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Preface

A Transition to Advanced Mathematics: A Survey Course promotes the goals of a
“transition” course in mathematics, helping to lead students from courses in the calculus
sequence to theoretical upper-level mathematics courses. The text simultaneously
promotes the goals of a “survey” course, describing the intriguing questions and
insights fundamental to many diverse areas of mathematics. Its only prerequisite is
single variable calculus, and there are many chapters, such as chapters 1, 2, 3, and 6,
that do not even require calculus. A hallmark of the book is its flexibility—an instructor
may choose to use the text in a variety of ways. The standard adoption would be for a
transition course, but this text could also be used in other settings.

A lack of diversity is perhaps the most noteworthy weakness in many institutions’
current introductory mathematics curricula. A significant number of students (indeed,
most people in the general population) have little understanding of the broad scope
of mathematics. Since many promising students never even complete the calculus
sequence, they drop out of mathematics before having had the opportunity to study
some mathematical field they would have loved. Calculus doesn’t stir everyone’s
imagination. Could a potential coding theory wizard have missed out on the fun of
public key cryptography? Has a potential complex analyst who could have proven the
Riemann hypothesis turned to another major? Has a potential logician who might have
followed in the footsteps of Gödel decided math was purely computational? In addition,
without a survey course, most mathematics majors do not possess an appreciation for
the multifaceted aspects of the study of mathematics—at least not until after they
have declared their major and taken a variety of upper-level courses. This situation
in mathematics stands in marked contrast to virtually every other area of academics,
where a survey course is among the regular course offerings. Surely our standard
undergraduate course offerings can do better? But how can we succeed in showing our
students the expansive vista of mathematics without a significant restructuring of the
curriculum?

The answer can come in many forms, and this text can help. Combining the
goals of a transition course with the desire to provide a survey of the subject,
A Transition to Advanced Mathematics: A Survey Course teaches proof writing,
reading, and understanding mathematics in the context of its many wonderful and
interesting subfields. And so the text is written primarily for use in a one-semester
transition course, enhancing that course by giving students a taste of the many areas
of mathematics. Learning to read and write proofs is an important yet challenging
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process; by embedding it in the study of interesting and diverse mathematics, this text
is designed to motivate and inspire students in their further studies.

Depending on how a department stresses theory at the junior-senior level, some
instructors may also wish to use the text in a survey course at the upper level. Students
who have seen only one or two advanced courses, such as differential equations or
complex analysis, would benefit from this text’s approach, as it promotes a training in
the abstract nature of the subject. The text would be terrific at a large university that
might offer many curricular tracks toward mathematical science majors. It also serves
small colleges well, including those institutions whose resources limit the possibility of
offering the full breadth of courses common in larger programs. The book could also be
used as a training tool in independent studies, where a bright student could work through
the sections by reading, answering questions, and working through selected exercises.
Or it would make an inspirational gift for a young person who has expressed an interest
in mathematics but is not yet a student in a four-year undergraduate program—anyone
who loves mathematics and wants to know more about mathematical thinking would
benefit from working through this text.

And so the main objective of the book is to bring about a deep change in
the mathematical character of students—how they think and their fundamental
perspectives on the world of mathematics. Instead of just calculating a derivative,
we want students to enjoy the theory that Newton and Leibniz developed, especially
as the theory leads to the techniques used in calculations. Instead of just knowing such
facts as the first three primes are 2, 3, and 5, we want students to respond well to the
variety of theoretical questions about primes, to formulate such questions on their own,
and to be impressed by and to understand key elements of the mathematical theory of
primes. In this way, we hope that working through the text will encourage students to
become mathematicians in the fullest sense of the word.

How can we bring about this change in our students? We believe this text promotes
three major mathematical traits in a meaningful, transformative way: to develop an
ability to communicate with precise language, to use mathematically sound reasoning,
and to ask probing questions about mathematics. These skills are the hallmarks of a
good mathematician.

Mathematicians live in a unique world. Our language is the natural language
of our culture (for most people in the United States and the United Kingdom this
language is English), but a mathematician’s use of this natural language is refined and
specific. Through the common consensus of professional researchers and teachers,
mathematical words and phrases are given precise, unambiguous interpretations,
making it crucial for a mathematician to be able to work carefully with formal,
rigorous definitions. With years of experience and practice, most mathematicians
naturally express themselves in this formal language, but at the same time, this
ability is an acquired skill that sometimes runs counter to the fluidity and adaptability
of our natural language. With care and practice, students can develop the ability
to write and speak well using the formal, explicit language of mathematics—
its terminology and symbols, its expression of deductive and inductive reasoning,
and its insistence on clarity and organizational neatness. A Transition to Advanced
Mathematics offers engagement in the necessary experience to develop a mathematical
voice.
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Similarly, a mathematician’s rational mode of thought is rooted in natural human
reasoning, but it also differs from that of the mainstream, being uniquely refined and
sophisticated. It searches for general truths that follow from deductive reasoning. The
creation of new mathematics often follows from leaps of intuitive insight based on
results gathered from examples. But examples are not enough. Centuries of experience
and practice have led mathematicians to rely on logical deductive arguments as the
litmus test for mathematical truth. These arguments are traditionally presented in
formal mathematical proofs. The format of this text encourages students to develop
the logical thought processes needed to reason through these proofs. The book
introduces the fundamentals of mathematical thought by placing the study of logic
(as a description of this formal deductive reasoning) up front. And it gives students
practice in applying mathematical arguments and proofs in the context of the broad
landscape of mathematical fields. A reviewer of this text recognized the strategy well
and wrote, “The justification for axiomatic reasoning … is clearest when there are
questions on the table that simply cannot be resolved in any way other than employing
the logical precision of a mathematical argument.” The text also encourages students
to learn to write proofs not for the sake of writing proofs, but because they see the
value of applying sound reasoning to intriguing mathematical questions. In short, the
book invites students to enter the ongoing mathematical dialogue with mentors and
colleagues.

Finally, mathematicians have an active curiosity and a constant desire to ask
questions. Mathematicians perceive a world of ideas to be grappled with, research
interests to be explored, and applications of theory to be determined. While much
great mathematics is already known, students need to understand that there is so
much more waiting to be discovered! Put succinctly, discovering patterns and forming
conjectures are essential to the pursuit of mathematical truth. A Transition to Advanced
Mathematics has many questions and exercises that promote the formulation of
reasonable hypotheses; diverse examples throughout the text help students begin
investigations of many different types of mathematical objects.

A Transition Course

A Transition to Advanced Mathematics nicely serves as a text for the “transition”
course now so common in many institutions’ undergraduate mathematics curriculum.
Usually offered at the sophomore level, a transition course bridges the gap between
computationally oriented lower-level courses and theoretically oriented upper-level
courses.

Most mathematics students begin their college career in a calculus sequence
that emphasizes computational problem-solving and applications of calculus methods.
There are many good reasons for beginning the undergraduate curriculum with this
sequence of courses. Students learn a lot of analysis and function theory by the end of
their second year, which provides them with good depth in one area of mathematics
and a great deal of experience in solving many problems at increasing levels of
sophistication. In addition, calculus is the field of mathematics that is most useful as a
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prerequisite for the physical sciences, engineering, the social sciences, and business.
Students majoring in these areas of study need to learn differential and integral calculus
by the end of their first year of college, and mathematics teachers across the country
do an excellent job of preparing these students for the rigors ahead.

On the other hand, as budding mathematicians our students should seek more
than just knowing what mathematical truths hold; they should want to understand why
mathematical truths hold. The good news is that computations and algorithms learned
in lower-level courses often contain the kernel of the ideas behind the truth of certain
mathematical statements. Thus, by working through calculations, students can develop
an insightful intuition about many mathematical truths. The next step for a student to
mature into a fully developed mathematician is to gain an ability to articulate precisely
reasoned arguments that explain and justify the mathematical idea under scrutiny.

Unfortunately, as many in the mathematical community have recognized, a focus
on the computational elements of calculus is not preparing students for this transition
into theoretically oriented upper-level courses. Many students enter courses on abstract
mathematics having minimal experience with either the deductive reasoning or the
abstract thought processes that are characteristic of proofs. Furthermore, many have
never been exposed to the experimentation and conjecture essential to the discovery
and creation of mathematics. This text is designed to bridge the gap and improve the
success of students in upper-level courses. By making mathematics enjoyable and
manageable, and by serving the need to train students in mathematics well, this book
is also intended to serve as the mathematical community’s much sought after “pump”
to bring more students into the mathematical fold. As they work through the text,
students hopefully will recognize that they are learning the art of mathematics, and,
like an apprentice artist, hopefully they will enjoy the resulting creations as they use
their “mathematical palette.”

In summary, as a text for a transition course, A Transition to Advanced Mathematics
encourages students to:

• Develop careful reasoning skills as the student is transitioning from com-
putationally oriented, algorithmic thinking to more sophisticated modes of
reasoning;

• Learn to read mathematics, specifically definitions, examples, proofs, and
counterexamples;

• Learn to write mathematics, primarily formal proofs, but also intuitive explana-
tions and conjectures.

A Survey Course

More than just serving as a text for a transition course, A Transition to Advanced
Mathematics is also designed to provide students with a broad survey of many
fundamental areas of mathematics. Students completing a calculus sequence may not
realize that mathematicians are a diverse lot with wide-ranging interests. Indeed, many
different areas of mathematics suit individual skills and insights as well as personal
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interests and temperaments. With the calculus sequence serving as the primary point
of entry to the mathematics major, many students are unaware of the marvelous variety
inherent in mathematics.

A Transition to Advanced Mathematics responds in a positive way to the need to
provide students with a broad survey of mathematical ideas and explorations, as it is
intended to:

• Provide students with a broad and comprehensive introduction to mathematics,
including both continuous and discrete mathematics;

• Introduce students to “upper-level” topics at an earlier stage in the mathematics
major;

• Create greater continuity and flow in the mathematics major, introducing various
topics, mathematical objects, and proof techniques multiple times at increasing
levels of sophistication.

The text responds to the mathematical community’s ambitious desire to show
students a vast array of mathematical ideas. In its writing, we had to decide which
topics to include and which to omit. Two questions guided the decision process: (1)
What fundamental ideas should all mathematics majors know when they complete their
undergraduate degree? (2) What ideas do mathematicians experience as intriguing,
exciting, and central to mathematics? In some ways, these questions may be highly
personal with subjective answers; very reasonable people may give very different
and equally compelling answers. This text offers an answer in a way that we believe
represents a thoughtful response of the full mathematical community. The answers have
naturally been guided by our own experiences, but they have also been informed by
discussions with many colleagues and friends, presentations and panels at national and
regional mathematics meetings, published statements of professional mathematical
societies, and our personal understanding of the consensus of the contemporary
mathematical culture. Some people may wish that we had included additional areas,
but we feel the text promotes mathematics in general and intends that students be
able to make the jump into areas not discussed in the book (such as general and
algebraic topology, differential geometry, non-Euclidean geometry, or relativity theory)
by having discussed the mathematics presented.

The following general descriptions of the chapters, together with the detailed
Table of Contents, present the balance we have struck between continuous and discrete
mathematical topics in light of the “survey” aspect of the course. We hope that this
panoramic view of the mathematics we know and love will intrigue, excite, and
ultimately encourage students to take up a more thorough study of the topics in
upper-level mathematics courses.

Suggestions for the Instructor

We wrote the text to give instructors options when using it in a one-semester course,
although it is impossible to teach every topic from every section in such a short time.
We intentionally provided plenty of material to allow for a follow-up study, such as an
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independent project for a student who might be excited about a mathematical problem
described in the readings. In this way, the book offers flexibility within a mathematical
curriculum; it will usually be used in a one-semester course, but some institutions may
have short terms where a follow-up course would fit in well.

The one-semester offering is the standard fare, and the book is designed for this
setting. An instructor can choose from the Contents in a variety of ways. Chapter 1
is required and needs to be discussed first, but then there are many options for the
way this book can be used. Use will typically depend on the needs of the department
and the curriculum, the interests of the instructor, the purpose of the course, and the
backgrounds of the students.Areviewer for the text said it best, “The beauty of this type
of text is that you can jump around, since … most of the chapters are self-contained.”
The flowchart, though it does not have to be followed, gives some guidance as to the
rough logical dependence of the chapters.

We believe that the heart of the course is in chapters 1–4, and these four chapters
could support a wonderful course in and of themselves. The first chapter is designed
to teach students to think mathematically and to prove mathematical theorems in the
context of mathematical logic. We chose to begin the book with symbolic logic because
we have found that students’ proof-writing skills improve tremendously when their
approaches are grounded in proper logical thought. The study of logic is rightfully
approached for its own sake as an interesting field of mathematics, and in this text it
doubles as an important tool to develop theorem-proving skills.

Chapter 1
Mathematical Logic.
Section 1.4 is optional

Chapter 2
Abstract Algebra.
Sections 2.5 and 2.6
are optional

Chapter 3
Number Theory.
Sections 3.2 and 3.3
are optional

Chapter 5
Probability and Statistics.
Sections 5.4 and 5.5
    are optional

Chapter 6
Graph Theory.
Sections 6.3 and 6.4
    are optional

Chapter 7
Complex Analysis.
Sections 7.4 and 7.5
    are optional

Chapter 4
Real Analysis.
Sections 4.6, 4.7,
and 4.8 are optional

The last section of chapter 1 is the most important in the book, in the sense that
it gathers the ideas from formal logic into a discussion of how to prove mathematical
theorems. It sets the stage for proving mathematical results in all other chapters.
Additional ideas introduced in chapter 1 include the sentential (or propositional) logic
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of connectives, truth tables, validity of arguments, Gödel’s incompleteness theorems,
and predicate logic. Nearly all of these topics are directly connected to learning about
the fundamental proof techniques of mathematics, and the text intends for students to be
motivated by seeing the value of symbolic logic throughout the study. An application
section explores the design of computer circuits via sentential logic and Karnaugh
maps. Not all of these topics need to be explored, and an instructor may choose to
omit many of the sections. A streamlined approach to chapter 1, for example, could
examine only sections 1.1, 1.2, 1.6, and 1.7. In the flowchart, we have listed section
1.4 as optional because we often choose to omit it, but a quick review of any chapter
will indicate that an instructor may pick and choose from the many topics found within
sections in a variety of ways.

Chapter 2 studies number systems as foundational to understanding mathematics.
The chapter explores the integers and other basic number systems from the perspective
of abstract algebraic properties and relations. These notions lead to important insights
that are applied in later chapters, especially chapter 3. The fundamental ideas
introduced in chapter 2 include a basic algebra of sets, Russell’s paradox, the division
algorithm, modular arithmetic, congruence of integers modulo n, equivalence relations,
proofs of the uniqueness of mathematical objects, dihedral groups, and the basic
notions of group theory. An application section explores a variety of check digit
schemes.

Chapter 3 is meant to be a lot of fun. It expands on chapter 2’s study of
number systems from the perspective of examining abstract algebraic properties,
including the exploration of solutions to polynomials. This theme is picked up on
in many later chapters, especially in the study of polynomials as functions. An
instructor can pick and choose from the many interesting, accessible, and historic
topics from number theory, including ideas on the infinitude of primes, the prime
number theorem, Goldbach’s conjecture, the fundamental theorem of arithmetic, the
Pythagorean theorem, solutions of basic Diophantine equations, fields, Fermat’s last
theorem (the proof is given for n = 4), the irrationality of the square root of two, the
classical fundamental theorem of algebra, Abel’s theorem, and the proof technique of
mathematical induction. An application section explores public key encryption (via
the RSA system) and Hamming codes, which require a short introduction to matrix
multiplication.

The mathematics developed during the Age of Enlightenment sets the stage for
the development of both calculus and the theory of transfinite numbers. Chapter 4
introduces the basic notions of real analysis that underlie calculus. An instructor can
choose to cover all of the topics in any section or simply focus on the basic definitions
provided. The ideas introduced in this chapter include Descartes’ development of
analytic geometry, the definition and properties of functions, the theory of inverse
functions, the definition and basic properties of limits, derivatives, and Riemann
integrals, the definitions of cardinality and countability, Cantor’s diagonalization
arguments to prove the countability of the rationals and the uncountability of the reals,
and a brief introduction to L2 spaces. An application section explores how differential
equations can model physical processes such as the motion of a clock pendulum.
The chapter assumes competency with topics found in a standard single-variable
calculus course. As for any of the chapters from chapter 4 on, an instructor may
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choose to stop at any midway point through the list of sections. When we teach
the one-semester course, we often decide to go on to chapter 5 after covering
section 4.6.

Chapters 5–7 are offered as sweet desserts. There are two distinct approaches to
these last three chapters of the text. When we teach the course, we like to choose at least
two or three sections from each of these chapters in order to give the students a taste of
the many different disciplines in mathematics. Our students value this exposure—they
say it helps them choose which courses they might later select from the upper-level
offerings. Alternatively, each of the chapters is a completely independent module and
can be studied in greater depth or omitted. Chapter 5 explores the mathematics of
likelihood and the long-term patterns in discrete events. The section on hypothesis
testing provides a mathematical approach to inductive thinking, parallel to the way
in which chapter 1 provides a mathematical approach to deductive reasoning. The
fundamental ideas introduced in this chapter include basic combinatorics, Pascal’s
triangle, the binomial theorem, basic probability, hypothesis testing, and least squares
regression. Many of the problems are computational, but the overriding framework of
hypothesis testing and many of the abstract notions of probability theory are presented.
This exposure is meant to assist greatly any student entering the corresponding upper
level course.

Chapter 6 introduces the study of graphs by indicating how they model and solve
real-world questions, beginning with the Königsberg bridge problem. In this way,
the chapter describes the mathematics of adjacency and the abstract descriptions of
networks of “connected” points (or objects). This chapter’s fundamental ideas include
the definition and basic properties of graphs, Eulerian and Hamiltonian circuits, trees
and spanning trees, and weighted graphs. The chapter presents many algorithms for
constructing shortest paths, spanning trees, Hamiltonian cycles, and minimum weight
versions of these objects in a given graph.

Chapter 7 presents an introduction to the theory of complex-valued functions,
teaching students about the basic algebra of complex numbers, single- and multivalued
functions such as nth roots, exponential, trigonometric, and logarithmic functions
and their graphical representation, analytic functions, partial differentiation and
the Cauchy–Riemann equations, power series representations of analytic functions,
harmonic functions, and the Laplacian. An application section explores the use of
streamlines and equipotentials to understand and model fluid flow.

Key Elements of the Text

We hope A Transition to Advanced Mathematics will be recognized as a clear and
cogent text in support of a transition course surveying mathematics. It is designed to
serve ideally in collaboration with mathematics professors helping students to explore
new mathematical vistas, to grow into the perspectives of the mathematician, and to
successfully practice mathematics. The following elements of the text are intended to
help facilitate this partnership between professor and text in the creation of a dynamic
and interesting learning experience.
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Embedded questions. In each section, after reading through the text and examples
that illustrate and explain fundamental concepts, students are invited to create and
display their personal understanding of the mathematical idea at hand by answering
questions. Many of these queries are straightforward and useful in providing good
introductory experiences with the new ideas at hand; as such, they can be assigned as
homework in preparation for class or used during class in the spirit of active learning
and engaged discussion. Some of them lead to a main idea of an upcoming proof. An
example is question 3.1.9 in section 3.1, which asks students about computations of
the form p1 · p2 · · · pn + 1 where each pk is prime—are integers of that form always
prime? (It is still an open question whether there are infinitely many primes in this
sequence.)

Reading questions. An effective pedagogical tool is to expect students to read the
text before coming to class and to be able to answer a collection of basic questions. We
always want our students to use a text more than as a reference for worked examples.
Reading comprehension questions at the end of each section ask for definitions,
examples, and the central ideas of the material, leading students to open the book
and read.

There are many ways for an instructor to use the reading questions. We assign them
before every class meeting and expect students to write their responses in complete
English sentences. Our hope is that students both learn the value of reading the book
and get practice in expressing mathematical concepts well. They also come better
prepared for class. In this way, teachers can respond to students’ questions and engage
the mathematical ideas at a much deeper level during class, and the students develop
the independent reading skills essential for more sophisticated mathematical studies.

Exercises. Every section is accompanied by 70 exercises that allow the professor
considerable flexibility in assigning homework and that give the reader practice. As
with any exercise set, the ultimate goal is to provide students needed practice to deepen
their understanding of the corresponding mathematical concepts. Instructors can pick
and chose from many different types of problems. The exercises are grouped according
to topic; if the instructor has focused on just part of the section’s material, it is easy to
pick out corresponding problems to assign.

The end of each exercise set always contains a variety of more challenging
exercises. These questions sometimes anticipate ideas in upcoming sections, require
the study and use of a new definition or idea, or ask students to make conjectures
based on some pattern arising from a collection of computations. Instructors could
occasionally use them to motivate students to pursue a topic in more detail, or as a
staging point for further investigations that might lead to a short paper or presentation.

An application section. Every chapter includes a section that explores an
application of the theoretical ideas under study. All involve interesting “real-world”
issues. Students are often surprised when theoretical notions find expression as a useful
tool in life. The text intends to teach students, as they see a variety of applications, to
view purely abstract, theoretical ideas as not antithetical to using mathematics to benefit
society. The intent is for students to begin to perceive pure and applied mathematics as
going hand in hand and strengthening one another in interplay: a search for applications
often results in the development of new theoretical ideas, and theoretical mathematics
often manifests itself as a critical underpinning of an applied tool.
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None of the application sections are required for the text’s other sections. When
we teach the course, we sometimes treat a chapter’s applied section in the same way
as the others in the chapter, but at other times we might simply ask our students to read
the section outside of class and submit the reading questions, or have them work in
teams to answer some of the exercises. Depending upon the instructor’s interests and
the parameters of the course, any applied section may be skipped.

Embedded reflections on the history, culture, and philosophy of mathematics.
Mathematics is a timeless study that has been gradually developed through the
corporate efforts of diverse individuals and cultures. The historical origins of
mathematical ideas and the accompanying cultural standards for definitions, examples,
and proofs are worthwhile and interesting and contribute to a student’s ability to
understand and appreciate contemporary mathematics. Throughout the text, we tell
stories about the struggles, the insights, and the people and events that helped shape
mathematics. Our hope is for students to enjoy the drama, getting a sense of the eureka
of mathematical breakthroughs and connecting proofs and mathematical statements
(so often presented as devoid of human emotion), and relating to the human lives of
the men and women who first presented them.
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1 Mathematical Logic

The formal study of logic is ancient, going back to at least the fourth century b.c.e.,
when Aristotle and his Greek compatriots sought to identify those forms of human
reasoning that are correct (or valid) and those that are not. Our motivation is similar.
In this text, we explore diverse areas of mathematics, identify new mathematical
objects, investigate the relationships among them, and develop algorithms to facilitate
their study. In short, we pursue mathematical truth. But more than just the “what” of
mathematical truth, we seek the “why” of mathematical truth. We develop an ability
to understand and prove theoretical mathematical results, including those that derive
the computational tools so useful in applied mathematics. Successful insight into this
theory of mathematics is essentially dependent on the use of correct reasoning.

And so our study of mathematical logic has two goals. The first is the study of logic
for its own sake, as a field of mathematics with interesting objects, algorithms, and
insights. The second goal is the study of logic as a tool and a language for understanding
legitimate forms of human reasoning; in this way, logic will facilitate our study of the
theory of mathematics in many different settings.

In writings such as Prior Analytics, Aristotle developed the insight that human
reasoning can itself be studied via reasoning: we can turn inward and examine how
we think. In fact, Aristotle believed that logic should be studied before pursuing
any other branch of knowledge. The next significant step forward in the study of
logic did not occur until 2,200 years later in the heady aftermath of the Scientific
Revolution. In the middle of the nineteenth century, the Irish mathematician George
Boole introduced the notion of a formal language with an accompanying algebra of
logic. Beginning with the seminal paper An Investigation of the Laws of Thought, on
Which Are Founded the Mathematical Theories of Logic and Probabilities, Boole and
his fellow mathematicians described how formal languages overcome the ambiguity
of natural languages and provide a more precise analysis of both our natural languages
and our reasoning processes.

Less than 40 years later, the Austrian mathematician Kurt Gödel’s study of formal
languages illuminated both the potential and the essential limitations of the human
mind as it operates within a formal system of logic. Gödel’s incompleteness theorems
demonstrate that some true mathematical statements are not provable (that is, they can
never be proven in a suitable formal system) and are among the most significant
mathematical and philosophical insights of the twentieth century. Within another

3
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40 years, the use of formal languages began playing a key role in the design of the
computer chips that are so essential to our technologically based society.

In this chapter, we develop a formal language in the spirit of Aristotle and Boole
known as “sentential” logic. We examine the interaction of sentential logic with our
natural language and our intuitive notion of truth. We develop an algebra of sentential
logic, explore the expressiveness of this language, consider an application to the design
of computer chips, and study common rules of natural deductive reasoning that are
valid. We also consider an extension of sentential logic known as “predicate” logic
that incorporates a finer analysis of sentence structure. We end this chapter with a
discussion of the fundamental proof techniques widely utilized by mathematicians.
By developing some sophistication in our ability to work with these techniques, we
assume the role of a theoretical mathematician as we apply formal reasoning to prove
the truth of mathematical statements.

Why should we begin this book with a chapter on logic? Most of you have recently
finished studying the intricacies of calculus, and (in high school) the ins and outs
of geometry, trigonometry, and advanced algebra. Perhaps this chapter may strike
you as the study of odd-looking symbols that seem to have little relevance to your
previous mathematics courses. But mathematics is, after all, the study of “mathematical
objects” such as numbers, which are only symbols—meaningless, except in their
definitions and relationships. And yet these objects become powerful tools in making
sense of our world. Proving statements about such objects is the primary concern of
theoretical mathematicians and forms the basis for any rational, deductive investigation
of mathematics. And so in this chapter we get down to basics: True, False, or Maybe.
We present mathematical logic as an essential tool that you can use in your attempts
to determine the truth of mathematical statements.

In the study of more advanced mathematical ideas, one can go off on tan-
gents that either have no basis in sound logic and are irrelevant, or that lead to
incorrect conclusions and are counterproductive. Mathematical logic can keep us
on track, and this chapter is then essential as the basis for your continuing study
of mathematics.

1.1 The Formal Language of Sentential Logic

The goal ofAristotle’s logic was the analysis of arguments constructed as a combination
of sentences in our natural language. There is a great deal of consistency across human
cultures and languages in how we reason; there is little difference between representing
the idea of argument with the word “logos” in Aristotle’s natural language of ancient
Greek and the word “argument” in our natural language of modern English. Rather, the
way that we construct and reason through arguments shares much in common with the
way Aristotle and others reasoned. This universality enables the success of sentential
logic as a fundamental tool in the study of human reasoning.

In common usage, the word “argument” carries a host of connotations, including
fights or emotional outbursts that may not involve any rational thought. In this study,
we are interested in arguments in the precise logical sense of the word. For us, an
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argument is a list of sentences. The last sentence is the conclusion and the previous
sentences include some premises or assumptions with some intermediate steps included
for clarity. Ideally, the conclusion follows from the set of premises via some valid means
of logical reasoning.

The first systematic study of arguments and deductive reasoning was undertaken
by the eminent Greek philosopher Aristotle in the third century b.c.e. Aristotle was
a philosopher who made important contributions to the development of all areas of
knowledge. The son of a physician, he was orphaned at a young age and raised by his
uncle. At 17 he became a student at Plato’s Academy in Athens, and he soon joined the
faculty of the Academy. Political unrest in Greece and Macedonia eventually forced
him to leave Athens, although he eventually returned to found his own school, the
Lyceum. Aristotle died at the age of 62—his legacy, in thinking of the way rational
thought is structured and in the workings of the mind on philosophical issues, continues
to have an important influence to this day.

In studying arguments, Aristotle focused his attention on a special type of
argument known as a syllogism, which consists of two premises and a conclusion,
and he developed the theory of syllogisms in his book Prior Analytics. The following
two examples of syllogisms are based on the work of the scholastic logicians of the
Middle Ages.

Every Greek is a person. Every Greek is a person.
Every person is mortal. Every Trojan is a person.
Thus, every Greek is mortal. Thus, every Greek is a Trojan.

On the surface, these two arguments appear quite similar, but your intuition may
identify an important difference between them. The first argument should seem “right”
(in fact, it is a valid argument), while the second should seem “wrong” (in fact, it is
invalid). We seek to understand and clarify this distinction between valid and invalid
arguments and to develop various approaches for identifying the validity of arguments
without having to rely exclusively on intuition.

Natural languages are often ambiguous and at times misleading. You may be able
to think of moments in your life when something you said was misinterpreted by
another person; storylines, from Shakespearean plays to soap operas, are often driven
by misunderstandings among characters. In real life we rely on context, voice inflection,
and further conversation to provide clarity, but these tools of extended communication
are not available in formal, written mathematical settings. The inherent ambiguity of
natural languages is one of the factors that prompted the creation of formal languages.
As mathematicians, we need to eliminate ambiguities in the language we use, which
we will do by controlling the structure allowed within the sentences we consider. The
first structure we will discuss is the “connective.” Without such control, ambiguity can
play havoc. The following questions verify that English really is an ambiguous natural
language.

Question 1.1.1 Consider the poorly written sentence “I am going to bike and run or swim.”

(a) Identify two distinct interpretations of the given sentence by inserting a pair
of parentheses in two different ways.
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(b) State English sentences that express the two distinct interpretations from part
(a) by inserting the pairs of words “either–or” and “both–and” into the given
sentence.

■

In this book, the symbol “■” indicates the completion of the task at hand, including
the end of either an example or a question, and the successful completion of a proof. As
we can see from the results of question 1.1.1, the words “and” and “or” play a crucial
role in determining our interpretation of a sentence. These words are connectives
in the natural language of English and are essential to obtaining an unambiguous
formal language. We typically think of connectives linking simple subject–verb–object
sentences, such as “I am going to bike” or “Bailey hiresAndy,” to create more complex,
compound sentences, such as “I am going to bike, and Bailey hires Andy.”

Question 1.1.2 In each sentence, try to identify the connective linking the simple component
sentences.

(a) Bailey hires Alex or Alex becomes a telemarketer.
(b) Alex does not become a telemarketer.
(c) Alex becomes a telemarketer if and only if Bailey hires Alex.
(d) Both Alex graduates from college and Bailey hires Alex.
(e) Bailey hires Alex if Alex graduates from college.
(f) Bailey hires Alex when Alex graduates from college.
(g) If Alex does not graduate from college, then Alex becomes a telemarketer.

■

Did you find all the connectives? Probably the most difficult to identify is the one-
place connective “not” in sentences (b) and (g). The five most common connectives
are “not,” “and,” “or,” “if–then,” and “if and only if.” These connectives are expressed
in many different ways in written and spoken English and you need to become familiar
with the corresponding variants. For example, the “if and only if” connective is often
expressed as “precisely when” or “exactly when” and the phrase “A if and only if B”
succinctly expresses “both if A, then B and if B, then A.” The formal language of
sentential logic uses the following symbols, known as logical connectives, to represent
the given English connectives and their variants.

English connectives Logical connectives Formal names

not ∼ negation
and, both–and, but ∧ conjunction
or, either–or ∨ disjunction
if–then, implies, if, when, only if → implication
if and only if, precisely when ↔ biconditional

Most of the time we can directly substitute a logical connective’s symbol for
the identified English words; the most important exceptions are “if” and “when”
(expressions of implication) as discussed in example 1.1.1 below. Plainly put,
“A when B” is the same as “B implies A.” Similarly, “A if B” means “B implies A.”
In the formal language, simple sentences are represented by upper case letters.
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For example, in one context, we might define A to represent “Alex graduates from
college,” while in another, we might define P to represent “The number n is prime.”
We refer to a collection of definitions assigning sentence symbols to particular English
statements as a dictionary. With these basics of our formal language in mind, we
reconsider the sentences from question 1.1.2.

Example 1.1.1 We use the given dictionary to translate each English sentence into sentential
logic.

A: Alex graduates from college.
B: Bailey hires Alex.
C: Alex becomes a telemarketer.

(a) Bailey hires Alex or Alex becomes a telemarketer. B ∨ C
(b) Alex does not become a telemarketer. ∼C
(c) Alex becomes a telemarketer if and only if Bailey hires Alex. C ↔ B
(d) Both Alex graduates from college and Bailey hires Alex. A ∧ B
(e) Bailey hires Alex if Alex graduates from college. A→ B
(f) Bailey hires Alex when Alex graduates from college. A→ B
(g) If Alex does not graduate from college, then Alex becomes

a telemarketer. (∼A)→ C

■

For sentence (d), an attempted translation of∧ A∧ B is incorrect since the logical
connective ∧ expresses the complete phrase “both–and” and is only written once as
A∧B. Sentences (e) and (f) illustrate the correct translation of the implication expressed
by “if” and “when”; for these sentences B → A would be an incorrect translation.
We must include parentheses in sentence (g) to avoid the potential ambiguity that
accompanies the use of multiple connectives. In this example, we must clarify the
correct translation as (∼A)→ C, rather than the incorrect translation of ∼ (A→ C),
which actually expresses: “It’s not the case that if Alex graduates from college, then
Alex becomes a telemarketer.” Sentences can also be translated in the other direction,
from sentential logic into English.

Example 1.1.2 We use the dictionary from example 1.1.1 to translate each formal sentence into
English.

• A ∨ (∼B): Alex graduates from college or Bailey does not hire her.
• A ∧ (∼C): Alex graduates from college, but does not become a telemarketer.
• B↔ [A ∨ (∼C)]: Bailey hires Alex precisely when either she graduates from

college or she does not become a telemarketer.
• A ∧ (B ∧ C): Alex graduates from college, and both Bailey hires her and she

becomes a telemarketer.
• (A ∧ B) ∧ C: Both Alex graduates from college and Bailey hires her, and she

becomes a telemarketer.
• A→ (B ∧ C): If Alex graduates from college, then both Bailey hires her and

she becomes a telemarketer.

■
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In light of the variety of English connectives, there are many possible translations
of these formal sentences. For example, we could translate the last sentence in
example 1.1.2 as: “Alex is hired by Bailey and becomes a telemarketer when she
graduates from college.” As translators, we are free to give such alternate renditions,
provided we carefully obtain an English sentence accurately expressing the precise
meaning of the formal sentence.

Question 1.1.3 Use the given dictionary to translate each English sentence into sentential logic
and each formal sentence into English. Some of these sentences are true and some
are false. We’ll grapple with those issues soon, but for the moment we focus on
the process of translation.

P: The number n is prime.
Q: The number n is rational. (Q is for “quotient.”)
S: The number n is the square root of an integer.
Z: The number n is an integer. (Zahlen is German for “count.”)

(a) The number n is a prime integer.
(b) The number n is rational exactly when n is the square root of an integer.
(c) If the number n is the square root of an integer but n is also an integer, then n

is prime.
(d) The number n is the square root of an integer and if n is an integer, then n is

prime.
(e) The number n is rational when n is the square root of an integer.
(f) Either the number n is prime and n is an integer, or n is rational.
(g) The number n is prime and either n is an integer or n is rational.
(h) P ∨ Q
(i) Q → [(∼P) ∧ S]
(j) P ↔ (∼Q)
(k) (∼P) ∨ [Z ∧ (∼Q)]

■

In the preceding examples and questions, dictionaries have been given to facilitate
the process of translation. Eventually you will create your own dictionary when
translating English sentences into the formal language of sentential logic. In such cases,
you must first identify the connectives in the sentences you are analyzing and then
represent the corresponding simple sentence components with appropriate sentence
symbols. For example, in the sentence “Two is even and two is prime,” we identify
the connective “and” and represent “Two is even” with E and “Two is prime” with P
to obtain the sentential logic rendition E ∧ P.

We now turn to a precise definition of sentential logic, also known as propositional
logic or statement logic. This formal language has two components: an alphabet
identifying the legal symbols that may be used, and sentences consisting of legal strings
of symbols from the alphabet. Throughout this section we have used uppercase letters as
sentence symbols. The formal language of sentential logic also uses lowercase letters
to represent unspecified simple sentences; that is, lowercase letters p, q, r represent
unspecified simple sentences in the same way that the variables x, y, z represent
unspecified numbers in algebra.
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Definition 1.1.1 The formal alphabet of sentential logic consists of exactly the following
symbols.

sentence symbols: A, B, . . . , Z

sentence variables: a, b, . . . , z

logical connectives: ∼, ∧, ∨, →, ↔
grouping symbols: (, ), [, ], {, }
In a formal sentence, we may use only these symbols; any other symbols

are “illegal” and should not be used. A single exception allows the indexing of
sentence symbols and sentence variables with subscripts if the situation warrants.
For example, we work with sentence variables p1, . . . , pn when describing generic
sentences.

Sentential logic also identifies a collection of “legal” sentences consisting of
certain strings of symbols from the alphabet. In the following definition, the symbols
B and C denote generic sentences and may be sentence symbols, sentence variables,
or compound sentences.

Definition 1.1.2 A sentence of sentential logic is a string of symbols from the alphabet of sentential
logic that satisfies the following:

(a) A single sentence symbol or a single sentence variable is a sentence;
(b) If B, C are sentences, then so are (∼B), (B ∧ C), (B ∨ C), (B→ C), and

(B↔ C);
(c) Only strings of symbols obtained by finitely many applications of (a) and

(b) are sentences.

When building up formal sentences, we carefully include parentheses as grouping
symbols at each step. However, for the sake of readability, we often abbreviate
sentences by omitting the outermost pair of parentheses. We also utilize the other
grouping symbols from the alphabet to facilitate clarity of expression; for example,
we may write [(∼A)→ C] for ((∼A)→ C).

Example 1.1.3 Every string of formal symbols introduced thus far in this section has been a
sentence. In contrast, the following strings of symbols are not sentences, since
they do not satisfy any of the forms given in definition 1.1.2.

Nonsentence Reason

A ∼ ∼ must precede, not follow sentence symbols
∼∧ A connectives cannot be adjacent
∨ p ∧ q ∨ must be between sentences
I LOVE MATH sentence symbols cannot be adjacent

■

In contrast to the nonsentence ∨ p ∧ q in example 1.1.3, the string (∼p) ∧ q is a
sentence since (∼p) is a sentence of the form (∼A), and if we label (∼p) as B and q
as C, then (∼p) ∧ q is of the form (B ∧ C).
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Question 1.1.4 Identify each string of symbols as a sentence or as a nonsentence. Give reasons
justifying your answer.

(a) A ∧ ( p ∨ A) (d) ((∼A) ∨ B)↔ (A→ B)
(b) A ∧ p ∨ A (e) ( p ∧ q)↔ (q ∨ p)
(c) A ∼∧B→ 6 (f) ( p & q)↔ (q ∨ p)

■

We end this section with a few thoughts about mathematical definitions. While
mathematics is a language rich in expression, mathematics is also quite focused and
precise in its use of words. In contrast to the adaptability and fluidity of word use
in natural languages, mathematicians generally assign one meaning to each technical
word in a given context via a formal definition. For example, in definition 1.1.2, we
specified the meaning of the word “sentence” in the context of sentential logic. In
mathematical conversation, the word “sentence” now identifies exactly the objects
specified in the definition—no more and no less—and mathematicians restrict the use
of the word “sentence” to precisely these objects.

While at times definitions may seem somewhat arbitrary, they are most often the
result of months (if not years and centuries) of discussion and reflection by researchers
and teachers of mathematics. The definitions we use in this text are consistent with the
common consensus of the mathematical community and should be learned and used
with care. Perhaps some day soon you will choose to join in the ongoing conversation
about mathematical ideas and craft definitions that arise in research ventures.

1.1.1 Reading Questions for Section 1.1

1. State two goals in studying mathematical logic.
2. Define an argument. What two types of sentences appear in an argument?
3. Give an example of an argument and identify the premises and conclusion.
4. Give an example of a syllogism.
5. What motivates our interest in developing formal languages?
6. Specify a natural language sentence with two distinct interpretations.
7. State both English and formal versions of the five connectives.
8. Discuss the relationship between the sentences “if A, then B,” “B if A,” and

“B when A.”
9. Identify the two components of a formal language.

10. State the symbols in the alphabet of sentential logic.
11. Define a sentence in the context of sentential logic.
12. Give an example of a sentence and a nonsentence of sentential logic.

1.1.2 Exercises for Section 1.1

In exercises 1–11, use the given dictionary to translate each English sentence into
sentential logic and each formal sentence into English.

C: Taylor is a college student.
L: Taylor is a natural leader.
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M: Taylor is a math major.
Q: Taylor will be qualified for a high-paying job.

1. Taylor is a college student.
2. Taylor is not a math major.
3. If Taylor is a math major, then she will be qualified for a high-paying job.
4. Taylor is not in college, but she is a natural leader.
5. Since Taylor is not in college, she will not be qualified for a high-paying job.
6. (L ∧M)→ Q
7. (L ∨M)→ Q
8. ∼ (C → Q)
9. (∼C)→ (∼Q)

10. (∼M)→ [(∼L) ∨ (∼Q)]
11. C ↔ L

In exercises 12–22, use the given dictionary to translate each English sentence into
sentential logic and each formal sentence into English. Note that some of these
assertions are mathematically true and some are false.

A: X is associative.
C: X is commutative.
F: X is a field.
G: X is a group.

12. If X is a group, then X is associative.
13. X is a group but is not commutative.
14. X is associative or commutative, but not both.
15. X is associative and commutative when X is a field.
16. X is a group does not imply that X is a field.
17. F ∨ G
18. C ∧ (∼A)
19. ∼ (A→ G)
20. (∼C)→ (∼F)
21. F → [(C ∧ A) ∧ G]
22. (F ∨ G)→ A

In exercises 23–33, use the given dictionary to translate each English sentence into
sentential logic and each formal sentence into English. Note that some of these
assertions are mathematically true and some are false.

B: A sequence {an} is bounded.
C: A sequence {an} converges.
D: A sequence {an} diverges.
M: A sequence {an} is monotone.

23. A sequence {an} converges or diverges.
24. A sequence {an} diverges exactly when it does not converge.
25. If a sequence {an} is bounded and monotone, then it does not diverge.
26. If a sequence {an} is not bounded and not monotone, then it does not converge.
27. A sequence {an} diverging does not imply it is unbounded.
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28. C → B
29. (∼D)↔ C
30. ∼[(∼M)→ D]
31. [(∼B) ∧M] → D
32. ∼[(M → B) ∨ (B→ M)]
33. D→ [(∼B) ∨ (∼M)]

In exercises 34–53, translate each English sentence into sentential logic.

34. A if and only if B, but not C.
35. R if both P and Q.
36. Either U or T , otherwise Q.
37. Neither L nor R, but not Z .
38. D or both Q exactly when S and X.
39. A otherwise not B.
40. C or not D.
41. Neither E nor F, or G.
42. Either not H or both I and if

J then K .
43. Y if and only if both Z and W

implies X.

44. If H, then either J or both K and L.
45. Either if H, then J or both K and L.
46. If H, then either J or K , but not L.
47. If either H or J , then both

K and L.
48. If H, then either both J and K or L.
49. p if both q and r.
50. p when q, or r.
51. If either p or q, then r exactly

when s.
52. p or q, if and only if not r.
53. Neither p nor q, but not r.

In exercises 54–63, identify each string of symbols as a sentence or as a nonsentence.
Recall that the outermost pair of parentheses may be dropped. Give reasons justifying
your answer.

54. ∼A→ B
55. (∼A)→ B
56. ∼ (A→ B)
57. ∼∼A→∼∼A
58. (A↔ A) ∨ [∼ (B ∧ C)]

59. A↔∼[B ∧ (∼C)]
60. A→ [p ∧ (∼B)]
61. p↔ P ∧ B
62. MATH IS AWESOME
63. logic is fun

Exercises 64–66 explore the ambiguity of the English language with respect to
connectives.

64. State a natural language sentence with exactly five distinct interpretations.
65. How many connectives are necessary to create a natural language sentence

with exactly 14 distinct interpretations?
66. State a natural language sentence with exactly three distinct interpretations.

Exercises 67–70 outline a “proof by induction” that the number of left parentheses in
any sentence is the same as the number of right parentheses. The technique of proof
by induction will be studied in section 3.6. In this context, do not drop the outermost
pair of parentheses from a formal sentence.

67. How many left parentheses and how many right parentheses appear in an
individual sentence symbol (for example, A by itself) or in an individual
sentence variable (for example, p by itself)?

68. Assume that B has m left parentheses and m right parentheses. How many left
parentheses appear in (∼B)? How many right parentheses appear in (∼B)?
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69. Assume that B has m left parentheses and m right parentheses and that C has
n left parentheses and n right parentheses. How many left parentheses appear
in (B ∧ C)? How many right parentheses appear in (B ∧ C)?

70. Following the model given in exercise 69, argue that (B ∨ C), (B → C),
(B↔ C) each have the same number of left and right parentheses. Conclude
from exercises 67–70 that any sentence has the same number of left and
right parentheses.

1.2 Truth and Sentential Logic

Mathematicians seek to discover and to understand mathematical truth. The five
logical connectives of sentential logic play an important role in determining whether
a mathematical statement is true or false. Specifically, the truth value of a compound
sentence is determined by the interaction of the truth value of its component sentences
and the logical connectives linking these components. In this section, we learn a
truth table algorithm for computing all possible truth values of any sentence from
sentential logic.

In mathematics we generally assume that every sentence has one of two truth
values: true or false. As we discuss in later chapters, the reality of mathematics is
far less clear; some sentences are true, some are false, some are neither, while some
are unknown. Many questions can be considered in one of the various interesting
and reasonable multi-valued logics. For example, philosophers and physicists have
successfully utilized multi-valued logics with truth values “true,” “false,” and
“unknown” to model and analyze diverse real-world questions. In this book, we keep
our study immediately relevant to the most common needs in mathematics by assuming
a two-valued logic with truth values “true” denoted by T , and “false” denoted by F.
In a given setting, one of these two truth values is assigned to each sentence symbol
(A, B, . . . , Z), while sentence variables (a, b, . . . , z) are free to assume either truth
value. We use truth tables to determine the truth value of sentences built up from
sentence symbols, sentence variables, and logical connectives.

We begin by stating the distinct truth table for each logical connective. In defining
these basic truth tables, an intuitive understanding of connectives in our natural
language drives the interpretation of connectives in the formal language of sentential
logic, and so we appeal to our intuition in motivating our formal definitions.

First, consider negation, the “not” connective denoted by ∼. Negation switches
truth values. For example, if “The number n is prime” is true, then “The number n is
not prime” is false; that is, if P is true, then ∼P is false. Similarly, if “The number
n is prime” is false, then “The number n is not prime” is true; that is, if P is false,
then ∼P is true. We express this analysis both as a phrase to aid memorization and as
a truth table.

∼ swaps truth values
p ∼p
T F
F T
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This basic truth table uses the sentence variable p, since p (as a variable) is free
to assume either truth value T or F, enabling a complete analysis of the negation
connective. In addition, the truth table has only two rows, since p is the only sentence
variable in the sentence ∼p.

With this definition in hand, we no longer need to rely on intuition when
interpreting the negation connective in a sentence. Instead, the truth table for negation
has mathematically formalized the interpretation of negation when computing the
truth of sentences. We refer to this truth table when a negation appears in a sentence,
an approach which is particularly helpful when working with elaborate compound
sentences. By developing similar truth tables for the other logical connectives and
capturing our natural intuitions about these connectives, we establish the complete
tools for developing an algebra of truth for sentential logic.

Turning to the other connectives, consider conjunction, the “and” connective
denoted ∧. We interpret p ∧ q as true exactly when both p and q are true. If p is
false or if q is false or if both p and q are false, then p ∧ q is false. As above, we
gather this analysis (and the results of a similar analysis for the other connectives) into
a collection of phrases and truth tables.

∧ is T if
both T and
F otherwise

p q p ∧ q
T T T
T F F
F T F
F F F

∨ is F if
both F and
T otherwise

p q p ∨ q
T T T
T F T
F T T
F F F

→ is F if
T → F and
T otherwise

p q p → q
T T T
T F F
F T T
F F T

↔ is T if
the same and
F otherwise

p q p ↔ q
T T T
T F F
F T F
F F T

Since each sentence in the above chart has two sentence variables, there are four
rows in each truth table. In particular, each sentence variable can be either true or false,
resulting in the four possible permutations of truth values: TT , TF, FT , FF. The left
columns in each truth table list these four possibilities. We think of a truth table with
permutations TT , TF, FT , FF (in this order) as the standard truth table for a sentence
with two variables. You should mirror this pattern in your truth table computations to
facilitate comparisons among sentences.

The truth tables for disjunction and implication warrant further comment. For the
disjunction p∨ q, note that there are two standard yet very different usages of the word
“or” in our natural language of English. For example, suppose you are eating at your
favorite fast food restaurant and the server asks you two questions:

• Would you like french fries or onion rings with your value meal?
• Would you like cream or sugar with your coffee?
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In response to the fries–rings question, you can ask for fries or for onion rings, but not
both, and you would not be upset that you can only have one; we refer to this use of
disjunction as an exclusive-or. In contrast, in response to the cream–sugar question,
you can ask for cream or sugar or both, and opting for both is a common choice among
coffee lovers; we refer to this use of disjunction as an inclusive-or. In everyday life,
context and social norms typically clarify this potential ambiguity in the use of “or.”
However, for our formal language, we must avoid such ambiguity and choose just one
of these two options as the standard for all disjunctions. Over time, mathematicians
and philosophers have adopted the inclusive-or as the standard interpretation of “or,”
and so we define p ∨ q as true when p is true, when q is true, or when both p and q
are true.

In standard mathematical practice, the implication p → q is the most important
logical connective. Mathematics is essentially a science of implications in which we
explicitly identify assumptions and establish the conditional truth of mathematical
statements. The first two lines of the truth table for implication match most
people’s intuitions: “true implies true” is true and “true implies false” is false.
But, why should “false implies true” or “false implies false” be defined as a
true statement?

A couple of examples may clarify this choice. First, consider a common “bribe”
offered by parents to their children: “If you behave in the store, then we will stop for
ice cream.” If the child does not behave in the store, the parents’ statement would
be considered true not only if they do not stop for ice cream (the “false implies
false” case), but even if, in a moment of benevolent generosity, they do stop for ice
cream (the “false implies true” case). In particular, the parent’s statement is false
only when the child behaves in the store, but they do not stop for ice cream (the
“true implies false” case). Similar situations arise quite frequently in mathematics.
For example, consider the assertion “If n ≥ 3, then n2 ≥ 4.” This statement is true
even for n = 1, when n ≥ 3 is false and n2 ≥ 4 is false (the “false implies false”
case); similarly, it is true for n = 2, when n ≥ 3 is false and n2 ≥ 4 is true (the “false
implies true” case). In short, both “false implies true” and “false implies false” are
considered true.

We now focus on the mechanics of using the five basic truth tables to compute
the truth of compound sentences. This analysis is based on both the truth value of the
component sentences and the logical connectives linking them.

Example 1.2.1 We compute the truth table for (∼p) ∨ q.
The two sentence variables p and q generate the 2× 2 = 22 = 4 permutations

of truth values TT , TF, FT , FF in the corresponding truth table. After listing
these permutations, we begin with the innermost connective (the connective
farthest inside the parentheses—in this case the negation ∼ on p) and work
our way out through any other connectives (in this case, the disjunction ∨). We
compute one row at a time, applying the corresponding basic truth tables to the
particular truth values given in the appropriate columns of the truth table. For
this sentence, the operation of the innermost connective (the negation of p with
truth values in the first column) is given in the third column. The effect of the
next connective (the disjunction of the third and second columns) follows in the
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final (fourth) column.

p q ∼p (∼p) ∨ q
T T F T
T F F F
F T T T
F F T T

■

Example 1.2.2 We compute the truth table for (∼p) ∧ p.
The one sentence variable p generates the two rows of the corresponding

truth table. As in example 1.2.1, the innermost connective is ∼and the outermost
is ∧. First, the operation of the innermost connective (the negation of p with truth
values in the first column) is given in the second column. The effect of the next
connective (the conjunction of the second and first columns) follows in the final
(third) column.

p ∼p (∼p) ∧ p
T F F
F T F

■

Example 1.2.3 We compute the truth table for ( p ∧ q) → r.
The three distinct statement variables p, q and r generate the 2 × 2 × 2 =

23 = 8 permutations of truth values in the corresponding truth table. For this
sentence, the innermost connective is ∧ and the outermost is→. The construction
of the truth table proceeds as above, starting with the computation for the innermost
connective (the conjunction of the first and second columns) in the fourth column
and working outward to the next connective (the implication of the fourth and
third columns) in the final (fifth) column.

p q r p ∧ q ( p ∧ q) → r
T T T T T
T T F T F
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

■

As can be seen from these three examples, the number of variables in a sentence
determines the number of rows in the corresponding truth table. In fact, if a sentence
has n variables, the truth table for the sentence has 2n rows. The proof of this numerical
relationship uses mathematical induction and is discussed in section 3.6.
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Example 1.2.4 Another variation of the truth table question occurs in the context of sentences
blending sentence symbols (which have a fixed, known truth value) with sentence
variables (which are unspecified and may be either true or false). For example,
if A has truth value T and B has truth value F, we compute the corresponding truth
table for (A ∨ p)→ B.

p A B A ∨ p (A ∨ p)→ B
T T F T F
F T F T F

■

Question 1.2.1 Compute the truth table for each formal sentence.

(a) (∼p) ∨ p (b) (∼p) ∧ (∼q)
■

Reflecting on the previous examples and questions, notice that some of the truth
tables we have computed possess interesting and important features. In example 1.2.2,
we found that the truth table for (∼p)∧ p has all F’s in the its final column. Similarly,
in question 1.2.1, the truth table for (∼ p) ∨ p has all T ’s in its final column. These
are special events for sentences and (as with many special events) such sentences are
given distinctive names.

Definition 1.2.1 • A tautology is a sentence that has truth value T for every assignment of truth
values to its sentence variables.

• A contradiction is a sentence that has truth value F for every assignment of
truth values to its sentence variables.

• A contingency is a sentence that has truth value T for at least one assignment of
truth values to its sentence variables and truth value F for at least one assignment
of truth values to its sentence variables.

Example 1.2.5 From question 1.2.1, the truth table for (∼p)∨ p has all T ’s in its final column, and
so (∼p)∨ p is a tautology. From example 1.2.2, the truth table for (∼p)∧ p has all
F’s in the its final column, and so (∼p)∧ p is a contradiction. From example 1.2.1,
the truth table for (∼p)∨q has both T ’s and F’s in its final column, and so (∼p)∨q
is a contingency.

■

Question 1.2.2 Compute the truth table for each sentence and identify each as a tautology, a
contradiction, or a contingency.

(a) p↔ (∼p) (c) p↔ ( p ∨ q)
(b) p↔ p (d) p↔ ( p ∧ q)

■

We finish this section by defining an important relationship between sentences
based on their truth tables. When two sentences have identical final columns in their
respective truth tables, we identify them as “the same” in the algebra of logic. This
insight motivates the following definition.
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Definition 1.2.2 Sentences B and C are logically equivalent if the standard truth tables for B and
C have the same final column. We write B ≡ C to denote that B and C are logically
equivalent.

The use of the word “if” in mathematical definitions (as in the preceding definition
of logical equivalence) is a common practice in mathematical discourse and is always
interpreted to mean “if and only if.” This broader interpretation of “if” is used only in the
context of definitions, while for theorems, lemmas, and other mathematical statements,
we adhere to the strict, formal interpretation of the if–then logical connective. Thus,
when we are reading a mathematical definition and encounter the word “if,” we read the
definition as an “if and only if” statement asserting the exact meaning of the identified
word, allowing us to move freely back and forth between the defined word and the
definition.

For example, if two sentences are logically equivalent, then the two sentences
have the same final column in their standard truth tables. In addition, if two sentences
have the same final column in their standard truth tables, then the two sentences are
logically equivalent. You will want to develop a facility in this process of transitioning
back and forth between defined mathematical words and the corresponding formal
definitions.

We develop a good understanding of logical equivalences by considering some
pairs of sentences that are logically equivalent, and some that are not.

Example 1.2.6 We prove that ( p→ q) ≡ [(∼p) ∨ q].
The basic truth table for the implication p→ q and the standard truth table

for (∼p)∨ q given in example 1.2.1 have the same final columns, as demonstrated
below.

p q p→ q
T T T
T F F
F T T
F F T

p q ∼p (∼p) ∨ q
T T F T
T F F F
F T T T
F F T T

■

Example 1.2.7 We prove that both [(∼p) ∨ p] 	≡ [(∼p) ∨ q] and [(∼p) ∨ p] 	≡ ( p→ q).
Using the result of example 1.2.6, neither ( p→ q) nor [(∼p)∨ q] is logically

equivalent to a contradiction. A contradiction has truth value F in every row of
the final column of its standard truth table, while both of these sentences have
T in the first row (and also in the third and fourth rows) of their respective final
columns. In example 1.2.2, we found that (∼p)∧p is a contradiction.Alternatively,
observe that the first sentence in each pair has one sentence variable, while the
second sentence has two sentence variables, and so they cannot be logically
equivalent.

■

A particularly important pair of logical equivalences is referred to as De Morgan’s
laws in honor of the nineteenth century English mathematician Augustus De Morgan,
who first identified the significance of these relations for mathematical logic, set theory,
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and general mathematical discourse. De Morgan was born in India while his father was
serving as an officer in the military, and shortly after birth lost sight in his right eye.
While a child, he showed no particular aptitude for academics or athletics, but in 1823
he entered Trinity College of Cambridge University. In 1827, while only 21 years old,
De Morgan was appointed as the first professor of mathematics at the newly founded
University College London. As a research mathematician, De Morgan is best known
for his contribution to mathematical logic, mathematical induction, and the study of
algebras. He was also a prolific writer and was a co-founder and the first president of
the London Mathematical Society. De Morgan loved mathematical trivia, and noted
that he was x years old in the year x2 (he was 43 in 1849); people born in 1980 share
this in common with De Morgan (they will be x = 45 in x2 = 452 = 2025).

Question 1.2.3 De Morgan’s laws De Morgan’s laws specify how negation distributes across
conjunctions and disjunctions, changing the primary connective. Verify that the
sentences in each of the following pairs are logically equivalent by computing the
corresponding truth tables.

(a) [∼ ( p ∧ q)] ≡ [(∼p) ∨ (∼q)] (b) [∼ ( p ∨ q)] ≡ [(∼p) ∧ (∼q)]
■

1.2.1 Reading Questions for Section 1.2

1. State the two truth values of sentential logic. How are they represented?
2. Give an example of a setting in which a three-valued logic might prove useful.
3. State the basic truth tables for the five logical connectives ∼, ∧, ∨, →,

and↔.
4. Define the standard truth table for a sentence with two variables.
5. What is the relationship between the number of variables in a sentence and

the number of rows in the corresponding truth table?
6. Discuss the distinction between an inclusive-or and an exclusive-or.
7. Discuss the definition of the truth table for the implication p→ q.
8. Define and give examples of a tautology, a contradiction, and a contingency.
9. Give natural language examples of a tautology, a contradiction, and a

contingency.
10. Define logically equivalent sentences.
11. Give an example of a pair of sentences that are logically equivalent and a pair

that are not.
12. State De Morgan’s laws in both sentential logic and English.

1.2.2 Exercises for Section 1.2

For exercises 1–20, compute the truth table for each sentence and identify each sentence
as a tautology, a contradiction, or a contingency.

1. p↔ (∼p)
2. p ∧ ( p→ p)
3. ∼[(∼p)→ p]

4. [p→ (∼p)] ∨ p
5. (∼p)→ q
6. p↔ (∼q)
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7. p→ (q→ p)
8. ∼[p→ ( p ∨ q)]
9. ( p↔ q)↔ (∼p)

10. ( p ∨ q) ∨ (∼p)
11. [( p→ q) ∧ (∼q)] → p
12. ( p ∨ q) ∧ [(∼p) ∧ (∼q)]
13. ( p ∨ r)↔∼{[(∼p) ∧ (∼r)]}
14. [q↔ r] ↔ [(∼q) ∧ r]

15. ( p ∧ q) ∨ r
16. ( p ∧ q)→ [(∼q) ∧ r]
17. ( p↔ q)↔ (∼r)
18. ( p ∨ r)→ (q ∧ r)
19. {p→ [∼ (q ∧ r)]} →

(r → p)
20. {p→ [q ∧ (∼r)]} →
[(∼q)→ (∼p)]

In exercises 21–42, determine if each pair of sentences is logically equivalent by
computing the corresponding truth tables. Some pairs of sentences have names
associated with them to facilitate their use later in the text.

21. Double negation: ∼ (∼p); p

22. De Morgan’s laws: ∼ ( p ∧ q);
(∼p) ∨ (∼q)

23. De Morgan’s laws: ∼ ( p ∨ q);
(∼p) ∧ (∼q)

24. p ∧ q; p

25. p ∨ q; p

26. Commutativity: p ∧ q; q ∧ p

27. Commutativity: p ∨ q; q ∨ p

28. Associativity: ( p ∧ q) ∧ r;
p ∧ (q ∧ r)

29. Associativity: ( p ∨ q) ∨ r;
p ∨ (q ∨ r)

30. p ∧ (q ∨ r); ( p ∧ q) ∨ r

31. Distributivity: p ∧ (q ∨ r);
( p ∧ q) ∨ ( p ∧ r)

32. Distributivity: p ∨ (q ∧ r);
( p ∨ q) ∧ ( p ∨ r)

33. p ∨ (q ∧ r); ( p ∨ q) ∧ r

34. ( p→ q) ∧ p; q

35. Contrapositive: p→ q;
(∼q)→ (∼p)

36. Inverse: p→ q;
(∼p)→ (∼q)

37. Converse: p→ q; q→ p

38. Implication expansion: p→ q;
(∼p) ∨ q

39. p→ q; ∼[p ∧ (∼q)]
40. ∼ (q→ p); (∼p)→ (∼q)

41. Biconditional expansion: p ↔ q;
( p→ q) ∧ (q→ p)

42. p↔ q; (∼p)↔ (∼q)

In exercises 43–52, compute the truth table for each sentence under the assump-
tion that sentence symbol A has truth value T and sentence symbol B has truth
value F.

43. A→ (∼B)
44. (A ∧ B) ∨ (∼B)
45. A→ p
46. p→ B
47. p→ (A ∨ B)

48. p→ (A ∧ B)
49. A↔ [p ∨ (∼B)]
50. (B ∧ p)→ (∼A)
51. [∼ (B ∧ q)] → (A↔ p)
52. (A ∧ p)→ (q ∨ B)

Exercises 53–55 show that logical equivalence is an “equivalence relation” (an
important concept discussed in section 2.3) sharing three key properties in common
with the standard equality relation =. Verify that ≡ satisfies each property for formal
sentences B, C, and D from sentential logic.

53. Prove B ≡ B.
54. Prove that if B ≡ C, then C ≡ B.
55. Prove that if B ≡ C and C ≡ D, then B ≡ D.
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In exercises 56–57, let B and C be formal sentences from sentential logic and use the
definitions of tautology and logical equivalence to prove each statement.

56. If B ≡ C, then B↔ C is a tautology.
57. If B↔ C is a tautology, then B ≡ C.

Exercises 58–70 consider the truth functional rendition of the basic truth tables. The
basic truth tables can be thought of as defining functions on truth values as illustrated
in the following two examples.

f∼(T ) = F f∼(F) = T
f∧(T , T ) = T f∧(T , F) = F f∧(F, T ) = F f∧(F, F) = F

In exercises 58–60, follow the model given for f∼and f∧ and define each truth function
on the four distinct ordered pairs of Ts and Fs.

58. f∨
59. f→
60. f↔

In exercises 61–66, use the examples and your answers from exercise 58–60, to
compute the value of each composite function.

61. f∧(f∼(T ), F)
62. f↔(f∼(T ), f∧(T , T ))
63. f→(f∨(T , F), f∧(F, T ))

64. f∨(f∼(T ), f∼(F))
65. f∼(f↔(T , F))
66. f∼(f→(f∼(T ), F))

In exercises 67–70, determine the function resulting from each composition or explain
why the function is not defined.

67. f∼◦ f∧
68. f∧ ◦ f∼

69. f∨ ◦ f∼
70. f∼◦ f∨

1.3 An Algebra for Sentential Logic

In 1854 George Boole published his groundbreaking work An Investigation of the
Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and
Probabilities [22]. In this book, Boole developed an algebra of logic for manipulating
and simplifying formal sentences. Boole was born in Lincolnshire, England in 1815
and, due to financial constraints, was essentially a self-taught mathematician of
extraordinary accomplishments. From the age of 16, Boole supported his parents
and siblings by running a series of day and boarding schools. During this time he
began studying and researching mathematics, eventually winning the Royal Society’s
Royal Medal in 1844 for a paper On a general method of analysis applying algebraic
methods to solve differential equations. In 1849 Boole was appointed the first professor
of mathematics at the newly founded Queen’s College in Cork, Ireland. He taught in
Cork for the rest of his life, earning a reputation as an outstanding teacher while
remaining a prolific researcher. At the relatively young age of 49, Boole died of a fever
after walking from his home to the College in a soaking rainstorm.
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Boole’s algebra enables an analysis of the reasoning processes fundamental to the
pursuit of mathematical truth. Through the subsequent efforts of Augustus De Morgan,
Gottlob Frege, Charles Pierce, and other logicians, Boole’s initial work ultimately led
to a variety of results, including Gödel’s incompleteness theorems (which demonstrate
that some true mathematical statements can never be proven in any formal system of
logic). In this section, we describe an algebra of sentential logic in the spirit of Boole
based on the notion of logical equivalence. We also develop an ability to manipulate
the logical connectives appearing in sentences, transforming complex sentences into
simpler sentences.

Working with this algebra of sentential logic, we also address a fundamental
question about the “expressiveness” of our set of connectives. In the last section,
our investigations focused on constructing truth tables to determine all possible truth
values for a given formal sentence. In this section, we take up the question of turning
this process around and ask, “Given a truth table, can we find a sentence satisfying
the truth table?” We show the set of five basic logical connectives {∼,∧,∨,→,↔}
is adequate in the sense of possessing enough expressive power to identify a sentence
that satisfies any given truth table. We will see that this set of connectives is redundant
in the sense that some proper subcollections are also adequate. Armed with the algebra
of sentential logic, we identify new adequate sets of connectives by reducing them to
known adequate sets of connectives. As we highlight in the exercises, we can even
define new connectives “nand” and “nor” that, taken by themselves, form an adequate
set of connectives! Besides being of academic interest, we will see in the next section
that these ideas play an essential role in the design of computer circuits.

The algebra of sentential logic is based on the notion of logical equivalence and
is really quite similar to the standard algebra of numbers and variables. For example,
we can expand (2x)2 = 4x2 using either of the algebraic identities (ab)2 = a2b2 or
(a + b)2 = a2 + 2ab + b2. Similarly, in the setting of sentential logic, we utilize
known logical equivalences to manipulate and simplify formal sentences. In this way,
logical equivalence describes a relationship between formal sentences in sentential
logic. Consider the following example.

Example 1.3.1 We simplify [∼ (∼p)] ∨ p.

∼ (∼p) ∨ p ≡ p ∨ p since [∼ (∼p)] ≡ p
≡ p since p ∨ p ≡ p

■

As can be surmised from example 1.3.1, we must know certain basic logical
equivalences in order to perform such algebraic manipulations. In section 1.2, we
began developing a familiarity with various logical equivalences. For ready reference,
we gather together the most important and frequently used logical equivalences in the
following table.

Formal name Logical equivalence

Double negation ∼ (∼p) ≡ p

De Morgan’s laws ∼ ( p ∧ q) ≡ (∼p) ∨ (∼q)
∼ ( p ∨ q) ≡ (∼p) ∧ (∼q)
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Formal name Logical equivalence

Implication Expansion p→ q) ≡ (∼p) ∨ q
Contrapositive ( p→ q) ≡ (∼q)→ (∼p)
Biconditional Expansion ( p↔ q) ≡ ( p→ q) ∧ (q→ p)

Commutativity ( p ∧ q) ≡ (q ∧ p)
( p ∨ q) ≡ (q ∨ p)

Associativity ( p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
( p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributivity p ∧ (q ∨ r) ≡ ( p ∧ q) ∨ ( p ∧ r)
p ∨ (q ∧ r) ≡ ( p ∨ q) ∧ ( p ∨ r)

Tautology p ∨ (∼p) ≡ T
Contradiction p ∧ (∼p) ≡ F

Simplification p ∧ T ≡ p and p ∧ F ≡ F
p ∨ T ≡ T and p ∨ F ≡ p

Many of the names assigned to these logical equivalences correspond to the names
mathematicians have given to similar properties in other algebraic settings. We will
want to become adept at referencing these properties and transitioning from one version
of a logical equivalence to another.

Example 1.3.2 We prove that [∼ (p ∨ q)] → (∼q) is logically equivalent to the tautology T .

[∼ (p ∨ q)] → (∼q) ≡ {∼[∼ (p ∨ q)]} ∨ (∼q) Implication expansion
≡ (p ∨ q) ∨ (∼q) Double negation
≡ p ∨ (q ∨ (∼q)) Associativity
≡ p ∨ T Tautology
≡ T Simplification

As with standard algebraic manipulations, there is often more than one path to
an answer; the following is another approach to demonstrating this same logical
equivalence.

[∼ (p ∨ q)] → (∼q) ≡ [∼ (∼q)] → {∼[∼ (p ∨ q)]} Contrapositive
≡ q→ ( p ∨ q) Double negation (twice)
≡ (∼q) ∨ ( p ∨ q) Implication expansion
≡ (∼q) ∨ (q ∨ p) Commutativity
≡ [(∼q) ∨ q] ∨ p Associativity
≡ T ∨ p Tautology
≡ T Simplification

■

Example 1.3.3 We identify a sentence logically equivalent to p ∧ q that uses only the logical
connectives ∼and ∨.

p ∧ q ≡ [∼ (∼p)] ∧ [∼ (∼q)] Double negation (twice)
≡ ∼[(∼p) ∨ (∼q)] De Morgan’s laws

■
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The two De Morgan’s Laws express the relationship between ∧ (conjunction)
and ∨ (disjunction) using ∼ (negation). We make frequent use of this pair of logical
equivalences in transitioning between conjunction and disjunction.

Question 1.3.1 Identify a formal sentence logically equivalent to each sentence that uses only the
logical connectives ∼and ∧.

(a) p ∨ q Hint: Use double negation and De Morgan’s laws.
(b) p→ q Hint: Use implication expansion and De Morgan’s laws.
(c) p↔ q Hint: Use biconditional expansion.

■

This algebra of logical equivalence enables us to examine the expressive-
ness of the connectives in the formal language of sentential logic. For example,
since ( p→ q) ≡ [(∼p) ∨ q], can we drop the implication (the “if–then” connective
denoted→) from the set of connectives and make do with just using negation (the “not”
connective denoted ∼) and disjunction (the “or” connective denoted ∨) whenever we
need an implication? On the other hand, perhaps we would prefer to drop disjunction
and express all disjunctions in terms of negations and implications? In the context of
logical equivalence, the strongest rendition of this question of expressiveness is:

Can we find a sentence satisfying any given truth table?

In fact, we can produce such a sentence and, even better, we can accomplish this
task for every given truth table using the same standard algorithm. First, we identify a
collection of conjunctions (based on the truth values of the variable in each of the “true”
rows of the given table) and then form the disjunction of these conjunctions to obtain
the desired formal sentence. We illustrate this algorithm in the next two examples.

Example 1.3.4 We identify a formal sentence (using only the connectives∼, ∧, and ∨) satisfying
the following truth table.

p q ?
T T F
T F T
F T F
F F T

In the context of producing a formal sentence satisfying this truth table, only
the “true” rows are important for implementing our algorithm. In particular, we
use the two “true” rows of the truth table to identify conjunctions as follows.

p q ?
T T F
T F T p ∧ (∼q) since p = T and q = F
F T F
F F T (∼p) ∧ (∼q) since p = F and q = F

In the work given next to the truth table, we are being a little “loose” in our use
of the equality symbol. When we write p = T and q = F next to the second
row, we are observing the particular assignment of truth values to the sentence
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variables in the second row of the truth table. Since p = T in the second row, we
take the positive instance p of the sentence variable p and, since q = F, we take
the negative instance (∼ q) of the sentence variable q to obtain the conjunction
p ∧ (∼ q). Similarly, in the fourth row, we have both p = F and q = F and,
taking the negative instance (∼p) and (∼q) of each sentence variable, we obtain
the conjunction (∼ p) ∧ (∼ q). Finally, we take the disjunction of the sentences
determined by the second and fourth rows to obtain the desired formal sentence.

? ≡ [p ∧ (∼q)] ∨ [(∼p) ∧ (∼q)]
A complete truth table computation verifies our solution.

p q ∼p ∼q p ∧ (∼q) (∼p) ∧ (∼q) [p ∧ (∼q)] ∨ [(∼p) ∧ (∼q)]
T T F F F F F
T F F T T F T
F T T F F F F
F F T T F T T

■

We observe that each conjunction outputs exactly one T , while all the other rows
are F; this T occurs in the row used to construct the conjunction. The final disjunction
combines these various Ts into exactly the right rows needed to produce the given
truth table. This method of focusing on the “true” rows and taking the disjunction of
the resulting sentences works for every truth table.

Example 1.3.5 We identify a formal sentence (using only the connectives∼, ∧, and ∨) satisfying
the following truth table.

p q r ?
T T T T p ∧ q ∧ r since p = q = r = T
T T F F
T F T T p ∧ (∼q) ∧ r since p = r = T and q = F
T F F F
F T T T (∼p) ∧ q ∧ r since p = F and q = r = T
F T F F
F F T F
F F F F

We are free to write p ∧ q ∧ r without grouping symbols by the associativity
of ∧; recall that p∧ (q ∧ r) ≡ ( p∧ q)∧ r from our table of logical equivalences.
Taking the disjunction of the sentences determined by rows 1, 3, and 5, we
obtain the desired formal sentence (as can be verified with a complete truth table
computation).

? ≡ [p ∧ q ∧ r] ∨ [p ∧ (∼q) ∧ r] ∨ [(∼p) ∧ q ∧ r]
■

For the sake of completeness, we observe that a truth table without any true rows
must have only false rows and is therefore a contradiction. If such a table has 2n rows,
the truth table is satisfied by the contradiction [p1 ∧ (∼p1)] ∧ p2 ∧ · · · ∧ pn.
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Question 1.3.2 Find formal sentences (using only the connectives ∼, ∧, and ∨) satisfying each
truth table.

(a) p q ?
T T F
T F T
F T T
F F F

(b) p q r ?
T T T F
T T F T
T F T F
T F F F
F T T F
F T F T
F F T F
F F F T

■

The algorithm illustrated in examples 1.3.4 and 1.3.5 enables us to find a formal
sentence expressing any given truth table and always yields an “or” sentence (or
disjunction) of several “and” sentences (or conjunctions). Since this algorithm requires
only the logical connectives of negation, conjunction, and disjunction, it leads to the
following definition and theorem.

Definition 1.3.1 A set of connectives is adequate if every truth table is satisfied by a sentence using
only the connectives in the set.

Theorem 1.3.1 {∼,∧,∨} is an adequate set of connectives.

Sketch of Proof Given a truth table, we identify the true rows. If there are no true rows (and
so only 2n false rows) the contradiction [p1 ∧ (∼p1)] ∧ p2 ∧ . . .∧ pn is the desired
formal sentence. If there are true rows, we produce the corresponding conjunction
for each true row, with sentence variable p conjoined if p has value T in the row
and (∼ p) conjoined if p has value F in the row. Recalling the discussion after
example 1.3.4, we observe that the truth table for each conjunction is F on all
rows of the corresponding truth table except for a single T in exactly the row used
to construct the conjunction. Taking the disjunction of these various conjunctions
combines all the various T ’s into exactly the right rows needed to produce the
given truth table.

■

Observe that the output obtained by implementing the algorithm detailed in the
preceding sketch of a proof is always an “or” sentence (a disjunction) of several “and”
sentences (several conjunctions). We give a special name to sentences exhibiting this
distinctive structure.

Definition 1.3.2 A formal sentence is said to be in disjunctive normal form if the sentence is the
disjunction of sentences consisting of conjunctions of sentence symbols, sentence
variables, or their negations.

Example 1.3.6 The following two sentences are in disjunctive normal form.

[p ∧ (∼q)] ∨ [(∼p) ∧ (∼q)] [p ∧ q ∧ r] ∨ [p ∧ (∼q) ∧ r]
■
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A single sentence variable can be viewed as a “trivial” conjunction containing no
∧’s. From this perspective, both p and q are trivial conjunctions, and so the sentence
p ∨ q is in disjunctive normal form. Similarly, the conjunction p ∧ q ∧ (∼ r) can be
viewed as a trivial disjunction (containing no ∨’s), and so the sentence p ∧ q ∧ (∼ r)
is in disjunctive normal form.

Example 1.3.7 In contrast, the following two sentences are not in disjunctive normal form.

• [p ∨ (∼q)] ∧ [(∼p) ∨ (∼q)]
The conjunction ∧ is the primary connective joining two disjunctions, failing to
meet the requirements of disjunctive normal form. In the exercises, we consider
such sentences which are said to be in conjunctive normal form.

• p→ [p ∨ (∼q)]
Implication is not a negation, conjunction, or disjunction, which are the only
logical connectives allowed for disjunctive normal form.

■

Since the proof of theorem 1.3.1 is the first in this text, we reflect briefly on the
nature and role of theorems in mathematics. In the sense of using rational thought
as a guide toward truth, theorems are the lifeblood of mathematics. A theorem is
a declaration of mathematical truth that is supported by a proof, or a convincing
mathematical argument. The truths of mathematics, as embodied in theorems, are
of a distinctly different character than the truths of the other sciences or the truths
of almost any other area of human endeavor. The theorems of mathematics have a
universal character. When we have a proof that “A implies B,” the truth of the theorem
does not rely on a mechanical apparatus or a real world manifestation; instead, truth
is understood more absolutely as a definite piece of knowledge. When we claim that
every truth table is satisfied by a sentence using only the logical connectives ∼,∧,
and ∨, we really mean every truth table. This claim is not only different from the
declaration that “Everyone loves chocolate milk,” but is also fundamentally different
from scientific theories and hypotheses that are true based on the empirical data that
is currently available.

A mathematical truth is only identified as a theorem once a thorough and
convincing rational argument has been created justifying its truth. As scientists
pursuing truth, mathematicians begin with a small collection of (hopefully self-evident)
assumptions or properties known as axioms. Working from these axioms, further results
are argued to be true using deductive reasoning; such an argument is referred to as a
proof of the result. In practice, many different names are assigned to proven results,
including theorem, lemma, corollary, and proposition. In addition, notice that we have
identified the argument for theorem 1.3.1 as a “sketch” of a proof; further details
must be provided for a complete proof of theorem 1.3.1. In a mathematics course,
students study and learn the contemporary norms for mathematical proofs through
example, practice, and feedback from the professor who is mentoring the learning
experience.

We turn our attention back to the study of the adequacy of sets of connectives.
The addition of further connectives to a known adequate set preserves adequacy.
The definition of adequate does not require the use of every connective in the
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given set, and so every extension of an adequate set of connectives is adequate.
Therefore, since {∼,∧,∨} is adequate, each of the sets {∼,∧,∨,→}, {∼,∧,∨,↔},
and {∼,∧,∨,→,↔} is also adequate.

Working in the other direction, we are led to ask if any smaller sets of connectives
are adequate. For example, are any proper subsets of {∼,∧,∨} adequate? The
nonempty, proper subsets of {∼,∧,∨} are {∼,∧}, {∼,∨}, {∧,∨}, {∼}, {∧}, and
{∨}. The first two of these proper subsets of connectives are adequate, while the
last four are not. A set of connectives is proven not adequate by finding a specific
truth table that is not expressible by the given set of connectives. For example,
{∼} is not adequate because no sentence using only negation satisfies the following
truth table.

p ?
T T
F T

A complete justification that {∼} is not adequate requires more work than simply
stating this one observation; these further details are left for your later studies.
Instead, we focus on the more positive goal of showing a given set of connectives
is adequate.

The strategy employed to show the first two sets of connectives {∼,∧} and {∼,∨}
are adequate is common to many areas of mathematics. We reduce the mathematical
object under study to another object that is already known to possess the desired
property. In this setting, we reduce a given set of logical connectives to another
set of connectives already known to be adequate, as modeled in the following
example.

Example 1.3.8 We prove {∼,∧} is an adequate set of connectives.
From theorem 1.3.1, {∼,∧,∨} is adequate. We show {∼,∧} is adequate

by finding sentences logically equivalent to each of ∼ p, p ∧ q, and p ∨ q
using only the given connectives. Since ∼ p is logically equivalent to ∼ p
and p ∧ q is logically equivalent to p ∧ q, we just need a sentence logically
equivalent to p ∨ q using only ∼and ∧. From De Morgan’s laws, we know that
∼ ( p ∨ q) ≡ [(∼p) ∧ (∼q)]. Negating both sides, we have ∼ [∼ ( p ∨ q)] ≡
∼ [(∼ p) ∧ (∼ q)]. Thus, by double negation, ( p ∨ q) ≡ ∼[(∼ p) ∧ (∼ q)] and
we have the desired sentence logically equivalent to p ∨ q using only ∼ and ∧.
Thus, {∼,∧} is an adequate set of connectives. The following table summarizes
this argument that {∼,∧} is adequate.

Given adequate Proving adequate
{∼,∧,∨} {∼,∧}
∼p ≡ ∼p

p ∧ q ≡ p ∧ q
p ∨ q ≡ ∼[(∼p) ∧ (∼q)]

■



Chapter 1 ■ Mathematical Logic 29

Question 1.3.3 Prove {∼,∨} is an adequate set of connectives. Emulate the template given in
example 1.3.8, using double negation and the other half of De Morgan’s laws to
express ∼p, p ∧ q, and p ∨ q using only ∼and ∨.

■

1.3.1 Reading Questions for Section 1.3

1. What relationship between formal sentences is the basis for an algebra of
sentential logic?

2. State the logical equivalences double negation and De Morgan’s laws.
3. State three additional logical equivalences between formal sentences.
4. What is an important question of expressiveness in the context of sentential

logic?
5. Describe an algorithm for producing a formal sentence with a given truth

table.
6. What is the default formal sentence for a truth table with only false rows?
7. What is the characteristic structure of a formal sentence in disjunctive normal

form?
8. Discuss the nature of theorems and proofs in mathematics.
9. Define and give an example of an adequate set of connectives.

10. Describe a strategy for proving that a given set of logical connectives is
adequate.

11. Give an example of an inadequate set of connectives.
12. How do we prove that a set of connectives is not adequate?

1.3.2 Exercises for Section 1.3

In exercises 1–6, identify a formal sentence logically equivalent to (p→ q) that uses
only the given connectives.

1. {∼,∧,∨,→,↔}
2. {∼,∧,∨,↔}
3. {∼,∧,∨}

4. {∼,∧}
5. {∼,∨}
6. {∼,→}

In exercises 7–12, identify a formal sentence logically equivalent to (p↔ q) that uses
only the given connectives.

7. {∼,∧,∨,→,↔}
8. {∼,∧,∨,→}
9. {∼,∧,∨}

10. {∼,∧}
11. {∼,∨}
12. {∼,→}

In exercises 13–24, identify a formal sentence logically equivalent to each sentence
that uses only the connectives ∼and ∧.

13. p ∨ q
14. p→ q
15. p↔ q
16. (∼p)→ q

17. p→ (q→ p)
18. ∼ ((∼p)→ p)
19. ∼ ( p→ ( p ∨ q))
20. ( p↔ q) ∧ (∼p)
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21. ( p ∧ q)↔ r
22. ( p ∨ q) ∧ r

23. ( p ∨ r)→ (q ∧ r)
24. ( p ∨ r)↔ {∼[(∼p) ∧ (∼r)]}

In exercises 25–30, identify a formal sentence logically equivalent to each sentence
that uses only the connectives ∼and ∨.

25. p ∧ q
26. p→ q
27. p↔ q

28. (∼p)→ q
29. p→ (q→ p)
30. ∼ ((∼p)→ p)

In exercises 31–42, identify a formal sentence in disjunctive normal form satisfying
each truth table using the algorithm described in theorem 1.3.1.

31. p q ?
T T F
T F T
F T T
F F T

32. p q ?
T T T
T F F
F T T
F F F

33. p q ?
T T T
T F F
F T T
F F T

34. p q ?
T T T
T F T
F T F
F F T

35. p q ?
T T F
T F T
F T F
F F F

36. p q ?
T T T
T F T
F T T
F F T

37. p q r ?
T T T F
T T F F
T F T T
T F F T
F T T F
F T F F
F F T T
F F F F

38. p q r ?
T T T F
T T F T
T F T T
T F F T
F T T F
F T F F
F F T T
F F F T

39. p q r ?
T T T F
T T F T
T F T F
T F F F
F T T T
F T F T
F F T T
F F F T

40. p q r ?
T T T T
T T F T
T F T F
T F F F
F T T T
F T F F
F F T F
F F F F

41. p q r ?
T T T T
T T F F
T F T T
T F F F
F T T F
F T F F
F F T T
F F F T

42. p q r ?
T T T F
T T F F
T F T F
T F F F
F T T T
F T F T
F F T F
F F F T
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In exercises 43–52, use the fact that {∼,∨,∧} is adequate to prove each set of
connectives is adequate.

43. {∼,∨}
44. {∼,∧}
45. {∼,→}
46. {∼,∨,→}
47. {∼,∧,→}

48. {∼,∨,↔}
49. {∼,∧,↔}
50. {∼,∧,∨,→}
51. {∼,∧,∨,↔}
52. {∼,∧,∨,→,↔}

Exercises 53–56 consider some general properties of truth tables and adequate sets of
connectives.

53. Using only the connectives in the set {∼,↔}, there are four distinct types
of four-row truth tables for two sentence variables. Identify these four truth
tables. What does this tell us about the adequacy of {∼,↔}?

54. Using truth tables, verify the logical equivalence (p∨ q) ≡ [(p↔ q)→ q].
55. Based on the logical equivalence in exercise 54, we need only show (∼ p)

is logically equivalent to a sentence using only → and ↔ in order to
prove that {→,↔} is adequate. However, there is no such sentence, and
{→,↔} is not adequate. What row of the truth table for (∼p) is problematic
and why?

56. Based on exercise 55, what common reason ensures that each of {→,∧},
{→,∨}, and {∧,∨} is not an adequate set of connectives?

Exercises 57–58 consider logical connectives that are adequate by themselves. Two
such connectives are defined by the following truth tables.

p q p | q
T T F
T F T
F T T
F F T

p q p ↓ q
T T F
T F F
F T F
F F T

The connective | is referred to as either the Scheffer stroke or the “nand” connective
(since the truth table for | is that of a negated and-sentence). Similarly, the connective
↓ is referred to as either the Pierce arrow or the “nor” connective (since the truth table
for ↓ is that of a negated or-sentence).
In exercises 57–58, prove {|} is adequate by using truth tables to verify each logical
equivalence.

57. ∼p ≡ p | p 58. p ∧ q ≡ ( p | q) | ( p | q)

In exercises 59–60, prove {↓} is adequate by using truth tables to verify each logical
equivalence.

59. ∼p ≡ p ↓ p 60. p ∨ q ≡ ( p ↓ q) ↓ ( p ↓ q)

Exercises 61–70 consider implications. In technical discourse, the left side of an
implication is referred to as the “antecedent” and the right side of an implication
is referred to as the “consequent.” In addition, the “contrapositive” of an implication
p→ q is the logically equivalent sentence (∼q)→ (∼p).
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In exercises 61–70, identify the antecedent, the consequent, and the contrapositive of
each implication.

61. If p, then q.
62. If ∼p, then q.
63. If p ∨ q, then q ∨ p.
64. q ∧ p when p ∧ q.
65. ( p ∨ q) ≡ p when the variable

q = F.

66. ( p ∧ q) ≡ p when the variable
q = T .

67. If n > 2, then n2 > 4.
68. If n ≤ 2, then n2 ≤ 4.
69. n2 > 4 when n > 2.
70. n2 ≤ 4 when n ≤ 2.

1.4 Application: Designing Computer Circuits

In theorem 1.3.1 of section 1.3, we described an algorithm for constructing a formal
sentence satisfying a given truth table. Recall that the resulting output is always an
“or” sentence (a disjunction) of several “and” sentences (several conjunctions) and
that we say such sentences are in disjunctive normal form.

In addition to the disjunctive normal form’s connections with sentences satisfying
given truth tables and with adequate sets of connectives, this form is also important
for the design of computer circuits. The logical processes simulated by computers
are described using a two-state system and correspond directly with sentential logic.
The application of sentential logic to two-state systems actually predates computers
and was first developed for the design of telephone systems. In the 1920s and
1930s, the first telephone networks were constructed using physical switches that
were in either an “open” or a “closed” position. Similarly, the electric current in a
computer circuit is either “on” or “off.” These two-state systems can be modeled
using sentential logic by identifying a correspondence with the truth values “true”
and “false.” The standard correspondence is given in the following table. The
binary values 1 and 0 are traditionally used by computer scientists and computer
engineers in the design of computer circuits and so these binary values are included in
this table.

Truth Phone Electric Binary
value switch current value

true closed on 1

false open off 0

We study the design of basic computer circuits using our familiarity with sentential
logic and with disjunctive normal form. Recall that {∼,∧,∨} is an adequate set of
connectives, and so every truth table is satisfied by a formal sentence using only
these connectives. Therefore, when designing computer circuits, we utilize three
basic circuits or gates, where these gates correspond to the connectives for negation,
conjunction, and disjunction. We assign the values 1 to T and 0 to F and transform
the connectives’ truth tables into input–output tables. The following chart gives the
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input–output tables defining the three basic gates along with their standard circuit
diagram symbols.

Gate Input–output table Diagram symbol

NOT-gate (for ∼)
input output

1 0
0 1

AND-gate (for ∧)

input output
1 1 1
1 0 0
0 1 0
0 0 0

OR-gate (for ∨)

input output
1 1 1
1 0 1
0 1 1
0 0 0

Any adequate set of connectives can be used to determine a collection of basic
gates since every truth table (and so every input–output table) is expressible by an
adequate set of connectives. For example, {∼,∧} is an adequate set of connectives,
and we could design computer circuits using just a NOT-gate and an AND-gate.
However, as we have also seen (particularly in the exercises for section 1.3), using
only two connectives can significantly increase the complexity of formal sentences.
Therefore, we choose to utilize all three of the basic gates. Interestingly enough,
the “nand” and “nor” connectives (introduced in the exercises for section 1.3) are
utilized in actual practice. Both nand and nor are adequate by themselves and
only require the physical manufacture of a single basic circuit rather than three
basic circuits.

Acomputer circuit is presented as a diagram of wires and gates. The diagram begins
on the left with several input wires (these correspond to sentence variables), and a single
output wire terminates the circuit on the right of the diagram. Four fundamental rules
are followed when creating these circuit diagrams.

• Any single wire can split and provide input wires to two or more gates.
• Input wires cannot combine.
• An output wire from one gate can serve as an input wire for another gate.
• An output wire from a gate cannot loop back to serve as an input wire for the

same gate, neither directly nor after passing through any number of intermediate
gates.

Before we dive into designing computer circuits, we first trace the computation
of a given circuit on some sample inputs. In this section we are generous in using the
equal sign to denote both a particular assignment of truth values to sentence variables
and the correspondence between truth values and binary values. We also freely utilize
our knowledge of truth tables from sentential logic.
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p

q

r
Figure 1.1 The computer circuit for
example 1.4.1

Example 1.4.1 We trace some computations of the computer circuit given in figure 1.1.
We first trace the computation of this circuit on the inputs p = 1, q = 0,

r = 1.

• From the top gate (the NOT-gate), we have ∼p =∼1 =∼T = F = 0.
• From from the middle gate (the AND-gate), we have p∧ q = 1∧ 0 = T ∧ F =

F = 0.
• From the bottom gate (the OR-gate on the left), we have q∨ r = 0∨1= F∨T =

T = 1.

Taking the final disjunction (the OR-gate on the right), we combine the output
values of the first three gates and obtain 0 ∨ 0 ∨ 1 = F ∨ F ∨ T = T = 1.
Therefore, the circuit computes 1 from the given inputs of p = 1, q = 0,

and r = 1.
We now trace the computation of this circuit on the set of inputs p = 0, q = 0,

r = 1.

• From the top gate, we have ∼p =∼0 =∼F = T = 1.
• From from the middle gate, we have p ∧ q = 0 ∧ 0 = F ∧ F = F = 0.
• From the bottom gate, we have q ∨ r = 0 ∨ 1 = F ∨ T = T = 1.

Taking the final disjunction, the circuit computes 1 ∨ 0 ∨ 1 = T ∨ F ∨
T = T = 1.

From tracing these computations, we recognize that the top gate computes
(∼p), the middle gate computes ( p ∧ q), and the bottom gate computes (q ∨ r).
Taking the final disjunction, we see that the given circuit computes the formal
sentence (∼ p) ∨ ( p ∧ q) ∨ (q ∨ r). Based on this analysis, we can determine a
complete input–output table for the given circuit by computing the truth table for
this sentence and expressing the result in binary notation (using 1 for T and 0
for F).

■

In the circuit diagram given in figure 1.1 for example 1.4.1, we have three input
wires entering the right OR-gate, rather than just two input wires as specified in the
original definition of the OR-gate. We are free to adopt this shorthand notation for both
the OR-gate and the AND-gate by the associativity of conjunction and disjunction
provided by the logical equivalences p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r and p ∨ (q ∨ r) ≡
(p ∨ q) ∨ r, respectively. Similar logical equivalences hold for an arbitrary number
of sentence variables in multiple disjunctions and conjunctions. Therefore, we can
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increase the number of input wires into a single OR-gate and a single AND-gate as
needed in circuit diagrams.

Question 1.4.1 Trace the computation of the circuit given in figure 1.1 on each set of inputs.

(a) p = 1, q = 1, r = 1 (b) p = 0, q = 1, r = 0

■

We now study the design of a computer circuit with a given input–output table.
In light of the natural correspondence between truth tables and input–output tables
suggested by our work, we follow an approach suggested by section 1.3. Specifically,
we produce a sentence in disjunctive normal form satisfying the given table, and then
use this sentence to design the computer circuit using NOT-gates, AND-gates, and
OR-gates.

Example 1.4.2 We use disjunctive normal form to design a computer circuit with the following
input–output table.

p q output
1 1 1
1 0 0
0 1 1
0 0 1

Identifying 1 with T and 0 with F, we implement the standard algorithm for
disjunctive normal form to produce the sentence [p∧ q] ∨ [(∼p)∧ q] ∨ [(∼p)∧
(∼q)]. This sentence serves as a guide in designing the corresponding computer
circuit. First, we compute each of the three conjunctions using NOT-gates and
AND-gates. Then, we take the disjunction of the resulting outputs in a rightmost
OR-gate (in this case, with three input wires). This process produces the desired
circuit diagram given in figure 1.2.

■

The computer circuit produced in example 1.4.2 is not the simplest possible circuit
computing the given input–output table. You may be able to design a simpler circuit
using fewer gates based on your familiarity with the algebra of sentential logic. After
another example and question, we study “Karnaugh maps” as a means of reducing
circuit complexity.

Figure 1.2 The computer circuit
for example 1.4.2

q

p
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q

r

p

Figure 1.3 The computer circuit
for example 1.4.3

Example 1.4.3 We use disjunctive normal form to design a computer circuit with the following
input–output table.

p q r output
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

The input–output table is satisfied by [p ∧ q ∧ r] ∨ [p ∧ (∼ q) ∧ r]∨
[(∼ p) ∧ q ∧ r] by our standard algorithm for disjunctive normal form. First,
we compute each of the three conjunctions using NOT-gates and AND-gates, and
then we take the disjunction of the resulting outputs in a rightmost OR-gate (again
with three input wires). This process produces the desired circuit diagram given
in figure 1.3.

■

Question 1.4.2 Use disjunctive normal form to design computer circuits with each input–output
table.

(a) p q output
1 1 0
1 0 1
0 1 1
0 0 0

(b) p q r output
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

■
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Figure 1.4 The computer circuit for (∼p)∨ q q

p

Recall from example 1.4.2 that the formal sentence [p ∧ q] ∨ [(∼ p) ∧ q] ∨
[(∼ p) ∧ (∼ q)] was used to design a circuit computing the following input–output
table.

p q output
1 1 1
1 0 0
0 1 1
0 0 1

You may recognize the pattern of 1s in this input–output table from another setting:
if we substitute T for 1 and F for 0, we obtain the basic truth table for the
implication p → q. Example 1.2.6 in section 1.2 proved implication expansion,
the logical equivalence ( p → q) ≡ [(∼ p) ∨ q]. Based on this logical equivalence,
the circuit for (∼ p) ∨ q (figure 1.4) also computes the input–output table given in
example 1.4.2.

This second circuit is much simpler than one produced in example 1.4.2
and would certainly be favored by engineers and manufacturers because of this
relative simplicity. However, the design of this simpler circuit hinged on a bit of
clever insight. In contrast, the algorithmic approach of disjunctive normal form
guarantees a solution (that is, a circuit diagram) for every given input–output table.
Fortunately, this example is not an isolated event and there exists an algorithm that
enables the simplification of many formal sentences without requiring too much
cleverness. The algorithm involves searching a Karnaugh map representation of a
given input–output table for patterns of 1’s. We illustrate this approach in the next two
examples.

Example 1.4.4 We use a Karnaugh map to design a circuit with the input–output table from
example 1.4.2.

p q output
1 1 1
1 0 0
0 1 1
0 0 1

For two sentence variables p and q, the corresponding 2× 2 Karnaugh map is
determined by reorganizing the input–output table into a two-row by two-column
table. We label the rows and columns with the possible values of p and q and
list the output value of 1 in each interior square for which the input–output
table has an output value 1. For example, when p = 1 and q = 1, the output
is 1, so the entry in the first-row, first-column interior square of the following
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Karnaugh map is also 1. The following is the complete Karnaugh map for the
input–output table.

p
1 0

q 1 1 1
0 1

We now inspect the Karnaugh map for adjacent pairs of 1’s in either
rows or columns (but not diagonals). In two-variable settings, we are interested
in an adjacent pair of 1’s since they can always be represented by a single
sentence variable or its negation. In this example, we find two distinct adjacent
pairs of 1’s.

• The first row of the interior square is represented by q, since the variable q
only takes on the value 1 and the variable p takes on both values 1 and 0. The
corresponding formal sentence in disjunctive normal form is (p∧q)∨[(∼p)∧q]
and (using logical equivalences), we have

(p ∧ q) ∨ [(∼p) ∧ q] ≡ [p ∨ (∼p)] ∧ q ≡ T ∧ q ≡ q.

Sentence variables that take on both values 1 and 0 are referred to as free
variables and always “factor out” of the corresponding formal sentence. These
variables represent extraneous data and so they are designated as “free”
variables that can take on any value and do not impact the outcome of the
computation.

• The second column of the interior square is represented by (∼ p), since the
variable p only takes on value 0 and the variable q takes on both values 1 and 0.
The corresponding formal sentence in disjunctive normal form and the resulting
simplification are

[(∼p) ∧ q] ∨ [(∼p) ∧ (∼q)] ≡ (∼p) ∧ [q ∨ (∼q)] ≡ (∼p) ∧ T ≡ (∼p).

Since every 1 in the Karnaugh map appears in at least one of these adjacent
pairs, we move onto the final step. We take a disjunction q∨ (∼p) ≡ (∼p)∨ q to
obtain the final sentence satisfying the given input–output table. When working
with a Karnaugh map, we always take this final disjunction of the component
sentences determined by adjacent pairs of 1’s. This process produces the desired
circuit diagram given in figure 1.5.

■

Karnaugh maps were developed in the early 1950s by the telecommunications
engineer Maurice Karnaugh while he was working at Bell Laboratories. In 1953,
Karnaugh published his results on what have become known as Karnaugh maps in The
Map Method for Synthesis of Combinational Logic Circuits [137] and these diagrams

q

p
Figure 1.5 The computer circuit for
example 1.4.4
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are a standard component of computer science and engineering curricula. We are using
Karnaugh maps to simplify circuits and formal sentences and this process can be refined
to obtain minimal circuits and sentences (minimal in terms of the number of connectives
appearing in the final sentence). The success of Karnaugh maps hinges on humans’
natural affinity for identifying certain patterns, and this approach works quite well for
up to six variables. More sophisticated and subtle algorithms have been developed for
simplifying sentences with more than six variables. Consider the following use of a
Karnaugh map in the three-variable setting.

Example 1.4.5 We use a Karnaugh map to design a circuit with the input–output table from
example 1.4.3.

p q r output
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

In this three-variable setting, the two sentence variables p and q are grouped
together and the original input–output table is reorganized into a 2× 4 Karnaugh
map. As in example 1.4.4, we list a 1 in the interior square corresponding to
each output of 1 in the input–output table and so obtain the following complete
Karnaugh map.

pq
11 10 00 01

r 1 1 1 1
0

The column labeling of the 2× 4 Karnaugh map is particularly important. We
use what is known as grayscale labeling, in which exactly one bit changes from
one column to the next; this labeling permits adjacent pairs of 1’s and 2×2 squares
of 1’s to “wrap around” the ends of the map. We first inspect the Karnaugh map
for 2× 2 squares of 1’s; such squares can be represented by a single variable (or
its negation). We then look for adjacent pairs of 1’s in rows and columns (but not
diagonals); such pairs can be represented by a conjunction of just two variables
(or their negations). In this example, we do not find any 2× 2 squares of 1’s, but
we do find two distinct adjacent pairs of 1’s in the first row.

• The first two columns of the first row are represented by ( p∧ r) since p takes on
1, q takes on both 1 and 0, and r takes on 1. We eliminate the free variable q that
takes on both 1 and 0 and, since p = 1 = T and r = 1 = T , we have ( p ∧ r).

• The last and first column of the first row are represented by (q ∧ r). This pair
of 1’s is adjacent because 2 × 2 squares and adjacent pairs of 1’s can “wrap
around” the ends of the map under the given grayscale labeling of columns.
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q

r

p

Figure 1.6 The computer circuit for
example 1.4.5

For this adjacent pair, p takes on both 1 and 0, q takes on 1, and r takes on 1.
We eliminate the free variable p and, since q = 1 = T and r = 1 = T , we have
(q ∧ r).

Since every 1 in the Karnaugh map appears in at least one of these adjacent
pairs, we take the disjunction ( p∧ r)∨ (q∧ r) to obtain the final sentence satisfying
the given input–output table. This process produces the desired circuit diagram
given in figure 1.6.

■

Question 1.4.3 Use a Karnaugh map to design a computer circuit with the following input–output
table.

p q output
1 1 0
1 0 1
0 1 0
0 0 1

■

Thus far, we have used our knowledge of sentential logic to inform and guide
our work with computer circuits. However, we now find ourselves in a position
to reverse this relationship. Just as we have used Karnaugh maps to simplify
computer circuit diagrams, we can also use Karnaugh maps to simplify formal
sentences.

Example 1.4.6 We use a Karnaugh map to simplify the following formal sentence.

[p ∧ q ∧ (∼r)] ∨ [p ∧ (∼q) ∧ r] ∨ [(∼p) ∧ (∼q) ∧ r] ∨
[p ∧ (∼q) ∧ (∼r)] ∨ [(∼p) ∧ (∼q) ∧ (∼r)]

First, we construct the corresponding 2× 4 Karnaugh map, using the standard
grayscale labeling of columns as noted in example 1.4.5 and listing the value
1 in the interior square corresponding to each conjunction of the given formal
sentence.

pq
11 10 00 01

r 1 1 1
0 1 1 1
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We search the Karnaugh map for instances of 2×2 squares of 1’s and adjacent
pairs of 1’s, which corporately include all 1’s in the map. We find one square and
one adjacent pair.

• The center 2× 2 square of 1’s is represented by (∼q). In particular, p takes on
both 1 and 0, q takes on 0, and r takes on both 1 and 0. We eliminate the free
variables p and r and, since q = 0 = F, we have (∼q).

• The adjacent pair of 1’s determined by the first two columns of the second row
is represented by [p ∧ (∼ r)]. The variable p takes on 1, q takes on both 1 and
0, and r takes on 0. We eliminate the free variable q and, since p = 1 = T and
r = 0 = F, we have [p ∧ (∼r)].

Taking the final disjunction, the given formal sentence is logically equivalent
to the much simpler sentence (∼q) ∨ [p ∧ (∼r)].

■

Question 1.4.4 Use a Karnaugh map to simplify the following formal sentence.

[p ∧ q ∧ r] ∨ [p ∧ q ∧ (∼r)] ∨ [(∼p) ∧ q ∧ r] ∨
[(∼p) ∧ (∼q) ∧ (∼r)] ∨ [(∼p) ∧ q ∧ (∼r)]

In addition, sketch the corresponding circuit diagram. As you work with the
Karnaugh map, keep in mind that squares and adjacent pairs can wrap around
the ends of the map.

■

For completeness, we mention that isolated 1’s in Karnaugh maps do not allow
the elimination of any free variables. For example, consider a given input–output table
with the following Karnaugh map.

pq
11 10 00 01

r 1 1
0 1

Since no 2×2 squares of 1’s or adjacent pairs of 1’s appear in this map, there are no free
variables to eliminate. Therefore, the corresponding formal sentence is [ p ∧ q ∧ r]∨
[(∼p) ∧ (∼q) ∧ (∼r)].

Finally, we should note that a Karnaugh map with all 1’s corresponds to a tautology
utilizing an appropriate number of sentence variables, while a Karnaugh map with
no 1’s corresponds to a contradiction utilizing an appropriate number of sentence
variables.

1.4.1 Reading Questions for Section 1.4

1. Define disjunctive normal form. Give an example of a sentence that is in
disjunctive normal form and a sentence that is not.
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2. Define and sketch the symbol for the three basic gates used in designing
computer circuits.

3. Discuss the relationship between input–output tables and truth tables. Give
an example to facilitate your discussion.

4. State four fundamental rules for designing computer circuits.
5. Why are we free to use just three gates when designing computer circuits?
6. What is the first step in identifying a computer circuit for a given input–output

table?
7. What role do Karnaugh maps play in designing computer circuits?
8. What role do Karnaugh maps play in simplifying formal sentences?
9. State the dimensions of a Karnaugh map representing an input–output table

with two inputs. What are the dimensions for three inputs?
10. What configuration of 1’s do we look for in a 2× 2 Karnaugh map? in a 2× 4

Karnaugh map?
11. How many variables are needed to represent an adjacent pair of 1’s in a 2× 2

Karnaugh map? in a 2× 4 Karnaugh map?
12. How many variables are needed to represent a square of 1’s in a 2×2 Karnaugh

map? in a 2× 4 Karnaugh map?

1.4.2 Exercises for Section 1.4

In exercises 1–4, trace the computation of the computer circuit given in figure 1.7 on
each set of inputs.

1. p = 1, q = 1
2. p = 1, q = 0

3. p = 0, q = 1
4. p = 0, q = 0

In exercises 5–8, trace the computation of the computer circuit given in figure 1.8 on
each set of inputs.

5. p = 1, q = 1
6. p = 1, q = 0

7. p = 0, q = 1
8. p = 0, q = 0

In exercises 9–14, trace the computation of the computer circuit given in figure 1.9 on
each set of inputs.

9. p = 1, q = 1, r = 1
10. p = 1, q = 1, r = 0
11. p = 1, q = 0, r = 1

12. p = 0, q = 1, r = 1
13. p = 0, q = 0, r = 1
14. p = 0, q = 0, r = 0

q

p

Figure 1.7 The computer circuit for
exercises 1–4
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q

p

Figure 1.8 The computer circuit for
exercises 5–8

r

q

p

Figure 1.9 The computer circuit for
exercises 9–14

r

q

p

Figure 1.10 The computer circuit for
exercises 15–20

In exercises 15–20, trace the computation of the computer circuit given in figure 1.10
on each set of inputs.

15. p = 1, q = 1, r = 1

16. p = 1, q = 1, r = 0

17. p = 1, q = 0, r = 1

18. p = 0, q = 1, r = 1

19. p = 0, q = 0, r = 1

20. p = 0, q = 0, r = 0

In exercises 21–32, use disjunctive normal form to design a computer circuit with each
input–output table.

21. p q output
1 1 0
1 0 1
0 1 1
0 0 1

22. p q output
1 1 1
1 0 0
0 1 1
0 0 0

23. p q output
1 1 0
1 0 1
0 1 1
0 0 0

24. p q output
1 1 1
1 0 1
0 1 0
0 0 1

25. p q output
1 1 0
1 0 1
0 1 0
0 0 0

26. p q output
1 1 1
1 0 1
0 1 1
0 0 1



44 A Transition to Advanced Mathematics

27. p q r output
1 1 1 0
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 0

28. p q r output
1 1 1 0
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

29. p q r output
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

30. p q r output
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

31. p q r output
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

32. p q r output
1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1

In exercises 33–44, state a formal sentence satisfying the input–output table represented
by each Karnaugh map.

33. p
1 0

q 1 1
0 1 1

34. p
1 0

q 1
0 1 1

35. p
1 0

q 1 1
0 1

36. p
1 0

q 1 1
0 1

37. p
1 0

q 1 1 1
0 1 1

38. p
1 0

q 1 1
0 1

39. pq
11 10 00 01

r 1 1 1 1
0 1 1
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40. pq
11 10 00 01

r 1 1 1
0 1 1

41. pq
11 10 00 01

r 1 1 1
0 1 1

42. pq
11 10 00 01

r 1 1 1 1
0 1 1 1

43. pq
11 10 00 01

r 1 1 1 1 1
0 1 1

44. pq
11 10 00 01

r 1 1 1 1
0 1 1

In exercises 45–56, use a Karnaugh map to design a computer circuit with each input–
output table.

45. The input–output table from
exercise 21.

46. The input–output table from
exercise 22.

47. The input–output table from
exercise 23.

48. The input–output table from
exercise 24.

49. The input–output table from
exercise 25.

50. The input–output table from
exercise 26.

51. The input–output table from
exercise 27.

52. The input–output table from
exercise 28.

53. The input–output table from
exercise 29.

54. The input–output table from
exercise 30.

55. The input–output table from
exercise 31.

56. The input–output table from
exercise 32.

In exercises 57–64, use a Karnaugh map to simplify each formal sentence.

57. [p ∧ q] ∨ [(∼p) ∧ q]
58. [p ∧ q] ∨ [p ∧ (∼q)]
59. [p ∧ q] ∨ [p ∧ (∼q)] ∨ [(∼p) ∧ (∼q)]
60. [p ∧ q] ∨ [p ∧ (∼q)] ∨ [(∼p) ∧ (∼q)]
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61. [p ∧ q ∧ r] ∨ [p ∧ (∼q) ∧ (∼r)] ∨ [p ∧ (∼q) ∧ r]
62. [(∼p) ∧ (∼q) ∧ r] ∨ [(∼p) ∧ (∼q) ∧ (∼r)] ∨ [(∼p) ∧ q ∧ (∼r)]
63. [(∼p)∧ (∼q)] ∨ [p∧ q∧ (∼r)] ∨ [p∧ (∼q)∧ (∼r)] ∨ [(∼p)∧ q∧ (∼r)]
64. [(∼p) ∧ (∼q)] ∨ [(∼p) ∧ q] ∨ [p ∧ (∼q) ∧ (∼r)]

Exercises 65–70 consider an alternative to disjunctive normal form. A formal sentence
is in conjunctive normal form when the sentence is a conjunction of sentences
consisting of disjunctions of sentence symbols, sentence variables, or their negations.
Given a truth table, a sentence in conjunctive normal form satisfying the truth
table is obtained by stating a conjunction based on the truth values of the sentence
variable in each “false” row of the given table and then forming the disjunction of all
these conjunctions. Finally, we take the negation of the resulting sentence and apply
De Morgan’s laws and double negation to obtain the desired sentence in conjunctive
normal form. Consider the following example.

p q ?
T T F p ∧ q since p = T , q = T
T F T
F T F (∼p) ∧ q since p = F, q = T
F F T

Taking the negation of the resulting disjunction and applying De Morgan’s laws and
double negation, we have.

∼[( p ∧ q) ∨ ((∼p) ∧ q)] ≡ [∼ ( p ∧ q)] ∧ {∼[(∼p) ∧ q]}
≡ [(∼p) ∨ (∼q)] ∧ {[∼ (∼p)] ∨ (∼q)}
≡ [(∼p) ∨ (∼q)] ∧ [p ∨ (∼q)].

Thus, [(∼p) ∨ (∼q)] ∧ [p ∨ (∼q)] is a formal sentence in conjunctive normal form
satisfying the given truth table.

In exercises 65–70, use conjunctive normal form to design a circuit with each
input–output table. For the last three exercises use the generalized De Morgan’s
law ∼ (p ∧ q ∧ r) ≡ (∼p) ∨ (∼q) ∨ (∼r), which can be verified via a truth table
computation.

65. The input–output table from
exercise 21.

66. The input–output table from
exercise 22.

67. The input–output table from
exercise 23.

68. The input–output table from
exercise 27.

69. The input–output table from
exercise 28.

70. The input–output table from
exercise 29.

1.5 Natural Deductive Reasoning

In this section we discuss natural language arguments and deductive reasoning—the
very topics that motivated Aristotle’s original study of logic. There are many different
kinds of arguments, and some of the most effective arguments are those blending
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rational with irrational (yet persuasive) elements. We focus on the logical content
of arguments, identifying arguments as valid or invalid based purely on their formal
structure. In this context, an argument is a list of sentences. The last sentence is the
conclusion and the previous sentences include some premises or assumptions with some
intermediate steps often included for clarity. Ideally, the conclusion follows from the set
of premises by some valid means of logical reasoning. The process of determining the
validity of an argument is quite important, particularly when we must decide whether
we believe an argument and when our choices carry profound consequences.

The first step in analyzing arguments is to translate natural language arguments
into formal language arguments. This translation enables us to focus on the logical
structure of a given argument and to determine its validity. Good reasoning uses a
blend of various different argument forms or rules of deduction. We define “valid”
rules of deduction and then learn some particular rules of deduction. The two most
common templates for rules of deduction are

A ∴ B and C, D ∴ E.

The symbol “ ∴ ” is commonly translated as “therefore” or “thus” and denotes the
conclusion of the rule of deduction, and so the first template is read “A, therefore B.”
Similarly, the second template is read “C and D, therefore E.” In such arguments, A, C,

and D represent formal sentences that serve as premises or assumptions. Given these
assumptions, we deduce the conclusions B and E, respectively.

There are many different rules of deduction, some of which are valid, or correct,
and some of which are invalid, or incorrect. The following two rules of deduction are
valid.

Double negation: ∼ (∼p) ∴ p
Modus ponens: p→ q, p ∴ q

Double negation assumes the premise∼(∼p) and deduces the conclusion p. Similarly,
modus ponens assumes the two premises p→ q and p, and deduces the conclusion q.
The name “modus ponens” is Latin for “mode that affirms” and was given to this rule
of deduction by the logicians of the Scholastic period during the Middle Ages, when
the study of Aristotle’s logic flourished in European monasteries.

Before engaging in a broad study of many different rules of deduction, we first
define what it means for a rule of deduction to be valid, or correct. The fundamental
guiding principle that motivates our formal definition asserts, “an argument is incorrect
if it can have true premises and a false conclusion.” We also work with the positive
rendition of this guideline: “an argument is correct if it can never have true premises
and a false conclusion.”

With these principles in mind, we develop an algorithm identifying arguments
that can never have both true premises and a false conclusion. Thinking in terms
of the five original logical connectives and their basic truth tables, implication (the
“if-then” connective denoted →) provides the key tool. In particular, implication
returns the value true, except in the case “true implies false.” Therefore, we define an
argument to be valid when a corresponding implication is a tautology. If an argument
has multiple premises, we are only interested in the cases when all the premises are



48 A Transition to Advanced Mathematics

simultaneously true, and so we combine the argument’s multiple premises using a
conjunction. Consider the following definition.

Definition 1.5.1 A rule of deduction of the form A1, . . . , An ∴ C is valid if (A1 ∧ · · · ∧An)→ C

is a tautology. Thus, a rule of deduction of the form A ∴ B is valid if A→ B

is a tautology; similarly, a rule of deduction of the form C, D ∴ E is valid if
(C ∧ D)→ E is a tautology.

Example 1.5.1 We prove double negation: ∼ (∼p) ∴ p is a valid rule of deduction.

Proof Using the definition of validity (that is, definition 1.5.1), we compute the truth
table for the corresponding implication ∼ (∼p)→ p.

p (∼p) ∼ (∼p) ∼ (∼p)→ p
T F T T
F T F T

Since this implication is a tautology, the given argument can never have both a
true premise and a false conclusion. Therefore, double negation is a valid rule of
deduction.

■

Double negation is a special case of a more general principle: if B and C are formal
sentences and B ≡ C, then both B ∴ C and C ∴ B are valid rules of deduction. In
particular, since B and C are logically equivalent, they have the same final column
in their respective standard truth tables. Therefore, both B → C and C → B are
tautologies, and the corresponding rules of deduction B ∴ C and C ∴ B are valid.

Example 1.5.2 We prove modus ponens: ( p→ q), p ∴ q is a valid rule of deduction.

Proof Using the definition of validity, we compute the truth table for the corresponding
implication [( p→ q) ∧ p] → q.

p q p→ q ( p→ q) ∧ p [( p→ q) ∧ p] → q
T T T T T
T F F F T
F T T F T
F F T F T

Since this implication is a tautology, the given argument can never have both a
true premise and a false conclusion. Therefore, modus ponens is a valid rule of
deduction.

■

Question 1.5.1 Prove each rule of deduction is valid.

(a) Conjunctive simplification: p ∧ q ∴ p
(b) Modus tollens: p→ q, ∼q ∴ (∼p) (Latin for “mode that denies”)
(c) Disjunctive syllogism: p ∨ q, ∼p ∴ q

■
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Now that we have a good handle on proving that a rule of deduction is valid,
we consider the dual goal of proving a rule of deduction is not valid. We show that
the corresponding implication is not a tautology by demonstrating that one row of the
implication’s truth table is false (although certainly more than one row—and perhaps
even every row—may be false).

Example 1.5.3 We prove the converse error: p → q, q ∴ p is not a valid rule of
deduction.

Proof Using the definition of validity, we compute the truth table for the corresponding
implication [( p→ q) ∧ q] → p.

p q p→ q ( p→ q) ∧ q [( p→ q) ∧ q] → p
T T T T T
T F F F T
F T T T F
F F T F T

The final column has truth value F in the third row when p = F and q = T . Since
the corresponding implication is not a tautology, the given argument can have true
premises, but a false conclusion. Therefore, the converse error is not a valid rule
of deduction.

■

Question 1.5.2 Prove each rule of deduction is not valid.

(a) Inverse error: p→ q, (∼p) ∴∼q (b) p ∨ q, p ∴∼q

■

While this truth table algorithm provides a complete approach to determining
the validity of arguments, the size of the resulting truth tables and the corresponding
computational requirements make this approach unreasonable when the number of
variables is large. Since the truth table of a sentence with n variables has 2n rows,
checking the validity of an argument involving multiple premises with many distinct
sentence variables can quickly become impractical.

In addition, we are interested in Aristotle’s goal of modeling natural deductive
reasoning. Natural reasoning often proceeds in incremental steps using basic rules of
deduction, including double negation, modus ponens, and conjunctive simplification.
For example, we soon verify the validity of the rule of deduction: (∼ A) → B,
(∼C) → (∼ A), ∼ B, C → D ∴ D. Rather than computing the corresponding 16-
row truth table, we proceed from the premises to the conclusion in several steps,
justifying each step with a known rule of deduction. The underlying idea is that
an argument obtained by composing valid rules of deduction must also be valid,
providing us a model of the step-by-step processes inherent in natural reasoning.
The next several examples illustrate this approach to proving the validity of complex
arguments.
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Example 1.5.4 We prove A ∧ B, A→ C ∴ C is a valid argument by justifying each step in the
given deduction with a known rule of deduction.

1. A ∧ B premise

2. A 1—conjunctive simplification with p = A and q = B

3. A→ C premise

4. C 2,3—modus ponens with p = A and q = C

In the justification for line 2, the number 1 identifies A ∧ B from line 1 as
the premise allowing the deduction of A. Similarly, in the justification for
line 4, the numbers 2 and 3 identify the lines containing the premises for the
particular implementation of modus ponens that yield the conclusion C given in
line 4.

■

Example 1.5.5 We prove A→ (∼B), A, C → B ∴∼C is a valid argument by justifying each
step in the given deduction with a known rule of deduction.

1. A premise
2. A→ (∼B) premise
3. ∼B 1,2—modus ponens with p = A and q = ∼B
4. C → B premise
5. ∼C 3,4—modus tollens with p = C and q = B

■

Example 1.5.6 We prove A ∨ B, ∼A, B→ C ∴ C is a valid argument by justifying each step
in the given deduction with a known rule of deduction.

1. A ∨ B premise
2. ∼A premise
3. B 1,2—disjunctive syllogism with p = A and q = B
4. B→ C premise
5. C 3,4—modus ponens with p = B and q = C

■

As seen in these examples, our study focuses on the formal rendition of the
component sentences of an argument. When applying this approach to analyze natural
language arguments, we would employ the skills and techniques from section 1.1
to create an appropriate dictionary and express the natural language sentences
as formal sentences. While one would probably never engage in such a careful,
explicit analysis, the habits and patterns of correct reasoning and a careful, implicit
analysis of logical arguments are essential to the creation of proofs of mathematical
truth.

As can be surmised from these examples, we must know some basic rules of
deduction in order to justify the steps in a given deduction. For ready reference,
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the most frequently used rules of deduction are gathered together in the following
chart.

Formal name Rule of deduction

Modus ponens p→ q, p ∴ q

Modus tollens p→ q, ∼q ∴∼p

Double negation ∼ (∼p) ∴ p
p ∴∼ (∼p)

Conjunctive simplification p ∧ q ∴ p
p ∧ q ∴ q

Conjunctive addition p, q ∴ p ∧ q
p, q ∴ q ∧ p

Disjunctive syllogism p ∨ q, ∼p ∴ q
p ∨ q, ∼q ∴ p

Disjunctive addition p ∴ p ∨ q
q ∴ p ∨ q

Hypothetical syllogism p→ q, q→ r ∴ p→ r

Dilemma p ∨ q, p→ r, q→ r ∴ r

Contradiction (∼p)→ [q ∧ (∼q)], ∴ p

Logical equivalence if B ≡ C, then B ∴ C

De Morgan’s law ∼ (p ∧ q) ∴ (∼p) ∨ (∼q)
(∼p) ∨ (∼q) ∴∼ (p ∧ q)
∼ (p ∨ q) ∴ (∼p) ∧ (∼q)
(∼p) ∧ (∼q) ∴∼ (p ∨ q)

This collection of rules of deduction is commonly used in both mathematical
and philosophical courses in logic and has been isolated over centuries of study and
practice as essential guidelines for correct reasoning. We have already seen proofs of
the validity of some of these rules in the preceding examples and questions. The proofs
of the new rules of deduction appearing in the bottom half of the chart are given as
exercises at the end of this section.

Question 1.5.3 Prove (∼A)→ B, (∼C)→ (∼A), (∼B), C → D ∴ D is a valid argument by
justifying each step in the given deduction with a known rule of deduction from
the above table, as in the previous examples.

1. (∼A)→ B 3. ∼ (∼A)

2. ∼B 4. (∼C)→ (∼A)
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5. ∼ (∼C) 7. C → D
6. C 8. D

■

Question 1.5.4 Prove [(∼A)∧ B] → C, ∼A, ∼ (A∨ C) ∴∼B is a valid argument by justifying
each step in the given deduction with a known rule of deduction.

1. [(∼A) ∧ B] → C 5. ∼[(∼A) ∧ B]
2. ∼ (A ∨ C) 6. [∼ (∼A)] ∨ (∼B)
3. (∼A) ∧ (∼C) 7. A ∨ (∼B)
4. ∼C 8. ∼A

9. ∼B
■

We end this section with an alternative approach to proving a rule of deduction is
invalid. A rule of deduction is valid if every entry is T in the final column of the truth
table for the corresponding implication, while a rule of deduction is invalid if at least
one entry is F in the final column of the truth table for the corresponding implication.
The alternative approach is based on the observation that we do not need to produce a
complete truth table in order to prove that a rule of deduction is invalid—the T rows
of the truth table are irrelevant to demonstrating the invalidity of an argument. Instead,
we just need to identify one assignment of truth values to the sentence variables (i.e.,
one row in the corresponding truth table) for which all the premises are true, but the
conclusion is false. Consider the following example.

Example 1.5.7 We prove the converse error: p→ q, q ∴ p is an invalid rule of deduction using
the alternative approach discussed above.

Proof We assume the premises are T and the conclusion is F, resulting in the following
collection of assignments of truth values to the sentences appearing in the
argument.

p→ q q p
T T F

Working from these assumptions, we identify the possible assignments of truth
values to the corresponding sentence variables as determined by the basic truth
tables for the logical connectives.

( p→ q) = T ⇒ p = F or q = T
q = T ⇒ q = T
p = F ⇒ p = F

From the second and third conditions, we have q = T and p = F. The first line is
now satisfied, since we have both p = F and q = T (recall that mathematicians
work with the inclusive-or). Therefore, p = F and q = T is an assignment of truth
values to the sentence variables that is consistent with our assumptions and results
in the premises all being true while the conclusion is false. We say that p = F
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and q = T serves both as a witness to the invalidity of the converse error and as a
counterexample to the validity of the converse error.

■

As demonstrated in example 1.5.7, we first assume that the premises are T and the
conclusion is F when proving the invalidity of a given argument. We then work with
the basic truth tables to obtain a corresponding assignment of truth values to sentence
variables that is consistent with all of these assumptions and serves as a witness to the
invalidity of the given argument.

Example 1.5.8 We use the alternative approach to prove (∼p), (p∨ q), (r → q) ∴ (p∧ r) is an
invalid rule of deduction.

Proof We assume the premises are T and the conclusion is F, resulting in the following
collection of assignments of truth values to the sentences appearing in the
argument.

(∼p) p ∨ q r → q p ∧ r
T T T F

Working from these assumptions, we identify the possible assignments of truth
values to the corresponding sentence variables as determined by the basic truth
tables for the logical connectives.

(∼p) = T ⇒ p = F
( p ∨ q) = T ⇒ p = T or q = T
(r → q) = T ⇒ r = F or q = T
( p ∧ r) = F ⇒ p = F and r = F

From the first and last conditions, we have p = F and r = F. Based on the second
line, we must choose q = T , since we already have p = F. Under this assignment
of truth values, the third line is now satisfied, since we have both r = F and
q = T (again, we use the inclusive-or). Therefore, p = F, q = T , and r = F is
an assignment of truth values to sentence variables that results in the premises
all being true while the conclusion false, witnessing the invalidity of the given
argument.

■

Question 1.5.5 Use the alternative approach to prove the invalidity of each rule of deduction from
question 1.5.2.

(a) Inverse error: p→ q, (∼p) ∴∼q (b) p ∨ q, p ∴∼q

■

1.5.1 Reading Questions for Section 1.5

1. State the definition of an argument for natural deductive reasoning.
2. State one of the general forms for a rule of deduction, and give an example.
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3. What is the guiding principle for identifying an argument as valid?
4. How many rows are there in the truth table of a sentence with n distinct

sentence variables?
5. Define and give an example of a valid rule of deduction.
6. Define and give an example of an invalid rule of deduction.
7. Describe two distinct approaches to proving that a rule of deduction

is valid.
8. Discuss the positive and negative aspects of each approach to proving that a

rule of deduction is valid.
9. State four basic rules of deduction.

10. Describe two distinct approaches to proving that a rule of deduction
is invalid.

11. Discuss the positive and negative aspects of the two approaches to proving
that a rule of deduction is invalid.

12. Discuss the relationship between a witness and a counterexample.

1.5.2 Exercises for Section 1.5

In exercises 1–18, use the definition of validity (that is, an appropriate truth table
computation) to prove each rule of deduction is valid. In exercises 1–11, also state the
name associated with the rule of deduction.

1. p→ q, ∼q ∴ ∼p

2. p ∧ q ∴ p

3. p ∧ q ∴ q

4. p, q ∴ p ∧ q

5. p ∨ q, ∼p ∴ q

6. p ∨ q, ∼q ∴ p

7. p ∴ p ∨ q

8. q ∴ p ∨ q

9. p→ q, q→ r ∴ p→ r

10. p ∨ q, p→ r, q→ r ∴ r

11. [ p ∧ (∼q)] → [r ∧ (∼r)]
∴ p→ q

12. p→ q, p→ r
∴ p→ (q ∧ r)

13. p↔ q, p ∴ q

14. p↔ q, q ∴ p

15. p↔ q, ∼p ∴ ∼q

16. p↔ q, ∼q ∴ ∼p

17. p↔ q, p↔ r
∴ (∼q) ∨ r

18. p↔ q, p↔ r ∴ q↔ r

In exercises 19–32, use the definition of validity (that is, an appropriate truth table
computation) to prove each rule of deduction is invalid.

19. p→ q, ∼p ∴ ∼q

20. p→ q, ∼q ∴ p

21. p ∨ q, p ∴ ∼q

22. p ∨ q, p ∴ q

23. p ∨ q ∴ p

24. p ∧ q ∴ ∼r

25. p ∧ q ∴ ∼q

26. ( p ∧ q)→ r, ∼q ∴ r

27. ( p ∧ q)→ r, p ∴ r

28. ( p ∧ q)→ r, r ∴ p ∧ q
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29. ( p ∨ q) ∨ r, ∼p ∴ r

30. p ∨ q, p↔ q ∴ (∼p) ∧ q

31. p↔ q, q↔ r ∴ (∼p) ∧ r

32. p↔ q, ∼q ∴ p

In exercises 33–42, prove each argument is valid by justifying each step in the given
deduction with a known rule of deduction. In addition, state the number of rows in the
corresponding truth table proof of validity; do not compute these truth tables, just state
the number of rows.

33. ∼ (∼B), B→ A ∴ A
1. ∼ (∼B)

2. B

3. B→ A

4. A

34. A ∧ B, B→ C ∴ C
1. A ∧ B

2. B

3. B→ C

4. C

35. A→ B, (∼B) ∧ C ∴ ∼A
1. (∼B) ∧ C

2. ∼B

3. A→ B

4. ∼A

36. (A ∨ B)→ C, B ∴ C
1. B

2. A ∨ B

3. (A ∨ B)→ C

4. C

37. A→ B, B→ C, A ∨ D,

∼D ∴ C
1. A→ B

2. B→ C

3. A→ C

4. A ∨ D

5. ∼D

6. A

7. C

38. (∼A) ∧ (∼B), (∼C)→ B,

C → D ∴ D
1. (∼A) ∧ (∼B)

2. ∼B

3. (∼C)→ B

4. ∼ (∼C)

5. C

6. C → D

7. D

39. A→ (B ∧ C), A ∧ D,

(∼B) ∨ E ∴ E
1. A ∧ D

2. A

3. A→ (B ∧ C)

4. B ∧ C

5. B

6. ∼ (∼B)

7. (∼B) ∨ E

8. E

40. (A ∧ B)→ C, B ∨ D, ∼D,
A ∧ E ∴ C

1. A ∧ E

2. A

3. B ∨ D

4. ∼D

5. B

6. A ∧ B

7. (A ∧ B)→ C

8. C
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41. [A ∨ (∼B)] → C,
(∼B) ∨ D,∼C,

E → A, ∴ D ∧ (∼E)
1. [A ∨ (∼B)] → C
2. ∼C
3. ∼[A ∨ (∼B)]
4. (∼A)∧ ∼ (∼B)
5. ∼A
6. E → A
7. ∼E
8. ∼ (∼B)
9. D ∨ (∼B)

10. D
11. D ∧ (∼E)

42. (∼A ∨ B)→ C,
D ∨ (∼B),∼E, A→ E,
[(∼A) ∧ C] → (∼D) ∴ ∼B

1. A→ E
2. ∼E
3. ∼A
4. (∼A) ∨ B
5. [(∼A) ∨ B] → C
6. C
7. (∼A) ∧ C
8. [(∼A) ∧ C] → (∼D)
9. ∼D
10. D ∨ (∼B)
11. ∼B

In exercises 43–56, use the alternative approach (illustrated in example 1.5.7) to prove
each rule of deduction is invalid.

43. The invalid rule from exercise 19.

44. The invalid rule from exercise 20.

45. The invalid rule from exercise 21.

46. The invalid rule from exercise 22.

47. The invalid rule from exercise 23.

48. The invalid rule from exercise 24.

49. The invalid rule from exercise 25.

50. The invalid rule from exercise 26.

51. The invalid rule from exercise 27.

52. The invalid rule from exercise 28.

53. The invalid rule from exercise 29.

54. The invalid rule from exercise 30.

55. The invalid rule from exercise 31.

56. The invalid rule from exercise 32.

In exercises 57–64, classify each argument as an example of modus ponens, modus
tollens, converse error, or inverse error.

57. If Socrates is human, Socrates is mortal.
Socrates is human.
Therefore, Socrates is mortal.

58. If Socrates is human, Socrates is mortal.
Socrates is mortal.
Therefore, Socrates is human.

59. If Socrates is human, Socrates is mortal.
Socrates is not human.
Therefore, Socrates is not mortal.

60. If Socrates is human, Socrates is mortal.
Socrates is not mortal.
Therefore, Socrates is not human.

61. If n is an even prime, then n = 2.
n 	= 2.
Therefore, n is not an even prime.
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62. If n is an even prime, then n = 2.
The number n is an even prime.
Therefore, n = 2.

63. If n is an even prime, then n = 2.
The number n is not an even prime.
Therefore, n 	= 2.

64. If n is an even prime, then n = 2.
n = 2.
Therefore, n is an even prime.

In exercises 65–70, let B and C be formal sentences and use the definitions of tautology,
logical equivalence, and valid argument to prove each claim.

65. If B ≡ C, then B↔ C is a tautology.

66. If B↔ C is a tautology, then B ≡ C.
67. If B↔ C is a tautology, then B ∴ C is a valid argument.
68. B ∴ C is a valid argument does not imply that B↔ C is a tautology.

Hint: Give an example of B and C such that B ∴ C is a valid argument, but
B↔ C is not a tautology.

69. If B ≡ C, then B ∴ C is a valid argument.
70. B ∴ C is a valid argument does not imply that B ≡ C.

Hint: Give an example of B and C such that B ∴ C is a valid argument, but
B 	≡ C.

1.6 The Formal Language of Predicate Logic

Aristotle and Boole developed formal logic to facilitate the use of human reasoning
to study itself. In pursuing this objective, we have defined sentential logic and studied
the fundamental connectives of our natural language: not, and, or, if–then, and if and
only if. As we have seen through our work with translations, truth, expressibility,
computer circuits, and natural deductions, this endeavor has been quite successful. But
there is still more to be done.

For example, we cannot yet analyze the validity of the following syllogism (which
is another variation on Aristotle’s original work):

Every Greek is mortal.
There exists a Greek.
Thus, there exists a mortal.

Intuitively, this argument appears valid, but it can not be verified using sentential logic.
In particular, noun–verb–object sentences without connectives are the fundamental
“units” or “building blocks” of sentential logic; this syllogism is formalized as p, q ∴ r,
where, p is “Every Greek is mortal,” q is “There exists a Greek,” and r is “There exists
a mortal.” From the perspective of sentential logic, this argument is invalid, since
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( p ∧ q) → r is not a tautology under the assignment of truth values p = T , q = T ,
and r = F.

This example illustrates a need to expand the expressive power of sentential logic
to capture more sophisticated forms of valid reasoning. We work toward overcoming
the limitations of sentential logic by delving more deeply into the sentence structure
of our natural language. In the end, we make two significant extensions of sentential
logic to define what is known as predicate logic.

The first extension is the addition of predicates, which express the verb–object
portion of a sentence and identify a property of the subject. Some examples of predicate
phrases include: “x is Greek,” “x loves y,” “x is even,” “x > y,” and the distinguished
identity predicate “x = y.” Adding predicates to the formal logic also leads us to
consider the various names that can be substituted into predicates, including constants
(such as “b” representing Bailey and “5” representing five), variables (such as “x” and
“y”), and functions (such as addition and differentiation).

The second extension is the addition of quantifiers, which express the notions of
“every” and “exists.” In the above syllogism, “every” and “exists” are central to the
argument about Greeks and mortals. In mathematics as a whole, quantifiers play an
important role as we seek to understand and express general truths about mathematical
objects.

This section begins with the study of predicates and then develops quantifiers.
We start by examining a collection of sentences from the perspective of sentential
logic.

Example 1.6.1 We translate each English sentence into sentential logic. In translating, we
implicitly define a dictionary; for example, based on the first sentence, C represents
“Bailey loves Chris”.

• Bailey loves Chris, but not Morgan. C ∧ (∼M)
• Bailey loves Chris only if Dakota loves Morgan. C → D
• Chris loves neither Bailey nor Dakota. ∼ (B ∨ A)
• Five is either even or odd. E ∨ O
• Five is even if and only if five squared is even. E ↔ S
• Since five is odd and two is even, five plus

two is odd. (O ∧ T )→ F

■

Throughout this section the examples and questions explore both natural lan-
guage and mathematical translations. Both types of translations are of interest and
reveal the power and the versatility of predicate logic in the study of human
reasoning.

Question 1.6.1 Translate each English sentence into sentential logic. Notice how this level of
translation has become much easier compared to our initial work in section 1.1.

(a) Chris loves Bailey or she loves Dakota.
(b) If Chris loves Dakota, then Dakota does not love Morgan.
(c) Bailey and Chris do not love each other.
(d) Two is both prime and even.
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(e) Five is odd only if five plus five is even.
(f) Five is not even, but two is even.

■

Now that we have a good handle on the sentential logic analysis of these English
sentences, we develop the perspective of predicate logic. We delve more deeply into the
structure of sentences by means of predicates and names. For example, in the sentence
“Bailey loves Chris, but not Morgan,” the relevant predicate is “x loves y,” and the
relevant names are “Bailey,” “Chris,” and “Morgan.” In the spirit of formal logic, we
represent these English phrases and words with the symbols L(x, y), b, c, and m.At this
point, we make an important transition in our practice: we apply the word predicate
exclusively to strings of symbols of the form P(x1, . . . , xn) that can be interpreted as
English predicate phrases and the word names exclusively to constants, variables, and
functions applied to names.

Definition 1.6.1 A predicate is a string of symbols of the form P(x1, . . . , xn) where x1, . . . , xn are
variables. A name is a string consisting of a single constant, a single variable,
or a function applied to names. A predicate has a finite number of variables and
is interpreted as true or false in a given context, when nonvariable names are
substituted for the variables appearing in the predicate. We refer to a predicate
with n distinct variables as an n-place predicate.

Example 1.6.2 We give some examples of predicates, along with one of the many possible
interpretations of each predicate.

1-place predicates G(x) : x is Greek
P(x) : x is prime

2-place predicates L(x, y) : x loves y
G(x, y) : x is greater than y
x = y : x is equal to y

3-place predicates T (x, y, z) : x thinks y is z
A(x, y, z) : x + y = z

We also give some examples of nonvariable names, along with one of many
possible interpretations of each name.

b : Bailey c : Chris a(2, 2) : two plus two
d : Dakota 2 : two a[a(2, 3), 5] : two plus three, plus five

■

Question 1.6.2 Give an additional example of a 1-place predicate, a 2-place predicate, a name
that is a constant, and a name that is a function applied to a constant.

■

When using predicates, we may not compose two or more predicates to assert that
a single object possesses multiple properties. Instead, we must translate such sentences
using a conjunction of the corresponding predicates. For example, working with the
predicates given in example 1.6.2, the predicate logic translation of the (nonsensical)
English sentence “x is a Greek prime” as G[P(x)] is incorrect. Instead, we translate
this sentence into predicate logic as G(x) ∧ P(x), using the conjunction to express



60 A Transition to Advanced Mathematics

that x is both Greek and prime. With these ideas in hand, we reconsider the sentences
previously translated into sentential logic.

Example 1.6.3 We use the given dictionary to translate each English sentence from example 1.6.1
into predicate logic.

b : Bailey c : Chris d : Dakota m : Morgan
2 : two 5 : five a(x, y) = x + y s(x) = x2

L(x, y) : x loves y E(x) : x is even O(x) : x is odd P(x) : x is prime

• Bailey loves Chris, but not Morgan. L(b, c) ∧ [∼L(b, m)]
• Bailey loves Chris only if Dakota loves Morgan. L(b, c)→ L(d, m)
• Chris loves neither Bailey nor Dakota. ∼[L(c, b) ∨ L(c, d)]
• Five is either even or odd. E(5) ∨ O(5)
• Five is even if and only if five squared is even. E(5)↔ E[s(5)]
• Since five is odd and two is even, five plus two is odd.

[O(5) ∧ E(2)] → O[a(5, 2)]
■

We use traditional notation for familiar functions and predicates. From studying
algebra and calculus, we recognize that functions are often expressed using the generic
notation a(x, y) or s(x), as in example 1.6.3. However, some common functions are
usually expressed differently. For example, we typically write x+ y rather than+(x, y)
and x2 rather than 2(x). Using this traditional notation, the last two sentences from
example 1.6.3 can be translated into predicate logic as follows.

E(5)↔ E[s(5)] as E(5)↔ E(52)
[O(5) ∧ E(2)] → O[a(5, 2)] as [O(5) ∧ E(2)] → O[5+ 2]

This same practice is also followed when translating familiar mathematical predicates.
For example, we usually write x < y, rather than <(x, y). Thus, we generally prefer
to use traditional mathematical notation for functions and predicates for the sake of
readability. However, we do require the strict notation for functions and predicates
when crafting proofs about sentences from predicate logic.

Question 1.6.3 Use the dictionary from example 1.6.3 to translate each English sentence from
question 1.6.1 into predicate logic.

(a) Either Chris loves Bailey or she loves Dakota.
(b) If Dakota loves Chris, then Dakota does not love Morgan.
(c) Bailey and Chris do not love each other.
(d) Two is both prime and even.
(e) Five is odd only if five plus five is even.
(f) Five is not even, but two is even.

■

The second significant extension of sentential logic is the introduction of
quantifiers. The words “every,” “all,” “exists,” and “some” make regular appearances
in Aristotle’s syllogisms, in our natural language, and in the common language of
mathematics, and these words play a central role in much of human reasoning.
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The formal language of predicate logic uses the following symbols to represent the
given English quantifiers and their variants.

English quantifiers Formal quantifiers Formal names

for all, for every, for each ∀ universal

there exists, there is, for some ∃ existential

Just these two quantifiers (expressing the complementary notions of “every” and
“exists”) capture the full range of human expression and reasoning about quantity
in our formal language. As illustrated in the following example, these quantifiers
enable the translation of much more sophisticated English sentences and ideas into
predicate logic.

Example 1.6.4 We use the given dictionary to translate each English sentence into predicate logic.

b : Bailey c : Chris d : Dakota m : Morgan
2 : two 5 : five a(x, y) = x + y s(x) = x2

L(x, y) : x loves y E(x) : x is even O(x) : x is odd P(x) : x is prime

• Someone loves Bailey. ∃xL(x, b)
• Everyone loves Chris and Morgan. ∀x[L(x, c) ∧ L(x, m)]
• Everyone who doesn’t love Bailey, loves Chris. ∀x{[∼L(x, b)] → L(x, c)}
• There exists an even prime. ∃x[E(x) ∧ P(x)]
• If n is even, then n is not odd. ∀x{E(x)→ [∼O(x)]}
• The square of a non-even integer is not even. ∀x{[∼E(x)] → [∼E(x2)]}

■

Even though the words “for all” (or their equivalent) did not explicitly appear in
the last two sentences of example 1.6.4, these sentences are still translated as universal
sentences (the formal quantifier ∀ is the universal quantifier expressing “for all”). Both
of these sentences implicitly assert that all numbers satisfy the stated property. In our
formal language, we must explicitly identify this implicit content of the sentence using
the universal quantifier. Many mathematical statements make such implicit claims
about all mathematical objects within some context. As we translate sentences into
predicate logic, and later as we work on proving mathematical statements, we must be
conscious of the frequent occurrence of such implicit universal assertions.

The implication is also crucial for the correct translation of the last two sentences
of example 1.6.4. In particular, the last sentence is sometimes mistakenly translated
as ∀x{[∼E(x)] ∧ [∼E(x2)]}, which claims that “every number is not even and the
square of every number is not even.” This is not the sentence we have been asked to
translate. Instead, we use an implication to specify a context for the claim made in this
sentence. For ease of reference in technical discourse, the left side of an implication is
referred to as the antecedent, and the right side of an implication is referred to as the
consequent. In this last sentence of example 1.6.4, the antecedent (∼E(x) expressing
“x is not even”) frames the context, and the consequent (∼E(x2) expressing “x2 is not
even”) makes an assertion about the numbers in the specified context. This process
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of “setting the stage” is crucial in mathematics, since context determines the truth of
mathematical statements.

Question 1.6.4 Using the dictionary from example 1.6.4, translate each English sentence into
predicate logic.

(a) Bailey loves someone.
(b) Someone loves themselves and Dakota.
(c) Everyone who loves Chris also loves Morgan.
(d) Some primes are odd.
(e) If n is even, then n2 is even.
(f) The square of every even integer is even.

■

Predicates and quantifiers provide the tools needed to make a more careful analysis
of the syllogism introduced at the beginning of this section.

Example 1.6.5 We state the sentential logic translation and the predicate logic translation of the
syllogism given at the beginning of this section. For this translation, we use the
dictionary G(x) : “x is Greek,” and M(x) : “x is mortal.”

The syllogism Sentential logic Predicate logic

Every Greek is mortal. p ∀x [G(x)→ M(x)]
There exists a Greek. q ∃x G(x)
Thus, there exists a mortal. ∴ r ∴ ∃x M(x)

A comparison of these translations clearly illustrates the finer analysis
provided by predicate logic. The sentential logic is simply insufficient for
analyzing valid arguments of this complexity, while the predicate logic enables
us to verify the validity of this syllogism (see example 1.7.7 at the end of
section 1.7).

■

Thus far, we have only translated sentences that require the use of a single
quantifier. Many interesting and important mathematical statements must be expressed
with multiple quantifiers. Recall the following definition of the limit from
calculus:

limx→c f (x) = L iff for every ε > 0, there exists δ > 0, such that
0 < |x − c| < δ implies |f (x)− L| < ε

Considering this definition from the perspective of predicate logic, we see the definition
begins with “every ε,” followed by “there exists δ,” and then an implicit “for all x.”
Therefore the formal translation of this definition begins ∀ε ∃δ ∀x. In other words,
we must work with multiple quantifiers to express precisely the definition of the limit
of a function at a point. This alternation of quantifiers is why this notion is challenging
for many calculus students.
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Example 1.6.6 We use the given dictionary to translate each English sentence into predicate
logic.

x + y x2 L(x, y) : x loves y E(x) : x is even P(x) : x is prime

• Everyone loves someone. ∀x∃yL(x, y)
• There is someone whom everyone loves. ∃x∀yL(y, x)
• Everyone who loves someone does not love

everyone. ∀x[∃yL(x, y)→∼∀zL(x, z)]
• If x and y are even, then the sum of x and

y is even. ∀x∀y{[E(x) ∧ E(y)] → E(x + y)}
• The sum of two odds is even. ∀x∀y{[O(x) ∧ O(y)] → E(x + y)}
• There exist x, y, z such that x2 + y2 = z2. ∃x∃y∃z[x2 + y2 = z2]

■

Question 1.6.5 Use the dictionary from example 1.6.6 to translate each English sentence into
predicate logic. Assume that = is in the dictionary.

(a) Everyone is loved by someone.
(b) Someone loves everyone.
(c) Everyone who loves someone is loved by someone.
(d) The sum of two evens is not prime.
(e) There do not exist even x and odd y with an even sum.
(f) For some x, y, we have (x + y)2 = x2 + y2.

■

As we have seen in calculus, the definition of limit is essential to calcu-
lus; the subtleties in the notion of a limit provide one example of the need
for multiple quantifiers. Limits also arise in the context of infinite sequences of
numbers. Recall that sequences are infinite lists of numbers; some basic examples
include 1, 2, 3, . . . , n, . . . and 1,−1, 2,−2, 3,−3, . . . . In the following example, we
consider the predicate logic rendition of various limit definitions associated with
sequences.

Example 1.6.7 We use the given dictionary to translate each mathematical definition into predicate
logic.

d(x, y) = |x − y| and x > y : x is greater than y

The function d(x, y) provides a measure of “distance” on the real line based on
the absolute value function. The predicate x > y is the standard “greater than”
relation; we also use the “less than” (y < x) version of this predicate for the sake
of readability.

• The sequence {an} converges to L if for every ε greater than 0, there exists an
N such that for every n greater than N , an is within ε of L. Thus, lim

n→∞ an = L

is translated as

∀ε ∃N ∀n { [ (ε > 0) ∧ (n > N) ] → [ d(an, L) < ε ] }.
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• The sequence {f (an)} converges to f (L) is translated as

∀ε ∃N ∀n { [ (ε > 0) ∧ (n > N) ] → [ d[f (an), f (L)] < ε ] }.

• The sequence {an} is Cauchy (named after a famous mathematician latter in the
text) if for every ε greater than 0, there exists an N such that for every m, n
greater than N , am and an are within ε of each other. Thus, we translate {an} is
Cauchy as

∀ε ∃N ∀m ∀n{ [ (ε > 0) ∧ (m > N) ∧ (n > N) ] → [ d(am, an) < ε ] }.

• We translate the sequence {f (an)} is Cauchy as

∀ε ∃N ∀m ∀n{ [ (ε > 0) ∧ (m > N) ∧ (n > N) ] → [ d[f (am), f (an)] < ε ]}.
■

We end this section with a precise definition of the formal language of predicate
logic. This definition parallels our work with sentential logic, but has additional
elements because of the introduction of names. The formal language of predicate
logic has three components: an alphabet identifying the legal symbols that may
be used; names consisting of strings of symbols from the alphabet that may be
substituted into predicates; and sentences consisting of legal strings of symbols from
the alphabet that make assertions. Consider the following definition of these three
components.

Definition 1.6.2 The formal alphabet of predicate logic consists of exactly the following
symbols.

constants: a, b, . . . , o
functions: f (x1, . . . , xn) for all n
predicates: P(x1, . . . , xn) for all n
identity predicate: =
variables: p, q, . . . , z
logical connectives: ∼, ∧, ∨, →, ↔
quantifiers: ∀, ∃
grouping symbols: (, ), [, ], {, }

As with sentential logic, constants, functions, predicates, and variables may
be indexed, and so we have infinitely many such symbols. For example, there
exist infinitely many constants a1, a2, a3, . . ., infinitely many variables x1, x2, x3, . . .,
infinitely many functions f1(x1), f2(x2), f3(x3), . . ., and infinitely many predicates
P1(x1), P2(x2), P3(x3), . . . . In addition, the choice of constants from roughly the
first half of the English alphabet and variables from roughly the second half of
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the English alphabet is not a strict distinction. We also use other symbols for
functions and predicates. For example, g and h are commonly used for functions,
and L, E, and O are used to identify predicates as in the various examples and
questions of this section. Finally, the phrase “for all n” in the specification of
functions and predicates indicates the availability of functions with any finite number
of variables. Thus, we have functions f (x1), f (x1, x2), f (x1, x2, x3), . . ., so on, and
an n-place function is a function with n variables; similarly, we have predicates
P(x1), P(x1, x2), P(x1, x2, x3), . . . and so on, and an n-place predicate is a predicate
with n variables.

Definition 1.6.3 A name of predicate logic is a string of symbols from the alphabet of predicate
logic that satisfies the following:

• a single constant or a single variable is a name;
• an n-place function applied to n names is a name.

In this section, we have used multiple names, including the constants b for Bailey
and 2 for two, the variables x and y, and the functions x+ y and x2. As suggested by the
second condition of this definition, x+ 2, (x+ y)+ 2, and [(2+ y)+ 2]2 are all names,
since we are allowed to compose, or “layer,” functions multiple times to produce new
names. In contrast, ∼ (x + y), x ∧ y, T (x, y), 22 < 5, and ∀x x2 are not names, since
we may not use connectives, predicates, or quantifiers in stating names—such symbols
make assertions rather than identify objects.

Definition 1.6.4 A sentence of predicate logic is a string of symbols from the alphabet of predicate
logic that satisfies the following:

• if A1, . . . , An are names and P(x1, . . . , xn) is an n-place predicate, then
P(A1, . . . , An) is a sentence;

• if A1 and A2 are names, then A1 = A2 is a sentence;
• if x is a variable and B, C are sentences, then so are (∼B), (B ∧ C), (B ∨ C),

(B→ C), (B↔ C), ∀x(B), ∃x(B).

For the sake of readability, we often abbreviate sentences by omitting the
outermost pair of parentheses, and we utilize the other grouping symbols given
in the alphabet. We also drop the numeric subscripts from variables; for example,
we may write ∀x∃yL(x, y) for ∀x1∃x2L(x1, x2). We have examined and produced
many different examples of sentences in this section, including E(5) ↔ E(52) and
∀x∃yL(x, y). In contrast, the following chart provides strings of symbols that are not
sentences.

Non-sentence Reason

(x + y) ∧ 5 Connectives do not apply to names such as 5,
only sentences

5 = (2 < 5) A name and a sentence cannot be equal, only two names
can be equal

∃ ∼x[P(x) ∧ E(x)] The ordering of connectives and quantifiers is critical
P(E(x)) Predicates cannot be composed
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1.6.1 Reading Questions for Section 1.6

1. What motivates our interest in predicate logic?
2. Define an n-place predicate and give examples for n = 1, 2, 3.
3. Define and give an example of each type of name.
4. Define an n-place function and give examples for n = 1, 2, 3.
5. Define and give examples of the two quantifiers.
6. Give an example of an implication and identify its antecedent

and consequent.
7. Discuss the role of implication in translating mathematical statements into

sentential logic.
8. Discuss the role of quantifiers in the definition of a limit.
9. Define and give an example of a sequence.

10. What are the three components of the formal language of predicate logic?
11. Give an example for each clause in the definition of a sentence of predicate

logic.
12. Give an example of an expression using symbols from the alphabet of

predicate logic that is not a sentence.

1.6.2 Exercises for Section 1.6

In exercises 1–16, use the given dictionary to translate each English sentence into
predicate logic.

c : Chris p : Pat L(x, y) : x loves y

1. Chris loves Pat or Pat loves Chris.
2. Chris and Pat do not love each other.
3. Chris and Pat love each other.
4. If Chris loves someone, then Chris loves Pat.
5. Pat loves both Chris and himself.
6. Pat loves someone.
7. Pat loves everyone, except Chris.
8. If anyone loves Pat, then Chris does.
9. If someone loves Chris, then Pat loves Chris.

10. Someone loves both Chris and Pat.
11. Everyone loves themselves.
12. Everyone loves someone who is loved by someone.
13. Chris doesn’t love anyone who doesn’t love someone.
14. No one loves Chris, but everyone loves Pat.
15. Since everyone loves themselves, everyone loves someone.
16. Not everyone who loves someone also loves themselves.

In exercises 17–32, use the given dictionary to translate each English sentence into
predicate logic.

0, 2, 5 E(x) : x is even x > y : x is greater than y
x + y P(x) : x is prime
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17. Two is both prime and even.
18. Zero is even, but not prime.
19. Five is not even, but two is even.
20. Either zero or two is prime, but not both.
21. The sum of two and five is greater than two and greater than five.
22. The sum of two and five is prime, but not even.
23. If the sum of two and five is prime, then the sum is not even.
24. Some even numbers are not prime.
25. If a number is greater than zero, then the number is not zero.
26. There exists an even number and an odd number.
27. The sum of two even numbers is even.
28. The sum of two odd numbers is even.
29. The sum of three even numbers is not prime.
30. If n is a prime that is not even, then n is greater than two.
31. For every even number, there is a greater even number.
32. There exists an even prime.

In exercises 33–40, use the two given dictionaries to translate each English sentence
into predicate logic in two different ways.

Dictionary A: 0 E(x) : x is even x > y : x is greater than y
Dictionary B: Z(x) : x is zero E(x) : x is even x > y : x is greater than y

33. Zero is even.
34. If n is zero, then n is even.
35. There exists a number greater than zero.
36. There exists an even number greater than zero.
37. Every number is greater than zero.
38. Every even number is greater than zero.
39. Some number is less than zero.
40. If a number is greater than zero, then it is not zero.

In exercises 41–50, use the given dictionary to translate each definition of a
mathematical property into predicate logic.

x + y x < y : x is less than y

41. Commutativity: The sum of x and y is the same as the sum of y and x.
42. Non-commutativity: For some x and y, the sum of x and y is different from

the sum of y and x.
43. Identity: There exists an element e such that for all x, the sum of x and e is x

and the sum of e and x is x.
44. Reflexivity: For every x, x is less than x.
45. Irreflexivity: For every x, x is not less than x.
46. Symmetry: If x is less than y, then y is less than x.
47. Asymmetry: If x is less than y, then y is not less than x.
48. Transitivity: If x is less than y and y is less than z, then x is less than z.



68 A Transition to Advanced Mathematics

49. Density: If x is less than y, then there exists z such that z is between
x and y.

50. Comparability: For every x and y, x is less than y or x is the same as y or y is
less than x.

In exercises 51–56, use the given dictionary to translate each mathematical definition
into predicate logic (as in example 1.6.7).

0, c, δ, ε, f (x) d(x, y) = |x − y| x > y : x is greater than y
L, N, M x = y x < y : x is less than y

51. lim
x→c

f (x) = L if for every ε > 0, there exists δ > 0 such that for all x within

δ of c, but not equal to c, then f (x) is within ε of L.
52. lim

x→c
f (x) 	= L if for some ε > 0, for every δ > 0, there exists x within δ of c

such that x 	= c and f (x) is more than ε from L.
53. lim

x→c
f (x) = +∞ if for every M > 0, there exists δ > 0 such that for all x

within δ of c, but not equal to c, then f (x) is greater than M.
54. lim

x→c
f (x) = −∞ if for every M < 0, there exists δ > 0 such that for all x

within δ of c, but not equal to c, then f (x) is less than M.
55. lim

x→+∞ f (x) = L if for every ε > 0, there exists N > 0 such that for all x

greater than N , then f (x) is within ε of L.
56. lim

x→+∞ f (x) = L if for every ε > 0, there exists N < 0 such that for all x less

than N , then f (x) is within ε of L.

Exercises 57–70 focus on the identity predicate. Recall that this predicate is denoted
by “x = y” and is automatically included in every dictionary for predicate logic.
While the identity predicate is just one among many 2-place predicates, some
sentences make essential use of the distinguished identity predicate. For example,
“Chris loves only Pat,” “No one loves everyone else,” and “There exist at least two
even numbers,” can only be expressed via the notion of identity. The words “only,”
“besides,” “else,” “at least,” and “exactly” refer to relations among objects in terms
of being the same or different than some other object and must be expressed using
the identity.

In exercises 57–70, use the given dictionary to translate each English sentence
into predicate logic.

c : Chris p : Pat L(x, y) : x loves y x > y : x is greater than y
0 4 E(x) : x is even P(x) : x is prime

57. Chris loves only Pat.
58. Only Chris loves Pat.
59. Everyone loves someone.
60. Everyone loves someone else.
61. No one loves everyone.
62. No one loves everyone else.
63. There is exactly one even prime.
64. Every other prime is greater than the even prime.
65. There are at least two numbers greater than zero.
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66. There are at least two primes greater than zero.
67. There are at least three numbers greater than zero.
68. There are at least three primes greater than zero.
69. There are at least three numbers between zero and four.
70. There are exactly three numbers between zero and four.

1.7 Fundamentals of Mathematical Proofs

In this chapter we have studied logic partly for its own sake, but also to facilitate our
pursuit of mathematical truth; we expect the study of human reasoning to enhance
our intuition when we turn to the broad study of mathematics. In the last section,
we translated well-known mathematical statements into predicate logic, including
such assertions as “The sum of two even numbers is even” and “There exists an
even prime.” We now turn our attention to exploring when and why these statements
are true. While there is great value in knowing what mathematical statements are
true, there is even greater value in understanding why they are true. Among other
things, knowing why a statement is true often allows us to understand a whole host of
other mathematical statements. This general understanding then promotes our creative
efforts in extending the body of known mathematical results. In this section we
explore five fundamental approaches to proving mathematical truths: direct proof;
proof by contradiction; proof by contrapositive; proof by example; and proof by
counterexample. These are the most widely used tools of mathematical reasoning,
and mastering these proof techniques will enable your increasingly more sophisticated
forays into mathematical truth.

Before we dive into working with these proof techniques, we briefly discuss
an overall perspective of mathematics as a science. Mathematics is a “deductive
science of the conditional” in which the objects of study are ideas, and the
fundamental tool of study is logical reasoning. Many would argue that mathe-
matics extends beyond rational thought—that intuition and unconscious insight
are key to mathematical creativity, and that the thirst to uncover new truths
is the driving motivation behind mathematical endeavor. Furthermore, the many
surprising and deep connections between mathematics and our physical world are
of great significance and interest. However, creative intuitions, physical results, and
specific examples do not ensure mathematical truth. While these are indeed essential
elements supporting the continuing exploration and development of mathematics,
logical reasoning alone is the final arbiter of mathematical truth, and we rely on
logical argument in extrapolating mathematical truth from the evidence provided by
specific examples.

Traditionally, mathematicians have looked to Elements [73] as a first and ideal
model of mathematics as a deductive science. A geometry text written by the Greek
mathematician Euclid in 300 b.c.e, copies of the Elements have played an important
role in sparking periods of intense mathematical creativity—from the Arabic world in
the ninth century to Italy in the sixteenth century and even to this day, as a continuing
source of inspiration for mathematicians. Elements consists of a collection of logical
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arguments for geometric truths deduced from a few axioms, or assumptions. More
than just being convincing, many of these proofs have a constructive flavor, and
so hopefully enable a deep understanding of why the corresponding mathematical
statements are true. Elements was the first book to develop the goals of proof in
mathematics: to convince; to explain; to illuminate; and to inspire—in short, to make
us wiser.

With these reflections in mind, we turn toward developing our skills in crafting
proofs. The proof techniques of direct proof, proof by contradiction, and proof by
contrapositive are approaches to arguing the truth of conditional statements of the
form ( p → q). Most mathematical statements have this form, with the antecedent p
determining the context in which the property expressed by the consequent q is true. We
begin with the premises or assumptions expressed by p, and we attempt to demonstrate
the truth of the conclusion expressed by q with a logical argument. In this section, we
consider an illuminating example of each proof technique and provide an opportunity
to work with each in an accompanying question. You will want to reflect carefully on
these examples as you start crafting your own proofs and as you begin growing into
your own style of “doing mathematics.”

As we develop the ability to work with these proof techniques, we consider
some very basic mathematical notions: even, odd, rational, and irrational numbers.
In subsequent chapters we study more sophisticated mathematical ideas and use
these proof techniques to establish more elegant and subtler mathematical truths.
Mastering these techniques in this simpler setting will enable you to grapple with
more sophisticated notions. We formally define the ideas used in constructing the
proofs in this section. In the definitions we use the set-theoretic notation “∈” to
denote “is an element of” or “in the set.” Set theory is studied more fully in
section 2.1.

Definition 1.7.1 • The integers are the numbers . . . ,−2,−1, 0, 1, 2, . . .; the set of all integers is
denoted by Z. (“Zahlen” is German for “count.”)

• An integer n ∈ Z is even if there exists an integer k ∈ Z such that n = 2k.
• An integer n ∈ Z is odd if there exists an integer k ∈ Z such that n = 2k + 1.
• The reals are the numbers on the continuum of the real line. They are

directed distances from a designated point zero; the set of all real numbers is
denoted by R.

• A real r ∈ R is rational if there exist integers p, q ∈ Z with q 	= 0 such that
r = p/q; the set of all rational numbers is denoted by Q.

• A real r ∈ R is irrational if r is not rational.

These number systems and adjectives for numbers may be familiar from previous
mathematics courses; for example,

√
2 and π are examples of irrational numbers.

Before moving on, you should think of a specific example of each type of number
identified in definition 1.7.1. In this section we also use the fact that the sum, difference,
and product of two integers yields an integer. In addition, we need two more theorems.
We prove these claims about the integers and reals at appropriate points later in the
text, but for now we just state and use these results.

Theorem 1.7.1 The parity property of the integers Every integer is either even or odd.
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Theorem 1.7.2 The zero product property of the reals The product of two nonzero real numbers
is nonzero.

With these definitions and theorems in hand, we focus on developing an ability in
writing proofs. In a direct proof of a conditional statement ( p → q), we assume the
premise p (or multiple premises) and work toward the conclusion q. Mathematicians
often give direct proofs of mathematical statements that are not phrased as implications;
in such settings it is often helpful to first phrase the statement as an implication.
Typically, definitions and previously established results enable the transition from p to
q as we argue the truth of the desired sentence. In the following examples, we present
two versions of each proof. The first is an “expanded” proof in which the arguments are
fully described to transparently indicate the thought processes essential to the proof.
We then present a “succinct” proof in a more elegant style expressing the essential
details of the argument. Each style of proof has its pros and cons. As you begin writing
your own proofs, you should probably emulate the “expanded” proofs to help ensure
that you don’t miss any important details; eventually your proofs will evolve to mirror
more closely the “succinct” style of proofs.

Example 1.7.1 We prove the sum of two even integers is even.

An Expanded Proof We first phrase this mathematical statement as an implication: if two
integers are even, then the sum of these integers is even. Since the goal is to
prove something about every pair of even integers, we identify two arbitrary even
integers. Let m and n be even integers. The implication can now be phrased in
terms of m and n as: if m and n are even, then m+ n is even. Thus, the goal is now
to prove that m + n is even.

By the definition of an even integer, we must show that m+ n = 2k for some
integer k ∈ Z. The only information available to help us achieve this goal is the
fact that m and n are even, so we apply the definition of even to these two integers.
Since m is even, there exists an integer i ∈ Z such that m = 2i. Similarly, since
n is even, there exists an integer j ∈ Z such that n = 2j. Computing the sum and
making the appropriate substitutions, we have

m + n = 2i + 2j = 2(i + j) = 2k, where k = i + j.

Thus, by the definition of even integers, m + n is even.
■

A More Succinct Proof Let m and n be even integers. We prove that m + n is even. Since m
and n are even, there exist integers i and j such that m = 2i and n = 2j. Therefore,
m + n = 2i + 2j = 2(i + j), and so m + n is even.

■

In both the expanded and the succinct versions of the proof, we explicitly state
not only the premises we are using, but also the conclusion toward which we are
working. As you develop your own proofs, you should follow this same practice of
explicitly identifying both where you are starting from and where you are going.
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Often, the bridge linking the premises to the conclusion becomes apparent from the
corresponding definitions and other known results.

Question 1.7.1 Prove (directly) that the product of two even integers is even; that is, prove that if
m and n are even integers, then m · n is an even integer.

■

We now consider establishing the truth of a conditional mathematical statement
based on proof by contradiction. The approach taken in a proof by contradiction is
justified by the logical equivalence ( p → q) ≡ { [p ∧ (∼q)] → [r ∧ (∼ r)] }; that
is, if we can prove that p ∧ (∼q) implies a contradiction, then the implication p→ q
must also be true. The set-up for a proof by contradiction is apparent from this logical
equivalence: we assume both the premise and the negation of the conclusion. The next
step can be less obvious—we work toward a contradiction of the form r ∧ (∼r). While
r can be any mathematical statement, we often have the option of using either r = p
or r = q.

Example 1.7.2 Prove that the sum of a rational number and an irrational number is irrational.

An Expanded Proof We are asked to prove something about a rational number and an
irrational number, so we give ourselves an arbitrary number of each type. Let x be
rational, so x = p/q for some integers p and q with q 	= 0, and let y be irrational,
so y is not equal to such a quotient. Phrasing the mathematical statement we are
proving as an implication, we have: if x is rational and y is irrational, then x + y
is irrational.

We proceed by contradiction, assuming the premises and the negation of the
conclusion and working toward a contradiction. So, in addition to our assumptions
that x is rational and y is irrational, we also assume that x+ y is not irrational. Since
x+ y is not irrational, we know that x+ y is rational and there exist integers r and
s with s 	= 0 such that x+ y = r/s. By substituting and algebraically manipulating
the sum, we obtain the following.

x + y = r

s
⇒ p

q
+ y = r

s
⇒ y = r

s
− p

q
= rq − ps

sq

The product and difference of integers yield an integer and, by the zero product
property, the product sq 	= 0 since s 	= 0 and q 	= 0. Therefore, y is a rational
number. We have just shown that under our assumptions, the irrational number y
must be rational, which is a contradiction. Therefore, the sum of a rational and an
irrational is irrational.

■

AMore Succinct Proof We proceed by contradiction. Assume that x = p/q is rational where
p and q are integers with q 	= 0 and assume that y is irrational. In addition, we
assume that x+ y is not irrational and work toward a contradiction. Since x+ y is
not irrational, the sum is rational, and so x + y = r/s, where r and s are integers
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with s 	= 0. Substituting and algebraically manipulating the sum, we obtain the
following.

x + y = r

s
⇒ p

q
+ y = r

s
⇒ y = r

s
− p

q
= rq − ps

sq

The product and difference of integers yields an integer and, by the zero product
property, the product sq 	= 0 since s 	= 0 and q 	= 0. Thus, the irrational number
y is rational, which is a contradiction. Therefore, the sum of a rational and an
irrational is irrational.

■

Question 1.7.2 Prove (by contradiction) that the product of a nonzero rational number and an
irrational number is irrational. Why do we need a nonzero rational number in the
product?

■

The last proof technique we consider for establishing the truth of a conditional
mathematical statement is proof by contrapositive. This third proof technique for
implications is justified by the logical equivalence ( p→ q) ≡ [(∼q)→ (∼p)]; that
is, in a proof by contrapositive, we swap and negate the premises and conclusion, and
then proceed to give a direct proof of the resulting implication. Note that a proof by
contrapositive begins in the same fashion as a proof by contradiction—we assume the
negation of a conclusion.

Example 1.7.3 We prove that for every integer n ∈ Z, if n2 is even, then n is even.

An Expanded Proof Taking the contrapositive of “if n2 is even, then n is even” by swapping
and negating the premise and conclusion, we obtain “if n is not even, then n2 is
not even.” By the parity property of the integers, every integer is either even or
odd, and so an integer that is not even must be odd. Therefore, the contrapositive
is equivalent (by the parity property) to the implication “if n is odd, then n2 is
odd.” We give a direct proof of this contrapositive.

We assume n is odd and prove that n2 is odd. By the definition of an odd
integer, we must show n2 = 2k + 1 for some integer k ∈ Z. The only information
we have available to help us achieve this goal is the fact that n is odd, so we
apply the definition of an odd integer. Since n is odd, there exists an integer i ∈ Z

such that n = 2i + 1. Computing the square and algebraically manipulating the
resulting sum, we have

n2 = (2i + 1)2 = 4i2 + 4i + 1 = 2(2i2 + 2i)+ 1

= 2k + 1 where k = 2i2 + 2i.

Therefore, n2 is odd by the definition of an odd integer. Since n is odd implies n2

is odd, by contrapositive, we know that if n2 is even, then n is even.
■

A More Succinct Proof We give a proof by contrapositive that n2 is even implies n is even.
Taking the contrapositive and applying the parity property of the integers, we
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prove that n is odd implies n2 is odd. We assume n is an odd integer and prove
that n2 is odd. Since n is odd, there exist an integer i ∈ Z such that n = 2i + 1.
Therefore, n2 = (2i + 1)2 = 4i2 + 4i + 1 = 2(2i2 + 2i)+ 1 and n2 is odd. Since
n is odd implies n2 is odd, by contrapositive, we know that if n2 is even, then
n is even.

■

At this point, you might ask the natural question: “When and how do you recognize
that proof by contrapositive is appropriate?” We identify a few positive indicators for
proof by contrapositive that you should watch for as you craft proofs of implications.

• A direct proof becomes complicated or subtle. In example 1.7.3, if we had tried
to prove directly that n2 is even implies n is even, we would have assumed
n2 = 2i and then worked with the more complicated properties of factors and
primes. While continuing in this vein may prove necessary, we should at least
consider an alternate approach.

• The negation of the premises and the conclusion are easy to state, enabling us
to readily give a proof of the contrapositive.

• The more complicated computational component of an implication is embedded
in the theorem’s premises rather than in the conclusion. In example 1.7.3, the
squaring of n is in the premise. In general, we prefer that computations appear
in the conclusion because they provide us something to work with as we craft
a proof.

Question 1.7.3 Prove (by contrapositive) that for every integer n ∈ Z, if n2 is odd, then n is odd.
■

The proof of a biconditional mathematical statement of the form (p↔ q) requires
us to consider two implications. Recall that the biconditional is expressed in English
by such phrases as “if and only if,” “exactly when,” and “precisely when.” In addition,
mathematicians often use a standard abbreviation of “iff” for the biconditional phrase
“if and only if” in mathematical exposition (and so we must be careful to watch for
the second “f” when reading mathematical statements). The logical equivalence of
biconditional expansion ( p ↔ q) ≡ [( p → q) ∧ (q → p)] provides the strategy
for proving biconditionals: we prove a biconditional (p ↔ q) by proving the two
corresponding implications (p → q) and (q → p), each by a direct proof, a proof
by contradiction, or a proof by contrapositive. We illustrate this strategy for proving
a biconditional in the following example, which links together a couple of different
pieces of our work in this section.

Example 1.7.4 We prove n is even iff n2 is even.

Proof We prove the result by proving the two corresponding conditionals:

• If n is even, then n2 is even.
• If n2 is even, then n is even.

We have already proven some results that facilitate working with these conditional
statements. The first conditional follows from question 1.7.1, which states that the
product of two even integers is even. We assume n is even and so, by question 1.7.1,
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the product n ·n = n2 is even. The second conditional was proven in example 1.7.3.
Thus, n is even iff n2 is even.

■

If we did not have the results of question 1.7.1 and example 1.7.3 in hand, then
the proof of the biconditional in example 1.7.4 would follow the same outline given
above, only we would need to work from scratch and fill in the details of the proof
of the two corresponding conditionals. We also note that in mathematical discourse,
we commonly say the first conditional is a corollary of question 1.7.1 because the
corollary follows directly from the question. The word “corollary” is derived from the
Latin word for “gift” and refers to such an immediate consequence of a known theorem.

Once we learn the definitions and basic properties of a few more mathematical
objects, we are ready to prove a whole host of mathematical truths using these three
proof techniques for implications. By continuing to work with these proof techniques,
you will learn to recognize which approach is most useful in a given situation. When
you are considering a new mathematical statement and are unsure how to proceed, start
by trying to construct a direct proof. If for some reason you run into difficulty, don’t
despair—every mathematician has shared this experience. Often, important insights
are gained at such mathematical roadblocks. However, when you encounter such
difficulties, you should also be prepared to “bail out” and attempt a different approach.
If a direct proof is not working, try a proof by contradiction or a proof by contrapositive.
The ability to move fluidly between these proof techniques is one key to success in
understanding and creating new mathematics.

We now consider proving existential statements and negated universal statements.
For mathematical statements of these forms, producing a single example is sufficient
to prove the statement. For existentials this should be clear; an existential statement
claims that a certain object exists and so it suffices to produce at least one such object
to show that the statement is true.

Example 1.7.5 We prove each of the following existential mathematical statements.

• There exists an even integer.

Proof The number 2 = 2 · 1 is an even integer. There are infinitely many different
examples to prove this statement: 0, 2, 4, . . . are all even.

■

• There exists an even prime.

Proof The number 2 = 2 · 1 is an even prime. This value is the only example that will
prove this statement.

■

• There exists a rational number.

Proof As in the case of the even integers, there are infinitely many different rational
numbers. Examples of rational numbers include: 0, 1

2 , 3
4 and 2 (since it can be

written in the form 2
1 ).

■
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Question 1.7.4 Prove the following existential mathematical statements.

(a) There exists an odd prime. (b) There exists an irrational.
■

A similar approach works for proving negated universal statements; they are
logically equivalent to existentials as witnessed by the following pair of logical
equivalences.

∃x(B) ≡ ∼∀x ∼ (B) ∀x(B) ≡ ∼∃x ∼ (B)

A precise rendition of ∼∀x ∼ (B) would be written as [∼ (∀x[∼ (B)])]; we omit all
but the innermost parentheses for the sake of readability. We do not formally prove
these logical equivalences, but reading the English renditions of them may provide
some intuitive justification. For example, the left logical equivalence claims that “there
exists x such that B holds” is equivalent to “it is not the case that for all x not B holds.”
Similarly, the right logical equivalence claims that “for all x B holds” is equivalent
to “it is not the case that there exists x such that not B holds.” Most often, negated
universals arise in the context of disproving a universal mathematical statement. In
such a setting, the object produced to disprove a universal sentence is referred to as a
counterexample.

Example 1.7.6 We illustrate the equivalence of proving a negated universal statement and
disproving a universal statement.

• We prove that not every integer is even.

Proof 3 = 2 · 1+ 1 is an integer that is not even.
■

• We disprove the claim that every integer is even.

Proof 3 = 2 · 1+ 1 is an integer that is not even (and so, 3 is a counterexample).
■

Question 1.7.5 Disprove the following universal mathematical statements.

(a) Every prime is even. (b) For all n > 2, n2 ≥ 25.

■

Question 1.7.6 Prove the negated universal statement: Not every square root is rational.
■

We end this chapter by demonstrating how the mathematical proof techniques
developed in this section, along with the formal language of predicate logic, are
powerful enough to prove the validity of the syllogism given at the beginning of
section 1.6. In this way, the mathematical ideas we have studied in this chapter fulfill
Aristotle’s fundamental desire: they provide a rational framework for determining the
truth of arguments.
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Example 1.7.7 We prove the validity of the following syllogism.

Every Greek is mortal.
There exists a Greek.
Thus, there exists a mortal.

Proof We give a direct proof of this syllogism. We assume that “Every Greek is mortal”
and “There exists a Greek,” and we show that “There exists a mortal.” We begin
with the second assumption that “There exists a Greek,” which we translated into
predicate logic as ∃xG(x). From this assumption, there must exist a Greek and we
let g denote a Greek; working with the predicate notation, G(g) is true. We now
consider the first assumption that “Every Greek is mortal,” which we translated
into predicate logic as ∀x[G(x)→ M(x)]. This statement is assumed true for all
objects (including g) and so we have G(g)→ M(g); that is, if g is Greek, then g is
mortal. We now have the truth of both G(g) and G(g)→ M(g). Applying modus
ponens, we deduce M(g), which asserts g is mortal. Since g is mortal, “There
exists a mortal” is true. Thus, if the two assumptions are true, the conclusion must
be true, and the given syllogism is a valid argument.

■

1.7.1 Reading Questions for Section 1.7

1. State the five proof techniques discussed in this section.
2. Define and give an example of an even integer and an odd integer.
3. State the parity property of the integers.
4. Define and give an example of a rational number and an irrational

number.
5. State the zero product property of the reals.
6. Compute the truth table verifying that ( p→ q) ≡ {[p∧ (∼q)] → [r∧ (∼r)]}.

What proof technique is justified by this logical equivalence?
7. Compute the truth table verifying that ( p → q) ≡ [(∼ q) → (∼ p)]. What

proof technique is justified by this logical equivalence?
8. Compute the truth table verifying that ( p↔ q) ≡ [( p→ q)∧ (q→ p)]. What

proof technique is justified by this logical equivalence?
9. What logical connective is abbreviated “iff” in mathematical exposition?

10. Why can we prove an existential sentence with an example?
11. Why can we not prove a universal sentence with an example?
12. What types of mathematical statements can be proven by counterexamples?

1.7.2 Exercises for Section 1.7

In exercises 1–18, give a direct proof of each mathematical statement.

1. The sum of an odd integer and an even integer is odd.
2. The difference of two even integers is even.
3. The product an odd integer and an even integer is even.
4. The cube of an even integer is even.
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5. The sum of two odd integers is even.

6. The difference of two odd integers is even.
7. The product of two odd integers is odd.
8. The square of an odd integer is odd.
9. If n is odd, then n2 = 8i + 1 for some integer i.

10. If the sum of two integers is even, their difference is even.

11. If the sum of two integers is odd, their difference is odd.
12. The sum of two rational numbers is rational.

13. The difference of two rational numbers is rational.

14. The product of two rational numbers is rational.

15. The quotient of two nonzero rational numbers is nonzero.

16. The square of a rational number is rational.

17. The double of a rational number is rational.
18. Every integer is rational.

In exercises 19–30, give a proof by contradiction of each mathematical statement.

19. The square of an even integer is even.

20. The square of an odd integer is odd.
21. The cube of an even integer is even.

22. The cube of an odd integer is odd.
23. If r is an irrational number, then

√
r is irrational.

24. The double of a rational number is rational.
25. The square of a rational number is rational.
26. The product of a nonzero rational number and an irrational number is

irrational.

27. There does not exist a greatest integer.
28. There does not exist a greatest even integer.

29. There does not exist a least positive rational number.
30. There does not exist a least positive real number.

In exercises 31–35, give a proof by contrapositive of each mathematical statement.

31. If n3 is even, then n is even.

32. If n3 is odd, then n is odd.
33. If mn is odd, then both m and n are odd.

34. If the unit digit of an integer is nonzero, then the integer is not a multiple
of 10.

35. If r is an irrational number, then
√

r is an irrational number.

In exercises 36–40, prove each biconditional mathematical statement.

36. n3 is odd iff n is odd.
37. n2 is odd iff n is odd.
38. n is even iff n+ 1 is odd.
39. n is odd iff n+ 1 is even.
40. n is even iff n can be written as the sum of two odds.
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In exercises 41–48, prove each existential mathematical statement.

41. There exists an odd integer.

42. There exists an odd rational.

43. There exists an even integer that can be written as a sum of two distinct
primes.

44. There exists an even integer that can be written as a sum of two primes in two
different ways.

45. There exists an irrational number.

46. There exists a rational number.

47. There exists a rational integer.

48. There exists an even rational number.

In exercises 49–59, disprove each universal mathematical statement.

49. Every prime is odd.

50. For all n > 4, n2 ≥ 36.

51. The ratio of the circumference of a circle to its radius is rational.

52. The sum of two evens is odd.

53. The sum of two odds is odd.

54. The sum of an even and an odd is even.

55. Every odd integer is irrational.

56. Every even integer is irrational.

57. The sum of two irrational numbers is irrational.

58. The sum of a rational and irrational is rational.

59. For every pair of reals r and s, if r2 = s2, then r = s.

In exercises 60–67, prove each negated universal mathematical statement.

60. Not every square root of a positive integer is rational.

61. Not every square root of a positive integer is irrational.
62. Not every rational number is even.

63. Not every rational number is odd.
64. Not every integer is even.
65. Not every integer is odd.

66. Not every square root is greater than zero.

67. Not every square is positive.

In exercises 68–70, identify the error in each of the following incorrect “proofs” that
the sum of two even integers is even.

68. False proof 1: Let x be even. Since x+ x = 2x is even, the sum of two evens
is even.

69. False proof 2: Let x + y be even. Therefore the sum of two evens
is even.

70. False proof 3: If x is even and y is even, then x + y is even. Therefore, x + y
is even and the sum of two evens is even.
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Notes

The history of Western thought traces its roots to the Greeks in the third and fourth century
b.c.e. The works of Socrates, Plato, and Aristotle are among the preeminent accomplishments
of this time, and their thoughts and insights continue to influence Western thought and culture to
this day. Cahill [35] provides a generally accessible description of the impact of ancient Greek
ideas on contemporary Western mathematical culture (as passed down from Socrates to Plato
to Aristotle and, finally, to us), and also describes the Greek influence on how we feel, how
we rule, how we party, and how we see. Both Kline [142] and Jacobs [126] provide a similar,
but more thorough, introductory survey of the historical progression of mathematical thought,
including the contributions of the Greeks. Aristotle’s analysis of natural reasoning in the Prior
Analytics remains the foundation of the philosophical and mathematical approaches to logic;
Smith [220] is a contemporary English translation of this treatise. This vein of analyzing natural
language arguments continues in philosophy departments across the U.S.A. in logical reasoning
courses; such courses are supported by texts by Browne and Keeley [32], Kelley [138], and
McInerny [173].

The more formal approach of the sentential and predicate logic traces its roots to George
Boole in his seminal treatise An Investigation of the Laws of Thought, on Which are Founded
the Mathematical Theories of Logic and Probabilities (a reprint [22] is available from Dover
Publications), and the German philosopher Gottlob Frege in his treatise The Foundations of
Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number (see the translation by
Austin [91]). Davis [54] traces the development of rational thought from the perspective of the
historical development of computing and contemporary understanding of algorithms, including
a discussion of Boole’s and Frege’s work in this context. MacHale [161] has interwoven the
story of Boole’s personal and intellectual life in a biographical format.

The sentential and predicate logic are standard elements of formal logic courses offered by
both philosophy and mathematics departments. The philosophical rendition of these courses
focuses on working with translations and developing students’ capability to create natural
deductive arguments (rather than just identifying the steps in such arguments as we have done
in this text). Copi and Cohen [46], Gustason and Ulrich [105], and Jacquette [127] are widely
used texts that support such philosophy courses and enable students to develop their skills in
this more computational approach to these logics. There is also a Schaum’s Outline [181] and
a more recent abridgment by McAllister [182] that explore this line of development. Another
approach adopted in some philosophical contexts is a “tree method proof system” that captures
the essence of the natural deductive system, while also enabling a relatively quick approach
to the theoretical aspects of logic; Jeffrey [131] is a respected text supporting this approach
to logic.

Mathematicians typically adopt a more abbreviated approach to the sentential and predicate
logic in the interest of exploring the theoretical aspects of logic. Hamilton [109], Leary [152],
and Mendelson [175] are all fine introductions to this mathematical approach to logic;
Enderton [71] is the classic introduction to mathematical logic at the advanced undergraduate and
beginning graduate level. There are also philosophical texts that adopt this approach, including
Hunter [123]. Mathematicians and philosophers have collaborated for many years, and there is
an important cross-fertilization of insights and ideas between these complementary approaches
to logic.

Among the most significant intellectual accomplishments of the twentieth century are the
incompleteness theorems of the accomplishedAustrian–American mathematician Kurt Friedrich
Gödel, which assert that some true mathematical statements are not provable (that is, they
can never be proven) in sufficiently powerful formal systems. There are many enjoyable
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books describing various aspects of these results. Nagel and Newman [178] is the classic
text in this area, providing a marvelous description of the intellectual background and
the content of Gödel’s On Formally Undecidable Propositions of Principia Mathematica
and Related Systems (reprinted by Dover Publications [99]). Davis et al. [55] explores
the context and content of Gödel’s work, as well as a host of other interesting mathe-
matical miscellany. More technical explorations of Gödel’s incompleteness theorems can
be found in Enderton [71], Jeffrey [131], and the graduate level text by Smullyan [223].
Crossley et al. [49] contains an abbreviated outline of the proof of these results and, more
recently, Franzen [90] has written a book exploring the “uses and abuses” of Gödel’s
theorems. A number of more playful explorations of Gödel’s insights have been written
by Smullyan (see both [225] and [222]), using puzzles and riddles to illuminate various
facets and applications of these theorems. Several of Gödel biographies have been written,
including the recent definitive book by Dawson [52]. The Pulitzer Prize winning work
of Hofstadter [118] also explores the interconnections between Gödel’s results, music, art,
and biology.

Since we have touched on one of the many connections between mathematics and computer
science in the design of computer circuits, we also mention the foundational work of the English
mathematician Alan Turing in the mid-twentieth century. As discussed by Davis [54], Turing
isolated the notions at the heart of our understanding of “computability,” developing abstract and
practical tools for grappling with many questions of computer science. The Turing test remains
the gold-standard in efforts to assess and describe artificial intelligence, and the Turing Award
is the computer science equivalent of the Nobel Prize. Hodges [117] has written the definitive
biography of the personal and intellectual life of Turing. Hamilton [109] and Cutland [50] both
contain accessible descriptions of Turing’s model for computing, which has become known as
a Turing machine.

This chapter’s application of logic to computer science traces its historical roots to telephone
circuit design in the early 1930s and the continuation of this work at Bell Laboratories. Karnaugh
was working as a telecommunications engineer in the 1950s when he published his results on
what has become known as Karnaugh maps in The Map Method for Synthesis of Combinational
Logic Circuits [137]. These diagrams have become a standard component of computer science
and engineering curricula, and our presentation is based on the introductory courses in these
disciplines. Further details and applications of these ideas can be found in Comer [44], Kerns
and Irwin [139], and Mano [167].

Finally, the results presented in section 1.7 are widely known among mathematicians (and
others!), and so they are contained in many different mathematical textbooks. These ideas are
often studied in Discrete Mathematics courses, which are supported by such texts as those
by Epp [72], Richmond and Richmond [193], and Scheinerman [209]. Alternatively, there are
a growing number of “Foundations of Mathematics” textbooks that consider these notions,
including those by Barnier and Feldman [10], D’Angelo and West [51], and Smith et al. [219].
Two fun books about mathematical ideas and proofs put in the form of stories, rhymes, and
enjoyable explanations of problems are Fadiman [77] and [78].



2 Abstract Algebra

An important goal of mathematics is to understand the concept of quantity. This
concept has an ancient anthropological origin; among the first mathematical steps
made by humans was the ability to distinguish between one and many and, eventually,
between one, two, three, and so on. In modern English “quantity” is synonymous with
such words as amount, number, size, and magnitude. As we have seen in previous
mathematics courses, the term “quantity” is also frequently used to refer to objects
in mathematical expressions (for example, “substitute the quantity x = 2 into …”).
We seek a more precise mathematical understanding of this concept.

The development of number systems has a rich and interesting history. In Zaire,
Africa, archeologists have discovered what appear to be number representations etched
into fossilized bone fragments that have been carbon-dated to 20000 b.c.e. By 2000
b.c.e., the Babylonians, who lived in the area of modern Turkey, Iraq, and Iran, had
developed symbols to represent quantities and to perform basic arithmetic operations.
The Babylonians also began to analyze the general properties of numbers in connection
with the study of astronomy. Around 300 b.c.e., the Hindu mathematicians in India
developed our modern notation for numbers, which eventually reached the Middle East
through the interaction of merchants along ancient trade routes. By 1000 c.e., Islamic
settlers and traders had brought this Hindu–Arabic numeral system to southern Europe,
along with the mathematical advances of the Babylonians and the ancient Greeks.
These ideas found fertile ground in Italian academic circles and fostered a renaissance
in mathematical interests and studies.

Abstract algebra grew out of an interest in polynomial equations. The Italian
mathematicians of the 1500s studied not just individual numbers, but collections of
numbers identified as solutions of polynomial equations. By the mid-1800s, European
mathematicians had made significant progress in understanding both the power and the
essential limitations of our ability to solve polynomials (as discussed in section 3.5).
This sophisticated study used the abstract properties of numbers and formal number
systems. In this way, abstract algebra was born. This area of study remains a lively
theoretical field in which mathematicians continue to make significant progress and
contributions.Abstract algebra is also widely applicable and is used in a variety of ways
by mathematicians, physicists, chemists, computer scientists, mineralogists, artists, and
many others.

We begin to study abstract algebra by developing an algebra of sets. Intuitively,
a set is a collection of objects known as elements; set theory is the study of the
properties, relations, and operations for sets. While set theory is not technically

82
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part of abstract algebra, sets are fundamental to all areas of mathematics and we
need to establish a precise language for sets. We also explore operations on sets
and relations between sets, developing an “algebra of sets” that strongly resembles
aspects of the algebra of sentential logic. In addition, as we discussed in chapter 1,
a fundamental goal in mathematics is crafting articulate, thorough, convincing, and
insightful arguments for the truth of mathematical statements. We continue the
development of theorem-proving and proof-writing skills in the context of basic
set theory.

After exploring the algebra of sets, we study two number systems denoted
Zn and U(n) that are closely related to the integers. Our approach is based on a
widely used strategy of mathematicians: we work with specific examples and look
for general patterns. This study leads to the definition of modified addition and
multiplication operations on certain finite subsets of the integers. We isolate key
axioms, or properties, that are satisfied by these and many other number systems and
then examine number systems that share the “group” properties of the integers. Finally,
we consider an application of this mathematics to check digit schemes, which have
become increasingly important for the success of business and telecommunications in
our technologically based society. Through the study of these topics, we engage in a
thorough introduction to abstract algebra from the perspective of the mathematician—
working with specific examples to identify key abstract properties common to diverse
and interesting mathematical systems.

2.1 The Algebra of Sets

Intuitively, a set is a “collection” of objects known as “elements.” But in the early
1900’s, a radical transformation occurred in mathematicians’ understanding of sets
when the British philosopher Bertrand Russell identified a fundamental paradox
inherent in this intuitive notion of a set (this paradox is discussed in exercises 66–70 at
the end of this section). Consequently, in a formal set theory course, a set is defined as
a mathematical object satisfying certain axioms. These axioms detail properties of sets
and are used to develop an elegant and sophisticated theory of sets. This “axiomatic”
approach to describing mathematical objects is relevant to the study of all areas of
mathematics, and we begin exploring this approach later in this chapter. For now, we
assume the existence of a suitable axiomatic framework for sets and focus on their
basic relationships and operations. We first consider some examples.

Example 2.1.1 Each of the following collections of elements is a set.

• V = {cat, dog, fish}
• W = {1, 2}
• X = {1, 3, 5}
• Y = {n : n is an odd integer} = {. . . ,−5,−3,−1, 1, 3, 5, . . .}

■

In many settings, the upper case letters A, B, . . . , Z are used to name sets, and a
pair of braces {, } is used to specify the elements of a set. In example 2.1.1, V is a finite
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set of three English words identifying common household pets. Similarly, W is finite
set consisting of the integers 1 and 2, and X is a finite set consisting of the integers
1, 3, and 5. We have written Y using the two most common notations for an infinite
set. As finite beings, humans cannot physically list every element of an infinite set one
at a time. Therefore, we often use the descriptive set notation {n : P(n)}, where P(n) is
a predicate stating a property that characterizes the elements in the set. Alternatively,
enough elements are listed to define implicitly a pattern and ellipses “. . .” are used to
denote the infinite, unbounded nature of the set. This second notation must be used
carefully, since people vary considerably in their perception of patterns, while clarity
and precision are needed in mathematical exposition.

Certain sets are of widespread interest to mathematicians. Most likely, they are
already familiar from your previous mathematics courses. The following notation,
using “barred” upper case letters, is used to denote these fundamental sets of numbers.

Definition 2.1.1 • ∅ denotes the empty set { }, which does not contain any elements.
• N denotes the set of natural numbers { 1, 2, 3, . . . }.
• Z denotes the set of integers { . . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
• Q denotes the set of rational numbers { p/q : p, q ∈ Z with q 	= 0 }.
• R denotes the set of real numbers consisting of directed distances from a

designated point zero on the continuum of the real line.
• C denotes the set of complex numbers { a+ bi : a, b ∈ R with i = √−1 }.
In this definition, various names are used for the same collection of num-

bers. For example, the natural numbers are referred to by the mathematical sym-
bol “N,” the English words “the natural numbers,” and the set-theoretic notation
“{1, 2, 3, . . .}.” Mathematicians move freely among these different ways of referring
to the same number system as the situation warrants. In addition, the mathematical
symbols for these sets are “decorated” with the superscripts “∗,” “+,” and “−”
to designate the corresponding subcollections of nonzero, positive, and negative
numbers, respectively. For example, applying this symbolism to the integers Z =
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, we have

Z∗ = {. . . ,−3,−2,−1, 1, 2, 3, . . .},
Z+ = {1, 2, 3, . . .},
Z− = {−1,−2,−3, . . .}.

There is some discussion in the mathematics community concerning whether or not
zero is a natural number. Many define the natural numbers in terms of the “counting”
numbers 1, 2, 3, . . . (as we have done here) and refer to the set {0, 1, 2, 3, . . .} as
the set of whole numbers. On the other hand, many mathematicians think of zero
as a “natural” number. For example, the axiomatic definition of the natural numbers
introduced by the Italian mathematician Giuseppe Peano in the late 1800s includes zero.
Throughout this book, we use definition 2.1.1 and refer to the natural numbers as the
set N = { 1, 2, 3, . . . }.

Our study of sets focuses on relations and operations of sets. The most fundamental
relation associated with sets is the “element of” relationship that indicates when an
object is a member of a set.
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Definition 2.1.2 If a is an element of set A, then a ∈ A denotes “a is an element of A.”

Example 2.1.2 As in example 2.1.1, let W = {1, 2} and recall that Q is the set of rationals.

• 1 is in W , and so 1 ∈ W .
• 3 is not in W , and so 3 	∈ W .
• 1

2 is rational, and so 1
2 ∈ Q.

•
√

2 is not rational (as we prove in section 3.4), and so
√

2 	∈ Q.
■

Question 2.1.1 Give an example of a finite set A with 2 ∈ A and an infinite set B with 2 	∈ B.
■

We now consider relationships between sets. We are particularly interested in
describing when two sets are identical or equal. As it turns out, the identity relationship
on sets is best articulated in terms of a more primitive “subset” relationship describing
when all the elements of one set are contained in another set.

Definition 2.1.3 Let A and B be sets.

• A is a subset of B if every element of A is an element of B. We write A ⊆ B and
show A ⊆ B by proving that if a ∈ A, then a ∈ B.

• A is equal to B if A and B contain exactly the same elements. We write A = B
and show A = B by proving both A ⊆ B and B ⊆ A.

• A is a proper subset of B if A is a subset of B, but A is not equal to B. We
write either A ⊂ B or A � B and show A ⊂ B by proving both A ⊆ B and
B 	⊆ A.

Formally, the notation and the associated proof strategy are not part of the definition
of these set relations. However, these facts are fundamental to working with sets and
you will want to become adept at transitioning freely among definition, notation, and
proof strategy.

Example 2.1.3 As in example 2.1.1, let W = {1, 2}, X = {1, 3, 5}, and Y ={n : n is an odd integer}.
We first prove X ⊆ Y and then prove W 	⊆ Y .

Proof that X ⊆ Y We prove X ⊆ Y by showing that if a ∈ X, then a ∈ Y . Since X =
{1, 3, 5} is finite, we prove this implication by exhaustion; that is, we consider every
element of X one at a time and verify that each is in Y . Since 1 = 2 · 0 + 1, 3 =
2 · 1 + 1, and 5 = 2 · 2 + 1, each element of X is odd; in particular, each element
of X has been expressed as 2k + 1 for some k ∈ Z). Thus, if a ∈ X, then a ∈ Y ,
and so X ⊆ Y .

■

Proof that W 	⊆ Y We prove W 	⊆ Y by showing that a ∈ W does not necessarily imply
a ∈ Y . Recall that (p→ q) is false precisely when [p ∧ (∼q)] is true; in this case, we
need to identify a counterexample with a ∈ W and a 	∈ Y . Consider 2 ∈ W . Since
2 = 2 · 1 is even, we conclude 2 	∈ Y . Therefore, not every element of W is an
element of Y .

■
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Question 2.1.2 As in example 2.1.1, let X = {1, 3, 5} and Y = {n : n is an odd integer }. Prove
that X is a proper subset of Y .

■

Example 2.1.4 The fundamental sets of numbers from definition 2.1.1 are contained in one another
according to the following proper subset relationships.

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C

■

When working with relationships among sets, we must be careful to use the
notation properly so as to express true mathematical statements. One common misuse
of set-theoretic notation is illustrated by working with the set W = {1, 2}. While it is
true that 1 ∈ W since 1 is in W , the assertion that {1} ∈ W is not true. In particular,
W contains only numbers, not sets, and so the set {1} is not in W . In general, some sets do
contain sets—W is just not one of these sets. Similarly, we observe that {1} ⊆ W since
1 ∈ {1, 2} = W , but 1 ⊆ W is not true; indeed, 1 ⊆ W is not a sensible mathematical
statement since the notation ⊆ is not defined between an element and a set, but only
between sets.

Despite these distinctions, there is a strong connection between the “element of”
relation ∈ and the subset relation ⊆, as you are asked to develop in the following
question. In this way, we move beyond discussing relationships among specific sets
of numbers to exploring more general, abstract properties that hold for every element
and every set.

Question 2.1.3 Prove that a ∈ A if and only if {a} ⊆ A.
Hint: Use definitions 2.1.2 and 2.1.3 to prove the two implications forming this
“if-and-only-if” mathematical statement.

■

We now turn our attention to six fundamental operations on sets. These set
operations manipulate a single set or a pair of sets to produce a new set. When applying
the first three of these operations, you will want to utilize the close correspondence
between the set operations and the connectives of sentential logic.

Definition 2.1.4 Let A and B be sets.

• AC denotes the complement of A and consists of all elements not in A, but in
some prespecified universe or domain of all possible elements including those
in A; symbolically, we define AC = {x : x 	∈ A}.

• A ∩ B denotes the intersection of A and B and consists of the elements in both
A and B; symbolically, we define A ∩ B = {x : x ∈ A and x ∈ B}.

• A ∪ B denotes the union of A and B and consists of the elements in A or
in B or in both A and B; symbolically, we define A ∪ B = {x : x ∈ A or
x ∈ B}.

• A \B denotes the set difference of A and B and consists of the elements in A that
are not in B; symbolically, we define A \B = {x : x ∈ A and x 	∈ B}. We often use
the identity A \ B = A ∩ BC.
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• A × B denotes the Cartesian product of A and B and consists of the set of all
ordered pairs with first-coordinate in A and second-coordinate in B; symbolically,
we define A× B = {(a, b) : a ∈ A and b ∈ B}.

• P(A) denotes the power set of A and consists of all subsets of A; symbolically,
we define P(A) = {X : X ⊆ A}. Notice that we always have ∅ ∈ P(A) and
A ∈ P(A).

Example 2.1.5 As above, we let W = {1, 2}, X = {1, 3, 5} and Y = {n : n is an odd integer }.
In addition, we assume that the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} is
the universe and we identify the elements of the following sets.

• WC = {. . . ,−2,−1, 0, 3, 4, 5, . . .}
• YC = {n : n is an even integer } by the parity property of the integers
• W ∩ X = {1}, since 1 is the only element in both W and X
• W ∪ X = {1, 2, 3, 5}, since union is defined using the inclusive-or
• W \ X = {2}
• X \W = {3, 5}
• Z∗ = Z \ {0} = {. . . ,−3,−2,−1, 1, 2, 3, . . .}
• W × X = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5)}
• P(W ) = { ∅, {1}, {2}, {1, 2} }

■

The last two sets given in example 2.1.5 contain mathematical objects other than
numbers; the power set is also an example of a set containing other sets.As we continue
exploring mathematics, we will study sets of functions, matrices, and other more
sophisticated mathematical objects.

Question 2.1.4 Working with W , X, and Y from example 2.1.5, identify the elements in the sets
XC, W ∩ Y , W ∪ Y , W \ Y , Y \ W , X × W , W × W , W × Y , and P(X). In
addition, state six elements in P(Y ); that is, state six subsets of Y .

■

The use of symbols to represent relationships and operations on mathematical
objects is a standard feature of mathematics. Good choices in symbolism can facilitate
mathematical understanding and insight, while poor choices can genuinely hinder the
study and creation of mathematics. Historically, the symbols ∈ for “element of,” ∩ for
“intersection,” and∪ for “union” were introduced in 1889 by the Italian mathematician
Giuseppe Peano. His work in formalizing and axiomatizing set theory and the basic
arithmetic of the natural numbers remains of central importance. The Cartesian product
× is named in honor of the French mathematician and philosopher René Descartes, who
first formulated “analytic geometry” (an important branch of mathematics discussed
in section 4.1).

Although we have presented the Cartesian product A × B as an operation on
pairs of sets, this product extends to any finite number of sets. Mathematicians work
with ordered triples A × B × C = {(a, b, c) : a ∈ A, b ∈ B, and c ∈ C}, ordered
quadruples A×B×C×D = {(a, b, c, d) : a ∈ A, b ∈ B, c ∈ C, and d ∈ D}, and even
ordered n-tuples A1× · · · × An = {(a1, . . . , an) : ai ∈ Ai for 1 ≤ i ≤ n}. While the use
of n-tuples may at first seem to be of purely academic interest, models for science
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and business with tens (and even hundreds and thousands) of independent variables
have become more common as computers have extended our capacity to analyze
increasingly sophisticated events.

Along with considering the action of set-theoretic operations on specific sets of
numbers, we are also interested in exploring general, abstract properties that hold for
all sets. In this way we develop an algebra of sets, comparing various sets to determine
when one is a subset of another or when they are equal. In developing this algebra, we
adopt the standard approach of confirming informal intuitions and educated guesses
with thorough and convincing proofs.

Example 2.1.6 For sets A and B, we prove A ∩ B ⊆ A.

Proof We prove A ∩ B ⊆ A by showing that if a ∈ A ∩ B, then a ∈ A. We give a direct
proof of this implication; we assume that a ∈ A ∩ B and show that a ∈ A. Since
a ∈ A∩ B, both a ∈ A and a ∈ B from the definition of intersection. We have thus
quickly obtained the goal of showing a ∈ A.

■

In example 2.1.6 we used a direct proof to show that one set is a subset of another.
This strategy is very important: we prove X ⊆ Y by assuming a ∈ X and showing a ∈ Y .
In addition, the process of proving a ∈ X implies a ∈ Y usually involves “taking apart”
the sets X and Y and characterizing their elements based on the appropriate set-theoretic
definitions. Once X and Y have been expanded in this way, our insights into sentential
logic should enable us to understand the relationship between the two sets and to craft
a proof (or disproof) of the claim. We illustrate this approach by verifying another
set-theoretic identity.

Example 2.1.7 For sets A and B, we prove A \ B = A ∩ BC .

Proof In general, we prove two sets are equal by demonstrating that they are sub-
sets of each other. In this case, we must show both A \ B ⊆ A ∩ BC and
A ∩ BC ⊆ A \ B.

A \B ⊆ A∩BC : We assume a ∈ A \B and show a ∈ A∩BC . Since a ∈ A \B,
we know a ∈ A and a 	∈ B. The key observation is that a 	∈ B is equivalent to
a ∈ BC from the definition of set complement. Since a ∈ A and a 	∈ B, we have
both a ∈ A and a ∈ BC . Therefore, by the definition of intersection, a ∈ A ∩ BC .
Thus, we have A \ B ⊆ A ∩ BC , completing the first half of the proof.

A ∩ BC ⊆ A \ B: We assume a ∈ A ∩ BC and show a ∈ A \ B. From the
definition of intersection, we know a ∈ A ∩ BC implies both a ∈ A and a ∈ BC .
Therefore, both a ∈ A and a 	∈ B from the definition of complement. This is exactly
the definition of set difference, and so a ∈ A \B. Thus, A∩BC ⊆ A \B, completing
the second half of the proof.

The proof of these two subset relationships establishes the desired equality
A \ B = A ∩ BC for every set A and B.

■

Question 2.1.5 Prove that if A and B are sets with A ⊆ B, then BC ⊆ AC .
■
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A whole host of set-theoretic identities can be established using the strategies
illustrated in the preceding examples. As we have seen, the ideas and identities of
sentential logic play a fundamental role in working with the set-theoretic operations.
Recall that De Morgan’s laws are among the most important identities from sentential
logic; consider the following set-theoretic version of these identities.

Example 2.1.8 De Morgan’s laws for sets We prove one of De Morgan’s laws for sets: If A and B
are sets, then both (A ∩ B)C = AC ∪ BC and (A ∪ B)C = AC ∩ BC .

Proof We prove the identity (A ∩ B)C = AC ∪ BC by arguing that each set is a subset of
the other based on the following biconditionals:

a ∈ (A ∩ B)C iff a 	∈ A ∩ B Definition of complement
iff a is not in both A and B Definition of intersection
iff either a 	∈ A or a 	∈ B Sentential De Morgan’s laws
iff either a ∈ AC or a ∈ BC Definition of complement
iff a ∈ AC ∪ BC Definition of union

Working through these biconditionals from top to bottom, we have a ∈ (A ∩ B)C

implies a ∈ AC ∪BC , and so (A∩B)C ⊆ AC ∪BC . Similarly, working through these
biconditionals from bottom to top, we have a ∈ AC ∪ BC implies a ∈ (A ∩ B)C ,
and so AC ∪ BC ⊆ (A ∩ B)C . This proves one of De Morgan’s laws for sets,
(A ∩ B)C = AC ∪ BC for every set A and B.

■

Question 2.1.6 Prove the other half of De Morgan’s laws for sets; namely, prove that if A and B
are sets, then (A ∪ B)C = AC ∩ BC .

