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Preface

Yuri Ivanovich Manin has made outstanding contributions to algebra,
algebraic geometry, number theory, algorithmic complexity, noncommutative
geometry and mathematical physics. His numerous achievements include the
proof of the functional analogue of the Mordell Conjecture, the theory of the
Gauss–Manin connection, proof with V. Iskovskikh of the nonrationality of
smooth quartic threefolds, the theory of p-adic automorphic functions, con-
struction of instantons (jointly with V. Drinfeld, M. Atiyah and N. Hitchin),
and the theory of quantum computations.

We hope that the papers in this Festschrift, written in honor of Yu. I.
Manin’s seventieth birthday, will indicate the great respect and admiration
that his students, friends and colleagues throughout the world all have for him.

June 2009
Courant Institute Yuri Tschinkel
Penn State University Yuri Zarhin
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Potential Automorphy of Odd-Dimensional
Symmetric Powers of Elliptic Curves

and Applications

Michael Harris

UFR de Mathématiques, Université Paris 7,
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To Yuri Ivanovich Manin

Summary. I explain how to prove potential automorphy for odd-dimensional
symmetric power L-functions.

Key words: elliptic curves, Sato–Tate conjecture, potential automorphy

2000 Mathematics Subject Classifications: 11F80, 11F70, 11G05, 11R37,
22E55

Introduction

The present article was motivated by a question raised independently by Barry
Mazur and Nick Katz. The articles [CHT,HST,T] contain a proof of the Sato-
Tate conjecture for an elliptic curveE over a totally real field whose j-invariant
j(E) is not an algebraic integer. The Sato-Tate conjecture for E is an assertion
about the equidistribution of Frobenius angles of E, or equivalently about the
number of points |E(Fp)| on E modulo p as p varies. The precise statement
of the conjecture, which is supposed to hold for any elliptic curve without
complex multiplication, is recalled in Section 5. Now suppose E and E′ are
two elliptic curves without complex multiplication, and suppose E and E′ are
not isogenous. The question posed by Mazur and Katz is roughly the following:
are the distributions of the Frobenius angles of E and E′, or equivalently of
the numbers p+ 1 − |E(Fp)| and p+ 1 − |E′(Fp)|, independent?

The Sato-Tate conjecture, in the cases considered in [CHT,HST,T], is a
consequence of facts proved there about L-functions of symmetric powers of
the Galois representation on the Tate module T�(E) of E, following a strategy

Y. Tschinkel and Y. Zarhin (eds.), Algebra, Arithmetic, and Geometry, 1
Progress in Mathematics 270, DOI 10.1007/978-0-8176-4747-6 1,
c© Springer Science+Business Media, LLC 2009



2 Michael Harris

elaborated by Serre in [S]. These facts in turn follow from one of the main theo-
rems of [CHT,HST,T], namely that, if n is even, the (n−1)st symmetric power
of T�(E) is potentially automorphic, in that it is associated to a cuspidal auto-
morphic representation of GL(n) over some totally real Galois extension of the
original base field. The restriction to even n is inherent in the approach to po-
tential modularity developed in [HST], which applies only to even-dimensional
representations. The necessary properties of all symmetric power L-functions
follow from this result for even-dimensional symmetric powers, together with
basic facts about Rankin-Selberg L-functions proved by Jacquet-Shalika-
Piatetski-Shapiro and Shahidi. In a similar way, the Mazur-Katz question
can be resolved affirmatively if we can prove potential automorphy for all
symmetric power L-functions of E and E′ over the same field.

The main purpose of the present article is to explain how to prove potential
automorphy for odd-dimensional symmetric power L-functions, thus provid-
ing a response to the question of Mazur and Katz. The principal innovation
is a tensor product trick that converts an odd-dimensional representation to
an even-dimensional representation. Briefly, in Sections 2 and 3 one tensors
with a two-dimensional representation. One has to choose a two-dimensional
representation of the right kind, which is not difficult. The challenge is then
to recover the odd-dimensional symmetric power unencumbered by the extra-
neous two-dimensional factor; this is the subject of Section 4. I say “explain
how to prove” rather than “prove” because the proofs of the main results of
this article make use of stronger modularity theorems than those proved in
[CHT] and [T], and are thus conditional. I explain in Section 1 how I expect
these modularity results to result from a strengthening of known theorems as-
sociating compatible families of �-adic Galois representations to certain kinds
of automorphic representations. These stronger theorems, stated as Expected
Theorems 1.2 and 1.4, are the subject of work in progress by participants in
the Paris automorphic forms seminar, and described in [H]. This work has
progressed to a point where it seems legitimate to admit these Expected The-
orems. Nevertheless, the present article should be viewed as a promissory
note which will not be negotiable until the project outlined in [H] has been
completed1.

One can of course generalize the question and ask whether the distributions
of the Frobenius angles of n pairwise non-isogenous elliptic curves without
complex multiplication are independent. For n ≥ 3 this seems completely
inaccessible by current techniques in automorphic forms.

The article concludes with some speculations regarding additional appli-
cations of the tensor product trick.

1Note added in proof. All the Expected Theorems have now been proved in arti-
cles by Chenevier, Clozel, Guerberoff, Labesse, Shin, and the author, in various com-
binations. Most of these articles can be consulted at http://fa.institut.math.fr/node/
29. An article in preparation by the six authors will make the connections clear.
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I met Yuri Ivanovich Manin briefly near the beginning of my career. Later,
as a National Academy of Sciences exchange fellow I had the remarkable good
fortune of spending a year as his guest in Moscow, and as a (mostly passive
but deeply appreciative) participant in his seminar at Moscow State Univer-
sity during what may well have been its final year, and saw first-hand what
the Moscow mathematical community owed to his insight and personality.
The influence of Yuri Ivanovich on my own work is pervasive, and the present
work is no exception: though it is not apparent in what follows, the article
[HST], on which all the results presented here are based, can be read as an
extended meditation on the Gauss-Manin connection as applied to a partic-
ular family of Calabi-Yau varieties. It is an honor to dedicate this article to
Yuri Ivanovich Manin.

I thank Barry Mazur and Nick Katz for raising the question that led to
this paper. Apart from the tensor product trick, practically all the ideas in this
paper are contained in [CHT], [HST], and [T]; I thank my coauthors – Laurent
Clozel, Nick Shepherd-Barron, and Richard Taylor – for their collaboration
over many years. I thank Richard Taylor specifically for his help with the proof
of the crucial Lemma 4.2. Finally, I thank the referee for a careful reading,
and for helping me to clarify a number of important points.

1 Reciprocity for n-dimensional Galois representations

All finite-dimensional representations of Galois groups are assumed to be con-
tinuous. When E is a number field, contained in a fixed algebraic closure Q

of Q, we let ΓE denote Gal(Q/E). Let ρ be a (finite-dimensional) �-adic rep-
resentation of ΓE . Say ρ is pure of weight w if for all but finitely many primes
v of E the restriction ρv of ρ to the decomposition group Γv is unramified
and if the eigenvalues of ρv(Frobv) are all algebraic numbers whose absolute
values equal q

w
2
v ; here qv is the order of the residue field kv at v, and Frobv

is geometric Frobenius. If ρ is pure of weight w, the normalized L-function of
ρ is

Lnorm(s, ρ) = L(s+
w

2
, ρ);

here we assume we have a way to define the local Euler factors at primes
dividing � (for example, ρ belongs to a compatible system of λ-adic represen-
tations). Then Lnorm(s, ρ) converges absolutely for Re(s) > 1.

Let F be a CM field, F+ ⊂ F its maximal totally real subfield, so that
[F : F+]≤2. Let c ∈ Gal(F/F+) be complex conjugation; by transport of
structure it acts on automorphic representations of GL(n, F ). The following
theorem is the basis for many of the recent results on reciprocity for Galois
representations of dimension >2. For the purposes of the following theorem, a
unitary Harish-Chandra module σ for GL(n,C) will be called “cohomological”
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if σ ⊗ || det ||n−1
2 is cohomological in the usual sense, i.e., if there is a finite-

dimensional irreducible representation W of GL(n,C) such that

H•(Lie(GL(n,C)), U(n);σ ⊗ || det ||n−1
2 ⊗W ) �= 0.

The half-integral twist is required by the unitarity.

Theorem 1.1 ([C2, Ko, HT, TY]). In what follows, Π denotes a cuspi-
dal automorphic representation of GL(n, F ), and {ρ•,λ} denotes a compatible
family of n-dimensional λ-adic representations of ΓF .

There is an arrow Π �→ {ρΠ,λ}, where λ runs through non-archimedean
completions of a certain number field E(Π), under the following hypotheses:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1) The factor Π∞
is cohomological

(2) Π ◦ c ∼= Π∨

(3) ∃v0, Πv0

discrete series

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) ρ = ρΠ,λ geometric,
HT regular

(b) ρ⊗ ρ ◦ c → Q�(1 − n)
(c) local condition

at v0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

This correspondence has the following properties:

(i) For any finite place v prime to the residue characteristic � of λ,

[ρΠ,λ |WDv ]Frob−ss = L(Πv ⊗ | • |
1−n

2
v ).

Here WDv is the local Weil-Deligne group at v, L is the normal-
ized local Langlands correspondence, and Frob − ss denotes Frobenius
semisimplification;

(ii) The representation ρΠ,λ |Gv is potentially semistable, in Fontaine’s sense,
for any v dividing �, and the Hodge-Tate weights at v are explicitly deter-
mined by the infinitesimal character of the Harish-Chandra module Π∞.

The local Langlands correspondence is given the unitary normalization.
This means that the correspondence identifies L(s,Π) and Lnorm(s, ρΠ,λ), so
that the functional equations always exchange values at s and 1 − s.

The term “geometric” is used in the sense of Fontaine-Mazur: each ρΠ,λ
is unramified outside a finite set of places of F , in addition to the poten-
tial semistability mentioned in the statement of the theorem. The condition
“HT regular” (Hodge-Tate) means that the Hodge-Tate weights at v have
multiplicity at most one.

For the local condition (c), we can take the condition that the representa-
tion of the decomposition group at v0 is indecomposable as long as v0 is prime
to the residue characteristic of λ, or equivalently that this representation of the
decomposition group at v0 corresponds to a discrete series representation of
GL(n, Fv0). The conditions on both sides of the diagram match: (1) ↔ (a),
(2) ↔ (b), (3) ↔ (c).

When Π is a base change of a representation Π+ of GL(n, F+), condition
(2) just means that Π is self-dual.

In what follows, we will admit the following extension of Theorem 1.1:
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Expected Theorem 1.2. The assertions of Theorem 1.1 remain true pro-
vided Π satisfies conditions (1) and (2); then ρΠ,λ satisfies conditions (a)
and (b), as well as (i) and (ii).

Here “Expected Theorem” means something more than conjecture. The
claim of Expected Theorem 1.2 is a very special case of the general Langlands
conjectures, in the version for Galois representations developed in Clozel’s
article [C1]. This specific case is the subject of work in progress on the part
of participants in the Paris automorphic forms seminar and others, and an
outline of the various steps in the proof can be found in [H]. There are quite
a lot of intermediate steps, the most difficult of which involve analysis of the
stable trace formula, twisted or not, but I would “expect” that they will all
have been verified, and the theorem completely proved, by 2010 at the latest2.

I single out one of the intermediate steps. By a unitary group over F+ I will
mean the group of automorphisms of a vector space V/F preserving a non-
degenerate hermitian form. The group is denoted U(V ), the hermitian form
being understood. We will consider a hermitian vector space V of dimension
n with the following properties:

(1.3.1) For every real place σ of F+, the local group U(Vσ) is compact (the
hermitian form is totally definite);

(1.3.2) For every finite place v of F+, the local group U(Vv) is quasi-split and
split over an unramified extension.

We write G0 = U(V ). Such a unitary group always exists when n is odd,
provided F/F+ is everywhere unramified. When n is even, there is a sign
obstruction that can be removed by replacing F+ by a totally real quadratic
extension. Such restrictions are harmless for applications (see [H]).

We let K =
∏
vKv ⊂ G0(Af ) be an open compact level subgroup.

Hypothesis (1.3.2) guarantees that G0 (F+
v ) contains a hyperspecial maxi-

mal compact subgroup for all finite v. If v is split then any maximal compact
subgroup is hyperspecial and conjugate to GL(n,Ov). We assume

Hypothesis 1.3.3. Kv is hyperspecial maximal compact for all v that remain
inert in F .

For any ring R, let

MK(G0, R) = C(G0(F+)\G0(A)/G0(R) ·K,R),

where for any topological spaceX , C(X,R) means the R-module of continuous
functions from X to R, the latter endowed with the discrete topology. The
Hecke algebra HK(R) of double cosets of K in G0(Af ) with coefficients in R
acts on MK(G0, R). It contains a subring Hhyp

K (R) generated by the double
cosets ofKv inG0 (F+

v ) where v runs over primes that split in F at whichKv is
hyperspecial maximal compact. We denote by TK(R) the image of Hhyp

K (R)

2See footnote to introduction.
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in EndR(MK(G0, R)). The algebra TK(R) is reduced if R is a semisimple
algebra flat over Z (cf. [CHT], Corollary 2.3.3).

We can also consider M(G0, R), the direct limit of MK(G0, R) over all K,
including those not satisfying (1.3.3). This is a representation of G0(Af ) and
decomposes as a sum of irreducible representations when R is an algebraically
closed field of characteristic zero. Let π ⊂ M(G0,C) be an irreducible sum-
mand. Write π = π∞ ⊗ πf , πf = ⊗′

vπv, the restricted tensor product over
finite primes v of F+ of representations of G0 (F+

v ). With our hypotheses π∞
is the trivial representation of G0,R =

∏
σ U(Vσ), where σ is as in (1.3.1).

Suppose πK �= {0} for some K satisfying (1.3.3). Then for every finite v
one can define the local base change Πv = BCFv/F

+
v
πv, a representation of

G0 (F+
v ) ∼−→∏

w|v GL(n, Fw). If v is inert, then by (1.3.3) we know that πv is
an unramified representation, and so is Πv. If not, then πv is a representation
of GL (n, F+

v ) and Πv
∼−→πv ⊗ π∨

v , with the appropriate normalization. Thus
we have the following:

Lemma 1.3.4. The local factor πv is uniquely determined by Πv.

Expected Theorem 1.4.3 There is a cohomological representation Π∞ of
GL(n, F∞) = GL(n, F ⊗Q R) such that the formal base change

Π = BCF/F+π = Π∞ ⊗
⊗′

v
Πv

is an automorphic representation of GL(n, F ). Moreover, there is a parti-
tion n = a1 + a2 + · · · + ar and an automorphic representation

⊗
j Πj of

the group
∏
j GL(aj ,AF ) such that each Πj is in the discrete automorphic

spectrum of GL(aj , F ) and Π, as a representation of GL(n,AF ), is paraboli-
cally induced from the inflation of

⊗
jΠj to the standard parabolic subgroup

P (A) ⊂ GL(n,AF ) associated to the partition. Moreover, each Πj satisfies
conditions (1) and (2) of Theorem 1.1, where “cohomological” is understood
as in the discussion preceding that theorem.

We say π is F/F+-cuspidal if Π is cuspidal, in which case it follows from
the classification of generic cohomological representations that Π∞ is neces-
sarily tempered and is uniquely determined by the condition that π∞ is trivial.
This representation is denoted Π∞,0, or Π∞,0(n, F ) when this is necessary.

Fix a prime � and let O be the ring of integers in a finite extension of
Q�. The ring TK(O) is semilocal and TK(O ⊗ Q̄�) is a product of fields. Let
m ⊂ TK(O) be a maximal ideal and let I ⊂ TK(O ⊗ Q̄�) be any prime ideal
whose intersection with TK(O) is contained in m. Then I determines an ir-
reducible G0(Af )-summand π0 of M(G0, Q̄�), or equivalently of M(G0,C), if
one identifies the algebraic closures of Q in C and in Q̄�, as in [HT, p. 20]. More
precisely, I determines π0,v locally only at v for which Kv is hyperspecial, but
this includes all inert primes. Let S be the set at which Kv is not hyperspe-
cial. By Expected Theorem 1.4, I determines a collection of cohomological

3Note added in proof. This theorem has now been proved by Labesse.
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automorphic representations Π of GL(n, F ) which are isomorphic outside the
finite set S. By strong multiplicity one, Π is in fact unique; we denote it ΠI .
Then π is unique by Lemma 1.3.4.

Combining Expected Theorems 1.4 and 1.2, we thus obtain an n-
dimensional representation ρΠ,� = ρI,� of ΓF . We say I is Eisenstein at
� if the reduction mod �, denoted ρ̄Π,�, is not absolutely irreducible. It follows
in the usual way from property (i) of the correspondence between ρΠ,� and Π
that if I is Eisenstein at � then every prime ideal of TK(O ⊗ Q̄�) lying above
m is Eisenstein. In that case we say m is Eisenstein at �.

Lemma 1.5. Admit Expected Theorems 1.4 and 1.2. Fix a prime �, and sup-
pose m ⊂ TK(O) is not an Eisenstein ideal at �. Then any prime ideal
I ⊂ TK(O ⊗ Q̄�) lying above m has the property that ΠI is cuspidal (in that
case we say m and I are F/F+ − cuspidal).

Sketch of proof. This follows from the classification of automorphic represen-
tations of GL(n) and from properties of base change. Suppose I corresponds
to π ⊂M(G0,C). If the base change Π of π belongs to the discrete spectrum
of GL(n, F ) – that is, if the partition in Expected Theorem 1.4 is a singleton
– then it is either cuspidal or in the non-tempered discrete spectrum. In the
latter case, the Moeglin-Waldspurger classification implies that n factors as
ab, with a > 1, b > 1, and Π is the Speh representation attached to a cuspidal
automorphic representation Π1 of GL(b, F ). Clozel has checked in [C3] that
Π1 satisfies properties (1) and (2) of Expected Theorem 1.2 for GL(b), hence
is associated to a b-dimensional �-adic representation ρ1 of ΓF . It follows from
condition (i) of Expected Theorem 1.2 that the semisimple representation ρΠ,�
decomposes as a sum of a constituents, each of which is an abelian twist of ρ1.

Suppose Π does not belong to the discrete spectrum of GL(n, F ). Then
π is endoscopic, hence is associated to a partition n =

∑
aj, with each

aj > 0, and an automorphic representation ⊗jΠaj in the discrete spectrum of∏
j GL(aj , F ), such that each Πaj , satisfies properties (1) and (2) of Expected

Theorem 1.2. Then ρΠ,� decomposes as a sum of r > 1 pieces of dimensions aj .
��

I recall the main Modularity Lifting Theorem of [T], whose proof builds
on and completes the main results of [CHT].

1.6. Modularity Lifting Theorem. Let � > n be a prime unramified in
F+ (resp. and such that every divisor of � in F+ splits in F ) and let

r : ΓF+ → GL(n, Q̄�) (resp. r : ΓF → GL(n, Q̄�))

be a continuous irreducible representation satisfying the following properties:

(a) r ramifies at only finitely many primes, is crystalline at all primes dividing
�, and is Hodge-Tate regular;

(b) r � r∨(1 − n) · χ (resp. rc � r∨(1 − n)) where (1 − n) is the Tate twist
and χ is a character whose value is constant on all complex conjugations
(resp. c denotes complex conjugation);
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(c) At some finite place v not dividing �, rv corresponds to a square-integrable
representation of GL(n, F+

v ) under the local Langlands correspondence,
and satisfies the final “minimality” hypotheses of [CHT, 4.3.4 (5)] or
[T, 5.2 (5)]

In addition, we assume that r̄

(d) has “big” image in the sense of Definition 3.1 below;
(e) is absolutely irreducible;
(f) is of the form ρ̄Π,� for some cuspidal automorphic representation Π of

GL(n, F+) satisfying conditions (1)-(3) of Theorem 1.1.

Then r is of the form ρΠ′,� for some cuspidal automorphic representation
Π ′ of GL(n, F+) satisfying conditions (i)-(iii) of Theorem 1.1.

I have not written out the last part of hypothesis (c) in detail, because it
will be dropped in the remainder of the article. More precisely, if we admit
Expected Theorems 1.2 and 1.4, then we obtain the following theorem:

1.7. Expected Modularity Lifting Theorem.4 Let � and r be as in
Theorem 1.6, but we no longer assume condition (c), and in (f) we drop
condition (3). Then r is of the form ρΠ′,� for some cuspidal automorphic
representation Π ′ of GL(n, F+) satisfying properties (i)-(ii) of Expected
Theorem 1.2.

In the remainder of the paper, I draw consequences from Theorem 1.7.

2 Potential modularity of a Galois representation

Let F and F+ be as in Section 1. The article [HST] develops a method for
proving that certain n-dimensional �-adic representations ρ of ΓF+ (resp. ΓF )
that look like they arise from automorphic representations via the correspon-
dence of Theorem 1.1, are potentially automorphic in the following sense:
there exists a totally real Galois extension F ′/F+ such that ρ |ΓF ′ (resp.
ρ |ΓF ·F ′ ) does indeed correspond to a cuspidal automorphic representation of
GL(n, F ′) (resp. GL(n, F · F ′)). The relevant result is Theorem 3.1 of [HST],
which is in turn based on Theorem 1.6. Although the latter theorem is valid
for representations of arbitrary dimension n, Theorem 3.1 only applies to an
even-dimensional representation of ΓF+ endowed with an alternating form
that is preserved by ΓF+ up to a multiplier.

If we admit the expected results of Section 1, then Theorem 3.1 of [HST]
admits the following simplification. The constant C(ni) is a positive number
introduced in [HST], Corollary 1.11; its precise definition is irrelevant to the
applications. For a finite prime w, Gw denotes a decomposition group, Iw ⊂
Gw the inertia group.

4Note added in proof. This theorem has now been proved by Guerberoff.
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Theorem 2.1 [HST]. Assume the Expected Theorems of Section 1. Let
F+/F 0,+ be a Galois extension of totally real fields and let n1, . . . , nr be even
positive integers. Suppose that � > max{C(ni), ni} is a prime which is un-
ramified in F and which splits in Q(ζni+1), i = 1, . . . , r. Let L be a finite set
of primes of F+ not containing primes above � and let M be a finite extension
of F .

Suppose that for i = 1, . . . , r

ri : ΓF+ → GSp(ni,Z�)

is a continuous representation with the following properties.

(1) ri has multiplier ω1−ni

� , where ω� is the �-adic cyclotomic character.
(2) ri ramifies at only finitely many primes.
(3) The image r̄i(ΓF+(ζ�)) is big, in the sense of Definition 3.1 below, where

ζ� is a primitive �-th root of 1.
(4) The fixed field Fi of ker ad(r̄i) ⊂ ΓF+ does not contain F (ζ�).
(5) ri is unramified at all primes in L.
(6) If w | � is a prime of F then ri |Gw is crystalline with Hodge-Tate weights

0, 1, . . . , ni − 1, with the conventions of [HST]. Moreover,

r̄i |Iw�
ni−1⊕

j=0

ω−j
� .

Then there is a totally real field F ′,+/F+, Galois over F+
0 and linearly

disjoint from the compositum of the Fi with M over F+, with the property
that each ri,F ′,+ = ri |Γ ′,+

F
corresponds to an automorphic representation

Πi of GL(ni, F ′,+). If F ′/F ′,+ is a CM quadratic extension, then the base
change Πi,F ′ has archimedean constituent isomorphic to Π∞,0(ni, F ′) (cf. the
remarks after Expected Theorem 1.4). Finally, all primes of L and all primes
of F dividing � are unramified in F ′.

Apart from a few slight changes in notation, this theorem is practically
identical to Theorem 3.1 of [HST]. There is no field M in [HST] but the
proof yields an F ′,+ linearly disjoint over F+ from any fixed extension. Only
condition (7) of Theorem 3.1 of [HST], corresponding to condition (3) of The-
orem 1.1, has been eliminated. The proof is identical but simpler: references
to Theorem 1.6 are replaced by references to Expected Theorem 1.7, and all
arguments involving the primes q and q′ in [HST] are no longer necessary.

Let E be an elliptic curve over F+, and let ρE,� : ΓF+ → GL(2,Q�) denote
the representation on H1(E

Q
,Q�), i.e. the dual of the �-adic Tate module. For

n ≥ 1 let
ρnE,� = Symn−1ρE,� : ΓF+ → GL(n,Q�).

We will always assume E has no complex multiplication. Then ρnE,� is irre-
ducible by a theorem of Serre, for all n, and for almost all � > n, Im(ρ̄)
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contains the image of SL(2,F�) under the symmetric power representation,
and hence is absolutely irreducible. When F+ = Q it was proved in the se-
ries of papers initiated by Wiles and Taylor-Wiles and completed by Breuil,
Conrad, Diamond, and Taylor that L(s, ρE,�) is automorphic, which in this
case means is attached to a classical new form of weight 2. The prototype
for Theorem 2.1 is the theorem proved by Taylor in [T02], which shows that
L(s, ρE,�) is potentially automorphic for any F+.

In [HST] and [T], Theorem 2.1 is notably applied to show that L
(
s, ρnE,�

)

is potentially automorphic for any even n, provided E has non-integral j-
invariant. One can hardly hope to apply Theorem 2.1 as such when n is odd,
given that symplectic groups are only attached to even integers. Moreover,
when n is odd ρnE,� has an orthogonal polarization rather than a symplectic
polarization. These two related flaws – the oddness of n and the orthogonality
of ρn – can be cured simultaneously by tensoring ρnE,� by a two-dimensional
representation τ : ΓF+ → GL(2,Z�). Such a representation is necessarily
symplectic, with multiplier det τ . We suppose τ has determinant ω−n

� . In
order to preserve the hypotheses of Theorem 2.1, specifically 2.1 (6), we need
to assume the following:

Hypothesis 2.2. If w | � is a prime of F then τ |Gw is crystalline with
Hodge-Tate weights 0, n, with the conventions of [HST]. Moreover,

τ̄ |Iw� 1 ⊕ ω−n
� .

For example, let f be a classical new form of weight n + 1 for Γ0(N),
for some integer N . Associated to f is a number field Q(f), generated by
the Fourier coefficients of f , and a compatible system of 2-dimensional λ-adic
representations τf,λ of ΓQ as λ varies over the primes of Q(f). We choose a
prime � that splits completely in Q(f) and such that � � N . Fix λ dividing
�, and write τ = τf,λ. Then τ takes values in GL(2,Z�); since f has trivial
nebentypus, the determinant of τ is indeed ω−n

� . The hypothesis regarding
τ̄ |Iw is in general a serious restriction, but we will find explicit examples.

(2.3)

We say the residual representation τ̄ is “big enough” if its image contains
a non-commutative subgroup of the normalizer N(T ) of a maximal torus
T ⊂ SL(2,F�), and more specifically that Im(τ̄ ) contains an element h of T
with distinct eigenvalues that acts trivially on the cyclotomic field Q(ζ�), and
an element w of order 2 that does not commute with h.

Here are the representations we will use. Let L be an imaginary quadratic
field not contained in F , and let ηL be the corresponding quadratic Dirichlet
character, viewed as an idèle class character of Q. Let χ be a Hecke character
of (the idèles of) L whose restriction to the idèles of Q is the product |•|−nA ·ηL,
where |•|A is the idèle norm. Choose an isomorphism L∞ = L⊗QR

∼−→C, let z
be the corresponding coordinate function on L∞, and assume χ∞(z) = z−n.
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Then χ is an algebraic Hecke character and is associated to a compatible
system of �-adic characters χλ : ΓL → Q(χ)+λ , where Q(χ) is the field of
coefficients of χ, a finite extension of Q, and λ runs through the places of
Q(χ). Choose a prime � > 2n+ 1 that splits in L and in Q(χ); then for any λ
dividing � we can view χλ as a Q

×
� -valued character of ΓL; we write χ� = χλ.

For such an �, we define the monomial induced representation

τ� = IndΓQ

ΓL
χ� : ΓQ → GL(2,Q�).

Lemma 2.4. Under the above hypotheses, τ̄� is “big enough” in the sense
of (2.3).

Proof. Let v, v′ be the two primes of L dividing �. Let k(v), k(v′) denote the
corresponding residue fields; then the product of the respective Teichmüller
characters defines an inclusion

k(v)× × k(v′)× ↪→ O×
v ×O×

v′ ⊂ A×
L .

Let b and b′ denote generators of the images of the cyclic groups k(v)× and
k(v′)× in O×

v and O×
v′ , respectively, and let s(b), s(b′) denote their images

in Gal(Lab/L) under the reciprocity map. Our hypotheses imply that s(b)
acts on τ̄ with eigenvalues bn, 1, and likewise for s(b′). Moreover, the trivial
eigenspace for s(b) is the non-trivial eigenspace for s(b′), and vice versa. We
identify b and b′ with roots of unity in Q�

×. The element h = τ̄(s(b) · s(b′)−1)
then belongs to SL(2,F�) and has eigenvalues b±n. Since � − 1 > 2n, these
eigenvalues are distinct; in particular, h does not commute with the image
w of complex conjugation in Im(τ̄ ). Since the action of O×

v × O×
v′ on Q(ζ�)

factors through the norm to Z
×
� , we see that h acts trivially on Q(ζ�). This

completes the proof of Lemma 2.4. ��
Corollary 2.5. Let τ = τf,λ be as in the preceding paragraph and satisfy
Hypothesis 2.2. We continue to admit the Expected Theorems of Section 1.
We use the same notation for τ |ΓF+ . Let E be an elliptic curve over F . Let n
be an odd positive integer, and suppose there is a prime � > 2n+1, unramified
in F+, such that

(i) E has good ordinary reduction at all primes w dividing �.
(ii) � does not divide the conductor N of f , and

τ̄ |Iw
� 1 ⊕ ω−n

� .

(iii) � splits in Q(ζ2i+1), i = 1, . . . , n− 1; in particular, � ≡ 1 (mod n) (take
i = n−1

2 ).
(iv) �−1

n
> 2.

Suppose τ̄ is “big enough” in the sense of (2.3). Let M be an arbitrary
extension of F+. For every integer i ≤ n, let ri = ρ2i

E,�; let rτ = ρnE,�⊗τ . Then
there is a totally real Galois extension F ′,+/F+, linearly disjoint from M over
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F+, with the property that for i = 1, . . . , n, ri,F ′,+ = ri |Γ ′,+
F

corresponds to an
automorphic representation Πi of GL(2i, F ′,+), and such that rτ corresponds
to an automorphic representation Πτ of GL(2n, F ′,+). If F ′/F ′,+ is a CM
quadratic extension, then the base change Πi,F ′ (resp. Πτ,F ′) has archimedean
constituent isomorphic to Π∞,0(2i, F ′) (resp. Π∞,0(2n, F ′)).

Proof. Under our hypotheses on � and the image of τ̄ , r̄τ is absolutely irre-
ducible. We first prove the corollary under the hypothesis that for each w
dividing �,

ρ̄E,�|Iw
� 1 ⊕ ω−1

� . (2.5.1)

Conditions (1), (2), and (6) of Theorem 2.1 are clearly satisfied. Since �
is unramified in F+, F+ and Q(ζ�) are linearly disjoint over Q. By condition
(1), the intersection of Im(r̄i) with the center of GSp(ni,F�) maps onto the
subgroup of Gal(Q(ζ�)/Q) generated by 2(1 − ni)-th powers, which implies
condition (4) for all ri, and for rτ as well.

Condition (5) is irrelevant. It remains to verify condition (3). For r̄i, i =
1, . . . , n, this is Corollary 2.5.4 of [CHT]; the case of r̄τ is Lemma 3.2 below.

This completes the proof under hypothesis (2.5.1). We reduce to this case
as in the proof of Theorem 3.3 of [HST], replacing � by a second prime �′ >
2n+1 also split in L and in Q(χ), τ̄� by τ̄�′ , and E by a curve E′ (unfortunately
denoted E in [HST]) such that ρE′,�

∼−→ρE,� but ρE′,�′ satisfies hypothesis
(2.5.1) at �′. ��
Remark 2.6. Recall that the results of this section are all conditional on
the Expected Theorems of Section 1. In particular, we are not assuming that
E has potentially multiplicative reduction at some place. If we do assume
j(E) is not integral, then the automorphic representations Πi are constructed
unconditionally in [CHT,HST,T]. However, the local condition on j(E) does
not suffice to impose a strong enough local condition on rτ (corresponding to
a discrete series representation on the automorphic side).

3. A lemma about certain residual representations

Definition 3.1. Let V/F̄� be a finite dimensional vector space. Let ad0(V ) ⊂
ad(V ) = Hom(V, V ) be the subspace of trace 0 endomorphisms. A subgroup
Δ ⊂ GL(V ) is big if the following hold:

(a) H i(Δ, ad0V ) = (0) for i = 0, 1.
(b) For all irreducible F̄�[Δ]-submodules W ⊂ Hom(V, V ) we can find h ∈ Δ

and α ∈ F̄� with the following properties. The α-generalized eigenspace
Vh,α of h on V is one-dimensional. Let

πh,α : V → Vh,α; ih,α : Vh,α ↪→ V

denote, respectively, the h-equivariant projection and the h-equivariant in-
clusions of the indicated spaces. Then πh,α ◦W ◦ ih,α �= (0).
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Remark. It is not the case that if Δ contains a subgroup Δ′ which is big
in the above sense, then Δ itself is necessarily big (bigger than big is not
necessarily big). This is because condition (a) is not preserved under passage
to a bigger group. To check condition (b), on the other hand, it clearly suffices
to show that it holds for some subgroup Δ′ ⊂ Δ.

Lemma 3.2. Let F+, τ , ρn = ρnE,�, and rτ be as in the statement of Corol-
lary 2.5, with τ as in the proof of Lemma 2.4. Suppose � > 4n − 1. Then
r̄τ (ΓF+(ζ�)) is big in the sense of Definition 3.1.

Proof. We begin by establishing notation. Write ρ̄n = ρ̄nE,�. We define ad0 as
in Definition 3.1, and write

ad ρ̄n = ad0 ρ̄n ⊕ 1, ad τ̄ = ad0 τ̄ ⊕ 1,

where 1 denotes the trivial representation. Then

ad0 r̄τ = ad0 ρ̄n ⊗ ad0 τ̄ ⊕ ad0 ρ̄n ⊕ ad0 τ̄ . (3.2.1)

Let Δ = r̄τ (ΓF+(ζ�)), and define

Δ̃ = ρ̄n(ΓF+(ζ�)) × τ̄ ((ΓF+(ζ�)).

The tensor product defines an exact sequence

1 → C → Δ̃→ Δ→ 1

where the kernel C maps injectively to the center of GL(2,F�), viewed as the
group of linear transformations of the space of τ̄ . In particular, the order of
C is prime to �. (In fact, as the referee pointed out, under our hypotheses
one checks easily that C is trivial, but this makes no difference in the sequel.)
Finally, let Δρ denote the image of ρ̄n(ΓF+(ζ�)) ⊂ Δ̃ in Δ. This is a normal
subgroup of Δ isomorphic to the simple finite group PSL(2,F�), since n is
odd and � > 2n+ 1. Moreover, Δτ := Δ/Δρ is of order prime to �, since the
image of τ̄ is contained in the normalizer of a maximal torus. It follows from
the inflation-restriction sequence that

H1(Δ,W ) ∼−→H0(Δτ , H
1(Δρ,W )) (3.2.2)

for any summand W of (3.2.1).
Proof of (a): We first note thatΔ acts irreducibly on r̄τ ; henceH0(Δ, ad0 r̄τ ) =
(0). We apply (3.2.2) to show that H1(Δ,W ) = 0 for each summand W of
(3.2.1). Indeed, it suffices to show that H1(PSL(2,F�),W ) = 0 for each W .
But as a representation of PSL(2,F�), each W is a direct sum of copies
of i-dimensional symmetric powers Symi−1 of the standard representation
PSL(2,F�), where i runs through (odd) integers at most equal to 2n−1. Since
� > 2n+ 1, it is well known that H1(PSL(2,F�), Symi−1) = 0 for i ≤ 2n− 1.
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Proof of (b): Let b denote a generator of the cyclic group k(v)× � μ�−1, as
in the proof of Lemma 2.4. As remarked above, if Δ′ ⊂ Δ is a subgroup
that satisfies 3.1(b) for a given summand W of (3.2.1), then Δ also satistifes
this property for the given W . We may thus assume Im(τ̄ ) is contained in
the normalizer of a maximal torus T in SL(2,F�) and contains an element
t0 ∈ T with the two distinct eigenvalues bn, b−n on τ̄ , with corresponding
eigenvectors v1 and v2, as well as the element w /∈ T with eigenvalues 1
and −1. With appropriate normalizations, we can assume the corresponding
eigenvectors are v1 + v2 and v1 − v2, respectively. Write k = F�. We can write

ad τ̄ = k+ ⊕ k− ⊕ U,

where U = IndΓF+

ΓL·F+χ̄�/χ̄
c
� and k+ and k− are representations of ΓF+ that

factor through Gal(L · F+/F+), with the non-trivial element acting by the
indicated sign. We thus have

Hom(r̄τ , r̄τ ) = ad ρ̄n ⊗ [k+ ⊕ k− ⊕ U ]. (3.2.3)

For i, j ∈ {1, 2}), let pi,j ∈ End(τ̄ ) be the endomorphism that takes vi to vj
and vanishes on vk if k �= i. Then k+ (resp. k−) is spanned by p1,1 +p2,2 (resp.
p1,1 − p2,2, whereas U is spanned by p1,2 and p2,1.

Let t ∈ Im(ρ̄n) be the image of an element of a split maximal torus of
SL(2,F�), with n distinct eigenvalues under ρ̄n, as in the proof of Lemma 3.2 of
[HST]. More precisely, we can take t to be the diagonal element diag(b, b−1), so
that ρ̄n(t) has eigenvalues bn−1, bn−3, . . . , b1−n. The formula (3.2.3) expresses
Hom(r̄τ , r̄τ ) as a sum of four copies of ad ρ̄n, as representation of t. Let
h0, resp hw denote the image in Δ of (t, t0) ∈ Δ̃, resp. the image of (t, w).
Since � > 4n − 1, bi �= 1 for any i < 4n − 1, hence no ratio of eigenvalues
of ρ̄n(t) equals a ratio of eigenvalues of τ̄ (t0), nor of τ̄ (w). It follows that
all the generalized eigenspaces of h0 and hw in r̄τ are of dimension 1. It
was shown in the proof of Lemma 3.2 of [HST] that ad ρ̄n satisfies 3.1(b),
with Δ replaced by Im(ρ̄n) and with t playing the role of h; here we use the
hypothesis that �>2n+1. It thus follows that if W is an irreducible summand
of ad ρ̄n ⊗ [k+ ⊕ k−], then 3.1(b) is satisfied for this W with h = h0. On
the other hand, if W is an irreducible summand of ad ρ̄n ⊗ U , then 3.1(b)
is satisfied for this W with h = hw. Indeed, it suffices to observe that the
element (p1,2 + p2,1) ∈ U takes the eigenvector v1 + v2 to itself. ��

4. Removing τ

We fix an odd number n as above. The hypotheses of the earlier sections
remain in force; in particular, we admit the Expected Theorems of Section 1.

Corollary 4.1. Let F+(ρ̄E,�) denote the splitting field of ρ̄E,� and M =
L · F+(ρ̄E,�). Then there is a totally real Galois extension F ′,+/F+, lin-
early disjoint from M over F+, with the property that for i = 0, . . . , n,
ri,F ′,+ = ri |Γ ′,+

F
corresponds to a cuspidal automorphic representation Πi
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of GL(2i, F ′,+), and such that rτ,F ′,+ = rτ |Γ ′,+
F

corresponds to a cuspidal
automorphic representation Πτ of GL(2n, F ′,+).

Let E be a number field, and let ρ be an �-adic representation of ΓE . We
assume ρ to be pure of some weight w, as in Section 1; thus we can define
Lnorm(s, ρ). We say L(s, ρ) (or Lnorm(s, ρ)) is invertible if it extends to a
meromorphic function on C and if Lnorm(s, ρ) has no zeroes for Re(s) ≥ 1
and no poles for Re(s) ≥ 1 except for a possible pole at s = 1.

Let L′ = L · F ′,+, and let c ∈ Gal(L′/F ′,+) denote complex conjugation.
The proof of the following lemma was devised with a great deal of help from
Richard Taylor.

Lemma 4.2. The representation Πτ of GL(2n, F ′,+) is isomorphic to the
automorphic induction from L′ of some cuspidal automorphic representation
Π1(τ) of GL(n,L′). After possibly replacing Π1(τ) by its Galois conjugate
Π1(τ)c, the tensor product Π1(τ) ⊗ χ is isomorphic to its c-conjugate, hence
descends to a cuspidal automorphic representation π of GL(n, F ′,+).

Proof. Let ηL′ be the quadratic character of F ′,+ associated to the extension
L′. By construction, τ� |Γ

F ′,+ ⊗ηL′
∼−→τ� |Γ

F ′,+ ; hence

Πτ ⊗ ηL′
∼−→Πτ . (4.2.1)

It follows from [AC, Chapter 3, Theorem 4.2 (b)] that there exists a cuspidal
automorphic representation Π1(τ) of GL(n,L′) such that Πτ is isomorphic to
the automorphic induction of Π1(τ) from L′ to F ′,+. This means in particular
that

Π1(τ)c �� Π1(τ),

and
L(s, ρτ,L′) = L(s,Πτ,L′) = L(s,Π1(τ))L(s,Π1(τ)c) (4.2.2)

It follows from Corollary 2.5 that L
(
s, ρmE,F

)
, and more generally that

L
(
s, ρmE,F ⊗ ξ�

)
, is entire for all even m ≤ 2n, F = F ′,+ or F = L′, when

ξ� is the �-adic Galois avatar of an algebraic Hecke character ξ of A×
F . The

proof of Theorem 4.2 of [HST] shows that L
(
s, ρmE,F ⊗ ξ�

)
is invertible for all

m ≤ 2n and for all algebraic Hecke characters ξ, for F = F ′,+ or F = L′. Of
course L(s, rτ,F ′,+) is also entire and L(s, rτ,L′) is entire unless n = 1, which
gives rise to the only possible pole at s = 1.

Consider the automorphic L-function

L(s) = L
(
s,Πτ,L′ ×Π∨

τ,L′ ⊗ (χ/χc)
)

(4.2.3)

Comparing this to (4.2.2) we find that

L(s) = L(s,
[
ρnE,L′ ⊗ (χ ⊕ χc)

] ⊗
[
ρn,∨E,L′ ⊗ (χ−1 ⊕ χc,−1)

]
⊗ [χ/χc])

= L(s,
(
ρnE,L′ ⊗ ρn,∨E,L′

)
⊗ [(χ/χc) ⊕ (χ/χc) ⊕ (χ/χc)2]) · L

(
s, ρnE,L′ ⊗ ρn,∨E,L′

)

(4.2.4)
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Writing

ρnE,L′ ⊗ ρn,∨E,L′ =
n−1⊕

i=0

ρ2i+1
E,L′ ⊗ ω−i

�

we see that the first factor of the last line of (4.2.4) is a product of invertible
L-functions without poles at s = 1; the final factor of the last line has a
simple pole at s = 1. Thus L(s) has a simple pole at s = 1. But L(s) is an
automorphic L-function for GL(n) × GL(n). We rewrite L(s) using (4.2.2):

L(s) = L(s,Π1(τ) ×Π1(τ)∨ ⊗ (χ/χc)) · L(s,Π1(τ)c ×Π1(τ)c,∨ ⊗ (χ/χc))
·L(s,Π1(τ) ×Π1(τ)c,∨ ⊗ (χ/χc)) · L(s,Π1(τ)c ×Π1(τ)∨ ⊗ (χ/χc)).

Applying the Jacquet-Shalika classification theorem we see that exactly one
of the factors has a simple pole, and in that case the factor is necessarily of
the form L(s,Π×Π∨). Since (χ/χc)∞ is a character of infinite order, neither
of the first two factors can have a pole; we must therefore either have

Π1(τ)∨
∼−→Π1(τ)c,∨ ⊗ (χ/χc)

or

Π1(τ)c,∨
∼−→Π1(τ)∨ ⊗ (χ/χc).

In other words, up to exchanging Π1(τ) with Π1(τ)c, we have

Π1(τ) ⊗ χ
∼−→(Π1(τ) ⊗ χ)c;

hence Π1(τ) ⊗ χ descends to a cuspidal automorphic representation of
GL(n, F ′,+). This completes the proof. ��

Now (Πτ )∞ is cohomological, hence (Πτ )L′,∞ is also cohomological. But
(Πτ )L′,∞ is represented as a subquotient of the representation of GL (2n,L′∞)
induced from the representation (Π1(τ))∞ ⊗ (Π1(τ)c)∞ of the Levi factor
GL (n,L′

∞)×GL(n,L′
∞) of the relevant maximal parabolic, and it follows that

Π1(τ)∞ is also cohomological. Thus Π1(τ) satisfies condition (1) of Expected
Theorem 1.2.

On the other hand, ρτ has a symplectic polarization with multiplier ω1−2n
� ,

by construction. It follows that the associated automorphic representation Πτ

is self dual. This property is preserved under base change to L′. It thus follows
from (4.2.2) and the Jacquet-Shalika classification theorem that

{Π1(τ), Π1(τ)c} = {Π1(τ)∨, Π1(τ)c,∨}
as sets. Thus either (a) Π1(τ) satisfies condition (2) of Expected Theorem 1.2,
or (b) Π1(τ)

∼−→Π1(τ)∨.
Assume (a) holds. Then Π1(τ) satisfies both conditions of Expected

Theorem 1.2, hence is associated to an n-dimensional Galois representation
ρ1(τ) of ΓL′ . It follows from (4.2.2) that

ρ1(τ) ⊕ ρ1(τ)c
∼−→ρnE,� ⊗ χ� ⊕ ρnE,� ⊗ χc� (4.3)
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Since ρnE,� is irreducible, it follows that it must be equal to either ρ1(τ)⊗χ� or
ρ1(τ)⊗χc�. In either case, ρnE,� is associated to a cuspidal automorphic repre-
sentation Πn,L′ of GL(n,L′). Since ρnE,� descends to a representation of ΓF ′,+ ,
Πn,L′ descends to a cuspidal automorphic representation Πn of GL(n, F ′,+).
Thus ρnE,� is automorphic over F ′,+.

Assume (b) holds. Then the central character ξ of Π1(τ) is also self-dual,
i.e., ξ = ξ−1. It follows from Lemma 4.2 that

Π1(τ) ⊗ χ
∼−→Π1(τ)c ⊗ χc.

Combining this with (b), we have

ξ · χ ◦ det = ξc · χc ◦ det .

This implies that χ/χc is self-dual, ie.,

(χc)2 = χ2.

But this is already false for the archimedean components. Thus (b) is
impossible.

We have thus proved that ρnE,� is automorphic over F ′,+. More generally,
Theorem 2.1 allows us to add new rτ ’s of different dimensions 2ni, with ni
odd, to the list in Corollary 2.5. By adding ρ2i+1

E,� ⊗ τi to the list (we are free
to vary the 2-dimensional τi if we like), we thus obtain our main theorem:

Theorem 4.4. Assume the Expected Theorems of Section 1. Let F+ be a
totally real field, and let E be an elliptic curve over F+. Let n be a posi-
tive integer. Then there is a finite totally real Galois extension F ′,+/F and,
for each positive integer i ≤ n, a cuspidal automorphic representation Πi of
GL(i, F ′,+), satisfying conditions (a) and (b) of Expected Theorem 1.2, such
that

ρiE,� |ΓF ′,+ = ρΠi,�.

In particular, if i > 1, Lnorm
(
s, ρiE,�,F ′,+

)
= L(s,Πi) is an entire function.

I repeat that we are not assuming that E have non-integral j-invariant;
however, all statements are conditional on the Expected Theorems of
Section 1.

5. Applications and generalizations

We continue to admit the Expected Theorems of Section 1. Let E and E′ be
two elliptic curves over F+ without complex multiplication. Assume E and
E′ are not isogenous. It then follows from Faltings’ isogeny theorem that ρE,�
and ρE′,� are not isomorphic as representations of ΓF+ for all �. Since the
traces of Frobv, for primes v of good reduction for E and E′, are integers that
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determine ρE,� and ρE′,� up to isomorphism, it follows that ρ̄E,� and ρ̄E′,� are
not isomorphic for sufficiently large �. By Serre’s theorem, if � is sufficiently
large, Im(ρ̄E,�) = Im(ρ̄E′,�) = GL(2,F�).

Let m,m′ be two positive integers. Applying Theorem 2.1, we obtain the
analogue of Corollary 2.5 for the collection of representations ri = ρ2i

E,�, r
′
j =

ρ2j
E′,�, 1 ≤ i ≤ m, 1 ≤ j ≤ m′, together with rτ = ρmE,� ⊗ τ and r′τ ′ = ρm

′ ⊗ τ ′

if m or m′ is odd, provided τ̄ and τ̄ ′ are “big enough”. Bearing in mind the
results of Section 3, we have the following statement:

Proposition 5.1. Let L be as in Section 3, and define

τ� = IndΓQ

ΓL
χ�; τ ′� = IndΓQ

ΓL
χ′
�

where χ (resp. χ′) is a Hecke character with χ∞(z) = z−m, (resp. χ′∞(z) =
z−m

′
) if m (resp. m′) is odd. We assume

χ |A×
Q
= |•|−mA · ηL; χ′ |A×

Q
= | • |−m′

A · ηL
Suppose there is a prime � > sup(2m + 1, 2m′ + 1), unramified in F+, such
that

(i) E has good ordinary reduction at all primes w dividing �
(ii) � splits in L;
(iii) � splits in Q(ζ2i+1), i = 1, . . . , sup(m − 1,m′ − 1); in particular, � ≡ 1

(mod mm′);
(iv) �−1

m > 2, �−1
m′ > 2.

Let M be an arbitrary extension of F+. Define ri, r′j, rτ and rτ ′ as above.
Then there is a totally real Galois extension F ′,+/F+, linearly disjoint from
M over F+, with the property that for i = 1, . . . ,m, (resp. j = 1, . . . ,m′)
ri,F ′,+ = ri |Γ ′,+

F
(resp. r′j,F ′,+) corresponds to an automorphic representation

Πi of GL(2i, F ′,+) ((resp. Π ′
j of GL(2j, F ′,+)) and such that rτ (resp. r′τ ′) cor-

responds to an automorphic representation Πτ of GL(2m,F ′,+) (resp. Π ′
τ ′ of

GL(2m′, F ′,+). If F ′/F ′,+ is a CM quadratic extension, then the base change
Πi,F ′ (resp. Πτ,F ′) has archimedean constituent isomorphic to Π∞,0(2i, F ′)
(resp. Π∞,0(2n, F ′)), and likewise for Π ′

j,F ′ , Π ′
τ ′,F ′ .

The discussion of Section 4 applies to both Πτ and Π ′
τ , and we obtain the

following strengthening of Theorem 4.4.

Theorem 5.2. Assume the Expected Theorems of Section 1. Let F+ be a
totally real field, let E and E′ be elliptic curves over F+, and assume E and
E′ do not become isogenous over an abelian extension of F+. Let m and m′

be positive integers. Then there is a finite totally real Galois extension F ′,+/F
and, for each positive integer i ≤ m, (resp. j ≤ m′) a cuspidal automorphic
representation Πi of GL(i, F ′,+) (resp. Π ′

j of GL(j, F ′,+)) satisfying condi-
tions (a) and (b) of Expected Theorem 1.2, such that

ρiE,� |ΓF ′,+ = ρΠi,�; ρ
j
E′,� |ΓF ′,+ = ρΠ′

j ,�
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In particular, if m ·m′ > 1,

Lnorm
(
s, ρmE,�,F ′,+ ⊗ ρm

′
E′,�,F ′,+

)
= L (s,Πm ×Π ′

m′)

is an entire function.

The Rankin-Selberg L-function has no poles if m �= m′; if m = m′ it has a
pole if and only if Π ′

m′
∼−→ Π∨

m. which implies that the corresponding Galois
representations ρmE,� and ρmE′,� are isomorphic. The kernel of the map of the
standard 2-dimensional representation of GL(2) to its mth symmetric power
is finite and contained in the center. If ρmE,�

∼−→ρmE′,�, it thus follows that the
corresponding adjoint representations ad ρE,� and ad ρE′,� are isomorphic,
hence that there exists an abelian character η, necessarily finite, such that
ρE′,�

∼−→ρE,�⊗η. Thus ρE′,� and ρE,� become isomorphic over a finite extension
of F+, hence E and E′ are isogenous by Faltings’ theorem.

Using Brauer’s theorem, as in the proof of Theorem 4.2 of [HST], we then
obtain:

Theorem 5.3. Assume the Expected Theorems of Section 1. Let F+ be a
totally real field, let E and E′ be elliptic curves over F+, and assume E and
E′ do not become isogenous over an abelian extension of F+. Let m and m′

be positive integers. Then the L-function L
(
s, ρmE,� ⊗ ρm

′
E′,�

)
is invertible and

satisfies the expected functional equation.

Proof. This is obtained from Theorem 5.2 by applying Brauer’s theorem, as
in the proof of Theorem 4.2 of [HST]. It suffices to mention that the non-
vanishing of the Rankin-Selberg L-function along the line Re(s) = 1 of a pair
of cuspidal automorphic representations (with unitary central characters) is
due in general to Shahidi [Shi63]. ��

Finally, here is the precise statement of the question of Mazur and Katz
mentioned in the introduction, together with the affirmative response. Recall
the notation kv and qv of Section 1.

Theorem 5.4. Assume the Expected Theorems of Section 1. Let F+ be a
totally real field, let E and E′ be elliptic curves over F+, and assume E and
E′ do not become isogenous over an abelian extension of F+. For any prime
v of F+ where E and E′ both have good reduction, we let

|E(kv)| =
(
1 − q

1
2
v e

iφv

) (
1 − q

1
2
v e

−iφv

)

|E′(kv)| =
(
1 − q

1
2
v e

iψv

)(
1 − q

1
2
v e

−iψv

)

where φv, ψv ∈ [0, π].
Then the pairs (φv, ψv) ∈ [0, π] × [0, π] are uniformly distributed with

respect to the measure
4
π2
sin2φ sin2ψ dφdψ.
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Proof. Theorem 5.4 follows directly from Theorem 5.3 by the argument in [S,
Appendix to Section I]. ��

6. Concluding remarks

The author and Richard Taylor have independently noticed that tensoring
with an induced representation from a Hecke character may be useful in
other situations. For example, let f be an elliptic modular form of weight k,
ρf,� : ΓQ → GL(2, Q̄�) the associated two-dimensional Galois representation,
and let ρnf,� = Symn−1ρf,�. There is no hope of applying the potential modu-
larity technique of [HST] to ρnf,� if k > 2: the series of Hodge-Tate weights at
� has gaps for all n, and Griffiths transversality implies it is impossible to ob-
tain families of positive dimension of motives with such Hodge-Tate numbers.
However, if k is odd, one can choose a Hecke character χ of an abelian CM
extension L/Q of degree k−1 with infinity type so chosen that ρnf,�⊗ IndΓQ

ΓL
χ�

has an unbroken series of Hodge-Tate weights. (If k is even one takes L of
degree 2(k − 1).)

Two serious obstacles remain. In the first place, the constructions in
Section 4 require that we know in advance that the symmetric power
L-functions are invertible, and this information is not available a priori for
k > 2. In the second place, the arguments for finding rational points on moduli
spaces over number fields unramified at � break down in higher weights.
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Summary. We propose a category which can serve as the category of coefficients
for the cyclic homology HC∗(A) of an associative algebra A over a field k. The
construction is categorical in nature, and essentially uses only the tensor category
A-bimod of A–bimodules; objects of our category are A–bimodules with an additional
structure. We also generalize the construction to a more general tensor k-linear
tensor category C instead of A-bimod. We add some remarks about Getzler’s version
of the Gauss–Manin connection for the periodic cyclic homology HP∗(A).
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Introduction

Ever since it was discovered in 1982 by A. Connes [C1] and B. Tsygan [Ts],
cyclic homology has occupied a strange place in the realm of homological al-
gebra. Normally in homological algebra problems, one expects to start from
some data, for instance a topological space X , then construct some abelian
category, such as the category of sheaves on X , and then define the cohomol-
ogy of X by computing the derived functors of some natural functor, such
as the global sections functor Γ (X,−). Admittedly, this is a modern formu-
lation, but it was certainly current already in 1982. Cyclic homology starts
with an associative algebra A, and defines its homology groups HC �(A), but
there are absolutely no derived functors in sight. Originally, groups HC �(A)
were defined as the homology of an explicit complex, which anyone trained
to use triangulated categories cannot help but take as an insult. Later, A.
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Connes [C2] improved on the definition by introducing the abelian category
of so-called cyclic vector spaces. However, the passage from A to its associated
cyclic vector space A# is still done by an explicit ad hoc formula. It is as if
we were to know the bar-complex that computes the homology of a group,
without knowing the definition of the homology of a group.

This situation undoubtedly irked many people over the years, but to the
best of my knowledge, no satisfactory solution has been proposed, and it may
not exist; indeed, many relations to the de Rham homology notwithstanding,
it is not clear whether cyclic homology properly forms a part of homological
algebra at all (to the point that for instance in [FT], the word “homology” is
not used at all for HC �(A), and it is called instead additive K-theory of A). In
the great codification of homological algebra done in [GM1], cyclic homology
appears only in the exercises. This is not surprising, since the main unifying
idea of [GM1] is the ideology of “linearization”: homological algebra linearizes
geometry, just as functional analysis used to do 50 years ago; triangulated
categories and adjoint functors are modern-day versions of Banach spaces and
adjoint linear operators. This has been an immensely successful and clarifying
point of view in general, but HC �(A) sticks out on a complete tangent: there
is simply no natural place for it in this framework.

This paper arose as one more attempt to propose a solution to the
difficulty: to find a natural triangulated category where HC �(−) would be
able to live with a certain level of comfort (and with all the standard corol-
laries such as the notion of cyclic homology with coefficients, the ability to
compute cyclic homology by whatever resolution is convenient, not just the
bar resolution, and so on).

In a sense, our attempt has been successful: we define a triangulated
category that can serve as the natural “category of coefficients” for cyclic
homology of an algebra A, and we prove the comparison theorem that shows
that when the coefficients are trivial, the new definition of cyclic homology
is equivalent to the old one. In fact, the algebra A enters into the construc-
tion only through the category A-bimod of A-bimodules; we also show how to
generalize the construction so that A-bimod is replaced with a more general
tensor abelian category C.

From a different point of view, though, out attempt failed miserably:
the correspondence A �→ A#, being thrown out of the window, immediately
returns through the door in a new and “higher-level” disguise: it is now ap-
plied not to the algebra A, but to the tensor category C = A-bimod. Then in
practice, the freedom to choose an arbitrary resolution to compute the derived
functors leads, in our approach to HC �(−), to complexes that are even larger
than the original complex, and at some point the whole exercise starts to look
pointless.

Still, we believe that all said and done, some point can be found, and
some things are clarified in our approach; one such thing is, for instance,
the version of Gauss–Manin connection for cyclic homology discovered by
E. Getzler [Ge]. Moreover, we do propose a definition of cyclic homology
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that – makes sense for a general tensor category; and in some particular
questions, even the computations can be simplified. As for the presence of the
A#-construction, this might be in the nature of things, after all: not a bug in
the theory, but a necessary feature. However, we leave it to the reader to be
the judge.

The paper is organized as follows. In Section 1 we recall A. Connes’s second
definition of cyclic homology, which uses the cyclic category Λ; we also recall
some facts about homology of small categories that we will need. We have tried
to give only the absolute minimum; the reader not familiar with the material
will have to consult the references. In Section 2 we introduce our main object:
the notion of a cyclic bimodule over an associative algebra A, and the derived
category of such bimodules. We also introduce cyclic homology HC �(A, M)
with coefficients in a cyclic bimodule M . In Section 3 we give a very short
derivation of the Gauss–Manin connection; strictly speaking, the language of
cyclic bimodules is not needed for this, but we believe that it shows more
clearly what is really going on. In Section 4, we show how to replace the
category A-bimod everywhere with a more general tensor abelian category C.
Section 5 is a postface, or a “discussion” (as is done in medical journals);
we discuss some of the further things one might (and should) do with cyclic
bimodules, and how to correct some deficiencies of the theory developed in
Sections 2 and 4.
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1 Recollection on cyclic homology.

We start by recalling, extremely briefly, A. Connes’ approach to cyclic
homology, which was originally introduced in [C2] (for detailed overviews,
see, e.g., [L, Section 6] or [FT, Appendix]; a brief but complete exposition
using the same language and notation as in this paper can be found in
[Ka, Section 1]).
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Connes’ approach relies on the technique of homology of small categories.
Fix a base field k. Recall that for every small category Γ , the category
Fun(Γ, k) of functors from Γ to the category k-Vect of k-vector spaces is
an abelian category with enough projectives and enough injectives, with de-
rived category D(Γ, k). For any object E ∈ Fun(Γ, k), the homology H �(Γ, E)
of the category Γ with coefficients in E is by definition the derived functor of
the direct limit functor

lim
→
Γ

: Fun(Γ, k) → k-V ect.

Analogously, the cohomology H
�

(Λ, E) is the derived functor of the inverse
limit lim

←
Γ

. Equivalently,

H
�

(Γ, E) = Ext
�

(k, E),

where k ∈ Fun(Γ, k) is the constant functor (all objects in Γ go to k, all
maps go to identity). In particular, H

�

(Γ, k) is an algebra. For any E ∈
Fun(Γ, k), the cohomology H

�

(Γ, E) and the homology H �(Γ, E) are modules
over H

�

(Γ, k).
We also note, although it is not needed for the definition of cyclic homology,

that for any functor γ : Γ ′ → Γ between two small categories, we have the
pullback functor γ∗ : Fun(Γ, k) → Fun(Γ ′, k), and for any E ∈ Fun(Γ, k), we
have natural maps

H �(Γ ′, γ∗E) → H �(Γ, E), H
�

(Γ, E) → H
�

(Γ ′, γ∗E). (1.1)

Moreover, the pullback functor γ∗ has a left adjoint γ! : Fun(Γ ′, k) →
Fun(Γ, k) and a right-adjoint f∗ : Fun(Γ ′, k) → Fun(Γ, k), known as the
left and right Kan extensions. In general, f! is right-exact, but it need not be
left-exact. We will need one particular case in which it is exact. Assume given
a covariant functor V : Γ → Sets from a small category Γ to the category of
sets, and consider the category Γ ′ of pairs 〈[a], v〉 of an object [a] ∈ Γ and
an element v ∈ V ([a]) (maps in Γ ′ are those maps γ : [a] → [a′] that send
v ∈ V ([a]) to v′ ∈ V ([a′]). Such a category is known as a discrete cofibration
over Γ associated to V ; see [Gr]. Then the Kan extension f! associated to the
forgetful functor f : Γ ′ → Γ , 〈[a], v〉 �→ [a] is exact, and is easy to compute:
for any E ∈ Fun(Γ ′, k) and [a] ∈ Γ , we have

f!E([a]) =
⊕

v∈V ([a])

E(〈[a], v〉). (1.2)

Moreover, for any E ∈ Fun(Γ, k), this imediately gives the projection formula:

f!f
∗E ∼= E ⊗ F!k, (1.3)

where as before, k ∈ Fun(Γ ′, k) stands for the constant functor.
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For applications to cyclic homology, one starts by introducing the cyclic
category Λ. This is a small category whose objects [n] are numbered by positive
integers n ≥ 1. One thinks of an object [n] as a circle S1 with n distinct
marked points; we denote the set of these points by V ([n]). The set of maps
Λ([n′], [n]) from [n′] to [n] is then the set of homotopy classes of continuous
maps f : S1 → S1 such that

• f has degree 1, sends marked points to marked points, and is nondecreasing
with respect to the natural cyclic order on S1 (that is, if a point a ∈ S1

lies between points b and c when one counts clockwise, then the same is
true for f(a), f(b), and f(c)).

In particular, we have Λ([1], [n]) = V ([n]). This topological description of
the cyclic category Λ is easy to visualize, but there are also alternative
combinatorial descriptions (e.g., [GM1, Exercise II.1.6], [L, Section 6], or [FT,
A.2], retold in [Ka, Section 1.4]). All the descriptions are equivalent. Objects
in Fun(Λ, k) are usually called cyclic vector spaces.

The cyclic category Λ is related to the more familiar simplicial category
Δopp, the opposite to the category Δ of finite nonempty linearly ordered sets.
To understand the relation, consider the discrete cofibration Λ[1]/Λ associated
to the functor V : Λ → Sets; equivalently, Λ[1] is the category of objects [n]
in Λ equipped with a map [1] → [n]. Then it is easy to check that Λ[1] is
equivalent to the category Δopp. From now on, we will abuse notation and
identify Λ[1] and Δopp. We then have a natural projection Δopp = Λ[1] → Λ,
〈[n], v〉 �→ [n], which we denote by j : Δopp → Λ.

For any cyclic k-vector space E ∈ Fun(Λ, k), we have its restriction
j∗E ∈ Fun(Δopp, E), a simplicial vector space. One defines the cyclic ho-
mology HC �(E) and the Hochschild homology HH � of E by

HC �(E) def= H �(Λ, E), HH �(E) def= H �(Δopp, j∗E).

By (1.1), we have a natural map HH �(E) → HC �(E) (moreover, since j :
Δopp → Λ is a discrete cofibration, the Kan extension j! is exact, so that
we have HH �(E) ∼= HC �(j!j∗E), and the natural map is induced by the
adjunction map j!j

∗E → E). It has been shown by A. Connes that this map
fits into a long exact sequence

HH �(E) −−−−→ HC �(E) u−−−−→ HC �−2(E) −−−−→ . (1.4)

Here the map u is the so-called periodicity map on HC �(E): one shows that
the algebra H

�

(Λ, k) is isomorphic to the polynomial algebra k[u] in one gen-
erator u of degree 2, and the periodicity map on homology is simply the
action of this generator. This allows one to define a third homological invari-
ant, the periodic cyclic homology HP �(E); to do it, one inverts the periodic-
ity map.
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Definition 1.1. For any cyclic k-vector space E ∈ Fun(Λ, k), the periodic
cyclic homology of E is defined by

HP �(E) = lim
u←

�

HC �(E),

where lim←
�

denotes the derived functor of the inverse limit lim← .

Assume now that we are given an associative unital algebra A over k. To
define its cyclic homology, we associate to A a canonical cyclic vector space
A# in the following way. We set A#([n]) = A⊗V ([n]), the tensor product of n
copies of the vector space A numbered by marked points v ∈ V ([n]). Then for
any map f ∈ Λ([n′], [n]), we define

A#(f) =
⊗

v∈V ([n])

mf−1(v) : A⊗V ([n′]) =
⊗

v∈V ([n])

A⊗f−1(v) → A⊗V ([n]), (1.5)

where for any linearly ordered finite set S, mS : A⊗S → A is the canonical
multiplication map induced by the associative algebra structure on A (and if
S is empty, we set A⊗S = k, and mS is the embedding of the unity). This is
obviously compatible with compositions, and it is well defined since for any
v ∈ V ([n]), its preimage f−1 ⊂ V ([m]) carries a natural linear order induced
by the orientation of the circle S1.

Definition 1.2. For any associative unital algebra A over k, its Hochschild,
cyclic, and periodic cyclic homologies HH �(A), HC �(A), HP �(A) are defined
as the corresponding homologies of the cyclic k-vector space A#:

HH �(A) def= HH �(A#), HC �(A) def= HC �(A#), HC �(P ) def= HP �(A#).

2 Cyclic bimodules.

Among all the homology functors introduced in Definition 1.2, Hochschild
homology is the most accessible, and this is because it has another definition:
for any associative unital algebra A over k, we have

HH � = Tor
�

Aopp⊗A(A, A), (2.1)

where Tor
�

is taken over the algebra Aopp ⊗A (here Aopp denotes A with the
multiplication taken in the opposite direction).

This has a version with coefficients: if M is a left module over Aopp ⊗ A,
in other words, an A-bimodule, one defines Hochschild homology of A with
coefficients in M by

HH �(A, M) = Tor
�

Aopp⊗A(M, A). (2.2)
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The category A-bimod of A-bimodules is a unital (nonsymmetric) tensor
category, with tensor product − ⊗A − and the unit object A. Hochschild
homology is a homological functor from A-bimod to k-Vect .

To obtain a small category interpretation of HH �(A, M), one notes that
for any n, n′ ≥ 0, the A-bimodule structure on M induces a multiplication
map

A⊗n ⊗ M ⊗ A⊗n′ → M.

Therefore, if to any 〈[n], v〉 ∈ Δopp we associate the k-vector space

MΔ
# ([n]) = M ⊗ A⊗(V ([n])\{v}), (2.3)

with M filling the place corresponding to v ∈ V ([n]), then (1.5) makes perfect
sense for those maps f : [n′] → [n] that preserve the distinguished points.
Thus to any M ∈ A-bimod, we can associate a simplicial k-vector space MΔ

# ∈
Fun(Δopp, k). In the particular case M = A, we have AΔ

# = j∗A#.

Lemma 2.1. For any M ∈ A-bimod, we have a canonical isomorphism

HH �(A, M) ∼= H �(Δopp, MΔ
# ). (2.4)

Proof. It is well known that for any simplicial k-vector space E, the homology
H �(Δopp, E) can be computed by the standard complex of E (that is, the
complex with terms E([n]) and the differential d =

∑
i(−1)idi, where di

are the face maps). In particular, H0(Δopp, MΔ
# ) is the cokernel of the map

d : A ⊗ M → M given by d(a ⊗ m) = am − ma. The natural projection
M → M ⊗Aopp⊗A A obviously factors through this cokernel, so that we have
a natural map

ρ0 : H0

(
Δopp, MΔ

#

) → HH0(A, M).

Both sides of (2.4) are homological functors in M , and HH �(A, M) is a uni-
versal homological functor (= the derived functor of HH0(A, M)); therefore
the map ρ0 extends to a map ρ � : H �(Δopp, MΔ

# ) → HH �(A, M). To prove
that ρ � is an isomorphism for any M , it suffices to prove it when M is
free over Aopp ⊗ A, or in fact, when M = Aopp ⊗ A. Then on the one hand,
HH0(A, M) = A, and HHi(A, M) = 0 for i ≥ 1. And on the other hand, the
standard complex associated to the simplicial k-vector space (Aopp ⊗ A)Δ

# is
just the usual bar resolution of the diagonal A-bimodule A.

It is more or less obvious that for an arbitrary M ∈ A-bimod, MΔ
# does

not extend to a cyclic vector space: in order to be able to define HC �(A, M),
we have to equip the bimodule M with some additional structure. To do this,
we want to use the tensor structure on A-bimod. The slogan is the following:

• To find a suitable category of coefficients for cyclic homology, we have
to repeat the definition of the cyclic vector space A# ∈ Fun(Λ, k), but
replace the associative algebra A in this definition with the tensor category
A-bimod.
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Let us explain what this means.
First, consider an arbitrary associative unital monoidal category C with

unit object I (at this point, not necessarily abelian). For any integer n, we
have the Cartesian product Cn = C ×C × · · · × C. Moreover, the product on C
induces a product functor

m : Cn → C,

where if n = 0, we let Cn = pt, the category with one object and one morphism,
and let m : pt → C be the embedding of the unit object. More generally, for
any finite linearly ordered set S with n elements, we have a product functor
mS : CS → C, where CS = Cn with multiples in the product labeled by
elements of S. Then for any [n], [n′] ∈ Λ, and any f : [n′] → [n], we can define
a functor f! : CV ([n′]) → CV ([n]) by the same formula as in (1.5):

f! =
∏

v∈V ([n])

mf−1(v) : CV ([n′]) =
∏

v∈V ([n])

Cf−1(v) → CV ([n]). (2.5)

The natural associativity isomorphism for the product on C induces natural
isomorphisms (f ◦f ′)! ∼= f! ◦f ′! , and one checks easily that they satisfy natural
compatibility conditions. All in all, setting [n] �→ CV ([n]), f �→ f! defines a
weak functor (a.k.a. Lax functor, a.k.a. 2-functor, a.k.a. pseudofunctor in the
original terminology of Grothendieck) from Λ to the category of categories.
Informally, we have a “cyclic category.”

To work with weak functors, it is convenient to follow Grothendieck’s
approach in [Gr]. Namely, instead of considering a weak functor directly, we
define a category C# in the following way: its objects are pairs 〈[n], Mn〉 of an
object [n] of Λ and an object Mn ∈ Cn, and morphisms from 〈[n′], Mn′〉
to 〈[n], Mn〉 are pairs 〈f, ιf 〉 of a map f : [n′] → [n] and a bimodule
map ιf : f!(Mn′) → Mn. A map 〈f, ιf 〉 is called co-Cartesian if ιf is an
isomorphism. For the details of this construction, in particular, for the defini-
tion of the composition of morphisms, we refer the reader to [Gr].

The category C# comes equipped with a natural forgetful projection τ :
C# → Λ, and this projection is a cofibration in the sense of [Gr]. A section of
this projection is a functor σ : Λ → C# such that τ ◦ σ = id (since Λ is small,
there is no harm in requiring that two functors from Λ to itself be equal, not
just isomorphic). These sections obviously form a category which we denote
by Sec(C#). Explicitly, an object M# ∈ Sec(C#) is given by the following:

(i) a collection of objects Mn = M#([n]) ∈ Cn, and
(ii) a collection of transition maps ιf : f!Mn′ → Mn for any n, n′, and f ∈

Λ([n′], [n]),

subject to natural compatibility conditions.
A section σ : Λ → C# is called co-Cartesian if σ(f) is a cocartesian map

for any [n], [n′] ∈ Λ and f : [n′] → [n], equivalently, a section is cocartesian if
all the transition maps ιf are isomorphisms. co-Cartesian sections form a full
subcategory Seccart(C#).
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Lemma 2.2. The category Seccart(C#) of co-Cartesian objects M# ∈ Sec(C#)
is equivalent to the category of the following data:

(i) an object M = M#([1]) ∈ C, and
(ii) an isomorphism τ : I × M → M × I in the category C2 = C × C,

such that if we denote by τij the endomorphism of I × I × M ∈ C3 obtained
by applying τ to the i-th and j-th multiples, we have τ31 ◦ τ12 ◦ τ23 = id.

Proof. Straightforward and left to the reader.

Thus the natural forgetful functor Seccart(C#) → C, M# �→ M#([1]) is
faithful: an object in Seccart(C#) is given by M#([1]) plus some extra struc-
ture on it, and all the higher components M#([n]), n ≥ 2, together with the
transition maps ιf , can be recovered from M#([1]) and this extra structure.

Return now to the abelian situation: we are given an associative unital
algebra A over a field k, and our monoidal category is C = A-bimod, with
the natural tensor product. Then for every n, the product A-bimodn has a
fully faithful embedding A-bimodn → A⊗n-bimod, M1 × M2 × · · · × Mn �→
M1 � M2 � · · · � Mn, and one checks easily that the multiplication functors
mS actually extend to right-exact functors

mS : A⊗S-bimod → A-bimod;

for instance, one can define mS as

mS(M) = M/ {av′m − mav | v ∈ S, a ∈ A, m ∈ M} ,

where av = 1⊗ · · ·⊗ a⊗ · · ·⊗ 1 ∈ A⊗S with a at the v-th position, and v′ ∈ S
is the next element after v. We can therefore define the cofibered category
A-bimod#/Λ with fiber A⊗V ([n])-bimod over [n] ∈ Λ, and transition functors
f! as in (2.5). We also have the category of sections Sec(A-bimod#) and the
subcategory of co-Cartesian sections Seccart(A-bimod#) ⊂ Sec(A-bimod#).

Lemma 2.3. The category Sec(A-bimod#) is a k-linear abelian category.

Proof (Sketch of a proof ). This is a general fact about cofibered categories; the
proof is straightforward. The kernel Ker φ and cokernel Cokerφ of a map φ :
M# → M ′

# between objects M#, M ′
# ∈ Sec(A-bimod#) are taken pointwise:

for every n, we have an exact sequence

0 → (Ker φ)([n]) → M#([n])
φ→ M ′

#([n]) → (Coker φ)([n]) → 0.

The transtition maps ιf for Ker φ are obtained by restriction from those for
M#; for Cokerφ, one uses the fact that the functors f! are right-exact.

Definition 2.4. A cyclic bimodule M over a unital associative algebra A is a
cocartesian section M# ∈ Seccart(A-bimod#). A complex of cyclic bimodules
M � over A is an object in the derived category D(Sec(A-bimod#)) whose
homology objects are co-Cartesian.
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Complexes of cyclic bimodules obviously form a full triangulated
subcategory in D(Sec(A-bimod#)); consistent notation for the category would
be Dcart(Sec(A-bimod#)), but for simplicity we will denote its DΛ(A-bimod).
We have to define complexes separately for the following reasons:

(i) The category Seccart(A-bimod#) ⊂ Sec(A-bimod#) need not be abelian:
since the transition functors f! are only right-exact, the condition of being
cocartesian need not be preserved in passing to kernels.

(ii) Even if Seccart(A-bimod#) is abelian, its derived category might be much
smaller than DΛ(A-bimod).

Example 2.5. An extreme example of (ii) is the case A = k: in this case
Sec(A-bimod#) is just the category of cyclic vector spaces, Fun(Λ, k), and
E ∈ Fun(Λ, k) is co-Cartesian if and only if E(f) is invertible for any map
f : [n′] → [n]. One deduces easily that E must be a constant functor, so
that Seccart(k-bimod#) = k-Vect . Then DΛ(k-bimod) is the full subcategory
Dconst(Λ, k) ⊂ D(Λ, k) of complexes whose homology is constant. If we were to
consider Δopp instead of Λ, we would have Dconst(Δopp, k) ∼= D(k-Vect): since
H

�

(Δopp, k) = k, the embedding D(k-Vect) → D(Δopp, k) is fully faithful,
and Dconst(Δopp, k) is its essential image. However, H

�

(Λ, k) is k[u], not k.
Therefore there are maps between constant functors in D(Λ, k) that do not
come from maps in D(k-Vect), and the cones of these maps give objects in
Dconst(Λ, k) that do not come from D(k-Vect).

