A Transition to

ADVANCED
MATHEMATICS

A SURVEY COURSE
William Johnston « Alex M. McAllister




A Transition to Advanced Mathematics




This page intentionally left blank



A Transition to Advanced
Mathematics

A Survey Course

William Johnston
Alex M. McAllister

OXFORD

UNIVERSITY PRESS
2009



OXFORD

UNIVERSITY PRESS

Oxford University Press, Inc., publishes works that further
Oxford University’s objective of excellence
in research, scholarship, and education.

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2009 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.
198 Madison Avenue, New York, New York 10016
WWW.oup.com

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,

without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data
Johnston, William, 1960—
A transition to advanced mathematics : a survey course / William Johnston,
Alex M. McAllister.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-19-531076-4
1. Mathematics—Textbooks. I. McAllister, Alex M. IL. Title.
QA37.3.J65 2009
510—dc22 2009009644

987654321

Printed in the United States of America
on acid-free paper


www.oup.com

For our teachers and our students



This page intentionally left blank



Preface

A Transition to Advanced Mathematics: A Survey Course promotes the goals of a
“transition” course in mathematics, helping to lead students from courses in the calculus
sequence to theoretical upper-level mathematics courses. The text simultaneously
promotes the goals of a “survey” course, describing the intriguing questions and
insights fundamental to many diverse areas of mathematics. Its only prerequisite is
single variable calculus, and there are many chapters, such as chapters 1, 2, 3, and 6,
that do not even require calculus. A hallmark of the book is its flexibility—an instructor
may choose to use the text in a variety of ways. The standard adoption would be for a
transition course, but this text could also be used in other settings.

A lack of diversity is perhaps the most noteworthy weakness in many institutions’
current introductory mathematics curricula. A significant number of students (indeed,
most people in the general population) have little understanding of the broad scope
of mathematics. Since many promising students never even complete the calculus
sequence, they drop out of mathematics before having had the opportunity to study
some mathematical field they would have loved. Calculus doesn’t stir everyone’s
imagination. Could a potential coding theory wizard have missed out on the fun of
public key cryptography? Has a potential complex analyst who could have proven the
Riemann hypothesis turned to another major? Has a potential logician who might have
followed in the footsteps of Godel decided math was purely computational? In addition,
without a survey course, most mathematics majors do not possess an appreciation for
the multifaceted aspects of the study of mathematics—at least not until after they
have declared their major and taken a variety of upper-level courses. This situation
in mathematics stands in marked contrast to virtually every other area of academics,
where a survey course is among the regular course offerings. Surely our standard
undergraduate course offerings can do better? But how can we succeed in showing our
students the expansive vista of mathematics without a significant restructuring of the
curriculum?

The answer can come in many forms, and this text can help. Combining the
goals of a transition course with the desire to provide a survey of the subject,
A Transition to Advanced Mathematics: A Survey Course teaches proof writing,
reading, and understanding mathematics in the context of its many wonderful and
interesting subfields. And so the text is written primarily for use in a one-semester
transition course, enhancing that course by giving students a taste of the many areas
of mathematics. Learning to read and write proofs is an important yet challenging
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process; by embedding it in the study of interesting and diverse mathematics, this text
is designed to motivate and inspire students in their further studies.

Depending on how a department stresses theory at the junior-senior level, some
instructors may also wish to use the text in a survey course at the upper level. Students
who have seen only one or two advanced courses, such as differential equations or
complex analysis, would benefit from this text’s approach, as it promotes a training in
the abstract nature of the subject. The text would be terrific at a large university that
might offer many curricular tracks toward mathematical science majors. It also serves
small colleges well, including those institutions whose resources limit the possibility of
offering the full breadth of courses common in larger programs. The book could also be
used as a training tool in independent studies, where a bright student could work through
the sections by reading, answering questions, and working through selected exercises.
Or it would make an inspirational gift for a young person who has expressed an interest
in mathematics but is not yet a student in a four-year undergraduate program—anyone
who loves mathematics and wants to know more about mathematical thinking would
benefit from working through this text.

And so the main objective of the book is to bring about a deep change in
the mathematical character of students—how they think and their fundamental
perspectives on the world of mathematics. Instead of just calculating a derivative,
we want students to enjoy the theory that Newton and Leibniz developed, especially
as the theory leads to the techniques used in calculations. Instead of just knowing such
facts as the first three primes are 2, 3, and 5, we want students to respond well to the
variety of theoretical questions about primes, to formulate such questions on their own,
and to be impressed by and to understand key elements of the mathematical theory of
primes. In this way, we hope that working through the text will encourage students to
become mathematicians in the fullest sense of the word.

How can we bring about this change in our students? We believe this text promotes
three major mathematical traits in a meaningful, transformative way: to develop an
ability to communicate with precise language, to use mathematically sound reasoning,
and to ask probing questions about mathematics. These skills are the hallmarks of a
good mathematician.

Mathematicians live in a unique world. Our language is the natural language
of our culture (for most people in the United States and the United Kingdom this
language is English), but a mathematician’s use of this natural language is refined and
specific. Through the common consensus of professional researchers and teachers,
mathematical words and phrases are given precise, unambiguous interpretations,
making it crucial for a mathematician to be able to work carefully with formal,
rigorous definitions. With years of experience and practice, most mathematicians
naturally express themselves in this formal language, but at the same time, this
ability is an acquired skill that sometimes runs counter to the fluidity and adaptability
of our natural language. With care and practice, students can develop the ability
to write and speak well using the formal, explicit language of mathematics—
its terminology and symbols, its expression of deductive and inductive reasoning,
and its insistence on clarity and organizational neatness. A Transition to Advanced
Mathematics offers engagement in the necessary experience to develop a mathematical
voice.
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Similarly, a mathematician’s rational mode of thought is rooted in natural human
reasoning, but it also differs from that of the mainstream, being uniquely refined and
sophisticated. It searches for general truths that follow from deductive reasoning. The
creation of new mathematics often follows from leaps of intuitive insight based on
results gathered from examples. But examples are not enough. Centuries of experience
and practice have led mathematicians to rely on logical deductive arguments as the
litmus test for mathematical truth. These arguments are traditionally presented in
formal mathematical proofs. The format of this text encourages students to develop
the logical thought processes needed to reason through these proofs. The book
introduces the fundamentals of mathematical thought by placing the study of logic
(as a description of this formal deductive reasoning) up front. And it gives students
practice in applying mathematical arguments and proofs in the context of the broad
landscape of mathematical fields. A reviewer of this text recognized the strategy well
and wrote, “The justification for axiomatic reasoning ... is clearest when there are
questions on the table that simply cannot be resolved in any way other than employing
the logical precision of a mathematical argument.” The text also encourages students
to learn to write proofs not for the sake of writing proofs, but because they see the
value of applying sound reasoning to intriguing mathematical questions. In short, the
book invites students to enter the ongoing mathematical dialogue with mentors and
colleagues.

Finally, mathematicians have an active curiosity and a constant desire to ask
questions. Mathematicians perceive a world of ideas to be grappled with, research
interests to be explored, and applications of theory to be determined. While much
great mathematics is already known, students need to understand that there is so
much more waiting to be discovered! Put succinctly, discovering patterns and forming
conjectures are essential to the pursuit of mathematical truth. A Transition to Advanced
Mathematics has many questions and exercises that promote the formulation of
reasonable hypotheses; diverse examples throughout the text help students begin
investigations of many different types of mathematical objects.

A Transition Course

A Transition to Advanced Mathematics nicely serves as a text for the “transition”
course now so common in many institutions’ undergraduate mathematics curriculum.
Usually offered at the sophomore level, a transition course bridges the gap between
computationally oriented lower-level courses and theoretically oriented upper-level
courses.

Most mathematics students begin their college career in a calculus sequence
that emphasizes computational problem-solving and applications of calculus methods.
There are many good reasons for beginning the undergraduate curriculum with this
sequence of courses. Students learn a lot of analysis and function theory by the end of
their second year, which provides them with good depth in one area of mathematics
and a great deal of experience in solving many problems at increasing levels of
sophistication. In addition, calculus is the field of mathematics that is most useful as a



Preface

prerequisite for the physical sciences, engineering, the social sciences, and business.
Students majoring in these areas of study need to learn differential and integral calculus
by the end of their first year of college, and mathematics teachers across the country
do an excellent job of preparing these students for the rigors ahead.

On the other hand, as budding mathematicians our students should seek more
than just knowing what mathematical truths hold; they should want to understand why
mathematical truths hold. The good news is that computations and algorithms learned
in lower-level courses often contain the kernel of the ideas behind the truth of certain
mathematical statements. Thus, by working through calculations, students can develop
an insightful intuition about many mathematical truths. The next step for a student to
mature into a fully developed mathematician is to gain an ability to articulate precisely
reasoned arguments that explain and justify the mathematical idea under scrutiny.

Unfortunately, as many in the mathematical community have recognized, a focus
on the computational elements of calculus is not preparing students for this transition
into theoretically oriented upper-level courses. Many students enter courses on abstract
mathematics having minimal experience with either the deductive reasoning or the
abstract thought processes that are characteristic of proofs. Furthermore, many have
never been exposed to the experimentation and conjecture essential to the discovery
and creation of mathematics. This text is designed to bridge the gap and improve the
success of students in upper-level courses. By making mathematics enjoyable and
manageable, and by serving the need to train students in mathematics well, this book
is also intended to serve as the mathematical community’s much sought after “pump”
to bring more students into the mathematical fold. As they work through the text,
students hopefully will recognize that they are learning the art of mathematics, and,
like an apprentice artist, hopefully they will enjoy the resulting creations as they use
their “mathematical palette.”

In summary, as a text for a transition course, A Transition to Advanced Mathematics
encourages students to:

* Develop careful reasoning skills as the student is transitioning from com-
putationally oriented, algorithmic thinking to more sophisticated modes of
reasoning;

e Learn to read mathematics, specifically definitions, examples, proofs, and
counterexamples;

* Learn to write mathematics, primarily formal proofs, but also intuitive explana-
tions and conjectures.

A Survey Course

More than just serving as a text for a transition course, A Transition to Advanced
Mathematics is also designed to provide students with a broad survey of many
fundamental areas of mathematics. Students completing a calculus sequence may not
realize that mathematicians are a diverse lot with wide-ranging interests. Indeed, many
different areas of mathematics suit individual skills and insights as well as personal
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interests and temperaments. With the calculus sequence serving as the primary point
of entry to the mathematics major, many students are unaware of the marvelous variety
inherent in mathematics.

A Transition to Advanced Mathematics responds in a positive way to the need to
provide students with a broad survey of mathematical ideas and explorations, as it is
intended to:

* Provide students with a broad and comprehensive introduction to mathematics,
including both continuous and discrete mathematics;

* Introduce students to “upper-level” topics at an earlier stage in the mathematics
major;

* Create greater continuity and flow in the mathematics major, introducing various
topics, mathematical objects, and proof techniques multiple times at increasing
levels of sophistication.

The text responds to the mathematical community’s ambitious desire to show
students a vast array of mathematical ideas. In its writing, we had to decide which
topics to include and which to omit. Two questions guided the decision process: (1)
What fundamental ideas should all mathematics majors know when they complete their
undergraduate degree? (2) What ideas do mathematicians experience as intriguing,
exciting, and central to mathematics? In some ways, these questions may be highly
personal with subjective answers; very reasonable people may give very different
and equally compelling answers. This text offers an answer in a way that we believe
represents a thoughtful response of the full mathematical community. The answers have
naturally been guided by our own experiences, but they have also been informed by
discussions with many colleagues and friends, presentations and panels at national and
regional mathematics meetings, published statements of professional mathematical
societies, and our personal understanding of the consensus of the contemporary
mathematical culture. Some people may wish that we had included additional areas,
but we feel the text promotes mathematics in general and intends that students be
able to make the jump into areas not discussed in the book (such as general and
algebraic topology, differential geometry, non-Euclidean geometry, or relativity theory)
by having discussed the mathematics presented.

The following general descriptions of the chapters, together with the detailed
Table of Contents, present the balance we have struck between continuous and discrete
mathematical topics in light of the “survey” aspect of the course. We hope that this
panoramic view of the mathematics we know and love will intrigue, excite, and
ultimately encourage students to take up a more thorough study of the topics in
upper-level mathematics courses.

Suggestions for the Instructor

We wrote the text to give instructors options when using it in a one-semester course,
although it is impossible to teach every topic from every section in such a short time.
We intentionally provided plenty of material to allow for a follow-up study, such as an
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independent project for a student who might be excited about a mathematical problem
described in the readings. In this way, the book offers flexibility within a mathematical
curriculum; it will usually be used in a one-semester course, but some institutions may
have short terms where a follow-up course would fit in well.

The one-semester offering is the standard fare, and the book is designed for this
setting. An instructor can choose from the Contents in a variety of ways. Chapter 1
is required and needs to be discussed first, but then there are many options for the
way this book can be used. Use will typically depend on the needs of the department
and the curriculum, the interests of the instructor, the purpose of the course, and the
backgrounds of the students. A reviewer for the text said it best, “The beauty of this type
of text is that you can jump around, since ... most of the chapters are self-contained.”
The flowchart, though it does not have to be followed, gives some guidance as to the
rough logical dependence of the chapters.

We believe that the heart of the course is in chapters 1-4, and these four chapters
could support a wonderful course in and of themselves. The first chapter is designed
to teach students to think mathematically and to prove mathematical theorems in the
context of mathematical logic. We chose to begin the book with symbolic logic because
we have found that students’ proof-writing skills improve tremendously when their
approaches are grounded in proper logical thought. The study of logic is rightfully
approached for its own sake as an interesting field of mathematics, and in this text it
doubles as an important tool to develop theorem-proving skills.

Chapter 1
Mathematical Logic.
Section 1.4 is optional

4 A
Chapter 2
Abstract Algebra.
Sections 2.5 and 2.6
are optional
Chapter 3 Chapter 4
Number Theory. Real Analysis.
Sections 3.2 and 3.3 Sections 4.6, 4.7,
are optional and 4.8 are optional
- J
I
Chapter 5 Chapter 6 Chapter 7
Probability and Statistics. Graph Theory. Complex Analysis.
Sections 5.4 and 5.5 Sections 6.3 and 6.4 Sections 7.4 and 7.5
are optional are optional are optional

The last section of chapter 1 is the most important in the book, in the sense that
it gathers the ideas from formal logic into a discussion of how to prove mathematical
theorems. It sets the stage for proving mathematical results in all other chapters.
Additional ideas introduced in chapter 1 include the sentential (or propositional) logic
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of connectives, truth tables, validity of arguments, Godel’s incompleteness theorems,
and predicate logic. Nearly all of these topics are directly connected to learning about
the fundamental proof techniques of mathematics, and the text intends for students to be
motivated by seeing the value of symbolic logic throughout the study. An application
section explores the design of computer circuits via sentential logic and Karnaugh
maps. Not all of these topics need to be explored, and an instructor may choose to
omit many of the sections. A streamlined approach to chapter 1, for example, could
examine only sections 1.1, 1.2, 1.6, and 1.7. In the flowchart, we have listed section
1.4 as optional because we often choose to omit it, but a quick review of any chapter
will indicate that an instructor may pick and choose from the many topics found within
sections in a variety of ways.

Chapter 2 studies number systems as foundational to understanding mathematics.
The chapter explores the integers and other basic number systems from the perspective
of abstract algebraic properties and relations. These notions lead to important insights
that are applied in later chapters, especially chapter 3. The fundamental ideas
introduced in chapter 2 include a basic algebra of sets, Russell’s paradox, the division
algorithm, modular arithmetic, congruence of integers modulo n, equivalence relations,
proofs of the uniqueness of mathematical objects, dihedral groups, and the basic
notions of group theory. An application section explores a variety of check digit
schemes.

Chapter 3 is meant to be a lot of fun. It expands on chapter 2’s study of
number systems from the perspective of examining abstract algebraic properties,
including the exploration of solutions to polynomials. This theme is picked up on
in many later chapters, especially in the study of polynomials as functions. An
instructor can pick and choose from the many interesting, accessible, and historic
topics from number theory, including ideas on the infinitude of primes, the prime
number theorem, Goldbach’s conjecture, the fundamental theorem of arithmetic, the
Pythagorean theorem, solutions of basic Diophantine equations, fields, Fermat’s last
theorem (the proof is given for n = 4), the irrationality of the square root of two, the
classical fundamental theorem of algebra, Abel’s theorem, and the proof technique of
mathematical induction. An application section explores public key encryption (via
the RSA system) and Hamming codes, which require a short introduction to matrix
multiplication.

The mathematics developed during the Age of Enlightenment sets the stage for
the development of both calculus and the theory of transfinite numbers. Chapter 4
introduces the basic notions of real analysis that underlie calculus. An instructor can
choose to cover all of the topics in any section or simply focus on the basic definitions
provided. The ideas introduced in this chapter include Descartes’ development of
analytic geometry, the definition and properties of functions, the theory of inverse
functions, the definition and basic properties of limits, derivatives, and Riemann
integrals, the definitions of cardinality and countability, Cantor’s diagonalization
arguments to prove the countability of the rationals and the uncountability of the reals,
and a brief introduction to L, spaces. An application section explores how differential
equations can model physical processes such as the motion of a clock pendulum.
The chapter assumes competency with topics found in a standard single-variable
calculus course. As for any of the chapters from chapter 4 on, an instructor may
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choose to stop at any midway point through the list of sections. When we teach
the one-semester course, we often decide to go on to chapter 5 after covering
section 4.6.

Chapters 5—7 are offered as sweet desserts. There are two distinct approaches to
these last three chapters of the text. When we teach the course, we like to choose at least
two or three sections from each of these chapters in order to give the students a taste of
the many different disciplines in mathematics. Our students value this exposure—they
say it helps them choose which courses they might later select from the upper-level
offerings. Alternatively, each of the chapters is a completely independent module and
can be studied in greater depth or omitted. Chapter 5 explores the mathematics of
likelihood and the long-term patterns in discrete events. The section on hypothesis
testing provides a mathematical approach to inductive thinking, parallel to the way
in which chapter 1 provides a mathematical approach to deductive reasoning. The
fundamental ideas introduced in this chapter include basic combinatorics, Pascal’s
triangle, the binomial theorem, basic probability, hypothesis testing, and least squares
regression. Many of the problems are computational, but the overriding framework of
hypothesis testing and many of the abstract notions of probability theory are presented.
This exposure is meant to assist greatly any student entering the corresponding upper
level course.

Chapter 6 introduces the study of graphs by indicating how they model and solve
real-world questions, beginning with the Konigsberg bridge problem. In this way,
the chapter describes the mathematics of adjacency and the abstract descriptions of
networks of “connected” points (or objects). This chapter’s fundamental ideas include
the definition and basic properties of graphs, Eulerian and Hamiltonian circuits, trees
and spanning trees, and weighted graphs. The chapter presents many algorithms for
constructing shortest paths, spanning trees, Hamiltonian cycles, and minimum weight
versions of these objects in a given graph.

Chapter 7 presents an introduction to the theory of complex-valued functions,
teaching students about the basic algebra of complex numbers, single- and multivalued
functions such as nth roots, exponential, trigonometric, and logarithmic functions
and their graphical representation, analytic functions, partial differentiation and
the Cauchy—Riemann equations, power series representations of analytic functions,
harmonic functions, and the Laplacian. An application section explores the use of
streamlines and equipotentials to understand and model fluid flow.

Key Elements of the Text

We hope A Transition to Advanced Mathematics will be recognized as a clear and
cogent text in support of a transition course surveying mathematics. It is designed to
serve ideally in collaboration with mathematics professors helping students to explore
new mathematical vistas, to grow into the perspectives of the mathematician, and to
successfully practice mathematics. The following elements of the text are intended to
help facilitate this partnership between professor and text in the creation of a dynamic
and interesting learning experience.
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Embedded questions. In each section, after reading through the text and examples
that illustrate and explain fundamental concepts, students are invited to create and
display their personal understanding of the mathematical idea at hand by answering
questions. Many of these queries are straightforward and useful in providing good
introductory experiences with the new ideas at hand; as such, they can be assigned as
homework in preparation for class or used during class in the spirit of active learning
and engaged discussion. Some of them lead to a main idea of an upcoming proof. An
example is question 3.1.9 in section 3.1, which asks students about computations of
the form pp - p2 - - - p, + 1 where each py is prime—are integers of that form always
prime? (It is still an open question whether there are infinitely many primes in this
sequence.)

Reading questions. An effective pedagogical tool is to expect students to read the
text before coming to class and to be able to answer a collection of basic questions. We
always want our students to use a text more than as a reference for worked examples.
Reading comprehension questions at the end of each section ask for definitions,
examples, and the central ideas of the material, leading students to open the book
and read.

There are many ways for an instructor to use the reading questions. We assign them
before every class meeting and expect students to write their responses in complete
English sentences. Our hope is that students both learn the value of reading the book
and get practice in expressing mathematical concepts well. They also come better
prepared for class. In this way, teachers can respond to students’ questions and engage
the mathematical ideas at a much deeper level during class, and the students develop
the independent reading skills essential for more sophisticated mathematical studies.

Exercises. Every section is accompanied by 70 exercises that allow the professor
considerable flexibility in assigning homework and that give the reader practice. As
with any exercise set, the ultimate goal is to provide students needed practice to deepen
their understanding of the corresponding mathematical concepts. Instructors can pick
and chose from many different types of problems. The exercises are grouped according
to topic; if the instructor has focused on just part of the section’s material, it is easy to
pick out corresponding problems to assign.

The end of each exercise set always contains a variety of more challenging
exercises. These questions sometimes anticipate ideas in upcoming sections, require
the study and use of a new definition or idea, or ask students to make conjectures
based on some pattern arising from a collection of computations. Instructors could
occasionally use them to motivate students to pursue a topic in more detail, or as a
staging point for further investigations that might lead to a short paper or presentation.

An application section. Every chapter includes a section that explores an
application of the theoretical ideas under study. All involve interesting “real-world”
issues. Students are often surprised when theoretical notions find expression as a useful
tool in life. The text intends to teach students, as they see a variety of applications, to
view purely abstract, theoretical ideas as not antithetical to using mathematics to benefit
society. The intent is for students to begin to perceive pure and applied mathematics as
going hand in hand and strengthening one another in interplay: a search for applications
often results in the development of new theoretical ideas, and theoretical mathematics
often manifests itself as a critical underpinning of an applied tool.
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None of the application sections are required for the text’s other sections. When
we teach the course, we sometimes treat a chapter’s applied section in the same way
as the others in the chapter, but at other times we might simply ask our students to read
the section outside of class and submit the reading questions, or have them work in
teams to answer some of the exercises. Depending upon the instructor’s interests and
the parameters of the course, any applied section may be skipped.

Embedded reflections on the history, culture, and philosophy of mathematics.
Mathematics is a timeless study that has been gradually developed through the
corporate efforts of diverse individuals and cultures. The historical origins of
mathematical ideas and the accompanying cultural standards for definitions, examples,
and proofs are worthwhile and interesting and contribute to a student’s ability to
understand and appreciate contemporary mathematics. Throughout the text, we tell
stories about the struggles, the insights, and the people and events that helped shape
mathematics. Our hope is for students to enjoy the drama, getting a sense of the eureka
of mathematical breakthroughs and connecting proofs and mathematical statements
(so often presented as devoid of human emotion), and relating to the human lives of
the men and women who first presented them.
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1 Mathematical Logic

The formal study of logic is ancient, going back to at least the fourth century B.C.E.,
when Aristotle and his Greek compatriots sought to identify those forms of human
reasoning that are correct (or valid) and those that are not. Our motivation is similar.
In this text, we explore diverse areas of mathematics, identify new mathematical
objects, investigate the relationships among them, and develop algorithms to facilitate
their study. In short, we pursue mathematical truth. But more than just the “what” of
mathematical truth, we seek the “why” of mathematical truth. We develop an ability
to understand and prove theoretical mathematical results, including those that derive
the computational tools so useful in applied mathematics. Successful insight into this
theory of mathematics is essentially dependent on the use of correct reasoning.

And so our study of mathematical logic has two goals. The first is the study of logic
for its own sake, as a field of mathematics with interesting objects, algorithms, and
insights. The second goal is the study of logic as a tool and a language for understanding
legitimate forms of human reasoning; in this way, logic will facilitate our study of the
theory of mathematics in many different settings.

In writings such as Prior Analytics, Aristotle developed the insight that human
reasoning can itself be studied via reasoning: we can turn inward and examine how
we think. In fact, Aristotle believed that logic should be studied before pursuing
any other branch of knowledge. The next significant step forward in the study of
logic did not occur until 2,200 years later in the heady aftermath of the Scientific
Revolution. In the middle of the nineteenth century, the Irish mathematician George
Boole introduced the notion of a formal language with an accompanying algebra of
logic. Beginning with the seminal paper An Investigation of the Laws of Thought, on
Which Are Founded the Mathematical Theories of Logic and Probabilities, Boole and
his fellow mathematicians described how formal languages overcome the ambiguity
of natural languages and provide a more precise analysis of both our natural languages
and our reasoning processes.

Less than 40 years later, the Austrian mathematician Kurt Gédel’s study of formal
languages illuminated both the potential and the essential limitations of the human
mind as it operates within a formal system of logic. Godel’s incompleteness theorems
demonstrate that some true mathematical statements are not provable (that is, they can
never be proven in a suitable formal system) and are among the most significant
mathematical and philosophical insights of the twentieth century. Within another
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40 years, the use of formal languages began playing a key role in the design of the
computer chips that are so essential to our technologically based society.

In this chapter, we develop a formal language in the spirit of Aristotle and Boole
known as “sentential” logic. We examine the interaction of sentential logic with our
natural language and our intuitive notion of truth. We develop an algebra of sentential
logic, explore the expressiveness of this language, consider an application to the design
of computer chips, and study common rules of natural deductive reasoning that are
valid. We also consider an extension of sentential logic known as “predicate” logic
that incorporates a finer analysis of sentence structure. We end this chapter with a
discussion of the fundamental proof techniques widely utilized by mathematicians.
By developing some sophistication in our ability to work with these techniques, we
assume the role of a theoretical mathematician as we apply formal reasoning to prove
the truth of mathematical statements.

Why should we begin this book with a chapter on logic? Most of you have recently
finished studying the intricacies of calculus, and (in high school) the ins and outs
of geometry, trigonometry, and advanced algebra. Perhaps this chapter may strike
you as the study of odd-looking symbols that seem to have little relevance to your
previous mathematics courses. But mathematics is, after all, the study of “mathematical
objects” such as numbers, which are only symbols—meaningless, except in their
definitions and relationships. And yet these objects become powerful tools in making
sense of our world. Proving statements about such objects is the primary concern of
theoretical mathematicians and forms the basis for any rational, deductive investigation
of mathematics. And so in this chapter we get down to basics: True, False, or Maybe.
We present mathematical logic as an essential tool that you can use in your attempts
to determine the truth of mathematical statements.

In the study of more advanced mathematical ideas, one can go off on tan-
gents that either have no basis in sound logic and are irrelevant, or that lead to
incorrect conclusions and are counterproductive. Mathematical logic can keep us
on track, and this chapter is then essential as the basis for your continuing study
of mathematics.

1.1 The Formal Language of Sentential Logic

The goal of Aristotle’s logic was the analysis of arguments constructed as a combination
of sentences in our natural language. There is a great deal of consistency across human
cultures and languages in how we reason; there is little difference between representing
the idea of argument with the word “logos” in Aristotle’s natural language of ancient
Greek and the word “argument” in our natural language of modern English. Rather, the
way that we construct and reason through arguments shares much in common with the
way Aristotle and others reasoned. This universality enables the success of sentential
logic as a fundamental tool in the study of human reasoning.

In common usage, the word “argument” carries a host of connotations, including
fights or emotional outbursts that may not involve any rational thought. In this study,
we are interested in arguments in the precise logical sense of the word. For us, an
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argument is a list of sentences. The last sentence is the conclusion and the previous
sentences include some premises or assumptions with some intermediate steps included
for clarity. Ideally, the conclusion follows from the set of premises via some valid means
of logical reasoning.

The first systematic study of arguments and deductive reasoning was undertaken
by the eminent Greek philosopher Aristotle in the third century B.C.E. Aristotle was
a philosopher who made important contributions to the development of all areas of
knowledge. The son of a physician, he was orphaned at a young age and raised by his
uncle. At 17 he became a student at Plato’s Academy in Athens, and he soon joined the
faculty of the Academy. Political unrest in Greece and Macedonia eventually forced
him to leave Athens, although he eventually returned to found his own school, the
Lyceum. Aristotle died at the age of 62—his legacy, in thinking of the way rational
thought is structured and in the workings of the mind on philosophical issues, continues
to have an important influence to this day.

In studying arguments, Aristotle focused his attention on a special type of
argument known as a syllogism, which consists of two premises and a conclusion,
and he developed the theory of syllogisms in his book Prior Analytics. The following
two examples of syllogisms are based on the work of the scholastic logicians of the

Middle Ages.
Every Greek is a person. Every Greek is a person.
Every person is mortal. Every Trojan is a person.
Thus, every Greek is mortal. Thus, every Greek is a Trojan.

On the surface, these two arguments appear quite similar, but your intuition may
identify an important difference between them. The first argument should seem “right”
(in fact, it is a valid argument), while the second should seem “wrong” (in fact, it is
invalid). We seek to understand and clarify this distinction between valid and invalid
arguments and to develop various approaches for identifying the validity of arguments
without having to rely exclusively on intuition.

Natural languages are often ambiguous and at times misleading. You may be able
to think of moments in your life when something you said was misinterpreted by
another person; storylines, from Shakespearean plays to soap operas, are often driven
by misunderstandings among characters. In real life we rely on context, voice inflection,
and further conversation to provide clarity, but these tools of extended communication
are not available in formal, written mathematical settings. The inherent ambiguity of
natural languages is one of the factors that prompted the creation of formal languages.
As mathematicians, we need to eliminate ambiguities in the language we use, which
we will do by controlling the structure allowed within the sentences we consider. The
first structure we will discuss is the “connective.” Without such control, ambiguity can
play havoc. The following questions verify that English really is an ambiguous natural
language.

Question 1.1.1  Consider the poorly written sentence “I am going to bike and run or swim.”

(a) Identify two distinct interpretations of the given sentence by inserting a pair
of parentheses in two different ways.
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(b) State English sentences that express the two distinct interpretations from part
(a) by inserting the pairs of words “either—or” and “both—and” into the given
sentence.

|

In this book, the symbol “®” indicates the completion of the task at hand, including
the end of either an example or a question, and the successful completion of a proof. As
we can see from the results of question 1.1.1, the words “and” and “or” play a crucial
role in determining our interpretation of a sentence. These words are connectives
in the natural language of English and are essential to obtaining an unambiguous
formal language. We typically think of connectives linking simple subject—verb—object
sentences, such as “I am going to bike” or “Bailey hires Andy,” to create more complex,
compound sentences, such as “I am going to bike, and Bailey hires Andy.”

Question 1.1.2 In each sentence, try to identify the connective linking the simple component
sentences.

(a) Bailey hires Alex or Alex becomes a telemarketer.
(b) Alex does not become a telemarketer.
(c) Alex becomes a telemarketer if and only if Bailey hires Alex.
(d) Both Alex graduates from college and Bailey hires Alex.
(e) Bailey hires Alex if Alex graduates from college.
(f) Bailey hires Alex when Alex graduates from college.
(g) If Alex does not graduate from college, then Alex becomes a telemarketer.
|

Did you find all the connectives? Probably the most difficult to identify is the one-
place connective “not” in sentences (b) and (g). The five most common connectives
are “not,” “and,” “or,” “if-then,” and “if and only if.” These connectives are expressed
in many different ways in written and spoken English and you need to become familiar
with the corresponding variants. For example, the “if and only if”” connective is often
expressed as “precisely when” or “exactly when” and the phrase “A if and only if B”
succinctly expresses “both if A, then B and if B, then A.” The formal language of
sentential logic uses the following symbols, known as logical connectives, to represent
the given English connectives and their variants.

English connectives Logical connectives | Formal names
not ~ negation

and, both—and, but A conjunction
or, either—or Y disjunction
if-then, implies, if, when, only if | — implication

if and only if, precisely when <~ biconditional

Most of the time we can directly substitute a logical connective’s symbol for
the identified English words; the most important exceptions are “if”” and “when”
(expressions of implication) as discussed in example 1.1.1 below. Plainly put,
“A when B” is the same as “B implies A.” Similarly, “A if B” means “B implies A.”
In the formal language, simple sentences are represented by upper case letters.
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For example, in one context, we might define A to represent “Alex graduates from
college,” while in another, we might define P to represent “The number 7 is prime.”
We refer to a collection of definitions assigning sentence symbols to particular English
statements as a dictionary. With these basics of our formal language in mind, we
reconsider the sentences from question 1.1.2.

Example 1.1.1 We use the given dictionary to translate each English sentence into sentential
logic.

A:  Alex graduates from college.
B: Bailey hires Alex.
C: Alex becomes a telemarketer.

(a) Bailey hires Alex or Alex becomes a telemarketer. BvC
(b) Alex does not become a telemarketer. ~C
(c) Alex becomes a telemarketer if and only if Bailey hires Alex. C<B
(d) Both Alex graduates from college and Bailey hires Alex. ANB
(e) Bailey hires Alex if Alex graduates from college. A— B
(f) Bailey hires Alex when Alex graduates from college. A— B
(g) If Alex does not graduate from college, then Alex becomes
a telemarketer. (~A)—> C
]

For sentence (d), an attempted translation of A A A B is incorrect since the logical
connective A expresses the complete phrase “both—and” and is only written once as
A A B. Sentences (e) and (f) illustrate the correct translation of the implication expressed
by “if” and “when”; for these sentences B — A would be an incorrect translation.
We must include parentheses in sentence (g) to avoid the potential ambiguity that
accompanies the use of multiple connectives. In this example, we must clarify the
correct translation as (~A) — C, rather than the incorrect translation of ~(A — C),
which actually expresses: “It’s not the case that if Alex graduates from college, then
Alex becomes a telemarketer.” Sentences can also be translated in the other direction,
from sentential logic into English.

Example 1.1.2 We use the dictionary from example 1.1.1 to translate each formal sentence into
English.

* A Vv (~B): Alex graduates from college or Bailey does not hire her.

* A A(~C): Alex graduates from college, but does not become a telemarketer.
* B<[A Vv (~C)]: Bailey hires Alex precisely when either she graduates from
college or she does not become a telemarketer.

A AN (BAC): Alex graduates from college, and both Bailey hires her and she
becomes a telemarketer.

(AAB)AC: Both Alex graduates from college and Bailey hires her, and she
becomes a telemarketer.

A — (BAC): If Alex graduates from college, then both Bailey hires her and
she becomes a telemarketer.
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In light of the variety of English connectives, there are many possible translations
of these formal sentences. For example, we could translate the last sentence in
example 1.1.2 as: “Alex is hired by Bailey and becomes a telemarketer when she
graduates from college.” As translators, we are free to give such alternate renditions,
provided we carefully obtain an English sentence accurately expressing the precise
meaning of the formal sentence.

Question 1.1.3  Use the given dictionary to translate each English sentence into sentential logic
and each formal sentence into English. Some of these sentences are true and some
are false. We’ll grapple with those issues soon, but for the moment we focus on
the process of translation.

P:  The number 7 is prime.

Q: The number n is rational. (Q is for “quotient.”)

S: The number n is the square root of an integer.

Z: The number n is an integer. (Zahlen is German for “count.”)

(a) The number 7 is a prime integer.

(b) The number # is rational exactly when # is the square root of an integer.

(c) If the number 7 is the square root of an integer but # is also an integer, then n
is prime.

(d) The number n is the square root of an integer and if # is an integer, then n is
prime.

(e) The number 7 is rational when 7 is the square root of an integer.

(f) Either the number 7 is prime and # is an integer, or # is rational.

(g) The number 7 is prime and either # is an integer or n is rational.

(h) Pv Q

i @ — [(~P) A S]

G) P < (~0)

&) (~P) Vv [Z A (~0)]

|

In the preceding examples and questions, dictionaries have been given to facilitate
the process of translation. Eventually you will create your own dictionary when
translating English sentences into the formal language of sentential logic. In such cases,
you must first identify the connectives in the sentences you are analyzing and then
represent the corresponding simple sentence components with appropriate sentence
symbols. For example, in the sentence “Two is even and two is prime,” we identify
the connective “and” and represent “Two is even” with E and “Two is prime” with P
to obtain the sentential logic rendition E A P.

We now turn to a precise definition of sentential logic, also known as propositional
logic or statement logic. This formal language has two components: an alphabet
identifying the legal symbols that may be used, and sentences consisting of legal strings
of symbols from the alphabet. Throughout this section we have used uppercase letters as
sentence symbols. The formal language of sentential logic also uses lowercase letters
to represent unspecified simple sentences; that is, lowercase letters p, g, r represent
unspecified simple sentences in the same way that the variables x, y, z represent
unspecified numbers in algebra.
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Definition 1.1.1  The formal alphabet of sentential logic consists of exactly the following

symbols.
sentence symbols: AB,...,.Z
sentence variables: a,b,...,z

logical connectives: ~, A, V, —>, <
grouping symbols:  (, ), [, ], {, }

In a formal sentence, we may use only these symbols; any other symbols
are “illegal” and should not be used. A single exception allows the indexing of
sentence symbols and sentence variables with subscripts if the situation warrants.
For example, we work with sentence variables py, ..., p, when describing generic
sentences.

Sentential logic also identifies a collection of “legal” sentences consisting of
certain strings of symbols from the alphabet. In the following definition, the symbols
B and C denote generic sentences and may be sentence symbols, sentence variables,
or compound sentences.

Definition 1.1.2 A sentence of sentential logic is a string of symbols from the alphabet of sentential
logic that satisfies the following:

(a) A single sentence symbol or a single sentence variable is a sentence;

(b) If B, C are sentences, then so are (~B), (B A C), B v C), B — C), and
(B <~ C),

(c) Only strings of symbols obtained by finitely many applications of (a) and
(b) are sentences.

When building up formal sentences, we carefully include parentheses as grouping
symbols at each step. However, for the sake of readability, we often abbreviate
sentences by omitting the outermost pair of parentheses. We also utilize the other
grouping symbols from the alphabet to facilitate clarity of expression; for example,
we may write [(~A) — C] for (~A) — C).

Example 1.1.3 Every string of formal symbols introduced thus far in this section has been a
sentence. In contrast, the following strings of symbols are not sentences, since
they do not satisfy any of the forms given in definition 1.1.2.

Nonsentence Reason

A~ ~ must precede, not follow sentence symbols
~ANA connectives cannot be adjacent

VpAg Vv must be between sentences

I LOVE MATH sentence symbols cannot be adjacent

In contrast to the nonsentence V p A g in example 1.1.3, the string (~p) A g is a
sentence since (~ p) is a sentence of the form (~ A), and if we label (~p) as B and ¢
as C, then (~p) A g is of the form (B A C).
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Question 1.1.4 Identify each string of symbols as a sentence or as a nonsentence. Give reasons
justifying your answer.

@ AA(pVvA) d (~A) Vv B)<(A—B)
(b) AApVA e (pANg@<(@qVp
(c) A~AB—6 O (p&g)<(q Vv p

|

We end this section with a few thoughts about mathematical definitions. While
mathematics is a language rich in expression, mathematics is also quite focused and
precise in its use of words. In contrast to the adaptability and fluidity of word use
in natural languages, mathematicians generally assign one meaning to each technical
word in a given context via a formal definition. For example, in definition 1.1.2, we
specified the meaning of the word “sentence” in the context of sentential logic. In
mathematical conversation, the word “sentence” now identifies exactly the objects
specified in the definition—no more and no less—and mathematicians restrict the use
of the word “sentence” to precisely these objects.

While at times definitions may seem somewhat arbitrary, they are most often the
result of months (if not years and centuries) of discussion and reflection by researchers
and teachers of mathematics. The definitions we use in this text are consistent with the
common consensus of the mathematical community and should be learned and used
with care. Perhaps some day soon you will choose to join in the ongoing conversation
about mathematical ideas and craft definitions that arise in research ventures.

1.1.1 Reading Questions for Section 1.1

State two goals in studying mathematical logic.
Define an argument. What two types of sentences appear in an argument?
Give an example of an argument and identify the premises and conclusion.
Give an example of a syllogism.
What motivates our interest in developing formal languages?
Specify a natural language sentence with two distinct interpretations.
State both English and formal versions of the five connectives.
Discuss the relationship between the sentences “if A, then B,” “B if A,” and
“B when A.”
9. Identify the two components of a formal language.
10. State the symbols in the alphabet of sentential logic.
11. Define a sentence in the context of sentential logic.
12. Give an example of a sentence and a nonsentence of sentential logic.

NN R B

1.1.2 Exercises for Section 1.1

In exercises 1-11, use the given dictionary to translate each English sentence into
sentential logic and each formal sentence into English.

C: Taylor is a college student.
L: Taylor is a natural leader.
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M:

0:

—_ =
S RS o

Taylor is a math major.
Taylor will be qualified for a high-paying job.

Taylor is a college student.

Taylor is not a math major.

If Taylor is a math major, then she will be qualified for a high-paying job.
Taylor is not in college, but she is a natural leader.

Since Taylor is not in college, she will not be qualified for a high-paying job.
(LAM)— Q

(LVvM)— Q

~(C—0)

(~C) = (~0Q)

(~M) — [(~L) v (~Q)]

C< L

In exercises 12-22, use the given dictionary to translate each English sentence into
sentential logic and each formal sentence into English. Note that some of these
assertions are mathematically true and some are false.

A:
C:
F:
G:

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

X is associative.
X is commutative.
X is a field.

X is a group.

If X is a group, then X is associative.

X is a group but is not commutative.

X is associative or commutative, but not both.
X is associative and commutative when X is a field.
X is a group does not imply that X is a field.
FvG

C A (~A)

~(A—> G)

(~C) — (~F)

F— [(CAA)AG]

(FVvG)— A

In exercises 23-33, use the given dictionary to translate each English sentence into
sentential logic and each formal sentence into English. Note that some of these
assertions are mathematically true and some are false.

B:
C:
D:
M:

23.
24.
25.
26.
217.

A sequence {a,} is bounded.
A sequence {a,} converges.
A sequence {a,} diverges.

A sequence {a,} is monotone.

A sequence {a,} converges or diverges.

A sequence {a,} diverges exactly when it does not converge.

If a sequence {a,} is bounded and monotone, then it does not diverge.

If a sequence {a,} is not bounded and not monotone, then it does not converge.
A sequence {a,} diverging does not imply it is unbounded.
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28.
29.
30.
31.
32.
33.

C—>B

(~D) < C

~[(~M) — D]
[(~B)AM] — D

~[(M — B)Vv (B— M)]
D — [(~B)V (~M)]

In exercises 3453, translate each English sentence into sentential logic.

34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

A if and only if B, but not C.

R if both P and Q.

Either U or T, otherwise Q.
Neither L nor R, but not Z.

D orboth Q exactly when S and X.
A otherwise not B.

C or not D.

Neither E nor F, or G.

Either not H or both I and if
J then K.

Y if and only if both Z and W
implies X.

44.
45.
46.
47.

48.
49.
50.
51.

52.
53.

If H, then either J orboth K and L.
Eitherif H, thenJ orboth K and L.
If H, then either J or K, but not L.
If either H or J, then both

K and L.

If H, then either both J and K or L.
p if both g and r.

p when g, or r.

If either p or g, then r exactly
when s.

p or g, if and only if not r.
Neither p nor g, but not r.

In exercises 54—63, identify each string of symbols as a sentence or as a nonsentence.
Recall that the outermost pair of parentheses may be dropped. Give reasons justifying
your answer.

54.
55.
56.
57.
58.

~A — B
(~A) —> B
~(A — B)
~~A >~~A

(A < A VI[~BACO)]

59
60
61
62
63

. A <~[BA(~0)]

. A= [pA(~B)]
.p< PAB

. MATH IS AWESOME
. logic is fun

Exercises 64—66 explore the ambiguity of the English language with respect to
connectives.

64.
65.

66.

State a natural language sentence with exactly five distinct interpretations.

How many connectives are necessary to create a natural language sentence
with exactly 14 distinct interpretations?
State a natural language sentence with exactly three distinct interpretations.

Exercises 67-70 outline a “proof by induction” that the number of left parentheses in
any sentence is the same as the number of right parentheses. The technique of proof
by induction will be studied in section 3.6. In this context, do not drop the outermost

pair of parentheses from a formal sentence.

67. How many left parentheses and how many right parentheses appear in an
individual sentence symbol (for example, A by itself) or in an individual
sentence variable (for example, p by itself)?

68. Assume that B has m left parentheses and m right parentheses. How many left
parentheses appear in (~B)? How many right parentheses appear in (~B)?
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69. Assume that B has m left parentheses and m right parentheses and that C has
n left parentheses and n right parentheses. How many left parentheses appear
in (B A C)? How many right parentheses appear in (B A C)?

70. Following the model given in exercise 69, argue that (B v C), (B — C),
(B < C) each have the same number of left and right parentheses. Conclude
from exercises 67-70 that any sentence has the same number of left and
right parentheses.

1.2 Truth and Sentential Logic

Mathematicians seek to discover and to understand mathematical truth. The five
logical connectives of sentential logic play an important role in determining whether
a mathematical statement is true or false. Specifically, the truth value of a compound
sentence is determined by the interaction of the truth value of its component sentences
and the logical connectives linking these components. In this section, we learn a
truth table algorithm for computing all possible truth values of any sentence from
sentential logic.

In mathematics we generally assume that every sentence has one of two truth
values: true or false. As we discuss in later chapters, the reality of mathematics is
far less clear; some sentences are true, some are false, some are neither, while some
are unknown. Many questions can be considered in one of the various interesting
and reasonable multi-valued logics. For example, philosophers and physicists have
successfully utilized multi-valued logics with truth values ‘“true,” “false,” and
“unknown” to model and analyze diverse real-world questions. In this book, we keep
our study immediately relevant to the most common needs in mathematics by assuming
a two-valued logic with truth values “true” denoted by 7', and “false” denoted by F.
In a given setting, one of these two truth values is assigned to each sentence symbol
(A, B, ...,Z), while sentence variables (a, b, ..., z) are free to assume either truth
value. We use truth tables to determine the truth value of sentences built up from
sentence symbols, sentence variables, and logical connectives.

We begin by stating the distinct truth table for each logical connective. In defining
these basic truth tables, an intuitive understanding of connectives in our natural
language drives the interpretation of connectives in the formal language of sentential
logic, and so we appeal to our intuition in motivating our formal definitions.

First, consider negation, the “not” connective denoted by ~ Negation switches
truth values. For example, if “The number 7 is prime” is true, then “The number 7 is
not prime” is false; that is, if P is true, then ~ P is false. Similarly, if “The number
n is prime” is false, then “The number 7 is not prime” is true; that is, if P is false,
then ~ P is true. We express this analysis both as a phrase to aid memorization and as
a truth table.

~p
~ swaps truth values

- ’ﬂ|‘m
~
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This basic truth table uses the sentence variable p, since p (as a variable) is free
to assume either truth value T or F, enabling a complete analysis of the negation
connective. In addition, the truth table has only two rows, since p is the only sentence
variable in the sentence ~ p.

With this definition in hand, we no longer need to rely on intuition when
interpreting the negation connective in a sentence. Instead, the truth table for negation
has mathematically formalized the interpretation of negation when computing the
truth of sentences. We refer to this truth table when a negation appears in a sentence,
an approach which is particularly helpful when working with elaborate compound
sentences. By developing similar truth tables for the other logical connectives and
capturing our natural intuitions about these connectives, we establish the complete
tools for developing an algebra of truth for sentential logic.

Turning to the other connectives, consider conjunction, the “and” connective
denoted A. We interpret p A g as true exactly when both p and g are true. If p is
false or if ¢ is false or if both p and g are false, then p A g is false. As above, we
gather this analysis (and the results of a similar analysis for the other connectives) into
a collection of phrases and truth tables.

pPl4q|pPNg Plg9|pPVg
Ais T if T|T T Vis F if T|T T
both T and T|F F both F and T|F T
F otherwise F | T F T otherwise F|T T
F|F F F | F F
Ppla|p (9 Pla|P <4
— is Fif T|T T < is T if T|T T
T — F and T|F F the same and T|F F
T otherwise F|T T F otherwise F|T F
F|F T F | F T

Since each sentence in the above chart has two sentence variables, there are four
rows in each truth table. In particular, each sentence variable can be either true or false,
resulting in the four possible permutations of truth values: 7T, TF, FT, FF. The left
columns in each truth table list these four possibilities. We think of a truth table with
permutations 77, TF, FT, FF (in this order) as the standard truth table for a sentence
with two variables. You should mirror this pattern in your truth table computations to
facilitate comparisons among sentences.

The truth tables for disjunction and implication warrant further comment. For the
disjunction p V g, note that there are two standard yet very different usages of the word
“or” in our natural language of English. For example, suppose you are eating at your
favorite fast food restaurant and the server asks you two questions:

* Would you like french fries or onion rings with your value meal?
* Would you like cream or sugar with your coffee?
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In response to the fries—rings question, you can ask for fries or for onion rings, but not
both, and you would not be upset that you can only have one; we refer to this use of
disjunction as an exclusive-or. In contrast, in response to the cream—sugar question,
you can ask for cream or sugar or both, and opting for both is a common choice among
coffee lovers; we refer to this use of disjunction as an inclusive-or. In everyday life,
context and social norms typically clarify this potential ambiguity in the use of “or.”
However, for our formal language, we must avoid such ambiguity and choose just one
of these two options as the standard for all disjunctions. Over time, mathematicians
and philosophers have adopted the inclusive-or as the standard interpretation of “or,”
and so we define p V ¢ as true when p is true, when ¢ is true, or when both p and g
are true.

In standard mathematical practice, the implication p — ¢ is the most important
logical connective. Mathematics is essentially a science of implications in which we
explicitly identify assumptions and establish the conditional truth of mathematical
statements. The first two lines of the truth table for implication match most
people’s intuitions: “true implies true” is true and “true implies false” is false.
But, why should “false implies true” or “false implies false” be defined as a
true statement?

A couple of examples may clarify this choice. First, consider a common “bribe”
offered by parents to their children: “If you behave in the store, then we will stop for
ice cream.” If the child does not behave in the store, the parents’ statement would
be considered true not only if they do not stop for ice cream (the “false implies
false” case), but even if, in a moment of benevolent generosity, they do stop for ice
cream (the “false implies true” case). In particular, the parent’s statement is false
only when the child behaves in the store, but they do not stop for ice cream (the
“true implies false” case). Similar situations arise quite frequently in mathematics.
For example, consider the assertion “If n > 3, then n? > 4.” This statement is true
even for n = 1, when n > 3 is false and n? > 4 is false (the “false implies false”
case); similarly, it is true for n = 2, when n > 3 is false and n? > 4 is true (the “false
implies true” case). In short, both “false implies true” and “false implies false” are
considered true.

We now focus on the mechanics of using the five basic truth tables to compute
the truth of compound sentences. This analysis is based on both the truth value of the
component sentences and the logical connectives linking them.

Example 1.2.1 We compute the truth table for (~p) V q.

The two sentence variables p and g generate the 2 x 2 = 2% = 4 permutations
of truth values 7T, TF, FT, FF in the corresponding truth table. After listing
these permutations, we begin with the innermost connective (the connective
farthest inside the parentheses—in this case the negation ~ on p) and work
our way out through any other connectives (in this case, the disjunction V). We
compute one row at a time, applying the corresponding basic truth tables to the
particular truth values given in the appropriate columns of the truth table. For
this sentence, the operation of the innermost connective (the negation of p with
truth values in the first column) is given in the third column. The effect of the
next connective (the disjunction of the third and second columns) follows in the
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Example 1.2.2

Example 1.2.3

final (fourth) column.

pla|~p|(~pvyg
TT| F T
T|F| F F
FlT| T T
FIF| T T

We compute the truth table for (~p) A p.

The one sentence variable p generates the two rows of the corresponding
truth table. As in example 1.2.1, the innermost connective is ~and the outermost
is A. First, the operation of the innermost connective (the negation of p with truth
values in the first column) is given in the second column. The effect of the next
connective (the conjunction of the second and first columns) follows in the final
(third) column.

pl~p| (~pAap
T| F F
Fl T F

We compute the truth table for (p A q¢) — r.

The three distinct statement variables p, ¢ and r generate the 2 X 2 X 2 =
23 = 8 permutations of truth values in the corresponding truth table. For this
sentence, the innermost connective is A and the outermost is —. The construction
of the truth table proceeds as above, starting with the computation for the innermost
connective (the conjunction of the first and second columns) in the fourth column
and working outward to the next connective (the implication of the fourth and
third columns) in the final (fifth) column.

(pNq@ —r
T

p

LS

DTN T NN N NS
TTNN T TN N
STNTNTN T NS
T YT TN N>
NNNSNNST

As can be seen from these three examples, the number of variables in a sentence

determines the number of rows in the corresponding truth table. In fact, if a sentence
has n variables, the truth table for the sentence has 2" rows. The proof of this numerical
relationship uses mathematical induction and is discussed in section 3.6.
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Example 1.2.4 Another variation of the truth table question occurs in the context of sentences

Question 1.2.1

blending sentence symbols (which have a fixed, known truth value) with sentence
variables (which are unspecified and may be either true or false). For example,
if A has truth value 7 and B has truth value F, we compute the corresponding truth
table for (A v p) — B.

p|A|B|Avp|(Avp —B

T|T|F T F
F|T|F T F
|
Compute the truth table for each formal sentence.
@@ (~p)Vp (b) (~p)A(~q)
|

Reflecting on the previous examples and questions, notice that some of the truth

tables we have computed possess interesting and important features. In example 1.2.2,
we found that the truth table for (~p) A p has all F’s in the its final column. Similarly,
in question 1.2.1, the truth table for (~p) Vv p has all T’s in its final column. These
are special events for sentences and (as with many special events) such sentences are
given distinctive names.

Definition 1.2.1 « A tautology is a sentence that has truth value T for every assignment of truth

Example 1.2.5

Question 1.2.2

values to its sentence variables.

¢ A contradiction is a sentence that has truth value F for every assignment of
truth values to its sentence variables.

* A contingency is a sentence that has truth value T for at least one assignment of
truthvalues to its sentence variables and truth value F for at least one assignment
of truth values to its sentence variables.

From question 1.2.1, the truth table for (~p) Vv p has all 7’s in its final column, and
so (~p) V pis a tautology. From example 1.2.2, the truth table for (~p) A p has all
F’s in the its final column, and so (~p) A p is a contradiction. From example 1.2.1,
the truth table for (~p) Vv ¢ has both T’s and F’s in its final column, and so (~p) V ¢
is a contingency.

|

Compute the truth table for each sentence and identify each as a tautology, a
contradiction, or a contingency.

(@ p<(~p) © p<(pVvy

b)) pep d pe(prg .

We finish this section by defining an important relationship between sentences

based on their truth tables. When two sentences have identical final columns in their
respective truth tables, we identify them as “the same” in the algebra of logic. This
insight motivates the following definition.
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Definition 1.2.2 Sentences B and C are logically equivalent if the standard truth tables for B and

C have the same final column. We write B = C to denote that B and C are logically
equivalent.

The use of the word “if” in mathematical definitions (as in the preceding definition
of logical equivalence) is a common practice in mathematical discourse and is always
interpreted to mean “if and only if.” This broader interpretation of “if” is used only in the
context of definitions, while for theorems, lemmas, and other mathematical statements,
we adhere to the strict, formal interpretation of the if—then logical connective. Thus,
when we are reading a mathematical definition and encounter the word “if,” we read the
definition as an “if and only if” statement asserting the exact meaning of the identified
word, allowing us to move freely back and forth between the defined word and the
definition.

For example, if two sentences are logically equivalent, then the two sentences
have the same final column in their standard truth tables. In addition, if two sentences
have the same final column in their standard truth tables, then the two sentences are
logically equivalent. You will want to develop a facility in this process of transitioning
back and forth between defined mathematical words and the corresponding formal
definitions.

We develop a good understanding of logical equivalences by considering some
pairs of sentences that are logically equivalent, and some that are not.

Example 1.2.6 We prove that (p — ¢q) = [(~p) V ql.

The basic truth table for the implication p — ¢ and the standard truth table
for (~p) Vv g given in example 1.2.1 have the same final columns, as demonstrated

below.
pla|~p|(~p vy
T|T|F T
T|F| F F
FlT| T T
FIF| T T

Example 1.2.7 We prove that both [(~p) vV p] # [(~p)Vqgland[(~p)Vp] # (p— 9.

Using the result of example 1.2.6, neither (p — ¢) nor [(~p) V ¢] is logically
equivalent to a contradiction. A contradiction has truth value F in every row of
the final column of its standard truth table, while both of these sentences have
T in the first row (and also in the third and fourth rows) of their respective final
columns. Inexample 1.2.2, we found that (~p) A p is a contradiction. Alternatively,
observe that the first sentence in each pair has one sentence variable, while the
second sentence has two sentence variables, and so they cannot be logically
equivalent.

|

A particularly important pair of logical equivalences is referred to as De Morgan’s
laws in honor of the nineteenth century English mathematician Augustus De Morgan,
who first identified the significance of these relations for mathematical logic, set theory,
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and general mathematical discourse. De Morgan was born in India while his father was
serving as an officer in the military, and shortly after birth lost sight in his right eye.
While a child, he showed no particular aptitude for academics or athletics, but in 1823
he entered Trinity College of Cambridge University. In 1827, while only 21 years old,
De Morgan was appointed as the first professor of mathematics at the newly founded
University College London. As a research mathematician, De Morgan is best known
for his contribution to mathematical logic, mathematical induction, and the study of
algebras. He was also a prolific writer and was a co-founder and the first president of
the London Mathematical Society. De Morgan loved mathematical trivia, and noted
that he was x years old in the year x> (he was 43 in 1849); people born in 1980 share
this in common with De Morgan (they will be x = 45 in x? = 457 = 2025).

Question 1.2.3 De Morgan’s laws De Morgan’s laws specify how negation distributes across
conjunctions and disjunctions, changing the primary connective. Verify that the
sentences in each of the following pairs are logically equivalent by computing the
corresponding truth tables.

@ [~(pApl=[(~p)V(~g] ®) [~(pVvl=[~p)A(~g)]
|

1.2.1 Reading Questions for Section 1.2

1. State the two truth values of sentential logic. How are they represented?

2. Give an example of a setting in which a three-valued logic might prove useful.

3. State the basic truth tables for the five logical connectives ~, A, V, —,

and <.

Define the standard truth table for a sentence with two variables.

What is the relationship between the number of variables in a sentence and

the number of rows in the corresponding truth table?

Discuss the distinction between an inclusive-or and an exclusive-or.

Discuss the definition of the truth table for the implication p — g.

Define and give examples of a tautology, a contradiction, and a contingency.

Give natural language examples of a tautology, a contradiction, and a

contingency.

10. Define logically equivalent sentences.

11. Give an example of a pair of sentences that are logically equivalent and a pair
that are not.

12. State De Morgan’s laws in both sentential logic and English.

v

0 oA

1.2.2 Exercises for Section 1.2

For exercises 1-20, compute the truth table for each sentence and identify each sentence
as a tautology, a contradiction, or a contingency.

L.p<(~p) 4. [p—> (Cplvp

2.pA(p—Dp) 5. (~p)—>¢q
3. ~[(~p) = pl 6. p<(~q
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o o N

10.
11.
12.
13.
14.

p—(@—Dp
~[p—>(pVvgl

(p<=q) < (~p)
(pVvq@V(~p)
(p=>DA(~@l—>p
(pV@AL(~p)A(~9)]
(pvr)o~{l(~p)A(~n]}
[g < rl< [(~qg Ar]

15.
16.
17.
18.
19.

20.

(pAg@Vr
(pAg) = [(~q) A7l
(p<=q) < (~r)
(pvr)—(gAnr)
p—=>[~@nrn]}—
(r—p)
p—=>lgnr(~nN]} -
[(~q) = (~p)]

In exercises 21-42, determine if each pair of sentences is logically equivalent by
computing the corresponding truth tables. Some pairs of sentences have names
associated with them to facilitate their use later in the text.

21.
22.

23.

24.
25.
26.
27.
28.

29.

30.

31

Double negation: ~(~p); p
De Morgan’s laws: ~(p A q);
(~p) VvV (~q)

De Morgan’s laws: ~(p V q);
(~p) A (~q)

PANG D

pvg,p

Commutativity: p A g; g Ap
Commutativity: p VvV g; gV p
Associativity: (p A @) A T;
pA(gAT)

Associativity: (p VvV q) V 1;
pV(qVr)

pAG@Vr) (pAg VT

. Distributivity: p A (g V r);
(pA@)V(pAT)

32

33.
34.
35.

36.

37.
38.

39.
40.
41.

42.

Distributivity: p V (g A 7);
(pvaA(pVr)

pV@Ar);, (pVa AT
(=@ Ap; q
Contrapositive: p — g;

(~q) > (~p)

Inverse: p — gq;

(~p) = (~q)

Converse:p — q; q —> p
Implication expansion: p — g;
(~p)Vgq

p—q ~[pA(~q)]

~(g = p) (~p) = (~q)
Biconditional expansion: p < ¢;
(p—=> @ Arlg—p)

p< g (~p) < (~q)

In exercises 43-52, compute the truth table for each sentence under the assump-
tion that sentence symbol A has truth value 7 and sentence symbol B has truth
value F.

43
44
45
46
47

.A— (~B)
.(AAB)V (~B)
.A—>p
.p— B
.p—~>(AVB)

48
49
50
51
52

Exercises 53-55 show that logical equivalence
important concept discussed in section 2.3) sharing three key properties in common
with the standard equality relation =. Verify that = satisfies each property for formal

sentences B, C, and D from sentential logic.

53. Prove B = B.

54. Prove that if B = C, then C = B.

p— (AAB)
A< [pV(~B)]
(BAp)— (~A)
[~(BAg@]—> (A< p)
(AAp)—>(gVB)

is an “equivalence relation” (an

55. Prove thatif B = C and C = D), then B = .



Chapter 1 = Mathematical Logic 21

In exercises 56-57, let B and C be formal sentences from sentential logic and use the
definitions of tautology and logical equivalence to prove each statement.

56. If B = C, then B <> C is a tautology.
57. If B <> C is a tautology, then B = C.

Exercises 58—70 consider the truth functional rendition of the basic truth tables. The
basic truth tables can be thought of as defining functions on truth values as illustrated
in the following two examples.

fAT)=F JF)=T
WT.T)=T f(I.F)=F fu(F.T)=F fu(F.F)=F

In exercises 58—60, follow the model given for f~ and f, and define each truth function
on the four distinct ordered pairs of T's and F's.

8. fu
59. £,
60. fos

In exercises 61-66, use the examples and your answers from exercise 58-60, to
compute the value of each composite function.

61. fA(fAT), F) 64. fu(fAT), fAF))
02. fo(fAT), fA(T, T)) 05. ffo(T, F))
03. fo(((T, F), fA(F,T)) 66. fAf= (fAT), F))

In exercises 67—70, determine the function resulting from each composition or explain
why the function is not defined.

67. foofn 69. fu of-
68. frof- 70. foofy

1.3  An Algebra for Sentential Logic

In 1854 George Boole published his groundbreaking work An Investigation of the
Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and
Probabilities [22]. In this book, Boole developed an algebra of logic for manipulating
and simplifying formal sentences. Boole was born in Lincolnshire, England in 1815
and, due to financial constraints, was essentially a self-taught mathematician of
extraordinary accomplishments. From the age of 16, Boole supported his parents
and siblings by running a series of day and boarding schools. During this time he
began studying and researching mathematics, eventually winning the Royal Society’s
Royal Medal in 1844 for a paper On a general method of analysis applying algebraic
methods to solve differential equations. In 1849 Boole was appointed the first professor
of mathematics at the newly founded Queen’s College in Cork, Ireland. He taught in
Cork for the rest of his life, earning a reputation as an outstanding teacher while
remaining a prolific researcher. At the relatively young age of 49, Boole died of a fever
after walking from his home to the College in a soaking rainstorm.
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Boole’s algebra enables an analysis of the reasoning processes fundamental to the
pursuit of mathematical truth. Through the subsequent efforts of Augustus De Morgan,
Gottlob Frege, Charles Pierce, and other logicians, Boole’s initial work ultimately led
to a variety of results, including Godel’s incompleteness theorems (which demonstrate
that some true mathematical statements can never be proven in any formal system of
logic). In this section, we describe an algebra of sentential logic in the spirit of Boole
based on the notion of logical equivalence. We also develop an ability to manipulate
the logical connectives appearing in sentences, transforming complex sentences into
simpler sentences.

Working with this algebra of sentential logic, we also address a fundamental
question about the “expressiveness” of our set of connectives. In the last section,
our investigations focused on constructing truth tables to determine all possible truth
values for a given formal sentence. In this section, we take up the question of turning
this process around and ask, “Given a truth table, can we find a sentence satisfying
the truth table?” We show the set of five basic logical connectives {~, A, V, =, <}
is adequate in the sense of possessing enough expressive power to identify a sentence
that satisfies any given truth table. We will see that this set of connectives is redundant
in the sense that some proper subcollections are also adequate. Armed with the algebra
of sentential logic, we identify new adequate sets of connectives by reducing them to
known adequate sets of connectives. As we highlight in the exercises, we can even
define new connectives “nand” and “nor” that, taken by themselves, form an adequate
set of connectives! Besides being of academic interest, we will see in the next section
that these ideas play an essential role in the design of computer circuits.

The algebra of sentential logic is based on the notion of logical equivalence and
is really quite similar to the standard algebra of numbers and variables. For example,
we can expand (2x)> = 4x? using either of the algebraic identities (ab)> = a’b? or
(a + b)> = a* 4 2ab + b*. Similarly, in the setting of sentential logic, we utilize
known logical equivalences to manipulate and simplify formal sentences. In this way,
logical equivalence describes a relationship between formal sentences in sentential
logic. Consider the following example.

Example 1.3.1  We simplify [~ (~p)] V p.

~(~p)Vp = pVp since [~(~p)]=p
= p sincepVvp=p

|

As can be surmised from example 1.3.1, we must know certain basic logical

equivalences in order to perform such algebraic manipulations. In section 1.2, we

began developing a familiarity with various logical equivalences. For ready reference,

we gather together the most important and frequently used logical equivalences in the
following table.

Formal name Logical equivalence

Double negation ~(~p)=p

De Morgan’s laws | ~(p A gq) = (~p)V (~q)
~(pVg=(~pA(~q)
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Formal name Logical equivalence

Implication Expansion p—~>q@=(~p)Vg

Contrapositive (p=>9=(~q9 — (~p)

Biconditional Expansion | (p <> ¢q)=(p — ¢) A(q — p)

Commutativity (pAg =(qAp)
(pva)=(gVvp)

Associativity (pAQQAFr=pA(gAT)
(pvgVr=pv(gVvr)

Distributivity pPA@GVIH)=(pAQV(pAT)
pv@nr)=(pVvgn(pVvr)

Tautology pV(~p)=T

Contradiction pA(~p)=F

Simplification pAT=pand pANF=F
pVT=T and pVF=p

23

Many of the names assigned to these logical equivalences correspond to the names

mathematicians have given to similar properties in other algebraic settings. We will

want to become adept at referencing these properties and transitioning from one version
of a logical equivalence to another.

[~ V]—(~q)

{~I~@Vvl Vi~
@V Vv(~q)
pVv@qV(~q)

pvT

T

Example 1.3.2  We prove that [~ (p V g)] — (~¢q) is logically equivalent to the tautology 7.

Implication expansion
Double negation
Associativity
Tautology
Simplification

As with standard algebraic manipulations, there is often more than one path to
an answer; the following is another approach to demonstrating this same logical

equivalence.

[~@Vgl—(~q)

connectives ~and V.

pAgq

[~(~pIA[~(~q)]
= ~[(~pV(~9]

[~(~] = {~[~(pVl}
qg—>(pVq
~pVvipVve
(~q)Vv(gVp)
[(~@)VvglVvp

Tvp

T

Contrapositive
Double negation (twice)
Implication expansion
Commutativity
Associativity
Tautology
Simplification

|

Example 1.3.3 We identify a sentence logically equivalent to p A ¢ that uses only the logical

Double negation (twice)
De Morgan’s laws
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The two De Morgan’s Laws express the relationship between A (conjunction)
and Vv (disjunction) using ~ (negation). We make frequent use of this pair of logical
equivalences in transitioning between conjunction and disjunction.

Question 1.3.1 Identify a formal sentence logically equivalent to each sentence that uses only the
logical connectives ~and A.

(@ pvg Hint: Use double negation and De Morgan’s laws.
b)) p—gq Hint: Use implication expansion and De Morgan’s laws.
©)peg Hint: Use biconditional expansion.

This algebra of logical equivalence enables us to examine the expressive-
ness of the connectives in the formal language of sentential logic. For example,
since (p — gq) = [(~p) V q], can we drop the implication (the “if-then” connective
denoted — ) from the set of connectives and make do with just using negation (the “not”
connective denoted ~) and disjunction (the “or” connective denoted V) whenever we
need an implication? On the other hand, perhaps we would prefer to drop disjunction
and express all disjunctions in terms of negations and implications? In the context of
logical equivalence, the strongest rendition of this question of expressiveness is:

Can we find a sentence satisfying any given truth table?

In fact, we can produce such a sentence and, even better, we can accomplish this
task for every given truth table using the same standard algorithm. First, we identify a
collection of conjunctions (based on the truth values of the variable in each of the “true”
rows of the given table) and then form the disjunction of these conjunctions to obtain
the desired formal sentence. We illustrate this algorithm in the next two examples.

Example 1.3.4 We identify a formal sentence (using only the connectives ~, A, and V) satisfying
the following truth table.

In the context of producing a formal sentence satisfying this truth table, only
the “true” rows are important for implementing our algorithm. In particular, we
use the two “true” rows of the truth table to identify conjunctions as follows.

pPA(~q) sincep=Tandg=F

(~p)A(~q) sincep=Fandg=F

In the work given next to the truth table, we are being a little “loose” in our use
of the equality symbol. When we write p = T and g = F next to the second
row, we are observing the particular assignment of truth values to the sentence
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variables in the second row of the truth table. Since p = T in the second row, we
take the positive instance p of the sentence variable p and, since g = F, we take
the negative instance (~ ¢g) of the sentence variable ¢ to obtain the conjunction
p A (~¢q). Similarly, in the fourth row, we have both p = F and ¢ = F and,
taking the negative instance (~p) and (~ ¢q) of each sentence variable, we obtain
the conjunction (~ p) A (~ g). Finally, we take the disjunction of the sentences
determined by the second and fourth rows to obtain the desired formal sentence.

7 = pAC@]l V(P A ()]
A complete truth table computation verifies our solution.

|~p|~a|pAC~a | DA | IpA ]V [(~p) A(~9)]

TN NS
N T N

F | F
F T
T | F
T T

N
N T T
N TN

We observe that each conjunction outputs exactly one 7', while all the other rows
are F'; this T occurs in the row used to construct the conjunction. The final disjunction
combines these various T's into exactly the right rows needed to produce the given
truth table. This method of focusing on the “true” rows and taking the disjunction of
the resulting sentences works for every truth table.

Example 1.3.5 We identify a formal sentence (using only the connectives ~, A, and V) satisfying
the following truth table.

PANGNYT sincep=q=r=T
pA(@ AT sincep=r=Tandq=F

(~p)ANgANT sincep=Fandg=r=T

T NN NNTS
NN TN NR
NN TN N

MTNTNTN TN

B
B

We are free to write p A g A r without grouping symbols by the associativity
of Ajrecall thatp A (g A r) = (p A q) A r from our table of logical equivalences.
Taking the disjunction of the sentences determined by rows 1, 3, and 5, we
obtain the desired formal sentence (as can be verified with a complete truth table
computation).

7 = [pAgArlVIpAC-@ATIVI(p) AgAT]
||

For the sake of completeness, we observe that a truth table without any true rows
must have only false rows and is therefore a contradiction. If such a table has 2" rows,
the truth table is satisfied by the contradiction [p; A (~p1)I Ap2 A+ A pa.
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Question 1.3.2

Find formal sentences (using only the connectives ~, A, and V) satisfying each
truth table.

() (b)

T T TN N N NS
T M NN T TN Ne
TNTNTN TN
N NT T TN T

The algorithm illustrated in examples 1.3.4 and 1.3.5 enables us to find a formal

sentence expressing any given truth table and always yields an “or” sentence (or
disjunction) of several “and” sentences (or conjunctions). Since this algorithm requires
only the logical connectives of negation, conjunction, and disjunction, it leads to the
following definition and theorem.

Definition 1.3.1 A set of connectives is adequate if every truth table is satisfied by a sentence using

Theorem 1.3.1

only the connectives in the set.

{~, A, V} is an adequate set of connectives.

Sketch of Proof Given a truth table, we identify the true rows. If there are no true rows (and

so only 2" false rows) the contradiction [p; A (~p1)] Ap2 A ... Apy, is the desired
formal sentence. If there are true rows, we produce the corresponding conjunction
for each true row, with sentence variable p conjoined if p has value T in the row
and (~ p) conjoined if p has value F in the row. Recalling the discussion after
example 1.3.4, we observe that the truth table for each conjunction is F on all
rows of the corresponding truth table except for a single 7" in exactly the row used
to construct the conjunction. Taking the disjunction of these various conjunctions
combines all the various 7’s into exactly the right rows needed to produce the
given truth table.

|

Observe that the output obtained by implementing the algorithm detailed in the

preceding sketch of a proof is always an “or” sentence (a disjunction) of several “and”
sentences (several conjunctions). We give a special name to sentences exhibiting this
distinctive structure.

Definition 1.3.2

Example 1.3.6

A formal sentence is said to be in disjunctive normal form if the sentence is the
disjunction of sentences consisting of conjunctions of sentence symbols, sentence
variables, or their negations.

The following two sentences are in disjunctive normal form.

PAC@] Vv [(~p)A(~q)] bAgAr] vV IpA(~g) AT
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A single sentence variable can be viewed as a “trivial” conjunction containing no
A’s. From this perspective, both p and ¢ are trivial conjunctions, and so the sentence
p V q is in disjunctive normal form. Similarly, the conjunction p A g A (~r) can be
viewed as a trivial disjunction (containing no V’s), and so the sentence p A g A (~r)
is in disjunctive normal form.

Example 1.3.7 In contrast, the following two sentences are not in disjunctive normal form.

c PV PIAIP) Y (~)]
The conjunction A is the primary connective joining two disjunctions, failing to
meet the requirements of disjunctive normal form. In the exercises, we consider
such sentences which are said to be in conjunctive normal form.

*p—=>pVvi~gl
Implication is not a negation, conjunction, or disjunction, which are the only
logical connectives allowed for disjunctive normal form.

Since the proof of theorem 1.3.1 is the first in this text, we reflect briefly on the
nature and role of theorems in mathematics. In the sense of using rational thought
as a guide toward truth, theorems are the lifeblood of mathematics. A theorem is
a declaration of mathematical truth that is supported by a proof, or a convincing
mathematical argument. The truths of mathematics, as embodied in theorems, are
of a distinctly different character than the truths of the other sciences or the truths
of almost any other area of human endeavor. The theorems of mathematics have a
universal character. When we have a proof that “A implies B,” the truth of the theorem
does not rely on a mechanical apparatus or a real world manifestation; instead, truth
is understood more absolutely as a definite piece of knowledge. When we claim that
every truth table is satisfied by a sentence using only the logical connectives ~, A,
and Vv, we really mean every truth table. This claim is not only different from the
declaration that “Everyone loves chocolate milk,” but is also fundamentally different
from scientific theories and hypotheses that are true based on the empirical data that
is currently available.

A mathematical truth is only identified as a theorem once a thorough and
convincing rational argument has been created justifying its truth. As scientists
pursuing truth, mathematicians begin with a small collection of (hopefully self-evident)
assumptions or properties known as axioms. Working from these axioms, further results
are argued to be true using deductive reasoning; such an argument is referred to as a
proof of the result. In practice, many different names are assigned to proven results,
including theorem, lemma, corollary, and proposition. In addition, notice that we have
identified the argument for theorem 1.3.1 as a “sketch” of a proof; further details
must be provided for a complete proof of theorem 1.3.1. In a mathematics course,
students study and learn the contemporary norms for mathematical proofs through
example, practice, and feedback from the professor who is mentoring the learning
experience.

We turn our attention back to the study of the adequacy of sets of connectives.
The addition of further connectives to a known adequate set preserves adequacy.
The definition of adequate does not require the use of every connective in the
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given set, and so every extension of an adequate set of connectives is adequate.
Therefore, since {~, A, V} is adequate, each of the sets {~, A, vV, =}, {~, A, V, <},
and {~, A, V, —, <>} is also adequate.

Working in the other direction, we are led to ask if any smaller sets of connectives
are adequate. For example, are any proper subsets of {~, A, Vv} adequate? The
nonempty, proper subsets of {~, A, V} are {~, A}, {~, V},{A, V}, {~}, {A}, and
{Vv}. The first two of these proper subsets of connectives are adequate, while the
last four are not. A set of connectives is proven not adequate by finding a specific
truth table that is not expressible by the given set of connectives. For example,
{~} is not adequate because no sentence using only negation satisfies the following
truth table.

?
T
T

NS

A complete justification that {~} is not adequate requires more work than simply
stating this one observation; these further details are left for your later studies.
Instead, we focus on the more positive goal of showing a given set of connectives
is adequate.

The strategy employed to show the first two sets of connectives {~, A} and {~, V}
are adequate is common to many areas of mathematics. We reduce the mathematical
object under study to another object that is already known to possess the desired
property. In this setting, we reduce a given set of logical connectives to another
set of connectives already known to be adequate, as modeled in the following
example.

Example 1.3.8 We prove {~, A} is an adequate set of connectives.

From theorem 1.3.1, {~, A, VV} is adequate. We show {~, A} is adequate
by finding sentences logically equivalent to each of ~p, p A g, and p V ¢
using only the given connectives. Since ~ p is logically equivalent to ~ p
and p A g is logically equivalent to p A g, we just need a sentence logically
equivalent to p V g using only ~and A. From De Morgan’s laws, we know that
~(pVq) = [(~p) A(~q)]. Negating both sides, we have ~ [~ (p V ¢q)] =
~[(~p) A (~@)]. Thus, by double negation, (p vV q) = ~[(~p) A (~¢q)] and
we have the desired sentence logically equivalent to p V ¢ using only ~ and A.
Thus, {~, A} is an adequate set of connectives. The following table summarizes
this argument that {~, A} is adequate.

Given adequate Proving adequate
{~ AV} {~. A}
~p = ~p
pPAgq = pPAg
rVgq = ~l=p)A(~q)]
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Question 1.3.3 Prove {~, V} is an adequate set of connectives. Emulate the template given in
example 1.3.8, using double negation and the other half of De Morgan’s laws to

express ~p, p Aq, and p Vv g using only ~and V. -

1.3.1 Reading Questions for Section 1.3

1. What relationship between formal sentences is the basis for an algebra of
sentential logic?

2. State the logical equivalences double negation and De Morgan’s laws.

State three additional logical equivalences between formal sentences.

4. What is an important question of expressiveness in the context of sentential
logic?

5. Describe an algorithm for producing a formal sentence with a given truth
table.

6. What is the default formal sentence for a truth table with only false rows?

7. What is the characteristic structure of a formal sentence in disjunctive normal

et

form?
8. Discuss the nature of theorems and proofs in mathematics.
9. Define and give an example of an adequate set of connectives.
10. Describe a strategy for proving that a given set of logical connectives is
adequate.
11. Give an example of an inadequate set of connectives.
12. How do we prove that a set of connectives is not adequate?

1.3.2 Exercises for Section 1.3

In exercises 1-6, identify a formal sentence logically equivalent to (p — ¢g) that uses
only the given connectives.

L~ AV, =, <} 4. {~, 1}
2. {~, AV, <} 5. {~,Vv}
3. {~ nVv} 6. {~, —}

In exercises 7—12, identify a formal sentence logically equivalent to (p <> ¢) that uses
only the given connectives.

7. {~, N, V,—>, <} 10. {~, A}
8. {~, AV, —} 11. {~, Vv}
9. {~,A,V} 12. {~, =}

In exercises 13-24, identify a formal sentence logically equivalent to each sentence
that uses only the connectives ~and A.

13. pvyg 17. p—> (g —p)
4. p—gq 18. ~((~p) = p)
15. pogq 19. ~(p—> (pV Q)

16. (~p) — ¢ 20. (p <> @) A (~D)



A Transition to Advanced Mathematics

21. (pAg) <1 23. (pvr)—>(@Ar)
2. (pVg AT 24. (pvr)< {~[(~p)A(~D]}

In exercises 25-30, identify a formal sentence logically equivalent to each sentence
that uses only the connectives ~and V.

25. pAg 28. (~p)—¢q
26. p—>¢q 29. p— (¢ — p)
27. p<q 30. ~((~p) > p)

In exercises 3142, identify a formal sentence in disjunctive normal form satisfying
each truth table using the algorithm described in theorem 1.3.1.

3. plqg| ? 37. plg|r|? 4. plqg|r | ?
T|T|F T|T|T|F T|\T|T|T
T|F|T T|T|F|F T|T|F|T
F|T|T T|F|T|T T|F|T|F
F|F|T T|F|F|T T|F|F|F

F|T|T|F F|T|T|T

32. plg|? F|T|F|F F|T|F|F
T|T|T F|F|T|T F|F|T|F
T|F|F F|F|F|F F|F|F|F
F|T|T
F|F|F

33. plg|?

T|T|T 38. plg|r|? 41. plq | r | ?
T|F|F T|T|T|F T |t|T|T
F|T|T T|T|F|T T|T|F|F
F|F|T T|F|T|T T|\F|T|T

T|F|F|T T|F|F|F

4. plq|? F|T|T|F F|T|T|F
T|T|T F|T|F|F F|T|F|F
T|F|T F|F|T|T F|F|T|T
F|T|F F|F|F|T F|F|F|T
F|F|T

35. plg|?

T|T|F

T|F| T 9. plg|r]|? 42. plqg|r | ?

F|T|F r\17|T|F T|T|T|F

F|F|F r\17|r|T T|T|F|F
T|F|T|F TIFIT|F

36. plqg| ? T|F|F|F TIFIFI|F
T|T|T F|\T|T|T F|T|T|T
T|F|T F|T|F|T F|T|F|T
F|T|T F|\F|T|T F|F|T|F
F|F|T F|F |F|T F|F|F|T
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In exercises 43-52, use the fact that {~, v, A} is adequate to prove each set of
connectives is adequate.

43, {~, V} 48. {~,V, <}

44. {~, n} 49. {~, A, <}

45. {~, =} 50. {~, A, V, —}
46. {~,Vv,—} 51. {~, A, V, <}
47. {~, A, =} 52. {~, A, V,—, <)

Exercises 53-56 consider some general properties of truth tables and adequate sets of
connectives.

53. Using only the connectives in the set {~, <>}, there are four distinct types
of four-row truth tables for two sentence variables. Identify these four truth
tables. What does this tell us about the adequacy of {~, <>}?

54. Using truth tables, verify the logical equivalence (p vV q) = [(p < q) — q].

55. Based on the logical equivalence in exercise 54, we need only show (~ p)
is logically equivalent to a sentence using only — and <> in order to
prove that {—, <>} is adequate. However, there is no such sentence, and
{—, <} is not adequate. What row of the truth table for (~p) is problematic
and why?

56. Based on exercise 55, what common reason ensures that each of {—, A},
{—, v}, and {A, v} is not an adequate set of connectives?

Exercises 57-58 consider logical connectives that are adequate by themselves. Two
such connectives are defined by the following truth tables.

The connective | is referred to as either the Scheffer stroke or the “nand” connective
(since the truth table for | is that of a negated and-sentence). Similarly, the connective
J is referred to as either the Pierce arrow or the “nor” connective (since the truth table
for | is that of a negated or-sentence).

In exercises 57-58, prove {|} is adequate by using truth tables to verify each logical
equivalence.

57. ~p=plp 8. prg=lgl(plg

In exercises 59-60, prove {|} is adequate by using truth tables to verify each logical
equivalence.

59. ~p=plp 60. pvg=(plgpl(plqg

Exercises 61-70 consider implications. In technical discourse, the left side of an
implication is referred to as the “antecedent” and the right side of an implication
is referred to as the “consequent.” In addition, the “contrapositive” of an implication
p — q is the logically equivalent sentence (~q) — (~p).
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In exercises 61-70, identify the antecedent, the consequent, and the contrapositive of
each implication.

61. If p, then gq. 66. (p A q) = p when the variable
62. If ~p, then q. q=T.
63. If p v g, thengq Vv p. 67. If n > 2, then n> > 4.
64. g Apwhenp A q. 68. If n < 2, then n> < 4.
65. (p V q) = p when the variable 69. n> > 4whenn > 2.
g=F. 70. n> <4 whenn < 2.

14 Application: Designing Computer Circuits

In theorem 1.3.1 of section 1.3, we described an algorithm for constructing a formal
sentence satisfying a given truth table. Recall that the resulting output is always an
“or” sentence (a disjunction) of several “and” sentences (several conjunctions) and
that we say such sentences are in disjunctive normal form.

In addition to the disjunctive normal form’s connections with sentences satisfying
given truth tables and with adequate sets of connectives, this form is also important
for the design of computer circuits. The logical processes simulated by computers
are described using a two-state system and correspond directly with sentential logic.
The application of sentential logic to two-state systems actually predates computers
and was first developed for the design of telephone systems. In the 1920s and
1930s, the first telephone networks were constructed using physical switches that
were in either an “open” or a “closed” position. Similarly, the electric current in a
computer circuit is either “on” or “off.” These two-state systems can be modeled
using sentential logic by identifying a correspondence with the truth values “true”
and “false.” The standard correspondence is given in the following table. The
binary values 1 and O are traditionally used by computer scientists and computer
engineers in the design of computer circuits and so these binary values are included in
this table.

Truth | Phone | Electric | Binary
value | switch | current value
true closed | on 1

false open off 0

We study the design of basic computer circuits using our familiarity with sentential
logic and with disjunctive normal form. Recall that {~, A, v} is an adequate set of
connectives, and so every truth table is satisfied by a formal sentence using only
these connectives. Therefore, when designing computer circuits, we utilize three
basic circuits or gates, where these gates correspond to the connectives for negation,
conjunction, and disjunction. We assign the values 1 to 7 and 0 to F and transform
the connectives’ truth tables into input—output tables. The following chart gives the
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input—output tables defining the three basic gates along with their standard circuit
diagram symbols.

Gate Input—output table Diagram symbol

input | output
NOT-gate (for ~) 1 0
0 1

input | output

1 1 1
AND-gate (for A) 1 0 0 :D_

0 1 0
0 0 0
input | output

1 1 1
OR-gate (for V) :[>_

S O =
S = O
O ==

Any adequate set of connectives can be used to determine a collection of basic
gates since every truth table (and so every input—output table) is expressible by an
adequate set of connectives. For example, {~, A} is an adequate set of connectives,
and we could design computer circuits using just a NOT-gate and an AND-gate.
However, as we have also seen (particularly in the exercises for section 1.3), using
only two connectives can significantly increase the complexity of formal sentences.
Therefore, we choose to utilize all three of the basic gates. Interestingly enough,
the “nand” and “nor” connectives (introduced in the exercises for section 1.3) are
utilized in actual practice. Both nand and nor are adequate by themselves and
only require the physical manufacture of a single basic circuit rather than three
basic circuits.

Acomputer circuit is presented as a diagram of wires and gates. The diagram begins
on the left with several input wires (these correspond to sentence variables), and a single
output wire terminates the circuit on the right of the diagram. Four fundamental rules
are followed when creating these circuit diagrams.

* Any single wire can split and provide input wires to two or more gates.

* Input wires cannot combine.

* An output wire from one gate can serve as an input wire for another gate.

* An output wire from a gate cannot loop back to serve as an input wire for the
same gate, neither directly nor after passing through any number of intermediate
gates.

Before we dive into designing computer circuits, we first trace the computation
of a given circuit on some sample inputs. In this section we are generous in using the
equal sign to denote both a particular assignment of truth values to sentence variables
and the correspondence between truth values and binary values. We also freely utilize
our knowledge of truth tables from sentential logic.
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Example 1.4.1

Figure 1.1 The computer circuit for
example 1.4.1

We trace some computations of the computer circuit given in figure 1.1.
We first trace the computation of this circuit on the inputs p =1, ¢ = 0,
r=1.

* From the top gate (the NOT-gate), we have ~p =~1=~T = F = 0.

* From from the middle gate (the AND-gate), wehavep Agq=1A0=TAF =
F=0.

* From the bottom gate (the OR-gate on the left), wehaveqgVvr=0v1=FVvT =
T=1.

Taking the final disjunction (the OR-gate on the right), we combine the output
values of the first three gates and obtain O VOV 1 =FVFVvT =T = 1.
Therefore, the circuit computes 1 from the given inputs of p = 1, ¢ = 0,
andr = 1.

We now trace the computation of this circuit on the set of inputs p = 0, g = 0,
r=1.

* From the top gate, we have ~p =~0=~F =T = 1.
* From from the middle gate, we have p Agq=0A0=FAF =F =0.
* From the bottom gate, we havegvr=0v1=FvT =T = 1.

Taking the final disjunction, the circuit computes 1 VOV 1 =T Vv FvVv
T=T=1.

From tracing these computations, we recognize that the top gate computes
(~p), the middle gate computes (p A g), and the bottom gate computes (g V r).
Taking the final disjunction, we see that the given circuit computes the formal
sentence (~p) V (p A q) V (g V r). Based on this analysis, we can determine a
complete input—output table for the given circuit by computing the truth table for
this sentence and expressing the result in binary notation (using 1 for 7 and 0
for F).

|

In the circuit diagram given in figure 1.1 for example 1.4.1, we have three input

wires entering the right OR-gate, rather than just two input wires as specified in the
original definition of the OR-gate. We are free to adopt this shorthand notation for both
the OR-gate and the AND-gate by the associativity of conjunction and disjunction
provided by the logical equivalences p A (g AFr) =P Ag ArandpVv(gVvr)=
(» Vv q) Vv r, respectively. Similar logical equivalences hold for an arbitrary number
of sentence variables in multiple disjunctions and conjunctions. Therefore, we can
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increase the number of input wires into a single OR-gate and a single AND-gate as
needed in circuit diagrams.

Question 1.4.1 Trace the computation of the circuit given in figure 1.1 on each set of inputs.

@ p=1qg=1,r=1 ® p=0,g=1,r=0
]

We now study the design of a computer circuit with a given input—output table.
In light of the natural correspondence between truth tables and input—output tables
suggested by our work, we follow an approach suggested by section 1.3. Specifically,
we produce a sentence in disjunctive normal form satisfying the given table, and then
use this sentence to design the computer circuit using NOT-gates, AND-gates, and
OR-gates.

Example 1.4.2 We use disjunctive normal form to design a computer circuit with the following
input—output table.

Identifying 1 with 7" and O with F', we implement the standard algorithm for
disjunctive normal form to produce the sentence [p A gq] V [(~p) Aq] V [(~p) A
(~¢)]. This sentence serves as a guide in designing the corresponding computer
circuit. First, we compute each of the three conjunctions using NOT-gates and
AND-gates. Then, we take the disjunction of the resulting outputs in a rightmost
OR-gate (in this case, with three input wires). This process produces the desired
circuit diagram given in figure 1.2.

|

The computer circuit produced in example 1.4.2 is not the simplest possible circuit
computing the given input—output table. You may be able to design a simpler circuit
using fewer gates based on your familiarity with the algebra of sentential logic. After
another example and question, we study “Karnaugh maps” as a means of reducing
circuit complexity.

Figure 1.2 The computer circuit 9

for example 1.4.2
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Y
U

I>O\ Figure 1.3 The computer circuit

r L for example 1.4.3

Example 1.4.3 We use disjunctive normal form to design a computer circuit with the following
input—output table.

p | q | r| output
11111 1
1110 0
1101 1
1100 0
0|11 1
0|10 0
001 0
0(0|0 0

The input—output table is satisfied by [p AgAr] vV [pA(~q) ArlVv
[(~p) A g A r] by our standard algorithm for disjunctive normal form. First,
we compute each of the three conjunctions using NOT-gates and AND-gates, and
then we take the disjunction of the resulting outputs in a rightmost OR-gate (again
with three input wires). This process produces the desired circuit diagram given
in figure 1.3.

Question 1.4.2  Use disjunctive normal form to design computer circuits with each input—output

table.

(a) ®) plg]|r| output
1111 0
1{1]0 1
1{0]|1 0
11{0]0 0
o(1 |1 0
0110 1
001 0
0(01]0 1
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o

Figure 1.4 The computer circuit for (~p)vg 4 \§>;

Recall from example 1.4.2 that the formal sentence [p A g] vV [(~p) A gq] V
[(~p) A (~ q)] was used to design a circuit computing the following input—output
table.

You may recognize the pattern of 1s in this input—output table from another setting:
if we substitute 7 for 1 and F for 0, we obtain the basic truth table for the
implication p — ¢. Example 1.2.6 in section 1.2 proved implication expansion,
the logical equivalence (p — ¢q) = [(~p) V ¢q]. Based on this logical equivalence,
the circuit for (~p) Vv g (figure 1.4) also computes the input—output table given in
example 1.4.2.

This second circuit is much simpler than one produced in example 1.4.2
and would certainly be favored by engineers and manufacturers because of this
relative simplicity. However, the design of this simpler circuit hinged on a bit of
clever insight. In contrast, the algorithmic approach of disjunctive normal form
guarantees a solution (that is, a circuit diagram) for every given input—output table.
Fortunately, this example is not an isolated event and there exists an algorithm that
enables the simplification of many formal sentences without requiring too much
cleverness. The algorithm involves searching a Karnaugh map representation of a
given input—output table for patterns of 1’s. We illustrate this approach in the next two
examples.

Example 1.4.4 We use a Karnaugh map to design a circuit with the input—output table from
example 1.4.2.

For two sentence variables p and ¢, the corresponding 2 x 2 Karnaugh map is
determined by reorganizing the input—output table into a two-row by two-column
table. We label the rows and columns with the possible values of p and ¢ and
list the output value of 1 in each interior square for which the input—output
table has an output value 1. For example, when p = 1 and g = 1, the output
is 1, so the entry in the first-row, first-column interior square of the following
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Karnaugh map is also 1. The following is the complete Karnaugh map for the
input—output table.

We now inspect the Karnaugh map for adjacent pairs of 1’s in either
rows or columns (but not diagonals). In two-variable settings, we are interested
in an adjacent pair of 1’s since they can always be represented by a single
sentence variable or its negation. In this example, we find two distinct adjacent
pairs of 1’s.

* The first row of the interior square is represented by ¢, since the variable g
only takes on the value 1 and the variable p takes on both values 1 and 0. The
corresponding formal sentence in disjunctive normal formis (p A ) V [(~p) A q]
and (using logical equivalences), we have

erpVIi~prgl=lpvi~plag=T Ag=q.

Sentence variables that take on both values 1 and O are referred to as free
variables and always “factor out” of the corresponding formal sentence. These
variables represent extraneous data and so they are designated as “free”
variables that can take on any value and do not impact the outcome of the
computation.

* The second column of the interior square is represented by (~ p), since the
variable p only takes on value 0 and the variable g takes on both values 1 and 0.
The corresponding formal sentence in disjunctive normal form and the resulting
simplification are

(D) AgIVI(~>pAC~PI=(~p)AlgV (~l = (~p) AT = (~p).