■

We end this section by discussing proofs that certain set-theoretic relations and
identities do not hold. From section 1.7, we know that (supposed) identities can be
disproved by finding a counterexample, exhibiting specific sets for which the given
equality does not hold. To facilitate the definition of sets A, B, C with the desired
properties, we introduce a visual tool for describing sets and set operations known as
a Venn diagram. In a Venn diagram, the universe is denoted with a rectangle, and sets
are drawn inside this rectangle using circles or ellipses. When illustrating two or more
sets in a Venn diagram, we draw overlapping circles to indicate the possibility that the
sets may share some elements in common. The Venn diagrams for the first four set
operations from definition 2.1.4 are given in figure 2.1.

Example 2.1.9 We disprove the false claim that if A, B, and C are sets, then A ∩ (B ∪ C) =
(A ∩ B) ∪ C. This demonstrates that union and intersection operations are not
associative when used together, and so we must be careful with the order of
operation when “mixing” union and intersection.

The Venn diagrams given in figure 2.2 illustrate the sets we are considering
in this example. We use three circles to denote the three distinct sets A, B, and C.
In addition, the circles overlap in a general way so as to indicate all the various
possibilities for sets sharing elements.
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The shaded set is Ac. The shaded set is A � B.

AA B

B

The shaded set is A \ B.The shaded set is A � B.

Ac

AA B

Figure 2.1 Venn diagrams for basic set operations

A

A � B � C A � B � C

B

C

A B

C

Figure 2.2 The Venn diagram for example 2.1.9 showing A ∩ (B ∪ C) 	= (A ∩ B) ∪ C

Examining the Venn diagrams, we see that if A, B, C are defined so that C
contains an element that is in neither A nor B, the sets A∩ (B∪C) and (A∩B)∪C
will be different. Alternatively, we could define A, B, C so that B ∩ C contains an
element that is not in A. Following the first approach, we choose to define the sets
A = {1}, B = {1, 2}, and C = {1, 2, 3} and verify the desired inequality with the
following computations.

A ∩ (B ∪ C) = {1} ∩ {1, 2, 3} = {1}
(A ∩ B) ∪ C = {1} ∪ {1, 2, 3} = {1, 2, 3}

Therefore these three sets provide a counterexample demonstrating that sometimes
A ∩ (B ∪ C) 	= (A ∩ B) ∪ C.

■

In example 2.1.9, the choice of sets A, B, and C is just one choice among
many. We are certainly free to make other choices, and you might even think of
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constructing counterexamples as providing an opportunity to express your “mathe-
matical personality.”

Question 2.1.7 Guided by example 2.1.9, give another counterexample disproving the false claim
that A ∩ (B ∪ C) = (A ∩ B) ∪ C for all sets A, B, C.

■

We highlight one subtlety that arises in this setting. In example 2.1.9 and
question 2.1.7, the counterexamples only disprove the general claim that A∩ (B∪C) =
(A ∩ B) ∪ C for all sets A, B, C. However, these counterexamples do not prove
that we have inequality for every choice of sets. In fact, there exist many different
cases in which equality does hold. For example, both A = ∅, B = ∅, C = ∅ and
A = {1, 2}, B = {1, 3}, C = {1} produce the equality A ∩ (B ∪ C) = (A ∩ B) ∪ C,
but only because we are working with these specific sets. We therefore cannot make
any general claims about the equality of A∩ (B∪C) and (A∩B)∪C, but must consider
each possible setting on a case-by-case basis. In short, if we want to prove that a set-
theoretic identity does not always hold, then a counterexample accomplishes this goal;
if we want to prove that a set-theoretic identity never holds, then we must provide a
general proof and not just a specific (counter)example.

Question 2.1.8 Sketch the Venn diagram representing the following sets.

(a) (A ∪ B) ∩ C (b) AC \ B
■

Question 2.1.9 Following the model given in example 2.1.9, disprove the false claim that the
following identities hold for all sets A, B, C.

(a) (A ∪ B) ∩ C = A ∪ (B ∩ C) (b) AC \ B = (A \ B)C

■

2.1.1 Reading Questions for Section 2.1

1. What is the intuitive definition of a set?
2. What is the intuitive definition of an element?
3. Describe two approaches to identifying the elements of an infinite set.
4. Name six important sets and the symbolic notation for these sets.
5. Define and give an example of the “element of” relation a ∈ A.
6. Define and give an example of the set relations: A ⊆ B, A = B, and A ⊂ B.
7. If A and B are sets, what strategy do we use to prove that A ⊆ B?
8. If A and B are sets, what strategy do we use to prove that A = B?
9. Define and give an example of the set operations: AC , A ∩ B, A ∪ B, A \ B,

A× B, and P(A).
10. Define and give an example of a generalized Cartesian product

A1 × A2 × · · · × An.
11. State both the sentential logic and the set-theoretic versions of De Morgan’s

laws.
12. Discuss the use of a Venn diagram for representing sets.
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2.1.2 Exercises for Section 2.1

In exercises 1–14, identify the elements in each set, assuming A = {w, x, y, z} is the
universe, B = { x, y }, C = { x, y, z }, and D = { x, z }.

1. BC

2. CC

3. B ∩ C

4. B ∩ D

5. B ∪ C

6. B ∪ D

7. B ∩ (C ∪ D)

8. (B ∩ C) ∪ D

9. B \ D

10. D \ B

11. B× C

12. B× D

13. P(B)

14. P(C)

In exercises 15–22, identify the elements in each set, assuming A = (0, 2) =
{x : 0 < x ≤ 2} and B = [1, 3) = {x : 1 ≤ x < 3} are subsets of the real line R.

15. AC

16. BC

17. A ∩ B

18. A ∪ B

19. A \ B

20. B \ A

21. AC ∩ BC

22. AC ∪ BC

In exercises 23–27, give an example proving each subset relationship is proper.

23. ∅ ⊂ N

24. N ⊂ Z

25. Z ⊂ Q

26. Q ⊂ R

27. R ⊂ C

In exercises 28–41, prove each set-theoretic identity for sets A, B, and C.

28. {2, 2, 2} = {2}
29. {1, 2} = {2, 1}
30. {1} ∈ P({1})
31. A ⊆ A (and so A ∈ P(A) )

32. ∅ ⊆ A (and so ∅ ∈ P(A) )

33. A \ ∅ = A

34. [AC]C = A

35. A ∩ B ⊆ A

36. A ∩ ∅ = ∅
37. A ⊆ A ∪ B

38. If A ⊆ B and B ⊆ C, then
A ⊆ C.

39. If A ⊆ B and A ⊆ C, then
A ⊆ B ∩ C.

40. (A ∪ B) \ C = (A \ C) ∪ (B \ C)

41. If A ⊆ B, then P(A) ⊆ P(B).

In exercises 42–45, disprove each false set-theoretic identity.

42. 1 = {1}
43. 1 ⊆ {1}

44. {1} ∈ {1}
45. {1} ⊆ P({1})

For exercises 46–53, disprove the false claim that the following hold for all sets A, B, C
by describing a counterexample.

46. If A 	⊆ B and B 	⊆ C, then A 	⊆ C.

47. If A ⊆ B, then AC ⊆ BC .

48. If AC = BC , then A ∪ B = ∅.
49. If AC = BC , then A ∩ B = ∅.

50. If A ∪ C = B ∪ C, then A = B.

51. If A ∩ C = B ∩ C, then A = B.

52. If B = A ∪ C, then A = B \ C.

53. (A \ B) ∪ (B \ C) = A \ C
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Exercises 54–57 consider “disjoint” pairs of sets. We say that a pair of sets X and Y is
disjoint when they have an empty intersection; that is, when X ∩ Y = ∅.

In exercises 54–57, let B = {x, y}, C = {x, y, z}, D = {x, z}, E = {y}, and F = {w}
and identify the sets in this collection that are disjoint from the following sets.

54. B
55. C

56. D
57. E

Exercises 58–62 explore numeric properties of the power set operation.

58. State every element in P(∅). How many elements are in P(∅)?
59. State every element in P( {1} ). How many elements are in P( {1} )?
60. State every element in P( {1, 2} ). How many elements are in P( {1, 2} )?
61. State every element in P( {1, 2, 3} ). How many elements are in P( {1, 2, 3} )?
62. Based on your answers to exercises 58–61, make a conjecture about how many

elements are in P( {1, 2, 3, 4} ). Extend your conjecture to P( {1, 2, . . . , n} ).
Exercises 63–65 consider how mathematicians have utilized set theory as a tool for
defining the natural numbers. In particular, a correspondence between the nonnegative
integers {0, 1, 2, 3, . . .} and certain sets is defined, beginning as follows.

0 = ∅
1 = {0} = { ∅ }
2 = {0, 1} = { ∅, { ∅ } }
3 = {0, 1, 2} = { ∅, { ∅ }, { ∅, { ∅ } } }

63. Using this model as a guide, state the set corresponding to the integer 4.
64. Using this model as a guide, state the set corresponding to the integer 5.
65. For each natural number from 0 to 5, how many elements are in the

corresponding set? Based on this observation make a conjecture of how many
elements are in the set for the natural number 50.

Exercises 66–67 consider the Barber paradox that was introduced by Bertrand Russell
in an effort to illuminate Russell’s paradox (discussed in the exercises 68–70).
The Barber paradox is based on the following question.

If the barber shaves everyone who doesn’t shave themselves and only
those who don’t shave themselves, who shaves the barber?

66. Assume the barber does not shave himself and find a contradiction.
67. Assume the barber shaves himself and find a contradiction.

Exercises 68–70 consider Russell’s paradox. A set N is said to be normal if the set does
not contain itself; symbolically, we write N 	∈ N. Examples of normal sets include the
set of all even integers (which is itself not an even integer) and the set of all cows
(which is itself not a cow). An example of a set that is not normal is the set of all
thinkable things (which is itself thinkable).

68. Give two more examples of normal sets and an example of a set that is not
normal.
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69. Let N be the set of all normal sets. Assume N is a normal set and find a
contradiction.

70. Let N be the set of all normal sets. Assume N is not a normal set and find a
contradiction.

Bertrand Russell pointed out this paradox in our intuitive understanding of sets in
a letter to Gottlob Frege in 1903. This paradox holds when a set is defined as
“any collection” of objects and highlights the interesting observation that not every
collection is a set.

2.2 The Division Algorithm andModular Addition

Our study of abstract algebra begins with the system of whole numbers known more
formally as the integers. Recall that Z denotes the set of integers {. . . ,−3,−2,−1, 0,

1, 2, 3, . . .}. From previous mathematics courses, we are already familiar with several
operations on the integers, including addition, subtraction, multiplication, division,
and exponentiation. In this chapter, we “push the boundaries” on these operations
by studying certain subsets of the integers along with a modified addition operation
known as modular addition. We use the division algorithm to define this new addition
operation.

The division algorithm is actually the name of a theorem, but the standard proof
of this result describes the long division algorithm for integers. The ancient Greek
mathematician Euclid included the division algorithm in Book VII of Elements [73],
a comprehensive survey of geometry and number theory. Traditionally, Euclid is
believed to have taught and written at the Museum and Library of Alexandria in Egypt,
but otherwise relatively little is known about him. And yet Elements is arguably the
most important mathematics book ever written, appearing in more editions than any
book other than the Christian Bible.

By the time Elements had appeared in 300 b.c.e., Greek mathematicians had
recognized a duality in the fundamental nature of geometry. On the one hand, geometry
is empirical, at least to the extent that it describes the physical space we inhabit. On the
other hand, geometry is deductive because it uses axioms and reasoning to establish
mathematically certain truths. Mathematicians and others continue to wonder at this
duality. As Albert Einstein questioned, “How can it be that mathematics, being after
all a product of human thought independent of experience, is so admirably adapted to
the objects of reality?”

Mathematicians have a special affection for Euclid’s book because Elements is
the first known comprehensive exposition of mathematics to utilize the deductive,
axiomatic method. In addition, a Latin translation of Euclid’s Elements played a
fundamental role in fostering the European mathematical renaissance of the sixteenth
and seventeenth centuries. We now formally state the division algorithm.

Theorem 2.2.1 Division algorithm If m, n ∈ Z and n is a positive integer, then there exist unique
integers q ∈ Z and r ∈ {0, 1, . . . , n− 1} such that m = n · q+ r. We refer to n as
the divisor, q as the quotient, and r as the remainder when m is divided by n.



Chapter 2 ■ Abstract Algebra 95

The division algorithm makes two distinct claims about the quotient q and the
remainder r. First of all, the division algorithm is an existence result guaranteeing
that when we divide an integer m by a positive integer n, then we must obtain
values q and r that are also integers. In addition, the division algorithm is a
uniqueness result, ensuring that for each pair of integers m and n (with n positive)
there is exactly one such quotient q and remainder r (when r ∈ {0, . . . , n − 1}).
The uniqueness aspect of this theorem is in many ways just as significant as the
existence, although perhaps highlighting uniqueness might seem a bit strange. Can
you think of some setting in which a mathematical question does not have a unique
answer? Perhaps thinking about the notion of “an” antiderivative in calculus is helpful.
Many important results in mathematics make these dual claims of existence and
uniqueness, and so the idea of uniqueness is something to watch for when studying
mathematics.

Although the division algorithm guarantees the existence and uniqueness of an
equation relating any two integers m and n with n positive, the theorem itself does not
provide any information about how to actually find the equation. In most cases, the
choice of integers q and r for the quotient and remainder are not immediately obvious,
requiring a “behind the scenes” calculation using long division. The following example
illustrates the intimate connection between the process of long division and the division
algorithm.

Example 2.2.1 We use long division to specify the quotient q and the remainder r from the division
algorithm when m = 29 is divided by n = 12. The grade school approach to long
division produces the following result.

2
12 29−24

5

In the notation of the division algorithm, the quotient q = 2 and the remainder
r = 5 when m = 29 is divided by n = 12. Alternatively, this result can be written
in the division algorithm’s m = n · q + r equation form as 29 = 12 · 2+ 5.

■

Even though the division algorithm does not explicitly state an algorithm for
finding m = n · q + r, the value of this result lies in the guarantees of existence and
uniqueness. When working with particular integers m and n with n positive, we are
assured that a long division calculation will not be in vain. Also, in general settings, we
can confidently work with the quotient q, the remainder r, and the equation m = n ·q+ r
for any choice of integers m and n with n positive.

Example 2.2.2 Continuing to work with the divisor n = 12 from example 2.2.1, we use long
division to verify that three more integers m have remainder r = 5 when m is
divided by 12.

3 − 2 0
12 41 12 −19 12 5−36

5

−(−24)

5

−0

5
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Based on these computations, m = 41, m = −19, and m = 5 all have
remainder r = 5 when divided by n = 12. As may be apparent, infinitely many
integers m have remainder r = 5 under division by n = 12.

When creating this example, we chose m = 41, m = −19, and m = 5 by
substituting different integer values q into the equation m = q · 12 + 5. Distinct
integers q ∈ Z produce distinct m = q ·12+5 with remainder r = 5 under division
by n= 12. Since there exist infinitely many integers q ∈ Z, infinitely many integers
m have remainder r = 5 under division by n = 12.

■

As we’ll see throughout this chapter, the remainders identified by the division
algorithm are key to many important mathematical insights and applications. One
important property of these remainders is that they must be nonnegative—that is, r
must be zero or positive. Thus, for a negative m, the nonnegative requirement for
r also results in a negative quotient q. In example 2.2.2, we divided m = −19 by
n = 12 and obtained the negative quotient q = −2 since the remainder r had to be
nonnegative. Notice that the product of the quotient q and divisor n (in this case,
n · q = (−2) · 12 = −24) had to be less than or equal to m = −19 so that adding the
nonnegative reminder r produced the desired equality; and so, we must be careful (as
always) when working with negative integers.

Question 2.2.1 Use long division to compute the quotient q and the remainder r when each m is
divided by n = 6.

(a) m = 39
(b) m = 195

(c) m = −9
(d) m = −603

■

Question 2.2.2 State two positive integers and two negative integers m ∈ Z with each remainder
r under division by n = 6.

(a) r = 1 (b) r = 5
■

Now that we have a good handle on the computations associated with the division
algorithm, we outline a proof of this theorem. This argument discusses a constructive,
algorithmic approach to identifying the quotient and the remainder that will hopefully
provide some insight into why this theorem is true. As we begin, note that this is only
a sketch of a proof rather than a complete proof with full details. A complete proof of
the division algorithm is often discussed in abstract algebra and number theory courses
and is left for your later studies.

A Sketch of a Proof of the division algorithm As highlighted above, the division algorithm
makes two claims about the quotient and the remainder: an existence claim and a
uniqueness claim. And so a proof of this theorem has two parts.

Existence Consider the case where m and n are both positive integers. The basic idea is to
compare multiples of n with the integer m. First we check to see if n ·0 ≤ m < n ·1.
If so, we are done, using q = 0 and r = m. If not, we check to see if n ·1≤ m < n ·2;
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if so, we are done, using q = 1 and r = m − n · 1. Continuing in this manner,
we eventually find the desired quotient q ∈ Z such that n · q ≤ m < n · (q + 1)
with remainder r = m − n · q. If m is negative, the idea is the same, only consider
negative quotients q ∈ Z. The following illustration may provide further insight
into the process outlined here.

0 n 2n … q .n m (q+1).n

r

A complete, formal proof of the existence portion of the division algorithm
typically uses an axiom known as the well-ordering principle of the integers to
prove that there exist integers q and r satisfying m = n · q+ r. The well-ordering
principle implies that every set of positive integers contains a least integer; the
least integer in an appropriately defined set is used to obtain q and r.

Uniqueness The uniqueness portion of the division algorithm is proven by assuming that
there exist two distinct quotient–remainder pairs for m and n and proving that the
two quotients and the two remainders must actually be equal. Symbolically, we
assume m = n · q1 + r1 = n · q2 + r2 where q1, q2 and r1, r2 satisfy the division
algorithm conditions for the quotient and remainder, respectively. We then prove
q1 = q2 and r1 = r2. This strategy is used in many different settings in proving
uniqueness: we assume there exist two distinct mathematical objects with a given
set of properties and show that they must actually be equal to each other.

■

We now use the division algorithm to identify certain subsets of the integers that
are of particular interest to mathematicians—these sets allow for the definition of a
modified addition operation. The division algorithm serves as a tool for partitioning
the integers into a finite number of subsets, allowing us to “lump together” various
integers into disjoint, or nonintersecting, sets of integers. The idea is to fix a specific
positive integer n as a divisor and place all integers with the same remainder under
division by n into the same subset of Z.

For example, fix n = 6 as the divisor (as in question 2.2.1). Then, as you can
verify, the integers . . . ,−15, −9, −3, 3, 9, 15, . . . each have remainder r = 3
under division by n = 6. Adopting the approach suggested above, we place all
of these integers into the same subset {. . . ,−15, −9, −3, 3, 9, 15, . . .} of Z.
Similarly, the integers . . . ,−13,−7,−1, 5, 11, 17, . . . each have remainder r = 5
under division by n = 6, and we place all of these integers into the same subset
{. . . ,−13, −7, −1, 5, 11, 17, . . .} of Z. Continuing in this manner produces the
following six disjoint subsets of integers.

{...,−18,−12,−6,0,6,12,...} = {q ·6+0 :q∈Z} for remainder r=0
{...,−17,−11,−5,1,7,13,...} = {q ·6+1 :q∈Z} r=1
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{...,−16,−10,−4,2,8,14,...} = {q ·6+2 :q∈Z} for remainder r=2
{...,−15,−9,−3,3,9,15,...} = {q ·6+3 :q∈Z} r=3
{...,−14,−8,−2,4,10,16,...} = {q ·6+4 :q∈Z} r=4
{...,−13,−7,−1,5,11,17,...} = {q ·6+5 :q∈Z} r=5

In order to facilitate working with such sets of integers for different divisors n, we
introduce a notation that conveniently relates integers sharing a common remainder.
Specifically, we define m mod n to be the remainder of m under division by n. For
example, using this notation, we have 15 mod 6 = 3 (since 3 is the remainder when
15 is divided by 6) and we have 17 mod 6 = 5 (since 5 is the remainder when 17 is
divided by 6).

Definition 2.2.1 For integers m and n, we write m mod n= r when m = n · q+ r for integers q and
r satisfying the division algorithm, and say “m mod n is r” or “m modulo n is r.”
For a, b ∈ Z, a mod n = b mod n exactly when a and b have the same remainder
r under division by n; in this case, we often write a ≡ b mod n and say that “a is
congruent to b mod n.”

Example 2.2.3 Continuing to work with the divisor n = 6, we illustrate the modular oper-
ation and the congruence relation by observing the following congruence
relationships.

• 39 mod 6 = 3, since 39 = 6 · 6+ 3
• 195 mod 6 = 3, since 195 = 6 · 32+ 3
• −9 mod 6 = 3, since −9 = 6 · (−2)+ 3
• −603 mod 6 = 3, since −603 = 6 · (−101)+ 3

Furthermore, since all four of these integers have the same remainder of r = 3
under division by n = 6, the following congruence relations hold.

39 ≡ 195 mod 6, 39 ≡ (−9) mod 6, 39 ≡ (−603) mod 6, and so on …

■

In light of the computations in example 2.2.3, the partition of the integers
determined by remainders under division by n = 6 places all four of 39, 195,−9, and
−603 into the same subset {q · 6+ 3 : q ∈ Z} of Z—the subset identified for remainder
r = 3 above. The next question considers modular computations for various divisors
n ∈ N.

Question 2.2.3 Using the division algorithm, determine the value of each expression.

(a) 39 mod 3, 195 mod 3, (−9) mod 3, (−603) mod 3
(b) 39 mod 10, 195 mod 10, (−9) mod 10, (−603) mod 10
(c) 39 mod 2, 195 mod 2, (2k + 1) mod 2, (2k) mod 2 (where k is an arbitrary

integer)
■

The relation of congruence modulo n on the integers was first defined by
Carl Friedrich Gauss in the late 1700s and played a significant role in Gauss’s
seminal treatise on number theory, Disquisitiones Arithmeticae [97]. Gauss was a
German mathematician, physicist, astronomer, and surveyor who was born in 1777
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in Brunswick and died in 1855 in Göttingen. Along with Archimedes and Newton,
Gauss is widely regarded as one of the three most important mathematicians in recorded
human history. Gauss developed a tremendous number of mathematical insights during
his career and supervised the doctoral work of many active research mathematicians
of the 1800s. He was particularly interested in number theory and in 1801 published
Disquisitiones Arithmeticae, which included his work with congruence modulo n and
modular arithmetic.These ideas have remained foundational in today’s study of abstract
algebra.

As described above, remainders play an important role in utilizing the division
algorithm. Our study of modular arithmetic will benefit from determining all possible
values of the remainder under division by a given positive integer n. For example, the
possible remainders satisfying the division algorithm under division by n = 2 are the
values r = 0 and r = 1.

Question 2.2.4 State a set consisting of all possible remainders that can result from the division
algorithm under division by each n.

(a) n = 3
(b) n = 6

(c) n = 9
(d) an arbitrary n ∈ N

■

In light of the answers to question 2.2.4 and the abstract power and generality of
the division algorithm, the the integers 0, 1, 2, . . . , n− 1 are the only possible values
for the remainder r under division by a fixed positive integer n ∈ N. For example, when
dividing by n = 3, the only possible remainders are 0, 1, and 2 and, when dividing by
n = 4, the only possible remainders are 0, 1, 2, and 3. To facilitate our work with the
sets of integers sharing a common remainder under division by n, we identify each set
of congruent integers with the corresponding remainder. For example, when n = 3,
the integers are partitioned into the following three sets, which are then identified with
their corresponding remainders.

{. . . ,−6,−3, 0, 3, 6, . . .} with remainder r = 0
{. . . ,−5,−2, 1, 4, 7, . . .} with remainder r = 1
{. . . ,−4,−1, 2, 5, 8, . . .} with remainder r = 2

The remainders serve as “representatives” for their corresponding sets and are the
objects of study for much of this chapter. In the next section, we begin referring to these
sets as equivalence classes of integers and develop the theory of equivalence classes
and equivalence relations. For the moment, we define the set of these remainders.

Definition 2.2.2 Zn denotes the set of integers mod n consisting of the remainders {0, 1, 2, . . . ,

n− 1} under division by n ∈ N. We refer to the set Zn as “Z mod n.”

Question 2.2.5 State the elements in each of the sets Z3, Z6, and Z10.
■

These sets Zn are important because they contain all the possible remainders under
division by a fixed positive integer n ∈ N. The remainders serve as representatives of
the infinite sets of integers obtained by partitioning the integers (based on division by
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a fixed positive integer n) so that every integer appears in exactly one set. As Gauss
and others since have found, this perspective has profound implications when studying
the algebraic properties of integers.

The algebraic properties of number systems depend not just on the numbers,
but also on the operations performed on them. This dependence leads us to consider
possible operations on these sets of numbers. Since Zn is a finite set of integers, we
naturally think of applying the standard addition operation for integers (and other
operations, including standard multiplication). This practice of implementing well-
understood operations and techniques in new settings is common in mathematics.
Unfortunately, the standard addition of integers suffers an important shortcoming
in Zn, which is addressed by modifying the standard addition operation into a new
modular addition operation. Before defining this operation, we explore the limitations
of standard addition in the context of Z6.

Question 2.2.6 Consider the closure of the set Z6 under standard addition. Identify which of the
following sums (computed using standard addition), are in Z6 = {0, 1, 2, 3, 4, 5}
and which are not in Z6.

(a) 0+ 3
(b) 3+ 3

(c) 0+ 4
(d) 3+ 4

■

As question 2.2.6 indicates, when a, b ∈ Z6, sometimes a+ b ∈ Z6 and sometimes
a+ b 	∈ Z6. This behavior is described by saying Z6 is not closed under addition. We
typically want to work with sets and operations where the set is closed under the given
operation. Fortunately, there is a modified “modular” addition operation ⊕ such that
Z6 is closed under⊕. The idea is to define a⊕ b equal to the remainder r when a+ b
(the standard sum of a and b) is divided by a fixed, given integer n ∈ N. The following
definition makes this notion precise.

Definition 2.2.3 If a, b ∈ Zn and (a + b) mod n = r, then a ⊕ b = r. This operation is called
addition mod n and we refer to Zn under addition mod n.

The notation ⊕ for modular addition is traditionally used for all sets Zn. There
are actually infinitely many different modular addition operations ⊕n, one for each
positive integer n ∈ N that can serve as a divisor. Mathematicians often rely on context
to identify the particular operation in use, and the designation of a set Zn automatically
determines the value of the divisor n and the corresponding modular addition operation.

Example 2.2.4 We compute two sums in Z6 = {0, 1, 2, 3, 4, 5} under addition mod 6.

• 1⊕ 2 = 3 since (1+ 2) mod 6 = 3 mod 6 = 3
• 3⊕ 5 = 2 since (3+ 5) mod 6 = 8 mod 6 = 2

■

Question 2.2.7 Verify the following sums in Z6 = {0, 1, 2, 3, 4, 5} under addition mod 6.

(a) 1⊕ 4 = 5
(b) 4⊕ 5 = 3

(c) 2⊕ 4 = 0
(d) 3⊕ 4 = 1

■
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The sums computed in example 2.2.4 and question 2.2.7 provide some evidence
that Z6 is closed under addition mod 6; that is, a⊕b appears to be in Z6 for all a, b ∈ Z6.
However, we have not yet proven this general fact—only that a ⊕ b is in Z6 for the
specific pairs of numbers given in example 2.2.4 and question 2.2.7. In this simple
setting, mathematicians often use exhaustion to provide a complete justification that
Z6 is closed under addition mod 6, computing the mod 6 sum for every possible pair of
integers in Z6. In the next section, we describe a “Cayley table” for Z6 that performs all
of these computations. In section 2.4, we also study the abstract properties of integers
under modular arithmetic; this approach shows that every set Zn is closed under the
corresponding modular addition operation.

For now, we explore two important algebraic properties of the set Zn under addition
mod n. As in the context of standard addition on the integers, the number zero plays a
special role in Zn under modular addition.

Question 2.2.8 Directly compute the value of 0⊕ a and a⊕ 0 for every a ∈ Z6.
■

The computations in question 2.2.8 demonstrate that the element 0 ∈ Z6 “fixes”
every element of Z6 and so preserves the “identity” of every element. Therefore, we
refer to 0 as the identity element of Z6. As you might surmise, 0 plays a similar role in
every set Zn under addition mod n.

We also observe that some pairs of integers, when summed together using modular
addition, produce the identity 0. This property is also found in the setting of the
integers Z under standard addition. For example, 2 + (−2) = 0 and (−2) + 2 = 0;
in general, a + (−a) = 0 and (−a) + a = 0 for every integer a ∈ Z. This process
of identifying the additive inverse (−a) of an integer a ∈ Z can also be carried out
in the context of Zn. Whenever the sum of a and b produces the identity (in this
case, when a ⊕ b = 0), we say that a and b are inverses, or that b is the additive
inverse of a.

Question 2.2.9 Answer the following questions about inverses in Z6 = {0, 1, 2, 3, 4, 5} under
addition mod 6.

(a) Prove that 2 and 4 are inverses under addition mod 6 by showing both 2⊕4= 0
and 4⊕ 2 = 0.

(b) State the inverse of 3 under addition mod 6; that is, find b ∈ Z6 such that
both 3 ⊕ b = 0 and b ⊕ 3 = 0. The answer is an element of Z6 = {0, 1, 2,

3, 4, 5}.
(c) State the inverse of 5 under addition mod 6.

■

Our discussion of closure, identity, and inverses in the context of Z6 is really
just a preliminary investigation of the algebraic properties common to many different
number systems. We continue to explore these properties in a variety of different
number systems throughout this chapter. For example, in the next section we
consider a modified version of another familiar operation: standard multiplication of
integers. Perhaps you can already hazard a conjecture about how we will modify this
operation.
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For now, we end this section with a proof of one of the theorems that was
introduced in section 1.7, using the division algorithm to prove the parity property
of the integers.

Theorem 2.2.2 The parity property of the integers Every integer is either even or odd.

Proof Assume m ∈ Z is an integer. We prove that m is either even or odd by showing
that m = 2k or m = 2k + 1 for some k ∈ Z. Applying the division algorithm to
m using the divisor n = 2 produces m = 2q + r with r ∈ {0, 1}. There are two
cases to consider. If r = 0, then m = 2q + 0 = 2q and m is even. If r = 1, then
m = 2q + 1 and m is odd. Since every integer falls into one of these two cases,
every integer must be either even or odd.

■

2.2.1 Reading Questions for Section 2.2

1. State the division algorithm.

2. Discuss the two distinct claims made by the division algorithm.

3. What quotient q and remainder r satisfy the division algorithm when m = 7
and n = 3?

4. Discuss why infinitely many integers m have remainder r = 1 under division
by n = 3.

5. Define a ≡ b mod n and give an interesting example for n = 3.

6. Define Zn and give an example.

7. Why are we interested in the elements of Zn?

8. Define a⊕ b = r and give an example.

9. When is a set G is closed under standard addition? Give an example of a set
that is closed under addition and a set that is not.

10. How does closure motivate the definition of modular addition?

11. Define and give an example of an identity.

12. Define and give an example of an additive inverse.

2.2.2 Exercises for Section 2.2

In exercises 1–4, determine the quotient q and the remainder r from the division
algorithm when each m is divided by n = 7.

1. m = 39
2. m = 195

3. m = −9
4. m = −603

In exercises 5–8, identify three integers m ∈ Z that produce each remainder r when m
is divided by n = 7.

5. r = 1
6. r = 2

7. r = 4
8. r = 5
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In exercises 9–12, determine the quotient q and the remainder r from the division
algorithm when each m is divided by n = 8.

9. m = 33
10. m = 198

11. m = −11
12. m = −612

In exercises 13–16, identify three integers m ∈ Z that produce each remainder r when
m is divided by n = 8.

13. r = 1
14. r = 4

15. r = 5
16. r = 7

In exercises 17–22, determine the three smallest positive integers m ∈ Z with remainder
r under division by n.

17. n = 3 and r = 1
18. n = 3 and r = 2
19. n = 7 and r = 3

20. n = 7 and r = 4
21. n = 10 and r = 3
22. n = 10 and r = 7

In exercises 23–32, find the value of each expression.

23. 39 mod 7, 195 mod 7, (−9) mod 7, (−603) mod 7
24. 33 mod 8, 198 mod 8, (−11) mod 8, (−608) mod 8
25. 34 mod 9, 199 mod 9, (−13) mod 9, (−606) mod 9
26. 36 mod 10, 197 mod 10, (−10) mod 10, (−605) mod 10
27. 35 mod 11, 196 mod 11, (−12) mod 11, (−607) mod 11
28. 36 mod 2, 197 mod 2, and both (2k + 1) mod 2 and (2k) mod 2 for k ∈ Z

29. 02 mod 2, 12 mod 2
30. 03 mod 3, 13 mod 3, 23 mod 3
31. 05 mod 5, 15 mod 5, 25 mod 5, 35 mod 5, 45 mod 5.
32. 07 mod 7, 17 mod 7, 27 mod 7, 37 mod 7, 47 mod 7, 57 mod 7, 67 mod 7.
33. (Fermat’s little theorem) Based on the answers to exercises 29–32, formulate

a conjecture about the value of ap mod p when a ∈ Zp and p is a prime
integer.

In exercises 34–37, state the elements in each set.

34. Z5

35. Z8

36. Z11

37. Z15

In exercises 38–41, identify the infinite subset of the integers represented by each
remainder r in the given set Zn.

38. r = 2 in Z5

39. r = 4 in Z5

40. r = 2 in Z8

41. r = 4 in Z8

In exercises 42–53, compute each modular sum in the given set Zn.

42. in Z2 : 0⊕ 1 and 1⊕ 1

43. in Z3 : 1⊕ 2 and 2⊕ 2

44. in Z4 : 0⊕ 3 and 1⊕ 3

45. in Z4 : 3⊕ 2 and 3⊕ 3

46. in Z5 : 4⊕ 3 and 3⊕ 2

47. in Z5 : 3⊕ 4 and 2⊕ 2

48. in Z7 : 4⊕ 5 and 3⊕ 2

49. in Z7 : 6⊕ 5 and 3⊕ 6
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50. in Z9 : 7⊕ 5 and 3⊕ 6

51. in Z9 : 2⊕ 7 and 8⊕ 8

52. in Z11 : 4⊕ 5 and 7⊕ 5

53. in Z11 : 8⊕ 9 and 1⊕ 10

Exercises 54–55 consider identities and inverses in Z4 = {0, 1, 2, 3}.
54. Prove 0 is the additive identity of Z4 by directly computing 0 ⊕ a = a and

a⊕ 0 = a for every a ∈ Z4.

55. The addition mod 4 inverse of 2 is 2 since (2 + 2) mod 4 = 4 mod 4 = 0.
Identify the addition mod 4 inverse for each of the four elements in Z4.

In exercises 56–59, identify the inverse under addition mod n for every element of
each set.

56. Z5

57. Z8

58. Z11

59. Z15

In exercises 60–64, prove each mathematical statement. For exercises 60 and 61,
assume that a,b,c,d ∈ Z with a ≡ b mod n and c ≡ d mod n.

60. (a+ c) ≡ (b+ d) mod n

61. (a− c) ≡ (b− d) mod n

62. If a is even, then a2 ≡ 0 mod 4.

63. If a is odd, then a2 ≡ 1 mod 4.

64. If a is odd, then a2 ≡ 1 mod 8.

Exercises 65–68 consider the commutativity of set-theoretic operations. You may have
noticed that identity computations require both a⊕ 0 = a and 0⊕ a = a for all a ∈
Zn. This requirement of commutativity (adding 0 on both the left and the right) may
seem a bit mysterious. While many mathematical operations commute, some do not,
as illustrated by considering the following (possible) identities.

In exercises 65–68, let A and B be sets. Either prove or disprove (with a
counterexample) each set-theoretic identity.

65. A ∩ B = B ∩ A

66. A ∪ B = B ∪ A

67. A \ B = B \ A

68. A× B = B× A

Exercises 69 and 70 consider further algebraic properties of sets.

69. Prove that ∅ is the identity for union of sets; that is, prove that if A is a set,
then both A ∪ ∅ = A and ∅ ∪ A = A.

70. (Unique empty set theorem) Use exercise 69 to justify the two equalities in
the following proof that the empty set is unique.

Proof Assume that both ∅1 and ∅2 are empty sets. Then the following two
equalities hold:

∅1 = ∅1 ∪ ∅2 = ∅2
■

2.3 Modular Multiplication and Equivalence Relations

We continue our study of number systems by considering a “modular multiplication”
operation on Zn. When working with products of elements of Zn, we must modify
the standard multiplication operation for the same reason we modified the standard
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addition operation—the set Zn is not closed under either standard addition or standard
multiplication (see question 2.2.6). For example, 5, 6 ∈ Z7, but the standard product
5 · 6 = 30 	∈ Z7. As you might expect, the definition of multiplication mod n closely
parallels the definition of addition mod n. The idea is to set a� b equal to the remainder
r when a · b (the standard product of a and b) is divided by a fixed, given integer n ∈ N.
The following definition makes this notion precise.

Definition 2.3.1 If a, b ∈ Zn and (a · b) mod n = r, then a � b = r. This operation is called
multiplication mod n, and we refer to Zn under multiplication mod n.

As with modular addition, the notation� for modular multiplication is traditionally
used for all sets Zn with context indicating the particular divisor n. The designation
of a set Zn automatically determines the value of the divisor n and the corresponding
modular multiplication operation.

Example 2.3.1 We compute two products in Z7 = {0, 1, 2, 3, 4, 5, 6} under multiplication
mod 7.

• 2� 3 = 6 since (2 · 3) mod 7 = 6 mod 7 = 6
• 2� 5 = 3 since (2 · 5) mod 7 = 10 mod 7 = 3

■

Question 2.3.1 Verify the following products in Z7 = {0, 1, 2, 3, 4, 5, 6} under multiplication
mod 7.

(a) 1� 4 = 4
(b) 3� 5 = 1

(c) 4� 5 = 6
(d) 4� 6 = 3

■

In the previous section, we began investigating abstract algebraic properties of Zn

under modular addition. We identified three particularly important properties: closure,
identity, and inverses under addition mod n. These three properties, together with
associativity, describe the notion of a “group” and are fundamental to our work with
number systems. We continue this study of abstract algebra in the context of Zn under
modular multiplication.

We first determine the identity for Zn under multiplication mod n. Recall that an
identity “fixes” every element of the number system under the given operation. For
example, 0 was the identity element of Zn under addition mod n since both 0⊕ a = a
and a⊕0 = a for every a ∈ Zn. In the multiplicative setting, we are similarly interested
in identifying an element e ∈ Zn such that both e � a = a and a � e = a for every
a ∈ Zn. Based on our experience with the integers under standard multiplication, we
can readily identify the element that serves as this identity.

Question 2.3.2 Compute the value of 1� a and a� 1 for every a ∈ Z7.
■

The computations in question 2.3.2 demonstrate that 1 “fixes” every element of
Z7 under multiplication mod 7 and is therefore the identity of Z7 under multiplication
mod 7. Similar computations verify that 1 is the identity for Zn under multiplication
mod n for any choice of n ∈ N.
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We now turn our attention to determining multiplication mod n inverses of the
elements of Zn. For each element a ∈ Zn, the goal is to find b ∈ Zn such that the
modular product of a and b is equal to the identity under modular multiplication;
symbolically, we need both a � b = 1 and b � a = 1. When this happens, we say
that a and b are inverses under multiplication mod n or that b is the multiplicative
inverse of a.

Example 2.3.2 We verify that 3 and 5 are multiplicative inverses in Z7.
As indicated in question 2.3.1 above, 3� 5 = 15 mod 7 = 1 in Z7. Similarly,

5� 3 = 15 mod 7 = 1. Since both 3� 5 and 5� 3 are equal to the identity of Z7,
we know that 3 is the inverse of 5 under multiplication mod 7 and that 5 is the
inverse of 3 under multiplication mod 7.

■

Question 2.3.3 Determine the multiplicative inverse of each element from Z7 = {0, 1, 2, 3, 4, 5, 6}
under multiplication mod 7.

(a) a = 1
(b) a = 2

(c) a = 3
(d) a = 6

In addition, identify the unique element of Z7 that does not have a
multiplicative inverse; this same element has “inverse issues” under standard
multiplication of integers.

■

As highlighted in question 2.3.3, not every element of Zn has an inverse under
multiplication mod n. For Z7, the unique element without a multiplicative inverse
is 0. This situation is the best possible result we can hope for since 0 does not have a
multiplicative inverse in any Zn. In general, most Zn’s contain several elements not
having multiplicative inverses. However, having an inverse is a desirable property.
Therefore, we modify the set under examination to guarantee every element has
an inverse. In this way, we follow of the practice of mathematicians—making slight,
incremental changes to known objects to enable a fruitful analysis.

In the context of studying abstract algebraic properties, we are particularly
interested in the subset of Zn that consists of exactly those elements of Zn with
multiplicative inverses; this set is denoted U(n). We refer to U(n) as the set of units
of Zn. In the next section, we prove that the set U(n) of invertible elements under
the operation of multiplication mod n satisfies the desirable algebraic properties that
define a “group”; in fact, the sets U(n) under multiplication mod n provide the standard
examples of finite multiplicative groups.

As demonstrated in question 2.3.2, we can observe that the multiplicative identity
is always its own inverse (since 1� 1 = 1), and so the element 1 is always in U(n). But
what about the nonidentity elements of Zn? One approach to determining which of these
elements are also in U(n) is to check for inverses one element at a time. Unfortunately,
this exhaustive approach is too computationally intense for large n ∈ N. Instead, there
exists an algorithmic approach for identifying the elements of U(n). The algorithm is
based on determining the elements of Zn that are relatively prime to n; those elements
satisfy the axiom for inverses.
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Working in this direction, we say that a positive integer p ∈ N is a factor of
an integer n ∈ Z if p divides n evenly; using the notation of the division algorithm,
p is a factor of n if n = q · p for some quotient q ∈ Z. For example, 7 is a factor
of 21 since 21 = 3 · 7. We say that m ∈ Z shares a common factor with n ∈ Z if
there exists an integer p ∈ Z such that p is a factor of both m and n. For example,
36 shares a common factor with 21, since 3 is a factor of both. Finally, we say
that m ∈ Z is relatively prime to n ∈ Z if m and n do not share a common factor
p > 1. For example, 14 and 15 are relatively prime, since 2 and 7 (the factors of
14) are not factors of 15. These ideas enable the following characterization of the set
of units.

Definition 2.3.2 U(n) denotes the set of units of Zn consisting of the nonzero elements of Zn that
are relatively prime to n ∈ N; these elements share no common factors with n
greater than 1. We typically work with U(n) under the operation of multiplication
mod n.

Example 2.3.3 We identify the elements in U(9). From definition 2.3.2, the set U(9) is a subset of
Z9 and membership in U(9) is determined by identifying which nonzero elements
of Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8} share a common factor with 9 greater than 1. We
first observe that the factors of 9 are 1, 3, and 9.

• For 0: Only nonzero elements of Z9 can be elements of U(9), and so
0 	∈ U(9).

• For 1: The only factor of 1 is 1 itself, so 1 is relatively prime to 9 and 1 ∈ U(9).

• For 2: The factors of 2 are 1 and 2, so 2 is relatively prime to 9 and 2 ∈ U(9).
• For 3: The factors of 3 are 1 and 3, and 3 is a common factor of both 3 and 9

that is greater than 1. Therefore, 3 and 9 are not relatively prime, and we have
3 	∈ U(9).

Continuing in this fashion, we find that U(9) = {1, 2, 4, 5, 7, 8}.
■

Question 2.3.4 Identify the elements in the sets U(5) ⊂ Z5 and U(6) ⊂ Z6.
■

As you have perhaps surmised in answering question 2.3.4, the elements of U(n)
are readily identified when the integer n is prime. Prime numbers are studied more fully
in section 3.1, but for the moment, perhaps you can recall that an integer n is prime
if the only factors of n are 1 and n. Therefore, when n is a prime integer, no positive
integer between 1 and n shares a common factor with n. In this case, U(n) is equal to the
set of all nonzero elements of Zn; symbolically, U(n) = Zn \ {0} = {1, 2, . . . , n− 1}
when n is prime.

We now examine the property of closure under modular multiplication. In the
previous section, we asserted that Zn is closed under addition mod n since for every
pair a, b ∈ Zn, we have a⊕ b ∈ Zn. As we will see, Zn and U(n) are both closed under
multiplication mod n. Since we are interested in knowing this mathematical truth for
every integer n, we eventually consider a general proof of this result using abstract
properties of integers. For the moment, we use the method of exhaustion for relatively
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small integers n. The direct exhaustion approach to verifying the closure of U(n)
and Zn under modular multiplication (and Zn under modular addition) requires the
computation of all possible products of pairs of elements from these sets. Fortunately,
a Cayley table provides a systematic approach to computing all of these various
products.

Definition 2.3.3 Let G be a finite set that is closed under an operation ◦; that is, for every
a, b ∈ G, we have a ◦ b ∈ G. A Cayley table for G under operation ◦ is an
operation table that displays the result of applying the operation ◦ to each pair
of elements a, b ∈ G, and so identifies the element a ◦ b ∈ G for every pair
a, b ∈ G.

These computational tables are named in honor of the talented and prolific
English mathematician Arthur Cayley. In the 1800s, relatively few professorships
were available at the handful of colleges and universities in England. Therefore,
despite exhibiting tremendous mathematical talent during and immediately after his
undergraduate work at Trinity College in Cambridge, Cayley worked as a lawyer for
14 years in order to make enough money to support his mathematical “hobby.” During
this time, Cayley shared strong friendships and deep mathematical conversations
with a number of other well-regarded mathematicians (many of whom were also
lawyers and actuaries). In just this relatively short time span, Cayley published
approximately 250 research papers. Even today this publication record would be
considered a highly prolific career, let alone just a few years worth of work while
otherwise employed. In the 1850s, Cayley first extended the notion of a “group”
from the setting of finite functions to a variety of other number systems. In the
paper developing these ideas, Cayley gave the first computational tables of the type
illustrated below for Z3 and U(3); in this way they have come to be known as Cayley
tables.

Example 2.3.4 We compute the Cayley table for Z3 = {0, 1, 2} under addition mod 3.
The Cayley table is constructed so the interior table position determined by

the row with element a and the column with element b contains the element
a ⊕ b, with a in the left position of the sum and b in the right position of
the sum.

⊕ 0 1 2
0 0⊕ 0 0⊕ 1 0⊕ 2
1 1⊕ 0 1⊕ 1 1⊕ 2
2 2⊕ 0 2⊕ 1 2⊕ 2

⇒
⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Examining the Cayley table on the right, we can see that the set Z3 is closed
under addition mod 3 since only elements of Z3 appear in the table. The algebraic
properties of identity and inverses are readily observed. Since 0 fixes every element
of Z3 under addition mod 3 (as witnessed in the first column and first row of the
Cayley table), 0 is the additive identity . In addition, the additive inverse of a given
element can be determined by searching for 0 in the appropriate row and column.
For example, 1 and 2 are additive inverses since 0 appears both in the second row,
third column and in the third row, second column.

■
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Example 2.3.5 We compute the Cayley table for U(3) = Z3 \ {0} = {1, 2} under multiplication
mod 3.

� 1 2
1 1� 1 1� 2
2 2� 1 2� 2

which is
� 1 2
1 1 2
2 2 1

As in example 2.3.4, U(3) is closed under multiplication mod 3 since only
elements of U(3) appear in the Cayley table. In addition, 1 is the identity for
multiplication mod 3 and both 1 and 2 are their own inverses under multiplication
mod 3.

■

As discussed in these examples, the Cayley table for a set under an associated
operation contains a great deal of algebraic information, which can play a key role
in analyzing the set under the given operation. Significant patterns can appear; for
example, in the Cayley tables of examples 2.3.4 and 2.3.5, notice that each element of
the set appears exactly once in each row and each column. Such squares of n symbols
in an array of size n with each symbol occurring exactly once in each row and in each
column are known as Latin squares. The Cayley tables for Zn under modular addition
and U(n) under modular multiplication are always Latin squares, and the Cayley table
for any “group” is a Latin square; in practice, we often use this fact when computing
the Cayley tables of such sets.

Question 2.3.5 Compute the Cayley table for each set under the given operation.

(a) Z4 under addition mod 4
(b) Z6 under addition mod 6

(c) U(6) under multiplication mod 6
(d) U(7) under multiplication mod 7

■

Another important conceptual key to developing a deep understanding of Zn and
U(n) is the notion of an equivalence relation. As you may recall from the previous
section, the elements of Zn and U(n) are not just numbers, but also sets (even though
we work with them in much the same way that we work with numbers). Specifically,
the elements of Zn and U(n) represent certain subsets of integers known as equivalence
classes. In preparation for studying equivalence relations and equivalence classes, we
revisit some consequences of the division algorithm.

Question 2.3.6 (a) Using the division algorithm, identify the remainder r when each of m = 7,

m = 4, and m = −5 is divided by n = 3.
(b) Determine an infinite set consisting of every integer m with remainder r = 1

under division by n = 3.
(c) Similarly, describe the two infinite sets of integers with corresponding

remainders r = 0 and r = 2 under division by n = 3.
■

As we have seen, the elements of Z3 are not just integers, but also represent sets
of integers. In particular, an element r ∈ Z3 represents the set consisting of all integers
with remainder r under division by n = 3; that is, an integer a is in the set represented
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by r if a mod 3 = r. The full correspondence is given by the following identification
of sets and remainders.

Identify the set {. . . ,−6,−3, 0, 3, 6, . . .} with remainder r = 0.

Identify the set {. . . ,−5,−2, 1, 4, 7, . . .} with remainder r = 1.

Identify the set {. . . ,−4,−1, 2, 5, 8, . . .} with remainder r = 2.

More generally, this correspondence extends to any n ∈ N with each element
r ∈ Zn representing the corresponding infinite set of integers with remainder r under
division by n; symbolically, a ∈ Z is in the set represented by r ∈ Zn iff a mod
n = r.

Gathering together the elements of these various subsets recognizes a relationship
that exists among integers. In the particular case of Zn, the elements are related because
they share a common remainder under division by n. Frequently in mathematics,
we are interested in defining and working with relationships among numbers
and other mathematical objects, and we identify (or “equate”) objects based on
these relationships. The following definition states the key properties of such
relationships.

Definition 2.3.4 Let S be a nonempty set. A relation on S is a set of ordered pairs (a, b) with
a, b ∈ S. In this setting, we write the ordered pair (a, b) as a ∼ b and say “a is
related to b.” An equivalence relation ∼ on a set S is a relation satisfying the
following three properties for all a, b, c ∈ S.

• Reflexivity: a ∼ a; that is, every element is related to itself;
• Symmetry: a ∼ b implies b ∼ a; that is, if a is related to b, then b is related

to a;
• Transitivity: a ∼ b and b ∼ c imply a ∼ c; that is, if a is related to b and b is

related to c, then a is related to c.

Recall that we have already used the symbol∼ to denote the negation connective
of sentential logic. The context in which ∼ is used will indicate the intended meaning
of this symbol. In addition, mathematicians often use other, traditional symbols to
denote equivalence relations. For example, we use “≡” to denoted the equivalence
relation of logical equivalence in the context of sentential logic.

Even if the name “equivalence relation” is new, we are already familiar with
several equivalence relations. Exercises 53–55 from section 1.2 demonstrate that
logical equivalence is an equivalence relation on the sentences of sentential logic.
More importantly, the standard identity or equality relation “a = b” is an equivalence
relation on every set of mathematical objects. This should be clear from the definition
of an equivalence relation and your mathematical experience with equality. In fact,
the definition of equivalence relation is motivated in large part by the key properties
of the standard equality relation. Another important example of an equivalence
relation is provided by modular arithmetic on integers as detailed in the following
example.

Example 2.3.6 Recall from definition 2.2.1 in section 2.2 that if n ∈ Z is a divisor and a, b ∈ Z,
then a ≡ b mod n iff a mod n = b mod n, and we say that a is congruent to b
mod n. We often use the fact that a mod n = b mod n if and only if a− b = n · q
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(see exercise 41 at the end of this section). We prove that congruence modulo
n is an equivalence relation on Z by verifying that each of the three properties
from definition 2.3.4 hold for a ≡ b mod n on Z. In this example, we use the
traditional mathematical notation a ≡ b mod n to denote that a is related to b
(rather than a ∼ b).

• Reflexivity: We show a ≡ a mod n. Since a mod n = r ∈ {0, 1, . . . , n− 1}, we
have a mod n = a mod n. Therefore, since standard equality is reflexive on the
integers, a ≡ a mod n and congruence mod n is reflexive.

• Symmetry: We assume that a ≡ b mod n and show that b ≡ a mod n. Since
a ≡ b mod n, we know a mod n = b mod n, where a mod n = b mod n = r ∈
{0, 1, 2, . . . , n − 1} is an integer. Since standard equality is symmetric on the
integers, b mod n = a mod n and so b ≡ a mod n. Therefore, congruence modulo
n is symmetric.

• Transitivity: We assume a ≡ b mod n and b ≡ c mod n, and show a ≡ c mod n.
Since a ≡ b mod n, we know a mod n = b mod n, where a mod n = b mod n =
r ∈ {0, 1, 2, . . . , n − 1} is an integer. Similarly, since b ≡ c mod n, we know
b mod n = c mod n, where b mod n = c mod n = s ∈ {0, 1, 2, . . . , n − 1} is an
integer. Since standard equality is transitive on the integers, the following string
of equalities yields a mod n = c mod n.

a mod n = r = b mod n = s = c mod n

Therefore, a ≡ c mod n and congruence modulo n is transitive.

Since congruence modulo n is reflexive, symmetric, and transitive, congruence
modulo n is an equivalence relation.

■

With this example in hand, we consider the identification of set elements induced
by an equivalence relation. One good example is the “equality” of the fractions
1/2, 5/10, and 10/20, which are (formally) distinct elements of Q and are only
identified as the same by an appropriate equivalence relation on Q (see questions
2.3.8–2.3.10 below). We express this identification of elements in set-theoretic
terms by gathering together all elements that are equivalent to one another into the
same set.

Definition 2.3.5 Let ∼ be an equivalence relation on a nonempty set S. For every a ∈ S, the
equivalence class of a is the subset of S consisting of all b ∈ S such that a ∼ b.
Symbolically, the equivalence class of a is often denoted by [a] = {b : a ∼ b}.
Every element of S appears in exactly one equivalence class.

As discussed in the exercises at the end of this section, the equivalence classes
partition the set S on which∼ is defined. In particular, equivalence classes are disjoint;
that is, they have an empty intersection. In addition, the union of all equivalence classes
is the entire set S. We highlight these features of equivalence classes in the following
example.

Example 2.3.7 The equivalence relation a ≡ b mod n partitions the set of integers Z into
equivalence classes that are represented by the elements of Zn. These equivalence
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classes are labeled according to the different possible remainders r that result from
applying the division algorithm with divisor n. For example, the element 0 in Zn is
not just the number 0, but the set of all integers a ∈ Z such that a ≡ 0 mod n = 0.
Integers with remainder 0 under division by n are all multiples of n, and so the
equivalence class of 0 is [0] = {. . . ,−2n,−n, 0, n, 2n, . . .}.

■

Question 2.3.7 Working in Z4 under addition mod 4, identify the set of integers that form the
corresponding equivalence classes for 0 and for 2.

■

We end this section with an example of an equivalence relation on the set Q of
rational numbers, consisting of quotients of integers with nonzero denominators. For
example, 1/2, 3/1 and 3/2 are rational numbers, while 3/0 and π are not.As mentioned
above, we consider a relation on Q describing the identification of fractions as equal
to one another. For example, the fraction 1/2 is typically identified with the fractions
2/4, 3/6, 4/8, and so on. Informally, we say that m/n is related to s/t when we can
cross multiply and obtain equal integers. Formally, we define this relation ∼ on the
rationals Q by

m

n
∼ s

t
iff m · t = n · s.

Example 2.3.8 We consider the relation ∼ on Q defined by m/n ∼ s/t iff m · t = n · s.

•
4

5
∼ 12

15
, since 4 · 15 = 60 and 5 · 12 = 60

•
1

2
	∼ 4

5
, since 1 · 5 = 5, 2 · 4 = 8, and 5 	= 8

■

Question 2.3.8 Explain why the following statements are true or false for the relation ∼ on Q

defined by m/n ∼ s/t iff m · t = n · s,

(a)
7

3
∼ 28

12

(b)
7

3
∼ 28

3

(c)
3

4
∼ 6

8

(d)
5

4
∼ −10

8
■

Now that we have some computational experience with this relation ∼ on Q,
we consider the proof that ∼ is an equivalence relation on Q. A given relation is an
equivalence relation if the relation is reflexive, symmetric, and transitive, and so this
proof has three parts. Since this relation ∼ on Q is computationally defined using
familiar arithmetic operations on the integers, we lead you through the proof in the
three steps of the following question.

Question 2.3.9 Prove that the relation ∼ on the rationals Q defined by m/n ∼ s/t iff m · t = n · s
is an equivalence relation by showing ∼ satisfies the three properties of an
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equivalence relation. While arguing that these properties hold for ∼, assume
standard equality on the integers is an equivalence relation (as we did in
example 2.3.6).

(a) Reflexivity: Assume m, n ∈ Z with n 	= 0. Prove that m/n ∼ m/n by direct
computation.

(b) Symmetry: Assume m, n, s, t ∈ Z with n, t 	= 0 and that m/n ∼ s/t. Prove
that s/t ∼ m/n by direct computation and the symmetry of equality.

(c) Transitivity: Assume m, n, s, t, u, v ∈ Z with n, t, v 	= 0 and that both m/n ∼
s/t and s/t ∼ u/v. Prove that m

n ∼ u
v .

■

Question

2.3.10

Continue the study of the relation ∼ on Q defined by m/n ∼ s/t iff m · t =
n · s by considering the equivalence classes of rational numbers. For example,
the equivalence class of 1

3 ∈ Q is the set
[ 1

3

] = { n
3n : n ∈ Z∗

}
. Determine the

equivalence classes of the following rational numbers.

(a)
2

4
(b)

5

3
■

2.3.1 Reading Questions for Section 2.3

1. When is a set G closed under an operation ◦? Give an example of a set that is
closed under some operation and a set that is not.

2. Define a� b and give an example.
3. Define multiplicative inverse mod n and give an example.
4. Define U(n) and give an example.
5. Why are we interested in the elements of U(n)?
6. What is distinctive about U(n) when n is prime?
7. Define the Cayley table for G under operation ◦ and give an example.
8. What is a relation on a set of numbers? What notation identifies a

relation?
9. Give an example of a relation and a set that is not a relation.

10. State and define the three properties satisfied by an equivalence relation.
11. Give three examples of equivalence relations.
12. Define and give an example of an equivalence class.

2.3.2 Exercises for Section 2.3

In exercises 1–10, compute each modular product in the given set Zn.

1. in Z2 : 0� 1 and 1� 1
2. in Z3 : 1� 2 and 2� 2
3. in Z5 : 4� 3 and 3� 2
4. in Z5 : 1� 4 and 2� 2
5. in Z7 : 4� 5 and 3� 2

6. in Z7 : 6� 5 and 3� 6
7. in Z9 : 7� 5 and 3� 6
8. in Z9 : 2� 7 and 8� 8
9. in Z11 : 4� 5 and 7� 5

10. in Z11 : 8� 9 and 1� 10
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In exercises 10–16, state the elements in each set.

11. Z2 under addition mod 2
12. Z8 under addition mod 8
13. Z11 under addition mod 11

14. U(2) under multiplication mod 2
15. U(8) under multiplication mod 8
16. U(11) under multiplication mod 11

In exercises 17–22, compute the Cayley table for each set under the natural
corresponding modular operation.

17. Z2

18. Z5

19. Z8

20. U(2)
21. U(5)
22. U(8)

In exercises 23–24, identify the multiplication mod n inverse for every element in the
given set using the Cayley tables from exercises 21 and 22.

23. U(5) 24. U(8)

Exercises 25–28 consider the “associativity” of modular multiplication. Working in
U(11) under multiplication mod 11, verify the property (a� b)� c = a� (b� c) for
each triple of elements by directly computing each pair of products.

25. 2, 3, 4 : (2� 3)� 4 = 2� (3� 4)
26. 5, 3, 6 : (5� 3)� 6 = 5� (3� 6)
27. 4, 8, 10 : (4� 8)� 10 = 4� (8� 10)
28. 7, 8, 9 : (7� 8)� 9 = 7� (8� 9)

Exercises 29–31 consider a case in which nonzero elements of Zn do not have
multiplicative inverses by studying Z8 \ {0} = {1, 2, 3, 4, 5, 6, 7} under multiplication
mod 8.

29. Compute the complete operation table for Z8 \ {0} under multiplication
mod 8; the result is not a Cayley table because this set is not closed under
multiplication mod 8.

30. Give an example of a, b ∈ Z8 \ {0} such that a� b = c with c 	∈ Z8 \ {0}.
31. Identify the elements of Z8 \ {0} with inverses under multiplication mod 8

and state the corresponding inverse. Do you note anything special about the
elements with multiplicative inverses?

Exercises 32–36 explore a basic version of the Chinese remainder theorem, which
relates standard and modular multiplication. The following computations use both
standard multiplication (denoted ·) and multiplication mod 11 (denoted �).

33. Compute both 12� 5 = (12 · 5) mod 11 and (12 mod 11) · (5 mod 11).
34. Compute both 101� 48 = (101 · 48) mod 11 and (101 mod 11) · (48 mod 11).
35. In light of the answers to exercises 33 and 34, formulate a conjecture

about the relationship between a � b = (a · b) mod 11 and (a mod 11) ·
(b mod 11).

36. Compute both 14�10 = (14 ·10) mod 11 and (14 mod 11) · (10 mod 11). Was
your conjecture correct?

37. Compute [(14 mod 11) · (10 mod 11)]mod 11. If necessary, formulate a revised
conjecture.
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Exercises 37–38 consider Wilson’s theorem, which describes factorials under congru-
ence modulo n. Recall that n! denotes the standard product of integers 1 · 2 · 3 · · · n.

37. Compute (2!) mod 3, (4!) mod 5, and (6!) mod 7. Based on these computa-
tions, formulate a conjecture about (n!) mod (n+ 1).

38. Compute (3!) mod 4, (5!) mod 6, and (10!) mod 11. Was your conjecture
correct? What is distinctive about the numbers for which your conjecture
works? If necessary, formulate a revised conjecture.

In exercises 39–41, prove each mathematical claim about congruence modulo n, where
a,b,c,d ∈ Z and n ∈ N.

39. If a ≡ b mod n and c ≡ d mod n, then (a× c) ≡ (b× d) mod n.
40. a2 ≡ b2 mod n does not imply a ≡ b mod n. Hint: Give a counter-

example.
41. a ≡ b mod n if and only if a− b is divisible by n.

In exercises 42–45, use the biconditional from exercise 41 to prove each mathematical
claim about congruence modulo n, where a,b,c,d ∈ Z and n ∈ N.

42. If a ≡ b mod n, then (a+ c) ≡ (b+ c) mod n. Hint: Use the biconditional
from exercise 41.

43. If a is even, then a2 ≡ 0 mod 4.
44. If a is odd, then a2 ≡ 1 mod 4.
45. If a is odd, then a2 ≡ 1 mod 8.

Exercises 46–48 consider definition 2.3.4 of an equivalence relation.

46. Express each property of an equivalence relation in predicate logic.
47. Express the negation of each property of an equivalence relation in both

predicate logic and English.
48. Prove that if ∼ is an equivalence relation on a set S and [a] denotes

the equivalence class of a in S under ∼, then a ∼ b if and only if
[a] = [b].

In exercises 49–54, let S be the set of humans and determine whether or not each
relation ∼ is an equivalence relation. If not, state the properties of an equivalence
relation that fail.

49. Define a ∼ b iff a is the same age
as b.

50. Define a ∼ b iff a loves b.
51. Define a ∼ b iff a is a full-brother

of b.

52. Define a ∼ b iff a is a sibling of b.
53. Define a ∼ b iff a is a first cousin

of b.
54. Define a ∼ b iff a is an ancestor

of b.

In exercises 55–56, let S = { Alex, Andy, Bailey, Chris, Dakota, Morgan }. List the
pairs of elements in each equivalence relation and identify the corresponding distinct
equivalence classes.

55. For a, b ∈ S, define a ∼ b iff a and b begin with the same letter.
56. For a, b ∈ S, define a ∼ b iff a and b contain the same number of

letters.
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In exercises 57–65, prove each relation is an equivalence relation and identify two
distinct equivalence classes.

58. For a, b ∈ R, define a ∼ b iff a− b ∈ Z.
59. For a, b ∈ Z \ {0}, define a ∼ b iff ab ≥ 0.
60. For a, b ∈ Z, define a ∼ b iff a+ b is even.
61. For a, b ∈ Z, define a ∼ b iff a− b is even.
62. For (a, b), (x, y) ∈ R2, define (a, b) ∼ (x, y) iff a = x.
63. For (a, b), (x, y) ∈ R2, define (a, b) ∼ (x, y) iff a− x ∈ Z.
64. For differentiable functions f , g on R, define f ∼ g iff f ′ = g′.
65. For points (a, b), (x, y) on the Cartesian plane R2, define (a, b) ∼ (x, y) iff

(a, b) and (x, y) are equidistant from the origin.
66. For lines J, K on the plane R2, define J ∼ K iff the slope of J is equal to the

slope of K .

In exercises 66–70, each relation is not an equivalence relations. Determine the
properties of an equivalence relation that hold and the properties that fail for each
relation.

66. For a, b ∈ Z, define a ∼ b iff ab > 0.
67. For a, b ∈ Z, define a ∼ b iff a > b.
68. For a, b ∈ Z, define a ∼ b iff a ≥ b.
69. For a, b ∈ Z, define a ∼ b iff a divides b.
70. For (a, b), (x, y) ∈ R2, define (a, b) ∼ (x, y) iff either a = x or b = y.

2.4 An Introduction to Groups

We continue our exploration of abstract algebra by developing the mathematical notion
of a group. In this chapter, we have focused on algebraic properties when studying
numbers systems with their corresponding operations and equivalence relations. This
focus has enabled us to identify and ferret out fundamental properties from well-
understood settings and has given us the ability to look at these properties in similar,
though new, settings. For example, equivalence relations highlight the key properties
of the standard equality relation and help us recognize these properties in a whole
host of quite diverse settings. In this section, we focus on four of the most important
algebraic properties of the set of integers under standard addition and refer to every set–
operation pair satisfying these four properties as a group. After carefully articulating
the definition of a group, we study several different number systems satisfying the
four group axioms, most of which will be familiar from your previous mathematics
courses.

The notion of a group traces its origins to Évariste Galois, a French student who
attempted to prove the nonexistence of general algorithms for solving polynomials
of sufficient complexity. Galois considered functions mapping the solutions of a
polynomial equation to other solutions of this same equation, and so the first groups
studied by mathematicians were essentially functions on finite sets (since every
polynomial equation over the reals has finitely many solutions). Galois’ mathematical
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insights were so far ahead of his time that even some of the best mathematicians of that
era failed to recognize and understand his ideas until years after his death. In one of
the more dramatic tales in the history of mathematics, Galois’ love life led him into a
duel in 1832 and he died at the young age of 20. Realizing that he would probably not
survive the duel, Galois wrote a long letter to his friend, Auguste Chevalier, in which
he scribbled down his mathematical inspirations on solving polynomial equations,
including his insights into groups. Fortunately for us, Chevalier preserved Galois’work
and passed his manuscripts along to Joseph Liouville, who published them in 1846.

Over the next 50 years, mathematicians gradually recognized the power of Galois’
ideas, and his initial work was developed and refined into a sophisticated and powerful
mathematical theory of groups. The application of groups to questions about the
solvability of polynomials examines sets of finite functions under composition, but
the axiomatic group properties have proven essential to understanding the algebraic
properties of many different sets and number systems. The English mathematician
Arthur Cayley gave what might be considered the first general definition of a group
in the 1850s. At this time, Cayley was studying matrix groups and the quaternions,
a number system that extends the complex numbers. His work played a pivotal role
in broadening mathematicians’ understanding of abstract number systems and helped
open doors to applications of group theory in many different areas of mathematics and
the physical sciences. To this day, the study of groups (or group theory) remains an
active and fertile area of research.

Group theory is also a widely applicable field of mathematics and has been
used in a variety of essential ways in many different arts and sciences. For example,
crystallographers have used group theory in the study of natural crystal structures and
in their efforts to design synthetic crystals with certain desirable properties. Physicists
have recognized that subatomic particles satisfy the properties of groups, and group
theory allowed them to predict the existence of the “top quark” subatomic particle
shortly before its discovery in superaccelerator experiments.

We soon define a group as a set under an operation satisfying four partic-
ular algebraic properties. From among the various familiar number systems, we
choose to begin our study of groups with the important example of the integers
Z = {. . . ,−2,−1, 0, 1, 2, . . .} under standard addition. The following question recalls
four algebraic properties already identified in the previous two sections. Studying these
properties deepens our understanding of the integers and helps motivate the formal
definition of a group.

Question 2.4.1 Consider the integers Z under the standard addition operation +.

(a) If we add two integers from Z, can we obtain a number that is not an integer
in Z?

(b) Compute both 1+ (2+ 3) and (1+ 2)+ 3. What is the relationship between
these two sums? Does this relationship hold whenever we add three integers?
Formulate a general statement.

(c) In the context of the integers under standard addition, what is distinctive about
zero?

(d) What integer can we add to 3 and obtain 0? Given an arbitrary integer n, what
integer can we add to n and obtain 0? Formulate a general statement.
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These properties are familiar from our work with modular addition and modular
multiplication. What name is given to each of these four algebraic properties?

■

Motivated by the answers to question 2.4.1 and our work with other number
systems, we formally define the notion of a group as follows.

Definition 2.4.1 A binary operation on a set G is a function that maps each ordered pair in G×G
to a unique element of a set containing G. A set G under binary operation ◦ is a
group when the following four properties hold.

(1) Closure: For every a, b ∈ G, we have a ◦ b ∈ G;
(2) Associativity: For every a, b, c,∈ G, we have a ◦ (b ◦ c) = (a ◦ b) ◦ c;
(3) Identity: There exists an element e ∈ G such that for every a ∈ G, we have both
e ◦ a = a and a ◦ e = a; we call e the identity for G under ◦ (“einheit” is German for
“identity”);
(4) Inverses: For every a ∈ G, there exists b ∈ G such that both a ◦b = e and b◦a = e;
we call b the inverse of a and we often write b = a−1.

Mathematicians refer to these four properties as the axioms of group theory or
as the group axioms. As with many abstract concepts in mathematics, the definition
of a group evolved gradually. Galois isolated this notion while studying functions on
solution sets of polynomials in 1832. Cayley’s contributions in the 1850s extended
the notion of a group to the context of matrices and the quaternions. These insights
eventually led Walter von Dyck to articulate definition 2.4.1 of a group in 1882.
In parallel to this work, the eminent French mathematician Augustin-Louis Cauchy
implicitly defined the notion of a group in the 1850s. His work appears to have
influenced Heinrich Weber, who independently articulated definition 2.4.1. of a
group in 1882. Even so it was not until the early 1900s that the abstract definition
of a group gained widespread understanding and acceptance by the mathematics
community.

These four axioms serve as fundamental assumptions when proving various
theorems, or mathematical truths, in group theory. One of the primary characteristics
of group theory is that the axioms are sufficiently weak so that many different number
systems satisfy the four axioms, and yet they are sufficiently strong so as to enable
the proof of many results and the development of a rich mathematical theory. We
begin to describe this richness through examples that refine and bring into focus an
understanding of the definition of a group. We have already pointed out one very
important example of a group: the integers under standard addition.

Example 2.4.1 We observe that each of the four group axioms holds for the set of integers Z under
the standard addition operation +.

1. Closure: For every n, m ∈ Z, we have n+ m ∈ Z.
2. Associativity: For every n, m, k ∈ Z, we have (n+ m)+ k = n+ (m + k).
3. Identity: The additive identity of the integers is 0, since for every n ∈ Z, we have
both 0+ n = n and n+ 0 = n.
4. Inverses: For every n ∈ Z, the additive inverse of n is (−n) ∈ Z, since we have
both n+ (−n) = 0 and (−n)+ n = 0.
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A more complete, rigorous proof that the four group axioms are satisfied by
the integers under standard addition uses a formal, axiomatic description of the
integers. The details of such a proof are beyond the scope of this book and are left
for your later studies.

■

In definition 2.4.1, notice that a group consists of both a set and an operation. For
example, the set of integers, by itself, is not a group. However, the set of integers under
standard addition is a group, as we observed in example 2.4.1. The particular operation
associated with a given set is central to determining whether or not we have a group,
since some sets can be a group under one operation but not under another. There are
infinitely many different examples of groups. The next question identifies an infinite
group with a multiplicative operation.

Question 2.4.2 Consider the set of nonzero rational numbers Q∗ = Q \ {0} = { p
q : p, q ∈ Z

and p, q 	= 0}. Prove Q∗ is a group under the standard multiplication operation
by considering each of the four group axioms as outlined below.

(a) Closure: Let p/q, r/s ∈ Q and prove that the product of p/q and r/s is
rational. Assume the closure of the integers under multiplication and use the
zero product property of the reals; in particular, assume the product of two
nonzero reals is nonzero and recall that every integer is real.

(b) Associativity: Show that the three rationals 1/2, 3/5, and 8/7 satisfy
associativity under standard multiplication. Prove that any three rationals
m/n, p/q, r/s ∈ Q satisfy associativity under standard multiplication,
assuming the associativity of the integers under standard multiplication.

(c) Identity: State the identity of the nonzero rationals under standard multipli-
cation.

(d) Inverses: Determine the inverse of the rational 3/2 under multiplication.
Identify the inverse of an arbitrary nonzero rational m/n.

(e) Zero is omitted from Q in this question because one of the four group axioms
fails to hold if 0 is included. Which group axiom fails?

■

As we might hope and expect, many widely used number systems under their
standard operations are groups. For some of these number systems, we need to exclude
an element (as with 0 for the rational numbers under standard multiplication), but these
special cases are often widely known or easily identified. The next example attempts
a naive, straightforward approach to identifying a finite group. In its failure, we see
how a given set and operation may not completely satisfy the group axioms.

Example 2.4.2 We prove the set {0, 1} under the standard addition operation + is not a group.

• Closure: The closure axiom fails for {0, 1} under standard addition. The unique
counterexample is provided by working with the element 1 ∈ {0, 1}. In particular,
1 ∈ {0, 1}, but 1+ 1 = 2 	∈ {0, 1}. Therefore, {0, 1} is not closed under standard
addition.

• Associativity: We observe that standard addition is associative on {0, 1} since
addition is associative on the set of all integers Z, which includes the elements
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0 and 1. Often we find that associativity is “inherited” from the integers or some
other appropriate, ambient base set that is already known to satisfy associativity.

• Identity: We observe that 0 is the additive identity. In particular, we have
0+ 0 = 0 and both 0+ 1 = 1 and 1+ 0 = 1.

• Inverses: The inverse axiom fails for {0, 1} under standard addition. The
element 0 ∈ {0, 1} has an inverse since 0+ 0 = 0, and so 0 is its own inverse.
However, the element 1 ∈ {0, 1} does not have an inverse since the only
possible candidates for inverses in this set are 0 and 1, but 0 + 1 = 1 	= 0
and 1 + 1 = 2 	= 0. The inverse of 1 under standard addition is −1, but
−1 	∈ {0, 1}.

Since the group axioms of closure and inverses do not hold, the set {0, 1} is not a
group under standard addition.

■

Only one group axiom needs to fail in order for a given set not to be a group
under a given operation. In example 2.4.2, we considered all four axioms for the sake
of developing a thorough understanding of the group axioms. As you study further
examples of set–operation pairs that are not groups, feel free to identify any one group
axiom that fails (unless directed otherwise).

In disproving the closure axiom, example 2.4.2 utilized the methods developed in
section 1.7 for disproving universal statements. For example, a proof that the closure
axiom is not satisfied involves identifying a counterexample in the given set; that is,
specific elements a, b ∈ G such that a ◦ b 	∈ G. Similarly, a proof that the inverse axiom
is not satisfied requires us to produce (at least) one concrete counterexample a ∈ G
such that for every b ∈ G, the inverse property a ◦ b = e = b ◦ a does not hold for
a and b. Many given sets under an operation are not groups because of the failure of
closure and inverses. Associativity and identity fail less frequently; we consider a few
such cases in the exercises at the end of this section.

Despite the failure of our first attempt to identify a finite group, some groups are
finite. Modular arithmetic provides examples of finite groups: both Zn under modular
addition and U(n) under modular multiplication are groups. For example, the closure
axiom is satisfied in both Zn and U(n) under their respective modular operations, since
we identify every modular sum and product with a remainder under division by n,
and since these remainders are precisely the elements of Zn and U(n). The following
question carefully considers the ideas behind the proof that Zn under addition mod n
satisfies the four group axioms. While this discussion does not constitute a complete,
formal proof, your answers should include sufficient detail to convince you of the
validity of the claim.

Question 2.4.3 Verify that Zn under addition mod n is a group by considering the four group
axioms as outlined below.

(a) Closure: For a, b ∈ Zn, we defined a⊕b = (a+b) mod n; that is, we compute
a ⊕ b by applying the division algorithm to a + b to obtain r ∈ Z where
a + b = n · q + r for some integer q. According to the division algorithm,
what are the possible values of r? What are the possible values of a ⊕ b? Is
a⊕ b always in Zn?
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(b) Associativity: Associativity for Zn under modular addition follows from
repeated use of the division algorithm and the associativity of standard addition
on the integers Z. As an example (and just an example, not a proof), verify
that the following equalities hold in Z6 under addition mod 6.

• (4⊕ 5)⊕ 3 = 4⊕ (5⊕ 3) • (2⊕ 5)⊕ 1 = 2⊕ (5⊕ 1)

(c) Identity: What is the identity of Zn under addition mod n? Justify your answer.
(d) Inverses: For a ∈ Zn, show that 0 is the inverse of a = 0, and otherwise

n − a is the inverse of a by arguing that both (n − a) ⊕ a = 0 and
a⊕ (n− a) = 0.

■

The answers to question 2.4.3 form the heart of a complete proof that Zn under
addition mod n is a group. We leave the remaining details for your later studies and
summarize this important result in the following theorem.

Theorem 2.4.1 The set Zn under the operation of addition mod n is a group.

We now turn our attention to the sets U(n) under multiplication mod n. We provide
a more complete proof that U(n) is a group under multiplication mod n, particularly
for the closure and inverse axioms. The proof that U(n) under multiplication mod n
satisfies these group axioms uses a pair of results from number theory (that is, the
abstract study of the properties of integers and the solutions to polynomial equations).
As we did with the parity property of the integers and the zero product property of the
reals in section 1.7, we just state and use these results without proof for the moment.

Theorem 2.4.2 (a) For a, b ∈ Z, if p is a prime factor of a · b, then either p is a factor of a or p is
a factor of b.

(b) If a, n ∈ Z are relatively prime, then there exist h, k ∈ Z such that
a · h+ n · k = 1.

We give some specific examples illustrating this pair of results. These examples
do not constitute proofs but are intended to facilitate an intuitive understanding.

Example 2.4.3 • 2 is a prime factor of 6 · 15, and 2 is a factor of 6 = 2 · 3.
• 2 is a prime factor of 6 · 20, and 2 is a factor of both 6 = 2 · 3 and 20 = 2 · 10

(this example shows that the first part of theorem 2.4.2 uses the inclusive-or).
• 3 and 5 are relatively prime because they have no common factor greater than 1.

Letting h = 2 and k = −1, we have 3 · 2+ 5 · (−1) = 1.
• 4 and 9 are relatively prime. Letting h = −2 and k = 1, we have 4 · (−2) +

9 · (1) = 1.
■

Question 2.4.4 Identify h, k ∈ Z satisfying a · h + n · k = 1 for the following pairs of relatively
prime numbers.

(a) a = 3 and n = 7 (b) a = 8 and n = 5
■
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With the results of theorem 2.4.2 in hand, we prove that U(n) under multiplication
mod n is a finite group for every integer n ∈ Z.

Theorem 2.4.3 The set U(n) under multiplication mod n is a group.

Proof We verify that each of the four group axioms holds for U(n) under multiplication
mod n.

• Closure: We assume a, b ∈ U(n) and show a� b ∈ U(n). First, since a� b =
(a · b) mod n, we know that a � b ∈ Zn. Therefore we need only prove that
(a · b) mod n is relatively prime to n in order to show a� b ∈ U(n). We proceed
by contradiction; we assume a � b 	∈ U(n) and work toward a contradiction.
Since a� b 	∈ U(n), we know a� b is not relatively prime to n and so shares a
common factor with n greater than 1. Let p ∈ Z with 1 < p ≤ a� b denote such
a common factor. In addition, assume that p is prime. By the division algorithm,
there exist q, r ∈ Z such that a · b = n · q + r where r = a � b ∈ Zn. Since
p is a factor of both n and r, we know that p is a factor of a · b based on the
equation a · b = n · q+ r. At this point, we use theorem 2.4.2(a): if p is a prime
factor of a · b, then either p is a factor of a or p is a factor of b. However, if p is
a factor of a, then a and n share a common factor greater than 1, contradicting
our assumption that a ∈ U(n). Similarly, if p is a factor of b, then b and n share
a common factor greater than 1, contradicting our assumption that b ∈ U(n).
In either case, we have a contradiction. Therefore, a�b must be relatively prime
to n, and so a� b ∈ U(n).

• Associativity: Associativity for U(n) under multiplication mod n follows
from repeated use of the division algorithm and the associativity of the
integers Z under standard multiplication. Further details are left to the reader.

• Identity: The identity of U(n) under multiplication mod n is 1 since for
every a ∈ U(n), we have 1� a = (1 · a) mod n = a mod n = a and, similarly,
a� 1 = a.

• Inverses: The inverse axiom is proven using theorem 2.4.2(b): if two integers
a, n ∈ Z are relatively prime, then there exist integers h, k ∈ Z such that a ·
h + n · k = 1. We let a ∈ U(n) and identify the inverse of a, including the
justification that the inverse is actually in U(n). Since a ∈ U(n), we know that a
and n are relatively prime, and so there exist h, k ∈ Z such that a · h+ n · k = 1.
We now determine the mod n value of both sides of this equation. On the left
side (a · h + n · k) mod n = (a · h) mod n, since n · k mod n = 0. On the right
side, 1 mod n = 1. Therefore, (a · h) mod n = 1, and so h mod n ∈ U(n) is the
multiplicative inverse of a ∈ U(n). We note that h mod n ∈ U(n) since otherwise
h and n share a common factor greater than 1; this common factor would then
divide 1 since a · h+ n · k = 1, which is a contradiction. Since a ∈ U(n) was an
arbitrary element of U(n), every element of U(n) has a multiplicative inverse,
and the inverse axiom holds.

■

We end this section with two theorems that make claims about all groups. As
we have seen in this section (and as will continue to see in the next two sets of
exercises), many diverse number systems satisfy the group axioms. In the proofs
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of the following theorems, we use only the group axioms as justifications in our
proofs, and so these results hold for every number system that is a group. This general
approach is the source of the far-reaching scope of group theory and is a powerful
feature of abstract mathematics. In general, mathematicians seek to utilize the weakest
possible assumptions to determine truths for broad classes of number systems; in
this case, we use the four axioms of groups to prove two theorems that hold for
all of the many different groups simultaneously. These two theorems are really just
the tip of the proverbial group-theoretic iceberg. Whole courses in the upper-level
undergraduate and graduate mathematics curriculum are devoted to continuing and
extending the first steps taken here. If you enjoy these investigations, then you can
look forward to more advanced work in group theory and other courses in abstract
algebra.

Theorem 2.4.4 Unique inverses theorem for groups If G is a group under operation ◦ and a ∈ G,
then the ◦-inverse of a is unique.

Proof Mathematicians typically prove the uniqueness of a mathematical object by
assuming there exist two objects with the properties under consideration and
then showing these two objects must actually be the same. With this strategy
in mind, assume that G is a group under operation ◦, that a ∈ G, and that both
x, y ∈ G are ◦-inverses of a. We then use the axioms of group theory to prove
that x = y. Letting e denote the ◦-identity of G, observe the following string of
equalities.

x = e ◦ x via the identity axiom
= (y ◦ a) ◦ x via the inverse axiom for y; in particular, e = y ◦ a
= y ◦ (a ◦ x) via associativity
= y ◦ e via the inverse axiom for x; in particular, e = a ◦ x
= y via the identity axiom

Since the two ◦-inverses x, y ∈ G for a are equal, the ◦-inverse of a is
unique.

■

In light of theorem 2.4.4, we are now free to follow our intuitive instinct of referring
to “the” inverse of an element a ∈ G, rather than just “an” inverse of a group element.
In addition, theorem 2.4.4 ensures that the notation a−1 for an inverse is unambiguous.
Sometimes we also use the notation (−a) for the inverse of a group element when the
group operation is expressed using additive notation rather than multiplicative notation.
Most students become comfortable with this diversity in notation as they spend
more time studying groups. Now consider the second of the two promised theorems;
this result extends a familiarity with cancellation in equations to the group-theoretic
setting.

Theorem 2.4.5 Left cancellation theorem for groups If G is a group under operation ◦ and
a, b, c ∈ G, then a ◦ b = a ◦ c implies b = c.

Proof Assuming the hypotheses of this theorem, we give a direct proof that b = c.
Since a ∈ G, and G is a group under operation ◦, the ◦-inverse of a exists and
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a−1 ∈ G. Multiplying both sides of the given equation a ◦ b = a ◦ c by a−1

produces

a−1 ◦ (a ◦ b) = a−1 ◦ (a ◦ c).

Applying the axioms of associativity, inverses, and identity for ◦ on elements of G
(in this order) to first the left side and then the right side of this equality produces
the following two strings of equalities.

a−1 ◦ (a ◦ b) = (a−1 ◦ a) ◦ b = e ◦ b = b

a−1 ◦ (a ◦ c) = (a−1 ◦ a) ◦ c = e ◦ c = c

Based on this collection of equalities, b = a−1 ◦ (a ◦ b) = a−1 ◦ (a ◦ c) = c.
We also give the condensed version of these equalities, in which we integrate all
of the preceding strings of equalities into one line:

b = e ◦ b = (a−1 ◦ a) ◦ b = a−1 ◦ (a ◦ b) = a−1 ◦ (a ◦ c) = (a−1 ◦ a) ◦ c

= e ◦ c = c.

Each equality in this string can be justified by the assumptions or by an axiom
of group theory; you may find it interesting and helpful to justify each equality
explicitly.

■

We finish this introduction to group theory with a comment on the choice of
the name “left” cancellation theorem for groups. As stated, theorem 2.4.5 allows the
cancellation of terms in an equality only when the same terms appear on the left
side of the two expressions in the given equality. There is a similar, but distinct,
“right” cancellation theorem for groups that allows the cancellation of the same
terms appearing on the right side of two equal expressions. We actually need both
a left and a right cancellation theorem because not every group satisfies the axiom
of commutativity (that is, the assertion that a ◦ b = b ◦ a for every pair of elements
a and b in the group). Even though most number systems introduced in lower level
mathematics courses satisfy commutativity, there are important groups that do not;
we consider such groups in the exercises to follow. This fact might also lead us to
wonder what other familiar properties might be satisfied in some number systems but
not in others. From these subtle differences we can develop a keen and insightful
understanding of diverse mathematical objects.

2.4.1 Reading Questions for Section 2.4

1. Define and give an example of a binary operation.
2. State the four axioms satisfied by every group.
3. Give an example of an infinite group.
4. Give an example of an infinite set with a binary operation that is not a group.

Identify the group axioms that fail.
5. State theorem 2.4.1. How is this result helpful when studying groups?
6. Give two examples of finite groups.
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7. Give an example of a finite set with a binary operation that is not a group.
Identify the group axioms that fail.

8. State theorem 2.4.2 and give examples illustrating the two parts of this
theorem.

9. How do we use the number-theoretic results of theorem 2.4.2 in our study of
groups?

10. State theorem 2.4.3. How is this result helpful when studying groups?
11. State two general properties that hold for all groups.
12. Discuss the distinction between “an” inverse and “the” inverse of a group

element.

2.4.2 Exercises for Section 2.4

Exercises 1–3 consider definition 2.4.1 of a group.

1. Express each property of a group in predicate logic.
2. State the negation of each property of a group in English.
3. Express the negation of each property of a group in predicate logic.

In exercises 4–15, each set is a group under the given binary operation. State both the
identity element of the group and the inverse of an arbitrary element of the group.

4. The rational numbers Q under standard addition+. Recall that: m/n+ p/q =
(mq + np)/(nq). Also, verify associativity by proving the following are equal:

mq + np

nq
+ r

s
and

m

n
+ ps+ rq

qs

5. The nonzero rational numbers Q∗ = Q \ {0} under standard multiplication.
Why omit 0?

6. The real numbers R under standard addition.
7. The nonzero real numbers R∗ = R \ {0} under standard multiplication. Why

omit 0?
8. The complex numbers C under standard addition: (a + b · i) + (c + d · i) =

(a+ c)+ (b+ d) · i.
9. The nonzero complex numbers C \ {0} under standard multiplication:

(a+ b · i) · (c+ d · i) = (ac− bd)+ (bc+ ad) · i. Why omit 0?
10. The ordered pairs of integers Z2 = {(m, n) : m, n ∈ Z} under componentwise

addition: (m, n)+ (j, k) = (m + j, n+ k).
11. The ordered pairs of rational numbers Q2 = {(r, s) : r, s ∈ Q} under

componentwise addition: (r, s)+ (p, q) = (r + p, s+ q).
12. The ordered pairs of reals R2 = {(r, s) : r, s ∈ R} under componentwise

addition: (r, s)+ (p, q) = (r + p, s+ q).
13. The ordered pairs of nonzero rational numbers [Q∗]2 = {(r, s) : r, s ∈ Q

and r, s 	= 0} under componentwise multiplication: (r, s) · (p, q) =
(r · p, s · q).

14. The ordered pairs of nonzero reals [R∗]2 = {(r, s) : r, s ∈ R and r, s 	= 0}
under componentwise multiplication: (r, s) · (p, q) = (r · p, s · q).
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15. The ordered pairs of nonzero reals [R∗]2 = {(r, s) : r, s ∈ R and r, s 	= 0}
under the operation (r, s) ∗ (p, q) = (rp − sq, rq + sp). Verify that (1, 0)
is the identity element. For inverses, consider the similarities between this
∗-multiplication operation and multiplication of complex numbers.

In exercises 16–27, each set is not a group under the given operation. Identify the
group axioms that do not hold and state corresponding counterexamples.

16. The natural numbers N under standard addition.
17. The integers Z under standard multiplication.
18. The rational numbers Q under standard multiplication.
19. The real numbers R under standard multiplication.
20. The set {0, 1, 2} under standard addition.
21. The set {0, 1, 2, 3} under standard addition.
22. The set {0, . . . , n} under standard addition for integers n > 2.
23. The set {−1, 0, 1} under standard addition.
24. The set {−2,−1, 0, 1, 2} under standard addition.
25. The set {−n, . . . ,−1, 0, 1, . . . , n} under standard addition.
26. The ordered pairs of integers Z2 = {(m, n) : m, n ∈ Z} under componentwise

multiplication: (m, n) · (j, k) = (m · j, n · k).
27. The ordered pairs of reals R2 = {(r, s) : r, s ∈ R} under componentwise

multiplication: (r, s) · (p, q) = (rp, sq).

In exercises 28–31, prove each mathematical statement.

28. The set natural numbers N is not closed under subtraction. Give a counterex-
ample, identifying two natural numbers witnessing the nonclosure of N under
subtraction.

29. Subtraction is not associative on the integers Z. Give a counterexample,
identifying three integers witnessing the nonassociativity of subtraction.

30. (Unique identity theorem for groups) If G is a group under operation ◦, then
the ◦-identity in G is unique. Hint: By way of contradiction, suppose there
are two identities e and f , and consider e ◦ f .

31. (Right cancellation theorem for groups) If G is a group under operation ◦ and
a, b, c ∈ G, then a ◦ b = c ◦ b implies a = c. Hint: See theorem 2.4.5.

Exercises 32–45 study “zero divisors” in the context of modular groups. A nonzero
element a ∈ Zn is a zero divisor of Zn if there exists a nonzero b ∈ Zn such that
a� b = 0.

32. Prove that 0 ∈ Z6 under multiplication mod 6 is not a zero divisor.
33. Prove that 1 ∈ Z6 under multiplication mod 6 is not a zero divisor by

computing all products 1� b for all nonzero b ∈ Z6.
34. Prove that 2 ∈ Z6 under multiplication mod 6 is a zero divisor by identifying

a nonzero b ∈ Z6 such that 2� b = 0.
35. Prove that 3 ∈ Z6 under multiplication mod 6 is a zero divisor by identifying

a nonzero b ∈ Z6 such that 3� b = 0.
36. Prove that 4 ∈ Z6 under multiplication mod 6 is a zero divisor by identifying

a nonzero b ∈ Z6 such that 4� b = 0.
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37. Prove that 5 ∈ Z6 under multiplication mod 6 is not a zero divisor by
computing all products 5� b for all nonzero b ∈ Z6.

38. Based on exercises 32–37, what property identifies the zero divisors of Z6?
Conjecture a relationship between Z6, U(6), and the set of zero divisors of Z6.

39. Identify the zero divisors of Z8 under multiplication mod 8.
40. Identify the zero divisors of Z12 under multiplication mod 12.
41. Identify an odd integer n such that Zn under multiplication mod n contains at

least one zero divisor. State the zero divisors in this Zn.
42. Prove that Z3 does not contain any zero divisors based on the Cayley table for

Z3 under multiplication mod 3. What property of 3 results in Z3 not having
any zero divisors?

43. Prove that Z5 does not contain any zero divisors based on the Cayley table for
Z5 under multiplication mod 5. What property of 5 results in Z5 not having
any zero divisors?

44. Prove that if Zn contains zero divisors, then left cancellation does not hold
for all elements of Zn by identifying a, b, c ∈ Zn such that a� b = a� c but
b 	= c.

45. Prove that if Zn contains zero divisors, then right cancellation does not hold for
all elements of Zn by identifying a, b, c ∈ Zn such that a�b= c�b but a 	= c.

Exercises 46–54 consider “idempotent” elements in modular groups. An element
a ∈ Zn is an idempotent of Zn if a · a = a (often written as a2 = a).

46. Identify the idempotents of Z3 under multiplication mod 3.
47. Identify the idempotents of Z5 under multiplication mod 5.
48. Identify the idempotents of Z7 under multiplication mod 7.
49. Identify the idempotents of Z6 under multiplication mod 6.
50. Identify the idempotents of Z10 under multiplication mod 10.
51. Identify the idempotents of Z14 under multiplication mod 14.
52. Based on exercises 46–51, conjecture a relationship between the divisor n for

Zn and the number of idempotents of Zn. What if n is prime? What if n = 2p,
where p is prime?

53. Prove that if a, b ∈ Zn are idempotents, then a� b is also an idempotent under
multiplication mod n.

54. Prove that if Zn has no zero divisors (as defined before exercise 32), then 0
and 1 are the only idempotents of Zn under multiplication mod n.

Exercises 55–70 consider symmetric groups. Symmetric groups, also known as
permutation groups, were the first groups studied by Galois and others in the mid-
1800s. In fact, the symmetric groups can be considered the most fundamental finite
groups since every finite group can be identified with a subset of a symmetric group that
is itself a group. The symmetric group Sn consists of all one-to-one, onto functions on
the integers {1, . . . , n} under the operation of composition. Such functions are studied
in section 4.2, but for now we consider examples on the finite sets {1, . . . n}. The
elements of Sn are functions α represented in arrays of the form

α =
[

1 2 · · · n
α(1) α(2) · · · α(n)

]
.
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The top row of the array denotes the inputs of the function and the bottom row consists of
the corresponding, distinct outputs, which are also elements of {1, . . . n}. For example,
the following are three elements of S3 represented in array form.

ε =
[

1 2 3
1 2 3

]
α =

[
1 2 3
2 3 1

]
β =

[
1 2 3
1 3 2

]
For this α ∈ S3, we have α(1) = 2, α(2) = 3, and α(3) = 1. Elements of Sn are
combined under the operation of composition, denoted by ◦. For example, for this
α, β ∈ S3, the composition α ◦ β is

α ◦ β(1) = α[β(1)] = α(1) = 2,

α ◦ β(2) = α[β(2)] = α(3) = 1,

α ◦ β(3) = α[β(3)] = α(2) = 3.

Representing the composition α ◦ β in array form, we have

α ◦ β =
[

1 2 3
2 1 3

]
.

In exercises 54–60, express each function from S4 in array form.

55. α(1) = 1, α(2) = 3, α(3) = 4, α(4) = 2
56. α(1) = 3, α(2) = 1, α(3) = 2, α(4) = 4
57. α(1) = 2, α(2) = 3, α(3) = 4, α(4) = 1
58. α(1) = 3, α(2) = 2, α(3) = 1, α(4) = 4
59. α(1) = 4, α(2) = 1, α(3) = 2, α(4) = 3
60. α(1) = 4, α(2) = 2, α(3) = 3, α(4) = 1

In exercises 61–66, identify the function from S5 in array form resulting from each
composition of the given functions.

α =
[

1 2 3 4 5
2 1 4 3 5

]
β =

[
1 2 3 4 5
3 2 1 5 4

]
γ =

[
1 2 3 4 5
5 4 3 2 1

]
61. α ◦ β

62. α ◦ γ

63. β ◦ α

64. β ◦ γ

65. γ ◦ α

66. γ ◦ β

Exercises 67–70 consider the symmetric group S2 = {ε, α} on {1, 2} under composi-
tion. The two elements of S2 are

ε =
[

1 2
1 2

]
and α =

[
1 2
2 1

]
.

67. Express the function ε ◦ ε ∈ S2 in array form.
68. Express the functions α ◦ ε ∈ S2 and ε ◦ α ∈ S2 in array form.
69. Express the function α ◦ α ∈ S2 in array form.
70. Based on exercises 67–69, state the Cayley table for S2 under composition.
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2.5 Dihedral Groups

We continue our study of number systems with a radically different type of group called
the “dihedral group.” Their description uses Euclidean geometry and is based on an
understanding of motions in the two-dimensional space of the Euclidean plane. Over
the centuries, such motions have inspired artisans when creating beautiful patterns
for decorating pottery, clothing, and buildings. In the early middle ages, Islamic
mathematicians and artists decorated mosques throughout southern Spain and northern
Morocco with intricate designs based on these motions. In the early 1900s, the artist
Maurits Cornelis Escher created many fantastical and diverse images using planar
motions. Posters of his work often decorate the walls of mathematicians’ classrooms
and offices and even a few dormitory rooms. When mathematicians learned that Escher
had identified a complete classification of certain groups of motions, he was invited to
share his work with group theorists at a national mathematics conference!

We are interested in planar motions with certain distinctive features. There are
many different “types” of these transformations of the plane: we can translate the
plane in a uniform direction; rotate the plane about some fixed point; reflect the
plane across some given line; or implement a glide reflection combining a translation
and a reflection. These four types of motions are referred to as Euclidean plane
isometries since they preserve the geometric property of distance (or length) between
points in the plane. In contrast, non-isometries are transformations such as bending,
stretching, twisting, folding, cutting, or otherwise distorting the plane so that the
distance between some points is changed.

The dihedral groups are certain subcollections of Euclidean plane isometries—
namely, those that preserve the orientation of a given regular polygon. These sets of
isometries have many fundamental group-theoretic properties. We begin our study of
the dihedral groups with the definition of a regular polygon and identify some examples
and nonexamples of polygons.

Definition 2.5.1 A polygon is a closed geometric figure in the plane with three or more (but only
finitely many) straight sides. A polygon is said to be a regular polygon if every
side of the polygon has the same length and every interior angle of the polygon
has the same magnitude.

We often encounter polygons in our everyday lives from the rectangular buildings
we live in, to octagonal stop signs, to the hexagonal honeycombs of bees. Most students
study polygons from the earliest days in school and learn the familiar, distinctive
names of many, including triangles, squares, and pentagons. The definition of a regular
polygon guarantees that there exists exactly one regular polygon with n sides for every
positive integer n ≥ 3 (once the length of the sides is determined).

Example 2.5.1 The sides and the interior angles of each of the polygons in figure 2.3 are equal,
and so each polygon is regular.

■

As we have seen, a good understanding of a formal definition is developed
by considering not only examples satisfying the definition, but also a collection
of examples exploring the boundaries and limitations of the definition. The two
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Equilateral triangle Square Octagon

Figure 2.3 Some regular polygons

Rectangle Rhombus Trapezoid

Figure 2.4 Geometric figures that are not regular polygons

requirements that a closed figure with straight sides must satisfy in order to be a
regular polygon are equality of sides and equality of interior angles. From sentential
logic, we know that these requirements are not satisfied if one or the other condition
fails or when both fail simultaneously.

Example 2.5.2 We identify a figure in the plane that is not a polygon. We also describe the
three different ways a four-sided polygon can fail to be regular as illustrated in
figure 2.4.

• A circle is not a polygon because the circle does not have at least three straight
sides.

• A nonsquare rectangle is not regular. Even though all the interior angles are
equal, the sides have different lengths.

• A nonsquare rhombus (popularly known as a “diamond”) is not regular. Even
though the lengths of the sides are all equal, the interior angles are different from
one another.

• A trapezoid whose sides and interior angles are different from each other is not
regular.

■

Dihedral groups do not include all motions of regular polygons, but just the
orientation-preserving, distance-preserving motions of regular polygons. An isometry
preserves the orientation of a polygon if the motion consists of “picking up” the polygon
and moving it around so that when the motion is completed, every vertex is mapped
to the initial location of one of the vertices of the polygon. For example, consider the
two motions of an equilateral triangle illustrated in figure 2.5. The left diagram depicts
a motion that is orientation-preserving, while the right diagram depicts a motion that
is not orientation-preserving.
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1

2 2

2 3

13 323

1 1

Orientation-preserving Not orientation preserving

Figure 2.5 Two motions of an equilateral triangle

From these specific examples of motions, we can see that there exist infinitely
many different isometries of an equilateral triangle that are not orientation-preserving.
Recall that all isometries are translations, rotations, reflections, or glide reflections.
The translations and glide reflections that involve shifting the figure to a different
location in the plane are clearly not orientation preserving. Many of these motions that
do not preserve orientations are interesting in their own right and have served as the
basis for the work of the Islamic artists and of Escher, among others. However, some
rotations and reflections are orientation-preserving. In fact, only a relative handful of the
isometries of the plane are orientation-preserving for an equilateral triangle (the regular
three-sided polygon) or for any regular n-sided polygon, but they are enough to yield an
interesting set of mathematical objects. As it turns out, the set of orientation-preserving
isometries of an equilateral triangle is a group under composition. The following
example and questions explore the dihedral group consisting of these motions under
composition.

Example 2.5.3 The dihedral group D3 is the set of orientation-preserving isometries of an
equilateral triangle under the operation of composition. In the notation D3, the “D”
stands for the “dihedral group” and the subscript “three” indicates that we are
working with a regular three-sided polygon. To facilitate the discussion, we
number the vertices of the equilateral triangle in its original position, where
the top vertex is 1, the bottom right vertex is 2, and the bottom left is 3;
this assignment of numbers to vertices is illustrated in the left triangle of
figure 2.6.

The orientation-preserving isometries of an equilateral triangle may change
the position of the vertices (with their corresponding numberings) but always
return the triangle to the space in the plane that the triangle originally occupied. For
example, when the triangle is rotated counterclockwise 120 degrees, the 1 vertex

1

1 323

2

A counterclockwise, 120-degree rotation. Figure 2.6 The motion R120



132 A Transition to Advanced Mathematics

moves to the original position of the 3 vertex, the 3 vertex moves to 2’s original
position, and the 2 vertex moves to 1’s original position. This motion is denoted
by R120 and is illustrated in figure 2.6.

The dihedral group D3 consists of all orientation-preserving isometries of
an equilateral triangle. There are exactly six such motions, since vertex 1 can be
placed at any of the three original vertex positions, which leaves two choices for
placing the vertex 2 and just one choice for the vertex 3. Comparing the original
labeling of vertices with the post-motion labeling of vertices enables us to identify
three of these motions as rotations about the center of the equilateral triangle and
the other three motions as flips (or reflections) across the three lines of symmetry of
the equilateral triangle. The six possible motions are identified using the following
suggestive labels.

• R0 = rotate counterclockwise 0 degrees, moving 1→ 1, 2→ 2, 3→ 3;
• R120 = rotate counterclockwise 120 degrees, moving 1→ 3, 2→ 1, 3→ 2

(as illustrated in figure 2.6, vertex 1 has moved to the position originally occupied
by vertex 3, etc.);

• R240 = rotate counterclockwise 240 degrees, moving 1 → 2, 2 → 3,

3→ 1;
• FT = flip, or reflect, across the axis drawn from the top vertex to the center of

the opposite side, moving 1→ 1, 2→ 3, 3→ 2;
• FR = flip, or reflect, across the axis drawn from the right vertex to the center of

the opposite side, moving 1→ 3, 2→ 2, 3→ 1;
• FL = flip, or reflect, across the axis drawn from the left vertex to the center of

the opposite side, moving 1→ 2, 2→ 1, 3→ 3.

Since these six motions are all the orientation-preserving, distance-preserving
motions of an equilateral triangle, D3 = {R0, R120, R240,FT , FR, FL}. The standard
operation on these elements of D3 is composition of motions, read from right to
left. For example, the composition R120 ◦ R240 means that we first apply R240, and
then R120; figure 2.7 illustrates this composition.

Intuitively, we recognize that R120 ◦ R240 = R0, since a counterclockwise
rotation of 120 degrees followed by a counterclockwise rotation of 240 degrees
returns every vertex to its original position; that is, the net effect of composing
this pair of motions is a counterclockwise rotation of 0 degrees. This observation
provides one piece of evidence that D3 is closed under composition, as must be
verified in a proof that D3 is a group.

■

1

2 123

3

3 2

1

Figure 2.7 The motion of R240 followed by R120
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The following questions continue our study of D3, particularly in light of the
four group axioms of closure, associativity, identity, and inverses. We also pay close
attention to the further algebraic property of commutativity. As a first step in this
direction, you are invited to practice a bit more with the operation of composition on
the elements of D3.

Question 2.5.1 Compute each composition of elements from D3 = {R0, R120, R240, FT ,

FR, FL}.
(a) R0 ◦ R240

(b) R120 ◦ R120

(c) R240 ◦ R240

(d) FT ◦ FT

(e) FT ◦ FR

(f) FR ◦ FT

■

The last two computations in question 2.5.1 are of particular interest because
they prove that composition on D3 is not commutative. Recall that an operation ◦ is
commutative on a set S if for every a, b ∈ S, we have a ◦ b = b ◦ a. The results of
question 2.5.1 show that FT ◦ FR 	= FR ◦ FT , and so composition is not commutative
on D3. At the same time, we observe that some elements of D3 do commute with each
other; for example, R0 ◦ FT = FT ◦ R0 (in fact, R0 commutes with every element of
D3). Thus, FT ◦ FR 	= FR ◦ FT only proves that the universal property of all elements
commuting with each other does not hold in D3.

This behavior in D3 is striking. Every number system we have studied thus
far has been commutative, but D3 behaves quite differently. As it turns out,
many groups are noncommutative, and so we must be careful not to appeal to
commutativity until we verify that the group in question actually satisfies this
condition. As mentioned in the previous section, the issue of commutativity is
why we considered both “left cancellation” and “right cancellation” separately in
section 2.4. Motivated by the dihedral groups and other similar groups, mathematicians
have come to recognize the importance of the algebraic property of commutativity
and (as with most notions of importance) a special name is given to commutative
groups.

Definition 2.5.2 A group G under operation ◦ is Abelian if the operation ◦ is commutative on G;
that is, G is Abelian if for every a, b ∈ G, we have a ◦ b = b ◦ a.

Abelian groups are named in honor of the insightful Norwegian mathematician
Niels Henrik Abel. In the late 1700s, Abel found quite limited opportunities to study
mathematics in the schools of his native country. Despite (or because of) these
limitations, Abel was a primarily self-educated mathematician who learned directly
from the books and the research papers of the greatest mathematicians in history. In
his early twenties, Abel solved one of the fundamental research questions of his time.
He proved that there does not exist a general solution (in radicals) for polynomial
equations of degree five or higher, in striking contrast to the existence of the quadratic
equation for solving quadratic polynomials, and similar equations for solving cubics
and quartics (such solutions of polynomial equations are discussed more fully in
section 3.5). Abel’s work preceded Galois’ work on this same question, although
Galois’ approach was more general and is more widely known among contemporary
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mathematicians. Sadly, Abel died of tuberculosis at the age of 24, shortly before
receiving word of an offer of a position at one of the leading research universities
in Germany.

Every group we have studied thus far has been Abelian (except D3), including
Z under addition, Q∗ under multiplication, Zn under modular addition, and U(n)
under modular multiplication. Question 2.5.1 (together with the proof that D3

is a group) show that D3 is a nonAbelian group, as stated in theorem 2.5.1
below.

Working toward a proof that D3 is a group, we first consider the closure of D3

under composition—for every a, b ∈ D3, we want to show that a ◦ b ∈ D3. Recall
from section 2.3 that a Cayley table provides a thorough and systematic approach to
computing the action of the binary operation on all possible pairings of elements. If
only elements from the given set appear in the corresponding Cayley table, the set is
closed under the given operation.

Question 2.5.2 Simplify the following Cayley table for D3 under composition.

◦ R0 R120 R240 FT FR FL

R0 R0 ◦ R0 R0 ◦ R120 R0 ◦ R240 R0 ◦ FT R0 ◦ FR R0 ◦ FL

R120 R120 ◦ R0 R120 ◦ R120 R120 ◦ R240 R120 ◦ FT R120 ◦ FR R120 ◦ FL

R240 R240 ◦ R0 R240 ◦ R120 R240 ◦ R240 R240 ◦ FT R240 ◦ FR R240 ◦ FL

FT FT ◦ R0 FT ◦ R120 FT ◦ R240 FT ◦ FT FT ◦ FR FT ◦ FL

FR FR ◦ R0 FR ◦ R120 FR ◦ R240 FR ◦ FT FR ◦ FR FR ◦ FL

FL FL ◦ R0 FL ◦ R120 FL ◦ R240 FL ◦ FT FL ◦ FR FL ◦ FL

■

The simplified Cayley table in question 2.5.2 contains only elements of D3 and
exhibits the distinctive Latin square feature common to every Cayley table of a finite
group. Therefore, D3 is closed under composition and satisfies the first of the four
group axioms.

The verification that composition is an associative operation on D3 requires
significant work, since D3 is not contained in any set whose associativity is already
known. A proof by exhaustion that composition is associative on D3 requires the
computation of the two possible orderings of composition on the 63 = 216 distinct
triples of elements from D3. Rather than offer this tedious proof, the next question
highlights a couple of representative examples.

Question 2.5.3 Verify each equality in D3 under composition.

(a) R120 ◦ (FT ◦ R240) = (R120 ◦ FT ) ◦ R240

(b) FT ◦ (R120 ◦ FR) = (FT ◦ R120) ◦ FR

■

We now investigate the identity and inverse axioms for D3 under composition.
Question 2.5.2 asked for the simplified Cayley table for D3. Since the following analysis
makes essential use of this Cayley table, we provide the simplified version here; you
may wish to use it to double-check your answer to question 2.5.2.
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◦ R0 R120 R240 FT FR FL

R0 R0 R120 R240 FT FR FL

R120 R120 R240 R0 FR FL FT

R240 R240 R0 R120 FL FT FR

FT FT FL FR R0 R240 R120

FR FR FT FL R120 R0 R240

FL FL FR FT R240 R120 R0

Recall from section 2.4 that the Cayley table for a group readily allows us to identify
the identity element of the group and the inverse of each element of the group. The
identity is determined by finding the group element that “preserves the identity” of
every element of D3 under composition. We can then determine inverses by locating
the identity element in each row (or in each column) of the Cayley table.

Question 2.5.4 Working with the above Cayley table for D3 under composition, state the identity
of D3 and the inverse of each element of D3.

■

The answers to questions 2.5.1–2.5.4 above constitute a proof of the following
result.

Theorem 2.5.1 D3 under composition is a nonAbelian group.

The next step in studying dihedral groups is to consider an arbitrary regular n-sided
polygon. In D3, the orientation-preserving isometries of a regular three-sided polygon
are three rotations (each through a multiple of 360/3 = 120 degrees) and three flips
(each over an axis through a vertex and the center of the opposite side).Asimilar pattern
occurs in the more general setting for the set Dn of orientation-preserving isometries
of a regular n-sided polygon. The set Dn contains n rotations, one for each a multiple of
360/n degrees or 2π/n radians. In addition, Dn contains n flips (or reflections) across
the n axes of symmetry that bisect the regular n-sided polygon, where the description
of the axes depends on whether the polygon has an even or an odd number of sides. If n
is odd, then each flip is over an axis through a vertex and the center of the opposite side
(as for the equilateral triangle). If n is even, then half the flips are over an axis through
a pair of opposite vertices and the other half of the flips are over an axis through the
centers of two opposite sides. To help clarify this general description in a more concrete
setting, think about a square with its four axes of symmetry. The dihedral group for a
square is studied in exercises 11–17 at the end of this section.

In general, the number of elements in a finite group is referred to as the order
of the group. Since D3 = {R0, R120, R240, FT , FR, FL}, we say that D3 has order six.
Similarly, the set Dn contains n rotations and n flips, and so Dn has order 2n. This
notion of order extends to other groups, including Zn under addition mod n (which has
order n) and U(n) under multiplication mod n (which has order n− 1 when n is prime).

As with D3, the operation on Dn of composition from right to left provides a
group structure and satisfies the four group axioms. As you might expect, the proof
that Dn is a group closely mirrors the argument that D3 is a group. We formally state
the theorem for this general case and provide a sketch of a proof.
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Theorem 2.5.2 The set Dn of orientation-preserving isometries of a regular n-sided polygon is a
group under the operation of composition. We refer to Dn as the dihedral group
of order 2n.

Sketch of proof Closure is satisfied since the aggregate result of implementing one
orientation-preserving isometry and then another is itself an orientation-preserving
isometry. Associativity follows from an exhaustive consideration of all combina-
tions of group elements using appropriate general descriptions of the orientation-
preserving isometries of a regular n-sided polygon. The identity element of Dn

under composition is R0. Finally, every flip is its own inverse and the inverse of
a rotation of 360/n degrees is a rotation of 360 − 360/n degrees (which is also
an orientation-preserving isometry and so in Dn). Thus, Dn under composition
is a group.

■

For the remainder of this section, we examine patterns that arise when composing
elements of Dn and take a more careful look at the issue of commutativity and
noncommutativity in this group-theoretic setting. We focus our discussion around
the study of the Cayley table for D3 under composition computed in question 2.5.2
and given just before question 2.5.4. We first look for general patterns in computing
compositions in D3.

Question 2.5.5 Examining the Cayley table for D3, we observe that the orientation-preserving
isometries of the equilateral triangle are bunched together in four distinct blocks:
two blocks of rotations in the upper left and lower right quadrants and two blocks
of flips in the lower left and upper right quadrants. Based on the computations
given in this table, identify the following general statements as true or false. For
the false statements, give a counterexample.

(a) A rotation followed by a rotation is a rotation; that is, R ◦ R = R.
(b) A rotation followed by a rotation is a flip; that is, R ◦ R = F.
(c) A rotation followed by a flip is a rotation; that is, F ◦ R = R.
(d) A rotation followed by a flip is a flip; that is, F ◦ R = F.
(e) A flip followed by a rotation is a rotation; that is, R ◦ F = R.
(f) A flip followed by a rotation is a flip; that is, R ◦ F = F.
(g) A flip followed by a flip is a rotation; that is, F ◦ F = R.
(h) A flip followed by a flip is a flip; that is, F ◦ F = F.

■

We now consider the issue of commutativity and noncommutativity. In addition to
observing the noncommutative behavior of some elements of D3, we also note that some
elements of D3 do commute with each other. Every group actually has some elements
that commute with one another. For example, e is the identity of a group G under
operation ◦ iff e ◦ a = a = a ◦ e for every element a ∈ G. Therefore, by definition, the
identity always commutes with every element of a group. In the specific setting of D3,
the identity element R0 commutes with every element of D3. Similarly, group elements
always commute with their inverses since (by definition) a ◦ a−1 = e = a−1 ◦ a for
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every a ∈ G. Furthermore, every element commutes with itself since a ◦ a = a ◦ a by
the reflexivity of standard equality. Based on these observations, we conclude that a
great deal of commutativity still must exist among individual group elements, even
when a group is nonAbelian.

In studying the role of commutativity in a particular group, mathematicians
sometimes gather together the elements that commute with every other element of the
group into a set called the center of the group. In addition to considering such global
behavior, mathematicians also study more locally defined behavior. With regard to
commutativity, we consider the set of group elements that commute with a single given
group element a ∈ G. This set is called the centralizer of a. Consider the following
definition.

Definition 2.5.3 If a is an element of a group G under operation ◦, then the centralizer of a in G
is the set of elements in G that commute with a. Symbolically, the centralizer of a
in G is denoted by C(a) = {g : g ∈ G and a ◦ g = g ◦ a}.

Example 2.5.4 We identify the centralizers of R0, R120, and FT in D3 under composition.
Since the identity element R0 commutes with every element of D3, we immediately
have C(R0) = D3. In contrast, the centralizer of every other element of D3 is
a proper subset of D3, as can be verified by checking the (lack of) symmetry
between the row and column of a given element in the Cayley table for D3. For
example, for the rotation R120, we find C(R120) = {R0, R120, R240} since R120

commutes with every rotation but with no flips. Similarly, for the flip FT , we find
C(FT ) = {R0, FT }.

■

The conclusion that C(FT ) = {R0, FT } is a special case that warrants further
discussion. For groups containing two or more elements, the least possible order of
the centralizer of a group element is two, since every element commutes with at least
the identity of the group and itself. As mentioned above, every group element also
commutes with its inverse, and so a centralizer has order two exactly when a group
element is its own inverse. Thus, C(FT ) = {R0, FT } since FT commutes with precisely
the identity (R0), with itself (FT ), and with its inverse (which is also FT ).

Question 2.5.6 Determine the centralizer of R240, FR, and FL using the Cayley table for D3 under
composition.

■

Finally, we say a bit more about cancellation in the context of the dihedral groups.
From theorem 2.4.5 and exercise 31 in section 2.4, the left cancellation and the right
cancellation properties hold for any group, and so they hold for Dn. For example,
working in D3 we know that FT ◦R120 = FT ◦ (R240 ◦R240) implies R120 = R240 ◦R240

by left cancellation and that R120 ◦FT = (R240 ◦R240) ◦FT implies R120 = R240 ◦R240

via right cancellation.
In many other familiar number systems, we are perhaps used to using “cross”

cancellation. For example, working with products of integers and rationals, we may
say that 2 · 1 = (3 · 1/3) · 2 implies 1 = 3 · 1/3 or that 2x = (3 + x) · 2 implies
x = 3 + x by cancelling the 2 on both sides of the original equations. However,
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such cross-cancellation makes implicit use of the commutativity of elements in the
underlying number systems for these equations. As we have seen, commutativity fails
for several pairs of elements in D3, and we will soon see that commutativity also fails
to hold in a number of other important groups. Therefore, in general we cannot utilize
cross-cancellation when manipulating equations unless we first verify and reference
that we are working in an Abelian group. The following question explicitly highlights
the failure of cross-cancellation in D3.

Question 2.5.7 Verify that cross-cancellation is not valid in D3 under composition by identifying
A ∈ D3 such that FT ◦ A = R120 ◦ FT , but A 	= R120.

■

2.5.1 Reading Questions for Section 2.5

1. What is a regular polygon? Give examples of polygons that are regular and
irregular.

2. Give an example of a geometric figure that is not a polygon.

3. What is an isometry of the plane? Give an example of an isometry and a
motion of the plane that is not an isometry.

4. What is an orientation-preserving isometry? Give an example of an orientation-
preserving isometry of a square and an isometry of a square that is not
orientation-preserving.

5. List the elements of D3.
6. Define when an operation ◦ is commutative on set S.
7. Give an example of a commutative operation.
8. Give an example of an operation that is not commutative.
9. Define and give an example of an Abelian group.

10. Define the order of a group and give examples of groups of orders 2, 5,

and 6.
11. Define the center of a group G and give an example.
12. Define the centralizer of an element α in a group G and give an example.

2.5.2 Exercises for Section 2.5

In exercises 1–10, sketch a geometric figure satisfying each condition, or explain why
no such figure exists.

1. a regular two-sided polygon
2. a regular four-sided polygon
3. a regular five-sided polygon
4. a regular eight-sided polygon
5. an irregular five-sided polygon with equal sides
6. an irregular five-sided polygon with equal interior angles
7. an irregular five-sided polygon with neither equal sides nor equal interior

angles
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8. an irregular six-sided polygon with equal sides
9. an irregular six-sided polygon with equal interior angles

10. an irregular six-sided polygon with neither equal sides nor equal interior
angles

Exercises 11–17 consider the dihedral group D4 under composition. The set D4

consists of the eight orientation-preserving isometries of a square (a regular four-sided
polygon). The set D4 contains four rotations, denoted R0, R90, R180, R270 with the
subscript indicating the angle of counterclockwise rotation. In addition, D4 contains
four flips (denoted FV , FH , FR, FL), where FV is the flip across the vertical axis through
the center of the top and bottom sides, FR is the flip across the axis from the lower right
vertex to the upper left vertex, and FH , FL are the horizontal and lower left variations
on these flips.

11. As modeled in example 2.5.3, give a written description of the eight isometries
in D4.

12. Compute the Cayley table for D4 under composition.
13. State the identity of D4 under composition.

14. State the inverse of each element of D4 under composition.

15. Based on exercise 14, describe any patterns that exist for inverse pairs.
16. Prove that D4 is not an Abelian group by identifying two elements of D4 that

do not commute under composition.
17. Determine the centralizer of each element in D4.

Exercises 18–28 consider the dihedral group D5 under composition. The set D5 consists
of the ten orientation-preserving isometries of a regular pentagon (a regular 5-sided
polygon). In particular, D5 contains five rotations (denoted R0, R72, R144, R216, R288)
and five flips (denoted F1, F2, F3, F4, F5). Note that each flip is across an axis through
a vertex and the opposite side’s midpoint.

18. As modeled in example 2.5.3, give a written description of the ten isometries
in D5.

19. Compute the Cayley table for D5 under composition.
20. State the identity of D5 under composition.
21. State the inverse of each element of D5 under composition.
22. Based on exercise 21, describe any patterns that exist for inverse pairs.
23. Prove that D5 is not an Abelian group by identifying two elements of D5 that

do not commute under composition.
24. Determine the elements in the centralizer of an arbitrary nonidentity rotation

in D5.
25. Determine the elements in the centralizer of an arbitrary flip in D5.
26. Describe the isometry that results from the composition of two rotations in

D5. Justify your answer.
27. State the numeric relationship that ensures two rotations in D5 are inverses of

each other.
28. Describe the isometry that results from the composition of two flips in D5.

Justify your answer.
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Exercises 29–34 consider the general dihedral group Dn of order 2n consisting of the
orientation-preserving isometries of a regular n-sided polygon under the operation of
composition.

29. How many rotations are in Dn? Justify your answer.
30. As modeled in example 2.5.3, give a written description of the rotation

elements of Dn.
31. If n is odd, how many flips are in Dn? Give a geometric justification of your

answer.
32. As modeled in example 2.5.3, give a written description of the flip elements

of Dn when n is odd.
33. If n is even, how many flips are in Dn? Give a geometric justification of your

answer.
34. As modeled in example 2.5.3, give a written description of the two distinct

types of flip elements of Dn when n is even.

In exercises 35–44, identify the order of each group by determining the number of
elements in the group.

35. Z5

36. U(5)
37. D5

38. Z8

39. U(8)

40. D8

41. Z11

42. U(11)
43. U(14)
44. Z14

In exercises 45–54, identify the elements in the group of orientation-preserving
isometries of each geometric figure.

45. a nonsquare rectangle
46. a nonrectangular parallelogram
47. a rhombus
48. a circle
49. a noncircular ellipse

50. a valentine’s heart (or a cardioid)
51. an addition symbol +
52. a multiplication symbol ×
53. a division symbol ÷
54. a subtraction symbol −

Exercises 55–65 consider the M2(Z) of 2× 2 matrices on the set of integers. Matrix
groups were studied by Cayley in the 1850s and are of interest in this section since
they provide another important example of noncommutativity. A 2× 2 matrix on the
integers is an array of integers with two rows and two columns. The following are
some elements of M2(Z).

A =
[

1 0
0 1

]
B =

[ −1 0
1 −1

]
C =

[
1 3
2 4

]
Addition and multiplication of matrices are defined by combining the entries in a
given pair of matrices in an appropriate fashion based on the corresponding operations
on the integers. Consider the following formal definitions of matrix addition and
multiplication. [

a b
c d

]
+
[

e f
g h

]
=

[
a+ e b+ f
c+ g d + h

]
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[
a b
c d

]
·
[

e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]

In exercises 55–62, compute each sum and product.

55. A+ B
56. B+ A
57. A+ C
58. C + A

59. A · B
60. B · A
61. B · C
62. C · B

Exercises 63–65 consider the commutativity of matrix addition and matrix multipli-
cation in light of the computations in exercises 55–62.

63. What do exercises 55–58 suggest about the commutativity of matrix addition
on M2(Z)?

64. Using the commutativity of integer addition, prove that addition of matrices
from M2(Z) is commutative.

65. What do exercises 59–62 prove about the commutativity of matrix multipli-
cation on M2(Z)?

Exercises 66–70 continue a study of the symmetric groups begun in in exercises 55–70
of section 2.4. The symmetric group Sn consists of all one-to-one, onto functions on
the integers {1, . . . , n} under the operation of composition. Recall that the elements of
Sn are functions α represented in arrays of the form

α =
[

1 2 · · · n
α(1) α(2) · · · α(n)

]
.

The top row of the array denotes the inputs of the function and the bottom row consists
of the corresponding distinct outputs which are also elements of {1, . . . n}. For example,
the following are three elements of S3 represented in array form.

ε =
[

1 2 3
1 2 3

]
α =

[
1 2 3
2 3 1

]
β =

[
1 2 3
1 3 2

]
In exercises 66–69, compute each composition.

66. β ◦ α

67. α2 = α ◦ α

68. α2 ◦ β

69. β ◦ α2

70. What do exercises 68–69 prove about the commutativity of composition
on S3?

2.6 Application: Check Digit Schemes

We complete this study of abstract algebra with an application of modular arithmetic
and dihedral groups. Contemporary American society assigns numbers to just about
everything, using “identification numbers” to represent such diverse objects as books,
food, financial transactions, and even people. These assignments of numbers provide
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benefits in record-keeping and tracking information, but they also produce some new,
associated problems. In this section, we grapple with the problem of incorrect digits
appearing in these numbers when they are stored or transmitted. We can readily imagine
how easily an accountant might accidentally move a decimal place and record $10.00
instead of $1000, or a teacher might erroneously record a grade of 89 instead of 98. In
addition to human error, the physical devices of communication systems sometimes
break down, resulting in signals that degrade or become garbled due to background
noise. Such disruptions can also introduce errors in identification numbers. In short,
we need some algorithmic process for verifying the accuracy of stored and transmitted
numbers.

Fortunately, mathematicians have developed a variety of approaches to the
problem of verifying the accuracy of identification numbers. In this section, we study
check digits—values that enable us to verify whether or not a given identification
number (such as a credit card number or an inventory record) is correct. In this way, a
check digit acts as a flag for incorrect numbers, identifying when an error has occurred in
record keeping. The ideas of abstract algebra, particularly those of modular arithmetic
and dihedral groups, are among the most important tools for specifying such check digit
schemes. A variety of different schemes or algorithms have been devised for assigning
a check digit to a given identification number.

Definition 2.6.1 If n ∈ N is a positive integer that serves as an identification number for an object,
then a check digit for n is an integer c ∈ {0, . . . , 9} appended to n to produce the
corresponding record number n∧c = 10 · n+ c. Thus,

record number = identification number ∧check digit.

Example 2.6.1 An identification number 542 with check digit 7 has record number 5427.
■

Many different approaches have been devised to compute a check digit for a
given identification number. Modular arithmetic is used in most check digit schemes
as a device for “reducing” multidigit numbers to a single digit. A check digit permits
the verification of the identification number up to some degree of accuracy depending
on the type of scheme employed. In this section, we introduce four different check
digit schemes and consider the relative strengths and weaknesses of each approach.
This discussion will show that not all check digit schemes are created equal. We begin
our study with perhaps the simplest scheme, based on congruence modulo ten.

2.6.1 The Mod 10 Check Digit Scheme

For a given identification number n ∈ N, the mod 10 check digit scheme determines
the check digit for n using the formula

check digit for n = n mod 10.

Therefore, under the mod 10 check digit scheme, an identification number n ∈ N has
the record number n∧(n mod 10) = 10 · n+ n mod 10.
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Example 2.6.2 We use the mod 10 check digit scheme to compute the record number for identi-
fication number n = 1165. The corresponding check digit is 1165 mod 10 = 5,
which produces the record number 1165∧5 = 11655. Several more examples are
presented in the following table.

Identification number Check digit Record number
n n mod 10 n∧(n mod 10)

1165 5 11655
23876 6 238766
1234 4 12344
1235 5 12355
1284 4 12844
2134 4 21344

■

Question 2.6.1 Use the mod 10 check digit scheme to compute the record number for each
identification number.

(a) 2345
(b) 4675

(c) 345
(d) 345654765

■

As discussed above, we are not just interested in specifying record numbers; we are
also interested in using check digits to determine the accuracy of the record numbers,
at least to the extent possible for the given check digit scheme.

Example 2.6.3 We determine the validity of a few record numbers under the mod 10 check digit
scheme.

• 1222: Record number 1222 has identification number 122 and check digit 2.
Since 122 mod 10 = 2, the identification number 1222 is valid with respect to
the mod 10 check digit scheme.

• 1236: Record number 1236 has identification number 123 and check
digit 6. Since 123 mod 10 = 3 	= 6, the identification number 1236 is not
valid.

• 3574: Since 357 mod 10 = 7 	= 4, 3574 is not a valid record number.
■

Question 2.6.2 Explain why each number is or is not a valid record number under the mod 10
check digit scheme.

(a) 155 (b) 12532
■

The following question explores the strengths and weaknesses of the mod 10
check digit scheme. We also introduce two of the most common errors that arise in
identification numbers: the single-digit error and the transposition error.
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Question 2.6.3 At Record Keeping International (RKI), record specialist Morgan Smith is entering
record numbers obtained using the mod 10 check digit scheme in an inventory
list.

(a) Morgan enters the number 18983 in the inventory list and the computer flashes
the error message: Invalid Record Number! Identify the three possible errors
that Morgan could have made in entering the number 18983 and that could
be detected by the computer using the mod 10 check digit scheme.
Hint: One possible error is that Morgan could have typed the last digit wrong.

(b) Several record numbers later, Morgan is trying to enter record number
12344, but incorrectly types 12844 instead. Explain why the mod 10 check
digit scheme does or does not detect this single-digit error in the third
position.

(c) Suppose Morgan is trying to enter record number 12344, but incorrectly types
21344 instead. Explain why the mod 10 check digit scheme does or does not
detect this transposition error of the first two digits.

(d) Should RKI terminate Morgan Smith’s employment or should they explore
the possibility of using another check digit scheme?

■

Statistical data indicate that single-digit errors and transposition errors are the two
most common errors in storing and communicating numbers. Therefore, check digit
schemes that detect these errors are particularly valuable. For the sake of clarity and
precision, these two types of common errors are defined as follows.

Definition 2.6.2 Let a1 · · · an be a record number with ak ∈ {0, . . . , 9} for every k with 1 ≤ k ≤ n.

• A single-digit error in the kth position occurs if the record number stored is
a1 · · · ak−1 bk ak+1 · · · an where bk 	= ak for some k with 1 ≤ k ≤ n.

• A transposition error occurs if two adjacent digits are switched and the record
number stored is a1 · · · ak−1 ak+1 ak ak+2 · · · an for some k with 1 ≤ k ≤ n.

In summary, the mod 10 check-digit scheme detects single-digit errors in the
last two positions of a record number. However, this scheme fails to detect any other
errors and so has quite limited practical usefulness. Fortunately, mathematicians have
developed other, more discerning check-digit schemes. We turn our attention to a
second check-digit scheme, also based on modular arithmetic. As we will see, this
“mod 9 check-digit scheme” does a better job of detecting single-digit errors than the
mod 10 check-digit scheme.

2.6.2 The Mod 9 Check Digit Scheme

For a given identification number n ∈ N, the mod 9 check-digit scheme determines the
check digit for n using the formula

check digit for n = n mod 9.

Therefore, under the mod 9 check digit scheme, an identification number n ∈ N has
the record number n∧n mod 9 = 10 · n+ n mod 9.
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Example 2.6.4 We use the mod 9 check digit scheme to compute the record number for
identification number n = 1165. The corresponding check digit is 1165 mod 9 = 4
(since 1165 = 9 · 124 + 4), producing record number 1165∧4 = 11654. Several
more examples are presented in the following table.

Identification number Check digit Record number
n n mod 9 n∧(n mod 9)

1165 = 9· 129 + 4 4 11654
23876 = 9· 2652 + 8 8 238768
1234 = 9· 137 + 1 1 12341
1235 = 9· 137 + 2 2 12352
1284 = 9· 142 + 6 6 12846
2134 = 9· 237 + 1 1 21341

■

Before considering some questions exploring the capabilities of the mod 9 check
digit scheme, we point out an algorithm that facilitates mod 9 computations. One
approach to computing n mod 9 is the standard long division technique of dividing n
by 9 to determine the quotient q and then computing n− 9 · q = n mod 9. Alternatively,
if n = a1 · · · ak ∈ N is a positive integer with decimal digits a1, . . . , ak , then n mod 9
is equal to the mod 9 value of the digits’ sum; that is, we can compute n mod 9 using
the following formula:

n mod 9 = (a1 · · · ak) mod 9 = (a1 + · · · + ak) mod 9.

Reconsidering example 2.6.4 in which we determined the mod 9 check digit
for identification number n = 1165, we can either determine the check digit
1165 mod 9 = 4 directly (as in the example), or use this new formula to obtain

1165 mod 9 = (1+ 1+ 6+ 5) mod 9 = 13 mod 9 = 4.

This algorithm only works for mod 9 arithmetic and does not extend to divi-
sion by other positive integers. This approach may be helpful in the following
questions.

Question 2.6.4 Use the mod 9 check digit scheme to compute the record number for each
identification number.

(a) 2345
(b) 4675

(c) 345
(d) 345654765

■

Example 2.6.5 We determine the validity of two record numbers under the mod 9 check-digit
scheme.

• 1222: Record number 1222 has identification number 122 and check digit 2.
Since 122 mod 9 = 5 	= 2, the identification number 1222 is not valid with
respect to the mod 9 check digit scheme.
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• 1236: For the record number 1236, we have identification number 123 and
check digit 6. Since 123 mod 9 = 6, the identification number 1236 is valid with
respect to the mod 9 check digit scheme.

■

Question 2.6.5 Explain why each number is or is not a valid record number under the mod 9 check
digit scheme.

(a) 155 (b) 12532
■

Question 2.6.6 After sufficient experience with the shortcomings of the mod 10 check-digit
scheme, RKI has converted its inventory system to the mod 9 check-digit scheme.
Record specialist Morgan Smith is once again entering record numbers in an
inventory list for RKI. For each case, explain why the mod 9 check digit-scheme
does or does not detect the single-digit error in the third position.

(a) Morgan is trying to enter 12341, but incorrectly types 12841.
(b) Morgan is trying to enter 18988, but incorrectly types 18888.
(c) Morgan is trying to enter 18988, but incorrectly types 18088.
(d) Morgan is trying to enter 12047, but incorrectly types 12947.

What is distinctive about cases (c) and (d) in which the mod 9 check digit scheme
fails to detect the single-digit error?

■

The mod 9 check digit scheme detects all single-digit errors except for when 0
is substituted for 9 or 9 is substituted for 0. Since 9 mod 9 = 0 = 0 mod 9, mod 9
arithmetic is simply not capable of detecting such errors. Unfortunately, the mod 9
check digit scheme does not detect any transposition errors nor any other errors
involving rearrangement of the digits.

Example 2.6.6 We verify that the mod 9 check-digit scheme does not detect transposition errors.
Consider the identification numbers 1234 and 2134 on lines 3 and 6 of the

table given in example 2.6.4. Both of these identification numbers have check digit
1, indicating that the mod 9 check-digit scheme does not detect the transposition
of the first two digits.

■

Question 2.6.7 (a) Determine the check digit for three more rearrangements of the identification
number 1234.

(b) Using the algorithm explained before question 2.6.4, explain why the mod 9
check digit scheme does not detect transposition errors in any identification
number.

(c) Prove that the mod 9 check-digit scheme computes the same check digit when
a1 · · · an is rearranged as ak1 · · · akn . This shows that that the mod 9 scheme
cannot detect errors involving any type of rearrangement of digits in any given
identification number.

■
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In summary, the mod 9 check digit scheme detects single-digit errors in any
position, except for single-digit errors in which the numbers 0 and 9 are substituted
for each other. In addition to not detecting some single-digit errors, the mod 9 check
digit scheme fails to detect any transposition errors, indicating the need for a more
subtle, discerning, and ultimately more useful check digit scheme. In fact, of the four
different check digit schemes studied in this section, only the last scheme (which is a
dihedral check digit scheme) completely satisfies the goal of detecting all single-digit
errors and all transposition errors.

2.6.3 The Codabar Check Digit Scheme

In preparation for working the dihedral check digit scheme, we first consider the
Codabar check digit scheme. Codabar is a highly effective check digit scheme that
detects all single-digit errors and 98% of other common errors (including, but not
limited to transposition errors). In light of this high level of effectiveness, the Codabar
check digit scheme is widely used in many diverse settings. Every major credit
company uses Codabar, as well as many banks, libraries, universities, and a variety of
other commercial enterprises. We are particularly interested in the Codabar check digit
scheme because of the manner in which this algorithm blends standard arithmetic and
modular arithmetic operations.

We present the Codabar check digit scheme in the context of determining the
check digit for a credit card number. A credit card number is a 16-digit record number
consisting of a 15-digit identification number assigned administratively by the issuing
financial institution and a single check digit determined by the Codabar check digit
scheme. In this context, the algorithm for the Codabar check digit scheme has the
following four steps.

(a) Sum the digits in the odd positions, 1, 3, 5, . . . , 15, and double the sum.
(b) Determine how many digits in the odd positions exceed four (so, are either 5,

6, 7, 8, or 9) and add this number to the result of step (a).
(c) Add the digits in the even positions, 2, 4, 6, . . . , 14, to the result of step (b).
(d) Determine the check digit using the formula: [ step (c) + check digit ]

mod 10 ≡ 0.

The final credit card number consists of the original 15-digit identification number
with the appended check digit.

Before working through some examples and questions, we note that credit card
numbers are often presented in four blocks of four digits. Often spaces or hyphens are
inserted between each block of digits; hyphens are used in this text. This presentation of
credit card numbers facilitates the reading, recording, and recollection of these numbers
by human beings, since most minds are not readily able to work with continuous blocks
of sixteen digits.

Example 2.6.7 We determine the check digit and the complete credit card number for the
identification number 8479-2675-3419-241.

Working from the left, we sum the digits in the odd positions and double the
sum to obtain

2 · (8+ 7+ 2+ 7+ 3+ 1+ 2+ 1) = 62.
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For each 5, 6, 7, 8, or 9 in an odd position, we add one to the result of the first step.

we have 8, 7, 7 ⇒ 62+ 3 = 65

We add the remaining digits to the result of the second step to obtain

65+ 4+ 9+ 6+ 5+ 4+ 9+ 4 = 106.

We choose the check digit so that [ step (c) + check digit ]mod 10 ≡ 0; in this
case, we have

(106+ c) mod 10 ≡ 0 ⇒ c = 4.

Therefore, the Codabar check digit for the given identification number is 4, and
the complete credit card number is 8479-2675-3419-2414.

■

Perhaps the most interesting mathematical step in the algorithm for the Codabar
check digit scheme is the final step in which we solve a modular equation for the
unknown check digit c. The dihedral check digit scheme also requires us to solve a
modular equation, as do many other sophisticated check digit schemes.

As with our other check digit schemes, we are interested in the Codabar check
digit scheme as a tool for seeking errors in a given credit card number. As before, we
compute the check digit for the given identification number and compare the resulting
value with the given check digit. If the two digits are the same, the credit card number
is accepted as valid (at least up to the error detection capabilities of the check digit
scheme); if the two digits differ, then the credit card number is declared invalid.

Question 2.6.8 Use the Codabar check digit scheme to compute the credit card number with
identification number 8479-2642-1937-847.

■

Question 2.6.9 Explain why 9479-2675-3419-2414 is or is not a valid credit card number under
the Codabar check digit scheme. Compare your result with example 2.6.7. These
examples provide some evidence for what property of the Codabar check digit
scheme?

■

In summary, the Codabar check digit scheme combines standard integer arithmetic
with modular arithmetic to obtain some pretty impressive error-detecting capabilities.
As mentioned above, the Codabar check digit scheme detects all single-digit errors
and 98% of other common errors. This check digit scheme has also provided a nice
introduction to one of the essential elements of the fourth check digit scheme presented
in this section.

2.6.4 The D5 Check Digit Scheme

We finish this section on check digits with a “dihedral check digit scheme” that uses
the dihedral group D5 of order 10 in an essential way. The D5 check digit scheme
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was developed by the Dutch mathematician Jacobus Verhoeff in 1969. Since the order
of D5 is 10, this group is a natural fit for the standard Hindu–Arabic numeral system
with its 10 distinct digits. This D5 check digit scheme is very effective in detecting the
common errors in storing and communicating record numbers and is used by many
banks and other financial institutions. This scheme detects all single-digit errors in
any position and all transposition errors, and so is a significant improvement over the
mod 9 and mod 10 check digit schemes presented above.

Recall that the dihedral group D5 consists of all orientation-preserving isometries
of a regular pentagon under the operation of composition. In order to facilitate our
computations, the 10 digits of the Hindu–Arabic numeral system are associated with
the 10 orientation-preserving isometries of the regular pentagon. Roughly speaking,
the digits 0–4 with the five rotations in D5 and the digits 5–9 with the five flips in D5.
While we do not give the exact mapping, the corresponding numeric rendition of the
Cayley table for D5 given below is used when carrying out computations in the D5

check digit scheme.

◦ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

In this numeric rendition of the Cayley table for D5, note the characteristic
computational patterns for the dihedral group. In particular, the composition of two
rotations (represented by 0–4) or two flips (represented by 5–9) produces a rotation
(0–4), as witnessed in the upper left and lower right quadrants of this Cayley table.
Similarly, the composition of a rotation (0–4) and a flip (5–9) produce a flip (5–9), as
is apparent in the lower left and upper right quadrants of the table.

The D5 check digit scheme also utilizes a collection of functions fk defined on
the elements of the dihedral group. In this text, we focus on applications of the D5

check digit scheme to identification numbers with at most four digits, and so we give
just the first four of these functions. Continuing to associate the digits 0–9 with the
elements of D5, these functions are presented in the following table; the inputs appear
along the top row and the outputs of each function are listed beneath the corresponding
inputs.

n 0 1 2 3 4 5 6 7 8 9

f1(n) 1 5 7 6 2 8 3 0 9 4
f2(n) 5 8 0 3 7 9 6 1 4 2
f3(n) 8 9 1 6 0 4 3 5 2 7
f4(n) 9 4 5 3 1 2 6 8 7 0
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From the first row of this table, f1(0) = 1, f1(1) = 5, f1(2) = 7, . . . , f1(9) = 4, and
similarly for the other three functions. Given the function f1, the other three functions
are computed by repeated compositions. In particular, the function f2 is equal to the
composition f1 ◦ f1, f3 = f1 ◦ f1 ◦ f1, and so on. Therefore, when a check digit is needed
for a number with more than four digits, we can obtain the needed additional functions
by taking an appropriate number of compositions of f1 (see exercises 45–50 at the end
of this section).

For a given identification number with digits a1 · · · an, the D5 check digit is the
digit c satisfying ]

f1(a1) ◦ f2(a2) ◦ · · · ◦ fn(an) ◦ c = 0.

From an algorithmic perspective, the D5 check digit scheme first applies the function
fk to the kth digit of the identification number, composes the resulting digits with the
check digit c (as elements of D5), sets the result equal to 0, and finally solves for
the unknown check digit c in the resulting equation using the Cayley table for D5

given above. The order of composition is critical here, since the dihedral group D5 is
a nonAbelian group and commutativity does not hold. For a four-digit identification
number a1a2a3a4, the check digit c is chosen to satisfy

f1(a1) ◦ f2(a2) ◦ f3(a3) ◦ f4(a4) ◦ c = 0.

We illustrate the D5 check digit scheme in the following example and then have you
continue the study of the D5 scheme in some questions.

Example 2.6.8 We use the D5 check digit scheme to determine the record number for identification
number 1165.

We proceed by substituting a1 = 1, a2 = 1, a3 = 6, and a4 = 5 into the D5

check digit equation. The check digit c is determined by simplifying and solving
this equation for c using the given table of functions and the Cayley table for D5.
In the following sequence of compositions, we use the fact that the composition
operation ◦ is associative on D5 and so we are free to work our way from left to
right in simplifying each expression.

f1(1) ◦ f2(1) ◦ f3(6) ◦ f4(5) ◦ c = 0
(5 ◦ 8) ◦ 3 ◦ 2 ◦ c = 0

(2 ◦ 3) ◦ 2 ◦ c = 0 since 5 ◦ 8 = 2 in D5

(0 ◦ 2) ◦ c = 0 since 2 ◦ 3 = 0 in D5

2 ◦ c = 0 since 0 ◦ 2 = 2 in D5

Finally, we search for a 0 in the third row (the row for 2 in the D5 Cayley table) and
find that 2 ◦ 3 = 0, and so c = 3. Appending this check digit to the identification
number, the desired record number is 11653.

■

Question

2.6.10

Use the D5 check digit scheme to compute the record number for each identification
number.

(a) 1234
(b) 1235

(c) 1284
(d) 2134

■
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Notice that the D5 check digits are different for each of the four identification
numbers given in question 2.6.10. What evidence do these examples provide for the D5

check digit scheme detecting single-digit errors and transposition errors? Knowing that
the D5 scheme succeeds in detecting these two types of errors, what recommendations
do you have for Morgan Smith and the folks at RKI?

Question

2.6.11

Explain why each number is not a valid record number under the D5 check digit
scheme.

(a) 45802

(b) 23943

(c) 9873

(d) 123

For the third and fourth record numbers, we note that the D5 check digit
scheme does not require the use of four-digit identification numbers, and so we
interpret the potential record number 9873 as consisting of an identification number
987 and a check digit 3.

■

2.6.5 Reading Questions for Section 2.6

1. What motivates the development of check digit schemes?
2. Define and give an example of a single-digit error.
3. Define and give an example of a transposition error.
4. Describe how the mod 10 check digit scheme determines a check digit.
5. Discuss the relative strengths and weaknesses of the mod 10 check digit

scheme.
6. Describe how the mod 9 check digit scheme determines a check digit.
7. Discuss the relative strengths and weaknesses of the mod 9 check digit scheme.
8. Describe how the Codabar check digit scheme determines a check digit.
9. Discuss the relative strengths and weaknesses of the Codabar check digit

scheme.
10. Describe how the D5 check digit scheme determines a check digit.
11. For the D5 check digit scheme, state the definition of f2 in terms of f1.
12. Discuss the relative strengths and weaknesses of the D5 check digit scheme.

2.6.6 Exercises for Section 2.6

In exercises 1–4, use the mod 10 check digit scheme to compute the record number
for each identification number.

1. 1234
2. 1235

3. 1284
4. 2134

In exercises 5–8, explain why each number is or is not a valid record number under
the mod 10 check digit scheme.

5. 45808
6. 23944

7. 9877
8. 1236



152 A Transition to Advanced Mathematics

In exercises 9–14, use the mod 9 check digit scheme to compute the record number
for each identification number.

9. 1234
10. 1235
11. 1284

12. 2134
13. 2135
14. 2185

In exercises 15–20, explain why each number is or is not a valid record number under
the mod 9 check digit scheme.

15. 45808
16. 23944
17. 9877

18. 1236
19. 345-936
20. 345-455

In exercises 21–26, use the Codabar digit scheme to compute the complete credit card
number for each identification number.

21. 2181-2389-8824-398
22. 4566-3932-6858-147
23. 1234-7898-3243-311

24. 3577-1232-8098-294
25. 7678-1443-3425-768
26. 4556-7688-2345-355

In exercises 27–32, explain why each number is or is not a valid credit card number
under the Codabar digit scheme.

27. 2345-4356-3112-7854
28. 9695-2859-8724-5659
29. 2456-5024-7695-4268

30. 0987-6568-3453-4452
31. 4586-7092-6795-4657
32. 0495-0256-6526-7096

In exercises 33–38, use the D5 check digit scheme to compute the record number for
each identification number.

33. 123
34. 132
35. 8345

36. 8435
37. 5345
38. 3545

In exercises 39–44, explain why each number is or is not a valid record number under
the D5 check digit scheme.

39. 2483
40. 8423
41. 45800

42. 54800
43. 45899
44. 55809

In exercises 45–46, we extend the D5 check digit scheme to handle five- and six-digit
identification numbers. Recall that f1 is defined by the input-output table

n 0 1 2 3 4 5 6 7 8 9
f 1(n) 1 5 7 6 2 8 3 0 9 4

and that f2 = f1 ◦ f1, f3 = f1 ◦ f1 ◦ f1 = f1 ◦ f2, and so on.
In exercises 45–46, follow this pattern to determine each functions.

45. f5 46. f6
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In exercises 47–50, use the D5 check digit scheme and the answers to exercises 45–46
to compute the the record number for each identification number.

47. 84765
48. 23987

49. 012345
50. 346589

Exercises 51–62 consider the check digits for ISBNs, or International Standard
Book Numbers. Every published book is assigned a 10-digit ISBN, denoted by
a1− a2a3a4a5− a6a7a8a9− a10, where the hyphens are inserted for readability. For
example, in the ISBN 0-7167-3817-1, we have a1 = 0, a2 = 7, a3 = 1, . . ., a10 = 1.
The last digit a10 of the ISBN is a check digit and the ISBN check digit scheme
determines the check digit using the following formula.

[10·a1+9·a2+8·a3+7·a4+6·a5+5·a6+4·a7+3·a8+2·a9+a10] mod 11=0

We verify the check digit of the ISBN 0-7167-3817-1 by first computing:

10 · 0+ 9 · 7+ 8 · 1+ 7 · 6+ 6 · 7+ 5 · 3+ 4 · 8+ 3 · 1+ 2 · 7+ a10 = 219+ a10.

As with the Codabar check digit scheme and the D5 check digit scheme, the ISBN check
digit requires [219+ a10] mod 11 = 0. Since [219+ 1] mod 11 = 220 mod 11 = 0,
we have a10 = 1 and the given ISBN is correct. Since the ISBN check digit is
determined using mod 11 arithmetic, the scheme sometimes needs an eleventh digit;
the standard convention is to use X for the check digit when using a10 = 10. The
ISBN check digit scheme detects all single-digit errors and all transposition errors of
adjacent digits.

In exercises 51–56, use the ISBN check digit scheme to compute the ISBN for each
identification number.

51. 2-3474-9129
52. 0-0823-7322
53. 0-7167-3818

54. 2-2343-6856
55. 3-3458-2134
56. 1-6987-5687

In exercises 57–62, explain why each number is or is not a valid ISBN under the ISBN
check digit scheme.

57. 0-6181-2214-1
58. 0-5349-4422-3
59. 0-6181-4916-2

60. 0-9232-3140-4
61. 1-7365-4557-7
62. 2-8768-7698-5

Exercises 63–70 consider “isomorphic” finite groups. Intuitively, isomorphic groups
are identical as groups (up to the particular choice of names used to identify group
elements), and so share all group properties in common. Formally, two groups are
isomorphic if there exists a one-to-one, onto function from one group to the other
which preserves the group operation. The following exercises consider only finite
groups and use Cayley tables to determine if two groups are isomorphic. Consider the
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following familiar Cayley tables for Z2, U(3), and Z3 under the appropriate modular
operations.

⊕ 0 1
0 0 1
1 1 0

� 1 2
1 1 2
2 2 1

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

As we can see, the groups Z2 under addition mod 2 and U(3) under multiplication
mod 3 have identical Cayley tables provided we identify 0 ∈ Z2 with 1 ∈ U(3) and
1 ∈ Z2 with 2 ∈ U(3). We say that Z2 and U(3) are isomorphic groups and write
Z2 ≈ U(3); as mentioned above, we now know that Z2 and U(3) share all group
properties in common. On the other hand, the group Z3 under multiplication mod 3
is not isomorphic to either Z2 or U(3); there are a different number of elements in
Z3 than in either Z2 or U(3), and so the Cayley tables are not identical. We can often
prove that two groups are not isomorphic by comparing the number of elements in their
respective sets, but sometimes we must carefully inspect the Cayley table to determine
nonisomorphism.

In exercises 63–70, determine whether or not each pair of groups (under the appropriate
operations) is isomorphic by inspecting Cayley tables. If the groups are isomorphic,
state the identification of group elements witnessing the isomorphism.

63. Z2 and U(4)

64. Z2 and U(5)
65. D3 and U(7)
66. Z4 and U(8)

67. Z3 and U(8)

68. Z6 and D3

69. Z6 and S3

70. U(5) and U(8)

Notes

The ideas and results presented in section 2.1 are widely known among mathematicians
(and others), and so they are contained in many different mathematical textbooks. Basic set
theory is often studied in “Discrete Mathematics” courses, which are supported by such texts
as those by Epp [72], Richmond and Richmond [193], and Scheinerman [209]. Alternatively,
there are a growing number of “Foundations of Mathematics” textbooks that consider these
notions, including those by Barnier and Feldman [10], D’Angelo and West [51], and Smith
et al. [219].

A number of excellent books are devoted exclusively to the development and study of
set theory as a rich mathematical field in its own right, including an undergraduate text
by Halmos [108]; the standard graduate level texts exploring set theory are those written by
Kunen [146] and Jech [130]. The rigorous, axiomatic study of set theory was initiated by
a letter from Bertrand Russell to Gottlob Frege in which Russell outlined what has become
known as Russell’s paradox (see exercises 69–73 in section 2.1). Davis et al. [55] has a nice
exploration of the context and content of this and other related paradoxes. Aside from his
contributions to mathematics, Russell was a widely known and respected philosopher and wrote
many different works exploring religion, happiness, and knowledge. Late in his life, Russell
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wrote his autobiography [204] reflecting on his intellectual and personal life in the context of
the many events of the twentieth century.

The majority of this chapter was devoted to the development and study of abstract algebra.
Most undergraduate mathematics majors take at least one course devoted exclusively to the
study of abstract algebra. One of the most widely acclaimed undergraduate textbooks on abstract
algebra is by Gallian [93]; two popular book are by Fraleigh [88] and Hillman et al. [116]; a
standard graduate text in abstract algebra is by Hungerford [122].

In this chapter, we mentioned the work of several famous algebraists, including Abel, Galois,
and Caley. The definitive biography of Niels Henrick Abel has been written by Stubhaug and
Daly [236]. In addition, Abel’s Proof by Pesic [187] provides an excellent exposition of the
content and the historical results leading up to Abel’s proof of the insolvability of the quintic, as
does The Equation That Couldn’t Be Solved by Livio [158]. In contrast, relatively little is known
about Évariste Galois. Stewart [229], Livio [158], Bell [15], and Boyer and Merzbach [28]
contain sketches about Galois’ life. On the other hand, Galois’ mathematical insights are well
known, and there is a whole area of mathematics known as Galois theory. For undergraduates
who have studied sufficient abstract algebra, Garling [96], Stewart [229] and Swallow [237] are
excellent and accessible texts. Edwards [70] is a graduate text devoted exclusively to Galois
theory, and Hungerford [122] is a standard graduate text in abstract algebra that also addresses
Galois theory.

Arthur Caley had wide-ranging mathematical interests and was one of the most prolific
mathematicians in known history; his collected works consist of over 2000 pages of published
text. For those who are interested in learning more about Cayley, Crilly [48] has written a
good and accessible biography. Emmy Noether is another mathematician who made important
contributions to abstract algebra. Noether was a German mathematician who relocated to teach
at Bryn Mawr College in Philadelphia shortly before the start of World War II. Noether was
widely regarded as one of the most insightful algebraists of her time, and her work was
praised by Einstein, Hilbert, and a host of other mathematicians. Van Der Waerden [244]
has written an interesting book surveying the development of algebra from the contributions
of the Islamic mathematicians in the Middle Ages to Noether’s work in the twentieth
century.

In the section on dihedral groups, we mentioned the connections between group theory
and Maurits Cornelis Escher’s work. In 1985, an International Congress was held exploring
and discussing these interrelations; the proceedings of that conference can be found in [47].
In addition, those familiar with Escher’s work will recognize that some of his pieces explore
self-reference and self-perception, themes that are related to Gödel’s mathematics and Bach’s
music, as explored in Hofstadter’s Pulitzer Prize winning book Gödel, Escher, Bach: An Eternal
Golden Braid (see [118]). Locher [159] is a good biographical account of Escher’s life and
work.

The application explored in this chapter concerned check digits for identification numbers.
There are many different presentations of these notions. Perhaps the most accessible can be found
in the textbooks written to support “LiberalArts Mathematics” courses that focus on applications,
including those texts by Burger and Starbird [34] and the Consortium for Mathematics and
Its Applications [43]. In addition, Kirtland [141] has written a book exclusively devoted to
developing a variety of check digit schemes.

The proliferation of electronic communication systems has not only generated a need
for verification systems for transmitted information, but also an increasing need for secure
communication systems. Hodges’ biography of Turing [117] includes a description of the
British effort to break the Enigma code utilized by the Germans during World War II.
Such efforts continue to this day as federal agencies recruit mathematicians to contribute
to more modern efforts to create and decipher code. This area of mathematical research
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is known as “cryptography” and is discussed further in section 3.2. Accessible intro-
ductions to coding theory include those by Bierbrauer [18], Hill [115], and Ling and
Xing [156]. A young Irish mathematics student named Sarah Flannery has co-written an
enjoyable autobiography [85], which includes a discussion of her development of a new
coding scheme. Flannery was awarded both the 1998 Intel Fellows Achievement Award
and the 1999 Ireland Young Scientist of the Year award for her work with this coding
scheme.



3 Number Theory

In this chapter, we continue a study of numbers in all their grandness and diversity. As
we have seen, there are many important and distinct number systems, including the
natural numbers, the integers, the rationals, the reals, and the complex numbers. We
consider each of these number systems from both a computational and a theoretical
point of view, developing insights that provide a competent understanding of
each one.

We begin with a special type of integer known as a prime number. Prime
numbers can be thought of as the basic building blocks in the multiplicative
structure of the integers. Many of the world’s greatest mathematicians have devoted
significant effort to exploring and understanding primes, including Euclid, Pierre
de Fermat, Leonhard Euler, Carl Friedrich Gauss, Peter Lejeune Dirichlet, and
Georg Bernhard Riemann. Through these collective efforts, mathematicians have
developed a sound understanding of both the prime numbers and the integers. At the
same time, many questions about these integers remain open (or unsolved); we
introduce some of these intriguing questions that continue to inspire and challenge
mathematicians.

Prime numbers have an important technological application in the fields of
coding theory and cryptography. With the widespread use of electronic systems
for sharing information, many people have become increasingly invested in secure
and accurate means of communication. Cryptography is the field of mathematics
devoted to the careful analysis and development of encryption algorithms that
enable such communication. We first study RSA algorithms, which ingeniously
ensure secure coding and decoding of messages using modular arithmetic and the
group-theoretic properties of primes. We also study Hamming codes, a topic in
coding theory (which is dedicated to detecting errors created during transmission).
Hamming codes use modular matrix arithmetic to both detect and correct many
such errors.

Mathematicians are also interested in certain relationships among ordered triples
of integers. The Pythagorean theorem of geometry fame induces a relationship on
triples of integers based on the possible side lengths of right triangles. Mathematicians
have generalized this relation based on Diophantine equations, which are multivariable
equations with integer solutions. Diophantus ofAlexandria was a Greek mathematician
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from the third century c.e. who wrote the Arithmetica, a collection of 130 questions and
solutions of linear and quadratic equations. Along with Euclid’s Elements, Diophantus’
Arithmetica and an important accompanying commentary by Hypatia were passed
from the ancient Greeks to Islamic mathematicians, to Italian mathematicians, and
eventually to the rest of western Europe.

The Arithmetica had a profound impact on European mathematicians in the
sixteenth and seventeenth centuries, who extended Diophantus’ work on specific
linear and quadratic equations to a more general study of higher-order polynomial
equations and multivariable equations with certain types of solutions. Aside from
the Pythagorean theorem, perhaps the most famous Diophantine equations are those
identified in Fermat’s last theorem. This result claims that for every integer n greater
than two, there are no integers a, b, c such that an + bn = cn. Fermat scribbled this
claim in the margins of his personal copy of the Arithmetica around 1630, along with
the tantalizing assertion that “I have discovered a truly remarkable proof which this
margin is too small to contain.” For more than three centuries, mathematicians sought
to prove Fermat’s last theorem. In 1995, the English mathematician Andrew Wiles
from Princeton University gave the first complete proof of this result. We investigate
the proof of one important case of Fermat’s last theorem; the complete proof of the
general theorem is quite advanced, using sophisticated mathematical ideas currently
studied in graduate courses.

The chapter then takes up the study of the rational, real, and complex numbers.
We develop definitions of these numbers in terms of the integers, and we prove the
proper inclusions Q ⊂ R ⊂ C. This discussion includes the classic proof that the
square root of two is irrational, a startling insight in its time. Employing the abstract,
algebraic approach of chapter 2, general properties are identified that hold in these
number systems. This approach provides a coherent framework for studying these
properties in the context of specific number systems. The primary algebraic object of
interest is known as a “field,” and extends the notion of a group to number systems
with two operations. The rational, real, and complex numbers all have natural additive
and multiplicative operations; the study of fields illuminates the interplay between
these operations.

After developing a solid understanding of these number systems, the chapter then
turns to polynomial equations. For centuries, mathematicians have studied polynomial
equations and have developed polynomial models for physical and social behaviors.
We consider the solvability and insolvability of polynomials over different number
systems, seeing how the underlying numerical structure affects the set of solutions.
We also take a closer look at the famous quadratic equation, its close cousins the cubic
and the quartic equations, and the surprising result of the Norwegian mathematician
Niels Abel, who proved that no such formula exists for polynomials of any degree
greater than four.

The chapter ends with the study of “mathematical induction.” Induction on the
natural numbers (and other mathematical structures) is a useful proof technique of
mathematics. We first use induction to prove general claims about all natural numbers.
We also discuss the application of induction to verifying the truth of mathematical
statements useful in other settings, including mathematical logic, abstract algebra, real
analysis, and complex analysis.
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3.1 Prime Numbers

Prime numbers serve as the basic building blocks in the multiplicative structure of the
integers. As you may recall, an integer n greater than one is prime if its only positive
integer multiplicative factors are 1 and n. Furthermore, every integer can be expressed
as a product of primes, and this expression is unique up to the order of the primes in
the product. This important insight into the multiplicative structure of the integers has
become known as the fundamental theorem of arithmetic.

Beneath the simplicity of the prime numbers lies a sophisticated world of insights
and results that has intrigued mathematicians for centuries. By the third century b.c.e.,
Greek mathematicians had defined prime numbers, as one might expect from their
familiarity with the division algorithm. In Book IX of Elements [73], Euclid gives a
proof of the infinitude of primes—one of the most elegant proofs in all of mathematics.
Just as important as this understanding of prime numbers are the many unsolved
questions about primes. For example, the Riemann hypothesis is one of the most
famous open questions in all of mathematics. This claim provides an analytic formula
for the number of primes less than or equal to any given natural number. A proof of the
Riemann hypothesis also has financial rewards. The Clay Mathematics Institute has
chosen six open questions (including the Riemann hypothesis)—a complete solution
of any one would earn a $1 million prize. Working toward defining a prime number,
we recall an important theorem and definition from section 2.2.

Theorem 3.1.1 The division algorithm; theorem 2.2.1 in section 2.2 If m, n ∈ Z and n is a positive
integer, then there exist unique integers q ∈ Z and r ∈ {0, 1, . . . , n− 1} such that
m = n ·q+ r.We refer to n as the divisor, q as the quotient, and r as the remainder
when m is divided by n.

Definition 3.1.1 For m, n ∈ Z, we say that n divides m when there exists q ∈ Z such that m = n · q;
that is, when the remainder r is 0 as the division algorithm is applied to m and n.
In this context, n is called a divisor of m or a factor of m.

The consideration of remainders from the division algorithm may bring to mind
an important fact from the study of modular equivalence in chapter 2. Recall that n
divides m exactly when m mod n = 0.

Example 3.1.1 We know that 3 divides 36 (or 3 is a factor of 36) because 36 = 3 · 12. On the other
hand, 3 does not divide 37 (or 3 is not a factor of 37) because 37 = 3 · 12+ 1, and
so the remainder from the division algorithm is 1 rather than 0.

■

Question 3.1.1 Determine if the following statements are true; if not, state the nonzero remainder.

(a) 5 divides 15 (c) 8 is a factor of 23
(b) 5 divides 24 (d) 8 is a factor of 32

■

In addition to determining if one particular integer divides another, mathematicians
are often interested in identifying the complete set of all divisors of a given integer.
For example, one important aspect of factoring polynomials is an ability to determine
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all possible divisors of the constant term. Similarly, divisors play a key role when
determining the elements of a group U(n).

Example 3.1.2 The positive integer divisors of 90 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, and 90.
■

When compiling such lists, we typically consider only positive integer divisors
(although certainly the negative of a divisor is also a divisor). It also helpful to
notice that most divisors match up in pairs; for example, both 3 and 30 are divisors of
90 = 3 · 30.

Question 3.1.2 List every positive divisor of the integers 98 and 120.
■

We now state the definition of a prime number.

Definition 3.1.2 An integer p ∈ Z is prime when p ≥ 2 and the only positive divisors of p are 1 and
p itself. When an integer n is not prime, we say that n is nonprime.

Recall that nonprimes are also known as composite numbers. The follow-
ing examples and questions highlight important examples and properties of these
numbers.

Example 3.1.3 Using the definition of a prime, we observe that 3 is prime because its only divisors
are 1 and 3. On the other hand, 4 is not prime because 2 divides 4, and so 1 and 4
are not the only positive divisors of 4.

■

Question 3.1.3 Determine if each integer is prime; if not, state the positive integer divisors of the
given number.

(a) 11 (d) 1
(b) 34 (e) 83
(c) −3 (f) 6

■

Question 3.1.4 How many prime numbers are even? Justify your answer.
■

We often use prime numbers and their properties when working with integers. One
approach to identifying if a given integer is prime is to try to factor it. A significant
downside to this approach is its slowness—factoring arbitrary integers on the order
of 100 digits can require up to 74 years of supercomputer time! As we discuss in the
next section, this difficulty in quickly factoring large integers does have a positive side,
enabling the security of certain encryption schemes. As an illustration of the relative
slowness of this process, the next question asks you to distinguish among the first
twenty primes and nonprimes.

Question 3.1.5 (a) List the first 10 prime numbers.
(b) List the first 10 positive integers that are nonprimes.

■
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The relationship between primes and nonprimes is expressed by the prime power
factorization of integers as described in the fundamental theorem of arithmetic.
A statement and proof of this result appear as Proposition 14 in Book IX of Euclid’s
Elements [73]. In this text, we state and use the fundamental theorem of arithmetic,
leaving its proof for your later studies.

Theorem 3.1.2 Fundamental theorem of arithmetic Every integer greater than 1 is either a prime
or a product of primes; that is, every integer m can be written as

m = pn1
1 · pn2

2 · · · pnk
k

where p1, p2, . . . , pk ∈ Z are prime numbers raised to positive integer powers
n1, n2, . . . , nk. Furthermore, for a given integer, such a product of powers of
primes is unique up to the order of the primes. We refer to such a product as the
prime power factorization of the integer m.

Similar to the division algorithm, the fundamental theorem of arithmetic makes
two distinct claims about every integer greater than one. First, the fundamental theorem
of arithmetic is an existence result, guaranteeing that every integer greater than one
can be expressed as a product of primes raised to powers. Second, the fundamental
theorem of arithmetic is a uniqueness result, ensuring that every integer has exactly one
such prime factorization up to order. As we will see, an integer’s unique prime factors
play a pivotal role in understanding and proving many insights into the properties of
integers.

Example 3.1.4 We give the prime power factorizations of a few integers.

• 6 = 2 · 3
• 11 = 11
• 1620 = 162 · 10 = 2 · 81 · 10 = 2 · 34 · 2 · 5 = 22 · 34 · 5

■

Question 3.1.6 Find the prime power factorization of each integer.

(a) 30 (c) 12
(b) 5 (d) 27

■

Determining the prime power factorization of a relatively small integer is often
straightforward. Number patterns help. For example, even numbers have a factor of
two, and multiples of 10 have factors of two and five. Another simple pattern was
introduced in section 2.6: if the sum of an integer’s digits is divisible by nine, then the
integer is divisible by nine (and so has a factor of 32). If no such pattern is apparent,
then a factorization can be obtained by checking each integer up to

√
n to find a divisor

(if one exists); actually it is enough to check for divisibility by every prime number
less than or equal to

√
n.

On the other hand, for sufficiently large integers, the prime power factorization
can be extremely difficult to find. An exhaustive search for factors based on testing
every integer (or prime) less than or equal to

√
n can be extraordinarily time consuming

and resource intensive. Computer scientists express this complexity by asserting that
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factoring integers requires nonpolynomial time computations; although Peter Shor has
recently proven that a theoretical “quantum” computer is capable of polynomial time
factorization of integers. The next example illustrates this complexity in producing
prime power factorizations.

Example 3.1.5 We find the prime factorization of the integer 5,473,381,693.
Without sophisticated mathematical software, most people would have difficulty
finding this integer’s prime factorization. The square root of 5,473,381,693 is
73,983 (when rounded up), and so an exhaustive search may have to check
for divisibility by every prime less than or equal to 73,983—which is a lot of
dividing! Even the fastest of supercomputers can require a serious investment
of time and space resources to factor this (and larger) integers. As it turns
out, 5,473,381,693 can be factored by standard computer algebra systems as
13 · 174 · 712. Interestingly enough, just a single change in the tens digit from 9 to
4 produces 5,473,381,643, which requires much more computer time to verify as
prime.

■

When determining a prime power factorization by hand, it is often helpful to use
intermediate steps and identify nonprime factors, which can in turn be factored. The
following questions highlight the use of such intermediate steps.

Question 3.1.7 (a) Given that 6 divides 15,444,752,706, identify two primes that divide
15,444,752,706.

(b) Given that 6 divides an integer n, identify two primes that divide n.
■

Question 3.1.8 Determine the prime power factorization of 28,171,962,000 using direct
computations. Hint: No prime greater than 13 divides this integer.

■

Computer algebra systems can be quite helpful when exploring divisibility and
working with prime numbers. The following are useful commands from two widely
used computer algebra systems (or CAS). The Maple function isprime(n) determines
if n is a prime. The Mathematica function PrimepowerQ[n] determines if n is a power
of a single prime.

CAS Command Example
Maple [> m / n ; [> 54 / 3

[> ifactor(n) ; [> ifactor(54) ;
[> isprime(n) ; [> isprime(54) ;

Mathematica ]: m / n ]: 54 / 3
]: PrimeFactorList[n] ]: PrimeFactorList[54]
]: PrimepowerQ[n] ]: PrimepowerQ[54]

We now shift attention from detailed computations with specific integers to more
abstract, general questions about prime numbers. We know there exist infinitely many
positive integers 1, 2, 3, . . .. But how many of these integers have the property of being
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prime? Could there be a “greatest” prime number, or are the primes unbounded in the
set of integers (and so infinite)? As your intuition may suggest or as you’ve learned in
other math courses, there are infinitely many distinct primes. In 300 b.c.e., Euclid gave
an elegant proof of this result for Proposition 20 in Book IX of Elements [73]. To help
motivate this proof, the following question considers integers obtained by adding one
to a product of consecutive prime numbers.

Question 3.1.9 (a) Determine whether or not each integer is prime; if not, give a nontrivial divisor.

• 2+ 1
• 2 · 3+ 1
• 2 · 3 · 5+ 1
• 2 · 3 · 5 · 7+ 1

(b) Formulate a conjecture about the number p1 · p2 · · · pn+ 1 obtained by adding
one to the product of the first n prime numbers.

(c) Find two primes greater than 50 that divide the number 2 ·3 ·5 ·7 ·11 ·13+1=
30,031.

(d) If necessary, reformulate your conjecture from part (b). What can be said about
the primes p1, . . . , pn (not) dividing p1 · p2 · · · pn + 1?

■

Question 3.1.9 indicates that integers of the form p1 · p2 · · · pn + 1 can be either
prime or nonprime. This observation raises further questions. Do primes greater than
30,031 occur in the sequence of integers of this form? (Yes, they do—can you find one?)
Is there something distinctive about the sixth prime 13 that leads to p1 · p2 · · · p6+ 1 =
30,031 not being prime? How often do primes and nonprimes occur in this sequence?
Mathematicians do not know if there exists an upper bound on the primes occurring
in this sequence; in other words, it is an open question as to whether or not numbers
of the form p1 · p2 · · · pn + 1 are prime infinitely often.

Hopefully the insights gained from question 3.1.9 will help you understand and
appreciate Euclid’s proof. His argument is a classical proof by contradiction, assuming
the negation of the desired result and working toward two mathematical statements
that contradict each other.

Theorem 3.1.3 There exist infinitely many prime numbers.

Proof Assume that there are only finitely many prime numbers and that p1, . . . , pn is a
complete list of these primes. This proof produces a “new” prime P that is not
in the list, yielding a contradiction and leading to the conclusion that there are
infinitely many primes.

Motivated by question 3.1.9, we define the desired integer as P = p1 ·
p2 · · · pn + 1. Since P is greater than each of p1, . . . , pn in the complete list of
primes, P is not prime. Therefore, by the fundamental theorem of arithmetic,
P is a product of primes and so divisible by a prime. In particular, at least
one of p1, . . . , pn must divide P, which in turn implies that one of p1, . . . , pn

must divide

P − p1 · p2 · · · pn = (
p1 · p2 · · · pn + 1

) − p1 · p2 · · · pn = 1.
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However, the only positive divisor of 1 is 1, while every prime is greater than 1.
Thus, none of p1, . . . , pn can divide 1. We have obtained the desired contradiction
and conclude there exist infinitely many primes.

■

Since Euclid gave his proof of the infinitude of primes, many different and
interesting proofs of this result have been given by various mathematicians, including
one by the twentieth century Hungarian Paul Erdös. Most of Erdös’s work was in
discrete mathematics, particularly number theory and graph theory. In his lifetime,
Erdös published more than 1,500 papers with at least 500 different coauthors. He
liked to talk, in a jovial way, about “The Book” in which God had written a perfect
proof for every mathematical theorem. Proofs from THE BOOK [3] is a recently
published collection of theorems and proofs based on his suggestions and begins with
six different proofs of the infinitude of primes, including Euclid’s proof as well as
proofs by Goldbach, Euler, and Erdös himself.

As you have perhaps surmised from our discussion in this section, there are many
questions about prime numbers that remain open. We highlight three examples.

The Goldbach conjecture: In a 1742 letter to Leonhard Euler, the Russian math-
ematician Christian Goldbach conjectured that every even integer greater than two
can be written as the sum of two primes. This claim is readily verified for small
integers; for example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, and so on.
Despite the best efforts of many professional and amateur mathematicians, so far no
proof of this conjecture has been pieced together. With the development of increasingly
powerful and sophisticated supercomputers, the Goldbach conjecture has been verified
for all even integers up to 12 × 1017 as of July 14, 2008. In addition, a number of
“partial” Goldbach results have been proven, including independent proofs by Nikolai
Chudakov, Theodor Estermann, and Johannes van der Corput in the 1930s that “almost
all” even numbers are the sum of two primes, as well as Chen Jing-Run’s proof in the
1960s that every even number must be the sum of a prime and either a prime or a
product of two primes (such a product of two primes is known as a semiprime). While
the Goldbach conjecture is widely believed to be true by mathematicians, evidence
and intuition do not carry the same weight as a thorough, logical argument. And so
mathematicians continue to seek a proof of the Goldbach conjecture in their quest for
mathematical truth.

The twin primes conjecture: Pairs of prime numbers that differ by two are known
as twin primes. For example, the first four pairs of twin primes are the primes 3 and
5, the primes 5 and 7, the primes 11 and 13, and the primes 17 and 19. The twin
primes conjecture asserts that there are infinitely many pairs of twin primes. As with
the Goldbach conjecture, the twin primes conjecture is generally believed to be true,
but a complete proof continues to elude mathematicians.

The squares conjecture: The following examples help motivate this conjecture.

• n = 1: Consider n2 = 1 and (n + 1)2 = 22 = 4 and observe that 2 is a prime
between 1 and 4.
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• n = 2: Consider n2 = 4 and (n+ 1)2 = 9 and observe that 5 is a prime between
4 and 9.

• n = 3: Consider n2 = 9 and (n + 1)2 = 16 and observe that 11 is a prime
between 9 and 16.

The squares conjecture asserts that for every positive integer n ∈ N, there exists a
prime between n2 and (n + 1)2. The squares conjecture is believed to be true, but
mathematicians have not been able to prove the general result.

These three questions represent just a few of the many questions about primes that
remain open. We hope your interests are piqued, and perhaps you will want to study
such questions further. We end this section with a theorem stated in section 2.4. With
the fundamental theorem of arithmetic in hand, we can now provide the proof.

Theorem 3.1.4 Theorem 2.4.2 in section 2.4 For a, b ∈ Z, if p is a prime factor of a · b, then either
p is a factor of a or p is a factor of b.

Proof In proving a disjunction (an “or” statement), a standard strategy is to assume the
hypothesis and the negation of one of the disjuncts, and then to argue for the
truth of the other disjunct. The validity of this strategy is based on the logical
equivalence of p→ (q ∨ r) and (p ∧ ∼q)→ r.

We assume a, b ∈ Z, p is prime factor of a · b, and p is not a factor of a.
We show that p is a factor of b. Using the existence portion of the fundamental
theorem of arithmetic, express a · b, a, and b as the unique products of powers of
primes (up to order)

a · b = pn1
1 · · · pni

i , a = qm1
1 · · · q

mj
j , and b = rl1

1 · · · rlk
k ,

where p1, . . . , pi, q1, . . . , qj, r1, . . . , rk are prime numbers and n1, . . . , ni,
m1, . . . , mj, l1, . . . , lk are positive integers. Since p is a prime factor of a · b, we
know that p is one of p1, . . . , pi by the uniqueness of prime power factorizations.
Without loss of generality, assume p = p1, so that a · b = pn1 · pn2

2 · · · pni
i .

Multiplying the prime power factorizations of a and b together, we also have
a · b = qm1

1 · · · q
mj
j · rl1

1 · · · rlk
k . Equating these two expressions for a · b produces

pn1 · pn2
2 · · · pni

i = qm1
1 · · · q

mj
j · rl1

1 · · · rlk
k .

The uniqueness portion of the fundamental theorem of arithmetic implies that
these primes and their powers are unique up to the order in which they appear.
Since p is not a factor of a (by the assumption), p is not equal to any of q1, . . . , qj.

Therefore, p must be one of r1, . . . , rk , and so p is a factor of b = rl1
1 · · · rlk

k .
■

3.1.1 Reading Questions for Section 3.1

1. Define what is meant by the phrase “n divides m” and give an example.
2. What is the relationship between divides and modular equivalence?
3. Define and give an example of a prime number.
4. How many primes are there?
5. How many even primes are there?
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6. State the fundamental theorem of arithmetic.
7. Discuss the nature of the two distinct claims made by the fundamental theorem

of arithmetic.
8. What is the prime power factorization of an integer n? Determine the prime

power factorization of 1,275.
9. State and give an example for the Goldbach conjecture.

10. Define and give an example of a semiprime.
11. State and give an example for the twin primes conjecture.
12. State and give an example for the squares conjecture.

3.1.2 Exercises for Section 3.1

In exercises 1–4, verify each statement by finding the corresponding quotient q from
the division algorithm.

1. 10 divides 30
2. 59 divides 7,729

3. 34 is a factor of 2,414
4. 23 is a factor of 161

In exercises 5–20, prove each mathematical statement for integers m, n, k, p, a,
b ∈ Z .

5. The negative of a divisor of n is also a divisor of n.
6. The “divides” relation is reflexive; that is, m divides m.

7. The “divides” relation is transitive; that is, if m divides n and n divides k, then
m divides k.

8. The “divides” relation is linear; that is, if m divides n and m divides k, then
for every a, b, we have m divides a · n+ b · k.

9. If m divides a and n divides b, then m · n divides a · b.
10. If m · n divides k, then both m divides k and n divides k.

11. An integer m divides n if and only if n mod m = 0.

12. For every prime p and nonzero n, we have n2 ≡ n mod p if and only if either
n ≡ 1 mod p or n ≡ 0 mod p.

13. If 2 divides n, then 4 divides n2.
14. If a prime p divides n, then p2 divides n2.
15. If a prime p divides n2, then p divides n. Note: This result is used in

section 3.3.
16. If a prime p divides nk , then p divides n.
17. If a prime p divides both m and n, then p4 divides m4 − n4.

18. If no prime less than n divides n, then n is prime.
19. For any positive integer n, 3 divides n3 − n.
20. The product of three consecutive integers is divisible by 6.

In exercises 21–25, disprove each false mathematical statement for m, n, k, a, b ∈ Z .

21. If m divides a and n divides b, then m + n divides a+ b.
22. If positive integers m and n both divide k, then m · n divides k. Hint: Consider

n = m2.
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23. The “divides” relation is symmetric; that is, if m divides n, then n
divides m.

24. The “divides” relation is asymmetric; that is, if m divides n, then n does not
divide m.

25. The “divides” relation satisfies comparability; that is, for every m and n, m
divides n, or m is equal to n, or n divides m.

In exercises 26–33, find the prime power factorization of each integer.

26. 1,045
27. 123
28. 61,600

29. 1,225
30. 2,103
31. 2,301

32. Every integer between 2 and 10 inclusive.
33. Every integer between 11 and 20 inclusive.
34. For a fixed, nonprime integer n ∈ Z with prime power factorization n =

pn1
1 · pn2

2 · · · pnk
k , what is the largest possible integer that can appear in this

factorization? Explain your answer.

Exercises 35–42 consider properties of greatest common divisors. A pair of integers
has a greatest common divisor (gcd) (or factor) k when k is the greatest divisor
of both. For example, 25 and 40 have a greatest common divisor 5 because 5 is a
(common) divisor of both 25 and 40, and there is no common divisor of 25 and 40
greater than 5. In this case, we write gcd(25, 40) = 5. In general, the primes shared
by the prime power factorizations of two integers generate their greatest common
divisor.

35. Find the prime power factorization of the integers 18 and 60.
36. Find all positive common divisors of 18 and 60. What is gcd(18, 60)?
37. Determine gcd(12, 50).
38. Determine gcd(75, 100).
39. Determine gcd(31, 32).
40. Determine gcd(31, 62).
41. If p is prime and n is a positive integer, what are the two possible values of

gcd( p, n)?
42. Prove that if m and n are positive integers, then [gcd(m, n)]2 is a divisor

of m · n.

Exercises 43–46 consider greatest common divisors and linear combinations. The
greatest common divisor gcd(m, n) is defined before Exercises 35–42. One con-
sequence of the division algorithm is that for all positive integers m and n, there
exist integers a, b such that a · m + b · n = gcd(m, n). We say that gcd(m, n) can be
expressed as a linear combination of m and n.

In Exercises 43–46 find the greatest common divisor of each pair of integers
and express this greatest common divisor as a linear combination of the two
integers.

43. 3 and 8
44. 3 and 6

45. 12 and 16
46. 14 and 22
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Exercises 47–52 consider relatively prime integers. Every pair of integers m and n
have a common divisor of 1. When 1 is the greatest common divisor of m and n (that
is, when gcd(m, n) = 1), we say that m and n are relatively prime.

In Exercises 47–52 determine if each pair of integers is relatively prime by finding
their greatest common divisor.

47. 12 and 175
48. 31 and 67
49. 637 and 26,400

50. 164 and 25,83
51. 517 and 31,891
52. 517 and 51,183

In Exercise 53–58, prove each mathematical statement for m, n, k, p ∈ Z. Relatively
prime is defined before exercises 47–52.

53. A prime p is relatively prime to every integer n < p.
54. Positive integers n and n2 are never relatively prime.
55. Positive integers n and n+ 1 are always relatively prime.
56. If m is relatively prime to n · k, then m is relatively prime to both n and k.
57. If m and n are relatively prime, then m2 and n2 are relatively prime.
58. Give a counterexample disproving the false assertion that “If m is relatively

prime to n · p, then m · n is relatively prime to p.”

Exercises 59–63 consider a numerical approximation for the number of primes less than
or equal to a given integer n, where π(n) denotes this number. For example, π(2) = 1,
π(3) = 2, π(4) = 2, and π(5) = 3. Mathematicians have long sought patterns and
relations for primes—including the question of what percentage or ratio of integers are
prime. The prime number theorem provides one answer, asserting the following limit.

lim
n→∞

π(n)
n

ln(n)

= 1

Exercises 59–63 consider numerical evidence supporting the prime number theorem.

59. Determine the value of π(n) for every integer between 2 and 10 inclusive.
60. Determine the value of π(n) for every integer between 11 and 20 inclusive.
61. Working with a table of primes (perhaps on the web), determine the value of

π(100) and π(200).
62. Complete the following table. Does the resulting data support the assertion

of the prime number theorem that

lim
n→∞

π(n)

n/ ln(n)
= 1

n π(n) n
ln (n)

π(n)
n

ln (n)

10 4
1,000 168

100,000 9,592
10,000,000 664,579
1,000,000,000 50,847,534
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63. Complete the following table. Based on this data, what proportion of the
integers less than or equal to n is also prime?

n π(n) π(n)
n

1
ln (n)

10 4
1,000 168

100,000 9,592
10,000,000 664,579
1,000,000,000 50,847,534

Exercises 64–70 consider questions related to Euclid’s proof of the infinitude
of the primes and the number-theoretic conjectures discussed at the end of this
section.

64. What is the smallest composite positive integer of the form p1 · p2 · · · pn + 1
with n greater than 1 and p1, p2, . . ., pn distinct primes? Consider products
of nonconsecutive primes such as 7 · 13+ 1 = 92.

65. Express every even number between 4 and 32 inclusive as a sum of two
primes. For example, 12 = 5+ 7. These sums verify the Goldbach conjecture
up to 32.

66. Goldbach also made a conjecture about odd numbers and sums of primes:
every odd positive integer greater than five is the sum of three primes. Verify
this conjecture for every odd number between 7 and 31 inclusive.

67. State the first eight pairs of twin primes; this list begins with the
pair (3, 5).

68. Prove that an odd integer cannot be written as the sum of twin primes.
69. For every positive integer n between 2 and 20 inclusive, determine a

prime between n2 and (n + 1)2. These primes verify the squares conjecture
up to 20.

70. Mathematicians from Diophantus to Fermat thought that every positive
integer can be expressed as the sum of four squares of integers. In the late
1700s, Lagrange gave the first rigorous proof of this result, based on work
of Euler. Computationally verify this statement for every positive integer
between 1 and 20 inclusive.

3.2 Application: Introduction to Coding Theory and Cryptography

This application of number theory involves prime numbers, modular arithmetic,
and a bit of group theory in the context of sharing information. When two parties
are communicating with one another, they (usually) seek an accurate exchange of
information. In addition, the parties involved often have a strong interest in preserving
the privacy of the shared information. Fortunately, mathematicians working in the
fields of cryptography and coding theory have developed a variety of mathematical
schemes that ensure both private and accurate communication.
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These encryption schemes take a sensible string of characters and code them
in some fashion so they appear to be garbled nonsense to everyone (except,
hopefully, those who should be able to decode the message). Historically, nations
and armed forces have invested significant resources in developing coding schemes,
and (as you can readily imagine) such schemes have often provided entertaining
subject matter for many a thrilling spy novel! The contemporary widespread use
of the Internet for email, retail purchases, and other communication and financial
transactions has also brought security concerns to the attention of people from various
professions.

This section introduces two ingenious mathematical approaches to encoding and
decoding messages. RSA algorithms are useful for preserving the privacy of transmitted
information and are classic examples of a “public key” encryption scheme. Such
schemes allow anyone to become a sender of a secure message, but permit only the
publisher of the public key to decode the message. Public key encryption schemes are
important; for example, they enable anyone to make purchases from on-line retailers’
websites while preserving the privacy of the financial transaction. In general, public
key encryption schemes rely on the relative ease of performing some mathematical
operation coupled with the relative difficulty of undoing, or reversing, that operation.
RSA codes rely on the ease of multiplying large prime numbers coupled with the
difficulty of factoring large composite numbers. With the increasing sophistication of
computers, RSA encryption has become a widely used algorithmic scheme for many
aspects of electronic communication.

In contrast, Hamming codes address the issue of accurate communication.
Hamming codes encrypt a message so the receiver can examine the transmitted
result and determine if there was an error in the transmission. When an error
occurs, Hamming codes enable the receiver to recover the original, correct message
that had been intended for transmission. Coding schemes with the capability of
detecting and fixing transmission errors are known as “error-correcting” codes.
Hamming codes were the first coding schemes to incorporate error-detecting and error-
correcting features and utilize a blend of matrix and modular arithmetic in the coding
process.

3.2.1 RSA Cryptography

The algorithm embodied in RSA codes was developed by the cryptographers Ronald
Rivest,Adi Shamir, and LeonardAdleman while working at the Massachusetts Institute
of Technology in the late 1970s. The relatively recent declassification of Cold War era
documents revealed that Clifford Cooks developed essentially the same scheme in
1973 at the British Government Communication Headquarters (a British intelligence
agency). However, because Cooks’ work was classified, the world at large first learned
of this scheme from Rivest, Shamir, and Adleman in 1977. Their work with this
encryption scheme was of such fundamental importance that they were jointly honored
with the 2002 Turing Award by the Association for Computing Machinery (ACM). The
Turing Award is given annually by the ACM for “contributions of lasting and major
technical importance to computer science” and is the equivalent of the Nobel Prize for
computer science.
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The RSA coding scheme encodes characters of the alphabet by blending standard
and modular arithmetic operations. We first identify each letter of the alphabet with a
number; typically, we equate A = 01, B = 02, . . . , Z = 26. The following chart may
help your work with this correspondence.

A B C D E F G H I J K L M
01 02 03 04 05 06 07 08 09 10 11 12 13

N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

If we wish to encode more characters (perhaps the other symbols that appear on
a standard keyboard), we appropriately extend this identification of symbols with
positive integers. For the sake of human readability we use the vertical bar symbol (|)
to separate codes for individual characters (for example when coding a word or a
sentence).

Example 3.2.1 Using the identification A = 01, B = 02, . . . , Z = 26 from above, we have

• “GO COLLEGE” identified with 07 | 15 | 03 | 15 | 12 | 12 | 05 | 07 | 05, and
• 16 | 08 | 15 | 14 | 05 | 08 | 15 | 13 | 05 identified with “PHONE HOME”.

■

Question 3.2.1 State the alphabetic string and the numeric string identified with the following.

(a) 20 | 23 | 15 | 09 | 19 | 16 | 18 | 09 | 13 | 05 (b) MATH IS FUN

■

Once the symbols in the alphabet have been correlated with numbers, select two
prime numbers p and q. Almost any pair of primes works, and distinct choices of
primes results in distinct RSA codes. The RSA code identifies the numbers 01, . . . , 26
with elements of Zp·q, and so sufficiently large primes p and q are chosen to ensure
26 < p · q. In real-life applications, very large primes are chosen with the goal of
producing a code that is difficult to break in any reasonable period of time.

Once the two primes p and q have been selected, one more choice is made: select
a positive integer e less than (p− 1) · (q − 1) and relatively prime to (p− 1) · (q − 1).
These two properties are exactly the defining features of the elements in U[(p − 1) ·
(q − 1)] (see section 2.4). The RSA code makes essential use of the multiplicative
inverse of e in U[(p− 1) · (q − 1)]; this choice of e ensures that e−1 exists.

How does an RSA code encode a letter? For n = p · q, the “letter” L (which is
really the corresponding number from 01, . . . , 26 identified with L) is encoded using
the function

f (L) = Le mod n.

Strings of letters are encoded one letter at a time.
How does an RSA code decode an encrypted letter? We first identify e−1 (the

multiplicative inverse of e) in the group U[(p−1)(q−1)], and then decode an encrypted
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letter M = f (L) using the function

g(M) = M(e−1) mod n.

Rivest, Shamir, and Adleman proved that g(f (L)) = L, and so g is the inverse of f
under composition (also, f (g(M)) = M). In other words, this function g successfully
decodes a letter encrypted by the function f given above.

Example 3.2.2 We use the RSA code with p = 5, q = 7, and e = 5 to encode and decode
“GO COLLEGE”.

For computational ease in this first example of an RSA code, we use relatively
small primes p and q. For p= 5 and q = 7, we have n= 35 and (p−1)(q−1)= 24.
There are many options for the choice of e ∈ U(24). We chose the minimum
nonidentity element e = 5 of U(24) in creating this example, but any element
of U(24) will work when implementing this algorithm. Recall that the letters
A, . . . , Z are identified with the numbers 01, . . . , 26; these numbers are less than
n = 35 and are thought of as elements of Z35.

Encoding: We encode the message “GO COLLEGE” using the RSA code with p = 5, q = 7,
n = 35, and e = 5. As in example 3.2.1, we identify this message with the list
of numbers 07 | 15 | 03 | 15 | 12 | 12 | 05 | 07 | 05. For this RSA code, each
two-digit number L in this list is encoded using the function: f (L) = L5 mod 35.
Using a calculator or computer, we obtain the following.

• f (07) = 075 mod 35 = 16,807 mod 35 = (480 · 35+ 07) mod 35 = 07
• f (15) = 155 mod 35 = 15
• f (03) = 035 mod 35 = 33

Continuing in this fashion, the encoded message is

07 | 15 | 33 | 15 | 17 | 17 | 10 | 07 | 10.

Decoding: We now imagine this string of numbers 07 | 15 | 33 | 15 | 17 | 17 | 10 | 07 | 10
is transmitted and the receiver of the message is interested in decoding this string
to obtain the original message. For the RSA code, each two-digit number in the
message is decoded using the function: g(M) = M(5−1) mod 35, where 5−1 is the
multiplicative inverse of 5 in U(24). Since 5 · 5 = 25 and 25 mod 24 = 1, we have
5−1 = 5. Using a calculator or computer algebra system, we obtain the following.

• g(07) = 07(5−1) mod 35 = 075 mod 35 = 07
• g(15) = 15(5−1) mod 35 = 155 mod 35 = 15
• g(03) = 33(5−1) mod 35 = 335 mod 35 = 03

Continuing in this fashion, the decoded message is

07 | 15 | 03 | 15 | 12 | 12 | 05 | 07 | 05 or “GO COLLEGE”.

■
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Question 3.2.2 Implement the RSA code with p = 5, q = 7, and e = 5. Recall that e−1 = 5.

(a) Identify “PHONE HOME” with its corresponding list of two-digit numbers.
(b) Encode the message “PHONE HOME”.
(c) Decode the message 06 | 10 | 23 | 13 | 01 | 20.

■

The algorithm for RSA cryptosystems is a classical example of a public key
encryption scheme. When using a public key cryptography, the person interested in
receiving a message sets up a key pair consisting of a public key and a private key. The
public key is used for encoding messages and is announced widely, enabling anyone to
code and transmit an encrypted message. The private key is used for decoding messages
and is kept secret so that only the creator of the key can decode the transmitted message,
even if the means of communication is vulnerable to eavesdropping.

When using RSA codes for public key cryptography, the person interested in
receiving a message publishes the two integers n = p · q and e, and only these two
integers. The numbers n and e serve as the public key, and anyone familiar with RSA
codes can readily encode a message (using the function f (L) = Le mod n) and transmit
the result. The integers p, q and e−1 serve as the private key; only the publisher of
the public key knows e−1 and can decode the encrypted message (using the function
g(M) = M(e−1) mod n).

If the primes p and q are kept secret and are sufficiently large, only the publisher
of the key is able to decode the encrypted message. In order to determine e−1 as
an element in U[(p − 1)(q − 1)], the numbers p − 1 and q − 1 generally must
be known; that is, the primes p and q must be known. Even though n = p · q is
published publicly, the available algorithms for factoring large composite integers
and the current state of computing technology render the determination of the primes
p and q from n effectively impossible. In formal computer science terminology,
integer factorizations require “nonpolynomial time” computations. In practical terms,
if primes p and q are sufficiently large so that their product yields, say, a 100-
digit number, then factoring p and q can require decades of time—which would
provide no benefit to those seeking to eavesdrop. This difficulty in factoring integers
makes RSA codes secure—even though the public keys for encoding strings are
widely available; and so, if the corresponding private keys for decoding strings are
kept secret, then the privacy of the transmitted message is ensured. In practical
applications, composite numbers with more than 100 digits are routinely used
for RSA codes.

As might be expected from the RSA codes’ security features, federal agencies
invested in national security are strongly interested in knowing large primes and in
keeping these values secret in order to code and decode messages. As of November,
2008 there are 46 known Mersenne primes with the 46th equal to 243,112,609− 1 which
has 12,978,189 digits, identified through the collective efforts of hundreds of people
participating in the Great Internet Mersenne Prime Search. This group continues in its
efforts to identify large primes—perhaps you might be interested in joining in their
ongoing work (see the Index of Online Resources).

Because of the scale of the numbers and computations involved, computers
and computer algebra systems are essential to working with RSA codes in most
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practical settings. The following are some useful commands for two widely used
computer algebra systems.

CAS Command Example

Maple [> p * q ; [> 71 * 73 ;
[> L∧e mod n ; [> 18∧11 mod 5183 ;
[> e∧(−1) mod [(p−1) * (q−1)] ; [> 11∧(−1) mod 5040 ;

Mathematica ]: p * q ]: 71 * 73
]: Mod[ L∧e , n ] ]: Mod[ 18∧11 , 5183 ]
]: Mod[ e∧(−1) , (p−1) * (q−1) ] ]: Mod[ 11∧(−1) , 5040 ]

Example 3.2.3 We use the RSA code with p = 71, q = 73, and e = 11 to encode and decode the
message “RSA”.

Encoding We first compute n = p · q = 71 · 73 = 5183 and identify the message “RSA”
with the sequence of numbers 18 | 19 | 01. Each two-digit number L in this list is
encoded using the function f (L) = Le mod n = L11 mod 5183. Using a computer
algebra system, each character is encoded as follows.

• f (18) = 1811 mod 5183 = 4713
• f (19) = 1911 mod 5183 = 3685
• f (01) = 0111 mod 5183 = 1

Since the computations use mod 5183 arithmetic, the resulting values appear as up
to four-digit numbers. For the sake of uniformity, every encoded number is pre-
sented with the same number of digits; the encoded message is 4713 | 3685 | 0001.

Decoding We now imagine the string of numbers 4713 | 3685 | 0001 is transmitted, and the
receiver decodes the message using the function g(M) = g(M) = M(e−1) mod n =
M(11−1) mod 5183. Here 11−1 is the multiplicative inverse of 11 in

U[(p− 1) · (q − 1)] = U(5040);
using a computer algebra system, this inverse is 11−1 = 2291 because (11 ·
2291) mod 5040 = 1. Using a computer algebra system, each character is decoded
as follows.

• g(07) = 4713(11−1) mod 5183 = 47132291 mod 5183 = 18 = R
• g(15) = 3685(11−1) mod 5183 = 36852291 mod 5183 = 19 = S
• g(03) = 0001(11−1) mod 5183 = 01 = A

The decoded message is 18 | 19 | 01, or “RSA”.
■

Question 3.2.3 Implement the RSA code with p = 31, q = 53, and e = 223.

(a) Encode the message “I LOVE MATH”.
(b) Decode the message 1188 | 0666 | 1391 | 0979 | 1502 | 0098 | 0850 | 0098 |

0586.
■
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3.2.2 Hamming Codes

In 1950, the American mathematician Richard Hamming developed Hamming codes.
For his work, Hamming received the 1968 Turing Award from the Association
for Computing Machinery. Throughout his life, Hamming made many important
contributions to coding theory, number theory, and numerical analysis; and so, in 1998,
the Institute of Electrical and Electronics Engineers created an annual prize named the
Hamming Medal for “exceptional contributions to information sciences, systems, and
technology.” Coding theory remains a rich and diverse area of mathematical research,
and much of this work relies on a deep understanding of the notions of number theory
and abstract algebra.

Hamming developed his error-correcting codes while working for Bell Laborato-
ries. In the context of telecommunications, messages are transmitted in binary; that is,
as strings of 0’s and 1’s. Such binary codes are the easiest to correct—just knowing
the position of an error allows for its immediate correction by switching the digit from
a 0 to 1, or vice-versa.

Hamming codes are not concerned with the security issues that were the
primary focus of RSA encryption. Instead, these codes focus on the accuracy
of transmitted information; once a message is received, how can we ensure that
it was the message originally sent? This question may bring to mind the study
of check digits in section 2.6, which addressed human error and breakdowns in
physical communication devices introducing errors into messages. While check
digits determined the accuracy of transmitted information, Hamming codes both
determine if any single-digit error has occurred and the position of the error
(and hence the correct binary digit for that position). Hamming codes can also
detect double errors (occurring in two positions), but cannot automatically
correct them.

Hamming codes append several check digits to the end of a message. These check
digits are computed using matrix multiplication of the message (written as a row
vector) by a generating matrix. Once the message has been transmitted, the receiver
can then multiply by a second parity check matrix, where the result indicates if and
where a single-digit error has occurred. Hamming codes are defined using matrix
multiplication, and so our study begins with a description of matrices and matrix
multiplication.

Example 3.2.4 An m× n matrix is an array of numbers with m rows and n columns. For the
following, A is a 2× 3 matrix, B is a 2× 1 matrix (also called a column vector),
and C is a 1× 3 matrix (also called a row vector).

A =
[

1 2 3
4 5 6

]
B =

[
1
4

]
C = [ 2 3 4

]
■

The multiplication of 2×2 matrices was used in exercises 54–64 from section 2.5.
For an arbitrary product, matrix multiplication is best studied after first learning how
to multiply a row vector by a column vector of the same length.
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Definition 3.2.1 The product of a row vector A = [
a1 a2 · · · an

]
with a column vector of

equal length

B =

⎡⎢⎢⎢⎣
b1

b2
...

bn

⎤⎥⎥⎥⎦
is the real number obtained by taking the sum of the products of the corresponding
components: a1 · b1 + a2 · b2 + · · · + an · bn. We write

[
a1 a2 · · · an

] ·
⎡⎢⎢⎢⎣

b1

b2
...

bn

⎤⎥⎥⎥⎦ = a1 ·b1+a2 ·b2+· · ·+an ·bn =
n∑

i=1

ai ·bi.

Example 3.2.5 Using definition 3.2.1, we multiply

A = [ 1 5 2
]

and

B =
⎡⎣ 4

3
6

⎤⎦ .

These vectors have the same length n = 3 and can be multiplied together. First take
the product of the corresponding components 1 · 4 = 4, 5 · 3 = 15, and 2 · 6 = 12
and then add these three products together to obtain 4 + 15 + 12 = 31. Thus,
we have

[
1 5 2

] ·
⎡⎣ 4

3
6

⎤⎦ = 4+ 15+ 12 = 31.

■

Question 3.2.4 Using definition 3.2.1 of vector multiplication, answer the following.

(a) Compute each product of row and column vectors.

• [
2 −10

] · [ 13
1

]
• [

2 8 10
] ·
⎡⎣ 3

5
1

⎤⎦
(b) Explain why the product

[
2 8 10

] · [ 13
1

]
is undefined.

■

Vector multiplication is one step in the more general process of computing the
product A · B of an m × n matrix A and an n × p matrix B. Such a product results in
an m × p matrix, where the entry in the jth row and kth column is the vector product
of the jth row of A with the kth column of B. The following definition describes this
process.
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Definition 3.2.2 Let A be an m× n matrix and B be an n× p matrix with entries labeled as follows:

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 ... amn

⎤⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎣
b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
...

bn1 bn2 ... bnp

⎤⎥⎥⎥⎦
The product C = A · B = AB is an m× p matrix where the entry cjk in the jth row
and kth column of C is the vector product of the jth row of A with with kth column
of B; that is,

cjk =
[

aj1 aj2 · · · ajn
] ·
⎡⎢⎢⎢⎣

b1k

b2k
...

bnk

⎤⎥⎥⎥⎦ = aj1 · b1k + aj2 · b2k + · · · + ajn · bnk .

Example 3.2.6 We use definition 3.2.2 to compute the product C = A · B of the 2× 2 matrices

A =
[

1 2
3 4

]
and

B =
[

5 6
7 8

]
.

• The entry c11 is the product of the first row of A with the first column of B.

c11 =
[

1 2
] · [ 5

7

]
= 1 · 5+ 2 · 7 = 19

• The entry c12 is the product of the first row of A with the second column of B.

c12 =
[

1 2
] · [ 6

8

]
= 1 · 6+ 2 · 8 = 22

• c21 =
[

3 4
] · [ 5

7

]
= 3 · 5+ 4 · 7 = 43

• c22 =
[

3 4
] · [ 6

8

]
= 3 · 6+ 4 · 8 = 50

Therefore, we have

C = A · B =
[

1 2
3 4

]
·
[

5 6
7 8

]
=
[

19 22
43 50

]
.

■

Example 3.2.7 We compute the product of a 1× 2 row vector and a 2× 3 matrix:[
1 2

] · [ 3 4 5
6 7 8

]
= [

(1 · 3+ 2 · 6) (1 · 4+ 2 · 7) (1 · 5+ 2 · 8)
]

= [
15 18 21

]
.

■
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A matrix product A · B is only defined when the number of columns in the left
matrix A is equal to the number of rows in the right matrix B. If these numbers
differ, the corresponding vector products are undefined, and so the matrix product
is undefined.

Example 3.2.8 The following product is undefined because the left matrix only has two columns,
while the right matrix has three rows, and so we are unable to compute any of the
corresponding vector products.[ −1 12

7 3

]
·
⎡⎣ 15 −6 8

1 1 2
0 1 0

⎤⎦ is undefined.

■

Question 3.2.5 Using definition 3.2.2 of vector multiplication, answer the following.

(a) Compute each product of matrices.

•

[ −1 10 3
0 4 1

]
·
⎡⎣ 3 −2

12 5
2 −2

⎤⎦
•
[ −10 1 0

] ·
⎡⎣ 1 0 3
−1 2 0
0 10 −1

⎤⎦

(b) Explain why the product
[

0 1
] ·
⎡⎣ −1 10
−12 1

0 0

⎤⎦ is undefined.

■

As with RSA codes, there are many different Hamming codes. A Hamming code
encodes “letters” that have been identified as row vectors of some uniform length r.
Hamming codes are defined on vectors containing binary numbers, and so every entry
in these row vectors is either 0 or 1. Row vectors with r entries may represent up to
2r distinct “letters.” For example, there are 24 = 16 distinct row vectors available for
coding letters when using vectors of length r = 4.[

0 0 0 0
] [

1 0 0 0
] [

0 1 0 0
] [

0 0 1 0
]

[
0 0 0 1

] [
1 1 0 0

] [
1 0 1 0

] [
1 0 0 1

]
[

0 1 1 0
] [

0 1 0 1
] [

0 0 1 1
] [

1 1 1 0
]

[
1 1 0 1

] [
1 0 1 1

] [
0 1 1 1

] [
1 1 1 1

]
Hamming codes encrypt these “letters” by multiplying the corresponding row

vectors by a generating matrix that is specific to each Hamming code. The entries of
the generating matrix are 0’s and 1’s, and vector and matrix products are computed
using modulo 2 arithmetic (since the code uses only binary vectors and matrices).
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The generating matrix consists of two distinct components. The left component is the
r × r identity matrix with 1’s on the main diagonal and 0’s in all other entries. The
right component consists of additional parity bit columns that are cleverly selected
to produce the error-correction capability of this coding scheme. After multiplying
a given row vector by the generating matrix, the corresponding encoded row vector
consists of the original vector with multiple check digits appended. These encoded row
vectors are then transmitted.