This phenomenon is quite common in homological algebra; examples are,
for instance, the triangulated category of complexes of étale sheaves with
constructible homology, the category of complex of D-modules with holonomic
homology, and the so-called “equivariant derived category” of sheaves on a
topological space X acted upon by a topological group G (which is not in
fact the derived category of anything useful). The upshot is that it is the
triangulated categoryDΛ(A-bimod) that should be treated as the basic object,
wherever categories are discussed.

Remark 2.6. We note one interesting property of the category Dconst(Λ, k).
Fix an integer n ≥ 1, and consider the full subcategory Λ≤n ⊂ Λ of objects
[n′] ∈ Λ with n′ ≤ n. Then one can show that H

�

(Λ≤n, k) = k[u]/un, so that
we have a natural exact triangle

H �(Λ≤n, E
�

) −−−−→ HC �(E
�

) un

−−−−→ HC �+2n(E) −−−−→ , (2.6)

for every E
� ∈ Dconst (Λ, k). We note that for any E

� ∈ D(Λ, k), (1.4) extends
to a spectral sequence

HH �(E
�

)[u−1] ⇒ HC �(E), (2.7)

where the expression on the left-hand side reads as “polynomials in one formal
variable u−1 of homological degree 2 with coefficients in HH �(E

�

).” Then (2.6)
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shows that for E
� ∈ Dconst(Λ, k), the first n differentials in (2.7) depend only

on the restriction of E
�

to Λ≤(n+1) ⊂ Λ. This is useful because in practice,
one is often interested only in the first differential in the spectral sequence.

As in Lemma 2.2, a cyclic A-bimodule M# essentially consists of an
A-bimodule M = M#([1]) equipped with an extra structure. Explicitly, this
structure is a map τ : A ⊗k M → M ⊗k A that respects the A⊗2-bimodule
structure on both sides and satisfies the condition τ31 ◦ τ12 ◦ τ23 = id, as in
Lemma 2.2.

Another way to view this structure is the following. One checks easily
that for any cyclic A-bimodule M#, the restriction j∗M# ∈ Fun(Δopp, k) is
canonically isomorphic to the simplicial k-vector space MΔ

# associated to the
underlying A-bimodule M as in (2.3). By adjunction, we have a natural map

τ# : j!M
Δ
# → M#.

Then j!M
Δ
# in this formula depends only on M ∈ A-bimod, and all the struc-

ture maps that turn M into the cyclic bimodule M# are collected in the
map τ#.

We can now define cyclic homology with coefficients. The definition is
rather tautological. We note that for any cyclic A-bimodule M#, or in fact,
for any M# ∈ Sec(A-bimod#), we can treat M# as a cyclic vector space by
forgetting the bimodule structure on its components Mn.

Definition 2.7. The cyclic homology HC �(A, M#) with coefficients in a
cyclic A-bimodule M is equal to H �(Λ, M#).

Of course, (1.4), being valid for any cyclic k-vector space, also applies to
HC �(A, M#), so that we automatically get the whole package: the Connes ex-
act sequence, the periodicity endomorphism, and the periodic cyclic homology
HP �(A, M). By Lemma 2.1, HH �(M#) coincides with HH �(A, M) as defined
in (2.2).

3 Gauss–Manin connection.

To illustate the usefulness of the notion of a cyclic bimodule, let us study the
behavior of cyclic homology under deformations.

There are two types of deformation theory objects that one can study for
an associative algebra A. The first is the notion of a square-zero extension of
the algebra A by an A-bimodule M . This is an associative algebra Ã that fits
into a short exact sequence

0 −−−−→ M
i−−−−→ Ã

p−−−−→ A −−−−→ 0,

where p is an algebra map, and i is an Ã-bimodule map, under the Ã-bimodule
structure on M induced from the given A-bimodule structure by means of the
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map p. In other words, the multiplication on the ideal Ker p ⊂ Ã is trivial, so
that the Ã-bimodule structure on Ker p is induced by an A-bimodule structure,
and i identifies the A-bimodule Ker p with M . Square-zero extensions are clas-
sified up to an isomorphism by elements in the second Hochschild cohomology
group HH2(A, M), defined as

HH
�

(A, M) = Ext
�

Aopp⊗A(A, M).

In this setting, we can consider the cyclic homology of the algebra Ã and
compare it with the cyclic homology of A. T. Goodwillie’s theorem [Go] claims
that if the base field k has characteristic 0, the natural map

HP �(Ã) → HP �(A)

is an isomorphism, and there is also some information on the behavior of
HC �(A).

A second type of deformation-theory data includes a commutative k-
algebra R with a maximal ideal m ⊂ R. A deformation AR of the algebra
A over R is a flat associative unital algebra AR over R equipped with an
isomorphism AR/m ∼= A. In this case, one can form the relative cyclic R-
module AR# by taking the tensor products over R; thus we have relative
homology HH �(AR/R), HC �(AR/R), HP �(AR/R). The fundamental fact dis-
covered by E. Getzler [Ge] is that we have an analogue of the Gauss–Manin
connection: if Spec(R) is smooth, the R-module HPi(AR/R) carries a canon-
ical flat connection for every i.

Consider now the case that R is not smooth but, on the contrary, local
Artin. Moreover, assume that m2 = 0, so that R is itself a (commutative)
square-zero extension of k. Then a deformation AR of A over R is also a square-
zero extension of A, by the bimodule A ⊗ m (m here is taken as a k-vector
space). But this square-zero extension is special: for a general square-zero
extension Ã of A by some M ∈ A-bimod, there does not exist any analogue
of the relative cyclic R-module AR# ∈ Fun(Λ, R).

We observe the following: the data needed to define such an analogue is
precisely a cyclic bimodule structure on the bimodule M .

Namely, assume given a square-zero extension Ã of the algebra A by some
A-bimodule M , and consider the cyclic k-vector space Ã# ∈ Fun(Λ, k). Let
us equip Ã with a descreasing two-step filtration F

�

by setting F 1Ã = M .
Then this induces a decreasing filtration F

�

on tensor powers Ã⊗n. Since Ã is
square-zero, F

�

is compatible with the multiplication maps; therefore we also
have a filtration F

�

on Ã#. Consider the quotient

A# = Ã#/F 2Ã#.

One checks easily that gr0F Ã#
∼= A# and gr1F Ã#

∼= j!M
Δ
# in a canonical way,

so that A# fits into a canonical short exact sequence
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0 −−−−→ j!M
Δ
# −−−−→ A# −−−−→ A# −−−−→ 0 (3.1)

of cyclic k-vector spaces.
Now assume in addition that M is equipped with a structure of a cyclic

A-bimodule M#, so that MΔ
#

∼= j∗M#, and we have the structure map τ# :
j!M

Δ
# → M#. Then we can compose the extension (3.1) with the map τ#, to

obtain a commutative diagram

0 −−−−→ j!M
Δ
# −−−−→ A# −−−−→ A# −−−−→ 0

τ#

⏐⏐

⏐⏐


∥∥∥

0 −−−−→ M# −−−−→ Â# −−−−→ A# −−−−→ 0

(3.2)

of short exact sequences in Fun(Λ, k), with Cartesian left square. It is easy
to check that when Ã = AR for some square-zero R, so that M = A ⊗ m,
and we take the cyclic A-bimodule structure on M induced by the tautological
structure on A, then Â# coincides precisely with the relative cyclic object AR#

(which we consider as a k-vector space, forgetting the R-module structure).
We believe that this is the proper generality for the Getzler connection; in

this setting, the main result reads as follows.

Proposition 3.1. Assume given a square-zero extension Ã of an associative
algebra A by an A-bimodule M , and assume that M is equipped with a struc-
ture of a cyclic A-bimodule. Then the long exact sequence

HP �(A, M) −−−−→ HP �(Â#) −−−−→ HP �(A) −−−−→
of periodic cyclic homology induced by the second row in (3.2) admits a
canonical splitting HP �(A) → HP �(Â#).

Proof. By definition, we have two natural maps

HP �(A#) → HP �(A#) = HP �(A),

HP �(A#) → HP �(Â#),
(3.3)

and the cone of the first map is isomorphic to HP �(j!MΔ
# ). Since j! is

exact, we have HC �(j!MΔ
# ) ∼= HH �(M#), and the periodicity map u :

HC �(j!MΔ
# ) → HC �−2(j!MΔ

# ) is equal to 0, so that HP �(j!MΔ
# ) = 0. Thus the

first map in (3.3) is an isomorphism, and the second map is then the required
splitting.

Corollary 3.2. Assume given a commutative k-algebra R with a maximal
ideal m ⊂ R, and a deformation AR of the algebra A over R. Then if Spec(R)
is smooth, the R-modules HP �(AR/R) carry a natural connection.
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Proof (Sketch of a proof ). Consider the R⊗R-algebras AR ⊗R and R⊗AR,
and their restrictions to the first infinitesimal neighborhood of the diagonal
in Spec(R⊗R) = Spec(R)×Spec(R). Then Proposition 3.1, suitably general-
ized, shows that HP �(−) of these two restrictions are canonically isomorphic.
It is well known that giving such an isomorphism is equivalent to giving a
connection on HP �(AR/R).

We note that we do not claim that the connection is flat. It certainly is,
at least in characteristic 0; but our present method does not allow one to go
beyond square-zero extensions.Thuswe cannot analyze the second infinitesemal
neighborhood of the diagonal in Spec(R ⊗ R), and we cannot prove flatness.

Unfortunately, at present, we do not understand what is the proper cyclic
bimodule context for higher-level infinitesimal extensions. Of course, if one is
interested only in an R-deformation Ã = AR over an Artin local base R, not in
its cyclic bimodule generalizations, one can use Goodwillie’s Theorem: using
the full cyclic object Ã# instead of its quotient A# in Proposition 3.1 im-
mediately gives a splitting HP �(A) → HP �(AR/R) of the augmentation map
HP �(AR/R) → HP �(A), and this extends by R-linearity to an isomorphism
HP �(AR/R) ∼= HP �(A) ⊗ R. However, this is not quite satisfactory from
the conceptual point of view, and it does not work in positive characteristic
(where Goodwillie’s Theorem is simply not true). If char k �= 2, the latter can
be cured by using Ã#/F 3Ã#, but the former one remains. We plan to return
to this elsewhere.

4 Categorical Approach.

Let us now try to define cyclic homology in a more general setting: we will
attempt to replace A-bimod with an arbitrary associative unital k-linear tensor
category C with a unit object I ∈ C. We do not assume that C is symmetric in
any way. However, we will assume that the tensor product −⊗− is right-exact
in each variable, and we will need to impose additional technical assumptions
later on.

The first thing to do is to try to define Hochschild homology; so let us look
more closely at (2.1). The formula an the right-hand side looks symmetric,
but this is an optical illusion; the two copies of A are completely different
objects: one is a left module over Aopp ⊗ A, and the other is a right module
(A just happens to have both structures at the same time). It is better to
separate them and introduce the functor

tr : A-bimod → k-Vect

by tr(M) = M ⊗Aopp⊗A A, or equivalently, by

tr(M) = M/{am − ma | a ∈ A, m ∈ M} . (4.1)

Then tr is a right-exact functor, and we have HH �(A, M) = L
�

tr(M).
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We want to emphasize that the functor tr cannot be recovered from the
tensor structure on A-bimod; this really is an extra piece of data. For a general
tensor category C, it does not exist a priori; we have to impose it as an
additional structure.

Let us axiomatize the situation. First, forget for the moment about the
k-linear and abelian structure on C; let us treat it simply as a monoidal cate-
gory. Assume given some other category B and a functor T : C → B.

Definition 4.1. The functor T : C → B is a trace functor if it is extended to
a functor C# → B that sends any cocartesian map f : M → M ′ in C# to an
invertible map.

Another way to say the same thing is the following: the categories
Fun(Cn,B) of functors from Cn to B form a fibered category over Λ, and a
trace functor is a Cartesian section of this fibration. Explicitly, a trace functor
is defined by T : C → B and a collection of isomorphisms

T (M ⊗ M ′) → T (M ′ ⊗ M)

for any M, M ′ ∈ C that are functorial in M and M ′ and satisfy some
compatibility conditions analogous to those in Lemma 2.2; we leave it to
the reader to write down these conditions precisely. Thus T has a tracelike
property with respect to the product in C, and this motivates our terminology.

Recall now that C is a k-linear abelian category. To define Hochschild
homology, we have to assume that it is equipped with a right-exact trace
functor tr : C → k-Vect ; then for any M ∈ C, we set

HH �(M) = L
�

tr(M). (4.2)

Lemma 4.2. The functor tr : A-bimod → k-Vect canonically extends to a
right-exact trace functor in the sense of Definition 4.1.

Proof. For any object 〈[n], Mn〉 ∈ A-bimod#, [n] ∈ Λ, Mn ∈ A⊗n-bimod, let

tr(〈[n], Mn〉) = Mn/ {av′m − mav | v ∈ V ([n]), m ∈ Mn, a ∈ A} ,

where av = 1⊗1⊗· · ·⊗a⊗· · ·⊗1 ∈ A⊗V ([n]) has a in the multiple corresponding
to v ∈ V ([n]), and v′ ∈ V ([n]) is the next marked point after v counting
clockwise. The compatibility with maps in the category A-bimod# is obvious.

We note that here, in the case C = A-bimod, the category A-bimod#

is actually larger than what we would have had purely from the monoidal
structure on C: Mn is allowed to be an arbitrary A⊗n-bimodule, not a col-
lection of n A-bimodules. To do the same for general k-linear C, we need to
replace A⊗n-bimod with some version of the tensor product C⊗n. Here we have
a difficulty: for various technical reasons, it is not clear how to define tensor
products for sufficiently general abelian categories.
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One way around it is the following. For any (small) k-linear abelian
category B, a k-linear functor Bopp → k-V ect is left-exact if and only if it
is a sheaf for for the canonical Grothendieck topology on B ([BD, 5, §10]);
the category Shv(B) of such functors is abelian and k-linear, and B itself is
naturally embedded into Shv(B) by Yoneda. The embedding is a fully faithful
exact functor. Every functor in Shv(B) is in fact a direct limit of representable
functors, so that Shv(B) is an inductive completion of the abelian category
B. Now, if we are given two (small) k-linear abelian categories B1, B2, then
their product B1 ×B2 is no longer abelian. However, we still have the abelian
category Shv(B1 × B2) of bilinear functors Bopp

1 × Bopp
2 → k-V ect, which are

left-exact in each variable, and the same goes for polylinear functors.
Moreover, for any right-exact functor F : B1 → B2 between small abelian

categories, we have the restriction functor F ∗ : Shv(B2) → Shv(B1), which is
left-exact, and its left-adjoint F! : Shv(B1) → Shv(B2), which is right-exact.
The functor F! is an extension of the functor F : on Yoneda images Bi ⊂
Shv(Bi), we have F! = F . And again, the same works for polylinear functors.

In particular, given our k-linear abelian tensor category C, we can form
the category Shv(C)# of pairs 〈E, [n]〉, [n] ∈ Λ, E ∈ Shv(Cn), with a map
from 〈E′, [n′]〉 to 〈E, [n]〉 given by a pair of a map f : [n′] → [n] and either
a map E′ → (f!)∗E, or map (f!)!E′ → E; this is equivalent by adjunction.
Then Shv(C)# is a bifibered category over Λ in the sense of [Gr].

The category of sections Λ → Shv(C)# of this bifibration can also be
described as the full subcategory Shv(C#) ⊂ Fun(Copp

# , k) spanned by those
functors E# : Copp

# → k-V ect whose restriction to (Copp)n ⊂ Copp
# is a sheaf,

that is, an object in Shv(Cn) ⊂ Fun((Copp)n, k). Since the transition functors
(f!)! are right-exact, Shv(C#) is an abelian category (this is proved in exactly
the same way as Lemma 2.3).

We denote by Shvcart(C#) ⊂ Shv(C#) the full subcategory of sections
E : Λ → Shv(C)# that are co-Cartesian, and moreover, are such that E([1]) ∈
Shv(C) actually lies in the Yoneda image C ⊂ Shv(C). We also denote by
DΛ(C) ⊂ D(Shv(C#)) the full triangulated subcategory of complexes E

�

# ∈
D(Shv(C#)) with homology in Shvcart(C#).

If C is the category of A-bimodules for some algebra A, or better yet, of
A-bimodules of cardinality not more than that of A×N, so that C is small, then
Shv(C) is equivalent to A-bimod (one shows easily that every sheaf E ∈ Shv(C)
is completely determined by its value at Aopp ⊗ A ∈ C). In this case, DΛ(C)
is our old category DΛ(A-bimod).

Now we assume that C is equipped with a right-exact trace functor tr :
C → k-V ect. We would like to define cyclic homology HC �(M �) for any M � ∈
DΛ(C), and we immediately notice a problem: for a general C, we do not have
a forgetful functor to vector spaces. However, it turns out that the forgetful
functor is not needed for the definition; it can be replaced with the trace
functor tr.

We proceed as follows. By definition, tr is extended to a functor C# →
k-V ect; we extend it canonically to a functor Shv(C)# → k-V ect, and consider
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the product
tr×τ : Shv(C)# → k-Vect × Λ,

where τ : Shv(C)# → Λ is the projection. This is a functor compatible with
the projections to Λ, and therefore, it induces a functor of the categories
of sections. The category of sections of the projection k-Vect × Λ → Λ is
tautologically the same as Fun(Λ, k-Vect), so that we have a functor

tr# : Shv(C#) → Fun(Λ, k).

One checks easily that this functor is right-exact.

Definition 4.3. For any M# ∈ Sec(C#), its cyclic homology HC �(M#) is
defined by

HC �(M#) def= HC �(L
�

tr#(M#)) = H �(Λ, L
�

tr#(M#)).

Definition 4.4. The pair 〈C, tr〉 is called homologically clean if for any n, the
category Shv(Cn) has enough objects E such that

(i) E is acyclic both for functors (f!)! : Shv(Cn) → Shv(Cn′), for any f :
[n] → [n′], and for the trace functor tr : Shv(Cn) → k-Vect, and

(ii) for any f : [n] → [n′], (f!)!E ∈ Shv(Cn′) is acyclic for tr : Shv(Cn′) →
k-Vect.

Example 4.5. Assume that the category C has enough projectives, and more-
over, P1 ⊗ P2 is projective for any projective P1, P2 ∈ C (this is satisfied, for
instance, for C = A-bimod). Then the pair 〈C, tr〉 is homologically clean, for
any trace functor tr. Indeed, Shv(Cn) then also has enough projectives, say
sums of objects

P = P1 � P2 � · · · � Pn ∈ Shv(Cn) (4.3)

for projective P1, . . . , Pn ∈ C ⊂ Shv(C), and these projectives automatically
satisfy the condition (i). To check (ii), one decomposes f : [n] → [n′] into a
surjection p : [n] → [n′′] and an injection i : [n′′] → [n′]. Since the tensor
product of projective objects is projective, (p!)!(P ) ∈ Shv(Cn′′) is also an
object of type (4.3), so we may as well assume that f is injective. Then one
can find a left-inverse map f ′ : [n′] → [n], f ′ ◦ f = id; since P ′ = (f!)!(P ) is
obviously acyclic for (f ′! )!, and (f ′! )! (P

′) = ((f ′ ◦ f)!)!(P ) = P is acyclic for
tr, P ′ itself is acyclic for tr = tr ◦ (f ′! )!.

Lemma 4.6. Assume that 〈C, tr〉 is homologically clean. Then for any object
[n] ∈ Λ and any M# ∈ Shv(C#), we have

L
�

tr#(M#)([n]) ∼= L
�

tr(M#([n])). (4.4)

For any M
�

# ∈ DΛ(C), we have L
�

tr#(M#) ∈ Dconst(Λ, k) ⊂ D(Λ, k).
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Proof. The natural restriction functor Shv(C#) → Shv(Cn), M# �→ M#([m])
has a left-adjoint functor In! : Shv(Cn) → Shv(C#); explicitly, it is given by

In!(E)([n′]) =
⊕

f :[n]→[n′]

(f!)!(E). (4.5)

Let us say that an object E ∈ Shv(Cn) is admissible if it satisfies the condi-
tions (i), (ii) of Definition 4.4. By assumption, Shv(Cn) has enough admissible
objects for any n. Then Shv(C#) has enough objects of the form In!E, [n] ∈ Λ,
E ∈ Shv(Cn) admissible, and to prove the first claim, it suffices to consider
M# = In!E of this form. In degree 0, (4.4) is the definition of the functor
tr#, and the higher-degree terms on the right-hand side vanish by Defini-
tion 4.4 (ii). Therefore it suffices to prove that M# = In!E is acyclic for the
functor tr#. This is obvious: applying tr# to any short exact sequence

0 −−−−→ M ′
# −−−−→ M ′′

# −−−−→ M# −−−−→ 0

in Shv(C#), we see that since M#([n′]) is acyclic for any [n′] ∈ Λ, the sequence

0 −−−−→ tr M ′
#([n′]) −−−−→ tr M ′′

#([n′]) −−−−→ tr M#([n′]) −−−−→ 0

is exact; this means that

0 −−−−→ tr M ′
# −−−−→ tr M ′′

# −−−−→ tr M# −−−−→ 0

is an exact sequence in Fun(Λ, k), and this means that M# is indeed acyclic
for tr#.

With the first claim proved, the second amounts to showing that the nat-
ural map

L
�

tr ◦L �

(f!)!(E) → L
�

tr(E)

is a quasi-ismorphism for any f : [n] → [n′] and any E ∈ Shv(Cn). It suffices
to prove it for admissible M ; then the higher derived functors vanish, and the
isomorphism tr ◦(f!)! ∼= tr is Definition 4.1.

Lemma 4.7. In the assumptions of Lemma 4.6, for any complex M
�

# ∈
DΛ(C) with the first component M

�

= M
�

#([1]) we have

HH �(M
�

) ∼= HH �

(
L

�

tr#
(
M

�

#

))
.

Proof. By Lemma 4.6, the left-hand side, HH �(M
�

), is canonically isomorphic
to the complex L

�

tr#(M
�

#) ∈ D(Λ, k) evaluated at [1] ∈ Λ, and moreover,
L

�

tr#(M
�

#) lies in the subcategory Dconst(Λ, k) ⊂ D(Λ, k). It remains to
apply the following general fact: for any E

� ∈ Dconst(Λ, k), we have a natural
isomorphism HH �(E

�

) ∼= E
�

([1]). Indeed, by definition we have

HH �(E
�

) = H �(Δopp, j∗E
�

),

and j∗E
�

lies in the category Dconst(Δopp, k), which is equivalent to D(k-Vect)
(see Example 2.5, and also Remark 2.6: the isomorphism we constructed here
is a special case of (2.6) for n = 1).
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The lemma shows that if the pair 〈C, tr〉 is homologically clean,
Definition 4.3 is consistent with (4.2), and we get the whole periodicity
package of (1.4): the periodicity map u, the Connes exact sequence

HH �(M
�

) −−−−→ HC �(M
�

) u−−−−→ HC �−2(M
�

) −−−−→ ,

and the periodic cyclic homology HP �(M
�

).
In general, objects in DΛ(C) may be hard to construct, but we always have

at least one: the identity section I# : Λ → Shv(C)#, given by

I#([n]) = I�n ∈ C⊗n,

where I ∈ C is the unit object. Thus we can define cyclic homology of a tensor
category equipped with a trace functor.

Definition 4.8. For any k-linear abelian unital tensor category C equipped
with a trace functor tr : C → kVect, its Hochschild and cyclic homologies are
given by

HH �(C, tr) def= HH �(I), HC �(C, tr) def= HC �(I#),

where I ∈ C is the unit object, and I# ∈ DΛ(C) is the identity section.

We now have to check that in the case C = A-bimod, Definition 4.3 is
compatible with our earlier Definition 2.7, in other words, that the cyclic
homology computed by means of the forgetful functor is the same as the
cyclic homology computed by means of the trace. This is not at all trivial.
Indeed, if for instance M# ∈ Shv(C#) is co-Cartesian, then, while L

�

tr# M#

lies in the subcategory Dconst(Λ, k) ⊂ D(Λ, k), the same is certainly not true
for the object M# ∈ Fun(Λ, k) obtained by forgetting the bimodule structure
on Mn.

Thus these two objects are different. However, they do become equal after
taking cyclic (or Hochschild, or periodic cyclic) homology. Namely, for any
M# ∈ Sec(A-bimod#) we have a natural map

M# → L
�

tr# M# (4.6)

in the derived category D(Λ, k), and we have the following result.

Proposition 4.9. For every M# ∈ Sec(A-bimod#), the natural map (4.6)
induces isomorphisms

HH �(M#) ∼= HH �(L
�

tr M#),
HC �(M#) ∼= HC �(L

�

tr M#),
HP �(M#) ∼= HP �(L

�

tr M#).

Proof. By (1.4), it suffices to consider HC �(−); as in the proof of Lemma 4.6, it
suffices to consider M# = In!E given in (4.5), with E being the free bimodule
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E = (Aopp ⊗ A)⊗n ∈ Shv(Cn) = A⊗n-bimod

for some fixed n. Explicitly, we have

In!E([n′]) =
⊕

f :[n]→[n′]

⊗

v′∈V ([n′])

Aopp ⊗ A⊗f−1(v′) (4.7)

for any [n′] ∈ Λ. Then Lp tr# In!E = 0 for p ≥ 1, and one checks easily that

tr# In!E = in! tr E = in!A
⊗n ∈ Fun(Λ, k),

where in : pt → Λ is the embedding of the object [n] ∈ Λ (pt is the category
with one object and one morphism). Therefore

HC0(L
�

tr# In!E) = H �(Λ, in!A
⊗n) = A⊗n,

and HCp(L
�

tr# in!E) = 0 for p ≥ 1. We have to compare it with HC �(in!E).
To do this, consider the category Λ[n] of objects [n′] ∈ Λ equipped with

a map [n] → [n′], and let jn : Λ[n] → Λ be the forgetful functor. Then jn is
obviously a discrete cofibration. Comparing (1.2) and (4.7), we see that

In!E = jn!E
[n]
#

for some E
[n]
# ∈ Fun(Λ[n]). Moreover, fix once and for all a map [1] → [n].

Then we see that the discrete cofibration jn : Λ[n] → Λ factors through the
discrete cofibration j : Λ[1] = Δopp → Λ by means of a discrete cofibration
γn : Λ[n] → Λ[1], and we observe that

E
[n]
# ([n′]) = (Aopp)⊗n′ ⊗ A⊗n

depends only on γn([n′]) ∈ Δopp. More precisely, we have E
[n]
# = γ∗nEΔ

n , where
EΔ

n ∈ Fun(Δopp, k) is as in (2.3), and En is the free A-bimodule

En = Aopp ⊗ A⊗(n−1) ⊗ A.

The conclusion: we have

HC �(In!E) = H �

(
Λ[n], E

[n]
#

)
= H �

(
Δopp, γn!γ

∗
nEΔ

n

)
= H �

(
Δopp, EΔ

n ⊗ γn!k
)
,

where we have used the projection formula (1.3) in the right-hand side. The
homology of the category Δopp can be computed by the standard complex;
then by the Künneth formula, the right-hand side is isomorphic to

H �

(
Δopp, EΔ

n

) ⊗ H �(Δopp, γn!k) ∼= H �

(
Δopp, EΔ

n

) ⊗ H �(Λ[n], k).

By Lemma 2.1,

H �

(
Δopp, EΔ

n

) ∼= HH �(A, En) ∼= A⊗n.

Since the category Λ[n] has an initial object [n] ∈ Λ[n], we have k = in!k, so
that the second multiple H �(Λ[n], k) is just k in degree 0.
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The essential point of Proposition 4.9 is the following: the cyclic object
A# associated to an algebra A inconveniently contains two things at the same
time: the cyclic structure, which seems to be essential to the problem, and
the bar resolution, which is needed only to compute the Hochschild homol-
ogy HH �(A). Replacing A# with the cyclic complex L

�

tr# A# ∈ D(Λ, k)
disentangles these two.

We note that while one still has to prove that this does not change the
final answer, the construction itself looks pretty straightforward: if one wants
to remove the inessential bar resolution from the definition of the cyclic ho-
mology, Definition 4.8 seems to be the obvious thing to try. However, it was
actually arrived at by a sort of reverse engineering process. To finish the sec-
tion, perhaps it would be useful to show the reader the first stage of this
process.

Assume given an associative algebra A, and fix a projective resolution P � of
the diagonal A-module A. Then HH �(A, M) can be computed by the complex

tr(P �) = P � ⊗Aopp⊗A A.

How can one see the cyclic homology in terms of this complex? Or even
simpler, what is the first differential in the spectral sequence (2.7), the Connes
differential B : HH �(A) → HH �+1(A)?

There is the following recipe, which gives the answer. Let τ : P � → A
be the augmentation map. Consider the tensor product P � ⊗A P �. This is
also a projective resolution of A, and we actually have two natural quasi-
isomorphisms

τ1, τ2 : P � ⊗A P � → P �,

given by τ1 = τ ⊗ id, τ2 = id⊗τ . These quasi-isomorphisms are different.
However, since both are maps between projective resolutions of the same
object, there should be a chain homotopy between them. Fix such a homotopy
ι : P � ⊗A P � → P �+1.

Now we apply the trace functor tr, and obtain two maps τ1, τ2:
tr(P � ⊗ P �) → tr(P �), and a homotopy ι : tr(P � ⊗ P �) → tr(P �+1) between

them.
However, by the trace property of τ , we also have an involution σ :

tr(P � ⊗A P �) that interchanges the two multiples. This involution obviously
also interchages τ1 and τ2, but there is no reason why it should fix the homo-
topy ι – in fact, it sends ι to a second homotopy ι′ : tr(P � ⊗A P �) → tr(P �+1)
between τ1 and τ2.

The difference ι′ − ι is then a well-defined map of complexes

ι′ − ι : tr(P � ⊗A P �) → tr(P �+1). (4.8)

On the level of homology, both sides are HH �(A); the map ι′− ι then induces
exactly the Connes differential B : HH �(A) → HH �+1(A).

To justify this recipe, we use Proposition 4.9 and identify HC �(A) with
HC �(L

�

tr#(A#)) rather than HC �(A#). Then L
�

tr#(A#) is an object in
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Dconst(Λ, k). Therefore, as noted in Remark 2.6, the Connes differential B
depends only on the restriction of L

�

tr#(A#) to Λ≤2 ⊂ Λ. In other words, we
do not need to compute the full L

�

tr#(A#) and to construct a full resolution
P#

�
of the cyclic A-bimodule A#; it suffices to construct P i

�
= P#

�
([i]) for

i = 1, 2 (and then apply the functor tr).
With the choices made above, we set P 1

�
= P �, and we let P 2

�
be the cone

of the map

P � � P �

(τ�id)⊕(id �τ)−−−−−−−−−→ (A � P �) ⊕ (P � � A).

The involution σ : [2] → [2] acts on P 2
�

in the obvious way. We also need to
define the transition maps ιf for the two injections d, d′ : [1] → [2] and the
two surjections s, s′ : [2] → [1]. For d1, the transition map ιd : A � P � → P 2

�

is the obvious embedding, and so is the transition map ιd′ . For the surjection
s, we need a map ιs from the cone of the map

P � ⊗A P �

(τ⊗id)⊕(id⊗τ)−−−−−−−−−→ P � ⊕ P �

to P �. On P � ⊕ P �, the map ιs is just the difference map a ⊕ b �→ a − b; on
P �⊗A P �, ιs is our fixed homotopy ι : P �⊗A P � → P �+1. And similarly for the
other surjection s′.

We leave it to the reader to check that if one computes L
�

tr#(A#) |Λ≤2

using this resolution P#
�
, then one obtains exactly (4.8) for the Connes dif-

ferential B.

5 Discussion

One of the most unpleasant features of the construction presented in Section 4
is the strong assumptions we need to impose on the tensor category C. In fact,
the category to which one would really like to apply the construction is the
category EndB of endofunctors—whatever that means—of the category B of
coherent sheaves on an algebraic variety X . But if X is not affine, EndB
certainly does not have enough projectives, so that Example 4.5 does not
apply, and it is unlikely that EndB can be made homologically clean in the
sense of Definition 4.4. We note that Definition 4.4 has been arranged so as
not to impose anything more than strictly necessary for the proofs; but in
practice, we do not know any examples that are not covered by Example 4.5.

As for the category EndB, there is an even bigger problem with it: while
there are ways to define endofunctors so that EndB is an abelian category
with a right-exact tensor product, it cannot be equipped with a right-exact
trace functor tr. Indeed, it immediately follows from Definition 4.8 that the
Hochschild homology groups HH �(C) of a tensor category C are trivial in
negative homological degrees. If C = EndB, one of course expects HH �(C) =
HH �(X), the Hochschild homology HH �(X) of the variety X , which by now
is well understood (see, e.g., [W]). And if X is not affine, HH �(X) typically is
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nontrivial both in positive and in negative degrees. If X is smooth and proper,
HH �(X) in fact carries a nondegenerate pairing, so that it is just as nontrivial
in degrees > 0 as in degrees < 0. Thus the case of a nonaffine algebraic variety
is far beyond the methods developed in this paper.

The real reason for these difficulties is that we are dealing with abelian
categories, while the theory emphatically wants to live in the triangulated
world; as we explained in Example 2.5, even our main topic, cyclic bimodules,
are best understood as objects of a triangulated category DΛ(C). Unfortu-
nately, we cannot develop the theory from scratch in the triangulated context,
since we do not have a strong and natural enough notion of an enhanced
triangulated category (and working with the usual triangulated categories is
out of the question because, for instance, the category of triangulated func-
tors between triangulated categories is usually not a triangulated category
itself). A well-developed theory would probably require a certain compromise
between the abelian and the triangulated approaches. We will return to it
elsewhere.

Another thing that is very conspicuously not done in the present paper
is the combination of Section 4 and Section 3. Indeed, in Section 3, we are
dealing with cyclic homology in the straightforward naive way of Section 2,
and while we define the cyclic object Â# associated to a square-zero extension
Ã, we make no attempt to find an appropriate category ̂Sec(A-bimod#) where
it should live. This is essentially the reason why we cannot go further than
square-zero extensions. At present, sadly, we do not really understand this
hypothetical category ̂Sec(A-bimod#).

One suspects that treating this properly would require studying defor-
mations in a much more general context: instead of considering square-zero
extensions of an algebra, we should look at the deformations of the abelian
category of its modules, or at the deformations of the tensor category of its
bimodules. This brings us to another topic completely untouched in the paper:
the Hochschild cohomology HH

�

(A).
Merely defining Hochschild cohomology for an arbitrary tensor category C

is in fact much simpler than the definition of HH �(C), and one does not need a
trace functor for this: we just set HH

�

(C) = Ext
�

(I, I), where I ∈ C is the unit
object. However, it is well understood by now that just as Hochschild homol-
ogy always comes equipped with the Connes differential, the spectral sequence
(2.7), and the whole cyclic homology package, Hochschild cohomology should
be considered not as an algebra but as the so-called Gerstenhaber algebra; in
fact, the pair HH �(−), HH

�

(−) should form a version of “noncommutative
calculus,” as proposed for instance in [TT]. Deformations of the tensor cat-
egory C should be controlled by HH

�

(C), and the behavior of HH �(C) and
HC �(C) under these deformations reflects various natural actions of HH

�

(−)
on HH �(−).

We believe that a convenient development of the “noncommutative
calculus” for a tensor category C might be possible along the same lines
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as our Section 4. Just as our category DΛ(C) is defined as the category of
sections of the cofibration C#/Λ, whose definition imitates the usual cyclic
object A#, one can construct a cofibration C#/Δ that imitates the standard
cosimplicial object computing HH

�

(A): for any [n] ∈ Δ, C#([n]) is the cat-
egory of polylinear right-exact functors from Cn−1 to C, and the transition
functors between various C#([n]) are induced by the tensor product on C.
Then one can define a triangulated category DΔ(C), the subcategory in
D(Sec(C#)) of complexes with co-Cartesian homology; the higher structures
on HH

�

(C) should be encoded in the structure of the category DΔ(C), and
relations between HH �(C) and HH

�

(C) should be reflected in a relation
between DΛ(C) and DΔ(C). We will proceed in this direction elsewhere. At
present, the best we can do is to make the following hopeful observation:

• the category Seccart(C#) is naturally a braided tensor category over k.

The reason for this is very simple: if one writes out explicitly the definition of
Seccart(C#) along the lines of Lemma 2.2, one finds that it coincides on the
nose with the Drinfeld double of the tensor category C.
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Introduction

(0.1) A monomial in noncommutative variablesX and Y , say,X iY jXkY l . . .,
can be visualized as a lattice path in the plane, starting from 0, going i steps
in the horizontal direction, j steps in the vertical one, then again k steps in the
horizontal one, and so on. Usual commutative monomials are often visualized
as lattice points, for example xayb corresponds to the point (a, b). To lift such
a monomial to the noncommutative domain is therefore the same as to choose
a “history” for (a, b), i.e., a lattice path originating at 0 and ending at (a, b).

This correspondence between paths and noncommutative monomials can
be extended to more general piecewise smooth paths if we deal with ex-
ponential functions instead. Let us represent our commutative variables as
x = ez, y = ew; then a monomial will be replaced by the exponential eaz+bw

and we are free to take a and b to be any real numbers. To lift this ex-
ponential to the noncommutative domain, i.e., to a series in Z,W where
X = eZ , Y = eW , one needs to choose a path γ in R

2 joining 0 with (a, b).
One can easily see this by approximating γ by lattice paths with step 1/M ,
M → ∞, and working with monomials in X1/M = eZ/M and Y 1/M = eW/M .
Denote this exponential series by Eγ(Z,W ).
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This suggests the possibility of a “noncommutative Fourier transform”
(NCFT) identifying appropriate spaces of functions of noncommuting vari-
ables (say, of matrices of indeterminate size) with spaces of ordinary functions
or measures on the space of paths. For example, to a measure μ on the space
Π of paths (or some completion of it) we want to associate the function F(μ)
of Z,W given by

F(μ)(Z,W ) =
∫
γ∈Π

Eγ(Z,W )dμ(γ).(0.1.1)

The basic phenomenon here seems to be that the two types of functional
spaces (noncommutative functions of n variables vs. ordinary commutative
functions but on the space of paths in R

n) have, on some fundamental level,
the same size.

The goal of this paper and the ones to follow [K1-2] is to investigate this
idea from several points of view.

(0.2) The concept of NCFT seems to implicitly underlie the very founda-
tions of quantum mechanics such as the equivalence of the Lagrangian and
Hamiltonian approaches to the theory. Indeed, the Lagrangian point of view
deals with path integrals, while the Hamiltonian one works with noncom-
muting operators. Further, it is very close to the concept of the “Wilson
loop” functional (trace of the holonomy) in Yang–Mills theory [Po]. Note that
the exponential Eγ , being itself the holonomy of a certain formal connec-
tion, is invariant under reparametrization of the path. Quantities invariant
under reparametrization are particularly important in string theory, and the
reparametrization invariance of the Wilson loop led to conjectural relations
between strings and the N → ∞ limit of Yang–Mills theory [Po].

Since the integral transform F should, intuitively, act between spaces of
the same size, it does not lead to any loss of information and can therefore be
viewed as “path integration without integration.” The actual integration oc-
curs when we restrict the function F(μ) to the commutative locus, i.e., make
Z and W commute. Alternatively, instead of allowing Z,W to be arbitrary
matrices, we take them to be scalars. Then all paths having the same end-
point will contribute to make up a single Fourier mode of the commutativized
function. We arrive at the following conclusion: the natural homomorphism
R → Rab of a noncommutative ring to its maximal commutative quotient is
the algebraic analogue of path integration.

(0.3) The idea that the space of paths is related to the free group and to its
various versions was clearly enunciated by K.-T. Chen [C1] in the 1950s and
can be traced throughout almost all of his work [C0]. Apparently, much more
can be said about this classical subject. Thus, the universal connection with
values in the free Lie algebra (known to Chen and appearing in (2.1) below)
leads to beautiful nonholonomic geometry on the free nilpotent Lie groups
Gn,d, which is still far from being fully understood; see [G].
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Well-known examples of measures on path spaces are provided by prob-
ability theory, and we spend some time in §4 below to formulate various
results from the probabilistic literature in terms of NCFT. Most importantly,
the Fourier transform of the Wiener measure on paths in R

n is the noncom-
mutative Gaussian series exp

(−∑n
i=1 Z

2
j

)
, where the Zi are considered as

noncommuting variables. We should mention here the recent book by Bau-
doin [Ba], who considered the idea of associating a noncommutative series to
a stochastic process. It is clearly the same type of construction as our NCFT
except in the framework of probability theory: parametrized paths, positive
measures, etc.

(0.4) I would like to thank R. Beals, E. Getzler, H. Koch, Y.I. Manin, and
M. A. Olshanetsky for useful discussions. I am also grateful to the referee for
several remarks that helped improve the exposition. This paper was written
during my stay at the Max-Planck-Institut für Mathematik in Bonn, and I
am grateful to the institute for support and excellent working conditions. This
work was also partially supported by an NSF grant.

1 Noncommutative Monomials and Lattice Paths

(1.1) Noncommutative polynomials and the free semigroup. Con-
sider n noncommuting (free) variables X1, . . . , Xn and form the algebra of
noncommutative polynomials in these variables. This algebra will be denoted
by C〈X1, . . . , Xn〉. It is the same as the tensor algebra

T (V ) =
∞⊕
d=1

V ⊗d, V = C
n =

n⊕
i=1

C ·Xi.

A noncommutative monomial in X = (X1, . . . , Xn) is, as described in the
introduction, the same as a monotone lattice path in R

n starting at 0. We
denote by F+

n the set of all such paths and write Xγ for the monomial corre-
sponding to a path γ. The set F+

n is a semigroup with the following operation.
If γ, γ′ are two monotone paths as above starting at 0, then γ ◦ γ′ is obtained
by translating γ so that its beginning meets the end of γ′ and then forming
the composite path. It is clear that F+

n is the free semigroup on n generators.
Thus a typical noncommutative polynomial is written as

f(X1, . . . , Xn) = f(X) =
∑
γ∈F+

n

aγX
γ .(1.1.1)

Along with C〈X1, . . . , Xn〉 we will consider the algebra C[x1, . . . , xn] of usual
(commutative) polynomials in the variables x1, . . . , xn. A typical such poly-
nomial will be written as

g(x1, . . . , xn) = g(x) =
∑
α∈Zn

+

bαx
α, xα = xα1

1 · · ·xαn
n .(1.1.2)
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The two algebras are related by the commutativization homomorphism

c : C〈X1, . . . , Xn〉 → C[x1, . . . , xn],(1.1.3)

which takes Xi to xi. For a path γ ∈ Γn let e(γ) ∈ Z
n
+ denote the endpoint

of γ. Then we have

c(Xγ) = xe(γ).(1.1.4)

This means that at the level of coefficients, the commutativization homo-
morphism is given by the summation over paths with given endpoints: if
g(x) = c(f(X)), then

bα =
∑

e(γ)=α

aγ .(1.1.5)

(1.2) Noncommutative power series. Let I ⊂ C〈X1, . . . , Xn〉 be the span
of monomials of degree ≥ 1. Then clearly I is a 2-sided ideal and Id is the
span of monomials of degree ≥ d. We define the algebra C〈〈X1, . . . , Xn〉〉 as
the completion of C〈X1, . . . , Xn〉 in the I-adic topology. Explicitly, elements of
C〈〈X1, . . . , Xn〉〉 can be seen as infinite formal linear combinations of noncom-
mutative monomials, i.e., expressions of the form

∑
γ∈F+

N
aγX

γ. For example,

eX1 · eX2 =
∞∑

i,j=0

X i
1X

j
2

i!j!
,

1
1 − (X1 +X2)

=
∑
γ∈F+

2

Xγ(1.2.1)

are noncommutative power series. We will also be interested in convergence of
noncommutative series. A series f(X) =

∑
γ∈F+

n
aγX

γ will be called entire if

lim
γ→∞R

l(γ)|aγ | = 0, ∀R > 0.(1.2.2)

Here l(γ) is the length of the path γ, and the limit is taken over the countable
set F+

n (so no ordering of this set is needed). We denote by C〈〈X1, . . . , Xn〉〉ent

the set of entire series. It is clear that this set is a subring.

(1.2.3) Proposition. The condition (1.2.2) is equivalent to the property that
for any N and for any square matrices X0

1 , . . . , X
0
n of size N the series of

matrices
∑
aγ(X0)γ obtained by specializing Xi → X0

i converges absolutely.

(1.3) Noncommutative Laurent polynomials. By a noncommutative
Laurent monomial in X1, . . . , Xn we will mean a monomial in positive and
negative powers of the Xi such as, e.g., X1X2X

−1
1 X5

2 . In other words, this
is an element of Fn, the free noncommutative group on the generators Xi. A
noncommutative Laurent polynomial is then a finite formal linear combination
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of such monomials, i.e., an element of the group algebra of Fn. We will denote
this algebra by

C
〈
X±1

1 , . . . , X±1
n

〉
= C[Fn].(1.3.1)

As before, a noncommutative Laurent monomial corresponds to a lattice path
in R

n beginning at 0 but not necessarily monotone. These paths are defined
up to cancellation of pieces consisting of a subpath and the same subpath run
in the opposite direction immediately afterward.

We retain the notation Xγ for the monomial corresponding to a path γ.
We also write (−γ) for the path inverse to γ, so X−γ = (Xγ)−1.

(1.4) Noncommutative Fourier transform: discrete case. The usual
(commutative) Fourier transform relates the spaces of functions on a locally
compact abelian group G and its Pontryagin dual Ĝ. The “discrete” case
G = Z

n, Ĝ = (S1)n corresponds to the theory of Fourier series.
In the algebraic formulation, the discrete Fourier transform identifies the

space of finitely supported functions

b : Z
n → C, α �→ bα, | Supp(b)| <∞,(1.4.1)

with the space C[x±1
1 , . . . , x±1

n ] of Laurent polynomials. It is given by the
well-known formulas

(bα) �→ f, f(x) =
∑
α∈Zn

bαx
α,(1.4.2)

f �→ (bα), bα =
∫
|x1|=···=|xn|=1

f(x)x−αd∗x1 · · ·d∗xn,(1.4.3)

where d∗x is the Haar measure on S1 with volume 1. Our goal in this sec-
tion is to give a generalization of these formulas for noncommutative Laurent
polynomials.

Instead of (1.4.1) we consider the space of finitely supported functions

a : Fn → C, γ �→ aγ , |Supp(a)| <∞.(1.4.4)

The discrete noncommutative Fourier transform is the identification of this
space with C

〈
X±1

1 , . . . , X±1
n

〉
via

(aγ) �→ f, f(X) =
∑
γ∈Fn

aγX
γ .(1.4.5)

This identification ceases to look like a tautology if we regard a noncom-
mutative Laurent polynomial as a function f that to any n invertible
elements X0

1 , . . . , X
0
n of any associative algebra A associates an element

f(X0
1 , . . . , X

0
n) ∈ A. We want then to recover the coefficients aγ in terms

of the values of f on various elements of various A. Most importantly, we
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will consider A = MatN (C), the algebra of matrices of size N , and let N be
arbitrary. To get a generalization of (1.4.3) we replace the unit circle |x| = 1
by the group of unitary matrices U(N) ⊂ MatN (C). Let d∗X be the Haar
measure on U(N) of volume 1.

The following result is a consequence of the so-called asymptotic freedom
theorem for unitary matrices due to Voiculescu [V]; see also [HP] for a more
elementary exposition.

(1.4.6) Theorem. If f(X) =
∑

γ∈Fn
aγX

γ is a noncommutative Laurent
polynomial, then we have

aγ = lim
N→∞

1
N

tr
∫
X1,...,Xn∈U(N)

f(X1, . . . , Xn)X−γ d∗X1 · · ·d∗Xn.

As for the commutative case, the theorem is equivalent to the following
orthogonality relation. It is this relation that is usually called “asymptotic
freedom” in the literature.

(1.4.7) Reformulation. Let γ ∈ Fn be a nontrivial lattice path. Then

lim
N→∞

1
N

tr
∫
X1,...,Xn∈U(N)

Xγ d∗X1 · · · d∗Xn = 0.

Note that for γ = 0 the integral is equal to 1 for any N .

Passing to the N → ∞ limit is unavoidable here, since for any given N
there exist nonzero noncommutative polynomials that vanish identically on
MatN (C). An example is provided by the famous Amitsur–Levitsky polyno-
mial

f(X1, . . . , X2N ) =
∑

σ∈S2N

sgn(σ)Xσ(1) · · ·Xσ(2N).

2 Noncommutative exponential functions.

(2.1) The universal connection and noncommutative exponentials.
Let us introduce the “logarithmic” variables Z1, . . . , Zn, so that we have the
embedding

C〈X1, . . . , Xn〉 ⊂ C〈〈Z1, . . . , Zn〉〉, Xi �→ eZi .(2.1.1)

The algebra C〈〈Z1, . . . , Zn〉〉 is a projective limit of finite-dimensional alge-
bras, namely

C〈〈Z1, . . . , Zn〉〉 = lim←− d C〈Z1, . . . , Zn〉/Id,(2.1.2)

where the ideal I is as in (1.2).
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Consider the space R
n with coordinates y1, . . . , yn. On this space we have

the following 1-form with values in C〈〈Z1, . . . , Zn〉〉:

Ω =
∑
i

Zi · dyi ∈ Ω1(Rn) ⊗ C〈〈Z1, . . . , Zn〉〉.(2.1.3)

We consider the form as a connection on R
n. One can see it as the universal

translation-invariant connection on R
n, an algebraic version of the connection

of Kobayashi on the path space, see [Si], Section 3.
Let γ be any piecewise smooth path in R

n. We define the noncommutative
exponential function corresponding to γ to be the holonomy of the above
connection along γ:

Eγ(Z) = Eγ(Z1, . . . , Zn) = P exp
∫
γ

Ω ∈ C〈〈Z1, . . . , Zn〉〉.(2.1.4)

The holonomy can be understood by passing to finite-dimensional quotients
as in (2.1.2) and solving an ordinary differential equation with values in each
such quotient.

It is clear that Eγ(Z) becomes unchanged under parallel translations of γ,
since the form Ω is translation-invariant. So in the following we will always
assume that γ begins at 0.

Further, Eγ(Z) is invariant under reparametrizations of γ: this is a general
property of the holonomy of any connection. So let us give the following
definition.

(2.1.5) Definition. Let M be a C∞-manifold. An (oriented) unparametrized
path in M is an equivalence class of pairs (I, γ : I →M), where I is a smooth
manifold with boundary diffeomorphic to [0, 1] and γ is a piecewise smooth
map I → M . Two such pairs (I, γ) and (I ′, γ′) are equivalent if there is an
orientation-preserving piecewise smooth homeomorphism φ : I → I ′ such that
γ = γ′ ◦ φ.

We will denote an unparametrized path simply by γ.

(2.1.6) Example. Let γ be a straight segment in R
2 joining (0,0) and (1,1).

Let also δ be the path consisting of the horizontal segment [(0, 0), (0, 1)] and
the vertical segment [(0, 1), (1, 1)]. Let σ be the path consisting of the vertical
segment [(0, 0), (1, 0)] and the horizontal segment [(1, 0), (1.1)]. Then

Eγ(Z1, Z2) = eZ1+Z2 , Eδ(Z1, Z2) = eZ1eZ2 , Eσ(Z) = eZ2eZ1 .

More generally, if γ is a lattice path corresponding to the integer lattice Z
n,

then Eγ(Z) = Xγ is the noncommutative monomial in Xi = eZi associated
to γ as in Section 1.

Let γ, γ′ be two unparametrized paths in R
n starting at 0. Their product

γ ◦γ′ is the path obtained by translating γ so that its beginning meets the end
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of γ′ and then forming the composite path. The set of γ’s with this operation
forms a semigroup. For a path γ we denote by γ−1 the path obtained by
translating γ so that its end meets 0 and then taking it with the opposite
orientation. Finally, we denote by Πn the set of paths as above modulo can-
cellations, i.e., forgetting subpaths of a given path consisting of a segment and
then immediately of the same segment run in the opposite direction. Clearly
the set Πn forms a group, which we will call the group of paths in R

n.
The standard properties of the holonomy of connections imply the

following:

(2.1.7) Proposition. (a) We have

Eγ◦γ′(Z) = Eγ(Z) ·Eγ′(Z), Eγ−1(Z) = Eγ(Z)−1

(equalities in C〈〈Z1, . . . , Zn〉〉).
(b) The series Eγ(Z) is entire, i.e., it converges for any given N by N matrices
Z0

1 , . . . , Z
0
n.

(c) If Z0
1 , . . . , Z

0
n are Hermitian, then Eγ

(
iZ0

1 , . . . , iZ
0
n

)
is unitary.

The property (a) implies that Eγ(Z) depends only on the image of γ in the
group Πn. Further, let us consider the commutativization homomorphism

c : C〈〈Z1, . . . , Zn〉〉 → C[[z1, . . . , zn]].(2.1.8)

The following is also obvious.

(2.1.9) Proposition. If a = (a1, . . . , an) is the endpoint of γ, then

c(Eγ(Z)) = e(a,z)

is the usual exponential function.

Thus there are as many ways to lift e(a,z) into the noncommutative domain
as there are paths in R

n joining 0 and a.

(2.2) Idea of a noncommutative Fourier transform. The above obser-
vations suggest that there should be a version of Fourier transform that would
identify an appropriate space of measures on Πn with an appropriate space
of functions of n noncommutative variables Z1, . . . , Zn, via the formula

μ �→ f(Z1, . . . , Zn) =
∫
γ∈Πn

Eγ(iZ1, . . . , iZn)Dμ(γ).(2.2.1)

The integral in (2.2.1) is thus a path integral. The concept of a “function
of noncommuting variables” is of course open to interpretation. Several such
interpretations are currently being considered in noncommutative geometry.

In the present paper we adopt a loose point of view that a function of n
noncommutative variables is an element of an algebra R equipped with a ho-
momorphism C〈Z1, . . . , Zn〉 → R. We will assume that this homomorphism re-
alizes R as some kind of completion or localization (or both) of C〈Z1, . . . , Zn〉.
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In other words, that R does not have “superfluous” elements, independent of
the images of the Zi. See [Ta] for an early attempt to define noncommutative
functions in the analytic context.

(2.2.2) Examples. We can take R = C〈〈Z1, . . . , Zn〉〉ent, the algebra of entire
power series. Alternatively we can take R to be the skew field of “noncommu-
tative rational functions” in Z1, . . . , Zn constructed by P. Cohn [Coh]. Thus
expressions such as

exp
(
Z2

1 + Z2
2

)
,
(
Z2

1 + Z2
2

)−1
, (Z1Z2 − Z2Z1)

−1 + Z−2
3 Z1

are considered noncommutative functions.

It will be important for us to be able to view a “function” f(Z1, . . . , Zn)
as above as an actual function defined on appropriate subsets of n-tuples of
N by N matrices for each N and taking values in matrices of the same size.

Similarly, the group Πn can also possibly be replaced by various related
objects (completions). In this paper we will consider several approaches such
as completion by a pro-algebraic group or completion by continuous paths.

Alternatively, functions on Πn should correspond to “noncommutative
measures” or distributions on the space of noncommutative functions.
Examples of such “measures” are being studied in free probability theory
[HP], [NS], [VDN]. See Section 6 below.

Note that we have a surjective homomorphism of groups

e : Πn → R
n, γ �→ e(γ).(2.2.3)

Here e(γ) is the endpoint of γ. One important property of the Noncommu-
tative Fourier transform (NCFT) is the following principle, which is just a
consequence of Proposition 2.1.9: under the Fourier transform, the integra-
tion over paths with given beginning and end, i.e., the pushdown of measures
on Πn to measures on R

n, corresponds to a simple algebraic operation: the
commutativization homomorphism

c : R → R/([R,R]),(2.2.4)

where R is a noncommutative algebra and the right-hand side is the maximal
commutative quotient of R.

(2.3) Relation to Chen’s iterated integrals. Let us recall the main points
of Chen’s theory. Let M be a smooth manifold, γ an unparametrized path,
and ω a smooth 1-form on M .

Along with the “definite integral”
∫
γ
ω, we can consider the “indefinite in-

tegral,” which is a function “on γ,” or, more precisely, on the abstract interval
I such that γ is a map I →M . For any t ∈ I we have the subpath γ≤t going
from the beginning of I until t, and we have the function∫

(γ)

ω : I → C, t �→
∫
γ≤t

ω.
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If now ω1 and ω2 are two smooth 1-forms on M , we can form a new 1-form
on γ by multiplying (the restriction of) ω2 and the function

∫
(γ) ω1. Then this

form can be integrated along γ. The result is called the iterated integral
∫ →
γ

ω1 · ω2 =
∫
γ

(
ω2 ·

∫
(γ)

ω1

)
.

Note that if we think of γ as a map γ : I → M , then the iterated integral is
equal to ∫

t1≤t2∈I
γ∗(ω1)(t1)γ∗(ω2)(t2).

Note that integration over all t1, t2 ∈ I would give the product
(∫
γ
ω1

)·(∫
γ
ω2

)
.

Similarly, one defines the d-fold iterated integral of d smooth 1-forms
ω1, . . . , ωd on M by induction:

∫ →
γ

ω1 · · ·ωd =
∫
γ

(
ωd ·

∫ →
(γ)

ω1 · · ·ωd−1

)
,

where the (d− 1)-fold indefinite iterated integral is defined as the function on
I of the form

t→
∫ →
γ≤t

ω1 · · ·ωd−1.

As before, the iterated integral is equal to the integral over the d-simplex:∫ →
γ

ω1 · · ·ωd =
∫
t1≤···≤td∈I

γ∗ω1(t1) · · · γ∗ωd(td).

The concept of iterated integrals extends in an obvious way to 1-forms
with values in any associative (pro-)finite-dimensional C-algebra R. The well-
known Picard series for the holonomy of a connection consists exactly of such
iterated integrals. We state this as follows.

(2.3.1) Proposition. Let R be any (pro-)finite-dimensional associative C-
algebra, and A be a smooth 1-form on M with values in R considered as a
connection form. Then the parallel transport along an unparametrized path γ
has the form

P exp
∫
γ

A =
∞∑
d=0

∫ →
γ

A · · ·A.

Here the term corresponding to d = 0 is set equal to 1.

Let us specialize this to M = R
n, R = C〈〈Z1, . . . , Zn〉〉, and Ω =

∑
Zidyi.

(2.3.2) Corollary. The coefficient of the series Eγ(Z1, . . . , Zn) at any
noncommutative monomial Zi1 · · ·Zid is equal to the iterated integral

∫ →
γ

dyi1 · · · dyid .
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Thus Eγ is the generating function for all the iterated integrals involving
constant 1-forms on R

n.

(2.3.3) Example. By the above,

Eγ(Z) = 1 +
∑

aiZi +
∑

bijZiZj + · · · ,

where ai =
∫
γ
dyi is the ith coordinate of the endpoint of γ and

bij =
∫
γ

(
dyi ·

∫
(γ)

dyj

)
=
∫
γ

yjdyi.

Suppose that γ is closed, so ai = 0. Then bii = 0, and for i = j we have that
bij is the oriented area encirlced by γ after the projection to the (i, j)-plane.

The following was proved by Chen [C2].

(2.3.4) Theorem. The homomorphism Πn → C〈〈Z1, . . . , Zn〉〉∗ sending γ
to Eγ is injective. In other words, if a path γ has all iterated integrals as
above equal to 0, then γ is (equivalent modulo cancellations to) a constant
path (situated at 0).

(2.4) Grouplike and primitive elements. Let FL(Z1, . . . , Zn) be the free
Lie algebra generated by Z1, . . . , Zn. It is characterized by the obvious uni-
versal property; see [R] for background. This property implies that we have a
Lie algebra homomorphism

h : FL(Z1, . . . , Zn) → C〈Z1, . . . , Zn〉,(2.4.1)

and this homomorphism identifies C〈Z1, . . . , Zn〉 with the universal enveloping
algebra of FL(Z1, . . . , Zn). Further, let us consider the Hopf algebra structure
on C〈Z1, . . . , Zn〉 given on the generators by

Δ(Zi) = Zi ⊗ 1 + 1 ⊗ Zi.(2.4.2)

The following result, originally due to K. Friedrichs, is a particular case of a
general property of enveloping algebras.

(2.4.3) Theorem. The image of h consists precisely of all primitive ele-
ments, i.e., of elements f such that Δ(f) = f ⊗ 1 + 1 ⊗ f .

We will also use the term Lie elements for primitive elements of
C〈Z1, . . . , Zn〉.

Further, consider the noncommutative power series algebra C〈〈Z1, . . . , Zn〉〉.
It is naturally a topological Hopf algebra with respect to the comultiplication
given by (2.4.2) on generators and extended by additivity, multiplicativity,
and continuity.
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The free Lie algebra is graded:

FL(Z1, . . . , Zn) =
⊕
d≥1

FL(Z1, . . . , Zn)d,(2.4.3)

where FL(Z1, . . . , Zn)d is the span of Lie monomials containing exactly d
letters. We denote by

gn =
∏
d≥1

FL(Z1, . . . , Zn)d(2.4.4)

its completion, i.e., the set of formal Lie series. This is a complete topological
Lie algebra. We clearly have an embedding of gn into C〈〈Z1, . . . , Zn〉〉 induced
by the embedding of the graded components as above. Further, degree-by-
degree considerations and Theorem 2.4.3 imply the following:

(2.4.5) Corollary. A noncommutative power series f ∈ C〈〈Z1, . . . , Zn〉〉 lies
in gn if and only if it is primitive, i.e., Δ(f) = f ⊗ 1 + 1 ⊗ f with respect to
the topological Hopf algebra structure defined above.

Along with primitive (or Lie) series in Z1, . . . , Zn we will consider grouplike
elements of C〈〈Z1, . . . , Zn〉〉, i.e., series Φ satisfying

Δ(Φ) = Φ⊗ Φ.(2.4.6)

The completed tensor product C〈〈Z1, . . . , Zn〉〉⊗̂C〈〈Z1, . . . , Zn〉〉 consists of
series in 2n variables Z ′i = Zi ⊗ 1 and Z ′′i = 1 ⊗ Zi that satisfy

[
Z ′i, Z

′′
j

]
= 0

and no other relations. Thus a series Φ(Z1, . . . , Zn) is grouplike if it satisfies
the exponential property:

F (Z ′1 + Z ′′1 , . . . , Z
′
n + Z ′′n) = F (Z ′1, . . . , Z

′
n) · F (Z ′′1 , . . . , Z

′′
n) ,(2.4.7)

provided
[
Z ′i, Z

′′
j

]
= 0, ∀i, j. We denote by Gn the set of grouplike elements in

C〈〈Z1, . . . , Zn〉〉. Elementary properties of cocommutative Hopf algebras and
elementary convergence arguments in the adic topology imply the following:

(2.4.8) Proposition. (a) Gn is a group with respect to the multiplication.
(b) The exponential series defines a bijection

exp : gn → Gn,

with the inverse given by the logarithmic series.
(c) The image of any series Φ ∈ Gn under the commutativization homomor-
phism (2.1.8) is a formal series of the form e(a,z) for some a ∈ C

n.
(d) If Φ ∈ Gn, then

Φ(−Z1, . . . ,−Zn) = Φ(Z1, . . . , Zn)−1

(equality of power series).
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(2.4.9) Example. The above proposition implies that the series

log(eZ1 · eZ2) ∈ C〈〈Z1, Z2〉〉

is in fact a Lie series. It is known as the Campbell–Hausdorff series, and its
initial part has the form

log(eZ1 · eZ2) = Z1 + Z2 +
1
2
[Z1, Z2] + · · · .

Let Gn(R) ⊂ Gn be the set of grouplike series with real coefficients.
Further, the Lie algebra FL(Z1, . . . , Zn) is in fact defined over rational num-
bers. In particular, it makes sense to speak about its real part. By tak-
ing the completion as above, we define the real part of the completed free
algebra gn(R). It is clear that the exponential series establishes a bijection
between gn(R) and Gn(R).

The following fact was also pointed out by Chen [C2].

(2.4.9) Theorem. If γ ∈ Πn is a path in R
n as above, then Eγ(Z) is

grouplike. Moreover, it lies in the real part Gn(R).

Note that a typical element Φ = Φ(Z1, . . . , Zn) ∈ Gn is a priori just a
formal power series and does not have to converge for any given matrix values
of the Zi (unless they are all 0). At the same time, series of the form Φ = Eγ ,
γ ∈ Πn, converge for all values of the Zi. This leads to the proposal, formulated
by Chen [C3], to view series from Gn with good covergence properties as
corresponding to “generalized paths,” i.e., paths perhaps more general than
piecewise C∞ ones. The theory of stochastic integrals, see below, provides a
step in a similar direction.

(2.5) Finite-dimensional approximations to Gn and gn. Let us recall
a version of the Malcev theory for nilpotent Lie algebras. Let k be a field of
characteristic 0. A Lie algebra g over k is called nilpotent of degree d if all
d-fold iterated commutators in g vanish. Let U(g) be the universal enveloping
algebra of g. It is a Hopf algebra with the comultiplication given by Δ(x) =
x ⊗ 1 + 1 ⊗ x for x ∈ g. The subspace I in U(g) generated by all nontrivial
Lie monomials in elements of g is an ideal, with U(g)/I = k.

(2.5.1) Lemma. If g is nilpotent of some degree, then
⋂
In = 0.

Thus the I-adic completion

Û(g) = lim←− U(g)/In(2.5.2)

is a complete topological algebra containing U(g). As before, the standard
Hopf algebra structure on U(g) gives rise to a topological Hopf algebra struc-
ture on Û(g). We then have the following fact.
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(2.5.3) Theorem. (a) g is the set of primitive elements of Û(g).
(b) The set G of grouplike elements in Û(g) is the nilpotent group associated,
via the Malcev theory, to the Lie algebra g.
(c) If k = R or C, then G is the simply connected real or complex Lie group
with Lie algebra g.
(d) The exponential map establishes a bijection between g and G.

Let now k = C and

gn,d = FL(X1, . . . , Xn)/FL(X1, . . . , Xn)≥d+1.(2.5.4)

This is a finite-dimensional Lie algebra known as the free nilpotent Lie algebra
of degree d generated by n elements. It satisfies the obvious universal property.
Then

gn = lim←− n gn,d.

So gn is the free pronilpotent Lie algebra on n generators.

Let Rn,d be the quotient of Rn = C〈〈Z1, . . . , Zn〉〉 by the closed ideal
generated by all the (d+ 1)-fold commutators of the Zi. For example, Rn,1 =
C[[Z1, . . . , Zn]] is the usual (commutative) power series algebra.

The topological Hopf algebra structure on Rn descends to Rn,d, and we
easily see the following:

(2.5.5) Proposition. Rn,d is isomorphic to Û(gn,d) as a topological Hopf
algebra.

We denote by Gn,d ⊂ R∗n,d the group of grouplike elements of Rn,d. Then
the above facts imply:

(2.5.6) Theorem. (a) Gn,d is the simply connected complex Lie group with
Lie algebra gn,d.
(b) Gn is the projective limit of Gn,d.

Thus Gn,d is the “free unipotent complex algebraic group of degree d with
n generators,” while Gn is the free prounipotent group with n generators.

As above, taking k = R, we get the real parts Gn,d(R) and gn,d(R). The
homomorphism E : Πn → Gn(R) gives rise, for any d ≥ 1, to the homomor-
phism

εn,d : Πn → Gn,d(R),(2.5.7)

whose target is a finite-dimensional Lie group.

(2.5.8) Proposition. For any d ≥ 1 the homomorphism εn,d is surjective.
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In other words, the group Gn can be seen as a (pro-)algebraic completion
of the path group Πn.
Proof: Let Πrect

n ⊂ Πn be the subgroup of rectangular paths, i.e., paths con-
sisting of segments each going in the direction of some particular coordinate.
As a group, Πrect

n is the free product of n copies of R. Let Zi,d ∈ gn,d be the
image of Zi. Then the image of Πrect

n in Gn,d(R) is the subgroup generated
by the 1-parameter subgroups exp(t · Zi,d), t ∈ R, i = 1, . . . , n. Since the
Zi,d generate gn,d as a Lie algebra, the corresponding 1-parameter subgroups
generate Gn,d(R) as a group. Therefore εn,d (Πrect

n ) = Gn,d(R).

(2.6) Complex exponentials. Consider the complexification C
n of the space

R
n from (2.1). The form Ω from (2.1.3) is then a holomorphic form on C

n

with values in C〈〈Z1, . . . , Zn〉〉. In particular, we have the noncommutative
exponential function

Eγ(Z) ∈ Gn ⊂ C〈〈Z1, . . . , Zn〉〉
for any unparametrized path γ in C

n starting at 0. Because Ω is holomor-
phic, Eγ(Z) is, in addition to invariance under cancellations, also invariant
under deformations of subpaths of γ inside holomorphic curves. Let ΠC

n be
the quotient of Π2n, the group of paths in C

n = R
2n by the equivalence re-

lation generated by such deformations. Obviously, ΠC

n is a group, and the
correspondence γ �→ Eγ gives rise to a homomorphism

E : ΠC

n → Gn.(2.6.1)

In contrast to the real case, it seems to be unknown whether (2.6.1) is injective.
As before, we see that the composite homomorphism

εCn,d : ΠC

n → Gn,d(2.6.2)

is surjective.

(2.6.3) Example. Let C be a complex analytic curve, c0 ∈ C a point, and
φ : C → C

n a holomorphic map such that φ(c0) = 0. Denote by p : C̃ → C the
universal covering of C corresponding to the base point c0. In other words, C̃
is the space of pairs (c, γ), where c ∈ C and γ is a homotopy class of paths
joinig c0 and c. Then, by the above, φ induces a map φ̃ : C̃ → ΠC

n . The
composition

�d = εCn,d ◦ φ̃ : C̃ → Gn,d

can be called the period map of degree d. The restriction of �d to p−1(c0) =
π1(C, c0) is a homomorphism

md : π1(C, c0) → Gn,d,

called the monodromy homomorphism of degree d. We get then the “Albanese
map”
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αd : C → Gn,d/Im(md).

The particular case that C is the maximal abelian covering of a smooth pro-
jective curve of genus n, and φ is the Abel–Jacobi map, corresponds to the
setting of Parshin [Pa]. Iterated integrals of modular forms were studied by
Manin [Ma].

In the subsequent paper [K1] we will use complex noncommutative expo-
nentials to construct invariants of degenerations of families of curves in an
algebraic variety.

3 Generalities on the Noncommutative
Fourier Transform

(3.0) Formal Fourier Transform on nilpotent groups. Let us start with
the general situation of (2.5) with k = R. Thus g is a finite-dimensional
nilpotent real Lie algebra and G is the corresponding simply connected Lie
group. Then G is realized inside Û(g) as the set of grouplike elements. In
general, we can think of elements of Û(g) as some kind of formal series (infinite
formal linear combinations of elements of a Poincare–Birkhoff–Witt basis of
U(g)).

To keep the notation straight, we denote by Eg ∈ Û(g) the element corre-
sponding to g ∈ G.

(3.0.1) Example. Let G = R
n with coordinates y1, . . . , yn. Then Û(g) is the

ring C[[z1, . . . , zn]] of formal Taylor series. If g = (y1, . . . , yn) ∈ G, then Eg =
Eg(z) = exp (

∑
i yizi) is the exponential series with the vector of exponents

(y1, . . . , yn).

The above example motivates the following definition. Let μ be a measure
on G, or, more generally, a distribution (understood as a generalized measure,
i.e., as a functional on the space of C∞-functions). Its formal Fourier transform
is the element (formal series) given by

F̂(μ) =
∫
g∈G

Egdμ ∈ Û(g),(3.0.2)

whenever the integral is defined.
Recall that for two distributions μ, ν on a Lie group G their convolution

is defined by

μ ∗ ν = m∗(μ� ν),(3.0.3)

where m : G×G→ G is the multiplication and μ�ν is the Cartesian product
of μ and ν. Here we assume that the pushdown under m is defined. The
following is then straightforward.



Noncommutative Geometry and Path Integrals 65

(3.0.4) Proposition. For two (generalized) measures μ, ν on G we have

F̂(μ ∗ ν) = F̂(μ) · F̂(ν)

(product in Û(g)).

(3.1) Promeasures and formal NCFT. We now specialize the above to
the case G = Gn,d(R). In other words, we consider the projective system of
Lie groups

· · · → Gn,3(R) → Gn,2(R) → Gn,1(R) = R
n(3.1.1)

with projective limit Gn(R). For d ≥ d′ let

pdd′ : Gn,d(R) → Gn,d′(R)(3.1.2)

be the projection. By a promeasure on Gn(R) we will mean a compatible
system of measures on the Gn,d(R). In other words, a promeasure is a system
μ• = (μd) such that each μd is a measure on Gn,d(R) such that for any d ≥ d′

the pushdown (pdd′)∗(μd) is defined as a measure on Gn,d′(R) and is equal to
μd′ . Equivalently, this means that for any continuous function f on Gn,d′(R)
we have

∫
Gn,d′(R)

f · dμd′ =
∫
Gn,d(R)

(f ◦ pdd′) · dμd,(3.1.3)

whenever the left-hand side is defined.

More generally, by a prodistribution we mean a system of distributions
on the Gn,d(R) (understood as generalized measures, i.e., as functionals on
C∞-functions) compatible in a similar sense, i.e., satisfying (3.1.3) for C∞-
functions f .

For Φ = Φ(Z1, . . . , Zn) ∈ Gn we denote by Φi1,...,ip the coefficient of Φ at
Zi1 · · ·Zip . It is clear that Φi1,...,ip depends only on the image of Φ in Gn,p, so
it makes sense to speak about Ψi1,...,ip for Ψ ∈ Gn,d, d ≥ p.

Let μ• be a prodistribution on Gn(R). Its formal Fourier transform is the
formal series F̂(μ•) ∈ C〈〈Z1, . . . , Zn〉〉 defined as follows:

F̂(μ•) =
∞∑
p=0

∑
i1,...,ip

(∫
Ψ∈Gn,d(R)

Ψi1,...,ip · dμd
)
Zi1 · · ·Zip .(3.1.4)

Here for each p, the number d is any integer greater than or equal to p, and
we assume that all the integrals converge.

The convolution operation extends, in an obvious way, to prodistributions
on Gm(R):
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(3.1.6) Proposition 1. If μ•, ν• are two prodistributions, then

F̂(μ• ∗ ν•) = F̂(μ•) · F̂(ν•)

(product in C〈〈Z1, . . . , Zn〉〉).

(3.2) Delta functions. In classical analysis, the Fourier transform of δ(m),
the mth derivative of the delta function, is the monomial zm. We now give a
noncommutative analogue of this fact.

First of all, let δd be the delta function on Gn,d(R) supported at 1. Then
δ• = (δd) is a prodistribution, and

F̂(δ•) = 1 ∈ C〈〈Z1, . . . , Zn〉〉.(3.2.1)

Next, first derivatives of the delta function at a point on a C∞ manifold
correspond to elements of the complexified tangent space to the manifold at
this point. This, if ξ ∈ FL(Z1, . . . , Zn), and ξd is the image of ξ in gn,d =
T1Gn,d(R) ⊗ C, then we have the distribution ∂ξd

(δd) on Gn,d(R), and these
distributions form a prodistribution ∂ξ(δ•).

Further, for any Lie group G with Lie algebra g, the iterated derivatives
of the delta function at 1 correspond to elements of U(g ⊗ C), the universal
enveloping algebra. Thus for any ψ ∈ U(gn,d) we have a punctual distribution
Dψ(δd) on Gn,d(R).

Let now f ∈ C〈Z1, . . . , Zn〉 be a noncommutative polynomial. Recall that
C〈Z1, . . . , Zn〉 is the enveloping algebra of FL(Z1, . . . , Zd). Thus for any d
we have the image of f in U(gn,d), which we denote by fd. As before, the
distributions Dfd

(δd) form a prodistribution, which we denote by Df(δ•).

(3.2.2) Theorem. We have F̂(Df (δ•)) = f . In other words, F̂ takes iterated
derivatives of the delta function into (noncommutative) polynomials.

Let Lf,d be the left-invariant differential operator on Gn,d(R) correspond-
ing to fd ∈ U(gn,d)). Similarly, let Rf,d be the right-invariant differential
operator corresponding to fd. Recall that distributions (volume forms) form
a right module over the ring of differential operators. In other words, if P is a
differential operator acting on functions by φ �→ Pφ, then we write the action
of the adjoint operator on volume forms by ω �→ ωP . Thus, if μ• = (μd)
is a prodistribution, and f ∈ C〈Z1, . . . , Zn〉, then we have prodistributions
μ•Lf = (μdLf,d) and μ•Rf = (μdRf,d). Since applying Rf,d or Lf,d to a dis-
tribution is the same as the right or left convolution with Dfd

(δd), Proposition
3.1.6 implies the following.

(3.2.3) Proposition. If φ ∈ C〈〈Z1, . . . , Zn〉〉 is the Fourier transform of μ•,
then for any f ∈ C〈Z1, . . . , Zn〉 the product f · φ is the Fourier transform of
μ•Lf , and φ · f is the Fourier transform of μ•Rf .
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(3.3) Measures and convergent NCFT. Let pd : Gn(R) → Gn,d(R) be
the projection. By a cylindric open set in Gn(R) we mean a set of the form
p−1
d (U), where d ≥ 1 and U ⊂ Gn,d(R) is an open set. These sets thus form a

basis of the projective limit topology on Gn(R). We denote by S the σ-algebra
of sets in Gn(R) generated by cylindric open sets. Its elements will be simply
called Borel subsets in Gn(R).