Since every 1 in the Karnaugh map appears in at least one of these adjacent
pairs, we move onto the final step. We take a disjunction g vV (~p) = (~p)V qto
obtain the final sentence satisfying the given input—output table. When working
with a Karnaugh map, we always take this final disjunction of the component
sentences determined by adjacent pairs of 1’s. This process produces the desired
circuit diagram given in figure 1.5.

|

Karnaugh maps were developed in the early 1950s by the telecommunications

engineer Maurice Karnaugh while he was working at Bell Laboratories. In 1953,
Karnaugh published his results on what have become known as Karnaugh maps in The
Map Method for Synthesis of Combinational Logic Circuits [137] and these diagrams

p M Figure 1.5 The computer circuit for
q example 1.4.4
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are a standard component of computer science and engineering curricula. We are using
Karnaugh maps to simplify circuits and formal sentences and this process can be refined
to obtain minimal circuits and sentences (minimal in terms of the number of connectives
appearing in the final sentence). The success of Karnaugh maps hinges on humans’
natural affinity for identifying certain patterns, and this approach works quite well for
up to six variables. More sophisticated and subtle algorithms have been developed for
simplifying sentences with more than six variables. Consider the following use of a
Karnaugh map in the three-variable setting.

Example 1.4.5 We use a Karnaugh map to design a circuit with the input—output table from
example 1.4.3.

p | g | r | output
1111 1
111]0 0
110]1 1
1100 0
0111 1
0j110 0
0]0]|1 0
0(0|0 0

In this three-variable setting, the two sentence variables p and g are grouped
together and the original input—output table is reorganized into a 2 x 4 Karnaugh
map. As in example 1.4.4, we list a 1 in the interior square corresponding to
each output of 1 in the input—output table and so obtain the following complete
Karnaugh map.

Pq
11 10 00 01

r 1 1 1 1

The column labeling of the 2 x 4 Karnaugh map is particularly important. We
use what is known as grayscale labeling, in which exactly one bit changes from
one column to the next; this labeling permits adjacent pairs of 1’s and 2 x 2 squares
of 1’s to “wrap around” the ends of the map. We first inspect the Karnaugh map
for 2 x 2 squares of 1’s; such squares can be represented by a single variable (or
its negation). We then look for adjacent pairs of 1’s in rows and columns (but not
diagonals); such pairs can be represented by a conjunction of just two variables
(or their negations). In this example, we do not find any 2 x 2 squares of 1’s, but
we do find two distinct adjacent pairs of 1’s in the first row.

* The first two columns of the first row are represented by (p A r) since p takes on
1, g takes on both 1 and 0, and r takes on 1. We eliminate the free variable g that
takes on both 1 and 0 and, sincep =1=Tandr =1 =T, we have (p A 7).

* The last and first column of the first row are represented by (g A r). This pair
of 1’s is adjacent because 2 x 2 squares and adjacent pairs of 1’s can “wrap
around” the ends of the map under the given grayscale labeling of columns.
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p

q
] Figure 1.6 The computer circuit for
r——— example 1.4.5

For this adjacent pair, p takes on both 1 and 0, g takes on 1, and r takes on 1.
We eliminate the free variable p and, since¢q =1 =T andr = 1 = T, we have

(g N ).

Since every 1 in the Karnaugh map appears in at least one of these adjacent
pairs, we take the disjunction (p A7) V (g A r) to obtain the final sentence satisfying
the given input—output table. This process produces the desired circuit diagram
given in figure 1.6.

|

Question 1.4.3 Use a Karnaugh map to design a computer circuit with the following input—output
table.

Thus far, we have used our knowledge of sentential logic to inform and guide
our work with computer circuits. However, we now find ourselves in a position
to reverse this relationship. Just as we have used Karnaugh maps to simplify
computer circuit diagrams, we can also use Karnaugh maps to simplify formal
sentences.

Example 1.4.6 We use a Karnaugh map to simplify the following formal sentence.

AgA(~D] VvV IPAC@ATT V [(Mp)A(~g) AF]V
PACPACD]V [(~p)A(~g) A(~1)]

First, we construct the corresponding 2 x 4 Karnaugh map, using the standard
grayscale labeling of columns as noted in example 1.4.5 and listing the value
1 in the interior square corresponding to each conjunction of the given formal
sentence.

Pq
11 10 00 01
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Question 1.4.4

We search the Karnaugh map for instances of 2 x 2 squares of 1’s and adjacent
pairs of 1’s, which corporately include all 1’s in the map. We find one square and
one adjacent pair.

* The center 2 x 2 square of 1’s is represented by (~¢g). In particular, p takes on
both 1 and 0, ¢g takes on 0, and r takes on both 1 and 0. We eliminate the free
variables p and r and, since ¢ = 0 = F, we have (~¢q).

* The adjacent pair of 1’s determined by the first two columns of the second row
is represented by [p A (~r)]. The variable p takes on 1, g takes on both 1 and
0, and r takes on 0. We eliminate the free variable g and, sincep = 1 =T and
r=0=F,wehave [p A (~71)].

Taking the final disjunction, the given formal sentence is logically equivalent
to the much simpler sentence (~q) V [p A (~r1)].
|

Use a Karnaugh map to simplify the following formal sentence.

[pAgAT] VvV IpAgA (DL vV [(Mp)AgATTv
() A~ A(~1)] vV [(~p) Ag A (~T)]
In addition, sketch the corresponding circuit diagram. As you work with the
Karnaugh map, keep in mind that squares and adjacent pairs can wrap around
the ends of the map. -

For completeness, we mention that isolated 1’s in Karnaugh maps do not allow

the elimination of any free variables. For example, consider a given input—output table
with the following Karnaugh map.

pq
11 10 00 01

Since no 2 x 2 squares of 1’s or adjacent pairs of 1’s appear in this map, there are no free
variables to eliminate. Therefore, the corresponding formal sentence is [p A g A r]V

[(~p) A (~g) A (~1)].

Finally, we should note that a Karnaugh map with all 1’s corresponds to a tautology

utilizing an appropriate number of sentence variables, while a Karnaugh map with
no 1’s corresponds to a contradiction utilizing an appropriate number of sentence
variables.

1.4.1

Reading Questions for Section 1.4

1. Define disjunctive normal form. Give an example of a sentence that is in
disjunctive normal form and a sentence that is not.
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2. Define and sketch the symbol for the three basic gates used in designing
computer circuits.
3. Discuss the relationship between input—output tables and truth tables. Give
an example to facilitate your discussion.
4. State four fundamental rules for designing computer circuits.
5. Why are we free to use just three gates when designing computer circuits?
6. What is the first step in identifying a computer circuit for a given input—output
table?
7. What role do Karnaugh maps play in designing computer circuits?
What role do Karnaugh maps play in simplifying formal sentences?
9. State the dimensions of a Karnaugh map representing an input—output table
with two inputs. What are the dimensions for three inputs?
10. What configuration of 1’s do we look for in a 2 x 2 Karnaugh map?ina?2 x 4
Karnaugh map?
11. How many variables are needed to represent an adjacent pair of 1’sina?2 x 2
Karnaugh map? in a 2 x 4 Karnaugh map?
12. How many variables are needed to represent a square of 1’sina2 x 2 Karnaugh
map? in a 2 x 4 Karnaugh map?

*®

1.4.2 Exercises for Section 1.4

In exercises 14, trace the computation of the computer circuit given in figure 1.7 on
each set of inputs.

l.p=1,¢g=1 3.p
2.p=1,4=0 4. p =

In exercises 5-8, trace the computation of the computer circuit given in figure 1.8 on
each set of inputs.

5..p=1,¢qg=1 7.p=0,g=1
6.p=1,4g=0 8. p=0,¢9g=0

In exercises 9—14, trace the computation of the computer circuit given in figure 1.9 on
each set of inputs.

9.p=1,q=1,r=1 12. p=0,g=1,r=1
10. p=1,g=1,r=0 13. p=0,¢9g=0, r=1
1. p=1,4g=0, r=1 14. p=0,¢9q=0,r=0

Figure 1.7 The computer circuit for
L exercises 1-4
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Figure 1.8 The computer circuit for
exercises 5-8

q Figure 1.9 The computer circuit for
r exercises 9—14
p —

Figure 1.10 The computer circuit for
r exercises 15-20

In exercises 15-20, trace the computation of the computer circuit given in figure 1.10
on each set of inputs.

15.p=1,g=1,r=1 18. p=0,g=1,r=1
6. p=1,qg=1,r=0 19. p=0,9g=0,r=1
17.p=1,9q=0,r=1 20. p=0,9q=0,r=0

In exercises 21-32, use disjunctive normal form to design a computer circuit with each
input—output table.

21. p | g | output 23. p | g | output 25. p | g | output
1|1 0 1|1 0 1|1 0
1[0 1 110 1 1[0 1
0|1 1 0|1 1 011 0
00 1 00 0 010 0

22. p | g | output 24. p | q | output 26. p | g | output
11 1 11 1 111 1
1[0 0 110 1 110 1
01 1 0|1 0 011 1
00 0 00 1 010 1
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output

output

r

r

31. plg

output

3. plg

output

r

r

29. plg

output

30. plg

output

r

r

27. plgq

28. plg

Inexercises 33—44, state a formal sentence satisfying the input—output table represented

by each Karnaugh map.

36.

33.

37.

38.

34.

35.

Pq

39.

01

00

10

11
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40.

41.

42.

43.

44.

Mathematical Logic

rq
11| 10 00 ol
rl 1 1 1
0| 1 1
rq
11| 10 00| ol
P 1] 1 1
0| 1 1
rq
11| 10 00| ol
r[ 1] 1 1 1
0 1 1 1
rq
11| 10] 00 ol
o 1 1 1
0] 1 1
rq
1| 10] 00 ol
r[ 1] 1 1 1
0 1 1
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In exercises 45-56, use a Karnaugh map to design a computer circuit with each input—
output table.

45.

46.

47.

48.

49.

50.

The input—output table from
exercise 21.
The input—output table from
exercise 22.
The input—output table from
exercise 23.
The input—output table from
exercise 24.
The input—output table from
exercise 25.
The input—output table from
exercise 26.
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52.

53.

54.

55.

56.

. The input—output table from
exercise 27.
The input—output table from
exercise 28.
The input—output table from
exercise 29.
The input—output table from
exercise 30.
The input—output table from
exercise 31.
The input—output table from
exercise 32.

In exercises 57-64, use a Karnaugh map to simplify each formal sentence.

57.
58.

[pAgl vV [(~p)Aq]
[pAgl Vv [pA(Cg]

59.lpAgl VvV IpA(~@] V [(~p) A(~q)]
60. [pAgl vV IpA(~q@] V [(~p) A(~q)]
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6l. [pAgnAr]l vV [pA(@ AV [PA(~g) AT]

62. [(~p)A(~Ar] vV [(~p) A~ A (~P)] V [(~p) AgA(~7)]

63. [(~pD)AC~PIV [PAGACD]IV [PACPA(~N]V [(~p)AgA(~1)]
64. [(~>p)A(~I V [(~p)Agl vV [pA(~q) A(~T)]

Exercises 65-70 consider an alternative to disjunctive normal form. A formal sentence
is in conjunctive normal form when the sentence is a conjunction of sentences
consisting of disjunctions of sentence symbols, sentence variables, or their negations.
Given a truth table, a sentence in conjunctive normal form satisfying the truth
table is obtained by stating a conjunction based on the truth values of the sentence
variable in each “false” row of the given table and then forming the disjunction of all
these conjunctions. Finally, we take the negation of the resulting sentence and apply
De Morgan’s laws and double negation to obtain the desired sentence in conjunctive
normal form. Consider the following example.

PAg since p=T,9=T

(~p)Ag since p=F,q=T

Taking the negation of the resulting disjunction and applying De Morgan’s laws and
double negation, we have.

~l(pAg vV (APl = [~(pA@] A A{~[(~p) Aql}
= [Vl AMI~(plV(~g9)
= [(>pV (9l A lpV(~gl
Thus, [(~p) V (~q)] A [pV (~¢q)]is a formal sentence in conjunctive normal form
satisfying the given truth table.

In exercises 65-70, use conjunctive normal form to design a circuit with each
input—output table. For the last three exercises use the generalized De Morgan’s
law ~(p AgAr) = (~p)V (~q)V (~r), which can be verified via a truth table
computation.

65. The input—output table from 68. The input—output table from
exercise 21. exercise 27.

66. The input—output table from 69. The input—output table from
exercise 22. exercise 28.

67. The input—output table from 70. The input—output table from
exercise 23. exercise 29.

1.5 Natural Deductive Reasoning

In this section we discuss natural language arguments and deductive reasoning—the
very topics that motivated Aristotle’s original study of logic. There are many different
kinds of arguments, and some of the most effective arguments are those blending
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rational with irrational (yet persuasive) elements. We focus on the logical content
of arguments, identifying arguments as valid or invalid based purely on their formal
structure. In this context, an argument is a list of sentences. The last sentence is the
conclusion and the previous sentences include some premises or assumptions with some
intermediate steps often included for clarity. Ideally, the conclusion follows from the set
of premises by some valid means of logical reasoning. The process of determining the
validity of an argument is quite important, particularly when we must decide whether
we believe an argument and when our choices carry profound consequences.

The first step in analyzing arguments is to translate natural language arguments
into formal language arguments. This translation enables us to focus on the logical
structure of a given argument and to determine its validity. Good reasoning uses a
blend of various different argument forms or rules of deduction. We define “valid”
rules of deduction and then learn some particular rules of deduction. The two most
common templates for rules of deduction are

A B and C, D .- E.

The symbol ““ -, ” is commonly translated as “therefore” or “thus” and denotes the
conclusion of the rule of deduction, and so the first template is read “A, therefore B.”
Similarly, the second template is read “C and ID, therefore E.” In such arguments, A, C,
and D represent formal sentences that serve as premises or assumptions. Given these
assumptions, we deduce the conclusions B and E, respectively.

There are many different rules of deduction, some of which are valid, or correct,
and some of which are invalid, or incorrect. The following two rules of deduction are
valid.

Double negation: ~(~p) .. p
Modus ponens: p—>q, p .. q

Double negation assumes the premise ~ (~ p) and deduces the conclusion p. Similarly,
modus ponens assumes the two premises p — ¢ and p, and deduces the conclusion g.
The name “modus ponens” is Latin for “mode that affirms” and was given to this rule
of deduction by the logicians of the Scholastic period during the Middle Ages, when
the study of Aristotle’s logic flourished in European monasteries.

Before engaging in a broad study of many different rules of deduction, we first
define what it means for a rule of deduction to be valid, or correct. The fundamental
guiding principle that motivates our formal definition asserts, “an argumentis incorrect
if it can have true premises and a false conclusion.” We also work with the positive
rendition of this guideline: “an argument is correct if it can never have true premises
and a false conclusion.”

With these principles in mind, we develop an algorithm identifying arguments
that can never have both true premises and a false conclusion. Thinking in terms
of the five original logical connectives and their basic truth tables, implication (the
“if-then” connective denoted —) provides the key tool. In particular, implication
returns the value true, except in the case “true implies false.” Therefore, we define an
argument to be valid when a corresponding implication is a tautology. If an argument
has multiple premises, we are only interested in the cases when all the premises are



48 A Transition to Advanced Mathematics

simultaneously true, and so we combine the argument’s multiple premises using a
conjunction. Consider the following definition.

Definition 1.5.1 A rule of deduction of the form Ay, ..., A, . Cisvalid if ( A; A---AA,) —> C

Example 1.5.1

Proof

is a tautology. Thus, a rule of deduction of the form A . B is valid if A — B
is a tautology; similarly, a rule of deduction of the form C, D . E is valid if
(C AD) — E is a tautology.

We prove double negation: ~(~p) .. p is a valid rule of deduction.

Using the definition of validity (that is, definition 1.5.1), we compute the truth
table for the corresponding implication ~ (~p) — p.

pl(~p)|~C~p) | ~~p—p
T F T T
F T F T

Since this implication is a tautology, the given argument can never have both a
true premise and a false conclusion. Therefore, double negation is a valid rule of
deduction.

|

Double negation is a special case of a more general principle: if B and C are formal

sentences and B = C, then both B -, C and C -, B are valid rules of deduction. In
particular, since B and C are logically equivalent, they have the same final column
in their respective standard truth tables. Therefore, both B — C and C — B are
tautologies, and the corresponding rules of deduction B . Cand C .-. B are valid.

Example 1.5.2

Proof

Question 1.5.1

We prove modus ponens: (p — ¢), p .". g is a valid rule of deduction.

Using the definition of validity, we compute the truth table for the corresponding
implication [(p — ¢) A p] — q.

p qlp=>aq|lp>aAp|(p—>aArpl—q
T T| T T T
T F| F F T
FT| T F T
F F| T F T

Since this implication is a tautology, the given argument can never have both a
true premise and a false conclusion. Therefore, modus ponens is a valid rule of
deduction.

|

Prove each rule of deduction is valid.

(a) Conjunctive simplification: p A g .. p
(b) Modus tollens: p — g, ~¢q .. (~p) (Latin for “mode that denies”)
(c) Disjunctive syllogism: p VvV g, ~p .". q
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Now that we have a good handle on proving that a rule of deduction is valid,
we consider the dual goal of proving a rule of deduction is not valid. We show that
the corresponding implication is not a tautology by demonstrating that one row of the
implication’s truth table is false (although certainly more than one row—and perhaps
even every row—may be false).

Example 1.5.3 We prove the converse error: p — ¢q, g .. p is not a valid rule of
deduction.

Proof  Using the definition of validity, we compute the truth table for the corresponding
implication [(p — q) A q] — p.

p qlp=a|l(po>rg|llp—>Argl—>p
T T| T T T
T F| F F T
FT| T T F
F F| T F T

The final column has truth value F' in the third row when p = F and ¢ = T. Since
the corresponding implication is not a tautology, the given argument can have true
premises, but a false conclusion. Therefore, the converse error is not a valid rule

of deduction.
|
Question 1.5.2 Prove each rule of deduction is not valid.
(a) Inverseerror: p — g, (~p) ".~q ®d) pvg, p..~q
]

While this truth table algorithm provides a complete approach to determining
the validity of arguments, the size of the resulting truth tables and the corresponding
computational requirements make this approach unreasonable when the number of
variables is large. Since the truth table of a sentence with n variables has 2" rows,
checking the validity of an argument involving multiple premises with many distinct
sentence variables can quickly become impractical.

In addition, we are interested in Aristotle’s goal of modeling natural deductive
reasoning. Natural reasoning often proceeds in incremental steps using basic rules of
deduction, including double negation, modus ponens, and conjunctive simplification.
For example, we soon verify the validity of the rule of deduction: (~ A) — B,
(~C) = (~A), ~B, C — D .. D. Rather than computing the corresponding 16-
row truth table, we proceed from the premises to the conclusion in several steps,
justifying each step with a known rule of deduction. The underlying idea is that
an argument obtained by composing valid rules of deduction must also be valid,
providing us a model of the step-by-step processes inherent in natural reasoning.
The next several examples illustrate this approach to proving the validity of complex
arguments.
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Example 1.5.4 We prove A AB, A — C .. Cis avalid argument by justifying each step in the
given deduction with a known rule of deduction.

1
2.
3.
4

ANB
A
A—C
C

premise
1—conjunctive simplification with p = A and ¢ =B
premise

2,3—modus ponens with p =A and ¢ =C

In the justification for line 2, the number 1 identifies A A B from line 1 as
the premise allowing the deduction of A. Similarly, in the justification for
line 4, the numbers 2 and 3 identify the lines containing the premises for the
particular implementation of modus ponens that yield the conclusion C given in

line 4.

Example 1.5.5 We prove A — (~B), A, C — B ..~ C is a valid argument by justifying each
step in the given deduction with a known rule of deduction.

M

A

A= (~B)

~B
C—>B
~C

premise

premise

1,2—modus ponens with p =A and g = ~B
premise

3,4—modus tollens with p = C and ¢ =B

Example 1.5.6 We prove AV B, ~A, B — C .. Cis avalid argument by justifying each step
in the given deduction with a known rule of deduction.

NS

AV B

premise

premise

1,2—disjunctive syllogism with p =A and ¢ = B
premise

3,4—modus ponens with p =B and ¢ =C

As seen in these examples, our study focuses on the formal rendition of the
component sentences of an argument. When applying this approach to analyze natural
language arguments, we would employ the skills and techniques from section 1.1
to create an appropriate dictionary and express the natural language sentences
as formal sentences. While one would probably never engage in such a careful,
explicit analysis, the habits and patterns of correct reasoning and a careful, implicit
analysis of logical arguments are essential to the creation of proofs of mathematical

truth.

As can be surmised from these examples, we must know some basic rules of
deduction in order to justify the steps in a given deduction. For ready reference,
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the most frequently used rules of deduction are gathered together in the following
chart.

Formal name Rule of deduction
Modus ponens p—>q,p..q
Modus tollens p—>4q, ~q ..~p
Double negation ~(~p) .. p

p ..~ (~p)
Conjunctive simplification PAgqg .. p

PAG .. q
Conjunctive addition P, g ..pPAQ

pP»q .. gNp
Disjunctive syllogism pNvVgq, ~p .. ¢q

pvgqg, ~q ..p
Disjunctive addition p..pVvVq

q..pVvVq
Hypothetical syllogism p—>q, q—>r . .p—>r
Dilemma pvg, p—>r,q—>r . .r
Contradiction (~p)—>lgnr(~q)], ..p
Logical equivalence ifB=C,thenB .-.C
De Morgan’s law ~(pAgq) .. (~p)V(~q)

(~p)V(~q) .~pArq)
~pPVgqg ;. (~p)A(~q)
(~p)A(~q) -.~(pVq)

This collection of rules of deduction is commonly used in both mathematical
and philosophical courses in logic and has been isolated over centuries of study and
practice as essential guidelines for correct reasoning. We have already seen proofs of
the validity of some of these rules in the preceding examples and questions. The proofs
of the new rules of deduction appearing in the bottom half of the chart are given as
exercises at the end of this section.

Question 1.5.3 Prove (~A) — B, (~C) — (~A), (~B), C — D .. Dis avalid argument by
justifying each step in the given deduction with a known rule of deduction from
the above table, as in the previous examples.

1. (~A) — B 3. ~(~A)
2. ~B 4. (~C) = (~A)
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Question 1.5.4

5. ~(~0O) 7. C—D
6. C 8. D
|

Prove [(~A) AB] - C, ~A, ~(AV C) .".~Bis avalid argument by justifying
each step in the given deduction with a known rule of deduction.

I. [(~A)AB]l— C 5. ~[(~A) A B]
2. ~(AVO) 6. [~(~A)]V (~B)
3. (~A)A(~C) 7. AV (~B)
4. ~C 8. ~A

9. ~B

We end this section with an alternative approach to proving a rule of deduction is

invalid. A rule of deduction is valid if every entry is 7 in the final column of the truth
table for the corresponding implication, while a rule of deduction is invalid if at least
one entry is F' in the final column of the truth table for the corresponding implication.
The alternative approach is based on the observation that we do not need to produce a
complete truth table in order to prove that a rule of deduction is invalid—the 7' rows
of the truth table are irrelevant to demonstrating the invalidity of an argument. Instead,
we just need to identify one assignment of truth values to the sentence variables (i.e.,
one row in the corresponding truth table) for which all the premises are true, but the
conclusion is false. Consider the following example.

Example 1.5.7

Proof

We prove the converse error: p — ¢, g .". p is an invalid rule of deduction using
the alternative approach discussed above.

We assume the premises are 7" and the conclusion is F, resulting in the following
collection of assignments of truth values to the sentences appearing in the
argument.

Working from these assumptions, we identify the possible assignments of truth
values to the corresponding sentence variables as determined by the basic truth
tables for the logical connectives.

(p—=q@=T = p=Forg=T
p=F = p=F

From the second and third conditions, we have ¢ = T and p = F'. The first line is
now satisfied, since we have both p = F and ¢ = T (recall that mathematicians
work with the inclusive-or). Therefore, p = F and ¢ = T is an assignment of truth
values to the sentence variables that is consistent with our assumptions and results
in the premises all being true while the conclusion is false. We say that p = F
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and g = T serves both as a witness to the invalidity of the converse error and as a
counterexample to the validity of the converse error.
|

As demonstrated in example 1.5.7, we first assume that the premises are 7" and the
conclusion is /' when proving the invalidity of a given argument. We then work with
the basic truth tables to obtain a corresponding assignment of truth values to sentence
variables that is consistent with all of these assumptions and serves as a witness to the
invalidity of the given argument.

Example 1.5.8 We use the alternative approach to prove (~p), (pV q), (r - ¢q) ... (p Ar)isan
invalid rule of deduction.

Proof ~We assume the premises are 7" and the conclusion is F, resulting in the following
collection of assignments of truth values to the sentences appearing in the
argument.

(~p) pVg r—>q pAr
T T T F

Working from these assumptions, we identify the possible assignments of truth
values to the corresponding sentence variables as determined by the basic truth
tables for the logical connectives.

~p)=T = p=F

(pvg =T = p=Torqg=T
roq=T = r=Forq=T
(pAr)=F = p=Fand r=F

From the first and last conditions, we have p = F and r = F. Based on the second
line, we must choose ¢ = T, since we already have p = F. Under this assignment
of truth values, the third line is now satisfied, since we have both r = F and
q = T (again, we use the inclusive-or). Therefore, p = F,q =T, and r = F is
an assignment of truth values to sentence variables that results in the premises
all being true while the conclusion false, witnessing the invalidity of the given
argument.

Question 1.5.5 Use the alternative approach to prove the invalidity of each rule of deduction from
question 1.5.2.

(a) Inverseerror: p — g, (~p) ...~q (®) pvg p..~q

1.5.1 Reading Questions for Section 1.5

1. State the definition of an argument for natural deductive reasoning.
2. State one of the general forms for a rule of deduction, and give an example.



54

A Transition to Advanced Mathematics

10.

11.

12.

What is the guiding principle for identifying an argument as valid?

How many rows are there in the truth table of a sentence with »n distinct
sentence variables?

Define and give an example of a valid rule of deduction.

Define and give an example of an invalid rule of deduction.

Describe two distinct approaches to proving that a rule of deduction
is valid.

. Discuss the positive and negative aspects of each approach to proving that a

rule of deduction is valid.

State four basic rules of deduction.

Describe two distinct approaches to proving that a rule of deduction
is invalid.

Discuss the positive and negative aspects of the two approaches to proving
that a rule of deduction is invalid.

Discuss the relationship between a witness and a counterexample.

1.5.2 Exercises for Section 1.5

In exercises 1-18, use the definition of validity (that is, an appropriate truth table
computation) to prove each rule of deduction is valid. In exercises 1-11, also state the
name associated with the rule of deduction.

10

1
2
3
4
5.
6
7
8
9

-P—>q ~q .~p . [pA(~@]— [rA(~1)]
.PAgQ p S.p—>q
. PAG g 12.p—>gq, p—>r
Sop—> (@A)

.Ds g J.DPDANQ

13.pgq, p .. g
pvgqg, ~p

4. p<gq, ¢q

.pVgqg, ~q .p

15. p<q, ~p ..~q

-p . PVYg
16. p<q, ~q ..~p
.q ..pVyq
17. p<q, p<r
.p—>q, q—>r1r . .p—>r (g VT
pYa P g 18.p<q, por c.qgeor

In exercises 19-32, use the definition of validity (that is, an appropriate truth table
computation) to prove each rule of deduction is invalid.

19.
20.
21.
22.
23.

p—>q, ~p ..~¢q 2. pANg .1

p—>q, ~q ..p 25.pAg  .~q

pvgq, p ..~¢q 26. (pAgQ)—>r, ~q . .r
pvg, p .. q 27. (pANg)—r, p .1
pvg .. p 28. (pAgQ)—>r, r . pAgq
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29. (pvgVvr, ~p -.r 3l.p<gq, g<r . (~p)Ar
30. pvg, p<q .. (~p)Ag 32. p<gq, ~q ..p

In exercises 33—42, prove each argument is valid by justifying each step in the given
deduction with a known rule of deduction. In addition, state the number of rows in the
corresponding truth table proof of validity; do not compute these truth tables, just state
the number of rows.

33. ~(~B), B—>A . A 38. (~A)A(~B), (~C)— B,
I. ~(~B) C—-D D
2. B L. (~A)A(~B)
3. B—>A 2. ~B
4. A 3. (~CO)—B
4. ~(~C)
3. AAB, B—C C 5. C
1. AAB 6. C—D
2. B 7. D
3. B—C
4. C
39. A— (BAC), AAD,
35. A—>B, (~B)AC . .~A (~B)VE . E
1. (~BAC 1. AAD
2. ~B 2. A
3. A—B 3. A—-> BAO)
4. ~A 4. BAC
5. B
36. AvB)—>C, B .. C 6. ~(~B)
1. B 7. (~B)VE
2. AVBEB 8. E
3. (AVB)—>C
4. C
40. (AAB)— C, BvVD, ~D,
37. A—>B, B—C, AVD, ANE . C
~D - C l. AAE
1. A>B 2. A
2. B—>C 3. BvD
3. A—>C 4. ~D
4. AvVD 5. B
5. ~D 6. AAB
6. A 7. (AAB)— C
7. C 8. C
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[Av(~B)] — C, 42,
(~B)v D,~C,
E—A, .. DA(~E)
1. [Av(~B)]—C
2. ~C
3. ~[AV(~B)]
4. (~AA ~(~B)
5. ~A
6. E—A
7. ~E
8. ~(~B)
9. Dv(~B)
10. D
11. DA(~E)

(~AVB)— C,

DV (~B),~E, A — E,

[(~AYAC]— (~D)..~B
. A>E

~E

~A

(~A)V B

[(~A)V B] — C

c

(~A)AC

[(~A)AC] — (~D)

~D

DV (~B)

~B

e i

—_—
—_— O

In exercises 43-56, use the alternative approach (illustrated in example 1.5.7) to prove
each rule of deduction is invalid.

43.
44.
45.
46.
47.
48.
49.

The invalid rule from exercise 19.
The invalid rule from exercise 20.
The invalid rule from exercise 21.
The invalid rule from exercise 22.
The invalid rule from exercise 23.
The invalid rule from exercise 24.

The invalid rule from exercise 25.

50.
51.
52.
53.
54.
55.
56.

The invalid rule from exercise 26.
The invalid rule from exercise 27.
The invalid rule from exercise 28.
The invalid rule from exercise 29.
The invalid rule from exercise 30.
The invalid rule from exercise 31.

The invalid rule from exercise 32.

In exercises 57-64, classify each argument as an example of modus ponens, modus
tollens, converse error, or inverse error.

57.

58.

59.

60.

61.

If Socrates is human, Socrates is mortal.

Socrates is human.
Therefore, Socrates is mortal.

If Socrates is human, Socrates is mortal.

Socrates is mortal.
Therefore, Socrates is human.

If Socrates is human, Socrates is mortal.

Socrates is not human.
Therefore, Socrates is not mortal.

If Socrates is human, Socrates is mortal.

Socrates is not mortal.
Therefore, Socrates is not human.

If n is an even prime, then n = 2.

n#2.

Therefore, n is not an even prime.



Chapter 1 = Mathematical Logic 57

62. If nis an even prime, then n = 2.
The number 7 is an even prime.
Therefore, n = 2.

63. If nisaneven prime, thenn = 2.
The number 7 is not an even prime.
Therefore, n # 2.

64. If nisan even prime, then n = 2.
n=2.
Therefore, n is an even prime.

In exercises 6570, let B and C be formal sentences and use the definitions of tautology,
logical equivalence, and valid argument to prove each claim.

65. If B = C, then B <> C is a tautology.

66. If B <> C is a tautology, then B = C.

67. If B <> C is a tautology, then B .. C is a valid argument.

68. B .. Cis a valid argument does not imply that B <> C is a tautology.
Hint: Give an example of B and C such that B .-, C is a valid argument, but
B <> C is not a tautology.

69. If B=C, thenB .. Cis a valid argument.

70. B .. Cis avalid argument does not imply that B = C.
Hint: Give an example of B and C such that B .. C is a valid argument, but
B £ C.

1.6 The Formal Language of Predicate Logic

Aristotle and Boole developed formal logic to facilitate the use of human reasoning
to study itself. In pursuing this objective, we have defined sentential logic and studied
the fundamental connectives of our natural language: not, and, or, if—then, and if and
only if. As we have seen through our work with translations, truth, expressibility,
computer circuits, and natural deductions, this endeavor has been quite successful. But
there is still more to be done.

For example, we cannot yet analyze the validity of the following syllogism (which
is another variation on Aristotle’s original work):

Every Greek is mortal.
There exists a Greek.
Thus, there exists a mortal.

Intuitively, this argument appears valid, but it can not be verified using sentential logic.
In particular, noun—verb—object sentences without connectives are the fundamental
“units” or “building blocks” of sentential logic; this syllogismis formalizedasp, g .". r,
where, p is “Every Greek is mortal,” g is “There exists a Greek,” and r is “There exists
a mortal.” From the perspective of sentential logic, this argument is invalid, since
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(p A @) — ris not a tautology under the assignment of truth valuesp =T, ¢ =T,
andr = F.

This example illustrates a need to expand the expressive power of sentential logic
to capture more sophisticated forms of valid reasoning. We work toward overcoming
the limitations of sentential logic by delving more deeply into the sentence structure
of our natural language. In the end, we make two significant extensions of sentential
logic to define what is known as predicate logic.

The first extension is the addition of predicates, which express the verb—object
portion of a sentence and identify a property of the subject. Some examples of predicate
phrases include: “x is Greek,” “x loves y,” “x is even,” “x > y,” and the distinguished
identity predicate “x = y.” Adding predicates to the formal logic also leads us to
consider the various names that can be substituted into predicates, including constants
(such as “b” representing Bailey and “5” representing five), variables (such as “x” and
“y”), and functions (such as addition and differentiation).

The second extension is the addition of quantifiers, which express the notions of
“every” and “exists.” In the above syllogism, “every” and “exists” are central to the
argument about Greeks and mortals. In mathematics as a whole, quantifiers play an
important role as we seek to understand and express general truths about mathematical
objects.

This section begins with the study of predicates and then develops quantifiers.
We start by examining a collection of sentences from the perspective of sentential
logic.

Example 1.6.1 We translate each English sentence into sentential logic. In translating, we

implicitly define a dictionary; for example, based on the first sentence, C represents

“Bailey loves Chris”.
* Bailey loves Chris, but not Morgan. CA(~M)
* Bailey loves Chris only if Dakota loves Morgan. C—-D
* Chris loves neither Bailey nor Dakota. ~(BVA)
* Five is either even or odd. Evo
* Five is even if and only if five squared is even. E<S
» Since five is odd and two is even, five plus

two is odd. (OANT)— F

Throughout this section the examples and questions explore both natural lan-
guage and mathematical translations. Both types of translations are of interest and
reveal the power and the versatility of predicate logic in the study of human
reasoning.

Question 1.6.1 Translate each English sentence into sentential logic. Notice how this level of

translation has become much easier compared to our initial work in section 1.1.

(a) Chris loves Bailey or she loves Dakota.

(b) If Chris loves Dakota, then Dakota does not love Morgan.
(c) Bailey and Chris do not love each other.

(d) Two is both prime and even.
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(e) Five is odd only if five plus five is even.
(f) Five is not even, but two is even.
|

Now that we have a good handle on the sentential logic analysis of these English
sentences, we develop the perspective of predicate logic. We delve more deeply into the
structure of sentences by means of predicates and names. For example, in the sentence
“Bailey loves Chris, but not Morgan,” the relevant predicate is “x loves y,” and the
relevant names are “Bailey,” “Chris,” and “Morgan.” In the spirit of formal logic, we
represent these English phrases and words with the symbols L(x, y), b, ¢, and m. At this
point, we make an important transition in our practice: we apply the word predicate
exclusively to strings of symbols of the form P(xi, ..., x,) that can be interpreted as
English predicate phrases and the word names exclusively to constants, variables, and
functions applied to names.

Definition 1.6.1 A predicate is a string of symbols of the form P(xy, ..., x,) where x1, ..., X, are
variables. A name is a string consisting of a single constant, a single variable,
or a function applied to names. A predicate has a finite number of variables and
is interpreted as true or false in a given context, when nonvariable names are
substituted for the variables appearing in the predicate. We refer to a predicate
with n distinct variables as an n-place predicate.

Example 1.6.2 We give some examples of predicates, along with one of the many possible
interpretations of each predicate.

1-place predicates G(x) : xis Greek
P(x) : xis prime
2-place predicates L(x,y): xlovesy
G(x,y) : xis greater than y
x=y: xisequaltoy
3-place predicates T(x,y,z): xthinks yis z
A(x,y,2): x+y=2

We also give some examples of nonvariable names, along with one of many
possible interpretations of each name.

b : Bailey c: Chris a(2,2): two plus two
d : Dakota 2: two ala(2, 3), 5] : two plus three, plus five

Question 1.6.2 Give an additional example of a 1-place predicate, a 2-place predicate, a name
that is a constant, and a name that is a function applied to a constant. -

When using predicates, we may not compose two or more predicates to assert that

a single object possesses multiple properties. Instead, we must translate such sentences

using a conjunction of the corresponding predicates. For example, working with the

predicates given in example 1.6.2, the predicate logic translation of the (nonsensical)

English sentence “x is a Greek prime” as G[P(x)] is incorrect. Instead, we translate

this sentence into predicate logic as G(x) A P(x), using the conjunction to express
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that x is both Greek and prime. With these ideas in hand, we reconsider the sentences
previously translated into sentential logic.

Example 1.6.3 We use the given dictionary to translate each English sentence from example 1.6.1
into predicate logic.

b : Bailey c: Chris d : Dakota m : Morgan

2: two 5: five ax,y)=x-+y s(x) = x2

L(x,y): xlovesy E(x): xiseven O(x) : xisodd P(x) : xis prime
* Bailey loves Chris, but not Morgan. L(b,c) A [~L(b, m)]
* Bailey loves Chris only if Dakota loves Morgan. L(b,c) — L(d, m)
* Chris loves neither Bailey nor Dakota. ~[L(c, b) Vv L(c, d)]
¢ Five is either even or odd. E5) Vv O(5)
* Five is even if and only if five squared is even. E(5) < E[s(5)]

» Since five is odd and two is even, five plus two is odd.
[0(5) A E(2)] — Ola(5, 2)]

We use traditional notation for familiar functions and predicates. From studying
algebra and calculus, we recognize that functions are often expressed using the generic
notation a(x, y) or s(x), as in example 1.6.3. However, some common functions are
usually expressed differently. For example, we typically write x + y rather than +(x, y)
and x2 rather than 2(x). Using this traditional notation, the last two sentences from
example 1.6.3 can be translated into predicate logic as follows.

E(5) < E[5(5)] as  E(5) < E(5?)
[O(5) A E(2)] = Ola(5, 2)] as  [O(5) ANEQ2)] — O[5 +2]

This same practice is also followed when translating familiar mathematical predicates.
For example, we usually write x < y, rather than <(x, y). Thus, we generally prefer
to use traditional mathematical notation for functions and predicates for the sake of
readability. However, we do require the strict notation for functions and predicates
when crafting proofs about sentences from predicate logic.

Question 1.6.3 Use the dictionary from example 1.6.3 to translate each English sentence from
question 1.6.1 into predicate logic.

(a) Either Chris loves Bailey or she loves Dakota.
(b) If Dakota loves Chris, then Dakota does not love Morgan.
(c) Bailey and Chris do not love each other.
(d) Two is both prime and even.
(e) Five is odd only if five plus five is even.
(f) Five is not even, but two is even.
|

The second significant extension of sentential logic is the introduction of
quantifiers. The words “every,” “all,” “exists,” and “some” make regular appearances
in Aristotle’s syllogisms, in our natural language, and in the common language of

mathematics, and these words play a central role in much of human reasoning.
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The formal language of predicate logic uses the following symbols to represent the
given English quantifiers and their variants.

English quantifiers Formal quantifiers | Formal names
for all, for every, for each v universal
there exists, there is, for some | 3 existential

Just these two quantifiers (expressing the complementary notions of “every” and
“exists”) capture the full range of human expression and reasoning about quantity
in our formal language. As illustrated in the following example, these quantifiers
enable the translation of much more sophisticated English sentences and ideas into
predicate logic.

Example 1.6.4 We use the given dictionary to translate each English sentence into predicate logic.

b : Bailey c: Chris d : Dakota m : Morgan

2: two 5: five ax,y)=x+y s(x) = x2

L(x,y): xlovesy E(x) : xiseven O(x) : xis odd P(x) : xis prime
* Someone loves Bailey. AxL(x, b)
* Everyone loves Chris and Morgan. Vx[L(x, ¢) A L(x, m)]
» Everyone who doesn’t love Bailey, loves Chris. Vx{[~L(x, b)] — L(x, ¢)}
* There exists an even prime. Ax[E(x) A P(x)]
e If nis even, then n is not odd. Vx{E(x) — [~O0x)]}
* The square of a non-even integer is not even. Vx{[~Ex)] = [~ExD]}

|

Even though the words “for all” (or their equivalent) did not explicitly appear in
the last two sentences of example 1.6.4, these sentences are still translated as universal
sentences (the formal quantifier V is the universal quantifier expressing “for all”’). Both
of these sentences implicitly assert that all numbers satisfy the stated property. In our
formal language, we must explicitly identify this implicit content of the sentence using
the universal quantifier. Many mathematical statements make such implicit claims
about all mathematical objects within some context. As we translate sentences into
predicate logic, and later as we work on proving mathematical statements, we must be
conscious of the frequent occurrence of such implicit universal assertions.

The implication is also crucial for the correct translation of the last two sentences
of example 1.6.4. In particular, the last sentence is sometimes mistakenly translated
as Vx{[~ E(Xx)] A [~ E(xz)]}, which claims that “every number is not even and the
square of every number is not even.” This is not the sentence we have been asked to
translate. Instead, we use an implication to specify a context for the claim made in this
sentence. For ease of reference in technical discourse, the left side of an implication is
referred to as the antecedent, and the right side of an implication is referred to as the
consequent. In this last sentence of example 1.6.4, the antecedent (~ E(x) expressing
“x is not even”) frames the context, and the consequent (~ E(x?) expressing “x? is not
even”) makes an assertion about the numbers in the specified context. This process
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of “setting the stage” is crucial in mathematics, since context determines the truth of
mathematical statements.

Question 1.6.4 Using the dictionary from example 1.6.4, translate each English sentence into

predicate logic.

(a) Bailey loves someone.
(b) Someone loves themselves and Dakota.
(c) Everyone who loves Chris also loves Morgan.
(d) Some primes are odd.
(e) If n is even, then n? is even.
(f) The square of every even integer is even.
|

Predicates and quantifiers provide the tools needed to make a more careful analysis
of the syllogism introduced at the beginning of this section.

Example 1.6.5 We state the sentential logic translation and the predicate logic translation of the

syllogism given at the beginning of this section. For this translation, we use the
dictionary G(x) : “x is Greek,” and M (x) : “x is mortal.”

The syllogism Sentential logic | Predicate logic
Every Greek is mortal. P Vx [G(x) = M(x)]
There exists a Greek. q dx G(x)

Thus, there exists a mortal. | .-, r o dx M(x)

A comparison of these translations clearly illustrates the finer analysis
provided by predicate logic. The sentential logic is simply insufficient for
analyzing valid arguments of this complexity, while the predicate logic enables
us to verify the validity of this syllogism (see example 1.7.7 at the end of
section 1.7).

Thus far, we have only translated sentences that require the use of a single
quantifier. Many interesting and important mathematical statements must be expressed
with multiple quantifiers. Recall the following definition of the limit from
calculus:

limy—. f(x) =L iff forevery e > 0, there exists 6 > 0, such that
0 < |x —c| < 8 implies |[f(x) —L| < ¢

Considering this definition from the perspective of predicate logic, we see the definition
begins with “every ¢,” followed by “there exists §,” and then an implicit “for all x.”
Therefore the formal translation of this definition begins Ve 3§ Vx. In other words,
we must work with multiple quantifiers to express precisely the definition of the limit
of a function at a point. This alternation of quantifiers is why this notion is challenging
for many calculus students.
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Example 1.6.6

Question 1.6.5

We use the given dictionary to translate each English sentence into predicate
logic.

x+y x> L(x,y): xlovesy E(x): xiseven P(x): xis prime
* Everyone loves someone. Vx3yL(x,y)
* There is someone whom everyone loves. AxVyL(y, x)
* Everyone who loves someone does not love
everyone. Vx[3yL(x,y) —~VzL(x, 7)]
e If x and y are even, then the sum of x and
y is even. VaVy{[E(x) A E(y)] = E(x + y)}
¢ The sum of two odds is even. VxVy{[O(x) A O(y)] = E(x + y)}
* There exist x, y, z such that x> + y* = z2. InyIz[x? + y? = 22]
|

Use the dictionary from example 1.6.6 to translate each English sentence into
predicate logic. Assume that = is in the dictionary.

(a) Everyone is loved by someone.
(b) Someone loves everyone.
(c) Everyone who loves someone is loved by someone.
(d) The sum of two evens is not prime.
(e) There do not exist even x and odd y with an even sum.
(f) For some x, y, we have (x + y)> = x> + y%.
|

As we have seen in calculus, the definition of limit is essential to calcu-

lus; the subtleties in the notion of a limit provide one example of the need

for multiple quantifiers. Limits also arise in the context of infinite sequences of

numbers. Recall that sequences are infinite lists of numbers; some basic examples
include 1,2,3,...,n,...and 1, —1,2, —2,3, =3, .... In the following example, we
consider the predicate logic rendition of various limit definitions associated with
sequences.

Example 1.6.7

‘We use the given dictionary to translate each mathematical definition into predicate
logic.

d(x,y) = |x —y| and x> y: xis greater thany

The function d(x, y) provides a measure of “distance” on the real line based on
the absolute value function. The predicate x > y is the standard “greater than”
relation; we also use the “less than” (y < x) version of this predicate for the sake
of readability.

* The sequence {a,} converges to L if for every ¢ greater than 0, there exists an
N such that for every n greater than N, a,, is within ¢ of L. Thus, lim a, =L
n—o0

is translated as

VedNVn{[(e>0)Am>N)] - [d(a,,L)<el}.
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» The sequence {f(a,)} converges to f(L) is translated as

VedNVn{[(e>0)A(n>N)] = [d[f(an),f(L)] <e]}.

* The sequence {a,} is Cauchy (named after a famous mathematician latter in the
text) if for every e greater than 0, there exists an N such that for every m, n
greater than N, a,, and a, are within ¢ of each other. Thus, we translate {a,} is
Cauchy as

VedNVmVn{[(e >0 A(m>N)A(n>N)] - [dlay,a,) <e]}.

» We translate the sequence {f(a,)} is Cauchy as

VeANVmVn{[(e >0 A(m>N)A(n>N)] = [dlf(an),f(ay)] <e¢]}.
|

We end this section with a precise definition of the formal language of predicate
logic. This definition parallels our work with sentential logic, but has additional
elements because of the introduction of names. The formal language of predicate
logic has three components: an alphabet identifying the legal symbols that may
be used; names consisting of strings of symbols from the alphabet that may be
substituted into predicates; and sentences consisting of legal strings of symbols from
the alphabet that make assertions. Consider the following definition of these three
components.

Definition 1.6.2 The formal alphabet of predicate logic consists of exactly the following

symbols.

constants: a,b,...,o

functions: flx1,...,x,) foralln
predicates: P(xy,...,x,) foralln
identity predicate: =

variables: Psqs---2

logical connectives: ~ NV, =, <
quantifiers: v, 3

grouping symbols: G L1}

As with sentential logic, constants, functions, predicates, and variables may
be indexed, and so we have infinitely many such symbols. For example, there
exist infinitely many constants ai, az, as, .. ., infinitely many variables x1, x2, x3, .. .,
infinitely many functions fi(x), f2(x2), f3(x3), ..., and infinitely many predicates
Pi(x1), P2(x2), P3(x3), . ... In addition, the choice of constants from roughly the

first half of the English alphabet and variables from roughly the second half of
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the English alphabet is not a strict distinction. We also use other symbols for
functions and predicates. For example, g and /& are commonly used for functions,
and L, E, and O are used to identify predicates as in the various examples and
questions of this section. Finally, the phrase “for all »” in the specification of
functions and predicates indicates the availability of functions with any finite number
of variables. Thus, we have functions f(x1), f(x1, x2), f(x1, X2, X3), ..., so on, and
an n-place function is a function with n variables; similarly, we have predicates
P(x1), P(x1, x2), P(x1, x2, x3), ... and so on, and an n-place predicate is a predicate
with n variables.

Definition 1.6.3 A name of predicate logic is a string of symbols from the alphabet of predicate
logic that satisfies the following:

* a single constant or a single variable is a name;
* an n-place function applied to n names is a name.

In this section, we have used multiple names, including the constants b for Bailey
and 2 for two, the variables x and y, and the functions x 4 y and x2. As suggested by the
second condition of this definition, x +2, (x +y) +2,and [(2 + y) 4+ 2]? are all names,
since we are allowed to compose, or “layer,” functions multiple times to produce new
names. In contrast, ~(x +y), x Ay, T(x,y), 22 < 5, and Vx x? are not names, since
we may not use connectives, predicates, or quantifiers in stating names—such symbols
make assertions rather than identify objects.

Definition 1.6.4 A sentence of predicate logic is a string of symbols from the alphabet of predicate
logic that satisfies the following:

e if Ay,...,A, are names and P(xi,...,Xx,) is an n-place predicate, then
P(Aq, ..., A,) is a sentence;

e if A1 and A, are names, then A| = A, is a sentence;

* ifx is a variable and B, C are sentences, then so are (~B), (B A C), B v C),
B — C), B < C), Vx(B), Ax(B).

For the sake of readability, we often abbreviate sentences by omitting the
outermost pair of parentheses, and we utilize the other grouping symbols given
in the alphabet. We also drop the numeric subscripts from variables; for example,
we may write Vx3yL(x,y) for Vx;3IxpL(x1, x2). We have examined and produced
many different examples of sentences in this section, including E(5) < E(5%) and
Vx3yL(x, y). In contrast, the following chart provides strings of symbols that are not

sentences.

Non-sentence Reason

x+y)AS Connectives do not apply to names such as 5,
only sentences

5=2<)9) A name and a sentence cannot be equal, only two names
can be equal

3 ~x[P(x) A E(x)] | The ordering of connectives and quantifiers is critical

P(E(x)) Predicates cannot be composed
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1.6.1 Reading Questions for Section 1.6

A S

10.
I1.

12.

What motivates our interest in predicate logic?

Define an n-place predicate and give examples forn = 1, 2, 3.

Define and give an example of each type of name.

Define an n-place function and give examples forn = 1, 2, 3.

Define and give examples of the two quantifiers.

Give an example of an implication and identify its antecedent

and consequent.

Discuss the role of implication in translating mathematical statements into
sentential logic.

Discuss the role of quantifiers in the definition of a limit.

Define and give an example of a sequence.

What are the three components of the formal language of predicate logic?
Give an example for each clause in the definition of a sentence of predicate
logic.

Give an example of an expression using symbols from the alphabet of
predicate logic that is not a sentence.

1.6.2 Exercises for Section 1.6

In exercises 1-16, use the given dictionary to translate each English sentence into
predicate logic.

— e = = e

WA kW=

¢ : Chris p: Pat L(x,y): x lovesy

Chris loves Pat or Pat loves Chris.

Chris and Pat do not love each other.

Chris and Pat love each other.

If Chris loves someone, then Chris loves Pat.
Pat loves both Chris and himself.

Pat loves someone.

Pat loves everyone, except Chris.

If anyone loves Pat, then Chris does.

If someone loves Chris, then Pat loves Chris.
Someone loves both Chris and Pat.

. Everyone loves themselves.

. Everyone loves someone who is loved by someone.

. Chris doesn’t love anyone who doesn’t love someone.

. No one loves Chris, but everyone loves Pat.

. Since everyone loves themselves, everyone loves someone.
16.

Not everyone who loves someone also loves themselves.

In exercises 17-32, use the given dictionary to translate each English sentence into
predicate logic.

0,2,5 E(x): x iseven X >y: x is greater than y
x+y P(x) : x is prime
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17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Two is both prime and even.

Zero is even, but not prime.

Five is not even, but two is even.

Either zero or two is prime, but not both.

The sum of two and five is greater than two and greater than five.
The sum of two and five is prime, but not even.

If the sum of two and five is prime, then the sum is not even.
Some even numbers are not prime.

If a number is greater than zero, then the number is not zero.
There exists an even number and an odd number.

The sum of two even numbers is even.

The sum of two odd numbers is even.

The sum of three even numbers is not prime.

If n is a prime that is not even, then »n is greater than two.
For every even number, there is a greater even number.
There exists an even prime.

In exercises 33—-40, use the two given dictionaries to translate each English sentence
into predicate logic in two different ways.

Dictionary A: 0 E(x): x iseven x > y: x is greater thany
Dictionary B:  Z(x) : x iszero E(x): x iseven Xx >y : x is greater thany

33.
34.
35.
36.
37.
38.
39.
40.

Zero is even.

If n is zero, then n is even.

There exists a number greater than zero.

There exists an even number greater than zero.
Every number is greater than zero.

Every even number is greater than zero.

Some number is less than zero.

If a number is greater than zero, then it is not zero.

In exercises 41-50, use the given dictionary to translate each definition of a
mathematical property into predicate logic.

41.
42.

43.

44.
45.
46.
47.
48.

xX+y x <y: x islessthany

Commutativity: The sum of x and y is the same as the sum of y and x.
Non-commutativity: For some x and y, the sum of x and y is different from
the sum of y and x.

Identity: There exists an element e such that for all x, the sum of x and e is x
and the sum of e and x is x.

Reflexivity: For every x, x is less than x.

Irreflexivity: For every x, x is not less than x.

Symmetry: If x is less than y, then y is less than x.

Asymmetry: If x is less than y, then y is not less than x.

Transitivity: If x is less than y and y is less than z, then x is less than z.
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49. Density: If x is less than y, then there exists z such that z is between
x and y.

50. Comparability: For every x and y, x is less than y or x is the same as y or y is
less than x.

In exercises 51-56, use the given dictionary to translate each mathematical definition
into predicate logic (as in example 1.6.7).

0,¢,8,¢,f(x) dx,y)= |x —y| X >y : x is greater than y
L, N.M x=y x <y: x isless thany

51. lim f(x) = L if for every ¢ > 0, there exists 6 > 0 such that for all x within
X—>C

8 of ¢, but not equal to ¢, then f(x) is within & of L.
52. lim f(x) # L if for some ¢ > 0, for every § > 0, there exists x within § of ¢
X—>C

such that x # ¢ and f(x) is more than ¢ from L.
53. lim f(x) = +oo if for every M > O, there exists § > O such that for all x
X—>C

within § of ¢, but not equal to ¢, then f(x) is greater than M.
54. lim f(x) = —oo if for every M < 0, there exists § > 0 such that for all x
X—>C

within § of ¢, but not equal to ¢, then f(x) is less than M.
55. lim f(x) = L if for every ¢ > 0, there exists N > 0 such that for all x

xX—> 400

greater than NV, then f(x) is within ¢ of L.
56. lim f(x) =L if for every ¢ > 0, there exists N < 0 such that for all x less

xX—> 400

than N, then f(x) is within & of L.

Exercises 57-70 focus on the identity predicate. Recall that this predicate is denoted
by “x =y” and is automatically included in every dictionary for predicate logic.
While the identity predicate is just one among many 2-place predicates, some
sentences make essential use of the distinguished identity predicate. For example,
“Chris loves only Pat,” “No one loves everyone else,” and “There exist at least two
even numbers,” can only be expressed via the notion of identity. The words “only,”
“besides,” “else,” “at least,” and “exactly” refer to relations among objects in terms
of being the same or different than some other object and must be expressed using
the identity.

In exercises 5770, use the given dictionary to translate each English sentence
into predicate logic.

ELINT3

¢ : Chris p: Pat L(x,y): x lovesy X >y: x is greater than y
0 4 E(x): x iseven P(x) : x is prime

57. Chris loves only Pat.

58. Only Chris loves Pat.

59. Everyone loves someone.

60. Everyone loves someone else.

61. No one loves everyone.

62. No one loves everyone else.

63. There is exactly one even prime.

64. Every other prime is greater than the even prime.
65. There are at least two numbers greater than zero.
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66. There are at least two primes greater than zero.

67. There are at least three numbers greater than zero.

68. There are at least three primes greater than zero.

69. There are at least three numbers between zero and four.
70. There are exactly three numbers between zero and four.

1.7 Fundamentals of Mathematical Proofs

In this chapter we have studied logic partly for its own sake, but also to facilitate our
pursuit of mathematical truth; we expect the study of human reasoning to enhance
our intuition when we turn to the broad study of mathematics. In the last section,
we translated well-known mathematical statements into predicate logic, including
such assertions as “The sum of two even numbers is even” and “There exists an
even prime.” We now turn our attention to exploring when and why these statements
are true. While there is great value in knowing what mathematical statements are
true, there is even greater value in understanding why they are true. Among other
things, knowing why a statement is true often allows us to understand a whole host of
other mathematical statements. This general understanding then promotes our creative
efforts in extending the body of known mathematical results. In this section we
explore five fundamental approaches to proving mathematical truths: direct proof,
proof by contradiction; proof by contrapositive; proof by example; and proof by
counterexample. These are the most widely used tools of mathematical reasoning,
and mastering these proof techniques will enable your increasingly more sophisticated
forays into mathematical truth.

Before we dive into working with these proof techniques, we briefly discuss
an overall perspective of mathematics as a science. Mathematics is a “deductive
science of the conditional” in which the objects of study are ideas, and the
fundamental tool of study is logical reasoning. Many would argue that mathe-
matics extends beyond rational thought—that intuition and unconscious insight
are key to mathematical creativity, and that the thirst to uncover new truths
is the driving motivation behind mathematical endeavor. Furthermore, the many
surprising and deep connections between mathematics and our physical world are
of great significance and interest. However, creative intuitions, physical results, and
specific examples do not ensure mathematical truth. While these are indeed essential
elements supporting the continuing exploration and development of mathematics,
logical reasoning alone is the final arbiter of mathematical truth, and we rely on
logical argument in extrapolating mathematical truth from the evidence provided by
specific examples.

Traditionally, mathematicians have looked to Elements [73] as a first and ideal
model of mathematics as a deductive science. A geometry text written by the Greek
mathematician Euclid in 300 B.C.E, copies of the Elements have played an important
role in sparking periods of intense mathematical creativity—from the Arabic world in
the ninth century to Italy in the sixteenth century and even to this day, as a continuing
source of inspiration for mathematicians. Elements consists of a collection of logical
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arguments for geometric truths deduced from a few axioms, or assumptions. More
than just being convincing, many of these proofs have a constructive flavor, and
so hopefully enable a deep understanding of why the corresponding mathematical
statements are true. Elements was the first book to develop the goals of proof in
mathematics: to convince; to explain; to illuminate; and to inspire—in short, to make
us wiser.

With these reflections in mind, we turn toward developing our skills in crafting
proofs. The proof techniques of direct proof, proof by contradiction, and proof by
contrapositive are approaches to arguing the truth of conditional statements of the
form (p — ¢). Most mathematical statements have this form, with the antecedent p
determining the context in which the property expressed by the consequent g is true. We
begin with the premises or assumptions expressed by p, and we attempt to demonstrate
the truth of the conclusion expressed by g with a logical argument. In this section, we
consider an illuminating example of each proof technique and provide an opportunity
to work with each in an accompanying question. You will want to reflect carefully on
these examples as you start crafting your own proofs and as you begin growing into
your own style of “doing mathematics.”

As we develop the ability to work with these proof techniques, we consider
some very basic mathematical notions: even, odd, rational, and irrational numbers.
In subsequent chapters we study more sophisticated mathematical ideas and use
these proof techniques to establish more elegant and subtler mathematical truths.
Mastering these techniques in this simpler setting will enable you to grapple with
more sophisticated notions. We formally define the ideas used in constructing the
proofs in this section. In the definitions we use the set-theoretic notation “€” to
denote “is an element of” or “in the set.” Set theory is studied more fully in
section 2.1.

Definition 1.7.1  The integers are the numbers ..., —2,—1,0, 1,2, ...; the set of all integers is

denoted by 7. (“Zahlen” is German for “count.”)

* An integer n € Z is even if there exists an integer k € Z such that n = 2k.

* An integer n € Z is odd if there exists an integer k € Z such that n = 2k + 1.

* The reals are the numbers on the continuum of the real line. They are
directed distances from a designated point zero; the set of all real numbers is
denoted by R.

* A real r € R is rational if there exist integers p, q € Z with q # 0 such that
r = p/q; the set of all rational numbers is denoted by Q.

e A real r € R is irrational if r is not rational.

These number systems and adjectives for numbers may be familiar from previous
mathematics courses; for example, V2 and 7 are examples of irrational numbers.
Before moving on, you should think of a specific example of each type of number
identified in definition 1.7.1. In this section we also use the fact that the sum, difference,
and product of two integers yields an integer. In addition, we need two more theorems.
We prove these claims about the integers and reals at appropriate points later in the
text, but for now we just state and use these results.

Theorem 1.7.1 The parity property of the integers Every integer is either even or odd.
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Theorem 1.7.2 The zero product property of the reals The product of two nonzero real numbers
is nonzero.

With these definitions and theorems in hand, we focus on developing an ability in
writing proofs. In a direct proof of a conditional statement (p — ¢), we assume the
premise p (or multiple premises) and work toward the conclusion g. Mathematicians
often give direct proofs of mathematical statements that are not phrased as implications;
in such settings it is often helpful to first phrase the statement as an implication.
Typically, definitions and previously established results enable the transition from p to
q as we argue the truth of the desired sentence. In the following examples, we present
two versions of each proof. The first is an “expanded” proof in which the arguments are
fully described to transparently indicate the thought processes essential to the proof.
We then present a “succinct” proof in a more elegant style expressing the essential
details of the argument. Each style of proof has its pros and cons. As you begin writing
your own proofs, you should probably emulate the “expanded” proofs to help ensure
that you don’t miss any important details; eventually your proofs will evolve to mirror
more closely the “succinct” style of proofs.

Example 1.7.1 We prove the sum of two even integers is even.

An Expanded Proof We first phrase this mathematical statement as an implication: if two
integers are even, then the sum of these integers is even. Since the goal is to
prove something about every pair of even integers, we identify two arbitrary even
integers. Let m and n be even integers. The implication can now be phrased in
terms of m and n as: if m and n are even, then m + n is even. Thus, the goal is now
to prove that m + n is even.

By the definition of an even integer, we must show that m + n = 2k for some
integer k € Z. The only information available to help us achieve this goal is the
fact that m and n are even, so we apply the definition of even to these two integers.
Since m is even, there exists an integer i € Z such that m = 2i. Similarly, since
n is even, there exists an integer j € Z such that n = 2j. Computing the sum and
making the appropriate substitutions, we have

m+n=2i+2 =2(i+j) =2k wherek=i-+j.

Thus, by the definition of even integers, m + n is even.
|

A More Succinct Proof Let m and n be even integers. We prove that m + n is even. Since m
and n are even, there exist integers i and j such that m = 2i and n = 2j. Therefore,
m—+n=2i+2j =2(i+j), and so m + n is even.

|

In both the expanded and the succinct versions of the proof, we explicitly state
not only the premises we are using, but also the conclusion toward which we are
working. As you develop your own proofs, you should follow this same practice of
explicitly identifying both where you are starting from and where you are going.
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Often, the bridge linking the premises to the conclusion becomes apparent from the
corresponding definitions and other known results.

Question 1.7.1  Prove (directly) that the product of two even integers is even; that is, prove that if
m and n are even integers, then m - n is an even integer.
|

We now consider establishing the truth of a conditional mathematical statement
based on proof by contradiction. The approach taken in a proof by contradiction is
justified by the logical equivalence (p — ¢) = { [p A (~q)] — [r A (~r)] }; that
is, if we can prove that p A (~¢) implies a contradiction, then the implication p — ¢
must also be true. The set-up for a proof by contradiction is apparent from this logical
equivalence: we assume both the premise and the negation of the conclusion. The next
step can be less obvious—we work toward a contradiction of the form r A (~r). While
r can be any mathematical statement, we often have the option of using either r = p
orr=gq.

Example 1.7.2 Prove that the sum of a rational number and an irrational number is irrational.

An Expanded Proof We are asked to prove something about a rational number and an
irrational number, so we give ourselves an arbitrary number of each type. Let x be
rational, so x = p/q for some integers p and ¢ with ¢ # 0, and let y be irrational,
so y is not equal to such a quotient. Phrasing the mathematical statement we are
proving as an implication, we have: if x is rational and y is irrational, then x + y
is irrational.

We proceed by contradiction, assuming the premises and the negation of the
conclusion and working toward a contradiction. So, in addition to our assumptions
that x is rational and y is irrational, we also assume that x + y is not irrational. Since
X + y is not irrational, we know that x 4 y is rational and there exist integers r and
s with s # 0 such that x + y = r/s. By substituting and algebraically manipulating
the sum, we obtain the following.

+y= = y=

r r rqg — ps
civ=l S r_p_r-p
s s q

= 5

The product and difference of integers yield an integer and, by the zero product
property, the product sqg # O since s # 0 and g # 0. Therefore, y is a rational
number. We have just shown that under our assumptions, the irrational number y
must be rational, which is a contradiction. Therefore, the sum of a rational and an
irrational is irrational.

|

A More Succinct Proof We proceed by contradiction. Assume that x = p/gq is rational where
p and g are integers with g # 0 and assume that y is irrational. In addition, we
assume that x 4+ y is not irrational and work toward a contradiction. Since x + y is
not irrational, the sum is rational, and so x + y = r/s, where r and s are integers



Chapter 1 = Mathematical Logic 73

with s # 0. Substituting and algebraically manipulating the sum, we obtain the
following.

’
xX+y=- = b
§ q

’
+y = — = y=--—-=
N

The product and difference of integers yields an integer and, by the zero product
property, the product sq # 0 since s # 0 and g # 0. Thus, the irrational number
y is rational, which is a contradiction. Therefore, the sum of a rational and an
irrational is irrational.

|

Question 1.7.2 Prove (by contradiction) that the product of a nonzero rational number and an
irrational number is irrational. Why do we need a nonzero rational number in the
product? -
The last proof technique we consider for establishing the truth of a conditional

mathematical statement is proof by contrapositive. This third proof technique for
implications is justified by the logical equivalence (p — ¢) = [(~¢q) = (~p)]; that
is, in a proof by contrapositive, we swap and negate the premises and conclusion, and
then proceed to give a direct proof of the resulting implication. Note that a proof by
contrapositive begins in the same fashion as a proof by contradiction—we assume the
negation of a conclusion.

Example 1.7.3  We prove that for every integer n € Z, if n* is even, then n is even.

An Expanded Proof Taking the contrapositive of “if n® is even, then n is even” by swapping
and negating the premise and conclusion, we obtain “if 7 is not even, then n? is
not even.” By the parity property of the integers, every integer is either even or
odd, and so an integer that is not even must be odd. Therefore, the contrapositive
is equivalent (by the parity property) to the implication “if n is odd, then n? is
odd.” We give a direct proof of this contrapositive.

We assume 7 is odd and prove that n? is odd. By the definition of an odd
integer, we must show n*> = 2k + 1 for some integer k € Z. The only information
we have available to help us achieve this goal is the fact that n is odd, so we
apply the definition of an odd integer. Since n is odd, there exists an integer i € Z
such that n = 2i 4+ 1. Computing the square and algebraically manipulating the
resulting sum, we have

P =Qi+ 12 =424+4i+1=20Q7+2)+1
=2k + 1 where k = 2i* 4 2i.
Therefore, n” is odd by the definition of an odd integer. Since 7 is odd implies n>

is odd, by contrapositive, we know that if n? is even, then n is even.
|

A More Succinct Proof We give a proof by contrapositive that n” is even implies 7 is even.
Taking the contrapositive and applying the parity property of the integers, we
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prove that n is odd implies n* is odd. We assume # is an odd integer and prove
that n? is odd. Since 7 is odd, there exist an integer i € Z such that n = 2i + 1.
Therefore, n2 = (2i + 1)? = 4i2 4+ 4i + 1 = 2(2i% + 2i) + 1 and n? is odd. Since
n is odd implies n? is odd, by contrapositive, we know that if n? is even, then
n is even.

|

At this point, you might ask the natural question: “When and how do you recognize
that proof by contrapositive is appropriate?” We identify a few positive indicators for
proof by contrapositive that you should watch for as you craft proofs of implications.

* A direct proof becomes complicated or subtle. In example 1.7.3, if we had tried
to prove directly that n® is even implies n is even, we would have assumed
n* = 2i and then worked with the more complicated properties of factors and
primes. While continuing in this vein may prove necessary, we should at least
consider an alternate approach.

* The negation of the premises and the conclusion are easy to state, enabling us
to readily give a proof of the contrapositive.

* The more complicated computational component of an implication is embedded
in the theorem’s premises rather than in the conclusion. In example 1.7.3, the
squaring of n is in the premise. In general, we prefer that computations appear
in the conclusion because they provide us something to work with as we craft
a proof.

Question 1.7.3  Prove (by contrapositive) that for every integer n € Z, if n” is odd, then n is odd.

The proof of a biconditional mathematical statement of the form (p < g) requires
us to consider two implications. Recall that the biconditional is expressed in English
by such phrases as “if and only if,” “exactly when,” and “precisely when.” In addition,
mathematicians often use a standard abbreviation of “iff” for the biconditional phrase
“if and only if”” in mathematical exposition (and so we must be careful to watch for
the second “f” when reading mathematical statements). The logical equivalence of
biconditional expansion (p <> q) = [(p — g) A (¢ — p)] provides the strategy
for proving biconditionals: we prove a biconditional (p <> ¢) by proving the two
corresponding implications (p — ¢) and (¢ — p), each by a direct proof, a proof
by contradiction, or a proof by contrapositive. We illustrate this strategy for proving
a biconditional in the following example, which links together a couple of different
pieces of our work in this section.

Example 1.7.4 We prove n is even iff n? is even.

Proof  We prove the result by proving the two corresponding conditionals:

2

e If n is even, then n“ is even.

o If n? is even, then 7 is even.

We have already proven some results that facilitate working with these conditional
statements. The first conditional follows from question 1.7.1, which states that the
product of two even integers is even. We assume 7 is even and so, by question 1.7.1,
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the product n- n = n? is even. The second conditional was proven in example 1.7.3.

Thus, 7 is even iff n? is even.
|

If we did not have the results of question 1.7.1 and example 1.7.3 in hand, then
the proof of the biconditional in example 1.7.4 would follow the same outline given
above, only we would need to work from scratch and fill in the details of the proof
of the two corresponding conditionals. We also note that in mathematical discourse,
we commonly say the first conditional is a corollary of question 1.7.1 because the
corollary follows directly from the question. The word “corollary” is derived from the
Latin word for “gift” and refers to such an immediate consequence of a known theorem.

Once we learn the definitions and basic properties of a few more mathematical
objects, we are ready to prove a whole host of mathematical truths using these three
proof techniques for implications. By continuing to work with these proof techniques,
you will learn to recognize which approach is most useful in a given situation. When
you are considering a new mathematical statement and are unsure how to proceed, start
by trying to construct a direct proof. If for some reason you run into difficulty, don’t
despair—every mathematician has shared this experience. Often, important insights
are gained at such mathematical roadblocks. However, when you encounter such
difficulties, you should also be prepared to “bail out” and attempt a different approach.
If adirect proof is not working, try a proof by contradiction or a proof by contrapositive.
The ability to move fluidly between these proof techniques is one key to success in
understanding and creating new mathematics.

We now consider proving existential statements and negated universal statements.
For mathematical statements of these forms, producing a single example is sufficient
to prove the statement. For existentials this should be clear; an existential statement
claims that a certain object exists and so it suffices to produce at least one such object
to show that the statement is true.

Example 1.7.5 We prove each of the following existential mathematical statements.

* There exists an even integer.

Proof The number 2 = 2 - 1 is an even integer. There are infinitely many different
examples to prove this statement: 0, 2, 4, . .. are all even.
|

* There exists an even prime.

Proof The number 2 = 2 - 1 is an even prime. This value is the only example that will
prove this statement.
|

¢ There exists a rational number.

Proof As in the case of the even integers, there are infinitely many different rational
numbers. Examples of rational numbers include: 0, %, % and 2 (since it can be
written in the form %).

|



76

A Transition to Advanced Mathematics

Question 1.7.4 Prove the following existential mathematical statements.

(a) There exists an odd prime. (b) There exists an irrational.
|

A similar approach works for proving negated universal statements; they are
logically equivalent to existentials as witnessed by the following pair of logical
equivalences.

IxB) = ~Vx ~(B) Vx(B) =~3x ~(B)

A precise rendition of ~Vx ~ (B) would be written as [~ (Vx[~ (B)])]; we omit all
but the innermost parentheses for the sake of readability. We do not formally prove
these logical equivalences, but reading the English renditions of them may provide
some intuitive justification. For example, the left logical equivalence claims that “there
exists x such that B holds” is equivalent to “it is not the case that for all x not B holds.”
Similarly, the right logical equivalence claims that “for all x B holds” is equivalent
to “it is not the case that there exists x such that not B holds.” Most often, negated
universals arise in the context of disproving a universal mathematical statement. In
such a setting, the object produced to disprove a universal sentence is referred to as a
counterexample.

Example 1.7.6 We illustrate the equivalence of proving a negated universal statement and

disproving a universal statement.

* We prove that not every integer is even.

Proof 3 =72-1+ 1isan integer that is not even.

|
* We disprove the claim that every integer is even.
Proof 3 =2-1+ 1isan integer that is not even (and so, 3 is a counterexample).
|
Question 1.7.5 Disprove the following universal mathematical statements.
(a) Every prime is even. (b) Foralln > 2, n? > 25.
|

Question 1.7.6  Prove the negated universal statement: Not every square root is rational.

We end this chapter by demonstrating how the mathematical proof techniques
developed in this section, along with the formal language of predicate logic, are
powerful enough to prove the validity of the syllogism given at the beginning of
section 1.6. In this way, the mathematical ideas we have studied in this chapter fulfill
Aristotle’s fundamental desire: they provide a rational framework for determining the
truth of arguments.
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Example 1.7.7 We prove the validity of the following syllogism.

Every Greek is mortal.
There exists a Greek.
Thus, there exists a mortal.

Proof We give a direct proof of this syllogism. We assume that “Every Greek is mortal”

1.7.1

and “There exists a Greek,” and we show that “There exists a mortal.” We begin
with the second assumption that “There exists a Greek,” which we translated into
predicate logic as 3xG(x). From this assumption, there must exist a Greek and we
let g denote a Greek; working with the predicate notation, G(g) is true. We now
consider the first assumption that “Every Greek is mortal,” which we translated
into predicate logic as Yx[G(x) — M(x)]. This statement is assumed true for all
objects (including g) and so we have G(g) — M(g); that is, if g is Greek, then g is
mortal. We now have the truth of both G(g) and G(g) — M(g). Applying modus
ponens, we deduce M(g), which asserts g is mortal. Since g is mortal, “There
exists a mortal” is true. Thus, if the two assumptions are true, the conclusion must
be true, and the given syllogism is a valid argument.

|

Reading Questions for Section 1.7

State the five proof techniques discussed in this section.

Define and give an example of an even integer and an odd integer.

State the parity property of the integers.

Define and give an example of a rational number and an irrational

Sl

number.
State the zero product property of the reals.
Compute the truth table verifying that (p — q) = {[p A (~q)] = [r A(~1)]}.
What proof technique is justified by this logical equivalence?
7. Compute the truth table verifying that (p — ¢g) = [(~¢q) — (~p)]. What
proof technique is justified by this logical equivalence?
8. Compute the truth table verifying that (p <> q) = [(p — q) A (g — p)]. What
proof technique is justified by this logical equivalence?
9. What logical connective is abbreviated “iff”” in mathematical exposition?
10. Why can we prove an existential sentence with an example?
11. Why can we not prove a universal sentence with an example?
12. What types of mathematical statements can be proven by counterexamples?

SN

1.7.2 Exercises for Section 1.7

In exercises 1-18, give a direct proof of each mathematical statement.

1. The sum of an odd integer and an even integer is odd.
2. The difference of two even integers is even.

3. The product an odd integer and an even integer is even.
4. The cube of an even integer is even.
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The sum of two odd integers is even.
The difference of two odd integers is even.
The product of two odd integers is odd.

®© =N oW

The square of an odd integer is odd.
9. If n is odd, then n> = 8i + 1 for some integer i.
10. If the sum of two integers is even, their difference is even.
11. If the sum of two integers is odd, their difference is odd.
12. The sum of two rational numbers is rational.
13. The difference of two rational numbers is rational.
14. The product of two rational numbers is rational.
15. The quotient of two nonzero rational numbers is nonzero.
16. The square of a rational number is rational.
17. The double of a rational number is rational.
18. Every integer is rational.

In exercises 19-30, give a proof by contradiction of each mathematical statement.

19. The square of an even integer is even.

20. The square of an odd integer is odd.

21. The cube of an even integer is even.

22. The cube of an odd integer is odd.

23. If r is an irrational number, then 4/ is irrational.

24. The double of a rational number is rational.

25. The square of a rational number is rational.

26. The product of a nonzero rational number and an irrational number is
irrational.

27. There does not exist a greatest integer.

28. There does not exist a greatest even integer.

29. There does not exist a least positive rational number.

30. There does not exist a least positive real number.

In exercises 31-35, give a proof by contrapositive of each mathematical statement.

31. If n? is even, then n is even.

32. If n? is odd, then 7 is odd.

33. If mn is odd, then both m and n are odd.

34. If the unit digit of an integer is nonzero, then the integer is not a multiple
of 10.

35. If r is an irrational number, then 4/ is an irrational number.

In exercises 3640, prove each biconditional mathematical statement.

36. n? is odd iff n is odd.

37. n?is odd iff n is odd.

38. niseveniff n + 1is odd.

39. nisoddiff n + 11iseven.

40. nis even iff n can be written as the sum of two odds.
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In exercises 41-48, prove each existential mathematical statement.

41.
42.
43.

44.

45.
46.
47.
48.

There exists an odd integer.

There exists an odd rational.

There exists an even integer that can be written as a sum of two distinct
primes.

There exists an even integer that can be written as a sum of two primes in two
different ways.

There exists an irrational number.

There exists a rational number.

There exists a rational integer.

There exists an even rational number.

In exercises 49-59, disprove each universal mathematical statement.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

Every prime is odd.

Foralln > 4, n? > 36.

The ratio of the circumference of a circle to its radius is rational.
The sum of two evens is odd.

The sum of two odds is odd.

The sum of an even and an odd is even.

Every odd integer is irrational.

Every even integer is irrational.

The sum of two irrational numbers is irrational.

The sum of a rational and irrational is rational.

For every pair of reals r and s, if r2 =52 thenr =s.

In exercises 60—67, prove each negated universal mathematical statement.

60.
61.
62.
63.
64.
65.
66.
67.

Not every square root of a positive integer is rational.
Not every square root of a positive integer is irrational.
Not every rational number is even.

Not every rational number is odd.

Not every integer is even.

Not every integer is odd.

Not every square root is greater than zero.

Not every square is positive.

In exercises 6870, identify the error in each of the following incorrect “proofs” that
the sum of two even integers is even.

68.

69.

70.

False proof 1: Let x be even. Since x + x = 2x is even, the sum of two evens
is even.

False proof 2: Let x + y be even. Therefore the sum of two evens
is even.

False proof 3: If x is even and y is even, then x 4 y is even. Therefore, x + y
is even and the sum of two evens is even.
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Notes

The history of Western thought traces its roots to the Greeks in the third and fourth century
B.C.E. The works of Socrates, Plato, and Aristotle are among the preeminent accomplishments
of this time, and their thoughts and insights continue to influence Western thought and culture to
this day. Cahill [35] provides a generally accessible description of the impact of ancient Greek
ideas on contemporary Western mathematical culture (as passed down from Socrates to Plato
to Aristotle and, finally, to us), and also describes the Greek influence on how we feel, how
we rule, how we party, and how we see. Both Kline [142] and Jacobs [126] provide a similar,
but more thorough, introductory survey of the historical progression of mathematical thought,
including the contributions of the Greeks. Aristotle’s analysis of natural reasoning in the Prior
Analytics remains the foundation of the philosophical and mathematical approaches to logic;
Smith [220] is a contemporary English translation of this treatise. This vein of analyzing natural
language arguments continues in philosophy departments across the U.S.A. in logical reasoning
courses; such courses are supported by texts by Browne and Keeley [32], Kelley [138], and
Mclnerny [173].

The more formal approach of the sentential and predicate logic traces its roots to George
Boole in his seminal treatise An Investigation of the Laws of Thought, on Which are Founded
the Mathematical Theories of Logic and Probabilities (a reprint [22] is available from Dover
Publications), and the German philosopher Gottlob Frege in his treatise The Foundations of
Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number (see the translation by
Austin [91]). Davis [54] traces the development of rational thought from the perspective of the
historical development of computing and contemporary understanding of algorithms, including
a discussion of Boole’s and Frege’s work in this context. MacHale [161] has interwoven the
story of Boole’s personal and intellectual life in a biographical format.

The sentential and predicate logic are standard elements of formal logic courses offered by
both philosophy and mathematics departments. The philosophical rendition of these courses
focuses on working with translations and developing students’ capability to create natural
deductive arguments (rather than just identifying the steps in such arguments as we have done
in this text). Copi and Cohen [46], Gustason and Ulrich [105], and Jacquette [127] are widely
used texts that support such philosophy courses and enable students to develop their skills in
this more computational approach to these logics. There is also a Schaum’s Outline [181] and
a more recent abridgment by McAllister [182] that explore this line of development. Another
approach adopted in some philosophical contexts is a “tree method proof system” that captures
the essence of the natural deductive system, while also enabling a relatively quick approach
to the theoretical aspects of logic; Jeffrey [131] is a respected text supporting this approach
to logic.

Mathematicians typically adopt a more abbreviated approach to the sentential and predicate
logic in the interest of exploring the theoretical aspects of logic. Hamilton [109], Leary [152],
and Mendelson [175] are all fine introductions to this mathematical approach to logic;
Enderton [71] is the classic introduction to mathematical logic at the advanced undergraduate and
beginning graduate level. There are also philosophical texts that adopt this approach, including
Hunter [123]. Mathematicians and philosophers have collaborated for many years, and there is
an important cross-fertilization of insights and ideas between these complementary approaches
to logic.

Among the most significant intellectual accomplishments of the twentieth century are the
incompleteness theorems of the accomplished Austrian-American mathematician Kurt Friedrich
Godel, which assert that some true mathematical statements are not provable (that is, they
can never be proven) in sufficiently powerful formal systems. There are many enjoyable
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books describing various aspects of these results. Nagel and Newman [178] is the classic
text in this area, providing a marvelous description of the intellectual background and
the content of Godel’s On Formally Undecidable Propositions of Principia Mathematica
and Related Systems (reprinted by Dover Publications [99]). Davis et al. [55] explores
the context and content of Godel’s work, as well as a host of other interesting mathe-
matical miscellany. More technical explorations of Gdodel’s incompleteness theorems can
be found in Enderton [71], Jeffrey [131], and the graduate level text by Smullyan [223].
Crossley et al. [49] contains an abbreviated outline of the proof of these results and, more
recently, Franzen [90] has written a book exploring the “uses and abuses” of Godel’s
theorems. A number of more playful explorations of Godel’s insights have been written
by Smullyan (see both [225] and [222]), using puzzles and riddles to illuminate various
facets and applications of these theorems. Several of Godel biographies have been written,
including the recent definitive book by Dawson [52]. The Pulitzer Prize winning work
of Hofstadter [118] also explores the interconnections between Gdodel’s results, music, art,
and biology.

Since we have touched on one of the many connections between mathematics and computer
science in the design of computer circuits, we also mention the foundational work of the English
mathematician Alan Turing in the mid-twentieth century. As discussed by Davis [54], Turing
isolated the notions at the heart of our understanding of “computability,” developing abstract and
practical tools for grappling with many questions of computer science. The Turing test remains
the gold-standard in efforts to assess and describe artificial intelligence, and the Turing Award
is the computer science equivalent of the Nobel Prize. Hodges [117] has written the definitive
biography of the personal and intellectual life of Turing. Hamilton [109] and Cutland [50] both
contain accessible descriptions of Turing’s model for computing, which has become known as
a Turing machine.

This chapter’s application of logic to computer science traces its historical roots to telephone
circuit design in the early 1930s and the continuation of this work at Bell Laboratories. Karnaugh
was working as a telecommunications engineer in the 1950s when he published his results on
what has become known as Karnaugh maps in The Map Method for Synthesis of Combinational
Logic Circuits [137]. These diagrams have become a standard component of computer science
and engineering curricula, and our presentation is based on the introductory courses in these
disciplines. Further details and applications of these ideas can be found in Comer [44], Kerns
and Irwin [139], and Mano [167].

Finally, the results presented in section 1.7 are widely known among mathematicians (and
others!), and so they are contained in many different mathematical textbooks. These ideas are
often studied in Discrete Mathematics courses, which are supported by such texts as those
by Epp [72], Richmond and Richmond [193], and Scheinerman [209]. Alternatively, there are
a growing number of “Foundations of Mathematics” textbooks that consider these notions,
including those by Barnier and Feldman [10], D’ Angelo and West [51], and Smith et al. [219].
Two fun books about mathematical ideas and proofs put in the form of stories, rhymes, and
enjoyable explanations of problems are Fadiman [77] and [78].



2 Abstract Algebra

An important goal of mathematics is to understand the concept of quantity. This
concept has an ancient anthropological origin; among the first mathematical steps
made by humans was the ability to distinguish between one and many and, eventually,
between one, two, three, and so on. In modern English “quantity” is synonymous with
such words as amount, number, size, and magnitude. As we have seen in previous
mathematics courses, the term “quantity” is also frequently used to refer to objects
in mathematical expressions (for example, “substitute the quantity x = 2 into ...”).
We seek a more precise mathematical understanding of this concept.

The development of number systems has a rich and interesting history. In Zaire,
Africa, archeologists have discovered what appear to be number representations etched
into fossilized bone fragments that have been carbon-dated to 20000 B.C.E. By 2000
B.C.E., the Babylonians, who lived in the area of modern Turkey, Iraq, and Iran, had
developed symbols to represent quantities and to perform basic arithmetic operations.
The Babylonians also began to analyze the general properties of numbers in connection
with the study of astronomy. Around 300 B.C.E., the Hindu mathematicians in India
developed our modern notation for numbers, which eventually reached the Middle East
through the interaction of merchants along ancient trade routes. By 1000 .E., Islamic
settlers and traders had brought this Hindu—Arabic numeral system to southern Europe,
along with the mathematical advances of the Babylonians and the ancient Greeks.
These ideas found fertile ground in Italian academic circles and fostered a renaissance
in mathematical interests and studies.

Abstract algebra grew out of an interest in polynomial equations. The Italian
mathematicians of the 1500s studied not just individual numbers, but collections of
numbers identified as solutions of polynomial equations. By the mid-1800s, European
mathematicians had made significant progress in understanding both the power and the
essential limitations of our ability to solve polynomials (as discussed in section 3.5).
This sophisticated study used the abstract properties of numbers and formal number
systems. In this way, abstract algebra was born. This area of study remains a lively
theoretical field in which mathematicians continue to make significant progress and
contributions. Abstract algebra is also widely applicable and is used in a variety of ways
by mathematicians, physicists, chemists, computer scientists, mineralogists, artists, and
many others.

We begin to study abstract algebra by developing an algebra of sets. Intuitively,
a set is a collection of objects known as elements; set theory is the study of the
properties, relations, and operations for sets. While set theory is not technically

82
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part of abstract algebra, sets are fundamental to all areas of mathematics and we
need to establish a precise language for sets. We also explore operations on sets
and relations between sets, developing an “algebra of sets” that strongly resembles
aspects of the algebra of sentential logic. In addition, as we discussed in chapter 1,
a fundamental goal in mathematics is crafting articulate, thorough, convincing, and
insightful arguments for the truth of mathematical statements. We continue the
development of theorem-proving and proof-writing skills in the context of basic
set theory.

After exploring the algebra of sets, we study two number systems denoted
Z, and U(n) that are closely related to the integers. Our approach is based on a
widely used strategy of mathematicians: we work with specific examples and look
for general patterns. This study leads to the definition of modified addition and
multiplication operations on certain finite subsets of the integers. We isolate key
axioms, or properties, that are satisfied by these and many other number systems and
then examine number systems that share the “group” properties of the integers. Finally,
we consider an application of this mathematics to check digit schemes, which have
become increasingly important for the success of business and telecommunications in
our technologically based society. Through the study of these topics, we engage in a
thorough introduction to abstract algebra from the perspective of the mathematician—
working with specific examples to identify key abstract properties common to diverse
and interesting mathematical systems.

2.1 The Algebra of Sets

Intuitively, a set is a “collection” of objects known as “elements.” But in the early
1900’s, a radical transformation occurred in mathematicians’ understanding of sets
when the British philosopher Bertrand Russell identified a fundamental paradox
inherent in this intuitive notion of a set (this paradox is discussed in exercises 66—70 at
the end of this section). Consequently, in a formal set theory course, a set is defined as
a mathematical object satisfying certain axioms. These axioms detail properties of sets
and are used to develop an elegant and sophisticated theory of sets. This “axiomatic”
approach to describing mathematical objects is relevant to the study of all areas of
mathematics, and we begin exploring this approach later in this chapter. For now, we
assume the existence of a suitable axiomatic framework for sets and focus on their
basic relationships and operations. We first consider some examples.

Example 2.1.1 Each of the following collections of elements is a set.

e V = {cat, dog, fish}

e W= {1,2}
X = {1,3,5}
* Y = {n:nisanoddinteger} = {...,-5,-3,—-1,1,3,5,...}
|
In many settings, the upper case letters A, B, ..., Z are used to name sets, and a

pair of braces {, } is used to specify the elements of a set. In example 2.1.1, V is a finite
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set of three English words identifying common household pets. Similarly, W is finite
set consisting of the integers 1 and 2, and X is a finite set consisting of the integers
1,3, and 5. We have written Y using the two most common notations for an infinite
set. As finite beings, humans cannot physically list every element of an infinite set one
at a time. Therefore, we often use the descriptive set notation {n : P(n)}, where P(n) is
a predicate stating a property that characterizes the elements in the set. Alternatively,
enough elements are listed to define implicitly a pattern and ellipses “...” are used to
denote the infinite, unbounded nature of the set. This second notation must be used
carefully, since people vary considerably in their perception of patterns, while clarity
and precision are needed in mathematical exposition.

Certain sets are of widespread interest to mathematicians. Most likely, they are
already familiar from your previous mathematics courses. The following notation,
using “barred” upper case letters, is used to denote these fundamental sets of numbers.

Definition 2.1.1 « (J denotes the empty set { }, which does not contain any elements.

* N denotes the set of natural numbers { 1,2, 3, ... }.

e Z denotes the set of integers { ..., —3,-2,—1,0,1,2,3,...}.

* Q denotes the set of rational numbers { p/q : p,q € Zwithq #0 }.

* R denotes the set of real numbers consisting of directed distances from a
designated point zero on the continuum of the real line.

* C denotes the set of complex numbers { a +bi : a,b € Rwithi=/—1}.

In this definition, various names are used for the same collection of num-
bers. For example, the natural numbers are referred to by the mathematical sym-
bol “N,” the English words “the natural numbers,” and the set-theoretic notation
“{1, 2, 3,...}.” Mathematicians move freely among these different ways of referring
to the same number system as the situation warrants. In addition, the mathematical
symbols for these sets are “decorated” with the superscripts “x,” “+,” and “—”
to designate the corresponding subcollections of nonzero, positive, and negative
numbers, respectively. For example, applying this symbolism to the integers Z =
{...,—3,-2,-1,0,1,2,3,...}, we have

7¢ = {..,=3,-2,—1,1,2,3,...},
7t = {1,2,3,...),
7m = {—1,-2,-3,...).

There is some discussion in the mathematics community concerning whether or not
zero is a natural number. Many define the natural numbers in terms of the “counting”
numbers 1, 2,3, ... (as we have done here) and refer to the set {0, 1,2,3,...} as
the set of whole numbers. On the other hand, many mathematicians think of zero
as a “natural” number. For example, the axiomatic definition of the natural numbers
introduced by the Italian mathematician Giuseppe Peano in the late 1800s includes zero.
Throughout this book, we use definition 2.1.1 and refer to the natural numbers as the
setN={1,2,3,... }..

Our study of sets focuses on relations and operations of sets. The most fundamental
relation associated with sets is the “element of” relationship that indicates when an
object is a member of a set.
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Definition 2.1.2 If a is an element of set A, then a € A denotes “a is an element of A.”

Example 2.1.2 Asin example 2.1.1, let W = {1, 2} and recall that Q is the set of rationals.

e lisin W,andso 1 € W.
* 3isnotin W,andso3 ¢ W.
J % is rational, and so % e Q.

« /2 is not rational (as we prove in section 3.4), and so V2 Z Q.

Question 2.1.1  Give an example of a finite set A with 2 € A and an infinite set B with 2 & B.
|

We now consider relationships between sets. We are particularly interested in
describing when two sets are identical or equal. As it turns out, the identity relationship
on sets is best articulated in terms of a more primitive “subset” relationship describing
when all the elements of one set are contained in another set.

Definition 2.1.3 Let A and B be sets.

¢ A is a subset of B if every element of A is an element of B. We write A C B and
show A C B by proving that ifa € A, then a € B.

e A is equal to B if A and B contain exactly the same elements. We write A = B
and show A = B by proving both A € B and B C A.

e A is a proper subset of B if A is a subset of B, but A is not equal to B. We
write either A C B or A C B and show A C B by proving both A C B and
B Z A.

Formally, the notation and the associated proof strategy are not part of the definition
of these set relations. However, these facts are fundamental to working with sets and
you will want to become adept at transitioning freely among definition, notation, and
proof strategy.

Example 2.1.3 Asinexample2.1.1,letW = {1, 2}, X = {1, 3, 5},and Y = {n : nis an odd integer}.
We first prove X C Y and then prove W £ Y.

Proofthat X €Y We prove X C Y by showing that if @ € X, then a € Y. Since X =
{1, 3, 5} is finite, we prove this implication by exhaustion; that is, we consider every
element of X one at a time and verify that eachisin Y. Since 1 =2-0+ 1, 3 =
2-14+1,and 5 =2 -2+ 1, each element of X is odd; in particular, each element
of X has been expressed as 2k + 1 for some k € Z). Thus, if a € X, then a € Y,
andso X CY.

|

Proofthat W £ Y We prove W Z Y by showing that a € W does not necessarily imply
a € Y. Recall that (p — ¢) is false precisely when [p A (~¢)] is true; in this case, we
need to identify a counterexample with a € W and a ¢ Y. Consider 2 € W. Since
2 =2 -1 is even, we conclude 2 ¢ Y. Therefore, not every element of W is an
element of Y.

|



86 A Transition to Advanced Mathematics

Question 2.1.2 As in example 2.1.1, let X = {1, 3,5} and Y = {n : nis an odd integer }. Prove
that X is a proper subset of Y.
|

Example 2.1.4 The fundamental sets of numbers from definition 2.1.1 are contained in one another
according to the following proper subset relationships.

WcNcZcQcRcC
[

When working with relationships among sets, we must be careful to use the
notation properly so as to express true mathematical statements. One common misuse
of set-theoretic notation is illustrated by working with the set W = {1, 2}. While it is
true that 1 € W since 1 is in W, the assertion that {1} € W is not true. In particular,
W contains only numbers, not sets, and so the set {1} is notin W. In general, some sets do
contain sets—W is just not one of these sets. Similarly, we observe that {1} £ W since
1e{1,2} = W,but 1 C W is not true; indeed, 1 C W is not a sensible mathematical
statement since the notation C is not defined between an element and a set, but only
between sets.