The recipient can then check the received encoded row vectors for single-digit
errors in the message. The recipient multiplies the received vectors by a parity
check matrix, which is a variation on the generating matrix as defined below and
in the Exercises at the end of this section. When the product is the zero vector, the
Hamming code indicates that no single-digit errors have occurred. If the product is a
nonzero vector, the resulting vector identifies the location of any single-digit errors,
enabling their correction. With this general approach in mind, we study a specific
Hamming code.

3.2.3 The (7,4) Hamming Code

The rest of this section details the well-known (7,4) Hamming code, which Hamming
first identified in 1950. In this setting, the row vectors representing “letters” all
have uniform length r = 4. The generating matrix for the (7, 4) Hamming code
follows.

G =

⎡⎢⎢⎣
1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎤⎥⎥⎦
Notice that the left four columns of this matrix form the 4 × 4 identity matrix (with
1’s on the main diagonal and 0’s elsewhere), and the right three columns consist of
the parity bits. Exercises 60–65 at the end of this section discuss the definition of an
arbitrary Hamming code’s generating matrix.

Example 3.2.9 We use the generating matrix G for the (7, 4) Hamming code to encode the
message “PI.”

We first identify the message “PI” with the pair of integers 16 | 9. We then
determine the binary representation of these integers; since 16 = 1 · 23 + 1 ·
22 + 1 · 21 + 1 · 20, and 9 = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20, we identify
“PI” as

[
1 1 1 1

] [
1 0 0 1

]
. We now encode the message by

multiplying these row vectors by the generating matrix (using modulo 2 arithmetic)
as follows.

[
1 1 1 1

] ·
⎡⎢⎢⎣

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎤⎥⎥⎦ = [
1 1 1 1 1 1 1

]
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[
1 0 0 1

] ·
⎡⎢⎢⎣

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎤⎥⎥⎦ = [
1 0 0 1 1 0 0

]
For example, the fifth entry in the first product is 1 because (1 · 1+ 1 · 1+ 1 · 1+
1 · 0) mod 2 = 1. The code now transmits the following encoded version of the
original message.[

1 1 1 1 1 1 1
] [

1 0 0 1 1 0 0
]

■

Question 3.2.6 Using the (7, 4) Hamming code, compute the encoded version of the following
message. [

0 1 1 1
] [

0 0 1 1
] [

1 0 1 0
]

■

Comparing the original vectors with the corresponding encoded vectors in
example 3.2.9 and question 3.2.6, we observe that the original vector appears as the first
part of its encoded vector. Thus, the Hamming codes do not provide any measure of
security against eavesdropping. Instead, Hamming codes are useful because they detect
and correct any single-digit errors in the transmitted vectors. For example, suppose
someone receives a message

[
1 1 1 1 1 0 1

]
encoded using the (7, 4)

Hamming coding scheme. This vector does not match any of the 16 possible correctly
encoded vectors (as you can verify by multiplying each of the 16 possible binary
vectors of length four by the generating matrix). Therefore, some error has occurred. If
a transmission error occurred in at most one digit (a single-digit error), the Hamming
code determines the correct, original message.

Single-digit errors are detected by multiplying the received row vector by the
Hamming code’s parity check matrix. The parity check matrix P is formed by attaching
the (r−1)× (r−1) identity matrix (with all 1’s on the main diagonal and 0’s elsewhere)
to the “bottom” of the parity bit columns from the generating matrix G. The (7, 4)
Hamming code has the following generating matrix G and parity check matrix P;
for visual emphasis, the common parity bit portions of these matrices are printed
in bold.

G =

⎡⎢⎢⎣
1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎤⎥⎥⎦ P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
If no single-digit error has occurred, then the product of the encoded vectors

and the corresponding parity check matrix P results in the zero row vector (the
row vector with 0 in every entry). On the other hand, if a single-digit error has
occurred, then the product is one of the row vectors from P. The position of this
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row vector in P indicates the position of the single-digit error in the received encoded
vector. The error is corrected by switching the parity of the entry (substituting 1 for 0
or 0 for 1).

Example 3.2.10 We check the following two encoded row vectors for single-digit errors using the
parity check matrix P for the (7, 4) Hamming code. Recall that all arithmetic is
performed modulo 2.

• We check
[

1 1 1 1 1 0 1
]
. Multiplying by P produces

[
1 1 1 1 1 0 1

] ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [

0 1 0
]
.

The result is not the zero vector, and so the Hamming code indicates that a
single-digit error has occurred. Since the resulting vector

[
0 1 0

]
matches

the sixth row of P, the error occurred in the sixth entry of the encoded vector.
Reversing the parity of the sixth digit, the corrected version of the encoded
vector is

[
1 1 1 1 1 1 1

]
.

• We check
[

0 1 0 1 1 0 1
]
. Multiplying by P produces[

0 1 0 1 1 0 1
] · P = [ 0 0 0

]
.

The resulting zero vector indicates that no single-digit error has occurred.
■

Question 3.2.7 Using the parity check matrix for the (7, 4) Hamming coding scheme, identify the
single-digit errors in the following received vectors and state the corrected version
of the encoded vector.

(a)
[

1 1 1 1 1 0 0
]

(b)
[

0 1 1 1 0 0 1
]

■

3.2.4 Reading Questions for Section 3.2

1. Describe public key encryption.
2. How do we represent letters in the RSA encryption scheme?
3. How does an RSA code encode a letter?
4. How does an RSA code decode an encrypted letter?
5. What are the public and private keys for an RSA code?
6. What step in the RSAencryption process prevents a person who does not know

the factorization of n into n = p · q from decoding an encrypted message?
7. Why are financial institutions and national security agencies interested in large

primes?
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8. Describe the process of vector multiplication and give an example.
9. Describe the process of matrix multiplication and give an example.

10. How do we represent letters when using a Hamming code?
11. How does a Hamming code encode a letter?
12. What kind of errors can a Hamming code both detect and correct?

3.2.5 Exercises for Section 3.2

In exercises 1–4, find the numeric string identified with each alphabetic string.

1. ALGEBRA
2. ANALYSIS

3. PEACE
4. TRUE LOVE

In exercises 5–11, find the alphabetic string identified with each numeric string.

5. 05 | 21 | 12 | 05 | 18
6. 07 | 01 | 21 | 19 | 19
7. 14 | 05 | 23 | 20 | 15 | 14
8. 12 | 05 | 09 | 02 | 14 | 09 | 26
9. 19 | 16 | 05 | 01 | 11 | 20 | 18 | 21 | 20 | 08

10. 01 | 18 | 03 | 08 | 09 | 13 | 05 | 04 | 05 | 19
11. 23 | 01 | 12 | 11 | 23 | 09 | 20 | 08 | 15 | 21 | 20 | 02 | 12 | 01 | 13 | 05

In exercises 12–15, identify how many digits the RSA code uses to represent encoded
letters for the following values of n = p · q.

12. n = 33
13. n = 143

14. n = 1,919
15. n = 1,2533

In exercises 16–19, encode each message using the RSA code with p = 3, q = 11,
and e = 7.

16. ALGEBRA
17. ANALYSIS

18. PEACE
19. TRUE LOVE

In exercises 20–24, decode each encoded message using the RSA code with p = 5,
q = 13, e = 29, and e−1 = 5.

20. 30 | 45 | 25
21. 08 | 45 | 61 | 05
22. 41 | 01 | 29 | 50 | 08

23. 48 | 08 | 01 | 18 | 29 | 50 | 25
24. 30 | 21 | 54 | 50 | 29 | 48 | 05

Exercises 25–28, encode each message using the RSA code with p = 73, q = 103, and
e = 2543.

25. ALGEBRA
26. ANALYSIS

27. PEACE
28. TRUE LOVE

Exercises 29–32, decode each encoded message using the RSA code with p = 73,
q = 103, and e = 2543.

29. 5758 | 2429 | 1318 | 4221
30. 1276 | 0001 | 4299 | 4208 | 5758



Chapter 3 ■ Number Theory 183

29. 3745 | 3949 | 4733 | 4208 | 4299 | 4502 | 4221
30. 4502 | 5758 | 0001 | 0036 | 4299 | 4208 | 4330

Exercises 33–37 consider the relative security of the RSA codes for various
values of n.

33. Factor n into primes p and q when n = 143 and (p− 1)(q − 1) = 120.
34. Discuss the public encryption security of the RSA code that publishes

n = 143.
35. Factor n into primes p and q if n = 12, 533 and (p− 1)(q − 1) = 12, 300.
36. Discuss the public encryption security of the RSA code that publishes

n = 12, 533.
37. Try to stump one of your classmates with an RSA encrypted message. Choose

a large (at least four digits) integer value of n that factors into primes n = p · q
and e ∈ U[(p − 1)(q − 1)]. Implement the RSA coding scheme with this
p, q, and e to encode a three letter message (e.g., “RSA” or “ACE”). Publicly
announce your values for n and e (but not p and q) and see how long it takes for
your encrypted message to be deciphered. Are you satisfied with the security
of your code?

Exercises 38–39 consider a type of prime number named for the French monk and
mathematician Marin Mersenne. A Mersenne prime is a prime of the form 2p − 1,
where p is prime. As of November 2008 there are 46 known Mersenne primes with the
46th equal to 243,112,609 − 1, which has 12,978,189 digits.

38. State the first three Mersenne primes.
39. Identify the first prime p such that 2p − 1 is not prime.

In exercises 40–47, compute each product, or explain why the product is undefined.

40.
[ −1 0

] · [ −46
12

]

41.
[

3 1
] ·
⎡⎣ 15

1
27

⎤⎦

42.
[ −10 12 2

] ·
⎡⎣ −9

60
13

⎤⎦

43.
[

1 5 2 −3 −2
] ·
⎡⎢⎢⎢⎢⎢⎣

4
1
−2
0
−1

⎤⎥⎥⎥⎥⎥⎦
44.

[ −1 0 1 2
] ·
⎡⎣ 10 5 0 0 1

0 0 −2 2 1
3 −3 3 −3 1

⎤⎦
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45.
[

6 −10 1
] ·
⎡⎣ 0 17
−8 8
30 −30

⎤⎦
46.

[
a b
c d

]
·
[

e f
g h

]

47.

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ ·
⎡⎣ a b c

d e f
g h i

⎤⎦
In exercises 48–51, encode each message using the (7, 4) Hamming code.

48.
[

1 1 0 0
]

49.
[

1 1 1 0
] [

1 1 0 1
]

50.
[

0 0 1 0
] [

0 1 1 0
]

51.
[

0 0 0 1
] [

1 0 0 1
] [

1 0 1 1
]

In exercises 52–55, check each message encoded by the (7, 4) Hamming code for
single-digit errors. If multiplication by the parity check matrix indicates a single-digit
error, state the corrected version of the vector.

52.
[

0 1 1 1 1 0 0
]

53.
[

0 1 1 1 0 0 0
]

54.
[

1 0 1 0 1 1 0
] [

1 1 1 0 1 1 0
]

55.
[

1 0 1 0 0 1 0
] [

1 1 1 0 1 0 1
]

Exercises 56–59 highlight the limitations of the (7, 4) Hamming code for detecting
multiple errors in transmitted messages and indicate the need for more sophisticated
error-correcting schemes.

In exercises 56–59, verify that the (7, 4) Hamming coding scheme does not detect the
given errors. What correction does the (7, 4) Hamming code recommend?

56.
[

1 1 1 1 1 1 1
]

received as
[

1 1 1 1 1 0 0
]

57.
[

1 1 1 1 1 1 1
]

received as
[

1 0 1 1 1 0 1
]

58.
[

0 1 0 1 1 0 1
]

received as
[

0 1 0 1 1 1 0
]

59.
[

0 1 0 1 1 0 1
]

received as
[

1 1 0 1 1 1 1
]

Exercises 60–65 introduce Hamming codes of higher dimension. For every pair of
integers of the form [(2r−1 − 1), r], we can determine a [(2r−1 − 1), r]Hamming code
that produces encrypted binary vectors of length 2r−1 − r. Both the generating matrix
G and a parity check matrix P for the [(2r−1 − 1), r] Hamming code are determined
by the parity bit columns. The parity bit columns consist of an array of all binary
row vectors of length r − 1 with at least two 1’s. In general, matrix G is obtained by
attaching the (2r−1 − r)× (2r−1 − r) identity matrix to the front of this array and the
parity check matrix P is obtained by attaching the (r − 1)× (r − 1) identity matrix
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to the bottom of this array. This procedure for the (7, 4) Hamming coding scheme is
illustrated below, with the parity bits in bold.

⎡⎢⎢⎣
1 1 1
1 1 0
1 0 1
0 1 1

⎤⎥⎥⎦ ⇒ G =

⎡⎢⎢⎣
1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎤⎥⎥⎦ and P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In exercises 60–65, consider Hamming codes of higher dimensions.

60. Determine a matrix consisting of the 11 binary column vectors of length
r − 1 = 5− 1 = 4 with at least two 1’s.

61. What length vectors are encoded by the (15, 5) Hamming coding scheme?
62. Find the generating matrix G for the (15, 5) Hamming coding scheme.
63. Find the parity check matrix P for the (15, 5) Hamming coding scheme.
64. How many vectors of length r − 1 = 5 have at least two 1’s? What length

vectors are encoded by the (31, 6) Hamming code?
65. How many vectors of length r − 1 = 6 have at least two 1’s? What length

vectors are encoded by the (63, 7) Hamming code?

In exercises 62–65, encode each message using the (15, 5) Hamming code. The
generating matrix G and parity check matrix P for the (15, 5) Hamming code were
identified in exercises 62 and 63 above.

66.
[

0 0 1 1 0 1 0 1 1 0 0
]

67.
[

1 0 1 0 1 0 1 0 1 0 1
]

68.
[

1 1 1 0 1 1 0 1 1 0 1
]

In exercises 69–70, check the following messages encoded by the (15, 5) Hamming
code for single-digit errors. If multiplication by the parity check matrix indicates a
single-digit error, state the corrected version of the vector.

69.
[

1 1 1 1 1 1 0 0 0 0 0 1 1 0 0
]

70.
[

1 1 1 1 0 0 0 0 0 0 0 0 1 0 0
]

3.3 From the Pythagorean Theorem to Fermat’s Last Theorem

Some relationships among numbers are based on equations containing two or more
variables. This study of such relationships is focused around two of the most famous
results in all of mathematics. The first is well-known to any student who has studied
triangles—the Pythagorean theorem. For many centuries this result has been known
to mathematicians around the world, from ancient Greece to ancient China, and has
served as a staple of mathematical explorations. The second is an extension of the
Pythagorean theorem, known as Fermat’s last theorem. For more than three centuries,
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Fermat’s last theorem was one of the most significant open questions in mathematics,
and mathematicians around the world rejoiced over its first complete proof in the 1990s.
A study of these two results identifies some of the relations that do and do not exist
among integers.

The Pythagorean theorem is named in honor of Pythagoras, a somewhat eccentric
and yet brilliantly insightful Greek philosopher and mathematician. Pythagoras was
born in 569 b.c.e. on the island of Samos, but later migrated to Croton on the
south-eastern coast of Italy, where he established a semireligious, semiscientific
society. Pythagoras and his followers immersed themselves in a study of numbers,
becoming the first group in recorded history to work with numbers as abstract
concepts, to identify the numeric relationships that exist among musical notes, and
to explore the related geometric relations, including the Pythagorean theorem. At
the same time, the Pythagoreans were well known for their mutual friendship,
communal living, equal treatment of the sexes, and their intense secrecy. The
society grew rapidly throughout Pythagoras’ life but was violently suppressed shortly
after his death. We now state the Pythagorean theorem and outline of a proof of
this result.

Theorem 3.3.1 Pythagorean Theorem For any right triangle, the square of the hypotenuse is equal
to the sum of the squares of the other two sides, known as legs. If the hypotenuse
has length c and the other two sides have lengths a and b, then we express this
relation using the Pythagorean equation a2 + b2 = c2.

The Pythagorean theorem can also be expressed in terms of geometry, by attaching
squares to a right triangle as indicated in figure 3.1. The Pythagorean theorem asserts
that the area of the largest square is equal to the sum of the areas of the two smaller
squares.

There are many different proofs of the Pythagorean theorem—some with a
strong geometric flavor, and others that are more algebraic in nature. Many involve
arranging right triangles in some clever fashion. The proof presented here considers an
arrangement of four copies of the same generic right triangle in a square configuration,
as illustrated in figure 3.2. Rather than simply stating a proof of this result, we

a

a

b

b

c
c

Figure 3.1 Geometric view of the
Pythagorean theorem
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Figure 3.2 For Question 1’s proof of the Pythagorean
theorem
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b

a b

a

b

a

c

c

c
c

b

offer a series of questions that highlight the important characteristics of this figure,
and invite you to piece together these relations and write a proof of this theorem
yourself.

Question 3.3.1 Refer to figure 3.2, where the sides of the triangles are labeled with their
corresponding lengths a, b, and c. Recall that the area of a square is the side
length squared and the area of a triangle is one-half the product of the base and
height.

(a) What is the side length of the large, exterior square formed by the four
triangles? Determine the area of this exterior square.

(b) What is the side length of the small, interior square enclosed by the four
triangles? Determine the area of this interior square.

(c) Determine the area of the triangles.
(d) Express the area of the exterior square as the sum of the area of the interior

square and the area of the four triangles.
(e) Set the expressions for the area of the exterior square from part (a) and part

(d) equal to each other and algebraically simplify the result to obtain the
Pythagorean equation a2 + b2 = c2.

(f) Based on your answers to these questions, write a proof of the Pythagorean
theorem, using complete sentences and supportive algebraic computations at
appropriate points in the argument.

■

While Pythagoras is recognized as the first mathematician to produce a general,
abstract proof of this result, humanity’s knowledge of numeric examples of the
Pythagorean theorem predate his work by thousands of years. Megalithic monuments
on the British Isles dating to 2500 b.c.e. are engraved with an example of integers
satisfying the Pythagorean theorem. Numeric examples exist from ancient Egypt,
Mesopotamia, India, and China (where the result is known as the Gougu theorem),
including computational “proofs” with specific numbers that can be generalized.
The oldest known written proof of the Pythagorean theorem is Proposition 47 in
Book I of Euclid’s Elements [73]. Since then more than 250 different proofs of the
Pythagorean Theorem have been crafted, including an 1876 proof using trapezoids
attributed to the twentieth President of the United States James Garfield while he
was serving in the House of Representatives. The proof outlined in question 3.3.1



188 A Transition to Advanced Mathematics

c

b

53

4

13

Figure 3.3 Triangles for example 3.3.1

can be traced back to the work of the Indian mathematician Bhaskara from the
twelfth century c.e.

The Pythagorean theorem ensures that whenever the lengths of two sides of a right
triangle are known, the length of the third side can be computed.

Example 3.3.1 We compute the length of the side identified with a variable for each right
triangle.

• Applying the Pythagorean theorem to the triangle on the left in figure 3.3, 32 +
42 = c2, and so 25 = c2, which implies c = 5.

• For the triangle on the right in figure 3.3, 52+b2 = 132, and so b2 = 169−25 =
144, which implies b = 12.

■

As mathematicians worked with the Pythagorean theorem, they recognized
that right triangles with sides of integer length (such as those in example 3.3.1)
are more the exception than the rule. When two sides of a triangle are integers,
the third side is often not an integer. The following question provides some
examples.

Question 3.3.2 Answer each question about a right triangle. Recall that the nonhypotenuse sides
of a right triangle are called legs.

(a) If the legs have lengths 3 and 4, what is the length of the hypotenuse?
(b) If the legs have lengths 4 and 6.5, what is the length of the hypotenuse?
(c) If the hypotenuse has length 17 and one leg has length 8, what is the length

of the other leg?
(d) If the hypotenuse has length 17 and one leg has length 11, what is the length

of the other leg?
■

Mathematicians are especially interested in integer solutions of the Pythagorean
equation, and other similar multivariable equations known as Diophantine equations,
as defined below. Motivated by this interest, mathematicians have defined certain
distinguished types of triples of integers.

Definition 3.3.1 A triple (a, b, c) of positive integers satisfying a2 + b2 = c2 is called a
Pythagorean triple.

The next question considers various Pythagorean triples and explores the
possibility that there exist infinitely many Pythagorean triples.
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Question 3.3.3 The following questions show that some Pythagorean triples are multiples of
others.

(a) Prove that (5, 12, 13) is a Pythagorean triple.
(b) Based on part (a), find a Pythagorean triple with a = 10 = 5 · 2.
(c) Find a Pythagorean triple with a = 15 = 5 · 3.
(d) If n ∈ N is an arbitrary positive integer, find a Pythagorean triple with a = 5 ·n.

■

As can be surmised from the answers to question 3.3.3, there exist infinitely many
Pythagorean triples; the following proof of this result is constructive.

Theorem 3.3.2 There exist infinitely many Pythagorean triples; that is, there exist infinitely many
triples (a, b, c) of positive integers such that a2 + b2 = c2.

Proof The triple of positive integers (3, 4, 5) is a Pythagorean triple, since 32 + 42 =
9+ 16 = 25 = 52. Furthermore, for every positive integer n ∈ N,

(3n)2 + (4n)2 = 32n2 + 42n2 = (32 + 42)n2 = 52n2 = (5n)2.

Thus (3n, 4n, 5n) is a Pythagorean triple for every positive integer n. Since there are
infinitely many positive integers, there exist infinitely many Pythagorean triples.

■

In addition to knowing that there exist infinitely many Pythagorean triples,
mathematicians have made another important step forward in describing Pythagorean
triples. The proof of theorem 3.3.2 simply manipulated the Pythagorean triple (3, 4, 5)
to obtain infinitely many others. But many different Pythagorean triples are not
multiples of (3, 4, 5) (as we have seen in the preceding examples and questions). Faced
with this fact, mathematicians began seeking a pattern or formula that completely
classifies all Pythagorean triples—and they found one! Every Pythagorean triple is of
the form (2mn, n2 − m2, n2 + m2), where m, n ∈ N are positive integers with m < n.
In addition to proving theorem 3.3.2, the formula shows that there exist an infinite
number of primitive Pythagorean triples; that is, Pythagorean triples whose values
(a, b, c) have no common divisor.

The three integers a = 3, b = 4, and c = 5 are one solution of the Pythagorean
equation a2 + b2 = c2. Many other multivariable equations have integer solutions;
such equations have come to be known as Diophantine equations. The ancient Greek
mathematician Diophantus, who lived in the third century, studied these types of
equations (especially linear ones), and wrote the famous text Arithmetica that was
the standard number theory reference (in fact the only thorough exposition on the
topic) as late as the seventeenth century! For the remainder of this section, we restrict
our attention to integer solutions of polynomial equations.

Definition 3.3.2 A Diophantine equation is a polynomial equation in at least two variables with
integer solutions.

The Pythagorean equation a2 + b2 = c2 is the best known example of a
Diophantine equation, but many other multivariable equations are Diophantine.
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Example 3.3.2 We examine two equations—one is Diophantine with positive integer solutions,
and one is not.

• x − y = 0 is a Diophantine equation with infinitely many solutions x = y = 1,
x = y = 2, and so on; that is, every pair of integers with x = y is a solution.

• x + y = π is not a Diophantine equation because the sum of two integers
cannot be an irrational number, and so this equation does not have integer
solutions.

■

Question 3.3.4 State an equation that is Diophantine and one that is not; give equations different
from those in example 3.3.2

■

Theorem 3.3.2 proves not only that the Pythagorean equation is Diophantine,
but also that the Pythagorean equation is a Diophantine equation with infinitely
many positive integer solutions. Not every Diophantine equation has this property.
In fact, given any positive integer n ∈ N, there exists a Diophantine equation with
exactly n distinct positive integer solutions. The following example provides a linear
Diophantine equation in two variables (so, both x and y are raised to the first power)
with exactly two positive integer solutions.

Example 3.3.3 We identify the two pairs of positive integer solutions of 8x + 5y = 86.
We can solve for either x or y in this equation; we solve for both obtaining

x = 86− 5y

8
= 10− 5y − 6

8
and y = 86− 8x

5
= 17− 8x − 1

5
.

Since x is a positive integer, the left equation implies 5y−6
8 is a positive integer

less than or equal to 9, and so y must be either 6 or 14. Substituting, we find the
two pairs of solutions (7, 6) and (2, 14).

Alternatively, we can work with the right equation. Since y is a positive integer,
the right equation implies 8x−1

5 is a positive integer less than or equal to 16, and
so x must be either 2 or 5. Substituting, we again find that (7, 6) and (2, 14) are
the only two pairs of positive integer solutions of this Diophantine equation.

■

Question 3.3.5 Identify the three pairs of positive integer solutions of xy − 5x + 6y = 0.
Hint: Solve for y and manipulate your solution to express y as the difference of an
integer and a fraction in x as in example 3.3.3.

■

The Pythagorean equation is just one example of a nonlinear Diophantine equation.
Another famous example is the generalization of the Pythagorean equation to the
form a3 + b3 + c3 = d3. Since 33 + 43 + 53 = 63 and 13 + 63 + 83 = 93, at
least two quadruples of positive integers satisfy this equation. Following the same
approach as the proof of the infinitude of Pythagorean triples for theorem 3.3.2, we
can show that this Diophantine equation also has infinitely many positive integer
solutions. Even though a3+b3+c3 = d3 has infinitely many solutions, mathematicians
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still do not have a general formula for generating every positive integer solution of
this equation.

The infinite number of integer solutions to the Pythagorean equation a2+ b2 = c2

and the above Diophantine equation a3 + b3 + c3 = d3 stands in marked contrast
to what happens when we seek solutions to similar equations with greater integer
exponents: a3+b3 = c3, a4+b4 = c4, a5+b5 = c5, and so on. The intensive study of
this generalization of the Pythagorean theorem was initiated by the seventeenth century
French mathematician Pierre de Fermat. Late in his life, Fermat claimed when the
integer power n is greater than 2, there are no positive integer solutions to an+bn = cn.
About this same time, Fermat proved this claim for n = 4 using a “method of infinite
descent,” and he announced this result to other mathematicians, inviting them to craft
their own proofs.

Fermat’s successes as a mathematician are even more impressive when we consider
that he did not work full-time as a mathematician. A lawyer by day, Fermat had
only his free time to study and develop mathematical insights. While in this sense
only an amateur mathematician, Fermat came to be recognized as one of the greatest
mathematical minds of his time. A short time after proving the n = 4 case, Fermat died
without repeating his more general claim, nor providing any indication of how he was
thinking of proving this result for all positive integers. Fortunately, mathematicians
convinced Fermat’s son to gather together and save Fermat’s mathematical books
and notes for later study. It became apparent that Fermat made many such claims
with little or no proof, and mathematicians eagerly pursued complete proofs of these
results. In the end, this one claim remained unproven, and so it came to be known
as “Fermat’s last theorem.” For ease and clarity of reference, we formally state
this result.

Theorem 3.3.3 Fermat’s last theorem For every integer n greater than 2, there are no positive
integers a, b, c such that an + bn = cn.

Many great mathematicians worked on proving Fermat’s last theorem in its full
generality. It turns out that the n = 3 case is much harder to prove than the n = 4
case. More than 100 years after Fermat’s death, Leonhard Euler finally developed
the mathematical insights enabling the complete proof that a3 + b3 = c3 has no
integer solutions. In subsequent years, Fermat’s last theorem was proven for specific
integer exponents one at a time, until in 1995 a complete proof was announced
to the world. The English mathematician Andrew Wiles from Princeton University
used sophisticated mathematical methods involving “elliptic curves” to prove the
general version of Fermat’s last theorem. For this work, Wiles was honored with
numerous distinguished awards, including the presentation of a silver plate as a special
tribute by the International Mathematical Union in 1998. The IMU is the organization
responsible for awarding the Fields Medal, which is the equivalent of the Nobel
Prize in mathematics. The Fields Medal is awarded every fourth year to at most four
mathematicians “to recognize outstanding mathematical achievement for existing work
and for the promise of future achievement.” The Fields Medal is restricted to recipients
who are at most 40 years of age; Wiles was 45 years old in 1998, or surely he would
have been honored with the Fields Medal. While Wiles’ proof is beyond the scope of
this text, we can understand Fermat’s proof for the n = 4 case.
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3.3.1 Fermat’s Last Theorem for n = 4

The rest of this section develops Fermat’s proof that a4 + b4 = c4 has no positive
integer solutions. The first step is to modify the form of the equation. If a, b, c are
positive integer solutions of a4 + b4 = c4, then (a2)2 + b4 = c4. Thus, if a4 + b4 = c4

has positive integer solutions, then so does a2 + b4 = c4. Taking the contrapositive,
if a2 + b4 = c4 has no positive integer solutions, then neither does a4 + b4 = c4.
This proof therefore focuses on a2 + b4 = c4, proving that it has no positive integer
solutions.

Fermat’s proof of this result uses the “method of infinite descent,” which proceeds
by contradiction. Assuming that there does exist a triple of positive integers (a, b, c)
satisfying a2 + b4 = c4, we prove the existence of another such solution (a∗, b∗, c∗)
with the property that c∗ is less than c. Applying this result to (a∗, b∗, c∗), there exists
still another solution (a∗∗, b∗∗, c∗∗) with c∗∗ less than c∗, and so on ad infinitum. This
produces an infinite sequence of solutions with a corresponding infinite descending
sequence of positive integers c > c∗ > c∗∗ > c∗∗∗ > · · · . But for any given positive
integer c, there are only finitely many positive integers less than c, and we have the
desired contradiction. Thus, a2 + b4 = c4 has no positive integer solutions, and so
a4 + b4 = c4 has no positive integer solutions.

The main step in this argument is proving that if (a, b, c) is a triple of positive
integers satisfying a2 + b4 = c4, then there exists another such solution (a∗, b∗, c∗)
with c∗ less than c. There are many details to this proof, and we study some of them
here; the exercises at the end of this section outline each part of the remaining portions
of the proof.

The proof of Fermat’s last theorem for n = 4 is quite long and involved, as are the
proofs of many interesting and important mathematical results. Working through such
proofs requires great care and determination, especially as they challenge a reader’s
mathematical understandings and intellectual abilities. These studies can result in
frustration, but the rewards for perseverance can be tremendous. Furthermore, being
able to follow sophisticated, involved proofs is an important step forward in learning
to handle subtle mathematical ideas more easily and to craft such proofs yourself. And
so, as we follow in the footsteps of Fermat through the rest of this section, be patient
with yourself, be resolved to persevere through any tough spots—and enjoy a new
understanding of these mathematical truths.

Since Fermat’s proof proceeds by contradiction, the remainder of this section uses
the assumption that (a, b, c) is a triple of positive integers satisfying a2 + b4 = c4 with
c the least such positive integer. To prove the existence of a solution (a∗, b∗, c∗) with
c∗ less than c, we consider three cases:

• b and c are both even;
• b and c have opposite parity; and
• b and c are both odd.

The case in which b and c are both even is taken care of quickly using the following
theorem and question.

Theorem 3.3.4 If (a, b, c) is a triple of positive integers satisfying a2 + b4 = c4 with c the least
such positive integer, then b and c have no common prime divisors.
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Proof We proceed by contradiction, assuming that p is a prime divisor of both b and c (and
working toward a contradiction of the “leastness” of c). Under this assumption,
p4 must divide c4 − b4 = a2. From exercise 15 in section 3.1 or exercise 15 at
the end of section 3.4, this fact implies p2 divides a. Expressing these divisibility
relations algebraically, we have a = p2a∗, b = pb∗, and c = pc∗. Substituting
these expressions into the original equation and simplifying the result produces
the following implications.

a2 + b4 = c4 ⇒ ( p2a∗)2 + ( pb∗)4 = ( pc∗)4

⇒ p4(a∗)2 + p4(b∗)4 = p4(c∗)4

⇒ (a∗)2 + (b∗)4 = (c∗)4

Since c = pc∗ and p is prime (and so greater than 2), c∗must be less than c. But then,
there exists a triple of positive integers (a∗, b∗, c∗) satisfying (a∗)2+ (b∗)4 = (c∗)4

with c∗ less than c. This contradicts the leastness of c, and so b and c must not
share any common prime divisors.

■

Question 3.3.6 Use theorem 3.3.4 to prove that if (a, b, c) is a triple of positive integers satisfying
a2 + b4 = c4 with c the least such positive integer, then b and c cannot both
be even.

■

We now turn our attention to the proof of Fermat’s last theorem for n = 4 when
b and c have opposite parity. The proof of this portion of the theorem relies on three
lemmas, which we state and use without proof; exercises 62–69 at the end of this
section suggestively outline the proofs of these Lemmas.

Lemma 3.3.1 If (a, b, c) is a triple of positive integers satisfying a2 + b4 = c4 with c the least
such positive integer and with b and c of opposite parity, then there exist two odd
positive integers s and t such that gcd(s, t) = 1, s2 = c2 + b2, and t2 = c2 − b2.

Lemma 3.3.2 In the context of lemma 3.3.1, let s + t = 2u and s − t = 2v. Then the following
facts hold.

• The integer triple (u, v, c) is a Pythagorean triple.
• The integers u and v have opposite parity with u = 2m2 and v = (a∗)2 for positive

integers m and a∗.
• gcd(u, v) = 1.

Lemma 3.3.3 In the context of lemmas 3.3.1 and 3.3.2, there exist positive integers x and y such
that the following hold:

u = 2xy; v = x2 − y2; c = x2 + y2; and gcd(x, y) = 1.

These lemmas lead to the proof of the following desired result.

Theorem 3.3.5 In the context of lemmas 3.3.1, 3.3.2, and 3.3.3, there exist positive integers b∗
and c∗ with opposite parity and positive integer a∗ such that (a∗)2+ (b∗)4 = (c∗)4

with 0 < c∗ < x < c.
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Proof Lemma 3.3.2 asserts that u = 2m2, and lemma 3.3.3 asserts that u = 2xy; therefore,
m2 = xy. Replacing m with its prime power factorization m = pn1

1 · pn2
2 · · · pnr

r
produces (p1)2n1 · (p2)2n2 · · · (pr)2nr = xy. Lemma 3.3.3 states that gcd(x, y) = 1,
and so each of the prime powers (pi)2ni appears intact within exactly one of the
prime factorizations of either x or y. Thus, x and y have prime factorizations with
even exponents on every prime, and so both x and y are perfect squares. Since the
square roots of both x and y are integers, define c∗ = √x and b∗ = √y. The rest of
this proof verifies that a∗ from lemma 3.3.2 with this b∗ and c∗ have the desired
properties.

Lemma 3.3.2 states that v = (a∗)2, and lemma 3.3.3 states that v = x2 − y2.
Setting these equations equal to one another and substituting c∗ = √x and
b∗ = √y, produces the following equality

(a∗)2 = v = x2 − y2 = ((c∗)2)2 − ((b∗)2)2 = (c∗)4 − (b∗)4

Simplifying, (a∗)2 + (b∗)4 = (c∗)4. In addition, since c∗ = √x, we have
0 < c∗ < x. Lemma 3.3.3 asserts that c = x2 + y2, which implies x < c. Thus,
0 < c∗ < x < c.

Finally, we argue that b∗ and c∗ have opposite parity. Lemma 3.3.2 asserts
that u and v have opposite parity, and lemma 3.3.3 asserts that u = 2xy is even, so
v = x2 − y2 is odd. Therefore x and y have opposite parity, and so their respective
square roots c∗ = √x and b∗ = √y must also have opposite parity.

We have arrived at the desired result: (a∗)2 + (b∗)4 = (c∗)4 where b∗ and c∗
have opposite parity and c∗ < c. This conclusion contradicts the original claim
(that the triple of positive integers (a, b, c) with b and c of opposite parity is a
solution of a2 + b4 = c4 with the least possible value for c).

■

Lemmas 3.3.1, 3.3.2, and 3.3.3, and theorem 3.3.4 collectively prove that there
does not exist a triple of positive integer solutions of a2 + b4 = c4, which proves
Fermat’s last theorem for n = 4 when b and c have opposite parity. There is only
one more case to consider: when b and c are both odd. The proof of this case is
similar to the proof of theorem 3.3.4 and is outlined in exercise 70 at the end of
this section.

3.3.2 Reading Questions for Section 3.3

1. State the Pythagorean theorem.

2. Give an example applying the Pythagorean theorem to a right triangle with
one side of unknown length.

3. Sketch figure 3.2. How is this figure useful?

4. Define and give an example of a Pythagorean triple.

5. Give an example of a triple of integers that is not Pythagorean.

6. How many Pythagorean triples are there?

7. What is a primitive Pythagorean triple? Give an example.

8. Define and give an example of a Diophantine equation.
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9. Explain why the Pythagorean equation is a Diophantine equation.

10. Give an example of a Diophantine equation with infinitely many solutions
and a Diophantine equation with finitely many solutions.

11. State Fermat’s last theorem.

12. Discuss the distinction between Fermat’s and Euler’s work on Fermat’s last
theorem and Wiles’ work on Fermat’s last theorem.

3.3.3 Exercises for Section 3.3

In exercises 1–6, determine if each triple is Pythagorean.

1. (15, 36, 39)

2. (10, 12, 22)

3. (4, 3, 2)

4. (48, 55, 73)

5. (17, 144, 145)

6. (18, 144, 146)

In exercises 7–14, complete each Pythagorean triple by identifying the numeric value
for the missing variable.

7. (16, 63, c)

8. (48, 14, c)

9. (a, 40, 41)

10. (20, b, 52)

11. (a, b, 5)

12. (a, b, 17)

13. (a, 21, c)

14. (a, 45, c)

Exercises 15–23 consider abstract questions and statements about the Pythagorean
theorem and Pythagorean triples.

15. What is the least possible positive integer c for which there exist a and b such
that (a, b, c) is a Pythagorean triple?

16. Prove that if n is a positive even integer, then [n, ( n
2 )2 − 1, ( n

2 )2 + 1] is a
Pythagorean triple.

17. Using the formula from exercise 16, list three distinct Pythagorean
triples.

18. Prove that if n is a positive odd integer, then [n, (n2 − 1)/2, (n2 + 1)/2] is a
Pythagorean triple.

19. Using the formula from exercise 18, list three distinct Pythagorean triples.

20. Prove that if m, n ∈ N, then [2mn, n2 − m2, n2 + m2] is a Pythagorean
triple.

21. Using the formula from Exercise 20, list three distinct Pythagorean triples.

22. Prove that if (a, b, c) satisfy the Pythagorean equation, then (−a,−b,−c)
also satisfies the Pythagorean equation. Conclude that a study of solutions of
the Pythagorean equation can focus on positive solutions.

23. Suppose (r/s, t/u, v/w) is a triple of rational numbers satisfying the
Pythagorean equation. Determine a corresponding Pythagorean triple of
integers expressed in terms of r, s, t, u, v, and w. Conclude that a study of
rational solutions to the Pythagorean equation can focus on integer solutions.
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B
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H

Figure 3.4 Figure for exercises 28–33

In exercises 24–27, consider the question of whether a Pythagorean triple can contain
three prime numbers. Prove the following mathematical statements.

24. If (p, q, r) is a Pythagorean triple of primes, then one of p, q, r is even.

25. If p and q are prime, then (p, q, 2) is not a Pythagorean triple.

26. If q and r are prime, then (2, q, r) is not a Pythagorean triple.
Hint: Manipulate the sum of squares in the Pythagorean equation to obtain a
difference of squares and then factor.

27. A Pythagorean triple cannot contain three primes. Hint: Use exercises 24–26.

Exercises 28–33 develop Euclid’s proof of the Pythagorean theorem given in Book I of
Elements. Euclid added a line perpendicular to the hypotenuse (as shown in figure 3.4)
and worked with similar triangles. Two triangles are said to be similar if their three
interior angles are identical. Similar triangles are of interest in this setting because the
side lengths of the corresponding sides share the same ratios. In exercises 28–33, let
A, B, C, and H denote the four vertices determining the three triangles in figure 3.4, let
pairs of adjacent letters (e.g., AB) denote the length of the side between the two vertices,
and let triples of adjacent letters (e.g., ABC) denote the right triangle determined by
the three vertices.

28. Prove that triangle ABC is similar to triangle ACH. Explain why this implies
that AC/AB = AH/AC.

29. Algebraically manipulate the ratio from exercise 28 to find an expression for
(AC)2 in terms of AB and AH .

30. Prove that triangle ABC is similar to triangle BCH. Explain why this implies
that BC/AB = HB/BC.

31. Algebraically manipulate the ratio from exercise 30 to find an expression for
(BC)2 in terms of AB and HB.

32. Working with the expressions from exercises 29 and 31, and with the equality
AH + HB = AB, prove the Pythagorean identity (AC)2 + (BC)2 = (AB)2.

33. Based on exercises 28–32, write a proof of the Pythagorean theorem, using
complete sentences and supportive algebraic computations at appropriate
points in the argument.

Exercises 34–40 develop an alternative proof for the existence of infinitely many
Pythagorean triples.
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34. Complete the following table of squares and differences of squares:

b c c2 b2 c2 − b2

0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
12 13

35. Describe the pattern in the right column of the table from exercise 34.
36. Prove that every odd number occurs in the right column of (the infinitely

extended version of) the table from exercise 34 by considering the difference
of squares of consecutive integers n and n+ 1.

37. List two Pythagorean triples that occur in the table from exercise 34.
38. If the table from exercise 34 is extended to include rows with greater values of

consecutive integers b and c, what is the next Pythagorean triple that appears
in the table?

39. What integers have odd squares?
40. Based on exercises 34–39, write a proof that there exist infinitely many

Pythagorean triples, using complete sentences and supportive algebraic
computations at appropriate points in the argument.

In exercises 41–48, find all positive integer solutions x and y of the following
Diophantine equations.

41. 3x + 5y = 12

42. 6x + 15y = 30

43. 8x + 5y = 1

44. 20x + 25y = 125

45. 10x + 11y = 320

46. xy − 7x + 6y = 0

47. xy+ 3x − 2y = 0

48. xy− 3x + 4y = 0

Exercises 49–52 consider the special category of Diophantine equations of the form
x2 − Ny2 = 1, where N is a positive nonsquare integer. These equations are known
as Pell’s equations in honor of the seventeenth century English algebraist and number
theorist John Pell.

49. Prove x = 3, y = 2 is a solution of Pell’s equation x2 − 2y2 = 1.

50. Find a pair of positive integers (different from x = 3, y = 2) satisfying
x2 − 2y2 = 1.
Hint: There exists a solution with x ≤ 35.

51. Prove that if a pair of positive integers (x, y) satisfies x2 − 8y2 = 1, then x
is odd.

52. Prove that if a pair of positive integers (x, y) satisfies Pell’s equation with N
even, then x is odd.
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Exercises 53–55 consider the special category of Diophantine equations of the form
xn − Nyn = 1 where N and n are positive integers. These equations are known as
Thue’s equations in honor of the Norwegian mathematician Axel Thue. Thue made
a number of important contributions to abstract algebra and number theory, and he
identified conditions determining when these equations have a finite number of integer
solutions.

53. Prove that x = 2, y = 1 is a solution of Thue’s equation x3 − 7y3 = 1.

54. Find a pair of positive integers satisfying Thue’s equation x4 − 5y4 = 1.
Hint: There exists a solution with x ≤ 20.

55. Prove that if a pair of positive integers (x, y) satisfies Thue’s equation
x3 − 7y3 = 1, then x and y must have opposite parity.

Exercises 56–61 consider the types of equations addressed by Fermat’s last theorem.

56. Prove that a = 2, b = 3
√

19, and c = 3 satisfy a3 + b3 = c3. What does this
tell us about 3

√
19?

57. Find a triple of positive real numbers (a, b, c) satisfying a3+b3 = c3; identify
an answer different from that given in exercise 56.

58. Find a pair of positive integers b and c (with b ≤ 10) satisfying
1,701+ b3 = c3.

59. Based on exercise 58, prove that 1,701 cannot be expressed as the cube of
a rational number; that is, prove 1,701 	= (r/s)3 when r and s are positive
integers

60. While visiting his friend and colleague Srinivasa Ramanujan in the hospital,
Godfrey Harold Hardy remarked that he had arrived in taxi number 1,729.
Ramanujan immediately replied that “1,729 is an interesting number because
it is the smallest integer that can be expressed as the sum of two cubes in two
different ways.” Find two distinct pairs of positive integers (a, b) (both with
a ≤ 10) satisfying a3 + b3 = 1,729.

61. Suppose (r/s, t/u, v/w) is a triple of rational numbers satisfying an+bn = cn,
where n > 2 is an integer. Find a corresponding triple of integers (x, y, z)
expressed in terms of r, s, t, u, v, and w that would then satisfy an + bn = cn.
Based on this insight and Fermat’s last theorem, what do we know about the
existence of triples of rational numbers satisfying an + bn = cn, where n > 2
is an integer?

Exercises 62–70 complete the proof of Fermat’s last theorem for n = 4 by outlining
the proofs of lemmas 3.3.1–3.3.3 and the proof of the setting where b and c are both
odd. Specifically, you should assume in exercises 62–69 that b and c have opposite
parity (as in lemmas 3.3.1–3.3.3). Then assume in exercise 70 that b and c are both
odd (to prove the last case).

62. Working in the direction of proving lemma 3.3.1 in exercise 63, prove that
gcd(c2 + b2, c2 − b2) = 1. Develop a proof by contradiction, assuming there
exists a prime divisor p of c2 + b2 and c2 − b2. Since c2 + b2 is odd, p 	= 2.
Since p divides both c2 + b2 and c2 − b2, p divides their sum 2c2, and
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so p divides c. Since p now divides both c2 and c2 − b2, p also divides
b. Explain why theorem 3.3.4 provides a contradiction and conclude that
gcd(c2 + b2, c2 − b2) = 1.

63. Assume the integer triple (a, b, c) solves a2 + b4 = c4 with c the least such
positive integer, and that b and c have opposite parity. Using the prime
factorization of the integer a and the result from exercise 62, explain why
the equation (c2 + b2)(c2 − b2) = c4 − b4 = a2 implies that both of the
factors must be squares whose greatest common divisor is 1; that is, there
exist positive integers s, t ∈ N such that gcd(s, t) = 1, c2 + b2 = s2 and
c2 − b2 = t2. This completes the proof of lemma 3.3.1.

64. Working in the context of lemma 3.3.2, prove that the integer triple (u, v, c) is
Pythagorean by substituting u= (s+ t)/2 and v = (s− t)/2 into the expression
u2 + v2 and expanding the resulting expression to obtain (s2 + t2)/2 = c2.

65. Working in the context of lemma 3.3.2, prove that the integers u and v have
opposite parity with u = 2m2 and v = (a∗)2 for positive integers m and a∗
and that gcd(u, v) = 1. Using the equation 2uv = (s2 − t2)/2 = b2 and the
prime factorization of b, prove that either u or v has a factor of 2; without
loss of generality, assume u is the term with this factor of 2. Then use the
prime factorization of b and 2uv = b2 to prove the existence of the desired m
and a∗. Finally, give a proof by contradiction that u and v have no common
prime divisors: assume p divides both, prove that p would then divide both
2s = (s + t) + (s − t) and 2t = (s + t) − (s − t), and apply lemma 3.3.1 to
conclude that gcd(u, v) = 1.

66. Working in the context of lemma 3.3.3, use the prime factorization of v and
the facts that v2 = (c− u)(c+ u) and gcd(c− u, c+ u) = 1 to show that c+ u
and c− u are squares; in other words, prove that there exist positive integers
e and f with e2 = c+ u and f 2 = c− u.

67. Working in the context of lemma 3.3.3 and using the notation from exercise 66,
let x and y be positive integers defined by 2x = e+ f and 2y = e− f . Using
the fact that (u, v, c) is a Pythagorean triple and the results of exercise 66,
prove that v = x2 − y2 (the second fact stated in lemma 3.3.3).

68. Working in the context of lemma 3.3.3 and exercises 66–67 and using the facts
that u = (e2− f 2)/2 and c = (e2+ f 2)/2, prove that u = 2xy and c = x2+ y2

(the first and third facts stated in lemma 3.3.3).

69. Prove the last fact stated in lemma 3.3.3; that is, prove that gcd(x, y) = 1.
Develop a proof by contradiction, assuming p is a prime divisor of both
x and y. Use the fact that v = x2 − y2 to conclude that p must divide v.
But p also divides e = x + y and f = x − y, and so p is a divisor of c,
since 2c = (c + u) + (c − u) = e2 + f 2. Finally, p is a divisor of b, since
2b2 = s2 − t2 = (s− t)(s+ t) = 2u · 2v and p divides v. This analysis shows
p is a common divisor of c and b, which contradicts theorem 3.3.4.

70. Complete the proof of Fermat’s last theorem for n = 4 by showing that if there
exist positive integers a, b, c with b and c both odd such that a2+ b4 = c4 (the
reformulated version of a4+ b4 = c4), then a contradiction results. Under the
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assumption that such b and c are both odd (and so a is even) and a2+ b4 = c4

with c the least such positive integer, prove each of the following statements.

(a) Theorem 3.3.4 asserts that b and c have no common prime divisors.
Prove by contradiction that c2 + b2 and c2 − b2 have a unique
common prime divisor of 2.

(b) Using the result from part (a), prove that gcd(a, b, c) = 1 by showing
that a and b have no common prime divisors, and that a and c have
no common prime divisors. Conclude that gcd(c2 + a, c2 − a) = 1.

(c) Algebraically manipulate a2 + b4 = c4 to show that b4 = (c2 + a)
(c2 − a). Writing b in terms of its prime factorization and using
gcd(c2 + a, c2 − a) = 1 from part (b), prove that there exist s, t ∈ N

such that c2 + a = s2 and c2 − a = t2. Furthermore, note that s > t
and that both s and t are odd since c is odd and a is even.

(d) Working with s and t from part (c), define positive integers x and y
such that 2x = s+ t and 2y = s− t (note s and t are both odd); thus,
x > y, s = x+ y, and t = x− y. Using gcd(c2 + a, c2 − a) = 1 from
part (b), prove that gcd(x, y) = 1.

(e) Prove that x and y from part (d) satisfy a = 2xy, b2 = x2 − y2, and
c2 = x2 + y2.

(f) Using the identities from part (e), prove that (bc)2 + y4 = x4 with
0 < x < c, and explain why this is a contradiction of our assumption.

3.4 Irrational Numbers and Fields

This chapter’s study of number systems continues by considering extensions of the
integers Z to other well-known number systems, including the rationals Q, the reals R,
and the complex numbers C. Definition 2.1.1 in section 2.1 defined these sets of
numbers, and example 2.1.4 in section 2.1 identified the proper subset relationships
that exist among these sets of numbers: ∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C. We can
think of these sets of numbers as arising from successive closure operations on each
set to obtain the next in the sequence. This section examines such definitions of one
set in terms of the next, and then extends the study of groups to the study of sets with
two binary operations that form a “field.”

We first consider the relationship between the integers Z and the rational
numbers Q. The extension of Z to Q follows from considering ratios of integers.
The definition expresses the rational numbers as

Q =
{ m

n
: m, n ∈ Z with n 	= 0

}
.

The next question asks you to verify that the set of Z is a proper subset of the set of Q.

Question 3.4.1 (a) Express the integers 2 and −3 as a ratio of two integers m/n.
(b) Prove that Z ⊆ Q by expressing an arbitrary k ∈ Z as a ratio m/n of two

integers m and n with n nonzero.
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(c) Prove that Z � Q by finding a ratio m/n of two integers that is not itself an
integer.

(d) How many rational numbers are not integers?
■

We now consider the relationship between the rational numbers Q and the
continuum of the real line R. This study began with the Greeks, who were particularly
enamored of the rationals and, at one time, believed that every number could be
expressed as a ratio of two integers. The Pythagorean theorem asserts that for every
right triangle, the square of the hypotenuse is equal to the sum of the squares of the
other two sides. If we consider an isosceles right triangle with a = b = 1, then the
length of the hypotenuse c is c2 = 12 + 12 = 1+ 1 = 2, which implies c = √2. And
so the Greeks thought of

√
2 in terms of geometry – as the distance determined by the

hypotenuse of this simple triangle. In more recent centuries, as the sophistication of
algebraic notation and manipulation has increased, mathematicians have also come to
think of

√
2 algebraically—as the solution of the polynomial equation x2− 2 = 0; this

perspective is developed in Section 3.5.
As the Pythagoreans investigated this number’s properties, they recognized that√

2 is not a rational number, but is instead irrational. In this setting, “irrational” simply
means not rational; the other English usage of the word “irrational” is in reference to
mental activities rather than numbers and is attributable to the common Greek linguistic
root shared by “ratio” and “reason.”

We consider a proof that
√

2 is irrational and explore some natural extensions of
this result to prove that other real numbers are irrational. Over the centuries, many
different proofs have been given for the irrationality of

√
2. In a famous book entitled

A Mathematician’s Apology, the English mathematician G. H. Hardy [112] praised
the intrinsic beauty of mathematics and his love for mathematical results free of
applications. Hardy highlighted the algebraic proof we study in this text that

√
2 is

irrational as one of the most elegant proofs in mathematics. In preparation for presenting
this proof, the following question considers common factors shared by numerators and
denominators of rational numbers.

Question 3.4.2 For a rational number of the form m
n , the integer m is called the numerator and

n is called the denominator. Sometimes the numerator and denominator are not
relatively prime, but share a common factor; in this case the common factors can
be cancelled and the rational number expressed in lowest terms. Express each
rational number as a fraction in lowest terms.

(a)
2, 965

10, 000
(c) 2.2965

(b)
10, 505

100
(d) 0.10505

■

With this terminology in hand, consider the following proof of the irrationality
of
√

2.
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Theorem 3.4.1 The square root of two is irrational.

Proof This classical algebraic proof proceeds by contradiction, assuming that
√

2 is
rational and working toward a contradiction.

From the assumption that
√

2 is rational, there exist integers m and n (with n
nonzero) such that

√
2 = m/n. Furthermore, we may assume that m and n share

no common factors; any common divisor could be factored out and cancelled.
A contradiction is obtained from these assumptions by showing that m and n must
actually share a common factor of 2.

Since
√

2 = m/n, we have m = √2 · n and so m2 = 2n2. The fact that 2
divides m2 implies 2 divides m (see exercise 15 in section 3.1 or exercise 15 at the
end of this section). Therefore, m = 2k for some k ∈ Z. Substituting this term into
the expression m2 = 2n2, we have (2k)2 = 2n2. Expanding gives us 4k2 = 2n2,
which implies that 2k2 = n2. This same line of argument also proves that n is even.
Since m and n are both even, they have a common divisor of 2, contradicting the
assumption that m and n share no common factor.

■

Before considering extensions of this result, we pause to reflect on the significance
of the proof that

√
2 is irrational and the integrity of the Pythagoreans in accepting the

results of their intellectual explorations. For perhaps much of your mathematical life,
you have been aware of the existence of irrational numbers such as π , e, and

√
2. In

contrast, the Pythagoreans mistakenly first thought of all numbers as ratios of integers,
and much of their pseudoreligious philosophy hinged on ratio relationships among
integers. The realization that

√
2 is irrational must have initially upset their world view;

dramatic, apocryphal stories describe the first Pythagorean to recognize this proof as
being thrown overboard in the Mediterranean Sea to drown. And yet, the Pythagoreans
recognized mathematical truth and proof as absolute, and the mathematicians of
the sixth century b.c.e. accepted the veracity of this result and its consequences. In
subsequent years, mathematicians eventually came to recognize just how fundamental
the irrational numbers are to an understanding of the continuum of the real number
line, as we will see in our continuing study of the reals.

The next question considers a natural extension of theorem 3.4.1 to the next prime
number 3, and question 3.4 extends this result to any prime p. Both questions continue
using the fact that if p is a prime number, n is an integer, and p divides n2, then
p divides n.

Question 3.4.3 The following questions develop a proof that
√

3 is irrational. The proof proceeds
by contradiction, assuming

√
3 is rational and working toward the contradiction

that the numerator and denominator of a rational expression for
√

3 in lowest terms
must actually share a common factor of 3.

First assume that
√

3 is rational. By the definition, there exist integers m and
n 	= 0 such that

√
3 = m/n. Furthermore, assume m/n is in lowest terms, so that

m and n do not share any common factors.

(a) Algebraically manipulate
√

3 = m/n and determine an expression for m2 in
terms of n.

(b) Working with the expression for m2 from part (a), prove that m is a multiple
of 3, and so m = 3k for some integer k ∈ Z.
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(c) Substituting into the expression for m2 from part (b), find an expression for
n2 in terms of k and prove that n is a multiple of 3.

(d) What common factor is share by m and n?
(e) State the resulting contradiction and conclusion.
(f) Based on your answers to these questions, write a proof that

√
3 is

irrational, using complete sentences and supporting algebraic computations
at appropriate points in the argument.

■

Question 3.4.4 Prove that if p is a prime number, then
√

p is irrational.
■

Thus far, rational and irrational numbers have been defined in terms of the ability
to represent them as fractions of integers. These numbers are also characterized by
their decimal expansions. Consider the following theorem.

Theorem 3.4.2 A real number r ∈ R is rational exactly when the decimal expansion of r terminates
or repeats periodically, while a real number r ∈ R is irrational when the decimal
expansion of r is nonterminating and nonrepeating.

Theorem 3.4.2 may be familiar from your earlier studies in mathematics. The
proof of this result is beyond the scope of this text and is left for your later studies.
Even so, this description of rational and irrational numbers in terms of their decimal
expansions is helpful in many settings.

Example 3.4.1 We consider some examples of decimal expansions of rational and irrational
numbers.
Long division of integers produces the following decimal expansions.

1

8
= 0.125

1

9
= 0.111 . . . = 0.1

In contrast, the following irrational numbers have infinite, nonrepeating decimal
expansions, where

e = lim
n→∞(1+ 1/n)n

and π is defined as the circumference of a circle with diameter 1.
√

2 = 1.4142356 . . . e = 2.718281828 . . . π = 3.14159265 . . .

■

Although irrational numbers require infinite decimal expansions to be expressed
exactly, humans and computers are only capable of manipulating finite decimal
expansions. As such, identifying accurate finite approximations of irrational numbers
can be an important goal in a study of the irrationals and has become a common topic in
the sequence of calculus courses. On a less serious note, there even exist societies and
contests devoted to memorizing initial parts of the decimal expansion of π , sometimes
using mnemonics, such as “How I wish I could enumerate pi easily today” (the number
of letters in each word is the first part of the expansion of π). How many digits of π

do you know by heart?
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The history of proving π and e irrational is interesting. While the ancient Greeks
knew about the number π and “believed” it was irrational, it was not until 1768 that
the first proof of the irrationality of π was given by the Johann Heinrich Lambert,
a mathematician from the Alsace–Lorraine region on the Swiss–German border. In
1794, the French mathematician Adrien-Marie Legendre proved π2 is irrational. The
definition of e as the limit

e = lim
n→∞(1+ 1/n)n

was given in 1683 by the Swiss mathematician Jakob (Jacques) Bernoulli. Euler proved
e is irrational in 1737, and a simple proof of this result is given with theorem 3.4.3
below. In addition to his work with π , Lambert also proved that en is irrational for
any n ∈ Z∗. In 1996, the Russian mathematician Yuri Nesterenko from Moscow State
University proved that π + eπ is irrational. At the same time, the (ir)rationality of
many numbers is still an open question, including πe, 2e, and π

√
2.

Theorem 3.4.3 The real number e is irrational.

Proof This result uses some results about power series from calculus. The strategy
is to prove that the nonzero real number 1/e is not rational, and so e is not
rational. Substituting x = −1 into the power series e x =∑∞n=0 xn/n!, we obtain
the following infinite series.

1

e
= 1− 1

1! +
1

2! −
1

3! +
1

4! −
1

5! +
1

6! − · · ·

Since this series is an alternating series, its sum 1/e is bounded by consecutive
partial sums. Computing the third partial sum S3 = 1 − 1 + 1/2! = 1/2 and the
fourth partial sum S4 = 1 − 1/1! + 1/2! − 1/3! = 1/3, we have the following
inequalities (using a common denominator).

2

6
<

1

e
<

3

6

Considering further successive partial sums produces the following sequence of
inequalities, which can be extended indefinitely.

2

6
<

1

e
<

3

6
,

8

24
<

1

e
<

9

24
,

44

120
<

1

e
<

45

120
,

264

720
<

1

e
<

265

720
, . . .

Notice that in each inequality, the numerators differ by 1 and the denominators
are successive factorials n! with n = 2, 3, 4, 5, . . ..

With these observations in hand, we develop a proof by contradiction.Assume
1/e is rational, and so there exist integers p, q ∈ Z with q 	= 0 such that 1/e = p/q.
The first inequality 2/6 < 1/e < 3/6 implies that the denominator q is not a divisor
of 6. If q divides 6, then 1/e could be written as m/6 for some m ∈ Z; but there
does not exist such an integer m with 2 < m < 3. Similarly, the second inequality
8/24 < 1/e < 9/24 implies that the denominator q is not a divisor of 24 = 4!, the
third inequality implies that q is not a divisor of 120 = 5!, and so on. In addition,
q does not divide either n = 1 or n = 2, since 1/e is not equal to either 1 or 1/2.
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Therefore, the denominator of 1/e is not a divisor of n! for any n ∈ N, and so 1/e
is not rational. Since 1/e is not rational, its reciprocal e is not rational.

■

We now consider the relationship between the rational numbers Q and the
continuum of the real number line R. Every rational number appears in the reals (defined
as signed distances); that is, we can identify every rational with the corresponding
directed distance from the point zero on the real number line. Therefore, Q ⊆ R.
Furthermore, this inclusion is proper; there exist irrational real numbers, include

√
2,√

3, and e as shown above.
Just as the rationals can be defined in terms of the integers, we might seek to define

the reals in terms of the rationals. Such a definition has been crafted, but it is quite
subtle in nature and was developed only in the nineteenth century. The two approaches
typically studied use either Cauchy sequences or Dedekind cuts, and both require the
use of “infinite” objects to define irrational numbers. Cauchy sequences are named in
honor of Augustin-Louis Cauchy, an insightful French mathematician who published
an impressive 789 mathematical papers covering all areas of mathematics known at
that time. When used to define irrational numbers in the reals, Cauchy sequences are
infinite lists of rationals that converge to a given irrational number.

Dedekind cuts are named in honor of the German mathematician Richard Dedekind,
who thought of this idea on November 24, 1858 and published its definition in Stetigkeit
und Irrationale Zahlen in 1872. Dedekind was Gauss’ last doctoral student and was a
close friend and colleague of many of the leading mathematicians of the time, including
Riemann, Dirichlet, and Cantor. A Dedekind cut defining a given irrational number
consists of a pair of disjoint sets, one containing every rational number less than
the given irrational and one containing every rational number greater. Both Cauchy
sequences and Dedekind cuts provide a rigorous definition of the reals in terms of the
rationals.

Finally, we consider the relationship between the real numbers R and the complex
numbers C = {a + bi : a, b ∈ R}, where i = √−1. The history of mathematician’s
understanding and acceptance of the complex numbers is a bit checkered. The
Babylonians and the ancient Greek mathematicians, including Diophantus in the third
century c.e., labeled such equations as x2 + 1 = 0 “meaningless.” In 1572, the Italian
mathematician Rafael Bombelli examined the equation x2+ 1 = 0 and recognized the
need to extend the reals to include “imaginary” numbers such as “i = √−1.” This
recognition was a significant step forward, although the mathematical community was
not convinced of the legitimacy and value of studying complex numbers until the early
1800s. Section 7.1 provides more details about the history of complex numbers.

From the definition of C, every real number r ∈ R is in the set of complex numbers
since r = r+0i ∈ C. Furthermore, the reals are a proper subset of the complex numbers,
since i =√−1 is not real.Among other things, i does not satisfy the property that r2 ≥ 0
for every r ∈ R (see exercises 67–70 at the end of this section). Thus, the real numbers
are a proper subset of the complex numbers.

For the remainder of this section, we study these number systems from the
perspective of their abstract algebraic properties, adopting the approach followed in
chapter 2 when describing groups. In this setting, we consider sets of numbers with
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both additive and multiplicative operations and that satisfy the group properties for
both operations. Such sets, together with their operations, are known as fields.

The properties satisfied by a field are more extensive than the four group properties
applied to both binary operations (as expressed in definition 2.4.1 of section 2.4).
Perhaps this need for extra conditions seems natural since a field involves two
operations on the base set, rather than the one operation of a group. These extra
properties will be familiar, since they are satisfied by the standard addition and
multiplication operations of the real numbers; the next question begins a study of
the real numbers as a field.

Question 3.4.5 Recall that R under standard addition is an Abelian group.

(a) Identify the additive identity of R.
(b) Identify the additive inverse of an arbitrary element r ∈ R.

On the other hand, R under standard multiplication is not a group—although it
comes very close. Only the inverse property is not satisfied, and this fails for just
one real number.

(c) What real number r ∈ R does not have a multiplicative inverse?

The nonzero reals R∗ = R\{0} is a multiplicative group.

(d) Identify the multiplicative identity of R∗.
(e) Identify the multiplicative inverse of an arbitrary element r ∈ R∗.

■

As question 3.4.5 indicates, standard addition and standard multiplication are both
well-behaved operations on the real numbers, satisfying the properties of an Abelian
group (except for the additive identity 0 under multiplication). The definition of a field
reflects the properties of these two operations on the reals, and there exist many other
important and familiar examples of fields. By articulating and working with these
properties from a general, abstract perspective, mathematicians gain insight and prove
results that can be applied to a host of other settings.

Definition 3.4.1 A set F under two binary operations +,× is a field when the following three
properties hold.

1. The set F is an Abelian group under the “addition” operation +. The additive
identity is called the zero and is denoted by 0.

2. The set F∗ = F\{0} is an Abelian group under the “multiplication”
operation ×. The multiplicative identity is called the unity and is denoted
by 1.

3. The multiplication operation× distributes over the addition operation+; that
is, a× (b+ c) = a× b+ a× c, for every a, b, c ∈ F.

The references to addition +, multiplication ×, zero 0, and unity 1 in the above
definition are notational. While some fields are composed of numbers with binary
operations that correspond exactly with our intuitive understanding of these symbols,
there also exist fields of vectors, functions, and other mathematical objects. In these
contexts 0, 1, and the two binary operations are naturally different than the familiar
operations that inspired their names. So why use this potentially ambiguous and
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confusing notation? In part, the answer lies in the context in which these notions
were first isolated, the historical development of these ideas, and the ongoing tradition
and culture of mathematicians. In addition, fields do behave like the real numbers under
standard addition and multiplication, and so hopefully our intuitive understanding of
the reals facilitates the study of other fields.

Given an abstract definition, mathematicians often immediately identify examples
to sharpen their understanding. Working with concrete objects may throw further light
on some mathematical behavior, perhaps leading to a modification of the definition.
Furthermore, if a proposed definition is too strong and few objects satisfy the designated
properties, then the scope of any results or insights is limited. On the other hand,
if the proposed definition is too weak, then relatively few results may be provable.
The definition of a field lies in the happy middle ground—strong enough to produce
many interesting results and weak enough that many mathematical objects satisfy its
conditions.

In addition to the real numbers, the set of rationals under standard addition
and multiplication, the complex numbers under appropriately defined operations, and
certain sets Zn under modular addition and multiplication are all fields. For the rest of
this section we consider the field properties of the complex numbers and the sets Zn.

An investigation of the field structure of the complex numbers requires the
definition of addition and multiplication operations. If a+ bi and c + di are complex
numbers, then addition is defined componentwise as follows.

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

For example, (1 + 2i) + (3 + 4i) = (1 + 3) + (2 + 4)i = 4 + 6i. Multiplication of
complex numbers uses the “F.O.I.L.” method (multiplying First, Outer, Inner, and Last
terms) and then applies the identity i2 = −1 to simplify the resulting expression; the
general algebraic formula follows.

(a+ bi) · (c+ di) = ac+ adi + bci + bdi2 = (ac− bd) + (ad + bc)i

For example, (1+ 2i) · (3+ 4i) = 1 · 3+ 1 · 4i+ 2 · 3i+ 2 · 4i2 = (1 · 3− 2 · 4)+
(1 · 4+ 2 · 3)i = −5+ 10i.

Question 3.4.6 Add and multiply each pair of complex numbers.

(a) 1+ i and 3+ 5i (c) 2− i and −4+ 3i
(b) 2 and i (d) i and 3+ 5i

■

The following question outlines the proof that the set of complex numbers is a
field under these addition and multiplication operations. In addition to the appropriate
algebraic manipulations, the key insight is to recognize that complex numbers have two
real components and to use the corresponding properties of the field of real numbers.

Question 3.4.7 This question considers the field properties of the set of complex numbers C under
addition and multiplication.

The set of complex numbers is closed under both addition and multiplication
and these two operations are both associative on the complex numbers. These prop-
erties hold because the real numbers are closed and associative under both addition
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and multiplication. The detailed computations supporting these claims are left for
the reader. Verify that the other field properties hold for (C,+, ·) in response to
the following questions.

(a) Prove that 0 = 0+ 0i is the additive identity of C.
(b) Find the additive inverse of an arbitrary complex number a+ bi.
(c) Prove that complex addition is commutative, using the fact that addition of

real numbers is commutative.
(d) Prove that 1 = 1+ 0i is the multiplicative identity of C.
(e) Find the multiplicative inverse of an arbitrary complex number a + bi and

express this inverse in the form c+di. Use the following identity in answering
this question.

1

a+ bi
= a− bi

(a+ bi)(a− bi)
(f) Prove that complex multiplication is commutative, using the fact that

multiplication of real numbers is commutative.
(g) Prove that multiplication distributes across addition for arbitrary complex

numbers a+ bi, c+ di, and e+ fi.
■

The fields studied thus far have all been infinite, but finite fields exist. Finite fields
play a pivotal role in the abstract analysis of solutions of polynomials. As it turns out,
many sets of the form Zn are fields under modular addition and multiplication; the
following theorem characterizes exactly which of these sets are fields.

Theorem 3.4.4 The set Zp under addition mod p and multiplication mod p is a field iff p ∈ Z is a
prime number.

Proof Assuming p is prime, we prove that Zp is a field. Theorem 2.4.1 from section 2.4
asserts that Zp under addition mod p is a group for every prime number p.
Furthermore, because integer addition is commutative, so is modular addition.

a⊕ b = (a+ b) mod p = (b+ a) mod p = b⊕ a

Thus, Zp under addition mod p is an Abelian group.
Similarly, theorem 2.4.3 from section 2.4 asserts that U(p) = {1, 2, . . . ,

p − 1} = Zp\{0} under multiplication mod p is a group for every prime
p. Furthermore, because integer multiplication is commutative, so is modular
multiplication.

a� b = (a · b) mod p = (b · a) mod p = b� a

Thus, Zp\{0} under multiplication mod p is an Abelian group.
Finally, since integer multiplication distributes over integer addition, modular

multiplication distributes over modular addition.

a� (b⊕ c) = [ a · (b+ c) ]mod p

= [ a · b+ a · c ]mod p

= (a · b) mod p⊕ (a · c) mod p

= (a� b) ⊕ (a� c)
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Thus Zp under modular addition and multiplication is a field.
The other half of the biconditional is often proven using the contrapositive: if

n ∈ Z is nonprime, then Zn is not a field under modular addition and multiplication.
Question 3.4.9 below considers a specific instance of this result, and exercise 64
at the end of the section asks for the general proof.

■

As with groups, Cayley tables play a role in the study and analysis of finite sets
under binary operations. Recall that Cayley tables readily determine closure, identity,
and inverses for finite sets, and so they can help prove or disprove that a given set with
two binary operations is a field.

Question 3.4.8 Consider the field Z5 under addition mod 5 and multiplication mod 5.

(a) List the five elements of Z5.
(b) Compute the Cayley table for Z5 under addition mod 5.
(c) Using the Cayley table from part (b), argue that Z5 is closed under addition

mod 5.
(d) Identify the additive identity of Z5.
(e) Determine the additive inverse of each element from Z5.
(f) Compute the Cayley table for Z5 \ {0} = U(5) under multiplication

mod 5.
(g) Using the Cayley table from part (f), argue that Z5 \ {0} is closed under

multiplication mod 5.
(h) Identify the multiplicative identity of Z5.
(i) Determine the multiplicative inverse of each element from Z5 \ {0}.
(j) Multiplication mod 5 distributes across addition mod 5. Demonstrate that this

general property a � (b ⊕ c) = a � b ⊕ a � c holds for the particular triple
of elements a = 2, b = 3, c = 4 from Z5.

■

A Cayley table is also helpful for showing that a set with binary operations is not
a field. The next question considers a number system for which the addition operation
satisfies the field properties, but the multiplication operation does not.

Question 3.4.9 Consider the set Z4 under addition mod 4 and multiplication mod 4.

(a) List the four elements of Z4.
(b) Compute the Cayley table for Z4 under addition mod 4.
(c) Compute the Cayley table for Z4 \ {0} under multiplication mod 4.
(d) Based on one of the Cayley tables from parts (b) and (c), argue that Z4 is not

a field because the inverse property fails for one of these binary operations.
■

Finally, the next example identifies an infinite set with binary operations that is not
a field.Again, the addition operation satisfies the field properties, but the multiplication
operation does not.

Example 3.4.2 The set of integers under standard addition is an Abelian group. Furthermore, mul-
tiplication distributes over addition, as noted in the proof of theorem 3.4.4 above.
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However, the nonzero integers are not an Abelian group under multiplication;
in particular, only 1 and −1 have multiplicative inverses. Therefore, the set of
integers under standard addition and multiplication is not a field.

■

3.4.1 Reading Questions for Section 3.4

1. Define the rational numbers Q in terms of the integers Z.
2. Give an example verifying that Z is a proper subset of Q.
3. State theorem 3.4.1 and the generalization of this result to an arbitrary prime

number.
4. If p is a prime number, then

√
p is the solution of what algebraic equation?

5. Discuss the distinction between decimal representations of rational and
irrational numbers.

6. Name two approaches to defining the real numbers R in terms of the rational
numbers Q.

7. Give an example verifying that Q is a proper subset of R.
8. Define the complex numbers C in terms of the real numbers R.
9. Give an example verifying that R is a proper subset of C.

10. State the three properties satisfied by a field F under two binary operations.
11. Give four examples of a field—two infinite and two finite.
12. Provide two examples of a set under two binary operations that is not a field—

one infinite and one finite.

3.4.2 Exercises for Section 3.4

In exercises 1–4, express each rational number as a fraction in lowest terms.

1.
346

1, 000

2.
783, 552

10, 000

3. 0.953

4. 44.56423

Exercises 5–8 consider how to manipulate a repeating decimal expression to obtain
an equivalent fraction. For example, 0.9 = 1 by the following sequence of algebraic
manipulations.

x = 0.9 ⇒ 10x = 9.9 ⇒
10x = 9.9

− x = 0.9
9x = 9

⇒ x = 1

In exercises 5–8, use the technique demonstrated above to express the following
rational numbers as a fraction in lowest terms.

5. 0.7
6. 0.79

7. 0.25
8. 0.545
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Exercises 9–12 consider decimal expansions and sequences of rational and irrational
numbers.

9. As noted in example 3.4.1, the decimal expansion of e begins 2.718281828.
Explain why the four digits 1828 cannot repeat indefinitely.

10. Decimal expressions that are nonterminating and nonrepeating represent
irrational numbers. For example, Lindemann studied the irrational number
0.101001000100001 . . . on his way to proving that π is irrational. Using
Lindemann’s idea, find four distinct irrational numbers. Have some fun and
think up some wild and wacky irrational numbers!

11. Prove that there exist infinitely many rational numbers by listing an infinite
sequence of distinct rational numbers.

12. Prove that there exist infinitely many irrational numbers by listing an infinite
sequence of distinct irrational numbers.

Exercises 13–17 consider divisibility properties of integers. Recall that for m, n ∈ Z,
we say that n divides m when there exists q ∈ Z such that m = n · q.
In exercises 13–17, prove each mathematical statement.

13. If 2 divides an integer n, then 4 divides n2.
14. If a prime p divides an integer n, then p2 divides n2.
15. If a prime p divides n2, then p divides n.
16. If a prime p divides n3, then p divides n.
17. If a prime p divides nk for k ∈ N, then p divides n.

Exercises 18–27 consider extensions and variations on the Pythagoreans’ proof that
the square root of two is irrational.

18. Prove that
√

5 is irrational.
19. Prove that

√
7 is irrational.

20. Prove that if p is a prime number, then
√

p is irrational.
21. Prove that

√
6 is irrational.

22. Prove that if p is a prime number greater than 2, then
√

2p is irrational.
23. Prove that if p and q are distinct prime numbers, then

√
pq is irrational.

24. Prove that 3
√

2 is irrational. Hint: Use exercise 16.
25. Prove that k

√
2 is irrational for every k ≥ 2. Hint: Use exercise 17.

26. We know that
√

4= 2 is rational. In the Pythagorean proof that
√

2 is irrational
identify the first place where the proof fails to hold for

√
4.

27. Give two examples demonstrating that if p and q are distinct prime numbers,
then

√
p+ q may or may not be irrational.

In exercises 28–33, give an example of each type of number, or explain why such a
number does not exist.

28. A rational number that is not an integer.
29. A real number that is not rational.
30. A rational number that is not real.
31. An irrational number that is not complex.
32. A complex number that is not real.
33. A number that is not complex.
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In exercises 34–39, add and multiply each pair of complex numbers.

34. 3+ 2i and 4+ 5i
35. 2+ i and 5− 3i
36. 6− 2i and 4+ 2i

37. 12 and 45i
38. 1+ 5i and 1− 5i
39. a+ bi and a− bi, where a, b ∈ R

In exercises 40–45, find the additive and multiplicative inverse of each complex
number.

40. 8+ 3i
41. 7− 2i
42. −3+ 5i

43. i
44. −2i
45. −2

Exercises 46–47 consider further computations with complex numbers.

46. For u, v ∈ C, the fraction u/v can be thought of as u · v−1; in other words, as
u times the multiplicative inverse of v. Using this approach, find the value of
(1+ i)/(2− 3i).

47. Prove that w = (1/
√

2)+ (1/
√

2)i is
√

i by computing w2 = w · w.

In exercises 48–51, each set defined below is a field under the given pair of
binary operations. Determine both the additive and multiplicative inverse of an
arbitrary element of the field. (Hint: Cayley tables are helpful for answering these
questions.)

48. {0, 2, 4, 6, 8} under addition and multiplication mod 10.

49. Z5

[√
3
]
= {a+ b

√
3 : a, b ∈ Z5} under addition and multiplication mod 5.

50. Q
[√

2
]
= {a+ b

√
2 : a, b ∈ Q} under standard addition and multiplication

Hint: Rationalize the denominator of 1/(a+ b
√

2) to find the multiplicative
inverse.

51. Q
[√

3
]
= {a+ b

√
3 : a, b ∈ Q} under standard addition and multiplication.

In exercises 52–56, compute the additive and multiplicative Cayley tables for each
field.

52. Z3

53. Z5

54. Z7

55. {0, 2, 4, 6, 8} under mod 10 operations
56. Z3[i] = {a+ bi : a, b ∈ Z3}

In exercises 57–66, each set is not a field under the given pair of binary operations.
Identify the field axioms that fail to hold and give a counterexample.

57. The natural numbers N under standard addition and multiplication.
58. The integers Z under standard addition and multiplication.
59. The set nZ = {k · n : k ∈ Z} (that is, the set of all multiples of an integer n)

under standard addition and multiplication.
60. The set {0, 1} under standard addition and multiplication.
61. The set {−1, 0, 1} under standard addition and multiplication.
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62. The set Z4 under addition mod 4 and multiplication mod 4.
63. The set Z6 under addition mod 6 and multiplication mod 6.
64. The set Zn under addition mod n and multiplication mod n, when n is not a

prime number.
65. The set of ordered pairs of integers Z2 = {(m, n) : m, n ∈ Z} under

componentwise addition and multiplication.
66. The set of ordered pairs of real numbers R2 = {(r, s) : r, s ∈ R} under

componentwise addition and multiplication.

Exercises 67–70 consider ordered fields and some of their basic properties. An
ordered field (F,+, ·) is a field with a binary relation < satisfying the following
properties.

• comparability: For all x, y ∈ F, exactly one of x < y, x = y, y < x is true.

• transitivity: For all x, y, z ∈ F, if x < y and y < z, then x < z.

• addition preserves order: For all x, y, z ∈ F, if x < y, then x + z < y + z.

• multiplication preserves positives: For all x, y ∈ F, if x > 0 and y > 0, then
x · y > 0.

In exercises 67–70, consider the ordered field of real numbers and prove the following
mathematical statements.

67. If r, s ∈ R, then (−r) · s = −(r · s) and r · (−s) = −(r · s), the unique additive
inverse of r · s.

68. If r, s ∈ R, then (−r) · (−s) = r · s.
69. If r ∈ R, then r < 0 implies −r > 0. Similarly, r > 0 implies −r < 0
70. If r ∈ R∗ = R \ {0}, then r2 > 0.

3.5 Polynomials and Transcendental Numbers

This section continues to study the basic number systems: the natural numbers; integers;
rationals; reals; and complex numbers. The previous section verified the proper subset
relationships among these sets of numbers, which clarified the numbers these sets do
and do not share in common. This section revisits each number system, considering
relationships among numbers that arise from variable expressions. Section 3.3 took
the first steps in this direction with the study of the Pythagorean theorem and Fermat’s
last theorem.

The primary focus is polynomial equations. Polynomials are the simplest and
most basic of variable expressions, and mathematicians have devoted many centuries
of effort to the study of their solutions. Context plays a key role in this investigation—
we must take care to identify the number system in which solutions are sought. The
first step is the formal definition of a polynomial.

Definition 3.5.1 A polynomial over a set F is an expression of the form anxn + · · · + a1x + a0

with nonnegative integer powers and coefficients an, . . . , a0 ∈ F. The symbol x is
a variable that can take on any value in a given variable domain. The value n is
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the greatest power of x with a nonzero coefficient and is called the degree of the
polynomial. A nonzero constant polynomial is said to have degree 0.

Polynomials are widely studied in mathematics courses. Most often, both the
coefficient set F and the domain of the variable x are a field; when they are left
unspecified, both of these sets are assumed to be the field C.

Example 3.5.1 The expression 5x3 + 6x+ 1 is a polynomial over C of degree 3. The coefficients
of this polynomial are a3 = 5, a2 = 0, a1 = 6, and a0 = 1. Notice that this same
expression could be interpreted as a polynomial over Z7; in this case, F = Z7 must
be explicitly identified. Many familiar variable expressions are not polynomials,
including x2 +√x, sin(x), ex, and x + y (though x + y is called a polynomial of
two variables).

■

Question 3.5.1 Determine the degree and the coefficients of each polynomial over C. For the first
two polynomials, also identify a finite field that could serve as F.

(a) 3x4 + 2x3 − 7x2 + 5x − 1 (c) (1+ i)x3 + 2ix − 4
(b) 2x5 + 4x2 + x (d) 2ix7 + (1+ i)

■

Question 3.5.2 Identify polynomials with degree 17, 2, 1, and 0.
■

Question 3.5.3 State three variable expressions that are not polynomials; give examples different
from those in example 3.5.1.

■

Work with polynomials often focuses around the study of zeros of polynomial
equations; that is, elements of the variable domain for which the polynomial’s value
equals 0. Zeros are often referred to as the solutions of the equation obtained by setting
the polynomial equal to 0; zeros are also said to satisfy the corresponding polynomial
equation. Solving polynomial equations is a common exercise in high school and early
undergraduate mathematics courses, where zeros are shown to be significant in many
settings. For example, zeros provide information in calculus about maximum and
minimum polynomial function values. In practical applications, polynomials’ zeros
often identify the key features of mathematical models, providing insights into the
physical and social world.

Definition 3.5.2 A zero of the polynomial anxn + · · · + a1x + a0 over a set F is an element w of
the variable domain for which anwn + · · · + a1w+ a0 = 0.

Example 3.5.2 The integer x = 2 is a zero of the polynomial 3x2 − 12 because 3 · 22 − 12 =
12 − 12 = 0. Similarly, x = −2 is also a zero of this same polynomial. On the
other hand, x = 1 is not a zero of 3x2−12 because 3 ·12−12 = 3−12 = −9 	= 0.

■

Question 3.5.4 (a) Verify that x = 3 is a zero of 2x3 − 5x2 − 9x + 18 over C.
(b) Verify that x = 3 is a zero of 2x3 − 5x2 − 9x + 18 = 2x3 + x2 + 3x over Z6.
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(c) Verify that x = 2 is not a zero 2x3 − 5x2 − 9x + 18 over C.
(d) Verify that x = i is a zero of 2x3 + 3x2 + 2x + 3 over C.

■

Example 3.5.3 The polynomial 2x2 − 10x + 12 has two zeros (x = 2 and x = 3), while the
polynomial x2 − 2x + 1 has only one zero (x = 1). If c is a zero of a polynomial,
then x − c is a factor of the polynomial. Thus, x − 2 and x − 3 are both factors
of 2x2 − 10x + 12, and this polynomial can be written as 2x2 − 10x + 12 =
2(x − 2)(x − 3). Similarly, x2 − 2x + 1 = (x − 1)2.

The power of a linear term x− c is referred to as the multiplicity of the zero c.
Thus, 2x2 − 10x+ 12 has two zeros each with multiplicity 1, and x2 − 2x+ 1 has
a single zero with multiplicity 2.

■

In this section, zeros of polynomials are considered as an alternative means of
defining the basic number systems. This study leads to an important classification
of real numbers. Recall that real numbers are either rational or irrational based on
their expressibility as fractions of integers. Real numbers can also be viewed from the
perspective of polynomial equations, with a classification of reals as either algebraic
(expressible as zeros of polynomials) or transcendental (not expressible as zeros of
polynomials).

Working toward this classification of the reals, consider the natural numbers N as
a given number system and generate the integers Z using polynomial equations over N.
In particular, elements of Z are either elements of N or are zeros of the polynomials
over N of the form x or x + n, where n ∈ N.

In a similar way, Q can be obtained from Z. Any rational number x is of the
form m/n, where m, n ∈ Z and n 	= 0. For m/n, we have nx = m, which implies that
nx − m = 0. In short, we obtain Q by starting with Z and identifying all zeros of the
polynomials n · x − m over Z.

As suggested in the last section, the real numbers R are not so readily obtained
from Q. The definition of R in terms of Q is typically given using either Cauchy
sequences or Dedekind cuts. Considering the possibility of defining R from Q

using polynomials leads to some very interesting insights and results. Since the
given base set is the rationals, the goal is to identify polynomials over the rationals
whose zeros are irrational numbers. There are many such polynomials; for example,√

2 is a zero of x2 − 2, 3
√

2 is a zero of x3 − 2, 6
√

2 is a zero of x6 − 2, and
so on. This handful of examples demonstrates that polynomials of every degree are
needed just to define the nth roots of two, for every n ∈ N. Similarly, polynomials
of every degree are needed to obtain the nth roots of other integers, including
prime numbers. Thus there does not exist a simple formulaic description for a
subset of polynomials over Q with bounded, finite degree whose zeros generate the
reals R.

Faced with this obstruction to the program of defining the reals as zeros of
polynomials over the rationals, we can either give up or reframe the approach so as
to accomplish as much as possible in terms of the original goal. When grappling with
open questions, mathematicians often need to add limiting assumptions or rearticulate
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goals to proceed to a productive analysis. In this situation, we have been seeking a set of
polynomials with bounded, finite degree over Q that generate R. A natural redirection
is to consider the zeros of every polynomial over Q. Some polynomials over Q do not
have real zeros; for example, x2 + 1 has only complex zeros i and−i. But if we gather
together every real zero of every polynomial over Q, do we obtain the set of all real
numbers? Surprisingly, the answer is no! In this way, there are fundamental limits to
the expressiveness of polynomial equations. In light of this discussion, consider the
following definition.

Definition 3.5.3 Let F ⊆ R. An element a ∈ R is called algebraic over F when a is the zero of a
nonzero polynomial over F. An element a ∈ R is called transcendental over F
when a is not algebraic over F. When F = Q, the phrase “over F” is omitted and
a is said to be either algebraic or transcendental.

The eminent Swiss mathematician Leonhard Euler first stated this distinction
among real numbers in 1744, giving the name “transcendental” to nonalgebraic reals
because “they transcend the power of algebraic methods.” Many familiar real numbers
are algebraic over Q.

Example 3.5.4 The real number 1 is algebraic because 1 is a zero of the polynomial x− 1 over Q.
The real number

√
2 is algebraic because

√
2 is a zero of the polynomial x2 − 2

over Q.
■

Extending the approach in the first half of example 3.5.4, every rational number
is algebraic. Exercise 23 at the end of this section asserts the more general claim
that every element of a field F is algebraic over F. Furthermore, example 3.5.4 also
shows that some irrational numbers such as

√
2 are algebraic. However, not every real

is algebraic, and some of the most famous of irrationals are transcendental. Several
examples are presented in the following theorem, along with the mathematician who
first proved the result and the year of its proof. Notice that these proofs followed over
a century after Euler first isolated the distinction between algebraic and transcendental
numbers in 1744.

Theorem 3.5.1 • (Liouville, 1844) There exist (real) transcendental numbers .
• (Hermite, 1873) The real number e is transcendental.
• (Lindemann, 1882) The real number π is transcendental.

Thus, some of the most significant numbers in mathematics are not only irrational,
but also transcendental. The difficulty of these proofs is reflected by their relatively
recent date of publication. Furthermore, there are many simply described real numbers
whose classification is still undetermined; for example, mathematicians still do not
know if e+ π is transcendental!

We pause to describe briefly the three mathematicians associated with theorem 3.5.1.
Joseph Liouville was an accomplished French mathematician who worked in Paris for
much of the nineteenth century. Liouville sought to prove that e is transcendental, and
(while he did not succeed) he made important progress in this direction by proving
the existence of (infinitely many) real transcendental numbers. In 1851, his work on
this same question of proving e transcendental led to a constructive proof that the
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“Liouvillian” number 0.11000100 . . . (with one appearing in each n! decimal place
and zero appearing elsewhere) is transcendental.

Charles Hermite was another nineteenth century French mathematician. Hermite
overcame many obstacles (including a physical disability and a somewhat limited
and mediocre education) to become one of the great research mathematicians of his
time. Hermite’s proof that e is transcendental was followed closely by the German
mathematician Ferdinand Lindemann’s result a few years later. In essence, Lindemann
coupled Hermite’s proof with the fact that eiπ = −1 to prove that π is transcendental.
This result also provided a negative answer to one of the classical open problems of
ancient Greek mathematics: can we square the circle by constructing a square with the
same area as a given circle using only a ruler and compass? Lindemann’s proof that π

is transcendental implies that the circle cannot be squared.
Despite the impossibility of defining R from Q using polynomials, the complex

numbers C are defined from R readily enough. In general, an arbitrary element
a+ bi ∈ C is a zero of the quadratic polynomial x2 − 2ax + (a2 + b2) over R, which
can be verified by direct substitution as follows.

(a+ bi)2 − 2a(a+ bi)+ a2 + b2 = a2 − b2 + 2abi − 2a2 − 2abi + a2 + b2 = 0.

Question 3.5.5 State polynomials over R with the following zeros.

(a) 2+ i (c) 3− 4i
(b) i2 (d) i4

■

The complex numbers possess another important property with respect to
polynomials. Recall that the polynomial x2 + 1 does not have a zero in any of
the basic number systems except for C. While i ∈ C provides a zero for x2 + 1
(and many other polynomials), a natural question is whether or not there exists a
polynomial over C that does not have a zero in C. In fact, no such polynomial exists;
that is, C is algebraically closed in the sense that every zero of every polynomial
over C is an element of C. This result implies that every polynomial over C can
be expressed as a product of linear polynomials with complex coefficients. This key
insight into the complex numbers has become known as the fundamental theorem
of algebra.

Theorem 3.5.2 Fundamental theorem of algebra A polynomial over C of degree n > 0 has n zeros
in C. These zeros need not be distinct but are counted according to multiplicity.

Sometimes the fundamental theorem of algebra is stated as the assertion that
every polynomial over C of degree n > 0 has a zero; theorem 3.5.2 follows from
this claim by repeated applications of factoring and long division. A proof of the
fundamental theorem of algebra is beyond the scope of this text and is left for your
later studies.

Versions of the fundamental theorem of algebra were stated (but not proven)
by the French mathematicians Albert Girard in 1629 and René Descartes in 1637
(in his seminal treatise La Geometrie). By the mid-1700s Jean Le Rond d’Alembert
and Leonhard Euler had attempted proofs of this theorem, but their arguments were
incomplete and so unsuccessful. The first known complete proof was given by
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Carl Friedrich Gauss in 1796. Gauss published his first proof of the fundamental
theorem of algebra at the age of 19 as part of his doctoral dissertation at the University
of Helmstedt. Since then, more than 100 different proofs have been given for this result,
and these proofs can be studied in such courses as abstract algebra, number theory,
and complex analysis. During his lifetime, Gauss published four different proofs of
the fundamental theorem of algebra, the last at the age of 70.

Question 3.5.6 Identify every zero and its multiplicity for each polynomial over C.

(a) x − 4 (c) x3 − 1
(b) x2 − 2x + 1 (d) x4 − 1

■

Knowing the existence of n complex zeros for a polynomial over C of degree
n does not necessarily provide much insight into actually finding these zeros. And
so it seems natural to ask, “How can one find the zeros of an arbitrary polynomial
over C?” This question has occupied the attention of mathematicians for centuries;
the most significant breakthrough in this area occurred in the nineteenth century when
Paolo Ruffini, Niels Henrik Abel, and Évariste Galois independently recognized the
impossibility of finding a general formula providing the solutions of polynomials with
sufficient complexity. Working in the direction of understanding these results, we
consider the process of finding zeros of polynomials over C of increasing degree one
case at a time.

3.5.1 Linear Polynomials

For a polynomial of degree n = 1, calculating the single zero is relatively straight-
forward. The unique zero of a · x + b is given by the following.

x = −b

a

When a and b are real numbers, then the meaning of −b/a is apparent. But, what if a
and b are complex? What complex number is associated with the fraction −b/a? For
a = c+ di and b = e+ fi with c, d, e, f ,∈ R, the fraction x = −b/a is expressed as a
complex number in standard form via the following computation.

x = −b

a
= − e+ fi

c+ di
= − e+ fi

c+ di
· c− di

c− di
= −ce+ df

c2 + d2
+ de− cf

c2 + d2
· i

In other words, −b/a is computed by multiplying both the numerator and the
denominator by the complex conjugate c− di of the denominator c+ di.

Example 3.5.5 We express the quotient (2+ i)/(3− 5i) as a complex number of the form a+ bi,
where a, b ∈ R.
Based on the computation modeled above, we obtain the following.

2+ i

3− 5i
= 2+ i

3− 5i
· 3+ 5i

3+ 5i
= 6+ 10i + 3i − 5

9+ 25
= 1+ 13i

34
= 1

34
+ 13

34
i

■
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Question 3.5.7 Identify the zeros of the following polynomials over C; express complex numbers
that occur as solutions in the standard form a+ bi, where a, b ∈ R.

(a) 2x − 4 (c) e · x + π + 1
(b)

√
2 · x − 8 (d) (2+ 3i)x − 12

■

Before considering quadratic polynomials, we mention a bit of the interesting
history of negative numbers. Many early mathematicians did not accept the idea of
negative numbers, including Euclid and Diophantus. The ancient Greeks thought of
numbers as physical lengths or magnitudes, and a negative length made little sense
to them. By the seventh and ninth centuries, Indian and Islamic mathematicians were
working with negative numbers. The first known example of a negative number being
written in an equation is due to the French mathematician Nicolas Chuquet in 1484. But
even as late as 1637, Descartes still referred to negative solutions of equations as “false
roots.” Ultimately, the practical use of negative numbers in commercial record-keeping
brought negative numbers into widespread acceptance and use.

3.5.2 Quadratic Polynomials

For ease of calculation, the rest of this section examines only polynomials over R,
although all of the algorithms we introduce extend to the complex numbers. When
the degree of a polynomial is n = 2, the familiar quadratic formula determines the
two zeros of the polynomial. As early as the seventeenth century b.c.e., Babylonians
understood how to apply the quadratic formula.Aspecific known example of their work
includes the determination of the two roots of x2 − x − 87 = 0 as 1

2 ±
√

349/2. The
following familiar description of the solutions of ax2 + bx + c = 0 was not expressed
until the late sixteenth century, by the French lawyer and mathematician Francois Viète.

x = −b±√b2 − 4ac

2a

The term b2− 4ac appearing inside the square root is called the discriminant. The next
example illustrates the use of the quadratic formula.

Example 3.5.6 We identify the zeros of each quadratic.

• The zeros of x2 − 1 are the two real values

x = 0±√0− 4 · 1 · (−1)

2 · 1 = ±1

.
• The zeros of x2 − 2x + 1 both equal

x = 2±√4− 4 · 1 · 1
2 · 1 = 1,

which has multiplicity two.
• The zeros of x2 + x + 1 are the complex values

x = −1±√1− 4 · 1 · 1
2 · 1 = −1

2
±
√

3

2
i.
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The corresponding factorizations of these quadratics are therefore

x2 − 1 = (x − 1)(x + 1), x2 − 2x + 1 = (x − 1)2,

and

x2 + x + 1 = [x + (1−√3i)/2][x + (1+√3i)/2].
■

Example 3.5.6 illustrates the only possible combinations of zeros for a quadratic
polynomial with real coefficients: a pair of distinct real roots, a real root of multiplicity
two, or a pair of complex conjugates. The form of the quadratic formula forces every
polynomial with real coefficients to have roots that are either real or that occur as
complex conjugate pairs.

Using the quadratic formula to identify the zeros of a quadratic polynomial
with real coefficients is familiar and relatively straightforward, as illustrated above.
However, for quadratics with complex coefficients (which result in a discriminant
that is complex) the mathematics is more subtle. Mathematicians have developed a
well-defined extension of the square root function on real numbers to a square root
function on complex numbers that enables us to express such roots in the standard
form a + bi, where a, b ∈ R. This more advanced discussion of complex numbers is
saved for chapter 7.

Question 3.5.8 Identify the two zeros of the following quadratic polynomials by either directly
factoring the polynomials or using the quadratic formula.

(a) x2 + 4x + 4 (c) 6x2 − 3x + 7
(b) 3x2 − 5x − 2 (d) 8x2 − 8x + 1

■

3.5.3 Cubic Polynomials

Polynomials over the complex numbers with degree n = 3 also have a formula that
generates its zeros—one that is more subtle and complicated. The development of
the complete solution for cubic polynomials is due to several Italian mathematicians
during the Renaissance. By 1515, Sciopione del Ferro had identified an approach
to determining the zeros of every cubic polynomial of the form x3 + mx + n; such
polynomials are known as depressed cubics. Despite his position as the Chair of
Arithmetic and Geometry at the University of Bologna, del Ferro did not publish
or announce this breakthrough. However, others eventually recognized that such
techniques must exist—del Ferro and his student Antonio Fior were winning multiple
algebra contests, which were all the rage at that time. This recognition inspired Niccoló
Fontana (better known as Tartaglia, or the “stammerer”) in the 1530s to determine
independently del Ferro’s solution. This del Ferro–Tartaglia solution of the depressed
cubic x3 + mx + n is the zero x1 produced by the following formula.

x1 =
3
√√√√−n

2
+
√

n2

4
+ m3

27
−

3
√√√√n

2
+
√

n2

4
+ m3

27
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Once x1 is found, polynomial long division is used to express the cubic as

x3 + mx + n = (x − x1) · (ax2 + bx + c), where a, b, c ∈ C.

Finally, applying the quadratic formula to ax2 + bx + c produces the other
two zeros.

Example 3.5.7 We identify the three zeros of the cubic polynomial 2x3 − 6x + 4.
The polynomial is not a depressed cubic, but this is easily remedied by dividing
the original polynomial by two. The cubic x3 − 3x + 2 has the same zeros as the
original. The del Ferro–Tartaglia solution of this depressed cubic is computed as
follows.

x1 =
3
√√√√−2

2
+
√

22

4
+ (−3)3

27
−

3
√√√√2

2
+
√

22

4
+ (−3)3

27

= 3
√
−1+√1− 1 − 3

√
1+√1− 1 = −1− 1 = −2

Using long division, we factor x3 − 3x + 2 into the linear term (x + 2) and a
quadratic term.

x2 − 2x + 1
x + 2 x3 − 3x + 2
−(x3 + 2x2)

−2x2 − 3x + 2
−(−2x2 − 4x)

x + 2
−(x + 2)

0

Therefore, x3−3x+2 = (x+2)(x2−2x+1). Finally, applying the quadratic
formula with a = 1, b = −2, and c = 1, we have x2 = x3 = 1. Thus, the
three zeros of the original polynomial 2x3 − 6x + 4 are x1 = −2, x2 = 1,
and x3 = 1.

■

Question 3.5.9 Find the del Ferro solution to the cubic polynomial 3x3 − 36x + 48.
■

In the late 1530s, Tartaglia not only recovered the del Ferro solution for depressed
cubics, he also obtained solutions for many types of other cubic polynomials (but not
all). Like del Ferro, Tartaglia also did not publish or announce his results, although
he did share them privately with Girolama Cardano, a well-established physician and
mathematician from Milan. Just a few years later, Cardano extended Tartaglia’s work
to find a complete solution of general cubic polynomials, which he published in an
important 1545 book entitled the Ars Magna (that is, The Great Art, or the Rules
of Algebra).

Cardano’s work identified a transformation that reduces a general cubic
polynomial to a corresponding depressed cubic. For a cubic polynomial of the
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form ax3 + bx2 + cx + d, the following transformation produces a corresponding
depressed cubic y3 + my + n.

y = x + b

3a
m = c

a
− b2

3a2
n = 2b3

27a3
− bc

3a2
+ d

a

This mapping of variables and coefficients is known as Cardano transformation. The
zeros of the general cubic are found by applying the Cardano transformation and then
finding the del Ferro–Tartaglia solution y1 that is a zero of y3 + my + n. Computing
the inverse transformation, x1 = y1 − (b/3a) is a zero of the original cubic ax3 +
bx2+ cx+ d. The other two zeros are determined as before: use long division to factor
the original polynomial into a linear term and a quadratic term, and finally apply the
quadratic formula to produce the other two zeros. The next question carefully leads
you through the process of using the Cardano transformation to find the zeros of a
general cubic polynomial.

Question

3.5.10

Find the zeros of the cubic polynomial x3 − 6x2 + 11x − 6.

(a) The leading coefficient of this polynomial is a = 1. Identify the other three
coefficients b, c, and d when viewing this polynomial from the perspective of
the general cubic polynomial ax3 + bx2 + cx + d.

(b) Applying the Cardano transformation, find the coefficients m and n of the
corresponding depressed cubic y3 + my + n.

(c) Compute the del Ferro–Tartaglia solution y1 that is a zero of y3 + my + n.
(d) Implement the inverse transformation x1 = y1 − (b/3a) to obtain a zero x1

for x3 − 6x2 + 11x − 6.
(e) Find the other two zeros x2 and x3 for x3 − 6x2 + 11x− 6 using long division

and the quadratic formula.
■

3.5.4 Quartic Polynomials

With this success in identifying zeros of a general cubic, mathematicians naturally
turned their attention to polynomials of degree n = 4, known as quartics. In 1545, the
Italian mathematician Lodovico Ferrari (a student of Cardano) developed an algorithm
for finding the zeros of the general quartic polynomial ax4 + bx3 + cx2 + dx + e.
Ferrari’s success in solving the general quartic polynomial led to a professorship
in Bologna and was one of the factors that prompted Cardano’s publication of the
Ars Magna.

As you might expect, the Ferrari quartic algorithm is much more complicated than
the del Ferro–Tartaglia solution; this text does not provide an example of a detailed
Ferrari calculation. In general, the algorithm “completes the square” of the quartic and
then finds zeros in a nesting of quartic, cubic, and square roots—similar in flavor to the
nesting of roots used to find the zeros of cubics. For your interest, Ferrari’s method is
summarized here. The zeros of ax4+ bx3+ cx2+ dx+ e are found by first calculating:

A=−3b2

8a2
+ c

a
, B= b3

8a3
− bc

2a2
+ d

a
, and C =− 3b4

256a4
+ cb2

16a3
− bd

4a2
+ e

a
.
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If B = 0, the four roots are given by

x = − b

4a
±
√
−A±√A2 − 4C

2
.

Otherwise, compute

D = −A2

12
− C, E = − A3

108
+ AC

3
, and F = E

2
±
√

E2

4
+ D3

27
,

where plus or minus is chosen in the formula for F so that F 	= 0. Now set G = 3
√

F
(in case F is complex, choose any one of the three cube roots) and define

H =
⎧⎨⎩ 0 if G = 0

D

3G
if G 	= 0.

Letting y = −5A/6− G+ H, the four roots are given by

x = − b

4a
+ ±1

√
A+ 2y ±2

√−(3A+ 2y ±1 2B/
√

A+ 2y)

2
,

where the two symbols ±1 must have the same sign, and the other symbol ±2 acts
independently.

The most important fact to understand here is that such an algorithm exists.
Furthermore, the solution requires only certain types of algebraic operations applied
to the coefficients of the given polynomial: addition and subtraction; multiplication
and division; and nth roots. Mathematicians refer to such solutions as a solutions by
radicals.

3.5.5 Quintic and Higher-Degree Polynomials

With so much success by the middle of the sixteenth century, mathematicians
optimistically turned their attention to higher-degree polynomials. The next goal was to
determine a solution by radicals for the zeros of a general quintic polynomial equation
ax5 + bx4 + cx3 + dx2 + ex + f of degree n = 5. Mathematicians in the sixteenth,
seventeenth, and eighteenth centuries believed that all polynomials had solutions by
radicals and expected it would be just a matter of time until a general algorithm
would be identified. In 1771, the Italian–French mathematician Joseph-Louis Lagrange
began studying “permutations,” or mappings, of zeros of polynomials in his treatise
Reflections on the Algebraic Theory of Equations. While he did not obtain a solution,
Lagrange’s work provided insight that helped the next generation of mathematicians
obtain a complete analysis.

As it turns out, the general quintic polynomial is not solvable by radicals. The
Italian mathematician Paolo Ruffini published his first attempt to prove the insolvability
of the quintic in a 1799 book entitled General Theory of Equations in which it is Shown
that the Algebraic Solutions of the General Equation of Degree Greater than Four is
Impossible. Ruffini built on Lagrange’s work and developed many new, important
theorems (that are now interpreted as group-theoretic results). With the exception of
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one gap in his argument, Ruffini proved the insolvability of the quintic, but his work
was not fully understood or accepted by the leading mathematicians of his time.

Independent of Ruffini’s work, the Norwegian mathematician Niels Henrik Abel
proved the insolvability of the quintic in 1824. His proof was similar in character to
Ruffini’s, but without the important gap that Ruffini had overlooked. Évariste Galois,
who was unaware of the work of Ruffini and Abel, drafted a proof of the insolvability
of the quintic by developing an abstract approach to studying solutions of polynomials.
Galois’ results give a condition that determines when a fifth degree polynomial can
be solved by radicals and when one cannot. Though Galois died young, his insights
were eventually developed into a subfield of abstract algebra that has become known
as Galois theory, which remains an active area of research and study. Contemporary
mathematicians typically prove the insolvability of the quintic using the powerful,
general results of Galois theory. The next theorem formally states this insolvability of
the quintic in what has become known as Abel’s theorem.

Theorem 3.5.3 Abel’s Theorem If an integer n ≥ 5, then there does not exist a solution by radicals
that identifies every zero of an arbitrary polynomial over C of degree n; that
is, there is no general formula using only the algebraic operations of addition,
subtraction, multiplication, division, and integer roots of polynomial coefficients
that provides every zero of an arbitrary polynomial over C of degree n.

Although the proof of Abel’s theorem is difficult, this result provides a complete
understanding of a constructive approach to factoring an arbitrary polynomial into
linear terms: such a uniform algorithm involving basic algebraic operations exists only
for polynomials of degree 4 or less. In order to factor a polynomial of degree greater
than 4, enough zeros must be identified by other means to reduce the polynomial’s
factors to degree less than or equal to four.

Abel’s theorem does not imply the impossibility of finding zeros for all poly-
nomials of degree greater than four (for example, we can readily solve x5 = 0), only
that there is no procedure using the basic algebraic operations that simultaneously
solves every such polynomial of a given degree. In addition, this result ensures only
that polynomials of degree greater than four are not uniformly solvable by radicals;
other solutions are possible using other operations. Many positive results have been
proven. In the 1850s, Charles Hermite, Leopold Kronecker, and Francesco Briosch
independently proved that quintic polynomials are solvable using “elliptic modular”
functions. In the following decades, solutions were found for polynomials of degree
greater than four using such tools as modular functions, theta functions, and Mellin
integrals. Furthermore, in the 1990s, mathematicians successfully found a solution by
radicals for those quintics that are solvable by radicals.

3.5.6 Reading Questions for Section 3.5

1. What is a polynomial? Give an example of a polynomial and a variable
expression that is not.

2. What is the degree of a polynomial? Give an example.
3. Define and give an example of a zero of a polynomial.
4. Define and give an example of an algebraic number over Q.
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5. Define and give an example of a transcendental number over Q.
6. State the fundamental theorem of algebra.
7. What is the complex conjugate of a complex number? How do we use the

complex conjugate to simplify fractions involving complex numbers?
8. State the formula that provides every zero of any given quadratic polynomial.
9. Define and give an example of a depressed cubic.

10. State the formula that provides the del Ferro–Tartaglia solution of a depressed
cubic.

11. Define the Cardano transformation that maps a general cubic polynomial to
a depressed cubic polynomial.

12. State Abel’s theorem. Why is it interesting?

3.5.7 Exercises for Section 3.5

In exercises 1–6, state the degree of each polynomial or explain why the given variable
expression is not a polynomial.

1. 2x2 + 3x + 5
2. ix5 + ex3 + π

3. x + x−1

4. x
5
2 + x

3
2 + x

1
2

5. x247 + tan(x2)
6. ex2 + ex + e

In exercises 7–12, determine if the given number is a zero of the specified polynomial.

7. x = 4 for x − 4 over C

8. x = 4 for x − 4 over Z3

9. x = 3+ i for x2 + x − 3i over C

10. x = i for x4 − 1 over C

11. x = 2 for x2 + 3x + 2 over Z6

12. x = 3 for x2 + 3x + 2 over Z6

In exercises 13–16, prove each mathematical statement.

13. x2+3x+2 has four zeros over Z6

14. x2 + 2x + 2 has no zeros over Z4

15. x + 3 has no zeros over N

16. 2x + 1 has no zeros over Z8

In exercises 17–30, prove each statement about algebraic and transcendental numbers.

17. 4/5 is algebraic over Q

18. 4/5 is algebraic over Z

19. 3
√

5 is algebraic over Z

20. 3
√

5 is algebraic over Q

21. 4
√

14/5 is algebraic over Z

22. 5
√

3/4 is algebraic over Q

23. If a ∈ F a field, then a is algebraic
over F.

24. 5e is transcendental over Q

25. π
2 is transcendental over Q

26. 4 is transcendental over N

27. π2 	= aπ + b, where a, b ∈ Q

28. π2 = aπ + b, for some
a, b ∈ R

29. e3 = ae2 + be+ c, for some a, b,

c ∈ R

30. e3 	= ae2 + be + c, where a, b,

c ∈ Q

In exercises 31–54, identify every zero of each polynomial. Unless otherwise stated,
assume all polynomials are over C and express your solutions in standard form.

31. x − 2
32. x − 2 over Z5

33. x − 2 over Z7

34. 4x + 5
35. (1− 3i)x − (3+ 5i)
36. (−2+ 4i)x − (7+ 3i)
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37. 12x + (5+ 9i)
38. (2+ 10i)x − 6i
39. x2 + 2x − 15
40. x2 + 2x + 2
41. 3x2 + 2x + 2
42. x2 + 10x − 39
43. x3 − 8
44. 8x3 − 27
45. x3 − 9x − 28

46. 5x3 − 45x − 140
47. x3 − 12x + 16
48. x3 − 12x − 16
49. x3 − 3x2 + 3x − 1
50. x3 − 6x2 + 11x − 6
51. x3 − 7x2 + x − 7
52. x3 − 6x2 + 14x − 15
53. x3 − 15x2 + 81x − 175
54. 2x3 − 6x2 − 8x + 24

In exercises 55–58, find the del Ferro–Tartaglia solution of each cubic.

55. x3 + 15x + 7
56. x3 − 8x − 9

57. 3x3 + 27x − 6
58. 2x3 − 14x + 16

In exercises 59–62, find the corresponding depressed cubic for each cubic under the
Cardano transformation.

59. 3x3 + 7x2 − 6x − 4
60. 17x3 + 6x2 − 4x + 11

61. 3x3 − 2x2 + 19x − 8
62. 4x3 − 9x2 + 16x − 1

Exercises 63–70 introduce a number system extending the complex numbers known
as the quaternions. This number system was first defined by the Irish mathematician
Sir William Rowan Hamilton in 1843, and so H denotes the set of quaternions
{ a+ bi + cj + dk : a, b, c, d ∈ R}, where the three distinct quantities i, j, k satisfy
the following relationships.

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

The quaternions are a field under componentwise addition and a multiplication
operation, where products of i, j, k simplified using the above identities. The following
examples illustrate these operations.

(4+ 5i + 2j)+ (2+ j + 4k) = (4+ 2)+ (5+ 0)i + (2+ 1)j + (0+ 4)k

= 6+ 5i + 3j + 4k

(i + j) · (2i + 3k) = i · 2i + i · 3k + j · 2i + j · 3k

= −2+ 3(−j)+ 2(−k)+ 3i = −2+ 3i − 3j − 2k

In exercises 63–70, compute the following sums, differences, and products of
quaternions, expressing the answers in the form a+ bi + cj + dk where a, b, c, d ∈ R.

63. (1+ 5i + 10k)+ (2− 3i + 3j − 2k)
64. (2− 3i + 2j − 6k)+ (3− 3i − 2j + 5k)
65. (3+ 5i − 3k)− (4+ 3i + 7j + 3k)
66. (4− 3i + 7j + k)− (1+ 3i − 2j − 4k)
67. (3+ 10k) · (1+ 4i)
68. (4+ 2j) · (5− i)
69. (1+ 5i − 7j + 10k) · (2− 3i + 2j − 6k)
70. (3+ 5i + 2j − 3k) · (1+ 4i)
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3.6 Mathematical Induction

This section studies a proof technique commonly used to demonstrate that mathe-
matical statements are true for all elements of certain types of sets. The movement
from considering particular examples and counterexamples to making claims about all
mathematical objects in a given setting is fundamental to mathematics. As we have
seen, intuition is key to developing new insights, but verifying the truth of a conjecture
often requires considerably more effort. For certain infinite sets, we need a new proof
technique known as mathematical induction to prove claims about all objects in a
given set.

Before considering the infinite setting, recall that truths about finite sets can
be established using proof by exhaustion. For a finite set (that is not too large), a
mathematical statement can be proven true for every element in the set by verifying the
statement holds for each element of the set one at a time. In this way, the set of possible
counterexamples is “exhausted.” For example, every element of the set {0, 2, 4, 6} is
even because 0 = 2 · 0, 2 = 2 · 1, 4 = 2 · 2, and 6 = 2 · 3; that is, each element of the
given set is directly demonstrated to be even. As we can readily imagine, larger and
larger finite sets can make proofs by exhaustion anything from tedious to impossible
during a human’s lifetime, although computers are of significant help when studying
large finite sets that are readily amenable to algorithmic description. However, proof
by exhaustion is not applicable when studying infinite sets. As finite beings, we are
simply incapable of individually verifying that every element of an infinite set satisfies
a given mathematical claim. Instead, in certain infinite settings, the proof technique
known as mathematical induction is used to prove mathematical statements.

We begin the study of mathematical induction by considering infinite “end
segments” of the integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. An end segment of Z

is a set consisting of every element of Z that is greater than some designated integer
n ∈ Z. Notice that every end segment of Z is infinite. Induction is particularly suited
to proofs about end segments of Z, and most mathematicians identify induction with
such sets of numbers.

Example 3.6.1 Each set given below is an end segment of the integers.

• N = {1, 2, 3, . . .}
• {n : n ≥ 5} = {5, 6, 7, 8, . . .}
• {n : n ≥ −2} = {−2,−1, 0, 1, . . .}

■

In previous mathematics courses, you may have studied mathematical claims about
end segments of the integers, such as the following.

For every n ∈ N,

n∑
i=1

2 = 2+ · · · + 2 = 2n.

For every n ≥ 5, n2 < 2n.

If a1 = 1, a2 = 3, ak = ak−2 + 2ak−1, then for every n ≥ 1, an is odd.

The truth of such statements is established using induction. There are two different
renditions of induction: mathematical induction (also called “weak” induction or
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simply “induction”); and strong mathematical induction. The first two claims given
above are proven via induction, while the third requires strong induction. The
distinction between these two types of induction lies in how much information about
a “base case” the proof must address, as well as how many elements we use in
an “inductive” step of the proof. This distinction is discussed more carefully at an
appropriate point as we consider various examples. The principles of mathematical
induction are stated in the following theorem. Recall from section 1.6 that a predicate
P(k) is a string of symbols that can be interpreted as a predicate phrase about variables
(such as k and n) or about specific numbers (such as a below).

Theorem 3.6.1 • Principle of weak induction Let P(k) be a predicate defined on integers k ∈ Z

and let a ∈ Z. If P(a) is true and, for all n ≥ a, we have P(n) implies P(n+ 1),
then P(n) is true for all integers n ≥ a.

• Principle of strong induction Let P(k) be a predicate defined on integers k ∈ Z

and let a, b ∈ Z with a ≤ b. If P(a), P(a + 1), . . . , P(b) are true and, for all
n ≥ a, the conjunction [P(a) ∧ P(a + 1) ∧ . . . ∧ P(n)] implies P(n + 1), then
P(n) is true for all integers n ≥ a.

These principles of induction are often described using the image of a line of
dominoes falling down. For weak induction, we prove that P(a) is true and that P(n)
implies P(n+ 1) for all n ≥ a. In the domino setting, this corresponds to knowing both
that the first domino has fallen down and that when any domino falls down, the next
domino in line must also fall down. These two observations about a line of dominoes
leads to the conclusion that every domino in the line has fallen down. The principle of
strong induction is similar except that we need to know that the first few dominos have
fallen down, and that all the dominoes have fallen down up to some point in the line
implies the next domino in line must also fall down. In some mathematical settings, the
claim that a statement is true for a particular integer depends on knowing the statement
is true for every preceding integer (rather than just the immediate predecessor).

While such intuitive descriptions of induction are helpful, a mathematician is also
interested in a rational proof that induction is true. The choice of the word “Principle”
in naming mathematical induction highlights the fact that these statements are typically
not understood as theorems. Instead, induction is taken as an axiom (a fundamental
belief) that helps define the natural numbers and end segments of the integers. In 1838,
the English mathematician Augustus De Morgan introduced the term “mathematical
induction” in Induction Mathematics, which provided the first clear statement of this
fundamental proof technique. In 1887, the contemporary statement of induction was
given by the German mathematician Richard Dedekind in Was sind und Was sollen die
Zahlen? Furthermore, by 1889, the Italian mathematician Giuseppe Peano identified
five axioms precisely defining the natural numbers N in Arithmetices principia, nova
methodo exposita. The principle of weak induction is the fifth of Peano’s axioms for
arithmetic. We therefore do not prove that mathematical induction is valid, but instead
choose to accept these principles because they are rooted in our intuitive understanding
of the integers.

As a point of clarification, in some settings the principle of mathematical induction
is proven using the well-ordering principle of the integers, which asserts that every
subset of integers that is bounded below has a least element. However, one can also
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prove the well-ordering principle using the principle of mathematical induction, and so
these two principles are actually equivalent. These proofs are often studied in courses
in set theory and abstract algebra and are left for your later studies. Instead, this
section focuses on developing a facility with using induction to prove the validity of
mathematical statements. The first example proves a finite series (or finite summation)
formula commonly used for directly computing Riemann sums when beginning a study
of the integral in calculus.

Example 3.6.2 We use induction to prove that for every integer n ≥ 1, we have

n∑
i=1

i = n(n+ 1)

2
.

Recall that the notation
∑n

i=1 denotes a finite sum with an unspecified integer upper
bound. For example,

∑3
i=1 i = 1+ 2+ 3 = 6 and

∑n
i=1 i = 1+ 2+ 3+ · · · + n.

Therefore, the above formula claims that an arbitrary sum of successive integers∑n
i=1 i is equal to n(n+ 1)/2.

Proof This claim about every integer greater than or equal to 1 is proven using the
principle of weak induction on the predicate P(k) asserting “

∑k
i=1 i = k(k + 1)/2.”

Referring to theorem 3.6.1, the principle of induction instructs us to begin with
the base case a = 1; that is, we must prove P(1) is true. After settling the base
case, theorem 3.6.1 instructs us to prove the inductive step in which we assume
P(n) is true for some arbitrary, fixed integer n ≥ 1 and demonstrate (under this
assumption) that P(n+ 1) must also be true. For this example, the assumption is
that

∑n
i=1 i = n(n+ 1)/2, and this assumption is used to prove that

n+1∑
i=1

i = (n+ 1)[(n+ 1)+ 1]
2

is true. In this context, P(n) asserting that
∑n

i=1 i = n(n+ 1)/2 is known as the
induction hypothesis.

■

Base case a = 1. By direct computation,
∑1

i=1 i = 1 = 1(1+ 1)/2.

Inductive step We assume P(n), asserting that
∑n

i=1 i = n(n+ 1)/2. Under this assumption,
we prove P(n+ 1) asserting that

n+1∑
i=1

i = (n+ 1)[(n+ 1)+ 1]
2

.

The following string of equalities provides the desired conclusion.

n+1∑
i=1

i = 1+ · · · + n+ (n+ 1) Definition of series

= [1+ · · · + n] + (n+ 1) Associativity of integer addition
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=
n∑

i=1

i + (n+ 1) Definition of series

= n(n+ 1)

2
+ (n+ 1) Induction hypothesis

= n(n+ 1)

2
+ 2(n+ 1)

2
Basic algebra

= n(n+ 1)+ 2(n+ 1)

2
Common denominator

= (n+ 1)(n+ 2)

2
Factor (n+ 1)

= (n+ 1)[(n+ 1)+ 1]
2

n+ 2 = (n+ 1)+ 1

Therefore, by induction,
∑n

i=1 i = n(n+ 1)/2 for every n ≥ 1.
■

In the inductive step of example 3.6.2 above, the use of the induction hypothesis is
crucial to the success of the proof. As we work through several examples, observe how
the inductive hypothesis is incorporated into the proof; understanding this element of
these arguments will help you develop your own induction proofs. In addition, you’ll
want to observe the style and presentation of these inductive proofs and emulate these
models when crafting your own proofs.

Question 3.6.1 Using induction, prove that
∑n

i=1 2 = 2n for every n ≥ 1.
■

The first known proof by induction was given by the Italian mathematician
Francesco Maurolico in 1575. Maurolico proved that the sum of the first n odd integers
is n2 in Arithmeticorum libri fuo. However, the principle of mathematical induction
is useful for proving a whole host of different results about infinite end segments of
the integers, not just facts about series. In the next example and question, induction is
used to prove the validity of certain inequalities among integers.

Example 3.6.3 We use induction to prove 2n+ 1 < 2n for every n ≥ 3.

Proof This inequality is proven using the principle of weak induction on the predicate
P(k) asserting that “2k+1 < 2k .” The base case is n= 3, so we prove 2 ·3+1 < 23,
and the inductive step assumes 2n+ 1 < 2n and proves 2(n+ 1)+ 1 < 2n+1.

■

Base case n = 3. Direct computations produce the following equalities.

2n+ 1 = 2 · 3+ 1 = 7
2n = 23 = 8

Since 7 < 8, we have 2n+ 1 < 2n when n = 3.

Inductive step We assume that 2n + 1 < 2n and prove that 2(n + 1) + 1 < 2n+1. Some
preparatory computations with the inequality help us identify the best use of the
inductive hypothesis in this part of the proof. Direct computations produce the
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following equalities.

2(n+ 1)+ 1 = 2n+ 2+ 1 = (2n+ 1) + 2
2n+1 = 2 · 2n = 2n + 2n

The rightmost expressions indicate how we can use both the inductive hypothesis
2n+ 1 < 2n and the fact that 2 < 2n for n ≥ 1 to prove that 2(n+ 1)+ 1 < 2n+1.
We are now ready to piece these observations together into a fluid, articulate proof;
that is, these “scratchwork” computations do not prove the inductive step, but only
point us in the right direction. The proof of the inductive step follows from the
following string of equalities and inequalities.

2(n+ 1)+ 1 = 2n+ 2+ 1 Distribution of × over +
= (2n+ 1)+ 2 Commutativity and associativity
< 2n + 2 Induction hypothesis
< 2n + 2n Since 2 < 2n for n ≥ 1
= 2n+1 Exponentiation properties

Therefore, by induction, 2n+ 1 < 2n for every n ≥ 3.
■

Question 3.6.2 Using induction, prove that n2 < 2n for every n ≥ 5. Hint: The base case is
n = 5 since the claim asserts that the inequality holds for every n ≥ 5. Also, the
result of example 3.6.3 is useful in this proof’s inductive step.

■

The principle of induction is often applied to sequences of numbers defined by
“recursion.” Informally, a sequence is a list of numbers; for example, 2, 4, 6, 8, . . ..
Such lists play an important role in the study and application of results in real analysis,
complex analysis, topology, and computer science. Sequences arise quite naturally
in both abstract mathematics and the real-world, and they exhibit a striking array of
interesting and distinct behaviors. The following definition may be familiar from your
previous studies.

Definition 3.6.1 A sequence is a function defined on all integer inputs greater than or equal to some
n ∈ Z. A sequence is typically written using the subscript notation a1, a2, a3, . . .

where an denotes the nth term of the sequence and {an} denotes the entire
sequence.

Example 3.6.4 Some examples of sequences include the following.

1, 1, 1, 1, . . . where an = 1
1,−2, 4,−8, . . . where an = (−2)n

1, 2, 6, 24, . . . where an = n!
■

In the context of studying induction, we are primarily interested in sequences that
are obtained via recursion. A sequence is defined by recursion if the first few terms
of the sequence are explicitly stated and if the value of later terms depends on the
preceding terms in the sequence. Perhaps the most widely known sequence defined by
recursion is the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, . . ..
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The first recorded definition of this sequence was given by Leonardo of Pisa, who
is better known as Fibonacci or “son of Bonaccio.” Fibonacci was an Italian merchant
who wrote the classical mathematical work Liber abaci (or Book of the Abacus) in 1202.
In this manuscript, Fibonacci developed a variety of algebraic methods, primarily in
the context of commercial transactions. Most importantly for mathematics, this text
played a key role in the dissemination and use of the Hindu–Arabic numeral system
in Europe.

In the Liber abaci, Fibonacci asked: “How many pairs of rabbits will be produced
in a year, beginning with a single pair, if in every month each pair bears a new pair which
becomes productive from the second month on?” This question defines the Fibonacci
sequence. More than just an amusing description of rabbit population growth, this
sequence has been used to model a number of real-world processes, including the
development of the arrangement of sunflower seeds and pineapple rinds, the distinctive
spiral of nautilus shells, and the family trees of certain species. The following example
studies the Fibonacci sequence using its contemporary formulation as a recursive
sequence.

Example 3.6.5 The Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, . . . is defined recursively as follows.

f1 = 1, f2 = 1, fn+2 = fn + fn+1, for n ≥ 1

The formula defining the general term fn+2 is referred to as a recurrence relation
and indicates the dependence of the value fn+2 on the values of the previous two
terms fn and fn+1. We illustrate the use of this recurrence relation by explicitly
computing the first six terms of the Fibonacci sequence.

f1 = 1

f2 = 1

f3 = f1 + f2 = 1+ 1 = 2

f4 = f2 + f3 = 1+ 2 = 3

f5 = f3 + f4 = 2+ 3 = 5

f6 = f4 + f5 = 3+ 5 = 8

You can now see why the Fibonacci sequence begins 1, 1, 2, 3, 5, 8, . . .. Contin-
uing to apply the recurrence relation in this way, we can find any desired number
of terms of the Fibonacci sequence.

■

Question 3.6.3 State the first six terms of the sequence {an} defined recursively as follows.

a1 = 1, a2 = 3, an+2 = an + 2an+1, for n ≥ 1

■

Mathematical claims about sequences are usually proven using the principle of
strong induction. The following example provides a first application of this proof
technique.
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Example 3.6.6 We prove that every term of the sequence {sn} defined recursively as follows is
odd.

s1 = 1, s2 = 3, sn+1 = sn−1 + 2sn, for n ≥ 2

Proof We use strong induction to prove the result. In this case, the predicate statement
P(k) asserts that “the term sk is odd, for any k ≥ 1.”

■

Base case n = 1 and n = 2. Since the recursion relation for sn+1 is defined using the
previous two terms, the base case must examine both P(1) and P(2). From the
definition of the sequence, we immediately observe that s1 = 1 = 2 · 0 + 1 and
s2 = 3 = 2 · 1+ 1 are both odd. Therefore, P(1) and P(2) are both true.

Inductive step The inductive hypothesis is the other key difference between strong induction
and weak induction. In strong induction, P(k) is assumed true for every integer
from k = 1 to k = n, and P(n + 1) is proved true using this collection of
assumptions. In this proof, we assume that every term of the sequence s1, s2, . . . , sn

is odd, and prove that sn+1 is odd. Applying the inductive hypothesis to the terms
sn−1 and sn, there exist integers i, j ∈ Z such that sn−1 = 2i+ 1 and sn = 2j + 1.
Substituting these values into the recurrence relation and simplifying, produces
the following algebraic manipulations,

sn+1 = sn−1 + 2sn

= 2i + 1+ 2(2j + 1)

= 2(i + 2j + 1)+ 1

Therefore, sn+1 is an odd number and, by the principle of strong induction, every
term of the sequence {sn} is odd.

■

Question 3.6.4 Prove that bn ≤ 1 for every term of the sequence {bn} defined recursively as
follows.

b1 = 9

10
, b2 = 10

11
, bn+2 = bn · bn+1, for n ≥ 1

Hint: The base case is n = 1 and n = 2 since the recursion relation for bn+2 is
defined using the previous two terms.

■

While many proofs by induction are for end segments of the integers, this
process can be extended to prove universal statements about other inductively
defined mathematical structures. In addition to the integers, the definitions of
some other mathematical objects are given using an inductive structure. Both
Richard Dedekind and the Norwegian mathematician Thoralf Skolem made impor-
tant contributions to understanding the role of induction in these more general
settings. For example, the study of mathematical logic in chapter 1 involved
several inductive definitions, including the following definition of a sentence of
sentential logic.
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Definition 3.6.2 (Definition 1.1.2 in Section 1.1) A sentence of sentential logic is a string of symbols
from the alphabet of sentential logic that satisfies the following:

1. a single sentence symbol or a single sentence variable is a sentence;
2. if B, C are sentences, then so are (∼B), (B ∧ C), (B ∨ C), (B→ C), and

(B↔ C).

This inductive definition of sentences, first identifies a “base case” of sentences
(the sentence symbols and variables), and then the other sentences are built up
through repeated application of a restricted collection of operations on the base
case sentences. This inductive definition of sentences directly parallels the inductive
definition of the natural numbers, in which n = 1 is the base case and the other
natural numbers are built up by repeatedly adding one. This inductive structure
in the definition of a sentence enables us to prove mathematical claims about
all sentences of sentential logic by using induction as illustrated in the following
example.

Example 3.6.7 We prove that the number of left parentheses in any sentence of sentential logic
is the same as the number of right parentheses.

Proof We prove this claim by induction on definition 3.6.2 for a sentence of sentential
logic.

Base case We first verify the claim is true for sentence symbols and for sentence variables.
A sentence symbol (for example, A) does not have any parentheses, and so the
number of left parentheses is 0, as is the number of right parentheses. Similarly, a
sentence variable does not have any parentheses, so again the number of left and
right parentheses is 0.

Inductive step The sentences considered in this inductive step, must include all paren-
theses (including the outermost pair) rather than omitting parentheses as has
been our custom for the sake of readability. For the inductive hypothesis,
assume that B and C are sentences, where B has m left and right paren-
theses and C has n left and right parentheses. We verify the claim is true
for sentences built up from B and C by the operations identified in defini-
tion 3.6.2. The proof is therefore organized by examining these operations one
at a time.

• (∼B): This sentence begins with a left parenthesis, which together with the
m left parentheses from B, yields a total of 1 + m left parentheses. Similarly,
there are m right parentheses from B, plus one additional right parenthesis at
the end of the sentence, to yield a total of m + 1 right parentheses. From the
commutativity of integer addition, (∼B) has the same number of left and right
parentheses.

• (B ∧ C): This sentence begins with a left parenthesis, which together with
the m left parentheses from B and n right parentheses from C, yields a
total of 1 + m + n = m + n + 1 left parentheses. Similarly, there are m
right parentheses from B, n right parentheses from C, plus one additional
right parenthesis at the end of the sentence, to yield a total of m + n + 1
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right parentheses. Therefore, (B ∧ C) has the same number of left and right
parentheses.

• A similar argument shows that (B ∨ C), (B→ C), and (B↔ C) each have the
same number of left and right parentheses. Further details are left for the next
question.

Therefore, accepting these last details, this proof by induction shows that every
sentence has the same number of left and right parentheses.

■

Question 3.6.5 Prove that if B has m left and right parentheses and C has n left and right
parentheses, then (B ∨ C), (B→ C), (B↔ C) each have the same number of
left and right parentheses.

■

Recall from section 1.3 that a set of connectives is “adequate” if every truth table is
satisfied by a sentence using only the connectives in the set. The notion of an adequate
set of connectives was introduced in a discussion of the expressibility of sentential
logic. Another important reason for our interest in adequate sets of connectives is
the simplification of inductive proofs. A complete proof of the inductive step in
example 3.6.7 involved the consideration of five distinct cases, one for each of the
connectives ∼, ∧, ∨, →, and↔.

However, if we (re)define sentences using a smaller adequate set of connectives,
then a complete proof of the inductive step may involve just one or two distinct cases.
For example, suppose we define sentences using only the connectives {∼,∧} (one of
the sets of adequate connectives discussed in section 1.3). In this setting, the two cases
considered in example 3.6.7 provides a complete proof of the claim that the number of
left parentheses in any sentence of sentential logic is the same as the number of right
parentheses.

3.6.1 Reading Questions for Section 3.6

1. Describe the process of proof by exhaustion.

2. Give an example of a proof by exhaustion.

3. Define and give an example of an end segment of the integers.

4. State the two principles of mathematical induction.

5. What is the distinction between weak and strong mathematical induction?
6. Give an example of mathematical claim that can be proven using weak

mathematical induction.
7. Give an example of mathematical claim that can be proven using strong

mathematical induction. Why is strong induction necessary?

8. Explain the role of the base case in a proof by induction.

9. Explain the role of the induction hypothesis in a proof by induction.

10. Describe recurrence relations and give an example.
11. State the first eight terms of the Fibonacci sequence.
12. What do we mean by induction on mathematical structures besides the

integers?



236 A Transition to Advanced Mathematics

3.6.2 Exercises for Section 3.6

In exercises 1–10, give a proof by exhaustion of each mathematical statement.

1. Every even integer between 4 and 20 inclusive can be written as the sum of
two primes.

2. Every odd integer between 7 and 23 inclusive can be written as the sum of
three primes.

3. Every even integer between 4 and 20 inclusive is composite.
4. Every odd integer strictly between 1 and 9 is prime.
5. There exist only two odd composite integers between 2 and 20.
6. There exists a prime between n2 and (n+ 1)2 for every integer between 2 and

10 inclusive.
7. Every integer between 2 and 4 inclusive satisfies the equation 2n ≤ n2.
8. Every positive integer n less than 7 satisfies the equation n! < 3n.
9. Every element of Z7 has an inverse under addition mod 7.

10. Every nonzero element of Z7 has an inverse under multiplication mod 7.

In exercises 11–25, use induction to prove that each statement about finite series holds
for every n ∈ N.

11.
n∑

i=1

1 = n

12.
n∑

i=1

r = n · r, where r ∈ R

13.
n∑

i=1

2i = 2n+1 − 2

14.
n∑

i=1

ri = rn+1 − r

r − 1
, where r ∈ R

15.
n∑

i=1

i · (i!) = (n+ 1)! − 1

16.
n∑

i=1

i2 = n(n+ 1)(2n+ 1)

6

17.
n∑

i=1

i3 = n2(n+ 1)2

4

18.
n∑

i=1

2i = n2 + n

19.
n∑

i=1

(2i − 1) = n2

20.
n∑

i=1

(2i−1)2 = n(2n− 1)(2n+ 1)

3

21.
n∑

i=1

4i − 3 = n(2n− 1)

22.
n∑

i=1

3i − 2 = n(3n− 1)

2

23.
n∑

i=1

i(i + 1) = n(n+ 1)(n+ 2)

3

24.
n∑

i=1

1

i(i + 1)
= n

n+ 1

25.
n∑

i=1

1

(2i − 1) · (2i + 1)
= n

2n+ 1

In exercises 26–31, use induction to prove each statement about inequalities.

26. If n > 2, then 4 < n2.
27. If n ≥ 5, then n2 < 2n.
28. If n ≥ 1, then n < 2n.

29. If n ≥ 2, then 3n+ 1 < 3n.
30. If n ≥ 0, then 2n < (n+ 2)!.
31. If n ≥ 7, then 3n < n!.
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In exercises 32–39, use induction to prove each statement about divisibility relations.
Recall that m is divisible by n iff there exists q ∈ Z such that m = n · q.

32. If n ≥ 0, then 23n − 1 is divisible by 7.
33. If n ≥ 0, then 32n − 1 is divisible by 8.
34. If n ≥ 0, then 4n − 1 is divisible by 3.
35. If n ≥ 0, then 7n − 2n is divisible by 5.
36. If n ≥ 0, then n2 − n is divisible by 2.
37. If n ≥ 1, then n3 − n is divisible by 3.
38. If n ≥ 1, then 4n + 6n− 1 is divisible by 9.
39. If n ≥ 1, then x2n − y2n is divisible by x + y.

In exercises 40–41, let {an} be the sequence recursively defined by a1 = 1, a2 = 2, and
an+2 = 2an + an+1, for n ≥ 1. Use induction to prove each mathematical statement.

40. For every n ∈ N, an ≤ 2n. 41. For every n ≥ 2, an is even.

In exercises 42–44, let {bn} be the sequence recursively defined by b1 = 4, b2 = 8,
and bn+2 = bn + bn+1, for n ≥ 1. Use induction to prove each mathematical statement.

42. For every n ≥ 5, bn ≤ 2n.
43. For every n ∈ N, bn is even.

44. For every n ∈ N, bn is divisible
by 4.

In exercises 45–46, let {cn} be the sequence recursively defined by c1 = 1, c2 = 1,
c3 = 3, and cn+3 = cn + cn+1 + cn+2, for n ≥ 1. Use induction to prove each
mathematical statement.

45. For every n ∈ N, cn ≤ 3n. 46. For every n ∈ N, cn is odd.

In exercises 47–49, let {dn} be the sequence recursively defined by d1 = 2 and
dn+1 = 3 · dn, for n ≥ 1. Use induction to prove each mathematical statement.

47. For every n ∈ N, dn ≤ 3n.
48. For every n ∈ N, dn = 2 · 3n−1.

49. For every n ∈ N, dn is even.

In exercises 50–52, let {en} be the sequence recursively defined by e1 = 3 and
en+1 = 2+ en, for n ≥ 1. Use induction to prove each mathematical statement.

50. For every n ∈ N, en ≤ 2(n+ 1).

51. For every n ∈ N, en = 3+ 2(n− 1).

52. For every n ∈ N, en is odd.

In exercises 53–56, let {fn} be the Fibonacci sequence recursively defined by f1 = 1,
f2 = 1 and fn+2 = fn + fn+1, for n ≥ 1. Use induction to prove that each mathematical
statement holds for every n ∈ N.

53. fn ≤ 2n

54. f1 + f2 + · · · + fn+1 = fn+3 − 1

55. f1 + f3 + · · · + f2n+1 = f2n+2

56. there exist a, b ∈ Z so a · fn + b · fn+1 = 1

In exercises 57–59, let {Ln} be the Lucas sequence recursively defined by L1 = 2,

L2 = 1 and Ln+2 = Ln + Ln+1, for n ≥ 1. This sequence was defined by Edouard Lucas
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as a generalization of the Fibonacci sequence. Use induction to prove that each
mathematical statement holds for every n ∈ N.

57. Ln ≤ 2n

58. Ln+2 = fn + fn+2

59. Ln+2 = 2 · fn + fn+1

In exercises 60–67, use induction to prove each mathematical statement.

60. For every n ≥ 4, n is a linear combination of 2 and 3.
61. For every n ≥ 6, n is a linear combination of 2 and 5.
62. For every n ≥ 8, n is a linear combination of 2 and 7.

63. For every n ∈ N, the product
n∏

i=2

(
1− 1

i2

)
= n+ 1

2n
.

64. For every n ∈ N, the product
n∏

i=1

1

(2i + 1) · (2i + 2)
= 2

(2n+ 2)! .

65. For every n ∈ N,
√

n ≤
n∑

i=1

1√
i
.

66. For every n ∈ N, if a set A contains n elements, then the power set P(A) of A
contains 2n elements.

67. De Moivre’s theorem For every n ∈ N and θ ∈ R, (cos θ + i sin θ)n =
cos(nθ) + i sin(nθ). Hint: In this setting i = √−1; also, consider the
trigonometric identities cos(u± v) = cos u cos v∓ sin u sin v and sin(u± v) =
sin u cos v ± cos u sin v.

68. The power rule for differentiation For every n ∈ N, (d/dx)(xn) = n · xn−1.
Hint: Use the product rule for differentiation; see theorem 4.4.1 in section 4.4.

In exercises 69–71, give a complete proof by induction on the definition of sentence
of sentential logic for each mathematical statement.

69. The number of left parentheses in any sentence is equal to the number of right
parentheses.

70. The number of connectives in any sentence is equal to the number of right
parentheses.

71. The number of connectives in any sentence is equal to the number of left
parentheses.

Notes

Number theory is a lively area of ongoing study with many intriguing open questions.
Andrews [6], Jones and Jones [134], Rosen [197], and LeVeque [155] introduce the contemporary
study of number theory; a standard graduate text in number theory is Ireland and Rosen [124].
In addition, many discrete mathematics and abstract algebra texts present various aspects of the
ideas studied in this chapter. Some standard textbooks used in discrete mathematics courses
include Epp [72], Richmond and Richmond [193], and Scheinerman [209]. Fraleigh [88],
Gallian [93], and Hungerford [122] provide excellent introductions to abstract algebra at the
advanced undergraduate and graduate level.
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As we have seen, ancient Greek mathematicians made many important contributions to
the early development of number theory. Introductory surveys of the impact of Greek ideas
on contemporary culture and mathematics are presented in Cahill [35], Jacobs [126], and
Kline [142]. A more focused study of Pythagoras and the Pythagoreans can be found both
in Kahn [135] and in Riedwig and Rendall [194]; Archimedes’ work is still published and
available inArchimedes [8]. Similarly, Bashmakova [11] and Heath [113] study the contributions
of Diophantus to the development of algebra and discuss recent research into the solution of
Diophantine equations and Fermat’s last theorem.

As we have seen, Euclid’s Elements presents many important number-theoretic results and
has played an important role in the dissemination and development in the intervening centuries;
Heath [73] is a fine contemporary translation of this ancient work. Similarly, Carl Friedrich
Gauss’ Disquisitiones Arithmeticae revolutionized the study of number theory; Clarke [97] is
an available translation of this work. In addition, Dunnington [65] and Tent [238] are insightful
biographies of this “Prince of Mathematicians.”

The study of prime numbers remains an active and intriguing area of mathematical research.
The number theory texts mentioned above can provide an excellent introduction to the study
of these integers. In addition, Wells [253] provides an interesting survey of many “types” of
primes and the sometimes startling relationships among primes. One of the most important
open questions in mathematics is the “Riemann hypothesis,” which conjectures that a certain
analytic formula gives the number of primes less than or equal to a predesignated natural number.
Du Sautoy [60] and Derbyshire [57] detail the historical development of mathematicians’efforts
to resolve the Riemann hypothesis, and Rockmore [196] provides a more technical look at the
recent work of contemporary mathematicians.

Prime numbers play an important role in the implementation of coding schemes to preserve
the privacy and the accuracy of communication systems, particularly in the last few decades
since the announcement of RSA codes in A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems [195]. Almost all number theory texts (and many discrete mathematics and
abstract algebra texts) discuss RSA codes in some fashion. Hamming codes were first presented
by Richard Hamming in Error Detecting and Error Correcting Codes [110]; Hamming codes
are also discussed in both Gallian [93] and Grimaldi [103], as well as any text on error-correcting
codes. For an introduction to the mathematical field of coding theory see Bierbrauer [18],
Hill [115], and Ling and Xing [156]. More focused discussions of error-correcting codes are
given by Huffman and Pless [120] and by MacWillians and Sloane [162]. Finally, Singh [215]
provides an interesting historical survey of coding schemes from ancient Egypt to contemporary
applications.

Fermat’s last theorem is one of the most celebrated and famous of results in all of abstract
mathematics. Andrew Wiles proof, with important contributions by Richard Taylor, appeared
in “Modular elliptic curves and Fermat’s Last Theorem” [257] in 1995. Naturally, the books
on Fermat’s last theorem written before and after this proof differ markedly. Ribenboim [192]
is one interesting text that straddles this time period; most of the book discusses the proofs of
specific cases of the theorem (including the n = 4 case studied in section 3.3), and an epilogue
outlines Wiles’general approach to the complete proof. Both Hellegouarch [114] and Stewart and
Tall [233] also provide interesting introductions to this area of study; and Singh and Lynch [216]
detail the historical developments that led up to the complete solution of Fermat’s last theorem
by Wiles.

Throughout this chapter we have studied several very significant numbers in mathematics,
most notably π , e, and i. Various books have been written about the mathematical history of
these numbers and Mazur [172] has described ways of envisioning them. Beckmann [12] details
the history of π ; more recent books on this topic have been written by Eymard et al. [76] and
by Posamentier and Lehmann [188]. Blatner’s The Joy of Pi [20] is a playful collection of many
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intriguing facts and insights into this number. Maor [168] has written a history of e; Nahin [179]
has written a history of i; and both Seife [212] and Kaplan and Kaplan [136] have traced the
history of 0. Perhaps the story of 1 will be written before too much longer to complete the story
of each constant appearing in the famous mathematical equation eiπ + 1 = 0!

We identified various resources for learning more about Abel, Galois, and the insolvability
of the general quintic in the notes for chapter 2. Mathematicians currently prove Abel’s
theorem using Galois theory. For undergraduates who have studied sufficient abstract algebra,
Garling [96], Stewart [229], and Swallow [237] are excellent and accessible texts introducing
Galois theory; both Edwards [70] and Hungerford [122] are standard graduate texts.

Induction is used in significant ways in many areas of theoretical mathematics, and so is often
discussed in standard undergraduate courses, including discrete mathematics, abstract algebra,
and real analysis; the textbooks used in these courses (as identified above and in the notes for
chapters 2 and 4) are good references for how induction impacts on these fields. A number
of books have been written discussing the Fibonacci sequence and its generalizations. Both
Garland [95] and Wahl [247] are directed toward a general audience; Benjamin and Quinn [16]
detail the results of numerous undergraduate research projects exploring the Fibonacci sequence.
Recently, Sigler has translated Fibonacci’s Liber abaci [82].

Many of the theorems studied in this chapter appear in anthologies of the “fundamental”
theorems of mathematics that detail both their proofs and some of the historical context of these
results. Dunham’s Journey Through Genius [64] and Davis et al.’s The Mathematical Experience
[55] are two books in this genre. Aigner and Ziegler’s Proofs from THE BOOK [3], inspired
by their conversations and correspondence with Erdös, is a similarly intriguing collection
of theorems and proofs. Finally, we mention G. H. Hardy’s classic book A Mathematician’s
Apology [112], which reflects on the culture and nature of mathematics, and has been enjoyed
by generations of mathematicians; you might also be interested in Stewart’s recent Letters to a
Young Mathematician [230], which was inspired by Hardy’s book.



4 Real Analysis

The Renaissance and Baroque periods were times of profound change in the way
western Europeans chose to explore and understand the universe. The humanistic
intellectual and social movement in these eras was both encouraged by and contributed
to insightful shifts in developing mathematics and applying it to the physical world. The
“reawakening” in classical art and literature that defined the Renaissance (originating
in Italy and spreading throughout Europe during the fourteenth, fifteenth, and sixteenth
centuries) was accompanied by a movement to return to rational scientific investigation.
Mathematics formed the core of this movement. And just as art, literature, and music
flourished into the elaborate expressions of the Baroque period of the seventeenth
century, so too mathematics began to flourish. New foundational ideas in mathematics
and the mathematical community’s increasing commitment to rigor during the
seventeenth century paved the way for an “Age of Enlightenment” to follow—a time
when the prevailing European culture strongly valued the rationalism that permeates
Western culture to this day.

During the time between the ancient Greeks and the European Renaissance,
the development of mathematics proceeded relatively slowly. A handful of Indian
and Islamic mathematicians worked to preserve and extend the work of the ancient
Greeks, and the dissemination of the Hindu–Arabic numeral system contributed to the
mathematical achievements of the Renaissance and the Enlightenment. But the Age
of Enlightenment in seventeenth and eighteenth century Europe was truly a unique
time when a handful of exceptional individuals—mathematical geniuses, really—
profoundly changed our approach to scientific investigation. Instead of being satisfied
with calculations focused on practical problem solving, these mathematicians began
developing a broad, methodological approach to mathematical and scientific thought.
Many of the greatest mathematical minds in history worked at this time, including
Galileo, Descartes, Fermat, Leibniz, and Newton. During this period, great advances
occurred in the study of real-valued functions.

From your earlier courses in mathematics, you know that calculus characterizes
properties of functions using limits, derivatives, and integrals. These mathematical
tools help describe the way functions change as their independent, real-valued variables
change. In this chapter we explore several insights into the theory of functions,
describing these ideas in a mathematically rigorous fashion. We also investigate some
related mathematical developments that occurred well past the dawning of the Age
of Enlightenment, setting the stage for modern mathematical investigations into the
theory of functions during the twentieth and twenty-first centuries.

241
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4.1 Analytic Geometry

The modern understanding of the relationship between algebra and geometry can be
traced back to the French philosopher René Descartes; in 1637 he published the treatise
Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les
sciences (that is, A Discourse on the method of rightly conducting the reason and
seeking truth in the sciences). In La géometrie (the third appendix of this work),
Descartes explained a natural identification between algebraic equations and geometric
curves in the real plane. Since you were taught such an identification years ago,
this notion may seem relatively straightforward and obvious. But Descartes’ insight
was one of the key advances of the seventeenth century, initiating a new way of
thinking about algebra and geometry, and ultimately contributing to the development
of calculus.

We know this story well from previous mathematics courses. Descartes’ corre-
spondence between an algebraic equation and a geometric curve is obtained (in a
modern way) by associating a unique mathematical label to each point on the plane.
This unique name is known as an ordered pair. The values of an ordered pair are
determined by identifying two perpendicular lines on the plane called axes; these two
axes intersect in a single point called the origin. By convention, we visualize an x-axis
with a horizontal orientation and a y-axis with a vertical orientation. The real plane with
these axes is called the coordinate plane or sometimes the Cartesian plane in honor
of Descartes. Scaling these axes, each point on the plane is now uniquely identified
by an ordered pair of real numbers (x, y) ∈ R2. We determine the first coordinate
x ∈ R by drawing a vertical line through the point and setting x equal to the directed
distance along the x-axis from the origin to this vertical line. Similarly, y ∈ R is the
directed distance along the y-axis from the origin to the horizontal line through the
given point.

We can now describe Descartes’ correspondence between an algebraic equation
and a geometric curve: an equation in the variables x and y is identified with the
curve whose points (x, y) satisfy the equation. Mathematicians gradually expanded
on Descartes’ identification of geometric points with algebraic ordered pairs into the
mathematical field known as “analytic geometry.”

Example 4.1.1 The equation y = x2 is a parabola with vertex (0, 0). The ordered pairs (x, y)
satisfying this equation include (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), and (3, 9),
among others. The set of all ordered pairs (x, y) satisfying y = x2 produces the
parabola illustrated in figure 4.1.

■

Question 4.1.1 Identify three ordered pairs satisfying the equation y = 2x + 5 and sketch the
curve identified by this equation. What do we call such a curve?

■

Analytic geometry can be developed for dimensions greater than two. Most often,
we consider three-dimensional space R3. In this case, we identify three mutually
perpendicular lines arranged as shown in figure 4.2; these lines are called x, y, and
z axes. Scaling these axes as for R2, points in space are identified by ordered triples of
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Figure 4.1 The coordinate plane with y = x2
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the form (x, y, z), where each element of the ordered triple is the directed distance from
the point to one of three coordinate planes. For example, the value a in the ordered
triple (a, b, c) is the distance from the point to the yz-plane formed by the y-axis and
the z-axis.

For much of this section, we determine the algebraic equations corresponding to
many well-known curves in the plane. For most of these curves, the distance formula
plays a key role in determining the equation. The distance formula follows from the
Pythagorean theorem; further details of a proof are left to the reader. Also, the two-
dimensional distance formula can be extended to obtain the formula for the distance
between points in three-dimensional space.

Theorem 4.1.1 The Distance Formula The distance D between any two points (x, y) and (a, b) in
R2 is given by the formula

D =
√

(x − a)2 + (y − b)2.

Similarly, the distance D between any two points (x, y, z) and (a, b, c) in R3 is
given by the formula

D =
√

(x − a)2 + (y − b)2 + (z − c)2.

The distance formula is readily applied to find the distance between points.
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Question 4.1.2 Determine the distance between the following points.

(a) (1, 2) and (3, 4) (b) (5, 6, 7) and (10, 9, 8)
■

An understanding of the relationship between geometric and algebraic structures
provides a mathematical approach that enables us to prove many important results.
For example, we can use the algebraic interpretation of a curve to prove rigorously
that y = x2 is a parabola in the classical sense of the ancient Greeks, who defined a
parabola in terms of a fixed point called the focus and a fixed line called the directrix;
a parabola consists of the set of all points that are equidistant from the focus and the
directrix. The vertex of a parabola is the point on the curve closest to the focus (and
the directrix). A parabola is one example of a “conic section.” The following example
identifies the standard algebraic equation for certain parabolas.

Example 4.1.2 We prove that the parabola with a focus on the positive y-axis at the point (0, a)
and with a directrix that is the horizontal line y = −a has an algebraic equation
of the form y = cx2.

Proof Applying the distance formula, the distance from an arbitrary point (x, y) on this

parabola to the focus (0, a) is
√

(x − 0)2 + (y − a)2 =
√

x2 + (y − a)2. Similarly,

the distance from (x, y) to the directrix y = −a is
√

(x − x)2 + [y − (−a)]2 =
|y + a|. Setting these distances equal to each other and squaring both sides, we
obtain x2 + y2 − 2ay + a2 = y2 + 2ay + a2. Algebraically manipulating this
equation, x2 = 4ay. Thus, y = [1/(4a)] x2 = cx2 when c = 1/(4a).

■

Comparing this result with the equation y = x2 from example 4.1.1, the curve
corresponding to y = x2 satisfies the classical definition of a parabola with focus
at (0, 1/4) and directrix y = −1/4. Note that for any given parabola, the axes of
the coordinate plane can be positioned so that the x-axis is parallel to the directrix.
If a parabola has vertex (h, k), focus (h, k + a), and directrix y = k − a, then the
corresponding equation is (x − h)2 = 4a(y − k). We obtain this equation using the
distance formula and following the approach of example 4.1.2, which essentially
amounts to replacing x with x− h and y with y− k. If c = 1/(4a), the equation can be
algebraically manipulated to produce the following standard form for the equation of
a parabola with vertex (h, k).

y = c(x − h)2 + k

Descartes’ identification of algebraic equations with curves on the plane ushered
in a whole new era in the study of geometry. A geometric curve could now be studied
in terms of the properties determined by its corresponding algebraic equation. In this
way, the identification of algebraic equations expressing well-known curves became
important.

Another example of a curve studied by the ancient Greeks is the circle. In the
classical definition, a circle is the set of points equidistant from a fixed point called the
center; the fixed distance from points on the circle to the center is called the radius.
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For this discussion, let (h, k) denote the center and r denote the radius of a circle.
Applying the distance formula to the center (h, k) and an arbitrary point on the circle,

every point on the circle satisfies the equation r =
√

(x − h)2 + (y − k)2. Squaring both
sides, the standard form for the equation of a circle with center (h, k) and radius r is

r2 = (x − h)2 + (y − k)2.

Question 4.1.3 Graph each circle with center (h, k) and radius r, and state the corresponding
algebraic equation.

(a) (h, k) = (1, 1) and r = 1
(b) (h, k) = (−2, 5) and r = 8

(c) (h, k) = (2,−4) and r = 1
(d) (h, k) = (−3,−4) and r = 5

■

The unit circle has center (h, k) = (0, 0) at the origin and radius r = 1. It is studied
in many mathematics courses and is closely connected to trigonometric functions. The
following question considers the set of points that make up the unit circle.

Question 4.1.4 (a) Graph the unit circle and state the corresponding algebraic equation.
(b) Using your equation, find the two points on the unit circle with x = √3/2 and

label these points on your graph.
(c) Using your equation, find four other points on the unit circle and label these

points on your graph.
■

The unit circle helps define the trigonometric functions that are important in
modeling many physical and social phenomena. The French mathematician Jean
Baptiste Joseph Fourier proved early in the 1800s that many important functions
can be expressed as a (possibly infinite) sum of sine and cosine functions; from
this perspective, the trigonometric functions are the basic building blocks of a large
class of functions. The first known study of trigonometric functions was undertaken
by the Greek mathematician Hipparchus in the second century b.c.e., who applied
mathematics to astronomy, which required the computation of chord lengths of certain
circles. Trigonometric functions are defined on the unit circle by letting θ , measured
in radians, be the angle formed between a ray emanating from the origin and the
positive x-axis; a positive angle is measured counterclockwise up from the axis. The
ray emanating from the origin intersects the unit circle at a point (x, y); the value cos θ

is the x-coordinate of this point, and sin θ is the y-coordinate, as illustrated in figure 4.3.
The remaining trigonometric functions are defined using the following ratios.

tan θ = sin θ

cos θ
sec θ = 1

cos θ
csc θ = 1

sin θ
cot θ = cos θ

sin θ

Question 4.1.5 Complete the following table so that each ordered pair (x, y) is a point on the unit
circle with both x and y nonnegative; the Pythagorean theorem may prove helpful.
Use this table to answer the following questions.

x = cos θ 1
√

2/2 0

y = sin θ 1/2
√

3/2
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y = 1

x = 1

sin q

cos q

(cos q, sin q )

θ
Figure 4.3 Defining cos θ and sin θ for a given
angle θ

(a) Label these five points on a graph of the unit circle. For each point, draw a
ray from the origin through the point and identify the angle θ between the ray
and the x-axis in both degrees and radians.

(b) What are the values of cos (45◦), sin (45◦), cos (π/3), and sin (π/3)?
(c) Calculate the value tan θ for each column in the chart. What is the value of

tan (π/6) and tan (π/2)?
■

As mentioned above, a parabola is one example of a conic section, as is a
circle. Conic sections have been studied for at least the past 2300 years. In the
third century b.c.e., the “Great Geometer” Appolonius of Perga wrote a compre-
hensive anthology Conics that greatly influenced the development of mathematics
in subsequent centuries. Appolonius introduced the terms “parabola,” “ellipse,” and
“hyperbola,” and studied their properties based on the classical definitions discussed
in this section. The fourth century mathematician Hypatia of Alexandria (the first
woman known to contribute substantially to the development of mathematics) wrote
important commentaries on Appolonius’ Conics as well as Diophantus’ Arithmetica
and Ptolemy’s Almagest.

The Greeks defined conic sections (or just conics for short) as those curves resulting
from a plane intersecting a “double-napped” cone—one consisting of two cones joined
at a common vertex and having axes (the “edges” of the cones) colinear. Parabolas,
circles, ellipses, hyperbolas, a pair of intersecting lines, single lines, and points are the
seven distinct types of conics. Lines and points are called degenerate conic sections
because they are obtained when a plane intersects the cone’s vertex. Each type of
conic is identified with a standard equation; we are already familiar with the following
correspondences between curves and equations.

Conic section Standard algebraic equation

Parabola y = a(x − h)2 + k
Circle r2 = (x − h)2 + (y − k)2

Line y = mx + b

In general, every linear equation corresponds to a line, and every quadratic equation
corresponds to one of the nondegenerate conic sections. From the derivation of the



Chapter 4 ■ Real Analysis 247

equation for a parabola, we see that any polynomial in x and y with one variable of
degree one and the other variable of degree two is a parabola. As we show below,
polynomials in x and y with both variables of degree two are either circles, ellipses, or
hyperbolas. For circles and ellipses, the coefficients of x2 and y2 have the same sign;
for hyperbolas, the coefficients of x2 and y2 have opposite signs.

An ellipse is classically defined as the set of points (x, y) such that the sum of the
distances from (x, y) to two fixed points called foci is equal to some fixed constant.
Alternatively, an ellipse results from intersecting a “tilted” plane with a double-napped
cone (although it cannot be tilted too much or it would generate either a parabola or a
hyperbola). In the following example, we identify the standard algebraic equation for
an ellipse.

Example 4.1.3 We prove that an ellipse with both foci on the x-axis equidistant from the origin
has an algebraic equation of the form

x2

a2
+ y2

b2
= 1.

Proof Let (−c, 0) and (c, 0) denote the two foci of an ellipse with the sum of the distances
equal to 2K ; note that in this setting K > c. For any point (x, y) on the ellipse, the
sum of the distances from the point to the foci is 2K ; expressing this sum using
the distance formula, we have√

(x + c)2 + (y − 0)2 +
√

(x − c)2 + (y − 0)2 = 2K .

Bringing the second square root term to the right side of the equation, squaring
both sides, and simplifying yields the following equalities.

(x + c)2 + y2 = 4K2 +−4K
√

(x − c)2 + y2 + (x − c)2 + y2

x2 + 2xc+ c2 + y2 = 4K2 +−4K
√

(x − c)2 + y2 + x2 − 2xc+ c2 + y2

4xc = 4K2 +−4K
√

(x − c)2 + y2

xc− K2 = −K
√

(x − c)2 + y2

Now square both sides and simplify the result.

[xc− K2]2 = K2[(x − c)2 + y2]
x2c2 − 2K2xc+ K4 = K2x2 − 2xcK2 + K2c2 + K2y2

(K2 − c2)x2 + K2y2 = K4 − K2c2 = K2(K2 − c2)

x2

K2
+ y2

K2 − c2
= 1

Notice that since K > c, K2 − c2 is positive. The desired standard equation is

obtained by defining a = K and b =
√

K2 − c2.
■

The hyperbola is the last conic we consider in this section. Classically, a hyperbola
is defined as the set of points (x, y) such that the difference of the distances from (x, y)
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to two fixed points (called foci) is equal to a given fixed constant. Alternatively, a
hyperbola results from the intersection of a double-napped cone with a plane “tilted”
past the diagonal determined by the sides of the cone. The next question derives the
standard form of a hyperbola’s algebraic equation.

Question 4.1.6 Let (−c, 0) and (c, 0) denote the two foci on the x-axis equidistant from the origin,
and consider the hyperbola consisting of points (x, y) such that the difference of
the distances from (x, y) to the foci is 2K , where K < c.

(a) Following a procedure similar to that of example 4.1.3, prove that the algebraic
equation for such a hyperbola is of the following form.

x2

a2
− y2

b2
= 1

(b) Using the result from part (a), find the equation of the hyperbola with foci
(−4, 0) and (4, 0) with a difference of distances equal to 2K = 6.

■

While every curve on the xy-plane can be identified with a set of ordered pairs,
not every curve in the plane is a conic section. The next few questions consider
some patterns that can arise from studying finite sets of ordered pairs. This process
is inductive since many different curves can satisfy a given set of points. Such
curve-fitting is a delicate process, and mathematicians have developed sophisticated
algorithms for finding the “best” fitting curves of a given type (for example, of
polynomial type with least degree). The simplest possible curve that fits a given set
of ordered pairs is typically chosen. The following questions present relatively simple
patterns.

Question 4.1.7 Consider the ordered pairs presented in following table.

x −3 −1 0 1 2 5 6 8

y −6 −2 0 2 4 10 12 16

(a) Graph the ordered pairs identified in this table.
(b) Examining this graph, what geometric pattern exists among these points?
(c) Geometric patterns are often expressible as an algebraic equation. What

equation describes the relationship between these x and y values?
■

Question 4.1.8 Consider the graph of points on the plane given in figure 4.4.

(a) State the ordered pairs that identify each point in figure 4.4.
(b) What two lines can be combined so that every point lies on their graph? Restrict

the domains of the two lines to the negative and nonnegative real numbers,
respectively.

(c) What single function expresses this pattern of points?
■



Chapter 4 ■ Real Analysis 249

Figure 4.4 Points forming two
linear patterns 4321
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Question 4.1.9 Graph the ordered pairs in the set {(1, 2), (−5, 3), (0, 2), (4,−7), (−√2,−2),
(−3, 0)} on a coordinate plane. These points may seem unrelated, but can you
draw a continuous curve with only two relative extrema (say, at x = −√2 and
x = 1/2) that passes through all six points? Continuity is defined in section 4.3,
but for now work with the intuitive notion of not lifting your pencil or pen as you
trace the curve.

■

Basic geometric facts are often expressed in terms of a curve’s ordered pairs (x, y).
For example, the perpendicular distance d from an arbitrary point (x0, y0) ∈ R2 in the
plane to a line determined by y = mx + b is given by

d = |mx0 + b− y0|√
m2 + 1

.

The proof of this result is outlined in the exercises at the end of this section. The next
question uses this formula to study a triangle.

Question

4.1.10

Consider a triangle with vertices at (1, 2), (4, 7), and (6, 3).

(a) Determine the equation of a line through (4, 7) and (6, 3).
(b) Use the formula presented above to find the perpendicular distance from the

point (1, 2) to the opposite side of the triangle; this distance is the triangle’s
height.

(c) Compute the area of the triangle using the standard formula

Area = 1

2
· base · height.

■

We end this section by considering three-dimensional surfaces in R3. Every
point in three-dimensional space is identified with an ordered triple (x, y, z); algebraic
equations relating these variables define surfaces. A linear equation ax + by+ cz = d
(where a, b, c and d are real constants) is the equation of a plane, which is classically
defined as the set of all points (x, y, z) that are equidistant from two distinct points
(e, f , g) and (p, q, r). We verify this algebraic equation using the distance formula
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(for three dimensions), setting the corresponding distances equal, and performing some
algebraic manipulations

√
(x−e)2+(y−f )2+(z−g)2=

√
(x−p)2+(y−q)2+(z−r)2

x2−2ex+e2+y2−2fy+f 2+z2−2gz+g2= x2−2p+p2+y2−2qy+q2+z2−2rz+r2

2(p−e)x+2(q−f )y+2(r−g)z= p2+q2+r2−e2−f 2−g2

Letting a = 2(p− e), b = 2(q− f ), c = 2(r− g), and d = p2+ q2+ r2− e2− f 2− g2,
the standard form for the equation of a plane is ax+by+cz = d. The following question
applies this result.

Question

4.1.11

(a) What is the equation of the plane whose points (x, y, z) are equidistant from
the origin and from (2, 2, 2)?

(b) Find the real numbers r, s, t ∈ R such that the points (r, 0, 0), (0, s, 0), and
(0, 0, t) lie on the plane from part (a). These points are known as the x, y,
and z intercepts of the plane, respectively.

(c) Produce a graph of the plane by plotting the three points from part (b) on the
axes of a coordinate system in three-space and connecting these points with
line segments.

■

Just as we are interested in the three-dimensional analog of a line, we are similarly
interested in the three-dimensional analog of a circle known as a sphere.

Question

4.1.12

Classically, a sphere is defined to be the set of points (x, y, z) that are a
fixed radius r from a fixed center (h, j, k). Using the distance formula, show
that the form for the algebraic equation of a sphere is (x − h)2 + (y − j)2+
(z − k)2 = r2.

■

Geometric figures in two and three dimensions can be studied in terms of
corresponding algebraic equations. Sometimes these equations may be viewed as
functional expressions. For example, writing y = f (x), the standard equation of
a parabola may be written as f (x) = c(x − h)2 + k. Similarly, the equation of a
plane in three-space may be written as f (x, y) = ax + by + c, where z = f (x, y)
is a function of x and y. On the other hand, some algebraic equations cannot be
viewed as functional expressions; for example, the hyperbola x2 − y2 = 1 does
not have a single y-value corresponding to every x-value. The next section begins
a detailed study of the theory of functions, since functions are special curves that
lend themselves to mathematical operations such as composition, differentiation, and
integration.Arigorous understanding of functional properties enables an exploration of
the mathematical theory that underlies calculus. Ultimately this understanding allows
us to study spaces of functions, in much the same way that we have studied spaces of
points in this section.
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4.1.1 Reading Questions for Section 4.1

1. Define axes and origin in the context of the two-space R2.
2. What point does the ordered pair (1, 4) identify on the plane? Sketch a graph

to facilitate your description.
3. What mathematical objects did Descartes identify with curves?
4. State the distance formula and give an example.
5. What is a conic section?
6. Name the seven distinct types of conics identified by the ancient Greeks.
7. What is the classical definition of a parabola, a circle, an ellipse, and a

hyperbola?
8. State the standard algebraic equation of each conic.
9. Define cos θ and sin θ in terms of the unit circle.

10. Define tangent, cotangent, secant, and cosecant in terms of sine and cosine.
11. What is the classical definition of a plane and a sphere?
12. State the standard algebraic equation of a plane and a sphere.

4.1.2 Exercises for Section 4.1

In exercises 1–4, graph the points identified by each set of ordered pairs and tables.

1. { (2, 2), (π, e), (−1, 4), (−2,−2) }
2. { (5, 1), (−2,

√
3), (4, 0), (−5,−4), (1,−π) }

3. x −6 −4 −2 0 2 4 6
y −6 −4 −1 0 2 4 6

4. x −3 −2 −1 0 1 2 3 4
y 6 4 1 0 2 4 6 8

In exercises 5–18, graph each curve on the coordinate plane and find an equation in
x and y that corresponds to the curve.

5. The horizontal line two units above the x-axis.
6. The vertical line three units to the left of the y-axis.
7. The line passing through the points (−2, 3) and (5,−4).
8. The line passing through the points (4, 7) and (−1,−2).
9. The circle with center (1, 2) and radius 6.

10. The circle with center (3,−5) and radius 2.
11. The circle with center (0, 2) and radius 2.
12. The circle with center (2, 0) and radius 2.
13. The parabola with focus (0, 1) and directrix y = −1.
14. The parabola with focus (0, 3) and directrix y = −1.
15. The ellipse with foci (−5, 0) and (5, 0), and with sum of distances 2K = 20.
16. The ellipse with foci (−3, 0) and (3, 0), and with sum of distances 2K = 20.
17. The hyperbola with foci (−5, 0) and (5, 0), and with difference of distances

2K = 4.
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18. The hyperbola with foci (−3, 0) and (3, 0), and with difference of distances
2K = 2.

In exercises 19–25, sketch the intersection of a double-napped cone (consisting of two
cones joined at a common vertex with colinear axes) with a plane that yields each conic
section.

19. A parabola.
20. A circle.
21. A ellipse.
22. A hyperbola.

23. A point.
24. A line.
25. Two intersecting lines.

Exercises 26–32 consider the general equations of conic sections.

26. Specify the focus and directrix of the parabola y = 4x2.

27. Specify the focus and directrix of the parabola y = x2 + 1.

28. What point on y = 4x2 is closest to the focus of this parabola.

29. What point on y = x2 + 1 is closest to the focus of this parabola.

30. The main cable hanging from the tops of the suspension towers of the Golden
Gate Bridge is shaped as a parabola; the vertex of this parabola is the lowest
point of the cable, lying six feet above the level of the road. The towers are
approximately 520 feet above the level of the road and stand 4200 feet apart.
Use these facts to find an equation representing the shape of the cable, placing
the cable’s vertex at the origin of your coordinate plane.

31. The eccentricity of an ellipse with foci at (−c, 0) and (c, 0) and with the sum
of the distances equal to 2K is defined to be e = c/K . From the assumption
that K > c, we have 0 < e < 1. How do changes in e alter the shape of an
ellipse? Contrast e close to 0 with e close to 1.

32. Show that the classical definition of a line as the set of points (x, y) equidistant
from two fixed points (c, d) and (s, t) corresponds to an equation of the form
y = mx + b.

In exercises 33–38, find a linear equation that corresponds to each set of points.

33. The line with slope 5 and y-intercept b = −4.

34. The line passing through points (0, 0) and (5, 3).

35. The line passing through points (−2, 3) and (6,−7).

36. The set of points (x, y) equidistant from the two points (0, 0) and (6, 4).

37. The set of points (x, y) equidistant from (0, 0) and (−2, 8).

38. The set of points (x, y) equidistant from (−2, 3) and (6,−7).

In exercises 39–44, simultaneously solve the equations of the given curves to determine
all points of intersection of the curves.

39. The parabola y = x2 + 1 and the line y = x + 1.

40. The parabola y = x2 + 1 and the parabola y = 1− x2.

41. The parabola y = x2 + 1 and the hyperbola x2 − 2y2 = 1.
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Figure 4.5 Graph for exercises
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42. The ellipse 3x2 + y2 = 1 and the line y = x + 1.

43. The ellipse 3x2 + y2 = 3 and the parabola 2y = 3x2.

44. The ellipse 3x2 + 2y2 = 1 and the hyperbola 5x2 − 2y2 = 1.

In exercises 45–46, work with the following graph of points in the plane given in
figure 4.5.

45. State the ordered pairs that correspond with each of the points in figure 4.5.
Give your answer both as a set and as a table.

46. Sketch a quadratic curve that approximately fits the points given in figure 4.5
and state an algebraic equation defining this parabola.

In exercises 47–49, consider the set of points identified in the following table.

x −3 −2 −1 0 1 2 3 4

y −54 −16 −2 0 2 16 54 128

47. Graph the ordered pairs given in the above table on the coordinate plane.
48. Describe any geometric patterns you observe among the points graphed in

exercise 47.
49. Based on exercises 47 and 48, state an algebraic equation expressing the

relationship between the numbers in the x-row and the y-row in the above
table.

In exercises 50–52, consider the set of points identified in the following table.

x −153 −153 −100 −100 −50 −50 0 0 50 50 100 100 148

y 3 −3 115 −115 143 −143 150 −150 141 −141 110 −110 0

50. Graph the ordered pairs given in the above table on the coordinate plane.
51. Describe any geometric patterns you observe among the points graphed in

exercise 50.
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Figure 4.6 Earth’s orbit
for exercises 50–52

52. The collection of points in the above table corresponds with data on the Earth’s
orbit collected by astronomers before 1650. One of the major mathematical
breakthroughs of the seventeenth century was Newton’s determination that
the Earth’s orbit can be described by the equation: x2 + y2 = (150.4716 −
0.0167x)2. Newton’s study of planetary motion in terms of elliptical orbits
was his first application of calculus, and it motivated his development
of the theory describing how the position of objects change over time.
The above equation corresponds to an ellipse, and Newton framed his
equation so that the Sun (at one of the foci) is located at the origin
as illustrated in figure 4.6. Based on this information, which half of
the x-axis contains the Earth’s perihelion (that is, its closest approach to
the Sun)?

In exercises 53–58, find a linear equation that corresponds to each set of points in R3.

53. The set of points (x, y, z) equidistant from (1, 2, 0) and the origin.

54. The set of points (x, y, z) equidistant from (2, 0, 4) and the origin.

55. The set of points (x, y, z) equidistant from (1, 1, 1) and (2, 2, 2).

56. The set of points (x, y, z) equidistant from (−2,−3, 4) and (1, 3,−8).

57. The plane passing through (2, 0, 0), (0, 3, 0), and (0, 0, 1).

58. The plane passing through (4, 0, 0), (0, 1, 0), and (0, 0, 5).

Exercises 59–61 consider the intersection of the planes ax + by + cz = 1 with the
unit sphere x2 + y2 + z2 = 1. Answer each question by simultaneously solving the
corresponding equations.

59. Prove that the nonempty intersection points of a plane with the unit sphere is
always an ellipse, a circle, or a single point.

60. If c = 1, how are a and b related when the intersection of the plane and the
unit sphere is a circle?

61. If c = 1, what values of a and b result in the intersection of the plane and unit
sphere being a single point?
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Exercises 62–64 develop a proof that the perpendicular distance d from a point (x0, y0)
to a line y = mx + b is

d = |mx0 + b− y0|√
m2 + 1

.

62. Sketch the line segment from (x0, y0) to y = mx + b that is perpendicular to
the line. Let (x̂, ŷ) identify the point of intersection of this line segment with
y = mx+ b. Why is−(1/m) (x̂− x0)+ y0 = mx̂+ b? Solve this equation for
x̂ so that m2 + 1 appears in the denominator.

63. As in exercise 62, explain why (1/m) (ŷ− b) = −m(ŷ− y0)+ x0 is valid and
solve this equation for ŷ so that m2 + 1 appears in the denominator.

64. Using the algebraic expressions for x̂ and ŷ from exercises 62 and 63,

along with the distance formula d =
√

(x̂ − x0)2 + (ŷ − y0)2, prove that the
perpendicular distance from the point (x0, y0) to the line y = mx + b (that is,
to the point (x̂, ŷ)) is given by the formula stated above.

Exercises 65–70 use similar triangles to prove the equivalence of the unit circle and
right triangle definitions of the trigonometric functions. Recall from exercises 28–33
in section 3.3 that two triangles are similar if their three interior angles are identical;
the side lengths of corresponding similar triangles share the same ratios.

In exercises 65–70, assume that ABC is an arbitrary right triangle with side lengths
denoted by opp, adj, and hyp (greater than one). Use the similar triangles ABC and
ADE in figure 4.7 and the ratio property of similar triangles to prove the equivalence
of the definitions of the trigonometric functions. Note that edge AE is the radius of the
unit circle and has length one.

65. The right triangle definition of cosine asserts that cos θ = adj/hyp. Prove this
quantity is equal to the unit circle definition of cos θ , which in this setting
is |AD|.

66. The right triangle definition of sine asserts that sin θ = opp/hyp. Prove this
quantity is equal to the unit circle definition of sin θ , which in this setting
is |DE|.

67. The right triangle definition of tangent asserts that tan θ = opp/adj. Prove this
quantity is equal to the unit circle definition of tan θ , which in this setting
is |DE|/|AD|.

68. Prove the right triangle definition of secant equals the unit circle definition.

Figure 4.7 Similar right
triangles for

exercises 65–70
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69. Prove the right triangle definition of cosecant equals the unit circle definition.
70. Prove the right triangle definition of cotangent is equal to the unit circle

definition.

4.2 Functions and Inverse Functions

Functions are essential to the study of mathematics. As one might expect, humanity’s
understanding of functions developed gradually over centuries of reflection and
dialogue. While the Babylonian, Greek, Indian, and Islamic mathematicians all
worked with what we now understand as functions, the fourteenth century schools
of natural philosophy at Oxford and Paris were the first to consider the more general
notion of a function expressing dependence relations among quantities. The German
philosopher and mathematician Gottfried Wilhelm von Leibniz is credited with
introducing the word “function” into mathematical dialogue in the 1670s, and important
refinements to the understanding of functions were made by Johann Bernoulli (or
Jean Bernoulli), Euler, Cauchy, Fourier, and Dirichlet in the eighteenth and nineteenth
centuries.

Functions enable mathematicians to think beyond computations with specific
values to generalizations of algebraic rules, making it possible to apply a rule in
one fell swoop to a whole set of values. The standard notation for a function is
highly advantageous: abstractly writing y = f (x) allows notational manipulations
that are convenient, are easily understood, and prompt new insights into functions
and operations on functions. One such operation is “composition” in which first one
function and then another is applied to an input; this operation is defined more carefully
in this section, but for the moment we observe the notational ease of expressing
composition as y = g(f (x)). Even more, this notation allows us to name important
functions and to describe easily properties of functions (for example, we can say “f is
continuous” or “g is bounded”).

This exploration of functions has two primary goals: to understand the abstract
underpinnings of calculus; and to extend our investigations to spaces of func-
tions. Along the way, set theory will play an important role as we characterize
functions using domains and ranges (that is, using sets of inputs and sets of
outputs).

This study begins with the rigorous, formal definition of a function that is
commonly used by the mathematical community. Most often this definition (though its
form is a bit modernized) is attributed to the work of the German mathematician Peter
Lejeune Dirichlet in the 1830s. Dirichlet was trying to understand infinite sums of
trigonometric functions known as Fourier series, and he needed to describe the notion
of a “function” as something different from a “formula.” The following definition
rigorously expresses the intuitive notion that a function identifies every input with a
unique output.

Definition 4.2.1 Let D and Y be sets. A function from D to Y is a set of ordered pairs (x, y), where
x ∈ D, y ∈ Y, and every x ∈ D appears in exactly one ordered pair.
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We write f : D→ Y to identify a function f from D to Y, and we write f (x) = y to
indicate that the ordered pair (x, y) appears in the function. The set D of x-values
appearing in an ordered pair is called the domain of f , and the set R of y-values
appearing in an ordered pair is called the range of f . Finally, we say that f maps
D to the target space Y and that f maps a to b whenever f (a) = b.

In this definition of a function, notice that the range R is a subset of the target
space Y . In some contexts the set Y is identified as the range. The next example
considers a few simple finite functions on the integers.

Example 4.2.1 We first consider the function f defined as {(1, 2), (3, 2), (7, 3), (8, 12)}. This
set is a function because every x-coordinate (that is, 1, 3, 7, 8) appears in exactly
one ordered pair, and so every x is mapped to exactly one y. There is no difficulty
with 2 appearing as the y-coordinate for both 1 and 3; the definition prohibits
only repeated x-coordinates. The domain of f is D = {1, 3, 7, 8}, and the range is
R = {2, 3, 12}.

In contrast, consider the set of ordered pairs {(1, 2), (3, 2), (7, 3), (7, 12)}.
This set is not a function because 7 appears as the x-coordinate in two distinct
ordered pairs (7, 3) and (7, 12); hence every input does not have a unique output.
We could delete one or both of these two ordered pairs to obtain a function; in a
similar way, mathematicians often restrict the domain of an algebraic expression
or geometric curve in order to obtain a function.

Finally, sets such as {1, 2} and {4, (1, 2)} are not functions since they are not
sets of ordered pairs.

■

In an intuitive sense, a function is a correspondence (or a relationship) between
two variables, where each possible value of the independent variable (the function’s
input) produces a single unique value of the dependent variable (the function’s output).
The sets that correspond to the possible input and output values are the domain and
range sets, respectively. Recall from your previous math courses that often the domain
D and the range R are not mentioned explicitly when defining or referring to a function.
In these cases, D is understood to be the largest possible set on which the rule defining
the function is defined. For example, without a domain or range specification, the real
function f (x) = 1/x is understood to have domain D consisting of all nonzero real
numbers, since the equation is defined except when x = 0. The resulting range R is the
set of nonzero reals, since these are the possible output values that could result.

As we saw in example 4.2.1, functions need not be defined in terms of an algebraic
expression. Rather, any set of ordered pairs is a function (even infinite sets) if every
x-value is identified with a unique y-value, even if an algebraic expression is not
provided

Question 4.2.1 Explain why each set of ordered pairs is a function or not. For each function,
identify the domain D and range R.

(a) {(0, 0), (1, 2), (2, 4), (3, 6), (3, 25)}
(b) {(0, 0), (1, 1), (2, 4), (3, 9), (4, 16)}
(c) {(x, x) : x ∈ N} = {(1, 1), (2, 2), (3, 3), . . .}
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Figure 4.8 The left map is not one-to-one. The right map is not onto

(d) {(x, 2) : x ∈ N} = {(1, 2), (2, 2), (3, 2), . . .}
(e) {(2, y) : y ∈ N} = {(2, 1), (2, 2), (2, 3), . . .}

■

We verify that an algebraic equation relating variables x and y defines a function
y = f (x) in the following way: given any two distinct y-values y1 and y2 in the range
R, prove the corresponding x values x1 and x2 are also distinct. Recall the geometric
rendition of this property known as the “vertical line test”: any vertical line can intersect
the curve (corresponding to the algebraic equation) at most once.

Three important adjectives for functions are: one-to-one, onto, and one-to-one
correspondence. As you may recall, one-to-one functions have “inverses.” Intuitively,
an inverse function “undoes” the work of a given function mapping outputs back to
inputs. Many commonly used functions have inverses; for example, y = x − 5 is the
inverse of y = x + 5, the natural logarithm function ln (x) is the inverse of y = ex,
y = arcsin (x) is the inverse of y = sin (x) with restricted domain −π/2 < x < π/2,
and y = ax + b is the inverse of y = (x − b)/a. One-to-one correspondences play a
key role when studying the relative sizes of sets, and they are used to determine the
equivalence of two algebraic structures such as groups.

An intuitive understanding of one-to-one and onto functions may be gained from
simple illustrations. For one-to-one functions, every output comes from a unique input;
the function illustrated on the left in figure 4.8 is not one-to-one because the element
a is an output of two distinct inputs x and y. A function is onto a target set Y if
every element of Y is an element of the range R; that is, if every element of Y
is an output. The function on the right in figure 4.8 is not onto the illustrated set
because the element c is not an output for any input. A one-to-one correspondence
is both one-to-one and onto. The next definition precisely expresses these intuitive
descriptions.

Definition 4.2.2 • A function f : D→ Y is one-to-one if for all x, y ∈ D, f (x) = f (y) implies that
x = y; equivalently, if for all x, y ∈ D, x 	= y implies f (x) 	= f (y).

• A function f : D → Y is onto Y if for every y ∈ Y, there exists an x ∈ D such
that f (x) = y; in other words, if the range of f is the target set.

• A function f : D → Y is a one-to-one correspondence if f is both one-to-one
and onto. When this happens, we say that the sets D and Y are in one-to-one
correspondence and we write |D| = |Y |.
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The next two examples consider functions in light of this definition, one that is a
one-to-one correspondence and one that is neither one-to-one nor onto.

Example 4.2.2 We prove that the function f mapping the nonzero reals to the nonzero reals defined
by f (x) = 1/x is a one-to-one correspondence.

Proof We first show f is one-to-one, assuming that a, b ∈ R \ {0} with f (a) = f (b),
and proving that a = b. Since f (a) = f (b), 1/a = 1/b from the definition of the
function. Multiplying both sides of this equation by ab gives a = b. The function
is therefore one-to-one.

We now show f (x) is onto, assuming b ∈ R \ {0} (the target space) and finding
a nonzero real value a such that f (a) = b. From the function’s definition, this
condition holds exactly when 1/a = b, which identifies the corresponding domain
value as a = 1/b. In conclusion, we have found a value a in the function’s domain
that is mapped to the given value b in the target set, and so f is onto.

Because f is both one-to-one and onto, it is a one-to-one correspondence from
the set of nonzero reals to itself.

■

Example 4.2.3 We prove that the function f : R→ R defined by f (x) = x2 is neither one-to-one
nor onto the reals.

Proof We identify counterexamples to each property. To disprove f is one-to-one,
consider a = 2 and b = −2. For these values, f (a) = f (2) = 4 = f (−2) = f (b),
but a = 2 	= −2 = b. Hence f is not one-to-one. To disprove f is onto the reals,
consider b = −1 ∈ R (the target set). Since the square of every real number
is positive, there does not exist a ∈ R such that f (a) = a2 = −1. Thus f is
not onto.

■

Restricting the domain of the function f (x) = x2 in example 4.2.3 to the
nonnegative reals would result in a one-to-one function. Similarly restricting the target
space to the nonnegative reals would result in an onto function. Hence the function g
from the nonnegative reals to the nonnegative reals defined by g(x) = x2 is a one-to-one
correspondence.

Question 4.2.2 (a) Prove that f : R → R defined by f (x) = 12x − 10 is a one-to-one
correspondence.

(b) Prove that f : R→ R defined by f (x) = sin x is neither one-to-one nor onto.
Identify restrictions of the domain and range of sin x that yield a one-to-one
correspondence.

■

Recall the importance of the composition operation on functions from your
previous studies—most commonly used functional expressions are built up from

compositions of more basic functions. For example, the function y =
√

4(x − 2)2 + 1

is the composition of y = x − 2; y = 4x2 + 1; and y = √x. Many properties of the
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Figure 4.9 Composition of functions

composite function (f ◦ g)(x) = f (g(x)) result from the corresponding properties of
the component functions f (x) and g(x). Figure 4.9 graphically illustrates composition,
where f ◦g “combines” the process of first applying the function g and then the function
f into a single functional operation; in this case, f (g(a)) = f (x) = k (where g(a) = x)
becomes (f ◦ g)(a) = k.
The following definition of composition expresses this intuitive description.

Definition 4.2.3 Let A, B, C be sets, and both f : B → C and g : A → B be functions. The
composition f ◦ g : A → C is defined by (f ◦ g)(a) = f (g(a)) for every a ∈ A
such that g(a) ∈ B.

In many different mathematical settings, a composite function f ◦ g inherits
properties shared by its component functions f and g. Many of the functional properties
we have studied in this section have this feature.

Theorem 4.2.1 The composition of two one-to-one functions is one-to-one.

Proof Suppose f : B→ C and g : A→ B are one-to-one, and assume f (g(a)) = f (g(b)).
Since f is one-to-one, we conclude that g(a) = g(b). Similarly, since g is one-to-
one, we conclude that a = b. Hence the composition f ◦ g is one-to-one.

■

Theorem 4.2.2 The composition of two onto functions is onto.

Proof The proof is left for exercise 56 at the end of the section.
■

For the rest of this section we study inverse functions. Intuitively speaking, a
function f (x) maps each element of its domain to a unique element of its range.
The inverse function (written f −1(x)) reverses this process so that each output
value in the range of f is mapped back to the corresponding input from which it
came. In short, f and f −1 swap input and output values, as the following example
illustrates.

Example 4.2.4 We consider the inverse of f : Z → R, where R = {2, 3, 4, . . .} defined
by f (x) = x + 2. The following table represents this function on selected
inputs.

f -input 0 1 2 3 4 5 . . .

f -output 2 3 4 5 6 7 . . .
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The action of f −1 (which maps each f -output back to its corresponding f -input)
reverses the rows of the table as follows.

f−1-input = f -output 2 3 4 5 6 7 . . .

f−1-output = f -input 0 1 2 3 4 5 . . .

Notice that the inverse function’s output values are two less than the corresponding
input; that is, f −1(x) = x − 2.

■

The next definition expresses this intuitive description of the inverse of a function
in terms of composition. As in the study of groups and fields in chapters 2 and 3,
inverses should be “two-sided,” which leads to both clauses in the definition.

Definition 4.2.4 If f : D→ Y is a function with range R, then g : R→ D is the inverse function of
f when both (g ◦ f )(x) = x for all x ∈ D and (f ◦ g)(x) = x for all x ∈ R. We write
g = f −1 to identify the (unique) inverse of f .

Example 4.2.5 As discussed in example 4.2.4, the inverse of f (x) = x + 2 is f −1(x) = x − 2.
Similarly, the inverse of g(x) = 2x (which maps R to R) is the function g−1(x) =
x/2; that is, we “undo” the work of multiplying by 2 by dividing by 2.

■

For all but a handful of functions, the inverse f −1 of a function f (x) is not the same
as its multiplicative inverse (or reciprocal) [ f (x)]−1 = 1/f (x). In the last example, we
observed that f (x)= x+2 has inverse function f −1(x)= x−2, while the multiplicative
inverse of f (x) is [ f (x)]−1 = 1/(x + 2). These functions are clearly not the same—they
even have different domains! Therefore, we use the term “inverse function” exclusively
to identify the function f −1 that results from inverting the operation of composition,
rather than inverting the operation of multiplication.

As may be apparent, not all functions have inverses. Consider the familiar squaring
function f : R→ R defined by f (x) = x2. Many pairs of numbers map to the same
output; for example, both f (2) = 22 = 4 and f (−2) = (−2)2 = 4. An inverse function
for f (x) = x2 would need to assign a unique value to f −1(4). But this task is impossible,
since there were two values (2 and −2) that f maps to 4. Thus f (x) = x2 does
not have an inverse. Notice that f (x) = x2 is not one-to-one, which is the reason
it does not have an inverse. The following theorem extends this observation to all
functions.

Theorem 4.2.3 A function has an inverse iff the function is one-to-one.

Comments on proof The proof of this theorem is a direct application of definitions, and
is left for exercises 63–64 at the end of this section.

■

When a function is one-to-one, how do we find its inverse? A function f written
in terms of basic algebraic operations can often be manipulated using the following
two-step process to obtain an algebraic expression for its inverse f −1.
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• Switch the roles of x and y in the expression y = f (x) to obtain x = f (y).
• Solve the resulting new equation for y to obtain y = f −1(x).

The next example illustrates the process.

Example 4.2.6 We apply the two-step process to find the inverse f −1 of the one-to-one linear
function f (x) = 5x + 2.

First switch the roles of x and y, writing x = 5y+ 2. Then algebraically solve
for y to obtain the inverse: f −1(x) = y = (x − 2)/5. This expression is easily
verified to be the inverse by directly computing (f −1 ◦ f )(x) and (f ◦ f −1)(x)—
they both should equal x. For example, (f −1 ◦ f )(x) = f −1(f (x)) = f −1(5x+ 2) =
[(5x + 2)− 2]/5 = 5x/5 = x. Similarly, (f ◦ f −1)(x) = x.

■

Sometimes mathematicians modify the domain of a function that is not one-to-one
(and so not invertible). For example, f (x) = x2 is not invertible, but its domain can
be restricted to D = {x ∈ R : x ≥ 0} in order to generate an inverse. The function
h(x) = x2, where x ∈ D, has inverse function h−1(x) = √x. This strategy is commonly
employed by mathematicians—restrict a function’s domain to make it one-to-one, and
so invertible.

Question 4.2.3 Consider the one-to-one function f : {x ∈ R : x ≥ 0} → R defined by f (x) =
3x2 − 5.

(a) Find an algebraic expression for f −1(x).
(b) Verify that (f −1 ◦ f ) (x) = x.
(c) Verify that (f ◦ f −1) (x) = x.

■

Equations involving logarithms and exponentials are often solved by using inverse
functions. The function y = loga(x) is defined as the inverse of f (x) = ax (the natural
logarithm function has base e, so ln(x) = loge(x)). To solve for a variable x that is
“trapped” in the power of an exponential function, we apply the logarithm to both
sides, using the operation of composition.

Example 4.2.7 We solve the equation y− 5 = e4x−8 for x. Applying the natural logarithm to both
sides of this equation and simplifying (using the fact that f −1(f (x)) = x) yields
the following.

ln(y − 5) = ln(e4x−8)

ln(y − 5) = 4x − 8

x = (ln(y − 5)+ 8)/4
■

Question 4.2.4 Solve for x in the equation

y = ln[(x − 3)4]
12

.

■

We end this section with a discussion of the strong relationship between the graph
of a function f and the graph of its inverse function f −1. Understanding that an inverse
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function “swaps” the roles played by the x- and y-coordinates leads to the insight that
the graphs of the two functions are related by switching the roles of the x- and y-axis. In
other words, the graphs of a function and its inverse are reflections (or mirror images)
of one another across the line y = x.

This observation is particularly useful when f (x) is easy to graph, and when the
graph of f −1(x) is much more difficult to identify. To find the graph of f −1, simply
reflect the graph of f across the line y = x. Mathematicians often use this graphical
property to define new functions. Any one-to-one function f has an inverse whose
graph can be obtained from the graph of f using this reflection property. For example,
ln x is sometimes defined in terms of ex in this fashion.

At the same time, an inverse function f −1 can be important in its own right,
independent of any reference to the function f . For example, y = ln(x) has many
independent uses; the fact that ln(x) is the area under the graph of y = 1/t from t = 1
to t = x is one such application. The last question of this section considers the graphical
relationship between functions f and f −1 in the context of exponential and logarithmic
functions having base two.

Question 4.2.5 Consider the exponential function f : R→ R defined by f (x) = 2x.

(a) Graph the six points of f (x) identified by x = −2,−1, 0, 1, 3, 5.
(b) Extend the graph of points from part (a) to a complete graph of f (x) = 2x.
(c) Graph the inverse f −1(x) = log2(x) of f (x) = 2x.

■

4.2.1 Reading Questions for Section 4.2

1. State both an intuitive description and the definition of a function.
2. Give an example of a set of ordered pairs that is a function and a set that is not.
3. State both an intuitive description and the definition of a one-to-one function.
4. Give an example of a function that is one-to-one and function that is not.
5. State both an intuitive description and the definition of an onto function.
6. State both an intuitive description and the definition of a one-to-one

correspondence.
7. Define and give an example of a composition of functions.
8. State both an intuitive description and the definition of an inverse function.
9. Give an example of a function and its inverse.

10. What condition must a function satisfy to have an inverse?
11. Describe a process for algebraically identifying the inverse of an invertible

function.
12. What is the relationship between the graphs of a function and its inverse?

4.2.2 Exercises for Section 4.2

In exercises 1–8, explain why each set of ordered pairs is a function or not. For each
function identify the domain and range.

1. {(0, 5), (1, 2), (2, 4), (2, 6)}
2. {(0, 2), (1,−1), (−1, 4), (−3, 9)}

3. {(0, 0), (1, 2), (2, 4), (3, 6)}
4. {(0, 0), (1, 1), (1, 4), (3, 9)}
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5. {(x, 2) : x ∈ R} (or y = 2)
6. {(2, y) : y ∈ R} (or x = 2)

7. {(y2, y) : y ∈ R} (or x = y2)
8. {(y2, y) : y ∈ N} (or x = y2)

In exercises 9–12, explain why each set of ordered pairs from the unit circle is a function
or not. For each function identify the domain and range.

9. The “top” half of the unit circle: {(x, y) : x2 + y2 = 1 and y ≥ 0}
10. The “bottom” half of the unit circle: {(x, y) : x2 + y2 = 1 and y ≤ 0}
11. The “right” half of the unit circle: {(x, y) : x2 + y2 = 1 and x ≥ 0}
12. The “left” half of the unit circle: {(x, y) : x2 + y2 = 1 and x ≤ 0}

In exercises 13–16, define functions on the finite sets A = {1, 2, 3}, B = {4, 5, 6}, and
C = {7, 8} with the following properties.

13. One-to-one and onto
14. One-to-one, but not onto

15. Not one-to one, but onto
16. Neither one-to-one nor onto

In exercises 17–22, prove each function is onto, or identify an element of the target
that is not in the range.

17. f : R→ R defined by f (x) = 2x + 7

18. g : R→ R defined by g(x) = x2 − 5

19. h : R→ R defined by h(x) = x3 − 1

20. q : R→ R defined by q(x) = 1/x

21. r : R→ R defined by r(x) = sin(x)

22. s : R→ R defined by s(x) = tan(x)

In exercises 23–30, determine if each function has an inverse by proving or disproving
the function is one-to-one. If so, specify the inverse function, including an explicit
identification of its domain and range.

23. f (x) = 5x − 2, where x ∈ R

24. g(x) = x2 + 2x + 3, where x ∈ R

25. h(x) = (x + 3)2 + 12, where
x > 0

26. j(x) = ln(x − 1), where x > 1

27. k(x) = ex2
, where x > 0

28. p(x) = ex2
, where x ∈ R

29. q(x) = 1/(2x + 3), where x <

−3/2

30. r(x) = 1/(x2 + x), where x > 1

In exercises 31–34, state a restriction on the domain of each function to obtain a
one-to-one function.

31. f (x) = sin(x)

32. g(x) = cos(x)

33. r(x) = tan(x)

34. s(x) = (x + 2)4

In exercises 35–40, graph each function and its inverse on the same axes. Assume
appropriate domains so that all functions are defined and one-to-one, and so invertible.

35. f (x) = x+ 5 and f −1(x) = x− 5

36. g(x) = 3x + 2 and
g−1(x) = 1/3x − 2/3

37. h(x) = x2 and h−1(x) = √x

38. q(x) = 1/x and q−1(x) = 1/x

39. r(x) = 5x and r−1(x) = log5(x)

40. s(x) = (1/3)x and
s−1(x) = log1/3(x)
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In exercises 41–44, state the algebraic equation and identify the domain of each
composition f ◦ g(x) and g ◦ f (x).

41. f (x) = √5x − 1 and
g(x) = 1/(2x + 1)

42. f (x) = x3−1 and g(x) =√x + 1

43. f (x) = ln(5x − 1) and
g(x) = 1/(x + 2)

44. f (x) = e1/x and g(x) = √2x − 1

In exercises 45–55, identify each statement as true or false. For those statements that
are false, provide an explanatory reason or a counterexample.

45. If f (x) = x3 + x, then f is one-to-one, f −1(−2) = −1, and f −1(2) = 1.

46. If f (x) = 2x3 + 5x, then f is one-to-one, f −1(7) = 1, and f −1(14) = 2.

47. The sum of two onto functions is onto.

48. The sum of two one-to-one functions is one-to-one.

49. The product of two onto functions is onto.

50. The product of two one-to-one functions is one-to-one.

51. If f (x) is a function and c ∈ R, then f (c · x) = c · f (x).

52. Every polynomial function has an inverse.

53. The inverse of a polynomial is never a polynomial.

54. If f (x) is invertible, the product f (x) · f −1(x) = 1 for every x in the domain of f .

55. If f (x) is invertible, the composition (f ◦ f −1)(x) = 1 for every x in the
domain of f .

In exercises 56–70, prove each mathematical statement, assuming that f : A→ B and
g : B→ C in your proofs.

56. If f and g are onto functions, then g ◦ f is an onto function.

57. If g ◦ f is onto, then g is onto.

58. If g ◦ f is onto, then f may or may not be onto.

59. If g ◦ f is one-to-one, then f is one-to-one.

60. If g ◦ f is one-to-one, then g may or may not be one-to-one.

61. If f and g are one-to-one correspondences, then g ◦ f is a one-to-one
correspondence.

62. If f ◦ f is a one-to-one correspondence, then f is a one-to-one correspondence.

63. If f is one-to-one, then f has an inverse.

64. If f has an inverse, then f is one-to-one.

65. If f is invertible, then the inverse function of f is unique.

66. If f is invertible, then the inverse of f −1 is (f −1)−1 = f .

67. If f and g are invertible, then (g ◦ f )−1 = f −1 ◦ g−1.

68. Any nonconstant linear function f (x) = mx + b (with m 	= 0) is a one-to-one
correspondence from R to R.

69. The inverse of a nonconstant linear function f (x) = mx + b exists and is a
linear function.

70. The inverse of f (x) = x2k+1 exists for any k ∈ N ∪ {0}.
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4.3 Limits and Continuity

This section begins a study of the mathematical theory underlying calculus by exploring
the concept of a limit. Hopefully your previous studies of calculus have provided a
sense of how important limits are to the subject. For example, the property of continuity
is defined in terms of limits, where the limits of continuous functions are evaluated by
direct substitution. Similarly, the derivative is defined as a limit of difference quotients,
and the Riemann integral is a limit of a sum. Hence the study of limits sets the stage
for a study of the theory behind calculus.

In light of the dependence on limits of the definitions of derivative and integral,
we might expect an orderly development of these mathematical ideas, with a rigorous
understanding of limits historically preceding the notions of the derivative and the
integral. But the actual historical development was not nearly so neat. The French
mathematician Augustin-Louis Cauchy did not formulate the modern definition of a
limit until the early 1800s—nearly 150 years after Sir Isaac Newton and Gottfried
Wilhelm von Leibniz independently articulated the fundamental theorem of calculus
linking the derivative and the integral.

How did Newton and Leibniz think about derivatives and integrals without a well-
defined concept of a limit? Newton thought of the derivative in terms of small changes
he called “moments of a fluent,” and he called motion and the change in continuous
variables over time “fluxions.” He thought of the integral in terms of antiderivatives. In
contrast, Leibniz thought of the derivative in terms of differences between successive
terms in sequences with infinitely close values, and of the integral as a sum of infinitely
many lines. These less-refined concepts based on infinitesimal quantities were adequate
to handle many of the calculations that arose in the practical questions of optics, celestial
mechanics, and astronomy that motivated their work. Sadly, the independent work of
Newton in the 1660s and Leibniz in the 1670s resulted in a rather bitter argument over
who should receive credit for calculus.

As the next generation of mathematicians continued to develop calculus, they
recognized the importance of developing a rigorous, logical basis for the theory. A
famous critique was given by the Irish philosopher George Berkeley in his 1734
tract The analyst: or a discourse addressed to an infidel mathematician; Berkeley
asked piercing questions about the legitimacy of Newton’s “fluxions.” The Scottish
mathematician Colin Maclaurin in his 1742 Treatise of fluxions and the French
mathematician Jean Le Rond d’Alembert in his 1754 Différential both gave important
responses to Berkeley’s critique. However it was not until 1821 that Cauchy provided
the first rigorous development of calculus (including the contemporary definition of
the limit) in the text Cours d’Analyse.

Cauchy’s definition of the limit provides an important foundation for studying
many topics in the theory of functions. As you may have experienced, this definition
can be difficult to understand because of its unfamiliar Greek letters used as symbols
and the abstractness of its formulation. We discuss the definition of the limit and its
interpretation in some detail. If you struggle with its logic, be patient, remembering
that you are in good company—mathematics students have been struggling to master
these notions for more than two centuries. In fact, Cauchy’s own students rioted and
marched to university officials in complaint when he first taught these ideas! And rest
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assured that mastering these ideas will provide deeper insights into the theoretical
structure and behavior of functions.

We begin by discussing an intuitive description of a limit. In this discussion, all
numbers and functions are interpreted in the context of the reals. Recall from calculus
that the phrase “the limit of a function f (x) as the variable x approaches a is equal to
L,” written as lim

x→a
f (x) = L means the following.

If x is close to a (but not equal to a), then f (x) is close to L.

The following graphical example and question explore some of the subtleties in this
intuitive understanding of limit.

Example 4.3.1 We identify the following limits based on the graph of the function f (x) given in
figure 4.10.

• lim
x→−4

f (x) = 2.

• lim
x→−3

f (x) = 1. The limit exists even though f (−3) is undefined because we do

not consider the value of the function at x = a = −3 in determining the limit.
• lim

x→−2
f (x) = 0. The limit is 0 even though f (−2) = 1 because we do not

consider the value of the function at x = a = −2 in determining the limit.
• lim

x→−1
f (x) = DNE (or Does Not Exist). The fact that x must be close to a = −1

from either side is important here. If x < −1 is close to a = −1, we have f (x)
close to 1, while if x > −1 is close to a = −1, we have f (x) close to 0. Because
these values differ the limit is undefined.

■

Question 4.3.1 State the value of each limit based on the graph of f (x) given in figure 4.10.

(a) lim
x→0

f (x)

(b) lim
x→1

f (x)

(c) lim
x→2

f (x)

(d) lim
x→2.5

f (x)

(e) lim
x→3

f (x)

(f) lim
x→4

f (x)

■

The key to defining the limit lim
x→a

f (x) = L lies in articulating the mathematical

meaning of the phrases “x is close (but not equal) to a” and “f (x) is close to L.” The
word “close” is understood as a reference to distance. In the context of the real numbers,
the distance between two numbers is measured using the absolute value metric; that is,

2

1

11234 2 3 4

Figure 4.10 Graph for example 4.3.1 and question 4.3.1
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the distance between two real numbers r, s is |r − s|. Therefore the phrase “x is close
(but not equal) to a” is interpreted to mean that |x − a| is a small, positive, nonzero
real number; traditionally, this small number is denoted by “δ” (the lower case Greek
letter “delta”), and we write 0 < |x − a| < δ. In a similar fashion, “f (x) is close to L”
is interpreted as meaning that |f (x)− L| is a small, positive real number; traditionally,
this small number is denoted by “ε” (the lower case Greek letter “epsilon”), and we
write |f (x)− L| < ε. The next definition expresses the intuitive description of a limit.

Definition 4.3.1 Cauchy’s definition of the limit Let f : D → Y be a function and let a ∈ R such
that an open interval containing a is a subset of D. Then, lim

x→a
f (x) = L means: for

every ε > 0, there exists δ > 0 such that 0 < |x − a| < δ implies |f (x)− L| < ε.
In this case, we say that the limit of f as x approaches a exists and is equal to L.