(3.3.1) Example. Let

Gn(R)ent = Gn(R) ∩ C〈〈Z1, . . . , Zn〉〉ent

be the subgroup formed by entire series; see (1.2.2). Since for Φ ∈ Gn(R)
each given coefficient of f depends on the image of Φ in some Gn,d(R), the
condition (1.2.2) implies that Gn(R)ent is a Borel subset. Note further that
for Φ ∈ Gn(R)ent and any Hermitian matrices Z0

1 , . . . , Z
0
n (of any size N),

the matrix Φ
(
iZ0

1 , . . . , iZ
0
n

)
is unitary. This follows from the reality of the

coefficients in Φ and from Proposition 2.4.8(d).

By a measure on Gn(R) we mean a complex-valued, countably additive
measure on the σ-algebra S. If μ is such a measure, we define its Fourier
transform to be the function of indeterminate Hermitian N by N matrices
Z1, . . . , Zn (with indeterminate N) given by

F(μ)(Z1, . . . , Zn) =
∫
Φ∈Gn(R)ent

Φ(iZ1, . . . , iZn)dμ(Φ).(3.3.2)

As usual, by a probability measure on Gn(R) we mean a real, nonnegative-
valued measure on S of total volume 1.

Given a promeasure μ• = (μd) on Gn(R), the correspondence

p−1
d (U) �→ μd(U), U ∈ Gn,d(R),(3.3.3)

defines a finite-additive function on cylindric open sets in Gn(R). The
following fact is a version of the basic theorem of Kolmogorov ([SW],
Theorem 1.1.10) that a stochastic process is uniquely determined by its
finite-dimensional distributions.

(3.3.4) Theorem. If μ• is a probability promeasure (i.e., each μd is a proba-
bility measure), then the correspondence (3.3.3) extends to a unique probability
measure μ = lim←− μd on Gn(R), so that μd = pd∗(μ).

Thus, probability measures and probability promeasures are in bijection.

Proof: The original theorem of Kolmogorov is about probability measures
on an infinite product of measure spaces. Now, the projective limit Gn(R)
is a closed subset in the infinite product

∏
dGn,d(R). We can then apply

Kolmogorov’s theorem to this product and get a probability measure sup-
ported on this subset.
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4 Noncommutative Gaussian and the Wiener Measure

(4.1) Informal overview. By the noncommutative Gaussian we mean the
following noncommutative power series:

Ξ(Z) = exp

(
−1

2

n∑
i=1

Z2
i

)
∈ C〈〈Z1, . . . , Zn〉〉ent.(4.1.1)

Since the series is entire, we will denote by the same symbol Ξ(Z1, . . . , Zn)
its value on any given square matrices Z1, . . . , Zn. In classical (commutative)
analysis, the Fourier transform of a Gaussian is another Gaussian. In this
section we present a noncommutative extension of this fact. Informally, the
answer can be formulated as follows.

(4.1.2) Informal theorem. “The” measure on the space of paths whose
Fourier transform gives Ξ(Z) is the Wiener measure.

We write “the” in quotes because so far, there is no uniqueness result for
NCFT, so (4.1.2) can be read in one direction: that the NCFT of the Wiener
measure is Ξ(Z). Still, there are two more issues one has to address in order to
make (4.1.2) into a theorem. First, the Wiener measure (see below for a sum-
mary) is defined on the space of parametrized paths, while NCFT is defined
for measures on the space of unparametrized paths. This can be addressed
by considering the pushdown of the Wiener measure (i.e., by performing the
integration over the space of parametrized paths).

Second, and more importantly, the Wiener measure is defined on the space
of continuous paths, and piecewise smooth paths form a subset of measure 0.
On the other hand, the series Eγ(Z) is a solution of a differential equation
involving the time derivatives of γ and so is a priori not defined if γ is just a
continuous path. This difficulty is resolved by using the theory of stochastic
integrals and stochastic differential equations, which indeed provides a way of
associating Eγ(Z) to all continuous γ except those forming a set of Wiener
measure 0.

Once these two modifications are implemented, (4.1.2) becomes an in-
stance of the familiar principle in the theory of stochastic differential equa-
tions: that the direct image of the Wiener measure under the map given by
the solution of a stochastic differential equation is the heat measure for the
corresponding (hypo)elliptic operator; see [Bel], [Ok], [Bi1].

(4.2) The hypo-Laplacians and their heat kernels. Let Zi,d be the image
of Zi in gn,d, and Li,d the left-invariant vector field on Gn,d(R) corresponding
to Zi,d. We consider Li,d as a first-order differential operator on functions.
The dth hypo-Laplacian is the operator

Δd =
n∑
i=1

L2
i,d(4.2.1)
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in functions on Gn,d(R). For d ≥ d′ the operators Δd and Δd′ are compatible:

Δd (p∗dd′f) = p∗dd′(Δd′f), ∀f ∈ C2(Gd′(R)),(4.2.2)

where the projection pdd′ is as in (3.1.2). This follows because a similar com-
patibility holds for each Li,d and Li,d′ .

For d > 1 the number of summands in (4.2.1) is less than the dimension
of Gn,d(R), so Δd is not elliptic. However, Δd is hypoelliptic [Ho], i.e., every
distribution solution of Δdu = 0 is real analytic. This follows from Theorem
1.1 of Hörmander [Ho], since the Zi,d generate gn,d as a Lie algebra. Further,
it is obvious that Δd is positive:

(Δdu, u) ≥ 0, u ∈ C∞0 (Gn,d(R)).(4.2.3)

General properties of positive hypoelliptic operators [Ho] imply that the heat
operator exp(−tΔd), t > 0, is given by a positive C∞ kernel. Because this
operator is left-invariant, we get part (a) of the following theorem:

(4.2.4) Theorem. (a) The operator exp(Δd/2) is given by convolution with
a uniquely defined probability measure θd on Gn,d(R). This measure is in-
finitely differentiable with respect to the Haar measure.
(b) For d ≥ d′ the measures θd and θd′ are compatible: (pdd′)∗(θd) = θd′ .

Part (b) above follows from (4.2.2).

Thus we obtain a probability promeasure θ• = (θd) on Gn(R) and hence
a probability measure θ = lim←− θd.

(4.2.5) Examples. (a) the group Gn,1 is identified with the space R
n from

(2.1) with coordinates y1, . . . , yn, and Zi,1 = ∂/∂yi. Therefore Δ1 is the stan-
dard Laplacian on R

n, and

θ1 =
dy1 · · · dyn
(2π)n/2

exp
(
−1

2

n∑
i=1

y2
i

)

is the usual Gaussian measure on R
n. Each θd, d > 1, is thus a lift of this

measure to Gn,d.
(b) For d = 2 an explicit formula for θ2 was obtained by Gaveau in [G].

Here we consider the case n = 2, where the formula was also obtained by Hu-
lanicki [Hu]. In this case g2,2 is the Heisenberg Lie algebra with basis consisting
of Z1,2, Z2,2 and the central element h = [Z1,2, Z2,2]. Denoting by y1, y2, v the
corresponding exponential coordinates on G2,2, we have

θ2 =
dy1dy2dv

(2π)2

∫ ∞
τ=−∞

2τ
sinh(2τ)

· exp
(
iτv − (y2

1 + y2
2

) 2τ
tanh(2τ)

)
dτ.

In fact, all known formulas in the literature (see [BGG] for a survey) involve
integration over auxuliary parameters.
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(4.2.6) Theorem. The formal Fourier transform of the promeasure θ• is
equal to the noncommutative Gaussian Ξ(Z).

Proof: This follows from the fact that the delta-prodistribution DZi(δ•) cor-
responding to the generator Zi ∈ gn is taken by F into the monomial Zi.
For each d the corresponding distribution takes a function f on Gn,d(R) into
the value of Li(f) at the unit element of Gn,d(R). Further, convolution of
such prodistributions corresponds to composition of left-invariant differential
operators in the spaces of functions of the Gn,d(R). So the system of the heat
kernel operators on the Gn,d(R), d ≥ 1, given by exp

(− 1
2

∑
L2
i

)
has, as a

prodistribution, the Fourier transform equal to exp
(− 1

2

∑
Z2
i

)
. ��

(4.3) The Wiener measure. Let Pn be the space of continuous
parametrized paths γ : [0, 1] → R

n such that γ(0) = 0. The Wiener measure
w on Pn is first defined on cylindrical open sets C(t1, . . . , tm, U1, . . . , Um),
where 0 < t1 < · · · < tm < 1 and Ui ⊂ R

n is open. By definition,

C(t1, . . . , tm, U1, . . . , Um) =
{
γ : γ(ti) ∈ Ui, i = 1, . . . ,m

}
,

and

w
(
C(t1, . . . , tm, U1, . . . , Um)

)
(4.3.1)

=
∫
(y(1),...,y(m))∈U1×···×Um

m∏
i=0

exp
(−‖y(i+1) − y(i)‖2/2(ti+1 − ti)

)
(
2π(ti+1 − ti)

)1/2 dy(1)· · ·dy(m).

Here we put t0 = 0, tm+1 = 1 and y(0) = 0. Further, it is proved that w
extends to a probability measure on the σ-algebra generated by the above
subsets.

The Brownian motion is the family of R
n-valued functions (random vari-

ables) on Pn parametrized by t ∈ [0, 1]:

b(t) = (b1(t), . . . , bn(t)), b(t) : Pn → R
n, b(t)(γ) = γ(t).(4.3.2)

let P sm
n ⊂ Pn be the subset of piecewuse smooth paths. Then it is well known

that w (P sm
n ) = 0.

As is also well known, the Wiener measure has the following intuitive
interpretation:

dw(γ) = exp
(
−
∫ 1

0

‖γ′(t)‖2dt

)
Dγ, Dγ =

1∏
t=0

dγ(t).(4.3.3)

In other words, Dγ is the (nonexistent) Lebesgue measure on the infinite-
dimensional vector space of all paths, while the integral in the exponential is
the action of a free particle.
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(4.5) Reminder on stochastic integrals. Let ω =
∑n

i=1 φi(y)dyi be a
1-form on R

n with (complex-valued) C∞ coefficients. If γ : [0, 1] → R
n is a

piecewise smooth path, then we can integrate ω along γ, getting a number
∫
γ

ω =
∫ 1

0

γ∗(ω) =
∫ 1

0

∑
i

φi(γ(t))γ′i(t)dt.(4.5.1)

This gives a map (function)
∫

(ω) : P sm
n −→ C.(4.5.2)

If γ(t) is just a continuous path without any differentiability assumptions,
then (4.5.1) is not defined, so there is no immediate extension of the map
(4.5.2) to the space Pn. The theory of stochastic integrals provides several
(a priori different) ways to construct such an extension. The two best-known
approaches are the Ito and Stratonovich integrals over the Brownian motion;
see [SW] [KW]. They are the functions

∫ Ito

(ω),
∫ Str

(ω) : Pn → C,(4.5.3)

defined everywhere outside some subset of Wiener measure 0, and measurable
with respect to this measure.

To construct them, see [Ok], pp. 14–16, one has to consider Riemann
sum approximations to the integral but restrict to Riemann sums of some
particular type. For a piecewise smooth path γ, the integral is the limit of
sums

n∑
i=1

m∑
ν=1

φi(γ(ξν))
(
(γi(tν) − γi(tν−1)

)
,(4.5.4)

where 0 = t0 < t1 < · · · < tm = 1 is a decomposition of [0, 1] into intervals,
and ξν ∈ [tν−1, tν ] are some chosen points. In the smooth case the limit exists,
provided max(tν−tν−1) goes to 0 (in particular, the choice of ξν is inessential).

Now, to obtain
∫ Ito(ω), one chooses the class of Riemann sums with

tν = ν/m, ξν = tν−1, m = 2q, q → ∞.(4.5.5)

In other words, for each q the above sum defines a function SIto
q (ω) : Pn → C,

and

∫ Ito

(ω) = lim
q→∞SIto

q (ω).(4.5.6)

To obtain
∫ Str(ω), one chooses the class of Riemann sums with

tν = ν/m, ξν = (tν−1 + tν)/2, m = 2q, q → ∞.(4.5.7)
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Each such sum gives a function SStr
q (ω) : Pn → C, and

∫ Str

(ω) = lim
q→∞SStr

q (ω).(4.5.8)

It is known that
∫ Str(ω) is invariant under smooth reparametrizations

of the path considered as transformations acting on Pn and also satisfies a
transparent change of variables formula.

The more common notation for the stochastic integrals (considered as
random variables on Pn) is∫ Ito

(ω) =
∫ 1

0

ω(b(t))db(t)),
∫ Str

(ω) =
∫ 1

0

ω(b(t)) ◦ db(t)),(4.5.9)

where b(t) is the Brownian motion (4.3.2). Thus db(t) and ◦db(t) stand for the
two ways (due to Ito and Stratonovich) of regularizing the (a priori divergent)
differential of the Brownian path b(t). See [Ok] for the relation between the
two regularization schemes. By restricting to the truncated path [0, s], s ≤ 1,
one defines the stochastic integrals

∫ s
0 in each of the above settings.

(4.6) Stochastic holonomy. Let G be a Lie group, which we suppose to be
embedded as a closed subgroup of GLN (C) for some N , and let g ⊂ MatN (C)
be the Lie algebra of G. Let A =

∑
Ai(y)dyi be a smooth g-valued 1-form

on R
n, which we consider as a connection in the trivial G-bundle over R

n. If
γ : [0, 1] → R

n is a piecewise smooth path, then we have the holonomy of A
along γ:

Holγ(A) = P exp
∫
γ

A ∈ G.(4.6.1)

It is the value at t = 1 of the solution U(t) ∈ GLN (C) of the differential
equation

dU

dt
= U(t)

(∑
i

Ai(γ(t)) · γ′i(t)
)
, U(0) = 1.(4.6.2)

The holonomy defines thus a map

Hol(A) : P smn → G.(4.6.3)

As before, (4.6.2) and thus Holγ(A) have no immediate sense without some
differentiability assumptions on A.

The theory of stochastic differential equations [Ok], [KW] resolves this
difficulty by replacing the above differential equation by an integral equation
and understanding the integral in a regularized sense as in (4.5). Thus, one
defines the Ito and Stratonovich stochastic holonomies, which are measurable
maps
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HolIto(A), HolStr(A) : Pn → G,(4.6.4)

defined outside a subset of Wiener measure 0. For example, HolStr(A) is de-
fined as the value at t = 1 of the G-valued stochastic process U(t) satisfying
the Stratonovich integral equation

U(t) = 1 +
∫ t

0

U(s)
(∑

i

Ai(b(s)) ◦ dbi(s)
)
.(4.6.5)

We will be particularly interested in the case in which the Ai are constant,
i.e., our connection is translation-invariant. In this case, B(t) =

∑
Aibi(t) is

a (possibly degenerate) Brownian motion on g and U(t) is the correspond-
ing left-invariant Brownian motion on G as studied by McKean, see [McK,
Section 4.7], and also [HL]. In particular, the Stratonovich holonomy can be
represented as a “product integral” in the sense of McKean:

(4.6.6)

HolStr(A) =
∏
t∈[0,1]

exp(dB(t)) := lim
q→∞

2q∏
ν=1

exp
(
B
( ν

2q
)
−B

(
ν − 1

2q

))
;

see [HL], Thm. 2. Here the product is taken in the order of increasing ν. In
the sequel we will work with HolStr(A).

(4.7) The Malliavin calculus and the Feynman–Kac–Bismut for-
mula. We now specialize (4.6) to the case in which G = Gn,d(R), g = gn,d(R),
and A = Ω(d) is the constant 1-form Ω(d) =

∑n
i=1 Zi,ddyi. We get the stochas-

tic holonomy map
HolStr(Ω(d)) : Pn → Gn,d(R).(4.7.1)

(4.7.2) Theorem. The probability measure θd on Gn,d(R) is equal to

HolStr(Ω(d))∗(w),

the pushdown of the Wiener measure under the holonomy map.

Proof: This is a fundamental property of (hypo)elliptic diffusions holding for
any vector fields ξ1, . . . , ξn on a manifold M such that iterated commutators
of the ξi span the tangent space at every point. In this case the operator
Δ =

∑
Lie2

ξi
is hypoelliptic and has a uniquely defined, smooth heat kernel

Θ(x, y), x, y ∈ M , which is a function in x and a volume form in y and
represents the operator exp(−Δ/2). Further, the heat equation

∂u/∂t = −Δ(u)/2(4.7.3)
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is the “Kolmogorov backward equation” for the M -valued stochastic process
U(t) satisfying the Stratonovich differential equation

dU =
∑

Lξi(U) ◦ dbi(4.7.4)

with the bi(t) being as before. This means that the fundamental solution of
(4.7.3) is the pushforward of the Wiener measure under the process U(t). See
[Ok], Th. 8.1. Our case is obtained by specializing to M = Gn,d(R), ξi = Zi,d.

��
Further, let θ be the probability measure on Gn(R) = lim←− dGn,d(R) cor-

responding to the promeasure (θd) by Theorem 3.3.5. Note that the maps
HolStr(Ω(d)) for various d unite into a map

HolStr(Ω) : Pn → Gn(R), Ω =
∑

Zidyi.(4.7.4)

We get the following corollary.

(4.7.5) Corollary. The measure θ is the pushdown of the Wiener measure
under HolStr(Ω).

(4.7.6) Theorem. (a) The support of the measure θ is contained in
Gn(R)ent, the set of entire grouplike power series.
(b) The convergent Fourier transform of θ is equal to Ξ(Z). In other words
(taking into account part (a) and (4.7.5)), for any given Hermitian matrices
Z0

1 , . . . , Z
0
n of any given size N , we have

exp
(
−1

2

n∑
j=1

(
Z0
j

)2)
=
∫
γ∈Pn

HolStr
γ (A)

(
iZ0

1 , . . . , iZ
0
n

)
dw(γ).

(4.8) Stochastic iterated integrals and the proof of Theorem 4.7.6.
In the situation of (4.5), assume that we are given d smooth 1-forms ω1, . . . , ωd
on R

n. We then define, following Fliess and Normand-Cyrot [FN], the iterated
Stratonovich integral

∫ →Str

(ω1 · · ·ωd) : Pn → C(4.8.1)

by the same iterative procedure as in (2.3). Like the ordinary Stratonovich
integral, it is reparametrization-invariant. This definition extends to the case
that each ωi takes values in a (pro)finite-dimensional associative C-algebra R
(with unity). As before, we define the empty iterated integral (corresponding
to d = 0) to be equal to 1. We will need some extensions of Proposition 2.3.1
to the stochastic case. The first statement deals with the nilpotent case.
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(4.8.2) Proposition. Let I ⊂ R be a nilpotent ideal, i.e., Im = 0 for some
m. Let A be a smooth 1-form on R

n with values in I. Consider A as a con-
nection form with coefficients in R. Then

HolStr(A) =
∞∑
d=0

∫ →Str

(A · · ·A),

the series on the right being terminating.

Proof: This is a consequence of Theorem 2 of [FN].

(4.8.3) Corollary. The random variable HolStr(Ω) from (4.7.4), considered
as an R〈〈Z1, . . . , Zn〉〉-valued random variable on Pn, has the form

HolStr(Ω) =
∞∑
m=0

∑
J=(j1,...,jm)

Zj1 · · ·Zjm
∫ →Str

(dyj1 · · ·dyjm).

Next, we look at convergence of the series in (4.8.3). Questions of this
nature (“convergence of stochastic Taylor series”) were studied by Ben Arous
[Be], and we recall some of his results. Denote by

BJ =
∫ →Str

(dyj1 · · · dyjm) =
∫
dbj1 ◦ · · · ◦ dbjm(4.8.4)

the coefficient in the series (4.8.3) corresponding to the multi-index J . Here
the right-hand side is the notation of [Be]. Let |J | =

∑
jν be the degree of

the monomial corresponding to J .

(4.8.5) Theorem. Let (xJ ) be a collection of real numbers given for each
J = (j1, . . . , jm), m ≥ 0, and satisfying the condition

|xJ | ≤ KJ , for some K > 0.

Then the series ∑
m

∑
|J|=m

|xJBJ |

of random variables on Pn converges almost surely.

This is Corollary 1 of [Be] (with the parameter α from loc. cit. taken to
be 0).

We now deduce Theorem 4.7.6 from the above results. Let Z0
1 , . . . , Z

0
n be

fixed matrices of any given size N . For a matrix B denote by

‖B‖ = max
v �=0

‖B(v)‖
‖v‖
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the matrix norm of B. Let us apply Theorem 4.8.5 to

xJ = ‖(Z0)J‖ = ‖Z0
j1 · · ·Z0

jm‖.

Take K = max
(‖Z0

i ‖
)
. Then |xJ | ≤ KJ , so (4.8.5) gives that the series∑

J BJ(Z0)J converges absolutely almost surely. This establishes part (a) of
Theorem 4.7.6. Part (b) follows from (a) and from Theorem 4.2.6 about the
formal Fourier transform.

5 Futher Examples of NCFT

(5.1) Near-Gaussians. In classical analysis, a near-Gaussian is a function of
the form f(z) · e−‖z‖2/2, where f(z), z = (z1, . . . , zn), is a polynomial. In that
setting, the Fourier transform of a near-Gaussian is another near-Gaussian.

A natural noncommutative analogue of a near-Gaussian is a function of
the form

F (Z) · Ξ(Z) ·G(Z), F,G ∈ C〈Z1, . . . , Zn〉.(5.1.1)

It can be represented as a (formal) Fourier transform using Proposition 3.2.3:

F (Z) ·Ξ(Z) ·G(Z) = F̂(θ•LFRG),(5.1.2)

where LF is the system of left-invariant differential operators on the Gn,d(R),
d ≥ 1, corresponding to F , while RG is the system of right-invariant differen-
tial operators corresponding to G.

It seems difficult to realize the measures θdLFRG, d ≥ 1, in terms of
some transparent measures on the space Pn, since it requires using group
translations on Πcont

n , the group of continuous paths obtained by quotienting
Pn by reparametrizations and cancellations.

(5.2) The Green promeasure. Let gd be the fundamental solution of the
dth hypo-Laplacian on Gn,d(R) centered at 1, the unit element, i.e.,

Δd(gd) = δ1.(5.2.1)

By the general properties of hypoelliptic operators, gd is a measure (volume
form) on Gn,d(R) smooth away from 1. In fact, if we denote by θd,t the kernel
of exp(−tΔd/2), t > 0, i.e., the heat kernel measure at time t, then

gd =
∫ ∞
t=0

θd,tdt.(5.2.2)

This expresses the fact that the Green measure of a domain is equal to the
amount of time a diffusion path spends in the domain. It is clear therefore
that g• = (gd) is a promeasure on Gn(R).
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(5.2.3) Examples. (a) For d = 1 we have the Green function of the usual
Euclidean Laplacian in R

n, which has the form

g1(y) =
1
4π

ln
(
y2
1 + y2

2

)
dy1dy2, n = 2,

g1(y) = − ((n/2) − 2)!
4πn/2

(∑
y2
i

)1−n/2
dy1 · · · dyn, n ≥ 3.

(b) Consider the case n = 2, d = 2 corresponding to the Heisenberg group,
and let us use the exponential coordinates y1, y2, v as in Example 4.2.5(b).
Then

g2(y1, y2, v) =
1
π

1√
(y2

1 + y2
2) + v2

dy1dy2dv,

as was found by Folland [Fo], see also [G], p. 101.

(5.3) The method of kernels. More generally, if F (Z1, . . . , Zn) is a “non-
commutative function” such that the operator F (L1,d, . . . , Ln,d) in functions
on Gn,d(R) makes sense and possesses a distribution kernel Kd(x, y)dy, then
the distribution μd = Kd(1, y)dy is precisely the dth component of the prodis-
tribution whose Fourier transform is F .

Forexample,hypoellipticcalculusallowsustoconsiderF (Z) = φ
(∑n

i=1 Z
2
i

)
,

where φ : R → R is anyC∞ function decaying at infinity such as φ(u) = e−u
2/2,

φ(u) = 1/u, or 1/(u2+1).This leads toaconsiderable supplyofprodistributions.

(5.4) Probabilistic meaning. An idea in probability theory very similar
to our NCFT, namely the idea of associating a noncommutative power series
to a stochastic process, was proposed by Baudoin [Ba], who called this series
“expectation of the signature” and emphasized its importance. From the gen-
eral viewpoint of probability theory one can look at this series (the Fourier
transform of a probability measure on the space of paths) as being rather
an analogue of the characteristic function of n random variables. Indeed, if
x1, . . . , xn are random variables, then their joint distribution is a probability
measure on R

n, and the characteristic function is the (usual) Fourier trans-
form of this measure:

f(z1, . . . , zn) = E
[
ei(z,x)

]
,(5.4.1)

which is an entire function of n variables. Each time we have a natural lifting
of the characteristic function to the noncommutative domain, we can therefore
expect some n-dimensional stochastic process lurking in the background.

6 Fourier Transform of Noncommutative Measures

(6.1) Nomcommutative measures. Following the general approach of
noncommutative geometry [Con], we consider a possibly noncommutative C-
algebra R (with unit) as a replacement of a “space” (Spec(A)). A measure on
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R is then simply a linear functional (“integration map”) τ : I → C defined
on an appropriate subspace I ⊂ R whose elements have the meaning of in-
tegrable functions. We will call a measure τ finite if I = R, and normalized
if it is finite and τ(1) = 1. If R has a structure of a ∗-algebra, then a finite
measure τ is called positive if τ(aa∗) ≥ 0 for any a ∈ R. A (noncommutative)
probability measure on a ∗-algebra A is a normalized positive measure.

(6.1.1) Examples. (a) Let R = MatN(C) with the ∗-algebra structure given
by Hermitian conjugation. Then τ(a) = 1

N
Tr(a) is a probability measure.

(b) Let R = C〈Z1, . . . , Zn〉 with the ∗-algebra structure given by Z∗i =
Zi. Let HermN be the space of Hermitian N by N matrices. We denote by
dZ =

∏N
i,j=1 dZij the standard volume form on HermN . Let μ = μN be a

volume form on (HermN )n of exponential decay at infinity. Then we have a
finite measure on R given by

τ(f) =
1
N

Tr
∫
Z1,...,Zn∈HermN

f(Z1, . . . , Zn)dμ(Z1, . . . , Zn).

If μN is a normalized (resp. probability) measure in the usual sense, then τ
is a normalized (resp. probability) measure in the noncommutative sense. An
important example is

μN = exp (−S(Z1, . . . , Zn)) dZ1 · · · dZn,
where the “action” S(Z1, . . . , Zn) ∈ C〈Z1, . . . , Zn〉 is a noncommutative poly-
nomial with appropriate growth conditions at the infinity of Hermn

N .
(c) Let R = C

〈
X±1

1 , . . . , X±1
n

〉
with the ∗-algebra structure given byX∗i =

X−1
i . If μ = μN is a finite measure on U(N)n, then we have a finite measure

τ on R given by

τ(f) =
1
N

Tr
∫
X1,...,Xn∈U(N)

f(X1, . . . , Xn)dμ(X1, . . . , Xn),

which is normalized (resp. probability) if μN is so in the usual sense.

(6.2) Free products. Let R1, . . . , Rn be algebras with unit. Then we have
their free product R1 � · · · � Rn. This is an algebra containing all the Ri and
characterized by the following universal property: for any algebra B and any
homomorphisms fi : Ri → B there is a unique homomorphism f : R1 � · · · �
Rn → B restricting to fi on Ri for each i. Explicitly, R1 � · · · �Rn is obtained
as the quotient of the free (tensor) algebra generated by the vector space
R1 ⊕ · · ·⊕Rn by the relations saying that the products of elements from each
Ri are given by the existing multiplication in Ri. We will also use the notation
�n
i=1Ri.

(6.2.1) Example. If each Ri = C[Zi] is the polynomial algebra in one vari-
able, then R1 � · · · � Rn = C 〈Z1, . . . , Zn〉 is the algebra of noncommutative
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polynomials. If each Ri = C
[
Xi, X

−1
i

]
is the algebra of Laurent polynomials,

then R1 � · · · � Rn = C
〈
X±1

1 , . . . , X±1
n

〉
is the algebra of noncommutative

Laurent polynomials.
The following description of the free product follows easily from the defi-

nition (see [VDN]).

(6.2.2) Proposition. Suppose that for each i we choose a subspace R◦i ⊂ Ri
that is a complement to C · 1. Then as a vector space,

R1 � · · · � Rn = C · 1 ⊕
⊕
k>0

⊕
i1 �=i2 �=···�=ik

R◦i1 ⊗ · · · ⊗R◦ik .

The following definition of the free product of (noncommutative) measures
is due to Voiculescu; see [VDN].

(6.2.3) Proposition–Definition 1. Let Ri, i = 1, . . . , n, be associative al-
gebras with 1, and τi : Ri → C finite normalized measures. Then there exists
a unique finite normalized measure τ = �τi on �n

i=1Ri with the following
properties:
(1) τ |Ri = τi.
(2) If i1 = · · · = ik and aν ∈ Rν are such that τiν (aν) = 0, then

τ(ai1 · · ·aik) = 0.
If the Ri are ∗-algebras and each τi is a probability measure, then so is τ .

Both the existence and the uniqueness of τ follow at once from (6.2.2) if we
take R◦i = Ker(τi). The problem of finding τ(a1 · · · ak) for arbitrary elements
aν ∈ Riν is clearly equivalent to that of writing a1 · · · ak in the normal form
(6.2.2). To do this, one writes

aν = τiν (aν) · 1 + a◦ν ,(6.2.4)

with a◦ν defined so as to satisfy (6.2.4), and we have φiν (a◦ν) = 0. Then one
uses the conditions (1) and (2) to distribute.

(6.2.5) Examples. Suppose we have two algebras A and B and normalized
measures φ : A → C and ψ : B → C. Let χ : A � B → C be the free product
of φ and ψ. Then for a, a′ ∈ A and b, b′ ∈ B we have, after some calculations,

χ(ab) = φ(a)ψ(b), χ(aba′) = φ(aa′)ψ(b),
χ(aba′b′) = φ(aa′)ψ(b)ψ(b′) + φ(a)φ(a′)ψ(bb′) − φ(a)φ(a′)ψ(b)ψ(b′).

See [NS], Thm. 14.4, for a general formula for χ(a1b1 · · · ambm), ai ∈ A, bi ∈ B.

(6.2.6) Examples. (a) Let Ri = C[x±1], i = 1, . . . , n, and let τi be given
by the integration over the normalized Haar measure d∗x on the unit circle.
Thus

τi

(
f(x) =

∑
m

amx
m

)
=
∫
|x|=1

f(x)d∗x = a0.
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The free product of these measures is the functional on C〈X±1
1 , . . . , X±1

n 〉
given by

τ

⎛
⎝f(X) =

∑
γ∈Fn

aγX
γ

⎞
⎠ = a0,

the constant term of a noncommutative Laurent polynomial. The asymptotic
freedom theorem for unitary matrices (1.4.7) says that this functional is the
limit, as N → ∞, of the functionals from Example 6.1.1(c) with μN , for each
N , being the normalized Haar measure on U(N)n.

(b) Let Ri = C[z], i = 1, . . . , n, and let τi = δ(z − ai) be the Dirac delta
function situated at a point ai ∈ C, i.e., τi(f) = f(ai). Then the free product
τ = τ1 � · · · � τn is given by

τ(f(Z1, . . . , Zn)) = f(a1 · 1, . . . , an · 1);

in other words, it depends only on the image of f in the ring of commutative
polynomials C[z1, . . . , zn]. This can be seen from the procedure (6.2.4) using
the fact that each τi : C[z] → C is a ring homomorphism.

(c) Let Ri = C[z], i = 1, . . . , n, and let τi be integration over the standard
Gaussian probability measure

τi(f) =
1√
2π

∫ ∞
−∞

f(z)e−z
2/2dz.

Their free product is a probability measure on C〈Z1, . . . , Zn〉 denoted by ξn
and called the free Gaussian measure. The asymptotic freedom for Hermitian
Gaussian ensembles [V] can be formulated as follows.

(6.2.7) Theorem. The measure ξn is the limit, as N → ∞, of the mea-
sures from Example 6.1.1(b), where for each N , we take for μN the Gaussian
probability measure on the vector space (HermN )n corresponding to the scalar
product

∑
Tr(AiBi) on this vector space:

μ = μN =
1

(2π)nN2/2
exp

(
−1

2

n∑
i=1

Z2
i

)
dZ1 · · ·dZn.

(6.3) The Fourier transform of noncommutative measures. In classical
analysis, the Fourier transform is defined for measures on R

n, not on an arbi-
trary curved manifold. We will call a measure on R

n
NC (“noncommutative R

n”)
a datum consisting of a ∗-algebra R, a ∗-homomorphism C〈Z1, . . . , Zn〉 → R
(i.e., a choice of self-adjoint elements in R, which we will still denote by Zi),
and a measure τ on R. Elements of R for which τ is defined will be thought of
as functions integrable with respect to the measure. This concept is thus very
similar to that of n noncommutative random variables in noncommutative
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probability theory, except that we do not require any positivity or normaliza-
tion.

Let τ be a measure on R
n
NC. Its Fourier transform is the complex-valued

function F(τ) on the group Πn of piecewise smooth paths in R
n defined as

follows:

F(τ)(γ) = τ(Eγ(iZ1, . . . , iZn)), γ ∈ Πn.(6.3.1)
Here we assume that the “entire function” Eγ(iZ1, . . . , iZn) lies in the do-
main of definition of τ . In physical terminology, F(τ)(γ) is the “Wilson loop
functional” (defined here for nonclosed paths as well).

(6.3.2) Example: delta functions. (a) For every J = (j1, . . . , jm) we have
the measure δ(J) on C〈〈Z1, . . . , Zn〉〉 given by

δ(J)

⎛
⎝∑

m

∑
I=(i1,...,im)

aIZi1 · · ·Zim

⎞
⎠ = aJ .

The Fourier transform of δ(J) is the function WJ : Πn → C that associates to
a path γ the iterated integral along γ labeled by J :

WJ (γ) =
∫ →
γ

dyj1 · · · dyjm .

We will call these functions monomial functions on Πn.

(b) If we take for τ the free product of (underived) delta functions δa1 �
· · · � δan , as in Example 6.2.6(b), then

F(τ)(γ) = exp
(
i(e(γ), a)

)
,

where e(γ) ∈ R
n is the endpoint of γ. This follows from the fact that τ

is supported on the commutative locus, i.e., τ(Eγ(iZ)) depends only on the
image of Eγ(iZ) in the commutative power series ring, which is exp

(
ie(γ), z

)
).

(6.4) Convolution and product. Let τ, σ be two measures on R
n
NC, so we

have homomorphisms

α : C〈Z1, . . . , Zn〉 → R, β : C〈Z1, . . . , Zn〉 → S,

and τ is a linear functional on R, while σ is a linear functional on S. Their
(tensor) convolution is the measure τ ∗σ, which corresponds to the homomor-
phism

C〈Z1, . . . , Zn〉 → R ⊗ S, Zi �→ α(Zi) ⊗ 1 + 1 ⊗ β(Zi),(6.4.1)
and the linear functional

τ ∗ σ : R⊗ S → C, r ⊗ s �→ τ(r) ⊗ σ(s).

For commutative algebras this corresponds to the usual convolution of mea-
sures with respect to the group structure on R

n.
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(6.4.2) Proposition. The Fourier transform of the convolution of measures
is the product of their Fourier transforms:

F(τ ∗ σ) = F(τ) · F(σ).

Proof: This is a consequence of the fact that the elements Eγ(iZ1, . . . , iZn) of
C〈〈Z1, . . . , Zn〉〉 are grouplike; see the exponential property (2.4.7). ��
(6.5) Formal Fourier transform of noncommutative measures. The
product of two monomial functions onΠn is a linear combination of monomial
functions. This expresses Chen’s shuffle relations among iterated integrals:

Wj1,...,jmWjm+1,...,jm+p =
∑
s

Wjs(1),...,js(m+p) ,(6.5.1)

the sum being over the set of (m, p)-shuffles. An identical formula holds for the
convolution of the measures δ(j1,...,jm) and δ(jm+1,...,jm+p), since both formulas
describe the Hopf algebra structure on C〈〈Z1, . . . , Zn〉〉.

The C-algebra with basis WJ = Wj1,...,jm and multiplication law (6.5.1) is
nothing but the algebra

C[Gn] = lim−→ C[Gn,d](6.5.2)

of regular functions on the group scheme Gn = lim←− Gn,d. The multiplication
in Gn corresponds to the Hopf algebra structure given by

Δ(Wj1,...,jm) =
m+1∑
ν=0

Wj1,··· ,jν ⊗Wjν+1,...,jm .(6.5.3)

Elements of C[Gn] can be called polynomial functions on Πn.
Note that formal infinite linear combinations (series)

∑
J cJWJ still form

a well-defined algebra via (6.5.1), which we denote by C[[Gn]]. This is the
algebra of functions on the formal completion of Gn at 1. The rule (6.5.3)
makes C[[Gn]] into a topological Hopf algebra.

Let τ be a measure on R
n
NC. We will call the series

F̂(τ) =
∑

J=(j1,...,jm)

τ(Zi1 · · ·Zjm) ·WJ ∈ C[[Gn]](6.5.4)

the formal Fourier transform of τ . As before, we see that convolution of mea-
sures is taken into the product in C[[Gn]].

7 Toward the Inverse Noncommutative
Fourier Transform

(7.0) In this section we sketch a possible approach to the problem of finding
the inverse to the NCFT F from (2.2) In other words, given a “noncommu-
tative function” f = f(Z1, . . . , Zn), how do we find a measure μ on (possibly
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some completion of) Πn such that F(μ) = f? Note that in contrast to clas-
sical analysis, the dual Fourier transform F (from noncommutative measures
to functions on Πn) does not provide even a conjectural answer, since there
is no natural identification of functions and measures.

So we take as our starting point the case of discrete NCFT (1.4.5), where
Theorem 1.4.6 provides a neat inversion formula.

(7.1) Fourier series and Fourier integrals. We recall the classical proce-
dure expressing Fourier integrals as scaling limits of Fourier series; see [W],
§5. Let f(x) be a piecewise continuous C-valued function on R of sufficiently
rapid decay. We can restrict f to the interval [−π, π], which is a fundamental
domain for the exponential map z �→ exp(iz),R → S1, and then represent f
on this interval as a Fourier series in einz , n ∈ Z.

Next, let us scale the interval to [−A,A] instead. Then the orthonormal
basis of functions is formed by

1√
2A

exp
(
nπiz

A

)
, n ∈ Z,(7.1.1)

so on the new interval we have

f(z) =
1

2A

∑
n∈Z

exp
(
nπiz

A

)∫ A

−A
f(w) exp

(−nπiw
A

)
dw.(7.1.2)

If we associate the Fourier coefficients to the scaled lattice points, putting

g
(nπ
A

)
=

1√
2π

∫ A

−A
f(z) exp

(−nπiz
A

)
dz,(7.1.3)

then

f(z) =
1√
2π

∑
n∈Z

g
(nπ
A

)
exp

(
nπiz

A

)
Δ
(nπ
A

)
, z ∈ [−A,A],(7.1.4)

where Δ
(
nπ
A

)
= π

A is the step of the dual lattice. So when A → ∞, the
formulas (7.1.3) and (7.1.4) “tend to” the formulas for two mutually inverse
Fourier transforms for functions on R. In other words, the measures on R (with
coordinate y) given by infinite combinations of shifted Dirac delta functions,

1√
2π

π

A

∑
n∈Z

g
(nπ
A

)
δ
(
y − nπ

A

)
,(7.1.5)

converge, as A→ ∞, to a measure whose Fourier transform is f .

(7.2) Matrix fundamental domains. We now consider the analogue of the
above formalism for Hermitian matrices instead of elements of R, and unitary
matrices instead of those of S1. Let Herm≤AN be the set of Hermitian N by N
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matrices whose eigenvalues all lie in [−A,A]. Then Herm≤πN is a fundamental
domain for the exponential map

Z �→ X = exp(iZ), HermN → U(N).(7.2.1)

Note that the Jacobian of the map (7.2.1) is given by
(7.2.2)

J(Z) = detN2×N2
ead(Z) − 1

Z
=
∏
j,k

ei(λj−λk) − 1
λj − λk

=
∏
j<k

2
1 − cos(λj − λk)

(λk − λk)2
.

Here λ1, . . . , λN are the eigenvalues of Z; see [Hel], p. 255. Using the formula
for the volume of U(N), see, e.g., [Mac], we can write the normalized Haar
measure on U(N) transferred into Herm≤πN as

d∗X =
J(Z)dZ
VN

, VN =
N−1∏
m=0

2πm+1

m!
.(7.2.3)

Let f(Z1, . . . , Zn) be a “good” noncommutative function (for example an
entire function or a rational function defined for all Hermitian Z1, . . . , Zn and
having good decay at infinity). Then we can restrict f to (Herm≤πN )n and
transfer it, via the map (7.2.1), to a matrix function on U(N)n. This matrix
function is clearly nothing but

f(−i log(X1), . . . ,−i log(Xn)),(7.2.4)

where −i log : U(N) → Herm≤πN is the branch of the logarithm defined using
our choice of the fundamental domain. Although (7.2.4) is far from being a
noncommutative Laurent polynomial (indeed, it is typically discontinuous),
one can hope to use the procedure of Theorem 1.4.6 to expand it into a
noncommutative Fourier series. In other words, assuming that for each γ ∈ Fn
the limit

(7.2.5)

aγ= lim
N→∞

1

N
Tr

∫
X1,...,Xn∈U(N)

f(−i log(X1), . . . ,−i log(Xn))X−γ
n∏

j=1

d∗Xj

= lim
N→∞

1

N
Tr

∫
Z1,...,Zn∈Herm

≤π
N

f(Z1, . . . , Zn)Eγ−1(iZ1, . . . , iZn))

n∏
j=1

J(Zj)dZj

VN

exists, we can form the series
∑
γ

aγX
γ =

∑
γ

aγ Eγ(iZ1, . . . , iZn), Zj ∈ Herm≤πN .(7.2.6)

By analogy with the classical case one can expect that this series converges
to f |

(Herm
≤π
N )n away from the boundary.
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(7.3) Scaling the period. In the situation of (7.2) let us choose A > 0
and restrict f to (Herm≤AN )n. The same procedure would then expand the
restriction into a series in

X
π/A
j = exp

(
i
π

A
Zj

)
, j = 1, . . . , n.(7.3.1)

Let Fπ/An ⊂ Gn(R) be the group generated by the Xπ/A
j . We can think of

elements of Fπ/An as rectangular paths in R
n with increments being integer

multiples of π/A. The coefficients of the series for the restriction give then a
function

gA : Fπ/An → C,

so the series will have the form

f(Z) =
∑

γ∈Fπ/A
n

gA(γ)Eγ(iZ), Z = (Z1, . . . , Zn), Zj ∈ Herm≤AN .

Now, as A → ∞, we would like to say that the gA, considered as linear
combinations of Dirac measures on Πn (or some completion), tend to a limit
measure. Although Πn is not a manifold, we can pass to finite-dimensional
approximations

Πn ⊂ Gn(R)
pd−→ Gn,d(R).

Let Fπ/An,d = pd(F
π/A
n ). This is a free nilpotent group of degree d on generators

pd(X
π/A
j ), and is a discrete subgroup (“lattice”) in Gn,d(R). As A → ∞,

these lattices are getting dense in Gn,d(R). Supposing that the direct image
(summation over the fibers) pd∗(gA) exists as a function on Fπ/An,d or, what is

the same, a measure on Gn,d(R) supported on the discrete subgroup F
π/A
n,d ,

we can then ask for the existence of the limit

μd = lim
A→∞

pd∗(gA) ∈ Meas(Gn,d(R)).

These measures, if they exist, would then form a promeasure μ• that is the
natural candidate for the inverse Fourier transform of f . The author hopes to
address these issues in a future paper.
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[Ho] L. Hörmander, Hypoelliptic second order differential equations, Acta Math.
119 (1967), 141–171.

[Hu] A. Hulanicki, The distribution of energy in the Brownian motion in the
Gaussian field and analytic hypoellipticity of certain subelliptic operators on
the Heisenberg group, Studia Math. 56 (1976), 165–173.

[K1] M. Kapranov, Free Lie algebroids and the space of paths, Selecta Math. N.S.
13 (2007), 277–319.

[K2] M. Kapranov, Membranes and higher groupoids, in preparation.
[KW] N. Kunita, S. Watanabe, Stochastic Differential Equations and Diffusion

processes, North-Holland, Amsterdam, 1989.
[Mac] I. G. Macdonald, The volume of a compact Lie group, Invent. Math. 56 (1980),

93–95.
[McK] H. P. McKean, Stochastic Integrals, Chelsea Publ. Co. 2005.
[Ma] Y. I. Manin, Iterated Shimura integrals, preprint math.NT/0507438.
[NS] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability

(London Math. Soc. Lecture Notes vol. 335), Cambridge Univ. Press, 2006.
[Ok] B. Oksendal, Stochastic Differential Equations, Springer, Berlin, 1989.
[Pa] A. N. Parshin, On a certain generalization of the Jacobian manifold, Izv. AN

SSSR, 30(1966), 175–182.



Noncommutative Geometry and Path Integrals 87

[Po] A.M. Polyakov, Gauge Fields and Strings, Harwood Academic Publ. 1987.
[R] C. Reutenauer, Free Lie Algebras, Oxford Univ. Press, 1993.
[Si] I. M. Singer, On the master field in two dimensions, in: Functional Analysis

on the Eve of the 21st Century (In honor of I. M. Gelfand), S. Gindikin et al.,
eds, Vol. 1, 263–281.

[SW] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes,
Springer, Berlin, 1979.

[Ta] J. L. Taylor, Functions of several noncommuting variables, Bull. AMS, 79
(1973), 1–34.

[V] D. Voiculescu, Limit laws for random matrices and free products, Invent.
Math. 104 (1991), 201–220.

[VDN] D. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, Amer. Math.
Soc. 1992.

[W] N. Wiener, The Fourier Integral and Certain of Its Applications, Dover Publ,
1958.



Another Look at the Dwork Family

Nicholas M. Katz

Princeton University, Mathematics, Fine Hall, NJ 08544-1000, USA
nmk@math.princeton.edu

Dedicated to Yuri Manin on his seventieth birthday

Summary. We give a new approach to the cohomology of the Dwork family, and
more generally of single-monomial deformations of Fermat hypersurfaces. This ap-
proach is based on the surprising connection between these families and Klooster-
man sums, and makes use of the Fourier Transform and the theory of Kloosterman
sheaves and of hypergeometric sheaves.
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1 Introduction and a bit of history

After proving [Dw-Rat] the rationality of zeta functions of all algebraic va-
rieties over finite fields nearly fifty years ago, Dwork studied in detail the
zeta function of a nonsingular hypersurface in projective space, cf. [Dw-Hyp1]
and [Dw-HypII]. He then developed his “deformation theory”, cf. [Dw-Def],
[Dw-NPI] and [Dw-NPII], in which he analyzed the way in which his theory
varied in a family. One of his favorite examples of such a family, now called
the Dwork family, was the one parameter (λ) family, for each degree n ≥ 2,
of degree-n hypersurfaces in P

n−1 given by the equation
n∑

i=1

Xn
i − nλ

n∏

i=1

Xi = 0,

a family he wrote about explicitly in [Dw-Def, page 249, (i), (ii), (iv), the
cases n = 2, 3, 4], [Dw-HypII, section 8, pp. 286-288, the case n = 3] and
[Dw-PC, 6.25, the case n = 3, and 6.30, the case n = 4]. Dwork of course
also considered the generalization of the above Dwork family consisting of
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single-monomial deformations of Fermat hypersurfaces of any degree and
dimension. He mentioned one such example in [Dw-Def, page 249, (iii)].
In [Dw-PAA, pp. 153–154], he discussed the general single-monomial defor-
mation of a Fermat hypersurface, and explained how such families led to
generalized hypergeometric functions.

My own involvement with the Dwork family started (in all senses!) at the
Woods Hole conference in the summer of 1964 with the case n = 3, when I
managed to show in that special case that the algebraic aspects of Dwork’s
deformation theory amounted to what would later be called the Gauss–Manin
connection on relative de Rham cohomology, but which at the time went by
the more mundane name of “differentiating cohomology classes with respect
to parameters”.

That this article is dedicated to Manin on his seventieth birthday is partic-
ularly appropriate, because in that summer of 1964 my reference for the notion
of differentiating cohomology classes with respect to parameters was his 1958
paper [Ma-ACFD]. I would also like to take this opportunity to thank, albeit
belatedly, Arthur Mattuck for many helpful conversations that summer.

I discussed the Dwork family in [Ka-ASDE, 2.3.7.17–23, 2.3.8] as a “par-
ticularly beautiful family”, and computed explicitly the differential equation
satisfied by the cohomology class of the holomorphic n − 2 form. It later
showed up in [Ka-SE, 5.5, esp. pp. 188–190], about which more below. Ogus
[Ogus-GTCC, 3.5, 3.6] used the Dwork family to show the failure in general of
“strong divisibility”. Stevenson, in her thesis [St-th],[St, end of Section 5, page
211], discussed single-monomial deformations of Fermat hypersurfaces of any
degree and dimension. Koblitz [Kob] later wrote on these same families. With
mirror symmetry and the stunning work of Candelas et al. [C-dlO-G-P] on the
case n = 5, the Dwork family became widely known, especially in the physics
community, though its occurence in Dwork’s work was almost (not entirely,
cf. [Ber], [Mus-CDPMQ]) forgotten. Recently the Dwork family turned out to
play a key role in the proof of the Sato–Tate conjecture (for elliptic curves
over Q with non-integral j-invariant), cf. [H-SB-T, Section 1, pp. 5–15].

The present paper gives a new approach to computing the local sys-
tem given by the cohomology of the Dwork family, and more generally of
families of single-monomial deformations of Fermat hypersurfaces. This ap-
proach is based upon the surprising connection, noted in [Ka-SE, 5.5, esp.
pp. 188–190], between such families and Kloosterman sums. It uses also
the theory, developed later, of Kloosterman sheaves and of hypergeometric
sheaves, and of their behavior under Kummer pullback followed by Fourier
Transform, cf. [Ka-GKM] and [Ka-ESDE, esp. 9.2 and 9.3]. In a recent
preprint, Rojas-Leon and Wan [RL-Wan] have independently implemented
the same approach.
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2 The situation to be studied: generalities

We fix an integer n ≥ 2, a degree d ≥ n, and an n-tuple W = (w1, ..., wn) of
strictly positive integers with

∑
i wi = d, and with gcd(w1, ..., wn) = 1. This

data (n, d,W ) is now fixed. Let R be a ring in which d is invertible.
Over R we have the affine line A

1
R := Spec(R[λ]). Over A

1
R, we consider

certain one-parameter (namely λ) families of degree-d hypersurfaces in P
n−1.

Given an n + 1-tuple (a, b) := (a1, ..., an, b) of invertible elements in R, we
consider the one-parameter (namely λ) family of degree-d hypersurfaces in
P
n−1,

Xλ(a, b) :
n∑

i=1

aiX
d
i − bλXW = 0,

where we have written

XW :=
n∏

i=1

Xwi

i .

More precisely, we consider the closed subscheme X(a, b)R of P
n−1
R ×R A

1
R

defined by the equation

n∑

i=1

aiX
d
i − bλXW = 0,

and denote by
π(a, b)R : X(a, b)R → A

1
R

the restriction to X(a, b)R of the projection of P
n−1
R ×R A

1
R onto its second

factor.

Lemma 2.1. The morphism

π(a, b)R : X(a, b)R → A
1
R

is lisse over the open set of A
1
R where the function

(bλ/d)d
∏

i

(wi/ai)wi − 1

is invertible.

Proof. Because d and the ai are invertible in R, a Fermat hypersurface of the
form

n∑

i=1

aiX
d
i = 0

is lisse over R. When we intersect our family with any coordinate hyperplane
Xi = 0, we obtain a constant Fermat family in one lower dimension (because
each wi ≥ 1). Hence any geometric point (x, λ) ∈ X at which π is not smooth
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has all coordinatesXi invertible. So the locus of nonsmoothness of π is defined
by the simultaneous vanishing of all the Xid/dXi, i.e., by the simultaneous
equations

daiX
d
i = bλwiX

W , for i = 1, ..., n.

Divide through by the invertible factor dai. Then raise both sides of the i’th
equation to the wi power and multiply together right and left sides separately
over i. We find that at a point of nonsmoothness we have

XdW = (bλ/d)d
∏

i

(wi/ai)wiXdW .

As already noted, all the Xi are invertible at any such point, and hence

1 = (bλ/d)d
∏

i

(wi/ai)wi

at any geometric point of nonsmoothness. ��
In the Dwork family per se, all wi = 1. But in a situation where there is

a prime p not dividing d� but dividing one of the wi, then taking for R an
Fp-algebra (or more generally a ring in which p is nilpotent), we find a rather
remarkable family.

Corollary 2.2. Let p be a prime which is prime to d but which divides one
of the wi, and R a ring in which p is nilpotent. Then the morphism

π(a, b)R : X(a, b)R → A
1
R

is lisse over all of A
1
R.

Remark 2.3. Already the simplest possible example of the above situation,
the family in P

1/Fq given by

Xq+1 + Y q+1 = λXY q,

is quite interesting. In dehomogenized form, we are looking at

xq+1 − λx + 1

as polynomial over Fq(λ); its Galois group is known to be PSL(2,Fq), cf.
[Abh-PP, bottom of p. 1643], [Car], and [Abh-GTL, Serre’s Appendix]. The
general consideration of “p|wi for some i” families in higher dimension would
lead us too far afield, since our principal interest here is with families that
“start life” over C. We discuss briefly such “p|wi for some i” families in
Appendix II. We would like to call the attention of computational number
theorists to these families, with no degeneration at finite distance, as a good
test case for proposed methods of computing efficiently zeta functions in entire
families.
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3 The particular situation to be Studied: details

Recall that the data (n, d,W ) is fixed. Over any ring R in which d
∏
iwi is

invertible, we have the family π : X → A
1
R given by

Xλ := Xλ(W,d) :
n∑

i=1

wiX
d
i − dλXW = 0;

it is proper and smooth over the open set U := A
1
R[1/(λd − 1)] ⊂ A

1
R where

λd − 1 is invertible.
The most natural choice of R, then, is Z[1/(d

∏
iwi)]. However, it will

be more convenient to work over a somewhat larger cyclotomic ring, which
contains, for each i, all the roots of unity of order dwi. Denote by lcm(W ) the
least common multiple of the wi, and define dW := lcm(W )d. In what follows,
we will work over the ring

R0 := Z[1/dW ][ζdW ] := Z[1/dW ][T ]/(ΦdW (T )),

where ΦdW (T ) denotes the dW ’th cyclotomic polynomial.
We now introduce the relevant automorphism group of our family. We

denote by μd(R0) the group of d’th roots of unity in R0, by Γ = Γd,n the
n-fold product group (μd(R0))n, by ΓW ⊂ Γ the subgroup consisting of all
elements (ζ1, ..., ζn) with

∏n
i=1 ζ

wi

i = 1, and by Δ ⊂ ΓW the diagonal sub-
group, consisting of all elements of the form (ζ, ..., ζ). The group ΓW acts as
automorphisms of X/A1

R0
, an element (ζ1, ..., ζn) acting as

((X1, ..., Xn), λ) �→ ((ζ1X1, ..., ζnXn), λ).

The diagonal subgroup Δ acts trivially.
The natural pairing

(Z/dZ)n × Γ → μd(R0) ⊂ R×
0 ,

(v1, ..., vn) × (ζ1, ..., ζn) →
∏

i

ζvi

i ,

identifies (Z/dZ)n as the R0-valued character groupDΓ := Homgroup

(
Γ,R×

0

)
.

The subgroup
(Z/dZ)n0 ⊂ (Z/dZ)n

consisting of elements V = (v1, ..., vn) with
∑

i vi = 0 in Z/dZ is then the R0-
valued character group D(Γ/Δ) of Γ/Δ. The quotient group (Z/dZ)n0 /<W>
of (Z/dZ)n0 by the subgroup generated by (the image, by reduction mod d,
of) W is then the R0-valued character group D(ΓW /Δ) of ΓW /Δ.

For G either of the groups Γ/Δ, ΓW /Δ, an R0-linear action of G on a
sheaf of R0-modules M gives an eigendecomposition
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M =
⊕

ρ∈D(G)

M(ρ).

If the action is by the larger group G = Γ/Δ, then DG = (Z/dZ)n0 , and for
V ∈ (Z/dZ)n0 we denote by M(V ) the corresponding eigenspace. If the action
is by the smaller group ΓW /Δ, thenDG is the quotient group (Z/dZ)n0 /<W >;
given an element V ∈ (Z/dZ)n0 , we denote by V mod W its image in the
quotient group, and we denote byM(V mod W ) the corresponding eigenspace.

If M is given with an action of the larger group Γ/Δ, we can decompose
it for that action:

M =
⊕

V ∈(Z/dZ)n
0

M(V ).

If we view this same M only as a representation of the sugroup ΓW /Δ, we
can decompose it for that action:

M =
⊕

V ∈(Z/dZ)n
0 /<W>

M(V mod W ).

The relation between these decompositions is this: for any V ∈ (Z/dZ)n0 ,

M(V mod W ) =
⊕

r mod d

M(V + rW ).

We return now to our family π : X → A
1
R0

, which we have seen is (projec-
tive and) smooth over the open set

U = A
1
R0

[1/(λd − 1)].

We choose a prime number �, and an embedding of R0 into Q�. [We will now
need to invert �, so arguably the most efficient choice is to take for � a divisor
of dW .] We We form the sheaves

F i := Riπ�Q�

on A
1
R0[1/�]

. They vanish unless 0 ≤ i ≤ 2(n − 2), and they are all lisse on
U [1/�]. By the weak Lefschetz Theorem and Poincaré duality, the sheaves
F i|U [1/�] for i 
= n− 2 are completely understood. They vanish for odd i; for
even i = 2j ≤ 2(n− 2), i 
= n− 2, they are the Tate twists

F2j |U [1/�] ∼= Q�(−j).

We now turn to the lisse sheaf Fn−2|U [1/�]. It is endowed with an autod-
uality pairing (cup product) toward Q�(−(n− 2)) which is symplectic if n− 2
is odd, and orthogonal if n− 2 is even. If n− 2 is even, say n− 2 = 2m, then
Fn−2|U [1/�] contains Q�(−m) as a direct summand (m’th power of the hy-
perplane class from the ambient P) with nonzero self-intersection. We define
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Primn−2 (as a sheaf on U [1/�] only) to be the annihilator in Fn−2|U [1/�] of
this Q�(−m) summand under the cup product pairing. So we have

Fn−2|U [1/�] = Primn−2
⊕

Q�(−m),

when n − 2 = 2m. When n − 2 is odd, we define Primn−2 := Fn−2|U [1/�],
again as a sheaf on U [1/�] only.

The group ΓW /Δ acts on our family, so on all the sheaves above. For
i 
= n− 2, it acts trivially on F i|U [1/�]. For i = n− 2 = 2m even, it respects
the decomposition

Fn−2|U [1/�] = Prim
⊕

Q�(−m),

and acts trivially on the second factor. We thus decompose Primn−2 into
eigensheaves Primn−2(V mod W ). The basic information on the eigensheaves
Primn−2(V mod W ) is encoded in elementary combinatorics of the coset
V mod W . An element V = (v1, . . . , vn) ∈ (Z/dZ)n0 is said to be totally
nonzero if vi 
= 0 for all i. Given a totally nonzero element V ∈ (Z/dZ)n0 , we
define its degree deg(V ) as follows. For each i, denote by ṽi the unique integer
1 ≤ ṽi ≤ d− 1 that mod d gives vi. Then

∑
i ṽi is 0 mod d, and we define

deg(V ) := (1/d)
∑

i

ṽi.

Thus deg(V ) lies in the interval 1 ≤ deg(V ) ≤ n − 1. The Hodge type of a
totally nonzero V ∈ (Z/dZ)n0 is defined to be

HdgType(V ) := (n− 1 − deg(V ), deg(V ) − 1).

We now compute the rank and the Hodge numbers of eigensheaves
Primn−2(V mod W ). We have already chosen an embedding of R0 into Q�.
We now choose an embedding of Q� into C. The composite embedding R0 ⊂ C

allows us to extend scalars in our family π : X → A
1
R0

, which is projective
and smooth over the open set UR0 = A

1
R0

[1/(λd − 1)], to get a complex
family πC : XC → A

1
C
, which is projective and smooth over the open set

UC = A
1
C
[1/(λd − 1)]. Working in the classical complex topology with the

corresponding analytic spaces, we can form the higher direct image sheaves
Riπan

C
Q on A

1,an
C

, whose restrictions to Uan
C

are locally constant sheaves. We
can also form the locally constant sheaf Primn−2,an(Q) on Uan

C
. Extending

scalars in the coefficients from Q to Q�, we get the sheaf Primn−2,an(Q�).
On the other hand, we have the lisse Q�-sheaf Primn−2 on UR0[1/�], which we
can pull back, first to UC, and then to Uan

C
. By the fundamental comparison

theorem, we have

Primn−2,an(Q�) ∼= Primn−2|Uan
C
.
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Extending scalars from Q� to C, we obtain

Primn−2,an(C) ∼= (Primn−2|Uan
C

)⊗
Q�

C.

This is all ΓW /Δ-equivariant, so we have the same relation for individual
eigensheaves:

Primn−2,an(C)(V mod W ) ∼= (Primn−2(V mod W )|Uan
C

)⊗
Q�

C.

If we extend scalars on Uan
C

from the constant sheaf C to the sheaf OC∞ ,
then the resulting C∞ vector bundle Primn−2,an(C) ⊗C OC∞ has a Hodge
decomposition,

Primn−2,an(C) ⊗C OC∞ =
⊕

a≥0,b≥0,a+b=n−2

Prima,b.

This decomposition is respected by the action of ΓW /Δ, so we get a Hodge
decomposition of each eigensheaf:

Primn−2,an(C)(V mod W ) ⊗C OC∞ =
⊕

a≥0,b≥0,a+b=n−2

Prima,b(V mod W ).

Lemma 3.1. We have the following results.

(1) The rank of the lisse sheaf Primn−2(V mod W ) on UR0[1/�] is given by

rk(Primn−2(V mod W )) = # {r ∈ Z/dZ | V + rW is totally nonzero} .
In particular, the eigensheaf Primn−2(V mod W ) vanishes if none of the
W -translates V + rW is totally nonzero.

(2) For each (a, b) with a ≥ 0, b ≥ 0, a+ b = n− 2, the rank of the C∞ vector
bundle Prima,b(V mod W ) on Uan

C
is given by

rk(Prima,b(V mod W ))

= # {r ∈ Z/dZ | V + rW is totally nonzero and deg(V + rW ) = b+ 1} .
Proof. To compute the rank of a lisse sheaf on UR0[1/�], or the rank of a C∞

vector bundle on Uan
C

, it suffices to compute its rank at a single geometric
point of the base. We take the C-point λ = 0, where we have the Fermat
hypersurface. Here the larger group (Z/dZ)n0 operates. It is well known that
under the action of this larger group, the eigenspace Prim(V ) vanishes unless
V is totally nonzero, e.g., cf. [Ka-IMH, Section 6]. One knows further that if
V is totally nonzero, this eigenspace is one-dimensional, and of Hodge type
HdgType(V ) := (n−1−deg(V ), deg(V )−1), cf. [Grif-PCRI, 5.1 and 10.8]. ��

The main result of this paper is to describe the eigensheaves

Primn−2(V mod W )

as lisse sheaves on U [1/�], i.e., as representations of π1(U [1/�]), and to de-
scribe the direct image sheaves jU�(Primn−2(V mod W )) on A

1
R0[1/�], for

jU : U [1/�] ⊂ A
1
R0[1/�] the inclusion. The description will be in terms of hy-

pergeometric sheaves in the sense of [Ka-ESDE, 8.7.11].
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4 Interlude: Hypergeometric sheaves

We first recall the theory in its original context of finite fields, cf. [Ka-ESDE,
Chapter 8]. Let k be an R0[1/�]-algebra which is a finite field, and

ψ : (k,+) → Q
×
�

a nontrivial additive character. Because k is an R0[1/�]- algebra, it contains
dW distinct dW ’th roots of unity, and the structural map gives a group isomor-
phism μdW (R0) ∼= μdW (k). So raising to the #k×/dW ’th power is a surjective
group homomorphism

k× → μdW (k) ∼= μdW (R0).

So for any character χ : μdW (R0) → μdW (R0), we can and will view the com-
position of χ with the above surjection as defining a multiplicative character
of k×, still denoted χ. Every multiplicative character of k× of order dividing
dW is of this form. Fix two non-negative integers a and b, at least one of which
is nonzero. Let χ1, ..., χa be an unordered list of a multiplicative characters of
k× of order dividing dW , some possibly trivial, and not necessarily distinct.
Let ρ1, ..., ρb be another such list, but of length b. Assume that these two
lists are disjoint, i.e., no χi is a ρj . Attached to this data is a geometrically
irreducible middle extension Q�-sheaf

H(ψ;χi ′s; ρj ′s)

on Gm/k, which is pure of weight a + b − 1. We call it a hypergeometric
sheaf of type (a, b). If a 
= b, this sheaf is lisse on Gm/k; if a = b it is lisse
on Gm − {1}, with local monodromy around 1 a tame pseudoreflection of
determinant (

∏
j ρj)/(

∏
i χi).

The trace function of H(ψ;χi ′s; ρj ′s) is given as follows. For E/k a
finite extension field, denote by ψE the nontrivial additive character of E
obtained from ψ by composition with the trace map TraceE/k, and denote
by χi,E (resp. ρj,E) the multiplicative character of E obtained from χi (resp.
ρj) by composition with the norm map NormE/k. For t ∈ Gm(E) = E×,
denote by V (a, b, t) the hypersurface in (Gm)a × (Gm)b/E, with coordinates
x1, ..., xa, y1, ..., yb, defined by the equation

∏

i

xi = t
∏

j

yj .

Then
Trace(Frobt,E |H(ψ;χi ′s; ρj ′s))

= (−1)a+b−1
∑

V (n,m,t)(E)

ψE

⎛

⎝
∑

i

xi −
∑

j

yj

⎞

⎠
∏

i

χi,E(xi)
∏

j

ρj,E(yj).
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In studying these sheaves, we can always reduce to the case a ≥ b, because
under multiplicative inversion we have

inv�H(ψ;χi ′s; ρj ′s)) ∼= H(ψ; ρj
′s;χi

′s)).

If a ≥ b, the local monodromy around 0 is tame, specified by the list of χi’s:
the action of a generator γ0 of Itame

0 is the action of T on the Q�[T ]-module
Q�[T ]/(P (T )), for P (T ) the polynomial

P (T ) :=
∏

i

(T − χi(γ0)).

In other words, for each of the distinct characters χ on the list of the χ′
is, there

is a single Jordan block, whose size is the multiplicity with which χ appears
on the list. The local monodromy around ∞ is the direct sum of a tame part
of dimension b, and, if a > b, a totally wild part of dimension a − b, all of
whose upper numbering breaks are 1/(a − b). The b-dimensional tame part
of the local monodromy around ∞ is analogously specified by the list of ρ’s:
the action of a generator γ∞ of Itame

∞ is the action of T on the Q�[T ]-module
Q�[T ]/(Q(T )), for Q(T ) the polynomial

Q(T ) :=
∏

j

(T − ρj(γ0)).

When a = b, there is a canonical constant field twist of the hypergeometric
sheaf H = H (ψ;χi ′s; ρj ′s) which is independent of the auxiliary choice of ψ,
which we will call Hcan. We take for A ∈ Q

×
� the nonzero constant

A =

(
∏

i

(−g(ψ, χi)
)⎛

⎝
∏

j

(−g(ψ, ρj)
⎞

⎠ ,

and define
Hcan := H⊗ (1/A)deg.

[That Hcan is independent of the choice of ψ can be seen in two ways. By
elementary inspection, its trace function is independent of the choice of ψ, and
we appeal to Chebotarev. Or we can appeal to the rigidity of hypergeometric
sheaves with given local monodromy, cf. [Ka-ESDE, 8.5.6], to infer that with
given χ’s and ρ’s, the hypergeometric sheaves Hcan

ψ with different choices of
ψ are all geometrically isomorphic. Being geometrically irreducible as well,
they must all be constant field twists of each other. We then use the fact that
H1
(
Gm ⊗k k,Hcan

ψ

)
is one dimensional, and that Frobk acts on it by the

scalar 1, to see that the constant field twist is trivial.]
Here is the simplest example. Take χ 
= ρ, and form the hypergeometric

sheaf Hcan(ψ;χ; ρ). Then using the rigidity approach, we see that
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Hcan(ψ;χ; ρ) ∼= Lχ(x) ⊗ L(ρ/χ)(1−x) ⊗ (1/A)deg,

with A (minus) the Jacobi sum over k,

A = −J(k;χ, ρ/χ) := −
∑

x∈k×
χ(x)(ρ/χ)(1 − x).

The object
H(χ, ρ) := Lχ(x) ⊗ L(ρ/χ)(1−x)

makes perfect sense on Gm/R0[1/�], cf. [Ka-ESDE, 8.17.6]. By [We-JS], at-
taching to each maximal ideal P of R0 the Jacobi sum −J(R0/P ;χ, ρ/χ)
over its residue field is a grossencharacter, and so by [Se-ALR, Chapter 2] a
Q�-valued character, call it Λχ,ρ/χ, of π1(Spec(R0[1/�]). So we can form

Hcan(χ, ρ) := H(χ, ρ) ⊗ (1/Λχ,ρ/χ)

on Gm/R0[1/�]. For any R0[1/�]-algebra k which is a finite field, its pullback
to Gm/k is Hcan(ψ;χ; ρ).

This in turn allows us to perform the following global construction. Sup-
pose we are given an integer a > 0, and two unordered disjoint lists of charac-
ters, χ1, ..., χa and ρ1, ..., ρa, of the group μdW (R0) with values in that same
group. For a fixed choice of orderings of the lists, we can form the sheaves
Hcan(χi, ρi), i = 1, ..., a on Gm/R0[1/�]. We can then define, as in [Ka-ESDE,
8.17.11], the ! multiplicative convolution

Hcan(χ1, ρ1)[1] �! Hcan(χ2, ρ2)[1] �! ... �! Hcan(χa, ρa)[1],

which will be of the form F [1] for some sheaf F on Gm/R0[1/�] which is “tame
and adapted to the unit section”. This sheaf F we call Hcan (χi ′s; ρj ′s).
For any R0[1/�]-algebra k which is a finite field, its pullback to Gm/k is
Hcan (ψ;χi ′s; ρj ′s). By Chebotarev, the sheaf Hcan (ψ;χi ′s; ρj ′s) is, up to
isomorphism, independent of the orderings that went into its definition as an
interated convolution. This canonical choice (as opposed to, say, the ad hoc
construction given in [Ka-ESDE, 8.17.11], which did depend on the orderings)
has the property that, denoting by

f : Gm/R0[1/�] → Spec(R0[1/�])

the structural map, the sheaf R1f!Hcan (χi ′s; ρj ′s) on Spec(R0[1/�]) is
the constant sheaf, i.e., it is the trivial one-dimensional representation of
π1(Spec(R0[1/�])).

If the unordered lists χ1, ..., χa and ρ1, ..., ρb are not disjoint, but not iden-
tical, then we can “cancel” the terms in common, getting shorter disjoint lists.
The hypergeometric sheaf we form with these shorter, disjoint “cancelled” lists
we denote H (ψ;Cancel (χi ′s; ρj ′s)), cf. [Ka-ESDE, 9.3.1], where this was de-
noted CancelH (ψ;χi ′s; ρj ′s). If a = b, then after cancellation the shorter
disjoint lists still have the same common length, and so we can form the con-
stant field twist Hcan (ψ;Cancel (χi ′s; ρj ′s)). And in the global setting, we
can form the object Hcan (Cancel (χi ′s; ρj ′s)) on Gm/R0[1/�].
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5 Statement of the main theorem

We continue to work with the fixed data (n, d,W ). Given an element V =
(v1, ..., vn) ∈ (Z/dZ)n0 , we attach to it an unordered list List(V,W ) of d =∑

iwi multiplicative characters of μdW (R0), by the following procedure. For
each index i, denote by χvi the character of μdW (R0) given by

ζ �→ ζ(vi/d)dW .

Because wi divides dW /d, this characterχvi has wi distinct wi’th roots. We
then define

List(V,W ) = {all w′
1th roots of χv1 , ..., all w′

nth roots of χvn} .
We will also need the same list, but for −V , and the list

List(all d) := {all characters of order dividing d} .
So long as the two lists List(−V,W ) and List(all d) are not identical, we can
apply the Cancel operation, and form the hypergeometric sheaf

HV,W := Hcan(Cancel(List(all d);List(−V,W )))

on Gm/R0[1/�].

Lemma 5.1. If Primn−2(V mod W ) is nonzero, then the unordered lists
List(−V,W ) and List(all d) are not identical.

Proof. If Primn−2(V mod W ) is nontrivial, then at least one choice of V in the
coset V mod W is totally nonzero. For such a totally nonzero V , the trivial
character is absent from List(−V,W ). If we choose another representative
of the same coset, say V − rW , then denoting by χr the character of order
dividing d of μdW (R0) given by ζ �→ ζ(r/d)dW , we see easily that

List(−(V − rW ),W ) = χrList(−V,W ).

Hence the character χr is absent from List(−V + rW,W ). ��
Lemma 5.2. If Primn−2(V mod W ) is nonzero, then Primn−2(V mod W )
and [d]�HV,W have the same rank on UR0[1/�].

Proof. Choose V in the coset V mod W . The rank of Primn−2(V mod W ) is
the number of r ∈ Z/dZ such that V + rW is totally nonzero. Equivalently,
this rank is d − δ, for δ the number of r ∈ Z/dZ such that V + rW fails
to be totally nonzero. On the other hand, the rank of HV,W is d − ε, for
ε the number of elements in List(all d) which also appear in List(−V,W ).
Now a given character χr in List(all d) appears in List(−V,W ) if and only
if there exists an index i such that χr is a wi’th root of χ−vi , i.e., such that
χwi
r = χ−vi , i.e., such that rwi ≡ −vi mod d. ��
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Theorem 5.3. Suppose that Primn−2(V mod W ) is nonzero. Denote by
j1 : UR0[1/�] ⊂ A

1
R0[1/�]

and j2 : Gm,R0[1/�] ⊂ A
1
R0[1/�] the inclusions,

and by [d] : Gm,R0[1/�] → Gm,R0[1/�] the d’th power map. Then for any
choice of V in the coset V mod W , there exists a continuous character
ΛV,W : π1(Spec(R0[1/�])) → Q

×
� and an isomorphism of sheaves on A

1
R0[1/�]

,

j1�Primn−2(V mod W ) ∼= j2�[d]�HV,W ⊗ ΛV,W .

Remark 5.4. What happens if we change the choice of V in the coset
V mod W , say to V − rW? As noted above,

List(−(V − rW ),W ) = χrList(−V,W ).

Since List(all d) = χrList(all d) is stable by multiplication by any character of
order dividing d, we find [Ka-ESDE, 8.2.5] that HV−rW,W ∼= Lχr ⊗HV,W ⊗Λ,
for some continuous character Λ : π1(Spec(R0[1/�])) → Q

×
� . Therefore the

pullback [d]�HV,W is, up to tensoring with a character Λ of π1(Spec(R0[1/�])),
independent of the particular choice of V in the coset V mod W . Thus the
truth of the theorem is independent of the particular choice of V .

Question 5.5. There should be a universal recipe for the character ΛV,W
which occurs in Theorem 5.3. For example, if we look at the ΓW /Δ-invariant
part, both Primn−2(0 mod W ) and H0,W are pure of the same weight n− 2,
and both have traces (on Frobenii) in Q. So the character Λ0,W must take
Q-values of weight zero on Frobenii in large characteristic. [To make this
argument legitimate, we need to be sure that over every sufficiently large
finite field k which is an R0[1/�]-algebra, the sheaf Primn−2(0 mod W ) has
nonzero trace at some k-point. This is in fact true, in virtue of Corollary 8.7
and a standard equidistribution argument.] But the only rational numbers of
weight zero are ±1. So Λ2

0,W is trivial. Is Λ0,W itself trivial?

6 Proof of the main theorem: the strategy

Let us admit for a moment the truth of the following characteristic p theorem,
which will be proven in the next section.

Theorem 6.1. Let k be an R0[1/�]-algebra which is a finite field, and let
ψ : (k,+) → Q

×
� be a nontrivial additive character of k. Suppose that

Primn−2(V mod W ) is nonzero. Let j1,k : Uk ⊂ A
1
k and j2,k : Gm,k ⊂ A

1
k be

the inclusions. Choose V in the coset V mod W , and put

HV,W,k := Hcan(ψ;Cancel(;List(all d);List(−V,W ))).

Then on A
1
k the sheaves j1,k�Primn−2(V mod W ) and j2,k�[d]�HV,W,k are

geometrically isomorphic, i.e., they become isomorphic on A
1
k
.
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We now explain how to deduce the main theorem. The restriction to

UR0 − {0} = Gm,R0 − μd

of our family

Xλ :
n∑

i=1

wiX
d
i = dλXW

is the pullback, through the d’th power map, of a projective smooth family
over Gm − {1}, in a number of ways. Here is one way to write down such a
descent πdesc : Y → Gm−{1}. Use the fact that gcd(w1, ..., wn) = 1 to choose
integers (b1, ..., bn) with

∑
i biwi = 1. Then in the new variables

Yi := λbiXi

the equation of Xλ becomes
n∑

i=1

wiλ
−dbiY di = dYW .

Then the family

Yλ :
n∑

i=1

wiλ
−biY di = dYW

is such a descent. The same group ΓW /Δ acts on this family. On the base
Gm−{1}, we have the lisse sheaf Primn−2

desc for this family, and its eigensheaves
Primn−2

desc(V mod W ), whose pullbacks [d]�Primn−2
desc(V mod W ) are the sheaves

Primn−2(V mod W )|(Gm,R0 − μd).