Despite these distinctions, there is a strong connection between the “element of”
relation € and the subset relation C, as you are asked to develop in the following
question. In this way, we move beyond discussing relationships among specific sets
of numbers to exploring more general, abstract properties that hold for every element
and every set.

Question 2.1.3 Prove that a € A if and only if {a} C A.
Hint: Use definitions 2.1.2 and 2.1.3 to prove the two implications forming this
“if-and-only-if” mathematical statement.
|

We now turn our attention to six fundamental operations on sets. These set
operations manipulate a single set or a pair of sets to produce a new set. When applying
the first three of these operations, you will want to utilize the close correspondence
between the set operations and the connectives of sentential logic.

Definition 2.1.4 Let A and B be sets.

» A€ denotes the complement of A and consists of all elements not in A, but in
some prespecified universe or domain of all possible elements including those
in A; symbolically, we define A = {x : x & A}.

e A N B denotes the intersection of A and B and consists of the elements in both
A and B; symbolically, we define ANB = {x : x € Aand x € B}.

* A U B denotes the union of A and B and consists of the elements in A or
in B or in both A and B; symbolically, we define AUB = {x : x € Aor
x € B}.

e A\ B denotes the set difference of A and B and consists of the elements in A that
are not in B; symbolically, we define A\ B = {x : x € A and x ¢ B}. We often use
the identity A\ B = A N BC.
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* A X B denotes the Cartesian product of A and B and consists of the set of all
ordered pairs with first-coordinate in A and second-coordinate in B; symbolically,
we define A x B ={(a,b):a € Aandb € B}.

¢ IP(A) denotes the power set of A and consists of all subsets of A, symbolically,
we define P(A) = {X : X C A}. Notice that we always have ¢ € P(A) and
A € PA).

Example 2.1.5 As above, we let W = {1,2}, X = {1,3,5} and Y = {n : nis an odd integer }.
In addition, we assume that the set of integers Z = {..., —2,—1,0,1,2,...} is
the universe and we identify the elements of the following sets.

e WE=1{..,-2,-1,0,3,4,5,...}
« Y€ = {n: nis an even integer } by the parity property of the integers
* WNX = {1}, since 1 is the only element in both W and X
s WUX = {1, 2,3, 5}, since union is defined using the inclusive-or
e WA\X ={2}
s X\W=1{3,5}
o Z¥=7Z\{0}={...,-3,-2,—-1,1,2,3,..}
s WxX={1,1),(,3),(,5), (2, 1),(2,3),(2,5)}
« POW) = {9, {1}, {2}, {1,2}}
|

The last two sets given in example 2.1.5 contain mathematical objects other than
numbers; the power set is also an example of a set containing other sets. As we continue
exploring mathematics, we will study sets of functions, matrices, and other more
sophisticated mathematical objects.

Question 2.1.4 Working with W, X, and Y from example 2.1.5, identify the elements in the sets
X6, wny, wuvy, WAY, Y\W, XxW, WxW, WxY,and P(X). In

addition, state six elements in P(Y); that is, state six subsets of Y.
|

The use of symbols to represent relationships and operations on mathematical
objects is a standard feature of mathematics. Good choices in symbolism can facilitate
mathematical understanding and insight, while poor choices can genuinely hinder the
study and creation of mathematics. Historically, the symbols € for “element of,” N for
“intersection,” and U for “union” were introduced in 1889 by the Italian mathematician
Giuseppe Peano. His work in formalizing and axiomatizing set theory and the basic
arithmetic of the natural numbers remains of central importance. The Cartesian product
x is named in honor of the French mathematician and philosopher René Descartes, who
first formulated “analytic geometry” (an important branch of mathematics discussed
in section 4.1).

Although we have presented the Cartesian product A x B as an operation on
pairs of sets, this product extends to any finite number of sets. Mathematicians work
with ordered triples A x B x C = {(a,b,c) : a € A,b € B, and ¢ € C}, ordered
quadruplesA x Bx C x D ={(a,b,c,d):a€A,beB,ceC, andd € D},and even
ordered n-tuples A} x - -- x A, = {(ay, ...,ay) : a; € A; for 1 <i < n}. While the use
of n-tuples may at first seem to be of purely academic interest, models for science



88

A Transition to Advanced Mathematics

and business with tens (and even hundreds and thousands) of independent variables
have become more common as computers have extended our capacity to analyze
increasingly sophisticated events.

Along with considering the action of set-theoretic operations on specific sets of
numbers, we are also interested in exploring general, abstract properties that hold for
all sets. In this way we develop an algebra of sets, comparing various sets to determine
when one is a subset of another or when they are equal. In developing this algebra, we
adopt the standard approach of confirming informal intuitions and educated guesses
with thorough and convincing proofs.

Example 2.1.6 For sets A and B, we prove A N B C A.

Proof We prove A N B C A by showing that if « € A N B, then a € A. We give a direct

proof of this implication; we assume that a € A N B and show that a € A. Since
a € ANB,botha € A and a € B from the definition of intersection. We have thus
quickly obtained the goal of showing a € A.

|

In example 2.1.6 we used a direct proof to show that one set is a subset of another.
This strategy is very important: we prove X C Y by assuming a € X and showinga € Y.
In addition, the process of proving a € X implies a € Y usually involves “taking apart”
the sets X and Y and characterizing their elements based on the appropriate set-theoretic
definitions. Once X and Y have been expanded in this way, our insights into sentential
logic should enable us to understand the relationship between the two sets and to craft
a proof (or disproof) of the claim. We illustrate this approach by verifying another
set-theoretic identity.

Example 2.1.7 For sets A and B, we prove A \ B = A N BC.

Proof In general, we prove two sets are equal by demonstrating that they are sub-

sets of each other. In this case, we must show both A\ B € AN B¢ and
ANBC CA\B.

A\B CANBC:Weassumea € A\ Bandshowa € ANBC. Sincea € A\ B,
we know a € A and a ¢ B. The key observation is that a ¢ B is equivalent to
a € BE from the definition of set complement. Since @ € A and a ¢ B, we have
both @ € A and a € BE. Therefore, by the definition of intersection, a € A N B€.
Thus, we have A\ B C AN BC, completing the first half of the proof.

ANBC C A\ B: We assume a € AN B and show a € A \ B. From the
definition of intersection, we know a € A N B¢ implies botha € A and a € BC.
Therefore, botha € A and a ¢ B from the definition of complement. This is exactly
the definition of set difference, andsoa € A \ B. Thus, AN B¢ cCA \ B, completing
the second half of the proof.

The proof of these two subset relationships establishes the desired equality
A\ B = AN BC for every set A and B.

|

Question 2.1.5 Prove that if A and B are sets with A C B, then B¢ C A€,
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A whole host of set-theoretic identities can be established using the strategies
illustrated in the preceding examples. As we have seen, the ideas and identities of
sentential logic play a fundamental role in working with the set-theoretic operations.
Recall that De Morgan’s laws are among the most important identities from sentential
logic; consider the following set-theoretic version of these identities.

Example 2.1.8 De Morgan’s laws for sets We prove one of De Morgan’s laws for sets: If A and B
are sets, then both (A N B)¢ = A€ U B¢ and (A U B)¢ = A€ N B€.

Proof ~We prove the identity (A N B)® = A€ U B by arguing that each set is a subset of
the other based on the following biconditionals:

ac(ANBC iff a¢ANB Definition of complement
iff aisnotinboth A and B Definition of intersection
iff eithera g Aora ¢ B Sentential De Morgan’s laws
iff eithera € A ora € B¢ Definition of complement
iff aeA°UBC Definition of union

Working through these biconditionals from top to bottom, we have a € (A N B)¢
impliesa € ACUBC®, andso (ANB)C¢ € A€ UBC. Similarly, working through these
biconditionals from bottom to top, we have a € A€ U B implies a € (4 N B),
and so A® U B¢ C (A N B)C. This proves one of De Morgan’s laws for sets,
(AN B)¢ = A€ U B for every set A and B.

|

Question 2.1.6  Prove the other half of De Morgan’s laws for sets; namely, prove that if A and B
are sets, then (A U B) = A€ N B€.
|

We end this section by discussing proofs that certain set-theoretic relations and
identities do not hold. From section 1.7, we know that (supposed) identities can be
disproved by finding a counterexample, exhibiting specific sets for which the given
equality does not hold. To facilitate the definition of sets A, B, C with the desired
properties, we introduce a visual tool for describing sets and set operations known as
a Venn diagram. In a Venn diagram, the universe is denoted with a rectangle, and sets
are drawn inside this rectangle using circles or ellipses. When illustrating two or more
sets in a Venn diagram, we draw overlapping circles to indicate the possibility that the
sets may share some elements in common. The Venn diagrams for the first four set
operations from definition 2.1.4 are given in figure 2.1.

Example 2.1.9 We disprove the false claim that if A, B, and C are sets, then AN (B U C) =
(AN B)U C. This demonstrates that union and intersection operations are not
associative when used together, and so we must be careful with the order of
operation when “mixing” union and intersection.

The Venn diagrams given in figure 2.2 illustrate the sets we are considering
in this example. We use three circles to denote the three distinct sets A, B, and C.
In addition, the circles overlap in a general way so as to indicate all the various
possibilities for sets sharing elements.
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The shaded set is A°. The shaded setis AN B.
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The shaded setis AU B. The shaded set is A\ B.

Figure 2.1 Venn diagrams for basic set operations

ANnBUC ANBUC

Figure 2.2 The Venn diagram for example 2.1.9 showingAN(BUC) #(ANB)UC

Examining the Venn diagrams, we see that if A, B, C are defined so that C
contains an element that is in neither A nor B, the sets AN(BU C)and (ANB)UC
will be different. Alternatively, we could define A, B, C so that BN C contains an
element that is not in A. Following the first approach, we choose to define the sets
A = {1}, B={l1,2},and C = {1, 2, 3} and verify the desired inequality with the
following computations.

ANBUC) = {1}n{1,2,3)} = (1}

ANB)UC = {1}U{1,2,3)}=(1,2,3}

Therefore these three sets provide a counterexample demonstrating that sometimes
ANMBUC)#ANBUC.
|

In example 2.1.9, the choice of sets A, B, and C is just one choice among
many. We are certainly free to make other choices, and you might even think of
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constructing counterexamples as providing an opportunity to express your “mathe-
matical personality.”

Question 2.1.7 Guided by example 2.1.9, give another counterexample disproving the false claim
that AN(BUC)=(ANB)UC forall sets A, B, C.
|

We highlight one subtlety that arises in this setting. In example 2.1.9 and
question 2.1.7, the counterexamples only disprove the general claim that AN (BUC) =
(AN B)UC for all sets A, B, C. However, these counterexamples do not prove
that we have inequality for every choice of sets. In fact, there exist many different
cases in which equality does hold. For example, both A = #,B = ¢, C = ¢} and
A ={1,2},B = {1, 3}, C = {1} produce the equality AN (BUC)=(ANB)UC,
but only because we are working with these specific sets. We therefore cannot make
any general claims about the equality of AN (B U C) and (A N B) U C, but must consider
each possible setting on a case-by-case basis. In short, if we want to prove that a set-
theoretic identity does not always hold, then a counterexample accomplishes this goal;
if we want to prove that a set-theoretic identity never holds, then we must provide a
general proof and not just a specific (counter)example.

Question 2.1.8  Sketch the Venn diagram representing the following sets.

(@ (AUB)NC (b) A\ B
|

Question 2.1.9 Following the model given in example 2.1.9, disprove the false claim that the
following identities hold for all sets A, B, C.

@ AUBNC=A4AU(BNC) (b) A\ B=(A\B°

2.1.1 Reading Questions for Section 2.1

What is the intuitive definition of a set?

What is the intuitive definition of an element?

Describe two approaches to identifying the elements of an infinite set.
Name six important sets and the symbolic notation for these sets.

Define and give an example of the “element of” relation a € A.

Define and give an example of the set relations: A € B,A = B, and A C B.
If A and B are sets, what strategy do we use to prove that A C B?

If A and B are sets, what strategy do we use to prove that A = B?

Define and give an example of the set operations: A ANB,AUB, A \ B,
A x B, and P(A).

Define and give an example of a generalized Cartesian product
Al XAy x -+ X A,

. State both the sentential logic and the set-theoretic versions of De Morgan’s

e AR ol

,_.
e

—_
—

laws.

—_
[\

. Discuss the use of a Venn diagram for representing sets.
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2.1.2 Exercises for Section 2.1

In exercises 1-14, identify the elements in each set, assuming A = {w, x, y, z} is the
universe, B={x,y},C={x,y,z},and D ={ x, 7 }.

1. B¢ 8. BNC)UD
2. c¢ 9. B\D
3.BNC 10. D\ B

4. BND 11. Bx C
5.BUC 12. BxD

6. BUD 13. P(B)

7. BN (CUD) 14. P(C)

In exercises 15-22, identify the elements in each set, assuming A = (0,2) =
{x:0<x<2}and B=1[1,3) = {x: 1 < x < 3} are subsets of the real line R.

15. A€ 19. A\ B
16. B¢ 20. B\ A
17. ANB 21. AN B¢
18. AUB 22. A©UBC¢

In exercises 23-27, give an example proving each subset relationship is proper.

23. N 26 QCc R
24. NC Z 27. RcC
25. 2 CQ

In exercises 28—41, prove each set-theoretic identity for sets A, B, and C.

28. {2,2,2} = {2} 36. AN =0

29. (1,2} = {2, 1} 37. ACAUB

30. {1} € P({1}) 38.1f A C B and B € C, then
31. ACA(andso A € P(A)) ACC.

32. P CA(andso ¥ € P(A)) 39.If A C B and A C C, then
33. A\U=A ASBNC.

34, ACIC — A 40. (AUB)\ C=(A\C)U(B\ C)
35. ANBC A 41. If A C B, then P(A) C P(B).

In exercises 4245, disprove each false set-theoretic identity.

42. 1={1} 44. {1} e {1}
43. 1 c {1} 45. {1} < P({1})

For exercises 4653, disprove the false claim that the following hold for all sets A, B, C
by describing a counterexample.

46. fA Z BandB € C,thenA & C. 50. fAUC =BUC, thenA = B.
47. If A C B, then A€ C BC. 51. fANC=BNC,thenA = B.
48. If A = B¢, then AUB = (. 52. fB=AUC, thenA =B\ C.
49. If A€ = BC, then ANB = 0. 53. A\B)U(B\C)=A\C
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Exercises 54—57 consider “disjoint” pairs of sets. We say that a pair of sets X and Y is
disjoint when they have an empty intersection; that is, when X N Y = (.

In exercises 54-57,let B ={x, y},C = {x, y, z}, D = {x, 7}, E = {y},and F = {w}
and identify the sets in this collection that are disjoint from the following sets.

54. B 56. D
55. C 57. E

Exercises 58—62 explore numeric properties of the power set operation.

58. State every element in P((J). How many elements are in P()?

59. State every element in P( {1} ). How many elements are in P({1})?

60. State every element in P( {1, 2} ). How many elements are in P( {1, 2})?

61. State every element in P( {1, 2, 3} ). How many elements are in P( {1, 2, 3})?

62. Based on your answers to exercises 58—61, make a conjecture about how many
elements are in P( {1, 2, 3, 4} ). Extend your conjecture to P({1, 2, ..., n}).

Exercises 63—65 consider how mathematicians have utilized set theory as a tool for
defining the natural numbers. In particular, a correspondence between the nonnegative
integers {0, 1, 2, 3, ...} and certain sets is defined, beginning as follows.

0 =90

I = {0} = {¥}

2 = {01}y ={0 {9})

3= {0.1,2} = {0, {9}, {#4.{V}}}

63. Using this model as a guide, state the set corresponding to the integer 4.

64. Using this model as a guide, state the set corresponding to the integer 5.

65. For each natural number from O to 5, how many elements are in the
corresponding set? Based on this observation make a conjecture of how many
elements are in the set for the natural number 50.

Exercises 66—67 consider the Barber paradox that was introduced by Bertrand Russell
in an effort to illuminate Russell’s paradox (discussed in the exercises 68-70).
The Barber paradox is based on the following question.

If the barber shaves everyone who doesn’t shave themselves and only
those who don’t shave themselves, who shaves the barber?

66. Assume the barber does not shave himself and find a contradiction.
67. Assume the barber shaves himself and find a contradiction.

Exercises 68—70 consider Russell’s paradox. A set NV is said to be normal if the set does
not contain itself; symbolically, we write N ¢ N. Examples of normal sets include the
set of all even integers (which is itself not an even integer) and the set of all cows
(which is itself not a cow). An example of a set that is not normal is the set of all
thinkable things (which is itself thinkable).

68. Give two more examples of normal sets and an example of a set that is not
normal.
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69. Let N be the set of all normal sets. Assume N is a normal set and find a
contradiction.

70. Let N be the set of all normal sets. Assume N is not a normal set and find a
contradiction.

Bertrand Russell pointed out this paradox in our intuitive understanding of sets in
a letter to Gottlob Frege in 1903. This paradox holds when a set is defined as
“any collection” of objects and highlights the interesting observation that not every
collection is a set.

2.2 The Division Algorithm and Modular Addition

Our study of abstract algebra begins with the system of whole numbers known more
formally as the integers. Recall that Z denotes the set of integers {..., —3, =2, —1,0,
1,2, 3, ...}. From previous mathematics courses, we are already familiar with several
operations on the integers, including addition, subtraction, multiplication, division,
and exponentiation. In this chapter, we “push the boundaries” on these operations
by studying certain subsets of the integers along with a modified addition operation
known as modular addition. We use the division algorithm to define this new addition
operation.

The division algorithm is actually the name of a theorem, but the standard proof
of this result describes the long division algorithm for integers. The ancient Greek
mathematician Euclid included the division algorithm in Book VII of Elements [73],
a comprehensive survey of geometry and number theory. Traditionally, Euclid is
believed to have taught and written at the Museum and Library of Alexandria in Egypt,
but otherwise relatively little is known about him. And yet Elements is arguably the
most important mathematics book ever written, appearing in more editions than any
book other than the Christian Bible.

By the time Elements had appeared in 300 B.C.E., Greek mathematicians had
recognized a duality in the fundamental nature of geometry. On the one hand, geometry
is empirical, at least to the extent that it describes the physical space we inhabit. On the
other hand, geometry is deductive because it uses axioms and reasoning to establish
mathematically certain truths. Mathematicians and others continue to wonder at this
duality. As Albert Einstein questioned, “How can it be that mathematics, being after
all a product of human thought independent of experience, is so admirably adapted to
the objects of reality?”

Mathematicians have a special affection for Euclid’s book because Elements is
the first known comprehensive exposition of mathematics to utilize the deductive,
axiomatic method. In addition, a Latin translation of Euclid’s Elements played a
fundamental role in fostering the European mathematical renaissance of the sixteenth
and seventeenth centuries. We now formally state the division algorithm.

Theorem 2.2.1 Division algorithm If m, n € 7Z and n is a positive integer, then there exist unique

integers q € Zandr € {0,1,...,n— 1} suchthatm = n - q + r. We refer to n as
the divisor, g as the quotient, and r as the remainder when m is divided by n.
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The division algorithm makes two distinct claims about the quotient ¢ and the
remainder r. First of all, the division algorithm is an existence result guaranteeing
that when we divide an integer m by a positive integer n, then we must obtain
values ¢ and r that are also integers. In addition, the division algorithm is a
uniqueness result, ensuring that for each pair of integers m and n (with n positive)
there is exactly one such quotient ¢ and remainder » (when r € {0,...,n — 1}).
The uniqueness aspect of this theorem is in many ways just as significant as the
existence, although perhaps highlighting uniqueness might seem a bit strange. Can
you think of some setting in which a mathematical question does not have a unique
answer? Perhaps thinking about the notion of “an” antiderivative in calculus is helpful.
Many important results in mathematics make these dual claims of existence and
uniqueness, and so the idea of uniqueness is something to watch for when studying
mathematics.

Although the division algorithm guarantees the existence and uniqueness of an
equation relating any two integers m and n with n positive, the theorem itself does not
provide any information about how to actually find the equation. In most cases, the
choice of integers ¢ and r for the quotient and remainder are not immediately obvious,
requiring a “behind the scenes” calculation using long division. The following example
illustrates the intimate connection between the process of long division and the division
algorithm.

Example 2.2.1 We use long division to specify the quotient g and the remainder r from the division
algorithm when m = 29 is divided by n = 12. The grade school approach to long
division produces the following result.

2
12 29
—24

5

In the notation of the division algorithm, the quotient ¢ = 2 and the remainder

r =5 when m = 29 is divided by n = 12. Alternatively, this result can be written
in the division algorithm’s m = n - ¢ 4+ r equation form as 29 = 12 -2 4 5.

|

Even though the division algorithm does not explicitly state an algorithm for
finding m = n - ¢ + r, the value of this result lies in the guarantees of existence and
uniqueness. When working with particular integers m and n with n positive, we are
assured that a long division calculation will not be in vain. Also, in general settings, we
can confidently work with the quotient g, the remainder r, and the equationm =n-q+r
for any choice of integers m and n with n positive.

Example 2.2.2 Continuing to work with the divisor n = 12 from example 2.2.1, we use long

division to verify that three more integers m have remainder r = 5 when m is
divided by 12.

3 -2 0

121 41 121 =19 1215
—36 —(=24) -0

5 5 5
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Based on these computations, m = 41, m = —19, and m = 5 all have
remainder r = 5 when divided by n = 12. As may be apparent, infinitely many
integers m have remainder » = 5 under division by n = 12.

When creating this example, we chose m = 41, m = —19, and m = 5 by
substituting different integer values ¢ into the equation m = ¢ - 12 + 5. Distinct
integers g € Z produce distinct m = g - 12 + 5 with remainder r = 5 under division
by n = 12. Since there exist infinitely many integers g € Z, infinitely many integers
m have remainder = 5 under division by n = 12.

|

As we’ll see throughout this chapter, the remainders identified by the division
algorithm are key to many important mathematical insights and applications. One
important property of these remainders is that they must be nonnegative—that is, r
must be zero or positive. Thus, for a negative m, the nonnegative requirement for
r also results in a negative quotient g. In example 2.2.2, we divided m = —19 by
n = 12 and obtained the negative quotient ¢ = —2 since the remainder r had to be
nonnegative. Notice that the product of the quotient ¢ and divisor n (in this case,
n-qg = (—2)-12 = —24) had to be less than or equal to m = —19 so that adding the
nonnegative reminder r produced the desired equality; and so, we must be careful (as
always) when working with negative integers.

Question 2.2.1 Use long division to compute the quotient ¢ and the remainder » when each m is

divided by n = 6.

(a) m=39 (c) m=-9
(b) m =195 (d) m = —603
|

Question 2.2.2  State two positive integers and two negative integers m € Z with each remainder

r under division by n = 6.

(@) r=1 b)) r=5
|

Now that we have a good handle on the computations associated with the division
algorithm, we outline a proof of this theorem. This argument discusses a constructive,
algorithmic approach to identifying the quotient and the remainder that will hopefully
provide some insight into why this theorem is true. As we begin, note that this is only
a sketch of a proof rather than a complete proof with full details. A complete proof of
the division algorithm is often discussed in abstract algebra and number theory courses
and is left for your later studies.

A Sketch of a Proof of the division algorithm As highlighted above, the division algorithm

makes two claims about the quotient and the remainder: an existence claim and a
uniqueness claim. And so a proof of this theorem has two parts.

Existence Consider the case where m and n are both positive integers. The basic idea is to

compare multiples of n with the integer m. First we check toseeifn-0 <m < n- 1.
If so, we are done, using ¢ = Oand r = m. If not, we check toseeifn-1 <m < n-2;
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if so, we are done, using ¢ = 1 and r = m — n - 1. Continuing in this manner,
we eventually find the desired quotient ¢ € Z such thatn-g <m <n-(g+ 1)
with remainder r = m — n - g. If m is negative, the idea is the same, only consider
negative quotients g € Z. The following illustration may provide further insight
into the process outlined here.

[
0 n 2n q-n m (g+1)-n

A complete, formal proof of the existence portion of the division algorithm
typically uses an axiom known as the well-ordering principle of the integers to
prove that there exist integers g and r satisfying m = n - g + r. The well-ordering
principle implies that every set of positive integers contains a least integer; the
least integer in an appropriately defined set is used to obtain g and r.

Uniqueness The uniqueness portion of the division algorithm is proven by assuming that
there exist two distinct quotient—remainder pairs for m and n and proving that the
two quotients and the two remainders must actually be equal. Symbolically, we
assume m = n - qy + ry = n- g + r, where g1, g and ry, r, satisfy the division
algorithm conditions for the quotient and remainder, respectively. We then prove
q1 = q2 and r; = rp. This strategy is used in many different settings in proving
uniqueness: we assume there exist two distinct mathematical objects with a given
set of properties and show that they must actually be equal to each other.

|

We now use the division algorithm to identify certain subsets of the integers that
are of particular interest to mathematicians—these sets allow for the definition of a
modified addition operation. The division algorithm serves as a tool for partitioning
the integers into a finite number of subsets, allowing us to “lump together” various
integers into disjoint, or nonintersecting, sets of integers. The idea is to fix a specific
positive integer n as a divisor and place all integers with the same remainder under
division by 7 into the same subset of Z.

For example, fix n = 6 as the divisor (as in question 2.2.1). Then, as you can
verify, the integers ..., —15, —9, =3, 3, 9, 15, ... each have remainder r = 3
under division by n = 6. Adopting the approach suggested above, we place all
of these integers into the same subset {...,—15, =9, =3, 3, 9, 15,...} of Z.

Similarly, the integers ..., —13, =7, —1,5, 11, 17, ... each have remainder r = 5
under division by n = 6, and we place all of these integers into the same subset
{...,—13, =7, —1, 5, 11, 17,...} of Z. Continuing in this manner produces the

following six disjoint subsets of integers.

{...,—18,—-12,-6,0,6,12,...} = {q-64+0:q€Z} forremainder r=0
{..,—17,—11,-5,1,7,13,...} {g-6+1:qeZ} r=1
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{...,—16,—10,—4,2,8,14,...} = {q-64+2:q€Z} forremainder r=2
{...,—15,-9,-3,3,9,15,...} @ = {q-643:q€Z} r=3
{....,—14,-8,-2,4,10,16,...} = {q-6+4:q€Z} r=4
{...,—13,-7,—1,5,11,17,...} = {q-6+5:9q€Z} r=>5

In order to facilitate working with such sets of integers for different divisors n, we

introduce a notation that conveniently relates integers sharing a common remainder.
Specifically, we define m mod n to be the remainder of m under division by n. For
example, using this notation, we have 15 mod 6 = 3 (since 3 is the remainder when
15 is divided by 6) and we have 17 mod 6 = 5 (since 5 is the remainder when 17 is
divided by 6).

Definition 2.2.1  For integers m and n, we write mmod n =r when m = n - q + r for integers q and

r satisfying the division algorithm, and say “m mod nis r” or “m modulo n is r.”
For a,b € 7, a mod n = b mod n exactly when a and b have the same remainder
r under division by n; in this case, we often write a = b mod n and say that “a is
congruent to b mod n.”

Example 2.2.3 Continuing to work with the divisor n = 6, we illustrate the modular oper-

ation and the congruence relation by observing the following congruence
relationships.

* 39mod 6 =3,since 39 =6-6+3

e 195mod 6 =3,since 195=6-32+3

e —9mod 6 =3,since -9 =6-(—2)+3

e —603mod 6 = 3, since —603 =6-(—101) + 3

Furthermore, since all four of these integers have the same remainder of » = 3
under division by n = 6, the following congruence relations hold.

39=195mod6, 39=(—9) mod6, 39 =(—603)mod6, andsoon ...
|

In light of the computations in example 2.2.3, the partition of the integers
determined by remainders under division by n = 6 places all four of 39, 195, —9, and
—603 into the same subset {g - 6 + 3 : g € Z} of Z—the subset identified for remainder
r = 3 above. The next question considers modular computations for various divisors
neN.

Question 2.2.3  Using the division algorithm, determine the value of each expression.

(a) 39mod 3, 195mod 3, (—9)mod 3, (—603) mod 3
(b) 39 mod 10, 195mod 10, (—9)mod 10, (—603) mod 10
(¢) 39mod2, 195mod2, (2k + 1)mod 2, (2k) mod 2 (where k is an arbitrary
integer)
|

The relation of congruence modulo n on the integers was first defined by
Carl Friedrich Gauss in the late 1700s and played a significant role in Gauss’s
seminal treatise on number theory, Disquisitiones Arithmeticae [97]. Gauss was a
German mathematician, physicist, astronomer, and surveyor who was born in 1777
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in Brunswick and died in 1855 in Gottingen. Along with Archimedes and Newton,
Gauss is widely regarded as one of the three most important mathematicians in recorded
human history. Gauss developed a tremendous number of mathematical insights during
his career and supervised the doctoral work of many active research mathematicians
of the 1800s. He was particularly interested in number theory and in 1801 published
Disquisitiones Arithmeticae, which included his work with congruence modulo » and
modular arithmetic. These ideas have remained foundational in today’s study of abstract
algebra.

As described above, remainders play an important role in utilizing the division
algorithm. Our study of modular arithmetic will benefit from determining all possible
values of the remainder under division by a given positive integer n. For example, the
possible remainders satisfying the division algorithm under division by n = 2 are the
values r = 0 and r = 1.

Question 2.2.4 State a set consisting of all possible remainders that can result from the division
algorithm under division by each n.

(@ n=3 c)n=9
(b) n=6 (d) an arbitraryn € N
|

In light of the answers to question 2.2.4 and the abstract power and generality of
the division algorithm, the the integers 0, 1, 2, ..., n — 1 are the only possible values
for the remainder r under division by a fixed positive integer n € N. For example, when
dividing by n = 3, the only possible remainders are 0, 1, and 2 and, when dividing by
n = 4, the only possible remainders are 0, 1, 2, and 3. To facilitate our work with the
sets of integers sharing a common remainder under division by n, we identify each set
of congruent integers with the corresponding remainder. For example, when n = 3,
the integers are partitioned into the following three sets, which are then identified with
their corresponding remainders.

{...,—6,-3,0,3,6,...} withremainderr =20
{...,=5,-2,1,4,7,...} withremainderr =1
{...,—4,-1,2,5,8,...} withremainderr =2

The remainders serve as “representatives” for their corresponding sets and are the
objects of study for much of this chapter. In the next section, we begin referring to these
sets as equivalence classes of integers and develop the theory of equivalence classes
and equivalence relations. For the moment, we define the set of these remainders.

Definition 2.2.2 Z,, denotes the set of integers mod n consisting of the remainders {0, 1,2, ...,
n — 1} under division by n € N. We refer to the set Z, as “Z mod n.”

Question 2.2.5 State the elements in each of the sets Z3, Zg, and Zy.
|

These sets Z,, are important because they contain all the possible remainders under
division by a fixed positive integer n € N. The remainders serve as representatives of
the infinite sets of integers obtained by partitioning the integers (based on division by
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a fixed positive integer n) so that every integer appears in exactly one set. As Gauss
and others since have found, this perspective has profound implications when studying
the algebraic properties of integers.

The algebraic properties of number systems depend not just on the numbers,
but also on the operations performed on them. This dependence leads us to consider
possible operations on these sets of numbers. Since Z,, is a finite set of integers, we
naturally think of applying the standard addition operation for integers (and other
operations, including standard multiplication). This practice of implementing well-
understood operations and techniques in new settings is common in mathematics.
Unfortunately, the standard addition of integers suffers an important shortcoming
in Z,, which is addressed by modifying the standard addition operation into a new
modular addition operation. Before defining this operation, we explore the limitations
of standard addition in the context of Zg.

Question 2.2.6 Consider the closure of the set Z¢ under standard addition. Identify which of the

following sums (computed using standard addition), are in Z¢ = {0, 1, 2, 3,4, 5}
and which are not in Zg.

(@ 0+3 (c) 0+4
(b) 3+3 (d) 3+4
]

As question 2.2.6 indicates, when a, b € Zg, sometimes a + b € Zg and sometimes
a+ b & Ze. This behavior is described by saying Zg is not closed under addition. We
typically want to work with sets and operations where the set is closed under the given
operation. Fortunately, there is a modified “modular” addition operation € such that
Zg is closed under @. The idea is to define a @ b equal to the remainder r when a + b
(the standard sum of a and b) is divided by a fixed, given integer n € N. The following
definition makes this notion precise.

Definition2.2.3 Ifa,b € Z, and (a + b)ymodn = r, then a ® b = r. This operation is called

addition mod n and we refer to Z, under addition mod n.

The notation @ for modular addition is traditionally used for all sets Z,. There
are actually infinitely many different modular addition operations @,, one for each
positive integer n € N that can serve as a divisor. Mathematicians often rely on context
to identify the particular operation in use, and the designation of a set Z,, automatically
determines the value of the divisor n and the corresponding modular addition operation.

Example 2.2.4 We compute two sums in Z¢ = {0, 1, 2, 3, 4, 5} under addition mod 6.

e 1®2=3since (1 +2)mod6 =3mod6 =3
*3p5=2since (3+5)mod6 =8mod6 =2

Question 2.2.7  Verify the following sums in Z¢ = {0, 1, 2, 3, 4, 5} under addition mod 6.

(a) 14=5 () 264=0
(b) 4065=3 d3d4=1
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The sums computed in example 2.2.4 and question 2.2.7 provide some evidence
that Zg is closed under addition mod 6; thatis, a @ b appears to be in Zg forall a, b € Zs.
However, we have not yet proven this general fact—only that a @ b is in Zg¢ for the
specific pairs of numbers given in example 2.2.4 and question 2.2.7. In this simple
setting, mathematicians often use exhaustion to provide a complete justification that
Zsg is closed under addition mod 6, computing the mod 6 sum for every possible pair of
integers in Zg. In the next section, we describe a “Cayley table” for Zg that performs all
of these computations. In section 2.4, we also study the abstract properties of integers
under modular arithmetic; this approach shows that every set Z,, is closed under the
corresponding modular addition operation.

For now, we explore two important algebraic properties of the set Z,, under addition
mod n. As in the context of standard addition on the integers, the number zero plays a
special role in Z, under modular addition.

Question 2.2.8 Directly compute the value of 0 @ a and a @ 0 for every a € Ze.
|

The computations in question 2.2.8 demonstrate that the element 0 € Zg “fixes”
every element of Zg and so preserves the “identity” of every element. Therefore, we
refer to 0 as the identity element of Ze. As you might surmise, O plays a similar role in
every set Z,, under addition mod n.

We also observe that some pairs of integers, when summed together using modular
addition, produce the identity 0. This property is also found in the setting of the
integers Z under standard addition. For example, 2 + (—2) = 0 and (—2) + 2 = 0;
in general, a + (—a) = 0 and (—a) + a = 0 for every integer a € Z. This process
of identifying the additive inverse (—a) of an integer a € Z can also be carried out
in the context of 7Z,. Whenever the sum of a and b produces the identity (in this
case, when a @& b = 0), we say that a and b are inverses, or that b is the additive
inverse of a.

Question 2.2.9 Answer the following questions about inverses in Zg = {0, 1, 2, 3, 4, 5} under
addition mod 6.

(a) Provethat2and4 are inverses under addition mod 6 by showingboth2 @4 =0
and4 2 =0.

(b) State the inverse of 3 under addition mod 6; that is, find b € Zg such that
both 3@ b = 0 and b & 3 = 0. The answer is an element of Zg = {0, 1, 2,
3,4,5}.

(c) State the inverse of 5 under addition mod 6.

|

Our discussion of closure, identity, and inverses in the context of Zg is really
just a preliminary investigation of the algebraic properties common to many different
number systems. We continue to explore these properties in a variety of different
number systems throughout this chapter. For example, in the next section we
consider a modified version of another familiar operation: standard multiplication of
integers. Perhaps you can already hazard a conjecture about how we will modify this
operation.
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For now, we end this section with a proof of one of the theorems that was
introduced in section 1.7, using the division algorithm to prove the parity property
of the integers.

Theorem 2.2.2 The parity property of the integers Every integer is either even or odd.

Proof Assume m € Z is an integer. We prove that m is either even or odd by showing
that m = 2k or m = 2k 4 1 for some k € Z. Applying the division algorithm to
m using the divisor n = 2 produces m = 2q + r with r € {0, 1}. There are two
cases to consider. If » = 0, then m = 2g + 0 = 2q and m is even. If r = 1, then
m = 2q + 1 and m is odd. Since every integer falls into one of these two cases,
every integer must be either even or odd.
|

2.2.1 Reading Questions for Section 2.2

1. State the division algorithm.
2. Discuss the two distinct claims made by the division algorithm.

3. What quotient g and remainder r satisfy the division algorithm when m = 7

and n = 37
4. Discuss why infinitely many integers m have remainder » = 1 under division
by n =3.

Define a = bmod n and give an interesting example for n = 3.
Define Z,, and give an example.
Why are we interested in the elements of Z,,?

Define a @ b = r and give an example.

R A

When is a set G is closed under standard addition? Give an example of a set
that is closed under addition and a set that is not.

10. How does closure motivate the definition of modular addition?
11. Define and give an example of an identity.

12. Define and give an example of an additive inverse.

2.2.2 Exercises for Section 2.2

In exercises 1-4, determine the quotient ¢ and the remainder r from the division
algorithm when each m is divided by n = 7.

1. m =39 3.
2. m=195 4.

m= -9

m = —603

In exercises 5-8, identify three integers m € Z that produce each remainder » when m
is divided by n = 7.

5. r=1
6. r=2

®© =
N N
I
TN
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In exercises 9-12, determine the quotient ¢ and the remainder r from the division
algorithm when each m is divided by n = 8.

9. m=33 I1. m=—11
10. m =198 12. m = —612

In exercises 13-16, identify three integers m € Z that produce each remainder » when
m is divided by n = 8.

13. r=1 15. r=5

14. r=4 16. r=17

Inexercises 17-22, determine the three smallest positive integers m € Z with remainder
r under division by n.

17. n=3andr =1 200 n=7andr =4
18. n=3andr =2 21. n=10and r =3
19. n=7andr =3 22. n=10andr =7

In exercises 23-32, find the value of each expression.

23. 39mod 7, 195mod 7, (—9)mod 7, (—603)mod 7

24. 33mod 8, 198 mod 8, (—11)mod 8, (—608) mod 8

25. 34mod9, 199mod9, (—13)mod9, (—606) mod 9

26. 36 mod 10, 197 mod 10, (—10)mod 10, (—605)mod 10

27. 35mod 11, 196mod 11, (—12)mod 11, (—607)mod 11

28. 36 mod 2, 197mod 2, and both (2k + 1) mod 2 and (2k) mod 2 for k € Z

29. 0°mod 2, 1> mod 2

30. 03mod 3, 13 mod 3, 23 mod 3

31. 0°mod 5, 1°mod 5, 2°mod 5, 3’ mod 5, 4° mod 5.

32. 0’mod7, 17mod 7, 2’ mod7, 3’ mod7, 4’ mod7, 5" mod7, 6" mod?7.

33. (Fermat’s little theorem) Based on the answers to exercises 29-32, formulate
a conjecture about the value of @’ modp when a € Z, and p is a prime
integer.

In exercises 34-37, state the elements in each set.

34. Zs 36. 7y,
35. Zg 37. Zs

In exercises 3841, identify the infinite subset of the integers represented by each
remainder r in the given set Z,.

38. r=2inZs 40. r =2inZg
39. r =4inZs 41. r =4in Zg

In exercises 42-53, compute each modular sum in the given set Z,,.

42. inZy: 061 and 11 46. inZs: 463 and 3H2
43. inZ3: 162 and 242 47. inZs: 364 and 252
44, inZ4: 063 and 13 48. inZ7: 4645 and 3H2

45. inZ4: 362 and 33 49. inZ7: 65 and 36
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50. inZg: 75 and 366 52.inZ11: 4®5 and 75
51.inZg: 2@ 7 and 8 8 53.inZj;: 809 and 16 10

Exercises 54-55 consider identities and inverses in Z4 = {0, 1, 2, 3}.

54. Prove 0 is the additive identity of Z4 by directly computing 0 & a = a and
a® 0 =aforevery a € Za.

55. The addition mod 4 inverse of 2 is 2 since (2 + 2)mod4 = 4mod4 = 0.
Identify the addition mod 4 inverse for each of the four elements in Zj4.

In exercises 5659, identify the inverse under addition mod n for every element of

each set.
56. Zs 58. Zn
57. Zg 59. Zis

In exercises 60—-64, prove each mathematical statement. For exercises 60 and 61,
assume that a,b,c,d € Z with a = b mod n and ¢ = d mod n.
60. (a+c)=((b+d)ymodn 63. If a is odd, then a* = 1 mod 4.
6l. (a—c)=((b—d)ymodn 64. If a is odd, then a? = 1 mod 8.
62. If a is even, then ¢* = 0 mod 4.

Exercises 65-68 consider the commutativity of set-theoretic operations. You may have
noticed that identity computations require botha @0 =aand 0@ a =a forall a €
Zp,. This requirement of commutativity (adding 0 on both the left and the right) may
seem a bit mysterious. While many mathematical operations commute, some do not,
as illustrated by considering the following (possible) identities.

In exercises 65-68, let A and B be sets. Either prove or disprove (with a
counterexample) each set-theoretic identity.

65. ANB = BNA 67. A\B = B\A
66. AUB = BUA 68. AxB = BxA

Exercises 69 and 70 consider further algebraic properties of sets.

69. Prove that @ is the identity for union of sets; that is, prove that if A is a set,
thenboth AU =Aand JUA = A.

70. (Unique empty set theorem) Use exercise 69 to justify the two equalities in
the following proof that the empty set is unique.

Proof Assume that both @; and ¢}, are empty sets. Then the following two
equalities hold:
W =01Ulh =0

2.3  Modular Multiplication and Equivalence Relations

We continue our study of number systems by considering a “modular multiplication”
operation on Z,. When working with products of elements of Z,, we must modify
the standard multiplication operation for the same reason we modified the standard
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addition operation—the set Z,, is not closed under either standard addition or standard
multiplication (see question 2.2.6). For example, 5, 6 € Z, but the standard product
5.6 =30 ¢ Z7. As you might expect, the definition of multiplication mod n closely
parallels the definition of addition mod n. The idea is to set a © b equal to the remainder
r when a - b (the standard product of a and b) is divided by a fixed, given integer n € N.
The following definition makes this notion precise.

Definition2.3.1 Ifa,b € Z,, and (a - bymodn = r, then a ® b = r. This operation is called
multiplication mod n, and we refer to 7, under multiplication mod #.

As with modular addition, the notation ® for modular multiplication is traditionally
used for all sets Z, with context indicating the particular divisor n. The designation
of a set Z,, automatically determines the value of the divisor n and the corresponding
modular multiplication operation.

Example 2.3.1 We compute two products in Z7 = {0,1,2,3,4,5,6} under multiplication
mod 7.

203 =6since(2-3)mod7 =6mod7 =6
¢« 205=3since(2-5 mod7 =10mod7 =3
|

Question 2.3.1  Verify the following products in Z7; = {0, 1, 2, 3,4, 5, 6} under multiplication

mod 7.
(a) 104=14 )405=6
®d 36e5=1 d 406=3

In the previous section, we began investigating abstract algebraic properties of Z,,
under modular addition. We identified three particularly important properties: closure,
identity, and inverses under addition mod n. These three properties, together with
associativity, describe the notion of a “group” and are fundamental to our work with
number systems. We continue this study of abstract algebra in the context of Z,, under
modular multiplication.

We first determine the identity for Z,, under multiplication mod n. Recall that an
identity “fixes” every element of the number system under the given operation. For
example, 0 was the identity element of Z,, under addition mod » since both0 @ a = a
and a @ 0 = aforevery a € Zj,. In the multiplicative setting, we are similarly interested
in identifying an element e € Z, such that both ¢ © @ = a and a © e = a for every
a € Zy. Based on our experience with the integers under standard multiplication, we
can readily identify the element that serves as this identity.

Question 2.3.2 Compute the value of 1 ® a and a © 1 for every a € Z;.
|

The computations in question 2.3.2 demonstrate that 1 “fixes” every element of
Z7 under multiplication mod 7 and is therefore the identity of Z; under multiplication
mod 7. Similar computations verify that 1 is the identity for Z, under multiplication
mod # for any choice of n € N.



106

A Transition to Advanced Mathematics

We now turn our attention to determining multiplication mod n inverses of the
elements of Z,. For each element a € Z,, the goal is to find b € Z, such that the
modular product of a and b is equal to the identity under modular multiplication;
symbolically, we need both a © b = 1 and b © a = 1. When this happens, we say
that @ and b are inverses under multiplication mod n or that b is the multiplicative
inverse of a.

Example 2.3.2 We verify that 3 and 5 are multiplicative inverses in Z;.

As indicated in question 2.3.1 above, 3 ® 5 = 15mod 7 = 1 in Z7. Similarly,
503 =15mod7 = 1. Since both 3® 5 and 5 © 3 are equal to the identity of Z,
we know that 3 is the inverse of 5 under multiplication mod 7 and that 5 is the
inverse of 3 under multiplication mod 7.

|

Question 2.3.3 Determine the multiplicative inverse of each element from Z7 = {0, 1, 2, 3, 4, 5, 6}

under multiplication mod 7.

(@) a=1 (c)a=3
(b) a=2 d a=6

In addition, identify the unique element of Z; that does not have a
multiplicative inverse; this same element has “inverse issues” under standard
multiplication of integers.

|

As highlighted in question 2.3.3, not every element of Z, has an inverse under
multiplication mod n. For Z7, the unique element without a multiplicative inverse
is 0. This situation is the best possible result we can hope for since 0 does not have a
multiplicative inverse in any Z,. In general, most Z,’s contain several elements not
having multiplicative inverses. However, having an inverse is a desirable property.
Therefore, we modify the set under examination to guarantee every element has
an inverse. In this way, we follow of the practice of mathematicians—making slight,
incremental changes to known objects to enable a fruitful analysis.

In the context of studying abstract algebraic properties, we are particularly
interested in the subset of Z, that consists of exactly those elements of Z, with
multiplicative inverses; this set is denoted U(n). We refer to U(n) as the set of units
of Zy. In the next section, we prove that the set U(n) of invertible elements under
the operation of multiplication mod » satisfies the desirable algebraic properties that
define a “group”; in fact, the sets U(n) under multiplication mod n provide the standard
examples of finite multiplicative groups.

As demonstrated in question 2.3.2, we can observe that the multiplicative identity
is always its own inverse (since 1 ® 1 = 1), and so the element 1 is always in U(n). But
what about the nonidentity elements of Z,,? One approach to determining which of these
elements are also in U(n) is to check for inverses one element at a time. Unfortunately,
this exhaustive approach is too computationally intense for large n € N. Instead, there
exists an algorithmic approach for identifying the elements of U(n). The algorithm is
based on determining the elements of Z, that are relatively prime to n; those elements
satisfy the axiom for inverses.
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Working in this direction, we say that a positive integer p € N is a factor of
an integer n € Z if p divides n evenly; using the notation of the division algorithm,
p is a factor of n if n = g - p for some quotient g € Z. For example, 7 is a factor
of 21 since 21 = 3 - 7. We say that m € Z shares a common factor with n € Z if
there exists an integer p € Z such that p is a factor of both m and n. For example,
36 shares a common factor with 21, since 3 is a factor of both. Finally, we say
that m € Z is relatively prime to n € Z if m and n do not share a common factor
p > 1. For example, 14 and 15 are relatively prime, since 2 and 7 (the factors of
14) are not factors of 15. These ideas enable the following characterization of the set
of units.

Definition 2.3.2 U(n) denotes the set of units of Z, consisting of the nonzero elements of Z,, that
are relatively prime to n € N; these elements share no common factors with n
greater than 1. We typically work with U (n) under the operation of multiplication
mod n.

Example 2.3.3 We identify the elements in U(9). From definition 2.3.2, the set U(9) is a subset of
Zg and membership in U(9) is determined by identifying which nonzero elements
of Z9 =1{0,1,2,3,4,5,6,7, 8} share a common factor with 9 greater than 1. We
first observe that the factors of 9 are 1, 3, and 9.

e For 0: Only nonzero elements of Zg can be elements of U(9), and so
0&U@©).

* For 1: The only factor of 1 is 1 itself, so 1 is relatively prime to 9 and 1 € U(9).

* For 2: The factors of 2 are 1 and 2, so 2 is relatively prime to 9 and 2 € U(9).

e For 3: The factors of 3 are 1 and 3, and 3 is a common factor of both 3 and 9

that is greater than 1. Therefore, 3 and 9 are not relatively prime, and we have
3£U©).

Continuing in this fashion, we find that U(9) = {1, 2,4, 5,7, 8}.

Question 2.3.4 Identify the elements in the sets U(5) C Zs and U(6) C Zg.
|

As you have perhaps surmised in answering question 2.3.4, the elements of U(n)
are readily identified when the integer n is prime. Prime numbers are studied more fully
in section 3.1, but for the moment, perhaps you can recall that an integer n is prime
if the only factors of n are 1 and n. Therefore, when 7 is a prime integer, no positive
integer between 1 and n shares a common factor with n. In this case, U(n) is equal to the
set of all nonzero elements of Z,,; symbolically, U(n) = Z, \ {0} = {1,2,...,n— 1}
when 7 is prime.

We now examine the property of closure under modular multiplication. In the
previous section, we asserted that Z,, is closed under addition mod » since for every
paira, b € Z,, we have a ® b € Z,,. As we will see, Z,, and U(n) are both closed under
multiplication mod n. Since we are interested in knowing this mathematical truth for
every integer n, we eventually consider a general proof of this result using abstract
properties of integers. For the moment, we use the method of exhaustion for relatively
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small integers n. The direct exhaustion approach to verifying the closure of U(n)
and Z, under modular multiplication (and Z, under modular addition) requires the
computation of all possible products of pairs of elements from these sets. Fortunately,
a Cayley table provides a systematic approach to computing all of these various
products.

Definition 2.3.3 Let G be a finite set that is closed under an operation o; that is, for every

a,b € G, we have a o b € G. A Cayley table for G under operation o is an
operation table that displays the result of applying the operation o to each pair
of elements a,b € G, and so identifies the element a o b € G for every pair
a,b € G.

These computational tables are named in honor of the talented and prolific
English mathematician Arthur Cayley. In the 1800s, relatively few professorships
were available at the handful of colleges and universities in England. Therefore,
despite exhibiting tremendous mathematical talent during and immediately after his
undergraduate work at Trinity College in Cambridge, Cayley worked as a lawyer for
14 years in order to make enough money to support his mathematical “hobby.” During
this time, Cayley shared strong friendships and deep mathematical conversations
with a number of other well-regarded mathematicians (many of whom were also
lawyers and actuaries). In just this relatively short time span, Cayley published
approximately 250 research papers. Even today this publication record would be
considered a highly prolific career, let alone just a few years worth of work while
otherwise employed. In the 1850s, Cayley first extended the notion of a “group”
from the setting of finite functions to a variety of other number systems. In the
paper developing these ideas, Cayley gave the first computational tables of the type
illustrated below for Z3 and U(3); in this way they have come to be known as Cayley
tables.

Example 2.3.4 We compute the Cayley table for Z3 = {0, 1, 2} under addition mod 3.

The Cayley table is constructed so the interior table position determined by
the row with element a and the column with element b contains the element
a @ b, with a in the left position of the sum and b in the right position of
the sum.

@ 0 1 2

0000 01 02
1190 101 1602
200 201 202

[\

Examining the Cayley table on the right, we can see that the set Z3 is closed
under addition mod 3 since only elements of Z3 appear in the table. The algebraic
properties of identity and inverses are readily observed. Since 0 fixes every element
of Z3 under addition mod 3 (as witnessed in the first column and first row of the
Cayley table), 0 is the additive identity . In addition, the additive inverse of a given
element can be determined by searching for O in the appropriate row and column.
For example, 1 and 2 are additive inverses since 0 appears both in the second row,
third column and in the third row, second column.

|



Chapter 2 = Abstract Algebra 109

Example 2.3.5 We compute the Cayley table for U(3) = Z3 \ {0} = {1, 2} under multiplication

mod 3.
o 1 2 o)1 2
11101 102 which is 111 2
21201 202 212 1

As in example 2.3.4, U(3) is closed under multiplication mod 3 since only
elements of U(3) appear in the Cayley table. In addition, 1 is the identity for
multiplication mod 3 and both 1 and 2 are their own inverses under multiplication
mod 3.

|

As discussed in these examples, the Cayley table for a set under an associated
operation contains a great deal of algebraic information, which can play a key role
in analyzing the set under the given operation. Significant patterns can appear; for
example, in the Cayley tables of examples 2.3.4 and 2.3.5, notice that each element of
the set appears exactly once in each row and each column. Such squares of n symbols
in an array of size n with each symbol occurring exactly once in each row and in each
column are known as Latin squares. The Cayley tables for Z, under modular addition
and U(n) under modular multiplication are always Latin squares, and the Cayley table
for any “group” is a Latin square; in practice, we often use this fact when computing
the Cayley tables of such sets.

Question 2.3.5 Compute the Cayley table for each set under the given operation.

(a) Z4 under addition mod 4 (c) U(6) under multiplication mod 6
(b) Zg under addition mod 6 (d) U(7) under multiplication mod 7
|

Another important conceptual key to developing a deep understanding of Z, and
U(n) is the notion of an equivalence relation. As you may recall from the previous
section, the elements of Z, and U(n) are not just numbers, but also sets (even though
we work with them in much the same way that we work with numbers). Specifically,
the elements of Z, and U (n) represent certain subsets of integers known as equivalence
classes. In preparation for studying equivalence relations and equivalence classes, we
revisit some consequences of the division algorithm.

Question 2.3.6 (a) Using the division algorithm, identify the remainder  when each of m =7,
m=4,and m = —5 is divided by n = 3.
(b) Determine an infinite set consisting of every integer m with remainder r = 1
under division by n = 3.
(c) Similarly, describe the two infinite sets of integers with corresponding
remainders » = 0 and » = 2 under division by n = 3.
|

As we have seen, the elements of Z3 are not just integers, but also represent sets
of integers. In particular, an element r € Z3 represents the set consisting of all integers
with remainder r under division by n = 3; that is, an integer a is in the set represented
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by r if amod 3 = r. The full correspondence is given by the following identification
of sets and remainders.

Identify the set {...,—6,—-3,0,3,6,...} withremainder r =0.
Identify the set {...,—5,—-2,1,4,7,...} withremainder r = 1.
Identify the set {...,—4,—1,2,5,8,...} withremainder r =2.

More generally, this correspondence extends to any n € N with each element
r € Z, representing the corresponding infinite set of integers with remainder » under
division by n; symbolically, a € Z is in the set represented by r € Z, iff amod
n=r.

Gathering together the elements of these various subsets recognizes a relationship
that exists among integers. In the particular case of Z,,, the elements are related because
they share a common remainder under division by n. Frequently in mathematics,
we are interested in defining and working with relationships among numbers
and other mathematical objects, and we identify (or “equate”) objects based on
these relationships. The following definition states the key properties of such
relationships.

Definition 2.3.4 Let S be a nonempty set. A relation on S is a set of ordered pairs (a, b) with

a,b € S. In this setting, we write the ordered pair (a, b) as a ~ b and say “a is
related to b.” An equivalence relation ~ on a set S is a relation satisfying the
following three properties for all a, b, c € S.

e Reflexivity: a ~ a; that is, every element is related to itself;

e Symmetry: a ~ b implies b ~ a, that is, if a is related to b, then b is related
to a;

 Transitivity: a ~ b and b ~ c imply a ~ c; that is, if a is related to b and b is
related to c, then a is related to c.

Recall that we have already used the symbol ~ to denote the negation connective
of sentential logic. The context in which ~ is used will indicate the intended meaning
of this symbol. In addition, mathematicians often use other, traditional symbols to
denote equivalence relations. For example, we use “=" to denoted the equivalence
relation of logical equivalence in the context of sentential logic.

Even if the name “equivalence relation” is new, we are already familiar with
several equivalence relations. Exercises 53—55 from section 1.2 demonstrate that
logical equivalence is an equivalence relation on the sentences of sentential logic.
More importantly, the standard identity or equality relation “a = b” is an equivalence
relation on every set of mathematical objects. This should be clear from the definition
of an equivalence relation and your mathematical experience with equality. In fact,
the definition of equivalence relation is motivated in large part by the key properties
of the standard equality relation. Another important example of an equivalence
relation is provided by modular arithmetic on integers as detailed in the following
example.

Example 2.3.6 Recall from definition 2.2.1 in section 2.2 that if n € Z is a divisor and a, b € Z,

then @ = b mod n iff amod n = bmod n, and we say that a is congruent to b
mod n. We often use the fact thatamodn = bmodnifandonlyifa—b=n-gq
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(see exercise 41 at the end of this section). We prove that congruence modulo
n is an equivalence relation on Z by verifying that each of the three properties
from definition 2.3.4 hold for a = bmodn on Z. In this example, we use the
traditional mathematical notation a = bmod n to denote that a is related to b
(rather than a ~ b).

¢ Reflexivity: We show a = amodn. Sinceamodn=r € {0,1,...,n— 1}, we
have a mod n = @ mod n. Therefore, since standard equality is reflexive on the
integers, a = a mod n and congruence mod n is reflexive.

e Symmetry: We assume that a = b mod n and show that b = amod n. Since
a = bmod n, we know amodn = bmod n, where amodn = bmodn = r €
{0,1,2,...,n — 1} is an integer. Since standard equality is symmetric on the
integers, b mod n = a mod n and so b = a mod n. Therefore, congruence modulo
n is symmetric.

* Transitivity: We assume a = b mod n and b = ¢ mod n, and show a = ¢ mod n.
Since a = bmod n, we know amod n = b mod n, where amodn = bmodn =
re{0,1,2,...,n— 1} is an integer. Similarly, since b = ¢ mod n, we know
bmodn = cmodn, where bmodn = cmodn =s € {0,1,2,...,n— 1} is an
integer. Since standard equality is transitive on the integers, the following string
of equalities yields a mod n = ¢ mod n.

amodn = r = bmodn = s = cmodn

Therefore, a = ¢ mod n and congruence modulo 7 is transitive.

Since congruence modulo n is reflexive, symmetric, and transitive, congruence
modulo 7 is an equivalence relation.
]

With this example in hand, we consider the identification of set elements induced
by an equivalence relation. One good example is the “equality” of the fractions
1/2, 5/10, and 10/20, which are (formally) distinct elements of @Q and are only
identified as the same by an appropriate equivalence relation on Q (see questions
2.3.8-2.3.10 below). We express this identification of elements in set-theoretic
terms by gathering together all elements that are equivalent to one another into the
same set.

Definition 2.3.5 Let ~ be an equivalence relation on a nonempty set S. For every a € S, the
equivalence class of a is the subset of S consisting of all b € S such that a ~ b.
Symbolically, the equivalence class of a is often denoted by [a] = {b : a ~ b}.
Every element of S appears in exactly one equivalence class.

As discussed in the exercises at the end of this section, the equivalence classes
partition the set S on which ~ is defined. In particular, equivalence classes are disjoint;
that is, they have an empty intersection. In addition, the union of all equivalence classes
is the entire set S. We highlight these features of equivalence classes in the following
example.

Example 2.3.7 The equivalence relation a = bmodn partitions the set of integers Z into
equivalence classes that are represented by the elements of Z,,. These equivalence
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classes are labeled according to the different possible remainders r that result from
applying the division algorithm with divisor n. For example, the element O in Z,, is
not just the number 0, but the set of all integers a € Z such thata = Omod n = 0.
Integers with remainder O under division by n are all multiples of n, and so the
equivalence class of 0is [0] = {..., —2n, —n, 0, n, 2n, .. .}.

|

Question 2.3.7 Working in Z4 under addition mod 4, identify the set of integers that form the

corresponding equivalence classes for 0 and for 2.
|

We end this section with an example of an equivalence relation on the set Q of
rational numbers, consisting of quotients of integers with nonzero denominators. For
example, 1/2,3/1 and 3/2 are rational numbers, while 3/0 and 7 are not. As mentioned
above, we consider a relation on Q describing the identification of fractions as equal
to one another. For example, the fraction 1/2 is typically identified with the fractions
2/4,3/6, 4/8, and so on. Informally, we say that m/n is related to s/t when we can
cross multiply and obtain equal integers. Formally, we define this relation ~ on the
rationals Q by

iff m-t=n-s.

2|3
2
~ | G

Example 2.3.8 We consider the relation ~ on QQ defined by m/n ~ s/t iff m-t=n-s.

4 12 .

e —~ — since4-15=60and5-12 =60
5 15
1 4 .

-5 g,smcel~5=5,2~4=8,and5758

Question 2.3.8 Explain why the following statements are true or false for the relation ~ on Q

defined by m/n ~ s/tiffm-t =n-s,

7 28 3 6
@370 ©17%
) 7 28 @) 5 10

3 3 4 8

Now that we have some computational experience with this relation ~ on Q,
we consider the proof that ~ is an equivalence relation on QQ. A given relation is an
equivalence relation if the relation is reflexive, symmetric, and transitive, and so this
proof has three parts. Since this relation ~ on Q is computationally defined using
familiar arithmetic operations on the integers, we lead you through the proof in the
three steps of the following question.

Question 2.3.9 Prove that the relation ~ on the rationals Q defined by m/n ~ s/tifftm-t =n-s

is an equivalence relation by showing ~ satisfies the three properties of an
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Question
2.3.10

2.3.1

2.3.2

equivalence relation. While arguing that these properties hold for ~, assume
standard equality on the integers is an equivalence relation (as we did in
example 2.3.6).

(a) Reflexivity: Assume m, n € Z with n # 0. Prove that m/n ~ m/n by direct
computation.
(b) Symmetry: Assume m, n,s,t € Z with n,t # 0 and that m/n ~ s/t. Prove
that s/t ~ m/n by direct computation and the symmetry of equality.
(c) Transitivity: Assume m, n, s, t, u, v € Z withn, t, v # 0 and that both m/n ~
s/t and s/t ~ u/v. Prove that % ~ 2.
|

Continue the study of the relation ~ on Q defined by m/n ~ s/t iff m - t =
n - s by considering the equivalence classes of rational numbers. For example,
the equivalence class of % € Q is the set [%] = {% ‘ne Z*}. Determine the
equivalence classes of the following rational numbers.

2 5
(a) 4_1 (b) §

Reading Questions for Section 2.3

1. When is a set G closed under an operation o? Give an example of a set that is
closed under some operation and a set that is not.

Define a ® b and give an example.

Define multiplicative inverse mod » and give an example.

Define U(n) and give an example.

Why are we interested in the elements of U(n)?

What is distinctive about U(n) when n is prime?

Define the Cayley table for G under operation o and give an example.

What is a relation on a set of numbers? What notation identifies a
relation?

Sl A A e i

9. Give an example of a relation and a set that is not a relation.
10. State and define the three properties satisfied by an equivalence relation.
11. Give three examples of equivalence relations.
12. Define and give an example of an equivalence class.

Exercises for Section 2.3

In exercises 1-10, compute each modular product in the given set Z,,.

l.inZ,: 0©1 and 101 6.inZ7: 65 and 306
2.inZz: 102 and 202 7.inZyg: 705 and 306
3.inZs: 403 and 302 8. inZg: 207 and 8O 8
4. inZs: 14 and 202 9.inZj;: 405 and 705
5.inZ7: 405 and 302 10. inZj;: 8®9 and 1 10
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In exercises 10—16, state the elements in each set.

11. Z; under addition mod 2 14.
12. Zg under addition mod 8 15.
13. 7Zj; under addition mod 11 16.

In exercises 17-22, compute the Cayley table

U(2) under multiplication mod 2
U(8) under multiplication mod 8
U(1) under multiplication mod 11

for each set under the natural

corresponding modular operation.

17.
18.
19.

7 20. U(2)
Zs 21. U(5)
Zg 22. U(8)

In exercises 23-24, identify the multiplication mod » inverse for every element in the
given set using the Cayley tables from exercises 21 and 22.

23.

U(s) 24. U(8)

Exercises 25-28 consider the “associativity” of modular multiplication. Working in
U(11) under multiplication mod 11, verify the property (a © b)) ©c =a © (b O c) for
each triple of elements by directly computing each pair of products.

25.
26.
27.
28.

2,3,4: 203)04=200304)
5,3,6: 503)06=50(306)
4,8,10: (408)010=40@0 10)
7,8,9: (708 09=700809)

Exercises 29-31 consider a case in which nonzero elements of Z, do not have
multiplicative inverses by studying Zg \ {0} = {1, 2, 3, 4, 5, 6, 7} under multiplication

mod 8.

29.

30.
31.

Compute the complete operation table for Zg \ {0} under multiplication
mod 8; the result is not a Cayley table because this set is not closed under
multiplication mod 8.

Give an example of a, b € Zg \ {0} such thata © b = c with ¢ & Zg \ {0}.
Identify the elements of Zg \ {0} with inverses under multiplication mod 8
and state the corresponding inverse. Do you note anything special about the
elements with multiplicative inverses?

Exercises 32-36 explore a basic version of the Chinese remainder theorem, which
relates standard and modular multiplication. The following computations use both
standard multiplication (denoted ) and multiplication mod 11 (denoted ©).

33.

34.

35.

36.

37.

Compute both 12©® 5 = (12 - 5)mod 11 and (12mod 11) - (Smod 11).
Compute both 101 ©48 = (101 - 48) mod 11 and (101 mod 11) - (48 mod 11).
In light of the answers to exercises 33 and 34, formulate a conjecture
about the relationship between a ©® b = (a - b)mod 11 and (amod 11) -
(bmod 11).

Compute both 14 ® 10 = (14 - 10) mod 11 and (14 mod 11) - (10 mod 11). Was
your conjecture correct?

Compute [(14 mod 11)-(10mod 11)] mod 11. If necessary, formulate arevised
conjecture.
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Exercises 37-38 consider Wilson’s theorem, which describes factorials under congru-
ence modulo n. Recall that n/ denotes the standard product of integers 1-2-3---n.

37. Compute (2!)mod 3, (4!)mod5, and (6!)mod 7. Based on these computa-
tions, formulate a conjecture about (n!) mod (n + 1).

38. Compute (3!)mod4, (5!)mod6, and (10!)mod 11. Was your conjecture
correct? What is distinctive about the numbers for which your conjecture
works? If necessary, formulate a revised conjecture.

In exercises 39—41, prove each mathematical claim about congruence modulo n, where
a,b,c,d € Z andn € N.

39. Ifa =bmodn and ¢ = dmod n, then (a x ¢) = (b x d) mod n.

40. > = b>modn does not imply ¢ = bmodn. Hint: Give a counter-
example.

41. a = bmodn if and only if a — b is divisible by n.

In exercises 4245, use the biconditional from exercise 41 to prove each mathematical
claim about congruence modulo n, where a,b,c,d € Z and n € N.

42. If a = bmodn, then (a + ¢) = (b + ¢c)mod n.  Hint: Use the biconditional
from exercise 41.

43. If a is even, then a®> = O mod 4.

44. Tf a is odd, then ¢ = 1 mod 4.

45. If a is odd, then a®> = 1 mod 8.

Exercises 4648 consider definition 2.3.4 of an equivalence relation.

46. Express each property of an equivalence relation in predicate logic.

47. Express the negation of each property of an equivalence relation in both
predicate logic and English.

48. Prove that if ~ is an equivalence relation on a set S and [a] denotes
the equivalence class of a in S under ~, then a ~ b if and only if

la] = [D].

In exercises 49-54, let S be the set of humans and determine whether or not each
relation ~ is an equivalence relation. If not, state the properties of an equivalence
relation that fail.

49. Define a ~ b iff a is the same age 52. Define a ~ biff a is a sibling of b.

as b. 53. Define a ~ b iff a is a first cousin
50. Define a ~ b iff a loves b. of b.
51. Define a ~ b iff a is a full-brother 54. Define a ~ b iff a is an ancestor
of b. of b.

In exercises 55-56, let S = { Alex, Andy, Bailey, Chris, Dakota, Morgan }. List the
pairs of elements in each equivalence relation and identify the corresponding distinct
equivalence classes.

55. Fora, b € S, define a ~ b iff a and b begin with the same letter.
56. For a,b € S, define a ~ b iff a and b contain the same number of
letters.
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In exercises 57-65, prove each relation is an equivalence relation and identify two
distinct equivalence classes.

58. Fora,b € R, definea ~ biffa—b € Z.

59. Fora, b € Z \ {0}, define a ~ b iff ab > 0.

60. Fora, b € Z, define a ~ b iff a + b is even.

61. Fora, b € Z, define a ~ b iff a — b is even.

62. For (a, b), (x, y) € R?, define (a, b) ~ (x, y) iff a = x.

63. For (a, b), (x, y) € R?, define (a, b) ~ (x,y) iffa — x € Z.

64. For differentiable functions f, g on R, define f ~ g iff f’ = g.

65. For points (a, b), (x, y) on the Cartesian plane R2, define (a,b) ~ (x,y) iff
(a, b) and (x, y) are equidistant from the origin.

66. For lines J, K on the plane R2, define J ~ K iff the slope of J is equal to the
slope of K.

In exercises 66-70, each relation is not an equivalence relations. Determine the
properties of an equivalence relation that hold and the properties that fail for each
relation.

66. Fora, b € Z, define a ~ b iff ab > 0.

67. Fora,b € Z, define a ~ b iff a > b.

68. Fora,b € Z, define a ~ b iff a > b.

69. For a, b € Z, define a ~ b iff a divides b.

70. For (a, b), (x, y) € R?, define (a, b) ~ (x, y) iff either a = x or b = y.

24  AnIntroduction to Groups

We continue our exploration of abstract algebra by developing the mathematical notion
of a group. In this chapter, we have focused on algebraic properties when studying
numbers systems with their corresponding operations and equivalence relations. This
focus has enabled us to identify and ferret out fundamental properties from well-
understood settings and has given us the ability to look at these properties in similar,
though new, settings. For example, equivalence relations highlight the key properties
of the standard equality relation and help us recognize these properties in a whole
host of quite diverse settings. In this section, we focus on four of the most important
algebraic properties of the set of integers under standard addition and refer to every set—
operation pair satisfying these four properties as a group. After carefully articulating
the definition of a group, we study several different number systems satisfying the
four group axioms, most of which will be familiar from your previous mathematics
courses.

The notion of a group traces its origins to Evariste Galois, a French student who
attempted to prove the nonexistence of general algorithms for solving polynomials
of sufficient complexity. Galois considered functions mapping the solutions of a
polynomial equation to other solutions of this same equation, and so the first groups
studied by mathematicians were essentially functions on finite sets (since every
polynomial equation over the reals has finitely many solutions). Galois’ mathematical
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insights were so far ahead of his time that even some of the best mathematicians of that
era failed to recognize and understand his ideas until years after his death. In one of
the more dramatic tales in the history of mathematics, Galois’ love life led him into a
duel in 1832 and he died at the young age of 20. Realizing that he would probably not
survive the duel, Galois wrote a long letter to his friend, Auguste Chevalier, in which
he scribbled down his mathematical inspirations on solving polynomial equations,
including his insights into groups. Fortunately for us, Chevalier preserved Galois’ work
and passed his manuscripts along to Joseph Liouville, who published them in 1846.

Over the next 50 years, mathematicians gradually recognized the power of Galois’
ideas, and his initial work was developed and refined into a sophisticated and powerful
mathematical theory of groups. The application of groups to questions about the
solvability of polynomials examines sets of finite functions under composition, but
the axiomatic group properties have proven essential to understanding the algebraic
properties of many different sets and number systems. The English mathematician
Arthur Cayley gave what might be considered the first general definition of a group
in the 1850s. At this time, Cayley was studying matrix groups and the quaternions,
a number system that extends the complex numbers. His work played a pivotal role
in broadening mathematicians’ understanding of abstract number systems and helped
open doors to applications of group theory in many different areas of mathematics and
the physical sciences. To this day, the study of groups (or group theory) remains an
active and fertile area of research.

Group theory is also a widely applicable field of mathematics and has been
used in a variety of essential ways in many different arts and sciences. For example,
crystallographers have used group theory in the study of natural crystal structures and
in their efforts to design synthetic crystals with certain desirable properties. Physicists
have recognized that subatomic particles satisfy the properties of groups, and group
theory allowed them to predict the existence of the “top quark™ subatomic particle
shortly before its discovery in superaccelerator experiments.

We soon define a group as a set under an operation satisfying four partic-
ular algebraic properties. From among the various familiar number systems, we
choose to begin our study of groups with the important example of the integers
Z=A{...,-2,—1,0,1,2,...}under standard addition. The following question recalls
four algebraic properties already identified in the previous two sections. Studying these
properties deepens our understanding of the integers and helps motivate the formal
definition of a group.

Question 2.4.1  Consider the integers Z under the standard addition operation +.

(a) If we add two integers from Z, can we obtain a number that is not an integer
in Z?

(b) Compute both 1 + (2 + 3) and (1 + 2) 4+ 3. What is the relationship between
these two sums? Does this relationship hold whenever we add three integers?
Formulate a general statement.

(c) Inthe context of the integers under standard addition, what is distinctive about
zero?

(d) What integer can we add to 3 and obtain 0?7 Given an arbitrary integer n, what
integer can we add to n and obtain 0?7 Formulate a general statement.
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These properties are familiar from our work with modular addition and modular
multiplication. What name is given to each of these four algebraic properties?
|

Motivated by the answers to question 2.4.1 and our work with other number
systems, we formally define the notion of a group as follows.

Definition 2.4.1 A binary operation on a set G is a function that maps each ordered pairin G x G

to a unique element of a set containing G. A set G under binary operation o is a
group when the following four properties hold.

(1) Closure: Foreverya,b € G, we have ao b € G;

(2) Associativity: Foreverya, b, c, € G, we haveao (boc) =(aob)oc;

(3) Identity: There exists an element e € G such that for every a € G, we have both
eoa=aandaoe=a; wecall e the identity for G under o (“einheit” is German for
“identity”);

(4) Inverses: Foreverya € G, there exists b € G such thatbothaob = eandboa = e;

we call b the inverse of a and we often write b = a~.

Mathematicians refer to these four properties as the axioms of group theory or
as the group axioms. As with many abstract concepts in mathematics, the definition
of a group evolved gradually. Galois isolated this notion while studying functions on
solution sets of polynomials in 1832. Cayley’s contributions in the 1850s extended
the notion of a group to the context of matrices and the quaternions. These insights
eventually led Walter von Dyck to articulate definition 2.4.1 of a group in 1882.
In parallel to this work, the eminent French mathematician Augustin-Louis Cauchy
implicitly defined the notion of a group in the 1850s. His work appears to have
influenced Heinrich Weber, who independently articulated definition 2.4.1. of a
group in 1882. Even so it was not until the early 1900s that the abstract definition
of a group gained widespread understanding and acceptance by the mathematics
community.

These four axioms serve as fundamental assumptions when proving various
theorems, or mathematical truths, in group theory. One of the primary characteristics
of group theory is that the axioms are sufficiently weak so that many different number
systems satisfy the four axioms, and yet they are sufficiently strong so as to enable
the proof of many results and the development of a rich mathematical theory. We
begin to describe this richness through examples that refine and bring into focus an
understanding of the definition of a group. We have already pointed out one very
important example of a group: the integers under standard addition.

Example 2.4.1 'We observe that each of the four group axioms holds for the set of integers Z under

the standard addition operation +.

1. Closure: Forevery n,m € Z, we have n + m € Z.

2. Associativity: For every n,m, k € Z, we have (n +m) + k = n+ (m + k).

3. Identity: The additive identity of the integers is 0, since for every n € Z, we have
bothO+n=nandn+ 0 =n.

4. Inverses: For every n € Z, the additive inverse of n is (—n) € Z, since we have
bothn 4+ (—n) =0 and (—n) + n = 0.
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A more complete, rigorous proof that the four group axioms are satisfied by
the integers under standard addition uses a formal, axiomatic description of the
integers. The details of such a proof are beyond the scope of this book and are left
for your later studies.

|

In definition 2.4.1, notice that a group consists of both a set and an operation. For
example, the set of integers, by itself, is not a group. However, the set of integers under
standard addition is a group, as we observed in example 2.4.1. The particular operation
associated with a given set is central to determining whether or not we have a group,
since some sets can be a group under one operation but not under another. There are
infinitely many different examples of groups. The next question identifies an infinite
group with a multiplicative operation.

Question 2.4.2 Consider the set of nonzero rational numbers Q* = Q \ {0} = {’é p.q € Z
and p, g # 0}. Prove Q* is a group under the standard multiplication operation
by considering each of the four group axioms as outlined below.

(a) Closure: Let p/q,r/s € Q and prove that the product of p/g and r/s is
rational. Assume the closure of the integers under multiplication and use the
zero product property of the reals; in particular, assume the product of two
nonzero reals is nonzero and recall that every integer is real.

(b) Associativity: Show that the three rationals 1/2, 3/5, and 8/7 satisfy
associativity under standard multiplication. Prove that any three rationals
m/n, p/q, r/s € Q satisfy associativity under standard multiplication,
assuming the associativity of the integers under standard multiplication.

(c) Identity: State the identity of the nonzero rationals under standard multipli-
cation.

(d) Inverses: Determine the inverse of the rational 3/2 under multiplication.
Identify the inverse of an arbitrary nonzero rational m/n.

(e) Zero is omitted from Q in this question because one of the four group axioms
fails to hold if 0 is included. Which group axiom fails?

]

As we might hope and expect, many widely used number systems under their
standard operations are groups. For some of these number systems, we need to exclude
an element (as with O for the rational numbers under standard multiplication), but these
special cases are often widely known or easily identified. The next example attempts
a naive, straightforward approach to identifying a finite group. In its failure, we see
how a given set and operation may not completely satisfy the group axioms.

Example 2.4.2 We prove the set {0, 1} under the standard addition operation + is not a group.

* Closure: The closure axiom fails for {0, 1} under standard addition. The unique
counterexample is provided by working with the element 1 € {0, 1}. In particular,
1 €{0,1},butl +1=2 ¢ {0, 1}. Therefore, {0, 1} is not closed under standard
addition.

* Associativity: We observe that standard addition is associative on {0, 1} since
addition is associative on the set of all integers Z, which includes the elements
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0 and 1. Often we find that associativity is “inherited” from the integers or some

other appropriate, ambient base set that is already known to satisfy associativity.
 Identity: We observe that O is the additive identity. In particular, we have

0+0=0andbothO+1=1and1+0=1.

e Inverses: The inverse axiom fails for {0, 1} under standard addition. The
element O € {0, 1} has an inverse since 0 + 0 = 0, and so 0 is its own inverse.
However, the element 1 € {0, 1} does not have an inverse since the only
possible candidates for inverses in this set are 0 and 1, but 0+ 1 =1 #0
and 1 + 1 = 2 # 0. The inverse of 1 under standard addition is —1, but

—1¢1{0, 1}.

Since the group axioms of closure and inverses do not hold, the set {0, 1} is nota
group under standard addition.
|

Only one group axiom needs to fail in order for a given set not to be a group
under a given operation. In example 2.4.2, we considered all four axioms for the sake
of developing a thorough understanding of the group axioms. As you study further
examples of set—operation pairs that are not groups, feel free to identify any one group
axiom that fails (unless directed otherwise).

In disproving the closure axiom, example 2.4.2 utilized the methods developed in
section 1.7 for disproving universal statements. For example, a proof that the closure
axiom is not satisfied involves identifying a counterexample in the given set; that is,
specific elements a, b € G suchthata o b ¢ G. Similarly, a proof that the inverse axiom
is not satisfied requires us to produce (at least) one concrete counterexample a € G
such that for every b € G, the inverse property a o b = ¢ = b o a does not hold for
a and b. Many given sets under an operation are not groups because of the failure of
closure and inverses. Associativity and identity fail less frequently; we consider a few
such cases in the exercises at the end of this section.

Despite the failure of our first attempt to identify a finite group, some groups are
finite. Modular arithmetic provides examples of finite groups: both Z, under modular
addition and U(n) under modular multiplication are groups. For example, the closure
axiom is satisfied in both Z, and U (n) under their respective modular operations, since
we identify every modular sum and product with a remainder under division by n,
and since these remainders are precisely the elements of Z,, and U(n). The following
question carefully considers the ideas behind the proof that Z, under addition mod n
satisfies the four group axioms. While this discussion does not constitute a complete,
formal proof, your answers should include sufficient detail to convince you of the
validity of the claim.

Question 2.4.3  Verify that Z, under addition mod »n is a group by considering the four group

axioms as outlined below.

(a) Closure: Fora, b € Z,, we defineda @ b = (a + b) mod n; that is, we compute
a @ b by applying the division algorithm to a + b to obtain r € Z where
a+ b =n-q+ r for some integer gq. According to the division algorithm,
what are the possible values of »? What are the possible values of a @ b? Is
a @ b alwaysin Z,?
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(b) Associativity: Associativity for Z, under modular addition follows from
repeated use of the division algorithm and the associativity of standard addition
on the integers Z. As an example (and just an example, not a proof), verify
that the following equalities hold in Zg under addition mod 6.

e(4®5B3=4005d3) e2e5S)@l=280G01)

(c) Identity: What is the identity of Z, under addition mod n? Justify your answer.

(d) Inverses: For a € Z,, show that O is the inverse of a = 0, and otherwise

n — a is the inverse of a by arguing that both (n — a) ® a = 0 and
a®(n—a)=0.

|

The answers to question 2.4.3 form the heart of a complete proof that Z, under
addition mod = is a group. We leave the remaining details for your later studies and
summarize this important result in the following theorem.

Theorem 2.4.1 The set Z,, under the operation of addition mod n is a group.

‘We now turn our attention to the sets U(rn) under multiplication mod n. We provide
a more complete proof that U(n) is a group under multiplication mod n, particularly
for the closure and inverse axioms. The proof that U(n) under multiplication mod n
satisfies these group axioms uses a pair of results from number theory (that is, the
abstract study of the properties of integers and the solutions to polynomial equations).
As we did with the parity property of the integers and the zero product property of the
reals in section 1.7, we just state and use these results without proof for the moment.

Theorem 2.4.2 (a) Fora, b € Z, if p is a prime factor of a - b, then either p is a factor of a or p is

a factor of b.
) If a,n € Z are relatively prime, then there exist h,k € Z such that
a-h+n-k= 1

We give some specific examples illustrating this pair of results. These examples
do not constitute proofs but are intended to facilitate an intuitive understanding.

Example 2.4.3 « 2 is a prime factor of 6 - 15, and 2 is a factor of 6 = 2 - 3.
* 2 is a prime factor of 6 - 20, and 2 is a factor of both6 =2 -3 and 20 =2 - 10
(this example shows that the first part of theorem 2.4.2 uses the inclusive-or).
* 3 and 5 are relatively prime because they have no common factor greater than 1.
Lettingh =2and k = —1,wehave3-245-(-1) = 1.
* 4 and 9 are relatively prime. Letting # = —2 and k = 1, we have 4 - (—2) +
9.-(1)=1
|

Question 2.4.4 Identify i, k € Z satisfying a - h + n - k = 1 for the following pairs of relatively
prime numbers.

(@) a=3andn=7 (b) a=8andn =35
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Theorem 2.4.3

Proof

With the results of theorem 2.4.2 in hand, we prove that U (n) under multiplication
mod 7 is a finite group for every integer n € Z.

The set U(n) under multiplication mod n is a group.

We verify that each of the four group axioms holds for U(n) under multiplication

mod 7.

Closure: We assume a, b € U(n) and show a © b € U(n). First, sincea © b =
(a - bymod n, we know that a © b € Z,. Therefore we need only prove that
(a - b) mod n is relatively prime to n in order to show a © b € U(n). We proceed
by contradiction; we assume a ® b ¢ U(n) and work toward a contradiction.
Since a © b € U(n), we know a O b is not relatively prime to n and so shares a
common factor with n greater than 1. Let p € Z with 1 < p < a ® b denote such
a common factor. In addition, assume that p is prime. By the division algorithm,
there exist g, r € Z such thata-b =n-q 4+ r where r = a © b € Z,. Since
p is a factor of both n and r, we know that p is a factor of a - b based on the
equation a - b = n - g + r. At this point, we use theorem 2.4.2(a): if p is a prime
factor of a - b, then either p is a factor of a or p is a factor of b. However, if p is
a factor of a, then a and n share a common factor greater than 1, contradicting
our assumption that a € U(n). Similarly, if p is a factor of b, then b and n share
a common factor greater than 1, contradicting our assumption that b € U(n).
In either case, we have a contradiction. Therefore, a © b must be relatively prime
ton,and soa ® b € U(n).
Associativity: Associativity for U(n) under multiplication mod n follows
from repeated use of the division algorithm and the associativity of the
integers Z under standard multiplication. Further details are left to the reader.
Identity: The identity of U(n) under multiplication mod n is 1 since for
every a € U(n), we have 1 ©a = (1 - aymodn = amod n = a and, similarly,
a®l=a.
Inverses: The inverse axiom is proven using theorem 2.4.2(b): if two integers
a,n € Z are relatively prime, then there exist integers h, k € Z such that a -
h+n-k=1 Weleta e U(n) and identify the inverse of a, including the
justification that the inverse is actually in U(n). Since a € U(n), we know that a
and n are relatively prime, and so there exist 4, k € Z suchthata-h+n-k = 1.
We now determine the mod n value of both sides of this equation. On the left
side (a-h+n-kymodn = (a-h)modn, since n - kmodn = 0. On the right
side, 1 mod n = 1. Therefore, (a - h)modn = 1, and so hmodn € U(n) is the
multiplicative inverse of a € U(n). We note that h mod n € U(n) since otherwise
h and n share a common factor greater than 1; this common factor would then
divide 1 sincea-h+n -k = 1, which is a contradiction. Since @ € U(n) was an
arbitrary element of U(n), every element of U(n) has a multiplicative inverse,
and the inverse axiom holds.

|

We end this section with two theorems that make claims about all groups. As
we have seen in this section (and as will continue to see in the next two sets of
exercises), many diverse number systems satisfy the group axioms. In the proofs
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of the following theorems, we use only the group axioms as justifications in our
proofs, and so these results hold for every number system that is a group. This general
approach is the source of the far-reaching scope of group theory and is a powerful
feature of abstract mathematics. In general, mathematicians seek to utilize the weakest
possible assumptions to determine truths for broad classes of number systems; in
this case, we use the four axioms of groups to prove two theorems that hold for
all of the many different groups simultaneously. These two theorems are really just
the tip of the proverbial group-theoretic iceberg. Whole courses in the upper-level
undergraduate and graduate mathematics curriculum are devoted to continuing and
extending the first steps taken here. If you enjoy these investigations, then you can
look forward to more advanced work in group theory and other courses in abstract
algebra.

Theorem 2.4.4 Unique inverses theorem for groups If G is a group under operation o and a € G,
then the o-inverse of a is unique.

Proof Mathematicians typically prove the uniqueness of a mathematical object by
assuming there exist two objects with the properties under consideration and
then showing these two objects must actually be the same. With this strategy
in mind, assume that G is a group under operation o, that @ € G, and that both
x,y € G are o-inverses of a. We then use the axioms of group theory to prove
that x = y. Letting e denote the o-identity of G, observe the following string of

equalities.

X = eox via the identity axiom
= (yoa)ox via the inverse axiom for y; in particular,e =y o a
= yo(aox) via associativity
= yoe via the inverse axiom for x; in particular, e = a o x
=y via the identity axiom

Since the two o-inverses x,y € G for a are equal, the o-inverse of a is
unique.
|

Inlight of theorem 2.4.4, we are now free to follow our intuitive instinct of referring
to “the” inverse of an element a € G, rather than just “an” inverse of a group element.
In addition, theorem 2.4.4 ensures that the notation a~! for an inverse is unambiguous.
Sometimes we also use the notation (—a) for the inverse of a group element when the
group operation is expressed using additive notation rather than multiplicative notation.
Most students become comfortable with this diversity in notation as they spend
more time studying groups. Now consider the second of the two promised theorems;
this result extends a familiarity with cancellation in equations to the group-theoretic
setting.

Theorem 2.4.5 Left cancellation theorem for groups If G is a group under operation o and
a,b,c € G, thenaob =aocimpliesb = c.

Proof Assuming the hypotheses of this theorem, we give a direct proof that b = c.
Since a € G, and G is a group under operation o, the o-inverse of a exists and
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a~! € G. Multiplying both sides of the given equation a o b = a o ¢ by a~

produces

1

a_lo(aob)=a_lo(aoc).

Applying the axioms of associativity, inverses, and identity for o on elements of G
(in this order) to first the left side and then the right side of this equality produces
the following two strings of equalities.

alo@ob)y=(@ 'oa)ob=eob=0b
ailo(aoc):(ailoa)oc=eoc=c

Based on this collection of equalities, b = a~! o (@aob) =a ' o (aoc) = c.
We also give the condensed version of these equalities, in which we integrate all
of the preceding strings of equalities into one line:

b=eob=(a_1oa)ob=a_lo(aob)=a_lo(aoc)=(a_loa)oc
=c¢oc=c.

Each equality in this string can be justified by the assumptions or by an axiom
of group theory; you may find it interesting and helpful to justify each equality
explicitly.

|

We finish this introduction to group theory with a comment on the choice of
the name “left” cancellation theorem for groups. As stated, theorem 2.4.5 allows the
cancellation of terms in an equality only when the same terms appear on the left
side of the two expressions in the given equality. There is a similar, but distinct,
“right” cancellation theorem for groups that allows the cancellation of the same
terms appearing on the right side of two equal expressions. We actually need both
a left and a right cancellation theorem because not every group satisfies the axiom
of commutativity (that is, the assertion that a o b = b o a for every pair of elements
a and b in the group). Even though most number systems introduced in lower level
mathematics courses satisfy commutativity, there are important groups that do not;
we consider such groups in the exercises to follow. This fact might also lead us to
wonder what other familiar properties might be satisfied in some number systems but
not in others. From these subtle differences we can develop a keen and insightful
understanding of diverse mathematical objects.

2.4.1 Reading Questions for Section 2.4

Define and give an example of a binary operation.

State the four axioms satisfied by every group.

Give an example of an infinite group.

Give an example of an infinite set with a binary operation that is not a group.
Identify the group axioms that fail.

. State theorem 2.4.1. How is this result helpful when studying groups?

Give two examples of finite groups.

bl o e

o W\
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7. Give an example of a finite set with a binary operation that is not a group.
Identify the group axioms that fail.
8. State theorem 2.4.2 and give examples illustrating the two parts of this
theorem.
9. How do we use the number-theoretic results of theorem 2.4.2 in our study of
groups?
10. State theorem 2.4.3. How is this result helpful when studying groups?
11. State two general properties that hold for all groups.
12. Discuss the distinction between “an” inverse and “the” inverse of a group
element.

2.4.2 Exercises for Section 2.4
Exercises 1-3 consider definition 2.4.1 of a group.

1. Express each property of a group in predicate logic.
2. State the negation of each property of a group in English.
3. Express the negation of each property of a group in predicate logic.

In exercises 4—15, each set is a group under the given binary operation. State both the
identity element of the group and the inverse of an arbitrary element of the group.

4. The rational numbers QQ under standard addition +. Recall that: m/n + p/q =
(mq + np)/(nq). Also, verify associativity by proving the following are equal:
mg+np r m ps—+rq

+- and —+
ng s n qs

5. The nonzero rational numbers Q* = Q \ {0} under standard multiplication.
Why omit 0?

6. The real numbers R under standard addition.

7. The nonzero real numbers R* = R \ {0} under standard multiplication. Why
omit 0?

8. The complex numbers C under standard addition: (a +b-i)+ (c+d -i) =
(at+o)+b+d)-i.

9. The nonzero complex numbers C \ {0} under standard multiplication:
(a+b-i)-(c+d-i)=(ac — bd)+ (bc + ad) - i. Why omit 0?

10. The ordered pairs of integers 7% = {(m, n) : m, n € Z} under componentwise
addition: (m, n) + (j, k) = (m +j, n + k).

11. The ordered pairs of rational numbers Q> = {(r,s) : r,s € Q} under
componentwise addition: (r, s) + (p, q) = (r + p, s + q).

12. The ordered pairs of reals R> = {(r,s) : r, s € R} under componentwise
addition: (r, s) + (p,q) = (r +p, s + q).

13. The ordered pairs of nonzero rational numbers [Q*]> = {(r,s):r,s € Q
andr,s # 0} under componentwise multiplication: (r,s) - (p,q) =
(r-p,s-q).

14. The ordered pairs of nonzero reals [R*1?2 = {(r,s): r,s € Rand r, s = 0}
under componentwise multiplication: (r, s) - (p, q) = (r - p, s - q).
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15.

The ordered pairs of nonzero reals [R*1?2 = {(r,s): r,s € Rand r, s # 0}
under the operation (r, s) * (p, q) = (rp — sq, rq + sp). Verify that (1, 0)
is the identity element. For inverses, consider the similarities between this
s-multiplication operation and multiplication of complex numbers.

In exercises 16-27, each set is not a group under the given operation. Identify the
group axioms that do not hold and state corresponding counterexamples.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

The natural numbers N under standard addition.

The integers Z under standard multiplication.

The rational numbers Q under standard multiplication.

The real numbers R under standard multiplication.

The set {0, 1, 2} under standard addition.

The set {0, 1, 2, 3} under standard addition.

The set {0, ..., n} under standard addition for integers n > 2.

The set {—1, 0, 1} under standard addition.

The set {—2, —1, 0, 1, 2} under standard addition.

The set {—n, ..., —1,0,1, ..., n} under standard addition.

The ordered pairs of integers 7% = {(m, n) : m, n € Z} under componentwise
multiplication: (m, n) - (j, k) = (m - j, n - k).

The ordered pairs of reals R? = {(r,s) : r,s € R} under componentwise
multiplication: (r, s) - (p, q) = (rp, 5q).

In exercises 28-31, prove each mathematical statement.

28.

29.

30.

31.

The set natural numbers N is not closed under subtraction. Give a counterex-
ample, identifying two natural numbers witnessing the nonclosure of N under
subtraction.

Subtraction is not associative on the integers Z. Give a counterexample,
identifying three integers witnessing the nonassociativity of subtraction.
(Unique identity theorem for groups) If G is a group under operation o, then
the o-identity in G is unique. Hint: By way of contradiction, suppose there
are two identities e and f, and consider e o f.

(Right cancellation theorem for groups) If G is a group under operation o and
a,b,c € G,thenaob = cobimplies a = c. Hint: See theorem 2.4.5.

Exercises 3245 study “zero divisors” in the context of modular groups. A nonzero
element a € 7Z, is a zero divisor of Z, if there exists a nonzero b € Z, such that
a®b=0.

32.
33.

34.

35.

36.

Prove that 0 € Zg under multiplication mod 6 is not a zero divisor.

Prove that 1 € Zg under multiplication mod 6 is not a zero divisor by
computing all products 1 © b for all nonzero b € Ze.

Prove that 2 € Zg under multiplication mod 6 is a zero divisor by identifying
anonzero b € Zg such that 2 ® b = 0.

Prove that 3 € Zg under multiplication mod 6 is a zero divisor by identifying
anonzero b € Zg suchthat 30 b = 0.

Prove that 4 € Zg under multiplication mod 6 is a zero divisor by identifying
anonzero b € Zg such that4 © b = 0.
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37.
38.
39.
40.
41.

42.

43.

44.

45.

Prove that 5 € Ze under multiplication mod 6 is not a zero divisor by
computing all products 5 © b for all nonzero b € Ze.

Based on exercises 32—-37, what property identifies the zero divisors of Zg?
Conjecture a relationship between Zg, U(6), and the set of zero divisors of Zg.
Identify the zero divisors of Zg under multiplication mod 8.

Identify the zero divisors of Z; under multiplication mod 12.

Identify an odd integer n such that Z, under multiplication mod n contains at
least one zero divisor. State the zero divisors in this Z,,.