We note that usually δ depends on ε, and can often be expressed as a function
of ε. For example, the function f (x) = x2 is graphed in figure 4.11, and the specific
values for ε and δ are illustrated for the limit lim

x→3
x2 = 9. In this case, the ε-interval

around L = 0 determines a δ-interval around a = 3. In this case, it is possible to
express δ = −3+√9+ ε. Several examples and questions will show how to find an
appropriate value for δ.

Cauchy’s definition of the limit phrases questions about the existence and value of
a limit in terms of algebraic equations. Most students agree that it takes a little time to
get used to working with this definition, and so we consider several examples. Again,
be patient; the more you work with this definition, the more comfortable and intuitive
it will become, and the more appreciative you will be of its sophisticated handling of
a subtle concept.

Example 4.3.2 We use Cauchy’s definition of the limit to prove lim
x→2

3x + 5 = 11.

2
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Figure 4.11 The delta-epsilon
perspective on limits
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Proof Let ε > 0 be a real number. The proof requires us to identify a corresponding δ;
we choose δ = ε/3 for reasons soon discussed. Assuming that 0 < |x − a| < δ,
we prove that |f (x)− L| < ε. Therefore, assuming 0 < |x − 2| < δ,

|f (x)− L| = |(3x + 5)− 11| = |3x − 6| = 3 · |x − 2| < 3 · δ = 3 · ε
3
= ε.

By the formal of the limit, lim
x→2

3x + 5 = 11.

■

Question 4.3.2 Prove each limit using the definition and the given δ.

(a) Using δ = ε

4
, prove lim

x→3
4x − 10 = 2.

(b) Using δ = ε

2
, prove lim

x→1
−2x + 5 = 3.

(c) In light of parts (a) and (b), observe that δ = ε

|m| is a good candidate for proving

that lim
x→a

mx+b= ma+b. Using this hypothesis, prove that lim
x→5

4x+15= 35.

■

Thus far we have only considered limits of linear functions. As you might expect,
using the definition to verify limits of nonlinear functions can be subtler. The next two
examples consider such functions.

Example 4.3.3 We use the definition of the limit to prove lim
x→2

x2 = 4.

Proof Assume ε > 0 is given; we must choose an appropriate value for δ. In this and
other nonlinear settings, we begin by restricting the x-values to be considered. Our
intuitive understanding of limits indicates the x-values must be “close to a = 2,”
and so we may reasonably assume the “restriction” that x is in an interval centered
at a = 2, say 1 < x < 3. Because δ is a small number that measures how close x
is to a = 2 and because 1 < x < 3 restricts the x-values to a distance at most one
unit from a = 2, we are (at this point) assuming δ ≤ 1.

To finish determining an appropriate choice for δ, we now examine |f (x)−L|,
which equals

|f (x)− L| = |x2 − 4| = |x + 2| · |x − 2|.

The second term in this product (which is of the form |x − a| = |x − 2|) will be
bounded above by δ under the hypothesis of the limit definition. But how do we
specify an upper bound on the first term |x+2|? Here is where the above restriction
comes in; the inequality 1 < x < 3 implies that 1+ 2 < x+ 2 < 3+ 2, and so we
have |x + 2| < 5. Using this inequality, |f (x)− L| = |x + 2| · |x − 2| < 5 · δ.
Therefore, choosing δ so that 5 · δ ≤ ε, the above string of inequalities implies
that |f (x) − L| < ε whenever 0 < |x − a| < δ, provided both δ ≤ 1 (from the
restriction) and δ ≤ ε/5 (from the choice 5 · δ ≤ ε). We ensure both of these
conditions by defining δ as the minimum of 1 and ε/5; this minimum is denoted
by δ =min{1, ε/5}. Informed by this analysis, we can now articulate the complete,
formal proof.
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Let ε > 0 and define δ = min{1, ε/5}. Assuming that 0 < |x − 2| < δ, we
also know that |x + 2| < 5. Therefore,

|f (x)− L| = |x + 2| · |x − 2| < 5 · δ < 5 · ε
5
= ε.

By the definition of the limit, lim
x→2

x2 = 4.

■■

Example 4.3.4 We use the definition of the limit to prove

lim
x→4

1

x − 2
= 1

2
.

Proof As in example 4.3.3, first restrict the x-values under consideration to within one
unit of a = 4, so that 3 < x < 5 and (at this point) δ ≤ 1. We calculate

|f (x)− L| =
∣∣∣∣ 1

x − 2
− 1

2

∣∣∣∣ = ∣∣∣∣2− (x − 2)

2(x − 2)

∣∣∣∣ = ∣∣∣∣ 4− x

2(x − 2)

∣∣∣∣ = |x − 4| ·
∣∣∣∣ 1

2(x − 2)

∣∣∣∣ .
The first term of the rightmost expression is of the form |x − a| = |x − 4| and
is bounded by δ. A bound for the second term is based on the restriction that
3 < x < 5; and so 1 < x − 2 < 3, which implies 2 < 2(x − 2) < 6, and so

1

2
>

1

2(x − 2)
>

1

6
.

Substituting this upper bound for 1/2 into the expression for |f (x)− L|, we have

|x − 4| ·
∣∣∣∣ 1

2(x − 2)

∣∣∣∣ < δ · 1

2
.

Thus, choosing δ so that δ · 1
2 ≤ ε results in |f (x)−L| < ε whenever 0 < |x− a| <

δ, so long as δ ≤ 1 (from the restriction) and δ ≤ 2ε (from the choice δ/2 ≤ ε).
We therefore choose δ = min{1, 2ε}. The complete formal proof follows below.

Let ε > 0 and define δ = min{1, 2ε}. Assuming 0 < |x − 4| < δ, we have∣∣∣∣ 1

2(x − 2)

∣∣∣∣ <
1

2
.

Thus,

|f (x)− L| = |x − 4| ·
∣∣∣∣ 1

2(x − 2)

∣∣∣∣ < δ · 1

2
< 2ε · 1

2
≤ ε.

By the definition of the limit,

lim
x→4

1

x − 2
= 1

2
.

■

Question 4.3.3 Prove each limit using the definition of the limit and the restriction technique
illustrated in examples 4.3.3 and 4.3.4.

(a) lim
x→5

x2 = 25

(b) lim
x→3

(x − 2)2 = 1

(c) lim
x→3

1

x − 1
= 1

2

(d) lim
x→2

1

x + 3
= 1

5
■
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The ability to use Cauchy’s definition of the limit is key to proving that a given
limit exists and equals a specific value. More importantly, we use the formal definition
to prove general theorems that hold for all limits. Among other things, these results
help us to evaluate limits analytically, in the manner you are accustomed to from
your calculus courses. We first consider a uniqueness result for limits (enabling us to
refer to the limit of f (x) as x approaches a), and then identify some familiar analytic
results.

Theorem 4.3.1 If lim
x→a

f (x) = L exists, then L is unique.

The next series of questions lead you through a proof of this result. Recall that
a standard approach to proving the uniqueness of a mathematical object is to assume
that two such objects exist and then either prove they are equal or obtain some other
contradiction.

Question 4.3.4 The following steps develop a proof by contradiction for theorem 4.3.1.

(a) Assume lim
x→a

f (x) = L is not unique. Formulate this assumption in terms of a

mathematical statement about two limiting values, say L and M.
(b) Apply the definition of the limit to L and M for ε = |L −M|/2, writing out

the resulting statement for each of these limiting values.
(c) The two statements from part (b) should involve two values for δ, which

we refer to as δL and δM . Define δ = min{δL, δM} and reexpress these two
statements in terms of this δ.

(d) Explain why this last pair of statements yields a contradiction. Why can’t f (x)
be “close” to both L and M as asserted in these statements?

■

The next theorem states the analytic properties of limits; using these results is a
common exercise in calculus courses.

Theorem 4.3.2 Let a, c, L, M ∈ R, and let both f and g be functions on the reals with lim
x→a

f = L

and lim
x→a

g = M. Then the following equalities hold.

• Limit of a constant: lim
x→a

c = c

• Limit of a scalar multiple: lim
x→a

c · f (x) = c · L
• Limit of a sum: lim

x→a
f + g = L +M

• Limit of a difference: lim
x→a

f − g = L −M

• Limit of a square: lim
x→a
[ f (x)]2 = L2

• Limit of a product: lim
x→a

f · g = L ·M
• Limit of a quotient: lim

x→a

f

g
= L

M
, provided that M 	= 0

You should develop a strong familiarity with both the linguistic and symbolic
renditions of these results. For example, the third claim in theorem 4.3.2 is not
only thought of as lim

x→a
f + g = L + M, but also as “the limit of a sum is the sum

of the limits.” A proof of each a statement in theorem 4.3.2 uses the definition
of the limit. We present the proofs of several of these analytic properties here
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and leave some for the exercises at the end of this section. We highlight some
important properties of the absolute value function |x| that will be needed in these
proofs.

Theorem 4.3.3 Define the absolute value function on the reals by

|x| =
{

x, x ≥ 0
−x, x < 0.

Then the following relationships hold for x, y ∈ R.

• |x+y| ≤ |x|+|y| (triangle inequality)

• |x · y| = |x| · |y|
• |x| − |y| ≤ |x − y|
•

∣∣∣∣xy
∣∣∣∣ = |x||y|

Example 4.3.5 We prove the limit of a scalar multiple rule (from theorem 4.3.2): If a, c, L ∈ R

and f is a function on the reals with lim
x→a

f = L, then lim
x→a

c · f (x) = c · L.

Proof If c = 0, then c · f (x) = 0 is a constant function. Applying the limit of a constant
rule in theorem 4.3.2; we have lim

x→a
0 · f (x) = lim

x→a
0 = 0 = 0 · L.

Assume c 	= 0. For any given ε > 0, consider ε1 = ε/|c|. By Cauchy’s
definition of limit applied to the given value ε1 > 0, there exists a value δ > 0
such that 0 < |x − a| < δ implies |f (x)− L| < ε1. It follows that 0 < |x − a| < δ

implies

|c · f (x)− c · L| = |c| · |f (x)− L| < |c| · ε1 = ε.

■

Question 4.3.5 Prove the limit of a sum rule: If a, L, M ∈ R and both f and g are functions on the
reals with lim

x→a
f = L and lim

x→a
g = M, then lim

x→a
f + g = L +M.

Hint: Let ε > 0. Since lim
x→a

f = L, there exists δL > 0 such that 0 < |x − a| < δL

implies |f (x) − L| < ε/2. The limit lim
x→a

g = M implies a similar condition for a

δM > 0. Choose δ = min{δL, δM} so that both inequalities involving ε/2 are true
when 0 < |x − a| < δ, and apply the triangle inequality from theorem 4.3.3 to
complete the proof.

■

The proofs of the product properties for limits identified in theorem 4.3.3 are a bit
more complicated because of the algebra involved. Instead of jumping in to prove the
general result, we first prove the simpler result for squares.

Example 4.3.6 We prove the limit of a square rule: If a, L ∈ R and f is a function on the reals
with lim

x→a
f = L, then lim

x→a
[ f (x)]2 = L2.

Proof Without loss of generality, assume L ≥ 0; a similar proof works if L < 0. For ε > 0,
we identify δ > 0 such that 0 < |x − a| < δ implies
|[ f (x)]2 − L2| < ε. Working with ε1 =

√
L2 + ε − L > 0 (for reasons that

become apparent in the following calculations) and with lim
x→a

f = L, there exists
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δ > 0 such that 0 < | x − a| < δ implies | f (x)− L| < ε1. This δ is the needed
value. If 0 < |x − a| < δ, the following relations hold.

|f (x)2 − L2| = | f (x)− L| · | f (x)+ L| = | f (x)− L| · | f (x)− L + 2L|
≤ | f (x)− L| · ( | f (x)− L| + |2L| ) by the triangle inequality

< ε1 · (ε1 + 2L) = (
√

L2 + ε − L ) · (
√

L2 + ε + L)

= L2 + ε − L2 = ε

By the definition of the limit, lim
x→a
[ f (x)]2 = L2.

■

The proof of the limit of a product rule (which asserts that the limit of a product
is the product of the limits) uses the following polarization identity:

x · y = 1

4
[(x + y)2 − (x − y)2].

This algebraic identity simplifies a question about a product into a question about
squares; the validity of the polarization identity is verified by simplifying the algebraic
expression on the right-hand side. You can see how it is applied in the next
example.

Example 4.3.7 We prove the limit of a product rule: If a, L, M ∈ R and both f and g be functions
on the reals with lim

x→a
f = L and lim

x→a
g = M, then lim

x→a
f · g = L ·M.

Proof Applying the polarization identity and the limit rules from theorem 4.3.2 (that we
have already verified) for scalar multiples, differences, and squares, we obtain the
following equalities.

lim
x→a

f (x) · g(x) = lim
x→a

1

4
{ [ f (x)+ g(x)]2 − [ f (x)− g(x)]2 }

= 1

4

{
lim
x→a
[ f (x)+ g(x)]2 − lim

x→a
[ f (x)− g(x)]2

}
= 1

4

{ [
lim
x→a

f (x)+ g(x)
]2 −

[
lim
x→a

f (x)− g(x)
]2
}

= 1

4
{ [L +M]2 − [L −M]2 } = L ·M

■

The final limit rule stated here is useful in a study and development of the integral.
This famous “squeeze theorem” is studied in calculus; we state this result and leave
the proof for exercise 56 at the end of this section.

Theorem 4.3.4 The squeeze theorem If a, L ∈ R and f , g, h are functions on the reals such that
f (x) ≤ g(x) ≤ h(x) for every x (except possibly x = a) and both lim

x→a
f = L and

lim
x→a

h = L, then lim
x→a

g = L.

Now that we have investigated limits both from an intuitive perspective and in light
of a mathematically rigorous definition, we are ready to study the second main topic
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of this section: continuity. A continuous function is sometimes informally described as
a curve without any holes or gaps—one that can be drawn “without lifting the pencil.”
Mathematicians express continuity more carefully in terms of limits. A function f (x)
is continuous at a real value a if the limit of f (x) as x approaches a is equal to f (a);
that is, if lim

x→a
f (x) = f (a). Not every function is continuous at every point; the value

of the limit of f at a and the value of f (a) are not guaranteed to be the same. In this
sense, continuous functions are special.

We now define the continuity of a function f (x) at x = a to express the equality
lim
x→a

f (x) = f (a). We state the definition of continuity in terms of δs and ε’s; in this way,

we can determine if a function is continuous in rigorous manner and prove mathematical
truths about continuous functions. We first identify continuity as a pointwise property
and then extend the definition from a point to sets of points, and ultimately to the entire
real number line.

Definition 4.3.2 A function f : D → Y is continuous at a ∈ D if for every ε > 0, there exists
δ > 0 such that |x − a| < δ and x ∈ D implies |f (x)− f (a)| < ε. We say that f is
discontinuous at x = a when f is not continuous at a. If f is continuous at every
a in a set A, then we say f is continuous on the set A. If f is continuous on its
domain, then we say f is a continuous function.

When proving that a function is continuous at a point, we find that δ often
depends on both ε and a. Furthermore, the definition no longer needs to insist that
0 < |x − a| < δ, but only that |x − a| < δ, because the choice of x = a automatically
satisfies the limit definition: |f (x)− f (a)| = |f (a)− f (a)| = 0 < ε.

Example 4.3.8 We prove that f (x) = x3 is continuous at a = 2.

Proof We begin by observing that a = 2 is in the domain of f and that f (2) = 8. Let
ε > 0 and, (since the function is nonlinear) restrict the x-values to within one unit
of 2, so that 1 < x < 3. We are therefore (at this point) assuming that δ ≤ 1. Now
consider |x3 − 8| = |x − 2| · |x2 + 2x + 4|. Since δ bounds |x − 2|, we just need
a bound on the second term |x2 + 2x + 4|. Using the restriction 1 < x < 3 and
the fact that x2 + 2x + 4 is increasing on 1 < x < 3, we need only consider the
endpoints; by direct substitution, we find 7 < x2 + 2x + 4 < 19. Then whenever
|x − 2| < δ, we have |f (x)− f (a)| = |x − 2| · |x2 + 2x + 4| < δ · 19. Choosing
δ so that 19 · δ ≤ ε, we obtain |f (x)− f (a)| < ε. Thus for a given ε > 0, we choose
δ = min{1, ε/19}. The complete formal proof follows below.

Let ε > 0 and define δ = min{1, ε/19}. Assuming |x− 2| < δ, we know that
|x2 + 2x + 4| < 19. We now have

|f (x)− f (a)| = |x − 2| · |x2 + 2x + 4| < δ · 19 ≤ ε.

By the definition of continuity, f (x) = x3 is continuous at a = 2.
■

Example 4.3.9 We prove that f (x) = √x is continuous.

Proof By definition, f (x) = √x is continuous if
√

x is continuous at every element of its
domain D = {x : x ≥ 0}. First consider the domain value a = 0. Given any ε > 0,
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choose δ = ε2. Then whenever |x − 0| < δ and x ∈ D, we have 0 ≤ x < ε2, and
so |f (x)− f (a)| = |√x− 0| = √x < ε. The function is therefore continuous at
a = 0. Now let a > 0 be any other arbitrary element of this domain, and let ε > 0.
We must identify an appropriate δ > 0 so that |x−a| < δ implies |f (x)− f (a)| < ε.
Since a may be between 0 and 1, we restrict the x-values to within a/2 units of
a; this restriction gives us a/2 < x < 3a/2, and so we assume δ ≤ a/2. Then, if
|x − a| < δ, we have

|f (x)− f (a)| = |√x −√a| · |
√

x +√a|
|√x +√a| =

|x − a|
|√x +√a| <

δ

|√ a
2 +
√

a| .

The restriction that a/2 < x provides the right inequality in this last string of
relations. Choosing δ so that δ · (√a/2+√a )−1 ≤ ε; we obtain |f (x)− f (a)| < ε.
Thus for a given ε > 0, we choose δ = min{a/2, (

√
a/2+√a ) · ε}. The complete

formal proof follows below.

Let ε > 0 and define δ = min{a
2
, (
√

a/2+√a ) · ε}. Assuming |x − a| < δ,

we have a/2 < x. Therefore,

|f (x)− f (a)| = |x − a|
|√x +√a| <

δ

|√ a
2 +
√

a| ≤ ε.

By the definition of continuity, f (x) = √x is continuous.
■

Question 4.3.6 (a) Using the definition, prove that f (x) = 2x − 3 is continuous at a = 5.
(b) Using the definition, prove that f (x) = 2x − 3 is continuous.

■

In light of the analytic rules for computing limits presented in theorem 4.3.2, we
might wonder if the basic algebraic operations “preserve” continuity; that is, if we
combine two continuous functions using such operations, is the resulting function also
continuous? For example, if we add two continuous functions, is the resulting sum
continuous? The affirmative answer we expect for addition and the other arithmetic
operations is given by the following theorem.

Theorem 4.3.5 If a, c ∈ R, n ∈ N, and both f and g are continuous functions at x = a, then the
following functions are also continuous at x = a: c, c · f , f + g, f − g, f · g, f /g
(provided g(x) 	= 0 for all x in an open interval containing a), and n

√
f (provided

f (x) ≥ 0 for all x in an open interval containing a). We say that these operations
preserve continuity.

The proof of theorem 4.3.5 closely resembles the proof of theorem 4.3.2 detailing
the analytic rules for limit computations. The next example provides the proof that
scalar multiplication preserves continuity; proofs of the other statements are left for
the exercises at the end of this section.

Example 4.3.10 We prove that scalar multiplication preserves continuity (from theorem 4.3.5):
If a, c ∈ R and f is a continuous function at x = a, then c · f is continuous
at x = a.
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Proof This proof follows the one given in example 4.3.5. If c = 0, then c · f (x) = 0 is
a constant function, and by the limit of a constant rule, the following equalities
hold.

lim
x→a

c · f (x) = lim
x→a

0 = 0 = 0 · f (a) = c · f (a)

Therefore, c · f is a continuous function at x = a.
Now assume c 	= 0 and let ε > 0. We find δ > 0 such that |x− a| < δ implies

|c · f (x)− c · f (a)| < ε. From the definition of continuity applied to f for ε1 = ε/|c|
(identified as in example 4.3.5), there exists δ > 0 such that |x − a| < δ implies
|f (x)− f (a)| < ε1. This δ is the desired value: if |x − a| < δ, then

|c · f (x)− c · f (a)| = |c| · |f (x)− f (a)| < |c| · ε1 = |c| · ε

|c| = ε.

By the definition of continuity, c · f is continuous at x = a.
■

The limits of continuous functions are easily determined; we may simply use direct
substitution to evaluate a limit at any point where a given function is continuous.
In symbolic terms, if f is continuous at x = a, then lim

x→a
f (x) = f (a). In light of

theorem 4.3.5, a whole host of (familiar) functions are easily identified as continuous,
and so have limits that are readily evaluated.

Example 4.3.11 For each limit, the function is continuous on its domain, and we use direct
substitution to evaluate the limit.

• lim
x→7

4
√

3x2 − 2x + 5 = 4
√

3(7)2 − 2(7)+ 5 = 4
√

138

• lim
x→−2

21x5 − 4x3 + 6√
11− 3x + 4

= 21(−2)5 − 4(−2)3 + 6√
11− 3(−2)+ 4

= −634√
17+ 4

• lim
x→5
[3x6−70x4]

√
2x4 − 3x2 = [3(5)6−70(5)4]

√
2(5)4 − 3(5)2 = 15,625

√
47

■

Question 4.3.7 Use the fact that each function is continuous and use substitution to evaluate each
limit. Compare your answers with the results of question 4.3.2 and examples 4.3.3
and 4.3.4.

(a) lim
x→3

4x − 10

(b) lim
x→2

x2

(c) lim
x→4

1

x − 2

(d) lim
x→0

1

(x − 3)2

■

The discussion thus far has focused on continuous functions from a positive
perspective; the next example considers functions that are discontinuous.

Example 4.3.12 We prove that following function f : R→ {0, 1} is not continuous at any point in its
domain. Dirichlet first highlighted the relevance of this function to the discussion
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of continuity. Mathematicians now refer to f (x) as the characteristic function of
the rationals Q.

f (x) =
{

1 if x ∈ Q

0 if x 	∈ Q

Let a be an arbitrary element of the reals. Notice that any open interval containing
a also contains both rational and irrational numbers, and so f (x) takes on the values
0 and 1 in any interval containing a. Let ε ∈ R with 0 < ε < 1. We prove that no
δ > 0 satisfies the requirements given in the definition of continuity. Let δ > 0 be
any positive real number. There are two cases to consider:

• If a is rational, then f (a) = 1. But there exists an irrational x ∈ (a − δ, a + δ).
For this value x, |x − a| < δ, but also |f (x)− f (a)| = |0− 1| > ε.

• If a is irrational, then f (a) = 0. But there exists a rational x ∈ (a − δ, a + δ).
For this value x, |x − a| < δ, but also |f (x)− f (a)| = |0− 1| > ε.

Therefore f is not continuous at any a ∈ R.
■

One distinction between the definitions of limit and continuity is that the value
x = a need not be in the domain of a function f for the limit lim

x→a
f (x) to exist, but a

must be in the domain of f for the function to be continuous at a. The next example
and question highlight this distinction.

Example 4.3.13 We discuss limits and continuity for f (x) = x − 2

x2 − x − 2
.

First, note that f is not continuous at a = 2 because 2 is not in the domain
of f . However, the limit of f as x approaches 2 does exist and can be computed as
follows.

lim
x→2

x − 2

x2 − x − 2
= lim

x→2

x − 2

(x − 2)(x + 1)
= lim

x→2

1

x + 1
= 1

2+ 1
= 1

3

In light of this computation, the function f can be redefined at a = 2 to produce a
function that is identical to f (except at x = 2) and that is continuous at a = 2:

g(x) =

⎧⎪⎨⎪⎩
x − 2

x2 − x − 2
if x 	= 2

1

3
if x = 2.

When f (a) may be redefined so that the function becomes continuous at a (as in
this example), then a is called a removable discontinuity of the original function.

■

Question 4.3.8 The following functions f (x) are not continuous at a = 3 because 3 is not in their
domains. Prove that the limit of f as x approaches 3 exists and give a piecewise
redefinition of f to obtain a function that is continuous at a = 3.

(a) f (x) = x − 3

x2 + x − 12

(b) f (x) = 5x − 2

5x2 − 32x + 12

(c) f (x) = x − 3

x2 − 9

(d) f (x) = x − 3

x3 − 27
■
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We finish this section with a brief discussion of infinite limits. As you may recall
from your study of calculus, infinite limits describe important features of functions and
graphs. For example, one of the distinguishing features of the function f (x) = 1/x2 is
that lim

x→0
1/x2 = ∞. Our interest here is not so much in the evaluation of such limits,

but instead in developing its rigorous definition. The intuitive idea of an infinite limit
lim
x→a

f (x) = ∞ is that if x is close to a (but not equal to a), then f (x) is greater than any

prespecified real number (which is denoted by M). The following formal definition
closely resembles Cauchy’s definition of the limit.

Definition 4.3.3 Let f : D → Y be a function whose domain D contains all points of an open
interval around a ∈ R, except for a itself. Then the expression lim

x→a
f (x) = ∞

means: for every real M > 0, there exists δ > 0 such that 0 < |x− a| < δ implies
f (x) > M. In this case, we say that f (x) approaches infinity as x approaches a.

Example 4.3.14 We use the definition of an infinite limit to prove that lim
x→0

1/x2 = ∞.

Proof Let M > 0 be a given real number. We need to identify a corresponding δ so
that 0 < |x − a| < δ implies f (x) > M. We choose δ = 1/

√
M and assume 0 <

|x − a| < δ, which implies 0 < |x − 0| = |x| < δ = 1/
√

M. The inequalities
0 < |x| < 1/

√
M imply 0 < x2 < 1/m, and so 1/x2 > M. Therefore, by the

definition of an infinite limit, lim
x→0

1/x2 = ∞.

■

Question 4.3.9 Prove each limit using the definition.

(a) lim
x→3

1

(x − 3)4
= ∞ (b) lim

x→1

1

x(x − 1)2
= ∞

■

4.3.1 Reading Questions for Section 4.3

1. State both an intuitive description and the definition of lim
x→a

f (x) = L.

2. When using the definition to verify a limit, is δ always less than ε ? Consider
question 4.3.2 when explaining your answer.

3. State theorem 4.3.1. How is this result helpful when studying limits?

4. Give an example of each analytic rule for computing limits identified in
theorem 4.3.2.

5. State the triangle inequality. Give an example producing equality and an
example producing a strict inequality.

6. Give an example for each property of the absolute value function identified
in theorem 4.3.3.

7. State the polarization identity. How is this identity helpful when studying
limits?

8. State the squeeze theorem and give an example of an application of this result.
9. State both an intuitive description and the definition of f (x) is continuous at

x = a.
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10. Define and give an example of a continuous function.

11. Give an example of a function that is discontinuous at every element of its
domain.

12. State both an intuitive description and the definition of lim
x→a

f (x) = ∞.

4.3.2 Exercises for Section 4.3

In exercises 1–6, use the graph of the function f (x) given in figure 4.12 to identify the
value of each limit, or to explain why the limit does not exist.

1. lim
x→0

f (x)

2. lim
x→10

f (x)

3. lim
x→20

f (x)

4. lim
x→30

f (x)

5. lim
x→40

f (x)

6. lim
x→50

f (x)

In exercises 7–12, prove each limit using the definition of a limit and the given δ.

7. lim
x→2

7x − 8 = 6 with δ = ε

7
8. lim

x→4
−2x + 15 = 7 with δ = ε

2
9. lim

x→a
mx + b = ma+ b with δ = ε

|m|
10. lim

x→−2
x2 − 2 = 2 with δ = min {1, ε/5}

11. lim
x→0

ax2 + bx + c = c, where a, b > 0 with δ = min

{
b

a
,

ε

2b

}
12. lim

x→5

3

2x + 1
= 3

11
with δ = min

{
1,

6ε

121

}
In exercises 13–18, prove each limit using the definition.

13. lim
x→5

2x + 3 = 13

14. lim
x→3
−4x + 3 = −9

15. lim
x→2

x2 + 1 = 5

16. lim
x→0

x2 + 6x + 5 = 5

17. lim
x→9

3
√

x − 1 = 8

18. lim
x→8

1

x − 6
= 1

2

10

10

20

20 30 40 50

Figure 4.12 Graph of f (x) for exercises 1–6
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In exercises 19–26, evaluate the following limits using the analytic rules identified in
theorem 4.3.2, or using other techniques that you learned in your calculus courses.

19. lim
x→2

2x + 5

20. lim
x→1

(8x2 + 3) · (3x + 1)

21. lim
x→30

3
√

x − 3

22. lim
x→−3

9

x + 1

23. lim
x→0

4x + 1

5x + 2

24. lim
x→0

ex

x2

25. lim
x→0

x

tan(x)

26. lim
x→0

cos(x)

4x3

In exercises 27–32, determine the value of each limit under the following assumptions.

lim
x→2

f (x) = 3 lim
x→2

g(x) = 5 lim
x→2

h(x) = 8

27. lim
x→2

f + g

28. lim
x→2

f · h
29. lim

x→2
f − h

30. lim
x→2

3[ f ]2 + 1

31. lim
x→2

√
h+ 6

32. lim
x→2

2f + 3h

4g

In exercises 33–35, prove each function is continuous at x = 0 using the definition.

33. f (x) = x
34. f (x) = |x|

35. f (x) = x2

In exercises 36–38, prove each function is continuous using the definition.

36. f (x) = x
37. f (x) = |x|

38. f (x) = x2

In exercises 39–42, discuss the continuity of each function.

39. f (x) = x2 − 1

x + 1

40. f (x) = 2x2 − 4x

x3 − 4x

41. f (x)=
⎧⎨⎩ x2 if x<2

(x+2)(x−2)

x−2
if x>2

42. f (x) =
{

3x + 2 if x < 0
x2 + 2 if x > 0

In exercise 43–44, prove each limit using the definition of an infinite limit.

43. lim
x→3

2x

(x − 3)2
= ∞ 44. lim

x→2

3

x(x − 2)2
= ∞

In exercises 45–56, prove each mathematical statement about limits.

45. The limit of a constant rule from theorem 4.3.2.
46. The limit of a sum rule from theorem 4.3.2.
47. The limit of a difference rule from theorem 4.3.2.
48. The limit of a quotient rule from theorem 4.3.2.
49. If p(x) is a polynomial, then lim

x→a
p(x) = p(a).

50. If lim
x→a

f (x) = 0, then lim
x→a
| f (x)| = 0.
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51. Disprove the claim: If lim
x→a
| f (x)| = L, then either lim

x→a
f (x) = L or

lim
x→a

f (x) = −L.

52. If lim
x→a

f (x) = ∞ and lim
x→a

g(x) = ∞, then lim
x→a

f + g = ∞.

53. If lim
x→a

f (x) = ∞ and lim
x→a

g(x) = L ∈ R∗, then lim
x→a

f (x)

g(x)
= ∞.

54. If lim
x→a

f (x) = L, then lim
x→a

(f (x)− L) = 0.

55. Disprove the two claims:

(a) If lim
x→a

f (x) = L, then f (a) = L.

(b) If f (a) = L, then lim
x→a

f (x) = L.

56. The squeeze theorem (theorem 4.3.4).

In exercises 57–68, prove each mathematical statement about continuity.

57. The constant function is continuous (from theorem 4.3.5).
58. The sum of two continuous functions is continuous (from theorem 4.3.5).
59. The difference of two continuous functions is continuous (from theorem 4.3.5).
60. The product of two continuous functions is continuous (from theorem 4.3.5).
61. If f is continuous at x = a, then −f is continuous at x = a.
62. If f is continuous at x = a, then | f | is continuous at x = a.
63. Prove that f (x) = xn is continuous for all n ∈ N via induction (and

theorem 4.3.5).
64. If lim

h→0
f (a+ h) = f (a), then f is continuous at x = a.

65. Disprove the claim: If f and g are not continuous at x = a, then f + g is not
continuous at x = a.

66. Disprove the claim: If | f | is continuous at x = a, then f is continuous at x = a.
67. Disprove the claim: If the composite function f (g(x)) is continuous, then f (x)

and g(x) are both continuous.
68. The following variation on the characteristic function of Q is continuous at

x = 0:

f (x) =
{

x if x ∈ Q

0 if x 	∈ Q

In exercises 69–70, state both an intuitive description and a definition of each limit.

69. lim
x→a

f (x) = −∞ 70. lim
x→∞ f (x) = L

4.4 The Derivative

Calculus is the study of change. While Sir Isaac Newton and Gottfried Leibniz are both
credited for independently developing calculus in the late 1600s, mathematicians had
already been working with derivatives for nearly a half century. The study of change
as expressed by the derivative was motivated by a sixteenth and seventeenth century
European reflection on and ultimate rejection of ancient Greek astronomy and physics.
The European astronomers Nicolaus Copernicus, Tycho Brahe, and Johannes Kepler
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each had insights that challenged the theories of the ancient Greeks, setting the stage
for the ground-breaking work of the Italian scientist Galileo Galilei in the early 1600s.
Many of the questions about a moving object (that is, an object changing position and
velocity) that these scientists were studying are readily answered by considering lines
tangent to curves.

A number of mathematicians from many different countries made important
contributions to the question of finding the equation of a tangent line. Pierre de
Fermat studied maxima and minima of curves via tangent lines, essentially using the
approach studied in contemporary calculus courses. This work prompted fellow French
mathematician Joseph-Louis Lagrange to assert that Fermat should be credited with the
development of calculus! The English mathematician Isaac Barrow, who was Newton’s
teacher and mentor, corresponded regularly with Leibniz on these mathematical ideas.

As we have mentioned, neither Newton nor Leibniz thought of the derivative as a
measure of change in terms of our contemporary definition involving limits. Our study
of the derivative follows more closely the work of Fermat and Barrow from the early
1600s, in which we think of a tangent line as a limit of secant lines. Naturally, the
contemporary presentation is informed by an understanding of Cauchy’s notion of the
limit from the early 1800s.

The derivative enables the determination of the equation of a line tangent to a
given curve at a given point. Given a function y = f (x), the slope of a secant line
joining two points (c, f (c)) and (c+ h, f (c+ h)) is

m = rise

run
= 
y


x
= f (c+ h)− f (c)

(c+ h)− c
= f (c+ h)− f (c)

h
.

In this context, the symbol “m” is the first letter in the French word montrer which
translates as “to climb.”

To find the slope of the line tangent to a function f at the point (c, f (c)), we take
a limit of the slopes of secant lines, letting h approach 0. Figure 4.13 illustrates why
this limit process makes intuitive sense; you can see that the slopes of the secant lines
get closer and closer to the slope of the tangent line as the point (c+ h, f (c+ h)) gets
closer and closer to (c, f (c)). The definition of the derivative reflects these ideas.

The following definition expresses the real number c as a variable quantity x to
identify a general formula for the derivative, enabling us to determine the slope of the
line tangent to f (x) whenever this slope is defined.

Definition 4.4.1 Let f (x) be a function with domain D. Then the derivative of f (x) is

f ′(x) = lim
h→0

f (x + h)− f (x)

h
,

whenever this limit exists. We say that f (x) is differentiable at x = c when f ′(c)
exists for c ∈ D, and that f (x) is differentiable when f ′(x) exists for all x ∈ D.
The ratio

f (x + h)− f (x)

h

is called the difference quotient of the derivative.
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Figure 4.13 A tangent line at x = 2 as a
limit of secant lines
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Recall from calculus that many different notations are used for the derivative of a
function y = f (x), including

f ′(x) = df

dx
= d

dx
(f ) = y′ = dy

dx
= Dx(y) = ẏ .

Various phrases also refer to the derivative, including “f (or y) prime,” “the derivative
of f (or y) with respect to x,” the letters “d f d x” spoken individually, and “d y d x”
spoken individually. Most of this notation for the derivative is attributable to Leibniz,
who gave considerable thought to carefully identifying a useful symbolism and is
recognized as a genius in developing notation to make subtle concepts understandable.
The alternate definition of the derivative is sometimes helpful; if the limit exists, then

f ′(x) = lim
t→x

f (t)− f (x)

t − x
.

The proof of the equivalence of this alternate definition and the one given in definition
4.4.1 is left for exercise 50 at the end of this section.

Example 4.4.1 We use the two definitions of the derivative to determine the equation of a line
tangent to f (x) = x2 at (2, 4).

Applying the definition,

f ′(x)= lim
h→0

(x+h)2−x2

h
= lim

h→0

x2+2xh+h2−x2

h
= lim

h→0

2xh+h2

h
= lim

h→0
2x+h= 2x.

Hence the slope of the tangent line at (2, 4) is f ′(2) = 2 · 2 = 4, and the equation
of the line tangent to f (x) = x2 at (2, 4) is given by y − 4 = 4(x − 2).

Applying the alternate definition produces the same result:

f ′(x) = lim
t→x

t2 − x2

t − x
= lim

t→x

(t + x)(t − x)

t − x
= lim

t→x
t + x = 2x.

■

When using the definition (as in example 4.4.1), we often algebraically manipulate
the difference quotient so that h appears as a factor in the numerator. This factor
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then cancels the denominator, simplifying the difference quotient so the limit can be
evaluated. If the original function f (x) is a rational function, then finding a common
denominator will simplify the difference quotient in this way. If f (x) contains a square
root, multiplying by the conjugate square root function will simplify the difference
quotient.

Example 4.4.2 We use the definition of the derivative to find the derivative of f (x) = 5
√

x + 1.
Multiplying both the numerator and the denominator of the difference quotient

by the conjugate square root function and then simplifying yields the following
calculation.

f ′(x) = lim
h→0

5
√

x + h+ 1− 5
√

x + 1

h

= lim
h→0

5
√

x + h+ 1− 5
√

x + 1

h
· 5
√

x + h+ 1+ 5
√

x + 1

5
√

x + h+ 1+ 5
√

x + 1

= lim
h→0

25[(x + h+ 1)− (x + 1)]
5h(
√

x + h+ 1+√x + 1)
= lim

h→0

5h

h(
√

x + h+ 1+√x + 1)

= 5

2
√

x + 1
■

Question 4.4.1 Using the definition of the derivative, differentiate each function.

(a) f (x) = 2x + 1

(b) g(x) = 7x3

(c) s(x) = 1

x + 5

(d) t(x) = 1

3
√

x

■

While we can use the formal definition of the derivative to compute derivatives of
a given function, theoretical applications of the definition are more important. Using
the definition, we can prove general theorems that hold for all derivatives, making it
easy to differentiate many familiar functions without explicitly applying the definition
one function at at time. Many functions are so complicated in structure that directly
using the difference quotient becomes unwieldy or impossible. The next theorem
states analytic properties of derivatives to facilitate such computations. Using these
results is a common exercise in calculus courses, but you may not have considered the
underlying proofs that justify them. These proofs are the focus of the remainder of this
section.

Theorem 4.4.1 If c ∈ R and both f and g are differentiable functions, then the following hold.

• The constant rule:
d

dx
[ c ] = 0

• The scalar multiple rule:
d

dx
[ c · f (x) ] = c · f ′(x)
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• The sum rule:
d

dx
[ f + g ] = f ′ + g′

• The difference rule:
d

dx
[ f − g ] = f ′ − g′

• The power rule:
d

dx

[
xn ] = n · xn−1, for n ∈ R

• The product rule:
d

dx
[ f · g ] = g · f ′ + f · g′

• The quotient rule:
d

dx

[
f

g

]
= g · f ′ − f · g′

g2
, provided that g(x) 	= 0

• The chain rule:
d

dx
[ f (g(x)) ] = f ′(g(x)) · g′(x)

A standard goal of a calculus course is to develop a mastery in using these
differentiation rules. Before diving into the proofs of various parts of this theorem,
the next example provides the opportunity to revisit the skills you learned in
calculus.

Question 4.4.2 Using theorem 4.4.1, differentiate each function.

(a) f (x) = 10x3 − 7x2 + 5

(b) g(x) = √5x + 2

(c) h(x) = cos (3x + 1)

5x2 + 2

(d) p(x) = (x5 + x) tan(2x)

(e) q(x) = ln(4x2 + 1) · sin2(5x + 3)

(f) r(x) = (2x5 + 3) 3
√

4ex + 6x

■

The next three examples give the proofs of some of these differentiation rules.
As in the study of limits and continuity, we first consider the scalar multiple
and sum rules, and then discuss a couple of different approaches to proving the
power rule.

Example 4.4.3 We prove the scalar multiple rule from theorem 4.4.1: For any constant c ∈ R and
differentiable function f ,

d

dx
[ c · f (x) ] = c · f ′(x).

Proof Apply the definition of the derivative and the limit of a scalar multiple rule.

d

dx
[ c · f (x) ] = lim

h→0

c · f (x + h)− c · f (x)

h
= lim

h→0

c · [ f (x + h)− f (x)]
h

= c · lim
h→0

f (x + h)− f (x)

h
= c · f ′(x)

■

Example 4.4.4 We prove the sum rule: If f and g are differentiable functions, then
d

dx
[ f + g ] =

f ′(x) + g′(x).
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Proof Apply the definition of the derivative and the limit of a sum rule.

d

dx
[ f + g ] = lim

h→0

[ f (x + h)+ g(x + h)] − [ f (x)+ g(x)]
h

= lim
h→0

[ f (x + h)− f (x)] + [ g(x + h)− g(x)]
h

= lim
h→0

f (x + h)− f (x)

h
+ lim

h→0

g(x + h)− g(x)

h
= f ′(x)+ g′(x)

■

Example 4.4.5 We prove the power rule: If n ∈ R, then

d

dx

[
xn ] = n · xn−1.

Proof We prove the power rule in the case of the positive integers n ∈ N by using the
binomial theorem to expand the term f (x+h) = (x+h)n in the difference quotient
as follows:

(x + h)n = xn + n · xn−1 · h+ n(n− 1)

2
· xn−2 · h2 + · · · + n · x · hn−1 + hn.

Applying the definition of the derivative,

d

dx

[
xn ] = lim

h→0

(x+h)n−xn

h

= lim
h→0

[xn+n ·xn−1 ·h+ n(n−1)

2
·xn−2 ·h2+···+n ·x ·hn−1+hn]−xn

h

= lim
h→0

n ·xn−1 ·h+ n(n−1)

2
·xn−2 ·h2+···+n ·x ·hn−1+hn

h

= lim
h→0

h ·[n ·xn−1+ n(n−1)

2
·xn−2 ·h+···+n ·x ·hn−2+hn−1]

h

= lim
h→0

n ·xn−1+ n(n−1)

2
·xn−2 ·h+···+n ·x ·hn−2+hn−1

= n ·xn−1.

Alternatively, the power rule for n ∈ N follows by induction (see exercise 67

in section 3.6). The definition of the derivative proves the base case
d

dx
[ x ] =

1 · x0 = 1, and the product rule applies in the inductive step (for xn+1 = xn · x).
A complete proof of the power rule must consider arbitrary real numbers

n ∈ R, not just positive integers n ∈ N. The power rule extends to the negative
integers via the quotient rule, to rational powers via implicit differentiation, and
to all real numbers via logarithmic differentiation. The details of such a complete
proof are left for your later studies.

■
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Question 4.4.3 The following steps outline a proof of the quotient rule: If f (x), g(x) are
differentiable functions with g(x) 	= 0, then

d

dx

[
f (x)

g(x)

]
= g(x) · f ′(x) − f (x) · g′(x)

g(x)2
.

(a) What is the difference quotient for the function
f (x)

g(x)
?

(b) Using the common denominator g(x) · g(x + h) · h, simplify the difference
quotient from part (a).

(c) In the numerator from part (b), subtract and add the term g(x) · f (x). Now split
the fraction into a difference of two differences, gathering together the two
terms with g(x) as a common factor and the two terms with f (x) as a common
factor.

(d) What is the limit of the difference of difference quotients from part (c) as h
approaches 0?

(e) Based on parts (a)–(d), craft a complete proof of the quotient rule as modeled
in examples 4.4.3, 4.4.4, and 4.4.5.

■

Question 4.4.4 The following steps outline a proof of the chain rule: If f (x), g(x) are differentiable
functions, then

d

dx
[ f [g(x)] ] = f ′[g(x)] · g′(x).

(a) What is the difference quotient

h(t)− h(x)

t − x

(from the alternate definition of the derivative) for the function h(x) =
f [ g(x) ] ?

(b) Assuming there are no values x for which g(x) = g(t), multiply both the
numerator and the denominator of the difference quotient from part (a) by
g(t)− g(x). Factor out the resulting difference quotient for g(x).

(c) Take the limit of the product of difference quotients from part (b) as t
approaches x to obtain the chain rule formula.

(d) Based on parts (a)–(d), craft a proof of the chain rule under the assumption
that g(x) 	= g(t) as modeled in examples 4.4.3, 4.4.4, and 4.4.5.

The assumption that there are no values for which g(x) equals g(t) may be
unreasonable; a complete proof of the chain rule that does not use this assumption
is outlined in exercises 67–70 at the end of this section.

■

We end this section by considering the relationship between two of the most sig-
nificant properties of functions studied in this chapter: continuity and differentiability.
Some properties of functions are completely independent of one another, as we saw
in our discussion of one-to-one and onto functions; some functions are both, some are
neither, while still others have just one of these properties. This observation leads us
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to ask if continuity and differentiability are independent of one another, or is there
a connection between these two properties? As you may recall, every differentiable
function is continuous, but not every continuous function is differentiable. We consider
the theorem and its proof, along with a counterexample that together justify these
assertions.

Theorem 4.4.2 If a function f with domain D is differentiable at a ∈ (b, c)⊆ D, then f is continuous
at a.

Proof By the alternate definition of the derivative, given any ε > 0, there exists a value
δ > 0 so that ∣∣∣∣ f (x)− f (a)

x − a
− f ′(a)

∣∣∣∣ < ε

whenever 0 < |x − a| < δ. Multiplying both sides by |x − a|, we see that

| f (x)− f (a)− f ′(a)(x − a)| < ε|x − a|.
Applying the second inequality (|x| − |y| ≤ |x − y|) from theorem 4.3.3 in
section 4.3, we have

| f (x)− f (a)| − | f ′(a)(x − a)| ≤ | f (x)− f (a)− f ′(a)(x − a)|.
This fact implies | f (x)− f (a)| < | f ′(a)(x − a)| + ε|x − a|, and so

| f (x)− f (a)| < (| f ′(a)| + ε) · |x − a|.
The term on the right can be made arbitrarily small: we restrict values of x in that
term so that |x − a| is smaller than both δ (so that the first inequality holds) and
ε/(| f ′(a)| + ε). Then | f (x)− f (a)| < ε, which proves the result.

■

Theorem 4.4.2 asserts that every differentiable function is continuous. Are there
continuous functions that are not differentiable? Perhaps you can recall from calculus
examples of continuous functions that are not differentiable. The next example provides
one such counterexample.

Example 4.4.6 We discuss the continuity and differentiability of f (x) = |x| at x = 0.
We can show that y = |x| is continuous at x = 0, using the definition. Let

ε > 0 and choose δ = ε. For any x such that |x − 0| < δ, the following string of
relations holds:

| f (x)− f (0)| = | |x| − |0| | = | |x| | = |x| < ε.

By the definition of continuity, |x| is continuous at x = 0.
On the other hand, we can show that |x| is not differentiable at x = 0, using the

alternate definition of the derivative. The difference quotient for f (x) at x = 0 is

f (x)− f (0)

x − 0
= |x| − |0|

x
= |x|

x
.

Taking the limit of this difference quotient as x approaches 0,

lim
x→0 −

|x|
x
= −1 and lim

x→0 +
|x|
x
= 1.
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Therefore the limit

lim
x→0

f (x)− f (0)

x − 0

does not exist, and f (x) = |x| is not differentiable at x = 0.
■

Question 4.4.5 Give an example of a continuous function that is not differentiable at the following
points:

(a) x = 1
(b) both x = 1 and x = −1

(c) x = n · π , for every n ∈ Z

(d) x = 2n, for every n ∈ Z

■

These results show that (intuitively speaking) it is “more difficult” for a function
to be differentiable than continuous. From an informal, graphical perspective, this
fact is quite natural; at a point of discontinuity for a graph, we cannot draw a unique
tangent line.

The results also provide another reason for the importance of studying continuity:
the functions that are the most “well behaved” from the perspective of differential
calculus are continuous. Section 4.6 will identify an important connection between
continuity and Riemann integrability.

The derivative has transformed the way mathematicians think about functions.
Many questions about mathematical objects and our real-world can be phrased in terms
of the derivative’s measure of change. In this way, the development of the derivative
set the stage for much of the last three centuries of investigations into function theory.
From your calculus courses, you know that these investigations include finding maxima
and minima, and determining increasing and decreasing sections of curves, concavity,
and points of inflection, as well as the construction of power series. In summary, the
derivative flows through function theory in a useful and meaningful way.

4.4.1 Reading Questions for Section 4.4

1. Define and give an example of the slope of a line.
2. Describe an intuitive motivation for the definition of the derivative in terms

of secant lines and tangent lines to a curve.
3. State the definition of the derivative f ′(x).
4. State the alternative definition of the derivative f ′(x).
5. Give an example of a differentiable function.
6. What is the distinction between a function being differentiable at a point x = c

and a function being differentiable?
7. State theorem 4.4.1. How is this result helpful when studying derivatives?
8. Give an example of each differentiation rule stated in theorem 4.4.1.
9. Define and give an example of a conjugate square root function.

10. State the binomial theorem. How is this result helpful when studying
derivatives?

11. Discuss the relationship between continuity and differentiability.
12. Give two examples of functions that are continuous, but not differentiable.
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4.4.2 Exercises for Section 4.4

In exercises 1–6, express the slope of a secant line to each function for the designated
x-coordinates as a difference quotient, and sketch the corresponding graph.

1. f (x) = x2 + 2 at x = 3 and x = 4
2. f (x) = x2 + 2 at x = 3 and

x = 3.01
3. f (x) = x2 + 2 at x = 3 and

x = 3.0001

4. f (x) = x3 at x = 0 and x = 1
5. f (x) = x3 at x = 0 and

x = 0.01
6. f (x) = x3 at x = 0 and

x = 0.0001

In exercises 7–18, use the definition of the derivative to compute the derivative (if it
exists) of each function.

7. f (x) = 2x + 3

8. g(x) = 3x − 5

9. h(x) = x2 + 1

10. j(x) = x2 + x

11. p(x) = 1/x

12. q(x) = 1

x + 1

13. r(x) = 1

x − 3

14. s(x) = √x

15. t(x) = √2x + 2

16. u(x) = 1√
x + 7

17. v(x) =
{

4x if x ≤ 2
2x2 if x > 2

18. w(x) =
{

4x + 3 if x ≤ 2
2x2 if x > 2

In exercises 19–28, compute the derivative of each function using the analytic
differentiation rules from theorem 4.4.1, along with your recollection of the derivatives
of functions from calculus.

19. f (x) = (x9 + x6)37

20. f (x) = (x + x−1)4

21. f (x) = (3x2 + √6x + 5 − 4) ·
(2x + 1/x)

22. f (x)= (x2+1)3 ·√(5x3 + 2x)2 + 1

23. f (x) = sin5(x3 + 2x)

24. f (x) = ln(x) · cos(2x + 7)

25. f (x) = log3(cot(2x))

26. f (x) = ln(x2 + 2) · log5(csc(x) +
2x)

27. f (x) = (k · x5 + 2x) 3
√

x, where
k ∈ R

28. f (x) =
(√

3x2 + 2x + 1

kx

)3n

,

where k, n ∈ R

In exercises 29–34, determine the exact value of h′(3π/4) and state the equation of the
line tangent to h(x) at x = 3π/4 using the information in the following table.

f (x) f ′(x) g(x) g′(x)

x = 3π/4 4 2 5 3

29. h(x) = 7 · f (x)− sec(x)+ π3

30. h(x) = g(x) · cos(x)

31. h(x) = g(x)+ x

f (x)+ 2

32. h(x) = tan(x)+ π · cot2(g(x))

33. h(x) = sin[π · f (x)]+cos[π · g(x)]
34. h(x) = f (x)

x
− x2

g(x)
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In exercises 35–38, answer each question about f (x) = √x.

35. Using the definition of the derivative, find f ′(x).
36. Using the power rule, find f ′(x).
37. Determine the equation of the tangent line to f (x) = √x at (9, 3).
38. Determine the equation of the tangent line to f (x) = √x that is perpendicular

to the line determined by 2y+ 8x = 16.

Exercises 39–43 develop a proof that the derivative of sin θ is cos θ .

39. Prove that sin θ · cos θ < θ < tan θ .
Hint: Compare the areas of the three nested regions in figure 4.14 and use the
fact that a pie-shaped sector of the unit circle with central angle θ (in radians)
has an area of θ/2.

40. Identify upper and lower bounds on sin θ/θ using the inequalities from
exercise 39.
Hint: Divide by sin θ and take reciprocals.

41. Prove that lim
θ→0

sin θ/θ = 1.

Hint: Apply the squeeze theorem (see theorem 4.3.4 from section 4.3) to the
inequalities from exercise 40.

42. Prove that lim
θ→0

(1− cos θ)/θ = 0.

Hint: Multiply both the numerator and the denominator by 1 + cos θ and
then use both the Pythagorean identity sin2 θ + cos2 θ = 1 and the limit from
exercises 41.

43. Prove that the derivative of sin θ is cos θ .
Hint: Working with the definition of the derivative, simplify the resulting
difference quotient using the limits from exercises 41 and 42 along with the
trigonometric identity sin(u+ v) = sin u cos v + sin v cos u.

In exercises 44–48, derive the formulas for the derivative of the other trigonometric
functions; all but exercise 44 use the quotient rule.

44. Prove that the derivative of cos θ is − sin θ .
Hint: Use the cofunction identity cos x = sin(π/2− x) and the derivative from
exercises 43.

Figure 4.14 Figure for
exercise 39

(cos q, sin q)

(0,0) (1,0)

(1, tan q )

q
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45. Prove that the derivative of tan θ is sec2 θ .
46. Prove that the derivative of cot θ is − csc2 θ .
47. Prove that the derivative of sec θ is sec θ tan θ .
48. Prove that the derivative of csc θ is − csc θ cot θ .

In exercises 51–66, prove each mathematical statement about derivatives.

49. The derivative of a differentiable function is unique. Hint: See the unique
limit theorem (theorem 4.3.1 from section 4.3).

50. The two definitions of the derivative are equivalent. Hint: Let h = a− x.
51. The constant rule from theorem 4.4.1.
52. The difference rule from theorem 4.4.1.
53. The product rule from theorem 4.4.1. Hint: Add and subtract f (x + h) · g(x)

in the numerator of the difference quotient for f (x) · g(x).
54. The quotient rule from theorem 4.4.1. Hint: See question 4.4.3.
55. The chain rule from theorem 4.4.1. Hint: See question 4.4.4.
56. Every polynomial is differentiable.
57. The derivative of a polynomial of degree n is a polynomial of degree n− 1.
58. The derivative of an even function is odd; that is, if f (x) = f (−x), then f ′(x) =
−f ′(−x).

59. If f is a differentiable function on an interval (x − h, x + h) for some h ∈ R,
then the derivative f ′(x) equals limh→0 f ′(x+ h). Hint: Apply L’Hôpital’s rule
from calculus to the limit of the difference quotient.

60. Appling the alternative definition of the derivative at x = 0, the following
function is not differentiable at x = 0.

f (x) =
⎧⎨⎩ x · sin

[
1

x

]
if x 	= 0

0 if x = 0

61. The function f (x) defined as follows has derivative f ′(0) = 0.

f (x) =
⎧⎨⎩ x2 · sin

[
1

x

]
if x 	= 0

0 if x = 0

62. For every k ∈ R, the function f (x) defined as follows has derivative f ′(0) = 0.

f (x) =
{

k · x2 if x ∈ Q

0 if x 	∈ Q

63. If a function f is differentiable on (b, c) and f ′(a) = 0 for a ∈ (b, c), then it is
not necessarily true that either a relative maximum or relative minimum for
f occurs at x = a.

64. If f and g are differentiable functions on (a, b) with the same derivative, then
f (x)− g(x) is a constant for any x ∈ (a, b).
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65. If f and g are differentiable functions on (a, b) with f − g a constant, then f
and g have the same derivative at any x ∈ (a, b).

66. Define a function f that is nowhere differentiable, while f 2 is everywhere
differentiable. Hint: Consider a variation on the characteristic function
of Q.

Exercises 67–70 develop a proof of the chain rule in a fuller generality than
was discussed in question 4.4.4. Throughout these exercises assume that g(x) is
differentiable at a point x = a and that f (x) is differentiable at g(a).

67. Prove that the following function F is continuous at h = 0; intuitively, we
think of F as the derivative of f with respect to t = g(a).

f (h) =
⎧⎨⎩

f [g(a)+ h] − f [g(a)]
h

if h 	= 0

f ′[g(a)] if h = 0

68. Prove that f [g(a)+ h] = f [g(a)] + h · F(h) for sufficiently small values of h
by taking the limit of these two expressions as h approaches 0.

69. In a parallel way, we can define a function G so that G(0) = g′(a) and g(a+
k) = g(a) + k · G(k) for sufficiently small values of k. Use this fact, the
result from exercise 68, and the choice of h = g(a+ k)− g(a) = k · G(k) to
prove that:

f [g(a)+ h] = f [g(a+ k)] and h · F(h) = k · G(k) · F(k · G(k)).

70. Using the two equations obtained in exercise 69, substitute the first equation
into the second to prove that

f [g(a+ k)] = f [g(a)] + k · G(k) · F(k · G(k)).

The last term on the right is continuous at 0 based on the definitions of F and
G. Subtract f [g(a)] on both sides of this equation, divide both sides by k and
take the limit as k approaches 0 to obtain the chain rule.

4.5 Understanding Infinity

The notion of infinity has been an important element in many cultures’ attempts to
understand life: people refer to eternal time; an eternal spiritual afterlife; a boundless
universe; an all-powerful deity. Mathematics has a unique and important perspective
on infinity; the insights arising from mathematics’rigorous, logical approach to infinity
have had an important influence on Western society’s view of the world. But many
advanced mathematical results on infinity (especially those that grew out of Georg
Cantor’s work in the late 1860s) are not widely known. In this section, we explore a
mathematical understanding of the infinite.

We have already taken the first steps in this direction in our study of limits. One
major breakthrough in the development of calculus is the harnessing of infinity in the
very specific and powerful way expressed by the notion of limit to obtain the derivative
(and the integral as discussed in section 4.6). As mathematicians developed and refined
their understanding of limits, derivatives, and integrals in the eighteenth and nineteenth
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centuries, they began to recognize a need for a better understanding of the continuum
of the real line. The German mathematician Georg Cantor made the most significant
progress in this direction, ultimately developing a set-theoretic perspective of the reals
that enabled him to study the basic properties and arithmetic of actual infinite numbers.
While this study of infinity has a more discrete, set-theoretic feel, we immediately apply
the results to the study of real analysis.

During the late 1600s, a European openness to infinite processes was a key element
in the development of calculus. Based on the ancient Greek mathematicianArchimedes’
efforts to calculate the areas of closed plane figures via approximating polygons, it
appears that he essentially understood the ideas of limits and integrals. Archimedes
apparently held back because of the need to work with infinity. We can only wonder
about the advancement of mathematical thought had Archimedes, Euclid, or Pappus
of Alexandria successfully pursued these ideas further.

In our study of limits, we used the symbol “∞” to denote infinity. This notation
was introduced in 1655 by the English mathematician John Wallis in his paper De sec-
tionibus conicus. However, the symbol∞ does not denote an actual infinite number,
but indicates “unboundedness” or numbers growing without bound. For example, we
know lim

x→0
1/x2 = ∞. This notation does not mean that we substitute 0 for x and the

result is a number ∞; rather, this expression means that the values of the function
1/x2 grow larger and larger as we substitute numbers closer and closer to 0 for x. This
notion of “growing large without bound” or of processes that continue indefinitely
(such as counting positive integers) is referred to as potential infinity. The ancient
Greeks were mostly accepting of the notion of potential infinity; in the third century
b.c.e., Archimedes wrote about extremely large numbers growing without bound in his
essay The Sand Reckoner. While such a perspective on infinity is useful (as evident in
calculus), we are interested in more: we seek to define actual “infinite numbers.”

Humans have been grappling with the notion of infinity for thousands of years. This
struggle has led some of humanity’s greatest thinkers to describe various “paradoxes
of infinity,” two of which are described in this section. Such paradoxes highlight
the delicate issues at the heart of the notion of infinity–those that intuitively seem
contradictory and without possibility of resolution, and that ultimately require new
insights to unravel. The first was described during the fourth century b.c.e. by the Greek
philosopher Zeno of Elea. Zeno proposed four paradoxes of infinity: the Dichotomy,
Achilles, the Arrow, and the Stadium. Each paradox expresses concerns with the notion
of a realized, completed infinity, as opposed to the familiar potential infinity from our
studies of calculus.

Example 4.5.1 Zeno’s paradox of Achilles and the tortoise Achilles and the tortoise are racing,
and Achilles has kindly given the tortoise a head start. After making some slow
but steady progress, the tortoise decides to take a break and sit without moving on
the race course. Achilles starts the race and begins covering the distance between
himself and the stationary tortoise. First, Achilles covers half the distance between
the starting line and the tortoise. He then covers half the remaining distance to
the tortoise; at this point Achilles only needs to cover one-fourth of the distance
between the starting line and the tortoise. Again, Achilles makes progress and
covers half the remaining distance; now he has only one-eighth of the remaining
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distance left. He continues in this fashion: with 1/16th of the distance left to cover,
then 1/32nd left, then 1/64th left, and so on. In this way, Achilles gets closer and
closer to the tortoise. But he never catches the tortoise, because he has infinitely
many of these half-distance intervals to pass through! And here is the paradox, as
our “real-life” experience tells us that Achilles not only catches the tortoise (who
remains at a standstill), but also passes him and wins the race (so long as Achilles
continues to move toward the finish line).

A resolution of Zeno’s Achilles–tortoise paradox. One resolution is often referred to as
“irrelevant parametrization,” which can be thought of as “keeping your eye
on the wrong part of the problem.” In this setting, the element of time is never
considered in the statement of the paradox: How long does it take Achilles
to pass through these increasingly small distance intervals?

A second resolution of this paradox follows from an understanding
of infinite series (or sums) developed by European mathematicians in the
eighteenth century. Perhaps you recall studying geometric series with r =
1/2, for which

1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · =

1
2

1− 1
2

= 1.

In short, an infinite sum of positive terms can have finite value. In reference
to Zeno’s Achilles–tortoise paradox, if Achilles travels at a constant rate, then
the series sums the times it takes him to travel each of the half-distances, and
so the total distance between Achilles and the tortoise is covered in a finite
amount of time.

■

While we may now understand how to respond to Zeno’s paradoxes of infinity,
these resolutions were not apparent for some 2,000 years. During this time, the notion
of potential infinity continued to be accepted by philosophers and mathematicians,
while the notion of an actual, complete infinity was regarded with skepticism.

A second paradox of infinity was stated by Galileo in the early 1600s. Contempo-
rary mathematicians phrase Galileo’s paradox in terms of one-to-one correspondences,
which play a key role in the study of infinity. We defined a one-to-one correspondence
(in definition 4.2.2 of section 4.2) as a function f : X → Y that is both one-to-one
and onto. A one-to-one function satisfies the condition that every output comes from
a unique input, and an onto function satisfies the condition that every element of the
target set Y is in the range. Consider the following examples.

Example 4.5.2 We study functions on the sets A = {x, y, z}, B = {4, 5, 6}, and C = {a, b}.
• The function f : C → A defined by f = { (a, x), (b, z) } is one-to-one; there are

five other such one-to-one maps, but no maps from C onto A.
• The function g : A→ C defined by g = { (x, a), (y, b), (z, b) } is onto; there

are five other such onto maps, but no one-to-one maps from A to C.
• The function h : A → B defined by g = { (x, 4), (y, 5), (z, 6) } is both one-

to-one and onto; there are five other such one-to-one correspondences between
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A and B. We can think of these maps as expressing that A and B are the same
size, while C has a different size.

■

Question 4.5.1 Prove each map on infinite sets has the specified property.

(a) The function f : Z → Z defined by f (x) = x + 1 is a one-to-one
correspondence.

(b) The function g : Z→ Z defined by g(x) = 2x is one-to-one, but not onto.
(c) The function h : R→ R defined by h(x) = x2 is neither one-to-one nor onto.

■

One intriguing insight into one-to-one correspondences is that such maps between
finite sets have different properties than such maps between infinite sets. For example,
a finite set can never be placed in one-to-one correspondence with a proper subset of
itself. A proper subset contains fewer elements than the original set, and so any map
between the original set and a proper subset is either not one-to-one or not onto. As an
intuitive illustration, consider the impossibility of matching four left shoes with five
right shoes to form pairs of shoes without at least one right shoe left over. We can
develop a careful proof that there does not exist a one-to-one correspondence between
any finite set and a proper subset. This observation lies at the heart of Galileo’s “paradox
of infinity,” as stated below.

Example 4.5.3 Galileo’s paradox of squares In the early 1600s, the Italian physicist and astronomer
Galileo Galilei was reflecting on infinity and considering maps on infinite sets.
He observed that the natural numbers N = {1, 2, 3, ...} can be placed in one-to-
one correspondence with proper subsets of itself; for example, with the set of
squares of natural numbers S = {1, 4, 9, 16, 25, ...}. Galileo identified the one-to-
one correspondence f : N→ S defined by f (n) = n2 (that is, by f (1) = 12 = 1,
f (2) = 22 = 4, and so on). He identified this example as a paradox, (mistakenly)
believing that infinite sets could not be placed in one-to-one correspondence with
a proper subset.

A Resolution of Galileo’s paradox of squares Mathematicians now understand that finite and
infinite sets have different properties with respect to one-to-one correspondences;
in fact, a set is infinite exactly when the set can be placed in one-to-one
correspondence with a proper subset. Rather then identifying a paradox, Galileo
actually happened upon a characterization of infinity. We too must keep in mind
that not every property of finite numbers extends to infinite numbers.

■

The definition of “number” grew out of the work of nineteenth century function
theorists. In the early 1800s, Joseph Fourier modeled heat using trigonometric series,
but it was unclear how widely this model could be applied. Peter Dirichlet and other
mathematicians resolved this question by studying the points of discontinuity in domain
sets, including infinite sets of points of discontinuity. Cantor’s research efforts in this
area led him to ask questions about the continuum of the real number line. Among
other things, Cantor needed to know the relative size of the set of rational numbers
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vis-a-vis the set of real numbers. He originally conjectured that there was only one
size of infinity; this intuition matched that of his colleagues and perhaps matches your
own. But Cantor needed more than intuition—he needed proof. And his work led to
some startling results.

Georg Cantor was a mathematician of Danish and Russian descent who spent
most of his life working at the University of Halle in Germany. While his doctoral
work was in number theory, the bulk of his early research at Halle was in real analysis.
His study of Fourier series ultimately led him to explore perhaps one of the most
fundamental questions of mathematics: What is a “number”? From the early 1870s to
the late 1890s, Cantor published multiple papers that in aggregate develop set theory,
precisely define one-to-one correspondences, explore finite and infinite numbers via
such mappings, study an arithmetic of infinite numbers, and ask important questions
that continue to guide mathematical research. This insightful work was greeted with
mixed reactions, with some mathematicians expressing high praise and others strong
disdain for Cantor’s research program. The last couple of decades of Cantor’s life were
difficult; along with professional conflicts, Cantor struggled with the deaths of close
family members, crippling mental illness, and the consequences to civilian life arising
from the onset of World War I.

We now consider the question that Cantor asked: What do we mean by the word
“number”? An intuitive description of “number” typically includes such phrases as
“size” or “how many” (as in “How many elements are in a set?”). Cantor’s insight was
to think of “number” not as a property that is held in isolation, but as a relation. In
this way, we can use sets and functions to develop a rigorous mathematical definition
of “number.” Instead of the words “number” or “size,” mathematicians use the term
“cardinality” to refer to the number of objects in a set. The following definition precisely
expresses this concept and is at the heart of Cantor’s theory of infinity.

Definition 4.5.1 Sets X and Y have the same cardinality when there exists a one-to-one
correspondence from X to Y, and the cardinality of a set X is denoted by |X|.

• |X| = |Y | means that X and Y have the same cardinality.
• |X| ≤ |Y | means that there exists a one-to-one function from X to Y, which is

not necessarily onto.
• |X| < |Y |means that |X| ≤ |Y | but |X| 	= |Y |; that is, there exists a one-to-one

map from X to Y, but no one-to-one correspondence.

As you might expect, we denote the cardinality of finite sets using the nonnegative
integers 0, 1, 2, 3, . . .. The “smallest” infinite cardinality is that of the natural
numbers N.

Example 4.5.4 We use the notation |X| to express the cardinality of sets.
Considering the sets we studied in example 4.5.2, both |{x, y, z}| = 3 and

|{4, 5, 6}| = 3; also |{a, b}| = 2. Since the empty set ∅ contains no elements,
|∅| = 0. In addition, we can consider the cardinalities of infinite sets. As observed
in Galileo’s paradox of squares, there exists a one-to-one correspondence between
the set of natural numbers and the set of squares of natural numbers, and so
|N| = |{1, 4, 9, 16, 25, . . .}|.

■
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Question 4.5.2 Prove that N and the set E of even positive integers have the same cardinality
by showing that the function f : N → E defined by f (n) = 2n is a one-to-one
correspondence.

■

Cantor realized the importance of introducing symbols for infinite cardinalities and
denoted the cardinality of the natural numbers N by ℵ0, where ℵ (called “aleph”) is the
first letter of the Hebrew alphabet. Since the symbol ℵ0 is hard to write, we utilize the
more familiar ω (the Greek letter “omega”) in this text. In a more sophisticated study
of infinite sets, ω denotes the set of natural numbers under the standard ≤ ordering
of natural numbers; in such settings, we must use ℵ0 when referring exclusively to
the cardinality |N|. However, in this text, we write |N| = ω, and we say that the set
of natural numbers is countably infinite (or sometimes denumerably infinite). These
conventions are formalized in the following definition.

Definition 4.5.2 A set X is said to be countable when either X is finite or |X| = |N| = ω; that
is, when X is finite or when there exists a one-to-one correspondence between X
and N. A set X is said to be uncountable when X is not countable.

Observe that the elements of countable sets can be arranged in a sequence
a1, a2, a3, . . ., where elements are allowed to be repeated in such a list. Writing
the elements of a set X as a sequence implicitly identifies a one-to-one correspondence
f between N and X. We use this approach to prove that many familiar sets are countable.

Example 4.5.5 We verify the following sets are countable; we consider examples of uncountable
sets soon.

• The set of odd positive integers is countable as demonstrated by the sequence:

1, 3, 5, 7, 9, 11, 13, 15, 17, . . . .

• The set of integers Z is countable as demonstrated by the sequence:

0, 1, −1, 2, −2, 3, −3, 4, −4, . . . .

• The set Q0 of rational numbers in the (real) interval [0, 1) is countable. First,
consider the sequence:

0,
1

2
,

1

3
,

2

3
,

1

4
,

2

4
,

3

4
,

1

5
,

2

5
,

3

5
,

4

5
,

1

6
,

2

6
,

3

6
, . . . .

Do you see the pattern? Based on this sequence, we can define an onto map from
N to Q0. By omitting the repetitions in the sequence (for example, 1/2 = 2/4 =
3/6, and so on) we obtain a one-to-one map, as suggested by the following
sequence:

0,
1

2
,

1

3
,

2

3
,

1

4
,

3

4
,

1

5
,

2

5
,

3

5
,

4

5
,

1

6
,

5

6
,

1

7
,

2

7
, . . . .

■

Question 4.5.3 Using the sequence approach demonstrated in example 4.5.5, prove each set is
countable; be careful to include every element of the given set in the sequence.

(a) the set E of even positive integers
(b) the set of even integers
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(c) the set P of prime numbers
(d) the set of rational numbers in the (real) interval [1, 2)

■

Cantor also proved the following result about unions of countable sets; this result
is useful in many settings, for example, when studying the theory of integration.

Theorem 4.5.1 The union of a countable sequence of countable sets is countable.

Proof Let S1, S2, S3, . . . be a countable sequence of countable sets with Sj =
{sj1, sj2, sj3, . . .}. Then

⋃
j∈N

Sj is a countable set as demonstrated by the
sequence:

s11, s12, s21, s13, s22, s31, s14, s23, s32, s41, s15, s24, . . . .

This sequence is constructed by following along the “diagonals” identified in the
array of sequence elements given in figure 4.15; consequently, the technique used
to define this sequence is called Cantor’s first diagonalization method.

■

Theorem 4.5.1 can be used to prove the countability of many sets, as illustrated
in the following example and question.

Example 4.5.6 We prove that the set Q of rational numbers is countable.

Proof In light of theorem 4.5.1, we express the rationals as a union of a countable
sequence of countable sets. Define Qj to be the set of rational numbers in the
interval [ j, j + 1). By appropriately extending the argument for Q0 given in
example 4.5.5, we can prove that each set Qj is countable. We now observe that:

Q =
⋃
j∈Z

Qj .

S11 S12 S13 S14 S15
...

S21 S22 S23 S24 S25
...

S31 S32 S33 S34 S35
...

S41 S42 S43 S44 S45
...

S51 S52 S53 S54 S55
...

Figure 4.15 Cantor’s first diagonalization method
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Therefore, Q is a countable union of countable sets, and so Q is countable by
theorem 4.5.1.

■

Question 4.5.4 Using theorem 4.5.1, prove each set is countable.

(a) N× N = {(m, n) : m, n ∈ N}
(b) Qn = {(q1, q2, . . . , qn) : q1, . . . , qn ∈ Q}
(c) {(n1, n2, n3, . . .) : ni ∈ Z for all i ∈ N}

■

Thus far, these results all seem to confirm a natural intuition that the countable
cardinality ω of the set of natural numbers is the unique size of infinity. In addition,
the rationals are dense in the set of reals in the sense that there exists a rational number
strictly between any two real numbers. The countability of the rationals and the density
of the rationals in the reals provides further evidence for the intuition that the real
numbers are also countable. For many years, Cantor tried to prove that the set of real
numbers is countable, but he was unsuccessful—for good reason. By December 1873,
Cantor proved the astonishing, ground-breaking result that the set R of real numbers is
uncountable! Even with the 1874 publication of his proof of this result, mathematicians
continued to be surprised that there exists more than one infinite cardinality. The fol-
lowing elegant proof of the uncountability of the reals was published by Cantor in 1891.

Theorem 4.5.2 The set R of real numbers is uncountable.

Proof We prove [0, 1) is uncountable; because [0, 1) ⊂ R, the uncountability of [0, 1)
implies the uncountability of R. The proof proceeds by contradiction. First,
assume that [0, 1) is countable, and so its elements can be written as a sequence
{a1, a2, a3, a4, . . .}. Then produce a real number r ∈ [0, 1) that is not one of the
am’s, contradicting the fact that the (supposed) one-to-one correspondence from
N to [0, 1) defined by the sequence is onto.

The real number r is defined using the decimal expansion of each am ∈ [0, 1).
First express each am ∈ [0, 1) in an unambiguous way as a nonterminating decimal.
Let bmn represent the nth digit in the decimal expansion of am, so that we have:
a1 = 0.b11b12b13b14 . . .; a2 = 0.b21b22b23b24 . . .; a3 = 0.b31b32b33b34 . . .; and
so on. In this setting, think of real numbers with terminating decimal expansions
as having 0s appended to the end of their expansions; for example, think of am =
1/2 = 0.5000 . . . as bm1 = 5, bm2 = 0, bm3 = 0, bm4 = 0, and so on.

We now apply what has become known as Cantor’s second diagonalization
method to obtain a real number r 	∈ {am : m ∈ N}. Define r = 0.b1b2b3b4 . . ., where
the nth digit bn in the decimal expansion of r is determined by bnn, the nth digit
in the decimal expansion of an. If bnn equals 0, define bn = 1; if bnn is not equal
to 0, define bn = 0. Based on this definition, observe that the nth digit of r differs
from the nth digit of an. Thus, r is not an element of the sequence {am : m ∈ N},
contradicting the fact that the (supposed) one-to-one correspondence from N to
[0, 1) defined by {am : m ∈ N} is onto. Thus [0, 1) is uncountable, implying that
R is uncountable.

■
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Figure 4.16 Cantor’s second diagonalization method

a1 = 0 . b11 b12 b13 b14 ...

...

...

...

. . .

0 . b21 b22 b23 b24

0 . b31 b32 b33 b34

0 . b41 b42 b43 b44

=

=

=

a2

a3

a4

This approach to proving the uncountability of the reals is called Cantor’s second
diagonalization method (or more simply a diagonal argument) because it obtains r by
changing the digits in the decimal expansions of sequence elements along a diagonal. If
we present these decimal expansions am = 0.bm1bm2bm3bm4 . . . in an array and circle
the digits that are modified (bnn to obtain bn) the “diagonal” of Cantor’s argument is
readily apparent, as illustrated in figure 4.16.

Theorem 4.5.2 leads to the inescapable conclusion that there are different sizes of
infinity! This result surprised many mathematicians of the late nineteenth century, and
it took years for Cantor’s ideas to gain widespread acceptance. Cantor’s methods and
results provoked strong (positive and negative) reactions among mathematicians, from
Leopold Kronecker’s assertion that “God made the integers, all else is the work of man,”
to David Hilbert’s claim that “No one will expel us from the paradise that Cantor has
created.” While this controversy continued into the early twentieth century, Cantor’s
approach has been invaluable to mathematicians’efforts to explore mathematical truth.
As Cantor reflected on his proof that |R| 	= ω and continued to develop his ideas,
he was eventually able to identify a clever one-to-one correspondence that proved the
precise relationship:

|R| = 2ω.

This result led him to the following intriguing question:

Does there exist an infinite number between ω = |N| and 2ω = |R|?
Despite literally decades of effort, Cantor was never able to answer this question, but he
did conjecture what has become known as the continuum hypothesis: there is no infinite
number between ω and 2ω (just as there is no natural number between 1 and 2). The
continuum hypothesis received a lot of attention during the twentieth century. At the
1900 International Congress of Mathematicians in Paris, the German mathematician
David Hilbert gave a now famous address The problems of mathematics in which he
presented a list of 23 questions that he considered to be the most significant of the time.
These questions came to be called Hilbert’s problems, and they profoundly influenced
mathematical research throughout the twentieth century. Hilbert’s first problem called
for the resolution of the continuum hypothesis.

Surprisingly, there is no “right” answer to the continuum hypothesis. In 1938, the
Austrian mathematician Kurt Friedrich Gödel showed that the continuum hypothesis
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cannot be proven false. In addition, Gödel conjectured that the continuum hypothesis
also cannot be proven true; in 1963, theAmerican mathematician Paul Cohen confirmed
Gödel’s conjecture, showing that continuum hypothesis is not provable. Mathematical
statements that are neither provable nor disprovable are called undecidable. From the
work of Gödel and Cohen, we know that the continuum hypothesis is undecidable
(based on the standard axioms of set theory). Their results mean that we are “free” to
assume the existence of an infinite number between ω and 2ω, or the nonexistence of
such an infinite number, provided we explicitly identify the use of such an assumption.
These explorations of the infinite also tell us something about ourselves, as they
highlight an essential limitation of our mathematical reasoning processes.

4.5.1 Cantor’s Theorem

We now consider cardinality from an explicit set-theoretical perspective, including
an analog of Cantor’s proof of the uncountability of the reals based on the power
set operation. We also study an “addition” operation and a “countable multiplication”
operation for infinite numbers, along with what features of the finite versions of these
operations carry over to the context of infinite numbers. Recall from definition 2.1.4
in section 2.1 that if A is a set, then P(A) denotes the power set of A and is the set of all
subsets of A; symbolically, we define P(A) = {X : X ⊆ A}. Notice that both ∅ ∈ P(A)
and A ∈ P(A).

Example 4.5.7 If A = {a, b}, then the 2-element subset of A is {a, b}, the 1-element subsets of
A are {a} and {b}, and the 0-element subset of A is ∅ = {}. Therefore, P(A) =
{ {a, b}, {a}, {b}, ∅ }.

If A = ∅, then the only subset of ∅ is ∅, and so P(A) = P(∅) = {∅}.
■

Question 4.5.5 Determine the power set of each set.

(a) A = {0} (b) A = {0, 1}
■

In example 4.5.7 and question 4.5.5, if we compare the cardinality of a set A with
the cardinality of its power set P(A), a distinctive pattern becomes apparent.

A has 0 elements ⇒ P(A) has 1 = 20 element
A has 1 element ⇒ P(A) has 2 = 21 elements
A has 2 elements ⇒ P(A) has 4 = 22 elements

As it turns out, this numeric relation holds for every set A, including infinite sets: the
cardinality of the power set of A is equal to two raised to the cardinality of the set A.

Theorem 4.5.3 If A is a set, then |P(A)| = 2|A|.

Comments on proof For finite sets, we can use induction on the nonnegative integers to
prove theorem 4.5.3 (see exercise 65 in section 3.6). For infinite sets, we need to
state a precise definition of 2 raised to an infinite power; this part of the proof is
left for your later studies.
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In light of theorem 4.5.3, Cantor wondered about the relationship between the
cardinality of the set of natural numbers |N| = ω and the cardinality of the power set
of natural numbers |P(N)| = 2ω; are ω and 2ω equal, or not? As we have discussed
already, not every property of finite numbers carries over to infinite numbers and
so, even though n < 2n for every n ∈ N (see exercise 28 in section 3.6), Cantor
insightfully recognized that perhaps ω could be equal to 2ω. As you may recognize,
this query is really another variation on the question of whether there are different
sizes of infinity. Furthermore, from the uncountability of the reals and the fact that
|R| = 2ω, we know that ω 	= 2ω. However, more than just working in this specific
setting, Cantor proved a more general theorem with profound implications for a study
of infinite cardinalities.

Theorem 4.5.4 Cantor’s theorem If A is a set, then the cardinality of A is strictly less than the
cardinality of the power set of A; symbolically, we have |A| < |P(A)|.

Proof From definition 4.5.1, show that |A| ≤ |P(A)| by defining a one-to-one function
from A into P(A); we then need to prove that there is no one-to-one correspondence
from A to P(A) to obtain the strict inequality |A| < |P(A)|.

Define f : A→ P(A) by f (x) = {x} for every a ∈ A. This function f is one-
to-one; if x, y ∈ A and f (x) = f (y), then {x} = {y} and so x = y by the definition
of set equality. Thus, |A| ≤ |P(A)|.

A diagonal argument (using Cantor’s second diagonalization method) proves
that there does not exist a one-to-one correspondence from A to P(A). As in the
proof of the uncountability of the reals, this proof proceeds by contradiction.
Assume g : A→ P(A) is a one-to-one correspondence and then define a “diagonal”
set D ∈ P(A) such that D is not in the range of g (contradicting the assumption
that g is onto). Given the (supposed) one-to-one correspondence g, define:

D = { x ∈ A : x 	∈ g(x) }.
By definition, D ⊆ A and so D ∈ P(A). Therefore, since g is (supposedly) onto,
there exists an element d ∈ A satisfying g(d) = D. Either d ∈ D or d 	∈ D, but both
of these options lead us to a contradiction. If d ∈ D, then d 	∈ g(d) by the definition
of D; and so d 	∈ g(d) = D, giving a contradiction. On the other hand, if d 	∈ D,
then d ∈ g(d) by the definition of D; and so d ∈ g(d) = D, giving a contradiction.
Thus g is not onto and there does not exist a one-to-one correspondence from
A to P(A).

■

The proof of Cantor’s theorem is relatively abstract, and so we consider an example
in the context of the set of natural numbers to illustrate the diagonal set D.

Example 4.5.8 Suppose g : N→ P(N) is a one-to-one correspondence with the first few output
sets of g as follows.

g(1) = { 1, 2, 3, 4, . . . }
g(2) = { 1, 3, 5, 7, . . . }
g(3) = { 2, 4, 6, 8, . . . }
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g(4) = { 4, 5, 6, 7, 8, . . . }
g(5) = { 5 }
g(6) = { 5, 7 }

Working with the definition of D = {x ∈ N : x 	∈ g(x)}, we have D = {2, 3, 6, . . . }
because of the following relationships.

1 ∈ g(1), 2 	∈ g(2), 3 	∈ g(3), 4 ∈ g(4), 5 ∈ g(5), 6 	∈ g(6), . . .

■

Cantor’s theorem provides another confirmation that there exist different infinite
cardinalities. Since |N| = ω and |P(N)| = 2ω, we know that ω 	= 2ω. Furthermore,
we can apply the power set operation multiple times to obtain infinitely many distinct
infinite numbers! The following sequence illustrates this process.

|N| < |P(N)| < |P(P(N))| < |P3(N)| < · · ·
ω < 2ω < 22ω

< 222ω

< · · ·
Recall the assertion of the (unprovable) continuum hypothesis that there does not
exist an infinite number between ω and 2ω. Gödel’s and Cohen’s results proving
the undecidability of the continuum hypothesis extend to this broader context. The
generalized continuum hypothesis states that for any infinite cardinal κ (the Greek
letter “kappa”), there does not exist an infinite cardinal between κ and 2κ , and is also
undecidable.

4.5.2 Cardinal Arithmetic

We finish this section by studying cardinal arithmetic. Mathematicians have developed
well-defined extensions of the operations of addition, multiplication, and exponenti-
ation on the (finite) natural numbers to infinite cardinals, enabling us to associate
meaning with such expressions as 1 + ω, ω + ω, and 3 · ω. A first step in the
direction of understanding cardinal arithmetic is the definition of addition and countable
multiplication of cardinals; the complete definition of cardinal multiplication and
cardinal exponentiation are left for your later studies. In this context, mathematicians
commonly use κ and μ (the Greek letter “mu”) to denote arbitrary cardinals
(particularly infinite cardinals) in much the same way that m and n are used to denote
arbitrary integers.

Definition 4.5.3 If κ and μ are cardinals with κ = |A| and μ = |B| for disjoint sets A and B,
then

• κ + μ = |A ∪ B|, and
• if κ is finite or ω, then κ · μ = |A× B|.
As suggested by this definition, we perform cardinal operations by designating

representative sets and defining one-to-one correspondences between these sets.
In our discussion, we also informally illustrate these computations with imaginary
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Hilbert Hotels, which have infinitely many hotel rooms. These illustrations can help
us visualize solutions to some fairly complicated computations.

Example 4.5.9 We prove that 1+ ω = ω.

An informal proof Study the identity 1 + ω = ω using an infinite Hilbert Hotel with
ω many rooms. Suppose the traveler a arrives at a Hilbert Hotel and finds
that every room is occupied. Despite having no vacancy, the staff can find a
room for a. Doubling up is not allowed (as with any upscale hotel). But what
if every occupant is willing to switch rooms? Can you see how to open up a
room for traveler a? Figure 4.17 illustrates a process in which each occupant
n moves one room up, and traveler a moves into room number 1, giving us
1+ ω = ω. We now consider a formal proof of this result.

Proof The preceding informal discussion suggests how to prove that 1 + ω = ω.
We first choose representative sets for these cardinalities and then define a
one-to-one correspondence between these sets. For this proof, let A = {a}∪N

represent 1+ ω and let N represent ω; notice that these sets have the desired
cardinalities. We define a one-to-one correspondence f : A→ N by

f (x) =
{

1 if x = a
x + 1 if x ∈ N.

A detailed proof that f is one-to-one and onto is left to the reader; given this
one-to-one correspondence, we have 1+ ω = ω.

■

Question 4.5.6 Prove each equality by giving both an informal Hilbert Hotel argument and a
formal proof for a one-to-one correspondence between representative sets.

(a) 2+ ω = ω

(b) 3+ ω = ω

(c) 7+ ω = ω

(d) n+ ω = ω for n ∈ N

■

Example 4.5.10 We informally prove that ω + ω = ω; that is, 2 · ω = ω.

An informal proof We consider a scenario in which the Hilbert Hotel chain is doing a
bit of downsizing: suppose that one of two full Hilbert Hotels needs to close.
To avoid a public relations nightmare, the Hilbert Hotel chain guarantees

a

Occupant number:

Room number:

After occupant  move

1 2 3 4 5 ...

1 2 3 4 5 ...

1 2 3 4 5 ...

1 2 3 4 ...Occupant number:

Room number:

Figure 4.17 A vacancy is possible at a full Hilbert Hotel
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every occupant of the closing hotel a room in the hotel remaining open. Now
a full Hilbert Hotel needs to make room for countably infinite additional
people. Can you see how the hotel might accomplish this feat? One strategy
is to move everyone in the open hotel to even-numbered rooms and to move
everyone in the closing hotel to the now vacant odd-numbered rooms of the
open hotel; this approach is illustrated in figure 4.18. Thus, ω + ω = ω, and
so 2ω = ω. The formal proof is left for the next question.

■

Question 4.5.7 Prove each equality by identifying a one-to-one correspondence between appro-
priate representative sets.

(a) ω + ω = ω. Hint: Let A = {an : n ∈ N} and B = {bn : n ∈ N}. Define a
one-to-one correspondence f : A ∪ B→ N that gives a formula for the map
depicted in example 4.5.10.

(b) 3ω = ω+ω+ω is equal to ω. Also, give an illustration of the corresponding
informal Hilbert Hotel proof.

(c) n · ω = ω for n ∈ N.
■

The ideas we have explored in this section are just the first steps in the mathematical
study of infinite numbers—there is much more to learn about this topic. For example,
besides the power set operation, there exist many other set-theoretic operations
that yield larger and larger infinite numbers. These further explorations require a
more formal and complete study of set theory, and are left for your later studies in
mathematics. For now, we have identified many interesting results that play a role in
the study of integral calculus in the next section.

4.5.3 Reading Questions for Section 4.5

1. Discuss the distinction between potential infinity and actual infinity.
2. Describe Zeno’s paradox of Achilles and the tortoise. How do contemporary

mathematicians resolve this paradox?
3. Define and give an example of a one-to-one correspondence.
4. Describe Galileo’s paradox of squares. How do contemporary mathematicians

resolve this paradox?
5. Define cardinality and give an example.

a

Occupant number:

Room number:

After occupant  move

1 2 3 4 5 ...

1 2 3 4 5 ...

1 2 3 4 5 ...

1 b 2 c ...Occupant number:

Room number:

Figure 4.18 From the closing hotel, a,b,c, … move in among 1,2,3, … from the open hotel
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6. Discuss the distinction between |X| = |Y | and |X| < |Y |.
7. Define and give an example of a countable set and an uncountable set.
8. State theorem 4.5.1. How is this result helpful when studying cardinality?
9. State theorem 4.5.2 and informally describe a diagonal argument.

10. State the continuum hypothesis. Explain what is meant by the assertion that
the continuum hypothesis is undecidable.

11. Give an example for theorem 4.5.3.
12. State Cantor’s theorem. How is this result helpful when studying cardinality?

4.5.4 Exercises for Section 4.5

In exercises 1–13, define a function with the indicated properties, or explain why
such a function does not exist. The domains and targets of these functions are the
following sets.

A = {a, b} B = {1, 2, 3} C = {x} D = {y, z}

1. A one-to-one function f : A→ B.

2. A one-to-one function g : B→ A.

3. An onto function h : A→ B.

4. An onto function j : B→ A.

5. A one-to-one correspondence
k : A→ B.

6. A one-to-one function f : A→ C.

7. A one-to-one function g : C→ A.

8. An onto function h : A→ C.

9. An onto function j : C → A.

10. A one-to-one correspondence
k : A→ C.

11. A one-to-one correspondence
f : A→ D.

12. A one-to-one correspondence
g : B→ D.

13. A one-to-one correspondence
h : C → D.

In exercises 14–22, prove the following functions are one-to-one and onto, or identify
counterexamples showing that one (or both) of these properties does not hold.

14. f : N→ N defined by f (x) = 4.

15. f : N→ N defined by f (x) = 2x + 1.

16. f : R→ R defined by f (x) = x2 + 1.

17. f : R→ R defined by f (x) = x3 + 1.

18. f : R→ R defined by f (x) = xn + 1, where n ∈ N is even.

19. f : R→ R defined by f (x) = xn + 1, where n ∈ N is odd.

20. f : R→ R defined by f (x) = |x|.
21. f : R+ → R defined by f (x) = √x.

22. f : Z→ R defined by f (x) =
{ √

x x ≥ 0√−x x < 0.

In exercises 23–26, state all functions from the set A to the set B. Identify whether or
not each function is one-to-one or onto.

23. A = {a} and B = {1, 2}.
24. A = {a, b} and B = {u, v}.

25. A = {1, 2, 3} and B = {u, v}.
26. A = {a, b} and B = {2, 4, 6}.
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In exercises 27–34, define a one-to-one correspondence between the given pairs of
sets, or explain why such a function does not exist. Hint: A one-to-one correspondence
exists for the sets in 28, 29, 32, and 33.

27. {a, b, c, d} and {1, 2}
28. {4, 5} and {a, b}
29. N and N ∪ {a, b}
30. Z and R

31. Q and P(N)

32. Z and N

33. real intervals (0, 4) and (0, 2)

34. ∅ and {∅}

In exercises 35–38, each sequence of real numbers might result from the (incorrect)
assumption that [0, 1) is countable (as in the proof of the uncountability of the
reals for theorem 4.5.2). Identify the first few decimal digits of the real number
r that would result from applying Cantor’s second diagonalization method to each
sequence.

35. a1 = 0 . 0 2 3 4 5 6 7 8 . . .

a2 = 0 . 2 2 2 2 2 2 2 2 . . .

a3 = 0 . 0 9 0 0 9 0 0 0 . . .

a4 = 0 . 1 4 1 5 9 2 6 1 . . .

a5 = 0 . 2 3 5 8 0 3 4 7 . . .

a6 = 0 . 7 7 7 7 5 5 5 5 . . .

...

36. a1 = 0 . 6 5 4 1 2 3 8 9 . . .

a2 = 0 . 0 0 1 1 1 1 0 0 . . .

a3 = 0 . 9 8 9 7 6 6 4 9 . . .

a4 = 0 . 1 4 1 5 9 2 6 1 . . .

a5 = 0 . 9 0 9 9 0 9 9 9 . . .

a6 = 0 . 1 1 1 4 9 1 3 1 . . .

...

37. a1 = 0 . 8 9 1 1 4 1 2 3 . . .

a2 = 0 . 0 0 9 9 2 2 1 1 . . .

a3 = 0 . 4 9 1 4 9 7 6 6 . . .

a4 = 0 . 6 1 9 0 1 5 9 2 . . .

a5 = 0 . 0 0 3 3 9 9 9 9 . . .

a6 = 0 . 3 1 6 5 1 4 9 1 . . .

a7 = 0 . 9 9 8 8 7 7 6 6 . . .

a8 = 0 . 1 0 3 1 0 3 1 0 . . .
...

38. a1 = 0 . 2 3 8 9 1 1 1 4 . . .

a2 = 0 . 1 0 1 0 9 9 9 9 . . .

a3 = 0 . 6 6 0 5 5 5 0 4 . . .

a4 = 0 . 9 2 6 1 9 8 9 7 . . .

a5 = 0 . 2 5 0 0 3 3 2 2 . . .

a6 = 0 . 9 1 3 1 6 5 4 1 . . .

a7 = 0 . 1 1 1 1 1 1 1 1 . . .

a8 = 0 . 1 0 0 0 0 0 0 0 . . .
...

In exercises 39–42, each sequence of sets might result from the (incorrect) assumption
that P(N) is countable via a one-to-one correspondence g : N→ P(N) (as in the proof
of Cantor’s theorem and example 4.5.8). Identify the first few elements of the set
D that would result from applying Cantor’s second diagonalization method to each
sequence.

39. g(1) = { 1, 2, 3, 4, . . . }
g(2) = { 1, 3, 5, 7, . . . }
g(3) = { 2, 4 }
g(4) = { 2, 3, 5, 7, . . . }

...

40. g(1) = { 2, 4, 6, 8, . . . }
g(2) = { 5, 10, 15, 20, . . . }
g(3) = { 3 }
g(4) = { 4, 8, 12, 16, . . . }

...
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41. g(1) = { 1 }
g(2) = { 3 }
g(3) = { 5 }
g(4) = { 2, 4, 6, 8, . . . }
g(5) = { 1, 4, 7, 10, . . . }
g(6) = { 4 }

...

42. g(1) = { 2, 3, 5, 7, . . . }
g(2) = { 1 }
g(3) = { 8, 16, 24, 32, . . . }
g(4) = { 2 }
g(5) = { 1, 2, 3, 4, 5, . . . }
g(6) = { 3 }

...

In exercises 43–52, prove each mathematical statement.

43. For sets A, B define A ∼ B when |A| = |B|. Prove that ∼ is an equivalence
relation on sets.

44. If A and B are countable sets, then A × B = { (a, b) : a ∈ A, b ∈ B } is
countable.
Hint: Write A×B as a countable union, where the indexing is on the elements
of A for sets of the form { (a, b) : b ∈ B }.

45. If A ∪ B is uncountable, then either A or B must be uncountable.
Hint: Consider theorem 4.5.1.

46. The set of all infinite sequences of 0s and 1s is uncountable.
Hint: Consider the proof of theorem 4.5.2 giving the uncountability of the reals.

47. Given a set A, the cardinality |A| ≥ 2 iff there exists a one-to-one
correspondence f : A→ A that is not the identity function f (x) = x.

48. |N× N| = ω.
Hint: Use Cantor’s first diagonalization method as in the proof of theorem 4.5.1.

49. The function f : N× N→ N defined by f (m, n) = 2m−1 · (2n− 1) is a one-
to-one correspondence.
Hint: When proving f onto, consider the prime power factorization of an
arbitrary element from the range.

50. The function f : N→ Z defined below is a one-to-one correspondence.

f (n) =
⎧⎨⎩

n

2
if n is even

−n− 1

2
if n is odd

51. The function f : (0, 1)→ R defined below is a one-to-one correspondence.

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x − 1

2
x

if x ≤ 1

2
x − 1

2
1− x

if x >
1

2

52. Every linear polynomial over R defines a one-to-one correspondence from
R to R.

In exercises 53–56, determine the power set P(A) of each set A, and state the cardinality
of both A and P(A).

53. A = { ∅ }.
54. A = { 3, 5, 9 }.

55. A = { w, x, y, z }.
56. A = { car, bicycle, truck, bus}.
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In exercises 57–66, determine the cardinality of each set and its power set. For
exercises 62 and 66, consider theorem 4.5.1 or exercise 45.

57. A set containing 6 elements.
58. Z, the set of the integers.
59. Q, the set of the rationals.
60. R, the set of the reals.
61. P(R), the power set of the

reals.
62. R \Q, the set of the irrationals.

63. The set of linear polynomials
over Q.

64. The set of all polynomials over Q.
65. The set of algebraic numbers over

Q. (Use 64.)
66. The set of transcendental numbers

over Q.

In exercises 67–70, prove each equality by giving an illustration of the corresponding
informal Hilbert Hotel proof and by defining a one-to-one correspondence between
appropriate representative sets.

67. 7+ ω = ω.
68. 6+ ω = ω.

69. 5ω = ω.
70. ω + ω = ω.

4.6 The Riemann Integral

Since ancient times, mathematicians, scientists, and engineers have struggled with the
problem of computing the area enclosed by a curve on the plane. Many important
practical questions are essentially area problems; the integral has played a vital role in
answering these questions. Many aspects of our modern world are modeled and studied
via integration, including an understanding of probability and statistics, the economic
forecasts, building and monument design, manufacturing processes, space exploration,
and transportation systems. In this section, we explore the theoretical ideas behind
the familiar Riemann integral that is studied in introductory calculus courses. These
courses focus practically on the computation of a given integral using the fundamental
theorem of calculus and different integration techniques (integration by substitution,
integration by parts, and so on). We assume a familiarity with such techniques
and concentrate on developing a solid theoretical understanding of the definite
integral.

This section’s approach is based on the work of the German mathematician
Bernhard Riemann in the early 1850s. Riemann was a doctoral student of Gauss
at the University of Göttingen and made important contributions to many areas
of mathematics, including real analysis (the foundational work on the integral that
we study here), number theory (the Riemann hypothesis of chapter 3), geometry
(Riemann’s non-Euclidean geometry is a key element of Einstein’s theory of relativity),
and complex analysis (we study the Cauchy-Riemann equations in chapter 7). Sadly,
Riemann died at the relatively young age of 39 as a result of complications arising
from tuberculosis.

From your previous mathematics courses (including calculus), you know how to
solve many area problems. Often such questions are phrased in terms of either polygons
or functions, as in the following question.
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Question 4.6.1 Determine a formula for the area enclosed by each region in the plane.

(a) A circle with diameter d.

(b) A rectangle with sides a and b.

(c) A trapezoid with parallel sides a and b and with perpendicular distance
h between these sides.

(d) A regular pentagon with sides of length a.

(e) The triangular region bounded by f (x) = x, the x-axis, and the interval [0, 3].
(f) The area on the plane bounded by f (x)= 100−6x2, the x-axis, and the interval
[0, 4]. Hint: This one is usually answered using calculus!

■

The development of the integral as a tool for computing area traces its roots
back to the ancient Greeks. In the fourth century b.c.e., Eudoxus extended the work
of his predecessors to articulate a precise “method of exhaustion” that measured
areas by gradually expanding known areas to fill a given region. In the third century
b.c.e., Archimedes made insightful use of the method of exhaustion. He computed
the area of a regular polygon by “chopping” the figure into a collection of triangles
and computing the area of the enclosed triangles; see figure 4.19 for an illustrative
example. Archimedes extended this work to measure areas of parabolas (actually
computing the sum of an infinite series!), to approximate π based on the area of
a circle, and to measure areas, volumes, and surface areas of different geometric
figures.

These computations become increasingly difficult when considering progressively
more sophisticated geometric figures, and little progress was made on questions
involving complicated figures for some 2,000 years. In the early 1600s, the Italian
mathematician Bonaventura Cavalieri and the French mathematicians Gilles Persone
de Roberval and Pierre de Fermat independently studied the idea of measuring area as
sums of infinitely many, infinitely thin lines or rectangles. In the late 1600s, Leibniz
also thought of areas as sums (introducing the notation “

∫
”, which looks like the letter

“S” in the word “Sum”), while Newton thought of areas in terms of antidifferentiation.
Ultimately the work of Riemann in the 1850s provided a solid theoretical approach
to understanding the computation of areas via definite integrals. Among Riemann’s
key insights was his choice to use Cauchy’s notion of the limit (from the 1820s)
in formulating a definition of the definite integral. When a region is bounded by a
continuous function, computing a “Riemann sum” yields a close approximation of the
actual area. Taking an appropriate limit yields the exact value of the bounded area.

Figure 4.19 Archimedes’ method for
computing the area of a regular polygon
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Figure 4.20 A four right-rectangle approximation
of the bounded area

The Riemann sum uses rectangles to obtain the approximation, similar to the process
illustrated in the next question.

Question 4.6.2 Approximate the area under the curve f (x) = 100− 6x2 between a = 0 and b = 4
using the four “right-rectangles” identified in figure 4.20.

(a) Compute the area of the four rectangles identified in figure 4.20.
Hint: We partition the interval [0, 4] on the x-axis into subintervals of equal
width (b− a)/n, where a and b are the endpoints of the interval and n
is the number of rectangles (or subintervals). Figure 4.20 illustrates four
subintervals of width 1 = (4− 0)/4. Each subinterval serves as the base for
a rectangle whose height is determined by the subinterval’s right endpoint xi

on the x-axis. In this case, the height of each rectangle is determined by the
function f (x) = 100− 6x2; for example, the height of the leftmost rectangle
in figure 4.20 is f (1) = 100− 6 · 12 = 94 and so the area of this rectangle is
1 · 94 = 94.

(b) What is the total area enclosed by the four rectangles?
(c) Similarly, compute the eight right-rectangle approximation of the bounded

area.
■

As you may recall from your study of calculus, using more and more rectangles
leads to better and better approximations of the exact bounded area. One approach
to defining the integral is to let the number of subintervals (or, equivalently, the
number of rectangles) go to infinity. For any continuous function f (x) on [a, b],
we could let n be the number of right-rectangles and find the area under f (as
defined by the definite integral) to be the limit as n goes to infinity of the area
enclosed by n right-rectangles. This approach works well when f is a continuous
function, but fails in other more general settings. A more easily generalized approach
involves taking sums that involve certain “upper bounds” and “lower bounds” for
the function f on each subinterval. This technique follows from ideas Riemann
developed in the 1850s and the French mathematician Jean Gaston Darboux refined in
the 1870s.

Definition 4.6.1 A real number M is an upper bound for a set S ⊆ R when s ≤ M for every s ∈ S;
in this case, we say that S is bounded above. If a real set S has an upper bound,
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then the supremum of S, denoted by sup S, is the “least upper bound” satisfying
the following two properties:

• sup S is an upper bound for S,
• if M is any other upper bound for S, then sup S < M.

Some sets have an upper bound and some do not. Also, for sets that are bounded
above, the supremum may or may not be an element of the set. Consider the following
example.

Example 4.6.1 The set S = [0,∞) = {x : x ≥ 0} is not bounded above; for every positive real
number M, we observe that M + 1 ∈ S and M + 1 	≤ M (so M cannot be an
upper bound). On the other hand, the sets T = [0, 1] and U = [0, 1) are both
bounded above by any real number M ≥ 1. You can see that the least of these
upper bounds, which is the supremum of both these sets, is sup(T ) = sup(U) = 1.
The set T contains this supremum while U does not. Finally, the countable set of
fractions V = { 1

2 , 2
3 , 3

4 , 4
5 , . . . } is bounded above with supremum sup(V ) = 1.

■

Question 4.6.3 Give examples of sets with the following features.

(a) A set that is not bounded above.
(b) An uncountable set that is bounded above and contains its supremum of 4.
(c) An uncountable set that is bounded above, but does not contain its supre-

mum of 5.
(d) A countable set that is bounded above and contains its supremum of 6.
(e) A countable set that is bounded above, but does not contain its supremum of 7.

■

As suggested in the discussion above, every nonempty set of real numbers that is
bounded above has a supremum in the real numbers. Rather than proving this property
of the reals, mathematicians have come to understand the existence of such least
upper bounds as a defining, axiomatic property of the real numbers, similar in spirit to
the principle of induction or the well-ordering principle discussed in chapter 3. This
existence property is called the axiom of completeness and asserts that every nonempty
set of real numbers that is bounded above has a supremum in the real numbers. Once
the existence of a mathematical object is known, the question of uniqueness springs
quite naturally to mind. In this case, the supremum of a given set bounded above is
unique; the proof is left for exercise 55 at the end of this section. There are similar
considerations for the existence and uniqueness of a set’s lower bound and a greatest
lower bound, which is known as the infimum. The next definition makes these terms
precise.

Definition 4.6.2 A real number m is a lower bound for a real set S when s ≥ m for every s ∈ S; in
this case, we say that S is bounded below. If a real set S has a lower bound, then
the infimum of S, denoted by inf S, is the “greatest lower bound” satisfying the
following two properties:

• inf S is a lower bound for S,
• if m is any other lower bound for S, then inf S > m.
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Some sets of real numbers are bounded below while others are not; and sets that
are bounded below may or may not contain their infimum. The existence of an infimum
for a set bounded below follows from the axiom of completeness; the infimum of a set
that is bounded below is also unique. For example, the set S = { 1, 1

2 , 1
3 , 1

4 , . . . } is
bounded below and has infimum inf S = 0, which is not an element of S. Similarly,
the half-open interval T = (0, 1] does not contain its infimum of 0, while the closed
interval U = [0, 1] contains its infimum of 0.

Question 4.6.4 Give examples of sets with the following features.

(a) A set that is not bounded below.
(b) An uncountable set that is bounded below and contains its infimum of 5.
(c) An uncountable set that is bounded below, but does not contain its infi-

mum of 4.
(d) A countable set that is bounded below and contains its infimum of 3.
(e) A countable set that is bounded below, but does not contain its infimum of 2.

■

Sets that are both bounded above and bounded below are said simply to be bounded.
A rigorous study of integrals requires the characterization of sup S and inf S in terms
of their relative distance from the elements of the given set S. The next lemma makes
this notion precise for suprema and is useful for proving several important results later
in this section. The proof follows directly from the definition and is left for exercise 57
at the end of this section.

Lemma 4.6.1 If S ⊆ R is bounded above, then M = sup S iff both

• M is an upper bound of S, and
• for every ε > 0, there exists s ∈ S such that s > M − ε.

Question 4.6.5 Following the model given in lemma 4.6.1, state the corresponding characteriza-
tion of inf S for a given real set S.

■

We now turn our attention to developing Riemann’s definition of the definite
integral. Intuitively, the area of a given region on the plane is found by summing the
areas of a set of rectangles that approximate the given region. Taking an appropriate
limit corresponds to filling up the given region with more and more rectangles; the
limiting process gives the exact area. Riemann’s great insight was to state these informal
ideas in terms of the rigorous definitions discussed below.

Riemann’s definition finds the area (which is denoted as the integral
∫ b

a f (x) dx)
of the region bounded by the graph of a function f (x), the x-axis, and the vertical
lines x = a and x = b. The first step is to partition (or divide) the interval [a, b] into n
subintervals. In simple computations, these subintervals are often taken to have uniform
length, but this condition is not strictly necessary. The subintervals form the bases of
approximating rectangles, and so the base lengths needed for the corresponding area
computations (area = base · height) are naturally the lengths of these subintervals. We
state the definition of a partition and a refinement (needed for increasing the number
of rectangles) and then we consider how to determine the rectangles’ heights in this
setting.
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Definition 4.6.3 A partition of a closed and bounded interval [a, b] ⊆ R is a finite set of reals
P = { x0, x1, . . . , xn } with a = x0 < x1 < x2 < . . . < xn = b. If P and Q are two
partitions of [a, b], then Q is a refinement of P when P ⊂ Q.

We intuitively think of a refinement as adding numbers to a partition, and so each
original subinterval is either preserved or broken up into a finite number of smaller
subintervals.

Example 4.6.2 We examine the interval [a, b] = [1, 7]. The set P = { 1, 3, 5, 6, 7 } is a partition
of [1, 7]. The set Q = { 1, 2, 3, 4, 5, 6, 7 } is a refinement of P because Q is
also a partition of [1, 7] and P ⊂ Q. On the other hand R = { 1, 2, 5, 6, 7 } is a
partition of [1, 7] that is not a refinement of P because P 	⊂ R (notice that 3 ∈ P,
but 3 	∈ R). Finally, S = { 2, 5, 6, 7 } is not a partition of [1, 7] because 1 	∈ S.

■

Question 4.6.6 Identify three distinct partitions P, Q, and R of [0, 5] with the properties that Q
is a refinement of P that contains at least one irrational number and R is not a
refinement of P.

■

The Riemann definition of the integral considers both an upper and a lower
approximation to the exact area beneath the curve. The two approximations use
different rectangular heights (one upper and one lower) for each subinterval. A natural
choice for these heights is the supremum and the infimum of the given function
f on each subinterval. We consider only functions bounded on [a, b]; that is,
functions for which there exists a real value M such that | f (x)| ≤ M for all
x ∈ [a, b].

Definition 4.6.4 Let f be a bounded function defined on the interval [a, b] and P = { x0, x1, . . . , xn }
be a partition of [a, b]. For each subinterval of [a, b] of the form [xi−1, xi], where
i = 1, 2, . . . , n, we define the following terms.

• The supremum of f on the ith subinterval is Mi(f ) = sup{ f (x) : x ∈ [xi−1, xi] }.
• The infimum of f on the ith subinterval is mi(f ) = inf { f (x) : x ∈ [xi−1, xi] }.

Example 4.6.3 We identify the suprema Mi(f ) and the infima mi(f ) for the function f (x)= 3x2−2x
on the interval [1, 7] under the partition P = { 1, 3, 5, 6, 7 }.

The function f (x) is increasing on the interval [1, 7]. Therefore, each supre-
mum Mi(f ) equals the value of the function at the right endpoint of the subinterval,
and each infimum mi(f ) equals the value at the left endpoint. For example, the
supremum of f on [x0, x1] = [1, 3] is M1(f ) = f (3) = 3 · 32 − 2 · 3 = 21, and the
infimum of f on this subinterval is m1(f ) = f (1) = 3 · 12 − 2 · 1 = 1. Similar
computations produce the following.

• For [x0, x1] = [1, 3], M1(f ) = 21 and m1(f ) = 1.

• For [x1, x2] = [3, 5], M2(f ) = 65 and m2(f ) = 21.

• For [x2, x3] = [5, 6], M3(f ) = 96 and m3(f ) = 65.

• For [x3, x4] = [6, 7], M4(f ) = 133 and m4(f ) = 96.
■
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In more general settings, the suprema and infima may be the function’s value at any
point of the subinterval, or (for noncontinuous functions, they may not be realized as a
function value). The examples in this section consider functions that lend themselves
to relatively simple calculations of mi(f ) and Mi(f ), and focus on developing a good
theoretical understanding of these ideas.

Question 4.6.7 Identify the suprema Mi(f ) and the infima mi(f ) for the function f (x) = 3x2 − 2x
on the interval [1, 7] under the partition Q = { 1, 2, 3, 4, 5, 6, 7 }.

■

With this understanding of how to determine “bases” and “heights,” we are now
ready to define the upper and lower sums that enable us to approximate (and ultimately
compute) the definite integral

∫ b
a f (x)dx. Figure 4.21 provides a visual depiction of the

use of upper sums and lower sums to approximate a given area.

Definition 4.6.5 If f is a bounded function defined on the interval [a, b] and P = { x0, x1, . . . , xn }
is a partition of [a, b], then the upper Riemann sum (also called the upper sum)
of f on [a, b] with respect to P is

U( f , P) =
n∑

i=1

Mi( f ) · (xi − xi−1).

The lower Riemann sum (also called the lower sum) of f on [a, b] with respect
to P is

L( f , P) =
n∑

i=1

mi( f ) · (xi − xi−1).

Example 4.6.4 We compute the upper Riemann sum and the lower Riemann sum of f (x) = 3x2−
2x on [1, 7] with respect to partition P = { 1, 3, 5, 6, 7 }.

Example 4.6.3 computed the suprema Mi( f ) and the infima mi( f ) for this
function and partition. Based on these previous computations, the upper Riemann
sum is

U( f ,P)=
n∑

i=1

Mi( f )·(xi−xi−1)

=M1( f )·(x1−x0)+M2( f )·(x2−x1)+M3( f )·(x3−x2)+M4( f )·(x4−x3)

a b a b

Upper sum geometry Lower sum geometry

Figure 4.21 Computing upper sums and lower sums of a bounded area
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= 21 · (3− 1)+ 65 · (5− 3)+ 96 · (6− 5)+ 133 · (7− 6)

= 401.

Similarly, the lower Riemann sum is

L( f ,P) =
n∑

i=1

mi( f )·(xi−xi−1)

= m1( f )·(x1−x0)+m2( f )·(x2−x1)+m3( f )·(x3−x2)+m4( f )·(x4−x3)

= 1·(3−1)+21·(5−3)+65·(6−5)+96·(7−6)

= 205.

■

Example 4.6.5 We compute the upper sum and the lower sum of f (x) = 3x2 − 2x on [1, 7]
with respect to partition Q = { 1, 2, 3, 4, 5, 6, 7 }, the refinement of P from
question 4.6.7.

The calculations are similar to those in example 4.6.4, with the addition of
two more subintervals contributing two additional terms to the sums (along with a
corresponding modification of the subintervals that were split to create these new
subintervals). The upper sum and lower sum in this setting are as follows.

U(f ,Q) =
n∑

i=1

Mi( f )·(xi−xi−1)

= 8·(2−1)+21·(3−2)+40·(4−3)+65·(5−4)+96·(6−5)+133·(7−6)

=363

L(f ,Q) =
n∑

i=1

mi( f )·(xi−xi−1)

= 1·(2−1)+8·(3−2)+21·(4−3)+40·(5−4)+65·(6−5)+96·(7−6)

=231

■

Question 4.6.8 Find the upper sum and the lower sum for each function with respect to the partition
P = { 0, 1, 2, 3, 5 } of [0, 5].
(a) f (x) = 4x2 − 6 (b) f (x) = |x + 2|

■

As suggested by their names, upper Riemann sums are upper bounds for the exact
value of the corresponding integral, and lower Riemann sums are lower bounds. We
obtain the exact value of the integral by determining the infimum of these upper bounds
and the supremum of these lower bounds. When these infimum and supremum values
are equal, Riemann defined this number as the value of the integral.
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In this setting, the set of upper Riemann sums over which we take the infimum
is the set of upper sums U( f , P) over all possible partitions P of the given interval
[a, b]. Similarly, the set of lower Riemann sums over which we take the supremum is
the set of lower sums L( f , P) over all possible partitions P of [a, b]. In many cases, we
can think of the evaluation of the infimum and supremum in terms of a limit process,
allowing us to consider taking more and more rectangles with smaller and smaller
bases. The precise mathematical formulation of this intuitive description follows.

Definition 4.6.6 If f is a bounded function defined on the interval [a, b], then the infimum of the
upper Riemann sums is

U( f ) = inf { U( f , P) : P is a partition of [a, b] }.
Similarly the supremum of the lower Riemann sums is

L( f ) = sup{ L( f , P) : P is a partition of [a, b] }.
The infimum of upper Riemann sums and the supremum of lower Riemann sums

lead to a rigorous definition of integrability and the Riemann integral as follows.

Definition 4.6.7 If f is a bounded function defined on the interval [a, b], then f is Riemann
integrable on [a, b] exactly when L( f ) = U( f ). When f is Riemann integrable the
Riemann integral of f on [a, b] is denoted by

∫ b
a f dx and is equal to L( f )= U( f ).

We present a detailed computation of a Riemann integral using this definition. But
as you might expect, computing U( f ) as the infimum over the upper sums with respect
to all partitions of [a, b] and L( f ) as the supremum over the lower sums with respect to
all partitions of [a, b] can be computationally difficult–even for many simple functions.
This difficulty is one reason for the celebration of Newton’s and Leibniz’s genius
in recognizing the fundamental theorem of calculus as providing a computationally
straightforward approach to answering such questions. But a definitional approach can
manage to compute Riemann integrals in light of the following result, which puts the
computation in terms of partitions with certain features.

Theorem 4.6.1 Darboux’s theorem Let f be a bounded function that is Riemann integrable on
[a, b] and {Pn : n ∈ N} be a sequence of partitions of [a, b] such that the width of
every subinterval of Pn is less than or equal to 1/n. Then U( f ) and L( f ) can be
expressed in terms of the sequence {Pn}, and both of the following equalities hold.

U( f ) = inf { U( f , Pn) : n ∈ N} = lim
n→∞ U( f , Pn)

L( f ) = sup{L( f , Pn) : n ∈ N} = lim
n→∞ L( f , Pn)

We will soon see that any continuous function on an interval [a, b] is integrable
on [a, b]. Darboux’s theorem therefore applies to any such continuous function f . The
next example uses this fact.

Example 4.6.6 We evaluate
∫ 1

0
x dx using the definition of the Riemann integral and Darboux’s

theorem.
Calculate U( f ) = inf {U( f , P) : P is a partition of [a, b] } using Darboux’s

theorem, which allows the choice of any sequence of partitions {Pn} of [0, 1]with
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the property that the width of each subinterval of Pn is less than or equal to 1/n.
For each n ∈ N, we choose to define partitions that have subintervals of equal
length 1/n:

Pn =
{

0,
1

n
,

2

n
, . . . ,

n− 1

n
, 1

}
=
{

i

n
: 0 ≤ i ≤ n

}
.

Now determine U( f , Pn). Observe that f (x) = x is increasing on [0, 1], and so
Mi( f ) = f (xi) = f (i/n) = i/n, where xi is the right endpoint of the subinterval

[xi−1, xi] =
[

i − 1

n
,

i

n

]
.

Therefore, for n ∈ N,

U( f , Pn) =
n∑

i=1

Mi( f ) · (xi − xi−1) =
n∑

i=1

xi · (xi − xi−1) =
n∑

i=1

i

n
· 1

n

= 1

n2
·

n∑
i=1

i = 1

n2
· n(n+ 1)

2
(see example 3.6 from section 3.6)

= n+ 1

2n
.

Taking the limit as n goes to infinity (by Darboux’s theorem),

U( f ) = lim
n→∞ U( f , Pn) = lim

n→∞
n+ 1

2n
= 1

2
.

By the continuity of f , this calculation shows that
∫ 1

0
x dx = U( f ) = 1

2
.

■

As we can see from example 4.6.6, computing Riemann integral using the
definition is a complicated process, even with the help of Darboux’s theorem. In many
such cases, we are free to use the “right” sums when applying Darboux’s theorem,
as we did in the preceding example when the right sum happened to match the upper
sum. When the Riemann integral does exist, Darboux’s theorem allows us to use the
following equation for direct computations:∫ b

a
f (x)dx = lim

n→∞

(b−a)n∑
i=1

f

(
a+ i

n

)
· 1

n

Also, the following summation formulas that are often useful for these computations:

n∑
i=1

c= c ·n
n∑

i=1

i = n(n+ 1)

2

n∑
i=1

i2 = n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 = n2(n+ 1)2

4

Question 4.6.9 Directly compute L( f ) for f (x) = x on [0, 1] using Darboux’s theorem and
the sequence of partitions {Pn} of the form Pn = {i/n : 0 ≤ i ≤ n} identified in
example 4.6.6; you should find L( f , Pn) = (n− 1)/2n.

■
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Question

4.6.10

The function f (x) = x2 + 1 is Riemann integrable on [0, 2]. Using the definition

of the Riemann integral and Darboux’s theorem, evaluate
∫ 2

0
x2 + 1 dx.

■

We have asserted that continuous functions are Riemann integrable on bounded
intervals [a, b]. This fact follows from the Riemann condition for integrability
and the Riemann–Lebesgue theorem, which we study in the rest of this section.
The next lemma works toward the Riemann condition for integrability, providing
information about the relationship between upper and lower Riemann sums with
respect to a partition and its refinements. While thinking about this result, you may
find it helpful to visualize rectangular approximations of a bounded finite area as in
figure 4.22.

Lemma

4.6.2

If f is a bounded function on an interval [a, b] and both P and Q are partitions of
[a, b] with Q a refinement of P, then we have

(a) U(f , Q) ≥ L(f , Q),
(b) U( f , P) ≥ U(f , Q),
(c) L(f , Q) ≥ L( f , P).

Proof We prove U(f , Q) ≥ L(f , Q) based on the definitions of upper and lower Riemann
sums. Since Mi( f ) ≥ mi( f ), we have

U(f , Q) =
n∑

i=1

Mi( f ) · (xi − xi−1) ≥
n∑

i=1

mi( f ) · (xi − xi−1) = L(f , Q).

The proof that U( f , P) ≥ U(f , Q) is by induction on the number of
points added to P to obtain the refinement Q. For the base case, assume
P = {x0, x1, x2, . . . , xn} and that the refinement Q is obtained by adding
one additional point x∗ to P, so that xk−1 < x∗ < xk for some 1 ≤ k ≤ n and
Q = {x0, . . . , xk−1, x∗, xk, . . . , xn}. Now focus on the intervals [xk−1, xk],
[xk−1, x∗], and [x∗, xk], along with the corresponding suprema of f on these
intervals. In particular, define

M∗1 ( f ) = sup{ f (x) : x ∈ [xk−1, x∗] } and M∗2 ( f ) = sup{ f (x) : x ∈ [x∗, xk] }.

U(f, P ) U(f, Q ) L(f, Q ) L(f, P )≥ ≥ ≥

Figure 4.22 Relations among upper and lower Riemann sums
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Because Mk( f ) = sup{ f (x) : x ∈ [xk−1, xk] }, both Mk( f ) ≥ M∗1 ( f ) and Mk( f ) ≥
M∗2 ( f ). The definitions of U( f , P) and U(f , Q) imply

U( f ,P) =
n∑

i=1

Mi( f )·(xi−xi−1)

= Mk( f )·(xk−xk−1) +
n∑

i=1,i 	=k

Mi( f )·(xi−xi−1)

= Mk( f )·(x∗−xk−1) + Mk( f )·(xk−x∗) +
n∑

i=1,i 	=k

Mi( f )·(xi−xi−1)

≥ M∗1 ( f )·(x∗−xk−1) + M∗2 ( f )·(xk−x∗) +
n∑

i=1,i 	=k

Mi( f )·(xi−xi−1)

= U(f ,Q).

Therefore if Q is a refinement of P with one additional point, then U(f , Q) ≤
U( f , P). If Q is an arbitrary refinement of P, then we consider a sequence
of partitions beginning with P and adding one additional point at a time
until we obtain Q, and the corresponding application from the base case to
obtain:

P ⊂ P1 ⊂ · · · ⊂ Pn ⊂ Q, and so

U( f , P) ≥ U(f , P1) ≥ · · · ≥ U( f , Pn) ≥ U(f , Q).

The proof L(f , Q) ≥ L( f , P) is similar to the proof just given for U( f , P) ≥
U(f , Q) and is left for exercise 59 at the end of this section.

■

Lemma 4.6.2 enables the proof of a characterization of Riemann integrability.

Theorem 4.6.2 The Riemann condition for integrability A function f is Riemann integrable on
[a, b] iff for every ε > 0, there exists a partition P of [a, b] such that

U( f , P)− L( f , P) < ε.

Proof Assume f is Riemann integrable on [a, b] and prove that for every ε > 0, there
exists a partition P of [a, b] such that U( f , P) − L( f , P) < ε. Working in this
direction, let ε > 0. Since f is Riemann integrable, L( f ) = U( f ). Now apply the
properties of suprema and infima identified in lemma 4.6.1 and question 4.6.5. By
definition, L( f ) = sup{ L( f , P) : P is a partition of [a, b]}, and so there exists a
partition S of [a, b] such that L( f , S) > L( f )− ε/2 (by lemma 4.6.1). Similarly,
U( f ) = sup{ U( f , P) : P is a partition of [a, b]}, and so there exists a partition T
of [a, b] such that U( f , T ) < U( f )+ ε/2 (by question 4.6.5). We combine these
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two partitions of [a, b] to obtain the desired partition P = S ∪ T . Applying these
inequalities and the results on partitions produces the following.

U( f ,P)−L( f ,P) ≤ U( f ,T )−L( f ,P) P is a refinement of T and lemma 4.6.2

≤ U( f ,T )−L( f ,S) P is a refinement of S and lemma 4.6.2

< [U( f )+ ε

2
]−[L( f )− ε

2
] U( f ,T )<U( f )+ ε

2
,L( f ,S)>L( f )− ε

2

= ε L( f )=U( f ) since f is integrable

To prove the converse, assume there exists a partition P of [a, b] such that
U( f , P) − L( f , P) < ε and prove that f is Riemann integrable (that is, L( f ) =
U( f )). First note that U( f , P) ≥ L( f , P) for every partition P as observed in
lemma 4.6.2; therefore, we always have U( f ) ≥ L( f ). The inequality U( f ) ≤
L( f ) results from the following.

U( f ) ≤ U( f , P) Definition of infimum
< L( f , P)+ ε U( f , P)− L( f , P) < ε

≤ L( f )+ ε Definition of supremum

Since ε is arbitrarily small, we have U( f )≤ L( f ), which together with the previous
inequality shows U( f ) = L( f ). Hence f is Riemann integrable.

■

We now consider a second condition for Riemann integrability, known as the
Riemann–Lebesgue theorem, which is one of the most famous theorems of analysis.
This result is named in honor of Bernhard Riemann and of Henri Lebesgue, who
determined its straightforward characterization of Riemann integrable functions. The
modern advanced theory of the integral took an important step forward in the early
1900s when the French mathematician Henri Lebesgue successfully analyzed infinite
series constructed from sine and cosine functions. Such “Fourier series” represent
bounded functions f using an infinite series whose terms are obtained by individually
integrating sine and cosine expressions in f . In his initial work, Fourier assumed that
the integrals of these expressions exist for every bounded function, but Lebesgue’s
more careful analysis revealed that only bounded Riemann integrable functions have
this property. As part of this study, Lebsegue proved the Riemann–Lebsegue theorem
characterizing Riemann integrable functions, resolving important questions about the
existence of Riemann integrals. His work also highlighted some limitations of the
Riemann integral in terms of Fourier series.

These limitations motivated Lebesgue to consider alternative formulations of
the definite integral. In 1901, he developed an insightful “theory of measure” in an
immediately famous paper Sur une généralisation de l’intégrale définie. Lebesgue
offered a new definition of the definite integral that naturally generalizes the Riemann
integral; this “Lebesgue integral” agrees with the Riemann integral whenever the
Riemann integral exists, but many highly discontinuous functions have a well-defined
and meaningful Lebesgue integral (even when their Riemann integral is undefined).The
impact of his work was immediate. Among other things, Lebesgue helped determine
when a Fourier series correctly represents its corresponding function. In this way,
Lebesgue’s accomplishments not only provided a whole new theoretical perspective
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on the concept of integration, but also approached the integral in a fashion that perfectly
matched the practical requirements of many applications.

A first step toward appreciating Lebesgue’s work is learning the Riemann–
Lebesgue theorem, which characterizes Riemann integrable functions in terms of the
function’s continuity. While the proof of this result is beyond the scope of this text and
is left for later studies, we seek to understand the statement and use of this theorem.
We begin with two basic definitions from measure theory.

Definition

4.6.8

An interval open cover for a set S ⊆ R is a countable collection of open intervals

{In = (an, bn) : n ∈ N} such that S ⊆
⋃∞

n=1
In.

The same set may have many different interval open covers as illustrated in the
following example and question.

Example

4.6.7

We consider the set of all real numbers in the interval (0, 1). Three distinct interval
open covers of (0, 1) include

{(0, 1)},
{(
−1,

1

2

)
,

(
1

3
,

2

3

)
,

(
1

2
, 1

)}
, and{(

1

3
,

2

3

)
,

(
1

4
,

3

4

)
,

(
1

5
,

4

5

)
, . . . ,

(
1

n
,

n− 1

n

)
, . . .

}
.

Two distinct interval open covers of the irrationals R \Q are given by

{ (n, n+ 1) : n ∈ Z } and

{ (
n

2
,

n+ 1

2

)
: n ∈ Z

}
.

■

Question

4.6.11

If possible, find both a finite and a countably infinite interval open cover of each set.

(a) {2, 4}
(b) (1, 2) ∪ [17, 19]

(c) N

(d) the set of transcendental real numbers
■

The general theory of Lebesgue measure is usually presented in graduate courses.
However, it is easy to calculate the Lebesgue measure of any interval, since it is simply
that interval’s length. Some sets have Lebesgue measure zero and play an important
role in the Riemann–Lebesgue theorem. The next definition explains when a set S has
Lebesgue measure equal to 0.

Definition

4.6.9

The Lebesgue measure of an interval I = (a, b) is denoted by m(I) or m(a, b)
and is defined as m(I) = m(a, b) = b − a. A set S ⊆ R has measure zero if
for every ε > 0, there exists an interval open cover {In : n ∈ N} for S such
that both

S ⊂
∞⋃

n=1

In
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and

∞∑
n=1

m(In) ≤ ε.

Example

4.6.8

The measure of an interval is easily computed by subtracting the endpoints; for
example, the measure of the interval [0, 1] is m[0, 1] = 1 − 0 = 1, and the
measure of the half-open interval [2, 46) is m[2, 46) = 46− 2 = 44. Many infinite
sets have nonzero Lebesgue measure, including the reals, the irrationals, and the
transcendental numbers.

Any finite set has measure zero; for example, we prove that S = {1, 2} has
measure zero. For a given value ε > 0, define an interval of width ε/2 around
each point in S. In particular,

{ (1− ε

4
, 1+ ε

4
), (2− ε

4
, 2+ ε

4
) }

is an open cover of S, since

S = {1, 2} ⊆
(

1− ε

4
, 1+ ε

4

)
∪
(

2− ε

4
, 2+ ε

4

)
.

This cover shows S has measure zero, since

m
(

1− ε

4
, 1+ ε

4

)
+ m

(
2− ε

4
, 2+ ε

4

)
= ε

2
+ ε

2
= ε.

■

Question

4.6.12

Prove that any countably infinite set of points {xn : n ∈ N} has measure zero.
Hint: Let ε > 0 and consider the interval open cover consisting of

In =
(

xn − ε

2 · 2n
, xn + ε

2 · 2n

)
.

Prove that
∑∞

n=1
m(In) = ε using the geometric series formula with r = 1/2

(see exercise 14 in section 3.6).
■

The Riemann–Lebesgue theorem links the integrability of a function f with the
measure of its set of discontinuities.

Theorem 4.6.3 The Riemann–Lebesgue theorem If a function f is defined and bounded on an
interval [a, b], then f is Riemann integrable on [a, b] iff the set of points in [a, b]
where f is discontinuous has measure zero.

Example

4.6.9

An immediate consequence of the Riemann–Lebesgue theorem is that the Riemann
integral always exists when f (x) is continuous and bounded (in this case, the set of
discontinuities is the empty set, which has measure zero). For example, f (x) = x
and f (x) = x2 + 1 are continuous on R and thus Riemann integrable over any
finite interval of R.
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In contrast, the characteristic function of the rationals (defined below) is
discontinuous at every point in R. Since every interval [a, b] ⊆ R has nonzero
measure b− a, this function is not Riemann integrable on any interval of R.

f (x) =
{

1 if x ∈ Q

0 if x /∈ Q

■

Question

4.6.13

Prove that the following functions are Riemann integrable on [0, 1] based on a
discussion of the measure of the set of discontinuities of f .

(a) f (x) =
√

5 sin2 x + 2
(b) f (x) = ln

√
x + 1

(c) f (x) =
{

sin(1/x) if x 	= 0
0 if x = 0

(d) f (x) =
{

1 if x = 1/2k for k ∈ N

0 otherwise
■

4.6.1 Reading Questions for Section 4.6

1. State an intuitive description of the idea motivating the definition of the
Riemann integral.

2. Define and give an example of an upper bound and a supremum.
3. Define and give an example of a lower bound and an infimum.
4. Define and give an example of a partition and a refinement of [0, 5].
5. Define and give an example of the supremum Mi( f ) of f on the subinterval
[xi, xi+1]. For your example, use a two subinterval partition of the interval.

6. Define the upper Riemann sum U( f , P) and the lower Riemann sum L( f , P)
for a bounded function f with respect to a partition P of [a, b].

7. Define the infimum of the upper Riemann sum U( f ) and the supremum of
the lower Riemann sum L( f ) for a bounded function f .

8. State Darboux’s theorem. How is this result helpful when studying integration?
9. State the Riemann condition for integrability.

10. Give an example of an interval open cover.
11. Define and give an example of a set of measure zero.
12. State the Riemann–Lebesgue theorem. How is this result helpful when

studying integration?

4.6.2 Exercises for Section 4.6

In exercises 1-4, consider the area on the plane bounded by the given function f (x)
and the x-axis on the interval [2, 5]. Hand-plot and compute the 4 right-rectangle
approximation of this bounded area.

1. f (x) = x − 2
2. f (x) = 2x + 4

3. f (x) = 2(x − 3)2 + 1
4. f (x) = x2 + x
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In exercises 5–12, find the supremum and infimum for the following bounded sets S.
In addition, let ε = 0.001 and find a value s ∈ S as guaranteed by lemma 4.6.1 such
that s > sup S − ε, as well as a value t ∈ S such that t < inf S + ε.

5. S = { x : 1 < x ≤ 3 }
6. S = { x : −1 ≤ x < 3 }
7. S = { x : 0 < x ≤ 5 } ∪ { x : 10 < x < 15 }
8. S = { x : 0 < x ≤ 5 } ∪ { −1,− 1

2 ,− 1
3 }

9. S = { 1

2n
: n ∈ N }

10. S = { 1− 1

n
: n ∈ N }

11. S = { 1+ 1

n
: n ∈ N }

12. S = { 2n− 1

2n+ 1
: n ∈ N }

In exercises 13–20, give an example of sets with the following features, or explain
why such a set does not exist.

13. A bounded set with infimum −1 and supremum 4.
14. A bounded set with infimum 4 and supremum −1.
15. A bounded set without an infimum.
16. A set that is bounded above without an infimum.
17. An uncountable set that is bounded below and contains its infimum of 0.
18. An uncountable set that is bounded above, but does not contain its

supremum of 4.
19. A countable set that is bounded above and contains its supremum of 3.
20. A countable set that is bounded below, but does not contain its infimum of 8.

In exercises 21–24, give an example of a partition P of the following interval containing
4 points and a refinement Q of P containing 6 points.

21. [ 3, 7 ]
22. [ −1, 11 ]

23. [ 0, 8 ]
24. [ 1, 2 ]

In exercises 25–30, find the upper sum and the lower sum for each function with respect
to the partition P = { 0, 2, 3, 5 } of [0, 5].

25. f (x) = 4x + 1
26. f (x) = 2x + 4
27. f (x) = −3x2 + 4

28. f (x) = (x − 1)2

29. f (x) = √3x + 2
30. f (x) = ln(x + 1)

In exercises 31–42, find the value of Mi( f , P) and mi( f , P) for partition
P = { 1, 3, 4, 6 } of [1, 6]. In addition, use the definition of the definite integral and
Darboux’s theorem to determine the exact area bounded by f (x) and the x-axis on the
interval [1, 6].

31. f (x) = 4
32. f (x) = 2
33. f (x) = −x + 6
34. f (x) = x + 2

35. f (x) = −3x − 4
36. f (x) = 3x + 5
37. f (x) = x2

38. f (x) = x2 + 2



Chapter 4 ■ Real Analysis 327

39. f (x) = x2 + 3x − 2
40. f (x) = 2(x − 3)2 + 1

41. f (x) = x3

42. f (x) = x3 + 1

In exercises 43–50, use the definition of the definite integral and Darboux’s theorem
to evaluate each integral.

43.
∫ 5

2
4 dx

44.
∫ 2

2
dx

45.
∫ 3

0
x dx

46.
∫ 5

2
x − 1 dx

47.
∫ 2

0
−x2 dx

48.
∫ 3

0
2x2 + 4 dx

49.
∫ 2

0
x3 dx

50.
∫ 2

0
x3 − 4 dx

In exercises 51–54, prove each function is or is not Riemann integrable on the given
interval using the Riemann–Lebesgue theorem.

51. For [a, b] = [1, 4], the function f (x) =
⎧⎨⎩

x − 2

x2 − 7x + 10
if x 	= 2

32 if x = 2
.

52. For [a, b] = [2, 6], the function f (x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ [2, 3]
x2 if x ∈ (3, 4]
x − 3 if x ∈ (4, 5]√

ln (x + 10) if x ∈ (5, 6],
.

53. For [a, b] = [0, 1], the function f (x) =
{

x − 1 if x = 1/2n for n ∈ N

x + 1, otherwise
.

54. For [a, b] = [0, 1], the function f (x) =
{

1 if x = m/2n for m, n ∈ Z

0 otherwise
.

Hint: Prove that f is discontinuous at every x ∈ [0, 1], as in example 12 from
section 4.3.

In exercises 55–59, prove each mathematical statement.

55. If a set S ⊆ R is bounded above, then sup S is unique.
56. If a set S ⊆ R is bounded below, then inf S is unique.
57. Prove lemma 4.6.1 using the definition of supremum and upper bounds.
58. Prove the lower bound-infimum version of lemma 4.6.1: If S ⊆ R is bounded

below, then m = inf S iff both

• m is a lower bound of S, and
• for every ε > 0, there exists t ∈ S such that t < M + ε.

59. Prove lemma 4.6.2(c): If f is a bounded function on an interval [a, b] and
both P and Q are partitions of [a, b] with Q a refinement of P, then L(f , Q) ≥
L( f , P).

Exercises 60–66 together prove that a bounded function f that is Riemann integrable on
[a, b] has a set of discontinuities S = {x ∈ [a, b] : f is discontinuous at x} of measure
zero. The statements in many of these exercises depend on the following definition.
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If f : D→ Y and x ∈ D, then the oscillation of f at x is

osc(f , x) = lim
h→0

sup{| f (x∗)− f (x∗∗)| : x∗, x∗∗ ∈ (x − h, x + h) ∩ D}.

A function f is continuous at a domain point x ∈ D iff the oscillation osc(f , x) of f at
x is zero.
In exercises 60–66, prove each mathematical statement.

60. If f is a bounded function that is Riemann integrable on [a, b], why is the set
of discontinuities S equal to { x ∈ [a, b] : osc(f , x) > 0 }?

61. Prove that S =⋃∞i=1 Sn, where S = { x ∈ [a, b] : osc(f , x) ≥ 1
n }.

62. We prove that m(Sn) < ε for any given ε > 0, and so (since ε can be arbitrarily
small), we have m{ Sn } = 0. To begin this proof, suppose n ∈ N is fixed; how
do we know we can find a partition P = {x0, x1, ...xn} such that U( f , P) −
L( f , P) < ε/2n?

63. Examine the interval (xi−1, xi) for the partition P and assume (xi−1, xi)
contains a point a ∈ Sn. Using the fact that

lim
h↓0

sup{|f (x)−f (y)| :x,y∈ (a−h,a+h)} ≤ sup{|f (x)−f (y)| :x,y∈[xi,xi−1]}

≤sup{f (x) :x∈[xi,xi−1]}−inf {f (x) :x∈[xi,xi−1]},
prove that 1/n≤Mi( f )−mi( f ).

64. Prove that ε/2n>
∑n

i=1[Mi( f )−mi( f )]·(xi−xi−1)≥1/n
∑

(xi−xi−1), where
the sums are taken only over those subintervals with (xi−1,xi)∩Sn 	=∅.
Conclude that ε/2>

∑
(xi−xi−1), where the sum is taken over these same

subintervals.
65. Prove that all of the points in Sn (except for possibly the values x0,x1,...,xn)

are contained in a selection of the partition’s subintervals whose total measure
adds up to less than ε/2. Say why these subintervals, taken along with the set
of open intervals (xi−ε/4n,xi+ε/4n), for i=0,1,2,...,n−1 must form an
open cover for the set Sn whose total measure is less than ε.

66. Conclude from exercise 65 that m(Sn)=0 for all n. Use the fact that “any
countable union of sets of measure zero is also a set of measure zero” to
explain why m(S)=0.

Exercises 67–69 consider the famous Cantor set. The Cantor set is the subset of the
interval [0, 1] formed by repeatedly removing open subintervals. First, remove the
interval ( 1

3 , 2
3 ), which is the middle third of the interval [0, 1]. Then two intervals ([0, 1

3 ]
and [ 23 , 1) remain. Remove the open interval forming the middle third of both of these
intervals, so that four intervals ([0, 1

9 ], [ 29 , 1
3 ], [ 23 , 7

9 ], and [ 89 , 1]) remain. Continue
this process indefinitely, removing the open interval forming the middle third of each
remaining interval. The resulting set is called the Cantor set.
In exercises 67–69, prove each mathematical statement to show that the Cantor set is
an uncountable set of measure zero.

67. Each step removes the open interval forming the middle third of each
remaining interval. After two steps, the measure of the sets removed is the
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sum of the interval lengths: 1
3 + 2 · 1

9 = 5
9 . Calculate the measure of the sets

removed after three steps, and then show that the total measure of the sets
removed in the infinite number of steps it takes to create the Cantor set equals

∞∑
n=1

1

3

(
2

3

)n−1

.

68. The measure of the Cantor set is the measure of the interval [0, 1] minus the
total measure calculated in exercise 67. Use this fact and the geometric series
formula (see exercise 14 in section 3.6) to find the measure of the Cantor set.

69. Each element a in the Cantor set turns out to have a ternary expansion

a = b1

3
+ b1

32
+ b1

33
+ ...,

where every bn equals either 0 or 2 (a finite expansion that ends in a string
of zeros can be used). We write such an expansion as a = 0. b1 b2 b3 ... [3],
where the bracketed “3” indicates the expansion is ternary instead of base 10.
Use this fact to show that the Cantor set is uncountable, employing a proof by
contradiction that is reminiscent of the proof of theorem 4.5.3 in section 4.5.

4.7 The Fundamental Theorem of Calculus

This section studies the interrelationship between differential and integral calculus as
expressed by Newton’s and Leibniz’s brilliantly insightful fundamental theorem of
calculus. The Scottish mathematician James Gregory, who was in regular correspon-
dence with Newton, published the first statement and proof of the fundamental theorem.
As discussed in section 4.4, an understanding of the derivative had essentially been
developed by the mid-1600s through the work of Pierre de Fermat and Isaac Barrow.At
the time of this development, Bonaventura Cavalieri, Gilles de Roberval, and Fermat
studied the integral as a measure of bounded area, and Evangalista Torricelli and
Barrow studied the integral in the context of objects moving with variable speed. By
1660 the mathematical world was ready for the contributions of Newton, Leibniz, and
Gregory.

The fundamental theorem of calculus asserts that differentiation (finding the slope
of a tangent line) and integration (finding the area under a curve) are inverse operations.
After working through examples computing the complex algebra of upper and lower
sums connected to Riemann integrals, we can readily appreciate the advantage of
using antidifferentiation to evaluate them. The fundamental theorem of calculus was
first articulated by Newton in 1666 as part of his study of moving objects. His work
reached full fruition in 1687 with the publication of Philosophiae naturalis principia
mathematica. The Principia is recognized as one of the greatest scientific books ever
written; it used calculus to develop and articulate Newton’s fresh approach to physics
and astronomy. Working independently of Newton, Leibniz developed a complete
version of calculus by 1675 from an analytic perspective; he published his results
on differential calculus in 1684 in Nova methodus pro maximus et minimus itemque
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Tangentibus and on integral calculus in 1686. Sadly, delays in publishing results and
in delivery of correspondence, personal misunderstandings, and nationalistic pride
all played a role in a bitter priority dispute over who should receive credit for the
development of calculus. Contemporary mathematicians credit both Newton and
Leibniz for their brilliant insight; they independently described how the seemingly
disparate operations of differentiation and integration are inverses. At the same time,
both Newton and Leibniz freely acknowledged their appreciation for the contributions
predecessors and mentors made to their own work. As Newton wrote in a letter to
Robert Hooke in 1676, “If I have seen further it is by standing on the shoulders of
giants.”

This section’s goal is to state and prove the fundamental theorem of calculus.
Naturally enough, the proof relies on specific properties of the derivative and the
integral. And so we begin by isolating a few key results about differentiation,
antidifferentiation, and integration. These results lead to the fundamental theorem,
which will provide a deeper understanding of continuous functions and of the
differential and integral operations, as well as a way to to evaluate definite integrals.

Using Riemann’s definition of the integral as a computational tool has serious
limitations. In addition to the complexity of the computations (as illustrated in
section 4.6), the calculations are impossible without additional closed-form expressions
for series formulas working with broad classes of functions. The following question
highlights the difficulty.

Question 4.7.1 (a) Using partitions Pn with subintervals of uniform width 1/n, state (but do not
evaluate) a limit of upper sums U( f , Pn) whose value is the area bounded by
f (x) = 1/(x + 1) and the x-axis on the interval [0, 1].

(b) Using partitions Pn with subintervals of uniform width 1/n, state (but do not
evaluate) a limit of upper sums U( f , Pn) whose value is the area bounded by
f (x) = sin(x) and the x-axis on the interval [0, 1].

■

If you think carefully about the two limits identified in answer to question 4.7.1
(with an eye toward actually computing these limits to find the values of the integrals),
you can readily see the apparent shortcoming in using the Riemann definition to
evaluate a definite integral. In order to evaluate these limits, we would need a
closed-form expression for the sums:

n∑
i=1

1

i + 1
and

n∑
i=1

sin

(
i

n

)
.

A need for more and more series formulas snowballs as we consider other functions.
For example, integrating fourth, fifth, or sixth degree polynomials would require series
formulas for

∑n
i=1 i4,

∑n
i=1 i5, and

∑n
i=1 i6. Hence mathematicians quickly realized the

importance of developing a straightforward approach to computing definite integrals–
the approach ultimately provided by the fundamental theorem of calculus.

Before considering the inverse relationship between integration and differentiation
expressed by the fundamental theorem, we lay important groundwork by considering
two differentiation topics. The first is the mean value theorem, which provides a
theoretical foundation used in later proofs; the second is antidifferentiation, or the



Chapter 4 ■ Real Analysis 331

process of running differentiation backwards. These notions will lead to a proof of the
fundamental theorem of calculus.

We start with the mean value theorem. In this context, the word “mean” is used as a
technical term, not as a reference to anyone’s experience or perception of this theorem.
The term comes from its statistical usage, where “mean” indicates “average.” The next
question deals deals with a concept that motivates the idea of the mean value theorem
(or average value theorem).

Question 4.7.2 If the average class grade on a midterm exam is 71%, did someone earn exactly a
71%? Give an example to support your answer.

■

From your experience with exams, you should realize that the answer to question 4.7.2
is “no.” For example, perhaps two people took an exam and earned grades of 70% and
72%; the average score is 71%, but no one actually scored the average.

A startling fact, though, is that for continuous, differentiable functions, the answer
to such a question is “yes”; for such functions the average rate of change must always
occur. The mean value theorem claims that the average rate of change over an interval
must actually be equal to the instantaneous rate of change at some specific point in the
interval. An instantaneous rate of change is mathematically expressed as the value of
the derivative at a particular point, while an average rate of change is expressed by the
slope of a secant line from a point (a, f (a)) to a point (b, f (b)). The mean value theorem
says that the slope of any secant line must always equal the value of the derivative at
some point.

Theorem 4.7.1 Mean value theorem If a function f is continuous on [a, b] and differentiable on
(a, b), then there exists a value c ∈ (a, b) such that

f ′(c) = f (b)− f (a)

b− a
.

We outline a proof of the mean value theorem after developing a preliminary
result. Notice that the mean value theoremis an existence result, only guaranteeing
the existence of a particular c ∈ R with certain properties. One the other hand, the
mean value theorem is not a uniqueness result; there are functions f and intervals
[a, b] over which many different real values c satisfy f ′(c) = [f (b)− f (a)]/(b− a).
Furthermore, the theorem (and its proof) is nonconstructive in that it does not determine
a value for c, but only guarantees that c exists in the right interval with the right
properties.

Finally, the mean value theorem describes a relationship between a secant line and
a tangent line as illustrated in figure 4.23. If a function f is continuous on [a, b] and
differentiable on (a, b), then a secant line through the two points (a, f (a)) and (b, f (b))
must be parallel to some line tangent to f at a point in (a, b).

Before proving the mean value theorem, we first isolate two important properties of
the derivative and then prove a special case of the mean value theorem–for horizontal
lines–known as Rolle’s theorem. The section then finally considers a question that
provides a detailed outline of a complete proof of the mean value theorem. We begin
with the extreme value theorem for continuous functions.
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Figure 4.23 An illustration of the
mean value theorem a c b

Theorem 4.7.2 Extreme value theorem If a function f is continuous on [a, b], then f has both an
absolute maximum and an absolute minimum on [a, b].
The extreme value theorem is traditionally studied in an introductory calculus

course; the result guarantees the ability to find a continuous function’s absolute extrema
on any closed and bounded interval. The proof of the extreme value theorem relies on
a notion of “compactness,” which is beyond the scope of this text.

The next theorem is also a preliminary result needed to prove the mean value
theorem; it says that a differentiable function’s derivative is zero at a relative extrema.
We state a partial proof of the result and leave further details for the exercises at the
end of this section.

Theorem 4.7.3 If a function f is continuous on [a, b] and differentiable on (a, b), and if f has a
relative extrema at a point c ∈ (a, b), then f ′(c) = 0.

Proof The proof proceeds under the assumption that f (c) is a relative maximum. The
proof is by way of contradiction; assume the function f has a relative maximum at
c ∈ (a, b) with f ′(c) 	= 0. There are two cases to consider: f ′(c) > 0 and f ′(c) < 0.

First assume f ′(c) > 0. Identify an interval around c such that the difference
quotient from the alternative definition of the derivative is positive. Since

f ′(c) = lim
x→c

f (x)− f (c)

x − c
,

when we apply the definition of the limit with ε = f ′(c), there exists a value δ > 0
such that 0 < |x − c| < δ implies∣∣∣∣ f (x)− f (c)

x − c
− f ′(c)

∣∣∣∣ < ε = f ′(c).

Hence

−f ′(c) <
f (x)− f (c)

x − c
− f ′(c) < f ′(c) ⇒ 0 <

f (x)− f (c)

x − c
< 2f ′(c).

If (c − δ, c + δ) is not contained in (a, b), redefine δ as a sufficiently small
positive value so that (c − δ, c + δ) ⊆ (a, b). Then [ f (x)− f (c)]/(x − c) > 0
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whenever x ∈ (c, c + δ); for these x values, f (x) − f (c) > 0, and so f (x) > f (c).
But f (c) is a relative maximum, and so f (c) > f (x) must hold true for some
open interval about c. This fact gives the desired contradiction; we conclude
f ′(c) 	> 0.

The proof that f ′(c) < 0 leads to a similar contradiction; this case is left for
you to answer in the next question. The proof of the case where f (c) is a relative
minimum is left for exercises 53–54 at the end of the section. Accepting these
results, the theorem follows.

■

Question 4.7.3 Using the following strategy, complete the proof of theorem 4.7.3 for the case
where f (c) is a relative maximum. Assume a function f is continuous on [a, b]
and differentiable on (a, b), and that f has a relative maximum at c ∈ (a, b) with
f ′(c) < 0. Obtain a contradiction.

■

We can now state and prove Rolle’s theorem, which is a special case of the
mean value theorem where the secant line in question is horizontal (and has a slope
of zero). Rolle’s theorem is named in honor of the English mathematician Michel
Rolle who proved the result in 1691 using methods that the Danish mathematician
Johann van Waveren Hudde developed. Ironically, Rolle personally regarded calculus
as “a collection of ingenious fallacies” despite being best remembered for a result that
plays a vital role in the modern proof of the fundamental theorem of calculus. Rolle
also introduced the notation n

√
x for the nth root of x.

Theorem 4.7.4 Rolle’s theorem If a function f (x) is continuous on [a, b] and differentiable on
(a, b), and if f (a) = f (b), then there exists c ∈ [a, b] such that f ′(c) = 0.

Proof If f is a constant function, then f ′(c) = 0 for every c ∈ [a, b]; in this case any point
in (a, b) may be chosen to satisfy the theorem’s conclusion. Hence assume f is
not constant. Because it is continuous on [a, b], f has both an absolute maximum
and an absolute minimum on [a, b] by the extreme value theorem. Applying the
assumptions that f is not constant and f (a) = f (b), the endpoints can be at most one
of these maximum and minimum values. Therefore, there exists c ∈ (a, b) such
that either f has its maximum at c or f has its minimum at c. Furthermore, because
f is differentiable and c ∈ (a, b), this extremum must be a relative maximum or
minimum. Theorem 4.7.3 then implies f ′(c) = 0.

■

Rolle’s theorem leads to the proof of the mean value theorem. The first proof
of this result was given by Lagrange. The following sequence of questions outlines
highlights of the proof, inviting you to fill in all necessary details.

Question 4.7.4 The following steps outline a proof of the mean value theorem. The proof’s strategy
is to define a new function g in terms of the given function f :

g(x) = f (x)−
[

f (b)− f (a)

b− a

]
x.
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Prove that g satisfies the hypotheses of Rolle’s theorem and then use the conclusion
of Rolle’s theorem to obtain the desired conclusion of the mean value theorem as
follows.

(a) Prove that g is continuous on (a, b) using the continuity of f on [a, b] and
theorem 4.3.5 from section 4.3 (which details the properties of continuous
functions). Extend the continuity of g to the closed interval [a, b] by directly
verifying that lim

x→a+ g(x) = g(a) and lim
x→b− g(x) = g(b).

(b) Prove that g is differentiable on (a, b) by computing g′(x) in terms of f ′(x).
(c) Finish the verification that g satisfies all conditions of Rolle’s theorem: use

the definition of g and the assumptions about f in the statement of the mean
value theorem to prove g(a) = g(b).

(d) Apply Rolle’s theorem to g to obtain a value c ∈ (a, b) such that g′(c) = 0.
What does this fact about g say about f ?

(e) Based on your answers to parts (a)–(d), write a proof of the mean value
theorem, using complete sentences and appropriate supportive computations.

■

We will use the mean value theorem to prove the fundamental theorem of
calculus. As a means of solidifying an understanding of the mean value theorem,
we consider the process of actually finding the value c whose existence the theorem
guarantees. In this case, the values for c may be found by solving the equation
f ′(c) = [f (b)− f (a)]/(b− a).

Example 4.7.1 For the function f (x) = x3 + x2 on the interval [0, 1.5], we identify c ∈ (0, 1.5)
whose existence the mean value theorem guarantees.

First verify that the hypotheses of the mean value theorem are satisfied. The
function f is a polynomial and is therefore continuous and differentiable on all of
R (and therefore on the particular interval [0, 1.5]). According to the mean value
theorem, there exists a value c ∈ (0, 1.5) such that f ′(c) is equal to

f (1.5)− f (0)

1.5− 0
= (1.5)3 + (1.5)2 − 03 − 02

1.5
= 3.75.

We therefore seek c ∈ (0, 1.5) such that f ′(c) = 3.75. Since f ′(x) = 3x2 + 2x, we
need to solve the quadratic 3c2 + 2c = 3.75. The quadratic equation implies

c = −2±√4+ 45

6
,

and therefore c = 5
6 or c = − 3

2 . Since − 3
2 	∈ (0, 1.5) = (a, b), there is only one

value c = 5
6 ∈ (0, 1.5) that satisfies the mean value theorem.

■

After proving a theorem, mathematicians often investigate if all the theorem’s
assumptions are necessary. For example, does the mean value theorem really need to
assume f is continuous on [a, b] in order for the conclusion to hold? What about
differentiability? Sometimes hypotheses can be weakened to yield a more widely
applicable result; in other cases, counterexamples are identified that demonstrate the
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necessity of a given hypothesis. The next example demonstrates that the differentiation
hypothesis of the mean value theorem is necessary.

Example 4.7.2 We consider a function f that is continuous on an interval [a, b] but not
differentiable at every point in (a, b), and show that f fails to satisfy the conclusion
of the mean value theorem.

Toward this end, define f (x) = 5 − |x| on [a, b] = [−2, 2]. The function
f is continuous on [−2, 2] and differentiable on (−2, 0) ∪ (0, 2), but f is not
differentiable at x = 0. The slope of the secant line from x = −2 to x = 2 is

f (2)− f (−2)

2− (−2)
= 3− 3

4
= 0.

But f does not have any horizontal tangent lines, and so f ′(c) never equals 0 for
any given c ∈ [−2, 2]. The conclusion of the mean value theorem therefore fails
to hold. The assumption that f be differentiable on the entire interval is a vital one.

■

We now consider the process of antidifferentiation: given a function f , find F
so that F ′(x) = f (x). In the language of section 4.2, antidifferentiation is (up to the
addition of an arbitrary constant) the inverse of differentiation. The following simple
example illustrates this notion.

Example 4.7.3 For f (x) = 2x, we determine those functions F(x) such that
d

dx
F(x) = 2x.

Consider the following derivatives to motivate the solution.

d

dx
[x2] = 2x

d

dx
[x2 + 3] = 2x

d

dx
[x2 − 5] = 2x

As suggested by these examples and learned in any calculus course, the addition
of an arbitrary constant to F(x) does not affect its derivative. If we “undo” a
differentiation process that yields f (x) = 2x as a derivative F ′(x) = 2x, then we
obtain a function of the form F(x) = x2 + C, where C is an arbitrary constant.

■

Antidifferentiation is studied and used in several areas of mathematics, and so
there are many standard notations used for it.

Definition 4.7.1 A function F(x) is an antiderivative of a function f (x) when

d

dx
F(x) = f (x).

Notationally, the following are equivalent:

• F(x) is an antiderivative of f (x),
•
∫

f (x) dx = F(x),
• F(x) is the general solution of the differential equation dy

dx = f (x).

The function F is called the indefinite integral of f (x).

We recall some important observations about this definition of an antiderivative.
First of all, the article “an” is important in the definition, since a function f can have
many antiderivatives. But we will soon prove that each antiderivative differs only by
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a constant, and so we may refer to the general antiderivative. Whenever a reference is
given to the antiderivative of a function, the meaning should be understood as implicitly
referring to the general antiderivative. For example, the antiderivative of 2x is x2 +C,
where C is an arbitrary real constant.

Second, every differentiation rule can be “reversed” to yield a corresponding
antidifferentiation rule. The following familiar examples illustrate the relationship
between the two types of rules.

Differentiation rule Antidifferentiation rule
d

dx
[x2] = 2x

∫
2x dx = x2 + C

d

dx
[x4] = 4x3

∫
4x3 dx = x4 + C

d

dx
[cos(x)] = − sin(x)

∫ − sin(x) dx = cos(x)+ C

d

dx
[ln(x)] = 1

x

∫ 1
x dx = ln(x)+ C

A fluency with derivative rules for functions therefore results in a corresponding
fluency with antiderivatives. Not all functions have easily determined (or even closed-
form) antiderivatives, but the many cases that do provide a strong incentive to
apply the fundamental theorem of calculus—it links finding areas under curves to
the antiderivative. The next question will remind you of computational aspects of
antidifferentiation.

Question 4.7.5 Evaluate each indefinite integral and solve each differential equation. Some of
these exercises use basic antidifferentiation rules, while others involve more
sophisticated techniques of integration learned in calculus.

(a) f (x) = 5x4 + 2+ 1

2
√

x
(b) f (x) = ex + cos x
(c) f (x) = sec(x) tan(x)

(d) f (x) = 1

x
+ 1

x + 1
(e) y′ = x

√
x2 + 1

(f) y′ = ex(x2 + 1)
■

Question 4.7.6 Recall from calculus that the antiderivative of a product of two functions is not
equal to the product of the antiderivatives of the functions. Verify that

∫
x2 dx =∫

x · x dx 	= ∫
x dx · ∫ x dx provides a counterexample to such a supposed “rule”

for antidifferentiation.
■

How do we know that any antiderivative F(x) is unique up to a constant? In the
context of example 4.7.3, how can we be sure that every antiderivative of f (x) = 2x
is of the form F(x) = x2 + C? Could some algebraic combination of trigonometric,
logarithmic, or exponential functions also have a derivative of 2x? We resolve such
questions using theoretical mathematics. In this case we prove the uniqueness of the
general antiderivative (up to a constant), not only for the function f (x) = 2x, but for
all continuous functions simultaneously. The proof of this result follows after first
proving an intuitive statement about the derivative: a function that has a slope of zero
everywhere is a horizontal line.
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Theorem 4.7.5 If a function f is continuous on [a, b] and differentiable on (a, b), and if f ′(x) = 0
for every x ∈ (a, b), then f is constant on [a, b].

Proof For any given x in the interval (a, b], show f is constant by showing f (x) = f (a).
The function f satisfies the assumptions of the mean value theorem. Applying the
mean value theorem to f on the interval [a, x], there exists a value c ∈ (a, x) such
that

f ′(c) = f (x)− f (a)

x − a
.

But f ′(c) = 0, hence f (x) = f (a).
■

This theorem leads to a proof of the next result, which describes the uniqueness
of the general antiderivative.

Theorem 4.7.6 If the functions F(x) and G(x) are continuous on [a, b] and differentiable on (a, b),
and if F(x) is an antiderivative of f (x) on (a, b), then the following are equivalent.

(1) G(x) = F(x)+ C for some C ∈ R

(2) G(x) is an antiderivative of f (x)

Proof First prove (1) implies (2). Assume G(x) = F(x)+ C for some C ∈ R and show
that G(x) is an antiderivative of f (x). Differentiating G(x) using the differentiation
rules from theorem 4.4.1 in section 4.4,

d

dx
[G(x)] = d

dx
[F(x)+ C] = d

dx
[F(x)]+ d

dx
[C] = f (x)+ 0 = f (x).

Therefore, by definition, G(x) is an antiderivative of f (x).
Now prove (2) implies (1). Assume G(x) is an antiderivative of f (x) and show

that G(x) = F(x)+ C for some C ∈ R. Differentiating the function G(x)− F(x),

d

dx
[G(x)− F(x)] = d

dx
[G(x)]− d

dx
[F(x)] = f (x)− f (x) = 0.

theorem 4.7.5 now implies that G(x)− F(x) is constant on [a, b]; in other words,
G(x)− F(x) = C for some C ∈ R. The result follows.

■

As a final step before presenting the fundamental theorem, we state a handful of
properties of the definite integral that are familiar from calculus. Their formal proofs
follow from the definition of the definite integral and are left for exercises 57–59 at
the end of this section.

Theorem 4.7.7 If f is Riemann integrable and a, b, c, r ∈ R, then the following identities hold.

(a)
∫ b

a
f dx =

∫ c

a
f dx +

∫ b

c
f dx.

(b)
∫ a

a
f dx = 0.

(c)
∫ b

a
r dx = r · (b− a).
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We are now ready to state and prove the fundamental theorem of calculus.
Traditionally, the fundamental theorem is written in two parts. The first part asserts that
differentiation is the inverse operation of taking a definite integral; if F(x) equals the
area under a continuous function f between values a and x, then F ′(x) = f (x). In the
theorem’s statement, the independent variable x will appear as a limit of integration, and
a “dummy” variable t will be used in the integrand. The second part of the fundamental
theorem evaluates the definite integral of a given function f in terms of its antiderivative.

Theorem 4.7.8 The fundamental theorem of calculus

(a) If a function f is continuous on [a, b], then for every x ∈ (a, b)

d

dx

[∫ x

a
f (t) dt

]
= f (x).

(b) If a function f is continuous on [a, b] and F(x) is any antiderivative of f (x),
then ∫ b

a
f (x) dx = F(b)− F(a).

Proof of (a) Apply the definition of the derivative to the function F(x) =
∫ x

a
f (t) dt:

d

dx
F(x) = lim

h→0

F(x + h) − F(x)

h

= lim
h→0

∫ x+h
a f (t) dt − ∫ x

a f (t) dt

h

= lim
h→0

∫ x+h
x f (t) dt

h
.

Now identify upper and lower bounds on the integration term in this limit—
consider upper and lower Riemann sums and then apply the squeeze theorem
(see theorem 4.3.4 from section 4.3). The following inequalities consider only
the right hand limit with h > 0; the left hand limit with h < 0 is similar.

An upper bound is found by applying the partition with only one interval
P = {x, x + h} to the interval [x, x + h]; compute the corresponding upper and
lower Riemann sum.

U( f , P) = sup{f (t) : t ∈ [x, x + h]} · [(x + h)− x] = M1( f ) · h

L( f , P) = inf {f (t) : t ∈ [x, x + h]} · [(x + h)− x] = m1( f ) · h
From the definition of the definite integral, the following inequalities hold.

L( f , P) ≤ ∫ x+h
x f (t) dt ≤ U( f , P)

m1( f ) · h ≤ ∫ x+h
x f (t) dt ≤ M1( f ) · h

m1( f ) ≤
∫ x+h

x f (t) dt

h
≤ M1( f )
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As h approaches 0, M1( f )= m1( f )= f (x). Therefore, by the squeeze theorem
for limits,

d

dx

[∫ x

a
f (t) dt

]
= lim

h→0

∫ x+h
x f (t) dt

h
= f (x)

■

Proof of (b) Assume f is continuous on [a, b]. Let G(x) =
∫ x

a
f (t) dt be the antiderivative for

f given in part (a). If F(x) is any antiderivative of f , then theorem 4.7.6 implies
F(x) = G(x) + C for some C ∈ R. Substituting a and b into F as specified,

F(b)− F(a) = (G(b)+ C)− (G(a)+ C) = G(b)− G(a)

=
∫ b

a
f (t) dt −

∫ a

a
f (t) dt =

∫ b

a
f (t) dt − 0 =

∫ b

a
f (t) dt.

■

The next several examples and questions use the fundamental theorem of calculus
to evaluate derivatives and definite integrals. Many computations should be quite
familiar from calculus; their ease illustrates the importance of the theorem. When
using the fundamental theorem to differentiate a function F(x) = ∫ x

a f (t) dt whose
domain variable x appears as an upper limit of integration, the variable t acts only as a
placeholder. Using the chain rule, we may also differentiate a composition of the form
F(g(x)) = ∫ g(x)

a f (t) dt, obtaining

d

dx

∫ g(x)

a
f (t) dt = f (g(x)) · g′(x).

Example 4.7.4 We use the fundamental theorem of calculus to differentiate the following
functions.

•
d

dx

[∫ x

0
t + 2 dt

]
= x + 2

•
d

dx

[∫ x

2
t2 + cos(t) dt

]
= x2 + cos(x)

•
d

dx

[∫ x4

0
sec(t) dt

]
= sec(x4) · 4x3

•
d

dx

[∫ 3

x
t + 1

t
dt

]
= d

dx

[
−
∫ x

3
t + 1

t
dt

]
= − (x + 1/x)

■

Question 4.7.7 Use the fundamental theorem to differentiate each of the following functions.

(a)
∫ x

1
t + t2 dt

(b)
∫ x

π

ln t dt

(c)
∫ x3+ex

0
sin t dt

(d)
∫ 3

x2
t + et dt

■
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Example 4.7.5 We determine the area bounded by f (x) = 6x2 and the x-axis on [0, 4].
Apply the fundamental theorem of calculus. Since 2x3 is an antiderivative of

6x2, the bounded area is equal to∫ 4

0
6x2 dx = 2x3

]4

0
= 2(4)3 − 2(0)3 = 128.

■

Example 4.7.6 We determine the area bounded by f (x) = sin(x) and the x-axis on [0, π ].
Applying the fundamental theorem of calculus, this bounded area is equal to∫ π

0
sin(x) dx = − cos(x)

]π
0
= − cos(π)− (− cos(0)) = −(−1)− (−1) = 2.

■

Question 4.7.8 Use the fundamental theorem of calculus to determine the area bounded by f (x)
and the x-axis on the given interval.

(a) f (x) = 4x3 + 1 on [0, 1] (b) f (x) = 4x3 + 1 on [−1, 0]
■

A final example illustrates the necessity of continuity in the hypotheses of the
fundamental theorem of calculus. The example shows that discontinuous functions
may not satisfy the conclusion of the fundamental theorem.

Example 4.7.7 We consider the function f (x) = 1/x2 on the interval [−1, 1]. If the fundamental
theorem applied, then the corresponding definite integral of f would be∫ 1

−1

1

x2
dx = −1

x

]1

−1
= −1− [−(−1)] = −2.

But this value cannot be interpreted as the definite integral; in other words, it is
not the area between f (x) = 1/x2 and the x-axis over the interval [−1, 1]. This
region is unbounded, and the area is infinite. Since f (x) = 1/x2 is discontinuous
at x = 0 ∈ [−1, 1], the fundamental theorem of calculus cannot be applied.

■

4.7.1 Reading Questions for Section 4.7

1. State the mean value theorem.
2. State the extreme value theorem and illustrate it with an example.
3. State theorem 4.7.3. How is this result useful when studying functions?
4. State Rolle’s theorem.
5. What function is studied in proving the mean value theorem as outlined in

question 4.7.4?
6. Define and give an example of an antiderivative.
7. Name three different ways in which mathematicians refer to antiderivatives.
8. Discuss the uniqueness of antiderivatives. What does theorem 4.7.6 tell us?
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9. State theorem 4.7.5. Sketch an example and explain how this result is used in
the proof of theorem 4.7.6.

10. State and give an example of the properties of the definite integral identified
in theorem 4.7.7.

11. State the fundamental theorem of calculus. How is this result useful?
12. True or false: Any function f (x) on [a, b] satisfies

∫ b
a f (x) dx = F(b)− F(a),

where F ′(x) = f (x) on [a, b]. Explain your answer.

4.7.2 Exercises for Section 4.7

In exercises 1–4, apply Rolle’s theorem and the mean value theorem to the continuous
and differentiable function f (x) = (x − 2)(x + 1) = x2 − x − 2.

1. Compute the derivative of f .
2. Identify c between the zeros of f satisfying Rolle’s theorem.
3. Identify c ∈ [0, 3] satisfying the mean value theorem.
4. Identify c ∈ [0, 5] satisfying the mean value theorem.

In exercises 5–10, identify a constant c guaranteed to exist by applying either Rolle’s
theorem or the mean value theorem to each continuous, differentiable function f .
Indicate when you are using Rolle’s theorem.

5. f (x) = 3− 2

x
on [2, 4]

6. f (x) = x3 − 4x on [0, 1]
7. f (x) = x3 − 4x on [−2, 2]
8. f (x) = 2x4 − 14x2 + 20 on
[−5, 5]

9. f (x) = 3x5 − 50x3 + 135x on
[0, 2]

10. f (x) = 3x5 − 10x3 + 15x on
[−1, 1]

In exercises 11–12, apply the mean value theorem in each scenario.

11. Suppose two patrol cars are sitting along side the highway six miles apart
when a red sporty car drives by. The first police officer clocks the car at 50
mph, then three minutes later the second police officer clocks the car at 45
mph. Prove the driver deserves a huge speeding ticket for exceeding the speed
limit (of 50 mph) at some time during the three minutes.

12. Two toll booths are 25 miles apart on a turnpike. If a car stops at the first
tollbooth at 12:42 PM and the second at 12:58 later that afternoon, then what
can you say about the car’s speed somewhere in between the tollbooths?

In exercises 13–16, find the general solution of each differential equation.

13. f ′(x) = 3x2 + ex

14. f ′(x) = sin(2x)+ x2 · ln(x3)
15.

dy

dx
= x · ex

16.
dy

dx
= ex · cos x

Exercises 17–20 consider the “particular solution” of a differentiable equation
dy/dx = f ′(x) with a given initial condition f (x) = y. A particular solution identifies a
specific C ∈ R for the general antiderivative by substituting the given initial condition
into the general antiderivative and solving for C.
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For exercises 17–20, recall that the general solution of the differentiable equation
f ′(x) =cos(x)+ ex is f (x) =sin(x)+ ex +C. Identify the particular solution satisfying
each initial condition.

17. f (0) = 6
18. f (π) = eπ + 7

19. f (π/2) = 2
20. f (ln 2) = 0

In exercises 21–24, determine the particular solution satisfying each differential
equation and initial condition.

21. f ′(x) = 4x3 + 2ex and f (0) = 2

22. f ′(x) = 5 cos(2πx)+ x2 · ln(2x3) and f (1) = 2

23. dy/dx = (x + 2) · ex and f (ln 2) = 1

24. dy/dx = x2 · ex and f (0) = 1

In exercises 25–32, state the antiderivative of each function.

25. f (x) = 4x3 + 5x2/3

26. f (x) = (2x2 + 1)2

27. f (x) = 1

8x3
+ 1

2x

28. f (x) = 1

x(x + 1)

29. f (x) = 1

e2x
+ cos x

30. f (x) = tan(x)+ cot(x)

31. f (x) = ex cos(ex)+ sin(2x)

32. f (x) = [ln(x)]2 1

x

In exercises 33–40, differentiate each function using the fundamental theorem of
calculus.

33.
∫ x

3
t + 1

t
dt

34.
∫ x

π

csc(t2)+ ln(t) dt

35.
∫ 6

x
t2 + cos(t) dt

36.
∫ 4x

4
sec(t) dt

37.
∫ 3

x5

√
t + et dt

38.
∫ cos(x)+ex

1
t3 + ln(t) dt

39.
∫ x2+ln(x)

e
et + t8 dt

40.
∫ 2x

x

3

t
dt

In exercises 41–48, evaluate each definite integral using the fundamental theorem of
calculus.

41.
∫ 1

0
24x5 + ex dx

42.
∫ 3

1
x3 + 1/x dx

43.
∫ 2

0
(2+ t)

√
t dt

44.
∫ π/2

−π/2
2t + cos(t) dt

45.
∫ 4

1
4ex + 1

x3
√

x
dx

46.
∫ π

−π

cos(x) dx

47.
∫ π

−π

sin(x) dx

48.
∫ π/4

0
sec(x) tan(x) dx
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In exercises 49–52, explain why each definite integral cannot be evaluated using the
fundamental theorem of calculus.

49.
∫ 4

0

1

x
dx

50.
∫ 6

2

1

x2 − 4x
dx

51.
∫ 1

−1

√
x dx

52.
∫ 3

0

1√
x − 2

dx

In exercises 53–64, prove each mathematical statement.

53. Complete half of the proof of theorem 4.7.3 for a relative minimum. Assume
a function f is continuous on [a, b], differentiable on (a, b), and c ∈ (a, b) is
a relative minimum of f on [a, b] with f ′(c) < 0 and obtain a contradiction.

54. Complete half of the proof of theorem 4.7.3 for a relative minimum. Assume
a function f is continuous on [a, b], differentiable on (a, b), and c ∈ (a, b) is
a relative minimum of f on [a, b] with f ′(c) > 0 and obtain a contradiction.

55. If f is not continuous on [a, b], then f may not satisfy the extreme value theorem.
56. If f is not continuous on [a, b], then f may not satisfy the mean value theorem.
57. If f (x) = Ax2 + Bx + C, then for any interval [a, b], the real number c =

(b+ a)/2 satistfies the mean value theorem for f on [a, b].
58. If F ′(x) = G′(x) on [a, b], then F(b)− F(a) = G(b)− G(a).
59. Theorem 4.7.7(a): if f is Riemann integrable and a, b, c ∈ R, then∫ b

a
f dx =

∫ c

a
f dx +

∫ b

c
f dx.

60. Theorem 4.7.7(b): if f is Riemann integrable and a ∈ R, then∫ a

a
f dx = 0.

61. Theorem 4.7.7(c): if f is Riemann integrable and a, b, r ∈ R, then∫ b

a
r dx = r · (b− a).

62. If f and g are Riemann integrable and a, b ∈ R, then∫ b

a
f + g dx =

∫ b

a
f dx +

∫ b

a
g dx.

63. Integration by substitution: If g′(x) is positive and continuous on [c, d], f is
continuous on [a, b], and a = g(c) and b = g(d), then∫ b

a
f (x) dx =

∫ d

c
f (g(t))g′(t) dt.

Hint: Apply the chain rule

d

dx
{F(g(x))} = F ′(g(x)) · g′(x).
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64. Integration by parts: If the functions F and G have continuous derivatives
on [a, b], then∫ b

a
F(x)G′(x) dx = F(x)G(x)

]b

a
−
∫ b

a
F ′(x)G(x) dx.

Hint: Apply the product rule
d

dx
{F(x)G(x)} = F(x)G′(x)+ F ′(x)G(x).

In exercises 65–69, disprove each false mathematical statement by giving an appro-
priate counterexample.

65. If f ′(x) = 0 for every x in the domain of f , then f is a constant function.
66. For any function f with continuous derivative,∫

1

f (x)
dx = ln | f (x)| + C.

67. If the functions f and g have continuous derivatives on [a, b], then∫ b

a

f (x)

g(x)
dx =

∫ b
a f (x) dx∫ b
a g(x) dx

.

68. If f is a bounded function on [a, b] and F ′(x) = f (x), then∫ b

a
f dx = F(b)− F(a).

69. If f and g are bounded functions, then∫
f (x)+ g(x) dx =

∫
f (x) dx +

∫
g(x) dx + C.

Exercise 70 outlines the proof that π is irrational that is most often studied by
contemporary mathematicians. This proof was first given by Ivan Niven in 1947.
Niven’s proof that π is irrational proceeds by contradiction. Assume π = a/b, where
a, b ∈ N. Now define the following polynomials (where n ∈ N is a fixed, but at the
moment unspecified positive integer).

f (x) = xn · (a− bx)n

n! F(x) = f (x)− f (2)(x)+ · · · + (−1)nf (2n)(x)

Prove each mathematical statement about these polynomials.

(a) If 0 ≤ j < n, then f (j)(0) = 0 and f (j)(π) = 0.
(b) If n ≤ j, then f (j)(0) ∈ Z and f (j)(π) ∈ Z. Hint: n! · f (x) has integer coefficients.
(c) F(π) + F(0) is an integer. Hint: Use parts (a) and (b) and the definition of F.
(d) F + F ′′ = f . Hint: Differentiate F and algebraically combine terms.

(e)
d

dx

[
F ′(x) · sin(x)− F(x) · cos(x)

] = f (x) · sin(x). Hint: Use the difference

rule, the product rule, and part (d).

(f)
∫ π

0
f (x) · sin(x) dx is an integer. Hint: Use the fundamental theorem of calculus

and parts (c) and (e).
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(g) If 0 ≤ x ≤ π , then 0 ≤ f (x) ≤ πn · an

n! , and so 0 ≤ f (x) · sin(x) ≤ πn · an

n! .

(h) Conclude from part (g) that
∫ π

0
f (x) · sin(x) dx is positive but arbitrarily small

for sufficiently large n. Obtain a contradiction from part ( f).

4.8 Application: Differential Equations

One of the first and most important applications of calculus was the development of
a mathematical model for planetary motion. Since ancient times humans have stared
at the stars and sought to understand the motion of the planets. The ancient Greek
mathematician and astronomer Ptolemy detailed the most successful and enduring
of the ancient mathematical models in his treatise the Almagest. When subsequent
astronomers’ physical observations conflicted with Ptolemy’s description of planetary
motion, additions and adjustments were made to Ptolemy’s model to account for the
discrepancies. By the seventeenth century, the result was a complicated description—a
tangled mess of adjustments and unexplainable fine-tunings that was of limited use
and questionable accuracy. It also certainly lacked the elegance that mathematicians
often seek when modeling the physical world.

In the 1660s Sir Isaac Newton applied the newly developed mathematics of
derivatives and integrals to produce a model for planetary motion, including a
mathematical formula describing the path of the Earth around the Sun. In general,
an object’s future physical position can often be expressed in terms of derivatives
or integrals of functions for known present quantities; in this way, the techniques
of calculus can provide information about an object’s future position and behavior.
Newton’s model for planetary motion as detailed in the Principia is recognized as one
of the greatest accomplishments of science and remains an enduring witness to the
power and potential of calculus.

In only a short time, mathematical models were developed describing scores of
different physical phenomena, including the flight of cannonballs, the drape of a tent
roof, the flow of heat across a metal surface, and the vibration of violin strings. These
successes profoundly influenced the philosophical perspectives of western Europe.
Mathematicians and a host of others optimistically sought models and insights into
diverse physical phenomena, confident that mathematics could answer any and all
questions of science. Like a clock’s mechanisms turning and ticking at a predictable
rate, mathematics seemed to show that the various parts of our universe (the Moon, the
planets, comets, and other celestial objects) all move in a highly predictable manner.

The equations that form the heart of such physical models are often differential
equations—ones that explicitly incorporate derivatives as terms in the equations. In
this section, we categorize basic types of differential equations and discuss the general
algorithms that mathematicians have developed for solving them. This section begins
with the definition of a differential equation and some associated terms.

Definition 4.8.1 A differential equation expresses a relationship between a function and its
derivatives.The order of a differential equation is the order of the highest derivative
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that appears in the equation. A linear differential equation can be written in the
form

Fn(x)y(n) + · · · + F1(x)y′ + F0(x)y = G(x),

for some n ∈ N where y(n) denotes the nth derivative of a function y with respect
to x. A nonlinear differential equation is one that is not linear.

This introduction to the study focuses on first-order and second-order differential
equations for functions of a single-variable. Such equations are sometimes referred
to as ordinary differential equations, in contrast to partial differential equations for
multivariable functions involving partial derivatives. Definition 4.8.1 refers to ordinary
differential equations, since the derivatives are of a single-variable function. The
following example illustrates several common types of differential equations.

Example 4.8.1 We state several differential equations, their respective orders, and state whether
or not they are linear or nonlinear.

• First-order, linear differential equation: y′ + 1

x
y = 5ex.

• First-order, nonlinear differential equation: y′ + sin y = 6
• Second-order, linear differential equation: y′′ + exy = x3.
• Second-order, nonlinear differential equation: yy′′ + ey[y′]3 = x.
• Fourth-order, linear differential equation: y(4) + y = 0.

■

Question 4.8.1 Identify the order and linearity of each differential equation.

(a) y′ = cos x + ex

(b) y′ = x2y3
(c) y′′ = y(3) cos x + ex

(d) sin(x + y)y′ = y
■

For most of this section, we focus our attention on the study of first-order
differential equations. As we will see, the general study of first-order equations quickly
becomes quite complicated, even for equations that appear relatively simple at first
blush. For example, the nonlinear first-order differential equation [y′]2 + 1 = 0 has
no real solutions, since the derivative of a real function cannot equal the imaginary
number i = √−1. Such differential equations immediately bring to light challenging
questions about characterizing when a solution to a first order equation might exist, as
well as what might happen if we were to allow for solutions that are complex-valued.
Answering such questions has been a major area of focus for the last two centuries, and
progress has been made that has had an impact on applications as varied as electricity
and magnetism to the study of the subatomic world.

The study of antiderivatives in section 4.7 distinguished between the general
antiderivative and a particular antiderivative for a given function. The general
antiderivative’s form includes the addition of an arbitrary constant. In a similar fashion,
a given differential equation has both a general solution and particular solutions, where
a particular solution both satisfies the differential equation and passes through some
given point on the plane. The point is often identified by means of an initial condition;
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an exercise that seeks a particular solution to a differential equation is called an initial
condition problem or an initial value problem. The following definition explains these
notions.

Definition 4.8.2 A function y = f (x) is a solution to a differential equation when the equation
is satisfied (or true) when f (x) and its derivatives are substituted for y and its
derivatives. A general solution to a first-order equation includes an arbitrary
constant of integration that expresses every possible solution to the equation. A
particular solution satisfies both the equation and an initial condition y(a) =
f (a) = b for a, b ∈ R.

In these settings we often distinguish between verifying a given function is a
solution of a differential equation and the process of actually identifying a solution
for a differential equation. We briefly consider the process of verifying a solution and
spend the rest of the section working on finding solutions.

Example 4.8.2 We confirm that y(x) = cos x + 4 is a solution of the initial condition problem
y′′ + y = 4 and y(π) = 3.

Substituting y into the above equation we find

y′′ + y = d2

dx2
[cos x + 4] + cos x + 4 = − cos x + 0+ cos x + 4 = 4.

Therefore, the given function satisfies the differential equation. Furthermore,
y(π) = cos π + 4 = −1 + 4 = 3, and the given function satisfies the initial
condition.

■

Question 4.8.2 Verify that y(x) = cos x + 4 is a solution of each initial condition problem.

(a) y′′ − y + 4 = −2 cos x and y(0) = 5
(b) y(4) − y = −4 and y (π/3) = 4.5

■

Most problems do not provide a particular solution to a given differential
equation—they instead require an analysis leading to a solution. Sometimes the
analysis follows an algorithmic approach that has been shown to solve various types
of differential equations. Simple first-order differential equations can sometimes be
solved by applying basic antidifferentiation techniques, as the next example illustrates.

Example 4.8.3 We find the particular solution of the initial condition problem y′ = 2x and
y(3) = 17.

Finding the general solution of y′ = 2x is equivalent to determining the general
antiderivative of f (x) = 2x, which is of the form y = x2 + C. In short,∫

2x dx = 2
x2

2
+ C = x2 + C.

The given initial condition computes C as

17 = y(3) = 32 + C ⇒ 17 = 9+ C ⇒ 8 = C.
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The particular solution is therefore y = x2 + 8. As illustrated in figure 4.24,
the addition of the arbitrary constant in the general solution may be graphically
interpreted as translations of the parabola y = x2 up and down the y-axis, and the
particular solution y = x2 + 8 is the parabola with vertex at (0, 8).

■

Question 4.8.3 Find the solution of the initial condition problem y′ = cos x + ex and y(0) = 5.
■

Despite the relative ease of solving the differential equations given in exam-
ple 4.8.3 and question 4.8.3, first-order (and higher-order) differential equations are
often quite difficult to solve. Fortunately, mathematicians have successfully developed
various techniques for solving many types of differential equations; a standard
approach to finding solutions is to first determine if the given equation fits into a
category with a known solution technique.

Definition 4.8.1 includes one such category—linear first-order differential equa-
tions. Every such equation is of the form y′ +F(x)y = G(x) and is often readily solved
using a well-known, algorithmic process. The following theorem states the formula
that gives the solution.

Theorem 4.8.1 The general solution of a linear first-order differential equation y′ +F(x)y = G(x)
is provided by the formula

y =
[
e−

∫
F(x) dx

]
·
[∫

G(x) · e
∫

F(x) dx dx + C

]
.

The derivation of the solution identified in theorem 4.8.1 is left for your later
studies, perhaps in a course devoted exclusively to the study of differential equations.
In order to apply the theorem practically, we need to be able to antidifferentiate F(x) and
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the often more-complicated expression
∫

G(x) · e
∫

F(x) dx dx. But as seen in calculus

courses, not every function F(x) is elementary and antidifferentiated in closed form.
The formula is useful when the integrals can be evaluated, and in these cases it identifies
the solution. Finally, in cases where the integrals do not lend themselves to closed-form
expressions, the formula can often be evaluated using numerical methods.

Example 4.8.4 We use theorem 4.8.1 to solve the initial condition problem

y′ + (1/x)y = 5x and y(3) = 18.

Although unnecessary, we assume x > 0 to simplify the discussion.
The differential equation y′ + (1/x)y = 5x is a linear first-order differential

equation with F(x) = 1/x and G(x) = 5x. Applying the formula in theorem 4.8.1,∫
F(x) dx =

∫
1

x
dx = ln x.

In the end, any arbitrary constants in the solution are absorbed into the single
constant value C that appears explicitly in the formula, and so this first integral
calculation has chosen the arbitrary constant as 0 for simplicity. Now compute the
right-hand expression from the formula in theorem 4.8.1:∫

G(x) · e
∫

F(x) dx dx =
∫

5x · eln x dx =
∫

5x2 dx = 5

3
x3.

Putting the two pieces together, the general solution of y′ + (1/x)y = 5x is

y = e−lnx ·
[

5

3
x3 + C

]
= 5

3
x2 + C

x
.

Now use the given initial condition to compute C:

18 = y(3) = 5

3
32 + C

3
⇒ 18 = 15+ C

3
⇒ 9 = C.

The particular solution of the given initial value problem is therefore y = 5

3
x2+ 9

x
.

■

Question 4.8.4 Find the general solution of each linear first-order differential equation.

(a)
dy

dx
+ (1/x)y = 2x

(b)
dy

dx
− 3

x
y = 2x3

■

Another important category of first-order differential equations is referred to as
separable. These equations can be algebraically manipulated so that the variables x
and y are “separated” from one another, which enables a straightforward solution
process. calculus courses often study separable differential equations after defining the
natural logarithm and exponential functions; you may already be familiar with finding
solutions to separable equations. The next definition and theorem details the solution
to such an equation.



350 A Transition to Advanced Mathematics

Definition 4.8.3 A first-order differential equation is said to separable when the differential
equation can be expressed in the form y′ = F(x) · G(y).

By writing the separable differential equations in terms of differentials as
dy/G(y) = F(x)dx and integrating both sides, the following theorem is immediately
proven.

Theorem 4.8.2 The general solution of a separable first-order differential equation y′ = F(x) ·G(y)
is provided by the formula∫

1

G(y)
dy =

∫
F(x) dx.

Example 4.8.5 We use theorem 4.8.2 to solve the initial condition problem y′ = x2y3 and
y(3) = 0.5.

The differential equation y′ = x2y3 is a separable first-order equation with
F(x) = x2 and G(y) = y3. Hence

dy

dx
= x2y3 ⇒ dy

y3
= x2dx ⇒

∫
y−3 dy =

∫
x2 dx.

Taking the antiderivative of both sides give the general solution as −y−2/2 =
x3/3+ C. Now apply the given initial condition to compute C as

− 1

2 · (0.5)2
= 27

3
+ C ⇒ −2 = 9+ C ⇒ −11 = C.

The particular solution of the given initial value problem is therefore

− 1

2y2
= x3

3
− 11.

■

Question 4.8.5 Find the general solution of each separable first-order differential equation.

(a)
dy

dx
= x3y3 (b)

dy

dx
= (x2 + 1)(y3 + y)

■

Not all first-order linear differential equations have closed-form solutions. Try
finding a closed-form expression for the general solution to the separable first-order
equation dy/dx = e−x2

. The challenge presented by this fact only makes the study of
differential equations more interesting—there are many different approaches to finding
a solution, such as expressing the solution in the form of a power series, that are studied
in a course dedicated to differential equations. Because the equations arise in many
applied areas of mathematics and engineering, this study is not only interesting, it is
useful.

First-order differential equations can be used to model many different physical
and social phenomena, including the shape of hanging chains, the behavior of simple
electric circuits, the decay of radioactive substances, the growth of money under
various compounding schemes, and changing populations. The exercises at the end
of section explore some of these applications, and many textbooks on differential
equations describe these applications in great detail.
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At the same time, many physical and social phenomena are properly described
using higher-order equations. For example, the vibrations that occur in many physical
systems are modeled by second-order differential equations. Newton recognized that
a falling body is affected by gravity according to the second-order equation d2y/dt2 =
−g, where −g is the constant for gravitational acceleration, y is the body’s vertical
position, and t is time. In this setting, initial conditions are often expressed in terms
of the body’s initial position and initial velocity. When such an equation was solved,
it provided a deterministic view of the physical world, since the equation determined
the behavior of the object under study at any future time. The mathematics was seen
as predicting the future—so long as any physical action (such as the orbit of a planet
or a flight of a ball through the air) could be modeled in terms of a solvable differential
equation, the mathematical solution would determine how the action would play out
in any future time.

As mathematics has advanced into our present day understanding, the complexity
of the universe has been shown to produce highly unpredictable, chaotic behavior
of physical quantities, and the differential equations that model actions as simple
as water dripping to those as complicated as weather turn out to lead to inherently
chaotic solutions. Coupled with early twentieth century theory about physics on an
atomic scale—primarily Niels Bohr’s theory of quantum mechanics—this study of
chaos indicates that many real-world features do not work in a deterministic framework.
Instead they have chaotic properties that make future prediction—both on the micro
and macro scale—difficult or impossible.

But the classical mathematics of the eighteenth century is useful in many
controlled, nonchaotic settings. One such example is the motion of a clock pendulum.
The mathematical model for the motion of a pendulum can be traced back to
Galileo, who in the early 1600s first proved that the period of a pendulum’s
swing is independent of its amplitude. The Dutch mathematician Christian Huy-
gens is often credited with the construction of the pendulum clock, which he
described in a 1657 treatise titled Horologium. The Newtonian physics of the
1660s provided the right differential tools to mathematically model the motion of a
pendulum.

Example 4.8.6 We develop a mathematical model for the motion of a clock pendulum. Assume
the pendulum is swinging in a plane with a bob of mass m at the end of a pole
(having insignificant mass) of length L (see figure 4.25). Furthermore, suppose
the bob is drawn to one side so the pole makes an angle X with the vertical, and
then released.

At any given point in time, the pendulum bob is therefore positioned along
an arc at a distance D from the vertical, where the rod forms an angle x with the
vertical. The relationship between these distances is expressed by the equation
D = L · x.

The law of physics known as the principle of conservation of energy ensures
that the gain in kinetic energy attained by the pendulum moving along the arc is
equal to its loss in potential energy. In this case, the kinetic energy is 1

2 mv2, where
v is the velocity of the pendulum bob along the arc. The loss in potential energy
is −gm(L cos x − L cos X), where −g = −9.8 m/s2 is the gravitational constant.
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Figure 4.25 A clock pendulum with bob of mass m

The loss is calculated from the fact (which follows from unit circle analysis) that
L − L cos x is the vertical distance of the pendulum bob above its lowest possible
point.

Substituting D = Lx and v = dD/dt = L(dx/dt), the principle of conservation
of energy implies the following equalities.

mv2

2
= −gm[L cos x − L cos X]

1

2

[
L

dx

dt

]2

= −gL[cos x − cos X]

The last equality is thus a first-order, nonlinear differential equation that fully
describes the motion of the pendulum.

■

While any mathematician would feel pleased that a first-order differential equation
will model the motion of a pendulum, the equation’s nonlinearity makes the problem
difficult to solve. The only way to proceed toward a solution is to manipulate the
equation

1

2
L

[
dx

dt

]2

= −g[cos x − cos X],

transforming it into a linear second-order differential equation. Despite the increase in
order, such an equation is preferable since there exist well-known strategies for solving
linear second-order equations. In fact, mathematicians often adopt this approach when
working with nonlinear first-order equations. The next question outlines the steps
to obtain the desired linear second-order equation and introduces an approximation
technique that simplifies the resulting computations.
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Question 4.8.6 Continuing the study of pendulum motion from example 4.8.6, we examine the
nonlinear first-order differential equation

1

2
L

[
dx

dt

]2

= −g[cos x − cos X].

(a) Implicitly differentiate both sides of the equation

1

2
L

[
dx

dt

]2

= −g[cos x − cos X]

with respect to t to determine a second-order equation modeling pendulum
motion. Note that in this equation x is a function of t while L, g, and X are
constants. Simplify your result to obtain

L
d2x

dt2
= g sin x.

(b) When the angle x is small, sin x is approximately equal to x. Substituting x
for sin x in the linear second-order equation from part (a), demonstrate that
an approximate model for pendulum motion is provided by

d2x

dt2
− g

L
x = 0.

(c) Verify that for all C, D ∈ R, the following function is a solution of

d2x

dt2
− g

L
x = 0.

x = C sin

[√−g

L
t

]
+ D cos

[√−g

L
t

]
(d) When t = 0, both x = X and dx/dt = 0. Using these initial conditions and the

general solution from part (c), find an equation approximating the pendulum’s
position x at any time t.

■

Part (c) of question 4.8.6 asked you to verify a given general solution to the
differential equation. It is likely unclear where that solution came from, but there
exist standard techniques that solve linear second-order differential equations, and the
general solution given in part (c) comes from those techniques. These methods are
taught in any undergraduate course in differential equations; further details are left for
your later studies.

We finish this section by studying a type of second-order equation that has
become known as the Hermite differential equations. The nineteenth century French
mathematician Charles Hermite made extremely significant contributions in many
mathematical fields, even though as a young student he tested poorly and struggled
with low grades. In 1873 he gave the first proof that e is transcendental. His work also
included showing how to solve the general quintic polynomial using elliptic functions,
and he determined properties of an important class of matrices now called Hermitian.
The Hermite differential equations, a large class of equations that he investigated, turn
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out to have important applications in the study of physical processes called simple
harmonic oscillators. We turn our attention to these equations here.

As defined below, the Hermite equations take the form y′′ − 2xy′ + 2ny = 0, where
n is a nonnegative integer. These second-order differential equations play a key role
in articulating a mathematical model for quantum mechanics. In addition, the Hermite
equations will naturally lead us to discuss a central topic in advanced function theory—
namely, the construction of a “space of functions.” We will see that the equations give
rise to a solution set of polynomials called Hermite polynomials. We first define these
polynomials and then consider the corresponding Hermite differential equations.

Definition 4.8.4 For every nonnegative integer n= 0, 1, 2, . . ., the nth degree Hermite polynomial
is defined by

Hn(x) = (−1)n ex2 dn

dxn

[
e−x2

]
.

Despite having exponential functions in its formula, every Hermite polynomial
really is a polynomial; the nth derivative of e−x2

includes itself as a factor, which then
cancels with the formula’s term ex2

. The next example and question exhibit the first
few Hermite polynomials.

Example 4.8.7 We compute the 0th and 1st Hermite polynomials.
The 0th derivative of a function is the function itself. The 0th Hermite

polynomial is therefore a constant polynomial H0(x) = 1:

H0(x) = (−1)0 ex2 d0

dx0

[
e−x2

]
= 1 · ex2 · e−x2 = 1.

Similarly, a direct computation produces H1(x) = 2x:

H1(x) = (−1)1 ex2 d1

dx1

[
e−x2

]
= (−1) · ex2 · (−2x)e−x2 = 2x.

■

Question 4.8.7 Show that the 2nd, 3rd, and 4th Hermite polynomials are as follows:

H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, and H4(x) = 16x4 − 48x2 + 12.

■

You can see that the formula for computing the nth Hermite polynomials can be
applied at any finite value of n; the nth Hermite polynomial has degree n. The next
theorem states one of the Hermite polynomials’ more important features.

Theorem 4.8.3 For every nonnegative integer n = 0, 1, 2, . . ., the nth Hermite polynomial Hn(x)
is a solution of the nth Hermite differential equation y′′ − 2xy′ + 2ny = 0.

Acomplete proof of theorem 4.8.3 is left for your later studies, but the next example
and question verify a few special cases.

Example 4.8.8 We verify that the 2nd Hermite polynomial H2(x) = 4x2 − 2 is a solution of the
2nd Hermite differential equation y′′ − 2xy′ + 4y = 0.
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We first compute the first and second derivatives of H2(x) to obtain H ′2(x)= 8x
and H ′′2 (x) = 8. Substituting into the 2nd Hermite differential equation we have

y′′ − 2xy′ + 4y = 8− 2x · 8x + 4 · (4x2 − 2) = 8− 16x2 + 16x2 − 8 = 0.

■

Question 4.8.8 Verify that the 3rd Hermite polynomial H3(x) = 8x3 − 12x is a solution of the 3rd
Hermite differential equation y′′ − 2xy′ + 6y = 0.

■

The use of the article “a” in theorem 4.8.3 is important since the Hermite
polynomials Hn(x) are only one among many different solutions to the differential
equations y′′ − 2xy′ + 2ny = 0. For example, y = H0(x) = 1 is not the only solution
to y′′ − 2xy′ = 0; for all C, D ∈ R the following functions are also solutions:

y = C + D

⎡⎣x +
∞∑

j=1

(2)j(1)(3) · · · (2j − 1)

(2j + 1)! x2j+1

⎤⎦ .

Similarly, the other Hermite differential equations have infinitely many solutions,
but the Hermite polynomials are among the most important. First, they are the only
polynomial solutions. In addition, they also satisfy an important integration property
known as an orthogonality relation. In particular, when n 	= m are nonnegative integers,
then the following identity holds∫ ∞

−∞
Hm(x) · Hn(x) e−x2

dx = 0.

Question 4.8.9 Verify that H0(x) = 1 and H1(x) = 2x satisfy the orthogonality relation; that is,

produce a direct computation proving that
∫ ∞
−∞

H0(x) · H1(x) e−x2
dx = 0.

■

This orthogonality relation is intricately related to the set of all functions f for
which the following integral is finite:∫ ∞

−∞
| f (x)|2 e−x2

dx < ∞.

Such functions are said to belong to the “function space” denoted L2(−∞,∞).
A rigorous definition of L2(−∞,∞) requires the Lebesgue integral and is beyond
the scope of this text. However, it turns out that the Hermite polynomials are the
basic building blocks for functions in that space, in the sense that for every function
f (x) ∈ L2(−∞,∞), there exist Cn ∈ R such that

f (x) =
∞∑

n=0

CnHn(x).

Formally, the Hermite polynomials are said to form a “basis” for the function space
L2(−∞,∞). This fact is analogous to the identification of the ordered pairs x1 = (1, 0)
and x2 = (0, 1) as forming a basis for R2, since every ordered pair (a, b) ∈ R2 can
be represented as (a, b) = a(1, 0) + b(0, 1). Just as the space R2 of two-dimensional
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points has a basis {x1, x2}, so does the space L2(−∞,∞) (defined by the finiteness of
the above integral) have a basis consisting of the Hermite polynomials.

Since the early twentieth century, much important research in analysis has focused
on the study of function spaces. These sets of functions can possess a great deal of
inherent structure. The structure provides important insight into a function’s behavior,
as well as the relationship among these functions. For example, mathematicians speak
of the “size” of a function in the same way they speak of the size of a number, and they
refer to “angles between functions” in the same way they speak of “angles between
vectors.” In addition, there exist mathematical objects (known as “operators”) that map
functions to functions, in much the same way that functions map points to points. The
quest to learn more about operators and function spaces is at the heart of research in
function theory today.

4.8.1 Reading Questions for Section 4.8

1. Define and give an example of a differential equation.
2. Define the order of a differential equation and give examples of first-, second-,

and fifth- order differential equations.
3. Define what is meant by a linear differential equation and give examples of

first- and second- order linear differential equations.
4. Define the solution of a differential equation and give an example.
5. Explain the distinction between general and particular solutions of differential

equations.
6. State theorem 4.8.1. How is this result helpful when studying differential

equations?
7. Define and give an example of a separable differential equation.
8. State theorem 4.8.2. How is this result helpful when studying differential

equations?
9. State both a first-order differential equation and a second-order differential

equation modeling the motion of a pendulum.
10. Define the nth degree Hermite polynomial Hn(x) and list the polynomials

H1(x) and H2(x).
11. State theorem 4.8.3. How is this result helpful when studying differential

equations?
12. State the orthogonality relation that exists between distinct Hermite polyno-

mials.

4.8.2 Exercises for Section 4.8

In exercises 1–8, classify each differential equation based on order, linearity and
separability. Assume all derivatives are taken with respect to x.

1. y′ = 0
2. y′ + √1+ x y = 4
3. y′′ + y sin y′ = 2x
4. y′′ = 3ex cos y

5. x/y′ = 3y
6. y(3) + 2xy = ln x
7. sin y(23) + sin y′ = 0
8. y′ + y = 2
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In exercises 9–16, use direct integration to find the general solution of each differential
equation.

9. y′ = 0

10. xy′ + 2x2 − 1 = 0

11. y′′ + cos x = 2

12. y′ = 3(1+ x)−1

13. y′ − xe3x = 5x2 − 2

14. y′ = cos(2x) + sec(5x) tan(5x) −
x3

15. y′ = x cos x + ex sin x

16. y′′ + x = ex

In exercises 17–28, find the general solution of each linear or separable differential
equation.

17. y′ = 0

18. y′ + xy = 0

19. y′ = 4exy

20. y′ + xy + 2y2 = (x + 2)y2

21. y′ − 3
x y = 2x

22. y′ − 2xy = ex2

23. y′ = x2y3 − x(y3 + y)+ x2y

24. y′ + sin xy = 0

25. y′ − √x y = 0

26. y′ + y cos x = 0

27. y′ − 2xy = x

28. y′ + x2y = x2

In exercises 29–40, find the particular solution of each initial condition problem.

29. y′ − 2xy = x and y(1) = 2
30. y′ = cos(2πx)− x3 and y(1) = 3
31. y′ + xy = 0 and y(0) = 2

32. y′ + 2
x y = 3x and y(1) = 0

33. y′ − 2
x y = −x3 and y(2) = 4

34. y′ = 4e2xy and y(0) = 3

35. y′ = 5xy−1 and y(2) = 1

36. y′ = x(1+ y) and y(0) = 4

37. y′ + √1+ x2 = 0 and y(0) = 5

38. y′ + xy = 1+ x and y(1) = 0

39. 3x−1y′ = y cos x and y(0) = 1

40. cos y(1 + x2)y′ = −x sin y and
y(1) = π/2

Exercises 41–50 consider solutions of certain second-order linear differential equations
with constant coefficients. For a differential equation ay′′ + by′ + cy = 0, the solution
is determined by the zeros of the characteristic equation ar2 + br + c = 0 in the
following fashion (where C, D ∈ R are arbitrary constants).

Types of zeros of ar2 + br + c = 0 General solution of ay′′ + by′ + cy = 0

Real, distinct zeros p, q y = Ce px + De qx

Real, repeated zero p y = Ce px + Dxe px

Complex zeros p± qi y = Ce px cos(qx)+ De px sin(qx)

In exercises 41–50, find the general solution of each differential equation, or the
particular solution of each initial condition problem.

41. y′′ + 2y′ − 3y = 0

42. y′′ + 5y′ + 4y = 0

43. 4y′′ + 4y′ + 5y = 0

44. y′′ + y′ + y = 0

45. y′′ − 2y′ + y = 0

46. 9y′′ + 6y′ + y = 0

47. y′′ + 5y′ + 6y = 0, y′(0) = 3,

y(0) = 2

48. y′′ + 4y′ − 2y = 0, y′(0) = 2,

y(0) = 1
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49. y′′ + 2y′ + 4y = 0, y′(0) = 1,

y(0) = 1
50. y′′ + 4y′ + 4y = 0, y′(0) = 3,

y(0) = 2

In exercises 51–58, prove each mathematical statement about Hermite polynomials.

51. The 0th Hermite polynomial H0(x) = 1 is a solution of the 0th Hermite
differential equation y′′ − 2xy′ = 0.

52. The 1st Hermite polynomial H1(x) = 2x is a solution of the 1st Hermite
differential equation y′′ − 2xy′ + 2y = 0.

53. The 3rd Hermite polynomial H3(x) = 8x3 − 12x is a solution of the 3rd
Hermite differential equation y′′ − 2xy′ + 6y = 0.

54. The 4th Hermite polynomial H4(x) = 16x4 − 48x2 + 12 is a solution of the
4th Hermite differential equation y′′ − 2xy′ + 8y = 0.