Lemma 6.2. Let k be an R0[1/�]-algebra which is a finite field. Suppose
Primn−2

desc(V mod W ) is nonzero. Then there exists a choice of V in the coset
V mod W such that the lisse sheaves Primn−2

desc(V mod W ) and HV,W,k on
Gm,k − {1} are geometrically isomorphic, i.e., isomorphic on Gm,k − {1}.
Proof. Choose a V in the coset V mod W . By Theorem 6.1, the lisse sheaves
[d]�Primn−2

desc(V mod W ) and [d]�HV,W,k are isomorphic on Gm,k−μd. Taking
direct image by [d] and using the projection formula, we find an isomorphism

⊕

χ with χd trivial

Lχ ⊗ Primn−2
desc(V mod W ) ∼=

⊕

χ with χd trivial

Lχ ⊗HV,W,k

of lisse sheaves Gm,k − {1}. The right hand side is completely reducible,
being the sum of d irreducibles. Therefore the left hand side is completely
reducible, and each of its d nonzero summands Lχ ⊗ Primn−2

desc(V mod W )
must be irreducible (otherwise the left hand side is the sum of more than d
irreducibles). By Jordan-Hölder, the summand Primn−2

desc(V mod W ) on the
left is isomorphic to one of the summands Lχ ⊗ HV,W,k on the right, say to
the summand Lχr ⊗ HV,W,k. As explained in Remark 5.3, this summand is
geometrically isomorphic to HV−rW,W,k. ��
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Lemma 6.3. Suppose that the sheaf Primn−2
desc(V mod W ) is nonzero. Choose

an R0[1/�]-algebra k which is a finite field, and choose V in the coset V mod W
such that the lisse sheaves Primn−2

desc(V mod W ) and HV,W,k on Gm,k − {1}
are geometrically isomorphic. Then there exists a continuous character

ΛV,W : π1(Spec(R0[1/�])) → Q
×
�

and an isomorphism of lisse sheaves on Gm,R0[1/�] − {1},

Primn−2
desc(V mod W ) ∼= HV,W ⊗ ΛV,W .

This is an instance of the following general phenomenon, which is well
known to the specialists. In our application, the S below is Spec(R0[1/�]), C
is P

1, and D is the union of the three everywhere disjoint sections 0, 1,∞. We
will also use it a bit later when D is the union of the d+2 everywhere disjoint
sections 0, μd,∞.

Theorem 6.4. Let S be a reduced and irreducible normal noetherian Z[1/�]-
scheme whose generic point has characteristic zero. Let s be a chosen geomet-
ric point of S. Let C/S be a proper smooth curve with geometrically connected
fibres, and let D ⊂ C be a Cartier divisor which is finite étale over S. Let F
and G be lisse Q�-sheaves on C −D. Then we have the following results.

(1) Denote by j : C−D ⊂ C and i : D ⊂ C the inclusions. Then the formation
of j�F on C commutes with arbitrary change of base T → S, and i�j�F
is a lisse sheaf on D.

(2) Denoting by f : C −D → S the structural map, the sheaves Rif!F on S
are lisse.

(3) The sheaves Rif�F on S are lisse, and their formation commutes with
arbitrary change of base T → S.

(4) Consider the pullbacks Fs and Gs of F and of G to Cs −Ds. Suppose that
Fs ∼= Gs, and that Gs (and hence also Fs) are irreducible. Then there exists
a continuous character Λ : π1(S) → Q

×
� an isomorphism of lisse sheaves

on C −D,
G ⊗ Λ ∼= F .

Proof. The key point is that because the base S has generic characteristic zero,
any lisse sheaf on C − D is automatically tamely ramified along the divisor
D; this results from Abhyankar’s Lemma. See [Ka-SE, 4.7] for assertions (1)
and (2). Assertion (3) results from (2) by Poincaré duality, cf. [De-CEPD,
Corollaire, p. 72].

To prove assertion (4), we argue as follows. By the Tame Specialization
Theorem [Ka-ESDE, 8.17.13], the geometric monodromy group attached to
the sheaf Fs is, up to conjugacy in the ambient GL(rk(F),Q�), independent
of the choice of geometric point s of S. Since Fs is irreducible, it follows
that Fs1 is irreducible, for every geometric point s1 of S. Similarly, Gs1 is
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irreducible, for every geometric point s1 of S. Now consider the lisse sheaf
Hom(G,F) ∼= F ⊗ G∨ on C −D. By assertion (3), the sheaf f�Hom(G,F) is
lisse on S, and its stalk at a geometric point s1 of S is the group Hom(Gs1 ,Fs1).
At the chosen geometric point s, this Hom group is one-dimensional, by hy-
pothesis. Therefore the lisse sheaf f�Hom(G,F) on S has rank one. So at every
geometric point s1, Hom(Gs1 ,Fs1) is one-dimensional. As source and target
are irreducible, any nonzero element of this Hom group is an isomorphism,
and the canonical map

Gs1 ⊗ Hom(Gs1 ,Fs1) → Fs1
is an isomorphism. Therefore the canonical map of lisse sheaves on C −D

G ⊗ f�f�Hom(G,F) → F
is an isomorphism, as we see looking stalkwise. Interpreting the lisse sheaf
f�Hom(G,F) on S as a character Λ of π1(S), we get the asserted isomorphism.

��
Applying this result, we get Lemma 6.3. Now pull back the isomorphism

of that lemma by the d’th power map, to get an isomorphism

Primn−2(V mod W ) ∼= [d]�HV,W ⊗ ΛV,W

of lisse sheaves on Gm,R0[1/�] − μd. Then extend by direct image to A
1
R0[1/�]

to get the isomorphism asserted in Theorem 5.3.

7 Proof of Theorem 6.1

Let us recall the situation. Over the ground ring R0[1/�], we have the family
π : X → A

1 given by

Xλ := Xλ(W,d) :
n∑

i=1

wiX
d
i − dλXW = 0,

which is projective and smooth over U = A
1 − μd. We denote by V ⊂ X the

open set where XW is invertible, and by Z ⊂ X the complementary reduced
closed set, defined by the vanishing of XW . As scheme over A

1, Z/A1 is the
constant scheme with fibre

(XW = 0) ∩
(
∑

i

wiX
d
i = 0

)
.

The group ΓW /Δ, acting as A
1-automorphisms of X, preserves both the open

set V and its closed complement Z. In the following discussion, we will re-
peatedly invoke the following general principle, which we state here before
proceeding with the analysis of our particular situation.
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Lemma 7.1. Let S be a noetherian Z[1/�]-scheme, and f : X → S a separated
morphism of finite type. Suppose that a finite group G acts admissibly (:=
every point lies in a G-stable affine open set) as S-automorphisms of X. Then
in Db

c(S,Q�), we have a direct sum decomposition of Rf!Q� into G-isotypical
components

Rf!Q� =
⊕

irred. Q� rep.′s ρ of G

Rf!Q�(ρ).

Proof. Denote by h : X → Y := X/G the projection onto the quotient,
and denote by m : Y → S the structural morphism of Y/S. Then Rh!Q� =
h�Q� is a constructible sheaf of Q�[G] modules on Y , so has a G-isotypical
decomposition

Rh!Q� = h�Q� =
⊕

irred. Q� rep.′s ρ of G

h�Q�(ρ).

Applying Rm! to this decomposition gives the asserted decomposition of
Rf!Q�. ��

We now return to our particular situation. We are given a R0[1/�]-algebra
k which is a finite field, and a nontrivial additive character ψ : (k,+) → Q

×
� .

We denote by
πk : Xk → A

1
k

the base change to k of our family. Recall that the Fourier Transform FTψ
is the endomorphism of the derived category Db

c

(
A

1
k,Q�

)
defined by looking

at the two projections pr1, pr2 of A
2
k onto A

1
k, and at the “kernel” Lψ(xy) on

A
2
k, and putting

FTψ(K) := R(pr2)!
(Lψ(xy) ⊗ pr�1K[1]

)
;

cf. [Lau-TFCEF, 1.2]. One knows that FTψ is essentially involutive,

FTψ(FTψ(K)) ∼= [x �→ −x]�K(−1),

or equivalently
FTψ(FTψ(K)) ∼= K(−1),

that FTψ maps perverse sheaves to perverse sheaves and induces an exact
autoequivalence of the category of perverse sheaves with itself.

We denote by K
(
A

1
k,Q�

)
the Grothendieck group of Db

c

(
A

1
k,Q�

)
. One

knows that K is the free abelian group on the isomorphism classes of irre-
ducible perverse sheaves, cf. [Lau-TFCEF, 0.7, 0.8]. We also denote by FTψ
the endomorphism of K

(
A

1
k,Q�

)
induced by FTψ on Db

c

(
A

1
k,Q�

)
.

The key fact for us is the following, proven in [Ka-ESDE, 9.3.2], cf. also
[Ka-ESDE, 8.7.2 and line −4, p. 327].
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Theorem 7.2. Denote by ψ−1/d the additive character x �→ ψ(−x/d), and
denote by j : Gm,k ⊂ A

1
k the inclusion. Denote by Λ1, ..., Λd the list List(all d)

of all the multiplicative characters of k× of order dividing d. For any un-
ordered list of d multiplicative characters ρ1, ...ρd of k× which is different
from List(all d), the perverse sheaf

FTψj�[d]�H(ψ−1/d; ρ1, ...ρd; ∅)[1]

on A
1
k is geometrically isomorphic to the perverse sheaf

j�[d]�H(ψ;Cancel(List(all d); ρ1, ..., ρd))[1].

Before we can apply this result, we need some preliminaries. We first cal-
culate the Fourier Transform of Rπk,!Q�, or more precisely its restriction to
Gm,k, in a ΓW /Δ-equivariant way. Recall that Vk ⊂ Xk is the open set where
XW is invertible, and Zk ⊂ Xk is its closed complement. We denote by

f := πk|Vk : Vk → A
1
k

the restriction to Vk of πk. Concretely, Vk is the open set P
n−1
k [1/XW ] of P

n−1
k

(with homogeneous coordinates (X1, ..., Xn)) where XW is invertible, and f
is the map

(X1, ..., Xn) �→
∑

i

(wi/d)Xd
i /X

W .

Lemma 7.3. For any character V mod W of ΓW /Δ, the canonical map
of ρ-isotypical components Rf!Q�(V mod W ) → Rπk,!Q�(V mod W ) in-
duced by the A

1
k-linear open immersion Vk ⊂ Xk induces an isomorphism

in Db
c(Gm,k,Q�),

(FTψRf!Q�)(V mod W )|Gm,k
∼= (FTψRπk,!Q�)(V mod W )|Gm,k.

Proof. We have an “excision sequence” distinguished triangle

Rf!Q�(V mod W ) → Rπk,!Q�(V mod W ) → R(π|Z)k,!Q�(V mod W ) →

The third term is constant, i.e., the pullback to A
1
k of a an object on Spec(k),

so its FTψ is supported at the origin. Applying FTψ to this distinguished
triangle gives a distinguished triange

FTψRf!Q�(V mod W ) → FTψRπk,!Q�(V mod W )

→ FTψR(π|Z)k,!Q�(V mod W ) →
Restricting to Gm,k, the third term vanishes. ��

We next compute (FTψRf!Q�)|Gm,k in a ΓW /Δ-equivariant way. We do
this by working upstairs, on Vk with its ΓW /Δ-action.
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Denote by TW ⊂ G
n
m,k the connected (because gcd(w1, ...wn) = 1) torus

of dimension n − 1 in G
n
m,k, with coordinates xi, i = 1, ...., n, defined by the

equation xW = 1. Denote by P
n−1
k [1/XW ] ⊂ P

n−1
k the open set of P

n−1
k (with

homogeneous coordinates (X1, ..., Xn)) where XW is invertible. Our group
ΓW is precisely the group TW [d] of points of order dividing d in TW . And
the subgroup Δ ⊂ ΓW is just the intersection of TW with the diagonal in the
ambient G

n
m,k. We have a surjective map

g : TW → P
n−1
k [1/XW ], (x1, ..., xn) �→ (x1, ..., xn).

This map g makes TW a finite étale galois covering of P
n−1
k [1/XW ] with group

Δ. The d’th power map [d] : TW → TW makes TW into a finite étale galois
covering of itself, with group ΓW . We have a beautiful factorization of [d] as
h ◦ g, for

h : P
n−1
k [1/XW ] → TW , (X1, ..., Xn) �→

(
Xd

1/X
W , ..., Xd

n/X
W
)
.

This map h makes P
n−1
k [1/XW ] a finite étale galois covering of TW with group

ΓW /Δ. Denote by m the map

m : TW → A1
k, (x1, ..., xn) �→

∑

i

(wi/d)xi.

Let us state explicitly the tautology which underlies our computation.

Lemma 7.4. The map f : Vk = P
n−1
k [1/XW ] → A1

k is the composition

f = m ◦ h : P
n−1
k [1/XW ] h→ TW

m→ A
1
k.

Because h is a a finite étale galois covering of TW with group ΓW /Δ, we
have a direct sum decomposition on TW ,

Rh!Q� = h�Q� =
⊕

char ′s V mod W of ΓW /Δ

LV mod W .

More precisely, any V in the coset V mod W is a character of Γ/Δ, hence of Γ ,
so we have the Kummer sheaf LV on the ambient torus G

n
m,k. In the standard

coordinates (x1, ..., xn) on G
n
m,k, this Kummer sheaf LV is L∏

i χvi
(xi). The

restriction of LV to the subtorus TW is independent of the choice of V in the
coset V mod W ; it is the sheaf denoted LV mod W in the above decomposition.

Now apply Rm! to the above decomposition. We get a direct sum
decomposition

Rf!Q� = Rm!h�Q� =
⊕

char′s V mod W of ΓW /Δ

Rm!LV mod W

into eigenobjects for the action of ΓW /Δ.
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Apply now FTψ. We get a direct sum decomposition

FTψRf!Q� =
⊕

char ′s V mod W of ΓW /Δ

FTψRm!LV mod W

into eigenobjects for the action of ΓW /Δ; we have

(FTψRf!Q�)(V mod W ) = FTψRm!LV mod W

for each character Vmod W of ΓW /Δ.

Theorem 7.5. Given a character V mod W of ΓW /Δ, pick V in the coset
V mod W . We have a geometric isomorphism

(FTψRf!Q�)(V mod W )|Gm,k
∼= [d]�H(ψ−1/d;List(V,W ); ∅)[2 − n].

Proof. By the definition of FTψ, and proper base change for Rm!, we see that
FTψRm!LV mod W is obtained as follows. Choose V in the coset V mod W .
Endow the product TW × A

1
k, with coordinates (x = (x1, ..., xn); t) from the

ambient G
n
m,k × A

1
k. The product has projections pr1, pr2 onto TW and A

1
k

respectively. On the product we have the lisse sheaf Lψ(t
∑

i(wi/d)xi)
⊗ pr�1LV .

By definition, we have

FTψRm!LV mod W = Rpr2,!(Lψ(t
∑

i(wi/d)xi)
⊗ pr�1L∏ i χvi

(xi))[1].

If we pull back to Gm,k ⊂ A
1
k, then the source becomes TW×Gm,k. This source

is isomorphic to the subtorus Z of G
n+1
m,k , with coordinates (x = (x1, ..., xn); t),

defined by
xW = td,

by the map
(x = (x1, ..., xn); t) �→ (tx = (tx1, ..., txn); t).

On this subtorus Z, our sheaf becomes Lψ(
∑

i(wi/d)xi)
⊗pr�1L∏ i χvi

(xi)[1]. [Re-
member that V has

∑
i vi = 0, so L∏

i χvi
(xi) is invariant by x �→ tx.] Thus

we have

FTψRm!LV mod W |Gm,k = Rprn+1,!(Lψ(
∑

i(wi/d)xi)
⊗ pr�1L∏ i χvi

(xi)[1]).

This situation,

Lψ(
∑

i(wi/d)xi)
⊗ pr�1L∏ i χvi

(xi)[1] on Z := (xW = td)
prn+1→ Gm,k,

is the pullback by the d’th power map on the base of the situation

Lψ(
∑

i(wi/d)xi)
⊗ pr�1L∏ i χvi

(xi)[1] on G
n
m,k

xW→ Gm,k.
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Therefore we have

FTψRm!LV mod W |Gm,k
∼= [d]�R(xW )!

(
Lψ(

∑
i(wi/d)xi)

⊗ pr�1L∏ i χvi
(xi)[1]

)
.

According to [Ka-GKM, 4.0,4.1, 5.5],

Ra(xW )!
(
Lψ(

∑
i(wi/d)xi)

⊗ pr�1L∏ i χvi
(xi)

)

vanishes for a 
= n − 1, and for a = n − 1 is the multiple multiplicative !
convolution

Kl(ψ−w1/d;χv1 , w1) �! Kl(ψ−w2/d;χv2 , w2) �! · · · �! Kl(ψ−wn/d;χvn , wn).

By [Ka-GKM, 4.3, 5.6.2], for each convolvee we have geometric isomorphisms

Kl(ψ−wi/d;χvi , wi)=[wi]�Kl(ψ−wi/d;χvi)∼=Kl(ψ−1/d; all w′
ith roots of χvi).

So the above multiple convolution is the Kloosterman sheaf

Kl(ψ−1/d; all w′
1th roots of χv1 , ..., all w′

nth roots of χvn)

:= H(ψ−1/d; all w′
1th roots of χv1 , ..., all w′

nth roots of χvn ; ∅).
Recall that by definition

List(V,W ) := (all w′
1th roots of χv1 , ..., all w′

nth roots of χvn).

Putting this all together, we find the asserted geometric isomorphism

(FTψRf!Q�)(V mod W )|Gm,k
∼= [d]�H(ψ−1/d;List(V,W ); ∅)[2 − n].

��
We are now ready for the final step in the proof of Theorem 6.1. Recall

that j1,k : Uk := A
1
k − μd ⊂ A

1
k, and j2,k : Gm,k ⊂ A

1
k are the inclusions. We

must prove.

Theorem 7.6. (Restatement of 6.1) Let V mod W be a character of ΓW /Δ
for which Primn−2(V mod W ) is nonzero. Pick V in the coset V mod W .
Then we have a geometric isomorphism of perverse sheaves on A

1
k,

j1,k,�Primn−2(V mod W )[1] ∼= j2,k,�[d]�HV,W,k[1].

Proof. Over the open set Uk, we have seen that sheaves Riπk,�Q�|Uk are
geometrically constant for i 
= n − 2, and that Rn−2πk,�Q�|Uk is the direct
sum of Primn−2 and a geometrically constant sheaf. The same is true for the
ΓW /Δ-isotypical components. Thus in K(Uk,Q�), we have
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Rπk,�Q�(V mod W )|Uk : =
∑

i

(−1)iRiπk,�Q�(V mod W )|Uk

= (−1)n−2Primn−2(V mod W ) + (geom. const .).

Comparing this with the situation on all of A
1
k, we don’t know what happens

at the d missing points of μd, but in any case we will have

Rπk,�Q�(V mod W ) = (−1)n−2j1,k,�Primn−2(V mod W )
+(geom. const .) + (punctual , supported in μd)

in K
(
A

1
k,Q�

)
.

Taking Fourier Transform, we get

FTψj1,k,�Primn−2(V mod W ) =

(−1)n−2FTψRπk,�Q�(V mod W )+(punctual , supported at 0)+(sum of Lψ ′
ζs)

in K
(
A

1
k,Q�

)
.

By Lemma 7.3 , we have

(FTψRπk,!Q�)(V mod W )|Gm,k
∼= FTψRf!Q�(V mod W )|Gm,k,

so we have
FTψj1,k,�Primn−2(V mod W ) =

(−1)n−2FTψRf!Q�(V mod W )+ (punctual , supported at 0)+ (sum of L′
ψζ

s)

in K
(
A

1
k,Q�

)
.

By the previous theorem, we have

(FTψRf!Q�)(V mod W )|Gm,k = (−1)n−2[d]�H(ψ−1/d;List(V,W ); ∅)

in K(Gm,k,Q�). We don’t know what happens at the origin, but in any case
we have

(FTψRf!Q�)(V mod W )

= (−1)n−2j2,k,�[d]�H(ψ−1/d;List(V,W ); ∅) + (punctual , supported at 0)

in K
(

A
1
k
,Q�

)
. So we find

FTψj1,k,�Primn−2 (V mod W )
= j2,k,�[d]�H(ψ−1/d;List(V,W ); ∅)
+(punctual , supported at 0) + (sum of Lψζ

s)

in K
(
A

1
k
,Q�

)
. Now apply the inverse Fourier Transform FTψ . By

Theorem 7.2, we obtain an equality



Another Look at the Dwork Family 111

j1,k,�Primn−2(V mod W )[1]
= j2,k,�[d]�HV,W,k[1] + (geom. constant) + (punctual)

in the groupK
(

A
1
k
,Q�

)
. This is the free abelian group on isomorphism classes

of irreducible perverse sheaves on A
1
k
. So in any equality of elements in this

group, we can delete all occurrences of any particular isomorphism class, and
still have an equality.

On the open set Uk, the lisse sheaves Primn−2(V mod W ) and [d]�HV,W,k

are both pure, hence completely reducible on Uk by [De-Weil II, 3.4.1 (iii)]. So
both perverse sheaves j1,k,�Primn−2(V mod W )[1] and j2,k,�[d]�HV,W,k[1] on
A

1
k

are direct sums of perverse irreducibles which are middle extensions from
Uk, and hence have no punctual constituents. So we may cancel the punctual
terms, and conclude that we have

j1,k,�Primn−2(V mod W )[1] − j2,k,�[d]�HV,W,k[1] = (geom. constant)

in the group K
(
A

1
k
,Q�

)
. By Lemma 5.2, the left hand side has generic rank

zero, so there can be no geometrically constant virtual summand. Thus we
have an equality of perverse sheaves

j1,k,�Primn−2(V mod W )[1] = j2,k,�[d]�HV,W,k[1]

in the group K
(
A

1
k
,Q�

)
. Therefore the two perverse sheaves have geomet-

rically isomorphic semisimplifications. But by purity, both are geometrically
semisimple. This concludes the proof of Theorem 6.1, and so also the proof of
Theorem 5.3. ��

8 Appendix I: The transcendental approach

In this appendix, we continue to work with the fixed data (n, d,W ), but
now over the groundring C. We give a transcendental proof of Theorem 5.3,
but only for the ΓW /Δ-invariant part Primn−2(0 mod W ). Our proof is es-
sentially a slight simplification of an argument that Shepherd-Barron gave
in a November, 2006 lecture at MSRI, where he presented a variant of
[H-SB-T, pages 5–22]. We do not know how to treat the other eigensheaves
Primn−2(V mod W ), with V mod W a nontrivial character of ΓW /Δ, in an
analogous fashion.

First, let us recall the bare definition of hypergeometric D-modules. We
work on Gm (always over C), with coordinate λ. We write D := λd/dλ. We
denote by D := C[λ, 1/λ][D] the ring of differential operators on Gm. Fix non-
negative integers a and b, not both 0. Suppose we are given an unordered list
of a complex numbers α1, ..., αa ,not necessarily distinct. Let β1, ..., βb be a
second such list, but of length b. We denote by Hyp

(
α′
is;β

′
js
)

the differential
operator
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Hyp (αi′s;βj ′s) :=
∏

i

(D − αi) − λ
∏

j

(D − βj)

and by H(α′
is;β

′
js) the holonomic left D-module

H(αi′s;βj ′s) := D/DHyp(αi′s;βj ′s).

We say that H(α′
is;β

′
js) is a hypergeometric of type (a, b).

One knows [Ka-ESDE, 3.2.1] that this H is an irreducible D-module on
Gm, and remains irreducible when restricted to any dense open set U ⊂ Gm,
if and only if the two lists are disjoint “mod Z”, i.e., for all i, j, αi − βj is not
an integer. [If we are given two lists List1 and List2 which are not identical
mod Z, but possibly not disjoint mod Z, we can “cancel” the common (mod
Z) entries, and get an irreducible hypergeometric H(Cancel(List1,List2)).]

We will assume henceforth that this disjointness mod Z condition is satis-
fied, and that a = b. Then H(α′

is;β
′
js) has regular singular points at 0, 1,∞.

If the αi and βj lie in Q, pick a common denominator N , and denote by χαi

the character of μN (C) given by

χαi(ζ) := ζαiN .

Similarly for χβj . For any prime number �, the Riemann-Hilbert partner
of H(α′

is;β
′
js) is the Q� perverse sheaf Hcan(χαi

′s;χβj
′s)[1] on Gm, cf.

[Ka-ESDE, 8.17.11].
We denote by Dη := C(λ)[D] the ring of differential operators at the

generic point. Although this ring is not quite commutative, it is near enough
to being a one-variable polynomial ring over a field that it is left (and right)
Euclidean, for the obvious notion of long division. So every nonzero left ideal
in Dη is principal, generated by the monic (in Dη) operator in it of lowest
order. Given a left Dη-module M and an element m ∈ M , we denote by
Ann(m,M) the left ideal in Dη defined as

Ann(m,M) := {operators L ∈ Dη|L(m) = 0 in M} .
If Ann(m,M) 
= 0, we define Lm,M ∈ Dη to be the lowest order monic operator
in Ann(m,M).

We have the following elementary lemma, whose proof is left to the reader.

Lemma 8.1. Let N and M be left Dη-modules, f : M → N a horizon-
tal (:= Dη-linear) map, and m ∈ M . Suppose that Ann(m,M) 
= 0. Then
Ann(m,M) ⊂ Ann(f(m), N), and Lm,M is right-divisible by Lf(m),N .

We now turn to our complex family π : X → A
1, given by

Xλ := Xλ(W,d) :
n∑

i=1

wiX
d
i − dλXW = 0.

We pull it back to U := Gm − μd ⊂ A
1, over which it is proper and smooth,

and form the de Rham incarnation of Primn−2, which we denote Primn−2
dR .
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We also have the relative de Rham cohomolgy of (Pn−1 × U − XU )/U over
the base U in degree n− 1, which we denote simply Hn−1

dR ((P − X)/U). Both
are O-locally free D-modules (Gauss–Manin connection) on U , endowed with
a horizontal action of ΓW /Δ. The Poincaré residue map gives a horizontal,
ΓW /Δ-equivariant isomorphism

Res : Hn−1
dR ((P − X)/U) ∼= Primn−2

dR .

As in the discussion beginning Section 6, we write 1 =
∑

i biwi to obtain
a descent of our family through the d power map: the family πdesc : Y → Gm

given by

Yλ :
n∑

i=1

wiλ
−biY di = dXW .

The same group ΓW /Δ acts on this family, which is projective and smooth
over Gm − {1}. So on Gm − {1}, we have Primn−2

dR,desc for this family, and its
fixed part Primn−2

dR,desc(0 mod W ), whose pullback [d]�Primn−2
dR,desc(0 mod W )

is the sheaf Primn−2
dR (0 mod W )|(Gm − μd).

Our next step is to pull back further, to a small analytic disk. Choose a real
constant C > 4. Pull back the descended family to a small disk Uan,C around
C. We take the disk small enough that for λ ∈ Uan,C , we have |C/λ|bi < 2 for
all i. The extension of scalars map

Hn−1
dR ((P − Y)/(Gm − {1})) → Hn−1

dR ((P − Y)/(Gm − {1})) ⊗OGm−{1} OUan,C

is a horizontal map; we view both source and target as D-modules.
Over this disk, the C∞ closed immersion

γ : (S1)n/Diagonal → P
n−1,

(z1, . . . , zn) �→ (Cb1/dz1, . . . , Cbn−1/dzn−1, C
bn/dzn)

lands entirely in P−Y: its image is an (n− 1)-torus Z ⊂ P
n−1 that is disjoint

from Yλ for λ ∈ Uan,C . Restricting to the ΓW /Δ-invariant part

Hn−1
dR ((P − Y)/(Gm − {1}))(0 mod W ),

we get a horizontal map

Hn−1
dR ((P − Y)/(Gm − {1}))(0 mod W ) → H0(Uan,C ,OUan,C ), ω �→

∫

Z

ω.

Write yi := Yi/Yn for i = 1, . . . , n− 1. Denote by

ω ∈ Hn−1
dR ((P − Y)/(Gm − {1}))(0 mod W )

the (cohomology class of the) holomorphic (n− 1)-form
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ω := (1/2πi)n−1

(
dYW

dY W −∑n
i=1 wiλ

−biY di

) n−1∏

i=1

dyi/yi.

Our next task is to compute the integral
∫

Z

ω.

The computation will involve the Pochammer symbol. For α ∈ C, and
k ≥ 1 a positive integer, the Pochammer symbol (α)k is defined by

(α)k := Γ (α+ k)/Γ (α) =
k−1∏

i=0

(α+ i).

We state for ease of later reference the following elementary identity.

Lemma 8.2. For integers k ≥ 1 and r ≥ 1, we have

(kr)!/rkr =
r∏

i=1

(i/r)k.

Lemma 8.3. We have the formula

∫

Z

ω = 1 +
∑

k≥1

( ∏d
i=1(i/d)k∏n

i=1

∏wi

j=1(j/wi)k

)
(1/λ)k.

Proof. Divide top and bottom by dYW , expand the geometric series, and
integrate term by term. This is legitimate because at a point z ∈ Z, the
function

∑n
i=1(wi/d)λ

−biY di /Y
W has the value

n∑

i=1

(wi/d)λ−biCbizdi /Cz
W =

n∑

i=1

(wi/d)(C/λ)bizdi /Cz
W ,

which has absolute value ≤ 2 (
∑n

i=1(wi/d)) /C = 2/C ≤ 1/2. Because
each term in the geometric series is homogeneous of degree zero, the in-
tegral of the k’th term in the geometric series is the coefficient of zkW

in
(∑n

i=1(wi/d)(λ)−bizdi
)k. This coefficient vanishes unless k is a multiple

of d (because gcd(w1, ..., wn) = 1). The integral of the dk’th term is the
coefficient of zkdW in

(∑n
i=1(wi/d)(λ)−bizdi

)dk, i.e., the coefficient of zkW

in
(∑n

i=1(wi/d)(λ)−bizi
)dk. Expanding by the multinomial theorem, this

coefficient is

(dk)!
n∏

i=1

(
((wi/d)λ−bi)kwi/(kwi)!

)
= (λ)−k((dk)!/ddk)/

n∏

i=1

(
(kwi)!/wkwi

i

)
,

which, by the previous lemma, is as asserted. ��
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This function

F (λ) :
∫

Z

ω = 1 +
∑

k≥1

( ∏d
i=1(i/d)k∏n

i=1

∏wi

j=1(j/wi)k

)
(1/λ)k

is annihilated by the following differential operator. Consider the two lists of
length d.

List(all d) := {1/d, 2/d, ..., d/d} ,
List(0,W ) := {1/w1, 2/w1, ..., w1/w1, ..., 1/wn, 2/wn, ..., wn/wn} .

These lists are certainly not identical mod Z; the second one contains 0 with
multiplicity n, while the first contains only a single integer. Let us denote the
cancelled lists, whose common length we call a,

Cancel(List(all d);List(0,W )) = (α1, ..., αa); (β1, ..., βa).

So we have

F (λ) :
∫

Z

ω = 1 +
∑

k≥1

(∏a
i=1(αi)k∏a
i=1(βi)k

)
(1/λ)k,

which one readily checks is annihilated by the differential operator

Hyp0,W := Hyp(α′
is;βi − 1′s) :=

a∏

i=1

(D − αi) − λ

a∏

i=1

(D − (βi − 1)).

Theorem 8.4. We have an isomorphism of D-modules on Gm − {1},

Hn−1
dR ((P − Y)/(Gm − {1}))(0 mod W ) ∼= H0,W |(Gm − {1})

:= H(α′
is;βi − 1′s)|(Gm − {1}).

Proof. Both sides of the alleged isomorphism are O-coherent D-modules on
Gm − {1}, so each is the “middle extension” of its restriction to any Zariski
dense open set in Gm − {1}. So it suffices to show that both sides become
isomorphic over the function field of Gm − {1}, i.e., that they give rise to
isomorphic Dη-modules. For this, we argue as follows. Denote by A the ring

A := H0(Uan,C ,OUan,C ) ⊗OGm−{1} C(λ),

which we view as a Dη-module. We have the horizontal map

Hn−1
dR ((P − Y)/(Gm − {1}))(0 mod W )

∫
Z→ H0(Uan,C ,OUan,C).

Tensoring over OGm−{1} with C(λ), we obtain a horizontal map

Hn−1
dR ((P − Y)/C(λ))(0 mod W )

∫
Z→ A.
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By (the Hyp analogue of) Lemma 5.2, we know that the source has C(λ)-
dimension a:= the order of Hyp(α′

is;βi−1′s). So the element ω in the source is
annihilated by some operator in Dη of order at most a, simply because ω and
its first a derivatives must be linearly dependent over C(λ). So the lowest order
operator annihilating ω in Hn−1

dR ((P − Y)/C(λ))(0 mod W ), call it Lω,HdR ,
has order at most a. On the other hand, the irreducible operator Hyp(α′

is;βi−
1′s) annihilates

∫
Z
ω ∈ A. But

∫
Z
ω 
= 0, so Ann(

∫
Z
ω,A) is a proper

left ideal in Dη, and hence is generated by the irreducible monic operator
(1/(1−λ))Hyp (α′

is;βi − 1′s). By Lemma 8.2, we know that Lω,HdR is divisible
by (1/(1−λ))Hyp(α′

is;βi−1′s). But Lω,HdR has order at most a, the order of
Hyp(α′

is;βi−1′s), so we conclude that Lω,HdR = (1/(1 − λ))Hyp(α′
is;βi − 1′s).

Thus the Dη-span of ω in the group Hn−1
dR ((P − Y)/C(λ))(0 mod W ) is

Dη/DηHyp(α′
is;βi − 1′s). Comparing dimensions we see that this Dη-span

is all of Hn−1
dR ((P − Y)/C(λ))(0 mod W ). ��

Corollary 8.5. For the family

Xλ := Xλ(W,d) :
n∑

i=1

wiX
d
i − dλXW = 0,

its Primn−2
dR (0 mod W ) as D-module on A

1 − μd is related to the D-module
[d]�(H0,W |(Gm − {1})) on Gm − μd as follows.

(1) We have an isomorphism of D-modules on Gm − μd,

Primn−2
dR (0 mod W )|(Gm − μd) ∼= [d]�(H0,W |(Gm − {1})).

(2) Denote by j1 : A
1 − μd ⊂ A

1 and j2 : Gm − μd ⊂ A
1 the inclusions. Then

we have an isomorphism of D-modules on A
1 of the middle extensions

j1,!,�(Primn−2
dR (0 mod W )) ∼= j2,!,�([d]�(H0,W |(Gm − {1}))).

Proof. The first isomorphism is the pullback by d’th power of the isomorphism
of the theorem above. We obtain the second isomorphism as follows. Denote
by j3 : Gm − μd ⊂ A

1 − μd the inclusion. Because Primn−2
dR (0 mod W ) is an

O-coherent D-module on A
1 − μd, it is the middle extension

j3,!,�
(
Primn−2

dR (0 mod W )|(Gm − μd)
)
.

Because j2 = j1 ◦ j3, we obtain the second isomorphism by applying j2,!,� to
the first isomorphism. ��
Theorem 8.6. Suppose n ≥ 3. For either the family

Xλ := Xλ(W,d) :
n∑

i=1

wiX
d
i − dλXW = 0

over A
1 − μd or the descended family

Yλ :
n∑

i=1

wiλ
−biY di = dXW
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over Gm−{1} consider its Primn−2
dR (0 mod W ) (resp. Primn−2

dR,desc(0 mod W ))
as a D-module, and denote by a its rank. For either family, its differential
galois group Ggal (which here is the Zariski closure of its monodromy group)
is the symplectic group Sp(a) if n − 2 is odd, and the orthogonal group O(a)
if n− 2 is even.

Proof. Poincaré duality induces on Primn−2
dR (0 mod W ) (resp. on the module

Primn−2
dR,desc(0 mod W )) an autoduality which is symplectic if n − 2 is odd,

and orthogonal if n − 2 is even. So we have a priori inclusions Ggal ⊂ Sp(a)
if n− 2 is odd, Ggal ⊂ O(a) if n− 2 is even. It suffices to prove the theorem
for the descended family. This is obvious in the Sp case, since the identity
component of Ggal is invariant under finite pullback. In the O case, we must
rule out the possibility that the pullback has group SO(a) rather than O(a).
For this, we observe that an orthogonally autodual hypergeometric of type
(a, a) has a true reflection as local monodromy around 1 (since in any case
an irreducible hypergeometric of type (a, a) has as local monodromy around
1 a pseudoreflection, and the only pseudoreflection in an orthogonal group is
a true reflection). As the d’th power map is finite étale over 1, the pullback
has a true reflection as local monodromy around each ζ ∈ μd. So the group
for the pullback contains true reflections, so must be O(a).

We now consider the descended family. So we are dealing with H0,W :=
H(α′

is;βi−1′s). From the definition of H0,W , we see that β = 1 mod Z occurs
among the βi precisely n − 1 times (n − 1 times and not n times because of
a single cancellation with List(all d)). Because n − 1 ≥ 2 by hypothesis,
local monodromy around ∞ is not semisimple [Ka-ESDE, 3.2.2] and hence
H(α′

is;β
′
js) is not Belyi induced or inverse Belyi induced, cf. [Ka-ESDE, 3.5],

nor is its G0,der trivial.
We next show that H0,W is not Kummer induced of any degree r ≥ 2.

Suppose it is not. As the αi all have order dividing d in C/Z, r must divide
d, since 1/r mod Z is a difference of two αi’s, cf. [Ka-ESDE, 3.5.6]. But the
βj mod Z are also stable by x �→ x + 1/r, so we would find that 1/r mod Z

occurs with the same multiplicity n − 1 as 0 mod Z among the βj mod Z.
So r must divide at least n− 1 of the wi; it cannot divide all the wi because
gcd(w1, ..., wn) = 1. But this 1/r cannot cancel with List(all d), otherwise its
multiplicity would be at most n − 2. This lack of cancellation means that r
does not divide d, contradiction.

Now we appeal to [Ka-ESDE, 3.5.8]: let H(α′
is;β

′
js) be an irreducible hy-

pergeometric of type (a, a) which is neither Belyi induced nor inverse Belyi
induced not Kummer induced. Denote by G its differential galois group Ggal ,
G0 its identity component, and G0,der the derived group (:= commutator sub-
group) of G0. Then G0,der is either trivial or it is one of SL(a) or SO(a) or,
if a is even, possibly Sp(a).

In the case of H0,W , we have already seen that G0,der
gal is not trivial. Given

that Ggal lies in either Sp(a) or O(a), depending on the parity of n−2, the only
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possibility is that Ggal = Sp(a) for n−2 odd, and that Ggal = O(a) or SO(a)
if n−2 is even. In the even case, the presence of a true reflection in Ggal rules
out the SO case. ��
Corollary 8.7. In the context of Theorem 5.3, on each geometric fibre of
UR0[1/�]/Spec(R0[1/�]), the geometric monodromy group Ggeom of the sheaf
Primn−2(0 mod W ) is the full symplectic group Sp(a) if n− 2 is odd, and is
the full orthogonal group O(a) if n− 2 is even.

Proof. On a C-fibre, this is just the translation through Riemann–Hilbert of
the theorem above. The passage to other geometric fibres is done by the Tame
Specialization Theorem [Ka-ESDE, 8.17.3]. ��

When does it happen that Primn−2
dR (0 mod W ) has rank n − 1 and all

Hodge numbers 1?

Lemma 8.8. The following are equivalent.

(1) Primn−2
dR (0 mod W ) has rank n− 1.

(2) Every wi divides d, and for all i 
= j, gcd(wi, wj) = 1.
(3) Local monodromy at ∞ is a single unipotent Jordan block.
(4) Local monodromy at ∞ is a single Jordan block.
(5) All the Hodge numbers Prima,b

dR(0 mod W )a+b=n−2 are 1.

Proof. (1)⇒(2) The rank is at least n − 1, since this is the multiplicity of 0
mod Z as a β in H0,W . If the rank is no higher, then each wi must divide d,
so that the elements 1/wi, ..., (wi − 1)/wi mod Z can cancel with List(all d).
And the wi must be pairwise relatively prime, for if a fraction 1/r mod Z with
r ≥ 2 appeared among both 1/wi, ..., (wi − 1)/wi and 1/wj, ..., (wj − 1)/wj ,
only one of its occurrences at most can cancel with List(all d).

(2)⇒(1) If all wi divide d, and if the wi are pairwise relatively prime, then
after cancellation we find that H0,W has rank n− 1.

(1)⇒(3) If (1) holds, then the βi’s are all 0 mod Z, and there are n − 1
of them. This forces H0,W and also [d]�H0,W to have its local monodromy
around ∞, call it T , unipotent, with a single Jordan block, cf. [Ka-ESDE,
3.2.2].

(3)⇒(4) is obvious.
(4)⇒(3) Although d’th power pullback may change the eigenvalues of local

monodromy at ∞, it does not change the number of distinct Jordan blocks.
But there is always one unipotent Jordan block of size n− 1, cf. the proof of
(1)⇒(2).

(3)⇒(5) If not all the n−1 Hodge numbers are 1, then some Hodge number
vanishes, and at most n− 2 Hodge numbers are nonzero. But by [Ka-NCMT,
14.1] [strictly speaking, by projecting its proof onto ΓW /Δ-isotypical compo-
nents] any local monodromy is quasiunipotent of exponent of nilpotence ≤ h:=
the number of nonzero Hodge numbers. So our local monodromy T around
∞, already unipotent, would satisfy (T − 1)n−2 = 0. But as we have already
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remarked, H0,W always has unipotent Jordan block of size n − 1. Therefore
all the Hodge numbers are nonzero, and hence each is 1.

(5)⇒(1) is obvious. ��
Remark 8.9. Four particular n = 5 cases where condition (2) is satisfied,
namely W = (1, 1, 1, 1, 1), W = (1, 1, 1, 1, 2), W = (1, 1, 1, 1, 4), and W =
(1, 1, 1, 2, 5), were looked at in detain in the early days of mirror symmetry,
cf. [Mor, Section 4, Table 1].

Whatever the rank of Primn−2
dR (0 mod W ), we have:

Lemma 8.10. All the Hodge numbers Prima,b
dR(0 mod W )a+b=n−2 are

nonzero.

Proof. Repeat the proof of (3)⇒(5). ��

9 Appendix II: The situation in characteristic p, when p
divides some wi

We continue to work with the fixed data (n, d,W ). In this appendix, we indi-
cate briefly what happens in a prime-to-d characteristic p which divides one
of the wi. For each i, we denote by w◦

i the prime-to-p part of wi, i.e.,

wi = w◦
i × (a power of p),

and we define
W ◦ := (w◦

1 , ..., w
◦
n).

We denote by dW◦ the integer

dW◦ := lcm(w◦
1 , ..., w

◦
n)d,

and define
d′ :=

∑

i

w◦
i .

For each i, we have wi ≡ w◦
i mod p − 1, so we have the congruence, which

will be used later,
d ≡ d′ mod p− 1.

We work over a finite field k of characteristic p prime to d that contains the
dW◦ ’th roots of unity. We take for ψ a nontrivial additive character of k that
is of the form ψFp ◦ Tracek/Fp

, for some nontrivial additive character ψFp of
Fp. The signifigance of this choice of ψ is that for q = pe, e ≥ 1, any power of
p, under the q’th power map we have

[q]�Lψ = Lψ, [q]�Lψ = Lψ
on A

1
k.
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The family we study in this situation is π : X → A
1,

Xλ := Xλ(W,d) :
n∑

i=1

w◦
iX

d
i − dλXW = 0.

The novelty is that, because p divides some wi, this family is projective and
smooth over all of A

1.
The group ΓW /Δ operates on this family. Given a character V mod W of

this group, the rank of the eigensheaf Primn−2(V mod W ) is still given by the
same recipe as in Lemma 3.1(1), because at λ = 0 we have a smooth Fermat
hypersurface of degree d.

Given an element V = (v1, ..., vn) ∈ (Z/dZ)n0 , we attach to it an unordered
list List(V,W ) of d′ =

∑
i w

◦
i multiplicative characters of k×, by the following

procedure. For each index i, we denoted by χvi the character of k× given by

ζ �→ ζ(vi/d)#k
×
.

This character χvi has w◦
i (as opposed to wi) distinct wi’th roots. We then

define

List(V,W ) = {all w′
1th roots of χv1 , ..., all w′

nth roots of χvn} .
We will also need the same list, but for −V , and the list

List(all d) := {all characters of order dividing d} .
The two lists List(−V,W ) and List(all d) are not identical, as they have
different lengths d′ and d respectively, so we can apply the Cancel operation,
and form the hypergeometric sheaf

HV,W := Hcan(Cancel(List(all d);List(−V,W )))

on Gm,k. Exactly as in Lemma 5.2, if Primn−2(V mod W ) is nonzero, its rank
is the rank of HV,W .

An important technical fact in this situation is the following variant of
Theorem 7.2, cf. [Ka-ESDE, 9.3.2], which “works” because F

×
p has order p−1.

Theorem 9.1. Denote by ψ−1/d the additive character x �→ ψ(−x/d), and de-
note by j : Gm,k ⊂ A

1
k the inclusion. Denote by Λ1, ..., Λd the list List(all d) of

all the multiplicative characters of k× of order dividing d. Let d′ be a strictly
positive integer with d′ ≡ d mod p − 1. For any unordered list of d′ multi-
plicative characters ρ1, ...ρd′ of k× which is not identical to List(all d), the
perverse sheaf

FTψj�[d]�H(ψ−1/d; ρ1, ...ρd′ ; ∅)[1]

on A
1
k is geometrically isomorphic to the perverse sheaf

j�[d]�H(ψ;Cancel(List(all d); ρ1, ..., ρd′))[1].
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The main result is the following.

Theorem 9.2. Suppose that Primn−2(V mod W ) is nonzero and denote by
j : Gm ⊂ A

1 the inclusion. Choose V in the coset V mod W . There exists a
constant AV,W ∈ Q

×
� and an isomorphism of lisse sheaves on A

1
k,

Primn−2(V mod W ) ∼= j�[d]�HV,W ⊗ (AV,W )deg.

Proof. Because our family is projective and smooth over all of A
1, Deligne’s

degeneration theorem [De-TLCD, 2.4] gives a decomposition

Rπ�Q�
∼= Primn−2[2 − n] ⊕ (geom. constant).

So applying Fourier Transform, we get

FTψRπ�Q�(V mod W )|Gm
∼= FTψPrimn−2(V mod W )[2 − n]|Gm.

On the open set V ⊂ X where XW is invertible, the restriction of π becomes
the map f , now given by

(X1, ..., Xn) �→
∑

i

(w◦
i /d)X

d
i /X

W .

Then the argument of Lemma 7.3 gives

FTψPrimn−2(V mod W )[2 − n]|Gm
∼= FTψRf!Q�(V mod W )|Gm.

Theorem 7.5 remains correct as stated. [In its proof, the only modification
needed is the analysis now of the sheaves Kl(ψ−w◦

i /d
;χvi , wi). Pick for each i

a wi’th root ρi of χvi . We have geometric isomorphisms

Kl(ψ−w◦
i /d

;χvi , wi) = [wi]�Kl(ψ−w◦
i /d

;χvi) = Lρi ⊗ [wi]�Lψ−w◦
i

/d

= Lρi ⊗ [w◦
i ]�Lψ−w◦

i
/d

∼= Lρi ⊗Kl(ψ−1/d; all the w◦
i char ′s of order dividing wi)

∼= Kl(ψ−1/d; all the w◦
i w ′

i th roots of χvi).]

At this point, we have a geometric isomorphism

FTψPrimn−2(V mod W )[2 − n]|Gm
∼= [d]�H(ψ−1/d;List(V,W ); ∅)[2 − n].

So in the Grothendieck group K(A1
k
,Q�), we have

FTψPrimn−2(V mod W )

= j�[d]�H(ψ−1/d;List(V,W ); ∅) + (punctual , supported at 0).
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Applying the inverse Fourier Transform, we find that in K(A1
k
,Q�) we have

Primn−2(V mod W ) = j�[d]�HV,W + (geom. constant).

As before, the fact that Primn−2(V mod W ) and j�[d]�HV,W have the same
generic rank shows that there is no geometically constant term, so we have
an equality of perverse sheaves in K(A1

k
,Q�),

Primn−2(V mod W ) = j�[d]�HV,W .

So these two perverse sheaves have isomorphic semisimplifications. Again by
purity, both are geometrically semisimple. So the two sides are geometrically
isomorphic. To produce the constant field twist, we repeat the descent ar-
gument of Lemma 6.2 to reduce to the case when both descended sides are
geometrically irreducible and geometrically isomorphic, hence constant field
twists of each other. ��

10 Appendix III: Interesting pieces in the original
Dwork family

In this appendix, we consider the case n = d,W = (1, 1, ..., 1). We are in-
terested in those eigensheaves Primn−2(V mod W ) that have unipotent local
monodromy at ∞ with a single Jordan block. In view of the explicit descrip-
tion of Primn−2(V mod W )|(Gm − μd) as [d]�HV,W , and the known local
monodromy of hypergeometric sheaves, as recalled in Section 4, we have the
following characterization.

Lemma 10.1. In the case n = d,W = (1, 1, ..., 1), let V mod W be a char-
acter of ΓW /Δ such that Primn−2(V mod W ) is nonzero. The following are
equivalent.

(1) Local monodromy at ∞ on Primn−2(V mod W ) has a single Jordan block.
(2) Local monodromy at ∞ on Primn−2(V mod W ) is unipotent with a single

Jordan block.
(3) Every V = (v1, ..., vn) in the coset V mod W has the following property:

there is at most one vi which occurs more than once, i.e., there is at most
one a ∈ Z/dZ for which the number of indices i with vi = a exceeds 1.

(4) A unique V = (v1, ..., vn) in the coset V mod W has the following property:
the value 0 ∈ Z/dZ occurs more than once among the vi, and no other value
a ∈ Z/dZ does.

Proof. In order for Primn−2(V mod W ) to be nonzero, the list List(−V,W )
must differ from List(all d). In this n = d case, that means precisely that
List(−V,W ) must have at least one value repeated. Adding a suitable multiple
of W = (1, 1, ..., 1), we may assume that the value 0 occurs at least twice
among the vi. So (3) ⇔ (4).
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For a hypergeometric Hcan(χ′
is; ρ

′
js) of type (a, a), local monodromy at ∞

has a single Jordan block if and only if all the ρj ’s coincide, in which case
the common value of all the ρj ’s is the eigenvalue in that Jordan block. And
[d]�Hcan(χ′

is; ρ
′
js)’s local monodromy at ∞ has the same number of Jordan

blocks (possibly with different eigenvalues) as that of Hcan(χ′
is; ρ

′
js). In our

situation, if we denote by (χ1, ..., χd) all the characters of order dividing d,
and by (χ−v1 , ..., χ−vd

) the list List(−V,W ), then

HV,W = Hcan(Cancel((χ1, ..., χd); (χ−v1 , ..., χ−vd
))).

So in order for local monodromy at ∞ to have a single Jordan block, we
need all but one of the characters that occur among the χvi to cancel into
List(all d). But those that cancel are precisely those which occur with multi-
plicity 1. So (1) ⇔ (3). Now (2) ⇒ (1) is trivial, and (2) ⇒ (4) by the explicit
description of local monodromy at ∞ in terms of the ρj ’s. ��
Lemma 10.2. Suppose the equivalent conditions of Lemma 10.1 hold. De-
note by a the rank of Primn−2(V mod W ). Then on any geometric fibre of
(A1 − μd)/Spec(Z[ζd][1/d�]), the geometric monodromy group Ggeom attached
to Primn−2(V mod W ) has identity component either SL(a) or SO(a) or, if
a is even, possibly Sp(a).

Proof. By the Tame Specialization Theorem [Ka-ESDE, 8.17.13], the group
is the same on all geometric fibres. So it suffices to look in some characteristic
p > a. Because on our geometric fibre HV,W began life over a finite field, and
is geometrically irreducible, G0

geom is semisimple. The case a = 1 is trivial.
Suppose a ≥ 2. Because its local monodromy at ∞ is a single unipotent
block, the hypergeometric HV,W is not Belyi induced, or inverse Belyi induced,
or Kummer induced, and G0,der

geom is nontrivial. The result now follows from
[Ka-ESDE, 8.11.2]. ��
Lemma 10.3. Suppose the equivalent conditions of Lemma 10.1 hold. Denote
by a the rank of Primn−2(V mod W ). Suppose a ≥ 2. Denote by V the unique
element in the coset V mod W in which 0 ∈ Z/dZ occurs with multiplicity
a+1, while no other value occurs more than once. Then we have the following
results.

(1) Suppose that −V is not a permutation of V . Then

Ggeom = SL(a)

if n− 2 is odd, and

Ggeom = {A ∈ GL(a)|det(A) = ±1}
if n− 2 is even.

(2) If −V is a permutation of V and n− 2 is odd, then a is even and

Ggeom = Sp(a).
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(3) If −V is a permutation of V and n− 2 is even, then a is odd and

Ggeom = O(a).

Proof. That these results hold for HV,W results from [Ka-ESDE, 8.11.5, 8.8.1,
8.8.2]. In applying those results, one must remember that

∑
i vi = 0 ∈ Z/dZ,

which implies that (“even after cancellation”) local monodromy at ∞ has de-
terminant one. Thus in turn implies that when d, or equivalently n−2, is even,
then (“even after cancellation”) local monodromy at 0 has determinant the
quadratic character, and hence local monodromy at 1 also has determinant
the quadratic character. So in the cases where the group does not have deter-
minant one, it is because local monodromy at 1 is a true reflection. After [d]�,
which is finite étale over 1, we get a true reflection at each point in μd. ��
Lemma 10.4. If the equivalent conditions of the previous lemma hold, then
over C the Hodge numbers of Primn−2(V mod W ) form an unbroken string
of 1’s, i.e., the nonzero among the Primb,n−2−b(V mod W ) are all 1, and
the b for which Primb,n−2−b(V mod W ) is nonzero form (the integers in) an
interval [A,A− 1 + a] for some A.

Proof. From the explicit determination of Ggeom , we see in particular that
Primn−2(V mod W ) is an irreducible local system. Looking in a C-fibre of
(A1 − μd)/Spec(Z[ζd][1/d�]) and applying Riemann-Hilbert, we get that the
D-module Primn−2

dR (V mod W ) is irreducible. By Griffiths transversality, this
irreducibility implies that the b for which Primb,n−2−b(V mod W ) is nonzero
form (the integers in) an interval. The fact that local monodromy at ∞ is
unipotent with a single Jordan block implies that the number of nonzero
Hodge groups Primb,n−2−b(V mod W ) is at least a, cf. the proof of Lemma
8.8, (3) ⇔ (5). ��
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[SGA 4 Tome 3] Théorie des Topos et Cohomologie Etale des Schémas, Tome 3.
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Summary. In this paper, we revisit the formalism of graphs, trees, and surfaces
which allows one to build cell models for operads of algebraic interest and repre-
sent them in terms of a dynamical picture of moving strings—hence relating string
dynamics to algebra and geometry. In particular, we give a common framework for
solving the original version of Deligne’s conjecture, its cyclic, A∞, and cyclic–A∞
versions. We furthermore study a question raised by Kontsevich and Soibelman
about models of the little discs operad. On one hand, we give a new smooth model
and on the other hand, a minimally small cell model for the A∞ case. Further ge-
ometric results these models provide are novel decompositions and realizations of
cyclohedra as well as explicit simple cell representatives for Dyer–Lashof–Cohen op-
erations. We also briefly discuss the generalizations to moduli space actions and
applications to string topology as well as further directions.
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Introduction

As often happens in pure mathematics, a dynamical physical point of view
can be very helpful in solving complex problems. One instance of these dy-
namics which has been particularly useful is string theory. There are many
incarnations of this theory given by highly developed mathematical tools, such
as Gromov–Witten theory or singularity theory. We will take a less algebraic
and more geometric point of view in the following. Surprisingly, this approach
turns out to have far-reaching algebraic and topological implications. The ba-
sic idea is to treat a string as an interval or a circle with a measure. As these
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types of strings move, split, and recombine, they give rise to a surface with
a partially measured foliation. These ideas are completely described in [KP],
where actually we are considering strings that move on an oriented surface
with boundary. We will consider only the closed case here and furthermore
restrict ourselves to surfaces with no internal punctures.

The first step in obtaining applications to algebra and topology is to rep-
resent these surfaces by certain types of ribbon graphs. The measure of the
foliation translates to weights on the edges of these graphs. To be precise,
there are two types of graphs. One is called the arc graph, which is obtained
by replacing each band of parallel leaves of the foliation with one edge called
an arc. There is a dual picture, provided the foliation sweeps out the surface.
The condition for this to occur is that the complementary regions of the arcs
be polygonal. This condition is called quasi–filling. In this case there is the
natural notion of a dual graph. This dual graph is again a ribbon graph with
weights on its edges, and furthermore the surface it defines is precisely of the
same topological type as the underlying surface. We stress that in general this
need not be the case. Usually we call this dual graph if it exists the associated
ribbon graph or simply the ribbon graph. In these considerations we take the
closed strings to be pointed, which induces marked points on the boundary
and marked points on the cycles of the ribbon graph.

Now it is striking that with this picture one obtains several well-known al-
gebraic and topological objects in one fell swoop. The first object is an operad
[KLP] which is defined when all the boundaries are hit by arcs. This contains
the moduli space of genus g curves with n marked points and a tangent vec-
tor at each of its points as a rational suboperad. Here rational means densely
defined. Furthermore, taking a different route and using R≥0 graded operads
instead [KP], one can even induce a modular operad structure on cohomol-
ogy. We will forego this option and concentrate on the cell level instead. This
cell level is described by graphs, one ribbon graph of the above type for each
cell. Focusing our attention on different types of graphs, we obtain natural
operads, cyclic operads, PROPs, and other algebraic structures.1

Moreover, we are naturally led to cell models for various known and impor-
tant operads such as the little discs, and the framed little discs. Extending the
graphs, we are led to the definition of a ribbon graph operad for a cell model
of moduli space and a model for a PROP which can be called the Sullivan
PROP.2

In the current note, we wish to present the results as a reverse engineering
of sorts, starting with the combinatorics and building spaces out of them.
This is contrary to the historical genesis and the dynamic approach mentioned
above, but it is a purely algebraic/combinatorial formulation which matches
up beautifully with natural operations on the Hochschild complex of various

1See, e.g., [MSS] for a review of these notions and the operads mentioned below.
2There are actually several versions of this PROP on the topological and chain

level see, e.g., [CS,S1,S2,CG,TZ]; our version is that of [K4,K5].
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algebras. We will treat the associative, A∞, Frobenius, and Frobenius A∞
algebra cases. The latter has sometimes been called [Ko2] a cyclic A∞ algebra.
The classical case has been solved in [Ko3,T,MS1,Vo1,KS,MS2,BF,K2], the
cyclic case was first established in [K3] and then extended in [TZ] (see also
[MS4] for an announcement of a different proof), the A∞ case has been treated
in [KS]. The plethora of proofs goes back to the possibility of choosing suitable
chain models. In our approach the chain models are all CW models which are
minimal in a sense we explain below. Moreover, they all appear naturally
in a geometric picture dictated by string dynamics. The desire to have such
operations has three main sources: string topology [CS,Vo2,CJ,CG,Ch,Me,
S1,S2], Deligne’s conjecture, and D-brane considerations [KR,KLi1,KLi2]; see
[K4,K5] for details.

Taking this approach, there are algebraic questions and obstacles, but it
turns out that each time the geometry tells us how to overcome them. Along
the way, we introduce new cell models for the little discs and framed little discs,
some of which are smooth. This partially answers a question of Kontsevich and
Soibelman on this subject. Finally, our cell models also cast light on the Dyer–
Lashof Araki–Kudo [AK, Co, DL] operations on the Hochschild cohomology,
which thanks to the affirmative answer to Deligne’s conjecture formally has
the structure of a double loop space. Here we give the explicit cells that are
responsible for the operations, naturally reproducing the results of [We,Tou].

Finally, we comment on a new natural geometric stabilization for our sur-
face operad. This lends itself to exploring all of the above constructions in a
stable limit.

The paper is organized as follows:
§1 contains all the necessary details about graphs. §2 contains the con-

struction of various cell models of the little discs and framed little discs using
trees and graphs. In this paragraph, in particular, we also give a new smooth
cellular model for the little discs and the framed little discs and a cell model
for the minimal operad of [KS]. We furthermore identify the cells responsible
for the Dyer–Lashof operations. To illustrate our approach to operations using
trees, §3 contains a full self-contained proof of the cyclic version of Deligne’s
conjecture for a Frobenius algebra. In §3 we also go on to treat the A∞ and
cyclic A∞ versions. §4 contains the extensions to moduli space and the Sulli-
van PROP, hence string topology. It also contains the important new notion of
operadic correlation functions. We close the discussion in §5 with an outlook
and complementary results on the higher loop spaces and stabilization.
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Conventions

We fix k to be a field of arbitrary characteristic. We let n̄ be the set {0, . . . , n}.
I will denote the interval [0, 1], and Δn the standard n-simplex. Furthermore,
Kn is the n-th Stasheff polytope or associahedron, and Wn is the nth cyclo-
hedron or Bott–Taubes polytope, see, e.g., [MSS] for the definitions of these
polytopes.

1 Graphs, Spaces of Graphs, and Cell Models

1.1 Classes of Graphs

In this section, we formally introduce the graphs and the operations on graphs
which we will use in our analysis.

We will use several types of trees and ribbon graphs.

Graphs

A graph Γ is a tuple (VΓ , FΓ , ıΓ : FΓ → FΓ , ∂Γ : FΓ → VΓ ), where ıΓ is
an involution ı2Γ = id without fixed points. We call VΓ the vertices of Γ and
FΓ the flags of Γ . The edges EΓ of Γ are the orbits of the flags under the
involution ıΓ . A directed edge is an edge together with an order of the two
flags which define it. In case there is no risk of confusion, we will drop the
subscripts Γ . Notice that f �→ (f, ı(f)) gives a bijection between flags and
directed edges.

We also call FΓ,v := ∂−1(v) ⊂ FΓ the set of flags of the vertex v. If Γ is
clear from the context, we will just write Fv, and we also call |Fv| the valence
of v and denote it by val(v). We also let E(v) = {{f, ı(f)}|f ∈ F (v)} and call
these edges the edges incident to v.

The geometric realization of a graph is given by considering each flag as
a half-edge and glueing the half-edges together using the involution ı. This
yields a one-dimensional CW complex whose realization we call the realization
of the graph.

As usual, a tree is a graph whose image is contractible. A black and white
graph, b/w for short, is a graph with a map VΓ → {0, 1}. The inverse image
of 1 is called the set of white vertices and denoted by Vw, while the inverse
image of 0 is called the black vertices, and denoted by Vb.

Ribbon Graphs

A ribbon graph with tails is a connected graph together with a cyclic order of
the set of flags FΓ (v) of the vertex v for every vertex v. A ribbon graph with
tails that satisfies val(v) ≥ 2 for all vertices v will simply be called a ribbon
graph. Notice that we do not fix val(v) ≥ 3. We will call a ribbon graph stable
if it does satisfy this condition.
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For a ribbon graph with tails, the tail vertices are Vtail={v ∈ VΓ |val(v)=1},
the tail edges Etail(Γ ) are the edges incident to the tail vertices, and the tail
flags Ftail(Γ ) are those flags of the tail edges which are not incident to the
tail vertices.

A tree that is a ribbon graph with tails is called a planar tree.
A graph with a cyclic order of the flags at each vertex gives rise to bijections

Cycv : Fv → Fv, where Cycv(f) is the next flag in the cyclic order. Since
F = �Fv, one obtains a map Cyc : F → F . The orbits of the map N := Cyc◦ı
are called the cycles or the boundaries of the graph. These sets have the
induced cyclic order.

Notice that each boundary can be seen as a cyclic sequence of directed
edges. The directions are as follows. Start with any flag f in the orbit. In the
geometric realization go along this half-edge starting from the vertex ∂(f),
continue along the second half-edge ı(f) until you reach the vertex ∂(ı(f)),
then continue starting along the flag Cyc(ı(f)) and repeat.

An angle is a pair of flags (f,Cyc(f)); we denote the set of angles by ∠Γ .
It is clear that f �→ (f,Cyc(f)) yields a bijection between FΓ and ∠Γ . It is,
however, convenient to keep both notions.

By an angle marking we mean a map mk∠ : ∠Γ → Z/2Z.

The genus of a ribbon graph and its surface

The genus g(Γ ) of a ribbon graph Γ is given by 2 − 2g(Γ ) = |VΓ | − |EΓ | +
Cyc(Γ ) = χ(Γ ) + Cyc(Γ ), where Cyc(Γ ) = #cycles.

The surface Σ(Γ ) of a ribbon graph Γ is the surface obtained from the
realization of Γ by thickening the edges to ribbons. That is, replace each 0-
simplex v by a closed oriented disc D(v) and each 1-simplex e by e×I oriented
in the standard fashion. Now glue the boundaries of e× I to the appropriate
discs in their cyclic order according to the orientations. This is a surface whose
boundary components are given by the cycles of Γ . The graph Γ is naturally
embedded as the spine of this surface Γ ⊂ Σ(Γ ). Let Σ̄(Γ ) be the surface
obtained from Σ(Γ ) by filling in the boundaries with discs. Notice that the
genus of the Σ̄(Γ ) is g(Γ ) and χ(Γ ) = 2 − 2g(Σ(Γ )).

Treelike, normalized Marked ribbon graphs

Definition 1.1. A ribbon graph together with a distinguished cycle c0 is
called treelike if

(i) the graph is of genus 0 and
(ii) for all flags either f ∈ c0 or ı(f) ∈ c0 (and not both).

In other words, each edge is traversed exactly once by the cycle c0. Therefore
there is a cyclic order on all (undirected) edges, namely the cyclic order of c0.

The data above are called almost treelike if the condition (i) holds and in
condition (ii) the exclusive “or” is replaced by the logical “or”. This means
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that there might be edges both of whose flags belong to c0. We call these
edges the black edges of the graph.

Definition 1.2. A marked ribbon graph is a ribbon graph together with a
map mk : {cycles} → FΓ satisfying the conditions

(i) For every cycle c the directed edge mk(c) belongs to the cycle.
(ii) All vertices of valence two are in the image of mk, that is ∀v, val(v) = 2

implies v ∈ Im(∂ ◦ mk).

Notice that on a marked treelike ribbon graph there is a linear order on
each of the cycles ci. This order is defined by upgrading the cyclic order to
the linear order ≺i in which mk(ci) is the smallest element.

The intersection tree of an almost treelike ribbon graph

Notice that an almost treelike ribbon graph need not be a tree. Indeed, if it
has more than two cycles it won’t be. But the following construction yields
a black and white tree. The following definition of a dual tree is indeed a
duality, since one can recover the ribbon graph from its dual tree. For the
gory combinatorial details, see the appendix of [K2].

Dual b/w tree of a Marked ribbon graph

Given a marked almost treelike ribbon graph Γ , we define its dual tree to
be the colored graph whose black vertices are given by VΓ and whose set
of white vertices is the set of cycles ci of Γ . The set of flags at ci consists
of the flags f with f ∈ ci, and the set of flags at v consists of the flags
{f : f ∈ c0, ∂(f) = v}. The involution is given by ıτ (f) = N(f) if f ∈ c0 and
ıτ (f) = N−1(f) otherwise.

This graph is a tree and is b/w and bipartite by construction. It is also
planar, since the ci and the sets F (v) have a cyclic order and therefore also
so does Fv ∩ c0. It is furthermore rooted by declaring ∂(mk(c0)) to be the
root vertex. Declaring mk(c0) to be the smallest element makes it into a
planted tree.

An equivalent definition is given by defining that there be an edge between
a pair of a black and a white vertex if and only if the vertex corresponding to
b is on the boundary of the cycle ci, i.e., v ∈ ∂(ci) := {∂(f) : f ∈ ci} and two
black vertices are connected if there was a black edge between them.

Spineless marked ribbon graphs

A marked almost treelike ribbon graph is called spineless if

(i) There is at most one vertex of valence 2. If there is such a vertex v0 then
∂(mk(c0)) = v0.

(ii) The induced linear orders on the ci are (anti)compatible with that of c0,
i.e., f ≺i f

′ if and only if ı(f ′) ≺0 ı(f).
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1.2 Operations on graphs

In this section, we will give the basic definitions of the operations on graphs
that we will need.

Contracting Edges

The contraction Γ/e = (V̄Γ , F̄Γ , ı̄, ∂̄) of a graph Γ = (VΓ , FΓ , ı, ∂) with respect
to an edge e = {f, ı(f)} is defined as follows. Let ∼ be the equivalence relation
induced by ∂(f) ∼ ∂(ı(f)). Then let V̄Γ := VΓ / ∼, F̄Γ = FΓ \ {f, ı(f)} and
ı̄ : F̄Γ → F̄Γ , ∂̄ : F̄Γ → V̄Γ be the induced maps.

For a ribbon graph, the cyclic order is the one which descends naturally.
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Fig. 1. Counterclockwise: An example of an element in Cacti∞, the construction of
its dual arc graph and its dual black and white tree.
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For a marked ribbon graph, we define the marking of (V̄Γ , F̄Γ , ı̄, ∂̄) to be
mk(c̄) = mk(c) if mk(c) /∈ {f, ı(f)} and mk(c̄) = N ◦ ı(mk(c)) if mk(c) ∈
{f, ı(f)}, viz. the image of the next flag in the cycle.

If there is an angle marking, set f ′ = N−1(f), f ′′ = Cyc(f), g′ =
N−1(ı(f)) and g′′ = Cyc(ı(f)), let mk∠(f ′, f) = a,mk∠(f, f ′′) = b,
mk∠(g′, ı(f)) = c and mk∠(ı(f), g′′) = d, after the contraction we set
mk∠(f ′, g′′) = ād̄ and mk∠(g′, f ′′) = b̄c̄, where we use the notation
ā = 1 − a ∈ Z/2Z.

1.3 Spaces of Graphs with Metrics

Notation 1.3. We will write Ribn,g for the set of marked ribbon graphs of
genus g with n cycles and, by abuse of notation, also for the free Abelian
group generated by this set.

We set Rib := �n,gRibn,g, and we will again not distinguish in notation
between the set Rib, the free Abelian group generated by it, and the set
{�gRibn,g : n ∈ N} to avoid unnecessary clutter. We also write Rib(n) for
the set of marked ribbon graphs with n + 1 cycles together with a labelling
by {0, . . . , n} of these cycles. Again we also denote the free Abelian group
generated by this set as Rib(n). Finally, to streamline the notation, we will
denote the collection {Rib(n)|n ∈ N} simply by Rib.

The meaning of the symbols will always be clear from the context.

Graphs with a Metric

A metric wΓ for a graph is a map EΓ → R>0. The (global) rescaling of a
metric w by λ is the metric λw : λw(e) = λw(e). The length of a cycle c is the
sum of the lengths of its edges length(c) =

∑
f∈cw({f, ı(f)}). A metric for a

treelike ribbon graph is called normalized if the length of each undistinguished
cycle is 1. We will write MRibn,g for the set of metric marked ribbon graphs
of genus g with n boundary cycles.

Projective Metrics

Notice that there is an R>0-action on MRib which scales the metric μ by an
overall factor. This action of course preserves the genus and number of bound-
aries. We set PRib := MRib/R > 0. The elements of PRib are called graphs
with a projective metric. Notice that one can always choose a normalized
representative for any projective metric. We set PRibn,g = MRibn,g/R>0.

Remark 1.4. Now and in the following, we do not wish to dwell on
distinguishing projective and non-projective metrics.

Definition 1.5. By a local scaling at a cycle i, we mean that the metric is
scaled only on the edges belonging to the cycle i.
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The Space of Metric Ribbon Graphs

We endow these above sets with a topology by constructing PRibn,g in the
standard fashion. That is, we realize them as a subspace of the quotient of
the disjoint union of simplices by an equivalence relation. For each graph
Γ ∈ Ribn,g with |E(Γ )| = k + 1 we fix a k-simplex ΔΓ . Using barycentric
coordinates for this simplex, a point of this simplex can be identified with a
choice of projective weights on the edges. The points of PRibn,g can thus be
identified with the interior of the disjoint union over all ΔΓ : Γ ∈ Ribn,g. Fur-
thermore, the faces of ΔΓ correspond to the edges of Γ . We use the following
identifications: A face of ΔΓ is identified with ΔΓ/e if Γ/e ∈ Ribn,g. We give
the resulting space the quotient topology (this is actually a CW complex)
and identify PRib with the image of the interiors of the ΔΓ . Then we give
MRib := PRib× R>0 the product topology.

Cacti and Spineless Cacti and Thickened Cacti

Definition 1.6. We let Cacti(n) denote the subspace of the treelike ribbon
graphs with n labeled cycles (that is, excluding the distinguished cycle c0).
Furthermore, we let Cact(n) ⊂ Cacti(n) be the subset of spineless cacti.

We let Cacti∞ be the almost treelike ribbon graphs and Cact∞ be the
almost treelike spineless ribbon graphs.

Marked Ribbon Graphs with Metric and Maps of Circles

For a marked ribbon graph with a metric, let ci be its cycles, let |ci| be their
image in the realization, and let ri be the length of ci. Then there are natural
maps φi : S1 → |ci| which map S1 onto the cycle by starting at the vertex
vi := ∂(mk(ci)) and going around the cycle mapping each point θ ∈ S1 to the
point at distance θ

2π ri from vi along the cycle ci. This observation connects the
current constructions to those involving a more geometric definition of Cacti in
terms of configurations of circles [Vo2,K1] and other geometric constructions
involving such configurations such as the map Loop used for the Arc operad
[KLP]. In particular, the treelike ribbon graphs correspond to Cacti, and the
spineless treelike ribbon graphs correspond to Cact.

This observation is also useful in order to describe the glueing operations

◦i : Cacti∞(n) × Cacti∞(m) → Cacti∞(n+m− 1), (1)
(Γ1, Γ2) �→ Γ1 ◦i Γ2, (2)

which are given by scaling Γ2 to the size of the length of the ith cycle of Γ1

and then glueing together the graphs using the identification given by the
corresponding maps of S1s parameterizing the scaled cycle c0 of Γ2 and the
cycle ci of Γ1.
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For a purely combinatorial version of this construction we refer to the
appendix of [K2]. The version presented there which pertains to Cacti can
easily be adapted to the current case of Cacti∞.

Proposition 1.7. The spaces Cacti∞(n) together with the Sn action permut-
ing the labels and the glueing operations ◦i of (1) form a topological operad,
and the subspaces Cact∞(n), Cacti(n), Cact(n) form suboperads.

Proof. Straightforward.

Recall that two operads are equivalent as operads if there is a chain of
quasi-isomorphisms connecting them.

Theorem 1.8. Cacti∞(n) and Cacti(n) are equivalent to the framed little
discs operad, and Cact∞(n) and Cact(n) are equivalent to the little discs
operad.

Proof. The statements about Cacti and Cact are contained in [K1]. The cor-
responding statements about Cacti∞ and Cact∞ follow from the observation
that these spaces are homotopic to Cacti and Cact by the homotopy which
contracts all the edges both of whose flags are elements of the distinguished
cycle c0.

Cactus Terminology

The edges of a cactus are traditionally called arcs or segments, and the cycles
of a cactus are traditionally called lobes. The vertices are sometimes called the
marked or special points. Furthermore, the distinguished cycle c0 is called the
outside circle or the perimeter, and the vertex ∂(mk(c0)) is called the global
zero. And the vertices ∂(mk(ci)), i = 0, are called the local zeros. In pictures
these are represented by lines rather than fat dots.

Normalized Treelike and Almost Treelike Ribbon Graphs
and Their Cell Complexes

Definition 1.9. An element of Cacti∞ is called normalized if the length of all
the cycles except for possibly the distinguished cycle are 1 and the lengths of
all of the black edges are less than or equal to 1. We use the superscript 1 on
the spaces above to indicate the subset of normalized elements, e.g., Cacti1∞.

Notation 1.10. We will call an element of the set {Cacti, Cact, Cact∞, Cacti∞}
simply a species of cactus.

Lemma 1.11. Every species of cactus is homotopy equivalent to its subspace
of normalized elements.

Proof. The homotopy is given by locally scaling each lobe to size 1. Notice
that this is possible, because the graphs are almost treelike.
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The normalized versions have their good side and their bad side. On the
bad side, we see that they are not stable under glueing, but we can modify
the glueing as follows to obtain a topological quasioperad, that is, an operad
which is associative only up to homotopy:

◦i : Cacti1∞(n) × Cacti1∞(m) → Cacti∞(n+m− 1), (3)
(Γ1, Γ2) �→ Γ1 ◦i Γ2. (4)

Here the composition is given by first locally scaling the lobe i of Γ1 to the
length of the distinguished cycle of Γ2 and then glueing.

Proposition 1.12. The normalized elements of any species of cactus together
with the Sn action of relabelling and the glueings above form a topological
quasioperad.

Proof. Tedious but straightforward. See [K1] for Cact and Cacti, the more
general version is covered under the Sullivan PROP in [K4], see also Section 4.

The relations between the species are as follows:

Theorem 1.13. [K1] The operad of cacti is the bicrossed product of the op-
erad Cact of spineless cacti with the operad S1 based on the monoid S1. Fur-
thermore, this bicrossed product is homotopic to the semidirect product of the
operad of cacti without spines with the circle group S1:

Cacti ∼= Cact 
� S1 � Cact� S1. (5)

The same holds true for the thickened versions

Cacti∞ ∼= Cact∞ 
� S1 � Cact∞ � S1. (6)

The details of the semidirect products and bicrossed products are given
below.

Proof. The proof of the first statement is given by verifying that the two
operad structures coincide. For the second statement, one notices that the
homotopy diagonal is homotopy equivalent to the usual one and that one can
find homotopies to the diagonal which continuously depend on the cactus. The
third statement follows from contracting the factors R

n
>0 and using Theorem

1.15. Full details are given in [K1] for the non–thickened species. They go over
mutatis mutandis for the thickened species.