Prove that Z3 does not contain any zero divisors based on the Cayley table for
Z3 under multiplication mod 3. What property of 3 results in Z3 not having
any zero divisors?

Prove that Zs does not contain any zero divisors based on the Cayley table for
Zs under multiplication mod 5. What property of 5 results in Zs not having
any zero divisors?

Prove that if Z,, contains zero divisors, then left cancellation does not hold
for all elements of Z, by identifying a, b, ¢ € Z, suchthata © b = a © c but
b #c.

Prove that if Z,, contains zero divisors, then right cancellation does not hold for
all elements of Z,, by identifying a, b, ¢ € Z, suchthata©b = c©Obbuta # c.

Exercises 4654 consider “idempotent” elements in modular groups. An element

a € Z, is an idempotent of Z, if a - a = a (often written as a

46.
47.
48.
49.
50.
51.
52.

53.

54.

2:a).

Identify the idempotents of Z3 under multiplication mod 3.

Identify the idempotents of Zs under multiplication mod 5.

Identify the idempotents of Z7 under multiplication mod 7.

Identify the idempotents of Zg under multiplication mod 6.

Identify the idempotents of Z1(¢ under multiplication mod 10.

Identify the idempotents of Z14 under multiplication mod 14.

Based on exercises 4651, conjecture a relationship between the divisor n for
Z,, and the number of idempotents of Z,,. What if n is prime? What if n = 2p,
where p is prime?

Prove thatif a, b € Z, are idempotents, then a © b is also an idempotent under
multiplication mod n.

Prove that if Z, has no zero divisors (as defined before exercise 32), then 0
and 1 are the only idempotents of Z, under multiplication mod .

Exercises 55-70 consider symmetric groups. Symmetric groups, also known as
permutation groups, were the first groups studied by Galois and others in the mid-
1800s. In fact, the symmetric groups can be considered the most fundamental finite
groups since every finite group can be identified with a subset of a symmetric group that
is itself a group. The symmetric group S, consists of all one-to-one, onto functions on
the integers {1, . .., n} under the operation of composition. Such functions are studied
in section 4.2, but for now we consider examples on the finite sets {1, ...n}. The
elements of §,, are functions « represented in arrays of the form

_ 1 2 n
“= a(l) a2 - am@m |
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The top row of the array denotes the inputs of the function and the bottom row consists of
the corresponding, distinct outputs, which are also elements of {1, . .. n}. For example,
the following are three elements of S3 represented in array form.

c— 1 2 3 o 1 2 3 = 1 2 3
11 2 3 12 31 11 3 2
For this o € S3, we have a(l) =2, «(2) =3, and «(3) = 1. Elements of S, are

combined under the operation of composition, denoted by o. For example, for this
o, B € S3, the composition ¢ o § is

aof(l) = «[f(1)] = o) = 2,
aof(2) = «a[f?)] = a@) = 1,
aop3) = «[fB)] = a2 = 3.

Representing the composition « o § in array form, we have

12 3
“°’3=[2 1 3]

In exercises 54—60, express each function from Sy in array form.

55. a()=1, a(2) =3, a(3) = 4, a(4) =2
56. a(1) =3, a2) =1, a(3) =2, a(4) =4
57. a(l) =2, a(2) =3, a(3) =4, a4) =1
58 a(l) =3, a2) =2, a(3) =1, a(4) =4
59. a(l) =4, a2) =1, a(3) = 2, a(4) =3
60. a(1) =4, a(2) =2, a(3) =3, a(4) = 1

In exercises 61-66, identify the function from Ss in array form resulting from each
composition of the given functions.

|12 3 45 ’3_12345 |12 3 45
*Tl21 43 5 1321 5 4 V=15 4 3 21

6l. xo B 64. Boy
62. xoy 65. you
63. Bou 66. yop

Exercises 67-70 consider the symmetric group S» = {€, @} on {1, 2} under composi-
tion. The two elements of S, are

67. Express the function € o € € S in array form.

68. Express the functions @ o € € S> and € o @ € S, in array form.

69. Express the function « o @ € S5 in array form.

70. Based on exercises 67—69, state the Cayley table for S, under composition.
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2.5 Dihedral Groups

We continue our study of number systems with a radically different type of group called
the “dihedral group.” Their description uses Euclidean geometry and is based on an
understanding of motions in the two-dimensional space of the Euclidean plane. Over
the centuries, such motions have inspired artisans when creating beautiful patterns
for decorating pottery, clothing, and buildings. In the early middle ages, Islamic
mathematicians and artists decorated mosques throughout southern Spain and northern
Morocco with intricate designs based on these motions. In the early 1900s, the artist
Maurits Cornelis Escher created many fantastical and diverse images using planar
motions. Posters of his work often decorate the walls of mathematicians’ classrooms
and offices and even a few dormitory rooms. When mathematicians learned that Escher
had identified a complete classification of certain groups of motions, he was invited to
share his work with group theorists at a national mathematics conference!

We are interested in planar motions with certain distinctive features. There are
many different “types” of these transformations of the plane: we can translate the
plane in a uniform direction; rotate the plane about some fixed point; reflect the
plane across some given line; or implement a glide reflection combining a translation
and a reflection. These four types of motions are referred to as Euclidean plane
isometries since they preserve the geometric property of distance (or length) between
points in the plane. In contrast, non-isometries are transformations such as bending,
stretching, twisting, folding, cutting, or otherwise distorting the plane so that the
distance between some points is changed.

The dihedral groups are certain subcollections of Euclidean plane isometries—
namely, those that preserve the orientation of a given regular polygon. These sets of
isometries have many fundamental group-theoretic properties. We begin our study of
the dihedral groups with the definition of a regular polygon and identify some examples
and nonexamples of polygons.

Definition 2.5.1 A polygon is a closed geometric figure in the plane with three or more (but only
finitely many) straight sides. A polygon is said to be a regular polygon if every
side of the polygon has the same length and every interior angle of the polygon
has the same magnitude.

We often encounter polygons in our everyday lives from the rectangular buildings
we live in, to octagonal stop signs, to the hexagonal honeycombs of bees. Most students
study polygons from the earliest days in school and learn the familiar, distinctive
names of many, including triangles, squares, and pentagons. The definition of a regular
polygon guarantees that there exists exactly one regular polygon with # sides for every
positive integer n > 3 (once the length of the sides is determined).

Example 2.5.1 The sides and the interior angles of each of the polygons in figure 2.3 are equal,
and so each polygon is regular.
|

As we have seen, a good understanding of a formal definition is developed
by considering not only examples satisfying the definition, but also a collection
of examples exploring the boundaries and limitations of the definition. The two
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Equilateral triangle Square Octagon
Figure 2.3 Some regular polygons

Rectangle Rhombus Trapezoid

Figure 2.4 Geometric figures that are not regular polygons

requirements that a closed figure with straight sides must satisfy in order to be a
regular polygon are equality of sides and equality of interior angles. From sentential
logic, we know that these requirements are not satisfied if one or the other condition
fails or when both fail simultaneously.

Example 2.5.2 We identify a figure in the plane that is not a polygon. We also describe the
three different ways a four-sided polygon can fail to be regular as illustrated in
figure 2.4.

* Acircle is not a polygon because the circle does not have at least three straight
sides.

* A nonsquare rectangle is not regular. Even though all the interior angles are
equal, the sides have different lengths.

* A nonsquare rhombus (popularly known as a “diamond”) is not regular. Even
though the lengths of the sides are all equal, the interior angles are different from
one another.

* A trapezoid whose sides and interior angles are different from each other is not
regular.

|

Dihedral groups do not include all motions of regular polygons, but just the
orientation-preserving, distance-preserving motions of regular polygons. An isometry
preserves the orientation of a polygon if the motion consists of “picking up” the polygon
and moving it around so that when the motion is completed, every vertex is mapped
to the initial location of one of the vertices of the polygon. For example, consider the
two motions of an equilateral triangle illustrated in figure 2.5. The left diagram depicts
a motion that is orientation-preserving, while the right diagram depicts a motion that
is not orientation-preserving.
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1 2 3
o Af\ \/
2 2 3 3 2 1

Orientation-preserving Not orientation preserving
Figure 2.5 Two motions of an equilateral triangle

From these specific examples of motions, we can see that there exist infinitely
many different isometries of an equilateral triangle that are not orientation-preserving.
Recall that all isometries are translations, rotations, reflections, or glide reflections.
The translations and glide reflections that involve shifting the figure to a different
location in the plane are clearly not orientation preserving. Many of these motions that
do not preserve orientations are interesting in their own right and have served as the
basis for the work of the Islamic artists and of Escher, among others. However, some
rotations and reflections are orientation-preserving. In fact, only arelative handful of the
isometries of the plane are orientation-preserving for an equilateral triangle (the regular
three-sided polygon) or for any regular n-sided polygon, but they are enough to yield an
interesting set of mathematical objects. As it turns out, the set of orientation-preserving
isometries of an equilateral triangle is a group under composition. The following
example and questions explore the dihedral group consisting of these motions under
composition.

Example 2.5.3 The dihedral group D3 is the set of orientation-preserving isometries of an

equilateral triangle under the operation of composition. In the notation D3, the “D”
stands for the “dihedral group” and the subscript “three” indicates that we are
working with a regular three-sided polygon. To facilitate the discussion, we
number the vertices of the equilateral triangle in its original position, where
the top vertex is 1, the bottom right vertex is 2, and the bottom left is 3;
this assignment of numbers to vertices is illustrated in the left triangle of
figure 2.6.

The orientation-preserving isometries of an equilateral triangle may change
the position of the vertices (with their corresponding numberings) but always
return the triangle to the space in the plane that the triangle originally occupied. For
example, when the triangle is rotated counterclockwise 120 degrees, the 1 vertex

3 2 1 3

A counterclockwise, 120-degree rotation. Figure 2.6 The motion Rj2g
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moves to the original position of the 3 vertex, the 3 vertex moves to 2’s original
position, and the 2 vertex moves to 1’s original position. This motion is denoted
by Ri20 and is illustrated in figure 2.6.

The dihedral group D3 consists of all orientation-preserving isometries of
an equilateral triangle. There are exactly six such motions, since vertex 1 can be
placed at any of the three original vertex positions, which leaves two choices for
placing the vertex 2 and just one choice for the vertex 3. Comparing the original
labeling of vertices with the post-motion labeling of vertices enables us to identify
three of these motions as rotations about the center of the equilateral triangle and
the other three motions as flips (or reflections) across the three lines of symmetry of
the equilateral triangle. The six possible motions are identified using the following
suggestive labels.

* R = rotate counterclockwise 0 degrees, moving 1 — 1, 2 - 2, 3 — 3;

* Rjp0 = rotate counterclockwise 120 degrees, moving 1 — 3, 2 — 1, 3 — 2
(asillustrated in figure 2.6, vertex 1 has moved to the position originally occupied
by vertex 3, etc.);

* Rpso = rotate counterclockwise 240 degrees, moving 1 — 2, 2 — 3,
3—>1;

» Fr =flip, or reflect, across the axis drawn from the top vertex to the center of
the opposite side, moving 1 — 1, 2 - 3, 3 — 2;

» Fgr =flip, or reflect, across the axis drawn from the right vertex to the center of
the opposite side, moving 1 — 3, 2 — 2, 3 — 1;

» Fp = flip, or reflect, across the axis drawn from the left vertex to the center of
the opposite side, moving 1 — 2, 2 — 1, 3 — 3.

Since these six motions are all the orientation-preserving, distance-preserving
motions of an equilateral triangle, D3 = {Ry, R120, R240, F7, Fr, F1}. The standard
operation on these elements of D3 is composition of motions, read from right to
left. For example, the composition R139 o Ro40 means that we first apply R»40, and
then Ryy¢; figure 2.7 illustrates this composition.

Intuitively, we recognize that Riy9 o Ry49 = Ry, since a counterclockwise
rotation of 120 degrees followed by a counterclockwise rotation of 240 degrees
returns every vertex to its original position; that is, the net effect of composing
this pair of motions is a counterclockwise rotation of O degrees. This observation
provides one piece of evidence that Ds3 is closed under composition, as must be
verified in a proof that D3 is a group.

1 3 1
3 2 2 1 3 2

Figure 2.7 The motion of Ry4¢ followed by Rj29
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The following questions continue our study of D3, particularly in light of the
four group axioms of closure, associativity, identity, and inverses. We also pay close
attention to the further algebraic property of commutativity. As a first step in this
direction, you are invited to practice a bit more with the operation of composition on
the elements of Ds.

Question 2.5.1 Compute each composition of elements from D3 = {Ryp, Ri20, Roa0, FT,
Fg, FL}.
(a) Ro o Ry (d) FroFr
(b) Ri20 0 Ri20 (e) FroFpg
(¢) Raap o Rogo (f) Fro Fr
]

The last two computations in question 2.5.1 are of particular interest because
they prove that composition on D3 is not commutative. Recall that an operation o is
commutative on a set S if for every a, b € S, we have a o b = b o a. The results of
question 2.5.1 show that F7 o Fg 7# Fg o Fr, and so composition is not commutative
on Dj. At the same time, we observe that some elements of D3 do commute with each
other; for example, Ry o Fr = Fr o Rp (in fact, Ry commutes with every element of
D3). Thus, Fr o Fr # Fr o Fr only proves that the universal property of all elements
commuting with each other does not hold in Ds.

This behavior in D3 is striking. Every number system we have studied thus
far has been commutative, but D3 behaves quite differently. As it turns out,
many groups are noncommutative, and so we must be careful not to appeal to
commutativity until we verify that the group in question actually satisfies this
condition. As mentioned in the previous section, the issue of commutativity is
why we considered both “left cancellation” and “right cancellation™ separately in
section 2.4. Motivated by the dihedral groups and other similar groups, mathematicians
have come to recognize the importance of the algebraic property of commutativity
and (as with most notions of importance) a special name is given to commutative
groups.

Definition 2.5.2 A group G under operation o is Abelian if the operation o is commutative on G;
that is, G is Abelian if for every a, b € G, we have aob = b o a.

Abelian groups are named in honor of the insightful Norwegian mathematician
Niels Henrik Abel. In the late 1700s, Abel found quite limited opportunities to study
mathematics in the schools of his native country. Despite (or because of) these
limitations, Abel was a primarily self-educated mathematician who learned directly
from the books and the research papers of the greatest mathematicians in history. In
his early twenties, Abel solved one of the fundamental research questions of his time.
He proved that there does not exist a general solution (in radicals) for polynomial
equations of degree five or higher, in striking contrast to the existence of the quadratic
equation for solving quadratic polynomials, and similar equations for solving cubics
and quartics (such solutions of polynomial equations are discussed more fully in
section 3.5). Abel’s work preceded Galois’ work on this same question, although
Galois’ approach was more general and is more widely known among contemporary



134

A Transition to Advanced Mathematics

mathematicians. Sadly, Abel died of tuberculosis at the age of 24, shortly before
receiving word of an offer of a position at one of the leading research universities
in Germany.

Every group we have studied thus far has been Abelian (except D3), including
Z under addition, Q* under multiplication, 7Z, under modular addition, and U(n)
under modular multiplication. Question 2.5.1 (together with the proof that D3
is a group) show that D3 is a nonAbelian group, as stated in theorem 2.5.1
below.

Working toward a proof that D3 is a group, we first consider the closure of D3
under composition—for every a, b € D3, we want to show that a o b € D3. Recall
from section 2.3 that a Cayley table provides a thorough and systematic approach to
computing the action of the binary operation on all possible pairings of elements. If
only elements from the given set appear in the corresponding Cayley table, the set is
closed under the given operation.

Question 2.5.2 Simplify the following Cayley table for D3 under composition.

o Ro R120 Raqp Fr Fr Fr

Ro Ro o Ry Ry o R12o Ry o R Ry o Fr Ry o Fg Ryo FL
Ri2o | RiooRo  RioooRi20 RizooRaao RizooFr RiooFr  RiooFlL
Roqo | RoaooRo  Rpa00Ri20 Roa00Rpa0 Rosoo Fr Rpgoo0 FR Rogoo Fr

Fr Fr o Ry Fr o Ry20 Fr1 0o Ryy FroFr Fr o Fg FroFr,

Fgr FroRy Fr o Ry Fr o Ryy FroFr FRro Fg FroFp,

Fr. Fr oRg Fr o Ry F1 o Ryq FroFr Fr o Fp Fr o F,

The simplified Cayley table in question 2.5.2 contains only elements of D3 and
exhibits the distinctive Latin square feature common to every Cayley table of a finite
group. Therefore, D3 is closed under composition and satisfies the first of the four
group axioms.

The verification that composition is an associative operation on D3 requires
significant work, since D3 is not contained in any set whose associativity is already
known. A proof by exhaustion that composition is associative on D3 requires the
computation of the two possible orderings of composition on the 6> = 216 distinct
triples of elements from D3. Rather than offer this tedious proof, the next question
highlights a couple of representative examples.

Question 2.5.3  Verify each equality in D3 under composition.

(a) Ri20 o (F1 0 Rpa0) = (R120 0 F7) 0 Rogg
(b) Fro(Riz00FRr) = (Fr o Ri20) o Fg
]

We now investigate the identity and inverse axioms for D3 under composition.
Question 2.5.2 asked for the simplified Cayley table for D3. Since the following analysis
makes essential use of this Cayley table, we provide the simplified version here; you
may wish to use it to double-check your answer to question 2.5.2.
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o Ry  Ripo Roao  Fr Fg Fr
Ro Ro Ripo Roao Fr Fr Fr,
Rio | Rioo Roao  Ro Fr Fr Fr
Ryao | Raao Ro R0 FL Fr Fr
Fr Fr Fr Fg Ry  Raap R
Fr Fr Fr Fr. Rioo R0 Ry
Fr Fr Fr Fr  Ruo Rio Ro

Recall from section 2.4 that the Cayley table for a group readily allows us to identify
the identity element of the group and the inverse of each element of the group. The
identity is determined by finding the group element that “preserves the identity” of
every element of D3 under composition. We can then determine inverses by locating
the identity element in each row (or in each column) of the Cayley table.

Question 2.5.4 Working with the above Cayley table for D3 under composition, state the identity
of D3 and the inverse of each element of Ds.
|

The answers to questions 2.5.1-2.5.4 above constitute a proof of the following
result.

Theorem 2.5.1 D3 under composition is a nonAbelian group.

The next step in studying dihedral groups is to consider an arbitrary regular n-sided
polygon. In D3, the orientation-preserving isometries of a regular three-sided polygon
are three rotations (each through a multiple of 360/3 = 120 degrees) and three flips
(each over an axis through a vertex and the center of the opposite side). A similar pattern
occurs in the more general setting for the set D,, of orientation-preserving isometries
of aregular n-sided polygon. The set D,, contains n rotations, one for each a multiple of
360/n degrees or 2m /n radians. In addition, D,, contains #n flips (or reflections) across
the n axes of symmetry that bisect the regular n-sided polygon, where the description
of the axes depends on whether the polygon has an even or an odd number of sides. If n
is odd, then each flip is over an axis through a vertex and the center of the opposite side
(as for the equilateral triangle). If n is even, then half the flips are over an axis through
a pair of opposite vertices and the other half of the flips are over an axis through the
centers of two opposite sides. To help clarify this general description in a more concrete
setting, think about a square with its four axes of symmetry. The dihedral group for a
square is studied in exercises 11-17 at the end of this section.

In general, the number of elements in a finite group is referred to as the order
of the group. Since D3 = {Ry, R120, R240, Fr, Fr, F1}, we say that D3 has order six.
Similarly, the set D, contains n rotations and n flips, and so D, has order 2n. This
notion of order extends to other groups, including Z, under addition mod » (which has
order n) and U(n) under multiplication mod n (which has order n — 1 when 7 is prime).

As with D3, the operation on D, of composition from right to left provides a
group structure and satisfies the four group axioms. As you might expect, the proof
that D, is a group closely mirrors the argument that D3 is a group. We formally state
the theorem for this general case and provide a sketch of a proof.
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Theorem 2.5.2 The set D,, of orientation-preserving isometries of a regular n-sided polygon is a
group under the operation of composition. We refer to D,, as the dihedral group
of order 2n.

Sketch of proof Closure is satisfied since the aggregate result of implementing one
orientation-preserving isometry and then another is itself an orientation-preserving
isometry. Associativity follows from an exhaustive consideration of all combina-
tions of group elements using appropriate general descriptions of the orientation-
preserving isometries of a regular n-sided polygon. The identity element of D,
under composition is Ry. Finally, every flip is its own inverse and the inverse of
a rotation of 360/n degrees is a rotation of 360 — 360/n degrees (which is also
an orientation-preserving isometry and so in D,). Thus, D, under composition
is a group.

|

For the remainder of this section, we examine patterns that arise when composing
elements of D, and take a more careful look at the issue of commutativity and
noncommutativity in this group-theoretic setting. We focus our discussion around
the study of the Cayley table for D3 under composition computed in question 2.5.2
and given just before question 2.5.4. We first look for general patterns in computing
compositions in Ds3.

Question 2.5.5 Examining the Cayley table for D3, we observe that the orientation-preserving
isometries of the equilateral triangle are bunched together in four distinct blocks:
two blocks of rotations in the upper left and lower right quadrants and two blocks
of flips in the lower left and upper right quadrants. Based on the computations
given in this table, identify the following general statements as true or false. For
the false statements, give a counterexample.

(a) Arotation followed by a rotation is a rotation; that is, Ro R = R.
(b) A rotation followed by a rotation is a flip; thatis, RoR = F'.
(c) Arotation followed by a flip is a rotation; that is, F o R = R.
(d) A rotation followed by a flip is a flip; thatis, F o R = F.
(e) Aflip followed by a rotation is a rotation; that is, R o F = R.
(f) Aflip followed by a rotation is a flip; thatis, Ro F = F.
(g) Aflip followed by a flip is a rotation; that is, F o F = R.
(h) Aflip followed by a flip is a flip; thatis, F o F = F.
|

We now consider the issue of commutativity and noncommutativity. In addition to
observing the noncommutative behavior of some elements of D3, we also note that some
elements of D3 do commute with each other. Every group actually has some elements
that commute with one another. For example, e is the identity of a group G under
operation o iff e o a = a = a o e for every element a € G. Therefore, by definition, the
identity always commutes with every element of a group. In the specific setting of D3,
the identity element Rg commutes with every element of D3. Similarly, group elements
always commute with their inverses since (by definition) a o a~! !

=e=a " oafor
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every a € G. Furthermore, every element commutes with itself since a o a = a o a by
the reflexivity of standard equality. Based on these observations, we conclude that a
great deal of commutativity still must exist among individual group elements, even
when a group is nonAbelian.

In studying the role of commutativity in a particular group, mathematicians
sometimes gather together the elements that commute with every other element of the
group into a set called the center of the group. In addition to considering such global
behavior, mathematicians also study more locally defined behavior. With regard to
commutativity, we consider the set of group elements that commute with a single given
group element @ € G. This set is called the centralizer of a. Consider the following
definition.

Definition 2.5.3 [f a is an element of a group G under operation o, then the centralizer of a in G
is the set of elements in G that commute with a. Symbolically, the centralizer of a
in G is denotedby C(a)={g: g€ Gandaog=goa}.

Example 2.5.4 We identify the centralizers of Ry, R12¢, and F7 in D3 under composition.

Since the identity element Ry commutes with every element of D3, we immediately
have C(Rg) = Ds. In contrast, the centralizer of every other element of D3 is
a proper subset of D3, as can be verified by checking the (lack of) symmetry
between the row and column of a given element in the Cayley table for D3. For
example, for the rotation Rjg, we find C(R120) = {Ro, R120, Rz40} since Riog
commutes with every rotation but with no flips. Similarly, for the flip F7, we find
C(Fr) = {Ro, Fr}.

|

The conclusion that C(Fr) = {Ro, Fr} is a special case that warrants further
discussion. For groups containing two or more elements, the least possible order of
the centralizer of a group element is two, since every element commutes with at least
the identity of the group and itself. As mentioned above, every group element also
commutes with its inverse, and so a centralizer has order two exactly when a group
element is its own inverse. Thus, C(F) = {Ro, Fr} since FT commutes with precisely
the identity (Ry), with itself (), and with its inverse (which is also Fr).

Question 2.5.6 Determine the centralizer of R40, Fr, and Fy, using the Cayley table for D3 under
composition.
|

Finally, we say a bit more about cancellation in the context of the dihedral groups.
From theorem 2.4.5 and exercise 31 in section 2.4, the left cancellation and the right
cancellation properties hold for any group, and so they hold for D,. For example,
working in D3 we know that F'r o R129 = F1 o (R249 © Ro40) implies R129 = Ra40 © Ro49
by left cancellation and that R120 o F7 = (Ra40 © Ro49) o Fr implies R120 = Ro40 © Ro49
via right cancellation.

In many other familiar number systems, we are perhaps used to using “cross”
cancellation. For example, working with products of integers and rationals, we may
say that 2 -1 = (3-1/3) -2 implies | = 3 - 1/3 or that 2x = (3 + x) - 2 implies
x = 3 + x by cancelling the 2 on both sides of the original equations. However,
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such cross-cancellation makes implicit use of the commutativity of elements in the
underlying number systems for these equations. As we have seen, commutativity fails
for several pairs of elements in D3, and we will soon see that commutativity also fails
to hold in a number of other important groups. Therefore, in general we cannot utilize
cross-cancellation when manipulating equations unless we first verify and reference
that we are working in an Abelian group. The following question explicitly highlights
the failure of cross-cancellation in D3.

Question 2.5.7  Verify that cross-cancellation is not valid in D3 under composition by identifying
A € D3 such that Fr o A = Ryp9 o Fr, but A £ Ry29.

2.5.1 Reading Questions for Section 2.5

1.

e

10.

11.
12.

What is a regular polygon? Give examples of polygons that are regular and
irregular.

Give an example of a geometric figure that is not a polygon.

What is an isometry of the plane? Give an example of an isometry and a
motion of the plane that is not an isometry.

Whatis an orientation-preserving isometry? Give an example of an orientation-
preserving isometry of a square and an isometry of a square that is not
orientation-preserving.

List the elements of Ds.

Define when an operation o is commutative on set S.

Give an example of a commutative operation.

Give an example of an operation that is not commutative.

Define and give an example of an Abelian group.

Define the order of a group and give examples of groups of orders 2, 5,
and 6.

Define the center of a group G and give an example.

Define the centralizer of an element « in a group G and give an example.

2.5.2 Exercises for Section 2.5

In exercises 1-10, sketch a geometric figure satisfying each condition, or explain why
no such figure exists.

Nk wh -

a regular two-sided polygon

a regular four-sided polygon

a regular five-sided polygon

a regular eight-sided polygon

an irregular five-sided polygon with equal sides

an irregular five-sided polygon with equal interior angles

an irregular five-sided polygon with neither equal sides nor equal interior
angles
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8. an irregular six-sided polygon with equal sides
9. an irregular six-sided polygon with equal interior angles
10. an irregular six-sided polygon with neither equal sides nor equal interior
angles

Exercises 11-17 consider the dihedral group D4 under composition. The set Dy
consists of the eight orientation-preserving isometries of a square (a regular four-sided
polygon). The set D4 contains four rotations, denoted Ry, Rop, Rigo, Ra70 with the
subscript indicating the angle of counterclockwise rotation. In addition, D4 contains
four flips (denoted Fy, Fy, Fg, F1), where Fy is the flip across the vertical axis through
the center of the top and bottom sides, F is the flip across the axis from the lower right
vertex to the upper left vertex, and Fy, F are the horizontal and lower left variations
on these flips.

11. Asmodeled in example 2.5.3, give a written description of the eight isometries
in Dy.

12. Compute the Cayley table for D4 under composition.

13. State the identity of D4 under composition.

14. State the inverse of each element of D4 under composition.

15. Based on exercise 14, describe any patterns that exist for inverse pairs.

16. Prove that D4 is not an Abelian group by identifying two elements of Dy that
do not commute under composition.

17. Determine the centralizer of each element in Dy.

Exercises 18-28 consider the dihedral group D5 under composition. The set D5 consists
of the ten orientation-preserving isometries of a regular pentagon (a regular 5-sided
polygon). In particular, D5 contains five rotations (denoted Ry, R72, R144, Ro16, R283)
and five flips (denoted Fy, F», F3, F4, F5). Note that each flip is across an axis through
a vertex and the opposite side’s midpoint.

18. As modeled in example 2.5.3, give a written description of the ten isometries
in D5.

19. Compute the Cayley table for D5 under composition.

20. State the identity of Ds under composition.

21. State the inverse of each element of D5 under composition.

22. Based on exercise 21, describe any patterns that exist for inverse pairs.

23. Prove that D5 is not an Abelian group by identifying two elements of D5 that
do not commute under composition.

24. Determine the elements in the centralizer of an arbitrary nonidentity rotation
in Ds.

25. Determine the elements in the centralizer of an arbitrary flip in Ds.

26. Describe the isometry that results from the composition of two rotations in
Ds. Justify your answer.

27. State the numeric relationship that ensures two rotations in D5 are inverses of
each other.

28. Describe the isometry that results from the composition of two flips in Ds.
Justify your answer.
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Exercises 29-34 consider the general dihedral group D, of order 2n consisting of the
orientation-preserving isometries of a regular n-sided polygon under the operation of
composition.

29. How many rotations are in D, ? Justify your answer.

30. As modeled in example 2.5.3, give a written description of the rotation
elements of D,,.

31. If n is odd, how many flips are in D,,? Give a geometric justification of your
answer.

32. As modeled in example 2.5.3, give a written description of the flip elements
of D,, when n is odd.

33. If nis even, how many flips are in D,,? Give a geometric justification of your
answer.

34. As modeled in example 2.5.3, give a written description of the two distinct
types of flip elements of D, when n is even.

In exercises 35-44, identify the order of each group by determining the number of
elements in the group.

35. Zs 40. Dg
36. U(5) 41. 7y
37. Ds 42. U(11)
38. Zg 43. U(14)
39. U(8) 44. Zys

In exercises 45-54, identify the elements in the group of orientation-preserving
isometries of each geometric figure.

45. anonsquare rectangle 50. a valentine’s heart (or a cardioid)
46. anonrectangular parallelogram 51. an addition symbol +

47. arhombus 52. a multiplication symbol x

48. acircle 53. adivision symbol =

49. a noncircular ellipse 54. a subtraction symbol —

Exercises 55—65 consider the M»(Z) of 2 x 2 matrices on the set of integers. Matrix
groups were studied by Cayley in the 1850s and are of interest in this section since
they provide another important example of noncommutativity. A 2 x 2 matrix on the
integers is an array of integers with two rows and two columns. The following are
some elements of M;(Z).

=l 0] m=[ 7 0] e=[4 1]

Addition and multiplication of matrices are defined by combining the entries in a
given pair of matrices in an appropriate fashion based on the corresponding operations
on the integers. Consider the following formal definitions of matrix addition and

multiplication.
a b + e f _ ate b+f
c d g h - c+g d+h
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a b e f _ ae +bg af + bh
c d g h o ce+dg cf +dh

In exercises 55—62, compute each sum and product.

55. A+B 59. A-B
56. B4+ A 60. B-A
57. A+C 61. B-C
58. C+A 62. C-B

Exercises 63—65 consider the commutativity of matrix addition and matrix multipli-
cation in light of the computations in exercises 55—62.

63. What do exercises 55-58 suggest about the commutativity of matrix addition
on M»(Z)?

64. Using the commutativity of integer addition, prove that addition of matrices
from M»(Z) is commutative.

65. What do exercises 59-62 prove about the commutativity of matrix multipli-
cation on M»(7Z)?

Exercises 66—70 continue a study of the symmetric groups begun in in exercises 55-70
of section 2.4. The symmetric group S, consists of all one-to-one, onto functions on
the integers {1, ..., n} under the operation of composition. Recall that the elements of
Sy are functions « represented in arrays of the form

_ 1 2 . n
Tl ey a@ - am) |

The top row of the array denotes the inputs of the function and the bottom row consists
of the corresponding distinct outputs which are also elements of {1, . . . n}. For example,
the following are three elements of S3 represented in array form.

.= 1 2 3 o= 1 2 3 = 1 2 3
L1 2 3 12 31 L1302
In exercises 66—69, compute each composition.

66. Boux 68. a?o B
67. a’ =aoa 69. Boa?

70. What do exercises 68—69 prove about the commutativity of composition
on $3?

2.6  Application: Check Digit Schemes

We complete this study of abstract algebra with an application of modular arithmetic
and dihedral groups. Contemporary American society assigns numbers to just about
everything, using “identification numbers” to represent such diverse objects as books,
food, financial transactions, and even people. These assignments of numbers provide
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benefits in record-keeping and tracking information, but they also produce some new,
associated problems. In this section, we grapple with the problem of incorrect digits
appearing in these numbers when they are stored or transmitted. We can readily imagine
how easily an accountant might accidentally move a decimal place and record $10.00
instead of $1000, or a teacher might erroneously record a grade of 89 instead of 98. In
addition to human error, the physical devices of communication systems sometimes
break down, resulting in signals that degrade or become garbled due to background
noise. Such disruptions can also introduce errors in identification numbers. In short,
we need some algorithmic process for verifying the accuracy of stored and transmitted
numbers.

Fortunately, mathematicians have developed a variety of approaches to the
problem of verifying the accuracy of identification numbers. In this section, we study
check digits—values that enable us to verify whether or not a given identification
number (such as a credit card number or an inventory record) is correct. In this way, a
check digitacts as a flag for incorrect numbers, identifying when an error has occurred in
record keeping. The ideas of abstract algebra, particularly those of modular arithmetic
and dihedral groups, are among the most important tools for specifying such check digit
schemes. A variety of different schemes or algorithms have been devised for assigning
a check digit to a given identification number.

Definition 2.6.1 Ifn € Nisa positive integer that serves as an identification number for an object,

then a check digit for n is an integer ¢ € {0, ..., 9} appended to n to produce the
corresponding record number n"c = 10 - n + c. Thus,

record number = identification number "check digit.

Example 2.6.1 An identification number 542 with check digit 7 has record number 5427.

Many different approaches have been devised to compute a check digit for a
given identification number. Modular arithmetic is used in most check digit schemes
as a device for “reducing” multidigit numbers to a single digit. A check digit permits
the verification of the identification number up to some degree of accuracy depending
on the type of scheme employed. In this section, we introduce four different check
digit schemes and consider the relative strengths and weaknesses of each approach.
This discussion will show that not all check digit schemes are created equal. We begin
our study with perhaps the simplest scheme, based on congruence modulo ten.

2.6.1 The Mod 10 Check Digit Scheme

For a given identification number n € N, the mod 10 check digit scheme determines
the check digit for n using the formula

check digit forn = nmod 10.

Therefore, under the mod 10 check digit scheme, an identification number n € N has
the record number n”(n mod 10) = 10 - n + nmod 10.
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Example 2.6.2 We use the mod 10 check digit scheme to compute the record number for identi-

Question 2.6.1

fication number n = 1165. The corresponding check digit is 1165 mod 10 =5,
which produces the record number 1165*5 = 11655. Several more examples are
presented in the following table.

Identification number | Check digit | Record number
n nmod 10 n”(n mod 10)

1165 5 11655

23876 6 238766
1234 4 12344
1235 5 12355
1284 4 12844
2134 4 21344

Use the mod 10 check digit scheme to compute the record number for each
identification number.

(a) 2345 (c) 345
(b) 4675 (d) 345654765
|

As discussed above, we are not just interested in specifying record numbers; we are

also interested in using check digits to determine the accuracy of the record numbers,
at least to the extent possible for the given check digit scheme.

Example 2.6.3

Question 2.6.2

We determine the validity of a few record numbers under the mod 10 check digit
scheme.

* 1222: Record number 1222 has identification number 122 and check digit 2.
Since 122 mod 10 = 2, the identification number 1222 is valid with respect to
the mod 10 check digit scheme.

e 1236: Record number 1236 has identification number 123 and check
digit 6. Since 123mod 10 = 3 # 6, the identification number 1236 is not
valid.

* 3574: Since 357 mod 10 = 7 # 4, 3574 is not a valid record number.
]

Explain why each number is or is not a valid record number under the mod 10
check digit scheme.

(a) 155 (b) 12532
|

The following question explores the strengths and weaknesses of the mod 10

check digit scheme. We also introduce two of the most common errors that arise in
identification numbers: the single-digit error and the transposition error.
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Question 2.6.3 AtRecord Keeping International (RKI), record specialist Morgan Smith is entering
record numbers obtained using the mod 10 check digit scheme in an inventory
list.

(a) Morgan enters the number 18983 in the inventory list and the computer flashes
the error message: Invalid Record Number! Identify the three possible errors
that Morgan could have made in entering the number 18983 and that could
be detected by the computer using the mod 10 check digit scheme.

Hint: One possible error is that Morgan could have typed the last digit wrong.

(b) Several record numbers later, Morgan is trying to enter record number
12344, but incorrectly types 12844 instead. Explain why the mod 10 check
digit scheme does or does not detect this single-digit error in the third
position.

(c) Suppose Morgan is trying to enter record number 12344, but incorrectly types
21344 instead. Explain why the mod 10 check digit scheme does or does not
detect this transposition error of the first two digits.

(d) Should RKI terminate Morgan Smith’s employment or should they explore
the possibility of using another check digit scheme?

|

Statistical data indicate that single-digit errors and transposition errors are the two
most common errors in storing and communicating numbers. Therefore, check digit
schemes that detect these errors are particularly valuable. For the sake of clarity and
precision, these two types of common errors are defined as follows.

Definition 2.6.2 Let aj - - - a, be a record number with ay, € {0, ..., 9} for every k with 1 < k <n.

* A single-digit error in the kth position occurs if the record number stored is
aj -+ - ag—1 by aky1 - - - ay where by # ay for some k with 1 <k <n.

* A transposition error occurs if two adjacent digits are switched and the record
number stored is aj - - - Ag—1 Ak+1 Qk Ak42 - - - A for some k with 1 < k < n.

In summary, the mod 10 check-digit scheme detects single-digit errors in the
last two positions of a record number. However, this scheme fails to detect any other
errors and so has quite limited practical usefulness. Fortunately, mathematicians have
developed other, more discerning check-digit schemes. We turn our attention to a
second check-digit scheme, also based on modular arithmetic. As we will see, this
“mod 9 check-digit scheme” does a better job of detecting single-digit errors than the
mod 10 check-digit scheme.

2.6.2 The Mod 9 Check Digit Scheme

For a given identification number n € N, the mod 9 check-digit scheme determines the
check digit for n using the formula

check digitforn = nmod9.

Therefore, under the mod 9 check digit scheme, an identification number n € N has
the record number n* nmod 9 = 10 - n 4+ nmod 9.



Chapter 2 = Abstract Algebra 145

Example 2.6.4 We use the mod 9 check digit scheme to compute the record number for
identification number n = 1165. The corresponding check digitis 1165 mod 9 = 4
(since 1165 = 9 - 124 + 4), producing record number 1165”4 = 11654. Several
more examples are presented in the following table.

Identification number | Check digit | Record number

n nmod 9 n”(n mod 9)
1165=9-129 +4 4 11654
23876 =9- 2652 + 8 8 238768
1234=9-137+1 1 12341
1235=9-137+2 2 12352
1284=9-142+6 6 12846
2134=9-237 +1 1 21341

Before considering some questions exploring the capabilities of the mod 9 check
digit scheme, we point out an algorithm that facilitates mod 9 computations. One
approach to computing n mod 9 is the standard long division technique of dividing n
by 9 to determine the quotient g and then computingn — 9 - g = nmod 9. Alternatively,
if n = ay - --ax € Nis a positive integer with decimal digits ay, . . ., ax, then nmod 9
is equal to the mod 9 value of the digits’ sum; that is, we can compute n mod 9 using
the following formula:

nmod9 = (a;---ar)mod9 = (a; + - - - + ar) mod 9.

Reconsidering example 2.6.4 in which we determined the mod 9 check digit
for identification number n = 1165, we can either determine the check digit
1165 mod 9 = 4 directly (as in the example), or use this new formula to obtain

1165mod9 = (14+1+64+5mod9 = 13mod9 =4.

This algorithm only works for mod 9 arithmetic and does not extend to divi-
sion by other positive integers. This approach may be helpful in the following
questions.

Question 2.6.4 Use the mod 9 check digit scheme to compute the record number for each
identification number.

(a) 2345 (c) 345
(b) 4675 (d) 345654765
|

Example 2.6.5 We determine the validity of two record numbers under the mod 9 check-digit
scheme.

* 1222: Record number 1222 has identification number 122 and check digit 2.
Since 122mod9 = 5 # 2, the identification number 1222 is not valid with
respect to the mod 9 check digit scheme.
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Question 2.6.5

Question 2.6.6

e 1236: For the record number 1236, we have identification number 123 and
check digit 6. Since 123 mod 9 = 6, the identification number 1236 is valid with
respect to the mod 9 check digit scheme.

|

Explain why each number is or is not a valid record number under the mod 9 check
digit scheme.

(a) 155 (b) 12532
|

After sufficient experience with the shortcomings of the mod 10 check-digit
scheme, RKI has converted its inventory system to the mod 9 check-digit scheme.
Record specialist Morgan Smith is once again entering record numbers in an
inventory list for RKI. For each case, explain why the mod 9 check digit-scheme
does or does not detect the single-digit error in the third position.

(a) Morgan is trying to enter 12341, but incorrectly types 12841.
(b) Morgan is trying to enter 18988, but incorrectly types 18888.
(c) Morgan is trying to enter 18988, but incorrectly types 18088.
(d) Morgan is trying to enter 12047, but incorrectly types 12947.

What is distinctive about cases (c) and (d) in which the mod 9 check digit scheme
fails to detect the single-digit error?
|

The mod 9 check digit scheme detects all single-digit errors except for when 0

is substituted for 9 or 9 is substituted for 0. Since 9mod9 = 0 = Omod 9, mod 9
arithmetic is simply not capable of detecting such errors. Unfortunately, the mod 9
check digit scheme does not detect any transposition errors nor any other errors
involving rearrangement of the digits.

Example 2.6.6

Question 2.6.7

We verify that the mod 9 check-digit scheme does not detect transposition errors.
Consider the identification numbers 1234 and 2134 on lines 3 and 6 of the
table given in example 2.6.4. Both of these identification numbers have check digit
1, indicating that the mod 9 check-digit scheme does not detect the transposition

of the first two digits.
|

(a) Determine the check digit for three more rearrangements of the identification
number 1234.

(b) Using the algorithm explained before question 2.6.4, explain why the mod 9
check digit scheme does not detect transposition errors in any identification
number.

(c) Prove that the mod 9 check-digit scheme computes the same check digit when
ap - - - ay is rearranged as ay, - - - ax,. This shows that that the mod 9 scheme
cannot detect errors involving any type of rearrangement of digits in any given

identification number.
|
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In summary, the mod 9 check digit scheme detects single-digit errors in any
position, except for single-digit errors in which the numbers 0 and 9 are substituted
for each other. In addition to not detecting some single-digit errors, the mod 9 check
digit scheme fails to detect any transposition errors, indicating the need for a more
subtle, discerning, and ultimately more useful check digit scheme. In fact, of the four
different check digit schemes studied in this section, only the last scheme (which is a
dihedral check digit scheme) completely satisfies the goal of detecting all single-digit
errors and all transposition errors.

2.6.3 The Codabar Check Digit Scheme

In preparation for working the dihedral check digit scheme, we first consider the
Codabar check digit scheme. Codabar is a highly effective check digit scheme that
detects all single-digit errors and 98% of other common errors (including, but not
limited to transposition errors). In light of this high level of effectiveness, the Codabar
check digit scheme is widely used in many diverse settings. Every major credit
company uses Codabar, as well as many banks, libraries, universities, and a variety of
other commercial enterprises. We are particularly interested in the Codabar check digit
scheme because of the manner in which this algorithm blends standard arithmetic and
modular arithmetic operations.

We present the Codabar check digit scheme in the context of determining the
check digit for a credit card number. A credit card number is a 16-digit record number
consisting of a 15-digit identification number assigned administratively by the issuing
financial institution and a single check digit determined by the Codabar check digit
scheme. In this context, the algorithm for the Codabar check digit scheme has the
following four steps.

(a) Sum the digits in the odd positions, 1, 3, 5, ..., 15, and double the sum.

(b) Determine how many digits in the odd positions exceed four (so, are either 5,
6,7, 8, or 9) and add this number to the result of step (a).

(c) Add the digits in the even positions, 2,4, 6, ..., 14, to the result of step (b).

(d) Determine the check digit using the formula: [ step (¢) + check digit ]
mod 10 = 0.

The final credit card number consists of the original 15-digit identification number
with the appended check digit.

Before working through some examples and questions, we note that credit card
numbers are often presented in four blocks of four digits. Often spaces or hyphens are
inserted between each block of digits; hyphens are used in this text. This presentation of
credit card numbers facilitates the reading, recording, and recollection of these numbers
by human beings, since most minds are not readily able to work with continuous blocks
of sixteen digits.

Example 2.6.7 We determine the check digit and the complete credit card number for the
identification number 8479-2675-3419-241.
Working from the left, we sum the digits in the odd positions and double the
sum to obtain
2-84+74+24+T7+3+1+2+1)=062.
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Foreach 5, 6, 7, 8, or 9 in an odd position, we add one to the result of the first step.
we have 8,7,7 = 62+4+3=065
We add the remaining digits to the result of the second step to obtain
654+4+9+6+5+4+9+4=106.

We choose the check digit so that [ step (¢) + check digit ]mod 10 = O0; in this
case, we have

(106 +c¢)mod 10 =0 = c=4.

Therefore, the Codabar check digit for the given identification number is 4, and
the complete credit card number is 8479-2675-3419-2414.
|

Perhaps the most interesting mathematical step in the algorithm for the Codabar
check digit scheme is the final step in which we solve a modular equation for the
unknown check digit c. The dihedral check digit scheme also requires us to solve a
modular equation, as do many other sophisticated check digit schemes.

As with our other check digit schemes, we are interested in the Codabar check
digit scheme as a tool for seeking errors in a given credit card number. As before, we
compute the check digit for the given identification number and compare the resulting
value with the given check digit. If the two digits are the same, the credit card number
is accepted as valid (at least up to the error detection capabilities of the check digit
scheme); if the two digits differ, then the credit card number is declared invalid.

Question 2.6.8 Use the Codabar check digit scheme to compute the credit card number with

identification number 8479-2642-1937-847.
|

Question 2.6.9 Explain why 9479-2675-3419-2414 is or is not a valid credit card number under

the Codabar check digit scheme. Compare your result with example 2.6.7. These
examples provide some evidence for what property of the Codabar check digit
scheme?

|

In summary, the Codabar check digit scheme combines standard integer arithmetic
with modular arithmetic to obtain some pretty impressive error-detecting capabilities.
As mentioned above, the Codabar check digit scheme detects all single-digit errors
and 98% of other common errors. This check digit scheme has also provided a nice
introduction to one of the essential elements of the fourth check digit scheme presented
in this section.

2.6.4 The D5 Check Digit Scheme

We finish this section on check digits with a “dihedral check digit scheme” that uses
the dihedral group Ds of order 10 in an essential way. The D5 check digit scheme
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was developed by the Dutch mathematician Jacobus Verhoeff in 1969. Since the order
of Ds is 10, this group is a natural fit for the standard Hindu—Arabic numeral system
with its 10 distinct digits. This Ds check digit scheme is very effective in detecting the
common errors in storing and communicating record numbers and is used by many
banks and other financial institutions. This scheme detects all single-digit errors in
any position and all transposition errors, and so is a significant improvement over the
mod 9 and mod 10 check digit schemes presented above.

Recall that the dihedral group D5 consists of all orientation-preserving isometries
of a regular pentagon under the operation of composition. In order to facilitate our
computations, the 10 digits of the Hindu—Arabic numeral system are associated with
the 10 orientation-preserving isometries of the regular pentagon. Roughly speaking,
the digits 0—4 with the five rotations in D5 and the digits 5-9 with the five flips in Ds.
While we do not give the exact mapping, the corresponding numeric rendition of the
Cayley table for D5 given below is used when carrying out computations in the Ds
check digit scheme.

o

OO0 IN NP W —O
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In this numeric rendition of the Cayley table for Ds, note the characteristic
computational patterns for the dihedral group. In particular, the composition of two
rotations (represented by 0—4) or two flips (represented by 5-9) produces a rotation
(0—4), as witnessed in the upper left and lower right quadrants of this Cayley table.
Similarly, the composition of a rotation (0—4) and a flip (5-9) produce a flip (5-9), as
is apparent in the lower left and upper right quadrants of the table.

The D5 check digit scheme also utilizes a collection of functions f; defined on
the elements of the dihedral group. In this text, we focus on applications of the Ds
check digit scheme to identification numbers with at most four digits, and so we give
just the first four of these functions. Continuing to associate the digits 0-9 with the
elements of Ds, these functions are presented in the following table; the inputs appear
along the top row and the outputs of each function are listed beneath the corresponding
inputs.

n |0 1 2 3 4 5 6 7 8 9
fim|1 5 7 6 2 8 3 0 9 4
Am |5 8 0 3 7 9 6 1 4 2
B |8 9 1 6 0 4 3 5 2 7
Gm |9 4 5 3 1 2 6 8 7 0
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From the first row of this table, f1(0) =1, fi(1) =5, fi2)=17,...,£1(9) =4, and
similarly for the other three functions. Given the function fi, the other three functions
are computed by repeated compositions. In particular, the function f> is equal to the
composition fi o f, f3 = f1 of1 of1, and so on. Therefore, when a check digit is needed
for a number with more than four digits, we can obtain the needed additional functions
by taking an appropriate number of compositions of f (see exercises 45-50 at the end
of this section).

For a given identification number with digits a; - - - a,, the Ds check digit is the
digit ¢ satisfying ]

fila) ofr(az) o -+ ofylay) oc =0.

From an algorithmic perspective, the D5 check digit scheme first applies the function
Jx to the kth digit of the identification number, composes the resulting digits with the
check digit ¢ (as elements of Ds), sets the result equal to 0, and finally solves for
the unknown check digit ¢ in the resulting equation using the Cayley table for Ds
given above. The order of composition is critical here, since the dihedral group Ds is
a nonAbelian group and commutativity does not hold. For a four-digit identification
number ajaraszas, the check digit ¢ is chosen to satisfy

fiar) o fo(a2) o f3(az) o fa(as) oc = 0.

We illustrate the Ds check digit scheme in the following example and then have you
continue the study of the D5 scheme in some questions.

Example 2.6.8 We use the D5 check digit scheme to determine the record number for identification

number 1165.

We proceed by substituting a; = 1, a» = 1, a3 = 6, and a4 = 5 into the Ds
check digit equation. The check digit ¢ is determined by simplifying and solving
this equation for ¢ using the given table of functions and the Cayley table for Ds.
In the following sequence of compositions, we use the fact that the composition
operation o is associative on D5 and so we are free to work our way from left to
right in simplifying each expression.

Ao ofs6)ofsS)oc = 0
(508)03020c = 0

(203)020c = 0 since 508 = 2in Ds

0o2)oc = 0 since 203 =0in Ds

2o0c = 0 since 0 02 = 2in Ds

Finally, we search for a 0 in the third row (the row for 2 in the D5 Cayley table) and
find that 2 0 3 = 0, and so ¢ = 3. Appending this check digit to the identification
number, the desired record number is 11653.

|

Question Use the Ds check digit scheme to compute the record number for each identification
2.6.10 number.

(a) 1234 (c) 1284
(b) 1235 (d) 2134
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Notice that the D5 check digits are different for each of the four identification
numbers given in question 2.6.10. What evidence do these examples provide for the D5
check digit scheme detecting single-digit errors and transposition errors? Knowing that
the D5 scheme succeeds in detecting these two types of errors, what recommendations
do you have for Morgan Smith and the folks at RKI?

Question Explain why each number is not a valid record number under the Ds check digit
2.6.11 scheme.
(a) 45802 (c) 9873
(b) 23943 (d) 123

For the third and fourth record numbers, we note that the D5 check digit
scheme does not require the use of four-digit identification numbers, and so we
interpret the potential record number 9873 as consisting of an identification number
987 and a check digit 3.

]

2.6.5 Reading Questions for Section 2.6

What motivates the development of check digit schemes?

Define and give an example of a single-digit error.

Define and give an example of a transposition error.

Describe how the mod 10 check digit scheme determines a check digit.

M S

Discuss the relative strengths and weaknesses of the mod 10 check digit
scheme.

Describe how the mod 9 check digit scheme determines a check digit.
Discuss the relative strengths and weaknesses of the mod 9 check digit scheme.
Describe how the Codabar check digit scheme determines a check digit.

A e

Discuss the relative strengths and weaknesses of the Codabar check digit
scheme.

10. Describe how the D5 check digit scheme determines a check digit.
11. For the D5 check digit scheme, state the definition of £, in terms of f7.
12. Discuss the relative strengths and weaknesses of the D5 check digit scheme.

2.6.6 Exercises for Section 2.6
In exercises 1-4, use the mod 10 check digit scheme to compute the record number
for each identification number.

1. 1234 3. 1284
2. 1235 4. 2134

In exercises 5-8, explain why each number is or is not a valid record number under
the mod 10 check digit scheme.

5. 45808 7. 98717
6. 23944 8. 1236
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In exercises 9-14, use the mod 9 check digit scheme to compute the record number
for each identification number.

9. 1234 12. 2134
10. 1235 13. 2135
11. 1284 14. 2185

In exercises 15-20, explain why each number is or is not a valid record number under
the mod 9 check digit scheme.

15. 45808 18. 1236
16. 23944 19. 345-936
17. 9877 20. 345-455

In exercises 21-26, use the Codabar digit scheme to compute the complete credit card
number for each identification number.

21. 2181-2389-8824-398 24. 3577-1232-8098-294
22. 4566-3932-6858-147 25. 7678-1443-3425-768
23. 1234-7898-3243-311 26. 4556-7688-2345-355

In exercises 27-32, explain why each number is or is not a valid credit card number
under the Codabar digit scheme.

27. 2345-4356-3112-7854 30. 0987-6568-3453-4452
28. 9695-2859-8724-5659 31. 4586-7092-6795-4657
29. 2456-5024-7695-4268 32. 0495-0256-6526-7096

In exercises 33-38, use the D5 check digit scheme to compute the record number for
each identification number.

33. 123 36. 8435
34. 132 37. 5345
35. 8345 38. 3545

In exercises 39-44, explain why each number is or is not a valid record number under
the D5 check digit scheme.

39. 2483 42. 54800
40. 8423 43. 45899
41. 45800 44. 55809

In exercises 4546, we extend the D5 check digit scheme to handle five- and six-digit
identification numbers. Recall that f; is defined by the input-output table

ol
©| oo
o

n
fim [T 5 7 6

and thatf, = f o fi, 5 = f) ofi of) =/fi of2, and so on.
In exercises 4546, follow this pattern to determine each functions.

45. fs 46. fo
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In exercises 47-50, use the D5 check digit scheme and the answers to exercises 45-46
to compute the the record number for each identification number.

47. 84765 49. 012345
48. 23987 50. 346589

Exercises 51-62 consider the check digits for ISBNs, or International Standard
Book Numbers. Every published book is assigned a 10-digit ISBN, denoted by
a) — arazasas — agaragag — ajo, where the hyphens are inserted for readability. For
example, in the ISBN 0-7167-3817-1, we have a; = 0,a, =7, a3 =1, ..., a;0 = 1.
The last digit ajo of the ISBN is a check digit and the ISBN check digit scheme
determines the check digit using the following formula.

[10-a1+9-a+8-az3+7-a4+6-as+5-a¢+4-a7+3-ag+2-a9+ajp] mod 11=0

We verify the check digit of the ISBN 0-7167-3817-1 by first computing:

10-04+9-74+8-14+7-64+6-74+5-3+4-843-14+2-7T+ajp=219+ ajo.

As with the Codabar check digit scheme and the D5 check digit scheme, the ISBN check
digit requires [219 + ajg] mod 11 = 0. Since [219 4 1] mod 11 = 220 mod 11 = 0,
we have ajg =1 and the given ISBN is correct. Since the ISBN check digit is
determined using mod 11 arithmetic, the scheme sometimes needs an eleventh digit;
the standard convention is to use X for the check digit when using ajg = 10. The
ISBN check digit scheme detects all single-digit errors and all transposition errors of
adjacent digits.

In exercises 51-56, use the ISBN check digit scheme to compute the ISBN for each
identification number.

51. 2-3474-9129 54. 2-2343-6856
52. 0-0823-7322 55. 3-3458-2134
53. 0-7167-3818 56. 1-6987-5687

In exercises 57-62, explain why each number is or is not a valid ISBN under the ISBN
check digit scheme.

57. 0-6181-2214-1 60. 0-9232-3140-4
58. 0-5349-4422-3 61. 1-7365-4557-7
59. 0-6181-4916-2 62. 2-8768-7698-5

Exercises 63-70 consider “isomorphic” finite groups. Intuitively, isomorphic groups
are identical as groups (up to the particular choice of names used to identify group
elements), and so share all group properties in common. Formally, two groups are
isomorphic if there exists a one-to-one, onto function from one group to the other
which preserves the group operation. The following exercises consider only finite
groups and use Cayley tables to determine if two groups are isomorphic. Consider the
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following familiar Cayley tables for Z;, U(3), and Z3 under the appropriate modular
operations.

@0 1 o1 2
00 1 11 2
{10 202 1

As we can see, the groups Z; under addition mod 2 and U(3) under multiplication
mod 3 have identical Cayley tables provided we identify O € Z, with 1 € U(3) and
1 € Z, with 2 € U(3). We say that Z and U(3) are isomorphic groups and write
Zo =~ U(3); as mentioned above, we now know that Z, and U(3) share all group
properties in common. On the other hand, the group Z3 under multiplication mod 3
is not isomorphic to either Z, or U(3); there are a different number of elements in
Zs3 than in either Z, or U(3), and so the Cayley tables are not identical. We can often
prove that two groups are not isomorphic by comparing the number of elements in their
respective sets, but sometimes we must carefully inspect the Cayley table to determine
nonisomorphism.

In exercises 63—70, determine whether or not each pair of groups (under the appropriate
operations) is isomorphic by inspecting Cayley tables. If the groups are isomorphic,
state the identification of group elements witnessing the isomorphism.

63. Z, and U(4) 67. Z3 and U(8)

64. Z, and U(5) 68. Zg and D3

65. D3 and U(7) 69. Zg and S3

66. Z4 and U(8) 70. U(5) and U(8)
Notes

The ideas and results presented in section 2.1 are widely known among mathematicians
(and others), and so they are contained in many different mathematical textbooks. Basic set
theory is often studied in “Discrete Mathematics” courses, which are supported by such texts
as those by Epp [72], Richmond and Richmond [193], and Scheinerman [209]. Alternatively,
there are a growing number of “Foundations of Mathematics” textbooks that consider these
notions, including those by Barnier and Feldman [10], D’ Angelo and West [51], and Smith
etal. [219].

A number of excellent books are devoted exclusively to the development and study of
set theory as a rich mathematical field in its own right, including an undergraduate text
by Halmos [108]; the standard graduate level texts exploring set theory are those written by
Kunen [146] and Jech [130]. The rigorous, axiomatic study of set theory was initiated by
a letter from Bertrand Russell to Gottlob Frege in which Russell outlined what has become
known as Russell’s paradox (see exercises 69—73 in section 2.1). Davis et al. [55] has a nice
exploration of the context and content of this and other related paradoxes. Aside from his
contributions to mathematics, Russell was a widely known and respected philosopher and wrote
many different works exploring religion, happiness, and knowledge. Late in his life, Russell
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wrote his autobiography [204] reflecting on his intellectual and personal life in the context of
the many events of the twentieth century.

The majority of this chapter was devoted to the development and study of abstract algebra.
Most undergraduate mathematics majors take at least one course devoted exclusively to the
study of abstract algebra. One of the most widely acclaimed undergraduate textbooks on abstract
algebra is by Gallian [93]; two popular book are by Fraleigh [88] and Hillman et al. [116]; a
standard graduate text in abstract algebra is by Hungerford [122].

In this chapter, we mentioned the work of several famous algebraists, including Abel, Galois,
and Caley. The definitive biography of Niels Henrick Abel has been written by Stubhaug and
Daly [236]. In addition, Abel’s Proof by Pesic [187] provides an excellent exposition of the
content and the historical results leading up to Abel’s proof of the insolvability of the quintic, as
does The Equation That Couldn’t Be Solved by Livio [158]. In contrast, relatively little is known
about Evariste Galois. Stewart [229], Livio [158], Bell [15], and Boyer and Merzbach [28]
contain sketches about Galois’ life. On the other hand, Galois’ mathematical insights are well
known, and there is a whole area of mathematics known as Galois theory. For undergraduates
who have studied sufficient abstract algebra, Garling [96], Stewart [229] and Swallow [237] are
excellent and accessible texts. Edwards [70] is a graduate text devoted exclusively to Galois
theory, and Hungerford [122] is a standard graduate text in abstract algebra that also addresses
Galois theory.

Arthur Caley had wide-ranging mathematical interests and was one of the most prolific
mathematicians in known history; his collected works consist of over 2000 pages of published
text. For those who are interested in learning more about Cayley, Crilly [48] has written a
good and accessible biography. Emmy Noether is another mathematician who made important
contributions to abstract algebra. Noether was a German mathematician who relocated to teach
at Bryn Mawr College in Philadelphia shortly before the start of World War II. Noether was
widely regarded as one of the most insightful algebraists of her time, and her work was
praised by Einstein, Hilbert, and a host of other mathematicians. Van Der Waerden [244]
has written an interesting book surveying the development of algebra from the contributions
of the Islamic mathematicians in the Middle Ages to Noether’s work in the twentieth
century.

In the section on dihedral groups, we mentioned the connections between group theory
and Maurits Cornelis Escher’s work. In 1985, an International Congress was held exploring
and discussing these interrelations; the proceedings of that conference can be found in [47].
In addition, those familiar with Escher’s work will recognize that some of his pieces explore
self-reference and self-perception, themes that are related to Godel’s mathematics and Bach’s
music, as explored in Hofstadter’s Pulitzer Prize winning book Godel, Escher, Bach: An Eternal
Golden Braid (see [118]). Locher [159] is a good biographical account of Escher’s life and
work.

The application explored in this chapter concerned check digits for identification numbers.
There are many different presentations of these notions. Perhaps the most accessible can be found
in the textbooks written to support “Liberal Arts Mathematics” courses that focus on applications,
including those texts by Burger and Starbird [34] and the Consortium for Mathematics and
Its Applications [43]. In addition, Kirtland [141] has written a book exclusively devoted to
developing a variety of check digit schemes.

The proliferation of electronic communication systems has not only generated a need
for verification systems for transmitted information, but also an increasing need for secure
communication systems. Hodges’ biography of Turing [117] includes a description of the
British effort to break the Enigma code utilized by the Germans during World War II.
Such efforts continue to this day as federal agencies recruit mathematicians to contribute
to more modern efforts to create and decipher code. This area of mathematical research
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is known as “cryptography” and is discussed further in section 3.2. Accessible intro-
ductions to coding theory include those by Bierbrauer [18], Hill [115], and Ling and
Xing [156]. A young Irish mathematics student named Sarah Flannery has co-written an
enjoyable autobiography [85], which includes a discussion of her development of a new
coding scheme. Flannery was awarded both the 1998 Intel Fellows Achievement Award
and the 1999 Ireland Young Scientist of the Year award for her work with this coding
scheme.



3 Number Theory

In this chapter, we continue a study of numbers in all their grandness and diversity. As
we have seen, there are many important and distinct number systems, including the
natural numbers, the integers, the rationals, the reals, and the complex numbers. We
consider each of these number systems from both a computational and a theoretical
point of view, developing insights that provide a competent understanding of
each one.

We begin with a special type of integer known as a prime number. Prime
numbers can be thought of as the basic building blocks in the multiplicative
structure of the integers. Many of the world’s greatest mathematicians have devoted
significant effort to exploring and understanding primes, including Euclid, Pierre
de Fermat, Leonhard Euler, Carl Friedrich Gauss, Peter Lejeune Dirichlet, and
Georg Bernhard Riemann. Through these collective efforts, mathematicians have
developed a sound understanding of both the prime numbers and the integers. At the
same time, many questions about these integers remain open (or unsolved); we
introduce some of these intriguing questions that continue to inspire and challenge
mathematicians.

Prime numbers have an important technological application in the fields of
coding theory and cryptography. With the widespread use of electronic systems
for sharing information, many people have become increasingly invested in secure
and accurate means of communication. Cryptography is the field of mathematics
devoted to the careful analysis and development of encryption algorithms that
enable such communication. We first study RSA algorithms, which ingeniously
ensure secure coding and decoding of messages using modular arithmetic and the
group-theoretic properties of primes. We also study Hamming codes, a topic in
coding theory (which is dedicated to detecting errors created during transmission).
Hamming codes use modular matrix arithmetic to both detect and correct many
such errors.

Mathematicians are also interested in certain relationships among ordered triples
of integers. The Pythagorean theorem of geometry fame induces a relationship on
triples of integers based on the possible side lengths of right triangles. Mathematicians
have generalized this relation based on Diophantine equations, which are multivariable
equations with integer solutions. Diophantus of Alexandria was a Greek mathematician

157
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from the third century C.E. who wrote the Arithmetica, a collection of 130 questions and
solutions of linear and quadratic equations. Along with Euclid’s Elements, Diophantus’
Arithmetica and an important accompanying commentary by Hypatia were passed
from the ancient Greeks to Islamic mathematicians, to Italian mathematicians, and
eventually to the rest of western Europe.

The Arithmetica had a profound impact on European mathematicians in the
sixteenth and seventeenth centuries, who extended Diophantus’ work on specific
linear and quadratic equations to a more general study of higher-order polynomial
equations and multivariable equations with certain types of solutions. Aside from
the Pythagorean theorem, perhaps the most famous Diophantine equations are those
identified in Fermat’s last theorem. This result claims that for every integer n greater
than two, there are no integers a, b, ¢ such that @ 4+ b"* = ¢". Fermat scribbled this
claim in the margins of his personal copy of the Arithmetica around 1630, along with
the tantalizing assertion that “I have discovered a truly remarkable proof which this
margin is too small to contain.” For more than three centuries, mathematicians sought
to prove Fermat’s last theorem. In 1995, the English mathematician Andrew Wiles
from Princeton University gave the first complete proof of this result. We investigate
the proof of one important case of Fermat’s last theorem; the complete proof of the
general theorem is quite advanced, using sophisticated mathematical ideas currently
studied in graduate courses.

The chapter then takes up the study of the rational, real, and complex numbers.
We develop definitions of these numbers in terms of the integers, and we prove the
proper inclusions Q € R C C. This discussion includes the classic proof that the
square root of two is irrational, a startling insight in its time. Employing the abstract,
algebraic approach of chapter 2, general properties are identified that hold in these
number systems. This approach provides a coherent framework for studying these
properties in the context of specific number systems. The primary algebraic object of
interest is known as a “field,” and extends the notion of a group to number systems
with two operations. The rational, real, and complex numbers all have natural additive
and multiplicative operations; the study of fields illuminates the interplay between
these operations.

After developing a solid understanding of these number systems, the chapter then
turns to polynomial equations. For centuries, mathematicians have studied polynomial
equations and have developed polynomial models for physical and social behaviors.
We consider the solvability and insolvability of polynomials over different number
systems, seeing how the underlying numerical structure affects the set of solutions.
We also take a closer look at the famous quadratic equation, its close cousins the cubic
and the quartic equations, and the surprising result of the Norwegian mathematician
Niels Abel, who proved that no such formula exists for polynomials of any degree
greater than four.

The chapter ends with the study of “mathematical induction.” Induction on the
natural numbers (and other mathematical structures) is a useful proof technique of
mathematics. We first use induction to prove general claims about all natural numbers.
We also discuss the application of induction to verifying the truth of mathematical
statements useful in other settings, including mathematical logic, abstract algebra, real
analysis, and complex analysis.
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3.1 Prime Numbers

Prime numbers serve as the basic building blocks in the multiplicative structure of the
integers. As you may recall, an integer n greater than one is prime if its only positive
integer multiplicative factors are 1 and n. Furthermore, every integer can be expressed
as a product of primes, and this expression is unique up to the order of the primes in
the product. This important insight into the multiplicative structure of the integers has
become known as the fundamental theorem of arithmetic.

Beneath the simplicity of the prime numbers lies a sophisticated world of insights
and results that has intrigued mathematicians for centuries. By the third century B.C.E.,
Greek mathematicians had defined prime numbers, as one might expect from their
familiarity with the division algorithm. In Book IX of Elements [73], Euclid gives a
proof of the infinitude of primes—one of the most elegant proofs in all of mathematics.
Just as important as this understanding of prime numbers are the many unsolved
questions about primes. For example, the Riemann hypothesis is one of the most
famous open questions in all of mathematics. This claim provides an analytic formula
for the number of primes less than or equal to any given natural number. A proof of the
Riemann hypothesis also has financial rewards. The Clay Mathematics Institute has
chosen six open questions (including the Riemann hypothesis)—a complete solution
of any one would earn a $1 million prize. Working toward defining a prime number,
we recall an important theorem and definition from section 2.2.

Theorem 3.1.1 The division algorithm; theorem 2.2.1 in section 2.2 Ifm, n € Z andnis a positive
integer, then there exist unique integers q € Z andr € {0, 1, ..., n — 1} such that
m=n-q+r. We referton as the divisor, g as the quotient, and r as the remainder
when m is divided by n.

Definition 3.1.1  Form, n € Z, we say that n divides m when there exists q € Z such thatm = n - q;
that is, when the remainder r is 0 as the division algorithm is applied to m and n.
In this context, n is called a divisor of m or a factor of m.

The consideration of remainders from the division algorithm may bring to mind
an important fact from the study of modular equivalence in chapter 2. Recall that n
divides m exactly when m mod n = 0.

Example 3.1.1 We know that 3 divides 36 (or 3 is a factor of 36) because 36 = 3 - 12. On the other
hand, 3 does not divide 37 (or 3 is not a factor of 37) because 37 =3 - 12+ 1, and

so the remainder from the division algorithm is 1 rather than 0.
|

Question 3.1.1 Determine if the following statements are true; if not, state the nonzero remainder.

(a) 5 divides 15 (c) 8is afactor of 23
(b) 5divides 24 (d) 8is a factor of 32
|

In addition to determining if one particular integer divides another, mathematicians
are often interested in identifying the complete set of all divisors of a given integer.
For example, one important aspect of factoring polynomials is an ability to determine
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all possible divisors of the constant term. Similarly, divisors play a key role when
determining the elements of a group U(n).

Example 3.1.2

The positive integer divisors of 90 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, and 90.
|

When compiling such lists, we typically consider only positive integer divisors
(although certainly the negative of a divisor is also a divisor). It also helpful to
notice that most divisors match up in pairs; for example, both 3 and 30 are divisors of
90 =3 - 30.

Question 3.1.2

List every positive divisor of the integers 98 and 120.

We now state the definition of a prime number.

Definition 3.1.2 An integer p € Z is prime when p > 2 and the only positive divisors of p are 1 and

p itself. When an integer n is not prime, we say that n is nonprime.

Recall that nonprimes are also known as composite numbers. The follow-

ing examples and questions highlight important examples and properties of these
numbers.

Example 3.1.3

Question 3.1.3

Question 3.1.4

Using the definition of a prime, we observe that 3 is prime because its only divisors
are 1 and 3. On the other hand, 4 is not prime because 2 divides 4, and so 1 and 4
are not the only positive divisors of 4.

|

Determine if each integer is prime; if not, state the positive integer divisors of the
given number.

(@ 11 @ 1
(b) 34 (e) 83
() =3 ® 6
|
How many prime numbers are even? Justify your answer. =

We often use prime numbers and their properties when working with integers. One

approach to identifying if a given integer is prime is to try to factor it. A significant
downside to this approach is its slowness—factoring arbitrary integers on the order
of 100 digits can require up to 74 years of supercomputer time! As we discuss in the
next section, this difficulty in quickly factoring large integers does have a positive side,
enabling the security of certain encryption schemes. As an illustration of the relative
slowness of this process, the next question asks you to distinguish among the first
twenty primes and nonprimes.

Question 3.1.5

(a) List the first 10 prime numbers.
(b) List the first 10 positive integers that are nonprimes.
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The relationship between primes and nonprimes is expressed by the prime power
factorization of integers as described in the fundamental theorem of arithmetic.
A statement and proof of this result appear as Proposition 14 in Book IX of Euclid’s
Elements [73]. In this text, we state and use the fundamental theorem of arithmetic,
leaving its proof for your later studies.

Theorem 3.1.2 Fundamental theorem of arithmetic Every integer greater than 1 is either a prime
or a product of primes; that is, every integer m can be written as

1 U3 ny
m:pl .p2 pk
where p1,p2, ..., px € Z are prime numbers raised to positive integer powers
ni, na, ..., ng. Furthermore, for a given integer, such a product of powers of
primes is unique up to the order of the primes. We refer to such a product as the
prime power factorization of the integer m.

Similar to the division algorithm, the fundamental theorem of arithmetic makes
two distinct claims about every integer greater than one. First, the fundamental theorem
of arithmetic is an existence result, guaranteeing that every integer greater than one
can be expressed as a product of primes raised to powers. Second, the fundamental
theorem of arithmetic is a uniqueness result, ensuring that every integer has exactly one
such prime factorization up to order. As we will see, an integer’s unique prime factors
play a pivotal role in understanding and proving many insights into the properties of
integers.

Example 3.1.4 We give the prime power factorizations of a few integers.

e 6=2-3
e 11 =11
© 1620 = 162-10 = 2-81-10 = 2.3%*.2.5 = 22.3%.5

|
Question 3.1.6  Find the prime power factorization of each integer.
(a) 30 () 12
(b) 5 d 27
|

Determining the prime power factorization of a relatively small integer is often
straightforward. Number patterns help. For example, even numbers have a factor of
two, and multiples of 10 have factors of two and five. Another simple pattern was
introduced in section 2.6: if the sum of an integer’s digits is divisible by nine, then the
integer is divisible by nine (and so has a factor of 3%). If no such pattern is apparent,
then a factorization can be obtained by checking each integer up to /7 to find a divisor
(if one exists); actually it is enough to check for divisibility by every prime number
less than or equal to /7.

On the other hand, for sufficiently large integers, the prime power factorization
can be extremely difficult to find. An exhaustive search for factors based on testing
every integer (or prime) less than or equal to /7 can be extraordinarily time consuming
and resource intensive. Computer scientists express this complexity by asserting that
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factoring integers requires nonpolynomial time computations; although Peter Shor has

recently proven that a theoretical “quantum” computer is capable of polynomial time

factorization of integers. The next example illustrates this complexity in producing
prime power factorizations.

Example 3.1.5

We find the prime factorization of the integer 5,473,381,693.
Without sophisticated mathematical software, most people would have difficulty
finding this integer’s prime factorization. The square root of 5,473,381,693 is
73,983 (when rounded up), and so an exhaustive search may have to check
for divisibility by every prime less than or equal to 73,983—which is a lot of
dividing! Even the fastest of supercomputers can require a serious investment
of time and space resources to factor this (and larger) integers. As it turns
out, 5,473,381,693 can be factored by standard computer algebra systems as
13- 17% - 712 Interestingly enough, just a single change in the tens digit from 9 to
4 produces 5,473,381,643, which requires much more computer time to verify as
prime.

|

When determining a prime power factorization by hand, it is often helpful to use

intermediate steps and identify nonprime factors, which can in turn be factored. The
following questions highlight the use of such intermediate steps.

Question 3.1.7

Question 3.1.8

(a) Given that 6 divides 15,444,752,706, identify two primes that divide
15,444,752,706.
(b) Given that 6 divides an integer n, identify two primes that divide n.
|

Determine the prime power factorization of 28,171,962,000 using direct

computations. Hint: No prime greater than 13 divides this integer. -

Computer algebra systems can be quite helpful when exploring divisibility and

working with prime numbers. The following are useful commands from two widely
used computer algebra systems (or CAS). The Maple function isprime(n) determines
if n is a prime. The Mathematica function PrimepowerQ[n] determines if  is a power
of a single prime.

CAS Command Example
Maple [>m/n; [>54/3
[> ifactor(n) ; [> ifactor(54) ;
[> isprime(n) ; [> isprime(54) ;
Mathematica | ]: m/n 1:54/3
]: PrimeFactorList[n] | ]: PrimeFactorList[54]
]: PrimepowerQ[n] ]: PrimepowerQ[54]

We now shift attention from detailed computations with specific integers to more

abstract, general questions about prime numbers. We know there exist infinitely many
positive integers 1, 2, 3, .. .. Buthow many of these integers have the property of being
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prime? Could there be a “greatest” prime number, or are the primes unbounded in the
set of integers (and so infinite)? As your intuition may suggest or as you’ve learned in
other math courses, there are infinitely many distinct primes. In 300 B.C.E., Euclid gave
an elegant proof of this result for Proposition 20 in Book IX of Elements [73]. To help
motivate this proof, the following question considers integers obtained by adding one
to a product of consecutive prime numbers.

Question 3.1.9 (a) Determine whether or not each integer is prime; if not, give a nontrivial divisor.

*2+1
*2.3+1
*2.3.5+1
*2.3.5-7T+1

(b) Formulate a conjecture about the number p; - p; - - - p, + 1 obtained by adding
one to the product of the first n prime numbers.
(c) Find two primes greater than 50 that divide the number2-3-5-7-11-134+1 =
30,031.
(d) Ifnecessary, reformulate your conjecture from part (b). What can be said about
the primes p1, ..., p, (not) dividing p; - p2 - - - p, + 17
|

Question 3.1.9 indicates that integers of the form p; - p> - - - p,, + 1 can be either
prime or nonprime. This observation raises further questions. Do primes greater than
30,031 occur in the sequence of integers of this form? (Yes, they do—can you find one?)
Is there something distinctive about the sixth prime 13 thatleadstop; -p2---pg+1 =
30,031 not being prime? How often do primes and nonprimes occur in this sequence?
Mathematicians do not know if there exists an upper bound on the primes occurring
in this sequence; in other words, it is an open question as to whether or not numbers
of the form py - ps - - - p, + 1 are prime infinitely often.

Hopefully the insights gained from question 3.1.9 will help you understand and
appreciate Euclid’s proof. His argument is a classical proof by contradiction, assuming
the negation of the desired result and working toward two mathematical statements
that contradict each other.

Theorem 3.1.3  There exist infinitely many prime numbers.

Proof ~Assume that there are only finitely many prime numbers and that py,...,p, is a
complete list of these primes. This proof produces a “new” prime P that is not
in the list, yielding a contradiction and leading to the conclusion that there are
infinitely many primes.

Motivated by question 3.1.9, we define the desired integer as P = p; -
p2---pn + 1. Since P is greater than each of py, ..., p, in the complete list of
primes, P is not prime. Therefore, by the fundamental theorem of arithmetic,
P is a product of primes and so divisible by a prime. In particular, at least
one of py, ..., p, must divide P, which in turn implies that one of py, ..., p,
must divide

P — pipropn = (pr-p2opntl) —piopropn = L
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However, the only positive divisor of 1 is 1, while every prime is greater than 1.
Thus, none of py, ..., p, can divide 1. We have obtained the desired contradiction
and conclude there exist infinitely many primes.

|

Since Euclid gave his proof of the infinitude of primes, many different and
interesting proofs of this result have been given by various mathematicians, including
one by the twentieth century Hungarian Paul Erdos. Most of Erdos’s work was in
discrete mathematics, particularly number theory and graph theory. In his lifetime,
Erdos published more than 1,500 papers with at least 500 different coauthors. He
liked to talk, in a jovial way, about “The Book™ in which God had written a perfect
proof for every mathematical theorem. Proofs from THE BOOK [3] is a recently
published collection of theorems and proofs based on his suggestions and begins with
six different proofs of the infinitude of primes, including Euclid’s proof as well as
proofs by Goldbach, Euler, and Erdos himself.

As you have perhaps surmised from our discussion in this section, there are many
questions about prime numbers that remain open. We highlight three examples.

The Goldbach conjecture: In a 1742 letter to Leonhard Euler, the Russian math-
ematician Christian Goldbach conjectured that every even integer greater than two
can be written as the sum of two primes. This claim is readily verified for small
integers; for example, 4 =2 +2,6 =3+3,8 =345, 10 =5+ 5, and so on.
Despite the best efforts of many professional and amateur mathematicians, so far no
proof of this conjecture has been pieced together. With the development of increasingly
powerful and sophisticated supercomputers, the Goldbach conjecture has been verified
for all even integers up to 12 x 10'7 as of July 14, 2008. In addition, a number of
“partial” Goldbach results have been proven, including independent proofs by Nikolai
Chudakov, Theodor Estermann, and Johannes van der Corput in the 1930s that “almost
all” even numbers are the sum of two primes, as well as Chen Jing-Run’s proof in the
1960s that every even number must be the sum of a prime and either a prime or a
product of two primes (such a product of two primes is known as a semiprime). While
the Goldbach conjecture is widely believed to be true by mathematicians, evidence
and intuition do not carry the same weight as a thorough, logical argument. And so
mathematicians continue to seek a proof of the Goldbach conjecture in their quest for
mathematical truth.

The twin primes conjecture: Pairs of prime numbers that differ by two are known
as twin primes. For example, the first four pairs of twin primes are the primes 3 and
5, the primes 5 and 7, the primes 11 and 13, and the primes 17 and 19. The twin
primes conjecture asserts that there are infinitely many pairs of twin primes. As with
the Goldbach conjecture, the twin primes conjecture is generally believed to be true,
but a complete proof continues to elude mathematicians.

The squares conjecture: The following examples help motivate this conjecture.

e n=1: Consider n? = 1 and (n + 1)? = 22 = 4 and observe that 2 is a prime
between 1 and 4.



Chapter 3 = Number Theory 165

 n =2: Consider n> = 4 and (n + 1)> = 9 and observe that 5 is a prime between
4 and 9.

e n =3: Consider n*> = 9 and (n + 1)> = 16 and observe that 11 is a prime
between 9 and 16.

The squares conjecture asserts that for every positive integer n € N, there exists a
prime between n> and (n + 1)%. The squares conjecture is believed to be true, but
mathematicians have not been able to prove the general result.

These three questions represent just a few of the many questions about primes that
remain open. We hope your interests are piqued, and perhaps you will want to study
such questions further. We end this section with a theorem stated in section 2.4. With
the fundamental theorem of arithmetic in hand, we can now provide the proof.

Theorem 3.1.4 Theorem 2.4.2 in section 2.4 Fora, b € 7Z, if p is a prime factor of a - b, then either
p is a factor of a or p is a factor of b.

Proof In proving a disjunction (an “or” statement), a standard strategy is to assume the
hypothesis and the negation of one of the disjuncts, and then to argue for the
truth of the other disjunct. The validity of this strategy is based on the logical
equivalenceof p —> (g vr)and (p A ~q) — r.

We assume a, b € Z, p is prime factor of a - b, and p is not a factor of a.
We show that p is a factor of b. Using the existence portion of the fundamental
theorem of arithmetic, express a - b, a, and b as the unique products of powers of
primes (up to order)

mj [ [
, a:q;nl...qj]’ and b:}"ll...y‘kk7

i

where pi,...,pi,q1,...,q,7r1,..., 7% are prime numbers and ny,...,n;,
my, ..., mj, Iy, ..., [} are positive integers. Since p is a prime factor of a - b, we
know that p is one of py, .. ., p; by the uniqueness of prime power factorizations.

ny n;

Without loss of generality, assume p = pi, so that a - b = p"' - p,*---p;".
Multiplying the prime power factorizations of a and b together, we also have

a-b=q" - -qu."" : ri’ e r,l(". Equating these two expressions for a - b produces

2 i m mj | Ik
pnl .pzz...p?’ :qll...qj'/ .rll ...rk/‘_
The uniqueness portion of the fundamental theorem of arithmetic implies that
these primes and their powers are unique up to the order in which they appear.
Since p is not a factor of a (by the assumption), p is not equal to any of g1, . . ., g;.
Therefore, p must be one of r1, ..., r, and so p is a factor of b = ri‘ e r,lf.
|

3.1.1 Reading Questions for Section 3.1

Define what is meant by the phrase “n divides m” and give an example.
What is the relationship between divides and modular equivalence?
Define and give an example of a prime number.

How many primes are there?

How many even primes are there?

M
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9.
10.
11.
12.

State the fundamental theorem of arithmetic.
Discuss the nature of the two distinct claims made by the fundamental theorem
of arithmetic.

. What is the prime power factorization of an integer n? Determine the prime

power factorization of 1,275.

State and give an example for the Goldbach conjecture.
Define and give an example of a semiprime.

State and give an example for the twin primes conjecture.
State and give an example for the squares conjecture.

3.1.2 Exercises for Section 3.1

In exercises 1-4, verify each statement by finding the corresponding quotient g from
the division algorithm.

1. 10 divides 30 3. 34 is a factor of 2,414
2. 59 divides 7,729 4. 23 is a factor of 161

In exercises 5-20, prove each mathematical statement for integers m,n,k, p, a,

beZ.

5.
6.
7.

9.
10.
11.
12.

13.
14.
15.

16.
17.
18.
19.
20.

The negative of a divisor of 7 is also a divisor of n.

The “divides” relation is reflexive; that is, m divides m.

The “divides” relation is transitive; that is, if m divides n and n divides k, then
m divides k.

. The “divides” relation is linear; that is, if m divides n and m divides k, then

for every a, b, we have m dividesa -n+ b - k.

If m divides a and n divides b, then m - n divides a - b.
If m - n divides k, then both m divides k and n divides k.
An integer m divides n if and only if n mod m = 0.

For every prime p and nonzero n, we have n?
n = lmodp orn = 0mod p.

If 2 divides n, then 4 divides n>.

If a prime p divides n, then p? divides n?.

= nmod p if and only if either

If a prime p divides n?, then p divides n.  Note: This result is used in

section 3.3.

If a prime p divides n¥, then p divides n.

If a prime p divides both m and n, then p* divides m* — n*.
If no prime less than n divides n, then n is prime.

For any positive integer 7, 3 divides n® — n.

The product of three consecutive integers is divisible by 6.

In exercises 21-25, disprove each false mathematical statement for m, n, k,a, b € Z.

21.
22.

If m divides a and n divides b, then m + n divides a + b.

If positive integers m and n both divide k, then m - n divides k. Hint: Consider
2

n=m-.
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23. The “divides” relation is symmetric; that is, if m divides n, then n
divides m.

24. The “divides” relation is asymmetric; that is, if m divides n, then n does not
divide m.

25. The “divides” relation satisfies comparability; that is, for every m and n, m
divides n, or m is equal to n, or n divides m.

In exercises 2633, find the prime power factorization of each integer.

26. 1,045 29. 1,225
27. 123 30. 2,103
28. 61,600 31. 2,301

32. Every integer between 2 and 10 inclusive.

33. Every integer between 11 and 20 inclusive.

34. For a fixed, nonprime integer n € Z with prime power factorization n =
Py - P32+ p¥, what is the largest possible integer that can appear in this
factorization? Explain your answer.

Exercises 35-42 consider properties of greatest common divisors. A pair of integers
has a greatest common divisor (gcd) (or factor) k when k is the greatest divisor
of both. For example, 25 and 40 have a greatest common divisor 5 because 5 is a
(common) divisor of both 25 and 40, and there is no common divisor of 25 and 40
greater than 5. In this case, we write gcd(25, 40) = 5. In general, the primes shared
by the prime power factorizations of two integers generate their greatest common
divisor.

35. Find the prime power factorization of the integers 18 and 60.

36. Find all positive common divisors of 18 and 60. What is gcd(18, 60)?

37. Determine gcd(12, 50).

38. Determine gcd(75, 100).

39. Determine gcd(31, 32).

40. Determine gcd(31, 62).

41. If p is prime and # is a positive integer, what are the two possible values of
ged(p, n)?

42. Prove that if m and n are positive integers, then [gcd(m, n)
of m - n.

1% is a divisor

Exercises 43—46 consider greatest common divisors and linear combinations. The
greatest common divisor gcd(m, n) is defined before Exercises 35-42. One con-
sequence of the division algorithm is that for all positive integers m and n, there
exist integers a, b such that a - m + b - n = ged(m, n). We say that gcd(m, n) can be
expressed as a linear combination of m and n.

In Exercises 43-46 find the greatest common divisor of each pair of integers
and express this greatest common divisor as a linear combination of the two
integers.

43. 3 and 8 45. 12 and 16
44. 3 and 6 46. 14 and 22
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Exercises 47-52 consider relatively prime integers. Every pair of integers m and n
have a common divisor of 1. When 1 is the greatest common divisor of m and n (that
is, when gcd(m, n) = 1), we say that m and n are relatively prime.

In Exercises 47-52 determine if each pair of integers is relatively prime by finding
their greatest common divisor.

47. 12 and 175 50. 164 and 25,83
48. 31 and 67 51. 517 and 31,891
49. 637 and 26,400 52. 517 and 51,183

In Exercise 53-58, prove each mathematical statement for m, n, k, p € Z. Relatively
prime is defined before exercises 47-52.

53. A prime p is relatively prime to every integer n < p.

54. Positive integers n and n” are never relatively prime.

55. Positive integers n and n + 1 are always relatively prime.

56. If m is relatively prime to n - k, then m is relatively prime to both n and k.

57. If m and n are relatively prime, then m? and n” are relatively prime.

58. Give a counterexample disproving the false assertion that “If m is relatively
prime to n - p, then m - n is relatively prime to p.”

Exercises 59—63 consider a numerical approximation for the number of primes less than
or equal to a given integer n, where 7 (n) denotes this number. For example, 7 (2) = 1,
7(3) =2, n(4) = 2, and 7 (5) = 3. Mathematicians have long sought patterns and
relations for primes—including the question of what percentage or ratio of integers are
prime. The prime number theorem provides one answer, asserting the following limit.

im 20—

n—00 oD )
Exercises 59-63 consider numerical evidence supporting the prime number theorem.

59. Determine the value of 7 (n) for every integer between 2 and 10 inclusive.

60. Determine the value of 7 (n) for every integer between 11 and 20 inclusive.

61. Working with a table of primes (perhaps on the web), determine the value of
(100) and 7 (200).

62. Complete the following table. Does the resulting data support the assertion
of the prime number theorem that

7 (n)

m =
n—oo n/In(n)

n (n) o) Zlf(l:f
10 4
1,000 168
100,000 9,592
10,000,000 664,579
1,000,000,000 50,847,534
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63.

Complete the following table. Based on this data, what proportion of the
integers less than or equal to n is also prime?

n w(n) @ ﬁ
10 4
1,000 168
100,000 9,592
10,000,000 664,579
1,000,000,000 50,847,534

Exercises 64-70 consider questions related to Euclid’s proof of the infinitude
of the primes and the number-theoretic conjectures discussed at the end of this

section.

64.

65.

66.

67.

68.

69.

70.

What is the smallest composite positive integer of the form py - pa---p, + 1
with n greater than 1 and p1, p2, ..., p, distinct primes? Consider products
of nonconsecutive primes such as 7 - 13 + 1 = 92.

Express every even number between 4 and 32 inclusive as a sum of two
primes. For example, 12 = 5 4 7. These sums verify the Goldbach conjecture
up to 32.

Goldbach also made a conjecture about odd numbers and sums of primes:
every odd positive integer greater than five is the sum of three primes. Verify
this conjecture for every odd number between 7 and 31 inclusive.

State the first eight pairs of twin primes; this list begins with the
pair (3, 5).

Prove that an odd integer cannot be written as the sum of twin primes.

For every positive integer n between 2 and 20 inclusive, determine a
prime between n* and (n + 1)%. These primes verify the squares conjecture
up to 20.

Mathematicians from Diophantus to Fermat thought that every positive
integer can be expressed as the sum of four squares of integers. In the late
1700s, Lagrange gave the first rigorous proof of this result, based on work
of Euler. Computationally verify this statement for every positive integer
between 1 and 20 inclusive.

3.2 Application: Introduction to Coding Theory and Cryptography

This application of number theory involves prime numbers, modular arithmetic,
and a bit of group theory in the context of sharing information. When two parties
are communicating with one another, they (usually) seek an accurate exchange of
information. In addition, the parties involved often have a strong interest in preserving
the privacy of the shared information. Fortunately, mathematicians working in the
fields of cryptography and coding theory have developed a variety of mathematical
schemes that ensure both private and accurate communication.
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These encryption schemes take a sensible string of characters and code them
in some fashion so they appear to be garbled nonsense to everyone (except,
hopefully, those who should be able to decode the message). Historically, nations
and armed forces have invested significant resources in developing coding schemes,
and (as you can readily imagine) such schemes have often provided entertaining
subject matter for many a thrilling spy novel! The contemporary widespread use
of the Internet for email, retail purchases, and other communication and financial
transactions has also brought security concerns to the attention of people from various
professions.

This section introduces two ingenious mathematical approaches to encoding and
decoding messages. RSA algorithms are useful for preserving the privacy of transmitted
information and are classic examples of a “public key” encryption scheme. Such
schemes allow anyone to become a sender of a secure message, but permit only the
publisher of the public key to decode the message. Public key encryption schemes are
important; for example, they enable anyone to make purchases from on-line retailers’
websites while preserving the privacy of the financial transaction. In general, public
key encryption schemes rely on the relative ease of performing some mathematical
operation coupled with the relative difficulty of undoing, or reversing, that operation.
RSA codes rely on the ease of multiplying large prime numbers coupled with the
difficulty of factoring large composite numbers. With the increasing sophistication of
computers, RSA encryption has become a widely used algorithmic scheme for many
aspects of electronic communication.

In contrast, Hamming codes address the issue of accurate communication.
Hamming codes encrypt a message so the receiver can examine the transmitted
result and determine if there was an error in the transmission. When an error
occurs, Hamming codes enable the receiver to recover the original, correct message
that had been intended for transmission. Coding schemes with the capability of
detecting and fixing transmission errors are known as “error-correcting” codes.
Hamming codes were the first coding schemes to incorporate error-detecting and error-
correcting features and utilize a blend of matrix and modular arithmetic in the coding
process.

3.2.1 RSA Cryptography

The algorithm embodied in RSA codes was developed by the cryptographers Ronald
Rivest, Adi Shamir, and Leonard Adleman while working at the Massachusetts Institute
of Technology in the late 1970s. The relatively recent declassification of Cold War era
documents revealed that Clifford Cooks developed essentially the same scheme in
1973 at the British Government Communication Headquarters (a British intelligence
agency). However, because Cooks’ work was classified, the world at large first learned
of this scheme from Rivest, Shamir, and Adleman in 1977. Their work with this
encryption scheme was of such fundamental importance that they were jointly honored
with the 2002 Turing Award by the Association for Computing Machinery (ACM). The
Turing Award is given annually by the ACM for “contributions of lasting and major
technical importance to computer science” and is the equivalent of the Nobel Prize for
computer science.
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The RSA coding scheme encodes characters of the alphabet by blending standard
and modular arithmetic operations. We first identify each letter of the alphabet with a
number; typically, we equate A = 01, B =02, ..., Z = 26. The following chart may
help your work with this correspondence.

A|/B|C|D|E|F|G|H|T|J|K|L|M
01 102|03[04[05]06/|07|08|09]| 10| 11 |12] 13

N|IO|P|Q|R|S|T|U|V|IW|X|Y|Z
1411516 |17 |18 |19 |20 | 21 |22 |23 |24 |25 26

If we wish to encode more characters (perhaps the other symbols that appear on
a standard keyboard), we appropriately extend this identification of symbols with
positive integers. For the sake of human readability we use the vertical bar symbol (|)
to separate codes for individual characters (for example when coding a word or a
sentence).