55. The Hermite polynomials H0(x) = 1 and H2(x) = 4x2 − 2 satisfy the
orthogonality relation; that is, produce a direct computation proving that∫ ∞
−∞

H0(x) · H2(x) e−x2
dx = 0.

56. The Hermite polynomials H1(x) = 2x and H2(x) = 4x2 − 2 satisfy the
orthogonality relation; that is, produce a direct computation proving that∫ ∞
−∞

H1(x) · H2(x)e−x2
dx = 0.

57. The Hermite polynomial H0(x) = 1 is an element of L2(−∞,∞); that is,
prove that H0(x) satisfies the integral condition for membership:∫ ∞

−∞
|H0(x)|2e−x2

dx <∞.

Hint: Square this integral and convert to polar coordinates.
58. The Hermite polynomial H1(x) = 2x is an element of L2(−∞,∞); that is,

prove that H1(x) satisfies the integral condition for membership:∫ ∞
−∞
|H1(x)|2e−x2

dx < ∞.

Exercises 59–62 consider the Laguerre polynomials Ln(x) which are defined by

Ln(x) = ex dn

dxn
(xne−x).

These polynomials satisfy the Laguerre differential equation xy′′ + (1− x)y′ + λx = 0,
where λ ∈ R.

59. Compute the polynomial expression for the Laguerre polynomials L0(x) and
L1(x).

60. Compute the polynomial expression for the Laguerre polynomials L2(x) and
L3(x).

61. Prove the Laguerre polynomials L0(x) and L1(x) satisfy the orthogonality
relation ∫ ∞

0
L0(x) · L1(x) e−x dx = 0.

62. Prove that L1(x) satisfies the integral bound
∫ ∞

0
|L1(x)|2 e−x dx < ∞.
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Figure 4.26 The electric circuit for
exercise 65

I

L

R

E

Exercises 63–66 consider physical settings modeled by first-order differential equa-
tions. Verify the model identified for each setting.

63. Radioactive decay satisfies the differential equation dy/dt = ky, where y is
the amount of radioactive substance left at time t, and k is a constant of
proportionality. Prove that y = y0ekt , where y0 is the amount y of the substance
present at time t = 0.

64. The logistic model for population growth posits that the size of a population p
at time t is determined by the differential equation

dp/dt = kp(1− p

L
),

where k is a proportionality constant and L is the carrying capacity of the
local population. Using partial fractions, prove that in this setting we have

p = L

1+ be−kt
.

65. The flow of electricity around the electric circuit in figure 4.26 is governed
by the differential equation L(dI/dt) + RI = E, where t is time, L is the
constant inductance produced by the “inductor” in the circuit, I is the current,
R is the constant resistance to the current generated by the “resistor,” and E
is a constant force produced by the battery. Find the general solution to the
differential equation, expressing the current as a function of time.

66. Suppose that a hanging chain is modeled on the plane by the differential
equation y′′ = c

√
1+ y2, where c ∈ R is a constant with initial conditions

y′(0) = 0 and y(0) = c−1. Prove that the shape of the chain (known as a
catenary) is given by

y = 1

2c

(
ecx + e−cx) .

Exercises 67–70 apply the logistic model from exercise 64 to the population of
humans on the Earth. For these exercises assume the carrying capacity of the Earth is
approximately 10.76 billion.

67. If 2000 c.e. is taken as time t = 0 and the human population was approximately
5.96 billion, what is the value of b in this model?

68. Using the b from exercise 67, find the value of k in this model based on an
actual approximate population of 6.47 billion in 2005.
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69. Using the result from 67 and 68, predict the human population in the year
2020.

70. Using the result from 67 and 68, when does the human population reach the
assumed carrying capacity of the Earth?

Notes

Real analysis has been a major area of mathematical research and application for the past four
hundred years. In addition to the theoretical insights discussed in this chapter, the practical
applications of calculus (for example, in engineering, the physical sciences, and the social
sciences) have played a key role in the development of modern culture and civilization. Most
mathematics students are first exposed to real analysis in a sequence of calculus courses. Many
texts have been written to support the study of calculus at the basic undergraduate level, including
Larson et al. [149], Stewart [234], and Thomas et al. [239]. Two texts that grew out of a 1990’s
“reform” movement in teaching calculus are Hughes-Hallet et al. [121] and Ostebee and Zorn
[184]. An interesting text by Hahn [107] gives an historical perspective by discussing calculus
in the context of questions studied and answered by Archimedes, Galileo, Newton, Leibniz, and
others.

Arich and interesting theory supports the use of computational tools studied in initial calculus
courses. Standard real analysis texts used in advanced undergraduate courses include those by
Abbott [1], Goldberg [100], Kirkwood [140], and Rudin [202]. Standard graduate texts include
those by Lang [148] and Rudin [203]. These books discuss proofs of the theorems we have
studied in this chapter (including the Riemann–Lebesgue theorem) as well as many further
insights into analysis. The Lebesgue integral plays a central role in a more sophisticated study
of real analysis; it is described in texts by Goffman and Pedrick [101], Jones [133], and Royden
[199]. Another interesting introduction to the Lebesgue integral is given by Weir in [251]; his
novel approach allows for the computation of Lebesgue integrals with a minimal discussion of
measure theory.

The historical development of calculus is discussed in any comprehensive treatment of the
history of mathematics, including those by Boyer and Merzbach [28] and by Struik [235].
Studies focusing only on calculus include books by Boyer [27] and Dunham [62]. Two well-
written and insightful books on the Age of Enlightenment (whose analysis is historical instead
of mathematical) are by Will and Ariel Durant [66] and [67]. Part of a thorough eleven-volume
set entitled The story of civilization, these works analyze “the Great Debate between faith and
reason” (although many would agree that these two subjects are not mutually exclusive nor
contradictory). The volumes on the Age of Enlightenment include passages on the contributions
of Newton and Leibniz to mathematics as well as to science and philosophy; the authors clearly
respect the importance of mathematical and scientific contributions to the development of history.
One example of the detail the Durants offer is their description of Newton’s 1704 work Optiks,
where he listed 31 questions at the end of the book (reminiscent of Hilbert’s 23 important
unsolved problems offered in 1900). The Durants write, “Query I suggested prophetically: ‘Do
not bodies act upon light at a distance, and by their action bend its rays, and is not this action
strongest at the least distance?’And Query XXX: ‘Why may not Nature change bodies into light,
and light into bodies?’” Written 200 years before Einstein’s relativity theory introduced the fact
that space is curved (and gave the formula for the equivalence between light energy and matter
as E = mc2), Newton’s ability for conjecture and his instinctive understanding of the behavior
of light seem remarkable (from only just these two “queries”).



Chapter 4 ■ Real Analysis 361

Many biographical reflections have been written about the geniuses who have been credited
with the development of calculus. Christianson [40] and Westfall [255] are well-respected
biographers of Sir Isaac Newton; both authors have written other books on his life and work.
A translation of Newton’s seminal treatise Principia has been prepared by Cohen and Whitman
[180]. For a biography of Leibniz see Antognazza [7]. Thomson [240] is an excellent survey and
overview of Leibniz’s philosophical work. Scholars continue to study and discuss the priority
dispute that arose between Newton and Leibniz. An excellent overview of this controversy (and
others) is in Acid tongues and tranquil dreamers: Eight scientific rivalries that changed the
world by White [256]. A more detailed discussion focusing on the controversy between Newton
and Leibniz can be found in Equivalence and priority: Newton versus Leibniz by Meli [174].

A number of biographies have been written about René Descartes, including recent texts by
Aczel [2] and Clarke [41]. In addition, Boyer [26] describes the history of analytic geometry,
and Smith and Latham [58] is the definitive English translation of Descartes’s La géometrie.
For reflections on the life and work of Pierre de Fermat see Mahoney [163]; a similar book on
the contributions of Isaac Barrow has been edited by Feingold [80]. After Newton and Leibniz
proved the fundamental theorem of calculus, the most significant contributions to calculus were
made by Augustin-Louis Cauchy and Bernhard Riemann. Belhoste [14] describes Cauchy’s life;
Grabiner [102] traces the development of Cauchy’s rigorous treatment of calculus. In addition to
the texts discussing the Riemann hypothesis mentioned in the notes for chapter 3, biographical
works include Bernhard Riemann 1826–1866: Turning points in the conception of mathematics
by Laugwitz and Shenitzer [150].

Many books describe the study of infinity. Dauben [53] is a biography of Georg Cantor,
blending a description of his personal life with a detailed discussion of his professional
contributions to mathematics. The first chapter is an illuminating reflection on eighteenth century
analysis and the influences that led Cantor to explore the transfinite. Tiles [241] provides a
historical introduction to Cantorian set theory. Contemporary translations of important essays
by Georg Cantor [37] and by Richard Dedekind [56] are also available. A number of popular and
accessible accounts of humanity’s efforts to explore and understand infinity have been written by
Maor [169], Rucker [201], Vicenkin [245], and Wallace [248]. In addition, Smullyan [224] is a
fanciful and amusing discussion of the infinite. For a further discussion of Zeno’s paradoxes, see
Salmon [206]. A reference book that includes comments on countable vs. uncountable infinity
is Gullberg and Hilton [104]. Sainsbury [205] provides a general discussion of mathematical
paradoxes. Cantor’s work is the starting point for continuing mathematical research in set theory.
For an undergraduate text in set theory, see Halmos [108]; standard graduate level texts in set
theory include those by Jech [130]. and by Kunen [146]

Differential equations are described briefly in most calculus courses, and undergraduate
mathematics students typically study at least one course devoted to differential equations.
Excellent undergraduate introductions to this field include Blanchard et al. [19], Boyce and
DiPrima [25], Braun [29] Powers [189], and Simmons and Krantz [214]. In addition, Simmons
[213] includes notes on the historical development of differential equations. A standard graduate
text in this field is Walter [249]. While this chapter only briefly mentioned partial differential
equations, a great deal of interesting mathematics has been developed in studying the derivatives
of multivariate functions. Some popular introductions to this field include DuChateau and
Zachmann [61], Farlow [79], and Logan [160].



5 Probability and Statistics

Probability and statistics are distinct fields of mathematics and yet are naturally
intertwined with one another—sharing many common goals, questions, and techniques.
Roughly speaking, probability is the mathematics of chance that seeks to measure
the likelihood of an event occurring. Many people enjoy probability theory because
its simplest problems reflect our natural intuition about real-life experience. For
example, we expect a fair coin toss to show heads half the time, which matches the
corresponding calculation from probability theory.As probability theorists grapple with
more sophisticated questions, the required mathematics becomes more sophisticated
and advanced. In this way, probability theory is an intricate field of mathematics with
many surprises.

Probability theory draws on ideas from both discrete mathematics and real analysis
and uses them in creative and useful ways. For example, the probability model for a
coin toss is quite different from the probability model for the weight of a person; the
first situation has only two outcomes (heads and tails) and is studied using discrete
mathematics, while the second has a continuum of outcomes (since any weight greater
than zero is theoretically possible) and is studied using the theory of functions with a
positive domain. For even more sophisticated questions (such as the study of the price
of stocks or the movement of microscopic particles in fluid), the Lebesgue integral
may be required for a successful and productive analysis.

One important real-world application of probability theory is statistics. Roughly
speaking, statistics is the mathematics of analyzing real-world data with the objective of
identifying patterns, of better understanding the results, and of using inference to make
decisions. Mathematicians typically distinguish between descriptive statistics, which
focuses on the collection and organization of data, and inferential statistics, which
focuses on drawing conclusions and making decisions. Our study of statistics develops
inferential statistics. The mathematical procedure at the heart of basic statistical
analysis is known as “hypothesis testing” or as “Fisher’s procedure.” Hypothesis testing
enables us to interpret data (usually a sample of randomly collected numbers) in terms
of known or assumed probabilities (the mathematics at work in the background). The
procedure determines whether to reject or not reject a stated hypothesis based on an
associated probability. Hypothesis testing was first developed in the 1920s by the
British geneticist and mathematician Sir Ronald Fisher in terms of randomly collected
data resulting from well-designed experiments; this procedure is now a standard
method used in statistics.

362
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In many settings, the computation of probabilities depends on knowing the
number of objects in associated sets. We therefore first study combinatorics—the
mathematics of counting. The chapter then considers an application of combi-
natorics in Pascal’s triangle and the binomial theorem. These studies enable a
development of basic probability theory in which the probability of an outcome is
defined in terms of a mathematical formula. From this development we consider
two important applications of statistics: hypothesis testing and linear regression.
Hypothesis testing is a procedure for real-world decision-making. Linear regression is
a systematic process for identifying linear models of relationships between variables.
When a linear model is appropriate, linear regression determines the “best” such
model.

The study of probability and statistics is relatively new. Scattered ancient historical
sources reference probabilistic games. For example, the Christian Bible mentions
Roman centurions gambling for Jesus Christ’s garments during his crucifixion. The
first, rudimentary formulations of probability theory took place around 1650 in a
productive series of letters between the French mathematicians Blaise Pascal and Pierre
de Fermat. The advances in probability theory for continuous settings occurred for the
most part after the late 1800s. Statistics is mostly a twentieth-century-and-beyond sport,
and has grown significantly with continuing development and use of more sophisticated
computing devices. Probability and statistics both remain active areas of mathematical
study and research—we hope that this brief introduction will motivate you to pursue
further studies in these fields.

5.1 Combinatorics

In many settings, computing probabilities depends on knowing the number of objects
in (that is, the cardinality of) related sets. Therefore, we begin a study of probability and
statistics with combinatorics, or the mathematics of counting. We focus our attention
on developing mathematical formulas and algorithmic methods for determining the
number of elements in a given set or list, the two most common settings for counting
objects. For simple scenarios, we are often able to reason through the process of
identifying the variety of possible answers. However, for more complicated settings,
manually counting elements in sets and lists is at best tedious and often impractical.
Combinatorics provides efficient and elegant methods for determining the cardinality
of sets and lists quickly and precisely.

In diverse settings, computing the number of lists and the number of sets formed
from a given collection of objects plays an important role in the study of probability
and statistics—these computations inform decision-making processes in real-life
situations. Many important, real-life counting questions essentially boil down to finding
the number of ways to select k objects from a given set of size n, with particular attention
to two details:

• Is order relevant?
• Is repetition allowed?
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For example, order is important when considering the number of different starting
lineups of five players that a basketball coach can assign from a squad of 10 (playing
center is different from playing guard), but not important when real estate agent is
preparing to advertise 10 houses from a pool of 25 available for sale. Mathematicians
typically express settings in which order is important in terms of lists, and settings
in which order is not important in terms of sets. In addition, there are some settings
in which repetition is allowed and others in which it is not. When forming three-
letter words, letters may be repeated (for example, the word “BEE”); but if a set of
refrigerator magnets has only one of each letter of the alphabet, then we cannot repeat
letters. The following example and question consider further scenarios highlighting
these distinctions.

Example 5.1.1 We state whether order is important and repetition is allowed in each possible way
of selecting the executive committee of a student organization.

(a) The committee has offices that are designated, and a person can hold more
than one office.
Since the offices are named, order is important so as to differentiate between,
say, the president, vice-president, secretary, and treasurer. Since a person can
hold more than one office, repetition is allowed.

(b) The committee has offices that are designated, and the officers must be distinct.
As in (a), order is important, but now repetition is not allowed because a single
person cannot hold more than one office.

(c) The committee has offices that are equivalent to each other, and a person can
hold more than one position.
Since the offices are equivalent, order of elevation to them is not important—it
is a “set” rather than a “list” of officers. As in (a), repetition is allowed.

(d) The committee has offices that are equivalent to each other, and the officers
must be distinct.
In this case order is not important and repetition is not allowed.

■

Question 5.1.1 Determine if order is important and repetition is allowed when identifying
each object. In part (d), a “multiset” may contain elements that appear more
than once.

(a) Four-letter words
(b) Four-letter words with distinct letters
(c) Four-letter sets
(d) Four-letter multisets

■

We will become quite adept at determining if order is important and if repetitions
are allowed. The approach used to count objects is often determined by these
two factors; knowing if order is important and if repetitions are allowed precisely
identifies a consistent, algorithmic approach to counting the objects. You can see
that there are four distinct pairings: (ordered) lists with repetition; lists without
repetition; (unordered) sets with repetition (called “multisets”); and sets without
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repetition. We consider each of these combinations in turn, giving examples and
developing mathematical formulas that make possible the immediate combinatoric
solutions.

5.1.1 Lists with Repetition: The Multiplication Principle

An example of a simple action that is connected with probability might involve tossing
coins or rolling dice multiple times. In these settings the order in which the outcomes
occur is important, and repetitions are allowed—a (fair) coin tossed three times must
repeat either a head or a tail! In any setting where order is important and repetition is
allowed, we can count the number of objects having a given property by means of the
multiplication principle.

We first consider this principle from a set-theoretic point of view. Recall from
section 2.1 that the Cartesian product A × B is the set of all ordered pairs with first-
coordinate in A and second-coordinate in B; symbolically, A × B = {(a, b) : a ∈
A and b ∈ B}. The multiplication principle for sets expresses the Cartesian product
in terms of the cardinality of the component sets.

Theorem 5.1.1 Multiplication principle for sets If A and B are finite sets with A containing
m elements and B containing n elements, then the set A×B contains m ·n elements.

Proof For every fixed a ∈ A in the first coordinate of an ordered pair (a, b) ∈ A × B,
there exist exactly n elements b ∈ B that can be in the second coordinate. Since
there are m elements from A that can be in the first coordinate of an ordered pair
(a, b), there are m · n ordered pairs in the Cartesian product A× B.

■

In addition to considering the Cartesian product of a pair of sets, we might also
work generally with ordered n-tuples A1 × · · · × An = {(a1, . . . , an) : ai ∈ Ai for 1 ≤
i ≤ n}. The multiplication principle for sets extends in a natural way to these settings.
The size of A1 × · · · × An is the product of the (finite) sizes of the component sets;
more formally, if set Ai contains mi elements for i = 1 . . . n, then the set A1 × · · · × An

contains m1 · m2 · · ·mn elements.
Our interest in the multiplication principle is rooted in its application to

combinatorics and probability, in which we focus primarily on finite processes. By
properly interpreting this result in the context of step-by-step processes (rather than
just in terms of Cartesian products of sets), the multiplication principle becomes quite
useful and helps form the bedrock of a study of combinatorics. Consider the following
expression of the multiplication principle.

Theorem 5.1.2 Multiplication principle for a two-step process The number of outcomes from a
two-step process is m · n, when:

• The number of outcomes from Step 1 is m; and
• No matter what outcome results from Step 1, the number of outcomes from

Step 2 is n.

Example 5.1.2 We compute the total number of outcomes that can result from rolling two
six-sided dice.
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Viewed from the perspective of the multiplication principle, we can think of this
activity as a two-step process, where Step 1 is the roll of the first die and Step 2
is the roll of the second. Observe that there are m = 6 possible outcomes from
rolling the first die for Step 1 and also n = 6 possible outcomes from rolling the
second die for Step 2 (no matter what is rolled on the first die). Therefore, by the
multiplication principle, the total number of two-dice rolls is 6 · 6 = 36.

■

Question 5.1.2 Using the multiplication principle, determine the total number of outcomes that
can result from each activity.

(a) Tossing a coin two times.
(b) Rolling one die and tossing one coin.

■

The multiplication principle extends to step-by-step processes with any (finite)
number of steps. For example, we may want to count the number of outcomes from
tossing a coin three, four, or five times, or the number of outcomes from rolling two dice
and tossing two coins (these examples are simplistic, but they form good illustrations
at an introductory level). In such settings, we use the multiplication principle for a
multistep process as stated below.

Theorem 5.1.3 Multiplication principle for a multistep process The total number of outcomes
from a multistep process is the product of the number of outcomes from each
step, provided that the number of outcomes in any one step is the same no matter
what outcomes resulted in the previous steps.

Proof The set of outcomes from an n-step process can be identified as a set of ordered
n-tuples. Therefore, the total number of outcomes from the process is the same as
the number of n-tuples in the corresponding set; according to the multiplication
principle for sets, this number is the product of the number of outcomes from
each step.

■

We often refer to the multiplication principle for multistep processes as simply
the multiplication principle. When forming a list of size k from a set of n objects with
repetition allowed, the multiplication principle indicates the total number of such lists
is nk . Consider the following example and question.

Example 5.1.3 We apply the multiplication principle to determine the total number of outcomes
that can result from each activity.

• If a coin is tossed 10 times, the total number of possible outcomes is 210.
• When rolling two dice and tossing two coins, the total number of possible

outcomes is 6 · 6 · 2 · 2 = 144.
• A 12-question multiple-choice test with four possible answers to each question

(only one of which is correct) has 412 different solutions that can be turned in
by students.

■
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Question 5.1.3 Using the multiplication principle, compute the total number of outcomes that can
result from each activity.

(a) A student organization with 20 members elects a three-member executive
committee with offices that are designated, allowing a person to hold more
than one office.

(b) A child lists all (possible) five-letter words.
■

5.1.2 Lists without Repetition: Permutations

When applying probability theory to model reality, mathematicians also need to be
able to handle situations that involve lists without repetition. For example, most
organizations only allow officers to hold one office—in the United States Government,
the President and Vice-President must be different people. Similarly, batting orders,
starting line-ups, the order of finish for a collection of racers, as well as some
words and puzzles (such as Sudoku) can be interpreted as lists without repetition.
Formally, mathematicians refer to such lists without repetition as permutations; these
mathematical objects play important roles in the study of group theory, Galois theory,
and graph theory. They are also important in combinatorics and probability theory.

Combinatorics is interested in determining the number of distinct permutations
of a given set of n objects that have some prespecified length k. Sometimes n = k
(when every object available in the given set is listed), but we will also want to count
situations with k < n (when listing a proper subset of the objects available). We consider
examples of permutations and then develop a formula for counting them.

Example 5.1.4 We determine the number of permutations of letters by manually listing every
permutation with the specified features.

• Form three-letter words without repeated letters using A, B, and G.
Using each letter in the collection exactly once, the six possible words are:ABG,
AGB, BAG, BGA, GAB, and GBA. These six lists are distinct; everyone knows
that BAG is not the same as GAB (one holds groceries while the other describes
trivial chatter).

• Form three-letter words without repeated letters using A, B, G, and N.
In this setting, there are many more possibilities; the following list describes the
24 distinct permutations satisfying this criteria.

ABG, AGB, BAG, BGA, GAB, GBA, ABN, ANB, BAN, BNA, NAB, NBA,
ANG, AGN, NAG, NGA, GAN, GNA, NBG, NGB, BNG, BGN, GNB, GBN.

■

Question 5.1.4 State the number of permutations of each type by manually listing every
permutation with the given features.

(a) Form two-letter words without repeated letters using T and O.
(b) Form two-letter words with repeated letters using T and O (these are not

permutations).
(c) Form two-letter words without repeated letters using T, O, and P.

■
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In general, we consider the number of lists without repetition of length k that can
be formed from a collection of n objects; we use the notation P(n, k) to denote the
number of such permutations. Here order is important, and repetition is not allowed.
In example 5.1.4, we found that n = 3 and k = 3 produce P(3, 3) = 6 permutations;
similarly, n = 4 and k = 3 produce P(4, 3) = 24 permutations. As may be apparent,
the total number of permutations quickly becomes quite large for even relatively small
increases in the values of n and k. For example, when n = 15 and k = 7, there exist
P(15, 7) = 32, 432, 400 permutations! Even in this relatively simple setting, writing
out every permutation is clearly impractical. Instead, we find a general formula that
counts permutations for any nonnegative integers n and k (with k ≤ n).

The formula is written in terms of factorials. Recall that if n ∈ N, then n! =
n · (n − 1) · · · 2 · 1 is the product of the positive integers less than or equal to n. For
example, 3! = 3 ·2 ·1 = 6 and 5! = 5 ·4 ·3 ·2 ·1 = 120. By convention mathematicians
define 0! = 1. The next theorem states the formula for the number of permutations.

Theorem 5.1.4 If n and k are nonnegative integers with k ≤ n, then the number of permutations
of length k that can be created from a given set of n objects is

P(n, k) = n!
(n− k)! .

Proof This result follows from an application of the multiplication principle. The process
of creating a list of length k can be envisioned as a k-step process, where the first
step fills in the first position in the list, the second step fills in the second position,
and so on.

We now consider the number of objects available at each step in this process.
For the first step, n different objects may be chosen. For the second step, the object
chosen in the first step cannot be used again; only (n− 1) objects are thus available
(no matter what object is chosen in the first step). Continuing in this fashion, (n−2)
objects are available in the third step, (n− 3) in the fourth step, and so on. By the
multiplication principle, there exist P(n, k) = n · (n− 1) · (n− 2) · · · [n− (k− 1)]
distinct permutations of length k that can be created from a given set of n objects.

The final form of the solution (as given in the statement of this theorem) is
obtained from algebra:

P(n,k)=n ·(n−1)·(n−2)···[n−(k−1)]

=n ·(n−1)·(n−2)···[n−(k−1)]· (n−k)·[n−(k+1)]···2·1
(n−k)·[n−(k+1)]···2·1=

n!
(n−k)! .

■

Example 5.1.5 We apply the formula for P(n, k) to the lists in example 5.1.4.

• From example 5.1.4, there are six three-letter words without repeated letters that
can be formed using A, B, and G.
We use the formula from theorem 5.1.4 to obtain the corresponding number of
permutations of length k = 3.

P(3, 3) = 3!
(3− 3)! =

3!
0! =

6

1
= 6.
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• From example 5.1.4, there are 24 three-letter words without repeated letters that
can be formed using A, B, G, and N.
Using the formula from theorem 5.1.4,

P(4, 3) = 4!
(4− 3)! =

4!
1! =

24

1
= 24.

• Using the formula from theorem 5.1.4, we verify the earlier assertion that

P(15, 7) = 15!
(15− 7)! =

15!
8! =

1307674368000

40320
= 32, 432, 400.

■

Question 5.1.5 Using theorem 5.1.4, compute the value of each expression.

(a) P(5, 1)
(b) P(5, 3)

(c) P(15, 1)
(d) P(15, 3)

■

Example 5.1.6 We use theorem 5.1.4 to determine the number of starting line-ups for a basketball
team with 10 women on the roster.

In basketball, the five starting positions are point guard, shooting guard, small
forward, large forward, and center. Since there are n = 10 players available for the
permutation of k = 5 players, there are P(10, 5) distinct starting line-ups. From
theorem 5.1.4, we have

P(10, 5) = 10!
(10− 5)! =

10!
5! =

10 · 9 · · · 1
5 · 4 · · · 1 = 10 · 9 · 8 · 7 · 6 = 30,240.

■

Question 5.1.6 Using theorem 5.1.4, compute the total number of possible outcomes from each
activity.

(a) A student organization with 20 members elects a three-member executive
committee with named offices that must be held by different people.

(b) A child lists all (possible) five-letter words without repetition.
■

5.1.3 Sets without Repetition: Combinations

In many situations, the order in which objects are selected does not matter; instead, the
important feature is simply the choice of which elements to include. For example, study
groups, committees of equals, the players who make a sports team, and the “Choose
Three Special” at your favorite restaurant, are just a few of the many scenarios in
which the order of selection is not important. For those familiar with betting on horse
races, the “unboxed trifecta” is another classic example; the bet is won by correctly
identifying the collection of three horses that will win, place, or show, without needing
to specify which horse will place in what position.
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In these situations we are counting the number of sets that can be formed, rather
than the number of lists that can be formed. This focus on sets implies that repetition
is not allowed, since sets do not consider repeated elements; that is, we identify
{A, A} as {A}. Formally, mathematicians refer to such sets as combinations; they
play important roles in many areas of mathematics, especially in combinatorics and
probability theory.

Combinatorics is interested in determining the number of combinations (or groups)
formed from a collection of n objects. Sometimes n = k (where every object available
is included in the given set), but we will also want to count situations with k < n
(when forming a proper subset of the objects available). We consider examples
of combinations in the context of sets of letters and then develop a formula for
counting them.

Example 5.1.7 We determine the number of combinations of letters by writing out every set with
the given features.

• Three-letter sets that can be formed using A, B, G, and N.
The four possible sets satisfying these conditions are {A, B, G}; {A, B, N};
{A, G, N}; and {B, G, N}.

• Three letter sets that can be formed using A, B, G, N, and P.
The 10 distinct combinations satisfying this criteria are

{A, B, G}, {A, B, N}, {A, B, P}, {A, G, N}, {A, G, P},
{A, N, P}, {B, G, N}, {B, G, P}, {B, N, P}, {G, N, P}.

■

Question 5.1.7 State the number of combinations of each type by writing out every combination
with the given features.

(a) Two-letter sets formed using T, O, and P.
(b) Three-letter sets formed using T, O, and P.

■

We find a general formula for the number of sets of size k that can be formed
from a collection of n objects; we use the notation C(n, k) to denote the number
of such combinations. In example 5.1.7, we found that n = 4 and k = 3 produce
C(4, 3) = 4 combinations; similarly, n = 5 and k = 4 produce C(5, 4) = 5. As
with permutations, the total number of combinations quickly becomes quite large
for even relatively small increases in the value of n and k. For example, n = 35
and k = 7 produce C(35, 7) = 6,724,520 combinations! Even in this relatively
simple setting, writing out every combination is impractical. Instead, we identify
a general formula that counts combinations for any nonnegative integers n and k
(with k ≤ n).

Theorem 5.1.5 If n and k are nonnegative integers with k ≤ n, then the number of combinations
(or sets) of size k that can be formed from a given set of n objects is

C(n, k) =
(

n
k

)
= n!

k! · (n− k)! .
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The notation

(
n
k

)
, which is read as “n choose k” is also commonly used for

C(n, k).

Proof The proof uses the formula for the number of permutations from theorem 5.1.4,
and then divides by k! to factor out the permutations’ attention to order (because
combinations do not take order into account when forming sets). For each set of
size k, there exist k! different lists of length k of the elements in the set.

Think of forming a set as a two-step process, where the first step is to
select k elements from the n available (there are C(n, k) ways of choosing these
k elements), and the second step is to arrange those k elements in a listed order
(there are k! ways to do this step). The multiplication principle then implies
P(n, k) = C(n, k) · k!. Solving for C(n, k) and applying theorem 5.1.4,

C(n, k) = P(n, k)

k! = n!
(n− k)! ·

1

k! =
n!

k! · (n− k)! .
■

Various notations are useful to denote the number of combinations of size k selected
from n objects. We primarily use the notation C(n, k) introduced in theorem 5.1.5.
Equivalent notations are Cn,k and Cn

k . The “n choose k” notation(
n
k

)
is widely used in undergraduate and graduate mathematical studies; this symbolism
was first introduced by the German mathematician Andreas von Ettinghausen in 1826.

Example 5.1.8 We apply the formula for C(n, k) to the combinations in example 5.1.7.

• From example 5.1.7, there are four three-letter sets that can be formed using
A, B, G, N.
Using the formula from theorem 5.1.5,

C(4, 3) = 4!
3! · (4− 3)! =

4!
3! · 1! =

24

6
= 4.

• From example 5.1.7, there are 10 three-letter sets that can be formed using
A, B, G, N, P.
Using the formula from theorem 5.1.5,

C(5, 3) = 5!
3! · (5− 3)! =

5!
3! · 2! =

120

6 · 2 = 10.

• Using the formula from theorem 5.1.5 and cancelling algebraically, we verify
the earlier calculation of C(35, 7):

C(35, 7) = 35!
7! · (35− 7)! =

35!
7! · 28! =

35 · 34 · 33 · 32 · 31 · 30 · 29

7!
= 35 · 34 · 33 · 32 · 31 · 30 · 29

7 · 6 · 5 · 4 · 3 · 2 · 1 .

Eliminating like factors, C(35, 7) = 5 · 17 · 11 · 8 · 31 · 29 = 6,724,520.

■
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Question 5.1.8 Using theorem 5.1.5, compute the value of each expression.

(a) C(5, 1)
(b) C(5, 3)

(c) C(15, 1)
(d) C(15, 3)

■

Example 5.1.9 We use theorem 5.1.5 to determine the number of rosters available for a basketball
squad of seven players when 12 women try out for the team. The number of
different groups of women that could be used to form the team is a combination;
a player wouldn’t care about the order of selection, only that she was selected. In
this case, we have n = 12 women trying out for k = 7 slots on the roster; from
theorem 5.1.5, there are C(12, 7) = 792 rosters as computed by

C(12, 7) = 12!
7!(12− 7)! =

479001600

5040 · 120
= 792.

■

Question 5.1.9 Using theorem 5.1.5, compute the total number of possible outcomes from each
activity.

(a) A student organization with 20 members elects a three-member executive
committee of equals that must be held by different people.

(b) A child lists all (possible) five-letter sets without repeating a letter.
■

5.1.4 Sets with Repetition

Finally, we consider the case in which we identify unordered collections of objects and
allow repetition of elements in the collection. For example, a student organization may
have an executive committee for which the same person may hold multiple positions;
the collection of winners of the World Series and/or the Super Bowl might be presented
with repeated team names in recognition of multiple national titles; or a mathematical
model of stockholders in a company might incorporate a collection with repeated
presentations of shareholders corresponding to the number of stocks owned by that
individual. A simple model for such a setting is a game played with colored balls and
a bag. The balls are drawn from the bag one at a time, their color noted, and then they
are returned to the bag before the next draw—the results of the game are presented as
a collection of colors with repetition allowed in light of returning each drawn ball to
the bag before the next draw.

All of these settings involve sets of objects with repetition. As mentioned
above, sets are defined so as to not allow repeated elements, but, as suggested here,
mathematicians sometimes work with collections of objects and allow for repetitions
in these collections. Formally, these mathematical objects are referred to as multisets.
Combinatorics can determine the number of distinct multisets of size k formed
from a given collection of n objects. This number turns out to be the combination
C(n+ k − 1, k).
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Example

5.1.10

We determine the number of two element multisets that can be formed using
the letters A, B, and G. Here n = 3 and k = 2, and so the total number of such
multisets is

C(3+ 2− 1, 2) = C(4, 2) = 4!
2! · (4− 2)! =

4!
2! · 2! =

24

4
= 6.

Alternatively, we can write out these six multisets.

{A,A}, {A,B}, {A,G}, {B,B}, {B,G}, {G,G}.
■

Question

5.1.10

Using the formula C(n+ k−1, k), compute the total number of possible outcomes
from each activity.

(a) A student organization with 20 members elects a three-member executive
committee of equals for which a person can hold more than one position.

(b) A child lists all (possible) four-letter multisets.
■

In summary, the following mathematical objects provide structure for a basic
combinatoric study.

Definition

5.1.1

A permutation is a finite ordered list without any repetitions. A combination is
a finite set. A multiset is a finite collection of elements that may have repeated
elements.

In addition, the following formulas determine the number of objects that satisfy the
corresponding conditions.

Ordered list Unordered set

Repetition nk C(n+ k − 1, k)

No repetition P(n, k) C(n, k)

The next several examples show how the multiplication principle, together with the
formulas for combinations and permutations, can effectively count very complicated
numbers of outcomes in various settings. We begin with a simple example that uses
only the multiplication principle, and then combine the multiplication principle with
the results of theorems 5.1.4 and 5.1.5 to handle more complicated situations.

Example

5.1.11

We use the multiplication principle to answer the question: In how many ways
could a student answer a ten-question multiple choice test, if each question has
four possible answers? We apply the multiplication principle by envisioning the
test as a ten-step process, with the first step answering question one, the second
step answering question two, and so on. Because there are four possible answers
for each question, there are four possible outcomes in each step. Applying the
multiplication principle, there are 410 = 1,048,576 possible ways to complete
the test.

■
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Example

5.1.12

In preparation for taking some pictures on vacation, a shopper selects two packs
of film from a bin of 100 packs and three packs of batteries from a display of
40 packs. We determine how many distinct combinations of film and battery
packages she could choose by viewing the selection as a two-step procedure:
first, choose two packs of film; second, choose three battery packs. In both steps
the order of selection is not important (we are simply choosing sets of film
packs and battery packs) and repetition is not allowed (once a pack is selected
it cannot be reselected); that is, we are interested in the number of combinations
at each step. Applying theorem 5.1.5, there are C(100, 2) = 4,950 possible
choices for film and C(40, 3) = 9,880 possible choices for batteries. Applying
the multiplication principle, the total number of different selections is the product
C(100, 2) · C(40, 3) = 48,906,000.

■

Example

5.1.13

A Midwest state charges $2.00 to play the game LottoFun, where a LottoFun
ticketholder chooses five distinct numbers between one and 50, and wins if five,
four, or three of the chosen numbers match the seven distinct numbers randomly
drawn in the state’s LottoFun draw. We use combinatorics to determine how many
possible ways there are for a player to win. In analyzing this problem, the key is
to recognize that a player can win in three different ways, and so there are three
corresponding nonoverlapping cases that must be considered.

• Case I: Match five of the seven numbers drawn;
• Case II: Match four of the seven; and
• Case III: Match three of the seven.

Case I is the easiest to analyze—we determine how many ways a person can
choose five out of seven numbers. In this case, order is irrelevant and repetition is
not allowed, so there are C(7, 5) = 21 possibilities of winning in this way.

The other two cases are handled using the multiplication principle. For Case II,
view matching four of the five chosen numbers as a two-step process. In the first
step, choose four of the seven numbers drawn (to form a match); in the second
step, choose one of the 50 − 7 = 43 numbers not drawn (to complete the entire
selection of five numbers by the player). Both steps form combinations, since
order is not important and repetition is not allowed. The first step has C(7, 4) = 35
possible outcomes and the second step C(43, 1) = 43. Applying the multiplication
principle, there are 35 · 43 = 1, 505 ways to match four of the seven numbers.

Case III is similar to Case II; view matching three of the five numbers as a
two-step process. For the first step, choose three of the seven numbers drawn (to
form a match), which can be done in C(7, 3) = 35 different ways. For the second
step, choose two of the 43 numbers not drawn (to complete the selection of five
numbers by the player), which can be done in C(43, 2) = 903 ways. Applying the
multiplication principle, there are 35 · 903 = 31,605 ways to match three of the
seven numbers drawn.

The total number of ways to win is the sum of the possible ways to win from
the three nonoverlapping cases: 21+ 1,505+ 31,605 = 33,131.

■
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Example

5.1.14

A student is writing two term papers, both of which require five footnotes. Each
footnote must refer to a distinct book selected from the school library; the library
has 10 books on the first paper’s topic and eight (other) books on the second. In
light of this information, we determine the number of ways that the student can
present the footnotes in these two papers.

We use combinatorics to analyze this situation. In this case, order does matter;
a different organization of footnotes would result in a different presentation
of the topic at hand (and so a different paper). In addition, repetition is not
allowed because all 10 footnotes must refer to distinct texts. Thus, we can count
permutations when finding the number of different presentations of footnotes.

Listing the footnotes is a two-step process. The first step lists k = 5 of the
n= 10 relevant books available in the library; there are P(10, 5)= 30,240 possible
outcomes for this step. The second step lists k = 5 of the n = 8 books; there
are P(8, 5) = 6,720 possible outcomes for this step. Applying the multiplication
principle, the total number of ways the student can present the footnotes is
P(10, 5) · P(8, 5) = 30,240 · 6,720 = 203,212,800.

■

Without the benefit of combinatorics, it would have been nearly impossible to come
up with the results in these last four examples—writing out every possible outcome is
simply too large a task. These examples illustrate the power and scope of combinatorics,
as broad classes of questions are managed by a handful of formulas. To conclude this
section with a bit of practice using some of these formulas, the next question gives you
the opportunity to imitate the techniques discussed in the preceding examples.

Question

5.1.11

Using the results and techniques presented in this section, compute the total number
of possible outcomes from each activity.

(a) In how many ways can someone making a purchase form 73 cents, given that
her purse holds 12 quarters, three dimes, and eight pennies, where all coins
are distinguishable?

(b) A player immediately wins the casino game Blackjack if they are dealt an Ace
and any other card worth 10 points. If Kings, Queens, Jacks, and tens are each
worth 10 points, find the number of ways a player can win Blackjack on a
two-card deal.

(c) A Northeastern state charges $1.00 for the game LottoNewEngland, where
a LottoNewEngland player chooses four numbers between one and 25, and
wins if one, two, three, or four of the chosen numbers match the five numbers
randomly chosen in the state’s LottoNewEngland draw. How many possible
ways can a player win?

(d) A governmental agency decides to select randomly four corporations for
review. The agency decides to interview the top four officers in the first
company selected, three of the top four officers in the second company
selected, two of the top four officers in the third, and one of the top four
officers in the fourth. In how many ways can the agency conduct the review
process if 12 corporations are candidates for review?

■
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5.1.5 Reading Questions for Section 5.1

1. State the two key questions that are considered when analyzing a counting
question from the perspective of combinatorics.

2. State the multiplication principle for a multistep process.
3. What types of counting questions are answered using the multiplication

principle?
4. Define and give an example of a permutation.
5. What does the mathematical symbol P(n, k) represent?
6. Define n! and compute the value of 1!, 3!, and 5!.
7. What is a mathematical formula for calculating P(n, k), where n, k ∈ N with

n ≥ k?
8. Define and give an example of a combination.
9. What does the mathematical symbol C(n, k) = represent?

10. What is a mathematical formula for calculating C(n, k), where n, k ∈ N with
n ≥ k?

11. Define and give an example of a multiset.
12. What formula do we use to compute the number of ways to form a multiset

of k objects from a collection of n objects?

5.1.6 Exercises for Section 5.1

In exercises 1–12, compute the value of each expression without using a calculator.

1. P(6, 2)

2. P(5, 4)

3. C(12, 3)

4. C(7, 5)

5. C(10, 1)

6. C(1,300, 1)

7. C(8, 5) · P(5, 4)

8. C(10, 2) · C(8, 2)

9. C(10, 3)+ C(10, 2)

10. C(n, 1) for n ∈ N

11. P(n, 1) for n ∈ N

12. C(n, k) · P(k, k − 1) for k ≥ 1

In exercises 13–20, assume you are given the letters a, b, c, d and compute the total
number of possible outcomes from forming each type of object. In answering this
question, state whether order is important and whether repetition is allowed.

13. Three-letter words.
14. Three-letter words with distinct

letters.
15. Three-letter sets.
16. Three-letter multisets.

17. Six-letter words.
18. Six-letter words with distinct

letters.
19. Six-letter sets.
20. Six-letter multisets.

In exercises 21–39, answer each question using the results of this section. Explicitly
state the role of order and repetition in your analysis of each situation.

21. How many lists of length nine can be formed from a set of 15 names?
22. How many different groups of size nine can be formed from a set of 15 names?
23. How many subsets of size six can be formed from the set {A, B, C, D, E,

F, G, H, I, J}?
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24. How many subsets of size nine can be formed from the set {A, B, C, D, E,
F, G, H, I, J}? List every subset.

25. In how many ways can a mathematician arrange 12 objects in a list of
size 12?

26. If order matters, how many ways can 13 objects be placed in an inventory of
size 10?

27. If order doesn’t matter, how many ways can 20 objects be placed in a catalog
of size 12?

28. A mathematician counts the number of ways to complete a two-step process,
where the first step arranges 10 names, chosen from a slate of 12, in a directory,
and the second step chooses eight objects from a collection of 11. How many
different outcomes are possible from this two-step procedure?

29. A three-step process consists of choosing five objects from a collection of
11, then listing 10 objects in an inventory, and finally arranging eight objects
selected from 15 in a record. How many different ways can this three-step
process be completed?

30. An airline with a hub in Chicago has five flights each morning from New York
to Chicago and seven flights each afternoon and evening from Chicago
to Dallas. Assuming any of the morning choices serve well as connecting
flights for the afternoon alternatives, how many options are available to a
traveler flying on the airline from New York to Dallas and eating lunch in
Chicago?

31. A menu has six appetizers, five salad and soup options, 12 entrées, eight
desserts, and nine beverage choices. How many different options are
there for a customer who chooses one item from each of these food
groups?

32. Suppose the customer looking at the menu described in the last exercise
considers the possibility of not selecting from one or more of the food
groups: if this patron decides to choose one item from at least three of
the food groups (but not necessarily from all), how many options are
available?

33. In how many ways can a vegetarian customer select a lunch of three distinct
menu items, when the menu lists the following vegetables: salad, beans, peas,
corn, potatoes, okra, spinach, and beets?

34. In a single elimination tournament, a team is eliminated if it loses one game
(played between two teams). If the tournament starts with 16 teams, how
many games must be played before the champion is declared? What about a
tournament with 1,024 teams? What about with n teams, where n is of the
form 2k?

35. Whenever a game is played between two teams, there are two possible
outcomes. After preliminary rounds, the NCAA basketball tournament starts
with 64 teams. How many ways can a person fill out this tournament’s brackets
with winning teams? Hint: Use the result from exercise 34.

36. A conference organizer is to divide 120 participants into two rooms, each
seating 60 people. In how many ways can he organize the participants into
two groups?
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37. A biologist plans to cross-pollinate two pea plants, selected from a crop of
five different plants. In how many ways can she organize this pairing?

38. A poker player is dealt five cards from a 52-card deck. How many different
poker hands can result? How many dealt hands result with the player receiving
four cards that have the rank of Ace? How many result with the player
receiving four cards of any single rank (this type of hand is called four of
a kind)?

39. Which occurs more often in a deal of five poker cards—four of a kind or
a straight flush (including a royal flush and where Aces are high or low)?
A straight flush results when the five cards dealt are all in the same suit
(spades, hearts, diamonds, or clubs), and are in adjacent rank order, such as
nine, ten, Jack, Queen, and King. See the last exercise for interpretation of
“four of a kind.”

In exercises 40–49, suppose a jar contains 60 colored balls, with 40 green balls and
20 red balls, and we select three balls from the jar. In this setting, compute the total
number of possible outcomes of each type, assuming that each ball is distinguishable
from the others.

40. Total possible outcomes, if we do not replace balls.
41. Total possible outcomes, if we do replace balls.
42. An outcome with only green balls, if we do not replace balls.
43. An outcome with only green balls, if we do replace balls.
44. An outcome with two green balls and one red ball, if we do not replace balls.
45. An outcome with two green balls and one red ball, if we do replace balls.
46. An outcome with at least two green balls, if we do not replace balls.
47. An outcome with at least two green balls, if we do replace balls.
48. An outcome with a green ball chosen first, if we do not replace balls.
49. An outcome with a green ball chosen first, if we do replace balls.

In exercises 50–52, prove each mathematical statement about circular permutations;
that is, ordered arrangements of objects in a circle.

50. There are two distinct ways that three people can seat themselves around a
circular table. Hint: Draw a representation of each seating.

51. There are six distinct ways that four people can seat themselves around a
circular table.

52. There are (n − 1)! distinct ways to arrange n objects in a circle. Hint: Begin
by placing one object anywhere in the circle, and then arrange the other
objects.

Exercises 53–59 apply the pigeonhole principle, which asserts that if n “pigeons”
reside in n − 1 “pigeonholes,” then at least one pigeonhole holds more than one
pigeon.
In exercises 53–59, prove each mathematical statement using the pigeonhole principle.

53. A dresser drawer contains four pairs of socks. The owner must remove at
least five socks to guarantee that at least two of them match to form a
pair. Why?
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54. Suppose a dresser drawer contains m pairs of socks. The owner must remove
at least m + 1 individual socks to guarantee that at least two of the socks
match to form a pair. In your analysis, what objects did you identify as the
pigeons? The pigeonholes?

55. Whenever eight women and 10 men are seated facing an audience, at least
two men must sit next to each other.

56. A person needs to choose at least four numbers from the set {1, 2, 3, 4, 5}
to ensure that at least two of the values add to six.
Hint: Think of the subsets {1, 5}, {2, 4}, and {3} as pigeonholes.

57. If n is odd, then at least (n + 1)/2+ 1 numbers must be chosen from the set
{1, 2, 3, . . ., n} to ensure that at least two of the values add to n+ 1.

58. A person needs to choose at least four numbers from the set {1, 2, 3, 4, 5}
to ensure that at least two of the values have a difference of three.

59. If graduation requirements at a college mandate a student earn credit in seven
courses from five disciplines of study, selecting at least one course from each
discipline, then there must be at least one discipline from which the student
takes at least two courses.

In exercises 60–65, prove each mathematical statement using the formulas for
permutations and combinations given in theorems 5.1.4 and 5.1.5.

60. For every n ∈ N, P(n, 1) = n.
61. For every n ∈ N, C(n, 0) = 1.
62. For all nonnegative integers n and k with k ≤ n, C(n, k) = C(n, n− k).
63. For all nonnegative integers n and k with k ≤ n, C(n, k) + C(n, k − 1) =

C(n+ 1, k).
64. For all nonnegative integers n, j, k with j ≤ n − k, P(n, k) · P(n − k, j) =

P(n, k + j).
65. Suppose n distinct objects are being placed into three different boxes, with n1

in the first box, n2 in the second, and n3 in the third, where n1+n2+n3 = n and
each ni is a nonnegative integer. The number of different ways to accomplish
this partitioning of the n objects is n!/(n1!n2!n3!).
Hint: Use the multiplication principle to count the number of ways to first
partition the n objects into three boxes as described above and then arrange
each of the three groups of elements in a list within each box. Realize that
procedure is exactly equivalent to forming a list of size n.

Exercises 66–70 consider situations in which n distinct objects are partitioned into k
sets so that every object is placed into exactly one of set. If ni is the number of objects
in set i for 1 ≤ i ≤ k, then n1 + n2 + n3 + · · · + nk = n (since each of the n objects is
placed in some set). As proved in exercise 65 for the case k = 3, the number of ways
to form such a partition is given by the formula (given with its standard notation):(

n
n1, n2, . . . , nk

)
= n!

n1! · n2! · · · nk ! .

For example, there are 12,600 ways to partition 10 objects into four sets, with three
elements in the first set, two elements in the second set, one element in the third set,
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and four elements in the fourth set, because(
10

3, 2, 1, 4

)
= 10!

3! · 2! · 1! · 4! = 12,600.

66. In how many ways can we partition 12 objects into five sets, with two in the
first three sets, five in the fourth, and one in the last?

67. In how many ways can we partition 25 objects into three sets, with 10 in the
first set, 12 in the second, and three in the third?

68. In a test of quality of supply parts received, a manufacturer of lamp bulbs
orders six filaments of identical specifications from six different suppliers.
Two of the filaments received are assigned to each of three assembly lines,
and the resulting produced bulbs are tested at the end of the manufacturing
process. In how many different ways can the company assign the six distinct
filaments to the three assembly lines?

69. A middle school men’s basketball coach has 10 players on his squad, which he
first divides into Team A and Team B. The coach thinks of these two teams as
different: when holding a practice scrimmage drill between these two teams,
the coach tells Team A to pass the ball without dribbling, but allows Team B
to dribble the basketball as normal rules allow. After separating the squad into
the two teams, the coach then assigns the five players on each team into the
appropriate positions: one player is the center; two players are forwards; and
two players are guards. In how many ways can the coach formulate the two
squads with these lineups?

70. Prove that in the case where the n objects are partitioned into k = 2 sets,
we have: (

n
n1, n2

)
= C(n, n1) = n!

n1!(n− n1)! .

5.2 Pascal’s Triangle and the Binomial Theorem

In this section we study a triangle of numbers named in honor of the French
mathematician and philosopher Blaise Pascal. Pascal is counted among the most
brilliant and insightful minds of the seventeenth century; he made many important
contributions to both mathematics and philosophy that continue to be studied to this
day. Among his many accomplishments is a noteworthy paper on projective geometry
that he wrote when was just 16 years old. Projective geometry places a viewer’s “eye”
as a point on the plane of vision (called the projective plane), and then considers
a geometric representation of objects in terms of this eye. For example, a ray that
extends directly outward and away from the front of the eye is represented as a single
point because the “rest” of the ray behind this point is hidden from the eye by the point.
Amazingly enough, Pascal’s work preceded the identifiable establishment of projective
geometry as a distinctive mathematical discipline by almost 200 years!

Along with his compatriot Pierre de Fermat, Pascal is recognized as the founder
of mathematical probability theory. These two great mathematicians developed their
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insights and expression of probability theory in a sequence of letters in the 1650s that
fortunately has been preserved for study and admired by subsequent generations of
mathematicians (they were first published in 1679). In this famous correspondence,
Pascal and Fermat established the mathematical formulas used to compute probabilities
of events that have at most a finite number of possible outcomes. In the next section,
we develop this approach to studying probability and apply it to a study of hypothesis
testing and linear regression.

You may be interested to know that Pascal and Fermat began their correspondence
as a result of a question posed by the wealthy Antoine Gombaud (better known by his
title of Chevalier de Méré), who frequently bet on games of chance and was searching
for insights to increase his likelihood of winning. This led de Méré to ask how often
two dice needed to be rolled before there is better than a 50–50 chance of rolling
double sixes. And so probability theory was founded as the result of a question about
gambling! Despite these very playful origins, probability theory has proven itself as an
important and powerful tool for studying and understanding the world in which we live.

In addition to his mathematical genius, Pascal is also well-known for his many
other talents and insights. After a mid-life religious experience and conversion, Pascal
wrote several major treatises on theology and philosophy; in fact, he proved only
one further mathematical result after this conversion experience—during a sleepless
night when a painful toothache kept him awake, and Pascal turned to mathematics in
search of diversion and relief. The book Pensées is his most famous work, especially
in philosophical circles; this treatise describes his personal devotion to asceticism
and contains the well-known “Pascal’s Wager”—an attempt at developing a logical
argument favoring belief in the divine over unbelief.

In mathematical circles, Pascal is best known in connection with the numerical
Pascal’s triangle, which we describe in this section as one of his main contributions
to combinatorics. In preparation for presenting this triangle, we state and prove an
important mathematical formula known as Pascal’s formula. This formula explains the
nature and structure of Pascal’s triangle and indicates how Pascal’s triangle produces
numbers that are immediately applicable to combinatorial analysis. In fact, we stated
Pascal’s formula in the exercises of section 5.1; here we restate this important formula
and present a complete proof.

Theorem 5.2.1 Pascal’s formula If n, k ∈ N with 1 ≤ k ≤ n− 1, then

C(n+ 1, k + 1) = C(n, k)+ C(n, k + 1).

Proof The proof is completely algebraic. We add the terms on the right-hand side
of the formula by finding a common denominator to obtain the expression for
C(n+ 1, k + 1) given by theorem 5.1.5.

C(n,k)+C(n,k+1)= n!
k! ·(n−k)! +

n!
(k+1)! ·[n−(k+1)]!

= (k+1) ·n!
(k+1)·k! ·(n−k)! +

n! ·(n−k)

(k+1)! ·[n−(k+1)]!·(n−k)

= n! ·(k+1+n−k)

(k+1)!(n−k)! =
(n+1)!

(k+1)! ·(n−k)! =C(n+1,k+1)

■
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Pascal’s formula provides an alternative (and sometimes simpler) approach to
calculate combinations. Instead of using the factorial formula from theorem 5.1.5,
we can successively “build up” combinations for larger and larger values of n, by
adding two combinations from preceding values of n. For example, knowing that
C(1, 0) = 1!/(0! · 1!) = 1 and that C(1, 1) = 1!/(1! · 0!) = 1, we use Pascal’s formula
to find C(2, 1) by means of the sum:

C(2, 1) = C(1, 0)+ C(1, 1) = 1+ 1 = 2.

The other combinations with n = 2 are C(2, 0) = 1 and C(2, 2) = 1; recall that for
every positive integer n, C(n, 0) = 1 and C(n, n) = 1. Summarizing, the combinations
with n = 2 are

C(2, 0) = 1 C(2, 1) = 2 C(2, 2) = 1.

Now use the values for these n = 2 combinations to determine the number of
combinations for n = 3 as follows:

• C(3, 0) = 1;
• C(3, 1) = C(2, 0)+ C(2, 1) = 1+ 2 = 3;
• C(3, 2) = C(2, 1)+ C(2, 2) = 2+ 1 = 3;
• C(3, 3) = 1.

These calculations are easy and fun! We always start and end such a list with
C(n+ 1, 0) = 1 and C(n + 1, n + 1) = 1 and, using Pascal’s formula, sum the
appropriate number of combinations for the preceding stage n to determine the middle
values. The following question gives you practice.

Question 5.2.1 Using Pascal’s formula, compute the value of C(n, k) for 0 ≤ k ≤ n when

(a) n = 4
(b) n = 5

(c) n = 6
(d) n = 7

■

Definition 5.2.1 Pascal’s triangle consists of the values of C(n, k) for 0 ≤ k ≤ n organized into
rows based on the value of n, where the nth row contains the values for C(n, k).

C(0, 0)

C(1, 0) C(1, 1)

C(2, 0) C(2, 1) C(2, 2)

C(3, 0) C(3, 1) C(3, 2) C(3, 3)

C(4, 0) C(4, 1) C(4, 2) C(4, 3) C(4, 4)

...
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With the combinations calculated, Pascal’s triangle is presented as either:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

or

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

The remainder of this section studies applications of Pascal’s triangle; these
combinations appear and provide helpful mathematical insight in many interesting and
sometimes surprising ways. The first application is algebraic in nature: the binomial
theorem.Abinomial is an algebraic expression of the form (a+b)n, where n is a positive
integer. We are familiar with binomials from algebra and calculus. For example, we
have all used the F.O.I.L. method to expand the polynomial (x+ 3)2 = x2+ 6x+ 9 and
the two-variable expression (x + y)2 = x2 + 2xy + y2. However, for large exponents
n ∈ N, the time and space resources required to directly multiply out and simplify
such expressions becomes impractical (and tedious if we are doing this work by hand).
The binomial theorem is useful in these situations—providing a simpler approach to
computing the coefficients of an expanded binomial in terms of combinations.

If we study a few binomial expansions and compare them with Pascal’s triangle, we
can intuit the binomial theorem’s result. Consider the following binomial expansions
and compare them with Pascal’s triangle:

(x + y)0 = 1

(x + y)1 = 1 · x + 1 · y
(x + y)2 = 1 · x2 + 2 · xy + 1 · y2

(x + y)3 = 1 · x3 + 3 · x2y + 3 · xy2 + 1 · y3

Can you see the pattern? The coefficients in the expansion of (x + y)1 are the
combinations identified in the n = 1 row of Pascal’s triangle; the coefficients in
the expansion of (x + y)2 are the combinations identified in the n = 2 row of the
triangle; and so on. As we might hope, this pattern continues, and the coefficients in
the expansion of (x + y)n are the combinations identified in the nth row of Pascal’s
triangle; this includes identifying (x + y)0 with the coefficient 1 in the n = 0 or the
0th row of Pascal’s triangle. For this reason, combinations are sometimes referred to
as binomial coefficients. The following famous theorem formalizes these observations
and intuitions.

Theorem 5.2.2 The binomial theorem If n ∈ N, the coefficients in the expansion of (a + b)n are
combinations of the form C(n, k) for 0 ≤ k ≤ n; symbolically, the expansion of
(a+ b)n is given by:

(a+ b)n =
n∑

k=0

C(n, k) · ak · bn−k .

Proof The coefficient of the term ak · bn−k is the number of ways to multiply ak by bn−k

when expanding the product (a + b)n = (a + b) · (a + b) · (a + b) · · · (a + b).
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The term ak · bn−k is obtained in this expansion when we choose k of these n
“(a + b)” terms to contribute a factor of a (the other n − k “(a + b)” terms then
automatically contribute a factor of b). In this situation, order is not important and
repetition is not allowed. By definition, the total number of ways to obtain the
term ak · bn−k is therefore C(n, k).

■

As mentioned above, the binomial theorem can be understood as an application
of Pascal’s triangle. The value C(n, k) appears as the kth term in the nth row of the
triangle, and so Pascal’s triangle provides an alternative approach (different than the
formula stated in theorem 5.1.5) to computing the value of C(n, k). The case n = 2 of
the binomial theorem was stated by Euclid as Proposition 4 in Book XI of Elements
in the third century b.c.e. In addition, Indian, Chinese, and Islamic mathematicians
are believed to have been familiar with various versions of this result. Pascal was the
first European to give this rendition of the binomial theorem in his Treatise on the
Arithmetical Triangle in 1665. By 1676, Sir Isaac Newton had extended this statement
of the binomial theorem for positive integer exponents to arbitrary exponents, including
negatives and fractional exponents. The next example and question provide further
illustrations of the use of these results.

Example 5.2.1 We expand the binomial expressions (a + b)4 and (a + b)8 using the binomial
theorem and Pascal’s triangle.

The binomial theorem assures us that the fourth row provides the coefficients
for the expansion of (a + b)4. Consulting Pascal’s triangle as given in defini-
tion 5.2.1, we see that the fourth row is 1, 4, 6, 4, 1. These numbers are the desired
coefficients, providing the expansion:

(a+ b)4 =
4∑

k=0

C(4, k) · ak · b4−k = 1a4 + 4a3b+ 6a2b2 + 4ab3 + 1b4.

We also expand (a+ b)8, extending Pascal’s triangle using Pascal’s formula
C(n+ 1, k + 1) = C(n, k)+ C(n, k + 1) until we have determined its eighth row
to be 1, 8, 28, 56, 70, 56, 28, 8, 1. These numbers are the desired coefficients,
providing us with the expansion:

(a+b)8=
8∑

k=0

C(8,k) ·ak ·b8−k

=1a8+8a7b+28a6b2+56a5b3+70a4b4+56a3b5+28a2b6+8ab7+1b8.

If you have ever had to manually multiply out such an expression as (a+ b)8, the
relative ease of this approach is quite apparent!

■

Question 5.2.2 Using the binomial theorem and Pascal’s triangle expand each expression.

(a) (a+ b)5

(b) (2x + b)5, setting a = 2x in (a)
(c) (2x− 3y)5, setting b = −3y in (b)

(d) (a+ b)6

(e) (3x + 2y)6

(f) (3x − 2y)6

■
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The rest of this section continues to explore interrelationships among the numbers
appearing in Pascal’s triangle, as well as other diverse applications. We begin with an
interesting and well-known result about the sum of the numbers appearing in any row
of Pascal’s triangle.

Theorem 5.2.3 The sum of the numbers appearing in the nth row of Pascal’s triangle is equal to
2n; using the symbolism for combinations, we have:

n∑
k=0

C(n, k) = 2n.

Proof The strategy of this proof is to count the total number of outcomes from the same
activity in two different ways, obtaining the desired equality of the two expressions.
This approach is commonly used in combinatorics, and so it is helpful to develop
the ability to recognize the different ways that an activity can occur. For this
argument, consider the activity of tossing a (fair, two-sided) coin n times and
count the total number of possible outcomes in two different ways.

First, consider the corresponding n-step process, with each step consisting of
one toss of the coin. Each step has two possible outcomes (heads or tails), and the
steps are independent of one another. Applying the multiplication principle, there
are 2n possible outcomes from tossing a coin n times.

Alternatively, count the number of outcomes by splitting them into distinct
nonoverlapping sets based on the number of heads in each collection of n tosses.
Define “Set 0” as those outcomes with 0 heads (and n tails), “Set 1” as those
outcomes with 1 head (and n− 1 tails), and so on, until “Set n” consists of those
outcomes with n head (and 0 tails). For these sets, the order in which the k heads
are tossed is not important and repetitions are not allowed. Therefore, “Set k”
has C(n, k) elements. Since these sets are nonoverlapping, the total number of
outcomes from tossing a coin n times is

C(n, 0)+ C(n, 1)+ · · · + C(n, n) =
n∑

k=0

C(n, k).

Both counting methods identify the total number of outcomes of the same
activity, and so the resulting numbers must be equal to one another. Thus

n∑
k=0

C(n, k) = 2n.

■

As with other important mathematical results, this theorem can be proven in a
variety of different ways. The following question indicates an algebraic proof.

Question 5.2.3 Use the binomial theorem with a = 1 and b = 1 to prove that
n∑

k=0

C(n, k) = 2n.

■

Mathematicians have also recognized connections between numbers in Pascal’s
triangle and other important numbers that have be defined and explored in completely
different settings. An example of this phenomenon occurs with Catalan numbers,
which were defined in the mid-nineteenth century by the Belgian mathematician
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Eugéne Charles Catalan. He was studying the polygon division problem, which asks:
“In how many ways can a regular polygon with n+ 2 sides be divided into n triangles
using diagonals that connect vertices?” Here a different orientation of the same slicing
is counted as a different division. This question was first solved in the eighteenth century
by the Hungarian mathematician Johann Andreas van Segner (the first mathematics
professor at Göttingen); both Leonhard Euler and the French mathematician Jacques
Phillipe Marie Binet simplified Segner’s solution. However, Catalan’s approach is the
most elegant and has endured. Consider the following formal definition.

Definition 5.2.2 For n ∈ N, the nth Catalan number Cn is the number of ways that a regular
polygon with n+ 2 sides can be divided into n triangular pieces using diagonals
that connect vertices. Here a different orientation of the same slicing is counted
as a different division. The nth Catalan number is computed using the formula

Cn = C(2n, n)

n+ 1
= 1

n+ 1
·
(

2n
n

)
= (2n)!

(n+ 1)! · n! .

Example 5.2.2 We identify the first three Catalan numbers.

• C1 = 1, since there is only one way to divide a regular polygon with three sides
(a triangle) into triangles (it would be the triangle itself). Using the formula from
definition 5.2.2,

C1 = 2!
2! · 1! =

2

2
= 1.

• C2 = 2, because there are two ways to divide a regular polygon with four sides
(a square) into triangles. Here each diagonal of the square provides one such
division. From definition 5.2.2,

C2 = 4!
3! · 2! =

24

6 · 2 = 2.

• C3 = 5, since there are five ways to divide a regular pentagon into triangles;
figure 5.1 illustrates these divisions. From definition 5.2.2,

C3 = 6!
4! · 3! =

720

24 · 6 = 5.

■

Question 5.2.4 As in example 5.2.2, prove that C4 = 14 both by sketching the 14 divisions of a
regular hexagon into triangles and by using the formula from definition 5.2.2.

■

Catalan numbers can also be used to describe such results as the number of ways to
place parentheses in a sequence of numbers to be multiplied two at a time, the number
of “rooted trivalent trees with n + 1 nodes,” and the number of paths of length 2n

Figure 5.1 The five divisions of a pentagon into triangles
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through an n× n grid that do not rise above the main diagonal. There is also an elegant
relationship between Catalan numbers and Pascal’s triangle: the Catalan number Cn is
equal to the difference of two adjacent numbers on the 2nth row of Pascal’s triangle.
We invite you to prove this identity in the following question.

Question 5.2.5 Using the formula for C(n, k) given in theorem 5.1.5, prove the Catalan number
identity Cn = C(2n, n)− C(2n, n+ 1).

■

This section ends by considering a connection between Pascal’s triangle and a
famous fractal known as the Sierpinski triangle. Perhaps you have studied or seen
pictures of such fractals as the Koch snowflake, the Mandelbrot set, or Julia sets (which
we will study in the exercises of section 7.3). These self-similar, self-replicating sets
have proven useful for modeling such diverse and interesting natural phenomena as
weather patterns, the shape of coastlines, the branching of ferns, trees, and rivers, and
blood and air flow in arterial and bronchial systems.

Sierpinski’s triangle results from applying mod 2 arithmetic to the elements of
Pascal’s triangle. When we reduce each number mod 2, Pascal’s triangle contains only
0’s and 1’s, as illustrated for the first 15 rows in figure 5.2.

Essentially, the mod 2 arithmetic distinguishes among the even and odd numbers
appearing in Pascal’s triangle, substituting 0 for the even numbers and 1 for the odd
numbers. Can you see a triangular design in this mod 2 version of Pascal’s triangle?
Placing lines around the groups of 0’s helps highlight the triangular shapes, as illustrated
in figure 5.3.

Even though figure 5.3 only contains the first 15 rows of Pascal’s triangle, a clear
pattern is becoming apparent. As more and more rows are included, a surprising and
pleasing complexity appears in these patterns; each of these images is a manifestation
of a step in the construction of the Sierpinski triangle. The Sierpinski triangle is a
self-replicating set; any such set is formed using a step-by-step process beginning with
some given shape and repeatedly removing this same shape (of appropriately scaled
size) from “middle regions” that remain from the previous step. The first steps in the
construction of the Sierpinski triangle are illustrated in figure 5.4.

1

0

0

0

0

0

0

0

1

0

1

0

0

0

1

1

0

1

0

0

0

1

1

0

0

0

1

0

1

0

0

0

1

0

1

1

0

1

0

0

0

1

1

0

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

0

1

0

1

1

0

1

0

1

1

1

0

1

1

1

1

0

1

1

1

0

0

0

1

0

0

0

1

1

1

0

1

1

1

0

1

0

1

1

0

1

1

1

0

1

1

0
1

0

1

0

1

1

1

1
1

11

Figure 5.2 Pascal’s triangle mod 2
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Figure 5.3 Pascal’s Triangle mod 2

etc.

Figure 5.4 Constructing Sierpinski’s triangle

As can be seen, an equilateral triangle is the shape used in the construction of
the Sierpinski triangle. We begin with a solid equilateral triangle and remove the
appropriately scaled equilateral triangle from the center of this given triangle. Three
equilateral triangles remain, each one a smaller version of the original triangle. We
now remove the appropriately scaled equilateral triangle from the center of each of
these three triangles, leaving nine much smaller triangles. Continuing this process
indefinitely produces the Sierpinski triangle.

The Sierpinski triangle is named in honor of the Polish mathematician Waclaw
Sierpinski. Sierpinski is best known for his work in set theory, point set topology, and
functions of real variables, publishing an impressive 724 papers and 50 books during
his long and active mathematical career. In addition to defining the Sierpinski triangle,
he also proved a theorem asserting that points in the plane can be specified with a
single coordinate, gave the first example of an absolutely normal number whose digits
occur with equal frequency in whatever base it is written, and produced the Sierpinski
curve that has infinite length, visits every interior point of a given square, and bounds
an area equal to 5/12 the area of the given square. Sierpinski’s mathematical career and
his support for the study of mathematics in Poland carried on through both World Wars
despite the loss of close friends, colleagues, and students, and the loss of his personal
library and papers.

Many other such self-replicating sets exist, and the same procedure applied to
triangles can be implemented using other regular polygons. For example, the Sierpinski
carpet is obtained by repeatedly removing the central square forming the middle-ninth
of a larger square. In the mid-1800s, the German mathematician Georg Cantor defined
the first of these self-replicating sets by removing the middle third of the interval [0, 1]
and indefinitely repeating the removal of the middle third of each remaining interval.
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This set is known as the Cantor set and is examined in further detail in the exercises for
section 4.6. Self-replicating sets defined by such a process of repeated removals often
turn out to have quite stunning geometrical properties and, in the late 1960s, chaos
theory emerged as a distinct field of mathematics devoted to their study. More than
just a fun study of patterns, Chaos theory has been used to model such complicated
physical phenomena as weather patterns, oddly dripping water faucets and unevenly
recurring ocean waves (more formally known as irregular dynamical systems), and
behavior of some celestial objects.

This success with applying mod 2 arithmetic to the elements of Pascal’s triangle
might lead us to wonder what patterns and results might appear if we consider mod n
arithmetic using other, fixed values of n ∈ N. The following questions invite you to
explore other patterns within Pascal’s triangle that are similar in nature to the mod 2
results discussed above.

Question 5.2.6 List the first 27 rows of Pascal’s triangle, reducing each element mod 3. (Notice
that you do not need to write out every element in the original Pascal’s triangle;
rather, the mod 3 Pascal’s triangle can be obtained by adding pairs of mod 3
numbers on the previous row to obtain the next row’s mod 3 numbers.) Then
draw triangles around each of grouping of 0’s, 1’s, and 2’s and color the triangles
for 0’s red, for 1’s black, and for 2’s green. Compare and contrast the resulting
picture with figures 5.3 and 5.4.

■

Question 5.2.7 Repeat the construction outlined in question 5.2.6 for mod 4 arithmetic on the first
32 rows of Pascal’s triangle, using four colors to distinguish the various triangles.
Compare and contrast the resulting picture with figures 5.3 and 5.4.

■

Many more interesting properties and mathematical results are associated with
Pascal’s triangle; we take up some of these ideas in the following exercises. In addition,
section 5.3 uses combinations to calculate important probabilities that arise often in
the real-world. Pascal’s triangle frequently helps simplify calculations that involve
combinations.

5.2.1 Reading Questions for Section 5.2

1. State Pascal’s formula and give an example. How is this result helpful?
2. Give the first five rows of Pascal’s triangle.
3. What are the first and last numbers in any row of Pascal’s triangle? Why?
4. What is the connection between Pascal’s triangle and expanding a binomial

expression (a+ b)n?
5. State the binomial theorem. How is this result helpful?
6. What is the idea behind the proof of the binomial theorem?
7. According to the binomial theorem, what is the expansion of (a+ b)3? Using

this result expand the binomial (x + 2y)3.
8. Using the binomial theorem and the formula for computing combinations,

determine the coefficient of x4y3 in the expansion of (x + y)7?
9. State theorem 5.2.3. What strategy is used in proving this result?
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10. Define and give an example of a Catalan number.
11. State the relationship between the nth Catalan number and the elements in

the 2nth row of Pascal’s triangle.
12. Describe the construction of Sierpinski’s triangle.

5.2.2 Exercises for Section 5.2

In exercises 1–4, extend the portion of Pascal’s triangle given in definition 5.2.1 up
to the given row. By writing out these additional rows of Pascal’s triangle, you are
constructing a handy reference that is useful when working with combinatorics, and
you are preparing to study this triangles for further patterns.

1. Extend up to row 8.
2. Extend up to row 12.

3. Extend up to row 16.
4. Extend up to row 20.

In exercises 5–10, identify the combination that answers each question and determine
its value using Pascal’s triangle.

5. An art dealer decides to buy four valuable paintings at auction. If 15 paintings
are on the auction block, how many options are available to the dealer?

6. A genetic process involves randomly selecting two genomes from a collection
of eight to form a health characteristic. In how many ways can the
characteristic be expressed genetically from this part of the process alone?

7. A chef offers a menu consisting of 12 entrées. In how many ways can a group
of six patrons ask the cook to prepare their meals if everyone in the group
orders a different single entree? (Note: Who orders what doesn’t matter.)

8. A neighborhood of 16 homes is awarded a tree-planting grant from the local
community that directs the planting of 10 trees. If each tree is planted at a
different community home, in how many ways can the plantings be done?

9. A group of seven teenagers arrive at an ice cream parlor that serves 21 flavors.
How many different combinations of single scoop ice cream cones can the
group ask for if each teenager gets a different flavor?

10. A college has 15 new computers, but 20 faculty members are in need of an
upgrade. In how many ways can the college administration select 15 of the
20 to receive upgrades this academic year?

In exercises 11–30, use the extension of Pascal’s triangle identified in exercises 1–4 to
answer each question about combinations and patterns in Pascal’s triangle.

11. Find the value of C(7, 0) and C(7, 7).
12. Find the value of C(9, 0) and C(9, 9).
13. Find the value of C(11, 0) and C(11, 11).
14. In light of the answers to exercises 11–13, make a conjecture about the value

of C(n, 0) and C(n, n) for n ∈ N. What property of Pascal’s triangle supports
your conjecture? Prove this result using the formula for combinations given
in theorem 5.1.5.

15. Find the value of C(8, 1) and C(8, 7).
16. Find the value of C(10, 1) and C(10, 9).



Chapter 5 ■ Probability and Statistics 391

17. Find the value of C(12, 1) and C(12, 11).
18. In light of the answers to exercises 15–17, make a conjecture about the value of

C(n, 1) and C(n, n− 1) for n ∈ N. What property of Pascal’s triangle supports
your conjecture? Prove this result using the formula for combinations given
in theorem 5.1.5.

19. Identify which numbers in the n = 2 row of Pascal’s triangle are even.
20. Identify which numbers in the n = 4 row of Pascal’s triangle are even.
21. Identify which numbers in the n = 8 row of Pascal’s triangle are even.
22. In light of the answers to exercises 19–21, make a conjecture about the value

of C(n, k) when n = 2m is a power of two and k is not equal to 0 or n. What
property of Pascal’s triangle supports your conjecture? Prove this result using
the formula for combinations given in theorem 5.1.5.

23. Show that 5 divides every non-one element in the 5th row of Pascal’s triangle.
24. Show that 7 divides every non-one element in the 7th row of Pascal’s triangle.
25. Show that 11 divides every non-one element in the 11th row of Pascal’s

triangle.
26. In light of the answers to exercises 23–25, make a conjecture about the

divisibility of C(n, k) when n is prime and k is not equal to 0 or n. What
property of Pascal’s triangle supports your conjecture? Prove this result using
the formula for combinations given in theorem 5.1.5.

27. Find a counterexample disproving the claim that n divides every non-one
element of the nth row of Pascal’s triangle for every n ∈ N.

28. The third main diagonal from right to left in Pascal’s triangle consists of the
numbers 1, 3, 6, 10, 15, . . .. Prove by direct computation that the sum of
any two adjacent numbers in the first five terms of this sequence is a perfect
square.

29. The third main diagonal from right to left in Pascal’s triangle consists of the
numbers 1, 3, 6, 10, 15, . . .. Prove by direct computation that the sum of any
two adjacent numbers in the first 10 terms of this sequence is a perfect square.

30. In light of the answers to exercises 28–29, make a conjecture about the value
of C(n, 2) + C(n + 1, 2) when n is an integer greater than or equal to two.
Prove this result using the formula for combinations given in theorem 5.1.5.

In exercises 31–37, prove each mathematical statement about combinations and
Pascal’s triangle.

31. If n and k are integers with 0 ≤ k ≤ n, then C(n, k) = C(n, n − k). What
property of Pascal’s triangle follows from this equality?

32. If n is a nonnegative odd integer, then the alternating sum of the elements of
the nth row of Pascal’s triangle is equal to zero; that is,

C(n, 0)− C(n, 1)+ C(n, 2)− · · · + C(n, n− 1)− C(n, n) = 0.

33. If n is a nonnegative even integer, then

C(n,
n

2
) = C(n− 1,

n

2
− 1)+ C(n− 1,

n

2
).
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34. For every positive integer n,
n∑

k=0

C(n, k) is even.

35. Using induction, prove that if n is a nonnegative integer, then
n∑

k=0

C(n, k)= 2n.

Hint: This is theorem 5.2.3; use Pascal’s formula in the inductive step.

36. Using induction, prove that if n is a positive integer, then
n−1∑
k=0

2k = 2n − 1.

37. The sum of the first n rows of Pascal’s triangle (that is, the sum of all the
numbers from the 0th row to the n− 1st row) is equal to 2n − 1.
Hint: Use exercises 35 and 36.

In exercises 38–43, answer each question about the permutation triangle, a variation
on Pascal’s triangle obtained by recalling that P(n, k) = C(n, k) · k! and multiplying
the elements in Pascal’s triangle by k! to obtain a triangle of permutations.

38. Determine the first five rows of the permutation triangle.
39. Determine the first 10 rows of the permutation triangle.
40. Using exercise 38, find the value of P(4, 2) and P(4, 3).
41. Using exercise 38, find the value of P(5, 2) and P(5, 3).
42. Using exercise 39, find the value of P(8, 3) and P(8, 5).
43. Using exercise 39, find the value of P(9, 3) and P(9, 5).

In exercises 44–57, expand each expression using the binomial theorem and Pascal’s
triangle.

44. (x + y)2 + (x − y)4

45. (x2 + y2)2 + (x − y)4

46. (2x + y)3 + (2x − y)5

47. (x + y2)3 + (2x − y)5

48. (x + y)7

49. (5x + 2y)7

50. (3x − y)7

51. (xy + z)7

52. (x + y)9

53. (4t + 5s)9

54. (4t − 5s)9

55. (x2 − y2)9

56. (x + y)10

57. (x + y)11

In exercises 58–60, prove each mathematical statement, extending our understanding
and results for the binomial theorem. For exercises 58–60, recall that the binomial
power series was defined by Sir Isaac Newton as:

(1+ x)n = 1+ nx + n(n− 1)

2! · x2 + n(n− 1)(n− 2)

3! · x3 + · · ·

58. If n is a nonnegative integer, then the coefficients in the above formula for the
binomial power series are C(n, k).

59. If n is a nonnegative integer, then the binomial power series is finite.
60. Using induction, prove the binomial theorem.

Exercises 61–65 consider connections between Pascal’s triangle and both the Catalan
numbers and the Fibonacci numbers.

61. Compute the first seven Catalan numbers.
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62. In Pascal’s triangle, identify the pairs of numbers C(2n, n) and C(2n, n + 1)
for n = 1, 2, 3, 4.

63. Prove the Catalan number identity Cn = C(2n, n)− C(2n, n+ 1) for n ≥ 1.
64. In section 3.6, the sequence of Fibonacci numbers was defined by f1 = 1,

f2 = 1, and fn+2 = fn + fn+1; this sequence begins 1, 1, 2, 3, 5, 8, . . .. Prove
by direct computation that the first 10 Fibonacci numbers can be obtained
by summing the elements of Pascal’s triangle along the diagonals indicated
below.

1
↗ 1

1 ↗ 2
↗ 3

1 1 ↗ 5
↗ ↗ 8

1 2 1 ↗
↗ ↗

1 3 3 1
↗ ↗ ↗

1 4 6 4 1

65. Following the model given in exercise 64, prove by direct computation that
the first 20 Fibonacci numbers can be obtained by summing the elements of
Pascal’s triangle along the appropriate diagonals.

Exercises 66–67 examine Pascal’s triangle using modular arithmetic with various
integers.

66. State the first 24 rows of Pascal’s triangle, reducing each element mod 3.
Notice that you do not need to write out every element in the original Pascal’s
triangle; rather, the mod 3 Pascal’s triangle can be obtained by adding the two
mod 3 numbers on the previous row to obtain the next row’s mod 3 numbers.
Color the triangles for 0’s red, for 1’s black, and for 2’s green. Compare and
contrast the resulting picture with figure 5.4.

67. Repeat exercise 66 for 24 rows, reducing each element mod 4, and coloring
the triangles for 0’s red, for 1’s black, for 2’s green, and for 3’s blue.

5.3 Basic Probability Theory

Probability is the mathematical calculation of chance. It measures the likelihood
of a given event occurring. Throughout history, humans have been concerned with
chance: What is the probability that a serious storm will develop? Can I predict
if a tossed coin results in heads or tails? What is the chance that I will remain
healthy? How does that chance change if I regularly smoke cigarettes? By adopting a
systematic, mathematical approach to questions of chance, probabilists have developed
a mathematics of inferential study: based on collected data, we can ask and answer
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questions about large populations and, as a result, better understand the world about us.
Any application of probability begins with the description of an experiment (sometimes
called a random experiment), which is an activity that can result in many different
possible outcomes.

Definition 5.3.1 An experiment is an activity that might result in many different outcomes, where
an outcome is a technical term for the most fundamental of the results of an
experiment. A finite experiment has only a finite number of possible outcomes.
In addition, a finite experiment is equiprobable when each possible outcome is
equally likely.

As may be apparent, there are a variety of different types of experiments. The next
example describes a few.

Example 5.3.1 In the experiment of rolling a standard die, the six possible outcomes are
determined by the number of dots appearing on the die roll. This experiment
is also equiprobable (when the die is fair) because each of the six rolls has an
equal probability of occurring 1/6 of the time.

When predicting the weather, a given day’s outcomes might be broadly
categorized as sunny, rainy, sleeting, or snowy. Based on these categories,
predicting the weather is a finite experiment. However, it is rarely equiprobable;
in some locales, the outcome of sunny is more common than rainy, while in others
rainy is more common than sunny.

When measuring the distance between two objects, the outcomes are the
possible distances. This experiment is not finite, since any nonnegative distance
is possible.

■

Question 5.3.1 Provide additional real-life examples of:

(a) a finite, equiprobable experiment;
(b) a finite experiment that is not equiprobable;
(c) an infinite experiment.

■

In practical applications, probability theorists have found it useful to refer to
various collections of outcomes. The largest such set is the collection of all possible
outcomes; it is referred to as the sample space and labeled S. Subsets of the sample space
are events. Simply put, an event is some result of the experiment (an outcome is a most
basic type of event). For example, in the finite experiment of tossing a two-sided coin
twice, the set of all possible outcomes (the sample space) is S = {HH, HT , TH, TT},
where H denotes heads and T denotes tails. An example of an event in this setting
is {HH, HT , TH}, which can be described as “toss heads at least once.” We can see
that many different outcomes may result in the same event. Another event is {HH},
or “toss heads twice.” We now give the formal mathematical definitions of these
notions.

Definition 5.3.2 The sample space of an experiment is the set S of all possible outcomes of the
experiment. An event is a subset of the sample space, and so it is a collection of
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outcomes of the experiment. We use capital letters, such as A and B, to identify
events.

We consider further examples of sample spaces and events in the following example
and question.

Example 5.3.2 We consider the experiment of rolling a standard six-sided die twice. In this setting,
each element of the sample space may be conveniently represented as an ordered
pair (x, y), where x is the roll on the first die and y is the roll on the second. Using
this notation, the sample space of this experiment is the set S consisting of the
following 36 ordered pairs:

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6).

Many different events can be described in this setting, including:

• A = “the first roll is 1” = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)};
• B = “the sum of the dice is four” = {(1, 3), (2, 2), (3, 1)};
• C = “the sum of the dice is twelve” = {(6, 6)}.

■

Question 5.3.2 Continuing to work in the setting of example 5.3.2, state the elements in each
event.

(a) D= “the second roll is two or three’’
(b) E = “the sum of the digits is six”

(c) F = “roll doubles”
(d) G = “the first roll is prime”

■

We can now state Pascal and Fermat’s definition of the probability of simple types
of events, which they developed in an exchange of letters in 1654. Their formulation
is widely recognized as the advent of probability theory. After Pascal and Fermat
developed this theory, their ideas were taken up by other researchers and gradually
became an important element of popular culture. You will hopefully find the formal
definition of probability intuitive; it has become such a part of the natural discourse of
society that we innately understand many of its basic notions. Recall that |A| denotes
the number of elements in a set A.

Definition 5.3.3 For any finite, equiprobable experiment, the probability of an event A is

P[A] = |A||S| =
the number of outcomes resulting in A

the number of outcomes in the sample space S.

While this definition does not describe what happens for experiments that are not
finite and equiprobable, it is an important start. Since Pascal’s and Fermat’s original
work, mathematicians have developed mathematical models that can handle any type
of experiment in probability theory; we will examine some of these models later in
this section. But we first focus on finite, equiprobable experiments and study simple,
easily managed examples.
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Example 5.3.3 Example 5.3.2 considered the experiment of rolling a standard six-sided die twice
and found that S is the set of 36 ordered pairs of dice rolls. Assuming the dice are
fair, each of these outcomes is equally likely, and so the experiment is equiprobable.
We can thus apply definition 5.3.3 to compute the probabilities of events; those
discussed in example 5.3.2 follow.

• If A = “the first roll is 1” = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}, then

P[A] = 6

36
= 1

6
;

• If B = “the sum of the dice is four” = {(1, 3), (2, 2), (3, 1)}, then P[B] =
3

36
= 1

12
;

• If C = “the sum of the dice is twelve” = {(6, 6)}, then P[C] = 1

36
.

■

Question 5.3.3 Continuing in the setting of example 5.3.3, state the probability of each event;
your answers to question 5.3.2 may be helpful.

(a) D= “the second roll is two or three’’
(b) E = “the sum of the digits is six”

(c) F = “roll doubles”
(d) G = “the first roll is prime”

■

While considering such playful games as tossing games and rolling dice is a vital
and helpful approach to first learning basic probability theory, it is also important
to realize that the insights and understandings acquired from studying these basic
scenarios extends far beyond such games. Many real-life situations involve finite,
equiprobable experiments; the probabilities in these settings are computed using the
techniques already outlined. The next example provides an easily understood query
from an industrial setting.

Example 5.3.4 Aquality-control engineer at a film manufacturing plant is testing for defective film
cannisters. Assume that a batch of 50 cannisters contains two that are defective.
If the engineer randomly tests five cannisters for defects, what is the probability
that exactly one of them is defective?

We count the number of possible outcomes when randomly choosing five
cannisters from the batch of fifty; since order is not important and repetition is
not allowed, this number is C(50, 5) = 2,118,760. This experiment is therefore
finite, and the selection being random ensures it is equiprobable. Defining the
event A = “a single defective cannister appears in the sample of five chosen,” we
think of A as being obtained by a two-step process. In the first step, one of the
two defective cannisters in the batch of 50 is chosen for the sample; this step can
be done in C(2, 1) = 2 ways. In the second step, four of the 48 good cannisters
in the batch of 50 is chosen for the sample; this step can be done in C(48, 4) =
194,580 ways. Applying the multiplication principle and definition 5.3.3, P[A] =
194,580 · 2/2, 118, 760 = 9/49 ≈ 0.18367. Thus, there is approximately an 18
percent chance of finding exactly one defective film in a random selection of five
cannisters.

■



Chapter 5 ■ Probability and Statistics 397

We have focused thus far on finite experiments. The discussion of experiments
having infinitely many possible outcomes is more subtle, but turns out to be manageable
using ideas from calculus. Mathematicians describe a given experiment in terms of a
random variable, which assigns a numeric value to each outcome of the experiment.
A random variable acts like a function; its domain value inputs are the outcomes of the
experiment, and its range value outputs are the corresponding numbers that it assigns.

Mathematicians have naturally adopted a notation for random variables that
closely mirrors the notation for a function. Just as f , g, and u are common names for
functions, capital letters (such as X, Y , or Z) are common names for random variables.
And just as f (t) describes a functional output for a given input value t, the notation
X(ω) describe a random variable’s numeric output for a given input event ω. We make
these ideas precise in the following definition.

Definition 5.3.4 Given an experiment and resulting sample space S containing all possible
outcomes, a random variable X assigns a number X(ω) to each element ω ∈ S.
In this way, the random variable X acts like a function on the sample space S;
sometimes X is called a random function. In addition, for any value x that X
might assign, the notation X = x identifies the event that X assigns the number x.
We write P[X = x] for the probability of this event.

Example 5.3.5 We may define a simple (but useful) example of a random variable X on the
experiment of tossing a coin, where X(ω) = 1 if the experiment results in the
event ω of “tossing heads,” and X(ω) = 0 if ω is “tossing tails.” For a fair coin,
the probability of tossing heads and the probability of tossing tails are both equal
to 1/2, and so P[X = 0] = 1/2 and P[X = 1] = 1/2.

■

Question 5.3.4 Define a random variable Y on the experiment of rolling a fair six-sided die, and
determine the corresponding probabilities for each possible event of the form Y = y.

■

Some random variables are categorized as being discrete, which means that the
random variable assigns only a countable number of possible outputs. For discrete X,
a probability P[X = x] is generally positive for any value x that X assigns. In contrast,
a continuous random variable X assigns an uncountably infinite number of different
values, and the probability P[X = x] is generally zero for any value x. Other types of
random variables are more complicated and more difficult to categorize; some are a
combination of both discrete and continuous types, still others require advanced notions
such as the Lebesgue integral to handle mathematically. In this chapter, we assume that
any given random variable is either (purely) discrete or (purely) continuous, and we
will develop the mathematical models for each of these types. As it turns out, almost
every real-life probabilistic question is either discrete or continuous, and so these ideas
are broadly applicable in many diverse settings.

5.3.1 Discrete Random Variables

We begin a study of discrete random variables by discussing the experiment that
motivated the development of probability theory. Recall that the Chevalier de Méré
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asked Pascal and Fermat the question, “How many times must I roll two fair dice
before there is better than a 50–50 chance of rolling double-sixes?” While this concern
would not impact any of our lives, many profound insights and results have followed
from its solution. The Chevalier’s question asks about the experiment of “rolling the
dice until double-sixes occurs.” An important associated discrete random variable is
X = “the number of times the dice are rolled.” Thus, if the Chevalier happens to roll
double-sixes on the very first roll, then X = 1. But if it takes 30 rolls before he rolls
double-sixes, then X = 30. Since it can only take on positive integer values, X is a
discrete random variable. Furthermore, X is infinite because it can take on any positive
integer value.

What are the probabilities associated with this random variable X? We might
start by considering the probability that the Chevalier rolls double-sixes on the first
roll, finding P[X = 1]. As we observed in example 5.3.3, the probability of rolling
double-sixes on a single dice roll is 1/36; we thus conclude that P[X = 1] = 1/36.
In order to determine the probabilities of other values of this random variable X, we
need to use three important results about probabilities, which we present in the next
theorem.

Theorem 5.3.1 Suppose A and B are given events.

• The probability of the complementary event A′ = “A does not happen” satisfies

P[A′] = 1− P[A].
• If the occurrence of A does not affect the probability of B, then we say that A and

B are independent events; in this case, the probability that both A and B occur
is given by

P[A and B] = P[A] · P[B].
• If A and B are independent, so are A′ and B.

Comments on Proof We consider the proof of the first statement only for finite, equiprobable
experiments, though the results hold in general. In this case, the formula for
probabilities of complementary events follows from the set-theoretic relationship
between sizes of complementary sets. Since A′ = S \A, we have |A′| = |S \A| =
|S| − |A|. Substituting this fact into the formula in definition 5.3.3,

P[A′] = |A
′|
|S| =

|S| − |A|
|S| = 1− |A||S| = 1− P[A].

An alternative proof of this property can be given in terms of “mutually exclusive”
events; we discuss this notion shortly and leave this proof for the exercises at the
end of this section. The standard proof of the formula for independent events
relies on the notion of “conditional” probability and is left for your later studies.

■

Theorem 5.3.1 is useful in a continuing analysis of the Chevalier’s question to
Pascal and Fermat.

Example 5.3.6 Recall the Chevalier’s question: “How many times must I roll two fair dice before
there is better than a 50–50 chance of rolling double-sixes?” The corresponding
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discrete random variable X = “the number of rolls until double-six occurs” has
P[X = 1] = 1/36. We now determine the probabilities associated with the other
possible values of the random variable X.

The event X = 2 happens when the Chevalier fails to roll double-sixes on
the first roll, but succeeds in rolling double-sixes on the second. Defining events
A = “roll double sixes on the first roll” and B = “roll double-sixes on the second
roll,” we see that A and B are independent because the chance that B occurs
is unaffected by whether or not A has occurred (in either case, P[B] = 1/36).
Applying theorem 5.3.1,

P[A′] = 1− P[A] = 1− 1

36
= 35

36

and

P[X = 2] = P[A′ and B] = P[A′] · P[B] = 35

36
· 1

36
.

In the exact same way but adding one more layer of dice rolls,

P[X = 3] = 35

36
· 35

36
· 1

36
= 1

36
·
(

35

36

)2

.

For an arbitrary number of dice rolls n,

P[X = n] = 1

36
·
(

35

36

)n−1

.

■

Example 5.3.6 comes close to answering the Chevalier’s question, as it provides
the probability of getting double-sixes on any given number of dice rolls. But the
Chevalier is asking for more: “How many times do I have to roll two fair dice
before there is better than a 50–50 chance of rolling double-sixes?” Since P[X =
1] = 1/36 ≈ 0.02778, there is less than a 3 percent chance of rolling double-sixes
on the first roll. To determine the probability of rolling double-sixes on either of the
first two rolls, we calculate P[X = 1 or X = 2]. As you might expect, this probability
will still be less than 50 percent, and so we turn to P[X = 1 or X = 2 or X = 3],
and P[X = 1 or X = 2 or X = 3 or X = 4], and so on until the probability reaches
50 percent. The next theorem provides an important mathematical tool to calculate
these probabilities.

Theorem 5.3.2 When events A and B can never happen at the same time, then they are called
mutually exclusive. Mutually exclusive events satisfy

P[A or B] = P[A] + P[B].
Proof We consider a proof for finite, equiprobable experiments, though the results hold

in general. In this case, the formula follows from the corresponding set-theoretic
relationship between sizes of disjoint sets. Recall that an “or” relationship is
expressed set-theoretically in terms of the union operation, denoted by “∪.”
Mutually exclusive events A and B have no outcome in common, and so they
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are disjoint sets that satisfy |A ∪ B| = |A| + |B|. Combining this fact with the
formula from definition 5.3.3,

P[A or B] = |A ∪ B|
|S| = |A| + |B||S| = |A||S| +

|B|
|S| = P[A] + P[B].

■

We can now complete the analysis of the question posed by the Chevalier. This
final part of that project utilizes the geometric identity from basic algebra:

1+ p+ p2 + · · · + pn−1 = 1− pn

1− p
.

This identity holds for every real number p and n ∈ N (except for p = 1 because of
division by zero) and is easily verified by long division of the corresponding polynomial
expressions.

Example 5.3.7 We determine the answer to the Chevalier’s question, “How many times must I
roll two fair dice before there is better than a 50–50 chance of rolling double-
sixes?” From example 6, we know P[X = n] = 1/36 · (35/36)n−1, where
X = “the number of rolls until double-six occurs.”

Events such as X = 1 and X = 2 are mutually exclusive, since the first
occurrence of double-six cannot simultaneously happen on different numbers of
dice rolls. By theorem 5.3.2, the probability of rolling double-sixes on one of the
first two dice rolls is

P[X≤2]=P[X=1 or X=2]=P[X=1]+P[X=2]= 1

36
+ 1

36
·
(

35

36

)
≈0.05478.

This approach extends to the general case of rolling double-six on one of the first
n rolls; using theorem 5.3.2 and the geometric identity,

P[X ≤ n] = P[X = 1 or X = 2 or . . . or X = n]
= P[X = 1] + P[X = 2] + · · · + P[X = n]

= 1

36
+ 1

36
·
(

35

36

)
+ · · · + 1

36
·
(

35

36

)n−1

= 1

36
·
[

1+ 35

36
+ · · · +

(
35

36

)n−1
]

= 1

36
· 1− ( 35

36

)n
1− 35

36

= 1−
(

35

36

)n

.

Substituting n = 24 and n = 25 into this equation gives

P[X ≤ 24] = 1−
(

35

36

)24

≈ 0.49140 and P[X ≤ 25] = 1−
(

35

36

)25

≈ 0.50553.

The Chevalier therefore needs to roll the dice 25 times to be assured of a better
than 50–50 chance of rolling double-sixes.

■
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For any discrete random variable, mathematicians refer to P[X = x] as the
probability distribution function, or simply the probability distribution. A probability
distribution identifies all the probabilities associated with a given discrete random
variable X in terms of the particular numbers x that X might assign. The probability
distribution is therefore a complete description of the chance elements associated with
the random variable. We formalize this notion in the following definition.

Definition 5.3.5 If X is a discrete random variable, then every value x assigned by X has
a corresponding probability P[X = x]. These values form the probability
distribution function for X, or simply the probability distribution.

Example 5.3.8 We consider the finite, equiprobable experiment of rolling a fair six-sided die
once. An associated random variable is X = “the numeric result of the die roll.”
The sample space is S = {1, 2, 3, 4, 5, 6}, and the probability distribution for X is
P[X = n] = 1

6 for n = 1, . . . , 6. Sometimes probability distributions are illustrated
graphically; in this example, the probability distribution for this experiment is
given in figure 5.5.

■

Question 5.3.5 Consider the finite, equiprobable experiment of tossing a fair coin until heads is
tossed, along with the associated random variable X = “the number of tosses until
heads is tossed for the first time.” Find the formula for the probability distribution
P[X = n] for n ∈ N and sketch the (infinite) graph that illustrates it. In parallel
with the Chevalier’s question about dice, how many times must a fair coin be
tossed until there is better than a 90 percent chance of tossing heads?

■

Mathematicians often categorize a discrete random variable based on the type of
formula that describes its probability distribution. For example, a random variable with
probability distribution P[X = n] = p · (1− p)n−1 (as in example 5.3.6) is referred to
as a geometric random variable. There are many other important categories of discrete
random variables; we highlight two other examples in this text: the binomial and
the hypergeometric. The accompanying discussion of these random variables includes
examples and questions, which provide further illustration; they are based on real-world
scenarios and provide some indication of the random variables’breadth of applicability
and usefulness.

5.3.2 Geometric Discrete Random Variables

The analysis undertaken in examples 5.3.6 and 5.3.7 works for any experiment that
involves a number of independent repetitions of some process (such as the repeated rolls

Figure 5.5 The Probability distribution for example 5.3.8

1/6

1 2 3 4 5 6
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of two dice) and ends with the occurrence of some event (such as rolling double sixes).
In such settings, the random variable counting how many repetitions have occurred
at the end of the process (such as X = “the number of rolls until double sixes”) is
sometimes referred to as the stopping time. In addition, because of the mathematical
formula involved (the geometric formula identified just before example 5.3.7), this
random variable is classified as a geometric random variable. If p is the probability
that the event will occur on any given repetition (such as p = 1/36 in example 5.3.6),
then the same analysis as above shows that for every n ∈ N, we have

P[X = n] = p · (1− p)n−1.

Example 5.3.9 A broker decides to sell a package of Dorsicom stock as soon as its value increases
by at least five percent. Based on past performance, there is an approximately two
percent chance of such an increase on any given day. What is the probability that
the broker sells his package of Dorsicom stock by the end of the fifth business day?

The random variable X = “the number of days the stock is held” is geometric
with p = 0.02. Therefore, the corresponding geometric probability distribution is
given by P[X = n] = 0.02 · (0.98)n−1. Proceeding as in example 5.3.7, we obtain

P[X ≤ 5] = P[X = 1] + P[X = 2] + · · · + P[X = 5] = 1− (.98)4 ≈ 0.09608.

■

Question 5.3.6 An assembly line at Turbo Motor Corporation shuts down whenever three
components malfunction at any one time. If there is approximately a one percent
chance of a shutdown on any given day of operation, what is the probability that
the assembly line will shut down by the end of the twentieth day of operation?

■

5.3.3 Binomial Discrete Random Variables

The probability distribution of a binomial random variable Y is defined on y =
0, 1, 2, . . . , n for some fixed positive integer n by the formula

P[Y = y] = C(n, y) · py · (1− p)n−y.

In general, a binomial random variable Y counts the number of times some “good”
outcome occurs when a process is repeated n times, where each independent repetition
of the process results in exactly one of two outcomes (either a “good” or “bad”
outcome). The repetitions are often called “trials.” In the above formula, p is the
probability of the good outcome occurring on any given trial, and so 1 − p is the
probability of the bad outcome occurring. For example, for the experiment of tossing
a fair coin n times, the random variable Y = “the number of times heads is tossed” is
binomial with p = 1/2. The formula for P[Y = y] is obtained by first choosing the y
trials out of n in which the good outcome occurs and then taking the product of the
probabilities for the y good outcomes and the n− y bad outcomes.

Example

5.3.10

Based on a previous analysis of its manufacturing process, an industrial manufac-
turer believes that an assembly line machine produces defective bolts three percent
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of the time, with no predictable indication of when a defective bolt will occur.
During a follow-up test, the manufacturer counts the number of defective bolts
appearing in a randomly selected group of 15. Assuming the previous analysis is
correct and that there is an endless supply of bolts, what is the probability that one
or fewer bolts in this group is defective?

The random variable Y = “the number of defective bolts in the group” is
binomial with n = 15 members in the group and a probability p = 0.03 that a
defective bolt is selected. A bolt is either defective or not (that is, considered
“good” or “bad” if we swap the usual interpretation of these words). The trials
are independent because the bolts are randomly selected, and therefore a future
occurrence of a defective bolt is not predicted based on a previous selection. The
corresponding binomial probability distribution is therefore given by P[Y = y] =
C(15, y) · (0.03)y · (0.97)15−y, and the probability that Y is one or fewer is

P[Y ≤ 1] = P[Y = 0] + P[Y = 1]
= C(15, 0) · (0.03)0 · (0.97)15 + C(15, 1) · (0.03)1 · (0.97)14 ≈ 0.92703.

■

Question

5.3.7

A basketball player shoots 12 free throws in a contest. Assuming the player makes
85 percent of her free throws and that the outcomes for each free throw shot are
independent, what is the probability that the player will make at least 10 out of
the 12 shots?

■

5.3.4 Hypergeometric Discrete Random Variables

The probability distribution of a hypergeometric random variable S is defined on
s = 0, 1, 2, . . . , M + N for fixed positive integers M and N by the formula

P[S = s] = C(M, s) · C(N, n− s)

C(M + N, n)
.

In general, a hypergeometric random variable S counts the number of “good” elements
randomly selected from a set containing M “good” elements and N “bad” elements,
when a total of n elements are selected (without replacement). For example, the
experiment of selecting n = 10 red and green balls from a jar containing M = 15
red balls and 16 green balls has an associated hypergeometric random variable
S = “the number of red balls selected in 10 draws.”

Example

5.3.11

Fifty people have applied for a position; 29 applicants are female. Suppose the
company follows equal opportunity hiring guidelines and that the applicants are
all essentially equally qualified for the position. What is the probability that a
fair selection process for determining three final candidates does not result in a
selection of any of the female applicants?

The random variable S = “the number of females in the group of three final
candidates” is hypergeometric with M = 29 female applicants, N = 21 male
applicants, and a group of n = 3 candidates that are selected. The corresponding
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hypergeometric probability distribution and the probability that no female
applicant is selected for the group of three finalists are therefore

P[S=s]= C(29,s)·C(21,3−s)

C(50,3)
and P[S=0]= C(29,0)·C(21,3)

C(50,3)
≈0.06786.

■

Question

5.3.8

Another example of a hypergeometric random variable is S = “the number of
Foodmerchant grocery stores that are profitable” when 20 Foodmerchant groceries
are randomly selected from the total of 70 chain locations of which 52 are
profitable.

(a) State the probability distribution formula for P[S = s].
(b) What is the probability that 19 or 20 of the selected stores are profitable?
(c) If three Foodmerchant stores have already been selected and are known to be

profitable, what is the probability that 17 stores randomly selected from the
remaining 67 locations identifies 16 or 17 profitable stores?

■

5.3.5 Continuous Random Variables

Continuous random variables differ markedly from discrete random variables, both
in their descriptions and in the mathematical structures used to model them. Discrete
random variables are usually defined as the number of some object, such as “the number
of cars traveling over the speed limit on a given stretch of highway,” or “how many in
a survey group were in favor of gun control,” or “the number of diabetics who have
properly controlled their weight.” In contrast, continuous random variables are usually
defined as the amount of some object, such as “the volume of paint remaining in a
gallon bucket,” or “the weight of a newborn baby,” or “the speed of an automobile
traveling a given stretch of highway.”

For a discrete random variable X, the probability distribution function P[X = x]
is the mathematical structure best-suited to analyzing X and providing insight into
its behavior. In contrast, probability distributions are useless for studying continuous
random variables; it turns out that any continuous X has P[X = x] = 0 for every possible
value x. Instead of studying them in terms of distribution functions, continuous random
variables are mathematically modeled in terms of density functions, which we
define below.

Definition

5.3.6

A probability density function f (x) is a real-valued, Riemann integrable
function with domain R that satisfies the properties:

• f (x) ≥ 0 for every x ∈ R;

•
∫ ∞
−∞

f (x) dx = 1.

A continuous random variable X is mathematically defined as having a corre-
sponding density function f (x) such that for every a, b ∈ R

P[a < X < b] =
∫ b

a
f (x) dx.
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a b x

f (x)

P [a<X<b]

Figure 5.6 The correspondence between P[a < X < b] and bounded area

For any value a ∈ R and any density function f (x),
∫ a

a f (x) dx = 0. We can therefore
always replace “<” by “≤” in the expression P[a < X < b]; in other words, for any
continuous random variable X,

P[a < X < b] = P[a ≤ X < b] = P[a < X ≤ b] = P[a ≤ X ≤ b].

In addition, since the definite integral of f equals the area bounded by the x-axis and
the integrand, Definition 5.3.6 links probabilities associated with continuous random
variables to the corresponding areas bounded by the density function’s curve. Figure 5.6
illustrates the relationship between probabilities and bounded areas.

In this way, the density function provides us with a mathematical framework
upon which to build a suitable model for continuous random variables. The profound
importance and usefulness of this model will become apparent as we explore its
mathematical properties in the rest of the chapter.

Just as mathematicians have identified various categories for discrete random
variables, there are also important categories of continuous random variables. Two of
the most important types of random variable are the uniform and the normal. As usual,
we define each of these random variables and develop insights into their behavior by
considering examples and questions.

5.3.6 Uniform Continuous Random Variables

Uniform random variables are important because of their relative simplicity – the
defining density functions for these random variables is constant over a given interval.
The probability density function for a uniform random variable X is of the form

f (x) =
{ 1

b−a if x ∈ [a, b]
0 otherwise.

Equivalently, we say that a random variable X is uniformly distributed over the interval
[a, b] if the corresponding density function is of this form. The corresponding graphical
presentation of the density function is illustrated in figure 5.7.

Example

5.3.12

In a proton accelerator, the projected distance between two protons in a “zone of
impact” is uniformly distributed in the interval [0, 90] (measured in microns). We
determine the probability that a camera image of two protons (taken in the zone
of impact) reveals protons between 20 and 40 microns apart.
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a b x

f (x)

1

(b-a)

Figure 5.7 The graph of a uniform random
variable

First, define the uniform random variable X = “the distance in question,” and
then calculate

P[20 < X < 40] =
∫ 40

20

1

90− 0
dx = x

90

]40

20
= 40− 20

90
= 2

9
≈ 0.22222.

■

Question

5.3.9

The final horizontal position (measured in feet from the center point) of a projectile
fired in a walled chamber 60 feet across is assumed to be uniformly distributed
in the interval [−30, 30]. Find the probability that a projectile will have a final
horizontal position that is within 10 feet of the target center point.

■

5.3.7 Normal Continuous Random Variables

Normal random variables are important because of their broad applicability—the
density function for a normal random variable is a “bell-shaped curve.” As a functional
expression, a normal random variable X has a density function of the form

f (x) = 1

σ
√

2π
· e−(x−μ)2/(2σ 2).

Here μ and σ > 0 are given constants, respectively called the mean and standard
deviation. Equivalently, we say that a random variable X is normally distributed with
mean μ and standard deviation σ . In addition, a normal density function is sometimes
called Gaussian in honor of the contributions made by Carl Freidrich Gauss to the
study of such functions. The normal density function f has a graphical representation
that is illustrated as a bell-shaped curve in figure 5.8.

Example

5.3.13

The weight of full-grown labrador retrievers is believed to be approximately
normally distributed with a mean of μ = 80 pounds and a standard deviation
of σ = 30. Suppose a labrador retriever is randomly selected from a registered

x

f (x)
Figure 5.8 The graph of a normal (or Gaussian)
random variable
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list of newborn pups. We determine the probability that the selected retriever will
eventually weigh between 75 and 90 pounds as an adult.

Set X = “the weight of an adult labrador retriever.” The desired probability
P[75 < X < 90]matches the area under the normal density function (with μ = 80
and σ = 30) and between x = 75 and x = 90. This area is found via the normal
density function integral as

P[75 < X < 90] =
∫ 90

75

1

30
√

2π
· e−(x−80)2/(2·302) dx ≈ 0.1967.

The approximate value of this integral was obtained by numerically estimating
the integral using a computing device, which we discuss below.

■

We will want and need to use computing devices to obtain numerical approxi-
mations for the integrals of normal density functions. We can find these values using
appropriate commands for the exponential function and for the numerical value of
an integral. Alternatively, the use of the normal distribution as a statistical model in
real-life settings has become so prevalent that many graphing calculators and computer
algebra systems include special commands for numerically approximating the normal
density function. We provide examples of several commands using the context provided
by example 5.3.13, where we calculated P[75 < X < 90] for μ = 80 and σ = 30.

System Command

TI-83 DISTR - normalcdf
normalcdf(75,90,80,30)

Maple [> with(stats):
[> statevalf[cdf,normald[80,30]](90) - statevalf[cdf,normald[80,30]](75);

Mathematica ]:<<Statistics ‘NormalDistribution’
]:CDF[NormalDistribution[80,30], 90] - CDF[NormalDistribution[80,30], 75]

When using computing devices to study the normal distribution, you should
consult the manual for your calculator or computer algebra system to determine
commands that return normal probabilities. Some systems return probabilities of the
form P[a ≤ X ≤ b] (as for the TI-83). Others return probabilities of the form P[X ≤ a]
(as for Maple); in this case, a desired probability P[a ≤ X ≤ b] is found by taking a
difference

P[a ≤ X ≤ b] = P[X ≤ b] − P[X ≤ a].
Drawing a picture of the probability as an area under the density function can help
you determine how to manipulate a probability algebraically; for example, since the
total area under the normal density is 1, a picture as in figure 5.9 quickly indicates that
P[X ≤ a] = 1− P[X > a].

Question

5.3.10

Consider the normal random variable X = “the average quarterly profit” that is
calculuted from 10 randomly selected quarterly profit/loss reports of Oilmark, a
Canadian sand oil distributer. Based on historical performance, the mean of this
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a a

1

= −

P [X > a]P [X < a]

Figure 5.9 An illustration of P[X ≤ a] = 1− P[X > a]

average profit (in millions) is μ = 1.2 with a standard deviation of σ = 0.15.
Assuming these values remain constant over time, what is the probability that 10
randomly selected quarters over the next many years of operation will have an
average between $1.3 and $1.5 million? In this setting, what is the probability of
such an average quarterly profit being above $1.5 million?

■

Many other important types of continuous random variables play a prominent
role in statistical models applied to real-life settings. Several important categories of
continuous random variables are the Exponential and Weibull distributions (useful
in engineering modeling problems), the Student’s t- and F- distributions (useful
in statistical analysis), and the Chi-square distribution (useful in analyzing risks
associated with life factors). We present some of these distributions in the exercises at
the end of this section.

5.3.8 Some Parameters for Statistics

Mathematicians approach a study of chance by means of experiments, defining random
variables to isolate important properties of interest. Statistics is the study of random
variables, analyzing the numbers assigned by random variables and seeking patterns
in data sets for past events (often as a means of predicting future events). In statistics,
mathematicians have isolated important values that help describe random variables.
Referred to as parameters, the two most important of these values are the mean and
standard deviation. We present the definitions of these parameters for both the discrete
and continuous cases.

Definition

5.3.7

If X is a random variable, then the “average” value of X is called the mean of
X and is denoted by μ; sometimes we refer to the mean as the expectation of X
and denote it by E[X]. For a discrete random variable X, the mean is defined by

a sum computed over each value x assigned by X: μ = E[X] =
∑

x · P[X = x].
For a continuous random variable X with corresponding density function f (x), the

mean is defined by an integral: μ = E[X] =
∫ ∞
−∞

x · f (x) dx.

The mean is the average value assigned by the random variable X. Many real-world
problems depend on the calculation of an average or are concerned with the magnitude
of an average. A simple example in the real estate business is the importance of an
average home price in a neighborhood. The use of definition 5.3.7 to calculate E[X] is
straightforward and is the topic of the next two questions.
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Figure 5.10 Different distributions
with μ = 3 2 3 4 2 3 4

Question

5.3.11

Consider an experiment of tossing a fair coin one time. Define a discrete random
variable X for this experiment by setting X = 0 if heads is tossed and X = 1 if
tails is tossed. Using the definition for the mean of a discrete random variable,
prove the mean of X is μ = 1/2.

■

Question

5.3.12

Use the definition for the mean of a continuous random variable and the formula
for a uniform density function to prove that a uniform random variable X on an
interval [a, b] has mean E[X] = (a+ b)/2.

■

The measure of the “average” or “central” value of a random variable as provided
by the mean gives us important insight into the behavior of the random variable.
Another important feature of random variables is how the outcomes of an experiment
are spread out around the mean. Figure 5.10 provides a visual presentation of two
discrete random variables with identical means, but with very different distributions.

The statistical parameter used to describe the way in which a random variable X
assigns values spread out around the mean is known as the standard deviation of X.
The next definition provides formulas for each of the discrete and continuous cases.

Definition

5.3.8

If X is a random variable, the standard deviation of X, which is denoted
by σ , provides a measurement of how much the values assigned by X differ
from the mean. For a discrete random variable X, the standard deviation is
defined as the square root of a sum computed over each value x assigned:

σ =
√∑

(x − μ)2 · P[X = x]. For a continuous random variable X with cor-

responding density function f (x), the standard deviation is defined as the square

root of an integral: σ =
√∫ ∞
−∞

(x − μ)2 · f (x) dx.

Question

5.3.13

Consider the experiment of tossing a fair coin one time. Define a discrete random
variable X for this experiment by setting X = 0 if heads is tossed and X = 1 if
tails is tossed. Using the definition for the standard deviation of a discrete random
variable, prove the standard deviation of X is σ = 1/2.

■

Question

5.3.14

Using the definition for the standard deviation of a continuous random variable,
prove that a uniform random variable X on an interval [a, b] has standard deviation
σ = (b− a)/

√
12.

■

The mean and standard deviation of a random variable are just two of the
statistical parameters that are used to develop an insight and an understanding of
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random variables. We hope that this glance at these parameters will motivate you
to continue an exploration of the mathematics of random variables in your later
studies.

5.3.9 Reading Questions for Section 5.3

1. Define and give an example of an experiment.
2. When is a finite experiment equiprobable? Give an example of such an

experiment.
3. Define and give an example of an event.
4. State the formula for the probability of an event A occurring as a result of a

finite, equiprobable experiment.
5. What is a discrete random variable? Give two examples of discrete random

variables—one finite and one infinite.
6. What is a probability distribution function for a discrete random variable?
7. What is a geometric random variable? Give an example of a real-life situation

generating a geometric random variable.
8. Define and give an example of a continuous random variable.
9. What is a density function for a continuous random variable?

10. What is a normal random variable? Give an example of a real-life situation
generating a normal random variable.

11. State the formulas for the mean and standard deviation of a discrete random
variable X.

12. State the formulas for the mean and standard deviation of a continuous random
variable X with density function f .

5.3.10 Exercises for Section 5.3

Exercises 1–10 consider the experiment of tossing three fair coins and recording the
resulting sequence of heads and tails.

1. Without listing the sample space S, compute the number of elements in S
using the appropriate combinatorial formula.

2. Identify the outcomes in the sample space S.
3. Identify the outcomes in the event A = “heads is tossed on the first coin.”
4. Determine the probability that heads is tossed on the first coin.
5. Identify the outcomes in the complementary event A′ for event A from

exercise 3.
6. Determine the probability of event A′ from exercise 4 in two different ways.
7. Identify the outcomes in the event B = “heads is never tossed.”
8. Identify the outcomes in the event C = “heads is tossed twice.”
9. Determine the probability of events B from exercise 7 and event C from

exercise 8.
10. Suppose this experiment is modified so that only the number of heads tossed is

recorded. State the corresponding sample space for this modified experiment.
Explain why this new experiment is no longer equiprobable.
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Exercises 11–18 consider an experiment in which researchers randomly select
participants in a medical study from a pool of 1,000 patients; in this pool 20 patients
have some symptoms of cardiovascular disease.

11. Find the total number of outcomes if 15 patients are selected for the study.
12. If 15 are selected, what is the probability that exactly two have cardiovascular

symptoms?
13. If 15 are selected, what is the probability that two or fewer have cardiovascular

symptoms?
14. If 15 are selected, what is the probability that more than two have cardio-

vascular symptoms?
15. Find the total number of outcomes if 30 patients are selected for the study.
16. If 30 are selected, what is the probability that exactly two have cardiovascular

symptoms?
17. If 30 are selected, what is the probability that two or fewer have cardiovascular

symptoms?
18. If 30 are selected, what is the probability that more than two have cardio-

vascular symptoms?

Exercises 19–23 consider an experiment in which seven horses are running a race and
two of the seven are fillies. Assume that each horse has an equal likelihood of winning
the race.

19. If someone randomly chooses a list of three horses to finish in first, second,
and third place, what is the probability the list is correct?

20. What is the probability that a filly finishes in first place?
21. If someone randomly chooses a set of three horses to finish in the top three,

what is the probability the set is correct?
22. What is the probability that exactly one filly finishes in the top three?
23. What is the probability that no filly finishes in the top three?

Exercises 24–27 consider the situation in which local law enforcement officers have
apprehended two suspects, Baker and Taylor, who are alleged to have robbed the First
Union Town Bank and Trust. The police invite an eyewitness to pick out the two
conspirators from a lineup of five people.

24. Determine the total number of ways that two people can be selected from a
line-up of five people.

25. If the eyewitness does not recognize any of the subjects and randomly chooses
two people from the lineup, what is the probability that both Baker and Taylor
are selected?

26. If the eyewitness randomly chooses two people from the line-up, what is the
probability that exactly one of Baker and Taylor is selected?

27. If the eyewitness randomly chooses two people from the line-up, what is the
probability that neither Baker nor Taylor is selected?

In exercises 28–34, define clearly a random variable that satisfies the stated criteria.
Verify that your definition identifies the value the random variable assigns to each
outcome of the given experiment. Note that there are many different correct answers
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to each exercise. For example, when defining a random variable X on the experiment
consisting of a person stepping on a scale, we can define X = “the person’s weight as
determined by the scale” or we can define X = 0 if the person weighs at most 100 lbs
and X = 1 if the person weighs more.

28. Define a random variable X on the experiment of rolling two dice. What value
does your random variable assign when the first die rolls one and the second
rolls four?

29. Define a random variable X on the experiment of rolling two dice, where X
assigns only even numbers. What value does your random variable assign
when the first die rolls one and the second rolls four?

30. Define a discrete random variable D on the experiment consisting of a person
running a 100 yard dash.

31. Define a continuous random variable Y on the experiment consisting of a
person running a 100 yard dash.

32. Define a discrete random variable C on the experiment consisting of a person
purchasing groceries at a check-out register, where the number of different
values that C could assign is countably infinite.

33. Define a finite random variable N on the sample space of drawing a card out of
a standard 52-card deck, where N can assign one of 13 different values. What
value does your random variable assign when the Ace of Spades is selected?

34. Define a random variable P on the sample space of an ornithologist surveying
for different species of birds in a local recreation area.

In exercises 35–49, find the identified probabilities for each random variable X.

35. If X is geometric with p = .65, find P[X = 10] and P[X 	= 10].
36. If X is geometric with p = .10, find P[X = 2] and P[X ≤ 2].

Hint: If X is geometric, then P[X ≤ 2] = P[X = 1] + P[X = 2].
37. If X is geometric with p = .25, find P[X = 1] and P[X ≤ 1].
38. If X is binomial with n = 12 and p = .40, find P[X = 10] and P[X 	= 10].
39. If X is binomial with n = 10 and p = .20, find P[X = 1] and P[X ≤ 1].

Hint: If X is binomial, then P[X ≤ 1] = P[X = 0] + P[X = 1].
40. If X is binomial with n = 20 and p = .10, find P[X = 2] and P[X ≤ 2].
41. If X is hypergeometric with n = 12, M = 20 and N = 10, find P[X = 10].
42. If X is hypergeometric with n = 3, M = 10 and N = 2, find P[X = 2].
43. If X is uniform with a = 0 and b = 4, find P[2 < X < 5] and P[2 ≤ X ≤ 5].
44. If X is uniform with a = 1 and b = 6, find P[X < 7] and P[2 ≤ X].
45. If X is uniform with a = 2 and b = 6, find P[−1 ≤ X < 5] and P[X = 3].
46. If X is normal with μ = 3 and σ = 1, find P[2 < X < 4] and P[2 < X < 5].

State explicitly the integral for the corresponding normal density function and
use a computing device to approximate these probabilities.

47. If Z is the standard normal random variable with μ = 0 and σ = 1, find
P[1 < Z < 2] and P[−2 < Z < −1]. State explicitly the integral for
the corresponding normal density function and use a computing device to
approximate these probabilities. What does your answer suggest about the
graph of the standard normal density function?
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48. Let X be a continuous random variable with the following density function

f (x) =
⎧⎨⎩

x if x ∈ [0, 1)
2− x if x ∈ [1, 2]
0 otherwise.

Prove that
∫∞
−∞ f (x) dx = 1 and find both P[0 < X < 1] and P[1/2 ≤

X < 3/2].
49. Let X be a continuous random variable with density function

f (x) =
{

e−x if x ≥ 0
0 if x < 0.

Prove that
∫∞
−∞ f (x) dx = 1 and find both P[X > 1] and P[−1 < X ≤ 2].

In exercises 50–53, find the probabilities associated with each real-life situation.

50. When rolling two dice, what is the probability of rolling “lucky seven,” where
the number of dots appearing on the dice sum to seven?

51. A state lottery Prosperity Pick 4 asks players to choose four distinct numbers
from 1 to 20, and then the state draws four such numbers from a random
process. If all four of a player’s numbers match the state’s, then the player
wins $10,000. If three numbers match, then the player wins $2,000. Let X be
the discrete random variable X =“the amount of winnings” for a single play
of the lottery. Find the values for P[X = 10, 000], P[X = 2, 000], and E[X].
Comparing the entrance fee against E[X], which equals the expected winnings,
would you be willing to play the lottery if it costs $5? What if it costs $2?

52. The accepted probability of Boris Stansky winning a game of chess against
Peter Similov is 2/3. Assuming that each game of chess is independent of any
previous game, what is the probability that Stansky will win at least three
games out of four played against Similov? Use the binomial distribution to
answer this question.

53. A machine that is put into service with the goal of filling paint cans to exactly
one gallon has an error, measuring the overfill (a positive error) or an underfill
(a negative error) for each can that is normally distributed with a mean of
1 gallon and a standard deviation of 0.001. Find the probability that the
machine will fill a randomly selected can with an amount of paint between
0.9995 gallons and 1.002 gallons.

In exercises 54–61, compute the mean μ and the standard deviation σ of each random
variable X; use the definitions given in this section.

54. A random variable X assigns only the values 1 and 2 with equal probability.
55. A discrete random variable X with P[X = 0] = 0.2, P[X = 1] = 0.3,

P[X = 2] = 0.1, and P[X = 3] = 0.4.
56. Adiscrete random variable X with the following probability distribution table:

x 0 1 2 3 4

P[X = x] 0.2 0.1 0.2 0.35 0.15
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57. Adiscrete random variable X with the following probability distribution table:

x 1/2 1 3/2 2 3 4

P[X = x] 0.3 0.2 0.1 0.1 0.1 0.2

58. Adiscrete random variable X with the following probability distribution table:

x −1 0 1 2 π 8.5
√

73

P[X = x] 0.15 0.25 0.1 0.2 0.15 0.05 0.1

59. The continuous random variable X with density function

f (x) =
⎧⎨⎩

x if x ∈ [0, 1)
2− x if x ∈ [1, 2]
0 otherwise

60. The exponential random variable X with density function:

f (x) =
{

e−x if x ≥ 0
0 if x < 0.

61. The continuous random variable X with density function:

f (x) =
⎧⎨⎩

2/3 if x ∈ [0, 1)
x2/7 if x ∈ [1, 2]
0 otherwise .

In exercises 62–66, prove each mathematical statement.

62. By the definition of mutually exclusive events, P[A′] = 1− P[A].
63. If c ∈ R, then E[cX] = c · E[X]. Hint: Prove this for both discrete and

continuous random variables.
64. If X and Y are both discrete or both continuous random variables, then

E[X + Y ] = E[X] + E[Y ].
65. If c ∈ R, then the standard deviation of cX is equal to the product of |c| and

the standard deviation of X; symbolically, we write σ(cX) = |c| · σX .
Hint: Prove this for both discrete and continuous random variables.

66. If the second moment of a continuous random variable is defined as

E[X2] =
∫ ∞
−∞

x2 · f (x) dx and if the variance of a random variable is defined

as Var[X] = σ 2 (that is, the square of the standard deviation), then

Var[X] =
∫ ∞
−∞

(x − μ)2 · f (x) dx = E[X2] − (E[X])2.

Exercises 67–70 consider the gamma function defined for x > 0 by

�(x) =
∫ ∞

0
tx−1e−t dt.
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The gamma function is often thought of as a generalization of factorials because when
x is a nonnegative integer n, �(n+ 1) = n!.
In exercises 67–70, evaluate the gamma function at each value; use a computing device
to approximate the corresponding integrals.

67. �(1)
68. �(2.5)

69. �(3.5)
70. �(10)

Exercises 71–74 consider the Student’s t-distribution. The random variable Tm with a
Student’s t-distribution has the following density function for −∞ < t <∞:

f (t) = �((m + 1)/2)√
mπ · �(m/2)

·
[

1+ t2

m

]−(m+1)/2

Note that the gamma function �(x) is defined for exercises 67–70. The parameter
m in this expression for Tm is called the random variable’s degrees of freedom.
The mean of Tm is μ = 0, and the standard deviation is σ = √m/(m − 2). The
graph of this density function is similar to the normal density function with μ = 0
and σ = 1, only the “bell-shape” is lower and wider. A probability P[a < Tm < b]
can be computed using a TI-83 with the command tcdf(a,b,m) accessed under
the DISTR menu. Computer algebra systems have similar commands in their
statistics libraries. Furthermore, since P[Tm > 12] ≈ 0 ≈ P[Tm < −12], we can
use the identities P[a < Tm < 12] ≈ P[Tm > a] and P[−12 < Tm < b] ≈ P[Tm < b]
when computing probabilities.

In exercises 71–74, find each probability.

71. P[−0.91 < T21 < 1.3]
72. P[T11 > 0.21]

73. P[T7 < 0.21]
74. P[T21 < −2.03]

5.4 Application: Statistical Inference and Hypothesis Testing

Many real-life situations require drawing valid conclusions and making decisions about
large groups of people or objects. Researchers often want to answer a question about
an entire group (or population) affected by an issue, but it is often impossible to have
information on every element of the population.

• Sometimes the population may be too large for a timely gathering of information.
For example, a national political consultant may want to understand how
150 million registered voters feel about the federal deficit vis-a-vis increased
taxation; it is impossible to survey the entire group in a reasonable period of
time at a reasonable cost.

• The population may be conceptually defined, rather then referring to an existing
group of people or objects. For example, if a camera manufacturer is interested in
determining the percentage of defective lenses produced in a particular factory,
the population in question is the group of all lenses, including those that may be
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produced in the future. In this way, an examination of the entire group is again
impossible, at least in time to contribute to a decision-making process.

• The population may be infinite, either considered as a conceptual notion or from
a practical perspective. For example, an astronomer may develop a conjecture
about the average apparent magnitude of the stars in our galaxy. The number of
stars in this population is so vast that a practical study would essentially need
to treat the population as infinite.

In these and many other real-world investigations, a researcher cannot collect data
for every element of the population. In such settings with only partial information
available, how might mathematics make a meaningful contribution?

In the 1940s, Sir Ronald Aylmer Fisher developed a decision-making process for
these (and other) settings based on probability theory. Essentially, this process (widely
known as hypothesis testing) is a model for inductive reasoning that uses data collected
on only a sample to draw statistical conclusion about the entire population. Just as the
mathematics of symbolic logic provided a framework to study rigorously the deductive
reasoning process of chapter 1, so does the mathematics of probability theory provide
a sound framework for inductive reasoning. This section describes how hypothesis
testing lies at the heart of rigorous inductive thought and decision-making, sometimes
referred to as inferential mathematics or statistical inference.

Fisher’s influence on the practice of statistics was enormous. He began his
professional career in 1919 as a lower-level statistician at a small agricultural station
in Hertfordshire, England. His brilliant understanding of the mathematical framework
behind statistics allowed him to develop guidelines for conducting experiments,
and he promoted the idea of randomization. During the next decade, he created a
process now known as analysis of variance and developed new statistical methods
in small sample analysis and other new statistical methods, such as “maximum
likelihood.” In 1925, he wrote his first book, Statistical Methods for Research Workers,
which almost instantly became the standard in the field. It was in this text that
Fisher introduced a standard “level of significance” of α = 0.05, which continues
in common use today. Fisher was by far the most influential statistician in the
twentieth century.

The process of statistical inference involves collecting data for only a sample—a
small portion of the population – and then extrapolating these representative results to
the population. This process has a number of specific and practical steps, beginning
with a researcher’s question. For example, a researcher might ask: What percentage
of voters would favor a five percent increase in taxation to control the federal deficit?
Should we expect a factory to produce an intolerable number of defective lenses?
Is the average apparent magnitude less than six (that is, the magnitude of a star just
visible to the human eye)? Not every question lends itself to an inferential study, but
a well-directed initial question kick-starts the process. By its very nature, the question
should focus attention on a population of interest, and therefore defines the population
to be studied. Successful research answers the question by collecting and analyzing
sample data.

Each step in the statistical inference process follows fixed guidelines, which
provide a mathematical framework for inductively determining an answer to the
question at hand. The next definition introduces this approach to inductive reasoning.
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Definition 5.4.1 Statistical inference consists of the following process.

1. Formulate a question that can ultimately be phrased in terms of a random
variable.

2. Identify the corresponding population; this is the group of objects to which the
random variable is applied.

3. Collect relevant data for a representative sample, using a random process to
eliminate problems such as bias.

4. Analyze the random variable’s statistical values for the sample, and use
hypothesis testing (as described below) to extrapolate the sample results and
answer the question about the entire population.

The first step of statistical inference involves the formulation of a question in terms
of a random variable. Since any random variable X assigns numbers to the outcomes of
an experiment, the question must be phrased in terms of a numerical value or some other
feature of X, such as its distribution. Sometimes this numerical value is a parameter,
which is a quantity that describes the random variable on the population. Two examples
of frequently studied parameters are the mean μ (the average value assigned by X) and
the proportion p of the population that is assigned a particular value by X.Alternatively,
the research question may ask about the distribution of X; for example, it might ask if
X is normal. Although the question need not explicitly identify the random variable,
the corresponding population, or the parameter in question, the process of statistical
inference requires that they be identified clearly. The next example examines the first
step in this process.

Example 5.4.1 We consider a researcher who asks, “What percentage of voters would favor a
five percent increase in taxes to control the federal deficit?” This question can be
phrased in terms of a random variable defined on an experiment: ask a registered
voter whether or not (s)he is in favor of a five percent tax increase to control the
deficit. Let X = 1 if the voter responds “Yes,” and X = 0 if “No.” The original
question is then equivalent to a question about the parameter p, which is the
proportion of time X assigns the value 1. For example, the researcher might ask,
“Is p > 0.50?” in an effort to gauge the preference of the majority. In this way, the
researcher’s original query is formulated in terms of a parameter and identifies a
random variable at the heart of the original research question.

■

The next question practices the formation of such inferential queries; there is a
“natural” random variable that can be defined in each real-world setting.

Question 5.4.1 For each research question, define a random variable with its corresponding
population and experiment, and then express the question in terms of the random
variable and an associated parameter.

(a) A high-tech company runs an analysis of its disk drive factory, which has
an acceptable tolerance level of fewer than 1/2 of a percent of defective
manufactured items. A quality control engineer asks, “Should the company
expect a collection of 500 newly manufactured disk drives to satisfy this
tolerance level?”
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(b) A biologist studying tropical fish asks, “Does the visual presence of a male
Mexican cichlid (Herichthys cyanoguttatus) increase the average food intake
of female Mexican cichlid?”

(c) A certain pain reliever is known to bring relief in an average of 3.5 minutes.
A pharmacist asks, “Is a new drug faster at providing relief from pain?”

■

Once a research question is phrased in terms of a random variable, and once the
corresponding population has been identified, the process of statistical inference directs
us to collect relevant data for a representative sample (or subset) of the population.
Samples must be chosen carefully. In the relatively simple settings we are studying
(where the question can be phrased in terms of a single random variable), a sample
of size n is often obtained by repeating the corresponding experiment n times. More
sophisticated models of statistical inference consider questions about multiple random
variables simultaneously. In such settings, the sampling procedures in these cases
require more careful control. But when the question at hand involves only one random
variable and is expressed in terms of a single parameter, the identification of a sample
is relatively straightforward, as formalized in the following definition.

Definition 5.4.2 A sample of size n is a subset of a random variable’s population formed by
repeating the associated experiment n times.

Repeating an experiment n times and recording the numbers the random variable
assigns produces a set of n numbers. This set of numbers is the desired representative
data set. Once a sample is formed, statistical inference proceeds to its next step, where
the random variable’s statistical values are analyzed. Hypothesis testing can extrapolate
the sample results and answer the question about the entire population. The following
example illustrates the construction of a sample.

Example 5.4.2 We consider a gambler who wonders if a coin is fair. For the experiment of tossing
the coin, she defines a random variable X = 1 if heads is tossed and X = 0 if tails
is tossed. The population is the set of all coin tosses (past, present, and future),
and a sample of any size n is formed by tossing the coin n times and recording the
value X = 0 or X = 1 for each toss.

■

Question 5.4.2 In parallel to the work in example 5.4.2, describe the first three steps in the
statistical inference process for the Chevalier, who is interested in determining
whether a pair of dice rolls double-sixes in a fair way.

■

At times, the population exists as a real entity; in question 5.4.1 the populations
under study are disk drives, fish, and patients in pain. In such settings, the sample
must be representative, and we must be careful to avoid lurking variables – additional
features that are not shared by the entire population and that influence the analysis. For
example, if a researcher is studying the average weight of 12-year-olds, then lurking
variables result from surveying only males (or only females), or only children living in
urban areas, or only children with access to email, or only children attending a particular
elementary school. A famous historical example of lurking variables affecting a survey
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occurred when the Chicago Tribune incorrectly forecast that Thomas Dewey would
defeat Harry S. Truman in the 1944 presidential election. The forecast was based on a
telephone survey at a time when telephones were a luxury, and apparently people with
phones (and more disposable income) were inclined to vote for Dewey.

Question 5.4.3 Working in the context of example 5.4.1, a researcher asks registered voters
whether or not they are in favor of a five percent tax increase to control the
deficit. Describe a poorly designed selection process for survey participants that
might introduce a lurking variable into the analysis.

■

Arandom selection process is an important tool to avoid both lurking variables and
unintended bias when choosing the sample. For example, suppose a student running for
class president wonders how many of her 1,100 classmates agree that their university
should freeze tuition hikes. Using the experiment of surveying classmates on this issue,
she defines a random variable X = 1 if a classmate agrees and X = 0 if a classmate
disagrees. The corresponding population is the set of all her classmates, but which
classmates should be selected for a representative sample of survey participants?

To guaranteeing an unbiased sample in such settings, select the classmates by
a random process. Many computing devices are programmed with “random number
generators”; the commands for some are provided below. The candidate for class
president can identify a sample by first assigning a number from 1 to 1,100 to each of
her classmates. A computing device can then generate a random number between 0 and
1, which is then multiplied by 1,100 and rounded up. This method produces a random
value between 1 and 1,100, and the classmate with this number is added to the sample.
A classmate should only be chosen once (we wouldn’t want to survey the same person
multiple times); if the same random number is generated twice, simply toss it out the
second time and use the next generated number. Continue in this fashion until a sample
of the desired size n is identified. Some commands for generating random numbers
are listed in the following table. The Maple command returns n random numbers.

System Command

TI-83 MATH, PRB, rand

Maple [>with(stats):
[>stats[random, uniform](n);

Mathematica ]:= Random[ ]

Question 5.4.4 Using a computing device, randomly produce a list of five numbers.
■

Question 5.4.5 Describe a procedure for constructing a representative sample for each scenario.

(a) A RISK player wonders if a game die really does “roll a one” one-sixth of
the time.

(b) A medical doctor wonders if existing juvenile diabetics lost more than
five percent of their bodyweight at the initial onset of the illness.
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(c) A medical doctor wonders if a newly diagnosed juvenile diabetic under her
care should be expected to lose more than five percent of his bodyweight at
the initial onsent of the illness.

■

We now focus on the last step of statistical inference, which uses hypothesis
testing to answer researchers’ questions. In this setting, possible answers are referred
to as hypotheses. We test a first hypothesis against a second hypothesis, and decide
whether or not to reject the first in favor of the second. As described below, hypothesis
testing relies on the calculation of a probability, called the P-value. The P-value is
the probability of an “observation” occurring. The observation is typically a statistical
value obtained on a sample. We formally outline the process of Hypothesis Testing
and then focus on developing a familiarity with it.

Hypothesis Testing
This process decides between two statements after making an observation. The
statements are formulated as a null-hypothesis H0 and an alternative hypothesis
Ha (often as logical complements of one another).

• Step 1. Assume the null-hypothesis H0 is true.
• Step 2. Based on this assumption, calculate the probability of the obser-

vation occurring. This probability is called the P-value; the observation is
often a statistical value obtained on a representative sample.

• Step 3. If the P-value from Step 2 is low, reject the null hypothesis and
conclude the alternative hypothesis Ha is true. If the P-value is high, do
not reject H0. The distinction between low and high P-values is based on
a comparison against a predetermined significance level that is commonly
denoted by α (the Greek letter “alpha”).

■

The decision made in hypothesis testing depends on the comparative sizes of
the P-value and the significance level α. In statistics, there is no single standard for
a numerical choice of α. Sir Ronald Fisher first articulated the hypothesis testing
process, and he suggested that an appropriate benchmark is the five-percent level; in
other words, reject the null hypothesis when the P-value is less than α = 0.05.

In practice, the significance level used in a given setting depends on the
repercussions of rejecting the null hypothesis. If researchers need to be very sure of
a hypothesis test’s conclusions, then they use a correspondingly smaller significance
level (such as α = 0.01 or α = 0.005). For example, hypothesis tests studying the
failure rate of gaskets would use a different level of significance for gaskets used in a
lawn mowers versus gaskets used in a nuclear power plant. Unless otherwise stated,
we will follow Fisher’s convention and use α = 0.05.

In addition, researchers should be careful to determine the significance level
for a hypothesis test before implementing the test. Choosing it instead after the
computation of the P-value can compromise its value as an independent benchmark
level, which would leave the procedure open to criticism—the researcher could be
accused of adjusting the selection of α to obtain a desired conclusion. In this way,
a hypothesis test is conducted with integrity when a significance level is selected
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in advance. Many researchers follow a standard practice of comparing the P-value
against α = 0.05, α = 0.01, or α = 0.001; a small P-value in each case is respectively
deemed significant, very significant, or highly significant.

The next example demonstrates the complete process of statistical inference.

Example 5.4.3 An accounting firm checks the accuracy of a company’s records, which contains 13
inaccurate accounts out of a total of 50. Because of time constraints, the accounting
firm can only audit eight of the 50 accounts. The company supplies the accounting
firm with eight “randomly selected” accounts. However none of the eight accounts
contain inaccuracies. In light of this information, an investigator asks, “Is it true
that the company randomly selected the eight accounts to be audited, or did the
company purposefully supply only accurate accounts?”

We use statistical inference to answer the investigator’s question, commenting
on each step of the process.

1. The experiment selects one of the company’s 50 records to be audited; define
a random variable X = 1 if the record is accurate, and X = 0 if not.

2. The population of this experiment is the set of all 50 records.
3. A sample of size n = 8 was taken (as described above), and the company

claimed that the sample was randomly selected. The sample contained only
accurate records, producing X = 1 for every element of the sample. The
“observation” made about the random variable is thus {1, 1, 1, 1, 1, 1, 1, 1}.

4. Now perform a hypothesis test using the significance level α = 0.05.

• Step 1: State the null hypothesis H0 and the alternative hypotheses Ha.
The two choices for the hypotheses are: “the selection of accounts was
random” and “the selection of accounts was not random,” which are
phrased as H0 and Ha.

H0: The selection of the accounts was random.
Ha: The selection of the accounts was not random.

We’ll say more below about the choice of “The selection of the accounts
was random” as the null hypothesis. Following the guidelines in Step 1,
assume that the null hypothesis is true; i.e., that the selection of the
accounts was random.

• Step 2: Based on this assumption, calculate the corresponding P-value
(that is, probability of the observation occurring).
Since there are 37 accurate accounts in the collection of 50 accounts, the
probability that the company randomly selected eight accurate accounts
is equal to

P-value = C(37, 8)

C(50, 8)
= 0.0719.

You can see how the assumption and the observation both played a role
in the calculation of the P-value: the assumption guarantees randomness,
and the observation is the event of selecting eight accurate records.

• Step 3: Base the decision to reject or not reject the null hypothesis H0

on the relative size of the P-value and the significance level α.
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In this case, the P-value is 0.0719, which is greater than α = 0.05. We
therefore do not reject the null hypothesis. Although there appears to
be some evidence that the company selected only accurate files, this
evidence is not strong enough at the five-percent significance level to
reject the assumption that the company randomly selected the accounts
to be audited.

■

Hypothesis testing depends on an ability to calculate the P-value, which must
be done in terms of an observation and an assumption. The observation is based
on the sample identified in the third step of the statistical inference process. The
assumption is phrased as H0. In example 5.4.3 the probability of the observation
occurring (that is, the probability that every selected account is accurate) is calculated
under the assumption as “the probability of randomly selecting a sample of size eight
and obtaining {1, 1, 1, 1, 1, 1, 1, 1} as the outcome.” In practice, researchers must
phrase both the null hypothesis and the observation in such a way as to allow for the
computation of the P-value.

Question 5.4.6 Working in the context of example 5.4.3, state the outcome of the investigation
under the following significance levels.

(a) α = 0.01 (b) α = 0.10
■

Question 5.4.6 demonstrates the importance of a researcher predetermining the
significance level before computing the P-value: different significance levels can
produce different results for the same observation.

Question 5.4.7 A judge wonders if a company followed Equal Opportunity Employer guidelines
when narrowing a field of 20 female applicants and 35 male applicants to a
pool of five final candidates, all of whom were male. Assuming the applicants
were all equally qualified for the position, use statistical inference to conclude
whether or not there was bias in the selection process. Use the significance
level α = 0.05.

■

The formation of the P-value depends upon the phrasing of the observation. In
general, we frame the statistical evidence in the sample so that it includes all sample
statistic values that provide evidence toward the alternative hypothesis.

The point is that we have some freedom in how we formulate the observation.
For example, suppose that question 5.4.7 had discussed a scenario where the pool of
five final candidates contained four males (rather than five). This observation can be
expressed in terms of what happened on the sample of five in at least two different
ways: as Y = 4 (where Y = “the number of males in the pool of five candidates”)
or as Y ≥ 4. The second formulation Y ≥ 4 also includes the situation where all five
of the final candidates are males, which would intuitively lend even more evidence
toward the alternative hypothesis that “there was bias toward males in the selection
process.”
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Succinctly put, use the following principle whenever forming the observation:

When framing the observation in terms of a sample statistic, include any
value of the statistic that lends additional evidence toward the alternative
hypothesis.

Aresearcher using a hypothesis test will sometimes make a mistake, either rejecting
the null hypothesis when it is true, or deciding not to reject H0 when it is false. In
statistical circles, the first type of mistake is called a Type I error, and the second is
called a Type II error. In practice, the researcher should always establish H0 and Ha so
that a Type I error is the more serious of the two. This structure is analogous to many
important real-life decisions. For example, a jury choosing between guilt and innocence
can make two types of mistakes: convicting an innocent person, or declaring innocent
someone who committed a crime. Most people would agree that the first mistake is
the more serious error; by formulating a corresponding null hypothesis as “H0: the
accused is innocent,” a researcher would be establishing the test’s Type I error as this
more serious mistake.

5.4.1 The Central Limit Theorem

In many statistical tests, the calculation of the P-value is difficult without powerful
probabilistic theorems. In most practical situations, the hypotheses are written in terms
of a random variable’s parameter (such as a mean or standard deviation) or in terms of
a parameter for multiple random variables (such as a difference of means). But if the
value of a parameter is unknown, then the random variable’s distribution will surely
also be unknown. And so it will be impossible to calculate a P-value if that calculation
is based on this distribution.

Fortunately, mathematical theory exists to help us resolve this mathematical dead
end. There are several powerful theorems that describe the probabilistic behavior of
samples (regardless of the random variable’s distribution) and enable a computation
of the corresponding P-value. Each is suited to a particular type of hypothesis test;
a full course in statistics would show how to employ several of these theorems. We
focus on one of the most important and useful results—the central limit theorem. This
theorem describes the probability distribution for a value called the sample mean,
which is symbolically denoted X and defined as the average value of the data in the
sample. The central limit theorem considers X as a random variable, defined on the
experiment of collecting a sample of given size n, and states that when n is large, X
is normally distributed. In this way, the central limit theorem enables the calculation
of P-values involving an observation about a sample mean. We formally define the
notion of a sample mean, consider an example, and then focus on the central limit
theorem.

Definition 5.4.3 If X = {X1, X2, . . . , Xn} is a sample of size n, then the sample mean X is the
average of the sample values; symbolically, we define

X = 1

n
·

n∑
i=1

Xi = X1 + X2 + · · · + Xn

n
.
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Most people are familiar with the notion of a sample mean. It is simply the average
of the numbers in a sample. Means such as the average exam grade for a class of
10 students, the average total rainfall for 10 months on record, and the average high
temperature recorded for a collection of 10 days are all examples of a sample mean
defined on samples of size n = 10. It’s important to realize that a random variable’s
sample mean X is a completely different object than the population mean μ. The first is
defined on a sample and can change depending on the choice of the sample, while the
second is a fixed value defined probabilistically (as in definition 5.3.7 of section 5.3)
on the population.

Question 5.4.8 A student at My University is interested in knowing the mean grade point average
of graduating seniors. For confidentiality reasons, she does not have access to
the grade point average of every senior, and so she conducts several surveys in an
effort to estimate the population mean. Compute the sample mean for each survey.

(a) { 2.44, 2.98, 3.15 }
(b) { 2.01, 2.33, 2.68, 3.01 }

(c) { 2.22, 2.99, 3.14, 3.50, 3.75 }
(d) { 3.33, 3.89, 3.96 }

■

As you might expect, different samples of the same population often have
different sample means; the sample means computed in question 5.4.8 illustrate this
phenomenon. The central limit theorem provides important insight into the statistical
behavior of the sample mean, as it considers the sample mean as a random variable.
In particular, given any underlying random variable X, the experiment of selecting a
random sample of size n from the population of outcomes for X determines the sample
mean random variable Xn. We define Xn = “ the mean of a randomly selected sample of
size n.” The central limit theorem asserts that for large enough n, the random variable
Xn is normally distributed, no matter what the probability distribution of the underlying
random variable X. We present this important result as the following theorem.

Theorem 5.4.1 The central limit theorem Let X be a random variable with mean μ and standard
deviation σ . For each n ∈ N, define a random variable Xn as the sample mean
(that corresponds to the experiment of selecting a random sample of size n for X).
No matter what distribution X has, the probability distribution of Xn is normal in
the limit:

lim
n→∞P[a ≤ Xn ≤ b] =

∫ b

a

1

(σ/
√

n) · √2π
· e−

(x−μ)2

2(σ/
√

n)2 dx.

Furthermore, Xn has mean equal to μ (the mean of X) and standard deviation
equal to σ/

√
n (the standard deviation σ of X divided by the square root of the

sample size).

The proof of this theorem is sophisticated and interesting, but it is also beyond the
scope of this text and left for later studies. We instead focus on applying the central
limit theorem in the statistical inference process.

The central limit theorem is especially useful in tests having hypotheses phrased
in terms of an unknown population mean μ and when the observation is expressed
in terms of a sample mean X on samples with large size n. Such a test is called a
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large sample test on the mean. In light of the central limit theorem, the P-value for the
corresponding observation can be calculated; it is approximately a probability about a
normal random variable X (assuming the sample size n is sufficiently large).

The central limit theorem implies that the approximation of the P-value becomes
more accurate as the sample size n increases. The standard benchmark for a “sufficiently
large” sample size is n = 30; unless the original random variable X is extraordinarily
lopsided or has a very oddly shaped distribution or density, the sample mean for samples
of size n ≥ 30 is approximately normal.

Most standard tests phrase the null hypothesis H0 in terms of given parameter
equaling a specific value. A common example is a test on the mean, such as
H0: μ = −10. When the null hypothesis has this form, there are three possible options
for the alternative hypothesis:

• Ha: the parameter is less than a specified value (for example, Ha: μ < −10);
this format is commonly called a left-tailed test;

• Ha: the parameter is greater than the specified value (for example, Ha: μ >−10);
this format is commonly called a right-tailed test;

• Ha: the parameter is not equal to the specified value (for example, Ha: μ 	= −10);
this format is commonly called a two-tailed test.

The form of the alternative hypothesis plays a crucial role in determining the
structure of the corresponding P-value. The general rule of thumb is that the inequality
in the format of the P-value points the same way as that in the one-tailed alternative
hypothesis, and the P-value is doubled for the two-tailed test. The next example
illustrates this structure.

Example 5.4.4 Continuing to work with the example of a null hypothesis of the form H0: μ=−10,
we consider scenarios that correspond to calculated values of the sample mean,
and we identify the format of the P-value for each possible alternative hypothesis.

• Suppose that a random sample has a sample mean of X = −12. For the left-tailed
test with Ha: μ < −10, the P-value is P[X ≤ −12].

• Suppose that a random sample has a sample mean of X = −4. For the right-tailed
test with Ha: μ > −10, the P-value is P[X ≥ −4];

• Suppose that a random sample has a sample mean of X = 2. For the two-tailed
test with Ha: μ 	= −10, the P-value is 2 · P[X ≥ 2].

■

Any hypothesis test in terms of a parameter (such as μ) should be set up so that
the alternative hypothesis has a left-tailed, right-tailed, or two-tailed format. The null
hypothesis may first be structured as the parameter equaling a specified value, such as
H0: μ = −10. A statistician should then always formulate the alternative hypothesis
so that it is supported by the evidence provided in the sample. For example, it would
make little sense to formulate a right-tailed alternative hypothesis as Ha: μ > −10
when a large random sample had X = −150; there is no way that a test would support
a population mean larger than −10 when the sample mean is less than −10.

Besides requiring the sample evidence to support the result, the formation and
choice of Ha should set up a Type I error as being more serious than a Type II.
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The alternative hypothesis should also be of a form that makes good conclusive sense.
For example, a researcher worried about global warming raising the average global
temperature above 50 degrees Fahrenheit would construct the alternative hypothesis
as Ha : μ > 50 rather than the two-tailed Ha : μ 	= 50. On the other hand, a quality
controller studying if an assembly line machine has an average output quantity different
from the standard average of 100 grams would typically formulate the alternative
hypothesis in a two-tailed structure, using Ha : μ 	= 100. As indicated by the next
question, the P-value for a test on the mean follows from the sample mean and the
formulation of the hypotheses.

Question 5.4.9 Suppose a hypothesis test on the mean has a null hypothesis H0: μ = 2 and
that a random sample of size 40 has a sample mean of X = 3 and standard
deviation 7. Identify the P-value for the right-tailed and two-tailed test as in
example 5.4.4.

■

We now consider the application of the central limit theorem in a specific
hypothesis test on the mean.

Example 5.4.5 A psychologist wonders if the mental states of clinically depressed patients would
be significantly improved by an exercise regimen of at least 30 minutes of walking
or jogging every day. She identifies significant improvement with an average
decrease of more than 10 points in the patient’s score on the Goldberg Depression
Psychological Test. To test this theory, she randomly selects 45 clinically depressed
patients with a Goldberg score of at least 36 (the cutoff level for a moderate chance
of depression). Suppose that after four weeks of daily, controlled workouts, each
patient is retested, indicating an average decrease in their Goldberg scores of 11
points with an estimated standard deviation of 3.1. Based on these results, can
the psychologist extrapolate the average reduction of more than 10 points to all
clinically depressed patients? As usual, use a significance level of α = 0.05 for
this hypothesis test.

The psychologist’s expectation of an average decrease of more than 10 points
in a patient’s Goldberg score can be phrased in terms of a hypothesis test on the
mean. For the experiment of determining a clinically depressed patient’s Goldberg
score before and after the four-week exercise regimen, define the random variable
X = “the change in a patient’s Goldberg score.” The psychologist’s question can
then be formulated as a choice between the two hypotheses H0: μ = −10 and Ha:
μ < −10.

In this setting, a negative mean indicates an average decrease in the score. The
null hypothesis H0: μ = −10 has the standard format for a test on the mean, and
the alternative hypothesis Ha: μ < −10 is supported by the evidence provided on
the sample; since the sample average X = −11 is less than −10, it is reasonable
to conjecture that the population mean is also less than −10. Notice the form of
the alternative hypothesis Ha: μ < −10 is for a left-tailed test.

Because the psychologist obtained a sample mean of X = −11, the P-value
is equal to P[X ≤ −11]. This form of the P-value matches that of a left-tailed test
with alternative hypothesis Ha: μ < −10. Since the sample size n = 45 is greater
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than 30, the central limit theorem applies with n = 45, μ = −10, and σ = 3.1,
obtaining

P-value = P[X ≤ −11] ≈
∫ −11

−∞
1

(3.1/
√

45) · √2π
· e−

(x+10)2

2(3.1/
√

45)2 dx ≈ 0.0152.

Acomputing device can provide the final value in the calculation; useful commands
for such a calculation are listed in a chart at the end of section 5.3. If the computing
device used cannot manage the lower limit of−∞, then you may (by convention)
substitute any value that is outside of four standard deviations from the mean. In
this example, μ− 4(σ/

√
n) = −10− 4 · 3.1/

√
45 ≈ −10− 1.85 ≈ −12, and so

it is appropriate to substitute −12 for −∞ when using a computing device.
Since the P-value is less than 0.05, we reject the null hypothesis and adopt

the alternative hypothesis. And so (in this imaginary scenario), the psycholo-
gist’s supposition was correct: a daily exercise regimen produces an average
decrease of more than 10 points in the Goldberg score of clinically depressed
patients.

■

Question 5.4.10 An automobile manufacturer conjectures that the mean mileage per gallon of one
of its cars exceeds the mean EPA rating of 43 miles per gallon. A random sample of
40 cars produces a mean of 43.6 and a standard deviation of 1.3 miles per gallon.
Is the company’s conjecture correct?

■

Question 5.4.11 A machine is supposed to produce bolts with a mean length of 1 inch. A sample of
40 bolts has a mean of 1.02 inches and a standard deviation of 0.07 inches. Does
this provide evidence to indicate that the machine is producing bolts with a mean
length different from 1 inch?

■

The central limit theorem is one of several theorems that help calculate a P-value
when a random variable’s underlying probability distribution is unknown. Similar
results exist for processes involving a small sample size (n < 30), or when many
random variables’ means are being compared against one another, or when the test
studies the number of recurrences of categorized events. Such theorems and their
applications are discussed in any statistics course, including introductory courses
that require almost no mathematical prerequisites. Their proofs (including the proof
of the central limit theorem) are described in both advanced undergraduate and
graduate statistics courses. Theoretical statistics remains an active area of research,
as mathematicians continue to develop new insights to handle inference procedures in
increasingly advanced settings. We hope you might be interested in learning about this
theory and studying more topics in mathematical statistics.

Because the process of statistical inference uses inductive reasoning (rather than
deductive), its hypothesis test conclusions are never absolutely proven (independent
of a corresponding deductive proof of the result). However, because it is rooted in
sound mathematical principle, the statistical inference process is one of the most useful
methods for exploring and understanding the variable nature of the world in which
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we live. Statistical inference allows us to extrapolate from a relatively small sample to
an entire population, providing insight into how various aspects of our world influence
us and one another. In this sense, the application of statistical inference and hypothesis
testing is far reaching and important in our lives.

5.4.2 Reading Questions for Section 5.4

1. Define and give an example of a population and a sample. What motivates
the study of samples rather than entire populations?

2. What are the four steps in the process of statistical inference?
3. Define and give an example of a parameter. What role do parameters play in

the development of research questions?
4. Give an example of a sample that suffers from lurking variables and a sample

that suffers from bias. How do we avoid such issues when selecting samples?
5. What is a hypothesis? Discuss the distinction between the null and alternative

hypotheses in the hypothesis testing process.
6. What is a P-value?
7. State the three steps in the process of hypothesis testing.
8. Define the significance level α for a hypothesis test. What is the standard

significance level used in most hypothesis tests?
9. Define Type I and Type II errors and give an example.

10. Define and give an example of a sample mean.
11. State the central limit theorem. How is this result helpful for statistical

inference?
12. In a hypothesis test on the mean, how does the P-value depend on the form

of the alternative hypothesis?

5.4.3 Exercises for Section 5.4

In exercises 1–8, define a random variable for each question with a corresponding
population and experiment, and then express the question in terms of the random
variable and an associated parameter.

1. A dietician is concerned about how much students are eating for lunch and
asks, “Is the average student consuming more than 1,000 calories at lunch in
the school cafeteria?”

2. An economist is studying the local economy and wonders, “What percentage
of adults earn an annual income in excess of $100,000 per year?”

3. An archeological anthropologist is studying whether a severe drought may
have caused the collapse of an ancient civilization and asks, “Does the soil in
the region from the time of the collapse contain a severely small amount of
moisture?”

4. A software developer has created a game-theoretic computer program to
facilitate divorced couples’division of belongings and asks, “Does each party
believe they have obtained at least 70 percent of the objects they originally
wanted?”
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5. The director of Information Technology wonders, “How much time does a
typical student spend working on college-owned computers in the various
labs around campus?”

6. A medical researcher asks, “Will a rare disease strike an average of 10 times
per million people each year?”

7. A physicist wonders, “Does a mu-proton (a type of sub-atomic particle) pass
through a particular chamber on average once every 10 days?”

8. An investor in the tourist industry asks, “Does a typical family take more than
one family vacation each year to a destination at least 500 miles away from
home?”

In exercises 9–13, identify the population whose properties are studied by each random
variable.

9. X = “the late arrival time (in minutes) for States Airline on a flight from
New York to Chicago”; the researcher sets X = 0 if the plane arrives early or
on time.

10. X = “the amount of rainfall in one day in Washington, DC.”
11. X = “the amount of tar present in a Horse and Rider cigarette.”
12. X = “the miles per gallon consumed by a Sunburst automobile when the car

is driven 500 miles over a controlled route.”
13. X = “the average grade point average of high school seniors.”

In exercises 14–19 use a computing device to identify a random sample of the given
size from the following data set identifying the number of books read by 24 graders in
fulfilling a reading challenge. In addition, compute the sample mean X and compare
X with the population mean μ = 49.

Student 1 2 3 4 5 6 7 8 9 10 11 12

Books read 10 12 15 15 16 17 19 19 21 28 32 32

Student 13 14 15 16 17 18 19 20 21 22 23 24

Books read 32 34 35 38 38 52 64 75 80 160 162 170

14. A random sample of size n = 4.
15. A random sample of size n = 6.
16. A random sample of size n = 8.

17. A random sample of size n = 10.
18. A random sample of size n = 12.
19. A random sample of size n = 14.

In exercises 20–25, perform a hypothesis test on H0: “the selection process is random”
against Ha: “the selection process is not random” with a significance level of α = 0.05
to determine if a company followed Equal Opportunity Employer guidelines requiring
a random selection process to narrow each given collection of equally qualified
candidates to a pool of four final candidates.

20. A field of 45 female and five male applicants to a pool of all male candidates.
21. Afield of 45 female and five male applicants to a pool of all female candidates.
22. A field of 25 female and 25 male applicants to a pool of all male candidates.
23. A field of 25 female and 25 male applicants to a pool of all female candidates.
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24. A field of five female and 45 male applicants to a pool of all male candidates.
25. Afield of five female and 45 male applicants to a pool of all female candidates.

Exercises 26–35 use a hypothesis test to assess whether or not a selection process is
random. A jar contains 50 colored balls, of which 30 are red and 20 are green. Perform
the hypothesis test on H0: “the selection process is random” against Ha: “the selection
process is biased toward selecting red balls” with significance level α = 0.05 for each
selection (without replacement) of balls from the jar.

26. Five balls, five of which are red.
27. Six balls, five of which are red.
28. Three balls, three of which are red.
29. Eight balls, two of which are red.
30. 10 balls, five of which are red.

31. Seven balls, five of which are red.
32. 16 balls, one of which is red.
33. 15 balls, 13 of which are red.
34. 15 balls, 10 of which are red.
35. 20 balls, none of which are red.

In exercises 36–40, explicitly work through each of the four steps of the statistical
inference process, including a hypothesis test in Step 4 with significance level α = 0.05;
example 5.4.3 may serve as a helpful model for these exercises.

36. An accounting firm checks the accuracy of a company’s records, which
contains 15 inaccurate accounts out of a total of 45. Because of time
constraints, the accounting firm can only audit six of the 45 accounts. The
company supplies the accounting firm with six “randomly selected” accounts.
However, all six of the supplied accounts contain no inaccuracies. In light of
this information, an investigator asks, “Is it true that the company randomly
selected the six accounts to be audited, or did the company purposefully supply
only accurate accounts?”

37. A travel agent assures his manager that, from his current pool of 60 potential
customers, 40 will purchase an agency trip and 20 will make arrangements
elsewhere or not go on vacation at all. In a subsequent review, the manager
observes that out a randomly selected set of four from the pool of 60,
none of four purchased an agency trip. In light of this information, was
the travel agent’s assumption reasonable, or should the estimate of 40 have
been lower?

38. A travel agent assures her manager that, from her current pool of 50 potential
customers, 34 will purchase an agency trip and 16 will make arrangements
elsewhere or not go on vacation at all. In a subsequent review, the manager
observes that out a randomly selected set of five from the pool of 50, two
of five purchased an agency trip. In light of this information, was the travel
agent’s assumption reasonable, or should the estimate of 34 have been lower?

39. Responding to a tip that a large percentage of a company’s specially manu-
factured machine bolts are defective, an inspector examines the company’s
inventory of 10, 000 bolts. Due to time constraints, the inspector initially
examines only 200 bolts randomly selected by the company. The inspector
finds that 199 of these bolts are perfect, and starts to wonder if they really
were randomly selected. A subsequent test of all the bolts finds 530 defective
bolts. Determine the validity of the company’s claim that the original set of
200 bolts was randomly selected.
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40. In a Pick ’em and Win game, a casino advertises that a basket contains 100
blue chips, 10 white chips, nine red chips, and nine green chips. A contestant
selects five chips from the basket (without replacement) and wins if any chip
is white or green. After playing once, a contestant selects five chips that are
blue and red. Determine if the casino’s advertisement about the contents of
the basket is accurate.

In exercises 41–48, assume that a hypothesis test on the mean has a null hypothesis
H0: μ = 22, that σ = 1.5, and that the sample size is n = 40. Identify the P-value
for the given mean for the two-tailed test and the appropriate one-tailed test using a
significance level of α = 0.01.

41. X = 20.5
42. X = 23.5

43. X = 22.1
44. X = 24

45. X = 25
46. X = 21.8

47. X = 21.5
48. X = 22.5

In exercises 49–54, determine whether or not to reject the given null hypothesis in
each hypothesis test on the mean using first a significance level of α = 0.05 and then
a significance level of α = 0.01.

49. For H0: μ = 0 and Ha: μ > 0, a random sample of size n = 34 from a
population with a standard deviation of σ = 15 has a sample mean of X = 5.

50. For H0: μ = 2 and Ha: μ > 2, a random sample of size n = 44 from a
population with a standard deviation of σ = 1 has a sample mean of X = 3.

51. For H0: μ = 5 and Ha: μ < 5, a random sample of size n = 60 from a
population with a standard deviation of σ = 2 has a sample mean of X = 3.

52. For H0: μ = 80 and Ha: μ < 80, a random sample of size n = 45 from a
population with a standard deviation of σ = 11 has a sample mean of X = 78.

53. For H0: μ = 5 and Ha: μ 	= 5, a random sample of size n = 60 from a
population with a standard deviation of σ = 9 has a sample mean of X = 3.

54. For H0: μ = 50 and Ha: μ 	= 50, a random sample of size n = 49 from a
population with a standard deviation of σ = 15 has a sample mean of X = 53.

In exercises 55–60, determine whether or not to reject the given null hypothesis in
each hypothesis test on the mean using a significance level of α = 0.05

55. A consumer advocate group is concerned that a chain of restaurants is selling
“quarter pounders” that weigh less than the advertised weight. In a test of
H0: μ = 4 against Ha: μ < 4, a random sample of 34 burgers is found to
have an average weight of only 3.75 ounces with a standard deviation of
0.12 ounces. Should the advocate group conclude that the population average
is less than 4 ounces?

56. A pediatrician randomly samples 95 twelve-year-old boys and finds that their
average height is 57 inches with a standard deviation of 6.8 inches. The
pediatrician suspects that the average height of the corresponding population
is less than 62 inches. Perform a hypothesis test to investigate the validity of
the pediatrician’s belief.
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57. A school counselor wonders if local high-income students generally score
higher than the national average of 1,000 on the SAT test. In a test of
H0: μ = 1, 000 against Ha: μ > 1, 000, a random sample of 59 high-income
students has an average scores of 1, 053 with a standard deviation of 60.
Should the counselor conclude that the average of local high-income students
is greater than the national average?

58. A random survey of 400 local high school boys between 65 and 70 inches tall
found an average weight of 165 pounds with a standard deviation of 21 pounds.
Based on this sample, should a researcher conclude that the corresponding
population of boys has an average weight greater than a fitness upper bound
of 157 pounds?

59. A realtor is curious about a neighborhood’s average assessed home value and
tests H0: μ = $275,000 against Ha: μ 	= $275,000. A random sample of 30
homes in the neighborhood finds an average assessed value of $300,000 with
a standard deviation of $9,000. What does the realtor conclude?

60. The average life of a standard fluorescent lightbulb is 900 hours. For a new
type of lightbulb, a sample of 64 bulbs is found to have an average life of
920 hours with a standard deviation of 80 hours. Is the average life of the new
type of fluorescent bulb different from the average life of the old standard
fluorescent bulb?

5.5 Least Squares Regression

Many research efforts attempt to identify and describe a relationship that may exist
between variables. Economists search for relationships between a good’s price and its
quantity demanded. Medical teams work to find causal relationships between a patient’s
blood pressure and the body’s cholesterol level. Golfers wonder about increasing
clubhead speed in order to gain yardage on tee shots. Environmentalists study the
impact of a high consumption of fossil fuels on the average global temperature—the
“Greenhouse Effect.” These examples are just a handful of the many relationships
among real-world quantities. Often a change in one causes a change in the other,
but sometimes the apparent relationship is due to some third factor, or may just be
coincidental.

Mathematics can provide some clarity and direction in an effort to understand
the often complicated and subtle relationships that exist between random variables.
An appropriate hypothesis test can assess whether certain types of relationships (such
as a linear relationship) exist. If a linear relationship is determined to hold, then an
appropriate mathematical model can be applied. Data sets and mathematical models
are often viewed from a graphical perspective, and so the use of such a model is
sometimes referred to as “curve-fitting.” In this section, we seek the “optimal” linear
model matching a set of data by means of a process called least squares regression.

Afirst step in this direction is to develop the basic terminology used by statisticians
who study relationships between random variables, say X and Y . We start with the data
upon which the model is based; they are called bivariate data and are often presented
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as ordered pairs (x, y), where the value x corresponds to the random variable X and y
corresponds to Y .

Definition 5.5.1 For given random variables X and Y, a determination about a possible relationship
between X and Y is based on bivariate data, which are ordered pairs of numerical
values of the form (x, y), where we observe simultaneously X = x and Y = y.
A bivariate sample of size n consists of n such ordered pairs, and the graph of
these points on an X-Y plane is called a scatterplot.

Example 5.5.1 Medical researchers study the relationship between an adult male’s height X as
compared to his weight Y . A random sample of size n is obtained by randomly
selecting n adult males from the population and recording each man’s height
X = x and weight Y = y as an ordered pair (x, y). Consider the following sample
of size three presented as a set of ordered pairs, as a table, and as a scatterplot in
Figure 5.11.

{ (69, 168), (69, 155), (72, 184) } height 69 69 72
weight 168 155 184

Real-world data is often not functional in nature; for this example, the height
of 69 inches corresponds to two different weights of 168 pounds and 155 pounds.
Even so, functions often serve as reasonably accurate models for such data sets.

■

Question 5.5.1 Extend the sample of size three from example 5.5.1 to a sample of size six by
asking three more adult male’s their height and weight. Present your data as a set
of ordered pairs, as a table, and as a scatterplot.

■

When using a statistical model to relate bivariate data, researchers often begin with
the simplest of all curves—the line—where two variables X and Y are related by the
equation Y = mX + b. Instead of the notations m and b for the slope and Y -intercept,
statisticians traditionally use the Greek letter “beta” for both, with subscripts: β1

is the slope and β0 is the intercept. The graph of the equation Y = β1X + β0 is
a line in the X − Y plane. The slope β1 of that line predicts the change in one
variable (the dependent variable Y ) per unit change in the other, X. Whenever a
mathematical model is used, a researcher should ask if the form of the model is an
appropriate choice. In this setting, the researcher should confirm if it is reasonable

Figure 5.11 A scatterplot for
example 5.5.1 69
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to assume that the variables are related linearly, or is there an absence of a linear
relationship? Approaching this question from the perspective of statistical inference
requires that the researcher base the answer on an analysis of the corresponding
bivariate data.

The full statistical model also introduces an error term. The random fluctuations
that occur in nature, the accuracy of equipment used to gather data, and the inevitable
mistakes by human observers can all introduce variance and error into data sets. The
error term in a linear model indicates that the relationship is theoretical and that real-
world values for (x, y) often do not lie directly on the theoretical line. Using ε to denote
the error term, a linear statistical model describing the (assumed linear) relationship
between two random variables X and Y is expressed as

Y = β0 + β1X + ε.

A complete mathematical model establishing a linear relationship between two
variables depends on a number of standard assumptions:

• The values of Y are independent of each other, so that one observed value of Y
does not influence the value of another.

• At any given value for X, an expected value E[Y |X] for Y exists. When different
values of E[Y |X] are plotted on an X–Y plane, they will lie on a straight line.

• The standard deviation of the error random variable ε is the same for each
value of X.

• The error random variable ε is normally distributed.

We take these assumptions for granted throughout this section’s introduction. Their
role in the analysis may not be readily apparent. Rest assured that there exist statistical
inference procedures that test each of these assumptions as it applies to a given bivariate
data set. Further discussion of these details is left for your later studies.

An important statistical process is to determine the line that “best” runs through
the data collected, as visualized in the scatterplot. This line is often referred to as the
regression line or the line of best fit for the given set of bivariate data. The regression
line is not the actual, theoretical relationship Y = β0+β1X+ ε between X and Y , but is
instead an estimate of that relationship based on given bivariate data. In fact, different
bivariate data will generally produce a different regression line. Regression lines are
therefore typically denoted by Ŷ = β̂0 + β̂1X, where the “hat” notation distinguishes
the regression line’s estimation of the linear relationship between X and Y from the
actual linear relationship between X and Y .

Statisticians have identified a precise formulation of what is meant by the “best-
fitting line”—it is one that minimizes the sum of squares of distances between the data
points and the line. Using subscripts to identify the elements of a bivariate data set as
{(xi, yi) : i = 1, . . . , n}, figure 5.12 presents a graphical illustration of this overarching
idea. The vertical distances between the regression line and a given data point (xi, yi)
is denoted vi. As we can see, data points lie both above and below the regression line,
resulting in some vi being positive and others negative. Squaring each distance makes
each term v2

i positive and eliminates the possibility of negative and positive values
cancelling. The regression line minimizes the sum of these squared values.
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Figure 5.12 The regression line minimizes
n∑

i=1
v2

i

Definition 5.5.2 If {(xi, yi) : i = 1, . . . , n} is a bivariate data set for random variables X and Y,
then the corresponding regression line minimizes the sum of the squares of the
vertical distances from the data points to the line. Symbolically, the regression line
is the line Ŷ = β̂0 + β̂1X that minimizes the sum

n∑
i=1

v2
i =

n∑
i=1

[Ŷi − yi]2 =
n∑

i=1

[(β̂0 + β̂1xi)− yi]2.

The regression line’s slope β̂1 approximates the theoretical line’s slope β1, and
the intercept β̂0 approximates β0.

Statisticians have determined the formulas for the slope β̂1 and y-intercept β̂0 of
the regression line. They are expressed in terms of the sample mean for each random
variable X and Y on the data set {(xi, yi) : i = 1, . . . , n}. As in definition 5.4.3 of
section 5.4,

X = 1

n
·

n∑
i=1

xi and Y = 1

n
·

n∑
i=1

yi.

The next theorem incorporates these values in the formulas for β̂0 and β̂1.

Theorem 5.5.1 Let {(xi, yi) : i = 1, . . . , n} be a bivariate data set for random variables X and Y.
The regression line Ŷ = β̂0 + β̂1X is defined by the least squares estimators

β̂1 =
∑n

i=1(xi − X) · (yi − Y )∑n
i=1(xi − X)2

and β̂0 = Y − β̂1 · X.

We apply theorem 5.5.1 in examples and questions, and then discuss its proof.

Example 5.5.2 An economist studies the relationship between the price P of Shine toothpaste
and the quantity Q demanded by consumers. She collects the following data from
three randomly selected local markets:

P = price 1.95 2.32 1.85

Q = quantity sold 20 12 16

To find the regression line, first compute the sample means

P = 1.95+ 2.32+ 1.85

3
= 6.12

3
= 2.04
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Figure 5.13 The regression line for
example 5.5.2

and

Q = 20+ 12+ 16

3
= 48

3
= 16.

Using these values, find the regression line’s slope and intercept:

β̂1= (1.95−2.04)·(20−16)+(2.32−2.04)·(12−16)+(1.85−2.04)·(16−16)

(1.95−2.04)2+(2.32−2.04)2+(1.85−2.04)2

= (−0.09)·4+(0.28)·(−4)+(−0.19)·0
(−0.09)2+(−0.28)2+(−0.19)2

= −1.48

0.1226
≈ −12.072;

β̂0=16−(−12.072)·2.04 ≈ 40.627.

According to theorem 5.5.1, the regression line is

Q̂ = 40.627− 12.082P.

Assuming a linear relationship between P and Q, this regression line provides an
estimate of the demand function for Shine toothpaste in the local area studied by
the economist. Figure 5.13 illustrates this curve with the corresponding data points.

■

Question 5.5.2 The economist considers using the line Q∗ = 41 − 12P, which has rounded off
slope and intercept values, as a model for the demand function. Verify that the
regression line Q̂ = 40.627 − 12.082P is a “better-fitting” curve for the data
given in example 5.5.2 by finding the sum of squares of vertical distances for each
line; that is, compute both

3∑
i=1

[Q̂i − Qi]2 =
3∑

i=1

[(40.627− 12.082Pi)− Qi]2

and

3∑
i=1

[Q∗i − Qi]2 =
3∑

i=1

[(41− 12Pi)− Qi]2.

■

In the relatively simple settings of example 5.5.2 and question 5.5.2, the usefulness
of computing devices is readily apparent. Whenever data sets are sufficiently large,
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computing devices are needed to calculate the regression line in a reasonable amount
of time. The commands listed in the following table describe how to input bivariate
data into a given computing device.

System Command

TI-83 STAT - EDIT - Type X data into L1 and Y data into L2

Maple [> with(stats):
[> datax:=[x1, x2, x3, . . ., xn]; datay:=[y1, y2, y3, . . ., yn];

Mathematica ]:< <Statistics‘LinearRegression’
]:=data={{x1, y1}, {x2, y2}, . . . {xn, yn}};

Once the bivariate data are stored, a computing device will calculate the regression
line, using the following commands.

System Command

TI-83 STAT - CALC - LinReg(ax+b)

Maple [> with(stats):
[> fit[leastsquare[[x,y]]([datax,datay]);

Mathematica ]:< <Statistics‘LinearRegression’
]:=func = Fit[data, {1, x}, x]

Example 5.5.3 We use a computing device to identify the least squares regression line for the
bivariate data introduced in example 5.5.1:

Height 69 69 72

Weight 168 155 184

A computing device finds the rounded values as β̂1 = 7.5 and β̂0 = −356. The
least squares regression line is therefore Ŷ = −356+ 7.5 · X.

■

Question 5.5.3 A college believes that the sum of the algebra and trigonometry subscores X of
a standardized test is an indicator of a student’s grade Y in the fall term calculus
course. Determine the regression line for the following randomly selected data:

X = subscore 31 27 22 20 15

Y = grade 4.0 3.5 3.0 2.5 2.0

■

The next question considers the proof of theorem 5.5.1. Its argument is very
algebraic in nature; the sum of squares of vertical distances turns out to be quadratic
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in the variable β0. Therefore the minimum of the sum of squares corresponds to the
minimum of the quadratic, which occurs at its vertex.

Question 5.5.4 This question outlines the proof that the regression line formula given in
theorem 5.5.1 minimizes the sum of the squares of the vertical distances. As
in the context of the theorem, assume {(xi, yi) : i = 1, . . . , n} is a bivariate data
set for X and Y .

(a) For a general line Y = β0+β1X, express the sum of the squares of the vertical
distances given below as a quadratic in the variable β0. Explicitly determine

the coefficients a, b, and c. You may wish to use the fact that
n∑

i=1
β2

0 = n · β2
0 .

n∑
i=1

[Yi − yi]2 =
n∑

i=1

[β0 + (β1xi − yi)]2 = a · β0
2 + b · β0 + c.

(b) The minimum of a quadratic a · β0
2+ b · β0+ c occurs at the vertex for which

β0 = −b/2a. Using the result from part (a), show that the vertex of the above
quadratic occurs when β̂0 = Y − β1 · X.

(c) Note that part (b) identifies the value of β̂0 that minimizes the sum of the
squares independent of any specific value of β1. Therefore, we can use this
expression to find the value of β1 that minimizes the sum of the squares. To
this end, algebraically “complete the square” in the quadratic expression for
β1 as follows:

n∑
i=1

(Yi−yi)
2=

n∑
i=1

[(β̂0+β1xi)−yi]2 =
n∑

i=1

[β1xi+(β̂0−yi)]2

=
n∑

i=1

[β2
1 x2

i +2(β̂0−yi)β1xi+(β̂0−yi)
2]

=
n∑

i=1

x2
i ·
⎡⎣β2

1+
2β1

∑n
i=1xi(β̂0−yi)∑n

i=1x2
i

+
(∑n

i=1xi(β̂0−yi)∑n
i=1x2

i

)2
⎤⎦

+
(

n∑
i=1

(β̂0−yi)
2− (

∑n
i=1xi(β̂0−yi))2∑n

i=1x2
i

)

=
n∑

i=1

x2
i ·
[
β1+

∑n
i=1xi(β̂0−yi)∑n

i=1x2
i

]2

+{terms that do not involve β1}.

Based on the bracketed squared term at the beginning of the last line of this
string of equalities, what choice of β1 minimizes this expression?

(d) Part (c) shows that the sum of squares is minimized by

β̂1 = −
∑n

i=1 xi(β̂0 − yi)∑n
i=1 x2

i

.
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Substituting the expression β̂0 = Y − β1X,

β̂1 =
∑n

i=1 xi · (yi − Y + β̂1X)∑n
i=1 x2

i

.

Algebraically manipulate this equation by solving for β̂1 and appropriately
substituting the algebraic identity

n∑
i=1

(ai − A)(bi − B) =
n∑

i=1

aibi − 1

n

n∑
i=1

ai

n∑
i=1

bi

twice (once for ai = xi and bi = yi, and once for ai = bi = xi) to prove the
final desired expression for β̂1:

β̂1 =
∑n

i=1 xi · (yi − Y + β̂1X)∑n
i=1 x2

i

⇒ β̂1 =
∑n

i=1(xi − X)(yi − Y )∑n
i=1(xi − X)2

.

■

5.5.1 Hypothesis Test for Linearity

We now consider the question: How useful is a linear model in predicting the
relationship between X and Y? Sometimes bivariate data points indicate that a linear
pattern may exist, but sometimes they do not; the random variables may not be related
at all, or they may have a nonlinear relationship. The scatterplots in figure 5.14 illustrate
bivariate data that seem to follow linear, quadratic, and exponential patterns.

How might we inferentially test a set of given data to determine if a linear model
is useful in describing the relationship?

To determine statistically if two random variables X and Y share a linear
relationship, first collect a sample of bivariate data, and then carry out a straightforward
hypothesis test to determine the usefulness of a linear model. This test is formulated
in terms of the slope β1 of the theoretical line. As it turns out, if the scatterplot of X
and Y is filled with points that show no discernable pattern (and do not indicate any
relationship between X and Y ), then the regression model results in β̂1 = 0. This value
estimates that the true line’s slope would also equal 0. To check for linearity between
X and Y , we therefore test H0: β1 = 0 vs. Ha: β1 	= 0. Rejecting the null hypothesis
H0 is equivalent to concluding that a linear model is useful. We call this procedure a
hypothesis test for linearity.

The P-value for this two-tailed test can be phrased in terms of the Student’s
t-distribution Tm that was introduced in exercises 67–70 of section 5.3. The random

× ×
× ×

×

× ×
×

×
×
×

××

Figure 5.14 Scatterplots with linear, quadratic, and exponential patterns
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variable Tm having m degrees of freedom is defined using the gamma function

�(x) =
∫ ∞

0
tx−1e−t dt, where x > 0.

The density function for Tm is then

f (t) = �((m + 1)/2)√
mπ · �(m/2)

·
[

1+ t2

m

]−(m+1)/2

, where −∞ < t <∞.

The population mean of Tm is μ = 0, and the standard deviation is σ = √m/(m − 2).
The density function’s graph is similar to that of the normal density having mean 0
and standard deviation 1, except the “bell-shape” for f (t) is lower and wider. The
following commands enable the use of computing devices to calculate probabilities
P[a < Tm < b]:

System Command

TI-83 DISTR - tcdf(a,b,m)

Maple [> with(stats):
[>int(GAMMA((m+1)/2)/GAMMA(m/2)/sqrt(m*Pi)/(1+t∧2/m)∧((m+1)/2),

t=a..b);

Mathematica ]:< <Statistics‘ContinuousDistribution‘
]:CDF[StudentTDistribution[m],b] - CDF[StudentTDistribution[m],a]

Furthermore, since P[Tm > 12] ≈ 0 ≈ P[Tm < −12], we can use the identities
P[a < Tm < 12] ≈ P[Tm > a] and P[−12 < Tm < b] ≈ P[Tm < b] when computing
probabilities.

The following theorem describes how to compute the P-value for the test of
linearity. The proof of the theorem is given in advanced statistics courses and is left
for your later studies.

Theorem 5.5.2 Hypothesis test for linearity Based on bivariate data {(xi, yi) : i = 1, 2, . . . , n},
a test for the usefulness of a linear model describing the relationship between
random variables X and Y is conducted using H0: β1 = 0 vs. Ha: β1 	= 0. The
corresponding P-value is

P-value = 2 · P
[

Tn−2 >
|β̂1|

(s/
√

SSX )

]
,

which uses SSX =
n∑

i=1

(xi −X)2, SSY =
n∑

i=1

(yi − Y )2, and s =
√

SSY − β̂ 2
1 · SSX

n− 2
.

The values SSX and SSY are often called the sums of squares for the x-values
and y-values, respectively. These sums of squares are related to the sample standard
deviations sx and sy, which a computing device will calculate, by the equations
SSX = (n− 1) · (sx)2 and SSY = (n− 1) · (sy)2.

Example 5.5.4 A real estate agent studies the relationship between home size X (in thousands of
square feet) in a local neighborhood and the corresponding sale price Y (in tens of
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thousands of dollars). She is interested in determining the usefulness of a linear
model in predicting home prices and collects the following data for seven randomly
selected homes:

X = size 1 2 3 4 5 6 7

Y = price 10 13 17 18 21 26 28

To test for linearity between X and Y , we test H0: β1 = 0 vs. Ha: β1 	= 0. To
calculate the P-value, we first compute the necessary statistics.

X= 1+2+3+4+5+6+7

7
=4 Y= 10+13+17+18+21+26+28

7
=19

SSX=
n∑

i=1

(xi−X)2=28 SSY =
n∑

i=1

(yi−Y )2=256

β̂1=
∑n

i=1(xi−X)(yi−Y )

SSX
= 84

28
=3 s=

√
SSY−β̂ 2

1 ·SSX

n−2
=
√

256−32 ·28

7−2

=0.894427

Applying the formula from theorem 5.5.2,

P-value = 2 · P

[
Tn−2 >

β̂1

(s/
√

SSX )

]
= 2 · P

[
T5 >

3

(.894427/
√

28)

]
=

2 · P[T5 > 17.74] ≈ 2 · 0 = 0.
Since the P-value is less than α = 0.05, the real estate agent should reject

the null hypothesis in favor of the alternative Ha: β1 	= 0. She should conclude
that the linear model is useful in predicting the sale price Y in terms of the
size of a home X, where Y = β0 + β1X + ε. Using the value for β̂1 calculated
above, along with β̂0 = Y − β̂1 · X = 19 − 3 · 4 = 7, the regression line is
Ŷ = 3 · X + 7.

■

Question 5.5.5 A medical researcher studies the relationship between the age X (in years) of a
female child and the child’s weight Y (in pounds). Wondering if it is reasonable
to conclude that X and Y are related linearly, she collects the following data for
eight randomly selected children:

X = age 1 2 3 5 7 9 10 12

Y = weight 14 26 30 41 54 60 81 87

Using theorem 5.5.2, conduct a hypothesis test to determine the usefulness
of a linear model for the relationship between X and Y . If so, determine the
corresponding regression line using theorem 5.5.1.

■
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5.5.2 Predicting Response Values

We now consider using the regression line to predict an output value Ŷ that corresponds
to an input X = x0. These output values are often called response values. When a test
for linearity concludes that a linear model appropriately describes the relationship
between X and Y , then it is appropriate to substitute the value x0 into the regression
line to obtain the response: Ŷ = β̂0 + β̂1 · x0. The only restriction that applies to this
substitution is that the value X = x0 should lie inside the range of X values in the
bivariate data. This restriction makes sense: the bivariate data set that generated a
positive conclusion about linearity does not contribute information about any value
outside of its range; the relationship might be linear in the range of bivariate data,
but could become curvilinear or degenerate into no relationship outside of that
range.

In example 5.5.4, all of the values for X lie between 1 and 7, and the data indicate
the usefulness of a linear model for X and Y . The corresponding regression line Ŷ =
3 · X + 7 may therefore be used as a predictor of output values Ŷ corresponding to any
input that falls between 1 and 7. The next example illustrates the use of the regression
line as a predictive model.

Example 5.5.5 In example 5.5.4, the regression line is identified as Ŷ = 3 · X + 7, where
the home size X is measured in thousands of square feet, and the sales price
Y is measured in tens of thousands of dollars. We use this regression line to
predict the value of a home in the neighborhood with 1,800 square feet of living
space.

The corresponding input value is x0 = 1.8 ∈ [1, 7]. Substituting into the
regression line produces the response value Ŷ = 3 · 1.8 + 7 = 12.4. Therefore,
we predict that home in this neighborhood with 1,800 square feet can sell for
$124, 000.

■

Question 5.5.6 Working in the context of example 5.5.4, find the predicted value of homes in the
neighborhood that have each of the following square footage.

(a) 2,200

(b) 1,250

(c) 3,100

(d) 4,000

Explain why might it not be appropriate to use the regression line Ŷ = 3 · X + 7
to predict the sale value of a home with 900 square feet.

■

Many statisticians and mathematicians have invested a great deal of research
effort into the development of statistical inference processes for regression analysis.
This brief introduction has touched on only a few of the most basic ideas; many other
interesting topics await your study in later courses. The notes at the end of the section
indicate several sources to help with further investigation.

We finish this section by briefly touching on some of the more advanced topics.
A number of hypothesis tests exist for other regression parameters. For example, to
test H0: β1 = C vs. Ha: β1 	= C with C 	= 0 (theorem 5.5.2 dealt with the choice of
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C = 0), compute the corresponding P-value:

P-value = 2 · P
[

Tn−2 >
|β̂1 − C|
(s/
√

SSX )

]
.

Hypothesis tests also exist for the Y -intercept β0 and the response value Y ; these
statistical inference processes are discussed in most standard texts devoted exclusively
to statistics.

Models also exist for situations in which the bivariate data indicate a nonlinear
relationship between random variables X and Y . If the nonlinear pattern matches
a well-known function such as an exponential, logarithmic, or sinusoidal, then a
transformation can be applied to the data, producing new bivariate data having a linear
pattern. A test for linearity would then indicate the usefulness of a linear model relating
the transformed data. An inverse transformation can then convert the regression line
for the transformed data into a regression curve that predicts the response Ŷ in terms
of the original random variable X.

Further statistical processes exist for models that involve multiple variables.
The standard “multiple linear regression model” assumes an underlying relationship
between an output variable Y that depends on n input variables X1,X2,. . .,Xn of the
form Y = β0 + β1X1 + β2X2 + · · · + βnXn + ε. Such models are more sophisticated
than the simple linear regression model outlined in this section and involve matrix
theory in the construction of “best-fitting” lines. But they follow an approach similar
to the process outlined in this section. Further details and discussion are left for your
later studies in statistics.

5.5.3 Reading Questions for Section 5.5

1. Define and give an example of bivariate data.
2. Give an example of a bivariate data set that is functional and one that is not.
3. What is a scatterplot? Sketch an example.
4. What value does a regression line estimate? Include a discussion of the

distinction between Y = β0 + β1X + ε and Ŷ = β̂0 + β̂1X.
5. What sum is minimized by the regression line?
6. Define and give an example of a sample mean.
7. State theorem 5.5.1. How is this result helpful when studying linear

regression?
8. Sketch scatterplots illustrating a linear and a nonlinear relationship between

random variables.
9. State the null and alternative hypotheses in a hypothesis test for linearity.

Identify which hypothesis indicates the usefulness of a linear model.
10. What is the relationship between Student’s t-distribution and the standard

normal distribution?
11. State theorem 5.5.2. How is this result helpful when studying linear

regression?
12. What input values may be substituted into a regression line to obtain a good

predictor for a corresponding response value?
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5.5.4 Exercises for Section 5.5

Exercises 1–6 study the following bivariate data set.

X 1 2 4 5

Y 2 6 8 12

1. Using theorem 5.5.2, confirm the usefulness of a linear model for X and Y .
2. Using theorem 5.5.1, determine the linear regression line for this data set.
3. Sketch the scatterplot for this data set and the linear regression line on the

Cartesian plane.
4. Compute the sums of squares of vertical distances for the linear regression line.
5. Confirm that y = 2x + 3 is not the “best-fitting” line for this data set by

computing the sums of squares of vertical distances for this line at each
data point and comparing the result with the corresponding sum for the
regression line.

6. Confirm that y = 3x + 2 is not the “best-fitting” line for this data set by
computing the sums of squares of vertical distances for this line at each
data point and comparing the result with the corresponding sum for the
regression line.

Exercises 7–12 consider a bivariate data set that is extended one observation at a time.
Perform a hypothesis test to determine if a linear model is useful for the corresponding
random variables. If so, compute the regression line for the data set; if not, sketch
the scatterplot and make a conjecture about the nature of the relationship between the
random variables.

7. X 1 2
Y 8 6

8. X 1 2 3
Y 8 6 4

9. X 1 2 3 4
Y 8 6 4 8

10. X 0 1 2 3 4
Y 4 8 6 4 8

11. X 0 1 2 3 4 5
Y 4 8 6 4 8 24

12. X −1 0 1 2 3 4 5
Y −12 4 8 6 4 8 24

Exercises 13–18 consider the analysis of the bivariate data set from exercise 12; use
the corresponding regression line to answer the following questions.

13. Compute the response for X = 1.5.

14. Compute the response for X = 2.5.

15. Compute the response for X = 2. Explain the difference between this response
and the data set in exercise 12.

16. Compute the response for X = 3. Explain the difference between this response
and the data set in exercise 12.

17. Compute the response for X = 4. Explain the difference between this response
and the data set in exercise 12.
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18. Compute the response for X = 5. Explain the difference between this response
and the data set in Exercise 12.

In exercises 19–28, perform a hypothesis test to determine if the corresponding random
variables are linearly related and, if so, compute the linear regression line for the
data set.

19. To study the difference in average weights of brothers, based on age, a
researcher randomly selects five sets of brothers, all over 30 years old, and
compares their weights, with the following results (in pounds):

X = older brother’s weight 178 150 197 168 200
Y = younger brother’s weight 173 139 178 170 200

20. To determine the relationship between family income and IQ of nine-year-old
children, a school psychologist randomly collected the following bivariate
data, where the family income is measured in thousands of dollars.

X = IQ 178 150 197 168 200 90 200
Y = income 173 139 178 170 200 300 200

21. An environmentalist collects total rainfall amounts on her hometown Caribbean
island, with the following results:

X = month 1 3 4 6 8 10 12
Y = rainfall in inches 73 62 59 50 112 104 74

22. A physician looks at the effect of pH levels on the number of bacterial cells,
measured in tens of thousands, appearing in a culture at the midpoint of a
controlled experiment.

X = pH 2 3 3 5 6 6
Y = number of bacteria 103 139 146 140 196 212

23. The advising office at a major university is curious about the relationship
between student study times and success on a sociology test. Seven students
in a large introductory course were randomly selected, and their grades on the
final test were recorded, with the following results:

X = hours studying 3 7 11 9 18 20 6
Y = test grade 58 87 89 89 93 90 77

24. Amedical research team performs a study on patients not taking a beta-blocker
medication. The results linking a patient’s age to a corresponding systolic
blood pressure follow:

X = age 17 25 55 68 76
Y = systolic blood pressure 119 121 158 136 168

25. An academic research group studies the number of Ph.D.s awarded by
American universities in the given year. The results follow.

X = year 1980 1985 1990 1995 2000
Y = Ph.D.s in physics 873 739 778 670 720
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26. The white-tailed deer population, given in thousands, in a midwest state was
examined by a governmental agency, with the results below:

X = year 1949 1970 1980 1990 1995 2000 2005
Y = deer population 2.3 50 82 135 436 476 487

27. Astudy is performed on the effect of a nitrate fertilizer on plant growth follows,
where the fertilizer amount is given in pounds, and the crop yield is given in
bushels of wheat.

X = fertilizer amount 3 7 15 17 21 25 25
Y = crop yield 55 66 79 88 90 90 95

28. The Environmental Group Agency studied American-built automobiles’
highway miles per gallon rating against the amount of horsepower produced
by the cars’ engines. The results follow.

X = miles per gallon 15 18 21 23 25 29 31
Y = horsepower 189 167 158 159 145 144 138

In exercises 29–33, determine the regression line using summation formulas; you may
wish to use the formulas:

n∑
i=1

(xi−X)(yi−Y )=
n∑

i=1

xiyi−(
n∑

i=1

xi)·(
n∑

i=1

yi)/n and

n∑
i=1

(xi−X)2=
n∑

i=1

x2
i −(

n∑
i=1

xi)
2/n.

29. A researcher collects data in the form (xi, yi) to find the regression line and,
from a data set of n = 15 points, computes the following sums:

n∑
i=1

xi = 3;
n∑

i=1

xiyi = 12;
n∑

i=1

yi = 2;
n∑

i=1

x2
i = 15.

30. An engineer collects data on X = “the horsepower produced by an automobile
engine” as compared to Y = “the size of the engine as measured in liters.”
From a data set of n = 21 points, the engineer computes the following sums:

n∑
i=1

(xi−X)(yi−Y )=4,419;
n∑

i=1

xiyi=8,475;
n∑

i=1

yi=44.5;
n∑

i=1

x2
i =865,380.

31. A researcher collects data in the form (xi, yi) to find the regression line and,
from a data set of n = 15 points, computes the following sums:

n∑
i=1

(xi−X)(yi−Y )=1,160;
n∑

i=1

(xi−X)2=482;
n∑

i=1

xi=29;
n∑

i=1

yi=25.

32. To study the growth in federal expenditures on urban development, an
economist collects data on X = “the year (measured in numbers of years
after 1995)” and Y = “percent of total outlays devoted to development.”



Chapter 5 ■ Probability and Statistics 447

The data set of n = 12 points yields the following sums:

n∑
i=1

(xi−X)(yi−Y )=−75;
n∑

i=1

(xi−X)2=275;
n∑

i=1

xi=7.2;
n∑

i=1

yi=11.8.

33. A researcher collects data in the form (xi, yi) and, from the n = 20 data points,
computes the following sums. Based on these results, is it appropriate to
conclude that there exists a linear relationship between the variables X and Y?

n∑
i=1

(xi−X)(yi−Y )=115;
n∑

i=1

(xi−X)2=480;
n∑

i=1

(yi−Y )2=610;

n∑
i=1

xi=30;
n∑

i=1

yi=34.

We say that X and Y are positively correlated when an increase in one causes an increase
in another, negatively correlated when an increase in one causes a decrease in another,
and have no correlation when a change in one does not affect the other.

In exercises 34–45, sketch a scatter plot with the given features.

34. A low positive correlation.
35. A high positive correlation.
36. A perfect positive correlation.
37. A low negative correlation.
38. A high negative correlation.
39. A perfect negative correlation.

40. No correlation.
41. A quadratic correlation.
42. A cubic correlation.
43. An exponential correlation.
44. A logarithmic correlation.
45. A sinusoidal correlation.

Exercises 46–55 consider an alternative approach to the hypothesis test for linearity.
Define

r = β̂1

√
SSX

SSY

and use the P-value equal to

2 · P
[

Tn−2 > |r|
√

n− 2

1− r2

]
.

When the P-value is less than α, conclude that a linear model is useful in describing
the relationship between X and Y .

In exercises 46–55, conduct a hypothesis test using the alternative approach on each
bivariate data set to determine if the corresponding random variables are linearly
related.

46. The data set from exercise 19.
47. The data set from exercise 20.
48. The data set from exercise 21.
49. The data set from exercise 22.
50. The data set from exercise 23.

51. The data set from exercise 24.
52. The data set from exercise 25.
53. The data set from exercise 26.
54. The data set from exercise 27.
55. The data set from exercise 28.
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Exercises 56–60 consider an alternative derivation of the formulas for the least squares
estimators β̂0 and β̂1 than the one provided by question 5.5.4. These same formulas
can be derived using the techniques of calculus by minimizing the sum of squares of
vertical distances (also called the sum of squares due to error, or SSE). In addition, we
consider further properties of these least squares estimators.

56. Part (a) of question 5.5.4 identifies the sum of vertical distances as SSE =
n∑

i=1

(β0+ β1 · xi − yi)
2. This expression may be thought of either as a function

of β0 treating β1 as a constant, or as a function of β1 treating β0 as a constant.
For this exercise we adopt the first perspective, writing f (β0) =∑n

i=1(β0 +
β1 · xi − yi)2. Differentiate this function and set the derivative equal to zero
to obtain an equation in the terms of β1 and β0.

57. Following the approach begun in exercise 56, adopt the second perspective
suggested above; think of SSE as a function g(β1) treating β0 as a constant
and write g(β1) =∑n

i=1(β0 + β1 · xi − yi)2. Differentiate this function and
set the derivative equal to zero to obtain an equation in the terms of β1 and β0.

58. The solutions obtained in exercises 56 and 57 are two equations in terms of
β1 and β0. Based on multivariable calculus, the minimum value for SSE is
found by solving these two equations for the unknowns β1 and β0. Solve
the equation from exercise 56 for the unknown β0 and the equation from
exercise 57 for the unknown β1 (using the formulas from the instructions for
exercises 29–33) to show that SSE is minimized at

β̂0 = Y − β̂1X and β̂1 =
∑n

i=1(xi − X)(yi − Y )∑n
i=1(xi − X)2

.

59. Assume that the relationship between random variables X and Y follows a
linear model with a y-intercept equal to 0; that is, β0 = 0 and so Y = β1 ·X+ε.
Find the value of β1 that minimizes the sum of squares

∑n
i=1(Yi − yi)2 =∑n

i=1(β1xi − yi)2.
Hint: As in exercises 57 and 58, differentiate with respect to β1, set the
resulting derivative equal to 0, and solve for β1.

60. Treating β̂1 as a random variable defined on a sample of bivariate data, we
may calculate its expected value E[β̂1]. From algebraic computations and
properties of the expected value:

E[β̂1] = E

[
n∑

i=1

(xi − X)(yi − Y )

SSX

]
= E

[
n∑

i=1

(xi − X)yi

SSX

]

=
n∑

i=1

(xi − X)E[yi]
SSX

=
n∑

i=1

(xi − X)(β0 + β1xi)

SSX
.

Expanding this final expression, we have:

E[β̂1] = β0

n∑
i=1

xi − X

SSX
+ β1

n∑
i=1

(xi − X) · xi

SSX
.
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Use this result and the fact
n∑

i=1

(xi − X) = 0 and SSX =
n∑

i=1

(xi − X) · xi to

prove that E[β̂1] = β1.

Notes

Combinatorics is an intriguing and active area of mathematical study; there are many well-
written books describing its approach to answering mathematical questions. Basic combinatorics
is often studied in “Discrete Mathematics” courses, which are supported by such texts as those
by Epp [72], Richmond and Richmond [193], and Scheinerman [209]. Standard texts devoted
exclusively to the study and development of combinatorics at the undergraduate level include
those by Andreescu and Feng [5], Brualdi [33], Cameron [36], and van Lint and Wilson [157].
In addition, Tucker [243] approaches combinatorics from an applied perspective. Benjamin and
Quinn [16] adopt an especially insightful view of combinatorial questions by developing a visual
analysis; much of the work they present was a result of undergraduate research projects.

Section 5.2 is only an introduction to Pascal’s triangle. Conway and Guy [45] provide an
enjoyable discussion of many different types of numbers and sequences of numbers that are
defined using Pascal’s triangle. Colledge [42] is a resource developed for teachers that explores
various aspects of this triangle. The history of Pascal’s triangle is traced in Edwards [69].
An interesting biography of Blaise Pascal has been written by O’Connell [183]; this work
describes the physical and intellectual climate of seventeenth century France and its impact on
this insightful mathematician. Krailsheimer [185] is a good translation of Pascal’s Pensées, the
most important of his philosophical works.

Section 5.2 included a basic introduction to fractals. You may have seen some of the beautiful
fractal images that have become popular with the general public. In the 1990s, television shows
describing fractals and their applications to modeling occurred on such series as NOVA on
PBS. Benoit M. Mandelbrot [165] drew attention to the mathematical study of fractals; his
work received wide acclaim. Briggs [30] provides another well-written introduction to fractals.
Several interesting and accessible books about fractals have recently been published, including
an anthology of original papers creating an historical context of the study in Mandelbrot [164],
a collection of essays by leading researchers that describes recent developments in Stewart et al.
[232], and a connection to economic applications in Mandelbrot and Hudson [166]. To learn
how to create some of those beautiful and intriguing fractal images, see Stevens [227].

Probability theory is often studied at an introductory level and can be found in the
discrete mathematics textbooks cited above. For a more thorough and complete development
of probability theory at an undergraduate level, see Bertsekas and Tsitsiklis [17], Jaynes [129],
Ross [198], and Rozanov [200]. The complete correspondence on probability theory between
Pascal and Fermat is presented in Smith [217]. Two textbooks that focus on the development of
probability theory with a focus on applications include Feller [81] and Scheaffer [208]. Anyone
interested in working on problems in probability will find Mosteller [177] fun and intriguing.

The study of probability is naturally intertwined with the study of statistics. Statistics is
taught at the undergraduate level both from an introductory applied standpoint and in a way that
illuminates the underlying mathematical theory. Textbooks serving an advanced, calculus-based
undergraduate course include such classics as Wackerly et al. [246] and Hogg and Tanis [119].
A more computational approach that describes the methods (but does not generally prove the
mathematical results) is taken in Fleiss et al. [86], Johnston [132], Peck et al. [186], and
Watkins et al. [250]. Advanced discussions of hypothesis testing are in Casella and Berger [38]
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and Lehmann and Romano [154]. Linear regression is developed more fully in Montgomery
et al. [176], Seber and Lee [210], and Weisberg [252].

For an overview of the development of statistics in the twentieth century, The Lady Tasting
Tea: How Statistics Revolutionized Science in the Twentieth Century by Salsburg [207] is an
excellent reference. As discussed in section 5.4, Sir Ronald Fisher played a pivotal role in the
development of statistical inference. Fisher’s seminal treatise The Genetical Theory of Natural
Selection [83] details this process in the context of genetics, developing an important synthesis of
Darwinian evolution and Mendelian genetics. Philosophical Problems of Statistical Inference:
Learning from R. A. Fisher by Seidenfeld [211] is an insightful reflection on Fisher’s continuing
influence in this area. Finally, the book R. A. Fisher, the Life of a Scientist by Fisher’s daughter
Joan Fisher Box [24] blends the stories of the personal life and the professional accomplishments
of this scientist, who contributed so much to mathematical statistics.



6 Graph Theory

Graph theory is the area of mathematics that grapples with the notion of connectedness
among objects. Viewed from the proper perspective, our world is filled with many
different relationships from the large-scale to the microscopic, from the concrete to
the more abstract. Airline routes and interstates connect cities, bridges connect land
masses, and wires connect computer circuits. There are relationships among family
members, friends, business associates, countries, and corporations. Many aspects of
our society are improved by analyzing and optimizing such connections. On a more
personal level, navigating our way through daily life often involves understanding
social relationships.

Many of the questions that challenge and motivate mathematicians who study
graph theory are rooted in visual representations of our world. For example, we might
wonder, “What is the best route from Cincinnati, Ohio to Nashville, Tennessee?” The
road map in figure 6.1 can help us answer this question. When considering this map,
we should keep in mind that “best” can have many different meanings, including least
distance, least time, or most picturesque. Perhaps you can think of some other criterion;
for example, having a close friend in Lexington, Kentucky might influence your choice
of routes.