Corollary 1.14. The homology operad of Cacti is the semidirect product of
Cact and the homology of the operad S1 built on the monoid S1. The same
holds true for Cacti∞.

Theorem 1.15. Every species of cactus is homotopy equivalent through qua-
sioperads to its normalized version.
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Proof. The statement for regular cacti is contained in [K1], and the argument
carries over mutatis mutandis to the thickened versions.

Corollary 1.16. Every species of cactus is quasi-isomorphic as quasi-operads
to its normalized version, and in particular, the induced homology quasi-
operads are operads and are isomorphic as operads.

Details of the Bicrossed Product Structure for Cacti

In this section we recall the construction of the bicrossed product as it was
given in [K1], to which we refer the reader for more details.

First notice that there is an action of S1 on Cact(n) given by rotating
the base point clockwise (i.e., in the orientation opposite the usual one of c0)
around the perimeter. We denote this action by

ρS1
: S1 × Cact(n) → Cact(n).

With this action we can define the twisted glueing

◦S1

i : Cact(n) × S1(n) × Cact(m) → Cact(n+m− 1),

(C, θ, C′) �→ C ◦ ρS1
(θi, C

′) =: C ◦θi

i C′. (7)

Given a cactus without spines C ∈ Cact(n), the orientation-reversed
perimeter (i.e., going around the outer circle clockwise, i.e., reversing the ori-
entation of the source of φ0) gives a map ΔC : S1 → (S1)n.

As one goes around the perimeter the map goes around each circle once,
and thus the map ΔC is homotopic to the diagonal ΔC(S1) ∼ Δ(S1).

We can use the map ΔC to give an action of S1 and (S1)×n:

ρC : S1 × (S1)×n ΔC→ (S1)×n × (S1)×n μn

→ (S1)×n; (8)

here μn is the diagonal multiplication in (S1)×n and ◦̄i is the operation that
forgets the ith factor and shuffles the last m factors to the ith, . . . , (i+m−1)st
places. Set

◦C
i : (S1)×n × (S1)×m (id×πi)(Δ)×id−→ (S1)×n × S1 × (S1)×m

id×ρC

−→ (S1)×n × (S1)×m ◦̄i−→ (S1)×n+m−1. (9)

These maps are to be understood as perturbations of the usual maps

◦i : (S1)×n × (S1)×m (id×πi)(Δ)×id−→ (S1)×n × S1 × (S1)×m

id×ρ−→ (S1)×n × (S1)×m ◦̄i−→ (S1)×n+m−1, (10)
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where now ρ is the diagonal action of S1 on (S1)×n. The maps ◦i and the
permutation action on the factors give the collection {S1(n)} = (S1)×n the
structure of an operad. In fact, this is exactly the usual construction of an
operad built on a monoid.

The multiplication in the bicrossed product is given by

(C, θ) ◦i (C′, θ′) =
(
C ◦θi

i C′, θ ◦C′
i θ′

)
. (11)

The multiplication in the semidirect product is given by

(C, θ) ◦i (C′, θ′) =
(
C ◦θi

i C′, θ ◦i θ
′
)
. (12)

Also, normalized cacti are homotopy equivalent to cacti that are homotopy
equivalent to the bicrossed product of normalized cacti with S1 and the semidi-
rect product with S1, where all equivalences are as quasioperads:

Cacti1 ∼ Cacti ∼= Cact 
� S1 ∼ Cact1 
� S1 ∼ Cact1 � S1. (13)

2 The Tree Level: Cell Models for (Framed)
Little Discs and Their Operations

The virtue of the normalized species is that they provide cellular models. In
order to give the cell model, we will use the dualized trees.

2.1 A First Cell Model for the Little Discs: Cact1

In this section we will give a cell model for Cact1. It will be indexed by the
dual trees of the ribbon graphs. The specific type of trees we need are given by
the sets T bp(n), that is, planar planted bipartite black and white trees with
only white leaves. Here as usual a leaf is a vertex of valence one that is not
the root. Since the tree is rooted, the edges have a natural direction toward
the root, and we call the edges that are incoming to white vertices the white
edges and denote the set they form by Ew.

Notice that the differential on the ribbon graphs induces a differential on
the dual trees.

Definition 2.1. We define T bp(n)k to be the elements of T bp(n) with
|Ew| = k.

Definition 2.2. For τ ∈ T bp we define Δ(τ) := ×v∈Vw(τ)Δ
|v|. We define

C(τ) = |Δ(τ)|. Notice that dim(C(τ)) = |Ew(τ)|.
Given Δ(τ) and a vertex x of any of the constituting simplices of Δ(τ),

we define the xth face of C(τ) to be the subset of |Δ(τ)| whose points have
the xth coordinate equal to zero.
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Definition 2.3. We let K(n) be the CW complex whose k-cells are indexed
by τ ∈ T bp(n)k with the cell C(τ) = |Δ(τ)| and the attaching maps eτ defined
as follows. We identify the xth face of C(τ) with C(τ ′), where τ ′ = ∂x(τ) is
the local contribution of the differential contracting the corresponding white
edge. This corresponds to contracting an edge of the cactus if its weight goes
to zero so that Δ(∂τ) is identified with ∂(Δ(τ)).

Lemma 2.4. K(n) is a CW composition for Cact.

Proof. It is straightforward to see that the differential on the graphs which
contracts an edge on the tree side collapses an angle.

Proposition 2.5. K(n) is a cellular chain model for the little discs.

Proof. The claim is that already on the cell level the induced quasioperad is
an operad. This is indeed the case, since in a cell all possible positions of the
lobes are possible and the composition again gives all possible positions; see
[K1] for details.

2.2 A CW Decomposition for Cacti1 and a Cellular Chain Model
for the Framed Little Discs

Definition 2.6. A Z/2Z decoration for a black and white bipartite tree is a
map dec± : Vw → Z/2Z.

Proposition 2.7. The quasi–operad of normalized cacti Cacti1 has a CW de-
composition which is given by cells indexed by planar planted bipartite trees
with a Z/2Z decoration. The k-cells are indexed by trees with k− i white edges
and i vertices marked by 1.

Moreover, cellular chains are a chain model for the framed little discs op-
erad and form an operad. This operad is isomorphic to the semidirect product
of the chain model of the little discs operad given by CC∗(Cact) of [K2] and
the cellular chains of the operad built on the monoid S1.

Proof. For the CW decomposition we note that as spaces, Cacti1(n) =
Cact1(n)×(S1)×n. Now viewing S1 = [0, 1]/0 ∼ 1 as a 1-cell together with the
0-cell given by 0 ∈ S1, the first part of the proposition follows immediately,
by viewing the decoration by 1 as indicating the presence of the 1-cell of S1

for that labeled component in the product of cells.
To show that the cellular chains indeed form an operad, we use the fact

that the bicrossed product is homotopy equivalent to the semidirect product
in such a way that the action of a cell S1 in the bicrossed product is homotopic
to the diagonal action. This is just the observation that the diagonal and the
diagonal defined by a cactus are homotopic. Since a semidirect product of a
monoid with an operad is an operad, the statement follows. Alternatively, one
could just remark that there is also an obvious functorial map induced by the
diagonal for these cells.
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The chains are a chain model for the framed little discs operad since
Cacti1(n) and Cacti(n) are homotopy equivalent and the latter is equivalent
to the framed little discs operad.

Although the above chain model is the one one would expect to use for
framed little discs, it does not have enough cells for our purposes. In order to
translate the proofs in the arc complex given in [KLP] into statements about
the Hochschild complex, we will need a slightly finer cell structure than the
one above. After having used the larger structure one can reduce to the cell
model with few cells, since they are obviously equivalent.

Definition 2.8. A spine decoration dec′ for a planted planar bipartite tree
is a Z/2Z decoration together with the marking of one angle at each vertex
labeled by one and a flag at each vertex labeled by zero. We denote the set
of such trees which are n-labeled by T bp,dec′(n) and again use this notation
as well for the free Abelian group and the k vector space generated by these
sets. We let T bp,dec′ be their union respectively direct sum. In pictures we
show the angle marking as a line emanating from the vertex that lies between
the marked edges and an edge marking by a line through the respective edge.
For an example see Figure 2 (VI). We sometimes omit the edge marking if
the marked edge is the outgoing edge, e.g., in Figure 3.

The realization τ̂ of a planar planted bipartite tree τ with a spine dec-
oration is the realization of τ as a planar planted tree (the root is fixed to
be black) together with one additional edge inserted into each marked an-
gle connecting to a new vertex. We call the set of these edges spine edges
and denote them by Espine. Likewise, set Vspine to be the set of new vertices
called the spine vertices, which are defined to be black. The spine edges are
then white edges. As for tails, we will consider only the flags of Espine, which
are not incident to the spine vertices. We call the set of these flags Fspine.
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Notice that this tree is the dual tree of a cactus with an explicit marking of
the flags mk(ci). Given a cactus, we call its dual tree with explicit markings
its topological type. If τ had tails, we will split the set of tails of the real-
ization into spines and free tails, which are the images of the original tails:
Etails(τ̂ ) = Eftails(τ̂ ) � Espine(τ̂ ); and we proceed likewise for the respective
flags.

A spine decoration induces a new linear order on the flags incident to the
white vertices of its realization. This order ≺′

v is given by the cyclic order at
v and declaring the smallest element to be the spine flag in case dec±(v) = 1
and the marked flag in case dec±(v) = 0. This gives a canonical identification
of F≺′

v
: Fv → {0, . . . , |v|}.

Proposition 2.9. The spaces Cacti1(n) of the quasi–operad of normalized
cacti Cacti1 have CW decompositions K ′(n) whose cells are indexed by spine
decorated planar planted bipartite trees (τ, dec′) ∈ T bp,dec′ corresponding to
the topological type of the cacti. The k-cells are indexed by n-labeled trees with
k − i white edges and i markings by 1.

Moreover, cellular chains of the complex above are a chain model for the
framed little discs operad and form an operad.

Proof. The decomposition is almost as in the preceding proposition except
that in the product Cact1(n) × (S1)×n we decompose each factor S1 as indi-
cated by the lobe it presents. That is, for the S1 associated to the nth lobe we
chose the 0-cells to correspond to the marked points and 1-cells to correspond
to the arcs with glueing given by attaching the 1-cells to the 0-cells represent-
ing the endpoints of the arcs (e.g., four 0-cells and four 1-cells for the lobe 1 in
Figure 2 (VIa)). In terms of trees, the arcs correspond to the angles, and thus
we take a marking of an arc to be the inclusion of the corresponding 1-cell
in the tensor product of the cell complexes. Likewise, the edges correspond
to the marked points, and we take a marking of an edge to be the inclusion
of the corresponding 0-cell in the tensor product of the cell complexes.

For the operadic properties, we remark that moving the spine along an arc
and then glueing, which is what is parameterized by marking an angle on the
lobe i of c when calculating c ◦i c

′, has the effect of moving the base point of
c′ along a complete sequence of arcs until it coincides with a marked point in
the composition of the two cacti. This is one side of the bicrossed product.
The effect on the local zeros of c′ of the movement of the base point is to
move them corresponding to structure maps of the bicrossed product above.
The local zeros thus move through a full arc if the global zero passes through
the arc on which they lie. Therefore the ◦i product of two cells results in
sums of cells. Marking an arc of c′ obviously gives rise to a sum of cells.
Alternatively, one can again just remark that there is a functorial map for the
diagonal for this cell model, since there is such a map on the first factor by
[K2] and its existence is obvious on the second factor.

The associativity follows from the associativity of cacti. Let C(τ),
τ ∈ T bp,dec′(n) be the cells in the CW-complex and Ċ(τ) their interior.
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Then P (τ) = Ċ(τ) × R
n
>0, τ ∈ T bp,dec′ give a pseudocell decomposition

Cacti(n) = �τP (τ). It is easy to see that Im(P (τ) ◦i P (τ ′)) = �kP (τk) for
some τk and ◦i is a bijection onto its image. Let ◦comb

i be the quasioperad
structure pulled back from K ′ to T bp,dec′ and let ◦+

i be the operad structure
pulled back from the pseudocell decomposition of Cacti to T bp,dec′. Then
these two operad structures coincide over Z/2Z, thus yielding associativity
up to signs. The signs are just given by shuffles, cf. Section 3.1, and are
associative as well.

Remark 2.10. Pulling back the operadic compositions, the differential, and
the grading yields a dg-operad structure on T bp,dec′ which is isomorphic to
that of CC∗(Cacti1) :=

⊕
n CC∗(K ′(n)), where CC∗(K ′(n)) are the cellular

chains of the CW model K ′(n) of Cact1(n).
The operation is briefly as follows: given two trees τ, τ ′ ∈ T bp,dec′ the

product is τ ◦comb
i τ ′ =

∑
±τk, where the τk are the trees obtained by the

following procedure. Delete vi to obtain an ordered collection of trees (τc
l ,≺′

v),
then graft these trees to τ ′, keeping their order by first identifying the spine
edge or marked edge of vi with the root edge of τ ′ and then grafting the
rest of the branches to τ ′ so that their original order is compatible with that
of τ ′. Lastly, contract the image of the root edge of τ ′ and declare the image
of the root of τ to be the new root. The sign is as explained in Section 3.1.
Due to the isomorphism between CC∗(Cacti1) and T bp,dec′ we will drop the
superscript comb.

2.3 The GBV Structure

The picture for the GBV structure is essentially that of [KLP] and goes back
to [CS]. It appears here in another guise, however, since we are now dealing
with cells in CC∗(Cacti1).

First notice that there is a product on the chain level induced by the
spineless cactus given by the rooted tree τn depicted in Figure 2. Explicitly:
a · b �→ γ

(
τb
2 ; a, b

)
, where γ is the usual operadic composition. This product

gives CC∗(Cacti1) the structure of an associative algebra with unit. Moreover,
the product is commutative up to homotopy. The homotopy is given by the
usual operation, which is induced by γ(τ1; a, b). This also induces a bracket
which is Gerstenhaber up to homotopy. This can be seen by translating the
statements from [KLP,K2], but it also follows from the BV description of the
bracket below (Figure 5).

To give the BV structure, let O′ be the tree with one white vertex, no
additional black edges, no free tails, and a spine. Notice that the operation δ
induced by a �→ γ(O′, a) on CC∗(Cacti1) breaks up on products of chains as
follows, see Figure 3:

δ(ab) ∼ δ(a, b) + (−1)|a||b|δ(b, a),
δ(abc) ∼ δ(a, b, c) + (−1)|a|(|b|+|c|)δ(b, c, a) + (−1)|c|(|a|+|b|)δ(c, a, b), (14)



144 Ralph M. Kaufmann

δ(a1a2 · · · an) ∼
n−1∑

i=0

(−1)σ(ci,a)δ(aci(1), . . . , aci(n)), (15)

where c is the cyclic permutation and σ(ci, a) is the sign of the cyclic permu-
tations of the graded elements ai.

Lemma 2.11.

δ(a, b, c) ∼ (−1)(|a|+1)|b|bδ(a, c) + δ(a, b)c− δ(a)bc. (16)

Proof. The proof is contained in Figure 4.

Proposition 2.12. The chains CC∗(Cacti1) are a GBV algebra up to homo-
topy. That is, there are a bracket and a BV operator that satisfy the usual
equations up to homotopy. Taking coefficients in k when k is of characteristic
zero, the homology of Cacti hence becomes a GBV algebra.

Proof. The BV structure follows from Lemma 2.11 via the calculation

δ(abc) ∼ δ(a, b, c) + (−1)|a|(|b|+|c|)δ(b, c, a) + (−1)|c|(|a|+|b|)δ(c, b, a)
∼ (−1)(|a|+1)|b|bδ(a, c) + δ(a, b)c− δ(a)bc+ (−1)|a|aδ(b, c)

+(−1)|a||b|δ(b, a)c− (−1)|a|aδ(b)c+ (−1)(|a|+|b|)|c|aδ(b, c)
+(−1)|b|(|a|+1|)+|a||c|bδ(c, a) − (−1)|a|+|b|abδ(c)

∼ δ(ab)c+ (−1)|a|aδ(bc) + (−1)|a+1||b|bδ(ac) − δ(a)bc
−(−1)|a|aδ(b)c− (−1)|a|+|b|abδ(c) (17)

Figure 5 contains the homotopy relating the BV operator to the bracket.
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2.4 Cells for the Araki–Kudo–Cohen, Dyer–Lashof Operations

By the general theory, see, e.g., [Tou], we need to find elements

ξ1 ∈ Hp−1(Cact1(p)/Sp,±Z/pZ),

that is, homology classes with values in the sign representation.
Now taking coinvariants on Cact1, we see that the iteration of the

product ∗, that is, the operation given by n∗ := γ(γ(. . . (γ(τ1), τ1), . . . , τ1), τ1),
gives a class that is the sum over all trees of the highest dimension, where the
partial order on the labeled vertices when considered in the usual tree partial
order is compatible with the linear order on n̄.

Proposition 2.13. n∗ is the cohomology class ξ1 in Hp−1(Cact1(p)/Sp,
±Z/pZ).

Proof. First we could reengineer the result from the proof of Tourtchine [Tou],
but it also follows from a straightforward calculation of the boundary of
said cell.

The first example for p = 2 is given by the operation of τ1, which has
boundaries in the multiplication and its opposite, cf. Figure 5, and the example
for p = 3 is the hexagon of Figure 6 with i = 1.

Remark 2.14. We wish to point out two interesting facts. First, the class
is solely induced by an operation for p = 2, and second, the resulting cell
description is just the left iteration of ∗, whereas the right iteration of ∗ is the
simple class given by a cube.
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Fig. 6. The hexagon that gives the Dyer–Lashof operation, establishes that Cacti
is a braid operad, and shows the associativity up to homotopy of the multiplication.

2.5 A Smooth Cellular Model for the Framed Little Discs: Cacti∞

The above CW model for the little discs is actually the smallest model which
solves Deligne’s conjecture and has enough cells to support the brace and the
multiplication operations. However, the model is easily seen to be nonsmooth
starting at n = 3. We can read this off Figure 6, since two of these hexagons
glue to give a “cylinder with wings.”

There is, however, a surprisingly small CW model that is smooth. It is
given by considering Cact∞. This is not the minimal model that yields a
solution for the A∞-Deligne conjecture, which we will discuss later.

The Relevant Trees

Again the cells of this model will be indexed by certain types of trees that
are the dual trees of the ribbon graphs that are elements of Cact1∞. These are
planar planted b/w trees with heights.
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It will be convenient to use the convention that these trees have a black
root with valence one and call the unique incident edge the root edge. We will
call the edges which are incident to a white vertex the white edges, Ew, the
other edges are considered to be black, Eb. The exception is the root edge,
which is not considered to be black in case it is not white. We will also fix
the stability condition that there are no black vertices of valence 2 with two
black edges.3 We will call such trees Tb/w.

Definition 2.15. We let HT (n) be pairs (τ, ht) of a planar planted b/w tree
with white leaves only and a black root (τ) and a function ht : Eb → {1, var}.
We will let Evar be the inverse image of var, and call them variable edges.
Likewise, let HT top(n) be pairs (τ, httop) with τ as above and httop : E → [0, 1]
such that the sum of the weights of the edges adjacent to a white vertex is 1.

Remark 2.16. Notice that there is a natural differential on the underlying
ribbon graphs, which can also be considered to have white and black edges.
The latter are labeled by 1, var. The differential is given by summing (with
the appropriate sign) over contractions of the white edges, contractions of the
black edges labeled by var, and relabellings of these edges by 1.

Definition 2.17. We define HT (n)k to be the elements of HT (n) with
|Evar| + |Ew | − |Vw| = k.

Definition 2.18. For τ ∈ HT we define Δ(τ) := ×v∈Vw(τ)Δ
|v|××e∈Evar(τ)I.

We define C(τ) = |Δ(τ)|. Notice that dim(C(τ)) = |Ew(τ)| + |Eb(τ)|.
Given Δ(τ) and a vertex x of any of the constituting simplices of Δ(τ),

we define the xth face of C(τ) to be the subset of |Δ(τ)| whose points have
the xth coordinate equal to zero. The boundaries of the intervals are taken to
be 0 and 1.

Definition 2.19. We let K∞(n) be the CW complex whose k-cells are in-
dexed by τ ∈ HT (n)k with the cell C(τ) = |Δ(τ)| and the attaching maps
eτ defined as follows. We identify the xth face of C(τ) with C(τ ′), where
τ ′ = ∂x(τ). This corresponds to contracting a white edge of the cactus as its
weight goes to zero so that Δ(∂τ) is identified with ∂(Δ(τ)) for these edges.
For the black edges, passing to the boundaries of the intervals corresponds to
letting the weight of the edge go to 1 or 0, and the latter is taken to mean
that the relevant edge is contracted.

Lemma 2.20. K∞(n) is a CW composition for Cact1∞.

Proof. For this it suffices to remark that the dual ribbon graph of the tree
indexing a cell and an element of this cell has a natural metric on the cor-
responding graph given by the barycentric coordinates on the simplices for
the white edges and the natural coordinates on the intervals taking values

3This means no parallel arcs in the dual picture.
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between 0 and 1 on the black edges. Conversely, using the dual tree construc-
tion turns any element of Cacti∞ into a tree of the given type, and the metric
determines a unique point in the open cell.

Proposition 2.21. K∞(n) is a cellular chain model for the little discs.

Proof. The proof is analogous to the one for normalized spineless cacti.

Theorem 2.22. The space Cact1∞ is smooth, that is, it is a manifold with
corners.

Proof. The easiest way to see this is to use the dual description in terms of
arc graph. The arc graph is the dual graph on the surface Σ(Γ ) to Γ , where
Γ is embedded as the spine of this surface (more details are contained in
Section 4.1). Now fix an element p ∈ Cacti1∞(n). If it has the maximal number
of edges, that is, the complementary regions of the arc graph are triangles,4

then we can vary the weights of the white edges freely and the weights of the
black variable edges as well, while the ones for the black edges with weight 1
can only decrease. So for the interior of the maximal cells we are done. If we are
in the interior of a cell of lower dimension, some of the complementary regions
are not triangles, but other polygons. Now, not all the diagonals are allowed,
since we have to take care that the resulting ribbon graph is still treelike. To
be precise, the vertices of the polygons are labeled by i = 0 or by 0 and the
diagonals are not allowed to connect two vertices with non–zero labels. But
the vertices adjacent to a vertex with a non–zero label have to be labeled by
zero. See Figure 8 for an example. The relevant space is a subspace of the
product of the spaces of the diagonals of all of the polygons. Now the space
of diagonals of a polygon near the point without diagonals is homeomorphic
to a neighborhood of zero in the corresponding Stasheff polytope. There is
a subpolygon given by connecting the nonzero labeled vertices. Removing
these points corresponds to collapsing cubes in the cubical decomposition of
the Stasheff polytope in such a fashion that the result is again a polytope.
See Figure 7 for an example. The image of 0 can, however, now lie on a face
of the polytope. Nevertheless, we again have found a neighborhood that is
homeomorphic to a neighborhood of 0 in R

n × R
k
≥0.

Remark 2.23. This cell model almost answers a question of Kontsevich and
Soibelman in [KS]. Namely, the existence of a certain smooth CW model
for the Fulton–MacPherson configuration spaces. In fact, this is a minimal
thickening of a minimal cell model of the little discs, which is minimal in the
sense that it contains all the cells for the A∞ multiplications and the brace
operations, that is, a cell incarnation of the minimal operad M of [KS], which
we construct in the next section. See also Remark 2.32.

4We contract the edges of the polygon which lie on the boundary and label them
by the corresponding boundary component.



Graphs, Strings, and Actions 149

Fig. 7. The Stasheff polytope K4, its cubical decomposition, and the polytope of
the cells avoiding one diagonal of the underlying polygon.
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Fig. 8. An arc graph, its tree, cactus representation, and one of its polygons.

2.6 The KW Cell Model for the Little Discs

In this section, we construct two more cell models for the little discs operad.
The first will be a cell incarnation of the minimal operad of [KS], and the
second will be a cacti-based model that is a contraction of the model Cact1∞
above. We need this second model only as a mediator, to establish the equiv-
alence to the little discs operad.

Trees

The relevant trees are the stable b/w planar planted trees of [KS] with
white leaves T∞. Here stability means that there are no black vertices of
valence 2.
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The Minimal A∞ Complex

Let Kn denote the nth Stasheff polytope (associahedron) of dimension n− 2
and let Wn denote the nth Bott–Taubes polytope (cyclohedron) of dimension
n− 1.

We will now construct the following CW complex KW . The cells are
indexed by τ ∈ T∞, and the cell for τ is given by

Δ(τ) := ×v∈VwhiteW|v| ××v∈VblackK|v|−1. (18)

The boundary of this cell is given by

∂(Δ(τ)) =
∑

v′∈Vwhite

±∂W|v| ××v 	=v′∈VwhiteW|v| ××v∈VblackK|v|

+
∑

v′∈Vblack

±×v∈Vwhite W|v| × ∂K|v′| ××v 	=v′∈VblackK|v|

= Δ(∂(τ)) (19)

Fixing n, we inductively glue the cells corresponding to τ ∈ T∞(n) to the
existing skeleton by identifying the boundary pieces with the cells of lower
dimension. For this we have to remark that indeed the cell differential given
above agrees with the differential on T∞, which is straightforward.

We call the resulting CW complex KW(n).

Lemma 2.24. The collection CC∗(KW(n)) forms an operad isomorphic to
the minimal operad of [KS].

Proof. Since T∞ is an operad, we just pull back the operad structure, since
as Abelian groups, CC∗(KW(n)) � T∞(n).

2.7 A Finer Cell Model, the Generalized Boardman–Vogt
Decomposition

In order to connect the above cell model with the little discs, we need to
transform it slightly by subdividing the cells. We will call the corresponding
model KS. First, we identify the spaces of the two CW models and then
afterward, we can contract to the model Cact1. The full details are in [KSch].

Decomposing the Stasheff Polytope

For this we need two basic decompositions. First we decompose the associ-
ahedron into its Boardman–Vogt decomposition (see, e.g., [MSS]). We will
actually need a topological realization, which is given by trees with heights.
In this case, we consider a planar planted tree as used in this construction
as a b/w tree with white leaves and topologically realize the cubical cells by
using a height function on the black edges. This means that a point in this
cubical model of Kn is an element of HT top.
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Decomposing the Cyclohedra

We actually decompose the cyclohedra as a blowup of the simplex. For this we
again use b/w trees in HT top as above. The basic simplex is given by taking a
tree with one internal vertex. Now we glue to this simplex the cells that allow
black edges to appear. This is again easiest to describe in the arc graph. We
consider all arc graphs corresponding to at most one internal white vertex, but
we allow diagonals, that is, edges between 0 and 0, that do not form a triangle
two of whose sides are identified. An example of such a complementary region
is given in Figure 8.

Trees and Their Cell Complex

In other words, we consider trees of Tb/w with the following restrictions. There
are no black vertices of valence two such that one edge is a leaf edge and the
other is black.5

We call this subset T rig
b/w. For the height functions, we have one more

restriction. A height function for T rig
b/w is compatible if the height of a black

edge, both of whose vertices are of valence 2, has to be 1. This restriction is
needed, but in a sense is ungeometric. Omitting it, one is led to the thickened
model above. It is necessary to make the incidence relations of the cells match.

It is clear that we can again glue a cell complex from these trees. This
time

Δ(τ) := ×v∈Vw(τ)Δ
|v| ××e∈EvarI . (20)

In particular, there is a new subdivision of cyclohedra, that is, not the
Boardman–Vogt subdivision. The cells are products of cubes and simplices.
This also allows for a partially linear realization in terms of trees with heights.
Here the restriction for the cyclohedron is that there is only one nonleaf white
vertex. See Figure 9 for an example in the language of arc graphs; for further
details we refer to [KSch].

Proposition 2.25. Each element of KW corresponds to a pair (τ, ht) with
τ ∈ T rig

b/w and ht a compatible height function. That is, the KS and KW are
cell models for the same space. In the description in terms of KS, an element
is given by the tree of its cell and a compatible topological height function.

Proof. Any element of KW lies in a unique maximal cell. This corresponds
to a tree τ̃ ∈ T∞. Now each cyclohedron and associahedron of the product
making up |D(τ)| has a decomposition as above, and our element inside the
cell Δ(τ̃ ) lies inside one of these finer cells. Inside this product the element is
given by a tree with height satisfying the given conditions. Moreover, given a
pair (τ, ht) satisfying the above conditions, it is easy to see that this element
in the above description belongs to the cell Δ(τ̃ ), where τ̃ is the tree in which
all the black edges with ht < 1 are contracted.

5This means that there is no triangle with two sides given by the same arc in
the polygon picture.
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Fig. 9. The subdivision of W2 into a simplex and cubes.

The Homotopy from KS to Cact1

Definition 2.26. We define the flow Ψ : I × KS → Cact1 by 1 ≥ t > 0 :
Ψ(t)((τ, ht)) = (τ, ψ(t)(ht)), where

ψ(t)(ht)(e) =

{
ht(e) if e /∈ Eblack,

t ht(e) if e ∈ Eblack,

and Ψ(0)(τ, ht) = (τ̃ , h̃t), where τ̃ is the tree τ with all black edges contracted
and h̃t is ht descended to τ̃ .

Definition 2.27. We define itop∞ : Cact1(n) → KW(n) by mapping (τ, ht) to
itself.

Proposition 2.28. The spaces Cact1(n) and KS(n) are homotopy equivalent,
and hence KW is too.

Proof. Using the flow Ψ and the maps itop∞ , the statement is straightforward.

The Cell Level: Maps π∞ and i∞

On the cell level this induces the following maps. There are maps π∞ : T∞ →
T bp and i∞ : T bp → T∞.

The first π∞ is given as follows. If there is a black vertex of valence > 3,
then the image is set to be 0. If all black vertices are of valence 3, then contract
all black edges and then insert a black vertex into each white edge. It is clear
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that the leaves will stay white. The global marking is defined to be the image
under the contraction.

The second map i∞ is given as follows. Remove all black vertices with
valence = 2 and replace each black vertex of valence > 2 by the binary tree,
with all branches to the left.

It is clear that π∞ is surjective and π∞ ◦ i∞ = id.

Lemma 2.29. These maps behave well with respect to the differential. We
have π∞(∂(τ)) = ∂π∞(τ) and the same for i∞. And π∞ is an operadic map.

Proof. It is straightforward to check.

We now come to the main statement of this section:

Theorem 2.30. The topological spaces KW(n) and Cact1(n) are homo-
topy equivalent. Moreover, the homotopy is given by an explicit contraction
Ψ , which descends to the chain level operadic map π∞ : CC∗(KW) →
CC∗(Cact1), where we used the isomorphisms of operads CC∗(KW) � T∞
and CC∗(Cact1) � T bp to pull back the map π∞.

Proof. First it is clear that Φ contracts onto the image of itop∞ , which gives the
desired statement about homotopies. We see that any cell of T∞ is contracted
to a cell of lower dimension as soon as there is a black vertex whose valence
is greater than 3, so that these cells are sent to zero. If the vertices only have
valence 3, then the black subtrees are contracted onto the image of i∞, which
yields a cell of the same dimension indexed by the tree π∞(τ). Finally, since
π∞ is an operadic map and CC∗(Cact1) is an operadic chain model for the
little discs, we deduce that CC∗(KW) also has this property.

Corollary 2.31. KW is a cell model for the little discs operad whose cells are
indexed by T∞.

Remark 2.32. This remark should be seen in conjunction with Remark 2.23.
We have identified a natural cell model for the minimal operad of [KS]. This
is, however, not smooth. We can thicken it by the procedure above to obtain
the smooth model Cact∞. Its dimension is, however, too large, and some cells
will have to operate as 0. We do wish to point out that there is an inclusion
of the cells of KW into Cact∞, and indeed there are cells which correspond
to T∞. So it seems that finding a smooth and minimal cell model for the
A∞-Deligne conjecture is not possible.

The Versions for the Framed Little Discs

We do not wish to go through all of the details again. Going over to the framed
versions means taking a bicrossed product on the topological level, which on
the cell level can be realized by inducing Z/2Z decorations as in Section 2.2.
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3 Operations of the Cell Models on Hochschild
Complexes

In this section we use the tree language in order to naturally obtain operations
on the Hochschild complex.

3.1 The Cyclic Deligne Conjecture

In this subsection we give the full details of an action of the model Cacti of
the framed little discs on the Hochschild complex.

Assumption

Now we fix A to be a finite–dimensional associative algebra with unit 1 to-
gether with an inner product η : A⊗A→ k which is non-degenerate and both
(i) invariant: η(ab, c) = η(a, bc) and (ii) symmetric: η(a, b) = η(b, a). Such an
algebra is called a Frobenius algebra.

We will use CH to stand for Hochschild cochains CHn(A,A) :=
Hom(A⊗n, A).

Actually, it would be enough to have a non-degenerate inner product η on
A � CH0(A,A) for which (i) holds on HH0(A,A), that is, up to homotopy
for A. The condition (ii) will then hold automatically up to homotopy, since
CH0(A,A) is commutative up to homotopy [G].

If one wishes to relax furthermore the other conditions “up to homotopy,”
one can fix that η needs to be non-degenerate only on HH0(A,A) and require
only that HH0(A,A) be finite–dimensional. In this case, the operadic opera-
tions defined below will give operations f : A⊗n → HH0(A,A) and will thus
give actions only up to homotopy. This is enough to get the BV structure on
CH∗(A,A), but not quite enough to lift the action to the chain level.

Notation

Let (ei) be a basis for A and let C := eiη
ij ⊗ ej be the Casimir element, i.e.,

ηij is the inverse to ηij = η(ei, ej).
With the help of the non–degenerate bilinear form, we identify

CHn(A,A) = Hom(A⊗n, A) ∼= A⊗A∗⊗n ∼= A∗⊗n+1. (21)

We would like to stress the order of the tensor products we choose. This is the
order from right to left, which works in such a way that one does not need to
permute tensor factors in order to contract.

If f ∈ Hom(A⊗n, A), we denote by f̃ its image in A∗⊗n+1, explicitly
f̃(a0, . . . , an) = η(a0, f(a1, . . . , an)).

With the help of (21) we can pull back the Connes operators b and B (see,
e.g., [L]) on the spaces A⊗n to their duals and to Hom(A⊗n, A).
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Also let t : A⊗n → A⊗n be the operator given by performing a cyclic
permutation (a1, . . . , an) �→ (−1)n−1(an, a1, . . . , an−1) and N := 1 + t+ · · ·+
tn−1 : A⊗n → A⊗n.

It is easy to check that the operator induced by b is exactly the Hochschild
differential; we will denote this operator by ∂. We write Δ for the operator
induced by B. It follows that Δ2 = 0 and Δ∂ + ∂Δ = 0.

Assumption

To make the formulas simpler we will restrict to normalized Hochschild
cochains CH

n
(A,A), which are the f ∈ CHn(A,A) that vanish when eval-

uated on any tensor containing 1 ∈ A as a tensor factor (see, e.g., [L]).
On the normalized chains the operator Δ is explicitly defined as follows: for
f ∈ CH

n
(A,A),

η(a0, (Δf)(a1, . . . , an−1)) := η(1, f ◦N(a0, . . . , an)). (22)

Correlators from Decorated Trees

We will use the notation of tensor products indexed by arbitrary sets; see,
e.g., [D]. For a linearly ordered set I denote by

⋃
I ai the product of the ai in

the order dictated by I.

Definition 3.1. Let τ be the realization of a spine-decorated planted planar
b/w tree, v ∈ Vw , and f ∈ CH

|v|
(A,A). We define Y (v, f) : AFv(τ) → k by

Y (v, f)

(
⊗

i∈Fv(τ)

ai

)

:= η

(

aF−1
≺′

v
(0), f

(

aF−1
≺′

v
(1) ⊗ · · · ⊗ aF−1

≺′
v
(|v|)

))

.

Set Vb-int := Vb(τ) \ (Vtail ∪ {vroot} ∪ Vspine). For v ∈ Vb-int we define
Y (v) := AFv(τ) → k by

Y (v)

(
⊕

i∈Fv(τ)

ai

)

= η

(

1,
⋃

i∈Fv

ai

)

.

Definition 3.2. Let τ be the realization of a planar planted b/w tree with
n free tails and k labels and fi ∈ CH

ni(A,A). For such a tree there is a
canonical identification {vroot} ∪ Vftail → {0, 1, . . . , |Vftail|} which is given by
sending vroot to 0 and enumerating the tails in the linear order induced by
the planted planar tree. Set Eint(τ) := E(τ) \ (Etail ∪ Eroot ∪ Espine) and for
(a0, . . . , an) ∈ A⊗({vroot}∪Vftail) set
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Y (τ)(f1, . . . , fk)(a0, . . . , an)

:=

⎛

⎝
⊗

v∈Vw(τ)

Y (v, fLab(v))
⊗

v∈Vb-int

Yv

⎞

⎠

×

⎛

⎝

⎛

⎝
⊗

i∈Fftail(τ)∪{Froot}
ai

⎞

⎠

⎛

⎝
⊗

j∈Fspine

1

⎞

⎠⊗ C⊗Eint(τ)

⎞

⎠ .

(23)

In other words, decorate the root flag by a0, the free tail flags by a1, . . . , an,
the spines by 1, and the edges by C and then contract tensors according to the
decoration at the white vertices while using the product at the black vertices.

Definition 3.3. We extend the definition above by

Y (τ)(f1, . . . , fk)(a0, . . . , an) = 0 if |vLab−1(i)| = ni =: |fi|. (24)

The Foliage Operator

Let F be the foliage operator of [K2] applied to trees. This means that F (τ) is
the formal sum over all trees obtained from τ by glueing an arbitrary number
of free tails to the white vertices. The extra edges are called free tail edges
Eftail, and the extra vertices Vftail are defined to be black and are called free
tail vertices.

Using the trees defined in Figure 2, this corresponds to the formal sum
F (τ) :=

∑
n ln ◦v τ , where the operadic composition is the one for b/w trees

that are not necessarily bipartite (see [K2]). In our current setup we should
first form F̃ (τ) :=

∑
n τn ◦v τ and then delete the images of all leaf edges

together with their white vertices of the τn to obtain F (τ).

Signs

The best way to fix signs of course is to work with tensors indexed by edges as
in [K2,KS]. For this, one fixes a free object L (free Z-module or k-vector space)
generated by one element of degree ±1 and calculates signs using L⊗Ew(τ)

before applying the foliage operator while using L⊗Eweight after applying the
foliage operator, where Eweight = Ew ∪ Eroot ∪Eftail ∪Espine.

Explicitly, we fix the signs to be given as follows. For any tree τ ′ in the
linear combination above, we take the sign of τ ′ to be the sign of the permu-
tation which permutes the set Eweight in the order induced by ≺ to the order
where at each vertex one first has the root if applicable, then all non–tail
edges, then all the free tails, and if there is a spine edge, the spine.

The explicit signs above coincide with usual signs [L] for the operations
and the operators b and B and also coincide with the signs of [G] for the ◦i
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and hence for the brace operations [Ge,Kad,GV]. The signs for the operations
corresponding to operations on the Hochschild side are fixed by declaring the
symbols “,” and “{” to have degree one.

Definition 3.4. For τ ∈ T bp,dec′ let τ̂ be its realization. We define the
operation of τ on CH(A,A) by

η(a0, τ(f1, . . . , fn)(a1, . . . , aN )) := Y (F (τ̂ ))(f1, . . . , fn)(a0, . . . , aN). (25)

Notice that due to Definition 3.3, the right-hand side is finite.

Examples

We will first regard the tree O′ with one white vertex, no additional black
edges, no free tails, and a spine; see Figure 2. For a function f ∈ CH

n
we

obtain

Y (F (O′))(f)(a0, . . . , an−1) = η (1, f(a0, . . . an−1)
+ (−1)n−1f(an−1, a0, . . . , an−2) + · · ·

)

= η(a0, Δ(f)(a1, . . . , an−1))

Let τ ′n,i be the tree of Figure 2. Then the operation corresponds to

Y (F (τ ′n,i))(f ; g1, . . . , gn)(a0, . . . , aN )
= η(1, f{′gi+1, . . . , gn, g1, . . . , gi}(a(2), a0, a(1))),

where N = |f | +
∑

|gi| − n− 1 and we used the shorthand notation

f{′gj+1, . . . , gn, g1, . . . , gj}(a(2), a0, a(1)) =
∑

±f(ak+1, . . . , aij+1−1,

gj+1(aij+1 , . . . , aij+1+|gj+1|), . . . , ain−1, gn(ain , . . . , ain+|gn|), . . . , aN , a0,

a1, . . . , ai1−1, g1(ai1 , . . . , ai1+|g1|), . . . , aij−1, gj(aij , . . . , aij+|gj |), . . . , ak),

where the sum runs over 1 ≤ i1 ≤ · · · ≤ ij ≤ · · · ≤ k ≤ · · · ≤ ij+1 ≤ · · · ≤
in ≤ N : il + |gl| ≤ il+1, ij + |gj| ≤ k and the signs are as explained above.

Theorem 3.5. [K3] (The cyclic Deligne conjecture) The Hochschild cochains
of a finite-dimensional associative algebra with a non–degenerate, symmetric,
invariant bilinear form are an algebra over the chains of the framed little discs
operad. This operation is compatible with the differentials.

Proof. We will use the cellular chains CC∗(Cacti1) as a model for the chains
of the framed little discs operad. It is clear that Definition 3.4 defines an
action. On the Hochschild side, the ◦i operations are substitutions of the type
fi = ψ(g1, . . . , gn). For CC∗(Cacti1) the τ ◦i τ

′ operations are the pullback
via the foliage operator of all possible substitutions of elements of F (τ), τ ∈
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CC∗(Cacti1) into the position i of F (τ ′). The action Y then projects onto
the substitution fi = ψ(g1, . . . , gn), so that the action is operadic. Explicitly,
the substitution t ◦s

i t
′ for planted planar bipartite trees with a decoration

dec′ and additional free tails is given as follows: Say the number of tails of t′

coincides with |F (vi)|. In this case replace the vertex vi of t, its edges, and
the black vertices corresponding to the edges with the tree t′ matching the
flags of vi with the tails of t′ by first matching the root edge with the marked
flag of vi and then using the linear order. Lastly, contract the image of the
root flag. Otherwise, set t ◦s

i t
′ = 0. With this definition it is easy to see that

F (τ ◦ τ ′) = F (τ) ◦s
i F (τ ′).

The compatibility of the Hochschild differential with the differential of
the cell complex follows from the relevant statements for τn and τb

n, which
are straightforward but lengthy calculations (see, e.g., [11,K2]), together with
the calculations above Section 3.1, which are easily modified to show that
(∂O′)(f) = Δ(∂(f)) and that

(
∂τ ′n,i

)
(f, g1, . . . , gn) =

(
∂τ ′n,i

)
(f, g1, . . . , gn)±

(
τ ′n,i

)
(∂f, g1, . . . , gn) +

∑
i ±
(
τ ′n,i

)
(f, g1, . . . , ∂(gi), . . . , gn) via an even more

lengthy but still straightforward calculation. This then verifies the claim
in view of the compatibility of the differentials and the respective operad
structures.

Alternatively, in view of the operation of the foliage operator, the compat-
ibilities follow from a straightforward translation of trees with tails into oper-
ations on the Hochschild complex. The compatibility of the differential then
follows from the almost identical definition of the differential for trees with
tails of [K2] and that in the Hochschild complex as ∂(f) = f ◦∪−(−1)|f |∪◦f .

Corollary 3.6. The normalized Hochschild cochains of an algebra as above
are a GBV algebra up to homotopy in the sense of Proposition 2.12.

This could of course have been checked directly without recourse to the
operation of a chain model, but we do not know of any source for this result.
It also seems to be difficult to guess the right homotopies as Gerstenhaber did
in the non-cyclic case [G].

Corollary 3.7. Over a field of characteristic zero, the Hochschild cohomology
of an algebra as above is a BV algebra such that the induced bracket is the
Gerstenhaber bracket.

Lastly, since our second version of cellular chains of Proposition 2.9 is a
subdivision of the cell decomposition of Proposition 2.7, we can also use the
latter cell decomposition.

Corollary 3.8. The normalized Hochschild cochains of an algebra as above
are an algebra over the semidirect product over a chain model of the little
discs operad and a chain model for the operad S built on the monoid S1.
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Remark 3.9. The operation of the little discs operad by braces, viz. the origi-
nal Deligne conjecture as discussed in [K2] for Frobenius algebras, corresponds
to the decorations in which dec± ≡ 0 and the decorated edge is always the
outgoing edge.

Remark 3.10. In Theorem 3.5 we can relax the conditions and implications
as explained in Section 3.1.

3.2 The Araki–Kudo–Cohen, Dyer–Lashof Operations
on the Hochschild Complex

By the positive answer to Deligne’s conjecture, the Hochschild complex be-
haves as if it were a double loop space. So we should expect operations ξ1 and
ζ1 on it. Indeed, they were found by Westerland [We] for p = 2 and by Tourt-
chine [Tou] for general p. We wish to point out that the cells of Section 2.4
naturally induce these operations. It is easy to see that ξ1 is just the iterated
◦ product and ζ1 is the product of such iterations. That is,

ξ1(x) = x ◦ (x ◦ (· · · ◦ x) · · · ). (26)

Note that the result is not novel, only the cells of Section 2.4 are. This
description, however, simplifies matters very much.

3.3 The A∞-Deligne Conjecture

Theorem 3.11. There is an action of the cellular chains model CC∗(KW)
on the Hochschild cochain complex of an A∞-algebra.

Proof. This follows from the theorem above in conjunction with the theorem
of [KS] that the operad T∞ acts in a dg fashion on C∗(A,A).

Remark 3.12. We recall that the action is given by viewing the tree as a
flow chart. Given functions f1, . . . , fn, the action of τ ∈ T∞(n) is defined as
follows. First “insert” the functions fi into the vertex labeled by i and then
view the tree as a flow chart using the operations μn of the A∞-algebra at
each black vertex of arity n and the brace operation h{g1, . . . , gk} at each
white vertex marked by h of arity k to concatenate the function. Here the
brace operation [Ge,Kad,GV] is given by

h{g1, . . . , gn}(x1, . . . , xN )

:=
∑

1 ≤ i1 ≤ · · · ≤ in ≤ |h| :
ij + |gj | ≤ ij+1

±h(x1, . . . , xi1−1, g1(xi1 , . . . , xi1+|g1|),

. . . , xin−1, gn(xin , . . . , xin+|gn|), . . . , xN ). (27)
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3.4 The Cyclic A∞ Case

We assume that we have an A∞-algebra A which is Frobenius in the sense
that there is a nondegenerate symmetric inner product such that the higher
multiplications μn are all cyclic with respect to the inner product. These are
sometimes called cyclic A∞-algebras, see [Ko2].

Theorem 3.13. The cyclic A∞ conjecture holds.

Sketch of proof. For the proof of this statement use spine-decorated stable
trees, that is, trees in T∞ together with a spine decoration. First they give
compatible operations, and second, they index a cell model of the framed
little discs. Both these claims follow from constructions completely analogous
to the ones above. ��

4 The Moduli Space vs. the Sullivan PROP

There are two generalizations of interest for the construction of the previous
paragraph. The first is given by generalizing the restriction In to Out to the
case of several “Out”s, and the second is given by going to the full moduli
space. Surprisingly, these lead to slightly different results. The first route
leads one into the realm of Penner’s combinatorial compactification, and it
fits perfectly with the algebra of the Hochschild complex. However, it does
not exhaust moduli space. Alternatively, one can expand to moduli space and
even omit invoking the compactification, but the price one pays is in terms of
further construction on the Hochschild side to make things match.

4.1 Ribbon Graphs and Arc Graphs

A Short Introduction to the Arc Operad

In this section, we start by giving a brief review of the salient features of
the Arc operad of [KLP] which is reasonably self-contained. The presentation
of the material closely follows Appendix B of [K1]. For full details, we refer
to [KLP]. In addition to this review, we furthermore introduce an equivalent
combinatorial language which will be key for the following, in particular for
[K5]. Simultaneously, we introduce new cell-level structures and then go on
to define new cell-level operads and extensions of the Arc operad structure.

4.2 Spaces of Graphs on Surfaces

Fix an oriented surface F s
g,r of genus g with s punctures and r boundary

components which are labeled from 0 to r − 1, together with marked points
on the boundary, one for each boundary component. We call this data F for
short if no confusion can arise.
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The piece of the Arc operad supported on F will be an open subspace of
a space As

g,r. The latter space is a CW complex whose cells are indexed by
graphs on the surface F s

g,r up to the action of the pure mapping class group
PMC, which is the group of orientation-preserving homeomorphisms of F s

g,r

modulo homotopies that pointwise fix the set which is the union of the set of
the marked points on the boundary and the set of punctures. A quick review
in terms of graphs follows.

Embedded Graphs

By an embedding of a graph Γ into a surface F , we mean an embedding
i : |Γ | → F with the conditions

(i) Γ has at least one edge.
(ii) The vertices map bijectively to the marked points on the boundaries.
(iii) No images of two edges are homotopic to each other by homotopies fixing

the endpoints.
(iv) No image of an edge is homotopic to a part of the boundary, again by

homotopies fixing the endpoints.

Two embeddings are equivalent if there is a homotopy of embeddings of
the above type from one to the other. Note that such a homotopy is necessarily
constant on the vertices.

The images of the edges are called arcs. And the connected components
of F \ i(Γ ) are called complementary regions.

Changing representatives in a class yields natural bijections of the sets
of arcs and connected components of F \ i(Γ ) corresponding to the differ-
ent representatives. We can therefore associate to each equivalence class of
embeddings its sets of arcs together with their incidence conditions and con-
nected components—strictly speaking, of course, the equivalence classes of
these objects.

Definition 4.1. By a graph γ on a surface we mean a triple (F, Γ, [i]), where
[i] is an equivalence class of embeddings of Γ into that surface. We will denote
the isomorphism class of complementary regions by Comp(γ). We will also
set |γ| = |EΓ |. Fixing the surface F , we will call the set of graphs on a
surface G(F ).

A Linear Order on Arcs

Notice that due to the orientation of the surface, the graph inherits an in-
duced linear order of all the flags at every vertex F (v) from the embedding.
Furthermore, there is even a linear order on all flags by enumerating the flags
first according to the boundary components on which their vertex lies and
then according to the linear order at that vertex. This induces a linear order
on all edges by enumerating the edges by the first appearance of a flag of that
edge.
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The Poset Structure

The set of such graphs on a fixed surface F is a poset. The partial order is
given by writing (F, Γ ′, [i′]) ≺ (F, Γ, [i]) if Γ ′ is a subgraph of Γ with the same
vertices and [i′] is the restriction of [i] to Γ ′. In other words, the first graph
is obtained from the second by deleting some arcs.

We associate a simplex Δ(F, Γ, [i]) to each such graph, where Δ is the
simplex whose vertices are given by the set of arcs/edges enumerated in their
linear order. The face maps are then given by deleting the respective arcs.
This allows us to construct a CW complex out of this poset.

Definition 4.2. Fix F = F s
g,n. The space A′s

g,n is the space obtained by glue-
ing the simplices Δ(F, Γ ′, [i′]) for all graphs on the surface according to the
face maps.

The pure mapping class group naturally acts on A′s
g,n and has finite

isotropy [KLP].

Definition 4.3. The space As
g,r is defined to be A′s

g,r/PMC.

CW Structure of As
g,r

Definition 4.4. Given a graph on a surface, we call its PMC orbit its arc
graph. If γ is a graph on a surface, we denote by γ̄ its arc graph or PMC
orbit. We denote the set of all arc graphs of a fixed surface F by G(F ). A
graph is called exhaustive if there are no vertices v with val(v) = 0. This
condition is invariant under PMC, and hence we can speak about exhaustive
arc graphs. The set of all exhaustive arc graphs on F is denoted by Ge

(F ).

Notice that since the incidence conditions are preserved, we can set |γ̄| =
|γ|, where γ is any representative, and likewise define Comp(γ̄). We call an
arc graph exhaustive if it contains no isolated vertices, that is, vertices with
val(v) = 0.

Now by construction it is clear that As
g,r is realized as a CW complex that

has one cell for each arc graph γ̄ of dimension |γ| − 1. Moreover, the cell for a
given class of graphs is actually a map of a simplex whose vertices correspond
to the arcs in the order discussed above. The attaching maps are given by
deleting edges and identifying the resulting face with its image. Due to the
action of PMC, some of the faces might become identified by these maps, so
that the image will not necessarily be a simplex. The open part of the cell
will, however, be an open simplex. Let C(ᾱ) be the image of the cell, and
Ċ(ᾱ) its interior. Then

As
g,r = ∪ᾱ∈G(F s

g,r)C(ᾱ), As
g,r = �ᾱ∈G(F s

g,r)Ċ(ᾱ). (28)

Let Δn denote the standard n-simplex and Δ̇ its interior. Then Ċ(γ) =
R

|EΓ |
>0 /R>0 = Δ̇|EΓ |−1 =: C(Γ ), which depends only on the underlying graph

Γ of γ.
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This also means that the space As
g,r is filtered by the cells of dimension

less than or equal to k. We will use the notation
(
As

g,r

)≤k for the pieces of
this filtration.

Open-Cell Cell Complex

It is clear by construction that the Arc operad again has a decomposition into
open cells:

Arcsg(n) = �γ∈Ge(F s
g,n+1)Ċ(γ). (29)

Again Ċ(γ) = R
|EΓ |
>0 /R>0 = Δ̇|EΓ |−1 := Ċ(Γ ) depends only on the underlying

graph Γ of γ.
We will denote the free Abelian group generated by the C(α) as above

by C∗
o (Arc)s

g(n). We will write C∗
o (Arc)(n) = �g,sC∗

o (Arc)s
g(n) and C∗

o(Arc) =
�nC∗

o (Arc)(n). We choose the notation to reflect the fact that we are strictly
speaking not dealing with cellular chains; however, see [K4].

The group C∗
o (Arc)(n) is also graded by the dimension of the cells; we will

write C∗
o(Arc)(n)k for the subgroup generated by cells of dimension k, and

we will also write C∗
o (Arc)(n)≤k for the subgroup of cells of dimension ≤ k.

It is clear that C∗
o (Arc)(n)≤k induces a filtration on C∗

o(Arc)(n) and that the
associated graded is isomorphic to the direct sum of the C∗

o(Arc)(n)k :

Gr(C∗
o (Arc)) := Gr (C∗

o(Arc)(n),≤) �
⊕

k

C∗
o (Arc)k(n). (30)

The differential ∂ of As
g,r also descends to C∗

o (Arc) and Gr(C∗
o (Arc)) by

simply omitting the cells which are not in Arc. Applying the differential twice
will kill two arcs, and each original summand will either be twice treated as
zero or appear with opposite sign as in As

g,r. Hence the differential squares
to zero.

Relative Cells

The complex C∗
o (Arc)s

g(n) and the isomorphic complex Gr(C∗
o (Arc))s

G(n) can
be identified with the complex of relative cells CC∗(A,A \ Arc).

Elements of the As
g,r as Projectively Weighted Graphs

Using barycentric coordinates for the open part of the cells, the elements of
As

g,r are given by specifying an arc graph together with a map w from the
edges of the graph EΓ to R>0 assigning a weight to each edge such that the
sum of all weights is 1.

Alternatively, we can regard the map w : EΓ → R>0 as an equivalence class
under the equivalence relation w ∼ w′ if ∃λ ∈ R>0∀e ∈ EΓ w(e) = λw′(e).
That is, w is a projective metric. We call the set of w(e) the projective weights
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of the edges. In the limit, when the projective weight of an edge goes to
zero, the edge/arc is deleted; see [KLP] for more details. For an example see
Figure 10, which is discussed below.

An element α ∈ As
g,r can be described by a tuple α = (F, Γ, [i], w), where F

and Γ are as above, [i] is a PMC orbit of an equivalence class of embeddings,
and w is a projective metric for Γ . Alternatively, it can be described by a
tuple (γ̄, w), where γ̄ ∈ G(F ) and w is a projective metric for the underlying
abstract graph Γ .

Example 4.5. A0
0,2 = S1. Up to PMC there is a unique graph with one edge

and a unique graph with two edges. The former gives a zero-cell and the latter
gives a one-cell whose source is a 1-simplex. Its two subgraphs with one edge
that correspond to the boundary lie in the same orbit of the action of PMC
and thus are identified to yield S1. The fundamental cycle is given by Δ of
Figure 10.

1

1

1

11

A0
0,2 = S1

s1

1−s

1

s1

1−s

Fig. 10. The space A0
0,2 is given as the CW decomposition of S1 with one 0-cell

and one 1-cell. It can be thought of as the quotient of the interval in which the
endpoints are identified by the action of the pure mapping class group. The generator
of CC∗(S1) is called Δ.
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4.3 Topological Operad Structure

The Spaces Arc(n)

We begin by reviewing the construction of [KLP]. We then recast it in a
purely combinatorial way. This will allow us to define the actions of [K5]
more simply, but also allow us to show that although Arc# is not an operad
on the topological level, it is a rational operad and gives rise to a cellular
operad.

Definition 4.6. We define Arcsg(n) ⊂ As
g,n+1 to be the subset of those

weighted arc graphs whose arc graph is exhaustive. We define Arc(n) :=∐
s,g∈N

Arcsg(n).6

Notice that the space Arc(n) carries a natural operation of Sn which
permutes the labels {1, . . . , n} and one of Sn+1 which permutes the labels
{0, . . . , n}. Also notice that the spaces Arcsg(n) inherit the grading and filtra-
tion from As

g(n). This is also true for their unions Arc(n), and we will write
Arc(n)≤k for these pieces. That is, if α ∈ Arc(n)≤k then |E(Γ (α))| ≤ k + 1.

Topological Description of the Glueing [KLP]

To give the composite α ◦i α
′ for two arc families α = (F, Γ, [i], w) ∈ Arc(m)

and α′ = (F ′, Γ ′, [i′], w′) ∈ Arc(n) one most conveniently chooses metrics on
F and F ′. The construction does not depend on the choice. With this metric,
one produces a partially measured foliation in which the arcs are replaced
by bands of parallel leaves (parallel to the original arc) of width given by the
weight of the arc. For this we choose the window representation and also make
the window tight in the sense that there is no space between the bands and
between the endpoints of the window and the bands. Finally, we put in the
separatrices. The normalization we choose is that the sum of the weights at
boundary i of α coincides with the sum of the weights at the boundary 0;
we can also fix them both to be one. Now when glueing the boundaries, we
match up the windows, which have the same width, and then just glue the
foliations. This basically means that we glue two leaves of the two foliations
if they end on the same point. We then delete the separatrices. Afterward, we
collect together all parallel leaves into one band. In this procedure, some of
the original bands might be split or “cut” by the separatrices. We assign to
each band one arc with weight given by the width of the consolidated band.
If arcs occur, which do not hit the boundaries, then we simply delete these
arcs. We call these arcs or bands “closed loops” and say that “closed loops
appear in the glueing.”

6Unfortunately there is a typo in the definition of Arc(n) in [KLP], where
∐

was inadvertently replaced by the direct limit.
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Theorem 4.7. [KLP] Together with the glueing operations above, the spaces
Arc form a cyclic operad.

In [KLP] we furthermore obtained the following theorem.

Theorem 4.8. [KLP] The chains of the Arc operad carry the structure of a
GBV algebra up to homotopy. That is, it has a natural Gerstenhaber algebra
structure up to homotopy and a BV operator up to homotopy, and they are
compatible.

The Dual Graph

Informally the dual graph of an element in Arc# is given as follows. The
vertices are the complementary regions. Two vertices are joined by an edge
if the complementary regions border the same arc. Due to the orientation of
the surface, this graph is actually a ribbon graph via the induced cyclic order.
Moreover, the marked points on the boundary make this graph into a marked
ribbon graph. A more precise formal definition is given in [K4].

4.4 DArc

The whole theory of arc graphs can be looked at in two flavors, either with
projective metrics as we did, or with metrics proper, that is, without modding
out by the overall scaling. This results in a completely equivalent theory. Here
the operad Arc is replaced by the operad DArc, where the “D” stands for
“deprojectivized.”

The Relation to Moduli Space

An interesting subspace of DArc is the space DArc#, which consists of the
arc graphs whose complementary regions are all polygons.

Theorem 4.9. [K4] The space DArc# is equivalent to M1n+1

g,n+1, that is, the
moduli space of curves of genus g with n marked points and a tangent vector
at each of these points. The glueing operations on DArc induce the structure
of a rational operad on M1n+1

g,n+1.

4.5 Cells

There are several cell models hidden in this construction. First A is a cell
complex from the start.

Second, we wish to point out that the arc graphs actually index cells of a
relative cell complex. This is in complete analogy to the graph complex that
describes the moduli space Mg,n [Ko1, CV], with the addition that we are
not dealing with a projectivized version, since the tangent vectors have real
lengths.
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4.6 Digraphs and Sullivan Chord Diagrams

Ribbon Digraphs

A ribbon graph is a digraph Γ together with a Z/2Z labelling of the cycles
of Γ : i/o : {cycles of Γ} → Z/2Z. We call the cycles i/o−1(0) =: OutΓ the
outgoing ones and i/o−1(1) =: InΓ the incoming ones. A digraph is said to be
of type (n,m) if |InΓ| = n and |OutΓ| = m. We will denote the set of these
graphs by Ribi/o.

A ribbon digraph is called perfectly partitioned if i/o(ı(f)) = 1 − i/o(f)
for every flag f . That is, each edge is part of one input and one output cycle.
We will call the set of these graphs Ribi↔o.

An (S1, S2)-labeled ribbon digraph is a ribbon digraph together with bi-
jective maps In → S1 and Out → S2. We denote the induced map on In�Out
by Lab. If (S1, S2) is not mentioned, we will use S1 = n and S2 = m as the
default indexing sets for a graph of type (n,m).

Sullivan Chord and Ribbon Diagrams

There are many definitions of Sullivan chord diagrams in the literature; we
will use the following conventions.

Definition 4.10. A Sullivan chord diagram is a marked labeled ribbon di-
graph which satisfies the following condition:

(i) after deleting the edges of the incoming cycles one is left with a forest, i.e.,
a possibly disconnected set of contractible graphs.

Remark 4.11. In terms of the dual arc picture, this means that there is a
partition of the boundary components of the surface into In and Out and arcs
only run from In to Out and Out to Out. A complete list of all versions of
Sullivan chord diagrams and their dual Arc pictures can be found in [K4].

The most important candidate for us will be a homotopically equivalent
version of contracted diagrams.

Definition 4.12. We let Arci↔o

1 be weighted arc graphs on surfaces with
marked inputs and outputs such that

1. All arcs run from In to Out.
2. The sum of the weights on each In boundary is 1.

The importance of this space is that it is the analogue of the normalized
cacti, that is, it gives a cell model for the Sullivan PROP.

Theorem 4.13. [K4] The subspaces Arci↔o

1 when bigraded by the number of
In and Out boundaries and endowed with the symmetric group actions permut-
ing the labels form a topological quasi-PROP, i.e., a PROP up to homotopy.
It is naturally a CW complex whose cells are indexed by the corresponding
graphs, and the induced quasi-PROP structure on the cell level is already a
PROP structure.
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4.7 Graph Actions, Feynman Rules, and Correlation Functions

Operadic Correlation Functions

In this section, we introduce operadic correlation functions, which can be
thought of as the generalization of an algebra over a cyclic operad to the dg
setting. In order to get to the main definition, we first set up some notation.

Given a pair (A,C) whereA is a vector space and C =
∑
c(1)⊗c(2) ∈ A⊗A,

we define the following operations:

◦i : Hom(A⊗n+1, k) ⊗ Hom(A⊗m+1, k) → Hom(A⊗n+m, k), (31)

where for φ ∈ Hom(A⊗n+1, k) and ψ ∈ Hom(A⊗m+1, k),

φ ◦i ψ(a1 ⊗ · · · ⊗ an+m)

=
∑

φ(a1⊗· · ·⊗ai−1⊗c(1)⊗ai+m⊗· · ·⊗am+n)ψ(c(2)⊗ai⊗· · ·⊗ai+m−1).
(32)

Definition 4.14. A set of operadic correlation functions for a cyclic linear
operad O is a tuple (A,C, {Yn}), where A is a vector space, C =

∑
c(1) ⊗

c(2) ∈ A ⊗ A is a fixed element, and Yn+1 : O(n) → Hom(A⊗n+1, k) is a
set of multilinear maps. The maps {Yn} should be Sn+1 equivariant, and for
opn ∈ O(n), opm ∈ O(m),

Yn+m(opn ◦i opm) = Yn+1(opn) ◦i Ym+1(opm), (33)

where the ◦i on the left is the multiplication of equation (31) for the pair
(A,C).

We call the data (A, {Yn}) of an algebra and the Sn+1 equivariant maps
correlation functions or simply correlators for O.

Example 4.15. Correlators for algebras over cyclic operads. An example
is given by an algebra over a cyclic operad. Recall that this a triple
(A, 〈 , 〉, {ρn}), where A is a vector space, 〈 , 〉 is a non–degenerate bi–
linear pairing, and ρn : O(n) → Hom(A⊗n, A) are multilinear maps, also
called correlators, that satisfy

(i) ρ(opn ◦i opm) = ρ(opn) ◦i ρ(opm), where ◦i is the substitution in the ith
variable.

(ii) The induced maps Yn+1 : O(n) → Hom(A⊗n+1, k) given by

Yn+1(opn)(a0 ⊗ · · · ⊗ an) := 〈a0, ρ(opn)(a1 ⊗ · · · ⊗ an)〉 (34)

are Sn+1 equivariant.

Notation 4.16. Given a finite dimensional vector space A with a non-
degenerate pairing 〈 , 〉 = η ∈ Ǎ ⊗ Ǎ, let C ∈ A ⊗ A be dual to η
under the isomorphism induced by the pairing and call it the Casimir el-
ement. It has the following explicit expression: Let ei be a basis of V , let
ηij := 〈ei, ej〉 be the matrix of the metric, and let ηij be the inverse matrix.
Then C =

∑
ij eiη

ij ⊗ ej .



Graphs, Strings, and Actions 169

4.8 Operadic Correlation Functions with Values
in a Twisted Hom Operad

Definition 4.17. Let (A, 〈 , 〉, {Yn}) be as above. And let H = {H(n)} with
H(n) ⊂ Hom(A⊗n, A) as k-modules be an operad where the Sn action is the
usual action, but the operad structure is not necessarily the induced operad
structure. Furthermore, assume that ρYn+1 ∈ H(n). We say that the {Yn}
are operadic correlation functions for O with values in H if the maps ρ are
operadic maps from O to H. We will also say that we get an action of O with
values in H.

Signs

As in the case of the Deligne conjecture, one twist which we have to use is
dictated by picking sign rules. In the case of Deligne’s conjecture this could
be done by mapping to the brace operad Brace (see, e.g., [K2]) or by twisting
the operad Hom by lines of degree 1 (see, e.g., [KS]). In what follows, our
actions will take values on operads that are naturally graded, and moreover,
we will identify the grading with the geometric grading by, e.g., the number
of edges or the number of angles. The signs will then automatically match
up if we use the procedure at the same time for both the graph side and the
Hom side, i.e., for the operad H. In fact, this approach unifies the two sign
conventions mentioned above on the subspace of operations corresponding to
LTreecp.

Definition 4.18. A quasi-Frobenius algebra is a triple (A, d, 〈 , 〉), where
(A, d) is a unital dg-algebra whose homology algebra H := H(A, d) is finite-
dimensional and has a non–degenerate pairing 〈 , 〉 and is a Frobenius algebra
for this pairing. A quasi-Frobenius algebra with an integral is a triple (A, d,

∫
),

where
∫

: A→ k is a linear map such that

(i) ∀a ∈ A :
∫
da = 0;

(ii) (A, d, 〈 , 〉) is a quasi-Frobenius algebra, where 〈a, b〉 :=
∫
ab. The cocycles

of a quasi-Frobenius algebra with an integral are the subalgebra Z =
ker(d) ⊂ A of the algebra above.

4.9 Arc∠ Correlation Functions

In order to present the correlation functions, we need to partition the arc
graphs and endow them with angle markings. Given an arc graph α, it gives
rise to a formal sum of arc graphs P(α), where each summand is obtained
from α by inserting finitely many parallel edges. See Figure 11 for one such
summand. This operation is the analogue of the foliage operator. An angle
marking is an angle marking of the arc graph. The corresponding space is
called A∠. In keeping with the notation already in place, Arc∠ is the subspace
of graphs that hit all boundaries, and elements of Arc∠# are also quasifilling.
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Given an arc graph, there are two standard angle markings. The first marks all
angles by 0 except the angles spanned by the smallest and biggest element at
each boundary. The second marking marks all angles by 1. When partitioning
an angle-marked graph, we mark all new angles by 1.

The idea of how to obtain the correlation functions for the tensor algebra
is very nice in the Arc picture, where it is based on the polygon picture. This
polygon picture can be thought of as an IRF (interaction ’round a face) picture
for a grid on a surface which is dual to the ribbon picture. For this we would
modify the arc graph by moving the arcs a little bit apart as described. Then
the complementary regions of partitioned quasifilling arc graphs, denoted by
PG#, are 2k-gons whose sides alternately correspond to arcs and pieces of
the boundary. The pieces of the boundary correspond to the angles of the
graph, and of course any polygonal region corresponds to a cycle of the arc
graph. If the graph αp has an angle marking, then the sides of the polygons
corresponding to the boundaries will also be marked. We fix the following
notation. For an angle-marked partitioned arc graph αp that is quasifilling,
let Poly(αp) be the set of polygons given by the complementary regions of αp

when treated as above. See Figure 8 for an example. For π ∈ Poly(αp), let
Sides′ be the sides corresponding to the angles which are marked by 1, and
Sides′(αp) be the union of all of these sides. If we set ∠+(Γ ) = (mk∠)−1(1),
let there is a natural bijection between ∠+(αp) and Sides′(αp).

For some purposes it is convenient to contract the edges of the 2k-gon
that belong to pieces of the boundary and label the resulting vertex by the
corresponding boundary label.

Correlation Functions on the Tensor Algebra of an Algebra

Fix an algebra A with a cyclic trace, i.e., a map
∫

: A → k which satisfies∫
a1 · · · an = ±

∫
ana1 · · · an−1, where ± is the standard sign.

Now for π ∈ Poly(αp), set

Y (π)

(
⊗

s∈Sides′(π)

as

)

=
∫ ∏

s∈Sides′(π)

as. (35)

Notice that we only have a cyclic order for the sides of the polygon, but
∫

is
(super)-invariant under cyclic permutations, so that if we think of the tensor
product and the product as indexed by sets (35), it is well defined.

For an angle marked partitioned arc family αp set

Y (αp)

⎛

⎝
⊗

s∈(mk∠)−1(1)

as

⎞

⎠ =
⊗

π∈Poly(αp)

Y (π)

⎛

⎝
⊗

s∈Sides′(π)

as

⎞

⎠ , (36)

where we used the identification of the set Sides′(αp) = �π∈Poly(αp)Sides′(π)
with ∠+(αp). Since for each αp ∈ P∠Ge

(n) the set of all flags has a linear
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order, we can think of Y (αp) as a map A⊗|F (αp)| =
⊗n

i=1 A
⊗|F (vi)| → k and

furthermore as a map to TA⊗n → k by letting it be equal to equation (36)
as a map from

⊗n
i=1A

⊗|F (vi)| ⊂ TA⊗n and setting it to zero outside of this
subspace.

Extending linearly, for an angle-marked arc family α ∈ Arc∠, we finally
define

Y (α) := Y (P(α)). (37)

Correlators for the Hochschild Cochains of a Frobenius Algebra

Let A be an algebra and let Cn(A,A) = Hom(A⊗n, A) be the Hochschild
cochain complex of A. We denote the cyclic cochain complex by CCn(A, k) =
Hom(A⊗n+1, k). Then one has a canonical isomorphism of CC∗(A) ∼=
C∗(A, Ǎ) as complexes and hence also HC∗(A) ∼= H∗(A,A), where HC is
Connes’ cyclic cohomology and H is the Hochschild cohomology.

Lemma 4.19. For any Frobenius algebra (A, 〈 , 〉), we have canonical isomor-
phisms CC∗(A) ∼= C∗(A, Ǎ) ∼= C∗(A,A) and HC∗(A) ∼= H∗(A,A) ∼= H∗(A, Ǎ)
induced by the isomorphism of A and Ǎ which is defined by the non-degenerate
pairing of A.

Proof. The only statement to prove is the last isomorphism. As mentioned,
the map on the chain level is induced by the isomorphism of A and Ǎ defined
by the nondegenerate pairing of A. The fact that the complexes are isomorphic
follows from the well-known fact that the invariance of the pairing 〈ab, c〉 =
〈a, bc〉 implies that the isomorphism between A and Ǎ is an isomorphism of
A bimodules, where the bimodule structure of functions f ∈ Ǎ is given by
a′fa′′(c) = f(a′′ca′); see, e.g., [L].

For any f ∈ Cn(A,A) let f̃ ∈ Ǎ⊗n be its image under the isomorphism of
Ǎ with A defined by the Frobenius structure of A.

Given pure tensors fi = f0i⊗f1i⊗· · ·⊗fini ∈ Cni(A,A), i ∈ {0, . . . , n}, we
write f̃i = f0i ⊗ · · · ⊗ fini for their image in CCni(A). Fix α ∈ Arc∠(n). Now
decorate the sides s ∈ Sides′(α) := (mk∠)−1(1) of the complementary regions,
which correspond to pieces of the boundary, by elements of A as follows: for
a side s ∈ Sides′ let j, be its position in its cycle ci counting only the sides of
ci in Sides′ starting at the side corresponding to the unique outside angle at
the boundary given by the cycle. If the number of such sides at the boundary
i is ni + 1, then set fs := fij .

Now we set

Y (α)(f1, . . . , fn) := Y (P(α))

⎛

⎝
⊗

s∈∠+(αp)

fs

⎞

⎠ . (38)
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Fig. 11. A partitioned arc graph with decorations by elements of A and one of its
decorated polygons. The bold line corresponds to the bold edges.

We extend this definition by linearity if fi ∈ Cni(A,A), i ∈ n̄. If the condition
that ni + 1 equals the number of Sides′ at the boundary i is not met, we set
Y (α)(f0, . . . , fn) = 0. An example of a decorated partitioned surface and its
polygons is given in Figure 11.

Theorem 4.20. [K5] Let A be a Frobenius algebra and let C(A,A) be the
Hochschild complex of the Frobenius algebra. Then the cyclic chain operad of
the open cells of Arc∠ acts on C(A,A) via correlation functions. Hence so
do all the suboperads, subdioperads, and PROPs of [K4] mentioned in the in-
troduction. In particular, the graph complex of M1n+1

g,n+1, the Moduli space of
pointed curves with fixed tangent vectors at each point, act on CH(A,A) by its
two embeddings into Arc∠#. Furthermore, there is a natural operad structure
on the corresponding partitioned graphs P∠Arc#, and for this operad struc-
ture the correlation functions are operadic correlation functions with values in
GrCM. Moreover, the operations of the suboperad T reecp correspond to the
operations � and �i induced by Ξ2 as defined in [MS3].

The same formalism also yields operadic correlation functions for the ten-
sor algebra of the cocycles of a differential algebra (A, d) over k with a cycli-
cally invariant trace

∫
: A → k that satisfies

∫
da = 0 and whose induced

pairing on H = H(A, d) turns H into a Frobenius algebra, i.e., they are
chain-level operadic correlation functions with values in GrCM.

Here GrCM is the associated graded operad of a filtered suboperad of
Hom, which is essentially generated by products, co–products, and shuffles.

Remark 4.21. We wish to point out that strictly speaking, Deligne’s origi-
nal conjecture also only yields correlation functions with values in the Brace
suboperad. This is due to the necessary fixing of signs.
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The Sullivan–Chord Diagram Case

Assumption: For the rest of the discussion of this subsection let A be a
commutative Frobenius algebra.

4.10 Correlators for A∠

In general, we extend the action as follows. Notice that given an arc graph α,
each complementary region S ∈ Comp(G) has the following structure: it is a
surface of some genus g with r ≥ 1 boundary components whose boundaries
are identified with a 2k-gons. Alternating sides belong to arcs and boundaries
as above, and the sides come marked with 1 or 0 by identifying them with
the angles of the underling arc graph. Now let Sides′(S) be the sides which
have an angle marking by 1 and let χ be the Euler characteristic of S. We set

Y (S)

⎛

⎝
⊗

s∈Sides′(S)

a

⎞

⎠ :=
∫
⎛

⎝
∏

s∈Sides′(S)

as

⎞

⎠ e−χ+1, (39)

where e := μ(Δ(1)) is the Euler element. For an angle marked partitioned arc
graph αp we set

Y (αp)

⎛

⎝
⊗

S∈Comp(αi)

⎛

⎝
⊗

s∈Sides′(S)

as

⎞

⎠

⎞

⎠ =
⊗

S∈Comp(αi)

Y (S)

⎛

⎝
⊗

s∈Sides′(S)

as

⎞

⎠

(40)
Again, for α ∈ CC∗(A∠) we simply set

Y (α) = Y (P(α)). (41)

Theorem 4.22. The Y (α) defined in equation (41) give operadic correla-
tion functions for CC∗(Arc

i↔o

1 ) and induces a dg-action of the dg-PROP
CC∗(Arc

i↔o

1 ) on the dg-algebra CH
∗
(A,A) of reduced Hochschild cochains for

a commutative Frobenius algebra A.
The Y (α) also yield correlation functions on the tensor algebra of the

cocycles of a differential algebra (A, d) over k with a cyclically invariant trace∫
: A→ k that satisfies

∫
da = 0 and whose induced pairing on H = H(A, d)

turns H into a Frobenius algebra. These correlation functions are operadic
chain-level correlation functions.