Example 3.2.1 Using the identification A = 01, B =02, ..., Z = 26 from above, we have

« “GO COLLEGE” identified with 07 | 1503 | 15| 12| 12 ] 05| 07 | 05, and
« 16|08 |15] 1410508 | 15| 13| 05 identified with “PHONE HOME”.

Question 3.2.1 State the alphabetic string and the numeric string identified with the following.

(@ 20]23]15]/09(19[16|18]09]13]05 (b) MATHIS FUN
|

Once the symbols in the alphabet have been correlated with numbers, select two
prime numbers p and g. Almost any pair of primes works, and distinct choices of
primes results in distinct RSA codes. The RSA code identifies the numbers 01, . .., 26
with elements of Z,.4, and so sufficiently large primes p and g are chosen to ensure
26 < p - g. In real-life applications, very large primes are chosen with the goal of
producing a code that is difficult to break in any reasonable period of time.

Once the two primes p and g have been selected, one more choice is made: select
a positive integer e less than (p — 1) - (¢ — 1) and relatively prime to (p — 1) - (¢ — 1).
These two properties are exactly the defining features of the elements in U[(p — 1) -
(g — 1)] (see section 2.4). The RSA code makes essential use of the multiplicative
inverse of e in U[(p — 1) - (¢ — 1)]; this choice of e ensures that e~ ! exists.

How does an RSA code encode a letter? For n = p - ¢, the “letter” L (which is
really the corresponding number from 01, ..., 26 identified with L) is encoded using
the function

f(L) = L mod n.

Strings of letters are encoded one letter at a time.
How does an RSA code decode an encrypted letter? We first identify e~! (the
multiplicative inverse of ) in the group U[(p — 1)(g — 1)], and then decode an encrypted
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letter M = f(L) using the function

e(M) = M D mod n.

Rivest, Shamir, and Adleman proved that g(f(L)) = L, and so g is the inverse of f
under composition (also, f(g(M)) = M). In other words, this function g successfully
decodes a letter encrypted by the function f given above.

Example 3.2.2 We use the RSA code with p =5, ¢ = 7, and e = 5 to encode and decode

“GO COLLEGE".

For computational ease in this first example of an RSA code, we use relatively
small primes p and g. Forp = Sandg =7, wehaven =35and (p — 1)(¢ — 1) = 24.
There are many options for the choice of e € U(24). We chose the minimum
nonidentity element e = 5 of U(24) in creating this example, but any element
of U(24) will work when implementing this algorithm. Recall that the letters
A, ..., Z are identified with the numbers 01, ..., 26; these numbers are less than
n = 35 and are thought of as elements of Z3s.

Encoding: We encode the message “GO COLLEGE” using the RSA code withp =5,g =7,

n = 35, and e = 5. As in example 3.2.1, we identify this message with the list
of numbers 07 | 15103 | 15| 12| 12 | 05 | 07 | 05. For this RSA code, each
two-digit number L in this list is encoded using the function: f(L) = L3 mod 35.
Using a calculator or computer, we obtain the following.

« £(07) = 07°mod35 = 16,807mod 35 = (480 .35+ 07)mod 35 = 07
e f(15) = 15°mod35 = 15
* £(03) = 03°mod35 = 33

Continuing in this fashion, the encoded message is

0715(33|15(17]17]1007 | 10.

Decoding: We now imagine this string of numbers 07 | 15 |33 | 15|17 | 17| 10|07 | 10

is transmitted and the receiver of the message is interested in decoding this string
to obtain the original message. For the RSA code, each two-digit number in the
message is decoded using the function: g(M) = M ™) mod 35, where 5! is the
multiplicative inverse of 5 in U(24). Since 5 - 5 = 25 and 25 mod 24 = 1, we have
5~1 = 5. Using a calculator or computer algebra system, we obtain the following.

e 2(07) = 07 V' mod35 = 07°mod35 = 07

e g(15) = 155" mod35 = 15°mod35 = 15
—1

« ¢(03) = 335 Imod35 = 33°mod35 = 03

Continuing in this fashion, the decoded message is

071503 |15[12]12]05/07]05 or “GOCOLLEGE”.
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Question 3.2.2 Implement the RSA code with p = 5, ¢ = 7, and ¢ = 5. Recall that ! = 5.

(a) Identifty “PHONE HOME” with its corresponding list of two-digit numbers.
(b) Encode the message “PHONE HOME”.
(c) Decode the message 06 | 10 | 23 | 13| 01 | 20.

|

The algorithm for RSA cryptosystems is a classical example of a public key
encryption scheme. When using a public key cryptography, the person interested in
receiving a message sets up a key pair consisting of a public key and a private key. The
public key is used for encoding messages and is announced widely, enabling anyone to
code and transmit an encrypted message. The private key is used for decoding messages
and is kept secret so that only the creator of the key can decode the transmitted message,
even if the means of communication is vulnerable to eavesdropping.

When using RSA codes for public key cryptography, the person interested in
receiving a message publishes the two integers n = p - ¢ and e, and only these two
integers. The numbers n and e serve as the public key, and anyone familiar with RSA
codes can readily encode a message (using the function f (L) = L mod n) and transmit
the result. The integers p, ¢ and e~! serve as the private key; only the publisher of
the public key knows e~! and can decode the encrypted message (using the function
(M) = M ) mod n).

If the primes p and ¢ are kept secret and are sufficiently large, only the publisher
of the key is able to decode the encrypted message. In order to determine e~! as
an element in U[(p — 1)(g — 1)], the numbers p — 1 and g — 1 generally must
be known; that is, the primes p and ¢ must be known. Even though n = p - ¢ is
published publicly, the available algorithms for factoring large composite integers
and the current state of computing technology render the determination of the primes
p and g from n effectively impossible. In formal computer science terminology,
integer factorizations require “nonpolynomial time” computations. In practical terms,
if primes p and ¢ are sufficiently large so that their product yields, say, a 100-
digit number, then factoring p and g can require decades of time—which would
provide no benefit to those seeking to eavesdrop. This difficulty in factoring integers
makes RSA codes secure—even though the public keys for encoding strings are
widely available; and so, if the corresponding private keys for decoding strings are
kept secret, then the privacy of the transmitted message is ensured. In practical
applications, composite numbers with more than 100 digits are routinely used
for RSA codes.

As might be expected from the RSA codes’ security features, federal agencies
invested in national security are strongly interested in knowing large primes and in
keeping these values secret in order to code and decode messages. As of November,
2008 there are 46 known Mersenne primes with the 46th equal to 243112:609 _ | which
has 12,978,189 digits, identified through the collective efforts of hundreds of people
participating in the Great Internet Mersenne Prime Search. This group continues in its
efforts to identify large primes—perhaps you might be interested in joining in their
ongoing work (see the Index of Online Resources).

Because of the scale of the numbers and computations involved, computers
and computer algebra systems are essential to working with RSA codes in most
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practical settings. The following are some useful commands for two widely used
computer algebra systems.

Example 3.2.3

CAS Command Example
Maple [>p*q; [>71*73;
[>L"e modn; [> 18”11 mod 5183 ;
[>e (=) mod [(p—1) * (q—1)]; | [>11°(—1) mod 5040 ;
Mathematica | 1:p*q 1: 71 %73
]: Mod[ L"e ,n | ]: Mod[ 18711, 5183 ]

1: Mod[ e™(—1), (p—1) * (q—1) ] 1: Mod[ 11" (=1), 5040 ]

We use the RSA code with p = 71, g = 73, and e = 11 to encode and decode the
message “RSA”.

Encoding We first compute n = p - g = 71 - 73 = 5183 and identify the message “RSA”

with the sequence of numbers 18 | 19 | 01. Each two-digit number L in this list is
encoded using the function f(L) = L¢ mod n = L' mod 5183. Using a computer
algebra system, each character is encoded as follows.

e £(18) = 18" mod 5183 = 4713
« f(19) = 19''mod 5183 = 3685
« f(01) = 01''mod5183 = 1

Since the computations use mod 5183 arithmetic, the resulting values appear as up
to four-digit numbers. For the sake of uniformity, every encoded number is pre-
sented with the same number of digits; the encoded message is 4713 | 3685 | 0001.

Decoding We now imagine the string of numbers 4713 | 3685 | 0001 is transmitted, and the

Question 3.2.3

receiver decodes the message using the function g(M) = g(M) =M ©Dmodn =
MM mod 5183. Here 117! is the multiplicative inverse of 11 in

Ullp — 1) - (g — D] = U(5040);

using a computer algebra system, this inverse is 117! = 2291 because (11 -
2291) mod 5040 = 1. Using a computer algebra system, each character is decoded
as follows.

e g(07) = 47131 D mod 5183 = 471322 mod 5183 = 18 = R
. g(15) = 3685<“’i>moc15183 = 36852 mod5183 = 19 = S
e ¢(03) = 00011 ) mod 5183 = 01 = A

The decoded message is 18 | 19 | 01, or “RSA”.

Implement the RSA code with p = 31, g = 53, and e = 223.

(a) Encode the message “I LOVE MATH”.
(b) Decode the message 1188 | 0666 | 1391 | 0979 | 1502 | 0098 | 0850 | 0098 |
0586.
|
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3.2.2 Hamming Codes

In 1950, the American mathematician Richard Hamming developed Hamming codes.
For his work, Hamming received the 1968 Turing Award from the Association
for Computing Machinery. Throughout his life, Hamming made many important
contributions to coding theory, number theory, and numerical analysis; and so, in 1998,
the Institute of Electrical and Electronics Engineers created an annual prize named the
Hamming Medal for “exceptional contributions to information sciences, systems, and
technology.” Coding theory remains a rich and diverse area of mathematical research,
and much of this work relies on a deep understanding of the notions of number theory
and abstract algebra.

Hamming developed his error-correcting codes while working for Bell Laborato-
ries. In the context of telecommunications, messages are transmitted in binary; that is,
as strings of 0’s and 1’s. Such binary codes are the easiest to correct—just knowing
the position of an error allows for its immediate correction by switching the digit from
a0to 1, or vice-versa.

Hamming codes are not concerned with the security issues that were the
primary focus of RSA encryption. Instead, these codes focus on the accuracy
of transmitted information; once a message is received, how can we ensure that
it was the message originally sent? This question may bring to mind the study
of check digits in section 2.6, which addressed human error and breakdowns in
physical communication devices introducing errors into messages. While check
digits determined the accuracy of transmitted information, Hamming codes both
determine if any single-digit error has occurred and the position of the error
(and hence the correct binary digit for that position). Hamming codes can also
detect double errors (occurring in two positions), but cannot automatically
correct them.

Hamming codes append several check digits to the end of a message. These check
digits are computed using matrix multiplication of the message (written as a row
vector) by a generating matrix. Once the message has been transmitted, the receiver
can then multiply by a second parity check matrix, where the result indicates if and
where a single-digit error has occurred. Hamming codes are defined using matrix
multiplication, and so our study begins with a description of matrices and matrix
multiplication.

Example 3.2.4 An m x n matrix is an array of numbers with m rows and n columns. For the
following, A is a 2 x 3 matrix, B is a 2 x 1 matrix (also called a column vector),
and C is a 1 x 3 matrix (also called a row vector).

A:[iiz] B:[‘” C=[2 3 4]

The multiplication of 2 x 2 matrices was used in exercises 54—64 from section 2.5.
For an arbitrary product, matrix multiplication is best studied after first learning how
to multiply a row vector by a column vector of the same length.
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Definition 3.2.1 The product of a row vector A = [ ap ay -+ ay ] with a column vector of
equal length
by
by
B=| |
by

is the real number obtained by taking the sum of the products of the corresponding
components: ay - by +az - by + - - - + ay, - b,. We write

b
b> n
[a1 a --- ay ] : = ai-bi+ay-br+---4a,-b, = Za,wb,'.
. i=1
by

Example 3.2.5 Using definition 3.2.1, we multiply
A=[1 5 2]

and

4
B=| 3
6
These vectors have the same length n = 3 and can be multiplied together. First take

the product of the corresponding components 1 -4 =4,5-3 =15,and2-6 = 12
and then add these three products together to obtain 4 + 15 + 12 = 31. Thus,

we have
4
[1 5 2] 3 | =4+15+12 =31
6
|
Question 3.2.4 Using definition 3.2.1 of vector multiplication, answer the following.
(a) Compute each product of row and column vectors.
3
.[2—10]-[13} e [2 8 10]-|5
1
1
. 13 |.
(b) Explain why the product [ 2 8 10 |- | |is undefined.
|

Vector multiplication is one step in the more general process of computing the
product A - B of an m x n matrix A and an n X p matrix B. Such a product results in
an m X p matrix, where the entry in the jth row and kth column is the vector product
of the jth row of A with the kth column of B. The following definition describes this
process.
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Definition 3.2.2 Let A be an m x n matrix and B be an n x p matrix with entries labeled as follows:

ain  ap -+ amn by by -+ by
an [25%) tet ann b21 b22 cee bzp
aml Am2 ... Amn by by .. bnp

The product C = A - B = AB is an m X p matrix where the entry cji. in the jth row
and kth column of C is the vector product of the jth row of A with with kth column

of B; that is,
b1k
bak
v = [ a1 ap - ap |- : = aj1 - bik +ajp - bog + - + ajn - buk.
bnk

Example 3.2.6 We use definition 3.2.2 to compute the product C = A - B of the 2 x 2 matrices

=[5 7]
[54]

* The entry cy; is the product of the first row of A with the first column of B.

C11=[1 2]~ 2 =1-542-7=19

and

» The entry cy3 is the product of the first row of A with the second column of B.

co=[12] g =1-6+2-8 =22

s =[3 4] 3.544.7 = 43

0 AN N W

} =3.6+4-8 = 50

[
cenm = [ 3 4].[

Therefore, we have
1 2 5 6 19 22
C_A'B_[3 4]'[7 8}_[43 50}'

Example 3.2.7 We compute the product of a 1 x 2 row vector and a 2 x 3 matrix:

(1215 58]

[ 1-342-6) (1-442-7) (1-54+2-8) ]
[ 15 18 21 ].
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A matrix product A - B is only defined when the number of columns in the left
matrix A is equal to the number of rows in the right matrix B. If these numbers
differ, the corresponding vector products are undefined, and so the matrix product
is undefined.

Example 3.2.8 The following product is undefined because the left matrix only has two columns,

while the right matrix has three rows, and so we are unable to compute any of the
corresponding vector products.

15 -6 8
|: _71 132 ] 1 1 2 | isundefined.
0 1 0
|
Question 3.2.5 Using definition 3.2.2 of vector multiplication, answer the following.
(a) Compute each product of matrices.
.[—1 10 3] 132 _52
0 4 1 5
1 0 3
«[-10 1 0]-| -1 2 0
0 10 -1
-1 10
(b) Explain why the product [ 0 1 ]-| —12 1 | is undefined.
0 0
|

As with RSA codes, there are many different Hamming codes. A Hamming code
encodes “letters” that have been identified as row vectors of some uniform length r.
Hamming codes are defined on vectors containing binary numbers, and so every entry
in these row vectors is either 0 or 1. Row vectors with r entries may represent up to
27 distinct “letters.” For example, there are 24 = 16 distinct row vectors available for
coding letters when using vectors of length r = 4.

[0 00 0] [100O0] [O010O0] [O0O0T10]

[0 00 1] [Tt 1oO00] [1oOT1O] [1O001]

[t 101] [tot11] [ot11 1] [1111]

Hamming codes encrypt these “letters” by multiplying the corresponding row
vectors by a generating matrix that is specific to each Hamming code. The entries of
the generating matrix are 0’s and 1’s, and vector and matrix products are computed
using modulo 2 arithmetic (since the code uses only binary vectors and matrices).
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The generating matrix consists of two distinct components. The left component is the
r X r identity matrix with 1’s on the main diagonal and 0’s in all other entries. The
right component consists of additional parity bit columns that are cleverly selected
to produce the error-correction capability of this coding scheme. After multiplying
a given row vector by the generating matrix, the corresponding encoded row vector
consists of the original vector with multiple check digits appended. These encoded row
vectors are then transmitted.

The recipient can then check the received encoded row vectors for single-digit
errors in the message. The recipient multiplies the received vectors by a parity
check matrix, which is a variation on the generating matrix as defined below and
in the Exercises at the end of this section. When the product is the zero vector, the
Hamming code indicates that no single-digit errors have occurred. If the product is a
nonzero vector, the resulting vector identifies the location of any single-digit errors,
enabling their correction. With this general approach in mind, we study a specific
Hamming code.

3.2.3 The (7, 4) Hamming Code

The rest of this section details the well-known (7,4) Hamming code, which Hamming
first identified in 1950. In this setting, the row vectors representing “letters” all
have uniform length r = 4. The generating matrix for the (7,4) Hamming code
follows.

S O O =
S O = O
oS = O O
- O O O
O = = =
— O = =
—_—— O =

Notice that the left four columns of this matrix form the 4 x 4 identity matrix (with
1’s on the main diagonal and 0’s elsewhere), and the right three columns consist of
the parity bits. Exercises 60—65 at the end of this section discuss the definition of an
arbitrary Hamming code’s generating matrix.

Example 3.2.9 We use the generating matrix G for the (7,4) Hamming code to encode the
message ‘“PL.”

We first identify the message “PI” with the pair of integers 16 | 9. We then
determine the binary representation of these integers; since 16 = 1-23 + 1 -
224+ 1-2"4+1-2%and 9 =1-22+0-224+0-2" +1-2° we identify
“PI” as [ I 1 11 ] [ 1 0 0 1 ] We now encode the message by
multiplying these row vectors by the generating matrix (using modulo 2 arithmetic)
as follows.

oS O O =
S O = O
S = O O
- o O O
O = = -
—_— O =
—_—_ O M
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S O =
- o O
—

[1 00 1] = [1 001 10 0]

o

S O = O
—_ o O O
—_ O = =
— e O

0 0

For example, the fifth entry in the first productis 1 because (1-14+1-1+1-1+
1-0)mod2 = 1. The code now transmits the following encoded version of the
original message.

[t 11111 1] [1001100]

Question 3.2.6 Using the (7,4) Hamming code, compute the encoded version of the following

message.

[01 1 1] [0o00 1 1] [1 O 1 0]

Comparing the original vectors with the corresponding encoded vectors in
example 3.2.9 and question 3.2.6, we observe that the original vector appears as the first
part of its encoded vector. Thus, the Hamming codes do not provide any measure of
security against eavesdropping. Instead, Hamming codes are useful because they detect
and correct any single-digit errors in the transmitted vectors. For example, suppose
someone receives a message [ 1 1.1 1 1 01 ] encoded using the (7, 4)
Hamming coding scheme. This vector does not match any of the 16 possible correctly
encoded vectors (as you can verify by multiplying each of the 16 possible binary
vectors of length four by the generating matrix). Therefore, some error has occurred. If
a transmission error occurred in at most one digit (a single-digit error), the Hamming
code determines the correct, original message.

Single-digit errors are detected by multiplying the received row vector by the
Hamming code’s parity check matrix. The parity check matrix P is formed by attaching
the (r — 1) x (r — 1) identity matrix (with all 1’s on the main diagonal and 0’s elsewhere)
to the “bottom” of the parity bit columns from the generating matrix G. The (7, 4)
Hamming code has the following generating matrix G and parity check matrix P;
for visual emphasis, the common parity bit portions of these matrices are printed
in bold.

1 1 1

1000 1 1 1 1(1)(1)
0100 1 1 0

=loo0o101 0 1 P=?;g

0001 0 1 1 01 o

L0 0 1

If no single-digit error has occurred, then the product of the encoded vectors
and the corresponding parity check matrix P results in the zero row vector (the
row vector with 0 in every entry). On the other hand, if a single-digit error has
occurred, then the product is one of the row vectors from P. The position of this



Chapter 3 = Number Theory 181

row vector in P indicates the position of the single-digit error in the received encoded
vector. The error is corrected by switching the parity of the entry (substituting 1 for 0
or O for 1).

Example 3.2.10 'We check the following two encoded row vectors for single-digit errors using the

Question 3.2.7

parity check matrix P for the (7, 4) Hamming code. Recall that all arithmetic is
performed modulo 2.

* Wecheck[ 1 1 1 1 1 0 1 ].Multiplying by P produces

111
110
101

[1 1 1 1 10 1]-|]0 111 = [0 1 0].
100
010
L0 0 1 |

The result is not the zero vector, and so the Hamming code indicates that a
single-digit error has occurred. Since the resulting vector [ 010 ] matches
the sixth row of P, the error occurred in the sixth entry of the encoded vector.
Reversing the parity of the sixth digit, the corrected version of the encoded
vectoris[ I 111111 ]

Wecheck[ 0 1 0 1 1 0 1 ].Multiplying by P produces
[01 01 1 0 1]-P=[0 0 0].

The resulting zero vector indicates that no single-digit error has occurred.
|

Using the parity check matrix for the (7, 4) Hamming coding scheme, identify the
single-digit errors in the following received vectors and state the corrected version
of the encoded vector.

@[1 1 1110 0]
®[0 1 1 1 00 1]

3.2.4 Reading Questions for Section 3.2

Describe public key encryption.

How do we represent letters in the RSA encryption scheme?

How does an RSA code encode a letter?

How does an RSA code decode an encrypted letter?

What are the public and private keys for an RSA code?

What step in the RSA encryption process prevents a person who does not know
the factorization of n into n = p - ¢ from decoding an encrypted message?

7. Why are financial institutions and national security agencies interested in large
primes?

AN e
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8. Describe the process of vector multiplication and give an example.
9. Describe the process of matrix multiplication and give an example.
10. How do we represent letters when using a Hamming code?
11. How does a Hamming code encode a letter?
12. What kind of errors can a Hamming code both detect and correct?

3.2.5 Exercises for Section 3.2

In exercises 14, find the numeric string identified with each alphabetic string.

1. ALGEBRA 3. PEACE
2. ANALYSIS 4. TRUE LOVE

In exercises 5—11, find the alphabetic string identified with each numeric string.

5.05|21]12]05]18

07101211919

14105(23120(15] 14

12105[09] 0214109 |26
19116]05]01|11[20]18]21]20]08

10. 01| 18030809 | 13]05|0405]| 19

11. 230112 11]23]09]20]08|15]21[20]02]12]01]13]05

Y

In exercises 12—15, identify how many digits the RSA code uses to represent encoded
letters for the following values of n = p - g.

12. n =33 14. n=1,919

13. n =143 15. n=1,2533
In exercises 16-19, encode each message using the RSA code with p =3, g = 11,
ande =7.

16. ALGEBRA 18. PEACE

17. ANALYSIS 19. TRUE LOVE

In exercises 20-24, decode each encoded message using the RSA code with p =5,
g=13,e=29,ande”! =5.

20. 304525 23. 4810801182950 25
21. 08456105 24. 302154502948 |05
22. 41101295008

Exercises 25-28, encode each message using the RSA code with p = 73, ¢ = 103, and

e = 2543.
25. ALGEBRA 27. PEACE
26. ANALYSIS 28. TRUE LOVE

Exercises 29-32, decode each encoded message using the RSA code with p = 73,
g = 103, and e = 2543.

29. 5758 | 2429 | 1318 | 4221
30. 1276 | 0001 | 4299 | 4208 | 5758
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29. 3745|3949 | 4733 | 4208 | 4299 | 4502 | 4221
30. 4502 | 5758 | 0001 | 0036 | 4299 | 4208 | 4330
Exercises 33-37 consider the relative security of the RSA codes for various
values of n.
33. Factor n into primes p and g when n = 143 and (p — 1)(¢ — 1) = 120.
34. Discuss the public encryption security of the RSA code that publishes
n = 143.
35. Factor n into primes p and g if n = 12,533 and (p — 1)(¢ — 1) = 12, 300.
36. Discuss the public encryption security of the RSA code that publishes
n=12,533.
37. Try to stump one of your classmates with an RSA encrypted message. Choose

a large (at least four digits) integer value of n that factors into primesn =p - g
and e € U[(p — 1)(¢ — 1)]. Implement the RSA coding scheme with this
P, g, and e to encode a three letter message (e.g., “RSA” or “ACE”). Publicly
announce your values for z and e (but not p and ¢) and see how long it takes for
your encrypted message to be deciphered. Are you satisfied with the security
of your code?

Exercises 38-39 consider a type of prime number named for the French monk and
mathematician Marin Mersenne. A Mersenne prime is a prime of the form 27 — 1,
where p is prime. As of November 2008 there are 46 known Mersenne primes with the
46th equal to 243-112:699 _ | 'which has 12,978,189 digits.

38.
39.

State the first three Mersenne primes.
Identify the first prime p such that 27 — 1 is not prime.

In exercises 4047, compute each product, or explain why the product is undefined.

40.

41.

42

43.

44.

—46
[—10]{12}
15
[3 1] ] 1
27
-9
[ -10 12 2 ]| 60
13
4
1
[1 52 -3 —2]-| =2
0
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0 17
45.[6 —10 1]-| -8 8
30 -30
a b e f
46. .
el ]
1 00 a b c
47. 1 0 1 0 d e f
0 0 1 g h i
In exercises 48-51, encode each message using the (7, 4) Hamming code.

48.[1 1 0 0]

49.[1 11 0] [1 1 0 1]
50.[0 01 0] [01 1 0]
5.f]o o o0 1] [1O0OOT1] [1L O 1 1]

In exercises 52-55, check each message encoded by the (7, 4) Hamming code for
single-digit errors. If multiplication by the parity check matrix indicates a single-digit
error, state the corrected version of the vector.

52[0 1 1 1 1 0 0]
5.0 1 1 100 0]
s4[1 0101 1O0][1 110171 0]
55.[1 0100 1O0][1 11010 1]

Exercises 56-59 highlight the limitations of the (7, 4) Hamming code for detecting
multiple errors in transmitted messages and indicate the need for more sophisticated
error-correcting schemes.

In exercises 5659, verify that the (7, 4) Hamming coding scheme does not detect the
given errors. What correction does the (7, 4) Hamming code recommend?

56.[1 1 1 1 1 1 1] receivedas [1 1 1 1 1 0 ]
5.1 1 1 1 1 1 1] receivedas [1 0 1 1 1 1]
58. [ 01 01 1 01 ] received as [ 0101 110 ]
59.[0 1 0 1 1 0 1] receivedas [1 1 0 1 1 1 1]

Exercises 60—65 introduce Hamming codes of higher dimension. For every pair of
integers of the form [(2"=Y — 1), r], we can determine a [(2"~! — 1), r] Hamming code
that produces encrypted binary vectors of length 2"~! — r. Both the generating matrix
G and a parity check matrix P for the [2~t—1,r] Hamming code are determined
by the parity bit columns. The parity bit columns consist of an array of all binary
row vectors of length r — 1 with at least two 1’s. In general, matrix G is obtained by
attaching the (2~! — r) x (2"~ — r) identity matrix to the front of this array and the
parity check matrix P is obtained by attaching the (r — 1) x (r — 1) identity matrix
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to the bottom of this array. This procedure for the (7, 4) Hamming coding scheme is
illustrated below, with the parity bits in bold.

111
11 1 1000 1 1 1 1(1)(1’
11 0 0100 1 1 0
1 01]7% o010 1 0 1 |P= 10;;
0 1 1 0001 0 1 1 0 1o
0 0 1

In exercises 60—65, consider Hamming codes of higher dimensions.

60. Determine a matrix consisting of the 11 binary column vectors of length
r—1=5—1=4with at least two 1’s.

61. What length vectors are encoded by the (15, 5) Hamming coding scheme?

62. Find the generating matrix G for the (15, 5) Hamming coding scheme.

63. Find the parity check matrix P for the (15, 5) Hamming coding scheme.

64. How many vectors of length » — 1 = 5 have at least two 1’s? What length
vectors are encoded by the (31, 6) Hamming code?

65. How many vectors of length » — 1 = 6 have at least two 1’s? What length
vectors are encoded by the (63, 7) Hamming code?

In exercises 62-65, encode each message using the (15,5) Hamming code. The
generating matrix G and parity check matrix P for the (15, 5) Hamming code were
identified in exercises 62 and 63 above.
66.[0011010110
6.1 0 1 01 010 1 0 1]
68.[1110110110]
In exercises 6970, check the following messages encoded by the (15, 5) Hamming
code for single-digit errors. If multiplication by the parity check matrix indicates a
single-digit error, state the corrected version of the vector.
69.[1 1 1 111000001 10 0]
70.[1 1 1. 1.000000O0O0T1 0 0]

]

—_ = O

3.3 From the Pythagorean Theorem to Fermat’s Last Theorem

Some relationships among numbers are based on equations containing two or more
variables. This study of such relationships is focused around two of the most famous
results in all of mathematics. The first is well-known to any student who has studied
triangles—the Pythagorean theorem. For many centuries this result has been known
to mathematicians around the world, from ancient Greece to ancient China, and has
served as a staple of mathematical explorations. The second is an extension of the
Pythagorean theorem, known as Fermat’s last theorem. For more than three centuries,
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Fermat’s last theorem was one of the most significant open questions in mathematics,
and mathematicians around the world rejoiced over its first complete proof in the 1990s.
A study of these two results identifies some of the relations that do and do not exist
among integers.

The Pythagorean theorem is named in honor of Pythagoras, a somewhat eccentric
and yet brilliantly insightful Greek philosopher and mathematician. Pythagoras was
born in 569 B.C.E. on the island of Samos, but later migrated to Croton on the
south-eastern coast of Italy, where he established a semireligious, semiscientific
society. Pythagoras and his followers immersed themselves in a study of numbers,
becoming the first group in recorded history to work with numbers as abstract
concepts, to identify the numeric relationships that exist among musical notes, and
to explore the related geometric relations, including the Pythagorean theorem. At
the same time, the Pythagoreans were well known for their mutual friendship,
communal living, equal treatment of the sexes, and their intense secrecy. The
society grew rapidly throughout Pythagoras’ life but was violently suppressed shortly
after his death. We now state the Pythagorean theorem and outline of a proof of
this result.

Theorem 3.3.1 Pythagorean Theorem Forany right triangle, the square of the hypotenuse is equal

to the sum of the squares of the other two sides, known as legs. If the hypotenuse
has length c and the other two sides have lengths a and b, then we express this

relation using the Pythagorean equation o> + b> = ¢2.

The Pythagorean theorem can also be expressed in terms of geometry, by attaching
squares to a right triangle as indicated in figure 3.1. The Pythagorean theorem asserts
that the area of the largest square is equal to the sum of the areas of the two smaller
squares.

There are many different proofs of the Pythagorean theorem—some with a
strong geometric flavor, and others that are more algebraic in nature. Many involve
arranging right triangles in some clever fashion. The proof presented here considers an
arrangement of four copies of the same generic right triangle in a square configuration,
as illustrated in figure 3.2. Rather than simply stating a proof of this result, we

Figure 3.1 Geometric view of the
Pythagorean theorem
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Figure 3.2 For Question 1’s proof of the Pythagorean
theorem b a

offer a series of questions that highlight the important characteristics of this figure,
and invite you to piece together these relations and write a proof of this theorem
yourself.

Question 3.3.1 Refer to figure 3.2, where the sides of the triangles are labeled with their
corresponding lengths a, b, and c. Recall that the area of a square is the side
length squared and the area of a triangle is one-half the product of the base and
height.

(a) What is the side length of the large, exterior square formed by the four
triangles? Determine the area of this exterior square.

(b) What is the side length of the small, interior square enclosed by the four
triangles? Determine the area of this interior square.

(c) Determine the area of the triangles.

(d) Express the area of the exterior square as the sum of the area of the interior
square and the area of the four triangles.

(e) Set the expressions for the area of the exterior square from part (a) and part
(d) equal to each other and algebraically simplify the result to obtain the
Pythagorean equation a” + b* = ¢?.

(f) Based on your answers to these questions, write a proof of the Pythagorean
theorem, using complete sentences and supportive algebraic computations at
appropriate points in the argument.

While Pythagoras is recognized as the first mathematician to produce a general,
abstract proof of this result, humanity’s knowledge of numeric examples of the
Pythagorean theorem predate his work by thousands of years. Megalithic monuments
on the British Isles dating to 2500 B.C.E. are engraved with an example of integers
satisfying the Pythagorean theorem. Numeric examples exist from ancient Egypt,
Mesopotamia, India, and China (where the result is known as the Gougu theorem),
including computational “proofs” with specific numbers that can be generalized.
The oldest known written proof of the Pythagorean theorem is Proposition 47 in
Book I of Euclid’s Elements [73]. Since then more than 250 different proofs of the
Pythagorean Theorem have been crafted, including an 1876 proof using trapezoids
attributed to the twentieth President of the United States James Garfield while he
was serving in the House of Representatives. The proof outlined in question 3.3.1
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13

4 b
Figure 3.3 Triangles for example 3.3.1

can be traced back to the work of the Indian mathematician Bhaskara from the
twelfth century C.E.

The Pythagorean theorem ensures that whenever the lengths of two sides of a right
triangle are known, the length of the third side can be computed.

Example 3.3.1 We compute the length of the side identified with a variable for each right
triangle.

« Applying the Pythagorean theorem to the triangle on the left in figure 3.3, 3% +
4% = ¢2, and 50 25 = ¢?, which implies ¢ = 5.
« For the triangle on the right in figure 3.3, 52 4+ b? = 13%, and so b* = 169 — 25 =
144, which implies b = 12.
|

As mathematicians worked with the Pythagorean theorem, they recognized
that right triangles with sides of integer length (such as those in example 3.3.1)
are more the exception than the rule. When two sides of a triangle are integers,
the third side is often not an integer. The following question provides some
examples.

Question 3.3.2 Answer each question about a right triangle. Recall that the nonhypotenuse sides
of a right triangle are called legs.

(a) If the legs have lengths 3 and 4, what is the length of the hypotenuse?
(b) If the legs have lengths 4 and 6.5, what is the length of the hypotenuse?
(c) If the hypotenuse has length 17 and one leg has length 8, what is the length
of the other leg?
(d) If the hypotenuse has length 17 and one leg has length 11, what is the length
of the other leg?
|

Mathematicians are especially interested in integer solutions of the Pythagorean
equation, and other similar multivariable equations known as Diophantine equations,
as defined below. Motivated by this interest, mathematicians have defined certain
distinguished types of triples of integers.

Definition 3.3.1 A triple (a,b,c) of positive integers satisfying a*> + b* = ¢? is called a
Pythagorean triple.

The next question considers various Pythagorean triples and explores the
possibility that there exist infinitely many Pythagorean triples.



Chapter 3 = Number Theory 189

Question 3.3.3 The following questions show that some Pythagorean triples are multiples of
others.

(a) Prove that (5, 12, 13) is a Pythagorean triple.

(b) Based on part (a), find a Pythagorean triple witha = 10 =5 - 2.

(c) Find a Pythagorean triple witha = 15=15-3.

(d) Ifn € Nisan arbitrary positive integer, find a Pythagorean triple witha = 5 - n.
|

As can be surmised from the answers to question 3.3.3, there exist infinitely many
Pythagorean triples; the following proof of this result is constructive.

Theorem 3.3.2 There exist infinitely many Pythagorean triples; that is, there exist infinitely many

triples (a, b, ¢) of positive integers such that a*> + b* = c>.

Proof ~The triple of positive integers (3, 4, 5) is a Pythagorean triple, since 3> 4 4> =
9 + 16 = 25 = 5%. Furthermore, for every positive integer n € N,

Gn)? + @n)? = 322+ 4% = 32+ 49 = %2 = (5n)t

Thus (3n, 4n, Sn)is a Pythagorean triple for every positive integer n. Since there are
infinitely many positive integers, there exist infinitely many Pythagorean triples.
|

In addition to knowing that there exist infinitely many Pythagorean triples,
mathematicians have made another important step forward in describing Pythagorean
triples. The proof of theorem 3.3.2 simply manipulated the Pythagorean triple (3, 4, 5)
to obtain infinitely many others. But many different Pythagorean triples are not
multiples of (3, 4, 5) (as we have seen in the preceding examples and questions). Faced
with this fact, mathematicians began seeking a pattern or formula that completely
classifies all Pythagorean triples—and they found one! Every Pythagorean triple is of
the form (2mn, n?
In addition to proving theorem 3.3.2, the formula shows that there exist an infinite
number of primitive Pythagorean triples; that is, Pythagorean triples whose values
(a, b, ¢) have no common divisor.

The three integers a = 3, b = 4, and ¢ = 5 are one solution of the Pythagorean
equation a®> 4+ b*> = ¢?. Many other multivariable equations have integer solutions;
such equations have come to be known as Diophantine equations. The ancient Greek
mathematician Diophantus, who lived in the third century, studied these types of
equations (especially linear ones), and wrote the famous text Arithmetica that was
the standard number theory reference (in fact the only thorough exposition on the
topic) as late as the seventeenth century! For the remainder of this section, we restrict
our attention to integer solutions of polynomial equations.

—m?, n?+ mz), where m, n € N are positive integers with m < n.

Definition 3.3.2 A Diophantine equation is a polynomial equation in at least two variables with
integer solutions.

The Pythagorean equation a® + b> = ¢? is the best known example of a

Diophantine equation, but many other multivariable equations are Diophantine.
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Example 3.3.2 We examine two equations—one is Diophantine with positive integer solutions,

and one is not.

* x —y = 01is a Diophantine equation with infinitely many solutions x =y = 1,
x =y = 2, and so on; that is, every pair of integers with x = y is a solution.

* x + y = m is not a Diophantine equation because the sum of two integers
cannot be an irrational number, and so this equation does not have integer
solutions.

Question 3.3.4 State an equation that is Diophantine and one that is not; give equations different

from those in example 3.3.2 .

Theorem 3.3.2 proves not only that the Pythagorean equation is Diophantine,
but also that the Pythagorean equation is a Diophantine equation with infinitely
many positive integer solutions. Not every Diophantine equation has this property.
In fact, given any positive integer n € N, there exists a Diophantine equation with
exactly n distinct positive integer solutions. The following example provides a linear
Diophantine equation in two variables (so, both x and y are raised to the first power)
with exactly two positive integer solutions.

Example 3.3.3 We identify the two pairs of positive integer solutions of 8x + 5y = 86.

We can solve for either x or y in this equation; we solve for both obtaining

and _86—8x_17 8x—1
8 8 R 5

Since x is a positive integer, the left equation implies ? is a positive integer
less than or equal to 9, and so y must be either 6 or 14. Substituting, we find the
two pairs of solutions (7, 6) and (2, 14).

Alternatively, we can work with the right equation. Since y is a positive integer,
the right equation implies st_ L is a positive integer less than or equal to 16, and
so x must be either 2 or 5. Substituting, we again find that (7, 6) and (2, 14) are

the only two pairs of positive integer solutions of this Diophantine equation.

Question 3.3.5 Identify the three pairs of positive integer solutions of xy — 5x + 6y = 0.

Hint: Solve for y and manipulate your solution to express y as the difference of an
integer and a fraction in x as in example 3.3.3. =
The Pythagorean equation is just one example of a nonlinear Diophantine equation.
Another famous example is the generalization of the Pythagorean equation to the
form @ + B> + ¢ = d® Since 3* + 43 +5 =63 and 1P + 63 + 8 = 93, at
least two quadruples of positive integers satisfy this equation. Following the same
approach as the proof of the infinitude of Pythagorean triples for theorem 3.3.2, we
can show that this Diophantine equation also has infinitely many positive integer
solutions. Even though a® + b* 4¢3 = d> has infinitely many solutions, mathematicians
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still do not have a general formula for generating every positive integer solution of
this equation.

The infinite number of integer solutions to the Pythagorean equation a” + b> = ¢
and the above Diophantine equation a® 4+ b* 4+ ¢3 = d> stands in marked contrast
to what happens when we seek solutions to similar equations with greater integer
exponents: a3 +b* = ¢3, a* +b* = ¢*, @® +b> = ¢, and so on. The intensive study of
this generalization of the Pythagorean theorem was initiated by the seventeenth century
French mathematician Pierre de Fermat. Late in his life, Fermat claimed when the
integer power n is greater than 2, there are no positive integer solutions to a” + b" = ¢
About this same time, Fermat proved this claim for n = 4 using a “method of infinite
descent,” and he announced this result to other mathematicians, inviting them to craft
their own proofs.

Fermat’s successes as a mathematician are even more impressive when we consider
that he did not work full-time as a mathematician. A lawyer by day, Fermat had
only his free time to study and develop mathematical insights. While in this sense
only an amateur mathematician, Fermat came to be recognized as one of the greatest
mathematical minds of his time. A short time after proving the n = 4 case, Fermat died
without repeating his more general claim, nor providing any indication of how he was
thinking of proving this result for all positive integers. Fortunately, mathematicians
convinced Fermat’s son to gather together and save Fermat’s mathematical books
and notes for later study. It became apparent that Fermat made many such claims
with little or no proof, and mathematicians eagerly pursued complete proofs of these
results. In the end, this one claim remained unproven, and so it came to be known
as “Fermat’s last theorem.” For ease and clarity of reference, we formally state
this result.

2

Theorem 3.3.3 Fermat’s last theorem For every integer n greater than 2, there are no positive
integers a, b, ¢ such that a" + b"* = c".

Many great mathematicians worked on proving Fermat’s last theorem in its full
generality. It turns out that the n = 3 case is much harder to prove than the n = 4
case. More than 100 years after Fermat’s death, Leonhard Euler finally developed
the mathematical insights enabling the complete proof that a® + b3 = ¢ has no
integer solutions. In subsequent years, Fermat’s last theorem was proven for specific
integer exponents one at a time, until in 1995 a complete proof was announced
to the world. The English mathematician Andrew Wiles from Princeton University
used sophisticated mathematical methods involving “elliptic curves” to prove the
general version of Fermat’s last theorem. For this work, Wiles was honored with
numerous distinguished awards, including the presentation of a silver plate as a special
tribute by the International Mathematical Union in 1998. The IMU is the organization
responsible for awarding the Fields Medal, which is the equivalent of the Nobel
Prize in mathematics. The Fields Medal is awarded every fourth year to at most four
mathematicians “to recognize outstanding mathematical achievement for existing work
and for the promise of future achievement.” The Fields Medal is restricted to recipients
who are at most 40 years of age; Wiles was 45 years old in 1998, or surely he would
have been honored with the Fields Medal. While Wiles’ proof is beyond the scope of
this text, we can understand Fermat’s proof for the n = 4 case.
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3.3.1 Fermat’s Last Theorem forn =4

The rest of this section develops Fermat’s proof that a* + b* = ¢* has no positive
integer solutions. The first step is to modify the form of the equation. If a, b, ¢ are
positive integer solutions of a* +b* = ¢*, then (az)2 +b* = ¢*. Thus, if a* + b* = ¢*
has positive integer solutions, then so does a*> + b* = ¢*. Taking the contrapositive,
if a> + b* = ¢* has no positive integer solutions, then neither does a* + b* = ¢*.
This proof therefore focuses on a®> + b* = ¢*, proving that it has no positive integer
solutions.

Fermat’s proof of this result uses the “method of infinite descent,” which proceeds
by contradiction. Assuming that there does exist a triple of positive integers (a, b, ¢)
satisfying a® + b* = ¢, we prove the existence of another such solution (a*, b*, ¢*)
with the property that ¢* is less than ¢. Applying this result to (a*, b*, ¢*), there exists
still another solution (a™*, b™*, ¢**) with ¢** less than ¢*, and so on ad infinitum. This
produces an infinite sequence of solutions with a corresponding infinite descending
sequence of positive integers ¢ > ¢* > ¢™* > ¢** > ... But for any given positive
integer c, there are only finitely many positive integers less than ¢, and we have the
desired contradiction. Thus, a® + b* = ¢* has no positive integer solutions, and so
a* + b* = ¢* has no positive integer solutions.

The main step in this argument is proving that if (a, b, ¢) is a triple of positive
integers satisfying a®> + b* = ¢*, then there exists another such solution (a*, b*, c*)
with c¢* less than c. There are many details to this proof, and we study some of them
here; the exercises at the end of this section outline each part of the remaining portions
of the proof.

The proof of Fermat’s last theorem for n = 4 is quite long and involved, as are the
proofs of many interesting and important mathematical results. Working through such
proofs requires great care and determination, especially as they challenge a reader’s
mathematical understandings and intellectual abilities. These studies can result in
frustration, but the rewards for perseverance can be tremendous. Furthermore, being
able to follow sophisticated, involved proofs is an important step forward in learning
to handle subtle mathematical ideas more easily and to craft such proofs yourself. And
so, as we follow in the footsteps of Fermat through the rest of this section, be patient
with yourself, be resolved to persevere through any tough spots—and enjoy a new
understanding of these mathematical truths.

Since Fermat’s proof proceeds by contradiction, the remainder of this section uses
the assumption that (a, b, ¢) is a triple of positive integers satisfying a* + b* = ¢* with
¢ the least such positive integer. To prove the existence of a solution (a*, b*, c*) with
c¢* less than ¢, we consider three cases:

e b and c are both even;
* b and c have opposite parity; and
e b and c are both odd.

The case in which b and ¢ are both even is taken care of quickly using the following
theorem and question.

Theorem 3.3.4 If (a, b, ¢) is a triple of positive integers satisfying a> + b* = c¢* with c the least

such positive integer, then b and ¢ have no common prime divisors.
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Proof

Question 3.3.6

We proceed by contradiction, assuming that p is a prime divisor of both b and ¢ (and
working toward a contradiction of the “leastness” of ¢). Under this assumption,
p* must divide ¢* — b* = 4?. From exercise 15 in section 3.1 or exercise 15 at
the end of section 3.4, this fact implies p? divides a. Expressing these divisibility
relations algebraically, we have a = pza*, b = pb*, and ¢ = pc*. Substituting
these expressions into the original equation and simplifying the result produces
the following implications.

(12 + b4 — C4 :> (pza*)z + (pb*)4 — (pc*)4
= pHa)? +p' 0" = phe?
:> (a*)z + (b*)4 — (c*)4
Since ¢ = pc* and p is prime (and so greater than 2), ¢* must be less than ¢. But then,
there exists a triple of positive integers (a*, b*, ¢*) satisfying (a*)? + (b*)* = (c*)*
with ¢* less than c¢. This contradicts the leastness of ¢, and so b and ¢ must not

share any common prime divisors.
|

Use theorem 3.3.4 to prove that if (a, b, c) is a triple of positive integers satisfying
a*> + b* = ¢* with ¢ the least such positive integer, then » and ¢ cannot both
be even.

]

We now turn our attention to the proof of Fermat’s last theorem for n = 4 when

b and ¢ have opposite parity. The proof of this portion of the theorem relies on three
lemmas, which we state and use without proof; exercises 62-69 at the end of this
section suggestively outline the proofs of these Lemmas.

Lemma 3.3.1

Lemma 3.3.2

Lemma 3.3.3

Theorem 3.3.5

If (a, b, ¢) is a triple of positive integers satisfying a> + b* = c¢* with ¢ the least
such positive integer and with b and c of opposite parity, then there exist two odd
positive integers s and t such that gcd(s, t) = 1, s> = ¢ + b%, and t* = ¢* — b,

In the context of lemma 3.3.1, let s +t = 2u and s — t = 2v. Then the following
facts hold.

e The integer triple (u, v, ¢) is a Pythagorean triple.

* The integers u and v have opposite parity withu = 2m? and v = (a*)? for positive
integers m and a*.

e ged(u,v) = 1.

In the context of lemmas 3.3.1 and 3.3.2, there exist positive integers x and y such
that the following hold:

u=2uxy, v= x? —y2; c=x" +y2; and gcd(x,y) = 1.
These lemmas lead to the proof of the following desired result.

In the context of lemmas 3.3.1, 3.3.2, and 3.3.3, there exist positive integers b*
and c* with opposite parity and positive integer a* such that (a*)* 4+ (b*)* = (¢*)*
with) < c* <x <c.



194

A Transition to Advanced Mathematics

Proof Lemma 3.3.2 asserts that u = 2m?, and lemma 3.3.3 asserts that u = 2xy; therefore,
m? = xy. Replacing m with its prime power factorization m = p']'1 . pgz S plt
produces (p1)*™ - (p2)*"2 - - - (p,)*" = xy. Lemma 3.3.3 states that gcd(x, y) = 1,
and so each of the prime powers (p;)>" appears intact within exactly one of the
prime factorizations of either x or y. Thus, x and y have prime factorizations with
even exponents on every prime, and so both x and y are perfect squares. Since the
square roots of both x and y are integers, define ¢* = /x and b* = /y. The rest of
this proof verifies that a* from lemma 3.3.2 with this b* and ¢* have the desired
properties.
Lemma 3.3.2 states that v = (¢*)?, and lemma 3.3.3 states that v = x> — y2.
Setting these equations equal to one another and substituting c¢* = ,/x and
b* = ,/y, produces the following equality

@)? =v=x*—y* = (cHD* = (b")D)* = (¢*)* — (b)*

Simplifying, (a*)?> + (b*)* = (c*)*. In addition, since ¢* = ./x, we have
0 < ¢* < x. Lemma 3.3.3 asserts that ¢ = x2 + yz, which implies x < c¢. Thus,
O<c*<x<ec.

Finally, we argue that b* and ¢* have opposite parity. Lemma 3.3.2 asserts
that « and v have opposite parity, and lemma 3.3.3 asserts that u = 2xy is even, so
v = x? —y? is odd. Therefore x and y have opposite parity, and so their respective
square roots ¢* = /x and b* = , /y must also have opposite parity.

We have arrived at the desired result: (a*)? + (b*)* = (¢*)* where b* and ¢*
have opposite parity and ¢* < c. This conclusion contradicts the original claim
(that the triple of positive integers (a, b, ¢) with b and ¢ of opposite parity is a
solution of a® 4+ b* = ¢* with the least possible value for c).

|

Lemmas 3.3.1, 3.3.2, and 3.3.3, and theorem 3.3.4 collectively prove that there
does not exist a triple of positive integer solutions of a> + b* = ¢*, which proves
Fermat’s last theorem for n = 4 when b and ¢ have opposite parity. There is only
one more case to consider: when b and ¢ are both odd. The proof of this case is
similar to the proof of theorem 3.3.4 and is outlined in exercise 70 at the end of
this section.

3.3.2 Reading Questions for Section 3.3

1. State the Pythagorean theorem.

2. Give an example applying the Pythagorean theorem to a right triangle with
one side of unknown length.

Sketch figure 3.2. How is this figure useful?

Define and give an example of a Pythagorean triple.

Give an example of a triple of integers that is not Pythagorean.
How many Pythagorean triples are there?

What is a primitive Pythagorean triple? Give an example.

® N kW

Define and give an example of a Diophantine equation.
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10.

I1.
12.

Explain why the Pythagorean equation is a Diophantine equation.

Give an example of a Diophantine equation with infinitely many solutions
and a Diophantine equation with finitely many solutions.

State Fermat’s last theorem.

Discuss the distinction between Fermat’s and Euler’s work on Fermat’s last
theorem and Wiles’ work on Fermat’s last theorem.

3.3.3 Exercises for Section 3.3

In exercises 1-6, determine if each triple is Pythagorean.

1.
2.
3.

(15, 36, 39) 4. (48,55,73)
(10, 12, 22) 5. (17, 144, 145)
4,3,2) 6. (18, 144, 146)

In exercises 7-14, complete each Pythagorean triple by identifying the numeric value
for the missing variable.

7.
8.
9.
10.

(16, 63, ¢) 11. (a, b,5)
(48, 14, ¢) 12. (a, b, 17)
(a, 40, 41) 13. (a,21,¢)
(20, b, 52) 14. (a, 45, ¢)

Exercises 15-23 consider abstract questions and statements about the Pythagorean
theorem and Pythagorean triples.

15.

16.

17.

18.

19.
20.

21.
22.

23.

What is the least possible positive integer ¢ for which there exist a and b such
that (a, b, c) is a Pythagorean triple?

Prove that if n is a positive even integer, then [n, (%)2 -1, (%)2 + 1] is a
Pythagorean triple.

Using the formula from exercise 16, list three distinct Pythagorean
triples.

Prove that if 7 is a positive odd integer, then [n, (n*> — 1)/2, (n*> + 1)/2] is a
Pythagorean triple.

Using the formula from exercise 18, list three distinct Pythagorean triples.

2

Prove that if m,n € N, then [2mn, n® — m?, n? + m2] is a Pythagorean

triple.

Using the formula from Exercise 20, list three distinct Pythagorean triples.
Prove that if (a, b, c) satisfy the Pythagorean equation, then (—a, —b, —c)
also satisfies the Pythagorean equation. Conclude that a study of solutions of
the Pythagorean equation can focus on positive solutions.

Suppose (r/s,t/u,v/w) is a triple of rational numbers satisfying the
Pythagorean equation. Determine a corresponding Pythagorean triple of
integers expressed in terms of r, s, t, u, v, and w. Conclude that a study of
rational solutions to the Pythagorean equation can focus on integer solutions.
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c B Figure 3.4 Figure for exercises 28-33

In exercises 24-27, consider the question of whether a Pythagorean triple can contain
three prime numbers. Prove the following mathematical statements.

24. If (p, q, r) is a Pythagorean triple of primes, then one of p, ¢, r is even.
25. If p and g are prime, then (p, ¢, 2) is not a Pythagorean triple.

26. If g and r are prime, then (2, g, r) is not a Pythagorean triple.
Hint: Manipulate the sum of squares in the Pythagorean equation to obtain a
difference of squares and then factor.

27. APythagorean triple cannot contain three primes. Hint: Use exercises 24-26.

Exercises 28-33 develop Euclid’s proof of the Pythagorean theorem given in Book I of
Elements. Euclid added a line perpendicular to the hypotenuse (as shown in figure 3.4)
and worked with similar triangles. Two triangles are said to be similar if their three
interior angles are identical. Similar triangles are of interest in this setting because the
side lengths of the corresponding sides share the same ratios. In exercises 28-33, let
A, B, C, and H denote the four vertices determining the three triangles in figure 3.4, let
pairs of adjacent letters (e.g., AB) denote the length of the side between the two vertices,
and let triples of adjacent letters (e.g., ABC) denote the right triangle determined by
the three vertices.

28. Prove that triangle ABC is similar to triangle ACH. Explain why this implies
that AC/AB = AH /AC.

29. Algebraically manipulate the ratio from exercise 28 to find an expression for
(AC)? in terms of AB and AH.

30. Prove that triangle ABC is similar to triangle BCH. Explain why this implies
that BC/AB = HB/BC.

31. Algebraically manipulate the ratio from exercise 30 to find an expression for
(BC)2 in terms of AB and HB.

32. Working with the expressions from exercises 29 and 31, and with the equality
AH + HB = AB, prove the Pythagorean identity (AC)?> + (BC)*> = (AB)?.

33. Based on exercises 28-32, write a proof of the Pythagorean theorem, using
complete sentences and supportive algebraic computations at appropriate
points in the argument.

Exercises 34—40 develop an alternative proof for the existence of infinitely many
Pythagorean triples.
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34.

35.
36.

37.
38.

39.
40.

Complete the following table of squares and differences of squares:

2 b2 C2 _ b2

QNN AL = O
e KRN Mo V| VRl SR

Describe the pattern in the right column of the table from exercise 34.

Prove that every odd number occurs in the right column of (the infinitely
extended version of) the table from exercise 34 by considering the difference
of squares of consecutive integers n and n + 1.

List two Pythagorean triples that occur in the table from exercise 34.

If the table from exercise 34 is extended to include rows with greater values of
consecutive integers b and ¢, what is the next Pythagorean triple that appears
in the table?

What integers have odd squares?

Based on exercises 34-39, write a proof that there exist infinitely many
Pythagorean triples, using complete sentences and supportive algebraic
computations at appropriate points in the argument.

In exercises 41-48, find all positive integer solutions x and y of the following
Diophantine equations.

41.
42.
43.
44.

3x+5y =12 45. 10x + 11y = 320
6x + 15y =30 46. xy —Tx+6y =0
8x+5y=1 47. xy+3x—2y=0
20x + 25y = 125 48. xy —3x+4y=0

Exercises 49-52 consider the special category of Diophantine equations of the form

2

x> — Ny? = 1, where N is a positive nonsquare integer. These equations are known

as Pell’s equations in honor of the seventeenth century English algebraist and number
theorist John Pell.

49.
50.

51.

52.

Prove x = 3,y = 2 is a solution of Pell’s equation x> — 2y = 1.

Find a pair of positive integers (different from x = 3, y = 2) satisfying
x2 -2 =1.

Hint: There exists a solution with x < 35.

Prove that if a pair of positive integers (x, y) satisfies x> — 8y> = 1, then x
is odd.

Prove that if a pair of positive integers (x, y) satisfies Pell’s equation with N
even, then x is odd.
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Exercises 53-55 consider the special category of Diophantine equations of the form
x" — Ny" =1 where N and n are positive integers. These equations are known as
Thue’s equations in honor of the Norwegian mathematician Axel Thue. Thue made
a number of important contributions to abstract algebra and number theory, and he
identified conditions determining when these equations have a finite number of integer
solutions.

53. Prove that x = 2, y = 1 is a solution of Thue’s equation x> — 7y* = 1.

54. Find a pair of positive integers satisfying Thue’s equation x* — 5y* = 1.
Hint: There exists a solution with x < 20.

55. Prove that if a pair of positive integers (x,y) satisfies Thue’s equation
x® —7y® = 1, then x and y must have opposite parity.

Exercises 56—61 consider the types of equations addressed by Fermat’s last theorem.

56. Prove thata =2,b = \3/@, and ¢ = 3 satisfy @’ + b3 = 3. What does this
tell us about ~/19?

57. Find a triple of positive real numbers (a, b, ¢) satisfying a® + b = ¢3; identify
an answer different from that given in exercise 56.

58. Find a pair of positive integers b and c¢ (with b < 10) satisfying
1,701 + b* = ¢3.

59. Based on exercise 58, prove that 1,701 cannot be expressed as the cube of
a rational number; that is, prove 1,701 % (r/s)’ when r and s are positive
integers

60. While visiting his friend and colleague Srinivasa Ramanujan in the hospital,
Godfrey Harold Hardy remarked that he had arrived in taxi number 1,729.
Ramanujan immediately replied that ““1,729 is an interesting number because
it is the smallest integer that can be expressed as the sum of two cubes in two
different ways.” Find two distinct pairs of positive integers (a, b) (both with
a < 10) satisfying a® + b> = 1,729.

61. Suppose (r/s, t/u, v/w)is atriple of rational numbers satisfying a" + b" = ¢",
where n > 2 is an integer. Find a corresponding triple of integers (x, y, z)
expressed in terms of r, s, ¢, u, v, and w that would then satisfy a" 4 b" = c".
Based on this insight and Fermat’s last theorem, what do we know about the
existence of triples of rational numbers satisfying a”* + b" = ¢", where n > 2
is an integer?

Exercises 62—70 complete the proof of Fermat’s last theorem for n = 4 by outlining
the proofs of lemmas 3.3.1-3.3.3 and the proof of the setting where b and ¢ are both
odd. Specifically, you should assume in exercises 62—-69 that b and ¢ have opposite
parity (as in lemmas 3.3.1-3.3.3). Then assume in exercise 70 that b and c are both
odd (to prove the last case).

62. Working in the direction of proving lemma 3.3.1 in exercise 63, prove that
gcd(c? + b2, ¢? — b?) = 1. Develop a proof by contradiction, assuming there
exists a prime divisor p of ¢? 4 b? and ¢? — b?. Since ¢ + b? is odd, p # 2.
Since p divides both ¢ + b? and ¢* — b?, p divides their sum 2¢?, and
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63.

64.

65.

66.

67.

68.

69.

70.

so p divides c¢. Since p now divides both ¢? and ¢* — b?, p also divides
b. Explain why theorem 3.3.4 provides a contradiction and conclude that
ged(c? + b%, ¢ — b?) = 1.

Assume the integer triple (a, b, c¢) solves a? + b* = ¢* with ¢ the least such
positive integer, and that b and ¢ have opposite parity. Using the prime
factorization of the integer a and the result from exercise 62, explain why
the equation (¢*> 4 b%)(c> — b?) = ¢* — b* = a* implies that both of the
factors must be squares whose greatest common divisor is 1; that is, there
exist positive integers s, ¢ € N such that ged(s, ) = 1, ¢* + b> = s> and
¢? — b> = 1. This completes the proof of lemma 3.3.1.

Working in the context of lemma 3.3.2, prove that the integer triple («, v, c) is
Pythagorean by substitutingu = (s+1)/2 and v = (s —¢)/2 into the expression
u? + v? and expanding the resulting expression to obtain (s> + 12)/2 = ¢?.

Working in the context of lemma 3.3.2, prove that the integers u and v have
opposite parity with u = 2m? and v = (a*)? for positive integers m and a*
and that ged(u, v) = 1. Using the equation 2uy = (s> — 1%)/2 = b? and the
prime factorization of b, prove that either u or v has a factor of 2; without
loss of generality, assume u is the term with this factor of 2. Then use the
prime factorization of b and 2uv = b to prove the existence of the desired m
and a*. Finally, give a proof by contradiction that ¥ and v have no common
prime divisors: assume p divides both, prove that p would then divide both
2s=(s+1)+(s—1t)and 2t = (s + t) — (s — 1), and apply lemma 3.3.1 to
conclude that ged(u, v) = 1.

Working in the context of lemma 3.3.3, use the prime factorization of v and
the facts that v> = (¢ — u)(c 4 u) and gcd(c — u, ¢ + u) = 1 to show that ¢ + u
and ¢ — u are squares; in other words, prove that there exist positive integers
eand f with e? = c +uand f2 = ¢ — u.

Working in the context of lemma 3.3.3 and using the notation from exercise 66,
let x and y be positive integers defined by 2x = e + f and 2y = e — f. Using
the fact that (u, v, ¢) is a Pythagorean triple and the results of exercise 66,
prove that v = x> — y? (the second fact stated in lemma 3.3.3).

Working in the context of lemma 3.3.3 and exercises 66—67 and using the facts
that u = (¢> —f?)/2 and ¢ = (¢ 4+ f2)/2, prove that u = 2xy and ¢ = x> + y?
(the first and third facts stated in lemma 3.3.3).

Prove the last fact stated in lemma 3.3.3; that is, prove that gcd(x, y) = 1.
Develop a proof by contradiction, assuming p is a prime divisor of both
x and y. Use the fact that v = x> — y? to conclude that p must divide v.
But p also divides e = x + y and f = x — y, and so p is a divisor of c,
since 2¢ = (¢ + u) + (¢ — u) = e* + f2. Finally, p is a divisor of b, since
2b* = 5% — 1> = (s — t)(s + 1) = 2u - 2v and p divides v. This analysis shows
p is a common divisor of ¢ and b, which contradicts theorem 3.3.4.

Complete the proof of Fermat’s last theorem for n = 4 by showing that if there

exist positive integers a, b, ¢ with b and ¢ both odd such that a?+bt=c* (the
reformulated version of a* + b* = c4), then a contradiction results. Under the
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assumption that such b and ¢ are both odd (and so a is even) and a” + b* = ¢*

with c the least such positive integer, prove each of the following statements.

(a) Theorem 3.3.4 asserts that b and ¢ have no common prime divisors.
Prove by contradiction that ¢? + b> and ¢> — b*> have a unique
common prime divisor of 2.

(b) Using the result from part (a), prove that gcd(a, b, ¢) = 1 by showing
that a and b have no common prime divisors, and that @ and ¢ have
no common prime divisors. Conclude that ged(c* +a,c? —a)=1.

(c) Algebraically manipulate a®> + b* = ¢* to show that b* = (c? + a)
(c* — a). Writing b in terms of its prime factorization and using
gcd(c2 +a,c?— a) = 1 from part (b), prove that there exist s, r € N
such that ¢Z 4+ a = s? and ¢ — a = #2. Furthermore, note that s > 7
and that both s and ¢ are odd since ¢ is odd and a is even.

(d) Working with s and ¢ from part (c), define positive integers x and y
such that 2x = s 4+ ¢ and 2y = s — ¢ (note s and ¢ are both odd); thus,
x>y, s=x+y,andt = x — y. Using ged(c? + a, ¢* — a) = 1 from
part (b), prove that gcd(x, y) = 1.

(e) Prove that x and y from part (d) satisfy a = 2xy, b> = x> — y?, and
2 =x% 4y

(f) Using the identities from part (e), prove that (be)* + y4 = x* with
0 < x < ¢, and explain why this is a contradiction of our assumption.

3.4 Irrational Numbers and Fields

This chapter’s study of number systems continues by considering extensions of the
integers Z to other well-known number systems, including the rationals Q, the reals R,
and the complex numbers C. Definition 2.1.1 in section 2.1 defined these sets of
numbers, and example 2.1.4 in section 2.1 identified the proper subset relationships
that exist among these sets of numbers: ¥ ¢ N ¢ Z ¢ Q ¢ R < C. Wecan
think of these sets of numbers as arising from successive closure operations on each
set to obtain the next in the sequence. This section examines such definitions of one
set in terms of the next, and then extends the study of groups to the study of sets with
two binary operations that form a “field.”

We first consider the relationship between the integers Z and the rational
numbers Q. The extension of Z to Q follows from considering ratios of integers.
The definition expresses the rational numbers as

Q = [% : m,neZwithn;ﬁO}.

The next question asks you to verify that the set of Z is a proper subset of the set of Q.

Question 3.4.1 (a) Express the integers 2 and —3 as a ratio of two integers m/n.
(b) Prove that Z € Q by expressing an arbitrary k € Z as a ratio m/n of two
integers m and n with n nonzero.
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(c) Prove that Z C Q by finding a ratio m/n of two integers that is not itself an
integer.
(d) How many rational numbers are not integers?
|

We now consider the relationship between the rational numbers Q and the
continuum of the real line R. This study began with the Greeks, who were particularly
enamored of the rationals and, at one time, believed that every number could be
expressed as a ratio of two integers. The Pythagorean theorem asserts that for every
right triangle, the square of the hypotenuse is equal to the sum of the squares of the
other two sides. If we consider an isosceles right triangle with a = b = 1, then the
length of the hypotenuse ¢ is ¢ = 12 4+ 1> = 1 + 1 = 2, which implies ¢ = V2. And
so the Greeks thought of +/2 in terms of geometry — as the distance determined by the
hypotenuse of this simple triangle. In more recent centuries, as the sophistication of
algebraic notation and manipulation has increased, mathematicians have also come to
think of +/2 algebraically—as the solution of the polynomial equation x> — 2 = 0; this
perspective is developed in Section 3.5.

As the Pythagoreans investigated this number’s properties, they recognized that
/2 is not a rational number, but is instead irrational. In this setting, “irrational” simply
means not rational; the other English usage of the word “irrational” is in reference to
mental activities rather than numbers and is attributable to the common Greek linguistic
root shared by “ratio” and “reason.”

We consider a proof that +/2 is irrational and explore some natural extensions of
this result to prove that other real numbers are irrational. Over the centuries, many
different proofs have been given for the irrationality of +/2. In a famous book entitled
A Mathematician’s Apology, the English mathematician G. H. Hardy [112] praised
the intrinsic beauty of mathematics and his love for mathematical results free of
applications. Hardy highlighted the algebraic proof we study in this text that /2 is
irrational as one of the most elegant proofs in mathematics. In preparation for presenting
this proof, the following question considers common factors shared by numerators and
denominators of rational numbers.

Question 3.4.2 For a rational number of the form %, the integer m is called the numerator and
n is called the denominator. Sometimes the numerator and denominator are not
relatively prime, but share a common factor; in this case the common factors can
be cancelled and the rational number expressed in lowest terms. Express each
rational number as a fraction in lowest terms.

2.965
2.2965
@ 10,000 ©
10, 505
k) 1
(b) —o ) 0.10505

With this terminology in hand, consider the following proof of the irrationality

of +/2.
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Theorem 3.4.1 The square root of two is irrational.

Proof This classical algebraic proof proceeds by contradiction, assuming that /2 is

rational and working toward a contradiction.

From the assumption that +/2 is rational, there exist integers m and n (with n
nonzero) such that V2 =m /n. Furthermore, we may assume that m and n share
no common factors; any common divisor could be factored out and cancelled.
A contradiction is obtained from these assumptions by showing that m and n must
actually share a common factor of 2.

Since /2 = m/n, we have m = /2 - n and so m? = 2n2. The fact that 2
divides m? implies 2 divides m (see exercise 15 in section 3.1 or exercise 15 at the
end of this section). Therefore, m = 2k for some k € Z. Substituting this term into
the expression m?> = 2n?, we have (2k)> = 2n*. Expanding gives us 4k*> = 2n?,
which implies that 2k> = »?. This same line of argument also proves that n is even.
Since m and n are both even, they have a common divisor of 2, contradicting the
assumption that m and n share no common factor.

|

Before considering extensions of this result, we pause to reflect on the significance
of the proof that +/2 is irrational and the integrity of the Pythagoreans in accepting the
results of their intellectual explorations. For perhaps much of your mathematical life,
you have been aware of the existence of irrational numbers such as 7, e, and V2. In
contrast, the Pythagoreans mistakenly first thought of all numbers as ratios of integers,
and much of their pseudoreligious philosophy hinged on ratio relationships among
integers. The realization that /2 is irrational must have initially upset their world view;
dramatic, apocryphal stories describe the first Pythagorean to recognize this proof as
being thrown overboard in the Mediterranean Sea to drown. And yet, the Pythagoreans
recognized mathematical truth and proof as absolute, and the mathematicians of
the sixth century B.C.E. accepted the veracity of this result and its consequences. In
subsequent years, mathematicians eventually came to recognize just how fundamental
the irrational numbers are to an understanding of the continuum of the real number
line, as we will see in our continuing study of the reals.

The next question considers a natural extension of theorem 3.4.1 to the next prime
number 3, and question 3.4 extends this result to any prime p. Both questions continue
using the fact that if p is a prime number, n is an integer, and p divides n?, then
p divides n.

Question 3.4.3 The following questions develop a proof that 4/3 is irrational. The proof proceeds

by contradiction, assuming +/3 is rational and working toward the contradiction
that the numerator and denominator of a rational expression for +/3 in lowest terms
must actually share a common factor of 3.
First assume that /3 is rational. By the definition, there exist integers m and
n # 0 such that V3= m/n. Furthermore, assume m/n is in lowest terms, so that
m and n do not share any common factors.
(a) Algebraically manipulate /3 = m/n and determine an expression for m? i
terms of n.
(b) Working with the expression for m? from part (a), prove that m is a multiple
of 3, and so m = 3k for some integer k € Z.

n
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Question 3.4.4

(c) Substituting into the expression for m? from part (b), find an expression for
n? in terms of k and prove that n is a multiple of 3.

(d) What common factor is share by m and n?

(e) State the resulting contradiction and conclusion.

(f) Based on your answers to these questions, write a proof that /3 is
irrational, using complete sentences and supporting algebraic computations
at appropriate points in the argument.

|

Prove that if p is a prime number, then ,/p is irrational. -

Thus far, rational and irrational numbers have been defined in terms of the ability

to represent them as fractions of integers. These numbers are also characterized by
their decimal expansions. Consider the following theorem.

Theorem 3.4.2 A real numberr € R isrational exactly when the decimal expansion of r terminates

or repeats periodically, while a real number r € R is irrational when the decimal
expansion of r is nonterminating and nonrepeating.

Theorem 3.4.2 may be familiar from your earlier studies in mathematics. The

proof of this result is beyond the scope of this text and is left for your later studies.
Even so, this description of rational and irrational numbers in terms of their decimal
expansions is helpful in many settings.

Example 3.4.1

We consider some examples of decimal expansions of rational and irrational
numbers.
Long division of integers produces the following decimal expansions.

1 1 =
- =0.125 —=0.111...=0.1
8 9

In contrast, the following irrational numbers have infinite, nonrepeating decimal
expansions, where

e= lim (1 + 1/n)"
n—>oo
and 7 is defined as the circumference of a circle with diameter 1.
V2 =1.4142356. .. e=12.718281828... = 3.14159265...

Although irrational numbers require infinite decimal expansions to be expressed

exactly, humans and computers are only capable of manipulating finite decimal

expansions. As such, identifying accurate finite approximations of irrational numbers

can be an important goal in a study of the irrationals and has become a common topic in

the sequence of calculus courses. On a less serious note, there even exist societies and

contests devoted to memorizing initial parts of the decimal expansion of 7, sometimes

using mnemonics, such as “How I wish I could enumerate pi easily today” (the number
of letters in each word is the first part of the expansion of 7). How many digits of &
do you know by heart?
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The history of proving 7 and e irrational is interesting. While the ancient Greeks
knew about the number 7 and “believed” it was irrational, it was not until 1768 that
the first proof of the irrationality of 7 was given by the Johann Heinrich Lambert,
a mathematician from the Alsace—Lorraine region on the Swiss—German border. In
1794, the French mathematician Adrien-Marie Legendre proved 77 is irrational. The
definition of e as the limit

e= lim (1 + 1/n)"
n—>0oo

was givenin 1683 by the Swiss mathematician Jakob (Jacques) Bernoulli. Euler proved
e is irrational in 1737, and a simple proof of this result is given with theorem 3.4.3
below. In addition to his work with 7z, Lambert also proved that ¢” is irrational for
any n € Z*. In 1996, the Russian mathematician Yuri Nesterenko from Moscow State
University proved that = + €7 is irrational. At the same time, the (ir)rationality of
many numbers is still an open question, including ¢, 2¢, and V2,

Theorem 3.4.3 The real number e is irrational.

Proof This result uses some results about power series from calculus. The strategy

is to prove that the nonzero real number 1/e is not rational, and so e is not
rational. Substituting x = —1 into the power series e* = ) -, x" /n!, we obtain
the following infinite series.

1 { 1 n 1 1 n 1 1 n 1

e 120 31 4 51 6!
Since this series is an alternating series, its sum 1/e is bounded by consecutive
partial sums. Computing the third partial sum S3 = 1 — 1 4+ 1/2! = 1/2 and the
fourth partial sum S4 =1 — 1/1! 4 1/2! — 1/3! = 1/3, we have the following
inequalities (using a common denominator).

NN
A
Q| =
A
AN W

Considering further successive partial sums produces the following sequence of
inequalities, which can be extended indefinitely.

3 8 1 9 44 1 45 264 1 265

1
< - < -, =< -< = — < - < —, — < - < —, ...
e 6 24 e 24" 120 e 120" 720 e 720

[ Y \)

Notice that in each inequality, the numerators differ by 1 and the denominators
are successive factorials n! withn =2, 3,4, 5, ....

With these observations in hand, we develop a proof by contradiction. Assume
1/eis rational, and so there exist integers p, g € Z with g # Osuchthat 1/e = p/q.
The firstinequality 2/6 < 1/e < 3/6 implies that the denominator ¢ is not a divisor
of 6. If ¢ divides 6, then 1/e could be written as m/6 for some m € Z; but there
does not exist such an integer m with 2 < m < 3. Similarly, the second inequality
8/24 < 1/e < 9/24 implies that the denominator ¢ is not a divisor of 24 = 4!, the
third inequality implies that g is not a divisor of 120 = 5!, and so on. In addition,
q does not divide either n = 1 or n = 2, since 1/e is not equal to either 1 or 1/2.
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Therefore, the denominator of 1/e is not a divisor of n! forany n € N, and so 1/e
is not rational. Since 1/e is not rational, its reciprocal e is not rational.

We now consider the relationship between the rational numbers Q and the
continuum of the real number line R. Every rational number appears in the reals (defined
as signed distances); that is, we can identify every rational with the corresponding
directed distance from the point zero on the real number line. Therefore, Q C R.
Furthermore, this inclusion is proper; there exist irrational real numbers, include ﬁ,
\/5, and e as shown above.

Just as the rationals can be defined in terms of the integers, we might seek to define
the reals in terms of the rationals. Such a definition has been crafted, but it is quite
subtle in nature and was developed only in the nineteenth century. The two approaches
typically studied use either Cauchy sequences or Dedekind cuts, and both require the
use of “infinite” objects to define irrational numbers. Cauchy sequences are named in
honor of Augustin-Louis Cauchy, an insightful French mathematician who published
an impressive 789 mathematical papers covering all areas of mathematics known at
that time. When used to define irrational numbers in the reals, Cauchy sequences are
infinite lists of rationals that converge to a given irrational number.

Dedekind cuts are named in honor of the German mathematician Richard Dedekind,
who thought of this idea on November 24, 1858 and published its definition in Stetigkeit
und Irrationale Zahlen in 1872. Dedekind was Gauss’ last doctoral student and was a
close friend and colleague of many of the leading mathematicians of the time, including
Riemann, Dirichlet, and Cantor. A Dedekind cut defining a given irrational number
consists of a pair of disjoint sets, one containing every rational number less than
the given irrational and one containing every rational number greater. Both Cauchy
sequences and Dedekind cuts provide a rigorous definition of the reals in terms of the
rationals.

Finally, we consider the relationship between the real numbers R and the complex
numbers C = {a + bi : a, b € R}, where i = /—1. The history of mathematician’s
understanding and acceptance of the complex numbers is a bit checkered. The
Babylonians and the ancient Greek mathematicians, including Diophantus in the third
century C.E., labeled such equations as x> 4+ 1 = 0 “meaningless.” In 1572, the Italian
mathematician Rafael Bombelli examined the equation x> 4 1 = 0 and recognized the
need to extend the reals to include “imaginary” numbers such as “i = /—1.” This
recognition was a significant step forward, although the mathematical community was
not convinced of the legitimacy and value of studying complex numbers until the early
1800s. Section 7.1 provides more details about the history of complex numbers.

From the definition of C, every real number r € R is in the set of complex numbers
since r = r +0i € C. Furthermore, the reals are a proper subset of the complex numbers,
since i = +/—1 is not real. Among other things, i does not satisfy the property that r> > 0
for every r € R (see exercises 67—70 at the end of this section). Thus, the real numbers
are a proper subset of the complex numbers.

For the remainder of this section, we study these number systems from the
perspective of their abstract algebraic properties, adopting the approach followed in
chapter 2 when describing groups. In this setting, we consider sets of numbers with
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both additive and multiplicative operations and that satisfy the group properties for
both operations. Such sets, together with their operations, are known as fields.

The properties satisfied by a field are more extensive than the four group properties
applied to both binary operations (as expressed in definition 2.4.1 of section 2.4).
Perhaps this need for extra conditions seems natural since a field involves two
operations on the base set, rather than the one operation of a group. These extra
properties will be familiar, since they are satisfied by the standard addition and
multiplication operations of the real numbers; the next question begins a study of
the real numbers as a field.

Question 3.4.5 Recall that R under standard addition is an Abelian group.

(a) Identify the additive identity of R.
(b) Identify the additive inverse of an arbitrary element r € R.

On the other hand, R under standard multiplication is not a group—although it
comes very close. Only the inverse property is not satisfied, and this fails for just
one real number.

(c) What real number r € R does not have a multiplicative inverse?
The nonzero reals R* = R\{0} is a multiplicative group.

(d) Identify the multiplicative identity of R*.
(e) Identify the multiplicative inverse of an arbitrary element » € R*.
|

As question 3.4.5 indicates, standard addition and standard multiplication are both
well-behaved operations on the real numbers, satisfying the properties of an Abelian
group (except for the additive identity O under multiplication). The definition of a field
reflects the properties of these two operations on the reals, and there exist many other
important and familiar examples of fields. By articulating and working with these
properties from a general, abstract perspective, mathematicians gain insight and prove
results that can be applied to a host of other settings.

Definition 3.4.1 A set F under two binary operations +, x is a field when the following three

properties hold.

1. The set F is an Abelian group under the “addition” operation +. The additive
identity is called the zero and is denoted by 0.

2. The set F* = F\{0} is an Abelian group under the ‘“multiplication”
operation x. The multiplicative identity is called the unity and is denoted
by 1.

3. The multiplication operation x distributes over the addition operation +; that
is,ax (b4+c)=axb+a xc, foreverya,b,c € F.

The references to addition +, multiplication X, zero 0, and unity 1 in the above
definition are notational. While some fields are composed of numbers with binary
operations that correspond exactly with our intuitive understanding of these symbols,
there also exist fields of vectors, functions, and other mathematical objects. In these
contexts 0, 1, and the two binary operations are naturally different than the familiar
operations that inspired their names. So why use this potentially ambiguous and
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confusing notation? In part, the answer lies in the context in which these notions
were first isolated, the historical development of these ideas, and the ongoing tradition
and culture of mathematicians. In addition, fields do behave like the real numbers under
standard addition and multiplication, and so hopefully our intuitive understanding of
the reals facilitates the study of other fields.

Given an abstract definition, mathematicians often immediately identify examples
to sharpen their understanding. Working with concrete objects may throw further light
on some mathematical behavior, perhaps leading to a modification of the definition.
Furthermore, if a proposed definition is too strong and few objects satisfy the designated
properties, then the scope of any results or insights is limited. On the other hand,
if the proposed definition is too weak, then relatively few results may be provable.
The definition of a field lies in the happy middle ground—strong enough to produce
many interesting results and weak enough that many mathematical objects satisfy its
conditions.

In addition to the real numbers, the set of rationals under standard addition
and multiplication, the complex numbers under appropriately defined operations, and
certain sets Z, under modular addition and multiplication are all fields. For the rest of
this section we consider the field properties of the complex numbers and the sets Z,,.

An investigation of the field structure of the complex numbers requires the
definition of addition and multiplication operations. If a 4+ bi and ¢ + di are complex
numbers, then addition is defined componentwise as follows.

(a+bi) + (c+di)=(@a+c) + b+ ad)i

For example, (1 4+ 2i) + (3 +4i) = (1 +3) + (2 + 4)i = 4 + 6i. Multiplication of
complex numbers uses the “F.O.I.L.” method (multiplying First, Outer, Inner, and Last
terms) and then applies the identity i> = —1 to simplify the resulting expression; the
general algebraic formula follows.

(a—+ bi)-(c+di) = ac + adi + bci + bdi® = (ac — bd) + (ad + be)i

For example, (1 +2i)- 3+4i) = 1-3+1-4i4+2-3i+2-4% = (1-3—-2-4)+
(1-4+42-3)i = =5+ 10i.

Question 3.4.6 Add and multiply each pair of complex numbers.

(@ 14+i and 3+5i (¢ 2—i and —4+43i
(b) 2 and i (d i and 3+5i

The following question outlines the proof that the set of complex numbers is a
field under these addition and multiplication operations. In addition to the appropriate
algebraic manipulations, the key insight is to recognize that complex numbers have two
real components and to use the corresponding properties of the field of real numbers.

Question 3.4.7 This question considers the field properties of the set of complex numbers C under
addition and multiplication.

The set of complex numbers is closed under both addition and multiplication

and these two operations are both associative on the complex numbers. These prop-

erties hold because the real numbers are closed and associative under both addition
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and multiplication. The detailed computations supporting these claims are left for
the reader. Verify that the other field properties hold for (C, +, -) in response to
the following questions.

(a) Prove that 0 = 0 + 0i is the additive identity of C.

(b) Find the additive inverse of an arbitrary complex number a + bi.

(c) Prove that complex addition is commutative, using the fact that addition of
real numbers is commutative.

(d) Prove that 1 = 1+ 0i is the multiplicative identity of C.

(e) Find the multiplicative inverse of an arbitrary complex number a + bi and
express this inverse in the form ¢ 4- di. Use the following identity in answering
this question.

1 a— bi
a+bi  (a+ bi)a— bi)
(f) Prove that complex multiplication is commutative, using the fact that

multiplication of real numbers is commutative.
(g) Prove that multiplication distributes across addition for arbitrary complex
numbers a + bi, ¢ + di, and e + fi.
|
The fields studied thus far have all been infinite, but finite fields exist. Finite fields

play a pivotal role in the abstract analysis of solutions of polynomials. As it turns out,
many sets of the form Z, are fields under modular addition and multiplication; the
following theorem characterizes exactly which of these sets are fields.

Theorem 3.4.4 The set Z, under addition mod p and multiplication mod p is a field iff p € Z is a

Proof

prime number.

Assuming p is prime, we prove that Zj, is a field. Theorem 2.4.1 from section 2.4
asserts that Z, under addition mod p is a group for every prime number p.
Furthermore, because integer addition is commutative, so is modular addition.

a®b = (a+b)ymodp = (b+a)ymodp = bbha

Thus, Z, under addition mod p is an Abelian group.

Similarly, theorem 2.4.3 from section 2.4 asserts that U(p) = {1,2,...,
p — 1} = Z,\{0} under multiplication mod p is a group for every prime
p. Furthermore, because integer multiplication is commutative, so is modular
multiplication.

a®b = (a-bymodp = (b-a)ymodp = bOa

Thus, Z,\ {0} under multiplication mod p is an Abelian group.
Finally, since integer multiplication distributes over integer addition, modular
multiplication distributes over modular addition.

a®b®dc) [a-(b+c)]modp

= [a-b+a-c]modp
= (a-bymodp @ (a-c)modp
= (@Ob) ® (abo)
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Thus Z,, under modular addition and multiplication is a field.
The other half of the biconditional is often proven using the contrapositive: if
n € Zis nonprime, then Zj, is not a field under modular addition and multiplication.
Question 3.4.9 below considers a specific instance of this result, and exercise 64
at the end of the section asks for the general proof.
|

As with groups, Cayley tables play a role in the study and analysis of finite sets
under binary operations. Recall that Cayley tables readily determine closure, identity,
and inverses for finite sets, and so they can help prove or disprove that a given set with
two binary operations is a field.

Question 3.4.8 Consider the field Z5 under addition mod 5 and multiplication mod 5.

(a) List the five elements of Zs.

(b) Compute the Cayley table for Zs under addition mod 5.

(c) Using the Cayley table from part (b), argue that Zs is closed under addition
mod 5.

(d) Identify the additive identity of Zs.

(e) Determine the additive inverse of each element from Zs.

(f) Compute the Cayley table for Zs \ {0} = U(5) under multiplication
mod 5.

(g) Using the Cayley table from part (f), argue that Zs \ {0} is closed under
multiplication mod 5.

(h) Identify the multiplicative identity of Zs.

(i) Determine the multiplicative inverse of each element from Zs \ {0}.

(j) Multiplication mod 5 distributes across addition mod 5. Demonstrate that this
general property a © (b ® ¢) = a ® b @ a © c holds for the particular triple
of elementsa = 2,b = 3, ¢ = 4 from Zs.

|

A Cayley table is also helpful for showing that a set with binary operations is not
a field. The next question considers a number system for which the addition operation
satisfies the field properties, but the multiplication operation does not.

Question 3.4.9 Consider the set Z4 under addition mod 4 and multiplication mod 4.

(a) List the four elements of Z4.
(b) Compute the Cayley table for Z4 under addition mod 4.
(c) Compute the Cayley table for Z4 \ {0} under multiplication mod 4.
(d) Based on one of the Cayley tables from parts (b) and (c), argue that Z4 is not
a field because the inverse property fails for one of these binary operations.
]

Finally, the next example identifies an infinite set with binary operations that is not
afield. Again, the addition operation satisfies the field properties, but the multiplication
operation does not.

Example 3.4.2 The set of integers under standard addition is an Abelian group. Furthermore, mul-
tiplication distributes over addition, as noted in the proof of theorem 3.4.4 above.
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However, the nonzero integers are not an Abelian group under multiplication;
in particular, only 1 and —1 have multiplicative inverses. Therefore, the set of
integers under standard addition and multiplication is not a field.

3.4.1 Reading Questions for Section 3.4

0 o

10.

12.

Define the rational numbers Q in terms of the integers Z.

Give an example verifying that Z is a proper subset of Q.

State theorem 3.4.1 and the generalization of this result to an arbitrary prime
number.

If p is a prime number, then ,/p is the solution of what algebraic equation?
Discuss the distinction between decimal representations of rational and
irrational numbers.

Name two approaches to defining the real numbers R in terms of the rational
numbers Q.

Give an example verifying that Q is a proper subset of R.

Define the complex numbers C in terms of the real numbers R.

Give an example verifying that R is a proper subset of C.

State the three properties satisfied by a field F' under two binary operations.

. Give four examples of a field—two infinite and two finite.

Provide two examples of a set under two binary operations that is not a field—
one infinite and one finite.

3.4.2 Exercises for Section 3.4

In exercises 1-4, express each rational number as a fraction in lowest terms.

346 3. 0.953
" 1,000
2
783,552 4. 4456423
10, 000

Exercises 5-8 consider how to manipulate a repeating decimal expression to obtain
an equivalent fraction. For example, 0.9 = 1 by the following sequence of algebraic

manipulations.
10x = 99

x=09 = 10x=9.9 = - x = 09 = x=1
9x = 9

In exercises 5-8, use the technique demonstrated above to express the following
rational numbers as a fraction in lowest terms.

5.
6.

0.7 7. 0.25
0.79 8. 0.545
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Exercises 9—12 consider decimal expansions and sequences of rational and irrational
numbers.

9.

10.

11.

12.

As noted in example 3.4.1, the decimal expansion of e begins 2.718281828.
Explain why the four digits 1828 cannot repeat indefinitely.

Decimal expressions that are nonterminating and nonrepeating represent
irrational numbers. For example, Lindemann studied the irrational number
0.101001000100001 . .. on his way to proving that s is irrational. Using
Lindemann’s idea, find four distinct irrational numbers. Have some fun and
think up some wild and wacky irrational numbers!

Prove that there exist infinitely many rational numbers by listing an infinite
sequence of distinct rational numbers.

Prove that there exist infinitely many irrational numbers by listing an infinite
sequence of distinct irrational numbers.

Exercises 13—17 consider divisibility properties of integers. Recall that for m, n € Z,
we say that n divides m when there exists ¢ € Z such thatm = n - q.
In exercises 13—17, prove each mathematical statement.

13.
14.
15.
16.
17.

If 2 divides an integer n, then 4 divides n?.

If a prime p divides an integer n, then p? divides n>.
If a prime p divides n?, then p divides n.

If a prime p divides n?, then p divides n.

If a prime p divides n* for k € N, then p divides n.

Exercises 18-27 consider extensions and variations on the Pythagoreans’ proof that
the square root of two is irrational.

18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

Prove that +/5 is irrational.

Prove that +/7 is irrational.

Prove that if p is a prime number, then ,/p is irrational.

Prove that /6 is irrational.

Prove that if p is a prime number greater than 2, then +/2p is irrational.
Prove that if p and ¢ are distinct prime numbers, then ,/pg is irrational.
Prove that ~/2 is irrational. Hint: Use exercise 16.

Prove that +/2 is irrational for every k > 2. Hint: Use exercise 17.

We know that /4 = 2 is rational. In the Pythagorean proof that /2 is irrational
identify the first place where the proof fails to hold for /4.

Give two examples demonstrating that if p and g are distinct prime numbers,
then /p + ¢ may or may not be irrational.

In exercises 28-33, give an example of each type of number, or explain why such a
number does not exist.

28.
29.
30.
31.
32.
33.

A rational number that is not an integer.
A real number that is not rational.

A rational number that is not real.

An irrational number that is not complex.
A complex number that is not real.

A number that is not complex.
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In exercises 34-39, add and multiply each pair of complex numbers.

34. 34+ 2iand 4 + 5i 37. 12 and 45i
35. 2+4+iand 5 — 3i 38. 1 +5iand 1 — 5i
36. 6 —2iand 4 + 2i 39. a+ biand a — bi, where a, b € R

In exercises 40-45, find the additive and multiplicative inverse of each complex
number.

40. 84 3i 43. i
41. 7—2i 44. =2
42. =3 45i 45. =2

Exercises 46—47 consider further computations with complex numbers.

46. For u, v € C, the fraction u/v can be thought of as u - v~1: in other words, as

u times the multiplicative inverse of v. Using this approach, find the value of
(1 +/@2 — 3i0).
47. Prove that w = (1/\/5) + (1/[2)1' is v/i by computing w? = w - w.

In exercises 48-51, each set defined below is a field under the given pair of
binary operations. Determine both the additive and multiplicative inverse of an
arbitrary element of the field. (Hint: Cayley tables are helpful for answering these
questions.)

48. {0, 2,4, 6, 8} under addition and multiplication mod 10.
49. Zs [ﬁ] = {a+ b3 : a, b € Zs)} under addition and multiplication mod 5.

50. Q [ﬁ] = {a 4 b+/2 : a, b € Q} under standard addition and multiplication

Hint: Rationalize the denominator of 1/(a + b+/2) to find the multiplicative
inverse.

51. Q [ﬁ] = {a + b3 : a, b € Q} under standard addition and multiplication.

In exercises 52-56, compute the additive and multiplicative Cayley tables for each
field.

52. Zs

53. Zs

54. 7

55. {0, 2, 4, 6, 8} under mod 10 operations
56. Zslil={a+bi:a,b € Z3}

In exercises 57-66, each set is not a field under the given pair of binary operations.
Identify the field axioms that fail to hold and give a counterexample.

57. The natural numbers N under standard addition and multiplication.

58. The integers Z under standard addition and multiplication.

59. The set nZ = {k - n : k € Z} (that is, the set of all multiples of an integer n)
under standard addition and multiplication.

60. The set {0, 1} under standard addition and multiplication.

61. The set {—1, 0, 1} under standard addition and multiplication.
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62. The set Z4 under addition mod 4 and multiplication mod 4.

63. The set Zg under addition mod 6 and multiplication mod 6.

64. The set Z, under addition mod » and multiplication mod n, when » is not a
prime number.

65. The set of ordered pairs of integers 7Z? = {(m,n) : m,n € Z} under
componentwise addition and multiplication.

66. The set of ordered pairs of real numbers R? = {(r,s) : r,s € R} under
componentwise addition and multiplication.

Exercises 67-70 consider ordered fields and some of their basic properties. An
ordered field (F, 4+, ) is a field with a binary relation < satisfying the following
properties.

e comparability: Forall x,y € F, exactly one of x < y,x =y, y < x is true.
e transitivity: Forall x,y,z€ F,ifx <yandy < z, thenx < z.
 addition preserves order: Forallx,y,z € F,ifx <y,thenx+z<y+z.

* multiplication preserves positives: For all x,y € F, if x > 0 and y > 0, then
x-y>0.

In exercises 67-70, consider the ordered field of real numbers and prove the following
mathematical statements.

67. Ifr,s e R,then (—r)-s = —(r-s)and r - (—s) = —(r - 5), the unique additive
inverse of r - s.

68. If r,s € R, then (—r) - (—s) =r-s.

69. If r € R, then r < 0 implies —r > 0. Similarly, » > O implies —r < 0

70. If r € R* = R\ {0}, then r2 > 0.

3.5 Polynomials and Transcendental Numbers

This section continues to study the basic number systems: the natural numbers; integers;
rationals; reals; and complex numbers. The previous section verified the proper subset
relationships among these sets of numbers, which clarified the numbers these sets do
and do not share in common. This section revisits each number system, considering
relationships among numbers that arise from variable expressions. Section 3.3 took
the first steps in this direction with the study of the Pythagorean theorem and Fermat’s
last theorem.

The primary focus is polynomial equations. Polynomials are the simplest and
most basic of variable expressions, and mathematicians have devoted many centuries
of effort to the study of their solutions. Context plays a key role in this investigation—
we must take care to identify the number system in which solutions are sought. The
first step is the formal definition of a polynomial.

Definition 3.5.1 A polynomial over a set F is an expression of the form a,x" + --- + aix + agp
with nonnegative integer powers and coefficients a,, . . ., agp € F. The symbol x is
a variable that can take on any value in a given variable domain. The value n is



214 A Transition to Advanced Mathematics

the greatest power of x with a nonzero coefficient and is called the degree of the
polynomial. A nonzero constant polynomial is said to have degree 0.

Polynomials are widely studied in mathematics courses. Most often, both the
coefficient set F and the domain of the variable x are a field; when they are left
unspecified, both of these sets are assumed to be the field C.

Example 3.5.1 The expression 5x + 6x + 1 is a polynomial over C of degree 3. The coefficients
of this polynomial are a3 = 5, a» = 0, a; = 6, and ap = 1. Notice that this same
expression could be interpreted as a polynomial over Z7; in this case, F = Z7 must
be explicitly identified. Many familiar variable expressions are not polynomials,
including x% + \/x, sin(x), ¢*, and x + y (though x + y is called a polynomial of
two variables).

|

Question 3.5.1 Determine the degree and the coefficients of each polynomial over C. For the first
two polynomials, also identify a finite field that could serve as F.