Graph theory enables us to analyze such questions by representing entities such as
cities on the map as points called “vertices.” We then represent relationships between
entities such as roads between cities as lines or curves called “edges” connecting the
corresponding vertices. These abstract representations cull away unimportant details,
allowing us to focus on the essential features of and to obtain precise answers to
a variety of important questions. As we develop a theory of graphs, we will begin
to reintroduce some of these details, expanding the scope and power of associated
mathematical tools. This more advanced work in graph theory has led mathematicians
to include weights on edges to represent such details as distance or time, directions
on edges to represent such features as one-way streets, and colors on both edges and
vertices to represent levels of connection and distinction between measurable quantities
in relationships.

The abstract study of relationships via graph theory is an active area of
mathematical research that grapples with many issues relevant to our lives at personal,
professional, and societal levels. Many find the perspectives and algorithms of
graph theory rather intuitive, as well as both interesting and elegant. In addition,
a large number of the open questions of graph theory are readily explored and
studied by both professional and amateur mathematicians. We hope that you will

451
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Figure 6.1 Possible major routes from Cincinnati to Nashville

want to contribute to the way mathematicians articulate and understand the ideas of
graph theory.

This chapter begins with an introduction to the basic terminology of graph theory.
As in any field of mathematics, a precise vocabulary of words with unique meanings
has gradually been developed in graph theory as mathematicians have explored the
intuitive ideas that motivate its study. The chapter identifies the fundamental notions
and defines the corresponding terms that elucidate these notions. The remainder of this
chapter studies specific graph-theoretic questions, all of which have a very practical
flavor. We study Euler’s solution of the explorer’s problem of visiting every edge of
a graph exactly once as well as the similar (but far more subtle) traveling salesman
problem of visiting every vertex exactly once. We then search for optimal paths through
both standard graphs and weighted graphs. All of these ideas and questions are of
significant importance. Mathematicians have succeeded in several different ways in
making progress on understanding graph theory.

6.1 An Introduction to Graph Theory

We begin with the basic ideas and terminology of graph theory. Graph theory
approaches the notion of connectedness from a visual perspective, using graphical
representations to express relationships among entities. As mathematicians, we are
interested in culling away unimportant details and identifying the essential features of
a given situation by expressing seemingly complicated scenarios with simple pictures.
Working with such graphs enables us to analyze and (in many cases) solve many
different and important questions.

The first question that led to the development of graph theory was the Königsberg
bridge problem. The town of Königsberg (now known as Kaliningrad in central Russia)
is divided into four parts by the Pregel River. After flowing around the central island
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Pregel River Kneiphof Island

N

Figure 6.2 A model of the overall layout of Königsberg

of Kneiphof, the Pregel splits into two branches on the downstream side of the island.
As Königsberg grew, bridges were built over various stretches of the river until there
were a total of seven bridges connecting the four parts of the town. The general layout
of the river and the bridges is illustrated in figure 6.2.

To relax in the evenings, the people of Königsberg would often go for leisurely
walks, crossing the various bridges during their strolls through town. During one of
these walks, some curious and clever person asked: “What route allows someone to
cross every bridge exactly once and end the walk at its starting place?” As news of this
challenge spread, many townspeople walked through the town in search of a solution.
In the 1730s, the study of this Königsberg bridge problem was taken up by the eminent
Swiss mathematician Leonhard Euler (pronounced “Oiler” because it a Germanic name
like “Freud” rather than a Greek name like “Euclid”). In the process of answering this
question, the study of graph theory was born.

In thinking about the Königsberg bridge problem, Euler chose to identify the four
land masses of the town (as partitioned by the Pregel) as four points (or vertices) and
to connect these vertices with seven curves (or edges) representing the seven bridges.
In this way, Euler obtained the graph in figure 6.3 representing the city of Königsberg
with its seven bridges. For example, the center vertex in the left-side column of three
represents Kneiphof Island.

This simplified picture facilitated Euler’s analysis of the Königsberg bridge
problem and enabled Euler not only to answer this particular question, but also to
identify general criteria that an arbitrary graph must satisfy for one to be able to traverse
every edge exactly once and return to the starting point. We study Euler’s solution in
section 6.2. But first, we define the basic vocabulary and explore the corresponding
ideas of graph theory for the remainder of this section. For now, you might be interested

Figure 6.3 Euler’s representation of Königsberg as a graph
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in working with the graph in figure 6.3 to see if you can identify Euler’s response to
the Königsberg bridge problem.

As we have mentioned before, Archimedes, Newton, and Gauss are widely
regarded as three of the most preeminent mathematicians of recorded human history.
Leonhard Euler could certainly be added as a fourth. Euler was born and educated in
Basel, Switzerland in the early 1700s. His early academic studies were in theology,
but his first love was mathematics, which he began studying and researching under
the tutelage of Johann Bernoulli. By the age of 19, Euler had published his first paper,
and he went on to become the most prolific writer of mathematics of all time; in fact,
his papers continued to be published for almost 50 years after his death. For most of
his professional life, Euler worked at the St. Petersburg Academy in Russia and at the
BerlinAcademy in Germany. He made contributions in all areas of mathematics, despite
gradually going blind and raising and supporting a large family. Euler’s important
influence on mathematics is reflected in some of the mathematical notation attributed
to him: f (x) for a function from 1734; e for the base of the natural logarithm from
1722; i for

√−1 from 1777; π for pi; � for summations from 1755; and 
y for finite
differences.

What are the basic notions and terminology of graph theory? As we have seen,
the choice of words to denote mathematical concepts plays an important role in our
understanding of the ideas at hand. Since graph theory is such a visually motivated
subject, we rely on related English terms, being careful to distinguish between formal
definitions and informal meanings when the situation warrants. We begin with the
definition of a graph.

Definition 6.1.1 A graph is a set of points called vertices and a set of curves called edges. Every
edge joins exactly two vertices (these vertices may not be distinct). The two vertices
are called the endpoints of an edge joining them and are said to be adjacent to
one another. An edge is said to be incident to its two endpoints.

Example 6.1.1 Three graphs are given in figure 6.4.
■

Question 6.1.1 Mathematicians distinguish among the three graphs given in figure 6.4 for
example 6.1.1 by categorizing their different features. For example, graph (a) has
three edges, while graph (b) has five. Identify as many differences as you can
among these graphs. Developing the ideas and vocabulary for graph theory allows
us to express more carefully these distinctions.

■

(a) (b) (c)
Figure 6.4

Graphs for
example 6.1.1
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(a) (b) (c)

y

x

Figure 6.5 Three non-graphs for question 6.1.2

(a) (b) (c)

Figure 6.6 Three more graphs

Question 6.1.2 Explain why the pictures given in figure 6.5 are not graphs in the sense of
definition 6.1.1.

■

We will consider only finite graphs (that is, graphs with a finite number of vertices
and edges), unless explicitly stated otherwise. Finite graphs are sufficient to address
most questions of interest. As you might expect, there are many different ways to
present graphs. The pictorial representation illustrated in example 6.1.1 is often the
most intuitive and useful. However, some questions and ideas are best explored from
other perspectives, and so we introduce alternative ways to represent graphs in the
exercises at the end of sections 6.1 and 6.2.

For now, we focus on enriching our language for describing important features of
graphs. In question 6.1.1 we began developing an intuition for distinguishing among
graphs. To help sharpen these insights further, we consider the three graphs given in
figure 6.6.

There are some important differences among these three graphs. Some edges share
endpoints while others do not, and other edges have a unique endpoint. Motivated by
these observations, we define several terms that describe such features.

Definition 6.1.2 Two edges are parallel if they have the same endpoints. An edge is a loop if its
endpoints are identical. A graph is simple if the graph has no loops or parallel
edges. We sometimes refer to a graph that is not simple as a multigraph.

Example 6.1.2 We consider the graphs given in figure 6.6 in light of definition 6.1.2. Graph (a) is
simple, while graphs (b) and (c) are not. In particular, graph (b) has two parallel
edges and graph (c) has a loop.

■

Question 6.1.3 Sketch a graph with the following features, or explain why such a graph does
not exist.

(a) A graph (or multigraph) with two vertices, two loops, and two parallel
edges.
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(b) A graph (or multigraph) with one vertex and two loops.
(c) A simple graph with two loops.

■

As suggested by definition 6.1.2 and these examples, the number of edges
connecting a pair of vertices is of interest in our study of graph theory. Mathematicians
have also found that focusing on the total number of edges incident to a single vertex
is helpful in the study of graph theory; this total is known as the degree of a vertex, as
defined below.

Definition 6.1.3 The degree of a vertex is the total number of times the vertex is an endpoint of an
edge; alternatively, the degree is the total number of edges incident to the vertex,
provided we count incident edges that are loops twice. If a vertex is labeled V,
then d(V) denotes the degree of the vertex. The total degree of a graph is the sum
of the degrees of all vertices in the graph.

In some applications of graph theory, the degree of a vertex is referred to as the valence
of a vertex. This terminology arose from the British mathematician Arthur Caley’s
application of graph theory to the study of molecules in chemistry. In chemistry, the
“valence” of an atom in a molecule is important and corresponds to the degree of a
vertex in an appropriate representative graph.

Example 6.1.3 We identify the degree of each vertex and the total degree of the graph in
figure 6.7. As customary in graph theory, vertices are labeled with letters for ease
of reference.

• d(A) = 4 • d(D) = 2
• d(B) = 3 • d(E) = 1
• d(C) = 0 • total degree = 4+ 3+ 0+ 2+ 1 = 10

■

Question 6.1.4 Specify the degree of each vertex and the total degree of the graphs given in
figure 6.8.

■

Question 6.1.5 Based on example 6.1.3 and question 6.1.4, what conjectures can you make
about the total degree of a graph? What conjecture can you make about the
relationship between the total degree of a graph and the number of edges in the
graph? Can you see any other patterns? Try to answer these questions before
reading further.

■

A B C

D E Figure 6.7 Graph for example 6.1.3
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C

B D

A

A B

C D

(a) (b)

Figure 6.8 Graphs for question 6.1.4

Your conjectures in response to question 6.1.5 are part of a search for general facts
about graphs. We have learned that mathematicians often begin the quest for theorems
and mathematical truths by forming conjectures based on repeated patterns observed
in multiple examples. In many cases, a conjecture is an important part of the process of
mathematics—a process in which a mathematician seeks the reasons behind observed
patterns, refines an understanding of the underlying ideas, and ultimately crafts a proof
expressing these insights as a theorem.

In this context, we are considering a potential relationship between the total degree
of a graph and the number of edges in the graph. If we study the graph in figure 6.7
for example 6.1.3, we observe that the total degree is 10 and that there are five edges
in the graph. Similarly, for graph (a) in figure 6.8 for question 6.1.4, the total degree is
12 and there are six edges. Based on these observations, we might start to wonder if
this doubling pattern holds for all graphs (or perhaps it is particular to these examples,
and other graphs do not satisfy this pattern). At this point, we might notice that every
edge has exactly two endpoints and contributes to the degree of exactly two vertices.
This observation is the key to an argument proving that a doubling pattern is indeed
universal. In light of these reflections, we state and prove a first theorem of graph
theory; this result first appeared in Euler’s 1736 paper that presented a solution of the
Königsberg bridge problem and began the study of graphs.

Theorem 6.1.1 The total degree of a graph is twice the number of edges in the graph.

Proof Recall from definition 6.1.3 that the total degree of a graph is the sum of the
degrees of all vertices in the graph. According to the definition of the degree of a
vertex, we are summing the number of times a vertex is an endpoint of an edge.
Since every edge of a graph has exactly two endpoints, the total degree must be
equal to twice the number of edges.

■

Question 6.1.6 Prove that the total degree of a graph is even. Use definition 1.7.1 in section 1.7.
■

As suggested by the Königsberg bridge problem and the map examples mentioned
in the introduction to this chapter, many important questions in graph theory address the
goal of traversing graphs under certain assumptions or restrictions. In graph-theoretic
models of these physical settings, traversing a graph corresponds to crossing the bridges
or traveling the roads on a map. Some of the most common restrictions on such
traversals include minimizing time or distance, minimizing or avoiding repetition, and
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beginning and ending traversals at the same vertex. The following definitions facilitate
this study; we consider several examples after stating these several definitions to help
clarify the distinctions among these terms.

Definition 6.1.4 • For a graph with labeled vertices and edges, a walk from a vertex V to another
vertex W is a sequence of edges such that the first edge has V as an endpoint,
the last edge has W as an endpoint, and any two adjacent edges in the sequence
are incident to a common vertex. Vertex V is the initial endpoint of the walk and
vertex W is the final endpoint of the walk.

• A path is a walk with no repeated edges.
• A simple path has no repeated vertices.
• A closed walk has the same initial and final endpoint. We say that a closed walk

is based at this common endpoint.
• A circuit is a closed path; that is, a walk with a common initial and final endpoint

that does not repeat an edge.
• A cycle is a circuit that does not repeat any vertex besides the base vertex.

The following table summarizes definition 6.1.4 and may help with understanding and
recalling the distinctions among these terms.

Traversal Repeated edges Repeated vertices Initial = final vertex

Walk maybe maybe maybe
Path no maybe maybe
Simple path no no maybe
Closed walk maybe at least initial yes
Closed path no at least initial yes
Circuit no maybe yes
Cycle no exactly initial yes

When only the vertices in a graph are labeled, we present walks and paths as a
sequence of vertices (rather than as a sequence of edges). Similarly, when neither the
vertices nor the edges of a graph are labeled, walks and paths are presented in some
other appropriate fashion. For example, a pictorial representation of a graph may have
a sequence of edges highlighted to denote a path. In such settings, particular care may
be required to uniquely express a walk or path through a graph. In particular, when
multiple traversed edges are incident to the same vertex and the order of traversal is
important, we must somehow indicate the intended ordering of edges in the path.

Example 6.1.4 The graph in figure 6.9 represents a selection of possible routes from Cincinnati,
Ohio to Nashville, Tennessee. We label the graph’s vertices (with uppercase letters)
and edges (with lowercase letters) to facilitate the identification of various walks,
paths, circuits, and cycles.

We identify several of the many different walks from Cincinnati (denoted by
vertex C) to Nashville (denoted by vertex N) in figure 6.9.

(a) u, u, x, y (c) u, v, y
(b) u, v, x, z (d) z
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Figure 6.9 A graph representing some routes from
Cincinnati (C) to Nashville (N) N

B

v

y

w
u

x

z

C

L

The walk (a) is not a path because it repeats edge u, while the last three walks are
paths. The walks (a) and (b) are not simple because they repeat vertex C, while
walks (c) and (d) are simple paths because no edge or vertex is repeated. There
are other simple paths from C to N ; perhaps you can find one of them?

We also consider circuits and cycles in figure 6.9 based at Louisville, Kentucky
(denoted by vertex L). Directly from the definitions, we observe that every cycle
is a circuit. Therefore, the cycles u, x, v and v, y, z, u are also examples of circuits.
On the other hand, not every circuit is a cycle; for example, the path v, y, z, x, w
is a circuit but not a cycle (because vertex B is visited twice).

■

As mentioned above, we sometimes present paths by boldfacing the appropriate
edges in the graph. For example, the path u, v, y in the graph given in figure 6.9 can
be represented by boldfacing edges as illustrated in figure 6.10 below.

Question 6.1.7 Working with the graph in figure 6.11, identify paths, circuits, and cycles with the
following properties.

(a) Identify a simple path and a non-simple path with initial vertex A and final
vertex D.

(b) Identify two distinct circuits with base vertex B that are not cycles; that is,
circuits with some repeated vertex in addition to the common base.

(c) Identify two distinct cycles with base vertex C.
■

With this understanding of traversals in hand, we carefully consider various types
of connectedness among the vertices of a graph. Reflecting on the graphs we have
studied thus far, you may recognize at least three different levels of connectedness

Figure 6.10 The path u, v, y highlighted from figure 6.9 N

B C

L
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Figure 6.11 Graph for question 6.1.7

among pairs of vertices: some pairs of vertices are adjacent and directly connected by
an edge; other pairs are only connected by a path using edges through other vertices;
and still other pairs of vertices are not even connected by a path. We have also seen
graphs in which some vertices are adjacent to every other vertex in a graph, while
other vertices are adjacent to only a proper subset of vertices. We can readily visualize
a graph with a vertex that is not adjacent to any other vertex in the graph. Motivated
by such examples and reflections, we define some terms to help us articulate such
distinctions among graphs and vertices.

Definition 6.1.5 • A graph is connected if for every pair of distinct vertices V and W in the graph
there exists a path with V and W as the the initial and final vertex of the path.

• A complete graph is a graph in which every vertex is joined to every other vertex
in the graph by exactly one edge; that is, if every pair of distinct vertices are
the endpoints of exactly one edge. We denote the unique complete graph with n
vertices by Kn.

• A cycle graph is a graph consisting of a single cycle. We denote the unique cycle
graph with n vertices by Cn.

• A null graph is a graph with no edges. We denote the unique null graph with n
vertices by Nn.

• A vertex is isolated if the vertex is not adjacent to any other vertex in the graph.

In definition 6.1.5, notice that “connected,” “complete,” “cycle,” and “null” are
properties of graphs, while “isolated” is a property of vertices. We illustrate these
terms in the following example.

Example 6.1.5 We discuss the connectedness of the graphs in figure 6.12.
Graph (a) is both the complete graph K3 with three vertices and the cycle

graph C3 with three vertices; notice that every complete graph and every cycle
graph is connected. Graph (b) is a connected graph, but is not complete since there

CB

A

CB

A

(a) (b) (c) (d)

Figure 6.12 Graphs for example 6.1.5
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is no edge between vertices A and C. In contrast, graph (c) is not connected since
there is no edge from either A or B to vertex C; for this same reason, graph (c) has
the single isolated vertex C. Similarly, graph (d) is not connected, but graph (d)
does not have any isolated vertices.

■

We note that graph (d) in figure 6.12 is an example that motivates the definition of
the “connected components” of a graph; this graph has two connected components,
each consisting of one edge with its two incident vertices. In this context, we can
readily conceive of a connected component of a graph as a portion of a graph whose
vertices are all connected by paths. Further details are left for your later studies.

Question 6.1.8 Sketch graphs with the following properties.

(a) The complete graph K4 with four vertices.
(b) The cycle graph C4 with four vertices.
(c) The null graph N4 with four vertices.
(d) A graph with four vertices that is not connected.
(e) A graph with four vertices exactly two of which are isolated.

■

Question 6.1.9 Prove the following mathematical statements for graphs with at least two vertices.

(a) Every complete graph is connected.
(b) Every cycle graph is connected.
(c) Every null graph is not connected.

■

We end this section by describing four important questions of graph theory; we
study some of these questions later in this chapter.

6.1.1 The Explorer’s Problem

The most famous example of the explorer’s problem is the first question that motivated
the study of graph theory—the Königsberg bridge problem. Extended to a more general
setting, we consider an explorer who is interested in traveling every possible route and
eventually returning home. As we discuss in section 6.2, Euler isolated a criterion that
determines when a graph has a solution to the explorer’s problem and when a graph does
not. Once a solution is known to exist, we can find these solutions by implementing an
algorithm, by the method of exhaustion, or by clever insight. In addition, for graphs that
do not have solutions, we can identify an “eulerization” of the graph by “duplicating”
edges in the given graph (without a solution to the explorer’s problem) to obtain a
graph that does have a solution.

6.1.2 The Traveling Salesman Problem

This variation of the explorer’s problem focuses on visiting vertices rather than edges.
Contemporary mathematicians describe this problem in terms of a traveling salesman
leaving the home office, visiting each of a predetermined set of locations exactly once,
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and finally returning home. The visited locations are represented as vertices on a graph
and the available routes between these locations are represented as edges. The goal is
to determine the route of the salesman that is most efficient, where efficiency might
be measured in terms of the total distance, time, or money (or some other measure)
required to complete the route.

Specific instances of the traveling salesman problem were studied by Euler in
1759, by the French mathematician Alexandre-Théophile Vandermonde in 1771 in
the context of a knight visiting every square of a chess board exactly once, and
by the Irish mathematician Sir William Rowan Hamilton in the nineteenth century.
Hamilton designed a puzzle called the “Icosian game” based on solving the traveling
salesman problem on the planar graph of a regular dodecahedron. The first general
study of the traveling salesman problem appears to have been undertaken by the English
mathematician Thomas Penyngton Kirkman in his 1856 paper On the Representation of
Polyhedra. Interestingly enough, the first actual use of the phrase “traveling salesman
problem” appears to have occurred during conversations among Hassler Whitney,
Albert William Tucker, and Merrill Flood at Princeton University in the 1930s; the
first refereed publication explicitly using this phrase was published in 1949 by the
logician Julia Robinson.

Many practical questions of how best to do business or provide services can be
understood as traveling salesman problems, including work in such diverse industries
as transportation (airline routes), public service (mail routes), energy (power grid
networks), communications (phone, cable, and computer networks), and hardware
development (computer circuit design). Consequently there has been a strong and
steady interest in developing solutions to such questions. As you might expect,
researchers are interested in a general algorithm for solving any traveling salesman
problem. However, at this point, no such general algorithm is known; in fact, such
questions are known to be “NP-hard” requiring nonpolynomial computations of
significant complexity. And so the traveling salesman problem remains an active area
of ongoing research in graph theory.

6.1.3 The Four-Color Problem

Do you remember the large political maps of the world and the United States that
adorned the walls of your elementary classroom? Regions on such maps were colored
various shades of pink, yellow, green, and orange (or other colors) to distinguish
among countries and states. In 1852, mathematics student Francis Guthrie (later a
mathematics professor at the University of Cape Town in South Africa) conjectured
that it is possible to color the regions of any map on a plane with at most four colors so
that no two adjacent regions have the same color. Guthrie shared this conjecture with
his brother Frederick, who was studying at University College London in England,
and Frederick in turn passed the claim along to his mathematics professor Augustus
De Morgan. De Morgan discussed this question with others (most notably Sir William
Rowan Hamilton and Arthur Cayley), and soon the four-color problem became one of
the most famous open questions in mathematics.

Many talented mathematicians invested more than a century’s worth of effort in
working to prove (or disprove) Guthrie’s conjecture. Progress was made in special cases.
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For example, if a map can be drawn so that a single, continuous, closed curve determines
the boundaries of its various regions, then three colors are sufficient. Mathematicians
overcame the difficulty of grappling with regions of any shape arranged in any
configuration by means of graph theory. Distinct regions of a map are represented by
vertices that are joined by an edge whenever the corresponding regions are adjacent.
We then seek to color the vertices (using just four colors) so that no two adjacent
vertices have the same color.

Finally, in 1976 (more than 120 years after Guthrie’s original conjecture), Kenneth
Appel and Wolfgang Haken of the University of Illinois at Urbana-Champaign proved
the four-color theorem. Their argument consists of a proof by contradiction in which
they show that if a map cannot be four-colored, then it must contain a “smaller” map
that cannot be four-colored. The contradiction is obtained by considering a map that
is “minimal” in the sense that every submap can be four-colored. The Appel–Haken
proof uses computers; they wrote a program to exhaustively rule out the need for
more than four colors in the more than 1000 special map configurations to prove the
general result. From a positive perspective, we know that the four-color theorem is
true. But, at the same time, the Appel–Haken proof does not provide any insight into
why the theorem is true. In this sense, mathematicians continue to be interested in a
more theoretically based and more elegant proof of the four-color theorem.

Variations of this problem have also been studied by mathematicians. The Appel–
Haken proof of the four-color theorem ensures that any map on a plane or a sphere can
be four-colored. In 1890, the English mathematician Percy John Heawood studied a
donut-shaped surface (formally referred to as a torus) and proved that maps on such
surfaces require at most seven colors. The following is an open question in the study
of graph colorings.

If we color every point in the plane, how many colors are needed if we
require any two points that are exactly one unit apart to have different
colors?

First posed in 1954, this question is known as the Chromatic plane number problem,
where chromatic number refers to the required number of colors. While it is known that
either four, five, six, or seven colors is necessary, the exact number required remains
unknown.

6.1.4 The Crossing Number Problem

The complete bipartite graph K(n, n) of size n is formed by placing n vertices along a
top row in the plane and another n vertices along a bottom row, and then joining every
vertex in the top row with every vertex in the bottom row by a single edge. A depiction
of the complete bipartite graph K(3, 3) of size n = 3 is given in figure 6.13.

Notice that one of the edges crosses another edge in this presentation of the
graph. In fact, every presentation of K(3, 3) must have at least one such crossing;
mathematicians identify the crossing number of K(3, 3) as 1.

The crossing numbers of many other complete bipartite graphs are known. For
example, the crossing number of K(4, 4) is 4, the crossing number of K(5, 5) is 16,
and the crossing number of K(6, 6) is 36. However, as we increase the size n of the
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Figure 6.13 The complete bipartite graph K(3, 3)

complete bipartite graph, there is a corresponding significant increase in the difficulty
of determining the crossing number (because K(n, n) can be presented in so many more
ways). In fact, for the relatively small integer n = 9, the crossing number of K(9, 9) is
unknown. In 1954, the Polish mathematician Kazimierz Zarankiewicz conjectured a
formula for crossing numbers that predicts the crossing number of K(9, 9) is 256, but
no definitive proof of this fact is known.

6.1.5 Reading Questions for Section 6.1

1. Define and give an example of a graph, parallel edges, a loop, and a simple
graph.

2. Define and give an example of the degree of a vertex and the total degree of
a graph.

3. State and explain theorem 6.1.1. What is the main idea behind the proof of
this theorem?

4. Define and give an example of a walk, a path, a closed walk, a circuit, and
a cycle.

5. Discuss the relationship between a walk and a path, a path and a cycle, and
a circuit and a cycle.

6. Define and give an example of a connected graph and an isolated vertex.
7. Can a connected graph have an isolated vertex? Explain your answer.
8. Can a complete graph have an isolated vertex? Explain your answer.
9. Can a cycle graph have an isolated vertex? Explain your answer.

10. Can a null graph have an isolated vertex? Explain your answer.

6.1.6 Exercises for Section 6.1

In exercises 1–6, explain why each picture does (or does not ) represent a graph.

1.

4.

2.

5.

3.

6.
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In exercises 7–12, explain why each graph is (or is not) simple, connected, complete,
and/or a cycle graph.

7.

10.

8.

11.

9.

12.

In exercises 13–20, sketch a graph with the following properties, or explain why such
a graph does not exist.

13. A connected graph with four vertices that is not complete.
14. A connected, complete graph with four vertices.
15. A connected, simple graph with four vertices.
16. A simple graph with four vertices that is not connected.
17. A connected, cycle graph with four vertices.
18. A null graph with five vertices.
19. A connected, null graph with five vertices.
20. A connected, simple graph with one isolated vertex.

In exercises 21–26, identify the following six objects in the labeled graph, or explain
why such an object does not exist.

(a) a walk from vertex A to vertex E
(b) a path from vertex A to vertex E
(c) a circuit based at vertex B
(d) a cycle based at vertex E
(e) the degree of each vertex in the graph
(f) the total degree of the graph

A

21.

24.

22.

25.

23.

26.

B

D E

D E

C A B

D E

C A B

D E

C

A B

D E

CA B C

D E

A B C

In exercises 27–32, prove each mathematical statement about graphs.

27. Every graph has an even number of vertices of odd degree.
28. A walk with a repeated edge must have a repeated vertex.



466 A Transition to Advanced Mathematics

29. If vertices V and W are connected by a walk, then V and W are connected
by a path.

30. If vertices V and W are in a circuit of a connected graph G, then a graph
obtained by removing any one edge from G still contains a path from V to W .

31. If a graph has exactly two vertices V and W of odd degree, then V and W are
connected by a path.

32. The complete bipartite graph K(n, n) has 2n vertices and n2 edges.

Exercises 33–38 consider the complete graph Kn with n vertices and the cycle graph
Cn with n vertices.

33. Sketch the complete graphs K1, K2, and K3 and specify the number of edges
in each graph.

34. Sketch the complete graphs K4 and K5 and specify the number of edges in
each graph.

35. Prove by induction that Kn has n(n− 1)/2 edges, where n ∈ N.
36. Sketch the cycle graph C3 and specify its the number of edges.
37. Sketch the cycle graphs C4 and C5 and specify the number of edges in each

graph.
38. Prove by induction that Cn has n edges, where n ≥ 3.

Exercises 39–42 consider the complement G of a simple graph G, where the set of
vertices of G is the same as the vertices of G, but vertex V is adjacent to vertex W in
G iff V is not adjacent to W in G.

In exercises 39–42, identify the complement of each simple graph.

39.
A B

C D

A B

C D

40. 41.
A B C

FD E

42.
A B C

FD E

Exercises 43–49 consider an adjacency list representation of graphs that lists all the
vertices adjacent to each vertex in the graph. For example, we represent the graph in
figure 6.14 with either of the given adjacency lists.

Glenn: Highland, Bigtown, Glenn Glenn: Highland (w), Bigtown (x), Glenn (v)
Highland: Glenn, Bigtown Highland: Glenn (w), Bigtown(y)
Bigtown: Glenn, Highland, Union Bigtown: Glenn (x), Highland (y), Union (z)
Union: Bigtown Union: Bigtown(z)

These adjacency lists indicate that Glenn is joined by an edge to Highland, Bigtown,
and Glenn (perhaps by a bypass), as identified in the graph. Similarly, Highland is
adjacent to both Glenn and Bigtown, and so on. Any graph with labeled vertices can
be represented by an adjacency list. In the rightmost adjacency list, the labels for the
edges are identified by writing the edge label next to each incident vertex. Parallel
edges are denoted by repeating vertices in the adjacency matrix.
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Figure 6.14 Routes between Glenn (G), Highland (H), Bigtown (B),
and Union (U)

G H

B Uz

w

yx
v

In exercises 43–45, sketch the graph represented by each adjacency list.

43. Capital: Mall (v), Natural History Museum (q), Smithsonian (r),
White House: Mall (w)
Mall: White House (w), Washington Monument (x), Smithsonian (u),

Capital (v), Natural History Museum (t)
Washington Monument: Mall (x)
Natural History Museum: Mall (t), Capital (q), Smithsonian (s)
Smithsonian: Natural History Museum (s), Capital (r), Mall (u)

44. A : B, D, D, E
B : A
C :
D : A, A
E : A

45. A : B, C, D, E
B : A, C, D, E
C : A, B, D, E
D : A, B, C, E
E : A, B, C, D

In exercises 46–49, state the adjacency list representation of each graph.

46. The graph from exercise 39.

47. The graph from exercise 40.

48. The graph from exercise 41.

49. The graph from exercise 42.

Exercises 50–58 consider an adjacency relation on vertices defined by graphs. Given
a graph G and two vertices V and W in G, we write V ∼G W iff V is adjacent to W in
G. Every graph induces an adjacency relation on its set of vertices.

In exercises 50–53, use the notation V ∼G W to identify the vertices adjacent to vertex
A and vertex B in each graph.

50. The graph from exercise 39.

51. The graph from exercise 40.

52. The graph from exercise 41.

53. The graph from exercise 42.

In exercises 54–58, prove each property of a relation holds for the adjacency relation∼G

for an arbitrary graph G, or sketch a counterexample demonstrating otherwise. If a given
property does not hold, state a condition on graphs that ensures the property holds for
every graph satisfying the condition.

54. Reflexivity: For every vertex V , V ∼G V .

55. Irreflexivity: For every vertex V , V 	∼G V .

56. Symmetry: For all vertices V and W , V ∼G W implies W ∼G V .
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57. Transitivity: For all vertices V , W , and X, V ∼G W and W ∼G X implies
V ∼G X.

58. Comparability: For all vertices V and W , either V ∼G W or V = W or
W ∼G V .

Exercises 59–70 consider a matrix representation of graphs. A matrix represents a
graph when every vertex in the graph is numbered and the ith vertex is identified with
both ith row and the ith column of the matrix. The ai,j entry of the matrix (the entry in
the ith row and jth column) is a nonnegative integer identifying the number of edges
connecting the graph’s ith vertex with the jth vertex. For example, the following two
matrices represent the given graphs.

1

1 2

2

2 0
represents

1

1 2 3

2 0

2 2 2

0 2 2

represents

For the left graph and matrix, matrix entry a11 = 1 identifies the loop based at vertex 1,
matrix entries a12 = a21 = 2 identify the two edges adjoining vertex 1 and vertex 2,
and matrix entry a22 = 0 identifies that there are zero loops based at vertex 2. The right
graph and matrix are similar.

In exercises 59–62, sketch the graph represented by each matrix.

59.
⎡⎣1 1 1

1 0 1
1 1 0

⎤⎦

60.
⎡⎣1 2 0

2 2 0
0 0 1

⎤⎦

61.
⎡⎢⎢⎣

2 1 1 2
1 2 1 1
1 1 2 1
2 1 1 2

⎤⎥⎥⎦
62.

⎡⎢⎢⎣
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤⎥⎥⎦
In exercises 63–66, state the matrix representation of each graph.

63.
1

2 3

1

2 3 3

1
2 2

43

1

4

64. 65. 66.

Exercises 67–70 consider general properties of matrix representations of graphs.

67. Describe the graph represented by the zero matrix Zn with 0 in every entry.
68. Describe the graph represented by the identity matrix In with 1’s down the

main diagonal and 0’s in all other entries.
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69. How does the matrix representation of a graph indicate that a vertex is isolated?
70. What is the relationship between aij and aji in the matrix representa-

tion of a graph? Matrices with this property are said to be symmetric
and (among other things) can be helpful when solving systems of linear
equations.

6.2 The Explorer and the Traveling Salesman

In this section we consider two of the questions that led to the study and development
of graph theory: the traveling salesman problem and the explorer’s problem. You may
recall the brief outline and discussion of these questions at the end of section 6.1. The
explorer’s problem is often presented by imagining an explorer who wants to develop
a thorough understanding of some area and is interested in traveling every possible
road in the given region. Adopting a graph-theoretic perspective on this scenario,
we consider a graph whose edges represent all possible routes that are available;
the explorer’s mission can be translated into the goal of visiting every edge of the
corresponding graph. Furthermore, motivated by a sense of efficiency, we seek paths
and circuits through graphs that visit every edge exactly once. Perhaps this task reminds
you of the Königsberg bridge problem described in section 6.1; in fact, the Königsberg
bridge problem is the first rendition of the explorer’s problem studied from such a
graph-theoretic point of view.

A solution of the explorer’s problem is relevant not just to entertaining puzzles and
amusing distractions such as walking across bridges. Although puzzles are important
for raising and expressing this and similar questions, a solution to the explorer’s
problem has significant practical applications. Such everyday tasks as delivering mail,
picking up trash, and plowing roads during snow storms can be accomplished in
an optimal fashion by solving the corresponding explorer’s problem. The resulting
increase in efficiency has saved cities, states, and countries millions of dollars and
thousands of hours of labor. Similarly, companies have realized significant savings
in manufacturing processes and business transactions by modeling processes with
graphs and implementing solutions of the explorer’s problem. As mathematicians, we
have the good fortune of working with relatively simple renditions of such questions
and finding optimal solutions in the idealized world of graph theory—solutions that
(more often than not) are relevant to the more complicated real-world settings we
have described.

We also study the traveling salesman problem in which our traveler seeks to
visit every vertex of a given graph (rather than every edge). Euler, Vandermonde,
Hamilton, and Kirkman studied this question in the eighteenth and nineteenth centuries,
and contemporary mathematicians and computer scientists continue to grapple with
this subtle and delicate question. As described in section 6.1, the traveling salesman
problem is often presented by imagining a traveling salesman who leaves the home
office to visit a predetermined set of locations before returning home. In this section,
we seek the simplest possible “efficiency” in the salesman’s journey by requiring
the route to begin and end at home and to visit the other locations exactly once.
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Viewed from a graph-theoretic perspective, we represent the locations to be visited
as vertices and possible routes as edges; the traveling salesman problem asks for a
cycle visiting every vertex of this representative graph exactly once. Many important,
practical questions can be phrased in terms of this problem. Telecommunications
companies, computer manufacturers, and transportation industries must regularly
resolve networking and connection questions that are traveling salesman problems.
In fact, whenever you leave your home or residence hall to visit friends, to attend
classes, to go shopping, or to run other errands, you are essentially solving such a
problem. As we learn in this section, insights into the traveling salesman problem
are more difficult to develop than for the explorer’s problem. However, there are
many interesting partial results, and mathematicians, computer scientists, industrial
engineers, and others continue to work on optimal solutions to a given traveling
salesman problem.

6.2.1 The Explorer’s Problem and Eulerian Circuits

We begin our study of the explorer’s problem by describing Euler’s approach to
the Königsberg bridge problem. Recall that the Pregel River divides the town
of Königsberg into four parts that were interconnected by seven bridges in the
1730s. Is there a path that starts in one part of the town, crosses every bridge
exactly once, and returns to the place where the path began? As we mentioned
in section 6.1, Euler answered this question by modeling the physical setting of
Königsberg with a graph G in which the vertices represented the four parts of the
town and the edges represented the bridges; figure 6.15 presents Euler’s model
of Königsberg.

Working with this graphical representation, Euler translated the question of
traversing every bridge exactly once into the graph-theoretic question: “Does there
exist a circuit traversing every edge of G?” In other words, does there exist a closed
path in G that traverses every edge of G exactly once?

As we can see, this question is an example of the explorer’s problem. Perhaps
you tried to find a solution to this specific problem when it was introduced
in section 6.1—and hopefully you didn’t succeed! In Euler’s 1736 paper Solutio
problematic ad geometriam situs pertinentis (that is, The Solution of a Problem Relating
to the Geometry of Position), he proved that such a circuit of G does not exist; either we
come up one bridge short or we have to cross at least one bridge twice. In fact, Euler
proved a much more general result characterizing precisely those graphs containing a
circuit traversing every edge exactly once. Motivated by Euler’s success, we define a

Figure 6.15 Euler’s representation of Königsberg as a graph G
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solution of the explorer’s problem in terms of an Eulerian circuit along with the closely
related notion of an Eulerian path.

Definition 6.2.1 If G is a graph then, an Eulerian circuit of G is a circuit of G that includes
every edge of G exactly once. Recall that every circuit is closed, and so the initial
endpoint and the final endpoint of an Eulerian circuit are the same. An Eulerian
path in G is a path in G that includes every edge of G exactly once.

Often a graph G is said to be Eulerian if there is an Eulerian circuit of G, and semi-
Eulerian if there is an Eulerian path in G (that is not an Eulerian circuit). From these
definitions, we see that every Eulerian circuit is an Eulerian path. On the other hand,
not every Eulerian path is an Eulerian circuit, because the initial and final endpoints
may differ in an Eulerian path. For example, the complete graph K2 with two vertices
does not have an Eulerian circuit (you can verify this fact with a sketch of the graph);
after traversing the one available edge, it is impossible to return to the initial endpoint.
However, K2 does have an Eulerian path that starts at either vertex and traverses the
single edge to the other vertex. The next example identifies further Eulerian circuits
and paths.

Example 6.2.1 We discuss Eulerian circuits and paths in the graphs given in figure 6.16.
In graph (a), the path given by the sequence of edges s, t, u, v, w, x, y, z is an

Eulerian circuit of graph (a) based at the top left vertex. The reverse of this path
is also an Eulerian circuit of graph (a). Similarly, we can obtain other Eulerian
circuits of graph (a) based at other vertices by beginning with an edge adjacent to
the given vertex and otherwise preserving the ordering of the above sequence of
edges. For example, v, w, x, y, z, s, t, u is an Eulerian circuit based at the top right
vertex of graph (a). Since every Eulerian circuit is an Eulerian path, this graph
also contains multiple Eulerian paths.

Graph (b) contains many different Eulerian paths including those given by the
sequence of edges v, w, x, y, z and by v, w, z, y, x. Can you identify other distinct
Eulerian paths in this graph? Having identified Eulerian paths, we naturally search
for Eulerian circuits of graph (b). However, there does not exist an Eulerian circuit
of graph (b); can you articulate why?

■

Question 6.2.1 If possible, identify an Eulerian circuit of each graph given in figure 6.17; if such
a circuit does not exist, identify an Eulerian path.

■

The four graphs we considered in example 6.2.1 and question 6.2.1 have either
an Eulerian circuit or an Eulerian path. As you might expect, not every graph has
an Eulerian circuit or path. For example, the complete graph K4 on four vertices has

Figure 6.16 Graphs for
example 6.2.1
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Figure 6.17 Graphs
for question 6.2.1

neither an Eulerian circuit nor an Eulerian path. If you sketch K4 and try to identify
Eulerian circuits and Eulerian paths in K4, you may come to recognize why this graph
does not have such circuits or paths.

Such an example highlights important questions concerning the existence of
Eulerian circuits and Eulerian paths. When does a given graph have an Eulerian circuit
or path? Is there a criterion that a graph must satisfy to contain such a circuit or
path? Are any criteria on a graph equivalent to the existence of an Eulerian circuit or
path? Answers to these questions are of interest not only from an abstract, theoretical
perspective, but also because of the corresponding real-world applications of solutions
to this question. Fortunately, rather than blindly (or even cleverly) searching for
Eulerian circuits or paths in a graph, we can first determine the existence of such
a circuit or path based on the degrees of vertices and the connectedness of the graph.
Once we know that the conditions guaranteeing the existence of Eulerian circuit or
path are satisfied, then we can search for such a circuit or path confident that we will
eventually find at least one (if not more). When these conditions fail to hold, we know
that such a search would be fruitless, and we are free to turn our attention to other
interesting questions.

Recall that a graph is connected if there exists a path between any two vertices
in the graph, and that the degree of a vertex is the total number of times the vertex
is the endpoint of an edge (alternatively, we can compute the total number of edges
incident to the vertex, provided loops are counted twice). As Euler recognized, these
two features of a graph G are all that is needed to determine the existence of an Eulerian
circuit or path in G. Consider the following theorem.

Theorem 6.2.1 If G is a connected graph, then the following hold:

(a) There exists an Eulerian circuit of G iff the degree of every vertex is even.
(b) There exists an Eulerian path in G (which is not an Eulerian circuit)

between distinct vertices V and W iff V and W are the only vertices in G of
odd degree.

Proof of (a) We prove this “if and only if” statement in two parts, one for each half of
the biconditional. We first assume that there exists an Eulerian circuit of G and
prove that an arbitrary vertex V in G has even degree. The Eulerian circuit of G
traverses every edge of G exactly once, and (most importantly for this argument)
must therefore traverse every edge incident to V exactly once. We determine the
parity of the degree of V by following the Eulerian circuit around G. Whenever
the given Eulerian circuit enters V along an edge, the circuit exits V along some
other distinct edge, and so contributes 2 to d(V ). Because every edge of G is
traversed exactly once, d(V ) is a sum of 2’s and so even.
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We now consider the other half of the biconditional. We assume G is a connected
graph such that every vertex has even degree. We prove that there exists an Eulerian
circuit of G by describing an algorithm for constructing the desired Eulerian circuit.
If G consists of a single vertex V with no edges, the trivial walk from V to V is an
Eulerian circuit. If G contains more than one vertex, we choose an arbitrary vertex V
in G to serve as the base for the Eulerian circuit under construction. We then traverse
the edges of G in some arbitrary fashion (under the one restriction that we never
repeat an edge) until we return to V . Since every vertex of G has even degree, we
can exit every vertex we enter along some other edge; this fact, together with the
assumption of finitely many edges in G, ensures that this process must eventually close
the path under construction by returning to V . For ease of reference, we refer to this
circuit as C.

If C contains every edge of G, then C is the desired Eulerian circuit of G. If not,
the algorithm extends C to include additional edges of G. We first identify another
circuit C∗ in G that shares at least one vertex, but no edge, in common with C. Let G∗
denote the subgraph of G consisting of every edge in G that is not in C along with the
corresponding set of vertices incident to an edge not in C; note that every vertex of G∗
is also of even degree. Since C does not contain every edge of G and G is connected,
the original circuit C and this subgraph G∗ share some common vertex V∗. As before,
we identify a circuit in G∗ based at V∗. With C∗ in hand, we extend the original circuit
C by “patching together” C and C∗. We start at the orginal base V , traverse C until
V∗, hop off C and traverse C∗ from start to finish, and finally complete the traversal
of C from V∗ back to V .

If this new, extended circuit contains every edge of G, this is the desired Eulerian
circuit of G. If not, we repeat the extension process outlined above. Since G is finite,
this algorithm must eventually terminate, providing the desired Eulerian circuit of
the given graph G. Notice the constructive flavor of this proof—we are provided an
algorithm for identifying an Eulerian circuit in any connected graph with every vertex
of even degree.

■

Comments on the proof of (b) We assume G is a connected graph with exactly two distinct
vertices V and W of odd degree. The strategy in this setting is to add an extra edge
from V to W , apply the first part (1) of theorem 6.2.1, and then remove the added
edge to obtain the desired conclusion.As indicated in the statement of the theorem,
an Eulerian path in such a graph G must have the two vertices of odd degree as
its initial and final vertex. Further details are left for the exercises at the end of
this section.

■

Example 6.2.2 We use theorem 6.2.1 to determine if the graphs in figure 6.18 have an Eulerian
path or Eulerian circuit.

Graph (a) is the representation of Königsberg studied by Euler. The graph is
connected, and all four vertices have odd degree: the center vertex representing
the island has degree five and the other vertices have degree three. Since more
than two vertices have odd degree, the graph has neither an Eulerian circuit nor
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Figure 6.18 Graphs for example 6.2.2

an Eulerian path. In this way, Euler proved that the Königsberg bridge problem
has no solution.

Graph (b) is also connected.Vertices A and C have degree two, while vertices B
and D have odd degrees of three and one, respectively. Since this graph has vertices
of odd degree, there does not exist an Eulerian circuit of graph (b). However,
because this graph has exactly two vertices of odd degree, there does exist an
Eulerian path in graph (b). Recall from theorem 6.2.1 that such an Eulerian path
must begin and end at the vertices of odd degree. One example of an Eulerian
path in graph (b) is B, C, B, A, D. Can you identify another Eulerian path
in graph (b)?

Graph (c) is connected and every vertex has degree four, so this graph has
an Eulerian circuit. One Eulerian circuit of graph (c) is: A, B, C, D, E, A, D, C,
B, E, A. Can you identify another Eulerian circuit of graph (c)?

Finally, in graph (d), every vertex has an even degree of two. However,
the graph is not connected and theorem 6.2.1 does not apply. As we can see,
the existence of an Eulerian circuit or path is not guaranteed by every vertex
having even degree. In particular, there is no way to move from one “connected
component” of graph (d) to the other, and so it is impossible to traverse every edge
of the graph with a single path or circuit.

■

Example 6.2.2 demonstrates the usefulness of theorem 6.2.1. We do not need
(or want) to engage in a trial- and- error search through the graphs in figure 6.18
for example 6.2.2 in a perhaps vain quest for an Eulerian circuit or path. Instead,
we simply observe connectedness and check the degrees of vertices (both relatively
straightforward processes) to determine the existence of Eulerian circuits and Eulerian
paths. Once we are assured of the existence of such circuits or paths we begin our
search for them—if necessary, using the algorithmic processes outlined in the proof of
theorem 6.2.1.

Finally, note that graph (c) in figure 6.18 for example 6.2.2 demonstrates the
necessity of searching for Eulerian circuits rather than Eulerian cycles in most graphs.
Recall that a cycle does not repeat edges or vertices. For most graphs, we must revisit
some vertices in order to traverse every edge of the graph.

Question 6.2.2 Using theorem 6.2.1, identify either an Eulerian circuit or path in each graph in
figure 6.19, or explain why such a circuit or path does not exist.

■
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Figure 6.19 Graphs for question 6.2.2

6.2.2 The Traveling Salesman Problem and Hamiltonian Cycles

We now turn our attention to the explorer problem’s close cousin: the traveling salesman
problem. For this question, we focus on visiting every vertex exactly once (instead of
every edge exactly once). This slight shift in the type of “efficiency” we seek from
our paths yields a profoundly different mathematical question that is far more subtle
than the explorer’s problem. We have already presented this question in the context of
a salesman visiting some collection of locations without repetition and finishing the
journey where he began. The existence of cycles solving specific traveling salesman
problems is significant for many practical applications.

Unfortunately, the only known general method for finding such cycles employs the
method of exhaustion; as we have seen in other settings, exhaustion is not feasible in any
sufficiently complex setting. In addition, there is no theorem similar to Theorem 6.2.1
that would allow us to determine if a solution to the traveling salesman problem exists
for a given graph by examining some collection of relatively apparent features of the
graph. Mathematicians (and others) continue to seek such a theorem, and the study of
the traveling salesman problem remains an important and active area of research in
graph theory.

The study of cycles and paths that visit every vertex exactly once was popularized
by the Irish mathematician Sir William Rowan Hamilton in the nineteenth century.
Hamilton was born in Dublin in 1805 and showed an early skill for languages, mastering
Latin, Greek, and Hebrew by the age of five under the tutelage of his uncle. He entered
Trinity College in Dublin at the age of 18 and, while he was still an undergraduate, he
(amazingly) was appointed Professor of Astronomy and Royal Astronomer of Ireland.
However, most of Hamilton’s research efforts were devoted to the mathematical study
of optics, dynamics, and abstract algebra. He is best known for his definition of
the quaternions, the first noncommutative algebra studied by mathematicians and
an important tool in the study of physics. After struggling to define an appropriate
multiplication of triples of real numbers for almost a decade, Hamilton had the flash
of insight defining the quaternions via the equation i2 = j2 = k2 = ijk = −1 (see the
exercises at the end of section 3.5) while on a walk with his wife on the Brougham
Bridge over Dublin’s Royal Canal on Monday, October 16, 1843. Hamilton was so
delighted that he carved this equation on the bridge!

Hamilton’s association with graph theory is traced to his description of an “Icosian
calculus” in 1856 that can be interpreted in terms of paths on the surface of a regular
dodecahedron (a solid figure with twelve identical pentagonal faces). In 1858, Hamilton
developed the Icosian game based on this calculus. He labeled the vertices of the
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planar rendition of a regular dodecahedron with the names of cities from around
the world, including Brussels, Delhi, Canton, …, and Zanzibar. The players of this
game were challenged to start in a city and tour the world, visiting all the other cities
exactly once until returning to the starting city; that is, they were asked to solve
a specific instance of the traveling salesman problem. In light of this connection,
we name such cycles and paths that visit every vertex of a given graph in honor
of Hamilton.

Definition 6.2.2 If G is a graph, then a Hamiltonian cycle in G is a cycle in G that includes every
vertex of G and a Hamiltonian path is a simple path in G that includes every
vertex of G.

Often a graph G is said to be Hamiltonian if there is a Hamiltonian cycle in G,
and semi-Hamiltonian if there is a Hamiltonian path in G (that is not a Hamiltonian
cycle). From the definition of cycle and simple path, every Hamiltonian cycle and path
contains every vertex of the given graph exactly once. Every Hamiltonian cycle is
a Hamiltonian path; on the other hand, not every Hamiltonian path is a Hamiltonian
cycle because the initial and final endpoints may differ in a Hamiltonian path. As in
the Eulerian setting, the complete graph K2 on two vertices illustrates this distinction.
The next example considers further examples of such cycles and paths.

Example 6.2.3 We discuss Hamiltonian cycles and paths in the graphs given in figure 6.20.
In graph (a), the cycle A, B, C, D, A is a Hamiltonian cycle. This path is

based at A and visits every vertex of the graph exactly once. In fact, this path also
traverses every edge of the graph exactly once and so is an Eulerian circuit. Can
you identify the other Hamiltonian cycle in graph (a) that is based at vertex A?

Graph (b) is the complete graph K2 on two vertices. This graph has a
Hamiltonian path but no Hamiltonian cycle. For example, the path beginning at
vertex A and following the one edge to vertex B is a Hamiltonian path. However,
after traversing the one available edge, it is impossible to return to the initial
vertex; thus, K2 does not have a Hamiltonian cycle.

Finally, graph (c) has neither a Hamiltonian cycle nor a Hamiltonian path. The
key issue is vertex C. A path exiting vertex C must choose one of the three edges
to follow and, once it has done so, the path cannot reach the other branches of
the graph without violating the Hamiltonian condition of visiting vertices exactly
once. Thus, any path in graph (c) entering C from (at most) one of the three vertices
A, B, D can exit C to visit one of A, B, D. Therefore, at least just one of A, B, D is
not visited.

■

(a) (b)
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BC D

A B

(c)

B C

A

D

Figure 6.20 Graphs for example 6.2.3
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Reflecting on the graphs studied in figure 6.20 for example 6.2.3, mathematicians
are particularly interested in graph (c) that contains neither a Hamiltonian cycle
nor a Hamiltonian path. Such a relatively simple example can often yield insights
into the essential features of graphs that determine the existence and nonexistence
of Hamiltonian cycles and paths. Perhaps you can develop a conjecture as to what
general feature of graph (c) led to the nonexistence of a Hamiltonian cycle or path,
and suggest some corresponding sufficient condition(s) that a graph must satisfy to
(possibly) contain a Hamiltonian cycle or path.

Question 6.2.3 For each graph given in figure 6.21, either identify a Hamiltonian cycle or path in
the graph, or explain why such a cycle or path does not exist.

■

As mentioned above, mathematicians have not yet identified a general result
characterizing graphs with Hamiltonian cycles or paths. While Euler’s success with the
explorer’s problem has not been achieved with the traveling salesman problem, various
partial results have been proven that provide sufficient conditions for the existence of
Hamiltonian cycles and paths. We present one of these results, first proved by the
Norwegian mathematician Øystein Ore in 1960.

Theorem 6.2.2 If G is a simple, connected path with n vertices such that n ≥ 3 and for every
pair of distinct non-adjacent vertices V and W in G, d(V )+ d(W ) ≥ n, then there
exists a Hamiltonian cycle in G.

The proof of this result is left for your later studies of mathematics. Instead, we
focus on applying theorem 6.2.2 to specific graphs.

Example 6.2.4 We discuss the application of theorem 6.2.2 to each graph given in figure 6.22.
In graph (a) with n = 4 vertices, there are two pairs of distinct, nonadjacent

vertices: A, D and B, C. We observe that both d(A)+ d(D) = 2+ 2 = 4 ≥ n
and d(B) + d(C) = 2 + 2 = 4 ≥ n. Therefore, since graph (a) is simple and

(a) (b)
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Figure 6.21 Graphs for question 6.2.3
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Figure 6.22 Graphs for example 6.2.4
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Figure 6.23 Graphs for question 6.2.4

connected, theorem 6.2.2 ensures that there exists a Hamiltonian cycle in G. The
path A, B, C, D is one such cycle.

In graph (b) with n = 6 vertices, no pair of distinct, nonadjacent vertices V
and W satisfies the required condition that d(V ) + d(W ) ≥ n = 6. For example,
d(A) + d(E) = 2 + 2 = 4 < n. As we have seen, when the hypotheses of a
theorem are false, the conclusion may be either true or false. In this case, there
does exists a Hamiltonian cycle in graph (b); the path A, B, C, F, E, D, A is one
such cycle. This graph demonstrates that the hypotheses of Ore’s theorem 6.2.2
are not necessary for the existence of a Hamiltonian cycle in a given graph (even
though they are sufficient).

Graph (c) also does not satisfy the hypotheses of theorem 6.2.2, but in this
case there is no Hamiltonian cycle in the graph. However, there does exist a
Hamiltonian path in graph (c); can you identify such a path?

■

Question 6.2.4 Determine if theorem 6.2.2 applies to each graph given in figure 6.23. If so, identify
a Hamiltonian cycle in the graph.

■

In section 6.4, we study variations of the traveling salesman problem that extend the
goal of efficiency beyond visiting every vertex exactly once. We consider “weighted”
graphs that have numeric labels assigned to their edges. These labels may represent
distance, time, money, or some other measurable quantity of interest. In this context, we
seek “minimum weight” Hamiltonian cycles and paths that visit every vertex exactly
once at the least possible expense. Again, we will not practically be able to obtain ideal
solutions for every such graph, but we can obtain some measure of optimization by
means of various “heuristic” algorithms.

6.2.3 Reading Questions for Section 6.2

1. State the Königsberg bridge problem, the explorer’s problem, and the traveling
salesman problem.

2. Define and give an example of a connected graph.
3. Define and give an example of a vertex of even degree and a vertex of odd

degree.
4. Define and give an example of an Eulerian circuit and an Eulerian path.
5. State theorem 6.2.1. How is this result helpful when studying graphs?
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6. Discuss the possibility of defining an Eulerian cycle. What are the potential
difficulties with such a notion?

7. Define and give an example of a Hamiltonian cycle and a Hamiltonian path.
8. Identify at least two ways in which an Eulerian circuit and a Hamiltonian

cycle differ.
9. Discuss the possibility of defining a Hamiltonian circuit.What are the potential

difficulties with such a notion?
10. Explain why a Hamiltonian walk and a Hamiltonian path are identical;

that is, why must a walk visiting every vertex exactly once necessarily be
a path?

11. State theorem 6.2.2. How is this result helpful when studying graphs?
12. In light of the application of theorem 6.2.2 to the graph (b) in example 6.2.4,

discuss the distinction between “necessary” and “sufficient” conditions for
mathematical properties.

6.2.4 Exercises for Section 6.2

In exercises 1–8, identify an Eulerian circuit or an Eulerian path in each graph, or
explain why such a circuit or path does not exist.
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In exercises 9–16, identify a Hamiltonian cycle or a Hamiltonian path in each graph,
or explain why such a cycle or path does not exist.
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In exercises 17–24, sketch a graph containing the given object or explain why such
a graph does not exist. While many different answers may be possible, try to find an
example using as few vertices and edges as possible.

17. A graph with an Eulerian circuit and a Hamiltonian cycle.
18. A graph with an Eulerian circuit but no Hamiltonian cycle.
19. A graph with no Eulerian circuit but a Hamiltonian cycle.
20. A graph with no Eulerian circuit and no Hamiltonian cycle.
21. A graph with an Eulerian path and a Hamiltonian path.
22. A graph with an Eulerian path but no Hamiltonian path.
23. A graph with no Eulerian path but a Hamiltonian path.
24. A graph with no Eulerian path and no Hamiltonian path.

In exercises 25–34, prove each mathematical statement about graphs.

25. Theorem 6.2.1, part(2): If there exists an Eulerian path in a connected graph G
between distinct vertices V and W , then V and W are the only vertices in G
of odd degree.

26. Theorem 6.2.1, part(2): If V and W are distinct vertices in a connected graph G
and are the only vertices in G of odd degree, then there exists an Eulerian path
in G between V and W .

27. If every vertex of a graph G has even degree, then G can be partitioned into
distinct cycles so that no two cycles share an edge in common.
Hint: See the proof of theorem 6.2.1 part (a).

28. If a graph has a vertex of odd degree, then the graph does not have an Eulerian
circuit.

29. If a graph G has a Eulerian circuit and no isolated vertices, then G is connected.
Using the contrapositive of this result, sketch a graph that does not have an
Eulerian circuit.

30. If a graph G has a Hamiltonian cycle, then G is connected. Using the
contrapositive of this result, sketch a graph that does not have a Hamiltonian
cycle.

31. If a graph G has a cycle that is both an Eulerian circuit and a Hamiltonian
cycle, then the number of vertices in G is the same as the number of edges
in G. Using the contrapositive of this result, sketch a graph that does not have
a cycle that is both Eulerian and Hamiltonian.

32. If a graph G has a cycle that is both an Eulerian circuit and a Hamiltonian
cycle, then every vertex of G has degree two. Using the contrapositive of this
result, sketch a graph that does not have a cycle that is both Eulerian and
Hamiltonian.

33. There exists a Hamiltonian cycle in every complete graph with at least three
vertices.

34. If G is a simple, connected graph with n vertices such that n ≥ 3 and for every
vertex in G, d(V ) ≥ n/2, then there exists a Hamiltonian cycle in G.
Hint: Use theorem 6.2.2 to prove this result.

In exercises 35–41, sketch a graph (or graphs) representing the following modifications
of the Königsberg bridge problem. In addition, either identify an Eulerian circuit or an
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Figure 6.24 Eulerizing graphs

Eulerian path in the resulting graph(s), or explain why such a circuit or path does not
exist. You may be interested in referring to figure 6.2 and figure 6.15.

35. An eighth Königsberg bridge is built downriver on the north-eastern branch
of the Pregel River.

36. An eighth Königsberg bridge is built downriver on the south-eastern branch
of the Pregel River.

37. An eighth Königsberg bridge is built over the Pregel River that provides an
Eulerian path in the corresponding graph; identify one such solution.

38. An eighth Königsberg bridge is built over the Pregel River; we do not specify
which part of the river is spanned, so there are several representative graphs.

39. An eighth and a ninth Königsberg bridge are built over the Pregel River that
provide an Eulerian circuit in the corresponding graph; identify one such
solution.

40. The north-eastern Königsberg bridge is removed.
41. The Königsberg bridge running from east to west is removed.

Exercises 42–47 consider an eulerization of a graph. Even if a connected graph does not
contain an Eulerian circuit or path, we can obtain a close approximation by eulerizing
the graph. A connected graph does not contain an Eulerian circuit or path if the
graph contains the wrong number of vertices of odd degree. We eulerize a graph by
duplicating existing edges until we have the correct number of vertices of odd degree.
In example 6.2.1, we observed that graph (a) (shown in figure 6.24) does not has an
Eulerian circuit because vertices B and C have odd degree.

However, if we duplicate edge x in graph (a), we obtain graph (b); now every
vertex has even degree, and graph (b) contains several Eulerian circuits, including v,
x, u, y, z, w. In this case, graph (b) is said to be an eulerization of the original graph (a).
Eulerizations of graphs are not unique; for example, graph (c) in figure 6.24 is another
distinct eulerization of graph (a). Usually we seek eulerizations that are optimal in the
sense of duplicating the fewest number of edges possible.

In exercises 42–47, explain why each graph does not have an Eulerian circuit and
provide an (optimal) eulerization of the graph.
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Exercises 48–53 consider the notion of a subgraph. Intuitively, a graph H is a subgraph
of a graph G if H can be obtained from G by (possibly) deleting some vertices and
edges of G. More formally, H is a subgraph of a graph G if every vertex and edge of
H is in G and every edge of H has the same endpoints as in G.

In exercises 48–53, specify which of the given graphs (a) and (b) is a subgraph of the
other, or explain why neither is a subgraph of the other.

48. 49.

(a) (b)

50.

(a) (b)(a) (b)

51.

(a) (b)

53.

(a) (b)(a)

52.

(b)

Exercises 54–61 study set-theoretic representations of graphs through a collection
of two-element multisets. The two elements in each multiset are vertices that are
adjacent to one another. For example, { {A, A}, {A, B}, {B, C} } represents graph (a)
in figure 6.25. Similarly, we can represent the complete graph K3 on three vertices
given in graph (b) in figure 6.25 with the set: { {A, B}, {B, C}, {A, C} }.

The equality of edges AB and BA is expressed by the equality of the corresponding
multisets {A, B} and {B, A}. In addition, this representation uses multisets in the same
way (allowing repeated elements in the two element sets) in order to represent loops
with their identical endpoints.

In exercises 54–57, sketch the graph represented by each set, or explain why the set
does not represent a graph.

54. { {A, A}, {B, B}, {A, B} }
55. { {A, A}, {A, B}, {A, C}, {B, B}, {C, C} }

(a)

A

B C

A

B C

(b) Figure 6.25 Set-theoretic representations of graphs



Chapter 6 ■ Graph Theory 483

56. { {A, B}, A}
57. { {A, A}, {A, C}, {B, D}, {C, D}, {D, D} }

In exercises 58–61, state the set-theoretic representation of each graph.

58. The graph from exercise 2.
59. The graph from exercise 4.

60. The graph from exercise 6.
61. The graph from exercise 8.

Exercises 62–70 consider the connected to relation on vertices defined via graphs:
given a graph G and two vertices V and W in G, we define V ∼G W iff V is connected
to W via some path in graph G. Every graph induces a connected to relation on its set
of vertices.

In exercises 62–65, use the notation V ∼G W to identify the vertices connected to
vertex A and connected to vertex B in each graph.

62.

A B

C D

63.

A B

C D

64.

A B C

D E F

65.

A B C

D E F

In exercises 66–70, prove each property of a relation holds for the connected to relation
∼G for an arbitrary graph G, or sketch a counterexample demonstrating otherwise. If
a given property does not hold, state a condition on graphs that ensures the property
holds for every graph satisfying the condition.

1. Reflexivity: For every vertex V , V ∼G V .
2. Irreflexivity: For every vertex V , V 	∼G V .
3. Symmetry: For all vertices V and W , V ∼G W implies W ∼G V .
4. Transitivity: For all vertices V , W , and X, V ∼G W and W ∼G X implies

V ∼G X.
5. Comparability: For all vertices V and W , either V ∼G W or V = W or

W ∼G V .

6.3 Shortest Paths and Spanning Trees

We continue a study of graph-theoretic questions with an optimization theme. In
section 6.2, we sought efficiency with respect to visiting edges by means of Eulerian
circuits and paths, and with respect to visiting vertices by means of Hamiltonian cycles
and paths. In this section, we are interested in identifying optimal paths that traverse
a minimal number of edges. Such a shortest path always exists between any two
connected vertices. Connected vertices are the endpoints of some path, and there
exist only finitely many paths joining such vertices because graphs are finite; one
of these paths is of minimum length. We consider a shortest path algorithm that
enables the identification of one of the shortest paths between any two given vertices.
This algorithm employs a variation on the method of exhaustion and introduces a
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labeling system for vertices that is useful in our continuing study of graph-theoretic
algorithms.

In addition to optimizing paths with respect to length, we are interested in
efficiently connecting vertices. Recall the complete graph Kn on n vertices joins every
pair of distinct vertices with an edge. In some settings such an explicit connection
between vertices is essential, but in many applications simply having a path between
distinct vertices is sufficient. For example, airline companies commonly operate with
a few designated “hub” airports. Rather than taking direct flights between two small,
regional airports, passengers fly from the closest regional airport to their airline’s
hub, and then catch a connecting flight to their final destination. Expressed graph-
theoretically, there is a path between any two distinct vertices (or airports), even when
there is not an edge between them. Similar choices are often made in establishing
computer networks, running gas and electric lines, routing mass transportation systems,
and a host of other settings in which people are interested in the (sometimes) competing
goals of connectedness and efficiency in creating the connectedness. In the language
of graph theory, these applications search for a spanning tree that includes every
vertex of a given connected graph. We will study spanning trees in the second
half of this section and will continue this work in the context of weighted graphs
in section 6.4.

For each algorithm studied in this chapter, we will first work carefully through a
detailed example and then state the general algorithm. Along the way, we also discuss
proofs that these algorithms always achieve their stated goals.

6.3.1 A Shortest Path Algorithm

This algorithm identifies a path between two connected vertices that traverses the
minimum possible number of edges. In essence, the shortest path algorithm uses the
method of exhaustion, considering every possible initial segment of a path based at
one of the two given vertices. Since the given vertices are assumed to be connected, the
algorithm eventually identifies a path to the other vertex; the first such path identified
by the algorithm is a shortest path. As we study this algorithm, we should keep in mind
that such an exhaustive search is sufficient and appropriate for relatively small graphs.
However, as graphs increase in size and complexity, the corresponding (significant)
increase in the resources required to implement this algorithm can render its use
infeasible.

Example 6.3.1 We implement the shortest path algorithm to identify a shortest path between
vertices A and J in the graph S given in figure 6.26.

The algorithm first selects one of the two given vertices to serve as the initial
endpoint of the path; for this example, we select A. The algorithm now assigns
labels to the vertices in S while constructing a path to the other given vertex
(in this case, vertex J). First, the label 1:A is assigned to every vertex adjacent
to A; in this graph, both B and E are labeled 1:A. Proceeding alphabetically on
B and E, the algorithm labels every previously unlabeled vertex adjacent to B
with the notation 2:B; for graph S, both C and F are labeled 2:B. Notice that
even though E is adjacent to B, the algorithm does not “relabel” the previously
labeled vertex E. The algorithm completes this second step by considering E and
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Figure 6.26 Graph S for example 6.3.1
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Figure 6.27 A shortest path in graph S for
example 6.3.1
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labeling the adjacent unlabeled vertex H with 2:E. Proceeding alphabetically on
C, F, and H, the above process is repeated so that D and G are labeled 3:C and I is
labeled 3:F. Finally, J is labeled 4:G and the labeling process is stopped because
J (the other given vertex) is now labeled.

The algorithm identifies a shortest path by working backwards from J to A
based on the assigned labels. Since J is labeled 4:G, the algorithm includes the
edge JG from vertex J to vertex G in the path under construction. Continuing
in this fashion, the shortest path from J to A also includes edge GC (since G is
labeled 3:C), edge CB (since C is labeled 2:B), and edge BA (since B is labeled
1:A). Thus, a shortest path from A to J follows the four edges connecting the
vertices A, B, C, G, J as highlighted in figure 6.27.

■

The graph given in figure 6.26 for example 6.3.1 actually has two distinct paths of
minimum length four from vertex A to vertex J; can you find the other path of length
four? This other shortest path is identical to the path identified by the shortest path
algorithm, except for visiting vertex F instead of vertex C.As in other such settings, we
must therefore refer to the path identified by this algorithm as “a” shortest path between
given vertices, rather than “the” shortest path (which would incorrectly indicate a
unique solution). We now present a general description of the shortest path algorithm.

A shortest path algorithm This algorithm identifies a shortest path between
two connected vertices. For ease of reference, we assume the given vertices
are labeled A and B and let A denote the initial endpoint of the path under
construction.
Step 1. Label every vertex adjacent to A with the notation 1:A.
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Step 2. Consider each vertex V labeled with the notation 1:A. If more than
one vertex is labeled 1:A, use any ordering of these vertices. Label every
vertex adjacent to V that is previously unlabeled (either in Step 1 or in a
previous iteration of Step 2) with the notation 2:V .

Step 3. Repeat Step 2 until vertex B is labeled. Throughout this process,
label vertices using the notation n:V , where n is the number of iterations of
Step 2 and V is a previously labeled vertex.

Step 4. Construct a shortest path by working backwards from B to A using
the assigned labels. If vertex B is labeled m:V (for some adjacent vertex V
and integer m), include the edge BV from B to V in the path under
construction. Continuing in this fashion, include the edge from V to the
vertex designated by its label, and so on back to vertex A. The length of this
shortest path is m.

■

If any step in this shortest path algorithm requires an ordering of vertices, then any
ordering may be used. In fact, the particular ordering is not important from one step
to the next, although we often fix some ordering at the beginning and consistently use
this ordering throughout the implementation of the algorithm. We now discuss a proof
that this algorithm always achieves its goal of identifying a “shortest” path between
any two connected vertices.

Theorem 6.3.1 If V and W are distinct, connected vertices in a graph G and a path in G identified
by the shortest path algorithm has length m, then every path from V to W has
length greater than or equal to m.

Sketch of proof We outline a proof by contradiction. Such a proof assumes that p is a
path of length m from vertex V to W given by the shortest path algorithm and
that q is a distinct path from V to W of length n with n < m. We obtain a
contradiction by considering the labeling process utilized by the shortest path
algorithm. In particular, vertex W must be labeled n:X for some vertex X in G
based on path q, and so cannot later be labeled m:Y for a vertex Y in G based
on path p. This contradicts the construction of p by means of the shortest path
algorithm.

■

Question 6.3.1 Using the shortest path algorithm, identify a shortest path from vertex A to vertex H
in the graph given in figure 6.28.

■

A B

E F G H

C D

Figure 6.28 Graph for question 6.3.1
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6.3.2 Spanning Trees

For the remainder of this section, we develop and explore the notion of a “spanning
tree” of a graph. As discussed above, many real-life problems are solved using graph-
theoretic models to examine connections between vertices in a representative graph.
The strongest response to a need for connectivity is to supply edges that make every
vertex adjacent to every other vertex; the complete graph on n vertices models this
approach. However, in many practical settings, such a use of resources may be wasteful
and (more often) impossible. In such cases, an effective, alternative approach is
to require every pair of vertices simply to be connected by a path. Airline routes,
bus routes, and computer networks are just a few of the many interrelationships
implemented in this fashion; and all of these connectivity problems are readily solved
by finding a spanning tree of an appropriate representative graph.

The first mathematical treatise on spanning trees was written by Gustav Robert
Kirchoff in the mid-1800s. Kirchoff was born and raised in Königsberg (of graph-
theoretic bridge fame) and studied mathematical physics at Albertus University of
Königsberg in the early 1840s. While still an undergraduate, Kirchoff made his first
significant research contribution, extending Ohm’s laws to allow for the calculation
of currents, voltages, and resistances in electrical circuits with multiple loops; his
interest in spanning trees arose naturally in this study of electrical networks. Soon
after, Kirchoff moved to Berlin, Germany (eventually becoming chair of mathematical
physics at the University of Berlin), where he played a prominent role in the analysis
and teaching of physics and influenced the generation of physicists that followed.

Requiring only connectedness among vertices (rather than adjacency) enables us
(like Kirchoff) to optimize potential networks of relationships among vertices; we can
eliminate repeated or redundant paths linking two vertices, thereby obtaining a greater
level of efficiency. For example, after implementing the shortest path algorithm in
example 6.3.1, we observed that there exist two shortest paths connecting vertices A
and J in figure 6.26; in fact, many different paths connect these two vertices. In this
setting, we can pare down the graph in figure 6.26 so that there exists exactly one path
connecting vertices A and J , and any other pair of distinct vertices.

In graph-theoretic terms, we seek a subgraph that includes every vertex of the
original graph G and preserves all connectedness relations in G, but also contains as
few edges of G as possible. Formally, we refer to this type of subgraph as a spanning
tree. The key to obtaining such an ideal subgraph is to avoid cycles; recall from
definition 6.1.4 in section 6.1 that a cycle is a closed path that does not repeat any
vertices or edges. If we identify a subgraph of a given graph not containing any cycles,
then the resulting subgraph avoids any redundant paths and contains exactly one path
connecting any distinct pair of vertices. With these reflections in mind, we state the
related definitions.

Definition 6.3.1 A tree is a connected graph that does not contain any cycles. A spanning tree
of a connected graph G is a subgraph of G that is a tree and that contains every
vertex of G.

As you might expect, every graph that is a tree is a spanning tree of itself. However,
most often, we consider graphs that are not trees and seek spanning trees of these more
complicated graphs. Consider the following example.
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Figure 6.29 Graphs for example 6.3.2
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Figure 6.30 Graphs for question 6.3.2

Example 6.3.2 We examine the graphs given in figure 6.29 in light of the notions of a tree and a
spanning tree from definition 6.3.1.

Graph (a) is a tree because the graph is connected and does not contain any
cycles. In contrast, graph (b) is not a tree. Although this graph is connected, there
are many different cycles in graph (b), including A, B, D; can you identify another
cycle in graph (b)? In addition, graph (a) is a subgraph of graph (b) because every
vertex and every edge in (a) is also in (b). Since (a) is a subgraph of (b), and graph
(a) is a tree, and every vertex of (b) appears in (a), we conclude that graph (a) is a
spanning tree of graph (b).

■

As illustrated in example 6.3.2, the following three properties must be verified to prove
that a graph T is a spanning tree of a graph G:

• T is a subgraph of G; that is, every vertex and every edge of T is in G;
• T is a tree; that is, T is a connected graph not containing any cycles;
• every vertex of G is contained in T .

If even one of these three properties fails, then T is not a spanning tree. We continue
to refine our understanding of these ideas in the following question.

Question 6.3.2 Explain why each graph given in figure 6.30 is (or is not) a tree. Also, prove that
one of these three graphs is a spanning tree of one of the other graphs.

■

When given a visual representation of a graph, we are often readily able to
determine if the graph is a tree; the human eye and mind almost instinctively identify
the presence of cycles in graphs. In addition to such a geometric approach to identifying
trees, the following theorem provides an arithmetic test for trees based on a numeric
relationship between the number of vertices and the number of edges in a graph;
consider the following theorem.

Theorem 6.3.2 If n is a nonnegative integer and G is a connected graph with n+ 1 vertices, then
G is a tree iff G has exactly n edges.
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Comments on proof Throughout this discussion, we assume that n is a nonnegative integer
and that G is a connected graph with n + 1 vertices. Induction is often used to
prove “If G is a tree, then G has exactly n edges.” This portion of the proof uses
the fact that every tree with more than one vertex contains at least one vertex of
degree one. Often a proof by contradiction is given to prove “If G has n edges,
then G is a tree.” This portion of the proof uses the fact that connected graphs
remain connected when a single edge is removed from a nontrivial circuit in
the graph.

■

Theorem 6.3.2 may bring to mind theorem 6.3.2 from section 6.1, in which
the relatively straightforward properties of connectedness and degrees of vertices
characterize the apparently much stronger assertion that Eulerian circuits or paths
exist. In this setting, counting vertices and edges in a given graph is a routine process;
comparing the resulting numbers enables the determination of cycles existing (and
whether the given graph is a tree). We now reconsider the graphs given in the previous
example and question in light of this result.

Example 6.3.3 We use theorem 6.3.2 to determine if the graphs given in figure 6.31 are trees.
Graph (a) is connected with six vertices and five edges; thus, theorem 6.3.2

implies that (a) is a tree. In contrast, graph (b) is not a tree, because (b) has six
vertices but eight edges (and six is not equal to eight plus one).

■

Question 6.3.3 Using theorem 6.3.2, determine if the graphs given in figure 6.32 are trees.
■

Question 6.3.4 Sketch a graph with the following properties, or explain why such a graph does
not exist.

(a) A tree with eight vertices and nine edges.
(b) A connected graph with eight vertices and nine edges.
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Figure 6.31 Graphs for example 6.3.3
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Figure 6.32 Graphs for question 6.3.3
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(c) A tree with eight vertices and seven edges.
(d) A graph with eight vertices and seven edges that is not a tree.

■

Two algorithms identify a spanning tree of a given graph: the breadth-first spanning
tree algorithm and the depth-first spanning tree algorithm. As with the shortest path
algorithm, we carefully work through a detailed example and then give a general
description of each algorithm.

6.3.3 The Breadth-First Spanning Tree Algorithm

The main idea of this algorithm, which identifies a spanning tree of a given connected
graph, is to move from one vertex to the next, adjoining as many edges as we can at
each vertex. As you might expect, placing a priority on “breadth” results in spanning
trees that tend to be “thicker” around a few vertices having many adjacent vertices.
Consider the following example.

Example 6.3.4 We implement the breadth-first spanning tree algorithm to identify a spanning tree
of the graph given in figure 6.33.

The algorithm first selects any two adjacent vertices, labels them V1 and V2,
and includes these vertices along with the incident edge V1V2 in the spanning
tree. For this graph, vertex A is labeled V1 and vertex B is labeled V2; vertices
V1 = A and V2 = B and edge V1V2 = AB are then included in the spanning tree
under construction. The algorithm now focuses on vertex V1 = A and considers all
unlabeled vertices adjacent to V1. In this graph, vertex E is the only such vertex;
therefore, E is labeled V3, and vertex V3 = E and edge V1V3 = AE are included
in the spanning tree under construction.

Because no further unlabeled vertices are adjacent to V1, the algorithm moves
onto V2 = B and considers all unlabeled vertices adjacent to V2. In this graph, C
and F are the two vertices satisfying this criteria. Using an alphabetical ordering,
C is labeled V4 and F is labeled V5, and we includes vertices V4 = C and V5 = F
and the edges V2V4 = BC and V2V5 = BF in the spanning tree under construction.

The algorithm then considers V3 = E, labeling H as V6 and including vertex
V6 = H and edge V3V6 = EH in the spanning tree. Continuing in this fashion
until all the vertices are labeled, we obtain the following results.

• For V4 = C: vertex D is labeled V7, vertex G is labeled V8, and vertices
V7 = D and V8 = G and edges V4V7 = CD and V4V8 = CG are included in
the spanning tree;

A B

E F G

H JI

C D

Figure 6.33 Graph for example 6.3.4
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Figure 6.34 A breadth-first spanning tree for
example 6.3.4

A=v1 B=v2

E=v3 F=v5
G=v8

H=v6 J=v10I=v9

C=v4 D=v7

• For V5 = F: vertex I is labeled V9, and vertex V9 = I and edge V5V9 = FI are
included in the spanning tree;

• For V6 = H: there are no unlabeled adjacent vertices;
• For V7 = D: there are no unlabeled adjacent vertices;
• For V8 = G: vertex J is labeled V10, and vertex V10 = J and edge V8V10 = GJ

are included in the spanning tree.

At this point, every vertex in the original graph has been labeled and included
in the spanning tree under construction. The set of vertices and edges identified
by the algorithm is a subset of the original graph; that is, this set is a subgraph.
Furthermore, this subgraph is a tree because only edges incident to unlabeled
vertices are added to the graph, ensuring that no cycles are created during the
construction. Thus, the breadth-first spanning tree algorithm has successfully
identified a spanning tree of the original graph as illustrated in figure 6.34.

■

The breadth-first spanning tree algorithm identifies just one of (typically) many
possible spanning trees for a given connected graph. As may be apparent, different
choices for the initial vertices V1 and V2 often led to the breadth-first algorithm
identifying different spanning trees of the same graph. In addition, the depth-first
spanning tree algorithm (discussed below) provides an alternative approach to finding
a spanning tree of a given graph and often identifies a different spanning tree than
the breadth-first algorithm. We now present the general description of the breadth-first
spanning tree algorithm.

The breadth-first spanning tree algorithm This algorithm identifies a
spanning tree of any given connected graph.

Step 1. Choose any two adjacent vertices in the graph, label them V1 and
V2, and include the vertices V1 and V2 and the edge V1V2 in the spanning
tree under construction. In addition, two counters are defined to facilitate the
construction. First, let m denote the vertex for which the algorithm is
currently seeking adjacent unlabeled vertices and set m = 1. Second, let n
denote a “label counter” that identifies the index of the label Vn to be
assigned to the next vertex and set n = 3.

Step 2. Consider vertex Vm and identify an unlabeled vertex adjacent to Vm.
If such a vertex does not exist, increment the counter m (setting m = m+ 1)
and consider the next vertex. If there exists more than one unlabeled vertex
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adjacent to Vm, select one using any ordering of the adjacent unlabeled
vertices. The selected vertex is labeled Vn, and both the vertex Vn and the
edge VmVn are included in the spanning tree; also, increment the label
counter n. We continue this process with unlabeled vertices adjacent to Vm

until every vertex adjacent to Vm has been labeled and included in the
spanning tree under construction (along with the appropriate corresponding
edge). At this point, increment the counter m and consider the next vertex.

Step 3. Repeat Step 2 until every vertex of the given graph has been
labeled. Once n is one more than the number of vertices in the given graph,
the algorithm is complete and the resulting tree is a spanning tree of the
original graph.

■

Theorem 6.3.3 The breadth-first spanning tree algorithm identifies a spanning tree of any given
connected graph.

Sketch of proof The graph identified by this algorithm includes only vertices and
edges from the original graph, ensuring the constructed graph is a subgraph of the
original. In addition, this algorithm always identifies a tree because only edges
from a labeled vertex to a new, previously unlabeled vertex are included in the
graph under construction. A cycle could only be created by including edges from a
labeled vertex to a labeled vertex, and the algorithm does not allow this possibility.
Finally, the algorithm continues adding vertices and edges until every vertex in the
original graph is included in the tree under construction. Thus, the graph identified
by the breadth-first spanning tree algorithm is a spanning tree of the original graph.

■

In this proof sketch of theorem 6.3.3, notice the three strands of the argument that
must be developed: subgraph, tree, and spanning. Every proof of the validity of such
an algorithm must address these three criteria to ensure that a spanning tree of the
original graph has been identified.

Question 6.3.5 Using the breadth-first spanning tree algorithm, identify a spanning tree of the
graph given in figure 6.35; for the first step, use the labels V1 = A and V2 = E.

■

6.3.4 The Depth-First Spanning Tree Algorithm

This algorithm is an alternative approach to identifying a spanning tree of a given
connected graph. The main idea of the depth-first spanning tree algorithm is to move
from one vertex to the next, adjoining just one edge incident to each vertex, unless
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Figure 6.35 Graph for question 6.3.5
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Figure 6.36 Graph for example 6.3.5
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forced to backtrack and add more edges incident to a previously included vertex
(because of the particular structure of the given graph). As you might expect, placing a
priority on “depth” results in spanning trees that tend to be “thinner” with fewer edges
incident to any one vertex. Consider the following example.

Example 6.3.5 We implement the depth-first spanning tree algorithm to identify a spanning tree
for the (now familiar) graph given in figure 6.36.

The algorithm first selects an arbitrary vertex to serve as the starting point
and proceeds through the original graph assigning labels to vertices in a fashion
similar to that of the shortest path algorithm. In this case, we begin with vertex A,
labeling A as vertex “1”, and including A in the spanning tree under construction.
The remaining vertex labels are of the form n:V where n refers to the number of
vertices already included in the spanning tree, and V refers to the “originating”
adjacent vertex.

Beginning with vertex A, the algorithm identifies adjacent vertices B and E.
Proceeding alphabetically, B is labeled with the notation 2:A and both vertex B
and edge AB are included in the spanning tree. We now consider vertex 2:A = B
and identify the adjacent vertices A, C, F. Continuing to work with the alphabetic
ordering of vertices, the first vertex (vertex A) is already labeled, so the next
(unlabeled) vertex C is labeled 3:B and both vertex C and edge BC are included in
the spanning tree. Considering vertex 3:B = C, the algorithm identifies adjacent
vertices B, D, F, G. Proceeding alphabetically, vertex B = 2:A is already labeled,
so the next (unlabeled) vertex D is labeled 4:C and both vertex D and edge CD
are included in the spanning tree under construction.

Moving on to the next vertex, we see that 4:C = D has no unlabeled adjacent
vertices, even though some vertices in the original graph remain unlabeled;
consulting the label counter, the number of labeled vertices is n = 4 which is
less than 10 (the total number of vertices in the graph). When such a vertex is
reached, the algorithm backtracks along the path of the most recently labeled
vertices until reaching a vertex with an adjacent unlabeled vertex. For this graph,
we backtrack to 3:B = C with adjacent unlabeled vertices F and G. Using the
alphabetic ordering, vertex F is labeled 5:C and both vertex F and edge CF are
included in the spanning tree. Continuing in this fashion until all vertices are
labeled, we obtain the following results.

• Vertex G is labeled 6:F and both G and FG are included in the spanning tree.
• Vertex J is labeled 7:G and both J and GJ are included in the spanning tree.
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Figure 6.37 A depth-first spanning tree for
example 6.3.5

• Vertex H is labeled 8:F and both H and FH are included in the spanning tree.
• Vertex E is labeled 9:H and both E and HE are included in the spanning tree.
• Vertex I is labeled 10:F and both I and FI are included in the spanning tree.

At this point, every vertex in the original graph has been labeled and included in
the spanning tree under construction. Based on an argument similar to that for
the breadth-first spanning tree algorithm, the depth-first spanning tree algorithm
has successfully identified a spanning tree of the original graph as illustrated in
figure 6.37.

■

The depth-first spanning tree algorithm identifies just one of (typically) many
possible spanning trees of a given connected graph. As may be apparent, dif-
ferent choices for the initial vertex often lead to the depth-first spanning tree
algorithm identifying different spanning trees of the same graph. In addition, the
depth-first spanning tree algorithm and breadth-first spanning tree algorithm often
identify different spanning trees; compare figure 6.37 with figure 6.34 for an
example of different spanning trees produced by these algorithms for the same
graph. We now present a general description of the depth-first spanning tree
algorithm.

The depth-first spanning tree algorithm This algorithm identifies a
spanning tree of any given connected graph.

Step 1. Choose a fixed ordering of the vertices in the given graph; often an
alphabetic or numeric ordering is chosen. This description of the algorithm
uses an alphabetic ordering and labeling of vertices, but is easily modified to
handle any ordering of vertices.

Step 2. The first vertex A is labeled “1” and included in the spanning tree
under construction. We now consider the vertex adjacent to A that appears
first in the fixed ordering from Step 1. This vertex is labeled 2:A and both
vertex 2:A and edge with endpoints A and 2:A are included in the spanning
tree under construction.

Step 3. Let V = n:W denote the most recently labeled vertex, where n is
the total number of vertices already labeled and W is the vertex adjacent to
V that added V to the spanning tree. Based on the fixed ordering of vertices,
identify the next unlabeled vertex adjacent to V = n:W . This vertex is
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Figure 6.38 Graph for question 6.3.6
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labeled (n+ 1):V and both the vertex (n+ 1):V and the edge with endpoints
V and (n+ 1):V are included in the spanning tree.

Step 4. Repeat Step 3 until every vertex in the graph is labeled. If Step 3
cannot be implemented, but some vertex in the original graph remains
unlabeled, then there must not be any unlabeled vertices adjacent to the
most recently labeled vertex V = n:W . In this case, we backtrack along the
path of most recently labeled vertices until we reach a labeled vertex U with
at least one adjacent unlabeled vertex; such a vertex U exists because the
given graph is connected. Now apply Step 3 to U, assigning (n+ 1):U to the
(first) unlabeled vertex adjacent to U and include both vertex (n+ 1):U and
the edge with endpoints U and (n+ 1):U in the spanning tree under
construction. Repeat Step 3 for this newly labeled vertex (n+ 1):U.

Step 5. Repeat Step 3 (and if necessary Step 4) until every vertex of the
original graph is labeled. Once n is equal to the total number of vertices in
the original graph, the algorithm is complete and the resulting tree is a
spanning tree of the original graph.

■

Theorem 6.3.4 The depth-first spanning tree algorithm identifies a spanning tree of any given
connected graph.

Comments onproof The proof is essentially identical to that of theorem 6.3.3 for the breadth-
first spanning tree algorithm; further details are left to the reader.

■

Question 6.3.6 Using the depth-first spanning tree algorithm, identify a spanning tree for the
graph given in figure 6.38; start at vertex A and use alphabetic ordering of
vertices.

■

Question 6.3.7 Compare and contrast the spanning trees produced using the breadth-first
spanning tree algorithm in question 6.3.5 and the depth-first spanning tree
algorithm in question 6.3.6. What insights does this comparison provide into these
algorithms?

■

Among other things, your response to question 6.3.7 might include the observation
that the breadth-first spanning tree algorithm produces trees that tend to be “thicker”
around a few vertices, where these vertices have more adjacent vertices. In contrast,
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the depth-first spanning tree algorithm produces “thinner” trees with fewer incident
edges at any one vertex.

6.3.5 Reading Questions for Section 6.3

1. Describe the strategy implemented by the shortest path algorithm.
2. State theorem 6.3.1. In what sense is the path identified by the shortest path

algorithm the shortest path in a given graph?
3. Why do we say that the shortest path algorithm identifies “a” shortest path,

rather than “the” shortest path between two vertices in a connected graph?
4. Define and give an example of a tree.
5. State theorem 6.3.2. How is this result helpful when studying graphs?
6. Using theorem 6.3.2, give an example of a tree and a graph that is not a tree.
7. Define and give an example of a spanning tree.
8. Discuss some real-world applications of spanning trees.
9. Describe the strategy implemented by the breadth-first spanning tree

algorithm.
10. Describe the strategy implemented by the depth-first spanning tree algorithm.
11. Compare and contrast the breadth-first and depth-first spanning tree

algorithms.
12. State theorem 6.3.3 and theorem 6.3.4. Why are these results both helpful and

necessary?

6.3.6 Exercises for Section 6.3

In exercises 1–12, sketch a graph with the following properties, or explain why such
a graph does not exist.

1. A tree with seven vertices and eight edges.
2. A connected graph with seven vertices and eight edges.
3. A tree with seven vertices and six edges.
4. A graph with seven vertices and six edges that is not a tree.
5. A connected graph with seven vertices, eight edges, and no cycles.
6. A graph with seven vertices, eight edges, and no cycles.
7. A tree with eight vertices and a total degree of 14.
8. A tree with eight vertices and a total degree of 15.
9. A graph with four vertices, five edges, and no cycles.

10. A connected graph with four vertices, three edges, and one cycle.
11. A graph with four vertices, three edges, and one cycle.
12. A tree with one vertex.

In exercises 13–20, use the shortest path algorithm to identify a shortest path from
vertex A to vertex H in each graph.

A

13.

B
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C D A
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B
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C D A

15.

B
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C D
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In exercises 21–28, use the breadth-first spanning tree algorithm to identify a spanning
tree of each graph; for the first step, let V1 = A and V2 = B.
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In exercises 29–36, use the depth-first spanning tree algorithm to identify a spanning
tree of each graph; start at vertex A and use an alphabetic ordering of vertices.

29. The graph from exercise 21.
30. The graph from exercise 22.
31. The graph from exercise 23.
32. The graph from exercise 24.

33. The graph from exercise 25.
34. The graph from exercise 26.
35. The graph from exercise 27.
36. The graph from exercise 28.

Exercises 37–47 consider the leaves of a tree; a vertex in a tree with degree one is
called a leaf of the given tree. For example, vertices D, E, and F are leaves of the tree
in figure 6.39.

In exercises 37–40, identify the leaves in each graph. Also, add a minimal number of
edges to the given graph to obtain an extension of the given graph with no leaves.
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Figure 6.39 Leaves of trees
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In exercises 41–47, prove each mathematical statement about trees and leaves of trees.
As defined before exercise 37, a vertex of degree one is called a leaf of a tree.

41. A tree with two or more vertices has at least one leaf.
Hint: Develop a proof by construction, describing an algorithm that selects
an arbitrary vertex in the tree and searches outward along a path until a vertex
of degree one is found. The fact that a graph has finitely many vertices is key.

42. A tree with two or more vertices has at least two leaves.
Hint: Develop a proof by contradiction on the length of the longest path in
the tree; the two endpoints of this longest path are the desired leaves.

43. There exist exactly two trees with no leaves.
Hint: Use exercises 41 and 42 to identify and sketch the two examples.

44. If T is a tree and vertex V is a leaf of T , then T \ {V} is a tree.
45. If G is a tree with n+ 1 vertices, then G has exactly n edges, where n ∈ N.

Hint: Develop a proof by induction on the number of vertices in the tree. In
the inductive step, use the results stated in exercises 41–44.

46. The average degree of a vertex in a tree with two or more vertices is less
than two.
Hint: Use exercise 45.

47. Using exercise 46, prove that every tree with two or more vertices has at least
one leaf.
Note: This exercise calls for a statistical argument, rather than the constructive
argument suggested for exercise 41.

Exercises 48–63 consider the notion of a binary tree. Working in this direction, a rooted
tree is a tree with one distinguished vertex identified as the root of the tree. Also, the
level of a given vertex V in a rooted tree is the number of edges in the (unique) path
from the root to V . A binary tree is a rooted tree with the property that each vertex
is adjacent to at most two vertices on the next level; these two vertices are called
“children” as motivated by diagrams representing family trees. For example, consider
the graphs given in figure 6.40.

Graph (a) is a binary tree with root A. Although vertex C has only one child F,
graph (a) is a binary tree because each vertex has at most two children on the next
level. In contrast, graph (b) is not a binary tree, because vertex B has three children
(even though every other vertex has at most two children). Finally, a full binary tree is
a binary tree in which every vertex (except the leaves) has exactly two children.

In exercises 48–53, sketch a rooted tree with the following properties or explain why
such a graph does not exist.

48. A binary tree with six vertices and three leaves.
49. A binary tree with six vertices and five leaves.

A

B C

D

(a)

E F

A

B C

D

(b)

E F G
Figure 6.40 A tree that is binary and a tree
that is not
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50. A binary tree with four vertices and three leaves.
51. A binary tree with four vertices and two leaves.
52. A full binary tree with five vertices.
53. A full binary tree with 12 vertices and seven leaves.

Exercises 54–57 consider the height of a tree. The maximum length of a path in a tree
with the root as one endpoint is called the height of the tree.

In exercises 54–57, identify upper and lower bounds on the height of rooted trees with
the following properties.

54. A full binary tree with eight
leaves.

55. A binary tree with eight leaves.

56. A full binary tree with nine
vertices.

57. A binary tree with nine vertices.

Exercises 58–63 consider complete binary trees, The complete tree Bn is a full binary
tree of height n with the additional property that every vertex at any level less than
n has exactly two children; the only leaves in the complete binary tree Bn occur at
level n. For example, consider the graphs in figure 6.41.

Both graphs in figure 6.41 are full binary trees of height two. Since graph (a) has
a leaf at level one, this graph is not complete; in contrast, graph (b) is the complete
binary tree B2 of height two.

In exercises 58–63, explain why each rooted tree is (or is not) binary, full, and/or
complete.
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Exercises 64–69 consider connected graphs with a vertex at every intersection of
two edges. Such a graph has no vertices with degree one and subdivides the plane
into distinct regions. For example, the graph in figure 6.42 yields four distinct planar
regions that are labeled I, II, III, and IV.

Figure 6.41 A full and a complete binary tree
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E
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Figure 6.42 A graph producing four planar regions
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In exercises 64–67, specify the number of planar regions r, the number of edges e, the
number of vertices v, and the value of r − e+ v for each graph.

64. 65. 67.66.

Exercises 68–69 consider properties of connected graphs with a vertex at every
intersection of two edges.

68. In light of the results from exercises 64–67, make a conjecture about the value
of r − e+ v.
The correct conjecture is often referred to as Euler’s formula.

69. Sketch a disconnected graph with a vertex at every intersection of two edges
that also fails to satisfy your conjecture for the value of r − e+ v. What is the
value of r − e+ v for this graph?

Exercise 70 considers the notion of isomorphic graphs. The term isomorphism is used
in many mathematical fields and is derived from the Greek/Latin words “iso” (meaning
“same”) and “morph” (meaning “form”). In mathematics, we say that two objects are
isomorphic if they are identical with respect to some mathematical property under study
(even if other details, such as names, are different).We often identify isomorphic objects
by defining a one-to-one, onto function between the two objects that also satisfies some
further condition(s).

70. In graph theory, we prove that two graphs are isomorphic by defining a one-
to-one correspondence from the vertices of one graph to the vertices of the
other, and from the edges of one graph to the edges of the other that also satisfy
an additional graph-theoretic property. What properties of vertices and edges
must be preserved by such a one-to-one correspondence to ensure that the
graphs are identical with respect to their graph-theoretic properties?

6.4 Application: Weighted Graphs

In this section we add another layer of sophistication to our study of graphs by including
“weights” on graphs. In many applications, we need more information than just the
connectedness of two objects as modeled by vertices joined by edges or paths. Often,
important aspects of the relationships among objects can be expressed by assigning
numeric values to the edges of a graph. These numeric values are called weights and
a graph with such labels is called a weighted graph. Working with weighted graphs
as representative models of real-life settings enables us to successfully address such
sophisticated questions as the weighted renditions of the spanning tree problem and
the traveling salesman problem.

For example, suppose we are deciding whether to fly or drive from New York City
to Los Angeles. After doing some research, we find that flying will take 6 hours and
12 minutes at a cost of $383, while driving will take 41 hours and 29 minutes at a
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Time

New York New York Los AngelesLos Angeles

6:12 Cost $383

41:29 $277

Figure 6.43 Two weighted graphs

cost of $277. These comparative relationships can be represented in the two weighted
graphs (one for time and one for cost) given in figure 6.43.

In deciding whether to fly or drive, the traveler needs to assess the relative
importance of the weights presented in each graph. Some other criteria may also
influence the decision-making process; for example, enjoying the scenery while driving
or visiting Aunt Gertrude in Saint Louis on the way out west may be more important
than either time or money. In short, the information presented by weighted graphs can
greatly assist decision-making processes in a variety of real-life settings.

Similar decisions are routinely made by trucking companies when setting up
routes, by phone and electric companies when running lines, by oil and chemical
companies when laying pipe, by computer manufacturers when designing chips and
hardwiring computers, and by a host of other service and manufacturing industries.
A common goal in many of these settings (as when making travel plans) is to
minimize the use of some resource, whether it be time, or distance, or money,
or physical objects. This goal of optimizing solutions has played an influential
role in shaping the study of algorithms for working with weighted graphs. While
sometimes real-world problem solvers are able to get by with rough guesses and
estimates, more often they need a systematic approach that produces a a desired,
precise, optimal solution. Just as calculus successfully addresses such questions in
the continuous context, graph theory has proven marvelously applicable in many
discrete settings. Since the 1930s, graph theorists have developed a variety of
algorithms that identify optimal (or at least nearly optimal) solutions to many
questions about weighted graphs. We begin with two definitions that set the stage
for this study.

Definition 6.4.1 A weighted graph is a graph whose edges are labeled with numbers that are
called the weights of the edges. The total weight of a weighted graph is the sum
of the weights of all the edges of the graph.

We have already given two simple examples of weighted graphs for a traveler
from New York City to Los Angeles; additional examples are given in the following
example and question.

Example 6.4.1 The graphs in figure 6.44 are weighted because each edge is labeled with a
numerical value or weight.

■

Question 6.4.1 State two destinations in the world that you would like to visit and sketch two
weighted graphs with your hometown (or college town) as one vertex and the
destinations as the other two vertices. As above, determine the time and cost of
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Figure 6.44 Weighted graphs for
example 6.4.1
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the journey represented by each edge and assign these values as weights to the
corresponding edges. This graph is a weighted version of the complete graph K3

on three vertices.
■

Question 6.4.2 Describe another scenario (besides traveling) for which a weighted graph could
serve as a helpful model and sketch an example of a corresponding weighted
graph.

■

Most applications of weighted graphs seek an optimal (often minimal) solution to
some question, and often these questions are solved by identifying spanning trees
or Hamiltonian cycles (which are already familiar from our work in sections 6.2
and 6.3). Therefore, we focus our study in this section on the very practical task
of identifying minimum weight spanning trees that solve the weighted spanning tree
problem and minimum weight Hamiltonian cycles that solve the weighted traveling
salesman problem.

6.4.1 TheWeighted Spanning Tree Problem

Recall from definition 6.3.1 in section 6.3 that a spanning tree of a connected graph
is a subgraph of that is a tree and that contains every vertex of the original graph. For
a weighted graph, we compute the (total) weight of a spanning tree by summing the
weights of the edges included in the spanning tree. Many connected graphs have several
distinct spanning trees with different weights and (as suggested by the discussion
above) we are interested in the spanning tree with the least possible weight. As you
might expect from our work in section 6.3, various algorithms have been developed for
identifying a minimum weight spanning tree of a given connected, weighted graph; we
study two such algorithms in this section: Kruskal’s algorithm and Prim’s algorithm.
We begin with the formal definition of a minimum weight spanning tree and then
develop these algorithms.

Definition 6.4.2 A minimum weight spanning tree of a connected, weighted graph G is a spanning
tree of G whose total weight is less than or equal to the total weight of any other
spanning tree of G.

Every connected, weighted graph has a minimum weight spanning tree—the
challenge is identifying this tree! For sufficiently small graphs, we can use the method
of exhaustion to find the minimum weight spanning tree; consider the following
example and question.



Chapter 6 ■ Graph Theory 503

3 4

5

K3

4

5

3 43

5

(a) (b) (c)

Figure 6.45 A weighted K3 graph and its spanning trees for example 6.4.2

Figure 6.46 A weighted graph for question 6.4.3
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Example 6.4.2 We identify a minimum weight spanning tree of the weighted version of K3 given
in figure 6.45; the three spanning trees of this graph are also given as graphs (a),
(b), and (c).

Summing the weights of the edges, we see that graph (a) has total weight 8,
graph (b) has total weight 7, and graph (c) has total weight 9. Thus, graph (b) is
the minimum weight spanning tree of this weighted version of K3.

■

Question 6.4.3 Using the method of exhaustion (as in example 6.4.2) identify a minimum weight
spanning tree of the graph given in figure 6.46; this graph has seven distinct
spanning trees.

■

For the small graphs given in example 6.4.2 and question 6.4.3, we are able
to find minimum weight spanning trees with relative ease by using the method of
exhaustion to identify all possible spanning trees and comparing their total weights.
As we have come to recognize, such exhaustive searches are infeasible for graphs of
sufficient complexity. Just the relatively slight increase in the complexity of the graphs
from example 6.4.2 to question 6.4.3 results in a significant increase in the number
of spanning trees that must be considered. Another example that provides numerical
insight is the complete graph Kn on n vertices; this graph has nn−2 spanning trees,
leading quickly to an impractical number of spanning trees for increasing values of n.
For large values of n we therefore need some other approach to identifying minimum
weight spanning trees, and so we turn our attention to studying Kruskal’s algorithm
and Prim’s algorithm.

6.4.2 Kruskal’s Algorithm

This algorithm for identifying minimum weight spanning trees was developed by the
American mathematician and statistician Joseph Bernard Kruskal while he has working
at Bell Laboratories in the 1950s. At that time, researchers at Bell Labs were grappling
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with a key problem in computer network design that is solved by finding a minimum
weight spanning tree. Kruskal first outlined this algorithm that now bears his name
in a 1956 paper entitled on the shortest spanning tree and the traveling salesman
problem [144]. In addition, Kruskal made important contributions to statistics in his
study of “multidimensional scaling”; his two older brothers were also accomplished
researchers in mathematics and statistics.

Kruskal’s algorithm is a classical example of a “greedy” algorithm that constructs a
minimum weight spanning tree by selecting edges from the given connected, weighted
graph that are of overall minimum weight; the algorithm is “greedy” in the sense
that it focuses on including what appear to be the best possible edges in the spanning
tree under construction. Computer scientists have determined that Kruskal’s algorithm
can be implemented (using an appropriate data structure) in “the order of m log n
time,” where m is the number of edges and n is the number of vertices in the given
graph; this is considered a relatively “short” time and indicates the algorithm is pretty
efficient. We carefully work through an example; a general description of Kruskal’s
algorithm follows.

Example 6.4.3 We implement Kruskal’s algorithm to identify a minimum weight spanning tree
of the connected, weighted graph G given in figure 6.47.

The overall strategy of Kruskal’s algorithm is to include one edge at a time in
the spanning tree under construction from least to greatest weight. Edges are added
until every vertex of the given graph is included in the tree, at which point we have
the desired spanning tree. Since the goal is to identify a tree, the algorithm cannot
include any edge that would create a cycle. This is the one restriction in our choice
of edges: if including some edge would result in a cycle, then the algorithm skips
that edge and considers another edge of the same or of the next largest weight.
When multiple edges have the same weight and are simultaneously eligible for
inclusion in the spanning tree, we consider one edge at a time using any ordering
of edges. With this discussion in mind, we apply Kruskal’s algorithm to the graph
G given in figure 6.47.

The algorithm first considers all edges in G with minimum weight. In this
graph, the minimum weight is two and BE is the unique edge of weight two; the
algorithm includes edge BE and its endpoints, the vertices B and E, in the spanning
tree under construction.

The algorithm now considers all edges in G with the next largest weight; in this
graph, both edges AE and CF have weight three. Proceeding in this listed order, we
check if adding edge AE would create a cycle in the tree under construction; since
it does not, edge AE and vertices A and E are included in the tree. Similarly, adding

A B C

D E F

5

5 4

3
2 4 3

4

Figure 6.47 A weighted graph G for example 6.4.3
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edge CF would not create a cycle in the tree under construction, and the algorithm
includes edge CF and vertices C and F in the tree. Since not every vertex of the
original graph is included in the tree under construction, the algorithm proceeds
to the next largest weight.

In this graph, edges BC, BF, and EF all have the next largest weight of four;
we consider whether these edges can be added to the tree under construction in the
order listed. Adding BC does not create a cycle and so edge BC is included in the
tree under construction (the vertices B and C are already in the tree). At this point,
we observe that adding either BF or EF to this tree would create a cycle: including
BF creates cycle BC, CF, BF, and including EF creates cycle BC, CF, FE, EB.
Therefore, the algorithm does not include any additional edges of weight four.

Since vertex D is still not in the tree under construction, the algorithm
considers adding edges of the next largest weight; in this graph, edges AD and DE
both have weight five, and we consider including these edges in the listed order.
Adding edge AD does not create a cycle and so edge AD and vertex D are included
in the tree.

Every vertex of the original graph has now been included in the spanning tree
under construction. The set of vertices and edges identified by this algorithm is
a subset of the original graph; that is, the construction has produced a subgraph.
Furthermore, this subgraph is a tree because edges that would create a cycle are
not included by construction, and so the subgraph does not contain any cycles.
Kruskal’s algorithm has thus identified a spanning tree of the original graph as
illustrated in figure 6.48.

The total weight of this spanning tree is 2+ 3+ 3+ 4+ 5 = 17. As discussed
below, Kruskal’s algorithm always identifies a minimum weight spanning tree of
a given connected, weighted graph, and so we are guaranteed that every spanning
tree of G has total weight greater than or equal to 17.

■

As may be apparent, Kruskal’s algorithm produces “a” minimum weight spanning
tree for a given connected, weighted graph G, rather than “the” minimum weight
spanning tree, because G may have several different spanning trees with the same
minimum weight. In example 6.4.3, we could have listed the last two edges in the
order DE and AD, and instead included DE in the spanning tree under construction;
this different spanning tree has the same minimum weight of 17 as the spanning tree
identified in figure 6.48.

Question 6.4.4 Working with the graph given in figure 6.48 for example 6.4.3, identify another
distinct spanning tree with minimum weight 17.

Figure 6.48 Kruskal’s minimum weight spanning tree for
example 6.4.3
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Hint: Consider another ordering of the edges having weight four from that used
in example 6.4.3.

■

We now present a general description of Kruskal’s Algorithm.

Kruskal’s algorithm for minimum weight spanning trees This algorithm
identifies a minimum weight spanning tree of any given connected,
weighted graph.

Step 1. Choose any edge of minimum weight in the given graph and include
this edge and its two endpoints in the spanning tree under construction.

Step 2. Identify an edge of minimum weight that has not been included in
or been previously rejected for inclusion in the spanning tree under
construction. If more than one edge satisfies this criteria, then choose one
based on any ordering of the edges. Determine if adding this selected edge
would create a cycle. If not, include the edge and its endpoints in the tree
under construction; if so, identify another such edge of the same or the next
largest weight and consider this new edge for inclusion in the tree
as above.

Step 3. Repeat Step 2 until the graph under construction is a tree containing
every vertex of the given graph. At this point, the algorithm is complete and
the resulting tree is a minimum weight spanning tree of the original graph.

■

Theorem 6.4.1 Kruskal’s algorithm identifies a minimum weight spanning tree of any given
connected, weighted graph.

Comments on proof As discussed at the end of example 6.4.3, Kruskal’s algorithm
always constructs a subgraph that is a tree and that includes every vertex of
the original graph; that is, this algorithm identifies a spanning tree of the given
graph. The proof that this spanning tree obtained has minimum weight is more
subtle. The standard proof proceeds by contradiction, assuming that there is some
other spanning tree with total weight less than the spanning tree identified by
Kruskal’s algorithm. By comparing the edges and their corresponding weights in
this assumed tree with the edges and their corresponding weights in Kruskal’s tree,
a contradiction follows from the choices made in the construction of Kruskal’s
tree. Further details are left to the reader.

■

Question 6.4.5 Using Kruskal’s algorithm, identify a minimum weight spanning tree of the graph
given in figure 6.49.

■

6.4.3 Prim’s Algorithm

We describe a second algorithm that identifies a minimum weight spanning tree of a
given connected, weighted graph. Widely known as Prim’s algorithm, this algorithm
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Figure 6.49 A weighted graph for question 6.4.5

was developed by several different researchers working independently of one another
and is sometimes referred to as the Jarnik algorithm or the DJP algorithm because of
this history. Prim’s algorithm was articulated by the Czech mathematician Vojtech
Jarnik in 1930, by the American mathematician Robert Prim [190] in 1957, and
by the Dutch computer scientist Edsger Dijkstra in 1959. Jarnik is best known for
his contributions to number theory, functions of real variables, and the support of
mathematical education and research in Czechoslovakia through much of the twentieth
century. Prim was a colleague of Kruskal at Bell Laboratories in the 1950s and served
as director of mathematics research at Bell Labs from 1958 to 1961. Dijkstra is best
known for his contributions to computer science in the area of programming languages
and in 1972 was honored with the Turing Award for this work. For different reasons,
each of them became interested in minimum weight spanning trees, and they all isolated
this same algorithm.

This situation is just one example of the many times in mathematical history when
different individuals have independently developed the same result at approximately
the same time in history. Newton’s and Leibniz’s independent articulation of the
fundamental theorem of calculus is another well-known example. At such times in
humanity’s intellectual history, the confluence of ideas and culture seem to have primed
simultaneous creative insights from multiple individuals. In addition, slow means of
communication, language barriers, and reluctance to publish results have sometimes
delayed the dissemination of mathematical knowledge and provided the opportunity for
such independent work. At their best, mathematicians have graciously acknowledged
and celebrated such independent, identical contributions to humanity’s collective
knowledge; at their worst, bitter rivalries have erupted that negatively impacted other
mathematicians and the ongoing development of new mathematical insights.

Prim’s algorithm identifies a minimum weight spanning tree by focusing on
vertices (rather than edges), constructing a spanning tree in connected links from a fixed
initial vertex. Also classified as a “greedy” algorithm, Prim’s algorithm is essentially
equivalent to Kruskal’s in terms of efficiency; using an appropriate data structure, this
algorithm can be implemented in the “order of (m + n) log n” time, where m is the
number of edges and n is the number of vertices in the given graph. We carefully work
through an example; a general description of Prim’s algorithm follows.

Example 6.4.4 We implement Prim’s algorithm to identify a minimum weight spanning tree of
the (by now familiar) connected, weighted graph G given in figure 6.50.

Prim’s algorithm constructs a minimum weight spanning tree by adding edges
to a tree built up from a fixed initial vertex. In this example, we select A as the initial
vertex and include A in the spanning tree under construction. The algorithm now
considers all edges incident to vertex A and adds the edge of minimum weight.
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Figure 6.50 A weighted graph G for example 6.4.4
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In this graph, edge AD has weight five and edge AE has weight three, so the
algorithm includes edge AE and vertex E in the tree.

Since the tree under construction does not contain every vertex of G, the
algorithm continues to add vertices. We consider every edge that is incident to
some vertex in the current tree under construction but is not already included in
the tree. At this step, the available edge incident to vertex A is AD with weight
five, and the available edges incident to vertex E are DE with weight five, BE with
weight two, and EF with weight four. The algorithm selects the edge of minimum
weight from this collection of available edges and includes edge BE and vertex B
in the tree under construction.

The current tree still does not span G, so the algorithm again considers all
available (unincluded) edges incident to the vertices in the current tree. At this
step, the available edges are: AD with weight five; DE with weight five; EF with
weight four; BF with weight four; and BC with weight four. Four is the minimum
weight available and we (arbitrarily) choose to include edge EF and vertex F in
the tree under construction.

The current tree does not span G (vertices C and D are still not included), so
the algorithm adds another edge in this same manner. At this step, every edge of
graph G is either in or incident to a vertex in the tree under construction; that is,
every unincluded edge is available for inclusion in the tree. Among the available
edges, CF has minimum weight three, and the algorithm includes edge CF and
vertex C in the tree under construction.

Finally, only vertex D is not included in the tree. The minimum weight edges
still available are the two edges BF and BC with weight four, but neither can
be added because doing so would create a cycle in the tree under construction.
Therefore, the algorithm considers the two edges AD and DE of weight five. Either
of these edges can be added and we (arbitrarily) choose to include edge AD and
vertex D in the tree.

At this point, every vertex of the original graph is included in the spanning
tree under construction. Thus, Prim’s algorithm is complete and has identified a
spanning tree of the original graph G as illustrated in figure 6.51.

The total weight of this spanning tree is 2+ 3+ 3+ 4+ 5 = 17. As discussed
below, Prim’s algorithm always identifies a minimum weight spanning tree of a
given connected, weighted graph, and so we are guaranteed that every spanning
tree of G has total weight greater than or equal to 17.

■

As with Kruskal’s algorithm, Prim’s algorithm always produces “a” minimum
weight spanning tree. Notice that the spanning tree of graph G produced by
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Figure 6.51 Prim’s minimum weight spanning tree for
example 6.4.4

Prim’s algorithm (given in figure 6.51 for example 6.4.4) is different from the spanning
tree of G produced by Kruskal’s algorithm (given in figure 6.48 for example 6.4.3).
Furthermore, both of these graphs have the same minimum weight of 17. Thus,
a connected, weighted graph does not necessarily have a unique minimum weight
spanning tree. We now present a general description of Prim’s algorithm.

Prim’s algorithm for minimum weight spanning trees This algorithm
identifies a minimum weight spanning tree of any given connected,
weighted graph.

Step 1. Choose any vertex V in the given graph and include V in the tree
under construction.

Step 2. Identify every edge of the original graph that is incident to a vertex
in the tree under construction, that is not already in this tree, and that would
not create a cycle if added to this tree. From this collection of available
edges, select one of minimum weight, and include both this edge and the
(new) endpoint in the tree under construction. If more than one available
edge has minimum weight, then choose one based on any ordering of the
edges.

Step 3. Repeat Step 2 until the tree under construction contains every
vertex of the given graph. At this point, the algorithm is complete and the
resulting tree is a minimum weight spanning tree of the original graph.

■

Theorem 6.4.2 Prim’s algorithm identifies a minimum weight spanning tree of any given
connected, weighted graph.

Comments on proof The proof is essentially identical to that for Kruskal’s
Algorithm; further details are left to the reader.

■

Question 6.4.6 Using Prim’s algorithm, identify a minimum weight spanning tree of the graph
given in figure 6.52; use vertex A as the initial vertex.

■

6.4.4 TheWeighted Traveling Salesman Problem

In the traveling salesman problem, we are given a connected graph and we seek to
find a Hamiltonian cycle in this graph that visits every vertex in exactly once along
some closed path. In real-life applications, additional information is often relevant
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Figure 6.52 A weighted graph for question 6.4.6
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to identifying a useful solution of the traveling salesman problem; this information
is incorporated into a corresponding graph-theoretic model by means of weighted
graphs. In such settings, real-life problem solvers seek minimum weight solutions
of the traveling salesman problem that are naturally referred to as minimum weight
Hamiltonian cycles. In this way, we not only identify a solution of the (unweighted)
traversal question, but also conserve the resource represented by the weights on the
graph (perhaps money, time, or some physical objects). We begin with the formal
definition of a minimum weight Hamiltonian cycle and then develop two algorithms
that identify approximate solutions to the weighted traveling salesman problem.

Definition 6.4.3 A minimum weight Hamiltonian cycle in a graph G is a Hamiltonian cycle in G
whose total weight is less than or equal to the total weight of any other Hamiltonian
cycle in G.

Recall from section 6.2 that some connected graphs do not have Hamiltonian
cycles; naturally, not every connected, weighted graph has a minimum weight
Hamiltonian cycle. When a graph does have such a cycle, identifying one can be
a difficult process. For sufficiently small weighted graphs, we can use the method
of exhaustion to find minimum weight Hamiltonian cycles; consider the following
example and question.

Example 6.4.5 We identify a minimum weight Hamiltonian cycle in the weighted version of K4

given in figure 6.53; the three Hamiltonian cycles in this graph are also given as
graphs (a), (b), and (c).

Summing the weights of the edges, we see that graph (a) has total weight 11,
graph (b) has total weight 10, and graph (c) has total weight nine. Thus, graph (c)
is the minimum weight Hamiltonian cycle in this weighted version of K4.

■

Question 6.4.7 Using the method of exhaustion (as in example 6.4.5) identify a minimum weight
Hamiltonian cycle in the weighted version of K4 given in figure 6.54.

■

A B
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43
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3 3 411

Figure 6.53 A weighted K4 with its Hamiltonian cycles for example 6.4.5
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Figure 6.54 A weighted graph for question 6.4.7

For the small graphs studied in example 6.4.5 and question 6.4.7, we are able to
find minimum weight Hamiltonian cycles with relative ease by using the method of
exhaustion to identify all possible Hamiltonian cycles and then comparing their total
weights. However, for graphs of sufficient complexity, using exhaustion to identify a
minimum weight Hamiltonian cycle is simply not feasible. For example, the complete
graph K10 with 10 vertices has 1,814,400 distinct Hamiltonian cycles and the complete
graph K20 with twenty vertices has 1.216 × 1018 distinct Hamiltonian cycles! Even
the fastest of today’s supercomputers cannot generate and compare the weights of
1.216× 1018 Hamiltonian cycles in a person’s lifetime. Thus, real-life problem solvers
need some other approach to answering practical questions expressed as weighted
traveling salesman problems.

Unfortunately, as we learned in section 6.2, there is no known general algorithm
(besides exhaustion) for determining if there exists a Hamiltonian cycle in a connected
graph, let alone a general algorithm for identifying such a Hamiltonian cycle when
one exists. Adding a minimum weight requirement to the desired solution only
increases the question’s complexity. Thus there is no known general algorithm (besides
exhaustion) answering the weighted traveling salesman problem for an arbitrary
connected, weighted graph.

At the same time, we often need an answer to weighted traveling salesman
problems: roads need to be snowplowed, mail delivered, electric and phone lines run,
and computers assembled—and all (hopefully) by the most efficient means possible.
Fortunately, graph-theorists have isolated several “heuristic” algorithms employing
minimization strategies that quickly and efficiently identify a Hamiltonian cycle (if one
exists). Sometimes these algorithms stumble across a minimum weight Hamiltonian
cycle, but all they really promise to achieve is some measure of optimization; in
this sense, these heuristic algorithms typically identify an “approximately” minimum
weight Hamiltonian cycle. Despite this shortcoming, the increase in speed, coupled
with their ability to achieve some optimization, have proven the importance and utility
of these algorithms.

We study two of these heuristic algorithms in this section: the sorted edges
algorithm and the nearest neighbor algorithm. The goal of these algorithms is to identify
a Hamiltonian cycle, and so we must state the resulting restrictions on adding edges
to the cycle under construction. Both of these algorithms:

(1) do not add an edge to the cycle under construction that would result in three
edges incident to a single vertex (because a Hamiltonian cycle can visit each
vertex exactly once); and

(2) do not add an edge to the cycle under construction that would create a cycle
until every vertex has been included in the cycle (at which point a last edge
is included to close the cycle).
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Abiding by theses two restrictions at each step in the process ensures that these
algorithms identify a Hamiltonian cycle in the given graph (if one exists). With these
reflections in mind, we carefully work through an example and then provide a general
description of each heuristic algorithm.

6.4.5 The Sorted Edges Algorithm

This algorithm resembles Kruskal’s algorithm for identifying minimum weight
spanning trees, only adapted to finding minimum weight Hamiltonian cycles. The
strategy of Kruskal’s algorithm is to focus on edges and include edges one at a time
in the tree under construction from least to greatest weight under the appropriate
restrictions that ensure the end result is a spanning tree. The sorted edges algorithm
also includes edges from least to greatest weight under the appropriate restrictions
(discussed above) for identifying a cycle visiting every vertex exactly once. Since not
every connected graph has a Hamiltonian cycle, this algorithm does not always obtain
the desired solution. However, when the algorithm succeeds, the Hamiltonian cycle
identified is “approximately” minimal. We demonstrate the sorted edges algorithm
in the relatively simple setting provided by the weighted version of K4 studied in
example 6.4.5.

Example 6.4.6 We implement the sorted edges algorithm to identify an approximately minimum
weight Hamiltonian cycle in the graph given in figure 6.55.

The sorted edges algorithm adds edges to the cycle under construction from
least to greatest weight. Recall that in order to obtain a Hamiltonian cycle, the
algorithm cannot add an edge that would result in either three edges incident
to a single vertex or a cycle (until the last edge is added). At each step in the
following process, the algorithm verifies that including an edge in the cycle under
construction would not violate either of these restrictions.

The first step is to list every edge of the given graph in order from least to
greatest weight; multiple edges with the same weight may be listed in any order.
In this example, we use the following ordering of edges (identified by weight to
facilitate the discussion):

1 : AC, AD 2 : CD 3 : BC 4 : AB, BD.

Working with this ordered list of edges, the algorithm adds edges to the cycle
under construction from least to greatest weight (under the two restrictions). Both
edges of weight one satisfy these conditions, and so the edges AC and AD and the
vertices A, C, and D are included in the cycle under construction. In fact, the sorted

A B

DC

1 1

4

43

2
Figure 6.55 A weighted graph for example 6.4.6
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Figure 6.56 The sorted edges Hamiltonian cycle for example 6.4.6
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edges algorithm always includes the first two edges from such a weight-ordered
list; can you articulate why?

The algorithm now considers the next edge in this list: edge CD with weight
two. Notice that adding CD to the current cycle would create the cycle AC, CD,
DA, and so CD cannot be included in the (Hamiltonian) cycle under construction.
Moving on to the next edge in the ordered list, BC can be added; thus, edge BC
and vertex B are included in the cycle under construction. This cycle now contains
every vertex of the original graph and the last edge can now be added to close
the cycle.

The algorithm considers the two edges of weight four in the order listed
above. Edge AB cannot be added to the cycle under construction because doing
so would violate both restrictions on adding edges. In particular, vertex A already
has two incident edges AC and AD, and edge AB would be a third incident edge;
furthermore, the edges AC, CB, AB would form a cycle that does not contain vertex
D. In contrast, edge BD can be added to the cycle under construction, completing
the construction of the subgraph illustrated in figure 6.56.

As we can see, this subgraph is a closed path visiting every vertex of the given
graph exactly once; that is, the algorithm has identified a Hamiltonian cycle. The
total weight of this Hamiltonian cycle is 1+ 1+ 3+ 4 = 9. As mentioned above,
the sorted edges algorithm finds an approximately minimum weight Hamiltonian
cycle; as determined by the method of exhaustion in example 6.4.5, this subgraph
does happen to be the minimum weight Hamiltonian cycle in the original graph.

■

In many settings, the approximately optimal solution provided by the sorted edges
algorithm enables real-life problem solvers to make important and timely decisions.
The strength of the sorted edges algorithm (and the nearest neighbor algorithm) lies
in quickly and systematically identifying a Hamiltonian cycle in a given connected,
weighted graph (if one exists). Even if the minimum weight Hamiltonian cycle is
not identified by applying these algorithms, some measure of optimization has been
achieved and, in this sense, the solution is approximately minimal. We now present a
general description of the sorted edges algorithm.

The sorted edges algorithm for minimum weight Hamiltonian cycles
This algorithm identifies an approximately minimum weight Hamiltonian
cycle in a given connected weighted graph (if such a cycle exists).

Step 1. Sort the edges of the given graph in order from least to greatest
weight. Multiple edges with the same weight can be listed in any order
relative to one another.
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Step 2. Based on the ordering of edges from least to greatest weight from
Step 1, add one edge at a time to the cycle under construction, provided
including an edge does not produce a cycle or result in either three edges
incident to a single vertex.

Step 3. Repeat Step 2 until every vertex is included in the graph and then
include a last edge to close the cycle under construction, producing the
desired Hamiltonian cycle.

Since not every graph has a Hamiltonian cycle, Step 2 and Step 3 cannot
always be implemented. In such cases, the sorted edges algorithm (indeed
any algorithm) cannot identify a Hamiltonian cycle in the given graph.

■

Question 6.4.8 Using the sorted edges algorithm, identify an approximately minimum weight
Hamiltonian cycle in the graph given in figure 6.57. This graph is a weighted
version of K5, and the sorted edges algorithm determines a Hamiltonian cycle of
weight 14.

■

Question 6.4.9 Compare the weight of the Hamiltonian cycle identified in question 6.4.8 with the
weight of the Hamiltonian cycle obtained by traversing exactly the outer edges
of the graph given in figure 6.57. What does this comparison tell you about the
sorted edges algorithm?

■

6.4.6 The Nearest Neighbor Algorithm

We develop a second heuristic algorithm for approximating a minimum weight
Hamiltonian cycle in a given connected, weighted graph. This nearest neighbor
algorithm resembles Prim’s algorithm for identifying minimum weight spanning trees,
only adapted to finding minimum weight Hamiltonian cycles. The strategy of Prim’s
algorithm is to focus on vertices, and include edges in the tree under construction only if
they are incident to a vertex in the current tree. Similarly, the nearest neighbor algorithm
works from vertex to vertex in the given graph, including the minimum weight edge
incident to the current vertex in the cycle under construction (under the standard
restrictions needed to ensure a Hamiltonian cycle). In this way, the new included edge

B
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E D

C

1 4

3

25

3
7 6 1

3

Figure 6.57 A weighted graph for question 6.4.8; for
edges in the interior of the graph, each numerical
weight goes with the edge next to it and toward the
center of the figure. For example, 6 goes with edge CE
and 7 to AD
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Figure 6.58 A weighted graph for example 6.4.7
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identifies the “nearest” vertex (or the nearest neighbor) of the current vertex. Therefore,
the nearest neighbor algorithm is a “greedy” algorithm because the algorithm always
makes the best possible choice available at any one vertex. This locally good choice
often turns out to be the best choice (or at least an approximately best choice) for
the entire graph. We demonstrate the nearest neighbor algorithm in the relatively
simple setting provided by the weighted version of K4 studied in examples 6.4.5
and 6.4.6.

Example 6.4.7 We implement the nearest neighbor algorithm to identify an approximately
minimum weight Hamiltonian cycle in the graph given in figure 6.58.

The nearest neighbor algorithm arbitrarily identifies some vertex in the given
graph to serve as the base vertex for the cycle under construction. Although
different choices for this base vertex may result in different Hamiltonian cycles,
there is no particular strategy for selecting the starting point of the construction.
The algorithm then includes the minimum weight edge incident to the base
vertex and the other endpoint of this edge in the cycle under construction.
The other endpoint of this included edge is the “nearest neighbor” of the base
vertex and is considered next. The algorithm continues to add available (that
is, unincluded) minimum weight edges incident to the most recently added
vertex until every vertex of the original graph is included in the cycle under
construction. Finally, an edge is included to close the Hamiltonian cycle. As with
the sorted edges algorithm, the algorithm does not add an edge that would result
in either three edges incident to a single vertex or a cycle (until the last edge
is added).

For this example, we choose A as the base vertex. Vertex A has three incident
edges: AC with weight one; AD with weight one; and AB with weight four. Either
edge of minimum weight one can be added; based on the order they are listed, we
include edge AC and vertex C in the cycle under construction.

The algorithm now considers vertex C. The edges incident to C not already
in the current cycle are: BC with weight three and CD with weight two. Edge CD
has the minimum weight and both edge CD and vertex D are included in the cycle
under construction.

The available edges incident to vertex D are: AD with weight one and BD with
weight four. Edge AD has the minimum weight of one, but adding this edge would
create the cycle AC, CD, AD, and so AD cannot be included in the (Hamiltonian)
cycle under construction. Therefore, the algorithm includes edge BD and vertex D
in the cycle under construction.

Finally, the algorithm considers the available edges incident to vertex B: AB
with weight one and BD with weight three. Adding minimum weight edge BC
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Figure 6.59 Nearest neighbor Hamiltonian cycle for
example 6.4.7

would violate both restrictions on adding edges. In particular, vertex C already
has two incident edges AC and CD, and edge BC would be a third incident edge;
furthermore, the edges BC, CD, BD would form a cycle that does not contain
vertex A. Instead, the algorithm includes edge AB, completing the construction of
the desired Hamiltonian cycle as illustrated in figure 6.59.

The total weight of this cycle is 1+2+4+4 = 11, which is an approximately
minimum weight Hamiltonian cycle in the graph given in figure 6.58.

■

In example 6.4.5 we used the method of exhaustion to identify the minimum weight
Hamiltonian cycle (with a total weight of nine) in the graph given in figure 6.58;
therefore, the nearest neighbor algorithm does not necessarily identify a minimum
weight Hamiltonian cycle. However, the nearest neighbor algorithm does efficiently
find an approximately minimum weight Hamiltonian cycle and, in some cases, this
algorithm actually does identify the minimum weight Hamiltonian cycle (if one exists).
The choice of the base vertex in the first step of this algorithm has an important
influence on the Hamiltonian cycle that is identified; if we had chosen B as the base
vertex in example 6.4.7, the nearest neighbor algorithm would have identified the same
minimum weight Hamiltonian cycle as the method of exhaustion (and the sorted edges
algorithm). We now present a general description of the nearest neighbor algorithm.

The nearest neighbor algorithm for minimum weight Hamiltonian
cycles This algorithm identifies an approximately minimum weight
Hamiltonian cycle in a given connected weighted graph (if such a cycle
exists).

Step 1. Choose any vertex V in the given graph to serve as a base vertex for
the cycle under construction and include V in the cycle under construction.

Step 2. Consider all available (that is, unincluded) edges incident to the
vertex most recently added to the cycle under construction. From this
collection of edges, include the minimum weight edge and its other endpoint
in the cycle under construction, provided that including an edge does not
produce a cycle or result in either three edges incident to a single vertex.

Step 3. Repeat Step 2 until every vertex is included in the graph and then
include a last edge to close the cycle under construction, producing the
desired Hamiltonian cycle.

Since not every graph has a Hamiltonian cycle, Step 2 and Step 3 cannot
always be implemented. In such cases, the nearest neighbor algorithm
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Figure 6.60 A weighted graph for question 6.4.10;
each numerical weight goes with the edge next to it
and toward the center of the figure. For example, 2

goes with edge BD
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(indeed any algorithm) cannot identify a Hamiltonian cycle in the given
graph.

■

Question

6.4.10

Using the nearest neighbor algorithm, identify an approximately minimum weight
Hamiltonian cycle in the graph given in figure 6.60. Use vertex A as base vertex;
with this base vertex, the nearest neighbor algorithm determines a Hamiltonian
cycle of weight 13.

■

Question

6.4.11

Compare the weight of the Hamiltonian cycle identified in question 6.4.10 with
the weight of the Hamiltonian cycle obtained by traversing exactly the outer edges
of the graph given in figure 6.60. What does this comparison tell you about the
nearest neighbor algorithm?

■

Question

6.4.12

(a) Using vertex B as the base vertex in the nearest neighbor algorithm, identify
a an approximately minimum weight Hamiltonian cycle in the graph given in
figure 6.60 for question 6.4.10.

(b) Compare the solutions obtained from using vertices A, B, and E as the base
vertex in the nearest neighbor algorithm for the graph given in figure 6.60.

■

6.4.7 Reading Questions for Section 6.4

1. Define and give an example of a weighted graph.
2. Discuss the real-world questions that motivate the study of weighted graphs.
3. Define and give an example of a minimum weight spanning tree.
4. Discuss the distinction between “a” minimum weight spanning tree and “the”

minimum weight spanning tree of a graph.
5. Describe the strategy implemented by Kruskal’s algorithm.
6. Describe the strategy implemented by Prim’s algorithm.
7. Define and give an example of a minimum weight Hamiltonian cycle.
8. Discuss the necessity and nature of an “approximately” minimum weight

Hamiltonian cycle.
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9. State the weighted traveling salesman problem.
10. Describe the strategy implemented by the sorted edges algorithm.
11. Describe the strategy implemented by the nearest neighbor algorithm.
12. Discuss the impact of the base vertex on the solution identified by the nearest

neighbor algorithm.

6.4.8 Exercises for Section 6.4

In exercises 1–8, use Kruskal’s algorithm to identify a minimum weight spanning tree
of each graph.
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In exercises 9–16, use Prim’s algorithm to identify a minimum weight spanning tree
of each graph.

9. The graph from exercise 1.
10. The graph from exercise 2.
11. The graph from exercise 3.
12. The graph from exercise 4.

13. The graph from exercise 5.
14. The graph from exercise 6.
15. The graph from exercise 7.
16. The graph from exercise 8.

In exercises 17–24, use the sorted edges algorithm to identify an approximately
minimum weight Hamiltonian cycle in each graph (if such a cycle exists).
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In exercises 25–32, use the nearest neighbor algorithm to identify an approximately
minimum weight Hamiltonian cycle in each graph (if such a cycle exists).

25. The graph from exercise 17.
26. The graph from exercise 18.
27. The graph from exercise 19.
28. The graph from exercise 20.

29. The graph from exercise 21.
30. The graph from exercise 22.
31. The graph from exercise 23.
32. The graph from exercise 24.

Exercises 33–40 consider the extended nearest neighbor algorithm for specifying an
approximately minimum weight Hamiltonian cycle in a given connected, weighted
graph. As discussed in question 6.4.12, implementing the nearest neighbor algorithm
with different base vertices can result in different Hamiltonian cycles with different
weights. The extended nearest neighbor algorithm applies the nearest neighbor
algorithm to every vertex in a given graph and identifies the Hamiltonian cycle from
this collection with minimum weight as the solution. For example, applying the nearest
neighbor algorithm to every vertex of the weighted version of K4 in figure 6.61 produces
the Hamiltonian cycles identified in the following table.

Base vertex Hamiltonian cycle Cycle weight

A A, C, D, B, A 15
B B, C, A, D, B 13
C C, A, D, B, C 13
D D, A, C, B, D 13

The minimum cycle weight is 13 and the extended nearest neighbor algorithm identifies
any of the last three cycles as an approximately minimum weight Hamiltonian cycle
in the given graph. In this particular example, the three vertices B, C, D all happen to
identify the same Hamiltonian cycle; they only appear to differ because of the different
base vertices and the direction of traversal of the cycle. This pattern occurs often, but is
not necessary.This algorithm requires more resources than the original nearest neighbor
algorithm because of the repeated use of the nearest neighbor algorithm. However,

Figure 6.61 A weighted graph for the extended
nearest neighbor algorithm
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for most graphs, far fewer resources are used by the extended nearest neighbor
algorithm than by the method of exhaustion, and a greater measure of optimization is
achieved than just using the nearest neighbor algorithm based at one vertex in a given
graph.

In exercises 33–40, use the extended nearest neighbor algorithm to identify an
approximately minimum weight Hamiltonian cycle in each graph (if such a cycle
exists).

33. The graph from exercise 17.
34. The graph from exercise 18.
35. The graph from exercise 19.
36. The graph from exercise 20.

37. The graph from exercise 21.
38. The graph from exercise 22.
39. The graph from exercise 23.
40. The graph from exercise 24.

Exercises 41–52 consider regular graphs. A graph is regular if every vertex of the graph
has the same degree; sometimes we say that a regular graph is r-regular if the degree
of every vertex is r.

In exercises 41–46, determine if each graph is regular; if not, identify two vertices of
different degree.

41.
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44.

42.

45.

43.

46.

In exercises 47–50, sketch an r-regular graph with the indicated number of vertices.

47. A three-regular graph with four
vertices.

48. A three-regular graph with six
vertices.

49. A four-regular graph with two
vertices.

50. A four-regular graph with five
vertices.

In exercises 51–53, prove each mathematical statement about regular graphs.

51. Every complete graph Kn is (n− 1)-regular.
52. An r-regular graph with n vertices has nr/2 edges.
53. If a graph G with more than two vertices has an Eulerian path between distinct

vertices, then G is not regular.

Exercises 54–60 consider isomorphic graphs. We say that graphs G and G∗ are
isomorphic if there exist one-to-one correspondences f : V (G)→ V (G∗) on the set
of vertices and g : E(G)→ E(G∗) on the set of edges that preserve the edge–endpoint
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Figure 6.62 Isomorphic
graphs
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relations of G and G∗; that is, vertex V ∈ V (G) is an endpoint of edge e ∈ E(G) iff vertex
f (V ) ∈ V (G∗) is an endpoint of edge g(e) ∈ E(G∗). Thus, two graphs are isomorphic
if they have the same form in the sense that the vertices and edges identified by the
maps share the same edge–endpoint relationships. For example, the two graphs given
in figure 6.62 are isomorphic under the mappings f (from vertices to vertices) and g
(from edges to edges) defined by

f : A→ X B→ W C → Y D→ Z
g : a→ y b→ x c→ w d → z.

In Exercises 54–59, state an isomorphism for each pair of graphs, or explain why such
a mapping does not exist.
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In exercise 60, prove one of many isomorphism theorems that hold for graphs.

60. If two simple graphs G and H are isomorphic, then the complements of the
two graphs G and H are also isomorphic.

Exercises 61–62 consider the infinite complete binary tree, which is denoted by either
2<ω or B<ω. As illustrated in figure 6.63, the graph 2<ω contains every complete
graph of height n as a subgraph, where we identify the root of each graph Bn with the
root of 2<ω.
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Figure 6.63 The infinite complete binary tree 2<ω

In exercises 61–62, prove each mathematical statement about the infinite complete
binary tree 2<ω.

61. The infinite complete binary tree 2<ω has countably many paths of finite
length with one endpoint at the root.
Hint: Define a one-to-one correspondence between such paths and the natural
numbers by means of a one-to-one correspondence between the vertices of
2<ω and the natural numbers N. State why identifying this second mapping
is sufficient to prove the statement.

62. There exist uncountably many paths of “infinite” length (i.e., paths passing
through every level) in the infinite complete binary tree 2<ω.
Hint: One approach is to give a proof by contradiction modeled on the proof
of the uncountability of R in section 4.5. Alternatively, construct a one-to-one
correspondence between infinite binary numbers and infinite paths of 2<ω by
assigning the binary digits 0 and 1 to right and left branches in the tree; then
prove the uncountability of the set of infinite binary numbers.

Exercises 63–70 consider parse trees, which play an important role in the analysis of
languages (a fundamental task relevant to many different areas of computer science).
Parse trees for algebraic expressions in a single variable x are generated by context-free
grammars. We work with such a grammar defined by the set of rules:

S → (S) S →−S S → S + S S → S − S
S → S ∗ S S → S/S S → x.

For example, this grammar generates the string −(x ∗ x) by the following derivation;
the corresponding parse tree is given in figure 6.64.

S → −S → −(S) → −(S ∗ S) → −(x ∗ S) → −(x ∗ x)

S

S

( (S

S * S

x x
Figure 6.64 The parse tree for a derivation
of −(x ∗ x)
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In exercises 63–70, use the grammar given above to identify a derivation of
each algebraic expression in x and sketch the corresponding parse tree for each
derivation.

63. x

64. x + x

65. −(x + x)

66. (−x)+ x

67. x − (−x)

68. −(x − x)

69. (x + x) ∗ x

70. (x ∗ x)/(x + x)

Notes

Graph theory is an exciting and active area of mathematical study with lots of open questions.
Many of these questions are easily stated and understood, and undergraduate mathematics
students have engaged research-level questions in this field. A number of books surveying graph
theory have been written in recent years. Among the excellent undergraduate introductions
to graph theory are those by Alduous and Wilson [4], Chartrand [39], Trudeau [242], and
West [254]; both Bollobas [21] and Diestal [59] are standard graduate level texts in graph
theory. Another interesting text that is accessible to advanced undergraduates has been written
by Foulds [87] and focuses on the practical application of graph theory to a striking number of
different areas.

In addition to books focused exclusively on surveying graph theory, many of the ideas
presented in this chapter are studied in both discrete mathematics and “liberal arts” mathematics
courses. Some standard textbooks used in discrete mathematics courses include Epp [72],
Richmond and Richmond [193], and Scheinerman [209]; supporting texts for liberal arts
mathematics courses have been written by Burger and Starbird [34] and the Consortium for
Mathematics and Its Applications [43].

Some of the questions we have introduced in this chapter are (by themselves) the
focus of entire books. Recall our discussion of the four-color theorem in section 6.1.
Recently, Wilson [258] has written an interesting book exploring the history and proof of
the four-color theorem; Fristch et al. [92] is another good exploration of mathematicians’
study and solution of this same result. In addition, we have extensively discussed the
traveling salesman problem in this chapter. An even more thorough study of this ques-
tion can be found in Lawler et al. [151] and in The Traveling Salesman Problem and
its Variations edited by Gutin and Punnen [106]. As we mentioned in sections 6.2 and
6.4, there is no known general algorithm for solving the traveling salesman problem, and
mathematicians, computer scientists, and many others continue to actively search for such
a solution.

The most prominent and widely acclaimed mathematician associated with the study of graph
theory is Leonhard Euler. Dunham’s Euler: The Master of Us All [63] details the life and the
significant contributions of Euler to the ongoing study of many areas of mathematics. Any
general survey of mathematical history, such as Boyer and Merzbach [28], will discuss Euler’s
work. Anthologies of biographies of mathematicians with dedicated, extensive essays on Euler
include Remarkable Mathematicians: From Euler to von Neumann by James [128] and Men of
Mathematics by Bell [15]. Recently, two of Euler’s most important mathematical works were
translated by Blanton: Introduction to Analysis of the Infinite [74] and Foundations of Differential
Calculus [75].
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Finally, we mention Hankin’s engaging biography [111] of Sir William Rowan Hamilton,
blending the story of his personal life with a discussion of his professional accomplishments.
In addition to his contributions to graph theory, Hamilton is best known for his study and
development of the quaternions—a noncommutative extension of the complex numbers. Both
Kuipers [145] and Smith and Conway [218] are good introductions to significant aspects of this
interesting and important number system.



7 Complex Analysis

This chapter introduces the elegant and useful mathematics of complex-valued
functions. The underlying characterization of a single-valued complex function is the
same as for a real-valued function—every (complex number) input is mapped to a
unique (complex number) output. In the same way as for real functions, the set of all
possible inputs is called the domain of the function and the set of all possible outputs is
the range. As we defined in chapter 3, the field of complex numbers contains the reals
as a proper subset; we will see that C is two-dimensional, whereas the set of reals is
one-dimensional. Because of this increase in dimensionality, the resulting functional
behavior is much more intricate for complex functions than for real-valued ones. As a
result, the study of complex functions is a rich, interesting field of endeavor, containing
many beautiful and sometimes surprising mathematical phenomena.

Mathematicians have historically long been conscious of the algebraic issues
involved with taking square roots of negative numbers. In ancient recorded human
history, the Babylonians understood the quadratic formula from a procedural perspec-
tive; they recognized the need to take the square root of the discriminant b2−4ac when
solving for x in the quadratic equation ax2+bx+c = 0. Chapter 3 has already discussed
the fact that the discriminant is often negative, such as when solving x2 + 2x+ 3 = 0.
In this case, b2 − 4ac = −8.

Until relatively recent times, mathematicians concluded that the appearance of
square roots of negative numbers implied the nonexistence of solutions; they thereby
would have asserted that x2 + 2x + 3 has no roots. The belief that square roots of
negative numbers formed an impasse to finding roots continued until the Age of
Enlightenment. Even the many insightful Italian mathematicians of the Renaissance
who advanced techniques to find zeros of polynomials perpetuated this perspective.
Recall from section 3.5 that Sciopione del Ferro (who lived until 1526) was able to
factor the cubic equation x3 + mx + n = 0 into a linear term and a quadratic. But as
it turns out, when m is positive and n is negative, the resulting quadratic factor of del
Ferro’s cubic always has a negative discriminant. What was del Ferro’s conclusion in
this case? It was the same as any other mathematician’s of his day: the corresponding
cubic had only one root!

It was not until the late 1700s that the idea of a complex number a + bi began
to gain widespread understanding and acceptance by mathematicians. The Swiss
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mathematician Leonhard Euler made early discoveries about the algebraic properties
of complex numbers. Euler, who developed the notion of the natural logarithm and
described the importance of the irrational number e (whose notational symbol ‘e’ he
first introduced) discovered such important formulas as

eit = cos t + i sin t.

Here the symbol i stands for
√−1 and the angle t is a given real value. Euler

demonstrated this formula early—in the mid-1700s. We will use this important formula
over and over again in this chapter, and we will see that Euler’s insights resulted
from what he considered a natural extension of facts about power series of real
valued functions. Beginning in the 1770s, Euler was the first mathematician to use
the symbol i to denote

√−1, and he went on to derive many curious and often
surprising algebraic truths about complex numbers. For example, we will see that
ii is real-valued (interestingly enough, ii takes on an infinite number of values, but all
of them are real!).

The study of complex numbers grew out of mathematicians’ efforts to explain
nonreal algebraic solutions of equations. But there are many other aspects to complex
analysis. The subject is extremely useful in many mathematical fields such as
complex number theory, ordinary and partial differential equations, physical chemistry,
homotopy theory, mathematical physics, and operator theory. Because of its broad
applicability, complex analysis is often recognized as a field that opens doors to
many advanced studies of mathematics. This chapter develops a theory of complex
functions, describing many ideas and applications that result from working with the
derivative of complex-valued functions. As you might expect, there is a parallel theory
of the integral as it applies to complex functions, one that can be traced back to
Augustin-Louis Cauchy in the late 1700s. That material is left for your later studies in
mathematics.

We will find that a study of just the differential properties of complex functions
provides many interesting facts and insights. After developing several basic algebraic
and geometric properties of complex numbers and functions, the chapter will examine
what it means for a complex function to be differentiable. This investigation will
include a description of the “partial derivatives” of associated functions, which will
lead to a study of the “Cauchy–Riemann” equations that characterize differentiability.
Section 7.3 then develops power series representations of differentiable functions.
Later sections study a type of function known as “harmonic,” which can be used
to model many real-life phenomena in the study of fluid flow and other physical
processes.

7.1 Complex Numbers and Complex Functions

By the 1730s a number of mathematicians (most notably Euler) were working with
complex numbers and had identified various algebraic facts for this number system. But
it was not until a geometric understanding of these numbers appeared in the late 1700s
and early 1800s that complex analysis really became a fruitful mathematical field.
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These early geometric insights involved representing complex numbers as points and
are now attributed to the Norwegian mathematician Caspar Wessel. In 1797 Wessel
published these notions shortly after a presentation to the Royal Danish Academy of
Sciences. Unfortunately, Wessel was an impoverished surveyor and mapmaker and
only an amateur mathematician. His lowly professional position explains in part why
his geometric insight was known only to a few. Like a spark that may flicker but fails
to light a fire, important geometric properties associated with complex numbers did
not catch on with most mathematicians around the world.

In 1806, the French mathematician Jean-Robert Argand independently developed
results equivalent to Wessel’s work. Argand published his ideas at his own expense in a
small book that did not even list his name as the author. The treatise was passed around
the mathematical community sparingly and read by a handful of mathematicians,
including Adrien-Marie Legendre. But little came of it, and the flame of complex
analysis continued to sputter unsteadily.

Around this same time, Carl Friedrich Gauss began making important contribu-
tions to mathematics that incorporated the field of complex numbers in an essential
way.As part of his dissertation (written in 1799 when he was 22), Gauss formulated and
proved the famous fundamental theorem of algebra that was presented in section 3.5,
describing the algebraic factorization of an arbitrary polynomial into linear and
quadratic factors. The zero of any linear factor ax+ b was understood to be x = −b/a,
but (before Gauss’ work) the zeros of a quadratic ax2 + bx + c were not always
considered to be meaningful numbers; a negative discriminant b2 − 4ac results in the
quadratic formula having a square root of a negative number. Such terms were said
to be “imaginary,” reflecting the distrust mathematicians had for the existence of such
numbers.

Gauss’s statement and proof of the fundamental theorem of algebra showed
the world why complex numbers were important. Because the complex field C is
crucial to factoring all polynomials into linear terms, complex numbers were finally
understood to be of essential value to understanding the basic underlying structure of
polynomials. By 1831 Gauss had also independently reproduced Wessel’s andArgand’s
geometric depiction of complex numbers as points in the plane, and he had used
these results to prove significant mathematical theorems in complex analysis. Faced
with the fundamental theorem of algebra, mathematicians everywhere were persuaded
that complex analysis deserved their engaged attention. The sputtering flame finally
caught fire.

How did the fundamental theorem work in producing complex numbers as
important quantities when studying polynomials? We can answer this question by
looking at an example. We know that the quadratic x2 + 2x + 5 has zeros (according
to the quadratic formula) equal to x = −1 + √−4 and −1 − √−4, which do not
make sense as real numbers. Gauss declared these values to exist in a very important
way, as they provided the complete set of zeros for the polynomial (the fundamental
theorem says there are two, since the polynomial has degree two). Gauss used the
jargon already established by that time: he called the values complex and used Euler’s
symbol i = √−1 to provide a coherent interpretation of their nature; the terms become
x = −1+√4

√−1 = −1+ 2i and x = −1− 2i, respectively, and the quadratic factors
as x2 + 2x + 5 = (x − (−1+ 2i))(x − (−1− 2i)).
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Question 7.1.1 Determine the zeros of each quadratic polynomial.

(a) x2 − 1
(b) x2 + 1

(c) x2 + 4x + 4
(d) x2 − 4x + 5

■

By expressing a complex number x + iy in terms of its “real part” x and its
“imaginary part” y, Gauss realized (as did Wessel and Argand) that complex numbers
x + iy need to be understood in terms of two components. Since these two pieces can
assume any real value, the complex number x + iy corresponds to a point (x, y) on
a two-dimensional coordinate plane. Gauss called this plane the complex plane C; it
is sometimes now called the Argand plane after Jean-Robert Argand. The following
definition expresses these ideas.

Definition 7.1.1 The set of complex numbers is C = {a + bi : a, b ∈ R, where i = √−1}.
A complex number z = a + bi has real part a = Re(z) and imaginary part
b = Im(z); the number z = a+ ib is graphically represented as the point (a, b) on
the two-dimensional plane having horizontal “real” axis labeled R and vertical
“imaginary” axis labeled i.

A graphical illustration of the complex plane is provided in figure 7.1. Note, for
example, that the number i equals 0+ 1i, and so it is identified on the complex plane
as the point (0, 1), which sits on the imaginary axis.

Example 7.1.1 We identify the real and imaginary parts of several complex numbers and then
graph these numbers on the complex plane in figure 7.2.

(a) The complex number z = −1+ 2i has Re(z) = −1 and Im(z) = 2.
(b) The number z = −2i has Re(z) = 0 and Im(z) = −2.
(c) The number z = 4 has Re(z) = 4 and Im(z) = 0.

■

a R

b
i a + i b

Figure 7.1 A point a+ bi on the
complex plane

R42

2

(b)

(a)

(c)

i

Figure 7.2 Graph of complex numbers for
example 7.1.1
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Figure 7.3
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Question 7.1.2 Identify the real and imaginary parts of each complex number and then graph each
one as a point on the complex plane.

(a) z = 2+ i
(b) z = −5+ 3i

(c) z = 2i
(d) z = 4− 7i

■

Question 7.1.3 State the complex number that corresponds with each point on the complex plane
identified in figure 7.3.

■

Geometric representations of complex numbers provide important insights into
their algebraic representations and properties. In addition to the rectangular coordinate
representation described in definition 7.1.1, each complex number also has a polar
coordinate representation, one that turns out to be extremely important in many
algebraic calculations. Rather than describing the two dimensions in terms of real
and imaginary parts, a polar representation thinks of a complex number in terms of:
(i) the distance from the point to the origin; and (ii) the angle that is formed between
the positive real axis R and the ray emanating from the origin through the point. The
following definition establishes a complex number’s polar representation.

Definition 7.1.2 A complex number z is represented by its two polar coordinates: the modulus
|z| of z equal to the distance from z to the origin; and the polar angle θ equal to
the angle formed between the positive real axis R and the ray emanating from the
origin through the point.

Figure 7.4 provides a graphical illustration of a number’s polar representation;
notice that every point on the dashed circle has the same modulus.

The polar representation of a value z is not unique. If z has polar angle θ , then any
2π multiple can be added to θ to obtain the same polar angle; θ +2nπ for n ∈ Z are also
polar angles for z. A unique polar representation can be assigned to a complex number
z by requiring, for example, that −π < θ ≤ π , or in some other such predetermined
2π range of values for the polar angle. This unique polar representation is often useful
when making algebraic calculations or when representing a set of values such as the
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Ra

b

a + i b = z

i

q

⎢z ⎢

Figure 7.4 The polar representation of a complex number z

range outputs from a given function. In these settings, such a chosen range of values
is often called the principal range, and the unique representation value for the polar
angle is called the principal value.

It is a straightforward process to move from the rectangular coordinate represen-
tation of a complex number z to the polar representation. The next theorem lists the
relationships between the variables involved. The proof uses the fact, first defined by
Euler and verified by him as reasonable (in terms of properties of an exponential), that
eiθ = cos θ + i sin θ , where θ ∈ R. We’ll discuss this fact further in section 7.3.

Theorem 7.1.1 For a complex number z = a + bi having modulus |z| and polar angle θ , the
following identities hold:

a = |z| cos θ, b = |z| sin θ, |z| =
√

a2 + b2, and z = |z|eiθ .

When−π/2 < θ < π/2, the polar angle is θ = tan−1
(

b

a

)
; otherwise, tan−1

(
b

a

)
will serve to indicate a reference angle for θ .

Proof The right triangle with hypotenuse from (a, b) to the origin and base on the real axis
has a base with length |a|, height with length |b|, and hypotenuse with length |z|.
The first two identities follow from basic definitions of the cosine and sine ratios.
Since tan θ = (b/a), it follows that θ = tan−1 (b/a) when −π/2 < θ < π/2.
The Pythagorean theorem implies a2 + b2 = z2, and so |z| = √a2 + b2. Since
eiθ = cos θ + i sin θ ,

z = a+ bi = |z| cos θ + i|z| sin θ = |z|(cos θ + i sin θ) = |z|eiθ .

■

In some settings the rectangular representation of a complex number is more
helpful, while in other settings the polar representation is better used. It is helpful
to become adept at working with both representations and to develop an ability to
move freely back and forth between them. The next example considers the polar
representation of several complex numbers.

Example 7.1.2 We consider the complex number z = 1 + i using a principal range of −π <

θ ≤ π . Both the real and imaginary part of z are a = b = 1, and its modulus
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is |z| = √12 + 12 = √2. The graph of the point z on the complex plane shows
that its principal value polar angle is θ = π/4. Allowing for multiple-value polar
angles, θ = tan−1 1+ 2nπ = (π/4)+ 2nπ , for n ∈ Z. The point 1+ i therefore
has polar representations

√
2ei(9π/4) =√2e−i(7π/4), and so on. Using the principal

range −π < θ ≤ π , the polar representation is 1+ i = √2ei(π/4).
■

Example 7.1.3 We consider the complex number z = √6+√2i using a principal range of−π <

θ ≤ π . The modulus is |z| = √6+ 2 = 2
√

2 and the (multi-valued) polar angle is
θ =tan−1(

√
2/
√

6)= arctan(1/
√

3)= (π/6)+2nπ , for n ∈ Z. Using the principal
range −π < θ ≤ π , the polar representation is found using the principal value
θ = π/6 as

√
6+√2i = 2

√
2ei(π/6).

■

Question 7.1.4 Identify the modulus and the (multi-valued) polar angle of each complex number
and then graph each one as a point on the complex plane. Then use the
principal range of−π < θ ≤ π to identify the corresponding single-valued polar
representation.

(a) z = 2+ 2i

(b) z = 2
√

3+ 2i

(c) z = 4i

(d) z = −4

(e) z = 3ei(π/6)

(f) z = 2ei(11π/6)

■

7.1.1 The Arithmetic of Complex Numbers

The field of complex numbers has well-defined addition and multiplication operations,
along with their associated inverse operations of subtraction and division. We describe
these operations in terms of the rectangular representation of complex numbers and
then in terms of the polar representation.

Definition 7.1.3 Suppose z = a + bi and w = c + di are complex numbers with a, b, c, d ∈ R.
Algebraic operations are:

• addition: z + w = (a+ bi)+ (c+ di) = (a+ c)+ (b+ d)i;

• subtraction: z − w = (a+ bi)− (c+ di) = (a− c)+ (b− d)i;

• multiplication: z · w = (a+ bi) · (c+ di) = (ac− bd)+ (ad + bc)i;

• complex conjugate: z = a− bi;

• division:
z

w
= z · w

w · w = (a+ bi) · (c− di)

(c+ di) · (c− di)
= ac+ bd

c2 + d2
+ bc− ad

c2 + d2
i.

In a descriptive sense, addition and subtraction are defined componentwise in
terms of real and imaginary parts. Multiplication uses the familiar F.O.I.L. method of
multiplying First, Outer, Inner, and Last terms and the fact that i2 = √−1

√−1 = −1.
Division is defined by multiplying both the numerator and denominator by the complex
conjugate of the denominator, and then simplifying the resulting expression. The next
example shows how each operation works.
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Example 7.1.4 We apply each arithmetic operation to the complex numbers z = −1 + 2i and
w = −1− 2i.

• z + w = (−1 + 2i) + (−1 − 2i) = (−1 + (−1)) + (2 + (−2))i = −2 +
0i = −2

• z − w = (−1+ 2i)− (−1− 2i) = (−1− (−1))+ (2− (−2))i = 4i
• z ·w = (−1+2i) · (−1−2i)= (−1)(−1)+ (−1)(−2i)+ (2i)(−1)+ (2i)(−2i)=

1+ 2i − 2i + 4 = 5
• w = −1− (−2i) = −1+ 2i and z = −1− (2i) = −1− 2i

•
z

w
= z · w

w · w =
(−1+ 2i)(−1+ 2i)

(−1− 2i)(−1+ 2i)
= 1− 2i − 2i − 4

5
= −3

5
− 4

5
i

■

The result of arithmetic operations applied to complex numbers in rectangular
form should always generate an answer that is also expressed in rectangular
form as a + bi with a, b ∈ R. The next question practices working with the
operations.

Question 7.1.5 For t = 4+ 7i, u = √2− 0.5i, v = 10− 5i, and w = −π + ln(2)i, express each
of the following terms in rectangular form.

(a) z = t + v

(b) z = v − t

(c) z = u+ w

(d) z = t − u

(e) z = v

(f) z = v + v

(g) z = t · v
(h) z = t2 + u · v
(i) z = t/v

(j) z = u/w

(k) z = |t|
(l) z = |u|

■

The polar representation is especially useful when multiplying and dividing
complex numbers, as well as for the more advanced operations of taking integer powers
or roots. Consider the following definition.

Definition 7.1.4 Suppose z = reit and w = peis are complex numbers written in polar format with
r, t, p, s ∈ R. If n ∈ Z, then:

• multiplication: z · w = reit · peis = (r · p)ei(s+t);

• division:
z

w
= reit

peis
= r

p
ei(t−s);

• integer powers: zn = (reit)n = rneint .

It can be helpful to visualize these operations in terms of actions on polar angles.
From the definition, we see that multiplication adds the two polar angles to get the
new polar angle, division subtracts one from the other, and taking an integer power
corresponds to multiplying the polar angle by that power. The next example shows
how each operation works.

Example 7.1.5 The complex numbers z = 4 + 4i and w = −4 − 4i have polar representation
using the principal range −π < θ ≤ π as z = 4

√
2ei(π/4) and w = 4

√
2ei(−3π/4).

We apply each of the operations from definition 7.1.4 to z and w. The final
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answer is given in terms of the rectangular coordinate system using the fact that
eit = cos t + i sin t.

• z · w = 4
√

2ei(π/4) · 4√2ei(−3π/4) = (4
√

2 · 4√2)ei(π/4−3π/4) = 32ei(−π/2) =
−32i

•
z

w
= 4

√
2ei(π/4)

4
√

2ei(−3π/4)
= 4
√

2

4
√

2
ei[π/4−(−3π/4)] = eiπ = −1

• z5 = (4
√

2ei(π/4))5 = (4
√

2)5ei(5π/4) = 4096
√

2ei(−3π/4)

= 4096
√

2(cos(−3π/4)+ i sin(−3π/4)) = −4096− 4096i

■

The calculation of z5 in terms of its polar angle in example 7.1.5 was finalized
only when it was given in terms of the principal value for the polar angle. Whenever
a calculation is made and a principal value is mandated, such an adjustment is
necessary.

Question 7.1.6 Use the polar representation with principal range −π < θ ≤ π to find the value
of each complex number. Then write your final answer in rectangular coordinates.

(a) z = (3+ 3i) · (2− 2i)
(b) z = (1+ i) · (−3i)

(c) z = 3+ 3i

2− 2i

(d) z = 1+ i

−3i
(e) z = (3+ 3i)8

(f) z = (1+ i)−3

■

The polar representation of complex numbers is especially useful when computing
roots (fractional powers) of complex numbers. Because a complex number can have
multiple roots (in the same way that a positive real value x has two square roots±√x),
the computations for fractional powers require greater care. Though there are some
real numbers, such as x = −1, that do not have real square roots, the square root of
any arbitrary complex number can be found using a polar representation and has two
values. Similarly, the cube root of any complex number has three values, the fourth
root has four values, and so on. The next example presents a standard algebraic method
for determining a cube root; the approach for an arbitrary nth root is similar.

Example 7.1.6 We find the cube root of 1+ i using the polar representation with principal range
−π < θ ≤ π . We first consider the polar representation of 1 + i and allow for
polar angles outside the principal range: 1 + i = √2ei(π/4) = √2ei(π/4+2kπ) for
any integer k ∈ Z. Expressing the cube root in terms of the 1/3 power, (1+ i)1/3 =
(
√

2)1/3e(i/3)(π/4+2kπ) = 6√
2ei(π/12+2kπ/3). Three of these polar angles are in the

principal range: π/12; π/12 + 2π/3 = 3π/4; and π/12 − 2π/3 = −7π/12.
Pictured geometrically on the complex plane, the three cube roots are spaced
evenly around the circle with modulus 6

√
2 as illustrated in figure 7.5.

■

The algebraic process demonstrated in example 7.1.6 can be implemented to obtain
the values for the nth root n

√
z of any complex number z. This process proves there

exist n distinct nth roots of any given nonzero complex value z, each of these roots
have modulus n

√|z|, and they are equally spaced at 2π/n intervals around the circle
having radius n

√|z|. We summarize these results in the following theorem.
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R

i

1 (1/6)

2

Figure 7.5 The cube roots of (1+ i) as calculated in example 7.1.6

Theorem 7.1.2 There are n distinct complex values for the nth root of a nonzero complex number
z. These values are equally spaced at 2π/n intervals around the circle of points
in the complex plane with modulus n

√|z|.
Applying theorem 7.1.2 to z = 1, there must exist n distinct nth roots of unity;

that is, the equation zn = 1 has n distinct solutions. The nth roots of unity play an
important role in the study of solutions of complex equations and the study of complex
functions. This section’s exercises provide an opportunity to study these numbers in
greater detail.

In addition, theorem 7.1.2 indicates how to calculate a complex number raised to
any fractional exponent. To calculate zm/n, where m, n ∈ Z and n 	= 0, express m/n as
m(1/n), find zm, and then take this value’s nth root.

Question 7.1.7 Determine the n distinct complex nth roots as indicated below, using the principal
range −π < θ ≤ π . Graph these roots on the complex plane.

(a)
√

5ei(π/7)

(b)
√

10+ 10i

(c)
3
√
−5
√

3+ 5i

(d)
4
√
−5
√

3+ 5i

(e) 6
√

2− 2i

(f)
5
√
−4− 4

√
3i

■

7.1.2 Complex Functions

We now turn our attention to the study of variable expressions in z ∈ C, focusing on the
expressions that can be interpreted as functions. Not surprisingly, a complex function
is a type of relation between elements in a domain set D of complex numbers and
those in a range set R of complex numbers. But in complex analysis, mathematicians
often extend the study functions to those that produce multiple outputs for a given
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input (rather than just those that produce a unique output). At first this choice may
seem odd, as functions have been defined previously so that every input value maps
to a unique output. But we have already seen, in the calculation of the nth root of a
complex number, a situation where a study of multiple outputs is valuable. In the same
way, the study of “multiple-valued functions” will be of great benefit.

Our study of functions begins with complex polynomials, whose definition is
identical to that of real polynomials, but whose coefficients and input variables are
allowed to be complex-valued.

Definition 7.1.5 A polynomial over C with degree n ∈ Z and coefficients a0, . . . , an ∈ C is
an expression of the form p(z) = anzn + an−1zn−1 + · · · + a1z + a0, where
z ∈ C.

Any real polynomial p(x) generalizes to a complex polynomial p(z) by appro-
priately substituting the complex variable. For example, p(x) = x2 yields the
complex quadratic p(z) = z2. At the same time, many polynomials are unique to
the complex numbers; for example, q(z) = z2 + i is not a real polynomial. As with
complex numbers, complex polynomials are often presented in “rectangular” form
p(x+ iy) = u(x, y)+ iv(x, y) with real part u(x, y) = Re[p(x+ iy)] and imaginary part
v(x, y) = Im[p(x + iy)]. For example, the real and imaginary parts of p(z) = z2 are
calculated as p(z) = z2 = (x+ iy)2 = (x2 − y2)+ i(2xy), and so u(x, y) = x2 − y2 and
v(x, y) = 2xy. The real and imaginary parts are seen to be real valued functions of the
two input variables x and y, where z = x + iy.

For any polynomial p(z), each input z is related (or mapped) to a unique
output element p(z). In this way polynomials act as a function with a single
output; mathematicians call such relationships “single-valued functions.” But complex
analysts also consider relationships that have many output values for each single
input z, interpreting these relationships as “multiple-valued functions.” The following
definition makes these notions precise.

Definition 7.1.6 If to each value z in a domain set D there corresponds, via a relation, one or more
values w in a range set R, then we call the relation a complex function from D
to R and describe the function using such notation as f (z) = w. When only one
value w is in relation with each value z ∈ D, then f (z) = w is a single-valued
function of z. When more than one value w is in relation with each value z ∈ D,
then f (z) = w is a multiple-valued function of z.

We have already studied many relations among complex numbers that are
functions. The next example highlights several.

Example 7.1.7 Every complex polynomial is a single-valued function, since applying the
algebraic operations of taking nonnegative integer powers, multiplying by a
complex coefficient, and adding or subtracting complex numbers always produces
a single outcome.

In contrast, f (z) = √z is a multiple-valued function with two output values
for each nonzero input z ∈ C. For this reason it is sometimes called a two-valued
function. For any nonzero z = reiθ represented using the principal range of−π <

θ < π , the two square roots of z are w1(z) = √reiθ/2 and w2(z) = √rei(θ/2+π).
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Therefore f (z) = √z is a multiple-valued function. Notice that f (0) = √0 = 0 is
unique; definition 7.1.6 only requires some inputs z to have more than one output√

z for the function to be multiple-valued.
■

Question 7.1.8 Identify each complex function as single-valued or multiple-valued; explain your
answer.

(a) f (z) = 5z3 − 9z + 102

(b) g(z) = 3
√

4z + 15

(c) h(z) = 15z + 4z̄

(d) j(z) = 4
√

5z2 − (2+ 15i)

■

The polar angle for a given complex number generates both a single-valued
function and a multiple-valued function. We know that a complex number z can be
represented as reiθ where r = |z| and θ is the polar angle. For any given polar angle θ ,
the values θ ± 2nπ for n ∈ Z serve to define the same polar angle. Defining the
function f (z) = arg(z), where arg(z) is any angle θ satisfying z = reiθ , we see that
arg(z) is multiple-valued. In contrast, we can also consider the polar angle in terms of
the principal range −π < θ ≤ π . Defining the function f (z) = Arg(z), where Arg(z)
is the (unique) polar angle θ for z in the principal range (−π, π ], we see that Arg(z)
is single-valued with domain D = C. (Note: for z = 0 we simply choose θ = 0.) The
next definition formalizes the meaning of these functions.

Definition 7.1.7 If z ∈ C is a complex number, then

• arg(z) is any polar angle θ that satisfies z = reiθ , and
• Arg(z) = θ is the unique angle θ that satisfies z = reiθ with
−π < θ = Arg(z) ≤ π .

Definition 7.1.7 purposefully indicates the notational difference that distinguishes
the two functions: the multiple-valued function arg(z) has a lower-case lettering while
the single-valued function Arg(z) has a capital letter; this notation has become standard
in complex analysis. Both functions are referred to as the argument function, and the
polar angle is often called the argument of the complex number. Definition 7.1.7 shows
that the functions are related to each other according to arg(z) = Arg(z)+ 2kπ , where
k ∈ Z; mathematicians sometimes call Arg(z) a branch of the function arg(z) because
it generates a single choice for an output value from the collection of outputs for
arg(z). The principal range (−π, π ] is considered so standard that the function Arg(z)
is sometimes called the principal branch of the argument function. The argument
functions will be very useful in the definition of other important functions, such as the
logarithm function described in the next section.

Question 7.1.9 For the following complex numbers from question 7.1.4, determine the value of
arg(z) and Arg(z) for each complex z.

(a) z = 2+ 2i

(b) z = 2
√

3+ 2i

(c) z = 4i

(d) z = −4

(e) z = 3ei(π/6)

(f) z = 2ei(11π/6)

■
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7.1.3 Partial Derivatives

The rest of this section deals with “multivariate real-valued functions.” We have seen
that single-valued complex functions are often separated into real and imaginary parts
as f (x + iy) = u(x, y) + iv(x, y), and so u(x, y) and v(x, y) are real-valued functions
defined on two real independent variables x and y. Mathematicians refer to functions
such as u(x, y) and v(x, y) as multivariate functions; these functions are studied in
an undergraduate multivariate calculus course. They arise in the study of complex
functions because they appear as a function’s real and imaginary parts.

In an analysis of real functions in the single variable setting, the derivative
(when it exists) generates the slope of the line tangent to a given function at a
point; the slope is the instantaneous rate of change in the dependent variable with
respect to the independent variable. In the multivariable setting, the rate of change
for the given function can be calculated with respect to each of the independent
variables—these rates of change are called partial derivatives. They turn out to be
very helpful in analyzing the properties for the real and imaginary parts of many
complex functions.

A real-valued function u(x, y) can have two partial derivatives—one with respect
to x and the other with respect to y. These partial derivatives are described in terms of
difference quotients, as the next definition points out.

Definition 7.1.8 The partial derivatives of u(x, y) with respect to the variable x and with respect
to the variable y are

ux = ∂u

∂x
= lim


x→0

u(x +
x, y)− u(x, y)


x
and

uy = ∂u

∂y
= lim


y→0

u(x, y +
y)− u(x, y)


y
.

When the first limit exists, we say that u(x, y) is differentiable with respect to
x and, when the second limit exists, we say that u(x, y) is differentiable with
respect to y.

Using the definition to calculate a partial derivative can sometimes be quite
involved. But other partial derivatives have very straightforward calculations, as in
the following example.

Example 7.1.8 We use the definition of the partial derivative to compute ux and uy for the function
u(x, y) = x · y.

ux = ∂u(x, y)

∂x
= ∂[xy]

∂x
= lim


x→0

(x +
x)y − xy


x
= lim


x→0


x · y

x

= lim

x→0

y = y

uy = ∂u(x, y)

∂y
= ∂[xy]

∂y
= lim


y→0

x(y +
y)− xy


y
= lim


y→0

x ·
y


y
= lim


y→0
x = x

Both of these limits exist everywhere, and so at any point (x, y), u(x, y) = x · y is
differentiable with respect to both x and y.

■
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Question

7.1.10

Using the definition of a partial derivative, find both partial derivatives of each
function.

(a) u(x, y) = 2x − y
(b) v(x, y) = x + 2y

(c) f (x, y) = x2y

(d) g(x, y) = x

y
■

From a practical standpoint, we will not want to use the definition of partial
derivatives to compute the derivative too often. Instead, the familiar rules for
single-variable differentiation extend to the calculation of a partial derivative! When
differentiating u(x, y) with respect to x, we may simply employ standard differentiation
rules for x while treating the variable y as a “constant.” The notion of treating y
as a constant makes sense, since y remains unchanged when x changes. Similarly,
when differentiating u(x, y) with respect to y, simply use standard differentiation
rules for y while treating x as a “constant.” The next example illustrates these
calculations.

Example

7.1.9

We use differentiation rules to compute ux and uy for the function u(x, y) = y3x5.

ux = ∂

∂x
[y3x5] = y3 ∂

∂x
[x5] = y35x4 = 5y3x4,

uy = ∂

∂y
[y3x5] = x5 ∂

∂x
[y3] = x53y2 = 3x5y2.

Both of these computations use first a scalar multiple rule to factor out the
“constant” variable, and then the standard power rule for differentiation.

■

Example

7.1.10

We use differentiation rules to compute the partial derivatives vx and vy for the
function v(x, y) = (y3 + cos x)(x5 + 2y).

The function v(x, y) is a product of two functions f (x, y) and g(x, y). Using
the product rule, we have vx = ∂/∂x(f · g) = fx · g + f · gx, and similarly for vy.
First compute the partial derivatives of each component of the product.

fx= (∂/∂x)[y3+cosx]=0−sinx=−sinx gx= (∂/∂x)[x5+2y]=5x4+0=5x4

fy= (∂/∂y)[y3+cosx]=3y2−0=3y2 gy= (∂/∂y)[x5+2y]=0+2=2

Now use the product rule to compute vx and vy.

vx = ∂

∂x
[(y3+cosx)(x5+2y)] = (−sinx)(x5+2y)+(y3+cosx)(5x4),

vy = ∂

∂y
[(y3+cosx)(x5+2y)] = 3y2(x5+2y)+(y3+cosx)2.

■

The examples show that standard differentiation rules enable straightforward
calculations of the partial derivatives of many multivariate functions.

Question

7.1.11

Find both partial derivatives with respect to each variable x and y for the following
functions.

(a) f (x, y) = sin(x2 + y2) (b) g(x, y) = 10x2e2y
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(c) h(x, y) = (x + y) sin(x2 + y2)

(d) j(x, y) = x2

y3

(e) u(x, y) = x4 − 6x2y2 + y4

(f) v(x, y) = 4x3y − 4xy3

■

We have mentioned that real-valued multivariate functions arise in the study of
single-valued complex functions w = f (z) = f (x+ iy) because the real and imaginary
parts of the output are themselves functions of the form u(x, y) and v(x, y). For
example, the quadratic p(z) = z2 has p(x + iy) = (x + iy)2 = (x2 − y2) + i(2xy),
and so u(x, y) = Re[p(z)] = x2 − y2 and v(x, y) = Im[p(z)] = 2xy. For many single-
valued complex functions, including all polynomials, the real and imaginary parts
might appear unrelated, but they happen to share a rather remarkable association that is
expressed in terms of their partial derivatives. The next question begins an exploration
of this relationship; section 7.2 will develop and explain it fully.

Question

7.1.12

Consider the partial derivatives of p(z) = z2 = (x + iy)2 = (x2 − y2)+ i(2xy).

(a) Evaluate the partial derivatives ux and uy for u(x, y) = x2 − y2.
(b) Evaluate the partial derivatives vx and vy for v(x, y) = 2xy.
(c) Based on a comparison of ux and vy for p(z) = z2, formulate a conjecture about

the relationship between ux and vy for an arbitrary polynomial p(x + iy) =
u(x, y)+ iv(x, y).

(d) Based on a comparison of vx and uy for p(z) = z2, formulate a conjecture about
the relationship between vx and uy for an arbitrary polynomial p(x + iy) =
u(x, y)+ iv(x, y).

■

As we have discussed, the partial derivative ∂u/∂x describes the rate of change in a
given function u(x, y) in the x-direction; similarly, ∂u/∂y describes the rate of change in
u(x, y) in the y-direction. These changes in u(x, y) are well-defined (and often readily
computed) when the corresponding partial derivatives exist. But when can we say
that the rate of change in u(x, y) is well-defined in any direction? Mathematicians say
that a multivariate function is differentiable at a point when the rate of change exists
in every direction; the concept of being differentiable is discussed in any multivariate
calculus course. It turns out that a multivariate function is differentiable whenever each
of its partial derivatives with respect to either independent variable are continuous.
The concept of continuity for a multivariate function is detailed in the following
definition.

Definition

7.1.9

Let (x0, y0) be a point in a disk S = {z : |z − c| < R} having fixed center c ∈ C

and radius R ∈ C. A function u(x, y) whose domain contains S is continuous
at (x0, y0) when lim

(x,y)→(x0,y0)
u(x, y) = u(x0, y0). By this limit we mean: Given

ε > 0, there exists a value δ > 0 such that |u(x, y) − u(x0, y0)| < ε whenever√
(x − x0)2 + (y − y0)2 < δ.

This definition of a continuous function of two variables may appear a bit
complicated, as it involves algebra associated with both variables x and y. Intu-
itively, though, it is quite familiar. It says that the value of u(x, y) is close to
u(x0, y0) whenever the point (x, y) is close to (x0, y0); the square root term in
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the definition is simply the two-dimensional distance formula applied to these last
two points. Nonetheless, we will restrict the introductory remarks here to fairly
simple functions, as the algebra quickly becomes complicated for more intricate
situations.

Example

7.1.11

We consider the continuity of u(x, y) = x − y2 at the point (0, 0), showing that
lim

(x,y)→(0,0)
u(x, y) = u(0, 0) = 0. Given any ε > 0, choose δ = (−1+√1+ 4ε)/2.

Astraightforward calculation shows δ+δ2 = ε.Whenever
√

(x − 0)2 + (y − 0)2 <

δ, we have |x| = √x2 ≤ √x2 + y2 < δ, and similarly |y| < δ. Therefore by the
triangle inequality,

|u(x, y)− u(0, 0)| = |(x − y2)− 0| = |x − y2| ≤ |x| + |y|2 < δ + δ2 = ε.

The function u(x, y) is therefore continuous at (0, 0).
■

The function u(x, y) = x − y2 is an example of a multivariate polynomial,
which is any function consisting of a sum of terms that are products of real-valued
coefficients and powers of x and/or y. It turns out, not surprisingly, that all multivariate
polynomials are continuous at any given point. Hence the function u(x, y) = x − y2 is
not only continuous at the origin, but also at any given point in the two-dimensional
plane.

As in any instance of applying the definition of limit, the choice of δ may certainly
not be apparent at the onset of calculations involved with the definition. The strategy
is to find an upper bound for |u(x, y) − u(x0, y0)| that involves only constants and δ,
assuming

√
(x − x0)2 + (y − y0)2 < δ (whatever δ may turn out to be). Then set that

upper bound equal to ε and solve for δ. In the last example, when δ + δ2 is set equal
to ε, the quadratic 1δ2 + 1δ − ε = 0 has (using the quadratic formula with a = 1,
b = 1, and c = −ε) the positive root δ = (−1+√1+ 4ε)/2. A similar strategy may
be applied to the functions in the next question.

Question

7.1.13

Verify that the real part u(x, y) = x2 − y2 and the imaginary part v(x, y) = 2xy of
the polynomial f (z) = z2 = u(x, y)+ iv(x, y) are continuous at (0, 0). Also verify
that the partial derivatives ux(x, y) = 2y and uy(x, y) = 2x are continuous at any
point (x0, y0).

■

This brief study of partial derivatives and continuity for multivariable functions
is a first step in the direction of developing the elegant and interesting theory of
differentiability for complex functions. As we will see in the next section, for any
complex function that is differentiable, the real and imaginary parts of the function will
always be related to one another. These relationships are called the Cauchy–Riemann
equations. For example, we will see that every complex polynomial has real and
imaginary parts that follow the Cauchy–Riemann equations. These facts will lead
us to interesting theory about real-valued multivariate functions, which will in turn
lead to many important real-world applications and advanced mathematical analysis.
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7.1.4 Reading Questions for Section 7.1

1. Define and give an example of the real part and the imaginary part of a complex
number.

2. Define and give an example of the modulus and the polar angle of a complex
number.

3. Define the principal range and the principal value of a complex number.
4. State theorem 7.1.1. What does this theorem accomplish?
5. Define and give an example of addition and subtraction for two complex

numbers z = a+ ib and w = c+ id in rectangular form.
6. Define and give an example of multiplication and division for two complex

numbers z = a+ ib and w = c+ id in rectangular form.
7. Define and give an example of multiplication and division for two complex

numbers z = reiθ and w = seiα in polar form.
8. State theorem 7.1.2. How many cube roots does an arbitrary complex number

have?
9. Discuss the distinction between single-valued and multiple-valued complex

functions.
10. Define the two argument functions defined on the complex numbers and give

an example.
11. Define the partial derivatives ux = ∂u/∂x and uy = ∂u/∂y for a multi-

variate real-valued function u(x, y). Give an example using the rules for
differentiation.

12. State the definition of a function u(x, y) continuous at a point (x0, y0).

7.1.5 Exercises for Section 7.1

In exercises 1–6, graph each complex number a+ bi on the complex plane and
determine its modulus and polar angle in radians.

1. −3
√

3− 3i
2.
√

2−√2i
3. 8+ 8i

4. −4+ 4
√

3i
5. 2
6. −8i

In exercises 7–12, graph each complex number on the complex plane and express each
in rectangular form a+ ib.

7. ei3π/2

8. 6eiπ/4

9.
√

2eiπ/3

10. 5ei13π/6

11. eiπ/2eiπ/4

12. 7ei2π/3ei9π/4

In exercises 13–24, evaluate each expression in rectangular form.

13. (7+ 3i)− (2− 4i)
14. (8+ 21i)+ (14− 3i)− (3+ 5i)
15. 5i − (8+ 3i)+ 16
16. (−2+ i) · (−2− i)
17. (4+ 2i) · (8+ 3i)
18. (9− 2i) · (−2+ 3i)

19. 8− 3i
20. −2 · i
21.

4+ 2i

8− 3i

22.
9− 2i

−2− 3i
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23. (1+ 3i)+ 3− 2i

8+ 3i
24. (1+ 2i) · 8+ 2i

2− 3i

In exercises 25–30, evaluate each expression using a polar representation with principal
range −π < θ ≤ π .

25. (4+ 4i)4

26. (2− 2
√

3i)10

27. (−3− 3i)2

28. (−3− 3i)−1

29. (8i)7

30. (−4i)5

In exercises 31–36, find the n distinct complex nth roots using the principal range
−π < θ ≤ π . Graph these roots on the complex plane.

31.
√−3+ 3i

32.
√

9ei(π/12)

33.
3
√

2− 2
√

3i

34.
3
√

2
√

3− 2i
35. 4
√−8− 8i

36.
5
√

16
√

3+ 16i

In exercises 37–50, prove each of the theorems about complex numbers. Use the fact
that the complex conjugate of z = a+ ib is z = a− ib.

37. For every r ∈ R, r = r.
38. For every z, w ∈ C, z + w = z + w.
39. For every z, w ∈ C, z · w = z · w.
40. For every z, w ∈ C, z/w = z/w.
41. For every z ∈ C, Re(z) = 1

2 (z + z).
42. For every z ∈ C, Im(z) = 1

2 (z − z).

43. For every θ ∈ R, (eiθ ) = e−iθ , where eiθ = cos θ + i sin θ .
Hint: Use the trignometric identities for cos(−) and sin(−θ).

44. For every z = reiθ , z = re−iθ .
45. For every z ∈ C, |z|2 = z · z.
46. For every z ∈ C, |z| = |z|.
47. For every z = a+ ib, |z| ≤ |a| + |b|.
48. If z = a+ ib and w = c+ id, then ac+ bd = Re[z ·w] and ac+ bd ≤ |z ·w|.
49. For every z, w ∈ C, |z + w| ≤ |z| + |w|.

Note: This relationship is known as the triangle inequality and is important
for our study of limits later in this chapter.

50. For every z, w ∈ C, |z − w| ≥ |z| − |w|.
Hint: use the triangle inequality from exercise 49.

In exercises 51–54, use the definition of the partial derivative to find both partial
derivatives for each function.

51. f (x, y) = 2x − 4y + 8
52. g(x, y) = x(y + 2)

53. u(x, y) = (x + 1)y2

54. v(x, y) = 2x
√

y + 3

In exercises 55–60, use differentiation rules and the fundamental theorem of calculus
to find both partial derivatives for each function.

55. u(x, y) = (x + 1)y2

56. v(x, y) = 2x
√

x2 + y2

57. u(x, y) = (x + y)2 + 2x − y
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58. v(x, y) = y 3
√

x − 2y
59. u(x, y) = ∫ x

0

√
1+ t2 dt + ∫ y

0 x + t3 dt

60. v(x, y) = xy + ∫ x
y

√
t + t2 dt

In exercises 61–64 prove that each polynomial function is continuous at the point (0, 0)
by using the definition of continuity.

61. u(x, y) = 3x2 + y
62. u(x, y) = 2x2y

63. u(x, y) = x2 − 2x + 3y2

64. u(x, y) = x + 2y2 + 5

In exercises 65–70, prove each function is continuous at the given point using the
formal definition of continuity.

65. u(x, y) = x − 2y at (a, b) = (1, 2)
66. u(x, y) = 3x + 2y + 7 at (a, b) = (3, 4)

67. u(x, y) = x

y
at (a, b) = (0, 1)

68. u(x, y) = x + i

y
at z = 2+ i

In exercises 69–75, prove each mathematical statement about real-valued continuous
functions.

69. Constant functions are continuous: if c ∈ R and u(x, y) = c, then u(x, y) is
continuous.

70. Scalar multiplication preserves continuity: if c ∈ R and u(x, y) is continuous
at (a, b), then c · u(x, y) is continuous at (a, b).

71. Addition preserves continuity: if u(x, y) and v(x, y) are continuous at (a, b),
then u(x, y)+ v(x, y) is continuous at (a, b).

72. Subtraction preserves continuity: if u(x, y) and v(x, y) are continuous at (a, b),
then u(x, y)− v(x, y) is continuous at (a, b).

73. Squaring preserves continuity: if u(x, y) is continuous at (a, b), then [u(x, y)]2

is continuous at (a, b).
74. Multiplication preserves continuity: if u(x, y) and v(x, y) are continuous at

(a, b), then u(x, y) · v(x, y) is continuous at (a, b).
75. Reciprocals preserve continuity (when defined): if u(x, y) is continuous and

nonzero at (a, b), then 1/u(x, y) = 1/u(x, y) is continuous at (a, b).

In exercises 76–79 show that each nonpolynomial function is continuous at (0, 0) by
applying the definition of continuity.

76. u(x, y) = xey

77. v(x, y) = ex sin y
78. g(x, y) = ex cos y
79. f (x, y) = (x + 1) · sin y

Exercises 80–81 consider the Laplacian equation, which asserts that the sum of the
second partial derivatives uxx and uyy is zero; symbolically,

∂2u

∂x2
+ ∂2u

∂y2
= uxx + uyy = 0,

where uxx = (ux)x and uyy = (uy)y. The Laplacian is named in honor of the French
mathematician Pierre-Simon Laplace who made many important contributions to the
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development of complex analysis and differential equations in the nineteeth century.
In exercises 80–81, verify that both the real and the imaginary parts of each complex
function satisfy the Laplacian equation.

80. f (z) = z2 = (x2 − y2)+ i(2xy) 81. g(z) = z3

7.2 Analytic Functions and the Cauchy–Riemann Equations

This section defines and develops basic properties of differentiable single-valued
complex functions. Such functions f (z) are also called analytic or holomorphic. We
will see that they have a number of important properties and applications, many
of which are expressible in terms of their real and imaginary parts u and v, where
f (z) = u(x, y) + iv(x, y). Definition 7.1.9 in section 7.1 described how to determine
the continuity of u and v at any given point in the domain: verify that the limit as
the function approaches the point is equal to the function’s value at that point.

But many important questions remain: How do we determine the differentiability
of the single-valued complex function f (z)? Is the derivative of f (x + iy) = u(x, y)+
iv(x, y) related to the partial derivatives of u and v? Does the differentiability of
f force the partial derivatives of u and v to satisfy certain differential equations?
These questions have attracted the interest and attention of mathematicians since
the study of complex analysis first blossomed after the publication of Gauss’s
insights, and they have been answered by many of the great functional analysts in
history, including Augustin-Louis Cauchy, Pierre-Simon Laplace, and the German
mathematician Bernhard Riemann. This section’s study of analytic functions will
examine their insightful answers to these and other questions.

As in a study of real functions, differentiability of complex functions is defined in
terms of a limit of a difference quotient. We will therefore need to establish what
it means for a single-valued complex function f (z) to approach a limit L as the
complex number z approaches the origin 0 in the two-dimensional complex plane C.
Symbolically, we will describe what is meant by lim

z→0
f (z) = L.

The fact that z approaches 0 means that the distance gets very small between
the complex number z = x + iy and the origin (0, 0) in the complex plane. This
distance is measured by the two-dimensional distance formula

√
(x − 0)2 + (y − 0)2 =√

x2 + y2 = |z|. In the same way, the distance between f (z) and L may be calculated
as |f (z) − L|. Since we are working in the two-dimensional plane, z may approach 0
along any path; figure 7.6 illustrates two paths that approach the origin—one along
a radial path, and the second along a spiral path. These are just two of the many
different paths approaching the origin in the complex plane; a definition of the limit
must allow for any path of approach. With these reflections in mind, the definition
follows.

Definition 7.2.1 Suppose f : D → C is a given single-valued complex function with 0 ∈ D ⊆ C

and L is a complex value. The notation lim
z→0

f (z) = L means: given any ε > 0,

there exists δ > 0 such that 0 < |z| < δ and z ∈ D implies |f (z)− L| < ε. In this
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R R

ii

Figure 7.6 Two paths approaching the origin in the complex plane

case, we say that the limit of f as z approaches 0 exists and is equal to L. The term
δ may depend on ε but not on z.

This definition of the limit of a complex function closely mirrors the definition of
a limit for a real function and historically follows from the work of Augustin-Louis
Cauchy. As you work with this definition, keep in mind that the term |z| is calculated
as |x + iy| = √

x2 + y2. The next example applies this definition to verify a general
limit statement.

Example 7.2.1 We use the formal definition of the limit to prove that for m, b ∈ C,
lim
z→0

m · z + b = b.

Proof Let ε > 0 be a given real number and define δ = ε/|m|. Then whenever 0 < |z|< δ,
we have

|f (z)− L| = |(m · z + b)− b| = |m · z| = |m| · |z| < |m| · δ = |m| · ε

|m| = ε.

The definition of limit is therefore satisfied, and so lim
z→0

m · z + b = b.

■

Question 7.2.1 Identify a formula for δ expressed in terms of an arbitrary ε > 0 that satisfies the
formal definition of the limit. (Hint: the proof given in example 7.2.1 indicates
that δ = ε/|m|, where m is the coefficient of z.)

(a) lim
z→0
−12z + (7− 8i) = 7− 8i (b) lim

z→0
(2− 3i)z + 5 = 5

■

The result given in example 7.2.1 is just a first step in the full development of the
theory of limits (and continuity) for complex functions. Since this section’s main goal
is to study derivatives and analytic functions, we simply state the primary results that
parallel our study of limits in real analysis. The proofs are similar to those from real
analysis; further details are left for the exercises at the end of this section.

Theorem 7.2.1 Let c, L, M ∈ C and let both f and g be single-valued complex functions with
lim
z→0

f = L and lim
z→0

g = M. Then the following equalities hold.

• Limits are unique: If lim
z→0

f (z) = L exists, then L is unique.

• Limit of a constant: lim
z→0

c = c
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• Limit of a scalar multiple: lim
z→0

c · f (z) = c · L
• Limit of a sum: lim

z→0
f + g = L +M

• Limit of a difference: lim
z→0

f − g = L −M

• Limit of a product: lim
z→0

f · g = L ·M
• Limit of a quotient: lim

z→0

f

g
= L

M
, provided that M 	= 0

We now focus on the concept of the derivative. For complex functions f (z),
differentiability is defined in terms of a limit of a difference quotient, which closely
mimics the definition of the derivative for real-valued functions.

Definition 7.2.2 If f (z) is a single-valued complex function, then the derivative of f (z) is

df

dz
= f ′(z) = lim


z→0

f (z +
z)− f (z)


z
,

provided this limit exists. Given a point z0 ∈ C, we say that f (z) is differentiable
at z0 when f ′(z0) exists. Given a disk S = {z : |z − c| < R} having fixed center
c ∈ C and radius R ∈ C, we say that f (z) is analytic on S when f ′(z) exists for all
z ∈ S. If f ′(z) exists for every z ∈ C, then f (z) is simply said to be differentiable
or analytic. Such functions are also called entire.

Many algebraic calculations used to compute derivatives of complex functions are
identical to those used for real functions. The following question and example apply
the definition of the derivative. We will later describe differentiation rules that will
greatly simplify the computation of derivatives.

Example 7.2.2 We use the definition of the derivative to differentiate f (z) = z2.
Applying the definition, expanding the resulting quadratic, and simplifying

yields the following result.

d

dz
[z2] = lim


z→0

(z +
z)2 − z2


z
= lim


z→0

[z2 + 2z ·
z + (
z)2] − z2


z

= lim

z→0

2z ·
z + (
z)2


z
= lim


z→0
2z +
z = 2z.

■

Question 7.2.2 Using the definition, find the derivative of the following complex functions.

(a) f (z) = (1+ i)z3 (b) g(z) = 2z2 + iz + 1− i
■

The complex functions in both example 7.2.2 and question 7.2.2 are defined and
differentiable on the complex plane, and so we say that they are analytic functions.
In contrast, the function f (z) = z is not differentiable at every point on the complex
plane, and so is not analytic. In fact, f (z) = z is nowhere differentiable, as the following
example shows.

Example 7.2.3 We prove that f (z) = z is not differentiable at the origin.
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Proof Consider two paths approaching the origin and compute the corresponding limits
of the difference quotient. Each path will result in a different limit, and so the
limit defining the derivative does not exist. The computations use the fact that
z + w = z + w for z, w ∈ C.

The first path approaches 0 along the real axis (here, 
z = x):

lim

z→0

0+
z − 0


z
= lim


z→0

0+
z − 0


z
= lim


z→0


z


z
= lim

x→0

x

x
= 1.

The second path approaches 0 along the imaginary axis (here, 
z = iy):

lim

z→0

0+
z − 0


z
= lim


z→0

0+
z − 0


z
= lim


z→0


z


z
= lim

x→0

−iy

iy
= −1.

As we have seen, two different paths of approach to the origin result in two different
values for the limit of the difference quotient. Thus, the derivative does not exist.
We note that an appropriate extension of this argument demonstrates that f (z) = z
is not differentiable at any point on the complex plane.

■

As in real analysis, we rely on the definition of the derivative when proving that
certain specific rules of differentiation are valid. However, this definition with its
reliance on the limit is much too cumbersome to use for typical derivative computations,
and so we state a number of rules of differentiation. You can see that the close parallel
between the the definitions of the derivative for complex functions and for real functions
makes the familiar differentiation rules from real analysis carry over to the complex
setting. We summarize the most important of these rules in the following theorem.

Theorem 7.2.2 If c ∈ C and both f (z) and g(z) are differentiable functions, then the following
hold.

• The constant rule:
d

dz
[ c ] = 0

• The scalar multiple rule:
d

dz
[ c · f (z) ] = c · f ′(z)

• The sum rule:
d

dz
[ f + g ] = f ′ + g′

• The difference rule:
d

dz
[ f − g ] = f ′ − g′

• The power rule:
d

dz

[
zn ] = n · zn−1, for n ∈ N

• The product rule:
d

dz
[ f · g ] = g · f ′ + f · g′

• The quotient rule:
d

dz

[
f

g

]
= g · f ′ − f · g′

g2
,

provided that g(z) 	= 0

• The chain rule:
d

dz
[ f (g(z)) ] = f ′(g(z)) · g′(z)
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The rules greatly simplify the process of differentiating complex functions. Before
considering the proofs of various parts of this theorem, the next question gives you the
opportunity to practice them.

Question 7.2.3 Using theorem 7.2.2, compute the derivative of each function.

(a) f (z) = 10z3 − 7iz2 + 5− i
(b) g(z) = (iz + 2)3

(c) h(z) = iz + 2

5z2 + 3i
(d) j(z) = (2z + 9i)5 · (4iz3 + 7)4

■

The proofs of the rules in theorem 7.2.2 are identical in algebraic structure to
those from real analysis. The next question and examples prove a couple of these
results; further details are left for the exercises at the end of this section and for later
studies.

Example 7.2.4 We prove the power rule for positive integers from theorem 7.2.2: If n ∈ N is a
positive integer, then d/dz

[
zn ] = n · zn−1.

Proof The proof closely parallels the corresponding one for real functions given in
example 4.4.5 in section 4.4. From the definition of the derivative and the binomial
theorem from section 5.2,

d

dz
[zn] = lim


z→0

(z +
z)n − zn


z

= lim

z→0

[zn + nzn−1
z + · · · + nz(
z)n−1 + (
z)n] − zn


z

= lim

z→0

nzn−1
z + · · · + nz(
z)n−1 + (
z)n


z

= lim

z→0

nzn−1 + · · · + nz(
z)n−2 + (
z)n−1 = nzn−1.

■

Question 7.2.4 Using the definition of the derivative, prove the scalar multiple rule from
theorem 7.2.2; prove that if c ∈ C and f (z) is a differentiable function, then

d

dz
[ c · f (z) ] = c · f ′(z).

■

When calculating the derivative of a complex function, we are free to apply either
the definition of the derivative or the differentiation rules stated in theorem 7.2.2. As
you would expect, it is generally easier to apply the differentiation rules.

Example 7.2.5 We compare the calculations that the derivative of f (z) = 3z+ 1 is f ′(z) = 3, using
first the definition of the derivative and then the differentiation rules.

Applying the definition,

f ′(z) = lim

z→0

3(z +
z)+ 1− (3z + 1)


z
= lim


z→0

3z + 3
z + 1− 3z − 1


z

= lim

z→0

3
z


z
= 3.
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Alternatively, we apply four differentiation rules from theorem 7.2.2: the sum
rule, the scalar multiple rule, the power rule, and the constant rule. Justifying each
step in the calculation,

d

dz
[3z + 1] = d

dz
[3z] + d

dz
[1] Sum rule

= 3 · d

dz
[z] + 0 Scalar multiple and constant rule

= 3 · 1 = 3 Power rule (and simplification)
■

The differentiation rules are also used effectively to obtain general results about
analytic complex functions. For example, an application to a general polynomial of
the sum rule, the scalar multiple rule, the power rule, and the constant rule as in
example 7.2.5 shows that every complex polynomial p(z) is differentiable at any value
z ∈ C. The many important results that can be proven using the differentiation rules
include the following:

• Every complex polynomial is analytic;
• Every sum, difference, and product of analytic functions is analytic;
• Every quotient of analytic functions is analytic (except for when the denominator

is zero);
• A composition of analytic functions is analytic.

And these are only a handful of the many significant and interesting corollaries of the
differentiation rules.

We are now ready to explore the famous Cauchy–Riemann equations, which begin
to describe the powerful relationship between the real and imaginary parts of analytic
functions and whichAugustin-Louis Cauchy and Bernhard Riemann recognized. When
f (z) has real and imaginary parts u(x, y) and v(x, y) that are continuous and have
continuous first partial derivatives on some disk S = {z : |z − c| < R}, then f is
differentiable at any given point in S exactly when the following equations are satisfied
at the point: ux = vy and uy = −vx. Known as the Cauchy–Riemann equations, this
condition therefore exactly determines when a complex function f (z) is differentiable
at a given point in the complex plane. The following theorem states this result.

Theorem 7.2.3 The Cauchy–Riemann theorem Suppose the multivariate functions u(x, y) and
v(x, y) and their first partial derivatives with respect to x and y are all continuous
in some disk in C. Then the complex function f (z) = f (x+ iy) = u(x, y)+ iv(x, y)
is differentiable at any point (x0, y0) in that disk iff u(x, y) and v(x, y) satisfy the
Cauchy–Riemann equations at the point:

ux = vy and uy = −vx.

Proof We first prove that if the function f is differentiable at (x0, y0) in the given disk,
then the Cauchy–Riemann equations are satisfied by f = u+ iv at (x0, y0).Assume
f (z) = f (x+ iy) = u(x, y)+ iv(x, y) is differentiable at z0 = x0+ iy0 and calculate
f ′(z0) in two ways, examining the definition of the derivative along two different
path approaches to the origin. Since f is differentiable at z0, the resulting limits
must agree; the Cauchy–Riemann equations will follow.
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The first path approaches the origin along the real axis. Let 
z = h, where h
is real:

f ′(z0) = lim
h→0

f (z0 + h)− f (z0)

h
= lim

h→0

f ((x0 + h)+ iy0)− f (x0 + iy0)

h

= lim
h→0

u(x0 + h, y0)+ iv(x0 + h, y0)− u(x0, y0)− iv(x0, y0)

h

= lim
h→0

[
u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h

]
= ux(x0, y0)+ ivx(x0, y0).

The second path approaches the origin along the imaginary axis. Let 
z = i ·h
for h real:

f ′(z0) = lim
ih→0

f (z0 + ih)− f (z0)

ih
= lim

h→0

f (x0 + i(y0 + h))− f (x0 + iy0)

ih

= lim
h→0
−i

u(x0, y0 + h)+ iv(x0, y0 + h)− u(x0, y0)− iv(x0, y0)

h

= lim
h→0

[
v(x0, y0 + h)− v(x0, y0)

h
− i

u(x0, y0 + h)− u(x0, y0)

h

]
= vy(x0, y0)− iuy(x0, y0).

Because f ′(x0 + iy0) exists, these two expressions for f ′(z0) must be equal,
which means

f ′(z0) = ux(x0, y0)+ ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

Equating the real and imaginary parts of these expressions proves that the
Cauchy–Riemann equations are satisfied; that is, ux = vy and uy = −vx at (x0, y0).

We now indicate the proof of the converse. Assume the functions u(x, y)
and v(x, y) satisfy the Cauchy–Riemann equations in the disk. We show f is
differentiable at any point in the disk by showing it satisfies the definition of the
derivative. We do so by working with the Taylor series (with remainder) expansion
of u(x, y) and v(x, y) near any point (x0, y0) of the disk. This multivariate expansion
can be written in terms of the function’s first partial derivatives, just as the one-
variable Taylor series expansion can be written in terms of the function’s first
derivative. The details are messy, but when the Cauchy–Riemann equations are
applied to the Taylor series expansions, we obtain the following expression for
any point z0 = x0 + iy0 in the disk.

f (z0 + h) = f (z0)+ h [ux(x0, y0) + ivx(x0, y0)] + δ1(A+ iB) + δ2(C + iD):
where h = δ1 + iδ2 has an arbitrarily small modulus and A, B, C, and D approach
0 as h approaches 0. Subtracting f (z0) from both sides of the above expression and
dividing by h, we obtain the function’s difference quotient at the point z0. Taking
the limit as h approaches 0 and applying the fact that the partial derivatives are
continuous, f ′(z) = ux(x0, y0)+ ivx(x0, y0). Thus, f (z) is analytic in the disk.

■
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The history of the Cauchy–Riemann equations is long in development. Using a
technique that he pioneered of integrating complex functions along a closed curve,
Augustin-Louis Cauchy published the Cauchy–Riemann equations in an involved
treatise on definite integrals; he initially presented this result in 1814 and published
it as a book in 1827. As part of his 1851 dissertation, Bernhard Riemann gave the
first general, formal proof of the Cauchy–Riemann theorem; his proof of sufficiency
was essentially the same as that presented above. Much previous to both Riemann and
Cauchy, the French mathematician Jean le Rond d’Alembert had stated a form of the
equations in a 1752 essay on fluid dynamics.

The Cauchy–Riemann equations turn out to have far-reaching implications about
the relationships between an analytic function and its real and imaginary parts. Such
relationships make the study of analytic functions useful in physics, especially in the
field of harmonic analysis; section 7.5 will illustrate a small portion of this real-world
application. For the moment, we simply practice verifying that the Cauchy–Riemann
equations are satisfied for given examples of analytic functions.

Example 7.2.6 We verify the conclusion of the Cauchy–Riemann theorem at every point in C for
the analytic function f (z) = z4 = (x + iy)4.

First note that f (z) = z4 is analytic (that is, differentiable at every point in C),
and f ′(z) = 4z3 by the power rule from theorem 7.2.2. Expanding the expression
f (x+ iy)4, the function f (z) has real part u(x, y) = x4− 6x2y2+ y4 and imaginary
part v(x, y) = 4x3y − 4xy3. Now compute the partial derivatives of u and v at an
arbitrary point z in C:

ux = 4x3 − 12xy2

uy = −12x2y + 4y3
vy = 4x3 − 12xy2

vx = 12x2y − 4y3.

Notice that both u(x, y) and v(x, y) are continuous, as are their partial derivatives
because they are polynomials in x and y. Also, ux = vy and uy = −vx, and so the
Cauchy–Riemann equations are satisfied.

■

Question 7.2.5 Following the technique used in example 7.2.6, verify the conclusion of the
Cauchy–Riemann theorem for the following analytic functions.

(a) f (z) = z5 (b) g(z) = 2z5 − iz3

■

The Cauchy–Riemann theorem can also be used to confirm that a given complex
function is not differentiable. In particular, f (z) cannot be differentiable whenever the
partial derivatives of the real and imaginary parts of f do not satisfy the Cauchy–
Riemann equations. Consider the following example.

Example 7.2.7 We use the Cauchy–Riemann theorem to prove that the conjugate function f (z) = z
is not analytic.

Proof The function f (z) = z is f (x+ iy) = x− iy, and therefore has real part u(x, y) = x
and imaginary part v(x, y) = −y. The corresponding partial derivatives are ux = 1,
uy = 0, vx = 0, and vy = −1. Even though uy = −vx = 0, the Cauchy–Riemann
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equations are not satisfied at any point z ∈ C because ux = 1 	= −1= vy. Therefore
f (z) = z cannot be analytic at any z ∈ C.

■

The analytic functions we have thus far studied have all been complex polynomials
(such as the functions f (z) = z5 and g(z) = 2z5 − iz3 in question 7.2.5). As you might
expect, there are many other types of analytic functions that play a prominent role in
the study of complex analysis. Among the most important is the complex exponential
f (z) = ez. This function arises quite naturally in many applications of complex
analysis, much as its real counterpart ex often arises in applications of real analysis.
The following definition of the exponential function is based on Euler’s formula
eiy = cos y + i sin y.

