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Preface

Yuri Ivanovich Manin has made outstanding contributions to algebra,
algebraic geometry, number theory, algorithmic complexity, noncommutative
geometry and mathematical physics. His numerous achievements include the
proof of the functional analogue of the Mordell Conjecture, the theory of the
Gauss—Manin connection, proof with V. Iskovskikh of the nonrationality of
smooth quartic threefolds, the theory of p-adic automorphic functions, con-
struction of instantons (jointly with V. Drinfeld, M. Atiyah and N. Hitchin),
and the theory of quantum computations.

We hope that the papers in this Festschrift, written in honor of Yu. I.
Manin’s seventieth birthday, will indicate the great respect and admiration
that his students, friends and colleagues throughout the world all have for him.

June 2009
Courant Institute Yuri Tschinkel
Penn State University Yuri Zarhin
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Summary. Let M and N be Lagrangian submanifolds of a complex symplectic
manifold S. We construct a Gerstenhaber algebra structure on Tor?s (Om,OnN)
and a compatible Batalin—Vilkovisky module structure on Sxtgs (Om,On). This
gives rise to a de Rham type cohomology theory for Lagrangian intersections.
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Introduction

We are interested in intersections of Lagrangian submanifolds of holomorphic
symplectic manifolds. Thus we work over the complex numbers in the analytic
category.

There are two main aspects of this paper we would like to explain in the
introduction: categorification of intersection numbers, and Gerstenhaber and
Batalin—Vilkovisky structures on Lagrangian intersections.

Categorification of Lagrangian intersection numbers

This paper grew out of an attempt to categorify Lagrangian intersection num-
bers. We will explain what we mean by this, and how we propose a solution to
the problem. Our construction looks very promising, but is still conjectural.

Lagrangian intersection numbers: smooth case

Let S be a (complex) symplectic manifold and L, M Lagrangian submanifolds.
Since L and M are half-dimensional, the expected dimension of their inter-
section is zero. Intersection theory therefore gives us the intersection number

Y. Tschinkel and Y. Zarhin (eds.), Algebra, Arithmetic, and Geometry, 1
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#(L0 M)
if the intersection is compact. In the general case, we get a class
[LN MY e Ag(L N M)
in degree-zero Borel-Moore homology such that in the compact case,
#(L N M) = deg[L N M]¥'r.
If the intersection X = L N M is smooth, then
[X]" = ctop(E) N [X],

where E is the excess bundle of the intersection, which fits into the exact
sequence

O_>TX_)TL‘X@TM‘X T5|X FE 0

of vector bundles on X. The symplectic form o defines an isomorphism
Ts|x = Qg|x. Under this isomorphism, the subbundle T|x corresponds to
the conormal bundle N/ /s Thus we can rewrite our exact sequence as

0——=EY——=N/,5® Ny /s Qs|x Qx 0,

which shows that the excess bundle FE is equal to the cotangent bundle Qx.
Thus, in the smooth case,

[X]7r = Ctop(£) N [X] = crop(02x) N[X] = (=1)"ctop(Tx) N [X],

and in the smooth and compact case,

F(L0 M) = deglX] = (<1 [ eap(T) = (-1)"x(X),
X
where 2n is the dimension of S and x(X) is the topological Euler characteristic
of X. This shows that we can make sense of the intersection number even if the
intersection is not compact: define the intersection number to be the signed
Euler characteristic.

Intersection numbers: singular case

In [1], it was shown how to make sense of the statement that Lagrangian
intersection numbers are signed Euler characteristics in the case that the in-
tersection X is singular. An integer invariant vy (P) € Z of the singularity of
the analytic space X at the point P € X was introduced.

In the case of a Lagrangian intersection X = L N M, the number vx (P)
can be described as follows. Locally around P, we can assume that S is equal
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to the cotangent bundle of M and M C S is the zero section. Moreover, we
can assume that L is the graph of a closed, even exact, 1-form w on M. If
w = df, for a holomorphic function f: M — C, defined near P, then

vx(P) = (=1)"(1 - x(Fpr)) , (1)

where n = dim M and Fp is the Milnor fiber of f at P.
The main theorem of [1] implies that if L and M are Lagrangian subman-
ifolds of the symplectic manifold S, with compact intersection X, then

#X = deg[ X" = (X, vx),

the weighted Euler characteristic of X with respect to the constructible func-
tion vy, which is defined as

x(X,vx) Zz x({vx =1i}).

1EZL

In particular, arbitrary Lagrangian intersection numbers are always well-
defined: the intersection need not be smooth or compact. The integer vx (P)
may be considered as the contribution of the point P to the intersection
X=LNM.

Categorifying intersection numbers: smooth case

To categorify the intersection number means to construct a cohomology theory
such that the intersection number is equal to the alternating sum of Betti
numbers. If X is smooth (not necessarily compact), a natural candidate is
(shifted) holomorphic de Rham cohomology

#X = (-1)"x(X) = Z(q)i*“ dime H' (X, (2%, 4d) ).
Here (Q%,d) is the holomorphic de Rham complex of X and H' its hyperco-

homology. Of course, by the holomorphic Poincaré lemma, hypercohomology
reduces to cohomology.

Categorification: compact case

If the intersection X = L N M is compact, but not necessarily smooth, we
have

#X = Z(—l)"*” dime Ext{, (Or, Onr)

= Z 1)~ dime H' (X, Exto (OL,0wnm)) .
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For X smooth, &‘t?gs (Or,0n) = QJ)'(, so this reduces to Hodge cohomology

#X =3 (~1)(~1)/ " dime H' (X, QJX) .

4,3

This justifies using the sheaves &nt{gs (Or, O ) as replacements for the sheaves

QJX if X is no longer smooth. To get finite-dimensional cohomology groups,
we will construct de Rham type differentials

d: 5.215?95 (Or,0pn) — Ext{jsl(OL, Oum),
so that the hypercohomology groups
H (X, (5xtbs (OL, OM), d) )

are finite-dimensional, even if X is not compact. Returning to the compact
case, for any such d, we necessarily have

#X =3 (~1)"" dime HY (X, (&td, (Or, Onr), d) ).

Categorification: local case

Every symplectic manifold S is locally isomorphic to the cotangent bundle
Qn of a manifold N. The fibers of the induced vector bundle structure on
S are Lagrangian submanifolds, and thus we have defined (locally on S) a
foliation by Lagrangian submanifolds, i.e., a Lagrangian foliation. (Lagrangian
foliations are also called polarizations.) We may assume that the leaves of our
Lagrangian foliation of S are transverse to the two Lagrangians L and M
whose intersection we wish to study. Then L and M turn into the graphs of
1-forms on N. The Lagrangian condition implies that these 1-forms on N are
closed. Without loss of generality, we may assume that one of these 1-forms
is the zero section of Qy and hence identify M with N. By making M = N
smaller if necessary, we may assume that the closed 1-form defined by L is
exact. Then L is the graph of the 1-form df, for a holomorphic function f on
M. Thus the intersection L N M is now the zero locus of the 1-form df:

X = Z(df).

This is the local case.
Multiplying by df defines a differential

. 0J J+1
s: Q0 — M,

wr—df Nw.
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Because df is closed, the differential s commutes with the de Rham differential
d: Y, — Qﬂ' ! Thus the de Rham differential passes to cohomology with
respect to s: _ _

d: 0 (Qy,8) — P (QY,s),
where h/ denotes the cohomology sheaves, which are coherent sheaves of Ox-
modules. Let us denote these cohomology sheaves by

1 =n1 (QY,s).
We have thus defined a complex of sheaves on X,
(€%, d), (2)

where the £ are coherent sheaves of Ox-modules, and the differential d is
C-linear. It is a theorem of Kapranov [2] that the cohomology sheaves h*(£®, d)
are constructible sheaves on X and thus have finite-dimensional cohomology
groups. It follows that the hypercohomology groups

H' (X, (£°,d))

are finite-dimensional as well.
We conjecture that the constructible function

P Y (=) dime Hipy (X, (€,d)) ,

of fiberwise Euler characteristic of (£, d) is equal to the function vx from (1)
above. This would achieve the categorification in the local case. In particular,
for the noncompact intersection numbers we would have

X(X,vx) = (1) dime H' (X, (€, d)) -
i
We remark that if f is a homogeneous polynomial (in a suitable set of coor-
dinates), then this conjecture is true.
To make the connection with the compact case (and because this construc-
tion is of central importance to the paper), let us explain why

g = &ty (Or,0n).

Denote the projection S = Qp; — M by . The 1-form on Qj; that corre-
sponds to the vector field generating the natural C*-action on the fibers we
shall call . Then da = ¢ is the symplectic form on .S. We consider the 1-form
s = a—w*df on S. Its zero locus in S is equal to the graph of df. Let us
denote the subbundle of (2g annihilating vector fields tangent to the fibers
of m by E. Then s € Qg is a section of E and we obtain a resolution of the
structure sheaf of O, over Og:

s s

AQEV EY OSv
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where 5 denotes the derivation of the differential graded Og-algebra A®*EY
given by contraction with s. Taking duals and tensoring with O, we obtain
a complex of vector bundles (AE|y, s|ar) that computes Extégs (OL,O0n). One
checks that (AE|n, s|yv) = (s, 8).

Categorification: global case

We now come to the contents of this paper. let S be a symplectic manifold
and L, M Lagrangian submanifolds with intersection X. Let us use the ab-
breviation £ = Extés (Or,On). The £ are coherent sheaves of O x-modules.
The main theorem of this paper is that the locally defined de Rham differen-
tials (2) do not depend on the way we write S as a cotangent bundle, or in
other words, that d is independent of the chosen polarization of S. Thus, the
locally defined d glue, and we obtain a globally defined canonical de Rham
type differential
d: & — gL,

In the case that X is smooth, & = Q% and d is the usual de Rham dif-
ferential. We may call (£°,d) the virtual de Rham complex of the Lagrangian
intersection X . Conjecturally, (£, d) categorifies Lagrangian intersection num-
bers in the sense that for the local contribution of the point P € X to the
Lagrangian intersection we have

vx(P) = ZH)H dime Hipy (X, (&, d)).

Hence, for the noncompact intersection numbers we should have

X(X,vx) = (1) dime H' (X, (€, d)).
i
In particular, if the intersection is compact, #X = x(X,vx) should be the
alternating sum of the Betti numbers of the hypercohomology groups of the
virtual de Rham complex.

Donaldson—Thomas invariants

Our original motivation for this research was a better understanding of
Donaldson—Thomas invariants. It is to be hoped that the moduli spaces giv-
ing rise to Donaldson-Thomas invariants (spaces of stable sheaves of fixed
determinant on Calabi—Yau threefolds) are Lagrangian intersections, at least
locally. We have two reasons for believing this: First of all, the obstruction
theory giving rise to the virtual fundamental class is symmetric, a property
shared by the obstruction theories of Lagrangian intersections. Secondly, at
least heuristically, these moduli spaces are equal to the critical set of the
holomorphic Chern—Simons functional.

Our “exchange property” should be useful for gluing virtual de Rham com-
plexes if the moduli spaces are only local Lagrangian intersections.
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In this way we hope to construct a virtual de Rham complex on the
Donaldson-Thomas moduli spaces and thus categorify Donaldson—Thomas
invariants.

Gerstenhaber and Batalin—Vilkovisky structures
on Lagrangian intersections

The virtual de Rham complex (£°,d) is just half of the story. There is also
the graded sheaf of Ox-algebras A® given by

.Ai = TOT(_QiS (OL, OM) .

Locally, A® is given as the cohomology of (AT),5), in the above notation.
The Lie-Schouten—Nijenhuis bracket induces a C-linear bracket operation

[,]: A*®c A* — A°®
of degree +1. We show that these locally defined brackets glue to give a
globally defined bracket making (LA®, A[,]) a sheaf of Gerstenhaber algebras.

Then £° is a sheaf of modules over A®. (The module structure is induced
by contraction.) The bracket on A® and the differential on £°® satisfy a com-
patibility condition; see (5). We say that (€, d) is a Batalin—Vilkovisky module
over the Gerstenhaber algebra (A, A[,]). (This structure has been called a
calculus by Tamarkin and Tsygan in [4].)

In the case that L and M are oriented submanifolds, i.e., the highest
exterior powers of the normal bundles have been trivialized, we have an iden-
tification

A =gt
Transporting the differential from £° to A® via this identification turns
(A, Al,],d) into a Batalin—Vilkovisky algebra.

To prove these facts we have to study differential Gerstenhaber algebras
and differential Batalin—Vilkovisky modules over them. We will prove that lo-
cally defined differential Gerstenhaber algebras and their differential Batalin—
Vilkovisky modules are quasi-isomorphic, making their cohomologies isomor-
phic and hence yielding the well-definedness of the bracket and the differential.

First order truncation

In this paper we are interested only in the Gerstenhaber and Batalin—
Vilkovisky structures on A and £. In other words, we deal only with the
structures induced on cohomology. This amounts to a truncation of the full
derived Lagrangian intersection. Because of our modest goal, we need to study
differential Gerstenhaber and Batalin—Vilkovisky structures only up to first
order. In future research, we hope to address the complete derived structure
on Lagrangian intersections.

This would certainly involve studying the Witten deformation of the de
Rham complex in more detail. Related work along these lines has been done
by Kashiwara and Schapira [3].
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Overview
1. Algebra

In this introductory section, we discuss algebraic preliminaries. We review
the definitions of differential Gerstenhaber algebra and differential Batalin—
Vilkovisky module. This is mainly to fix our notation. There are quite a
few definitions to keep track of; we apologize for the lengthiness of this
section.

2. Symplectic geometry

Here we review a few basic facts about complex symplectic manifolds. In
particular, the notions of Lagrangian foliation, polarization, and the canonical
partial connection are introduced.

3. Derived Lagrangian intersections on polarized symplectic manifolds

On a polarized symplectic manifold, we define derived intersections of La-
grangian submanifolds. These are (sheaves of) Gerstenhaber algebras on the
scheme-theoretic intersection of two Lagrangian submanifolds. The main theo-
rem we prove about these derived intersections is a certain invariance property
with respect to symplectic correspondences. We call it the exchange property.
We repeat this program for derived homs (the Batalin—Vilkovisky case),
and oriented derived intersections (the oriented Batalin—Vilkovisky case).

4. The Gerstenhaber structure on Tor and the Batalin—Vilkovisky structure
on &xt

In this section we use the exchange property to prove that after passing
to cohomology, we no longer notice the polarization. The Gerstenhaber and
Batalin—Vilkovisky structures are independent of the polarization chosen to
define them.

This section closes with an example of a symplectic correspondence and
the corresponding exchange property.

5. Further remarks

In this final section we define virtual de Rham cohomology of Lagrangian in-
tersections. We speculate on what virtual Hodge theory might look like. We
introduce a natural differential graded category associated to a complex sym-
plectic manifold. (It looks like a kind of holomorphic, de Rham type analogue
of the Fukaya category.) Finally, we mention the conjectures connecting the
virtual de Rham complex to the perverse sheaf of vanishing cycles.
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1 Algebra

Let M be a manifold. Regular functions, elements of Oy, have degree 0.
By ATy we mean the graded sheaf of polyvector fields on M. We think of
it as a sheaf of graded O);-algebras (the product being A), concentrated in
nonpositive degrees, the vector fields having degree —1. By 23, we denote the
graded sheaf of differential forms on M. This we think of as a sheaf of graded
Ops-modules, concentrated in nonnegative degrees, with 1-forms having degree
+1. We will denote the natural pairing of Tj; with Q3; by X 4w € Og, for
X € Ty and w € Q. The following is, of course, well known:

Lemma 1.1. There exists a unique extension of 1 to an action of the sheaf of

graded Opr-algebras ATy on the sheaf of graded Os-modules 23, that satisfies

(i) fow= fw, for f € Og and w € QY (linearity over Oy ),

(ii) X 5(w1 Aw2) = (X swi) Aws + (—1)%twr A (X Jws), for X € Ty and
wi,ws € QY, (the degree —1 part acts by derivations),

(i) (X ANY)sw=X 4(Y Jw), for X, Y € ATn, w € QY (action property).

Now turn things around and note that any section s € Q) defines a
derivation of degree +1 on AT}, which we shall denote by s. It is the unique
derivation that extends the map Thpy — Oj given by $(X) = X us, for all
X € Ty. (Note that this is not a violation of the universal sign convention;
see Remark 1.3.)

Lemma 1.2. The pair (AThr, S) is a sheaf of differential graded Opr-algebras.
Left multiplication by s defines a differential on Q%,, and the pair (2%, s) is
a sheaf of differential graded modules over (AT, S).

Proof. This amounts to the formula
sA (X ow)=3X)ow+ (-1)XX (s Aw) (3)
for all w € Q3; and X € ATy O

Remark 1.3. Set (X,w) equal to the degree zero part of X jw. This is a
perfect pairing ATy ®0,, 23, — O, expressing the fact that 23, is the Ops-
dual of ATys. According to formula (3), we have, if deg X + degw + 1 =0,

GX),w)+ (—DX(X, s Aw) =0.

This means that the derivation s and left multiplication by s are Og-duals of
one another. To explain the signs, note that we think of s and s as differentials
on the graded sheaves ATj; and Q3,, and for differentials of degree +1 the
sign convention is

0=D(X,w) = (DX,w) + (-1)X(X, Dw) .

In particular, for deg X =1 and w =1 we get 5(X) = (X,s) = X Js.
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Remark 1.4. We can summarize formula (3) more succinctly as
[Sa ZX] = Zg(X) ’

where ix : Q}, — 3, denotes the endomorphism w — X Jw.

1.1 Differential Gerstenhaber algebras
Let S be a manifold and A a graded sheaf of Og-modules.

Definition 1.5. A bracket on A of degree +1 is a homomorphism

[]:AQcA— A
of degree +1 satisfying:
(i) [,]is a graded C-linear derivation in each of its two arguments,
(ii) [,] is graded commutative (not anticommutative).

If [,] satisfies, in addition, the Jacobi identity, we shall call [,] a Lie bracket.

The sign convention for brackets of degree +1 is that the comma is treated
as carrying the degree +1, the opening and closing bracket as having degree 0.
Thus, when passing an odd element past the comma, the sign changes. For
example, the graded commutativity reads

Y, X] = (1) [x v,

Definition 1.6. A Gerstenhaber algebra over Og is a sheaf of graded Og-
modules A, concentrated in nonpositive degrees, endowed with

(i) a commutative (associative, of course) product A of degree 0 with unit,
making A a sheaf of graded Og-algebras,

(ii) a Lie bracket [,] of degree +1 (see Definition 1.5).

In our cases, the underlying Og-module of A will always be coherent and
Og — A° will be a surjection of coherent Og-algebras. The main example is
the following:

Example 1.7. Let M C S be a submanifold and A = Ap,, T the polyvector
fields on M. The bracket is the Schouten—Nijenhuis bracket.

Definition 1.8. A differential Gerstenhaber algebra is a Gerstenhaber
algebra A over Og endowed with an additional C-linear map s : A — A of
degree +1 that satisfies

(i) [3=8=0
ii) sis a derivation with respect to A; in particular, it is Og-linear;
p b p b b

(iii) $is a derivation with respect to [, ].
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Thus, neglecting the bracket, a differential Gerstenhaber algebra is a sheaf
of differential graded algebras over Og.

Lemma 1.9. Let (A,3) be a differential Gerstenhaber algebra. Let I < A°
be the image of 5 : A~ — A9. This is a sheaf of ideals in A°. Then the
cohomology h*(A,3) is a Gerstenhaber algebra with h°(A,5) = A%/I.

Proof. This is clear: the fact that 5 is a derivation with respect to both prod-
ucts on A implies that the two products pass to h*(A,s). Then all the prop-
erties of the products pass to cohomology. O

Example 1.10. Let M C S and A = AT); be as in Example 1.7. In addition,
let s € Qps be a closed 1-form. Then (AT, s) with A and Schouten—Nijenhuis
bracket [,] is a differential Gerstenhaber algebra. The closedness of s makes §
a derivation with respect to [, ].

1.2 Morphisms of differential Gerstenhaber algebras

Definition 1.11. Let A and B be Gerstenhaber algebras over Og. A mor-
phism of Gerstenhaber algebras is a homomorphism ¢ : A — B of graded
Og-modules (of degree zero) that is compatible with both A and [, ]:

() d(XAY) =d(X)Ao(Y),
(i) o([X,Y]) = [o(X), 6(Y)].

Definition 1.12. Let (A,35) and (B, t) be differential Gerstenhaber algebras

over Og. A (first-order) morphism of differential Gerstenhaber algebras is

a pair (¢, {, }), where ¢ : A — B is a degree-zero homomorphism of graded

Og-modules, and {, } : A®c A — B is a degree-zero C-bilinear map such that

(1) PXAY)=¢(X)Ad(Y) and ¢(3X) = tp(X), so that ¢ : A — B is a
morphism of differential graded Og-algebras;

(ii) {,} is symmetric, i.e., {Y, X} = (-1)XV{X,Y};

(iii) {,} is a C-linear derivation with respect to A in each of its arguments,
where the A-module structure on B is given by ¢, in other words,

X AY,Z} = 6(X) A Y, Z} + (=L)X 6(Y) A {X, 2}

and
{(X,YANZY = {X, Y} AO(Z) + (1) Z{X, Z} A p(Y);

(iv) the failure of ¢ to commute with [] is equal to the failure of the Og-linear
differentials to behave as derivations with respect to { },

SX, Y]~ [6(X), 6(Y)] = (-1 HX, Y} - (- 1)¥{EX, Y} - {X,5Y}. (4)
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Remark 1.13. We will always omit the qualifier “first order,” since we will not
consider any “higher-order” morphisms in this paper. This is because, in the
end, we are interested only in the cohomology of our differential Gerstenhaber
algebras. To keep track of the induced structure on cohomology, first-order
morphisms suffice. We hope to return to “higher-order” questions in future
research.

Remark 1.14. Suppose all conditions in Definition 1.12 except the last are
satisfied. Then both sides of the equation in condition (iv) are symmetric
of degree-one and C-linear derivations with respect to A in each of the two
arguments. Thus, to check condition (iv), it suffices to check on C-algebra
generators for A.

Lemma 1.15. A morphism of differential Gerstenhaber algebras

(@.{}): (4,8) — (B,1)

induces a morphism of Gerstenhaber algebras on cohomology. In other words,

B(6) " (A,3) — h*(B,1)
respects both A and [,].

Proof. Any morphism of differential graded Og-algebras induces a morphism
of graded algebras upon passing to cohomology. Thus h*(¢) respects A.
The fact that h*(¢) respects the Lie brackets follows from property (iv) of
Definition 1.12. All three terms on the right-hand side of said equation vanish
in cohomology. 0O

Definition 1.16. A quasi-isomorphism of differential Gerstenhaber alge-
bras is a morphism of differential Gerstenhaber algebras that induces an iso-
morphism of Gerstenhaber algebras on cohomology.

1.3 Differential Batalin—Vilkovisky modules

Definition 1.17. Let A be a Gerstenhaber algebra. A sheaf of graded Og-
modules L with an action 4 of A making L a graded A-module is called a
Batalin—Vilkovisky module over A if it is endowed with a C-linear map
d: L — L of degree +1 satisfying

(i) [d,d] =d*=0;
(ii) For all X,Y € A and every w € L we have

AXAY sw)+ (DX XAY Ldw + (-1DX[X, Y] sw
= (=DXX 2d(Y sw) + (-1)XYY Jd(X sw). (5)
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Remark 1.18. Write ix for the endomorphism w +— X Jw of L. Then for-
mula (5) can be rewritten as

X, Y] ow = [[ix, d),iv] (@)

or simply
iy = [lix, dl,iv]. (6)

Note also that [[ix,d], iy] = [ix, [d, 2y]]

The action property (X AY)_ w = X J(Y Jw) translates into ixay =
’iX o iy.

In our applications, Batalin—Vilkovisky modules will always be coherent

over Og. Note that there is no multiplicative structure on L, so there is no
requirement for the differential d to be a derivation.

Example 1.19. Let M C S and A = AT); be the Gerstenhaber algebra of
polyvector fields on M, as in Example 1.7. Then 23, with exterior differenti-
ation d is a Batalin—Vilkovisky module over AT;.

Definition 1.20. A differential Batalin—Vilkovisky module over the dif-

ferential Gerstenhaber algebra (A4, 5) is a Batalin—Vilkovisky module L for the

underlying Gerstenhaber algebra A, endowed with an additional C-linear map

s : L — L of degree +1 satisfying:

(i) [s,8] =s?=0;

(ii) (M, s) is a differential graded module over the differential graded algebra
(4,3), i.e., we have

$(X ow) =35(X) sw+ (=1)XX Js(w)

for all X € A, w € L. More succinctly: [s,ix] = i3x);
(iii) [d, s] = 0.

Note that the differential s is necessarily Og-linear. This distinguishes it
from d.

Lemma 1.21. Let (L, s) be a differential Batalin—Vilkovisky module over the
differential Gerstenhaber algebra (A,S). Then h*(L, s) is a Batalin—Vilkovisky
module for the Gerstenhaber algebra h*(A,S).

Proof. First, h*(M, s) is a graded h*(A,5)-module. The condition [d,s] = 0
implies that d passes to cohomology. Then the properties of d pass to coho-
mology as well. O

Example 1.22. Let M C S be a submanifold and s € Qj; a closed 1-form.
Then (9%,,s) (see Lemma 1.2) is a differential Batalin—Vilkovisky module
over the differential Gerstenhaber algebra (AT, S) of Example 1.10.
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1.4 Homomorphisms of differential Batalin—Vilkovisky modules

Definition 1.23. Let A and B be Gerstenhaber algebras and ¢ : A — B a
morphism of Gerstenhaber algebras. Let L be a Batalin—Vilkovisky module
over A and M a Batalin—Vilkovisky module over B. A homomorphism of
Batalin—Vilkovisky modules of degree n (covering ¢) is a degree n homomor-
phism of graded A-modules ¢ : L — M (where the A-module structure on M
is defined via ¢), which commutes with d:

() DX sw) = (~1)"FS(X) s (W),
(i) ddr(w) = (=1)"dmy(w).
We write the latter condition as [¢,d] = 0.

Definition 1.24. Let (A,3) and (B, t) be differential Gerstenhaber algebras
and (¢, {,}) : (A,3) — (B,t) a morphism of differential Gerstenhaber alge-
bras. Let (L, s) be a differential Batalin—Vilkovisky module over (4,5) and
(M,t) a differential Batalin-Vilkovisky module over (B,t). A (first-order)
homomorphism of differential Batalin—Vilkovisky modules of degree n cov-
ering (¢,{,}) is a pair (¢,9), where ¢ : (L,s) — (M,t) is a degree n ho-
momorphism of differential graded (A4, s)-modules, where the (A, 3)-module
structure on (M, t) is through ¢. Moreover, 6 : L — M is a C-linear map, also
of degree n, satisfying

(i) the commutator property
pod—(—=1)"dotp = =2(—1)"tod+250s, (7)

(ii) compatibility with the bracket {, } property

S(XAY 3w)+(=1)" TG X)AG(Y) 26w+ (—1)" X Y} Sap(w)
= (=)™ (X)) 16(Y sw) + (1) TV H(Y)L6(X sw). (8)

Remark 1.25. The same comments as those in Remark 1.13 apply.

Remark 1.26. If we use the same letter s to denote the Og-linear differentials
on L and M, we can rewrite the commutator conditions of Definition 1.24 more
succinctly as

W]as} =0, W]ad} _2[533} =0.
The compatibility with the bracket property can be rewritten as
[ex, [y, 6] = tyx,yy 0 0. 9)

Note the absence of a condition on the commutator [d,d]. This would be a
“higher-order” condition.
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Remark 1.27. It is a formal consequence of properties of the commutator
bracket that the left-hand side of (9) is a C-linear derivation in each of its
two arguments X, Y. The same is true of the right-hand side by assumption.
Thus we have that if all properties of Definition 1.24 except for (i) and (ii)
are satisfied, then to check that (ii) is satisfied, it suffices to do this for all X
and Y belonging to a set of C-algebra generators for A.

Remark 1.28. Suppose all properties of Definition 1.24 except for (i) are
satisfied. Suppose also that L is free of rank one as an A-module on the basis
w® € L. Then it suffices to prove equation (7) applied to elements of the form
X Jw®, where X runs over a set of generators of A as an A°-module.

Lemma 1.29. Let (¢,6) : (L,s) — (M,t) be a homomorphism of differen-
tial Batalin-Vilkovisky modules over the morphism (¢,{,}) : (4,3) — (B,1)
of differential Gerstenhaber algebras. Then h*(y) : h*(L,s) — h*(M,t) is a
homomorphism of Batalin—Vilkovisky modules over the morphism of Gersten-

haber algebras h*(¢) : h*(A,3) — h*(B,t).

Proof. Evaluating the right-hand side of equation (7) on s-cocycles in L yields
t-boundaries in M. O

1.5 Invertible differential Batalin—Vilkovisky modules

Definition 1.30. We call the Batalin—Vilkovisky module L over the Gersten-
haber algebra A invertible if locally in S, there exists a section w® of L such
that the evaluation homomorphism

U°:A— L,
X — (fl)yaoXon,

is an isomorphism of sheaves of Og-modules. Any such w® will be called a
(local) orientation for L over A.

Note that if the degree of an orientation w® is n, then L¥ = 0 for all k > n,
by our assumption on A. Thus orientations always live in the top degree of
L. Moreover, if orientations exist everywhere locally, L™ is an invertible sheaf
over A°.

Lemma 1.31. Let L be an invertible Batalin—Vilkovisky module over the Ger-
stenhaber algebra A and assume that w° is a (global) orientation for L over
A. Then, transporting the differential d via W° to A yields a C-linear map of
degree +1, which we will call d° : A — A. It is characterized by the formula

d°(X) sw°® =d(X Jw°).

It squares to 0 and it satisfies
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(fl)Y[X, Y|=d°(X)ANY + (—1)7X ANd°(Y)—d° (X NY), (10)

for all X, Y € A. In other words, d° is a generator for the bracket [,], making
A o Batalin—Vilkovisky algebra.

Proof. The assertion follows directly from formula (5) upon noticing that
because w® is top-dimensional, it is automatically d-closed: dw® = 0. 0O

Corollary 1.32. If the Gerstenhaber algebra admits an invertible Batalin—
Vilkovisky module it is locally a Batalin—Vilkovisky algebra.

Example 1.33. The Batalin—Vilkovisky module Q%, over the Gerstenhaber
algebra AT of Example 1.10 is invertible. Any nonvanishing top-degree form
w® € Qf; is an orientation for Q%,, where n = dim M. Thus, the Schouten—
Nijenhuis algebra AT}, is a Batalin—Vilkovisky algebra. For Calabi—Yau man-
ifolds, i.e., Q};, = Og, a generator for the Batalin—Vilkovisky algebra is given.

Definition 1.34. Let (L, s) be a differential Batalin—Vilkovisky module over
the differential Gerstenhaber algebra (A, 3). Then (L, s) is called invertible if
the underlying Batalin—Vilkovisky module L is invertible over the underlying
Gerstenhaber algebra A. An orientation for (A,3) is an orientation of the
underlying L.

Proposition 1.35. Let (L, s) be an invertible differential Batalin—Vilkovisky
module over the differential Gerstenhaber algebra (A,S). Then under the iso-
morphism W° defined by an orientation w® of L over A, the differential s
corresponds to the differential s. In particular, the induced differential d° on

A has the property
[do’ 5] =0,

besides satisfying (10). Hence (A,d°,s) is a differential Batalin—
Vilkovisky algebra.

Moreover, the cohomology h*(L, s) is an invertible Batalin—Vilkovisky mod-
ule over the Gerstenhaber algebra h*(A,3). We have h™(L,s) = L™/1, and the
image of any orientation of L over A under the quotient map L™ — L"/I
gives an orientation for h*(L,s) over h*(A,5s).

Proof. The equation so®° = (—1)¥ ¥° 03 follows immediately from [s,ix] =
i3(x) upon noticing that s(w) = 0. Since ¥° is therefore an isomorphism of dif-

ferential graded Og-modules, the cohomology is an isomorphism: h*(A, 3) =
h*(L, s). The rest follows from this. o

Example 1.36. For a closed 1-form s on M, the differential Batalin—
Vilkovisky module (23, s) over the differential Gerstenhaber algebra (AT, 5)
of Example 1.22 is invertible. Any trivialization of )}, defines an orientation.
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1.6 Oriented homomorphisms of invertible Batalin—Vilkovisky
modules

Definition 1.37. Let ¢ : A — B be a morphism of Gerstenhaber algebras
and ¢ : L — M a homomorphism of invertible Batalin—Vilkovisky modules
covering ¢. Let w$ and w$; be orientations for L and M, respectively. The
homomorphism ¢ : L — M is said to preserve the orientations (or be
oriented) if ¥ (w$) = w$;.

Lemma 1.38. Suppose we are given oriented invertible Batalin—Vilkovisky
modules L and M over the Gerstenhaber algebras A and B, making A and B
into Batalin—Vilkovisky algebras. Suppose ¢ : L — M 1is an oriented homo-
morphism of Batalin—Vilkovisky modules. Then under the identifications of L
and M with A and B given by w{ and w$;, the map v : L — M corresponds
to¢p: A— B. Hence ¢ : A — B commutes with d°. Thus ¢ is a morphism of
Batalin—Vilkovisky algebras: it respects A, [,], and d°.

Definition 1.39. Let (¢,0) : (L,s) — (M,t) be a homomorphism of invert-
ible differentiable Batalin-Vilkovisky modules over (¢, {,}) : (4,3) — (B, 1).
Let wg and w$; be orientations for L and M, respectively. We call (¢, 9)
oriented if ¢ (w}) = w$; and § (w)) = 0.

Proposition 1.40. Suppose (v,96) : (L,s,w3) — (M,t,ws,) is an oriented
homomorphism of oriented invertible differential Batalin—Vilkovisky modules
over (¢,{,}) : (A,3) — (B,1). Then (A,3,],],d°) and (B,t,[,],d°) are differ-
ential Batalin—Vilkovisky algebras. Transporting § : L — M wvia the identifi-
cations of L and M with A and B to a map 6° : A — B satisfying

8°(X) swnr = (—=1)°X8(X swy),
we get a triple
((bv {7}’60) : (A’gv [7]7do) I (B,t~, [,Ldo) ,

which satisfies the following conditions:

(i) ¢:(A,3) — (B,t) is a morphism of differential graded algebras;

(ii) we have the commutator property
pod® —d°o¢p=—2t08°+26°03,

or, by abuse of notation, [¢,d°] — 2[6°,5] = 0;
(#ii) the map 6° is a generator for the bracket {,},

{X, Y} =0°(X) A oY) + p(X) AG°(Y) = 0°(X AY);

(iv) the failure of ¢ to preserve |,] equals the failure of 5 to be a derivation
with respect to {,}, equation (4).



18 Kai Behrend and Barbara Fantechi

Thus (¢,{},6°) is a (first-order) morphism of differential Batalin—
Vilkovisky algebras.

The Lie bracket [,] is determined by its generator d°; and the bracket {, }
is determined by its generator 6. Thus, in a certain sense, the two brackets
are redundant. Moreover, condition (iv) is implied by conditions (ii) and (iii).

Remark 1.41. A morphism of differential Batalin—Vilkovisky algebras

(@,{,},09 : (4,5,[.],d°) — (B, £, [.].d°)

induces on cohomology

h*(¢) : (h*(A’g)’[’Ldo) - (h*(B’~)> Hvdo)

a morphism of Batalin—Vilkovisky algebras.

2 Symplectic geometry

Let (S,0) be a symplectic manifold, i.e., a complex manifold S endowed with
a closed holomorphic 2-form o € Q% that is everywhere nondegenerate, i.e.,
X — X o defines an isomorphism of vector bundles Ts — Qg. The (complex)
dimension of S is even, and we will denote it by 2n.

A submanifold M C S is Lagrangian if the restriction of this isomorphism
Ts|a — Qs|ar identifies Thy C Ts|pr with T3; C Qs|ar. An equivalent condi-
tion is that the restriction of o to a 2-form on M vanishes and that dim M = n.
More generally, we define an immersed Lagrangian to be an unramified mor-
phism i : M — S, where M is a manifold of dimension n, such that i*o € Q%
vanishes.

Holomorphic coordinates x1,...,Zn,p1,...,pn on S are called Darbouz
coordinates if

n
o= dei ANdx; .
i=1

Let us introduce one further piece of notation. For a subbundle F C Qg
we consider the associated bundles E+, EV, and E' defined by the short exact
sequences of vector bundles

0 E+ Ts EY 0

and

0 E Qs Ef 0.
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2.1 Lagrangian foliations

Definition 2.1. A Lagrangian foliation on S is an integrable distribution
F C Ts, where F' C Tg is a Lagrangian subbundle, i.e., X — X Lo defines an
isomorphism of vector bundles F — F+ C Qg.

All leaves of the Lagrangian foliation I’ are Lagrangian submanifolds of S.
The Lagrangian foliation F' C Ts may be equivalently defined in terms of the
subbundle £ = F+ C Qg. Usually, we find it more convenient to specify E C
Qg, rather than F' C Ts. In terms of E, we have the following isomorphism
of short exact sequences of vector bundles:

0 E+ Ts EY 0
0 E Qs Ef 0

Definition 2.2. A polarized symplectic manifold is a symplectic manifold
endowed with a Lagrangian foliation.

The canonical partial connection

Any foliation F' C Tg defines a partial connection on the quotient bundle
Ts/F:
V:Ts/F — FY @Ts/F, (11)

given by
Vy(X) = [, X],

for Y € F and X € Tg/F. This partial connection is flat. The dual bundle of
Ts/F is F+ C Qg. The dual connection
V:Ft —F'gFt
is given by
Vy (w) =Y Jdw

forY € Fand w € F+ C Qg.

Let us specialize to the case that F' is Lagrangian. Then we can transport
the partial connection from F* to F via the isomorphism F' = F--. We obtain
the canonical partial flat connection

V:F—F'®F

characterized by
VY(X)_IO' = Y_ld(X_lU),
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for Y € F and X € F. The dual of this partial connection is
V:FV —F'®FY,

which is characterized by
Vy (X so)=[Y,X]u0o,

forY € Fand X € Ts.

Oriented Lagrangian foliations

Definition 2.3. Let F' C Ts be a Lagrangian foliation on S. An orientation
of F'is a nowhere vanishing global section

0 € I'(S,A"F)

that is flat with respect to the canonical partial connection on F.
A polarized symplectic manifold is called oriented if its Lagrangian foli-
ation is endowed with an orientation.

Remark 2.4. If 8 is an orientation of the Lagrangian foliation F', then we
have V(0 1o™) = 0. (Note that § Jo™ € A"F*+ C A"Qg.)

2.2 Polarizations and transverse Lagrangians
Let E C Qg define a Lagrangian foliation on S.

Lemma 2.5. Let M be a Lagrangian submanifold of S that is everywhere
transverse to E. Then there exists (locally near M) a unique section s of E
such that ds = o and M = Z(s), i.e., M is the zero locus of s (as a section
of the vector bundle E ).

Definition 2.6. We call s the Euler form of M with respect to E, or the
Euler section of M in E.

Remark 2.7. Conversely, if s is any section of E such that ds = o, then Z(s)
is a Lagrangian submanifold. Thus we have a canonical one-to-one correspon-
dence between sections s of E such that ds = ¢ and Lagrangian submanifolds
of S transverse to E.

Lemma 2.8. Let (S, F,0,0) be an oriented polarized symplectic manifold and
E = Ft. Let M C S be a Lagrangian submanifold, everywhere transverse
to F. Then near every point of M there exists a set of Darbouzx coordinates
T1ye-yTpyPn---,Dn Such that

- 9 9 .
(ZZ)F:<0—p1...,m>,
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a o . .
(m)V(api) =0, foralli=1,...,n;
: _ 0 )
Moreover, in these coordinates we have
(i) E={dxyi,...,dr,);
(i) the Euler form s of M inside E is given by s = > p;da;.

3 Derived Lagrangian intersections on polarized
symplectic manifolds

Definition 3.1. Let (S, E,0) be a polarized symplectic manifold and L, M
immersed Lagrangians of S that are both transverse to E. Then the derived
intersection

Lmng M

is the sheaf of differential Gerstenhaber algebras (AT, t) on M, where ¢ is
the derivation on ATj; induced by the restriction to M of the Euler section
te EC Qg of L.

Since dt = o and M is Lagrangian, the restriction of ¢ to M is closed, and
so t is a derivation with respect to the Schouten—Nijenhuis bracket on ATy,

making (AT, t) a differential Gerstenhaber algebra.

Remark 3.2. After passing (locally in L) to suitable étale neighborhoods of
L in S we can assume that L is embedded (not just immersed) in S and that
L admits a globally defined Euler section ¢t on S. This defines the derived
intersection étale locally in M, and the global derived intersection is defined
by gluing in the étale topology on M.

Remark 3.3. If we forget about the bracket, the underlying complex of Og-

modules (AT, t) represents the derived tensor product

L
Or Qo s Owm
in the derived category of sheaves of Og-modules.

Remark 3.4. The derived intersection L Mg M depends a priori on the po-
larization E. We will see later (see the proof of Theorem 4.2) that differ-
ent polarizations lead to locally quasi-isomorphic derived intersections. (The
quasi-isomorphism is not canonical, since it depends on the choice of a third
polarization transverse to both of the polarizations being compared. It is not
clear that such a third polarization can necessarily be found globally.)

Remark 3.5. The derived intersection does not seem to be symmetric. We
will see below that L Mg M = M Mg L, where S = (S,—0), but only if S
is endowed with a different polarization, transverse to E. Then the issue of
change of polarization of Remark 3.4 arises.
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Definition 3.6. Let S, L, M be as in Definition 3.1. Let M be oriented, i.e.,
endowed with a nowhere-vanishing top-degree differential form w$,. (Since M
is Lagrangian, this amounts to the same as a trivialization of the determi-
nant of the normal bundle Ny;/¢.) We call the differential Batalin—Vilkovisky
algebra (ATyr,t,[,],d°), where d° is induced by w$, as in Section 1.5, the
oriented derived intersection, notation L mg M.

By a local system we mean a vector bundle (locally free sheaf of finite rank)
endowed with a flat connection. Every local system P on a complex manifold
M has an associated holomorphic de Rham complex (P ®o,, Q%,d), where
d denotes the covariant derivative.

Definition 3.7. Let (S, E,0) be a polarized symplectic manifold and L, M
immersed Lagrangians, both transverse to F. Let P be a local system on
M and @ a local system on S. The derived hom from Q|L to P|M is the
differential Batalin—Vilkovisky module

RHoms (Q|L, PIM) = (3, ® Q"M ® P,t)

over the differential Gerstenhaber algebra

Lng M = (ATM,t).

The tensor products are taken over Op;. The closed 1-form t € Q,; is the
restriction to M of the Euler section of L inside E. The Op;-linear differential
t is multiplication by ¢ and the C-linear differential d is covariant derivative
with respect to the induced flat connection on QV|y @ P.

Remark 3.8. If we forget about the C-linear differential d and the flat connec-
tions on P and @, the underlying complex of Og-modules RHomgs(Q|L, P|M)
represents the derived sheaf of homomorphisms RHomeg (Q|L, P) in the de-
rived category of sheaves of Og-modules.

3.1 The exchange property: Gerstenhaber case

Given two symplectic manifolds S’, S, of dimensions 2n’ and 2n, a symplectic
correspondence between S’ and S is a manifold C of dimension n + n’,
together with morphisms 7’ : C — S’ and 7 : C — S, such that

(i) 7o =7""0" (as sections of Q¢),
(i) C — S’ x S is unramified.

Thus a symplectic correspondence is an immersed Lagrangian of
S x8=(8x%x80—0).

Let C — S’ x S be a symplectic correspondence. We say that the immersed
Lagrangian L — S is transverse to C if
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(i) for every (@, P) € C xg L we have that
Telq ®Tilp — Tslx)

is surjective; hence the pullback L' = C'x g L is a manifold of dimension n/;
(ii) the natural map L' — S’ is unramified (and hence L’ is an immersed
Lagrangian of S’).

By exchanging the roles of S and S” we also get the notion of transversality
to C for immersed Lagrangians of S’

Exchange property setup

Let (S,E,o) and (S', E',0') be polarized symplectic manifolds. Let E+ C
Ts and E’ L c Ts be the corresponding Lagrangian foliations. Consider a
transverse symplectic correspondence C — S’ x S. This means that C' —
S’ x S is transverse to the foliation E'* x E+ of S’ x S. In particular, the
composition

To — 7*Tg — 7*EY

is surjective. Hence the foliation £+ C T pulls back to a foliation F' C T¢ of
rank n’. We have the exact sequence of vector bundles

0—F —Tc—a*E¥Y — 0. (12)

Similarly, the foliation E'" C T pulls back to a foliation F/ C T of rank n
with the exact sequence

0— F — T¢ — "B —0.
Moreover, F' and F’ are transverse foliations of C, and so we have
FoF =To=7"E" o 1*E".

Even though it is not strictly necessary, we will make the assumption that
F CTc descends to a Lagrangian foliation F' C Ts» and F’ C T descends to
a Lagrangian foliation F’ C Ts. This makes some of the arguments simpler.

Remark 3.9. The composition

1%/
4T O

F—>Tc—>7T/*TS/ 7T/*QS/ W’*E’T

defines an isomorphism of vector bundles 3 : F — 7/*E’ T and its inverse
n: o E'Y =5 F. We can reinterpret these as perfect pairings § : F ®o,
P DN O¢ and 1 : FY Q0 A AN O¢. These will be important in the
proof below.
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Now assume that we are given immersed Lagrangians L of S and M’ of
S’. Assume that both are transverse to C. Then we obtain manifolds L’ and
M by the pullback diagram

L' ——1
M——sC—=F (13)

M — 5

Then L’ is an immersed Lagrangian of S’ and M an immersed Lagrangian
of S.

Finally, we assume that L and M are transverse to E and that M’ and
L’ are transverse to E’. As a consequence, L’ is transverse to F’ and M is
transverse to F'.

Remark 3.10. Since M is transverse to F', we have a canonical isomorphism
Fly = Ny Also, since ’RJ*NM//S/ = Nuyc, we have ’/T/*E/L‘M = Nuyyc-
Thus, restricting the pairings 8 and 7 to M, we obtain

Bl 2 Narje @0y Nuye — Owms

and
nlar N]\\//[/C RO N]\\//I/C — Owm.

Lemma 3.11. If s € E is the Euler section of M in E and s’ the Euler
section of M’ in E', then the homomorphism B|pr : Ny — N]\\’MC fits into
the commutative diagram

Te Sl 00— = 0¢
| o
Telm — Nuyc M/C Qclm

Proof. Let P € M C C be a point. It suffices to prove the claim locally near
P.Let F' C Ts' be the Lagrangian foliation on S’, which pulls back to F' C T¢.
Then F is transverse to both E' and M’.

Choose holomorphic functions x1, ..., x, in a neighborhood of 7’/(P) in S’
such that dzy,...,dz, is a basis for E' C Qg. Also, choose y1, ...,y , such
that dyi, ..., dy, is a basis for FX C Qg. Then (z;,y;) is a set of coordinates
for S’ near 7'(P).

Let 5 be the Euler section of M’ in F* and let f be the unique holomorphic
function on S’, defined in a neighborhood of 7’/(P), such that f(7'(P)) =0



Lagrangian Intersections 25

and df = 5—s'. Then we haves = 5. 2
o'=3 m%dxl/\dy]

”» d
We remark that the composition T g, Og/ 4, Qg factors through
Naprysr — NV,/S,, because f vanishes on M’. The resulting map is, in
fact, the Hessmn of f. Via our identifications, this Hessian agrees with the
map Fly — odl | as7 1nduced by o, because, Wlth our choice of coordinates,

[ .
i By AL gy;ands' = -3, 2L 5a-dz;. Moreover,

F\M/ = Ny /s has basis 8_901 and E’T|M/ = NM,/S, has basis dy;.

To transfer this result from S’ to C, we remark that the pullback of 5 to C
is necessarily equal to the pullback of s to C'. Thus the composition do (5—73)
is equal to the Hessian of the pullback of f to C. This is, by what we proved
above, equal to the pullback of the map induced by o’. O

Theorem 3.12. There are canonical quasi-isomorphisms of differential Ger-
stenhaber algebras

(M x L)m C—LnAsM

'S’ xS
and
(M’ x L) Mg, o C — M’ Mg L.

In particular, the derived intersections L Mg M and M'fg L' are canonically
quasi-isomorphic.

Proof. Passing to étale neighborhoods of L in S and M’ in S’ will not change
anything about either derived intersection L Ms M or M’ Mg L', so we may
assume, without loss of generality, that

1 1s embedded (not just immersed) in and the same for n ,
() Li bddd( j i d)'S( d th fi M"S’)

(ii) L admits a global Euler section ¢ with respect to E on S (and M’ has the
Euler section s’ in E’ on §).

Then the Euler section of M’ with respect to E'on S is —s'. Thus the derived
intersection LMg M is equal to (ATyy,t) and the derived intersection M’ Mg L'
equals (ATy.,—35").

Pulling back the 1-form ¢ via 7, we obtain a 1-form on C', which we shall,
by abuse of notation, also denote by ¢. Similarly, pulling back s’ via 7’ we get
the 1-form s’ on C. The difference ¢t — s’ is closed on C, and thus we have the
differential Gerstenhaber algebra (ATq,t — 3). We remark that it is equal to
(M'"x L) g ¢ C.

Recall that we have the identification T = 7/*E’Y & 7*EV. Under this
direct sum decomposition ¢ — ' splits up into two components, —5' and .
Hence we obtain the decomposition

(ATe,t—3) =7 (AE" ,-3) @ 7*(AEY,1)

of differential graded O¢-algebras.
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Recall that Og: — O induces a quasi-isomorphism of differential graded
Ogr-algebras (AE",—5) — Oyp. Because the pullback M = M’ xg C is
transverse, we get an induced quasi-isomorphism

W/*(AE/\/, -5)— On

of differential graded O¢c-algebras. Tensoring with 7* (AEV,tN), we obtain the
quasi-isomorphism _ N
(ATc,t—3") — (AEY,)|m -

Noting that EV|yr = Tas, becausg M is an immegsed submanifold in S trans-
verse to F, we see that (AEY,t)[ps = (AT, t), and so we have a quasi-
isomorphism of differential graded O¢-algebras

¢: (ATo,t—3) — (AT, t). (14)
For analogous reasons, we also have the quasi-isomorphism
¢/ : (ATc,gf 54) — (ATL/, 754) .

The proof will be finished if we can enhance ¢ and ¢’ by brackets, making
them morphisms of differential Gerstenhaber algebras. We will concentrate
on ¢. The case of ¢’ follows by symmetry.

Thus we shall define a bracket

{,} 1 ATe ®c ATe — ATy (15)

such that (¢, {, }) becomes a morphism of differential Gerstenhaber algebras.
We use the foliation F' C T¢. It defines as in equation (11) a partial flat
connection
V: Tc/F — FV Roc Tc/F.

By the usual formulas we can transport V onto the exterior powers of T/ F.
In our context, we obtain

V:m*AEY — FY ®o. m*AE" .

To get the signs right, we will consider the elements of the factor FV in this
expression to have degree zero.

Let us write the projection ATc — 7*AEY as p. We identify FV|y with
Nypjc and (7 AEY)|y with ATy Then ¢ is the composition of p with re-
striction to M. We now define for X,Y € AT,

[X,Y} = n(V(oX)ar A V(pY)lar) - (16)
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In this formula, “A” denotes the homomorphism (all tensors are over Oyy)

(N]VVI/C ®ATM) ® (N]VVI/C ®ATM) s (Nx,/C@Nx,/C) ® ATy,
1 XQWRY r— 1w XAY.

There is no sign correction in this definition, because the elements of Ny, ¢ are
considered to have degree zero, by our sign convention. We have also extended
the map 7 linearly to

n: (N]\VMC Q04 N]x,/c) 0y, ATar — ATy .

Claim. The conditions of Definition 1.12 are satisfied by (¢, { }).

All but the last condition follow easily from the definitions. Let us check
condition (iv). We use Remark 1.14. The C-algebra AT is generated in de-
grees 0 and —1. As generators in degree —1, we may take the basic vector
fields of a coordinate system for C. We choose this coordinate system such
that M is cut out by a subset of the coordinates. Then, if we plug in genera-
tors of degree —1 for both X and Y in formula (4), every term vanishes. Also,
if we plug in terms of degree 0 for both X and Y, both sides of (4) vanish for
degree reasons. By symmetry, we thus reduce to considering the case in which
X is of degree —1, i.e., a vector field on C, and Y is of degree 0, i.e., a regular
function on C.

Hence we need to prove that for all X € T and g € O¢ we have

X(9)lm — p(X)|ar(glae) = {(E—3)X, g} — H{X, g} (17)

Let s denote the Euler section of M in E C Qg, and its pullback to C. We
will prove that

X ()l = p(X)|ar (glar) = {(5 - 3)X, g} (18)

and
{t-3)X, g} =t{X,g}. (19)

equation (18) involves only M, not L, and equation (19) involves only E,
not E’. Together, they imply equation (17).

All terms in these three equations are Og-linear in X and derivations in g,
and may hence be considered as O¢-linear maps T¢ — Der(Oc, Opr). Since
Der(Oc,Op) = Homo, (e, On) = Te|M, we may also think of them as
Oc¢-linear maps T — To|pm-

For example, the O¢-linear map

To —>T0‘M, (20)
X—{GE-9)X, -},
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is equal to the composition

d n

Te Oc Qc FY|u Flar Telar.
Then the commutative diagram (Lemma 3.11)
To ——> 0c —2> Q¢
Te|m Qclm FY\|um U Flm Te|m

J | A

NM/C é]\/}\&/c

and the fact that n is the inverse of § proves that (20) is equal to the
composition

P
Tc Telm Telw,
where p is the projection onto the the second summand of the decomposition
Telm =Tu © Nyje

given by the foliation F' transverse to M in C. If we denote by ¢ the projection
onto the first summand, we see that the map

Tc—>TC|M, (21)
X — p(X)|m (M),

is equal to

Tc Te|lm——Tc|ur -

Thus (20) and (21) sum to the restriction map Te — T, which is equal to
the map given by X — X (-)|as. This proves (18).
Now let us remark that for any closed 1-form u on C' we have

aly, X] =Y (a(X)) — X (u(Y)) .
Ifuen*E CQc, thenu(Y) =0, forallY € F. Soif Y € F we have
aly, X] =Y (u(X)) .

We have u[Y, X] = @(V(X)(Y)) by definition of the partial connection V and
we can write Y (a(X)) = (Y, d(a(X))). In other words, the diagram

Tc/F v Hom(F, Tc:/F)
| J
Oc Qc FY
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commutes. Thus, the larger diagram

®id
Tc—p>7r*Ev—V>FV®W*EV—>FV\M®TML>F|M ® Ty

\ La lid@ﬁ lid@ﬁM jid@ﬂhw
u

Oc FY FY |y ——— Flu

commutes as well. We can apply these considerations to u = ¢t — s. Then

=t — 5 and @|y; = t|p. Thus the upper composition in this diagram
represents the right-hand side of equation (19), and the lower composition
represents the left-hand side of equation (19). This shows that (19) holds and
finishes the proof of the theorem. a

3.2 The Batalin—Vilkovisky case

For the exchange property in the Batalin—Vilkovisky case, we require an ori-
entation on the symplectic correspondence C' — S’ x S.

Definition 3.13. Let 7 : C' — S be a morphism of complex manifolds, F' C
Tc and FcCT s foliations. The foliations F', F' are compatible (with respect
to m), if F — T — 7*Ts factors through ™ F — 7*Ts.

If F and F are compatible, then partial connections with respect to a pull
back to partial connections with respect to F'.

Now let (S, E,0), (S',E',0’) and C — S’ x S be, as in Section 3.1, polar-
ized symplectic manifolds with a transverse symplectic correspondence. Let
F and F’ be, as in 3.1, the inverse image foliations:

F——F*

E/J_ _ Sl

Furthermore, we suppose that F C Ty is a Lagrangian foliation on S" com-
patible with F' via 7’ and that F' C Ts is a Lagrangian foliation on S,
compatible with F” via 7. Since the composition F — /* Ty — 7/ *E’" is an
isomorphism, the map F — 7'*Tg identifies F with a subbundle of 7'*Tg.
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Since F and F have the same rank, it follows that F' — =’ *F is an isomor-
phism of subbundles of 7/*Ts. Similarly, we have an identification F/ — 7*F’
of subbundles of 7*Ts. )

_ Thus we have two Lagrangian foliations on S x S, namely E’ L x EL and
Fx F'. Both Lagrangian foliations are transverse to C, and they are transverse
to each other near C.

Definition 3.14.1f § € I'(S’, A" F) and ¢ € I'(S, A"F’) are orientations of
the Lagrangian foliations Fon S and F' on S, we call the data (ﬁ, 0, F, 0"
an orientation of the symplectic correspondence C' — S’ x S.

We call the transverse symplectic correspondence of polarized symplectic
manifolds C — S’ x S orientable if it admits an orientation.

Exchange property setup

Let (S,FE,0) and (S’,E’,0’) be polarized symplectic manifolds and C' —
S’' xS, (ﬁ 0, F' ,0") an oriented transverse symplectic correspondence. More-
over, let L — S and M’ — S’ be, as in Section 3.1, immersed Lagrangians
transverse to C' such that the induced M and L’ are transverse to £ and E’,
respectively. (This latter condition is satisfied if M’ and L are transverse to F’
and F' , respectively.) Pulling back 6 to C' gives us a trivialization of A" F and
restricting further to M gives a trivialization of the determinant of the normal
bundle A”INM/C, because of the canonical identification F'|a; = Ny c. Sim-
ilarly, 6’ gives rise to a trivialization of the determinant of the normal bundle
AnNL//C.

Finally, let P’ be a local system on S’, and @ a local system on S. Let
P =7""P and Q' = 7*Q be the pullbacks of these local systems to C.

Theorem 3.15. There exists a canonical quasi-isomorphism of differential
Batalin—Vilkovisky modules

RHomyg: ¢ (O|(M' x L), (P® Q"")|C) — RHoms (Q|L, P|M)
of degree —n/, covering the corresponding canonical quasi-isomorphism of dif-
ferential Gerstenhaber algebras of Theorem 3.12. Moreover, there is the quasi-
isomorphism of differential Batalin—Vilkovisky modules

RHomg 5 (O|(M' x L), (P®Q")|C) — RHomg (P"|M',Q""|L)

of degree —n, covering the other canonical quasi-isomorphism of differential
Gerstenhaber algebras of Theorem 3.12.

Thus, the derived homs RHomg(Q|L, P|M) and R'Homgl(P’V|M’, QV|L")
are canonically quasi-isomorphic, up to a degree shift n' — n.

Proof. Let t and s’ be as in the proof of Theorem 3.12. We need to construct
quasi-isomorphisms of Batalin—Vilkovisky modules
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w.0): (2 ePoQYt-s) — (WersQt)
and
(', 5 : ( CoPoQ " t— s’) — (Q‘L, oPQ", —s’) .

(Note that because the elements of P and @’ Y have degree zero, it is immate-
rial in which order we write the two factors P and Q’”.) The case of (¢',4)
being analogous, we will discuss only (1, d).

Let us start with . Denote the pullback of the orientation 6 € A" F to C
by the same letter, thus giving us a trivialization 6 € A™ F. Note that contract-
ing @ € Q% with 6 gives a form 0 J« in the subbundle 7*AE C Q%; see (12).
Recall the nondegenerate symmetric bilinear form 3 : Ny/o ®o,, Nyjo —
On of Remark 3.10. Since F|y = Njy/c, we may apply the discriminant of
0 to 0|y ® 0|as to obtain the nowhere-vanishing regular function

g=det 5 (0|m @0|m) € Opm (23)
on M. The homomorphism % is now defined as the composition

b Qe AL ARy, = 03,200,

Tensoring with P®Q’ Y we obtain the quasi-isomorphism of differential graded
modules

¥ : ( 5®P®Q’v,t—s) — (QM@P@Q’V,O
covering the morphism of differential graded algebras ¢ of (14). The formula
for v is
(@) =g-[0aal,,. (24)
(“Ceiling brackets” denote restriction.) Note that degy = —n/.
Let us next construct 6 : Q% — 3,. Recall the canonical partial flat

connection on the Lagrangian foliation FonS"
V.F a0, I,

defined by the requirement

V;,()?)JU' =Y d(X .0,

for }7, X € F. Since F is compatible with F via 7/ , we get the pullback partial
flat connection N B
V:1""F — FY ®p,n'"F.

Making the identification F = 7’ * I we rewrite this partial connection as

V:F—F ®0,F.
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It is characterized by the formula
VY(X)_IO' = Y_ld(X_lU),

for Y, X € F. We have written o for the restriction of the symplectic form o’
to C'. The dual connection

V:F' — FY®p, FY (25)

satisfies
Vy(X'L.0)=[Y,X'] 4o,

for Y € F and X' € T¢.
Recall that we also have the partial connection

V:m"E — FY ®o, mF (26)

defined by Vyw =Y Jdw, for Y € F and w € m*FE C Q¢. We used the dual
of this connection in the proof of Theorem 3.12.

Thus, we have partial flat connections on F' and 7*F, in such a way that
the canonical homomorphism F — 7*FE given by X — X o is flat. We hope
there will be no confusion from using the same symbol V for both partial con-

nections. As usual, we get induced partial connections on all tensor operations
involving F' and 7*E. We define

V2. 7m*AE — FY @ F¥ @ 7" AE
as the composition (all tensor products are over O¢)
T AE -5 FY @ m*AE 5 FV @ F¥ @ m*AE.

We will also need
V3:0c — F'®F @FY.

To simplify notation, let us assume that the closed 1-form s — s’ on C
is exact. Let I be the ideal of M in O¢. Then there exists a unique regular
function f € I? such that df = s — s’. The fact that f is in I? follows because
s and s vanish in Q¢|arz, so df vanishes in Q¢|ps. Then the Hessian of f is a
symmetric bilinear form Ny, c ®o,, Narjc — Ownr, and is equal to S|y, by
Lemma 3.11.

Finally, we define 4 : Q¢ — Qf, as a certain C-linear combination of the
two compositions

2
EJL)’/T*AEL)FV@OCFV@OC’/T*AE

lresM
n

Ny o ®@ou Nypjo ®ou Uy —— Q8 —= QY
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and

V3 (f)®id
T AE —— FV @ 1*AE ) (FV)®* @ m*AE

]GJ . lreSM

Qe (NV)®1 @ 03, -0 08, — 2209,

Here 1 and 7 ® i are the linear extensions of the map 7 from Remark 3.10. In
fact, we define

5() = —4g-n([V*(020)],,) +39-men)(IVX(f@V(daa),,).

Since P and Q" have flat connections on them, their pullbacks to C' do, too.
In particular, we can partially differentiate. Thus, § extends naturally to the
map6: QLR PRQ"Y - QuePoQ".

We need to check properties (i) and (ii) of Definition 1.24. To simplify
notation, we will spell out only the case in which P = Q' = (O¢,d), leaving
the general case to the reader.

Proving (ii) is a straightforward but tedious calculation using the prop-
erties of the partial connections on 7*AFE, 7*AEY, F, and FV, in particu-
lar, compatibility with contraction. One can simplify this calculation using
Remark 1.27: choose C-algebra generators for AT in such a way that the
generators of degree —1 are flat for the partial connection (see below). This
reduces to checking (8) for the case in which X and Y are of degree 0, i.e.,
regular functions x and y on C. The claim is that

d(zyw) + xyd(w) + {2, y}P(w) = 26(yw) + yé(aw) ,

for all w € Q¢. We leave the details to the reader, and only write down the
terms containing dr ® dy and only after canceling g - (6 Jw)|as. In fact, from
the term 0(zyw) we get the contribution

1
—én[dx ®@dy +dy @dz],, ,
and from the term {z,y}¥(w) we get the contribution

nldz ®dyl,, ,

and these two expressions do indeed add up to 0, because 7 is symmetric.
To prove (i), we shall use Remark 1.28. We will carefully choose a local
trivialization of the vector bundle T, since this will give local generators for
ATec as an O¢-algebra.
The equations we wish to prove can be checked locally. So we pick a point
P € M and pass to a sufficiently small analytic neighborhood of P in C.
Choose holomorphic functions pi, ..., p, in a neighborhood of 7/ (P) in S’
satisfying
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i) p1,...,pn cut out the submanifold M’ C S’,

ii) dpi,...,dp, form a frame of FV,

iii) dp1,...,dp, are flat for the partial connection on F v,

iv) @ a(dpy A+ ANdpy) = 1.

Denote the pullbacks of these functions to C' by the same letters. Then these
functions on C' cut out M; their differentials are flat for the partial connection
(25) and form a frame for F'V. Also, the last property remains true as written.
Such p; exist by Lemma 2.8.

Similarly, we choose holomorphic functions x1,...,z, in a neighborhood
of 7(P) in S such that dx1,...,dz, form a frame for the subbundle E' C Qg.
Then the dz; are automatically flat for the partial connection on E. Again,
we denote the pullbacks to C' of these functions by the same letters. For the
functions z1,...,2z, on C we have that their differentials dz,...,dx, form
a flat frame for the subbundle 7*E of Q. In particular, the restrictions of
T1,...,T, to M C C form a set of coordinates for M near P.

Then the union of these two families dp1, . .., dpy/, dz1, . .., dx, forms a ba-
sis for Q. We denote the dual basis (as usual) by 0%1, e %"/’ 0%1, ce %
We have

(
(
(
(

1 ’ ’ 8 8
0= (—1)zn (=1 _Z_ AL A —— |
( ) apl apn’
We define
w® =dpy1 A Ndpy Ndzy A -+ ANdzy, ,
which is a basis for %, as a ATc-module. Note that
0w =dxi A ANdxy, .

We denote the restriction to M of dxy A --- A dzx, by 7°. This is a basis for
Q3 as a ATp-module. We have
[0 0w p=7°.