Corollary 4.23. The operadic correlation functions descend to give a PROP
action of H∗(Arc

i↔o

1 ) on H∗(A) for a commutative Frobenius algebra A.
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4.11 Application to String Topology

Let M be a simply connected compact manifold M and denote the free loop
space by LM and let C∗(M) and C∗(M) be the singular chains and (co)-
chains of M . We know from [J,CJ] that C∗(LM) = C∗(C∗(M), C∗(M)) and
H∗(LM) � H∗(C∗(M), C∗(M)). Moreover, C∗(M) is an associative dg alge-
bra with unit, differential d, and an integral (M was taken to be a compact
manifold)

∫
: C∗(M) → k such that

∫
dω = 0. By using the spectral sequence

and taking field coefficients, we first obtain operadic correlation functions Y
for T ree on E1 � C∗(H,H), where H = H∗(M). The spectral sequence
converges to H∗(LM) and the operadic correlation functions Y descend to
induce an operadic action on the homology of the loop space. Except for the
last remark, this was established in [K3].

Theorem 4.24. When taking field coefficients, the above action gives a dg
action of a dg-PROP of Sullivan chord diagrams on the E1-term of a spectral
sequence converging to H∗(LM), that is, the homology of the loop space if a
simply connected compact manifold and hence induces operations on this loop
space.

Proof. Recall from [CJ] that the isomorphism C∗(LM) = C∗(C∗(M), C∗(M))
comes from dualizing the isomorphism C∗(LM) = C∗(C∗(M))[J]. Calculating
the latter with the usual bicomplex [L], we see that the E1-term is given
by CH∗(H∗(M)), and dualizing the corresponding E1 spectral sequence, we
get CH∗(H∗(M), H∗(M)), so we get an operation of the E1 level. Since the
operation of T ree was dg, it is compatible with the E1 differential and hence
gives an action on the convergent spectral sequence computing H∗(LM) and
hence on its abutment.

5 Stabilization and Outlook

We have shown that the above methods are well suited to treat the double
loop space nature of the Hochschild complex, string topology, and a moduli
space generalization. The Arc operad is manifestly BV, and since it describes
string topology, it should not go beyond the double loop space. To go to higher
loop spaces we need a stabilization of the arc operad. In the following, we will
give an outlook of the results we aim to prove in the higher loop case.

In this section s = 0.
Definition 5.1. The elements in the complement of Arc# are called non-
effective. Let Arcctd be the suboperad of connected arc families.

Definition 5.2. We define StArc0(n) := lim−→Arcctd, where the limit is taken
with respect to the system α→ α◦iOpg, α→ Opg◦iα, where Opg ∈ Arcctd1 (2)
is non-effective.

Claim. The spaces StArc0(n) form an operad.
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2
1 2

1

Fig. 12. The ∪2 and the ∪i operations.

Claim. The operad StArc0(n) detects infinite loop spaces, i.e., if X admits
an operadic action of StArc0(n), then it has the homotopy type of an infinite
loop space.

Sketch of proof. We can give a hemispherical construction a la Fiedorowicz
by using the arc graphs for the ∪i products as given in Figure 12.

Corollary 5.3. StArc0(n) has the homotopy type of an infinite loop space.

This can be compared to the theorems of Tillmann and Madsen on infinite
loop spaces and Segal’s approach to CFT.

Notice that the construction above uses only the tree part and indeed, we
make the following claim.

Claim. The suboperad of stabilized linear Chinese trees (cf. [KLP]) has an
operadic filtration StGTreeg in terms of effective genus. The operad linear
StGTreeg is isomorphic to the little 2g cubes operad. That is, we get cells for
the ∪i-operations. A finer filtration gives all k-cubes.

This fits well with the slogan that strings yield all higher-dimensional
objects. It also gives tools to describe the cells for the higher Dyer–Lashof–
Cohen operations.
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Deligne’s conjecture. Conférence Moshé Flato 1999, Vol. I (Dijon), 255–307,
Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000.

[KLi1] A. Kapustin and Y. Li. D-branes in Landau-Ginzburg models and algebraic
geometry. JHEP 0312, 005 (2003).

[KLi2] A. Kapustin and Y. Li. Topological correlators in Landau-Ginzburg models
with boundaries. Preprint hep-th/0305136.

[KR] A. Kapustin and L. Rozansky. On the relation between open and closed
topological strings. Commun. Math. Phys. 252 (2004) 393–414.

[L] J–L. Loday. Cyclic Homology. Appendix E by Maŕıa O. Ronco. Second
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Summary. Let X be a complex Calabi–Yau variety, that is, a complex projective
variety with canonical singularities whose canonical class is numerically trivial. Let G
be a finite group acting on X and consider the quotient variety X/G. The aim of this
paper is to determine the place of X/G in the birational classification of varieties.
That is, we determine the Kodaira dimension of X/G and decide when it is uniruled
or rationally connected. If G acts without fixed points, then κ(X/G) = κ(X) = 0;
thus the interesting case is when G has fixed points. We answer the above questions
in terms of the action of the stabilizer subgroups near the fixed points. We give a
rough classification of possible stabilizer groups which cause X/G to have Kodaira
dimension −∞ or equivalently (as we show) to be uniruled. These stabilizers are
closely related to unitary reflection groups.

Key words: Calabi–Yau, uniruled, rationally connected, reflection group
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Let X be a Calabi–Yau variety over C, that is, a projective variety with
canonical singularities whose canonical class is numericaly trivial. Let G be
a finite group acting on X and consider the quotient variety X/G. The aim
of this paper is to determine the place of X/G in the birational classification
of varieties. That is, we determine the Kodaira dimension of X/G and decide
when it is uniruled or rationally connected.

If G acts without fixed points, then κ(X/G) = κ(X) = 0; thus the inter-
esting case is that in which G has fixed points. We answer the above questions
in terms of the action of the stabilizer subgroups near the fixed points.

The answer is especially nice if X is smooth. In the introduction we con-
centrate on this case. The precise general results are formulated later.

Definition 1. Let V be a complex vector space and g ∈ GL(V ) an ele-
ment of finite order. Its eigenvalues (with multiplicity) can be written as
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e(r1), . . . , e(rn), where e(x) := e2πix and 0 ≤ ri < 1. Following [IR96,Rei02],
we define the age of g as

age(g) := r1 + · · ·+ rn.

Let G be a finite group and (ρ, V ) a finite-dimensional complex representation
of G. We say that ρ : G → GL(V ) satisfies the (local) Reid–Tai condition if
age(ρ(g)) ≥ 1 for every g ∈ G for which ρ(g) is not the identity (cf. [Rei80,
3.1]).

Let G be a finite group acting on a smooth projective variety X. We say
that the G-action satisfies the (global) Reid–Tai condition if for every x ∈ X,
the stabilizer representation Stabx(G)→ GL(TxX) satisfies the (local) Reid–
Tai condition.

Our first result relates the uniruledness of X/G to the Reid–Tai condition.

Theorem 2. Let X be a smooth projective Calabi–Yau variety and G a finite
group acting on X. The following are equivalent:

1. κ(X/G) = 0.
2. X/G is not uniruled.
3. The G-action satisfies the global Reid–Tai condition.

The equivalence of (1) and (3) is essentially in [Rei80, Sec. 3]. It is conjec-
tured in general that being uniruled is equivalent to having Kodaira dimension
−∞. The main point of Theorem 2 is to establish this equivalence for varieties
of the form X/G.

It can happen that X/G is uniruled but not rationally connected. The
simplest example is that in which X = X1×X2 is a product, G acts trivially
on X1, and X2/G is rationally connected. Then X/G ∼= X1 × (X2/G) is a
product of the Calabi–Yau variety X1 and of the rationally connected variety
X2/G. We show that this is essentially the only way that X/G can be uniruled
but not rationally connected. The key step is a description of rational maps
from Calabi–Yau varieties to lower-dimensional nonuniruled varieties.

Theorem 3. Let X be a smooth, simply connected projective Calabi–Yau va-
riety and f : X ��� Y a dominant map such that Y is not uniruled. Then one
can write

f : X
π−→ X1

g��� Y,

where π is a projection to a direct factor of X ∼= X1 ×X2 and g : X1 ��� Y
is generically finite.

Note: C. Voisin pointed out that the smooth case discussed above also
follows from the Beauville–Bogomolov–Yau structure theorem; see [Bea83b,
Bea83a]. The structure theorem is conjectured to hold also for singular Calabi–
Yau varieties. In any case, we prove the singular version Theorem 14 in
Section 2 by other methods.

Applying this to the MRC-fibration of X/G, we obtain the following.
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Corollary 4. Let X be a smooth, simply connected projective Calabi–Yau
variety that is not a nontrivial product of two Calabi–Yau varieties. Let G
be a finite group acting on X. The following are equivalent:

1. X/G is uniruled.
2. X/G is rationally connected.
3. The G-action does not satisfy the global Reid–Tai condition.

Next we turn our attention to a study of the local Reid–Tai condition. For
any given representation it is relatively easy to decide whether the Reid–Tai
condition is satisfied. It is, however, quite difficult to get a good understanding
of all representations that satisfy it. For instance, it is quite tricky to determine
all ≤ 4-dimensional representations of cyclic groups that satisfy the Reid–Tai
condition; cf. [MS84, Mor85, MMM88, Rei87]. These turn out to be rather
special.

By contrast, we claim that every representation of a “typical” nonabelian
group satisfies the Reid–Tai condition. The groups that have some representa-
tion violating the Reid–Tai condition are closely related to complex reflection
groups. In the second part of the paper we provide a kit for building all of
them, using basic building blocks, all but finitely many of which are (up to
projective equivalence) reflection groups.

Let G be a finite group and (ρ, V ) a finite-dimensional complex represen-
tation of G such that (ρ, V ) does not satisfy the (local) Reid–Tai condition.
That is, G has an element g such that 0 < age(ρ(g)) < 1. We say that such
a pair (G, V ) is a non-RT pair and g is an exceptional element. There is no
essential gain in generality in allowing ρ : G→ GL(V ) not to be faithful. We
therefore assume that ρ is faithful, and remove it from the notation, regarding
G as a subgroup of GL(V ) (which is to be classified up to conjugation). If the
conjugacy class of g does not generate the full group G, it must generate a
normal subgroup H of G such that (H, V ) is again a non-RT pair. After clas-
sifying the cases for which the conjugacy class of g generates G, we can take
the normalization of each such G in GL(V ); all finite subgroups intermediate
between G and this normalizer give further examples. If V is reducible, then
for every irreducible factor Vi of V on which g acts nontrivially, (G, Vi) is again
a non-RT pair with exceptional element g. Moreover, if the conjugacy class
of g generates G, then g must be an exceptional element for every nontrivial
factor Vi of V . These reduction steps motivate the following definition:

Definition 5. A basic non-RT pair is an ordered pair (G, V ) consisting of a
finite group G and a faithful irreducible representation V such that the conju-
gacy class of any exceptional element g ∈ G generates G.

Given a basic non-RT pair (G, V ) and a positive integer n, we define
Gn = G×Z/nZ and let Vn denote the tensor product of V with the character
of Z/nZ sending 1 to e(1/n). Then Vn is always an irreducible representation
of Gn and is faithful if n is prime to the order of G. Also if the conjugacy class
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of g ∈ G generates the whole group, a ∈ Z is relatively prime to n, and n is
prime to the order of G, then the conjugacy class of (g, a) ∈ Gn generates Gn.
Finally, if g is an exceptional element, (a, n) = 1, and a/n > 0 is sufficiently
small, then (g, a) is exceptional. Thus for each basic non-RT pair (G, V ), there
are infinitely many other basic non-RT pairs that are projectively equivalent
to it. To avoid this complication, we seek to classify basic non-RT pairs only
up to projective equivalence:

Definition 6. Pairs (G1, V1) and (G2, V2) are projectively equivalent if there
exists an isomorphism PGL(V1) → PGL(V2) mapping the image of G1 in
PGL(V1) isomorphically to the image of G2 in PGL(V2).

We recall that a pseudoreflection g ∈ GL(V ) is an element of finite order
that fixes a codimension-1 subspace of V pointwise. A (complex) reflection
group is a finite subgroup of GL(V ) that is generated by pseudoreflections.
We say that (G, V ) is a reflection group if G is a reflection group in GL(V ).

Definition 7. We say that a basic non-RT pair (G, V ) is of reflection type if
(G, V ) is projectively equivalent to some reflection group (G′, V ′).

The reflection groups are classified in [ST54]. Note that every pseudore-
flection is of exceptional type, so every reflection group is a non-RT pair.
On the other hand, there may be elements of exceptional type in a reflection
group that are not pseudoreflections. Moreover, not every irreducible reflec-
tion group gives rise to a basic non-RT pair; it may happen that a particular
conjugacy class of pseudoreflections fails to generate the whole group, since
some irreducible reflection groups have multiple conjugacy classes of pseu-
doreflections.

We are interested in the other direction, however, and here we have the
following theorem.

Theorem 8. Up to projective equivalence, there are only finitely many basic
non-RT pairs that are not of reflection type.

We give an example in Section 5 below. Guralnick and Tiep [GT07] have
proved that all exceptions are 4-dimensional and given two additional exam-
ples. In principle our proof provides an effective way (via the classification of
finite simple groups) to determine all examples.

Finally, we study in detail the case in which X = A is an Abelian variety.
In fact, this case was the starting point of our investigations. For Abelian
varieties, the induced representations Stabx G → V = TxA have the prop-
erty that V + V ∗ is isomorphic to the rational representation of Stabx G on
H1(A, Q). This property substantially reduces the number of cases that we
need to consider and allows us to show that a basic non-RT pair arising from
an Abelian variety that is not of reflection type is of the unique known type.
A more precise statement is given in Theorem 36 below. Unlike the proof of
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Theorem 8, the proof of this theorem does not make use of the classification
of finite simple groups.

A consequence of the analysis that ultimately gives Theorem 36 is the
following easier statement.

Theorem 9. Let A be a simple Abelian variety of dimension ≥ 4 and
G a finite group acting on A. Then A/G has canonical singularities and
κ(A/G) = 0.

Acknowledgments. We thank Ch. Hacon, S. Kovács, and C. Voisin for help-
ful comments and references and De-Qi Zhang for correcting an error in an
earlier version of Theorem 3. Partial financial support to JK and ML was
provided by the NSF under grant numbers DMS-0500198 and DMS-0354772.

1 Uniruled quotients

Let X be a projective Calabi–Yau variety and G ⊂ Aut(X) a finite group
of automorphisms. Our aim is to decide when the quotient variety X/G is
uniruled or rationally connected. Our primary interest is in the case that X
is smooth, but the proof works without change whenever X has canonical
singularities and KX is numerically trivial. (Note that by [Kaw85, 8.2], KX

numerically trivial implies that KX is torsion.)

Theorem 10. Let X be a projective Calabi–Yau variety and G a finite group
acting on X. The following are equivalent:

1. G acts freely outside a set of codimension ≥ 2 and X/G has canonical
singularities.

2. κ(X/G) = 0.
3. X/G is not uniruled.

Proof. Set Z := X/G and let Di ⊂ Z be the branch divisors of the quotient
map π : X → Z with branching index ei. Set Δ :=

∑(
1 − 1

ei

)
Di. By the

Hurwitz formula,
KX ∼Q π∗(KZ + Δ

)
,

where ∼Q means that some nonzero integral multiples of the two sides are
linearly equivalent. Thus KZ + Δ ∼Q 0, and hence Theorem 10 is a special
case of Theorem 11. 	

Theorem 11. Let Z be a projective variety and Δ an effective divisor on Z
such that KZ + Δ ∼Q 0. The following are equivalent:

1. Δ = 0 and Z has canonical singularities.
2. κ(Z) = 0.
3. Z is not uniruled.
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Proof. If Δ = 0 then KZ is numerically trivial. Let g : Y → Z be a resolution
of singularities and write

KY ∼Q g∗KZ +
∑

aiEi ∼Q

∑
aiEi,

where the Ei are g-exceptional and ai ≥ 0 for every i iff Z has canonical
singularities.

Thus if (1) holds then KY ∼Q

∑
aiEi is effective and so κ(Y ) ≥ 0. Since∑

aiEi is exceptional, no multiple of it moves; hence κ(Y ) = κ(Z) = 0.
The implication (2)⇒ (3) always holds (cf. [Kol96, IV.1.11]). It is conjec-

tured that in fact (2) is equivalent to (3), but this is known only in dimensions
≤ 3 (cf. [KM98, 3.12–13]).

Thus it remains to prove that if (1) fails then Z is uniruled. We want to use
the Miyaoka–Mori criterion [MM86] to get uniruledness. That is, a projective
variety Y is uniruled if an open subset of it is covered by projective curves
C ⊂ Y such that KY · C < 0 and C ∩ Sing Y = ∅.

If Δ �= 0 then we can take C ⊂ Z to be any smooth complete intersection
curve that does not intersect the singular locus of Z.

Thus we can assume from now on that Δ = 0 and, as noted before,
KY ∼Q

∑
aiEi, where the Ei are g-exceptional and ai < 0 for some i, since

Z does not have canonical singularities by assumption. For notational conve-
nience assume that a1 < 0.

Ideally, we would like to find curves C ⊂ Y such that C intersects E1 but
no other Ei. If such a C exists then

(KY · C) =
(∑

aiEi · C
)

= a1(E1 · C) < 0.

We are not sure that such curves exist. (The condition KZ ≡ 0 puts strong
restrictions on the singularities of Z and creates a rather special situation.)

Fortunately, it is sufficient to find curves C such that (C · E1) is big and
the other (C · Ei) are small. This is enough to give KY · C < 0.

Lemma 12. Let Z be a normal projective variety over a field of arbitrary
characteristic, g : Y → Z a birational morphism, and E =

∑
aiEi a nonef-

fective g-exceptional Cartier divisor. Then Y is covered by curves C such that
(E · C) < 0.

Proof. Our aim is to reduce the problem to a carefully chosen surface S → Y
and then construct such curves directly on S. At each step we make sure that
S can be chosen to pass through any general point of Y , so if we can cover
these surfaces S with curves C, then the resulting curves also cover Y .

Assume that a1 < 0. If dim g(E1) > 0 then we can cut Y by pullbacks of
hypersurface sections of Z and use induction on the dimension.

Thus assume that g(E1) is a point. The next step would be to cut with
hypersurface sections of Y . The problem is that in this process some of the
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divisors Ei may become nonexceptional, even ample. Thus first we need to
kill all the other Ei such that dim g(Ei) > 0.

To this end, construct a series of varieties σi : Zi → Z starting with
σ0 : Z0 = Z as follows. Let Wi ⊂ Zi be the closure of

(
σ−1

i ◦ g
)
∗ (E1),

πi : Zi+1 → Zi the blowup of Wi ⊂ Zi, and σi+1 = σi ◦ πi.
By Abhyankar’s lemma (in the form given in [KM98, 2.45]), there is an

index j such that if Y ′ ⊂ Zj denotes the main component and g′ := σj : Y ′ →
Z the induced birational morphism then the following hold:

1. g′ is an isomorphism over Z \ g(E1), and
2. h := g−1 ◦ g′ : Y ′ ��� Y is a local isomorphism over the generic point

of E1.

Thus h∗(
∑

aiEi) is g′-exceptional and not effective (though it is guaranteed
to be Cartier only outside the indeterminacy locus of h).

Now we can cut by hypersurface sections of Y ′ to get a surface S′ ⊂ Y ′.
Let π : S → S′ be a resolution such that h ◦ π : S → Y is a morphism and
f := (g′ ◦ π) : S → T := g′(S′) ⊂ Z the induced morphism. Then (h ◦ π)∗E is
exceptional over T and not effective. Thus it is sufficient to prove Lemma 12
in case S = Y is a smooth surface.

Fix an ample divisor H on S such that

H1(S,OS(KS + H + L)) = 0

for every nef divisor L. (In characteristic 0 any ample divisor works by the
Kodaira vanishing theorem. In positive characteristic, one can use for in-
stance [Kol96, Sec. II.6] to show that any H such that (p − 1)H − KS −
4(some ample divisor) is nef has this property.)

Assume next that H is also very ample and pick B ∈ |H |. Using the exact
sequence

0→ OS(KS + 2H + L)→ OS(KS + 3H + L)→ OB(KB + 2H |B + L|B)→ 0,

we conclude that OS(KS + 3H + L) is generated by global sections.
By the Hodge index theorem, the intersection product on the curves Ei is

negative definite, hence nondegenerate. Thus we can find a linear combination
F =

∑
biEi such that F · E1 > 0 and F · Ei = 0 for every i �= 1. Choose HZ

ample on Z such that F + g∗HZ is nef.
Thus the linear system |KS + 3H + m(F + g∗HZ)| is base-point-free for

every m ≥ 0. Let Cm ∈ |KS + 3H + m(F + g∗HZ)| be a general irreducible
curve. Then

(Cm ·E1) = m(F ·E1) + (constant), and
(Cm · Ei) = (constant) for i > 1.

Thus (Cm · E)→ −∞ as m→∞. 	
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The following consequence of Lemma 12 is of independent interest. In
characteristic zero, Corollary 13 is equivalent to Lemma 12 by [BDPP]; thus
one can use Corollary 13 to give an alternative proof of Lemma 12. The
equivalence should also hold in any characteristic.

Corollary 13 (Lazarsfeld, unpublished). Let Z be a normal projective
variety, g : Y → Z a birational morphism, and E =

∑
aiEi a g-exceptional

Cartier divisor. Then E is pseudoeffective iff it is effective. 	


2 Maps of Calabi–Yau Varieties

Every variety has many different dominant rational maps to projective spaces,
but usually very few dominant rational maps whose targets are not unira-
tional. The main result of this section proves a version of this for Calabi–Yau
varieties.

Theorem 14. Let X be a projective Calabi–Yau variety and g : X ��� Z a
dominant rational map such that Z is not uniruled.

Then there are

1. a finite Calabi–Yau cover hX : X̃ → X,
2. an isomorphism X̃ ∼= F̃ × Z̃ where F̃ , Z̃ are Calabi–Yau varieties and πZ

denotes the projection onto Z̃, and
3. a generically finite map gZ : Z̃ ��� Z

such that g ◦ hX = gZ ◦ πZ .

Remark 15. 1. De-Qi Zhang pointed out to us that in general gZ cannot
be chosen to be Galois (contrary to our original claim). A simple example is
given as follows. Let A be an Abelian surface, K = A/ {±1} the corresponding
smooth Kummer surface, and m > 1. Then multiplication by m on A descends
to a rational map K ��� K, but it is not Galois.

2. Standard methods of the Iitaka conjecture (see especially [Kaw85]) im-
ply that for any dominant rational map X ��� Z, either κ(Z) = −∞ or π is
an étale locally trivial fiber bundle with Calabi–Yau fiber over an open subset
of Z. Furthermore, [Kaw85, Sec. 8] proves Theorem 14 for the Albanese mor-
phism. The papers [Zha96,Zha05] also contain related results and techniques.

First we explain how to modify the standard approach to the Iitaka con-
jecture to replace κ(Z) = −∞ with Z uniruled.

The remaining steps are more subtle, since we have to construct a suitable
birational model of Z and then to extend the fiber bundle structure from the
open set to everywhere, at least after a finite cover.

Proof. As we noted before, there is a finite Calabi–Yau cover X ′→X such that
KX′∼0. In particular, X ′ has canonical singularities. We can further replace Z
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by its normalization in C(X). Thus we can assume to start with that KX∼0,
X has canonical singularities, and g has irreducible general fibers.

If g is not a morphism along the closure of the general fiber of g then Z
is uniruled. If X is smooth, this is proved in [Kol96, VI.1.9]; the general case
follows from [HM05]. Thus there are open subsets X∗⊂X and Z∗⊂Z such
that g : X∗→Z∗ is proper. We are free to shrink Z∗ in the sequel if necessary.

Let us look at a general fiber F ⊂ X of g. It is a local complete intersection
subvariety whose normal bundle is trivial. So, by the adjunction formula, the
canonical class KF is also trivial. F has canonical singularities by [Rei80, 1.13].

Choose smooth birational models σ : X ′ → X and Z ′ → Z such that the
corresponding g′ : X ′ → Z ′ is a morphism that is smooth over the complement
of a simple normal crossing divisor B′ ⊂ Z ′. We can also assume that the
image of every divisor in X \ X∗ is a divisor in Z ′. Thus we can choose
smooth open subvarieties X0 ⊂ X and Z∗ ⊂ Z0 ⊂ Z ′ such that

1. X \X0 has codimension ≥ 2 in X , and
2. g0 := g′|X0 : X0 → Z0 is flat and surjective (but not proper).

The proof proceeds in three steps.
First, we show that ωX′/Z′ |X0 is the pullback of a line bundle L from Z0

that is Q-linearly equivalent to 0.
Second, we prove that there are an étale cover Z1 → Z0 and a birational

map Z1 × F ��� X0 ×Z0 Z1 that is an isomorphism in codimension 1.
Third, we show that if X̃ → X is the corresponding cover, then X̃ is a

product of two Calabi–Yau varieties, as expected.
In order to start with Step 1, we need the following result about algebraic

fiber spaces for which we could not find a convenient simple reference.

Proposition 16. Notation as above. Then g′∗ωX′/Z′ is a line bundle and one
can write the corresponding Cartier divisor

divisor class of
(
g′∗ωX′/Z′

) ∼Q Jg + Bg,

where

1. Bg is an effective Q-divisor supported on B′, and
2. Jg is a nef Q-divisor such that

(a) either Jg ∼Q 0 and g is an étale locally trivial fiber bundle over some
open set of Z∗,

(b) or (Jg ·C) > 0 for every irreducible curve C ⊂ Z ′ that is not contained
in B′ and is not tangent to a certain foliation of Z∗.

Proof. Over the open set where g′ is smooth, the results of [Gri70, Thm.
5.2] endow g′∗ωX′/Z′ with a Hermitian metric whose curvature is semipositive.
This metric degenerates along B′, but this degeneration is understood [Fuj78,
Kaw81], giving the decomposition Jg + Bg, where Jg is the curvature term
and Bg comes from the singularities of the metric along B′.
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Set d = dim F , where F is a general fiber of g. If F is smooth, we can
assume that F is also a fiber of g′. In this case the curvature is flat in the
directions corresponding to the (left) kernel of the Kodaira–Spencer map

H1(F, TF )×H0
(
F, Ωd

F

)→ H1
(
F, Ωd−1

F

)
.

If Ωd
F
∼= OF then this is identified with the Serre duality isomorphism

(
Hd−1

(
F, Ω1

F

))∗ ∼= H1
(
F, Ωd−1

F

)
;

hence the above (left) kernel is zero. Thus (Jg · C) = 0 iff the deformation of
the fibers g−1(C)→ C is trivial to first order over every point of C \B′. This
holds iff the fibers of g are all isomorphic to each other over C \B′.

The corresponding result for the case that F has canonical singularities is
worked out in [Kaw85, Sec. 6]. 	


Let us now look at the natural map

g′∗
(
ωZ′ ⊗ g′∗ωX′/Z′

)→ ωX′ ,

which is an isomorphism generically along F , thus nonzero. Hence there is an
effective divisor D1 such that

g′∗
(
ωZ′ ⊗ g′∗ωX′/Z′

) ∼= ωX′(−D1).

Write ωX′ ∼= σ∗ωX(D2) ∼= OX′(D2), where D2 is σ-exceptional.
Let C ⊂ X0 be a general complete intersection curve. Then σ−1 is defined

along C, and setting C′ := σ−1(C) we get that

degC′ g′∗
(
ωZ′⊗g′∗ωX′/Z′

)
= degC′ ωX′(−D1) =

(
C′ ·(D2−D1)

)
= −(

C′ ·D1

)
.

By the projection formula this implies that
(
g0(C) ·KZ′

)
+

(
g0(C) · Jg

)
+

(
g0(C) · Bg

)
+ (C · σ∗(D1)) = 0. (∗)

If
(
g0(C)·KZ′

)
< 0 then Z ′ is uniruled by the Miyaoka–Mori criterion [MM86],

contrary to our assumptions. Thus all the terms on the left-hand side are
nonnegative; hence they are all zero.

Since C is a general curve, it can be chosen to be not tangent to any given
foliation. Therefore Jg is torsion in Pic(Z ′) and X∗ → Z∗ is an étale locally
trivial fiber bundle for a suitable Z∗. A general complete intersection curve
intersects every divisor in X ; thus (C · σ∗(D1)) = 0 implies that σ∗(D1) = 0,
that is, D1 is σ-exceptional.

Similarly, g0(C) intersects every irreducible component of Z0 \ Z∗. Thus
(g0(C) · Bg) = 0 implies that Bg|Z0 = 0. These together imply that
L :=

(
g′∗ωX′/Z′

)|Z0 is Q-linearly equivalent to 0 and ωX′/Z′ |X0 ∼= g∗0L. This
completes the first step.
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Now to Step 2. Apply Lemma 17 to X∗ → Z∗. We get a finite cover
π : Z1 → Z0 such that X ′ ×Z0 Z1 is birational to F × Z1. By shrinking Z0,
we may assume that Z1 is also smooth. Eventually we prove that π is étale
over Z0, but for now we allow ramification over Z0 \ Z∗.

Let n : X1 → X ′ ×Z0 Z1 be the normalization. We compare the relative
dualizing sheaves

ωF×Z1/Z1 ∼= OF×Z1 and ωX1/Z1 .

Let X1 u← Y
v→ F × Z1 be a common resolution. We can then write

ωY/Z1 ∼= v∗ωF×Z1/Z1 (Ev) ∼= OY (Ev)

for some divisor Ev supported on Ex(v) and also

ωY/Z1 ∼= u∗ωX1/Z1 (E′
u) ∼= (g′ ◦ n ◦ u)∗L(Eu)

for some divisors E′
u, Eu. Since g∗L|X0 is Q-linearly equivalent to zero, we

conclude from these that

u∗(Eu − Ev)|X0 ∼Q 0.

Next we get some information about Eu and Ev. Since F × Z1 has canonical
singularities, every irreducible component of Ev is effective. Furthermore, an
irreducible component of Ex(v) appears with positive coefficient in Ev unless it
dominates Z0. Thus we see that u∗(Ev)|X0 is supported in X0 \X∗ and an
irreducible component of X0 \X∗ appears with positive coefficient in u∗(Ev),
unless v ◦ u−1 is a local isomorphism over its generic point.

On the other hand, since ωX′/Z′ |X0 is the pullback of L, ωX′×Z0Z1/Z1 |X0

is the pullback of π∗L. As we normalize, we subtract divisors correspond-
ing to the nonnormal locus. Every other irreducible component of Eu is
u-exceptional, hence gets killed by u∗. Thus we obtain that u∗(Eu)|X0 is also
contained in X0\X∗, and either an irreducible component of X0\X∗ appears
with negative coefficient or X ′×Z′ Z1 is normal over that component and the
coefficient is 0.

Thus u∗(Eu − Ev)|X0 is a nonpositive linear combination of the irre-
ducible components of X0 \X∗ and it is also Q-lineraly equivalent to 0. Since
X \X0 has codimension ≥ 2, we conclude that u∗(Eu −Ev)|X0 = 0. That is,
X0 ×Z0 Z1 is normal in codimension 1 and isomorphic to F ×Z1, again only
in codimension 1.

We may as well assume that Z1 → Z0 is Galois with group G. We then
have a corresponding G-action on F × Z1 for a suitable G-action on F . By
taking the quotient, we obtain a birational map

φ : W := (F × Z1)/G→ Z0 ��� X0,
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which is an isomorphism in codimension 1. In particular,

ωW/Z0 ∼= φ∗ωX0/Z0 ∼= g∗W L,

where gW : W → Z0 is the quotient of the projection map to Z1. Using (18.1)
we conclude that gW : W → Z0 is in fact an étale locally trivial fiber bundle
with fiber F , at least outside a codimension 2 set.

Then Lemma 17 shows that Z1 → Z0 is also étale at every generic point
of Z0 \ Z∗; thus it is a finite étale cover.

Let now X̃ → X be the normalization of X in the function field of X1.
Since Z1 → Z0 is étale, we see that X̃ → X is étale over X0. Thus X̃ → X
is étale outside a set of codimension ≥ 2. In particular, X̃ is a Calabi–Yau
variety.

Furthermore, the birational map φ : X̃ → F × Z1 is an open embedding
outside a set of codimension ≥ 2. That is, φ does not contract any divisor.
This completes Step 2.

By Proposition 18, X̃ is itself a product F̃ × Z̃. Note that F = F̃ , since φ
is an isomorphism along F ∼= π−1(z) for z ∈ Z∗. Thus X̃ ∼= F × Z̃ and there
is a generically finite map Z̃ ��� Z. 	

Lemma 17. Let f : U → V be a projective morphism between normal va-
rieties, V smooth. Assume that f is an étale locally trivial fiber bundle with
typical fiber F that is a Calabi–Yau variety. Then there is a finite étale cover
V ′ → V such that the pullback U ×V V ′ → V ′ is globally trivial. Moreover,
we can choose V ′ → V such that its generic fiber depends only on the generic
fiber of f .

Proof. Let H be an ample divisor on U . Let π : Isom(F×V, U, H)→ V denote
the V -scheme parametrizing V -isomorphisms φ : F × V → U such that φ∗H
is numerically equivalent to HF . The fiber of Isom(F × V, U, H) → V over
v ∈ V is the set of isomorphisms φ : F → Uv such that φ∗(H |Uv ) is numerically
equivalent to HF .

Note that Isom(F × V, U, H) → V is an étale locally trivial fiber bundle
with typical fiber AutH(F ). Any étale multisection of π gives a required étale
cover V ′ → V .

Thus we need to find an étale multisection of a projective group scheme
(in characteristic 0). The Stein factorization of π gives an étale cover V1 → V ,
and if we pull back everything to V1, then there is a well-defined identity
component. Thus we are reduced to the case that π : I → V is a torsor over
an Abelian scheme A→ V .

Let Ig be the generic fiber and let P ∈ Ig be a point of degree d. Let
Sd ⊂ Ig be the set of geometric points p such that dp− P = 0 ∈ Ag. Then Sd

is defined over k(V ) and it is a principal homogeneous space over the subgroup
of d-torsion points of Ag. We claim that the closure of Sd in I is finite and
étale over V . Indeed, it is finite over codimension-1 points and also étale over
codimension-1 points since the limit of nonzero d-torsion points cannot be
zero. Thus it is also étale over all points by the purity of branch loci. 	
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The KX = 0 of the following lemma is proved in [Pet94, Thm. 2].

Proposition 18. Let X, U, V be normal projective varieties. Assume that X
has rational singularities. Let φ : X ��� U × V be a birational map that
does not contract any divisor. Then there are normal projective varieties U ′

birational to U and V ′ birational to V such that X ∼= U ′ × V ′.

Proof. We can replace U, V by resolutions; thus we may assume that they are
smooth.

Let X
p← Y

q→ U × V be a factorization of g. By assumption, Ex(q) ⊂
Ex(p). Let H be a very ample divisor on X and φ∗H = q∗p∗H its birational
transform. Then |q∗p∗H | = |p∗H + m Ex(q)| for m� 1. On the other hand,

|H | = |p∗H | ⊂ |p∗H + m Ex(q)| ⊂ |p∗H + m Ex(p)| = |H |.

Thus |H | = |φ∗H |.
Assume that there are divisors HU on U and HV on V such that φ∗H ∼

π∗
UHU + π∗

V HV . Then

H0(U × V,OU×V (φ∗H)) = H0(U,OU (HU ))⊗H0(V,OV (HV )).

Since X is the closure of the image of U × V under the linear system |φ∗H |,
we see that X ∼= U ′×V ′, where U ′ is the image of U under the linear system
|HU | and V ′ is the image of V under the linear system |HV |.

If H1(U,OU ) = 0, then Pic(U × V ) = π∗
U Pic(U) + π∗

V Pic(V ), and we are
done. In general, however, Pic(U ×V ) � π∗

U Pic(U)+π∗
V Pic(V ), and we have

to change H .
Fix points u ∈ U and v ∈ V and let DU := φ∗H |U×{v} and DV :=

φ∗H |{u}×V . Set D′ := φ∗H − π∗
UDU − π∗

V DV . Then D′ restricted to any
U × {v′} is in Pic0(U) and D′ restricted to any {u′} × V is in Pic0(V ). Thus
there is a divisor B on Alb(U × V ) such that D′ = alb∗

U×V B, where, for a
variety Z, albZ : Z → Alb(Z) denotes the Albanese map.

Choose divisors BU on Alb(U) and BV on Alb(V ) such that π∗
UBU +

π∗
V BV − B is very ample, where, somewhat sloppily, πU , πV also denote the

coordinate projections of Alb(U × V ).
Since X has rational singularities, Alb(X) = Alb(U × V ). Replace H by

H∗ := H + alb∗
X (π∗

UBU + π∗
V BV −B).

Then
φ∗H∗ = φ∗H + alb∗

U×V (π∗
UBU + π∗

V BV −B)
= π∗

U (HU + alb∗
U BU ) + π∗

V (HV + alb∗
V BV ).

Since H∗ is again very ample, we are done. 	




192 János Kollár and Michael Larsen

18.1 (Quotients of trivial families). We consider families X → C over a
smooth pointed curve germ 0 ∈ C such that after a finite base change and
normalization we get a trivial family. This means that we start with a trivial
family F × D over a disk D, an automorphism τ of F of order dividing m,
and take the quotient X := (F ×D)/(τ, e(1/m)).

If the order of τ is less than m then there is a subgroup that acts trivially
on F and the quotient is again a trivial family. Thus we may assume that the
order of τ is precisely m.

Fix a top form ω on F . Pulling back by τ gives an isomorphism ω = ητ∗ω
for some mth root of unity η. If η �= 1 then on the quotient family the
monodromy around 0 ∈ C has finite order �= 1, and the boundary term B
in Proposition 16 is nonzero.

Finally, if ω = τ∗ω then F0 := F/(τ) also has trivial canonical class. Thus
by the adjunction formula we see that ωX/C

∼= OX((m− 1)F0) is not trivial.
Next we apply Theorem 14 to study those quotients of Calabi–Yau varieties

that are uniruled but not rationally connected. Let us see first some examples
of how this can happen. Then we will see that these trivial examples exhaust
all possibilities.

Example 19. Let Π : X ′ → Z ′ be an étale locally trivial fiber bundle whose
base Z ′ and typical fiber F ′ are both projective Calabi–Yau varieties. Then
X ′ is also a projective Calabi–Yau variety. Let G′ be a finite group acting on
X ′ and assume that Π is G′-equivariant. Assume that

1. κ(Z ′/G′) = 0, and
2. for general z ∈ Z ′, the quotient Π−1(z)/ Stabz G′ is rationally connected.

Then Π/G′ : X ′/G′ → Z ′/G′ is the MRC fibration of X ′/G′.
More generally, let H ⊂ G′ be a normal subgroup such that X := X ′/H is

a Calabi–Yau variety and set G := G′/H . Then X/G ∼= X ′/G′, and its MRC
fibration is given by Π/G′ : X ′/G′ → Z ′/G′.

Theorem 20. Let X be a projective Calabi–Yau variety and G a finite group
acting on X. Assume that X/G is uniruled but not rationally connected. Let
π : X/G ��� Z be the MRC fibration. Then there are

1. a finite, Calabi–Yau, Galois cover X ′ → X,
2. a proper morphism Π : X ′ → Z ′ that is an étale locally trivial fiber bundle

whose base Z ′ and typical fiber F ′ are both projective Calabi–Yau varieties,
and

3. a group G′ acting on X ′, where G ⊃ Gal(X ′/X) and G′/ Gal(X ′/X) = G,

such that Π/G′ : X ′/G′ → Z ′/G′ is birational to the MRC fibration π :
X/G ��� Z.

Proof. Let X/G ��� Z be the MRC fibration and let π : X → X/G ��� Z be
the composite. Since Z is not uniruled by [GHS03]; Theorem 14 applies and



Quotients of Calabi–Yau Varieties 193

we get a direct product F × Z mapping to X . Since both X and F × Z have
trivial canonical class, F × Z → X is étale in codimension 1.

In order to lift the G-action from X to a cover, we need to take the Galois
closure of F ×Z → X/G. Let G′ be its Galois group. This replaces F ×Z with
a finite cover that is étale in codimension 1. The latter need not be globally
a product, only étale locally a product. 	

Corollary 21. Let A be an Abelian variety and G a finite group acting on A.
There is a unique maximal G-equivariant quotient A→ B such that A/G →
B/G is the MRC quotient.

Proof. Let Π : A0 → Z0 be the quotient constructed in Theorem 20. Its
fibers Fz are smooth subvarieties of A with trivial canonical class. Thus each
Fz is a translation of a fixed Abelian subvariety C ⊂ A (cf. [GH79, 4.14]). Set
B = A/C. 	

Definition 22. Let G be a finite group acting on a vector space V . Let
GRT < G be the subgroup generated by all elements of age < 1 and V RT

the complement of the fixed space of GRT .

Definition 23. Let A be an Abelian variety and G a finite group acting on A.
For every x ∈ A, let Gx := Stab(x) < G denote the stabilizer and ix : A→ A
the translation by x. Consider the action of Gx on TxA, the tangent space
of A at x. Let GRT

x and (TxA)RT be as above. Note that (TxA)RT is the
tangent space of a translate of an Abelian subvariety Ax ⊂ A, since it is the
intersection of the kernels of the endomorphisms g − 1A for g ∈ GRT

x . Set

GRT :=
〈
GRT

x : x ∈ A
〉

and (TA)RT :=
〈
i∗x(TxA)RT : x ∈ A

〉
.

Then (TA)RT is the tangent space of the Abelian subvariety generated by the
Ax. Denote it by ART

1 .
The group G/GRT acts on the quotient Abelian variety q1 : A→ A/ART

1 .
If qi : A→ A/ART

i is already defined, set

ART
i+1 := q−1

i

((
A/ART

i

)RT

1

)

and let qi+1 : A → A/ART
i+1 be the quotient map. The increasing sequence of

Abelian subvarieties ART
1 ⊂ ART

2 ⊂ · · · eventually stabilizes to ART
stab ⊂ A.

Corollary 24. Let A be an Abelian variety and G a finite group acting on A.
Then

1. κ(A/G) = 0 iff GRT = {1}, and
2. A/G is rationally connected iff ART

stab = A.
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3 Basic Non-Reid–Tai Pairs

Our goal in this section is to classify basic non-RT pairs.
There is a basic dichotomy:

Proposition 25. If (G, V ) is a basic non-RT pair, then either (G, V ) is prim-
itive or G respects a decomposition of V as a direct sum of lines:

V = L1 ⊕ · · · ⊕ Ln.

In the latter case, the homomorphism φ : G → Sn given by the permutation
action of G on {L1, . . . , Ln} is surjective, and every exceptional element in G
maps to a transposition.

Proof. Suppose that G respects the decomposition V ∼= V1⊕· · ·⊕Vm for some
m ≥ 2. If there is more than one such decomposition, we choose one such that
m ≥ 2 is minimal. By irreducibility, G acts transitively on the set of Vi. Since
the conjugacy class of any exceptional element g generates G, it follows that
g permutes the Vi nontrivially. Suppose that for 2 ≤ k ≤ m, we have

g(V1) = V2, g(V2) = V3, g(Vk) = V1.

Then g and e(1/k)g are isospectral on V1⊕· · ·⊕Vk. Thus the eigenvalues of g
constitute a union of dimV1 cosets of the cyclic group 〈e(1/k)〉. Such a union
of cosets can satisfy the Reid–Tai condition only if k = 2 and dimV1 = 1, and
then g must stabilize Vi for every i ≥ 3. Thus g induces a transposition on
the Vi, each of which must be of dimension 1. A transitive subgroup of Sm

that contains a transposition must be of the form Sb
a � T , where ab = m, T is

a transitive subgroup of Sb, and a ≥ 2. It corresponds to a decomposition of
the set of factors Vi into b sets of cardinality a. If Wj denote the direct sums
of the Vi within each of the a-element sets of this partition, it follows that
G respects this coarser decomposition, contrary to the assumption that m is
minimal.

To analyze the primitive case, it is useful to quantify how far a unitary
operator is from the identity.

Definition 26. Let H be a Hilbert space, T a unitary operator on H, and B
an orthonormal basis of H. The deviation of T with respect to B is given by

d(T, B) :=
∑

b∈B

‖T (b)− b‖.

The deviation of T is
d(T ) := inf

B
d(T, B),

as B ranges over all orthonormal bases. If d(T ) <∞, we say that T has finite
deviation.
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Since the arc of a circle cut off by a chord is always longer than the chord,
if H is a finite-dimensional Hilbert space and g : H → H a unitary operator
of finite order not satisfying the Reid–Tai condition, we have d(g) < 2π. This
is the primary motivation for our definition of deviation.

For any space H , unitary operator T , basis B, and real number x > 0, we
define

S(T, B, x) = {b ∈ B | ‖T (b)− b‖ ≥ x}.
If 1I denotes the characteristic function of the interval I, then

∫ ∞

0

|S(T, B, x)|dx =
∫ ∞

0

∑

b∈B

1[0,‖T (b)−b‖]dx

=
∑

b∈B

∫ ∞

0

1[0,‖T (b)−b‖]dx =
∑

b∈B

‖T (b)− b‖ = d(T, B).

It is obvious that deviation is symmetric in the sense that d(T ) = d(T−1).
Next we prove a lemma relating d to multiplication in the unitary group.

Proposition 27. If T1, T2, . . . , Tn are unitary operators of finite deviation on
a Hilbert space H, then

d(T1T2 · · ·Tn) ≤ n(d(T1) + d(T2) + · · ·+ d(Tn)).

Proof. Let B1, B2, . . . , Bn denote orthonormal bases of H . We claim that there
exists an orthonormal basis B such that for all x > 0,

|S(T1T2 · · ·Tn, B, nx)| ≤ |S(T1, B1, x)|+|S(T2, B2, x)| + · · ·+ |S(Tn, Bn, x)|.
(1)

This claim implies the proposition, by integrating over x.
Given Ti, Bi and x > 0, we define

Vx = Span
n⋃

i=1

S(Ti, Bi, x).

Since all Ti are of finite deviation, the set of “jumps” (x such that Vx is not
constant in a neighborhood of x) is discrete in (0,∞). Arranging them in
reverse order, we see that there exists a (possibly infinite) increasing chain of
finite-dimensional subspaces Wi of H such that each Vx is equal to one of the
Wi. We choose B to be any orthonormal basis adapted to W1 ⊂W2 ⊂ · · · in
the sense that B ∩Wi is an orthonormal basis of Wi for all i.

For all b ∈ B, by the triangle inequality,

‖T1T2 · · ·Tn(b)− b‖ ≤
n∑

i=1

‖T1T2 · · ·Ti−1(Ti(b)− b)‖ =
n∑

i=1

‖Ti(b)− b‖.
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If b /∈ Vx, then b is orthogonal to every element of S(Ti, Bi, x) for i = 1, . . . , n,
and therefore ‖Ti(b)− b‖ ≤ x for all i. It follows that

‖T1T2 · · ·Tn(b)− b‖ ≤ nx,

or b /∈ S(T1T2 · · ·Tn, B, nx). This implies (1).

Proposition 28. If T1 and T2 are operators on a Hilbert space H such that
T1 is of bounded deviation, then

d
(
T−1

1 T−1
2 T1T2

) ≤ 4d(T1).

Proof. Since d
(
T−1

1

)
= d(T1) = d

(
T−1

2 T1T2

)
, the proposition follows from

Proposition 27.

Lemma 29. Let G be a compact group and (ρ, V ) a nontrivial representation
of G such that V G = (0). Then there exists g ∈ G with d(g) ≥ dimV .

Proof. Since V has no G-invariants,
∫

G

tr(ρ(g)) dg = 0,

there exists g ∈ G with �(tr(ρ(g))) ≤ 0. If d(g) < dim V , there exists an
orthonormal basis B of V such that

∑
b∈B |g(b) − b| < dim V . If aij is the

matrix of ρ(g) with respect to such a basis then �(
∑

i aii) < 0, so
∑

b∈B

‖b− g(b)‖ >
∑

i

|1− aii| ≥
∑

i

(1−�(aii)) > dimV,

which gives a contradiction.

Lemma 30. Let (G, V ) be a finite group and a representation such that V G =
(0). Suppose that for some integer k, every element of G can be written as a
product of at most k elements conjugate to g or g−1. Then d(g) ≥ dim V

k2 .

Proof. This is an immediate consequence of Proposition 27 and Lemma 29.

We recall that a characteristically simple group G is isomorphic to a group
of the form Kr, where K is a (possibly abelian) finite simple group.

Proposition 31. There exists a constant C such that if H is a perfect central
extension of a characteristically simple group Kr and the conjugacy class of
h ∈ H generates the whole group, then every element in H is the product of
no more than C log |H | elements conjugate to h or h−1.

Proof. If H is perfect, then Kr is perfect, so K is a nonabelian finite sim-
ple group and therefore perfect. Let K̃ denote the universal central exten-
sion of K, so K̃r is the universal central extension of Kr as well as of H .
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Since the only subgroup of K̃r mapping onto H is K̃r, it suffices to prove that
if h̃ = (x1, . . . , xr) ∈ K̃r has the property that its conjugacy class generates
K̃r, then every element of K̃r is the product of at most C log |H | conjugates
of h̃ or h̃−1 . For any t from 1 to r, we can choose (1, . . . , 1, y, 1, . . . , 1) ∈ K̃r

(with y in the tth coordinate) whose commutator with h̃ is an element
(1, . . . , 1, z, 1, . . . , 1) not in the center of K̃r. This element is the product of a
conjugate of h̃ and a conjugate of h̃−1. If we can find an absolute constant A
such that for every finite simple group K and every noncentral element z ∈ K̃,
every element of K̃ is the product of at most A log |K| elements conjugate to
z or z−1, the proposition holds with C = 2A.

To prove the existence of A, we note that we may assume that K has
order greater than any specified constant. In particular, we may assume that
K is either an alternating group Am, m ≥ 8, or a group of Lie type. It is
known that the covering number of Am is �m/2� (see, e.g., [ASH85]), so every
element of the group can be written as a product of ≤ m/2 elements belonging
to any given nontrivial conjugacy class X . The universal central extension of
Am is of order m!, and at least half of those elements are products of ≤ m/2
elements in any fixed conjugacy class X , so all of the elements are products
of ≤ m < log m!/2 elements of X . For the groups of Lie type and their
perfect central extensions, we have an upper bound linear in the absolute
rank ([EGH99], [LL98]) and therefore sublogarithmic in order.

Lemma 32. For every integer n > 0, there are only finitely many classes of
primitive finite subgroups G ⊂ GLn(C) up to projective equivalence.

Proof. Since G is primitive, a normal abelian subgroup of G lies in the center
of GLn(C). By Jordan’s theorem, G has a normal abelian subgroup whose
index can be bounded in terms of n. Thus the image of G in PGLn(C) is
bounded in terms of n. For each isomorphism class of finite groups, there are
only finitely many projective n-dimensional representations.

32.1 (Proof of Theorem 8).
First we assume that G stabilizes a set {L1, . . . , Ln} of lines that give a direct
sum decomposition of V . We have already seen that the resulting homomor-
phism φ : G → Sn is surjective. Let t ∈ G lie in kerφ, so t(vi) = λivi for all
i and all vi ∈ Li. The commutator of t with any preimage of the transposi-
tion (i j) ∈ Sn gives an element of kerφ that has eigenvalues λi/λj , λj/λi,
and 1 (of multiplicity n − 2). The G-conjugacy class of this element consists
of all diagonal matrices with this multiset of eigenvalues. Thus kerφ con-
tains ker detC : Cn → C, where C is the group generated by all ratios of
eigenvalues of all elements of kerφ. It follows that kerφ is the product of
ker detC and a group of scalar matrices. If we pass to PGL(V ), therefore, the
image of G is an extension of Cn−1 by Sn.

We claim that this extension is split if n is sufficiently large. To prove
this, it suffices to prove H2(Sn, Cn−1) = 0. This follows if we can show
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that H2(Sn, Zn−1) = H3(Sn, Zn−1) = 0, or that the sum-of-coordinate
maps

Hi(Sn, Zn)→ Hi(Sn, Z)

are isomorphisms for i = 1, 2, 3, where Sn acts on Z
n by permutations. By

Shapiro’s lemma, the composition of restriction and sum-of-coordinates gives
an isomorphism Hi(Sn, Zn)→̃Hi(Sn−1, Z), so we need to know that the re-
striction homomorphisms Hi(Sn, Z) → Hi(Sn−1, Z) are isomorphisms when
n is large compared to i, which follows from [Nak60].

Thus the image of G in PGL(V ) is Cn−1
� Sn, which is the same as the

image in PGL(V ) of the imprimitive unitary reflection group G(|C|, k, n),
where k is any divisor of G.

It remains to consider the primitive case. Let Z denote the center of G.
Since Z is abelian and has a faithful isotypic representation, it must be cyclic.
If G is abelian, then G = Z, and we are done. (This can be regarded as a sub-
case of the case that G stabilizes a decomposition of V into lines.) Otherwise,
let H ∼= Kr denote a characteristically simple normal subgroup of G := G/Z,
where K is a (possibly abelian) finite simple group and r ≥ 1. If K is abelian,
we let H ⊂ G denote the inverse image of H in G. In the nonabelian case,
we let H denote the derived group of the inverse image of H in G, which is
perfect and again maps onto H . We know that H is not contained in the cen-
ter of G, so some inner automorphism of G acts nontrivially on H . It follows
that conjugation by g acts nontrivially on H . By Proposition 28, there exists
a nontrivial element h ∈ H with d(h) < 8π.

We consider five cases:

1. H is abelian.
2. H is abelian but H is not.
3. K is a group of Lie type.
4. K is an alternating group Am, where m is greater than a sufficiently large

constant.
5. K is nonabelian but not of type (3) or (4).

We prove that case (4) leads to reflection groups, and all of the other cases
contribute only finitely many solutions.

If H is abelian, then the restriction of V to H is isotypical and H is central,
contrary to the definition of H .

If H is abelian and H is not, then H is a central extension of a vector group
and is therefore the product of its center Z by an extraspecial p-group Hp for
some prime p. The kernel Z[p] of multiplication by p on Z is isomorphic to
Z/pZ, and the commutator map H×H → Z[p] gives a nondegenerate pairing.
Therefore, conjugation by any element in G\H induces a nontrivial map on H .
Thus we can take h with d(h) < 8π to lie outside the center of H .

The image of every element of H in Aut(V ) is the product of a scalar
matrix and the image of an element of Hp in a direct sum of m ≥ 1 copies
of one of its faithful irreducible representations. By the Stone–von Neumann
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theorem, a faithful representation of an extraspecial p-group is determined
by a central character; its dimension is pn, where |Hp| = p2n+1, and every
noncentral element has eigenvalues ω, ωe(1/p), ωe(2/p), . . . , ωe(−1/p), each
occurring with multiplicity pn−1, where ωp2

= 1. Since h is a scalar multiple
of an element with these eigenvalues, we have

8π > d(h) ≥ 2πmpn−1 p(p− 1)
2p

≥ 2πmpn

4
,

so dimV = mpn < 16. By Lemma 32, there are only finitely many possibilities
for (G, V ) up to projective equivalence.

In cases (3)–(5), H is perfect. If the conjugacy class of h in G does not
generate H , it generates a proper normal subgroup of H , which is a central
extension of a subgroup of Kr that is again normal in G. Such a subgroup is
of the form Ks for s < r. Replacing H if necessary by a smaller group, we
may assume that the G-conjugacy class of h generates H . By Proposition 31,
every element of H is the product of at most C log |H | elements conjugate to
h or h−1, and by Lemma 30, this implies

dimV < 8πC2 log2 |H |. (2)

For case (3), we note that by [SZ93, Table 1], a faithful irreducible pro-
jective representation of a finite simple group K that is not an alternating
group always has dimension at least ec1

√
log |K| for some positive absolute

constant c1. A faithful irreducible representation of Kr is the tensor power
of r faithful irreducible representations of K, so its dimension is at least
ec1

√
log |H| > ec1

√
log |H|/2. For |H | � 0, this is in contradiction with (2).

Thus there are only finitely many possibilities for H up to isomorphism, and
this gives an upper bound for dim V . By Lemma 32, there are only finitely
many possibilities for (G, V ) up to projective equivalence.

For case (4), we need to consider both ordinary representations of Am and
spin representations (i.e., projective representations that do not lift to linear
representations). By [KT04], the minimal degree of a spin representation of
Am grows faster than any polynomial, in particular, faster than m5/2. To
every irreducible linear representation of Am one can associate a partition
λ of m for which the first part λ1 is greater than or equal to the number
of parts. There may be one or two representations associated to λ, and in
the latter case their degrees are equal and their direct sum is irreducible as
an Sm-representation. By [LS04, 2.1, 2.4], if λ1 ≤ m − 3, the degree of any
Sm-representation associated to λ is at least

(
m−3

3

)
, so the degree of any Am-

representation associated to λ is at least half of that. Thus, for m � 0, the
only faithful representations of Am that have degree less than m5/2 are Vm−1,1,
Vm−2,2, and Vm−2,1,1 of degrees m− 1, (m−1)(m−2)

2 , and m(m−3)
2 respectively.

Now, log |H | ≤ log(m!)r < rm1.1 for m � 0, and the minimal degree of
any faithful representation of H is at least (m − 1)r � r2m2.2 for r ≥ 3.
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By (2), there are only four possibilities that need be considered. If r = 2, then
H = H = A2

m, and V must be the tensor product of two copies of Vm−1,1.
Otherwise, r = 1, H = H = Am, and V is Vm−1,1, Vm−2,2, or Vm−2,1,1. In the
first case, the normalizer of H in GL(V ) is S2

n; in the remaining cases, it is Sn.
Since representations of S2

n or Sn respectively are all self-dual, if g ∈ G or any
scalar multiple thereof satisfies the Reid–Tai condition, all eigenvalues of g
must be 1 except for a single −1. By the classification of reflection groups, the
only one of these possibilities that can actually occur is the case V = Vm−1,1,
which corresponds to the Weyl group of type Am−1.

For case (5), there are only finitely many possibilities for K, and for
each K, we have log |H | ≤ r log |K̃|, while the minimal dimension of a faithful
irreducible representation of H grows exponentially. Thus, (2) gives an upper
bound on dim V . The theorem follows from Lemma 32.

4 Quotients of Abelian Varieties

Let us now specialize to the case in which X = A is an abelian variety and G a
finite group acting on A. For any x ∈ A, the dual of the tangent space TxA can
be canonically identified with H0(A, ΩA). By Hodge theory the representation
of Autx(A) on H1(A, Q) ⊗ C is isomorphic to the direct sum of the dual
representations on H0(A, ΩA) and on H1(A,OA).

Definition 33. A pair (G, V ) is of AV-type if V ⊕ V ∗ is isomorphic to the
complexification of a rational representation of G.

We have the following elementary proposition.

Proposition 34. Let (G, V ) denote a non-RT pair of AV-type. Let G1 ⊂ G
be a subgroup and V1 ⊂ V a G1-subrepresentation such that (G1, V1) is a basic
non-RT pair. Let g1 ∈ G1 be exceptional for V , and let S1 denote the set of
eigenvalues of g1 acting on V1, excluding 1. Then every element of S1 is a
root of unity whose order lies in

{2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 18} . (3)

If |S1| > 1, then S1 is one of the following:

1. {e(1/6), e(1/3)}.
2. {e(1/6), e(1/2)}.
3. {e(1/6), e(2/3)}.
4. {e(1/3), e(1/2)}.
5. {e(1/8), e(3/8)}.
6. {e(1/8), e(5/8)}.
7. A subset of {e(1/12), e(1/4), e(5/12)}.
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Proof. Let Σ ⊂ Gal(Q/Q) be the set of automorphisms σ such that V σ
1 is

a G1-subrepresentation of V . Since V ⊕ V ∗ is Gal(Q/Q)-stable, Σ ∪ cΣ =
Gal(Q/Q), where c denotes complex conjugation. Let e(r1) be an element of
S1, set

S0 = {σ(e(r1)) | σ ∈ Σ} ,
and let r1, . . . , rk denote distinct rational numbers in (0, 1) such that S0 =
{e(r1), . . . , e(rk)}. The ri have a common denominator d, and we write ai =
dri. Since age(g1) < 1,

d > a1 + · · ·+ ak ≥ 1 + 2 + · · ·+ k ≥
(

k + 1
2

)

≥
(

φ(d)/2 + 1
2

)

≥ φ(d)2

8
.

On the other hand,

φ(d) = d
∏

p|d

p− 1
p
≥ d

3

∏

p|d,p≥5

p
log 4
log 5−1 ≥ d

log 4
log 5

3
.

Thus, d < 372, and an examination of cases by machine leads to the conclusion
that d belongs to the set (3).

If α and β are two distinct elements of S1, then there exists Σ for
which Σ(α) ∪ Σ(β) satisfies the Reid–Tai condition. On the other hand,
αf = βf = 1 for some f ≤ 126. We seek to classify triples of integers (a, b, f),
0 < a < b < f ≤ 126, for which there exists a subset Σ ⊂ Gal(Q/Q) with
Σ ∪ cΣ = Gal(Q/Q) for which Σ(e(a/f)) ∪ Σ(e(b/f)) satisfies the Reid–
Tai condition. A machine search for such triples is not difficult and reveals
that the only possibilities are given by the first six cases of the proposition
together with the three pairs obtained by omitting a single element from
{e(1/12), e(1/4), e(5/12)}. The proposition follows.

34.1 (Proof of Theorem 9). If A is a simple Abelian variety of dimension
≥ 4, V = T0A, and G is a finite automorphism group of A that constitutes an
exception to the statement of the theorem, then (G, V ) is a non-RT pair of
AV-type. For every g ∈ G and every integer k, the identity component of the
kernel of gk − 1, regarded as an endomorphism of A, is an Abelian subvariety
of A and therefore either trivial or equal to the whole of A. It follows that all
eigenvalues of g are roots of unity of the same order.

Let g denote an exceptional element. Let Sg be the multiset of eigenvalues
of g on V and Sg∪Sg the multiset of eigenvalues of g on V ⊕V ∗. Then Sg∪Sg

can be partitioned into a union (in the sense of multisets) of Gal(Q/Q)-orbits
of roots of unity. Thus Sg can be partitioned into subsets Sg,i such that for
each Xg,i either Sg,i ∪ Sg,i or Sg,i itself is a single Gal(Q/Q)-orbit. If each
Sg,i is written as a set {e(ri,1), . . . , e(ri,ji )}, where the ri,j lie in (0, 1), then
for some i, the mean of the values ri,j is less than 1

4
. Since every root of unity

is Galois-conjugate to its inverse and age(g) < 1, if Sg,i consists of a single
Gal(Q/Q)-orbit, then Sg,i is {1} or {−1}, in which case all eigenvalues of Sg
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Table 1. Means of fractions in [0, 1/2]

n φ(n)/2 Values of rj Mean of rj

3 1
1

3

1

3

4 1
1

4

1

4

5 2
1

5
,
2

5

3

10

6 1
1

6

1

6

7 3
1

7
,
2

7
,
3

7

2

7

8 2
1

8
,
3

8

1

4

9 3
1

9
,
2

9
,
4

9

7

27

10 2
1

10
,

3

10

1

5

12 2
1

12
,

5

12

1

4

14 3
1

14
,

3

14
,

5

14

3

14

18 3
1

18
,

5

18
,

7

18

13

54

are equal, so the mean of the values ri,j is always ≥ 1
2 . For each n > 2 in the

set (3), we present in Table 1 the set S =
{
e(r1), e(r2), . . . , e(rφ(n)/2)

}
such

that S ∪ S contains all primitive nth roots of unity and
∑

j rj is minimal,
rj ≥ 0:

Inspection of this table reveals that the mean of the values rj is less than
1
4 only if n = 18, n = 14, n = 10, or n = 6. In the first two cases, the
condition dimA ≥ 4 implies that there must be at least two subsets Sg,i in
the partition, which implies dimA ≥ 6. Since the mean of the rj exceeds 1

6 for
n = 14 and n = 18, this is impossible. If n = 6, all the eigenvalues of g must be
1
6 , and there could be as many as five. However, an abelian variety A with an
automorphism that acts as the scalar e(1/6) on T0A is of the form Cg/Λ, where
Λ is a torsion-free Z[e(1/6)] = Z[e(1/3)]-module with the inclusion Λ → Cg

equivariant with respect to Z[e(1/3)]. Every finitely generated torsion-free
module over Z[e(1/3)] is free (since Z[e(1/3)] is a PID), so A decomposes as
a product of elliptic curves with CM by Z[e(1/3)], contrary to hypothesis. If
n = 10, the only possibility is that dim A = 4, and the eigenvalues of g are
e(1/10), e(1/10), e(3/10), e(3/10). Again, Z[e(1/5)] is a PID, so A = C4/Λ,
where Λ ∼= Z[e(1/5)]⊕Z[e(1/5)]. Let Λ1 ⊂ Λ denote the first summand. Since
A is simple, the C-span of Λ1 must have dimension > 2. However, letting
λ ∈ Λ1 be a generator, we can write λ as a sum of two eigenvectors for
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e(1/10) ∈ Z[e(1/5)]. Every element of Z[e(1/5)]λ is then a complex linear
combination of these two eigenvectors.

Lemma 35. Let (G, V ) denote a non-RT pair of AV-type. Let G1 ⊂ G be a
subgroup and V1 ⊂ V a G1-subrepresentation such that (G1, V1) is an imprim-
itive basic non-RT pair. Then (G1, V1) is a complex reflection group.

Proof. By Proposition 25, V1 decomposes as a direct sum of lines that G1 per-
mutes. Let g1 be an element of G1 that is exceptional for V1. By Proposition 25,
after renumbering the Li, g1 interchanges L1 and L2 and stabilizes all the
other Li. The eigenvalues of g1 acting on L1 ⊕ L2 are therefore of the form
e(r) and e(r + 1/2) for some r ∈ [0, 1/2). By Proposition 34, this means that
r = 0, r = 1/6, or r = 1/8. In the first case, g might have an additional
eigenvalue e(1/6) or e(1/3) on one of the lines Li, i ≥ 3, and fix all the re-
maining lines pointwise. In all other cases, g1 must fix Li pointwise for i ≥ 3.
If g1 has eigenvalues −1, 1, e(1/6), 1, . . . , 1, eigenvalues −1, 1, e(1/3), 1 . . . , 1,
eigenvalues e(1/6), e(2/3), 1, . . . , 1, or eigenvalues e(1/8), e(5/8), 1, . . . , 1, then
g2
1 is again exceptional but stabilizes all of the lines Li, which is impossible

by Proposition 25. In the remaining case, g1 has eigenvalues −1, 1, . . . , 1, so
g1 is a reflection, and G1 is a complex reflection group.

Theorem 36. Let (G, V ) be a non-RT pair of AV-type, G1 ⊂ G a subgroup,
and V1 ⊂ V a G1-subrepresentation such that (G1, V1) is a basic non-RT pair.
If (G1, V1) is not of reflection type, then dimV1 = 4, and G1 is contained in
the reflection group G31 in the Shephard–Todd classification.

Proof. Let g1 ∈ G1 be an exceptional element for V . If g1 or any of its powers
is a pseudoreflection on V1, then G1 is generated by pseudoreflections and is
therefore a reflection group on V1. We may therefore assume that every power
of g1 that is nontrivial on V1 has at least two nontrivial eigenvalues in its
action on V1. Also, by Lemma 35, (G1, V1) may be assumed primitive.

We consider first the case that S1 consists of a single element of order n.
By a well-known theorem of Blichfeldt (see, e.g., [Coh76, 5.1]), a nonscalar
element in a primitive group cannot have all of its eigenvalues contained in an
arc of length π/3. If follows that n ≤ 5. If n = 5, the spectrum of g, on V con-
tains at least two different fifth roots of unity, and since g1 is exceptional on
V , it follows that the multiplicity of the nontrivial eigenvalue of g1 on V1 is 1,
contrary to hypothesis. If n = 4, then by [Wal01], the eigenvalues 1 and i have
the same multiplicity (which must be at least 2), and by [Kor86], dimV1 is a
power of 2. Since the multiplicity of i is at most 3, the only possibility is that
dimV1 = 4 and the eigenvalues of g1 are 1, 1, i, i. The classification of primitive
4-dimensional groups [Bli17] shows that the only such groups containing such
an element are contained in the group G31 in the Shephard–Todd classifica-
tion. If n = 3, the multiplicity of the eigenvalue e(1/3) must be 2, and [Wal01]
shows that there are only two possible examples, one in dimension 3 (which
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is projectively equivalent to the Hessian reflection group G25) and one in di-
mension 5 (which is projectively equivalent to the reflection group G33). The
case n = 2 does not arise, since the nontrivial eigenvalue multiplicity is ≥2.

Thus, we need only consider the cases that |S1| ≥ 2. The possibilities for
the multiset of nontrivial eigenvalues of g1 acting on V1 that are consistent
with g1 being exceptional for an AV-pair (G1, V ) are as follows:

a. e(1/6), e(1/3)
b. e(1/6), e(1/6), e(1/3)
c. e(1/6), e(1/6), e(1/6), e(1/3)
d. e(1/6), e(1/3), e(1/3)
e. e(1/6), e(1/2)
f. e(1/6), e(1/6), e(1/2)
g. e(1/6), e(2/3)
h. e(1/3), e(1/2)
i. e(1/8), e(3/8)
j. e(1/8), e(5/8)
k. e(1/12), e(1/4)
l. e(1/12), e(5/12)

m. e(1/4), e(5/12)
n. e(1/12), e(1/4), e(5/12)

Cases (a), (d), (e), (g), (h), (k), and (m) are ruled out because no power
of g1 may be a pseudoreflection. In case (f), g2

1 has two nontrivial eigenvalues,
both equal to e(1/3), and we have already treated this case. Likewise, cases (j)
and (l) are subsumed in our analysis of the case that there are two nontrivial
eigenvalues, both equal to i.

For the four remaining cases, we observe that the conjugacy class of g1 gen-
erates the nonabelian group G1, so g1 fails to commute with some conjugate
h1. The group generated by g1 and h1 fixes a subspace W1 of V1 of codimen-
sion at most 6, 8, 4, and 6 in cases (b), (c), (i), and (n) respectively that g1

and h1 fix pointwise. Let U1 ⊂ V1/W1 denote a space on which 〈g1, h1〉 acts
irreducibly and on which g1 and h1 do not commute. The nontrivial eigenval-
ues of g1 and h1 on U1 form subsets of the nontrivial eigenvalues of g1 and h1

on V1, and the action of 〈g1, h1〉 on U1 is primitive because the eigenvalues of
g1 do not include a coset of any nontrivial subgroup of C×.

We claim that if dimU1 > 1, all the nontrivial eigenvalues of g1 on V1

occur already in U1. In cases (i) and (n), we have already seen that no proper
subset of indicated sets of eigenvalues can appear, together with the eigenvalue
1 with some multiplicity, in any primitive irreducible representation. In cases
(b) and (c), Blichfeldt’s π/3 theorem implies that if the eigenvalues of some
element in a primitive representation of a finite group are 1 with some multi-
plicity, e(1/6) with some multiplicity, and possibly e(1/3), then e(1/3) must
actually appear. Therefore, the factor U1 must have e(1/3) as eigenvalue, and
every other irreducible factor of V1 must be 1-dimensional. If no eigenvalue
e(1/6) appears in g1 acting on U1, then g3

1 and h3
1 commute. If all conjugates
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of g3
1 commute, then G has a normal abelian subgroup. Such a subgroup must

consist of scalar elements of End(V1), but this is not possible given that at
least one eigenvalue of g3

1 on V1 is 1 and at least one eigenvalue is −1. Without
loss of generality, therefore, we may assume that g3

1 and h3
1 fail to commute.

It follows that both e(1/3) and e(1/6) are eigenvalues of g1 on U1. Since case
(a) has already been disposed of, the multiplicity of e(1/6) as an eigenvalue of
g1 on U1 is at least 2. In the case (b), this proves the claim. Once it has been
shown that there are no solutions of type (b), it will follow that the eigenvalue
e(1/6) must appear with multiplicity 3, which proves the claim for (c).

Finally, we show that for each of the cases (b), (c), (i), and (n) there
is no finite group G1 with a primitive representation U1 and an element
g1 whose multiset of nontrivial eigenvalues is as specified. First we con-
sider whether G1 can stabilize a nontrivial tensor decomposition of U1.
The only possibilities for g1 respecting such a decomposition are case (b)
with eigenvalues 1, e(1/6), e(1/6), e(1/3) decomposing as a tensor product of
two representations with eigenvalues 1, e(1/6) and case (c) with eigenvalues
1, 1, e(1/6), e(1/6), e(1/6), e(1/3) decomposing as a tensor product of repre-
sentations with eigenvalues 1, e(1/6) and 1, 1, e(1/6). Since U1 is a primitive
representation of G1, Blichfeldt’s theorem rules out both possibilities.

Next we rule out the possibility that G1 normalizes a tensor decomposi-
tion with g1 permuting tensor factors nontrivially. Given that dimU1 ≤ 8,
this can happen only if there are two or three tensor factors, each of di-
mension 2. It is easy to see that if T1, . . . , Tn are linear transformations on
a vector space V , the transformation on V ⊗n defined by v1 ⊗ · · · ⊗ vn �→
Tn(vn) ⊗ T1(v1) ⊗ · · · ⊗ Tn−1(vn−1) has the same trace as T1T2 · · ·Tn. It fol-
lows that any unitary transformation T on V ⊗n that normalizes the tensor
decomposition but permutes the factors nontrivially satisfies

|tr(T )| ≤ (dim V )n−1,

with equality only if the permutation is a transposition (ij), TiTj is scalar,
and all other factors Ti are scalar; in particular, equality implies that T 2 is
scalar. Table 2 gives for each case the absolute value of the trace of g1 acting
on U1 in terms of the dimension of U1.

In each case, except (b) and dim U1 = 4, tr(T ) violates the inequality, and
in this case, T 2 is not scalar.

Table 2. Absolute traces of g1 on u1.

Case 3 4 5 6 7 8

(b)
√

7 3
√

13
√

19

(c)
√

13 4
√

21 2
√

7
√

37

(i)
√

3
√

6

(n) 2
√

5 2
√

2
√

13
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Let H1 denote a characteristically simple normal subgroup of G1. Since G1

does not normalize a tensor decomposition, U1 is an irreducible representation
of H1. Either H1 is the product of an extraspecial p-group Hp and a group
Z of scalars or H1 is a central extension of a product of mutually isomorphic
finite simple groups by a scalar group Z. Since dimU1 ≤ 8, in the former case,
|Hp| ∈

{
23, 25, 27, 33, 53, 73

}
. In the latter case, H1 = H1/Z is isomorphic to

Kr for some finite simple group K, and r = 1, since G1 does not normalize
a tensor decomposition. For a list of possibilities for H1, we use the tables of
Hiss and Malle [HM01], which are based on the classification of finite simple
groups. Note that primitive groups were classified up through dimension 10
before the classification of finite simple groups was available (see, e.g., [Fei71],
[Fei76] and the references therein). Table 3 enumerates the possibilities for H1,
where representation numbering is that of [CCN+85] and asterisks indicate a
Stone–von Neumann representation:

For the finite simple groups H1, we consult character tables [CCN+85].
This is easy to do so, since only a few of the characters in Table 3 take values
whose absolute values are large enough to appear in Table 2. There are no
cases in which an element of order 6 has a character absolute value as given in

Table 3. Degree ≤ 8 projective representations of H1.

Representation Degree

Group 2 3 4 5 6 7 8

(Z/2Z)2 ∗
(Z/3Z)2 ∗
(Z/2Z)4 ∗
(Z/5Z)2 ∗
(Z/7Z)2 ∗
A5 6 3 4, 8 5 9
(Z/2Z)6 ∗
L2(7) 2 7 4, 9 5 6, 11
A6 14 8 2 16, 19 4, 10
L2(8) 2, 3 6
L2(11) 2 9
L2(13) 10 2
L2(17) 12
A7 10 2, 17, 24
U3(3) 2 3, 4
A8 2 15
L3(4) 41 19
U4(2) 21 2 4
A9 2, 19
J2 22
S6(2) 2 31
U4(3) 72
O+

8 (2) 54
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row (b) or (c) of Table 2, an element of order 8 has an absolute value as given
by row (i), or an element of order 12 has an absolute value as given by row (n).

For the case that H1 is an extraspecial p-group, every nonzero character
value is an integral power of

√
p. This was proved for p > 2 by Howe [How73,

Prop. 2(ii)]. For lack of a reference for p = 2, we sketch a proof that works in
general. The embedding H1 → GL(U1) is a Stone–von Neumann representa-
tion with central character χ. Let GG1 denote the group of pairs (g1, g2) ∈ G2

1

such that g1H1 = g2H1. There is a natural action of GG1 on C[H1] given by

(g1, g2)([h1]) =
[
g1h1g

−1
2

]
.

The restriction of this representation to H2
1 ⊂ GG1 is of the form

⊕
Vi � V ∗

i ,
where the sum is taken over all irreducible representations Vi of H1. The fac-
tor U1 � U∗

1 is the χ � χ∗ eigenspace of the center Z2 of H2
1 acting on C[H1],

where χ is the central character of Z on U1. Since the action of GG1 on this
eigenspace of C[H1] extends the irreducible representation of H2

1 on U1 � U∗
1 ,

any other extension of
(
H2

1 , U1 � U∗
1

)
to GG1 is projectively equivalent to

this one. The particular extension we have in mind is obtained by letting
(g1, g2) ∈ GG1 act on U1 � U∗

1 according to the action of g1 on U1 and the
action of g2 on U∗

1 coming from the inclusion G1 ⊂ GL(U1). From this it is
easy to see that the character value of (g1, g1) on each Z2-eigenspace of C[H1]
is either 0 or

∣
∣
∣H

g1

1

∣
∣
∣. Since H

g1

1 is a vector space over Z/pZ, tr(g1|U1)tr (g1|U∗
1 )

is either 0 or an integer power of p. Consulting Table 2, we see that this rules
out every possibility except a character value 2 and dim U1 = 4. This can
actually occur, but not with the eigenvalues of case (b).

5 Examples

We conclude with some examples to illustrate various aspects of the classifi-
cation given above. We begin with some examples from group theory.