(@ 3x*+2x* —Ta? 4+ 5x— 1 (© (14 ix*+2ix—4
(b) 2x° +4x% +x (d 2ix”+A+10)
[
Question 3.5.2 Identify polynomials with degree 17, 2, 1, and 0. .

Question 3.5.3  State three variable expressions that are not polynomials; give examples different
from those in example 3.5.1. =
Work with polynomials often focuses around the study of zeros of polynomial

equations; that is, elements of the variable domain for which the polynomial’s value
equals 0. Zeros are often referred to as the solutions of the equation obtained by setting
the polynomial equal to O; zeros are also said to satisfy the corresponding polynomial
equation. Solving polynomial equations is a common exercise in high school and early
undergraduate mathematics courses, where zeros are shown to be significant in many
settings. For example, zeros provide information in calculus about maximum and
minimum polynomial function values. In practical applications, polynomials’ zeros
often identify the key features of mathematical models, providing insights into the
physical and social world.

Definition 3.5.2 A zero of the polynomial a,x" + --- 4+ ayx + ag over a set F is an element w of
the variable domain for which a,w" + - - - + ayw + ag = 0.

Example 3.5.2 The integer x = 2 is a zero of the polynomial 3x> — 12 because 3 - 22 — 12 =

12 — 12 = 0. Similarly, x = —2 is also a zero of this same polynomial. On the
other hand, x = 1 is not a zero of 3x2 — 12 because 3-12—12=3—12 = —9 #0.
|

Question 3.5.4 (a) Verify that x = 3 is a zero of 2x3 — 5x% — 9x + 18 over C.
(b) Verify that x = 3 is a zero of 2x3 — 5x> — 9x + 18 = 2x> + x? + 3x over Z.
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(c) Verify that x = 2 is not a zero 2x> — 5x*> — 9x + 18 over C.
(d) Verify that x = i is a zero of 2x> + 3x? + 2x + 3 over C.

Example 3.5.3 The polynomial 2x> — 10x 4 12 has two zeros (x = 2 and x = 3), while the
polynomial x> — 2x + 1 has only one zero (x = 1). If ¢ is a zero of a polynomial,
then x — c is a factor of the polynomial. Thus, x — 2 and x — 3 are both factors
of 2x> — 10x + 12, and this polynomial can be written as 2x> — 10x + 12 =
2(x — 2)(x — 3). Similarly, x> — 2x + 1 = (x — 1)2.

The power of a linear term x — c is referred to as the multiplicity of the zero c.
Thus, 2x% — 10x + 12 has two zeros each with multiplicity 1, and x% —2x + 1 has
a single zero with multiplicity 2.

In this section, zeros of polynomials are considered as an alternative means of
defining the basic number systems. This study leads to an important classification
of real numbers. Recall that real numbers are either rational or irrational based on
their expressibility as fractions of integers. Real numbers can also be viewed from the
perspective of polynomial equations, with a classification of reals as either algebraic
(expressible as zeros of polynomials) or transcendental (not expressible as zeros of
polynomials).

Working toward this classification of the reals, consider the natural numbers N as
a given number system and generate the integers Z using polynomial equations over N.
In particular, elements of Z are either elements of N or are zeros of the polynomials
over N of the form x or x 4+ n, where n € N.

In a similar way, QQ can be obtained from Z. Any rational number x is of the
form m/n, where m, n € Z and n # 0. For m/n, we have nx = m, which implies that
nx —m = 0. In short, we obtain QQ by starting with Z and identifying all zeros of the
polynomials n - x — m over Z.

As suggested in the last section, the real numbers R are not so readily obtained
from Q. The definition of R in terms of Q is typically given using either Cauchy
sequences or Dedekind cuts. Considering the possibility of defining R from Q
using polynomials leads to some very interesting insights and results. Since the
given base set is the rationals, the goal is to identify polynomials over the rationals
whose zeros are irrational numbers. There are many such polynomials; for example,
V2 is a zero of x2 — 2, J2 is a zero of x3 — 2, 2 is a zero of x® — 2, and
so on. This handful of examples demonstrates that polynomials of every degree are
needed just to define the nth roots of two, for every n € N. Similarly, polynomials
of every degree are needed to obtain the nth roots of other integers, including
prime numbers. Thus there does not exist a simple formulaic description for a
subset of polynomials over Q with bounded, finite degree whose zeros generate the
reals R.

Faced with this obstruction to the program of defining the reals as zeros of
polynomials over the rationals, we can either give up or reframe the approach so as
to accomplish as much as possible in terms of the original goal. When grappling with
open questions, mathematicians often need to add limiting assumptions or rearticulate
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goals to proceed to a productive analysis. In this situation, we have been seeking a set of
polynomials with bounded, finite degree over Q that generate R. A natural redirection
is to consider the zeros of every polynomial over Q. Some polynomials over Q do not
have real zeros; for example, x> 4 1 has only complex zeros i and —i. But if we gather
together every real zero of every polynomial over Q, do we obtain the set of all real
numbers? Surprisingly, the answer is no! In this way, there are fundamental limits to
the expressiveness of polynomial equations. In light of this discussion, consider the
following definition.

Definition 3.5.3 Let F C R. An element a € R is called algebraic over F when a is the zero of a

nonzero polynomial over F. An element a € R is called transcendental over F
when a is not algebraic over F. When F = Q, the phrase “over F” is omitted and
a is said to be either algebraic or transcendental.

The eminent Swiss mathematician Leonhard Euler first stated this distinction
among real numbers in 1744, giving the name “transcendental” to nonalgebraic reals
because “they transcend the power of algebraic methods.” Many familiar real numbers
are algebraic over Q.

Example 3.5.4 The real number 1 is algebraic because 1 is a zero of the polynomial x — 1 over Q.

The real number +/2 is algebraic because /2 is a zero of the polynomial x> — 2
over Q.
|

Extending the approach in the first half of example 3.5.4, every rational number
is algebraic. Exercise 23 at the end of this section asserts the more general claim
that every element of a field F is algebraic over F. Furthermore, example 3.5.4 also
shows that some irrational numbers such as +/2 are algebraic. However, not every real
is algebraic, and some of the most famous of irrationals are transcendental. Several
examples are presented in the following theorem, along with the mathematician who
first proved the result and the year of its proof. Notice that these proofs followed over
a century after Euler first isolated the distinction between algebraic and transcendental
numbers in 1744.

Theorem 3.5.1 ¢ (Liouville, 1844) There exist (real) transcendental numbers .

* (Hermite, 1873) The real number e is transcendental.
* (Lindemann, 1882) The real number w is transcendental.

Thus, some of the most significant numbers in mathematics are not only irrational,
but also transcendental. The difficulty of these proofs is reflected by their relatively
recent date of publication. Furthermore, there are many simply described real numbers
whose classification is still undetermined; for example, mathematicians still do not
know if e 4 7 is transcendental!

We pause to describe briefly the three mathematicians associated with theorem 3.5.1.
Joseph Liouville was an accomplished French mathematician who worked in Paris for
much of the nineteenth century. Liouville sought to prove that e is transcendental, and
(while he did not succeed) he made important progress in this direction by proving
the existence of (infinitely many) real transcendental numbers. In 1851, his work on
this same question of proving e transcendental led to a constructive proof that the
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“Liouvillian” number 0.11000100. .. (with one appearing in each n! decimal place
and zero appearing elsewhere) is transcendental.

Charles Hermite was another nineteenth century French mathematician. Hermite
overcame many obstacles (including a physical disability and a somewhat limited
and mediocre education) to become one of the great research mathematicians of his
time. Hermite’s proof that e is transcendental was followed closely by the German
mathematician Ferdinand Lindemann’s result a few years later. In essence, Lindemann
coupled Hermite’s proof with the fact that ¢ = —1 to prove that 7 is transcendental.
This result also provided a negative answer to one of the classical open problems of
ancient Greek mathematics: can we square the circle by constructing a square with the
same area as a given circle using only a ruler and compass? Lindemann’s proof that
is transcendental implies that the circle cannot be squared.

Despite the impossibility of defining R from Q using polynomials, the complex
numbers C are defined from R readily enough. In general, an arbitrary element
a + bi € C is a zero of the quadratic polynomial x> — 2ax + (a> + b?) over R, which
can be verified by direct substitution as follows.

(a + bi)* = 2a(a + bi) + a® + b> = a® — b* + 2abi — 24> — 2abi + a* + b* = 0.
Question 3.5.5 State polynomials over R with the following zeros.

(@ 2+i (c) 3—4i
b) 2 d)
]

The complex numbers possess another important property with respect to
polynomials. Recall that the polynomial x> + 1 does not have a zero in any of
the basic number systems except for C. While i € C provides a zero for x> + 1
(and many other polynomials), a natural question is whether or not there exists a
polynomial over C that does not have a zero in C. In fact, no such polynomial exists;
that is, C is algebraically closed in the sense that every zero of every polynomial
over C is an element of C. This result implies that every polynomial over C can
be expressed as a product of linear polynomials with complex coefficients. This key
insight into the complex numbers has become known as the fundamental theorem
of algebra.

Theorem 3.5.2 Fundamental theorem of algebra A polynomial over C of degree n > 0 has n zeros
in C. These zeros need not be distinct but are counted according to multiplicity.

Sometimes the fundamental theorem of algebra is stated as the assertion that
every polynomial over C of degree n > 0 has a zero; theorem 3.5.2 follows from
this claim by repeated applications of factoring and long division. A proof of the
fundamental theorem of algebra is beyond the scope of this text and is left for your
later studies.

Versions of the fundamental theorem of algebra were stated (but not proven)
by the French mathematicians Albert Girard in 1629 and René Descartes in 1637
(in his seminal treatise La Geometrie). By the mid-1700s Jean Le Rond d’ Alembert
and Leonhard Euler had attempted proofs of this theorem, but their arguments were
incomplete and so unsuccessful. The first known complete proof was given by
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Carl Friedrich Gauss in 1796. Gauss published his first proof of the fundamental
theorem of algebra at the age of 19 as part of his doctoral dissertation at the University
of Helmstedt. Since then, more than 100 different proofs have been given for this result,
and these proofs can be studied in such courses as abstract algebra, number theory,
and complex analysis. During his lifetime, Gauss published four different proofs of
the fundamental theorem of algebra, the last at the age of 70.

Question 3.5.6 Identify every zero and its multiplicity for each polynomial over C.

(@ x—4 ) x*—1
b) x2—2x+1 d x*—1
|

Knowing the existence of n complex zeros for a polynomial over C of degree
n does not necessarily provide much insight into actually finding these zeros. And
so it seems natural to ask, “How can one find the zeros of an arbitrary polynomial
over C?” This question has occupied the attention of mathematicians for centuries;
the most significant breakthrough in this area occurred in the nineteenth century when
Paolo Ruffini, Niels Henrik Abel, and Evariste Galois independently recognized the
impossibility of finding a general formula providing the solutions of polynomials with
sufficient complexity. Working in the direction of understanding these results, we
consider the process of finding zeros of polynomials over C of increasing degree one
case at a time.

3.5.1 Linear Polynomials

For a polynomial of degree n = 1, calculating the single zero is relatively straight-
forward. The unique zero of a - x + b is given by the following.

X=—-
a

When a and b are real numbers, then the meaning of —b/a is apparent. But, what if a
and b are complex? What complex number is associated with the fraction —b/a? For
a=c+diandb =e+ fiwithc,d, e, f, € R, the fraction x = —b/a is expressed as a
complex number in standard form via the following computation.

b e+fi e+fi c—di ce+df de—cf

X = —— = — T = — T T = = + -1

a c+di c+di c—di 2+d? 2+ d?

In other words, —b/a is computed by multiplying both the numerator and the
denominator by the complex conjugate ¢ — di of the denominator ¢ + di.

Example 3.5.5 We express the quotient (2 + i)/(3 — 5i) as a complex number of the form a + bi,

where a, b € R.
Based on the computation modeled above, we obtain the following.

2+i 2+i 3450 6+10i +3i—5 1+13i 1 13

351 3-5 345 9+ 25 = T3 T a3
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Question 3.5.7 Identify the zeros of the following polynomials over C; express complex numbers
that occur as solutions in the standard form a + bi, where a, b € R.

(a) 2x—4 ) e-x+m+1
b) V2-x—38 d 2+3x—12
|

Before considering quadratic polynomials, we mention a bit of the interesting
history of negative numbers. Many early mathematicians did not accept the idea of
negative numbers, including Euclid and Diophantus. The ancient Greeks thought of
numbers as physical lengths or magnitudes, and a negative length made little sense
to them. By the seventh and ninth centuries, Indian and Islamic mathematicians were
working with negative numbers. The first known example of a negative number being
written in an equation is due to the French mathematician Nicolas Chuquet in 1484. But
even as late as 1637, Descartes still referred to negative solutions of equations as “false
roots.” Ultimately, the practical use of negative numbers in commercial record-keeping
brought negative numbers into widespread acceptance and use.

3.5.2 Quadratic Polynomials

For ease of calculation, the rest of this section examines only polynomials over R,
although all of the algorithms we introduce extend to the complex numbers. When
the degree of a polynomial is n = 2, the familiar quadratic formula determines the
two zeros of the polynomial. As early as the seventeenth century B.C.E., Babylonians
understood how to apply the quadratic formula. A specific known example of their work
includes the determination of the two roots of x2 — x — 87 = 0 as % + 4/349/2. The
following familiar description of the solutions of ax> 4 bx 4 ¢ = 0 was not expressed
until the late sixteenth century, by the French lawyer and mathematician Francois Viete.

—b £ Vb? — 4ac
2a

The term b> — 4ac appearing inside the square root is called the discriminant. The next
example illustrates the use of the quadratic formula.

X =

Example 3.5.6 We identify the zeros of each quadratic.

* The zeros of x2 — 1 are the two real values

_0+£,0—4-1-(-D

==+l
2-1

X

* The zeros of x> — 2x + 1 both equal

24411 _,

.x b
2.1

which has multiplicity two.
* The zeros of x*> 4+ x + 1 are the complex values

I+ JT—4-1-1 1 V3

X = =—=+ —Ii.
2-1 2 2
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The corresponding factorizations of these quadratics are therefore
P-l=@—-Dx+1),x>=2x+1=(x—1)>?
and

X2 x+1=[x+1—~30)/20x + (1 ++/30)/2].
|

Example 3.5.6 illustrates the only possible combinations of zeros for a quadratic
polynomial with real coefficients: a pair of distinct real roots, a real root of multiplicity
two, or a pair of complex conjugates. The form of the quadratic formula forces every
polynomial with real coefficients to have roots that are either real or that occur as
complex conjugate pairs.

Using the quadratic formula to identify the zeros of a quadratic polynomial
with real coefficients is familiar and relatively straightforward, as illustrated above.
However, for quadratics with complex coefficients (which result in a discriminant
that is complex) the mathematics is more subtle. Mathematicians have developed a
well-defined extension of the square root function on real numbers to a square root
function on complex numbers that enables us to express such roots in the standard
form a + bi, where a, b € R. This more advanced discussion of complex numbers is
saved for chapter 7.

Question 3.5.8 Identify the two zeros of the following quadratic polynomials by either directly

factoring the polynomials or using the quadratic formula.

(@ x*+4x+4 (c) 6x2—3x+7
(b) 3x2—5x—2 (d) 8x2—-8x+1

3.5.3 Cubic Polynomials

Polynomials over the complex numbers with degree n = 3 also have a formula that
generates its zeros—one that is more subtle and complicated. The development of
the complete solution for cubic polynomials is due to several Italian mathematicians
during the Renaissance. By 1515, Sciopione del Ferro had identified an approach
to determining the zeros of every cubic polynomial of the form x* 4+ mx + n; such
polynomials are known as depressed cubics. Despite his position as the Chair of
Arithmetic and Geometry at the University of Bologna, del Ferro did not publish
or announce this breakthrough. However, others eventually recognized that such
techniques must exist—del Ferro and his student Antonio Fior were winning multiple
algebra contests, which were all the rage at that time. This recognition inspired Niccol6
Fontana (better known as Tartaglia, or the “stammerer”) in the 1530s to determine
independently del Ferro’s solution. This del Ferro—Tartaglia solution of the depressed
cubic x* + mx + n is the zero x; produced by the following formula.
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Once x; is found, polynomial long division is used to express the cubic as
C4mx+n = (x—x1)~(ax2+bx+c), where a, b, ¢c € C.

Finally, applying the quadratic formula to ax> + bx + ¢ produces the other
two zeros.

Example 3.5.7 We identify the three zeros of the cubic polynomial 2x> — 6x + 4.
The polynomial is not a depressed cubic, but this is easily remedied by dividing
the original polynomial by two. The cubic x> — 3x 4 2 has the same zeros as the
original. The del Ferro—Tartaglia solution of this depressed cubic is computed as
follows.

3 3
n= | 224 2—2+(_3)3 _ 2y 2—2+(_3)3
=2 4 27 2 4 27
—J 141 = J1+/T=1 = -1-1 = -2

Using long division, we factor x> — 3x + 2 into the linear term (x + 2) and a
quadratic term.

x2—2x+1
x+2x3—3x+2
—(x3 +2x?)
—2x% —3x+2
—(—2x% — 4x)
x+2
—(x+2)
0

Therefore, x> — 3x +2 = (x +2)(x> — 2x + 1). Finally, applying the quadratic
formula with a = 1, b = -2, and ¢ = 1, we have x» = x3 = 1. Thus, the
three zeros of the original polynomial 2x> — 6x + 4 are x| = =2, x, = 1,
and x3 = 1.

|

Question 3.5.9  Find the del Ferro solution to the cubic polynomial 3x3 — 36x + 48. .
In the late 1530s, Tartaglia not only recovered the del Ferro solution for depressed
cubics, he also obtained solutions for many types of other cubic polynomials (but not
all). Like del Ferro, Tartaglia also did not publish or announce his results, although
he did share them privately with Girolama Cardano, a well-established physician and
mathematician from Milan. Just a few years later, Cardano extended Tartaglia’s work
to find a complete solution of general cubic polynomials, which he published in an
important 1545 book entitled the Ars Magna (that is, The Great Art, or the Rules
of Algebra).
Cardano’s work identified a transformation that reduces a general cubic
polynomial to a corresponding depressed cubic. For a cubic polynomial of the
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form ax® + bx> + cx + d, the following transformation produces a corresponding
depressed cubic y* + my + n.

N b ¢ b? 253 be +d
=x+ — m=-—— n=_——=—>>5
Y 3a a 3ad? 2743 342  a

This mapping of variables and coefficients is known as Cardano transformation. The
zeros of the general cubic are found by applying the Cardano transformation and then
finding the del Ferro—Tartaglia solution y; that is a zero of y* + my + n. Computing
the inverse transformation, x; = y; — (b/3a) is a zero of the original cubic ax’ +
bx* 4 cx 4 d. The other two zeros are determined as before: use long division to factor
the original polynomial into a linear term and a quadratic term, and finally apply the
quadratic formula to produce the other two zeros. The next question carefully leads
you through the process of using the Cardano transformation to find the zeros of a
general cubic polynomial.

Question Find the zeros of the cubic polynomial x* — 6x% + 11x — 6.
3.5.10

(a) The leading coefficient of this polynomial is a = 1. Identify the other three
coefficients b, ¢, and d when viewing this polynomial from the perspective of
the general cubic polynomial ax® 4+ bx? + cx 4 d.

(b) Applying the Cardano transformation, find the coefficients m and n of the
corresponding depressed cubic y* + my + n.

(c) Compute the del Ferro—Tartaglia solution y, that is a zero of y> + my + n.

(d) Implement the inverse transformation x; = y; — (b/3a) to obtain a zero x|
for x* — 6x? + 11x — 6.

(e) Find the other two zeros x, and x3 for x> — 6x2 + 11x — 6 using long division
and the quadratic formula.

|

3.5.4 Quartic Polynomials

With this success in identifying zeros of a general cubic, mathematicians naturally
turned their attention to polynomials of degree n = 4, known as quartics. In 1545, the
Italian mathematician Lodovico Ferrari (a student of Cardano) developed an algorithm
for finding the zeros of the general quartic polynomial ax* + bx® + cx? + dx + e.
Ferrari’s success in solving the general quartic polynomial led to a professorship
in Bologna and was one of the factors that prompted Cardano’s publication of the
Ars Magna.

As you might expect, the Ferrari quartic algorithm is much more complicated than
the del Ferro—Tartaglia solution; this text does not provide an example of a detailed
Ferrari calculation. In general, the algorithm “completes the square” of the quartic and
then finds zeros in a nesting of quartic, cubic, and square roots—similar in flavor to the
nesting of roots used to find the zeros of cubics. For your interest, Ferrari’s method is
summarized here. The zeros of ax* 4 bx? + cx? + dx + e are found by first calculating:

A 3b2+c P be 4 4 co 3b4+cb2 bd e
82 a’ T8 242 a’ ©256a* " 1643 4a?  a’
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If B = 0, the four roots are given by

b —A+JAZ —4C
X=—— i
4a 2
Otherwise, compute
A? A3 AC E E2 D3
D=—-———-C, E=——+—, and F=-—-—%+,—+ —,
12 108 3 2 4 27

where plus or minus is chosen in the formula for F' so that F' # 0. Now set G = JF
(in case F is complex, choose any one of the three cube roots) and define

0 ifG=0
H=1 2 6+o0
36 1670

Letting y = —5A/6 — G + H, the four roots are given by

b N +1/AF 2y 42 /—(3A + 2y £1 2B/ /A + 2y)
4a 2 ’

where the two symbols 4| must have the same sign, and the other symbol 4, acts
independently.

The most important fact to understand here is that such an algorithm exists.
Furthermore, the solution requires only certain types of algebraic operations applied
to the coefficients of the given polynomial: addition and subtraction; multiplication
and division; and nth roots. Mathematicians refer to such solutions as a solutions by
radicals.

3.5.5 Quintic and Higher-Degree Polynomials

With so much success by the middle of the sixteenth century, mathematicians
optimistically turned their attention to higher-degree polynomials. The next goal was to
determine a solution by radicals for the zeros of a general quintic polynomial equation
ax> + bx* + cx® + dx? + ex + f of degree n = 5. Mathematicians in the sixteenth,
seventeenth, and eighteenth centuries believed that all polynomials had solutions by
radicals and expected it would be just a matter of time until a general algorithm
would be identified. In 1771, the Italian—French mathematician Joseph-Louis Lagrange
began studying “permutations,” or mappings, of zeros of polynomials in his treatise
Reflections on the Algebraic Theory of Equations. While he did not obtain a solution,
Lagrange’s work provided insight that helped the next generation of mathematicians
obtain a complete analysis.

As it turns out, the general quintic polynomial is not solvable by radicals. The
Italian mathematician Paolo Ruffini published his first attempt to prove the insolvability
of the quintic in a 1799 book entitled General Theory of Equations in which it is Shown
that the Algebraic Solutions of the General Equation of Degree Greater than Four is
Impossible. Ruffini built on Lagrange’s work and developed many new, important
theorems (that are now interpreted as group-theoretic results). With the exception of
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one gap in his argument, Ruffini proved the insolvability of the quintic, but his work
was not fully understood or accepted by the leading mathematicians of his time.

Independent of Ruffini’s work, the Norwegian mathematician Niels Henrik Abel
proved the insolvability of the quintic in 1824. His proof was similar in character to
Ruffini’s, but without the important gap that Ruffini had overlooked. Evariste Galois,
who was unaware of the work of Ruffini and Abel, drafted a proof of the insolvability
of the quintic by developing an abstract approach to studying solutions of polynomials.
Galois’ results give a condition that determines when a fifth degree polynomial can
be solved by radicals and when one cannot. Though Galois died young, his insights
were eventually developed into a subfield of abstract algebra that has become known
as Galois theory, which remains an active area of research and study. Contemporary
mathematicians typically prove the insolvability of the quintic using the powerful,
general results of Galois theory. The next theorem formally states this insolvability of
the quintic in what has become known as Abel’s theorem.

Theorem 3.5.3 Abel’'s Theorem [fan integer n > 5, then there does not exist a solution by radicals

that identifies every zero of an arbitrary polynomial over C of degree n; that
is, there is no general formula using only the algebraic operations of addition,
subtraction, multiplication, division, and integer roots of polynomial coefficients
that provides every zero of an arbitrary polynomial over C of degree n.

Although the proof of Abel’s theorem is difficult, this result provides a complete
understanding of a constructive approach to factoring an arbitrary polynomial into
linear terms: such a uniform algorithm involving basic algebraic operations exists only
for polynomials of degree 4 or less. In order to factor a polynomial of degree greater
than 4, enough zeros must be identified by other means to reduce the polynomial’s
factors to degree less than or equal to four.

Abel’s theorem does not imply the impossibility of finding zeros for all poly-
nomials of degree greater than four (for example, we can readily solve x> = 0), only
that there is no procedure using the basic algebraic operations that simultaneously
solves every such polynomial of a given degree. In addition, this result ensures only
that polynomials of degree greater than four are not uniformly solvable by radicals;
other solutions are possible using other operations. Many positive results have been
proven. In the 1850s, Charles Hermite, Leopold Kronecker, and Francesco Briosch
independently proved that quintic polynomials are solvable using “elliptic modular”
functions. In the following decades, solutions were found for polynomials of degree
greater than four using such tools as modular functions, theta functions, and Mellin
integrals. Furthermore, in the 1990s, mathematicians successfully found a solution by
radicals for those quintics that are solvable by radicals.

3.5.6 Reading Questions for Section 3.5

1. What is a polynomial? Give an example of a polynomial and a variable
expression that is not.

2. What is the degree of a polynomial? Give an example.

Define and give an example of a zero of a polynomial.

4. Define and give an example of an algebraic number over Q.

et
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5. Define and give an example of a transcendental number over Q.
State the fundamental theorem of algebra.
7. What is the complex conjugate of a complex number? How do we use the
complex conjugate to simplify fractions involving complex numbers?
8. State the formula that provides every zero of any given quadratic polynomial.
9. Define and give an example of a depressed cubic.
10. State the formula that provides the del Ferro—Tartaglia solution of a depressed
cubic.
11. Define the Cardano transformation that maps a general cubic polynomial to
a depressed cubic polynomial.
12. State Abel’s theorem. Why is it interesting?

a

3.5.7 Exercises for Section 3.5

In exercises 1-6, state the degree of each polynomial or explain why the given variable
expression is not a polynomial.

1. 2x24+3x+5 4, x%+x%+x%
2. i +ex* +7w 5. x*7 4 tan(x?)
3. x4+x7! 6. e"2+e"+e

In exercises 7—12, determine if the given number is a zero of the specified polynomial.
7. x =4 forx —4 over C 10. x =i forx* — 1 over C
8. x =4 forx — 4 over Z3 11. x = 2 for x% + 3x + 2 over Zg
9. x =3 +iforx*+x —3iover C 12. x = 3 for x* 4+ 3x + 2 over Zg
In exercises 13—16, prove each mathematical statement.

13. x2 + 3x + 2 has four zeros over Zg 15. x + 3 has no zeros over N
14. x2 4+ 2x + 2 has no zeros over Zy 16. 2x + 1 has no zeros over Zg

In exercises 17-30, prove each statement about algebraic and transcendental numbers.

17. 4/5 is algebraic over Q 25. % is transcendental over QQ
18. 4/5 is algebraic over Z 26. 4 is transcendental over N
19. J5is algebraic over Z 27. 72 # am + b, where a, b € Q
20. 5 is algebraic over QQ 28. 72 = am + b, for some
21. Y/14/5 is algebraic over Z a,becR
22. J/3/4 is algebraic over Q 29. &3 = ae? + be + ¢, for some a, b,
23. Ifa € F afield, then a is algebraic celR

over F. 30. &3 #* ae’ + be + ¢, where a, b,
24. 5e is transcendental over Q ceQ

In exercises 31-54, identify every zero of each polynomial. Unless otherwise stated,
assume all polynomials are over C and express your solutions in standard form.

3. x =2 34. 4x+5

32. x — 2 over Zs 35. (1 —=3ix — (B +50)
33. x —2over Zy 36. (=24 4i)x — (7 + 30)
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37. 12x 4+ (5 +9) 46. 5x3 —45x — 140

38. (24 10i)x — 6i 47. x3 —12x + 16

39. x> +2x— 15 48. x> —12x — 16

40. x> +2x+2 49. 33 —3x2 4+3x—1

41. 3x2 4+ 2x+2 50. X —6x2+11x— 6
42. x* 4+ 10x — 39 51, X3 —Tx2+x—7

43. x3 -8 52. x3 —6x% + 14x — 15
44. 8x3 —27 53. x3 — 15x% 4+ 81x — 175
45. x3 —9x — 28 54. 2x3 — 6x2 — 8x + 24

In exercises 55-58, find the del Ferro—Tartaglia solution of each cubic.

55. X3+ 15x 47 57. 3x3+27x— 6
56. x> —8x—9 58. 2x3 — 14x + 16

In exercises 59-62, find the corresponding depressed cubic for each cubic under the
Cardano transformation.

59. 3x3 4+ 7x2 —6x— 4 61. 3x3 —2x2+ 19x — 8
60. 17x3 + 6x2 —4x + 11 62. 4x3 —9x% 4+ 16x — 1

Exercises 63-70 introduce a number system extending the complex numbers known
as the quaternions. This number system was first defined by the Irish mathematician
Sir William Rowan Hamilton in 1843, and so H denotes the set of quaternions
{a+bi+cj+dk : a,b,c,d e R}, where the three distinct quantities i, j, k satisfy
the following relationships.

2= =k =ijk =—1, ij=—ji=k,  jk=—kji=i, ki=—ik=j

The quaternions are a field under componentwise addition and a multiplication
operation, where products of 7, j, k simplified using the above identities. The following
examples illustrate these operations.

GHS5i+2)+Q+j+4k) = G+2)+G+0)i+ Q2+ 1)j+0+4k
= 6+5i+3j+4k
(+j) Qi+3k) = i-2i+i 3k+j-2i+j-3k

= 243(—)+2(—-k)+3i = —24+3i-3j -2k

In exercises 63-70, compute the following sums, differences, and products of
quaternions, expressing the answers in the form a + bi + ¢j + dk where a, b, ¢, d € R.

63. (1+5i+ 10k) + (2 — 3i + 3j — 2k)
64. (2 —3i+2j — 6k) + (3 — 3i — 2j + 5k)
65. (3+5i — 3k) — (44 3i +7j + 3k)

66. (4—3i+7j+k) — (1 +3i —2j — 4k)
67. (34 10k) - (1 + 4i)

68. (4+2j)-(5—1i)

69. (14 5i —7j + 10k) - (2 — 3i + 2j — 6k)
70. (3 + 5i +2j — 3k) - (1 + 4i)
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3.6 Mathematical Induction

This section studies a proof technique commonly used to demonstrate that mathe-
matical statements are true for all elements of certain types of sets. The movement
from considering particular examples and counterexamples to making claims about all
mathematical objects in a given setting is fundamental to mathematics. As we have
seen, intuition is key to developing new insights, but verifying the truth of a conjecture
often requires considerably more effort. For certain infinite sets, we need a new proof
technique known as mathematical induction to prove claims about all objects in a
given set.

Before considering the infinite setting, recall that truths about finite sets can
be established using proof by exhaustion. For a finite set (that is not too large), a
mathematical statement can be proven true for every element in the set by verifying the
statement holds for each element of the set one at a time. In this way, the set of possible
counterexamples is “exhausted.” For example, every element of the set {0, 2, 4, 6} is
evenbecause 0 =2-0, 2=2-1, 4=2-2, and 6 = 2 - 3; that is, each element of the
given set is directly demonstrated to be even. As we can readily imagine, larger and
larger finite sets can make proofs by exhaustion anything from tedious to impossible
during a human’s lifetime, although computers are of significant help when studying
large finite sets that are readily amenable to algorithmic description. However, proof
by exhaustion is not applicable when studying infinite sets. As finite beings, we are
simply incapable of individually verifying that every element of an infinite set satisfies
a given mathematical claim. Instead, in certain infinite settings, the proof technique
known as mathematical induction is used to prove mathematical statements.

We begin the study of mathematical induction by considering infinite “end
segments” of the integers Z = {..., =3, -2, —1,0, 1,2, 3, ...}. An end segment of Z
is a set consisting of every element of Z that is greater than some designated integer
n € Z. Notice that every end segment of Z is infinite. Induction is particularly suited
to proofs about end segments of Z, and most mathematicians identify induction with
such sets of numbers.

Example 3.6.1 Each set given below is an end segment of the integers.

N = {1,2,3,..)
e (n:n=5 = {56,78,..)
e (n:in>-2) = {-=2,-1,0,1,...}

In previous mathematics courses, you may have studied mathematical claims about
end segments of the integers, such as the following.

n
Foreveryn € N, ZZ = 24---4+2 = 2n.
i=1
Foreveryn > 5, n? < 2n,
Ifay =1, a =3, ax = ax—2 + 2ax—1, then forevery n > 1, a, is odd.

The truth of such statements is established using induction. There are two different

renditions of induction: mathematical induction (also called “weak” induction or
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simply “induction”); and strong mathematical induction. The first two claims given
above are proven via induction, while the third requires strong induction. The
distinction between these two types of induction lies in how much information about
a “base case” the proof must address, as well as how many elements we use in
an “inductive” step of the proof. This distinction is discussed more carefully at an
appropriate point as we consider various examples. The principles of mathematical
induction are stated in the following theorem. Recall from section 1.6 that a predicate
P(k) is a string of symbols that can be interpreted as a predicate phrase about variables
(such as k and n) or about specific numbers (such as a below).

Theorem 3.6.1 ¢ Principle of weak induction Let P(k) be a predicate defined on integers k € Z

and let a € Z. If P(a) is true and, for all n > a, we have P(n) implies P(n + 1),
then P(n) is true for all integers n > a.

* Principle of strong induction Let P(k) be a predicate defined on integers k € 7.
and let a,b € Z with a < b. If P(a), P(a + 1), ..., P(b) are true and, for all
n > a, the conjunction [P(a) A P(a + 1) A ... A P(n)] implies P(n + 1), then
P(n) is true for all integers n > a.

These principles of induction are often described using the image of a line of
dominoes falling down. For weak induction, we prove that P(a) is true and that P(n)
implies P(n + 1) for all n > a. In the domino setting, this corresponds to knowing both
that the first domino has fallen down and that when any domino falls down, the next
domino in line must also fall down. These two observations about a line of dominoes
leads to the conclusion that every domino in the line has fallen down. The principle of
strong induction is similar except that we need to know that the first few dominos have
fallen down, and that all the dominoes have fallen down up to some point in the line
implies the next domino in line must also fall down. In some mathematical settings, the
claim that a statement is true for a particular integer depends on knowing the statement
is true for every preceding integer (rather than just the immediate predecessor).

While such intuitive descriptions of induction are helpful, a mathematician is also
interested in a rational proof that induction is true. The choice of the word “Principle”
in naming mathematical induction highlights the fact that these statements are typically
not understood as theorems. Instead, induction is taken as an axiom (a fundamental
belief) that helps define the natural numbers and end segments of the integers. In 1838,
the English mathematician Augustus De Morgan introduced the term “mathematical
induction” in Induction Mathematics, which provided the first clear statement of this
fundamental proof technique. In 1887, the contemporary statement of induction was
given by the German mathematician Richard Dedekind in Was sind und Was sollen die
Zahlen? Furthermore, by 1889, the Italian mathematician Giuseppe Peano identified
five axioms precisely defining the natural numbers N in Arithmetices principia, nova
methodo exposita. The principle of weak induction is the fifth of Peano’s axioms for
arithmetic. We therefore do not prove that mathematical induction is valid, but instead
choose to accept these principles because they are rooted in our intuitive understanding
of the integers.

As apoint of clarification, in some settings the principle of mathematical induction
is proven using the well-ordering principle of the integers, which asserts that every
subset of integers that is bounded below has a least element. However, one can also
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prove the well-ordering principle using the principle of mathematical induction, and so

these two principles are actually equivalent. These proofs are often studied in courses

in set theory and abstract algebra and are left for your later studies. Instead, this

section focuses on developing a facility with using induction to prove the validity of

mathematical statements. The first example proves a finite series (or finite summation)
formula commonly used for directly computing Riemann sums when beginning a study
of the integral in calculus.

Example 3.6.2 We use induction to prove that for every integer n > 1, we have

Proof

ii:n(n;l).

i=1

Recall that the notation ) 7, denotes a finite sum with an unspecified integer upper
bound. For example, 37 | i=1+2+3=6and Y i=14+2+3+---4n
Therefore, the above formula claims that an arbitrary sum of successive integers
Yo iisequal ton(n+ 1)/2.

This claim about every integer greater than or equal to 1 is proven using the
principle of weak induction on the predicate P(k) asserting “Zle i=k(k+1)/2”
Referring to theorem 3.6.1, the principle of induction instructs us to begin with
the base case a = 1; that is, we must prove P(1) is true. After settling the base
case, theorem 3.6.1 instructs us to prove the inductive step in which we assume
P(n) is true for some arbitrary, fixed integer n > 1 and demonstrate (under this
assumption) that P(n 4 1) must also be true. For this example, the assumption is
that )i, i = n(n + 1)/2, and this assumption is used to prove that

i (n+ DI+ 1)+ 1]
— 2
is true. In this context, P(n) asserting that > ;_, i = n(n + 1)/2 is known as the
induction hypothesis.
|

Basecase a = 1. By direct computation, Z}zl i=1=11+1)/2

Inductive step We assume P(n), asserting that Y ., i = n(n + 1)/2. Under this assumption,

we prove P(n + 1) asserting that

n+1

Zi: (n+Dln+1)+1]
5 .

i=1
The following string of equalities provides the desired conclusion.

n+1
Zi = 14+.---4+n+m+1) Definition of series

[I+---4+n]l+®+1) Associativity of integer addition
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n
= Z i+(n+1) Definition of series
i=1
1
= w +m+1) Induction hypothesis
1 2 1
= n(n+ 1) + (nt+ 1) Basic algebra
2 2
nn+1)+2n+1) .
= 5 Common denominator
1 2
= w Factor (n + 1)
1 H+1
_ (n+ )[(n2+ )+ 1] N2 =+ 1)+ 1

Therefore, by induction, Zl'-'zl i=n(n+1)/2foreveryn > 1.
|

In the inductive step of example 3.6.2 above, the use of the induction hypothesis is
crucial to the success of the proof. As we work through several examples, observe how
the inductive hypothesis is incorporated into the proof; understanding this element of
these arguments will help you develop your own induction proofs. In addition, you’ll
want to observe the style and presentation of these inductive proofs and emulate these
models when crafting your own proofs.

Question 3.6.1  Using induction, prove that ) i, 2 = 2n for every n > 1. -

The first known proof by induction was given by the Italian mathematician
Francesco Maurolico in 1575. Maurolico proved that the sum of the first n odd integers
is n? in Arithmeticorum libri fuo. However, the principle of mathematical induction
is useful for proving a whole host of different results about infinite end segments of
the integers, not just facts about series. In the next example and question, induction is
used to prove the validity of certain inequalities among integers.

Example 3.6.3 We use induction to prove 2n + 1 < 2" for every n > 3.

Proof  This inequality is proven using the principle of weak induction on the predicate
P(k)asserting that “2k + 1 < 2 .” The base caseisn = 3,sowe prove2-3+1 < 23,
and the inductive step assumes 21 + 1 < 2" and proves 2(n + 1) + 1 < 2"+,

|

Base case n = 3. Direct computations produce the following equalities.

2n+1 = 2341 = 7
2" = 2 = 8
Since 7 < 8, we have 2n + 1 < 2" whenn = 3.
Inductive step We assume that 2n + 1 < 2" and prove that 2(n + 1) + 1 < 2"+, Some

preparatory computations with the inequality help us identify the best use of the
inductive hypothesis in this part of the proof. Direct computations produce the
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following equalities.

2n+1)+1 2n+2+1 Qn+1) + 2
2ntl = 2.2" = 2 + 2

The rightmost expressions indicate how we can use both the inductive hypothesis
2n 4 1 < 2" and the fact that 2 < 2" for n > 1 to prove that 2(n + 1) + 1 < 2"+1,
We are now ready to piece these observations together into a fluid, articulate proof;
that is, these “scratchwork’ computations do not prove the inductive step, but only
point us in the right direction. The proof of the inductive step follows from the
following string of equalities and inequalities.

2m+1)+1 = 2n+2+4+1 Distribution of x over +
= 2n+1)+2 Commutativity and associativity
< 2"42 Induction hypothesis
< 242" Since 2 < 2" forn > 1
= ontl Exponentiation properties

Therefore, by induction, 2n + 1 < 2" for every n > 3.
|

Question 3.6.2 Using induction, prove that n> < 2" for every n > 5.  Hint: The base case is
n = 5 since the claim asserts that the inequality holds for every n > 5. Also, the
result of example 3.6.3 is useful in this proof’s inductive step. .
The principle of induction is often applied to sequences of numbers defined by
“recursion.” Informally, a sequence is a list of numbers; for example, 2,4, 6,8, .. ..
Such lists play an important role in the study and application of results in real analysis,
complex analysis, topology, and computer science. Sequences arise quite naturally
in both abstract mathematics and the real-world, and they exhibit a striking array of
interesting and distinct behaviors. The following definition may be familiar from your
previous studies.

Definition 3.6.1 A sequence is a function defined on all integer inputs greater than or equal to some
n € Z. A sequence is typically written using the subscript notation ay, az, as, . ..
where a, denotes the nth term of the sequence and {a,} denotes the entire
sequence.

Example 3.6.4 Some examples of sequences include the following.

1,1,1,1,... where a, =1
1,-2,4,-8,... where a, = (-2)"
1,2,6,24, ... where a, =n!

In the context of studying induction, we are primarily interested in sequences that
are obtained via recursion. A sequence is defined by recursion if the first few terms
of the sequence are explicitly stated and if the value of later terms depends on the
preceding terms in the sequence. Perhaps the most widely known sequence defined by
recursion is the Fibonacci sequence: 1,1,2,3,5,8,13,....
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The first recorded definition of this sequence was given by Leonardo of Pisa, who
is better known as Fibonacci or “son of Bonaccio.” Fibonacci was an Italian merchant
who wrote the classical mathematical work Liber abaci (or Book of the Abacus) in 1202.
In this manuscript, Fibonacci developed a variety of algebraic methods, primarily in
the context of commercial transactions. Most importantly for mathematics, this text
played a key role in the dissemination and use of the Hindu—Arabic numeral system
in Europe.

In the Liber abaci, Fibonacci asked: “How many pairs of rabbits will be produced
in ayear, beginning with a single pair, if in every month each pair bears a new pair which
becomes productive from the second month on?” This question defines the Fibonacci
sequence. More than just an amusing description of rabbit population growth, this
sequence has been used to model a number of real-world processes, including the
development of the arrangement of sunflower seeds and pineapple rinds, the distinctive
spiral of nautilus shells, and the family trees of certain species. The following example
studies the Fibonacci sequence using its contemporary formulation as a recursive
sequence.

Example 3.6.5 The Fibonacci sequence: 1,1,2,3,5,8,13,...1s defined recursively as follows.

f]=1, f2=13 fn+2 :f;'l +ﬁ‘[+17 fornZ]

The formula defining the general term ;4 is referred to as a recurrence relation
and indicates the dependence of the value f; 4, on the values of the previous two
terms f,, and f,41. We illustrate the use of this recurrence relation by explicitly
computing the first six terms of the Fibonacci sequence.

hn =1
h =1
B = hth=1+1=2
fa = Lh+tfh=1+2=3
fs = fa+fa=2+4+3=5
Jo = fa+fs=3+5=8

You can now see why the Fibonacci sequence begins 1, 1,2, 3,5, 8, .. .. Contin-
uing to apply the recurrence relation in this way, we can find any desired number
of terms of the Fibonacci sequence.

|

Question 3.6.3  State the first six terms of the sequence {a,} defined recursively as follows.

a; =1, a, =3, an+2 = ap + 2a,4+1, forn > 1
|

Mathematical claims about sequences are usually proven using the principle of
strong induction. The following example provides a first application of this proof
technique.
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Example 3.6.6 We prove that every term of the sequence {s,} defined recursively as follows is
odd.

s1 =1, sy =3, Sp+1 = Sp—1 + 28y, forn > 2

Proof ~We use strong induction to prove the result. In this case, the predicate statement
P(k) asserts that “the term sy is odd, for any k > 1.”
]

Base case n = 1 and n = 2. Since the recursion relation for s,,1 is defined using the
previous two terms, the base case must examine both P(1) and P(2). From the
definition of the sequence, we immediately observe that sy =1 =2-0+4 1 and
sp =3 =2-1+1 are both odd. Therefore, P(1) and P(2) are both true.

Inductive step The inductive hypothesis is the other key difference between strong induction
and weak induction. In strong induction, P(k) is assumed true for every integer
from k = 1 to k = n, and P(n + 1) is proved true using this collection of
assumptions. In this proof, we assume that every term of the sequence sy, 52, . .., S,
is odd, and prove that s, 41 is odd. Applying the inductive hypothesis to the terms
sp—1 and s, there exist integers i, j € Z such that s,_; = 2i+ 1 and s, = 2j + 1.
Substituting these values into the recurrence relation and simplifying, produces
the following algebraic manipulations,

Sptl = Sp—1 + 28y
2i+ 1422+ 1)
= 20+2+1)+1

Therefore, s,+1 is an odd number and, by the principle of strong induction, every
term of the sequence {s,} is odd.
|

Question 3.6.4 Prove that b, < 1 for every term of the sequence {b,} defined recursively as
follows.

o, 10

10 11

Hint: The base case is n = 1 and n = 2 since the recursion relation for b, ; is

defined using the previous two terms.

by = bn+2 =b, - bn+1, forn >1

While many proofs by induction are for end segments of the integers, this
process can be extended to prove universal statements about other inductively
defined mathematical structures. In addition to the integers, the definitions of
some other mathematical objects are given using an inductive structure. Both
Richard Dedekind and the Norwegian mathematician Thoralf Skolem made impor-
tant contributions to understanding the role of induction in these more general
settings. For example, the study of mathematical logic in chapter 1 involved
several inductive definitions, including the following definition of a sentence of
sentential logic.
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Definition 3.6.2 (Definition 1.1.2 in Section 1.1) A sentence of sentential logic is a string of symbols
from the alphabet of sentential logic that satisfies the following:

1. a single sentence symbol or a single sentence variable is a sentence;
2. if B, C are sentences, then so are (~B), (B A C), (B v C), (B — C), and
B < C).

This inductive definition of sentences, first identifies a “base case” of sentences
(the sentence symbols and variables), and then the other sentences are built up
through repeated application of a restricted collection of operations on the base
case sentences. This inductive definition of sentences directly parallels the inductive
definition of the natural numbers, in which n = 1 is the base case and the other
natural numbers are built up by repeatedly adding one. This inductive structure
in the definition of a sentence enables us to prove mathematical claims about
all sentences of sentential logic by using induction as illustrated in the following
example.

Example 3.6.7 We prove that the number of left parentheses in any sentence of sentential logic
is the same as the number of right parentheses.

Proof = We prove this claim by induction on definition 3.6.2 for a sentence of sentential
logic.

Base case We first verify the claim is true for sentence symbols and for sentence variables.
A sentence symbol (for example, A) does not have any parentheses, and so the
number of left parentheses is 0, as is the number of right parentheses. Similarly, a
sentence variable does not have any parentheses, so again the number of left and
right parentheses is 0.

Inductive step The sentences considered in this inductive step, must include all paren-
theses (including the outermost pair) rather than omitting parentheses as has
been our custom for the sake of readability. For the inductive hypothesis,
assume that B and C are sentences, where B has m left and right paren-
theses and C has n left and right parentheses. We verify the claim is true
for sentences built up from B and C by the operations identified in defini-
tion 3.6.2. The proof is therefore organized by examining these operations one
at a time.

* (~B): This sentence begins with a left parenthesis, which together with the
m left parentheses from B, yields a total of 1 + m left parentheses. Similarly,
there are m right parentheses from B, plus one additional right parenthesis at
the end of the sentence, to yield a total of m + 1 right parentheses. From the
commutativity of integer addition, (~B) has the same number of left and right
parentheses.

* (B A ©): This sentence begins with a left parenthesis, which together with
the m left parentheses from B and n right parentheses from C, yields a
total of 1 +m + n = m + n + 1 left parentheses. Similarly, there are m
right parentheses from B, n right parentheses from C, plus one additional
right parenthesis at the end of the sentence, to yield a total of m + n + 1
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right parentheses. Therefore, (B A C) has the same number of left and right
parentheses.

* A similar argument shows that (B v C), (B — C), and (B <> C) each have the
same number of left and right parentheses. Further details are left for the next
question.

Therefore, accepting these last details, this proof by induction shows that every
sentence has the same number of left and right parentheses.
]

Question 3.6.5 Prove that if B has m left and right parentheses and C has n left and right
parentheses, then (B v C), (B — C), (B <> C) each have the same number of

left and right parentheses. .

Recall from section 1.3 that a set of connectives is “adequate” if every truth table is
satisfied by a sentence using only the connectives in the set. The notion of an adequate
set of connectives was introduced in a discussion of the expressibility of sentential
logic. Another important reason for our interest in adequate sets of connectives is
the simplification of inductive proofs. A complete proof of the inductive step in
example 3.6.7 involved the consideration of five distinct cases, one for each of the
connectives ~, A, V, —, and <.

However, if we (re)define sentences using a smaller adequate set of connectives,
then a complete proof of the inductive step may involve just one or two distinct cases.
For example, suppose we define sentences using only the connectives {~ A} (one of
the sets of adequate connectives discussed in section 1.3). In this setting, the two cases
considered in example 3.6.7 provides a complete proof of the claim that the number of
left parentheses in any sentence of sentential logic is the same as the number of right
parentheses.

3.6.1 Reading Questions for Section 3.6

Describe the process of proof by exhaustion.

Give an example of a proof by exhaustion.

Define and give an example of an end segment of the integers.

State the two principles of mathematical induction.

What is the distinction between weak and strong mathematical induction?

AR

Give an example of mathematical claim that can be proven using weak
mathematical induction.

7. Give an example of mathematical claim that can be proven using strong

mathematical induction. Why is strong induction necessary?

8. Explain the role of the base case in a proof by induction.

9. Explain the role of the induction hypothesis in a proof by induction.
10. Describe recurrence relations and give an example.
11. State the first eight terms of the Fibonacci sequence.
12. What do we mean by induction on mathematical structures besides the
integers?
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3.6.2 Exercises for Section 3.6

In exercises 1-10, give a proof by exhaustion of each mathematical statement.

1.

N

AR

0 o~

10.

Every even integer between 4 and 20 inclusive can be written as the sum of
two primes.

Every odd integer between 7 and 23 inclusive can be written as the sum of
three primes.

Every even integer between 4 and 20 inclusive is composite.

Every odd integer strictly between 1 and 9 is prime.

There exist only two odd composite integers between 2 and 20.

There exists a prime between n? and (n 4 1)? for every integer between 2 and
10 inclusive.

Every integer between 2 and 4 inclusive satisfies the equation 2" < n?.
Every positive integer n less than 7 satisfies the equation n! < 3".
Every element of Z7 has an inverse under addition mod 7.

Every nonzero element of Z7 has an inverse under multiplication mod 7.

In exercises 11-25, use induction to prove that each statement about finite series holds
for every n € N.

n n
11. Zl:n 19. Z(Zi—l):n2
i=1 i=1
n n
. n2n— DH2n+1)
12. =n-r, wh R 20. 2i—1)* =
Zr n-r,wherer € Z(l ) 3
i=1 i=1
13 anzf—z”“—z 21 Xn:4'—3— -
. = . i =nn—-1)
i=1 i=1
no n+l _ n 3In—1
14.Zr’:%,wherereR 2. Z3i—2:%
i=1 i=1
n n
oo » n(n+ 1Dn +2)
15. (i) = D—1 23. D= — %
Zz (i) =(+1) Zz<z+ ) 2
i=1 i=1
n n
. nn+ 1)2n+1) 1 n
16. LI L Bt ek M 24, -
;’ 6 ;i(i+l) nt 1
n 2 2 n
. n“(n+1) 1 n
17. KA A M A 25. -
i 4 Z(21'—1).(2z'+1) 1

i=1 i=1

In exercises 26-31, use induction to prove each statement about inequalities.

26. If n > 2, then 4 < n?.
27. If n > 5, then n? < 27.
28. If n > 1,thenn < 2".

29. If n > 2,then3n+1 < 3".
30. If n > 0, then 2" < (n+2)!.
31. If n > 7, then 3" < n!.
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In exercises 32-39, use induction to prove each statement about divisibility relations.
Recall that m is divisible by n iff there exists ¢ € Z such thatm =n - q.

32. If n > 0, then 23" — 1 is divisible by 7.

33. If n > 0, then 3%" — 1 is divisible by 8.

34. If n > 0, then 4" — 1 is divisible by 3.

35. If n > 0, then 7" — 2" is divisible by 5.

36. If n > 0, then n? — n is divisible by 2.

37. If n > 1, then n® — n is divisible by 3.

38. If n > 1, then 4" + 6n — 1 is divisible by 9.
39. If n > 1, then x> — y*" is divisible by x + y.

Inexercises 4041, let {a, } be the sequence recursively definedbya; = 1, ap = 2,and
an+2 = 2a, + a,+1, for n > 1. Use induction to prove each mathematical statement.

40. Foreveryn € N, a, <2". 41. Forevery n > 2, a, is even.

In exercises 4244, let {b,} be the sequence recursively defined by by =4, by = 8§,
and b, 12 = b, + b,41,forn > 1. Use induction to prove each mathematical statement.

42. Foreveryn > 5, b, <2". 44. For every n € N, b, is divisible
43. Foreveryn € N, b, is even. by 4.

In exercises 45-46, let {c,} be the sequence recursively defined by c; = 1, ¢ = 1,
c3 = 3, and c¢p43 = ¢y + Cnt1 + cny2, for n > 1. Use induction to prove each
mathematical statement.

45. Foreveryn € N, ¢, < 3™ 46. Forevery n € N, ¢, is odd.

In exercises 47-49, let {d,} be the sequence recursively defined by d; =2 and
dy+1 =3 - d,, for n > 1. Use induction to prove each mathematical statement.

47. Foreveryn € N, d, <3". 49. Forevery n € N, d, is even.
48. Foreveryn e N, d, =2-3""1.

In exercises 50-52, let {e,} be the sequence recursively defined by e; =3 and
en+1 = 2+ ey, for n > 1. Use induction to prove each mathematical statement.

50. Foreveryn e N, e, <2(n+1).
51. Foreveryn e N, e, =34 2(n—1).
52. Forevery n € N, ¢, is odd.
In exercises 53-56, let {f,} be the Fibonacci sequence recursively defined by f; = 1,

fo = landf,42 = f + fut1, forn > 1. Use induction to prove that each mathematical
statement holds for every n € N.

53. f<2"

54 ittt =farz — 1

55. i +f3+ -+ fant1 = St

56. thereexista,be Zsoa-fu+b-foy1 =1

In exercises 57-59, let {L,} be the Lucas sequence recursively defined by L; = 2,
Ly =1and L,y = L, + L,+1,forn > 1. This sequence was defined by Edouard Lucas
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as a generalization of the Fibonacci sequence. Use induction to prove that each
mathematical statement holds for every n € N.

57. L, <2" 59. Lyv2 =2 fu +Jfun

58. Lyt2 =fu +Jfo+2

In exercises 60—67, use induction to prove each mathematical statement.

60. For every n > 4, n is a linear combination of 2 and 3.
61. For every n > 6, n is a linear combination of 2 and 5.
62. For every n > 8, n is a linear combination of 2 and 7.

n
1 1
63. Forevery n € N, the productl_[ (1 — 3> = n; .
i n
=2

1 2
Qi+D-Q2i+2) @n+2)

n
64. For every n € N, the product 1_[
i=1

n
65. Foreveryne N, /n < ). %
i=1

66. For every n € N, if a set A contains n elements, then the power set P(A) of A
contains 2" elements.

67. De Moivre’s theorem For every n € N and 6 € R, (cosf + isinf)" =
cos(nf) + isin(nf). Hint: In this setting i = +/—1; also, consider the
trigonometric identities cos(u# £ v) = cos u cos v F sin u sin v and sin(u £ v) =
sin u cos v == cos u sin v.

68. The power rule for differentiation For every n € N, (d/dx)(x") = n - x"~!.
Hint: Use the product rule for differentiation; see theorem 4.4.1 in section 4.4.

In exercises 69-71, give a complete proof by induction on the definition of sentence
of sentential logic for each mathematical statement.

69. The number of left parentheses in any sentence is equal to the number of right
parentheses.

70. The number of connectives in any sentence is equal to the number of right
parentheses.

71. The number of connectives in any sentence is equal to the number of left
parentheses.

Notes

Number theory is a lively area of ongoing study with many intriguing open questions.
Andrews [6], Jones and Jones [134], Rosen [197], and Le Veque [155] introduce the contemporary
study of number theory; a standard graduate text in number theory is Ireland and Rosen [124].
In addition, many discrete mathematics and abstract algebra texts present various aspects of the
ideas studied in this chapter. Some standard textbooks used in discrete mathematics courses
include Epp [72], Richmond and Richmond [193], and Scheinerman [209]. Fraleigh [88],
Gallian [93], and Hungerford [122] provide excellent introductions to abstract algebra at the
advanced undergraduate and graduate level.
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As we have seen, ancient Greek mathematicians made many important contributions to
the early development of number theory. Introductory surveys of the impact of Greek ideas
on contemporary culture and mathematics are presented in Cahill [35], Jacobs [126], and
Kline [142]. A more focused study of Pythagoras and the Pythagoreans can be found both
in Kahn [135] and in Riedwig and Rendall [194]; Archimedes’ work is still published and
available in Archimedes [8]. Similarly, Bashmakova[11] and Heath [113] study the contributions
of Diophantus to the development of algebra and discuss recent research into the solution of
Diophantine equations and Fermat’s last theorem.

As we have seen, Euclid’s Elements presents many important number-theoretic results and
has played an important role in the dissemination and development in the intervening centuries;
Heath [73] is a fine contemporary translation of this ancient work. Similarly, Carl Friedrich
Gauss’ Disquisitiones Arithmeticae revolutionized the study of number theory; Clarke [97] is
an available translation of this work. In addition, Dunnington [65] and Tent [238] are insightful
biographies of this “Prince of Mathematicians.”

The study of prime numbers remains an active and intriguing area of mathematical research.
The number theory texts mentioned above can provide an excellent introduction to the study
of these integers. In addition, Wells [253] provides an interesting survey of many “types” of
primes and the sometimes startling relationships among primes. One of the most important
open questions in mathematics is the “Riemann hypothesis,” which conjectures that a certain
analytic formula gives the number of primes less than or equal to a predesignated natural number.
Du Sautoy [60] and Derbyshire [57] detail the historical development of mathematicians’ efforts
to resolve the Riemann hypothesis, and Rockmore [196] provides a more technical look at the
recent work of contemporary mathematicians.

Prime numbers play an important role in the implementation of coding schemes to preserve
the privacy and the accuracy of communication systems, particularly in the last few decades
since the announcement of RSA codes in A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems [195]. Almost all number theory texts (and many discrete mathematics and
abstract algebra texts) discuss RSA codes in some fashion. Hamming codes were first presented
by Richard Hamming in Error Detecting and Error Correcting Codes [110]; Hamming codes
are also discussed in both Gallian [93] and Grimaldi [103], as well as any text on error-correcting
codes. For an introduction to the mathematical field of coding theory see Bierbrauer [18],
Hill [115], and Ling and Xing [156]. More focused discussions of error-correcting codes are
given by Huffman and Pless [120] and by MacWillians and Sloane [162]. Finally, Singh [215]
provides an interesting historical survey of coding schemes from ancient Egypt to contemporary
applications.

Fermat’s last theorem is one of the most celebrated and famous of results in all of abstract
mathematics. Andrew Wiles proof, with important contributions by Richard Taylor, appeared
in “Modular elliptic curves and Fermat’s Last Theorem” [257] in 1995. Naturally, the books
on Fermat’s last theorem written before and after this proof differ markedly. Ribenboim [192]
is one interesting text that straddles this time period; most of the book discusses the proofs of
specific cases of the theorem (including the n = 4 case studied in section 3.3), and an epilogue
outlines Wiles’ general approach to the complete proof. Both Hellegouarch [114] and Stewart and
Tall [233] also provide interesting introductions to this area of study; and Singh and Lynch [216]
detail the historical developments that led up to the complete solution of Fermat’s last theorem
by Wiles.

Throughout this chapter we have studied several very significant numbers in mathematics,
most notably 7, e, and i. Various books have been written about the mathematical history of
these numbers and Mazur [172] has described ways of envisioning them. Beckmann [12] details
the history of 77; more recent books on this topic have been written by Eymard et al. [76] and
by Posamentier and Lehmann [188]. Blatner’s The Joy of Pi [20] is a playful collection of many
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intriguing facts and insights into this number. Maor [168] has written a history of e; Nahin [179]
has written a history of i; and both Seife [212] and Kaplan and Kaplan [136] have traced the
history of 0. Perhaps the story of 1 will be written before too much longer to complete the story
of each constant appearing in the famous mathematical equation ™ + 1 = 0!

We identified various resources for learning more about Abel, Galois, and the insolvability
of the general quintic in the notes for chapter 2. Mathematicians currently prove Abel’s
theorem using Galois theory. For undergraduates who have studied sufficient abstract algebra,
Garling [96], Stewart [229], and Swallow [237] are excellent and accessible texts introducing
Galois theory; both Edwards [70] and Hungerford [122] are standard graduate texts.

Induction is used in significant ways in many areas of theoretical mathematics, and so is often
discussed in standard undergraduate courses, including discrete mathematics, abstract algebra,
and real analysis; the textbooks used in these courses (as identified above and in the notes for
chapters 2 and 4) are good references for how induction impacts on these fields. A number
of books have been written discussing the Fibonacci sequence and its generalizations. Both
Garland [95] and Wahl [247] are directed toward a general audience; Benjamin and Quinn [16]
detail the results of numerous undergraduate research projects exploring the Fibonacci sequence.
Recently, Sigler has translated Fibonacci’s Liber abaci [82].

Many of the theorems studied in this chapter appear in anthologies of the “fundamental”
theorems of mathematics that detail both their proofs and some of the historical context of these
results. Dunham’s Journey Through Genius [64] and Davis et al.’s The Mathematical Experience
[55] are two books in this genre. Aigner and Ziegler’s Proofs from THE BOOK [3], inspired
by their conversations and correspondence with Erdos, is a similarly intriguing collection
of theorems and proofs. Finally, we mention G. H. Hardy’s classic book A Mathematician’s
Apology [112], which reflects on the culture and nature of mathematics, and has been enjoyed
by generations of mathematicians; you might also be interested in Stewart’s recent Letters to a
Young Mathematician [230], which was inspired by Hardy’s book.



4 Real Analysis

The Renaissance and Baroque periods were times of profound change in the way
western Europeans chose to explore and understand the universe. The humanistic
intellectual and social movement in these eras was both encouraged by and contributed
to insightful shifts in developing mathematics and applying it to the physical world. The
“reawakening” in classical art and literature that defined the Renaissance (originating
in Italy and spreading throughout Europe during the fourteenth, fifteenth, and sixteenth
centuries) was accompanied by a movement to return to rational scientific investigation.
Mathematics formed the core of this movement. And just as art, literature, and music
flourished into the elaborate expressions of the Baroque period of the seventeenth
century, so too mathematics began to flourish. New foundational ideas in mathematics
and the mathematical community’s increasing commitment to rigor during the
seventeenth century paved the way for an “Age of Enlightenment” to follow—a time
when the prevailing European culture strongly valued the rationalism that permeates
Western culture to this day.

During the time between the ancient Greeks and the European Renaissance,
the development of mathematics proceeded relatively slowly. A handful of Indian
and Islamic mathematicians worked to preserve and extend the work of the ancient
Greeks, and the dissemination of the Hindu—Arabic numeral system contributed to the
mathematical achievements of the Renaissance and the Enlightenment. But the Age
of Enlightenment in seventeenth and eighteenth century Europe was truly a unique
time when a handful of exceptional individuals—mathematical geniuses, really—
profoundly changed our approach to scientific investigation. Instead of being satisfied
with calculations focused on practical problem solving, these mathematicians began
developing a broad, methodological approach to mathematical and scientific thought.
Many of the greatest mathematical minds in history worked at this time, including
Galileo, Descartes, Fermat, Leibniz, and Newton. During this period, great advances
occurred in the study of real-valued functions.

From your earlier courses in mathematics, you know that calculus characterizes
properties of functions using limits, derivatives, and integrals. These mathematical
tools help describe the way functions change as their independent, real-valued variables
change. In this chapter we explore several insights into the theory of functions,
describing these ideas in a mathematically rigorous fashion. We also investigate some
related mathematical developments that occurred well past the dawning of the Age
of Enlightenment, setting the stage for modern mathematical investigations into the
theory of functions during the twentieth and twenty-first centuries.

241
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4.1 Analytic Geometry

The modern understanding of the relationship between algebra and geometry can be
traced back to the French philosopher René Descartes; in 1637 he published the treatise
Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les
sciences (that is, A Discourse on the method of rightly conducting the reason and
seeking truth in the sciences). In La géometrie (the third appendix of this work),
Descartes explained a natural identification between algebraic equations and geometric
curves in the real plane. Since you were taught such an identification years ago,
this notion may seem relatively straightforward and obvious. But Descartes’ insight
was one of the key advances of the seventeenth century, initiating a new way of
thinking about algebra and geometry, and ultimately contributing to the development
of calculus.

We know this story well from previous mathematics courses. Descartes’ corre-
spondence between an algebraic equation and a geometric curve is obtained (in a
modern way) by associating a unique mathematical label to each point on the plane.
This unique name is known as an ordered pair. The values of an ordered pair are
determined by identifying two perpendicular lines on the plane called axes; these two
axes intersect in a single point called the origin. By convention, we visualize an x-axis
with a horizontal orientation and a y-axis with a vertical orientation. The real plane with
these axes is called the coordinate plane or sometimes the Cartesian plane in honor
of Descartes. Scaling these axes, each point on the plane is now uniquely identified
by an ordered pair of real numbers (x,y) € R?. We determine the first coordinate
x € R by drawing a vertical line through the point and setting x equal to the directed
distance along the x-axis from the origin to this vertical line. Similarly, y € R is the
directed distance along the y-axis from the origin to the horizontal line through the
given point.

We can now describe Descartes’ correspondence between an algebraic equation
and a geometric curve: an equation in the variables x and y is identified with the
curve whose points (x, y) satisfy the equation. Mathematicians gradually expanded
on Descartes’ identification of geometric points with algebraic ordered pairs into the
mathematical field known as “analytic geometry.”

Example 4.1.1 The equation y = xZis a parabola with vertex (0, 0). The ordered pairs (x, y)

satisfying this equation include (-2, 4), (—1, 1), (0, 0), (1, 1), (2, 4), and (3, 9),
among others. The set of all ordered pairs (x, y) satisfying y = x? produces the
parabola illustrated in figure 4.1.

]

Question 4.1.1 Identify three ordered pairs satisfying the equation y = 2x 4+ 5 and sketch the

curve identified by this equation. What do we call such a curve?
|

Analytic geometry can be developed for dimensions greater than two. Most often,
we consider three-dimensional space R>. In this case, we identify three mutually
perpendicular lines arranged as shown in figure 4.2; these lines are called x, y, and
z axes. Scaling these axes as for R?, points in space are identified by ordered triples of
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Figure 4.1 The coordinate plane with y = x2 X
z

Figure 4.2 Nonnegative axes for a 3-dimensional
coordinate system
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the form (x, y, z), where each element of the ordered triple is the directed distance from
the point to one of three coordinate planes. For example, the value a in the ordered
triple (a, b, c¢) is the distance from the point to the yz-plane formed by the y-axis and
the z-axis.

For much of this section, we determine the algebraic equations corresponding to
many well-known curves in the plane. For most of these curves, the distance formula
plays a key role in determining the equation. The distance formula follows from the
Pythagorean theorem; further details of a proof are left to the reader. Also, the two-
dimensional distance formula can be extended to obtain the formula for the distance
between points in three-dimensional space.

Theorem 4.1.1 The Distance Formula The distance D between any two points (x, y) and (a, b) in
R? is given by the formula

D = \/(x—a)z—i-(y—b)z.

Similarly, the distance D between any two points (x,y, z) and (a, b, ¢) in R3 is
given by the formula

D = \/(x—a)2+(y—b)2+(z—c)2.

The distance formula is readily applied to find the distance between points.
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Question 4.1.2 Determine the distance between the following points.

(a) (1,2)and (3,4) (b) (5,6,7)and (10,9, 8)
|

An understanding of the relationship between geometric and algebraic structures
provides a mathematical approach that enables us to prove many important results.
For example, we can use the algebraic interpretation of a curve to prove rigorously
that y = x2isa parabola in the classical sense of the ancient Greeks, who defined a
parabola in terms of a fixed point called the focus and a fixed line called the directrix;
a parabola consists of the set of all points that are equidistant from the focus and the
directrix. The vertex of a parabola is the point on the curve closest to the focus (and
the directrix). A parabola is one example of a “conic section.” The following example
identifies the standard algebraic equation for certain parabolas.

Example 4.1.2 We prove that the parabola with a focus on the positive y-axis at the point (0, a)

and with a directrix that is the horizontal line y = —a has an algebraic equation

of the form y = ex?.

Proof  Applying the distance formula, the distance from an arbitrary point (x, y) on this

parabola to the focus (0, a) is /(x — 07 + (y — a)? = \/2? + (v — a)?. Similarly,

the distance from (x, y) to the directrix y = —a is \/(x — x4y - (—a)]? =
|y + al. Setting these distances equal to each other and squaring both sides, we
obtain x* + y> — 2ay + a> = y* + 2ay + a®. Algebraically manipulating this
equation, x> = 4ay. Thus, y = [1/(4a)] x> = cx* when ¢ = 1/(4a).

|

Comparing this result with the equation y = x> from example 4.1.1, the curve
corresponding to y = x? satisfies the classical definition of a parabola with focus
at (0, 1/4) and directrix y = —1/4. Note that for any given parabola, the axes of
the coordinate plane can be positioned so that the x-axis is parallel to the directrix.
If a parabola has vertex (h, k), focus (h, k + a), and directrix y = k — a, then the
corresponding equation is (x — h)*> = 4a(y — k). We obtain this equation using the
distance formula and following the approach of example 4.1.2, which essentially
amounts to replacing x with x — h and y with y — k. If ¢ = 1/(4a), the equation can be
algebraically manipulated to produce the following standard form for the equation of
a parabola with vertex (4, k).

y=clx—h?+k

Descartes’ identification of algebraic equations with curves on the plane ushered
in a whole new era in the study of geometry. A geometric curve could now be studied
in terms of the properties determined by its corresponding algebraic equation. In this
way, the identification of algebraic equations expressing well-known curves became
important.

Another example of a curve studied by the ancient Greeks is the circle. In the
classical definition, a circle is the set of points equidistant from a fixed point called the
center; the fixed distance from points on the circle to the center is called the radius.
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For this discussion, let (4, k) denote the center and r denote the radius of a circle.
Applying the distance formula to the center (k, k) and an arbitrary point on the circle,

every point on the circle satisfies the equation r = \/ (x — h)? + (y — k)2. Squaring both
sides, the standard form for the equation of a circle with center (%, k) and radius r is

2= (x—h)?+(y—k>.

Question 4.1.3  Graph each circle with center (k, k) and radius r, and state the corresponding
algebraic equation.

(@ (h,k)=(1,1)andr =1 ©) (hk)=(2,—4) andr = 1
() (h, k)= (=2,5)and r = 8 d) (h k)= (=3, —4)andr =5
]

The unit circle has center (4, k) = (0, 0) at the origin and radius r = 1. Itis studied
in many mathematics courses and is closely connected to trigonometric functions. The
following question considers the set of points that make up the unit circle.

Question 4.1.4 (a) Graph the unit circle and state the corresponding algebraic equation.
(b) Using your equation, find the two points on the unit circle with x = +/3/2 and
label these points on your graph.
(c) Using your equation, find four other points on the unit circle and label these
points on your graph.
|

The unit circle helps define the trigonometric functions that are important in
modeling many physical and social phenomena. The French mathematician Jean
Baptiste Joseph Fourier proved early in the 1800s that many important functions
can be expressed as a (possibly infinite) sum of sine and cosine functions; from
this perspective, the trigonometric functions are the basic building blocks of a large
class of functions. The first known study of trigonometric functions was undertaken
by the Greek mathematician Hipparchus in the second century B.C.E., who applied
mathematics to astronomy, which required the computation of chord lengths of certain
circles. Trigonometric functions are defined on the unit circle by letting 6, measured
in radians, be the angle formed between a ray emanating from the origin and the
positive x-axis; a positive angle is measured counterclockwise up from the axis. The
ray emanating from the origin intersects the unit circle at a point (x, y); the value cos 6
is the x-coordinate of this point, and sin 8 is the y-coordinate, as illustrated in figure 4.3.
The remaining trigonometric functions are defined using the following ratios.

sin 6 1 1 cosf

secd = csc) = —— cotld = —
cosf cosf sin 6 sin 6

Question 4.1.5 Complete the following table so that each ordered pair (x, y) is a point on the unit
circle with both x and y nonnegative; the Pythagorean theorem may prove helpful.
Use this table to answer the following questions.

x=cosf | 1 V2/2 0
y =sin@ 12 V32
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. (cos 6, sin 0)
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Figure 4.3 Defining cos 6 and sin 6 for a given
cos g X=1 angle 0

(a) Label these five points on a graph of the unit circle. For each point, draw a
ray from the origin through the point and identify the angle 6 between the ray
and the x-axis in both degrees and radians.

(b) What are the values of cos (45°), sin (45°), cos (7/3), and sin (;r/3)?

(c) Calculate the value tan 6 for each column in the chart. What is the value of
tan (77 /6) and tan (;r/2)?

|

As mentioned above, a parabola is one example of a conic section, as is a
circle. Conic sections have been studied for at least the past 2300 years. In the
third century B.C.E., the “Great Geometer” Appolonius of Perga wrote a compre-
hensive anthology Conics that greatly influenced the development of mathematics
in subsequent centuries. Appolonius introduced the terms “parabola,” “ellipse,” and
“hyperbola,” and studied their properties based on the classical definitions discussed
in this section. The fourth century mathematician Hypatia of Alexandria (the first
woman known to contribute substantially to the development of mathematics) wrote
important commentaries on Appolonius’ Conics as well as Diophantus’ Arithmetica
and Ptolemy’s Almagest.

The Greeks defined conic sections (or just conics for short) as those curves resulting
from a plane intersecting a “double-napped” cone—one consisting of two cones joined
at a common vertex and having axes (the “edges” of the cones) colinear. Parabolas,
circles, ellipses, hyperbolas, a pair of intersecting lines, single lines, and points are the
seven distinct types of conics. Lines and points are called degenerate conic sections
because they are obtained when a plane intersects the cone’s vertex. Each type of
conic is identified with a standard equation; we are already familiar with the following
correspondences between curves and equations.

Conic section | Standard algebraic equation

Parabola y=alx— h? +k
Circle rP=x—-h?*+ Oy — k)?
Line y=mx+b

In general, every linear equation corresponds to a line, and every quadratic equation
corresponds to one of the nondegenerate conic sections. From the derivation of the
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equation for a parabola, we see that any polynomial in x and y with one variable of
degree one and the other variable of degree two is a parabola. As we show below,
polynomials in x and y with both variables of degree two are either circles, ellipses, or
hyperbolas. For circles and ellipses, the coefficients of x> and y* have the same sign;
for hyperbolas, the coefficients of x> and y? have opposite signs.

An ellipse is classically defined as the set of points (x, y) such that the sum of the
distances from (x, y) to two fixed points called foci is equal to some fixed constant.
Alternatively, an ellipse results from intersecting a “tilted”” plane with a double-napped
cone (although it cannot be tilted too much or it would generate either a parabola or a
hyperbola). In the following example, we identify the standard algebraic equation for
an ellipse.

Example 4.1.3 We prove that an ellipse with both foci on the x-axis equidistant from the origin
has an algebraic equation of the form

Proof Let(—c, 0)and (c, 0) denote the two foci of an ellipse with the sum of the distances
equal to 2K; note that in this setting K > c. For any point (x, y) on the ellipse, the
sum of the distances from the point to the foci is 2K; expressing this sum using
the distance formula, we have

o eP + =02+ Jx— P+ (=0 = 2k.

Bringing the second square root term to the right side of the equation, squaring
both sides, and simplifying yields the following equalities.

x+e)+y = 4K2+—4K\/m+(x—c)2+y2
e+t = 4K+ AR P bR - e+ )P
dxc = 4K2+—4K\/m
xc—K? = —K(x—cR2+y?

Now square both sides and simplify the result.

ke —K2? = K [(x—cP?+y]
x2c? —2K?%xc + K* = K% —2xcK? 4+ K% + K?y?
(K2 — 2 +K2y2 = K —K2? = KXK®—¢P)
2 2
202
KZ KZ _C2

Notice that since K > ¢, K? — ¢? is positive. The desired standard equation is
obtained by defining a = K and b = v K2 — ¢2.
|

The hyperbola is the last conic we consider in this section. Classically, a hyperbola
is defined as the set of points (x, ¥) such that the difference of the distances from (x, y)
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to two fixed points (called foci) is equal to a given fixed constant. Alternatively, a
hyperbola results from the intersection of a double-napped cone with a plane “tilted”
past the diagonal determined by the sides of the cone. The next question derives the
standard form of a hyperbola’s algebraic equation.

Question 4.1.6 Let (—c, 0) and (c, 0) denote the two foci on the x-axis equidistant from the origin,

and consider the hyperbola consisting of points (x, y) such that the difference of
the distances from (x, y) to the foci is 2K, where K < c.

(a) Following a procedure similar to that of example 4.1.3, prove that the algebraic
equation for such a hyperbola is of the following form.

2 )
2 !
(b) Using the result from part (a), find the equation of the hyperbola with foci
(—4, 0) and (4, 0) with a difference of distances equal to 2K = 6.

While every curve on the xy-plane can be identified with a set of ordered pairs,
not every curve in the plane is a conic section. The next few questions consider
some patterns that can arise from studying finite sets of ordered pairs. This process
is inductive since many different curves can satisfy a given set of points. Such
curve-fitting is a delicate process, and mathematicians have developed sophisticated
algorithms for finding the “best” fitting curves of a given type (for example, of
polynomial type with least degree). The simplest possible curve that fits a given set
of ordered pairs is typically chosen. The following questions present relatively simple
patterns.

Question 4.1.7 Consider the ordered pairs presented in following table.

x| -3 -1 0 1 2 5 6 8
y|—-6 -2 0 2 4 10 12 16

(a) Graph the ordered pairs identified in this table.
(b) Examining this graph, what geometric pattern exists among these points?
(c) Geometric patterns are often expressible as an algebraic equation. What
equation describes the relationship between these x and y values?
|

Question 4.1.8 Consider the graph of points on the plane given in figure 4.4.

(a) State the ordered pairs that identify each point in figure 4.4.

(b) Whattwo lines can be combined so that every point lies on their graph? Restrict
the domains of the two lines to the negative and nonnegative real numbers,
respectively.

(c) What single function expresses this pattern of points?
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Question 4.1.9 Graph the ordered pairs in the set {(1, 2), (-5, 3), (0, 2), 4, =7), (—ﬁ, -2),
(=3, 0)} on a coordinate plane. These points may seem unrelated, but can you
draw a continuous curve with only two relative extrema (say, at x = —+/2 and
x = 1/2) that passes through all six points? Continuity is defined in section 4.3,
but for now work with the intuitive notion of not lifting your pencil or pen as you
trace the curve.

|

Basic geometric facts are often expressed in terms of a curve’s ordered pairs (x, y).

For example, the perpendicular distance d from an arbitrary point (xo, yo) € R? in the
plane to a line determined by y = mx + b is given by

_|mxo + b — yo
mZ+1

d

The proof of this result is outlined in the exercises at the end of this section. The next
question uses this formula to study a triangle.

Question Consider a triangle with vertices at (1, 2), (4, 7), and (6, 3).

4.1.10 (a) Determine the equation of a line through (4, 7) and (6, 3).

(b) Use the formula presented above to find the perpendicular distance from the
point (1, 2) to the opposite side of the triangle; this distance is the triangle’s
height.

(c) Compute the area of the triangle using the standard formula

1
Area = 3 base - height.
|

We end this section by considering three-dimensional surfaces in R>. Every
point in three-dimensional space is identified with an ordered triple (x, y, z); algebraic
equations relating these variables define surfaces. A linear equation ax + by + cz = d
(where a, b, c and d are real constants) is the equation of a plane, which is classically
defined as the set of all points (x, y, z) that are equidistant from two distinct points
(e,f,g) and (p, g, r). We verify this algebraic equation using the distance formula



250

Question
4.1.11

A Transition to Advanced Mathematics

(for three dimensions), setting the corresponding distances equal, and performing some
algebraic manipulations

Jx—eP 4=+ =P =\ k= pP (=) +(c— )2
2 —2ex+e +y* =2y +f2 422 —2gz+ 82 =2 —2p+pP 4+ —2qy+¢* + 22— 2rz 412

2Ap—ex+2g—fy+2r—gz=p*+@*+r* - —f*—g*

Lettinga =2(p —e),b =2(q —f),c =2(r —g),andd = p* + ¢* + r*> — &> —f> — g2,
the standard form for the equation of a plane is ax + by 4 cz = d. The following question
applies this result.

(a) What is the equation of the plane whose points (x, y, z) are equidistant from
the origin and from (2, 2, 2)?

(b) Find the real numbers r, s, ¢ € R such that the points (r, 0, 0), (0, s, 0), and
(0, 0, 7) lie on the plane from part (a). These points are known as the x, y,
and z intercepts of the plane, respectively.

(c) Produce a graph of the plane by plotting the three points from part (b) on the
axes of a coordinate system in three-space and connecting these points with

line segments. =

Just as we are interested in the three-dimensional analog of a line, we are similarly
interested in the three-dimensional analog of a circle known as a sphere.

Question Classically, a sphere is defined to be the set of points (x,y,z) that are a
4.1.12 fixed radius r from a fixed center (h,j, k). Using the distance formula, show

that the form for the algebraic equation of a sphere is (x — h? + (y — j)*+

N2 2
(z—k)y=r- .

Geometric figures in two and three dimensions can be studied in terms of
corresponding algebraic equations. Sometimes these equations may be viewed as
functional expressions. For example, writing y = f(x), the standard equation of
a parabola may be written as f(x) = c(x — h)? + k. Similarly, the equation of a
plane in three-space may be written as f(x,y) = ax + by + ¢, where z = f(x, y)
is a function of x and y. On the other hand, some algebraic equations cannot be
viewed as functional expressions; for example, the hyperbola x> — y> = 1 does
not have a single y-value corresponding to every x-value. The next section begins
a detailed study of the theory of functions, since functions are special curves that
lend themselves to mathematical operations such as composition, differentiation, and
integration. A rigorous understanding of functional properties enables an exploration of
the mathematical theory that underlies calculus. Ultimately this understanding allows
us to study spaces of functions, in much the same way that we have studied spaces of
points in this section.



Chapter 4 = Real Analysis 251

4.1.1 Reading Questions for Section 4.1

1.

N

Now e W

Define axes and origin in the context of the two-space R?.

What point does the ordered pair (1, 4) identify on the plane? Sketch a graph
to facilitate your description.

What mathematical objects did Descartes identify with curves?

State the distance formula and give an example.

What is a conic section?

Name the seven distinct types of conics identified by the ancient Greeks.

. What is the classical definition of a parabola, a circle, an ellipse, and a

hyperbola?

. State the standard algebraic equation of each conic.
. Define cos 6 and sin 6 in terms of the unit circle.

10.
11.
12.

Define tangent, cotangent, secant, and cosecant in terms of sine and cosine.
What is the classical definition of a plane and a sphere?
State the standard algebraic equation of a plane and a sphere.

4.1.2 Exercises for Section 4.1

In exercises 1-4, graph the points identified by each set of ordered pairs and tables.

1. {(2,2), (mw,e), (—1,4), (=2,-2)}

2.4, 1), (=2,/3), 4,0), (=5,—4), (1, —7) }

3.

x|—-6 —4 -2 0 2 4 6

y|l-6 =4 -1 0 2 4 6

x{-3 -2 -1 01 2 3

vyl 6 4 1 0 2 4 6 8

In exercises 5—18, graph each curve on the coordinate plane and find an equation in
x and y that corresponds to the curve.

5.

W oo

10.
. The circle with center (0, 2) and radius 2.
12.
13.
14.
15.
16.
17.

The horizontal line two units above the x-axis.

The vertical line three units to the left of the y-axis.

The line passing through the points (—2, 3) and (5, —4).
The line passing through the points (4, 7) and (—1, —2).
The circle with center (1, 2) and radius 6.

The circle with center (3, —5) and radius 2.

The circle with center (2, 0) and radius 2.

The parabola with focus (0, 1) and directrix y = —1.

The parabola with focus (0, 3) and directrix y = —1.

The ellipse with foci (-5, 0) and (5, 0), and with sum of distances 2K = 20.
The ellipse with foci (—3, 0) and (3, 0), and with sum of distances 2K = 20.
The hyperbola with foci (-5, 0) and (5, 0), and with difference of distances
2K = 4.
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18.

The hyperbola with foci (—3, 0) and (3, 0), and with difference of distances
2K = 2.

In exercises 19-25, sketch the intersection of a double-napped cone (consisting of two
cones joined at a common vertex with colinear axes) with a plane that yields each conic

section.

19.
20.
21.
22.

A parabola. 23. A point.

A circle. 24. Aline.

A ellipse. 25. Two intersecting lines.
A hyperbola.

Exercises 26—32 consider the general equations of conic sections.

26.
27.
28.
29.
30.

31.

32.

Specify the focus and directrix of the parabola y = 4x?.

Specify the focus and directrix of the parabola y = x> + 1.
What point on y = 4x? is closest to the focus of this parabola.
What point on y = x” + 1 is closest to the focus of this parabola.

The main cable hanging from the tops of the suspension towers of the Golden
Gate Bridge is shaped as a parabola; the vertex of this parabola is the lowest
point of the cable, lying six feet above the level of the road. The towers are
approximately 520 feet above the level of the road and stand 4200 feet apart.
Use these facts to find an equation representing the shape of the cable, placing
the cable’s vertex at the origin of your coordinate plane.

The eccentricity of an ellipse with foci at (—c, 0) and (¢, 0) and with the sum
of the distances equal to 2K is defined to be e = ¢/K. From the assumption
that K > ¢, we have 0 < e < 1. How do changes in e alter the shape of an
ellipse? Contrast e close to 0 with e close to 1.

Show that the classical definition of a line as the set of points (x, y) equidistant
from two fixed points (c, d) and (s, t) corresponds to an equation of the form
y=mx+b.

In exercises 33-38, find a linear equation that corresponds to each set of points.

33.
34.
35.
36.
37.
38.

The line with slope 5 and y-intercept b = —4.

The line passing through points (0, 0) and (5, 3).

The line passing through points (—2, 3) and (6, —7).

The set of points (x, y) equidistant from the two points (0, 0) and (6, 4).
The set of points (x, y) equidistant from (0, 0) and (-2, 8).

The set of points (x, y) equidistant from (—2, 3) and (6, —7).

In exercises 39-44, simultaneously solve the equations of the given curves to determine
all points of intersection of the curves.

39.

The parabola y = x> + 1 and the line y = x + 1.

40. The parabola y = x> + 1 and the parabolay = 1 — x2.

41.

The parabola y = x> + 1 and the hyperbola x> — 2y* = 1.



Chapter 4 = Real Analysis 253

X <4 y
+3
X 1 %
X 14 x
. . | | | | | | | |
Figure 4.5 Graph for exercises I I I I I I I 1
45-46 -4 -3 —2 -1 1 2 3 4

42. The ellipse 3x> + y> = 1 and the line y = x + 1.
43. The ellipse 3x* + y*> = 3 and the parabola 2y = 3x?.
44. The ellipse 3x> 4 2y? = 1 and the hyperbola 5x> — 2y = 1.

In exercises 45-46, work with the following graph of points in the plane given in
figure 4.5.

45. State the ordered pairs that correspond with each of the points in figure 4.5.
Give your answer both as a set and as a table.

46. Sketch a quadratic curve that approximately fits the points given in figure 4.5
and state an algebraic equation defining this parabola.

In exercises 4749, consider the set of points identified in the following table.

x| =3 -2 -1 0 1 2 3 4
y| -5 -16 -2 0 2 16 54 128

47. Graph the ordered pairs given in the above table on the coordinate plane.

48. Describe any geometric patterns you observe among the points graphed in
exercise 47.

49. Based on exercises 47 and 48, state an algebraic equation expressing the
relationship between the numbers in the x-row and the y-row in the above
table.

In exercises 50-52, consider the set of points identified in the following table.

x| —153 —153 —100 —100 —50 —-50 O 0 50 50 100 100 148
y| 3 -3 115 —115 143 —143 150 —150 141 —-141 110 —-110 O

50. Graph the ordered pairs given in the above table on the coordinate plane.
51. Describe any geometric patterns you observe among the points graphed in
exercise 50.
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52.

()

Earth

Figure 4.6 Earth’s orbit
4 for exercises 50-52

The collection of points in the above table corresponds with data on the Earth’s
orbit collected by astronomers before 1650. One of the major mathematical
breakthroughs of the seventeenth century was Newton’s determination that
the Earth’s orbit can be described by the equation: x? + y> = (150.4716 —
0.0167x)%. Newton’s study of planetary motion in terms of elliptical orbits
was his first application of calculus, and it motivated his development
of the theory describing how the position of objects change over time.
The above equation corresponds to an ellipse, and Newton framed his
equation so that the Sun (at one of the foci) is located at the origin
as illustrated in figure 4.6. Based on this information, which half of
the x-axis contains the Earth’s perihelion (that is, its closest approach to
the Sun)?

In exercises 53—58, find a linear equation that corresponds to each set of points in R3.

53.
54.
55.
56.
57.
58.

The set of points (x, y, z) equidistant from (1, 2, 0) and the origin.
The set of points (x, y, z) equidistant from (2, 0, 4) and the origin.
The set of points (x, y, z) equidistant from (1, 1, 1) and (2, 2, 2).

The set of points (x, y, z) equidistant from (—2, —3, 4) and (1, 3, —8).
The plane passing through (2, 0, 0), (0, 3, 0), and (0, O, 1).

The plane passing through (4, 0, 0), (0, 1, 0), and (0, 0, 5).

Exercises 59-61 consider the intersection of the planes ax 4 by 4+ cz = 1 with the
unit sphere x> + y? + z> = 1. Answer each question by simultaneously solving the
corresponding equations.

59.

60.

61.

Prove that the nonempty intersection points of a plane with the unit sphere is
always an ellipse, a circle, or a single point.

If ¢ = 1, how are a and b related when the intersection of the plane and the
unit sphere is a circle?

If ¢ = 1, what values of a and b result in the intersection of the plane and unit
sphere being a single point?
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Exercises 62—-64 develop a proof that the perpendicular distance d from a point (xg, yo)
toaliney =mx + b is

62.

63.

64.

_mxo 4+ b — yol
m? + 1

d

Sketch the line segment from (xg, yo) to y = mx + b that is perpendicular to
the line. Let (X, ) identify the point of intersection of this line segment with
y = mx + b. Why is —(1/m) (X — xo) + yo = mx + b? Solve this equation for
% so that m? + 1 appears in the denominator.

As in exercise 62, explain why (1/m) (y — b) = —m(y — yo) + xp is valid and
solve this equation for J so that m?> + 1 appears in the denominator.

Using the algebraic expressions for X and y from exercises 62 and 63,

along with the distance formula d = \/ (& — x0)? + (@ — y0)?, prove that the
perpendicular distance from the point (xg, yo) to the line y = mx + b (that is,
to the point (X, ¥)) is given by the formula stated above.

Exercises 65—70 use similar triangles to prove the equivalence of the unit circle and
right triangle definitions of the trigonometric functions. Recall from exercises 28-33
in section 3.3 that two triangles are similar if their three interior angles are identical;
the side lengths of corresponding similar triangles share the same ratios.

In exercises 65-70, assume that ABC is an arbitrary right triangle with side lengths
denoted by opp, adj, and hyp (greater than one). Use the similar triangles ABC and
ADE in figure 4.7 and the ratio property of similar triangles to prove the equivalence
of the definitions of the trigonometric functions. Note that edge AE is the radius of the
unit circle and has length one.

65.

66.

67.

68.

The right triangle definition of cosine asserts that cos 8 = adj/hyp. Prove this
quantity is equal to the unit circle definition of cosf, which in this setting
is |AD|.

The right triangle definition of sine asserts that sin & = opp/hyp. Prove this
quantity is equal to the unit circle definition of sin 6, which in this setting
is |DE]|.

The right triangle definition of tangent asserts that tan 6 = opp/adj. Prove this
quantity is equal to the unit circle definition of tan 6, which in this setting
is |DE|/|AD].

Prove the right triangle definition of secant equals the unit circle definition.

C
y
hyp
E opp
. .. . 0
Figure 4.7 Similar right A i >
triangles for D) 1 adj B X
exercises 65-70



256

A Transition to Advanced Mathematics

69. Prove the right triangle definition of cosecant equals the unit circle definition.
70. Prove the right triangle definition of cotangent is equal to the unit circle
definition.

4.2 Functions and Inverse Functions

Functions are essential to the study of mathematics. As one might expect, humanity’s
understanding of functions developed gradually over centuries of reflection and
dialogue. While the Babylonian, Greek, Indian, and Islamic mathematicians all
worked with what we now understand as functions, the fourteenth century schools
of natural philosophy at Oxford and Paris were the first to consider the more general
notion of a function expressing dependence relations among quantities. The German
philosopher and mathematician Gottfried Wilhelm von Leibniz is credited with
introducing the word “function” into mathematical dialogue in the 1670s, and important
refinements to the understanding of functions were made by Johann Bernoulli (or
Jean Bernoulli), Euler, Cauchy, Fourier, and Dirichlet in the eighteenth and nineteenth
centuries.

Functions enable mathematicians to think beyond computations with specific
values to generalizations of algebraic rules, making it possible to apply a rule in
one fell swoop to a whole set of values. The standard notation for a function is
highly advantageous: abstractly writing y = f(x) allows notational manipulations
that are convenient, are easily understood, and prompt new insights into functions
and operations on functions. One such operation is “composition” in which first one
function and then another is applied to an input; this operation is defined more carefully
in this section, but for the moment we observe the notational ease of expressing
composition as y = g(f(x)). Even more, this notation allows us to name important
functions and to describe easily properties of functions (for example, we can say “f is
continuous” or “g is bounded”).

This exploration of functions has two primary goals: to understand the abstract
underpinnings of calculus; and to extend our investigations to spaces of func-
tions. Along the way, set theory will play an important role as we characterize
functions using domains and ranges (that is, using sets of inputs and sets of
outputs).

This study begins with the rigorous, formal definition of a function that is
commonly used by the mathematical community. Most often this definition (though its
form is a bit modernized) is attributed to the work of the German mathematician Peter
Lejeune Dirichlet in the 1830s. Dirichlet was trying to understand infinite sums of
trigonometric functions known as Fourier series, and he needed to describe the notion
of a “function” as something different from a “formula.” The following definition
rigorously expresses the intuitive notion that a function identifies every input with a
unique output.