We now have to prove that for X = 0%_ and X = % we have
i J

P(d(X 3w°)) — (=1 d(P(X 1w°))
= 21"t AS(X 2w®) +26((t—8) A (X 5w%)). (27)
For any of our values for X we have d(X Jw®) = 0. So the first term in (27)
always vanishes. Similarly, the third term always vanishes, because all of our
values for X, as well as 6 and w®, are flat for the partial connection V. Thus

only the second and fourth terms of (27) contribute.
Consider the fourth term. We have

(=8N (X 2w®) =6(1t—5) A (X2w®))+6(df A(X sw®))
=5((X a(t—s))w) +0(X(f)w®).
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Since t — s is a section of 7*F and is also a closed 1-form, ¢ — s is flat with
respect to the partial connection V. Since X is by assumption also flat with
respect to V, it follows that V(X L (¢ — s)) = 0, and hence the fourth term of

(27) is equal to
S((t— )N (X ow?) =0(X(f)w®).
Thus, (27) reduces to

’

(—1)" d(B(X 2w)) = —25(X(f)w?). (28)

Let us first consider the case that X = 8%_. In this case 6 A X = 0, so that
the left-hand side of (28) vanishes. The claim is therefore that

0(gmw?) =0,
for all: = 1,...,n/. This is equivalent to
n(1V25515,) = e m (V2 11, @ V8L ) (29)

To check (29), let us write it out in coordinates. The right-hand side is equal to

o f ‘ f P ‘
;mzmnkm OprOPIOP |,y OPnOps ZZW OpkdpiOpm |,

p=0

- Zn 8pk8pz<9pz

)
p=0

which is indeed equal to the left-hand side of (29).
Now let us consider the case X = % Recall that the ideal I defining M

is given by I = (p1,...,pn). Since f € I?, we still have % € I? and hence
\Y% (%) |p=0 = 0. Thus, the right-hand side of (28) is equal to

—25(%w°) :g~n(fV2—LlM)T°+0
=g-tr(n- 53 H(f)) ™,

because differentiating with respect to x; commutes with restriction to M =
{p = 0}. (We have written H(f) for the Hessian of f.) On the other hand,
the left-hand side of (28) is equal to

(—D)"d(p(X 5w)) = 2L 7°,

and thus our final claim is equivalent to

SL =g-tr(n- 5 H(f)).
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Recalling that ¢ = det H(f) and that 7 is the inverse of H(f), this claim
follows from the following:

Claim. Let A be an invertible square matrix of regular functions on the
manifold M. Then for every vector field X on M we have

(det A) "' X (det A) = tr (A7 X (A4)).

This last claim is both well known and easy to check. O

3.3 The oriented Batalin—Vilkovisky case

The setup is exactly the same as in Section 3.2, with one additional ingredient,
namely, an orientation of C, i.e., a nowhere-vanishing global section wg €
Qg*”/. We require w@ to be compatible with the orientation (F, F’,6,0") on
the symplectic correspondence C' — S’ x S in the following sense: we ask that
(i) V(0iwg)=0,whereV:7n*E — FY®n*E is the partial connection (26)
on Ft+ = 7*E defined by the foliation F of C;
(i) V' (0’ swg) = 0, where V' : #/*E' — F'Y @ n’*E’ is the corresponding
partial connection defined by the foliation F’ of C.
Now, (6 swg) |ar is an orientation of M (recalling that (7*E)|ay = Q).
We shall denote it by w$,. Similarly, (¢’ Jwg) |1+ is an orientation of L', which

we shall denote by wj,. This orients the three Lagrangian intersections in
Theorem 3.12.

Theorem 3.16. The quasi-isomorphisms of differential Gerstenhaber alge-
bras of Theorem 3.12 are canonically enhanced to quasi-isomorphisms of dif-
ferential Batalin—Vilkovisky algebras
/ o] o]
(M X L)@g/XsC—»LﬁﬂsM
and
/ o / o /

(M XL)@ngSC*)M (mg/L .
In particular, the oriented derived intersections L Mg M and M’ rm%, L' are
canonically quasi-isomorphic.

Proof. In view of Theorems 3.12 and 3.15 and the results of Section 1.6, we
only need to check that

(i) ¥ (wg) =wir,

(i) ¢ (we) = wis,

(ii) & () = 0,

(iv) ¢’ (wg) =0,

where (¢,6) and (¢’,4¢’) are the homomorphisms of differential Batalin—
Vilkovisky modules constructed in the proof of Theorem 3.15. But the first

two follow from the above definitions and the last two from the above
assumptions. 0O
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Remark 3.17.If C = S and C' — S x S is the diagonal, a canonical choice
for the orientation of C' is wg = 0", by Remark 2.4. In this case, we also
have wj, = 0|nr, via the identification Q}, = A"Ny;/g = A"F|p. Similarly,
wj—:, = QI‘L/.

4 The Gerstenhaber structure on Zor
and the Batalin—Vilkovisky structure on &xt

4.1 The Gerstenhaber algebra structure on Zor

Let L and M be immersed Lagrangians in the symplectic manifold S. Write
Tor,(Or,Own) = Tor®$(Or, Opr). The direct sum

Tor, (O, On) = @ Torly, (O, Onr)

K2

is a graded sheaf of Og-algebras, concentrated in nonpositive degrees.

Remark 4.1. To be precise, we have to use the analytic étale topology on
S to be able to think of Torg, (O, Onr) as a sheaf of Og-algebras. If L and
M are embedded, not just immersed, we can use the usual analytic topol-
ogy. Alternatively, introduce the fibered product Z = L xg M and think of
Tory, (Or, On) as a sheaf of graded Oz-algebras.

Theorem 4.2. There exists a unique bracket of degree +1 on Torg, (Or, Onr)
such that

(i) Tory,(Or,On) is a sheaf of Gerstenhaber algebras;

(i) whenever E is a (local) polarization of S such that L and M are transverse
to E, then this sheaf of Gerstenhaber algebras is obtained from the derived
intersection L Mg M (defined with respect to E) by passing to cohomology.

Proof. Without loss of generality, assume that L and M are submanifolds.
For every point of S we can find an open neighborhood in S over which
we can choose a polarization E that is transverse to L and M. This proves
uniqueness.

For existence, we have to prove that any two polarizations E, E” give rise
to the same bracket on Torg, (Or, On). This is a local question, so we may
choose a third polarization E’ that is transverse to both E and E”, and also
to L and M.

We will apply the exchange property, Theorem 3.12, twice, first to the
symplectic correspondence A : C = S — S x S between the polarized sym-
plectic manifolds (S, E’) and (S, E), then to the symplectic correspondence
A:C =8 — S xS between (S,E") and (S, E’). We obtain the follow-
ing diagram of quasi-isomorphisms of sheaves of differential Gerstenhaber
algebras:
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(M xLynZ>F s ——Laf M

J

(L x M)nZ xF'g MaE L (30)

%

Laf" M

We have included the polarizations defining the derived intersections in the
notation.

Passing to cohomology sheaves, we obtain the following diagram of iso-
morphisms of sheaves of Gerstenhaber algebras:

TOT:QSXS(OMXL,Os) —>TOT:95(OL,OM)

|

Tory,, s (Orxn, Os) Tory, (O, Or)

|

TOT:DS (OL, OM)

One checks that all these morphisms are the canonical ones, and hence that
the composition of all four of them is the identity on Torg, (O, On). If the
identity preserves the two brackets on Zorg, <(Or,0n) defined by E and E”,
respectively, then the two brackets are equal. 0O

4.2 The Batalin—Vilkovisky structure on &rt

Let L and M continue to denote immersed Lagrangians in the symplectic
manifold S. Furthermore, let P be a local system on M, and @ a local system
on L. The direct sum

&ty (Q, P) @Ext

is a graded sheaf of Zorg,  (Or, Opr)-modules.
Theorem 4.3. There exists a unique C-linear differential
d: Sxtég (Q,P) — Ext”l(Q P)

(for all i) such that

(i) Exty,(Q,P) is a sheaf of Batalin—Vilkovisky modules over the Gersten-
haber algebra Torg, (Or, On);
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(ii) whenever E is a (local) polarization of S such that L and M are trans-
verse to E, and Q is a local system on S restricting to Q on L, this
sheaf of Batalin—Vilkovisky modules is obtained from the derived hom
RHoms(Q|L, P|M) (defined with respect to E) by passing to cohomology.

Proof. Uniqueness is clear. Let us prove existence. For this, we assume that we
are given two polarizations £, E”, transverse to L and M, and two extensions
Q and Q of Q to S. To compare the derived homs RHom (Q|L, P|M) and
R'Homs (Q\L, P|M), we choose (locally) a third polarization E’, transverse
to L and M, and E and E”, and an extension P of P to S. These choices
make the five derived homs in diagram (32), below, well-defined.

To define the homomorphisms of differential Batalin—Vilkovisky modules
n (32), we orient the symplectic correspondence given by the diagonal of S in
the canonical way, as in Remark 3.17, by ¢™. The corresponding symplectic
correspondence given by the diagonal of S is hence oriented by (—1)"¢".
We also orient the three Lagrangian foliations F', I, I on S, by choosing
6 € A"F, 0" € A"F', and 0" € A"F”. (Note that F = F = E*, etc., in
our case.) But the choice of 6, 8” is not completely arbitrary. In fact, notice
that both F|;, and F”|;, are complements to T;, C Ts|z, so that we get a
canonical identification F|, AN F"|r,. We choose 0 and 6" in such a way that
the composition

9 ~ 9"V
L et Flp—2 det P — " 0, (31)

Or,

is equal to the identity.

Now, by applying the exchange property, Theorem 3.15, twice, as in the
proof of Theorem 4.2, we obtain the following diagram of quasi-isomorphisms
of differential Batalin—Vilkovisky modules, covering diagram (30) of differen-
tial Gerstenhaber algebras:

RHomZ * (O|(M x L), (P ©Q")|S) ——> RHomE(Q|L, P|M)

\

RHom” %" (O|(L x M), (@, @P)|S) — RHomE (P |M,Q¥|L) (32)

\

RHomE" (Q|L, P|M)

When passing to cohomology, the first and the last items in this diagram are
both equal to &xty, +(@, P). We claim that the induced isomorphism on co-
homology is equal to the identity. For simplicity, we will prove this for the
case that P and (Q are the trivial rank-one local systems. Then the differential
Batalin—Vilkovisky modules of diagram (32) are invertible. We orient them
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using o”, (—=1)"0™ and (0 50™)|p, (0’ 2o™)|r and (07 50™)|ar, respectively,
as in Section 3.3. Then the homomorphisms in diagram (32) do not preserve
orientations according to Definition 1.37, because of the presence of the func-
tions g, defined in (23), entering into the definition of v, equation (24).

Let us call these functions, from the top to the bottom, g1, g2, g3, g4. We
also need more detailed notation for the various maps 3 of Remark 3.9 and
introduce

ﬁij F(Z) —>TS J—U>Qs—>F‘(j)v,

where 7, j = 0, 1,2 denotes the number of primes on the letter F'. Using similar
notation, we introduce the functions

hij = (09)" o det Bi; 000 .

These are functions on S, invertible where they are defined.
On the submanifold M, we have canonical isomorphisms «;; : F(i)| M —
FU)|yr and functions

aij = (09) "t odet a0 0@ .

Similarly, on L, we have canonical isomorphisms 7;; : F@|, — FW|, and
functions 4 4
cij = (0Y) L odet a0 0@ .

With this notation we now have

g1 = hoao1,
g2 = hiocio,
g3 = hiaci2,

g4 = ha1a21.

Hence the failure of the maps in (32) to preserve orientations is given by the
product

92((=1)"g4) _ higcrohaiast _ cioam

g1((=1)"g3)  horaothizciz  agicia’
noting that h;; is dual, and hence equal, to hj;.

Now note that we have two orientations on M, namely (0 50™)|) and

(0" 20™)|ar- On Extyy (Or, Opr), this difference induces a factor of agg. Thus,
to prove our claim, we need to show that

C10021
a0 — —— .
ap1€12
Now, it is clear that a;ja;x = a:, and c;jcjr = ci. Thus, our claim is equiv-
alent to

Co0 — 1,

which is true, because cg2 is the homomorphism of diagram (31), which is the
identity, by assumption. O
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4.3 Oriented case

Theorem 4.4. Let L and M be immersed Lagrangians of the symplectic man-
ifold S of dimension 2n. Then every orientation of M defines a generator
for the bracket of Theorem 4.2. More precisely, every trivialization w$; of
O defines a differential d° on Torg, (Op,On) making the latter a sheaf of
Batalin—Vilkovisky algebras.

Proof. From Example 1.36 and Proposition 1.35, we get that w}, defines a
differential d° on Zorg, (Or, Onr). We have to show that d° does not depend
on the polarization. For this we repeat the proof of Theorem 4.3, making
sure that all morphisms of differential Batalin—Vilkovisky modules preserve
orientations. For this, we have to be more careful with our choices. Of course,
F and I, the two polarizations to be compared, are given. But we will choose
F’ in a special way, as follows.

First note that on L, both F|;, and F"|;, are complements to T}, inside
Ts|r. Thus we obtain an isomorphism ¢ : F|;, — F”|p, characterized by
¢(X)—X € Ty, for all X € F|r. There exists a canonical subbundle H C Ts|r,
such that H is complementary to F|, F"” |, and Tp,, and the isomorphism b
F|;, — F"|p, characterized by gg(X)fX € H is equal to —¢. (Essentially, H is
obtained by negating the F"-components of the vectors in T}, but preserving
their F-components.) The subbundle H C Tgs|y, is isotropic, so we can extend
it, at least locally, to a Lagrangian subbundle F’ C Ts. With this choice we
will have

hi1o hio\Vv
=9 29— (1)
hi <h12) (=1)"coz,

and hence
92 = (—1)"gs.
Now, finally, we choose first an orientation w9 of L and then 6 and 6’ in
such a way that
g1(0 50™) |\ = Wiy,

G20 50™)as = .
Then, by the choice of F’, we have
93(0’ | (71)”0“) ‘M = wz .

We choose 0”7 in such a way that cgo = 1, as above. Then hijg = (—1)"hq2,
and hence hgy = (—1)"h2; and hoiapiazg = (—1)"hoias1. In other words,

grazo = (—1)"ga, or
g4(9//4(71)n0n)‘M = 91(940")|M = wfw .

Now all four homomorphisms of diagram (32) preserve orientations, and
hence they are equal to the morphisms of diagram (30). This finishes the proof.
O
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Corollary 4.5. In the nonoriented case, the sheaf of Gerstenhaber algebras
Tory,(Or, On) is locally a Batalin—Vilkovisky algebra, albeit in a noncanon-
ical way.

4.4 The exchange property

Let S and S’ be complex symplectic manifolds, of dimensions 2n, 2n/,
respectively.

Definition 4.6. A symplectic correspondence C — S’ x S is called regular
if for every point P € C one can find polarizations E C g, defined in a
neighborhood of ©(P) € S, and E' C Qg, defined in a neighborhood of
7'(P) € S’, such that

(i) C is transverse to B’ x E* inside $' x S;

(i) the induced foliations F, F’ on C descend to foliations F, F’ on S and
S, respectively, as in Section 3.2.

Theorem 4.7. Let C — S’ x S be a reqular symplectic correspondence. Let
L — S be an immersed Lagrangian transverse to C and M’ — S’ an immersed
Lagrangian transverse to C'. Then there is a canonical isomorphism of sheaves
of Gerstenhaber algebras

TOT:?S/ (OL’, OM/) = TOT:?S(OL’ OM) N

with notation as in (5.2).
If L, M’ and C are oriented, then this is an isomorphism of sheaves of
Batalin—Vilkovisky algebras.

Proof. We apply the exchange property, Theorem 3.12, twice, first to C' —
S"x S, thento S’ — 8" x 5. ]

Theorem 4.8. Let C' — S’ x S be a reqular symplectic correspondence. Let
L — S be an immersed Lagrangian transverse to C and M’ — S’ an immersed
Lagrangian transverse to C. Let P’ be a local system on M' and Q a local
system on L. Then there is a canonical isomorphism of sheaves of Batalin—
Vilkovisky modules

Eaty, (Qlr, P') = &ty (Q, P'lm)
covering the isomorphism of sheaves of Gerstenhaber algebras of Theorem 4.7.

Proof. We apply the exchange property, Theorem 3.15, twice, first to C' —
S'x S, then to 8" — S’ x.S’. The details are similar to the proof of Theorem 4.3.
O
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An example

Let M be a complex manifold and S = Q) the cotangent bundle with its

canonical symplectic structure. There are two typical examples of immersed

Lagrangians:

(i) the graph of a closed 1-form w € I'(M,Qs), which we denote by I, C
Q. This is in fact embedded.

(i) the conormal bundle Cy/p — Qnr, where Z — M is an immersion of
complex manifolds, i.e., a holomorphic map, injective on tangent spaces.

Given one of each, we consider the Lagrangian intersection I, U C/5s. Note
that it is supported on Z(w) N Z. We use the notation

Tu(w, 2) =Tory, (Or,,0cy,,)

and
5M(wa Z) = gxtbQM (OFU) ) OCZ/M)'

Let f : M — N be a holomorphic map between complex manifolds M,
N. Consider the symplectic manifolds S’ = Qs and S = Qu. The pullback
vector bundle f*Qy is then a symplectic correspondence C:

Oy —Qn

|

Qs

Let us assume that f*Qy — Qp/ fits into a short exact sequence of vector
bundles
OﬁK%f*QN%QM%QM/N%O .

Then the symplectic correspondence C' = f*Q) is regular.

If Z — M is an immersion (i.e., injective on tangent spaces) such that
the composition Z — N is also an immersion, then the conormal bundle
Cyz/m — Qu is an immersed Lagrangian transverse to f*Qy. The corre-
sponding immersed Lagrangian of {2y is the conormal bundle Cz /.

Ifw e I'(N,Qy) is a closed 1-form, then its graph is a Lagrangian subman-
ifold of Qp, which is automatically transverse to f*Qy. The corresponding
Lagrangian submanifold of €, is the graph of the pullback form f*w.

Corollary 4.9. There is a canonical isomorphism of Gerstenhaber algebras
with Batalin—Vilkovisky modules

TN(w,Z):TM(f*w,Z), SN(w,Z):é’M(f*w,Z).
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5 Further remarks

5.1 Virtual de Rham cohomology

Let M and L be Lagrangian submanifolds of the complex symplectic manifold
S. Let X be their scheme-theoretic intersection. Let £ = &xt, (O, On) be
endowed with the differential d from Section 4.2. The sheaf £ is a coherent
Ox-module; the differential d is C-linear.

Definition 5.1. We call (£,d) the virtual de Rham complex of X.
Theorem 5.2. The complex (€,d) is constructible.

Proof. The claim is local in X, so we may assume that the symplectic manifold
S is the cotangent bundle of the manifold M, that the first Lagrangian M
is the zero section, and that the second Lagrangian L is the graph of an
exact 1-form df, where f : M — C is a holomorphic function. In this form,
the theorem was proved by Kapranov; see the remarks toward the bottom of
page 72 in [2]. O

Corollary 5.3. The hypercohomology group HP(X, (S,d)) is finite-dimen-
sional. Moreover, for Z C X Zariski closed, H%(X, (E,d)) is also
finite-dimensional.

By abuse of notation, we will write HP(X, ) and H (X, ), instead of
HP (X, (€,d)) and HY (X, (£,d)), respectively.

Definition 5.4. We call the hypercohomology group HP(X,E) the pth
virtual de Rham cohomology group of the Lagrangian intersection X.

Corollary 5.5. The function

Pr— Y (~1)" dime H}py (X, €)

s a constructible function x : X — Z.
We may think of x : X — Z as the fiberwise Euler characteristic of the
constructible complex (€, d).
5.2 A speculation in Hodge theory
Remark 5.6. There is the standard spectral sequence of hypercohomology
EP" = HI(X,EP) :>]H1p+q(X, (E,d)). (33)

This should be viewed as a generalization of the Hodge to de Rham spectral
sequence.
There is also the usual local to global spectral sequence

B = HP(X,E7) = Extggq((’)L, Om). (34)

One may speculate to what extent these spectral sequences degenerate.



Lagrangian Intersections 45

Example 5.7. For example, if M is a manifold and S = Qj; the cotangent
bundle with its standard symplectic structure, and we consider the intersection
of M (the zero section) with itself, we get

Extty (Onr, Onr) = O

Moreover, (€,d) = (%;,d) is the de Rham complex of M, and Lagrangian
intersection cohomology is equal to de Rham cohomology of M. Thus the
spectral sequence (33) is the usual Hodge to de Rham spectral sequence:

EY? = HY(M,QP) = HPTI (M, (Q),,d)).
On the other hand, we have
Extl, (On, On) = @ H!(M,Q9),
p+q=i

in other words, the Er-term of the spectral sequence (34) is equal to the
abutment. Thus Ext (O, Onr) is equal to Hodge cohomology of M.
We may, then, rewrite the Hodge to de Rham spectral sequence (33) as

Ext{,, (Onr, Onr) = HY (M, (€,d)).
This, of course, degenerates if M is proper and gives the equality
Ext( (O, On) = HY (M, (€,4d)), (35)
if M is Kahler, by Hodge theory.
The following conjecture is thus a generalization of Hodge theory:

Conjecture 5.8. Under sufficiently strong hypotheses, including certainly
that the intersection X = LN M is complete and some analogue of the Kdhler
condition, for example that X is projective, we have

HP(X, (5,d)> = EXt%S(OL,OM) .

5.3 A differential graded category

Let S be a symplectic variety and 4 = {U;} an affine open cover of S. Con-
struct a category A as follows: objects of A are pairs (M, P), where M is
a Lagrangian submanifold of S and P is a local system on M. We do not
assume that M — S is a closed immersion, it suffices that this map be affine.
We often omit the first component of such a pair (M, P) from the notation.

For objects (M, P) and (L, Q) of A we define Hom4(Q, P) to be the total
complex associated to the double complex

C* (U, (&°,d))

given by Cech cochains with respect to the cover 4 with values in the vir-
tual de Rham complex £ = &xt, (Q, P) (endowed with the differential from
Theorem 4.3).
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Theorem 5.9. This defines a differential graded category.

Proof. For simplicity of notation, we deal only with Lagrangian submanifolds
M, N, and L, leaving the generalization to local systems to the reader. There
are natural Yoneda pairings (all tensors and &xt’s are over Og)

Sfti(OM, On) ® 5$tj(ON, OL) — 51’ti+j(OM, Or).

We need to show that these are compatible with the canonical differential
of Section 4.2. This is a local question, so we may assume that S has three
Lagrangian foliations F'; F’, and F”, all transverse to each other, and all
transverse to M, N, L. Let s, t’, u” be the Euler sections of M, N, L with
respect to F; F', and F"”, respectively. Then we can represent Ext®(Opr, On)
as the cohomology of (Q%,s —¢'), and &xt*(On,OL) as the cohomology of
(Q%,t' —u”), and &xt*(On, Or) as the cohomology of (2%, s —u”). So the
claim will follow if we can produce a morphism of complexes

Q%5 — ) @ (Ot — ") — (O, 5 — u") .
But this is easy: just take the cup product. O

Remark 5.10. The cohomology groups of the hom-spaces in A are the virtual
de Rham cohomology groups of Lagrangian intersections.

Remark 5.11. The category A does not depend on the affine cover 4l in any
essential way.

Remark 5.12. Of course, it is tempting to speculate on relations of A to the
Fukaya category of S. We will leave this to future research.

5.4 Relation to vanishing cycles

Let S be a complex symplectic manifold of dimension 2n. Let L, M be La-
grangian submanifolds, and X = L N M their intersection.

In [1], we introduced for any scheme X a constructible function vx : X —
Z. The value vx (P) is an invariant of the singularity (X, P). In our context,
the singularity (X, P) is the critical set of a holomorphic function f : M — C,
locally defined near P € M. Hence (see [1]), the invariant vx (P) is equal to
the Milnor number of f at P, i.e., we have

vx(P) = (-1)"(1 - x(Fp)),
where Fp is the Milnor fiber of f at the point P.
Conjecture 5.13. We have x(P) = vx(P).

This conjecture would follow from Remark 2.12 (b) of [2]. Note that
Kapranov refers to this as a fact, which is not obvious, although probably
not very difficult.
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Conjecture 5.14. If the intersection X is compact, so that the intersection
number #V7(X) is well-defined, we have

#9(X) =) (-1)'dimH' (X, €),

i

i.e., the intersection number is equal to the virtual Euler characteristic of
X, defined in terms of virtual de Rham cohomology.

To see that Conjecture 5.13 implies Conjecture 5.14, recall from [1] that
the intersection X has a symmetric obstruction theory. The main result of [1]
implies that #V7(X) = x(X, vx). But if x = vx, then x(X,vx) = x(X, x) =
(1)t dimHY(X, E).

Remark 5.15. If S is the cotangent bundle of M, and L is the graph of df,
where f : M — C is a holomorphic function, then the Lagrangian intersection
X = LN M is the critical set of f. Thus X carries the perverse sheaf of van-
ishing cycles ;. In [2], Kapranov constructs, at least conjecturally, a spectral
sequence whose Es-term is (€, d) and whose abutment is, in some sense, ®;.

Conjecture 5.16. In the general case of a Lagrangian intersection X =
LN M inside a complexr symplectic manifold S, we conjecture the existence
of a natural perverse sheaf on X that locally coincides with the perverse sheaf
of vanishing cycles of Remark 5.15. There should be a spectral sequence re-
lating (€,d) to this perverse sheaf of vanishing cycles. We believe that [3]
may be related to this question. This conjecture, in some sense, categorifies
Congjecture 5.13.
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Summary. Let X be a proper scheme over the field F' of functions meromorphic
in an open neighborhood of zero in the complex plane. The scheme X gives rise
to a proper morphism of complex analytic spaces X* — D* and, if the radius of
the open disc D is sufficiently small, the cohomology groups of the fibers X} at
points t € D* form a variation of mixed Hodge structures on D*, which admits a
limit mixed Hodge structure. The purpose of the paper is to construct a canonical
isomorphism between the weight zero subspace of this limit mixed Hodge structure
and the rational cohomology group of the non-Archimedean analytic space X"
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Introduction

Let X be a proper scheme over the field F' of functions meromorphic in an
open neighborhood of zero in the complex plane C. The scheme X gives rise
to a proper morphism of complex analytic spaces X" — D* = D\{0}, where
D is an open disc with center at zero (see Section 3). It is well known that
after shrinking the disc D (and replacing X" by its preimage), the cohomol-
ogy groups H*® (Xth, Z) of the fiber X at a point t € D* form a local system
of finitely generated abelian groups, and that the corresponding action of the
fundamental group 7 (D*) = m(D*,t) on H' (X}, Z) is quasi-unipotent. Fur-
thermore, the mixed Hodge structures on the above groups define a variation
of mixed Hodge structures on D*. Let D* — D* be a universal covering of
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D*, and X" = X" x p- D*. Then the cohomology group H'(X", Z) admits a
mixed Hodge structure, which is the limit (in a certain sense) of the above vari-
ation of mixed Hodge structures on D* (see [GNPP, Exp. IV, Theorem 7.4]).
One of the purposes of this paper is to describe the weight zero subspace
WoH! (X", Q) in terms of non-Archimedean analytic geometry.

Let K be the completion of the discrete valuation field F', and fix a corre-
sponding multiplicative valuation on it. The scheme X gives rise to a proper
K-analytic space X*" = (X @p K)*" in the sense of [Berl| and [Ber2|. Re-
call that, as a topological space, X*" is compact and locally arcwise con-
nected, and the topological dimension of X®" is equal to the dimension of
X. If X is smooth, then X" is even locally contractible. Furthermore, let
Xon = = (X ®Fr K "‘)an where K® is the completion of the algebraic closure K?
of K, which corresponds to the universal covering D* — D*. Recall that the
cohomology groups H*(X?", Z) of the underlying topological space of X*" are
finitely generated, and there is a finite extension K" of K in K? such that
they coincide with H*((X ®p K’)*,Z) for any finite extension K’ of K" in
K? (see [Ber5, 10.1]).

In Section 3, we construct a topological space XY™ and a surjective continu-
ous map A : XA" — [0, 1] for which there are an open embedding A~1(]0, 1]) —
X"x]0, 1], which is a homotopy equivalence, and a homeomorphism A~1(0) =
X2 x]0,r[, where r is the radius of the disc D. We show that the induced
maps HY(XA* Z) — HY(x*x]0,r[,Z) = H*(X*",Z) are isomorphisms for
all i > 0. In this way, we get a homomorphism H(X*" Z) — H'(X" Z),
whose composition with the canonical map H*(X" Z) — H'(X" Z) gives a
homomorphism H*(X?",Z) — H*(X",Z). The same construction applied to
finite extensions of F' in F'® gives rise to a homomorphism of 71 (D*)-modules
H{(X*Z) — H'(X" Z). Theorem 5.1 states that the latter gives rise to a
functorial isomorphism of 71 (D*)-modules

H{(X™ Q) S WoH (X", Q).

If X is projective and smooth, one can describe the group Wy H* (X", Q)
as follows. By the local monodromy theorem, the action of (7™ — 1)+!
on H! (XZL,Z) is zero (for some m > 1), where T is the canonical gen-
erator of 71 (D*). If we fix a point of D* over ¢, there is an induced iso-
morphism H'(X",Z) = H'(X/]',Z), which gives rise to an isomorphism
between WoH*(X", Q) and the maximal unipotent monodromy subspace of
H' (X}, Q), ie., (T™—1)'H' (X}, Q). Thus, in the case considered, there is
a functorial isomorphism of 71 (D*)-modules

Hz’(?an, Q) = (Tm - 1)ZHZ (Xtha Q) .

The mixed Hodge theory (see [St, p. 247], [IIl, p. 29]) provides an upper
bound on the dimension of the space on the right-hand side, which implies
the following bound on that of the left-hand side:

dimq H*(X™", Q) < dimr H'(X,Ox).
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The equality is achieved for a totally degenerate family of abelian varieties
(see [Berl, §6]), and for a totally degenerate family of Calabi—Yau varieties (in
the strong sense). In the latter example, X" has rational cohomology of the
sphere of dimension dim(X’), and is simply connected (see Remark 4.4(ii)).

In fact, X" is the underlying topological space of an analytic space over a
commutative Banach ring. The idea of such an object was introduced in [Berl,
§1.5], and developed there in detail in the case when the Banach ring is a non-
Archimedean field. The spaces considered in this paper are defined over the
field of complex numbers C provided with the following Banach norm: ||a|| =
max{|a|co, |alo} for a € C, where | | is the usual Archimedean valuation, and
| o is the trivial valuation (i.e., |alo = 1 for a # 0). One has [0, 1] = M(C, || ||)-
Namely, a nonzero point p €]0, 1] corresponds to the Archimedean valuation
| |%,, and the zero point 0 corresponds to the trivial valuation | |o. The above
map A is a canonical map XYA" — M(C, || ||) = [0, 1]. The preimage A~!(p) of
p €]0, 1] is the restriction of the complex analytic space X" to the smaller open
disc D(T%), and A~!(0) is a non-Archimedean analytic space over the field C
provided with the trivial valuation | |o. Thus, the space X" incorporates
both complex analytic and non-Archimedean analytic spaces, and the result
on a non-Archimedean interpretation of the weight zero subspaces is evidence
that analytic spaces over (C, || ||) are worth studying.

In Section 1, we recall a construction from [Berl, §1] that associates with
an algebraic variety over a commutative Banach ring k£ the underlying topo-
logical space of a k-analytic space. We do not develop a theory of k-analytic
spaces, but restrict ourselves to establishing basic properties necessary for
this paper. In Section 2, we specify our study for the field C provided with
the above Banach norm || ||, and prove a particular case of the main result
from Section 4. Let Oc o be the local ring of functions analytic in an open
neighborhood of zero in C. In Section 3, we associate with an algebraic vari-
ety X over O o analytic spaces of three types: a complex analytic space X",
a (C,| ||)-analytic space X" and a (C,| |o)-analytic space X", All three
spaces are provided with a morphism to the corresponding open discs, and
are closely interrelated. The construction gives rise to a commutative diagram
of maps between topological spaces. In Section 4, we prove our main result
(Theorem 4.1), which states that if X is proper over Oc,, the homomorphisms
between integral cohomology groups induced by certain maps from that dia-
gram are isomorphisms. Essential ingredients of the proof are C. H. Clemens’s
results from [Cle| and similar results from [Ber5]. If X is strictly semistable
over Og,o, the former provide a strong deformation retraction of X" to its
fiber X" at zero, and the latter provide a similar homotopy description of the
non-Archimedean space Xé*n. In Section 5, we prove Theorem 5.1, which was
already formulated.

We want to emphasize that the above result is an analogue of the descrip-
tion of the weight zero subspaces of [-adic étale cohomology groups of algebraic
varieties defined over a local field in terms of cohomology groups of the asso-
ciated non-Archimedean spaces (see [Ber6]). All of these results are evidence
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for the fact that the underlying topological space of the non-Archimedean
analytic space associated with an algebraic variety somehow represents the
weight zero part of the mixed motive of the variety.

I am very grateful to Johannes Nicaise for pointing out a mistake in a
previous version of Theorem 4.1, and to the referee for many corrections and
suggestions that significantly improved the paper.

1 Topological spaces associated with algebraic varieties
over a commutative Banach ring

Let k be a commutative Banach ring, i.e., a commutative ring provided with
a Banach norm || || and complete with respect to it. For an affine scheme
X = Spec(A) of finite type over k, let XA" denote the set of all nonzero
multiplicative seminorms | | : A — Ry on the ring A whose restriction to k
is bounded with respect to the norm || ||. The set X" is provided with the
weakest topology with respect to which all real-valued functions of the form
| | = |f], f € A, are continuous. For a point 2 € X", the corresponding
multiplicative seminorm | |,, on A gives rise to a multiplicative norm on the
integral domain A/Ker(| |;) and therefore extends to a multiplicative norm
on its field of fractions. The completion of the latter is denoted by H(z), and
the image of an element f € A under the corresponding character A — H(z) is
denoted by f(x). (In particular, |f|, = |f(z)| for all f € A)If A=Fk #0, the
space XA" is the spectrum M (k) of k, which is a nonempty compact space,
by [Berl, 1.2.1]. If A = k[Ty,...,T,], the space X" is denoted by A" (the
n-dimensional affine space over k). Notice that the correspondence X s X0
is functorial in X.

A continuous map of topological spaces ¢ : Y — X is said to be Hausdorff
if, for any pair of distinct points y1,y2 € Y with ¢(y1) = ¢(y2), there exist
open neighborhoods V; of y1 and Vs of y» with V1 NV, = 0 (i.e., the image of
Y in Y xx Y is closed). Furthermore, let X be a topological space such that
each point of it has a compact neighborhood. A continuous map ¢ : ¥ — X
is said to be compact if the preimage of a compact subset of X is a compact
subset of Y (i.e., ¢ is proper in the usual sense, but we use the terminology of
[Ber2]). Such a map is Hausdortl, it takes closed subsets of ¥ to closed subsets
of X, and each point of Y has a compact neighborhood.

Lemma 1.1. (i) The space X" is locally compact and countable at infinity;

(i) given a closed (respectively an open) immersion ¢ : Y — X, the map ¢®" :
YA — XAY induces a homeomorphism of YA™ with a closed (respectively
open) subset of XA";

(ii) given morphisms ¢ : Y — X and Z — X, the canonical map

(VY xx Z)An — yA“ X xAn Zhn

18 compact.
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Proof. (ii) If ¢ is a closed immersion, the required fact is trivial. If ¢ is an
open immersion, it suffices to consider the case of a principal open subset ) =
Spec(Ay) for an element f € A. It is clear that the map @™ is injective and its
image is an open subset of X", A fundamental system of open sets in YA is
formed by finite intersections of sets of the form U = {y € Y| fi(y)| <r}

and V = {y € yA“H?%(y)\ > r}, where g € A, n > 0 and 7 > 0. It suffices
therefore to verify that the sets &/ and V are open in X". Given a point y € U

(respectively V), there exist €,6 > 0 such that ‘J%% < r (respectively

AN > 7). Then the set {2 € X4"|g(2)| < |g(y)[+0, |f"(2)] > [ (y)| <}

(respectively {z € X27||g(2)| > lg()| — 5, |f"(2)] < |/ ()] +¢<}) is an open
neighborhood of the point y in XA", which is contained in U (respectively V).

(i) By (ii), it suffices to consider the case of the affine space A™, which
is associated with the ring of polynomials k[T] = k[T4,...,T,]. One has
A" = |, E(r), where the union is taken over tuples of positive numbers
r = (ri,...,my) and E(r) is the closed polydisc of radius r with center at
Z€ero {x € A”||Tz(x)| <r;foralll <i< n} The latter is a compact space.
Indeed, let k(r—'T) = k (r{'Ty,...,r;'T,) denote the commutative Banach
ring of all power series f = > a,T" over k such that ||f|| =" [lav||r’ < oco.
By [Berl, Theorem 1.2.1], the spectrum M (k{r~'T)) is a nonempty compact
space, and the canonical homomorphism k[T] — k{r~'T) induces a homeo-
morphism M (k(r=1T)) = E(r).

(iii) Let X = Spec(A), ¥ = Spec(B) and £ = Spec(C). By (ii), it suf-
fices to consider the case A = k[T1,...,T,], B = A[Uy,...,Up], and C =
A[Vi,...,V,], i.e., it suffices to verify that the corresponding map A"+tP+e —
A"TP x an A™F4 is compact. This is clear, since the preimage of E(r') X an
E(r") with ' = (r1,...,7n,81,...,8p) and " = (r1,..., 7, t1,...,1,) is the
polydisc E(r) with 7 = (r1,...,7n, 81, -, Sps 11, - - s tq)- O

Now let X' be a scheme of finite type over k. By Lemma 1.1(ii), one can glue
the spaces UA" for open affine subschemes U C X to get a topological space
XA in which all 42" are open subspaces. Here is an equivalent description of
the space X", For a bounded character x : k — K to a valuation field K (i.e.,
a field complete with respect to a valuation), let X'(K)X denote the set of all
K-points of X that induce the character x on k. Furthermore, let XAn be the
disjoint union of the sets X'(K)X taken over bounded characters x : k — K to
a valuation field K. Two points 2’ € X(K')X and 2" € X(K")X" are said to be
equivalent if there exist a bounded character x : k — K, a point € X(K)X,
and isometric embeddings K — K’ and K — K" that are compatible with
the characters x’ and x”, taking x to the points 2’ and z”, respectively. It
is really an equivalence relation, and the space & An is the set of equivalence
classes in XA",

The correspondence X' +— XA is functorial in X', and the properties (ii)
and (iii) of Lemma 1.1 are straightforwardly extended to arbitrary schemes of
finite type over k.
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Lemma 1.2. Let ¢ : Y — X be a morphism of schemes of finite type over k,
and let <pA“ be the induced map Y™ — XA, Then

(i) if @ is separated, then the map ™ is Hausdorff:
(ii) if @ is projective, then the map ™™ is compact;
(#11) if  is proper and either the ring k is Noetherian or Y has a finite number
of irreducible components, then the map ™" is compact.

The assumptions in (iii) guarantee application of Chow’s lemma (see
[EGATI, 5.6.1]).

Proof. We may assume that the scheme X' = Spec(A) is affine.

(i) Since ¢ is separated, the diagonal map YA* — (¥ x 1 V)" has a closed
image. Since the image of the latter in VAR % pan YA s closed, it follows that
the map ™" is Hausdorff.

(ii) It suffices to consider the case in which Y = Proj(A[Ty,...,T.])
is the projective space over A. In this case, Y = U?:o Vi, where Y; =

Spec (A [5 ’%D If B, = {y € ,)}ZA“H%(yH < 1foral 0<j<n},

L)
then the map E; — XA" is compact, and one has YA = Uiz Ei. It follows
that A" is a compact map.
(iii) Chow’s lemma reduces the situation to the case considered in (ii). O

2 The case of the Banach ring (C, || ||)

We now consider the case when k is the field of complex numbers C provided
with the following Banach norm: ||a|| = max{|a|e,|a|o} for all a € C. Notice
that there is a homeomorphism [0,1] = M(C,|| ||) : p — p,, where the
point py corresponds to the trivial norm | |o, and each point p, with p > 0
corresponds to the Archimedean norm | |2, . Indeed, if | | is a valuation that is
different from those above, then it is nontrivial and not equivalent to | |o. It
follows that there exists a complex number a € C with |a|s < 1 and |a| > 1,
i.e., |a| > ||a||, and the valuation | | is not bounded with respect to the Banach
norm || ||

For every scheme X of finite type over C, there is a canonical surjective
map A = Ay : XA — M(C, | ||) = [0,1]. If p €]0, 1], then H(p,) is the field C
provided with the Archimedean valuation | |2, . The fiber A~1(1) is the complex
analytic space X" associated with X, by complex GAGA [Serre]. The fiber
A71(0) is the non-Archimedean (C,| |¢)-analytic space X" associated with
X, by non-Archimedean GAGA [Berl].

Lemma 2.1. There is a functorial homeomorphism A~1(]0,1]) = x"x]0,1] :
x +— (y,p), which commutes with the projections onto ]0,1] and, in the case

of affine X = Spec(A), is defined by p = A(z) and |f(y)]|e = \f(x)\%, feA
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Proof. Assume first that X = Spec(A) is affine. The map considered is
evidently continuous. It has an inverse map X" x]0,1] — A=1(]0,1]) : (y,p) —
Yo, defined by [f(y,)| = |f(y)|% for f € A, and therefore it is bijec-
tive. The inverse map is continuous, since the topology on X"x]0,1] coin-
cides with the weakest one with respect to which all functions of the form
Xhx]0,1] — Ry : (y,p) = |f(y)|? for f € A are continuous. It is trivial that
the homeomorphisms are functorial in X', and they extend to the class of all
schemes of finite type over C. O

Corollary 2.2. If X is connected, then the topological space X™™ is also con-
nected.

Proof. Any C-point of X' defines a section M(C, | ||) = [0,1] — X" of the
canonical map A : XA" — [0,1], and so the required fact follows from the
corresponding facts in complex GAGA [Serre] and non-Archimedean GAGA
[Berl, 3.5.3]. O

Proposition 2.3. If X is proper, then HI(XA"Z) = HI(X* Z) for all
q=0.

Proof. Since the space X" is compact, it suffices to show that the cohomology
groups with compact support H?(X" x]0, 1], Z) are zero for all ¢ > 0. For this
we use the Leray spectral sequence

EY® = HE(10,1], RINZ) = HI*I(X"x]0,1],Z).

The sheaves RI\.Z are constant, and therefore E5'? = 0 for all p,q > 0, and
the required fact follows. 0O

By Proposition 2.3, if X' is proper, there is a homomorphism
HY(Xx™ Z) — HY(X"x]0,1],Z) = HI(X", Z).

Corollary 2.4. If X is proper, the above homomorphism gives rise to an iso-
morphism
HU(X™, Q) = WoH" (X", Q).

Proof. By the construction from [Del3, §6.2] and Hironaka’s theorem on reso-
lution of singularities, there exists a proper hypercovering X, — X such that
each X, is smooth. By [SGA4, Exp. V bis|, it gives rise to a homomorphism
of spectral sequences

‘BP9 = HY (X2, Q) = HPT(X™, Q),
! !
"EPY = HY(XM, Q) = HPMI(X", Q).

By [Ber5, §5], the connected components of each A" are contractible. This
implies that "E?"? = 0 for all ¢ > 1, and therefore the first spectral sequence
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~

gives rise to isomorphisms ’E§’° = HP(X?* Q). On the other hand, by [Del2,
3.2.15(ii)], the mixed Hodge structure on H? (X;, Q) has the property that
W; = 0 for ¢ < g. Since the functor H — WyH on the category of rational
mixed Hodge structures H with W; H = 0 for i < 0 is exact [Del2, 2.3.5(iv)],
the latter implies that Wy (E*?) = 0 for all ¢ > 1, and therefore the second

spectral sequence gives rise to an isomorphism Wy (”Eg’o) S WoHP (X", Q).
The required fact now follows from Corollary 2.2.

Remarks 2.5. (i) It would be interesting to know whether Proposition 2.3.
is true for an arbitrary separated scheme X of finite type over F. If this
is true, then the similar induced homomorphism H?(X?*" Z) — HI(X" Z)
gives rise to an isomorphism analogous to that of Corollary 2.4. That such
an isomorphism exists is shown in [Ber6, Theorem 1.1(c)| using the same
reasoning as that used in the proof of Corollary 2.4 (see also Remark 5.3).

(ii) It is very likely that the map X*® — X" is a homotopy equivalence at
least in the case when X is a proper scheme over F' with the property that for
every n > 1, a nonempty intersection of n-irreducible components is smooth
and of codimension n — 1 (see also Remark 4.4(iii)).

3 Topological spaces associated with algebraic varieties
over the ring Oc

Let X be a scheme of finite type over the local ring O¢,. We are going to
associate with X’ (the underlying topological spaces of ) analytic spaces of three
types. The first one is a classical object. This is a complex analytic space X"
over an open disc D(r) in C of radius r (with center at zero). The second one
is a (C,|| ||)-analytic space X™ over an open disc D(r) in A'. And the third
one is a non-Archimedean (C, | |)-analytic space X§*" over an open disc Dy (7)
in the (C,| |)-analytic affine line Aj. The first two objects are related to two
representations of the ring Oc¢ ¢ in the form of a filtered inductive limit of the
same commutative rings, provided with two different commutative Banach
ring structures. The third object is the analytic space associated with the
base change of X under the homomorphism Oc,o — C[[T]] = Oy o, and is a
particular case of an object introduced in [Ber3, §3].

For r > 0, let C{r~1T) denote the commutative Banach algebra of formal
power series f = Z;ﬁo a;T* over C absolutely convergent at the closed disc
E(r) = {z € C||T ()| < r} and provided with the norm || f|| = 3272 [ai|oor".
The canonical homomorphism C[T] — C(r~!T) induces a homeomorphism
M(C{(r=1T)) = E(r), and one has Oc,o = liLnC(r_lT> for r tending to zero.
By [EGAIV, §8], for any scheme X of finite type over Oc g, there exist 7 > 0
and a scheme X’ of finite type over C(r~!T) whose base change with respect
to the canonical homomorphism C(r=!'T) — Og is X. By the construction
of Section 1, there is an associated topological space X', and we denote by
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X" the preimage of the open disc D(r) = {x € C||T ()| < r} with respect to
the canonical map X’* — E(r). The morphism X* — D(r) does not depend,
up to a change of 7, on the choice of X’, and the construction is functorial in
X (see Remark 3.3).

Furthermore, for » > 0, let C{(r~!'T)) denote the commutative Banach
ring of formal power series f = > a;T% over C such that [|f|] =
Yoo llaillr® < oo. The canonical homomorphism C[T] — C{(r~'T)) gives
rise to a homeomorphism M(C((r=1T))) = &(r) = {z € AY||T(2)| < r}. If
r > 1, then C[T] = C({(r~'T)), and if r < 1, then C({(r~'T)) = C({r~'T)
(as C-subalgebras of C[[T]). One has Oc g = liLnC((r’lT» for r tending to

zero. By [EGAIV, §8] again, for any scheme X of finite type over O¢,g, there
exist 0 < r < 1 and a scheme X’ of finite type over C{(r~1T)) whose base
change with respect to the canonical homomorphism C{(r~'T)) — Oc, is
X. By the construction of Section 1, there is an associated topological space
X'A"and we denote by X" the preimage of D(r) = {z € Al||T ()| < r}
with respect to the canonical map A’A* — &(r). The map ¢ : XA — D(r)
does not depend, up to a change of , on the choice of X, and the construction
is functorial in X' (see again Remark 3.3).

Finally, for r > 0, let C{r~!T} denote the commutative Banach ring of for-
mal power series f =Y .- a;T" over C convergent at the closed disc Ey(r) =
{z e A(l)“T(x)\ <r} and provided with the norm | f|| = max;>of|a;|or}.
The canonical homomorphism C[T] — C{r~!T} gives rise to a homeomor-
phism M(C{r~'T}) = Ey(r). If » > 1, then C[T] = C{r~!T}, and if
r < 1, then C{r~'T} = C[[T]]. One has Ox1 o = C[[T]] = C{r'T} for
every 0 < r < 1. Thus, given a scheme X of finite type over Oc o, we set
Xy = X ®og, C[[T]], and for 0 < r < 1, we set Xj = Xy @cyry C{r~'T}.
There is an associated topological space X A" and we denote by X" the
preimage of Do(r) = {x € A}||T(z)| < r} with respect to the canonical map
XA — Fo(r).

Recall that F' denotes the fraction field of Oc o, and K denotes the com-
pletion of F' with respect to a fixed valuation, which is determined by its value
at T. Let € be the latter value. The K-analytic space associated with a scheme
X of finite type over F is denoted by X** (instead of (X ®@p K)*").

Lemma 3.1. Let X be a scheme of finite type over Oc,o, Xy = X @0, F its
generic fiber, and Xs = X ®o¢, C its closed fiber. Let XAM be the associated
(C, || IN-analytic space over D(r) with 0 < r < 1, and let X, X, and X\, be the
canonical maps to M((C, || ||) = [0,1] from XAr, Xf“ and X2, respectively.
Then

(i) there is a homeomorphism

A7Hjo,1]) & {(x,p) IS X}Lx]0,1]||T(1:)\oo < r%} 22— (z,p),
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which commutes with the projections onto 10,1] and, in the case of the
affine X = Spec(A), is defined by p = A(z') and |f(z)|ec = \f(x')\%,
feA;

(i1) A7H(0) = X

(i) there is a homeomorphism

A1 (0) 5 2 %10, 7 2 (2, p),

which, in the case of the affine X = Spec(A), is defined by p = |T(a')]
and |f(z)| = |f(a")[ %), f € A;

(iv) XAMN\XA = X220 where the right-hand side is the (C, || ||)-analytic space
associated with X in the sense of Section 2.

Proof. In (i), the converse map (x,p) — x, is defined by |f(z,)| = [f(z)|%,
f € A, and in (iii), the converse map X" x]0,7[= A~ (0)\¢~(0) : (z,p) —
P, , is defined by | f(Py,,)| = | f(z)|'8=("), f € A. The statements (ii) and (iv)

are trivial. O

Corollary 3.2. The open embedding A71(]0,1]) — X"x]0,1] is a homotopy
equivalence.

Proof. The formula ((z,p),t) — (z,max(p,t)) defines a strong deformation
retraction of A71(]0,1]) and X"x]0,1] to X" x {1}. 0

Remarks 3.3. (i) The spaces X", XA" and X" are in fact pro-objects (i.e.,
filtered projective systems of objects) of the corresponding categories of an-
alytic spaces (see [Ber3, §2]). The functoriality of their constructions means
that they give rise to functors from the category of schemes of finite type over
Oc,o to the corresponding categories of pro-objects.

(ii) Suppose that X is a scheme of finite type over Oc for which the

canonical morphism to Spec(Oc,o) is a composition X % Spec(Oc,o) 2
Spec(Oc,o), where 1 is induced by the homomorphism Oc g — Ocyo : T —
T™ for n > 1. Let Y denote the same scheme X but considered over Spec(Oc o)
with respect to the morphism ¢. Then there is a canonical homeomorphism
of topological spaces V3" = X" : y +— 2, which, in the case of affine X =
Spec(A), is defined by |f(x)| = |f(y)|™ for f € A. It induces homeomorphisms
y;;nx}o,r%[i X,7A“><]0,r[: (y,p) — (z,p") and YA 5 XAY -y s 1 (see
Lemma 3.1(i) and (iii)), defined by |f(x)| = |f(y)|™ for f € A.

4 The main result

Let X be a scheme of finite type over O¢ . By the previous section, for some
0 < r < 1 there is a commutative diagram in which hook and down arrows are
open embeddings, left and up arrows are closed embeddings, and all squares
are cartesian:
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Xx]0,1] > A;1(10,1]) < XA — AT1(0) S A2 <0, 7
[ ] ! !
X"x0,1] « A71(]0,1]) = XA «— A71(0) = A

1 1 [ | 1

~

Xx10,1] <= AT1(0,1]) = Afn — ATH0) & A
Theorem 4.1. Assume that X is proper (respectively proper and strictly
semistable) over Oc,o. Then for a sufficiently small v, all of the horizontal
(respectively vertical) arrows of the diagram, except those marked by *, in-

duce an isomorphism between integral cohomology groups of the corresponding
topological spaces.

The following lemma is a version of Grothendieck’s Proposition 3.10.2 from
[Gro]. If F is a sheaf on a topological space X, @ is a family of supports in X,
and Y is a subspace of X, then HJ ., (Y, F) denotes the cohomology groups
with coefficients in the pullback of F' at Y and with supports in @ NY =
{ANY|A € 2}

Lemma 4.2. Let X be a paracompact locally compact topological space, X1 C
Xy C -+ an increasing sequence of closed subsets such that the union of their
topological interiors in X coincides with X, and @ a paracompactifying family
of supports in X such that A € @ if and only if ANX; € &N X; for all
i > 1. Let F be an abelian sheaf on X, and let ¢ > 1. Assume that for each
i > 1 the image Hgai(Hl(XiH,F) in Hg;;i (X, F) under the restriction
homomorphism coincides with the image of Hga}xi+2(Xi+2,F). Then there is
a canonical isomorphism

HE(X,F) > lim HY (X5, F).

Remark 4.3. An analogue of [Gro, Proposition 3.10.2| for étale cohomology
groups of non-Archimedean analytic spaces is [Ber2, Proposition 6.3.12]. In
the formulation of the latter, only the assumption that X is a union of all X;’s
was made. This is not enough, and one has to make the stronger assumption
that X is a union of the topological interiors of all X;’s (this guarantees that
F(X)> {inF(Xz) for any sheaf F' on X).

Proof. First of all, by the above remark and the assumptions on the X;’s
and @, for any abelian sheaf G on X one has I's(X,G) = lim I'pnx, (Xi, G).

We claim that, given an injective abelian sheaf J on X and a closed subset
Y C X, the canonical map I's(X,J) — I'eny(Y,J) is surjective. Indeed,
let g be an element from I'gny (Y, J) and let B be its support. By [God,
Ch. II, Theorem 3.3.1], g is the restriction of a section ¢’ of J over an open
neighborhood U of B in X. Furthermore, let A € ® be such that B=ANY,
and let A’ € @ be a neighborhood of A in X. Shrinking U, we may assume
that & C A’. Since J is injective, the map I'(X,J) — I'U][(X\A'),J) =
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I'U,J) ® I'(X\A',J) is surjective. It follows that there exists an element
f € I'(X,J) whose restriction to U is g’ and whose restriction to X\ A’ is
zero. Since the support of f lies in A’, one has f € I's(X,J), and the claim
follows.

The claim implies that the pullback of J at any closed subset ¥ C X
is a (@ NY)-soft sheaf on Y, i.e., for any A € # NY, the canonical map
I'pny (Y,J) — I'(A,J) is surjective (see [God, Ch. II, Section 3.5]). Thus,
given an injective resolution 0 — F — J° — J' — ... of F, there is a
commutative diagram

0— TIs(X,J% — Ts(X,JYH) — Te(X,J?) —--
|
0 — Ipnx, (X, J°) = Tonx, (X5, JY) = Tonx, (Xi J?) — -

in which the first and second rows give rise to the groups H}(X,F) and
Hj X, (X;, F), respectively, and the vertical arrows are surjections. The in-
jectivity of the map considered is verified by a simple diagram search in the
same way as in the proof of [Ber2, Proposition 6.3.12], and verification of its
surjectivity is even easier (and because of that it was omitted in [Ber2]) and
goes as follows.

Let 3; € Hgmxi (X, F), i > 1, be a compatible system. Assume that
for i > 1, we have constructed elements 3; € I'pnx, (X;, J?) each from the
class of Ej, 1 < j <14, with ﬁJ'H’Xj = fj for 1 < j <i—1,and let 8,
be an element from the class of 3;,;. Then ﬁgﬂ’xi = B; + dy; for some
Yi € Tonx, (X3, J71). If o € IT'p(X, J771) is such that a’Xi = 7;, then for
the element 341 = 3{,; — da|Xi+17 we have ﬁi+1|xi = f3;. By the remark at
the beginning of the proof, there exists an element 8 € I's(X, J?) such that
ﬁ’Xi = (; for all i > 1. Then d@ = 0, and the surjectivity follows. O

Proof of Theorem 4.1. Step 1. First of all, the isomorphism H?(XA" Z) =
HI(\;1(0),Z) = HI(X",Z) follows from Proposition 2.3. The isomorphisms

HY(X"x]0,1],2) = HY(A7'(]0,1)), Z)

and
H(X)'x]0,1],Z) = HY(\,;*(]0,1]), Z)

follow from Corollary 3.2.
Step 2. To get the isomorphisms

HY(XA Z) = HIAY(0),Z) and HY (X", Z) = H(X,1(0),2),

we assume that r is sufficiently small that the groups H? (Xth, Z), t € D*(r),

form a local system for all ¢ > 0, and therefore, R, (Z th) are locally

constant quasi-unipotent sheaves of finitely generated abelian groups for all
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q > 0, where 1 is the canonical morphism X" — D(r). Let X" and @
denote the images of A='(]0,1]) and X, *(]0,1]) in X" x]0, 1] and X' x ]O 1],
respectively. (If X = Spec(Oc o), they will be denoted by D( ) and D*( ).)
It suffices to show that HJ (X" Z) = 0 and Hg” (X#, Z) =0 for all ¢ > 0,

where ¢ and @, are families of supports in X* and X# consisting of the closed
subsets that are also closed in X" and Xé\“, respectively.

Consider the following commutative diagrams in which all squares are
cartesian:

D(r) & D) «— (0,7 D*(r) = D*(r) — 0,7
l@ T "2 T L@n 1 ©n T
Xh s AN o xpn xpr XnA“ — A x]0,7|

Since all of the vertical maps are compact, there are spectral sequences (with
initial terms E57)

1y (D(r), 13,23, = HE™(X",2)

and

—_~—

Hy (D), R'3y g ) = H3' (%).2),

where @ and @, in the E'? terms denote the similar families of supports in

—_~—

BZT/) and D*(r), respectively. Thus, it suffices to verify the following fact. Let
L be an abelian sheaf on D(r) whose restriction to D*(r) is locally constant
and quasi- unipotent and let 7 denote the canonical projection D(r) — D(r).
Then (x) HP(D( ),m*L) = 0 and (x,) Hj ,(D*(r),m*L) = 0 for all p > 0.
Both equalities are proved in the same way usmg Lemma 4.2 as follows.

The equality (*). The space D( ) is a union of the closed discs Elp)={z €

(M|IT(@)| < p} with p < 1. Letc‘?( ) = E(p)ND(r) = {(4.1)]|T ()| < pt}.
Then D( ) is a union of all 5( ) with p < r, and if p < p/, then &£(p) and
Ef(\;) are contained in the topological interiors of £(p’) and g(\p’/) in D(r) and
%, respectively. It follgx\VJs easily that a closed subset B C If(rj is closed in

D(r) if and only if BN E(p) is closed in E(p) for all p < r. Since the spaces
E(p) are compact, from Lemma 4.2 it follows that to prove the equality (x),

it suffices to show that HYZ (E(p),ﬂ';L) = 0 for all ¢ > 0, where 7, is the

canonical projection g(\;) — E(p).

One has 7, (0) =]0,1] and, for y # 0, 7, (y) = [t,, 1], where 0 < ¢, <1
is such that |T(y)|e = p% It follows that (R (’/T;L))y is zero if ¢ > 1
or ¢ =0 and y = 0, and coincides with L, if ¢ = 0 and y # 0. This means
that Rim (ﬂ;L) is zero for ¢ > 1, and coincides with j (j;L) for ¢ = 0,
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where j, is the canonical open embedding E*(p) — E(p). The Leray spectral
sequence E5'? = HE (E(p), R (73L)) = HE' (E(p),ﬂ';L) implies that

H? (%),W;L) = HI(E*(p),L) for all ¢ > 0. Thus, the equality (%) is a
consequence of the following simple fact: HI(E*(p),L) = 0, ¢ > 0, for any
abelian quasi-unipotent sheaf L on E*(p).

If L is constant, the above fact follows from the long exact sequence of
cohomology with compact supports associated with the maps

E*(p) & E(p) — {0}.

It follows easily that the same is true for any unipotent abelian sheaf L.
Assume now that L is quasi-unipotent. Then there exists n > 1 such that

the pullback of L under the n'"-power map ¢ : E* (p%) — E*(p) : z —
z™ is unipotent. By the previous case, HY (E* (p%) ,<p*L) = 0 for all

q > 0. The spectral sequence F¥? = HP (Z/nZ,Hg (E* (p%) ,cp*L)) =
HPT4(E*(p), L) implies the required fact for such L.

The equality (*,) (see also Remark 4.4(i)). The space D*(r) is a union of
the closed annuli A, = {z € D(r)|p < |T(z)] < r —p} with 0 < p < %.
Let A, = A, N D*(r) = {(y,t)|p? < |T(¥)|oc < (r —p)7}. Then D*(r) is a

union of A, with 0 < p < %, and for p < p’, A, and .;C, lie in the topological
interiors of A, and ;l; in D*(r) and D*(r), respectively. It follows that a

closed subset B C D*(r) is closed in D*(r) if and only if Bﬂ;c) is closed in A,
for all 0 < p < 5. Since the spaces A, are compact, from Lemma 4.2 it follows

that to prove the equality (x,) it suffices to show that HZ (./féc,, 7T;L) = 0 for

all ¢ > 0, where 7, is the canonical projection .Z; — E*(r — p).

Notice that in comparison with the previous case, the preimage of any
point of E*(p) under the latter map is always a closed interval or a point. It
follows that RI7 . (ﬂ;L) is zero if ¢ > 1, and coincides with L if g =0.

E*(r—p)

The Leray spectral sequence of the map 7, implies that H (.Z;,?T;L) =
HI(E*(r — p), L) for all ¢ > 0, and the equality (x,) follows from the fact we
have already verified.

Step 3. It remains to show that if X’ is proper and strictly semistable over
Oc,0, then the unmarked vertical arrows in the extreme left and right columns
induce isomorphisms of cohomology groups. In this case, X is even a strong
deformation retract of X", by the results of C. H. Clemens (see [Cle, §6]), and
both maps X" x]0, r[— XM and X2 — X are homotopy equivalences, by
results from [Ber5|, as we are going to explain.

Consider a more general situation. Let k be an arbitrary field (instead
of C) provided with the trivial valuation. The ring of formal power series
E[[2]] coincides with the ring Oa1 o of formal power series convergent in an
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open neighborhood of zero in the affine line A' over k as well as with the
ring O(D(1)) of those power series that are convergent in the open disc D(1)
(of radius one with center at zero). The formal spectrum X = Spf(k[[z]])
is a special formal scheme over k° = k in the sense of [Ber4|, and its generic
fiber X,, coincides with D(1). Notice that there is a canonical homeomorphism
[0,1[= D(1): p — P,, where P, is defined by |z(P,)| = p.

Let X be a scheme of finite type over k[[z]]. For any number 0 < r < 1, the
ring k[[z]] coincides with the k-affinoid algebra k{r~!z}, the algebra of analytic
functions on the closed disc E(r) C A! (which is canonically homeomorphic

o [0,7]), and so there is an associated k-analytic space Y*"(r). If r < 7/,
X2 (r) is identified with a closed analytic subdomain of A?"(r’), and we set
X = UXxan(r). There is a canonical surjective morphism ¢ : X — D(1) =
[0, 1[. The fiber ¢~1(p) at p € [0, 1] is identified with the H(P,)-analytic space
A" associated with the scheme X ®j () H(P,). The formal completion X of
X along its closed fiber X is a special formal scheme, and there is a canonical
morphism of strictly k-analytic spaces &, — X*" whose composition with the
above morphism ¢ is induced by the canonlcal morphism of formal schemes
X — X.If X is separated and of finite type over El[=]], X is identified with
a closed strictly analytic subdomain of X*". If X' is proper over k[[z]], then
X Z xan_ If X is semistable over k[[z]], then so is X.

Assume now that 2) is a semistable formal scheme over X = Spf(k[[z]])
(or, more generally, polystable in the sense of [Ber5]). For p € [0, 1], we set
2, =Y xx Spf(H(P,)°). It is a semistable formal scheme of H(F,), and
there are canonical isomorphisms 9, , = 2, and Y, = 9. In [Berb, §5],
we constructed a closed subset S (@ ») (the skeleton of 9 ,) and a strong defor-
mation retraction @, :9), , x[0,1] =9, , of Y, to the skeleton S(é\jp). We

denote by S(2)/%) the union of S(@p) over all p € [0,1[, and by @ the map-
ping 9, x [0,1] — 2),, that coincides with @, at each fiber of ¢. In [Ber5, §4],
we also associated with the closed fiber 9, of 2 a simplicial set C(9),) that
has a geometric realization |C(Q),)|. Thus, to prove the claim, it suffices to
verify the following two facts:

(a) the mapping @ :9), x [0,1] — 9, is continuous and compact, and
(b) there is a homeomorphism |C(Q),)| x X,, — S(2/X) that commutes with
the canonical projections to [0, 1].

(a) The assertion follows from the proof of [Ber5, Theorem 7.1]. In the
formulation of the latter, the formal scheme X was in fact assumed to be
locally finitely presented over the ring of integers of the ground field (in our
case k° = k), but its proof uses only the fact that the morphism ) — X is
polystable and works in the case when X is an arbitrary special formal scheme.

(b) By the properties of the skeleton established in [Berb, §5], the situation
is easily reduced to the case 9 = Spf(B), where

B =k[[){To,..,T}/(To-- Tp—2), 0<n <m.
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If n = 0, then S(Y/X) = X, = [0,1], |C(DY,)| is a point, and (b) follows.
Assume that n > 1. Then S()/%) is identified with the set {(P,,r0,...,7) €
X, x [0,1"rg---r, = p}, and |C(D,)| is identified with the set
{(uo, ..., un) € [0,1]" " Jug+- - -+uy = 1}. The required map [C(),)| x X, —
S(/%) takes a point ((uo, ..., un),p) to (Py, (ro,...,rs)), where (ro,...,7y)
is the point of intersection of the line, connecting the points (ug, ..., u,) and
(1,...,1), and the hypersurface defined by the equation ¢y - - - - - th = p. O

Remarks 4.4. (i) The equality (*,) can be established in a different way.
Namely, we claim that there is a strong deformation retraction of D*(r) to
the subset ;' (0) (identified with ]0,7[). Indeed, let P, denote the point of
A, 1(0) that corresponds to p €]0,7[ (it is a unique point from A;*(0) with
|T'(P,)| = p). Then the required strong deformation retraction ¥ : D*(r) x
[0,1] — D*(r) (with ¥(z,1) = 2 and ¥(z,0) € X,/1(0)) is defined as follows:
(1) if (pe'?,s) € 5*\/(7“), then ¥((pe'?, s),t) = (ptei®, st) € IT*(\T) for t €]0,1];
(2) Q((peup, 8)70) = PPS;

(3) if p €]0, 7], then ¥(P,,t) = P, for all t € [0,1].

The claim implies that if the sheaf L is constant, then H?(D*(r),m*L) =

HP(]0,r[,7*L) = 0, and therefore, Hg (D*(r),7*L) = 0 for all p > 0. Thus,
the equality (x,) is true for constant L, and is easily extended to arbitrary
quasi-unipotent sheaves L.