In principle, all non-RT pairs can be built up from basic pairs, by reversing
the operations that led to constructing basic pairs in the first place, i.e., by
replacing G by an extension G̃ of G whose image in Aut(V ) is the same as that
of G; by combining (G, V1) and (G, V2) to give the pair (G, V1 ⊕ V2) (which
may or may not be non-RT); and by replacing (G, V ) by (G′, V ), where G′

lies between G and its normalizer in Aut(V ). To illustrate this, we observe
that all non-RT pairs of the form ((Z/2Z)n � H, Cn), where H ⊂ Sn is a
transitive group, arise from the basic non-RT pair (Z/2Z, C). This accounts
for the series of Weyl groups of type Bn/Cn, but not for the Weyl groups of
type Dn, which are primitive. This construction can be used more generally
to build non-RT pairs of the form (Gn

� H, V n) starting with a non-RT pair
(G, V ) and a transitive permutation group H ⊂ Sn.

It may happen that a basic non-RT pair (G, V ) of reflection type nev-
ertheless fails to have an exceptional element that is a scalar multiple of a
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pseudoreflection. Consider the case G = U4(2) × Z/3Z and V is a faithful
irreducible 5-dimensional representation of G. Then G has an exceptional ele-
ment g whose eigenvalues are 1, 1, 1, e(1/3), e(1/3) and whose conjugacy class
generates G. It has another element h with eigenvalues 1,−1,−1,−1,−1 that
is not exceptional. Since −h is a reflection, it is easy to see that U4(2)×Z/2Z

is a 5-dimensional reflection group (in fact, it is G33 in the Shephard–Todd
classification), and of course this reflection group is projectively equivalent to
(G, V ).

There really does exist a primitive 4-dimensional non-RT pair (G, V ) that
is not of reflection type. By [Bli17], there is a short exact sequence

0→ I4 → G31 → S6 → 0,

where I4 is the central product of Z/4Z and any extraspecial 2-group of order
32. The group S6 contains two nonconjugate subgroups isomorphic to S5,
whose inverse images in G31 are primitive. One is the reflection group G29, and
one contains elements with eigenvalues 1, 1, i, i. The question arises whether
these two groups are conjugate. The character table of G29, provided by the
software package CHEVIE [GHL+96], reveals that this group has two faithful
4-dimensional representations. One has reflections and the other has elements
with spectrum 1, 1, i, i. It follows that G29 with respect to this nonreflection
representation, or equivalently, the nonreflection index-6 subgroup of G31,
gives the desired example. This example (in fact all of G31) can actually be
realized inside GL4(Z[i]), as shown in [Bli17].

The set of projective equivalence classes of basic non-RT pairs that are of
AV-type is infinite, as is the set of basic non-RT pairs that are not. We have
already mentioned the Weyl groups of type Dn as examples of the first kind;
the reflection groups (Z/kZ)n−1 × Sn are never of AV-type if k > 4.

We conclude with some geometric examples.
If (G, V ) is a non-RT pair and V = V0⊗QC for some rational representation

V0 of G, then there exist an Abelian variety A and a homomorphism G →
Aut(A) such that A/G is uniruled and the Lie algebra of A is isomorphic
to V as a G-module. Indeed, we may choose any integral lattice Λ0 ⊂ V0

that is G-stable and define A = Hom(Λ0, E) for any elliptic curve E. If V is
irreducible, then A/G is rationally connected. This includes all examples in
which G is the Weyl group of a root system and V0 is the Q-span of the root
system. When Λ0 is taken to be the root system, the quotients A/G are in
fact weighted projective spaces by a theorem of E. Looijenga [Loo77], which
was one of the motivations for this paper.

Let Λ0 denote the (12-dimensional) Coxeter–Todd lattice, which we regard
as a free module of rank 6 over R := Z[e(1/3)]. Let G = G34 denote the group
of R-linear isometries of this lattice. If E denotes the elliptic curve over C with
complex multiplication by R, then HomR(Λ0, E)/G is rationally connected.
The group G is a reflection group but not a Weyl group, and we do not know
whether this variety is rational or even unirational.
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We have already observed that there is a 4-dimensional basic non-RT pair
(G, V ) that is not of reflection type and such that G ⊂ GL4(Z[i]) ⊂ GL(V ).
If E denotes the elliptic curve with CM by Z[i], then E4/G is rationally
connected. Again, we do not know about rationality or unirationality.

Let A be an abelian variety with complex multiplication by Z[e(1/7)] with
CM type chosen so that some automorphism g of order 7 has eigenvalues
e(1/7), e(2/7), e(3/7) acting on T0A. Then A/〈g〉 is rationally connected, but
once again we do not know whether it is rational or unirational.

Let E be any elliptic curve, A = E3, and G = S3 × {±1}. Let the factors
S3 and {±1} of G act on A by permuting factors and by multiplication re-
spectively. If V = T0A = C

3 and W denotes the plane in which coordinates
sum to zero, then the images of G in W and in V/W are reflection groups.
Thus ART

stab = A, so A/G is rationally connected by Corollary 24. Yet again,
we do not know about the rationality or unirationality of the quotient.

There are imprimitive basic non-RT triples of arbitrarily large degree that
can be realized by automorphism groups of Calabi–Yau varieties but not as
automorphism groups of Abelian varieties. For example,

Gn+2,1,n = (Z/(n + 2)Z)n
� Sn

acts on the n-dimensional Fermat hypersurface xn+2
0 + · · ·+ xn+2

n+1 = 0 fixing
the coordinates x0 and x1 and therefore the point

P =
(
1 : e

πi
n+2 : 0 : · · · : 0

)
.

The action of G on the tangent space to P gives the reflection representation
of Gn+2,1,n.
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Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 1–26.

[Bea83b] — , “Variétés Kähleriennes dont la première classe de Chern est nulle,”
J. Differential Geom. 18 (1983), no. 4, pp. 755–782 (1984).

[Bli17] H. F. Blichfeldt – Finite collineation groups, with an introduction to
the theory of groups of operators and substitution groups, University of
Chicago Press, Chicago, Ill., 1917.



210 János Kollár and Michael Larsen

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A.

Wilson – Atlas of finite groups, Oxford University Press, Eynsham,
1985, Maximal subgroups and ordinary characters for simple groups,
with computational assistance from J. G. Thackray.

[Coh76] A. M. Cohen – “Finite complex reflection groups,” Ann. Sci. École
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Summary. Motivic local systems over a curve in finite characteristic form a count-
able set endowed with an action of the absolute Galois group of rational numbers
commuting with the Frobenius map. I will discuss three series of conjectures about
such sets, based on an analogy with algebraic dynamics, on a formalism of commu-
tative algebras of motivic integral operators, and on an analogy with 2-dimensional
lattice models in statistical physics.
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Introduction and an example

These notes grew from an attempt to interpret a formula of Drinfeld (see [3])
enumerating the absolutely irreducible local systems of rank 2 on algebraic
curves over finite fields, obtained as a corollary of the Langlands correspon-
dence for GL(2) in the function field case, together with the trace formula.

Let C be a smooth projective geometrically connected curve defined over
a finite field Fq, with a base point v ∈ C(Fq). The geometric fundamental
group πgeom

1 (C, v) := π1(C ×SpecFq SpecFq, v) is a profinite group on which
the Galois group ̂Z = Gal(Fq/Fq) (with the canonical generator Fr := Frq)
acts. In what follows we will omit the base point from the notation.

Theorem 1. (Drinfeld) Under the above assumptions, for any integer n ≥ 1
and any prime l �= char(Fq), the set of fixed points
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X(l)
n :=

(

IrrRep (π1(C ×SpecFq SpecFq) → GL(2, Ql))/conjugation
)Frn

is finite. Here IrrRep (. . . ) denotes the set of conjugacy classes of irreducible
continuous 2-dimensional representations of πgeom

1 (C) defined over finite ex-
tensions of Ql. Moreover, there exist a finite collection (λi) ∈ Q

×
of algebraic

integers and signs (εi) ∈ {−1, +1} depending only on C such that for any n, l
one has the equality

#X(l)
n =

∑

i

εiλ
n
i .

From the explicit formula that one can extract from [3], one can see that
numbers λi are q-Weil algebraic integers whose norm for any embedding Q ↪→
C belongs to q

1
2 Z≥0 . Therefore, the number of elements of X

(l)
n , n = 1, 2, . . . ,

looks like the number of Fqn -points on some variety over Fq. The largest
exponent is q4g−3, which indicates that this variety has dimension 4g − 3. A
natural guess is that it is closely related to the moduli space of stable bundles
of rank 2 over C. At least the dimensions coincide, and Weil numbers that
appear are essentially the same; they are products of the eigenvalues of the
Frobenius acting on the motive defined by the first cohomology of C.

The Langlands correspondence identifies X
(l)
n with the set of Ql-valued

unramified cuspidal automorphic forms for the adelic group GL(2, AFq(C)).
These forms are eigenvectors of a collection of commuting matrices (Hecke
operators) with integer coefficients. Therefore, for a given n ≥ 1 one can
identify1 all sets X

(l)
n for various primes l with one set Xn endowed with an

action of the absolute Galois group Gal(Q/Q), extending the obvious actions
of Gal(Ql/Ql) on X

(l)
n .

Today, the Langlands correspondence in the function field case has been
established for all the groups GL(N) by L. Lafforgue. To my knowledge, almost
no attempts have been made to extend Drinfeld’s calculation to the case of
higher rank, or even to the GL(2) case with nontrivial ramification.

It is convenient to take the inductive limit X∞ := lim−→Xn, Xn1 ↪→ Xn1n2 ,
which is an infinite countable set endowed with an action of the product2

Gal(Q/Q)× Gal(Fq/Fq) .

The individual set Xn can be reconstructed from this datum as the set of
fixed points of Frn ∈ Gal(Fq/Fq).

In spite of the numerical evidence, it would be too naive to expect a natural
identification of X∞ with the set of Fq-points of an algebraic variety defined

1It is expected that all representations from X
(l)
n are motivic, i.e., they arise from

projectors with coefficients in Q acting on l-adic cohomology of certain projective
varieties defined over the field of rational functions Fqn(C).

2One can replace Gal(Q/Q) by its quotient Gal(Qq−Weil/Q) where Q
q−Weil ⊂ Q

is CM-field generated by all q-Weil numbers.
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over Fq, since there is no obvious mechanism producing a nontrivial Gal(Q/Q)-
action on the latter.

The main question addressed here is the following:

Question 2. Does there exist some alternative way to construct the set X∞
with the commuting action of two Galois groups?

In the present notes I will offer three different hypothetical constructions.
The first construction comes from the analogy between the Frobenius act-
ing on πgeom

1 (C) and an element of the mapping class group acting on the
fundamental group of a closed oriented surface; the second one is almost tau-
tological and arises from the contemplation on the shape of explicit formulas
for Hecke operators (see an example in Section 0.1); the third one is based on
an analogy with lattice models in statistical physics.

I propose several conjectures, which should be better considered as guesses
in the first and in the third part, as there is almost no experimental evidence
in their favor. In a sense, the first and the third part should be regarded as
science fiction, but even if the appropriate conjectures are wrong (as I strongly
suspect), there should be some grains of truth in them.

On the contrary, I feel quite confident that the conjectures made in the
second part are essentially true, the output is a higher-dimensional generaliza-
tion of the Langlands correspondence in the functional field case. At the end
of the second part I will show how to make a step in the arithmetic direction,
extending the formulas to the case of an arbitrary local field.

In the fourth part I will describe briefly a similarity between a modification
of the category of motives based on non-commutative geometry, and two other
categories introduced in the second and the third part. Also I will make a link
between the proposal based on polynomial dynamics and the one based on
lattice models.

Finally, I apologize to the reader that the formulas in Sections 0.1 and 1.3
are given without explanations, this is the result of my poor knowledge of the
representation theory. The formulas were polished with the help of computer.

Acknowledgements: I am grateful to many people for useful discussions,
especially to Vladimir Drinfeld (on the second part of this paper), to Laurent
Lafforgue who told me about [3] and explained some basic stuff about
automorphic forms, to Vincent Lafforgue who proposed an argument for the
Conjecture 5 based on lifting, to James Milne for consultations about the
category of motives over a finite field, to Misha Gromov who suggested the idea
to imitate Dwork’s methods in the third part, also to Mitya Lebedev, Sasha
Goncharov, Dima Grigoriev, Dima Kazhdan, Yan Soibelman and Don Zagier.
Also I am grateful to the referee for useful remarks and corrections.

0.1 An explicit example

Here we will show explicit formulas for the tower (Xn)n≥1 in the simplest
truly non-trivial case. Consider the affine curve C = P

1
Fq

\ {0, 1, t,∞} for
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a given element t ∈ Fq \ {0, 1}. We are interested in motivic local SL(2)-
systems on C with tame non-trivial unipotent monodromies around all punc-
tures {0, 1, t,∞}.

A lengthy calculation lead to the following explicit formulas3 for the Hecke
operators for cuspidal representations. In what follows we assume char Fq �= 2.
The Hecke operators act on the spaces of functions on certain double coset
space for the adelic group, which can be identified with the set of equiva-
lence classes of vector bundles of rank 2 over P

1
Fq

together with a choice of
one-dimensional subspaces of fibers at {0, 1, t,∞}. This double coset space is
infinite, but the eigenfunctions of Hecke operators corresponding to cuspidal
representations have finite support, which one can bound a priori.

For any x ∈ Fq, the Hecke operator Tx (on cuspidal forms) can be written
as an integral q × q matrix whose rows and columns are labeled by elements
of Fq (i.e., Tx ∈ Mat(Fq × Fq; Z)). Coefficients of Tx are given by the formula

(Tx)yz := 2 − #{w ∈ Fq|w2 = ft(x, y, z)} + (correction term),

where ft(x, y, z) is the following universal polynomial with integral coeffi-
cients:

ft(x, y, z) := (xy + yz + zx − t)2 + 4xyz(1 + t − (x + y + z)) .

The correction term is equal to

−

⎧

⎪

⎨

⎪

⎩

q + 1 x = y ∈ {0, 1, t}
1 x = y /∈ {0, 1, t}
0 x �= y

+

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q if x /∈ {0, 1, t} and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

y =
t

x
, z = 0,

y =
t − x

1 − x
, z = 1,

y =
t(1 − x)

t − x
, z = t,

0 otherwise.

Operators (Tx)x∈Fq satisfy the following properties:

1. [Tx1 , Tx2 ] = 0;
2.
∑

x∈Fq
Tx = 1 = id

Z
Fq ;

3. T 2
x = 1 for x ∈ {0, 1, t}; moreover, {1, T0, T1, Tt} form a group under

multiplication, isomorphic to Z/2Z ⊕ Z/2Z,
4. for any x /∈ {0, 1, t} the spectrum of Tx is real and belongs to

[−2
√

q, +2
√

q]; any element of Spec(Tx) can be written as λ + λ, where
|λ| =

√
q is a q-Weil number;

5. for any ξ = λ + λ ∈ Spec(Tx) and any integer n ≥ 1 the spectrum of the
matrix T

(n)
x corresponding to x ∈ Fq ⊂ Fqn (if we pass to the extension

Fqn ⊃ Fq) contains the element ξ(n) := λn + λ
n
;

3I was informed by V. Drinfeld that a similar calculation for the case of SL(2)
local systems on P

1
Fq

\ {4 points}, with tame non-trivial semisimple monodromy
around punctures was performed few years ago by Teruji Thomas.
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6. the vector space generated by {Tx}x∈Fq is closed under the product; the
multiplication table is

Tx · Ty =
∑

z∈Fq

cxyzTz where cxyz = (Tx)yz .

Typically (for “generic” t, x) the characteristic polynomial of Tx splits into
the product of four irreducible polynomials of almost the same degree. The
splitting is not surprising, since we have a group4 of order 4 commuting with
all operators Tx (see property 3). Computer experiments indicate that the
Galois groups of these polynomials (considered as permutation groups) tend
to be rather large, typically the full symmetric groups if q is prime, and the
corresponding number fields have huge factors in the prime decomposition of
the discriminant.

Notice that in the theory of automorphic forms one usually deals with
infinitely many commuting Hecke operators corresponding to all places of the
global field, i.e. to closed points of C (in other words, to orbits of Gal(Fq/Fq)
acting on C(Fq)). Here we are writing formulas only for the points defined
over Fq. The advantage of our example is that the number these operators
coincides with the size of Hecke matrices, hence one can try to write formulas
for structure constants, which by luck turn out to coincide with the matrix
coefficients of matrices Tx (property 6).

1 First proposal: algebraic dynamics

As was mentioned before, it is hard to imagine a mechanism for a non-trivial
action of the absolute Galois group of Q on the set of points of a variety over
a finite field. One can try to exchange the roles of fields Q and Fq. The first
proposal is the following one:

Conjecture 3. For a tower (Xn)n≥1 arising from automorphic forms (or
from motivic local systems on curves), as defined in the Introduction, there
exists a variety X defined over Q and a map F : X → X such that there is a
family of bijections

Xn � (X(Q))F n

, n ≥ 1
covariant with respect to Gal(Q/Q) × Z/nZ actions, and with respect to in-
clusions Xn1 ⊂ Xn1n2 for integers n1, n2 ≥ 1.

1.1 The case of GL(1)

Geometric class field theory gives a description of the sets (Xn)n≥1 in terms
of the Jacobian of C:

Xn = (JacC(Fqn))∨(Q) = Hom(JacC(Fqn), Q
×

) .

4This is the group of automorphisms of P
1\{4 points} for the generic cross-ratio.
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The number of elements of this set is equal to

# JacC(Fqn) = det(Frn
H1(C) −1)

where FrH1(C) is the Frobenius operator acting on, say, l-adic first cohomology
group of C.

One can propose a blatantly non-canonical candidate for the corresponding
dynamical system (X, F ). Namely, let us choose a semisimple (2g×2g) matrix
A = (Ai,j)1≤i,j≤2g (where g is the genus of C) with coefficients in Z, whose
characteristic polynomial is equal to the characteristic polynomial of FrH1(C).
Define X/Q to be the standard 2g-dimensional torus G

2g
m = Hom(Z2g , Gm),

and the map F to be the dual to the map A : Z
2g → Z

2g:

F (z1, . . . , z2g) =

(

∏

i

z
Ai,1
i , . . . ,

∏

i

z
Ai,2g

i

)

.

Moreover, one can choose A in such a way that

F ∗ω = qω, where ω =
g
∑

i=1

dzi

zi
∧ dzg+i

zg+i
.

On the set of fixed points of Fn, the groups Gal(Q/Q) (via the cyclotomic
quotient) and Z/nZ (by powers of F ) act simultaneously. Nothing contradicts
the existence of an equivariant isomorphism between two towers of finite sets.

1.2 Moduli of local systems on surfaces

One can interpret the scheme G
2g
m as the moduli space of rank-1 local systems

on an oriented closed topological surface S of genus g; the form ω is the natural
symplectic form on this moduli space.

In general, for any N ≥ 1, one can make an analogy between the action
of the Frobenius Fr on the the set of l-adic irreducible representations of
πgeom

1 (C) of rank N and the action of the isotopy class of a homeomorphism
ϕ : S → S on the set of irreducible complex representations of π1(S) of the
same rank. Sets of representations are similar to each other, for it is known
that the maximal quotient of πgeom

1 (C) coprime to q is isomorphic to the
analogous quotient of the profinite completion π̂1(S) of π1(S). Also, if we
assume that there are only finitely many fixed points of ϕ acting on

IrrRep(π1(S) → GL(2, C))/conjugation,

then the sets

X(l) :=
(

IrrRep(π̂1(C ×SpecFq SpecFq) → GL(2, Ql))/conjugation
)ϕ

do not depend on the prime l for l large enough.
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All this leads to the following conjecture (which is formulated a bit slop-
pily), a strengthening of Conjecture 1:

Conjecture 4. For any smooth compact geometrically connected curve C/Fq

of genus g ≥ 2 there exists an endomorphism ΦC of the tensor category of
finite-dimensional complex local systems on S such that

• ΦC is algebraic and defined over Q, in the sense that it acts on the moduli
stack of irreducible local systems of any given rank N ≥ 1 by a rational
map defined over Q;

• ΦC multiplies the natural symplectic form on the moduli space of irreducible
local systems of rank N by the constant q;

• for every n, N ≥ 1 there exists an identification of the set of isomorphism
classes of irreducible motivic local systems of rank N on C ×SpecFq SpecFq

invariant under Frn with the set of isomorphism classes of Q-local systems
of rank N on S invariant under Φn

C , compatible with the relevant Galois
symmetries and tensor constructions.

One cannot expect that ΦC comes from an actual endomorphism ϕ of the
fundamental group π1(S), since it is known that for g ≥ 2, any such ϕ is
necessarily an automorphism. That is a rationale for replacing a putative en-
domorphism of π1(S) by a more esoteric endomorphism of the tensor category
of its finite-dimensional representations.

Example: SL(2)-local systems on the sphere with three punctures

A generic SL(2, C)-local system on CP 1 \ {0, 1,∞} is uniquely determined by
three traces of monodromies around punctures. A similar statement holds for
l-adic local systems with tame monodromy in the case of finite characteristic.
Motivic local systems correspond to the case that all the eigenvalues of the
monodromies around punctures are roots of unity, i.e., that the traces of
monodromies are twice cosines of rational angles. This leads to the following
prediction:

X = A
3, F (x1, x2, x3) = (Tq(x1), Tq(x2), Tq(x3)),

where Tq ∈ Z[x] is the qth Chebyshev polynomial,

Tq(λ + λ−1) = λq + λ−q .

In this case the identifications between the fixed points of F and motivic local
systems on P

1
Fq

\ {0, 1,∞} exist, and can be extracted form the construction
of these local systems (called hypergeometric) as summands in certain direct
images of abelian local systems (analogous to the classical integral formulas
for hypergeometric functions). The identification is ambiguous; it depends on
a choice of a group embedding F

×
q ↪→ Q/Z.
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1.3 Equivariant bundles and Ruelle-type zeta functions

The analogy with an element of the mapping class group acting on a surface
S suggests the following addition to Conjecture 1. Let us fix the curve C/Fq

and the rank N ≥ 1 of the local systems under consideration. For a given
point x ∈ C(Fq) we have a sequence of Hecke operators T

(n)
x associated with

curves C ×Spec Fq SpecFqn . The spectrum of T
(n)
x is a Q-valued function on

Xn, i.e., according to Conjecture 1, a function on the set of fixed points of
Fn. We expect that the collection of these functions for n = 1, 2 . . . comes
from an F -equivariant vector bundle on X .

Conjecture 5. Using the notation of Conjecture 1, for given x ∈ C(Fq) there
exists a pair (E , g), where E is a vector bundle on X of rank N together with
an isomorphism g : F ∗E → E (defined over Q) such that the eigenvalue of
T

(n)
x at the point of its spectrum corresponding to z ∈ Xn coincides with

Trace(Ez = EF n(z) → · · · → EF (z) → Ez),

where arrows are isomorphisms of fibers of E coming from g.

In particular, one can ask for an explicit formula for the F -equivariant
bundle E in the case of SL(2)-local systems on the sphere with three punctures
where we have an explicit candidate for (X, F ).

In the limiting simplest nonabelian case when the monodromy is unipotent
around two punctures, and arbitrary semisimple around the third puncture,
one can make the above question completely explicit:

Question 6. For a given x ∈ Fq \ {0, 1}, does there exist a rational function
R = Rx on CP 1 with values in q1/2SL(2, C) ⊂ Mat(2 × 2, C) that has no
singularities on the set

(

∪n≥1

{

z ∈ C|zqn−1 = 1
})

\ {1}

such that for any n ≥ 1 two sets of complex numbers (with multiplicities),

Xn :=

⎧

⎨

⎩

∑

y∈Fqn\{0,1,x}
χ

(

y(1 − xy)
1 − y

)

∣

∣ χ : F
×
qn → C

×, χ �= 1

⎫

⎬

⎭

,

where χ runs through all nontrivial multiplicative characters of Fqn , and

X ′
n :=

{

Trace
(

R(z)R(zq) · · ·R
(

zqn−1
))

| zqn−1 = 1, z �= 1
}

,

coincide?

Elements of the set Xn are real numbers of the form λ+λ, where λ ∈ Q is
a q-Weil number with |λ| = q1/2. Therefore it is natural to expect that R(z)
belongs to q1/2SU(2) if |z| = 1.
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The Galois symmetry does not forbid the function R (as a rational function
with values in 2 × 2 matrices) to be defined over Q after conjugation by a
constant matrix. Moreover, the existence of such a function over Q leads
to certain choice of generators of the multiplicative groups

(

F
×
qn

)

for all
n ≥ 1, well defined modulo the action of the Frobenius Frq (the Galois group
Gal(Fqn/Fq) = Z/nZ), as in a sense we identify roots of unity in C and multi-
plicative characters of Fqn . In particular, there will be a canonical irreducible
polynomial over Fq of degree n for every n ≥ 1. This is something almost too
good to be true.

Reminder: Trace formula and Ruelle-type zeta function

Let X now be a smooth proper variety (say, over C), endowed with a map
F : X → X , and E a vector bundle on X together with a morphism (not
necessarily invertible) g : F ∗E → E . Let us assume that for any n ≥ 1 all fixed
points z of Fn : X → X are isolated and nondegenerate, i.e., the tangent map

(Fn)′z : TzX → TzX

has no nonzero invariant vectors (in other words, all eigenvalues of (Fn)′z are
not equal to 1). Then one has the following identity (Atiyah–Bott fixed-point
formula):

∑

v∈X:F n(z)=z

Trace(Ez = EF n(z) → · · · → Ez)
det (1 − (Fn)′z)

= Trace((g∗ ◦ F ∗)n : H•(X, E) → H•(X, E)).

The trace on the right-hand side is understood in the super sense, as the
alternating sum of the ordinary traces in individual cohomology spaces.

If one wants to eliminate the determinant factor in the denominator on
the left-hand side, one should replace E by the superbundle E ⊗ ∧• (T ∗

X).
The trace formula implies that the series in t

exp

⎛

⎝−
∑

n≥1

tn

n

∑

z∈X:F n(z)=z

Trace(Ez = EF n(z) → · · · → Ez)
det (1 − (Fn)′z)

⎞

⎠

is the Taylor expansion of a rational function in t. It seems that in many cases,
for noncompact varieties X a weaker form of rationality holds as well when no
equivariant compactification can be found. Namely, the above series (called
the Ruelle zeta function in general, not necessarily algebraic, case) admits a
meromorphic continuation to C; also the zeta function in the version without
the denominator is often rational in the noncompact case.
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Rationality conjecture for motivic local systems

In the case hypothetically corresponding to motivic local systems on curves
(in the setting of Conjecture 3), one can make a natural a priori guess about
the denominator in the left-hand side of the trace formula. Namely, for a
fixed point z of the map Fn corresponding to a fixed point [ρ] in the space
of representations of π1(C ×SpecFq SpecFq) in GL(N, Ql), we expect that the
vector space TzX together with the automorphism (Fn)′z should be isomorphic
(after the change of scalars) to

H1(C ×SpecFq SpecFq, End(ρ)) = Ext1(ρ, ρ)

endowed with the Frobenius operator.
Eigenvalues of Frn in this case have norm qn/2 by the Weil conjecture,

hence not equal to 1, and the denominator in the Ruelle zeta function does
not vanish (meaning that the fixed points are nondegenerate).

In our basic example from Section 0.1 one can propose an explicit formula
for the denominator term. Define (in notation from Section 0.1) for given
t ∈ Fq \ {0, 1} a matrix Ttan ∈ Mat(Fq × Fq, Q) by the formula

Ttan := −1
q

∑

x∈Fq

(Tx)2 + (q − 3 − 1/q) · id
Q

Fq .

This matrix satisfies the same properties as Hecke operators.5 Namely,
all eigenvalues of Ttan belong to [−2

√
q, +2

√
q], any element of Spec(Ttan)

can be written as λ + λ where |λ| =
√

q is a q-Weil number, and for any
ξ = λ + λ ∈ Spec(Tx) and any integer n ≥ 1 the spectrum of the matrix T

(n)
tan

corresponding to x ∈ Fq ⊂ Fqn (if we pass to the extension Fqn ⊃ Fq) contains
the element ξ(n) := λn + λ

n
.

We expect that the eigenvalue of Ttan at the point of the spectrum corre-
sponding to the motivic local system ρ is equal to the trace of the Frobenius
in a two-dimensional submotive of the motive H1(C, End(ρ)), corresponding
to the deformations of ρ preserving the unipotency of the monodromy around
punctures.

Notice that any motivic local system ρ on C can be endowed with a
nondegenerate skew-symmetric pairing with values in the Tate motive. This
explains the main term of the formula:

• the sum of squares of Hecke operators means that we are using the trace
formula for the Frobenius in the cohomology of C with coefficients in the
tensor square of ρ;

• the factor 1/q comes from the Tate twist;
• the minus sign comes from the odd (first) cohomology.

5The only difference is that eigenvalues of operators Tx are algebraic integers,
while eigenvalues of Ttan are algebraic integers divided by q.
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The candidate for the denominator term in the putative Ruelle zeta
function is the following operator commuting with the Hecke operators (we
write the formula only for the first iteration, n = 1), considered as a function
on the spectrum:

D := (q + 1 − Ttan)−1
.

The reason is that the eigenvalue of D at the eigenvector corresponding to
the motivic local system ρ is equal to

1
(1 − λ)(1 − λ)

=
1

1 + q − ξ
,

where λ, λ are Weil numbers, eigenvalues of the Frobenius in H1(C, End(ρ))
satisfying the equations

λ + λ = ξ, λ + λ = q .

The l.h.s. of the putative trace formula for the equivariant vector bundle
Ex1 ⊗ · · · ⊗ Exk

(here Ex is the F -equivariant vector bundle corresponding to
point x ∈ C(Fq), see Conjecture 3), is given (for the n-th iteration) by the
formula

Trace
(

T (n)
x1

. . . T (n)
xk

D(n)
)

.

It looks that in order to achieve the rationality of the putative Ruelle
zeta-function one has to add by hand certain contributions corresponding to
“missing fixed points”. For example, for any x ∈ Fq \ {0, 1, t} one has

Trace(TxD) =
q

(q − 1)2

and the corresponding zeta-function

exp

⎛

⎝−
∑

n≥1

tn

n

qn

(qn − 1)2

⎞

⎠ =
∏

m≥1

(1 − q−mt)m ∈ Q[[t]]

is meromorphic but not rational. The above zeta-function looks like the contri-
bution of just one6 fixed point z0 on an algebraic dynamical system z �→ F (z)
on a two-dimensional variety, with the spectrum of (F ′)z0 equal to (q, q), and
the spectrum of the map on the fiber Ez0 → Ez0 equal to (q, 0). Here is the
precise conjecture coming from computer experiments:

Conjecture 7. For any x1, . . . , xk ∈ Fq \ {0, 1, t}, k ≥ 1 the series

exp

⎛

⎝−
∑

n≥1

tn

n

{

Trace
(

T (n)
x1

. . . T (n)
xk

D(n)
)

+ Corr(n, k)
}

⎞

⎠

6Maybe the complete interpretation should be a bit more complicated as one can

check numerically that Trace(D) = q2(q−2)

(q−1)2(q+1)
.
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where

Corr(n, k) := − (−1 − qn)k

(1 − q−n) (1 − q2n)
,

is a rational function.

The rational function in the above conjecture should be an L-function of
a motive over Fq, all its zeroes and poles should be q-Weil numbers.

Finally, if one considers Ruelle zeta-functions without the denominator
term, then rationality is elementary, as will become clear in the next section.

2 Second proposal: formalism of motivic function spaces
and higher-dimensional Langlands correspondence

The origin of this section is property 6 (the multiplication table) of Hecke
operators in our example from Section 0.1.

2.1 Motivic functions and the tensor category Ck

Let S be a Noetherian scheme.

Definition 8. The commutative ring Funpoor(S) of poor man’s motivic func-
tions7 on S is the quotient of the free abelian group generated by equivalence
classes of schemes of finite type over S, modulo relations

[X → S] = [Z → S] + [(X \ Z) → S],

where Z is a closed subscheme of X over S. The multiplication on Funpoor(S)
is given by the fibered product over S.

In the case that S is the spectrum of a field k, we obtain the standard defi-
nition8 of the Grothendieck ring of varieties over k. Any motivic function on
S gives a function on the set of points of S with values in the Grothendieck
rings corresponding to the residue fields.

For a given field k let us consider the following additive category Ck. Its
objects are schemes of finite type over k; the abelian groups of homomorphisms
are defined by

HomCk
(X, Y ) := Funpoor(X × Y ) .

The composition of two morphisms represented by schemes is given by the
fibered product as below,

[B → Y × Z] ◦ [A → X × Y ] := [A ×Y B → X × Z],
7The name was suggested by V. Drinfeld.
8Usually one extends the Grothendieck ring of varieties by inverting the class

[A1
k] of the affine line, which is the geometric counterpart of the inversion of the

Lefschetz motive L = H2(P
1
k) in the construction of Grothendieck pure motives.

Here also we can do the same thing.
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and extended by additivity to all motivic functions. The identity morphism
idX is given by the diagonal embedding X ↪→ X × X .

One can start from the beginning from constructible sets over k instead
of schemes. The category of constructible sets over k is a full subcategory of
Ck; the morphism in Ck corresponding to a constructible map f : X → Y is

given by [X
(idX ,f)−→ X × Y ], the graph of f .

Finite sums (and products) in Ck are given by the disjoint union.
We endow the category Ck with the following tensor structure on objects:

X ⊗ Y := X × Y,

and by a similar formula on morphisms. The unit object 1Ck
is the point

Spec(k). The category Ck is rigid, i.e., for every object X there exists another
object X∨ together with morphisms δX : X ⊗ X∨ → 1, εX : 1 → X∨ ⊗ X
such that both compositions:

X
idX⊗εX−→ X ⊗ X∨ ⊗ X

δX⊗idX−→ X, X∨ εX⊗idX∨−→ X∨ ⊗ X ⊗ X∨ idX∨⊗δX−→ X∨

are identity morphisms. The dual object X∨ in Ck coincides with X ; the
duality morphisms δX , εX are given by the diagonal embedding X ↪→ X2.

As in any tensor category, the ring EndCk
(1Ck

) is commutative, and the
whole category is linear over this ring, which is nothing but the Grothendieck
ring of varieties over k.

Fiber functors for finite fields

If k = Fq is a finite field then there is an infinite chain (φn)n≥1 of tensor
functors from Ck to the category of finite-dimensional vector spaces over Q.
It is defined on objects by the formula

φn(X) := Q
X(Fqn ) .

The operator corresponding by φn to a morphism [A → X × Y ] has the
following matrix coefficient with indices (x, y) ∈ X(Fqn) × Y (Fqn):

#{a ∈ A(Fqn) | a �→ (x, y)} ∈ Z≥0 ⊂ Q.

The functor φn is not canonically defined for n ≥ 2; the ambiguity is the
cyclic group Z/nZ = Gal(Fqn/Fq) ⊂ Aut(φn).

Extensions and variants

The abelian group Funpoor(S) of poor man’s motivic functions can (and prob-
ably should) be replaced by the K0 group of the triangulated category MotS,Q

of “constructible motivic sheaves” (with coefficients in Q) on S. Although the
latter category is not yet rigorously defined, one can envision a reasonable
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candidate for the elementary description of K0(MotS,Q). This group should
be generated by equivalence classes of families of Grothendieck motives (with
coefficients in Q) over closed subschemes of S, modulo a suitable equivalence
relation. Moreover, the group K0(MotS,Q) should be filtered by the dimension
of support, and the associated graded group should be canonically isomorphic
to the direct sum over all points x ∈ S of K0 groups of categories of pure
motives (with coefficients in Q) over the residue fields.9

Similarly, one can extend the coefficients of the motives from Q to any
field of zero characteristic. This change will affect the group K0 and give a
different algebra of motivic functions.

Finally, one can add formally images of projectors to the category Ck.

Question 9. Are there interesting nontrivial projectors in Ck?

I do not know at the moment any example of an object in the Karoubi
closure of Ck that is not isomorphic to a scheme. Still, there are interest-
ing nontrivial isomorphisms between objects of Ck, for example the following
version of the Radon transform.

Example: motivic Radon transform

Let X = P(V ) and Y = P(V ∨) be two dual projective spaces over k. We
assume that n := dim V is at least 3.

The incidence relation gives a subvariety Z ⊂ X × Y , which can be inter-
preted as a morphism in Ck in two ways:

f1 := [Z ↪→ X × Y ] ∈ HomCk
(X, Y ),

f2 := [Z ↪→ Y × X ] ∈ HomCk
(Y, X).

The composition f2 ◦ f1 is equal to

[An−2] · idX + [Pn−3] · [X → pt → X ] .

The reason is that the scheme of hyperplanes passing through points x1, x2 ∈
X is either P

n−3 if x1 �= x2, or P
n−2 if x1 = x2. On the level of constructible

sets one has P
n−2 = P

n−3 � A
n−2.

The first term is the identity morphism multiplied by the (n− 2)nd power
of the Tate motive, while the second term is in a sense a rank-1 operator. It
can be killed after passing to the quotient of X by pt, which is in fact a direct
summand in Ck:

X � pt ⊕ (X \ pt) .

Here we have to choose a point pt ∈ X . Similar arguments work for Y , and
as a result we obtain an isomorphism (inverting the Tate motive)

X \ pt � Y \ pt

in the category Ck that is not a geometric isomorphism of constructible sets.
9I do not know how to fill in all the details in the above sketch.
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2.2 Commutative algebras in Ck

By definition, a unital commutative associative algebra A in the tensor cate-
gory Ck is given by a scheme of finite type X/k, and two elements

1A ∈ Funpoor(X), mA ∈ Funpoor(X3)

(the unit and the product in A) satisfying the usual constraints of unitality,
commutativity, and associativity.

The formula for the structure constants cxyz = (Tx)yz of the algebra of
Hecke operators in our basic example (see Section 0.1) is given explicitly
by counting points on constructible sets depending constructibly on a point
(x, y, z) ∈ X3, where X = A

1, for any t ∈ k\{0, 1} (one should replace factors
q by bundles with fiber A

1). Hence we obtain a motivic function on X3 that
gives the structure of a commutative algebra on X for any t ∈ k \ {0, 1}, for
arbitrary field k. A straightforward check (see Proposition 1 in Section 2.4
below for a closely related statement) shows that this algebra is associative.

Elementary examples of algebras

The first example of a commutative algebra is given by an arbitrary scheme
X (or a constructible set) of finite type over k. The multiplication tensor is
given by the diagonal embedding X ↪→ X3; the unit is given by the identity
map X → X . If k = Fq is finite, then for any n ≥ 1 the algebra φn(X) is
the algebra of Q-valued functions on the finite set X(Fqn), with pointwise
multiplication.

The next example corresponds to the case that X is an abelian group
scheme (e.g., Ga, Gm, or an abelian variety). We define the multiplication
tensor mA ∈ Funpoor(X3) as the graph of the multiplication morphism X ×
X → X . Again, if k is finite then the algebra φn(X) is the group algebra
with coefficients in Q of the finite abelian group X(Fqn). Its points in Q are
additive (resp. multiplicative) characters of k if X = Ga (resp. X = Gm).

Also, one can see that the algebra in Ck corresponding to the group scheme
Ga is isomorphic to the direct sum of 1Ck

(corresponding to the trivial ad-
ditive character of k) and another algebra A, which can be thought of as
parameterizing nontrivial additive characters of the field, with the underlying
scheme A

1 \ {0}.
Finally, one can make “quotients” of abelian group schemes by finite groups

of automorphisms. For example, for Ga endowed with the action of the an-
tipodal involution x → −x, the formula for the product for the corresponding
algebra is the sum of the “main term”

[Z ↪→ (A1)3], Z = {(x, y, z)| x2 + y2 + z2 − 2(xy + yz + zx) = 0}
(the latter equation means that

√
x+

√
y =

√
z) and certain correction terms.

Similarly, for the antipodal involution (x, w) → (x,−w) on the elliptic curve
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E ⊂ P
1 × P

1 given by w2 = x(x − 1)(x − t) (with (∞,∞) serving as zero
for the group law), the quotient is P

1 endowed with a multiplication law sim-
ilar to that from Section 0.1. The main term is given by the hypersurface
ft(x, y, z) = 0 in the notation of Section 0.1. The spectrum of the correspond-
ing algebra is rather trivial, in comparison to our example. The difference
is that in Section 0.1 we consider the twofold cover of (A1)3 ramified at the
hypersurface ft(x, y, z) = 0.

Categorification

One may wonder whether a commutative associative algebra A in Ck (for
general field k, not necessarily finite) is in fact a materialization of the struc-
ture of a symmetric (or only braided) monoidal category on a triangulated
category, i.e., whether the multiplication morphism is the class in K0 of a
bifunctor defining the monoidal structure. The category under consideration
should be either the category of constructible mixed motivic sheaves on the
underlying scheme of A or some small modification of it not affecting the group
K0 (e.g., both categories could have semiorthogonal decompositions with the
same factors).

2.3 Algebras parameterizing motivic local systems

As we have already observed, the example of Section 0.1 can be interpreted as
a commutative associative algebra in Ck parameterizing in a certain sense (via
the chain of functors (φn)n≥1) motivic local systems on a curve over k = Fq.
Here we will formulate a general conjecture, which goes beyond the case of
curves.

Preparations on ramification and motivic local systems

Let Y be a smooth geometrically connected projective variety over a finitely
generated field k. Let us denote by K the field of rational functions on X and
by K ′ the field of rational functions on Y ′ := Y ×Speck Speck. We have an
exact sequence

1 → Gal(K/K ′) → Gal(K/K) → Gal(k/k) → 1.

For a continuous homomorphism

ρ : Gal(K/K ′) → GL(N, Ql),

where l �= char(k), which factorizes through the quotient πgeom
1 (U) for some

open subscheme U ⊂ Y ′, one can envision some notion of ramification divisor
(similar to the notion of the conductor in the one-dimensional case) that
should be an effective divisor on Y ′.
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One expects that for a pure motive of rank N over K with coefficients in
Q, the ramification divisor of the corresponding l-adic local system does not
depend on the prime l �= char(k), at least for large l.

Denote by IrrRepY ′,N,l the set of conjugacy classes of irreducible repre-
sentations ρ : Gal(K/K) → GL(N, Ql) factoring through πgeom

1 (U) for some
open subscheme U ⊂ Y ′ as above. The Galois group Gal(k/k) acts on this set.

Denote by IrrRepmot,geom
Y,N the set of equivalence classes of pure motives in

the sense of Grothendieck (defined using the numerical equivalence) of rank N
over K, with coefficients in Q, that are absolutely simple (i.e., remain simple
after the pullback to K ′), modulo the action of the Picard group of rank-1
motives over k with coefficients in Q. This set is endowed with a natural action
of Gal(Q/Q). The superscript geom indicates that we are interested only in
representations of the geometric fundamental group.

One expects that the natural map from IrrRepmot,geom
Y,N to the set of fixed

points (IrrRepY ′,N,l)Gal(k/k) is a bijection. In particular, it implies that one
can define the ramification divisor for an element of IrrRepmot,geom

Y,N . Presum-
ably, one can give a purely geometric definition of it, without referring to
l-adic representations.

Conjecture on algebras parameterizing motivic local systems

Conjecture 10. For a smooth projective geometrically connected variety Y
over a finite field k = Fq, an effective divisor D on Y , and a positive integer
N , there exists a commutative associative unital algebra A = AY,D,N in the
category Ck satisfying the following property:

For any n ≥ 1 the algebra φn(A) over Q is semisimple (i.e., it is a
finite direct sum of number fields) and for any prime l, (l, q) = 1, there
exists a bijection between HomQ−alg(φn(A), Q) and the set of elements of
IrrRepmot,geom

Y ×Spec Fq Spec Fqn ,N for which the ramification divisor is D. Moreover, the

above bijection is equivariant with respect to the natural Gal(Q/Q) × Z/nZ-
action.

One can also try to formulate a generalization of the above conjecture, al-
lowing not an individual variety Y but a family, i.e., a smooth projective mor-
phism Y → B to a scheme of finite type over k, with geometrically connected
fibers, together with a flat family of ramification divisors. The correspond-
ing algebra should parameterize choices of a point b ∈ B(Fqn), an irreducible
motivic system of given rank, and a given ramification on the fiber Yb. This
algebra should map to the algebra of functions with the pointwise product
(see Section 2.2) associated with the base B.

In the above conjecture we did not describe how to associate a tower of
finite sets to the algebra A, since a priori we have just a sequence of finite sets
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Xn := HomQ−alg(φn(A), Q) with no obvious maps between them. This leads
to the following question:
Question 11. Which property of an associative commutative algebra A in
CFq gives naturally a chain of embeddings

HomQ−alg(φn1(A), Q) ↪→ HomQ−alg(φn1n2(A), Q)

for all integers n1, n2 ≥ 1?
It appears that this holds automatically, by a kind of trace morphism.

Arguments in favor, and extensions

First of all, there is good reason to believe that Conjecture 5 holds for curves.
Also, it would be reasonable to consider local systems with an arbitrary struc-
ture group G instead of GL(N). The algebra parameterizing motivic local sys-
tems on a curve Y = C with structure group G should be (roughly) equal to
some finite open part of the moduli stack BunGL of GL-bundles on C, where
GL is the Langlands dual group. The multiplication should be given by the
class of a motivic constructible sheaf on

(BunGL)3 = BunGL × BunGL×GL ,

which should be a geometric counterpart to the lifting of automorphic forms
corresponding to the diagonal embedding

GL → GL × GL .

Presumably, the multiplication law from Example 0.1 corresponds to the
lifting.

If we believe in Conjecture 5 in the case of curves, then it is very natural
to believe in it in general. The reason is that for a higher-dimensional variety
Y (not necessarily compact) there exists a curve C ⊂ Y such that πgeom

1 (Y )
is a quotient of πgeom

1 (C). Such a curve can be, e.g., a complete intersection of
ample divisors; the surjectivity is a particular case of the Lefschetz theorem
on hyperplane sections. Therefore, the set of equivalence classes of absolutely
irreducible motivic local systems on Y ×SpecFq SpecFqn should be a subset of
the corresponding set for C for any n ≥ 1, and invariant under the Gal(Q/Q)-
action as well. It seems very plausible that such a collection of subsets should
arise from a quotient algebra in CFq .

From the previous discussion it appears that the motivic local systems in
the higher-dimensional case are “less interesting”; the 1-dimensional case is
the richest one. Nevertheless, there is definitely nontrivial higher-dimensional
information about local systems that cannot be reduced to 1-dimensional data.
Namely, for any motivic local system ρarith on Y and an integer i ≥ 0, the
cohomology space

Hi(Y ′, ρ),
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where ρ is the pullback of ρarith to Y ′, is a motive over the finite field k = Fq.
We can calculate the trace of the Nth power of the Frobenius on it for a given
N ≥ 1, and get a Q-valued function10 on the set

Xn := HomQ−alg(φn(A), Q)

for each n ≥ 1. This leads to a natural addition to Conjecture 5. Namely,
we expect that systems of Q-valued functions on Xn associated with higher
cohomology spaces arise from elements in HomCFq

(1, A) (i.e., from motivic
functions on the constructible set underlying the algebra A).

More generally, one can expect that the motivic constructible sheaves with
some kind of boundedness will be parameterized by commutative algebras.

Formulas from the example from Section 0.1 make sense and give an
algebra in Ck for an arbitrary field k. This leads to the following question:

Question 12. Can one construct algebras AY,D,N for an arbitrary ground
field k, not necessarily finite? In what sense will these algebras “parameterize”
motivic local systems?

In general, it seems that the natural source of commutative algebras in Ck is
not the representation theory, but (quantum) algebraic integrable systems.

2.4 Toward integrable systems over local fields

Here we will describe briefly an analogue of commutative algebras of integral
operators as above for arbitrary local fields, i.e., R, C, or finite extensions of Qp

or Fp((x)). Let us return to our basic example. The check of the associativity
of the multiplication law given by the formula from Section 0.1 in the case
of finite fields is reduced to an identification of certain varieties. The most
nontrivial part is the following:

Proposition 13. For generic parameters t, x1, x2, x3, x4, the two elliptic
curves

E : ft(x1, x2, y) = w2
12, ft(y, x3, x4) = w2

34,

Ẽ : ft(x1, x3, ỹ) = w̃2
13, ft(ỹ, x2, x4) = w̃2

24,

given by equations in variables (y, w12, w34) and (ỹ, w̃13, w̃24) respectively, are
canonically isomorphic over the ground field. Moreover, one can choose such
an isomorphism that identifies the abelian differentials

dy

w12w34
and

dỹ

w̃13, w̃24
.

10Here there is a small ambiguity that should be resolved somehow, since one can
multiply ρarith by a one-dimensional motive over k with coefficients in Q.
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In fact, it is enough to check the proposition over an algebraically closed field
and observe that the curves E, Ẽ have points over the ground field.11

Let now k be a local field. For a given t ∈ k \ {0, 1} we define a (nonneg-
ative) half-density ct on k3 by the formula

ct := π∗

( |dx1|1/2|dx2|1/2|dx3|1/2

|w|
)

,

where
π : Z(k) → A

3(k), π(x1, x2, x3, w) = (x1, x2, x3)

is the projection of the hypersurface

Z ⊂ A
4
k : ft(x1, x2, x3) = w2 .

We will interpret ct as a half-density on (P1(k))3 as well.
One can deduce from the above proposition the following:

Theorem 14. The operators Tx, x ∈ k \ {0, 1, t}, on the Hilbert space of
half-densities on P

1(k), given by

Tx(φ)(y) =
∫

z∈P1(k)

ct(x, y, z) φ(z),

are commuting compact self-adjoint operators.

Moreover, in the nonarchimedean case one can show that the joint spec-
trum of commuting operators as above is discrete and consists of densities
locally constant on P

1(k) \ {0, 1, t,∞}. In particular, all eigenvalues of op-
erators Tx are algebraic complex numbers. Passing to the limit over finite
extensions of k, we obtain a countable set on which acts

Gal(Q/Q)× Gal(k/k) .

Also notice that in the case of local fields the formula is much simpler than
the motivic one: there is no correction term. On the other hand, one has a
new ingredient, the local density of an integral operator. In general, one can
imagine a new formalism12 in which the structure of an algebra is given by
data (X, Z, π, ν), where X is a (birational type of) variety over a given field
k, Z is another variety, π : Z → X3 is a map (defined only at generic points
of Z), and ν is a rational section of the line bundle K⊗2

Z ⊗ π∗ (K⊗−1
X3

)

. If k
is a local field, then the pushdown by π of |ν|1/2 is a half-density on X3. The
condition of the associativity would follow from a property of certain data
formulated purely in terms of birational algebraic geometry.

11The curve E has 16 rational points with coordinate y ∈ {0, 1, t,∞}, and the
same for Ẽ.

12A somewhat similar formalism was proposed by Braverman and Kazhdan (see
[1], who had in mind orbital integrals in the usual local Langlands correspondence.
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Presumably, the spectrum for the case of the finite field is just a
“low-frequency” part of a much larger spectrum for p-adic fields, corre-
sponding to some mysterious objects.13

The commuting integral operators in the archimedean case k = R, C are
similar to ones found recently in the usual algebraic quantum integrable sys-
tems; see [5].

3 Third proposal: lattice models

3.1 Traces depending on two indices

Let X be a constructible set over Fq and let M be an endomorphism of X in
the category CFq (e.g., a Hecke operator). What kind of object can be called
the “spectrum” of M?

Applying the functors φn for n ≥ 1, we obtain an infinite sequence of
finite matrices, of exponentially growing size. We would like to understand the
behavior of spectra of operators φn(M) as n → +∞. A similar question arises
in some models in quantum physics where one is interested in the spectrum
of a system with finitely many states, with the dimension of the Hilbert space
depending exponentially on the “number of particles.”

The spectrum of an operator acting on a finite-dimensional space can be
reconstructed from the traces of all positive powers. This leads us to the
consideration of the following collection of numbers:

ZM (n, m) := Trace((φn(M))m),

where n ≥ 1 and m ≥ 0 are integers. It will be important later to restrict
attention only to strictly positive values of m, which means that we are inter-
ested only in nonzero eigenvalues of matrices φn(M), and want to ignore the
multiplicity of the zero eigenvalue.

Observation 1. For a given n ≥ 1 there exists a finite collection of nonzero
complex numbers (λi) such that for any m ≥ 1 one has

ZM (n, m) =
∑

i

λm
i .

Observation 2. For a given m ≥ 1 there exists a finite collection of
nonzero complex numbers (μj) and signs (εj ∈ {−1, +1}) such that for any
n ≥ 1 one has

ZM (n, m) =
∑

j

εjμ
n
j .

13It appears that all this goes beyond motives, and on the automorphic side is
related to some kind of Langlands correspondence for two-(or more) dimensional
mixed local–global fields.
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The symmetry between the parameters n and m (modulo a minor
difference with signs) is quite striking.

The first observation is completely trivial. For a given n the numbers (λi)
are all nonzero eigenvalues of the matrix φn(M).

Let us explain the second observation. By functoriality we have

ZM (n, m) = Trace(φn(Mm)) .

Let us assume first that M is given by a constructible set Y that maps to
X × X :

Y → X × X, y �→ (π1(y), π2(y)) .

Then Mm is given by the consecutive fibered product

Y (m) = Y ×X Y ×X · · · ×X Y ⊂ Y × · · · × Y

of m copies of Y :

Y (m)(Fq) = {(y1, . . . , ym) ∈ (Y (Fq))m|π2(y1)
= π1(y2), . . . , π2(ym−1) = π1(ym)}

The projection to X ×X is given by (y1, . . . , ym) �→ (π1(y1), π2(ym)). To take
the trace we should intersect Y (m) with the diagonal. The conclusion is that
ZM (n, m) is equal to the number of Fqn -points of the constructible set

˜Y (m) := Y (m) ×X×X X ,

˜Y (m)(Fq) = {(y1, . . . , ym) ∈ Y (m)(Fq)|π1(y1) = π2(ym)} .

The second observation is now an immediate corollary of the Weil conjecture
on numbers of points of varieties over finite fields14. The general case when
M is given by a formal integral linear combination

∑

α nα[Yα → X × X ] can
be treated in a similar way.

3.2 Two-dimensional translation invariant lattice models

There is another source of numbers depending on two indices with a similar
behavior with respect to each of indices when another one is fixed. It comes
from the so-called lattice models in statistical physics. A typical example is
the Ising model. There is a convenient way to encode Boltzmann weights of a
general lattice model on Z

2 in terms of linear algebra.

Definition 15. Boltzmann weights of a 2-dimensional translation invariant
lattice model are given by a pair V1, V2 of finite-dimensional vector spaces
over C and a linear operator

R : V1 ⊗ V2 → V1 ⊗ V2 .

14Here we mean only the fact that the zeta-function of a variety over is rational
in qs, and not the more deep statement about the norms of Weil numbers.
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Such data give a function (called the partition function) on a certain set
of graphs. Namely, let Γ be a finite oriented graph whose edges are colored
by {1, 2} in such a way that for every vertex v there are exactly two edges
colored by 1 and 2 with head v, and also there are exactly two edges colored
by 1 and 2 with tail v. Consider the tensor product of copies of R labelled by
the set V ert(Γ ) of vertices of Γ . It is an element vR,Γ of the vector space

(V ∨
1 ⊗ V ∨

2 ⊗ V1 ⊗ V2)⊗V ert(Γ ) .

The structure of an oriented colored graph gives an identification of the above
space with

(V1 ⊗ V ∨
1 )⊗Edge1(Γ ) ⊗ (V2 ⊗ V ∨

2 )⊗Edge2(Γ )

where Edge1(Γ ), Edge2(Γ ) are the sets of edges of Γ colored by 1 and by 2.
The tensor product of copies of the standard pairing gives a linear functional
uΓ on the above space. We define the partition function of the lattice model
on Γ as

ZR(Γ ) = uΓ (vR,Γ ) ∈ C .

An oriented colored graph Γ as above is the same as a finite set with
two permutations τ1, τ2. The set here is Vert(Γ ), and permutations τ1, τ2

correspond to edges colored by 1 and 2 respectively.
In the setting of translation-invariant 2-dimensional lattice models we are

interested in the values of the partition function only on graphs corresponding
to pairs of commuting permutations. Such a graph (if it is nonempty and
connected) corresponds to a subgroup Λ ⊂ Z

2 of finite index. We will denote
the partition function15 of the graph corresponding to Λ by Z lat

R (Λ).
Finally, Boltzmann data make sense in an arbitrary rigid tensor category C.

The partition function of a graph takes values in the commutative ring
EndC(1). In particular, one can speak about super Boltzmann data for the
category Super

C
of finite-dimensional complex super vector spaces.

Transfer matrices

Let us consider a special class of lattices Λ ⊂ Z
2 depending on two parameters.

Namely, we set
Λn,m := Z · (n, 0) ⊕ Z · (0, m) ⊂ Z

2 .

Proposition 16. For any Boltzmann data (V1, V2, R) and a given n ≥ 1 there
exists a finite collection of nonzero complex numbers (λi) such that for any
m ≥ 1 one has

Z lat
R (Λn,m) =

∑

i

λm
i .

15In the physical literature it is called the partition function with periodic
boundary conditions.



236 Maxim Kontsevich

The proof is the following. Let us introduce a linear operator (called the
transfer matrix) by the formula

T(2),n := TraceV ⊗n
1

((σn ⊗ idV ⊗n
2

) ◦ R⊗n) ∈ End
(

V ⊗n
2

)

,

where σn ∈ End
(

V ⊗n
1

)

is the cyclic permutation. Here we interpret R⊗n as
an element of

(V ∨
1 )⊗n ⊗ (V ∨

2 )⊗n ⊗ V ⊗n
1 ⊗ V ⊗n

2 = End
(

V ⊗n
1

)⊗ End
(

V ⊗n
2

)

.

It follows from the definition of the partition function that

Z lat
R (Λn,m) = Trace

(

T(2),n

)m

for all m ≥ 1. The collection (λi) is just the collection of all nonzero eigenvalues
of T(2),n taken with multiplicities.

Similarly, one can define transfer matrices T(1),m such that Z lat
R (Λn,m) =

Trace
(

T(1),m

)n for all n, m ≥ 1. We see that the function (n, m) �→ Z lat
R (Λn,m)

has the same two properties as the function (n, m) �→ ZM (n, m) from Section
3.1. For super Boltzmann data one obtains sums of exponents with signs.

3.3 Two-dimensional Weil conjecture

Let us return to the case of an endomorphism M ∈ EndCFq
(X). In Section 3.1

we have defined numbers ZM (n, m) for n, m ≥ 1. The results of Section 3.2
indicate that one should interpret pairs (n, m) as parameters for a special
class of “rectangular” lattices in Z

2. A general lattice Λ ⊂ Z
2 depends on

three integer parameters

Λ = Λn,m,k = Z · (n, 0) ⊕ Z · (k, m), n, m ≥ 1, 0 ≤ k < n .

Here we propose an extension of the function ZM to all lattices in Z
2:

ZM (Λn,m,k) := Trace((φn(M))m(φn(FrX))k),

where FrX ∈ EndCFq
(X) is the graph of the Frobenius endomorphism of the

scheme X . Notice that φn(FrX) is periodic with period n for any n ≥ 1.

Proposition 17. The function ZM on lattices in Z
2 defined as above satisfies

the following property: for any two vectors γ1, γ2 ∈ Z
2 such that γ1 ∧ γ2 �= 0

there exist a finite collection of nonzero complex numbers (λi) and signs (εi)
such that for any n ≥ 1 one has

ZM (Z · γ1 ⊕ Z · nγ2) =
∑

i

εiλ
n
i .

In other words, the series

exp

⎛

⎝−
∑

n≥1

ZM (Z · γ1 ⊕ Z · nγ2) · tn/n

⎞

⎠

in the formal variable t is rational.
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The proof is omitted here; we’ll just indicate that it follows from a con-
sideration of the action of the Frobenius element and of cyclic permutations
on the (étale) cohomology of spaces ˜Y (m) introduced in Section 3.1.

Also, it is easy to see that the same property holds for the partition func-
tion Z lat

R (Λm,n,k) for arbitrary (super) lattice models.16 The analogy leads to
a two-dimensional analogue of the Weil conjecture (the name will be explained
in the next section):

Conjecture 18. For any endomorphism M ∈ EndCFq
(X) there exist super

Boltzmann data (V1, V2, R) such that for any Λ ⊂ Z
2 of finite index one has

ZM (Λ) = Z lat
R (Λ) .

Up to now there is no hard evidence for this conjecture; there are just a
few cases in which one can construct a corresponding lattice model in an ad
hoc manner. For example, it is possible (and not totally trivial) to do so for
the case that X = A

1
Fq

and M is the graph of the map x → xc, where c ≥ 1
is an integer.

The above conjecture means that one can see matrices φn(M) as analogues
of transfer matrices.17 In the theory of integrable models, people are inter-
ested in systems in which the Boltzmann weights R depend nontrivially on a
parameter ρ (spaces V1, V2 do not vary), and the horizontal transfer matrices
commute with each other,

[T(2),n(ρ1), T(2),n(ρ2)] = 0,

because of the Yang–Baxter equation. The theory of automorphic forms seems
to produce families of commuting endomorphisms in the category CFq , which
is quite analogous to the integrability in lattice models. There are still seri-
ous differences. First of all, commuting operators in the automorphic forms
case depend on discrete parameters, whereas in the integrable model case
they depend algebraically on continuous parameters. Secondly, the spectrum
of a Hecke operator in its nth incarnation (such as T

(n)
x in Section 0.1) has

typically n-fold degeneracy, which does not happen in the case of the usual
integrable models with period n.

3.4 Higher-dimensional lattice models and a higher-dimensional
Weil conjecture

Let d ≥ 0 be an integer.
16In general, one can show that for any lattice model given by the operator R,

and for any matrix A ∈ GL(2, Z), there exists another lattice model with operator
R′ such that for any lattice Λ ⊂ Z

2 one has Zlat
R (Λ) = Zlat

R′ (A(Λ)).
17At least if one is interested in the nonzero part of spectra. In general, the size

of the transfer matrix depends on n as an exact exponent, while the size of φn(M)
is a finite alternating sum of exponents.
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Definition 19. The Boltzmann data of a d-dimensional translation-invariant
lattice model are given by a collection V1, . . . , Vd of finite-dimensional vector
spaces over C and a linear operator

R : V1 ⊗ · · · ⊗ Vd → V1 ⊗ · · · ⊗ Vd .

Similarly, one can define a d-dimensional lattice model in an arbitrary rigid
tensor category. The partition function is a function on finite sets endowed
with the action of the free group with d generators. In particular, for abelian
actions, it gives a function Λ �→ Z lat

R (Λ) ∈ C on the set of subgroups of finite
index in Z

d. Also, for any lattice Λd−1 ⊂ Z
d of rank (d − 1) and a vector

γ ∈ Z
d such that γ /∈ Q ⊗ Λd−1, the function

n ≥ 1 �→ Z lat
R (Λd−1 ⊕ Z · nγ)

is a finite sum of exponents. Analogously, for any d-dimensional lattice model
R and any integer n ≥ 1 there exists its dimensional reduction, periodic with
period n in the dth coordinate, which is a (d − 1)-dimensional lattice model
R(n) satisfying the property

ZR(n)(Λd−1) = ZR(Λd−1 ⊕ Z · n ed) , ∀Λd−1 ⊂ Z
d−1,

where ed = (0, . . . , 0, 1) ∈ Z
d = Z

d−1 ⊕ Z is the last standard basis vector.

Conjecture 20. For any (d−1)-dimensional lattice model (X1, . . . , Xd−1, M),
d ≥ 1, in the category CFq , there exists a d-dimensional super lattice model
(V1, . . . , Vd, R) in Super

C
such that for any n ≥ 1 the numerical (d − 1)-

dimensional model φn(M) gives the same partition function on the set of
subgroups of finite index in Z

d−1 as the dimensional reduction R(n).

In the case d = 1 this conjecture follows from the usual Weil conjecture.
Namely, a 0-dimensional Boltzmann data in CFk

is just an element

M ∈ EndCFq
(1) = EndCFq

(⊗i∈∅Xi)

of the Grothendieck group of varieties over Fk (or of K0 of the category of
pure motives over Fk with rational coefficients). The corresponding numerical
lattice models φn(M) are just numbers, counting Fqn -points in M . By the
usual Weil conjecture these numbers are traces of powers of an operator in
a super vector space, i.e., values of the partition function for 1-dimensional
super lattice model.

Similarly, for d = 2 one gets the 2-dimensional Weil conjecture from the
previous section.

Evidence: p-adic Banach lattice models

Let K be a complete nonarchimedean field (e.g., a finite extension of Qp).
We define a d-dimensional contracting Banach lattice model as follows. The
Boltzmann data consists of
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• 2d countable generated K-Banach spaces V in
1 , . . . , V in

d , V out
1 , . . . , V out

d ,
• a bounded operator Rvertices : V in

1
̂⊗ · · · ̂⊗V in

d → V out
1
̂⊗ · · · ̂⊗V out

d ,

• a collection of compact operators Redges
i : V out

i → V in
i , i = 1, . . . , d.

Such data again give a function on oriented graphs with colored edges; in the
definition one should insert the operator Redges

i for each edge colored by the in-
dex i, i = 1, . . . , d. In the case of finite-dimensional spaces

(

V in
i , V out

i

)

i=1,...,d

we obtain the same partition function as for a usual finite-dimensional lattice
model. Namely, one can set

R :=
(

⊗d
i=1R

edges
i

)

◦ Rvertices, Vi = V in
i , ∀i = 1, . . . , d,

or alternatively,

R̃ := Rvertices ◦
(

⊗d
i=1R

edges
i

)

, Ṽi := V out
i , ∀i = 1, . . . , d .

In particular, for any contracting Banach model one gets a function Λ �→
Z lat

R (Λ) ∈ K on the set of sublattices of Z
d. This function satisfies the property

that for any lattice Λd−1 ⊂ Z
d of rank (d − 1) and a vector γ ∈ Z

d such that
γ /∈ Q ⊗ Λd−1, one has

Z lat
R (Λn−1 ⊕ Z · nγ) =

∑

α

λn
α, ∀n ≥ 1,

where (λα) is a (possibly) countable Gal(K/K)-invariant collection of nonzero
numbers in K (eigenvalues of transfer operators) whose norms tend to zero.
Similarly, one can define super Banach lattice models.

Here we announce a result supporting Conjecture 7; the proof is a straight-
forward extension of the Dwork method for the proving the rationality of zeta
the function of a variety over a finite field.

Theorem 21. Conjecture 7 holds if one allows contracting Banach super lat-
tice models over a finite extension of Qp, where p is the characteristic of the
finite field Fq.

3.5 Tensor category A and the Master Conjecture

Let us consider the following rigid tensor category A. Objects of A are finite-
dimensional vector spaces over C. The set of morphisms HomA(V1, V2) is
defined as the group K0 of the category of finite-dimensional representations
of the free (tensor) algebra

T (V1 ⊗ V ∨
2 ) :=

⊕

n≥0

(V1 ⊗ V ∨
2 )⊗n

.
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A representation of the free algebra by operators in a vector space U is the
same as an action of its generators on U , i.e., a linear map

V1 ⊗ V ∨
2 ⊗ U → U .

Using duality we interpret it as a map

V1 ⊗ U → V2 ⊗ U .

The composition of morphisms is defined by the following formula on
generators:

[V1 ⊗ U → V2 ⊗ U ] ◦ [V2 ⊗ U ′ → V3 ⊗ U ′]

is equal to
[V1 ⊗ (U ⊗ U ′) → V3 ⊗ (U ⊗ U ′)],

where the expression in the brackets is the obvious composition of linear maps

V1 ⊗ U ⊗ U ′ → V2 ⊗ U ⊗ U ′ → V3 ⊗ U ⊗ U ′ .

The tensor product in A coincides on objects with the tensor product
in VectC, the same for the duality. The formula for the tensor product on
morphisms is an obvious one; we leave the details to the reader.

As in Section 2.1 (Question 3), we can ask the following question:

Question 22. Are there interesting nontrivial projectors in A?18

We denote by Akar the Karoubi closure of A.
There exists an infinite chain of tensor functors

(

φA
n

)

n≥1
from A to the

category of finite-dimensional vector spaces over C given by

φA
n (V ) := V ⊗n

on objects, and by

[f : V1⊗U → V2⊗U ]
φn�−→ TraceU⊗n((σn⊗idV ⊗n

2
f⊗n) ∈ HomV ectC

(

V ⊗n
1 , V ⊗n

2

)

on morphisms, where σn : U⊗n → U⊗n is the cyclic permutation. The cyclic
group Z/nZ acts by automorphisms of φA

n . Moreover, the generator of the
cyclic group acting on V ⊗n = φA

n (V ) is the image under φA
n of a certain central

element FrV in the algebra of endomorphisms EndA(V ). This “Frobenius”
element is represented by the linear map σ : V ⊗ U → V ⊗ U , where U := V
and σ = σ2 is the permutation. As in the case of CFq , for any V the operator
φA

n (FrV ) is periodic with period n.

18A similar question about commuting endomorphisms in A is almost equivalent
to the study of finite-dimensional solutions of the Yang–Baxter equation.
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Let us introduce a small modification A′ of the tensor category A. Namely,
it will have the same objects (finite-dimensional vector spaces over C), and
the morphism groups will be the quotients

HomA′(V1, V2) := K0 (T (V1 ⊗ V ∨
2 ) − mod) /Z · [triv]

where triv is the trivial one-dimensional representation of T (V1 ⊗ V ∨
2 ) given

by the zero map
V1 ⊗ 1 0→ V2 ⊗ 1.

All the previous considerations extend to the case of A′.
The amazing similarities between the categories CFq and A′ suggest the

following conjecture:

Conjecture 23. For any prime p there exists a tensor functor

Φp : CFp → A′kar

and a sequence of isomorphisms of tensor functors from CFp to V ectC for all
n ≥ 1

ison,p : φA′
n ◦ Φp � iV ectQ→V ectC

◦ φn

where iV ectQ→V ectC
is the obvious embedding functor from the category of vec-

tor spaces over Q to the one over C. Moreover, for any X ∈ CFp the functor
Φp maps the Frobenius element FrX ∈ EndCFp

(X) to FrΦp(V ).

This conjecture we call the Master Conjecture because it implies simulta-
neously all higher-dimensional versions of the Weil conjecture at once, as one
has the bijection (essentially by definition)

{(d − 1)-dimensional super lattice models in A′} �
� {d-dimensional super lattice models in V ectC} .

Remark 24. One can consider a larger category Asuper adding to objects
of A super vector spaces as well. The group K0 in the super case should be
defined as the naive K0 modulo the relation

[V1 ⊗ U → V2 ⊗ U ] = −[V1 ⊗ Π(U) → V2 ⊗ Π(U)]

where Π is the parity changing functor.

It suffices to verify the Master Conjecture only on the full symmetric
monoidal subcategory of CFp consisting of powers

(

A
n
Fp

)

n≥0
of the affine line.

The reason is that any scheme of finite type can be embedded (by a con-
structible map) in an affine space A

n
Fp

, and the characteristic function of the
image of such an embedding as an idempotent in EndCFp

(An
Fp

).
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Machine modelling finite fields

Let us fix a prime p. The object A := A
1
Fp

of CFp is a commutative algebra
(as well as any scheme of finite type, see 2.2.1), with the product given by
the diagonal in its cube. The category Aff(CFp) of “affine schemes” in CFp

(i.e. the category opposite to the category of commutative associative unital
algebras in CFp) is closed under finite products. In particular, it makes sense to
speak about group-like etc. objects in Aff(CFp). Affine line A is a commutative
ring-like object in Aff(CFp), with the operations of addition and multiplication
corresponding to the graphs of the usual addition and multiplication on A

1
Fp

.
In plain terms, this means that besides the commutative algebra structure
on A

m : A ⊗ A → A

we have two coproducts (for the addition and for the multiplication)

co − a : A → A ⊗ A, co − m : A → A ⊗ A,

which are homomorphisms of algebras and satisfy the usual bunch of rules for
commutative associative rings, including the distributivity law.

If the master conjecture is true, then it gives an object Vp := Φp(A) ∈
A′kar, with one product and two coproducts. One can expect that it is just C

p

as a vector space. For any n ≥ 1, the A′-product on Vp defines a commutative
algebra structure on V ⊗n

p . Its spectrum should be a finite set consisting of pn

elements. Two coproducts give operations of addition and multiplication on
this set, and we will obtain a canonical construction19 of the finite field Fpn

uniformly for all n ≥ 1.
Even in the case p = 2 the construction of such Vp is a formidable task: one

should find three finite-dimensional super representations of the free algebra
in eight generators, satisfying nine identities in various K0 groups.

3.6 Corollaries of the Master Conjecture

Good sign: Bombieri–Dwork bound

One can deduce easily from the master conjecture that for any given p and
any system of equations in an arbitrary number of variables (xi), where each
of the equations is of an elementary form like xi1 +xi2 = xi3 or xi1xi2 = xi3 or
xi = 1, the number of solutions of this system over Fpn is an alternating sum
of exponents in n, with the total number of terms bounded by CN , where
C = Cp is a constant depending on p, and N is the number of equations.
In fact, it is a well-known Bombieri–Dwork bound (and C is an absolute
constant)20; see [2].

19Compare with Question 2 in Section 1.3, and remarks thereafter.
20A straightforward application of [2] gives the upper bound C ≤ 174, which is

presumably very far from the optimal one.
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Bad sign: cohomology theories for motives over finite fields

Any machine-modeling finite field should be defined over a finitely generated
commutative ring. In particular, there should be a machine defined over a
number field Kp depending only on the characteristic p. A little thinking
shows that the enumeration of the number of solutions of any given system of
equations in the elementary form as above will be expressed as a super trace
of an operator in a finite-dimensional super vector space defined over Kp. On
the other hand, it looks very plausible that the category of motives over any
finite field Fq does not have any fiber functor defined over a number field;
see [9] for a discussion. I think that this is a strong sign indicating that the
master conjecture is just wrong!

4 Categorical afterthoughts

4.1 Decategorifications of 2-categories

The two categories Ck and A introduced in this paper have a common feature
that is also shared (almost) by the category of Grothendieck motives. The
general framework is the following.

Let B be a 2-category such that for any two objects X, Y ∈ B the category
of 1-morphisms HomB(X, Y ) is a small additive category, and the composition
of 1-morphisms is a biadditive functor. In practice, we may ask for categories
HomB(X, Y ) to be triangulated categories (enriched by spectra, or by com-
plexes of vector spaces). Moreover, the composition could be only a weak
functor (e.g., A∞-functor), and the associativity of the composition could
hold only up to (fixed) homotopies and higher homotopies. The rough idea is
that objects of B are “spaces” (nonlinear in general), whereas objects of the
category HomB(X, Y ) are linear things on the “product” X × Y interpreted
as kernels of some additive functors transforming some kind of sheaves from
X to Y , by taking the pullback from X , the tensor product with the kernel
on X × Y , and then the direct image with compact support to Y .

In such a situation one can define a new (1-)category Ktr(B), which is in
fact a triangulated category. This category will be called the decategorification
of B.

The first step is to define a new 1-category K(B) enriched by spectra. It
has the same objects as B; the morphism spectrum HomK(B)(X, Y ) is defined
as the spectrum of K-theory of the triangulated category HomB(X, Y ).21

The second step is to make a formal triangulated envelope of this category.
This step needs nothing; it can be performed for an arbitrary category enriched

21It is well known that in order to define a correct K-theory one needs either an
appropriate enrichment on HomB(X, Y ) or a model structure in the sense of Quillen;
see, e.g., [10].
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by spectra. Objects of the new category are finite extensions of formal shifts
of the objects of K(B), such as twisted complexes by Bondal and Kapranov.

At the third step one adds formally direct summands for projectors. The
resulting category Ktr(B) is the same as the full category of compact objects
in the category of exact functors from K(B)opp to the triangulated category
of spectra (enriched by itself).

Finally, one can define a more elementary preadditive22 category K0(B)
by defining HomK0(B)(X, Y ) to be the K0 group of the triangulated cate-
gory HomB(X, Y ). Then we add formally to it finite sums and images of
projectors. The resulting additive Karoubi-closed category will be denoted by
Kkar

0 (B) and called the K0-decategorification of B. In what follows we list
several examples of decategorifications.

Noncommutative stable homotopy theory

R. Meyer and R. Nest introduced in [8] a noncommutative analogue of the
triangulated category of spectra. Objects of their category are not necessarily
unital C∗-algebras; the morphism group from A to B is defined as the bivariant
Kasparov theory KK(A, B). One of the main observations in [8] is that this
gives a structure of a triangulated category on C∗-algebras. Obviously this
construction has a flavor of the K0-decategorification.

Elementary algebraic model of bivariant K-theory

One can define a toy algebraic model of the construction by Meyer and Nest.
For a given base field k consider the preadditive category whose objects are
unital associative k-algebras, and the group of morphisms from A to B is
defined as K0 of the exact category consisting of bimodules (Aop⊗B-modules)
that are projective and finitely generated as B-modules. This is obviously a
K0-decategorification of a 2-category.

Noncommutative pure and mixed motives

Let us consider the quotient of the category of Grothendieck–Chow motives
Motk,Q over a given field k with rational coefficients by an autoequivalence
given by the invertible functor Q(1)⊗·. The set of morphisms in this category
between motives of two smooth projective schemes X, Y is given by

HomMotk,Q/ZQ(1)⊗· (X, Y ) =
⊕

n∈Z

HomMotk,Q(X, Q(n) ⊗ Y )

=

(

Q ⊗Z

⊕

n∈Z

Cyclesn(X × Y )

)

/(rational equivalence)

= Q ⊗Z

⊕

n∈Z

CHn(X × Y ) = Q ⊗Z K0(X × Y )

22Enriched by abelian groups in the plain sense (without higher homotopies).
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because the Chern character gives an isomorphism modulo torsion between
the sum of all Chow groups and K0(X) = K0(Db(CohX)), the K0 group of
the bounded derived category D(X) := Db(Coh X) of coherent sheaves on X .
Finally, the category D(X ×Y ) can be interpreted as the category of functors
D(Y ) → D(X).