Definition 4.2.1 Let D and Y be sets. A function from D to Y is a set of ordered pairs (x, y), where

x €D,y eY,and every x € D appears in exactly one ordered pair.



Chapter 4 = Real Analysis 257

We write f : D — Y to identify a function f from D to Y, and we write f(x) = y to
indicate that the ordered pair (x, y) appears in the function. The set D of x-values
appearing in an ordered pair is called the domain of f, and the set R of y-values
appearing in an ordered pair is called the range of f. Finally, we say that f maps
D to the target space Y and that f maps a to b whenever f(a) = b.

In this definition of a function, notice that the range R is a subset of the target
space Y. In some contexts the set Y is identified as the range. The next example
considers a few simple finite functions on the integers.

Example 4.2.1 We first consider the function f defined as {(1, 2), (3,2), (7,3), (8, 12)}. This
set is a function because every x-coordinate (that is, 1, 3, 7, 8) appears in exactly
one ordered pair, and so every x is mapped to exactly one y. There is no difficulty
with 2 appearing as the y-coordinate for both 1 and 3; the definition prohibits
only repeated x-coordinates. The domain of f is D = {1, 3, 7, 8}, and the range is
R =1{2,3,12}.

In contrast, consider the set of ordered pairs {(1, 2), (3,2), (7,3), (7, 12)}.
This set is not a function because 7 appears as the x-coordinate in two distinct
ordered pairs (7, 3) and (7, 12); hence every input does not have a unique output.
We could delete one or both of these two ordered pairs to obtain a function; in a
similar way, mathematicians often restrict the domain of an algebraic expression
or geometric curve in order to obtain a function.

Finally, sets such as {1, 2} and {4, (1, 2)} are not functions since they are not
sets of ordered pairs.

|

In an intuitive sense, a function is a correspondence (or a relationship) between
two variables, where each possible value of the independent variable (the function’s
input) produces a single unique value of the dependent variable (the function’s output).
The sets that correspond to the possible input and output values are the domain and
range sets, respectively. Recall from your previous math courses that often the domain
D and the range R are not mentioned explicitly when defining or referring to a function.
In these cases, D is understood to be the largest possible set on which the rule defining
the function is defined. For example, without a domain or range specification, the real
function f(x) = 1/x is understood to have domain D consisting of all nonzero real
numbers, since the equation is defined except when x = 0. The resulting range R is the
set of nonzero reals, since these are the possible output values that could result.

As we saw in example 4.2.1, functions need not be defined in terms of an algebraic
expression. Rather, any set of ordered pairs is a function (even infinite sets) if every
x-value is identified with a unique y-value, even if an algebraic expression is not
provided

Question 4.2.1 Explain why each set of ordered pairs is a function or not. For each function,
identify the domain D and range R.

(a) {(0,0), (1,2), (2,4), 3,6), (3,25)}
(b) {(0,0), (1, 1), (2,4, (3,9), (4,16)}
© {(x,x):xeN} = {(1, 1), (2,2), (3,3),...}
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Figure 4.8 The left map is not one-to-one. The right map is not onto

@) {(x,2):xeN} {(1,2), (2,2), (3,2),...}

@ {2,»:yeN} = {2, D, 2,2), 2,3),..}
]

We verify that an algebraic equation relating variables x and y defines a function
y = f(x) in the following way: given any two distinct y-values y; and y; in the range
R, prove the corresponding x values x; and x; are also distinct. Recall the geometric
rendition of this property known as the “vertical line test”: any vertical line can intersect
the curve (corresponding to the algebraic equation) at most once.

Three important adjectives for functions are: one-to-one, onto, and one-to-one
correspondence. As you may recall, one-to-one functions have “inverses.” Intuitively,
an inverse function “undoes” the work of a given function mapping outputs back to
inputs. Many commonly used functions have inverses; for example, y = x — 5 is the
inverse of y = x + 5, the natural logarithm function In (x) is the inverse of y = e,
y = arcsin (x) is the inverse of y = sin (x) with restricted domain —7/2 < x < 7/2,
and y = ax + b is the inverse of y = (x — b)/a. One-to-one correspondences play a
key role when studying the relative sizes of sets, and they are used to determine the
equivalence of two algebraic structures such as groups.

An intuitive understanding of one-to-one and onto functions may be gained from
simple illustrations. For one-to-one functions, every output comes from a unique input;
the function illustrated on the left in figure 4.8 is not one-to-one because the element
a is an output of two distinct inputs x and y. A function is onto a target set Y if
every element of Y is an element of the range R; that is, if every element of Y
is an output. The function on the right in figure 4.8 is not onto the illustrated set
because the element c is not an output for any input. A one-to-one correspondence
is both one-to-one and onto. The next definition precisely expresses these intuitive
descriptions.

Definition 4.2.2 A function f : D — Y is one-to-one if for all x,y € D, f(x) = f(y) implies that

x =y, equivalently, if for all x,y € D, x # y implies f(x) # f(y).

* A functionf : D — Y is onto Y if for every y € Y, there exists an x € D such
that f (x) = y; in other words, if the range of f is the target set.

* A function f : D — Y is a one-to-one correspondence if f is both one-to-one
and onto. When this happens, we say that the sets D and Y are in one-to-one
correspondence and we write |D| = |Y/|.
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The next two examples consider functions in light of this definition, one that is a
one-to-one correspondence and one that is neither one-to-one nor onto.

Example 4.2.2 'We prove that the function f mapping the nonzero reals to the nonzero reals defined
by f(x) = 1/x is a one-to-one correspondence.

Proof ~We first show f is one-to-one, assuming that a, b € R \ {0} with f(a) = f(b),
and proving that a = b. Since f(a) = f(b), 1/a = 1/b from the definition of the
function. Multiplying both sides of this equation by ab gives a = b. The function
is therefore one-to-one.

We now show f(x) is onto, assuming b € R\ {0} (the target space) and finding
a nonzero real value a such that f(a) = b. From the function’s definition, this
condition holds exactly when 1/a = b, which identifies the corresponding domain
value as @ = 1/b. In conclusion, we have found a value a in the function’s domain
that is mapped to the given value b in the target set, and so f is onto.
Because f is both one-to-one and onto, it is a one-to-one correspondence from
the set of nonzero reals to itself.
|

Example 4.2.3 We prove that the function f : R — R defined by f(x) = x? is neither one-to-one
nor onto the reals.

Proof We identify counterexamples to each property. To disprove f is one-to-one,
consider a = 2 and b = —2. For these values, f(a) = f(2) = 4 = f(—2) = f(b),
buta =2 # —2 = b. Hence f is not one-to-one. To disprove f is onto the reals,

consider b = —1 € R (the target set). Since the square of every real number
is positive, there does not exist a € R such that f(a) = a> = —1. Thus f is
not onto.

|

Restricting the domain of the function f(x) = x> in example 4.2.3 to the

nonnegative reals would result in a one-to-one function. Similarly restricting the target
space to the nonnegative reals would result in an onto function. Hence the function g
from the nonnegative reals to the nonnegative reals defined by g(x) = x? is a one-to-one
correspondence.

Question4.2.2 (a) Prove that f : R — R defined by f(x) = 12x — 10 is a one-to-one
correspondence.

(b) Prove that f : R — R defined by f(x) = sin x is neither one-to-one nor onto.

Identify restrictions of the domain and range of sin x that yield a one-to-one
correspondence.

|

Recall the importance of the composition operation on functions from your
previous studies—most commonly used functional expressions are built up from

compositions of more basic functions. For example, the function y = /4(x — 2)? + 1
is the composition of y = x — 2; y = 4x> + 1; and y = /x. Many properties of the
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f o g

Figure 49 Composition of functions

composite function (f o g)(x) = f(g(x)) result from the corresponding properties of
the component functions f(x) and g(x). Figure 4.9 graphically illustrates composition,
where f o g “combines” the process of first applying the function g and then the function
f into a single functional operation; in this case, f(g(a)) = f(x) = k (where g(a) = x)
becomes (f o g)(a) = k.

The following definition of composition expresses this intuitive description.

Definition 4.2.3 Let A, B, C be sets, and both f : B — C and g : A — B be functions. The

composition f o g : A — C is defined by (f o g)(a) = f(g(a)) for every a € A
such that g(a) € B.

In many different mathematical settings, a composite function f o g inherits
properties shared by its component functions f and g. Many of the functional properties
we have studied in this section have this feature.

Theorem 4.2.1 The composition of two one-to-one functions is one-to-one.

Proof Supposef : B— Cand g : A — B are one-to-one, and assume f(g(a)) = f(g(b)).

Since f is one-to-one, we conclude that g(a) = g(b). Similarly, since g is one-to-
one, we conclude that a = b. Hence the composition f o g is one-to-one.
|

Theorem 4.2.2 The composition of two onto functions is onto.

Proof  The proof is left for exercise 56 at the end of the section.

For the rest of this section we study inverse functions. Intuitively speaking, a
function f(x) maps each element of its domain to a unique element of its range.
The inverse function (written f~!(x)) reverses this process so that each output
value in the range of f is mapped back to the corresponding input from which it
came. In short, f and f~! swap input and output values, as the following example
illustrates.

Example 4.2.4 We consider the inverse of f : Z — R, where R = {2,3,4,...} defined

by f(x) = x + 2. The following table represents this function on selected
inputs.

f-input | O | 1[2]3]|4]|5
foutput | 2|3 (4|5|6]|7
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The action of f~! (which maps each f-output back to its corresponding f-input)
reverses the rows of the table as follows.

fl-input=f-output |2 [3 |4 |5|6|7
f'-output =f-input | 0 [ 1|2 |3 |45

Notice that the inverse function’s output values are two less than the corresponding
input; that is, f~1(x) = x — 2.
|

The next definition expresses this intuitive description of the inverse of a function
in terms of composition. As in the study of groups and fields in chapters 2 and 3,
inverses should be “two-sided,” which leads to both clauses in the definition.

Definition 4.2.4 [ff : D — Y is a function with range R, then g : R — D is the inverse function of
f when both (g of)(x) = x for all x € D and (f o g)(x) = x for all x € R. We write
g =f ! to identify the (unique) inverse of f.

Example 4.2.5 As discussed in example 4.2.4, the inverse of f(x) = x + 2 is f~1(x) = x — 2.
Similarly, the inverse of g(x) = 2x (which maps R to R) is the function g~!(x) =

x/2; that is, we “undo” the work of multiplying by 2 by dividing by 2.
|

For all but a handful of functions, the inverse f ~! of a function f(x) is not the same
as its multiplicative inverse (or reciprocal) [ f(x)]~! = 1/f(x). In the last example, we
observed that f (x) = x +2 has inverse function f ~! (x) = x — 2, while the multiplicative
inverse of f(x) is [ f(x)]~' = 1/(x + 2). These functions are clearly not the same—they
even have different domains! Therefore, we use the term “inverse function” exclusively
to identify the function f~! that results from inverting the operation of composition,
rather than inverting the operation of multiplication.

As may be apparent, not all functions have inverses. Consider the familiar squaring
function f : R — R defined by f(x) = x2. Many pairs of numbers map to the same
output; for example, both f(2) = 22 = 4 and f(—2) = (—2)*> = 4. An inverse function
for f(x) = x> would need to assign a unique value to f ~!(4). But this task is impossible,
since there were two values (2 and —2) that f maps to 4. Thus f(x) = x2 does
not have an inverse. Notice that f(x) = x2 is not one-to-one, which is the reason
it does not have an inverse. The following theorem extends this observation to all
functions.

Theorem 4.2.3 A function has an inverse iff the function is one-to-one.

Comments on proof The proof of this theorem is a direct application of definitions, and
is left for exercises 63—64 at the end of this section.
|
When a function is one-to-one, how do we find its inverse? A function f written
in terms of basic algebraic operations can often be manipulated using the following
two-step process to obtain an algebraic expression for its inverse f .
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» Switch the roles of x and y in the expression y = f(x) to obtain x = f(y).
* Solve the resulting new equation for y to obtain y = f~!(x).

The next example illustrates the process.

Example 4.2.6 We apply the two-step process to find the inverse f~! of the one-to-one linear
function f(x) = 5x 4 2.

First switch the roles of x and y, writing x = Sy + 2. Then algebraically solve
for y to obtain the inverse: f~'(x) = y = (x — 2)/5. This expression is easily
verified to be the inverse by directly computing (f~! o f)(x) and (f o f~1)(x)—
they both should equal x. For example, (f ~' o f)(x) = f~1(f(x)) = f'(5x+2) =
[(5x +2) — 2]/5 = 5x/5 = x. Similarly, (f o f~1(x) = x.

|

Sometimes mathematicians modify the domain of a function that is not one-to-one
(and so not invertible). For example, f(x) = x>
be restricted to D = {x € R : x > 0} in order to generate an inverse. The function
h(x) = x?, where x € D, has inverse function #~!(x) = \/x. This strategy is commonly
employed by mathematicians—restrict a function’s domain to make it one-to-one, and

is not invertible, but its domain can

so invertible.

Question 4.2.3 Consider the one-to-one function f : {x € R : x > 0} — R defined by f(x) =
3x2 - 5.

(a) Find an algebraic expression for f “L(x).
(b) Verify that (f~! o f) (x) = x.
(c) Verify that (f o f~1) (x) = x.
|

Equations involving logarithms and exponentials are often solved by using inverse
functions. The function y = log,(x) is defined as the inverse of f(x) = a* (the natural
logarithm function has base e, so In(x) = log,(x)). To solve for a variable x that is
“trapped” in the power of an exponential function, we apply the logarithm to both
sides, using the operation of composition.

Example 4.2.7 We solve the equation y — 5 = ¢**~8 for x. Applying the natural logarithm to both
sides of this equation and simplifying (using the fact that f~'(f(x)) = x) yields
the following.

Iny—5) = In@*?%)
Iny—-5) = 4x-38
x = (In(y—5)+28)/4
]
Question 4.2.4 Solve for x in the equation
_ In[(x —3)"]
YT
|

We end this section with a discussion of the strong relationship between the graph
of a function f and the graph of its inverse function f ~!. Understanding that an inverse
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function “swaps” the roles played by the x- and y-coordinates leads to the insight that
the graphs of the two functions are related by switching the roles of the x- and y-axis. In
other words, the graphs of a function and its inverse are reflections (or mirror images)
of one another across the line y = x.

This observation is particularly useful when f(x) is easy to graph, and when the
graph of £~!(x) is much more difficult to identify. To find the graph of f~!, simply
reflect the graph of f across the line y = x. Mathematicians often use this graphical
property to define new functions. Any one-to-one function f has an inverse whose
graph can be obtained from the graph of f using this reflection property. For example,
In x is sometimes defined in terms of ¢ in this fashion.

At the same time, an inverse function f =1 can be important in its own right,
independent of any reference to the function f. For example, y = In(x) has many
independent uses; the fact that In(x) is the area under the graph of y = 1/¢ from ¢t = 1
to ¢ = x is one such application. The last question of this section considers the graphical
relationship between functions f and £ ~! in the context of exponential and logarithmic
functions having base two.

Question 4.2.5 Consider the exponential function f : R — R defined by f(x) = 2*.

(a) Graph the six points of f(x) identified by x = -2, —1,0, 1, 3, 5.
(b) Extend the graph of points from part (a) to a complete graph of f(x) = 2*.
(c) Graph the inverse f~!(x) = log, (x) of f(x) = 2*.

4.2.1 Reading Questions for Section 4.2

State both an intuitive description and the definition of a function.

Give an example of a set of ordered pairs that is a function and a set that is not.
State both an intuitive description and the definition of a one-to-one function.
Give an example of a function that is one-to-one and function that is not.
State both an intuitive description and the definition of an onto function.
State both an intuitive description and the definition of a one-to-one
correspondence.

Define and give an example of a composition of functions.

State both an intuitive description and the definition of an inverse function.
Give an example of a function and its inverse.

What condition must a function satisfy to have an inverse?

Describe a process for algebraically identifying the inverse of an invertible
function.

12. What is the relationship between the graphs of a function and its inverse?

AR

—_ =
= 9 0 o

4.2.2 Exercises for Section 4.2

In exercises 1-8, explain why each set of ordered pairs is a function or not. For each
function identify the domain and range.

1. {(0,5), (1,2), (2,4), (2,6)} 3. {(0,0), (1,2), (2,4), (3,6)}
2. {(0,2), (1, -1), (—1,4), (=3,9)} 4. {(0,0), (1, 1), (1,4), (3,9)}
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5. {(x,2):x € R} (ory =2)
6. {2,y):yeR}(orx =2)

7. {0%y) :y € R} (orx = y?)
8. {0% ) :y e N} (orx =y?)

Inexercises 9—12, explain why each set of ordered pairs from the unit circle is a function
or not. For each function identify the domain and range.

9. The “top” half of the unit circle: {(x, y) : x> +y> = 1 and y > 0}
10. The “bottom” half of the unit circle: {(x,y) : x> +y*> = 1 and y < 0}
11. The “right” half of the unit circle: {(x, y) : x> + y> = 1 and x > 0}
12. The “left” half of the unit circle: {(x, y) : x> + y> = 1 and x < 0}

In exercises 13—16, define functions on the finite sets A = {1, 2, 3}, B = {4, 5, 6}, and
C = {7, 8} with the following properties.

15. Not one-to one, but onto
16. Neither one-to-one nor onto

13. One-to-one and onto
14. One-to-one, but not onto

In exercises 17-22, prove each function is onto, or identify an element of the target

that is not in the range.

17. f : R — R defined by f(x) =2x + 7
18. g : R — R defined by g(x) = x> — 5

19. h: R — R defined by h(x) = x> — 1
20. g : R — R defined by g(x) = 1/x

21. r : R — R defined by r(x) = sin(x)
22. s : R — R defined by s(x) = tan(x)

In exercises 23-30, determine if each function has an inverse by proving or disproving
the function is one-to-one. If so, specify the inverse function, including an explicit
identification of its domain and range.

23. f(x) = 5x — 2, where x € R 27. k(x) = ¢, where x > 0

24. g(x) = x> +2x+ 3, wherex e R 28. p(x) = e"z, where x € R

25. h(x) = (x + 3)% + 12, where 29. g(x) = 1/(2x +3), where x <

x>0 —=3/2

26. j(x) = In(x — 1), where x > 1 30. r(x) = 1/(x*> +x), where x > 1
In exercises 31-34, state a restriction on the domain of each function to obtain a
one-to-one function.

31. f(x) = sin(x)

32. g(x) = cos(x)

33. r(x) = tan(x)
34. s(x) = (x +2)*

In exercises 35—40, graph each function and its inverse on the same axes. Assume
appropriate domains so that all functions are defined and one-to-one, and so invertible.

35. f@)=x+5and f'x)=x—-5
36. g(x) =3x+2 and

g ') =1/3x—2/3
37. h(x) =x* and h~'(x) = /x

38. g(x) = 1/x and ¢~ '(x) = 1/x
39. r(x) = 5% and r~!(x) = logs(x)
40. s(x) = (1/3)* and

sTHx) = logy 3(x)
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In exercises 41-44, state the algebraic equation and identify the domain of each
composition f o g(x) and g o f(x).

41. f(x) =+/5x —1 and 43. f(x) =In(5x — 1) and
g) =1/Q2x+1) gx) =1/(x+2)

42, f(x)=x>—1and gx) = v/x + 1 44. f(x) =e'* and g(x) = v2x — 1

In exercises 45-55, identify each statement as true or false. For those statements that
are false, provide an explanatory reason or a counterexample.

45. If f(x) = x> + x, then f is one-to-one, f~'(—=2) = —1,and f~'(2) = 1.

46. If f(x) = 2x3 + 5x, then f is one-to-one, f~1(7) = 1, and f~1(14) = 2.

47. The sum of two onto functions is onto.

48. The sum of two one-to-one functions is one-to-one.

49. The product of two onto functions is onto.

50. The product of two one-to-one functions is one-to-one.

51. If f(x) is a function and ¢ € R, then f(c - x) = ¢ - f(x).

52. Every polynomial function has an inverse.

53. The inverse of a polynomial is never a polynomial.

54. If f(x)is invertible, the product f(x) - f ~!(x) = 1 for every x in the domain of f.

55. If f(x) is invertible, the composition (f o f~')(x) = 1 for every x in the
domain of f.

In exercises 5670, prove each mathematical statement, assuming that f : A — B and
g : B — C in your proofs.

56. If f and g are onto functions, then g o f is an onto function.
57. If g o f is onto, then g is onto.

58. If g of is onto, then f may or may not be onto.

59. If g o f is one-to-one, then f is one-to-one.

60. If g o f is one-to-one, then g may or may not be one-to-one.

61. If f and g are one-to-one correspondences, then g o f is a one-to-one
correspondence.

62. If f o f is a one-to-one correspondence, then f is a one-to-one correspondence.

63. If f is one-to-one, then f has an inverse.

64. If f has an inverse, then f is one-to-one.

65. If f is invertible, then the inverse function of f is unique.

66. If f is invertible, then the inverse of f ! is (f~1)~! =f.

67. If f and g are invertible, then (g o f) ™' =f 1o g™

68. Any nonconstant linear function f(x) = mx + b (with m # 0) is a one-to-one
correspondence from R to R.

69. The inverse of a nonconstant linear function f(x) = mx + b exists and is a
linear function.

70. The inverse of f(x) = x2*1 exists for any k € NU {0}.
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4.3 Limits and Continuity

This section begins a study of the mathematical theory underlying calculus by exploring
the concept of a limit. Hopefully your previous studies of calculus have provided a
sense of how important limits are to the subject. For example, the property of continuity
is defined in terms of limits, where the limits of continuous functions are evaluated by
direct substitution. Similarly, the derivative is defined as a limit of difference quotients,
and the Riemann integral is a limit of a sum. Hence the study of limits sets the stage
for a study of the theory behind calculus.

In light of the dependence on limits of the definitions of derivative and integral,
we might expect an orderly development of these mathematical ideas, with a rigorous
understanding of limits historically preceding the notions of the derivative and the
integral. But the actual historical development was not nearly so neat. The French
mathematician Augustin-Louis Cauchy did not formulate the modern definition of a
limit until the early 1800s—nearly 150 years after Sir Isaac Newton and Gottfried
Wilhelm von Leibniz independently articulated the fundamental theorem of calculus
linking the derivative and the integral.

How did Newton and Leibniz think about derivatives and integrals without a well-
defined concept of a limit? Newton thought of the derivative in terms of small changes
he called “moments of a fluent,” and he called motion and the change in continuous
variables over time “fluxions.” He thought of the integral in terms of antiderivatives. In
contrast, Leibniz thought of the derivative in terms of differences between successive
terms in sequences with infinitely close values, and of the integral as a sum of infinitely
many lines. These less-refined concepts based on infinitesimal quantities were adequate
to handle many of the calculations that arose in the practical questions of optics, celestial
mechanics, and astronomy that motivated their work. Sadly, the independent work of
Newton in the 1660s and Leibniz in the 1670s resulted in a rather bitter argument over
who should receive credit for calculus.

As the next generation of mathematicians continued to develop calculus, they
recognized the importance of developing a rigorous, logical basis for the theory. A
famous critique was given by the Irish philosopher George Berkeley in his 1734
tract The analyst: or a discourse addressed to an infidel mathematician; Berkeley
asked piercing questions about the legitimacy of Newton’s “fluxions.” The Scottish
mathematician Colin Maclaurin in his 1742 Treatise of fluxions and the French
mathematician Jean Le Rond d’ Alembert in his 1754 Différential both gave important
responses to Berkeley’s critique. However it was not until 1821 that Cauchy provided
the first rigorous development of calculus (including the contemporary definition of
the limit) in the text Cours d’Analyse.

Cauchy’s definition of the limit provides an important foundation for studying
many topics in the theory of functions. As you may have experienced, this definition
can be difficult to understand because of its unfamiliar Greek letters used as symbols
and the abstractness of its formulation. We discuss the definition of the limit and its
interpretation in some detail. If you struggle with its logic, be patient, remembering
that you are in good company—mathematics students have been struggling to master
these notions for more than two centuries. In fact, Cauchy’s own students rioted and
marched to university officials in complaint when he first taught these ideas! And rest



Chapter 4 = Real Analysis 267

assured that mastering these ideas will provide deeper insights into the theoretical
structure and behavior of functions.

We begin by discussing an intuitive description of a limit. In this discussion, all
numbers and functions are interpreted in the context of the reals. Recall from calculus
that the phrase “the limit of a function f(x) as the variable x approaches a is equal to
L,” written as ;1_131 f(x) = L means the following.

If x is close to a (but not equal to a), then f(x) is close to L.
The following graphical example and question explore some of the subtleties in this
intuitive understanding of limit.

Example 4.3.1 We identify the following limits based on the graph of the function f(x) given in
figure 4.10.

. 1im4f(x) = 2.
x——

o lim2 f(x) = 1. The limit exists even though f(—3) is undefined because we do
x— —3

not consider the value of the function at x = a = —3 in determining the limit.
. lim2 f(x) = 0. The limit is 0 even though f(—2) = 1 because we do not
xX——

consider the value of the function at x = a = —2 in determining the limit.
. lim1 f(x) = DNE (or Does Not Exist). The fact that x must be close toa = —1
xX—>—

from either side is important here. If x < —1 is close to a = —1, we have f(x)
close to 1, while if x > —1 is close to a = —1, we have f(x) close to 0. Because
these values differ the limit is undefined.

|
Question 4.3.1 State the value of each limit based on the graph of f(x) given in figure 4.10.
(a) lim f(x) (d) lim_f(x)
x—0 x—2.5
(b) lim f(x) () lim f(x)
X—> X—>
(¢) lim f(x) (®) lim f(x)
x—2 x—4
|

The key to defining the limit %g}l f(x) = L lies in articulating the mathematical
meaning of the phrases “x is close (but not equal) to @” and “f(x) is close to L.” The
word “close” is understood as a reference to distance. In the context of the real numbers,
the distance between two numbers is measured using the absolute value metric; that is,

|
|
|
|
|
|
\ @o——>
4 3 2 1 T 1 2

Figure 4.10 Graph for example 4.3.1 and question 4.3.1
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the distance between two real numbers r, s is |r — s|. Therefore the phrase “x is close
(but not equal) to a” is interpreted to mean that |x — a| is a small, positive, nonzero
real number; traditionally, this small number is denoted by “5” (the lower case Greek
letter “delta”), and we write 0 < |x — a| < §. In a similar fashion, “f(x) is close to L”
is interpreted as meaning that |[f(x) — L| is a small, positive real number; traditionally,
this small number is denoted by “c” (the lower case Greek letter “epsilon”), and we
write |f(x) — L| < e. The next definition expresses the intuitive description of a limit.

Definition 4.3.1 Cauchy’s definition of the limit Let f : D — Y be a function and let a € R such

that an open interval containing a is a subset of D. Then, lim f(x) = L means: for
X—a

every ¢ > 0, there exists § > 0 such that 0 < |x — a| < § implies |f(x) — L| < ¢.
In this case, we say that the limit of f as x approaches a exists and is equal to L.

We note that usually § depends on ¢, and can often be expressed as a function
of &. For example, the function f(x) = x? is graphed in figure 4.11, and the specific

values for € and § are illustrated for the limit lim3 x> = 9. In this case, the e-interval
X—>

around L = 0 determines a é-interval around a = 3. In this case, it is possible to
express § = —3 + +/9 + . Several examples and questions will show how to find an
appropriate value for §.

Cauchy’s definition of the limit phrases questions about the existence and value of
a limit in terms of algebraic equations. Most students agree that it takes a little time to
get used to working with this definition, and so we consider several examples. Again,
be patient; the more you work with this definition, the more comfortable and intuitive
it will become, and the more appreciative you will be of its sophisticated handling of
a subtle concept.

Example 4.3.2 We use Cauchy’s definition of the limit to prove lirra 3x+5=11.
x—

| Figure 4.11 The delta-epsilon
oo perspective on limits
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Proof

Question 4.3.2

Let ¢ > 0 be a real number. The proof requires us to identify a corresponding §;
we choose § = ¢/3 for reasons soon discussed. Assuming that 0 < |x — a| < &,
we prove that |f(x) — L| < &. Therefore, assuming 0 < |x — 2| < §,

F)—L| = |Gx+5) —11] = 3x—6] = 3-|x—2| < 3-8 = 3-% = e

By the formal of the limit, lirn2 3x+5=11.
X—>

Prove each limit using the definition and the given §.
(a) Using 6 = i, prove lim 4x — 10 = 2.
4 x—3
(b) Using § = % prove lim —2x +5 = 3.
x—

(c) Inlightofparts (a) and (b), observe that§ = ﬁ is a good candidate for proving
m
that lim mx + b = ma + b. Using this hypothesis, prove that lim5 4x+ 15 = 35.
X—>a X—

Thus far we have only considered limits of linear functions. As you might expect,

using the definition to verify limits of nonlinear functions can be subtler. The next two
examples consider such functions.

Example 4.3.3

Proof

We use the definition of the limit to prove lim2 x? =4,
x—

Assume ¢ > 0 is given; we must choose an appropriate value for §. In this and
other nonlinear settings, we begin by restricting the x-values to be considered. Our
intuitive understanding of limits indicates the x-values must be “close to a = 2,”
and so we may reasonably assume the “restriction” that x is in an interval centered
ata = 2,say 1 < x < 3. Because § is a small number that measures how close x
is to a = 2 and because 1 < x < 3 restricts the x-values to a distance at most one
unit from a = 2, we are (at this point) assuming § < 1.

To finish determining an appropriate choice for §, we now examine |f (x) — L],
which equals

Fx) =Ll = |x* —4] = |x+2|-|]x—2|.

The second term in this product (which is of the form |x — a| = |x — 2|) will be
bounded above by § under the hypothesis of the limit definition. But how do we
specify an upper bound on the first term |x + 2|? Here is where the above restriction
comes in; the inequality 1 < x < 3 impliesthat ] +2 < x4 2 <342, and so we
have |x 4+ 2| < 5. Using this inequality, |[f(x) — L] = |x+2|-|x —2] < 5-6.
Therefore, choosing § so that 5 - § < ¢, the above string of inequalities implies
that |f(x) — L] < & whenever 0 < |x — a| < §, provided both § < 1 (from the
restriction) and § < ¢/5 (from the choice 5 - § < ¢). We ensure both of these
conditions by defining § as the minimum of 1 and &/5; this minimum is denoted
by 8 = min{l, ¢/5}. Informed by this analysis, we can now articulate the complete,
formal proof.



270 A Transition to Advanced Mathematics

Let ¢ > 0 and define § = min{l, ¢/5}. Assuming that 0 < |x — 2| < §, we
also know that |x + 2| < 5. Therefore,

f)—L| = [x+2|-x=2] <58 < 5.2 —

By the definition of the limit, lim2 2 =4,
X—>

]
Example 4.3.4 We use the definition of the limit to prove
. 1 1
lim = —.
x—=4x—2 2
Proof  As in example 4.3.3, first restrict the x-values under consideration to within one
unit of a = 4, so that 3 < x < 5 and (at this point) 6 < 1. We calculate
1 1 2—(x—=2) 4 — 1
V) =Ll = |—=—z|=|——5—| = = [x—4|- .
x—2 2 2(x —2) 2(x —2) 2(x —2)
The first term of the rightmost expression is of the form |x — a| = |[x — 4| and

Question 4.3.3

is bounded by §. A bound for the second term is based on the restriction that
3<x<35;andso 1 <x —2 < 3, which implies 2 < 2(x — 2) < 6, and so

1 1 1

- > > —.

2 2x—2) 6
Substituting this upper bound for 1/2 into the expression for |f(x) — L|, we have

1
< §-—.
2(x—2)‘ 2

|x—4|~‘

Thus, choosing § so that § - % < eresultsin |[f(x) — L| < ¢ whenever0 < |[x —a| <

38, so long as 6 < 1 (from the restriction) and § < 2¢ (from the choice §/2 < ¢).
We therefore choose 6 = min{1, 2¢}. The complete formal proof follows below.
Let ¢ > 0 and define § = min{l, 2¢}. Assuming 0 < |x — 4| < §, we have

1

‘ 2(x —2)

1
< —.
2
Thus,

< e&.

1
[f(x)—L|=|x—4|-‘ <25-5_

1 1
— < 8 . —
2(x — 2) ‘ 2
By the definition of the limit,

1

1
lim = —.
x—4x—2 2

Prove each limit using the definition of the limit and the restriction technique
illustrated in examples 4.3.3 and 4.3.4.

. 2 1 1

—>3 X —
(b) lim(x —2)% = 1 T 1
3 ) lim ==
x—2x+3 5
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The ability to use Cauchy’s definition of the limit is key to proving that a given
limit exists and equals a specific value. More importantly, we use the formal definition
to prove general theorems that hold for all limits. Among other things, these results
help us to evaluate limits analytically, in the manner you are accustomed to from
your calculus courses. We first consider a uniqueness result for limits (enabling us to
refer to the limit of f(x) as x approaches a), and then identify some familiar analytic
results.

Theorem 4.3.1 [f lim f(x) = L exists, then L is unique.
X—a

The next series of questions lead you through a proof of this result. Recall that
a standard approach to proving the uniqueness of a mathematical object is to assume
that two such objects exist and then either prove they are equal or obtain some other
contradiction.

Question 4.3.4 The following steps develop a proof by contradiction for theorem 4.3.1.

(a) Assume lim f(x) = L is not unique. Formulate this assumption in terms of a
X—da

mathematical statement about two limiting values, say L and M.

(b) Apply the definition of the limit to L and M for ¢ = |L — M|/2, writing out
the resulting statement for each of these limiting values.

(c) The two statements from part (b) should involve two values for §, which
we refer to as 8z and Jys. Define § = min{éz, §)/} and reexpress these two
statements in terms of this 8.

(d) Explain why this last pair of statements yields a contradiction. Why can’t f (x)
be “close” to both L and M as asserted in these statements?

|

The next theorem states the analytic properties of limits; using these results is a
common exercise in calculus courses.

Theorem4.3.2 Leta,c,L,M € R, and let both f and g be functions on the reals with lim f = L

X—a
and lim g = M. Then the following equalities hold.
X—a
e Limit of a constant: lime = ¢
X—a
e Limit of a scalar multiple: limc-f(x) = ¢-L
X—a
e Limit of a sum: limf+g =L+M
X—a
e Limit of a difference: limf—g=L—-M
X—a
e Limit of a square: lim[ f W = L?
X—a
e Limit of a product: limf-g =L-M
X—a L
e Limit of a quotient: lim ]: = —, provided that M # 0
x—a g M

You should develop a strong familiarity with both the linguistic and symbolic
renditions of these results. For example, the third claim in theorem 4.3.2 is not
only thought of as lim f 4+ g = L + M, but also as “the limit of a sum is the sum

X—a

of the limits.” A proof of each a statement in theorem 4.3.2 uses the definition
of the limit. We present the proofs of several of these analytic properties here
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and leave some for the exercises at the end of this section. We highlight some
important properties of the absolute value function |x| that will be needed in these
proofs.

Theorem 4.3.3  Define the absolute value function on the reals by

Example 4.3.5

Proof

Question 4.3.5

X, x>0
x| =
—x, x<0.

Then the following relationships hold for x,y € R.
* |x+yl < |x|+Iyl (triangle inequality) < |x| —|y| < |x —y|

o« bx-yl =[xl - Iyl A |
Iyl

X

y

We prove the limit of a scalar multiple rule (from theorem 4.3.2): If a, ¢, L € R

and f is a function on the reals with lim f = L, then hm c-f(x) = c-L.
X—a

If c = 0, then ¢ - f(x) = 0 is a constant function. Applying the limit of a constant
rule in theorem 4.3.2; we have }EE,O flx) = }1’%0 =0=0-L.

Assume ¢ # 0. For any given ¢ > 0, consider 1 = ¢/|c|. By Cauchy’s
definition of limit applied to the given value &1 > 0, there exists a value § > 0
such that 0 < |x — a| < & implies |f(x) — L| < e;. It follows that 0 < |[x —a| < &
implies

le-f)—c-L| = |c[-[f(x) =L| < [c]-&1 = e.

Prove the limit of a sum rule: If @, L, M € R and both f and g are functions on the
reals with lim f = L and lim g = M, then hm f +g=L+M.

Hint: Let sXZaO Since hn);?a L, there ex1sts 8L > O suchthat 0 < |x —a| < 8,
implies |f(x) — L| < ¢ /2 T he limit lim g = M implies a similar condition for a
Sy > 0. Choose § = min{&y,, dp1} soxthat both inequalities involving &/2 are true
when 0 < |x — a| < §, and apply the triangle inequality from theorem 4.3.3 to

complete the proof. .

The proofs of the product properties for limits identified in theorem 4.3.3 are a bit

more complicated because of the algebra involved. Instead of jumping in to prove the
general result, we first prove the simpler result for squares.

Example 4.3.6

Proof

We prove the limit of a square rule: If @, L € R and f is a function on the reals
with lim f = L, then lim[ f(x)]* = L.
X—a X—a

Without loss of generality, assume L > 0; a similar proof worksif L < 0.Fore > 0,
we identify 6 > 0 such that 0 < |x — a < & implies
I[ f(xX)]> — L?| < e. Working with &; = ~/L24+¢& — L > 0 (for reasons that
become apparent in the following calculations) and with )}1_1)1}1 f = L, there exists
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8 >0suchthat0 < |x — a| < § implies |f(x) — L| < &1. This § is the needed
value. If 0 < |x — a| < §, the following relations hold.

F)* —L* = |f&x)—L|-|f@)+L| = [f(x)—L|-|f(x)— L+2L]|
[f(x)—L|-(|f(x)—L|+|2L]) by the triangle inequality
< e1-(e1+2L) = (VL2 +e—L)- (VL2 +e+L)

= L2+8—L2 =&

IA

By the definition of the limit, lim [ f(x)]*> = L?.
X—a
]

The proof of the limit of a product rule (which asserts that the limit of a product
is the product of the limits) uses the following polarization identity:

1
x-y = Z[(x+y>2 — (x =y’

This algebraic identity simplifies a question about a product into a question about
squares; the validity of the polarization identity is verified by simplifying the algebraic
expression on the right-hand side. You can see how it is applied in the next
example.

Example 4.3.7 We prove the limit of a product rule: If a, L, M € R and both f and g be functions
on the reals with lim f = L and lim g =M, then limf-g=L-M.
x—a x—a x—>a

Proof  Applying the polarization identity and the limit rules from theorem 4.3.2 (that we
have already verified) for scalar multiples, differences, and squares, we obtain the
following equalities.

1
limf()-g() = lim ([0 +g@P — [f() — g0 )

_ l[lim[f( 2 i - 2

= | limEreo + g0 — lim{ 700 — g0or |
2 2

= %{ [lim £+ g0]” = [lim 70 = g0 }

1 2 2
= JL+MP —[L-MP} =L-M
]

The final limit rule stated here is useful in a study and development of the integral.
This famous “squeeze theorem” is studied in calculus; we state this result and leave
the proof for exercise 56 at the end of this section.

Theorem 4.3.4 The squeeze theorem Ifa, L € R and f, g, h are functions on the reals such that
f(x) < g(x) < h(x) for every x (except possibly x = a) and both lim f = L and
X—a
limh =L, then lim g = L.
X—a

X—a

Now that we have investigated limits both from an intuitive perspective and in light
of a mathematically rigorous definition, we are ready to study the second main topic
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of this section: continuity. A continuous function is sometimes informally described as
a curve without any holes or gaps—one that can be drawn “without lifting the pencil.”
Mathematicians express continuity more carefully in terms of limits. A function f(x)
is continuous at a real value a if the limit of f(x) as x approaches a is equal to f(a);
that is, if }1_1)1}1 f(x) = f(a). Not every function is continuous at every point; the value

of the limit of f at a and the value of f(a) are not guaranteed to be the same. In this
sense, continuous functions are special.

We now define the continuity of a function f(x) at x = a to express the equality
)!er}l f(x) = f(a). We state the definition of continuity in terms of §s and ¢’s; in this way,

we can determine if a function is continuous in rigorous manner and prove mathematical
truths about continuous functions. We first identify continuity as a pointwise property
and then extend the definition from a point to sets of points, and ultimately to the entire
real number line.

Definition 4.3.2 A function f : D — Y is continuous at a € D if for every ¢ > O, there exists

8 > 0 such that |x — a| < § and x € D implies |f(x) — f(a)| < &. We say that f is
discontinuous at x = a when f is not continuous at a. If f is continuous at every
a in a set A, then we say f is continuous on the set A. If f is continuous on its
domain, then we say f is a continuous function.

When proving that a function is continuous at a point, we find that § often
depends on both ¢ and a. Furthermore, the definition no longer needs to insist that
0 < |x — a| < §, but only that |x — a| < 8, because the choice of x = a automatically
satisfies the limit definition: |f(x) — f(a)| = |f(a) —f(a)] = 0 < e.

Example 4.3.8 We prove that f(x) = x3 is continuous at a = 2.

Proof We begin by observing that a = 2 is in the domain of f and that f(2) = 8. Let

& > 0 and, (since the function is nonlinear) restrict the x-values to within one unit
of 2, so that 1 < x < 3. We are therefore (at this point) assuming that § < 1. Now
consider |x* — 8] = |x — 2| - |x2 + 2x + 4]. Since & bounds |x — 2|, we just need
a bound on the second term [x% + 2x + 4|. Using the restriction 1 < x < 3 and
the fact that x> + 2x 4 4 is increasing on 1 < x < 3, we need only consider the
endpoints; by direct substitution, we find 7 < x> + 2x 4+ 4 < 19. Then whenever
Ix — 2| < 8, we have [f(x) —f(a)] = |x—2|-|x*+2x+4| < §-19. Choosing
dsothat 19-6 < e, we obtain |f(x) —f(a)| < e. Thus fora given ¢ > 0, we choose
6 = min{l, ¢/19}. The complete formal proof follows below.

Let ¢ > 0 and define § = min{1, ¢/19}. Assuming |x — 2| < §, we know that
Ix2 4+ 2x + 4| < 19. We now have

F&) —f@| = [x =2 - X2 +2x+4 < 8-19 < e.

By the definition of continuity, f(x) = x> is continuous at a = 2.

Example 4.3.9 We prove that f(x) = 4/ is continuous.

Proof By definition, f(x) = +/x is continuous if /X is continuous at every element of its

domain D = {x : x > 0}. First consider the domain value a = 0. Given any ¢ > 0,
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choose & = £2. Then whenever lx —0] <dandx € D, wehave 0 < x < &2, and
50 |[f(x) —f(a)] = |v/x—0] = /x < &.The function is therefore continuous at
a = 0. Now let a > 0 be any other arbitrary element of this domain, and let ¢ > 0.
‘We must identify an appropriate § > 0 so that |x — a| < & implies |[f(x) —f(a)| < e.
Since a may be between 0 and 1, we restrict the x-values to within a/2 units of
a; this restriction gives us a/2 < x < 3a/2, and so we assume § < a/2. Then, if
|x —a|] < 8, we have

WE+VEl _ x—al 8
Vx+al  Vx+al Y5+ Val
The restriction that a/2 < x provides the right inequality in this last string of
relations. Choosing 8 so that § - (v/a/2 + /a )~ < &; we obtain |f(x) — f(a)| < ¢.

Thus for a given & > 0, we choose § = min{a/2, (v/a/2 + «/a) - ¢}. The complete
formal proof follows below.

Lete > 0 and define § = min{g, (/a2 + /@) - ). Assuming |x — a| < &,

we have a/2 < x. Therefore,

Fx) —f@l = |Vx—+al-

|x — al 1)

ritval 1 ral -

By the definition of continuity, f(x) = +/x is continuous.

[fex) —fla)l =

Question 4.3.6 (a) Using the definition, prove that f(x) = 2x — 3 is continuous at a = 5.
(b) Using the definition, prove that f(x) = 2x — 3 is continuous.
|

In light of the analytic rules for computing limits presented in theorem 4.3.2, we
might wonder if the basic algebraic operations “preserve” continuity; that is, if we
combine two continuous functions using such operations, is the resulting function also
continuous? For example, if we add two continuous functions, is the resulting sum
continuous? The affirmative answer we expect for addition and the other arithmetic
operations is given by the following theorem.

Theorem4.3.5 Ifa,c € R, n e N, and both f and g are continuous functions at x = a, then the
following functions are also continuous atx = a:c,c-f,f+g f—8f-8f/¢g
(provided g(x) # 0 for all x in an open interval containing a), and /f (provided
f(x) = 0 for all x in an open interval containing a). We say that these operations
preserve continuity.

The proof of theorem 4.3.5 closely resembles the proof of theorem 4.3.2 detailing
the analytic rules for limit computations. The next example provides the proof that
scalar multiplication preserves continuity; proofs of the other statements are left for
the exercises at the end of this section.

Example 4.3.10 We prove that scalar multiplication preserves continuity (from theorem 4.3.5):
If a,c € R and f is a continuous function at x = a, then ¢ - f is continuous
atx = a.
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Proof

This proof follows the one given in example 4.3.5. If ¢ = 0, then ¢ - f(x) = 0 is
a constant function, and by the limit of a constant rule, the following equalities
hold.

lime-f(x) = im0 = 0 = 0-f(a) = ¢-f(@

Therefore, ¢ - f is a continuous function at x = a.

Now assume ¢ # 0 and let ¢ > 0. We find § > O such that [x — a| < § implies
|c-f(x)—c-f(a)| < e. From the definition of continuity applied to f for e = ¢/|c|
(identified as in example 4.3.5), there exists § > O such that |x — a| < § implies
If(x) — f(a)] < e;. This § is the desired value: if |[x — a| < §, then

€)= e-fl@] = lel - [f) ~f@] < lel-e1 = lel - = =

By the definition of continuity, ¢ - f is continuous at x = a.
|

The limits of continuous functions are easily determined; we may simply use direct

substitution to evaluate a limit at any point where a given function is continuous.
In symbolic terms, if f is continuous at x = a, then lim f(x) = f(a). In light of
X—a

theorem 4.3.5, a whole host of (familiar) functions are easily identified as continuous,
and so have limits that are readily evaluated.

Example 4.3.11

Question 4.3.7

For each limit, the function is continuous on its domain, and we use direct
substitution to evaluate the limit.

* lim4y/3x2 — 2045 = 4372 —2(7) +5 = 4138
x—

2100 —4x3 +6  21(=2)° —4(-2+6 —634

lim = =
x—-2 /11 —3x+ 4 JI1=3(=2)+ 4 V1744
. lin§[3x6—70x4]\/2x4 —3x2 = [3(5° —70(5)*1,/2(5)* — 3(5)2 = 15,625/47

Use the fact that each function is continuous and use substitution to evaluate each
limit. Compare your answers with the results of question 4.3.2 and examples 4.3.3
and 4.3.4.

lim 4x — 10 -
@ o © lm =
(b) lim x* D i

x=2 @ I 37

The discussion thus far has focused on continuous functions from a positive

perspective; the next example considers functions that are discontinuous.

Example 4.3.12

We prove that following functionf : R — {0, 1}is not continuous at any point in its
domain. Dirichlet first highlighted the relevance of this function to the discussion
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of continuity. Mathematicians now refer to f(x) as the characteristic function of
the rationals Q.

1 ifxeQ
f = { 0 ifxgQ

Let a be an arbitrary element of the reals. Notice that any open interval containing
a also contains both rational and irrational numbers, and so f(x) takes on the values
0 and 1 in any interval containing a. Let ¢ € R with 0 < ¢ < 1. We prove that no
§ > 0 satisfies the requirements given in the definition of continuity. Let § > 0 be
any positive real number. There are two cases to consider:

* If a is rational, then f(a) = 1. But there exists an irrational x € (a — §, a + §).

For this value x, |[x — a| < §, but also |[f(x) —f(a)| = |0 —1] > e.
* If a is irrational, then f(a) = 0. But there exists a rational x € (a — 8§, a + §).
For this value x, |[x — a| < §, but also |[f(x) —f(a)| = |0 —1] > e.

Therefore f is not continuous at any a € R.
|

One distinction between the definitions of limit and continuity is that the value

x = a need not be in the domain of a function f for the limit lim f(x) to exist, but a
X—a

must be in the domain of f for the function to be continuous at a. The next example
and question highlight this distinction.

Example 4.3.13

Question 4.3.8

x—2

o
xr—x—2
First, note that f is not continuous at a = 2 because 2 is not in the domain

We discuss limits and continuity for f(x) =

of f. However, the limit of f as x approaches 2 does exist and can be computed as
follows.
x—=2 ) x—=2 ) 1 1 1

im—————=1lm———— = lim—— = —— =
x—2x2—x—=2 =2 (x—=2)(x+1) —=2x+1 241 3

In light of this computation, the function f can be redefined at @ = 2 to produce a
function that is identical to f (except at x = 2) and that is continuous at a = 2:

x—2 ifx £ 2
—_—= I x
_l 2—x—2
gx) =1 7 7%

= ifx=2.
3

When f(a) may be redefined so that the function becomes continuous at a (as in
this example), then a is called a removable discontinuity of the original function.
|

The following functions f(x) are not continuous at @ = 3 because 3 is not in their
domains. Prove that the limit of f as x approaches 3 exists and give a piecewise
redefinition of f to obtain a function that is continuous at a = 3.

x—3 x—3
WIO=an © £ = 5
b) f() = 2 @ foy = ~=2
( T5x2 —32x+ 12 ST 7
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We finish this section with a brief discussion of infinite limits. As you may recall
from your study of calculus, infinite limits describe important features of functions and
graphs. For example, one of the distinguishing features of the function f(x) = 1/x? is

that lir% 1 /)c2 = 00. Our interest here is not so much in the evaluation of such limits,
x—

but instead in developing its rigorous definition. The intuitive idea of an infinite limit
;1_131 f(x) = ooisthatif x is close to a (but not equal to a), then f (x) is greater than any
prespecified real number (which is denoted by M). The following formal definition
closely resembles Cauchy’s definition of the limit.

Definition4.3.3 Let f : D — Y be a function whose domain D contains all points of an open
interval around a € R, except for a itself. Then the expression }1_% fx) = o0
means: for every real M > 0, there exists 6 > 0 such that 0 < |x — a| < § implies
f(x) > M. In this case, we say that f(x) approaches infinity as x approaches a.

Example 4.3.14 We use the definition of an infinite limit to prove that lirrz) l/x2 = 00.
X—

Proof Let M > 0 be a given real number. We need to identify a corresponding § so
that 0 < |[x — a|] < § implies f(x) > M. We choose § = l/«/]\_l and assume 0 <
|x —a] < 8, whichimplies0 < |x—0] = |x| < § = 1/«/1\—/1. The inequalities
0 < x| < 1/\/M imply 0 < x*> < 1/m, and so 1/x*> > M. Therefore, by the
definition of an infinite limit, lin%) 1 /)c2 = 0.

X—>

|
Question 4.3.9 Prove each limit using the definition.
1 1
a) lim ——— = oo b) lim —= = o
@ x—3 (X—3)4 ®) =1 x(x — 1)2
|

4.3.1 Reading Questions for Section 4.3

1. State both an intuitive description and the definition of }1_131 fx)=L.

2. When using the definition to verify a limit, is § always less than & ? Consider
question 4.3.2 when explaining your answer.

3. State theorem 4.3.1. How is this result helpful when studying limits?

4. Give an example of each analytic rule for computing limits identified in
theorem 4.3.2.

5. State the triangle inequality. Give an example producing equality and an
example producing a strict inequality.

6. Give an example for each property of the absolute value function identified
in theorem 4.3.3.

7. State the polarization identity. How is this identity helpful when studying
limits?

8. State the squeeze theorem and give an example of an application of this result.

9. State both an intuitive description and the definition of f(x) is continuous at
x=a.
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10. Define and give an example of a continuous function.
11. Give an example of a function that is discontinuous at every element of its
domain.

12. State both an intuitive description and the definition of lim f(x) = co.
X—a

4.3.2 Exercises for Section 4.3

In exercises 1-6, use the graph of the function f(x) given in figure 4.12 to identify the
value of each limit, or to explain why the limit does not exist.

L. lim £(x) 4. lim f(x)
2 i g0 5. i /0
3 xll>n210f(X) 6. xll>n510f(X)

In exercises 7—-12, prove each limit using the definition of a limit and the given §.

7. lim7x — 8 = 6 with 8 = &
x—2 7

8. lim —2x + 15 = 7 with § =
x—4 2
£
9. limmx+b=ma+bwithd = —
x—a |m|
10. lim2x2 —2 =2 with§ = min {1, ¢/5}
x—>—

b
11. lim ax2+bx+c=c, where a, b > 0 with § = min —,i
x—0 a 2b

. 3 3 . . 6¢
12. lim ——— = — with§ = min {1, —
x—52x+1 11 121

In exercises 13—18, prove each limit using the definition.

13. lim2x +3 =13 16. limx2+6x+5=>5
x—5 x—0
14. lim —4x+3 = —9 17. lim3/x—1=8
x—3 x—9
1 1
15. limx*>+1=5 18. lim S
x—2 x—>8x—06 2

i
1
!
1
20 ® i
:
!
®-10 !
: [0 — S
|
1 ’_
10 20 30 40 50

Figure 4.12 Graph of f(x) for exercises 1-6
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In exercises 19-26, evaluate the following limits using the analytic rules identified in
theorem 4.3.2, or using other techniques that you learned in your calculus courses.

x'—>2 5 T x—=05x+2

20. Iim(8x“+3)-3x+ 1) &
x—1 24. lim 3

21. lim vx -3 #>0 X%
=0y 25. lim

22 lim x—0 tan(x)
x—-3x+1 2. lim cos(x)

T x>0 4x3

In exercises 27-32, determine the value of each limit under the following assumptions.

lim f(x) =3 lim g(x) =5 lim A(x) = 8
x—>2 x—2 x—2
27. limf +¢ 30. 1111123[f]2 +1
X— x—
28. lirr;f'h 31. limvh+6
29. Tim f — h =2
x—=>2 32. lim f +
x—2 4g
In exercises 33-35, prove each function is continuous at x = 0 using the definition.
33. f(x) =x 35. f(x) = x?
34. f(x) = |x|
In exercises 3638, prove each function is continuous using the definition.
36. f(x) =x 38. f(x) = x?
37. f(x) = |x|
In exercises 39-42, discuss the continuity of each function.
2 2 .
x—1 X ifx<?2
39. fo) = 41, f(x)= 2)(x—2
x+1 - f(x) (x+2)(x—2) Fre
40 _ 2x% — 4x X—
SO =5T0 oo [ B2 ifx<0
‘ T 242 ifx>0
In exercise 43—44, prove each limit using the definition of an infinite limit.
2 3
43, lim —= — 0 4. lim — — o0
x—3 (x — 3)2 x—2 x(x — 2)2

In exercises 45-56, prove each mathematical statement about limits.

45. The limit of a constant rule from theorem 4.3.2.
46. The limit of a sum rule from theorem 4.3.2.

47. The limit of a difference rule from theorem 4.3.2.
48. The limit of a quotient rule from theorem 4.3.2.
49. If p(x) is a polynomial, then lgrrz{ p(x) = p(a).

50. If;i_r)r}lf(x) =0, then ;1_1)1}1 | f(x)] =0.
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51.

52.

53.

54.
55.

56.

Disprove the claim: If lim |f(x)] = L, then either limf(x) = L or
X—a X—a
lim f(x) = —L.
x—a
If lim f(x) = oo and lim g(x) = oo, then lim f 4+ g = oo.
X—a X—a X—a
If lim f(x) = oo and lim g(x) = L € R*, then lim @ =00
x—=>a x—a xX—a g(x)
If lim f(x) = L, then lim(f(x) — L) = 0.
X—a X—a

Disprove the two claims:

(a) If lim f(x) = L, then f(a) = L.
(b) 1f f(a) = L, then lim f(x) = L.

The squeeze theorem (theorem 4.3.4).

In exercises 57-68, prove each mathematical statement about continuity.

57.
58.
59.
60.
61.
62.
63.

64.
65.

66.
67.

68.

The constant function is continuous (from theorem 4.3.5).
The sum of two continuous functions is continuous (from theorem 4.3.5).
The difference of two continuous functions is continuous (from theorem 4.3.5).
The product of two continuous functions is continuous (from theorem 4.3.5).
If f is continuous at x = a, then —f is continuous at x = a.
If f is continuous at x = a, then | f]| is continuous at x = a.
Prove that f(x) = x" is continuous for all » € N via induction (and
theorem 4.3.5).
If }llirr})f(a + h) = f(a), then f is continuous at x = a.
Dis;rove the claim: If f and g are not continuous at x = a, then f 4 g is not
continuous at x = a.
Disprove the claim: If | | is continuous at x = a, then f is continuous atx = a.
Disprove the claim: If the composite function f(g(x)) is continuous, then f(x)
and g(x) are both continuous.
The following variation on the characteristic function of @ is continuous at
x=0:

x ifxeQ
f&) = { 0 ifxgQ

In exercises 69-70, state both an intuitive description and a definition of each limit.

69.

lim f(x) = —oc0 70. lim f(x) =L
x—a X—>00

44 The Derivative

Calculus is the study of change. While Sir [saac Newton and Gottfried Leibniz are both
credited for independently developing calculus in the late 1600s, mathematicians had
already been working with derivatives for nearly a half century. The study of change
as expressed by the derivative was motivated by a sixteenth and seventeenth century
European reflection on and ultimate rejection of ancient Greek astronomy and physics.
The European astronomers Nicolaus Copernicus, Tycho Brahe, and Johannes Kepler
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each had insights that challenged the theories of the ancient Greeks, setting the stage
for the ground-breaking work of the Italian scientist Galileo Galilei in the early 1600s.
Many of the questions about a moving object (that is, an object changing position and
velocity) that these scientists were studying are readily answered by considering lines
tangent to curves.

A number of mathematicians from many different countries made important
contributions to the question of finding the equation of a tangent line. Pierre de
Fermat studied maxima and minima of curves via tangent lines, essentially using the
approach studied in contemporary calculus courses. This work prompted fellow French
mathematician Joseph-Louis Lagrange to assert that Fermat should be credited with the
development of calculus! The English mathematician Isaac Barrow, who was Newton’s
teacher and mentor, corresponded regularly with Leibniz on these mathematical ideas.

As we have mentioned, neither Newton nor Leibniz thought of the derivative as a
measure of change in terms of our contemporary definition involving limits. Our study
of the derivative follows more closely the work of Fermat and Barrow from the early
1600s, in which we think of a tangent line as a limit of secant lines. Naturally, the
contemporary presentation is informed by an understanding of Cauchy’s notion of the
limit from the early 1800s.

The derivative enables the determination of the equation of a line tangent to a
given curve at a given point. Given a function y = f(x), the slope of a secant line
joining two points (c, f(c)) and (¢ + h, f(c + h)) is

rise Ay _ fle+h)—fl) _ flc+h)—fl(c)
run Ax  (c+h)—c h '

m =

In this context, the symbol “m” is the first letter in the French word montrer which
translates as “to climb.”

To find the slope of the line tangent to a function f at the point (c, f(c)), we take
a limit of the slopes of secant lines, letting 4 approach 0. Figure 4.13 illustrates why
this limit process makes intuitive sense; you can see that the slopes of the secant lines
get closer and closer to the slope of the tangent line as the point (¢ + &, f(c + h)) gets
closer and closer to (c, f(c)). The definition of the derivative reflects these ideas.

The following definition expresses the real number c¢ as a variable quantity x to
identify a general formula for the derivative, enabling us to determine the slope of the
line tangent to f(x) whenever this slope is defined.

Definition 4.4.1 Let f(x) be a function with domain D. Then the derivative of f(x) is

/ . fe+h)—f)

= 1 _—,
f®) = lim ;
whenever this limit exists. We say that f (x) is differentiable at x = ¢ when f'(c)
exists for ¢ € D, and that f(x) is differentiable when f'(x) exists for all x € D.
The ratio

Ja+h —fx)
h

is called the difference quotient of the derivative.
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800 —
600 f
400 -
200 -
Figure 4.13 Atangentlineatx =2 asa 0 72I é ‘Il EIS
limit of secant lines X

Recall from calculus that many different notations are used for the derivative of a
function y = f(x), including

fo=T gy =Y o py =y,
X

Various phrases also refer to the derivative, including “f (or y) prime,
of f (or y) with respect to x,” the letters “d f d x” spoken individually, and “d y d x”
spoken individually. Most of this notation for the derivative is attributable to Leibniz,
who gave considerable thought to carefully identifying a useful symbolism and is
recognized as a genius in developing notation to make subtle concepts understandable.
The alternate definition of the derivative is sometimes helpful; if the limit exists, then
f (1 ) f @)

t—>x

99 <.

the derivative

flx) =

The proof of the equivalence of this alternate definition and the one given in definition
4.4.1 is left for exercise 50 at the end of this section.

Example 4.4.1 We use the two definitions of the derivative to determine the equation of a line
tangent to f(x) = x2at(2,4).

Applying the definition,
h)? —x? 24 2xh+h? —x? 2xh +h?
Floym fim ST R e P i v k=2,
h—0 h h—0 h h—0 h—0

Hence the slope of the tangent line at (2, 4) is f'(2) = 2 - 2 = 4, and the equation
of the line tangent to f(x) = x? at (2, 4) is given by y — 4 = 4(x — 2).
Applying the alternate definition produces the same result:
R N (2 5 [ (25|

f(x)—hm =lim ——— =lim¢+x = 2x.
t—x —Xx t—x r—Xx —x

When using the definition (as in example 4.4.1), we often algebraically manipulate
the difference quotient so that i appears as a factor in the numerator. This factor
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then cancels the denominator, simplifying the difference quotient so the limit can be
evaluated. If the original function f(x) is a rational function, then finding a common
denominator will simplify the difference quotient in this way. If f(x) contains a square
root, multiplying by the conjugate square root function will simplify the difference
quotient.

Example 4.4.2 We use the definition of the derivative to find the derivative of f(x) = 5+/x + 1.

Multiplying both the numerator and the denominator of the difference quotient
by the conjugate square root function and then simplifying yields the following

calculation.
5 h+1-5 1
F) = lim Vx+h+ vx+
h—0 h
— lm S5x+h+1=5Jx+1 S5Vx+h+1+5/x+1
T hs0 h SYx+h+1+5x+1
. B[x+h+1D)—x+D] ‘m Sh
= 0SA(Vx+ht1+x D) —0h(Vx+h+1+Mx+ D)
_ 5
o 2Jx+ 1
[ ]
Question 4.4.1 Using the definition of the derivative, differentiate each function.
(@) f(x) =2x+1 _
(c) s(x) T 1+ 5
(b) g(x) =7x° d) 1) = ——
d 1(x) 3%
[ ]

While we can use the formal definition of the derivative to compute derivatives of
a given function, theoretical applications of the definition are more important. Using
the definition, we can prove general theorems that hold for all derivatives, making it
easy to differentiate many familiar functions without explicitly applying the definition
one function at at time. Many functions are so complicated in structure that directly
using the difference quotient becomes unwieldy or impossible. The next theorem
states analytic properties of derivatives to facilitate such computations. Using these
results is a common exercise in calculus courses, but you may not have considered the
underlying proofs that justify them. These proofs are the focus of the remainder of this
section.

Theorem 4.4.1 Ifc € R and both f and g are differentiable functions, then the following hold.

d
o The constant rule: —[c]l =0
dx

d
o The scalar multiple rule: o [c-f)] = c-f'(0)
X
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d
The sum rule: —[f+gl=f+4¢
dx
d
The difference rule: = f —gl=f —-¢
X
d
The power rule: . [x” ] =n-x""! forneR
X
d
The product rule: d—[f-g] =g-f +fg
X
d = f. 9
The quotient rule: — I:]:i| &) '8 S 5 S8 , provided that g(x) # 0
dx | g g
) d
The chain rule: o [f(g) ] = f'(gW)) - &'(x)

A standard goal of a calculus course is to develop a mastery in using these

differentiation rules. Before diving into the proofs of various parts of this theorem,
the next example provides the opportunity to revisit the skills you learned in

calculus.

Question 4.4.2

Using theorem 4.4.1, differentiate each function.

(@) f() = 106> = 762 +5 (&) p(x) = (x° + x)tan(2x)
(b) g(x) = v5x+2 (&) g(x) = In(4x2 + 1) - sin?(5x + 3)
(©) hix) = % () r(x) = (215 + 3)/de* + 6x

The next three examples give the proofs of some of these differentiation rules.

As in the study of limits and continuity, we first consider the scalar multiple
and sum rules, and then discuss a couple of different approaches to proving the
power rule.

Example 4.4.3

Proof

Example 4.4.4

We prove the scalar multiple rule from theorem 4.4.1: For any constant ¢ € R and
differentiable function f,

di[c-ﬂx)] )
X

Apply the definition of the derivative and the limit of a scalar multiple rule.

d e fa+h)—c-fx) o [f(x+h)—f)]
oL CTO1 =i i = i
@
= clim " = /()

d

We prove the sum rule: If f and g are differentiable functions, then o [f +¢]=
X

fl) + g'@).
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Proof  Apply the definition of the derivative and the limit of a sum rule.

d e e+ + g+ )] = [f(x) + g(x)]
E[f +gl = ;11136 Y
— im [fx+h) —f)]+[gx+h) — gx)]
T >0 h
o et —fx) L g+ ) —gx) /
= %1_% — +}{1_r)% = fx)+g'x)

Example 4.4.5 We prove the power rule: If n € R, then

d
—[+"] =n-x
dx

Proof =~ We prove the power rule in the case of the positive integers n € N by using the
binomial theorem to expand the term f(x 4+ i) = (x + h)" in the difference quotient

as follows:
-1
(x+h" = x"+n-x"! _h+n(n2 )~x”_2'h2+--~+n-x-h"_1 + h".
Applying the definition of the derivative,
d h)" —x"
—[x"] = lim AR —x"
dx h—0 h
-1
[xn_i_n'xnfl'h_i_%.xan.hZ_i_.“_i_n.x.hnfl+hn]_xn
=l
B0 h
—1
n.x”_l.h+%.xn_z.h2+...+n.x.hn_l+h"
=1
hl—% h
-1
h.[n.xnfl_i_%.x"72.h+...+n.x.hn72+hn71]
= 1.
50 h
—1
= }lin%) n~x”_l+—n(n2 )~)c"_2~h+--~—}-n-)c~h"_2—f-h"_1
=n-x""L

Alternatively, the power rule for n € N follows by induction (see exercise 67
d

in section 3.6). The definition of the derivative proves the base case d_[ x]=
X

1-x% = 1, and the product rule applies in the inductive step (for X"t = x - x).
A complete proof of the power rule must consider arbitrary real numbers
n € R, not just positive integers n € N. The power rule extends to the negative
integers via the quotient rule, to rational powers via implicit differentiation, and
to all real numbers via logarithmic differentiation. The details of such a complete

proof are left for your later studies.
|
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Question 4.4.3

Question 4.4.4

The following steps outline a proof of the quotient rule: If f(x), g(x) are
differentiable functions with g(x) # 0, then

d [f(_X)] _ 8w ') — f) - &)
dx | gx) g(x)? .

(a) What is the difference quotient for the function @?

(b) Using the common denominator g(x) - g(x + h) - h, simplify the difference
quotient from part (a).

(c) Inthe numerator from part (b), subtract and add the term g(x) - f(x). Now split
the fraction into a difference of two differences, gathering together the two
terms with g(x) as a common factor and the two terms with f(x) as a common
factor.

(d) What is the limit of the difference of difference quotients from part (c) as A
approaches 0?

(e) Based on parts (a)—(d), craft a complete proof of the quotient rule as modeled
in examples 4.4.3, 4.4.4, and 4.4.5.

|

The following steps outline a proof of the chain rule: If f(x), g(x) are differentiable
functions, then

d
7 gl = f1g)1 - g ).
X

(a) What is the difference quotient
h(t) — h(x)
r—x
(from the alternate definition of the derivative) for the function h(x) =
flegx)17?

(b) Assuming there are no values x for which g(x) = g(¢), multiply both the
numerator and the denominator of the difference quotient from part (a) by
g(t) — g(x). Factor out the resulting difference quotient for g(x).

(c) Take the limit of the product of difference quotients from part (b) as ¢
approaches x to obtain the chain rule formula.

(d) Based on parts (a)—(d), craft a proof of the chain rule under the assumption
that g(x) # g(#) as modeled in examples 4.4.3, 4.4.4, and 4.4.5.

The assumption that there are no values for which g(x) equals g(f) may be
unreasonable; a complete proof of the chain rule that does not use this assumption
is outlined in exercises 67-70 at the end of this section. .

We end this section by considering the relationship between two of the most sig-

nificant properties of functions studied in this chapter: continuity and differentiability.
Some properties of functions are completely independent of one another, as we saw

in our discussion of one-to-one and onto functions; some functions are both, some are
neither, while still others have just one of these properties. This observation leads us
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to ask if continuity and differentiability are independent of one another, or is there
a connection between these two properties? As you may recall, every differentiable

function is continuous, but not every continuous function is differentiable. We consider

the theorem and its proof, along with a counterexample that together justify these

assertions.

Theorem 4.4.2

Proof

Ifafunctionf with domain D is differentiable ata € (b, c) C D, thenf is continuous
at a.

By the alternate definition of the derivative, given any ¢ > 0, there exists a value
8 > 0 so that

fO 1@ _ el
X —a

whenever 0 < |x — a| < §. Multiplying both sides by |[x — a|, we see that
If) = f@) = fl@)(x —a) < elx—al.

Applying the second inequality (|x| — |[y| < |x — y|) from theorem 4.3.3 in
section 4.3, we have

If() = f@] = |f(@x —a)| < |f(x)—fla) - f@)x—a)l.
This fact implies | f(x) — f(a)| < |f'(a)(x — a)| + &|x — al, and so
If(0) —f@| < (f'@|+e)-|x—al

The term on the right can be made arbitrarily small: we restrict values of x in that
term so that |x — a| is smaller than both § (so that the first inequality holds) and
e/(|f'(a)| + ). Then | f(x) — f(a)| < e, which proves the result.

|

Theorem 4.4.2 asserts that every differentiable function is continuous. Are there

continuous functions that are not differentiable? Perhaps you can recall from calculus
examples of continuous functions that are not differentiable. The next example provides
one such counterexample.

Example 4.4.6

We discuss the continuity and differentiability of f(x) = |x| at x = 0.

We can show that y = |x| is continuous at x = 0, using the definition. Let
& > 0 and choose § = ¢. For any x such that [x — 0| < &, the following string of
relations holds:

IfC) =fO) = [Ix| =[0[] = ||x|| = x| < e.

By the definition of continuity, |x| is continuous at x = 0.
On the other hand, we can show that |x| is not differentiable at x = 0, using the
alternate definition of the derivative. The difference quotient for f(x) at x = 0 is
fO—f© _ k=101 _ Il

x—0 X X

Taking the limit of this difference quotient as x approaches 0,

. |x] . |x|
lim — = —1 and lim — = 1.
x—0— X x—>0+ X
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Therefore the limit
i fx) —£(0)
im—
x—0 x—0

does not exist, and f(x) = |x| is not differentiable at x = 0.
|

Question 4.4.5 Give an example of a continuous function that is not differentiable at the following

points:
(@ x=1 (c) x=n-m,foreveryn € Z
(b) bothx =1andx = —1 (d) x =2n,foreveryn € Z

These results show that (intuitively speaking) it is “more difficult” for a function
to be differentiable than continuous. From an informal, graphical perspective, this
fact is quite natural; at a point of discontinuity for a graph, we cannot draw a unique
tangent line.

The results also provide another reason for the importance of studying continuity:
the functions that are the most “well behaved” from the perspective of differential
calculus are continuous. Section 4.6 will identify an important connection between
continuity and Riemann integrability.

The derivative has transformed the way mathematicians think about functions.
Many questions about mathematical objects and our real-world can be phrased in terms
of the derivative’s measure of change. In this way, the development of the derivative
set the stage for much of the last three centuries of investigations into function theory.
From your calculus courses, you know that these investigations include finding maxima
and minima, and determining increasing and decreasing sections of curves, concavity,
and points of inflection, as well as the construction of power series. In summary, the
derivative flows through function theory in a useful and meaningful way.

4.4.1 Reading Questions for Section 4.4

1. Define and give an example of the slope of a line.

2. Describe an intuitive motivation for the definition of the derivative in terms

of secant lines and tangent lines to a curve.

State the definition of the derivative f’(x).

State the alternative definition of the derivative f’(x).

Give an example of a differentiable function.

What is the distinction between a function being differentiable at a pointx = ¢

and a function being differentiable?

State theorem 4.4.1. How is this result helpful when studying derivatives?

Give an example of each differentiation rule stated in theorem 4.4.1.

Define and give an example of a conjugate square root function.

10. State the binomial theorem. How is this result helpful when studying
derivatives?

11. Discuss the relationship between continuity and differentiability.

12. Give two examples of functions that are continuous, but not differentiable.

SN

Y o N
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4.4.2 Exercises for Section 4.4

In exercises 1-6, express the slope of a secant line to each function for the designated
x-coordinates as a difference quotient, and sketch the corresponding graph.

1. fx) =x>+2atx =3 and x = 4 4, fx)y=x>atx=0andx = 1
2. f(x) = x> + 2 at x = 3and 5. fx) = x> at x = 0 and

x =3.01 x = 0.01
3. f(x) = x* +2 at x = 3 and 6. fx) = x> at x = 0 and
x = 3.0001 x = 0.0001

In exercises 7-18, use the definition of the derivative to compute the derivative (if it
exists) of each function.

7. f(x)=2x+3 14. s(x) = /x
8. glx)=3x-5 15. t(x) =v/2x+2
9. h(x) =x2+1 16, u(x) = —
10. j(x) = x> +x Vx+7
4x ifx <2
11. p(x) =1/x 17. v(x):{ e
1 2x ifx >2
12. Q(x)zx—_'_1 18, o) — 4x+3 ifx<2
1 W= 02 ifx>2
13. r(x) = ——
x—3

In exercises 19-28, compute the derivative of each function using the analytic
differentiation rules from theorem 4.4.1, along with your recollection of the derivatives
of functions from calculus.

19. f(x) = (x? +x%)%7 25. f(x) = logs(cot(2x))
20. f(x) = (x +x~H? 26. f(x) = In(x> 4 2) - logs(csc(x) +
21. f(x) = (3x2 + /6x+5 — 4) - 2x)

(2x + 1/x) 27. f(x) = (k - x> + 2x)J/x, where
2 f@) =+ /Gt +1 keR .
23. f(x) = sin> (x> 4 2x) 28. f(x) = <\/m_|_ %) ,
24. f(x) = In(x) - cos(2x + 7) where k,n € R

In exercises 29-34, determine the exact value of &' (37 /4) and state the equation of the
line tangent to h(x) at x = 37 /4 using the information in the following table.

fQ) | f/®) | gx) | &)
x=3n/4 | 4 |2 5 3

29. h(x) =7 - f(x) — sec(x) + 7> 32. h(x) = tan(x) + 7 - cot?(g(x))
30. h(x) = g(x) - cos(x) 33. h(x) = sin[m- f(x)]4+cos[r - g(x)]
31. h(x) = 800 +x 34. h(x) z@ — i

f)+2 x o g)



Chapter 4 = Real Analysis 291

In exercises 35-38, answer each question about f(x) = \/x.

35.
36.
37.
38.

Using the definition of the derivative, find f”(x).

Using the power rule, find f’(x).

Determine the equation of the tangent line to f(x) = /x at (9, 3).

Determine the equation of the tangent line to f(x) = /x that is perpendicular
to the line determined by 2y + 8x = 16.

Exercises 39-43 develop a proof that the derivative of sin 6 is cos 6.

39.

40.

41.

42.

43.

Prove that sinf - cosf < 6 < tan6.

Hint: Compare the areas of the three nested regions in figure 4.14 and use the
fact that a pie-shaped sector of the unit circle with central angle 6 (in radians)
has an area of 6/2.

Identify upper and lower bounds on sin /6 using the inequalities from
exercise 39.

Hint: Divide by sin 8 and take reciprocals.

Prove that (}irr%) sinf/6 = 1.

Hint: Apply_t)he squeeze theorem (see theorem 4.3.4 from section 4.3) to the
inequalities from exercise 40.

Prove that é}inb (1 —cos8)/6 = 0.

Hint: Multiply both the numerator and the denominator by 1 + cos6 and
then use both the Pythagorean identity sin® 6 4 cos? 6 = 1 and the limit from
exercises 41.

Prove that the derivative of sin 8 is cos 6.

Hint: Working with the definition of the derivative, simplify the resulting
difference quotient using the limits from exercises 41 and 42 along with the
trigonometric identity sin(u 4 v) = sin u cos v 4 sin v cos u.

In exercises 44—48, derive the formulas for the derivative of the other trigonometric
functions; all but exercise 44 use the quotient rule.

44.

Figure 4.14 Figure for

Prove that the derivative of cos 8 is — sin 6.
Hint: Use the cofunction identity cos x = sin(7/2 — x) and the derivative from
exercises 43.

(1, tan 0)

(cos 6, sin 0) \

exercise 39 (0,0) (1,0)
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45.
46.
47.
48.

Prove that the derivative of tan 6 is sec? 6.

Prove that the derivative of cot 8 is — csc? 6.
Prove that the derivative of sec 6 is sec 6 tan 6.
Prove that the derivative of csc 6 is — csc 6 cot 6.

In exercises 51-66, prove each mathematical statement about derivatives.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

62.

63.

64.

The derivative of a differentiable function is unique. Hint: See the unique
limit theorem (theorem 4.3.1 from section 4.3).

The two definitions of the derivative are equivalent. Hint: Let h = a — x.
The constant rule from theorem 4.4.1.

The difference rule from theorem 4.4.1.

The product rule from theorem 4.4.1. Hint: Add and subtract f(x + /) - g(x)
in the numerator of the difference quotient for f(x) - g(x).

The quotient rule from theorem 4.4.1. Hint: See question 4.4.3.

The chain rule from theorem 4.4.1. Hint: See question 4.4.4.

Every polynomial is differentiable.

The derivative of a polynomial of degree n is a polynomial of degree n — 1.
The derivative of an even function is odd; that is, if f(x) = f(—x), then f’(x) =
—f'(—=x).

If f is a differentiable function on an interval (x — &, x 4+ h) for some & € R,
then the derivative f'(x) equals lim,_.o f'(x 4 /). Hint: Apply L’Hopital’s rule
from calculus to the limit of the difference quotient.

Appling the alternative definition of the derivative at x = 0, the following
function is not differentiable at x = 0.

Flo) = x-sin|:)lc1| ifx#0
0 itx=0

The function f(x) defined as follows has derivative f'(0) = 0.

Flx) = x2~sin|:)lci| ifx#0
0 itx=0

For every k € R, the function f'(x) defined as follows has derivative '(0) = 0.

| k-x? ifxeQ
f(x)_{o ifxgQ

If a function f is differentiable on (b, ¢) and f'(a) = O for a € (b, ¢), then it is
not necessarily true that either a relative maximum or relative minimum for
f occurs at x = a.

If f and g are differentiable functions on (a, b) with the same derivative, then
f(x) — g(x) is a constant for any x € (a, b).
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65. If f and g are differentiable functions on (a, b) with f — g a constant, then f
and g have the same derivative at any x € (a, D).

66. Define a function f that is nowhere differentiable, while 2 is everywhere
differentiable. Hint: Consider a variation on the characteristic function

of Q.

Exercises 67-70 develop a proof of the chain rule in a fuller generality than
was discussed in question 4.4.4. Throughout these exercises assume that g(x) is
differentiable at a point x = a and that f(x) is differentiable at g(a).

67. Prove that the following function F is continuous at 2 = 0; intuitively, we
think of F as the derivative of f with respect to t = g(a).

flgla) + h] — flg(@)] ith 0

h
flg(@)] ifh=0

68. Prove that f[g(a) + h] = flg(a)] 4+ h - F(h) for sufficiently small values of &
by taking the limit of these two expressions as / approaches 0.

69. In a parallel way, we can define a function G so that G(0) = g'(a) and g(a +
k) = g(a) + k - G(k) for sufficiently small values of k. Use this fact, the
result from exercise 68, and the choice of 1 = g(a + k) — g(a) = k - G(k) to
prove that:

fh) =

flg@)+hl = flgla+ k)] and h-Fh) =k-Gk)- F(k-G(k)).

70. Using the two equations obtained in exercise 69, substitute the first equation
into the second to prove that

flgla+ )] =flg@] +k - G(k) - F(k - G(k)).

The last term on the right is continuous at 0 based on the definitions of " and
G. Subtract f[g(a)] on both sides of this equation, divide both sides by k and
take the limit as k approaches 0 to obtain the chain rule.

45 Understanding Infinity

The notion of infinity has been an important element in many cultures’ attempts to
understand life: people refer to eternal time; an eternal spiritual afterlife; a boundless
universe; an all-powerful deity. Mathematics has a unique and important perspective
on infinity; the insights arising from mathematics’ rigorous, logical approach to infinity
have had an important influence on Western society’s view of the world. But many
advanced mathematical results on infinity (especially those that grew out of Georg
Cantor’s work in the late 1860s) are not widely known. In this section, we explore a
mathematical understanding of the infinite.

We have already taken the first steps in this direction in our study of limits. One
major breakthrough in the development of calculus is the harnessing of infinity in the
very specific and powerful way expressed by the notion of limit to obtain the derivative
(and the integral as discussed in section 4.6). As mathematicians developed and refined
their understanding of limits, derivatives, and integrals in the eighteenth and nineteenth
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centuries, they began to recognize a need for a better understanding of the continuum
of the real line. The German mathematician Georg Cantor made the most significant
progress in this direction, ultimately developing a set-theoretic perspective of the reals
that enabled him to study the basic properties and arithmetic of actual infinite numbers.
While this study of infinity has a more discrete, set-theoretic feel, we immediately apply
the results to the study of real analysis.

During the late 1600s, a European openness to infinite processes was a key element
in the development of calculus. Based on the ancient Greek mathematician Archimedes’
efforts to calculate the areas of closed plane figures via approximating polygons, it
appears that he essentially understood the ideas of limits and integrals. Archimedes
apparently held back because of the need to work with infinity. We can only wonder
about the advancement of mathematical thought had Archimedes, Euclid, or Pappus
of Alexandria successfully pursued these ideas further.

In our study of limits, we used the symbol “co” to denote infinity. This notation
was introduced in 1655 by the English mathematician John Wallis in his paper De sec-
tionibus conicus. However, the symbol oo does not denote an actual infinite number,
but indicates “unboundedness” or numbers growing without bound. For example, we

know lim0 1/x% = oo. This notation does nor mean that we substitute 0 for x and the
X—>

result is a number oo; rather, this expression means that the values of the function
1/x? grow larger and larger as we substitute numbers closer and closer to 0 for x. This
notion of “growing large without bound” or of processes that continue indefinitely
(such as counting positive integers) is referred to as potential infinity. The ancient
Greeks were mostly accepting of the notion of potential infinity; in the third century
B.C.E., Archimedes wrote about extremely large numbers growing without bound in his
essay The Sand Reckoner. While such a perspective on infinity is useful (as evident in
calculus), we are interested in more: we seek to define actual “infinite numbers.”

Humans have been grappling with the notion of infinity for thousands of years. This
struggle has led some of humanity’s greatest thinkers to describe various “paradoxes
of infinity,” two of which are described in this section. Such paradoxes highlight
the delicate issues at the heart of the notion of infinity—those that intuitively seem
contradictory and without possibility of resolution, and that ultimately require new
insights to unravel. The first was described during the fourth century B.C.E. by the Greek
philosopher Zeno of Elea. Zeno proposed four paradoxes of infinity: the Dichotomy,
Achilles, the Arrow, and the Stadium. Each paradox expresses concerns with the notion
of a realized, completed infinity, as opposed to the familiar potential infinity from our
studies of calculus.

Example 4.5.1 Zeno's paradox of Achilles and the tortoise  Achilles and the tortoise are racing,

and Achilles has kindly given the tortoise a head start. After making some slow
but steady progress, the tortoise decides to take a break and sit without moving on
the race course. Achilles starts the race and begins covering the distance between
himself and the stationary tortoise. First, Achilles covers half the distance between
the starting line and the tortoise. He then covers half the remaining distance to
the tortoise; at this point Achilles only needs to cover one-fourth of the distance
between the starting line and the tortoise. Again, Achilles makes progress and
covers half the remaining distance; now he has only one-eighth of the remaining
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distance left. He continues in this fashion: with 1/16th of the distance left to cover,
then 1/32nd left, then 1/64th left, and so on. In this way, Achilles gets closer and
closer to the tortoise. But he never catches the tortoise, because he has infinitely
many of these half-distance intervals to pass through! And here is the paradox, as
our “real-life”” experience tells us that Achilles not only catches the tortoise (who
remains at a standstill), but also passes him and wins the race (so long as Achilles
continues to move toward the finish line).

A resolution of Zeno’s Achilles-tortoise paradox. One resolution is often referred to as

“irrelevant parametrization,” which can be thought of as “keeping your eye
on the wrong part of the problem.” In this setting, the element of time is never
considered in the statement of the paradox: How long does it take Achilles
to pass through these increasingly small distance intervals?

A second resolution of this paradox follows from an understanding
of infinite series (or sums) developed by European mathematicians in the
eighteenth century. Perhaps you recall studying geometric series with r =
1/2, for which

1
16 11—

N =
L
0| —

In short, an infinite sum of positive terms can have finite value. In reference
to Zeno’s Achilles—tortoise paradox, if Achilles travels at a constant rate, then
the series sums the times it takes him to travel each of the half-distances, and
so the total distance between Achilles and the tortoise is covered in a finite
amount of time.

While we may now understand how to respond to Zeno’s paradoxes of infinity,

these resolutions were not apparent for some 2,000 years. During this time, the notion
of potential infinity continued to be accepted by philosophers and mathematicians,
while the notion of an actual, complete infinity was regarded with skepticism.

A second paradox of infinity was stated by Galileo in the early 1600s. Contempo-

rary mathematicians phrase Galileo’s paradox in terms of one-to-one correspondences,
which play a key role in the study of infinity. We defined a one-to-one correspondence
(in definition 4.2.2 of section 4.2) as a function f : X — Y that is both one-to-one
and onto. A one-to-one function satisfies the condition that every output comes from
a unique input, and an onto function satisfies the condition that every element of the
target set Y is in the range. Consider the following examples.

Example 4.5.2

We study functions on the sets A = {x, y, z}, B = {4, 5, 6}, and C = {a, b}.

* The function f : C — A defined by f = { (a, x), (b, z) } is one-to-one; there are
five other such one-to-one maps, but no maps from C onto A.

* The function g : A — C defined by g = { (x, @), (v, D), (z, b) } is onto; there
are five other such onto maps, but no one-to-one maps from A to C.

* The function & : A — B defined by g = { (x,4), (1,5), (z,6) } is both one-
to-one and onto; there are five other such one-to-one correspondences between
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A and B. We can think of these maps as expressing that A and B are the same
size, while C has a different size.

Question 4.5.1 Prove each map on infinite sets has the specified property.

(a) The function f : Z — 7Z defined by f(x) = x + 1 is a one-to-one
correspondence.
(b) The function g : Z — Z defined by g(x) = 2x is one-to-one, but not onto.
(c) The function 4 : R — R defined by a(x) = x? is neither one-to-one nor onto.
|

One intriguing insight into one-to-one correspondences is that such maps between
finite sets have different properties than such maps between infinite sets. For example,
a finite set can never be placed in one-to-one correspondence with a proper subset of
itself. A proper subset contains fewer elements than the original set, and so any map
between the original set and a proper subset is either not one-to-one or not onto. As an
intuitive illustration, consider the impossibility of matching four left shoes with five
right shoes to form pairs of shoes without at least one right shoe left over. We can
develop a careful proof that there does not exist a one-to-one correspondence between
any finite set and a proper subset. This observation lies at the heart of Galileo’s “paradox
of infinity,” as stated below.

Example 4.5.3 Galileo’s paradox of squares In the early 1600s, the Italian physicist and astronomer

Galileo Galilei was reflecting on infinity and considering maps on infinite sets.
He observed that the natural numbers N = {1, 2, 3, ...} can be placed in one-to-
one correspondence with proper subsets of itself; for example, with the set of
squares of natural numbers S = {1, 4, 9, 16, 25, ...}. Galileo identified the one-to-
one correspondence f : N — § defined by f(n) = n? (that is, by f(1) = 12 = 1,
f2)= 22 = 4, and so on). He identified this example as a paradox, (mistakenly)
believing that infinite sets could not be placed in one-to-one correspondence with
a proper subset.

A Resolution of Galileo’s paradox of squares Mathematicians now understand that finite and

infinite sets have different properties with respect to one-to-one correspondences;
in fact, a set is infinite exactly when the set can be placed in one-to-one
correspondence with a proper subset. Rather then identifying a paradox, Galileo
actually happened upon a characterization of infinity. We too must keep in mind
that not every property of finite numbers extends to infinite numbers.

|

The definition of “number” grew out of the work of nineteenth century function
theorists. In the early 1800s, Joseph Fourier modeled heat using trigonometric series,
but it was unclear how widely this model could be applied. Peter Dirichlet and other
mathematicians resolved this question by studying the points of discontinuity in domain
sets, including infinite sets of points of discontinuity. Cantor’s research efforts in this
area led him to ask questions about the continuum of the real number line. Among
other things, Cantor needed to know the relative size of the set of rational numbers
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vis-a-vis the set of real numbers. He originally conjectured that there was only one
size of infinity; this intuition matched that of his colleagues and perhaps matches your
own. But Cantor needed more than intuition—he needed proof. And his work led to
some startling results.

Georg Cantor was a mathematician of Danish and Russian descent who spent
most of his life working at the University of Halle in Germany. While his doctoral
work was in number theory, the bulk of his early research at Halle was in real analysis.
His study of Fourier series ultimately led him to explore perhaps one of the most
fundamental questions of mathematics: What is a “number”? From the early 1870s to
the late 1890s, Cantor published multiple papers that in aggregate develop set theory,
precisely define one-to-one correspondences, explore finite and infinite numbers via
such mappings, study an arithmetic of infinite numbers, and ask important questions
that continue to guide mathematical research. This insightful work was greeted with
mixed reactions, with some mathematicians expressing high praise and others strong
disdain for Cantor’s research program. The last couple of decades of Cantor’s life were
difficult; along with professional conflicts, Cantor struggled with the deaths of close
family members, crippling mental illness, and the consequences to civilian life arising
from the onset of World War L.

We now consider the question that Cantor asked: What do we mean by the word
“number”? An intuitive description of “number” typically includes such phrases as
“size” or “how many” (as in “How many elements are in a set?”’). Cantor’s insight was
to think of “number” not as a property that is held in isolation, but as a relation. In
this way, we can use sets and functions to develop a rigorous mathematical definition
of “number.” Instead of the words “number” or “size,” mathematicians use the term
“cardinality” to refer to the number of objects in a set. The following definition precisely
expresses this concept and is at the heart of Cantor’s theory of infinity.

Definition 4.5.1 Sets X and Y have the same cardinality when there exists a one-to-one
correspondence from X to Y, and the cardinality of a set X is denoted by |X]|.

e |X| = |Y| means that X and Y have the same cardinality.

e |X| < |Y| means that there exists a one-to-one function from X to Y, which is
not necessarily onto.

* |X| < |Y|meansthat |X| < |Y|but|X| # |Y|, thatis, there exists a one-to-one
map from X to Y, but no one-to-one correspondence.

As you might expect, we denote the cardinality of finite sets using the nonnegative
integers 0, 1,2,3,.... The “smallest” infinite cardinality is that of the natural
numbers N.

Example 4.5.4 We use the notation |X| to express the cardinality of sets.

Considering the sets we studied in example 4.5.2, both |{x,y,z}| = 3 and
|{4,5, 6} = 3;also |[{a, b}|] = 2. Since the empty set @ contains no elements,
|#] = 0.Inaddition, we can consider the cardinalities of infinite sets. As observed
in Galileo’s paradox of squares, there exists a one-to-one correspondence between
the set of natural numbers and the set of squares of natural numbers, and so
IN| = [{1,4,9,16,25,...}].

|
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Question 4.5.2 Prove that N and the set E of even positive integers have the same cardinality

by showing that the function f : N — FE defined by f(n) = 2n is a one-to-one

corre spondence. -

Cantor realized the importance of introducing symbols for infinite cardinalities and
denoted the cardinality of the natural numbers N by X, where R (called “aleph”) is the
first letter of the Hebrew alphabet. Since the symbol R is hard to write, we utilize the
more familiar w (the Greek letter “omega”) in this text. In a more sophisticated study
of infinite sets, w denotes the set of natural numbers under the standard < ordering
of natural numbers; in such settings, we must use Xg when referring exclusively to
the cardinality |N|. However, in this text, we write |[N| = w, and we say that the set
of natural numbers is countably infinite (or sometimes denumerably infinite). These
conventions are formalized in the following definition.

Definition 4.5.2 A set X is said to be countable when either X is finite or |X| = |N| = w; that

is, when X is finite or when there exists a one-to-one correspondence between X
and N. A set X is said to be uncountable when X is not countable.

Observe that the elements of countable sets can be arranged in a sequence
ay, az, as,..., where elements are allowed to be repeated in such a list. Writing
the elements of a set X as a sequence implicitly identifies a one-to-one correspondence
f between N and X. We use this approach to prove that many familiar sets are countable.

Example 4.5.5 We verify the following sets are countable; we consider examples of uncountable

sets soon.
* The set of odd positive integers is countable as demonstrated by the sequence:
1, 3,5, 7,9, 11, 13, 15, 17,....
 The set of integers Z is countable as demonstrated by the sequence:
0,1, -1, 2, =2, 3, 3,4, —4,....
e The set Qg of rational numbers in the (real) interval [0, 1) is countable. First,
consider the sequence:
1 1 2 1 2 3 1 2 3 4 1 2 3
273 3 44 4 5 5 5 5 66 6
Do you see the pattern? Based on this sequence, we can define an onto map from
N to Q. By omitting the repetitions in the sequence (for example, 1/2 =2/4 =

3/6, and so on) we obtain a one-to-one map, as suggested by the following
sequence:

0,

O,
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Question 4.5.3 Using the sequence approach demonstrated in example 4.5.5, prove each set is

countable; be careful to include every element of the given set in the sequence.

(a) the set E of even positive integers
(b) the set of even integers
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(c) the set P of prime numbers
(d) the set of rational numbers in the (real) interval [1, 2)
|

Cantor also proved the following result about unions of countable sets; this result

is useful in many settings, for example, when studying the theory of integration.

Theorem 4.5.1

Proof

The union of a countable sequence of countable sets is countable.

Let S1, S2, S3, ... be a countable sequence of countable sets with §; =

{sjt, sj2, $j3, ...}. Then U . S; is a countable set as demonstrated by the
Jje

sequence:

S11, $125 821, S13, 522, $31, S14, $23, §32, S41, $15, $24, ...

This sequence is constructed by following along the “diagonals” identified in the
array of sequence elements given in figure 4.15; consequently, the technique used
to define this sequence is called Cantor’s first diagonalization method.

|

Theorem 4.5.1 can be used to prove the countability of many sets, as illustrated

in the following example and question.

Example 4.5.6 We prove that the set QQ of rational numbers is countable.