(ii) Let X be a connected projective scheme over F that admits a strictly
semistable reduction over Oc,. Then the fundamental group of X*" is iso-
morphic to a quotient of the fundamental group of the fiber X}, t € D*(r),
and in particular, if the latter is simply connected, then so is A*". Indeed,
let Y be a projective strictly semistable scheme over Oc o with V,, = X. The
canonical morphism Y — Spec(Oc,) has a section Spec(Oc,0) — Y (with
the image in the smooth locus of that morphism), and therefore, for some
0 < r < 1, the canonical morphism Y* — D(r) has a section D(r) — Y. It
follows that the canonical surjection 1 (X") — 71(D*) has a section whose
image lies in the kernel of the canonical homomorphism 7y (X") — 1 (J"),
and therefore, the image of m (/) in 71 (J") coincides with that of 7 (X").
But the canonical homomorphism 71 (X*) — 7;(J") is surjective, since the
preimage of X" in a universal covering of " is connected (it is the com-
plement of a Zariski closed subset of a connected smooth complex analytic
space). Thus, w1 (Y") is a quotient of 7 (Xth). Furthermore, by the result of
Clemens [Cle] used in the proof of Theorem 4.1, Y% is a strong deformation
retraction of yh, i.e., m (J{?) is a quotient of (Xth). If C is the simplicial
set associated with the scheme ), there is a surjective homomorphism from
71 (V) to the fundamental group of the geometric realization |C| of C. It
remains to notice that by [Ber5, Theorem 5.2], X" is homotopy equivalent
to |C|]. (I am grateful to O. Gabber for the above reasoning.)
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(iii) Assume that X is proper and strictly semistable over Oc . It is very
likely that all of the maps in the diagram from the beginning of this section,
except those marked by *, are in fact homotopy equivalences.

(iv) It would be interesting to know whether Theorem 4.1 is true for not
necessarily proper schemes.

5 An interpretation of the weight zero subspaces

Let X be a proper scheme over F', and let 0 < r < 1 be small enough
that the isomorphisms H9(X**x]0,r[,Z) = HI(X* Z) = HI(XA" Z) from
Theorem 4.1 take place. They give rise to homomorphisms H?(X?* Z) —
HY(X" Z), ¢ > 0. Let D*(r) — D*(r) be a universal covering of D*(r). The
fundamental group m(D*) = 71 (D*(r),t) (which does not depend on the
choice of r and a point ¢ € D*(r)) acts on D*(r), and therefore, it acts on
xXh = xh X D= (r) D*(r). Furthermore, let F® be the field of functions mero-
morphic in the preimage of an open neighborhood of zero in D*(r) that are
algebraic over F'. It is an algebraic closure of F, and in particular, 71 (D*) acts
on F*. Let K* be the corresponding algebraic closure of K, K® the completion
of K?, and X" = (X* ®@p K*)*. As was mentioned in the introduction, the
constructed homomorphisms of cohomology groups induce 71 (D*)-equivariant
homomorphisms H9(X** Z) — HI(X" Z), ¢ > 0.

Theorem 5.1. The above homomorphisms give rise to m(D*)-equivariant
isomorphisms . .
Hq(Xan,Q) = WOHq(Xha Q), q > 0.

Proof. Consider first the case X = Y,, where ) is a projective strictly
semistable scheme over O¢ . By Corollary 2.4, in the commutative diagram
of Theorem 4.1, for such Y the maps from the lower row give rise to an
isomorphism HY()*", Q) = WoH? (ysh, Q), and by Steenbrink’s work [St],
the homomorphisms H? (Y, Z) = HY (Y",Z) — HI(X", Z) — HI(X", Z)
give rise to an isomorphism WyH? (ysh, Q) = WoHI(X", Q), ¢ > 0. Since
the residue field of K is algebraically closed, the canonical map X?» — xa»
is a homotopy equivalence (see [Ber5, §5]) and, in particular, H?(X",Z) =
H1 (fan, Z). Thus, the required isomorphism follows from Theorem 4.1. Con-
sider now the case when X is projective and smooth over F'. One can find an
integer n > 1 such that, if F’ is the cyclic extension of F of degree n in F'?,
then the scheme X’ = XY ®p F” is of the previous type over F’. The extensions

F2 > F' O F correspond to morphisms D*(r) — D* (r%) gaid D*(r), and
so there is a canonical isomorphism of complex analytic spaces xh 5 oxh,
The latter gives rise to isomorphisms H4(X" Z) = H(X'", Z) of cohomology
groups provided with the limit mixed Hodge structures (see [GNPP, p. 126]).
Similarly, one has canonical isomorphisms HY(X?",Z) = H9(X'*" Z), and
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the required isomorphism follows from the previous case. Finally, if X' is an
arbitrary proper scheme over F', one gets the required isomorphism using the
same reasoning as in the proof of Corollary 2.4, i.e., using a proper hyper-
covering X, — X with projective and smooth A),’s and the fact that the
functor H — WyH on the category of rational mixed Hodge structures H
with W;H = 0 for ¢ < 0 is exact. 0O

Corollary 5.2. In the above situation, the following is true:

(i) HI(x*", Q) = (WoH(X",Q))"=";
(i) if X is projective and smooth, then

Hq(xan, Q) = ((Tm - 1)ZHq (Xtha Q))TZI'

Here T is the canonical generator of 1 (D*), and m is a positive integer for
which the action of (I"™ —1)"*! on H? (X}, Q) is zero (see the introduction).

Proof. 1t suffices to show that the canonical map
HO(X™, Q) — HI(T™, Q)=

is an isomorphism. For this we recall that by [Ber5, Theorem 10.1], one has
Hi((X @p K')™,Q) = H1(X* Q) for some finite Galois extension K’ of
K in K*®. Since the topological space X" is the quotient of (X @ K')™" by
the action of the Galois group of K’ over K, the required fact follows from
[Gro, Corollary 5.2.3]. |

Remark 5.3. As was mentioned at the end of the introduction, Theorem 5.1
is an analogue of a similar description of the weight zero subspaces in the
[-adic cohomology groups of algebraic varieties over a local field, which holds
for arbitrary separated schemes of finite type (see [Ber6]). And so it is very
likely that the isomorphism of Theorem 5.1 also takes place for arbitrary
separated schemes of finite type over F. The latter would follow from the
validity of Theorem 4.1 for that class of schemes (see Remark 4.4(iv)), and is
easily extended to separated smooth schemes. (Recall that the theory of limit
mixed Hodge structures on the cohomology groups H(X", Q) for separated
schemes X of finite type over F' is developed in [EZ].)
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Summary. We establish algebraicity criteria for formal germs of curves in algebraic
varieties over number fields and apply them to derive a rationality criterion for
formal germs of functions on algebraic curves that extends the classical rationality
theorems of Borel-UDwork and Polya—UBertrandias, valid over the projective line,
to arbitrary algebraic curves over a number field. The formulation and the proof
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1 Introduction

The purpose of this article is to establish algebraicity criteria for formal germs
of curves in algebraic varieties over number fields and to apply them to de-
rive a rationality criterion for formal germs of functions, which extends the
classical rationality theorems of Borel-Dwork [6], [22] and Pélya—Bertrandias
[1, Chapter 5], [43], (see also [16]), valid over the projective line, to arbitrary
algebraic curves over a number field.

Our algebraicity criteria improve on those in [12] and [13], which them-
selves were inspired by the papers [19] and [20] of D. V. and G. V. Chudnovsky
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and by the subsequent works by André [2] and Graftieaux [26,27]. As in [12]
and [13], our results will be proved by means of a geometric version of “tran-
scendence techniques,” which avoids the traditional constructions of “auxiliary
polynomials” and the explicit use of Siegel’s lemma, replacing them by a few
basic concepts of Arakelov geometry. In the proofs, our main objects of in-
terest will be some evaluation maps, defined on the spaces of global sections
of powers of an ample line bundle on a projective variety by restricting these
sections to formal subschemes or to subschemes of finite lengths. Arakelov ge-
ometry enters through the estimates satisfied by the heights of the evaluation
maps, and the slopes and Arakelov degrees of the hermitian vector bundles
defined by spaces of sections (see [17] and [14] for more details and references
on this approach).

Our main motivation in investigating the algebraicity and rationality cri-
teria presented in this article has been the desire to obtain theorems respect-
ing the classical principle of number theory that “all places of number fields
should appear on an equal footing”—which actually is not the case in “classi-
cal” Arakelov geometry and in its applications in [12]. A closely related aim
has been to establish arithmetic theorems whose geometric counterparts (ob-
tained through the analogy between number fields and function fields) have
simple formulations and proofs. These concerns led us to two technical devel-
opments in this paper: the use of (rigid) analytic geometry over p-adic fields
to define and estimate local invariants of formal curves over number fields,?
and the derivation of a rationality criterion from an algebraicity criterion by
means of the Hodge index theorem on (algebraic or arithmetic) surfaces.

Let us describe the contents of this article in more detail.

In Section 2, we discuss geometric analogues of our arithmetic theorems.
Actually, these are classical results in algebraic geometry, going back to
Hartshorne [32] and Hironaka—Matsumura [35]. For instance, our algebraicity
result admits as analogue the following fact. Let X be a quasiprojective variety
over a field k, and let Y be a smooth projective integral curve in X ; let S be a
smooth formal germ of surface through'Y (that is, a smooth formal subscheme
of dimension 2, containing Y, of the completion )/(:y) If the degree degy Ny S
of the normal bundle to 'Y in S is positive, then S is algebraic.

Our point is that, transposed to a geometric setting, the arguments leading
to our algebraicity and rationality criteria in the arithmetic setting—which
rely on the consideration of suitable evaluation maps and on the Hodge index
theorem—provide simple proofs of these nontrivial algebro-geometric results,
in which the geometric punch line of the arguments appears more clearly.

In Section 3, we introduce the notion of A-analytic curve in an algebraic
variety X over a number field K. By definition, this will be a smooth for-

3Since the first version of this paper was written, the relevance of rigid analytic
geometry a la Berkovich to develop a non-archimedean potential theory on p-adic
curves, and consequently a “modern” version of Arakelov geometry of arithmetic sur-
faces satisfying the above principle of “equality of places,” has been largely demon-
strated by A. Thuillier in his thesis [51].
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mal curve C through a rational point P in X (K)—that is, a smooth formal
subscheme of dimension 1 in the completion X p—which, firstly, is analytic at
every place of K, finite or infinite. Namely, if v denotes any such place and
K, the corresponding completion of K, the formal curve Cx, in Xg, deduced
from C by the extension of scalars K — K, is the formal curve defined by a
K,-analytic curve in X (K,). Moreover the v-adic radius r, (in |0, 1]) of the
open ball in X (K,) in which éKU “analytically extends” is required to “stay
close to 1 when v varies,” in the sense that the series > logr, ! has to be
convergent. The precise formulation of this condition relies on the notion of
size of a smooth analytic germ in an algebraic variety over a p-adic field. This
notion was introduced in [12, 3.1]; we review it in Section 3.A, adding some
complements.

With the above notation, if 2" is a model of X over the ring of integers &
of K, and if P extends to an integral point & in 2" (O ), then a formal curve
C through P is A-analytic if it is analytlc at e each archimedean place of K and
extends to a smooth formal surface € in 25 . For a general formal curve c
that is analytic at archimedean places, being an A-analytic germ may be
seen as a weakened form of the existence of such a smooth extension € of C
along . In this way, an A-analytic curve through the point P appears as an
arithmetic counterpart of the smooth formal surface S along the curve Y in
the geometric algebraicity criterion above.

The tools needed to formulate the arithmetic counterpart of the positivity
condition degy Ny S > 0 are developed in Sections 4 and 5. We first show in
Section 4 how, for any germ of analytic curve C through a rational point P
in some algebraic variety X over a local field K, one is led to introduce the
so-called canonical seminorm. ||- & on the K-line T »C through the consider-

ation of the metric properties of the evaluatlon maps involved in our geometric
version of the method of auxiliary polynomials. This extends a definition intro-
duced in [13] when K = C. In Section 5, we discuss the construction of Green
functions and capacities on rigid analytic curves over p-adic fields. We then
extend the comparison of “canonical seminorms” and “capacitary metrics” in
[13], 3.4, to the non-archimedean setting.

In Section 6, we apply these notions to formulate and establish our al-
gebraicity results. If C' is an A-analytic curve through a rational point P
in an algebraic variety X over some number field K, then the K-line TpC
may be equipped with a “K,-adic semi-norm” for every place v by the above

construction—namely, the seminorm || - ||®* .  on
X1y, Crey

Tpa[{v ~ Tpa QK KU.

The so-defined metrized K-line TpC has a well-defined Arakelov degree
in |—o0, +0o0], and our main algebraicity criterion asserts that C' is algebraic

if the Arakelov degree d/eTg;Tpa is positive. Actually, the converse implica-
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can
. all
XK, ,Ck,

tion also holds: when C' is algebraic, the canonical seminorms ||.

vanish, and d/eTnga = +00.

Finally, in Section 7, we derive an extension of the classical theorems of
Borel, Dwork, Poélya, and Bertrandias, which gives a criterion for the ratio-
nality of a formal germ of function ¢ on some algebraic curve Y over a num-
ber field. By considering the graph of ¢p—a formal curve C in the surface
X =Y x Al~—we easily obtain the algebraicity of ¢ as a corollary of our
previous algebraicity criterion. In this way, we are reduced to establishing
a rationality criterion for an algebraic formal germ. Actually, rationality re-
sults for algebraic functions on the projective line have been investigated by
Harbater [30], and used by Thara [36] to study the fundamental group of some
arithmetic surfaces. Thara’s results have been extended in [11] using Arakelov
geometry on arithmetic surfaces. Our rationality argument in Section 7, based
on the Hodge index theorem on arithmetic surfaces of Faltings—Hriljac, is a
variation on the proof of the Lefschetz theorem on arithmetic surfaces in [11].

It is a pleasure to thank A. Ducros for his helpful advice on rigid analytic
geometry during the preparation of this article.

Some of the results below were presented, in a preliminary form, during the
“Arithmetic Geometry and Number Theory” conference in honor of N. Katz,
in Princeton, December 2003, and were announced in [14].

During the preparation of this article, the authors benefitted from the
support of the Institut Universitaire de France.

It would be difficult to acknowledge fairly the multifaceted influences of
Yuri Ivanovich Manin on our work. We hope that this article will appear
as a tribute, not only to his multiple contributions to algebraic geometry
and number theory, but also to his global vision of mathematics, emphasiz-
ing geometric insights and analogies. The presentation of this vision in his
25th-Arbeitstagung report New Dimensions in Geometry [38] has been, since
it was written, a source of wonder and inspiration to one of the authors,
and we allowed ourselves to borrow the terminology “A-analytic” from the
“A-geometry” programmatically discussed in [38]. It is an honor for us to
dedicate this article to Yuri Ivanovich Manin.

2 Preliminary: the geometric case

The theorems we want to prove in this paper are analogues in arithmetic geom-
etry of classical algebro-geometric results going back—at least in an implicit
form—to Hartshorne, Hironaka, and Matsumura ([31],[34],[35]). Conversely, in
this section we give short proofs of algebraic analogues of our main arithmetic
theorems.

Proposition 2.1. Let 2" be a quasi-projective scheme over a field k and let &
be a projective connected subscheme of dimension 1 in Z . Let € be a formal
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subscheme of dimension 2 in % admitting & as a scheme of definition.
Assume that € is (formally) smooth over k, and that & has no embedded
component (of dimension 0), or equivalently, that & defines a Cartier divisor
n ‘g, and let A be the normal bundle of the immersion v : &P — Cf’ that is,
the invertible sheaf 1*O;(2) on 2.

If the divisor [Z?] on the formal surface % is nef and has positive self-

intersection, then the formal surface % is algebraic; namely, the Zariski-
closure of%” in Z is an algebraic subvariety of dimension 2.

Let (£;);c1 be the family of irreducible components of &2, and (n;)icr
their multiplicities in &2. Recall that [£?] is said to be nef on ¢ when

[Zi] - [P] :=degp, N 20 foranyicl,
and to have positive self-intersection if

(2] (2] = nidegg, N >0,

icl

or equivalently, when [Z] is nef, if one the nonnegative integers deg g, .4 is
positive. Observe that these conditions are satisfied if .4” is ample on &.

More general versions of the algebraicity criterion in Proposition 2.1 and
of its proof below, without restriction on the dimensions of ¢ and &, can be
found in [12, §3.3], [5], [13, Theorem 2.5], (see also [17,18]). Besides, it will
be clear from the proof that, suitably reformulated, Proposition 2.1 still holds
with the smoothness assumption on ¢ omitted; we leave this to the interested
reader.

Such algebraicity criteria may also be deduced from the works of Hironaka,
Matsumura, and Hartshorne on the condition Gg [34], [35], [31]. We refer the
reader to the monographs [33] and [3] for extensive discussions and references
about related results concerning formal functions and projective algebraic
varieties.

Note that Proposition 2.1 has consequences for the study of algebraic va-
rieties over function fields. Indeed, let S be a smooth, projective, and geomet-
rically connected curve over a field k and let K = k(S). Let f: 2~ — S be
a surjective map of k-schemes and assume that & is the image of a section
of f.Let X = 2k, P = Pk, and C = %K be the generic fibers of 27, 2,
and ¢. Then P is a_K-rational point of X and Cis a germ of curve in X
at P. Observe that € is algebraic if and only if Cis algebraic. Consequently,
in this situation, Prgposmlon 2.1 appears as an algebraicity criterion for a for-
mal germ of curves C in X. In particular, it shows that such a smooth formal
curve C in X is algebraic if it extends to a smooth formal scheme 2 through
P in X such that the normal bundle of & in % has positive degree.

Proof (of Proposition 2.1). We may assume that 2 is projective and that 2
is Zariski-dense in Z". We let d = dim £". One has obviously d > 2 and our
goal is to prove the equality.
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Let (1) be any very ample line bundle on 2. The method of “auxiliary
polynomials,” borrowed from transcendence theory, suggests the introduction
of the “evaluation maps”

pp: [(2,0(D)) = I'(€,0(D)), s~ slg,

for positive integers D.

Let us write Ep = I'(2°,0(D)), and for any integer i > 0, let E% be
the set of all s € Ep such that ¢p(s) = 5|z vanishes to order at least i
along &, i.e., such that the restriction of ¢p(s) to i vanishes. Since % is
Zariski-dense in 2", no nonzero section of &'(D) has a restriction to € that
vanishes at infinite order along &, and we have

o0 .
() Eb =0.
i=0
Consequently,
oo
rank Ep = Z rank (EE/ES'I) .
i=0

Moreover, there is a canonical injective map of k-vector spaces
EL Bt — I(2,0(D) @ 4V,

which amounts to taking the ith jet along &—that is, the restriction to
(1 + 1)P—of a section that vanishes to order at least i. Indeed, the quotient
sheaf

(ﬁ(D) ® ﬁ(@;(—i@)) / (ﬁ(D) ® O(—(i+ 1)@))

over % may be identified with &(D) ® 1,4 V. Observe also that the dimen-
sion of the range of this injection satisfies an upper bound of the form

dim I'(2,0(D) @ /) < ¢(D +1),

valid for any nonnegative integers D and i.

Assume that EY # 0 and let s € E% be any nonzero element. By assump-
tion, ¢p(s) vanishes to order i along &7; hence div ¢ p(s) —i[Z?] is an effective
divisor on % and its intersection number with [Z] is nonnegative, for [Z] is
nef. Consequently

divep(s) - (2] 2 i[2) - |2).
Since
divpp(s) - [2] = deg »(6(D)) = Ddeg »(6(1))

and [Z2] - [Z?] > 0 by the assumption of positive self-intersection, this implies
i < aD, where a := deg 5 0(1)/[ 2] [2]. Consequently E% is reduced to 0 if
t>aD.
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Finally, we obtain

00 laD] laD]
rank Ep = Zrank (EL/ERY) = Z rank (E},/E5 ") < Z c(D +1).
i=0 i=0 i=0

This proves that as D goes to 400,
rank Ep < D2
On the other hand,
rank Ep = rank I'(2", 0(D)) =< D%,

by Hilbert—Samuel’s theorem. This establishes that the integer d, which is at
least 2, actually equals 2. O

Proposition 2.2. Let f: S — S be a dominant morphism between two nor-
mal projective surfaces over a field k. Let D C S and D' C S’ be effective
divisors such that f(D') = D.

Assume that f|D/. D' — D is an isomorphism and that [ induces an

isomorphism f S , = SD between formal completions. If, moreover, D is
nef and D - D > 0, then f is birational.

Recall that D is said to be nef if, for any effective divisor E on S, the
(rational) intersection number D - E is nonnegative.

Proof. By hypothesis, f is étale in a neighborhood of D’. If deg(f) > 1, one
can therefore write f*D = D’ + D”, where D" is a nonzero effective Cartier
divisor on S’ that is disjoint from D’. Now, f*D is a nef divisor on S’ such that
f*D- f*D =deg(f)D- D > 0. As a classical consequence of the Hodge index
theorem (see [24], [45] and also [11, Proposition 2.2]), the effective divisor f*D
is numerically connected, hence connected. This contradicts the decomposition
f*D=D'UD". O

Proposition 2.3. Let . be a smooth projective connected surface over a per-
fect field k. Let &2 be a smooth projective connected curve in .. If the divisor
[Z] on . is big and nef, then any formal rational function along & is defined
by a (unique) rational function on . In other words, one has an isomorphism

of fields
k() = I['(Z,Frac ﬁ’?y)

Proof. Let ¢ be any formal rational function along &?. We may introduce a
sequence of blowups of closed points v: ./ — . such that ¢’ = v*y has
no point of indeterminacy and may be seen as a map (of formal k-schemes)
@, — P}, where &' = v* 2.

Let us consider the graph Gr¢’ of ¢’ in ./ x P}. This is a formally
smooth 2-dimensional formal scheme, admitting the graph of cpi g: P — Py



76 Jean-Benoit Bost and Antoine Chambert-Loir

as a scheme of definition, and the morphism ¢’ defines an isomorphism of
formal schemes

Y = (Id, ¢): 7 1 — Gr 0.

Like the divisor &2 in ., its inverse image &’ in .¥” is nef and has positive self-
intersection. Proposition 2.1 therefore implies that Gr¢' is algebraic in .’ x
P}. In other words, ¢’ is an algebraic function.

To establish its rationality, let us introduce the Zariski closure I' of the
graph of Gr¢’ in ./ x Pj}, the projections pry: I' — ./ and pry: I’ — P,
and the normalization n: I — I" of I'. Consider also the Cartier divisor £,
(respectively 9}) defined as the inverse image prj &’ (respectively n* /)
of 2" in I' (respectively I"). The morphisms n and pr, induce morphisms of
formal completions:

~

RN P, —
To LF% = S .
r

The morphism ¢’ may be viewed as a section of pry; by normality of ./, it
admits a factorization through n of the form 1)’ = n o4, for some uniquely de-
termined morphism of k-formal schemes 1) : 8 o — I P This morphism 1)

is a section of pry o 7. Therefore the (scheme-theoretic) image (') defines
a (Cartier) divisor in I" such that

(f: 8" —=8,D',D)=(pryon: I — .7 2, P

satisfy the hypotheses of Proposition 2.2. Consequently the morphism pr;on is
birational. Therefore, pr, is birational too and ¢’ is the restriction of a rational
function on .’, namely pr, o pr; *. This implies that ¢ is the restriction of a
rational function on .¥. The uniqueness of this rational function follows from
the Zariski density of the formal neighborhood of & in .%. ]

Remark 2.4. In the terminology of Hironaka and Matsumura [35], the last
proposition asserts that & is Gs in ., and has been established by Hironaka
in [34]. Hartshorne observes in [32, Proposition 4.3, and Remark p. 123] that
Proposition 2.2 holds more generally under the assumption that D and D’
are Gz in . and /. Our approach to Propositions 2.2 and 2.3 follows an
order opposite to that in [34] and [32], and actually provides a simple proof
of [32, Proposition 4.3].

3 A-analyticity of formal curves

3.A Size of smooth formal curves over p-adic fields

In this section, we briefly recall some definitions and results from [12].
Let K be field equipped with some complete ultrametric absolute valueu
and assume that its valuation ring R is a discrete valuation ring. Let also K
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be an algebraic closure of K. We shall still denote by |.| the non-archimedean
absolute value on K that extends the absolute value |.| on K.

For any positive real number r, we define the norm ||g||,. of a formal power
series g = Y jonv ar X' € K[[X1,..., X,,]] by the formula

lgll, = supla|r''!;
I

it belongs to Ry U {oo}. The power series g such that ||g||,. < oo are precisely
those that are convergent and bounded on the open N-ball of radius r in FN.

The group Gsor, x = Aut (A%,o) of automorphisms of the formal comple-
tion of AX at 0 may be identified with the set of all N-tuples f = (f1,..., fn)

of power series in K[[X,..., Xn]] such that f(0) = 0 and Df(0) := (gfg (O))

belongs to GLy (K). We consider its following subgroups:

e the subgroups Gfo, consisting of all elements f € Gior, x such that Df(0) €
GLN(R);

o the subgroup Gan, i consisting of those f = (f1,..., fn) in Gior, x such that
for each j, f; has a positive radius of convergence;

o Goy = Gan,K N Gror;

e for any positive real number r, the subgroup Ga,, of Ga, consisting of
all N-tuples f = (f1,..., fnv) such that || f;]|, < r for each j. This subgroup
may be identified with the group of all analytic automorphisms, preserving
the origin, of the open N-dimensional ball of radius 7.

One has the inclusion Gap ,+ C Gan » for any 7’ > r > 0, and the equalities

U Ganr = Gan and - Gy = Aut (AN ).
>0

It is straightforward that a formal subscheme V of A%’O is (formally)
smooth of dimension d iff there exists ¢ € Ggor ik such that cp*‘A/ is the formal
subscheme AC}{’O x {0} of A%,(); when this holds, one can even find such a ¢
in Gtor. Moreover such a smooth formal subscheme Vis K -analytic iff one
can find ¢ as above in Gap i, or equivalently in Gyy.

Let 2 be a flat quasiprojective R-scheme, and X = 2 ®p K its generic
fiber. Let & € Z(R) be an R-point, and let P € X (K) be its restriction
to Spec K. In [12, §3.1.1], we associated to any smooth formal scheme V' of

dimension d in Xp, its size Sgg(‘/}) with respect to the model & of X. It is a
number in [0, 1] whose definition and basic properties may be summarized in
the following statement:

Theorem 3.1. There is a unique way to attach a number So- (V) in [0,1] to
any such data (2, P, V) so that the following properties hold:
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(a) if & — X' is an immersion, then Sg(V) = S4 (V) (invariance under
immersions);

(b) for any two triples (X, 2,V) and (X', 2',V') as above, if there exists
an R-morphism ¢: 2 — 2 mapping & to P', étale along &, and
inducing an isomorphism V ~ V', then Sqi (V') = S%( ) (invariance by
étale localization);

(c)if Z = AN s the affine space over R and & = (0,...,0), then Sa (V) is
the supremum in [0,1] of the real numbers r € (0,1] for which there exists
f € Gan,r such that V= Ad x {0} (normalization).

As a straightforward consequence of these properties of the size, we obtain
the following:

Proposition 3.2. A smooth formal subscheme V in )/(\’p is K-analytic if and
only if its size Sq (V') is a positive real number.

Proposition 3.3. Let 27, &, and V be as above and assume that there exists
a smooth formal R-subscheme ¥ C X such thatV = ¥. Then S (V) = 1.

The remainder of this section is devoted to further properties of the size.

Proposition 3.4. The size is invariant under isometric extensions of valued
fields (complete with respect to a discrete valuation).

Proof. 1t suffices to check this assertion in the case of a smooth formal sub-
scheme V through the origin of the affine space A™. By its very definition,
the size cannot decrease under extensions of the base field.

To show that it cannot increase either, let us fix an isomorphism of K-
formal schemes

€= (1,...,6n) A 5V AY

given by N power series & € K][[T1,...,T4)] such that &(0) = --- =
én(0) = 0. We then observe that for any N-tuple g = (¢1,...,gn) of series
in K[[Xy,...,Xn]], the following two conditions are equivalent:

(i) g belongs to Gror.x and (g~1)*V = j/X\g x {0};
(11) gl(o) = = gN(O) = O’ gd+1(§17"'7£1\7) = = gN(glaafN) = Oa
and (dg’ (0)) belongs to GLy (K).

Let K’ be a valued field, satisfying the same condition as K, that
contains K and whose absolute value restricts to the given one on K.
Let R’ be its valuation ring. Let Gi ., G},,Gh, ., .- denote the analogues
of Gior; Gan, Gan,r, - - . defined by replacing the valued field K by K’. Recall
that there exists an “orthogonal projection” from K’ to K, namely a K-linear
map A: K’ — K such that |A(a)| < |a| for any a € K’ and A(a) = a for
any a € K; see for instance [28, p. 58, Corollary (2.3)].
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Let V' = Vi be the formal subscheme of A%, deduced from v by the
extension of scalars K < K’, and let r be an element in ]0, SA% (V')[. By
the very definition of the size, there exists some ¢’ = (g1,...,9y) in Gy,
such that (¢'~1)*V = Ad x {0}. Since the tangent space at the origin of V" is
defined over K, by composing g’ with a suitable element in GLy (R’), we may
even find ¢’ such that Dg¢’(0) belongs to GLx (R). Then the series g; := Ao g,
deduced from the series g; by applying the linear map A to their coefficients,
satisty gi(0) = 0, (9g:/0X;)(0) = (9g./0X;) (0), and g, < ||, Therefore
g := (91,-..,9n) is an element of Gy, . Moreover, from the equivalence of
conditions (i) and (ii) above and its analogue with K’ instead of K, we derive

that g satisfies (g=1)*V = Ad x {0}. This shows that SAE(XA/) > r and
establishes the required inequality Spx V=5 AY, (V). O

The next proposition relates sizes, radii of convergence, and Newton
polygons.

Proposition 3.5. Let ¢ € K[[X]] be a power series such that <p(0) =0 and

©'(0) € R, and let C be its graph, namely the formal subscheme of A2 defined
by the equation xo = (x1).
(1) The radius of convergence p of ¢ satisfies

p =z SA%(O\)'
(2) Suppose that p is positive and that ©'(0) is a unit in R. Then
SAi(a) = min(1,exp A1),

where A1 denotes the first slope of the Newton polygon of the power se-
ries p(x)/x.
Recall that if ¢ = 3., ¢;T", under the hypothesis in (2), we have
A1 = inf — - -
i>1 i i— 00 i
Moreover, exp A; is the supremum of the numbers r €]0, p[ such that for any ¢

in K satisfying [t| < r, we have |o(t)| = |t|.

Proof. Let r be a positive real number such that r < Sa2 (C) By assumption,
there are power series f1 and f2 € K[[X1, X3]] such that f = (f1, f2) belongs

to Gan,r and such that f*C Al x {0}. This last condition implies (actually
is equivalent to) the identity

fo(T,0) = ¢(f1(T’0))

in K[[T]]. Let us write fi(T,0) = 3,5, aiT", f2(T,0) = 32,5, biT", and
QD(X) = Zi}l X"
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One has b; = cia1, and ¢; = ¢’(0) belongs to R by hypothesis. Moreover,
the first column of the matrix D f(0) is (3, ) = a1 (& ). Since D f(0) belongs
to GLa(R) and ¢; to R, this implies that a; is a umt in R. Then, looking
at the expansion of f1(T,0) (which satisfies || fi(7,0)|,, < 7), we see that
|f1(t,0)] = |t| for any ¢ € K such that |t| < r. Consequently, if g € K[[T]]
denotes the reciprocal power series of f1(T,0), then g converges in the open
disc of radius 7 and satisfies |g(t)| = |t| for any ¢ € K such that |t| < r.

The identity
o(T') = o(f1(9(T),0)) = f2(9(T),0)
in K[[T]] then shows that the radius of convergence of ¢ is at least r. This
establishes (1).

Let us now assume that p is positive and that ¢’(0)(= ¢1) is a unit of R.
Then by = ajc; is also a unit, and similarly, we have |f3(¢,0)| = |¢| for any
t € K such that |t| < r. This implies that |¢(t)] = |t| for any such ¢. This
shows that exp A1 = Saz ().

To complete the proof of (2), observe that the element f of G,, defined
as f(Ty,Ty) = (Ty + Ty, p(Ty)) satisfies f*C = Al x {0} and belongs to Gan,r
for any r in ]0, min(1, exp A1)[. O

Observe that for any nonzero a € R, the series ¢(T) = T'/(a — T) has
radius of convergence p = |a|, while the size of its graph Cis1 (observe that
F(TL, Ty) == (aTy + Ty, Ty /(1 —Ty)) satisfies £*C = Al x {0}). Taking |a| < 1,
this shows that the size of the graph of a power series ¢ can be larger than
its radius of convergence when the assumption ¢’(0) € R is omitted.

As an application of the second assertion in Proposition 3.5, we obtain that
when K is a p-adic field, the size of the graph of log(1+2) is equal to [p|/(P=1).
Considering this graph as the graph of the exponential power series with axes
exchanged, this also follows from the first assertions of Propositions 3.5 and 3.6
below.

Finally, let us indicate that by analyzing the construction a la Cauchy
of local solutions of analytic ordinary differential equations, one may estab-
lish the following lower bounds on the size of a formal curve obtained by
integrating an algebraic one-dimensional foliation over a p-adic field (cf. [13,
Proposition 4.1]):

Proposition 3.6. Assume that K is a field of characteristic 0, and that its
residue field k has positive characteristic p. Assume also that 2" is smooth
over R in a neighborhood of &. Let # C Tq /i be a rank 1 subbundle and

let C be the formal integral curve through P of the one-dimensional foliation
F = %. Then R

Sa(C) = [p|"/® Y.
If, moreover, K is absolutely unramified (that is, if the maximal ideal of R

is pR) and if the one-dimensional subbundle .Fy, C Tq;, is closed under p-th

powers, then R
Sa(C) = [p[V/P .
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3.B A-analyticity of formal curves in algebraic varieties
over number fields

Let K be a number field and let R denote its ring of integers. For any maxi-
mal ideal p of R, let |-|, denote the p-adic absolute value, normalized by the
condition |r|, = (#(R/p))~! for any uniformizing element 7 at p. Let K,
and R, be the p-adic completions of K and R, and F, := R/p the residue
field of p.

In this section, we consider a quasiprojective algebraic variety X over K,
a rational point P in X (K), and a smooth formal curve C' in Xp.

It is straightforward that if N denotes a sufficiently divisible positive inte-
ger, there exists a model 2" of X, quasiprojective over R[1/N], such that P
extends to a point & in Z (R[1/N]). Then, for any maximal ideal p not

~

dividing N, the size S, (Ck, ) is a well-defined real number in [0, 1].

Definition 3.7. We will say that the formal curve Cin X is A-analytic if
the following conditions are satisfied:

(i) for any place v of K, the formal curve éKv is K, -analytic;
(it) the infinite product [ ],y S, (Ck, ) converges to a positive real number.

Condition (ii) asserts precisely that the series with nonnegative terms

Zlog Sar, (Cr,)"
pIN

is convergent.

Observe that the above definition does not depend on the choices required
to formulate it. Indeed, condition (i) does not involve any choice. Moreover, if
condition (i) holds and if N’ is any positive multiple of N, condition (ii) holds
for (N, 2", &) if and only if it holds for (N’, ZR1NTS @R[1/N/])~ Moreover,
for any two such triples (N1, 27, %1) and (N2, 23, &3), there is a positive
integer M, a multiple of both N7 and Na, such that the models (27, %)
and (22, P2) of (X, P) become isomorphic over R[1/M]. This shows that
when (i) is satisfied, conditions (ii) for any two triples (N, 2", &) are indeed
equivalent.

It follows from the properties of the size recalled in Proposition 3.1
that A-analyticity is invariant under immersions and compatible to étale
localization.

As a consequence of Propositions 3.2 and 3.3, we also have the following:

Proposition 3.8. Let C bea smooth formal curve which is K,-analytic for
any place v of K. Assume that C' extends to a smooth formal curve ¢ — 2
over R[1/N], for some N > 1. Then C is A-analytic.

Indeed, these conditions imply that the size of C at almost every finite
place of K is equal to 1, while being positive at every place.
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As observed in essence by Eisenstein [23], any algebraic smooth formal
curve satisfies the hypothesis of Proposition 3.8. Therefore, we have the fol-
lowing corollary:

Corollary 3.9. If the smooth formal curve C is algebraic, then it is A-
analytic.

The invariance of size under extensions of valued fields established in
Proposition 3.4 easily implies that for any number field K’ containing K,
the smooth formal curve C' := Cxr in X+ deduced from C by the extension
of scalars K — K' is A-analytic iff C is A- analytic.

Let ¢ € K[[X]] be any formal power series, and let P := (0, ¢(0)). From
the inequality in Proposition 3.5(1), between the convergence radius of a power
series and the size of its graph, it follows that the A-analyticity of the graph C

of p in E implies that the convergence radii R, of ¢ at the places v of K
satisfy the so-called Bombieri condition

H min(1, R,) > 0

or equivalently

z:logJr Ry < +oo.

However, the converse does not hold, as can be seen by considering the power
series p(X) = log(1 + X), which satisfies Bombieri’s condition (since all the
R, equal 1) but is not A-analytic (its p-adic size is |p|'/®~1) and the infinite
series Z 7 logp diverges).

Let us conclude this section with a brief discussion of the relevance of
A-analyticity in the arithmetic theory of differential equations (we refer to
[12,13,17] for more details).

Assume that X is smooth over K, that F' is a sub-vector bundle of rank
one in the tangent bundle Tx (defined over K), and that C is the formal
leaf at P of the one-dimensional algebraic foliation on X defined by F. By
a model of (X, F) over R[1/N], we mean the data of a scheme 2" quasi-
projective and smooth over Spec R, of a coherent subsheaf .7 of Ty, and
of an isomorphism X ~ 2" ® K inducing an isomorphism F' ~ .% & K. Such
models clearly exist if IV is sufficiently divisible. Let us choose one of them
(2, F). We say that the foliation F satisfies the Grothendieck-Katz condition
if for almost every maximal ideal p C R, the subsheaf .Zp, of Tng /Fp is closed
under p-th powers, where p denotes the characteristic of Fy,. As above, this
condition does not depend on the choice of the model (£, .7).

Proposition 3.10. With the above notation, if F' satisfies the Grothendieck—
Katz condition, then its formal integral curve C' through any rational point P
in X(K) is A-analytic.
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Proof. 1t follows from Cauchy’s theory of analytic ordinary differential
equations over local fields that the formal curve C' is K,-analytic for any
place v of K.

After possibly increasing NV, we may assume that P extends to a section &
in 2 (R[1/N]). For any maximal ideal p C R that is unramified over a prime
number p and such that Fp, is closed under p-th power, Proposition 3.6

shows that the p-adic size of C is at least [p|'/P(P=1) When F satisfies the
Grothendieck—Katz condition, this inequality holds for almost all maximal

ideals of R. Since the series over primes Zp m log p converges, this implies

the convergence of the series ),y log Say, (6’1<p)_1 and consequently the
A-analyticity of C. (]

4 Analytic curves in algebraic varieties over local fields
and canonical seminorms

4.A Consistent sequences of norms

Let K be a local field, X a projective scheme over K, and L a line bundle
over X.

We may consider the following natural constructions of sequences of norms
on the spaces of sections I'(X, L®"):

(1) When K = C and X is reduced, we may choose an arbitrary continuous
norm |[|-||, on the C-analytic line bundle L,, defined by L on the compact
and reduced complex analytic space X (C). Then, for any integer n, the
space of algebraic regular sections I'(X, L®™) may be identified with a
subspace of the space of continuous sections of LE" over X (C). It may
therefore be equipped with the restriction of the L°°-norm, defined by

5l , ;== sup |[|s(z)| en foranyse I'(X, L®m), (4.1)
' (©)

S

where ||| ;. denotes the continuous norm on LY deduced from ||-||; by
taking the n-th tensor power.
This construction admits a variant in which instead of the sup-norms

(4.1), one considers the LP-norms defined by using some “Lebesgue mea-
sure” (cf. [12, 4.1.3], and [46, Théoréme 3.10]).

(2) When K = R and X is reduced, we may choose a continuous norm on L¢
that is invariant under complex conjugation. The previous constructions
define complex norms on the complex vector spaces

INX,L®")@r C~ T (Xc,LE"),

which are invariant under complex conjugation, and by restriction, real
norms on the real vector spaces I'(X, L®™).
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(3) When K is a p-adic field, with ring of integers ¢, we may choose a pair
(Z',%), where 2" is a projective flat model of X over ¢, and £ a
line bundle over 2~ extending L. Then, for any integer n, the &-module
(%, £®") is free of finite rank and may be identified with an @-lattice
in the K-vector space I'(X, L®"), and consequently defines a norm on the
latter, namely, the norm ||-||,, such that a section s € I'(X, L®") satisfies
], < 1iff s extends to a section of £®™ over 2.

(4) A variant of construction (1) can be used when K is a p-adic field and
X is reduced. Let ||| be a metric on L (see Appendix A for basic defi-
nitions concerning metrics in the p-adic setting). For any integer n, the
space I'(X, L®") admits an L°°-norm, defined for any s € I'(X, L®™) by
[8/lp, . =5UP,ex(c) I8(2)]|, where C denotes the completion of an alge-
braic closure of K. When the metric of L is defined by a model .Z of L on
a normal projective model 2" of X on R, then this norm coincides with
that defined by construction (3) (see, e.g., [48, Proposition 1.2]).

For any given K, X, and L as above, we shall say that two sequences
(II-l,,)nen and (||H'n)neN of norms on the finite-dimensional K-vector spaces
(I'(X, L®™))en are equivalent when for some positive constant C' and any
positive integer n,

— / /
CT G < M-l < €™ IFIL -

One easily checks that for any given K, X, and L, the above con-
structions provide sequences of norms (||.||,,)nen on the sequence of spaces
(I'(X,L®")),en that are all equivalent. In particular, their equivalence class
does not depend on the auxiliary data (models, norms on L, ...) involved.
(For the comparison of the L? and L* norms in the archimedean case, see
notably [46, Théoréme 3.10].)

A sequence of norms on the spaces I'(X, L®") that is equivalent to one
(or, equivalently, to any) of the sequences thus constructed will be called
consistent. This notion immediately extends to sequences ({|-|,,)n>n, of norms
on the spaces I'(X, L®™), defined only for n large enough.

When the line bundle L is ample, consistent sequences of norms are also
provided by additional constructions. Indeed we have the following result.

Proposition 4.2. Let K be a local field, X a projective scheme over K, and
L an ample line bundle over X . Let, moreover, Y be a closed subscheme of X,
and assume X and Y reduced when K is archimedean.

For any consistent sequence of norms (||-||,,)nen on (I'(X,L®"))pen, the

®n

quotient norms (|||} )nsn, on the spaces (F (Y, Ly , deduced from

n=ng

the norms ||-||,, by means of the restriction maps I'(X,L®") — I (Y, L%,")

— which are surjective for n > ng large enough since L is ample—constitute
a consistent sequence.
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When K is archimedean, this is proved in [13, Appendix], by introducing
a positive metric on L, as a consequence of Grauert’s finiteness theorem for
pseudoconvex domains applied to the unit disk bundle of LY (see also [46]).

When K is a p-adic field with ring of integers &, Proposition 4.2 follows
from the basic properties of ample line bundles over projective &-schemes.
Indeed, let 2" be a projective flat model of X over &, £ an ample line
bundle on 2, % the closure of Y in 2", and %5 the ideal sheaf of . If the
positive integer n is large enough, then the cohomology group HY (%, .%a -

Z®m™) vanishes, and the restriction morphism I'(2", £®") — I’ (@,,,?@,”)
is therefore surjective. Consequently, the norm on I (Y, L%,") attached to

the lattice I (@, 9%%”) is the quotient of the one on I'(X, L®") attached to
raZ,om).

Let FE be a finite-dimensional vector space over the local field K, equipped
with some norm, assumed to be euclidean or hermitian in the archimedean
case. This norm induces similar norms on the tensor powers E®" n € N,
hence—by taking the quotient norms—on the symmetric powers Sym" E. If X
is the projective space P(E) := Proj Sym (E) and L the line bundle €(1) over
P(E), then the canonical isomorphisms Sym™ £ ~ I'(X, L®") allow one to
see these norms as a sequence of norms on (I'(X, L®™")),en. One easily checks
that this sequence is consistent. (This is straightforward in the p-adic case.
When K is archimedean, this follows, for instance, from [15, Lemma 4.3.6].)

For any closed subvariety Y in P(F) and any n € N, we may consider the
following commutative diagram of K-linear maps:

Sym" E —— Sym" I'(P(E), 0(1)) ——= I'(P(E), O(n))

N

Sym" I'(Y,0(1)) ———I'(Y, O(n))

where the vertical maps are the obvious restriction morphisms. The maps a,,
and consequently (,, are surjective if n is large enough.

Together with Proposition 4.2, these observations yield the following
corollary:

Corollary 4.3. Let K, E, and Y, a closed subscheme of P(E), be as above.
Assume that Y is reduced if K is archimedean. Let us choose a morm
on E (respectively on I'(Y,0(1))) and let us equip Sym" E (respectively
Sym" I'(Y, 0(1)) ) with the induced norm, for any n € N.

Then the sequence of quotient norms on I'(Y, O (n)) defined for n large
enough by means of the surjective morphisms ay: Sym™ E — I'(Y,0(n))
(respectively by means of By Sym™ I'(Y, 0 (1)) — I'(Y, O(n))) is consistent.
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4.B Canonical seminorms

Let K be a local field. Let X be a projective variety over K, P a rational point
in X(K), and C a smooth K- analytic formal curve in Xp. To these data, we
are going to attach a canonical seminorm ||- ||§;“‘6 on the tangent line TpC of C
at P. It will be defined by considering an analogue of the evaluation map

Ep/Bp — I(2,0(D) @ 4V,

which played a prominent role in our proof of Proposition 2.1.
The construction of || - |C"“‘6 will require auxiliary data, on which it will

eventually not depend.

Let us choose a line bundle L on X and a consistent sequence of norms on
the K-vector spaces Ep = I'(X, L®P), for D € N. Let us also fix norms ||-||o
on the K-lines Tpé’ and Lp.

Let us denote by C; the ith neighborhood of P in C. Thus we have C_; = 0,
Co = {P}, and C; is a K-scheme isomorphic to Spec K[t]/(t**!); moreover,
C = h_H)lCz Let us denote by EiD the K-vector subspace of the s € Ep such
that sc,_, = 0. The restriction map Ep — I'(C;, L®P) induces a linear map
of finite-dimensional K-vector spaces

oh: B — T'(Ci, e, , ® LOP) ~ <T1¥C) ®L|P .

We may consider the norm Hcpb” of this map, computed by using the
chosen norms on Ep, T pé , and L p, and the ones they induce by restriction,
duality, and tensor product on E% and on (Tl\g/ 6’) ® L‘ b -

Let us now define p(L) by the following formula:

1 .
p(L) = limsup - log |||
i/ D—+o0 1

The analyticity of C' implies that p(L) belongs to [—occ,+oo[. Indeed,
when K is C or R, as observed in [13, §3.1], from Cauchy’s inequality we
easily derive the existence of positive real numbers r and C such that

leb|| < ¢, (4.4)
When K is ultrametric, we may actually bound p(L) in terms of the size of C:

Lemma 4.5. Assume that K is ultrametric and let R be its ring of integers.
Let & be a projective flat R-model of X and let &: Spec R — Z~ be the
section extending P. Assume, moreover, that the metric of L is given by a line
bundle £ on X extending L and the consistent sequence of norms on (Ep)
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by the construction (3) in Section 4.A, and fix the norm ||-||, on TpC so that

its unit ball is equal to Nop & N Tpa.
Then, one has

~

p(L) < —log Sa 2 (C).

Proof. Let r be an element of |0, S5 (C)[. We claim that with the notation
above, we have 4
e[| <7

D

This will establish that p(L) = limsup;;p_, 4 11og [|¢P|| < —logr, hence

the required inequality by letting r go to Sg (C).

To establish the above estimate on Hgo? | , let us choose an affine open
neighborhood U of & in 2" such that £y admits a nonvanishing section [,
and a closed embedding i: U — AX such that i(£) = (0,...,0). Let C’
denote the image of C by the embedding of formal schemes ix P Xp —

A%,o' By the very definition of the size, we may find @ in Gap, such that
&*C’ = A} x {0}¥~1. Let s be an element of I'(2",.£%P). We may write
sjp=1"Q- 19P for some @ in R[X1,..., Xy]. Then, *Q is given by a formal
series g = > by X! that satisfies ||g||, < 1, or equivalently, |b|r/!| < 1 for any
multi-index I. If s belongs to E},, with the chosen normalizations of norms,
we have ||oP(s)|| = |bio,....0l <77 O

The exponential of p(L) is a well-defined element in [0, +o00[, and we may
introduce the following definition:

Definition 4.6. The canonical seminorm on TpC' attached to (X,C, L) is

L
%6, = e Il -

Observe that if C is algebraic, then there exists a real number A such that

the filtration (E}j)Z eN becomes stationary—or equivalently ¢}, vanishes—for

i/D > X (for instance, we may take the degree of the Zariski closure of c
for A). Consequently, in this case, p(L) = —oo and the canonical seminorm
|l ;, vanishes.

The notation ||| ; for the canonical seminorm—which makes reference
<,

to X, 6’, and L only—is justified by the first part of the next proposition:

Proposition 4.7. (a) The seminorm |-||¢ , is independent of the choices

of norms on TpC and Lip, and of the consistent sequence of norms on
the spaces Ep := I'(X, L®P).

(b) For any positive integer k, the seminorm ||||§;méL is unchanged if L is
replaced by L®F.
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(¢) Let L1 and Lo be two line bundles and assume that Lo ®Lf1 has a reqular
section o over X that does not vanish at P. Then

Ixe.r, <IHxe., -

Proof. (a) Let us denote by primes another family of norms on the spaces

~ /
TpC, Lip,and Ep, and by p'(L) and (H 15T, 6) the attached “rho-invariant”

and canonical seminorm. There are positive real numbers a, b, ¢ such that
[ty = alt|l, for any t € TpC, ||s(P)|’ = b||s(P)]| for any local section s of L
at P, and

cPlsl < sl < <Pl

for any positive integer D and any global section s € Ep. Consequently, for

(i, D) € N? and s € Ei,,

leb () = a~ b [eh ()l < a™ B llsll < a™ b [ ebllc”|Is],
hence
bl < a™'cPbP b |
and )
= logllep |’ < —loga+ — log(bC) log\lw’p\l-

When i/D goes to infinity, this 1mphes

p'(L) < —loga+ p(L),

from which follows that

(15, &) < M

by definition of the canonical seminorm. The opposite inequality also holds
by symmetry, hence the desired equality. R

(b) To define p(L) and p(L®¥), let us use the same norm ||-|o on TpC,
and assume that the consistent sequence of norms chosen on (I'(X, L®P)) is
defined by one of the constructions (1-4) in the Section 4.A above, and finally
that the one on (I'(X, (L®¥)®P)) = (I'(X, L®*P)) is extracted from the one
on (I'(X, L®P)).

Specifying the line bundle with a supplementary index, one has

i _ i
Yp,Lek = PrD,L-

The definition of an upper limit therefore implies that p(L*) < p(L).
To establish the opposite inequality, observe that for any section s in Eb 1
and any positive integer k, the k - tensor power s®* belongs to E’g Lex and

; ; ®k
#hpex(s%) = (¢b 1(s) -
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Let p be any real number such that p < p(L), and choose i, D, and s € Ejj,L
such that [¢} 1 (s)|| > e”||s||. Then, for any positive integer k, we have

€5, Lex (s = Il () = e |s]|* = e [|s%*],

|1/kz

so that H<pD Lok e?. Consequently, p(L*) > p.

(c) Here again, we may use the same norm |-||o on TpC to define p(L)
and p(L2), and assume that the consistent sequences of norms chosen on
(I (X,LYP)) and (I" (X, LYP)) are defined by one of the constructions (1-4)
above.

If 5 is a global section of LY then s ® ¢®P is a global section of LY?;

if s vanishes to order i along C, so does s ® c®P, and

©b,1,(5® 0%P) = ¢ 1, (5) ® o (P)9P.

Consequently,

152, (I < b 1, 1lIs @ c®PLIe (P~ < (le(P)| o) lleb. L, lI-Isl,
and p(L1) < p(L2), as was to be shown. O

Corollary 4.8. The set of seminorms on TpC described by 1157, when L

varies in the class of line bundles on X possesses a maximal element, namely
the canonical seminorm ||-||' | attached to any ample line bundle L on X.

We shall denote by |- ||Cam this maximal element. The formation of |- ||Cam

satisfies the following compatlblhty properties with respect to rational mor-
phisms.

Proposition 4.9. Let X' be another projective algebraic variety over K, and
let f: X --+ X' be a rational map that is defined near P. Let P’ := f(P),
and assume that f defines an (analytic, or equwalently, formal) isomorphism
from C onto a smooth K - -analytic formal curve C’ in X’p/

Then for any v € TPC

IDF (Pl s < ol o

If, moreover, f is an immersion in a neighborhood of P, then the equality
holds.

When K is archimedean, this summarizes the results established in [13,
Sections 3.2 and 3.3]. The arguments in that work may be immediately trans-
posed to the ultrametric case using consistent norms as defined above instead
of L*° norms on the spaces of sections Ep. We leave the details to the reader.

Observe finally that this proposition allows us to define the canonical semi-

norm ||-[|$% when the algebraic variety X over K is assumed to be only
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quasiprojective. Indeed, if X denotes some projective variety containing X as
an open subvariety, the seminorm ||- HCE“‘A is independent of the choice of X,

and we let
H ‘CELII .

5 Capacitary metrics on p-adic curves

5.A Review of the complex case

Let M be a compact Riemann surface and let {2 be an open subset of M.
We assume that the compact subset complementary to {2 in any connected
component of M is not polar. Let D be an effective divisor on M whose
support is contained in {2. Potential theory on Riemann surfaces (see [11,
3.1.3-4]) shows the existence of a unique subharmonic function gp o on M
satisfying the following assumptions:

(1) gp,n is harmonic on 2\ |D|;

(2) the set of points z € M \ {2 such that gp o(z) # 0 is a polar subset of 042;

(3) for any open subset V of {2 and any holomorphic function f on V such
that div(f) = D, the function gp o —log|f|=2 on V'\ | D] is the restriction
of a harmonic function on V.

Moreover, gp,» takes nonnegative values, is locally integrable on M, and
defines an L2-Green current for D in the sense of [11]. It is the so-called
equilibrium potential attached to the divisor D in {2.

If E' is another effective divisor on M supported in {2, one has gpyg.o =
9p,2 + gr,o. We can therefore extend by linearity the definition of the equi-
librium potential gp ¢ to arbitrary divisors D on M that are supported on 2.
Recall also that if 29 denotes the union of the connected components of {2
that meet |D|, then gp o, = gp.o [11, p. 258].

The function gp, o allows one to define a generalized metric on the line
bundle &;(D) by the formula

I1pl*(2) = exp(—gp.2(2)),

where 1p denotes the canonical global section of &;(D). We will call this
metric the capacitary metric* on O (D) attached to {2 and denote by || f||557
the norm of a local section f of Oy (D).

*Our terminology differs slightly from that in [11]. In the present article, the
term capacitary metric will be used for two distinct notions: for the metrics on line
bundles defined using equilibrium potentials just defined, and for some metrics on
the tangent line to M at a point; see Section 5.C. In [11], it was used for the latter
notion only.
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5.B Equilibrium potential and capacity on p-adic curves

Let R be a complete discrete valuation ring, and let K be its field of fractions
and k its residue field. Let X be a smooth projective curve over K and let U
be an affinoid subspace of the associated rigid K-analytic curve X*"'. We
shall always require that U meets every connected component of X?"; this
hypothesis is analogous to the nonpolarity assumption in the complex case.
We also let 2 = X\ U, which we view as a (non-quasicompact) rigid K-
analytic curve; its affinoid subspaces are just affinoid subspaces of X 2" disjoint
from U. See Appendix B for a detailed proof that this endowes {2 with the
structure of a rigid K-analytic space in the sense of Tate.

The aim of this subsection is to endow the line bundle &(D), where D is a
divisor that does not meet U, with a metric (in the sense of Appendix A)
canonically attached to (2, in a way that parallels the construction over
Riemann surfaces recalled in the previous subsection.

Related constructions of equilibrium potentials over p-adic curves have
been developed by various authors, notably Rumely [49] and Thuillier [51]
(see also [37]). Our approach will be self-contained, and formulated in the
framework of classical rigid analytic geometry. Our main tool will be intersec-
tion theory on a model 2" of X over R. This point of view will allow us to
combine potential theory on p-adic curves and Arakelov intersection theory
on arithmetic surfaces in a straightforward way.

We want to indicate that by using an adequate potential theory on analytic
curves in the sense of Berkovich [4] such as the one developed by Thuillier [51],
one could give a treatment of equilibrium potential on p-adic curves and their
relations to canonical seminorms that would more closely parallel the one in
the complex case. For instance, in the Berkovich setting, the affinoid sub-
space U is a compact subset of the analytic curve attached to X, and (2 is
an open subset. We leave the transposition and the extension of our results
in the framework of Berkovich and Thuillier to the interested reader.

By Raynaud’s general results on formal/rigid geometry, see for instance
[8,9], there exists a normal projective flat model 2™ of X over R such that U
is the set of rigid points of X" reducing to some open subset U of the special
fiber X. We shall write U = |U[2 and say that U is the tube of U in Z’;
similarly, we write 2 = |2\ U[2 . (We remove the index 2 from the notation
when it is clear from the context.) The reduction map identifies the connected
components of U with those of U, and the connected components of 2 with
those of X \ U. Since we assumed that U meets every connected component
of X, this shows that U meets every connected component of X.

Recall that to any two Weil divisors Z; and Z; on 2 such that Z; g
and Zs g have disjoint supports is attached their the intersection number
(Z1,7Z3). Tt is a rational number, which depends linearly on Z; and Z,. It
may be defined a la Mumford (see [42, II.(b)]), and it coincides with the
degree over the residue field k of the intersection class Z1.Z5 in CHy(X) when
Zy or Zy is Cartier. Actually, when the residue field & is an algebraic extension
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of a finite field—for instance when K is a p-adic field, the case in which we
are interested in the sequel-—any Weil divisor on 2 has a multiple that is
Cartier (see [40, Théoréme 2.8]), and this last property, together with their
bilinearity, completely determines the intersection numbers.

The definition of intersection numbers immediately extends by bilinearity
to pairs of Weil divisors with coefficients in Q (Q-divisors, for short) in 2~
whose supports do not meet in X.

Proposition 5.1. For any divisor D on X, there is a unique Q-divisor 9
on X extending D and satisfying the following two conditions:

(1) For any irreducible component v of codimension 1 of X\ U, 2 -v = 0.
(2) The wvertical components of 2 do not meet U.

Moreover, the map D — 2 so defined is linear and sends effective divisors to
effective divisors.

Proof. Let S denote the set of irreducible components of X and let " C S
be the subset consisting of components that do not meet U. Let %, be the
schematic closure of D in 2. Since U meets every connected component
of X, T' does not contain all of the irreducible components of some connected
component of X, so that the restriction of the intersection pairing of Divg(Z")
to the subspace generated by the components of X that belong to T is negative
definite (see, for instance, [21, Corollaire 1.8], when 2" is regular; one reduces
to this case by considering a resolution of 27, as in [42, II.(b)]). Therefore,
there is a unique vertical divisor V', a linear combination of components in T,
such that (Zy + V,s) = 0 for any s € T. (In the analogy with the theory of
electric networks, the linear system one has to solve corresponds to that of a
Dirichlet problem on a graph, with at least one electric source per connected
component.) Set Z = Py+V; it satisfies assumptions (1) and (2). The linearity
of the map D — 2 follows immediately from the uniqueness of V.

Let us assume that D is effective and show that so is V. (In graph-theoretic
language, this is a consequence of the maximum principle for the discrete
Laplacian.) Denote by mg the multiplicity of the component s in the special
fiber of 27, so that ) s mss belongs to the kernel of the intersection pairing.
Write V =3 _gcss, where cs =0if s ¢ T'.

Let S” be the set of elements s € S where ¢;/ms achieves its minimal
value. Then, for any element 7 of S'NT,

0= (cr/ms)( D maes,7) = cr(T,7) + Y (e /mr)my(s, 7)

s€S SHET
< CT(T7 T) + ZCS(S,T) = Z(CSS,T)
SET ses

< (@,T) *(@0,7‘) :7(@0,7).

Since 2 is effective and horizontal, (%, 7) = 0; hence all previous inequalities
are in fact equalities. In particular, (%y,7) = 0 and ¢s/ms = ¢;/m, for
any s € S such that (s,7) # 0.
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Assume by contradiction that V' is not effective, i.e., that there is some s
with ¢, negative. Then S’ is contained in T (for ¢ = 0 we have s € T') and the
preceding argument implies that S’ is a union of connected components of X.
(In the graph-theoretic analogue, all neighbours of a vertex in S” belong to S’.)
This contradicts the assumption that U meets every connected component
of X" and concludes the proof that V' is effective. O

In order to describe the functoriality properties of the assignment D +— &
constructed in Proposition 5.1, we consider two smooth projective curves X
and X’ over K, some normal projective flat models 2" and 2" over R of
these curves, and 7: 2 — 2  an R-morphism such that the K-morphism
mx: X' — X is finite.

Recall that the direct image of 1-dimensional cycles defines a Q-linear map
between spaces of Q-divisors:

7. Divg(2”) — Divg(Z),

and that the inverse image of Cartier divisors defines a Q-linear map between
spaces of Q-Cartier divisors,

7(-*: Dlvgartlef(%') N DIV al’tlel‘(%’/).

These two maps satisfy the following adjunction formula, valid for any Z in
Divgamer(%) and any Z’ in Divg(Z”):

(1*2,2") = (Z,7.2") . (5.2)

When k is an algebraic extension of a finite field, as recalled above,
Q-divisors and Q-Cartier divisors on 2 or Z coincide, and 7* may be
seen as a linear map from Divg(Z") to Divg(2”) adjoint to ..

In general, the map 7* above admits a unique extension to a Q-linear map

7*: Divg(Z) — Divg(Z"),
compatible with the pullback of divisors on the generic fiber
7y Divg(X) — Divg(X'),

such that the adjunction formula (2.3) holds for any (Z,Z’) in Divg(Z") X
Divg(Z”). The uniqueness of such a map map follows from the nondegen-
eracy properties of the intersection pairing, which show that if a divisor Z;
supported by the closed fiber X of £ satisfies Z] - Z, = 0 for every Z) in
Divg(Z”), then Z] = 0. The existence of 7* is known when 2/ is regular
(then Divg(Z") and Divgartier(% ) coincide), and when 7 is birational—i.e.,
when 7 is an isomorphism—and 2" is regular, according to Mumford’s con-
struction in [42, IT.(b)]. To deal with the general case, observe that there exist
two projective flat regular curves 2 and 2" equipped with birational R-
morphisms v: 2 — 2 andvV/: 2" — 2, and an R- morphlsmﬂ X — X
such that mo 7 = T ov. Then it is straightforward that n* := 0, 7*v* satisfies
the required properties.
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Observe also that the assignment 7 — 7* so defined is functorial, as follows
easily from its definition.

Proposition 5.3. Let U be a Zariski open subset of the special fiber X and let
U’ = 7=1(U). Assume that U] meets every connected component of X%;
then U'[2+ meets every connected component of (X')2".

Let D and D’ be divisors on X and X' respectively, and let 2 and 2’ be the
extensions to Z and Z, relative to the open subsets U and U’ respectively,
given by Proposition 5.1.

(a) Assume that D' = w*D. If |D| does not meet JU[, then |D’'| is disjoint
from U'[ and ' = n* 9.

(b) Assume that D = w,.D'. If |D’| does not meet JU’[, then |D|NJU[ =0 and
9 =79

Proof. Let us denote by S the set of irreducible components of the closed
fiber X of 27, and by T its subset of the components that do not meet U.
Define similarly S’ and T’ to be the set of irreducible components of X" and
its subset corresponding to the components that do not meet U’. Also let N
denote the set of all irreducible components of X’ that are contracted to a
point by .

By construction of 7*, the divisor 7*(2) satisfies (7*(Z),n) = 0 for
any n € N and has no multiplicity along the components of N that are
not contained in 7~1(|2]).

Since U’ = 7= 1(U), T” is the union of all components of X’ that are mapped
by m, either to a point outside U or to a component in 7.

(a) Let ¢ € T'. One has (7*2,t') = (2, mt') = 0, since ¢ maps to
a component in T, or to a point. Moreover, by the construction of 7n*, the
vertical components of 7% are elements s’ € S’ such 7(s’) meets the support
of 2. By assumption, the Zariski closure of D in X is disjoint from U; in
other words, the vertical components of 7*% all belong to T’. This shows
that the divisor 7*% on 2"/ satisfies the conditions of Proposition 5.1; since
it extends D' = n*D, one has 7*% = &'

(b) Let s be a vertical component appearing in 7.(2’); necessarily, there
is a vertical component s’ of 2’ such that s = mw(s’). This implies that s’ €
T’, hence s € T. For any t € T, 7n*(t) is a linear combination of vertical
components of X’ contained in 7=1(¢). Consequently, they all belong to T”
and one has (m.(2'),t) = (2’',7*(t)) = 0. By uniqueness, 7.(2) = &. O

Corollary 5.4. Let X be a projective smooth algebraic curve over K, let U
be an affinoid subspace of X® that meets any connected component of X",
Let D be a divisor on X whose support is disjoint from U.

Then the metrics on the line bundle Ox (D) induced by the line bun-
dle O (2) defined by Proposition 5.1 does not depend on the choice of the
projective flat model 2 of X such that U is the tube of a Zariski open subset
of the special fiber of Z .
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Proof. For i = 1,2, let (27, U;) be a pair as above, consisting of a normal flat,
projective model Z; of X over R, and an open subset U; of its special fiber X;
such that JU;[2, = U. Let %; denote the extension of D on 2 relative to U,.

There exists a third model (£”,U’) that admits maps m;: &' — Z;,
for i = 1,2, extending the identity on the generic fiber. Let 2’ denote the
extension of D on 2. For 1 = 1,2, one has W;l(Ui) = U’. By Proposition 5.3,
one thus has the equalities 7* Z; = 2’; hence the line bundles O+ (2’) on 2"
and Og,(2;) on Z induce the same metric on Ox (D). O

We shall call this metric the capacitary metric and denote by || f||5" the
norm of a local section f of &x (D) for this metric.

Proposition 5.5. Let X be a projective smooth algebraic curve over K, and
let U be an affinoid subspace of X" that meets any connected component
of X?*. Let D be a divisor on X whose support is disjoint from U and let
Q=X"\U.