Definition 7.2.3 For every z ∈ C, we define ez = ex+iy = exeiy = ex(cos y+ i sin y). Therefore, the
real part of ez is u(x, y) = ex cos y and the imaginary part is v(x, y) = ex sin y.

When considering a new complex function, mathematicians often ask if it satisfies
certain desirable properties. In this context, we are immediately led to ask if f (z) = ez

is analytic on its domain C. The Cauchy–Riemann theorem will confirm the fact that
the exponential function is analytic, as stated in the next theorem.

Theorem 7.2.4 The exponential function f (z) = ez is analytic.

Proof Definition 7.2.3 identifies the real and imaginary parts of f (z) = ez as u(x, y) =
ex cos y and v(x, y) = ex sin y. These functions are continuous and turn out to have
continuous partial derivatives at any point (x, y) in the sense of definition 7.1.9 in
section 7.1. The derivatives are ux = ex cos y, uy = −ex sin y, vy = ex cos y, and
vx = ex sin y. Because ux = vy and uy = −vx, the Cauchy–Riemann equations are
satisfied. Therefore the complex exponential function f (z) = ez is differentiable
for every z ∈ C; in other words f (z) = ez is entire.

■

Question 7.2.6 Prove that f (z) = ez has derivative f ′(z) = ez using the definition of the derivative
along with the facts that ez+
z = eze
z and

lim

z→0

e
z − 1


z
= 1.

■

With this understanding of the complex exponential function in hand, we consider
the definition of its inverse function. Just as for real-valued functions discussed in
section 4.2, a complex function g is an inverse function of a complex function f if
w = f (z) whenever z = g(w). Equivalently, these conditions mean g(f (z)) = z for all
z in the domain of f and w = f (g(w)) for all w in the range of f . Any complete study
of calculus includes the fact that the inverse of the real exponential function f (x) = ex

is the natural logarithm function g(x) = ln(x).
The complex exponential function f (z) = ez has an inverse function g(z) satisfying

z = g(w) whenever w = ez. As in the real-valued situation, the function g is called
the logarithm function. If we allow the logarithm function to be multiple-valued,
then its definition is in terms of the multiple-valued argument function arg(z) = θ ,
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where θ is any polar angle satisfying z = reiθ . If, however, we insist on the logarithm
function being single-valued, then its definition must be chosen to be in terms of a
single-valued argument function, such as the principal branch given in definition 7.1.7
of section 7.1: Arg(z) = θ is the unique polar angle satisfying z = reiθ with−π < θ =
Arg(z) ≤ π . The next definition describes both of these complex logarithm functions
log(z) and Log(z).

Definition 7.2.4 If z 	= 0 is a complex number, then

• log(z) = ln |z| + i arg(z) is the multiple-valued complex logarithm function;
• Log(z) = ln |z| + iArg(z) is the single-valued complex logarithm function.

The next example helps clarify the definition through several computations.

Example 7.2.8 We determine the value of the complex logarithm(s) of 2+ 2i and −4i.
For 2+ 2i, we observe that |2+ 2i| = √8 = 2

√
2, that Arg(2+ 2i) = π/4,

and that arg(2+ 2i) = π/4+ 2nπ for n ∈ Z. Thus, we have:

Log(2+2i)= ln(2
√

2)+ i
π

4
and log(2+2i)= ln(2

√
2)+ i

[π

4
+ 2nπ

]
for n ∈ Z.

For −4i, we observe that | − 4i| = 4, that Arg(−4i) = −π/2, and that
arg(−4i) = −π/2+ 2nπ for n ∈ Z. Thus, we have:

Log(−4i) = ln 4− i
π

2
and log(−4i) = ln 4+ i

[
−π

2
+ 2nπ

]
for n ∈ Z.

■

Question 7.2.7 Compute the value of Log(z) and log(z) for each complex number.

(a) z = −4
(b) z = 2

√
3+ 2i

(c) z = 3ei(π/6)

(d) z = 2ei(11π/6)

■

In example 7.2.8 and question 7.2.7, the value of Log(z) for z 	= 0 is just one of
the values identified by the multiple-valued function log z, as Log(z) has an imaginary
part in the range (−π, π ]. To describe the fact that the function Log(z) is one choice
for the output value of the multiple-valued function log z, mathematicians refer to
Log(z) as the principal branch of the logarithm function. This label distinguishes it as
the single-valued logarithm function that arises from the principal range (−π, π ] of
the polar angle Arg(z). In part, our interest in the logarithm function is based on its
relationship with the complex exponential function. The following theorem confirms
that Log(z) serves as an inverse function for ez.

Theorem 7.2.5 The complex logarithm Log(z) is an inverse function of ez.

Proof The theorem follows by showing that eLog(z) and Log(ez) both equal z. For the first
composition,

eLog(z) = eln |z|+iArg(z) = eln |z|eiArg(z) = |z|eiArg(z) = z.
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The second calculation uses two identities: ln |ez| = Re(z) and Arg(ez) =
Im(z). The proofs of these identities are left for the exercises at the end of this
section (see exercises 65 and 66). Then the second calculation follows:

Log(ez) = ln |ez| + iArg(ez) = Re(z)+ iIm(z) = z.

The single-valued function g(z) = Log(z) therefore serves as the inverse function
of f (z) = ez.

■

The single-valued function Log(z) is not a continuous function; two points close
to each other but on opposite sides of the negative real axis will not have logarithm
values that are close (the point with positive imaginary part will have a corresponding
functional imaginary part near π , while the one with negative imaginary part will have
a functional imaginary part near−π). For examples of complex points close to z = −1,
if ε is a small positive number, then Log(−1 + iε) = √1+ ε2 + iArg(−1 + iε), but
Log(−1− iε) = √1+ ε2 + iArg(−1− iε), and these functional imaginary parts are
far apart. To work with a logarithm function that is continuous, complex analysts often
restrict the domain of f (z) = Log(z) to {z : −π < Arg(z) < π}. This function will not
only be continuous in the sense that nearby complex points will have nearby function
values, but this restricted function also turns out to be analytic across its domain;
several exercises at the end of this section discuss the differentiability of this restricted
function.

The function f (z) = Log(z) having restricted domain {z : −π < Arg(z) < π} is
sometimes said to have a “branch cut,” a reference to the fact that points in C along the
negative real axis have been “cut out of” the domain. Whenever complex analysts talk
about such functions as differentiable, it is always assumed that a branch cut has been
taken. The negative real axis is often called the “principal branch cut” for the logarithm
function, since it corresponds to the single-valued branch of log z that is sometimes
called the principal branch.

As in real analysis, a well-defined natural logarithm function enables us to
rigorously define the expression zw when z and w are any complex numbers. Thus
far, we have only considered rational powers, so this is a significant step forward in
developing an understanding of exponentiation for complex numbers. Consider the
following definition.

Definition 7.2.5 For z, w ∈ C, define zw = ew log z.

As we should expect and demand, definition 7.2.5 for zw agrees with our previous
definition of zw when w = n ∈ Z is an integer power or when w = 1/n for n ∈ Z is a
fractional power. The following example is a specific illustration of this claim.

Example 7.2.9 We determine the three cube roots of 1+ i.
The use of definition 7.2.5 in this case depends on knowing the value of

log(1+ i). Here, |1+ i| = √2 and arg(1+ i) = π/4+ 2kπ for k ∈ Z. Applying
the definition of exponentiation for complex numbers,

(1+ i)1/3 = e(1/3)·log(1+i) = e(1/3)[ln(
√

2)+i(π/4+2kπ)]

= eln( 6√2)ei(π/12+2kπ/3) = 6√
2ei(π/12+2kπ/3), where k ∈ Z.
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Three of these polar angles are in the principal range: π/12; π/12+2π/3= 3π/4;
and π/12− 2π/3 = −7π/12. We note that this approach results in the same three
values obtained in example 7.1.6 from section 7.1, which worked with the polar
representation of 1+ i.

■

In addition to agreeing with known exponentiation results for rational powers,
definition 7.2.5 can be used to calculate new and interesting results for complex
exponentials. As stated in the introduction to this chapter, Euler was the first
mathematician to observe that the expression ii is real-valued and, in fact, assumes
infinitely many distinct real numbers. Calculations using definition 7.2.5 confirm
Euler’s insightful observation.

Example 7.2.10 We evaluate the expression ii in rectangular form.
To use definition 7.2.5, first find log(i), which is calculated from the facts that

|i| = 1 and arg(i) = π/2+ 2kπ for k ∈ Z. Then

ii = ei log i = ei[ln |i|+i arg(i)] = ei[0+i(π/2+2kπ)] = e−(π/2+2kπ), where k ∈ Z.

Therefore ii is equal to (countably) infinite distinct values. Furthermore, because
there are no imaginary components in this final expression, these values are always
real!

■

Question 7.2.8 Evaluate each expression in rectangular form using the appropriate definition.

(a) e3−iπ

(b) log(1+ i
√

3)
(c) Log(1+ i

√
3)

(d) (−2)i

■

We end this section with a final look at an arbitrary monomial f (z) = zn. As stated
in theorem 7.2.2 and proven in example 7.2.4, any monomial f (z) = zn with a positive
integer power n ∈ N is differentiable at every z ∈ C and has derivative f ′(z) = nzn−1.
Therefore, according to the Cauchy–Riemann theorem, the real and imaginary parts
of f (z) = zn (which are continuous along with the first partial derivatives) satisfy
the Cauchy–Riemann equations. We verify this last observation in the following
example.

Example 7.2.11 Through direct calculation, we verify that the real and imaginary parts of the
analytic function f (z) = zn satisfy the Cauchy–Riemann equations for every
n ∈ N.

The calculations use the greatest integer function (denoted by "x#) to index the
sums that result from the expansion of f (x + iy) = (x + iy)n. Expand f (x + iy) =
(x + iy)n = u(x, y)+ iv(x, y) using the binomial theorem from section 5.2:

u(x, y)=
"n/2#∑
k=0

(−1)kn!xn−2ky2k

(2k)!(n− 2k)! and v(x, y)=
"(n+1)/2#−1∑

k=0

(−1)kn!xn−2k−1y2k+1

(2k + 1)!(n− 2k − 1)! .
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Now compute the partial derivative of ux(x, y):

ux =
"(n+1)/2#−1∑

k=0

(−1)kn!(n− 2k)xn−2k−1y2k

(2k)!(n− 2k)! =
"(n+1)/2#−1∑

k=0

(−1)kn!xn−2k−1y2k

(2k)!(n− 2k − 1)! .

Similarly, the partial derivative with respect to y is

vy =
"(n+1)/2#−1∑

k=0

(−1)kn!xn−2k−1(2k + 1)y2k

(2k + 1)!(n− 2k − 1)! =
"(n+1)/2#−1∑

k=0

(−1)kn!xn−2k−1y2k

(2k)!(n− 2k − 1)! .

As we can see, ux = vy for every (x, y). Similar computations yield the equality
uy = −vx for every (x, y), and so the Cauchy–Riemann equations hold for the
analytic function f (z) = zn, where n ∈ N.

■

7.2.1 Reading Questions for Section 7.2

1. Define and give an example of the limit lim
z→0

f (z) = L.

2. Discuss the role that different path approaches play in computing the limit of
a complex function.

3. State theorem 7.2.1. Why is this result interesting?

4. In this section, what motivates a consideration of only those limits that have
z approaching the origin?

5. Define the derivative f ′(z) for a complex function f (z).
6. Define and give an example of a function f (z) that is analytic at a given

point z0 ∈ C.
7. Give an example of a function that is not analytic at a point z0 ∈ C.
8. State theorem 7.2.2 and differentiate the complex function f (z) =

(4+ 3i)e(z2+i)(3iz3+2z).

9. State the Cauchy–Riemann theorem. What are the Cauchy–Riemann equa-
tions?

10. Define ez, Log(z), and log(z). What is the relationship among these three
functions?

11. Express e3+4i, Log(3+ 4i), and log(3+ 4i) in rectangular form.

12. Define zw for complex numbers z, w ∈ C. Give an example of an expression
zw in rectangular form, where w is not real.

7.2.2 Exercises for Section 7.2

In exercises 1–6, evaluate each limit expressing the solution in rectangular form.

1. lim
z→0

(3+ i)(z − i)+ 2+ 2i

2. lim
z→0

2z3 + 4z2 + 8z + 16

3. lim
z→0

(4− i)ez

4. lim
z→0

i(z − 7e3z−i)

5. lim
z→0

Log(z + i)

6. lim
z→0

zz
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In exercises 7–12, prove each limit using the formal definition.

7. lim
z→0

iz + i = i

8. lim
z→0

(3+ i)(z − i) = 1− 3i

9. lim
z→0

(1+ i)z + (3+ 2i) = 3+ 2i

10. lim
z→0

z2 + 1− i = 1− i

11. lim
z→0

1

z + 1
= 1

12. lim
z→0

x2

z
= 0

Hint: 0 ≤ x2 ≤ x2 + y2.

In exercises 13–20, prove each mathematical statement about limits.

13. The property that limits are unique from theorem 7.2.1.
Hint: Assume there exist two limits L and M and prove that L = M.

14. The limit of a constant rule from theorem 7.2.1.
Hint: Use the definition of the limit with any δ > 0.

15. The limit of a scalar multiple rule from theorem 7.2.1.
Hint: Use the definition of the limit with δ = ε/|c| for a given ε > 0.

16. The limit of a sum rule from theorem 7.2.1.
Hint: Given ε > 0, apply the definition of the limit to each of f (z) and g(z)
for ε/2 and let δ = min{δf

(
ε
2

)
, δg

(
ε
2

)}.
17. The limit of a difference rule from theorem 7.2.1.

18. The limit of a square rule: if limz→0 f = L, then limz→0 f 2 = L2.

19. The limit of a product rule from theorem 7.2.1.

20. The limit of a quotient rule from theorem 7.2.1.

In exercises 21–26, use the definition to compute the derivative of each function.

21. f (z) = 3z + 4i

22. g(z) = 5z2 + 1

23. h(z) = (3z + i)2

24. p(z) = 1

z

25. q(z) = i

z + 2i
26. r(z) = √z

In exercises 27–36, use the differentiation rules from theorem 7.2.2 to compute the
derivative f ′(z) of the following functions.

27. f (z) = 5z2 + 1+ i

28. f (z) = 4iz4 − 3z2 + 5iz − 10

29. f (z) = (3z + i)2

30. f (z) = (2− i)(z4 − iz2)3

31. f (z) = iz2 + 2

z3 + 2i

32. f (z) = √4z4 + iz3

33. f (z) = ez2

34. f (z) = 3e5iz(3z4 − 2z)

35. f (z) = 2iz

Hint: iz = ez log i

36. f (z) = iz
√

ez2

In exercises 37–44, prove each mathematical statement about derivatives.

37. The derivative of a (single-valued) analytic function is unique.
38. The derivative of a constant rule from theorem 7.2.2.
39. The derivative of a scalar multiple rule from theorem 7.2.2.
40. The derivative of a sum rule from theorem 7.2.2.
41. The derivative of a difference rule from theorem 7.2.2.
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42. For any constant w ∈ C, the derivative of f (z) = zw is f ′(z) = wzw−1.
43. The derivative of f (z) = eg(z) is f ′(z) = g′(z)eg(z) for any (single-valued)

analytic function g(z).
44. If f (z) is analytic and f (z) = f (−z), then f ′(z) = −f ′(−z).

In exercises 45–50, verify that the Cauchy–Riemann equations are satisfied for each
analytic function f (z).

45. f (z) = z + i
46. f (z) = z2 + z
47. f (z) = (3z + i)2

48. f (z) = e2z

49. f (z) = z + ez

50. f (z) = zez

In exercises 51–64, evaluate each expression in rectangular form using the appropriate
definition.

51.
(
e2−3i

)2
52. e(2−3i)2

53. Log(2
√

3− 2i)
54. log(2

√
3− 2i)

55. e2+i log(−4+ 4i)
56. e2+iLog(−4+ 4i)
57. eLog(−4+4i)

58. Log(e−4+4i)
59. (5− 2i)ei·Log(i)

60. ei·Log(−4+4i)

61. 2i

62. (−1)1+i

63. (1+ i)1+i

64. 3
√−3i

In exercises 65–67, prove each mathematical statement about the complex exponential
function.

65. For every z ∈ C, |ez| = eRe(z).
Note: This result was used in the proof of theorem 7.2.5.

66. For every z ∈ C, Arg(ez) = Im(z) (because of the polar representation of ez).
Note: This result was used in the proof of theorem 7.2.5.

67. For every z ∈ C, (ez) = e(z).

In exercises 68–70, prove each mathematical statement, and so develop a proof that
the derivative of Log(z) is 1/z. In these problems, we are working with the function
f (z) = Log(z) having domain restricted to the set {z : −π < Arg(z) < π} (where the
principal branch cut of the nonpositive real axis has been removed).

68. For any nonzero z = x + iy ∈ C with −π < Arg(z) < π , we have

Arg(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arctan
( y

x

)
if x > 0

π + arctan
( y

x

)
if x < 0 and y > 0

−π + arctan
( y

x

)
if x < 0 and y < 0

π/2 if x = 0 and y > 0
−π/2 if x = 0 and y < 0

69. The partial derivatives of v(x, y) = Arg(x + iy) are vx = −y/(x2 + y2) and
vy = x/(x2 + y2).
Hint: Use the piecewise expression for Arg(z) given in exercise 68.

70. The derivative of f (z) = Log(z) is f ′(z) = 1
z .

Hint: Use the partial derivatives from exercise 69 and the fact that for analytic
functions f (z) = u(x, y)+ iv(x, y) the derivative is f ′(z) = ux + ivx.



Chapter 7 ■ Complex Analysis 559

7.3 Power Series Representations of Analytic Functions

The last section defined complex analytic functions as being differentiable at every
point z ∈ C. We learned that all complex polynomials are analytic and that the complex
exponential function f (z) = ez is also analytic. This section studies power series
representations of functions analytic on a disk S = {z : |z− c| < R} having fixed center
c ∈ C and radius R ∈ C. These representations are important mathematical objects that,
among other things, show how to define complex versions of trigonometric functions.

We will see that the power series for a function f (z) analytic on a disk is often
expressable in the same algebraic form as the power series for the corresponding real-
valued function f (x). For example, the power series for the real-valued exponential
function is ex =∑∞n=0 xn/n!; this section will soon prove that the power series for the
complex exponential function f (z) = ez is ez =∑∞n=0 zn/n!. Such natural extensions
from real power series to complex ones provide important guidance and motivation
in deciding how to define many complex functions, and these extensions often result
in complex functions that share many well-understood properties of their real-valued
counterparts.

Complex power series are important for other reasons as well. For example, they
provide a type of representation that is valid for all analytic functions. Mathematicians
have proven a variety of “representation theorems,” which characterize a class of
functions in terms of some mathematical object such as an infinite power series. Repre-
sentation theorems are extremely useful in advanced complex analysis and allow math-
ematicians to understand powerful and general characteristics of all the functions in the
given category. Mathematicians have identified representations for many types of com-
plex functions, including “meromorphic,” “harmonic,” and “subharmonic” functions,
but a general theory of these representations is beyond the scope of this book (they gen-
erally require an understanding of complex integration). Rather, this setting provides
only a taste of the general theory as it studies complex functions with convergent power
series representations and considers several important examples of such functions.

Any discussion of representing analytic functions as complex power series must
consider the issues of convergent and divergent power series. It would be foolhardy
to try to identify a well-defined complex function as an infinite series that has no
sensible values to which it converges. Roughly speaking, a power series converges
if the infinite sum at a given domain value can be identified with a finite number,
and a power series diverges if it cannot. While this rough description is sufficient for
developing an intuitive understanding of infinite sums, it does not develop a precise
mathematical analysis; this section articulates a careful rigorous definition of power
series convergence.As for real power series, convergence follows from a corresponding
convergence of the sequence of partial sums. We must therefore describe what it means
for a complex sequence to converge before defining what it means for a complex power
series to converge.

7.3.1 Complex Sequences

Asequence is an infinite list of numbers; in a sense that emphasizes structure, a sequence
is a function whose domain is the set of natural numbers N. For a complex sequence,
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every element of the sequence (that is, every element in the range) is a complex number.
Complex sequences are often denoted by {zn}∞n=1. The indices are often omitted for
brevity’s sake.

Example 7.3.1 We state two examples of complex sequences.

• {(1+ i)/n}∞n=1 = {1+ i, 1
2 + 1

2 i, 1
3 + 1

3 i, . . .}
• {in} = {i,−1,−i, 1, i,−1, . . .}

■

These two simple examples already indicate that complex sequences can exhibit
very different behaviors when compared. We intuitively recognize that the first
sequence in example 7.3.1 is approaching 0 and should be identified as a convergent
sequence. In contrast, the second sequence keeps hopping around the complex plane
on the unit circle and should thus be identified as a divergent sequence. The following
definition makes these notions precise.

Definition 7.3.1 A sequence of complex numbers {zn}∞n=1 = {z1, z2, z3, . . .} converges to a limit
L ∈ C if for every ε > 0, there exists N > 0 such that |zn − L| < ε whenever
n ≥ N. In this case, we write lim

n→∞ zn = L. We note that N may depend on ε.

A sequence that does not converge is called divergent.

This definition for complex sequences closely mirrors the definition for a
convergent sequence of real numbers. It is thereby important to keep in mind that
the values (for zn and L) and the operations (taking the difference and the absolute
value) are complex numbers and operations, not real ones. Intuitively, this definition
says that a sequence of complex numbers converges to a limit L when every term far
enough along the sequence (that is, every term past some N th term) is close to L (that
is, within an arbitrary small distance ε). The following examples illustrate how the
definition works in practice.

Example 7.3.2 We use the definition of a convergent sequence to prove the sequence of complex
numbers {

1

(3+ 4i)n

}∞
n=1

converges to 0; that is, we prove

lim
n→∞

1

(3+ 4i)n
= 0.

Proof Let ε > 0 be a given small value, and choose

N = ln(1/ε)

ln(5)
.

Then, whenever n > N , we have

|zn − L| =
∣∣∣ 1

(3+ 4i)n
− 0

∣∣∣ = ∣∣∣ 1

3+ 4i

∣∣∣n = ( 1√
32 + 42

)n =
(1

5

)n
<
(1

5

)N = ε.
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The last equality follows from the choice of N , as N ln(5) = ln(1/ε) implies
ln(5N ) = ln(1/ε), and so 5N = 1/ε. We have therefore proven that the limit is
zero, since we have shown |zn − L| < ε whenever n > N .

■

An important strategy to employ when using the definition is to find a choice for the
positive number N that satisfies the right conditions. For most sequences, such as the
one in example 7.3.2, no readily apparent value for N will exist, and so the choice for N
may seem quite mysterious. As mentioned above, an effective strategy for identifying
N is to work with the expression |zn − L|, simplifying it as much as possible and
comparing it to the same term with the smaller (though yet undetermined) N replacing
n. Set this expression in N equal to ε and solve for N to obtain an appropriate choice
of N . The next example more fully illustrates this strategy.

Example 7.3.3 We use the definition of a convergent sequence to prove that

lim
n→∞

n+ i

n− i
= 1.

Proof Let ε > 0 be given and employ the strategy just described to identify a choice for
N . We have

|zn − L| =
∣∣∣n+ i

n− i
− 1

∣∣∣ = ∣∣∣n+ i − (n− i)

n− i

∣∣∣ = |2i|
|n− i| =

2√
n2 + 1

<
2√

n2 + 0
.

The last inequality follows from the simple fact that replacing a denominator with
a smaller value results in a larger fraction. Therefore,

|zn − L| < 2√
n2 + 0

= 2

n
<

2

N

whenever n > N (though N is as yet undetermined).
Now set 2/N = ε and solve to obtain N = 2/ε. With this choice of N ,

|zn − L| < ε whenever n > N , and so the limit is proven.
■

You can employ the same strategy to find an appropriate choice of positive number
N to many other examples. The next question allows you to practice this technique in
a straightforward way.

Question 7.3.1 Use the definition of a convergent sequence to prove each mathematical
statement.

(a) lim
n→∞

1

(9− 2i)n
= 0 (b) lim

n→∞
n

(2i)n
= 0

■

Using the definition can be a slow and tedious approach to computing the limit
of a sequence. Thankfully, the standard computational limit theorems so useful in real
analysis are also at our disposal for complex sequences. These results can be used to
find many limit values without reverting to the definition. The next theorem combines
many helpful statements into a single list.



562 A Transition to Advanced Mathematics

Theorem 7.3.1 Let c, L, M ∈ C and let both {zn} and {wn} be complex sequences that converge
to L and M respectively. Then the following hold.

• Limits are unique: If lim
n→∞ zn = L exists, then L is unique.

• Limit of a constant: lim
n→∞ c = c

• Limit of a scalar multiple: lim
n→∞ c · zn = c · L

• Limit of a sum: lim
n→∞ zn + wn = L +M

• Limit of a difference: lim
n→∞ zn − wn = L −M

• Limit of a product: lim
n→∞ zn · wn = L ·M

• Limit of a quotient: lim
n→∞

zn

wn
= L

M
, provided that M 	= 0

• Limit of a modulus: lim
n→∞ |zn| = |L|

• Limit of a conjugate: lim
n→∞ zn = L

The proofs for each of the statements in theorem 7.3.1 are essentially the same as
for real-valued sequences. Several of these proofs make essential use of the triangle
inequality for the complex absolute value; we recall from exercise 49 in section 7.1
that for every z, w ∈ C, we have |z+ w| ≤ |z| + |w|. To provide a flavor of the proofs
of these types of statements, we prove in the next example the limit of a sum rule
from theorem 7.3.1. The proofs of the others are similar (although some are a bit more
algebraically complicated); we leave the rest for the exercises and for your further
studies of mathematics.

Example 7.3.4 We use the definition of a convergent sequence to prove the limit of a sum rule;
that is, we prove if {zn} and {wn} are complex sequences that converge respectively
to L and M, then the sequence {zn + wn} converges to L +M.

Proof Let ε > 0 be given. Since {zn} converges to L, for the given positive value ε/2 there
exists a positive value Nz such that |wn −M| < ε/2 whenever n > Nz. Similarly,
there exists a positive value Nw such that |zn − L| < ε/2 whenever n > Nw.

Now show {zn + wn} satisfies the definition of a convergent sequence. For
the given ε > 0, define N = max{Nz, Nw}. Then whenever n > N , we have both
n > Nz and N > Nw. Applying the triangle inequality,

|(zn+wn)− (L+M)| = |(zn−L)+ (wn−M)| ≤ |zn−L|+ |wn−M| <
ε

2
+ ε

2
= ε.

The result follows from the definition of limit.
■

As we might hope and expect, theorem 7.3.1 can greatly simplify the process of
evaluating the limits of convergent sequences. Consider the following example and
question.

Example 7.3.5 We use theorem 7.3.1 to evaluate lim
n→∞

(n+ 1)+ (n+ 1)i

n− i
.
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Recall from example 7.3.3 that limn→∞ (n+ i)/(n− i) = 1. Using this result and
theorem 7.3.1,

lim
n→∞

(n+ 1)+ (n+ 1)i

n− i
= lim

n→∞
(n− i2)+ (ni + i)

n− i
= lim

n→∞
ni − i2 + n+ i

n− i

= lim
n→∞

ni − i2

n− i
+ n+ i

n− i
= lim

n→∞ i + n+ i

n− i
= i + 1.

■

Question 7.3.2 Determine the limit of each convergent sequence.

(a)

{
(7− 3i)(n+ 1)(1+ i)

n− 1

}
(b)

{
4n

5n+ i

} (c)

{
in2 + 3i

(2− 3i)n2

}
(d)

{
(1− i)n

n+ 1
+ i

n+ 1

}
■

There are many other theorems that help evaluate limits for complex sequences.
We highlight one of these results before moving on to a discussion of power
series.

Theorem 7.3.2 If lim
n→∞ |zn| = 0, then lim

n→∞ zn = 0.

The proof of this theorem uses the definition of the limit and follows quickly from
the fact that |zn − 0| = ||zn| − 0|. We leave further details to the reader. The next
example illustrates a typical application of this result.

Example 7.3.6 We use theorem 7.3.2 to evaluate lim
n→∞

1

(in)
.

First compute the modulus of the terms of this sequence as∣∣∣∣ 1

in

∣∣∣∣ =
√

02 +
(−1

n

)2

= 1

n
.

Recall that lim
n→∞ 1/n = 0. Therefore, by theorem 7.3.2, lim

n→∞ 1/(in) = 0.
■

The next question provides valuable experience applying theorem 7.3.2; it is an
often-applied and helpful result.

Question 7.3.3 Applying theorems 7.3.1 and 7.3.2 whenever necessary, determine the limit of
each convergent sequence.

(a) (1+ i)−n

(b)

{
1

(4+ i)n

} (c)

{
n

(2− 3i)n

}
(d)

{
(1+ i)−n + n+ i

n

}
■

With this understanding of complex sequences, we are now ready to discuss
convergence aspects of complex power series.



564 A Transition to Advanced Mathematics

7.3.2 Complex Power Series

A complex series is an infinite sum of complex-valued terms. Complex series are often

denoted by
∞∑

n=0
wn or simply

∑
wn (where the indexing implicitly begins at n = 0);

here each of terms wn is in C. To determine if the series
∑

wn converges, we form
the sequence of partial sums {Sk}∞k=0 = {w0 + w1 + w2 + · · · + wk}∞k=0. We say that
the series

∑
wn converges to a value L when the associated sequence of partial sums

{Sk}∞k=0 converges to L, and in this case we write
∑

wn = L. If a series does not
converge, then we say that the series diverges. The next example illustrates these
notions.

Example 7.3.7 We determine the convergence of the complex series
∞∑

n=0
i/2n.

The sequence of partial sums for this series is

S0 = i, S1 = i+ i

2
= 3i

2
, S2 = i+ i

2
+ i

4
= 7i

4
, S3 = i+ i

2
+ i

4
+ i

8
= 15i

8
, . . .

From the pattern apparent from these first few terms, the general partial sum term
and the associated limit are

Sn = i + i

2
+ i

4
+ · · · + i

2n
= (2n+1 − 1)i

2n
and lim

n→∞ Sn = lim
n→∞

[
2− 1

2n

]
i = (2− 0)i = 2i.

Therefore the series converges to 2i; we write
∑

i/2n = 2i.
■

Question 7.3.4 List the first eight terms of the sequence of partial sums for the complex series
∞∑

n=0
i. Using your result, find a general pattern for the terms in the sequence of

partial sums, and show that the series
∞∑

n=0
i diverges.

■

The rest of this section focuses on power series, which is a type of complex
series that contain variable expressions and can be used to represent analytic functions.
You can intuitively think of a power series as an infinite series extension of complex
polynomials (which are finite series since they have finite degree). The next definition
shows how complex power series have the same algebraic structure as real power series
studied in calculus.

Definition 7.3.2 A power series is an infinite series of the form

∞∑
n=0

an(z − c)n = a0 + a1(z − c)+ a2(z − c)2 + · · · + an(z − c)n + · · · .

For a complex power series, an ∈ C is the nth coefficient of the power series, z
is a complex variable, and c ∈ C is a fixed constant. Such a series is said to be
expanded about the point z = c.
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A power series can be intuitively thought of as an infinite polynomial in the sense
that the corresponding sequence of partial sums consists of complex polynomials.
Every complex polynomial forms a power series in its own right, having coefficients
an = 0 for every n greater than the degree of the polynomial.

When we substitute a given complex number into the variable z of a power series,
the resulting series expression may converge or it may diverge. The set of values z ∈ C

for which a given power series converges (as a limit of partial sums) is called the region
of convergence. In general, any given power series expanded about c ∈ C turns out to
converge for every complex number z in a disk S = {z : |z − c| < R}, where the real
number R is known as the radius of convergence. The series also turns out to diverge
for z outside of the disk and in the set {z : |z − c| > R}.

Theorem 7.3.3 For a given power series
∑

an(z−c)n, one of the following scenarios characterizes
the radius of convergence R:

• R = 0 and
∑

an(z − c)n converges at the single point z = c;

• R is a positive real number so that
∑

an(z − c)n converges for every complex
point in the disk S = {z : |z− c| < R}, and additionally may converge for a value
in the disk’s boundary {z : |z − c| = R};

• R = ∞ so that
∑

an(z − c)n converges for every z ∈ C.

The proof of theorem 7.3.3 is left for your later studies in complex analysis.
The result provides an elegant and simple characterization of the possible regions of
convergence for complex power series. Figure 7.7 illustrates the geometry for a region
of convergence when the radius of convergence R is a positive real number. The series
converges inside the disk, diverges outside the disk, and converges for all, some, or
none of the points on the boundary of the disk.

It might seem surprising that more-complicated sets in the complex plane cannot
serve as regions of convergence; and yet theorem 7.3.3 guarantees that only a point, a
disk, or the entire plane can act as regions of convergence. For each z0 ∈ C for which
the power series

∑
an(z− c)n converges, we denote the corresponding series value by

f (z0) =∑ an(z0 − c)n. In this way a power series defines a function whose domain is
the set of complex numbers for which the series converges. Those power series having
an infinite radius of convergence R = +∞ are called entire. An entire power series
has a domain that consists of the entire complex plane C.

Figure 7.7 A region of
convergence with a positive

radius of convergence R
R

i

c

R
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Example 7.3.8 Every complex polynomial is a power series with only a finite number of terms
and converges for every z ∈ C. Thus, every complex polynomial is entire.

In contrast, the power series
∞∑

n=0

zn/2n converges for some, but not every,

complex number z ∈ C. For example, it converges for z = 1, since
∑∞

n=0 1/2n = 2.
But it diverges for z = 2, since

∑∞
n=0 2n/2n = ∑∞

n=0 1. Thus, this series is not
entire.

■

Theorem 7.3.3 has characterized the possibilities for the radius of convergence
R; we now turn our attention to the practical calculation of the value of R for a given
series. As was the case in calculus for the corresponding real-valued discussion, an
important concept leading to this calculation is the absolute convergence of a power
series.

Theorem 7.3.4 If
∑

zn is a complex series and the real-valued series
∑ |zn| converges, then

∑
zn

also converges. When
∑ |zn| converges, we say that

∑
zn converges absolutely.

Proof To prove the result, separate
∑

zn into its real and imaginary parts and then
apply the corresponding version of this result for real-valued power series. Since
a complex series converges exactly when the two series forming its real and
imaginary parts both converge (that is,

∑
zn =∑(xn + iyn) converges when both∑

xn and
∑

yn converge), absolute convergence of
∑

zn can be analyzed in terms
of absolute convergence of its real and imaginary parts.

Assume that
∑ |zn| converges. Since |zn| ≥ |xn| and |zn| ≥ |yn|, both

∑ |xn|
and

∑ |yn| converge by the (real-valued) comparison test. Since real-valued series
that converge absolutely always converge, both

∑
xn and

∑
yn are convergent

series. But then
∑

zn =∑ xn + i
∑

yn converges.
■

Theorem 7.3.4 shows that the convergence of the real-valued series
∑ |an(z− c)n|

guarantees the convergence of the corresponding complex power series
∑

an(z− c)n.
Therefore any applicable real-valued series convergence test familiar from calculus
may help determine absolute convergence of complex power series. The ratio test,
as described in the following theorem, is one such test that applies perfectly to the
complex power series setting.

Theorem 7.3.5 The ratio test For a given complex power series
∑

an(z − c)n having nonzero
radius of convergence R,

1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
whenever the limit exists. When the limit is equal to 0, then R =∞ and the power
series is entire.

The proof of the ratio test can be found in any standard calculus text; these details
are left to the reader. We focus on using the ratio test to determine the radius of
convergence for a given power series.
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Example 7.3.9 We employ the ratio test to prove that f (z) =
∞∑

n=0

zn/n! is entire.

For this series, an = 1/n!. Applying the ratio test, we calculate the limit to
determine the value for 1/R:

1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

(n+ 1)! ·
n!
1

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

n+ 1

∣∣∣∣ = lim
n→∞

1

n+ 1
= 0.

Therefore, R = ∞ and the series
∑

zn/n! is entire.
■

Question 7.3.5 For each power series, explicitly identify the coefficient an for the nth term and
determine the radius of convergence R.

(a)
∞∑

n=0

zn

n+ 3i

(b)
∞∑

n=0

n!zn

(3n+ i)(n+ 1)!

(c)
∞∑

n=0

in(z − i)n

(n+ 2)!
(d)

∞∑
n=0

(z − 2i)n

■

The real version of the power series considered in example 7.3.9 may be familiar
from previous studies in mathematics. The (real) series

∑
xn/n! is the Maclaurin

series for the function f (x) = ex, where x ∈ R; we have f (x) = ex =
∑

xn/n!.
Mathematicians are naturally interested in the complex power series

∑
zn/n! to

determine its connection to the exponential function ez. We will soon see that
ez =

∑
zn/n! for every z ∈ C. Example 7.3.9 shows that

∑
zn/n! is entire, and

so the function f (z) =
∑

zn/n! is defined for all z ∈ C. The following theorem
characterizes the derivative of any complex power series, taking an important first
step in understanding the analytic properties of a given power series.

Theorem 7.3.6 A power series f (z) =
∞∑

n=0
an(z − c)n with radius of convergence R is analytic in

the disk S = {z : |z| < R}. The derivative of this series is f ′(z) =
∞∑

n=1
nan(z− c)n−1,

and this derivative f ′(z) is also analytic with radius of convergence R. In this way,
the power series f (z) is differentiable any number of times, and each derivative
has the same radius of convergence.

Proof We prove that the derivative of f (z) =
∞∑

n=0
an(z− c)n is f ′(z) =

∞∑
n=1

nan(z− c)n−1.

The proof that the radius of convergence for f ′ is the same as the radius of
convergence for f is developed in question 7.3.6 immediately following this
proof.

We first assume that c = 0 (the proof for other values of c would then follow
from a translation of the function to g(z) = f (z + c)). We are therefore assuming
that z is a given point inside the disk of radius R centered at the origin, so that
|z| < R. The strategy of this proof is to examine the distance between the series



568 A Transition to Advanced Mathematics

expression for f ′(z) given above and the difference quotient from the definition of
the derivative. We will show that this distance approaches 0 as 
z approaches 0,

which will imply that the derivative equals the series f ′(z) =
∞∑

n=1
nanzn−1.

Substituting the series expansion for f (z) into the difference quotient and
expanding, we obtain the following equality.

f (z +
z)− f (z)


z
−
∞∑

n=1

nanzn−1 =
∞∑

n=1

an

(
(z +
z)n − zn


z
− nzn−1

)
.

For the moment we focus our attention on the nth term of the right-hand series; it
satisfies the following sequence of equalities and inequalities, where justification
for each algebraic step is listed.∣∣∣∣ (z+
z)n−zn


z
−nzn−1

∣∣∣∣ = ∣∣∣∣ n∑
k=2

C(n,k)zn−k
zk−1

∣∣∣∣ Binomial theorem.

≤
n∑

k=2
C(n,k)|z|n−k|
z|k−1 Triangle inequality.

<
n∑

k=2
C(n,k)|z|n−k|
z|

[
R−|z|

2

]k−2

As 
z→0,

we may assume |
z|< R−|z|
2

.

= |
z|
[

R−|z|
2

]−2 n∑
k=2

C(n,k)|z|n−k

[
R−|z|

2

]k

Algebra.

< |
z|
[

R−|z|
2

]−2 n∑
k=0

C(n,k)|z|n−k

[
R−|z|

2

]k

Adding more terms.

The final sum in this sequence is an expansion of a binomial; applying the Binomial
theorem (but in the opposite direction) and simplifying implies∣∣∣∣ (z+
z)n−zn


z
−zn−1

∣∣∣∣< |
z|
[

R−|z|
2

]−2[
|z|+ R−|z|

2

]n

= |
z|
[

R−|z|
2

]−2[R+|z|
2

]n

.

Putting it all together,∣∣∣∣∣ f (z+
z)−f (z)


z
−
∞∑

n=1

nanzn−1

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

an

(
(z+
z)n−zn


z
−nzn−1

)∣∣∣∣∣
< |
z|

[
R−|z|

2

]−2 ∞∑
n=1

|an|·
[

R+|z|
2

]n

.
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As 
z goes to 0, this last expression approaches 0, since z is fixed in the disk S
and the series on the right converges by the ratio test. As discussed above, this fact

proves f ′(z)=
∞∑

n=1
nanzn−1.

■

Question 7.3.6 Complete the proof of theorem 7.3.6 for c = 0, answering the following questions

and proving that if f (z) =
∞∑

n=0
anzn has a radius of convergence R, then f ′(z) =

∞∑
n=1

nanzn−1 also has radius of convergence R. The proof for power series with

c 	= 0 is essentially identical to the proof outlined here.

(a) Prove that if K ∈ C with |K|< 1, then lim
n→∞ nKn = 0. Hint: Use theorem 7.3.2.

(b) Let r ∈ R be a positive real number such that |z| < r < R. Use part (a) to
prove that there exists an N > 0 such that n|z|n−1 ≤ rn for all integers
n > N . Conclude that n|an||z|n−1 ≤ |an|rn for all n > N . Furthermore, since

r < R, we know that the series f (r) =
∞∑

n=0
anrn converges absolutely by the

ratio test.
■

According to theorem 7.3.6, every complex power series is analytic in the region
determined by its radius of convergence. As it turns out, the converse result is also
true; that is, every analytic function can be expressed as a complex power series.
This powerful and important result is obtained by investigating the Taylor series
representation of analytic functions. Consider the following result.

Theorem 7.3.7 Taylor’s theorem Every function f (z) analytic in the disk S = {z : |z− c| < R} can
be represented in terms of its Taylor series

f (z) = f (c)+ f ′(c)(z − c)+ f ′′(c)

2! (z − c)2 + · · · + f (n)(c)

n! (z − c)n + · · · ,

which converges to f (z) for every z ∈ S. In this formula, the notation f (n)(c) denotes
the nth derivative of f evaluated at c.

The statement of this theorem is identical in structure to the real analysis version
of Taylor’s theorem that can be found in just about any calculus text. However the
standard proof of theorem 7.3.7 relies on the “Cauchy integral formula” and is therefore
beyond the scope of our investigation; we leave the proof for your later studies of
complex analysis. Taylor’s theorem “closes the loop” on this section’s discussion of
power series representations of complex functions. Every function analytic in a disk
of radius R can be represented by a convergent power series, and every convergent
power series is analytic inside a disk with radius of convergence R. These facts
combine to form a representation theory for analytic functions. The next example
begins an exploration of complex functions represented or defined in terms of their
Taylor series.



570 A Transition to Advanced Mathematics

Example 7.3.10 We determine the power series representation of the complex function f (z) = ez.
Recall from theorem 7.2.4 in section 7.2 that the complex exponential function

is analytic (for every z ∈ C). Furthermore, in question 7.2.6 in section 7.2, you
showed that the derivative of f (z) = ez is f ′(z) = ez, and so f (n)(z) = ez for all
n ∈ N. Applying Taylor’s theorem to f (z) = ez to obtain the power series

∑
anzn

about c = 0,

an = f (n)(0)

n! = e0

n! =
1

n! , and so ez =
∞∑

n=0

zn

n! .

Finally, example 7.3.9 indicates that the
∑

zn/n! is entire, showing that its
representation for f (z) = ez is valid on all of C. Because, as in this case, entire
power series represent functions that are always analytic (for all z ∈ C), we often
call analytic functions entire.

■

Question 7.3.7 Use Taylor’s theorem to find the power series representation for the function
1/(1− z), expanded about c = 0. Then determine the radius of convergence for
the resulting power series expression.

■

We now consider complex trigonometric functions; recall that the real-valued
functions cos x and sin x have Taylor series

cos x =
∞∑

n=0

(−1)n x2n

(2n)! and sin x =
∞∑

n=0

(−1)n x2n+1

(2n+ 1)! .

Motivated by the fact that the complex exponential function agreed in algebraic
structure with its real-valued counterpart, we define the complex cosine and sine
functions as complex-valued generalizations of these familiar real power series. In
addition, the other four complex trigonometric functions are defined as the familiar
ratios of these two functions.

Definition 7.3.3 For z ∈ C,

cos z =
∞∑

n=0

(−1)n z2n

(2n)! and sin z =
∞∑

n=0

(−1)n z2n+1

(2n+ 1)! .

Furthermore, whenever the denominator is nonzero, we define

tan z = sin z

cos z
, cot z = cos z

sin z
, sec z = 1

cos z
, and csc z = 1

sin z
.

As you may recall from calculus, the other four real trigonometric functions can
also be represented as real Taylor series (in addition to this familiar definition in terms of
ratios).At this point you won’t be surprised to learn that the Taylor series representation
of the complex trigonometric functions is the same as for the real power series written
with a complex variable z. For example, the real and complex tangent functions are:

tan x = x + x3

3
+ 2x5

15
+ 17x7

315
+ · · · and tan z = z + z3

3
+ 2z5

15
+ 17z7

315
+ · · · .
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Whenever defining a new function, mathematicians seek to ascertain its basic
properties. When defined in terms of a power series, an initial question of interest is
to determine the function’s radius of convergence, and hence its domain. In this case,
the following question asks you to prove that the complex cosine and sine functions
are defined (converge) for every complex number.

Question 7.3.8 Use the ratio test to prove that both sin z and cos z are entire.
■

In addition to determining the radius of convergence, we might wonder about the
relationships among functions in light of their respective power series representations.
Indeed, many important algebraic properties of functions can be readily proven by
examining the features of corresponding power series representations. The following
example provides one such instance.

Example 7.3.11 We show that the exponential power series representation is consistent with Euler’s
formula: if z = it with t ∈ R, then eit = cos t + i sin t.

Example 7.3.10 showed that ez =
∑

zn/n!. Setting z = it,

ez = eit =
∞∑

n=0

(it)n

n! =
∞∑

n=0

intn

n! .

Since in = i if n = 1 mod 4, in = −1 if n = 2 mod 4, in = −i if n = 3 mod 4, and
in = 1 if n = 0 mod 4, this summation splits into even and odd terms based on n.
Reindexing, we obtain the desired formula

eit =
∞∑

n=0

intn

n! =
∞∑

n=0

(−1)n t2n

(2n)! + i
∞∑

n=0

(−1)n t2n+1

(2n+ 1)! = cos t + i sin t.

■

Question 7.3.9 Following the strategy illustrated in example 7.3.11, prove that Euler’s formula
holds for every z ∈ C; that is, prove that if z ∈ C, then eiz = cos z + i sin z.

■

The verification of Euler’s formula given in example 7.3.11 is based on the
composition of a complex power series (in particular, the power series ez =

∑
zn/n!)

with an analytic function (in this case, the function f (z) = it) to obtain a new power
series. After algebraic manipulation, we obtained Euler’s formula. We can employ the
same composition strategy when examining other complex power series and functions
to obtain further power series representations and identities. The following example
illustrates this point.

Example 7.3.12 We determine a power series representation for e−z2
.

We may compose the known power series representation for ez with the term
−z2, obtaining:

ez =
∞∑

n=0

zn

n! ⇒ e(−z2) =
∞∑

n=0

(−z2)n

n! =
∞∑

n=0

(−1)nz2n

n! .

■
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Question

7.3.10

Prove the following algebraic identities by composing the power series for ez with
iz and −iz and performing the indicated algebraic operations.

cos z = eiz + e−iz

2
and sin z = eiz − e−iz

2i
.

■

We note that many complex analysis textbooks define the complex trigonometric
functions cos z and sin z using the formulas in question 7.3.10. The formulas are easily
applied to evaluate the trigonometric functions at specific values of z ∈ C; for example,

cos i = ei2 + e−i2

2
= e−1 + e

2
and sin i = ei2 − e−i2

2i
= i(e− e−1)

2
.

Hence cos i is real and sin i is purely imaginary. Values for the other trigonometric
functions follow similarly; for example,

tan i = sin i

cos i
= i

e− e−1

e−1 + e
≈ −0.7616i.

There are many more enjoyable aspects to the study of complex power series.
For example, a remarkable theorem of Cauchy’s expresses the coefficients of an
analytic function’s power series in terms of a complex-valued integral (instead of
the nth derivative). Additionally, the results in this section may be applied to important
complex functions such as f (z) = Log(z) or the complex inverse trigonometric
functions. Hopefully this introduction to analytic functions has motivated you to
continue investigating them in your later studies.

7.3.3 Reading Questions for Section 7.3

1. Define and give an example of a complex sequence.
2. Define what it means for a sequence to converge or diverge and give an

example of each.
3. State theorem 7.3.1. How is this result helpful to a study of complex

sequences?
4. Give an example of a complex series and display its associated sequence of

partial sums.
5. Define what it means for a series

∑
zn to converge absolutely, converge, or

diverge.
6. Define and give an example of a power series. What is the corresponding

sequence of partial sums?
7. Define the radius of convergence for a given power series.
8. Define and give an example of an entire function.
9. State the ratio test. How is this result helpful for a study of complex power

series?
10. State theorem 7.3.6 and Taylor’s theorem. What does this pair of theorems say

about the relationship between analytic functions and complex power series
with positive radius of convergence?

11. State Euler’s formula.
12. Define the complex cosine and sine functions.
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7.3.4 Exercises for Section 7.3

In exercises 1–8, use the definition of a convergent sequence to prove each mathemat-
ical statement.

1. lim
n→∞

1

(4− 3i)n
= 0

2. lim
n→∞

9+ 2i

(4− 3i)n
= 0

3. lim
n→∞ 5i + 1

in
= 5i

4. lim
n→∞

2in

3n+ 1
= 2i

3
5. lim

n→∞ |e
in| = 1

6. lim
n→∞

n+ in

n
= 1

7. lim
n→∞Re Log

[
n+ i

n− i

]
= 0

8. lim
n→∞Arg

[
1

n
+ i

]
= π

2
Hint: Arg(x + iy) = arctan y/x

when −π/2 < Arg(z) < π/2

In exercises 9–18, determine the limit of each complex sequence, expressing your
answer in rectangular form.

9.

{
2n+ i

n

}∞
n=1

10.

{
1

(1+ 3i)n

}∞
n=1

11.

{
(4− i)(2n+ 1)

n− i

}∞
n=1

12.

{
1− [ 13 (1+ i)]n+1

1− 1
3 (1+ i)

}∞
n=1

13.

{
i
√

2n+ 4

n2 + 2n

}∞
n=1

14.

{
in2 − 2in+ i

n2 − 1

}∞
n=0

15.
{
(x + iy)n}∞

n=0 for |x + iy| < 1

16.
{
(3+ 2i)zn + (5− 2i)

}∞
n=0 for

|z| < 1

17.

{
1− zn+1

1− z

}∞
n=0

for |z| < 1

18. Prove lim
n→∞Log

[
i + 1

n

]
= i

π

2
.

Hint: Use exercise 8.

In exercises 19–28, prove each mathematical statement about complex sequences.

19. The limit of a complex sequence is unique; from theorem 7.3.1.
20. The limit of a constant sequence rule from theorem 7.3.1.
21. The limit of a scalar multiple of a sequence rule from theorem 7.3.1.
22. The limit of a difference of sequences rule from theorem 7.3.1.
23. The limit of a product of sequences rule from theorem 7.3.1.
24. The limit of a modulus rule from theorem 7.3.1.
25. There exists a sequence {zn} such that lim

n→∞ |zn| exists, but for which lim
n→∞ zn

does not exist.
26. The limit of a conjugate rule from theorem 7.3.1.
27. Theorem 7.3.2; if lim

n→∞ |zn| = 0, then lim
n→∞ zn = 0.

28. If {xn} is a real sequence with lim
n→∞ xn = L, then lim

n→∞ ei·xn = ei·L.

In exercises 29–36, explicitly identify the coefficient an for the nth term of the complex
power series and use the ratio test to determine the radius of convergence R.

29.
∞∑

n=0

zn

2n− i
30.

∞∑
n=0

n2zn

2n(3n+ i)
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31.
∞∑

n=0

(2i)nzn

n!

32.
∞∑

n=0

n!zn

(2i)n

33.
∞∑

n=0

(z − 2i)n

(6i)n

34.
∞∑

n=0

n(z − 2i)n

n+ i

35.
∞∑

n=0

(z + i)n

n!(5+ i)n

36.
∞∑

n=0

(z + i)n

(5+ i)n

In exercises 37–42, use Taylor’s theorem to determine a power series representation
for each complex function expanded about the given complex point c ∈ C. Note that

d

dz
Log z = 1

z

and that

f ′(z) = 1

1+ z2

for f (z) = arctan(z), the inverse function for tan(z).

37. f (z) = Log(z) about c = 1
38. f (z) = Log(z) about c = i
39. f (z) = 1

z about c = 1

40. f (z) = 1
z about c = i

41. f (z) = arctan(z) about c = 0
42. f (z) = √z about c = −1

In exercises 43–50, use known power series representations for analytic functions
to determine power series representations expanded about c = 0 for each complex
function.

43. f (z) = ie−z

44. f (z) = zez2

45. f (z) = ez + e−z

46. f (z) = 4+ 3i − cos z

47. f (z) = 5i cos(iz)

48. f (z) = cos
[

(3+i)z
1+z

]
49. f (z) = sin(iz/5)
50. f (z) = sin(iz/5)+ i cos z

In exercises 51–54, evaluate each expression, writing the answer in rectangular form.

52. sin(iπ)
53. cos(π + i)

54. cot(i)
55. sec(10i)

Exercises 55–58 consider the derivatives of the complex trigonometric functions.

55. Prove that the derivative of f (z) = cos z is f ′(z) = − sin z using the power
series representations from definition 7.3.3.

56. Prove that the derivative of g(z) = sin z is g′(z) = cos z using the power series
representations from definition 7.3.3.

57. Prove that the derivative of f (z) = cos z is f ′(z) = − sin z and the derivative
of g(z) = sin z is g′(z) = cos z using the ratio from question 7.3.10.

58. Differentiate the complex trigonometric functions tan z, cot z, sec z, and csc z
using the quotient rule and the derivatives from exercises 55–57.

In exercises 59–62, differentiate each function.

59. f (z) = cos(z2 + 1) sin2(5z3 + iz)
60. f (z) = eiz tan2(2z)

61. f (z) = sec(z3 + i) csc2(2iz2 + iz)
62. f (z) = cot6(iz)
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Exercises 63–64 consider the relationship between the complex cosine and sine
functions and the hyperbolic cosine and sine functions. Recall that for every real
value t,

cosh t = et + e−t

2
and sinh t = et − e−t

2
.

In exercises 63–64, prove each algebraic identity for z = x + iy ∈ C.

63. cos(x + iy) = cos x cosh y − i sin x sinh y
64. sin(x + iy) = sin x cosh y + i cos x sinh y

In exercises 65–66, prove each mathematical statement about series.

65. If n ∈ N and zk ∈ C, then

∣∣∣∣ n∑
k=1

zk

∣∣∣∣ ≤ n∑
k=1
|zk|. Hint: Use induction on n ∈ N.

66. If
∞∑

k=1
zk = L <∞, then

∣∣∣∣ ∞∑
k=1

zk

∣∣∣∣ ≤ ∞∑
k=1
|zk|.

Exercises 67–70 consider sequences that are defined based on iterations of a selected
complex function. Given a function f(z) and a complex point z0, a resulting iterated
sequence is {zn} = {f(zn-1)}, where n = 1, 2, 3, . . .. In 1918 the French mathematicians
Gaston Julia and Pierre Fatou determined that many of these sequences produce fractal
images. Following Julia and Fatou’s lead, we study iterations resulting from quadratic
complex functions of the form fc(z) = z2 + c where c ∈ C is constant.
In exercises 67–70, answer the following questions about fc(z).

67. Prove each statement about f0(z) = z2.

(a) If z0 ∈ C with |z0|< 1, then the sequence {zn} = {f0(zn−1)} converges
to L = 0.

(b) If z0 ∈ C with |z0| > 1, then the sequence {zn} = {f0(zn−1)} diverges
to L = +∞; that is, given any real value M > 0, there exists N ∈ N

such that n > N implies |zn| > M.
(c) If z0 ∈ C with |z0| = 1, then the sequence {zn} = {f0(zn−1)} either

oscillates around the unit circle in the complex plane or converges
to L = 1. Hint: Examine the polar representation of zn based on the
polar representation of z0.

68. Working with f0(z) = z2 and the results from exercise 67, prove that the set of
z0 ∈ C for which the sequence {zn} = {f0(zn−1)} does not diverge to infinity
is the closed unit disk D = {z : |z| ≤ 1}.

69. Consider f−2(z) = z2 − 2. Prove that the sequence {zn} = {f−2(zn−1)}
does not diverge to infinity for any z0 ∈ S, where S = {z : z ∈ R and
− 2 ≤ z ≤ 2}.

70. The functions f0 and f−2 considered in exercises 67–69 are the only functions
of the form fc(z) = z2+ c with a simple set of values z0 for which the sequence
{zn} = {f0(zn−1)} does not diverge to infinity. For every other c ∈ C, this set
is a “fractal,” which is a self-replicating set as defined for the Sierbinski
triangle in section 5.2. The determination of every element of these sets and
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their corresponding illustrations is impractical without the aid of a computer.
For this exercise, consider fi(z) = z2 + i and prove that z0 = 0, z0 = i, and
z0 = −i are in the set of values S for which the the sequence {zn} = {fi(zn−1)}
does not diverge to infinity.
Hint: Determine the sequence {zn} by direct computation.

7.4 Harmonic Functions

Real and complex differentiable functions have proven themselves important in
mathematicians’ efforts to model and understand the real world. Many applications
involve differentiable functions, since an application studying a functional quantity’s
change with respect to an independent variable will often involve the derivative. In
real-life situations involving multiple variables (and hence multivariate functions),
mathematicians have come to recognize that other categories of functions share a
similar importance, including those that are harmonic.

Harmonic functions arise naturally in many physical applications. Their study
began in the 1800s with Joseph Fourier’s investigations of temperatures and tempera-
ture change. In 1807, Fourier published his seminal article On the Propagation of Heat
in Solid Bodies, which developed a mathematical model for the physical behavior
of heat—a model in which harmonic functions serve as the fundamental entities for
describing temperature change. In addition, harmonic functions are useful in the study
of electromagnetism, aerodynamics, and fluid flow, in which they are used to reduce
two—and three—dimensional vector fields to single-variable functions; we explore
this type of application in section 7.5. In these settings, physicists and mathematicians
often refer to harmonic functions as “potential functions” and harmonic analysis (that
is, the study of harmonic functions) as “potential theory.”

Though their labels involve the same term, a harmonic function arises in a different
physical setting than an object that follows the familiar term harmonic motion—an
object in “harmonic motion” is behaving in an oscillating movement common in nature.
The pendulum problem in section 4.8 is an example of simple harmonic motion; the
differential equation describing the pendulum’s position u is d2u/dt2 + c2u = 0 for a
constant c. In contrast, harmonic functions satisfy Laplace’s equation uxx + uyy = 0.
They can also be described from a physical perspective as satisfying the maximum
principle. This principle asserts that a harmonic function u(x, y) defined on a two-
dimensional disk cannot have a maximum or minimum inside the disk unless u(x, y)
is a constant function. Therefore, the maximum and minimum must always occur on
the boundary.

The maximum principle makes harmonic functions useful when mathematically
modeling real-life settings. For example, suppose we are studying the temperature
u(x, y, t) of a point (x, y) on a circular griddle at time t. The griddle may cool or warm
in various ways, but as time goes on (that is, as time approaches infinity), the griddle’s
temperature becomes stable and approaches a limit u(x, y). This limit u(x, y) is called
the steady-state temperature. The steady-state temperature does not change over time
(mathematically, there is no dependence on time t as a result of the limiting process).
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In addition, the steady-state temperature at one point in the interior of the griddle cannot
be greater than any nearby point; if the temperature was greater at some point, then
(in the limiting process over time) the heat at that point would flow out to the other
nearby points resulting in a different steady-state distribution. Therefore the maximum
of the steady-state limit u(x, y) cannot occur in the interior of the griddle—exactly the
physical manifestation of the maximum principle for u(x, y). The function u(x, y) must
be harmonic!

Other physical quantities have harmonic steady-state values satisfying the
maximum principle. Another example is the vertical position of a drumhead membrane
stretched inside a circular frame whose edge may be bent out of the horizontal
plane. The steady-state position of such a membrane cannot be highest at any point on
the interior of the membrane; if the highest point were on the interior, then the lower
position of the surrounding points would collectively “pull” down the membrane from
this high point. The study of harmonic functions does not lead to only simple trivia
that might inform drum-design in some way. Instead, it has contributed to a better
understanding of a number of important elements of our modern lifestyle, such as
electromagnetic radiation and the corresponding development of radio, television, and
cell-phone technologies.

From these physical descriptions you might conjecture that a harmonic function’s
value on a circular boundary would completely determine the function’s behavior
at all the interior points of the corresponding disk. This conjecture is known as
the Dirichlet problem and is correct, provided the function u(x, y) satisfies certain
continuity properties. In short, a continuous function on the circular boundary will
have exactly one continuous extension into the interior that is harmonic. The proof
of this claim is an important element in the advanced study of harmonic analysis,
but is beyond the scope of this text and is left for later studies that include complex
integration.

Perhaps at this point you are convinced that the study of harmonic functions is
both important and mathematically interesting. We might now begin to ask several of
the many corresponding questions: How are these functions defined? What are some
examples of harmonic functions? What properties are satisfied by harmonic functions?
We devote the rest of this section to developing and exploring the answers to these
questions, and we begin with the definition of a harmonic function.

Definition 7.4.1 A function u(x, y) is harmonic in a disk S = {z : |z − c| < R} with a fixed center
c ∈ C and a positive radius R if both second partial derivatives of u(x, y) are
continuous in S and if u(x, y) satisfies Laplace’s equation at every point in S:

∂2u

∂x2
+ ∂2u

∂y2
= 0.

If S = C (that is, if R = ∞), then we say that u(x, y) is harmonic on the entire
plane C, or simply that the function is harmonic.

Laplace’s equation uxx + uyy = 0 was first isolated by the French mathematician
Pierre Simon Laplace while he was studying gravity and its relation to planetary motion.
As we can see from the definition, proving that a given function u(x, y) is harmonic
over a disk involves two main steps: verifying that u satisfies Laplace’s equation and
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verifying that both second partial derivatives uxx and uyy are continuous. The following
example illustrates this process.

Example 7.4.1 We prove that u(x, y) = 3x2 + 5x − 3y2 + 2 is harmonic (on the entire complex
plane).

We first compute the second partials for u(x, y). Differentiating u(x, y) with
respect to x, we obtain ux = 6x+5 and so uxx = 6; similarly, differentiating u(x, y)
with respect to y, we obtain uy =−6y and so uyy =−6. Since all constant functions
are continuous at every point on the plane, both partial derivatives uxx = 6 and
uyy = −6 are continuous. In addition, Laplace’s equation is satisfied at every point
on the plane since uxx + uyy = 6 + (−6) = 0. Therefore u(x, y) = 3x2 + 5x −
3y2 + 2 is harmonic.

■

If we extend the definition of continuity of a multivariate function f (x, y) to include
possibly the case that f is complex-valued, then a function does not have to be real-
valued to be harmonic. For example, if u(x, y) and v(x, y) are both harmonic, then so is
f (x, y) = u(x, y) + iv(x, y), since the sum of two continuous functions is continuous.
Among the more important results of this section is the theorem and proof that the
real and imaginary parts of every analytic function are harmonic, and so any complex
analytic function (such as a complex polynomial) is harmonic. The next example
illustrates the way that a complex polynomial satisfies the Laplacian.

Example 7.4.2 We prove that f (z) = z3 is harmonic.
First write f as a function f (x, y) of two variables x and y by setting

z = x + iy. Applying the binomial theorem from section 5.2 (or using a direct
computation),

f (x, y) = = f (x + iy) = (x + iy)3 = (x3 − 3xy2)+ i(3x2y − y3).

Computing both second partial derivatives,

fx = 3x2 − 3y2 + i6xy ⇒ fxx = 6x + i6y,

fy = −6xy + i(3x2 − 3y2) ⇒ fyy = −6x − i6y.

Every multivariate polynomial is continuous at every point on the plane, and so
both fxx and fyy are continuous everywhere. In addition, f (x, y) satisfies Laplace’s
equation because fxx + fyy = 6x + i6y+ (−6x − i6y) = 0. Therefore the analytic
function f (z) = z3 is harmonic on all of C.

■

The same strategy can be used to determine if any complex function f (z) is
harmonic at a point or on the plane: substitute z = x+ iy to write f (z) as the multivariate
function f (x, y), and then verify that f satisfies the properties of a harmonic function.
The next questions gives practice is working with both real and complex harmonic
functions.
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Question 7.4.1 Prove each function is harmonic on the given set.

(a) u(x, y) = x4 − 6x2y2 + y4 on C.
(b) u(x, y) = arctan

[ y
x

]
having domain equal to the disk with radius 1 and center

c = (1, 0). Hint: Recall that the derivative of f (t) = arctan t is f ′(t) = 1/(1+
t2).

(c) f (z) = z4 on C.
(d) f (z) = Log(z) defined on the disk with radius 1 and center c = 1.

■

The real and imaginary parts of every analytic function are harmonic. As we will
see in the proof of the following theorem, the Cauchy–Riemann equations play an
important role in verifying that every analytic function has this property.

Theorem 7.4.1 If f (z) = u(x, y)+ iv(x, y) is a complex function that is analytic on a disk S, then
the real part u(x, y) and the imaginary part v(x, y) are harmonic in S.

Proof Consider the second partial derivatives uxx, uyy, vxx, and vyy. It turns out
that complex differentiability implies continuity of these functions; since f is
differentiable at any point in S, it and the second partial derivatives are continuous
there.

Verify that u(x, y) satisfies Laplace’s equation. Since f is analytic in S, u
and v satisfy the Cauchy–Riemann equations in S: ux = vy and uy = −vx.
Differentiating each side of the first equation with respect to x gives uxx = vyx.
Similarly, differentiating each side of the second equation with respect to y gives
uyy = −vxy. Now apply an important result from multivariable calculus: if the
second partial derivatives of any multivariate function g are continuous, then
gyx = gxy (that is, mixed partial derivatives are equal to one another). Applying
this result to v at any point in the disk S,

uxx + uyy = vyx − vxy = vyx − vyx = 0.

The proof that v(x, y) satisfies Laplace’s equation is similar. Thus, both the real
part u(x, y) and the imaginary part v(x, y) are harmonic in S.

■

The proof of theorem 7.4.1 used in a key way the fact that u and v satisfy
the Cauchy–Riemann equations. It turns out that any pair of real-valued functions
satisfying the Cauchy–Riemann equations and having continuous second partials are
harmonic; we will next show that any single real-valued harmonic function can also
be thought of as the real part and/or the imaginary part of an analytic function. This
result might seem extraordinarily “natural”; since any given analytic function can be
“broken apart” to obtain harmonic functions, we might wonder if a given pair of real-
valued harmonic functions can be pieced together to obtain an analytic function. The
delightful fact is that they always can be, so long as the two harmonic functions are
paired correctly—one is called the “harmonic conjugate” of the other. In addition, up
to an arbitrary real constant, each given real-valued harmonic function has exactly
one harmonic conjugate; it’s a bit like a marriage made in heaven. When u is a given
real-valued harmonic function, we often denote its harmonic conjugate by v = u∗.
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The marriage of the two functions (adding them together as real and imaginary parts)
always forms an analytic function. This result is extremely important in applications;
it means that an analysis of real-valued harmonic functions (which arise in many
real-world situations) can be examined through an investigation of complex analytic
functions. The next theorem describes the details of this fact, which you can think of
as a partial converse to theorem 7.4.1.

Theorem 7.4.2 If the function u(x, y) is real-valued and harmonic in a disk S centered at z0 =
x0+ iy0, then there exists a function v(x, y) harmonic in S such that f (z)= u(x, y)+
iv(x, y) is analytic in S. Such a function v(x, y) is called the harmonic conjugate
of u(x,y) and is uniquely determined by u(x, y) up to an arbitrary real constant;
we write v(x, y) = u∗(x, y).

The proof of theorem 7.4.2 is constructive; it provides an algorithm for producing
the harmonic conjugate v = u∗ for a given harmonic function u. The algorithm is based
on the process of “partial integration.” We first discuss and illustrate this process and
then give the proof of theorem 7.4.2.

A real two-variable function f (x, y) can be integrated to obtain an antiderivative
with respect to either variable x or y. If we integrate f (x, y) with respect to x, then

the integral
∫

f (x, y) dx is calculated by treating the variable y as a “constant”

and antidifferentiating f with respect to x. The result is a real two-variable function

F(x, y) =
∫

f (x, y) dx that satisfies the partial differential equation

∂F

∂x
= ∂

∂x

[∫
f (x, y) dx

]
= f (x, y).

A parallel result holds when integrating f (x, y) with respect to y.
The function F(x, y) obtained from the partial integration process will contain an

addition of an arbitrary constant. Because the partial integration was with respect to
only one variable (and the other variable was held constant), this arbitrary constant is
actually a function in the variable treated as a constant. When integrating f (x, y) with
respect to x, the arbitrary constant is therefore a function of y, say C(y). Similarly,
integrating f (x, y) with respect to y results in an addition of a function C(x). The next
example illustrates this notion.

Example 7.4.3 We integrate f (x, y) = 5y cos(x + y2) with respect to each variable x and y.
First integrate with respect to x, obtaining

∫
5y cos(x+ y2) dx = 5y sin(x+

y2) + C(y). The constant of integration is a function of y. Now integrate with

respect to y, obtaining
∫

5y cos(x + y2) dy = 5/2 sin(x + y2)+ C(x).

■

Question 7.4.2 Integrate each function with respect to the variables x and y.

(a) x2 − y2 (b) x2ey

■

The partial integration process discussed in example 7.4.3 produces an indefinite
integral; the corresponding “definite partial integral” evaluates the indefinite integral at
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the given limits of integration. If F(x, y)=
∫

f (x, y) dx, then we define
∫ b

a
f (x, y) dx =

F(x, y)
∣∣x=b
x=a = F(b, y)− F(a, y). The next example illustrates the process.

Example 7.4.4 We evaluate
∫ π

0
5y cos(x + y2) dx.

The corresponding indefinite partial integral is
∫

5y cos(x + y2) dx =
5y sin(x + y2). Hence,

∫ π

0
5y cos(x + y2) dx = 5y sin(x + y2)

∣∣∣x=π

0
= 5y sin(π + y2)− 5y sin(y2).

■

Question 7.4.3 Evaluate each definite partial integral.

(a)
∫ 3

0
x2 − y2 dx

(b)
∫ 4

2
x2 − y2 dy

(c) u(x, y) =
∫ x

0
s2 − y2 ds

(d) v(x, y) =
∫ y

0
x2 − t2 dt

■

We are now ready to prove theorem 7.4.2; the proof gives a constructive algorithm
to produce the desired harmonic conjugate v(x, y) for a given harmonic function u(x, y).

Proof of theorem 7.4.2 Assume that u(x, y) is harmonic in a disk S centered at z0 = x0 + iy0.
Define f (z) = f (x + iy) = u(x, y)+ iv(x, y), where v = u∗ is defined as

v(x,y) =
∫ x

x0

−∂u(s,y)

∂y
ds +

∫ y

y0

∂u(x0,t)

∂x
dt =

∫ x

x0

−uy(s,y) ds +
∫ y

y0

ux(x0,t) dt.

The fact that u is harmonic (and hence that its second partial derivatives are
continuous) and properties of the integral turn out to make v and its second partial
derivatives continuous. We claim v(x,y) is a harmonic function in S for which
f is analytic on S. This statement would follow completely from the fact that u
and v together satisfy the Cauchy–Riemann equations in S—the Cauchy–Riemann
theorem would then guarantee that f is analytic on S, and theorem 7.4.1 would
prove the rest. We therefore need only verify that f =u+iv satisfies the Cauchy–
Riemann equations.

First compute the partial derivative vx, using the fundamental theorem of
calculus to simplify the resulting expression as follows

vx(x,y) = ∂

∂x

[∫ x

x0

−uy(s,y) ds +
∫ y

y0

ux(x0,t) dt

]
= −uy(x,y)+0 = −uy(x,y).
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Therefore vx(x,y)=−uy(x,y) for any (x,y)∈S, and one of the Cauchy–Riemann
equations is satisfied. For the other equation, calculate and simplify fy as follows:

fy = uy + ivy

= uy + i
∫ x

x0

−uyy(s,y) ds + iux(x0,y) Fundamental theorem on v(x,y).

= uy + i
∫ x

x0

uxx(s,y) ds + iux(x0,y) u(x,y) is harmonic, so uxx=−uyy.

= uy + i
[
ux(x,y)−ux(x0,y)

]
+ iux(x0,y) Fundamental theorem on ux(x,y).

= uy + iux Algebra cancellation.

Since the imaginary parts of fy=uy+ivy=uy+iux must be equal, we obtain the
other Cauchy–Riemann equation ux=vy. The result follows.

■

Every real-valued harmonic function u has a harmonic conjugate v. We can imple-
ment the algorithm outlined in the proof to identify the harmonic conjugate v = u∗(x, y)
for a given real-valued harmonic function u(x, y). Consider the following example.

Example 7.4.5 We determine the harmonic conjugate of u(x, y) = x2 − y2 + 6x + 2y.
We first verify that u(x, y) is harmonic on the complex plane. Computing the

partial derivatives, ux = 2x + 6 and so uxx = 2. Similarly uy = −2y + 2, and so
uyy = −2. Since the second partial derivatives are constants, they are continuous
at every point on the plane. Finally, direct substitution verifies that Laplace’s
equation is satisfied at every point on the plane since uxx + uyy = 2+ (−2) = 0.

By theorem 7.4.2, the harmonic conjugate v = u∗ is v(x, y) =
∫ x

x0

−uy(s, y) ds +∫ y

y0

ux(x0, t) dt. We are free to choose any base point (x0, y0) on the plane when

using this formula (different choices result in different arbitrary constants being
added to the conjugate function); we choose x0 = y0 = 0 and obtain the harmonic
conjugate

v(x, y) =
∫ x

0
2y − 2 dt +

∫ y

0
2 · 0+ 6 ds = 2yt − 2t|x0 + 6s|y0 = 2xy − 2x + 6y.

Instead of defining the harmonic conjugate in terms of an integral formula,
a straightforward process leads to the harmonic conjugate function u∗(x, y). The
process uses the Cauchy–Riemann equations ux = vy and uy = −vx For any given
real-valued harmonic function u, compute ux and uy. Apply the Cauchy–Riemann
equations to realize these functions as vy and −vx. Using partial integration,
integrate the first function vy with respect to y obtaining v(x, y) + C1(x), where
C1(x) is a function of x.Also integrate with respect to x the negation vx of the second
function, obtaining v(x, y)+ C2(y), where C2(y) is a function of y. A comparison
of the two resulting expressions will determine the conjugate function v.
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To illustrate the process, examine u(x, y) = x2 − y2 + 6x + 2y as in the
last example; we have vy = ux = 2x + 6 and = −vx = uy = −2y + 2 (hence
vx = 2y − 2). Integrate both sides of these equations with respect to x and y,
respectively, to obtain

2xy + 6y + C1(x) = v(x, y) and 2xy − 2x + C2(y) = v(x, y).

Comparing the two equations, we set C1(x) = −2x and C2(y) = 6y, and conclude
that the harmonic conjugate, determined up to a real-valued constant, is v(x, y) =
u∗(x, y) = 2xy + 6y − 2x.

■

Question 7.4.4 Find the analytic function f (z) with real part Re(f ) = ex cos y by the following
steps.

(a) Prove that u(x, y) = ex cos y is harmonic on C.
(b) Find a harmonic conjugate v(x, y) of u(x, y) = ex cos y.
(c) Prove that f (z) = u(x, y)+ iv(x, y) is entire by computing its derivative.

■

Question 7.4.5 Example 7.4.2 verified that the complex monomial f (z) = z3 is harmonic. This
question considers an arbitrary monomial in z of any degree n ∈ N.

(a) Substitute z = x + iy into zn and use the binomial theorem to obtain

u(x, y) =
"n/2#∑
k=0

(−1)k n!
(2k)!(n− 2k)!x

n−2ky2k,

where " # denotes the greatest integer function. Prove that u(x, y) is harmonic
by verifying u(x, y) satisfies Laplace’s equation.

(b) Find the harmonic conjugate u∗(x, y) for u(x, y) given in (a) and explicitly
state the corresponding analytic function f (z) = u(x, y)+ iu∗(x, y).

■

There are many important and unexpected properties of harmonic functions that
we have not had a chance to explore in this brief introduction. Many of these properties
involve integration over paths in the complex plane—topics discussed in any complete
course in complex analysis. We’ve already highlighted the important property known
as the maximum principle.Another is the famous mean value property—a startling fact
about a harmonic function’s value at a given point being dependent on the function’s
value at surrounding points. The harmonic function’s value u(x0, y0) at a given point
z0 = x0 + iy0 turns out to equal the average value of u taken over any circle of points
in S that is centered at z0. You might expect such a rigid property to only be satisfied
by very simple functions (such as constant functions), but harmonic functions can be
quite sophisticated and intricate (as any analytic function’s real and imaginary parts are
harmonic). This dichotomy of facts about harmonic functions between a sophisticated
analytic structure and relatively simple configuration properties characterizes harmonic
functions as useful and elegant mathematical objects.
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The next section considers one of many important applications of harmonic
functions. Many people are surprised to learn that complex numbers can be applied
to the real-world in any meaningful way, perhaps believing the term “imaginary
number” suggests that complex analysis must be abstract mathematical game-playing.
Instead, the powerful analytic tools of complex analysis have made many complicated
real-world models manageable.

7.4.1 Reading Questions for Section 7.4

1. Name two physical quantities whose study motivates the definition of
harmonic functions.

2. Describe the maximum principle for harmonic functions.
3. Define and give an example of a continuous function u(x, y) in two variables.
4. What property of continuous functions is helpful for evaluating limits?
5. State the definition of a harmonic function, using Laplace’s equation.
6. Give an example of a real-valued function that is harmonic and one that

is not.
7. If f (z) is entire, what are two associated real-valued harmonic functions that

are harmonic conjugates?
8. Identify two real-valued harmonic functions associated with f (z) = ez.
9. Define and give an example of a harmonic conjugate of a harmonic function

u(x, y).
10. What formula does the proof of theorem 7.4.2 give to produce the harmonic

conjugate of a given harmonic function u(x, y)?
11. What does the mean value property say about a function u harmonic in a

disk S?

7.4.2 Exercises for Section 7.4

In exercises 1–10, show that each function is harmonic in the plane by calculating the
Laplacian.

1. u(x, y) = 4x3 + 12x2 − 12y2 − 12xy2

2. u(x, y) = x5 − 10x3y2 + 5xy4

3. u(x, y) = xy3 − x3y

4. u(x, y) = (3− i)(x + iy)3 + x

5. u(x, y) = e2i(x+iy)

6. u(x, y) = 2ix+ (3− i)y− e2i(x+iy)

7. u(x, y) = sin x cos(iy)

8. u(x, y) = ex+1 cos(y + 1)

9. u(x, y) = eix cos(iy)

10. u(x, y) = e(1+i)x sin ((1+ i)y)

In exercises 11–16, show that each function is harmonic inside the disk S centered at
z = x + iy = 1 with radius 1.

11. u(x, y) = x

x2 + y2

12. u(x, y) = y − y

x2 + y2

13. u(x, y) = ln(x2 + y2)

14. u(x, y) = ln
(
|3(x + iy)|4

)
15. u(x, y) = Arg(x + 1+ iy)

16. u(x, y) = x − iy

x2 + y2
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In exercises 17–28, determine whether each function is harmonic on the plane. For
exercises 27 and 28, recall that cosh y = (ey + e−y)/2 and sinh y = (ey − e−y)/2.

17. u(x, y)= 4x3+12x2−4y2−4xy2

18. u(x, y) = x5 − 10x3y2 + 5xy4

19. u(x, y) = x3 − y3

20. u(x, y) = xn − yn for n ∈ N

21. u(x, y) = xy3 − x3y

22. u(x, y) = 3(x + iy)2

23. u(x, y) = sin x cos y

24. u(x, y) = sin(x2 + 1) cos(y2 + 1)

25. u(x, y) = e5x+3 cos(5y + 3)

26. u(x, y) = ex2
cos y2

27. u(x, y) = cos x cosh y

28. u(x, y) = sin x sinh y

In exercises 29–38, directly prove the real and imaginary parts of each analytic function
are harmonic.

29. f (z) = 2z + 4

30. f (z) = mx + b for m, b ∈ C

31. f (z) = z2 + z

32. f (z) = z3 + z2

33. f (z) = ez

34. f (z) = Log z

35. f (z) = cos z

36. f (z) = sin z

37. f (z) = anzn + · · · + a1z + a0 for
ak ∈ C

38. f (z) =
∞∑

k=0
akzk for ak ∈ C and

the series convergent on C

In exercises 39–49, prove each mathematical statement about harmonic functions.

39. If m, b ∈ C, then the linear function u(x, y) = m(x + iy)+ b is harmonic.

40. A scalar multiple of a harmonic function is harmonic; that is, if c ∈ C and
u(x, y) is harmonic, then cu(x, y) is harmonic.

41. The sum of two harmonic functions is harmonic.

42. The difference of two harmonic functions is harmonic.

43. Linear combinations of harmonic functions are harmonic; that is, if a, b ∈ C

and both u(x, y) and v(x, y) are harmonic, then au(x, y) + bv(x, y) is
harmonic.

44. The square of a harmonic function is sometimes not harmonic.

45. The product of two harmonic functions is sometimes not harmonic.

46. The composition of a harmonic function u(x, y) with two real-valued
differentiable functions g(x) and h(y) to form u(g(x), h(y)) is sometimes not
harmonic.

47. If a, b, c ∈ R and u(x, y) is harmonic, then u(ax + b, ay + c) is harmonic.

48. If f (z) is entire, then g(z) = ef (z) is harmonic.

49. If c ∈ C, then u(x, y) = cx2 − cy2 is harmonic.

In exercises 50–59, find the harmonic conjugate for each harmonic function and state
the corresponding analytic function.

50. u(x, y) = 3x(1− y)
51. u(x, y) = 2x2 − 2y2 + 5
52. u(x, y) = 13x4 − 78x2y2 + 13y4

53. u(x, y) = 3x2 − x − 3y2

54. u(x, y) = 3x2y − y3

55. u(x, y) = ey sin x

56. u(x, y) = ex2−y2
sin(2xy)

57. u(x, y) = ln(x2 + y2)
58. u(x, y) = sin x cosh y

59. u(x, y) = sin x sinh y
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In exercises 60–62, prove each mathematical statement about harmonic conjugates.

60. If v(x, y) is a harmonic conjugate of u(x, y), then −u(x, y) is a harmonic
conjugate of v(x, y)

61. If v(x, y) is a harmonic conjugate of u(x, y), then h(x, y) = u2 − v2 is a
harmonic function.

62. If u(x, y) is harmonic, then the harmonic conjugate v(x, y) is unique up to a
complex constant.
Hint: Assume v1 is a different harmonic conjugate, and apply the Cauchy–
Riemann equations to calculate

∂

∂x
(v − v1) and

∂

∂x
(v− v1).

7.5 Application: Streamlines and Equipotentials

The study of harmonic functions is important in many applications, such as fluid
dynamics or aerodynamics—two situations where real-life phenomenon can be
modeled using a mathematical object known as a “vector field.” The complexity of
studying a vector field (which typically has a high-dimensional structure) can often
be reduced to an analytical discussion of real-valued harmonic functions. As we have
learned in section 7.4, every harmonic function can be paired with a harmonic conjugate
to obtain a complex-valued analytic function; the analytic structure of this function
can in turn provide information about the original vector field. The history of the study
of harmonic functions can be traced to applied settings, and so the real and imaginary
parts of an analytic function are often referred to using terms from these fields: the
real part u(x, y) is sometimes called the potential function, and its harmonic conjugate
v(x, y) is called the stream function. This section describes the relationships that exist
between harmonic functions and vector fields and explains how these notions are used
to model physical phenomena in the world around us.

We start with the concept of vectors, which are often first studied in either a
multivariable calculus or a linear algebra course; they also play a prominent role in
the study of many aspects of physics and engineering. A vector $v is a mathematical
object having both direction and magnitude; if $v is a two-dimensional vector, then
it is geometrically represented by an arrow in a two-dimensional plane (such arrows
are often called directed line segments). Of course, two vectors that have the same
direction and length are equal (or equivalent), and so the directed line segment
representing $v can be placed anywhere in the plane. We represent two-dimensional
vectors analytically in “component form” as $v = 〈a, b〉. The next definition makes
these ideas precise.

Definition 7.5.1 A vector is a mathematical object expressing both magnitude and direction.
Geometrically, a vector is a directed line segment in the plane. If a vector $v
can be placed on the plane so that the initial end of $v is at the origin and the
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Figure 7.8 The vector 〈3, 1〉 drawn in two positions on the complex plan

terminal end of $v is at the point (a, b), then the component form of the vector is
$v = 〈a, b〉. The real numbers a and b in this expression are called the components
of $v, and the zero vector is denoted by $0 = 〈0, 0〉.
The definition describes vectors as having magnitude and direction, and not

position. Placing the initial end of a vector at the origin is helpful for designating
its component form, and this location is referred to as the vector’s standard position.
But a vector can be placed anywhere in the plane; any two vectors in the plane with
the same direction and magnitude are said to be equivalent (or equal) regardless of
where they are located. Figure 7.8 provides a graphical illustration of the vector 〈3, 1〉
in two different locations: in standard position (on the left) and emanating from the
point (2,−1) (on the right).

Question 7.5.1 Sketch each vector, both in standard position and emanating from the
point (−2, 3).

(a) 〈0, 2〉
(b) 〈−1,−2〉

(c) 〈0, 0〉
(d) 〈−3, 0〉

■

Operations can be defined on vectors, such as addition, subtraction, multiplication
by scalars and two distinct vector products. In this section we need only define
one operation on vectors—the length (or norm) operation, which gives the vector’s
magnitude. In terms of the component form (which identifies a vector in terms of
its x and y components), the formula for the vector length is the familiar distance
formula.

Definition 7.5.2 The length or norm of a vector 〈a, b〉 is ‖〈a, b〉‖ = √a2 + b2.

Example 7.5.1 We compute the length of three vectors.

• The length of 〈2, 2〉 is ‖〈2, 2〉‖ = √22 + 22 = 2
√

2.
• The length of 〈0, 1〉 is ‖〈0, 1〉‖ = √02 + 12 = 1.
• The length of the zero vector $0 = 〈0, 0〉 is ‖〈0, 0〉‖ = √02 + 02 = 0.

■

Vectors with length one are called unit vectors. The zero vector $0 is the unique
vector of length zero.
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y

x1

Figure 7.9 A representative plot of the vector field $F(x, y) = 〈x, y〉 for example 7.5.2

Question 7.5.2 Compute the length of each vector from question 7.5.1.

(a) 〈0, 2〉
(b) 〈−1,−2〉

(c) 〈0, 0〉
(d) 〈−3, 0〉

■

We now consider mappings known as vector fields, which are mathematical objects
having the structure of a function—an input and an output. The input is a point in the
plane, and the output is a vector. Vector fields are commonly used in physics to represent
force fields and velocity fields. The following definition expresses this notion.

Definition 7.5.3 A two-dimensional vector field is a function F whose domain is the set of ordered
pairs of real numbers and whose target space is the set of two-dimensional vectors.
For every such vector field F, there exist multivariate real-valued functions M(x, y)
and N(x, y) such that $F(x, y) = 〈M(x, y), N(x, y)〉.
A representative plot of a vector field $F is formed by selecting a finite number of

points (a, b) in the plane and sketching each vector $F(a, b) so that it emanates from the
point. When sketching a representative plot of a vector field, mathematicians sometimes
find it helpful to group the vectors based on their respective lengths. A given vector
field $F(x, y) = 〈M(x, y), N(x, y)〉 has length at the point (a, b) equal to ‖$F(a, b)‖ =√[M(a, b)]2 + [N(a, b)]2. The next example provides a representative plot of a vector
field.

Example 7.5.2 We sketch the plot of $F(x, y) = 〈x, y〉.
The vector field $F has M(x, y) = x and N(x, y) = y. The length of any vector

$F(x, y) = 〈x, y〉 is ‖$F(x, y)‖ = ‖〈x, y〉‖ = √
x2 + y2. Therefore vectors $F with

equal length r = √
x2 + y2 all emanate from points (x, y) in a circular group

centered at the origin with radius r.
Figure 7.9 provides a representative plot of $F(x, y) = 〈x, y〉, using 12 vectors

to indicate the general pattern of the vectors in the vector field $F. The figure
organizes vectors in circular groups that share the same length. For example, the
four vectors drawn closest to the origin are 〈0, 1〉, 〈1, 0〉, 〈−1, 0〉, and 〈0,−1〉, and
all four have length one.

■
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Question 7.5.3 Determine the length of an arbitrary vector in each vector field and sketch a
representative plot of each vector field using at least 12 vectors. Based on this
plot, provide a written description of the vector field.

(a) $F(x,y)=〈0,y〉
(b) $F(x,y)=

〈
−y√

x2+y2
,

x√
x2+y2

〉
■

What do harmonic functions have to do with vector fields? Many vector fields that
show up in applications are of a special structure; they are the “gradient” operation
applied to a multivariate function f (x, y). The gradient is sometimes referred to as
a vector differential “operator”; it maps f (x, y) to vector fields whose components are
the partial derivatives of f . The following definition describes the gradient.

Definition 7.5.4 Applied to multivariate functions, the gradient operation is denoted by

$∇ = 〈 ∂

∂x
,

∂

∂y
〉,

and the gradient of a function u(x, y) is the vector field

$∇u =
〈
∂u

∂x
,
∂u

∂y

〉
= 〈ux, uy〉.

Any vector field that can be expressed as the gradient $∇u of a function is called a
conservative vector field, and the corresponding function u is called the potential
function for $∇u. If u(x, y) is a real-valued harmonic function, then the harmonic
conjugate u∗(x, y) is called the stream function.

The next example describes a conservative vector field in terms of the gradient
operator, focusing the discussion around analytic and harmonic functions.

Example 7.5.3 We apply the gradient operator to produce a conservative vector field that
corresponds to the real part of the complex analytic function f (z) = z2.

First expand f (z) = z2 = (x + iy)2 = x2 + 2xyi − y2 to determine the real
and imaginary parts, which are harmonic. These functions are u(x, y) = x2 − y2

together with its harmonic conjugate v(x, y) = 2xy. Therefore u is the potential
function and v is the stream function for the conservative vector field

$∇u = 〈ux, uy〉 = 〈2x,−2y〉.
■

Example 7.5.3 points out that an analytic function f (z) can play a prominent role
in identifying the potential function for a conservative vector field. In light of this
connection, such functions f (z) are sometimes referred to as the complex potential.

Question 7.5.4 Use the gradient operator to determine the conservative vector field for each given
complex potential f (z).

(a) f (z) = z2 − z

(b) f (z) = z3
(c) f (z) = e2z

(d) f (z) = cos z
■
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7.5.1 Fluid Flow

Vector fields are often used to model various types of force fields and velocity fields—
including the forces and velocities associated with fluid flow. The choice for the
mathematical model of the flow is in terms of real-valued functions M(x, y) and
N(x, y) forming a vector field $F(x, y) = 〈M(x, y), N(x, y)〉. The vector field provides
information about the velocity of the fluid at any given point (x, y); $F is often referred
to as a velocity field. The velocity field has an output that is two-dimensional, and so
the model is therefore assuming that the fluid is determined (by its velocity) in a
given two-dimensional x–y plane, which is equivalent to C. In short, the vectors
$F(a, b) describe the velocity of the fluid at each point a+ ib ∈ C. The model assumes
that there is no time dependence; that is, a time variable t does not appear in the
equations defining $F(x, y), and the fluid’s velocities are unchanging at each point.
Such time-independent fluid flow is commonly said to be stationary (with respect
to time).

This model focuses on fluid flows that are “incompressible” and “irrotational.” An
incompressible fluid flow occurs when the density of the fluid is constant throughout
the fluid. An irrotational fluid flow occurs when the fluid is “circulation free.” As it
turns out, a fluid flow that is incompressible and irrotational is a conservative vector
field with a harmonic potential function. In addition, the potential and stream function
determine the two most important characteristics of the flow, as the following theorem
describes.

Theorem 7.5.1 Let $F be an incompressible and irrotational fluid flow.

(a) The velocity field for the flow is a vector field of the form $∇u, where u(x, y)
is a harmonic function. In this setting, the function u is called the harmonic
potential, the velocity potential, or the scalar potential. A representative plot
of $∇u provides an image of the velocity of the fluid at given points. Curves of
the form u(x, y) = C for real constants C are called equipotentials.

(b) The harmonic conjugate v(x, y) = u∗(x, y) determines the path of an object
caught in the flow as v(x, y) = C, where C is a real constant. The graphs of
the equations v(x, y) = C are called streamlines.

(c) For real constants C, the streamlines v(x, y)= C and equipotentials u(x, y) = C
form an orthogonal system; that is, the curves intersect at right angles.

The graphical presentation is helpful when considering theorem 7.5.1. The next
examples illustrate its ideas through a depiction of different velocity fields.

Example 7.5.4 We apply theorem 7.5.1 to the incompressible and irrotational fluid flow having
complex potential f (z) = z2/4 = (x + iy)2/4.

Example 7.5.3 used the fact that z2 has real part x2 − y2 and imaginary part
2xy. Therefore f (z) = z2/4 has real part u(x, y) = (x2 − y2)/4 and imaginary part
v(x, y) = xy/2. Since f is analytic, u and v are harmonic. We determine the velocity
field for the flow by taking the gradient of u(x, y), obtaining $∇u = 〈x/2,−y/2〉.
A representative plot of $∇u provides a graphical illustration of the velocity of
the fluid at each point on the plane; figure 7.10 indicates this flow in the first
quadrant.
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Figure 7.10 A first-quadrant plot of
$∇u = 〈x/2,−y/2〉 for

example 7.5.4

y

x

Theorem 7.5.1(b) describes the streamlines for this velocity field; each one
corresponds to the path followed by an object trapped in the fluid flow. For any
real constant C,

v(x, y) = C ⇒ xy

2
= C ⇒ y = 2C

x
.

To find the path of an object dropped into the flow at any given point (a, b),
substitute x = a and y = b into the streamline equation, solve for the constant
C, and conclude that the object must travel along the streamline path having that
constant.

For example, if an object caught in the flow passes through the point (3, 5),
then (substituting x = 3 and y = 5) we have C = xy/2 = 3 · 5/2 = 15/2. The
corresponding streamline is therefore y = 2 · [15/2] · 1/x = 15/x. As illustrated
in figure 7.11, the graph of this streamline may be superimposed on the velocity
vector field to provide a geometric description for the object’s path.

Finally, we consider an illustrative graph for theorem 7.5.1 (c) when
〈x/2,−y/2〉. Since the streamlines and the equipotentials form an orthogonal
system, the corresponding curves intersect at right angles. The streamlines just
calculated are of the form y = 2C/x, where C ∈ R. The harmonic potential is

Figure 7.11 Streamline through
(3, 5) for example 7.5.4

y y = 15/x

x
3

3
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Figure 7.12 The
orthogonal system of
streamlines and
equipotentials for
example 7.5.4

u(x, y) = (x2 − y2)/4, and so the equipotentials u(x, y) = C are of the form

x2 − y2

4
= C ⇒ y =

√
4C + x2.

Figure 7.12 provides an illustration of the orthogonal system in the first quadrant
with streamlines chosen using C = 0.5, 2, and 5, and equipotentials using
C = −2.5, −0.25, 0.25, and 2.5.

■

The next question gives practice in analyzing a comprehensive model of a
fluid flow.

Question 7.5.5 Answer each question about a fluid flow with complex potential f (z) = z. Assume
the fluid is incompressible and irrotational and apply the fluid flow model from
theorem 7.5.1.

(a) State the harmonic potential u(x, y) and its harmonic conjugate v(x, y) for this
fluid flow.

(b) Exhibit the corresponding expression for the velocity field $∇u. Sketch a
representative plot of the velocity field by graphing the vectors at the following
points:

(0, 0), (−1, 2), (1, 2), (−1,−1), (1,−1), (−1, 2), (1, 2), (−2, 0), (2, 0).

Based on this plot, provide a written description of the fluid flow.
(c) State the general equation for the streamlines and the equipotentials, and

plot the streamlines and equipotentials for C = 1, 3, 5 on the same graph
(as modeled in figure 7.12).

(d) Determine the path followed by an object dropped in the fluid at (3, 5).
■
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Many other applications besides fluid flow follow a similar vector field model
that is generated from a complex potential. For example in the study of electro-
statics, a famous theorem by Gauss implies that the two-dimensional electric field
(which describes the force, or distribution and intensity of electric charge) is a
conservative vector field with a harmonic potential. Simply put, such an electric
field has the form $∇u where u(x, y) is harmonic. Gauss’s theorem provided a
mathematical description of Benjamin Franklin’s famous explanation of electricity
as a fluid (which he called “electric fluid”). While best known to contemporary
Americans as one of the Founding Fathers, Franklin was a famous, highly regarded
scientist in his day. Franklin was the first to chart the Gulf Stream current during his
voyages across the Atlantic, and he was the first person to adopt a scientific model for
electricity—an insight that soon brought him worldwide fame as the inventor of the
lightning rod.

When applying the vector field model developed here to electric fields, u(x, y) is
called the electrostatic potential, and the streamlines v(x, y) = C are called the flux
lines. Despite having different labels for the mathematical elements (due to the history
of their study and application), the electric field model is mathematically identical to
the fluid flow model; theorem 7.5.1 can be applied to electric fields as well.

In a similar fashion, heat flow in a two-dimensional structure follows this section’s
vector field model, provided there is no net buildup of heat in the system. In this
application, the vector field is called the heat flux, the streamlines are called flux lines,
and the equipotentials are called isothermals. In this setting every point on a given
isothermal has the same temperature. The following example applies the fluid flow
model to the case of heat flux.

Example 7.5.5 We study the vector field representing a heat flux across a planar surface and
with complex potential f (z) = −i Log(z − (1 + i)). We assume there is no net
buildup of heat in the system and apply the vector field model described in
theorem 7.5.1.

Since the heat flux has a complex potential function f (z)=−i Log(z− (1+ i)),
the potential function for this vector field is u(x, y) = Re[f (z)] = Arg(z− (1+ i)).
Exercise 68 in section 7.2 shows how to express Arg(x+ iy) in terms of arctan (y/x)
when the argument is between −π and π . Here z − (1+ i) = (x − 1)+ i(y− 1),
and so Arg(z − (1+ i)) = arctan(y − 1)/(x − 1). Applying the gradient operator
to u(x, y) = arctan(y − 1)/(x − 1), the heat flux is expressed as

$∇u = 〈ux, uy〉 =
〈
− y − 1

(x − 1)2 + (y − 1)2
,

x − 1

(x − 1)2 + (y − 1)2

〉
.

Question 7.5.3 considered a vector field very similar to this heat flux.As illustrated
in figure 7.13, the vectors exhibit a pattern of counterclockwise rotation around a
center of 1+ i, which is plotted at the origin of the plane in figure 7.13.

In addition to a display of the heat flux, figure 7.13 provides a graph of
the vector field’s flux lines (the streamlines v(x, y) = C) and the isothermals
(the equipotentials u(x, y) = C). The flux lines are equations of the form
v(x, y) = − ln[(x − 1)2 + (y − 1)2] = C, where C ∈ R. Negating both sides
of this equation and raising each as a power of e, the resulting expression is
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equivalent to the equation of a circle (x − 1)2 + (y − 1)2 = e−C . The flux lines
are therefore circles with center (1, 1) = 1 + i. Similarly, the isothermals are
u(x, y) = Arg[z − (1 + i)] = C; for any given C, this equation describes a ray
emanating from the point 1 + i (since for all points on this ray, the difference
with 1 + i generates the same constant polar angle). Figure 7.13 indicates the
characteristic orthogonal relationship between flux lines and isothermals.

■

Question 7.5.6 Answer each question about a heat flux with complex potential f (z)=−iz.Assume
there is no net buildup of heat in the system and apply the fluid flow model from
theorem 7.5.1.

(a) State the isothermal potential u(x, y) and flux line function v(x, y) for this heat
flux.

(b) State the analytic vector formula $∇u for this heat flux. Sketch a representative
plot of this vector field graphing the vectors at the points

(0, 0), (−1, 2), (1, 2), (−1,−1), (1,−1), (−1, 2), (1, 2), (−2, 0), (2, 0).

Based on this plot, provide a written description of the heat flux.
(c) State the general equation for the flux lines and the isothermals, and plot the

flux lines and isothermals for C = 1, 3, 5 on the same graph (as modeled in
figure 7.13).

■

As a final application, we consider the study of fluid flow around a stationary
object. Such models play an important role in aerodynamics when studying the motion
of air around an airplane wing, in hydrodynamics when studying the movement of
water around the hull of a ship or submarine, and in engineering when developing
industrial processes for working with fluids (including fossil fuels, chemicals, glass,
and steel). Under the assumption that the fluid is incompressible and irrotational, the
corresponding velocity field satisfies the fluid flow model from theorem 7.5.1; that is,
the velocity field is conservative (of the form $∇u) with a harmonic potential u(x, y).

1 50.5−0.5 0−1−1.5

−1.5

−1

−0.5

0.5

1

1.5

1

Figure 7.13 Heat flux, flux lines, and
isothermals for example 7.5.5
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The corresponding harmonic conjugate v(x, y) = u∗(x, y) generates the streamlines,
one of which describes the boundary of the stationary obstacle. The following example
illustrates the model.

Example 7.5.6 We study the fluid flow around a circular obstacle described by the unit circle,
where the fluid flow has complex potential function f (z) = z + (1/z) for |z| > 0.
We assume the fluid is incompressible and irrotational and apply the fluid flow
model from theorem 7.5.1. This example provides a thorough analysis of this fluid
flow, identifying the vector field $∇u, the harmonic potential u(x, y), the harmonic
conjugate v(x, y), and the general equations for the streamlines v(x, y) = C and
equipotentials u(x, y) = C. We also verify the fact that x2+ y2 = 1 is a streamline,
confirming that the fluid flows around the circular obstacle described by the unit
circle.

First determine the analytic vector formula $∇u = 〈ux, uy〉 for the velocity
field. The complex potential f (z) = z+ (1/z) is analytic over any disk S that does
not contain the origin z = 0, and the derivative is expressible in terms of the partial
derivatives of u: f ′(x+ iy) = ux(x, y)+ iuy(x, y) for x+ iy 	= 0. We can therefore
determine $∇u by computing f ′(z) and expressing it in rectangular form. Since
f (z) = z + z−1, the derivative of f (z) is f ′(z) = 1 − z−2; substituting z = x + iy
and multiplying by the denominator’s complex conjugate,

f ′(x + iy) = 1− 1

(x + iy)2
= 1− 1

x2 − y2 + i2xy
= 1− x2 − y2 − i2xy

(x2 − y2)2 + 4x2y2

=
[

(x2 + y2)2 − x2 + y2

(x2 + y2)2

]
+ i

[
2xy

(x2 + y2)2

]
.

Therefore, the velocity vector field is

$∇u(x, y) = 〈ux, uy〉 =
〈

(x2 + y2)2 − x2 + y2

(x2 + y2)2
,

2xy

(x2 + y2)2

〉
.

Now determine the harmonic potential u(x, y) and the stream function v(x, y)
(the harmonic conjugate of u). Because the obstacle is circular, the analysis is most
readily performed using a polar representation for z; as described in section 7.1,
z = reiθ . Substituting this term into the complex potential,

f (z) = f (r, θ) = reiθ + r−1e−iθ = r(cos θ + i sin θ)+ r−1[cos(−θ)+ i sin(−θ)]
= r cos θ + ri sin θ + r−1 cos θ − r−1i sin θ

= (r + r−1) cos θ + i[(r − r−1) sin θ ].
The real and imaginary parts of the complex potential are therefore u(r, θ) =
(r + r−1) cos θ and v(r, θ) = (r − r−1) sin θ .

The streamlines are found by setting the stream function equal to a constant;
they are (r − r−1) sin θ = C for C ∈ R. The streamline generated by C = 0 must
have either r − r−1 = 0 or sin θ = 0. The equation r − r−1 = 0 results in r = 1
or r = −1, both of which produce the circular obstacle having the unit circle as
a boundary. This streamline path with C = 0 is extended to the region exterior to
the circle by the solutions to sin θ = 0, which results in θ = nπ for n ∈ Z. We see
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Figure 7.14 Streamlines and
one (dashed) equipotential
for example 7.5.6

that these curves are equal to the x-axis. Thus, the streamline path determined by
C = 0 includes the unit circle and the entire x-axis exterior to the circle. There
cannot be any flow across a streamline; the circular boundary of the obstacle fits
this description. The streamline for C = 0 and the streamlines for other values of
C ∈ R are graphically illustrated in figure 7.14.

Determine the equipotentials to complete the analysis. They are of the form
u(r, t) = (r + r−1) cos t = C. The equipotential corresponding to C = 0 is the
portion of the y-axis exterior to the unit circle. To illustrate the fact that the
equipotentials are orthogonal to the streamlines, the equipotential for C = 1 is
graphed as a dashed curve with the streamlines in figure 7.14.

■

Question 7.5.7 As in example 7.5.6, analyze the streamlines of the fluid flow with complex
potential function

f (z) = z + 1

z
+ i

Log z

2π
.

Verify that one streamline is the circle x2 + y2 = 1. The streamlines for this fluid
flow are graphed in figure 7.15; they exhibit a flow around the unit circle obstacle
that is slightly different from the one in example 7.5.6.

■

y

x
1

1

Figure 7.15 Streamlines for
question 7.5.7
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This chapter has considered just a few of the many applications of harmonic
functions and differential complex analysis. A full course in complex analysis will
provide a more complete development of the ideas touched on in this chapter, as
well as integration theory, geometric issues in the complex plane, and a host of other
interesting ideas and applications.

7.5.2 Reading Questions for Section 7.5

1. What is a vector? Describe the relationship between a geometric and a
component form depiction of a vector.

2. What does it mean for a vector to be in standard position? Sketch an
example of a vector in standard position and an equivalent vector emanating
from (1, 1).

3. Define the length of a vector and give an example of a unit vector.
4. What is a vector field?
5. Define and give an example of the gradient operator applied to a multivariate

function u.

6. Define and give an example of a conservative vector field. Identify the
potential function and the stream function for the example.

7. Define and give an example of a complex potential. How do we determine
the corresponding (real-valued) potential function?

8. State theorem 7.5.1. How is this result helpful to a study of fluid flow?
9. State the mathematical form of a streamline. What information is provided

by a graph of the streamlines for a fluid flow?
10. State the mathematical form of an equipotential. What information is provided

by a graph of the equipotentials for a fluid flow?

11. What is the geometric relationship between the streamlines and the equipo-
tentials of an incompressible, irrotational fluid flow?

12. When studying heat flow, what names are traditionally associated with the
corresponding vector field, streamlines, and equipotentials?

7.5.3 Exercises for Section 7.5

In exercises 1–10, sketch each vector in standard position and emanating from (1, 0)
and from (−1, 0). Also, determine the length of each vector.

1. 〈1, 1〉
2. 〈2,−1〉
3. 〈−1, 1〉
4. 〈−1,−2〉
5. 〈−2, 1〉

6. 〈0, 0〉
7. 〈4, 0〉
8. 〈−2, 0〉
9. 〈0, 3〉

10. 〈0,−1〉
In exercises 11–24, determine the length of an arbitrary vector in each vector field and
sketch a representative plot of each vector field using at least eight vectors.

11. $F(x, y) = 〈1, 1〉 12. $F(x, y) = 〈−1, 2〉
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13. $F(x, y) = 〈x, 0〉
14. $F(x, y) = 〈0, x〉
15. $F(x, y) = 〈−x,−y〉
16. $F(x, y) = 〈y,−x〉
17. $F(x, y) = 〈x + y, 0〉
18. $F(x, y) = 〈x − y, 0〉

19. $F(x, y) = 〈1, ex〉
20. $F(x, y) = 〈ey, y〉
21. $F(x, y) = 〈1, cos x〉
22. $F(x, y) = 〈x, sin x〉
23. $F(x, y) = 〈ey cos x, ey sin x〉
24. $F(x, y) = 〈ex cos x, ey sin y〉

In exercises 25–40, compute the conservative vector field determined by each harmonic
function u(x,y). Also, identify the corresponding stream function v(x,y) (that is, the
harmonic conjugate) and complex potential function f(z).

25. u(x, y) = 2
26. u(x, y) = 8x(1− y)
27. u(x, y) = (x − a)(y − b) for

a, b ∈ R

28. u(x, y) = 4x2 − 4y2 + 5
29. u(x, y) = 3x2 − x − 3y2 + 2y
30. u(x, y) = cx2 − cy2, for c ∈ R

31. u(x, y) = x3 − 3xy2

32. u(x, y) = 3x2y − y3

33. u(x, y) = ey sin x
34. u(x, y) = ex cos y
35. u(x, y) = ex2−y2

sin(2xy)
36. u(x, y) = ex2−y2

cos(2xy)
37. u(x, y) = sin y sinh x
38. u(x, y) = sin x sinh y
39. u(x, y) = sin x cosh y
40. u(x, y) = ln[x2 + y2] for x2 +

y2 > 0

In exercises 41–44, answer each question about an incompressible and irrotational
fluid that has a fluid flow with complex potential function f(z) = −iz2.

41. State the harmonic potential u(x, y) and streamline function v(x, y) for this
fluid flow.

42. State the analytic vector formula $∇u for the velocity field of this fluid flow.
Sketch a representative plot and provide a written description of the fluid
flow.

43. State the general equation for the streamlines and the equipotentials and graph
at least two streamlines and at least two equipotentials on the same axes.

44. Describe the path followed by an object dropped in the fluid at (3, 5).

In exercises 45–48, answer each question about an incompressible and irrotational
fluid that has a fluid flow with complex potential function f (z) = ez. Use a computing
device as appropriate.

45. State the harmonic potential u(x, y) and streamline function v(x, y) for this
fluid flow.

46. State the analytic vector formula $∇u for the velocity field of this fluid flow.
Sketch a representative plot and provide a written description of the fluid
flow.

47. State the general equation for the streamlines and the equipotentials and
graph at least two streamlines and at least two equipotentials on the
same axes.

48. Describe the path followed by an object dropped in the fluid at (2, π/4).

In exercises 49–58, find the streamlines and equipotentials for a fluid flow satisfying
the given criteria. On the same axes sketch a representative plot of the corresponding
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fluid flow, at least two streamlines, and at least two equipotentials. Assume the
fluid is incompressible and irrotational, and apply the fluid flow model from
theorem 7.5.1.

49. Potential u(x, y) = 2

50. Potential u(x,y)=K , where K ∈R

51. Potential u(x, y) = 4x + 5y

52. Potential u(x, y)= 3x2−2x−2y2

53. Potential u(x, y) = ex cos y

54. Potential u(x, y) = Arg(x + iy)

55. Stream function v(x, y) = 3

56. Stream function v(x, y) = 3x+ 7y

57. Complex potential f (z) = z2 + z

58. Complex potential f (z) = 2z3

In exercises 59–62, find the flux lines and isothermals for a heat flux satisfying the
given criteria. On the same axes sketch a representative plot of the corresponding heat
flux, at least two flux lines, and at least two isothermals. Assume there is no net buildup
of heat in the system and apply the fluid flow model from theorem 7.5.1.

59. Isothermal u(x, y) = 2x

60. Flux v(x, y) = K , where K ∈ R

61. Isothermal u(x, y)= Log(x2+y2)

62. Complex isothermal f (z) = Logz

In exercises 63–64, answer each question about the velocity vector field for fluid flow
of an incompressible, irrotational fluid.

63. What is the relationship between the vectors in the velocity fields generated
by the potential functions u(x, y) and u(x, y)+ C, where C ∈ C?

64. What is the relationship between the vectors in the velocity fields generated
by the potential functions u(x, y) and C · u(x, y), where C ∈ C?

Exercises 65–70 consider the algebraic properties of two-dimensional vectors under
various operations. For a,b,c,d,r ∈ R, we define

Scalar multiplication r〈a, b〉 = 〈ra, rb〉
Vector addition 〈a, b〉 + 〈c, d〉 = 〈a+ c, b+ d〉
Vector dot product 〈a, b〉 · 〈c, d〉 = 〈ac, bd〉

In exercises 65–70, give an example and prove each statement about these operations
on vectors using the field-theoretic properties of the real numbers.

65. Scalar multiplication distributes over scalar addition; that is, (r + s)〈a, b〉 =
r〈a, b〉 + s〈a, b〉.

66. Scalar multiplication distributes over vector addition; that is, r [〈a, b〉 + 〈c, d〉]
= r〈a, b〉 + r〈c, d〉.

67. Scalar multiplication does not distribute over vector dot product; that is, there
exist a, b, c, d, r ∈ R such that

r [〈a, b〉 · 〈c, d〉] 	= [r〈a, b〉] · [r〈c, d〉] .

68. Vector dot product distributes over vector addition; that is,

〈a, b〉 · [〈c, d〉 + 〈e, f 〉] = 〈a, b〉 · 〈c, d〉 + 〈a, b〉 · 〈e, f 〉.
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69. Vector addition is a commutative operation. What is the identify for vector
addition?

70. Vector dot product is a commutative operation. What is the identity for vector
dot product?

Notes

The history of the development of complex analysis is reported in many popular books with an
expository flavor, including [23] by Bottazini and the more recent [221] by Smithies. Nahin’s
book [179] traces humanity’s efforts to understand i =√−1 and the complex numbers, detailing
both the corresponding history and the mathematics. Among many technical books in complex
analysis that address the history of the subject are the undergraduate text by Mathews and
Howell [171] and the graduate text by Remmert [191].

Remmert [191], promotes the idea that our current understanding of complex analysis
evolved from three distinct lines of development, arising from the work of Bernhard Riemann,
Augustin-Louis Cauchy, and Karl Weierstrass. Each were aware of and used the others’
breakthroughs and insights, but they also each had a unique approach to complex analysis.
Riemann characterized analytic functions from a geometric standpoint as mappings between
domains (now called Riemann surfaces) in the complex plane, creating “conformal equivalences”
between these domains. Cauchy characterized analytic functions in terms of integrals: every
analytic function can be represented as an integral in a set format. In contrast, Weierstrass
characterized analytic functions via power series: every analytic function can be represented as
a power series with a radius of convergence describing a domain over which the representation
is guaranteed valid. For Weierstrass, power series representations turned analytic issues into
algebraic ones.

The notes at the end of chapter 4 provide references on the life and work of Riemann,
Cauchy, and Gauss (who also made many important contributions to the study of real analysis
considered in chapter 4). A description of the life of French mathematician Pierre-Simon
Laplace is given in [98]. Laplace was one of the most influential mathematicians of his
time, and his work remains a staple in mathematics and engineering courses to this day.
This well-written biography blends together the engaging story of Laplace’s personal life
with his professional work on some of the most challenging questions of the eighteenth
and nineteenth centuries. Those interested in an historical description of Benjamin Franklin’s
development of a scientific theory of electricity would enjoy reading Isaacson [125]. Among
his many accomplishments, Franklin’s keen interpretations of observations led him to state in
lay terms what has become known as the law of conservation of charge, a fundamental axiom
in physics today. In addition, Franklin wrote an engaging autobiography [89] that may be of
interest.

A full course in complex analysis includes a more thorough development of the ideas we
have touched on in this chapter, as well as the complex integral, conformal mappings, transform
methods, and further aspects of analytic and harmonic functions. Standard undergraduate texts
in complex analysis include those by Brown and Churchill [31], Fisher [84], Gamelin [94],
Marsden and Hoffman [170], and Mathews and Howell [171]. Many students find the
complex variables workbook by Speigel [226] helpful. Standard graduate texts in complex
analysis include those by Lang [147] and Remmert [191]. A recent book by Krantz [143]
addresses advanced topics in complex analysis, touching on recent research developments in
the field.
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Much work has been done with harmonic functions; Axler et al. [9] is a good introduction to
the field. Another classic text is Zygmund [259], originally published in Warsaw in 1935, which
describes trigonometric series and Fourier series from the viewpoint of complex functions.
Beerends et al. [13] and Dyke [68] introduce Laplace and Fourier transforms and are accessible
to undergraduates.

Ian Stewart’s popular book [231] discusses the success of various models of math-
ematics for understanding the real-life physical world in which we live. In chapter 5
(From Violins to Videos) Stewart traces the development of several mathematical ideas
from Euler’s first study of violins to modern electronic applications—with the mathe-
matical study of drumskins playing an important role. Stewart has written a number of
engaging and enjoyable expository mathematical books, including [228] and [230]. This
last book of Stewart’s was inspired by G. H. Hardy’s classic book A Mathematician’s
Apology [112].



Answers to Questions

1.1 The Formal Language of Sentential Logic

Question 1.1.1

(a) I am going to [ bike and run ] or
swim.
I am going to bike and [ run or
swim. ]

(b) I am going to both bike and run,
or swim.
I am going to bike and either run
or swim.

Question 1.1.2

(a) or
(b) not
(c) if and only if
(d) both–and
(e) if
(f) when
(g) if–then; not

Question 1.1.3

(a) P ∧ Z
(b) Q↔ S

(c) (S ∧ Z)→ P
(d) S ∧ (Z → P)
(e) S → Q
(f) (P ∧ Z) ∨ Q
(g) P ∧ (Z ∨ Q)
(h) The number n is prime or rational.
(i) If the number n is rational, then n

is both not prime and square.
(j) The number n is prime exactly

when n is not rational.
(k) The number n is not prime or both

an integer and not rational.

Question 1.1.4

(a) sentence, outer parentheses may
be dropped

(b) nonsentence, missing parentheses
(c) nonsentence, adjacent connec-

tives
(d) sentence
(e) sentence
(f) nonsentence, ∧ is the conjunction

(or “and”) symbol, not &

1.2 Truth and Sentential Logic

Question 1.2.1

(a) p (∼p) (∼p) ∨ p

T F T
F T T

(b) p q ∼p ∼q (∼p) ∧ (∼q)

T T F F F
T F F T F
F T T F F
F F T T T

602
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Question 1.2.2

(a) contradiction
p (∼p) p↔ (∼p)

T F F
F T F

(b) tautology
p p↔ p

T T
F T

(c) contingency
p q p ∨ q p↔ (p ∨ q)

T T T T
T F T T
F T T F
F F F T

(d) contingency
p q p ∧ q p↔ (p ∧ q)

T T T T
T F F F
F T F T
F F F T

Question 1.2.3

(a) p q p ∧ q ∼ (p ∧ q)

T T T F
T F F T
F T F T
F F F T

p q ∼p ∼q (∼p) ∨ (∼q)

T T F F F
T F F T T
F T T F T
F F T T T

(b) p q p ∨ q ∼ (p ∨ q)

T T T F
T F T F
F T T F
F F F T

p q ∼p ∼q (∼p) ∧ (∼q)

T T F F F
T F F T F
F T T F F
F F T T T

1.3 An Algebra for Sentential Logic

Question 1.3.1

(a) p ∨ q ≡ ∼[∼ (p ∨ q)]
≡ ∼[(∼p) ∧ (∼q)]

(b) p→ q ≡ (∼p) ∨ q
≡ (∼p)∨ (∼∼q) ≡∼[p∧ (∼q)]

(c) p↔ q ≡ (p→ q) ∧ (q→ p)
≡ [∼[p∧ (∼q)]]∧ [∼[q∧ (∼p)]]

Question 1.3.2

(a) [p ∧ (∼q)] ∨ [(∼p) ∧ q]

(b) [p ∧ q ∧ (∼r)] ∨ [(∼p) ∧ q ∧
(∼r)] ∨ [(∼p) ∧ (∼q) ∧ (∼r)]

Question 1.3.3

Given adequate Proving adequate
{∼,∧,∨} {∼,∨}
∼p ≡ ∼p

p ∧ q ≡ ∼[(∼p) ∨ (∼q)]
p ∨ q ≡ p ∨ q
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1.4 Application: Designing Computer Circuits

Question 1.4.1

(a) top = ∼p = ∼1 = 0
middle = p ∧ q = 1 ∧ 1 = 1
bottom = q ∨ r = 1 ∨ 1 = 1
0 ∨ 1 ∨ 1 = 1

(b) top = ∼p = ∼0 = 1
middle = p ∧ q = 0 ∧ 1 = 0
bottom = q ∨ r = 1 ∨ 0 = 1
1 ∨ 0 ∨ 1 = 1

Question 1.4.2

(a) [p ∧ (∼q)] ∨ [(∼p) ∧ q]
(b) [p ∧ q ∧ (∼r)] ∨ [(∼p) ∧ q ∧

(∼r)] ∨ [(∼p) ∧ (∼q) ∧ (∼r)]
Question 1.4.3

∼q

Question 1.4.4

q ∨ [(∼p) ∧ (∼r)]

1.5 Natural Deductive Reasoning

Question 1.5.1

(a) p q p ∧ q (p ∧ q)→ p

T T T T
T F F T
F T F T
F F F T

(b) p q p→ q ∼q ∼p [(p→ q) ∧ (∼q)] → (∼p)

T T T F F T
T F F T F T
F T T F T T
F F T T T T

(c) p q p ∨ q ∼p [(p ∨ q) ∧ (∼p)] → q

T T T F T
T F T F T
F T T T T
F F F T T

Question 1.5.2

(a) row 3
p q p→ q ∼p ∼q [(p→ q) ∧ (∼p)] → (∼q)

T T T F F T
T F F F T T
F T T T F F
F F T T T T
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(b) row 1
p q p ∨ q ∼q [(p ∨ q) ∧ p] → (∼q)

T T T F F
T F T T T
F T T F T
F F F T T

Question 1.5.3

1. premise
2. premise
3. 2,3—modus tollens
4. premise
5. 3,4—modus tollens
6. 5—double negation
7. premise
8. 6,7—modus ponens

Question 1.5.4

1. premise
2. premise

3. 2—DeMorgan’s laws
4. 3—conjunctive simplification
5. 1,4—modus tollens
6. 5—DeMorgan’s laws
7. 6—double negation
8. premise
9. 7,8—disjunctive syllogism

Question 1.5.5

p = F; q = T

Question 1.5.6

p = T ; q = T

1.6 The Formal Language of Predicate Logic

Question 1.6.1

(a) B ∨ A

(b) A→ (∼D)

(c) (∼C) ∧ (∼B)

(d) P ∧ T

(e) O→ G

(f) (∼O) ∧ T

Question 1.6.2

Z(x): x is an integer

A(x, y): x is the antiderivative of y

3: three

t: three

a(3, 3): sum of 3 and 3

Question 1.6.3

(a) [L(c, b) ∨ L(c, d)]
(b) L(d, c) →∼L(d, m)
(c) [∼L(b, c)] ∧ [∼L(c, b)] or
∼[L(b, c) ∨ L(c, b)]

(d) P(2) ∧ E(2)
(e) O(5)→ E[a(5, 5)]
(f) [∼E(5)] ∧ E(2)

Question 1.6.4

(a) ∃xL(b, x)
(b) ∃x[L(x, x) ∧ L(x, d)]
(c) ∀x[L(x, c)→ L(x, m)]
(d) ∃x[P(x) ∧ O(x)]
(e) ∀n[E(n)→ E(s(n))]
(f) ∀n[E(n)→ E(s(n))]



606 Answers to Questions

Question 1.6.5

(a) ∀x∃y L(x, y)
(b) ∃x∀y L(x, y)
(c) ∀x[∃yL(x, y)→ ∃zL(z, x)] or
∀x[∃yL(x, y)→ ∃yL(y, x)]

(d) ∀x∀y{[E(x)∧E(y)] →∼P(x+y)}
(e) ∼∃x∃y[E(x) ∧ O(y) ∧ E(x + y)]
(f) ∃x∃y[(x + y)2 = x2 + y2]

1.7 Fundamentals of Mathematical Proofs

Question 1.7.1

Let m and n be even integers. Then there
exist i ∈ Z such that m = 2i. Then m · n =
2i · n = 2(in), so m · n is even.

Question 1.7.2

Let x ∈ Q∗ = Q \ {0}, let y ∈ R \ Q,
and suppose x · y ∈ Q. Then there exist
p, q, r, s ∈ Z with p, q, s 	= 0 such that
x = p/q and x · y = r/s. Therefore,
we have

p

q
y = r

s
⇒ y = q

p

r

s
= qr

ps

Since p, s 	= 0, ps 	= 0 by the zero product
property, and so y ∈ Q. This contradicts
the assumption that y ∈ R \Q.
If x = 0, then x · y = 0 · y = 0 ∈ Q for all
y ∈ R.

Question 1.7.3

Contrapositive: If n is not odd, then n2 is
not odd. or

Contrapositive: If n is even, then n2 is
even.
Let n be even. Then n = 2k for some
k ∈ Z. Thus, n2 = n · n = 2k · n = 2(kn),
which is even.

Question 1.7.4

(a) 3 is odd and prime.
(b)
√

2 is irrational, so is π , and
many other reals.

Question 1.7.5

(a) Every odd prime provides a
counterexample; consider the
odd prime 3 = 2 · 1+ 1.

(b) Both n = 3 and n = 4 provide
counterexamples. When n = 3 >

2, then 32 = 9 	≥ 25. When n =
4 > 2, then 42 = 16 	≥ 25.

Question 1.7.6
√

2 is irrational, and so not every square
root is rational.

2.1 The Algebra of Sets

Question 2.1.1

A = {2, 3}
B = {1, 3, 5, 7, . . .} = odd positive
integers

Question 2.1.2

Every element of X is odd and so in Y ; in
particular, 1 = 2 · 0+ 1, 3 = 2 · 1+ 1, and
5 = 2 · 2+ 1. Therefore, X ⊆ Y .
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On the other hand, 7 ∈ Y since
7 = 2 · 3+ 1 is odd, but 7 	∈ X. Thus, X is
a proper subset of Y .

Question 2.1.3

a ∈ A iff {a} ⊆ A
(⇒) Assume a ∈ A. The only element
of {a} is a. By assumption a ∈ A, and so
every element of {a} is in A. Thus, {a} ⊆ A
by definition.
(⇐) Assume {a} ⊆ A. Then every
element of {a} is in A. Since a ∈ {a},
we have a ∈ A.

Question 2.1.4

XC = {. . . ,−2,−1, 0, 2, 4, 6, 7, 8, . . .}
W ∩ Y = {1}
W ∪ Y = {n : n is odd } ∪ {2}
W \ Y = {2}
Y \W = {n : n is odd and not 1}
X ×W = {(1, 1), (1, 2), (3, 1), (3, 2),

(5, 1), (5, 2)}
W ×W = { (1, 1), (1, 2), (2, 1), (2, 2) }
W × Y = { (1, n), (2, n) : n is odd }
P(X) = {∅, {1}, {3}, {5}, {1, 3}, {1, 5},

{3, 5}, {1, 3, 5}}
P(Y ) contains {1}, {3}, {5}, {7}, {1, 3},
{1, 5}, and many other sets.

Question 2.1.5

If x ∈ BC , then x 	∈ B. Since x ∈ A implies
x ∈ B, then x 	∈ B implies x 	∈ A. Then
x 	∈ A, and so x ∈ AC .

Question 2.1.6

a ∈ (A ∪ B)C iff a 	∈ A ∪ B

iff a not in A or B

iff a not in A and

a not in B

iff a 	∈ A and a 	∈ B

iff a ∈ AC and a ∈ BC

iff a ∈ AC ∩ BC

Question 2.1.7

Following the second approach suggested
by example 2.1.9, define A= {1}, B= {2},
and C = {2}. This gives us A∩ (B∪C) =
{1} ∩ {2} = ∅ and (A ∩ B) ∪ C = ∅ ∪
{2} = {2}, which are not equal to each
other.

Question 2.1.8

(a)

(A∪B)∩C

A B

C

(b)

A B

Question 2.1.9

We provide counterexamples disproving
the supposed “equalities.”

(a) Let A = {1}, B = {2}, and C =
{2}. Then (A ∪ B) ∩ C = {2},
while A ∪ (B ∩ C) = {1, 2}.

(b) Let A = {2}, B = {1}, and U =
{1, 2, 3}. Then AC \ B = {3},
while (A \ B)C = {1, 3}.



608 Answers to Questions

2.2 The Division Algorithm andModular Addition

Question 2.2.1

(a) q = 6 and r = 3
(b) q = −2 and r = 3
(c) q = 32 and r = 3
(d) q = −101 and r = 3

Question 2.2.2

(a) 1, 7, −5, −11
(b) 5, 11, −1, −7

Question 2.2.3

(a) 0, 0, 0, 0
(b) 9, 5, 1, 7
(c) 1, 1, 1, 0

Question 2.2.4

(a) for n = 3, {0, 1, 2}
(b) for n = 6, {0, 1, 2, 3, 4, 5}
(c) for n = 9, {0, 1, 2, 3, 4, 5, 6,

7, 8}
(d) for n, {0, 1, 2, . . . , n− 1}

Question 2.2.5

Z3 = {0, 1, 2}
Z6 = {0, 1, 2, 3, 4, 5}
Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Question 2.2.6

(a) 0+ 3 = 3 ∈ Z6

(b) 3+ 3 = 6 	∈ Z6

(c) 0+ 4 = 4 ∈ Z6

(d) 3+ 4 = 7 	∈ Z6

Question 2.2.7

(a) 1 ⊕ 4 = (1 + 4) mod 6 =
5 mod 6 = 5

(b) 4 ⊕ 5 = (4 + 5) mod 6 =
9 mod 6 = 3

(c) 2 ⊕ 4 = (2 + 4) mod 6 =
6 mod 6 = 0

(d) 3 ⊕ 4 = (3 + 4) mod 6 =
7 mod 6 = 1

Question 2.2.8

0⊕1 = (0+1) mod 6 = 1 mod 6 = 1;
1⊕0 = (1+0) mod 6 = 1 mod 6 = 1;
0⊕2 = (0+2) mod 6 = 2 mod 6 = 2;
2⊕0 = (2+0) mod 6 = 2 mod 6 = 2;
and similarly for a = 3, 4, 5, 0.

Question 2.2.9

(a) 2 ⊕ 4 = (2 + 4) mod 6 =
6 mod 6 = 0
4 ⊕ 2 = (4 + 2) mod 6 =
6 mod 6 = 0

(b) b = 3 since 3 ⊕ 3 = (3 +
3) mod 6 = 6 mod 6 = 0

(c) Since 5 ⊕ 1 = 6 mod 6 = 0 and
1 ⊕ 5 = 6 mod 6 = 0, we know
that 1 is the inverse of 5 under
addition mod 6.

2.3 Modular Multiplication and Equivalence Relations

Question 2.3.1

(a) 1 � 4 = (1 · 4) mod 7 =
4 mod 7 = 4

(b) 3 � 5 = (3 · 5) mod 7 =
15 mod 7 = 1

(c) 4 � 5 = (4 · 5) mod 7 =
20 mod 7 = 6

(d) 4 � 6 = (4 · 6) mod 7 =
24 mod 7 = 3
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Question 2.3.2

1� 0 = (1 · 0) mod 7 = 0 mod 7 = 0;
0� 1 = (0 · 1) mod 7 = 0 mod 7 = 0;
1� 1 = (1 · 1) mod 7 = 1 mod 7 = 1;
1� 1 = (1 · 1) mod 7 = 1 mod 7 = 1;
1� 2 = (1 · 2) mod 7 = 2 mod 7 = 2;
2� 1 = (2 · 1) mod 7 = 2 mod 7 = 2;
and similarly for the rest of Z7, namely

a = 3, 4, 5, 6.

Question 2.3.3

(a) if a = 1, then a−1 = 1 in Z7 since
1� 1 = 1

(b) if a = 2, then a−1 = 4 in Z7 since
2� 4 = 1 and 4� 2 = 1

(c) if a = 3, then a−1 = 5 in Z7 since
3� 5 = 1 and 5� 3 = 1

(d) if a = 6, then a−1 = 6 in Z7 since
6� 6 = 1

Question 2.3.4

U(5) = {1, 2, 3, 4} and U(6) = {1, 5}

Question 2.3.5

(a) ⊕ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(b) ⊕ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

(c) � 1 5

1 1 5
5 5 1

(d) � 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Question 2.3.6

(a) m = 7 and r = 1; m = 4 and r = 1;
m = −5 and r = 1

(b) {3k + 1 : k ∈ Z} = {. . . ,−5,

−2, 1, 4, 7, 10, . . .}
(c) for r = 0,
{3k : k ∈ Z} = {. . . ,−6,−3, 0, 3,

6, 9, . . .}
for r = 2,
{3k + 2 : k ∈ Z} = {. . . ,−4,

−1, 2, 5, 8, 11, . . .}

Question 2.3.7

[0] = {. . . ,−8,−4, 0, 4, 8, . . .} =
{4k : k ∈ Z}

[2] = {. . . ,−6,−2, 2, 6, 10, . . .} =
{4k + 2 : k ∈ Z}

Question 2.3.8

(a) 7/3 ∼ 28/12 since 7 · 12 = 94 =
3 · 28

(b) 7/3 	∼ 28/3 since 7 · 3 = 21 	=
84 = 28 · 3

(c) 3/4 ∼ 6/8 since 3 · 8 = 24 = 4 · 6
(d) 5/4 	∼ −10/8 since 5 · 8 = 40 	=
−40 = −4 · 10

Question 2.3.9

(a) By the reflexivity of equality of
integers, m · n = m · n and so
m/n ∼ m/n.

(b) If m/n ∼ s/t, then m · t = n · s.
By the symmetry of equality of
integers, n · s = m · t and so
s/t ∼ m/n.
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(c) If m/n ∼ s/t and s/t ∼ u/v, then
m · t = n · s and s · v = t · u.
Multiplying provides the equality
(m · t)(s · v) = (n · s)(t · u). By
commutativity of integer multi-
plication, (st)(mv) = (st)(nu), and
so m · v = n · u (note that either
m, s, u 	= 0, or else m = s =
u = 0). Thus, m/n ∼ u/v.

Question 2.3.10

(a)

[
2

4

]
=
{

2n

4n
: n ∈ Z

}
=
{ n

2n
: n ∈ Z

}

(b)

[
5

3

]
=
{

5n

3n
: n ∈ Z

}

2.4 An Introduction to Groups

Question 2.4.1

(a) No. Z is closed under addition.
(b) 1+ (2+ 3) = 1+ 5 = 6 and (1+

2) + 3 = 3 + 3 = 6. These sums
are equal and such an equality
holds for every triple of integers;
that is, for every a, b, c ∈ Z, we
have a+ (b+ c) = (a+ b)+ c.

(c) 0+ a = a = a+ 0 for every a ∈ Z

(d) For a = 3, add −3, and for n,
add −n. Thus, n + (−n) = 0 =
(−n)+ n.

Property (a) is closure, (b) is asso-
ciativity, (c) is identity, and (d) is
inverses.

Question 2.4.2

(a)
p

q
· r

s
= pr

qs
. Since q, s 	= 0, the

zero product property implies that
qs 	= 0.

(b)
1

2
·
[

3

5
· 8

7

]
= 1

2
· 24

35
= 12

35
;[

1

2
· 3

5

]
· 8

7
= 3

10
· 8

7
= 12

35
;

m

n
·
[

p

q
· r

s

]
= m

n
· pr

qs
= m(pr)

n(qs)
=

(mp)r

(nq)s
= mp

nq
· r

s
=
[

m

n
· p

q

]
· r

s
.

(c) The identity is 1 = 1
1 .

(d)

[
3

2

]−1

= 2

3
; and

[m

n

]−1 = n

m

for
m

n
	= 0.

(e) The inverse axiom fails for zero.

Question 2.4.3

(a) By the division algorithm
r ∈ {0, . . . , n− 1},
and so the possible values of a⊕ b
are the elements of Zn; that is,
a⊕ b ∈ Zn for every a, b ∈ Zn.

(b) (4 ⊕ 5) ⊕ 3 = 3 ⊕ 3 = 0 and
4⊕ (5⊕ 3) = 4⊕ 2 = 0
(2 ⊕ 5) ⊕ 1 = 1 ⊕ 1 = 2 and
2⊕ (5⊕ 1) = 2⊕ 0 = 2

(c) 0 is the identity since for every
a ∈ Zn, both a⊕ 0 = a and
0⊕ a = a.

(d) 0 ⊕ 0 = (0 + 0) mod n =
0 mod n = 0
(n − a)⊕ a = (n − a + a) mod n
= n mod n = 0 and
a ⊕ (n − a) = (a + n − a) mod n
= n mod n = 0

Question 2.4.4

(a) h = 5 and k = −2
(b) h = 2 and k = −3
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2.5 Dihedral Groups

Question 2.5.1

(a) R240

(b) R240

(c) R120

(d) R0

(e) R240

(f) R120

Question 2.5.2

◦ R0 R120 R240 FT FR FL

R0 R0 R120 R240 FT FR FL

R120 R120 R240 R0 FR FL FT

R240 R240 R0 R120 FL FT FR

FT FT FL FR R0 R240 R120

FR FR FT FL R120 R0 R240

FL FL FR FT R240 R120 R0

Question 2.5.3

(a) R120 ◦ [FT ◦ R240]
= R120 ◦ FR = FL

[R120 ◦ FT ] ◦ R240

= FR ◦ R240 = FL

(b) FT ◦ [R120 ◦ FR]
= FT ◦ FL = R120

[FT ◦ R120] ◦ FR

= FL ◦ FR = R120

Question 2.5.4

The identity is R0 and the inverses are
given by
R−1

0 = R0, R−1
120 = R240, R−1

240 = R120,

F−1
T = FT , F−1

L = FL, and F−1
R = FR.

Question 2.5.5

(a) True
(b) False
(c) False
(d) True
(e) False
(f) True
(g) True
(h) False

Question 2.5.6

(a) C(R240) = {R0, R120, R240 }
(b) C(FR) = {R0, FR}
(c) C(FL) = {R0, FL}

Question 2.5.7

Let A = R240.

2.6 Application: Check Digit Schemes

Question 2.6.1

(a) 23455
(b) 46755
(c) 3455
(d) 3456547655

Question 2.6.2

(a) Valid since 15 mod 10 = 5.
(b) Invalid since 1253 mod 10 =

3 	= 2.

Question 2.6.3

(a) Incorrect last digit, so 18988 would be
correct; incorrect next to last digit, so
18933 would be correct; or both of the
last digits could be incorrect, so that
one of 18911, 18922, 18944, 18955,
18966, 18977, or 18999 would be
correct.

(b) The mod 10 check digit scheme does
not detect this error, since the scheme
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only checks if 1234 mod 10 = 4,
and does not check the third
position.

(c) The mod 10 check digit scheme
does not detect this error—the
scheme only checks if the last
two digits are equal.

(d) Time for a new check digit
scheme!

Question 2.6.4

(a) 23455
(b) 46754
(c) 3453
(d) 3456547650

Question 2.6.5

(a) Invalid. If an error occurred in the
last position, the correct record
number is 156, or perhaps some
other error occurred.

(b) Valid.

Question 2.6.6

(a) Since 1284 mod 9 = 6 	= 1, the
mod 9 scheme detects this error.

(b) Since 1888 mod 9 = 7 	= 8, the
mod 9 scheme detects this error.

(c) Since 1808 mod 9= 8, the mod 9
scheme does not detect this error.

(d) Since 1294 mod 9= 7, the mod 9
scheme does not detect this error.

In (c), the digit 0 is substituted for 9; and
in case (d), the digit 9 is substituted for 0.

Question 2.6.7

(a) 3124 mod 9 = 1; 4123 mod 9 = 1;
2314 mod 9 = 1; and there are others.

(b) Integer addition is commutative, so
transpositions (switching positions of
digits) are not detected.

(c) a1 · · · an mod 9

= (a1 + · · · + an) mod 9

= (ak1 + · · · + akn ) mod 9

= ak1 · · · akn mod 9

Question 2.6.8

8479− 2642− 1937− 847∧5

Question 2.6.9

Invalid—the check digit should be
2 rather than 4. These examples indicate
that the Codabar check digit scheme
detects all single-digit errors.

Question 2.6.10

(a) 1234∧0
(b) 1235∧4
(c) 1284∧7
(d) 2134∧9

Question 2.6.11

(a) The check digit should be c = 0.
(b) The check digit should be c = 2.
(c) The check digit should be c = 8.
(d) The check digit should be c = 5.

3.1 Prime Numbers

Question 3.1.1

(a) True

(b) False—r = 4

(c) False—r = 7

(d) True

Question 3.1.2

The positive integer divisors of 98 are
1, 2, 7, 14, 49, 98.
The positive integer divisors of 120 are
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30,
40, 60, 120.
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Question 3.1.3

(a) 11 is prime.
(b) 34 is nonprime with positive

integer divisors 1, 2, 17, 34.
(c) −3 is nonprime (since −3 	> 2)

with positive integer divisors 1
and 3.

(d) 1 is nonprime (since 1 	> 2) with
positive integer divisor 1.

(e) 83 is prime.
(f) 6 is nonprime with positive

integer divisors 1, 2, 3, and 6.

Question 3.1.4

Only one prime is even—two.
If n is even, then n = 2j; if n 	= 2, then n
is divisible by the distinct integers 1, 2, j,
and 2j.

Question 3.1.5

(a) The first 10 primes: 2, 3, 5, 7, 11,
13, 17, 19, 23, 29.

(b) The first 10 positive nonprimes:
1, 4, 6, 8, 9, 10, 12, 14, 15, 16.

Question 3.1.6

(a) 30 = 2 · 3 · 5
(b) 5 = 5
(c) 12 = 22 · 3
(d) 27 = 33

Question 3.1.7

(a) 2 and 3
(b) 2 and 3

Question 3.1.8

28,17,1962,000 = 24 · 35 · 53 · 73 · 132

Question 3.1.9

(a) 2+ 1 = 3 is prime;
2 · 3+ 1 = 7 is prime;
2 · 3 · 5+ 1 = 31 is prime; and
2 · 3 · 5 · 7+ 1 = 211 is prime.

(b) It appears that p1 · · · pn + 1 is prime.
(c) 2 · 3 · 5 · 7 · 9 · 11 · 13+ 1 = 30031 =

59 · 509
(d) The number p1 · · · pn+ 1 is not divis-

ible by any of the primes p1, . . . , pn.

3.2 Application: Introduction to Coding Theory and Cryptography

Question 3.2.1

(a) TWO IS PRIME
(b) 13 | 01 | 20 | 08 | 09 | 19 | 06 |

21 | 14

Question 3.2.2

(a) 16 | 08 | 15 | 14 | 05 | 08 | 15 |
13 | 05

(b) 11 | 08 | 15 | 14 | 10 | 08 | 15 |
13 | 10

(c) FERMAT

Question 3.2.3

(a) 0979 | 0079 | 1391 | 0850 | 0098 |
1282 | 0001 | 1188 | 1101

(b) TWO IS EVEN

Question 3.2.4

(a) •
[
2 −10

] · [13
1

]
= 26− 10 = 16

•
[
2 8 10

] ·
⎡⎣3

5
1

⎤⎦ = 6 + 40 + 10

= 56
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(b) The product is only defined if the
length of the row vector is the
same as the length of the column
vector.

Question 3.2.5

(a) •

[
123 46
50 18

]
•
[−11 2 −30

]
(b) The product AB is only defined

if the number of columns of A is
the same as the number of rows
of B, but 2 	= 3.

Question 3.2.6[
0 1 1 1 0 0 0

][
0 0 1 1 1 1 0

][
1 0 1 0 0 1 0

]
Question 3.2.7

(a)
[
1 1 1 1 1 0 0

]
has a sin-

gle digit error in the fourth position
and corrects as[
1 1 1 0 1 0 0

]
(b)

[
0 1 1 1 0 0 1

]
has a sin-

gle digit error in the seventh position
and corrects as[
0 1 1 1 0 0 0

]

3.3 From the Pythagorean Theorem to Fermat’s Last Theorem

Question 3.3.1

(a) L = a+ b and
AE = L2 = (a+ b)2

(b) L = c and AI = L2 = c2

(c) AT = 1
2 ab

(d) AE = AI + 4AT = c2 + 4 1
2 ab

(e) (a+ b)2 = c2 + 2ab

a2 + 2ab+ b2 = c2 + 2ab

a2 + b2 = c2

Question 3.3.2

(a) c = 5
(b) c = 7.623 . . .

(c) b = 15
(d) b = 12.961 . . .

Question 3.3.3

(a) 52 + 122 = 25+ 144
= 169 = 132

(b) 102 + 242 = 262

(c) 152 + 362 = 392

(d) (5n)2 + (12n)2 = (13n)2

Question 3.3.4

The Diophantine equation x2 − y = 0
has solutions x = 1, y = 1; and x = −1,

y = 1; one nonDiophantine equation is
x − y = √2. There are many other
examples.

Question 3.3.5

x = 4, y = 2; x = 9, y = 3; and x = 24,
y = 4.

Question 3.3.6

If b and c are both even, they have a com-
mon prime divisor of two—contradicting
theorem 3.3.4.
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3.4 Irrational Numbers and Fields

Question 3.4.1

(a) 2 = 2/1 and −3 = −3/1
(b) k = k/1
(c) 1/2 	∈ Z

(d) Infinitely many.

Question 3.4.2

(a)
2,965

10,000
= 593

2,000

(b)
10,505

100
= 2,101

20

(c)
22,965

10,000
= 4,593

2,000

(d)
10,505

10,000
= 2,101

20,000

Question 3.4.3

(a)
√

3n = m, so m2 = 3n2.
(b) If 3 divides n2, then 3 divides m

and m = 3k.
(c) If m2 = 3n2, then 32k2 = 3n2 and

3k2 = n2. In this case, 3 divides
m2, so 3 divides m and m = 3j.

(d) 3 is a common factor of m and n.
(e) This contradicts the assumption

that m and n have no common
factors, and so

√
3 is irrational.

(f) The proof is the same as that for
theorem 3.4.1 with 3 substituted
for 2 throughout the proof.

Question 3.4.4

The proof is the same as that for
theorem 3.4.1 with p substituted for 2
throughout the proof.

Question 3.4.5

(a) 0
(b) −r

(c) r = 0
(d) 1

(e) r−1 = 1

r

Question 3.4.6

(a) (1+ i)+ (3+ 5i) = 4+ 6i
(1+ i) · (3+ 5i) = −2+ 8i

(b) 2+ i and 2i

(c) (2− i)+ (−4+ 3i) = −2+ 2i
(2− i) · (−4+ 3i) = −5+ 10i

(d) i + (3+ 5i) = 3+ 6i
i · (3+ 5i) = −5+ 3i

Question 3.4.7

(a) (a+ bi)+ (0+ 0i) = (a+ 0)+
(b+ 0)i = a+ bi
(0+ 0i)+ (a+ bi) = (0+ a)+
(0+ b)i = a+ bi

(b) −a− bi

(c) (a+ bi)+ (c+ di)

= (a+ c)+ (b+ d)i

= (c+ a)+ (d + b)i

= (c+ di)+ (a+ bi)

(d) (a+ bi) · (1+ 0i) = a+ 0bi+ 0ai+
bi = a+ bi
(1+ 0i) · (a+ bi) = a+ 0bi+ 0ai+
bi = a+ bi

(e)
1

a+ bi
= a− bi

(a+ bi)(a− bi)

= a

a2 + b2
+ −b

a2 + b2
i

(f) (a+ bi) · (c+ di)

= (ac− bd)+ (ad + bc)i

= (ca− db)+ (da+ cb)i

= (c+ di) · (a+ bi)
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(g) (a+ bi) · [(c+ di)+ (e+ fi)]
= (a+ bi) · [(c+ e)+ (d + f )i]
= [a(c+ e)− b(d + f )]
+ [b(c+ e)+ a(d + f )]i
= [ac+ ae− bd − bf ]
+ [bc+ be+ ad + af ]i
= [ac− bd] + [bc+ ad]i
+ [ac− bf ] + [be+ af ]i

= (a+bi) · (c+di)+ (a+bi) · (e+fi)

Question 3.4.8

(a) Z5 = {0, 1, 2, 3, 4}
(b) ⊕ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

(c) Since only elements of Z5 appear in
the Cayley table, Z5 is closed under
⊕, addition mod 5.

(d) 0

(e) −0 = 0; −1 = 4; −2 = 3; −3 = 2;
−4 = 1

(f) � 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

(g) Since only elements of U(5) appear in
the Cayley table, U(5) is closed under
�, multiplication mod 5.

(h) 1
(i) 1−1 = 1; 2−1 = 3; 3−1 = 2; 4−1 = 4
(j) 2� (3⊕ 4) = 2� 2 = 4

(2� 3)⊕ (2� 4) = 1⊕ 3 = 4

Question 3.4.9

(a) Z4 = {0, 1, 2, 3}
(b) ⊕ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(c) � 1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

(d) 2 has no inverse under multipli-
cation mod 4.

3.5 Polynomials and Transcendental Numbers

Question 3.5.1

(a) Degree 4 with a4 = 3, a3 = 2,
a2 = −7, a1 = 5, and a0 = −1.
One possible finite field is
F = Z11.

(b) Degree 5 with a5 = 2, a4 = 0,
a3 = 0, a2 = 4, a1 = 1, and
a0 = 0. One possible finite field
is F = Z5.

(c) Degree 3 with a3 = 1 + i, a2 = 0,
a1 = 2i, and a0 = −4.

(d) Degree 7 with a7 = 2i, a6 = a5 =
a4 = a3 = a2 = a1 = 0, and a0 =
1+ i.

Question 3.5.2

There are many possible answers, includ-
ing x17, x2, x, and 1.
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Question 3.5.3

There are many possible answers,
including cos(x2 + 1), ln(x2 + 1), and
arctan(x2 + 1).

Question 3.5.4

(a) 2 · 33 − 5 · 32 − 9 · 3+ 18 = 0
(b) Using mod 6 arithmetic, 2 · 33 +

32 + 3 · 3 = 72 = 0( mod 6)
(c) 2 · 23− 5 · 22− 9 · 2+ 18 = −4
(d) 2 · i3 + 3 · i2 + 2 · i + 3 = 0

Question 3.5.5

(a) There are many such polyno-
mials, including (2 + i)x2 −
4x + 3.

(b) There are many such polynomi-
als, including x2 + 1.

(c) There are many such polynomi-
als, including x2 − 6x + 25.

(d) There are many such polynomi-
als, including x − 1.

Question 3.5.6

(a) x = 4 has multiplicity 1.
(b) x = 1 has multiplicity 2.

(c) x = 1, x = −1

2
+
√

3

2
i, and

x = −1

2
−
√

3

2
i each have

multiplicity 1.

(d) x = 1, x = −1, x = i, and x = −i
each have multiplicity 1.

Question 3.5.7

(a) x = 2

(b) x = 4
√

2

(c) x = −(π + 1)

e

(d) x = 24

13
− 36

13
i

Question 3.5.8

(a) x = −2 has multiplicity 2.

(b) x = −1

3
and x = 2.

(c) x = 1

4
±
√

159

12
i

(d) x = 1

2
±
√

2

4

Question 3.5.9

The del Ferro–Tartaglia solution is
x1 = −4.

Question 3.5.10

(a) a = 1, b = −6, c = 11, d = −6
(b) m = −1 and n = 0
(c) y1 = 0
(d) x1 = 2
(e) x2 = 1 and x3 = 3

3.6 Mathematical Induction

Question 3.6.1

Base case. For n = 1,
2∑

i=1

2 = 2 = 2 · 1.

Inductive step. Assume
n∑

i=1

2 = 2n and

prove that
n+1∑
i=1

2 = 2(n + 1). Then the

following equalities hold

n+1∑
i=1

2 =
[

n∑
i=1

2

]
+ 2

= 2n+ 2

= 2(n+ 1).
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Question 3.6.2

Base case. For n= 5, 52 = 25 < 32= 25.
Inductive step. Assume n2 < 2n and
prove that (n + 1)2 < 2n+1. Then the
following relations hold

(n+ 1)2 = n2 + 2n+ 1

< 2n + 2n+ 1

< 2n + 2n

= 2 · 2n

= 2n+1

Question 3.6.3

a1 = 1, a2 = 3, a3 = 1 + 2 · 3 = 7,
a4 = 3+2 ·7 = 17, a5 = 7+2 ·17 = 41,
and a6 = 17+ 2 · 41 = 99.

Question 3.6.4

Base case. b1 = 9/10 < 1 and b2 =
10/11 < 1.
Inductive step. Assume bn = r < 1 and
bn+1 = q < 1 and prove that bn+2 < 1.
Since the product of two positive num-
bers less than 1 is also less than 1,
we have

bn+2 = bn · bn+1 = r · q < 1.

Question 3.6.5

(B ∨ C) has 1 + m + n left parentheses
and m + n + 1 right parentheses; these
numbers are the same, and so (B ∨ C)
has the same number of left and right
parentheses. The proofs for (B→ C) and
(B↔ C) are identical.

4.1 Analytic Geometry

Question 4.1.1

There are many such points, including
(0, 5), (1, 7), and (−1, 3); we call such a
curve a line.

Question 4.1.2

(a) D = 2
√

2
(b) D = √35

Question 4.1.3

(a) (x − 1)2 + (y − 1)2 = 1
(b) (x + 2)2 + (y − 5)2 = 64
(c) (x − 2)2 + (y + 4)2 = 1
(d) (x + 3)2 + (y + 4)2 = 25

Question 4.1.4

(a) x2 + y2 = 1
(b) (

√
3/2, 1/2) and (

√
3/2,−1/2)

(c) There are many such points, including
(1, 0), (0, 1), (0,−1), and (0,−1).

Question 4.1.5

(a)
x = cos θ 1

√
3/2

√
2/2 1/2 0

y = sin θ 0 1/2
√

2/2
√

3/2 1

(b) cos(45◦) = √2/2 = sin(45◦)
cos (π/3) = 1/2 and sin (π/3) =√

3/2

(c) tan(0) = 0
tan (π/6) = 1/

√
3

tan (π/4) = 1
tan (π/3) = √3
tan (π/2) = undefined

Question 4.1.6

(a) Algebraic manipulations similar
to those in example 4.1.3 enable
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us to begin with√
(x + c)2 + (y − 0)2

−
√

(x − c)2 + (y − 0)2 = 2K

and obtain

x2

K2
+ y2

K2 − c2
= 1.

Since K < c, we have K2 −
c2 < 1 and so c2 − K2 > 1.
Defining a = K and b =√

c2 − K2 provides the desired
equation

x2

a2
+ y2

−b2
= 1.

(b) For foci (−4, 0) and (4, 0), we
have c = 4 and 2K = 6 implies
K = 3. Substituting into the
equation from part (a) yields

x2

32
+ y2

−(42 − 32)
= 1

⇒ x2

9
+ y2

−7
= 1.

Question 4.1.7

(b) A linear pattern.
(c) x = 2y

Question 4.1.8

(a) (−4, 4), (−3, 3), (−2, 2), (−1, 1),
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)

(b) The line y = x when x ≥ 0 and the
line y = −x when x < 0.

(c) y = |x|

Question 4.1.9

Many different graphs satisfy the stated
conditions.

Question 4.1.10

(a) y = −2x + 15

(b) d = (−2) · 1+ 15− 2√
(−2)2 + 1

= 11√
5

.

(c) base = 2
√

5 and area = 1/2 · 2√5 ·
11/
√

5 = 11

Question 4.1.11

(a) 4x+ 4y+ 4z = 4+ 4+ 4⇒ x+ y+
z = 3

(b) (3, 0, 0), (0, 3, 0), and (0, 0, 3).

Question 4.1.12

Squaring both sides of√
(x − h)2 + (y − j)2 + (z − k)2 = r

results in (x − h)2 + (y − j)2 +
(z − k)2 = r2.

4.2 Functions and Inverse Functions

Question 4.2.1

(a) Not a function since 3 maps to
both 6 and 25.

(b) A function since every input
maps to a unique output. The
domain is D = {0, 1, 2, 3, 4} and
the range is R = {0, 1, 4, 9, 16}.

(c) A function since every input
maps to a unique output. The
domain is D = N and the range
is R = N.

(d) A function since every input
maps to a unique output. The
domain is D = N and the range
is R = {2}.
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(e) Not a function since 2 maps to
every natural number.

Question 4.2.2

(a) For one-to-one:

f (a) = f (b)

⇒ 12a− 10 = 12b− 10

⇒ 12a = 12b

⇒ a = b.

For onto: Let a ∈ R. Then
(a+ 10)/12 ∈ R and

f

(
a+ 10

12

)
= 12

[
a+ 10

12

]
− 10

= [a+ 10] − 10 = a.

(b) The function f (x) = sin(x) is not
one-to-one since sin(0) = 0 and
sin(π) = 0, but 0 	= π . Also, this
function is not onto since 2 ∈ R

(the target space), but sin(x) 	= 2
for every x ∈ R. However, if
the domain is restricted to D =
[−π/2, π/2] and the range is
restricted to R = [−1, 1], then
the resulting function is both
one-to-one and onto.

Question 4.2.3

(a) f −1 : {x ∈ R : x ≥ −5} is alge-
braically defined by f −1(x) =√

x + 5

3
.

(b) (f −1 ◦ f )(x) = f −1(f (x))

= f −1(3x2 − 5)

=
√

(3x2 − 5)+ 5

3

=
√

3x2

3

=
√

x2

= x

(c) (f ◦ f −1)(x) = f (f −1(x))

= f

(√
x + 5

3

)

= 3

(√
x + 5

3

)2

− 5

= 3

(
x + 5

3

)
− 5

= (x + 5)− 5

= x

Question 4.2.4

y = ln[(x − 3)4]
12

⇒ 12y = ln[(x − 3)4]

⇒ e12y = (x − 3)4

⇒ e3y = x − 3

⇒ e3y + 3 = x

Question 4.2.5

(a) The six points are:
(−2, 1

4

)
,
(−1, 1

2

)
,

(0, 1), (1, 2), (3, 8), (5, 32).

4.3 Limits and Continuity

Question 4.3.1

(a) lim
x→0

f (x) does not exist

(b) lim
x→1

f (x) = 1

(c) lim
x→2

f (x) does not exist
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(d) lim
x→2.5

f (x) = 2

(e) lim
x→3

f (x) = 2

(f) lim
x→4

f (x) = 1

Question 4.3.2

(a) Let ε > 0 be a real number and
define δ = ε/4. Assuming 0 <

|x − 3| < δ,

| f (x)− L| = |4x − 10− 2|
= |4x − 12|
= 4|x − 3|

< 4 · δ = 4 · ε
4
= ε.

(b) Let ε > 0 be a real number and
define δ = ε/2. Assuming 0 <

|x − 1| < δ,

| f (x)− L| = | − 2x + 5− 3|
= | − 2x + 2|
= 2|x − 1|

< 2 · δ = 2 · ε
2
= ε.

(c) Let ε > 0 be a real number and
define δ = ε/4. Assuming 0 <

|x − 5| < δ,

| f (x)− L| = |4x + 15− 35|
= |4x − 20|
= 4|x − 5|

< 4 · δ = 4 · ε
4
= ε.

Question 4.3.3

(a) Let ε > 0 be a real number
and define δ = min{1, ε/11}.

Assuming 0 < |x − 5| < δ,

| f (x)− L| = |x2 − 25|
= |x + 5| · |x − 5|
< 11 · δ ≤ 11 · ε

11
= ε.

(b) Let ε > 0 be a real number and define
δ = min{1, ε/3}. Assuming
0 < |x − 3| < δ,

| f (x)− L| = |(x − 2)2 − 1|
= |x2 − 4x + 3|
= |x − 1| · |x − 3|
< 3 · δ ≤ 3 · ε

3
= ε.

(c) Let ε > 0 be a real number and define
δ = min{1, 2ε}. Assuming
0 < |x − 3| < δ,

| f (x)− L| =
∣∣∣∣ 1

x − 1
− 1

2

∣∣∣∣
=
∣∣∣∣2− (x − 1)

2(x − 1)

∣∣∣∣
= 1

2|x − 1| · |x − 3|

<
1

2
· δ ≤ 1

2
· 2ε = ε.

(d) Let ε > 0 be a real number and define
δ = min{1, 20ε}. Assuming
0 < |x − 2| < δ,

| f (x)− L| =
∣∣∣∣ 1

x + 3
− 1

5

∣∣∣∣
=
∣∣∣∣5− (x + 3)

5(x + 3)

∣∣∣∣
= 1

5|x + 3| · |x − 2|

<
1

20
· δ ≤ 1

20
· 20ε = ε.

Question 4.3.4

(a) Assume lim
x→a

f (x) = L and lim
x→a

f (x) =
M with L 	= M.
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(b) Let ε = |L −M|/2, then
there exists δL > 0 such
that 0 < |x − a| < δL implies
| f (x) − L| < ε and there
exists δM > 0 such that
0 < |x − a| < δM implies
| f (x)−M| < ε.

(c) Let δ =min{δL, δM}. Then if 0 <

|x − a| < δ, both | f (x)− L| < ε

and | f (x)−M| < ε.
(d) The contradiction follows from

the fact that ε is half the distance
between L and M and so f (x)
cannot be both closer to L than
M and closer to M than L.

Question 4.3.5

Let ε > 0. Since lim
x→a

f = L, there exists

δL > 0 such that 0 < |x − a| < δL

implies | f (x)−L| < ε/2. Similarly, since
lim
x→a

g = M, there exists δM > 0 such that

0 < |x − a| < δM implies |g(x) − M| <
ε/2. Choose δ = min{δL, δM} so that both
inequalities involving ε/2 are true when
0 < |x − a| < δ. Therefore, when 0 <

|x − a| < δ,

| f (x)+ g(x)− (L +M)|
= | f (x)− L + g(x)−M|
≤ | f (x)− L| + |g(x)−M|
<

ε

2
+ ε

2
= ε.

Question 4.3.6

(a) Let ε > 0 be a real number and
define δ = ε/2. Assuming 0 <

|x − 5| < δ,

| f (x)− f (a)| = |2x − 3− 7|
= |2x − 10|
= 2|x − 5|
< 2 · δ = 2 · ε

2
= ε.

(b) Let a ∈ R and ε > 0 be a real number.
Define δ = ε/2 and, assuming 0 <

|x − a| < δ,

| f (x)− f (a)| = |(2x − 3)− (2a− 3)|
= |2x − 2a|
= 2|x − a|

< 2 · δ = 2 · ε
2
= ε.

Question 4.3.7

(a) lim
x→3

4x − 10 = 12− 10 = 2

(b) lim
x→2

x2 = 22 = 4

(c) lim
x→4

1

x − 2
= 1

4− 2
= 1

2

(d) lim
x→0

1

(x − 3)2
= 1

9

Question 4.3.8

(a) lim
x→3

x − 3

x2 + x − 12
= 1

7
.

The following redefined function is
continuous at x = 3:

g(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − 3

x2 + x − 12
if x 	= 3

1

7
if x = 3.

(b) lim
x→3

5x − 2

5x2 − 32x + 12
= −1

3
.

The following redefined function is
continuous at x = 3:

g(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5x − 2

5x2 − 32x + 12
if x 	= 3

−1

3
if x = 3.
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(c) lim
x→3

x − 3

x2 − 9
= 1

6
.

The following redefined function
is continuous at x = 3:

g(x) =

⎧⎪⎪⎨⎪⎪⎩
x − 3

x2 − 9
if x 	= 3

1

6
if x = 3.

(d) lim
x→3

x − 3

x3 − 27
= 1

27
.

The following redefined function
is continuous at x = 3:

g(x) =

⎧⎪⎪⎨⎪⎪⎩
x − 3

x3 − 27
if x 	= 3

1

27
if x = 3.

Question 4.3.9

(a) Let M > 0 be a real num-
ber and choose δ = 1/

4
√

M.

Assuming 0 < |x − 3| < δ,

|x − 3| < δ = 1
4
√

M

(x − 3)4 <
1

M

1

(x − 3)4
> M.

Therefore, lim
x→3

1

(x − 3)4
= ∞.

(b) Let M > 0 be a real number,

choose δ = min

{
1

2
,

√
2

3M

}
,

and assume 0 < |x−1| < δ; note
that under these assumptions,
1

x
>

1

δ + 1
≥ 2

3
.∣∣∣∣ 1

x(x − 1)2

∣∣∣∣ >
2

3δ2
≥ M.

Therefore, lim
x→1

1

x(x − 1)2
= ∞.

4.4 The Derivative

Question 4.4.1

(a) For f (x) = 2x + 1,

f ′(x) = lim
h→0

2(x + h)+ 1− (2x + 1)

h

= lim
h→0

2x + 2h+ 1− 2x − 1

h

= lim
h→0

2h

h
= lim

h→0
2 = 2

(b) For g(x) = 7x3,

g′(x) = lim
h→0

7(x + h)3 − 7x3

h

= lim
h→0

7x3 + 21x2h+ 21xh2 + 7h3 − 7x3

h

= lim
h→0

21x2h+ 21xh2 + 7h3

h

= lim
h→0

21x2 + 21xh+ 7h2 = 21x2
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(c) For s(x) = 1

x + 5
,

s′(x) = lim
h→0

1/[(x + h)+ 5] − 1/(x + 5)

h

= lim
h→0

x + 5− (x + h+ 5)

h(x + h+ 5)(x + 5)

= lim
h→0

−h

h(x + h+ 5)(x + 5)
= −1

(x + 5)2

(d) For t(x) = 1

3
√

x
,

t′(x) = lim
h→0

1
3
√

x+h
− 1

3
√

x

h

= lim
h→0

√
x −√x + h

3h
√

x + h
√

x
·
√

x +√x + h√
x +√x + h

= lim
h→0

x − x − h

3h
√

x + h
√

x · (√x +√x + h)

= −1

6
√

x3

Question 4.4.2

(a) f ′(x) = 30x2 − 14x

(b) g′(x) = 1
2 · (5x + 2)−1/2 · 5

(c) h′(x)= (5x2 + 2) · [−3 sin(3x + 1)]
(5x2 + 2)2

−cos(3x + 1) · 10x

(5x2 + 2)2

(d) p′(x) = tan(2x) · (5x4 + 1) +
(x5 + x) · 2 sec2(2x)

(e) q′(x) = sin2(5x + 3) · |8x|
4x2+1

+
ln(4x2 + 1) · 2 sin(5x + 3) ·
cos(5x + 3) · 5

(f) r′(x) = 3
√

4e x + 6x · 10x4 +
(2x5 + 3) · 1

3 · (4e x + 6x)−2/3 ·
(4e x + 6)

Question 4.4.3

(a)
f (x + h)/g(x + h)− f (x)/g(x)

h

(b)
f (x + h) · g(x)− f (x) · g(x + h)

h · g(x) · g(x + h)

(c)
f (x + h)g(x)− g(x)f (x)+ g(x)f (x)− f (x)g(x + h)

h · g(x) · g(x + h)

= g(x) · [f (x + h)− f (x)]
h · g(x) · g(x + h)

− f (x) · [g(x + h)− g(x)]
h · g(x) · g(x + h)

(d)
d

dx

[
f

g

]
= g · f ′ − f · g′

g2
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Question 4.4.4

(a)
h(t)− h(x)

t − x
= f (g(t))− f (g(x))

t − x

(b)
f (g(t))− f (g(x))

t − x
· g(t)− g(x)

g(t)− g(x)

f (g(t))− f (g(x))

g(t)− g(x)
· g(t)− g(x)

t − x

(c) lim
t→x

f (g(t))− f (g(x))

g(t)− g(x)
· g(t)− g(x)

t − x
= f ′(g(x)) · g′(x)

Question 4.4.5

(a) |x − 1|

(b)
1

x2 − 1

(c) cot(x)

(d) cot
(

πx
2

)

4.5 Understanding Infinity

Question 4.5.1

(a) The function f : Z→ Z defined
by f (x) = x + 1 is one-to-one
since f (a) = f (b) implies that
a + 1 = b + 1; subtracting one
from both sides yields a = b. The
function f is also onto. For n ∈ Z,
consider n− 1 ∈ Z: f (n− 1) =
(n− 1)+ 1 = n.

(b) The function g : Z→ Z defined
by g(x) = 2x is one-to-one since
g(a)= g(b) implies that 2a= 2b;
dividing both sides by two yields
a = b. The function g is not onto.
Consider 1 ∈ Z; for all n ∈ Z,
g(n) = 2n 	= 1, and so 1 is not in
the range of g even though 1 is in
the target space.

(c) The function h : R → R defined by
h(x) = x2 is not one-to-one since
h(−2) = (−2)2 = 4 and h(2) = 22 =
4, but −2 	= 2. The function h is not
onto. Consider−1 ∈ R; for all r ∈ R,
h(r) = r2 	= −1, and so −1 is not in
the range of h even though −1 is in
the target space.

Question 4.5.2

The function f : N→ E defined by f (x) =
2x is one-to-one since f (a) = f (b) implies
that 2a = 2b; dividing both sides by two
yields a = b. The function f is also onto.
For n ∈ E, there exists j ∈ N such that
n = 2j. Then f (j) = 2j = n.
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Question 4.5.3

(a) 2, 4, 6, 8, . . . , 2j, . . .
(b) 0, 2,−2, 4,−4, 6,−6, . . . , 2j,
−2j, . . .

(c) 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

(d) Adding one to each element
in the last sequence given in
example 4.5.5,
1, 1 1

2 , 1 1
3 , 1 1

4 , 1 2
4 , 1 3

4 , . . ..

Question 4.5.4

(a) For every m ∈ N, the sets

Am = {(m, n) : n ∈ N}

are countable. Thus, N × N =⋃
m∈N

Am is a countable union of

countable sets and so countable.

(b) Qn =
⋃

q1∈Q

⋃
q2∈Q

· · ·
⋃

qn∈Q

{(q1,

q2, . . . , qn)}
(c) Define the following sequence of

countable sets:
Z1 = {(n1, 0, 0, 0, . . .) : n ∈ Z},
Z2 = {(n1, n2, 0, 0, . . .) : n,

m ∈ Z},
Z3 = {(n1, n2, n3, 0, . . .) : n,

m ∈ Z},
and so on . . .

Since the given set is equal to⋃
n∈N

Zn, it is a countable union of

countable sets and so countable.

Question 4.5.5

(a) P(A) = { ∅, {0} }
(b) P(A) = { ∅, {0}, {1}, {0, 1} }

Question 4.5.6

(a) For x ∈ N, map x to x + 2,
a to 1, and b to 2. Formally,
let A = {a, b} ∪ N represent

2+ ω and let N represent ω and
define a one-to-one correspondence
f : A→ N by

f (x) =
⎧⎨⎩

1 if x = a
2 if x = b
x + 2 if x ∈ N.

(b) For x ∈ N, map x to x + 3, a to 1,
b to 2, and c to 3. Formally, let A =
{a, b, c} ∪ N represent 3 + ω and let
N represent ω and define a one-to-one
correspondence f : A→ N by

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x = a
2 if x = b
3 if x = c
x + 3 if x ∈ N.

(c) Let A = {a1, . . . , a7} ∪ N represent
7 + ω and let N represent ω and
define a one-to-one correspondence
f : A→ N by

f (x)=
{

k if x=ak for k=1, . . . , 7

x + 7 if x ∈ N.

(d) Let n ∈ N be some fixed natural
number. Let A = {a1, . . . , an} ∪ N

represent n + ω and let N represent
ω and define a one-to-one correspon-
dence f : A→ N by

f (x)=
{

k if x=ak for k=1, . . . , n

x + n if x ∈ N.

Question 4.5.7

(a) Let A = {an : n ∈ N} and B =
{bn : n ∈ N}. Define a one-to-one
correspondence f : A ∪ B→ N by

f (x) =
{

2n− 1 if x = an

2n if x = bn.

(b) Let A = {an : n ∈ N}, B =
{bn : n ∈ N}, and C =
{cn : n ∈ N. Define a one-to-one
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correspondence f : A ∪ B ∪
C → N by

f (x) =

⎧⎪⎨⎪⎩
3n− 2 if x = an

3n− 1 if x = bn

3n if x = cn.

A Hilbert Hotel illustrating ω +
ω + ω = ω would begin by
listing the first element a1 from
the first ω, then the first element
b1 from the second ω, and then
the first element c1 from the
third copy of omega. The list
would then wrap back around

picking up the second element
from each set, then the third,
and so on. In short, we list:
a1, b1, c1, a2, b2, c2, a3, b3, . . ..

(c) For 1 ≤ m ≤ n, let Am =
{am,k : k ∈ N} and define a one-to-
one correspondence
f :⋃1≤m≤n Am → N by

f (x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
km − (m − 1) if x = a1,k

km − (m − 2) if x = a2,k
...

km if x = an,k .

4.6 The Riemann Integral

Question 4.6.1

(a) A = π ·
(

d

2

)2

(b) A = a · b

(c) A = 1

2
· (a+ b) · h

(d) A = 5

4
cot

(π

5

)
· a2

(e) A = 1

2
· 3 · 3 = 9

2

(f) A =
∫ 4

0
100− 6x2 dx

Question 4.6.2

(a) For base [0, 1], the area is
A = 94;
For base [1, 2], A = 1 · (100− 6 ·
22) = 76;
For base [2, 3], A = 1 · (100− 6 ·
32) = 46;
For base [3, 4], A = 1 · (100− 6 ·
42) = 4.

(b) The total enclosed area is the sum
of the four areas computed in

part (a); that is, A = 94 + 76 +
46+ 4 = 220.

(c) The eight right-rectangle area is
given by
A= 1

2 · (100−6 · ( 1
2 )2)+ 1

2 ·94+
1
2 · (100− 6 · ( 3

2 )2)+ 1
2 · 74+ 1

2 ·
(100 − 6 · ( 5

2 )2) + 1
2 · 46 + 1

2 ·
(100− 6 · ( 7

2 )2)+ 1
2 · 4 = 256.

Question 4.6.3

(a) Z

(b) The set of reals in the interval
[0, 4].

(c) The set of reals in the interval
[0, 5).

(d) {6, 5 1
2 , 5 1

3 , 5 1
4 , . . .}

(e) {6, 6 1
2 , 6 2

3 , 6 3
4 , . . .}

Question 4.6.4

(a) Z

(b) The set of reals in the interval
[5, 6].

(c) The set of reals in the interval
(4, 6].



628 Answers to Questions

(d) {3, 3 1
2 , 3 2

3 , 3 3
4 , . . .} or {3, 4, 5,

6, . . .}
(e) {3, 2 1

2 , 2 1
3 , 2 1

4 , . . .}
Question 4.6.5

If S ⊆ R is bounded below, then M =
inf S iff both

• M is a lower bound of S, and
• for every ε > 0, there exists s ∈ S

such that s < M + ε.

Question 4.6.6

P = {0, 2, 3, 5, }
Q = {0,

√
2, 2, 3, 5}

R = {0, 1, 5}
Question 4.6.7

Since f (x) = 3x2 − 2x is increasing on
[1, 7] the suprema Mi( f ) occur at the
right endpoint of each subinterval and the
infima mi( f ) occur at the left endpoint.
For [x0, x1] = [1, 2], M1( f ) = 8 and
m1( f ) = 1.
For [x1, x2] = [2, 3], M2( f ) = 21 and
m2( f ) = 8.
For [x2, x3] = [3, 4], M3( f ) = 40 and
m3( f ) = 21.
For [x3, x4] = [4, 5], M4( f ) = 65 and
m4( f ) = 40.
For [x4, x5] = [5, 6], M5( f ) = 96 and
m5( f ) = 65.
For [x5, x6] = [6, 7], M6( f ) = 133 and
m6( f ) = 96.

Question 4.6.8

(a) Note that f (x) = 4x2 − 6 is incr-
easingon [0, 5]; thus,U( f , P)

=
4∑

i=1

Mi( f ) · (xi − xi−1)

= (−2)(1− 0)+ 10(2− 1)

+ 30(3− 2)+ 94(5− 3)

= −2+ 10+ 30+ 188 = 226.

(b) Note that f (x) = |x + 2| is incr-
easingon [0, 5]; thus,U( f , P)

=
4∑

i=1

Mi( f ) · (xi − xi−1)

= 3(1− 0)+ 4(2− 1)

+ 5(3− 2)+ 7(5− 3)

= 3+ 4+ 5+ 14 = 26.

Question 4.6.9

First, find an algebraic expression for
L( f , Pn) as follows:

L( f , Pn) =
n∑

i=1

mi( f ) · (xi − xi−1)

=
n∑

i=1

xi−1 · (xi − xi−1)

=
n∑

i=1

i − 1

n
· 1

n

= 1

n2
·

n∑
i=1

i − 1

= 1

n2
·
[

n(n+ 1)

2
− n

]
= n− 1

2n
.

Applying Darboux’s theorem,

L( f ) = lim
n→∞ L( f , Pn)

= lim
n→∞

n− 1

2n
= 1

2
.

Question 4.6.10

Since the function f (x) = x2 + 1 is
Riemann integrable on [0, 2], we can
compute either U( f ) or L( f ) to obtain

the value of
∫ 2

0
x2 + 1 dx. The solution

presented here evaluates U( f ). First,
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define a sequence of partitions (that are
refinements as n increases)

Pn =
{

0,
2

n
,

4

n
, . . . , 2

}
=
{

2i

n
: 0 ≤ i ≤ n

}
.

Now find an algebraic expression for
U( f , Pn) as follows:

U(f ,Pn)=
n∑

i=1

Mi(f ) ·(xi−xi−1)

=
n∑

i=1

[x2
i +1]·(xi−xi−1)

=
n∑

i=1

[(
2i

n

)2

+1

]
· 2
n

=
n∑

i=1

8i2

n3
+ 2

n

= 1

n3
·8n(n+1)(2n+1)6n3+ 2n

n

= 2(n+1)(2n+1)

3n2
+2

Using the Riemann integrability and
applying Darboux’s theorem (for the
sequence of partitions {P2n},∫ 2

0
x2 + 1 dx = U( f )

= lim
n→∞ U( f , Pn)

= lim
n→∞

2(n+ 1)(2n+ 1)

3n2

+ 2 = 14

3
.

Question 4.6.11

(a) finite: {(0, 3), (3, 6)}
infinite: {(0, n) : n ∈ Z}

(b) finite: {(1, 2), (16, 20)}
none
infinite: {(0, n) : n ∈ Z}

(c) finite: none

infinite:

{(
2n+1

2
,

2n+3

2

)
:n∈Z

}
(d) finite: none

infinite: {(n, n+ 1) : n ∈ Z}

Question 4.6.12

Let ε > 0 and consider the inter-
val open cover consisting of In =(

xn − ε

2 · 2n
, xn + ε

2 · 2n

)
. Then the fol-

lowing equalities hold

∞∑
n=1

m(In) =
∞∑

n=1

ε

2n

= ε ·
∞∑

n=1

1

2n

= ε · 1/2

1− 1/2
= ε.

Question 4.6.13

(a) Since f (x) has no discontinuities and
the empty set has measure zero,
the given function f (x) is Riemann
integrable by the Riemann–Lebesgue
theorem.

(b) Since f (x) has one discontinuity at
x = 0, a set with one element is
countable, and every countable has
measure zero, the given function
f (x) is Riemann integrable by the
Riemann–Lebesgue theorem.

(c) Since f (x) has one discontinuity at
x = 0, a set with one element is
countable, and every countable has
measure zero, the given function
f (x) is Riemann integrable by the
Riemann–Lebesgue theorem.

(d) Since f (x) has countably infinitely
many discontinuities at x = 1/2k

for k ∈ N and every countable has
measure zero, the given function
f (x) is Riemann integrable by the
Riemann–Lebesgue theorem.
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4.7 The Fundamental Theorem of Calculus

Question 4.7.1

(a) Since f (x) = 1/(x + 1) is
decreasing on [0, 1] the suprema
Mi( f ) occur at the left endpoint
of each subinterval. First, define
a sequence of partitions (that are
refinements as n increases)

Pn =
{

0,
1

n
,

2

n
, . . . , 1

}
=
{

i

n
: 0 ≤ i ≤ n

}
.

Now find an algebraic expression
for U( f , Pn) as follows:

U( f , Pn) =
n∑

i=1

Mi( f ) · (xi − xi−1)

=
n∑

i=1

1

xi−1 + 1
· (xi − xi−1)

=
n∑

i=1

1

[(i − 1)/n] + 1
· 1

n

=
n∑

i=1

n

i − 1+ n
· 1

n

=
n∑

i=1

1

i − 1+ n
.

Thus, U(f )= lim
n→∞

n∑
i=1

1

i−1+n
.

(b) Since f (x) = sin(x) is increasing
on [0, 1] the suprema Mi( f )
occur at the right endpoint of
each subinterval. First, define a
sequence of partitions (that are
refinements as n increases)

Pn =
{

0,
1

n
,

2

n
, . . . , 1

}
=
{

i

n
: 0 ≤ i ≤ n

}
.

Now find an algebraic expression for
U( f , Pn) as follows:

U( f , Pn) =
n∑

i=1

Mi( f ) · (xi − xi−1)

=
n∑

i=1

sin(xi) · (xi − xi−1)

=
n∑

i=1

sin

(
i

n

)
· 1

n
.

Thus, U( f ) = lim
n→∞

n∑
i=1

sin

(
i

n

)
· 1

n
.

Question 4.7.2

Not necessarily—the text gives an exam-
ple of a two-person class with earned
grades of 70 percent and 72 percent,
which results in a mean of 71 percent and
no one earning the mean.

Question 4.7.3

Assume f ′(c) < 0. Identify an interval
around c such that the difference quotient
from the alternative definition of the
derivative is positive. Since

f ′(c) = lim
x→c

f (x)− f (c)

x − c
,

when we apply the definition of the limit
with ε = |f ′(c)| = −f ′(c), there exists a
value δ > 0 such that 0 < |x − c| < δ

implies∣∣∣∣ f (x)− f (c)

x − c
− f ′(c)

∣∣∣∣ < ε = |f ′(c)|.

Hence

f ′(c) <
f (x)− f (c)

x − c
− f ′(c) < −f ′(c)

which implies that

2f ′(c) <
f (x)− f (c)

x − c
< 0.
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If (c− δ, c+ δ) is not contained in (a, b),
redefine δ as a sufficiently small positive
value so that (c− δ, c+ δ) ⊆ (a, b). Then

f (x)− f (c)

x − c
> 0

whenever x ∈ (c− δ, c+ δ); for x ∈ (c−
δ, c), x − c < 0 and so f (x) − f (c) > 0,
and so f (x) > f (c). But f (c) is a relative
maximum, and so f (c) > f (x) must hold
true for some open interval about c. This
fact gives the desired contradiction; we
conclude f ′(c) 	> 0.

Question 4.7.4

(a) The linear expression[
f (b)− f (a)

b− a

]
· x

is continuous on R. Since f (x) is
continuous on [a, b] and a differ-
ence of continuous functions is
continuous

g(x) = f (x)−
[

f (b)− f (a)

b− a

]
· x

is continuous on [a, b]. Note
that the right continuity of g at
x = a and the left continuity
of g at x = b follow from the
corresponding continuity of f at
these points and the continuity of
the linear expression on all of R.

(b) g′(x) = f ′(x)−
[

f (b)− f (a)

b− a

]
(c) The following equalities hold

by direct substitution and the
assumption that f (a) = f (b).

g(a) = f (a)−
[

f (b)− f (a)

b− a

]
· a

= f (a)− 0 · a = f (a)

= f (b) = f (b)− 0 · b

= f (b)−
[

f (b)− f (a)

b− a

]
· b

= g(b)

(d) By Rolle’s theorem, there exists c ∈
(a, b) such that g′(c)= 0. Substituting
into the expression from part (b)
produces

f ′(c)−
[

f (b)− f (a)

b− a

]
= 0,

and so

f ′(c) =
[

f (b)− f (a)

b− a

]
.

Question 4.7.5

(a)
∫

f dx = x5 + 2x +√x + C

(b)
∫

f dx = e x + sin(x)+ C

(c)
∫

f dx = sec(x)+ C

(d)
∫

f dx = ln |x| + ln |x + 1| + C

(e) y = 1
3 (x2 + 1)3/2 + C

(f) y = x2e x − 2xe x + 3e x + C

Question 4.7.6

∫
x2 dx = x3

3
+ C, but∫

x dx ·
∫

x dx =
[

x2

2
+ C

]
·
[

x2

2
+ C

]
= x4

4
+ Cx2 + D.

Question 4.7.7

(a) x + x2

(b) ln |x|
(c) [sin(x3 + e x)] · (3x2 + e x)
(d) (−1) · (x2 + e x) · 2x

Question 4.7.8

(a)
∫ 1

0
4x3 + 1 dx = x4 + x

]1

0
= 2

(b)
∫ 0

−1
4x3 + 1 dx = x4 + x

]0

−1
= 0
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4.8 Application: Differential Equations

Question 4.8.1

(a) First-order, linear differential
equation.

(b) First-order, nonlinear differential
equation.

(c) Third-order, linear differential
equation.

(d) First-order, nonlinear differential
equation.

Question 4.8.2

(a) y′′ − y + 4 = [cos x + 4]′′ −
[cos x + 4] + 4 = − cos x + 0−
cos x − 4+ 4 = −2 cos x
y(0) = cos 0+ 4 = 1+ 4 = 5

(b) y(4) − y = [cos x + 4](4) −
[cos x + 4] = cos x − cos x − 4
= −4
y(π/3) = cos (π/3) + 4 = 1

2 +
4 = 4.5

Question 4.8.3∫
y′ dx =

∫
cos x+e x dx = sin x+e x+

C = y(x)
Applying the initial condition, 5 = y(0) =
sin 0+ e0 + C = 1+ C.
Thus,

y(x) = sin x + e x + 4

Question 4.8.4

(a) For y′ + 1
2 y = 2x, we have

F = 1/x and G = 2x. Then∫
F dx = ∫

1/x dx = ln x and∫
2x · eln x dx = ∫

2x2 dx =
2
3 x3 + C. Thus,

y = e− ln x ·
[

2

3
x3 + C

]
= 2

3
x2+C

1

x
.

(b) For y′ − (3/x)y = 2x3, we have F =
−3/x and G = 2x3. Then

∫
F dx =∫ −3/x dx = −3 ln x and
∫

2x3 ·
e−3 ln x dx = ∫ 2x3/x3 dx = 2x + C.
Thus,

y = e3 ln x · [2x + C]= 2x4+Cx3.

Question 4.8.5

(a) − 1

2y2
= x4

4
+ C

(b) ln |y| − arctan y = x3

3
+ x + C

Question 4.8.6

(a)
1

2
· L · 2 · dx

dt
· d2x

dt2
= g · sin x · dx

dt

L · d2x

dt2
= g · sin x

(b) L
d2x

dt2
= g sin x ⇒ L

d2x

dt2
= gx

⇒ d2x

dt2
= gx

L

⇒ d2x

dt2
− gx

L
= 0

(c) x=Csin

[√−g

L
t

]
+ Dcos

[√−g

L
t

]

dx

dt
= C cos

[√−g

L
t

]
·
√−g

L

− D sin

[√−g

L
t

]
·
√−g

L

d2x

dt2
= −C sin

[√−g

L
t

]
·
(−g

L

)

− D cos

[√−g

L
t

]
·
(−g

L

)
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= C sin

[√
g

L
t

]
·
(−g

L

)

+ D cos

[√−g

L
t

]
·
( g

L

)
Direct substitution shows that

d2x

dt2
− g

L
x = 0.

(d) When t = 0, then x = X and x′ = 0.
Substituting into the expressions
from (c) provides the value of the
constants as follows

X = C · 0+ D · 1⇒ D = X,

0 = C · 1 ·
√−g

L
− D · 0⇒ C = 0.

Thus, the solution is

x = X cos

[√−g

L
t

]
.

Question 4.8.7

H2 = (−1)2 · ex2 · d2

dx2

[
e−x2

]
= 1 · ex2 ·

[
(−2x)e−x2

(−2x)

+e−x2 · (−2)
]

= 4x2 − 2

H3 = (−1)3 · ex2 · d3

dx3

[
e−x2

]
= −1 · ex2 ·

[
(4x2)e−x2

(−2x)

+e−x2 · (8x)+ (−2) · e−x2 · (−2x)
]

= 8x3 + 12x

H4 = (−1)4 · ex2 · d4

dx4

[
e−x2

]
= 1 · ex2 ·

[
(−8x3)e−x2

(−2x)

+ e−x2 · (−24x2)+ (12x)

· e−x2 · (−2x)+ 12 · e−x2
]

= 16x4 − 48x2 + 12

Question 4.8.8

Since H3 = 8x3− 12x, then H ′3 = 24x2−
12 and H ′′3 = 48x. Substituting into the
given differential equation results in

y′′ − 2xy′ + 6y

= H ′′3 − 2xH ′3 + 6H3

= 48x − 2x · [24x2 − 12]
+ 6 · [8x3 − 12x]

= 48x − 48x3 + 24x + 48x3

− 72x = 0.

Question 4.8.9∫ ∞
−∞

H0 · H1 · e−x2
dx

=
∫ ∞
−∞

1 · 2x · e−x2
dx

=
∫ 0

−∞
2xe−x2

dx +
∫ ∞

0
2xe−x2

dx

= lim
a→−∞

∫ 0

b
2xe−x2

dx

+ lim
b→∞

∫ b

0
2xe−x2

dx

= lim
a→−∞−e−x2

]0

a
+ lim

b→∞−e−x2
]b

0

= lim
a→−∞−1+ e−a2 + lim

b→∞−e−b2 + 1

= −1+ 0+ 0+ 1 = 0
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5.1 Combinatorics

Question 5.1.1

(a) order, repetition
(b) order, no repetition
(c) no order, no repetition
(d) no order, repetition

Question 5.1.2

(a) 2 · 2 = 4
(b) 6 · 2 = 12

Question 5.1.3

(a) 20 · 20 · 20 = 8,000
(b) 26 ·26 ·26 ·26 ·26= 11,881,376

Question 5.1.4

(a) TO, OT
(b) TT, TO, OT, OO
(c) TO, TP, OT, OP, PT, PO

Question 5.1.5

(a) P(5, 1) = 5!
(5− 1)! =

5!
4! = 5

(b) P(5, 3) = 5!
(5− 3)! =

5!
2! = 60

(c) P(15,1)= 15!
(15−1)! =

15!
14! =15

(d) P(15, 3) = 15!
(15− 3)! =

15!
12!

= 2,730

Question 5.1.6

(a) P(20, 3) = 20!
(20− 3)! =

20!
17!

= 6,840

(b) P(26, 5) = 26!
(26− 5)! =

26!
21!

= 7,893,600

Question 5.1.7

(a) { T , O }; { T , P }; { O, P }
(b) { T , O, P }

Question 5.1.8

(a) C(5, 1) = 5!
1! · (5− 1)! =

5!
1! · 4! = 5

(b) C(5,3)= 5!
3! ·(5−3)! =

5!
3! ·2! = 10

(c) C(15, 1) = 15!
1! · (15− 1)!

= 15!
1! · 14! = 15

(d) C(15, 3) = 15!
3! · (15− 3)!

= 15!
3! · 12! = 455

Question 5.1.9

(a) C(20, 3) = 20!
3! · (20− 3)!

= 20!
3! · 12! = 1,140

(b) C(26, 5) = 26!
5! · (26− 5)!

= 26!
5! · 21! = 65,780

Question 5.1.10

(a) Using n = 20 and k = 3 in C(n+ k−
1, k), produces C(20 + 3 − 1, 3) =
C(22, 3) = 1,540.

(b) Using n = 26 and k = 4 in C(n+ k−
1, k), produces C(26 + 4 − 1, 4) =
C(29, 4) = 23,751.

Question 5.1.11

(a) C(12, 2) · C(3, 2) · C(8, 3) = 11,088
(b) C(2, 1) · C(4, 1) · C(16, 1) = 128
(c) C(5, 4) + C(5, 3) · C(20, 1) +

C(5, 2) ·C(20, 2)+C(5, 1) ·C(20, 3)
= 7,805

(d) P(12, 4) · C(4, 4) · C(4, 3) · C(4, 2) ·
C(4, 1) = 1,916,006,400
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5.2 Pascal’s Triangle and the Binomial Theorem

Question 5.2.1

(a) C(4, 0) = 1; C(4, 1) = 4;
C(4, 2) = 6; C(4, 3) = 4; and
C(4, 4) = 1.

(b) C(5, 0) = 1; C(5, 1) = 5;
C(5, 2) = 10; C(5, 3) = 10;
C(5, 4) = 5; and C(5, 5) = 1.

(c) C(6, 0) = 1; C(6, 1) = 6;
C(6, 2) = 15; C(6, 3) = 20;
C(6, 4) = 15; C(6, 5) = 6; and
C(6, 6) = 1.

(d) C(7, 0) = 1; C(7, 1) = 7;
C(7, 2) = 21; C(7, 3) = 35;
C(7, 4) = 35; C(7, 5) = 21;
C(7, 6) = 7; and C(7, 7) = 1.

Question 5.2.2

(a) (a+b)5 = a5+5a4b+10a3b2+
10a2b3 + 5ab4 + b5

(b) (2x + b)5 = (2x)5 + 5(2x)4b
+ 10(2x)3b2 + 10(2x)2b3 +
5(2x)b4 + b5

= 32x5 + 80x4b + 80x3b2 +
40x2b3 + 10xb4 + b5

(c) (2x − 3y)5 = (2x)5 + 5(2x)4 ·
(−3y) + 10(2x)3(−3y)2 +
10(2x)2(−3y)3+ 5(2x)(−3y)4+
(−3y)5

= 32x5 − 240x4y + 720x3y2 −
1080x2y3 + 810xy4 − 243y5

(d) (a+b)6 = a6+6a5b+15a4b2+
20a3b3 + 15a2b4 + 6ab5 + b6

(e) (3x + 2y)6 = (3x)6 + 6(3x)5 ·
(2y) + 15(3x)4(2y)2 + 20(3x)3 ·
(2y)3 + 15(3x)2(2y)4 + 6(3x) ·
(2y)5 + (2y)6

= 729x6 + 2,916x5y +
4,860x4y2 + 4,320x3y3 +
2,160x2y4 + 5,76xy5 + 64y6

(f) (3x − 2y)6 = (3x)6 + 6(3x)5(−2y)+
15(3x)4(−2y)2 + 20(3x)3(−2y)3 +
15(3x)2(−2y)4 + 6(3x)(−2y)5 +
(−2y)6

= 729x6 − 2,916x5y + 4,860x4y2 −
4,320x3y3 + 2,160x2y4 − 576xy5 +
64y6

Question 5.2.3

2n = (1+ 1)n

= C(n, 0) · 1n · 10

+ C(n, 1) · 1n−1 · 11

+ · · · + C(n, n) · 10 · 1n

= C(n, 0) + C(n, 1)

+ · · · + C(n, n)

=
n∑

k=0

C(n, k)

Question 5.2.4

C4 = 8!
5! · 4! = 14

Question 5.2.5

C(2n,n) − C(2n,n+1)

= (2n)!
n! ·(2n−n)! −

(2n)!
(n+1)! ·(n−1)!

= (2n)!
n! ·n! −

(2n)!
(n+1)! ·(n−1)!

= (2n)! ·(n+1)! ·(n−1)!−(2n)! ·n! ·n!
n! ·n! ·(n+1)! ·(n−1)!

= (2n)! ·(n)! ·(n−1)! ·[(n+1)−n]
n! ·n! ·(n+1)! ·(n−1)!

= (2n)!
(n+1)! ·n!
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Question 5.2.6

The n = 0 to n = 11 rows are:

1
1 1

1 2 1
1 0 0 1

1 1 0 1 1
1 2 1 1 2 1

1 0 0 2 0 0 1
1 1 0 2 2 0 1 1

1 2 1 2 1 2 1 2 1
1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1 1
1 2 1 0 0 0 0 0 0 1 2 1

Question 5.2.7

The n = 0 to n = 11 rows are:

1
1 1

1 2 1
1 3 3 1

1 0 2 0 1
1 1 2 2 1 1

1 2 3 0 3 2 1
1 3 1 3 3 1 3 1

1 0 0 0 2 0 0 0 1
1 1 0 0 2 2 0 0 1 1

1 2 1 0 2 0 2 0 1 2 1
1 3 3 1 2 2 2 2 1 3 3 1

5.3 Basic Probability Theory

Question 5.3.1

(a) Flip a coin.
(b) The sum of the roll of two dice.
(c) The number of coin flips until

heads is tossed.

Question 5.3.2

(a) D = {(1, 2), (1, 3), (2, 2), (2, 3),
(3, 2), (3, 3), (4, 2), (4, 3), (5, 2),
(5, 3), (6, 2), (6, 3)}

(b) E = {(1, 5), (2, 4), (3, 3), (4, 2),
(5, 1)}

(c) F = {(1, 1), (2, 2), (3, 3), (4, 4),
(5, 5), (6, 6)}

(d) G = {(2, 1), (2, 2), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 1), (3, 2), (3, 3),
(3, 4), (3, 5), (3, 6), (5, 1), (5, 2),
(5, 3), (5, 4), (5, 5), (5, 6)}

Question 5.3.3

P(D) = 12

36
= 1

3

P(E) = 5

36

P(F) = 6

36
= 1

6

P(G) = 18

36
= 1

2

Question 5.3.4

Y 1 2 3 4 5 6

P[Y = y] 1/6 1/6 1/6 1/6 1/6 1/6

Question 5.3.5

P[X = n] = [1/2]n. Since 1/2 + 1/4 +
1/8 = 0.875 and 1/2 + 1/4 + 1/8 +
1/16 = 0.9375, a fair coin must be tossed
four or more times until there is a better
than 90% chance of tossing heads.

Question 5.3.6

P[X ≤ 20] =
20∑

i=1

P[X = i] = 1 −

(0.99)20 ≈ 0.18209
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Question 5.3.7

P[Y≥10]=P[Y=10]+P[Y=11]
+P[Y=12]
=C(12,10)·(0.85)10 ·(0.15)2

+C(12,11)·(0.85)11 ·(0.15)1

+C(12,12)·(0.85)12 ·(0.15)0

≈0.735818

Question 5.3.8

(a) P[S=s]= C(52,s)·C(18,20−s)

C(70,20)

(b) P[S = 19] + P[S = 20]

= C(52, 19) · C(18, 1)

C(70, 20)

+ C(52, 20) · C(18, 0)

C(70, 20)

≈ 0.00926

(c) P[S=s]= C(49,s)·C(18,17−s)

C(67,17)

P[S = 16] + P[S = 17]

= C(49, 16) · C(18, 1)

C(67, 17)

+ C(49, 17) · C(18, 0)

C(67, 17)

≈ 0.019801

Question 5.3.9

P[−10 < X < 10] =
∫ 10

−10

1

60
dx = 1

3

Question 5.3.10

P[1.3 < X < 1.5] ≈ 0.22974
P[X ≥ 1.5] = 0.5−P[1.2 < X < 1.5] ≈
0.02275

Question 5.3.11

μ = 0 · P[X = 0] + 1 · P[X = 1] =
0+ 1/2 = 1/2

Question 5.3.12

For the density function

f (x) =
{

1/(b− a) x ∈ [a, b]
0 x 	∈ [a, b]

E[X]=
∫ ∞
−∞

x ·f (x) dx=
∫ b

a
x · 1

b−a
dx

= x2

2(b−a)

]b

a
= b2−a2

2(b−a)
= a+b

2

Question 5.3.13

σ =
√[

0− 1

2

]2

· 1

2
+
[

1− 1

2

]2

· 1

2

=
√[

1

2

]2

· 1

2
+
[

1

2

]2

· 1

2

=
√[

1

2

]2

= 1

2

Question 5.3.14

For the density function

f (x) =
{

1/(b− a) x ∈ [a, b]
0 x 	∈ [a, b]

σ 2=
∫ ∞
−∞

(x−μ)2 ·f (x)dx

=
∫ b

a

(
x− a+b

2

)2

· 1

b−a
dx

= 1

b−a

∫ b

a
x2−(a+b)x+

[
a+b

2

]2

dx

= (b−a)2

12

Thus, σ = b− a√
12

.
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5.4 Application: Statistical Inference and Hypothesis Testing

Question 5.4.1

(a) For a good part, let X = 1, and for
a defective part, let X = 0. Let p
be the percent of parts assigned
X = 0. Is p < 0.5 percent?

(b) Let X denote the difference in
food intake for an individual
fish and let X be the average
difference. Is X > 0?

(c) Let X denote the time to pain
relief for a new medicine and let
X be the average time to pain
relief. Is X < 3.5?

Question 5.4.2

The Chevalier wonders if a pair of dice
is fair. For the experiment of rolling the
dice, he defines a random variable X = 1
if double-sixes are rolled and X = 0 if not.
The population is the set of all dice rolls
(past, present, and future), and a sample
of any size n is formed by rolling the pair
of dice n times and recording the value
X = 1 or X = 0 for each roll.

Question 5.4.3

Just ask voters in one party or another; just
ask retirees; just ask college students; and
other answers are possible.

Question 5.4.4

There are many possible such lists.

Question 5.4.5

(a) Roll a die a certain number of
times and record the numbers
rolled as sample elements.

(b) Randomly select a certain num-
ber of juvenile diabetes patients

and record body weight loss as
sample elements.

(c) Randomly select patients from a list
of all juvenile diabetics that she has
treated and record body weight loss
as sample elements.

Question 5.4.6

(a) When α = 0.01, the P-value of
0.0719 is greater than α and so
the null hypothesis is not rejected—
keeping the assumption that accounts
were randomly selected.

(b) When α = 0.10, the P-value of
0.0719 is less than α and so the null
hypothesis is rejected—keeping the
assumption that accounts were not
randomly selected.

Question 5.4.7

Was there bias in the selection process?
Did the company purposefully only select
males?

1. The experiment selects one of the
applicants; define a random variable
X = 1 if male and X = 0 if female.

2. The population of this experiment is
the set of all 35 applicants.

3. The sample of size n = 5 is claimed
to be unbiased and consists of five
males; that is, the observation about X
is {1, 1, 1, 1, 1}.

4. Performing a hypothesis test at
α = 0.05.

Step 1: State the hypotheses:
H0 : The selection is unbiased.
Ha : The selection is biased.

Step 2: P-value= C(35, 5)

C(55, 5)
≈ 0.0933.

Step 3: The P-value of 0.0933 is grea-
ter than α = 0.05, and so the
null hypothesis is not rejected.
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Question 5.4.8

(a) 2.86
(b) 2.51
(c) 3.12
(d) 3.73

Question 5.4.9

Ha : μ > 2 the P-value is P[X ≥ 3]
Ha : μ 	= 2 the P-value is 2 · P[X ≥ 3]

Question 5.4.10

Performing a hypothesis test at α = 0.05.

Step 1: State the hypotheses:
H0 : μ= 43 and Ha : μ > 43.

Step 2: Compute the P-value. Since
n = 40 > 35, the cen-
tral limit theorem applies
with n = 40, μ = 43, and
σ = 1.3. P-value = P[X ≥
43.6] ≈ 0.00175.

Step 3: The P-value of 0.00175 is less
than α = 0.05, and so the null
hypothesis is rejected. Adopting
the alternate hypothesis, assume
that the mean miles per gallon
of one of its cars exceeds the
mean EPA rating of 43 miles per
gallon.

Question 5.4.11

Performing a hypothesis test at α = 0.05.

Step 1: State the hypotheses:
H0 : μ = 1 and Ha : μ 	= 1.

Step 2: Compute the P-value. Since n =
40 > 35, the central limit theorem
applies with n = 40, μ = 1,
and σ = 0.07. P-value = P[X ≥
1.02] ≈ 0.0707.

Step 3: The P-value of 0.0707 is greater
than α = 0.05, and so the null
hypothesis is not rejected.

5.5 Least Squares Regression

Question 5.5.1

There are many possible answers.

Question 5.5.2

3∑
i=1

[Q̂i − Qi]2 = [(40.627− 12.082 · 1.95)− 20]2

+ [(40.627− 12.082 · 2.32)− 12]2

+ [(40.627− 12.082 · 1.85)− 16]2
≈ 13.81450475

3∑
i=1

[Q∗i − Qi]2 = [(41− 12 · 1.95)− 20]2

+ [(41− 12 · 2.32)− 12]2

+ [(41− 12 · 1.85)− 16]2
= 14.9456
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Question 5.5.3

β̂1 = 0.1266233766 and β̂0 = 0.0876623377

Question 5.5.4

(a) a = n

b =
n∑

i=1

2 · (β1xi − yi) · β0

c =
n∑

i=1

(β1xi − yi)
2

(b) β0 = − b

2a

= − 1

2n

∑̇n

i=1
2 · (β1xi − yi)

= −
n∑

i=1

β1
xi

n
− yi

n

= Y − β1X

(c) β1 = −
∑n

i=1 xi(β̂0 − yi)∑n
i=1 x2

i

(d) β̂1 =
∑n

i=1 xi(yi − Y + β̂1X)∑n
i=1 x2

i

β̂1

n∑
i=1

x2
i =

n∑
i=1

xiyi − xiY +
n∑

i=1

xiβ̂1X

β̂1

[
n∑

i=1

x2
i −

n∑
i=1

xiX

]
=

n∑
i=1

xiyi −
n∑

i=1

xiY

β̂1 =
∑n

i=1 xiyi − Y
∑n

i=1 xi∑n
i=1 x2

i − X
∑n

i=1 xi

β̂1 =
∑n

i=1 xiyi − (1/n)
∑n

i=1 yi
∑n

i=1 xi∑n
i=1 x2

i − (1/n)
∑n

i=1 xi
∑n

i=1 xi

β̂1 =
∑n

i=1(xi − X) · (yi − Y )∑n
i=1(xi − X) · (xi − X)

β̂1 =
∑n

i=1(xi − X) · (yi − Y )∑n
i=1(xi − X)2
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Question 5.5.5

X = 6.125

Y = 49.125

SSX = 112.875

SSY = 4792.875

β̂1 = 6.430786268

s = 4.563040246

P-value = 2 · P[T6 > 159.00770541] ≈
2 · 0 = 0. Since the P-value is less than
α = 0.05, the linear model is useful.

In this case,

β̂1 = 6.430786268 and β̂0 = 9.736434109.

Question 5.5.6

(a) Ŷ = 3 · 2.2+ 7 = 13.6, so $136,000.

(b) Ŷ = 3 · 1.25 + 7 = 10.75, so
$107,500.

(c) Ŷ = 3 · 3.1+ 7 = 16.3, so $163,000.

(d) Ŷ = 3 · 4+ 7 = 19, so $190,000.

6.1 An Introduction to Graph Theory

Question 6.1.1

(a) and (b) have three vertices, while (c)
has two vertices
(a) has three edges, (b) has five edges, and
(c) has two edges
(b) has a loop
(b) and (c) have vertices that are con-
nected by more than one edge

Question 6.1.2

(a) The “graph” in (a) has no ver-
tices, and is a graph in the sense
of analytic geometry rather than
a graph in the sense of graph
theory.

(b) The picture in (b) has no vertices.
(c) The picture in (c) has only one

vertex with the right-hand of
the edge not connected to any
vertices.

Question 6.1.3

(a)

(b)

(c) Such a graph does not exist—
simple graphs do not have loops by
definition.

Question 6.1.4

(a) d(A) = 3; d(B) = 3; d(C) = 3;
and d(D) = 3. The total degree of the
graph is 12.

(b) d(A) = 3; d(B) = 5; d(C) = 3;
and d(D) = 3. The total degree of the
graph is 14.

Question 6.1.5

The total degree of the graph is even.

Question 6.1.6

If the graph has n edges, then the total
degree is twice the number of edges and
so is 2n. Since 2n is even, the total degree
of the graph is even.

Question 6.1.7

(a) a simple path: t, x
a nonsimple path: t, s, w

(b) t, r, u, z, x.
v, z, w, r, s.

(c) u, t, v.
v, x, z.
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Question 6.1.8

(a)

(b)

(c)

(d)

(e)

Question 6.1.9

(a) Let V and W be vertices in G. If
V 	= W , then there exists an edge
from V to W since G is connected
and this is a path from V to W . If
V = W , let U be any other vertex
in the graph and consider the path
consisting of traversing the edge from
V to U and then the edge from U to
V = W (again such an edge exists
since G is connected).

(b) Let G = Cn be a cycle graph with
vertices X1, . . . , Xn that are adjacent
based on this listing. Let V and W
be vertices in G. Then for some 1 ≤
i, j ≤ n, V = Xi and W = Xj. Without
loss of generality, assume i < j, in
which case the path following the
edges from Xi to Xi+1 to . . . to Xj−1

to Xj is the desired path.
(c) Let V and W be any two vertices in a

null graph. Since the null graph does
not contain any edges, there is no path
from V to W in the graph.

6.2 The Explorer and the Traveling Salesman

Question 6.2.1

(a) An Eulerian circuit: s, t, x, z, w,
v, y, u.

(b) There is no Eulerian circuit.
An Eulerian path: t, v, y, z,
w, u, x.