Proof In light of theorem 4.5.1, we express the rationals as a union of a countable
sequence of countable sets. Define Q; to be the set of rational numbers in the
interval [j,j + 1). By appropriately extending the argument for Qp given in
example 4.5.5, we can prove that each set Q; is countable. We now observe that:

e=J 9.
JEL
Si1 / Si2 Si3 Sia Sis5
Sa1 Sao Sa3 So4 Sos
Sa1 Sz Ss3 Saa Ss5
Sa Ss2 Su3 S44 Sus
Ss1 Ss2 Ssa Ssa Sss
Figure 4.15 Cantor’s first diagonalization method
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Question 4.5.4

Therefore, Q is a countable union of countable sets, and so QQ is countable by
theorem 4.5.1.

|
Using theorem 4.5.1, prove each set is countable.
(@ NxN = {(m,n):m,n € N}
(b) Q" = {1, q2.---.qn) 1 q1. .. gn € Q}
(c) {(n1,nz,n3,...):n; € Zforalli € N}
|

Thus far, these results all seem to confirm a natural intuition that the countable

cardinality w of the set of natural numbers is the unique size of infinity. In addition,
the rationals are dense in the set of reals in the sense that there exists a rational number
strictly between any two real numbers. The countability of the rationals and the density
of the rationals in the reals provides further evidence for the intuition that the real
numbers are also countable. For many years, Cantor tried to prove that the set of real
numbers is countable, but he was unsuccessful—for good reason. By December 1873,
Cantor proved the astonishing, ground-breaking result that the set R of real numbers is
uncountable! Even with the 1874 publication of his proof of this result, mathematicians
continued to be surprised that there exists more than one infinite cardinality. The fol-
lowing elegant proof of the uncountability of the reals was published by Cantor in 1891.

Theorem 4.5.2 The set R of real numbers is uncountable.

Proof

We prove [0, 1) is uncountable; because [0, 1) C R, the uncountability of [0, 1)
implies the uncountability of R. The proof proceeds by contradiction. First,
assume that [0, 1) is countable, and so its elements can be written as a sequence
{a1, aa, a3, a4, ...}. Then produce a real number r € [0, 1) that is not one of the
ap’s, contradicting the fact that the (supposed) one-to-one correspondence from
N to [0, 1) defined by the sequence is onto.

The real number r is defined using the decimal expansion of each a,, € [0, 1).
Firstexpress each a,, € [0, 1) in an unambiguous way as a nonterminating decimal.
Let b,,, represent the nth digit in the decimal expansion of a,,, so that we have:
ay = 0.b11b12b13b14 .. .; ao = 0.by1b2obarzbos . . ., a3 = 0.b31b3abszbsg . . .; and
so on. In this setting, think of real numbers with terminating decimal expansions
as having Os appended to the end of their expansions; for example, think of a,, =
1/2 =0.5000...as b1 =5,by2 =0, b3 =0, bya = 0, and so on.

We now apply what has become known as Cantor’s second diagonalization
methodto obtain areal number r & {a,, : m € N}. Definer = 0.b1b2b3b4 . . ., where
the nth digit b, in the decimal expansion of r is determined by b,,, the nth digit
in the decimal expansion of a,. If b,,, equals 0, define b,, = 1; if b, is not equal
to 0, define b,, = 0. Based on this definition, observe that the nth digit of r differs
from the nth digit of a,. Thus, r is not an element of the sequence {a,, : m € N},
contradicting the fact that the (supposed) one-to-one correspondence from N to
[0, 1) defined by {a,, : m € N} is onto. Thus [0, 1) is uncountable, implying that
R is uncountable.

|
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a = 0- bia b1z big
a, = 0.by b23 boy

az = 0.b3 b32b34
a = 0.byy by b43

Figure 4.16 Cantor’s second diagonalization method

This approach to proving the uncountability of the reals is called Cantor’s second
diagonalization method (or more simply a diagonal argument) because it obtains r by
changing the digits in the decimal expansions of sequence elements along a diagonal. If
we present these decimal expansions a,;, = 0.5,,10,,20,,3b14 - . . in an array and circle
the digits that are modified (b,,, to obtain b,)) the “diagonal” of Cantor’s argument is
readily apparent, as illustrated in figure 4.16.

Theorem 4.5.2 leads to the inescapable conclusion that there are different sizes of
infinity! This result surprised many mathematicians of the late nineteenth century, and
it took years for Cantor’s ideas to gain widespread acceptance. Cantor’s methods and
results provoked strong (positive and negative) reactions among mathematicians, from
Leopold Kronecker’s assertion that “God made the integers, all else is the work of man,”
to David Hilbert’s claim that “No one will expel us from the paradise that Cantor has
created.” While this controversy continued into the early twentieth century, Cantor’s
approach has been invaluable to mathematicians’ efforts to explore mathematical truth.
As Cantor reflected on his proof that [R| # o and continued to develop his ideas,
he was eventually able to identify a clever one-to-one correspondence that proved the
precise relationship:

IRl = 2“.
This result led him to the following intriguing question:
Does there exist an infinite number between w = |N| and 2% = |R|?

Despite literally decades of effort, Cantor was never able to answer this question, but he
did conjecture what has become known as the continuum hypothesis: there is no infinite
number between w and 2 (just as there is no natural number between 1 and 2). The
continuum hypothesis received a lot of attention during the twentieth century. At the
1900 International Congress of Mathematicians in Paris, the German mathematician
David Hilbert gave a now famous address The problems of mathematics in which he
presented a list of 23 questions that he considered to be the most significant of the time.
These questions came to be called Hilbert’s problems, and they profoundly influenced
mathematical research throughout the twentieth century. Hilbert’s first problem called
for the resolution of the continuum hypothesis.

Surprisingly, there is no “right” answer to the continuum hypothesis. In 1938, the
Austrian mathematician Kurt Friedrich Godel showed that the continuum hypothesis
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cannot be proven false. In addition, Godel conjectured that the continuum hypothesis
also cannot be proven true; in 1963, the American mathematician Paul Cohen confirmed
Godel’s conjecture, showing that continuum hypothesis is not provable. Mathematical
statements that are neither provable nor disprovable are called undecidable. From the
work of Godel and Cohen, we know that the continuum hypothesis is undecidable
(based on the standard axioms of set theory). Their results mean that we are “free” to
assume the existence of an infinite number between w and 2%, or the nonexistence of
such an infinite number, provided we explicitly identify the use of such an assumption.
These explorations of the infinite also tell us something about ourselves, as they
highlight an essential limitation of our mathematical reasoning processes.

4.5.1 Cantor’'s Theorem

We now consider cardinality from an explicit set-theoretical perspective, including
an analog of Cantor’s proof of the uncountability of the reals based on the power
set operation. We also study an “addition” operation and a “countable multiplication”
operation for infinite numbers, along with what features of the finite versions of these
operations carry over to the context of infinite numbers. Recall from definition 2.1.4
in section 2.1 that if A is a set, then IP(A) denotes the power set of A and is the set of all
subsets of A; symbolically, we define P(A) = {X : X C A}. Notice that both @ € P(A)
and A € P(A).

Example 4.5.7 If A = {a, b}, then the 2-element subset of A is {a, b}, the 1-element subsets of

A are {a} and {b}, and the 0-element subset of A is ¢ = {}. Therefore, P(A) =

{{a, b}, {a}, {0}, 0 }.
If A = @, then the only subset of ¥ is @, and so P(A) = P(0) = {0}.

Question 4.5.5 Determine the power set of each set.

(a) A= {0} (b) A={0,1}
[

In example 4.5.7 and question 4.5.5, if we compare the cardinality of a set A with
the cardinality of its power set P(A), a distinctive pattern becomes apparent.

AhasOelements = [P(A)has I = 2° element
Ahas 1element = IP(A)has 2 = 2! elements
Ahas2elements = IP(A)has 4 = 22 elements

As it turns out, this numeric relation holds for every set A, including infinite sets: the
cardinality of the power set of A is equal to two raised to the cardinality of the set A.

Theorem 4.5.3 IfA is a set, then |P(A)| = 2.

Comments on proof For finite sets, we can use induction on the nonnegative integers to

prove theorem 4.5.3 (see exercise 65 in section 3.6). For infinite sets, we need to
state a precise definition of 2 raised to an infinite power; this part of the proof is
left for your later studies.
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In light of theorem 4.5.3, Cantor wondered about the relationship between the
cardinality of the set of natural numbers |[N| = w and the cardinality of the power set
of natural numbers |[P(N)| = 2“; are w and 2“ equal, or not? As we have discussed
already, not every property of finite numbers carries over to infinite numbers and
so, even though n < 2" for every n € N (see exercise 28 in section 3.6), Cantor
insightfully recognized that perhaps w could be equal to 2“. As you may recognize,
this query is really another variation on the question of whether there are different
sizes of infinity. Furthermore, from the uncountability of the reals and the fact that
IR| = 2“, we know that w # 2“. However, more than just working in this specific
setting, Cantor proved a more general theorem with profound implications for a study
of infinite cardinalities.

Theorem 4.5.4 Cantor’s theorem If A is a set, then the cardinality of A is strictly less than the
cardinality of the power set of A; symbolically, we have |A| < |P(A)|.

Proof From definition 4.5.1, show that [A| < |P(A)| by defining a one-to-one function
from A into P(A); we then need to prove that there is no one-to-one correspondence
from A to P(A) to obtain the strict inequality |A] < |P(A)].

Define f : A — P(A) by f(x) = {x} for every a € A. This function f is one-
to-one; if x, y € A and f(x) = f(y), then {x} = {y} and so x = y by the definition
of set equality. Thus, |A] < [P(A)].

A diagonal argument (using Cantor’s second diagonalization method) proves
that there does not exist a one-to-one correspondence from A to P(A). As in the
proof of the uncountability of the reals, this proof proceeds by contradiction.
Assume g : A — P(A) is a one-to-one correspondence and then define a “diagonal”
set D € P(A) such that D is not in the range of g (contradicting the assumption
that g is onto). Given the (supposed) one-to-one correspondence g, define:

D ={xeA: x&gkx)}.

By definition, D € A and so D € P(A). Therefore, since g is (supposedly) onto,
there exists an element d € A satisfying g(d) = D. Eitherd € D ord ¢ D, but both
of these options lead us to a contradiction. If d € D, thend ¢ g(d) by the definition
of D; and so d ¢ g(d) = D, giving a contradiction. On the other hand, if d ¢ D,
then d € g(d) by the definition of D; and so d € g(d) = D, giving a contradiction.
Thus g is not onto and there does not exist a one-to-one correspondence from
A to P(A).

|

The proof of Cantor’s theorem is relatively abstract, and so we consider an example
in the context of the set of natural numbers to illustrate the diagonal set D.

Example 4.5.8 Suppose g : N — P(N) is a one-to-one correspondence with the first few output
sets of g as follows.

g)=1{1,2 3 4,...}
g2=1{1,3,5717,...}
g3)=1{2,4,68,...}
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g4 =1{4,56,78,...}
g3 ={5}
8(6) ={5, 7}

Working with the definitionof D = {x e N: x & g(x)},wehave D = {2, 3, 6, ...}
because of the following relationships.

leg), 2¢gQ2), 3¢g03), 4ecg@), 5€g0), 6¢g0), ...
[

Cantor’s theorem provides another confirmation that there exist different infinite
cardinalities. Since |[N| = w and |P(N)| = 2%, we know that w # 2%. Furthermore,
we can apply the power set operation multiple times to obtain infinitely many distinct
infinite numbers! The following sequence illustrates this process.

N < [PO)] < [PEN) < [PN)] <

o < 2¢ < 22 < 2 <
Recall the assertion of the (unprovable) continuum hypothesis that there does not
exist an infinite number between @ and 2¢. Godel’s and Cohen’s results proving
the undecidability of the continuum hypothesis extend to this broader context. The
generalized continuum hypothesis states that for any infinite cardinal « (the Greek
letter “kappa”), there does not exist an infinite cardinal between « and 2, and is also
undecidable.

4.5.2 Cardinal Arithmetic

We finish this section by studying cardinal arithmetic. Mathematicians have developed
well-defined extensions of the operations of addition, multiplication, and exponenti-
ation on the (finite) natural numbers to infinite cardinals, enabling us to associate
meaning with such expressions as 1 + w, w + w, and 3 - w. A first step in the
direction of understanding cardinal arithmetic is the definition of addition and countable
multiplication of cardinals; the complete definition of cardinal multiplication and
cardinal exponentiation are left for your later studies. In this context, mathematicians
commonly use x and p (the Greek letter “mu”) to denote arbitrary cardinals
(particularly infinite cardinals) in much the same way that m and n are used to denote
arbitrary integers.

Definition 4.5.3 If k and u are cardinals with k = |A| and u = |B| for disjoint sets A and B,

then

*k+u = |AUB|, and
e if k is finite or w, then k - 4 = |A X B|.

As suggested by this definition, we perform cardinal operations by designating
representative sets and defining one-to-one correspondences between these sets.
In our discussion, we also informally illustrate these computations with imaginary
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Hilbert Hotels, which have infinitely many hotel rooms. These illustrations can help
us visualize solutions to some fairly complicated computations.

Example 4.5.9 We prove that 1 + v = w.

An informal proof Study the identity 1 + w = w using an infinite Hilbert Hotel with
o many rooms. Suppose the traveler a arrives at a Hilbert Hotel and finds
that every room is occupied. Despite having no vacancy, the staff can find a
room for a. Doubling up is not allowed (as with any upscale hotel). But what
if every occupant is willing to switch rooms? Can you see how to open up a
room for traveler a? Figure 4.17 illustrates a process in which each occupant
n moves one room up, and traveler @ moves into room number 1, giving us
1 4+ w = w. We now consider a formal proof of this result.

Proof ~ The preceding informal discussion suggests how to prove that 1 + w = w.
We first choose representative sets for these cardinalities and then define a
one-to-one correspondence between these sets. For this proof, letA = {a} UN
represent 1 + w and let N represent w; notice that these sets have the desired
cardinalities. We define a one-to-one correspondence f : A — N by

1 if x=a

fo = { x+1 ifxeN

A detailed proof that f is one-to-one and onto is left to the reader; given this
one-to-one correspondence, we have 1 + o = w.

Question 4.5.6 Prove each equality by giving both an informal Hilbert Hotel argument and a
formal proof for a one-to-one correspondence between representative sets.

(@ 24+w=w © T4+w=w
®3+w=w dn+w=wforneN

Example 4.5.10 We informally prove that w + w = w; thatis, 2 - w = w.

An informal proof We consider a scenario in which the Hilbert Hotel chain is doing a
bit of downsizing: suppose that one of two full Hilbert Hotels needs to close.
To avoid a public relations nightmare, the Hilbert Hotel chain guarantees

Occupant number: | 1 | 2 | 3 | 4 | 5 | ‘
Room number: 1 2 3 4 5

After occupant move l

Occupant number: | a | 1 | 2 | 3 | 4 | ‘
Room number: 1 2 3 4 5

Figure 4.17 A vacancy is possible at a full Hilbert Hotel
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every occupant of the closing hotel a room in the hotel remaining open. Now
a full Hilbert Hotel needs to make room for countably infinite additional
people. Can you see how the hotel might accomplish this feat? One strategy
is to move everyone in the open hotel to even-numbered rooms and to move
everyone in the closing hotel to the now vacant odd-numbered rooms of the
open hotel; this approach is illustrated in figure 4.18. Thus, w + @ = w, and
s0 2w = w. The formal proof is left for the next question.

|

Question 4.5.7 Prove each equality by identifying a one-to-one correspondence between appro-
priate representative sets.

(@) w+ w = w. Hint: Let A = {a, : n € N} and B = {b, : n € N}. Define a

one-to-one correspondence f : A U B — N that gives a formula for the map
depicted in example 4.5.10.

(b) 3w = w+ w + wis equal to w. Also, give an illustration of the corresponding

informal Hilbert Hotel proof.

(c) n-w=wforneN.

The ideas we have explored in this section are just the first steps in the mathematical
study of infinite numbers—there is much more to learn about this topic. For example,
besides the power set operation, there exist many other set-theoretic operations
that yield larger and larger infinite numbers. These further explorations require a
more formal and complete study of set theory, and are left for your later studies in
mathematics. For now, we have identified many interesting results that play a role in
the study of integral calculus in the next section.

4.5.3 Reading Questions for Section 4.5

1.
2.

Discuss the distinction between potential infinity and actual infinity.
Describe Zeno’s paradox of Achilles and the tortoise. How do contemporary
mathematicians resolve this paradox?

Define and give an example of a one-to-one correspondence.

Describe Galileo’s paradox of squares. How do contemporary mathematicians
resolve this paradox?

Define cardinality and give an example.

Occupant number: | 1 | 2 | 3 | 4 | 5 | ‘
Room number: 1 2 3 4 5

After occupant move l

Occupant number: | a | 1 | b | 2 | c | ‘
Room number: 1 2 3 4 5

Figure 4.18 From the closing hotel, a,b,c, ... move in among 1,2,3, ... from the open hotel
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Discuss the distinction between |X| = |Y| and |X| < |Y].

Define and give an example of a countable set and an uncountable set.

State theorem 4.5.1. How is this result helpful when studying cardinality?

State theorem 4.5.2 and informally describe a diagonal argument.

10. State the continuum hypothesis. Explain what is meant by the assertion that
the continuum hypothesis is undecidable.

11. Give an example for theorem 4.5.3.

12. State Cantor’s theorem. How is this result helpful when studying cardinality?

RS

4.5.4 Exercises for Section 4.5

In exercises 1-13, define a function with the indicated properties, or explain why
such a function does not exist. The domains and targets of these functions are the
following sets.

A={a, b} B=1{1,2,31 C={} D={, 2}

1. A one-to-one functionf : A — B. 9. An onto functionj : C — A.
2. Aone-to-one functiong : B — A. 10. A one-to-one correspondence
3. Anonto function : A — B. k:A— C.
4. An onto functionj : B — A. 11. A one-to-one correspondence
5. A one-to-one correspondence f:A— D.

k:A— B. 12. A one-to-one correspondence
6. Aone-to-one functionf : A — C. g:B— D.
7. Aone-to-one function g : C — A. 13. A one-to-one correspondence
8. Anonto functionk : A — C. h:C— D.

In exercises 14-22, prove the following functions are one-to-one and onto, or identify
counterexamples showing that one (or both) of these properties does not hold.

14. f : N — N defined by f(x) = 4.

15. f : N — N defined by f(x) = 2x + 1.

16. f : R — R defined by f(x) = x% + 1.

17. f : R — R defined by f(x) = x> + 1.

18. f: R — R defined by f(x) = x"* 4+ 1, where n € N is even.
19. f: R — R defined by f(x) = x" + 1, where n € N is odd.
20. f : R — R defined by f(x) = |x|.

21. f: RT — R defined by f(x) = /x.
22.f:Z—>Rdeﬁnedbyf(x)={ fi_x iig.

In exercises 23-26, state all functions from the set A to the set B. Identify whether or
not each function is one-to-one or onto.
23. A={a} and B ={l1, 2}. 25. A=1{1, 2, 3} and B = {u, v}.
24. A ={a, b} and B = {u, v}. 26. A ={a, b} and B = {2, 4, 6}.
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In exercises 27-34, define a one-to-one correspondence between the given pairs of
sets, or explain why such a function does not exist. Hint: A one-to-one correspondence
exists for the sets in 28, 29, 32, and 33.

27. {a, b, ¢, d} and {1, 2} 31. Q and P(N)

28. {4, 5} and {a, b} 32. Z and N

29. N and N U {a, b} 33. real intervals (0, 4) and (0, 2)
30. Z and R 34. ¢ and {0}

In exercises 35-38, each sequence of real numbers might result from the (incorrect)
assumption that [0, 1) is countable (as in the proof of the uncountability of the
reals for theorem 4.5.2). Identify the first few decimal digits of the real number
r that would result from applying Cantor’s second diagonalization method to each
sequence.

35. a; = 0.02345678 ... 37. a; = 0.89114123 ...
ay =0.22222222 ... a =0.00992211 ...
a3 = 0.09009000 ... a3 = 0.49149766 ...
ag = 0.14159261 ... ag = 0.61901592 ...
as = 0.23580347 ... as = 0.003395999 ...
a = 0.77775555 ... a6 =0.31651491 ...

a7 =0.99887766 ...
ag = 0.10310310 ...

36. @ =0.65412389 ...

a = 0.00111100... 38. a; = 0.23891114 ...
a3 = 0.98976649 ... 4 = 0.10109996 ...
ay = 0.14159261 ... 4 = 0.66055504 ...
a5:0.90990999... a4:O.92619897...
ag =0.11149131 ... as = 0.25003322 ...
a6 = 0.91316541 ...
a7 =0.11111111 ...
ag = 0.10000000 ...

In exercises 39-42, each sequence of sets might result from the (incorrect) assumption
that P(N) is countable via a one-to-one correspondence g : N — P(N) (as in the proof
of Cantor’s theorem and example 4.5.8). Identify the first few elements of the set
D that would result from applying Cantor’s second diagonalization method to each
sequence.

39. g(1) = {1,2, 3,4, ...} 40. g(1) = {2, 4, 6,8, ...}
¢2) = {1,3,5 7, ...} ¢(2) = {5, 10, 15, 20, ...}
gB3) = {2, 4} g(3) = {3}

g4 =1{2,3,5 7, ...} g4) = {4, 8,12, 16, ...}
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41.

g(h) = {1} 4. g1) ={2,3,5 717, ...}

g2) = {3} g2) = {1}

g3) = {5} g3 = {8, 16, 24, 32, ...}

g4) = {2, 4,6,8, ...} g4 = {2}

g3 = {1, 4,7, 10, ...} g3 = {1,2,3,4,5,...}
= = {3}

g6) = {4} g(6)

In exercises 43-52, prove each mathematical statement.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

For sets A, B define A ~ B when |A| = |B|. Prove that ~ is an equivalence
relation on sets.

If A and B are countable sets, then A x B ={ (a,b) : a€ A, be B}is
countable.

Hint: Write A x B as a countable union, where the indexing is on the elements
of A for sets of the form { (a,b) : b € B}.

If A U B is uncountable, then either A or B must be uncountable.

Hint: Consider theorem 4.5.1.

The set of all infinite sequences of Os and 1s is uncountable.

Hint: Consider the proof of theorem 4.5.2 giving the uncountability of the reals.
Given a set A, the cardinality |[A| > 2 iff there exists a one-to-one
correspondence f : A — A that is not the identity function f(x) = x.

IN x N| = w.

Hint: Use Cantor’s first diagonalization method as in the proof of theorem4.5.1.
The function f : N x N — N defined by f(m, n) = 2”1 . (2n — 1) is a one-
to-one correspondence.

Hint: When proving f onto, consider the prime power factorization of an
arbitrary element from the range.

The function f : N — Z defined below is a one-to-one correspondence.
g if n is even
fn) = —1
-z if n iis odd
2
The function f : (0, 1) — R defined below is a one-to-one correspondence.
1
x— =
1
2 ifx < —
f@) = o 2
x— =
1
2 fx> -
1 —x

Every linear polynomial over R defines a one-to-one correspondence from
R to R.

In exercises 53-56, determine the power set P(A) of each set A, and state the cardinality
of both A and P(A).

53.A={0}. 55.A={w, x, 5, z2}.
54. A=1{3, 5, 9}. 56. A = { car, bicycle, truck, bus}.
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In exercises 57-66, determine the cardinality of each set and its power set. For
exercises 62 and 66, consider theorem 4.5.1 or exercise 45.

57. A set containing 6 elements. 63. The set of linear polynomials
58. Z, the set of the integers. over Q.
59. Q, the set of the rationals. 64. The set of all polynomials over Q.
60. R, the set of the reals. 65. The set of algebraic numbers over
61. P(R), the power set of the Q. (Use 64.)

reals. 66. The set of transcendental numbers
62. R\ Q, the set of the irrationals. over Q.

In exercises 67-70, prove each equality by giving an illustration of the corresponding
informal Hilbert Hotel proof and by defining a one-to-one correspondence between
appropriate representative sets.

67. T4+ w = w. 69. 5w = w.
68. 6+ w=w. 70. v+ w = w.

4.6 The Riemann Integral

Since ancient times, mathematicians, scientists, and engineers have struggled with the
problem of computing the area enclosed by a curve on the plane. Many important
practical questions are essentially area problems; the integral has played a vital role in
answering these questions. Many aspects of our modern world are modeled and studied
via integration, including an understanding of probability and statistics, the economic
forecasts, building and monument design, manufacturing processes, space exploration,
and transportation systems. In this section, we explore the theoretical ideas behind
the familiar Riemann integral that is studied in introductory calculus courses. These
courses focus practically on the computation of a given integral using the fundamental
theorem of calculus and different integration techniques (integration by substitution,
integration by parts, and so on). We assume a familiarity with such techniques
and concentrate on developing a solid theoretical understanding of the definite
integral.

This section’s approach is based on the work of the German mathematician
Bernhard Riemann in the early 1850s. Riemann was a doctoral student of Gauss
at the University of Gottingen and made important contributions to many areas
of mathematics, including real analysis (the foundational work on the integral that
we study here), number theory (the Riemann hypothesis of chapter 3), geometry
(Riemann’s non-Euclidean geometry is a key element of Einstein’s theory of relativity),
and complex analysis (we study the Cauchy-Riemann equations in chapter 7). Sadly,
Riemann died at the relatively young age of 39 as a result of complications arising
from tuberculosis.

From your previous mathematics courses (including calculus), you know how to
solve many area problems. Often such questions are phrased in terms of either polygons
or functions, as in the following question.
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Question 4.6.1 Determine a formula for the area enclosed by each region in the plane.

(a) A circle with diameter d.
(b) Arectangle with sides a and b.

(c) A trapezoid with parallel sides a and b and with perpendicular distance
h between these sides.

(d) A regular pentagon with sides of length a.
(e) The triangular region bounded by f(x) = x, the x-axis, and the interval [0, 3].

(f) The area on the plane bounded by f(x) = 100 — 6x2, the x-axis, and the interval
[0, 4]. Hint: This one is usually answered using calculus!
|

The development of the integral as a tool for computing area traces its roots
back to the ancient Greeks. In the fourth century B.C.E., Eudoxus extended the work
of his predecessors to articulate a precise “method of exhaustion” that measured
areas by gradually expanding known areas to fill a given region. In the third century
B.C.E., Archimedes made insightful use of the method of exhaustion. He computed
the area of a regular polygon by “chopping” the figure into a collection of triangles
and computing the area of the enclosed triangles; see figure 4.19 for an illustrative
example. Archimedes extended this work to measure areas of parabolas (actually
computing the sum of an infinite series!), to approximate 7 based on the area of
a circle, and to measure areas, volumes, and surface areas of different geometric
figures.

These computations become increasingly difficult when considering progressively
more sophisticated geometric figures, and little progress was made on questions
involving complicated figures for some 2,000 years. In the early 1600s, the Italian
mathematician Bonaventura Cavalieri and the French mathematicians Gilles Persone
de Roberval and Pierre de Fermat independently studied the idea of measuring area as
sums of infinitely many, infinitely thin lines or rectangles. In the late 1600s, Leibniz
also thought of areas as sums (introducing the notation * [, which looks like the letter
“S” in the word “Sum”), while Newton thought of areas in terms of antidifferentiation.
Ultimately the work of Riemann in the 1850s provided a solid theoretical approach
to understanding the computation of areas via definite integrals. Among Riemann’s
key insights was his choice to use Cauchy’s notion of the limit (from the 1820s)
in formulating a definition of the definite integral. When a region is bounded by a
continuous function, computing a “Riemann sum” yields a close approximation of the
actual area. Taking an appropriate limit yields the exact value of the bounded area.

Figure 4.19 Archimedes’ method for

computing the area of a regular polygon - I —
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The Riemann sum uses rectangles to obtain the approximation, similar to the process
illustrated in the next question.

Question 4.6.2 Approximate the area under the curve f(x) = 100 — 6x? between a = 0 and b = 4

using the four “right-rectangles” identified in figure 4.20.

(a) Compute the area of the four rectangles identified in figure 4.20.
Hint: We partition the interval [0, 4] on the x-axis into subintervals of equal
width (b — a)/n, where a and b are the endpoints of the interval and n
is the number of rectangles (or subintervals). Figure 4.20 illustrates four
subintervals of width 1 = (4 — 0)/4. Each subinterval serves as the base for
a rectangle whose height is determined by the subinterval’s right endpoint x;
on the x-axis. In this case, the height of each rectangle is determined by the
function f(x) = 100 — 6x?; for example, the height of the leftmost rectangle
in figure 4.20 is (1) = 100 — 6 - 1> = 94 and so the area of this rectangle is
1-94=094.

(b) What is the total area enclosed by the four rectangles?

(c) Similarly, compute the eight right-rectangle approximation of the bounded
area.

|

As you may recall from your study of calculus, using more and more rectangles
leads to better and better approximations of the exact bounded area. One approach
to defining the integral is to let the number of subintervals (or, equivalently, the
number of rectangles) go to infinity. For any continuous function f(x) on [a, b],
we could let n be the number of right-rectangles and find the area under f (as
defined by the definite integral) to be the limit as n goes to infinity of the area
enclosed by n right-rectangles. This approach works well when f is a continuous
function, but fails in other more general settings. A more easily generalized approach
involves taking sums that involve certain “upper bounds” and “lower bounds” for
the function f on each subinterval. This technique follows from ideas Riemann
developed in the 1850s and the French mathematician Jean Gaston Darboux refined in
the 1870s.

Definition 4.6.1 A real number M is an upper bound for a set S C R when s < M for every s € S;

in this case, we say that S is bounded above. If a real set S has an upper bound,
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then the supremum of S, denoted by sup S, is the “least upper bound” satisfying
the following two properties:

e sup S is an upper bound for S,
* if M is any other upper bound for S, then supS < M.

Some sets have an upper bound and some do not. Also, for sets that are bounded
above, the supremum may or may not be an element of the set. Consider the following
example.

Example 4.6.1 The set S = [0, o0) = {x : x > 0} is not bounded above; for every positive real
number M, we observe that M + 1 € Sand M + 1 £ M (so M cannot be an
upper bound). On the other hand, the sets 7 = [0, 1] and U = [0, 1) are both
bounded above by any real number M > 1. You can see that the least of these
upper bounds, which is the supremum of both these sets, is sup(7’) = sup(U) = 1.
The set T contains this supremum while U does not. Finally, the countable set of
fractions V = { % % %, %, ... } is bounded above with supremum sup(V) = 1.

|

Question 4.6.3 Give examples of sets with the following features.

(a) A set that is not bounded above.
(b) An uncountable set that is bounded above and contains its supremum of 4.
(c) An uncountable set that is bounded above, but does not contain its supre-
mum of 5.
(d) A countable set that is bounded above and contains its supremum of 6.
(e) Acountable set that is bounded above, but does not contain its supremum of 7.
|

As suggested in the discussion above, every nonempty set of real numbers that is
bounded above has a supremum in the real numbers. Rather than proving this property
of the reals, mathematicians have come to understand the existence of such least
upper bounds as a defining, axiomatic property of the real numbers, similar in spirit to
the principle of induction or the well-ordering principle discussed in chapter 3. This
existence property is called the axiom of completeness and asserts that every nonempty
set of real numbers that is bounded above has a supremum in the real numbers. Once
the existence of a mathematical object is known, the question of uniqueness springs
quite naturally to mind. In this case, the supremum of a given set bounded above is
unique; the proof is left for exercise 55 at the end of this section. There are similar
considerations for the existence and uniqueness of a set’s lower bound and a greatest
lower bound, which is known as the infimum. The next definition makes these terms
precise.

Definition 4.6.2 A real number m is a lower bound for a real set S when s > m for every s € S; in
this case, we say that S is bounded below. If a real set S has a lower bound, then
the infimum of S, denoted by inf S, is the “greatest lower bound” satisfying the
following two properties:

e inf S is a lower bound for S,
* if m is any other lower bound for S, then inf S > m.



314

A Transition to Advanced Mathematics

Some sets of real numbers are bounded below while others are not; and sets that
are bounded below may or may not contain their infimum. The existence of an infimum
for a set bounded below follows from the axiom of completeness; the infimum of a set
that is bounded below is also unique. For example, the set S = { 1, % % }‘, ... }is
bounded below and has infimum inf S = 0, which is not an element of S. Similarly,
the half-open interval T = (0, 1] does not contain its infimum of 0, while the closed

interval U = [0, 1] contains its infimum of 0.

Question 4.6.4 Give examples of sets with the following features.

(a) A set that is not bounded below.
(b) An uncountable set that is bounded below and contains its infimum of 5.
(c) An uncountable set that is bounded below, but does not contain its infi-
mum of 4.
(d) A countable set that is bounded below and contains its infimum of 3.
(e) A countable set that is bounded below, but does not contain its infimum of 2.
|

Sets that are both bounded above and bounded below are said simply to be bounded.
A rigorous study of integrals requires the characterization of sup § and inf S in terms
of their relative distance from the elements of the given set S. The next lemma makes
this notion precise for suprema and is useful for proving several important results later
in this section. The proof follows directly from the definition and is left for exercise 57
at the end of this section.

Lemma 4.6.1 IfS C R is bounded above, then M = sup S iff both

* M is an upper bound of S, and
e for every ¢ > 0, there exists s € S such thats > M — ¢.

Question 4.6.5 Following the model given in lemma 4.6.1, state the corresponding characteriza-

tion of inf S for a given real set S. =

We now turn our attention to developing Riemann’s definition of the definite
integral. Intuitively, the area of a given region on the plane is found by summing the
areas of a set of rectangles that approximate the given region. Taking an appropriate
limit corresponds to filling up the given region with more and more rectangles; the
limiting process gives the exact area. Riemann’s great insight was to state these informal
ideas in terms of the rigorous definitions discussed below.

Riemann’s definition finds the area (which is denoted as the integral f ab f(x) dx)
of the region bounded by the graph of a function f(x), the x-axis, and the vertical
lines x = a and x = b. The first step is to partition (or divide) the interval [a, b] into n
subintervals. In simple computations, these subintervals are often taken to have uniform
length, but this condition is not strictly necessary. The subintervals form the bases of
approximating rectangles, and so the base lengths needed for the corresponding area
computations (area = base - height) are naturally the lengths of these subintervals. We
state the definition of a partition and a refinement (needed for increasing the number
of rectangles) and then we consider how to determine the rectangles’ heights in this
setting.
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Definition 4.6.3 A partition of a closed and bounded interval [a, b] C R is a finite set of reals

P={x0, x1,..., xp}witha=xo <x]1 <xp <...<X,=>b.IfPand Q are two
partitions of [a, b], then Q is a refinement of P when P C Q.

We intuitively think of a refinement as adding numbers to a partition, and so each

original subinterval is either preserved or broken up into a finite number of smaller
subintervals.

Example 4.6.2

Question 4.6.6

We examine the interval [a, b] = [1, 7]. Theset P = { 1, 3, 5, 6, 7 } is a partition
of [1,7]. Theset Q ={ 1, 2, 3, 4, 5, 6, 7} is a refinement of P because Q is
also a partition of [1, 7] and P C Q. On the otherhand R ={ 1, 2, 5, 6, 7}isa
partition of [1, 7] that is not a refinement of P because P ¢ R (notice that 3 € P,
but 3 ¢ R). Finally, S = {2, 5, 6, 7} is not a partition of [1, 7] because 1 ¢ S.
|

Identify three distinct partitions P, Q, and R of [0, 5] with the properties that O
is a refinement of P that contains at least one irrational number and R is not a

refinement of P. -

The Riemann definition of the integral considers both an upper and a lower

approximation to the exact area beneath the curve. The two approximations use
different rectangular heights (one upper and one lower) for each subinterval. A natural
choice for these heights is the supremum and the infimum of the given function
f on each subinterval. We consider only functions bounded on [a, b]; that is,
functions for which there exists a real value M such that |f(x)] < M for all
x € [a, b].

Definition 4.6.4 Letf be a bounded function defined on the interval [a, bl and P = {x¢, X1, ..., Xy }

Example 4.6.3

be a partition of [a, b). For each subinterval of [a, b] of the form [x;_1, x;], where
i=1,2,...,n, we define the following terms.

e The supremum of f on the ith subinterval is M;(f) = sup{f(x): x € [x;—1, xi] }.
¢ The infimum of f on the ith subinterval is m;(f) = inf{f(x):x € [xi—1, x;] }.

We identify the suprema M;(f) and the infima m;(f) for the function f (x) = 3x* — 2x
on the interval [1, 7] under the partition P = { 1, 3, 5, 6, 7 }.

The function f(x) is increasing on the interval [1, 7]. Therefore, each supre-
mum M;(f) equals the value of the function at the right endpoint of the subinterval,
and each infimum m;(f) equals the value at the left endpoint. For example, the
supremum of f on [xg, x;] = [1, 3]is M 1(f) =f(3) =3 32_2.3=21,and the
infimum of f on this subinterval is m(f) = f(1) =3 - 1> — 2.1 = 1. Similar
computations produce the following.

* For [xp, x1] =[1, 3
e For [x1,x] =[3,5
e For [x2,x3] = [5,6
e For [x3,x4] = [6,7

, Mi(f) =21 and m(f) = 1.

, Ma(f) = 65 and my(f) = 21.
, M3(f) = 96 and m3(f) = 65.
, My(f) = 133 and my4(f) = 96.

— e e
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In more general settings, the suprema and infima may be the function’s value at any

point of the subinterval, or (for noncontinuous functions, they may not be realized as a

function value). The examples in this section consider functions that lend themselves
to relatively simple calculations of m;(f) and M;(f), and focus on developing a good
theoretical understanding of these ideas.

Question 4.6.7 Identify the suprema M;(f) and the infima m;(f) for the function f(x) = 3x2 —2x

on the interval [1, 7] under the partition Q = { 1, 2, 3, 4, 5, 6, 7}. .

With this understanding of how to determine “bases” and “heights,” we are now

ready to define the upper and lower sums that enable us to approximate (and ultimately
compute) the definite integral fab f(x)dx. Figure 4.21 provides a visual depiction of the
use of upper sums and lower sums to approximate a given area.

Definition 4.6.5 Iff is a bounded function defined on the interval [a, b] and P = { xp, X1, ..., %, }

is a partition of [a, b], then the upper Riemann sum (also called the upper sum)
of f on [a, b] with respect to P is

U(f,P) = Y Mi(f)- (xi —xi1).

i=1
The lower Riemann sum (also called the lower sum) of f on [a, b] with respect
toPis

n

L(f.P) = Y mi(f) (xi —xio1).

i=1

Example 4.6.4 We compute the upper Riemann sum and the lower Riemann sum of f(x) = 3x> —

2x on [1, 7] with respect to partition P = { 1, 3, 5, 6, 7 }.

Example 4.6.3 computed the suprema M;( f) and the infima m;( f) for this
function and partition. Based on these previous computations, the upper Riemann
sum is

U(f,P)=)_ Mi(f)-(xi—xi-1)

i=1

=M(f)-(x1 —x0) +Ma(f)- (2 —x1)+M3(f)- (x3 —x2) +M4(f)- (x4 —x3)

A

<
<

\4
\J

/

1
b a l b

Upper sum geometry Lower sum geometry

Figure 421 Computing upper sums and lower sums of a bounded area



Chapter 4 = Real Analysis 317

=21-B-1D+65-(5-3)+96-(6—-5)+133-(7—-06)
=401.

Similarly, the lower Riemann sum is

n

L(f.P) = Y mi(f)-(xi—xi-1)
i=1
= m(f)-G1—x0)+ma(f)-(x2 —x1)+m3(f)- (x3 —x2) +ma(f)- (x4 —x3)
= 1-3=1)+21-(5-3)+65-(6—5)+96-(7—6)

= 205.

Example 4.6.5 We compute the upper sum and the lower sum of f(x) = 3x> — 2x on [1, 7]
with respect to partition Q = { 1, 2, 3, 4, 5, 6, 7}, the refinement of P from
question 4.6.7.
The calculations are similar to those in example 4.6.4, with the addition of
two more subintervals contributing two additional terms to the sums (along with a
corresponding modification of the subintervals that were split to create these new
subintervals). The upper sum and lower sum in this setting are as follows.

Uf.0) = Y Mi(f)-(xi—xi—1)
i=1
=8-2-1)4+21-(3-2)440-(4—-3)4+65-(5—4)+96-(6—5)+133-(7—6)
=363

L(F.Q) = Y mi(f)-(xi—xi-1)
i=1
=1.2=1)+8-(3-2)+21-(4—3)+40-(5—4)+65-(6—5)+96-(7—6)
=231

Question 4.6.8 Find the upper sum and the lower sum for each function with respect to the partition
P={0,1, 2, 3, 5}of[0,5].

() f(x) =4x2 -6 (b) f(x) = |x+2]
| |

As suggested by their names, upper Riemann sums are upper bounds for the exact
value of the corresponding integral, and lower Riemann sums are lower bounds. We
obtain the exact value of the integral by determining the infimum of these upper bounds
and the supremum of these lower bounds. When these infimum and supremum values
are equal, Riemann defined this number as the value of the integral.
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In this setting, the set of upper Riemann sums over which we take the infimum
is the set of upper sums U( f, P) over all possible partitions P of the given interval
[a, b]. Similarly, the set of lower Riemann sums over which we take the supremum is
the set of lower sums L( f, P) over all possible partitions P of [a, b]. In many cases, we
can think of the evaluation of the infimum and supremum in terms of a limit process,
allowing us to consider taking more and more rectangles with smaller and smaller
bases. The precise mathematical formulation of this intuitive description follows.

Definition 4.6.6 Iff is a bounded function defined on the interval [a, b), then the infimum of the
upper Riemann sums is

U(f) = inf{ U(f, P) : P is a partition of [a, b] }.
Similarly the supremum of the lower Riemann sums is
L(f) = sup{ L(f, P) : P is a partition of |a, b] }.

The infimum of upper Riemann sums and the supremum of lower Riemann sums
lead to a rigorous definition of integrability and the Riemann integral as follows.

Definition 4.6.7 If f is a bounded function defined on the interval [a, b], then f is Riemann
integrable on [a, b] exactly when L(f) = U(f). Whenf is Riemann integrable the
Riemann integral of f on [a, b] is denoted by fab fdxandisequalto L(f) = U(f).

We present a detailed computation of a Riemann integral using this definition. But
as you might expect, computing U( f) as the infimum over the upper sums with respect
to all partitions of [a, b] and L( f) as the supremum over the lower sums with respect to
all partitions of [a, b] can be computationally difficult—even for many simple functions.
This difficulty is one reason for the celebration of Newton’s and Leibniz’s genius
in recognizing the fundamental theorem of calculus as providing a computationally
straightforward approach to answering such questions. But a definitional approach can
manage to compute Riemann integrals in light of the following result, which puts the
computation in terms of partitions with certain features.

Theorem 4.6.1 Darboux’s theorem Let f be a bounded function that is Riemann integrable on
[a, b] and {P, : n € N} be a sequence of partitions of [a, b] such that the width of
every subinterval of P, is less than or equal to 1/n. Then U( f) and L( f) can be
expressed in terms of the sequence {P,}, and both of the following equalities hold.

U(f) = inf{U(f, Pp):neN} = lim U(S, Py)

L(f) = swplL(f.Py):n €N} = lim L(f.Py)

We will soon see that any continuous function on an interval [a, b] is integrable
on [a, b]. Darboux’s theorem therefore applies to any such continuous function f. The
next example uses this fact.

1

Example 4.6.6 We evaluate / x dx using the definition of the Riemann integral and Darboux’s
0
theorem.

Calculate U( f) = inf{U( f, P) : P is a partition of [a, b] } using Darboux’s
theorem, which allows the choice of any sequence of partitions {P,} of [0, 1] with
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the property that the width of each subinterval of P, is less than or equal to 1/n.
For each n € N, we choose to define partitions that have subintervals of equal
length 1/n:

1 2 n—1 i .
P, =10, —, —, ..., ,1p =3 —:0<i<ny;.
n on n n

Now determine U( f, P,). Observe that f(x) = x is increasing on [0, 1], and so
M;(f) = f(x;) = f(i/n) = i/n, where x; is the right endpoint of the subinterval

i—1 i
[xi—1,x] = = -
n n

n n n . 1
UGfP) = Y M) Gi=xio) = ) 5 Ga—x) = )~
i=1 i=1 i=1

Therefore, forn € N,

1 < 1 1
= el ; i = e @ (see example 3.6 from section 3.6)

n+1
2n

Taking the limit as n goes to infinity (by Darboux’s theorem),

n+1_1

u(f) = lim U(f,Py) = lim

2n 2’

1
1
By the continuity of f, this calculation shows that / xdx=U(f)= 7
0

As we can see from example 4.6.6, computing Riemann integral using the
definition is a complicated process, even with the help of Darboux’s theorem. In many
such cases, we are free to use the “right” sums when applying Darboux’s theorem,
as we did in the preceding example when the right sum happened to match the upper
sum. When the Riemann integral does exist, Darboux’s theorem allows us to use the
following equation for direct computations:

(b—a)n

b , i\ 1
/ajf(x)dx = lim ;f(a—i—;).;

Also, the following summation formulas that are often useful for these computations:

n n n n 2 2

. onn+1) 2 nm+1D2n+1) 3 n(m+1)
Elc=c-n .EIZZT Elz == Elz =— 1
1= = = 1=

Question 4.6.9 Directly compute L( f) for f(x) = x on [0, 1] using Darboux’s theorem and
the sequence of partitions {P,} of the form P, = {i/n : 0 < i < n} identified in
example 4.6.6; you should find L( f, P,) = (n — 1)/2n.

|
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Question The function f(x) = x> 4 1 is Riemann integrable on [0, 2]. Using the definition

2
4.6.10 of the Riemann integral and Darboux’s theorem, evaluate / x2 + 1 dx.
0

We have asserted that continuous functions are Riemann integrable on bounded
intervals [a, b]. This fact follows from the Riemann condition for integrability
and the Riemann-Lebesgue theorem, which we study in the rest of this section.
The next lemma works toward the Riemann condition for integrability, providing
information about the relationship between upper and lower Riemann sums with
respect to a partition and its refinements. While thinking about this result, you may
find it helpful to visualize rectangular approximations of a bounded finite area as in
figure 4.22.

Lemma Iff is a bounded function on an interval [a, b] and both P and Q are partitions of
4.6.2 [a, b] with Q a refinement of P, then we have

(@ U(f, Q) = L(f, Q)
(b) U(f,P) = U(f, Q)
(© L(f, Q) = L(f, P).
Proof We prove U(f, Q) > L(f, Q) based on the definitions of upper and lower Riemann
sums. Since M;( f) > m;( f), we have

n

UF,Q =Y Mi(f)-(i—xi) = Y mi(f)- (x5 —xi1) = L(f, Q).
i=1

i=1

The proof that U( f,P) > U(f, Q) is by induction on the number of
points added to P to obtain the refinement Q. For the base case, assume

P = {xp, x1, x2,..., X,} and that the refinement Q is obtained by adding
one additional point x* to P, so that x;_; < x* < x; for some 1 < k < n and
QO ={xo,..., Xp_1, X*, Xk,..., x,}. Now focus on the intervals [x;_1, x¢],

[xr—1,x*], and [x*, x;], along with the corresponding suprema of f on these
intervals. In particular, define

MY(f) = sup{f(x): x € [xx—1,x"] } and M3(f) = sup{f(x):x € [x", xc]}.

R Ty R R "
utt, P) 2 ut, Q) 2 L(f, Q) 2 L(f, P)
Figure 4.22 Relations among upper and lower Riemann sums



Chapter 4 = Real Analysis 321

Because M (f) = sup{f(x) : x € [xg—1, x¢] }, both My (f) > M{(f)and Mi(f) >
M3 f). The definitions of U( f, P) and U(f, Q) imply

U(f.p)

D Mi(f)-(xi—xi1)
i=1
= Mi(f)-C—xD) + Y Mi(f)-(i—xi1)
i=1i#k
= Mi(f)- (" —xe1) + Mi(f)-Ca—x") + D Mi(f)-(xi—xi1)
i=Li%k
> M{(f) (* —x1) + M) (e—x") + D Mi(f)-(xi—xi-1)

i=1,ik

= U(f.0).

Therefore if Q is a refinement of P with one additional point, then U(f, Q) <
U( f,P). If Q is an arbitrary refinement of P, then we consider a sequence
of partitions beginning with P and adding one additional point at a time
until we obtain @, and the corresponding application from the base case to
obtain:

P C Py c -+ C P, C 0, and so
uif,py = u¢, Py = - = USLPD) = UK O

The proof L(f, Q) > L( f, P) is similar to the proof just given for U( f, P) >
U(f, Q) and is left for exercise 59 at the end of this section.
|

Lemma 4.6.2 enables the proof of a characterization of Riemann integrability.

Theorem 4.6.2 The Riemann condition for integrability A function f is Riemann integrable on
[a, b] iff for every ¢ > O, there exists a partition P of [a, b] such that

Uf,P)—L(f,P) < e.

Proof Assume f is Riemann integrable on [a, b] and prove that for every & > 0, there
exists a partition P of [a, b] such that U( f, P) — L( f, P) < &. Working in this
direction, let ¢ > 0. Since f is Riemann integrable, L( f) = U( f). Now apply the
properties of suprema and infima identified in lemma 4.6.1 and question 4.6.5. By
definition, L( f) = sup{ L( f, P) : P is a partition of [a, b]}, and so there exists a
partition S of [a, b] such that L( f, S) > L(f) — ¢/2 (by lemma 4.6.1). Similarly,
U(f)=sup{ U(f, P) : P is a partition of [a, b]}, and so there exists a partition T
of [a, b] suchthat U(f, T) < U(f) + ¢/2 (by question 4.6.5). We combine these
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two partitions of [a, b] to obtain the desired partition P = S U T. Applying these
inequalities and the results on partitions produces the following.

U(f,P)—L(f,P) < U(f,T)—L(f,P) Pis arefinement of 7 and lemma 4.6.2
< U(f,T)—L(f,S) P is a refinement of S and lemma 4.6.2

A

[U(f>+§]—[L(f>—§] U(f,T><U(f>+§,L(f,S>>L<f)—§

=¢ L(f)=U(f) since f is integrable

To prove the converse, assume there exists a partition P of [a, b] such that
U(f,P)— L(f,P) < ¢ and prove that f is Riemann integrable (that is, L( f) =
U( f)). First note that U( f, P) > L( f, P) for every partition P as observed in
lemma 4.6.2; therefore, we always have U( f) > L( f). The inequality U( f) <
L( f) results from the following.

U(f) < U, P Definition of infimum
< L(f,P)+e Uf.P)—L(f,P)<e
< L(f)+e Definition of supremum

Since ¢ is arbitrarily small, we have U( f) < L( f), which together with the previous
inequality shows U( f) = L(f). Hence f is Riemann integrable.
|

We now consider a second condition for Riemann integrability, known as the
Riemann—Lebesgue theorem, which is one of the most famous theorems of analysis.
This result is named in honor of Bernhard Riemann and of Henri Lebesgue, who
determined its straightforward characterization of Riemann integrable functions. The
modern advanced theory of the integral took an important step forward in the early
1900s when the French mathematician Henri Lebesgue successfully analyzed infinite
series constructed from sine and cosine functions. Such “Fourier series” represent
bounded functions f using an infinite series whose terms are obtained by individually
integrating sine and cosine expressions in f. In his initial work, Fourier assumed that
the integrals of these expressions exist for every bounded function, but Lebesgue’s
more careful analysis revealed that only bounded Riemann integrable functions have
this property. As part of this study, Lebsegue proved the Riemann—Lebsegue theorem
characterizing Riemann integrable functions, resolving important questions about the
existence of Riemann integrals. His work also highlighted some limitations of the
Riemann integral in terms of Fourier series.

These limitations motivated Lebesgue to consider alternative formulations of
the definite integral. In 1901, he developed an insightful “theory of measure” in an
immediately famous paper Sur une généralisation de l'intégrale définie. Lebesgue
offered a new definition of the definite integral that naturally generalizes the Riemann
integral; this “Lebesgue integral” agrees with the Riemann integral whenever the
Riemann integral exists, but many highly discontinuous functions have a well-defined
and meaningful Lebesgue integral (even when their Riemann integral is undefined). The
impact of his work was immediate. Among other things, Lebesgue helped determine
when a Fourier series correctly represents its corresponding function. In this way,
Lebesgue’s accomplishments not only provided a whole new theoretical perspective
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on the concept of integration, but also approached the integral in a fashion that perfectly
matched the practical requirements of many applications.

A first step toward appreciating Lebesgue’s work is learning the Riemann—
Lebesgue theorem, which characterizes Riemann integrable functions in terms of the
function’s continuity. While the proof of this result is beyond the scope of this text and
is left for later studies, we seek to understand the statement and use of this theorem.
We begin with two basic definitions from measure theory.

Definition Anr interval open cover for a set S C R is a countable collection of open intervals
o0
468 (I, = (anby) :n € N} suchthat S S~ In.
n=

The same set may have many different interval open covers as illustrated in the
following example and question.

Example We consider the set of all real numbers in the interval (0, 1). Three distinct interval
4.6.7 open covers of (0, 1) include

1 1 2 1
0,1 -1, = ——— —.1 d
{(0, D}, {( ,2),<3,3),<2, )} an
1 2 13 1 4 1 n—1
373 ’ 4»4 9, 5,5 g e e ey n, n 5 e e .
Two distinct interval open covers of the irrationals R \ Q are given by

{mn+1):neZ} and {(g,#):neZ}.

Question If possible, find both a finite and a countably infinite interval open cover of each set.

4.6.11
(a) {2,4} (c) N
®d) (1,2)U[17,19] (d) the set of transcendental real numbers
|

The general theory of Lebesgue measure is usually presented in graduate courses.
However, it is easy to calculate the Lebesgue measure of any interval, since it is simply
that interval’s length. Some sets have Lebesgue measure zero and play an important
role in the Riemann-Lebesgue theorem. The next definition explains when a set S has
Lebesgue measure equal to 0.

Definition The Lebesgue measure of an interval I = (a, b) is denoted by m(I) or m(a, b)
4.6.9 and is defined as m(I) = m(a,b) = b — a. A set S C R has measure zero if
for every ¢ > 0, there exists an interval open cover {I, : n € N} for S such

that both

o0
scl
n=1
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and

Example The measure of an interval is easily computed by subtracting the endpoints; for
4.6.8 example, the measure of the interval [0, 1] is m[0,1] = 1 — 0 = 1, and the
measure of the half-open interval [2, 46) is m[2, 46) = 46 — 2 = 44. Many infinite
sets have nonzero Lebesgue measure, including the reals, the irrationals, and the
transcendental numbers.

Any finite set has measure zero; for example, we prove that § = {1, 2} has
measure zero. For a given value ¢ > 0, define an interval of width /2 around

each point in S. In particular,

&
4

&

{a 1

& &
1+-), 2—=,2+-
A+ ( 240

is an open cover of S, since

S = {1,2) (1—2,1+2) U (2—2,2+2).

This cover shows S has measure zero, since

(1 81+8>+ (2 €2+8)_8+8_
" 4 Tg) " 4 T2y 7%

4
|
Question Prove that any countably infinite set of points {x, : n € N} has measure zero.
4.6.12 Hint: Let ¢ > 0 and consider the interval open cover consisting of
_ € €
In= (x”_ 2t 2-2n>'
o . . . .
Prove that Z 1 m(l,) = e using the geometric series formula with r = 1/2
n=
(see exercise 14 in section 3.6).
|

The Riemann-Lebesgue theorem links the integrability of a function f with the
measure of its set of discontinuities.

Theorem 4.6.3 The Riemann-Lebesgue theorem If a function f is defined and bounded on an
interval [a, b], then f is Riemann integrable on [a, b] iff the set of points in [a, b]
where f is discontinuous has measure zero.

Example Animmediate consequence of the Riemann—Lebesgue theorem is that the Riemann
4.6.9 integral always exists when f(x) is continuous and bounded (in this case, the set of
discontinuities is the empty set, which has measure zero). For example, f(x) = x
and f(x) = x> + 1 are continuous on R and thus Riemann integrable over any

finite interval of R.
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Question
4.6.13

4.6.1

4.6.2

In contrast, the characteristic function of the rationals (defined below) is
discontinuous at every point in R. Since every interval [a, b] € R has nonzero
measure b — a, this function is not Riemann integrable on any interval of R.

[ 1 ifxeQ
f(x)_{o ifx ¢ Q

Prove that the following functions are Riemann integrable on [0, 1] based on a
discussion of the measure of the set of discontinuities of f.

(@) f(x) = v/5sin’x +2
(b) f(x) =In/x +1

] sin(1/x)  ifx #0
(C)f(x)_{o if x=0

|1 ifx=1/2"forkeN
@ f&) = { 0 otherwise

Reading Questions for Section 4.6

1. State an intuitive description of the idea motivating the definition of the
Riemann integral.
Define and give an example of an upper bound and a supremum.
Define and give an example of a lower bound and an infimum.
Define and give an example of a partition and a refinement of [0, 5].
Define and give an example of the supremum M;( f) of f on the subinterval
[xi, x;+1]. For your example, use a two subinterval partition of the interval.
6. Define the upper Riemann sum U( f, P) and the lower Riemann sum L( f, P)
for a bounded function f with respect to a partition P of [a, b].
7. Define the infimum of the upper Riemann sum U( f) and the supremum of
the lower Riemann sum L( f) for a bounded function f.
8. State Darboux’s theorem. How is this result helpful when studying integration?
9. State the Riemann condition for integrability.
10. Give an example of an interval open cover.
11. Define and give an example of a set of measure zero.
12. State the Riemann-Lebesgue theorem. How is this result helpful when
studying integration?

A

Exercises for Section 4.6

In exercises 1-4, consider the area on the plane bounded by the given function f(x)
and the x-axis on the interval [2, 5]. Hand-plot and compute the 4 right-rectangle
approximation of this bounded area.

I fx) =x—2 3. f(x) =2(x — 3% + 1
2. fx)=2x+4 4, f(x) =x>+x
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In exercises 5-12, find the supremum and infimum for the following bounded sets S.
In addition, let ¢ = 0.001 and find a value s € S as guaranteed by lemma 4.6.1 such
that s > sup S — ¢, as well as a value ¢t € S such that r < inf S + €.

S={x:1<x<3}
S={x:—-1<x<3}
S={x:0<x=<5}U{x:10<x <15}
S={x:0<x<5}U{-1,-3,—1}

1
S:{ﬁzneN}

R

1
10. S={1—-:neN}
n

11. S:{l+l:neN}
2n —nl
2n+1
In exercises 13-20, give an example of sets with the following features, or explain
why such a set does not exist.

12. §={ :neN}

13. A bounded set with infimum —1 and supremum 4.

14. A bounded set with infimum 4 and supremum —1.

15. A bounded set without an infimum.

16. A set that is bounded above without an infimum.

17. An uncountable set that is bounded below and contains its infimum of 0.

18. An uncountable set that is bounded above, but does not contain its
supremum of 4.

19. A countable set that is bounded above and contains its supremum of 3.

20. A countable set that is bounded below, but does not contain its infimum of 8.

Inexercises 21-24, give an example of a partition P of the following interval containing
4 points and a refinement Q of P containing 6 points.

21. [3, 7] 23. [0, 8]
22. [ -1, 11] 24. [1, 2]

In exercises 25-30, find the upper sum and the lower sum for each function with respect
to the partition P = {0, 2, 3, 5} of [0, 5].

25. f(x) = 4x + 1 28. f(x) = (x — 1)?
26. f(x) = 2x + 4 29. f(x) = v/3x + 2
27. f(x) = =322 + 4 30. f(x) = In(x + 1)

In exercises 31-42, find the value of M;(f,P) and m;(f,P) for partition
P={1, 3, 4, 6}of[1,6]. In addition, use the definition of the definite integral and
Darboux’s theorem to determine the exact area bounded by f(x) and the x-axis on the
interval [1, 6].

31. fx) =4 35. f(x) = —3x — 4
32. fx) =2 36. f(x) =3x+5
33. fx) = —x+6 37. f(x) = x?

34, f(x) =x+2 38. f(x) =x2+2
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39. f(x) = x> +3x—2 41. f(x) = x3
40. f(x) =2(x — 3% +1 2. fx)=x>+1

In exercises 43-50, use the definition of the definite integral and Darboux’s theorem
to evaluate each integral.

5 2
43. / 4 dx 47.[ —x? dx
2 0
2 3
44, / dx 48. / 2x% + 4 dx
2 0
3 2
45. f x dx 49. / x> dx
0 0
5 2
46./ x — 1dx 50.] x> —4dx
2 0

In exercises 51-54, prove each function is or is not Riemann integrable on the given
interval using the Riemann—Lebesgue theorem.

x—2 .
51. For [a. b] = [1, 4], the function f(x) = { ¥ —7x110 X7 2
32 ifx=2
1 ifx € [2,3]
, x2 ifx € (3, 4]
52. For [a, b] = [2, 6], the function f(x) = c_3 ifx € (4. 5]

VIn(x +10) ifx € (5, 6],
x—1 ifx=1/2"forneN

53. For [a, b] = [0, 1], the function f(x) = x4+ 1. otherwise

1 ifx=m/2nform,n e Z

0 otherwise

Hint: Prove that f is discontinuous at every x € [0, 1], as in example 12 from
section 4.3.

54. For [a, b] = [0, 1], the function f(x) =

In exercises 55-59, prove each mathematical statement.

55. Ifaset S € R is bounded above, then sup S is unique.

56. If aset S C R is bounded below, then inf S is unique.

57. Prove lemma 4.6.1 using the definition of supremum and upper bounds.

58. Prove the lower bound-infimum version of lemma 4.6.1: If S € R is bounded
below, then m = inf S iff both

* mis a lower bound of S, and
« for every ¢ > 0, there exists ¢ € § such that r < M 4 ¢.

59. Prove lemma 4.6.2(c): If f is a bounded function on an interval [a, b] and
both P and Q are partitions of [a, b] with Q a refinement of P, then L(f, Q) >

L(f, P).
Exercises 60-66 together prove that a bounded function f that is Riemann integrable on

[a, b] has a set of discontinuities S = {x € [a, b] : f is discontinuous at x} of measure
zero. The statements in many of these exercises depend on the following definition.
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Iff: D — Y and x € D, then the oscillation of f at x is

osc(f, x) = %in}) sup{| f(x*) —f(xX*)| : x*, x™ € (x — h,x + h) N D}.

A function f is continuous at a domain point x € D iff the oscillation osc(f, x) of f at
X is zero.
In exercises 60—66, prove each mathematical statement.

60. If f is a bounded function that is Riemann integrable on [a, b], why is the set
of discontinuities S equal to { x € [a, b] : osc(f,x) > 0}?

61. Prove that S = U;ﬁl Sy, where S = { x € [a, b] : osc(f, x) > % }.

62. We prove that m(S,) < ¢ for any given ¢ > 0, and so (since € can be arbitrarily
small), we have m{ S,, } = 0. To begin this proof, suppose n € N is fixed; how
do we know we can find a partition P = {xg, X1, ...x,} such that U( f, P) —
L(f,P) <¢g/2n?

63. Examine the interval (x;_1, x;) for the partition P and assume (xj_1,x;)
contains a point a € S,. Using the fact that

lhiigsup{lf(x) —fWl:x,ye(a—h,a+h)} < sup{|f(x) =fW:x,y € [xi, xi-11}

<sup{f(x):x €[x;,x;—1]} —inf {f (x) :x € [x;, %11},

prove that 1/n <M;(f)—m;(f).

64. Provethate/2n>> " [M;(f)—mi(f)]-(xi—xi—1)>1/n_(x;—xi—1), where
the sums are taken only over those subintervals with (x;—1,x;)NS,#@.
Conclude that /2> )" (x; —x;_1), where the sum is taken over these same
subintervals.

65. Prove that all of the points in S, (except for possibly the values xg,x1,...,X;)
are contained in a selection of the partition’s subintervals whose total measure
adds up to less than £/2. Say why these subintervals, taken along with the set
of open intervals (x; —e&/4n,x;+¢/4n), for i=0,1,2,...,n—1 must form an
open cover for the set S,, whose total measure is less than €.

66. Conclude from exercise 65 that m(S,)=0 for all n. Use the fact that “any
countable union of sets of measure zero is also a set of measure zero” to
explain why m(S)=0.

Exercises 67—69 consider the famous Cantor set. The Cantor set is the subset of the
interval [0, 1] formed by repeatedly removing open subintervals. First, remove the
interval(%, %), which is the middle third of the interval [0, 1]. Then two intervals ([0, %]

and [%, 1) remain. Remove the open interval forming the middle third of both of these
intervals, so that four intervals ([0, %], [%, %], [%, %], and [g, 1]) remain. Continue
this process indefinitely, removing the open interval forming the middle third of each
remaining interval. The resulting set is called the Cantor set.

In exercises 67-69, prove each mathematical statement to show that the Cantor set is
an uncountable set of measure zero.

67. Each step removes the open interval forming the middle third of each
remaining interval. After two steps, the measure of the sets removed is the
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sum of the interval lengths: % +2- % = %. Calculate the measure of the sets
removed after three steps, and then show that the total measure of the sets
removed in the infinite number of steps it takes to create the Cantor set equals

Sy
p— 3\3
68. The measure of the Cantor set is the measure of the interval [0, 1] minus the
total measure calculated in exercise 67. Use this fact and the geometric series
formula (see exercise 14 in section 3.6) to find the measure of the Cantor set.
69. Each element a in the Cantor set turns out to have a fernary expansion
by n by n by n
a=—+—=+=++...,
3 32 3
where every b, equals either O or 2 (a finite expansion that ends in a string
of zeros can be used). We write such an expansion as a = 0. by by b3 ... [3],
where the bracketed “3” indicates the expansion is ternary instead of base 10.
Use this fact to show that the Cantor set is uncountable, employing a proof by
contradiction that is reminiscent of the proof of theorem 4.5.3 in section 4.5.

4.7 The Fundamental Theorem of Calculus

This section studies the interrelationship between differential and integral calculus as
expressed by Newton’s and Leibniz’s brilliantly insightful fundamental theorem of
calculus. The Scottish mathematician James Gregory, who was in regular correspon-
dence with Newton, published the first statement and proof of the fundamental theorem.
As discussed in section 4.4, an understanding of the derivative had essentially been
developed by the mid-1600s through the work of Pierre de Fermat and Isaac Barrow. At
the time of this development, Bonaventura Cavalieri, Gilles de Roberval, and Fermat
studied the integral as a measure of bounded area, and Evangalista Torricelli and
Barrow studied the integral in the context of objects moving with variable speed. By
1660 the mathematical world was ready for the contributions of Newton, Leibniz, and
Gregory.

The fundamental theorem of calculus asserts that differentiation (finding the slope
of atangent line) and integration (finding the area under a curve) are inverse operations.
After working through examples computing the complex algebra of upper and lower
sums connected to Riemann integrals, we can readily appreciate the advantage of
using antidifferentiation to evaluate them. The fundamental theorem of calculus was
first articulated by Newton in 1666 as part of his study of moving objects. His work
reached full fruition in 1687 with the publication of Philosophiae naturalis principia
mathematica. The Principia is recognized as one of the greatest scientific books ever
written; it used calculus to develop and articulate Newton’s fresh approach to physics
and astronomy. Working independently of Newton, Leibniz developed a complete
version of calculus by 1675 from an analytic perspective; he published his results
on differential calculus in 1684 in Nova methodus pro maximus et minimus itemque
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Tangentibus and on integral calculus in 1686. Sadly, delays in publishing results and
in delivery of correspondence, personal misunderstandings, and nationalistic pride
all played a role in a bitter priority dispute over who should receive credit for the
development of calculus. Contemporary mathematicians credit both Newton and
Leibniz for their brilliant insight; they independently described how the seemingly
disparate operations of differentiation and integration are inverses. At the same time,
both Newton and Leibniz freely acknowledged their appreciation for the contributions
predecessors and mentors made to their own work. As Newton wrote in a letter to
Robert Hooke in 1676, “If I have seen further it is by standing on the shoulders of
giants.”

This section’s goal is to state and prove the fundamental theorem of calculus.
Naturally enough, the proof relies on specific properties of the derivative and the
integral. And so we begin by isolating a few key results about differentiation,
antidifferentiation, and integration. These results lead to the fundamental theorem,
which will provide a deeper understanding of continuous functions and of the
differential and integral operations, as well as a way to to evaluate definite integrals.

Using Riemann’s definition of the integral as a computational tool has serious
limitations. In addition to the complexity of the computations (as illustrated in
section 4.6), the calculations are impossible without additional closed-form expressions
for series formulas working with broad classes of functions. The following question
highlights the difficulty.

Question 4.7.1 (a) Using partitions P, with subintervals of uniform width 1/n, state (but do not

evaluate) a limit of upper sums U( f, P,) whose value is the area bounded by
f(x) = 1/(x + 1) and the x-axis on the interval [0, 1].

(b) Using partitions P,, with subintervals of uniform width 1/n, state (but do not
evaluate) a limit of upper sums U( f, P,) whose value is the area bounded by
f(x) = sin(x) and the x-axis on the interval [0, 1].

|

If you think carefully about the two limits identified in answer to question 4.7.1
(with an eye toward actually computing these limits to find the values of the integrals),
you can readily see the apparent shortcoming in using the Riemann definition to
evaluate a definite integral. In order to evaluate these limits, we would need a
closed-form expression for the sums:

n l n ) i
Zi+1 and Zsm(;).

i=1 i=1

A need for more and more series formulas snowballs as we consider other functions.
For example, integrating fourth, fifth, or sixth degree polynomials would require series
formulas for Y%, i*,3""_ i°,and Y 7_, i®. Hence mathematicians quickly realized the
importance of developing a straightforward approach to computing definite integrals—
the approach ultimately provided by the fundamental theorem of calculus.

Before considering the inverse relationship between integration and differentiation
expressed by the fundamental theorem, we lay important groundwork by considering
two differentiation topics. The first is the mean value theorem, which provides a
theoretical foundation used in later proofs; the second is antidifferentiation, or the
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process of running differentiation backwards. These notions will lead to a proof of the
fundamental theorem of calculus.

‘We start with the mean value theorem. In this context, the word “mean’ is used as a
technical term, not as a reference to anyone’s experience or perception of this theorem.
The term comes from its statistical usage, where “mean” indicates “average.” The next
question deals deals with a concept that motivates the idea of the mean value theorem
(or average value theorem).

Question 4.7.2  If the average class grade on a midterm exam is 71%, did someone earn exactly a

71%? Give an example to support your answer. .
From your experience with exams, you should realize that the answer to question 4.7.2
is “no.” For example, perhaps two people took an exam and earned grades of 70% and
72%; the average score is 71%, but no one actually scored the average.

A startling fact, though, is that for continuous, differentiable functions, the answer
to such a question is “yes”; for such functions the average rate of change must always
occur. The mean value theorem claims that the average rate of change over an interval
must actually be equal to the instantaneous rate of change at some specific point in the
interval. An instantaneous rate of change is mathematically expressed as the value of
the derivative at a particular point, while an average rate of change is expressed by the
slope of a secant line from a point (a, f (a)) to a point (b, f(b)). The mean value theorem
says that the slope of any secant line must always equal the value of the derivative at
some point.

Theorem 4.7.1 Mean value theorem [fa function f is continuous on [a, b] and differentiable on
(a, b), then there exists a value ¢ € (a, b) such that

F(e) = f(bb) _J;(a).

We outline a proof of the mean value theorem after developing a preliminary
result. Notice that the mean value theoremis an existence result, only guaranteeing
the existence of a particular ¢ € R with certain properties. One the other hand, the
mean value theorem is not a uniqueness result; there are functions f and intervals
[a, b] over which many different real values c satisfy f'(c) = [f(b) — f(@)]/(b — a).
Furthermore, the theorem (and its proof) is nonconstructive in that it does not determine
a value for c, but only guarantees that ¢ exists in the right interval with the right
properties.

Finally, the mean value theorem describes a relationship between a secant line and
a tangent line as illustrated in figure 4.23. If a function f is continuous on [a, b] and
differentiable on (a, b), then a secant line through the two points (a, f(a)) and (b, f (D))
must be parallel to some line tangent to f at a point in (a, b).

Before proving the mean value theorem, we first isolate two important properties of
the derivative and then prove a special case of the mean value theorem—for horizontal
lines—known as Rolle’s theorem. The section then finally considers a question that
provides a detailed outline of a complete proof of the mean value theorem. We begin
with the extreme value theorem for continuous functions.
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Figure 4.23 An illustration of the

£
rd

mean value theorem

Theorem 4.7.2 Extreme value theorem If a function f is continuous on la, b], then f has both an

absolute maximum and an absolute minimum on [a, b].

The extreme value theorem is traditionally studied in an introductory calculus

course; the result guarantees the ability to find a continuous function’s absolute extrema
on any closed and bounded interval. The proof of the extreme value theorem relies on
a notion of “compactness,” which is beyond the scope of this text.

The next theorem is also a preliminary result needed to prove the mean value

theorem; it says that a differentiable function’s derivative is zero at a relative extrema.
We state a partial proof of the result and leave further details for the exercises at the
end of this section.

Theorem 4.7.3 If a function f is continuous on [a, b] and differentiable on (a, b), and if f has a

Proof

relative extrema at a point ¢ € (a, b), then f'(c) = 0

The proof proceeds under the assumption that f(c) is a relative maximum. The
proof is by way of contradiction; assume the function f has a relative maximum at
¢ € (a, b) withf'(c) # 0. There are two cases to consider: f'(c) > 0 and f'(c) < 0.
First assume f’(c) > 0. Identify an interval around ¢ such that the difference
quotient from the alternative definition of the derivative is positive. Since

iy S —f(0)
f(C)—;l_)mC—x_c ,

when we apply the definition of the limit with ¢ = f’(c), there exists a value § > 0
such that 0 < |x — ¢| < § implies

J@) —f(e)

X—C

—f'(0)| < e=f(0).

Hence

J&) —f(©) (X) f (c) J&) —f©

—f'(e) < —fle) < f(© = 0 < ¢ ° 2f'(o).

If (¢ — 8,c + §) is not contained in (a, b), redefine § as a sufficiently small
positive value so that (¢ — 8§, ¢ + 8) € (a, b). Then [ f(x) —f(c)]/(x —¢c) > 0
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Question 4.7.3

whenever x € (c, ¢ + §); for these x values, f(x) — f(c) > 0, and so f(x) > f(c).
But f(c) is a relative maximum, and so f(c¢) > f(x) must hold true for some
open interval about c. This fact gives the desired contradiction; we conclude
f'(e) #0.

The proof that f(¢) < 0 leads to a similar contradiction; this case is left for
you to answer in the next question. The proof of the case where f(c) is a relative
minimum is left for exercises 53—54 at the end of the section. Accepting these
results, the theorem follows.

|

Using the following strategy, complete the proof of theorem 4.7.3 for the case
where f(c) is a relative maximum. Assume a function f is continuous on [a, b]
and differentiable on (a, b), and that f has a relative maximum at ¢ € (a, b) with
f'(c) < 0. Obtain a contradiction. .

We can now state and prove Rolle’s theorem, which is a special case of the

mean value theorem where the secant line in question is horizontal (and has a slope
of zero). Rolle’s theorem is named in honor of the English mathematician Michel
Rolle who proved the result in 1691 using methods that the Danish mathematician
Johann van Waveren Hudde developed. Ironically, Rolle personally regarded calculus
as “a collection of ingenious fallacies” despite being best remembered for a result that
plays a vital role in the modern proof of the fundamental theorem of calculus. Rolle
also introduced the notation /x for the nth root of x.

Theorem 4.7.4 Rolle’s theorem If a function f(x) is continuous on [a, b] and differentiable on

Proof

(a, b), and if f (a) = f(b), then there exists ¢ € [a, b] such that f'(c) = 0.

If f is a constant function, then f’(c) = O for every ¢ € [a, b]; in this case any point
in (a, b) may be chosen to satisfy the theorem’s conclusion. Hence assume f is
not constant. Because it is continuous on [a, b], f has both an absolute maximum
and an absolute minimum on [a, b] by the extreme value theorem. Applying the
assumptions thatf is not constant and f (a) = f (), the endpoints can be at most one
of these maximum and minimum values. Therefore, there exists ¢ € (a, b) such
that either f has its maximum at c or f has its minimum at c. Furthermore, because
f is differentiable and ¢ € (a, b), this extremum must be a relative maximum or
minimum. Theorem 4.7.3 then implies f/(c) = 0.

|

Rolle’s theorem leads to the proof of the mean value theorem. The first proof

of this result was given by Lagrange. The following sequence of questions outlines
highlights of the proof, inviting you to fill in all necessary details.

Question 4.7.4

The following steps outline a proof of the mean value theorem. The proof’s strategy
is to define a new function g in terms of the given function f:

b _
) = f(x) — [f—(; f (“)}x.
—da
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Prove that g satisfies the hypotheses of Rolle’s theorem and then use the conclusion
of Rolle’s theorem to obtain the desired conclusion of the mean value theorem as
follows.

(a) Prove that g is continuous on (a, b) using the continuity of f on [a, b] and
theorem 4.3.5 from section 4.3 (which details the properties of continuous
functions). Extend the continuity of g to the closed interval [a, b] by directly
verifying that xgrzlll-&- g(x) = g(a) and XEI}; g(x) = g(b).

(b) Prove that g is differentiable on (a, b) by computing g’(x) in terms of f”(x).

(c) Finish the verification that g satisfies all conditions of Rolle’s theorem: use
the definition of g and the assumptions about f in the statement of the mean
value theorem to prove g(a) = g(b).

(d) Apply Rolle’s theorem to g to obtain a value ¢ € (a, b) such that g’(c) = 0.
What does this fact about g say about f?

(e) Based on your answers to parts (a)—(d), write a proof of the mean value
theorem, using complete sentences and appropriate supportive computations.

|

We will use the mean value theorem to prove the fundamental theorem of

calculus. As a means of solidifying an understanding of the mean value theorem,
we consider the process of actually finding the value ¢ whose existence the theorem
guarantees. In this case, the values for ¢ may be found by solving the equation

=1 —f@l/b—a.

Example 4.7.1

For the function f(x) = x> 4 x on the interval [0, 1.5], we identify c € (0, 1.5)
whose existence the mean value theorem guarantees.

First verify that the hypotheses of the mean value theorem are satisfied. The
function f is a polynomial and is therefore continuous and differentiable on all of
R (and therefore on the particular interval [0, 1.5]). According to the mean value
theorem, there exists a value ¢ € (0, 1.5) such that f’(c) is equal to

fA5)—f0)  (1.5° +(1.52—0°—0?

= =3.75.
1.5-0 1.5

We therefore seek ¢ € (0, 1.5) such that f'(c) = 3.75. Since f'(x) = 3x% + 2x, we
need to solve the quadratic 3c? + 2¢ = 3.75. The quadratic equation implies

24+ AT+ 45
c=—-
6

and therefore ¢ = % orc = —%. Since —% ¢ (0, 1.5) = (a, b), there is only one
value ¢ = % € (0, 1.5) that satisfies the mean value theorem.
|

After proving a theorem, mathematicians often investigate if all the theorem’s

assumptions are necessary. For example, does the mean value theorem really need to
assume f is continuous on [a, b] in order for the conclusion to hold? What about
differentiability? Sometimes hypotheses can be weakened to yield a more widely
applicable result; in other cases, counterexamples are identified that demonstrate the
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necessity of a given hypothesis. The next example demonstrates that the differentiation
hypothesis of the mean value theorem is necessary.

Example 4.7.2 We consider a function f that is continuous on an interval [a,b] but not
differentiable at every pointin (a, b), and show that f fails to satisfy the conclusion
of the mean value theorem.

Toward this end, define f(x) = 5 — |x| on [a, b] = [—2, 2]. The function
f is continuous on [—2, 2] and differentiable on (—2, 0) U (0, 2), but f is not

differentiable at x = 0. The slope of the secant line fromx = —2tox = 2 is
f@Q-f=2) _3-3_,
2—-(-2) 4 ’

But f does not have any horizontal tangent lines, and so f’(¢) never equals O for
any given ¢ € [—2, 2]. The conclusion of the mean value theorem therefore fails
to hold. The assumption that f be differentiable on the entire interval is a vital one.

|

We now consider the process of antidifferentiation: given a function f, find F
so that F'(x) = f(x). In the language of section 4.2, antidifferentiation is (up to the
addition of an arbitrary constant) the inverse of differentiation. The following simple
example illustrates this notion.

d
Example 4.7.3 For f(x) = 2x, we determine those functions F(x) such that d_F (x) = 2x.
X

Consider the following derivatives to motivate the solution.

d d

dx dx

As suggested by these examples and learned in any calculus course, the addition

of an arbitrary constant to F(x) does not affect its derivative. If we “undo” a

differentiation process that yields f(x) = 2x as a derivative F’(x) = 2x, then we
obtain a function of the form F(x) = x + C, where C is an arbitrary constant.

|

d
] = 2x P +3] = 2 [ — 5] = 2x

Antidifferentiation is studied and used in several areas of mathematics, and so
there are many standard notations used for it.

Definition 4.7.1 A function F(x) is an antiderivative of a function f(x) when
d
d_F (x) = f(x).

X

Notationally, the following are equivalent:

* F(x) is an antiderivative of f(x),
o [f(0) dx = F(x),

* F(x) is the general solution of the differential equation % = f(x).
The function F is called the indefinite integral of f(x).

We recall some important observations about this definition of an antiderivative.
First of all, the article “an” is important in the definition, since a function f can have
many antiderivatives. But we will soon prove that each antiderivative differs only by
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a constant, and so we may refer to the general antiderivative. Whenever a reference is
given to the antiderivative of a function, the meaning should be understood as implicitly
referring to the general antiderivative. For example, the antiderivative of 2x is x> + C,
where C is an arbitrary real constant.

Second, every differentiation rule can be “reversed” to yield a corresponding
antidifferentiation rule. The following familiar examples illustrate the relationship
between the two types of rules.

Differentiation rule Antidifferentiation rule
%[ﬁ] = 2x [2xdx = x>+ C
:_x[x“] = 453 [4x3dx = x*+C
%[cos(x)] = —sin(x) [ —sin(x) dx = cos(x) + C
%[ln(x)] =1 [Ldx = In@)+C

A fluency with derivative rules for functions therefore results in a corresponding
fluency with antiderivatives. Not all functions have easily determined (or even closed-
form) antiderivatives, but the many cases that do provide a strong incentive to
apply the fundamental theorem of calculus—it links finding areas under curves to
the antiderivative. The next question will remind you of computational aspects of
antidifferentiation.

Question 4.7.5 Evaluate each indefinite integral and solve each differential equation. Some of

these exercises use basic antidifferentiation rules, while others involve more
sophisticated techniques of integration learned in calculus.

4 R v,
(a) f(x) =5x +2+2ﬁ (d)f(x)_x+x+1
(b) f(x) = " + cosx )y =xvx2+1
(c) f(x) = sec(x) tan(x) ) y =ex*+1)

Question 4.7.6 Recall from calculus that the antiderivative of a product of two functions is not

equal to the product of the antiderivatives of the functions. Verify that [ x*dx =

Jx-xdx # [xdx- [xdxprovides a counterexample to such a supposed “rule”

for antidifferentiation. -

How do we know that any antiderivative F(x) is unique up to a constant? In the
context of example 4.7.3, how can we be sure that every antiderivative of f(x) = 2x
is of the form F(x) = x> + C? Could some algebraic combination of trigonometric,
logarithmic, or exponential functions also have a derivative of 2x? We resolve such
questions using theoretical mathematics. In this case we prove the uniqueness of the
general antiderivative (up to a constant), not only for the function f(x) = 2x, but for
all continuous functions simultaneously. The proof of this result follows after first
proving an intuitive statement about the derivative: a function that has a slope of zero
everywhere is a horizontal line.
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Theorem 4.7.5 [f a function f is continuous on [a, b] and differentiable on (a, b), and if f'(x) = 0
for every x € (a, b), then f is constant on [a, b].

Proof  For any given x in the interval (a, b], show f is constant by showing f(x) = f(a).
The function f satisfies the assumptions of the mean value theorem. Applying the
mean value theorem to f* on the interval [a, x], there exists a value ¢ € (a, x) such
that

fro=t0=1@

a

But f'(c) = 0, hence f(x) = f(a).
]

This theorem leads to a proof of the next result, which describes the uniqueness
of the general antiderivative.

Theorem 4.7.6  Ifthe functions F(x) and G(x) are continuous on [a, b] and differentiable on (a, b),
and if F(x) is an antiderivative of f(x) on (a, b), then the following are equivalent.

(1) G(x) = F(x)+ C for some C € R
(2) G(x) is an antiderivative of f (x)

Proof  First prove (1) implies (2). Assume G(x) = F(x) 4+ C for some C € R and show
that G(x) is an antiderivative of f (x). Differentiating G(x) using the differentiation
rules from theorem 4.4.1 in section 4.4,

i[G()]—i[F()-i-C]_i[F()]‘i'i[C]_ ) +0 = f(x)
T B dx = = /(-

Therefore, by definition, G(x) is an antiderivative of f(x).
Now prove (2) implies (1). Assume G(x) is an antiderivative of f(x) and show
that G(x) = F(x) + C for some C € R. Differentiating the function G(x) — F(x),

d d d
e [Gx) —F(x)] = —[GW)] - —[FWX)] = f(x) —f(x) = 0.
x dx dx

theorem 4.7.5 now implies that G(x) — F(x) is constant on [a, b]; in other words,
G(x) — F(x) = C for some C € R. The result follows.
|

As a final step before presenting the fundamental theorem, we state a handful of
properties of the definite integral that are familiar from calculus. Their formal proofs
follow from the definition of the definite integral and are left for exercises 57-59 at
the end of this section.

Theorem 4.7.7 Iff is Riemann integrable and a, b, c, r € R, then the following identities hold.

b c b
(a) fdx:/fdx+/fdx.

® | fax =o.

(c) rdx = r-(b-—a).
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We are now ready to state and prove the fundamental theorem of calculus.
Traditionally, the fundamental theorem is written in two parts. The first part asserts that
differentiation is the inverse operation of taking a definite integral; if F(x) equals the
area under a continuous function f between values a and x, then F’(x) = f(x). In the
theorem’s statement, the independent variable x will appear as a limit of integration, and
a “dummy” variable ¢ will be used in the integrand. The second part of the fundamental
theorem evaluates the definite integral of a given function f in terms of its antiderivative.

Theorem 4.7.8 The fundamental theorem of calculus

(a) If a function f is continuous on [a, b, then for every x € (a, b)

d X
E[ / £ dz} — ).

(b) If a function f is continuous on [a, b] and F(x) is any antiderivative of f(x),
then

b
/ fx)dx = F(b) — F(a).

X
Proofof (a) Apply the definition of the derivative to the function F(x) = / f() dt:
a

F —F
L pey = fim LR 2 IO
dx h—0 h

[ f@yde — [T de

h—0 h

lim LMo
h—0 h ’

Now identify upper and lower bounds on the integration term in this limit—
consider upper and lower Riemann sums and then apply the squeeze theorem
(see theorem 4.3.4 from section 4.3). The following inequalities consider only
the right hand limit with # > 0; the left hand limit with 4 < 0 is similar.

An upper bound is found by applying the partition with only one interval
P = {x, x 4+ h} to the interval [x, x + &]; compute the corresponding upper and
lower Riemann sum.

UCf,P) = sup{f(t) st € [x,x+hl} - [(x+h) —x] = Mi(f)-h

L(f,P) = inf{f(t):t € [x,x+hl}- [(x+h) —x] = mi(f)-h
From the definition of the definite integral, the following inequalities hold.

Lf.P) < [Mfwd < Uf.P)
mi(f)-h < [rod < Mi(f)-h

x-+h d
m(f) % < M)
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As happroaches 0, M1 (f) = m{(f) = f(x). Therefore, by the squeeze theorem

for limits,
d [ [ fwde
a[/ f(r)dr} = tim =%

X
Proofof (b) Assume f is continuous on [a, b]. Let G(x) = [ f(¢) dt be the antiderivative for

f given in part (a). If F(x) is any antiderivative aof f, then theorem 4.7.6 implies
F(x) = G(x) + C for some C € R. Substituting @ and b into F as specified,

F(b)—F(a) = (G(b)+ C)—(G(a)+ C) = G(b) — G(a)

b a b b
=ff(t)dt—/f(t)dt:ff(t)dt—O:/f(t)dt.
[ ]

The next several examples and questions use the fundamental theorem of calculus
to evaluate derivatives and definite integrals. Many computations should be quite
familiar from calculus; their ease illustrates the importance of the theorem. When
using the fundamental theorem to differentiate a function F(x) = f; f(¢) dt whose
domain variable x appears as an upper limit of integration, the variable ¢ acts only as a
placeholder. Using the chain rule, we may also differentiate a composition of the form
F(g) = [*% f(t) dt, obtaining

gx)

d
o [ dt = f(g(x))- g ).
X a

Example 4.7.4 We use the fundamental theorem of calculus to differentiate the following
functions.

d B X
. o / t+2dlj| =x+2
X LJo
d B X
2 _ .2
. o f t“ + cos(?) dti| = x“ + cos(x)
X LJ2
d[
. o / sec(t) dt | = sec(x4)-4x3
0
d-/3t+1dt—d /xt-i—]dt— (x+1/x)
dx | Jx t Cdx 3 t N * /

Question 4.7.7 Use the fundamental theorem to differentiate each of the following functions.

X 3 X
2 X7+
(a) [1 t+1° dt (c)/ sint dt
0

* 3
(b)/nln”” (d)/ {4 ¢ dr
)C2
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Example 4.7.5 We determine the area bounded by f(x) = 6x? and the x-axis on [0, 4].
Apply the fundamental theorem of calculus. Since 2x is an antiderivative of
6x2, the bounded area is equal to

4 4
/ 6x2 dx = 2x3]0 = 2(4)° — 2000 = 128.
0

Example 4.7.6 We determine the area bounded by f(x) = sin(x) and the x-axis on [0, 7].
Applying the fundamental theorem of calculus, this bounded area is equal to

/n sin(x) dx = —cos(x)]z = —cos(mr)—(—cos(0) = —(—1)—(-1) = 2.
0

Question 4.7.8 Use the fundamental theorem of calculus to determine the area bounded by f(x)
and the x-axis on the given interval.

(@) f(x) =4x>+1on]0,1] () f(x) =4x>+1on[—1,0]
|

A final example illustrates the necessity of continuity in the hypotheses of the
fundamental theorem of calculus. The example shows that discontinuous functions
may not satisfy the conclusion of the fundamental theorem.

Example 4.7.7 We consider the function f(x) = 1 /x2 on the interval [—1, 1]. If the fundamental
theorem applied, then the corresponding definite integral of f would be

| 17
/ —dx = ——} = —1—[=(=D] = —2.
- —1

1 x2 x

But this value cannot be interpreted as the definite integral; in other words, it is
not the area between f(x) = 1 /x2 and the x-axis over the interval [—1, 1]. This
region is unbounded, and the area is infinite. Since f(x) = 1 /x2 is discontinuous
atx = 0 € [—1, 1], the fundamental theorem of calculus cannot be applied.

|

4.7.1 Reading Questions for Section 4.7

State the mean value theorem.

State the extreme value theorem and illustrate it with an example.

State theorem 4.7.3. How is this result useful when studying functions?
State Rolle’s theorem.

What function is studied in proving the mean value theorem as outlined in
question 4.7.47?

Define and give an example of an antiderivative.

Name three different ways in which mathematicians refer to antiderivatives.
8. Discuss the uniqueness of antiderivatives. What does theorem 4.7.6 tell us?

Al
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9. State theorem 4.7.5. Sketch an example and explain how this result is used in
the proof of theorem 4.7.6.
10. State and give an example of the properties of the definite integral identified
in theorem 4.7.7.
11. State the fundamental theorem of calculus. How is this result useful?
12. True or false: Any function f(x) on [a, b] satisfies fab f(x)dx = F(b) — F(a),
where F’(x) = f(x) on [a, b]. Explain your answer.

4.7.2 Exercises for Section 4.7

In exercises 1-4, apply Rolle’s theorem and the mean value theorem to the continuous
and differentiable function f(x) = (x — 2)(x + 1) = x> —x — 2.

1. Compute the derivative of f.

2. Identify ¢ between the zeros of f satisfying Rolle’s theorem.
3. Identify ¢ € [0, 3] satisfying the mean value theorem.

4. Identify ¢ € [0, 5] satisfying the mean value theorem.

In exercises 5—-10, identify a constant ¢ guaranteed to exist by applying either Rolle’s
theorem or the mean value theorem to each continuous, differentiable function f.
Indicate when you are using Rolle’s theorem.

5. f()=3—2on[2 4] 9. /@) = 32 — 500 + 135x on
3 X [0, 2]

6. f(x) =x" —4xon|0, 1] 10. £(x) = 3x5 — 10«3 + 15x on

7. f(x) = x* —4xon[-2,2] =1.1]

8. f(x) = 2x* — 14x2 + 20 on
[_515]

In exercises 11-12, apply the mean value theorem in each scenario.

11. Suppose two patrol cars are sitting along side the highway six miles apart
when a red sporty car drives by. The first police officer clocks the car at 50
mph, then three minutes later the second police officer clocks the car at 45
mph. Prove the driver deserves a huge speeding ticket for exceeding the speed
limit (of 50 mph) at some time during the three minutes.

12. Two toll booths are 25 miles apart on a turnpike. If a car stops at the first
tollbooth at 12:42 PM and the second at 12:58 later that afternoon, then what
can you say about the car’s speed somewhere in between the tollbooths?

In exercises 13-16, find the general solution of each differential equation.

13. f/(x) = 322 + & 5.9 _
14. f'(x) = sin(2x) + x% - In(x?) dx
dy .
16. — =¢€*-cosx
dx

Exercises 17-20 consider the “particular solution” of a differentiable equation
dy/dx = f'(x) with a given initial condition f(x) = y. A particular solution identifies a
specific C € R for the general antiderivative by substituting the given initial condition
into the general antiderivative and solving for C.
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For exercises 17-20, recall that the general solution of the differentiable equation
' (x) =cos(x) + ¢* is f(x) =sin(x) + ¢* + C. Identify the particular solution satisfying
each initial condition.

17. f(0)=6 19. f(x/2)=2

18. f(m)=¢€"+7 20. f(In2) =0

In exercises 21-24, determine the particular solution satisfying each differential
equation and initial condition.

21. f'(x) = 4x> 4+ 2¢° and f(0) = 2

22. f'(x) = Scos(2x) + x2 - In(2x3) and f(1) = 2
23. dy/dx =(x+2)- ¢ and f(In2) =1

24. dy/dx = x* - ¢ and f(0) = 1

In exercises 25-32, state the antiderivative of each function.

25. f(x) = 4x3 + 5x%/3

1
29. =—+
26. £(x) = (2x2 + 1) T = g teos

1 1 30. f(x) = tan(x) + cot(x)
27. f(x) = el + o 31. f(x) = €* cos(e¥) + sin(2x)

32 f(x) = [ln(xnz}c

80 =551

In exercises 33—40, differentiate each function using the fundamental theorem of
calculus.

X 1 3
33./t+—dt 37_/ i+ e dt
3 t 5
X
e
34, f esc(?) + In(7) d 38, f OB e de
T
1
35. / 6t2+cos(t)dt 39 @ 4
. . j e +1t° dt
4x -
36. sec(t) dt 40/ Edt
, .
1
X

In exercises 41-48, evaluate each definite integral using the fundamental theorem of
calculus.

1 4
1
41. | 24x° +¢°d 45./4X+ dx
/(; x" + e dx 1 e P
3 b4
42. / x>+ 1/x dx 46. / cos(x) dx
1 -
2 b4
43. / Q2+ 0Vt dt 47. / sin(x) dx
0 -
/2 /4
44, / 2t 4 cos(t) dt 43. f sec(x) tan(x) dx
—/2 0
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In exercises 49-52, explain why each definite integral cannot be evaluated using the
fundamental theorem of calculus.

41 1
49./ = dx 51./ Jx dx
0 -1

X

6 3
50. / — dx 52. — dx
o X2 —4x 0 Vx—2

In exercises 53-64, prove each mathematical statement.

53. Complete half of the proof of theorem 4.7.3 for a relative minimum. Assume
a function f is continuous on [a, b], differentiable on (a, b), and ¢ € (a, b) is
a relative minimum of f on [a, b] with f'(c) < 0 and obtain a contradiction.

54. Complete half of the proof of theorem 4.7.3 for a relative mini