If 2 denotes the union of the connected components of §2 that meet |D|,
then the capacitary metrics of O(D) relative to 2 and to 2’ coincide.

Proof. Let us fix a normal projective flat model 2~ of X over R and a Zariski
open subset U of its special fiber X such that U = |U[2. Let Z = X\ U
and let Z' denote the union of those connected components of Z that meet
the specialization of |D|. Then ' = ]Z'[ is the complementary subset to the
affinoid |U’[, where U’ = X\ Z’; in particular, U’[ meets every connected
component of X?",

Let 9y denote the horizontal divisor on 2  that extends D. The divi-
sor 9’ := YDy is the unique Q-divisor of the form %y +V on 2 where V
is a vertical divisor supported by Z’ such that (2’,t) = 0 for any irreducible
component of Z'. By the definition of Z’, an irreducible component of Z that
is not contained in Z’ meets neither Z' nor %. It follows that for any such
component t, (2',t) = (%o, t) + (V,t) = 0. By uniqueness, 2’ is the extension
of D on 2 relative to U, so that P, = PDg;. This implies the proposition. [

As an application of the capacitary metric, in the next proposition we
establish a variant of a classical theorem by Fresnel and Matignon [25,
Théoréme 1] asserting that affinoids of a curve can be defined by one equa-
tion. (While these authors make no hypothesis on the residue field of &, or on
the complementary subset of the affinoid U, we are able to impose the polar
divisor of f.) Using the terminology of Rumely [49, §4.2, p. 220], this propo-
sition means that affinoid subsets of a curve are RL-domains (“rational lem-
niscates”), and that RL-domains with connected complement are PL-domains
(“polynomial lemniscates”). It is thus essentially equivalent to Rumely’s theo-
rem [49, Theorem 4.2.12, p. 244] asserting that island domains coincide with
PL-domains. Rumely’s proof relies on his non-archimedean potential theory,
which we replace here by Proposition 5.1.

This proposition will also be used to derive further properties of the ca-
pacitary metric.
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Proposition 5.6. Assume that the residue field k of K is algebraic over a
finite field. Let (X,U, $2) be as above, and let D be an effective divisor that
does not meet U but meets every connected component of (2. There is a rational
function f € K(X) with polar divisor a multiple of D such that U = {xz €

X5 |f(x)l <1}

Proof. Keep notation as in the proof of Proposition 5.1; in particular, S de-
notes the set of irreducible components of X. The closed subset X \ U has
only finitely many connected components, say Vi,...,V,. Moreover, we may
assume that for each ¢, V; is the union of a family 7; C S of components of X.
For any 4, the tube |V;[ in X" consisting of the rigid points of X that reduce
to points of V; is a connected analytic subset of X", albeit not quasicompact,
and X" is the disjoint union of U = JU[ and of the |V;[. (See [47] for more
details.) We let mg denote the multiplicity of the component s in the special
fiber, and F' = ) __gmss.

Let 2 = 2y + V be the extension of D to a Q-divisor of 2 given by
Proposition 5.1, where % is horizontal and V' =} __ 5 c,s is a vertical divisor
supported by the special fiber X. One has ¢ =0 for s ¢ T'and ¢ > 0if s € T'.
For any s € T, we define as = (V,s). This is a nonnegative rational number
and we have

Z asms = (V, F) — th(V,t) = th(.@o,t) = st(go,s),

seS\T teT teT ses

since D does not meet U; hence

Z asms = (%o, F) = deg(D). (5.7)

seS\T

For any s € S\ T, let us fix a point z, of X that is contained on the
component s as well as on the smooth locus of 2. Using either a theorem
of Rumely [49, Th. 1.3.1, p. 48], or van der Put’s description of the Picard
group of any one-dimensional K-affinoid, cf. [44, Prop. 3.1],% there is a rational
function f, € K(X) with polar divisor a multiple of D and of which all zeros
specialize to 5. We may write its divisor as a sum

div(fs) = —ns2 + Es + W,

where ng is a positive integer, Fs is a horizontal effective divisor having no
common component with & and W is a vertical divisor. Since E; is the
closure of the divisor of zeroes of fs, it meets only the component labeled s.
One thus has (Es,s’) =0 for s’ € S\ {s}, while

1 1
(Ey,mys) = — (B, F) = —= deg D.
my my my

(ES’S) =

®The proofs in both references are similar and rely on the Abel-Jacobi map,
together with the fact that K is the union of its locally compact subfields.
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Let t € T. One has (div(fs),t) = 0, hence
(Ws,t) = ns(2,t) — (Es,t) = 0.
Similarly, if s/ € S\ T, then (div(fs),s’) = 0 and
(Ws,s') =ns(2,5") — (Es, s")

=ns(%o,s') +ns(V,s') — (Es,s)
=0+ nsay — (Es, s).

If s # s, it follows that
(W37 S/) = nsas'a

while
N

- deg(D).

ms

(Ws, 8) = nsas —
‘We now define a vertical divisor

AsMg
w=>
ns

s¢&T

W.

For any ¢t € T, (W, t) = 0. Moreover, for any s’ € S\ T,
(W.s) = 3 = (W, o)
s¢T s

= E AsMss — Ens’ deg(D)
Ny
s&T

= ay Z asms | — ay deg(D),
s¢T

hence (W, s’) =0 by (5.7). Therefore, the vertical Q-divisor W is a multiple
of the special fiber and there is A € Q such that W = AF. Finally,

> a;ms div(fs) = A\F = —deg(D)Z + )

s€T s sgT

asMg
E,
n

S

is a principal Q-divisor. It follows that there are positive integers p and g,
for s € T, such that
P = MNE,—p7

s&T

is the divisor of a rational function f € K(X).

By construction, the polar divisor of f on X is a multiple of D. Moreover,
the reduction of any x ¢ U belongs to a component labeled by T at which the
multiplicity of & is positive. Consequently, | f(z)| > 1. In contrast, if x € U, it
reduces to a component outside 7', and |f(z)| < 1. More precisely, |f(z)] < 1
if and only if x reduces to one of the points x,, s ¢ T. O
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The definition of an algebraic metric now implies the following explicit
description of the capacitary metric.

Corollary 5.8. Let (X, U, £2) be as above, let D be any divisor that does not
meet U, and let f be a rational function defining U, as in the preceding propo-
sition, and whose polar divisor is equal to mD for some positive integer m.
Then the capacitary metric on Ox (D) can be computed as

ca; 1 m
—log||1p[["(x) = — log™|f ()| = max(0, log| f(x)[*/™).

Proposition 5.9. Let (X,U,2) and (X', U',{2) be as above and let
p: 2" — 2 be any rigid analytic isomorphism. Let D' be any divisor in X’
whose support does not meet U' and let D = ¢(D").

Then for any x € (2,

o l” () = [1plg" (p(2).

Proof. By linearity, we may assume that D is effective. Let f € K(X) and
f'" € K(X') be rational functions as in Proposition 5.6. Let m and m' be
positive integers such that the polar divisors of f and f’ are mD and m'D’
respectively. The function fo is a meromorphic function on {2’ whose divisor
is mD’. Consequently, the meromorphic function

g=(fou)™/(f)™

on {2 is in fact invertible. We have to prove that |g|(z) = 1 for any = € 2’

Let (g,,) be any decreasing sequence of elements of /|K*| converging to 1.
Thesets V) = {x € X' |f'(z)| > e, } are affinoid subspaces of 2’ and exhaust
it. By the maximum principle (see Proposition B.1 below), one has

sup |g(z)] = sup [g(z)| <1/(en)™ < 1.
zeVy |£(@)]=en

Consequently, sup,co/|g(x)| < 1. The opposite inequality is shown similarly

by considering the isomorphism ¢~!: 2 — (2’. This proves the proposition.
|

5.C Capacitary norms on tangent spaces

Definition 5.10. Let (X, U, §2) be as above and let P € X (K) be a rational
point lying in (2. Let us endow the line bundle Ox(P) with its capacitary
metric relative to 2. The capacitary norm ||-|| 55, on the K-line TpX is then
defined as the restriction of (Ox (P), ||-||57) to the point P, composed with the
adjunction isomorphism Ox (P)|p ~TpX.
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Example 5.11. Let us fix a normal projective flat model 27, let & be the
divisor extending P, meeting the special fiber X in a smooth point P. Let
U = X\ {P} and define U = JU[, 2 = |P[. In other words, {2 is the set of
rig-points of X" that have the same reduction P as P. Then 2 = |P[ is
isomorphic to an open unit ball, the divisor & is simply the image of the
section that extends the point P, and the capacitary metric on TpS is simply
the metric induced by the integral model.

Example 5.12 (Comparison with other definitions). Let us show how
this norm fits with Rumely’s definition in [49] of the capacity of U with respect
to the point P. Let f be a rational function on X, without pole except P,
such that U = {z € X ; |f(x)| < 1}. Let m be the order of f at P and let us
define ¢cp € K* so that f(x) = cpt(x)™™ + --- around P, where ¢ is a fixed
local parameter at P. By definition of the adjunction map, the local section
11p of Ox(P) maps to the tangent vector %. Consequently,
cap B 1
e

H% 1p|| (P) = lim [t(z)| " min(1, |f(2)]~Y™) = |ep| /™.
P, r—P

(5.13)

As an example, and to make explicit the relation of our rationality criterion
below with the classical theorem of Borel-Dwork later on, let us consider the
classical case in which X = P! (containing the affine line with ¢ coordinate),
and U is the affinoid subspace of P! defined by the inequality || > r (to which
we add the point at infinity), where r € \/|K*|. Let us note that 2 = CU
and choose for the point P € (2 the point with coordinate ¢ = 0. Let m be a
positive integer and a € K* such that »™ = |al; let f = a/t™; this is a rational
function on P! with a single pole at P, and U is defined by the inequality
|f] < 1. It follows that
cap

= |a|7Y™ =1/r.
) X7)

0
ot

Similarly, assume that U is an affinoid subset of P! that does not contain the
point P = co. Then U is bounded and ||t2% p,2 is nothing but its transfinite
diameter in the sense of Fekete. (See [1]; the equivalence of both notions follows
from [49, Theorem 4.1.19, p. 204]; see also [49, Theorem 3.1.18, p. 151] for its
archimedean counterpart.)

Remark 5.14. (a) Let (X, U) be as above, let P € X(K) be a rational point
such that P ¢ U. Let 2 = X" \ U and define {2 to be the connected
component of {2 that contains P. It follows from Proposition 5.5 that the
norms |||, and [|-[|5’, on TpX coincide.

(b) Let U’ be another affinoid subspace of X®" such that U’ C U; the
complementary subset {2 to U’ satisfies {2 C (2. If, moreover, {2 and (2

are connected, then for any P € {2 and any vector v € Tp X, one has

[ollBe < vl
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Indeed, since {2 and (2’ are connected and contain P, Proposition 5.6
implies that there exist rational functions f and f’ on X, without pole
except P, such that the affinoids U and U’ are defined by the inequalities
|f| < 1 and |f’| < 1 respectively. Replacing f and f’ by some positive
powers, we may also assume that ordp(f) = ordp(f’); let us denote it
by —d. Let t be a local parameter at P; it is enough to prove the desired
inequality for v = 2

ot
We may expand f and f’ around P as Laurent series in t — ¢t(P), writing

c c

= — CEEEE / —_ —— ...
R A e/ T
The rational function g = f/f’ on X defines a holomorphic function on
the affinoid subspace defined by the inequality {|f’| > 1}, since the poles
at P in the numerator and denominator cancel each other; moreover,
g(P) = ¢/c. Using the maximum principle twice (Proposition B.1) we

have
lg(P)| < sup |[g(x)|= sup |g(x)|= sup [f(z)]
|/ ()| >1 |f(2)|=1 |f(2)|=1
= sup |f(z) <1,
| (2)|<1

since {2 C £2'. This implies that |g(P)| < 1, so that |c| < |¢/|. Therefore,

|2 e <o |2
ot 0t pg

cap cap

PO

as was to be shown.

5.D Canonical seminorms and capacities

Let K be a local field.

In the case that K is archimedean, we assume moreover that K = C;
let M be a connected Riemann surface, and let {2 be an open subset in M,
relatively compact. In the case that K is ultrametric, let M be a smooth
projective curve over K, let U be an affinoid in M?", let us set 2 = M**\U.

In both cases, let O be a point in 2.

We endow the K-line To M with its capacitary seminorm, as defined by
the first author in [13] when K = C, or in the previous section in the p-adic
case.

Let X be a projective variety over K, let P € X(K) be a rational point,
and let C be a smooth formal curve in X p. Assume that Cis K- analytic and
let ¢: 2 — X2 be an analytic map such that ¢(O) = P that maps the germ
of 2 at O to C. (Consequently, if Dp(O) # 0, then ¢ defines an analytic
isomorphism from the formal germ of {2 at O to C .) We endow TpX with its
canonical seminorm ||-||$"%
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Proposition 5.15. For any v € Tp{2, one has

IDRO) I < ol E
Proof. The case K = C is treated in [13, Proposition 3.6]. It therefore remains
to treat the ultrametric case.

In view of Remark 5.14 (a), we may assume that {2 is connected. By
Proposition 5.6, there exists a rational function f € K (M) without pole ex-
cept O such that U = {& € M; |f(z)] < 1}. Let m > 0 denote the order of
the pole of f at the point O. For any real number r > 1 belonging to /| K|*,
let us denote by U, and 90U, the affinoids {|f(z)| > r} and {|f(x)| = r}
in M. One has | J,., U, = £2. We shall denote by ¢, the restriction of ¢ to
the affinoid U,. Let us also fix a local parameter ¢ at O and let us define
cp = lim, o t(z)™ f(x). One has || &[5, = [cp|~1/™.

Let L be an ample line bundle on X For the proof of the proposition, we
may assume that Dg(O) is nonzero; then ¢ is a formal isomorphism and we
may consider the formal parameter 7 = top~! on C at P. We have dt = prdr,
hence D@(O)(%) = %. Let us also fix a norm ||-||o on the K-line TpC, and
let us still denote by ||-||o the associated norm on its dual Tg(ﬁ“.

Let us choose a real number r > 1 such that r € /|K*|, fixed for the
moment. Since the residue field of K is finite, the line bundle ¢} L on U,
is torsion (see [44, Proposition 3.1]); we may therefore consider a positive
integer n and a nonvanishing section € of ¢ L®". For any integer D and any
section s € I'(X,L®"P), let us write ¢ks = 0e®"P where o is an analytic
function on U,. Since we assumed that Dy(O) # 0, the condition that s
vanishes to order 7 along C means exactly that o vanishes to order i at O.
Consequently, the i-th jet of ¢¥s at O is given by

jo (9ys) = (at™)(0)e"P (0) @ dr®".
Writing (at=%)™ = (™ f*)(ft™) ™, it follows that
136 (ers)lI™ = lo™ F11(O)ep |~ lle(O) "™ P lldrlg™.

Notice that ¢™ f? is an analytic function on U,. By the maximum principle
(Proposition B.1),

™ f11(0) < srljlplamfi\ = sup |0 f'(z)| = [lol5y, "

r zedU,
Consequently,

1io ()1l < llollov, lep| =™ [le(O)|*P lldr |l

mimi (O N

inf,eou, ||l

< |lsllov.
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With the notation of Section 4.B, it follows that the norm of the evaluation
morphism
i i ®nD v
PnD* EnD - L‘P Y (TPC>

satisfies the inequality

nD/i
Il < r/miepl =/ (1O el ) o

hence 1 1
) ) r
lim sup = log||¢;,pll < — log — = log]|d7 0.
i/D—o0 ? m ‘CP‘

Using the notation introduced for defining the canonical semi-norm, we thus
have p(L) = p(L®") < log||d7|o and

a can 8 can a
@), R, 12
ot X,C,P or X,C,P ot |l
1/m ca
. <L> / _Tl/mHQ "
‘Cp‘ 0t 2,P
Letting r go to 1, we obtain the desired inequality. O

5.E Global capacities

Let K be a number field, and let R denote the ring of integers in K. Let X
be a projective smooth algebraic curve over K. For any ultrametric place v
of R, let us denote by F, the residue field of R at v, by K, the completion
of K at v, and by X, the rigid K,-analytic variety attached to Xg,. For any
archimedean place v of X, corresponding to an embedding o: K — C, we
let X, be the compact Riemann surface X, (C). When v is real, by an open
subset of X, we shall mean an open subset of X, (C) invariant under complex
conjugation.

Our goal in this section is to show how capacitary metrics at all places fit
within the framework of the Arakelov intersection theory (with L2-regularity)
introduced in [11]. Let us briefly recall here the main notation and properties
of this arithmetic intersection theory, referring to this article for more details.

For any normal projective flat model 2" of X over R, the Arakelov Chow
group CHE (2) consists of equivalence classes of pairs (2, g) € Z5(Z"), where
9 is an R-divisor on 2" and g is a Green current with L3-regularity on 2 (C)
for the real divisor g, stable under complex conjugation. For any class a of
an Arakelov divisor (2, g), we shall denote, as usual, w(a) = dd°g + dg.

Arithmetic intersection theory endowes the space éﬁ%{(% ) with a sym-
metric R-valued bilinear form. Any morphism 7: 2/ — 2  between normal
projective flat models of curves X’ and X induces morphisms of abelian groups
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Tt éﬁﬁ(fr’f’) — éﬁ%{(%) and 7*: éﬁ%{(%) — 61?%{(55”) For any classes
aand (€ éﬁﬁ(%), v € éﬁﬁ(%’), one has m*a - 73 = o - § and a pro-
jection formula 7, (7*« - v) = deg(m)a - m(y), when 7 has constant generic
degree deg(m).

Any class a € Eﬁﬁ(% ) defines a height function h, that is a linear
function on the subspace of Z(2") consisting of real 1-cycles Z on 2  such
that w(a) is locally L> on a neighbourhood of |Z|(C). If D is a real divisor
on X such that w(a) is locally L™ in a neighbourhood of |D|(C), we shall
still denote by h,(D) the height of the unique horizontal 1-cycle on 2" that
extends D. Moreover, for any effective divisor D on X such that w(«a) is
locally L*° in a neighborhood of |m.(D)|(C), then w(m*«) is locally L™ in a
neighborhood of |D|(C), and one has the equality hq«q(D) = ho (7 (D)).

Definition 5.16. Let D be a divisor on X . For each place v of K, let £2,, be an
open subset of X, (stable under complex conjugation if v is archimedean). One
says that the collection (£2,) is an adelic tube adapted to D if the following
conditions are satisfied:

(1) for any ultrametric place v, the complement of {2, in any connected com-
ponent of X, is a nonempty affinoid subset;

(2) for any archimedean place v, the complement of §2,, in any connected com-
ponent of X, is nonpolar;

(3) there exist an effective reduced divisor E containing |D|, a finite set of
places F of K, and a normal projective flat model & of X over R such
that for any ultmmetmc place v of K such that v ¢ F, 2, = |E|, is the
tube in X, around the specialization of E in the special fiber Zw, .

Let 2 = (£2,) be a family where, for each place v of K, {2, is an open
subset of the analytic curve X, satisfying conditions (1) and (2). Let D be
a divisor on X whose support is contained in {2, for any place v of K. By
the considerations of this section, the line bundle &'x (D) is then endowed, for
each place v of K, with a v-adic metric ||-[|;". If £2 is an adelic tube adapted
to D, then for almost all places of K, this metric is in fact induced by the
horizontal extension of the divisor D in an adequate model 2 of X. Actually,
one has the following proposition:

Proposition 5.17. Assume that 2 is an adelic tube adapted to |D|. There
is a normal, flat, projective model Z of X over R and a (unique) Arakelov
Q-dwisor extending D, inducing at any place v of K the v-adic capacitary
metric on Ox (D).

Such an arithmetic surface 2~ will be said to be adapted to 2. Then the
Arakelov Q-divisor on 2" whose existence is asserted by the proposition will
be denoted by Dyg,. Observe, moreover, that the current w(DQ) is locally L*
on {2, since it vanishes there. Consequently, the height h DQ( ) is defined when
E is any O-cycle on X that is supported by (2.
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Proof. 1t has already been recalled that archimedean Green functions defined
by potential theory have the required L3-regularity. It thus remains to show
that the metrics at finite places can be defined using a single model (2", 2)
of (X, D) over R.

Lemma 5.18. There exists a normal, flat projective model Z~ of X over R,
and, for any ultrametric place v of K, a Zariski closed subset Z,, of the special
fiber Xg, at v such that 2, = ]Z,[. We may, moreover, assume that for almost
all ultrametric places v of K, Z, = & N Xy, , where & is an effective reduced
horizontal divisor on 2.

Proof. Let 27 be a projective flat model of X over R, E an effective reduced
divisor on 2", and F a finite set of places satisfying condition (3) of the
definition of an adelic tube. Up to enlarging F', we may assume that the fiber
product Z7 ®gr R; is normal, where R; denotes the subring of K obtained
from R by localizing outside places in F.

By Raynaud’s formal/rigid geometry comparison theorem, there are, for
each finite place v € F, a normal projective and flat model 2, of X over the
completion R, and a Zariski closed subset Z, of the special fiber of %, such
that 2, =1Z,][.

By a general descent theorem of Moret-Bailly ([41, Th. 1.1]; see also [10,
6.2, Lemma DJ), there exists a projective and flat R-scheme 2" that coincides
with 27 over Spec R; and such that its completion at any finite place v € F'is
isomorphic to 2. By faithfully flat descent, such a scheme is normal (see [39,
21.E, Corollary]).

For any ultrametric place v over Spec Ry, we just let Z,, be the specializa-
tion of E'in 2%, = (Z0)F,; one has (2, = |Z,[ by assumption, since v does not
belong to the finite set F' of excluded places. For any ultrametric place v € F,
Z, is identified with a Zariski closed subset of the special fiber ZF, and its
tube is equal to 2, by construction. This concludes the proof of the lemma.

|

Fix such a model 2 and let 9y be the Zariski closure of D in 2 . For
any ultrametric place v of F, let V,, be the unique divisor on the special
fiber Zw, such that 2, + V,, satisfies the assumptions of Proposition 5.1. One
has V,, = 0 for any ultrametric place v such that Z, has no component of
dimension 1, hence for all but finitely places v. We thus may consider the
Q-divisor 2 = %y + >, V,, on 2 and observe that it induces the capacitary
metric at all ultrametric places. O

Proposition 5.19. Let D be a divisor on X and let {2 be an adelic tube
adapted to |D|. One has the equality
Dgo-Dg=h

B, (D)

Proof. Let us consider a model 2 of X and an Arakelov Q-divisor 2 on 2

defining the capacitary metric [|-|;” at all ultrametric places v of K.
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Let 9y denote the Zariski closure of D in 2. For any ultrametric place v
of K, let V,, be the vertical part of & lying above v, so that 2 = %y + >, V.
By [11, Cor. 5.4], one has

Do Do =hp_(2).

By the definition of the capacitary metric at ultrametric places, the geometric
intersection number of & with any vertical component of Z is zero. Conse-
quently,

Do Do =hp, (%0)+> hp, (V) =hp, (%),
v
as was to be shown. O

Corollary 5.20. Let P € X(K) be a rational point of X and let {2 be an
adelic tube adapted to P. One has

Pq - Py = deg (Tp X, ||-|57).

6 An algebraicity criterion for A-analytic curves

Let K be a number field, R its ring of integers, X a quasiprojective algebraic
variety over K, and let P be a point in X(K). Let C — Xp be a smooth
formal curve that is A-analytic. R

For any place v of K, the formal curve C is K,-analytic, and we may equip

the K-line TpC with the canonical v-adic seminorm |-||$*" = ||H‘;?%Pv con-

structed in Section 4.B. We claim that equipped with these semi-norms, 7' pé
defines a seminormed K-line (TpC,|-[|°*") with a well-defined Arakelov de-
gree in |—00, +00], in the sense of [13, 4.2|. Recall that this means that, for any
(or equivalently, for some) nonzero element in TpC, the series >, logt|¢]|can
is convergent. To see this, consider a quasiprojective flat R-scheme 2~ with
generic fiber X, together with a section &2: Spec R — % that extends P. Ac-
cording to Lemma 4.5 (applied to projective compactifications of X and 2,
and an ample line bundle %), the inequality

~

log|[t][;™ < —log Sz v (C)

holds for almost all finite places v, where Sg , denotes the size of C with
respect to the R, model 2" ® R, Since by definition of A-analyticity the series
with nonnegative terms 3, log S ,(C)~! has a finite sum, this establishes
the required convergence.

The Arakelov degree of (T »C, H||C"‘“) is defined as the sum

deg (ToC, [1|") == 3 (~ loglllls™).

v
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It is a well-defined element in ]—oo, +00], independent of the choice of ¢t by
the product formula (we follow the usual convention —log0 = +0c0.)

The following criterion extends Theorem 4.2 of [13]|, where instead of
canonical seminorms, larger norms constructed by means of the sizes were
used at finite places.

Theorem 6.1. Let C be, as above, an A-analytic curve through a rational
point P in some algebraic variety X over K.

If deg (Tpa, ||~||Ca“) >0, then C is algebraic.

Proof. We keep the above notation, and we assume, as we may, X (respec-
tively 27) to be projective over K (respectively over R). We choose an ample
line bundle .Z over 2" and we let L := Y.

We let &p = I'(Z,£®P), and for any embedding o : K — C, we
choose a consistent sequence of hermitian norms (||-||p,») on the C-vector
spaces ép,y = I’ (XU, L?D), in a way compatible with complex conjugation.
Using these norms, we define hermitian vector bundles &p := (6p, (||| .0 ))
over Spec R.

We also choose a hermitian structure on &*.Z, and we denote by &*.&
the so-defined hermitian line bundle over Spec R. Finally, we equip TpC' with
the R-structure defined by N 2 N TpC and with an arbitrary hermitian
structure, and in this way we define a hermitian line bundle Ty over Spec R
such that (To)x = TpC.

We define the K-vector spaces Ep := &px ~ I'(X, L®P), their sub-
spaces E%, and the evaluation maps

. . ~\ ®1
¢pi Bh — (T3C) @ LY

as in the “local” situation considered in Section 4.B. According to the basic

~

algebraicity criteria in [13, 2.2], to prove that C is algebraic, it suffices to

prove that the ratio _
> (i/D)rank (E% /EGY)

120

> rank (EB/Egl)

i>0

(6.2)

stays bounded as D goes to +oo.

For any place v of K, the morphism ¢’ has a v-adic norm, defined by
means of the integral and hermitian structures introduced above. If %, # 0,
the height of (%, is the real number defined as the (finite) sum

h (b)) = loglleh -

When %, vanishes, we define h (¢%) = —oo; observe that in this case Eft =
Eb.
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As established in the proof of Lemma 4.5 above (see also [12, Lemma 3.3]),
the following inequality holds for any finite place v and any two nonnegative
integers ¢ and D:

log|l¢’h [lo < —ilog Sz .(C). (6.3)

Since C is A-analytic, the upper bounds (4.4) and (6.3) show the existence of
some positive real number ¢ such that

h(¢%) < c(i+ D). (6.4)

For any place v of K, we let

. 1 4
pv(L) = limsup —log[|¢p |-

i/D—o0 i
This is an element in [—oo, +00[, which, according to (6.3), satisfies

pu(L) < —log Sgy’v(a)

for any finite place v. Moreover, by its very definition, the Arakelov degree of
(Tpé, H-Hcan) is given by

deg (TpC. 1) = Y- (~po(L)) + deg T

v

— Z <7pU(L)710gS.%,v(6))

v finite

+ > logSaw(C)+ > (—pu(L)) + deg T

v finite v|oo

In the last expression, the terms of the first sum belong to [0, +o0] — and
the sum itself is therefore well-defined in [0, +00] — and the second sum is

convergent by A-analyticity of C.
Observe also that since the sums

1 . ~
> <—; log[l¢p v + log S%,U(C))
v finite

have nonnegative terms, we get, as a special instance of Fatou’s lemma:

1 ) ~
Z lim inf <—.10g|<pb|v+10g5%,u(c)>
i/ D—o00 ?

v finite

1 . ~
< liminf <—_log|<p§3|v+log5%,v(0)> .
j i

v finite
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Consequently
lim sup - h @D va
i/D—oo L
and - R 1 -
deg <Tpc’ H.Hcan) < - ll/%iuog Eh (¢%) + deg T. (6.5)

When deg (Tp@ , ||~||Ca“) is positive, the inequality (6.5) implies the existence

of positive real numbers ¢ and A such that, for any two positive integers i
and D,

— 1 ,
degTo — ;h (¢p) =e ifi=AD. (6.6)

Let &}, := &p N EY, and let &5 /&5 be the hermitian vector bundle on
Spec R defined by the quotient &L/ é&p 1 equipped With the hermitian struc-
ture induced by that of &p. The evaluatlon map ¢’ induces an injection

'L
EY/ES — (T%C) L®D Actually, either %, = 0 and then % = Eif",

or ¢ # 0, and this 1nc1u310n is an isomorphism of K-lines. In either case, we
have

d/eTgé%/éag'l = rank (B} /E5) (deg (9 7°" @ T(\)@Z) +h (cpﬁj)) :

Indeed, if % = 0, both sides vanish (we follow the usual convention
0-(—00) =0). If p% #0, the equality is a straightforward consequence of
the definitions of the Arakelov degree of a hermitian line bundle over Spec R
and of the heights h (¢%).

The above equality may also be written
deg &}/ &5 = rank (Bp/ B ") (Ddeg 77 Z — idegTo + h (¢h) ) - (6.7)

Moreover, by [12, Proposition 4.4], there is a constant ¢’ such that for any
D > 0 and any saturated submodule .%# of &p,

deg &p/F > —d Drank(6p ).F).

(This is an easy consequence of the fact that the K-algebra @D20 ép,Kk is
finitely generated.) Applied to F := ﬂi>0 &F, this estimate becomes

Zdeg é%/é”“ —c DZrank (EL/ESY) . (6.8)
120 120
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Using (6.7) and (6.8), we derive the inequality
— (' + deg P*LVD Zrank (Ep/EST
>0

< Zrank (EiD/Egrl) (—id/e\gTO +h (@ZD)) . (6.9)

i>0

Finally, using (6.9), (6.4), and (6.6), we obtain

o i —_  i4D o i
Z rank (E}, /E7 ) <BdegT0—c ) ) —I-'Z rank (E}, /E5) €5
i<AD i2AD
< (d + deg P*L) Zrank (EL/EN).

i>0

This implies that the ratio (6.2) is bounded by
Ly, —— —
A+ - (c + deg *Z + ¢+ Amax(0,c — degT0)>,

and completes the proof. O

7 Rationality criteria

7.A Numerical equivalence and numerical effectivity
on arithmetic surfaces

The following results are variations on a classical theme in Arakelov geome-
try of arithmetic surfaces. The first theorem characterizes numerically trivial
Arakelov divisors with real coefficients. It is used in the next proposition to
describe effective Arakelov divisors whose sum is numerically effective. We
allow ourselves to use freely the notation of [11].

Theorem 7.1. (Compare [11, Thm. 5.5]) Let 2" be a normal flat pro-
jective scheme over the ring of integers of a number field K whose generic
fiber is a smooth and geomerically connected curve. Let (D,g) be any ele-
ment in Zﬁ(%) that is numerically trivial. Then there exist an integer n,
real numbers X\; and rational functions f; € K(Z)*, for 1 < i < n, and
a family (¢y)o:. ke of real numbers such that cz = ¢», > . ce = 0, and

(D, g) = (0, (¢0)) + 30y Nadiv(fi).

Proof. There are real numbers \; and Arakelov divisors (D;,g;) € AC )
such that (D, g) = > \i(D;, gi). We may assume that the A; are linearly inde-
pendent over Q. By assumption, the degree of D on any vertical component
of 2 is zero; the linear independence of the ); implies that the same holds
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for any D;. Let us then denote by g, any Green current for D; such that
w(Di,g;) = 0. One has

0=w(D,g) = Z)\iw(Di,gi) = Z Aiw(Dy, g;),

so that the difference g — Y A;¢; is harmonic, and therefore constant on any
connected component of 2°(C). By adding a locally constant function to
some g}, we may assume that g = > Ajgl. Then (D, g) = > A\i(Di,¢;). This
shows that we may assume that one has w(D;, g;) = 0 for any ¢. By Faltings—
Hriljac’s formula, the Néron-Tate quadratic form on Pic’(2%) ® R takes the
value 0 on the class of the real divisor > A;(D;) k. Since this quadratic form
is positive definite (see [50, 3.8, p. 42]), this class is zero. Using that the \; are
linearly independent over Q, we deduce that the class of each divisor (D;)x
in Pico(ﬁi” k) is torsion. Since D; has degree zero on any vertical component
of 2 and the Picard group of the ring of integers of K is finite, the class
in Pic(2") of the divisor D; is torsion too. Let us then choose positive inte-
gers n; and rational functions f; on 2" such that div(f;) = n;D;. The Arakelov
divisors (Tl;(fz) —n4(D;, g;) are of the form (0, ¢;), where ¢; = (¢i.0)o: K 18
a family of real numbers such that ¢; 7 = ¢; » and ZU ¢i,o = 0. Then, letting
¢o = »_;(Xi/ni)ci o, one has

Ai =~
(D,g) = (0,(co)) + Y —div(f:)
as requested. O

Let fi,...,fn be meromorphic functions on some Riemann surface M,
let A1,..., )\, be real numbers, and let f € C(M)* ®z R be defined as
f =", fi ®\. We shall denote by |f| the real function on M given by
[11f:1*, and by div f the R-divisor >_ \; div(f;); they don’t depend on the
decomposition of f as a sum of tensors. One has dd° log|f|~2 + daiv(s) = 0.

We shall say that a pair (D, g) formed of a divisor D on M and of a Green
current g with L? regularity for D is effective® if the divisor D is effective and
if the Green current g of degree 0 for D may be represented by a nonnegative
summable function (see [11, Def. 6.1]).

Similarly, we say that an Arakelov divisor (D, g) € Z%{(%) on the arith-
metic surface 2 is effective if D is effective on 2" and if (D¢, g) is effective
on Z'(C).

We say that an Arakelov divisor, or the class « of an Arakelov divisor, is
numerically effective (for short, nef) if [(D, g)]-«a = 0 for any effective Arakelov
divisor (D,g) € Zﬁ(%) (according to [11, Lemma 6.6], it is sufficient to
consider Arakelov divisors (D, g) with ¢ *°-regularity). If (D, g) is an effective
and numerically effective Arakelov divisor, then the current w(g) := dd° g+dp
is a positive measure (see [11, proof of Proposition 6.9]).

5In the terminology of [11], nonnegative.
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Proposition 7.2. Let 2" be a normal, flat projective scheme over the ring
of integers of a number field K whose generic fiber is a smooth geometrically
connected algebraic curve. R

Let (D,g) and (E,h) be nonzero elements of Zk(Z); let a and (3 denote
their classes in Gﬁﬁ(%) Let us assume that the following conditions are
satisfied:

(1) the Arakelov divisors (D,g) and (E,h) are effective;
(2) the supports of D and E do not meet and f%(c) gxh=0.

If the class o + (B is numerically effective, then there exist a positive real
number X\, an element [ € K(Z)* @z R, and a family (¢y)o: k—c of real
numbers that is invariant under conjugation and satisfies Y co = 0 such that
for any embedding o: K — C,

9o = (CU + 10g|f‘_2)+ and  hs = )‘(CU + 10g|f‘_2)_’

where for any real-valued function ¢, we define o™ = max(0,p) and o~ =
max (0, —p), so that p* — ¢~ = .
Moreover, o® = aff = 3% = 0.

Proof. Since (D, g) and (E, h) are effective and nonzero, the classes o and
are not equal to zero ([11, Proposition 6.10]). Moreover, the assumptions of
the proposition imply that

1
a~ﬁ:deg7r*(D,E)—|——/ g*xh=0.
2 Ja )

Since a+ (3 is numerically effective, it follows from Lemma 6.11 of [11] (which
in turn is an application of the Hodge index theorem in Arakelov geometry)
that there exists A € R’ such that 8 = A« in éﬁ%{(%) In particular, «
and 3 are nef, and o> = 2 =a -5 =0.

Replacing (E, h) by (AE, Ah), we may assume A = 1. Then, (D —E,g—h)
belongs to the kernel of the canonical map p: /Z\%{(%) — éﬁ%{(%), so is
numerically trivial. By Theorem 7.1, there exist real numbers A;, rational func-
tions f; € K(2')*, and a family ¢ = (¢,)s: K of real numbers, invariant un-
der conjugation, such that )~ ¢, =0and (D—FE,g—h) = (0,c)+)_ )\Z&R/(fl)
in /Z\%{(%) Let us denote by f the element > f; @ A\; of K(Z)* ®z R.
The proposition now follows by applying Lemma 7.3 below to the connected
Riemann surface 2, (C), the pairs (D, gs), (E,hs), and the “meromorphic
function” e~2¢ fa,(c), for each embedding o: K — C. O

Lemma 7.3. Let M be a compact connected Riemann surface, let D and D’
be two monzero R-divisors on M, and let g and g’ be two Green functions with
L? regularity for D and D'. We make the following assumptions: |D|N|D’| = 0,
the pairs (D, g) and (D', g') are effective, the currents w(g) = dd® g+ ép and
w(g') = dd° g’ + ép: are positive measures, [, g+ g = 0. If there exists an
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element f € C(M)*®R such that g—g' = log|f|~2, then g = max(0, log| f|~2)
and g’ = max(0, log|f|?).

Proof. First observe that
w(g)—w(g") = dd“(9—g')+0p—0p = dd°log|f| > +6p—0p' = Op—pr—div(s)s

by the Poincaré-Lelong formula. By assumption, the current w(g) — w(g’)
belongs to the Sobolev space L2 |; it is therefore nonatomic (see [11, Appendix,
A3.1]), so that D — D' = div(f) and w(g) = w(g’).

Observe also that gjap\|p| (respectively g" M| DI') is a subharmonic cur-
rent. In the sequel, we denote by ¢ (respectively ¢g’) the unique subharmonic
function on M C |D| (respectively on M’ C |D|’) that represents this current.

Let F' be the set of points z € M where |f(z)] = 1 and let 2 =
M \ F be its complementary subset. The functions h = max(0, log|f|~2) and
h' = max(0, log|f|?) are continuous Green functions with L? regularity for D
and D’ respectively. The currents dd®h + ép, dd°h’ + dp are equal to a
common positive measure, which we denote by v. Since h (respectively h') is
harmonic on M \ (|D| U F) (respectively on M \ (|D|' U F')), this measure is
supported by F.

Let S be the support of the positive measure w(g). It follows from
[11, Remark 6.5] that ¢ and ¢’ vanish w(g)-almost everywhere on M. Con-
sequently, the equality log|f|™2 = g — ¢’ = 0 holds w(g)-almost everywhere;
in particular, S C F.

Let us pose u = h — g = h' — ¢'; this is a current with L? regularity
on M and dd°u = dd°h — dd®g = v — w(g). In particular, dd°(u|p) = 0: u
is harmonic on £2. Since ¢ is nonnegative, one has u < 0 on F = (2. By the
maximum principle, this implies that v < 0 on {2 (cf. [11, Theorem A.6.1];
observe that u is finely continuous on M).

Finally, one has

0:/ g*g’:/ h*h’—/ uy—/ uw(g)}/ hxh.
M M M M M

By [11, Corollary 6.4], this last term is nonnegative, so that all terms of the
formula vanish. In particular, [ur = 0; hence u = 0 (r-a.e.). Using again
that « is harmonic on {2, it follows that its Dirichlet norm vanishes, and
finally that u = 0. ]

Remark 7.4. The Green currents g and h appearing in the conclusion of
Proposition 7.2 are very special. Assume, for example, that the Arakelov di-
visors D and E are defined using capacity theory at the place o, with respect
to an open subset {2, of X,. Then, g, and h, vanish nearly everywhere
on 0f2,. In other words, 0f2, is contained in the set of z € X, such that
|f(2)|> = exp(—c,), which is a real semialgebraic curve in X,, viewed as a
real algebraic surface. In particular, it contradicts any of the following hy-
potheses on 2, respectively denoted by (4.2) 2 ., and (4.3) 2 o, in [11]:
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(1) the interior of 2, (C) \ 2, is not empty;

(2) there exists an open subset U of 2,(C)\ |D|(C) not contained in {2
such that any harmonic function on U that vanishes nearly everywhere
on U \ {2 vanishes on U.

7.B Rationality criteria for algebraic and analytic functions
on curves over number fields

Let K be a number field and X a smooth projective geometrically connected
curve over K. For any place v of K, we denote by X, the associated rigid ana-
lytic curve over K, if v is ultrametric, respectively the corresponding Riemann
surface X, (C) if v is induced by an embedding of K in C.

Let D be an effective divisor in X and 2 = (£2,), an adelic tube adapted
to |D|. We choose a normal projective flat model of X over the ring of in-
tegers Ok of K, say 2, and an Arakelov Q-divisor Do on & inducing the
capacitary metrics ||- H‘};p at all places v of K. In particular, we assume that for
any ultrametric place v, {2, is the tube ]Z,[ around a closed Zariski subset Z,,
of its special fiber 2F,, and Z, = D N 2, for almost all places v.

Our first statement in this section is the following arithmetic analogue of
Proposition 2.2.

Proposition 7.5. Let X' be another geometrically connected smooth projec-
tive curve over K and let f: X' — X be a nonconstant morphism. Let D’ be
an effective divisor in X'. We make the following assumptions:

(1) by restriction, f defines an isomorphism from the subscheme D' of X' to
the subscheme D of X and is étale in a neighbourhood of |D'|;

(2) for any place v of K, the morphism f admits an analytic section @, : (2, —
——1
X! defined over §2, whose formal germ is equal to fp

v’

(3) the class of the Arakelov Q-divisor Dy is numerically effective.
Assume moreover

(4') either that Dg - Do > 0;
(4") or that there is an archimedean place v such that the complementary
subset to §2,, in X, is not contained in a real semialgebraic curve of X,.

Then f is an isomorphism.

Proof. Let us denote by E the divisor f*D on X'; we will prove that £ = D’.
Observe that according to assumption (1), this divisor may be written

E:=f*D=D +R,

where R denotes an effective or zero divisor on X whose support is disjoint
from that of D’.

Let £ denote the normalization of £ in the function field of X’ and let
us still denote by f the natural map from 2" to 2 that extends f. Then 2"’
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is a normal projective flat model of X’ over €. For any place v of K, let 2]
denote the preimage f~1(§2,) of £2, by f. The complementary subset of {2, is a
nonempty affinoid subspace of X if v is ultrametric, and a nonpolar compact
subset of X if v is archimedean. Moreover, for almost all ultrametric places v,
(2, is the tube around the specialization in 2% of f~'(D). In particular, the
collection 2/ = (£2/) is an adelic tube adapted to |E|.

We thus may assume that the capacitary metrics on Ox-(D’) and Ox/(E)
relative to the open subsets {2/ are induced by Arakelov Q-divisors on 2.
Let us denote them by D o and Eq respectively.

Since X and X'’ are normal, and the associated rigid analytic spaces as
well, the image ¢, (£2,) of £2, by the analytic section ¢, is a closed and open
subset 21 of §2! containing |D’|, and the collection 2 = (Ql) is an adelic

tube adapted to |D’|. Consequently, by Proposition 5.5, one has D/_Q/ = D/QI
Similarly, writing 22 = 2/ \ 2L, the collection 22 = (92) is an adelic tube
adapted to |R| and Ry = Rm One has Eq = f*DQ - D "o + Rm Since
2lnn? = Q) for any place v, Lemma 7.6 below implies that [Re]- [D’Ql} =0.

Since D is nonzero and its class is numerically effective, the class in
CH1 (Z") of the Arakelov divisor f *D = D + R is numerically effective too.
Proposmon 7.2 and Remark 7.4 show that, when either of the hypotheses (4")
(4") is satisfied, necessarily Ro: = 0. In particular, R =0 and F = D'. It
follows that f has degree one, hence is an isomorphism. O

Lemma 7.6. Let X be a geometrically connected smooth projective curve over
a number field K, let Dy and Dy be divisors on X, and let 21 and 25 be adelic
tubes adapted to |D1| and |Da2|. Let us consider a normal projective and flat
model Z of X over the ring of integers of K as well as Arakelov divisors ./D\l_Ql
and 5292 inducing the capacitary metrics on Ox(D1) and Ox(D3) relative
to the adelic tubes 21 and (5.

If 21,0829, =0 for any place v of K, then

Dray - Dagy = 0.

Proof. Observe that D; and Ds have no common component, since any
point P common to D; and D would belong to {21 , N {25 ,.

Let 2" be a normal projective flat model of X adapted to {27 and (25,
so that the classes D; o, live in CH! ®R(Z). Namely D, = (Z;,9:), where
2; is the Q-divisor on 2" extending D; defined by Proposfcion 5.1 and g; =
(9p,.5:.,) is the family of capacitary Green currents at archimedean places.
The vertical components of 2; and 2, lying over any finite place v are distinct
one from one another, since {21 ,N 22, = (). Consequently, the geometric part
of the Arakelov intersection product is zero. In view of [11, Lemma 5.1] the
contribution of any archimedean place v is zero too, since {21, and (25, are
disjoint. This concludes the proof. O

The following proposition makes more explicit the numerical effectivity
hypothesis in Proposition 7.5.
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Proposition 7.7. Let X, 2, D, 4, Dg be as in the beginning of this
subsection.

(a) If D is effective, then the Arakelov divisor Dg on X, attached to the
effective divisor D and to the adelic tube §2, is effective.

(b) Write D = 3", n;P;, for some closed points P; of X and positive inte-
gers n;. Then D is numerically effective if and only if hp, (P;) =0 for
each 1. R

(¢) If D is a rational point P, then Dg is numerically effective (respectively
Dg - Dg > 0) if and only if the Arakelov degree deg(TpX, [-I57) is non-
negative (respectively positive).

Proof. (a) Let us assume that D is an effective divisor. For each archimedean
place v of K, the capacitary Green function gp g, is therefore nonnegative
[11, 3.1.4]. Moreover, we have proved in Proposition 5.1 that the Q-divisor 2
in Z}Q(% ) is effective. These two facts together imply that Dg, is an effective
Arakelov divisor.

(b) For any archimedean place v, the definition of the archimedean capac-
itary Green currents involved in Dy, implies that w(ﬁgv) is a positive mea-
sure on X, zero near |D| [11, Theorem 3.1, (iii)|. By [11, Proposition 6.9],
in order for Dy, to be numerically effective, it is necessary and sufficient that
hp, (E) = 0 for any irreducible component E of 2. This holds by construction
if F is a vertical component of Z": according to the conditions of Proposi-
tion 5.1, one has -V =0 for any vertical component V' of the support of Z;
for any other vertical component V', one has -V > 0 because the divisor Dg,
is effective. Consequently, Dy, is nef if and only if hp (P;) = 0 for all 4.

(c) This follows from (b) and from the equality (Corollary 5.20)

h -

5., (P) = Dq.Dg = deg (Tp X, ||| 57) .

]

Theorem 7.8. Let X be a geometrically connected smooth projective curve
over K. Let P be a rational point in X (K), and 2 = ({2,) an adelic tube
adapted to P.

Let ¢ € ﬁ/’xja be any formal function around P satisfying the following
assumptions:

(1) for any v € F, ¢ extends to an analytic meromorphic function on (2,;
(2) ¢ is algebraic over Ox p;
(3) deg (TP X, [-15") = 0.

If equality holds in the last inequality, assume moreover that there is an
archimedean place v of F such that X, \ §2, is not contained in a real semi-
algebraic curve of X, .

Then ¢ is the formal germ at P of a rational function in K(X).
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Proof. Let X' be the normalization of X in the field extension of K(X) gen-
erated by . This is a geometrically connected smooth projective curve over
K, which may be identified with the normalization of the Zariski closure Z in
X x Pl of the graph of ¢. It is endowed With a finite morphism f: X’ — X,
namely the composite morphism X’ — Z ™ X. Moreover, the formal func-
tion ¢ may be identified with the composition of the formal section o of f
at P that lifts the formal section (Idx, o) of Z 23 X and the rational function
@ in the local ring Ox ,(py defined as the composition X' — Z 2 Pi..

To show that ¢ is the germ at P of a rational function, we want to show
that f is an isomorphism.

For any place v, {2, is a smooth analytic curve in X,, and o extends to
an analytic section o,: £2, — X/ of f. Indeed, according to (1), the formal
morphism (Idy, ¢) extends to an analytic section of Z 25 X over 2, which
in turn lifts to an analytic section of f by normality.

By Corollary 5.20, the Arakelov Q divisor Py, attached to the point P and
the adelic tube 2 is nef. When deg (TpX, [-II57) is positive, Proposition 7.5
implies that f is an isomorphism; hence ce ¢ Is the formal germ to a rational
function on X. This still holds when deg (TpX, ||- I5Y) = 0, thanks to the
supplementary assumption at archimedean places in that case. O

As an example, this theorem applies when X is the projective line, P is
the origin, and when, for each place v in F, (2, is the disk of center 0 and
radius R, € /|K}| in the affine line. Then (£2,) is an adelic tube adapted

to P iff almost every R, equals 1, and deg (TpX, [-II57) is nonnegative iff
[I, Rv = 1. In this special case, Theorem 7.8 becomes Harbater’s rationality
criterion [30, Proposition 2.1].

Actually Harbater’s result is stated without the assumption R, € /|K}|
on the non-archimedean radii. The reader will easily check that his rationality
criterion may be derived in full generality from Theorem 7.8, by shrinking
the disks (2, for v non-archimedean, and replacing them by larger simply
connected domains for v archimedean.

When deg (Tp X, [-II57) = 0, some hypothesis on the sets X, \ {2, is really
necessary for a rationality criterion to hold. As an example, let us consider
the Taylor series of the algebraic function ¢(z) = 1/y/1 — 4z — 1, viewed as a
formal function around the origin of the projective line P}Q. As shown by the
explicit expansion

v Z (1/2)”_5(2:)”5”’

n=1

the coefficients of this series are rational integers. Moreover, the complemen-
tary subset {2 of the real interval [1/4,00] in P!(C) is a simply connected
open Riemann surface on which the algebraic function has no ramification.
Consequently, there is a meromorphic function ¢, on 2 such that ¢ (z) =
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(1—42)~/2—1 around 0. One has cap,(£2) = 1, hence deg(ToP?, |- P)) = 0.
However, ¢ is obviously not a rational functlon

By combining the algebraicity criterion of Theorem 6.1 and the previous
corollary, we deduce the following result, a generalization to curves of any
genus of Borel-Dwork’s criterion.

Theorem 7.9. Let X be a geometrically connected smooth projective curve
over K, P a rational point in X (K), and §2 := (£2,) an adelic tube adapted
to P. o

Let ¢ € Ox p be any formal function around P satisfying the following
assumptions:

(1) for any v € F, ¢ extends to an analytic meromorphic function on (2,;

2) the formal graph of ¢ in X x Al Po(p)) 18 A-analytic.
(Pp(P))

If, moreover, deg (TpX, || |SF) > 0, then ¢ is the formal germ at P of a
rational function on X (in other words, ¢ belongs to Ox p).

Proof. In view of Corollary 7.8, it suffices to prove that ¢ is algebraic. Let
V=XxPlandlet C C V(p »(P)) be the formal graph of ¢. We need to prove

that C is algebralc Indeed, since at each place v of K, the canonical v-adic

seminorm on TpC is smaller than the capacitary one, deg (T pX, |- Hcan ) >

deg (TpX, |- |59P) > 0. By Theorem 6.1, C is then algebraic, and ¢ is algebraic
over K(X). O

Observe that when condition (1) is satisfied in Theorem 7.9, the A-
analyticity condition (2) is implied by the following one:

(2') there exist a positive integer N and a smooth model Z of X
over Spec Ok[1/N] such that P extends to an integral point & in
2 (Ok[1/N]), and ¢ extends to a regular formal function on the formal

completion Xop.

This follows from Proposition 3.8, since then the formal graph of ¢ extends
to a smooth formal curve in 2" x A! over Spec Ok [1/N].

Example 7.10. Theorem 7.9 may be applied when X is P}, P is the origin 0
in A'(K) — P!(K), and when, for each place v, 2, C F, is a disk of center 0
and positive radius R, in the affine line, provided these radii are almost all
equal to 1 and satisfy [[R, > 1. In this case, the rationality of any ¢ in
@/’Xja ~ K[[X]] under the assumptions (1) and (2’) is precisely Borel-Dwork’s
rationality criterion [6,22].

More generally, the expression of capacitary norms in terms of transfinite
diameters and a straightforward approximation argument” allows one to re-
cover the criterion of Pdlya—Bertrandias ([1,43]) from our Theorem 7.9 with
X =PL.

"Using the fact that bounded subsets of C,, are contained in affinoids (actually,
lemniscates) with arbitrarily close transfinite diameters.
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Appendix
A Metrics on line bundles

Let K be a field that is complete with respect to the topology defined by a
discrete absolute value |-| on K. Let R be its valuation ring and let 7 be a
uniformizing element of R. We denote by v = log|-|/ log|r| the corresponding
normalized valuation on K.

Let X be an algebraic variety over K and let L be a line bundle on X.
In this appendix, we set out some basic facts concerning the definition of a
metric on the fibers of L.

Let K be an algebraic closure of K; endow it with the unique absolute
value that extends the given one on K. It might not be complete, however, its
completion, denoted by C, is a complete field containing K as a dense subset
on which the absolute value extends uniquely, endowing it with the structure
of a complete valued field.

A metric on the fibers of L is the datum, for any = € X(C), of a norm |||
on the one-dimensional C-vector space L(x). Namely, ||-|| is amap L(z) — Ry
satisfying the following properties:

o ||s1 + s2|| < max(||s1, ||s2]]) for all s1, s2 € L(x);
o |las|| = |a|||s| for all @ € C and s € L(z);
e ||s|| = 0 implies s = 0.

We also assume that these norms are stable under the natural action of the
Galois group Gal(C/K), namely that for any x € X(C), s € L(z) and o €
Gal(C/K), [lo(s)|| = [Is]-

We say that a metric is continuous if for any open subset U C X (for
the Zariski topology) and any section s € I'(U, L), the function z +— ||s(z)||
on U(C) is continuous. This definition corresponds to the classical notion of
a Weil function attached to a Cartier divisor on X and will be sufficient for
our purposes; a better one would be to impose that this function extend to
a continuous function on the analytic space attached to U by Berkovich [4];
see, e.g., [29] for this point of view.

Assume that X is projective and let 2 be any projective and flat R-scheme
with generic fiber X, together with a line bundle . on £  extending L. Let
x € X(O); if C° denotes the valuation ring of C, there is a unique morphism
€z SpecC® — Z by which the generic point of Spec C° maps to z. Then,
et % is a sub-C’-module of L(z). For any section s € L(z), there exists a € C°
such that as € €.Z. Define, for any s € L(x),

I|s| =inf{|a|™', as€ci?, aecC\ {0}}.

This is a continuous metric on the fibers of L, which we call an algebraic
metric.
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Algebraic metrics are in fact the only metrics that we use in this article,
where the language of metrics is just a convenient way of comparing various
extensions of X and L over R. In that respect, we make the following two
remarks:

(1) Let Y be another projective algebraic variety over K andlet f: Y — X
be a morphism. Let (L, |:]|z) be a metrized line bundle on X. Then the
line bundle f*L on Y admits a metric |||z, defined by the formula
N sl = lIs(f(y)llz, where y € Y(C) and s is a section of L in a
neighborhood of f(y). Assume that the metric of L is algebraic, defined by a
model (Z7,.%). Let # be any projective flat model of Y over R such that f
extends to a morphism ¢: % — 2. Then the metric ||-||s+1 is algebraic,
defined by the pair (%, p*.&).

(2) Let 2" be a projective and flat model of X on R and let £ and &’
be two line bundles on 2" that induce the same (algebraic) metric on L. If
Z is normal, then the identity map Zx = .ZJ on the generic fiber extends
uniquely to an isomorphism ¥ ~ Z".

B Background on rigid analytic geometry

The results of this appendix are basic facts of rigid analytic geometry: the first
one is a version of the maximum principle, while the second proposition states
that the complementary subsets to an affinoid subspace in a rigid analytic
space has a canonical structure of a rigid space. They are well known to
specialists, but having been unable to find a convenient reference, we decided
to write them down here.

Let K be a field, endowed with an ultrametric absolute value for which it
is complete.

Proposition B.1. Let C' be a smooth projective connected curve over K, let
f € K(C) be a nonconstant rational function, and let X denote the Weier-
strass domain C(f) = {x € X ; |f(2)] < 1} in X. Then any affinoid function g
on X 1is bounded; moreover, there exists x € U such that

|9(z)] = suplg| and [f(z)| =1.
X

The fact that ¢ is bounded and attains its maximum is the classical max-
imum principle; we just want to ensure that the maximum is attained on the
“boundary” of U.

Proof. The analytic map f: C*" — (P1)2% induced by f is finite, hence re-
stricts to a finite map fx: X — B of rigid analytic spaces, where B = Sp K (t)
is the unit ball. It corresponds to fx a morphism of affinoid algebras K (t) —
O (X) that makes 0(X) a K (t)-module of finite type. Let g € €(X) be an
analytic function. Then g is integral over K (t), hence there is a smallest pos-
itive integer n, as well as analytic functions a; € K(t), for 1 < i < n, such
that
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9(@)" + a1 (f(@)g(@)" ™"+ + an(f(x)) = 0
for any x € X. Then, (see [7, p. 239, Proposition 6.2.2/4])

sup lg(x)| = max |a;(£)]"/".
zeX N

The usual proof of the maximum principle on B shows that there is for each
integer ¢ € {1,...,n} a point ¢; € B satisfying |¢t;| = 1 and |a;(¢;)| = [Jasl-
(After having reduced to the case ||a;|| = 1, it suffices to lift any nonzero ele-
ment of the residue field at which the reduced polynomial #; does not vanish.)
Consequently, there is therefore a point ¢t € B such that |t| = 1 and

max]a;()['/" = max]|a;]| /.

Applying Proposition 3.2.1/2, p. 129, of [7] to the polynomial
Y™ +ai()Y" 4 an(t)

there is a point y € P! and |y| = max;||a;||'/*. Since the morphism K (t)[g] C
0 (X) is integral, there is a point z € X such that f(z) =t and g(z) = y. For
such a point, one has |f(z)] =1 and |g|(x) = ||g]|- O

Proposition B.2. Let X be a rigid analytic variety over K and let A C X
be the union of finitely many affinoid subsets.

Then X \ A, endowed with the induced G-topology, is a rigid analytic
variety.

Proof. By |7, p. 357, Proposition 9.3.1/5], and the remark that follows that
proposition, it suffices to prove that X \ A is an admissible open subset.

Let (X;) be an admissible affinoid covering of X; then, for each i, 4, =
ANX; is a finite union of affinoid subsets of X;. Assume that the Proposition
holds when X is affinoid; then, each X\ A; is an admissible open subset of X;,
hence of X. Then X \ A = |J,(X; \ 4;) is an admissible open subset of X, by
the property (Gp) satisfied by the G-topology of rigid analytic varieties.

We thus may assume that X is an affinoid variety. By Gerritzen—
Grauert’s theorem [7, p. 309, Cor. 7.3.5/3], A is a finite union of rational
subdomains (A;)1<ig<m in X. For each 4, let us consider affinoid functions
(fiay---s fing»gi) on X generating the unit ideal such that

NI
9i gi
_ {x € X fir (@) < Igi (@) s foms ()] < |gi<x>}.

We have
m Ny

x\A=NE\ 4 =N U {x € X [fus@) > |gi<x>|}.

i=1 i=1j=1
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Since any finite intersection of admissible open subsets is itself admissible
open, it suffices to treat the case m = 1, i.e., when A is a rational subdomain
X(f1,..., fn;g) of X, which we now assume.

By assumption, f1,..., f,, g have no common zero. By the maximum prin-
ciple [7, p. 307, Lemma 7.3.4/7], there is 6 € 4/|K*| such that for any x € X

max(|f1(@)],..., [fn(2)l; |l9(x)]) = 0.
For any o € /|K*| with a > 1, and any j € {1,...,n}, define

Xio =X (07,07 L) o X6 < I alslo)l < 51}
i 1
This is a rational domain in X. For any x € X ,, one has f;(z) # 0, and
lg(z)| < |fj(x)], hence z € X \ A. Conversely, if x € X \ A, there exists
j € {1,...,n} such that max(|f1(z)], ..., [fn(2)],lg(2)]) = |f;(x)] > |g(x)]; it
follows that there is a € \/|K*|, o > 1, such that z € X ,. This shows that
the affinoid domains X, of X, for 1 < j < n and @ € /|K*|, a > 1, form
a covering of X \ A. Let us show that this covering is admissible. Let Y be
an affinoid space and let ¢: Y — X be an affinoid map such that ¢(Y) C
X\ A. By [7, p. 342, Proposition 9.1.4/2], we need to show that the covering
(7 (Xj,a))ja Of Y has a (finite) affinoid covering that refines it. For that, it
is sufficient to prove that there are real numbers ay, ..., a, in v/|K*|, greater
than 1, such that ¢(Y) C Uj_; Xj.a;-
For j € {1,...,n}, define an affinoid subspace Y; of Y by

y, = {y €Y1 (o) < (o)) for 1 <i < n}

One has Y = U;.Lzl Y;. Fix some j € {1,...,n}. Since p(Y;) C X\ 4, |g(z)| <
|fj(z)| on Y;. It follows that f; o ¢ does not vanish on Y;; hence go ¢/ fjo0¢
is an affinoid function on Y; such that

goy
ij<P(y)| <!

for any y € Y;. By the maximum principle, there is o; € /|K*| such that
a; > 1 and ’ﬂ’ < L on Y. One then has p(Y) C Uj=1 Xj,a,, which

fjop aj
concludes the proof of the proposition. O

References
1. Y. AMICE, Les nombres p-adiques, Collection SUP: Le Mathématicien, vol. 14,

Presses Universitaires de France, Paris, 1975.
2. Y. ANDRE, G-functions and geometry, Vieweg, Braunschweig, 1989.



122

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Jean-Benoit Bost and Antoine Chambert-Loir

L. BADEScuU, Projective geometry and formal geometry, Mathematics Institute
of the Polish Academy of Sciences. Mathematical Monographs (New Series),
vol. 65, Birkhduser Verlag, Basel, 2004.

V. G. BERKOVICH, Spectral theory and analytic geometry over non-archimedean
fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical
Society, Providence, RI, 1990.

F. A. Bocomorov, M. L. MCQUILLAN, Rational curves on foliated varieties,
prépublication M/01/07, LH.E.S., 2001.

E. BOREL, Sur une application d’un théoréme de M. Hadamard, Bulletin des
sciences mathématiques 18 (1894), 22-25.

S. BoscH, U. GONTZER, R. REMMERT, Non-archimedean analysis,
Grundlehren der Mathematischen Wissenschaften, vol. 261, Springer-Verlag,
Berlin, 1984.

S. BoscH, W. LUTKEBOHMERT, Formal and rigid geometry. I. Rigid spaces,
Math. Ann. 295 (1993), no. 2, 291-317.

S. BoscH, W. LUTKEBOHMERT, Formal and rigid geometry. 1. Flattening tech-
niques, Math. Ann. 296 (1993), no. 3, 403-429.

S. BoscH, W. LUTKEBOHMERT, M. RAYNAUD, Néron models, Ergebnisse der
Mathematik und ihrer Grenzgebiete, vol. 21, Springer-Verlag, 1990.

J.-B. Bost, Potential theory and Lefschetz theorems for arithmetic surfaces,
Ann. Sci. Ecole Norm. Sup. 32 (1999), no. 2, p. 241-312.

J.-B. BosTt, Algebraic leaves of algebraic foliations over number fields, Publ.
Math. Inst. Hautes Etudes Sci. 93 (2001), 161-221.

J.-B. BosTt, Germs of analytic varieties in algebraic varieties: canonical met-
rics and arithmetic algebraization theorems, (A. Adolphson, F. Baldassarri,
P. Berthelot, N. Katz, F. Loeser, eds.), vol. I, Walter de Gruyter GmbH &
Co. KG, Berlin, 2004, 371-418.

J.-B. BosTt, Evaluation maps, slopes, and algebraicity criteria, Proceedings of
the International Congress of Mathematicians (Madrid 2006) (M. Sanz-Solé,
J. Soria, J. L. Varona, J. Verdera, eds.), vol. II, European Mathematical Society,
2007, 371-418.

J.-B. Bost, H. GiLLET, C. SOULE, Heights of projective varieties and positive
Green forms, J. Amer. Math. Soc. 7 (1994), 903-1027.

D. G. CANTOR, On an extension of the definition of transfinite diameter and
some applications, J. Reine Angew. Math. 316 (1980), 160-207.

A. CHAMBERT-LOIR, Théorémes d’algébricité en géométrie diophantienne
(d’aprés J.-B. Bost, Y. André, D. & G. Chudnovsky), Astérisque (2002), no. 282,
175-209, Exp. No. 886.

H. CHEN, Positivité en géométrie algébrique et en géométrie d’Arakelov : ap-
plication a l’algébrisation et a l’étude asymptotique des polygones de Harder-
Narasimhan, Thése, Ecole polytechnique, 2006.

D. V. CuubpNovsky, G. V. CHUDNOVSKY, Applications of Padé approrima-
tions to the Grothendieck conjecture on linear differential equations, Number
theory (New York, 1983-84), Lecture Notes in Math., vol. 1135, 1985, 52-100.
D. V. CauubpNovsKy, G. V. CHUDNOVSKY, Padé approximations and Diophan-
tine geometry, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 8, 2212-2216.

P. DELIGNE, Intersections sur les surfaces réguliéres, Groupes de monodromie
en géomeétrie algébrique (SGA 7 II), Lecture Notes in Math., vol. 340, Springer-
Verlag, 1973, 1-38.



22.

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Analytic Curves in Algebraic Varieties over Number Fields 123

B. DWORK, On the rationality of the zeta function of an algebraic variety, Amer.
J. Math. 82 (1960), 631-648.

. G. EISENSTEIN, Uber eine allgemeine Figenschaft der Reihen-Entwicklungen
aller algebraischen Funktionen (1852), Mathematische Gesammelte Werke,
Band II, Chelsea Publishing Co., New York, 1975, 765-767.

A. FRANCHETTA, Sulle curve riducibili appartenenti ad una superficie algebrica,
Univ. Roma. Ist. Naz. Alta. Mat. Rend. Mat. e Appl. (5) 8 (1949), 378-398.
J. FRESNEL, M. MATIGNON, Sur les espaces analytiques quasi-compacts de di-
mension 1 sur un corps valué complet ultramétrique, Ann. Mat. Pura Appl. (4)
145 (1986), 159-210.