Question 6.2.2

(a) There is no Eulerian circuit since
not every vertex has even degree.
There does exist an Eulerian path
from B to D since these are
the only two vertices of odd
degree; one such path is: DB, BC,
CA, AB.

(b) There does not exist an Eulerian
circuit or path since the graph is not
connected.

(c) There does not exist an Eulerian
circuit or path since there are more
than two (in particular, four) vertices
with odd degree.

(d) An Eulerian circuit: AB, BC, CD, DB,
BD, DA.

Question 6.2.3

(a) There is no Hamiltonian cycle—a
cycle would need to revisit vertex
C in order to move from, say,
vertices A, B to vertices D, E and
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then back to the initial verted in
vertices A, B.
A Hamiltonian path: AB, BC,
CE, ED.

(b) A Hamiltonian cycle: AB, BD,
DC, CA.

(c) There is no Hamiltonian cycle or
path, as in example 6.2.3(c).

Question 6.2.4

(a) Since there are n = 4 ≥ 3
vertices and for all pairs of
nonadjacent vertices V and W ,
we have d(V )+ d(W ) ≥ 6, there
exists a Hamiltonian cycle.

In particular, note that:
A, D: d(A)+ d(D) = 3+ 3 = 6 ≥ 4
B, C: d(B)+ d(C) = 3+ 3 = 6 ≥ 4
A Hamiltonian cycle: AB, BD,
DC, CA.

(b) Since there are n = 6 ≥ 3 vertices
and for all pairs of nonadjacent
vertices V and W , we have d(V ) +
d(W ) ≥ 6, there exists a Hamiltonian
cycle.
A Hamiltonian cycle: AB, BC, CF,
FE, ED, DA.

(c) There are n = 5 ≥ 3 vertices, but for
the nonadjacent vertices D and E,
d(D)+d(E) = 1+1 = 2 	≥ 3. There-
fore, theorem 6.2.2 does not apply.

6.3 Shortest Paths and Spanning Trees

Question 6.3.1

Vertices E and F are labeled 1 : A; vertices
B and C are labeled 2 : F; and vertices D,
G, and H are labeled 3 : C. Therefore,
a shortest path is that given by AF,
FC, CH.

Question 6.3.2

(a) Not a tree since BC, CE, EB is
a cycle.

(b) A tree. Note that this is not a
spanning tree of the graph in (a)
since edge AB is in graph (b) but
not in graph (c).

(c) A tree, and a spanning tree of (a).

Question 6.3.3

(a) The graph is connected with 5 =
4+ 1 vertices and 6 edges. Since
6 	= 4, this graph is not a tree by
theorem 6.3.2.

(b) The graph is connected with 5= 4+1
vertices and 4 edges, and so this graph
is a tree by theorem 6.3.2.

(c) The graph is connected with 5= 4+1
vertices and 4 edges, and so this graph
is a tree by theorem 6.3.2.

Question 6.3.4

(a) Such a graph does not exist by
theorem 6.3.2.

(b)

(c)

(d) Such a graph does not exist by
theorem 6.3.2.
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Question 6.3.5

V1 = A
V2 = E, so include AE
V3 = F, so include AF
V4 = B, so include FB
V5 = C, so include FC
V6 = D, so include CD
V7 = G, so include CG
V8 = H, so include CH

A B C D

E F G H

Question 6.3.6

1 = A
2: A = E, so include AE

3: E = F, so include EF
4: F = B, so include FB
5: B = C, so include BC
6: C = D, so include CD
7: D = H, so include DH
8: H = G, so include HG

A B C D

E F G H

Question 6.3.7

See the comments after question 6.3.7 in
the text.

6.4 Application: Weighted Graphs

Question 6.4.1

There are many possible solutions—see
the model in the text.

Question 6.4.2

Postal delivery routes; garbage and recy-
cling pick-up routes; hiking trails; among
many possible options.

Question 6.4.3

The seven possible weights are:
17, 18, 19, 19, 20, 21, and 23. The mini-
mum weight spanning tree for the graph
has weight 17 as illustrated in the
following.

4 8

3 2
6

5

Question 6.4.4

Another possible spanning tree with
minimum weight 17 is illustrated
below.

A B C

D E

4

3

4

4
2

3
5

5 F

Question 6.4.5

Kruskal’s algorithm identifies the fol-
lowing spanning tree with minimum
weight 25.

A B 5 9
9

8

8

82

2

4

4
4 4 5

5

C D

E F G H
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Question 6.4.6

Prim’s algorithm identifies the following
spanning tree with minimum weight 17.

A 4

5
4

45

2
3 3

B C

D E F

Question 6.4.7

The final Hamiltonian cycle below has the
desired minimum weight of seven.

A B2

4
13

C D

A B2

4

12

C D

A B

2 1 13

C D

Question 6.4.8

weight : edges
1: AB, CD
2: BD
3: AE, ED, AC
4: BC
5: BE
6: CE
7: AD

The sorted edges algorithm identifies
the following Hamiltonian cycle with
weight 13.

A

B

C

DE 3

3

1 4

1

2

67

5

3

Question 6.4.9

The Hamiltonian cycle determined by the
outer edges has weight 12; and so, we
see that the sorted edges algorithm may
not find a minimum weight Hamiltonian
cycle, but just a Hamiltonian cycle with
an approximately minimum weight.

Question 6.4.10

The nearest neighbor algorithm identifies
the following Hamiltonian cycle with
weight 13.

A

B

C

DE 3

3

1 4

1

2

67

5

3

Question 6.4.11

The Hamiltonian cycle determined by the
outer edges has weight 12; and so, we see
that the nearest neighbor algorithm may
not find a minimum weight Hamiltonian
cycle, but just a Hamiltonian cycle with
an approximately minimum weight.
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Question 6.4.12

(a) Using vertex B as the base
vertex, the nearest neighbor algo-
rithm identifies the following
two Hamiltonian cycles with
weight 12.

A

B

C

DE 3

3

1 4

1

2

67

5

3

(b) Using different bases the near-
est neighbor algorithm identifies a
Hamiltonian cycle with a weight
of either 12 or 13, as indicated in
accompanying graphs/figures.

A

B

C

DE 3

3

1 4

1

2

67

5

3

7.1 Complex Numbers and Complex Functions

Question 7.1.1

(a) x = 1 and x = −1
(b) x = i and x = −i
(c) x = −2 with multiplicity 2
(d) x = 2+ 2i and x = 2− 2i

Question 7.1.2

(a) Re(z) = 2 and Im(z) = 1
(b) Re(z) = −5 and Im(z) = 3
(c) Re(z) = 0 and Im(z) = 2
(d) Re(z) = 4 and Im(z) = −7

Question 7.1.3

The labeled points are: −4− i, −3+ 0i,
−3+6i, −2−6i, −1+2i, 0+5i, 1−4i,
2+ 4i, 4− 4i.

Question 7.1.4

(a) |z| = 2
√

2 and θ = π/4
(b) |z| = 4 and θ = π/6
(c) |z| = 4 and θ = π/2
(d) |z| = 4 and θ = π

(e) |z| = 3 and θ = π/6
(f) |z| = 2 and θ = −π/6

Question 7.1.5

(a) t + v = 14+ 2i

(b) v− t = 6− 12i

(c) u+ w = (
√

2− π)+ (ln 2− 0.5)i

(d) t − u = (4−√2)+ 6 1
2 i

(e) v = 10+ 5i

(f) v + v = 20

(g) t · v = 75+ 50i

(h) t2 + u · v = (− 71
2 + 10

√
2) +

(51− 5
√

2)i

(i)
t

v
= 1

15
+ 6

5
i

(j)
u

w
= [−π

√
2− 1

2 ln2]+[π2 −
√

2ln2]i
π2+(ln2)2

(k) |t| = √65

(l) |v| =
√

2+ 1
4
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Question 7.1.6

(a) (3
√

2+ 3
√

2i)(2
√

2− 2
√

2i) = 3
√

2eiπ/4 · 2√2e−iπ/4 = 12e0 = 12

(b) (
√

2+√2i)(−3i) = √2eiπ/4 · 3e−iπ/2 = 3
√

2e−iπ/4 = 3− 3i

(c)
3
√

2+ 3
√

2i

2
√

2− 2
√

2i
= 3

√
2eiπ/4

2
√

2e−iπ/4
= 3

2
eiπ/2 = 0+ 3

2
i

(d)

√
2+√2i

−3i
= 1eiπ/4

3e−iπ/2
= 1

3
ei3π/4 = −1

3
+ 1

3
i

(e) (3
√

2+ 3
√

2i)8 = (3
√

2eiπ/4)8 = (3
√

2)8ei2π = (3
√

2)8 + 0i

(f) (
√

2+√2i)−3 = (
√

2eiπ/4)−3 = (
√

2)−3e−i3π/4 = − 1
4 − 1

4 i

Question 7.1.7

(a)
√

5ei(−13)π/14 and
√

5eiπ/14

(b)
√

10 · 4
√

2ei(−7)π/8 and
√

10 · 4
√

2eiπ/8

(c) 3
√

10ei(−7)π/18, 3
√

10ei5π/18, and 3
√

10ei17π/18

(d) 4
√

10ei(−19)π/24, 4
√

10ei(−7)π/24, 4
√

10ei5π/24, and 4
√

10ei17π/24

(e) 12
√

8ei(−17)π/24, 12
√

8ei(−9)π/24, 12
√

8ei(−1)π/24, 12
√

8ei7π/24 12
√

8ei15π/24, and
12
√

8ei23π/24

(f) 5
√

8ei(−14)π/15, 5
√

8ei(−8)π/15, 5
√

8ei(−2)π/15, 5
√

8ei4π/15, and 5
√

8ei10π/15

Question 7.1.8

(a) Single-valued since a complex polynomial.
(b) Three-valued since a cube root.
(c) Single-valued since a complex polynomial.
(d) Four-valued since a fourth root.

Question 7.1.9

(a) arg(z) = π

4
+ 2kπ , Arg(z) = π

4

(b) arg(z) = π

6
+ 2kπ , Arg(z) = π

6

(c) arg(z) = π

2
+ 2kπ , Arg(z) = π

2

(d) arg(z) = π + 2kπ , Arg(z) = π

(e) arg(z) = π

6
+ 2kπ , Arg(z) = π

6

(f) arg(z) = −π

6
+ 2kπ , Arg(z) = −π

6
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Question 7.1.10

(a) ux = lim

x→0

2(x +
x)− y − (2x − y)


x

= lim

x→0

2 = 2

uy = lim

y→0

2x − (y +
y)− (2x − y)


y

= lim

y→0

−1 = −1

(b) vx = lim

x→0

(x +
x)+ 2y − (x + 2y)


x

= lim

x→0

1 = 1

vy = lim

y→0

x + 2(y +
y)− (x + 2y)


y

= lim

y→0

2 = 2

(c) fx = lim

x→0

(x +
x)2y − x2y


x

= lim

x→0

x2y + 2x
xy + (
x)2y − x2y


x

= 2xy

fy = lim

y→0

x2(y +
y)− x2y


y

= lim

y→0

x2 = x2

(d) gx = lim

x→0

x +
x

y
− x

y

x

= lim

x→0


x

y
x
= 1

y

gy = lim

y→0

x

y +
y
− x

y

y

= lim

y→0

−x
y

y(y +
y)
= −x

y2

Question 7.1.11

(a) fx = sin(x2 + y2) · 2x, fy = sin(x2 + y2) · 2y
(b) gx = 20xe2y, gy = 20x2e2y
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(c) hx = (x + y) · sin(x2 + y2) · 2x + 1 · sin(x2 + y2)
hy = (x + y) · sin(x2 + y2) · 2y + 1 · sin(x2 + y2)

(d) jx = 2xy−3, jy = x2(−3)y−4

(e) ux = 4x3 − 12xy2, uy = −12x2y + 4y3

(f) vx = 12xy2 − 4y3, uy = 4x3 − 12xy2

Question 7.1.12

(a) ux = 2x, uy = −2y
(b) vx = 2y, vy = 2x
(c) It appears that ux = vy.
(d) It appears that vx = −uy.

Question 7.1.13

To prove that lim
(x,y)→(0,0)

x2 − y2 = 0,

let ε > 0, choose δ = √ε/2, and assume
that

√
(x − 0)2 + (y − 0)2 < δ. Note that

this implies |x|, |y| < δ. Under this
assumption,

|x2 − y2 − 0| = |x2 − y2| ≤ |x|2 + |y|2

< δ2 + δ2 = 2δ2 = ε.

To prove that lim
(x,y)→(0,0)

2xy = 0, let

ε > 0, choose δ = √ε/2, and assume
that

√
(x − 0)2 + (y − 0)2 < δ. Note that

this implies |x|, |y| < δ. Under this

assumption,

|2xy − 0| = |2xy| = 2 · |x|2 · |y|
< 2δ2 = ε.

To prove that ux = 2y is continuous, let
(x0, y0) be an arbitrary point on the com-
plex plane and show that lim

(x,y)→(x0,y0)
2y =

2y0. Let ε > 0, choose δ = ε/2, and
assume that

√
(x − x0)2 + (y − y0)2 < δ.

Note that this implies |y− y0| < δ. Under
this assumption,

|2y − 2y0| = 2|y − y0| < 2δ = ε.

To prove that uy = 2x is continuous, let
(x0, y0) be an arbitrary point on the com-
plex plane and show that lim

(x,y)→(x0,y0)
2x =

2x0. Let ε > 0, choose δ = ε/2, and
assume that

√
(x − x0)2 + (y − y0)2 < δ.

Note that this implies |x− x0| < δ. Under
this assumption,

|2x − 2x0| = 2|x − x0| < 2δ = ε.

7.2 Analytic Functions and the Cauchy–Riemann Equations

Question 7.2.1

(a) δ = ε/12
(b) δ = ε/

√
13

Question 7.2.2

(a) f ′(x) = (3+ 3i)z2

(b) g′(z) = 4z + i

Question 7.2.3

(a) f ′(x) = 30z2 − 14iz
(b) g′(z) = 3(iz + 2)2i

(c) h′(z) = (5z2 + 3i)i − (iz + 2)10z

(5z2 + 3i)2

(d) j′(z) = (2z+ 9i)5 · 48iz2(4iz3+ 7)3+
10(2z + 9i)4 · (4iz3 + 7)4

Question 7.2.4

d

dz
[cf (z)] = lim


z→0

cf (z +
z)− cf (z)


z

= cf ′(z)
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Question 7.2.5

(a) ux = 5x4 − 30x2y2 + 5y4 =
vy, uy =−20x3y+20xy3 =−vx

(b) ux = 10x4 − 60x2y2 + 10y4 +
6xy = vy, uy = −40x3y +
40xy3 + 3x2 − 3y2 = −vx

Question 7.2.6

f ′(z) = lim

z→0

ez+
z − ez


z

= ez · lim

z→0

e
z−1

z = ez

Question 7.2.7

(a) Log(−4) = ln(4)+ iπ, log(−4)
= ln(4)+ i(π + 2nπ), for n ∈ Z

(b) Log(2
√

3 + 2i) = ln(4) + i(π/6),
log(2

√
3 + 2i) = ln(4) + i(π/6 +

2nπ), for n ∈ Z

(c) Log(3eiπ/6) = ln(3) + i(π/6),
log(3eiπ/6) = ln(3) + i(π/6 + 2nπ),
for n ∈ Z

(d) Log(2ei(11π/6)) = ln(2) + i(11π/6),
log(2ei(11π/6)) = ln(2) + i(11π/6 +
2nπ), for n ∈ Z

Question 7.2.8

(a) −e3

(b) log(1 + i
√

3) = ln(2) + i(π/3 +
2nπ), for n ∈ Z

(c) Log(1+ i
√

3) = ln(2)+ i(π/3)

(d) ei log(−2) = e−(π+2nπ) · [cos(ln 2) +
i sin(ln 2)], for n ∈ Z

7.3 Power Series Representations of Analytic Functions

Question 7.3.1

(a) Set N = ln(1/ε)/ln(
√

85). Then
whenever n > N , |9− 2i|−n < ε.

(b) Set N = ln(ε)/ln(.75), and use
the fact that n < 1.5n for any
n ∈ N. Then whenever n > N ,
|n/(2i)n| < .75n < ε.

Question 7.3.2

(a) (7− 3i)(1+ i)
(b) 4/5
(c) i/(2− 3i)
(d) 1− i

Question 7.3.3

(a) 0
(b) 0
(c) 0
(d) 1

Question 7.3.4

i, 2i, 3i, . . . 8i.
∞∑

n=0
i = lim

n→∞ ni, which

diverges.

Question 7.3.5

(a) an = 1/(n+ 3i), R = 1.

(b) an = n!
(3n+ i)(n+ 1)! , R = 1.

(c) an = in

(n+ 2)! , R = ∞.

(d) an = 1, R = 1.

Question 7.3.6

(a) lim
n→∞ |nKn|
= lim

n→∞ n|K|n = 0, since |K| < 1. By

theorem 7.3.2, lim
n→∞ nKn = 0.
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(b) For any fixed z with |z| <

r < R, |z/r| < 1, and so by
part (a), lim

n→∞ |n|z/r|n = 0. By

the definition of limit applied to
ε = |z|, there exists N > 0 such
that n|z/r|n < |z| whenever n >

N ; in other words, n|z|n−1 < rn.
The rest of the answer follows
from multiplication on both sides
by |an| and applying the ratio
test.

Question 7.3.7

f (n)(z) = n!(1− z)−(n+1), and so f (n)(0) =
n!. Therefore f (z) =

∞∑
n=0

zn. By the ratio

test, R = 1.

Question 7.3.8

For cos z, lim
n→∞ |an+1/an|

= lim
n→∞

1

(2n+ 2)(2n+ 1)
= 0.

For sin z, lim
n→∞ |an+1/an|

= lim
n→∞

1

(2n+ 3)(2n+ 2)
= 0.

Question 7.3.9

Splitting the sum into even and odd

terms, eiz =
∞∑

n=0
(−1)n z2n

(2n)! + i
∞∑

n=0
(−1)n ·

z2n+1

(2n+ 1)! = cos z + i sin z.

Question 7.3.10

eiz + e−iz =
∞∑

n=0

(
in

zn

n! + (−i)n zn

n!
)

=
∞∑

n=0

(
(−1)n · 2z2n

(2n)!
)
= 2 cos z.

Similarly,

eiz − e−iz =
∞∑

n=0

(
in

zn

n! − (−i)n zn

n!
)

=
∞∑

n=0

(
(−1)n · 2iz2n+1

(2n+ 1)!
)
= 2i sin z.

7.4 Harmonic Functions

Question 7.4.1

(a) uxx = 12x2 − 12y2 = −uyy.
The second partial derivatives
are continuous because they are
polynomials.

(b) uxx = 2xy

(x2 + y2)2
= −uyy; these

rational functions are continuous
wherever the denominators are
nonzero.

(c) f (x + iy) = x4 − 6x2y2 + y4 =
i(3x3y−3xy3. Then fxx = 12x2−
12y2 + i(18xy) = −fyy. The
second partial derivatives are
continuous because they are
polynomials.

(d) f (x + iy) = 0.5 ln(x2 + y2) +
i tan−1(y/x). The first term in the sum
is a harmonic function; if u(x, y) =
ln(x2 + y2), then

uxx = 2(y2 − x2)

(x2 + y2)2
= −uyy

(and rational functions are contin-
uous wherever the denominator is
nonzero). The second term is har-
monic from part (b).

Question 7.4.2

(a)
∫

x2 − y2 dx = x3/3 − xy2 + C(y),
and

∫
x2 − y2 dy = x2y − y3/3 +

C(x).
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(b)
∫

x2ey dx = x3ey/3 + C(y), and∫
x2ey dy = x2ey + C(x).

Question 7.4.3

(a)
∫ 3

0 x2 − y2 dx = 9− 3y2

(b)
∫ 4

2 x2ey dy = 2y − 56/3

(c) x3/3− xy2

(d) x2/y − y3/3

Question 7.4.4

(a) uxx = e x cos y = −uyy. Since
both terms in the product are
separately continuous in x and y,
the product is continuous.

(b) v(x, y) = e x sin y
(c) f (z) = e x cos y + ie x sin y =

e xeiy = ex+iy = ez. f ′(z) = ez.

Question 7.4.5

(a) ux is computed in example 7.2.11 of
section 7.2. Then

uxx =
"(n+1)/2#−2∑

k=0

(−1)kn!xn−2k−2y2k

(2k)!(n− 2k − 2)!

and

uyy =
"(n+1)/2#−1∑

k=1

(−1)kn!xn−2ky2k−2

(2k − 2)!(n− 2k)! .

Reindexing by setting j = k − 1,

uyy =−
"(n+1)/2#−2∑

j=0

(−1)jn!xn−2j−2y2j

(2j)!(n− 2j − 2)! ,

and so uxx = −uyy.

(b) Example 7.2.11 of section 7.2 gives
v(x, y) and shows f (z) = zn.

7.5 Application: Streamlines and Equipotentials

Question 7.5.1

(a) 〈0, 2〉 is a vertical vector of
length 2 directed upwards.

(b) In standard position, 〈−1,−2〉
emanates from the origin and
extends to the point (−1,−2).

(c) 〈0, 0〉 is the zero vector, which
has no length.

(d) 〈−3, 0〉 is a horizontal vector of
length 3 directed leftward.

Question 7.5.2

(a) 2
(b)
√

5
(c) 0
(d) 3

Question 7.5.3

(a) ‖〈0, y〉‖ = |y|
(b) ‖〈$F(x, y)‖ = 1

Question 7.5.4

(a) u(x, y) = x2 − y2 − x, $∇u = 〈2x −
1,−2y〉.

(b) u(x, y) = x3 − 3xy2, $∇u = 〈3x2 −
3y2,−6xy〉.

(c) e2x+i2y = e2x cos(2y) + ie2x sin(2y).
Hence $∇u = 〈2e2x cos(2y), −2e2x ·
sin(2y)〉.

(d) u(x, y) = cos x cosh y, $∇u = 〈− sin x
cosh y, cos x sinh y〉.

Question 7.5.5

(a) u(x, y) = x, v(x, y) = y,
(b) $∇u = 〈1, 0〉. All vectors are directed

to the right one unit.
(c) The streamlines v(x, y) = C are

horizontal lines through C, and the
equipotentials u(x, y) = C are verti-
cal lines through C.

(d) The path extends horizontally to the
right of (3, 5).
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Question 7.5.6

(a) Since f (z) = y + i(−x),
u(x, y) = y and v(x, y) = −x.

(b) $∇u = 〈0, 1〉. All vectors are
directed upward with unit length.

(c) The flux lines v(x, y) = C are
vertical lines through −C, and
the isothermals u(x, y) = C are
horizontal lines through C.

Question 7.5.7

Setting z = reiθ , the imaginary part of
f is v(r, θ) = (r − r−1) sin θ + (ln r)/2π ,
and so the streamlines are of the form
(r − r−1) sin θ + (ln r)/2π = C. The
choice of r = 1 (which is the unit
circle) satisfies C = 0, and so the unit
circle emerges as a streamline for this
fluid flow.
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1.1 The Formal Language of Sentential Logic

1. C
3. M → Q
5. (∼C)→ (∼Q)
7. If Taylor is either a natural leader or

math major, then she will be qualified
for a high-paying job.

9. If Taylor is not a college student,
then she will not be qualified for a
high-paying job.

11. Taylor is a college student if and only
if she is a natural leader.

13. G ∧ (∼C)
15. F → (A ∧ C)
17. X is either a field or a group.
19. X is associative does not imply that

X is a group.
21. If X is a field, then X is commutative,

associative, and a group.
23. C ∨ D
25. (B ∧M)→ (∼D)
27. ∼[D→ (∼B)]
29. A sequence does not diverge iff the

sequence converges.
31. If a sequence is not bounded but

monotonic, then it diverges.
33. If a sequence diverges, then the

sequence is either not bounded or not
monotonic.

35. ( p ∧ Q)→ R

37. [(∼L) ∧ (∼R)] ∧ (∼Z)
or [∼ (L ∨ R)] ∧ (∼Z)

39. A ∨ (∼B)

41. [(∼E) ∧ (∼F)] ∨ G or
[∼ (E ∨ F)] ∨ G

43. Y ↔ [Z ∧ (W → X)]
45. (H → J) ∨ (K ∧ L)

47. (H ∨ J)→ (K ∧ L)

49. (q ∧ r)→ p

51. ( p ∨ q)→ (r ↔ s)

53. [(∼p) ∧ (∼q)] ∧ (∼r) or
[∼ ( p ∨ q)] ∧ (∼r)

55. Sentence.
57. Nonsentence, two adjacent connec-

tives.
59. Nonsentence, missing parentheses.
61. Nonsentence, missing parentheses.
63. Nonsentence, adjacent sentence

variables.
65. Four alternating connectives.
67. Parentheses do not actually appear in

a variable or a symbol.
69. (1 + m + n) left parentheses and

(m + n+ 1) right parentheses appear
in (B ∧ C).

654
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1.2 Truth and Sentential Logic

1. Contradiction
p (∼p) p↔ (∼p)

T F F
F T F

3. Contingency
p (∼p) (∼p)→ p ∼[(∼p)→ p]
T F T F
F T F T

5. Contingency
p q (∼p) (∼p)→ q

T T F T
T F F T
F T T T
F F T F

7. Tautology
p q (q→ p) p→ (q→ p)

T T T T
T F T T
F T F T
F F T T

9. Contingency
p q ( p↔ q)↔ (∼p)

T T F
T F T
F T F
F F T

11. Contingency
p q [( p→ q) ∧ (∼q)] → p

T T T
T F T
F T T
F F F

13. Tautology
p r ( p ∨ r)↔ {∼[(∼p) ∧ (∼r)]}
T T T
T F T
F T T
F F T

Note: This follows from DeMorgan’s laws.

15. Contingency
p q r ( p ∧ q) ( p ∧ q) ∨ r

T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

17. Contingency
p q r ( p↔ q)↔ (∼r)

T T T F
T T F T
T F T T
T F F F
F T T T
F T F F
F F T F
F F F T

19. Contingency
p q r {p→ [∼ (q ∧ r)]} → (r → p)

T T T T
T T F T
T F T T
T F F T
F T T F
F T F T
F F T F
F F F T

21. Yes
p (∼p) ∼ (∼p)

T F T
F T F

23. Yes
p q ∼ ( p ∨ q) (∼p) ∧ (∼q)

T T F F
T F F F
F T F F
F F T T
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25. No, row 3
p q p ∨ q

T T T
T F T
F T T
F F F

27. Yes
p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

29. Yes
p q r ( p ∨ q) ∨ r p ∨ (q ∨ r)

T T T T T
T T F T T
T F T T T
T F F T T
F T T T T
F T F T T
F F T T T
F F F F F

31. Yes
p q r p ∧ (q ∨ r) ( p ∧ q) ∨ ( p ∧ r)
T T T T T
T T F T T
T F T T T
T F F F F
F T T F F
F T F F F
F F T F F
F F F F F

33. No, rows 2 and 4
p q r p ∨ (q ∧ r) ( p ∨ q) ∧ r

T T T T T
T T F T F
T F T T T
T F F T F
F T T T T
F T F F F
F F T F F
F F F F F

35. Yes
p q ( p→ q) (∼q)→ (∼p)

T T T T
T F F F
F T T T
F F T T

37. No, rows 2 and 3
p q ( p→ q) (q→ p)

T T T T
T F F T
F T T F
F F T T

39. Yes
p q ( p→ q) ∼[ p ∧ (∼q)]
T T T T
T F F F
F T T T
F F T T

41. Yes
p q p↔ q ( p→ q) ∧ (q→ p)

T T T T
T F F F
F T F F
F F T T

43. A B ∼B A→ (∼B)

T F T T

45. p A A→ p

T T T
F T F

47. p A B p→ (A ∨ B)

T T F T
F T F T

49. p A B A↔ [ p ∨ (∼B)]
T T F T
F T F T

51. p q A B [∼ (B ∧ q)] → (A↔ p)

T T T F T
T F T F T
F T T F F
F F T F F
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53. The standard truth table for B has
the same final column as itself.
Therefore, B ≡ B.

55. If B ≡ C, the final column of the
truth table for B is the same as the
final column of the truth table for C.
Similarly, if C ≡ D, the final column
of the truth table for C is the same
as the final column of the truth table
for D. Since the final column of the
truth table for B is the same as the
final column of the truth table for
C which is the same as the final
column of the truth table for D, the
final column of the truth table for B

must be the same as the final column
of the truth table for D. Therefore,
B ≡ D.

57. If B ↔ C is a tautology, then
from the basic truth table for the

connective ↔, we conclude that B

and C must have precisely the same
final truth table column. Therefore,
B ≡ C.

59. f→(T , T ) = T
f→(T , F) = F
f→(F, T ) = T
f→(F, F) = T

61. f∧(f∼(T ), F) = f∧(F, F) = F
63. f→(f∨(T , F), f∧(F, T ))
= f→(T , F) = F

65. f∼(f↔(T , F)) = f∼(F) = T
67. f∼◦ f∧(T , T ) = F

f∼◦ f∧(T , F) = T
f∼◦ f∧(F, T ) = T
f∼◦ f∧(F, F) = T

69. The composition is undefined
because the function f∼ outputs a
single value and the function f∨ is
not defined for single-value inputs.

1.3 An Algebra for Sentential Logic

1. p→ q
3. (∼p) ∨ q
5. (∼p) ∨ q
7. p↔ q
9. [(∼p) ∨ q] ∧ [(∼q) ∨ p]

11. ∼{∼[(∼p) ∨ q] ∨ [∼[(∼q) ∨ p]]}
13. ∼[(∼p) ∧ (∼q)]
15. ∼[ p ∧ (∼q)] ∧ {∼[q ∧ (∼p)]}
17. ∼{p ∧ [q ∧ (∼p)]}
19. p ∧ [(∼p) ∧ (∼q)]
21. {∼[( p ∧ q) ∧ (∼r)]}∧
{∼[r ∧ [∼ ( p ∧ q)]]}

23. ∼{∼[(∼p) ∧ (∼r)] ∧ [∼ (q ∧ r)]}
25. ∼[(∼p) ∨ (∼q)]
27. ∼{[∼[(∼p) ∨q]]∨[∼[(∼q) ∨ p]]}
29. (∼p) ∨ [(∼q) ∨ p]
31. [ p ∧ (∼q)] ∨ [(∼p) ∧ q)] ∨
[(∼p) ∧ (∼q)]

33. [ p ∧ q] ∨ [(∼p) ∧ q] ∨
[(∼p) ∧ (∼q)]

35. p ∧ (∼q)

37. [ p ∧ (∼q) ∧ r] ∨ [ p ∧ (∼q)∧
(∼r)] ∨ [(∼p) ∧ (∼q) ∧ r]

39. [ p ∧ q ∧ (∼r)] ∨ [(∼p)∧
q ∧ r] ∨ [(∼p) ∧ q ∧ (∼r)]
∨ [(∼p) ∧ (∼q) ∧ r] ∨
[(∼p) ∧ (∼q) ∧ (∼r)]

41. [ p ∧ q ∧ r] ∨ [ p ∧ (∼q) ∧ r]∨
[(∼p) ∧ (∼q) ∧ r] ∨ [(∼p)∧
(∼q) ∧ (∼r)]

43. {∼,∨,∧} {∼,∨}
∼p ∼p

p ∨ q p ∨ q
p ∧ q ∼[(∼p) ∨ (∼q)]

45. {∼,∨,∧} {∼,→}
∼p ∼p

p ∨ q (∼p)→ q
p ∧ q ∼[ p→ (∼q)]
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47. {∼,∧,→} is adequate since
{∼,∧} is adequate.

49. {∼,∧,↔} is adequate since {∼,∧} is
adequate.

51. {∼,∧,∨,↔} is adequate since {∼,∨}
is adequate (alternatively, since
{∼,∧} is adequate).

53. The following truth tables for
sentences using only ∼ and ↔
indicate that the final column of such
truth tables must contain an even
number of T ’s and F’s. However,
half of all two-variable truth tables
contain an odd number of T ’s and
F’s in their final columns and,
since {∼,↔} cannot express every
truth table, this set is not adequate.

p q ( p↔ p)↔ (q↔ q) p↔ q

T T T T
T F T F
F T T F
F F T T

p q ∼p [ p↔ (∼p)] ↔ (q↔ q)

T T F F
T F F F
F T T F
F F T F

p q ∼q p↔ (∼q)

T T F F
T F T T
F T F T
F F T F

55. The connectives → and ↔ cannot
produce the truth value F in the first
row of a truth table. Thus, the truth
table for (∼p) cannot be expressed by
a sentence using only the connectives
→ and ↔, and so this set is not
adequate.

57. p p | p

T F
F T

59. p p ↓ p

T F
F T

61. Antecedent: p
Consequent: q
Contrapositive: If∼q, then∼p.

63. Antecedent: p ∨ q
Consequent: q ∨ p
Contrapositive: If∼ (q ∨ p),
then∼ ( p ∨ q).

65. Antecedent: q = F
Consequent: ( p ∨ q) ≡ p
Contrapositive: q 	≡ F when
( p ∨ q) 	≡ p.

67. Antecedent: n > 2
Consequent: n2 > 4
Contrapositive: If n2 	> 4,
then n 	> 2.

69. Antecedent: n > 2
Consequent: n2 > 4
Contrapositive: n 	> 2 when
n2 	> 4.

1.4 Application: Designing Computer Circuits

1. (1 ∨ 1) ∧ (∼ 1) = (T ∨ T ) ∧ (F) =
T ∧ F = F = 0

3. (0 ∨ 1) ∧ (∼ 1) = (F ∨ T ) ∧ (F) =
T ∧ F = F = 0

5. [(∼1) ∨ 1] ∧ [1 ∨ (∼1)] =
[(∼T ) ∨ T ] ∧ [T ∨ (∼T )] =
T ∧ T = T = 1

7. [(∼0) ∨ 1] ∧ [0 ∨ (∼1)] =
[(∼F) ∨ T ] ∧ [F ∨ (∼T )] =
T ∧ F = F = 0

9. (∼1) ∧ (1 ∨ 1) = (∼T )∧
(T ∨ T ) = F ∧ T = F = 0

11. (∼1) ∧ (0 ∨ 1) = (∼T )∧
(F ∨ T ) = F ∧ T = F = 0
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13. (∼0) ∧ (0 ∨ 1) = (∼F)∧
(F ∨ T ) = T ∧ T = T = 1

15. (1∧ 1)∨ [(∼1)∧ 1] = (T ∧T )∨ [(∼
T ) ∧ T ] = T ∨ F = T = 1

17. (1∧ 0)∨ [(∼1)∧ 1] = (T ∧F)∨ [(∼
T ) ∧ T ] = F ∨ F = F = 0

19. (0∧ 0)∨ [(∼0)∧ 1] = (F ∧F)∨ [(∼
F) ∧ T ] = F ∨ T = T = 1

21. [ p ∧ (∼q)] ∨ [(∼p) ∧ q] ∨
[(∼p) ∧ (∼q)]

23. [ p ∧ (∼q)] ∨ [(∼p) ∧ q]
25. p ∧ (∼q)
27. [ p ∧ (∼q) ∧ r] ∨ [ p ∧ (∼q)∧

(∼r)] ∨ [(∼p) ∧ (∼q) ∧ r]
29. [ p ∧ q ∧ (∼r)] ∨ [(∼p)∧

q ∧ r] ∨ [(∼p) ∧ q ∧ (∼r)] ∨
[(∼p) ∧ (∼q) ∧ r] ∨
[(∼p) ∧ (∼q) ∧ (∼r)]

31. [ p∧ q∧ r] ∨ [ p∧ (∼q)∧ r] ∨ [(∼
p) ∧ (∼q) ∧ r] ∨ [(∼p)∧
(∼q) ∧ (∼r)]

33. (∼p) ∨ (∼q)
35. ∼p
37. p ∨ (∼p)
39. q ∨ [(∼p) ∧ r]
41. ( p ∧ q) ∨ [(∼p) ∧ (∼q)]
43. q ∨ r
45. (∼p) ∨ (∼q)
47. [ p ∧ (∼q)] ∨ [(∼p) ∧ q]
49. p ∧ (∼q)
51. [ p ∧ (∼q)] ∨ [(∼q) ∧ r]
53. (∼p) ∨ [q ∧ (∼r)]
55. ( p ∧ r) ∨ [(∼p) ∧ (∼q)]
57. q
59. p ∨ (∼q)
61. [ p ∧ r] ∨ [ p ∧ (∼q)]
63. [(∼p) ∧ (∼q)] ∨ (∼r)
65. [(∼p) ∨ (∼q)]
67. [(∼p) ∨ (∼q)] ∧ [ p ∨ q]
69. [(∼p) ∨ (∼q) ∨ (∼r)] ∧ [(∼p)
∨ (∼q) ∨ r] ∧ [ p ∨ (∼q)∨
(∼r)] ∧ [ p ∨ (∼q) ∨ r]

1.5 Natural Deductive Reasoning

1. Modus tollens
p q ( p→ q) ∧ (∼q) ∼p

T T F F
T F F F
F T F T
F F T T

3. Conjunctive simplification
p q p ∧ q q

T T T T
T F F F
F T F T
F F F F

5. Disjunctive syllogism
p q ( p ∨ q) ∧ (∼p) q

T T F T
T F F F
F T T T
F F F F
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7. Disjunctive addition
p q p ∨ q

T T T
T F T
F T T
F F F

9. Hypothetical syllogism
p q r ( p→ q) ∧ (q→ r) ( p→ r)

T T T T T
T T F F F
T F T F T
T F F F F
F T T T T
F T F F T
F F T T T
F F F T T

11. Contradiction
p q r [ p ∧ (∼q)] → [r ∧ (∼r)] p→ q

T T T T T
T T F T T
T F T F F
T F F F F
F T T T T
F T F T T
F F T T T
F F F T T

13. p q ( p↔ q) ∧ p q

T T T T
T F F F
F T F T
F F F F

15. p q ( p↔ q) ∧ (∼p) ∼q

T T F F
T F F T
F T F F
F F T T
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17. p q r ( p↔ q) ∧ ( p↔ r) (∼q) ∨ r

T T T T T
T T F F F
T F T F T
T F F F T
F T T F T
F T F F F
F F T F T
F F F T T

19. row 3
p q ( p→ q) ∧ (∼p) ∼q

T T F F
T F F T
F T T F
F F T T

21. row 1
p q ( p ∨ q) ∧ p ∼q

T T T F
T F T T
F T F T
F F F T

23. row 3
p q p ∨ q p

T T T T
T F T T
F T T F
F F F T

25. row 1
p q p ∧ q ∼q

T T T F
T F F T
F T F F
F F F T

27. row 4
p q r [( p ∧ q)→ r] ∧ p r

T T T T T
T T F F F
T F T T T
T F F T F
F T T F T
F T F F F
F F T F T
F F F F F
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29. row 6
p q r [( p ∨ q) ∨ r] ∧ (∼p) r

T T T F T
T T F F F
T F T F T
T F F F F
F T T T T
F T F T F
F F T T T
F F F F F

31. row 1 or row 8
p q r ( p↔ q) ∧ (q↔ r) (∼p) ∧ r

T T T T F
T T F F F
T F T F F
T F F F F
F T T F T
F T F F F
F F T F T
F F F T F

33. 1. premise
2. 1—double negation
3. premise
4. 2,3—modus ponens

35. 1. premise
2. 1—conjunctive simplification
3. premise
4. 2,3—modus tollens

37. 1. premise
2. premise
3. 1,2—hypothetical syllogism
4. premise
5. premise
6. 4,5—disjunctive syllogism
7. 3,6—modus ponens

39. 1. premise
2. 1—conjunctive simplification
3. premise
4. 2,3—modus ponens
5. 4—conjunctive simplification
6. 5—double negation
7. premise
8. 6,7—disjunctive syllogism

41. 1. premise
2. premise

3. 1,2—modus tollens
4. 3—De Morgan’s laws
5. 4—conjunctive simplification
6. premise
7. 5,6—modus tollens
8. 4—conjunctive simplification
9. premise

10. 8,9—disjunctive syllogism
11. 7,10—conjunctive addition

43. When p = F and q = T , the premises
( p→ q) and (∼p) are true while the
conclusion (∼q) is false.

45. When p = T and q = T , the premises
( p ∨ q) and p are true while the
conclusion (∼q) is false.

47. When p = F and q = T , the premise
( p∨ q) is true while the conclusion p
is false.

49. When p = T and q = T , the premise
( p ∧ q) is true while the conclusion
(∼q) is false.

51. When p = T , r = F, and either of q =
T or q = F, the premises [( p∧ q)→
r] and p are true while the conclusion
r is false.
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53. When p = F, q = T , and r = F, the
premises [( p ∨ q) ∨ r] and (∼p) are
true while the conclusion r is false.

55. When p = q = r are either of T or F,
the premises ( p↔ q) and (q↔ r) are
true while the conclusion [(∼p) ∧ r]
is false.

57. modus ponens
59. inverse error
61. modus tollens
63. inverse error
65. If B ≡ C, then B and C have the same

final column in their truth tables. It
follows from the basic truth table for
the connective↔, that B↔ C is true
whenever corresponding rows in the
final truth table columns for B and C

have the same truth value. Since this
happens in every row if B ≡ C, then
B ↔ C is true in every row and is
therefore a tautology.

67. If B ↔ C is a tautology, then we
know that (B→ C) ∧ (C→ B) is a
tautology because (B→ C) ∧ (C→
B) is logically equivalent to B ↔
C. By conjunctive simplification, we
know that B→ C is also a tautology.
Then by the definition of a rule of
deduction of the form B ∴ C, we
know that B ∴ C is a valid argument.

69. If B ≡ C, then from exercise 65
B↔ C is a tautology. Now, applying
exercise 67, B ∴ C is a valid
argument.

1.6 The Formal Language of Predicate Logic

1. L(c, p) ∨ L( p, c)

3. L(c, p) ∧ L( p, c)

5. L( p, c) ∧ L( p, p)

7. ∀y[∼ (x = c)→ L( p, y)]∧
[∼L( p, c)]

9. ∃x[L(x, c)→ L( p, c)]
11. ∀xL(x, x)

13. ∀x∀y{[∼L(x, y)] → [∼L(c, x)]}
15. ∀xL(x, x)→ ∀x∃yL(x, y)

17. P(2) ∧ E(2)

19. [∼E(5)] ∧ E(2)

21. [(2+ 5) > 2] ∧ [(2+ 5) > 5]
23. P(2+ 5)→ [∼E(2+ 5)]
25. ∀n{(n > 0)→ [∼ (n = 0)]}
27. ∀n∀m{[E(n) ∧ E(m)] → E(n+ m)}
29. ∀k∀n∀m{[E(k) ∧ E(n) ∧ E(m)] →
[∼P(k + n+ m)]}

31. ∀n∃m[E(n) ∧ E(m) ∧ (m > n)]
33. A: E(0)

B: ∃x[Z(x) ∧ E(x)]
35. A: ∃n(n > 0)

B: ∃n∀x[Z(x)→ (n > x)]

37. A: ∀n(n > 0)
B: ∀n∀x[Z(x)→ (n > x)]

39. A: ∃n(0 > n)
B: ∃n∀x[Z(x)→ (x > n)]

41. ∀x∀y[(x + y) = ( y + x)]
43. ∃e∀x{[(x + e) = x] ∧ [(e+ x) = x]}
45. ∀x[∼ (x < x)]
47. ∀x∀y{(x < y)→ [∼ ( y < x)]}
49. ∀x∀y{(x < y)→ ∃z[(x < z)∧

(z < y)]}
51. ∀ε∃δ∀x{[[(ε > 0) ∧ (δ > 0) ∧
[d(x, c) < δ] ∧ [∼ (x = c)]] →
[d( f (x), L) < ε]}

53. ∀M∃δ∀x{[(M > 0) ∧ (δ > 0) ∧
[d(x, c) < δ] ∧ [∼ (x = c)]] →
[ f (x) > M)}

55. ∀ε∃N∀x{[(ε > 0) ∧ (N > 0)∧
(x > N)] → [d( f (x), L) < ε]}

57. ∀y[L(c, y)→ ( y = p)]
59. ∀x∃yL(x, y)

61. ∼∃x∀yL(x, y)

63. ∃x{E(x) ∧ P(x) ∧ ∀y[(E( y)∧
P( y))→ (x = y)]}
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65. ∃x∃y{(x > 0) ∧ ( y > 0)∧
[∼ (x = y)]}

67. ∃x∃y∃z{[(x > 0) ∧ ( y > 0)∧
(z > 0)] ∧ [∼[(x = y)∨
(x = z) ∨ ( y = z)]]}

69. ∃x∃y∃z{[(x > 0) ∧ ( y > 0)∧
(z > 0)] ∧ [(4 > x) ∧ (4 > y)∧
(4 > z)] ∧ [∼[(x = y)∨
(x = z) ∨ ( y = z)]]}

1.7 Fundamentals of Mathematical Proofs

1. Let n = 2i , m = 2j + 1 where
i, j ∈ Z. Then n + m = 2i + (2j +
1) = 2(i + j) + 1. Since i + j is
an integer, 2(i + j) + 1 is an odd
integer. Therefore n + m is an even
integer.

3. Let n = 2i , m = 2j + 1 where
i, j ∈ Z. Then n ·m = (2i)(2j + 1) =
2(2ij + i). Since 2ij + i is an integer,
2(2ij+ i) is an even integer. Therefore
n · m is an even integer.

5. Let n = 2i + 1 , m = 2j + 1 where
i, j ∈ Z. Then n + m = (2i + 1) +
(2j+ 1) = 2i+ 2j+ 2 = 2(i+ j+ 1).
Since i+ j+ 1 is an integer, 2(i+ j+
1) is an even integer. Therefore n+m
is an even integer.

7. Let n = 2i + 1 , m = 2j + 1 where
i, j ∈ Z. Then n · m = (2i + 1)(2j +
1) = 4ij + 2i+ 2j + 1 = 2(2ij + i+
j)+ 1. Since 2ij + i+ j is an integer,
2(2ij + i + j) is an even integer.
Therefore 2(2ij + i + j) + 1 is an
odd integer. Therefore n ·m is an odd
integer.

9. Let n = 2k + 1 where k ∈ Z. Then
n2 = n · n = (2k + 1)(2k + 1) =
4k2 + 4k + 1 = 4k(k + 1) + 1.
Examine the case where k is an even
integer: k = 2r for some r ∈ Z. Then
4k = 4(2r) = 8r and so n2 = 8r(k +
1)+ 1. Letting r(k + 1) = i, we have
n2 = 8i+ 1. Examine the case where
k is an odd integer: k = 2r + 1 for
some r ∈ Z. Then (k+1)= (2r+1+
1)= 2(r+1) and so n2 = (4k)(2)(r+

1)+1= 8k(r+1). Letting k(r+1)=
i, we have n2 = 8i + 1. Therefore,
when n is odd, n2 = 8i + 1 for some
integer i ∈ Z.

11. Let n + m = 2i + 1 for some i ∈
Z where n, m ∈ Z. Without loss of
generality, let n > m (we know n 	=
m). Then n − m = (n + m) − 2m =
(2i+ 1)− 2m = 2(i−m)+ 1. Since
i − m is an integer, 2(i − m) + 1 is
an odd integer. Therefore n−m is an
odd integer.

13. Let x = p/q and y = r/s for some
p, q, r, s ∈ Z where q, s 	= 0. Then

x − y = p

q
− r

s
= ps− qr

qs
.

Since ps − qr is an integer and qs is
a nonzero integer by the zero product
property, (x − y) ∈ Q.

15. Let x = p/q and y = r/s for some
p, q, r, s ∈ Z where p, q, r, s 	= 0.
Then

x ÷ y = p

q
÷ r

s
= ps

qr
.

Since ps is a nonzero integer and qr is
a nonzero integer by the zero product
property, x ÷ y is a nonzero rational
number.

17. Let x = p/q for some p, q ∈ Z where
q 	= 0. Then

2x = 2 · p

q
= 2p

q
.

Since 2p is an integer and q is a
nonzero integer by the zero product
property, 2x ∈ Q.
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19. Let n be a nonzero even integer (if
n = 0, then n2 = 0, which is an even
integer). Assume that n2 is an odd
integer. Then n2 = 2i + 1 for some
i ∈ Z. Then

n = n2

n
= 2i + 1

n
.

If n is even, then

2i + 1

n
= 2k

for some k ∈ Z. Then 2i + 1 = 2kn.
Since kn is an integer, 2kn is an even
integer. Thus the odd integer 2i + 1
is an even integer, and we have a
contradiction of the parity property
of the integers. Therefore, if n is an
even integer, then n2 is also an even
integer.

21. Let n be a nonzero even integer (if
n = 0, then n3 = 0, which is an even
integer). Assume that n3 is an odd
integer. Then n3 = 2i + 1 for some
i ∈ Z. Then

n = n3

n2
= 2i + 1

n2
.

If n is even, then

2i + 1

n2
= 2k

for some k ∈ Z. Then 2i+ 1 = 2kn2.
Since kn2 is an integer, 2kn2 is an
even integer. Thus the odd integer
2i+ 1 is an even integer, and we have
a contradiction of the Parity Property
of the Integers. Therefore, if n is an
even integer, then n3 is also an even
integer.

23. Choose r where r 	∈ Q. Assume
that
√

r is rational. Then
√

r = p/q
for some p, q ∈ Z where q 	= 0.
Then (

√
r)2 = p2/q2 is a rational

number. Thus, since r = (
√

r)2, the
irrational number r is rational, and
we have a contradiction. Therefore,

if r is irrational, then
√

r is also
irrational.

25. Choose x where x ∈ Q. Assume
that x2 	∈ Q (i.e. x2 is irrational).
Then x = √x2. From exercise 22
we know that if x2 is irrational,
that
√

x2 is also irrational. Thus the
rational number x is irrational, and
we have a contradiction. Therefore,
if x is rational, then x2 is also
rational.

27. Assume that n is the greatest integer.
If n is an integer, then n + 1 is also
an integer. We know that n+ 1 > n.
Thus n + 1 is greater than the
greatest integer n, and we have a
contradiction. Therefore there does
not exist a greatest integer.

29. Assume that x is the least positive
rational number. If x is rational, x

2
is also rational since x/2 = p/(2q)
for some p, q ∈ Z where q 	= 0 and
thus 2q 	= 0. Since x is positive, we
know that 0 < x/2 < x. Thus x/2 is a
positive rational number less than the
least positive rational number, and we
have a contradiction. Therefore there
does not exist a least positive rational
number.

31. Assume that n is an odd integer. Then
n = 2k + 1 for some k ∈ Z. Then
n3 = (2k+ 1)3 = 8k3+ 12k2+ 6k+
1 = 2(4k3 + 6k2 + 3k) + 1. Since
4k3+ 6k2+ 3k is an integer, 2(4k3+
6k2 + 3k)+ 1 is an odd integer. Thus
n being odd implies that n3 is also
odd. Therefore, by contrapositive, we
know that if n3 is even, then n is also
even.

33. Assume that m or n is an even integer;
with loss of generality, we assume m
is even, so m = 2k for some k ∈ Z.
Then m · n = (2k)n = 2(kn). Since kn
is an integer, 2(kn) is an even integer.
Thus m or n being even implies that
m · n is also even. Therefore, by
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contrapositive, we know that if m · n
is odd, then both m and n are odd.

35. Assume that
√

r is a rational number.
Then

√
r = p/q for some p, q ∈ Z

where q 	= 0. Then r = (
√

r)2 =
p2/q2. Since p2 and q2 are both
integers and q2 	= 0 by the zero
product property, p2/q2 is a rational
number. Thus

√
r being a rational

number implies that r is also a
rational number. Therefore, by con-
trapositive, we know that if r is
irrational, then

√
r is also irrational.

37. ⇒ Assume that n is an even
integer. Then n = 2k for some k ∈
Z. Then n2 = n · n = (2k)(2k) =
4k2 = 2(2k2). Since 2k2 is an integer,
2(2k2) is an even integer. Thus n
being even implies that n2 is also
even. Therefore, by contrapositive,
we know that if n2 is odd, then n is
also odd.
⇐ Let n = 2k + 1 where k ∈ Z.
Then n2 = n ·n = (2k+1)(2k+1) =
4k2 + 4k + 1 = 2(2k2 + 2k) + 1.
Since 2k2 + 2k is an integer, 2(2k2 +
2k) + 1 is an odd integer. Therefore
n2 is an odd integer.

39. ⇒ Let n be an odd integer. Then
n = 2k + 1 for some k ∈ Z. Then
n + 1 = (2k + 1) + 1 = 2k + 2 =
2(k + 1), which is an even integer.
Therefore, if n is odd, then n + 1 is
even.
⇐ Let n+1 be an even integer. Then
n + 1 = 2k for some k ∈ Z. Then

n = (n+ 1)− 1 = 2k − 1. Let k =
i + 1 for some i ∈ Z. Notice that all
we have done is rewritten the integer
k in terms of the integer directly pre-
ceding k (e.g., 13 = 12+ 1). Then
n = 2k − 1 = 2(i + 1) − 1 =
2i + 1, which is an odd integer.
Therefore, if n + 1 is even, then n
is odd.

41. 3 = 2 · 1+ 1 is an odd integer.
43. 8 is even, since 8 = 2 · 4, and can

be written as the sum of two distinct
primes, since 8 = 3+ 5.

45. π is an irrational number.
47. 2 = 2/1 is a rational integer.
49. 2 is prime, but 2 = 2 · 1 is not odd.
51. The ratio C : r = 2π , but 2π is not

rational.
53. The sum of the odd integers 3 and 5

is 8, and 8 = 2 · 4 is not odd.
55. 3 = 2 · 1+ 1 = 3/1 is an odd integer

that is not irrational.
57. The sum of the two irrational num-

bers π and −π is 0, which is not
irrational.

59. For the pair of reals 2 and −2
satisfies the condition 22 = (−2)2,
but 2 	= −2.

61.
√

4 = 2 is a rational number.
63. 2 is a rational number that is not odd.
65. 2 is an even integer.
67. 02 = 0 is not greater than zero.
69. This proof incorrectly assumes that

the conclusion is true, then proceeds
to deduce that if the conclusion is
true, it must be true.

2.1 The Algebra of Sets

1. {w, z}
3. {x, y}
5. {x, y, z}
7. {x, y}

9. {y}
11. {(x, x), (x, y), (x, z), ( y, x),

( y, y), ( y, z)}
13. {∅, {x}, {y}, {x, y}}
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15. AC = (−∞, 0] ∪ (2,∞), or
AC = {x : −∞ < x ≤ 0 or
2 < x <∞}

17. A ∩ B = [1, 2] = {x : 1 ≤ x ≤ 2}
19. A \ B = (0, 1) = {x : 0 < x < 1}
21. AC ∩ BC = (A ∪ B)C = (−∞, 0]
∪[3,∞), or
AC ∩ BC = {x : −∞ < x ≤ 0 or
3 ≤ x <∞}

23. 1 ∈ N, but 1 	∈ ∅.
25. 1

2 ∈ Q, but 1
2 	∈ Z.

27. i ∈ C, but i = √−1 	∈ R.

29. The sets {1, 2} and {2, 1} have
precisely the the same elements and
the order in which the elements of
a set are listed is not important.
Therefore {1, 2} = {2, 1}.

31. Let x ∈ A, then x ∈ A and we have
A ⊆ A. Notice that A 	⊂ A since
A = A.

33. Since the empty set ∅ contains no
elements, ∅C contains every element
in the universe. Since A \ ∅ = A ∩
∅C , we have A ∩ ∅C = A since
the intersection between any set and
the entire universe is the set itself.
Therefore A \ ∅ = A.

35. By definition, if some element
a ∈ A ∩ B, then a ∈ A and a ∈ B.
Thus, for every element a ∈ A ∩
B, we have a ∈ A. Therefore A ∩
B ⊆ A.

37. Let a ∈ A. By definition of the union,
A ∪ B is the set of elements either in
A, in B, or in both A and B. Thus, if
a ∈ A, we have a ∈ A ∪ B. Therefore
A ⊆ A ∪ B.

39. Let a ∈ A. Since A ⊆ B, we have
a ∈ B. Since A ⊆ C, we have a ∈ C.
If a ∈ B and a ∈ C, then a ∈ B ∩ C.
Since for any element a ∈ A we have
a ∈ B ∩ C, we then have A ⊆ B ∩ C.

41. Let X ∈ P(A). Then X ⊆ A. Since
x ∈ X and X ⊆ A, we have x ∈ A.
In addition, A ⊆ B, so x ∈ B. Since
x ∈ X implies x ∈ B, we have X ⊆ B.
Then by the definition of a power
set, we have X ∈ P(B). Since for
every X ∈ P(A) we have X ∈ P(B),
P(A) ⊆ P(B).

43. An element is not a set and thus
cannot be a subset.

45. Apower set is a set of sets. So a subset
of a power set must be another set
of sets. Since the set {1} is a set of
numbers, not sets, {1} cannot be a
subset of a power set.

47. Let A = ∅ and B be any finite set.

49. Let A = {1, 2} and B = {1, 2}.
51. Let A = {1, 2, 3}, B = {2, 3, 4}, and

C = {2, 3}.
53. Let A = {1, 2, 3}, B = {1, 2}, and

C = {3, 4}.
55. C is only disjoint from F.

57. E is disjoint from D and F.

59. The two elements are ∅ and {1}.
61. The eight elements are∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

63. 5 = {1, 2, 3, 4}
65. Each set contains a number of

elements that is equal to its cor-
responding natural number. The set
corresponding to the natural number
50 contains 50 elements.

67. The barber is only allowed to shave
people who do not shave themselves.
Thus, if the barber shaves himself, he
must not shave himself.

69. If N is a normal set, then N cannot
be in N (that is, N 	∈ N). But N
contains all normal sets and since N
is normal, N is in N (that is, N ∈ N).
Contradiction!
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2.2 The Division Algorithm andModular Addition

1. q = 5 and r = 4
3. q = −2 and r = 5
5. Integers from {. . . ,−13,−6, 1, 8,

15, . . .}
7. Integers from {. . . ,−10,−3, 4, 11,

18, . . .}
9. q = 4 and r = 1

11. q = −2 and r = 5
13. Integers from {. . . ,−15,−7, 1, 9,

17, . . .}
15. Integers from {. . . ,−11,−3, 5, 13,

21, . . .}
17. 1, 4, 7
19. 3, 10, 17
21. 3, 13, 23
23. 4, 6, 5, 6
25. 7, 1, 5, 6
27. 2, 9, 10, 9
29. 0, 1
31. 0, 1, 2, 3, 4
33. ap mod p = a mod p where a ∈ Z+

and p is any prime number.
35. {0, 1, 2, 3, 4, 5, 6, 7}
37. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14}
39. n = 5k + 4 is the set {. . .,−11,

−6,−1, 4, 9, 14, . . .}.
41. n = 8k + 4 is the set {. . .,−20,

−12,−4, 4, 12, 20, . . .}.
43. 0, 1
45. 1, 2
47. 2, 4
49. 4, 2
51. 0, 7
53. 6, 0
55. 0 and 2 are their own inverses; 1 and

3 are inverses.
57. 0 and 4 are their own inverses; 1 and

7 are inverses; 2 and 6 are inverses;
and 3 and 5 are inverses.

59. 0 is its own inverse; 1 and 14 are
inverses; 2 and 13 are inverses; 3 and
12 are inverses; 4 and 11 are inverses;

5 and 10 are inverses; 6 and 9 are
inverses; and 7 and 8 are inverses.

61. Since a ≡ b mod n, we have a =
n · e + r and b = n · f + r, for
some e, f , r ∈ Z. Similarly, since c ≡
d mod n, we have c = n · g + s and
b = n · h + s, for some g, f , s ∈ Z.
Taking differences, we have a− c =
n · (e − g) + (r − s) and b − d =
n · (f − h)+ (r − s). By the division
algorithm, r − s = n · p+ t for some
p ∈ Z and t ∈ Zn. Thus, a − c and
b − d both have a remainder of t
under division by n, and we have
(a− c) ≡ (b− d) mod n.

63. If a is odd, then a = 2s+ 1 for some
s ∈ Z. Then a2 = 4s2 + 4s + 1 =
4(s2 + s) + 1, which is one greater
than a multiple of 4. Since every
number that is one greater than a
multiple of 4 is equivalent to 1 mod 4,
a2 ≡ 1 mod 4.

65. Each element a ∈ A ∩ B is in both
A and B. Since B ∩ A contains all
elements common to both B and A,
a ∈ B ∩ A. Thus A ∩ B ⊆ B ∩ A.
Each element b ∈ B ∩ A is in both
B and A. Since A ∩ B contains all
elements common to both A and B,
b ∈ A ∩ B. Thus B ∩ A ⊆ A ∩ B.
Therefore A ∩ B = B ∩ A.

67. Counterexample: Let A = {1, 2} and
B = {2, 3}.

69. Let a ∈ A∪∅. Then, by the definition
of union of sets, a ∈ A or a ∈ ∅
or a ∈ A ∩ ∅. By definition, the
empty set ∅ contains no elements.
Therefore, for all a ∈ A ∪ ∅, we have
a ∈ A. Thus A ∪ ∅ = A. By identical
argument∅∪A = A. Therefore, since
A ∪ ∅ = A and ∅ ∪ A = A, the
empty set ∅ is the identity for union
of sets.
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2.3 Modular Multiplication and Equivalence Relations

1. 0, 1
3. 2, 1
5. 6, 6

7. 8, 0
9. 9, 2

11. {0, 1}
13. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
15. {1, 3, 5, 7}
17. ⊕ 0 1

0 1
1 1 0

19. ⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

21. � 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

23. 1 and 4 are their own inverses; 2 and
3 are inverses.

25. (2 � 3) � 4 = {[(2 · 3) mod 11] · 4}
mod 11 = [(6 mod 11) · 4]mod 11 =
(6 · 4) mod 11 = 24 mod 11 = 2
2 � (3 � 4) = {2 · [(3 · 4)
mod 11]}mod 11 = [2 · (12 mod 11)]
mod 11 = (2 · 1) mod 11 = 2 mod 11
= 2

27. (4� 8)� 10 = {[(4 · 8) mod 11] · 10}
mod 11 = [(32 mod 11) · 10]mod
11 = (10 · 10) mod 11 = 100 mod 11
= 1
4� (8� 10) = {4 · [(8 · 10) mod 11]}
mod 11= [4 · (80 mod 11)]mod 11=
(4 · 3) mod 11 = 12 mod 11 = 1

29. � 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

31. 1, 3, 5, and 7 are their own
inverses. The other elements do not
have inverses. The elements with
multiplicative inverses are precisely
those elements that are relatively
prime to 8.

33. 101 � 48 = (101 · 48) mod 11 =
4,848 mod 11 = 8(101 mod 11) ·
(48 mod 11) = 2 · 4 = 8

35. 14 � 410 = (14 · 10) mod 11 =
140 mod 11 = 8(14 mod 11) ·
(10 mod 11) = 3 · 10 = 30
The conjecture a � b = (a mod 11) ·
(b mod 11) fails here.

37. (2!) mod 3 = 2; (4!) mod 5 = 4;
(6!) mod 7 = 6. For the cases we have
seen, (n− 1)!mod n = (n− 1).

39. Since a ≡ b mod n, we have a =
n · e + r and b = n · f + r, for
some e, f , r ∈ Z. Similarly, since c ≡
d mod n, we have c = n · g + s and
b = n · h + s, for some g, f , s ∈ Z.
Taking products we have a · c = n ·
(neg + rg + es) + rs and b · d = n ·
(nfh+ rh+ sf )+ rs. By the division
algorithm, rs = n · p + t for some
p ∈ Z and t ∈ Zn. Thus, a · c and
b · d both have a remainder of t under
division by n, and we have (a · c) ≡
(b · d) mod n.

41. (⇒) If a≡ b mod n, then a= n ·q+b
for some q ∈ Z. Subtracting b, we
have a − b = n · q. Thus n divides
(a− b).
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(⇐) If n divides (a−b), then a−b =
n · q for some q ∈ Z. Adding b, we
have a = n ·q+b. Thus a ≡ b mod n.

43. If a is even, then a = 2s for some
s ∈ Z and we have a2 = 4s2. Since
a2 − 0 = a2 is divisible 4, we apply
exercise 41 to obtain a2 ≡ 0 mod 4.

45. If a is odd, then a = 2s+ 1 for some
s ∈ Z. Then a2 = 4s2 + 4s + 1 =
4s(s+ 1)+ 1. The parity property of
integers tells us that we only have
two cases to consider: when s is
even and when s is odd. Examine the
case when s is even. Then s = 2k
for some k ∈ Z. Then 4s(s + 1) +
1 = 4(2k)(2k+ 1) = 8k(2k+ 1)+ 1,
which is one greater than a multiple
of 8. Examine the case when s is odd.
Then s= 2k+1 for some k ∈ Z. Then
4s(s+ 1)+ 1 = 4(2k + 1)(2k + 2)+
1 = 8(2k + 1)(k + 1) + 1, which is
one greater than a multiple of 8. Since
every number that is one greater than
a multiple of 8 is equivalent to 1 mod
8, a2 ≡ 1 mod 8.

47. Reflexivity: ∼P(a, a).
It is not always true that a is related
to itself.
Symmetry: ∼[ p(a, b)→ P(b, a)].
If a is related to b, then it is not
necessarily true that b is related to a.
Transitivity: ∼ {[ p(a, b) ∧ P(b, c)]
→ P(a, c)]}.
If a is related to b and c is related to
d, then it is not necessarily true that
a is related to c.

49. Yes, this is an equivalence relation.
51. No—fails all three properties.

53. No—only symmetric.
55. (Alex, Andy), (Andy, Alex), (Alex,

Alex), (Andy, Andy), (Bailey,
Bailey), (Chris,Chris), (Dakota,
Dakota), (Morgan,Morgan).
Equivalence classes:
[Alex] = {Alex, Andy } = [Andy];

[Bailey] = {Bailey}; [Chris] =
{Chris};
[Dakota] = {Dakota}; [Morgan] =
{Morgan}.

57. Reflexivity: a− a = 0 ∈ Z.
Symmetry: If a − b = c ∈ Z, then
b− a = −c ∈ Z.
Transitivity: If a − b = d ∈ Z and
b − c = e ∈ Z, adding the two
equations produces a − c = d +
e ∈ Z.
Examples of equivalence classes:
[0] = {x : x ∈ Z} = {. . . ,−1, 0,

1, . . .} and
[ 12 ] = {x : (x − 1

2 ) ∈ Z} = {. . . ,
− 1

2 , 1
2 , 3

2 , . . .}.
59. Reflexivity: a+ a = 2a is even.

Symmetry: If a + b = 2k for some
k ∈ Z, then b+ a = 2k.
Transitivity: If a+b= 2i and b+c =
2j for some i, j ∈ Z, then a + c =
(2i− b)+ (2j− b) = 2i+ 2j− 2b =
2(i + j − b) is even.
Examples of equivalence classes:
[0] = {n : n = 2k, k ∈ Z} and
[1] = {n : n = 2k + 1, k ∈ Z}.

61. Reflexivity: For all a ∈ R, a = a, so
(a, b) ∼ (a, b).
Symmetry: (a, b) ∼ (x, y) implies
a = x implies x = a implies (x, y) ∼
(a, b).
Transitivity: Assume (a, b) ∼ (x, y)
and (x, y) ∼ (c, d). Then a = x and
x = c, so a = c by transitivity of
equality for reals. Thus, (a, b) ∼
(c, d).
Examples of equivalence classes:
[(1, 7)] = {(1, y), y ∈ R} and
[(2, 17)] = {(2, y), y ∈ R}.

63. Assume f , g, h are differentiable.
Reflexivity: f ′ = f ′.
Symmetry: If f ′ = g′, then g′ = f ′.
Transitivity: If f ′ = g′ and g′ = h′,
then f ′ = h′.
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Examples of equivalence classes:
[x] = {f : f (x) = x + c, c ∈ R} and
[x2] = {f : f (x) = x2 + c, c ∈ R}.

65. Note that slopes are real numbers
and equality of real numbers is an
equivalence relation.
Reflexivity: The slope of J is equal to
the slope of J .
Symmetry: If the slope m of line J
equals the slope n of the line K , then
n = m by symmetry of equality of
reals.
Transitivity: If the slope m of line J
equals the slope n of the line K and n

equals the slope p of the line L, then
m = p by transitivity of equality for
reals.

Examples of equivalence classes:
[2] = {f : f (x) = 2x + c, c ∈ R}
and [3] = {f : f (x) = 3x + c,
c ∈ R}.

67. Property that holds: transitivity.

Properties that fail: reflexivity,
symmetry.

69. Properties that hold: reflexivity, tran-
sitivity.

Property that fails: symmetry.

2.4 An Introduction to Groups

1. Let p(a, b) = a ◦ b denote the group
operation.
Closure: ∀a, b[a, b ∈ G→
p(a, b) ∈ G].
Associativity:∀a, b, c[ p(a, p(b, c))=
p( p(a, b), c)].
Identity: ∃e∀a[ p(a, e) = a∧
p(a, e) = a].
Inverses: ∀a∃b[ p(a, b) = e∧
p(b, a) = e].

3. Let p(a, b) = a ◦ b denote the group
operation.
(not) Closure: ∃a, b[a, b ∈ G∧
p(a, b) 	∈ G].
(not) Associativity: ∃a, b, c
[ p(a, p(b, c)) 	= p( p(a, b), c)].
(not) Identity: ∀e∃a[ p(a, e) 	= a ∨
p(e, a)a].
(not) Inverses: ∃a∀b[ p(a, b) 	= e ∨
p(b, a). 	= e]

5. Identity: 1
1 .

Inverses: a/b · b/a = 1.
0 ∈ Q∗ does not have a multiplicative
inverse.

7. Identity: 1.
Inverses: r · 1/r = 1

0 ∈ R∗ does not have a multiplicative
inverse.

9. Identity: 1.

Inverses: (a+ bi) · 1

a+ bi
= 1 where

1

a+ bi
= 1

a+ bi
· a− bi

a− bi

= a− bi

a2 + b2
= a

a2 + b2
− bi

a2 + b2
.

0 ∈ C∗ does not have a multiplicative
inverse.

11. Identity: (0, 0).
Inverses: (r, s)+ (−r,−s) = (0, 0).

13. Identity: (1, 1).
Inverses: (r, s) · (1/r, 1/s) = (1, 1).

15. Identity: (1, 0) since (r, s) ∗ (1, 0) =
(r − 0, 0 + s) = (r, s) = (r − 0,

s+ 0) = (1, 0) ∗ (r, s).
Inverses: (r, s)−1 =(

r

r2 + s2
,
−s

r2 + s2

)
since

(r, s) ∗
(

r

r2 + s2
,
−s

r2 + s2

)
=
[(

r2

r2 + s2
+ s2

r2 + s2

)
,
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( −rs

r2 + s2
+ rs

r2 + s2

)]
= (1, 0) and(

r

r2 + s2
,
−s

r2 + s2

)
∗ (r, s)

=
[(

r2

r2 + s2
+ s2

r2 + s2

)
,(

rs

r2 + s2
− rs

r2 + s2

)]
= (1, 0).

17. Axiom that fails: Inverses.
Example: 0 has no multiplicative
inverse in Z; in fact, only 1 and −1
have inverses in Z under standard
multiplication.

19. Axiom that fails: Inverses.
Example: 0 has no multiplicative
inverse in R.

21. Axioms that fail: Closure, Inverses.
Examples: 2 + 3 = 5 	∈ {0, 1, 2, 3},
and 1 has no additive inverse since
−1 	∈ {0, 1, 2, 3}.

23. Axiom that fails: Closure.
Example: 1+ 1 = 2 	∈ {−1, 0, 1}.

25. Axiom that fails: Closure.
Example: n+ n = 2n 	∈ {−n, . . .,

−2,−1, 0, 1, 2, . . ., n}.
27. Axiom that fails: Inverses.

Example: (0, 0) has no component-
wise multiplicative inverse in {(r, s) :
r, s ∈ R}.

29. (3− 2)− 1 	= 3− (2− 1)

31. Following the text’s proof of the left
cancellation theorem:
If a ◦ b = c ◦ b, then we have (a ◦
b) ◦ b−1 = (c ◦ b) ◦ b−1, which, using
associativity, yields a ◦ (b ◦ b−1) =
c ◦ (b ◦ b−1), which, using the inverse
axiom, yields a ◦ e = c ◦ e, which,
using the identity axiom, yields a =
c. Therefore, if a ◦ b = c ◦ b, then
a = c.

33. Since 1� 1 = 1; 1� 2 = 2; 1� 3 =
3; 1 � 4 = 4; 1 � 5 = 5, 1 is not a
zero divisor.

35. For b = 2, we have 3� 2 = 0

37. Since 5� 1 = 5; 5� 2 = 4; 5� 3 =
3; 5 � 4 = 2; 5 � 5 = 1, 5 is not a
zero divisor.

39. 2, 4, 6

41. In Z9, 3 is a zero divisor since
3� 3 = 0.

43. The number 5 is prime.

� 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

45. In Zn, consider the elements 0, p,
and n/p, where p is a prime factor
of n. We know that n is not prime
because Zn has zero divisors (see
exercises 37–43). Then 0�p= 0 and
n/p�p= 0, and 0 	= n

p . For example,
consider the elements 3 and 4 in Z12.
0� 3 = 0 and 4� 3 = 0, and 0 	= 4.

47. 0, 1
49. 0, 1, 3, 4

51. 0, 1, 7, 8
53. If a, b ∈ Zn are both idempotents,

then, since modular multiplication is
both associative and commutative,
(a ◦ b)2 = (a ◦ b) ◦ (a ◦ b) = a ◦ (b ◦
a) ◦ b = a ◦ (a ◦ b) ◦ b = (a ◦ a) ◦ (b ◦
b) = a ◦ b. We also have (a2 ◦ b2) =
(a ◦ b) and so (a ◦ b)2 = a ◦ b.

55. α =
[

1 2 3 4
1 3 4 2

]

57. α =
[

1 2 3 4
2 3 4 1

]

59. α =
[

1 2 3 4
4 1 2 3

]

61. α ◦ β =
[

1 2 3 4 5
4 1 2 5 3

]
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63. β ◦ α =
[

1 2 3 4 5
2 3 5 1 4

]

65. γ ◦ α =
[

1 2 3 4 5
4 5 2 3 1

]
67. ε ◦ ε =

[
1 2
1 2

]
69. α ◦ α =

[
1 2
1 2

]

2.5 Dihedral Groups

1. Impossible to sketch. By definition,
a polygon must have at least three
sides.

3. A regular pentagon.
5. Move one vertex of exercise 3—but

not too much!
7. A misshapen pentagon.
9. Start with a regular hexagon, then

stretch one pair of opposite sides.
11. Number the vertices of a square as

follows: upper left = 1; upper right
= 2; lower right = 3; lower left = 4.
We then have:
R0 is a counterclockwise rotation
of 0 degrees.
R0 fixes all vertices.
R90 is a counterclockwise rotation
of 90 degrees.
R90 moves 1 to 4, 2 to 1, 3 to 2, and
4 to 3.
R180 is a counterclockwise rotation
of 180 degrees.
R180 moves 1 to 3, 2 to 4, 3 to 1, and
4 to 2.
R270 is a counterclockwise rotation
of 270 degrees.
R270 moves 1 to 2, 2 to 3, 3 to 4, and
4 to 1.
FV is a flip about the vertical axis
through the centers of the top and
bottom sides.
FV moves 1 to 2, 2 to 1, 3 to 4, and 4
to 3.
FH is a flip about the horizontal axis
through the centers of the left and
right sides.
FH moves 1 to 4, 4 to 1, 2 to 3, and
3 to 2.

FR is a flip about the diagonal axis
through the upper left and lower right
vertices.
FR moves 2 to 4 and 4 to 2; 1 and 3
are fixed.
FL is a flip about the diagonal axis
through the lower left and upper right
vertices.
FL moves 1 to 3 and 3 to 1; 2 and 4
are fixed.

13. R0 is the identity.

15. The identity R0 is its own inverse.
Every flip is its own inverse. Since
there are 360 degrees in one complete
rotation of the plane, the inverse of
a rotation must be another rotation
such that the sum of their degrees
is 360; that is, the inverse of
Rn is R360−n.

17. C(R0) = D4 = C(R180);
C(R90) = {R0, R90, R180, R270} =
C(R270);
C(FV ) = {R0, R180, FV , FH} =
C(FH );
C(FR) = {R0, R180, FR, FL} =
C(FL).

19. ◦ R0 R72 R144 R216 R288

R0 R0 R72 R144 R216 R288

R72 R72 R144 R216 R288 R0

R144 R144 R216 R288 R0 R72

R216 R216 R288 R0 R72 R144

R288 R288 R0 R72 R144 R216

F1 F1 F5 F4 F3 F2

F2 F2 F1 F5 F4 F3

F3 F3 F2 F1 F5 F4

F4 F4 F3 F2 F1 F5

F5 F5 F4 F3 F2 F1
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◦ F1 F2 F3 F4 F5

R0 F1 F2 F3 F4 F5

R72 F2 F3 F4 F5 F1

R144 F3 F4 F5 F1 F2

R216 F4 F5 F1 F2 F3

R288 F5 F1 F2 F3 F4

F1 R0 R288 R216 R144 R72

F2 R72 R0 R288 R216 R144

F3 R144 R72 R0 R288 R216

F4 R216 R144 R72 R0 R288

F5 R288 R216 R144 R72 R0

21. R0 is its own inverse; Each flip is
its own inverse; R72 and R288 are
inverses; R144 and R216 are inverses.

23. There are many pairs a, b ∈ D5 such
that a ◦ b 	= b ◦ a. For example,
F1 ◦ R72 = F5, but R72 ◦ F1 = F2.

25. The centralizer of any flip in D5 is
the set containing the identity R0 and
the flip itself. For example, C(F1) =
{R0, F1}.

27. For all n 	= 0, we have both Rn ◦
R360−n = R0 and R360−n ◦ Rn = R0.
We know that the identity R0 is its
own inverse.

29. There are n rotations in Dn. Since all
interior angles of a regular polygon
are identically 360/n degrees, each
rotation must be a multiple of 360/n
degrees in order to move each vertex
to a position previously occupied by a
vertex. We need n rotations of 360/n
degrees to complete a full 360 degree
rotation of the plane

31. If n is odd, then there are n flips in
Dn. Each flip is about an axis passing
through a vertex and the center of
the opposite side. Since no vertex
of a polygon with an odd number
of sides is located symmetrically
opposite another vertex, each vertex
corresponds to a distinct flip—so n
vertices give us n flips.

33. If n is even, then there are n flips
in Dn, one flip across each axis

through the center of each pair of
opposite parallel sides and one flip
across each axis through a pair
of opposite vertices. Every polygon
with an even number of sides has
each of its sides parallel to exactly
one other side and has each vertex
symmetrically opposite one other
vertex across the center point. The
number of paired parallel sides is
n/2, and the number of pairs of these
symmetrically opposite vertices is
also n/2. Therefore the total number
of flips is n/2+ n/2 = n.

35. The order of Z5 is 5.
37. The order of D5 is 10.
39. The order of U(8) is 4.
41. The order of Z11 is 11.
43. The order of U(14) is 6.
45. {R0, R180, FV , FH}
47. {R0, R180, FV , FH}, where FV and

FH denote flips across the diagonals
connecting opposite vertices

49. {R0, R180, FV , FH}, where FV and FH

denote flips across the major and
minor axes of the ellipse

51. {R0, R90, R180, R270, FV , FH , FR,

FL} = D4

53. {R0, R180, FV , FH}
55. A+ B =

[
0 0
1 0

]
57. A+ C =

[
2 3
2 5

]
59. A · B =

[−1 0
1 −1

]
61. B · C =

[−1 −3
−1 −1

]
63. Matrix addition is commutative.
65. Matrix multiplication is not commu-

tative. From exercises 61 and 62, we
have B · C 	= C · B.

67. α ◦ α =
[

1 2 3
3 1 2

]
69. β ◦ α2 =

[
1 2 3
2 1 3

]
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2.6 Application: Check Digit Schemes

1. 12344
3. 12844
5. no—the check digit should be 0
7. yes
9. 12341

11. 12846
13. 21352
15. yes
17. no—the check digit should be 8
19. yes
21. 2181-2389-8824-3989
23. 1234-7898-3243-3116
25. 7678-1443-3425-7682
27. no—the check digit should be 7
29. yes
31. no—the check digit should be 9
33. 1231
35. 83549
37. 53458
39. yes
41. yes

43. yes
45. n 0 1 2 3 4 5 6 7 8 9

f5(n) 4 2 8 6 5 7 3 9 0 1

47. 847,658

49. 0,123,450

51. 2-3474-9129-6

53. 0-7167-3818-X
55. 3-3458-2134-6
57. yes
59. no—the check digit should be 3
61. no—the check digit should be 4
63. yes—the unique isomorphism from

Z2 to U(4) is given by mapping 0 to
1 and 1 to 3

65. no—D3 is nonAbelian, while U(7) is
Abelian

67. no—Z3 has order 3, while U(8) has
order 4

69. no—Z6 is Abelian, while S3 is
nonAbelian

3.1 Prime Numbers

1. 3
3. 71
5. If m divides n with quotient q, then
−m divides n with quotient −q.

7. If mq = n and nr = k, where q, r ∈
Z, then m(qr) = k. Since qr ∈ Z,
m divides k.

9. If mq = a and nr = b, where q, r ∈ Z,
then mn(qr) = ab. Since qr ∈ Z,
mn divides ab.

11. Assume m divides n. By definition,
n = mq + 0 for some q ∈ Z, and
so n mod m = 0 since the remainder
is 0. Similarly, if n mod m = 0, then
n= mq+0= mq, and so m divides n.

13. If 2q = n where q ∈ Z, then
n2 = (2q)2 = 4q2. Since q2 ∈ Z,
4 divides n2.

15. If p divides n2, then p is one
of the primes in the prime power

factorization of n2. Since the primes
appearing in the prime power fac-
torization of n2 are exactly those
that appear in the prime power
factorization of n, p must appear in
the prime power factorization of n,
and so must divide n.

17. If pq = m and pr = n, where q, r ∈ Z,
then p4(q4 − r4) = m4 − n4. Since
q4 − r4 ∈ Z, p4 divides m4 − n4.

19. For any integer n, 3 divides one of
n− 1, n, or n+ 1. Hence 3 divides the
product (n− 1)n(n+ 1) = n3 − n.

21. 1 divides 3 and 1 divides 2, but 2 =
1+ 1 does not divide 5 = 3+ 2.

23. 1 divides 2 but 2 does not divide 1.
25. For example, let m = 2 and n = 3.
27. 123 = 3 · 41
29. 1,225 = 52 · 72

31. 2,301 = 3 · 13 · 59
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33. 11 is prime, 12 = 22 · 3, 13 is prime,
14 = 2 · 7, 15 = 3 · 5, 16 = 24, 17 is
prime, 18 = 2 · 32, 19 is prime, and
20 = 22 · 5.

35. 18 = 2 · 32 and 60 = 22 · 3 · 5.
37. gcd(12, 50) = 2
39. gcd(31, 32) = 1
41. p and 1
43. gcd(3, 8) = 1 = 3 · 3+ (−1) · 8
45. gcd(12, 16) = 4 = (−1) · 12+ 1 · 16
47. gcd(12, 175) = 1
49. gcd(637, 26400) = 1
51. gcd(517, 31891) = 1
53. By way of contradiction: if not,

then there would be a factor q of
some integer n that would also factor
p, contradicting the fact that p is
prime.

55. If q factored n and n+1, then it would
also factor (n+ 1)− n = 1.

57. If m and n are relatively prime,
then they share no common primes
in their prime power factorizations.
Since m2 and n2 have the same
primes (but with doubled powers)
in their prime power factorizations
as n and m, respectively, m2 and
n2 can have no common primes
in their prime power factorizations
either.

59. π(2) = 1, π(3) = 2, π(4) = 2,
π(5) = 3, π(6) = 3, π(7) = 4,
π(8) = 4, π(9) = 4, π(10) = 4

61. π(100) = 25, π(200) = 46
63. π(10)/10 = .4, 1/ ln(10) ≈ .434.

π(1,000)/1,000 = 0.168, 1/ ln(10)
≈ .145. π(100,000)/100,000 =
0.09592, 1/ ln(100,000) ≈ 0.087.
π(10,000,000)/10,000,000
≈ 0.0665,
1/ ln(10,000,000) ≈ 0.062.
π(1 billion)/(1 billion) ≈ 0.0508, 1/

ln(1 billion) ≈ 0.0483.About 1/ln(n)
of the integers less than or equal to n
are prime.

65. 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5,
10 = 3+ 7, 12 = 5+ 7, 14 = 3+ 11,
16 = 5 + 11, 18 = 7 + 11, 20 =
7+ 13, 22 = 11+ 11, 24 = 11+ 13,
26 = 13 + 13, 28 = 11 + 17, 30 =
13+ 17, 32 = 13+ 19.

67. (3, 5), (5, 7), (11, 13), (17, 19),
(29, 31), (41, 43), (59, 61), (71, 73).

69. 22 < 5 < 32 < 11 < 42 < 17 < 52 <

29 < 62 < 37 < 72 < 59 < 82 <

71 < 92 < 83 < 102 < 101 < 112 <

127 < 122 < 149 < 132 < 173 <

142 < 197 < 152 < 227 < 162 <

257 < 172 < 293 < 182 < 331 <

192 < 367 < 202 < 401 < 212.

3.2 Application: Introduction to Coding Theory and Cryptography

1. 01|12|07|05|02|18|01
3. 16|05|01|03|05
5. EULER
7. NEWTON
9. SPEAK TRUTH

11. WALK WITHOUT BLAME
13. 3 digits.
15. 5 digits.
17. 01|20|01|12|31|13|15|13
19. 26|06|21|14|12|27|22|14
21. HOPE

23. CHARITY
25. 0001|5646|6299|4221|1784|0036
|0001

27. 1318|4221|0001|4502|4221
29. HOPE
31. JUSTICE
33. 143 = 11 · 13
35. 12,533 = 83 · 151
37. For example, let n = 383,993 and

choose e = 13.
39. 211 − 1 = 2,047 = 23 · 89
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41. Not defined, since 2 	= 3.
43. [7]
45. [110 − 8]

47.

⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
49. [1 1 1 0 1 0 0] [1 1 0 1 0 1 0]
51. [0 0 0 1 0 1 1] [1 0 0 1 1 0 0]
[1 0 1 1 0 0 1]

53. Correct.
55. Incorrect. The seventh digit in the

second vector should be 0.
57. The product is [1 0 0] and it

recommends changing the vector to
[1 0 1 1 0 0 1].

59. The product is [1 0 1] and it
recommends changing the vector to
[1 1 1 1 1 1 1].

61. 11

63.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
65. 57
67. [1 0 1 0 1 0 1 0 1 0 1 0 1 0 0]
69. Correct.

3.3 From the Pythagorean Theorem to Fermat’s Last Theorem

1. Yes.
3. No.
5. Yes.
7. 65
9. 9

11. a = 3, b = 4
13. a = 20, c = 29
15. Assuming 0 < a < b < c, c = 5.
17. n = 4: (3, 4, 5). n = 6: (6, 8, 10).

n = 8: (8, 15, 17).
19. n = 3: (3, 4, 5). n = 5: (5, 12, 13).

n = 7: (7, 24, 25).
21. m = 1, n = 2: (3, 4, 5). m = 2,

n = 3: (5, 12, 13). m = 2, n = 4:
(12, 16, 20).

23. Apythagorean triple is (ruw, stw, suv).
25. Since p2 + q2 = 22, p and q are at

most 1, and so cannot be prime.
27. Exercises 24–26 rule out the possible

cases: that p, q, and r are odd primes,
or that any one of them is 2 and the
others are odd primes.

29. (AC)2 = AH · AB
31. (BC)2 = AB · BH
33. Since triangle ABC is similar to

ACH, the ratios of corresponding
sides implies AC/AB = AH/AC,
and so (AC)2 = AH · AB. Similarly,
triangle ABC is similar to BCH, and
so BC/AB = BH/BC, which means
(BC)2 = AB · BH. Adding, (AC)2 +
(BC)2 = AH · AB + AB · BH =
AB(AH + BH) = (AB)2.

35. Every odd number appears in the
right column.

37. (3, 4, 5) and (5, 12, 13)
39. Odd integers have odd squares.
41. There are no positive integers x and y

that solve 3x + 5y = 12.
43. There are no positive integers x and y

that solve 8x + 5y = 1.
45. x = 21, y = 10 and x = 10, y = 20

are the only two solutions.
47. x = 1, y = 3 is the only solution.
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49. 32 − 2 · 22 = 9− 8 = 1

51. Suppose x is even. Then x2− 8y2 has
a factor of 4, and so cannot equal 1.

53. 23 − 7 · 13 = 8− 7 = 1
55. If x and y are both even, then x3−7y3

has a factor of 8, and so cannot equal
1. If x = 2k − 1 and y = 2j− 1, then
x3 − 7y3 = (2k− 1)3 − 7(2j− 1)3 =
8(k3 − 7j3) − 4(k2 − 7j2) + 2(k −
7j) + 6, which is even and cannot
equal 1.

57. For example, a = 2, b = 3
√

56, c = 4.
59. If 1,701 = r3/s3, then r3 + (bs)3

= (cs)3.

61. x = ruw, y = stw, and z = suv. If
an + bn = cn, where n > 2, then at
least one of a, b, or c is irrational.

63. The prime power factorization of
(c2 + b2)(c2 − b2) is the same as
the prime power factorization of a2,
and so all its exponential powers
must be even. Since gcd(c2 + b2,

c2 − b2) = 1, any term of the form
p2n in this prime power factorization
must appear in the prime power
factorization of one of c2 + b2

or c2 − b2. Hence the exponential

powers of the prime power factor-
ization of each of these factors must
be even, and so the factors are each
expressible as squares.

65. Since 2uv = b2, the prime power
factorization of b2 contains a term
of the form 22n, where n ∈ N, and
so either u or v has a factor of 2.
Without loss of generality, u = 2k,
where k ∈ N. If any prime p divides
both u and v, then p divides 2u+2v =
(s+ t)+ (s− t) = 2s and 2u− 2v =
2t, and so p would divide s and t,
which contradicts gcd(s, t) = 1.

67. u2 + v2 = c2 implies v2 = c2 − u2 =
(c − u)(c + u) = e2f 2, hence v =
ef . But x2 − y2 = (

(e+ f )/2
)2 −(

(e− f )/2
)2 = ef , and so v = ef =

x2 − y2.
69. Assume there exist k, j ∈ N such that

x = pk and y = pj. Then v = x2 −
y2 = p2(k2 − j2), and so p divides v.
Similarly, if p divides both e and f ,
then p2 divides 2c = e2+ f 2, and so p
divides c. Since p divides v, it divides
2uv = b2, and so p divides b. But then
gcd(b, c) 	= 1, a contradiction.

3.4 Irrational Numbers and Fields

1. 173/500
3. 953/1,000
5. 7/9
7. 25/99
9. If the digits 1828 repeated indef-

initely without interruption, then e
would be rational.

11. For example, 1, 2, 3, 4, · · · .
13. If n = 2 · q where q ∈ Z, then n2 =

4 · q2. Since q2 ∈ Z, 4 divides n2.
15. The prime power factorizations of

n and n2 contain exactly the same
primes.

17. The prime power factorizations of
n and nk contain exactly the same
primes.

19. Proof by contradiction. Assume there
exist integers m and n such that√

7 = m/n, where m and n have
no common factors. Then m2 = 7n2,
and 7 divides m2. Hence 7 divides
m by the uniqueness of prime power
factorizations from the fundamental
theorem of arithmetic, and m = 7k
for k ∈ Z. Then 49k2 = 7n2, and 7
divides n2. As above, 7 divides n,
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and so 7 is a factor of both m and
n, a contradiction.

21. Proof by contradiction. Assume there
exist integers m and n such that

√
6 =

m/n, where m and n have no common
factors. Then m2 = 6n2, and 6 divides
m2. By the uniqueness property from
the fundamental theorem of arith-
metic, the prime power factorization
of m contains the primes 2 and 3,
which must both divide m; that is, we
have m = 2 · 3 · k for some k ∈ Z.
Then 36k2 = 6n2, and 6 divides n2.
As above, both 2 and 3 divide n, and
so 6 is a common factor of both m and
n, a contradiction.

23. There exist integers m and n such that√
pq = m/n, where m and n have no

common factors. Then m2 = pqn2,
and pq divides m2. Hence the prime
power factorization of m contains the
primes p and q, which must both
divide m; we have m = p · q · k for
k ∈ Z. Then p2q2k2 = pqn2, and pq
divides n2. Then both p and q divide
n, and so m/n is not in lowest terms,
a contradiction.

25. There exist integers m and n such
that k
√

2 = m/n, where m and n have
no common factors. Then mk = 2nk ,
and 2 divides mk . Hence 2 divides
m (by exercise 17) and m = kq for
q ∈ Z. Then 2kqk = 2nk , and 2
divides nk . Hence 2 divides n, and
so 2 is a factor of both m and n,
a contradiction.

27. For example,
√

p+ q is rational for
p = 2 and q = 7, while

√
p+ q is

irrational for p = 2 and q = 3.
29.
√

2
31. Does not exist—every irrational

number is complex.
33. Many answers are possible. The

quaternions extend the complex
numbers. Alternatively, consider the

modular numbers in such sets as Z4

or U(6).
35. sum = 7− 2i; product = 13− i
37. sum = 12+ 45i; product = 540i
39. sum = 2a; product = a2 + b2

41. The additive inverse is −7 + 2i; the
multiplicative inverse is (7/53) +
(2/53)i.

43. The additive inverse is −i; the
multiplicative inverse is −i.

45. The additive inverse is 2; the multi-
plicative inverse is − 1

2 .

47.
( 1√

2
+ 1√

2
i
)2 = i by direct multi-

plication.

49. The additive inverse is (−a) +
(−b)
√

3, where −a and −b are
the additive inverses of a and b,
respectively, in Z5. The multiplica-
tive inverse is a(a2−3b2)−1−b(a2−
3b2)−1

√
3, where c−1 stands for the

multiplicative inverse of c in U(5).
51. The additive inverse is (−a) +

(−b)
√

3, where −a and −b are
the additive inverses of a and b,
respectively, in Q. The multiplicative

inverse is

√
3 · (a− b)

a2 − 3b2
.

53. + 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1
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55. + 0 2 4 6 8

0 0 2 4 6 8
2 2 4 6 8 0
4 4 6 8 0 2
6 6 8 0 2 4
8 8 0 2 4 6

× 0 2 4 6 8

0 0 0 0 0 0
2 0 4 8 2 6
4 0 8 6 4 2
6 0 2 4 6 8
8 0 6 2 8 4

57. Since N does not contain 0, the
additive identity property fails, which
also causes the additive inverse
property to fail.

59. For k 	= 1, there is no multiplicative
identity; this also causes the multi-
plicative inverse axiom to fail.

61. The additive closure axiom fails.
63. Elements 2, 3, and 4 have no

multiplicative inverse.
65. Elements generally do not have a

multiplicative inverse.
67. If r, s ∈ R, then (−r) · s =−(r · s) and

r · (−s)=−(r · s), the unique additive
inverse of r · s. To prove (−r) · s is the
additive inverse of r · s, we compute
r · s + (−r) · s = (r + (−r)) · s =
0 · s = 0. Similarly, r · (−s) is the
additive inverse of r · s.

69. Proof that r < 0 implies −r > 0:
if r < 0, then the fact that addition
preserves order implies r + (−r) <

0 + (−r), and so 0 < −r. Proof that
r > 0 implies −r < 0: similarly,
using the fact that addition preserves
order implies r + (−r) > 0 + (−r),
and so 0 > −r (that is, −r < 0).

3.5 Polynomials and Transcendental Numbers

1. 2
3. Not a polynomial due to the −1

exponent.
5. Not a polynomial due to the tangent

term.
7. Yes.
9. No.

11. Yes.
13. 1, 2, 4, and 5 are zeros over Z6.
15. Since x > 0, x + 3 > 0 for any

x ∈ N.
17. It is a zero of 5x − 4.
19. It is a zero of x3 − 5.
21. It is a zero of 5x4 − 14.
23. It is a zero of x − a.
25. By way of contradiction: If it were

not, then it would be algebraic, and
so there would be a polynomial
p(x) with coefficients in Q such that
p(π/2) = 0. But then the polynomial
q(x) = p(x/2), which has coefficients

in Q, would satisfy q(π) = 0, which
would mean that π is algebraic, a
contradiction.

27. If it were, then π would be a zero of
x2 − ax − b, which would imply that
π is algebraic.

29. Let a = e and b = c = 0.
31. 2
33. 2

35.
−6

5
+ 7

5
i

37.
−5

12
− 3

4
i

39. −5 and 3

41.
−1±√5i

3

43. Use x3− a3 = (x− a)(x2+ ax+ a2).
The zeros are 2 and −1± i

√
3.

45. 4 and −2± i
√

3
47. −4 and 2 (which has multiplicity 2).
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49. 1 (which has multiplicity 3).
51. x3 − 7x2 + x − 7 = (x − 7)(x2 + 1)

has roots 7, i,−i.
53. 7 and 4± 3i.
55. x1 = − 3

√
1/2 · [ 3

√
7−√549 +

3
√

7+√549]
57. x1 = 3

√
1+√2− 3

√
−1+√2

59. y3 − (103/27)y + (848/729), where
y = x + 7/9.

61. y3 + (167/27)y − (934/729), where
y = x − 2/9.

63. 3+ 2i + 3j + 8k
65. −1+ 2i − 7j − 6k
67. 3+ 12i + 40j + 10k
69. 91+ 29i − 12j + 3k

3.6 Mathematical Induction

1. 4 = 2 + 2, 6 = 3 + 3, 8 = 3 +
5, 10 = 3 + 7, 12 = 5 + 7, 14 =
3 + 11, 16 = 5 + 11, 18 = 7 + 11,
20 = 7+ 13.

3. 4 = 2 · 2, 6 = 2 · 3, 8 = 2 · 4, 10 =
2 · 5, 12 = 2 · 6, 14 = 2 · 7, 16 = 2 · 8,
18 = 2 · 9, 20 = 2 · 10.

5. 3, 5, 7, 11, 13, 17, and 19 are prime;
9 and 15 are composite.

7. 22 = 4 ≤ 22, 23 = 8 ≤ 9 = 32, and
24 = 16 ≤ 42.

9. −0 = 0, −1 = 6, −2 = 5, −3 = 4,
−4 = 3, −5 = 2, and −6 = 1.

11. Base case: 1 = 1. If
n∑

i=1
1 = n, then

n+1∑
i=1

1 =
n∑

i=1
1+ (1) = n+ 1.

13. Base case: 21 = 2 = 4− 2 = 22 − 2.

If
n∑

i=1
2i = 2n+1 − 2, then

n+1∑
i=1

2i =
n∑

i=1
2i + (2n+1) = 2n+1− 2+ 2n+1 =

2(n+1)+1 − 2.
15. Base case: 1 · (1!) = 1 = 2! − 1.

If
n∑

i=1
i · (i!) = (n + 1)! − 1, then

n+1∑
i=1

i · (i!) =
n∑

i=1
i+ (n+ 1)(n+ 1)! =

(n + 1)! − 1 + (n + 1)(n + 1)! =
(n+1)!(1+n+1)−1= (n+2)!−1.

17. Base case: 13 = 1 = 12 · 22/4. If
n∑

i=1
i3 = n2(n + 1)2/4, then

n+1∑
i=1

i3 =
n∑

i=1
i3 + (n + 1)3 = n2(n + 1)2/4 +

(n+ 1)3 = (n+ 1)2((n+ 1)+ 1)2/4.
19. Base case: 12 = 1 = 2 · 1 − 1. If

n∑
i=1

(2i − 1) = n2, then
n+1∑
i=1

(2i − 1) =
n∑

i=1
(2i − 1) + 2(n + 1) − 1 = n2 +

2n+ 1 = (n+ 1)2.
21. Base case: 4(1) − 3 = 1 = 1(2(1) −

1). If
n∑

i=1
(4i − 3) = n(2n − 1), then

n+1∑
i=1

(4i − 3) =
n∑

i=1
(4i − 3) + 4(n +

1) − 3 = n(2n − 1) + 4n + 1 =
(n+ 1)(2(n+ 1)− 1).

23. Base case: 1(1 + 1) = 2 = 1(1 +
1)(1 + 2)/3. If

n∑
i=1

i(i + 1) = n(n +

1)(n + 2)/3, then
n+1∑
i=1

i(i + 1) =
n∑

i=1
i(i + 1) + (n + 1)(n + 2) =

n(n+ 1)(n+ 2)/3+ (n+ 1)(n+ 2) =
(n+ 1)(n+ 2)(n+ 3)/3.

25. Base case:
1

1 · 3 = 1/3. If
n∑

i=1

1

(2i − 1)(2i + 1)
= n/(2n + 1),
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then
n+1∑
i=1

1

(2i − 1)(2i + 1)
=

n∑
i=1

1

(2i−1)(2i+1)
+ 1

(2n+1)(2n+3)

= n/(2n + 1) + 1

(2n+ 1)(2n+ 3)

= n(2n+ 3)+ 1

(2n+ 1)(2n+ 3)
= (n + 1)/

(2(n+ 1)+ 1).

27. Base case: 52 = 25 < 32 = 25. If
n2 < 2n, then (n + 1)2 = n2 + 2n +
1 < 2n + 2n + 1 < 2n + 2n by
example 3. Hence (n+1)2 < 2 ·2n =
2n+1.

29. Base case: 3(2)+ 1 = 7 < 9 = 32. If
3n + 1 < 3n, then 3(n + 1) + 1 =
3n + 1 + 3 < 3n + 3 < 3n + 3n,
since 3 < 3n for any n ≥ 1. Hence
3(n + 1) + 1 < 2 · 3n < 3 · 3n =
3n+1.

31. Base case: 37 = 2187 < 5040 = 7!.
If 3n < n!, then 3n+1 = 3 · 3n <

3 · n! < (n+ 1) · n! for n ≥ 7. Hence
3n+1 < (n+ 1)!.

33. Base case: 32·0 − 1 = 1 − 1 = 0 is
divisible by 8, since 0 is divisible
by any nonzero integer. If 32n − 1
is divisible by 8, then 32(n+1) − 1 =
9 · 32n − 1 = 9 · (32n − 1) + 8 is
divisible by 8.

35. Base case: 70 − 20 = 1 − 1 = 0 is
divisible by 5, since 0 is divisible
by any nonzero integer. If 7n − 2n is
divisible by 5, then 7n+1 − 2n+1 =
7 · 7n − 2 · 2n = 7(7n − 2n) + 5 · 2n

is divisible by 5.
37. Base case: 13 − 1 = 0, which is

divisible by 3. If n3 − n is divisible
by 3, then (n+ 1)3 − (n+ 1) = n3 +
3n2 + 3n + 1 − n − 1 = (n3 − n) +
3n2 + 3n is divisible by 3.

39. Strong induction. Base case: x2 −
y2 = (x + y)(x − y) and x4 − y4 =
(x + y)(x − y)(x2 + y2) are divisible
by x + y. If x2k − y2k is divisible
by x + y for k = 1, 2, . . . , n, then

x2(n+1) − y2(n+1) = (x2 + y2)(x2n −
y2n)− x2y2(x2(n−1)− y2(n−1)), where
each term on the right is divisible
by x + y.

41. Strong induction. Base case: a2 = 2
and a3 = 2(1) + 2 are even. If ak is
even for k = 2, 3, . . ., n + 1, then
an+2 = 2an+an+1 is even, since each
term on the right is even.

43. Strong induction. Base case: b1 = 4
and b2 = 8 are even. If bk is even
for k = 2, 3, . . ., n+ 1, then bn+2 =
bn+ bn+1 is even, since each term on
the right is even.

45. Strong induction. Base case: c1 =
1 < 31, c2 = 1 < 32, and c3 = 3 <

33. If ck < 3k for k = 1, 2, . . . , n+ 2,
then cn+3 < 3n + 3n+1 + 3n+2 =
3n(1+ 3+ 9) < 3n · 33 = 3n+3.

47. Base case: d1 = 2 ≤ 31. If dn ≤ 3n,
then dn+1 = 3dn ≤ 3 · 3n = 3n+1.

49. Base case: d1 = 2 is even. If dn is
even, then dn+1 = 3dn is even.

51. Base case: e1 = 3 = 3 + 2(1 − 1).
If en = 3 + 2(n − 1), then en+1 =
2+ en = 2+ 3+ 2(n− 1) = 3+ 2n.

53. Strong induction. Base case: f1 = 1 ≤
21 and f2 = 1 ≤ 22. If fk ≤ 2k for
k = 1, 2, . . ., n+1, then fn+2 ≤ 2n+
2n+1 = 2n(1+ 2) < 2n22 = 2n+2.

55. Base case: f1 + f3 = 1+ 2 = 3 = f4.
If f1 + f3 + . . . + f2n−1 = f2n, then
f1 + f3 + . . .+ f2n+1 = f2n + f2n+1 =
f2n+2.

57. Base case: L1 = 2 ≤ 21. If Ln ≤
2n, then Ln+1 = Ln + Ln−1 ≤ 2n +
2n−1 = 2n−1(2 + 1) < 2n−1 · 22 =
2n+1.

59. Strong induction. Base case: L3=3=
2(1)+1= 2f1+ f2 and L4 = 4= 2(1)
+ 2 = 2f2 + f3. If Lk+2 = 2fk + fk+1,
then Ln+3 = Ln+1 + Ln+2 = 2fn−1 +
fn + 2fn + fn+1 = 2fn+1 + fn+2.

61. Base case: 6 = 2(−2)+ 5(2). If n =
2s + 5t, then n + 1 = 2s + 5t +
2(−2)2+ (1)5 = 2(s− 2)+ 5(t+ 1).



Answers to Odd-Numbered Exercises 683

63. Base case: 1 − 1/22 = 3/4 =
(2 + 1)/(2 · 2). If

n∏
i=2

(1 − 1/i2) =

(n + 1)/(2n), then
n+1∏
i=2

(1 − 1/i2) =

[1− 1/(n+ 1)2] ·
n∏

i=2
(1− 1/i2) =

((n+ 1)2 − 1)(n+ 1)

(n+ 1)2(2n)
= n+ 2

2(n+ 1)
.

65. Base case: If A is a set with one
element, then P(A) = {∅, A} has
2 = 21 elements. Suppose any set
A containing n elements has P(A)
containing 2n elements. A set B
containing n + 1 elements may be
written as B = C ∪ {b}, where b ∈ B
and C has n elements. Then P(B)
consists of the elements in P(C) along
with sets of the form D ∪ {b}, where

D ∈ P(C). Hence P(B) has 2n+ 2n =
2n+1 elements.

67. Base case: (d/dx)(x) = 1 = 1x1−1.
If (d/dx)(xn) = nxn−1, then by
the product rule (d/dx)(xn+1) =
x · nxn−1 + 1 · xn = (n+ 1)xn.

69. Let n be the number of connectives in
a sentence. Base case: If a sentence
has n = 0 connectives, then it has
no right parentheses. Assume that a
sentence with n = k connectives has
k right parentheses. Then a sentence
with n = k + 1 connectives has one
of the forms (∼ B), (B∧C), (B∨C),
(B→ C), or (B↔ C), where B and
C together have k connectives. Hence
each of these forms adds one right
parenthesis; the total number of right
parentheses must be k + 1.

4.1 Analytic Geometry

1. The point (π, e), for example, is
found by going π units (approxi-
mately 3.14) along the x axis and
e units (approximately 2.718) along
the y axis.

3. All but one of these points all lie
collinearly along the line y = x; the
point (−2,−1) is found by going
leftward 2 units along the x axis
and downward 1 unit along the
y axis.

5. The equation is y = 2.
7. The equation is y = −x + 1.
9. (x − 1)2 + ( y − 2)2 = 36

11. x2 + ( y − 2)2 = 4
13. y = x2/4
15. x2/100+ y2/75 = 1
17. x2/4− y2/21 = 1
19. The plane cuts diagonally across one

of the cones at an angle steeper than
the side of the cone and, say, above
the common vertex.

21. The plane cuts diagonally across one
of the cones at an angle less steep than
the side of the cone and, say, above
the common vertex.

23. The plane cuts horizontally across the
double-napped cone and intersects it
at the common vertex.

25. The plane cuts vertically straight
down through the double-napped
cone.

27. The focus is (0, 5/4) and the directrix
is y = 3/4.

29. The point (0, 1) is closest.
31. Changes in e stretch the ellipse

outward from a circular form either
along the x axis or along the y axis. If
e is close to 0, then the ellipse is close
to circular. If e is close to 1, then the
ellipse is stretched broadly in the y
axis direction.

33. y = 5x − 4.
35. y = −(5/4)x + 0.5
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37. y = (1/4)x + 17/4
39. (0, 1) and (1, 2)
41. There are no intersection points.
43. (

√
(2/3), 1) and (−√(2/3), 1)

45. {(−4, 4), (−3, 2), (−1.5, 1), (0, .5),
(1.5, 1), (3, 2), (4, 4)}

47. The eight points include, for example,
the point found by moving leftward
three units along the x-axis and
downward 54 units along the y-axis,
as well as the origin.

49. y = 2x3

51. They fit approximately into a circular
(or elliptical) pattern.

53. 2x + 4y = 5
55. 2x + 2y + 2z = 9
57. 3x + 2y + 6z = 6
59. The resulting equation is ((a2 +

c2)z2 + 2(by− c)z)+ ((a2 + b2)y2 −
2by)= a2−1. Completing the square
both in z and in y will result in

either an ellipse, a circle, or a single
point.

61. a = b = 0; the plane is then level and
intersects the unit sphere at its “north
pole.”

63. The point (x̂, ŷ) is on the line y =
mx + b, and so x̂ = 1/m(ŷ − b).
The perpendicular line segment has
slope−1/m, and so−1/m(x̂− x0) =
ŷ − y0. Substituting the expression
for x̂ and algebraically rearranging
the terms produces the result. When
solved for ŷ, the expression is

ŷ = m2y0 + mx0 + b

m2 + 1
.

65. cos θ = adj/hyp = AB/AC =
AD/AE = AD/1 = AD

67. tan θ = opp/adj = BC/AB =
DE/AD

69. csc θ = hyp/opp = AC/BC =
AE/DE = 1/DE

4.2 Functions and Inverse Functions

1. Not a function since the domain value
2 appears in two ordered pairs.

3. Yes, a function.
5. Yes, a function.
7. Not a function. For example, x = 4

has two output values y = 2 and
y = −2.

9. Yes, a function; each x value in the
domain has only one corresponding
y range value given by y = √1− x2.

11. Not a function. For example x = 0.5
has two output values y = ±√3/2.

13. For example, f : A → B, where
f (1) = 4, f (2) = 5, and f (3) = 6.

15. For example, f : A → C, where
f (1) = 7, f (2) = 7, and f (3) = 8.

17. The function is onto. For any y ∈ R,
x = (1/2)( y − 7) has f (x) = y.

19. The function is onto. For any y ∈ R,
x = 3
√

y + 1 has h(x) = y.

21. The function is not onto; for example,
y = 2 is not in the range.

23. The inverse is f −1(x) = (1/5)(x + 2)
with domain = R and range = R.

25. The inverse is h−1(x) =√x − 12− 3
with domain = {x ∈ R : x ≥ 21} and
range = {x ∈ R : x > 0}.

27. The inverse is k−1(x) = √ln x with
domain = {x ∈ R : x ≥ 1} and range
= {x ∈ R : x > 0}.

29. The inverse is q−1(x) = 1/(2x)−3/2
with domain = {x ∈ R : x < 0} and
range = {x ∈ R : x < −3/2}.

31. For example, restrict the domain to
D = {x : −π/2 ≤ x ≤ π/2}.

33. For example, restrict the domain to
D = {x : −π/2 ≤ x ≤ π/2}.

35. The graph of f is a line with slope 1
and y intercept 5, while f −1 is a line
with slope 1 and y intercept −5.
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37. With domain restricted to [0,∞), the
graph of h is the right half of a
parabola extending upward along the
y axis, while h−1 is the top half of a
parabola extending rightward.

39. The graph of r is a standard exponen-
tial graph; r−1 is its reflection across
the line y = x.

41. f (g(x)) = √
5/(2x + 1)− 1, whose

domain is the interval D = (−1/2, 2].
Similarly, g(f (x)) = 1/(2

√
5x − 1 +

1), whose domain is D = {x : x ≥
1/5}.

43. f (g(x)) = ln (5/(x + 2)− 1), whose
domain is D = (−∞,−2) ∪ (−2, 3).
Similarly, g(f (x)) = 1/(ln (5x − 1)+
2), whose domain is D = {x : x >

1/5 and x 	= (e−2 + 1)/5}.
45. True.
47. False; for example, f (x) = x and

g(x) = −x are both onto R, but
( f + g)(x) = 0 is not.

49. False; for example, f (x) = x is onto
R, but f (x) · f (x) = x2 is not.

51. False; for example, f (x) = x2 does
not satisfy this property.

53. False; the inverse of the polynomial
function p(x) = x is itself.

55. False; it equals x.
57. Proceed by way of contradiction;

assume g is not onto. Then there
exists y ∈ C where y 	= g(t) for
any t ∈ B. Since f (x) ∈ B for every
x ∈ A, there cannot exist x ∈ A with

g(f (x)) = y, contradicting the fact
that g ◦ f is onto.

59. Assume a, b ∈ R with f (a) = f (b).
Then g(f (a)) = g(f (b)). Since g ◦ f
is one-to-one, this equality implies
a = b. Hence f is one-to-one.

61. Assume a, b ∈ R with g(f (a)) =
g(f (b)). Since g is one-to-one, this
equality implies f (a) = f (b). Since
f is one-to-one, this equality implies
a = b. Hence g ◦ f is one-to-one.

63. For any element x in the range R of
f , define a function as g(x) = y when
f ( y) = x. Because f is one-to-one,
any element x ∈ R appears exactly
once in the set of ordered pairs (x,
g(x)) (which make up the function g).
Hence g is defined properly as a
function. For any y in the domain of
f , g(f ( y)) = g(x) = y, and for any
x ∈ R, f (g(x)) = f ( y) = x. Hence g
is the inverse function f −1.

65. Suppose g and f are inverse functions
for f . For every y in the range R of
f , there exists an x in the domain
of f where y = f (x). Hence g( y) =
g(f (x)) = x and h( y) = h(f (x)) = x.
Thus g( y) = h( y) for every y ∈ R,
and so g = h.

67. f −1(g−1(g(f (x)))) = f −1(f (x)) = x
and
g(f (f −1(g−1(x)))) = g(g−1(x)) = x.

69. Since the function is nonconstant,
m 	= 0, and so f −1(x) = (x − b)/m.

4.3 Limits and Continuity

1. 20
3. ∞
5. The limit does not exist, since the left

and right limits are not equal.
7. Given any ε > 0, 0 < |x − 2| < ε/7

implies |(7x − 8) − 6| = 7|x − 2| <
7 · (ε/7) = ε.

9. Given any ε > 0, 0 < |x−a|< ε/|m|
implies |(mx+b)− (ma+b)| = |m| ·
|x − a| < |m| · (ε/|m|) = ε.

11. Given any ε > 0, 0 < |x| < b/a
and 0 < |x| < ε/(2b) together imply
|(ax2+bx+ c)− c| = |x| · |ax+b| <
ε/(2b) · (a(b/a)+ b) = ε.
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13. Given any ε > 0, the definition is
satisfied by choosing δ = ε/2.

15. Given any ε > 0, the definition is sat-
isfied by choosing δ = min{1, ε/5}.

17. Given any ε > 0, the defi-
nition is satisfied by choosing
δ = min{1, ε(

√
8+ 3)/3}.

19. 9
21. 3
23. 1/2
25. 1
27. 8
29. −5
31.
√

14
33. Given any ε > 0, the definition is

satisfied by choosing δ = ε.
35. Given any ε > 0, the definition is

satisfied by choosing δ = √ε.
37. We show f is continuous at any

a ∈ R. Case 1: Suppose a > 0. Then
the definition is satisfied by choosing
δ = min{a/2, ε}. Case 2: Suppose
a < 0. Then the definition is satis-
fied by choosing δ = min{−a/2, ε}.
See exercise 34 for the case of
a = 0.

39. The function is continuous at all real
x except x = −1.

41. The function is continuous at all real
x except x = 2.

43. Given any M > 0, the defini-
tion is satisfied by choosing δ =
min{1,

√
4/M}.

45. Given any ε > 0, the defini-
tion is satisfied by any choice of
δ > 0.

47. Given any ε/2 > 0, there exist δf > 0
and δg > 0 that satisfy the definition
for f and g, respectively. Then δ =
min{δf , δg} satisfies the definition for
f − g.

49. Apolynomial p(x) is the sum of terms
that are scalar multiples of variable
powers. Applying the limit of a scalar
multiple rule, the limit of a sum rule,
and the limit of a product rule, along

with the fact that lim
x→c

x = c, we see

that lim
x→c

p(x) = p(c).

51. Let a = 0 and

f (x) =
{

1 if x ≥ 0
−1 if x < 0

.

53. Assume L > 0 (the case L < 0 is
similar). Given M > 0, the value
M(L2 + 1)/L > 0, and so there
exists δf such that 0 < |x − a| < δf

implies f > M(L2 + 1)/L. Setting
ε = 1/L, there exists δg such that
0 < |x − a| < δg implies |g(x) −
L| < 1/L. This last inequality implies
1/g(x) > L/(L2 + 1). Choosing δ =
min{δf , δg}, we have

f (x)/g(x) >
M(L2 + 1)

L
· L

L2 + 1
=M

whenever 0 < |x − a| < δ.
55. For both parts, let a = 0 and f (x) ={

x if x 	= 0
1 if x = 0

.

57. This fact follows from the limit of a
constant rule in theorem 4.3.2.

59. Let f and g be continuous at a.
By the limit of a difference rule
in theorem 4.3.2, lim

x→a
f (x) − g(x) =

lim
x→a

f (x)− lim
x→a

g(x) = f (a)− g(a).

61. Applying the definition of the
limit and the identity | − f (x) −
(−f (a))| = |f (x) − f (a)|, you can
prove lim

x→a
−f (x) = −f (a).

63. The base case is that f (x) = x is
continuous, which follows from the
definition by choosing δ = ε for any
given ε > 0. The induction hypoth-
esis is that f (x) = xk is continuous
for k ∈ N. Then g(x) = xk+1 = xk ·
x is the product of two continuous
functions, and so is continuous by
theorem 4.3.5.

65. The functions

f (x) =
{−1 if x ≥ 0

1 if x < 0
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and

g(x) =
{

1 if x ≥ 0
−1 if x < 0

provide a counterexample.
67. The functions f (x) = 0 and

g(x) =
{

1 if x ≥ 0
−1 if x < 0

provide a counterexample.

69. Intuitively, when x is close to a,
f (x) is a very large negative number.
Precisely, let f : D → Y be a
function whose domain D contains
all points of an open interval around
a ∈ R, except for a itself. Then the
expression lim

x→a
f (x) = −∞ means:

for every real M > 0, there exists
δ > 0 such that 0 < |x − a| < δ

implies f (x) < −M.

4.4 The Derivative

1. The slope is [(42 + 2) − (32 + 2)]/
(4− 3) = 7. The graph is a parabola
with vertex at (0, 2) having secant
line passing through the points (3, 11)
and (4, 18).

3. The slope is [(3.00012 + 2) − (32 +
2)]/(3.0001 − 3) = 6.0001. The
graph is a parabola with vertex
at (0, 2) having secant line pass-
ing through the points (3, 11) and
(3.0001, 11.00060001).

5. The slope is [(0.013) − (03)]/
(0.01 − 0) = 0.0001. The graph is
the standard cubic having secant line
passing through the points (0, 0) and
(0.01, 0.000001).

7. f ′(x) = lim
h→0
[(2(x + h) + 3) − (2x +

3)]/h = 2.

9. h′(x) = lim
h→0
[((x + h)2 + 1) − (x2 +

1)]/h = 2x.

11. p′(x) = lim
h→0
[1/(x + h) − 1/x]/h =

−1/x2

13. r′(t) = lim
h→0
[1/(x + h − 3) −

1/(x − 3)]/h = −1/(x − 3)2

15. t′(x) = lim
h→0

(
√

2(x + h)+ 2 −
√

2x + 2)/h = 1/
√

2x + 2

17. For x < 2, v′(x) = lim
h→0

(4(x +
h) − 4x)/h = 4. For x > 2,

v′(x) = lim
h→0

(2(x + h)2 − 2x2)/

h = 4x. The derivative does not exist
at x = 2.

19. f ′(x) = 37(x9 + x6)36(9x8 + 6x5)
21. f ′(x) = (3x2 + √6x + 5 − 4) ·

(2− x−2)+ (6x + 0.5(6x + 5)−1/2) ·
(2x + 1/x)

23. f ′(x)= 5 sin4(x3+2x) ·cos(x3+2x) ·
(3x2 + 2)

25. f ′(x) = −2 csc2(2x)

ln(3) · cot(2x)

27. f ′(x) = (kx5 + 2x) · (1/3)x−2/3 +
(5kx4 + 2) 3

√
x.

29. h′(3π/4) = 14 + √2. The tangent
line is y = (14+√2)x+ 28+√2+
π3 − (14+√2)3π/4.

31. h′(
3π

4
) = 28− 3π

72
.

The tangent line is y − 20+ 3π

24
=

28− 3π

72

(
x − 3π

4

)
.

33. h′(3π/4) = 2π . The tangent line is
y = 2πx − 1− 3π2/2.

35. f ′(x) = lim
h→0

(
√

x + h − √x)/h =
1

2
√

x
.

37. y = (1/6)x + (3/2)
39. The area of the small triangle is

(1/2) cos θ · sin θ , the area of the pie-
shaped region is θ/2, and the area
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of the large triangle is (1/2) tan θ .
Therefore cos θ · sin θ < θ < tan θ .

41. cos θ < sin θ/θ < sec θ . The limit
as θ approaches 0 of the two outside
terms is 1.

43. lim
h→0
[(sin x cos h+ sin h cos x)−

sin x]/h = cos x lim
h→0

(sin h)/h+
sin x lim

h→0
[cos h− 1]/h = cos x.

45.
cos θ · cos θ − sin θ(− sin θ)

cos2 θ
= sec2 θ .

47.
cos θ · 0− 1 · (− sin θ)

cos2 θ

= 1

cos θ

sin θ

cos θ
= sec θ · tan θ .

49. Since the derivative is defined in
terms of a limit, and the limit is
unique, the derivative is unique.

51. (d/dx)[c] = lim
h→0

(c− c)/h = 0.

53. lim
h→0
[ f (x + h)g(x + h) − f (x) ·

g(x)]/h = lim
h→0
[ f (x + h)g(x + h) −

f (x + h)g(x) + f (x + h)g(x) −
f (x)g(x)]/h = lim

h→0
f (x + h) · [g(x +

h)− g(x)]/h+ lim
h→0

g(x) · [ f (x+ h)−
f (x)]/h = f (x)g′(x)+ g(x) f ′(x).

55. Assuming there are no values x for
which g(x) = g(t), the difference
quotient [ f (g(t))− f (g(x))]/[t− x] is

f (g(t))− f (g(x))

g(t)− g(x)
· g(t)− g(x)

t − x
.

Taking the limit as t approaches x
produces the chain rule formula.

57. Apply the power rule, the scalar
multiple rule, and the sum rule
to a general polynomial p(x) =∑n

k=0 akxk , where n ∈ N ∪ {0}.
59. By L’Hopital’s rule applied to h,

f ′(x) = lim
h→0
[ f (x + h) − f (x)]/h =

lim
h→0
[f ′(x+h)−0]/1= lim

h→0
f ′(x+h).

61. f ′(0)= lim
h→0
[(0+h)2 sin(1/(0+h))−

0]/h = lim
h→0
[h · sin(1/h) = 0, since

| sin(1/h)| ≤ 1.

63. A counterexample is f ′(x) = x3 with
a = 0 on the interval (−1, 1).

65. Differentiating both sides of f (x) −
g(x) = C for any x ∈ (a, b), f ′(x) −
g′(x) = 0.

67. By the definition of the deriva-
tive, lim

h→0
[ f (g(a)+ h)− f (g(a))]/h =

f ′(g(a)).

69. f (g(a) + h) = f (g(a) + g(a +
k) − g(a)) = f (g(a + k)). From
exercise 68, h · F(h) = f (g(a) +
h)− f (g(a)) = f (g(a+ k))− f (g(a)).
Now k · G(k) · F(k · G(k)) =
k ·G(k) · f (g(a)+ k · G(k))− f (g(a))

k · G(k)
= f (g(a) + k · G(k)) − f (g(a)) =
f (g(a)+g(a+ k)−g(a))− f (g(a)) =
f (g(a+ k))− f (g(a)).

4.5 Understanding Infinity

1. For example, define f so that f (a) = 1
and f (b) = 2.

3. No such function exists because
|B| > |A|.

5. No such function exists because
|B| > |A|.

7. For example, define g so that
g(x) = a.

9. No such function exists because
|A| > |C|.

11. For example, define f so that f (a) = y
and f (b) = z.

13. No such function exists because
|D| > |C|.

15. The function is not onto; for example,
2 ∈ N, but there exists no value x ∈ N
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with 2x + 1 = 2. The function is
one-to-one; if 2a+ 1 = 2b+ 1, then
a = b.

17. f is one-to-one: If a3 + 1 = b3 + 1,
then a = b. f is onto: If r ∈ R, then
x = 3
√

r − 1 satisfies f (x) = r.
19. f is one-to-one: If an + 1 = bn + 1,

then a = b. f is onto: If r ∈ R, then
x = n
√

r − 1 satisfies f (x) = r.
21. f is not onto R; for example,−1 ∈ R,

but there exists no domain value x
with

√
x = −1. The function is one-

to-one; if
√

a = √b, then a = b since
R+ is the codomain.

23. There are two, defined by f (a) = 1
and g(a) = 2. Both are one-to-one;
neither is onto.

25. The eight maps are determined by
mapping each of the elements 1, 2,
and 3 to one of u and v. None are
one-to-one, and all but f (1) = f (2) =
f (3) = u and g(1) = g(2) = g(3) = v
are onto.

27. Note that the cardinality of the second
set is smaller than the cardinality of
the first.

29. For example, define f (1) = a, f (2) =
b, and f (n) = n− 2 for n ≥ 3.

31. Note that because Q is countable, but
P(N) is uncountable.

33. Define a one-to-one correspondence
f : (0, 2) → (0, 4) by f (x) = 2x.
This is a one-to-one, onto function on
these intervals of reals.

35. 0.101010 . . .

37. 0.01010001 . . .

39. D = {2, 3, 4, . . .}
41. D = {2, 3, 5, 6, . . .}
43. Reflexivity: The identity map is

a one-to-one correspondence, so
|A| = |A|.
Symmetry: If |A| = |B|, there is a one-
to-one correspondence f : A→ B.
The inverse f −1 : B → A is also
a one-to-one correspondence, so
|B| = |A|.

Transitivity: If |A| = |B| and |B| =
|C|, there are one-to-one correspon-
dences f : A → B and g : B → C.
The composite function g◦ f : A→ C
is also a one-to-one correspondence
(see section 4.2), and so |A| = |C|.

45. Proceed by way of contradiction:
suppose both A and B are countable.
Then A ∪ B would be countable by
theorem 4.5.1.

47. Suppose |A| ≥ 2 and label a and b two
elements of A. Define a one-to-one
correspondence f so that f (a) = b,
f (b) = a, and f (x) = x if x 	= a, b.
Now suppose f is a one-to-one cor-
respondence that is not the identity
function; there must exist an element
a ∈ A such that f (a) = b, where
b 	= a. Thus A contains at least the
elements a and b.

49. f is onto: Given any k ∈ N, set m
so that 2m−1 is the power of 2 in the
prime power factorization of k. Then
k/2m−1 is odd, and so there is a value
n ∈ N so that k/2m−1 = 2n − 1. f is
one to one: Assume 2m1−1(n1 − 1) =
2m2−1(n2 − 1). By the uniqueness
of the prime power factorization,
m1 − 1 = m2 − 1, and so m1 = m2.
Dividing by the equal power of 2, we
then have n1 − 1 = n2 − 1, and so
n1 = n2. Hence (m1, n1) = (m2, n2).

51. f is onto: For r ∈ (0, 1
2 ], set x =

1/(2(r − 1)) and for r ∈ ( 1
2 , 1), set

x = (r + 1
2 )/(1+ r); in both cases,

f (x) = r. Since f ′(x) > 0, f is
increasing and so one-to-one.

53. P(A) = {∅, {∅}}. |A| = 1 and
|P(A)| = 2.

55. P(A) = {∅, {w}, {x}, {y}, {z}, {w, x},
{w, y}, {w, z}, {x, y}, {x, z}, {y, z},
{w, x, y}, {w, x, z}, {w, y, z} {x, y, z},
{w, x, y, z}}. |A| = 4 and |P(A)| = 16.

57. |A| = 6 and |P(A)| = 64.
59. |Q| = ω and |P(Q)| = 2ω.

61. |P(R)| = 22ω
and |P[P(R)]| = 222ω
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63. Any such polynomial y = ax + b is
determined by its rational coefficients
a and b. Therefore the cardinality
of this set is the same as |Q × Q|,
which is ω (see exercise 44). Also,
|P(Q×Q)| = 2ω.

65. The cardinality of the set of all
polynomials over Q is ω; since each
polynomial has a finite number of
roots (equal to its degree), the set of
algebraic numbers is of cardinality ω.
Also, |P(the algebraic numbers over
Q)| = 2ω.

67. Let A = {a, b, c, d, e, f , g} ∪ N rep-
resent 7+ω and set f (a) = 1, f (b) =
2, · · · f (g) = 7, and f (n) = n + 7 for

n ∈ N. The Hilbert Hotel drawing
is similar to figure 4.17, except that
a, b, · · · , g fill the first seven rooms,
and 1, 2, · · · line up in the remaining
rooms.

69. Let A = {an : n ∈ N}, B = {bn :
n ∈ N}, and so on until E =
{en : n ∈ N}. Define f (an) = 5n− 4,
f (bn) = 5n− 3, and so on until
f (en) = 5n − 0. The Hilbert Hotel
proof would begin with five copies of
ω, with elements from each denoted
by an, bn, cn, dn, en. These copies are
then folded together to obtain a final
list that begins a1, b1, c1, d1, e1, a2,
b2, c2, d2, e2, . . ..

4.6 The Riemann Integral

1. 5.625
3. 11.8125
5. sup S = 3, inf S = 1, s = 3, and

t = 1.0005.
7. sup S = 15, inf S = 0, s = 14.9995,

and t = 0.0005.
9. sup S = 1/2, inf S = 0, s = 1/2, and

t = 1/210.
11. sup S = 2, inf S = 1, s = 2, and

t = 1+ 1/1,001.
13. (−1, 4)
15. No such set exists by the axiom of

completeness.
17. The set of reals in the interval [0, 1)
19. {2+ 1/n : n ∈ N}
21. P = {3, 4, 5, 7}, Q = {3, 4, 5, 5.5,

6, 7}.
23. P = {0, 2, 6, 8}, Q= {0, 2, 4, 6, 7, 8}.
25. U( f , P) = 73, L( f , P) = 37.
27. U( f , P) = −46, L( f , P) = −181.
29. U( f , P) = 2

√
8 + √11 + 2

√
19 ≈

17.69 and L( f , P) = 2
√

2 + √8 +
2
√

11 ≈ 12.29
31. Mi( f ) = 4 = mi( f ) for i = 1, 2, 3,

and
∫ 6

1 4dx = 20.

33. M1( f ) = 5, M2( f ) = 3, M3( f ) = 2.
m1( f ) = 3, m2( f ) = 2, m3( f ) = 0.∫ 6

1 −x + 6dx = 12.5.

35. M1( f ) = −7, M2( f ) = −13, M3( f )
= −16. m1( f ) = −13, m2( f ) =
−16, m3( f ) = −22.

∫ 6
1 −3x −

4 dx = −66.5.
37. M1( f ) = 9, M2( f ) = 16, M3( f ) =

36. m1( f ) = 1, m2( f ) = 9, m3( f ) =
16.

∫ 6
1 x2 dx = 215/3.

39. M1( f ) = 16, M2( f ) = 26, M3( f ) =
52. m1( f ) = 2, m2( f ) = 16,

m3( f ) = 26.
∫ 6

1 x2 + 3x − 2 dx =
685/6.

41. M1( f ) = 27, M2( f ) = 64, M3( f ) =
216. m1( f ) = 1, m2( f ) = 27,

m3( f ) = 64.
∫ 6

1 x3 dx = 1295/4.

43. limn→∞
∑n

i=1 4 · 3

n
= limn→∞

12n

n= 12

45. limn→∞
∑n

i=1
3i

n
· 3

n
= 9

2

47. limn→∞
∑n

i=1−
(

2i

n

)2

· 2

n
= −8

3
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49. limn→∞
∑n

i=1

(
2i

n

)3

· 2

n
= 4

51. The function is integrable since it
is bounded on [1, 4] and continuous
except at x = 2.

53. The function is integrable, since it
is bounded and discontinuous only
on the measure zero countable set
{1/2n : n ∈ N}.

55. Suppose sup S = s and sup S = t.
Since t is an upper bound for S, s ≥ t.
Since s is an upper bound for S, t ≥ s.
Hence s = t.

57. Suppose M = sup S. Then M is an
upper bound for S by definition.
Given any ε > 0, M − ε < M, and
so M − ε cannot be an upper bound
for S. Thus there is an element s ∈ S
such that S > M − ε.
Conversely, if the two conditions
in lemma 4.6.1 hold, then M is an
upper bound by the first condition.
Suppose A is any other upper bound.
If A < M, then we may set ε =
M − A > 0; the second condition
implies there exists a value s ∈ S
such that s > M − ε = A, contradict-
ing the fact that A is an upper bound.

59. Proceed by induction as was done in
the proof of lemma 4.6.2(b). Suppose
Q adds one additional point x∗ to
P = {x0, · · · xn}, where xk−1 < x∗ <

xk and set m∗1( f ) = inf {f (x) : x ∈
[xk−1, x∗]} and m∗2( f ) = inf {f (x) :
x ∈ [x∗, xk]}. Then mk( f ) ≤ m∗1( f )
and mk( f ) ≤ m∗2( f ). A calculation
similar to that in the proof of
lemma 4.6.2(b) now shows L( f , P)≤
L( f , Q).

If Q is an arbitrary refinement of
P, consider a sequence of partitions
refining P one point at a time until
obtaining Q, applying the fact just
proved to see that L( f , P) ≤ L( f , Q).

61. This set identity follows from exer-
cise 60 and the fact that {x : x > 0} =
∞⋃

i=1
{x : x ≥ 1/n}.

63. The first term in the given sequence
of inequalities is osc( f , a) and the last
term is Mi( f )−mi( f ). Since a ∈ Sn,
we have 1/n ≤ osc( f , a) ≤ Mi( f )−
mi( f ).

65. Exercise 64 says that ε/2 >
∑

(xi −
xi−1), where the sum is taken over
only those subintervals containing
points from Sn. Since all points of
Sn must be either one of the points
x0, x1, · · · , xn−1 or in one of these
subintervals, and since the measure of
n−1⋃
i=0

(xi− ε
4n , xi+ ε

4n ) is ε/2, all points

in Sn are contained in a collection of
open intervals having total measure
less than ε.

67. After three steps, the measure of the
sets removed is 19/27. The nth step
removes 2n−1 “middle” intervals,
each of width 1/3n. Let n go to
infinity in the sum to get the total
measure of the sets removed.

69. Assume all elements of the Cantor set
may be listed, where the nth number
in the list is
0.b1nb2nb3n · · · [3]. Obtain an ele-
ment
0.a1a2a3 · · · [3] of the Cantor set not
in this list by setting ak = 2 if bkk = 0
and ak = 0 if bkk = 2, where k ∈ N.

4.7 The Fundamental Theorem of Calculus

1. f (x) = 2x − 1
3. c = 1.5

5. c = √8
7. c = ± 2√

3
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9. c =
√

5−
√

3345

15

11. By the mean value theorem, the speed
at some point must have equaled the
average speed, which is 120 miles
per hour.

13. f (x) = x3 + ex + C
15. y = (x − 1)ex + C
17. f (x) = sin x + ex + 5
19. f (x) = sin x + ex + 1− eπ/2

21. f (x) = x4 + 2ex

23. y = (x + 1)ex − 1− 2 ln 2
25. x4 + 3x5/3 + C

27.
−1

16x2
+ ln |x|

2
+ C

29. −e−2x/2+ sin x + C

31. sin(ex)− cos(2x)

2
33. x + 1/x
35. −x2 − cos x
37. −(

√
x5 + e(x5))(5x4)

39. [xex2 + (x2 + ln x)8](2x + 1/x)
41. 3+ e

43.
64
√

2

15

45. 4(e4 − e)+ 31/80
47. 0
49. lim

x→0+
1
x = ∞

51.
√−1 /∈ R

53. Proceed similarly to the proof given
for theorem 4.7.3. Given ε =
−f ′(c) > 0, there exists δ > 0 such
that f (x) < f (c) when x ∈ (c, c + δ).
But f (c) is a relative minimum, and
so f (c) < f (x) for all x in some
open interval about c, which is a
contradiction.

55. The function f (x) = 1/x has no
maximum or minimum on [−1, 1].

57. Set

2Ac+B= Ab2+Bb+C−Aa2−Ba−C

b−a

to get c = (a+ b)/2.

59. Without loss of generality, assume
c ∈ (a, b). The Riemann–Lebesgue

theorem implies
b∫
c

f (x)dx and
c∫

a
f (x) dx exist. For any partitions

Pc of [a, c] and Pc of [c, b], Pc ∪ Pc

is a partition of [a, b]with U( f , Pc ∪
Pc) = U( f , Pc) + U( f , Pc) and
L( f , Pc∪Pc) = L( f , Pc)+L( f , Pc).
The first sum implies
inf {U( f , P): P is a partition of
[a, b]}≤ inf {U( f , R): R is a partition
of [a, c]} + inf {U( f , Q): Q is a
partition of [c, b]}, which means
b∫

a
f (x) dx ≤

c∫
a

f (x) dx +
b∫
c

f (x) dx.

The second sum similarly shows
b∫

a
f (x) dx ≥

c∫
a

f (x) dx +
b∫
c

f (x) dx.

61. For any partition P of [a, b], Mi( f ) =
mi( f ) = r for i = 1, 2, · · · , n. Hence
U( f , P) = L( f , P) = r(b− a).

63. Let F(t) =
t∫

g(a)
f (x) dx so that F ′(t) =

f (t) and (F ◦g)′(t)= F ′(g(t)) · f ′(t)=
f (g(t))g′(t). By the fundamental the-

orem,
b∫

a
f (g(t))g′(t) dt = (F ◦g)(b)−

(F ◦ g)(a) = F(g(b)) − F(g(a)) =
g(b)∫

g(a)
f (x) dx.

65. Use, for example,

f (x) =
{

1 if x ∈ (0, 1)
0 if x ∈ (1, 2)

.

67. Use, for example, f (x) = x2 and
g(x) = x.

69. Use, for example,

f (x) =
{

1 if x ∈ Q

0 otherwise

and

g(x) =
{−1 if x ∈ Q

0 otherwise
.
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4.8 Application: Differential Equations

1. The equation is first order, linear, and
separable.

3. The equation is second order, non-
linear, and not separable.

5. The equation is first order, nonlinear,
and separable.

7. The equation is of the twenty-third
order, nonlinear, and not separable.

9. y = C, where C ∈ R.
11. y = x2 + cos x + C1x + C2, where

C1, C2 ∈ R.
13. y = (1/3)xe3x − (1/9)e3x + (5/3)x3

− 2x + C, where C ∈ R.
15. y = cos x+ x sin x+ (1/2)ex(sin x−

cos x)+ C, where C ∈ R.
17. y = C, where C ∈ R.
19. y = Ce4ex

, where C ∈ R.
21. y = −2x2 + Cx3, where C ∈ R.
23. y2 = X/(1 − X), where X =

Ce(2/3)x3−x2
for C ∈ R.

25. y = Ce(2/3)x3/2
, where C ∈ R.

27. y = −1/2+ Cex2
, where C ∈ R.

29. y = −1/2+ (5/2)ex2−1

31. y = 2e−x2/2

33. y = −x4/2+ 3x2

35. Assuming y > 0, y = √5x2 − 19.
37. y = (−1/2)(x

√
1+ x2 + ln |x +√

1+ x2|)+ 5
39. y = e(1/3)(x sin x+cos x−1)

41. y = Ce−3x + Dex, where C, D ∈ R.
43. y = Ce−x/2 cos(x) + De−x/2 sin(x),

where C, D ∈ R.
45. y = Cex + Dxex, where C, D ∈ R.
47. y = 9e−2x − 7e−3x

49. y = e−x cos(
√

3x)
+ (2/

√
3)e−x sin(

√
3x)

51. H0(x) = 1 satisfies the equation
because H ′′0 (x) = 0 and H ′0(x) = 0.

53. 48x − 2x(24x2 − 12) + 6(8x3 −
12x) = 0

55. lim
R→∞−2Re−R2 − lim

T→−∞−2Te−T2 =
0− 0 = 0

57. Converting to polar coordinates,[ ∞∫
−∞

e−x2
dx
]2 =

∞∫
−∞

e−x2
dx

∞∫
−∞

e−y2
dy =

∞∫
−∞

∞∫
−∞

e−(x2+y2) dxdy =

( π∫
−π

dθ
)( ∞∫

0
e−r2

r dr
) =

2π lim
R→∞(1− e−R2

)/2 = π .

Therefore
∞∫
−∞

e−x2
dx = √π .

59. L0(x) = 1, L1(x) = 1− x

61. Use integration by parts.
∞∫
0

(1 −
x)e−x dx = lim

R→∞−e−R + Re−R +
e−R + 1− 0− 1 = 0.

63.
∫

dy/y = ∫ k dt implies y = ekt+C =
y0ekt .

65. Use theorem 4.8.1 with F(t) = R/L
and G(t) = E/L. I = E/R+Ce−Rt/L,
where C ∈ R.

67. b ≈ 0.80537.
69. The population is approximately

7.854 billion in 2020 in this model.

5.1 Combinatorics

1. 30
3. 220
5. 10
7. 6,720

9. 165
11. n
13. 64; order is important and repetition

is allowed.
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15. 4; order is not important and repeti-
tion is not allowed.

17. 4,096; order is important and repeti-
tion is allowed.

19. None possible; order is not important
and repetition is not allowed.

21. No repetition, order: 1,816,214,400
lists.

23. No repetition, no order: 210 subsets.
25. No repetition, order: 479,001,600

ways.
27. No repetition, no order: 125,970

outcomes.
29. No repetition, no order: 462 ·

3,628,800 · 259,459,200 ways.
31. No repetition, no order: 25,920

options.
33. No repetition, no order: 56 ways.
35. Repetition, order: 263 ways.
37. No repetition, no order: 10 ways.
39. Four of a kind occurs more often—

there are 624 ways it can occur,
compared with 40 ways.

41. 60× 60× 60 = 216,000
43. 40× 40× 40 = 64,000
45. 40× 40× 20 = 32,000
47. 40 × 40 × 40 + 40 × 40 × 20 =

96,000
49. 40× 60× 60 = 144,000
51. Once one person sits down (which

orients the circular arrangement by
determining where the arrangement
“starts”), there are P(3, 3) = 6 ways
to order the remaining three people.

53. The five socks represent n = 5
“pigeons” residing in n − 1 = 4
“pigeonholes,” which are the four
different colors of socks representing
each matching pair. The pigeonhole
principle says that at least two of
the five socks are guaranteed to be
matching. In contrast, if the owner
removes only four socks, all four can
be mismatched.

55. The eight women separate the 18
chairs into spaces (the pigeonholes),
where any group of adjacent chairs
not separated by a woman sitting in
between is one pigeonhole. There are
at most nine such spaces (since there
is a maximum of eight divisions),
and so the pigeonhole principle says
that at least one space holds more
than one male (the 10 males are the
“pigeons”).

57. Think of the subsets {1, n}, {2, n−1},
· · · {(n + 1)/2 − 1, (n + 1)/2 + 1},
{(n+ 1)/2} as the (n+ 1)/2 different
pigeonholes. These sets represent
the different ways two numbers can
combine to sum to n + 1. Inter-
preting the numbers as the pigeons,
the pigeonhole principle proves the
result.

59. The five disciplines are the pigeon-
holes and the courses are the pigeons.
Since there are more pigeons than
pigeonholes, the pigeonhole princi-
ple proves the result.

61. C(n, 0) = n!
0!(n− 0)! = 1, since

0! = 1.

63. C(n, k)+ C(n, k − 1)

= n!
k!(n− k)! +

n!
(k − 1)!(n− k + 1)!

= (n− k + 1) · n!
k!(n− k + 1)! +

k · n!
(k)!(n− k + 1)!

= (n− k + 1+ k) · n!
k!(n− k + 1)!

= (n+ 1)!
k!(n+ 1− k)! = C(n+ 1, k).

65. Follow the hint.
67. 1,487,285,800
69. 226,800
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5.2 Pascal’s Triangle and the Binomial Theorem

1. The n= 8 row is 1 8 28 56 70 56 28 8 1.
3. The n = 16 row is 1 16 120 560 1820

4368 8008 11440 12870 11440 8008
4368 1820 560 120 16 1.

5. 1,365
7. 924
9. 11,6280

11. They are both 1.
13. They are both 1.
15. They are both 8.
17. They are both 12.
19. All but the first and last.
21. All but the first and last.
23. The only non-one elements are 5 and

10, which are both divisible by 5.
25. The only non-one elements are 11,

55, 165, 330 and 462, which are all
divisible by 11.

27. Let n = 9 and note that 9 does not
divide C(9, 3).

29. 1 + 3 = 4 = 22, 3 + 6 = 9 = 32,
6 + 10 = 16 = 42, 10 + 15 = 25 =
52, 15 + 21 = 36 = 62, 21 + 28 =
49 = 72, 28 + 36 = 64 = 82, 36 +
45 = 81 = 92, 45+ 55 = 100 = 102,
55+ 66 = 121 = 112.

31. The left–right symmetry of the trian-
gle corresponds to this property.

33. C(n− 1, n/2− 1)+ C(n− 1, n/2)

= (n− 1)!
(n/2− 1)!(n− n/2)!

+ (n− 1)!
(n/2)!(n− n/2− 1)!

= (n/2+ n/2) · (n− 1)!
(n/2)!(n/2)!

= n!
(n/2)!(n− n/2)! = C(n, n/2)

35. The base case is that C(0, 0) = 1.
By reindexing and using the fact that

C(n + 1, 0) = C(n, 0) = C(n, n) =
C(n + 1, n + 1) = 1,

n+1∑
k=0

C(n +

1, k) = C(n + 1, 0) +
n∑

k=1
{C(n, k −

1) + C(n, k)} + C(n + 1, n +
1) = C(n + 1, 0) +

n−1∑
k=0

C(n, k) +
n∑

k=1
C(n, k) + C(n + 1, n + 1) =

2
n∑

k=0
C(n, k) = 2 · 2n.

37. Use the fact that 20+21+· · · 2n−1 =
2n − 1.

39. For example, the n = 5 row is
1 5 20 60 120 120.

41. P(5, 2) = 20 and P(5, 3) = 60.
43. P(9, 3) = 504 and P(9, 5) = 15,120.
45. x4 + 2x2y2 + y4 + x4 − 4x3y +

6x2y2 − 4xy3 + y4.
47. x3 + 3x2y2 + 13xy4 + y6 + 32x5 −

80x4y + 80x3y2 − 40x2y3 − y5.
49. 78,125x7 + 218,750x6y +

262,500x5y2 + 175,000x4y3 +
70,000x3y4 + 16,800x2y5 +
2,240xy6 + 128y7

51. x7y7 + 7x6y6z + 21x5y5z2 +
35x4y4z3 + 35x3y3z4 + 21x2y2z5 +
7xyz6 + z7.

53. 262,144t9 + 294,9120t8s +
1,4745,600t7s2 + 43,008,000t6s3 +
80,640,000t5s4+100,800,000t4s5+
84,000,000t3s6 + 45,000,000t2s7 +
14,062,500ts8 + 1,953,125s9

55. x18 − 9x16y2 + 36x14y4 − 84x12y6 +
126x10y8 − 126x8y10 + 84x6y12 −
36x4y14 + 9x2y16 − y18

57. x11 + 11yx10 + 55y2x9 + 165y3x8 +
330y4x7 + 462y5x6 + 462y6x5 +
330y7x4 + 165y8x3 + 55y9x2 +
11y10x + y11
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59. If n ∈ N, then the numerator terms
of the form n(n − 1)(n − 2) · · · will
equal zero after a finite number of
terms, since one of the factors will
eventually equal (n− n).

61. C1 = 1, C2 = 2, C3 = 5, C4 = 14,
C5 = 42, C6 = 132, and C7 = 429.

63. C(2n, n)− C(2n, n+ 1)

= (2n)!
n!n! −

(2n)!
(n+ 1)!(n− 1)!

= (n+ 1− n) · (2n)!
n!(n+ 1)!

= (2n)!
n!(n+ 1)! = Cn.

65. For example, f12 = 144 = 1 + 10 +
36+ 56+ 35+ 6.

67. The n = 0 to n = 6 rows modulo four
are:
1
1 1
1 2 1
1 3 3 1
1 0 2 0 1
1 1 2 2 1 1
1 2 3 0 3 2 1.
A richly colored fractal pattern ver-
sion of Sierpinski’s triangle appears
in the colored mod 4 version of
Pascal’s triangle.

5.3 Basic Probability Theory

1. 8
3. A = {HTT , HTH, HHT , HHH}
5. A′ = {TTT , THT , TTH, THH}
7. B = {TTT}
9. P[B] = 1/8 and P[C] = 3/8

11. C(1000, 15)

13. C(980, 15)+ 20 · C(980, 14)
+C(20, 2) · C(980, 13)

C(1000, 15)
≈ 0.9973.

15. C(1000, 30)

17. C(980, 30)+ 20 · C(980, 29)
+C(20, 2) · C(980, 28)

C(1000, 30)
≈ 0.9803.

19. 1/210
21. 1/35
23. 2/7
25. 1/10
27. 3/10
29. For example, let X = “twice the total

number of dots appearing on the two
dice rolled.” X = 10 in the case
given.

31. For example, let Y = “the time it
takes for the person to run the race.”

33. For example, let N = “the numerical
rank of the card,” where an Ace has
rank 1, a King has rank 13, a Queen
has rank 12, a Jack has rank 11, and
all other cards have rank equal to their
number. N = 1 in the case given.

35. P[X = 10] = 0.0000512 and
P[X 	= 10] = 0.9999487

37. Both probabilities are 0.25.
39. P[X = 1] = 0.2684 and P[X ≤ 1] =

0.3758
41. P[X = 10] = 0.0961
43. Both probabilities are 0.5.
45. P[−1 ≤ X < 5] = 0.75 and

P[X = 3] = 0.
47. Both probabilities are 0.1359. The

graph is symmetric across 0.
49.

∫∞
−∞ fdx = ∫∞

0 e−xdx =
lima→∞

∫ a
0 e−xdx = lima→∞−e−a+

e0 = 1, P[X > 1] = e−1, and
P[−1 < X ≤ 2] = e− e−2.

51. P[X = 10,000] = C(4, 4)/C(20, 4)≈
0.000206. P[X = 2,000] = C(4, 3)/
C(20, 4) ≈ 0.000824. E[X] = $3.71.
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Since E[X] = $3.71, for a charge of
$5 we don’t play the game and for a
charge of $2 we do play the game.

53. The probability is about 0.6687.
55. E[X] = 1.7. σ ≈ 1.187.
57. E[X] = 1.8. σ ≈ 1.327.
59. E[X] = 1. σ = 1/

√
6.

61. E[X] = 73/84. σ ≈ 0.5939.
63. For discrete X: E[cX] = ∑

cx ·
P[cX = cx] = c

∑
x · P[X = x] =

cE[X]. For continuous X: E[cX] =
∞∫
−∞

cx · f (x) dx = c
∞∫
−∞

x · f (x) dx =
cE[X].

65. For discrete X:

σcX=
√∑

(cx−cE[X])2 ·P[cX=cx]
= |c|σX .

For continuous X:

σcX =
[ ∞∫
−∞

(cx − cμ)2 · f (x) dx
]1/2

= |c|σX .

67. 1
69. Approximately 3.3234.
71. Approximately 0.7096.
73. Approximately 0.5802.

5.4 Application: Statistical Inference and Hypothesis Testing

1. Let X = “the number of calories
consumed by a student for lunch in
the school cafeteria.” Is the corre-
sponding population average μ >

1,000?
3. Let X = “the moisture level of a

randomly selected patch of soil from
the region.” Is the corresponding
population average μ < μ0, where
μ0 is a selected level of moisture that
would indicate severe drought?

5. Let X = “the amount of time a student
spends working on college-owned
computers in campus labs.” Is the
corresponding population average
μ = μ0, where μ0 is a selected
level that constitutes Information
Technology’s best estimate of this
time?

7. Let X = “the number of times a
mu-proton passes through the particle
chamber in a 10 day period.” Is the
corresponding population average
μ = 1?

9. All flights on States Airline from
New York to Chicago.

11. All Horse and Rider cigarettes.

13. All high school seniors.
15. The answer depends upon the random

numbers generated by the computing
device. If the numbers generated
were 3, 8, 11, 12, 18, and 21, then the
average would be X = [15 + 19 +
32+ 32+ 52+ 80]/6 = 38.3.

17. The answer depends upon the random
numbers generated by the computing
device. If the numbers generated
were 3, 8, 11, 12, 13, 15, 16, 18,
21, and 23 then the average would
be X = [15 + 19 + 32 + 32 +
32 + 35 + 38 + 52 + 80 + 162]/10
= 49.7.

19. The answer depends upon the random
numbers generated by the computing
device. If the numbers generated
were 3, 4, 5, 6, 7, 8, 11, 12, 18,
and 21, then the average would be
X = [15+ 15+ 16+ 17+ 19+ 19+
32+ 32+ 32+ 35+ 38+ 52+ 80+
162]/14 ≈ 40.29.

21. The P-value is 0.6470; do not reject
H0. The test concludes that the
selection process is random (without
bias).
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23. The P-value is 0.0549; do not reject
H0. The test concludes that the
selection process is random.

25. The P-value is 0.00002; reject H0.
The test concludes that the selection
process was not random (it was not
without bias).

27. The P-value is P[5 or 6 reds] =
0.2167. Do not reject H0; conclude
the that the selection process was
random (it was without bias).

29. The P-value is P[at least 2 are red] =
0.9640. Do not reject H0; conclude
the that the selection process was
random (it was without bias).

31. The P-value is P[at least 5 are red] =
0.4103. Do not reject H0; conclude
the that the selection process was
random (it was without bias).

33. The P-value is P[at least 13 are red] =
0.0115; reject H0 and conclude
the that the selection process was
not random (it was biased toward
selecting the red balls).

35. The P-value is 1; do not reject
H0; conclude the that the selection
process was random (it was with-
out bias toward selecting the red
balls).

37. Step 1. Will fewer than 2/3 of the
customers purchase agency trips?
Step 2. All agency customers. Step 3.
0 of 4 purchased an agency trip.
Step 4. Test H0: p = 2/3 vs. Ha:
p < 2/3, where p is the probability
that a randomly chosen customer will
purchase an agency trip. If X =
“the number of customers purchasing
agency trips,” then X is binomial;
n = 4 on the sample, and H0

assumes p = 2/3. The P-value is
P[X = 0] = 0.0123. Reject H0 and
conclude that the estimate should be
lowered.

39. Step 1. Was the original set of bolts
randomly selected? Step 2.All 10,000
bolts. Step 3. 1 of 200 were defective.
Step 4. Test H0: the selection was
random vs. Ha: the selection was
not random. If X = “the number
defective bolts in a sample of 200,”
then X is binomial; n = 200 and p =
0.053. The P-value is P[X ≤ 1] =
0.00023. Reject H0 and conclude that
the bolts were not randomly supplied.

41. The two-tailed P-value is 2 · P[X ≤
20.5] ≈ 0 and the one-tailed P-value
is also approximately 0. Reject H0 in
both cases.

43. The two-tailed P-value is 2 · P[X ≥
22.1] = 0.6733 and the one-tailed
P-value is 0.3366. Do not reject H0

in either case.
45. The two-tailed P-value is 2 · P[X ≥

25] ≈ 0 and the one-tailed P-value is
also 0. Reject H0 in both cases.

47. The two-tailed P-value is 2 · P[X ≥
20.5] ≈ 0.035 and the one-tailed
P-value is approximately 0.018. Do
not reject H0 in either case.

49. The P-value is 0.0260. Reject H0 at
α = 0.05 but not at α = 0.01.

51. The P-value is approximately 0.
Reject H0 at both α = 0.05 and α =
0.01.

53. The P-value is 0.0852. Do not reject
H0 at either α = 0.05 or α = 0.01.

55. The P-value is P[X ≤ 3.75] ≈ 0.
Reject H0 and conclude that the
average is less than advertised.

57. The P-value is P[X ≥ 1,053] ≈ 0.
Reject H0 and conclude that the
local high-income student average is
higher than the national norm.

59. The P-value is 2 · P[X ≥ 300,000]
≈ 0. Reject H0 and conclude that the
average is different than 275,000; it
appears to be higher.
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5.5 Least Squares Regression

1. The P-value is 2 · P[T2 > 5.185] =
0.035. Reject H0; the test confirms the
usefulness of a linear model.

3. The regression line is Ŷ = 2.2X + .4.
The scatterplot consists of the four
points plotted in the X–Y plane.

5. The sum of squares of vertical
distances for the regression line is
3.6; it is 20 for the line y = 2x + 3.

7. Since the regression line based on
only two points automatically runs
through both points, there is no need
for a test on linearity. The data set
needs additional values.

9. The P-value is 2 · P[T2 > 0.192] =
0.8652. Do not reject H0; conclude
the data do not indicate the usefulness
of a linear model.

11. The P-value is 2 · P[T4 > 1.920] =
0.1273. Do not reject H0; conclude
the data do not indicate the usefulness
of a linear model.

13. The response is 4 · 1.5− 2 = 4.
15. The response is 4 · 2 − 2 = 6. It

unexpectedly matches the scatterplot
point’s Y value of 6 when X = 2.
The regression line minimizes the
sum of squares, providing the best
fit to the data set as a whole, and
so may not intersect all of the data
points.

17. The response is 14, which differs
from the scatterplot point’s Y value
of 8 when X = 4. The regression
line minimizes the sum of squares,
providing the best fit to the data set
as a whole, and so may not intersect
all of the data points.

19. The test for linearity’s P-value is
2 · P[T3 > 4.0858] = 0.0264; the
regression line is Ŷ = 0.9692X −
1.099.

21. The test for linearity’s P-value is 2 ·
P[T5 > 1.210] = 0.2802.

23. The test for linearity’s P-value is 2 ·
P[T5 > 2.368] = 0.0640.

25. The test for linearity’s P-value is 2 ·
P[T3 > 2.154] = 0.1203.

27. The test for linearity’s P-value is
2 · P[T5 > 8.757] ≈ 0.0003; the
regression line is Ŷ = 1.674X −
53.41.

29. Ŷ = 0.8056X − 0.0278.
31. Ŷ = 2.407X − 2.986.
33. The test for linearity’s P-value is

2 · P[T18 > 0.9227] = 0.3683; the
data do not indicate a usefulness of
a linear model. The regression line is
Ŷ = 0.2396X + 1.34.

35. One such scatterplot would consist
of points fairly collinear with a very
steep upward slope.

37. One such scatterplot would consist
of points fairly collinear with a very
shallow downward slope.

39. Any scatterplot that consists of
collinear points along a line with a
negative slope.

41. One such scatterplot would consist of
points that lie fairly close along the
curve Y = X2.

43. One such scatterplot would consist of
points that lie fairly close along the
curve Y = eX .

45. One such scatterplot would consist of
points that lie fairly close along the
curve Y = sin X.

47. The test for linearity’s P-value is
2 · P[T5 > 1.792] = 0.1331; do not
conclude the usefulness of the linear
model.

49. The test for linearity’s P-value is 2 ·
P[T4 > 3.828] = 0.0186; conclude
the usefulness of the linear model.



700 Answers to Odd-Numbered Exercises

51. The test for linearity’s P-value is
2 · P[T3 > 2.655] = 0.0765; do not
conclude the usefulness of the linear
model.

53. The test for linearity’s P-value is
2 · P[T5 > 3.89027] ≈ 0.01145;
conclude the usefulness of the linear
model.

55. The test for linearity’s P-value
is 2 · P[T5 > 6.371] = 0.0007;

conclude the usefulness of the linear
model.

57.
n∑

i=1
xiyi − β̂0

n∑
i=1

xi − β̂1

n∑
i=1

x2
i = 0

59. β̂1 =

n∑
i=1

xiyi

n∑
i=1

x2
i

6.1 An Introduction to Graph Theory

1. Not a graph—the lines (edges) do not
join vertices.

3. A graph with one edge joining two
vertices.

5. Agraph with one vertex and no edges.
7. It is simple (it has no loops or parallel

edges), connected (a path exists
from any one vertex to another),
not complete (both the top left and
bottom right vertices, and the top
right and bottom left vertices are not
joined by an edge) and a cycle graph
(it consists of a single cycle).

9. It is simple (it has no loops or parallel
edges), not connected (a path does
not exists from every vertex to any
other), not complete (each vertex is
not joined to every other vertex by
exactly one edge) and is not a cycle
graph.

11. It is simple (it has no loops or parallel
edges), connected (a path exists from
any one vertex to another), complete
(each vertex is joined to every other
vertex by exactly one edge) and is not
a cycle graph (it contains numerous
cycles).

13. For example, arrange the four ver-
tices in a square and join them with
four edges around the perimeter of
the square, but do not include the

square’s “diagonals” as edges in the
graph.

15. For example, arrange the four ver-
tices in a square and join them with
four edges around the perimeter of the
square.

17. For example, arrange the four ver-
tices in a square and join them with
four edges around the perimeter of the
square.

19. No such graph exists, since a null
graph has no edges, and so the
vertices would be isolated.

21. (a) Labeling edges by their endpoints,
a walk is AB, BE. (b) AB, BE. (c) BE,
EA, AD, DE, EC, CB. (d) EA, AD,
DE. (e) d(A) = d(B) = 3, d(C) =
d(D) = 2, d(E) = 4. (f) 14.

23. (a) AE (b) AE (c) No circuit based at
vertex B exists. (d) No cycle based at
E exists. (e) d(A) = d(B) = d(D) =
1, d(C) = 2, d(E) = 3 (f) 8.

25. (a) AB, BE. (b) AB, BE. (c) BE, EA,
AD, DE, EC, CB. (d) EA, AD, DE.
(e) d(A) = d(B) = d(C) = d(D) =
d(E) = 4. (f) 20.

27. Since the total degree of a graph is
even, when the sum of the degrees
of vertices with even degrees is
subtracted, the sum of the degrees of
vertices with odd degrees must also
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be even. Hence there are an even
number of such vertices of an odd
degree.

29. If the walk has no repeated edge,
then it is a path. Otherwise, for each
repeated edge (say joining vertex A
to vertex B) remove the portion of the
walk that starts at vertex A and returns
to vertex A. There will be no repeated
edges after these removals, and so the
resulting walk is a path.

31. Examine the portion of the graph
consisting of the vertices T for which
there is a path from V to T , along with
any edge incident to these vertices.
Since this portion of the graph is itself
a graph (called a subgraph), its total
degree is even. Since d(V ) is odd,
there must be another vertex in the
subgraph with odd degree. But W is
the only other vertex with odd degree,
and so W must be in the subgraph. By
construction of the subgraph, there
must then be a path from V to W .

33. K1 is a single vertex (with no edges);
K2 consists of two vertices joined
by an edge; and K3 consists of three
vertices joined by three edges that
form a triangular cycle.

35. The base case states that K1 has
no edges, which is true. Assuming
Kn has n(n − 1)/2 edges, add one
additional vertex V and form Kn+1

by joining V to each of the vertices
of Kn, a process that requires the
addition of n edges. Hence Kn+1 has
n(n− 1)/2+ n = (n+ 1)n/2 edges.

37. C4 can be represented as four vertices
joined by four edges that form a
square. C5 can be represented as five
vertices joined by five edges that form
a pentagon.

39. The complement consists of the four
vertices with two edges: one that is
incident to A and C, and one that is
incident to B and C.

41. The complement consists of the
six vertices with nine edges, listed
according to the two vertices incident
to a given edge: AB, AC, AF, BD, BF,
CD, CE, DE, and DF.

43. The graph has six vertices and eight
edges.

45. The graph is K5.
47. A : C, D; B : C, D; C : A, B;

D : A, B.

49. A : B; B : A, D, E, F; C : F;
D : B, F; E : B, F; F : B, C, D, E.

51. A �G C, A �G D, B �G C, B �G D

53. A �G B, B �G A, B �G D,

B �G E, B �G F

55. The property does not hold in general;
a graph consisting of a single vertex
V with a loop joining V to itself is a
counterexample. If the graph has no
loops, then the property holds.

57. The property does not hold in general;
a counterexample is a graph consist-
ing of three vertices A, B, and C, and
two edges, one joining A to B and the
other joining B to C. For the property
to hold, all sets of three vertices
A, B, and C connected by a two-
edged path (AB and BC) must contain
a cycle.

59. The graph has three vertices that
may be arranged in a triangle, where
three edges form the perimeter of the
triangle and one vertex has a loop
joining it with itself.

61. The graph has four vertices that may
be arranged in a square. Each vertex
has two loops joining it with itself.
Four edges form the perimeter of the
square. There are two parallel edges
that cut across one diagonal, and there
is one edge that runs along the other
diagonal.

63.
⎡⎣1 1 1

1 0 0
1 0 0

⎤⎦
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65.
⎡⎢⎢⎣

0 0 1 0
0 1 1 1
1 1 0 1
0 1 1 1

⎤⎥⎥⎦
67. The graph has n vertices but no

edges.
69. In this case, the matrix element aij

would be 0 when i 	= j.

6.2 The Explorer and the Traveling Salesman

1. By theorem 6.2.1, there exists only
an Eulerian path. Labeling each edge
by the vertices that are incident to
it, one such path is: CA, AB, BD,

DC, CB.
3. By theorem 6.2.1, there exists

only an Eulerian path. Labeling
each edge by the vertices that are
incident to it, one such path is:
AB, BC, CE, EB, BD, DE, EA, AD.

5. Since the graph is not connected,
there is no Eulerian path or circuit.

7. By theorem 6.2.1, there exists
only an Eulerian path. Labeling
each edge by the vertices that
are incident to it, one such
path is: CB, BA, AD, DB, BE, EC,

CF, FE.
9. Labeling each edge by the vertices

that are incident to it, a Hamiltonian
path is: AB, BC, CD, DE. Trial
and error shows that there is not a
Hamiltonian circuit.

11. Labeling each edge by the vertices
that are incident to it, a Hamiltonian
cycle is: AB, BD, DC, CA.

13. Labeling each edge by the vertices
that are incident to it, a Hamiltonian
cycle is: AB, BC, CF, FE, ED, DA.

15. Labeling each edge by the vertices
that are incident to it, a Hamiltonian
cycle is: AB, BD, DC, CA.

17. An example is a graph containing just
one vertex having one loop joining it
to itself.

19. An example is a graph with four
vertices arranged in a square, with
four edges forming the perimeter of

the square, and one edge cutting
across one diagonal.

21. An example is a graph containing just
one vertex having one loop joining it
to itself.

23. The graph K4 is an example.
25. If there exists an Eulerian path from

V to W in such a graph G, then any
vertex A besides V and W must have
even degree: the path having edge
incident to and entering A must have
an additional edge incident to and
leaving A, since A is not a terminal
vertex of the path.

27. We construct an algorithm to parti-
tion the Eulerian circuit into distinct
cycles. If the Eulerian circuit does
not repeat any vertex besides the base
vertex, then it is a cycle. If it does
repeat a vertex, then partition the path
into two pieces: the portion of the
path from the repeated vertex back
to itself, and the rest of the path.
Repeat this process for each of the
two pieces, continuing to repeat the
process until there are no repeated
vertices besides the base vertex in any
portion.

29. Prove the result by way of contra-
diction, supposing that G is a graph
with no isolated vertices that is not
connected. Then G has at least two
subgraphs each containing one or
more edges, where the subgraphs
share no edges. Beginning at an
arbitrary vertex V of any subgraph,
it is impossible to construct a path
from V that contains any edge in the
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other subgraph(s). Hence G has no
Eulerian circuit. A graph consisting
of four vertices A, B, C, and D and
two edges AB and CD is an example
of a graph that has no isolated
vertices but does not have an Eulerian
circuit.

31. A cycle in G that is both Eulerian
and Hamiltonian must include all the
edges and all the vertices of G exactly
once. Hence G is a cycle graph
Cn, which has the same number of
edges as vertices (see exercise 38 of
section 6.1). A graph of four vertices
arranged in a square with edges
around the perimeter of the square
and one diagonal is an example of a
graph that does not have a cycle that
is both Eulerian and Hamiltonian.

33. Label the graph’s vertices
V1, V2, · · · , Vn. Since the graph is
complete, there is an edge incident
to Vk and Vk+1 for any k =
1, 2, · · · , n− 1, and there is an edge
incident to Vn and V1. This collection
of edges forms a Hamiltonian cycle.

35. Labeling the vertices as in
figure 6.8(b), the additional bridge
is built from vertex A to D, providing
another edge. Then, labeling any
edge by the vertices incident to it,
an Eulerian path is BC, CB, BA, AB,
BD, DA, AD, DC.

37. Labeling the vertices as in
figure 6.8(b), the additional bridge
could be built from vertex A to
C. Then, labeling any edge by the
vertices incident to it, an Eulerian
path is BC, CB, BA, AB, BD, DA, AC,
CD.

39. Labeling the vertices as in
figure 6.8(b), the additional bridges
could be built from vertex A to D and
from vertex B to C. Then every vertex
has even degree, and so the resulting
graph has an Eulerian circuit.

41. Labeling the vertices as in
figure 6.8(b), the removal of the
bridge corresponds to removing the
edge from vertex B to D. Then,
labeling any edge by the vertices
incident to it, an Eulerian path is
AB, BA, AD, DC, CB, BC.

43. It does not have an Eulerian circuit
because d(C) = d(F) = 1. Add an
edge incident to C and F.

45. It does not have an Eulerian circuit
because d(A) = d(D) = 1. Add an
edge incident to A and D.

47. Degrees d(B) = d(D) = d(F) =
d(H) = 3 are all odd. Add an edge
incident to B and D and one incident
to F and H.

49. Graph (b) is a subgraph of (a).
51. Graph (b) is a subgraph of (a).
53. Graph (b) is a subgraph of (a).
55. The graph has three vertices A, B, and

C, with a loop incident to each of A,
B, and C, and two other edges joining
A and B, and A and C.

57. The graph has four vertices A, B,
C, and D, with a loop incident to
each of A and D, and three other
edges joining A and C, B and D, and
C and D.

59. {{A, B}, {A, D}, {A, D}, {A, E}, {B, C},
{B, D}, {B, E}, {D, E}, {D, E}}

61. {{A, B}, {A, D}, {B, C}, {B, E}, {B, F},
{C, F}, {D, E}}

63. A ∼G A, A ∼G B, A ∼G C, A ∼G

C, B ∼G A, B ∼G B, B ∼G C,

B ∼G D
65. A �G A, A �G B, A �G D, B �G A,

B �G E
67. False, unless the graph has no circuit

(including no loops).
69. True; if there exists a path from V to

W and a path from W to X, then there
exists a path from V to X (construct
this path from the first two, removing
portions caused by repeated edges if
necessary).
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6.3 Shortest Paths and Spanning Trees

1. No such tree exists; it must have one
more vertex than edge.

3. The tree may be represented as
seven collinear vertices, where any
physically adjacent two are joined by
an edge.

5. Such a connected graph with no
cycles would be a tree, which cannot
exist because there are eight edges but
only seven vertices.

7. The tree may be represented as
eight collinear vertices, where any
physically adjacent two are joined by
an edge.

9. No such graph exists; since there are
no cycles, the graph must have at least
one more vertex than edge.

11. Label the four vertices A, B, C, and
D. Labeling each edge in terms of the
vertices incident to it, include in the
graph the edges AB, BC, and AC.

13. Labeling each edge in terms of the
vertices incident to it, a shortest path
is AB, BC, CH .

15. A shortest path is AB, BC, CH .
17. A shortest path is AB, BF, FH.
19. A shortest path is AB, BD, DH .
21. The spanning tree consists of edges

AB, BE, BF, BG, GC, GD, and GH .
The algorithm labels the additional
vertices in the following way: E =
V3, F = V4, G = V5, C = V6, D =
V7, and H = V8.

23. The spanning tree consists of edges
AB, AE, EF, FC, FG, CD, and CH .
The algorithm labels the additional
vertices in the following way: E =
V3, F = V4, C = V5, G = V6, D =
V7, and H = V8.

25. The spanning tree is the graph itself.
The algorithm labels the additional
vertices in the following way: G =
V3, H = V4, D = V5, C = V6, F =
V7, and E = V8.

27. The spanning tree consists of edges
AB, AC, AE, BD, BF, CH, and DG.
The algorithm labels the additional
vertices in the following way: C =
V3, E = V4, D = V5, F = V6, H =
V7, and G = V8.

29. The spanning tree consists of edges
AB, BE, EF, FG, GC, CD, and GH.
The algorithm labels the vertices in
the following way: B = 1 : A, E = 2 :
B, F = 3 : E, G = 4 : F, C = 5 : G,
D = 6 : C, and H = 7 : G.

31. The spanning tree consists of edges
AB, BE, EF, FC, CD, DH, and HG.
The algorithm labels the vertices in
the following way: B = 1 : A, E = 2 :
B, F = 3 : E, C = 4 : F, D = 5 : C,
H = 6 : D, and G = 7 : H.

33. The spanning tree is the graph itself.
The algorithm labels the vertices in
the following way: B = 1 : A, G = 2 :
B, H = 3 : G, D = 4 : H, C = 5 : D,
F = 6 : C, and E = 7 : H.

35. The spanning tree consists of edges
AB, BD, DC, CH, HE, EF, and FG.
The algorithm labels the vertices in
the following way: B = 1 : A, D = 2 :
B, C = 3 : D, H = 4 : C, E = 5 : H,
F = 6 : E, and G = 7 : F.

37. The leaves are A, B, D, and E.
Add edges AB and DE to obtain an
extension with no leaves.

39. The leaves are E, F, G, H, I ,
and J . Add edges EF, GH, and
IJ to obtain an extension with no
leaves.

41. Based on the hint give a contradiction
argument: since a tree is connected
with finitely many vertices, such a
path exists from any vertex to a vertex
with degree one (otherwise there is
a cycle or there are infinitely many
vertices, neither of which is possible
for a tree).
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43. The empty graph and the graph with
one vertex are the only examples of
graphs with fewer than two vertices.

45. Base case: A tree with two vertices
A and B has one edge AB. Now
follow the hint; assume a tree with
n vertices has n − 1 edges. A tree
T with n + 1 vertices has at least
one leaf V . Then T \ {V} is formed
by removing V and the one edge
incident to it, and so T \ {V} has n
vertices; by the induction hypothesis,
it has n − 1 edges. But then T has
n edges, since only one edge was
removed.

47. Proceed by way of contradiction;
assume a tree with two or more
vertices had no leaves. Then the
degree of every vertex would be
two, which contradicts the result of
exercise 46.

49. No such binary tree exists; the fewest
number of vertices in any binary tree
with five leaves is eight.

51. From the root extend one edge to a
second vertex, and from this second
vertex split into two more vertices.

53. Afull, binary tree has an even number
of leaves.

55. There is no upper bound, since one
path from root to leaf could continue
indefinitely but produce only one
leaf. The lower bound is 3.

57. The lower bound is 3; the upper
bound is 8.

59. The tree is binary since each vertex is
adjacent to at most two vertices at the
next level. It is full since every vertex
except leaves has two children. It is
not complete since, for example, D is
a leaf at level two.

61. The tree is binary since each vertex is
adjacent to at most two vertices at the
next level. It is full since every vertex
except leaves has two children. It is
not complete since, for example, C is
a leaf at level one.

63. The tree is binary, full, and complete.
65. r = 9, e = 15, and v = 8, so r − e+

v = 2.
67. r = 3, e = 7, and v = 6, so

r − e+ v = 2.
69. One such graph consists of six

vertices arranged in two triangular
shapes, with six edges forming the
two perimeters of the disconnected
triangles; this graph has r = 3, and
r − e+ v = 3.

6.4 Application: Weighted Graphs

1. The tree’s edges, as labeled by
endpoints and in the order selected
by the algorithm, are Dublin-
Chicago, Chicago-Rome, and
Dublin-Melbourne.

3. The tree’s edges, as labeled by
endpoints and in the order selected by
the algorithm, are BC, DE, AB, AD,
and EF.

5. The tree’s edges, as labeled by
endpoints and in the order selected by
the algorithm, are Chicago-LA, LA-
Charlotte, LA-DC, New Orleans-DC.

7. The tree’s edges, as labeled by
endpoints and in the order selected by
the algorithm, are AB, AE, GH, BF,
CD, CG, and CF.

9. Starting at vertex Dublin, the tree’s
edges, as labeled by endpoints and in
the order selected by the algorithm,
are Dublin-Chicago, Chicago-Rome,
and Dublin-Melbourne.

11. Starting at vertex A, the tree’s edges,
as labeled by endpoints and in the
order selected by the algorithm, are
AB, BC, AD, DE, and EF.
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13. Starting at vertex Chicago, the
tree’s edges, as labeled by endpoints
and in the order selected by the
algorithm, are Chicago-LA, LA-DC,
DC-New Orleans, and New Orleans-
Charlotte.

15. Starting at vertex A, the tree’s edges,
as labeled by endpoints and in the
order selected by the algorithm, are
AB, AE, BF, FC, CD, CG, and GH .

17. In the order selected by the algorithm,
the edges of the cycle are AB, AC, BD,
and CD.

19. In the order selected by the algorithm,
the edges of the cycle are AC, BD,
AD, and BC.

21. In the order selected by the algorithm,
the edges of the cycle are AC, DE, AB,
CE, and BD.

23. In the order selected by the algorithm,
the edges of the cycle are BC, BD,
AF, AC, EF, and DE.

25. Using A as the base vertex, the
algorithm adds edges in the following
order: AB, BC, CD, and AD.

27. Using A as the base vertex, the
algorithm adds edges in the following
order: AC, CB, BD, and DA.

29. Using A as the base vertex, the
algorithm adds edges in the following
order: AC, CB, BD, DE, and EA.

31. Using A as the base vertex, the
algorithm adds edges in the following
order: AF, FE, EB, BC, CD, and DA.

33. Using A or D as the base vertex
produces cycle weight 13; using B or
C as the base vertex produces cycle
weight 12.

35. Any base vertex produces cycle
weight 14.

37. Using A as the base vertex produces
cycle weight 11; using B, C, D, or
E as the base vertex produces cycle
weight 9.

39. Using B or F as base vertex produces
cycle weight 54, using A or E

produces cycle weight 53, and using
C or D produces cycle weight 52.

41. It is 3-regular.
43. It is 0-regular.
45. It is not regular; in particular, d(A) =

d(B) = d(D) = d(E) = 2, while
d(C) = d(F) = 3.

47. The graph K4.
49. For example, a graph with two ver-

tices and four parallel edges incident
to both.

51. Each vertex of Kn is joined to each
of the other n − 1 vertices through
exactly one edge, implying that the
degree of any vertex is n− 1.

53. By theorem 6.2.1 of section 6.2, two
vertices of G must be of odd degree,
while the other vertices have even
degree.

55. f : A→ V , B→ X, C → Z,

D→ W , E → Y
g : b→ v, c→ x, d → z,
e→ w, a→ y

57. No isomorphism exists, since G has
three edges, but G∗ has only two.

59. No isomorphism exists. Because iso-
morphisms preserve edge-endpoint
relationships, two vertices mapped to
each other would have to have the
same degree. But d(Z) = 1 in G∗,
while G has no vertex of degree one.

61. Follow the hint. Define f mapping a
vertex of 2<ω to a natural number
in the following way: the jth vertex
(counting left to right) at level k is
mapped to n = 2k + j− 2. Since any
path of finite length can be identified
with the vertex at which the path
terminates, this mapping serves as a
one-to-one correspondence between
the set of paths of finite length and N.

63. S → x. The parse tree has root S
and one vertical edge that terminates
at x.

65. S → −S → −(S) → −(S + S) →
−(x + S) → −(x + x). The parse
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tree is identical to the one given in
the example, except the symbol ∗ is
replaced with +.

67. S → S − S → S − (S) → S −
(−S)→ x − (−S)→ x − (−x). The
parse tree has root S and branches
to three vertices S, −, and S at level
one. Then the left S branches to x,
while the right branches to vertices
(, S, and ) at level two. Then S
branches to vertices − and S at level

three, and S branches to x at level
four.

69. S → S ∗ S → (S) ∗ S → (S) ∗ x →
(S + S) ∗ x → (x + S) ∗ x → (x +
x) ∗ x. The parse tree has root S and
branches to three vertices S, ∗, and S
at level one. Then the left S branches
to (, S, and ) while the right branches
to x at level two. Then S branches to
vertices S,+ and S at level three, and
each S branches to x at level four.

7.1 Complex Numbers and Complex Functions

1. 6e(−5π/6+2kπ)i, where k ∈ Z

3. 8
√

2e(π/4+2kπ)i, where k ∈ Z

5. 2e2kπ i, where k ∈ Z

7. −i

9.

√
2

2
+
√

6

2
i

11. −
√

2

2
+
√

2

2
i

13. 5+ 7i

15. 8+ 2i

17. 26+ 28i

19. 8+ 3i

21.
26

73
+ 28

73
i

23.
91

73
+ 194

73
i

25. 45eiπ

27. 18eiπ/2

29. 87e−iπ/2

31. 4
√

18e−i5π/8

33. 3
√

4e−iπ/9, 3
√

4ei5π/9, and
3
√

4e−i7π/9.

35. 8
√

128e−i11π/16, 8
√

128e−i3π/16,
8
√

128ei5π/16, and 8
√

128ei13π/16.

37. r = r + i0 = r − i0 = r

39. z · w = (a+ ib) · (c+ id)

= (ac− bd)+ i(ad + bc)

= (ac− bd)− i(ad + bc).
Also, z · w = (a − ib) · (c − id) =
(ac− bd)− i(ad + bc).

41. (z + z)/2 = (a + ib+ (a − ib))/2 =
a = Re(z).

43. Use cos(−θ)+ i sin(−θ) = cos(θ)−
i sin(θ).

45. Use (a + ib) · (a − ib) = a2 + b2.
Alternatively, z · z = |z|eiθ · |z|e−iθ .

47.
√

a2 + b2 ≤ √a2 + √b2, since
a2 + b2 ≤ a2 + 2

√
a2
√

b2 + b2 =
(|a| + |b|)2

49. let z = a+ ib and w = c+ id. (|z| +
|w|)2 = (a+ c)2 + (b+ d)2 = |z|2 +
|w|2 + 2Re(z · w) = |z|2 + |w|2 +
2|z · w| = |z|2 + |w|2 + 2|z||w| =
(|z| + |w|)2

51. The fx difference quotient simplifies
to 2. The fy difference quotient
simplifies to −4.
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53. The ux difference quotient simplifies
to y2. The uy difference quotient
simplifies to (x + 1)(2y +
y).

55. ux = y2 uy = 2(x + 1)y

57. ux = 2(x + y)+ 2 uy = 2(x + y)− 1

59. ux =
√

1+ x2 uy = x + y3

61. Given ε > 0, choose δ = (−1 +√
1+ 12ε)/6. Then

√
x2 + y2 < δ

implies |3x2 + y| ≤ |3x2| + |y| <

3δ2 + δ = ε.

63. Given ε > 0, choose δ = (−1 +√
1+ 4ε)/4. Then

√
x2 + y2 < δ

implies |x2 − 2x + 3y2| ≤ |x2| +
|2x|+ |3y2|< δ2+2δ+3δ2 = 4δ2+
2δ = ε.

65. Given ε > 0, choose δ = ε/3. Then√
(x − 1)2 + ( y − 2)2 < δ implies
|x − 2y − (−3)| = |(x − 1)− 2( y −
2)| ≤ |x − 1| + 2|y− 2| < δ + 2δ =
3δ = ε.

67. Given ε > 0, choose δ = min{0.5,

ε/2}. Then
√

x2 + ( y − 1)2 < δ

implies |y − 1| < δ, which means
.5 < y. It also means |x/y| < δ/|y| <
δ/0.5 ≤ ε.

69. Any choice of δ satisfies the definition
of continuity at any point (a, b).

71. Given ε/2 > 0, choose δu > 0
and δv > 0 so that u and v,
respectively, satisfy the definition
of continuity at (a, b). Then

|u(x, y) + v(x, y) − (u(a, b) +
v(a, b))| ≤ |u(x, y) − u(a, b)| +
|v(x, y) − v(a, b)| < ε/2 + ε/2
whenever

√
(x − a)2 + ( y − b)2 <

δ = min{δu + δv}.
73. The proof is similar to the proof of

example 4.3.6 in section 4.3.

75. Call u(a, b) = L and assume
L > 0; a similar proof works if
L < 0. Given L2ε/2, there exists
δ1 such that |u(x, y) − L| < L2ε/2
whenever

√
(x − a)2 + ( y − b)2 <

δ1. Given L/2 > 0, there exists δ2

such that
√

(x − a)2 + ( y − b)2 <

δ2 implies |u(x, y) − L| < L/2,
which implies L/2 < u(x, y).
Hence

√
(x − a)2 + ( y − b)2 < δ =

min{δ1, δ2} implies∣∣∣∣ 1

u(x, y)
− 1

L

∣∣∣∣ = |u(x, y)− L|
|u(x, y)| · L

<
L2ε

2|u(x, y)| · L < ε.

77. Use the fact that |ex sin y| =
|ex|| sin y| ≤ |ex| · 1 = ex ≤ e|x| < eδ

whenever |x| < δ.

79. Choose δ = ε− 1. Then
√

x2 + y2 <

δ implies |(x + 1) sin y| ≤ |x + 1| ≤
|x| + 1 < δ + 1 = ε.

81. u(x, y) = Re(g) = x3 − 3xy2;
v(x, y) = Im(g) = 3x2 − y3. Then
uxx = 6x and uyy = −6x. Also
vxx = 6y = −vyy.

7.2 Analytic Functions and the Cauchy–Riemann Equations

1. 3− i
3. 4− i
5. i(π/2)
7. Choose δ = ε. Then

√
x2 + y2 <

δ implies |iz + i − i| = |z| <

δ = ε.

9. Choose δ = ε/|m|. Then
√

x2 + y2 <

δ implies

|mz + b− b| = |m||z| < ε.

11. Using the fact that if |z| <

1/2, then |z + 1| > 1/2, choose



Answers to Odd-Numbered Exercises 709

δ = min{1/2, ε/2}. Then
√

x2 + y2

< δ implies

∣∣∣∣ 1

z + 1
− 1

∣∣∣∣ = ∣∣∣∣ z

z + 1

∣∣∣∣
<

δ

|z + 1| < 2δ ≤ ε.

13. Assume lim
z→0

f (z) = L and lim
z→0

f (z) =
M, where L > M. Define ε = (L −
M)/2. Examine the definition of limit
in terms of L and M to find a
contradiction (as there cannot exist
δ > 0 such that f (z) is within ε of both
L and M whenever

√
x2 + y2 < δ).

15. Given ε/|c| > 0, there exists δ >

0 such that
√

x2 + y2 < δ implies
|cf (z) − cL| = |c||f (z) − L| <

|c|(ε/|c|) = ε.

17. Given ε/2 > 0, there exists δf > 0
and δg > 0 that satisfy the definition
of limits for f and g, respectively.
Then

√
x2 + y2 < δ = min{δf , δg}

implies |f (z) − g(z) − (L − M)| ≤
|f (z)− L| + |g(z)−M| < ε/2+ ε/2.

19. Write f (z)g(z) − L · M as (f (z) −
L)M + (g(z) − M)f (z). Choose δf

so that |f (z) − L| < ε∗ whenever√
x2 + y2 < δf and choose δg so that
|g(z) − M| < ε∗ if

√
x2 + y2 < δg,

where ε∗(1 + |L| + |M|) = ε. Then
prove the definition holds for for a
given ε > 0 with the choice of δ =
min{δf , δg}.

21. The difference quotient simplifies
to 3.

23. The difference quotient simplifies to
18z + 9
z + 6i.

25. The difference quotient simplifies to
−i

(z +
z + 2i)(z + 2i)
.

27. 10z

29. 6(3z + i)

31.
2iz(z3 + 2i)− 3z2(iz2 + 2)

(z3 + 2i)2

33. 2zez2

35. 2(Log i)ez Log i = iπ iz

37. The uniqueness of the derivative
follows immediately from the prop-
erty that limits are unique; see
theorem 7.2.1.

39. The proof is similar to that given in
example 4.4.3 of section 4.4.

41. The proof is similar to that given in
example 4.4.4 of section 4.4, but with
subtraction replacing the sum.

43. Apply the chain rule to h(g(z)), where
h(z) = ez.

45. ux = 1 = vy and uy = 0 = −vx.

47. ux = 18x = vy and uy = −18y − 6
= −vx.

49. ux = 1 + ex cos y = vy and uy =
−ex sin y = −vx.

51. e4(cos 6− i sin 6)

53. ln 4− i(π/6)

55. e2(cos 1 · ln
√

32 − sin 1 · (3π/4 +
2kπ)) + i[e2(sin 1 · ln√32 + cos 1 ·
(3π/4+ 2kπ))], where k ∈ Z.

57. −4+ 4i

59. 5e−π/2 − 2e−π/2i

61. e−2kπ (cos(ln 2) + i sin(ln 2)), where
k ∈ Z.

63. eln
√

2−π/4−2kπ (cos(ln
√

2 + π/4 +
2kπ) + i sin(ln

√
2 + π/4 + 2kπ)),

where k ∈ Z

65. |ez|2 = ezez = ez+z = e2Re(z) =
(eRe(z))

2
.

67. ez = exeiy = ex(cos y − i sin y) =
ex(cos(−y) + i sin(−y)) = ex−iy

= ez.

69. If x > 0, then vy = (1/x)/[1+ ( y/x)2]
= x/(x2 + y2). The cases for x < 0
and the calculations of vx are similar.
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7.3 Power Series Representations of Analytic Functions

1. Choose N = ln(1/ε)/ ln(5).
3. Choose N = 1/ε.
5. For any real value n, |ein| = 1. The

sequence is constant; any choice of
N works.

7. The sequence is constant since
|n+ i/n− i| = 1; any choice of N
works.

9. 2
11. 8− 2i
13. 0
15. 0
17. 1/(1− z)
19. Assume lim

n→∞ zn = L and lim
n→∞ zn =

M, where L > M. Define ε = (L −
M)/2. Examine the definition of limit
in terms of L and M to find a
contradiction (as there cannot exist a
value N such that zn is within ε of
both L and M whenever n > N).

21. Given ε > 0, choose N so that it
satisfies the definition of limit for
the given value ε/|c| for the original
sequence.

23. Write znwn − L ·M as (zn − L)M +
(wn −M)zn. Choose Nz so that |zn −
L| < ε∗ if n > Nz and choose Nw so
that |wn −M| < ε∗ if n > Nw, where
ε∗(1 + |L| + |M|) = ε. Then prove
the definition holds for a given ε > 0
with the choice of N = Nz + Nw.

25. The sequence zn = (−1)ni is a
counterexample.

27. Use the fact that |zn − 0| = |zn| =
||zn| − 0|.

29. an = 1/(2n− i); R = 1

31. an = (2i)n/n!; R = ∞
33. an = 1/(6i)n; R = 6

35. an = 1/[n!(5+ i)n]; R = ∞

37. Log(z) =
∞∑

n=1

(−1)n−1(z − 1)n

n
;

R = 1.

39. 1
z =

∞∑
n=0

(−1)n(z − 1)n; R = 1.

41. arctan(z) =
∞∑

n=0

(−1)nz2n+1

2n+ 1
; R = 1.

43. ie−z =
∞∑

n=0

i(−1)nzn

n! ; R = ∞.

45. ez + e−z =
∞∑

n=0

(1+ (−1)n)zn

n! ;

R = ∞.

47. 5i cos(iz) =
∞∑

n=0

5i(1+ (−1)n)zn

2 · n! ;

R = ∞.

49. sin(iz/5) =
∞∑

n=0

((−1)n − 1)zn

2i · 5nn! ;

R = ∞.

51.
(eπ − e−π )

2
i

53.
e−1 + e

e−1 − e
i

55. Applying theorem 7.3.6,

g′(z) =
∞∑

n=1
(−1)n (2n)z2n−1

(2n)! .

Now cancel the (2n)’s and reindex.

57. For f (z) = cos z,

f ′(z) = ieiz − ie−iz

2
= − sin z.

59. cos(z2 + 1) · 2 sin(5z3 + iz) ·
cos(5z3 + iz)(15z2 + i) − sin(z2 +
1)(2z) sin2(5z3 + iz)

61. −2 sec(z3 + i) csc2(2iz2 + iz) ·
cot(2iz2 + iz)(4iz + i) + sec(z3 +
i) tan(z3 + i)(3z2) csc2(2iz2 + iz)

63. cos x(ey + e−y)/2 − i sin x(ey −
e−y)/2 = [(cos x + i sin x)e−y +
(cos x − i sin x)ey]/2 = [eix−y +
e−ix+y]/2 = cos(x + iy)

65. Apply the triangle inequality at the
induction step to obtain |zn+1 +∑n

k=0 zk| ≤ |zn+1| + |∑n
k=0 zk|.

67. Prove zn = z2n
0 , and study its conver-

gence properties in each case. For (c),
write z0 = eit for some t ∈ R.

69. Examine |zn| for |z0| ≤ 2.
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7.4 Harmonic Functions

1. u = 4x3 + 12x2 − 12y2 − 12xy2

implies uxx = 24x + 24 = −uyy.

3. uxx = −6xy = −uyy

5. uxx = −4(e−2y+i2x) = −uyy

7. uxx = − sin x cos(iy) = −uyy

9. uxx = −eix cos(iy) = −uyy

11. uxx = 2x3 − 6xy2

(x2 + y2)3
= −uyy;

these second partial derivatives are
continuous in S because they are
rational functions.

13. uxx = 2( y2 − x2)

(x2 + y2)3
= −uyy

15. The function is the imaginary part of
f (z) = Log(z + 1), which is analytic
in S.

17. Not harmonic.

19. Not harmonic.

21. Harmonic; uxx = −6xy = −uyy

(these polynomials are continuous).

23. Not harmonic.

25. Harmonic; uxx = 25e5x+3 cos(5y +
3) = −uyy.

27. Harmonic; uxx = − cos x cosh y
= −uyy.

29. Continuity of the second partial
derivatives follows automatically
from the fact that the functions
are real and imaginary parts of an
analytic function. u(x, y) = 2x + 4,
so uxx = 0 = uyy. Also v(x, y) = 2y,
so vxx = 0 = vyy.

31. u(x, y) = x2 − y2 + x, so uxx = 2 =
−uyy.Also v(x, y)= 2xy+y, so vxx =
0 = vyy.

33. u(x, y)= ex cos y, so uxx = ex cos y =
−uyy.Also v(x, y)= ex sin y, so vxx =
ex sin y = −vyy.

35. cos z = (1/2)(eixey + ei(−x)e−y),
and so u(x, y) = Re(cos z) =
(1/2)(ey cos x + e−y cos x) =
(1/2)(ey + e−y) cos x = cos x cosh y.
Now see exercise 27. Also,
v(x, y) = Im(cos z) = sin x sinh y =
(1/2)(ey sin x − e−y sin x), and so
vxx = − sin x sinh y = −vyy.

37. Proceed as in example 11 in
section 7.2; since ux = vy, then uxx =
vyx. Also, since uy = −vx, then uyy =
−vxy = −vyx due to continuity. The
result follows.

39. uxx = 0 = uyy; these functions are
continuous.

41. If u and v are harmonic, then
(u + v)xx = uxx + vxx = −uyy −
vyy = −(u+ v)yy. The second partial
derivatives are continuous, since the
sum of two continuous functions is
continuous.

43. If u and v are harmonic, then (au +
bv)xx = auxx + bvxx = −auyy −
bvyy = −(au + bv)yy. The algebraic
operations preserve continuity of the
second partial derivatives.

45. u(x, y) = x is harmonic, but u(x, y) ·
u(x, y) = x2 is not.

47. By the chain rule, [u(ax + b, ay +
c)]xx = a2uxx(ax + b, ay + c) =
−a2uyy(ax + b, ay+ c) = −[u(ax +
b, ay + c)]yy. The functional oper-
ations preserve continuity of the
second partial derivatives.

49. uxx = 2c = −uyy.
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51. u∗(x, y) = 4xy. f (z) = 2z2 + 5 =
u+ iu∗ is analytic.

53. u∗(x, y) = 6xy− y. f (z) = 3z2 − z =
u+ iu∗ is analytic.

55. u∗(x, y) = ey cos x. f (z) = ie−iz =
u+ iu∗ is analytic.

57. u∗(x, y) = 2 Arg(x + iy), where
−π < Arg(z) < π . f (z) = 2 Log z =
u+ iu∗ is analytic.

59. u∗(x, y) = cos x cosh y. f (z) = i cos z
= u+ iu∗ is analytic.

61. hx = 2uux − 2vvx, so hxx = 2(uxux +
uuxx − vxvx − vvxx). hy = 2uuy −
2vvy, so hyy = 2(uyuy + uuyy −
vyvy− vvyy). Now apply the Cauchy–
Riemann equations ux = vy, uy =
−vx, and the Laplacian identities
uxx = −uyy and vxx = −vyy.

7.5 Application: Streamlines and Equipotentials

1.
√

2

3.
√

2

5.
√

5

7. 4

9. 3

11. ‖$F‖ = √12 + 12 = √2

13. ‖$F‖ = |x|
15. ‖$F‖ = √x2 + y2

17. ‖$F‖ = |x + y|
19. ‖$F‖ = √1+ e2x

21. ‖$F‖ = √1+ cos2 x

23. ‖$F‖ = ey

25. $F = 〈0, 0〉. Set u∗(x, y) = 0, then
f (z) = u + iu∗ = 2 is a constant
analytic function.

27. $F = 〈y − b, x − a〉. Set u∗(x, y) =
( y2 − x2)/2 + ax − by, then f (z) =
u+ iu∗ = −iz2/2− bz+ iaz+ ab is
analytic.

29. $F = 〈6x−1,−6y+2〉. Set u∗(x, y)=
6xy − y − 2x, then f (z) = u+ iu∗ =
3z2 − z − 2iz is analytic.

31. $F = 〈3x2 − 3y2,−6xy〉. Set u∗(x, y)
= 3x2y − y3, then f (z) = u + iu∗ =
3z3 is analytic.

33. $F = 〈ey cos x, ey sin x〉. Set u∗(x, y)
= ey cos x, then f (z) = ie−iz =
u+ iu∗ is analytic.

35. $F = 〈2ex2−y2
(x sin(2xy)

+ y cos(2xy)),
2ex2−y2

(x cos(2xy) − y sin(2xy))〉.
Set u∗(x, y) = ex2−y2

(tan2(xy) − 1)/
sec2(xy), then f (z) = u + iu∗ is
analytic.

37. $F = 〈cos x cosh y, sin x sinh y〉. Set
u∗(x, y)=− cosh x cos y, then f (z)=
−i cos(−iz) = u+ iu∗ is analytic.

39. $F = 〈cos x cosh y, sin y sinh y〉. Set
u∗(x, y) = cos x sinh y, then f (z) =
sin(z) = u+ iu∗ is analytic.

41. u(x, y) = 2xy, v(x, y) = y2 − x2.

43. The streamlines are hyperbolas of
the form y2 − x2 = C, where C ∈
R. The equipotentials are reciprocal
functions of the form y = K/x, where
K ∈ R.

45. u(x, y) = ex cos y, v(x, y) = ex sin y.

47. The streamlines are of the form
ex sin y = C, where C ∈ R. The
equipotentials are of the form
excosy = K , where K ∈ R.

49. The fluid flow is $F = 〈0, 0〉, which
has no velocity. The corresponding
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stream function is v(x, y) = 0. There
is no movement in this stream; a
pebble dropped into it would not
move.

51. The fluid flow is $F = 〈4, 5〉, which
describes a constant velocity and
direction. The corresponding stream
function is v(x, y) = 4y − 5x (then
f (z) = 4z− 5iz). The streamlines are
lines of the form y = (5/4)x + C,
where C ∈ R. The equipotentials are
lines of the form y = (−4/5)x + K ,
where K ∈ R.

53. The fluid flow is $F = 〈ex cos y,
−ex sin y〉. The corresponding stream
function is v(x, y) = ex sin y (then
f (z) = ez). The streamlines are of
the form ex sin y = C, where C ∈ R.
The equipotentials are of the form
ex cos y = K , where K ∈ R.

55. The fluid flow is $F = 〈0, 0〉, which
has no velocity. The corresponding
harmonic potential is u(x, y) = 0.
There is no movement in this stream;
a pebble dropped into it would not
move.

57. The harmonic potential is u(x, y) =
x2 − y2 + x; the fluid flow is $F =
〈2x + 1,−2y〉. The corresponding
stream function is v(x, y) = 2xy + y.
The streamlines are of the form y =
C/(2x + 1), where C ∈ R. Their

graphs have a vertical asymptote at
x = −1/2. The equipotentials are
of the form [x − (1/2)]2 − y2 = K ,
where K ∈ R.

59. The isothermals are of the form x =
C, where C ∈ R, which are vertical
lines on the x− y plane. The flux lines
are of the form y = K , where K ∈ R,
which are horizontal lines. The heat
flux is $F = 〈2, 0〉, which consists of
vectors directed horizontally toward
the right of length 2.

61. The isothermals are circles centered
at the origin of the form x2+ y2 = C,
where C ∈ R. The flux lines are of the
form y = Kx, where K ∈ R, which
are lines through the origin. The heat
flux is

$F =
〈

2x

x2 + y2
,

2y

x2 + y2

〉
.

63. They are identical vector fields.

65. (r+ s)〈a, b〉 = 〈(r+ s)a, (r+ s)b〉 =
〈ra + sa, rb + sb〉 = 〈ra, rb〉 +
〈sa, sb〉 = r〈a, b〉 + s〈a, b〉.

67. Let a = b = c = d = 1 and r = 2 and
note that 2 · [〈1, 1〉 · 〈1, 1〉] = 〈2, 2〉,
but [2 · 〈1, 1〉] · [2 · 〈1, 1〉] = 〈4, 4〉.

69. The identity vector is 〈0, 0〉. Com-
mutativity follows from the additive
commutativity of the real numbers.
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In the past 30 years the Internet has become a powerful and important resource
for sharing and gathering information. Mathematicians were among the first people
involved in the development of computing systems and a great deal of mathematical
information can be found on the World Wide Web. To search for mathematical
ideas on the web, choose your favorite search engine, type in a mathematical word,
and see what pops up. Two well-regarded Internet search engines are Google at
http://www.google.com and Yahoo at http://www.yahoo.com.

Many excellent mathematics encyclopedic references have been developed and
provide quick access to diverse mathematical ideas. The following free online resources
generally rely on the contributions of readers for their content, correction, and
comment. The most extensive and well-regarded of the free online encyclopedias
include:

• MathWorld at http://mathworld.wolfram.com/
Among the first of the free online mathematics encyclopedias, this website was
first created by physics and astronomy student Eric W. Wiesstein, who posted
electronic notes based on various mathematical books and classes.

• PlanetMath at http://planetmath.org/
A temporary shutdown of MathWorld in 2000 prompted the creation of this
second well-respected online mathematics encyclopedia. This website is user-
generated with individual authors “owning” their article and providing peer
review and editorial rights to others in the mathematical community.

• Wikipedia at http://en.wikipedia.org/wiki/Mathematics
Wikipedia is a general encyclopedia providing information on a wide range of
topics, but has an extensive and well-developed presentation of mathematical
ideas.

Many other focused websites provide more detailed information about particular
mathematical topics. A few that may be of interest are:

• Earliest Uses of Various Mathematical Symbols at http://members.aol.com/
Jeff570/mathsym.html
This site presents a history of mathematical notation and other symbols compiled
by Gulf High School mathematics teacher Jeff Miller—a useful and fun website
for learning more about the history of mathematics.
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• Earliest Known Uses of Some of the Words of Mathematics at http://hometown.
aol.com/jeff570/mathword.html
Also developed by Jeff Miller, this sister website surveys various mathematical
terms and their history.

• The Great Internet Mersenne Prime Search (or GIMPS) at http://www.
mersenne.org/
Section 3.1 introduced Mersenne primes—primes of the form 2p − 1. GIMPS
coordinates a networking of personal computers to investigate the divisibility
properties of such large numbers. As of November 2008 there are 46 known
Mersenne primes with the 46th equal to 243,112,609 − 1, which has 12,978,189
digits.

• The MacTutor History of Mathematics Archive at http://www-groups.dcs.
st-and.ac.uk/ history/
This website is an excellent resource for learning more about individual
mathematicians throughout history. In addition to the many biographical
sketches (accompanied by pictures and quotes), the site includes surveys about
various areas and ideas of mathematics.

• The Math Forum at Drexel University at http://mathforum.org/
Drexel set up this interactive website to promote the learning, teaching,
and communication of mathematics through weekly problems, an
“Ask Dr. Math” forum, and links to mathematical tools on the
Internet.

• The Mathematics Subject Classification at http://www.ams.org/msc/
This classification of the many areas in mathematics is used by the leading
research journals and databases to categorize publications and presentations by
mathematicians.

• Mathwords at http://www.mathwords.com/
This online dictionary explains various terms and formulas used by mathemati-
cians in courses from beginning algebra through calculus.

• The Primes Page at http://primes.utm.edu/
Another fun resource for learning more about prime numbers, this website
includes lists of primes, historical surveys, and links to other sites with interesting
facts and applications of primes.

At various points, this text has provided helpful commands for computing devices.
The following websites provide further information about these computer algebra
systems and calculators.

• Maple at http://www.maplesoft.com/
• Mathematica at http://www.wolfram.com/
• Matlab at http://www.mathworks.com/
• Texas Instruments Calculators at http://education.ti.com/educationportal/sites/

US/homePage/index.html

A number of different professional societies have been established for promoting
mathematics. The homepages of these organizations have links to information that
is accessible to undergraduates (some publish monthly columns by well-respected

http://hometown.aol.com/jeff570/mathword.html
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http://www.mersenne.org/
http://www.mersenne.org/
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http://www-groups.dcs.st-and.ac.uk/history/
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authors) as well as announcements about mathematical meetings and events. Among
these organizations are:

• American Mathematical Association of Two-year Colleges at http://www.
amatyc.org/

• American Mathematical Society at http://www.ams.org/
• American Statistical Association at http://www.amstat.org/
• Association for Computing Machinery at http://www.acm.org/
• Association of Symbolic Logic at http://www.aslonline.org/index.htm
• Mathematics Association of America at http://www.maa.org/
• Society of Actuaries at http://www.soa.org/ccm/content/
• Society of Industrial and Applied Mathematics at http://www.siam.org/

National mathematics honor societies recognize excellence in mathematical
studies by undergraduate and high school students, and promote scholarly interest
and activity in mathematics. These honor societies include:

• Kappa Mu Epsilon at http://kappamuepsilon.org/, an honor society for
undergraduates

• Mu Alpha Theta at http://www.mualphatheta.org/, an honor society for high
school and two-year college students

• Pi Mu Epsilon at http://www.pme-math.org/, an honor society for
undergraduates
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√
2, 202

proof for
√

3, 202
proof for e, 204

isometry, 129
Euclidean plane, 129
glide reflection, 129
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inverse, 101, 106, 118
matrix multiplication, 140, 177
multiplication mod n, 105–07
power set, 87, 303
vector multiplication, 176

Ore, Øystein, 477



Index 739

parabola, 244–46
classical definition, 244
directrix, 244
focus, 244
standard equation, 245
vertex, 244

paradoxes
Achilles and the tortoise
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zeros satisfy equation, 214

polynomials
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insolvability of quintic, 240
insolvability of quintic by radicals, 224
linear, 218
long division, 221
quadratic, 219
quartic, 222
solution by radicals, 223

spanning tree, 487, 488
breadth-first, 490
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D4, 139
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