P. GRAFTIEAUX, Formal groups and the isogeny theorem, Duke Math. J. 106
(2001), no. 1, 81-121.

P. GRAFTIEAUX, Formal subgroups of abelian varieties, Invent. Math. 145
(2001), no. 1, 1-17.

L. GrusoN, M. vaN DER PuT, Banach spaces, Mém. Soc. Math. France (1974),
no. 3940, 55-100.

W. GUBLER, Local heights of subvarieties over non-archimedean fields, J. Reine
Angew. Math. 498 (1998), 61-113.

D. HARBATER, Galois covers of an arithmetic surface, Amer. J. Math. 110
(1988), no. 5, 849-885.

R. HARTSHORNE, Cohomological dimension of algebraic varieties, Ann. of Math.
(2) 88 (1968), 403-450.

R. HARTSHORNE, Curves with high self-intersection on algebraic surfaces, Publ.
Math. Inst. Hautes Etudes Sci. (1969), no. 36, 111-125.

R. HARTSHORNE, Ample subvarieties of algebraic varieties, Lecture Notes in
Mathematics, vol. 156, Springer-Verlag, Berlin, 1970.

H. HIRONAKA, On some formal imbeddings, Illinois J. Math. 12 (1968), 587-602.
H. HironakA, H. MATSUMURA, Formal functions and formal embeddings,
J. Math. Soc. Japan 20 (1968), 52-82.

Y. IHARA, Horizontal divisors on arithmetic surfaces associated with Belyi
uniformizations, The Grothendieck theory of dessins d’enfants (Luminy 1993)
(L. Schneps, ed.), London Math. Soc. Lecture Note Ser., vol. 200, Cambridge
Univ. Press, Cambridge, 1994, 245-254.

E. KaN1, Potential theory on curves, Théorie des nombres (Quebec, PQ, 1987),
de Gruyter, Berlin, 1989, 475-543.

Yu. I. MANIN, New dimensions in geometry, Workshop Bonn 1984 (Bonn,
1984), Lecture Notes in Math., vol. 1111, Springer, Berlin, 1985, 59-101.

H. MatsumMura, Commutative Algebra, Mathematics Lecture Notes Series, Ben-
jamin/Cummings, 1980.

L. MoRrRET-BAILLY, Groupes de Picard et problemes de Skolem. I., Ann. Sci.
Ecole Norm. Sup. 22 (1989), no. 2, 161-179.

L. MoreT-BaAIiLLy, Un probléme de descente, Bull. Soc. Math. France 124
(1996), 559-585.

D. MuMFORD, The topology of normal singularities of an algebraic surface and
a criterion for simplicity, Publ. Math. Inst. Hautes Etudes Sci. 9 (1961), 5-22.
G. Pouva, Uber gewisse notwendige Determinantenkriterien fir die Fort-
setzbarkeit einer Potenzreihe, Math. Ann. 99 (1928), 687-706.

M. vaN DER Put, The class group of a one-dimensional affinoid space, Ann.
Inst. Fourier (Grenoble) 30 (1980), no. 4, 155-164.



124 Jean-Benoit Bost and Antoine Chambert-Loir

45

46.

47.

48.

49.

50.

51.

. C. P. RamaNuJAM, Remarks on the Kodaira vanishing theorem, J. Indian Math.
Soc. (N.S.) 36 (1972), 41-51.

H. RANDRIAMBOLOLONA, Métriques de sous-quotient et théoréme de Hilbert—
Samuel arithmétique pour les faisceaux cohérents, J. Reine Angew. Math. 590
(2006), 67-88.

M. RAYNAUD, Revétements de la droite affine en caractéristique p > 0 et con-
jecture d’Abhyankar, Invent. Math. 116 (1994), 425-462.

R. RuMELY, C. F. LAu, R. VARLEY, Ezistence of the sectional capacity, Mem.
Amer. Math. Soc. 145 (2000), no. 690, 1-130.

R. S. RuMELY, Capacity theory on algebraic curves, Lecture Notes in Math.,
vol. 1378, Springer-Verlag, Berlin, 1989.

J.-P. SERRE, Lectures on the Mordell-Weil theorem, third ed., Aspects of Math-
ematics, Friedr. Vieweg & Sohn, Braunschweig, 1997.

A. THUILLIER, Théorie du potentiel sur les courbes en géométrie non archimédi-
enne. Applications a la théorie d’Arakelov, Thése, Université de Rennes 1, 2005.
http://tel.archives-ouvertes.fr/tel-00010990 /



Riemann—Roch for Real Varieties

Paul Bressler,! Mikhail Kapranov,? Boris Tsygan,® and Eric Vasserot?

L 1.A.S., Princeton bressler@math.ias.edu

2 Yale University mikhail.kapranov@yale.edu

3 Northwestern University tsygan@math.northwestern.edu
4 Université Paris 7 vasserot@math. jussieu.fr

To Yuri Ivanovich Manin on his 70th birthday.

Summary. We prove a Riemann—Roch type result for any smooth family of smooth
oriented compact manifolds. It describes the class of the conjectural higher deter-
minantal gerbe associated to the fibers of the family.

Key words: Riemann—Roch, determinantal gerbe, Lie algebroid, cyclic
homology.

2000 Mathematics Subject Classifications: 57R20 58] (Primary); 17B65
(Secondary)

1 Introduction

1.1

Let X be an oriented real analytic manifold of dimension d and let X be
a complex envelope of X, i.e., a complex manifold of the same dimension
containing X' as a totally real submanifold. Then, (real) geometric objects on
X can be viewed as (complex) geometric objects on X involving cohomology
classes of degree d. For example, a C*°-function f on X can be considered as
a section of By, the sheaf of hyperfunctions on X', which, according to Sato,
can be defined as

By = H%(Ox @ oryx) (1)
where or X'/ X is the relative orientation sheaf. So f can be viewed as a class
in dth local cohomology.

More generally, the equality (1) suggests that various results of holomor-
phic geometry on X should have consequences for the purely real geometry
on Y, consequences that involve raising the cohomological degree by d. The
goal of this paper is to investigate the consequences of one such result, the
Grothendieck-Riemann-Roch theorem (GRR).

Y. Tschinkel and Y. Zarhin (eds.), Algebra, Arithmetic, and Geometry, 125
Progress in Mathematics 269, DOI 10.1007/978-0-8176-4745-2 4,
(© Springer Science+Business Media, LLC 2009
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1.2

Let p: X — B be a smooth proper morphism of complex algebraic manifolds.
We denote the fibers of p by X, = p~1(b) and assume them to be of dimension
d. If £ is an algebraic vector bundle on X, the GRR theorem says that

chm (Rp«(£)) = / {ch(é’) -Td(7x/B) € H*™B,C). (2
X/B 2m+2d

Here [y p H?m+2d(X C) — H?>™(B,C) is the cohomological direct image
(integration over the fibers of p).

In the case m = 1, the class on the left comes from the class, in the Picard
group of B, of the determinantal line bundle det(Rp.&) whose fiber, at a
generic point b € B, is

det H*(X,,8) = Q) (4™ Hi(X,,€)" " 3)

i

Deligne [9] posed the problem of describing det(Rp.£) in a functorial way as
a refinement of GRR for m = 1. This problem makes sense already for the
case B = pt when we have to describe the 1-dimensional vector space (3) as
a functor of £. Deligne solved this problem for a family of curves, and further
results have been obtained in [11].

1.3

To understand the real counterpart of (2), assume first that B = pt, so X =
Xpt and let X C X be as in Section 1.1. Denote by E the restriction of £ to
XY and by C$°(E) the sheaf of its C* sections. Then, similarly to (1), we have
the embedding

C¥(E) C HL(E @ 2%).

Assume further that d = 1, so X is an algebraic curve, and that X is a
small circle in X cutting it into two pieces: X (a small disk) and X_. Let
E+ = &|x.. We are then in the situation of the Krichever correspondence
[26]. Namely, the space I'(E) of L?-sections has a canonical polarization in
the sense of Pressley and Segal [26] and therefore possesses a determinantal
gerbe Det I'(E). The latter is a category with every Hom-set made into a C*-
torsor (a 1-dimensional vector space with zero deleted). The extensions €4 of
E to X4 define two objects [€4] of this gerbe, and

det H*(X,€) = Hompe, 1) ([€4),[€-]).

The real counterpart of the problem of describing the C*-torsor det H*(X, &)
is the problem of describing the gerbe Det I'(E). If we now have a family
p : X — B as before (with d = 1), equipped with a subfamily of circles
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q: X — B, ¥ C X, then we have an O%-gerbe Det ¢, (F), which, according
to the the classification of gerbes |5], has a class in H?(B,O%). The latter
group maps naturally to H?(B,Z) and in fact can be identified with the
Deligne cohomology group H?*(B,Zp(1)), see [6]. The Real Riemann-Roch
for a circle fibration describes the above class (modulo 2-torsion) as

Detq.(£)] = | ehnlB) e we ey W

Here fE/B : H*(X,Zp(2)) — H?*(B,Zp(1)) is the direct image in Deligne
cohomology. Note the absence of the characteristic classes of 7x/p (they are
2-torsion for a real rank one bundle). If one is interested in the image of
the determinantal class in H3(B,Z), then one can understand the RHS of
the above formula in the purely topological sense.

Both sides of (4) do not involve anything other than ¢ : ¥ — B and a
vector bundle E on X' (equipped with CR-structures coming from the em-
beddings into X, £). One has a similar result for any C* circle fibration (no
CR structure) and any C* complex bundle F on Y. In this case we get a
gerbe with lien C'%*, the sheaf of invertible complex-valued C*°-functions on
B, and its class lies in H*(B,C%*) = H3(B,Z). It is this purely C* setting
that we adopt and generalize in the present paper.

1.4

Let X be a compact oriented C*°-manifold of arbitrary dimension d and
E a C* complex vector bundle on X. One expects that the space I'(E)
should have some kind of d-fold polarization, giving rise to a “determinan-
tal d-gerbe”; Det I'(E). This structure is rather clear when X' is a 2-torus,
but in general, the theory of higher gerbes is not fully developed. In any
case, one expects a C'°° family of such gerbes over a base B to give a class
in H*Y(B,C%*) = H¥*2(B,Z). In this paper we consider a C°° family
q : X — B of relative dimension d and a C'*° bundle E on Y. We then define
by means of the Chern—Weil approach what should be the characteristic class
of the would-be d-gerbe Det(g.(E)):

Ci(¢-(E)) € H™*(B,C).

We denote it by Cq, since it is a kind of d-fold delooping of the usual first
Chern (determinantal) class. We then show the compatibility of this class
with the gerbe approach whenever the latter can be carried out rigorously.
Our main result is the Real Riemann-Roch theorem (RRR):

Cl(q*E) = / |:Ch(E) . Td(TE/B) S Hd+2(B, (C)
X/B 2d+2

Here, 7y, p is the complexified relative tangent bundle, and S /B the inte-
gration along the fibers of ¢, lowers the degree by d.
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Note that the above theorem is a statement of purely real geometry and is
quite different from the “Riemann—Roch theorem for differentiable manifolds”
proved by Atiyah and Hirzebruch [1]. The latter expresses properties of a Dirac
operator on a real manifold X, while our RRR deals with the O-operator on
a complex envelope X of ¥. The d = 1 case above can be deduced from
a result of Lott [22] on “higher” index forms for Dirac operators (because
the polarization in the circle case can be described in terms of the signs of
eigenvalues of the Dirac operator). In general, however, our results proceed in
a different direction.

1.5

Our definition of C1(g.FE) uses the description of the cyclic homology of dif-
ferential operators [7] [29], which provides a construction of a natural Lie
algebra cohomology class v of the Atiyah algebra, i.e., of the Lie algebra of
infinitesimal automorphisms of a pair (X, E), where X' is a compact oriented
d-dimensional C'*°-manifold and F is a vector bundle on X'. The intuition with
higher gerbes suggests that this class comes in fact from a group cohomology
class of the infinite-dimensional group of all the automorphisms of (X, E), see
Proposition 40, and moreover, that there are similar classes coming from the
higher Chern classes in formula (39). This provides a new point of view on the
rather classical subject of “cocycles on gauge groups and Lie algebras”, i.e., on
groups of diffeomorphisms of manifolds and automorphisms of vector bundles
as well as their Lie algebra analogues.

There have been two sources of interest in this subject. The first one was
the study of the cohomology of the Lie algebras of vector fields following the
work of Gelfand—Fuks; see [13] for a systematic account. In particular, Bott [3]
produced a series of cohomology classes of the Lie algebra of vector fields on
a compact manifold and integrated them to group cohomology classes of the
group of diffeomorphisms. Later, group cocycles were studied with connections
with various anomalies in physics, see [27].

From our point of view, the approach of [27] can be seen as producing
“Integrals of products of Chern classes” in families over a base B, (cf. [9]
[11]), in other words, as producing the ingredients for the right-hand side
of a group-theoretical RRR. This is the same approach that leads to the
construction of the Morita—Miller characteristic classes for surface fibrations
[24]. The anomalies themselves, however, should be seen as the hypothetical
classes from Conjectures 39, 41 and whose description through integrals of
products of Chern classes constitutes the RRR.

1.6

As far as the proof of the RRR goes, we use two techniques. The first is
that of differential graded Lie algebroids (which can be seen as infinitesimal
analogues of higher groupoids appearing in the heuristic discussion above).
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The second technique is that of “formal geometry” of Gelfand and Kazhdan,
i.e., reduction of global problems in geometry of manifolds and vector bundles
to problems related to cohomology of Lie algebras of formal vector fields and
currents. The first work relating Riemann—Roch to Lie algebra cohomology
was [12], and this approach was further developed in [4]. To prove the RRR
we use results of [25] and [4] on the Lie algebra cohomology of formal Atiyah
algebras.

1.7

The second author would like to acknowledge support from NSF, Université
Paris-7, and Max-Planck Institut fiir Mathematik. The fourth author is par-
tially supported by the NSF.

2 Background on Lie algebroids, groupoids and gerbes

2.1 Conventions

All manifolds will be understood to be C* unless otherwise specified. For a
manifold X we denote by C the sheaf of C-valued C'*°-functions. By a vector
bundle over X' we mean a locally trivial, C* complex vector bundle, possibly
infinite-dimensional. For such a bundle E we denote by C*°(E) = C¥(E) the
sheaf of smooth sections, which is a locally free sheaf of C§Y-modules. By 7
we denote the complexified tangent bundle of X, so its sections are derivations
of CSY. We denote by Dy, the sheaf of differential operators acting on C%,
and by Dsx g the sheaf of differential operators acting from sections of E to
sections of E. The notations D(X) and D(X, E') will be used for the spaces of
global sections of Dy, and Dy g.

2.2 Lie algebroids

Recall [23] that a Lie algebroid on X consists of a vector bundle G, a morphism
of vector bundles « : G — Ty (the anchor map), and a Lie algebra structure
in C*(G) satisfying the following properties:

1. o takes the Lie bracket on sections of G to the standard Lie bracket on
vector fields.
2. For any smooth function f on X and sections z,y of G we have

[fz,y] = f - [2,y] = Lieagy) (f) - =

A Lie algebroid is called transitive if « is surjective.
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Example 1. When Y = pt, a Lie algebroid is the same as a Lie algebra.
Example 2. 7x with the standard Lie bracket and « = id is a Lie algebroid.

Example 3. If o = 0, then the bracket in G is C'{?-linear. In this case we say
that G is a bundle of Lie algebras: every fiber of G is a Lie algebra.

Morphisms of Lie algebroids are defined in an obvious way. Note that
for any transitive Lie algebroid G the kernel Ker(«) C G is a bundle of Lie
algebras, i.e., a Lie algebroid with trivial anchor map, and the maps in the
short exact sequence

0 — Ker(a) =G 5 Tx —0

are morphisms of Lie algebroids.

2.3 The de Rham complex of a Lie algebroid
Let G be a Lie algebroid on Y. Let

DR(G) := Hom(A'G, CS?).

The differential d : DR*(G) — DR'™!(G) is defined by the standard formula
of Cartan: for an antisymmetric i-linear function [ : G — C$° we set

i+1
dl(z1,. .., Tip1) = Z(—l)]Liea(zj)l(xh s Ty ey Tig)
j=1
+ 3 (0[] e, F e TR Tiga). (5)
i<k

We get a complex DR*(G) called the de Rham complex of G. A morphism of
Lie algebroids ¢ : G — H gives rise to the morphism of de Rham complexes
¢* : DR*(H) — DR*(G).

Example 4. If ¥ = pt, so G is a Lie algebra, then DR*(G) = C*(G) is the

cochain complex of G with trivial coefficients.

Example 5. If § = 75, then DR*(G) = 2% is the C*° de Rham complex
of X.

2.4 The enveloping algebra of a Lie algebroid

Let G be a Lie algebroid on X, as before. The enveloping algebra U(G) is the
sheaf of associative algebras on X' defined by generators « € G (local sections)
and f € C¥ (local functions) subject to the relations

ry —yzr = [z,y] ,
f-ax—a- f=Liegyu(f)
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Example 6. If X' = pt, so G is a Lie algebra, then U(G) is the usual enveloping
algebra of G.

Example 7. If G = Ty, then U(G) = Dy is the sheaf of differential operators
OF — O,

Example 8. If G is any Lie algebroid, then the anchor map « induces a
morphism

U(Oz) : U(g) — U(TE) :DZJ
of sheaves of associative algebras. In particular, C¥ is a left U(G)-module.

The sheaf U(G) has an increasing ring filtration {U™(G)} with U™(G)
generated by products involving at most m sections of G. The following is
then standard.

Proposition 9. The associated graded sheaf of algebras grU(G) is identified
with the symmetric algebra S*(G).

2.5 The Koszul resolution
Let G be a Lie algebroid on Y. We have then the complex
= UG)®@AG - UG)®G —U(G) — CF — 0. (6)

with the differential defined by:

n
dw® (1 A=+ Am)) Z Huy) @ (A A A A )
]+

+2 (-1

i<k

kq, ’Yz,’Yj]/\"'/\’/Y\z‘/\"'/\’%/\"'/\’Yn)~

Proposition 10. The complex (6) is exact. Thus, it provides a locally free
resolution of CSY as a U(G)-module.

Corollary 11. We have

2.6 The Atiyah algebra

Let G be a Lie group, g its Lie algebra, and p: P — X a principal G-bundle
on Y. The Atiyah algebra Ap is the sheaf of Lie algebras on X’ whose sections
are G-invariant vector fields on P:

Ap = (pTp)%.
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The map «a = dp makes Ap into a transitive Lie algebroid of the form

0 —— Ad(P) Ap —2— Ty 0. (7)

Here, Ad(P) is the bundle of Lie algebras on X associated to P via the adjoint
representation.

If ¥ = U, is a covering in which P is trivialized, P|y, = U; x G, and
gij : U; NU; — Aut(g) are the transition functions, then Ap is glued out of
Aplu, = Ty, X g via the transition functions

(v,2) = (v, 30(dgi; - 93;') + Adg,, (2)). (®)

Example 12. Let G = GL,(C), so g = gl,.(C). A principal G-bundle P cor-
responds then to a rank r vector bundle F on Y. In this case, Ap will also be
denoted by Ag, and it has a well-known alternative description. It consists of
differential operators L : £ — FE such that:

1. L has order < 1.
2. The first order symbol of L (which is a priori a section of Ty, ® End(FE))
lies in the subsheaf 7y, = 7 ® 1.

2.7 Modules over Lie algebroids

We follow [17, §3] but use a more geometric language. Let G be a Lie algebroid
on Y. A G-module is a vector bundle M on X equipped with a Lie algebra
action (z,m) — xm of G on the sections that satisfies

1. the Leibniz rule
x(fm)_f('rm):(Lleoz(x)f)m? fEC%O,xEQ,mEM;

in particular, the assignment z — (m — z - m) defines a map G — A
that commutes with respective anchor maps
2. the map G — A is C¥-linear.

Example 13. For any G the trivial bundle (whose sheaf of sections is) C% is a
G-module with the G action given via the anchor map and the Lie derivations
of functions.

Example 14. An ideal in G is a sub-Lie algebroid G’ such that [G,G'] C G'.
Suppose that G’ is an ideal in G such that the restriction of the anchor map
to G’ is trivial. Then, G’ is a G-module via the adjoint action.

Any G-module has a structure of a sheaf of modules over the sheaf of
rings U(G).
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2.8 Cohomology of Lie algebroids

Let M be a G-module. The de Rham complex DR*(G, M) with coefficients
in M is defined by _ '
DR*(G, M) = Hom(A'G, M)
with the differential of [ : G* — M defined by the following modification of
():
i+1 _
Al(zy,... 2is1) = Z(fl)ij(l(xl, Ty i)
Jj=
+Z IR (lzj, xr), 21, Ty Ty oo Tig1).
i<k

Its cohomology sheaves will be denoted by _iie(g , M) and the corresponding
cohomology groups of the complex of global smooth sections of DR*(G, M)
by H{..(G, M). See [23, §7.1]. As before, it is easy to see that

Therefore,
—Lle(g M) = M;-J(g) (C5, M), Hﬁie(gvM) = EXti](g)(Cg‘o’M)'

Example 15. The trivial bundle C¥ is always a G-module, and for G = 75,
we have H{. (Tx,C¥) = H/(X,C).

2.9 The Hochschild—Serre spectral sequence and the transgression

Let
0—-G¢ —-G—-G"—>0 (9)

be an extension of Lie algebroids on X, so G’ is an ideal with zero anchor
in G. Note that G’ is then a bundle of Lie algebras. Let M be a G-module.
Then for every point « € X' the fiber M, is a module over the Lie algebra G/ .
Assume that for any i > 0 the Lie algebra cohomology spaces Hi, (G., i)
have finite dimension which is independent of i. Then the sheaves H: . (G', M)
are vector bundles on X with fiber H{, (G!, M,) at x € X. These vector
bundles have natural structures of G”-modules. In this case we have (a Lie
algebroid generalization of) the Hochshild—Serre spectral sequence with

qu Hﬁle(g// —Lle(g/ )) Hﬁ;q(g,/\/{) (10)

The construction is parallel to the classical (Lie algebra) case as in [13]. One
uses the short exact sequence (9) to produce, in a standard way, a filtration
on DR*(G, M). See [23, Section 7.4] for the treatment of the case §” = Ty,
which is the only case we will use in this paper.
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Example 16. Similarly to the classical case, one can use (10) (or elementary
considerations) to identify H7; (G, M) with the set of isomorphism classes of
central extensions of Lie algebroids

0—=M-—G—G—0.

Central extensions of this type with ¢ = Ty, M = C¥, and the G-action
on M being the standard one (by Lie derivations), were called in [17] Picard
Lie algebroids. The set of their isomorphism classes is thus identified with
H?,. (T, C$), which is the same as the topological (de Rham) cohomology
H?(X,C).

Fix n > 0 and assume that
HI(G M)=0, 0<j<n. (11)

In this case Ey" = E07 as well as By = B!, We obtain therefore the
transgression map

dpir: ngl = By = Hfie(g/aM)g” —
HENG" M) = By = BP0 (12)

We will use this map later in the paper. Without the assumption (11) we
have that Eg’fl is a subspace of Ey™ = HP% (G, M)9", namely the intersec-
tion of the kernels of ds, ..., d,. For convenience we will call elements of this

space transgressive elements of Egn Similarly, E;Lii Oisa quotient space of

EpthO = Hf;gl(g”,/\/lg/) by the union of images of da, ..., d,.

Example 17. Suppose that n = 2 and X' = pt, so (9) is a central extension
of Lie algebras and M is a G-module in the usual sense. Let v € Eg,z =
H?,.(G', M)9" be a G"-invariant class in H? and let

O—)MH&'HQ’HO

be a central extension representing . The class « is transgressive (i.e., an-
nihilated by dg) if and only if G’ can be made into a G-equivariant central
extension (as opposed to the fact that the class of the extension remains un-
changed under the G-action or, what is the same, under G”-action). Given
such an equivariant extension, one obtains a crossed module of Lie algebras
(i.e., a dg-Lie algebra situated in degrees (—1) and 0)

’g”// i) g,
with Ker(d) = M and Coker(9) = G”. As is well known (see, e.g., [21,
Example E.10.3]), such a crossed module represents an element in H3(G"”, M),
and this element is the lifting of d3(3). Different choices of equivariant struc-
ture on G/ correspond to the ambiguity of the values of d3 modulo the image
of dz. One can generalize this picture easily to the case of an arbitrary X.
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2.10 Reminder on gerbes

We follow the same conventions as in [19] and use [5] as the background
reference.

If B is a topological space and F is a sheaf of abelian groups on B, then
we can speak of F-gerbes (= gerbes with band F). Recall that such a gerbe
& is the following;:

1. A category &(U) given for all open U C B, the restriction functors ryy :
&(U) — &(V) given for any morphism V' C U and natural isomorphisms
of functors syyvw : rvw o ryy = ruw given for each W C V C U and
satisfying the transitivity conditions.

2. The structure of F|y-torsor (possibly empty) on each sheaf Homg () (x,y)
compatible with the ryy and such that the composition of morphisms is
bi-additive.

These data have to satisfy the local uniqueness and gluing properties, for
which we refer to [5].

By a sheaf of F-groupoids we will mean a sheaf of categories € on B (so
both Ob¢€ and Mor € are sheaves of sets) in which each sheaf Homg (2, y)
is either empty or is made into a sheaf of F|y-torsors so that the composition
is bi-additive. A sheaf € of F-groupoids is called locally connected if locally
on B all the Ob&(U) and Homey)(z,y) are nonempty.

Each sheaf of F-groupoids can be seen as a fibered category over B; in
fact, it is a prestack, see, e.g., [20]. Recall (see, e.g., [20] Lemma 2.2) that for
any prestack @ there is an associated stack ¢ . If ¢ is a locally connected
sheaf of F-groupoids, then ¢ is an F-gerbe.

As is well known (see, e.g., [5]), the set formed by F-gerbes up to equiva-
lence is identified with H2(B, F). The identification of the set of isomorphism
classes of Picard Lie algebroids in Example 16 can be seen as an infinitesimal
analogue of this fact. Given an F-gerbe &, we denote by [&] € H?(B,F)
its class. Given a sheaf € of F-groupoids, we denote by [€] the class of the
corresponding gerbe.

Let B be a C"°°-manifold. We will be particularly interested in Cg*-gerbes
on B. Recall that we have the following exponential sequence of sheaves on B:

eZvriw

02— CF —— CZ*—0. (13)
The corresponding coboundary map
8, H"(B,O¥*) — H"™Y(B,7) (14)

is an isomoprhism for n > 1, since C% is a soft sheaf. Thus [&] gives rise to
a class in H*(B,Z).

Let & be a CF*-gerbe. Recall [6] that a connective structure A on & is a
set of data that associates to each open U C B and each object € Ob&(U)
an 2};-torsor A(z) (whose sections can be thought of as “formal connections”
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on z) and for any local (iso)morphism ¢ : © — y over U an identification
of torsors g. : A(z) — A(y), satisfying the compatibility property plus the
following gauge condition: if © = y so g € C°°*(U) is an invertible function,
then ¢.(V) =V — g~'d(g).

A curving of a connective structure A is a rule K associating to any x
as above and any global object V € A(z) a 2-form K(V) € 02%(U) satisfy-
ing the compatibility with pullbacks, invariance under isomorphisms, as well
as the gauge condition K(V + ) = K(V) + da, a € 2Y(U). In this situa-
tion J.-L. Brylinski defined the 3-curvature of the connective structure and
curving, which is a closed 3-form S = Sx ;¢ € £23(B).

Example 18. Let G be a Lie group and
1-C*—>G—>G—1

a central extension of Lie groups. Let p : P — B be a principal G-bundle.
We then have the C¥*-gerbe Lift&(P), whose objects over U C B are liftings
of P|y to a principal G-bundle over U; compare [2]. Let Vp be a connection
on P. Then Lift&(P) has a connective structure A that to every lifting P of
P to a G-bundle associates the space of all connections on P extending Vp.
Further, let Ry € 22?(B) ® Ad(P) be the curvature of V. A choice of a lifting
of Ry to a form Ry € £22(B) ® Ad(P) gives a curving K on A. This curving
associates to any section V of A(ﬁ), i.e., to a connection on P extending V,
the 2-form Rg — év, where Rg is the curvature of V.

We will need the following result [6, Thm. 5.3.12].

Theorem 19. If & is a CF*-gerbe with a connective structure A and a curv-
ing K, then the class of Sa i in H*(B,C) is integral and is equal to the image
of 02|®] under the natural map from H*(B,Z) to H*(B,C).

3 Background on homology of differential operators

3.1 Conventions

Let A be an associative algebra over C. We denote by Hoch, (A) the Hochschild
complex of A with coefficients in A:

S AQARA—-ARA—- A
with the differential given by the formula
p—1

b(ao®- - -@ap) = Y (—1)'ag®- - -@a;iai11® - -Day+(—1)Papa0Ra1 @ - -Dap_1.
=0
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By HHl(A) we denote the homology of Hoche(A). As is well known,
HH,(A) = Tord®4™ (A, A). (15)

Put

T(ap®@ - ®ap) =(—1)Pa; ®@ - ®ap ® aop.
Let N =1+47+724--4+7" on Hoch, (A). The cyclic complex of A is defined
as the total complex

CCW(A)
= Tot, { -+ — Hochy (A) "= Hoch,(A) 2 Hoch, (4) = Hoch.(A)}. (16)

The cyclic homology HC,(A) is the homology of the complex CC,(A). We
recall the theorem relating the cyclic homology with the Lie algebra homology
of the algebra of matrices; see [21].

Theorem 20. H¢(gl(A)) = S*(HC._1(A))

Corollary 21. If HC;(A) =0 for j =0,...,p— 1, then H]Lie(g[(A)) =0 for
j=1,...,p, and Hg;fl(g[(A)) = HC,(A).

3.2 Homology of differential operators: algebro-geometric version

Let X be a smooth affine algebraic variety over C of dimension d, and let £
be an algebraic vector bundle on X. Then the Hochschild-Kostant-Rosenberg
theorem (together with Morita invariance of H H,) gives an identification

HHp(End(£)) = 2™(X),

where on the right we have the space of global regular m-forms on X. Fur-
thermore,

HC,,(End(€)) = 2™(X)/dQ™ Y (X)eH™ *(X,C)eH™ *(X,C)& -,

where on the right we have the usual topological (de Rham) cohomology; see
[21, Th. 3.4.12]. Let D(E) be the ring of global differential operators from &
to €. Then the results of [7], [29] imply

HH,,(D(€)) = H*~™(X,C).

Furthermore,
HC,,(D(€)) = P H* (X, C).
i>0
We recall that the approach of [7], [29] is to use the filtration by the order
of differential operators and realize the E;-term of the corresponding spectral
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sequence for HH as the complex of forms on the cotangent bundle with the
differential adjoint to the de Rham differential by means of the symplectic
form. The spectral sequence is then seen to degenerate at Fo.

Let us note the particular case in which X = A% and E = O, is the
trivial bundle of rank 1. Then D(E) = Wy is the Weyl algebra with generators
r;,0;, 1 =1,...,d, and relations

[zi,2;] = [0:,0;] =0, [0i,x;] =i - 1.
The above results imply that
HH;(Wy)=0 if i+#2d, HHy3(Wq) =C, (17)
and

HCZ(Wd) =C,i1—2d € QZZ(), HCZ(Wd) =0, Z*Qd% QZZ().

3.3 The C*° version

Let X' be an oriented C°°-manifold of dimension d and let E be a smooth
complex vector bundle on X. We have then the algebras End(E), D(E) of
smooth endomorphisms and differential operators on E. Following [29] we
present the analogues of the results cited in Section 3.2 for these algebras.
These rings have natural Fréchet topologies. As pointed out in [29], to get
reasonable results, all tensor products occurring in the Hochschild and cyclic
complexes of the above algebras should be taken in the category of topological
vector spaces, i.e., be completed. In plain terms, this means that End(E)®?
should be understood as the ring of endomorphisms of the vector bundle E¥?
on the p-fold Cartesian product XP and similarly for differential operators.
Under these conventions, we have

HH,(D(E)) = H*""™(X,C), (18)
HC,,(D(E)) = @ H* (5, 0), (19)
i>0

where on the right we have the topological cohomology.

Remark 22. The Lie algebra cochain complexes of D(E) and of glyD(E) =
D(E®C™) involve exterior products of these algebras over C. If we understand
these products in the completed sense as above (compare also with Fuks [13]),
then the analogue of Theorem 20 holds, and we have the following.

Corollary 23. Let X be a compact, oriented C*° manifold of dimension d.
Then, for N > 0 we have

HMegIyD(E) =0, 0<i<d+1,
Hi5elyD(E) = C.
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3.4 The formal series version

Let -
Wy =Wy ®(C[xl,m,xd] (C[[$17 cee awdH

be the algebra of differential operators whose coefficients are formal power
series. Similarly to the above, we consider the Hochschild and cyclic complexes
of Wy using the adic topology on C[[z1, ..., z4]] and taking completions. Thus
/Wf’p is understood as the ring of differential operators whose coefficients are
power series in p groups of d variables. With this understanding, we have the
following analogue of (17):

HHyq(Wy) =C, HH;(Wy) =0, i#2d.

For the proof, see [12]. One can also apply the spectral sequence argument of
[7] and [29] and then use the Poincaré lemma on the (contangent bundle to
the) formal disk.

Our next step is to consider such formal completions simultaneously at all
points of a given C'*°-manifold X. So, let X, E be as above. Let H/oalp(D(E))
be the completion of D(EX¥®+1) (differential operators in the bundle EX¥®+1)
on XPt1) along the diagonal X C XP*!. This is a sheaf on X.

Then the Hochschild differential extends to }Toah(D(E)), making it into
a complex, and we denote by HH, (D(E)) its homology. Similarly, we define
the completed cyclic complex CC, (D(E)) by the procedure identical to (16)
and denote its homology by HC, (D(E)). Thus, HH, (D(E)) and cc. (D(E))
are sheaves on X.

Proposition 24. We have ﬁfp(D(E)) = Cyx (constant sheaf) for p = 2d
and HH,(D(E)) =0 for p # 2d.

Proof. Consider the case in which X is an open contractible domain in R?
and ¥ is trivial. Let us prove that in this case the complex of global sections
of HH,(D(E)) is exact everywhere except degree 2d, where the cohomol-
ogy is isomorphic to C. (This is the standard Hochschild-Kostant—Rosenberg
theorem in the context of completed Hochschild complexes).

We start with the case of }TOE. (C) defined, as before, using the comple-
tion of the functions on X**! along the diagonal. Recall the interpretation of
HH as Tor, see (15). Assume for a moment that X' is the affine space viewed
as an affine algebraic variety. Choose the standard Koszul resolution of C[X]
over C[X x X]. We see that

HH,(C[E]) = 2°(5),

and the same will hold if we replace C[X] by a matrix algebra (i.e., take E of
higher rank).
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Now let us get back to the C'°° case. There is a small difference, namely
that we are using completed tensor products, and therefore the standard ar-
gument of comparing two projective resolutions is not quite applicable. But
if we follow this standard argument in the algebraic case, we see that it gives
the embedding of complexes i : 2°(X) — Hoche(C[X]), a projection j :
Hoche (C[X]) — £2°(X), and a homotopy s : Hoche (C[X]) — Hoche1(C[X])
such that ji = 1, ij — 1 = sd 4 ds. It is easy to see that the maps ¢, j, and
s extend from C[X] to C*°(X) and from the algebraic Hochschild complex to
the completed one. We conclude that

HH.(C™(%)) = 2°(9),

and the same will hold if we replace C[X] by a matrix algebra.
Next, we replace C5Y by the sheaf of commutative algebras

A= S*(Tx)

(polynomial functions on the cotangent bundle) and define Hoch, (A) using
the completions of sheaves of sections of A2®+1) on XP+1 along the diagonals.
The same argument will apply, so we conclude that

HHo(A) = p (2. 5), (20)

where p : T*X — X is the projection. Again, a similar statement will hold for
matrices.
Finally, we use the approach of [7], [29] and consider the spectral sequence

for ﬁj\'{.(D(E)) associated to the filtration by degree of operators. We get
the Ej-term to be (20) with the differential being the adjoint of the de Rham
differential on 7*X. Since we assumed X to be a contractible domain in the
flat space, we conclude that the Fs-term reduces to one space C. Moreover,
we see that the class of the cycle

1® Alts,,(0p, @ @0y, @11 @+ @ 2q)

is a generator of I H 24(D(E)). We will call it the canonical generator. Note
also that the above argument works not only for the ring of algebraic or
smooth (or holomorphic) differential operators but also for formal differential
operators, i.e., differential operators whose coefficients are formal power series.

Now consider a diffeomorphism from one contractible domain in the flat
space to another. It induces an isomorphism of the rings of differential opera-
tors. It is enough to show that this isomorphism sends the canonical generator
to the canonical generator. Take a point of J'. We have seen that the homomor-
phism that associates to a function its jet at this point induces an isomorphism
on the Hochschild homology. Furthermore, any shift in the affine space sends
the canonical generator to itself. We are reduced to proving that any formal
coordinate change induces an automorphism of the ring of formal differen-
tial operators that sends the canonical generator to itself. Since a reflection
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preserves the canonical generator, we may assume that our formal coordinate
change is oriented. Therefore it may be included into a one-parameter group
of formal coordinate changes. We are reduced to proving that if X is a formal
vector field then the corresponding derivation of the ring of formal differential
operators is trivial on the Hochschild homology. But such a derivation is in-
ner, and any inner derivation acts on the Hochschild homology trivially (the
operator ¢y from (41) is a contracting homotopy).

More generally, any change of the trivialization of the vector bundle F in-
duces an automorphism of HH .(D(E)) that sends the fundamental generator
to itself. -

We have proven that the only sheaf of cohomology of HH,.(D(E)) in the
case that X' is a contractible domain in a flat space (and thus in the general
case) is Cy.. O

Furthermore, we need a relative version of the above statements. Let
q:X — B

be a submersion (smooth fibration) of C'°°-manifolds, whose fibers are of di-
mension d and are oriented. Let F be a C*°-bundle on X, as above. We then
have the subring

Dx/p(E) C D(E),

consisting of differential operators that are ¢~!C%-linear, i.e., act along the
fibers only.
Let 257" ¢ X741 be the (p+1)-fold fiber product of X over B. We denote

by ES®*Y the restriction of ER(F+D to X2+
Let Hochy,(Ds,p(£)) denote the completion of D2”+1/B(E§(p+1)) along
B

the diagonal. Then the Hochschild differential extends to I%E,,(DE /B(E)).

We also define the completed cyclic complex ccC, (Dx/p(E)) by implement-
ing (16).

Theorem 25.

1. The complex I%Hlp(DE/B(E)) is acyclic in degrees other than 2d, and its
2d-th cohomology sheaf is isomorphic to ¢~*C%. In other words, we have
an isomorphism in the derived category of sheaves of ¢~ C¥ -modules on X

pip : Hochy (D) 5(E)) — ¢~ C53[2d).

2. We have Hi(éa.(Dg/B(E)) =0 unlessi =—2d+k, k € Zy, and
H"H(CC (D) p(B) = g CF .

Proof. Similar to that of Proposition 24. a

Corollary 26. We have a morphism (no longer an isomorphism) in the de-
rived category -
vp : CCe(Dxyp(E)) — ¢~ CF[2d].
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4 Characteristic classes from Lie algebra cohomology

4.1 The finite-dimensional case

Let G be a Lie group with Lie algebra g. We denote by C*(g) the cochain
complex of g with trivial coefficients C and by H"(g) its nth cohomology
space.

Let v € H™(g) be a cohomology class. We want to associate (under certain
conditions) to v a characteristic class of principal G-bundles. In other words,
we want to produce, for each C*°-manifold B and each smooth principal G-
bundle P on B, a topological (de Rham) cohomology class

cy(P) € H""(B) = H""Y(B,C)

(note the shift of degree by 1).

Indeed, let a principal G-bundle p : P — B be given and let Ap be its
Atiyah algebra. We then have the extension of Lie algebroids (7) on B and
the corresponding Hochschild—Serre spectral sequence (10), which in our case
has the form

Ef = HY, (Tp, HY, (A(P),CF)) = HEE/(Ap,CF). (21)

This sequence was considered in [23, Thm. 7.4.19]. Note that H{. (Ad(P),C%)
is the cohomology of the cochain complex of Ad(P) as a Lie algebra over O,
i.e., of the complex of bundles formed by the duals of the fiberwise exterior
products of fibers of Ad(P). We will also use the notation C*(Ad(P),p) for
this complex.

Lemma 27. For any q > 0 the bundle H{; (Ad(P),C¥) = HI(Ad(P),p)
on B formed by the Lie algebra cohomology spaces of the fibers of Ad(P) is
canonically identified with the trivial bundle with fiber H1(g).

Proof. This follows from the fact adjoint action of G on g induces the trivial
action on H(g). |

Corollary 28. The Es-term of the spectral sequence (21) is given by EY? =
HP(B) ® Hi(g). In particular, the assignment v — 1 ® ~ defines a map
H™(g) — E§".

Assume now that there exists n > 0 such that the Lie algebra g satisfies
the acyclicity condition

Hi(g) =0, 0<i<n. (22)

Then we are in the situation of (11), so we have the transgression map (12),
which in our case has the form

dus1 - H'(g) — H™'(B), (23)
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and we define
e(P) = dyy1 (18 7). (24)

Without the assumption (22) we have that c,(P) is defined only if 1 ® v is
transgressive (i.e., annihilated by da, ..., d, and takes values not in H"*!(B)
but in the quotient of H"*1(B) by the images of da, ..., d,).

If the latter is true for a cohomology class -y, we say that v is transgressive.

Example 29. Let n = 1. Then the condition (22) is trivially satisfied. A
class v is just a trace functional y : g — C. The class ¢, (P) € H*(B) can be
obtained by choosing a connection V in P with curvature R € 2% ® g and
taking the class of the closed 2-form y(R) € 2%. Alternatively, one can use
v to produce a trace functional vp : Ad(P) — C%¥ and then use yp to push
forward the extension (7) to a central extension of Lie algebroids

0—-CF -G—T5—0.

As is well known (see Section 2.7) the set of isomorphism classes of such
central extensions is identified with HZ, (75,C%) = H*(B,C).

Example 30. Let n = 2, so v is represented by a central extension
0—-C—-g—g—0. (25)

A sufficient condition for v to be basic for any P is that g can be made into
a G-equivariant central extension; compare Example 17. Suppose that such
an equivariant structure has been chosen. Then the class ¢, (P) € H?(B,C)

can be constructed as follows. We have the representation Ad of G on g, and
therefore an extension of associated vector bundles on B:

0— C¥ — Ad(P) — Ad(P) — 0.

Choose a connection V in P. Then we have associated linear connections
Vad in Ad(P) and V5 in Ad(P). We also have the curvature Ry € 2*(B)®

Ad(P). Choose a lifting Ry of Ry to 2?(B)® Ka(P), and take
S =V (Ry) € 2°(B) @ Ad(P).

By the Bianchi identity, V(Rv) = 0, and so S lies in the tensor product of
23(B) and the subbundle C% C Ad(P)), i.e., it is a scalar differential form
S € 23(B). Furthermore, it is clear that S is a closed 3-form. The class ¢, (P)
is then the class of the form S. A different choice of an equivariant structure
on g leads to a change of the class of S by an element from the image of ds.

Example 31. Let G = GLy(C), so g = glx(C). Then H*(g) is the exterior
algebra on generators vy, ..., vx with v; € H?~!(g). A principal G-bundle P
on B is the same as a rank-N vector bundle F. In this case, each 1 ® ; is
transgressive, and ¢, (P) is the image of ¢;(E) € H*(B) under the natural

projection H?(B) — ngfrl. Here ¢;(E) is the usual ith Chern class of E.
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4.2 Other interpretations

Here we collect, for future use, some more or less straightforward reformula-
tions of the construction of ¢ (P).

4.2.1 The Chern—Weil picture

If we choose a connection V in P, then the sequence (7) splits (such splitting
is in fact the definition of a connection following Atiyah). So we can identify

2°(P)¢ =DR*(Ap) = 2% ® C*(Ad(P) ). (26)

Let R be the curvature of V. Then the differential in the RHS of (26) has the
form 0 + V + ig, where 0 is the differential in C*(g) and

iR 25®C%(g) — 257 0 C*(g)

is the contraction with R. This leads to a definition of ¢,(P) in terms of
differential forms. Namely, we have an injective map of complexes followed by
a surjective one:

2 = 252 CO(g) S 2 @ C(g) - 2% @ C*(g).

Here, ¢ is identified with the projection to grl., where F is the filtration from
(21). If our class « is basic, then it lifts uniquely to a class in H™(Coker(¢)),
s0 cy(P) is the image of that lifted class under the coboundary map corre-
sponding to the short exact sequence

0 0% % 2% @ C*(g) — Coker(¢) — 0.

4.2.2 The differential graded picture

Let 2 denote the cone of the map i : Ad(P) — Ap viewed as a differential
graded Lie algebroid. Thus Ap is put in degree 0, and Ad(P) in degree (—1).
The anchor map « induces the quasi-isomorphism of Lie algebroids 24 — 7p,
hence the map of respective universal enveloping (differential graded) algebras
U®) — U(7p) = Dp (the latter concentrated in degree zero), which is a
quasi-isomorphism. Define the map

DR*(Ap)/DR*(T5) > DR*H! ()

as follows. For X € Ad(P), denote by X the element (X,0) in the cone 2 of
i; for Y € Ap, denote the element (0,Y") simply by Y. Given a p-cochain w
from DR*(Ap), define the cochain dw by

Sw(Xy,. . X Y, Y =w(X,, Y5, )

) ==q"

for ¢ = 1 and zero for q # 1.
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It is easy to see that the sequence
DR*(Ap)/DR*(T5) > DR*TH(2) — DR*T!(75) = 24!
represents the boundary map
H*(DR*(Ap)/DR*(Tp)) — H*"'(DR*(Tp)) = H**'(B).  (27)

A basic class v as above defines an n-dimensional cohomology class 7 of
DR*(Ap)/DR*(7g), and ¢, (P) is the image of 4 under (27).

4.2.3 The D-module picture
Consider the short exact sequence
0 — C=Y(Ad(P),5) — C*(Ad(P),5) = CF — 0 (28)

coming from the fact that CF = CY(Ad(P),p) is the 0-th term of the relative
cochain complex. If 2 is as in (b), then all three complexes in (28) are graded
U(20)-modules in the following way. The elements Y = (0,Y),Y € A, act via
the adjoint action. The element X = (X,0), X € Ad(P), acts by contraction,
i.e., by substitution of X into a cochain. The action of U () on C'¥ is via the
quasi-isomorphism with Dp.

Note that (28) splits as a short exact sequence of complexes of vector
bundles but not of U(2)-modules. We will use the corresponding connecting
morphism

6 CF — CZ1(Ad(P)p)[1]

in D(U(2)), the derived category of differential graded U (2)-modules.

Since 2 is quasi-isomorphic to 7p, the DG algebra U(2l) is quasi-
isomorphic to Dp, and the category D(U(2)) is equivalent to D(Dpg). Now
recall (Corollary 11) that

H™(B; C) = Hompp,,)(C7’, CF [m]).

On the other hand, suppose that g is such that H%(g) = 0 for 0 < i < n. Then
H'(Ad(P),p) = H'(g) ® C =0 for 0 < i < n as well. In other words, the
complex C=!(Ad(P),p) is acyclic in degrees < n, and therefore each class ¢ in
its n-th cohomology (which is isomorphic to H"(g) @ C%’) defines a morphism
in the derived category of complexes of vector bundles

£: CZHAA(P) ) p) — CFn].

Furthermore, a “constant” class &, i.e., a class of the form v ® 1, v € H"(g),
defines in fact a morphism in the category D(U(2()) ~ D(Dp). Composing
v ® 1 with §, we get a morphism

Cy = Cgln+1], (29)

i.e., a class in H"*1(B;C).
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Proposition 32. The class in H""1(B;C) corresponding to (29) is equal to
ey (P).

Proof. This follows directly from the definitions (in fact, we could take (29)
as the definition of ¢4 (P)). Indeed, the morphism in the derived category
from the cohomology of a quotient complex such as C¥ to the homology of
a subcomplex such as CZ1(Ad(P) /B) acyclic up to degree n is precisely the
differential d, 11 in the corresponding spectral sequence. O

4.3 Infinite-dimensional groups

Slightly reformulating the approach of K.-T. Chen [8], we introduce the fol-
lowing definition.

Definition 33. A differentiable space is an ind-object in the category of C'*°-
manifolds.

For background on ind-objects, see [10]. Thus a differentiable space M is a
formal limit “lim”, e 4 M, of (finite-dimensional) C'*°-manifolds. In particular,

M defines a functor
S M(S)=C®(S, M) =1limC*>(S, M,) (30)

on such manifolds and can in fact be identified with this functor. In practice,
however, we will identify M with the set M (pt) = lim M, with (30) providing

an additional structure on this set (description of what it means for an element
of this set to vary in a smooth family).
For a differential space M we define (compare [8]) the space of p-forms (in
particular, of C*°-functions) on M by
QP (M) = lim 2P (M,,).

—

For a point m € M(pt) the tangent space T,, M is defined by

T, M = lim T,S |

where the limit is taken over C*-maps (5, s) — (M, m).

A differentiable group G is a group object in the category of differentiable
spaces. For such a group the space g = T.G is a Lie algebra in the standard
way.

Example 34 (Groups of diffeomorphisms). Let Xy be a compact ori-
ented C°°-manifold of dimension d. Then we have a differentiable group
G = Diffeo(Xy) of orientation-preserving diffeomorphisms. The corresponding
functor (30) is as follows. A smooth map S — Diffeo(X)y) is a diffeomorphism
of S x Xy preserving the projection to S. The Lie algebra of this group is
Vect(Xy), the algebra of C*° vector fields.
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Example 35 (Gauge groups). Let X be as before and let Ey be a C*° com-
plex vector bundle on ¥y. Then we have the differentiable group Aut(Ey) of
C*-automorphisms of Fy (the differentiable structure defined as in Example
34). Its Lie algebra is End(Ejp).

Example 36 (Atiyah groups). Let Xy, Ey be as before. The Atiyah group
AT (X, Ep) consists of pairs (¢, f), where ¢ is an orientation-preserving dif-
feomorphism of Xy, and f : ¢*Ey — Ey is an isomorphism of vector bundles.
Thus we have an extension of differentiable groups:

1— Aut(Eo) — AT(Z(),E()) — Diffeo(ZO) — 1.

The Lie algebra of AT (X, Eo) is Ag,(X0), the algebra of global C*°-sections
of the Atiyah Lie algebroid.

More generally, one can replace the vector bundle in Examples 35, 36 by
a principal bundle with a Lie group of arbitrary structure. In this paper we
will be interested in the vector bundle case and will concentrate on Example
36 as the most general.

Let us now describe a class of principal bundles with structure groups as
in Example 36. Suppose that ¢ : X' — B is a smooth fibration with compact
oriented fibers of dimension d. Suppose that B is connected. Then all the fibers
Xy = q 1(b),b € B, are diffeomorphic to each other. Let Xy be one such fiber.
Futher, let E be a smooth C-vector bundle on X and Ep = E|s5,. Then,
for different b the pairs (X, E}) are isomorphic, in particular, isomorphic to
(Xo, Ep). Let G = AT (X, Ep). We have the principal G-bundle

p:P=P(Y/B,E)— B (31)

whose fiber P, = p~1(b), b € B, consists of isomorphisms of pairs (Xy, Eo) —
(Xp, Ep).

For any differentiable G-bundle P over a finite-dimensional base B the
Atiyah algebra Ap can be defined by (8). In the example where G =
AT (X, Ey) and P = P(X /B, E), this gives

Apz/B.E) = ¢-AE
(the sheaf-theoretic direct image of the Atiyah algebra of FE).

4.4 The first Chern class

Let ¢ : ¥ — B and FE be as before, so that we have a principal bundle
P = P(¥/B,E) — B with structure group G = AT (X, Ep). Since the cor-
responding Lie algebra g = Ag, (X)) consists of global sections of the Atiyah
Lie algebroid of X, we have the embeddings

g — D(Eo) — gl(D(Ep)).

By Corollary 23, gl(D(Ep)) has a unique continuous (in the Fréchet topology)
cohomology class ¢ in degree d + 1. We denote by y the restriction of ¢ to g.
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Proposition 37.

1. There exists a Lie algebroid
0 — ¢.(8l(Ds/5(E))) — As/pp — Tp — 0

and a morphism (embedding) of Lie algebroids Ap — As/p g that re-
stricts to the embedding g — gl(D(Ey)).
2. The class 1 @ v is transgressive, so dgi2(1 ®@ ) is defined.

Proof. The construction of Ay, g is given in Section 4.5 below.

The fibers of Ker(a) are Lie algebras isomorphic to gl(Dx, g,) via an iso-
morphism defined uniquely up to an inner automorphism and thus satisfy the
acyclicity condition (22) with n = d+ 1. Therefore the class ¢ is transgressive.

The Hochschild-Serre spectral sequence for Ay, r maps into the analo-
gous spectral sequence for Ap. Since v is the restriction of ¢, the naturality
of the Hochschild—Serre spectral sequence implies that 7 is transgressive. 0O

Definition 38. The first Chern class C;(qE) is defined by
C1(¢E) == dgi2(1®~) € H*?(B,C).

The class C1 (g« E) will be the main object of study in the rest of the paper.

4.5 Construction of Ax/p g

We start with the Atiyah Lie algebroid on X
0 — End(E) > Ap % Ts — 0.

Let U(Ag), g denote the centralizer of ¢~ 'CF in U(Ag). Let FLU(Ag) =
{alla,q7'C¥] C ¢~ 'C¥}. Then, F1U(Ag) is a Lie algebra under the com-
mutator, U(Ag),p is a Lie ideal in F1U(Ag), and there is an exact sequence

OHU(.AE)/B%FlU(AE)Hq_lTBHO (32)

exhibiting F1U(Ag) as a transitive ¢~ C%-algebroid.

The inclusion Ag — Ds(E) induces the surjective map U(Ag)/;p —
Ds;/p,r with kernel being the ideal generated by the relation that identi-
fies 1 € C% C U(Ag)/p with 1 € Endoo (E) C U(Ag),p- The pushout of
the exact sequence (32) by the map U(Ag) — Dx(FE) gives the transitive Lie
algebroid (the middle term in the exact sequence)

0—Ds/pr— 1Ds g — g T — 0. (33)

Replacing F by its tensor product by the trivial bundle of rank r in the
above example, (33) can be rewritten as

0— g[r(DZ/B,E) — Flg[r('Dg’E) — qilTB — 0.
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Taking the limit over inclusions gl,, — gl,,;, we obtain a ¢~ *Cg-algebroid
0—gl(Ps/pp) — Age — ¢ 'Tp — 0. (34)

Let A, g denote the cone of the inclusion gl(Dx,p ) — Agr. There are
quasi-isomorphisms

g5 — q_lTB’ Uq*legc (g, ) — q_1DB~

Taking the direct image of (34) under ¢ and pulling back by the
canonical map 73 — q.q 7, we get the following transitivity (since
R'm,gl,(Dx/p,g) = 0) Lie algebroid on B:

0—-6G—As/pe—T —0,

where G = ¢.9l(Dx/p, g), as we wanted. Let Ay, p i denote the differential
graded Lie algebroid on B equal to the cone of the inclusion G — Ay, p £

For any Lie algebra bh, we denote by Ci(h) the positive part of the
Chevalley-Eilenberg complex, i.e. ©,~¢A”h with the Chevalley-Eilenberg dif-
ferential. There is an exact sequence of complexes

0 — C4(h) — Ca(h) — Co(h) — 0.
The exact sequence
0— C1(G) = Ca(G) — Co(G) = 0

is, in fact, an exact sequence of differential graded U(y/p)-modules (this is
a construction dual to (28)). Note that Cy(G) = CF. Let

denote the correponding morphism in the derived category of differential
graded modules over the universal enveloping (differential graded) algebra
URs/B)-

4.6 Smooth cohomology and characteristic classes

A more traditional way of getting characteristic classes of principal G-bundles
is by using group cohomology classes of G. Let us present a framework that
we will then compare with the Lie algebra framework above.

Let S be a topological space and F a sheaf of abelian groups on S. We de-
note by @°(F) the standard Godement resolution of F by flabby sheaves. Thus
@ (F) = DS(F) is the sheaf of (possibly discontinuous) sections of the (étale
space associated to) F, and " (F) = DS(#"(F)). In this and the next
sections we write RI'(S, F) for the complex of global sections I'(S, §*(F)).

Let G be a differentiable group and B,G its classifying space. Thus B,G =
(BrnG)n>o0 is a simplicial object in the category of differentiable spaces with
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B,G = G", and the face and degeneracy maps are given by the standard
formulas. We define the smooth cohomology of G with coefficients in C* to be

H? (G,C*) = H"(B,G, C>).

Here the hypercohomology on the right is defined as the cohomology of the
double complex whose rows are the complexes RI'(B,G, %O*G) and the differ-
ential between the neighboring slices coming from the simplicial structure on
BeG. This is a version of the Segal cohomology theory for topological groups
[13, p. 305]. In particular, we have a spectral sequence

HY(B,G,C*) = H}"(G,C*).

We will use some other natural (complexes of) sheaves on BoG to get natural
cohomology theories for G, for example, the Deligne cohomology

H, (G, Zp(p)) = H'(BeG, Zp(p)) ,

where for any differentiable space M we set
Zp(p) = {ZMHQ%HQ;T_)..._)ng} ,

with Z,, placed in degree zero; compare [6].
Let B be a C*-manifold and & = {U,};cr an open covering of B. We
denote by Nl the simplicial nerve of U, i.e., the simplicial manifold with

Nu= [ Ui,n---nU;,.

10,--+in

For any sheaf F on B there is a natural isomorphism
H'(NoU, Fs) = H' (B, F) ,

where F, is the natural sheaf on N/ whose n-th component is the sheaf on
N, U formed by the restrictions of F.

Let p : P — B be a principal G-bundle and suppose that P is trivial on
each U;. Then a collection of trivializations (i.e., sections) 7 = (7; : U; — P)
gives a morphism of simplicial differentiable spaces

Ur : NoU — BoG.
Given a class § € H? (G, C*), we define the characteristic class
¢5(P) = ug(B) € H"(B,CF™). (36)

Similarly, one can define characteristic classes corresponding to group coho-
mology classes with values in the Deligne cohomology.
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4.7 Integrality and integrability

Let G be as in Section 4.6, and let g be the Lie algebra of G. We construct
the “derivative” map

o0: H"

sm

(Ga C*) - Hﬁie (gv (C) (37)

To do this, we first observe that for any topological space S, any sheaf of
abelian groups F on S, and any point sg € S we have a natural morphism of

complexes
€so : RO(S, F) — Fsy,

where Fj, is the stalk of F at sg. To construct €, , we first project RI'(S, F) =
I(S,®*(F)) to its O-th term I'(S,P°(F)), which, by definition, is the space
of all sections ¢ = (s +— ¢;) of the étale space of F. Thus any such ¢ is a rule
that to any point s € § associates an element of F,. We define €,, by further
mapping any ¢ as above to ¢g, € Fyg,.

We now specialize to S = B,,G = G™, to s9 = e, := (1,...,1), and to
F = CZ*. We get a morphism from the double complex

{RE(BnG, CF, 6) tm=>0 (38)

to the complex of stalks

* 00 * 00 *
C* — Gl CGXG,ez .

Thus, an n-cocycle in (38) gives a germ of a smooth function
gzg(glv,gﬂ)Gn - C*

satisfying the group cocycle equation (on a neighborhood of e,41 in G**1).
Similarly to [13, p. 293], one associates to £ a Lie algebra cocycle 9(§) €
C"(g) by

(&) (x1,...,xpn) = %Alt log&(exp(txy), . .., exp(tey))

t=0

A Lie algebra cohomology class v € H™(g,C) will be called integrable if
it lies in the image of the map O from (37). Consider the exponential exact
sequence (13) of sheaves on B and its coboundary map d, from (14). The
intuition with determinantal d-gerbes (1.4) suggests the following.

Conjecture 39.

1. The class v € H Y (Ag, (X)) constructed in Section 4.4 is integrable
and comes from a natural class 8 € HZIL(AT (X, Eg), C*) (the “higher
determinantal class”).
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2. Furthermore, for any ¢ : ¥ — B and FE as above, the class C(q.E) =
c,(P) € H*%(B,C) is integral and is the image of the following class in
the integral cohomology:

da+1(cs(P)) € HTT(B, 7).

This conjecture holds for d = 1 (i.e., for the case of a circle fibration).
We will verify this in Section 6. In general, the second statement seems to
follow from the first by virtue of some compatibility result between group
cohomology classes with coefficients in C* and Lie algebra cohomology classes
with coefficients in C. Here we present a d = 1 version of such a result.

Let G be a differentiable group with Lie algebra g. Let 3 € HZ (G, C¥)
and let v = 9(8) € HE,.(g,C) be the derivative of 3. Suppose f3 is represented
by an extension of differentiable groups

1—>(C*—>é—>G—>17

whose Lie algebra is the extension (25) representing v. Let p : P — B be a
principal G-bundle over a C*°-manifold B. Then we have the characteristic
class ¢, (P) € H3(B,C) (the lifting to H? is well-defined because g is a G-

module via the adjoint representation of é, see Example 30). On the other
hand, 3 gives rise to a class c¢g(P) € H?(B,C%*); see (36).

Proposition 40. In the above situation, c,(P) € H3(B,C) is the image of
82(cs(P)) € H3(B,Z) under the natural homomorphism from integral to com-
plex cohomology.

Proof. This follows from Theorem 19 using Example 30 and an obvious gen-
eralization of Example 18 to differentiable groups. O

Conjecture 41. We further conjecture the existence of the natural “deloopings”
of the higher Chern classes as well, i.e., the existence of classes

By € HE2M(AT(20, Eo), Zp(m)), m>1, (39)
which then give characteristic classes in families:

Con(q+E) € H™**™(B, Zp(m)). (40)

5 The real Riemann—Roch

Here is the main result of the present paper.

Theorem 42. Let g : X — B be a C*° fibration with compact oriented fibers
of dimension d. Let E be a complex C* vector bundle on X. Then

Ci(g:E) = / [Ch(E) -Td(Ts/p) € H™**(B,C).
X/B 2d+2

The proof consists of several steps.
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5.1 A D-module interpretation of C; using Asx/p.r
We use the notation of Section 4.4 and introduce the following abbreviations:
G = q.(al(Dx/p(E))),
which is a bundle of infinite-dimensional Lie algebras on B,
A=Ay kB,
which is a DG Lie algebroid on X quasi-isomorphic to ¢~ 73,
UA=Us10x(Ug,E)

which is a sheaf of DG-algebras on X quasi-isomorphic to ¢~ 'Dp.

Now, U acts on Cy(gl(Dx/p,r))p. Furthermore, a similar algebra acts
on the Hochschild and cyclic complexes of Dy, 5 . Let g be the Lie algebroid
defined exactly in the same way as 2 but without tensoring by gl. In the same
spirit as in Section 4.2.3, elements Y = (0,Y),Y € A, g, act via the adjoint
action. Elements of the form X = (X, 0) act via the shuffle multiplication

P
tx(ao ® - Qap) ZZ(—l)ia0®~-~®ai®X®ai+1®-~-®ap. (41)
i=0

Denoting by b, B the standard operators on Hochschild chains, see [21], we
have
[b,.x] =ad(X), [B,ux]=0.

Therefore Uy acts on both the Hochschild and the cyclic complexes. This
action extends to the completions described in Section 3.4. Furthermore, the
morphisms pup,vp from Theorem 25 and Corollary 26 are in fact morphisms
in D(UR). Indeed, there is a spectral sequence

EYY = Ext?_,,, (H(Hochs(Ds,5(E))),C5) =

Extfy! ((Hochs (Dyy(E)), CF), (42)

71DB (

and similarly for the cyclic complex.

The action of ¢~!Dp on ﬂq(@u(DE/B(E))) is induced on the coho-
mology by the action of U2 on Hochs (Dx/p(E)). The map up defines an
element of EY?, and E}? = 0 for ¢ < d, so up gives rise to a well-defined class
in Ext? on the RHS of (42). Similarly for vp.

We would like to compare the Lie algebra chain complex to the cyclic com-
plex as modules over the algebras above. Roughly speaking, this comparison
involves the embedding of 2y into 2 induced by the embedding of differential
operators into matrix-valued differential operators as diagonal matrices all of
whose diagonal entries are the same. Unfortunately, these operators are not
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finite and therefore do not lie in gl. This causes a minor technical difficulty
that we are going to address next.
Let

C(9(Dsy/5(E)) 5 2 CCa(Dsy/5(E))p 1]
be the standard map from the Lie algebra chain complex to the cyclic complex;
see [21, (10.2.3)]. Observe that this map factors into the composition

Cy(8l(Dx/5(E) 5 25 (C1 (D) 5(E)))aic) = CCo(Dsy5(E))51]

(the complex in the middle is the complex of coinvariants). For each p the
coinvariants stabilize: the projection

Projy

(Cp(8ln(Dx/B(E)))B) gty ) — (Cp(gl(DPx/5(E)))B)ai(c)

is an isomorphism for N > p. The DG Lie algebroid 2y acts on the complex of
gl-coinvariants via the diagonal embedding of Dyx;/g(E) into gly(Dyx,p(E))
for N big enough; this action is independent of N.

Let

a: (Cy(sl(Dxyp(E)))B)ac) — ¢ ' CF[2d]
denote the composition
(C4(@UDx/5(E)))5)gic) 2> CC(Dsyp(E)) 5[] —
CCu(Dsp(E)p[1] 22 g 1e2d + 1) (43)

It is checked directly that § commutes with the operators tx, so it is
Up-invariant. Therefore, all maps in (43) and the map « are morphisms in
D(Uy).

Let us now take the direct image and define the morphism

[ ai(c@ulue — CFld
z/B
as the composition

(C+(9)B)gic) = 4+ (C+8l(Ds/5(E))B)gi(c) —
fZ/B

Rq.(C+ol(Ds/5(E))B)gic) — Rawq™ 'CF[2d + 1] == CF[d + 1].

Here the last map is the integration over the relative (topological) fundamental
class of ¥/ B. Consider the composition

Sx/B fE/B‘l

Cy — (C+(9)B)ai)[l] — CFld+2], (44)

where 5, is as in (35). Since both maps in (44) are morphisms in D(Dp),
the composition (denote it by C) is an element

C € Ext5?(CF, CF) = H(B,C).
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Proposition 43. We have C = C1(¢. E).

Proof. This follows from the interpretation of Ci(¢.E) = ¢y(P(X/B,E))
given in Sections 4.2.2 and 4.2.3, and from the compatibility of the Atiyah
algebroid of P(X/B) with Ax/p p. O

5.2 A local RRR in the total space

Proposition 43 reduces the RRR to the following “local” statement taking
place in the total space X .

Theorem 44. Let & be the morphism in D(q~1Dg) defined as the composition
¢ 'CF — C(gl(Pxyp,p))euc)[l] — ¢ CF[2d +2].
Then the class in

Ext?t] (¢7'CF,q ' CF) = H*P2(2,C)

corresponding to £ is equal to

h(B) - Td(Ts )
2d+2

We now concentrate on the proof of Theorem 44. First, we recall the
definition of periodic cyclic homology [21]. Let A be an associative algebra.
The “negative” cyclic complex of A is defined, similarly to (16), as

CC, (A) = Tot{Hoch. (A) X, Hoche(A) = Hoche(A) — - -+ }
Here, the grading of the copies of Hoche (A4) in the horizontal direction goes in
increasing integers 0, 1,2 etc. So CC, (A) is a module over the formal Taylor
series ring C[[u]], where u has degree (—2). The original cyclic complex is
a module over the polynomial ring C[u~?]. Finally, the periodic cyclic com-
plex CCY”(A) is obtained by merging together CC,s(A) and CCy (A) into
one double complex that is repeated 2-periodically both in the positive and
negative horizontal directions. In other words,

CCY*(A) = CC; (A) cypug C((w)-

We extend this construction to other situations (see Section 3) in which the
tensor products are understood in the sense of various completions. In partic-
ular, the morphism vp of Corollary 26 extends to morphisms

vp : CCy (Dyyp,p) — q 'CF[2d][[u]],

per

b COY (Dyyp,p) — ¢ 'CF[2d]((w)).

14
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These morphisms can be included in the commutative diagram

CC; (Dy/pp) —— CCY(DPxypp) —— CC(Dxs,p)[2]

| | |-
CxRdu] —— Cpld(w) =% C¥[2d+2]
We now want to reduce Theorem 44 to the following statement.

Theorem 45. The composition

CF = CCY (Dyyp,5) " CF [2d)((u))
defines an element of Ext)-1p, (¢~ CF, ¢ CF[2d])((u)) that is equal to

oo

> ut [h(E)Td(Tz/5)] 54y
=0

Proof (Theorem /). Assuming Theorem 45, it is sufficient to prove that the
composition

¢ 'CF — Ci(aU(PxyB.8))guc)[1] = CC(Dsyp.5)[2]
is equal to the composition
¢7'CF - CCE (Dsyp.p) — CCo(Dyyp )2

since the latter one is related to Chern and Todd via Theorem 45. In order to
perform the comparison, let K be the cone of the inclusion C (§{(Dx/p.5) —
Ce(8(Dx/p,E)), so that we have a quasi-isomorphism K — ¢~ 'CF as well
as an isomorphism of distinguished triangles

Ce(9l(Px/B,E))gicy —— K ——— Ci(gl(Dx/B,E))gic) 1]
C(el(Ds/pe))gicy —— ¢ 'CF —— Cy(al(Dxyp,e)) g0

(with the top row a short exact sequence of complexes). Note that there is a
morphism of distinguished triangles

Ce(9l(Ds/p,E))gic) — K —— C4(8l(Px/B,E))gic) 1]
CCy (Pg/pp) — CC*(Dgypp) ——  CCuo(Dxyp.p)2]
It remains to notice further that the diagram

iy K CCY(Px/B.B)

represents the morphism C'% L ocpe (Dx)B,E) in the derived category. O
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5.3 Proof of Theorem 45

This statement can be deduced from the results of [25] on the cohomology
of the Lie algebras of formal vector fields and formal matrix functions. We
recall the setting of [25], which extends that of the Chern—Weil definition of
characteristic classes. Recall that the latter provides a map

S*llho))"0 — H**(2,C) (45)

where Hy = GL4(C) x GL,(C) with r = rk(FE), while b is the Lie algebra of
Hy, i.e., gl (C) @ gl.(C). To be precise, the elementary symmetric functions
of the two copies of gl are mapped to the Chern classes of 75/ and E.

In [25], this construction was generalized in the following way. Let k =
dim(B), and let g be the Lie algebra of formal differential operators of the
form

k
0
ZPi(yh..-,yk)ay

i=1

8(1}i +R(£L’1,...,.’£d,y17~~~ayk)a

d
+ZQj($1,~~-,$day17"'ayk) 0
j=1
where P;, Q; are formal power series, and R(x) is an 7 x r matrix whose entries
are power series. Thus g is the formal version of the relative Atiyah algebra.
Consider the Lie subalgebra b of fields such that all P; and @); are of degree-one
and all entries of R are of degree zero. We can identify this subalgebra with

b = 6l4(C) @ g1, (C) @ gl,.(C).

Let
H = GL4(C) x GLg(C) x GL,(C)

be the corresponding Lie group. Thus (g, H) form a Harish-Chandra pair.
Following the ideas of “formal geometry” (or “localization”) of Gelfand and
Kazhdan, one sees that every (g, H)-module L induces a sheaf £ on Y. Sim-
ilarly, a complex L® of modules gives rise to a complex of sheaves L£®. A
complex L*® of modules is called homotopy constant if the action of g extends
to an action of the differential graded Lie algebra (g[e], ). Here € is a formal
variable of degree —1 and square zero. In this case, there is a generalization

of the Chern-Weil map constructed in [25]:
CW : H®(hole], ho; L*) — H* (X, L®),

which gives (45) when L = C with the trivial action. Consider the following
(g, H)-modules:

D= {Zpa(lj,...,.’ﬂd,ylau'ayk)ag}’
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where P, are r X r matrices whose entries are power series, and

0° — {pr(xl"“7xdvylw-~7yk)dla:},
I

which is the space of differential forms whose coefficients are formal power se-
ries. The latter is a complex with the (fiberwise) de Rham differential. More-
over, §2° is homotopy constant (eg acts on it by exterior multiplication). The
Hochschild, cyclic, etc. complexes of D inherit the (g, H)-module structure;
moreover, they also become homotopy constant (an element eX € eg acts by
the operator ¢x from equation (41). One constructs [4, pt. II, Lemma 3.2.4]
a class
v € HO(bhole], bo: Hom(CCPS (D), 224+%))

such that CW(v) coincides with

vp € H°(Z; Hom(CCPS (D)), 922%3.»

To be precise, the cited lemma concerns the Weyl algebra of power series in
both coordinates and derivations with the Moyal product (clearly, differential
operators of finite order form a subalgebra). Second, the construction there is
for the relative cohomology of the pair (g, ), but it extends to the case of the
pair (gle], h), of which (ho[e], bo) is a subpair.

The cochain v is actually independent of y. There is the canonical class 1
in HCoP*"(D); it is ho-invariant, and it is shown in [25] how to extend it to a
class in H°(ho[e], ho; CCP (D)). On the other hand,

HO (€], ho; £2°)
can be naturally identified with
HC (ho[e], bo; C).
It remains to show that
v(l) = Z[Ch - Td]y(gys - 0,

where ch is the corresponding invariant power series in H*®(gl,.[¢], gl,; C) and
Td is the corresponding invariant power series in H*®(gl,[e], gl ; C). This was
carried out in [4, Lemma 5.3.2] O

6 Comparison with the gerbe picture

6.1 L2-sections of a vector bundle on a circle

Let X be an oriented C*°-manifold diffeomorphic to the circle S' with the
standard orientation, and let E be a complex C'°°-vector bundle on Y. Choose
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a smooth Riemannian metric g on X~ and a smooth Hermitian metric h on
E. Let I'(X, E) be the space of C*-sections of E. The choice of g, h defines
a positive definite scalar product on this space, and we denote by L?J’ W2 E)
the Hilbert space obtained by completion with respect to this scalar product.

Lemma 46. For a different choice g',h’ of metrics on X, E we have a canon-
ical identification of topological vector spaces

L ,(2,E) — L2, (X, E).

Proof. The Hilbert norms on I'(X, E) associated to (g,h) and (¢’,h') are
equivalent, since X' is compact. 0O

We will denote the completion simply by L?(X, E).

Consider now the case in which X = S! is the standard circle and E = C"
is the trivial bundle of rank r. In this case, L*(X, E) = L?(S1)®". Let us
denote this Hilbert space by H. It comes with a polarization in the sense
of Pressley and Segal [26]. In other words, H is decomposed as Hy @ H_,
where H,, H_ are infinite-dimensional orthogonal closed subspaces defined
as follows.

The space H consists of vector functions extending holomorphically into
the unit disk Dy = {|z| < 1}. The space H_ consists of vector functions
extending holomorphically into the opposite annulus D_ = {|z| > 1} and
vanishing at oo.

The decomposition H = H, @ H_ yields the groups GLyes(H) C GL(H),
see [26, (6.2.1)], as well as the Sato Grassmannian Gr(H) on which GLyes(H)
acts transitively. We recall that Gr(H) consists of closed subspaces W C H
whose projection to Hy is a Fredholm operator and whose projection to H_
is a Hilbert—Schmidt operator; see [26, (7.1.1)].

Given arbitrary Y, E as before, we can choose an orientation-preserving
diffeomorphism ¢ : S' — X and a trivialization ¢ : $* E — C”. This gives an
identification

Uy L*(X,E) — H = L*(Sh)%.
In particular, we get a distinguished set of subspaces in L?(X, E), namely
Gry,u (2, E) = uy,(Gr(H)),
and a distinguished subgroup of its automorphisms, namely

GLEY (L(5, B)) = ugy Gllses (H)ttg .

res

Lemma 47. The subgroup GL%Y (L2(X, E)) and the set Gry 4 (L*(2, E)) are

res

independent of the choice of ¢ and .
Proof. Any two choices of ¢, differ by an element of the Atiyah group
AT(S',C"); see Example 36. This group being a semidirect product of

Diffeo(S') and GL,C>°(S'), our statement follows from the known fact that
both of these groups are subgroups of GLyes(H); see [26]. a
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From now on, we drop ¢, from the notation, writing Gr(L?(X, E)) and
GLyes(L2(X, E)). Recall further that Gr(H) x Gr(H) is equipped with a line
bundle A (the relative determinantal bundle) which has the following addi-
tional structures:

1. Equivariance with respect to GLyes(H ).
2. A multiplicative structure, i.e., an identification

P12l ® p33 A — pizA (46)

of vector bundles on Gr(H) x Gr(H) x Gr(H), which is equivariant under
GL,es(H) and satisfies the associativity, unit and inversion properties.

It follows from the above that we have a canonically defined line bun-
dle (still denoted by A) on Gr(L?(X, E)) x Gr(L*(X, E)) equivariant under
GLyes(L?(X, E)) and equipped with a multiplicative structure. For W, W’ &
Gr(L*(X, E)) we denote by Ay, the fiber of A at (W, W’).

As is well known, the multiplicative bundle A gives rise to a category
(C*-gerbe) Det L?(X, E) whose set of objects is Gr(L?(X, E)), while

Hompes 12(5, ) (W, W') = Aw,wr — {0}
The composition of morphisms comes from the identification

AW,W’ ® AWI’WII — AW,W”

given by (46).

6.2 L2-direct image in a circle fibration

Now let ¢ : X — B be a fibration in oriented circles and E a vector bundle
on Y. We then have a bundle of Hilbert spaces q*L2 (E) whose fiber at b €
B is L?(Xy, Ey). Furthermore, by Lemma 47 this bundle has a GLes(H)-
structure, where H = L?(S1)®". Therefore we have the associated bundle of
Sato Grassmannians Gr(qf2 (E)) on B and the (fiberwise) multiplicative line
bundle A on

Gr(gX" (B)) x5 Gr(g"" (E)).

We define a sheaf of CZ*-groupoids on B whose local objects are local sections
of Gr(qf2 (E)), and for any two such sections defined on U C B,

Hom(s, s2) = (s1,52)"A — Oy,

where Oy stands for the zero section of the induced line bundle. This sheaf
of groupoids is locally connected and so gives rise to a C¥*-gerbe, which we
denote by Det(g.E). So we have the class

[Det(g.e)] € H*(B,CF™).
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Alternatively, consider the Atiyah group G = AT(S!,C"); see Example 36.
By the above, G C GLyes(H). The determinantal C*-gerbe Det(H) (over a
point) with G-action gives a central extension Gof G by C*. A circle fibration
q: X — B gives a principal G-bundlle P(X/B), as in (31), and the following
is clear.

Proposition 48. The gerbe Det(q.E) is equivalent to Liftg(P(Z/B, E)); see
Example 18.

Consider the exponential sequence (13) of sheaves on B and the corre-
sponding coboundary map s, see (14). Then we have the class

82[Det(q. E)| € H*(B,Z).

Theorem 49. The image of §[Det(q.E)| in H*(B,C) coincides with the neg-
ative of the class C1(q.E) (see Definition 38).

Proof. We apply Proposition 40 to G = AT(S',C") and 3 being the class of
the central extension G. Then g = Ac+(S?) is the Atiyah algebra of the trivial

bundle on S! and v is the class of the “trace” central extension induced from
the Lie algebra gl..(H) of GLyes(H). We have the embeddings

g C gl (D(SY)) C gles(H),

and the trace central extension is represented by an explicit cocycle ¥ of
gl (H) (going back to [28]). Let z be the standard complex coordinate on
S1 such that |z| = 1. Then the formula for the restriction of ¥ to gl,.(D(S1))
was given in [15], see also [16, formula (1.5.2)]:

res

VI ()O2 9(:)00) = it Resodz - (/7 (2)g ™) (2),

where f(") denotes the n-th derivative with respect to z. Our statement now
reduces to the following lemma. 0O

Lemma 50. The second Lie cohomology class of gl, D(S*) given by the cocycle
W is equal to the negative of the class corresponding to the fundamental class
of S wvia the identification of Corollary 25.

Proof. Since the space of (continuous) Lie algebra homology in question is
1-dimensional, it is enough to evaluate the cocycle ¥ on the Lie algebra 2-
homology class ¢ from Corollary 23 and to show that this value is precisely
equal to 1. For this it is enough to consider r = 1. Let D = D(S?) for simplicity.

We need to recall the explicit form of the identification (18) for the case
n = 1 (first Hochschild homology maps to the second Lie algebra homology).
In other words, we need to recall the definition of the map

¢ : HH (D) — HY*°(gl(D)) — C.



162 Paul Bressler, Mikhail Kapranov, Boris Tsygan, and Eric Vasserot

As explained in [7] and [29], this map is defined via the order filtration F' on
the ring D and uses the corresponding spectral sequence. This means that we
need to start with a Hochschild 1-cycle 0 = > P, ® Q; € D ® D and form its
highest symbol cycle

Smbl(c) = > Smbl(P;) @ Smbl(Q;) € gr(D) @ gr(D),

which gives an element in Hoch; (gr(D)). Since gr(D) is the ring of polyno-
mial functions on 7*S', Hochschild-Kostant-Rosenberg gives H H; (gr(D)) =
0Y(T*S"), the space of 1-forms on T*S! polynomial along the fibers. So the
class of Smbl(c) is a 1-form w = w(o) on T*S!. This is an element of the
FE;-term of the spectral sequence for the Hochschild homology of the filtered
ring D.

Furthermore, one denotes by * the symplectic Hodge operator on forms on
T*S1. The results of [7], [29] imply that the differential in the Fj-term is *dx,
where d is the de Rham differential on 7*S* while higher differentials vanish.
This means that under our assumptions, *w(o) is a closed 1-form and

e(o) = /Sl *w(0).

To finish the proof we need to exhibit just one o as above such that

0 # €(0) =Y W(P;, Q).

We take
c0=22271'9,-22®0,.

Then one sees that o is a Hochschild 1-cycle and (o) = 1. On the other
hand, let @ be the real coordinate on S! such that z = exp(27if). Then the
real coordinates on T*S?t are 6, £ with ¢ = Smbl(9/86), so the Poisson bracket
{60, &} is equal to 1. In terms of the coordinate z it means that £ = Smbl(20/9z)
and {z,{} = z. Therefore

Smbl(0) = 22 ® 2726 — 22 ®@ 27 1€,

and hence

w(o) = 22d(272¢) = 22d(27Y¢) = —dz — 271¢ |

see |21, p.11]. The symplectic (volume) form on T*St is (dz/z) A d€, so the
symplectic Hodge operator is given by

xdé = dz/z, xdz/z=dE, +*=1.

Therefore,
xw(o) = —dz/z — £dE, / *w(o) = —1,
g1

and we are done. O
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Summary. We define a universal version of the Knizhnik—Zamolodchikov—Bernard
(KZB) connection in genus 1. This is a flat connection over a principal bundle
on the moduli space of elliptic curves with marked points. It restricts to a flat
connection on configuration spaces of points on elliptic curves, which can be used
for proving the formality of the pure braid groups on genus 1 surfaces. We study the
monodromy of this connection and show that it gives rise to a relation between the
KZ associator and a generating series for iterated integrals of Eisenstein forms. We
show that the universal KZB connection is realized as the usual KZB connection
for simple Lie algebras, and that in the sl, case this realization factors through the
Cherednik algebras. This leads us to define a functor from the category of equivariant
D-modules on sl,, to that of modules over the Cherednik algebra, and to compute
the character of irreducible equivariant D-modules over sl,, that are supported on
the nilpotent cone.

Key words: Knizhnik—Zamolodchikov—Bernard equations, elliptic curve,
monodromy.
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Introduction

The KZ system was introduced in [KZ84] as a system of equations satisfied by
correlation functions in conformal field theory. It was then realized that this
system has a universal version [Dri91]. The monodromy of this system leads
to representations of the braid groups, which can be used for proving that
the pure braid groups, which are the fundamental groups of the configuration
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spaces of C, are formal (i.e., their Lie algebras are isomorphic to their asso-
ciated graded Lie algebras, which is a holonomy Lie algebra and thus has an
explicit presentation). This fact was first proved in the framework of mini-
mal model theory [Sul77, Koh83]. These results gave rise to Drinfeld’s theory
of associators and quasi-Hopf algebras [Dri90b, Dri91]; one of the purposes of
this work was to give an algebraic construction of the formality isomorphisms,
and indeed, one of its by-products is the fact that these isomorphisms can be
defined over Q.

In the case of configuration spaces over surfaces of genus >1, similar Lie
algebra isomorphisms were constructed by Bezrukavnikov [Bez94|, using re-
sults of Kriz [Kri94]. In this series of papers, we will show that this result
can be re-proved using a suitable flat connection over configuration spaces.
This connection is a universal version of the KZB connection [Ber98a, Ber98b],
which is the higher-genus analogue of the KZ connection.

In this paper, we focus on the case of genus 1. We define the universal
KZB connection (Section 1), and rederive from there the formality result (Sec-
tion 2). As in the integrable case of the KZB connection, the universal KZB
connection extends from the configuration spaces C(E,,n)/S, to the moduli
space M p,,] of elliptic curves with n unordered marked points (Section 3).
This means that (a) the connection can be extended to the directions of vari-
ation of moduli, and (b) it is modular invariant.

This connection then gives rise to a monodromy morphism v, : I [] —
G,, xSy, which we analyze in Section 4. The images of most generators can be
expressed using the KZ associator, but the image © of the S-transformation
can be expressed using iterated integrals of Eisenstein series. The relations
between generators give rise to relations between © and the KZ associator,
identities (28). This identity may be viewed as an elliptic analogue of the
pentagon identity, since it is a “de Rham” analogue of the relation 6AS in
[HLSO00] (in [Man05], the question was asked of the existence of this kind of
identity).

In Section 5, we investigate how to algebraically construct a morphism
I'in) — Gpn % S,. We show that a morphism Bi,n — exp(tin) ¥ S, can be
constructed using an associator only (here Elm is the reduced braid group of
n points on the torus). [Dri91] then implies that the formality isomorphism
can be defined over Q. In the last part of Section 5, we develop the analogue
of the theory of quasitriangular quasibialgebras (QTQBAs), namely elliptic
structures over QTQBAs. These structures give rise to representations of Elm,
and they can be modified by twist. We hope that in the case of a simple
Lie algebra, and using suitable twists, the elliptic structure given in Section
5.4 will give rise to elliptic structures over the quantum group U,(g) (where
g € C*) or over the Lusztig quantum group (when ¢ is a root of unity),
recovering the representations of Elm from conformal field theory.

In Section 6, we show that the universal KZB connection indeed specializes
to the ordinary KZB connection.
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Sections 7-9 are dedicated to applications of the ideas of the preceding
sections (in particular, Section 6) to the representation theory of Cherednik
algebras.

More precisely, in Section 7, we construct a homomorphism from the Lie
algebra t; , x 0 to the rational Cherednik algebra H, (k) of type A,,_; (here d
is a Lie algebra introduced in Section 3, which acts on t,, by derivations). This
allows us to consider the elliptic KZB connection with values in representa-
tions of the rational Cherednik algebra. The monodromy of this connection
then gives representations of the true Cherednik algebra (i.e., the double affine
Hecke algebra). In particular, this gives a simple way of constructing an iso-
morphism between the rational Cherednik algebra and the double affine Hecke
algebra, with formal deformation parameters.

In Section 8, we consider the special representation Vy of the rational
Cherednik algebra H,(k), k = N/n, for which the elliptic KZB connection
is the KZB connection for (holomorphic) n-point correlation functions of the
WZW model for SLy(C) on the elliptic curve, when the marked points are
labeled by the vector representation CV. This representation is realized in the
space of equivariant polynomial functions on sly with values in (CV)®"  and
we show that it is irreducible, and calculate its character.

In Section 9, we generalize the construction of Section 8 by replacing,
in the construction of Vy, the space of polynomial functions on sly with
an arbitrary D-module on sly. This gives rise to an exact functor from the
category of (equivariant) D-modules on sly to the category of representations
of H,,(N/n). We study this functor in detail. In particular, we show that this
functor maps D-modules concentrated on the nilpotent cone to modules from
the category O_ of highest weight modules over the Cherednik algebra, and
is closely related to the Gan—Ginzburg functor [GG04]. Using these facts, we
show that it maps irreducible D-modules on the nilpotent cone to irreducible
representations of the Cherednik algebra, and determine their highest weights.
As an application, we compute the decomposition of cuspidal D-modules into
irreducible representations of SLy (C). Finally, we describe the generalization
of the above result to the trigonometric case (which involves D-modules on the
group and trigonometric Cherednik algebras) and point out several directions
for generalization.

1 Bundles with flat connections on (reduced)
configuration spaces

1.1 The Lie algebras t;,, and t;,,

Let n > 1 be an integer and k a field of characteristic zero. We define t¥, as
the Lie algebra with generators z;,y; (¢ =1,...,n)and t;; (1 #j € {1,...,n})
and relations

tij =tji, [tij,tie +tu] =0, [tij, te] =0, (1)
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(2o, y] = tig, (i, w5l = [y ] =0, [ws, 03] = Z Lijs
Jli#i
(2o, tjk] = [y tie] = 0, [2i + 25, ti5] = [yi +y5, 5] = 0
(4,7, k, 1 are distinct). In this Lie algebra, Z x; and Z y; are central; we then
define tf,, := ¢,/ (3, @, >, ¥:). Both tf, and €, are positively graded,
where deg(x;) = deg(y;) = 1.

The symmetric group S, acts by automorphisms of tfn by o(x;) = o),
o(Yi) = Yo(i)» 0(tij) = to(i)o(s); this induces an action of S, by automor-
phisms of £},

We will set t; , := t{,,, t1,n := £}, in Sections 1 to 4.

1.2 Bundles with flat connections over C(E,n) and C(E,n)

Let E be an elliptic curve, C(E,n) the configuration space E™ — {diagonals}
(n>1) and C’(E n) := C(E,n)/E the reduced configuration space. We will
define an* exp(’q n)-principal bundle with a flat (holomorphic) connection
(Pg.n,VEn) — C(E,n). For this, we define an exp(t; ,)-principal bundle
with a flat connection (PEWVE,”) — C(E,n). Its image under the nat-
ural morphism exp(t,) — exp(in) is an exp(il’n)—bundle with connection
(PE Ve n) — C(E,n), and we then prove that (PE Ve n) is the pullback
of a pair (Pg.,, Vi.n) under the canonical projection C(E,n) — C(E,n).

For this, we fix a uniformization F ~ FE., where for 7 € 9, § =
{r € (C|%(7') > 0}, B, := C/A;, and A, := Z + Z7. We then have
C(E-,n) = (C" — Diag,, )/ A%, where

Diag,, . :={z = (21,...,20) € C"|2j; 1= 2; — z; € A, for some i # j}.

We define P;,, as the restriction to C(E;,n) of the bundle over C"/A” for
which a section on U € C"/A™ is a regular map f : 7~ *(U) — exp(t.,), such
that® f(z+d;) = f(z), f(z+78;) = e 2% f(z) (here m : C* — C"/A" is the
canonical projection and ¢; is the ith vector of the canonical basis of C™).

The bundle JST n — C(Er,n) derived from P;,, is the pullback of a bundle
P, — C(E;,n) since the e~ 2% ¢ exp(t1 n) commute pairwise and their
product is 1. Here z — Z is the map t1 n— t1 ne

A flat connection V., on P, is then the same as an equivariant flat
connection over the trivial bundle over C" — Diag,, ., i.e., a connection of the
form

Veni=d— Y Ki(z|r)dz,

i=1

We will denote by g or g" the degree completion of a positively graded Lie
algebra g.
SWe set i := \/—1, leaving i for indices.
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where K;(—|r) : C* — t1,, is holomorphic on C" — Diag,, . such that:

(a) Ki(z + 6;|7) = Ki(z|7), Kz'(Z +78;|7) = e M) (K (7)),

(b) [0/0zi — Ki(2|7),0/0z; — K;(2|7 )} = 0 for any i, ].

Then V., induces a flat connection VT n Oon PT n- Then VT n is the pull-
back of a (necessarily flat) connection on P, ,, iff

(c) Ki(z|t) = Ki(z+u(})_,; 6;)|7) and Y-, K;(z|t) = 0 for z € C" —Diag,, .,
u e C.

In order to define the K;(z|7), we first recall some facts on theta functions.
There is a unique holomorphic function C x $ — C, (z,7) — 6(z|7), such that

o {z|0(z|T) =0} = A,

o 0(z +1|7) = —0(z|7) = 0(—=z|7),

o O(z+7|7) = —e ™Te 220 (£|7), and
e 40.(0|7) =1.

We have 0(z|t + 1) = (z|7), while 0(—=z/7| — 1/7) = 7(1/T)6(7T1/T)220(2|T).
If n(r) = ¢'/** [[,>:(1 —¢"), where ¢ = e?™7 and if we set V(z|7) =
n(7)30(z|7), then 0,9 = (1/471)029.

Let us set
0(z + z|1)

0(z|)0(x|7)
When 7 is fixed, k(z, z|7) belongs to Hol(C — A;)[[z]]. Substituting = = ad x;,

we get a linear map t; , — (t1,, ® Hol(C — A;))", and taking the image of ¢;;,
we define

Kij(417) := (2 adzsl7) (t) = <€(z u ;‘ji“)"i)“) - (:(?((g))m - 1) ();

1
k(z, x|T) = S —
T

it is a holomorphic function on C — A, with values in E1,n-
Now set z := (21,...,2n), 2ij := 2 — z; and define

KZ'(Z|T) = —y; + Z KU(Z”|T)
Jli#i
Let us check that the K;(z|r) satisfy condition (c). We have clearly
Ki(z+u(}_;0:)) = Ki(z). We have k(z, z|7) +k(—z, —z|7) = 0, so K;;(z|T)+
Kji(—z|t) =0, so that >, K;(z|T) = — ), yi, which implies >, K;(z|7) = 0.

Lemma 1. K;(z + 6,|7) = K;(z|7) and K;(z + 70;|7) = e~ 2™24%i (K, (z|7)),
i.e., the K;(z|T) satisfy condition (a).

Proof. We have k(z=£1,z|r) = k(z, z|T) so for any j, K;(z + ¢;|7) = K;(z|7).
We have k(z + 7, z|7) = eT2™k (2, 2|7) + (72" — 1)/, so if j # i,

2 a4 eZﬂ'iadxi -1
Ki(z+76;|r) = Y Kijo (2 |7) + €245 K (25 7) + ————
J'#4,3

ad x; ( J) Y
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Then

—2miad x;

627riad i _ ] 1—e

(tij) = (1) = (1 — e 2m2d2)(y,),

ad z; ad z;

e2mad s ([, (z5|7)) = e~2m4%5 (K, (2;;]7)) and for j/ # 4,7, Kij (zip|7) =
e 2madT (IC, 0 (2550 |7)), so K;(z + 70;|7) = e~2™84%i (K;(z|T)). Now

Ki(z+70i|7) = = yi— > K;(z+78]7)

i ilii

_ Zyz o e—27riadw7¢ Z Kj(Z|T)

Jli#i

_ 727r1adzz Zyl Z Kj(Z|T)
i Jli#i
_ 6727riadziKi(z|T)

(the first and last equalities follow from the proof of (c), the second equality
has just been proved, and the third equality follows from the centrality of

Zi yz) O

Proposition 2. [0/0z — K,(z|7),0/0z; — K;(z|T)] = 0, i.e., the K;(z|T) sat-
isfy condition (b).

Proof. For i # j, let us set K;; := K;j(z;|7). Recall that K;; + K;; = 0, and
therefore if 9; := 0/0z;, then

0iKij — 0;Kji =0, [y — Kij,y; — Kji] = —[Kij, yi + y;)-

Moreover, if i, 7, k,l are distinct, then [K, K;] = 0. It follows that if
i # j, then [0; — K;(z|r),0; — K;(z|T)] equals

[yi+v5, Kij] + Z (K ik, K]+ [Kij, K]+ [Kij, Kiw)+ [y, Kie] = [yi, Kji]).-
k| ki, j
Let us assume for a while that if k ¢ {4, j}, then
— Wi, K] — Y5, Kiil — [yr, Kij| + [Kji, Kii) + K, Kij] + K, Kje) =0 (2)

(this is the universal version of the classical dynamical Yang-Baxter equation).
Then (2) implies that

[8i7Ki(Z|T),aj*Kj(Z|T)] = [yz+yg,Kzg]+ Z yk, Zyk, zg
k|k#i,j5

(since ), yx is central), which proves the proposition.
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Let us now prove (2). If f(z) € C[[z]], then
fladz;) — f(—ad ;)
adz; +adz;

fladz;) — f(—adxy)
adz; + adzy
_ fladz;) — f(adz; + ad x;)

[yk, fladz;)(ti;)] =

[*tkia tlj}a

[y, f(ad z;)(tk)] = [—tij. tjnl

Cadz, [—tij. tik),
fladzg) — f(—ad ;)
L fad ) (tri)] = —tip, thi
ly;, fad k) ()] adzr 1 ada, [—t ik, thi
f(—adz; —adz;) — f(—adx;)
= “adz [tk thil-
J
The first identity is proved as follows:
n—1
[y, (ad )" ()] = — ) (ad @) (ad t) (ad )" 17> (t5)
s=0
n—1

(ad xi)s(adtki)(—ad l‘j)n_l_s(tij)

)

»
Il
= O

S

(ad xi)s(—ad l‘j)n_l_s(ad tki)(tij)

(]

s=0
= f(adz;, —ad z;) ([~ tki, tij]),

where f(u,v) = (u™ — v™)/(u — v). The two next identities follow from this
one and from the fact that x; + z; + x;, commutes with t,;, ¢k, t;.
Then, if we write k(z, ) instead of k(z, z|7), the Lh.s. of (2) is equal to

(k(zij, —ad x;)k(zik, ad x; + ad z;) — k(zij, ad x;)k(2jk, ad z; + ad ;)

k(zjk,adx;) — k(zjk, ad x; + ad z;)

+ k(zig, ad x; )k (25, ad z;) +

ad x;
n k(zik,ad i) — k(zij,adz; +ad ;) k(ziy,ad ;) — k(25, —ad ;)
ad z; adz; +adz;

[tij, tin)-
So (2) follows from the identity

k(z, —0)k(z',u+v) — k(z,u)k(z' — 2z,u +v) + k(2" u)k(z' — z,v)
k(2 —z,v) — k(2 — z,u+v) n k(2 u) — k(2 ,u+v)

+

<
<
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where u, v are formal variables, which is a consequence of the theta-functions

identity
1 1
(k:(z, —v) — ;) (k‘(z’,u +v) + " +v)

_ (k:(z,u) + %) <k:(z’ Cutu)+ u%v)
+ (k(z',u) + 1) <k(z’ — o)+ 1) 0, 3)

v

We have therefore proved:

Theorem 3. (P, ., V,,) is a flat connection on C(E;,n), and the induced

flat connection (Pr,,V:,) is the pullback of a unique flat connection
(PrnyVen) on C(Eq,n).

1.3 Bundles with flat connections on C(E,n)/S,, and C(E,n)/S,

The group S,, acts freely by automorphisms of C(E,n) by o(z1,...,2,) =
(Zo-1(1)5+ -+ » Zo-1(n))- This descends to a free action of S, on C(E,n). We set
C(E,[n]) == C(E,n)/Sn, C(E,[n]) :=C(E,n)/Sy.

We will show that (Pr,,V,,) induces a bundle with flat connection
(Prin)> Vrm) on C(E:,[n]) with group exp(tin) X S,, and similarly

(Prn, Vrn) induces (P (), Vs ) on C(E;, [n]) with group exp(ilm) X Sy

We define P.p,; — C(E;,[n]) by the condition that a section of U C
C(E,,[n]) is a regular map 7~ (U) — exp(ty,n) % Sy, satisfying again

f(z+6;) = f(z), f(z+70;) = e~ 2™%i f(z) and the additional requirement
f(oz) = of(z) (where 7 : C" — Diag, ,, — C(E,,[n]) is the canonical projec-
tion). It is clear that V. ,, is Sp-invariant, which implies that it defines a flat
connection V. ,j on C(E.,[n]).

The bundle P(E;,[n]) — C(E;,[n]) is defined by the additional require-
ment f(z+u(}_,;0;)) = f(z) and V., then induces a flat connection V_
on C(E-, [n]).

2 Formality of pure braid groups on the torus

2.1 Reminders on Malcev Lie algebras

Let k be a field of characteristic 0 and let g be a pronilpotent k-Lie algebra.
Set gt = g, g"*! = [g,0"]; then g = g' D g?--- is a decreasing filtration
of g. The associated graded Lie algebra is gr(g) := @®r>19%/g""!; we also

consider its completion gr(g) := Gr>19%/gF! (here @ is the direct product).
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We say that g is formal if there exists an isomorphism of filtered Lie algebras
g ~ gr(g), whose associated graded morphism is the identity. We will use the
following fact: if g is a pronilpotent Lie algebra, t is a positively graded Lie
algebra, and there exists an isomorphism g ~ t of filtered Lie algebras, then
g is formal and the associated graded morphism gr(g) — t is an isomorphism
of graded Lie algebras.

If I' is a finitely generated group, there exists a unique pair (I'(k),ir) of
a prounipotent algebraic group I'(k) and a group morphism ip : I' — I'(k),
which is initial in the category of all pairs (U, j), where U is a prounipotent
k-algebraic group and j : I' — U is a group morphism.

We denote by Lie(I")k the Lie algebra of I'(k). Then we have I'(k) =
exp(Lie(I")x); Lie(I)x is a pronilpotent Lie algebra. We have Lie(I')x =
Lie(I')g ® k. We say that I' is formal iff Lie(I")c is formal (one can show
that this implies that Lie(I")qg is formal).

When I' is presented by generators g1, .. ., g, and relations R;(g1,...,9n)
(¢t = 1,...,p), Lie(I")g is the quotient of the topologically free Lie al-
gebra f, generated by ~1,...,7, by the topological ideal generated by
log(Ri(eM,...,e™)) (i=1,...,p).

The decreasing filtration of f, is f, = (fa)* D (ja)2 D ---, where (f,)¥
is the part of fn of degree > k in the generators ~v1,...,7,. The image of
this filtration by the projection map is the decreasing filtration Lie(I")g =
Lie(I")g D Lie(I")g D - - - of Lie(I')q.

2.2 Presentation of PB; ,,

For 7 € 9, let U; C C" — Diag,, . be the open subset of all z = (21,...,25)
of the form z; = a; + 7b;, where 0 < a1 < - < ap <land 0 < by < -+ <
by < 1.Ifzg = (z?, ceey 22) € U, its image zp in E7 actually belongs to the
configuration space C(E;,n).

The pure braid group of n points on the torus PB; , may be viewed as
PBi1,, = m(C(E;,n),z). Denote by X;,Y; € PBy , the classes of the projec-
tion of the paths [0,1] 5 t — z¢ — tJ; and [0, 1] 5 t +— z¢ — t70;.

Set A; :=X;--X,,B;:=Y;---Y, fori=1,...,n. According to [Bir69al,
A;,B; (i =1,...,n) generate PB; ,, and a presentation of PBy ,, is, in terms
of these generators:

(Az,AJ) = (BZ,B]) =1 (any i,j), (Al,BJ) — (BlaAJ) =1 (any j),
(Br, AcA; ') = (BB ', A) = Cji (j < k);
(Ai, Cjr) = (Bi, Cjr) =1 (i < j < k),

where (g,h) = ghg=*h™1L.
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2.3 Alternative presentations of t; ,

We now give two variants of the defining presentation of t; ,. Presentation
(A) below is the original presentation in [Bez94], and presentation (B) will be
suited to the comparison with the above presentation of PB; ;.

Lemma 4. t; ,, admits the following presentations:

(A) generators are z;, y; (i = 1,...,n), relations are [x;,y;] = [z;,yi]
(i #3), [wi,zj] = [y, y;] = 0 (any i,5), D2, %5, ui) = [0y, 2] = 0 (any i),

J j

[xi’ [xjaykﬂ = [yza [ijka =0 (’L,],k are dZStlnCt)7

(B) generators are a;, b; (i =1,...,n), relations are [a;,a;] = [b;,b;] =0
(any i,j), a1, b] = [br, a;] = 0 (any j), [a;, bx] = [ak, bs] (any i, j), [ai, cjx] =
[biscik] =0 (i < j<k), where cjr = [bk,ar — aj].

The isomorphism of presentations (A) and (B) is a; = Z;L:Z
Z?:i Yj-

Proof. Let us prove that the initial relations for z;,y;,t;; imply the relations
(A) for x;,y;. Let us assume the initial relations. If i # j, since [z;,y;] = t;;
and t;; = tj;, we get [z;,y;] = [z}, ys]. The relations [z;, 2;] = [y, y;] = 0 (any
i, j) are contained in the initial relations. For any 1, since [z;, yi] = —>_;;; tij
and [z, yi] = tji = ti; (j # @), we get [3_; xj, ;] = 0. Similarly, [3°, y;, ;] =0
(for any 7). If i, j, k are distinct, since [z, yx] = ¢ and [z;,t;5] = 0, we get
[%i, [z, yx]] = 0, and similarly we prove [x;, [y;, zx]] = 0.

Let us now prove that the relations (A) for x;, y; imply the initial relations
for x;,y; and t;; := [z;,y;] (i # j). Assume the relations (A). If ¢ # j, since
[xi,y;] = [zj,vys], we have t;; = t;;. The relation t;; = [z;,y;] (i # j) is
clear and [x;,z;] = [yi,y;] = 0 (any i,7) are already in relations (A). Since
for any ia [ZJ xjayi] = Oa we get [x17yz] = _Zj|j7gi[xjayi] = _Zj\jséi tji -
— D1 tig- 14, j, k are distinct, the relations [2;, [z, yx]] = [ys, [y;, z&]] = 0
lmply [xZatjk] = [yzat]k] =0 1If ¢ 7é j’ since [Zk xkaxi] = [Zk xkayj] = Oa
we get [> . k. ti;] = 0, and [xy,t;;] = 0 for & ¢ {4,j} then implies [z; +
zj,t;;] = 0. One proves similarly [y; + y;,t;;] = 0. We have already shown
that [z, tw] = [y;, te] = O for ¢, 7, k, [ distinct, which implies [[x;, y;], txi] = 0,
ie., [tij,ti] = 0. If 4,4, k are distinct, we have shown that [t;;,yx] = 0 and
[tij,l‘i + .%‘j} =0, which implies [tz’j, [.Z‘Z + z;, ka =0, i.e., [tz’j,tik =+ tjk} =0.

Let us prove that the relations (A) for z;, y; imply relations (B) for a; :
doj—ijy bi = >0, y;. Summing up the relations [z, x;] = [yir,y;] =
and [y, y;] = [z, yw] for ¢/ =14,...,n and j/ = j,...,n, we get [a;, a;]
[bi,bj] = 0 and [a;, b;] = [a;,b;] (for any 4,j). Summing up [3°; x;,yx] =
[>°;yj. 2] = 0 for @' =i,....n, we get [a1,b;] = [a;,01] = 0 (for any ).

Zj, bz =

o

Finally, ¢ = Zlé;i > -k tap (in terms of the initial presentation), so the
relations [z, tqg] = 0 for i/ # o, 8 and [z + g, tag] = 0 imply [a;, cjx] =0
for i < j < k. Similarly, one shows that [b;, ¢;5] = 0 for i < j < k.

Let us prove that the relations (B) for a;, b; imply relations (A) for z; :=
a; — @iq1, Yi := b; — bir1 (with the convention a,+1 = b,41 = 0). As before,
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[ai, a5] = [bi;bs] = 0, [ai, bj] = la, bi] imply [zi, 25] = [yi,y;] = 0, [ws,y;] =
[j,y:] (for any 4, 7). We set t;; := [x;,y;] for i # j, then we have t;; = t;;.
We have for j <k, tjr = ¢jk — Cj k1 — Cj+1,k + Cj+1,k+1 (We set ¢ i1 :=0),
s0 [ai, ¢ji] = 0 implies [Y5_, zir,tjp] = 0 for i < j < k. When i < j < k, the
difference between this relation and its analogue for (i+1, j, k) gives [x;, ;] =

0 for ¢ < j < k. This can be rewritten [x;, [z, yx]] = 0, and since [z;,z;] = 0,
we get [z, [zi, yk]] = 0, so [xj,t;] = 0, and by changing indices, [z;,tjx] =0
for j < i < k. Rewriting again [z;,t;;] = O0fori < j < kas [z, [y;, zx]] = 0 and
using [z;, i) = 0, we get [z, [z;,y;]] =0, i.e., [zg,t;;] = 0, which we rewrite
[xi,tjx] = 0 for j < k <. Finally, [z;,t;:] = 0 for j < k and ¢ ¢ {j, k}, which
implies [z;,¢;x] = 0 for 4, j, k distinct. One proves similarly [y;,¢;x] = 0 for
i, j, k distinct. 0

2.4 The formality of PB, ,

The flat connection d — " | K;(z|7)dz; gives rise to a monodromy represen-
tation
Hzo,r i PB1n = m1(C,Z0) — exp(ti,n),

which factors through a morphism iy, .(C) : PB1,(C) — exp(t;,). Let
Lie(ftzy ~) @ Lie(PB1,)c — ti,, be the corresponding morphism between
pronilpotent Lie algebras.

Proposition 5. Lie(uy,, ) is an isomorphism of filtered Lie algebras, so that
PB; , is formal.

Proof. As we have seen, Lie(PB1 ,,)c (denoted by Lie(PBj ;) in this proof)
is the quotient of the topologically free Lie algebra generated by ay,(;
(¢ =1,...,n) by the topological ideal generated by [as, o], [Bi, G5, [, 55,
[B1, ], Tog(ef, e=25) — log(e® 5, ¢o%), [ag, yiul, [ 7] where " =
log (e, er—ai),

This presentation and the above presentation (B) of t; ,, imply that there
is a morphism of graded Lie algebras p,, : t1,, — grLie(PB;,) defined by
a; — [ag], by — [0, where o — [a] is the projection map Lie(PBy,) —
gr,Lie(PBy ).

The morphism p,, is surjective because grlLiel” is generated in degree 1 (as
the associated graded of any quotient of a topologically free Lie algebra).

There is a unique derivation Ay € Der(t1,,), such that Ao(xi) = y; and
Ao(yi) = 0. This derivation gives rise to a one-parameter group of automor-
phisms of Der(t; ,,), defined by exp(sjo)(xi) = x; + sy, eXp(sANO)(yi) =y;.

Lie(py,,-) induces a morphism grlLie(fis, +) : grLie(PBq ) — t1,,. We will
now prove that

. T x
grLie(piz, ) © pn = €xp <72—on) ow, (4)

where w is the automorphism of t; ,, defined by w(a;) = —b;, w(b;) = 27ia;.
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Then fiz, , is defined as follows. Let Fy,(z) be the solution of
(0/02;)Fp,(2) = Ki(2|T)Fpy (2), Fuo(z0) =1
on U;; let
H, :={z=(z1,...,2n) | zi=a; +7b0;,0< a1 < --- < a, < 1}
and
Vii={z=(21,...y2n) |zi=a; +7b;, 0 < by < -+- < b, <1}
let FZFUI and Fz‘g be the analytic prolongations of Fy, to H, and V;; then
Fy(z+6;) = Fyl (2)hae (Xi), ¥ Fy (24 70;) = Fy (2) 11,7 (Y)-

We have log F,,(z) = — >, (z, — Z?) y; + terms of degree > 2, where t; ,, is
graded by deg(x;) = deg(y;) = 1, which implies that log ji,, -(X;) = —y; +
terms of degree > 2, log iz, -(Y:) = 2mix; — 7y; + terms of degree > 2.
Therefore Lie(piz,,r)(;) = 10g iz, +(A;) = —b; + terms of degree > 2,
Lie(tny +)(0i) = 10g pigy,+(B;) = 2mia; — 7b; + terms of degree > 2. So
grLie(pz, 7 )([ai]) = —bi, grlie(pz, ) ([8i]) = 2mia; — 7b;.

It follows that grLie(tiz, - )opy, is the endomorphism a; — —b;, b; — 27ia;—

7b; of t; p,, which is the automorphism exp <72L7T1A~0) o w; this proves (4).
Since we have already proved that p, is surjective, it follows that
grLie(u,,,») and p, are both isomorphisms. Since Lie(PB,) and t;, are
both complete and separated, Lie(u,, ) is bijective, and since it is a mor-
phism, it is an isomorphism of filtered Lie algebras. 0O

2.5 The formality of ﬁl,n
Let zg € U, and let [zg] € C(E,,n) be its image. We set
ﬁl,n =TT (C(ET, TL), [ZOD'

Then ﬁl’n is the quotient of PBy , by its central subgroup (isomorphic to
7?) generated by A; and B;. We have fiz, (A1) = e~ 2% and jiz, - (B1) =
e2mYwi=T i g0 Lie(fzy,~) (1) = —a1, Lie(tzy +)(61) = 2mwia; —7b1, which
implies that Lie(f4, ) induces an isomorphism between Lie(ﬁl,n)@ and tj 5.
In particular, ﬁl,n is formal.

Remark 6. Let Diag, := {(z,7) € C" x 9|z € Diag, .} and let U C
(C™ x 9) — Diag,, be the set of all (z,7) such that z € U,. Each element
of U gives rise to a Lie algebra isomorphism f,_, : Lie(PBy,,) =~ t; ,,. For an
infinitesimal (dz, d7), the composition pz4dz r+dr © o, l is then an infinitesi-
mal automorphism of {1’,1. This defines a flat connection over U with values
in the trivial Lie algebra bundle with Lie algebra Der(t; ,,). When dr = 0, the
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infinitesimal automorphism has the form exp(>", K;(z|7)dz;), so the connec-
tion has the form d — 3, ad(K;(z|r))dz; — A(z|7)dr, where A : U — Der(ty,,,)
is a meromorphic map with poles at Diag,,. In the next section, we determine
amap A: (C" x H) — Diag,, — Der(t; ,) with the same flatness properties as
A(z|T).

2.6 The isomorphisms By, (C) ~ exp(t1,n) X Sn,
B1,n(C) ~ exp(t1,n) » Sn

Let zo be as above; we define By, := 7 (C(FE,,[n]),[z0]) and By, :=
71(C(E,,[n]), [Zo]), where z ~ [x] is the canonical projection C(E,,n) —
C(E,,[n]) or C(E,,n) — C(E.,[n]).

We have an exact sequence 1 — PB;,, — B1, — S, — 1, We then de-
fine groups By ,(C) fitting in an exact sequence 1 — PBy ,(C) — By ,(C) —
Sp — 1 as follows: the morphism B, — Aut(PB;,) extends to By, —
Aut(PBy,,,(C)); we then construct the semidirect product PBy ,(C) x By p;
then PB; ;, embeds diagonally as a normal subgroup of this semidirect prod-
uct, and By ,(C) is defined as the quotient (PB1,,(C) x By ,,)/PB1 .

The monodromy of V. [, then gives rise to a group morphism B, —
exp(fl’n) X Sy, which factors through B; ,(C) — exp(fl’n) X S,,. Since this
map commutes with the natural morphisms to S, using the isomorphism
PB1,,(C) ~ exp(ilm), we obtain that By ,,(C) — exp(flm) xS, is an isomor-
phism.

Similarly, from the exact sequence 1 — ﬁl’n — El’n — S, — 1 one
defines a group El’n(C) fitting in an exact sequence 1 — ﬁl’n — El’n(C) —

S, — 1 together with an isomorphism Elm((C) — exp(ilm) X Sy,.

3 Bundles with flat connection on M, ,, and M [,

We first define Lie algebras of derivations of t;, and a related group Gy,.
We then define a principal G,-bundle with flat connection of M, and a
principal G, x S,-bundle with flat connection on the moduli space M |, of
elliptic curves with n unordered marked points.

3.1 Derivations of the Lie algebras t, , and fl,n and associated
groups

Let 0 be the Lie algebra with generators Ay, d, X, and da,, (m > 1), and
relations

[d’ X] = 2X? [da AO] = _2A07 [X7 AO] - da
[52771, X] = 0, [d, 52m] = 2m52m, ad(A0)2m+1(62m) = 0



178 Damien Calaque, Benjamin Enriquez, and Pavel Etingof

Proposition 7. We have a Lie algebra morphism © — Der(t1 ,,), denoted by
& &, such that d(z;) = x;, d(yi) = —vs, d(ti;) =0, X(x;) =0, X(y;) = x4,
X(tij) =0, Ao(z:) = yi, Ao(yi) =0, Ao(tij) =0, dam(z;) =0,

Sam(tij) = [tij, (ad @) > (t;3)],  and
< 1
d2m (Yi) = Z 3 D ladw)P(ty), (—ad @) (tiy)].
it pte=2m-—1
This induces a Lie algebra morphism d — Der(t; ,,).
Proof. The fact that A, d, X are derivations and commute according to the

Lie bracket of sl is clear.
Let us prove that 2, is a derivation. We have

o (tij) = tijaZ(adxi)2m(tij) ,

i<j

which implies that &, preserves the infinitesimal pure braid identities. It
clearly preserves the relations

(@i, 2] =0, [z5,y;] = tij, [Tk, tij] = 0, [; + x5,t;5] = 0.

Let us prove that d,, preserves the relation [yk, ti;] = 0. On the one hand,

[52m(yk),tij]:% > (=1)[[(ad 2k (trs), (ad 2x) (trs)]

p+g=2m—1
+(ad zg )P (tr;), (ad 2k ) (tk; )], i)

Y (D lad k) (ti), (ad ) ()]

ptg=2m—1
+[(ad )P (tr;), (ad zk)? (tri)], tis]
> (=D [(ad @k)P (tki), (ad zk) (try)], ]

p+qg=2m—1

=ty > (“DP(adwi)”(ad 2;) ([tri, tay))

p+g=2m—1

N |

On the other hand

[ Oam (ti)] = [yn, [tij, (ad 2:)*™ ()] = [tis, [yk, (ad 2:)>™ (£:5)]].
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Now
[r, (ad )" ()] = — > (ad@:)* ([tas, (ad ) (£5)])

a+pB=2m—1

=— Y (adw) [t (—aday) (b))
a+pB=2m—1

=— Y (adw)(—adz;)’([thi, b))
a+p=2m—1

= Y (1PN (ad @) (ad @y) [tk thy))-
ptg=2m—1

Hence (5o, (1), tij] + [k, dam (tij)] = 0.
Let us prove that do,, preserves the relation [y;,y;] = 0, ie., that
[02m (i), y5] + [Yis 02m (y5)] = 0. We have

[Yis 2m (y5)] = % [yi, > (1)q[(ad%‘)p(ta‘i),(ad%‘)q(fﬂ)}]

p+g=2m—1

+% > [yi, > (—1)q[(adl‘j)p(ta‘k)’(adl‘j)q(tjk)}]~

k#i,j p+qg=2m—1
Now
% [y > (1)q[(adxj)”(tji),(adffj)q(tji)}] — (i< J) (5)
p+g=2m—1

:—% vit i, D (—1)q[(ad$z‘)p(tz’j),(adxi)q(tij)]]

p+g=2m—1

= > (D yi 4y, (ad@)P (8)], (ad @) (135)]

p+g=2m—1

A computation similar to the above computation of [y, (ad z;)*™(t;;)] yields

[yi +yj, (adzo)P (85)] = (=17 Y [(adaw)®(ta), (ad 2)° (t50)],
a+p=p—1

SO

G)y= > lade)*(ty) [(ada)’ (ti), (ad ;) (t)].

atBtry=2m—2
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If now k # 4, j, then

oy 3 (1) (), (ad ;) ()

ptg=2m—1

= > (1)l (ad )P (t)], (ad ) (tm)].

pHq=2m—1

As we have seen,

lyj, (ad )P (t)] = (1)P > (—adz;)*(adxp) [tij, ta]
a+p=p—1

= (=P Y [(—adai)®(tiy), (ad k) (t)].

a+pf=p—1
So we get that [yi, % Zp+q=2m—1(*1)q[(ad z;)P(tk), (ad xj)q(tjk)]} equals

> llad@)*(ty), (ad )’ (t)], (ad )7 (£5)]

a+pB+y=2m—2
and thus [yi, 3 > ptqam—1 (1) [(ad z;)P (1), (ad xj)Q(tjk)]] —(i <> j) equals

> lad i) (tiy), [(ad zk)? (tir), (ad 25) 7 (t55)])-

a+f+y=2m—2

Therefore [yi, d2m (y;)] + [02m (3:), y;] = 0. N
Since 821, (>, i) = d2m (D, ¥) = 0 and Y, x; and ), y; are central, da,,
preserves the relations [Y, z;,y;] = 0 and [, xx, ti;] = D_f k. tij] = 0. It
follows that d,, preserves the relations [; + xj,ti5] = [yi + y;,ti;] = 0 and
[xi,y:) = — Zj‘#i ti;. All this proves that dom is a derivation.
Let us show that ad(ﬂo)QmH(Szm) =0 for m > 1. We have

ad(Ao)™ Gom)a)
= —(2m + 1)AZ™ 0 8a,, 0 Ag(;)
= —(2m =+ I)A%m [} SZm(yz)

= —(2m+ 1) A" > ad ;)P (ti;), (—ad )7 (ti;)]

1
2
Jli # i,
p+qg=2m—1

the last part of this computation implies that ad(A¢)?™ 1 (8am)(yi) = 0; there-
fore ad(Ag)?™*1(dam) = 0.
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We have clearly [X,d5,,] = 0 and [d,d,,] = 2m52m~. It follows that
we have a Lie algebra morphism 8 — Der(t; ). Since d, Ay, X, and by,
all map C(>_, i) ® C(3_, v:) to itself, this induces a Lie algebra morphism
0 — Der(t1 ). O

Let e, f, h be the standard basis of sls. Then we have a Lie algebra mor-
phism 0 — sly, defined by 62, — 0, d — h, X — e, Ay — f. We denote by
04 C 0 its kernel.

Since the morphism 0 — sls has a section (given by e, f,h — X, Ay, d),
we have a semidirect product decomposition 0 = 04 x sls.

We then have

tin X0 = (t1, ¥ 0y) X sly.

Lemma 8. t; , X 04 is positively graded.

Proof. We define compatible Z2-gradings of ? and t; ,, by deg(4o) = (-1, 1),
deg(d) = (0,0), deg(X) = (1, 1), deg(d2m) = (2m + 1,1), deg(z;) = (1,0),
deg(yZ) = (0, 1), deg(tij) = (17 1)'
We define the support of d (respectively, ; ,,) as the subset of Z? of indices
for which the corresponding component of ? (respectively, t; ;) is nonzero.
Since the Z; on the one hand and the g; on the other hand generate abelian
Lie subalgebras of t; ,,, the support of t; ,, is contained in N2 U{(1,0), (0,1)}.
On the other hand, v is generated by the ad(Ao)?(d2m ), which all have
degrees in N2>0. It follows that the support of 04 is contained in N2>0.
Therefore the support of t; , x 0 is contained in N2, U {(1,0), (0,1)}, so
this Lie algebra is positively graded. O

Lemma 9. t; , X 0 is a sum of finite-dimensional sly-modules; 0 is a sum
of irreducible odd-dimensional sla-modules.

Proof. A generating space for t; ,, is Y _,(CZ; ® Cy;), which is a sum of finite-
dimensional sl;-modules, so t; ,, is a sum of finite-dimensional sl;-modules.
A generating space for 9 is the sum over m > 1 of its sly-submodules
generated by the ds,,, which are zero or irreducible odd-dimensional; therefore
0. is a sum of odd-dimensional sla-modules. (In fact, the sly-submodule gen-
erated by d2,, is nonzero, since it follows from the construction of the above
morphism 94 — Der(ty ,,) that da,, # 0.) 0

It follows that t; ,, 04, and t; ,, x 04 integrate to SLa(C)-modules (while
0 even integrates to a PSLy(C)-module).
We can form in particular the semidirect products

G, = exp((t1,, ¥ 04)") x SL2(C)

and exp(d) x PSLy(C); we have morphisms G,, — exp(d;) x PSLy(C) (this
is a 2-covering if n = 1, since t; 1 = 0).

Observe that the action of S,, by automorphisms of t;, extends to an
action on t; , X 0, where the action on ? is trivial. This gives rise to an action
of S, by automorphisms of G,,.
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3.2 Bundle with flat connection on M, ,

The semidirect product ((Z")? x C) x SLa(Z) acts on (C" x §) — Diag,, by

(n,m,u) x(z,7) := <n+Tm+u (Z 6i> ,7') for (n,m,u) € (Z")? x C

and 8 iy 8
Q V4 T [0
(7 5) (z,7) := (’YT+5’ ’YT+5> for (’y 5) € SLo(Z)

(here Diag,, := {(z,7) € C" x 9| for some i # j,z;; € A:}). The quotient is
then identified with the moduli space M, of elliptic curves with n marked
points.

Set Gy, := exp((t1,5, 04 )") xSL2(C). We will define a principal G,,-bundle
with flat connection (P, Vp,) over My ,.

For u e C*, u = (¢ ° )ESLQ(C)CG and for v € C, "X := (} V) €

0
SL2(C) C G,,. Since [X, wz] = 0, we consistently set

exp (aX + szxz> := exp(aX)exp (Z bixi> .

Proposition 10. There exists a unique principal G, -bundle P,, over M ,
such that a section of U C My, is a function f: 7= (U) — G,, (where

7: (C" x $) — Diag,, —» M1,

is the canonical projection) such that
o f(z+6il7) = f(z + u(X_; 6i)l7) = f(2|7),
* J(a + 70T) = 2T Tal),
flzltr+1) = (z|7’) and
° f( | — ;) = 79exp (27“ (>, 7% +X)) f(z|7).
Proof. Let ¢z : C* x 9 — G, be a family of holomorphic functions (where
g € ((Z™)? x C) x SL(Z)) satisfying the cocycle condition

cgy (2|T) = c3(§' * (2|7))cy (2]|T).
Then there exists a unique principal G,-bundle over M/ ,, such that a section
of U C My, is a function f : 77Y(U) — G, such that f(g * (z|7)) =
cg(2|7)f (2|T).

We will now prove that there is a unique cocycle such that c(y0,0) =
€(0,5,,0) = 1, €(0,0,6,) = e ?2mM% cg = 1 and cp(z|r) = T%exp (@ (>, ziTi
+X)), where S = (§1), T = (] 3')-

Such a cocycle is the same as a family of functions ¢4 : C* x$) — G,, (where
g € SLy(Z)), satisfying the cocycle conditions cgqy (z|T) = ¢4(g’ * (2|7))cq (2|T)
for g,g' € SL2(Z), and cy(z + §;|1) = €™ %icy(z|7), co(z + T8i|T) =
e~2mM0%ic (z|7)e?™% and cy(z + u(}; 6:)|7) = cy(2|7) for g = (:g) c
SLy(Z).
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Lemma 11. There exists a unique family of functions cg : C" x 9 — Gy, such
that cgq (2|7) = c4(g" * (2|7))cy (2|T) for g, 9" € SLo(Z), with

es(alr) =1, en(zr) = rleBmm G B8N,

Proof. SLa(Z) is the group generated by S, T, and relations T* = =1, (ST)® =
T2, 8T% = T?S. Let <S T) be the free group with generators S, T then there
is a unique family of maps ¢z : C" x $ — Gy, § € (S, T) satisfying the cocycle
conditions (with respect to the action of (S, T) on C" x § through its quotient
SL2(Z)) and cg = cs, ¢y = cr. It remains to show that czi = 1, ¢ g7ys = C7e,
and cgje = Cjag-

For this, we show that c;.(z|7) = (—1)%. We have

ci2(2|7) = er(z/7| = 1/7)er (z|7)

= (—T)_dexp <—27Ti7' (Z(zj/r)fj + X)) Tdexp (? (Z 2;T; + X))

= (_1)d7
since TX774 = 72X, 72,77 = 175
Since ((—1)%)? = 19 = 1, we get cjs = 1. Since c¢g and ¢, are both
constant and commute, we also get cgf2 = Cf2g.
We finally have cg7(z|7) = cp(z|7), while ST = (1 '), (ST)? = (§ Z1),
so

cg7ye(2[7)

- T—1
1 \* T—1\°
:<ﬁ) eXp(—Qﬂisza:j—l—Qwi(l—T)X)( - )

2mi
d —
1X Texp - Ej 2;%; + X

) er (452 extaln

2mi _ . T
xp | ——7 szxj + 271'17_ —
J

271'1
= (—1)%exp Zz]x] +X | | exp = 1 Zz]x] +X

1
ex — z2;iT; + X
p - ZJJ+
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End of proof of Proposition 10. We now check that the maps c, satisfy
the remaining conditions, i.e., ¢(z + u(>_,; 8)|7) = c4(2|7), c4(z + &|T) =
eV %ic (z|7), cy(z + 76:|T) = e F0%ic (z|7)e? . The cocycle identity
g (2|T) = ¢4(g'*(2|T))cy (z|7) implies that it suffices to prove these identities
for g = S and g = T. They are trivially satisfied if ¢ = S. When g = T, the
first identity follows from ), Z; = 0, the third identity follows from the fact

that (X, Z1,...,%,) is a commutative family, and the second identity follows
from the same fact together with 7%z;7=¢ = 7Z%;. 0O
Set
0(z+zx|r) (¢ 0’ 1
= — - — — =k (2,
o) = grsar o (G ain) = Glal) ) + o5 = helzualr)

(we set f'(z|7) := (9/02) f (2|7)).

We have g(z,z|T) € Hol((C x $) — Diag,)[[z]], therefore g(z,adZ;|7) is
a linear map t;,, — (Hol((C x ) — Diag;) ® t1,,)", so g(z,ad@;|7)(t;;) €
(Hol((C x ) — Diag;) ® t1,,)". Therefore

g(z|T) == Zg(zij,adfih)(fij)

is a meromorphic function C* x  — il’n with poles only at Diag,,.
We set

_ 1
A = A — — E E 7)o —
(z|7) o Ay o 2 a2n Eop42(T)02n + or g( I7),

where az, = —(2n + 1)Bay,12(2i7)?"*2/(2n + 2)! and B, are the Bernoulli
numbers given by z/(e* —1) = > (B, /r!)a". This is a meromorphic func-
tion C" X § — (t1,, ¥ 04)" xny C Lie(G,,) (where np = CAy C slp) with
poles only at Diag,,.

For ¢¥(z) = > o, bona®™, we set 8y = Y. o boplon, Ay = Ay +
> o1 bandoy,. If we set B

o(x|r) = =272 = (0'/0) (x|7)+ (7> + (0 /) (2|7)) ju=0 = 9(0,0|7) — g (0, z|7),
then @(l’|7’) = ZHZI a2nE2n-|-2(7—)x2n7 so that
A(2lr) = === Apmy + ——g(2]7)
BT = 7o Setn) T o g 9\ET)-

Theorem 12. There is a unique flat connection Vp, on P, whose pullback
to (C™ x §)) — Diag,, is the connection

— A(z|r)dr — Z K;(z|7)dz

on the trivial G,,-bundle.
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Proof. We should check that the connection d — A(z|r)dr — Y, K;(z|7)dz; is
equivariant and flat, which is expressed as follows (taking_into account that we
already checked the equivariance and flatness of d — ), K;(z|7)dz; for any 7):

(equivariance) for g = (3 g) € SL»(Z)

1 R A 7 (zlr
L (510 ) = MGy el (Ratai) )
+1(0/0)cq sl (o |r>‘1
Az + &|1) = z—l—uZ(S |T) = A(z|T)
and  A(z + 76i|7) = e 2™ (A(z|r) — Ki(z|7)), (7)
1 A z ar + 5 _ co(z|T) (A(z|T
e (51 ) = AdCe(aln))(Aai) Q
+72+6 Zz,Ad cg(2|7)) (Ki(2|7))
TN 1,
+ (EJFWT—HS; ) } I

(flatness) [0/01 — A(z|1),0/0z; — K,(z|T)] = 0.

Let us now check the equivariance identity (6) for K;(z|7). The cocycle
identity cgq (2|7) = c4(g'*(2|T))cy (z|7) implies that it suffices to check it when
g=Sand g =T. When g = S, this is the identity K;(z|7 + 1) = K;(z|7),
which follows from the identity 6(z|7 + 1) = 6(z|7). When g = T, we have to
check the identity

e <_| _ l) = Ad (79 C 5 0) (Ri(alr)) + 2mizs. (9)
T T T

We have
27iz; — Ad(e*m (i =T (g, /1)
= —Ad(e?mi = 2)) (g, /1) (since Ad(e*™TX)(g;/7) = i /T + 2mi;)

7; eQTriad(Z,C ZkTE) _ 1

_ b 7.0
T ad(d>", zkTk) zj:zj%, T

_ e e2miad(T, zxZk) _ | Z @f--
T ad(zk Zk‘j:k) Glii T !
7@ B e2miad(} ), zeTr) _ (@{)
ad(zk ij:k) T Y

Jli#i
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T ad(z;;Z;) T

Jli#i
_ _@ N Z e27riad(zij§:7¢) -1 t_ﬂ .
T L ad(7;) T /)’
jli#
therefore
1 eZﬂizijada’ci -1 _ ~ 2mi . B .
; T(tz]) — Yi = —Ad (Tde27' (ijzxz-&-X)) (yz)—i—Q’ﬂ'l.’El
j 2
(10)
We have 0(z/7| — 1/7) = (1/7)e™/7*0(z|7); therefore
1 1 . 2mizax 1
-k <E,x - —) = 2™ (2, 1| T) + SE—— (11)
T \T T xT

Substituting (z,z) = (zj,ad Z;) (j # i), applying to ¢;;, summing over j and
adding up identity (10), we get

1 Zii _ 1\ - B
- Z k <£7ad$z‘ - ;) (tij) — Ui
Jli#i
= ) Tk (2, rad 7|7) (Fij)
Jli#i
2mi

—Ad (Tde B (Ziz"’jﬁX)) (¥i) + 2miZ;.

Since

62ﬂizijad iik(zij, Tad i’i |T) ({U)

= Ad(Tde(%ri/T)(Zi z7¢§:7¢+X)) (]C(Zij, ad .fz)(t_w)>,

this implies (9). This ends the proof of (6).

Let us now check the shift identities (7) in A(z|7). The first part is imme-
diate; let us check the last identity. We have k(z + 7, z|7) = e 2™%g(2, z|7) +
(e=2m% —1)/x, therefore g(z + 7, 2|7) = e~ 2™%g(z, 2|7) — 2mie 2™k (2, z|7) +
1 (% — 2#16_2”1”). Substituting (z,z) = (zij,ad ;) (j # i), applying
to ¢;;, summing up and adding up D kllkI 9(zk1, ad T |7) (1), we get that
9(z + 76;|7) equals

e—27riad Z; (g(Z‘T)) _ 271_16—27riad T, (Rl (Z|7’) + gz)

—2miad Z;

1 1—e . —27iad &; T
+ Z ad T; ( ad T; me ) ( J)
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_ e—27riad z; (g(z|7’)) _ 27Tie—27riadac ([’( ( ‘T + yl)

1— 6727riad T; ori —oriad 7
— (—ad:m — zTle
—27iad Z; . —2miad Z; ¢ o 1 76_2Wiadii —
=e "(g(z|7)) — 2mie H(Ki(z|r)) = ——=———(%i);

ad z;

1 e—21r1ad T;

on the other hand, we have e~2™2d%i(Ag) = Ay + T(gz) (since
[Ao, Z;] = 7:); therefore g(z+0;|7) — Ag = e~ 2™8d%i (g(z|7) — Ag—27iK;(z|7)).
Since the da, commute with 7;, we get A(z + 76;|7) = e~ 2™2d%i(A(z|1) —
K;(z|7)), as desired.

Let us now check the equivariance identities (8) for A(z|7). As above, the
cocycle identities imply that it suffices to check (8) for g = S, T. When g = S,
this identity follows from >, K;(z|7) = 0. When g = T, it is written

Tzﬂ(ﬂ%)—Ad(CT(m))( Zzz i )+§—2mx (12)

The modularity identity (11) for k(z,z|7) implies that
1 1 : 27i .
=9 <f,x| - —) = 25 (2, mal7) + Tk (2, mal )
T T T T

1— e27riza: 2miz e27riza:

7222 2z

This implies that

3 e2mizad g (o rad 2ilr) (Eg)

1<J
21 . _
4 30 I etninin i rad ) )

27r1z” ad T;

27.(.12,” e27‘riz71jad;ii B
tii).
- Z ( 72(ad 7;) + 72 ad Z; (t)

1<j

We compute as above

> e Tig (s, rad T|7) (Fi)

1<j

= Ad (e 2550 (g (7)),
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2
S e B rad 7|7 (B
-

1<j
2 o ada _
=X i | 3 et (g, rad aifr) 7)
dlii
(using k(z,z|7) + k(—z, —z|T) = 0), and
> et Ty, rad 24|7) () = Ad (Tde@@i mﬁx)) (K;(2|7) + F:)-
i<j

Therefore

o (21- 1) = AdCer(alr) () )+ 2 S atelr) + 7 )

27r1z”ad T;

which implies

2’/T12’ij eZmz”adxl _

ti',

+Z< 2(ad z;) * 72 ad Z; )(J)
SA(Z1-2) = Adler(al) [ Azir) +
= ) cr(z|T z|T

1<]g
fQ(ZIT))
+ Ad CT ( Z Zzyz>
1 1— 627r1z”adm1 2’/TiZZ'j eZ'n’izijad z; B
R L
+ 27ri;< 72(ad 7;)? + T2 ad Z; > (t)

1 1
+ Q_M(Ad(CT(Z‘T))(Asa(*IT)) - T_QAAP(*\—l/T))‘

\1I>—‘

To prove (12), it then suffices to prove

1 1 1— 627rizijad T; 27TiZi' e27riz7¢jad T; _
Ad SN g |+ — j i
(er(2]7) (T Zz: zlyl>+ 2mi ; ( 72(ad 7;)? + T2 adz; ) (t5)

1 1 d .
+ %(Ad(CT(Zh))(A@(*\r)) — 7_—2A¢(*|,1/T)> = ; —27iX. (13)

We compute

1 _ 1 _ 2mi _

Ad(cr(zl|T)) (; Z%%) =2 2i¥i + - ZiT;
i i

27izijad T; 1

1 e -1 _
+ <_7_2) ey e G
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We also have Ad(cr(z|7))(Eant2(T)d2,) = T%ngrz (—%) dap, since [O2n, Ti] =
[62n, X] = 0 and [d, d2,,] = 2nd2,, and since Fa,12(—1/7) = 72" 2 Ey, 1o(7),
this implies
Ad(er(2]7)) (g (xir)) = dp(x]-1/7)-
We now compute Ad(cr(z|7))(Ao) — (1/72)Ag. We have
Ad(er(z|7))(Ao) = Ad(e?™ X1 %%4) o Ad(r%e™/MX) (A)
and '
Ad(r2eP /XY (Ag) = (1/72) Ag + (271/7)d — (2i)2 X.
Now Ad(e2™X:%%)(X) = X, Ad(e?™ 24 %%)(d) = d — 2mi Y, z;7;. We now
compute

Ad(TZ 255 ()

e27riziz7¢ad§:7¢ -1
= A 27 7 A
0 + 27r1ad(zz Zziz) lezth 0

2wy, ziad Ty _ 1

e

= AO — — Zﬂ

ad(y, 2i:) (Z Z )
2™ Y iz 2i12d T _

=4 - - (zi7i)
’ Zz: ad (224 2i )

1 6271—127”#" zjiadZ; 1
= A() — 27'1'122@2 + — — — 27
Z ( ad(Zﬂj;éi 2ji%;) ( ad(Zﬂj;éi 2ji%;)

K2

E 2§iZj, Zilji

Jli#i
A 22 o Z 1 e27riZjiad3_0j -1 ori (Z { )
= - T1ZiYi — - - — 4T itig) |5
O T 2 () \ T ad () /
the last sum decomposes as

27izjad T _

2 ad(lsfj) <€ ad(z;,1,) - - 27“) (zitij)

1<j
1 eQTriz]-iad T; 1 B
— 9 g
+2 ) ( ad(75) ’“> (zitiy)

i>j
1 eQTriz]-iada_cJ- -1 ) B
2 ) ( 2d(z5:7;) (zitiy)
1<J
1 e27riz7¢jad92i -1 B
+ ad(@) ( ad(z”@) ﬂ-l) (Z] z])
1 eQTrizi]-ad T; 1

=2 ad(z;) ( ad(z;;7;) %i) (ziitis).

i<j
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SO
Ad(e%iZi zin‘u)(AO) = Ay — 27?12 Z¥i
eZ‘ITiZijad Ti __ 1 > _
_ — 27 ) (2itij);
3 " < e (ziitis)
and finally

1
Ad(er(2]7))(Apgsir) = T—Aw(*Hm
e27rizijad:ii 1

27r1 - _
- ZiYi — — — 2mi th
Z Yi 72 Z ad (Z;) < ad(z;; ;) 7r1> (zjitis)
27r1
( — 27 Z zm) (271) X

which implies (13). This proves (12) and therefore (8).
We prove the flatness identity [0/0T — A(z|r),8/0z; — K;(z|7)] = 0. For
this, we prove that (9/07)K;(z|7) = (0/07)A(z|7) and [A(z|7), K;(z|T)] =
Let us first prove that

(0/07)Ki(2|7) = (0/02) A(z|7). (14)

We have - )
(0/0m)Ki(z|r) = Y (9-k) (i, ad 2| 7) (E:5)
Jli#i
and (0/0z;)A(z|r) = (2mi) 1 Zj‘#i (0.9)(zij,ad Z;)(ti;) (where 9, := 0/0T,
0, = 0/0z), so it suffices to prove the identity

(0-k) (2, 2|7) = (2m1) 71 (D:9) (2, 2|7),

Le., (0-k)(z, z|T) = (2m1) "1 (9.0:k)(2, z|7). In this identity, k(z,z|7) may be
replaced by k(z,z|7) := k(z,z|7) + 1/x = 0(z + z|7)/(0(2|7)0(x|T)). Dividing
by k(z,z|7), the desired identity is rewritten as

2mi (%(z +x|T) — 8;9 (z|7) — %(xﬂ)

- (%) (2 + x|7) + <% z+ ) — 5/( 7)) <%l(z+x7) - %/(CEIT))

(recall that f'(z|7) = 90.f(z|7)), or taking into account the heat equation
4mi(0-0/0)(z|T) = (0" /0)(z|T) — 127i(0-n/n)(7), as follows:
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2(§ (NG @) - G@ln G +alr) - GENGE+aln) (1)
+%(z\7) + %(mh‘) + T(z +z|T) — 127ri%(7’) =0.

Let us prove (15). Denote its L.h.s. by F(z,x|7). Since (z|7) is odd w.r.t. z,
F(z,x|7) is invariant under the permutation of z,z, —z — . The identities

(6"/0)(z + 7I7) = (¢0'/0)(2|7) — 2ni

and

(0" /6)(= + r|r) = (8" /9)(zI7) — 4mi(8' /6) (=|r) + (2mi)?

imply that F(z, z|7) is elliptic in z, 2 (w.r.t. the lattice A, ). The possible poles
of F(z,z|r) as a function of z are simple at z = 0 and z = —z (mod A,),
but one checks that F'(z,z|7) is regular at these points, so it is constant in z.
By the &3-symmetry, it is also constant in x; hence it is a function of 7 only:
F(z,z|t) = F(7).

To compute this function, we compute

F(z,007) = [=2(0'/0) = 2(0' /6)* + 20" /6] (=|7) + (6" /0) (0] ) — 127i(9, /) (7);

hence
F(r) = (0"/0)(07) — 12mi(0-n/n)(7);

The above heat equation then implies that F(7) = 47i(0,60/60)(0|7). Now
¢'(0]7) =1 implies that 0(z|7) has the expansion 0(z|7) = 2+ >, <, an(7)2"
as z — 0, which implies (9,0/60)(0|7) = 0. So F(r) = 0, which implies (15)
and therefore (14).

We now prove

[A(z|7), Ki(z7)] = 0. (16)

Since 7 is constant in what follows, we will write k(z,x), g(z,x), ¢ instead of
k(z,z|T), g(z,x|T), @(*|T). For i # j, let us set g;; := g(z”,adxl)( ij). Since
g(z,|7) = g(—2, —x|7), we have g;; = gj;. Recall that K;; = k(z;;,ad Z;)(t;;).

We have

27i[A(z|7), K;(2|T)] (17)
= |4, + Z 9ij, —Yi + Z Kij
i,5]i<j Jli#i
= [Ay, 7] + Z ( — [Ap, Kij] + [7i, 945] + [gij,f{iﬂ)
Jli#i

+ Z ([?iagjk] + [gik + gj, Kij) + [g5 + gjk,Kz’kD-
J.k|i#ik#i,5<k
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One computes

(A6, 9:] =Y _[falad :)(Eij), ga(—ad @) (E:5)], (18)

[e%

where Y, fa(u)ga(v) = 20220 1 f(z) € C[[z]], then

[Ao, flad ) (E5)] = [5i, f'(ad &) (E5)] = D _[ha(ad @) (i), ka(ad 2:) (Fij)]

[e3%

v 3 MR I D AR 0 )

k|ki,j
where
S ha(hka(v) = 5 (5 (Fluto)—f )0 f () = (Futv)—f (o) ~uf ().

Since g(z, z) = k. (2, ), we get

—[A0, Kij) + (56 9i) = = Y [ £ (ad 2:) (E;), g1 (ad ;) (£:)] (19)
k(zij,ad Z;) —k(zij, —ad T;) — (ad T; + ad ) ky (25, —ad Z;) , .

E tlat }

+ (adi‘z+adi‘])2 ([ J Jk:})

klk£i,j
where Y, fi7 (u)g¥ (v) equals
(;1: (K (21t 4 v) = k(2i5, u) — vy (215, 1))
b (k(zig, u + ) = K(zi5,0) = uka(245,0)) ).
For f(z) € C[[z]}, we have

[0, f(ad2:)(Fi5)] = Y _[la(ad 2:) (Fij), ma(ad 2:) ()],

[e3%

where ) lo(u)mq(v) = f(u+ v)p(v); therefore

— [0p Kijl = = [l (ad 7) (E:), m (ad 7:) (E5)] (20)

[e3

where > 19 (u)m¥ (v) = k(zij, u+ v)p(v).
For j,k # i and j < k, we have

(SIS

Wi, i) + [9ik + Gins Kij) + [9i5 + gins Kk
= [Ui> 9jk) — [gris Kji] — (95, Kni) + 9k, Kij) + [95k, Kik),
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and since for any f(z) € C[[z]],

 fladzy) — f(-adzy) - -
ad]:ijJradjk ([tij k),

(9, f(ad ) (Ex)] =

we get

[Gi> gir] + [9ik + gjns Kij] + 965 + gj, Kik]
_ ( ~ 9(zk,ad T;) — g(zjk, —ad Tx)
adz; + ad Ty
—9(2ki, ad T )k (253, ad T;5) + 9(2ji, ad T;) k(2ks, ad Tp) (21)

—9(21j,ad Tx )k (2i5, ad Z;) + g(2jx, ad T;) k (2, ad ffz')) ([tij- tjk])-

Summing up (18), (19), (20), and (21), (17) gives

27i[A(z|7), K. Z Z F” (ad z;)( ‘)aGi (ad Z;)(t zj)]
Jli#i o
+ Z H(zij, zir, —ad &, —ad Zp ) ([ti5, tjr)),
G klji, kA

where > F!9(u)GY (v) = L(zi5,u,v),

and

(k(z,u+v) — k(z,u) — vkz (2, u))

%=

H(z, 7' ,u,v) =
,%(k(z',u +v) — k(2',v) — uks(2',v))
1
u—+v
—g(—Z/, —v)k(—z, _u) + g(—Z, _u)k(_z/7 _U)
—g(z — 2, —v)k(z,u +v) + g(2' — 2z, —wk(z',u + v).

(g(z' —z,—u) — g(z/ — z,v))

Explicit computation shows that H(z,z',u,v) = 0, which implies that
L(z,u,v) = 0 since L(z,u,v) = —%H(z, z,u,v). This proves (16). O

Remark 13. Define A(z|7) by the same formula as A(z|7), replacing Z;, ¥
by x;,y;. Then d — A(z|r)dT — ", K;(z|7)dz; is flat. This can be interpreted
as follows.
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_ Let N C SL(C) be the connected subgroup with Lie algebra CAg. Set
N, := exp((t1,, X 04)") X Ny, N,, := exp((t1,, X 0+)") X N4 and G,, :=
exp((t1,n X 04)") % SLy(C). Then we have a diagram of groups

NHHNn
1l
G, — G,

The trivial N,,-bundle on () x C"*) —Diag,, with flat connection d— A(z|7)dr —
S, Ki(z|7)dz; admits a reduction to N,,, where the bundle is again trivial and
the connection is d — A(z|7)dr — >, K;(z|7)dz;.

((Z*)? x C) x SLy(7Z) contains the subgroups (Z")?2, (Z")? x C, (Z")? %
SL2(Z). We denote the corresponding quotients of (C™ x $) — Diag,, by C(n),
C(n), M1 ,,. These fit in the diagram

C(n) — C(n)
1 !
Ml,n - Ml,n

The pair (P, Vp,) can be pulled back to G,,-bundles over these covers of
M1 . These pullbacks admit G-structures, where G is the corresponding
group in the above diagram of groups.

We have natural projections C(n) — $, C(n) — $. The fibers of 7 € §
are respectively C(E,,n) and C(E,,n). The pair (P, V,,) can be pulled back
to C(E;,n) and C(E,,n); these pullbacks admit G-structures, where G =

exp(t1.,) and exp(t; ), which coincide with (P, ,, V., ,) and (P, -, V,.,).

3.3 Bundle with flat connection over M [,

The semidirect product ((Z")2 x C) x (SL2(Z) x S,,) acts on (C" x §) — Diag,,

as follows: the action of ((Z")? x C) x SLy(C) is as above and the action of S,,

is 0% (21,...,2n,T) := (25-1(1) - - - » Zo~1(n), T)- The quotient then is identified
We will define a principal G,, x S,-bundle with a flat connection

(P Ve, ) over My ).

Proposition 14. There erists a unique principal Gy, x Sp-bundle Py, over
My () such that a section of U C My ) is a function f : 7 HU) — Gy, xSy,
satisfying the conditions of Proposition 10 as well as f(oz|T) = of(z|T) for
o € Sy (here @ : (C" x §) — Diag,, — My [, is the canonical projection,).

Proof. One checks that ocy(z|7)0™! = ¢,5,-1 (071 2), where § € ((Z")? x C) x
SLy(Z), o € Sy,. It follows that there is a unique cocycle ¢(5,,) : C" x § —
G, x Sy, such that c(5 1) = ¢z and ¢(1,5)(2|T) = 0. O
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Theorem 15. There is a unique flat connection Vp, on Py, whose pullback
to (C" x §) — Diag,, is the connection d — A(z|r)dr — >, K;(z|7)dz; on the
trivial G,, x Sy, -bundle.

Proof. Taking into account Theorem 12, it remains to show that this con-
nection is Sy-equivariant. We have already mentioned that ), K;(z|7)dz; is
equivariant; A(z|7) is also checked to be equivariant. ]

4 The monodromy morphisms I [, — G, X S,

Let I' [,) be the mapping class group of genus 1 surfaces with n unordered
marked points. It can be viewed as the fundamental group m (M.}, *), where
* is a base point at infinity that will be specified later. The flat connection
on M [, introduced above gives rise to morphisms v, : I [] — Gn X Sy,
which we now study. This study in divided in two parts: In the first, analytic,
part, we show that -, can be obtained from 7; and 72, and show that the
restriction of v, to EML can be expressed in terms of the KZ associator only.

In the second part, we show that morphisms El,n — exp(il,n) X S, can be
constructed algebraically using an arbitrary associator. Finally, we introduce
the notion of an elliptic structure over a quasi-bialgebra.

4.1 The solution F™) (z|1)
The elliptic KZB system is now
(0/02)F (z|r) = K;(z|7)F(2|7), (0/07)F(2|r) = Ale|r)F(z|7),

where F'(z|7) is a function (C" x ) — Diag,, D U — G,, x S, invariant under
translation by C(>_, ;). Let D,, := {(z,7) € C" X 9|z; = a; + biT,a4,b; €
Riag < ag < - < ap < a1+ 1,1 < by < -+ < by < by + 1}. Then
D,, € (C* x §) — Diag,, is simply connected and invariant under C(}>_, J;).
A solution of the elliptic KZB system on this domain is then unique, up to
right multiplication by a constant. We now determine a particular solution
F™ (z|7).

Let us study the elliptic KZB system in the region z;; < 1, 7 — ico. Then
Ki(2|7) = 325 5 tis /(i — 2) + O(L).

We now compute the expansion of A(z|7). The heat equation for ) implies
the expansion U(z|r) = n(7)*(z + 2710, logn(7)z® + O(z%)), so (z|r) = z +
2mid,log n(7)x3 4+ O(x®), hence

/

0.21r) = (§ ) (alr)+ 25 = 470 10g 1(r) + 0(e) = ~(=* Er) +O(0),
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since Fa(7) = zma log n(7). We have ¢(0, z|7) = ¢g(0,0|7) — p(z|7), so

(0 LB|T Zagkx E2k+2( )
k>0

where ag = 72/3. Then

Afzlr) = 72L7ri<A0 + )k Bopga(7) 0ok + Y (ad )M ( ZJ))) + o(1)

k=0 i,5]i<j

for z;; < 1 and any 7 € $). Since we have an expansion Eoi(7) = 1+
2150 ape?™7 as T — ico, then using Propositiqn 85 with u, = zp1, Up_1 =
Zn—11/%n1y - -, Uz = 221/231, and u; = ¢ = €*™7, there is a unique solution
F™(z|7) with the expansion

(n) ti2  t13+t23 tint...+tn_1,n
F'"(z2|7) o~ 251225 2

X eXp( - # (Ao + Z agk (ar + Z(ad j:i)2k(t_ij)>))

k>0 i<j

in the region z9; <K 231 € +++ K 21 € 1, 7 — ioo, (z,7) € D, (here
2zij = %; — %j); here the sign ~ means that any of the ratios of both sides has
the form 1437, 0>, . . AU (uy L uy), where the second sum is
finite with a; > 0,4 € {1,...,n}, 7“Z A (L uy,) has degree k, and is
O(u;(loguy)®™ - - - (log up)®).

4.2 Presentation of I [,

According to [Bir69b|, I, = {B1 n X SLQ( )}/Z, where SLQ( ) is a
central extension 1 — Z — SLQ( ) — SLg(Z) — 1; the action a :
SLa(Z) — Aut(By,,) is such that for Z the central element 1 € Z C SLy(Z),
az(r) = Z'x(Z')~1, where Z' is the image of a generator of the center of
PB,, (the pure braid group of n points on the plane) under the natural mor-
phism PB,, — El,n; El’n X SLa(Z) is then El’n x SLo(Z) with the product
(p, A)(p', A") = (paa(p’), AA’); this semidirect product is then factored by its
central subgroup (isomorphic to Z) generated by ((Z’)~%, Z).

The group I p, is presented explicitly as follows. Generators are o; (i =
1,...,n—1), A4;,B; (i =1,...,n), Cjx, (1 < j <k <mn), ©and ¥, and
relations are

0;0i4+10; = 0i4+10;0i+1 (Z = 1,. ey — 2), 00 = 0404 (1 <i< ] < n),
O';lXiO';l = XiJrl, O'Z'Y;'Ui :Y;'Jrl (’L = ].,...,TL* 1),
(00, X;) = (05,Y;) =1 (G e{l,....n—1},j€{l,....n},j #i,i+ 1),
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7 =Ciit1Cit1,i42C, 1 (i=1,...,n— 1),
(Ais Aj) = (Bi, Bj) = 1(any i,j), A1 =DB1=1,
(Br, AgA; ) = (BkB; ', Ax) = Cjr (1< j <k <n),
(Az,c]k) (Bi,Cjr) =1 (1<i<j<k<n),
OA607' =B, O0B,67'=B;AB; ",
VAW = A, UBWT'=BiA;, (0,00) = (¥,0:) =1,
(7,0%) =1, (OV)P=6"=C1y---Cp_1n.

Here X; = A; AZJrll, Y; = BiBijrll for i = 1,...,n (with the convention

Apt+1 = Bpy1 = Cj py1 = 1). The relations imply

Cik = 0j 41, k" Ojbn—kjtn—k+1,..n05j4+1,...n—ktjtl " Ok—1k,..n,

where 0;41,...;j = 0j—1---0;. Observe that Cia,...,Cp_1, commute with
each other.
The group SLa(Z) is presented by generators ©,¥, and Z, and relations Z

is central, ©* = (OW¥)3 = Z and (¥, 0?) = 1. The morphism SLy(Z) — SLa(Z)
is @ — (( 0 1)) U ((0 1)), and the morphism I7 j,) — SLa(Z) is given
by the same formulas and A;, B;,0; — 1.

The elliptic braid group By, is the kernel of I't [n) — SL2(Z); it has the
same presentation as I [,), except for the omission of the generators ©,¥
and the relations involving them. The “pure” mapping class group I, is the
kernel of I'y ;) — Sh, Ai, Bi, Cji, — 1, 0; +— 0y; it has the same presentation

as I') [n), except for the omission of the ;. Finally, recall that ﬁl’n is the
kernel of Iy ) — SLa(Z) x Sy.

Remark 16. The extended mapping class group fl,n of classes of not neces-
sarily orientation-preserving self-homeomorphisms of a surface of type (1,n)
fits in a split exact sequence 1 - Iy — Iy — Z/2Z — 1; it may be
viewed as {PB1 n X GLo(Z )} /Z; it has the same presentation as I, with

the additional generator Y subject to
¥?=1, yoxt=e1! xurl=vl

YAYT =AY YBY T = AB AT

4.3 The monodromy morphisms v, : I'[n] — Gn X Sy

Let F(z|T) be a solution of the elliptic KZB system defined on D,,.

Recall that D,, = {(z,7) € C"* X 9|z, = a; + biT,a;,b; € Rya1 < a2 <
< ap < ap+ 1,y < by < --- < by, < by 4+ 1}. The domains H,
{(z, )E(C”xf)\zz—ari—bTaz,b ER a1 <az < -+ <ap<a+1} and
D, :={(z,7) € C"x9|z; = a;+b;7,a;,b; €R, b1<b2< <+ < by < by+1} are
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also simply connected and invariant, and we denote by F# (z|7) and FY (z|r)
the prolongations of F(z|7) to these domains.

Then (z,7) — F (Z+Z;'L:1 6i|7') and (z,7) > 2@t tE) PV (74
T (Z?:1 61) |7') are solutions of the elliptic KZB system on H,, and D,, re-
spectively. We define AF', Bf' € G,, by

FH (z + i 52-\7) — FH(g7) AT,

Jj=1

i

ettt Y (747 (36 )Ir) = FY (2lr) BY
J=1
The action of T-! = ((916)) is (z,7) — (—z/7,—1/7); this trans-

formation takes H, to V,. Then (z,7) — cp-1(z|7) " 'FY (-z/7| — 1/7) is
a solution of the elliptic KZB system on H, (recall that cp-1(z|7)™! =
e27ri(—21z1£1+TX)(_T)d — (_T)de(Qﬂi/T)(ziZiii—‘rX)). We define ©F by

cr1(z|T) P FY (—z/7| — 1/7) = FH(z|7)OF.

The action of S = (((1) %)) is (z,7) — (z,7+1). This transformation takes
H,, to itself. Since cg(z|7) = 1, the function (z,7) — F*(z,7+1) is a solution
of the elliptic KZB system on H,,. We define ¥F" by

FH(z|r +1) = F (z|r)o".
Finally, define o by

oiF (0] '2|7) = F(z|r)o],

K2 ?

where on the Lh.s. F' is extended to the universal cover of (C" x ) — Diag,
(04 exchanges z; and z;41, 2z;+1 passing to the right of z;).

Lemma 17. There is a unique morphism I'y ) — Gy xSy, taking X to XF,
where X = A;, B;,0, or V.

Proof. This follows from the geometric description of generators of I [,: if
(2z0,70) € Dy, then A; is the class of the projection of the path [0,1] 2
t— (zo +t2?:i 6j,70), B; is the class of the projection of [0,1] 3 t —

(ZO +tr Z;L:Z 05, 7'0), O is the class of the projection of any path connecting

(2o, 70) to (—zo /70, —1/70) contained in H,,, and ¥ is the class of the projection
of any path connecting (zg, 79) to (zo, 7o + 1) contained in H,. O

We will denote by vy, : I',[n) — Gy % S, the morphism induced by the
solution F(™)(z|r).
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4.4 Expression of vp, : I't|[n] — Gpn % Sy using 71 and 72

Lemma 18. There exists a unique Lie algebra morphismd — t1 , %0, x +— [z],
such that [02y,] = don + ZKJ.(adji)Q”(fij), [X] =X, [Ao] = Ay, [d =d.
It induces a group morphism G1 — Gy, also denoted by g — [g].

Lemma 19. For each map ¢ : {1,...,m} — {1,...,n}, there exists a Lie
algebra morphism t1 , — ti,m, x — x?, defined by (T;)? = Zi,€¢_1(i) T,
(5:)? = ey Uity (tij)? = Dives-1().€6-1() iy

It induces a group morphism exp(ti,) — exp(ti ), also denoted by

— g?

gr=g.

The proofs are immediate. We now recall the definition and properties of
the KZ associator [Dri91].

If k is a field with char(k) = 0, we let tX be the k-Lie algebra generated
by ti;, where i # j € {1,...,n}, with relations

tis = tij,  [tij +tin,tix) =0, [tij,t] =0

for i, j, k,1 distinct (in this section, we set t, := t). For each partially de-
fined map {1,...,m} D Dy 2, {1,...,n}, we have a Lie algebra morphism
t, — tm,  — 2%, defined by"7(1fz-J-)‘ls = Zi,e¢_1(i)7jle¢_1(j) tyj. We also have
morphisms t, — t1.,, t;; — ;;, compatible with the maps z — 2% on both
sides.

The KZ associator & = D(t12,t23) € exp(ts) is defined by Go(z) = G1(2)®,
where G; 3]0, 1[— exp(t3) are the solutions of G’(2)G(2) ™! = t12/2+ta3/(2—1)
with Go(z) ~ 2%2 as z — 0 and G1(z) ~ (1—2)'? as z — 1. The KZ associator
satisfies the duality, hexagon, and pentagon equations (37), (38) below (where
A = 27i).

Lemma 20. y3(A43) and v2(Bs) belong to exp(im) C Go.

Proof. It F(z|t) : H» — Gz is a solution of the KZB equation for n = 2,
then AL = FH (z+ 65|7)FH (z|7)~! is expressed as the iterated integral, from
zo € D,, to zg + 62, of Ka(z|7) € iLg; hence AL € exp(im). Since v2(Az) is a
conjugate of AL’ it belongs to exp(im), since exp(im) C G2 x S5 is normal.

One proves similarly that v2(B2) € exp(t 2). 0O

Set
@, = plroiTLiitleon o plen=2n=1ln o exp(ty).

We denote by x + {r} the morphism exp(t,) — exp(t;,) induced by
tij = {ZJ

5We will also use the notation 't for %, where I; = ¢~ 1(i).
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Proposition 21. If n > 2, then

1(O) = (@) FT s, 7, () = [y ()]l E Eocs B,
and if n > 3, then
’Yn(Az) — {@i}—1,72(A2)1,444,i—1,i,...,n{¢i}’ (l _ 1, o n),

’Yn(Bz) _ {Qsi}_1'72(B2)17...7i_1li7...7n{¢i}a (Z — 1’ o ,TL),
’Yn(o'i) _ {@1,‘“,1'71,1',2#1}716i7rti,i+1{@1,‘“,1'71,1',2#1}, (Z — 1’ = 1)

Proof. In the region 291 < 231 € -+ K zp1 < 1, (z,7) € Dy, we have

FO)(afr) o gt -2y T e ——( / E2+c) >ty | | F@),

1<J

where F(1) = F(z|r) for any z. Here C is the constant such that [ F» +
C=71+0(1) as 7 — ioo.

We have F(1 + 1) = F(1)11(¥), F(—-1/7) = F(1)71(©). Since ),
commutes with the image of x — [z], we get

z<]

F(zlr 4+ 1) = F(a|r)exp |~ [ S8 | | @),

SO

In the same region,

N ol (ff| - 1)

T T

~ (*T)de i 27"@*)()(72’21/7){12 e (fzn1/7)51"+"'+5"_1*"'

ao —-1/T
exp <2—m </ E2+C> <Zt”>> —1/7)].

Now Es(—1/7) = 72E5(7) + (6i/m)T, so

/i RS / B = (6i/mllog(~1/7) ~ log]

(where log(re®®) = logr +i6 for 6 €] — 7, ).
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It follows that

cp1(z|r) TFMY (l -

2mi(Y; 25%5) t12 tin+ - +tn_1n
2222

>~ e nl

xp (%_Tﬂog i (Kj L ) (=)™ DX F(=1/7))
~ Zt112 illn‘f’ +En—1 "exp (2@70 ( Eoy+ C) <Z t”>>
1<J

[F(r)71(6))exp (; > tz-j>
~ F(”>H(z\7')hl exp( Zt”>

i<j

(the second =~ follows from _, 2;%; = ), 2i1%; and z;; — 0), so

Y (O) = [11(O)]exp ig S

i<j

Let G;(z|T) be the solution of the elliptic KZB system such that

~ tio tiot4t1i-1 _tint+tn_1n Th-1,n
(2]7) =~ 251 - i—1,1 Zni T Znn—1
X exp( — —(Ao + Zagn (620 + Z ad z;)"(t za))))
1<j

when 291 €+ K zi—11 € 1, Zpn—1 € -0 K 2y € 1, 7 — ioo, and
(z,7) € D,. Then G; (z +2 0 52-\7) = G;(z|T)y2(Ag)li7 16 om because

in the domain considered, K;(z|7) is close to Ka(21, z,|7)b i~ 14" (where

Ks(---) corresponds to the 2-point system); on the other hand, F(z|T) =
G;(z|7){®;}, which implies the formula for v, (A;). The formula for v, (B;) is
proved in the same way. The behavior of F(”)(Z|T) forzg € <Kz K1
is similar to that of a solution of the KZ equations, which implies the formula
for vy, (04). a
Remark 22. One checks that the composition SLo(Z) ~ I3 — G1 —
SL2(C) is a conjugation of the canonical inclusion. It follows that the com-
position SLs(Z) C I, — Gi1 — SLg(C) is a conjugation of the canonical

projection for any n > 1.

Let us set A := v2(As2), B:= ~2(Bz). The image of AgAg =0, 1A ! 71
by 3 yields
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1412,3 — eiﬂ't_lz {@}3,1,2A2,13{@}2,1,3eim?12 . {@}3,2,141,23{@}1,2,3 (22)
and the image of Bngl =0 B;lal yields
B12,3 — e_iﬂ-t_lz{@}37172B2713{@}271736_iﬂ.£12 . {@}3,2,131,23 {@}1,2,3. (23)
Since (v3(Az2),73(43)) = (13(B2),73(B3)) = 1, we get
({@}3,2,1141,23{@}, A12,3) — ({@}3,2,131,23{@}, 312,3) -1 (24)

(this equation can also be directly derived from (22) and (23) by noting that
the Lh.s. is invariant under z +— 2213 and commutes with e*™12). We have
for n = 2, C1g = (B2, A2), so (A, B) = 1(C12)"". Also 11(0)* = 1, so
12(Cra) = 72(O) = (e 2]y, ()]} = iz, (8)1] = 27z, s

(A, B) = e~ ?miliz (25)

For n = 3, we have v3(0)* = 92”1(512“‘51”{23) = 73(01‘27023); since
73(Cr2) = (13(B2),73(A2)) = {®} (B, A)"* {2} = (@} termithatha) (g},
we get v3(Cog) = {@}le?™23{®}. The image by 73 of (B3, AsA;") =
(Bng_l, A3) = (93 then gives

(312,3, 412,3{¢}—1(Al,23)—1{¢}) — (B12,3{¢}—1(B1,23)—1{¢}’ A12,3)
= {9} 1 {0} (26)
(applying x r—>:tw*1’2, this identity implies (25)).

Let us set © := ,(O), ¥ := v1(O). Since 71,72 are group morphisms, we
have

CIER (G

e ,W —1 . e imr -1
@A (@ehe) = A, @B (0)eF) = BA.

We note that, (27) (respectively, (28), (29)) are identities in G (respectively,
G2); in (28), (29), z — [z] is induced by the map d — 9 X t; o defined above.

4.5 Expression of ¥ and of A and B in terms of &

In this section, we compute A and B in terms of the KZ associator . We also
compute V. ~
Recall the definition of ¥. The elliptic KZB system for n =1 is

270, F (1) + | Ao + Z aok Eopq2(T)02, | F(1) =0.
k=1
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The solution F(r) := F®(z|r) (for any z) is determined by F(r) =~
exp <fﬁ(A0 + D k1 agké%)). Then ¥ is determined by F(r+1) = F(7)¥.

We have therefore the following:

Lemma 23. ¥ = exp <7L(A0 + Zk21 agkégk)).

27i

Recall the definition of A and B. The elliptic KZB system for n = 2 is

0.5 (:Ir) = - (G S T ) ) o), (30)

270, F(z|7) + | Ao + Z azk Bap12(7)d2k — g(z,ad z|7)(t) | F(z|T) =0,

E>1
(31)
where z = 291, € = Ty = =1, Yy = Yo = —T1, t = t12 = — [, y].
The solution F(z|1) := F®)(z,2]|r) is determined by its behavior
F2]r) = 2lexp (= (Ao + Sz azk(0k + (ad 2)™)(1)) ) as 2 — 0F, 7 —

ico. We then have FH (z + 1|7) = FH(2|1)A, 2™ FV (2 4 7|7) = FV (2|7)B.
Proposition 24. We have”
A = (20 /i)' D (g, 1)e*™ (g, 1)~ (i/2m)!
= (2m) 3B (—f — t, 1) > TTIG(—g — ¢, £) 71 (2mi) 7,

where § = — 5= (y).-

Proof. A= FH"(z|7)"'F¥ (2 + 1|r), which we will compute in the limit 7 —
ico. For this, we will compute F(z|7) in the limit 7 — ioco. In this limit,
0(z|7) = (1/m)sin(r2)[1 + O(e*™'7)], so the system becomes

0, F(z|t) = (7rc0t g(mz)t — weot g(wad z)ad z(y) + 0(62“”)) F(z|t), (32)

QWiarF(Z‘T) + <A0 + ZkZI a2k + <sin2(7;2ad ) (adlx)Q)
X (£) + O(eQ”iT)> F(z|7) = 0,
where the last equation is
2110, F(z|T)
+ | Qo + aot + Z ask, (621 + (ad )2 (t)) + O(e®>™7) | F(z|7) = 0.
E>1

"By convention, if z € C \ R_ and x € n, where n is a pronilpotent Lie algebra,
then z” is exp(z log z) € exp(n), where log z is chosen with imaginary part in | —, 7[.
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We set

A= Ag+ Z azk(sgk, so Ag+aot+ Z a%(égk + (ad $)2k(t)) = [A] + apt.
k>1 k>1

The compatibility of this system implies that [A] + agt commutes with ¢ and
(rad x) cot g(rad z)(y) = in(—t—2g), hence with ¢ and §; actually ¢ commutes
with each [dax] = dar + (ad x)?*(2).

Equation (30) can be written 0,F(z|t) = (t/z + O(1))F(z|r). We then
let Fy(z|7) be the solution of (30) in V := {(2,7)|7 € 9,2 = a + b1,a €
10,1[,b € R} such that Fy(z|7) =~ 2 when z — 07, for any 7. This means
that the left (equivalently, right) ratio of these quantities has the form
1+, o(degree k)O(z(log 2)7¥)) where f(k) > 0.

We now relate F(z|7) and Fy(z|7). Let F(7) = F)(z|7) for any z be the
solution of the KZB system for n = 1, such that F(7) ~ exp (—55A4) as

27i
7 — 100 (meaning that the left, or equivalently right, ratio of these quantities

has the form 1+, (degree k)O(r/ () e?™i™) where f(k) > 0).

Lemma 25. We have F(z|1) = Fo(z|t)exp (—£% ([ B2+ C)t) [F(7)],
where C is such that fiT Ey +C =171+ 0(e?™7).

Proof of Lemma. F(z|7) = Fo(2|7)X (), where X : § — Gg is a map. We
have g(z,adz|7)(t) = agE2(T)t + 4o o a2k E2ikr2(7)(ad )% (t) + O(z) when
z — 0% and for any 7, so (31) is written as

270, F(z|T) + (Ao + agEa (1)t + ZGZkE2k+2(T)[52k] + O(Z)> F(z|r) =0,

k>0

where O(z) has degree > 0. Since Ay, t and the [d25] all commute with ¢, the
ratio Fy(z|7) "L F(z|7) satisfies

2710, ( F( ‘ )) + (Ao + aoEQ(T)t + Z a2kE2k+2(7—)[52k]
k>0

+ Z(degree k)O(z(logz)h(k))) (Fy'F(2|m)) =0
k>0

where h(k) > 0. Since Fy(z|7) 1 F(z|r) = X(7) is in fact independent of z,
we have

2mid, (X (1)) + (Ao + agBa(T)t + Z azkE2k+2(T)[52k]> (X (7)) =0,

k>0

which implies that X (7) = exp (— 4% (fl Ey + C)t) [F(1)] X0, where X is a
suitable element in Go. The asymptotic behavior of F(z|7) as 7 — ico and
z — 0% then implies X = 1. O
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End of proof of Proposition. We then have F(z|1) = Fy(z|7)X (1), where
X(7) ~ exp(—5([A] +aot)) as 7 — ioo, where this means that the
left ratio (equwalently, the right ratio) of these quantities has the form
1+ Y, o o(degree k)O(r=*) ™) where z(k) > 0.

If we set u := €2™* then (30) is rewritten as

OuF (ulr) = (§/u+1t/(u—1)+ O(e*™7)) F(ul7), (33)

where F(u|7) = F(z|).

Let D' := {u||u| < 1} —[0,1] be the complement of the unit interval in
the unit disc. Then we have a bijection {(z,7)|r € iRY,z=a+ 7b,a € [0,1],
b>0} — D' x iR}, given by (z,7) — (u,7) := (e*™=,7).

Let Fy,, F be the solutions of (33) in D’ xiR such that Fg(u|7) ~ ((u—1)/
(2mi))! when u = 1 410" and for any 7, and Fy(ulr) ~ €™ ((1 — u)/(2mi))!
when u = 1 —i07, for any 7.

Then one checks that Fy(z|7) = F,(e?™*|7), Fo(z — 1|7) = Fp(e®™#|7)
when (z,7) € {(z,7)|7 € iR}, 2z =a+ 7bla € [0,1],b > 0}.

We then define Fy, ..., F. as the solutions of (33) in D’ x iR, such that
Fy(ulr) ~ (1 —u)t as u = 1 — 0T, (u) > 0 for any T, F(u|7’) ~ u¥ as
u— 0%, S(u) > 0 for any 7, Fy(u|r) ~ u¥ as u — 07, C‘( ) < 0 for any T,

Fo(ult) ~ (1 —u)' as u=1-0%, S(u) <0 for any 7.

_ Then F}, = Fy(—2mi)", Fc(*\T): Fy(— et + O(e™7)], Fu(—|7) =
Fo(=|r)e ™8, Fo(=|r) = Fa(=|7)[®(§,1)"} + O(e 2””)] = Fe(i/2m)".
So Fy(~|r) = Fu(~|r ((=27i)'®(y, t)e >9(5, )~ (/ ™)' +0(e*™7)). It
follows that Fy(z + 1|7) = Fo(z|7)A(7), where
A(r) = (=2m) D (g, t)e*™0P(G, )7 (i/2m)" + O(e*™7).
Now

= )T (z+ 107) = X (1) T A(T) X (7)

-1
1+ Z (degree k)O(T“'(k)e%iT)) exp (#([A] + aot))

k>0

Il
/

0)'@(, 1) B(5, 1)~ (1/27)" + O(>™7)) exp (5= (4] + aot))
(1 + Z (degree k)O(TI(k)eQ“iT)> .
k>0

As we have seen, [A] + agt commutes with § and ¢; on the other hand,

exp (QLﬂ([A] + aot)) O(e*™)exp (fzim(m} + aot))

— exp <7’ad (M)) (0(e>™™)) = 3 (degree K)O(r™ () 2mi7),

27
k>0
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where nq(k) > 0, since [A] + apt is a sum of terms of positive degree and of
Ag, which is locally ad-nilpotent.
Then

-1
A= (1 + Z(degree k:)O(T‘”(k)e%iT))

k>0

(*QWi)t@(ﬂ, t)GZﬂigds(:g’ t)fl(i/Qﬂ')t + Z(degree k)O(’rnl(k)ezmT)
)

(1 + Z(degree k‘)O(T”(k)eQ”iT)> .

k>0

It follows that

A= (—QWi)tQS(g, t)€27rigdi(g, t)_l(i/Qﬂ')t + Z(degree k‘)O(T”Q (k})eQﬂ'iT)’
k>0

where n(k) > 0, which implies the first formula for A. The second formula
either follows from the first one by using the hexagon identity, or can be
obtained by repeating the above argument using a path 1 — 400 — 1, winding
around 1 and oo. O

Theorem 26.
B = (2mi)i®(—j — t, )™ =P (g, t) "L (2m /1) "¢

Proof. We first define Fy(z|7) as the solution in V' := {a +br|a €]0,1[,b € R}
of (30) such that Fy(z|r) ~ 2 as 2 — 0T. Then there exists B(7) such that
e?™Fy (2 + 7|7) = Fy(2|7)B(7). We compute the asymptotics of B(7) as
T — ioco.

We define four asymptotic zones (z is assumed to remain on the segment
[0,7],and TonthelineiR; ): (1) 2 <1<« 7, (21 K27, 31K T2 KT,
DT-2x1xT.

In the transition (1)-(2), the system takes the form (32), or if we set
u = e¥™* (33).

In the transition (3)—(4), G(2'|7) = e®>™®F (7 + 2'|7) satisfies (30), so
G'|T) = 2™ F (1 4 2'|7) satisfies (33), where u/ = €2™*",

We now compute the form of the system in the transition (2)—(3). We first
prove:

Lemma 27. Set u := €™ v := e2™(7=2) When 0 < 3(2) < I(7), we have
lul < 1, [o] < 1. When k >0, (00 /0)(2]7) = (—im)* + 3, ;504 4m0 a4 050,
where the sum in the r.h.s. is convergent in the domain |u| < 1, |v| < 1.
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Proof. This is clear if k = 0. Set ¢ = uv = €2™7. We have
0(z|m) = u' 2 [T0(1 = ¢°u) Tz (1 = q*u™") - (271) 7' [1,50(1 — ¢°) 72, 50

@' /0)(z|T) = 17772771211 u/(1 — q¢°u) +27r12q u /(1= g ut)

s>0 s>0
) ) us+1vs ) usvs+1
= —im — 2%12 PRy + 271'12 PRy
520 s>0
= —im+ Z asu’vt,
54+1t>0
where as; = 27i if (s,t) = k(r,r + 1), k > 0, r > 0, and agy = —2mi if

(s,t) = k(r+1,7), k > 0, r > 0. One checks that this series is convergent in
the domain |u| < 1, |v|] < 1. This proves the lemma for k = 1.
We then prove the remaining cases by induction, using

glk+1) ok / o ok
0 (2|T)*7(2|T)§(2|T)+&7(2|T)~ O

Using the expansion

et 2 g0 ) el

00l ~ i) & !

2k
:smﬂ'x <1+ZQ"P ) Z(m JrZa(k)St)F

n>0 k>0 s+£>0
2irx
_ —171'3? _ s, t
= sin(r + E ast(x)u’ vt = e 1 + E ast(x)u v,
s+t>0 s+t>0

the form of the system in the transition (2)—(3) is

2irad x s
0.F(z|r) = 76217”3(1—9”—1(y)+ Z astu®v' | F(z|r)

s,t|s+t>0
= |2imj+ > awu' | F(zln), (34)
s,t|s+t>0
where each homogeneous part of > _, asu®v’ converges for |u| < 1, [v| < 1.

Lemma 28. There exists a solution F.(z|T) of (34) defined for 0 < J(z) <
(1) such that

F.(z|T 1+Z Zlog % frs(u,v))

k>0 s<s(k)
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(logu = imz, u9 = e**¥) where frs(u,v) is an analytic function taking
its values in the homogeneous part of the algebra of degree k, convergent for
lu| <1 and |v] < 1, and vanishing at (0,0). This function is uniquely defined
up to right multiplication by an analytic function of the form 1+ 3, ar(q)
(recall that ¢ = uv), where ar(q) is an analytic function on {q||lq| < 1},
vanishing at g = 0, with values in the degree k part of the algebra.

Proof of Lemma. We set G(z|7) := u=YF(z|r), so G(z|7) should satisfy

0.G(z|T) = exp(—ad(y)logu) { Z astu’v } z|T),

s+t>0

which has the general form

(Z Z log(u)®ags(u U))G(Z|T),

k>0 s<a(k)

where ags(u,v) is analytic in |u| < 1, |[v| < 1 and vanishes at (0,0). We show
that this system admits a solution of the form

1+Z Zlog % frs (u,v),

k>0 s<s(k)

with fs(u,v) analytic in |u] < 1, |u] < 1, in the degree k part of the algebra,
vanishing at (0,0) for s # 0. For this, we solve inductively (in k) the system
of equations

0. (Z(logu)sfks(u,v)> = Z (logu)® %" ags o (u, v) frrsr (u, v).
s s7,8" Kk |k kY =k
(35)
Let O be the ring of analytic functions on {(u,v)||u] < 1,|v] < 1} (with
values in a finite-dimensional vector space) and let m C O be the subset of
functions vanishing at (0, 0). We have an injection O[X] — {analytic functions
n (u,v), |u| <1, jv] <1, u ¢ R_}, given by f(u,v) X" +— (logu)* f(u,v). The
endomorphism 00 = 27 (u% — vd‘zj) then corresponds to the endomorphism
of O[X] given by 27i (ax + uau — Ua ) It is surjective, and restricts to a
surjective endomorphism of m[X]. The latter surjectivity implies that equation
(35) can be solved.
Let us show that the solution G(z|7) is unique up to right multiplica-
tion by functions of ¢ as in the lemma. The ratio of two solutions is of the

form 1+3 740> <o 108(1)" fus (u, v) and is killed by 9.. Now the kernel of

the endomorphism of m[X] given by 2xi (aix + ué vddv) is m*(my), where
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m*(my) C mis the set of all functions of the form a(uv), where a is an analytic
function on {q||g| < 1} vanishing at 0. This implies that the ratio of two so-
lutions is as above. O

End of proof of Theorem. Similarly, there exists a solution Fy(z|7) of (34)
defined in the same domain, such that

Fy(z|t) =v7¥ 1+ZZlog Vogns(u,v) |,

k>0 s<t(k)

where bys(u,v) is as above (and logv = in(1 — 2), v™¥ = exp(27i(z — 7)7)).
The solution Fy(z|7) is defined up to right multiplication by a function of ¢
as above.

We now study the ratio F.(z|7) ! F4(z|7). This is a function of 7 only, and
it has the form

-7 (1 + Z Z (log u)* (logv)" kst (u, U)) ;

k>0 s<s(k),t<t(k)

where agst(u,v) € m (as v (1 + >, 2 s<s(h) (logu)*crs(u,v))vY has the
form 1+ 37,003, <oy (logu)®(logv)'dis(u,v), where dis(u,v) € m if
cks(u,v) € m). Set log q := logu+logwv = 27iT, then this ratio can be rewritten
{1+ Y0 D s<sthy<i(r) logu)* (log ) brst (u, v) }, where byse(u,v) € m,
and since the product of this ratio With q” is killed by 9, (which identifies
with the endomorphism 27i (5% + u2 —v2) of O[X]), the ratio is in fact
of the form

F Fy(2|r) = ¢7 1+Z Z (log q)’ars(q) | ,

k>0 s<s(k)

where ags is analytic in {g||¢q| < 1}, vanishing at ¢ = 0.
It follows that

FFy(2|1) = e 270 (1 + Z(degree k)O(TkeQ“iT)> . (36)

k>0

In addition to F, and Fy, which have prescribed behaviors in zones (2) and
(3), we define solutions of (30) in V' by prescribing behaviors in the remaining
asymptotic zones: F,(z|7) ~ 2! as z — 0T for any 7; Fy(z|7) ~ (27z/i)!

z — i0% for any 7 (in particular in zone (1)); 2™ F,(z|7) ~ (27(T — 2)/i)! as
z =71 —i0% for any 7; e*™*Fy(2|7) ~ (2 — 7)" when z =7+ 07 for any 7 (in
particular in zone (4)).

Then Fy(z|7) = F,(z|7), and e 22 Fy(z — 7|7) = Ff(z|r). We have F}, =

F,(2n/i)t, Fy = F.(2mi)~".
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Let us now compute the ratio between Fj, and F.. Recall that u = e2miz,
v = e?™(7=2) Set F(u,v) := F(z|r). Using the expansion of 6(z|r), one shows
that (30) has the form

A(u,v) | B(u,v)
_|_
U u—1

O F(u,0) = ( ) Flu,v),

where A(u, v) is holomorphic in the region [v| < 1/2, |u| < 2, and A(u, 0) =17,
B(u,0) = t. We have Fy,(u,v) = (1 —u)'(1+ ), 2 s<s(h) log(l —u)kbys (u, v))
and Fy(u,v) = ug(l—i—zk ngs(k) log(u)*ags(u,v)), Wlth ags, bgs analytic, and
aks(0,v) = bys(1,v) = 0. The ratio Fy, 'F, is an analytic function of ¢ only,
which coincides with &(g,t) for ¢ = 0, so it has the form &(g,¢) + 3, axr(q),
where ay(q) has degree k, is analytic in a neighborhood of ¢ = 0, and vanishes
at ¢ = 0. Therefore

Fe(2|r) = Fy(2|7)(2(3, 1) + O(e*™7)).
In the same way, one proves that
Fe(z|r) = Fa(e 2™ @(—g — t,1) "1 + O(e”™7)).
Let us set Ga(u',v') := 2™ Fy(7+2'|1), Ge(u',0') := M7 F(1+2'|7), where
u = e?ﬂi(7+237 v o= 67271'12’ then Gd(u/,vl) ~ (,U/)fyftezﬂ'iz as £u/,,ul) —
(0%,0%) and Ge(u',v") =~ (1 =v")" as v’ — 1~ for any v/, and both Gy and G-
are solutions of &J/G(u V') = [=(g+t)/v' +t/ (v =1)+O(u)]G(v"). Therefore

Gq = G[P(—7 —t, t)e 2ria | O(u')).
Combining these results, we get the following:

Lemma 29.
B(1) ~ (2mi)'d(—7 — t,1)e>™ A T, )1 (21 /i) 7,

in the sense that the left (equivalently, right) ratio of these quantities has the
form 143", (degree k)O(r™*) ™) for n(k) > 0.

Recall that we have proved:

Felr) = Faelr)exp (32 ([ Eav0) 1) ),

where C is such that fT Ey + C =1+ O(e?™7).
Set X (1) :=exp (=22 ([ B2 + C) t) [F(7)]. As 7 — ioo,

X(7) = exp (—#([A} + aot)) (1 +) (degree k;)O(Tf(k)eQ”iT)> _

k>0
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Then
F(z|r)7te®™ @ F (2 + 7|7) = X (1) B(7) X (1)
—1
= Ad ( 1 + kzgo degree k:)O(Tf(k)e%iT)) exp <2L71'1([A] + aot)))
(i) (=g — t,)emremmia(g, ) (2n i) )
x(1+ Z (degree k)O(T”(k)e%iT))),

k>0

where Ad(u)(z) = uzu=!.
Now, [A] + apt commutes with § and ¢; assume for a moment that

T 27ix 2miThy _ 2mix
Ad (exp (_Q’R'i([A] + aot))> (e“™%e )=¢
(Lemma 30 below), then

Ad (exp (#([A]—I—aot))) ((27ri)td5(—y—t £)e2mie 2miTIP (g 1) 1(27r/i)—t)
= (2mi)'®(—g — t, 1) D(g, 1)~ (2w /1)~

On the other hand, Ad (exp (3% ([4] + aot )) (1 4+ Yoo (degree k)O(r™*)

™)) has the form 1+ 3, (degree k)O(r"™ (k) 27Ty \where n/(k) > 0. It
follows that

B=Ad(1+ Z(degree k‘)O(Tf(k)eQ”iT))
k>0

X (((Qm)t@(g —t,1)e*™ P(g, 1) (2 /i) ")

X (1 + Z(degree k)O(T”'(k)e%iT)) >;

k>0

now

Ad((27ri)tg25(fgj e 10 t)’1(27r/i)’t) B

x (1 + ) (degree k)o(Tf(k)ezmT)>

k>0

=1+ Z(degree E)O(rf®) g2mir),
k>0
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SO

B= ((27ri)td5(fgj ¢, 1)e2 T g(g, t)’1(27r/i)’t)

X (1 + 3" (degree k)O(r! ) eam)>

k>0

X (1 + Z(degree k)O(T”/(k)e2”iT)>

k>0

= ((ri) (g - t. )G, )~ (2r/1) ")

X (1 + Z(degree k‘)O(T””(k)eQ”iT)>

k>0
for n” (k) > 0. Since B is constant w.r.t. 7, this implies
B = (2mi)'&(—j — t, )’ (g, ) (27 /i),

as claimed.
We now prove the conjugation used above.

Lemma 30. For any 7 € C, we have

€T ([A]+aot)e27rixe—ﬁ([A]—i—aot)eZiTrTg} — 2miz
Proof. We have [A] +aot = Ag + 375 a2k (925 + (ad x)?*(t)) (where dp = 0),

so [[A] + aot, 7] =y — D450 a2k (ad x)2*T1(t). Recall that

2
o%h T 1
daktl = sin? (u) e
k>0 g

2

then [[A] + agt, @] = y ~ (ad ) ( Frfomrsy — Gae ) (8)- S0

e~z (L([A] + aot)> 2ria

2mi
1 e—27riadx -1 1
= —(]A _ —([A
ot (Al a0t + — ({x 5l Haot)D
1 1 6727riadx -1
=—(]A - ——
27ri([ J+ aot) 27 ad x

(y - (ada) <sm2 (:Zd 2 (adlx)2 ) (t)> '
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We have

1 e—27riadx -1 7-(-2 1
e — _ _ — _97iv:
27 adz (y (ad ) (sin2(7rad x) (ad x)Q) (t)> s

therefore we get

L (14) + aot) — 2.

. 1 .
—2rix 2rix
—([A t =
¢ (27ri([ ]+ a0 )>e 2mi

Multiplying by 7, taking the exponential, and using the fact that [A] + agt
commutes with g, we get

67271'1306%([A]+a0t) e?friz _ e2:ri ([A]Jraot)efZﬂ'i'r'g’

which proves the lemma. O

This ends the proof of Theorem 26.

5 Construction of morphisms I ,; — G, %X S,

In this section, we fix a field k of characteristic zero. We denote the algebras
e, & simply by 1, t,. The above group G, is the set of C-points of a
group scheme defined over Q, and we now again denote by G,, the set of its
k-points.

5.1 Construction of morphisms Iy ] — G, % Sy, from a 5-tuple
(ds)\a A7 B7 @9 !P)
Let @) be a M-associator defined over k. This means that @, € exp(ts) (the
Lie algebras are now over k),
32,1 _ -1 2,34 1,234 1,23 _ =1,2,34 £12,3,4
DY =Dy, DTN =TT, (37)

e}\tgl/2¢§,3,16)\1523/2@)\6)\1512/2@?))\,1,2 _ e)\(t12+t23+t13)/2. (38)

For example, the KZ associator is a 2wi-associator over C.

Proposition 31. If 6,0 € Gy and A, B € exp(im) satisfy the “I'1 1 iden-
tities” (27), the “I'\ o identities” (28), (29), and the “I'y [3) identities” (23),
(22), (26) (with 27i replaced by \), as well as A% = ALY = B01 = 1.0 — 1
then one defines a morphism I [ — Gy X Sy by

O — [O)e'E i< bis
1/ [@]ei%2i<]‘ t_ij’
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. .. -1 - . ..
o {@1“‘1‘17““} eMeitt/2(5 5+ 1) {qﬁi‘“““’”l},
—1gdd+L,...n
Cy > {05504
Qg\...,k—l,...,n(e)\tlg)j...kfl,k:mn

—1
3 3+1,...m Jok=1,...n
><(d5A P Drjc,

Ai — {Qs)\,i}71141‘“1‘71’1-“%{@)\,1'},
Bi — {@)\J}—lél...i—l,i...n{@)\JL

Loie1,dit1... l.n—2n-1
where @y ; = &, it Tt

According to Section 4.4, the representations -, are obtained by the pro-
cedure described in this proposition from the KZ associator, ©, ¥ arising from
~1, and A, B arising from ~,.

Note also that the analogue of (22) is equivalent to the pair of equations

e)\flg/ZAZ,le)\t_lz/ZA =1,
(6A512/2A)3,12Q5i,1,2(e)\flg/QA)Z,Sl@i,&l (eAflz/ZA)l,QSQS;,?,S _ 1,
and similarly, (23) is equivalent to the same equations, with A, X replaced by
B,—\.

Remark 32. One can prove that if @, satisfies only the pentagon equation
and O,¥, A, B satisfy the the “I'} ; identities” (27), the “I'| 5 identities” (28),
(29), and the “I7 3 identities” (24), (26), then the above formulas (remov-
ing 0;) define a morphism I, — Gj,. In the same way, if ®, satisfies
all the associator conditions and A, B satisfy the Iy [3) identities (22), (23),
(26), then the above formulas (removing ©,%) define a morphism By, —

exp(il,n) X Sy,.

Proof. Let us prove that the identity (A4;,A;) =1 (¢ < j) is preserved. Ap-
plying z +— gl =Lii=1i=n 4 the first identity of (24), we get

A i—1,1 vt j—1,..m § i—1.4 _1\1ieg—1..n
<A1ml 1,2~~~ﬂ,¢§\ dej=lem 1l j-1j..n (gﬁ)\l) ):1.

The pentagon identity implies

1...,%,..n 1...,7—1,..n
ol pl (39)
_(giitl,.n ieeg=1,en gleoivig—1,em ((gleeyiy.i—1 1oj—2,—1
G B ), (2 3 ).

so the above identity is rewritten

—1
iitl,..n iond—1,en Jloi—1yi..n  ghitl,..n ieni—1,m
(q;)\ RN A (@/\ RN ,
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-1
1.i,..n 1..d=1,.m (gl 5—1 1..,5—2,..5—1 il..j—1,4..n
b, - Py (de S Py A

-1

Tooyiyj—1 1oyj=2,e§—=1 [ gl.iyn l..,j—1,..n .
o ) (% S ) ) =1.

AR iood—1,... A SRR IR 1oy j—1

Now &y Fhm o @I ™h™ commute with A+i=1in and @y b I
1.j—2,.5-1 . 1oy j—1 1..,j-2,..j-1 SO

oo, @ TTEIT commute with @, 7T L @y TSI which implies

(Al...ifl,imn ploerinem
, P

-1
1...,j—1,..n §1...j—1,5..n 1...,4,...n 1...,7—1,..n _
o A (2 D) =1,

so that (A;, A;) = 11is preserved. In the same way, one shows that (B;, B;) =1
is preserved.
Let us show that (Bk, AkAj*l) = (i, is preserved (if j < k).

-1 pl.k—1,k..n —1 51..k—1,k..n —1/F1l.j—1,5...n\—1 ]
(st,kB st,kv@)\,kA ¢)\J€¢>\,j(‘4 ) @,a)
_ 51 1...,5,...n 1...,k—1,..n Hpl...k—1,k..n 1...,5,...n 1...,k—1,..n
—¢,\,j(<¢A Py )B (¢>\ RN )

1...,4,...mn 1...,k—1,...n 1l..k—1,k...n 1...,4,...n 1...,k—1,...n
(ahrn . a ) A (ahrn )
T1..5—1,5..ny—1
(ATITH T By

=1 (=jj+1,..n Goook—1,..m x1...,j..k=1,..n Hl..k—1,k..n
_¢/\’j(¢)\ - Py Dy B

.. . . —1 .. .
J.j+1,...n j..k—1,...n gl...,5...k—1,...n J.j+1,...n j..,k—1,..n
(@)\ @)\ @)\ ) 7@)\ @)\
-1
1ojok=1,.n jl..k=Lk.n ((mii+l,..n_ gpj. k=1,..ngl. j. .k=1,.n
o} A (qﬁA @) o} )
T1l..j—1,4..n\—1
(A )7 )Pa

-1
_ #-lgiitlen giook—l..n(glj k=10 Bl k-1k.n (gl j.k-1,..n
- éA,jQSA D (Q\ B D, >

GLomdrk=lm L k=1k..n <¢1m,jmk—1,mn>’1 (A~1mj—1,jmn)—1)
N A

- ) -1
(ég\,]ﬂ—l,mn . .¢‘§\m,k—1,mn) @)\ .
¥
=1 pd,J+1,..n .. k—1,..n 12,3 712,3 1 —1, 71,23\ —1 B L
=@, DT oy & (B ATCD, (AVT)T Dy ) D
-1
j,i+1,...n j..k—1,...n
(@]v]ﬂL ) ) R , ) by
A A N

=1 54,54+1,..n Goonk—1,..n, 2witioNj...k—1,k..nf £7,5+1,..n Genk—1,..n\ — )
—¢)\,]¢A sy (e ) (¢>\ s Dy ) b)\m

where the second identity uses (39) and the invariance of @y, the third iden-
tity uses the fact that ¢7F0 " .. ,@i“"kil"“" commute with AL--d=1d--n
(again by the invariance of @), and the last identity uses (26). So
(Bk, AkAjfl) = ()}, is preserved. One shows similarly that
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—1 pl..k—1,k... —1/pl..j—1,j..n\—1 —1 J1..k—1,k...
(45,\,1@3 ndjz\kdj,\,j(B I n) st\,jv@,\,kA ndjx\,k)

— - lpiitl.n .@]‘...,k—l,mn(627ri£12)jwk—1,kmn
J
—1
7,J+1,..n J....k—1,..n
(dﬁ,\ "'QS,\ ) Q\Jv

so that (BkBj*l,Ak) = Cjy, is preserved.

Let us show that (A;,Cjx) =1 (¢ < j < k) is preserved. We have
(¢;1A1 z—l,imné)\’i’@;;é‘g\,j-}—l,mn . ¢‘§\m,k—l,mn(62ﬂ'iflz)jmk—l,kmn

—1

RER T i k—1,...
(@JAJ nL ] ") P5)
_ 45;’114 (A14.4i71,i.4.n’ éizn ) ..¢i.‘.,jfl,.”n@i,thl,.‘.n ) “¢]A'.4.,k71,.4.n

3

_ —1
27it19\j...k—1,k...n 1...,4,...n 1....,j—1,...n 57,7+1,...n J..k—1,..n
(e2mifaz) (qﬁA ol @ B ) )@

e 1( Fl.i—ly..n giit+l,..n ieei—1,om gl i j—1,m gl 0, —1

= oL (A D D oL oL

¢§4.4,]’72,j71¢§,j+1,4.4n . éiuqkfl,mn(eZﬂltlg) k—1,k...n
(qu\,1‘+1,“@ o @iH,j—1,uAnqsiH,iuAj—1,mn¢.;“,i,mj—1 o
. . .. . —1
@i”q]*z,‘]*l@g\y]%»l,u/ﬂ o @&.4.,k71,.4.n) )ék,i
— @)\l(A i—1d...n @l si4+1,. ..@iuA,j—1,4Hn¢im,imj—l,mnég'\,j-i—l,mn
¢§\4.4,k71,.4.n(627r1t12) k—1,k...n (¢§i+1,.4.n . ¢§;.4,jfl,”.néim,i”.jfl,”.n@j)'\,j#»l,mn
. —1
.¢‘§\m,k—1,mn> )¢)\,i
_ @K’iéiwl,mn L ¢§\“4,j—1,“‘n(A1“4i—l,i“4n7Qsi\uA,i“j—lpun@g\,jﬂ—l,“‘n L @iu,k—l,mn
(e2ﬁi{12)j”'k71’k"'” (éim,i4.4j71,4.4n¢i,j+1,.4.n . .¢i.<.,k71,”‘n)71 )
(¢§i+1,mn o @iu,j—h“n) -

o w=—1 iit+1,...n ivoj—1,oom ((Floi—1yi..m gj,04+1,...n Genk—1,..n g1..0...5—1,...n
- ¢A,i¢>\ "'¢)\ (A 7¢>\ "'¢>\ ¢)\

1
Dy

_ —1
27it19\j...k—1,k...n J.j+1,...n G k— n i...j—1,.
(e27712) (qﬁA el P ) )
. . —1
(¢z1+1 __@@A‘A‘,]—I,A‘An) @)\’i
=1,

where the second equality follows from the generalized pentagon identity (39),
the third equality follows from the fact that 451 oI T 1, (Pl nI= 21

commute with (e2762)7-kLkn - @hitln gk ”, the fourth
equality follows from the fact that @f\’”l"“”, . @3"’j71"“n commute with
Al-im L (since P, is invariant), the last equality follows from the fact that
@t I commutes with @I @R (again as By, s in-
variant) and with (e27112)7-k—1, ke (smce t34 commutes with the image of
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t3 — t4, x — 21?31). Therefore (4;,Cj;) = 1 is preserved. One shows sim-
ilarly that (B;,Cj) =1 (i < j < k), Xiz1 = 0:X;0; and Yiy1 = 0, Yo, !
are preserved.

The fact that the relations ©4;07' = B!, ©6B,67' = B,A;B; ",
WAW~ = A;, WB;w~! = B;A;, are preserved follows from the identities
(28), (29) and that if we denote by = +— [z], the morphism 0 — ? % t;,,
defined above, then (a) ®; commutes with }, ;,_; ti; and with the image of
0 = 0 Xty o [z]n; (b) for x €0, y € 5, we have [[z],, yli7bi"] =
[[x]2, y]t+ 1" Let us prove (a): the first part follows from the fact that
@ commutes with t15 + t13 + to3; the second part follows from the fact that
X,d,Ag and 02, + >, (ad Zx)?" () commute with ¢;; for any i < j. Let us
prove (b): the identity holds for [z, '] whenever it holds for « and for z’, so it
suffices to check it for x a generator of 9; = being such a generator, both sides
are (as functions of y) derivations t; o — t;,, w.r.t. the morphism t; o — 1 ,,,
y > yl-imbien g0 it suffices to check the identity for y a generator of t ».
The identity is obvious if € {Ay,d, X} and y € {Z1,71, T2, P2} If © = das
and y = Z1, then the identity holds because we have

[523 4 (adj1)2s(t—12)’jl]l...i—l,z’...n _ —((adi‘1)28+1(t_u))l'”i_l’i'”n

i1 2s5+1
= - (ad (Z “”“)) Yoot =— > (adz)* (),

u'=1 1<u<i<v<n 1<u<i<v<n

while

das+ Z (ad Z,)** (fuw), i Ty | = Z (ad Zy)?** (fuw ), i T

1<u<v<n u'=1 1<u<i<v<n u'=1
_ — \2s+1/1
=— E (ad z,,) (tuv),
1<u<i<v<n

where the first equality follows from the fact that (ad 7,)?%%(twy) commutes
with Z:;il Ty whenever u < v < tori < u < wv. If x = 635 and y =
To, then the identity follows because [das + (ad Z1)%*(t12), Z1 + Z2] = 0 and

|:628 + Zl§u<v§n(ad ‘/I;U)2s(fuv)’ ZZ':1 j“/:| =0.
If x = d25 and y = §1, then

[628 + (ad .’El)2s(t_12), gl]l--.i—l,i.._n

_{% )3 [(ad@)ﬁ(tlz),(adm%tun+[<adz1>25<tu>,m}

p+q=2s—1
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:% > > @dz)P (), Y, (adZw) (fur)

p+q=2s—1 [1<u<i<v<n 1<u/ <i<v’<n

+1 > (@dZ)* (Fuw), Gr+ -+ Bica | 5

1<u<i<v<n

on the other hand,

bas + Z (adju)zs(fuv),gl +o i
1<u<v<n

= > [(adZw)® (Fuw), 51+ - + Tic1]

1<u<v<n
1—1
IDIDY
u=1y|v#£u p+q=2s—1

= Y [(ad@u)* (Fuo) G2 + - + iz

1<u<v<n

DD

1<u<i<v<n p+q=2s—1

[(ad 24) (tuw), (—ad Z4) ! (fu)]

N |

[(ad ju)p(t_uv)a (—ad ju)q(tuv)]a

DN |

where the second equality follows from the fact that
[(ad Z4)? (Fuw), (—Zu)? (Fuw)] + [(ad Ty (fuw ), (—ad Zy)? (fuw)] = 0

as p + ¢ is odd.
Then

[62s + (ad Z1)2% (F12), ga ] > 171%™ — | §as + Z (ad Zu)?* (fuv), J1 + -+ + Fi1

1<u<v<n
=- Z [(ad 24)* (Fuv), U1 + -+ + Fi—1]
1<u<v<i
- Z [(ad 24)** (Fuv), U1 + -+ + Fi—1]
i<u<v<n
1 o - _
+5 > > [(ad Z4,)? (Fuw ), (—ad Z) (Eyr )]
ptg=2s—1 1<u<i<v<n

1<u/ <i<o’ <, (u,v) £/ v')

= Y [(ad@u)* (Fuo), Gi + - + Un]

1<u<v<i

— Y (@8 F) G+ 5]

i<u<v<n

o Y (@) (), (~ad 2)(F)

ptg=2s—1 1<u<i<v<n
1<u<i<v’ <n,v#v’
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1 _ _
t5 2 Y [adE) Ew), (~ad 20 Eur),
pg=2s—1 1<u<i<v<n
1<u’ <i<v<n,u#u’

where the second equality follows from the centrality of 71 + - - - + 7, the last
equality follows for the fact that (ad Z,, )P (fy,) and (—ad T, )?(ty, ) commute
for u,v,u’,v" all distinct. Since p + ¢ is odd, it follows that

[02s + (ada_il)Qs(t_u),ﬂl]l“‘i_l’imn — [ 02s + Z (adifu)2s(t_uu),271 + o+ Yo

1<u<v<n
= Z [(adju)zs(fuv)agl++gn]
1<u<v<i
= > [@dZ)* (Fun) g1+ + Gic]
i<u<v<n

> S [ad2)? (), (~ad2) ()

ptg=2s—11<u<i<v<v’/<n

+ 0> S [(adZu)?(Fus), (—ad T ) (Eurs)]-

pHg=2s—11<u<u’/<i<v<n
Now if 1 <u < v < i, we have

[(ad 2,)* (Fuw), G + - - + Y]
= > (adz,)Pad(fui + - + tun) (ad Zo)? (Fu)

p+q—2s—1

_Z Z (ad T, )P [tuw, (—ad Z4) U (fyyp)]

w=1i p+q=2s—1

Z Z (ad Z,, )P (—ad T ([tuw, tus])

w= zp+q 2s—1

_Z Z adxu adjv)q([fuwafvwb

w=1 p+q=2s—1

— S Y [ad) ) (—ad 7))

w=1 p+q=2s—1

one shows in the same way that if i < u < v <n, then

[(ad i‘u)% (t_uv)? Y1+ - '+gi—1]: Zjuizllzp—&-q:Qs—l [(ad -’Eu)p(t_uw)a (_ad jv)q(tvw)];
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all this implies that

(Baoct (ad 20) (Fr2). 9] |G D (ad ) () (50)

1<u<v<n

Since [d2s + (ad Z1)*(f12), 71 + J2] = 0 and

625+ Z (adju)ZS(Zuv),g1+"'+gn :0,

1<u<v<n

this equality implies

[528+(adj1)2s(t*12)’g2]1mi71,imn_ 5% + Z adxu uv)’(g2)1...i71 ,

1<u<v<n

which ends the proof of (b) above, and therefore of the fact that the identities
A0 ' =Bl ... WwB,Ww! = B;A, are preserved.

K
The relation (©,%?) =1 is preserved because

-~ i T - ix r \2 ~ r ~o im -
({e]e»% o, (W1 Tt ) ) = (1618 Xees o 2 Eess )

where the first two identities follow from the fact that ), _ j t;; commutes with
the image of ® — 0 X t; ,,,  — [z], the third identity follows from the fact
that G1 — Gy, g — [g] is a group morphism, and the last identity follows
from (27). )

The image of C; ;41 is @;} (e2mitiz)iitlng, . to the product of the images
of 012, ey Cn—l,n is

—1/ _2mit12\1,2...n -1 27mit1212,3...n -1
Py () (QBA,@A,Q) (e7m2) <¢A,2¢A,3)
% (627r1t12)3,4...n . (@Am—léx’z) ethn_l,n@)\m
_ H—1/ 27it12\1,2...n/ _2mit12\2,3...n 51,2,3..n/_2mit12\3,4...n 1. 1,..n
= QS,\J(G ) (e ) D, (e ) Dy
(627r1t12)i,i+1mn o @im,nfzn*l 7 2mitn 1,0
_ @;1 (627ri1?12)1,2...n(e27rit_12)2,3...n(e27rit_12)3,4mn . (627riz?12)z',z‘+1wn
= 1
2mity, 1, 1,2,3..n 1...,i—1,..n 1...n—2n—-1n
e n n@)\ e @)\ e @)\
—1 2wy _ .t 2wyt
— ¢)\,1e Zz<1 19@)\71 —e Zl<j 7J’
where the second equality follows from the fact that $-%" commutes with

(e2mit12)7.0+ 1. whenever j > i, and the last equality follows from the fact
that ZKj t;; is central is t,,.



Universal KZB Equations: The Elliptic Case 221

So the product of the images of Cia---Cp—1,4 is 2™ it
The relation (O¥)3 = Cia- - - Cp—1,n is then preserved because

~ ix - 3 ~ o~ . - -~ . _
(161617 e fr)ei8 Ross s ) = ([O)])e2™ X ies s = [(O)*)e2 X1

2miy .t
e i<jbis

where the first equality follows from the fact that ), _ j t;; commutes with the
image of G1 — Gy, g — [g], and the second equality follows from the fact that
g — [g] is a group morphism and the last equality follows from (27). In the

4 2 —
same way, one proves that O* = Ciy---Cp_1p, 07 = ¢7i+1C’i+17i+2CZ R

and (0,0;) = (¥,0;) = 1 are preserved. ]

—

5.2 Construction of morphisms B , — exp (f‘f’n) X S,
using an associator &
Let us keep the notation of the previous section. Set
2n+2 [ ad x
am(A) == =(2n 4+ 1) Ban2 A" /(20 + 2)1, fx = —m(y),

Ay = @A(g)\, t)eAgkﬁp)\(ﬂ)\, t)71
_ ef)\t/Zé)\(_g)\ —t,t)e’\@”t)di (—fa —t,8)” 1 7)\t/2
B)\ = e’\t/2d5,\(—§,\ — t,t)e’\’”é,\(g,\, ) 1
(the identity in the definition of Ay follows from the hexagon relation).
Proposition 33. We have
;1;2,3 _ e’\fl"’/z{@,\}3’1’2213\’13{@,\}2’1’36)"?12/2 ) {@/\}3,2,114;,23{@/\}1,2,3’
B}1\2,3 _ e—)\t12/2{@)\}3,1,233\,13{@A}Z,l,Se—)\tlg/Z . {QS)\}3’2’1B§\’23{@)\}1’2’3,
(B}\Q,:s, e)\fl2/2{@)\}37172Ai713{¢)\}27173€)\fl2/2)
_ (efxfm/z{@/\}3,1,23/2\,13{215)\}2,1,367,\512/2,Aiz,g)
— {QS)\}37271€)\£23 {@)\}1,2,3’

so the formulas of Proposition 31 (restricted to the genemtors A;, B;,04,Cii)

induce a morphism B1 n — €xp (tl n) X Sy, (here t is the degree completion

1,n
of tl,n ).
Proof. In this proof, we shift the indices of the generators of t,1 by 1, so
these generators are now t;;, i # j € {0,...,n} (recall that t,41 = <,

EL” = El1<,7’L)
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We have a morphism av, : tp+1 — t1,n, defined by t;; — t;; if 1 <i<j<n
and to; — §; = —%(gz) if 1 <4 < n (it takes the central element
2 0<i<j<n tij t0 0).

Let ¢ : {1,...,m} — {1,...,n} be a map and let ¢' : {0,...,m} —
{0,...,n} be given by ¢'(1) =1, ¢'(i) = ¢(i) for i = 1,...,m. The diagram

’
I!—>I¢

thr1 — bt

Qn i lam

@
T—x? -
t1,n - t1,rn

is not commutative, we have instead the identity

Ozm(x‘b/) = an(x)¢ — Zfz(x) Z fi/j/ ,

i, 5 €p= 1 (@)]i <5’

where & : t;, — k is the linear form defined by &;(to;) = 1, & (any other
homogeneous Lie polynomial in the tx;) = 0.
Since the various 3=,/ ¢ 41

jir<j¢ tiryy commute with each other and with

the image of x — 2, this implies
n —
am(g¢') = an(g)? H o€ (1089) (X jreg—101y,0 < v Bir7)
i=1
for g € exp(tni1).
1 0,1,2 Xt 01,2\ ! h
Set Ay := P "eMor (QSX ' ) € exp(tz). One proves that

70,123 At1s _ _At12/2531,2 50,2,13 52,13 At12/2  53,2.1 70,1,23 51,2,3
Ay e =e¢ YA e DV AY Dy

(relation in exp(;)). We then have as(Ay) = Ay, a3 (@i’2’3) = oy%% and
the relation between the a; and coproducts implies a3 ([12’1’23) = fli’% and
Qs ([12’12’36)‘“2) = A}\Z‘s Taking the image by a3, we get the first identity.
As we have already mentioned, this identity implies <§25;1/~1;’23Q5>\, fliz’g) =1.

Let exp(tn41) * Z"/I, be the quotient of the free product of exp(t, 1)
with Z" = @®],ZX; by the normal subgroup generated by the ratios of the
exponentials of the sides of each of the equations

Xitoi X' = D tan, Xiltoy +15) X, = toy,

0<a<n,a#i

Xt X' = tjn, X Xatin(X;Xe) ™t =tjk

where i, 7,k are distinct in {1,...,n}. Then the morphism a,, : t,11 — ti,,
extends to &, : exp(t,1) * Z" /I, — exp(t1,) by X; — eri.
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If¢:{1,...,m} — {1,...,n} is a map, then the Lie algebra morphism
thi1 — tma1, © — 2% extends to a group morphism exp(t,) * Z"/I, —
eXp](;tvz) ES Zm/lm by XZ — Hi'E(b_l(i) Xi"

e
By = 22002 X071 € exp(ty) * 22/ I,

Then ay(By) = By.
We will prove that

n0,12,3 _  —At12/2453,1,2 50,2,13 52,1,3  —At15/2 3,2,1 »0,1,23 £1,2,3
B3 — ¢ @312 BB L5, - N )

The Lh.s. is
BY123 = Moz /20312 X 3210

and the r.h.s. is
- 1,2 Xt 13,2 13,2,0 £2,1,3 — 2,1 Ato:
e )\t12/2¢§7 , e)\tsl‘2/2¢())\7 3, X2@)\3’ ’OQS)\’ ’36 )\t12/2¢§7 ) e)\tzs‘l/Q
0,23,1 32,1,0 51,2,3
Dy XD\ DT,
The equality between these terms is rewritten as
_ 503,1,251,3,0_—Aty3/2 13,2,0 _At13/2 52,3,1 50,23,1 01,2,3 52,1,0
X1 Xo=0,7"d e Xod, " e Py PVT X D T
or, using the fact that X; commutes with ¢;, (¢, 7, k distinct), as
_ 03,1,2 £1,3,0 02,3,1 £3,2,0 01,2,3 £2,1,0
X1 X =@, 7D 7 Xp® OV X BT
Now

02,3,1 _ £0,3,1
Xo@)2 3! = @93 X,
01,2,3 0,2,3
X892 = @0*3 X, and
2,1,0 _ £2,1,03
X1 X030 = o313 X, X,

so the r.h.s. is rewritten as
ngg’1’245}\’3’0452’3’1X2Q5§’2’0(P§’2’3X1¢§’1’0 — XX

This ends the proof of (40). Taking the image by a4, we then get the second
identity of the proposition.
Let us prove the next identity. We have

50,123 A1a/2.53,1,2 70,2,13 52,1,3 AF12/2
(B2, eXhe/2g 12 4021503 5

0312): 3,12,0 3,1,2 £0,2,13 13,2,0 £2,1,3
= 6)\“2’3/2@)\’ ’ IAXQQSA’ ’ 6)\t12/2¢)\’ ’ QS)\’ ’ 6At0’2¢)\ = @A’ ’
t 0,12 X1X5)™ 12,3,0 — — 1,2 50,2,13 —
e)\t12/2¢)\, 73( 1 ) 1@)\ 73, e At12’3/2€ )\t12/2¢§)\, 5 @)\, 3 36 )\to,z

13,2 2,1 — )\t
X@)\S’ 70¢)\7 ’36 At12/2
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Now
X1X2@§’12’Oe’\t_l"’/2¢§’1’2¢§’2’136’\t0v2@}\3’2’()@3\’1’36’\512/%52’12’3(X1X2)_1
_ e’\t_l"’/2X1X2§Z5§’12’0¢§’1’2¢2’2’136’\t0v2@isa’o@?\’l’s@g’u’s(X1X2)_1e’\t_l"’/Q
_ ext’m/2X1X2Q5(;,2,1@i,l,ozeMO,Q4532,1,3@(/)\,2,1(X1X2)71e>\512/2
— €A£12/2X1X2¢(>)\,2,1eAt0,2¢§,2,1(X1X2)—1e>\t‘12/2
= M2g0 B X XpeMo2 (X Xp) TP e /2

— 6)\{12/2¢23’2’16At03’2¢§3’2’16)\Elz/2~
Plugging this in the above expression for
50,12,3 Af12/2.53,1,2 70,2,13 £2,1,3 At15/2
(B2, X2l 2 AP g B :
one then obtains
50,12,3  Af12/253,1,2 70,2,13 £2,1,3 M12/2) _ 53:2,1 Atas 551,2,3
(B2, X232 AL P e = PIPLMn L3,
Taking the image by a4, we then obtain
512,3  A12/2.53,1,2 12,13 52,1,3_A12/2) _ 53:2,1 Aoz 51,2,3
(B3, X202 A e = P2 l23,
Let us prove this last identity. For this, we will show that

— 3,1,2 0,2,13 £2,1,3 — 710,12,3 3,2,1 3 £1,2,3
(e >\t12/2¢/\, , B/\’ , d;)\’ Be )\t12/2,A/\, s e)\tn) :dj/\a , e)\tzs@/\, ,

and take the image by ay.

We have
_ 3,1,2 50,2,13 £2.1,3 — 70,12,3
(e At12/2¢>\, 2Bo213g2 L3, At12/2’A>\7 , e)\tlz)

— €_>\t12/2¢§71726)\t2’13/2¢?\71372X2@1\37270¢i7173€_>\t12/2¢())\71273€)\t0’12
X¢§,12,Oe)\t12 e)\t12/2¢§7172¢?\72713X§1@3\71370€_>\t2’13/2¢i7173€)\t12/2
X¢§71273€_>\t0’12¢§71270€_>\t12

— €_>\t12/2¢§7172e)\tz’13/2¢())\71372X2¢1\37270¢i7173@2712736)\t0’12+>\t12 ¢§,12,0¢§)\,1,2
X@?\72713@?\713706_)\t2’13/2X271dsi’173€_>\t12/2¢())\71273€_>\t0’12¢§71270.

Now
Xg@}\S’Q’O@i’1’32252’12’36’\t°=12+)‘t12¢§’12’0925‘:3\’1’2@2’2’13)({1
_ X2¢§2,1,3¢}\,2,06,\t0,12+,\t12¢§,2,1¢§,1,02X51
— ¢g7173X2¢}\7270€)\t0’12+At12¢§7271X;1¢i7170
— @g’l’nge)‘(tm+t°2+t12)X;1@§’1’0

— ng’lﬁe)\(tm+t02+t12+t23)¢i’1,0.
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So
- 3,1,2 50,2,13 £2,1,3_— 70,12,3
e )\t12/2g25 1,2 50,2,1352,1,3 At12/2 A%:12 e)\tlz
A A A PEEN
_ e*)\tlz/2¢§7172e)\tz,13/2Q5§71372@())\71736)\(t01+t02+t12+t23)
1,0 £2,13,0 — 21,3 _ 12,3 _ 12
> 4537 ’0Q5 , 3’06 At2,13/2¢ ) ’36 )\t12/2¢07 ’36 )\to,12¢37 ,0.
A A A A PO
. . 3,2,1 _Aag51,2,3
after some computation, we find that this equals @y e 23 ™7, 0O

—

In particular, (®y, Ay, By) give rise to a morphism Bi, — exp (E’fn> X S
one proves as in Section 2 that it induces an isomorphism of filtered Lie

algebras Lie(PBy )k ~ flin. Taking @, to be a rational associator [Dri91], we
then obtain the following:

Corollary 34. We have a filtered isomorphism Lie(ﬁl’n)(@ ~ Egn, which can
be extended to an isomorphism By ,(Q) ~ exp < h n) X Sp.

5.3 Construction of morphisms I ) — Gpn X Sy,
using a pair (P, Ox)

Keep the notation of the previous section and set

~ 1
Uy = exp | —— Ag + Z azk 52k
k>1

Proposition 35. We have
[W] At12/12A ([ ] At12/12) _A)\’
[W } )\t12/12B ([Q ] )\t12/12) B)\A)\.
Proof. The first identity follows from the fact that Ao + 3, -, a2 (A)[d2x] —

A?t/12 commutes with ¢ and 7y; the second identity follows from these facts
and the analogue of Lemma 30, where 271 is replaced by A. O

Assume that 6, € G, satisfies
6i = (é,\i/)\)‘s = (éi,@)\) =1,
[Oa]eM12/2 A5 ([O5]eX2/4) 7! = By Y,
[O2]eN12/1 By ([62]eN12/4) 71 = By A, By
(one can show that the last two equations are equivalent), then © +—
[Ox]eM Xz i<iti)/4 oy [§y]eMi<5 t9)/12 extends the morphism defined in
Proposition 33 to a morphism I [,; — Gy, X Sy.

We do not know whether for each @, defined over k there exists a é)\
defined over k, satisfying the above conditions.
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5.4 Elliptic structures over QTQBAs

Let (H, Ay, Ry, ®y) be a quasitriangular quasi-bialgebra (QTQBA). Recall
that this means that [Dri90b] (H,my) is an algebra, Ay : H — H®? is an
algebra morphism, Ry € H®? and &5 € H®3 are invertible, and

AH(.TE)Q’I = RHAH(I’)Rﬁl,
(id® Ap) o Ap(z) = P (Ax @id) o Ap(z)dy,

-1
12,3 +31.2p1,3 [ £1,3,2 2,3 +1,2,3
Ry =&y "Ry (de ) Ry @y,

—1 -1
1,23 2,3,1 1,3 $2,1,3 1,2 1,2,3

1,2,34 £12,3,4 __ $2,3,4 £1,23,4 5£1,2,3

PL2MPI234 _ 23 Apl23dgl 23

One also assumes the existence of a unit 1y and a counit €.

If A is an algebra and Jy, Jo C A are left ideals, define the Hecke bimodule
H(A|J1, o) or H(J1,J2) as Homa(A/J1,A/Js) = (A/J2)"t where J; acts
on the quotient from the left; we thus have H(Jy, J2) = {z € A|Jix C Jo}/ Jo.
The product of A induces a product H(J1, J2)@H(J2, J3) — H(J1, J3). When
Ji = Jo = J, H(J) := H(J,J) is the usual Hecke algebra, and H(Jy, J2)
is a (H(J1), H(Jz2))-bimodule. Recall that we have a functor A—mod —
H(J)—mod, V +— V7 :={v € V|Jv = 0}.

If H is an algebra with unit equipped with a morphism Ay : H — H®?
and a : H — D is a morphism of algebras with unit, we define for each
n > 1 and each pair of words w,w’ in the free magma generated by 1,...,n
containing 1,...,n exactly once (recall that a magma is a set with a not
necessarily associative binary operation) the Hecke bimodule

HY ' (D, H) == H(D ® H®"|Jy, Ju),

(or simply 'H“”“’/) where J,, C D®H®" is the left ideal generated by the image
of (a® A%)oAg : H. — D@ H®". Here H, = Ker(H 2 k) and for example
Agl)?’ = (213) o (A ®1idgr) 0 Ap, etc. We have products H** @ H®' " —
H®" We denote the Hecke algebra H™* by H* (D, H) or H"; we denote by
14, its unit. We denote by (H“”“")X the set of invertible elements of H**", i.e.,
the set of elements X such that for some X’ € HY' ", X'X = 1/, XX' = 1,,.
The symmetric group S, acts on the system of bimodules H***" by permut-
ing the factors, so we get maps Ad(0) : H¥* — HOW):o@) (where o(w) is
the word w, and where i is replaced by o(i)). If wy = ((12)...)n, we define
an algebra structure on @,cs, H?(W0)g by (Coes, hoo) (X g, Hot) =
Y ores, hoAd(o) (h7)or. Then Uses, (Hwoowol )Xo C @,eg, HY (W) g
is a group with unit 1,,. We have an exact sequence 1 — (H“°)* —
Uges, (H®woo(@o)y<g — S, but the last map is not necessarily surjective
(and if it is, does not necessarily split).
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If H is a quasi-bialgebra, then $p gives rise to an element of H!(23)(12)3
(D, H), which we also denote by ®y; similarly, 451_{1 gives rise to the inverse
(w.r.t. composition of Hecke bimodules) element &' € H(123123) (D H).
We have algebra morphisms H'?(D, H) — H?3(D, H) induced by X —
X0123 .= (idp ® Ay ® idy)(X) (0 is the index of D) and similarly mor-
phisms H'2(D, H) — H*U3)(D, H), X + X923 H'2(D, H) — HY(D, H),
X — X010 and X001 ete. If, moreover, H is quasi-triangular, then Ry €
H2M12(D, H), Rﬁl € H'22Y(D, H), so in that case Li,eg, HV7(W0)g — S,
is surjective, and we have a morphism B,, — uaeanwO"’(wO)a such that the
composition B,, — I_IUGS"H“’O*"(“’O)J — S, is the canonical projection.

Definition 36. If H is a QTQBA, an elliptic structure on H is a triple
(D, A, B), where D is an algebra with unit, equipped with an algebra mor-
phism a : H — D, and A, B € H'?(D, H) are invertible such that A%H? =
A00.1 — B0,1,0 _ RB0,0,1 _ 1p® 1y,

—1 -1
2,1 [ £2,1,3 2,13 52,1,3 p1,2 ( 51,2,3 1,23 51,2,3
A012.3 _ R% (ng ) 40:2 13¢H RY <¢H ) A0 123(PH . (41)
B012.3 _ (Rzg)*l (¢2F}1,3)*1Bo,2,13¢2ﬁ1,3 (42)
-1 -1
2,1 1,2,3 1,23.51,2,3
(R ) (¢H ) BO 1 23¢H

and

-1
0,12,3 p2,1 ((#2,1,3 0,2,1352,1,3 p1,2
<B R (ah)  Avatiel, RH)

_ <<R}:}2) -1 (@2}173) -1 BO’2’13¢2L3 (Ri}l) -1 ,AO,IZ,S)
—1
1,2,3 3,2 p2,351,2,3
= (@H ) R RY o
(identities in HY2)3 (D, H)).
The pair of identities (41), (42) is equivalent to

2,1 1,2

REMA021RLZ A0L2 —

3,12 40,3,1253,1,2 p2,31 40,2,3152,3,1 p1,23 40,1,23 51,2,3 _
R312A03:12¢573: 12 231 40231231 p1.23 40.1,23¢51.2:5 _

and

(R}f -1 RO.2.1 <R§{’1)_1 BOL2 — 1

(Ry') ™" BO# 120302 (R )™ BO2 St (Ry!)™!

BO’1’23¢11L}2’3 -1
so the invertibility conditions on A, B follow from (41), (42).

If F € H®? is invertible with (ey ® idy)(F) = (iddy ® ey)(F) = 1g,
then the twist of H by F is the quasi-Hopf algebra FH with product
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mp, coproduct ANH(x) = FAg(z)F~!, R-matrix Ry = F2'RyF~!, and
associator ¢y = F23FLBG,(FL2F123)~1 If ¢ : H — D is an alge-
bra morphism, it can be viewed as a morphism “H — D, and we have
an algebra isomorphism H?3(D, H) — H2)3(D, H), induced by X —
FL2p012 X (FL2F012)=1 (more generally, we have an isomorphism of the sys-
tems of bimodules H**' (D, H) — H"“*' (D, H) induced by X F,XF,!
for suitable F,).

If (D, A, B) is an elliptic structure on H, then an elliptic structure on
FH is (D, A, B), where A = F12F012A(F12F012)=1 and B = FL2F012
(FL2F0.12)—1,

An elliptic structure (D, A, B) over H gives rise to a unique group mor-
phism

Bin — Uges, HY7Wo) (D H)* o

such that

it "L o
o; - (djg(12)3)mz—1),z,z+1) R},{zﬂ (i,i + 1)¢5:(I(12)3)...271),2,z+1’

A @I—_I}iAO,(((IZ)B)Mif1),(i“‘(n71,n))¢H’i’

Bi — ¢]}lz’BO7(((12)3).“i_l)7(i.“(n_17n))¢H7i,

where ) i b ,
¢H,i _ Q(Ig )i—1),3,(i+1(...(n—1,n))) é(lg )..n—2),n—1,n

b

here we have, for example, z((12)3) = (Ay ®idy) o Ay (x) for z € H.
If g is a Lie algebra and t; € S?(g)? is nondegenerate, then H = U(g)[[A]] is
a QTQBA, with my, Ay are the undeformed product and coproduct, Ry =

eMa/2 and oy = & (hté’Q,hti?’), where @ is a l-associator. The results of

the next section then imply that (D, A, B) is an elliptic structure over H,
where D = D(g)[[h]] (D(g) is the algebra of differential operators on the formal

neighborhood of the origin in g) and A, B are given by the formulas for Ay, By
with ¢ replaced by hté’2, z replaced by > xo® (ei), y replaced by =1 Y 0a®

(ea)-
Remark 37. If H is a Hopf algebra, we have an isomorphism

H*(D,H) ~ (D& H®" 1)
where the right side is the commutant of the diagonal map H — D ® H®" !,
h (a®idf ") o A(I_?)(h). This map takes the class of d ® hy @ -+ ® hy, to
da(Sy (h%n))) Q@ h1SH (h%"_l)) Q- Qhp_1SH (h%l)) (S is the antipode of
H). So A, B identify with elements A, B € (D ® H); the conditions are then

2,1 1,2 1,2 -1 2,1 -1
4012 _ R% AO’QRH AV goIZ (RH ) BY:2 (RH ) B,
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—1 —1
0,12 2,1 40,2 pl,2) _ 1,2 0,2 2,1 0,12
(5o mitaeemye) = ((mi?) 502 () A002)
0,1,2-
= (RSP Ri R Ry Ry RS

(conditions in (D ® H®2)M), where the superscript B, xZ"~! — B,,_q xZ"~!
is the map 2o ® - -- @ w3 — Su(zg) ® Sy (r1) ® x2Sy (23).

Moreover, the morphism PB,, — (H“)* ~ (D@ H®"~1)H factors through
PB, — PB,_1 x Z" ! — (D ® H®" 1) where (a) the first morphism is
induced by Z" ! x B!, — Z"~! x B,,_1 (where B/, = B,, x5, S,,_1 is the group
of braids leaving the last strand fixed), constructed as follows: we have a com-
position B}, | ; — 1 ((P')"** —diagonals/S,,) — 71 (C™ —diagonals/S,,) = By,
where the first map is induced by C C P!, and the middle map comes from
the fibration C"* — diagonals — (P1)"*! — diagonals — P!, (z1,...,2,) —
(#1,-.+,2n,00) and (21, ..., 2n41) — Zn+1 |[the second projection has a section
so the map between ;s is an isomorphism]|; viewing Z" ! x B/, Z"~! x B,,_1
as fundamental groups of configuration spaces of points equipped with a
nonzero tangent vector, we then get the morphism Z"~* x B/, — Z" "' xB,,_;
(which does not restrict to a morphism B!, — B,_1); (b) the second map
is induced by the standard map PB,_; x Z"! — (H®""1)* induced
by Ry = >, ® ry and the map taking the i-th generator of Z"~' to
1® - ®@uSp(u) ® --- ® 1, where v = >, Sy (rl) rl, (see [Dri90a]). The
morphism B,, — Aut((H*°)*) = Aut((D ® H®" 1)) extends the inner
action of PB,, by

0-2n—1,....n—1-#
. n—1n..2n—1+0,1,...,n—2,n...2n—1 pn...2n—1,n—1 e
an_l-X.:{RH : X0 L Ryl }

(where the superscript means that zo ® - - - ® x2,—1 maps to
20SH(T27-1) ® -+ @ Tp—1SH (Tn)) -

We have then Uyeg, (HY7(W0)) g ~ (D ® H®" 1)) xpp B, (the index
means that PB,, C B,, is identified with its image in ((D @ H®"~1)*)H).

Then if (A, B) is an elliptic structure over a : H — D, the morphism
B, — ((D® H®"= 1)) xpp B, extends to a morphism

El,n — ((D [ H®n71)X)H XPB, B,

via Ai — AO,l...ifl’ Bi — BO,lmifl.
This interpretation of H™° and of the relations between A,B can be
extended to the case when H is a quasi-Hopf algebra.

Remark 38. Let C be a rigid braided monoidal category. We define an elliptic
structure on C as a quadruple (£, A, B, F'), where & is a category, F': £ — C
is a functor, and A, B are functorial automorphisms of F(?)®?, which reduce
to the identity if the second factor is the neutral object 1, and such that the
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following equalities of automorphisms of F(M)® (X ®Y') hold (we write them
omitting associativity maps, since they can be put in automatically):

Ay xey = By, xAm,y Bx,y Am, x,

—1 —1
By, xey = BxyBum,y By xBu,x,

(Bum,xev, By, xAmyBxy) = (ﬁ;}XBM,Yﬁ;(}YaAM,X(@Y)
= Bmexey)-,yBy,(MexeY): © CANMRX®Y

where cany € Hom¢ (1, X ® X*) is the canonical map and the r.h.s. of the last
identity is viewed as an element of Ende (M ® X ® V') using its identification
with Home(1,(M @ X ®Y) ® (M ® X ® Y)*). An elliptic structure on a
quasitriangular quasi-Hopf algebra H gives rise to an elliptic structure on H-
mod. An elliptic structure over a rigid braided monoidal category C gives rise
to representations of By ,, by C-automorphisms of F(M) ® X®n~1,

6 The KZB connection as a realization of the universal
KZB connection

6.1 Realizations of t; ,

Let g be a Lie algebra and let t5 € S2(g)? be nondegenerate. We denote by
(a,b) — (a,b) the corresponding invariant pairing.

Let D(g) be the algebra of algebraic differential operators on g. It has
generators X, 04, a € g, and relations a — x,, a — J, are linear, [x,,xp] =
[0, Ob) = 0, [Ou, xs] = (a, b).

There is a unique Lie algebra morphism g — D(g), a — X,, where X, :=
Yoo X[aea]Ocar and tg = > eq ® eq (it is the infinitesimal of the adjoint
action). We also have a Lie algebra morphism g — A, := D(g) ® U(g)®",
a— Y, =X, 14+1® (Z?:l a(i)). We denote by g8 the image of this
morphism. We denote by M, (g) the Hecke algebra of (4,,, g4#2). Tt is defined
as the quotient {x € A, |Va € g,Y,z € A,g%28} /A, g%1%. We have a natural
action of S,, on A,,, which induces an action of S,, on H,(g).

If (Vi)i=1,....n are g-modules, then (S(g) ® (®7_,V;))? is a module over
H,(g). If, moreover, Vi = --- =V, this is a module over H,(g) x Sp.

Proposition 39. There is a unique Lie algebra morphism pg : t1 ., — Hn(g),
Ty Y Xa ® egf), Tit—= =400 ® egf), tij — 1 ®th]) (we set Xo = X, ,
On = 0O, ).

Proof. The images of all the generators of t; ,, are contained in the commutant
of g4i28 in A,,, therefore also in its normalizer. According to Lemma 4, we will
use the following presentation of t; ,. Generators are Z;,¥;, t;;, relations are
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[, 2] = [9:,9;] = 0, [T, 45] = ti5 (0 # J), tij = tjiy 2% = 2,9 = 0,
[i‘i,tjk] = [gi,tjk] =0 (i,j,k distinct).
The relations [z;,Z;] = [7:,9;] = 0, [Zi, 7] = tij (i # j), tij = t;; and

[Zi,tjk] = (Ui tjx]) = 0 are obviously preserved. Let us check that >, z; =
> ;Ui = 0 are preserved.
‘We have

Zpg(fi) = Zxa ® (Zdﬁ) = (%0 ®1)(Ya - Xa®1)

% o

= _ZX(XX ®1= erax[emeﬁ 86!3 ®1=0,
a,3

since X, commutes with x[., .,] and Y ;€3 ® eg = tg is invariant. We also
have

Zpg(?jz)

= 0a® (Zegj>> == (0a®1)(Yo — Xa®1)

[e3

= Zf)aXa ®1=-— Zaeax[emeg]aeﬁ
= —Z €a, ea,eg 65 ZX[SQ,E[-} €a eﬁ

Since tg4 is invariant and (—, —) is symmetric, we have ) _(eq, [€a,€g]) = 0 for
any (3, and since [0, , 0,] = 0, we have Z x[emeﬂ]ﬁea s> 50 D Pg(Bi) = 0.
O

6.2 Realizations of t; , x D
Let (g,tg) be as in Section 6.1. We keep the same notation.

Proposition 40. The Lie algebra morphism pg : t1.,, — Hy(g) of Proposition
39 extends to a Lie algebra morphism t1 , x 0 — H,(g), defined by Ag —
_% (Za 834) ® 17 X = % (Za Xi) ® 17 d = %(Za X(Jéaa + aOcXOt) ® 1} and

n

b= 3 Fert e @ (de(ean - ad(ea,,,) (o) ~ea><i>)

QL yeey 02,8 i=1

for m > 1. This morphism further extends to a morphism U(t1 , X 0) x S, —
Hn(g) xSy by o — 0.

Proof. First of all [pg(dam ), pg(Z;)] equals

1 .
9 Z Xai Xz Xp @ [eg,ad(€ay) - - ad(€as,, ) (€a)ea]

2
QL yeensQ2m, 03



232 Damien Calaque, Benjamin Enriquez, and Pavel Etingof

1
= b} Z Xag " Xagn Xp

A1,y 02m, L3

@Y (ad(ea,) - ad(leg, ea,)) -+ ad(ean, )(€a)ea)

(the equality follows from the invariance of t), which equals zero since the first
factor is symmetric in (3, ay), while the second is antisymmetric in (5, ay).
We note that pg preserves the relation [dop,, ;] = [tij, ad(Z;)*™ ()], be-
cause pg(dam + X2, ad(z;)?™(%;;)) belongs to D(g) ® Im(A™ : U(g) —
U(g)®"), where A™ is the n-fold coproduct and U(g) is equipped with its
standard bialgebra structure.
Now [pg(3am), pg ()] yields

1 i N
5 > <Z[6a,xa1  Tag] ® € ad(ea,) - ad(eas, ) (ea) Vel

J

s T 0 @ Lo, ad(0n) -8 ) ) - 0] )

2m
) | .
=32 X (Z Tay ++ Fay + Fag @ ebad(ear) - ad(eaz ) (ea) Ve
=1 a,...,a2m, J

S Tag, @ e((jl)ad(eal) to ad(ea2m)(ea)(j>ez(3cj>

Il
it
(]
™

The term corresponding to j =i is

-Z S Cay o far e Tag, @ [eanad(ea,) - ad(eay, ) (ea) - o] ©.

=1 ai,...,02m,

It corresponds to the linear map S2™~1(g) — U(g) such that for = € g,

P LS S e ad()Pad(e)ad(a)e) - o]

p+q=2m—1 o,

= %Z Z ad(z)Pad([eg, z])ad(z)?ad(eg)ad(z)" (eq) - €a

o, p+qt+r=2m-—2
+ ad(z)Pad(eg)ad(z)%ad([eg, x])ad(x)" (eq) - €q,

since pu(ty) = 0 (u: g®? — g is the Lie bracket) and t4 is g-invariant. Now
this is zero, since ty = Zg eg ® eg is invariant.
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The term corresponding to j # i corresponds to the map S?"~!(g) —
U(g)®" such that for x € g,

s —% ZZ ((adz)'~!(adeg)(ad 2)*™ (eq) - ea)(i)e(ﬁj) — (i <)

=1 o,p

2m - 4

= % (—1)l+1 Z ((adz)lfl([eﬁ, eaD . (adx)Qm—l(ea))(Z)egj) _ (Z - ])
=1 oy
2m -

= DY ((@de) ) - (ad )P ) leas 6] — (i < )
=1 ap

= 22D [ () ew)) Ve, S ((adr? ) Ve
=1 « 3

which coincides with the image of

S CUd 2 (Eg), (ad 7))

p+g=2m—1

It is then clear that pg preserves the commutation relations of Ag, X, and
d with 9,,. O

6.3 Reductions

Assume that g is finite-dimensional and we have a reductive decomposition
g=bhbdn, ie, h C gis a Lie subalgebra and n C g is a vector subspace
such that [h,n] C n; assume also that ty = ty + tn, where t, € S%(h)" and
to € S%(n)".

We assume that for a generic h € b, ad(h), € End(n) is invertible.
This condition is equivalent to the nonvanishing of P()) := det(ad(AY)}n) €
Sdimn () where A — AV is the map h* — b, with AV := (A ®id)(ty). If G
is a Lie group with Lie algebra g, an equivalent condition is that a generic
element of g* is conjugate to some element in h* (see [EE05]).

Let us set, for A € h*,

r(A) = (id ® (ad )\v)‘;l)(tn).

Then r : b, — A?%(n) is an h-equivariant map (here b, = {\ € h*|P(\) #

reg reg

0}), satisfying the classical dynamical Yang-Baxter (CDYB) equation
CYB(r) — Alt(dr) =0

(see [EE05]). Here for r = 3" aa ® bo @ lo € (n®2 ® S(h)[1/P])", we set
CYB(r) = Za’a,([aa,aa/}®ba®ba/+aa®[ba,aa/]®ba/+aa®aa/®[ba,ba/])®



234 Damien Calaque, Benjamin Enriquez, and Pavel Etingof

bolory dr := Y aq ® by ® dl,, where d extends S(h) — b ® S(h), zF —
kr®zb! and Alt(X @ 0) = (X + X231 + X312) @ 0.
We also set

() == <id ® (ad AV);E) (tn).

We write 1)(A) = 3, Aa ® Bo ® Lq.

Let D(h)[1/P] be the localization at P of the algebra D(f) of differential
operators on b; the latter algebra is generated by X, O, h € b, with relations
h v Xp, h— 6h linear, [Rh,f(h'] = [5}“5}#] =0, and [5h,ih'] = <h,h/>.

Set B, := D(h)[1/P]@U(g)®". For h € b, we define X}, := > i[h,hy]éhu €
D(b), where ty = 3" hy, ® hy. We then set Yy, := X + 31 h(). The map
h — B, is a Lie algebra morphism; we denote by h4i2¢ its image.

We denote by H,, (g, h) the Hecke algebra of B,, relative to h4&. Explicitly,
Hn(g,b) = {z € Bu|Vh € b, Yz € B,h%e} /B, hiee,

Proposition 41. There is a unique Lie algebra morphism
Pay : tn — Hn(g, b)

such that T; — Y %X, @ h(yi), g —>.,0, ® h Yi2ala® a((xi)ngj),
fij >t Here r(A\) = 3, €a(N) (a0 ® ba).

If Vi,...,V, are g-modules, then S(h)[1/P] ® (®;V;) is a module over
D(h)[1/P] @ U(g)®", and (S(h)[1/P] ® (2:V;))" is a module over H,(g,h).
Moreover, we have a restriction morphism (S(g) ® (®;V5))® — (S(h)[1/P]®
(®V;))Y. Note that (S(g)®(®;V;))? is a t; ,-module using the morphism t; , —
Hn(g), while (S(h)[1/P]®(®V;))" is a t; ,-module using the morphism t; ,, —
H,(g,h). Then one checks that the restriction morphism (S(g) ® (®;V;))¢ —
(S(§)[1/P] ® (®V;))" is a t; ,-module morphism.

Proof. The images of the above elements are all h-invariant. To lighten the
notation, we will imply summation over repeated indices and denote elements
of B, as follows: 0, ® 1 by J,,, %, @1 by (\, h,), 1®@z® by x°. Then pg 5 (7;) =
(Y, g (56) =~ B+ 301y (A (here for 2@y € g2, (z@y) i= a'y).
We will use the same presentation of t; ,, as in Proposition 39. The relations
[Z;,Z,;] = 0 and t;; = tj; are obviously preserved.
Let us check that [Z;, y;] = t;; is preserved (i # j):

[0a.0 (), pan (U)] = |Zuhiy, =10, + > r(N)*| =17 + [N, r(A)]
k
=t + 1 =t = pg(tij).

Let us check that >, 7; = Y, 9; = 0 are preserved. We have ). pg (Z;)
= 0 by the same argument as above and Y., pg.p(%:) = >_,(AY)" (by the
antisymmetry of 7()\)), which vanishes by the same argument as above.
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Let us check that [7;,3;] = 0 is preserved, for i # j. We have

[Pg,b(?i)a P&b(?j)] _
= 3 (RN B @) 4 [r(N)F, (A

k|k#i,j
+Hr()™, ( ) M e, ( )7']) + [, + 1) 0, r(N)7]
— 1,0, ] Hé N+ [PV, (A +r(A)]
> h’; A\ 4 [(hY 4 12) Dy, (V)] — [hED,, (V)]
k|k#i,j
[hjéu, (A )i] [( )N 4 (M)
= b —hi = X,) + [(h, + h3) By, r(A)7]

W (-
*hz (a r(\) + b, (a r(A)" + [r(N)7,r (V)" + (4]
= [hl, + ki, r(N)7] 0, — (0, r”(/\))X + [hl, + i, 0ur(N)7]
=hi, (0N + 1, (Bur(A)™ + [r(N)Y (V)™ + r(N)7].

The second equality follows from the CDYBE and the antisymmetry on 7()).
Then

[+ 17| 3= (@ () X = ([l + B TN = 0r VA [ b)) )

is zero thanks to the h-invariance of 7(\). Applying @'y’ z¥ +— 2¢(yz)7 to the
CDYB identity

[r()\)ij,r()\)ik] + [r()\)ij,r()\)jk] + [r()\)ik,r()\)jk] — K0, r(N\)7* + hio,r(\)*
- hiaur()‘)ij =Y,

we get
5 S lalyNaa, a5l Toas bl + [r(N), 7(0)] ~ B (,r (X))

+ [, 0,r(N)7] =0.

Since r(A) is antisymmetric, the sum (1/2)3_, 5... is symmetric in (4, j);
antisymmetrizing in (i, j), we get
1y, + 1), 0y (W)Y ] = by, (D (M) + 1 (8 (X)) +[r(N)Y (N +1(N)7] = 0.
All this implies that [pg.5(7:), pg.5(7;)] = 0.

Let us check that [Z;,t;x] = 0 is preserved (i,j,k distinct). We have
[P (@), pan(E)] = [OV)7 ] = 0.

Let us prove that [g;,%;x] = 0 is preserved (i,j, k distinct). We have
[Pan@): Pan )] = =D + Lr L] = [rO) + )%, 8] = 0
because g4 is g-invariant. 0O
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Proposition 42. If Vi, ..., V, are g-modules, then (S(h)[1/P]®(®;V;))" is a
t1,, X 0-module. The t1 ,,-module structure is induced by the morphism t; ,, —
H.(g,b) of Proposition 41, so

pv) (@) (F(N) @ (@iv:) = (W) (F(N) @ (@iv1)),
P (G)(f(N) @ (®ivi)) = (—hiay + Zr(w‘) (F(N) ® (®v3)),

Py (i) (F(N) @ (®ivi)) = t7 (f(A) @ (Riv4)),

and the 0-module structure is given by
P (Eam)(FN) © (@001)) = 5 (Z{(ad A2 (e,) }) (F) @ (@),
pviy(Qo)(f(N) @ (®iv4)) ( - —32 w(r(A)), hy)0y

+{2w<x> L aday, <<r<A>>n>}u”'n>

(f(N) @ (@ivi)),
(A )0y + 0 (X B} + (u(r(A)), AY))

pviy (@) (fN) ® (®507)) = %
(f(N) @ (®vi)),
1
2

Py (X)(FN) ® (@) = S A, A)N(F(N) @ (@v4)).

Here (—)n denotes the projection of g on n along b.

To summarize, we have a diagram

tin — Ha(g,h) — End((S(h)[1/P]® (2:V7))")
N W1 /!
tl,n X0

As before, the restriction morphism (S(g) ® (2;V;))® — (S(h)[1/P]®(®;V;))"
extends to a t; ,, x 9-module morphism.

The action of t; , xd factors through a morphism pg p : t1,, X0 — Hy(g, b)
extending pgp : t1,n, — Hn(g,h) (denoted by (1) in the diagram).
Proof. Let \ € b*

reg- Then if V' is a g-module, we have (Og-22V)8 = (Oh- A ®
V)" (where Ox,, is the completed local ring of a variety X at the point z).
We then have a morphism & ,, X0 — H,,(g) — End((Og- 1 ® (®;V;))?) for any
A € g*,sowhen \ € hreg we get a morphism t; ,, X0 — End((Op- A®(®:Vi))).

Let show that the images of the generators of t; ,, % under this morphism
are given by the above formulas.
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Since the actions of Z;, ¢;;, and X on ((’jg*7,\ ® (®;V;))? are given by
multiplication by elements of (Og- x ® U(g)®™)9, their actions on (Op« \ ®
(®;V;))" are given by multiplication by restrictions of these elements to h*.

Let us compute the action of g;. Let f(\) € (Op ® (®;V;))" and
F(\) € (Og-x ® (®;V;))® be its equivariant extension to a formal map
g* — ®;V;. Then for x € n, we have (yr + 3_;(ad A¥) ™1 (2)))(F (X)) }p- = 0
(the map z +— 2" is the inverse of g* — g, A — AV). Then p(v; (7)) (F(\)) =

(= hi0n + 5 e (@aA) " Hea)) ) FO) = (=hid, + 5, m(0) (FV):

Let us now compute the action of Ag. Let A9 € b* be such that A\§ € U and
A € g* be close to A\g. We set 6\ := A — \g. We then have A\ = e*d%(\g + h"),
where z € n and h € b are close to 0. We have the expansions

= 00 + 5 [(ad XD (@034 (60Y]
z=—(ad X))}, (((M): + {(ad A (((u):) ,(M)g]
#3 AR (@00, 6n:])

up to terms of order > 2; here the indices u, and up mean the projections of
uw € gtonand b If now f(A) : b* D V(Xo,h*) — ®;V; is an h-equivariant
function defined in the vicinity of Ao and F(\) : g* D V(Xo,g*) — @iV;
is its g-equivariant extension to a neighborhood of A\ in g*, then F \) =
(€*)t f(Ag + h), which implies the expansion

FO) = F00) + (63 + 5 {[(ad X3 (es),esr] 1) (35035 )0 FN0)
5NN, FO0) + (— (ad A (es)(00)s
—(ad A ([ (ad A}, (o). o] ) (92035
fé (d ) ([(ad MR o) ear] ) 6X)5(00)5
£ (ad Ay () (ad N (60 )(0X)5 (003 ) " F00)

—(ad A}, (ep)™ " (6A)5(6A)u 00 f (M)

up to terms of order > 2.
Then

(92F) (o) = (827) (o) + { |(ad )}, (e9), 5] 1) D1 (M)
+ (= @ a);" ([(ad AL (e0)ses] )
2\1..n _
+ (@A) (e0) ) T FOw),
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which implies the formula for the action of Ay.
Then (S(h)[1/P] ® (2:V;))" C erbﬁeg (Op= . @ (®;V;))" is preserved by

the action of the generators of t; ,, X 9-module, hence it is a sub-(t; , x 0)-
module, with action given by the above formulas. O

6.4 Realization of the universal KZB system

The realization of the flat connection d — Y, K;(z|7)dz; — A(z|r)dr on
(% x C") — Diag,, is a flat connection on the trivial bundle with fiber

b
<Oh;<eg ® (®sz))
We now compute this realization, under the assumption that h C g is a
maximal abelian subalgebra. In this case, two simplifications occur:

(a) (adAY)(h,) = 0 since b is abelian,
(b) [(ad )\V) Lep), 65} = 0, since |(ad\Y ) Y(ep),e5| commutes with any
element in b, so that it belongs to b.

The image of K;(z|7) is then the operator
K" (zlr)
= 10, = 3 (N7 + 3 k(ziy, (ad X)) (tfg‘ + t;f)

J Jli#i
_ i i 0(zi; + (ad \Y)|7) ij 0 ij
=Pl =TT 2 ey () 2 el
JIF VIFE]

The image of 27miA(z|7) is the operator

27TiA(Vi)(Z|T) = —32 <[(ad)‘v) (eﬁ)veﬁ] ’hV>8V 9(0,0l7) Z t“
+Z% ([9(zi5,ad 3 [7) = (ad AY) 2] () eﬁZ (22, 0lm) i

and the connection is now

. Vi i
vV — g — ZKZ( \(2|7)dz; — AV (a|7)dr

Recalling P(A) = det((adAY)},), we compute the conjugations P'/2v(V2)
P12 where P*'/2 is the operator of multiplication by (inverse branches
of) PE/2 on Oy @ (2:V7)".

Lemma 43. 9,log P(A\)=—(h,, u(r(A))), pl/2 [hiay _ T(/\)ii] p-1/2 — hid,,
P [+ [ e ] P = 8 5 (s )
— (hw, Su(r(V))
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Proof. d,log P(\) = (d/dt);,—odet {(ad()\v + thy)n)(ad X)) } —tr [(adh,)|s0

(admﬂ - < (adh,) o (ad AY) ! > <[(acw eﬁ} h, > -
—(hy, pu(r(A))). The next equality follows from pu(r(\)): = 2r( ). The last
equality is a direct consequence. O

Proposition 44. P12V p=1/2 = 4 — 3" K;(z|r)dz; — A(z|7)dr, where

i (25 + ad)\v) I7) ij 9_/ 1\40d
Ki(alr) = h,9, +Z€z ((ad AV)i|7) (1) + > Gl

dli (214l7)6 jlizi
2miA(z)r) = %aﬁ +9, <<h %u(r(A))» <h %M(T()‘))>29(0’ 0l7) Z ;’f?

+ Z % ((g(zij, ad \V|7) — (ad /\V)72)(65))ieé

+Z (2ij,0|T)hihI,

where

16" 0-n
z,0|7) = =—(z|7) = 2mi— (T
o(z,0/7) = 57 (2Ir) — 2mi =T (7)

and 1 6(z+alr) (0 %
g2 1 dzram) _ 7
9z alm) =0 = S B ealr) (9 (ztaln) =5 (0‘7))
The term in ), (1/2)t} is central and can be absorbed by a suitable further
conjugation. Rescaling ty into k~'ty, where x € C*, K;(z|7) and A(z|r) get
multiplied by k. Moreover, we have:

Lemma 45. When g is simple and b C g is the Cartan subalgebra,

0. { (. gutro ) b = (1. §u<r<A>>>2.

Proof. Let D(X) :=[],ca+(a, A), where A¥ is the set of positive roots of g.
Then D()) is W-anti-invariant, where W is the Weyl group. Therefore 92D ()
is also W-anti-invariant, so it is divisible (as a polynomial on h*) by all the
(o, \), where o € A% so it is divisible by D(A); since §2D()\) has degree
strictly lower than D(\), we get 92D ()\) = 0.

Now if (eq, fa, o) is & basis of the sly-triple associated with a, we have
F) = Yaens —(€a @ fo — fa @ €a)/(@,N), 50 Su(r(V) = — Yoc as haf
(o, A). Therefore 1pu(r(\)) = —d,logD(A)h,. Then 92D(X) = 0 implies that
2logD + (0,logD)? = 0, which implies the lemma. a

The resulting flat connection then coincides with that of [Ber98a, FW96].
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7 The universal KZB connection and representations
of Cherednik algebras

7.1 The rational Cherednik algebra of type A,,_1

Let £ be a complex number, and n > 1 an integer. The rational
Cherednik algebra H, (k) of type A,_1 is the quotient of the algebra
C[Sn] X C(x1,...,Xn,¥1,-..,¥n) by the relations

S =0, Y= 0, o] 0= v
1 .,
[Xi,y]'] :E_ksija 27&]?

where s;; € S, is the permutation of i and j (see, e.g., [EG02]).%

Let e := L3 s, 0 € C[Sy] be the Young symmetrizer. The spherical
subalgebra By, (k) (often called the spherical Cherednik algebra) is defined to
be the algebra eH, (k)e.

We define an important element

1
h:= B Z(Xiyi + yixi).

K2

We recall that category O is the category of H, (k)-modules that are locally
nilpotent under the action of the operators y; and decompose into a direct sum
of finite dimensional generalized eigenspaces of h. Similarly, one defines the
category O over B, (k) to be the category of B,,(k)-modules that are locally
nilpotent under the action of Cyy, ..., y,]*" and decompose into a direct sum
of finite dimensional generalized eigenspaces of h.

7.2 The homomorphism from fl,n to the rational
Cherednik algebra

Proposition 46. For each k,a,b € C, we have a homomorphism of Lie alge-
bras Eqp : 410 — Hp(k), defined by the formula

_ 1
Ty axg, Y by,  ti e ab <— - kSz‘j) .
n

Proof. Straightforward. a

Remark 47. Obviously, a,b can be rescaled independently, by rescaling the
generators Z; and g; of the source algebra t; ,. On the other hand, if we are
allowed only to apply automorphisms of the target algebra H,(k), then a,b
can be rescaled only in such a way that the product ab is preserved.

8The generators Xq, do Of Section 6.1 will be henceforth renamed g, pa.
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This shows that any representation V' of the rational Cherednik algebra
H, (k) yields a family of realizations for t; , parametrized by a,b € C, and
gives rise to a family of flat connections V,; over the configuration space

C(E-,n).

7.3 Monodromy representations of double affine Hecke algebras

Let H,(q,t) be Cherednik’s double affine Hecke algebra of type A,_1. By
definition, H,, (_q, t) is the quotient of the group algebra of the orbifold funda-

mental group By, of C(E,,n)/S, by the additional relations
(T —q )T +q 't =0,

where T is any element of El’n homotopic (as a free loop) to a small loop
around the divisor of diagonals in the counterclockwise direction.

Let V' be a representation of H,(k), and let V,;(V) be the universal
connection V, ; evaluated in V. In some cases, for example if a, b are formal or
if V' is finite-dimensional, we can consider the monodromy of this connection,
which obviously gives a representation of H,(g,t) on V, with

—27iab/n —27ikab
R .

g=ce t=e
In particular, taking a = b, V' = H,,(k), this monodromy representation de-
fines a homomorphism 6, : H,(q,t) — Hy,(k)[[a]], where

—27ia?/n

g=e , t = 6_27Tika2.

It is easy to check that this homomorphism becomes an isomorphism upon in-
verting a. The existence of such an isomorphism was pointed out by Cherednik
(see [Che03, end of Section 6], and the end of [Che97]), but his proof is dif-
ferent.

Ezample 48. Let k = r/n, where r is an integer relatively prime to n. In
this case, it is known (see, e.g., [BEG03a]) that the algebra H, (k) admits
an irreducible finite dimensional representation Y (r,n) of dimension r"~1. By
virtue of the above construction, the space Y (r, n) carries an action of H,, (g, t)
with any nonzero ¢,t such that ¢" = ¢. This finite-dimensional representation
of H,(q,t) is irreducible for generic ¢, and is called a perfect representation;
it was first constructed in [Eti94, p. 500], and later in [Che03, Theorem 6.5],
in a greater generality.

7.4 The modular extension of £, 5

Assume that a,b # 0.
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Proposition 49. The homomorphism qp can be extended to the algebra
U(ti,n X 0) X S, by the formulas

fa,b(sij) = Sij,

ap(d) =h= lz:(xiyi +yixi), Cap(X)= *%ab*1 fo,

ga b(AO 12}’27 gab 52m) = - 2m 1b_12 _X]

1<J
Proof. Direct computation. 0O

Thus, the flat connections V, ; extend to flat connections on My p,
This shows that the monodromy representation of the connection Vg 5(V),
when it can be defined, is a representation of the double affine Hecke algebra

H,(q,t) with a compatible action of the extended modular group SL2(Z). In
particular, this is the case if V' = Y'(r,n). Such representations of SLy(Z)

were considered by Cherednik [Che03]. The element T of SLy(Z) acts in
this representation by “the Gaussian,” and the element S by the “Fourier—

Cherednik transform.” They are generalizations of the SLg(Z)-action on Ver-
linde algebras.

8 Explicit realizations of certain highest weight
representations of the rational Cherednik algebra
of type A,,_1

8.1 The representation Vi

Let N be a divisor of n, and g = sly(C), G = SLy(C). Let Vi = (Clg] ®
(CN)®™)8 (the divisor condition is needed for this space to be nonzero). It

turns out that Vy has a natural structure of a representation of H, (k) for
k= N/n.

Proposition 50. We have a homomorphism (n : Hy,(N/n) — End(Vy), de-
fined by the formulas

(N (sif) = si5, CN(x)=Xi, (i)=Y (i=1,...,n),
where for f € Vi, A € g we have
(Xif)(A) = Aif(A),

VN = T S b)g ),

where {by} is an orthonormal basis of g with respect to the trace form.
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Proof. Straightforward verification. O

The relationship of the representation Vi to other results in this paper is
described by the following proposition.

Proposition 51. The connection V4 1(Vn) corresponding to the representa-
tion Vi is the usual KZB connection for the n-point correlation functions on
the elliptic curve for the Lie algebra sl and n copies of the vector represen-

tation CV, at level K = —-x—N.

Proof. We have a sequence of maps
Ulti, Xx0) xS, — Hy(N/n) — Hyp(g) xS, — End(Vn),

where the first map is &q3, the second map sends s;; to s;;, x; to the class of
Yo da ®el, and y; to the class of 3 po ® e, (recall that the x4, d, of Section
6.1 have been renamed g, p,), and the last map is explained in Section 6.1.
The composition of the first two maps is then that of Proposition 40, and
the composition of the last two maps is the map (n of Proposition 50. This
implies the statement. 0O

Remark 52. Suppose that K is a nonnegative integer, i.e., a = —m,
where K € Z. Then the connection V, ; on the infinite-dimensional vector
bundle with fiber Vi preserves a finite-dimensional subbundle of conformal
blocks for the WZW model at level K. The subbundle gives rise to a finite
dimensional monodromy representation Vi of the Cherednik algebra H,,(q,t)
with .

q= em, t= qN

(so both parameters are roots of unity). The dimension of Vi is given by the

Verlinde formula, and it carries a compatible action of SLa(Z) to the action of
the Cherednik algebra. Representations of this type were studied by Cherednik
in [Che03].

8.2 The spherical part of V.

(£
((Z Y) f) = (2)" won s (49)

Consider the space Uy = eVy = (Clg] ® S"CM)? as a module over the
spherical subalgebra B,, (k). It is known (see e.g. [BEG03b]) that the spherical

Note that

(tr A7) f(A), (43)

=l =
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subalgebra is generated by the elements (3 x”) e and (3~ y?) e. Thus formulas
(43), (44) determine the action of B, (k) on Uy.

We note that by restriction to the set h of diagonal matrices
diag(A1,...,\n), and dividing by AN, where A = [Ti<;(Ai = A;), one
identifies Uy with C[h]S~. Moreover, it follows from [EG02| that formulas
(43), (44) can be viewed as defining an action of another spherical Cherednik
algebra, namely By (1/k), on C[h]°~. Moreover, this representation is the
symmetric part W of the standard polynomial representation of Hy(1/k),
which is faithful and irreducible, since 1/k = n/N is an integer [GGORO03].
In other words, we have the following proposition.

Proposition 53. There exists a surjective homomorphism ¢ : B,(N/n) —
Bn(n/N), such that ¢*W = Uyn. In particular, Uy is an irreducible repre-
sentation of B, (N/n).

Proposition 53 can be generalized as follows. Let 0 < p < n/N be an
integer. Consider the partition p(p) = (n — p(N — 1),p,...,p) of n. The
representation of g attached to u(p) is S"PNCN.

Let e(p) be a primitive idempotent of the representation of S, at-
tached to u(p). Let UX, = e(p)Vy = (C[g] @ S""PNCN)8. Then the algebra
e(p)H,(N/n)e(p) acts on U%,, and the above situation of Uy is the special
case p = 0.

Proposition 54. There exists a surjective momorphism
¢p : €(p)Hn(N/n)e(p) — By(n/N —p)

such that ;W = UX.. In particular, UY, is an irreducible representation of
B, (N/n —p).

Proof. Similar to the proof of Proposition 53. O

Ezample 55.p = 1, n = N. In this case e(p) = e_ = %desn e(o)o, the
antisymmetrizer, and the map ¢, is the shift isomorphism e_Hy(1)e- —
eHn(0)e.

8.3 Coincidence of the two sl actions

As before, let {b,} be an orthonormal basis of g (under some invariant inner
product). Consider the sly-triple

0 dim g
H= bp—— + (45)
2. P ob, 2
(the shifted Euler field),
1 T 1
E = 5 bp’ F = *éAg, (4