Triangulated categories of type D(X), where X is a smooth projective
variety over k, belong to a larger class of smooth proper triangulated k-linear
dg-categories (another name is “saturated categories”); see, e.g., [7], [12]. We
see that the above quotient category of pure motives is a full subcategory of
K0-decategorification (with Q coefficients) of the 2-category of smooth proper
k-linear dg-categories. This construction was described recently (without men-
tioning the relation to motives) in [11].

Analogously, if one takes the quotient of the Voevodsky triangulated cate-
gory of mixed motives by the endofunctor Q(1)[2]⊗·, the resulting triangulated
category seems to be similar to a full subcategory of the full decategorification
of the 2-category of smooth proper k-linear dg-categories.

Motivic integral operators

We mentioned already in Section 2.1 that the category Ck should be consid-
ered as a K0-decategorification of a 2-category of motivic sheaves. A similar
2-category was considered in [6] in the relation to questions in integral geom-
etry and calculus of integral operators with holonomic kernels.

Correspondences for free algebras

The category A is a K0-decategorification by definition.

4.2 Trace of an exchange morphism

Let G1, G2 be two endofunctors of a triangulated category C, and an exchange
morphism (a natural transformation)

α : G1 ◦ G2 → G2 ◦ G1

is given23. Under the appropriate finiteness condition (e.g. when C is smooth
and proper) one can define the trace of α, which can be calculated in two
ways, as the trace of endomorphism of Tor(G1, idC) associated with G2 and
α, and as a similar trace with exchanged G1 and G2 (see [4] for a related
stuff). Passing to powers and natural exchange morphisms constructed from
nm copies of α:

α(n,m) : Gn
1 ◦ Gm

2 → Gm
2 ◦ Gn

1

23We do not assume that α is an isomorphism.
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we obtain a collection of numbers Zα(n, m) := Trace(α(n,m)) for n, m ≥ 1.
It is easy to see that these numbers come from a 2-dimensional super lattice
model.

Let C = D(X) for smooth projective X , and functors are given by F ∗ and
by E ⊗ · where F : X → X is a map, and E is a vector bundle endowed with a
morphism g : F ∗E → E (as in Section 1.3). In this case Zα(n, m) is the trace
(without the denominator) associated with the map Fn and the bundle E⊗m.
For example, one can construct a 2-dimensional super lattice model with the
partition function

Zlat
R (Λn,m) =

∑

x∈C:F n(x)=x

n
∏

i=1

(

F i(x)
)m

where F : C → C is a polynomial map,24 e.g., F (x) = x2 + c.
The conclusion is that we have two different proposals concerning motivic

local systems in positive characteristic: the first (algebraic dynamics) and
the third one (lattice models), are ultimately related. It is enough to find
the dynamical realization, and then the lattice model will pop out. As was
mentioned already, most probably these two proposals will fail, but they still
can serve as sources of analogies.
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These types of graph cohomology appear to be impossible to compute,
at least at this ancient stage of development of mathematics. For example,
the answer for ribbon graph cohomology is known only in a “stable” limit, as
the genus goes to infinity; see a recent “hard” proof of the Mumford conjecture
by I. Madsen and M.S. Weiss [11]. No elementary method of computation
seems to work: the graph complex becomes very complicated combinatorially
in higher degrees. Even the apparently much simpler case of tree cohomology
had been quite a tantalizing problem (except for the associative case, when
the computation follows from the contractibility of the associahedra) until
V. Ginzburg and M.M. Kapranov [6] attacked it by developing Koszul duality
for operads.

This paper originated from a project of computing the cohomology of a
large class of graph complexes. The graph complexes under consideration are
“PROPped up,” which means that the graphs are directed, provided with a
flow, and decorated by the elements of a certain vector space associated to
a given PROP. When this PROP is IB, the one describing infinitesimal bialge-
bras, see M. Aguiar [1], we get a directed version of the ribbon graph complex,
while the PROP LieB describing Lie bialgebras gives a directed commutative
version of the graph complex. In both cases, as well as in more general situa-
tions of a directed graph complex associated to a PROP coming from a Koszul
dioperad in the sense of W.L. Gan [4] and of a similar graph complex with a
differential perturbed in a certain way, we prove that the corresponding graph
complex is acyclic in all degrees but one, see Corollary 28, answering a ques-
tion of D. Sullivan in the Lie case. This answer stands in amazing contrast
with anything one may expect from the nondirected counterparts of graph co-
homology, such as the ones mentioned in the previous paragraphs: just putting
a flow on graphs in a graph complex changes the situation so dramatically!

Another important goal of the paper is to construct free resolutions and
minimal models of certain PROPs, which might be thought of as Koszul-like,
thus generalizing both the papers of Ginzburg–Kapranov [6] and Gan [4], from
trees (and operads and dioperads, respectively) to graphs (and PROPs). This
is the content of Theorem 37 below. This theory is essential for understanding
the notions of strongly homotopy structures described by the cobar construc-
tion for Koszul dioperads in [4] and the resolution of the bialgebra PROP

in [14].
We also observe that axioms of some important algebraic structures over

PROPs can be seen as perturbations of axioms of structures over 1
2PROPs,

objects in a way much smaller than PROPs and even smaller than dioper-
ads, whose definition, suggested by Kontsevich [9], we give in Section 1.1. For
example, we know from [14] that the PROP B describing bialgebras is a pertur-
bation of the 1

2PROP
1
2b for 1

2bialgebras (more precisely, B is a perturbation
of the PROP generated by the 1

2PROP
1
2b). Another important perturbation

of 1
2b is the dioperad IB for infinitesimal bialgebras and, of course, also the

PROP IB generated by this dioperad. In the same vein, the dioperad LieB
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describing Lie bialgebras and the corresponding PROP LieB are perturbations
of the 1

2PROP
1
2 lieb for 1

2Lie bialgebras introduced in Example 20.
As we argued in [14], every minimal model of a PROP or dioperad that is

a perturbation of a 1
2PROP can be expected to be a perturbation of a minimal

model of this 1
2PROP. However, there might be some unexpected technical

difficulties in applying this principle, such as the convergence problem in the
case of the bialgebra PROP; see Section 1.6.

The above observation can be employed to give a new proof of Gan’s
results on Koszulness of the dioperads describing Lie bialgebras and infinites-
imal bialgebras. First, one proves that the 1

2PROPs 1
2b and 1

2 lieb are Koszul
in the sense of Section 1.4, simply repeating Gan’s proof in the simpler case of
1
2PROPs. This means that the 1

2PROP cobar constructions on the quadratic
duals of these 1

2PROPs are minimal models thereof. Then one treats the di-
operadic cobar constructions on the dioperadic quadratic duals of IB and
LieB as perturbations of the dg dioperads freely generated by the 1

2
PROP

cobar constructions and applies our perturbation theory to show that these
dioperadic cobar constructions form minimal models of the corresponding di-
operads, which is equivalent to their Koszulness.

This paper is based on ideas of the paper [14] by the first author and an
e-mail message [9] from Kontsevich. The crucial notion of a 1

2
PROP (called

in [9] a small PROP) and the idea that generating a PROP out of a 1
2PROP

constitutes a polynomial functor belong to him.
Acknowledgment: We are grateful to Wee Liang Gan, Maxim Kontsevich,
Sergei Merkulov, Jim Stasheff, and Dennis Sullivan for useful discussions.

1.1 PROPs, Dioperads, and 1
2
PROPs

Let k denote a ground field, which will always be assumed of characteristic
zero. This guarantees the complete reducibility of finite group representa-
tions. A PROP is a collection P = {P(m,n)}, m,n � 1, of differential graded
(dg) (Σm, Σn)-bimodules (left Σm- right Σn-modules such that the left ac-
tion commutes with the right one), together with two types of compositions,
horizontal

⊗ : P(m1, n1)⊗ · · · ⊗ P(ms, ns)→ P(m1 + · · ·+ms, n1 + · · ·+ ns),

defined for all m1, . . . ,ms, n1, . . . , ns > 0, and vertical ,

◦ : P(m,n)⊗ P(n, k)→ P(m, k),

defined for all m,n, k > 0. These compositions respect the dg structures. One
also assumes the existence of a unit 11 ∈ P(1, 1).

PROPs should satisfy axioms that could be read off from the example of
the endomorphism PROP EndV of a vector space V , with EndV (m,n) the
space of linear maps Hom(V ⊗n, V ⊗m) with n “inputs” and m “outputs,”
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11 ∈ EndV (1, 1) the identity map, horizontal composition given by the tensor
product of linear maps, and vertical composition by the ordinary composition
of linear maps. For a precise definition see [10, 12].

Let us denote, for later use, by j◦i : P(m1, n1) ⊗ P(m2, n2) → P(m1 +
m2 − 1, n1 + n2 − 1), a, b �→ a j◦ib, 1 � i � n1, 1 � j � m2, the operation
that composes the jth output of b to the ith input of a. Formally,

a j◦ib := (11⊗ · · · ⊗ 11⊗ a⊗ 11⊗ · · · ⊗ 11)σ(11⊗ · · · ⊗ 11⊗ b⊗ 11⊗ · · · ⊗ 11), (1.1)

where a is at the jth place, b is at the ith place, and σ ∈ Σn1+m2−1 is the
block permutation ((12)(45))i−1,j−1,m2−j,n1−i; see [4], where this operation
was in fact denoted by i◦j , for details.

It will also be convenient to introduce special notation for 1◦i and j◦1,
namely ◦i := 1◦i : P(m1, n1)⊗ P(1, l)→ P(m1, n1 + l− 1), 1 � i � n1, which
can be defined simply by

a ◦i b := a ◦ (11⊗ · · · ⊗ 11⊗ b⊗ 11⊗ · · · ⊗ 11) (b at the ith position), (1.2)

and similarly, j◦ := j◦1P(k, 1)⊗P(m2, n2)→ P(m2 +k−1, n2), 1 � j � m2,
which can be expressed as

c j◦d := (11⊗ · · · ⊗ 11⊗ c⊗ 11⊗ · · · ⊗ 11) ◦ d (c at the jth position). (1.3)

A general iterated composition in a PROP is described by a “flow chart,”
which is a not necessarily connected graph of arbitrary genus, equipped with a
“direction of gravity” or a “flow”; see Section 1.2 for more details. PROPs are
in general gigantic objects, with P(m,n) infinite-dimensional for any m and n.
W.L. Gan [4] introduced dioperads, which avoid this combinatorial explosion.
Roughly speaking, a dioperad is a PROP in which only compositions along
contractible graphs are allowed.

This can be formally expressed by saying that a dioperad is a collection
D = {D(m,n)}, m,n � 1, of dg (Σm, Σn)-bimodules with compositions

j◦i : D(m1, n1)⊗D(m2, n2)→ D(m1 +m2 − 1, n1 + n2 − 1),

1 � i � n1, 1 � j � m2, that satisfy the axioms satisfied by operations
j◦i, see (1.1), in a general PROP. Gan [4] observed that some interesting
objects, such as Lie bialgebras and infinitesimal bialgebras, can be defined
using algebras over dioperads.

M. Kontsevich [9] suggested an even more radical simplification consist-
ing in considering objects for which only ◦i and j◦ compositions and their
iterations are allowed. More precisely, he suggested the following definition:

Definition 1. A 1
2PROP is a collection s = {s(m,n)} of dg (Σm, Σn)-

bimodules s(m,n) defined for all pairs of natural numbers except (m,n) =
(1, 1), together with compositions

◦i : s(m1, n1)⊗ s(1, l)→ s(m1, n1 + l − 1), 1 � i � n1, (1.4)
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and
j◦ : s(k, 1)⊗ s(m2, n2)→ s(m2 + k − 1, n2), 1�j�m2, (1.5)

that satisfy the axioms satisfied by operations ◦i and j◦, see (1.2) and (1.3),
in a general PROP.

We suggest as an exercise to unwrap the above definition, write the axioms
explicitly, and compare them to the axioms of a dioperad in [4]. Observe that
1
2PROPs cannot have units, because s(1, 1) is not there. Later we will also use
the notation

◦ := ◦1 = 1◦ : s(k, 1)⊗ s(1, l)→ s(k, l), k, l � 2. (1.6)

The category of 1
2PROPs will be denoted by 1

2PROP.

Example 2. Since 1
2PROPs do not have units, their nature is close to that

of pseudo-operads [15, Definition 1.16], which are, roughly, operads without
units, with axioms defined in terms of ◦i-operations. More precisely, the cate-
gory of 1

2PROPs s with s(m,n) = 0 for m � 2 is isomorphic to the category of
pseudo-operads P with P(0) = P(1) = 0. This isomorphism defines a faithful
embedding ι : Oper �→ 1

2PROP from the category Oper of pseudo-operads P
with P(0) = P(1) = 0 to the category of 1

2PROPs. To simplify the terminol-
ogy, by “operad” we will, in this paper, always understand a pseudo-operad
in the above sense.

Example 3. Given a PROP P, there exists the “opposite” PROP P† with
P†(m,n) := P(n,m), for each m,n � 1. A similar duality exists also for di-
operads and 1

2
PROPs. Therefore one may define another faithful embedding,

ι† : Oper �→ 1
2
PROP, by ι†(P) := ι(P)†, where ι was defined in Example 2.

The image of this embedding consists of all 1
2PROPs s with s(m,n) = 0 for

all n � 2.

Every PROP defines a dioperad by forgetting all compositions that are not
allowed in a dioperad. In the same vein, each dioperad defines a 1

2PROP if
we forget all compositions not allowed in Definition 1. These observations can
be organized into the following diagram of forgetful functors, in which diOp
denotes the category of dioperads:

PROP 1−→ diOp 2−→ 1
2PROP. (1.7)

The left adjoints F1 : diOp → PROP and F2 : 1
2PROP → diOp exist by

general nonsense. In fact, we give, in Section 1.3, an explicit description of
these functors. Of primary importance for us will be the composition

F := F1 ◦ F2 : 1
2PROP→ PROP, (1.8)

which is clearly the left adjoint to the forgetful functor := 2 ◦ 1 :
PROP → 1

2PROP. Given a 1
2PROP s, F (s) could be interpreted as the free

PROP generated by the 1
2
PROP s.
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Recall [10, 12] that an algebra over a PROP P is a morphism P → EndV
of PROPs. The adjoints above offer an elegant way to introduce algebras over
1
2PROPs and dioperads: an algebra over a 1

2PROP s is simply an algebra over
the PROP F (s), and similarly, an algebra over a dioperad D is defined to be
an algebra over the PROP F1(D).

The following important theorem, whose proof we postpone to Section 1.3,
follows from the fact, observed by M. Kontsevich in [9], that F and F2 are, in
a certain sense, polynomial functors; see (1.10) and (1.11).

Theorem 4. The functors F : 1
2PROP → PROP and F2 : 1

2PROP → diOp are
exact. This means that they commute with homology, that is, given a differ-
ential graded 1

2PROP s, H∗(F (s)) is naturally isomorphic to F (H∗(s)). In
particular, for any morphism α : s→ t of dg 1

2PROPs, the diagram of graded
PROPs

H∗(F (s)) H∗(F (t))

F (H∗(s)) F (H∗(s))

H∗(F (α))

∼= ∼=

F (H∗(α))
�

�

� �

is commutative. A similar statement is also true for F2 in place of F .

Let us emphasize here that we do not know whether the functor F1 is
exact. As a consequence of Theorem 4 we immediately obtain the following:

Corollary 5. A morphism α : s → t of dg 1
2PROPs is a homology isomor-

phism if and only if F (α) : F (s)→ F (t) is a homology isomorphism. A similar
statement is also true for F2.

Let us finish our catalogue of adjoint functors by the following definitions.
By a bicollection we mean a sequence E = {E(m,n)}m,n�1 of differential
graded (Σm, Σn)-bimodules such that E(1, 1) = 0. Let us denote by bCol
the category of bicollections. Display (1.7) then can be completed into the
following diagram of obvious forgetful functors:

PROP diOp 1
2PROP

bCol

� �

�

�
�

�
�

�
��

�
�

�
�

���

1 2

P 1
2 P

D

Denote finally by ΓP : bCol→ PROP, ΓD : bCol→ diOp, and Γ 1
2 P

: bCol→
1
2
PROP the left adjoints of the functors P, D, and 1

2 P
, respectively.
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Notation. We will use capital calligraphic letters P ,Q, etc. to denote operads,
small sans serif fonts s, t, etc. to denote 1

2PROPs, capital italic fonts S, T ,
etc. to denote dioperads, and capital sans serif fonts S, T, etc. to denote
PROPs.

1.2 Free PROPs

To deal with free PROPs and resolutions, we need to fix a suitable notion of
a graph. Thus, in this paper a graph or an (m,n)-graph, m,n � 1, will mean
a directed (i.e., each edge is equipped with direction) finite graph satisfying
the following conditions:

1. the valence n(v) of each vertex v is at least three;
2. each vertex has at least one outgoing and at least one incoming edge;
3. there are no directed cycles;
4. there are precisely m outgoing and n incoming legs, by which we mean

edges incident to a vertex on one side and having a “free end” on the
other; these legs are called the outputs and the inputs, respectively;

5. the legs are labeled, the inputs by {1, . . . , n}, the outputs by {1, . . . ,m}.
Note that the graphs considered are not necessarily connected. Graphs with no
vertices are also allowed. Those will be precisely the disjoint unions ↑↑ · · · ↑
of a number of directed edges. We will always assume the flow to go from
bottom to top when we sketch graphs.

Let v(G) denote the set of vertices of a graph G, e(G) the set of all edges,
and Out(v) (respectively, In(v)) the set of outgoing (respectively, incoming)
edges of a vertex v ∈ v(G). With an (m,n)-graph G, we will associate a
geometric realization |G|, a CW complex whose 0-cells are the vertices of the
graph G, as well as one extra 0-cell for each leg, and 1-cells are the edges
of the graph. The 1-cells of |G| are attached to its 0-cells, as given by the
graph. The genus gen(G) of a graph G is the first Betti number b1(|G|) =
rankH1(|G|) of its geometric realization. This terminology derives from the
theory of modular operads, but is not perfect, e.g., our genus is not what
one usually means by the genus for ribbon graphs, which are discussed in
Section 1.7.

An isomorphism between two (m,n)-graphs G1 and G2 is a bijection be-
tween the vertices of G1 and G2 and a bijection between the edges thereof
preserving the incidence relation, the edge directions, and fixing each leg. Let
Aut(G) denote the group of automorphisms of graph G. It is a finite group,
being a subgroup of a finite permutation group.

Let E = {E(m,n) | m,n � 1, (m,n) �= (1, 1)}, be a bicollection; see
Section 1.1. A standard trick allows us to extend the bicollection E to pairs
(A,B) of finite sets:

E(A,B) := Bij ([m], A)×Σm E(m,n)×Σn Bij (B, [n]),
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where Bij denotes the set of bijections, [k] = {1, 2, . . . , k}, and A and B are
any m- and n-element sets, respectively. We will mostly ignore such subtleties
as distinguishing finite sets of the same cardinality in the sequel and hope
this will cause no confusion. The inquisitive reader may look up an example
of careful treatment of such things and what came out of it in [5].

For each graph G, define a vector space

E(G) :=
⊗

v∈v(G)

E(Out(v), In(v)).

Note that this is an unordered tensor product (in other words, a tensor product
“ordered” by the elements of an index set), which makes a difference for the
sign convention in a graded algebra; see [15, page 64]. By definition, E(↑) = k.
We will refer to an element of E(G) as a G-monomial. One may also think of
a G-monomial as a decorated graph. Finally, let

ΓP(E)(m,n) :=
⊕

G∈Gr(m,n)

E(G)Aut(G)

be the (m,n)-space of the free PROP on E for m,n � 1, where the summation
runs over the set Gr(m,n) of isomorphism classes of all (m,n)-graphs G and

E(G)Aut(G) := E(G)/Span(ge− e | g ∈ Aut(G), e ∈ E(G))

is the space of coinvariants of the natural action of the automorphism group
Aut(G) of the graph G on the vector space E(G). The appearance of the au-
tomorphism group is due to the fact that the “right” definition would involve
taking the colimit over the diagram of all graphs with respect to isomorphisms,
see [5]. The space ΓP(E)(m,n) is a (Σm, Σn)-bimodule via the action by re-
labeling the legs. Moreover, the collection ΓP(E) = {ΓP(E)(m,n) | m,n � 1}
carries a natural PROP structure via disjoint union of decorated graphs as
horizontal composition, and grafting the outgoing legs of one decorated graph
to the incoming legs of another one as vertical composition. The unit is given
by 11 ∈ k = E(↑). The PROP ΓP(E) is precisely the free PROP introduced at
the end of Section 1.1.

1.3 From 1
2
PROPs to PROPs

Let us emphasize that in this article a dg free PROP means a dg PROP whose
underlying (non-dg) PROP is freely generated (by a 1

2PROP, dioperad, bicol-
lection, . . .) in the category of (non-dg) PROPs. Such PROPs are sometimes
also called quasi-free or almost-free PROPs.

We are going to describe the structure of the functors F : 1
2PROP→ PROP

and F2 : 1
2
PROP → diOp and prove that they commute with homology, i.e.,

prove Theorem 4. It is precisely the sense of equations (1.9), (1.10), and (1.11),
in which we say that the functors F and F2 are polynomial.
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Let s be a dg 1
2PROP. Then the dg free PROP F (s) generated by s may

be described as follows. We call an (m,n)-graph G, see Section 1.2, reduced if
it has no internal edge that is either a unique output or unique input edge of
a vertex. It is obvious that each graph can be modified to a reduced one by
contracting all the edges violating this condition, i.e., the edges like this:

& ,

where a triangle denotes a graph with at least one vertex and exactly one leg
in the direction pointed by the triangle, and a box denotes a graph with at
least one vertex. For each reduced graph G, define a vector space

s(G) :=
⊗

v∈v(G)

s(Out(v), In(v)). (1.9)

We claim that the PROP F (s) is given by

F (s)(m,n) =
⊕

G∈Gr(m,n)

s(G)Aut(G), (1.10)

where the summation runs over the set Gr(m,n) of isomorphism classes of
all reduced (m,n)-graphs G, and s(G)Aut(G) is the space of coinvariants of
the natural action of the automorphism group Aut(G) of the graph G on the
vector space s(G). The PROP structure on the whole collection {F (s)(m,n)}
will be given by the action of the permutation groups by relabeling the legs
and the horizontal and vertical compositions by disjoint union and grafting,
respectively. If grafting creates a nonreduced graph, we will contract the bad
edges and use suitable 1

2PROP compositions to decorate the reduced graph
appropriately.

A unit in the PROP F (s) is given by 11 ∈ s(↑). A differential is defined
as follows. Define a differential on s(G) =

⊗
v∈v(G) s(Out(v), In(v)) as the

standard differential on a tensor product of complexes. The action of Aut(G)
on s(G) respects this differential, and therefore the space s(G)Aut(G) of coin-
variants inherits a differential. Then we take the standard differential on the
direct sum (1.10) of complexes.

Proposition 6. The dg PROP F (s) is the dg free PROP generated by a dg
1
2PROP s, as defined in Section 1.1.

Proof. What we need to prove is that this construction delivers a left adjoint
functor for the forgetful functor : PROP→ 1

2
PROP. Let us define two maps

Mor 1
2 PROP

(s, (P)) ��
ψ

φ

Mor PROP(F (s),P),

which will be inverses of each other. For a morphism f : s→ (P) of 1
2PROPs

and a reduced graph decorated by elements sv ∈ s(m,n) at each vertex v, we
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can always compose f(sv)’s in P as prescribed by the graph. The associativity
of PROP compositions in P ensures the uniqueness of the result. This way we
get a PROP morphism φ(f) : F (s)→ P.

Given a PROP morphism g : F (s) → P, restrict it to the sub- 1
2PROP

s′ ⊂ F (s) given by decorated graphs with a unique vertex, such as . We
define ψ(g) as the resulting morphism of 1

2PROPs. 
�
Remark 7. The above construction of the dg free PROP F (s) generated by
a 1

2PROP s does not go through for the free PROP F1(D) generated by a
dioperad D. The reason is that there is no unique way to reduce an (m,n)-
graph to a graph with all possible dioperadic compositions, i.e., all interior
edges, contracted, as the following figure illustrates:

This suggests that the functor F1 may not be polynomial.

There is a similar description of the dg free dioperad F2(s) generated by
a dg 1

2PROP s:
F2(s)(m,n) =

⊕

T∈Tr(m,n)

s(T ). (1.11)

Here the summation runs over the set Tr(m,n) of isomorphism classes of
all reduced contractible (m,n)-graphs T . The automorphism groups of these
graphs are trivial and therefore do not show up in the formula. The following
proposition is proven by an obvious modification of the proof of Proposition 6.

Proposition 8. The dg PROP F2(s) is the dg free dioperad generated by a dg
1
2
PROP s, as defined in Section 1.1.

Proof of Theorem 4. Let us prove Theorem 4 for the dg free PROP F (s)
generated by a dg 1

2PROP s. The proof of the statement for F2(s) will be
analogous and even simpler, because of the absence of the automorphism
groups of graphs.

Proposition 6 describes F (s) as a direct sum (1.10) of complexes
s(G)Aut(G). Thus the homology H∗(F (s)) is naturally isomorphic to

⊕

G∈Gr(m,n)

H∗(s(G)Aut(G)).

The automorphism group Aut(G) is finite, acts on s(G) respecting the differ-
ential, and therefore, by Maschke’s theorem (remember, we work over a field
of characteristic zero), the coinvariants commute naturally with homology:

H∗(s(G)Aut(G))
∼→ H∗(s(G))Aut(G).
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Then, using the Künneth formula, we get a natural isomorphism

H∗(s(G)) ∼→
⊗

v∈v(G)

H∗(s(Out(v), In(v))).

Finally, combination of these isomorphisms results in a natural isomorphism

H∗(F (s)) ∼→
⊕

G∈Gr(m,n)

⊗

v∈v(G)

H∗(s(Out(v), In(v)))Aut(G) = F (H∗(s)).

The diagram in Theorem 4 is commutative, because of the naturality of the
above isomorphisms. 
�

1.4 Quadratic Duality and Koszulness for 1
2
PROPs

W.L. Gan defined in [4], for each dioperad D, a dg dioperad ΩD(D) =
(ΩD(D), ∂), the cobar dual of D (DD in his notation). He also introduced
quadratic dioperads, quadratic duality D �→ D!, and showed that for each
quadratic dioperad, there exists a natural map of dg dioperads αD : ΩD(D!)→
D. He called D Koszul if αD was a homology isomorphism. His theory is
a dioperadic analogue of a similar theory for operads developed in 1994 by
V. Ginzburg and M.M. Kapranov [6]. The aim of this section is to build an
analogous theory for 1

2
PROPs. Since the passage from 1

2
PROPs to PROPs is

given by an exact functor, resolutions of 1
2
PROPs constructed with the help

of this theory will induce resolutions in the category of PROPs.
Let us pause a little and recall, following [4], some facts about quadratic

duality for dioperads in more detail. First, a quadratic dioperad is a dioperad
D of the form

D = ΓD(U, V )/(A,B,C), (1.12)

where U = {U(m,n)} is a bicollection with U(m,n) = 0 for (m,n) �= (1, 2),
V = {V (m,n)} is a bicollection with V (m,n) = 0 for (m,n) �= (2, 1),
and (A,B,C) ⊂ ΓD(U, V ) denotes the dioperadic ideal generated by (Σ,Σ)-
invariant subspaces A ⊂ ΓD(U, V )(1, 3), B ⊂ ΓD(U, V )(2, 2), and C ⊂
ΓD(U, V )(3, 1). Notice that we use the original terminology of [6], where
quadraticity refers to arities of generators and relations, rather than just re-
lations. The dioperadic quadratic dual D! is then defined as

D! := ΓD(U∨, V ∨)/(A⊥, B⊥, C⊥), (1.13)

where U∨ and V ∨ are the linear duals with the action twisted by the sign
representations (the Czech duals , see [15, p. 142]), and A⊥, B⊥, and C⊥ are
the annihilators of spaces A, B, and C in

ΓD(U∨, V ∨)(i, j) ∼= ΓD(U, V )(i, j)∗,
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where (i, j) = (1, 3), (2, 2), and (3, 1), respectively. See [4, Section 2] for details.
Quadratic 1

2PROPs and their quadratic duals can then be defined in ex-
actly the same way as sketched above for dioperads, only replacing everywhere
ΓD by Γ 1

2 P
. We say therefore that a 1

2PROP s is quadratic if it is of the form

s = Γ 1
2 P

(U, V )/(A,B,C),

with U , V , and (A,B,C) ⊂ Γ 1
2 P

(U, V ) having a similar obvious meaning as
for dioperads. The quadratic dual of s is defined by a formula completely
analogous to (1.13):

s! := Γ 1
2 P

(U∨, V ∨)/(A⊥, B⊥, C⊥).

The apparent similarity of the above definitions, however, hides one very im-
portant subtlety. While

ΓD(U∨, V ∨)(1, 3) ∼= Γ 1
2 P

(U∨, V ∨)(1, 3)

and
ΓD(U∨, V ∨)(3, 1) ∼= Γ 1

2 P
(U∨, V ∨)(3, 1),

the (Σ2, Σ2)-bimodules ΓD(U∨, V ∨)(2, 2) and Γ 1
2 P

(U∨, V ∨)(2, 2) are substan-
tially different, namely

ΓD(U∨, V ∨)(2, 2) ∼= Γ 1
2 P

(U∨, V ∨)(2, 2)⊕ IndΣ2×Σ2
{1} (U∨ ⊗ V ∨),

where Γ 1
2 P

(U∨, V ∨)(2, 2) ∼= V ∨ ⊗ U∨; see [4, section 2.4] for details.
We see that the annihilator of B ⊂ Γ 1

2 P
(E,F )(2, 2) in Γ 1

2 P
(E∨, F∨)(2, 2) is

much smaller than the annihilator of the same space taken in ΓD(E∨, F∨)(2, 2).
A consequence of this observation is the rather stunning fact that quadratic
duals do not commute with the functor F2 : 1

2
PROP→ diOp, that is, F2(s!) �=

F2(s)!. The relation between s! and F2(s)! is much finer and can be described
as follows.

For a 1
2
PROP t, let j(t) denote the dioperad that coincides with t as a

bicollection and whose structure operations are those of t if they are allowed
for 1

2PROPs, and are trivial if they are not allowed for 1
2PROPs. This clearly

defines a functor j : 1
2PROP→ diOp.

Lemma 9. Let s be a quadratic 1
2
PROP. Then F2(s) is a quadratic dioperad

and
F2(s)! ∼= j(s!).

Proof. The proof immediately follows from the definitions and we may safely
leave it to the reader. 
�
Remark 10. Obviously j(s) = F2(s!)!. This means that the restriction of the
functor j : 1

2PROP → diOp to the full subcategory of quadratic 1
2PROPs can

in fact be defined using quadratic duality.
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The cobar dual Ω 1
2 P

(s) of a 1
2PROP s and the canonical map α 1

2 P
:

Ω 1
2 P

(s!) → s can be defined by mimicking mechanically the analogous defini-
tions for dioperads in [4], and we leave this task to the reader. The following
lemma, whose proof is completely straightforward and hides no surprises, may
in fact be interpreted as a characterization of these objects.

Lemma 11. For an arbitrary 1
2
PROP t, there exists a functorial isomorphism

of dg dioperads
ΩD(j(t)) ∼= F2

(
Ω 1

2 P
(t)

)
.

If s is a quadratic 1
2PROP, then the canonical maps

α 1
2 P

: Ω 1
2 P

(s!)→ s

and
αD : ΩD(F2(s)!)→ F2(s)

are related by
αD = F2

(
α 1

2 P

)
. (1.14)

We say that a quadratic 1
2PROP s is Koszul if the canonical map α 1

2 P
:

Ω 1
2 P

(s!) → s is a homology isomorphism. The following proposition is not
unexpected, though it is in fact based on the rather deep Theorem 4.

Proposition 12. A quadratic 1
2PROP s is Koszul if and only if F2(s) is a

Koszul dioperad.

Proof. The proposition immediately follows from (1.14) of Lemma 11 and
Corollary 5 of Theorem 4. 
�

We close this section with a couple of important constructions and exam-
ples. Let P and Q be two operads. Recall from Examples 2 and 3 that P
and Q can be considered as 1

2PROPs, via embeddings ι : Oper→ 1
2PROP and

ι† : Oper→ 1
2PROP, respectively. Let us denote by

P ∗ Q† := ι(P) � ι†(Q)

the coproduct (“free product”) of 1
2
PROPs ι(P) and ι†(Q). We will need also

the quotient
P � Q† := (ι(P) � ι†(Q))/(ι†(Q) ◦ ι(P)),

with (ι†(Q) ◦ ι(P)) denoting the ideal generated by all q† ◦ p, p ∈ ι(P), and
q† ∈ ι†(Q); here ◦ is as in (1.6).

Exercise 13. Let P = ΓOp(F )/(R) and Q = ΓOp(G)/(S) be quadratic oper-
ads [15, Definition 3.31]; here ΓOp(−) denotes the free operad functor. If we
interpret F , G, R, and S as bicollections with

F (1, 2) := F (2), G(2, 1) := G(2), R(1, 3) := R(3) and S(3, 1) := S(3),
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then we clearly have presentations (see (1.12))

P ∗ Q† = Γ 1
2 P

(F,G)/(R, 0, S) and P � Q† = Γ 1
2 P

(F,G)/(R,G ◦ F, S),

which show that both P ∗ Q† and P � Q† are quadratic 1
2PROPs.

Exercise 14. Let Ass be the operad for associative algebras [15, Defini-
tion 1.12]. Verify that algebras over the 1

2PROP Ass ∗ Ass† are given by
a vector space V , an associative multiplication • : V ⊗ V → V , and a coasso-
ciative comultiplication Δ : V → V ⊗ V , with no relation between these two
operations. Verify also that the algebra over 1

2b := Ass � Ass† consists of an
associative multiplication • and a coassociative comultiplication Δ as above,
with the exchange rule

Δ(a•b) = 0, for each a, b ∈ V .

These are exactly the 1
2
bialgebras introduced in [14]. The PROP F

(
1
2
b
)

gen-
erated by the 1

2PROP
1
2b is precisely the PROP

1
2B for the 1

2bialgebras con-
sidered in the same paper.

Exercise 15. Let P and Q be quadratic operads [15, Definition 3.31], with
quadratic duals P ! and Q!, respectively. Prove that the quadratic dual of the
1
2
PROP P � Q† is given by

(P � Q†)! = P ! ∗ (Q!)†.

Example 16. The quadratic dual of the 1
2PROP

1
2b introduced in Exercise 14

is Ass ∗Ass†. Let Lie denote the operad for Lie algebras [15, Definition 1.28]
and Com the operad for commutative associative algebras [15, Definition 1.12].
The quadratic dual of the 1

2PROP
1
2 lieb := Lie � Lie† is Com ∗ Com†.

Gan defined a monoidal structure (E,F ) �→ E F on the category of
bicollections such that dioperads were precisely monoids for this monoidal
structure. Roughly speaking, E F was a sum over all directed contractible
graphs G equipped with a level function  : v(G) → {1, 2} such that vertices
of level one (that is, vertices with (v) = 1) were decorated by E and vertices
of level two were decorated by F . See [4, Section 4] for precise definitions.
Needless to say, this should not be mistaken for the forgetful functors of
Section 1.1.

Let D = ΓD(U, V )/(A,B,C) be a quadratic dioperad as in (1.12), P :=
Γ0p(U)/(A), and Q := Γ0p(V )/(C). Let us interpret P as a bicollection with
P(1, n) = P(n), n � 1, and letQop be the bicollection withQop(n, 1) := Q(n),
n � 1, trivial for other values of (m,n). Since dioperads are -monoids in the
category of bicollections, there are canonical maps of bicollections

ϕ : P Qop → D and ϑ : Qop P → D.

Let us formulate the following useful proposition.
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Proposition 17. The canonical maps

ϕ : P Qop → F2(P � Q†) and ϑ : (Q!)op P ! → P ! ∗ (Q!)†

are isomorphisms of bicollections.

Proof. The fact that ϕ is an isomorphism follows immediately from the
definitions. The second isomorphism can be obtained by quadratic dual-
ity: according to [4, Proposition 5.9(b)], F2(P � Q†)! ∼= (Q!)op P !, while
F2(P � Q†)! ∼= j(P ! ∗ (Q!)†) ∼= P ! ∗ (Q!)† (isomorphisms of bicollections) by
Lemma 9 and Exercise 15. 
�

The following theorem is again not surprising, because P � Q† was con-
structed from operads P and Q using the relation

q† ◦ p = 0, for p ∈ P and q ∈ Q†,

which is a rather trivial mixed distributive law in the sense of [3, Defini-
tion 11.1]. As such, it cannot create anything unexpected in the derived cat-
egory; in particular, it cannot destroy the Koszulness of P and Q.

Theorem 18. If P and Q are Koszul quadratic operads, then P � Q† is a
Koszul 1

2PROP. This implies that the bar construction Ω 1
2 P

(P ! ∗ (Q!)†) is a
minimal model, in the sense of Definition 30, of 1

2PROP P � Q†.

Proof. We will use the following result of Gan [4]. Given a quadratic dioperad
D, suppose that the operads P and Q defined by P(n) := D(1, n) and Q :=
D(n, 1), n � 2, are Koszul and that D ∼= P Qop. Proposition 5.9(c) of [4]
then states that D is a Koszul dioperad.

Since by Proposition 17, F2(P�Q†) ∼= P Qop, the above-mentioned result
implies that F2(P � Q†) is a Koszul quadratic dioperad. Theorem 18 now
immediately follows from Proposition 12 and Exercise 15. 
�
Example 19. The following example is taken from [14], with signs altered
to match the conventions of the present paper. The minimal model (see
Definition 30) of the 1

2PROP
1
2b for 1

2bialgebras, given by the cobar dual
Ω 1

2 P
(Ass ∗ Ass†), equals

(
Γ 1

2 P
(Ξ), ∂0

) α 1
2 P−→ (

1
2b, ∂ = 0

)
,

where Ξ denotes the bicollection freely (Σ,Σ)-generated by the linear span
Span

(
{ξmn }m,n∈I

)
with

I := {m,n � 1, (m,n) �= (1, 1)}.
The generator ξmn of biarity (m,n) has degree n + m − 3. The map α 1

2 P
is

defined by
α 1

2 P

(
ξ12

)
:= , α 1

2 P

(
ξ21

)
:= ,
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while α 1
2 P

is trivial on all remaining generators. The differential ∂0 is given by
the formula

∂0 (ξmn ) := (−1)mξm1 ◦ ξ1n +
∑

U

(−1)i(s+1)+m+u−sξmu ◦i ξ1s (1.15)

+
∑

V

(−1)(v−j+1)(t+1)−1ξt1 j◦ξvn,

where we set ξ11 := 0,

U := {u, s � 1, u+ s = n+ 1, 1 � i � u},
and

V = {t, v � 1, t+ v = m+ 1, 1 � j � v}.
If we define ξ12 = and ξ21 = , then ∂0( ) = ∂0( ) = 0. If ξ22 = , then

∂0( ) = .

Under obvious, similar notation,

∂0( ) = − ,

∂0( ) = − + − + + ,

∂0( ) = − + ,

∂0( ) = − + ,

∂0( ) = − − + ,

∂0( ) = − + − − + ,

∂0( ) = − − + − + , etc.

Example 20. In this example we discuss a minimal model of the 1
2PROP

1
2 lieb

introduced in Example 16. The 1
2PROP

1
2 lieb describes 1

2Lie bialgebras given
by a vector space V with a Lie multiplication [−,−] : V ⊗ V → V and Lie
comultiplication (diagonal) δ : V → V ⊗ V tied together by

δ[a, b] = 0 for all a, b ∈ V .

A minimal model of 1
2 lieb is given by the cobar dual Ω 1

2 P
(Com ∗ Com†). It

is clearly of the form
(
Γ 1

2 P
(Υ ), ∂0

) α 1
2 P−→ (

1
2 lieb, ∂ = 0

)
,

where Υ is the bicollection such that Υ (m,n) is the ground field placed in
degree m + n − 3 with the sign representation of (Σm, Σn) for (m,n) �= 1,
while Υ (1, 1) := 0. If we denote by 1mn the generator of Υ (m,n), then the map
α 1

2 P
is defined by

α 1
2 P

(
11
2

)
:= , α 1

2 P

(
12
1

)
:= ,
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while it is trivial on all remaining generators. There is a formula for the
differential ∂0 that is in fact an antisymmetric version of (1.15). We leave
writing this formula, which contains a summation over unshuffles, as an exer-
cise to the reader.

1.5 Perturbation Techniques for Graph Cohomology

Let E be a bicollection. We are going to introduce, for an arbitrary fixed m
and n, three very important gradings of the piece ΓP(E)(m,n) of the free
PROP ΓP(E). We know, from Section 1.2, that ΓP(E)(m,n) is the direct sum,
over the graphs G ∈ Gr(m,n), of the vector spaces E(G)Aut(G). Recall that
we refer to elements of E(G)Aut(G) as G-monomials.

The first two gradings are of a purely topological nature. The component
grading of a G-monomial f is defined by cmp(f) := cmp(G), where cmp(G)
is the number of connected components of G minus one. The genus grading is
given by the topological genus gen(G) of graphs (see Section 1.2 for a precise
definition), that is, for a G-monomial f we put gen(f) := gen(G). Finally,
there is another path grading, denoted by pth(G), implicitly present in [9],
defined as the total number of directed paths connecting inputs with outputs
of G. It induces a grading of ΓP(E)(m,n) by setting pth(f) := pth(G) for a
G-monomial f .

Exercise 21. Prove that for each G-monomial f ∈ ΓP(E)(m,n),

gen(f) + max{m,n} � pth(f) � mn(gen(f) + 1)

and
cmp(f) � min{m,n} − 1.

Find examples that show that these inequalities cannot be improved and
observe that our assumption that E(m,n) is nonzero only for m,n � 1,
(m,n) �= (1, 1), is crucial.

Properties of these gradings are summarized in the following proposition.

Proposition 22. Suppose E is a bicollection of finite-dimensional (Σ,Σ)-
bimodules. Then for any fixed d, the subspaces

Span{f ∈ ΓP(E)(m,n); gen(f) = d} (1.16)

and
Span{f ∈ ΓP(E)(m,n); pth(f) = d}, (1.17)

where Span{−} is the k-linear span, are finite-dimensional. The subspace
ΓD(E)(m,n) ⊂ ΓP(E)(m,n) can be characterized as

ΓD(E)(m,n) = Span{f ∈ ΓP(E)(m,n); cmp(f) = gen(f) = 0}. (1.18)
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Fig. 1.1. Three branching points u, v, and w of paths p1 and p2.

For each f ∈ ΓD(E)(m,n), pth(f) � mn, and the subspace Γ 1
2 P

(E)(m,n) ⊂
ΓD(E)(m,n) can be described as

Γ 1
2 P

(E)(m,n) = Span{f ∈ ΓD(E)(m,n); pth(f) = mn}. (1.19)

Proof. Since all vertices of our graphs are at least trivalent, it follows from
standard combinatorics that there is only a finite number of (m,n)-graphs
with a fixed genus. This proves the finite-dimensionality of the space in (1.16).
Description (1.18) follows immediately from the definition of a dioperad. Our
proof of the finite-dimensionality of the space in (1.17) is based on the follow-
ing argument taken from [9].

Let us say that a vertex v is a branching vertex for a pair of directed paths
p1, p2 of a graph G ∈ Gr(m,n) if v is a vertex of both p1 and p2 and if it
has the property that either there exist two different input edges f1, f2 of v
such that fs ∈ ps, s = 1, 2, or there exist two different output edges e1, e2
of v such that es ∈ ps, s = 1, 2. See also Figure 1.1. Denote by br(p1, p2)
the number of all branching vertices for p1 and p2. A moment’s reflection
convinces us that a pair of paths p1 and p2 with b branching points generates
at least 2b−1 different paths in G; therefore 2br(p1,p2)−1 � d, where d is the
total number of directed paths in G. This implies that

br(p1, p2) � log2(d) + 1.

Now observe that each vertex is a branching point for at least one pair of
paths. We conclude that the number of vertices of G must be less than or
equal to d2 · (log2(d) + 1).

The graph G cannot have vertices of valence bigger than d, because each
vertex of valence k generates at least k − 1 different paths in G. Since there
are only finitely many isomorphism classes of graphs with the number of
vertices bounded by a constant and with the valences of its vertices bounded
by another constant, the finite-dimensionality of the space in (1.17) is proven.
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Let us finally demonstrate (1.19). Observe first that for a graph G ∈
Gr(m,n) of genus 0, mn is actually an upper bound for pth(G), because for
each output–input pair (i, j) there exists at most one path joining i with j
(genus 0 assumption). It is also not difficult to see that pth(f) = mn for a
G-monomial f ∈ Γ 1

2 P
(E). So it remains to prove that pth(f) = mn implies

f ∈ Γ 1
2 P

(E).
Suppose that f is aG-monomial such that f ∈ ΓD(E)(m,n)\Γ 1

2 P
(E)(m,n).

This happens exactly when G contains a configuration shown in Figure 1.2,
forbidden for 1

2
PROPs. Then there certainly exists a path p1 containing edges

e and a, and another path p2 containing edges b and g. Suppose that ps
connects output is with input js, i = 1, 2, as in Figure 1.2. It is then clear that
there is no path that connects i2 with j1, which means that the total number
of paths in G is not maximal. This finishes the proof of the proposition. 
�
Remark 23. As we already know, there are various “restricted” versions of
PROPs characterized by types of graphs along which the composition is al-
lowed. Thus 1

2
PROPs live on contractible graphs without “bad” edges as in

Figure 1.2, and Gan’s dioperads live on all contractible graphs. A version of
PROPs for which only compositions along connected graphs are allowed was
studied by Vallette, who called these PROPs properads [19]. All this can be
summarized by a chain of inclusions of full subcategories

Oper ⊂ 1
2PROP ⊂ diOp ⊂ Proper ⊂ PROP.

Let Γpth(E) ⊂ ΓP(E) be the subspace spanned by all G-monomials such
that G is contractible and contains at least one “bad” edge as in Figure 1.2.
By Proposition 22, one might equivalently define Γpth(E) by
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j1 j2

i1 i2

Fig. 1.2. A configuration forbidden for 1
2
PROPs – f is a “bad” edge. Vertices u

and v might have more input or output edges, which we did not indicate.
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Γpth(E)(m,n)
= Span{f ∈ ΓD(E)(m,n); cmp(f) = gen(f) = 0, and pth(f) < mn}.

If we write

Γc+g(E) := Span{f ∈ ΓP(E); cmp(f) + gen(f) > 0},

then there is a natural decomposition

ΓP(E) = Γ 1
2 P

(E)⊕ Γpth(E)⊕ Γc+g(E),

in which clearly Γ 1
2 P

(E) ⊕ Γpth(E) = ΓD(E). Let π 1
2 P

, πpth, and πc+g denote
the corresponding projections. For a degree-(−1) differential ∂ on ΓP(E), in-
troduce derivations ∂0, ∂pth, and ∂c+g determined by their restrictions to the
generators E as follows:

∂0

∣∣∣E := π 1
2 P
◦ ∂

∣∣∣
E
, ∂pth|E := πpth ◦ ∂|E, and ∂c+g|E := πc+g ◦ ∂|E .

Let us define also ∂D := ∂0+∂pth, the dioperadic part of ∂. The decompositions

∂ = ∂D + ∂c+g = ∂0 + ∂pth + ∂c+g (1.20)

are fundamental for our purposes. We will call them the canonical decompo-
sitions of the differential ∂. The following example shows that in general, ∂0,
∂D, and ∂c+g need not be differentials, since they may not square to zero.

Example 24. Let us consider the free PROP ΓP(a, b, c, u, x), where the gener-
ator a has degree 1 and biarity (4, 2), b degree 0 and biarity (2, 1), c degree
1 and biarity (4, 1), u degree 0 and biarity (2, 1), and x degree 2 and biarity
(4, 1). Define a degree-(−1) differential ∂ by the following formulas, whose
meaning is, as we believe, clear:

∂

(
x

)
:=

a

b
+ c, ∂

(
a

)
:= u⊗ u, ∂

(
c

)
:= −

b

u u
,

while ∂(b) = ∂(u) = 0. One can easily verify that ∂2 = 0. By definition,

∂0

(
x

)
= c , ∂0

(
a

)
= 0 ∂0

(
c

)
= −

b

u u
,

and of course, ∂0(b) = ∂0(u) = 0. A simple calculation shows that

∂2
0

(
x

)
= −

b

u u
;

therefore ∂2
0 �= 0. Since ∂0 = ∂D, we conclude that also ∂2

D �= 0.
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Let us formulate some conditions that guarantee that the derivations ∂0

and ∂D square to zero. We say that a differential ∂ in ΓP(E) is connected if
cmp(∂(e)) = 0 for each e ∈ E. Similarly, we say that ∂ has genus zero if
gen(∂(e)) = 0 for e ∈ E. Less formally, connectivity of ∂ means that ∂(e) is a
sum of G-monomials with all G’s connected, and ∂ has genus zero if ∂(e) is
a sum of G-monomials with all G’s of genus 0 (but not necessarily connected).

Proposition 25. In the canonical decomposition (1.20) of a differential ∂ in
a free PROP ΓP(E), ∂2

D = 0 always implies that ∂2
0 = 0.

If, moreover, either (i) the differential ∂ is connected or (ii) ∂ has genus
zero, then ∂2

D = 0; therefore both ∂0 and ∂D are differentials on ΓP(E).

Proof. For a G-monomial f , write

∂D(f) =
∑

H∈U
gH , (1.21)

the sum of H-monomials gH over a finite set U of graphs. Since ∂D is a deriva-
tion, each H ∈ U is obtained by replacing a vertex v ∈ v(G) of biarity (s, t)
by a graph R of the same biarity. It follows from the definition of the diop-
eradic part ∂D that each such R is contractible. This implies that all graphs
H ∈ U that nontrivially contribute to the sum (1.21) have the property that
pth(H) � pth(G) (∂D does not increase the path grading) and that

∂0(f) =
∑

H∈U0

gH , where U0 := {H ∈ U ; pth(H) = pth(G)}. (1.22)

This can be seen as follows. It is clear that a replacement of a vertex by a
contractible graph cannot increase the total number of paths inG. This implies
that ∂D does not increase the path grading. Equation (1.22) follows from the
observation that decreasing the path grading locally at a vertex decreases the
path grading of the whole graph. By this we mean the following.

Assume that a vertex v of biarity (s, t) is replaced by a contractible graph
R such that pth(R) < st. This means that there exists an output–input pair
(i, j) of R for which there is no path in R connecting output i with input j. On
the other hand, in G there certainly existed a path that ran through output
i and input j of vertex v and broke apart when we replaced v by R.

Now we see that ∂2
0 is precisely the part of ∂2

D that preserves the path
grading. This makes the implication

(
∂2
D = 0

)
=⇒ (

∂2
0 = 0

)
completely obvi-

ous and proves the first part of the proposition.
For the proof of the second half, it will be convenient to introduce still

another grading by putting

grad(G) := cmp(G) − gen(G) = +|v(G)| − |e(G)| − 1, (1.23)
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where |v(G)| denotes the number of vertices and |e(G)| the number of internal
edges of G. Let f be a G-monomial as above. Let us consider a sum similar
to (1.21), but this time for the entire differential ∂:

∂(f) =
∑

H∈S
gH ,

where S is a finite set of graphs. We claim that under assumption (i) or (ii),

∂D(f) =
∑

H∈SD

gH , where SD := {H ∈ S; grad(H) = grad(G)}. (1.24)

This would clearly imply that ∂2
D is exactly the part of ∂2 that preserves the

grad-grading; therefore ∂2
D = 0.

As in the first half of the proof, eachH ∈ S is obtained from G by replacing
v ∈ v(G) by some graph R. In case (i), R is connected, that is, cmp(G) =
cmp(H) for all H ∈ S. It follows from elementary algebraic topology that
gen(H) � gen(G) and that gen(G) = gen(H) if and only if gen(R) = 0. This
proves (1.24) for connected differentials.

Assume now that ∂ has genus zero, that is, gen(R) = 0. This means that R
can be contracted to a disjoint R′ union of cmp(R)+1 corollas. Since grad(−)
is a topological invariant, we may replace R inside H by its contraction R′. We
obtain a graph H ′ for which grad(H) = grad(H ′). It is obvious that H ′ has
the same number of internal edges as G and that |v(H ′)| = |v(G)|+ cmp(R).
Therefore grad(G) = grad(H)+cmp(R). This means that grad(G) = grad(H)
if and only if cmp(R) = 0, i.e., if R is connected. This proves (1.24) in case (ii)
and finishes the proof of the proposition. 
�

The following theorem will be our basic tool to calculate the homology of
free differential graded PROPs in terms of the canonical decomposition of the
differential.

Theorem 26. Let (ΓP(E), ∂) be a dg free PROP and m,n fixed natural
numbers.

(i) Suppose that the differential ∂ is connected. Then the genus grading
defines, by

F gen
p := Span{f ∈ ΓP(E)(m,n); gen(f) � −p}, (1.25)

an increasing ∂-invariant filtration of ΓP(E)(m,n).
(ii) If the differential ∂ has genus zero, then

F grad
p := Span{f ∈ ΓP(E)(m,n); grad(f) � −p}

is also an increasing ∂-invariant filtration of ΓP(E)(m,n).
The spectral sequences induced by these filtrations both have the first term

isomorphic to (ΓP(E)(m,n), ∂D) and they both abut to H∗(ΓP(E)(m,n), ∂).
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(iii) Suppose that ∂2
D = 0. Then the path grading defines an increasing

∂D-invariant filtration

F pth
p := Span{f ∈ ΓP(E)(m,n); pth(f) � p}.

This filtration induces a first quadrant-spectral sequence whose first term is
isomorphic to (ΓP(E)(m,n), ∂0) and that converges to H∗(ΓP(E)(m,n), ∂D).

Proof. The proof easily follows from Proposition 25 and the analysis of the
canonical decomposition given in the proof of that proposition. 
�

The following proposition describes an important particular case in which
the spectral sequence induced by the filtration (1.25) converges.

Proposition 27. If ∂ is connected and preserves the path grading, then the
filtration (1.25) induces a second-quadrant spectral sequence whose first term
is isomorphic to (ΓP(E)(m,n), ∂0) and that converges to H∗(ΓP(E)(m,n), ∂).

Proof. Under the assumptions of the proposition, the path grading is a
∂-invariant grading, compatible with the genus filtration (1.25), by finite-
dimensional pieces; see Proposition 22. This guarantees that the generally
ill-behaved second-quadrant spectral sequence induced by (1.25) converges.
The proof is finished by observing that the assumption that ∂ preserves the
path grading implies that ∂0 = ∂D. 
�

In most applications either ∂ is connected or ∂ = ∂D, though there are also
natural examples of PROPs with disconnected differentials, such as the defor-
mation quantization PROP DefQ introduced by Merkulov in [16]. The follow-
ing corollary immediately follows from Theorem 26(iii) and Proposition 27.

Corollary 28. Let P be a graded PROP concentrated in degree 0 and α :
(ΓP(E), ∂) → (P, 0) a homomorphism of dg PROPs. Suppose that α induces
an isomorphism H0(ΓP(E), ∂) ∼= P and that ΓP(E) is ∂0-acyclic in positive
degrees. Suppose moreover that either

(i) ∂ is connected and preserves the path grading, or
(ii) ∂(E) ⊂ ΓD(E).

Then α is a free resolution of the PROP P.

Remark 29. In Corollary 28 we assumed that the PROP P was concentrated
in degree 0. The case of a general nontrivially graded nondifferential PROP

P can be treated by introducing the Tate–Jozefiak grading, as was done, for
example, for bigraded models of operads in [13, page 1481].

1.6 Minimal Models of PROPs

In this section we show how the methods of this paper can be used to study
minimal models of PROPs. Let us first give a precise definition of this object.
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Definition 30. A minimal model of a dg PROP P is a dg free PROP

(ΓP(E), ∂) together with a homology isomorphism

P
α←− (ΓP(E), ∂).

We also assume that the image of ∂ consists of decomposable elements of
ΓP(E) or, equivalently, that ∂ has no “linear part” (the minimality condition).
Minimal models for 1

2PROPs and dioperads are defined in exactly the same
way, only replacing ΓP(−) by Γ 1

2 P
(−) or ΓD(−).

The above definition generalizes minimal models for operads introduced
in [13]. While we proved, in [13, Theorem 2.1], that each operad admits, under
some very mild conditions, a minimal model, and while the same statement
is probably true also for dioperads, a similar statement for a general PROP

would require some way to handle a divergence problem (see also the discus-
sion in [14] and below).

Bialgebras. Recall that a bialgebra is a vector space V with an associative
multiplication · : V ⊗ V → V and a coassociative comultiplication Δ : V →
V ⊗ V that are related by

Δ(a · b) = Δ(a) ·Δ(b), for a, b ∈ V.
The PROP B describing bialgebras has a presentation B = ΓP( , )/IB,
where IB denotes the ideal generated by

− , − , and − �� .

In the above display we have that

:= ( ⊗ 11), := (11⊗ ), := ( ⊗ 11) , := (11⊗ ) ,

:= ◦ , and �� := ( ⊗ ) ◦ σ(2, 2) ◦ ( ⊗ ),

where σ(2, 2) ∈ Σ4 is the permutation

σ(2, 2) =
(

1 2 3 4
1 3 2 4

)
.

As we argued in [14], the PROP B can be interpreted as a perturbation
of the PROP

1
2
B = F

(
1
2
b
)

for 1
2
bialgebras mentioned in Example 14. More

precisely, let ε be a formal parameter, IεB the ideal generated by

− , − , and − ε �� ,

and Bε := ΓP( , )/IεB. Then Bε is a one-dimensional family of deformations
of 1

2
B = B0 whose specialization (value) at ε = 1 is B. Therefore, every

minimal model for B can be expected to be a perturbation of the minimal
model for 1

2
B described in the following theorem:
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Theorem 31 ([14]). The dg free PROP

(M, ∂0) = (ΓP(Ξ), ∂0), (1.26)

where the generators Ξ = Span
(
{ξnm}m,n∈I

)
are as in Example 19 and the

differential ∂0 is given by formula (1.15), is a minimal model of the PROP

1
2B for 1

2bialgebras.

Proof. Clearly, (M, ∂0) = F
(
Ω 1

2 P
(Ass ∗ Ass†)

)
. The theorem now follows

from Theorem 18 (see also Example 19) and from the fact that the functor F
preserves homology isomorphisms; see Corollary 5. 
�

The methods developed in this paper were used in [14] to prove the
following:

Theorem 32. There exists a minimal model (M, ∂) of the PROP B for bial-
gebras that is a perturbation of the minimal model (M, ∂0) of the PROP

1
2B

for 1
2
bialgebras described in Theorem 31,

(M, ∂) = (ΓP(Ξ), ∂0 + ∂pert),

for some perturbation ∂pert that raises the genus and preserves the path
grading.

Proof. As shown in [14], a perturbation ∂pert can be constructed using stan-
dard methods of the homological perturbation theory because we know, by
Theorem 31, that ΓP(Ξ) is ∂0-acyclic in positive degrees. The main problem
was to show that the procedure converges. This was achieved by finding a
subspace X ⊂ ΓP(Ξ) of special elements whose pieces X(m,n) satisfy the
conditions that:

(i) each X(m,n) is a finite-dimensional space spanned by G-monomials with
connected G,

(ii) each X(m,n) is ∂0-closed and ∂0-acyclic in positive degrees,
(iii) each X(m,n) is closed under vertex insertion (see below), and

(iv) both and �� belong to X(2, 2).

Item (iii) means that X is stable under all derivations (not necessarily
differentials) ω of ΓP(Ξ) such that ω(Ξ) ⊂ X . The perturbation problem was
then solved in X instead of ΓP(Ξ). It remained to use, in an obvious way,
Corollary 28(i) to prove that the object we constructed is really a minimal
model of B. 
�
Dioperads. In this part we prove that the cobar duals of dioperads with
a replacement rule induce, via the functor F1 : diOp → PROP introduced in
Section 1.1, minimal models in the category of PROPs. Since we are unable
to prove the exactness of F1, we will need to show first that these models are
perturbations of minimal models of quadratic Koszul 1

2
PROPs and then use

Corollary 28(ii). This approach applies to the main examples of [4], i.e., Lie
bialgebras and infinitesimal bialgebras.
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Let P and Q be quadratic operads, with presentations P = ΓOp(F )/(R)
and Q = ΓOp(G)/(S). We will consider dioperads created from P and Q by a
dioperadic replacement rule. By this we mean the following.

As in Example 13, interpret F , G, R, and S as bicollections. We already
observed in Section 1.4 that

ΓD(F,G)(2, 2) ∼= Γ 1
2 P

(F,G)(2, 2)⊕IndΣ2×Σ2
{1} (F⊗G) ∼= G◦F⊕IndΣ2×Σ2

{1} (F⊗G);

see also [4, Section 2.4] for details. The above decomposition is in fact a
decomposition of ΓD(F,G)(2, 2) into pth-homogeneous components, namely

G ◦ F = Span{f ∈ ΓD(F,G)(2, 2); pth(f) = 4}
and

IndΣ2×Σ2
{1} (F ⊗G) = Span{f ∈ ΓD(F,G)(2, 2); pth(f) = 3}.

Given a (Σ2, Σ2)-equivariant map

λ : G ◦ F → IndΣ2×Σ2
{1} (F ⊗G), (1.27)

one might consider a subspace

B = Bλ := Span{f − λ(f); f ∈ G ◦ F} ⊂ ΓD(F,G)(2, 2)

and a quadratic dioperad

Dλ := ΓD(F,G)/(R,Bλ, S). (1.28)

We say that the map λ in (1.27) is a replacement rule [3, Definition 11.3] if
it is coherent in the sense that it extends to a mixed distributive law between
operads P and Q; see [3, Section 11] for details. An equivalent way to express
this coherence is to say that Dλ and F2(P � Q†) are isomorphic as bicollec-
tions or, in the terminology of [4, Proposition 5.9], that Dλ

∼= P Qop; see
Proposition 17.

Example 33. An important example is given by an infinitesimal bialgebra
(which we called in [3, Example 11.7] a mock bialgebra). It is a vector space V
together with an associative multiplication · : V ⊗V → V and a coassociative
comultiplication Δ : V → V ⊗ V such that

Δ(a · b) =
∑ (

a(1) ⊗ a(2) · b+ a · b(1) ⊗ b(2)
)

for any a, b ∈ V .
The dioperad IB describing infinitesimal bialgebras is given by IB =

ΓD( , )/IIB , where IIB denotes the dioperadic ideal generated by

− , − , and − − .
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The dioperad IB is created from two copies of the operad Ass for associative
algebras using a replacement rule given by

λ( ) := + ;

see [3, Example 11.7] for details. As before, one may consider a one-parameter
family IB ε := ΓD( , )/I εIB , where I εIB is the dioperadic ideal generated by

− , − , and − ε
(

+
)

given by the one-parameter family of replacement rules

λε( ) := ε
(

+
)
.

Let IB := F1(IB) be the PROP generated by the dioperad IB . It follows
from the above remarks that IB is another perturbation of the PROP

1
2
B for

1
2bialgebras.

Example 34. Recall that a Lie bialgebra is a vector space V , with a Lie algebra
structure [−,−] : V ⊗ V → V and a Lie diagonal δ : V → V ⊗ V . As in
Example 20 we assume that the bracket [−,−] is antisymmetric and satisfies
the Jacobi equation and that δ satisfies the obvious duals of these conditions,
but this time [−,−] and δ are related by

δ[a, b] =
∑ (

[a(1), b]⊗ a(2) + [a, b(1)]⊗ b(2) + a(1) ⊗ [a(2), b] + b(1) ⊗ [a, b(2)]
)

for any a, b ∈ V , where we used, as usual, the Sweedler notation δa =
∑
a(1)⊗

a(2) and δb =
∑
b(1) ⊗ b(2).

The dioperad LieB for Lie bialgebras is given by LieB = ΓD( , )/ILieB ,
where and are now antisymmetric generators and ILieB denotes the ideal
generated by

1 2 3
+

2 3 1
+

3 1 2
,

1 2 3

+
2 3 1

+
3 1 2

, and
1 2

1 2

−
21

21

−
1 2

1 2

+
21

12

+
1 2

2 1

,

with labels indicating, in the obvious way, the corresponding permutations of
the inputs and outputs. The dioperad LieB is a combination of two copies of
the operad Lie for Lie algebras, with the replacement rule

λ

(

1 2

1 2 )
:=

21

21

+
1 2

1 2

−
21

12

−
1 2

2 1

;

see [3, Example 11.6]. One may obtain, as in Example 33, a one-parameter
family LieB ε of dioperads generated by a one-parameter family λε of replace-
ment rules such that LieB1 = LieB and LieB0 = 1

2LieB := F2

(
1
2 lieb

)
, where

1
2
lieb is the 1

2
PROP for 1

2
Lie bialgebras introduced in Example 20. Thus, the

PROP LieB := F1(LieB) is a perturbation of the PROP
1
2LieB governing 1

2Lie
bialgebras.
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Examples 33 and 34 can be generalized as follows. Each replacement rule
λ as in (1.27) can be extended to a one-parameter family of replacement
rules by defining λε := ε · λ. This gives a one-parameter family Dε := Dλε of
dioperads such thatD1 = Dλ andD0 = P�Q†. ThereforeDλ is a perturbation
of the dioperad generated by the 1

2PROP P � Q†. This suggests that every
minimal model of the PROP F1(Dλ) is a perturbation of a minimal model
for F2(P � Q†), which is, as we already know from Section 1.4, given by
F2

(
Ω 1

2 P
((P � Q†)!)

)
= F2

(
Ω 1

2 P
(P ! ∗ (Q!)†)

)
. The rest of this section makes

this idea precise.
For any quadratic dioperad D, there is an obvious candidate for a min-

imal model of the PROP F1(D) generated by D, namely the dg PROP

ΩP(D!) = (ΩP(D!), ∂) := F1((ΩD(D!), ∂)) generated by the dioperadic cobar
dual ΩD(D!) = (ΩD(D!), ∂) of D!.

The following proposition, roughly speaking, says that the dioperadic co-
bar dual of Dλ is a perturbation of the cobar dual of the 1

2PROP (P �Q†)! =
P ! ∗ (Q!)†.

Proposition 35. Let D = Dλ be a dioperad constructed from Koszul
quadratic operads P and Q using a replacement rule λ. Consider the canonical
decomposition

(ΩD(D!), ∂0 + ∂pth)

of the differential in the dioperadic bar construction (ΩD(D!), ∂). Then

(ΩD(D!), ∂0) ∼= F2

(
Ω 1

2 P
(P ! ∗ (Q!)†)

)
. (1.29)

Proof. We already observed that, in the terminology of [4], D ∼= P Qop.
This implies, by [4, Proposition 5.9(b)], that D! ∼= (Q!)op P !, which clearly
coincides, as a bicollection, with our P ! ∗ (Q!)†. The rest of the proposition
follows from the description of D! given in [4], the behavior of the replacement
rule λ with respect to the path grading, and definitions. 
�
Remark 36. Since as a nondifferential dioperad, ΩD(D) = Λ−1ΓD(↑ D̄∗),
where ↑ denotes the suspension of a graded bicollection, Λ−1 the sheared
desuspension of a dioperad, and D̄∗ the linear dual of the augmentation ideal
of D, see Sections 1.4, 2.3, and 3.1 of [4] for details, the PROP (ΩP(D), ∂)
may be constructed from scratch as ΩP(D!) = Λ−1ΓP(↑ D̄∗) with a differential
coming from the “vertex expansion” (also called edge insertion). Thus, the
PROP (ΩP(D), ∂) may be thought of as a naive cobar dual of F1(D), as
opposed to the categorical cobar dual [6, Section 4.1.14].

Perhaps one can successfully develop quadratic and Koszul duality theory
for PROPs using this naive cobar dual by analogy with [4,6]. We are reluctant
to emphasize (ΩP(D), ∂) as a PROP cobar dual of the PROP F1(D), because
we do not know how this naive cobar dual is related to the categorical one.
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The following theorem generalizes a result of Kontsevich [9] for D = LieB .

Theorem 37. Under the assumptions of Proposition 35, (ΩP(D!), ∂) is a min-
imal model of the PROP F1(D).

Proof of Theorem 37. We are going to use Corollary 28(ii). It is straightforward
to verify that H0((ΩP (D!), ∂) ∼= F1(D). Equation (1.29) gives

ΩP(D!) ∼= F
(
Ω 1

2 P
(P ! ∗ (Q!)†)

)
,

and therefore the ∂0-acyclicity of ΩP(D!) follows from the exactness of the
functor F stated in Theorem 4. 
�
Example 38. By Theorem 37, the dg PROP ΩP(IB !), where the quadratic
dual IB ! of the dioperad IB for infinitesimal bialgebras is described in [4]
as IB ! = Assop Ass , is a minimal model of the PROP IB = F1(IB) for
infinitesimal bialgebras. The dg PROP ΩP(IB !) has a form (ΓP(Ξ), ∂0 +∂pth),
where Ξ and ∂0 are the same as in Example 19. The path part ∂pth of the
differential is trivial on generators ξmn with m + n � 4; therefore the easiest
example of the path part is provided by

∂( ) = ∂0( ) + + + − ,

where
∂0( ) = − +

is the same as in Example 19. We encourage the reader to verify that

pth( ) = pth( ) = pth( ) = pth( ) = 6,
pth( ) = pth( ) = 5, and pth( ) = pth( ) = 4.

Similarly, the dg PROPΩP(LieB !) = ΩP(Comop Com) is a minimal model
of the PROP LieB := F1(LieB) for Lie bialgebras.

1.7 Classical Graph Cohomology

Here we will reinterpret minimal models for the Lie bialgebra PROP LieB =
F1(LieB) and the infinitesimal bialgebra PROP IB = F1(IB) given by
Theorem 37 and Example 38 as graph complexes.
The commutative case. Consider the set of connected (m,n)-graphs G
for m,n � 1 in the sense of Section 1.2. An orientation on an (m,n)-graph
G is an orientation on R

v(G) ⊕ R
m ⊕ R

n, i.e., the choice of an element in
det R

v(G) ⊗ det R
m ⊗ det R

n up to multiplication by a positive real number.
This is equivalent to an orientation on R

e(G) ⊕H1(|G|; R), where e(G) is the
set of (all) edges of G; to verify this, consider the cellular chain complex of
the geometric realization |G|; see for example [18, Proposition B.1] and [15,
Proposition 5.65].
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Fig. 1.3. A graph vanishing in the quotient by the automorphism group.

Thus, an orientation on a connected (m,n)-graph G is equivalently given
by an ordering of the set e(G) along with the choice of an orientation on
H1(|G|; R) up to permutations and changes of orientation on H1(|G|; R) of
even total parity. Consider the set of isomorphism classes of oriented (m,n)-
graphs and take its k-linear span. More precisely, we should rather speak about
a colimit with respect to graph isomorphisms, as in Section 1.2. In particular,
if a graph G admits an orientation-reversing automorphism, such as the graph
in Figure 1.3, then G gets identified with G−, which will vanish after passing
to the following quotient. Let G(m,n) be the quotient of this space by the
subspace spanned by

G+G− for each oriented graph G,

where G− is the same graph as G, taken with the opposite orientation. Each
space G(m,n) is bigraded by the genus and the number of interior edges (i.e.,
edges other than legs) of the graph. Let Gqg = Gqg(m,n) denote the subspace
spanned by graphs of genus g with q interior edges for g, q � 0. Computing
the Euler characteristic of |G| in two ways, we get an identity |v(G)| − q =
1− g. A graph G ∈ Gg(m,n) has a maximal number of interior edges if each
vertex of G is trivalent, in which case we have 3|v(G)| = 2q +m+ n, whence
q = 3g − 3 +m+ n is the top degree in which Gqg(m,n) �= 0.

Define a differential
∂ : Gqg → Gq+1

g ,

so that ∂2 = 0, as follows:

∂G :=
∑

{G′ | G′/e=G}
G′,

where the sum is over the isomorphism classes of connected (m,n)-graphs G′

whose contraction along an edge e ∈ e(G′) is isomorphic to G. We will induce
an orientation on G′ by first choosing an ordering of the set of edges of G and
an orientation on H1(|G|; R) in a way compatible with the orientation of G.
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Then we will append the edge e that is being contracted at the end of the
list of the edges of G. Since we have a canonical isomorphism H1(|G′|; R) ∼→
H1(|G|; R), an orientation on the last space induces one on the first. This gives
an orientation on G′. An example is given below:

∂

(

1 2

1 2
)

=
1 2

1 2

−
21

21

−
1 2

1 2

+
21

12

+
1 2

2 1

In this figure we have oriented graphs, which are provided with a certain
canonical orientation that may be read off from the picture. The rule of thumb
is as follows. An orientation on the composition of two graphs is given by (1)
reordering the edges of the first, lower, graph in such a way that the output
legs follow the remaining edges, (2) reordering the edges of the second, upper,
graph in such a way that the input legs precede the remaining edges, and (3)
after grafting, putting the edges of the second graph after the edges of the first
graph. The resulting ordering should look like this: the newly grafted edges in
the middle, preceded by the remaining edges of the first graph and followed
by the remaining edges of the second graph. We remind the reader that we
place the inputs at the bottom of a graph and the outputs on the top.

Theorem 39. The graph complex in the commutative case is acyclic every-
where but at the top term G3g−3+m+n

g . The graph cohomology can be computed
as follows:

Hq
(
G∗
g(m,n), ∂

)
=

{
LieB0

g(m,n) for q = 3g − 3 +m+ n,
0 otherwise,

where LieB0
g(m,n) is the subspace of the (m,n)th component of the Lie

bialgebra PROP LieB = F1(LieB) consisting of linear combinations of con-
nected graphs of genus g; see the presentation of the corresponding dioperad
LieB in Example 34.

Remark 40. The acyclicity of the graph complex G∗
g(m,n) has been proven

in Kontsevich’s message [9], whose method we have essentially used in this
paper.

Proof. The dioperad LieB may be represented as a product of the Lie
operad Lie and the Lie co-operad Lieop: LieB = Lie Lieop; see [4, Sec-
tion 5.2]. The dioperadic quadratic dual LieB ! is then Comop Com, so that
LieB !(m,n) ∼= k with a trivial action of (Σn, Σn) for each pair (m,n),
m,n � 1. Then the subcomplex

(
Ω0

P

(
LieB !

)
, ∂

)
⊂ (ΩP(LieB !), ∂) spanned

by connected graphs is isomorphic to the graph complex (G∗(m,n), ∂). Now
the result follows from Theorem 37. 
�
The associative case. Consider connected, oriented (m,n)-graphs G for
m,n � 1, as above, now with a ribbon structure at each vertex, by which
we mean orderings of the set In(v) of incoming edges and the set Out(v)
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of outgoing edges at each vertex v ∈ v(G). It is convenient to think of an
equivalent cyclic ordering (i.e., ordering up to cyclic permutation) of the set
e(v) = In(v) ∪ Out(v) of all the edges incident to a vertex v in a way that
elements of In(v) precede those of Out(v). Let RG(m,n) be the linear span of
isomorphism classes of connected oriented ribbon (m,n)-graphs modulo the
relation G + G− = 0, with RGq

g(m,n) denoting the subspace of graphs of
genus g with q interior edges. The same formula

∂G :=
∑

{G′ | G′/e=G}
G′

defines a differential, except that in the ribbon case, when we contract an
edge e ∈ e(G′), we induce a cyclic ordering on the set of edges adjacent to
the resulting vertex by an obvious operation of insertion of the ordered set of
edges adjacent to the edge e through one of its vertices into the ordered set
of edges adjacent to e through its other vertex. An orientation is induced on
G′ in the same way as in the commutative case. An example is shown in the
following display:

∂( ) = − − + − + − − − − − −

A vanishing theorem, see below, also holds in the ribbon-graph case. The
proof is similar to the commutative case: it uses Theorem 37 and the fact that
IB = Ass Assop and IB ! = Assop Ass ; see Example 38.

Theorem 41. The ribbon graph complex is acyclic everywhere but at the top
term RG3g−3+m+n

g . The ribbon graph cohomology can be computed as follows:

Hq
(
RG∗

g(m,n), ∂
)

=
{

IB0
g(m,n) for q = 3g − 3 +m+ n,

0 otherwise,

where IB0
g(m,n) is the subspace of the (m,n)th component of the infinitesimal

bialgebra PROP IB = F1(IB) consisting of linear combinations of connected
ribbon graphs of genus g; see the presentation of the corresponding dioperad
IB in Example 33.

Remark 42. Note that our notion of the genus is not the same as the one
coming from the genus of an oriented surface associated to the graph, usually
used for ribbon graphs. Our genus is just the first Betti number of the surface.
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À Yuri Ivanovich Manin à l’occasion de son soixante-dixième anniversaire

Summary. En utilisant les symboles de Manin, nous observons d’abord qu’une
forme modulaire primitive f de niveauN et de poids 2 est caractérisée par un nombre
fini d’invariants associés aux fonctions L obtenues en tordant f par des caractères
de Dirichlet de niveau divisant N ; il s’agit des valeurs en 1 prises par ces fonctions
L et de quelques invariants locaux, qui concernent purement les places divisant N .
Nous établissons ensuite quelques relations numériques suivant le principe suivant.
Considérons la fonction L d’un objet de la catégorie tensorielle engendrée par f ;
la valeur en un nombre entier de cette fonction L s’exprime m écaniquement en
fonction des invariants considérés ci-dessus.

Key words: Dirichlet series, functional equations, modular forms, Special
values of automorphic L-series, periods of modular forms, modular symbols

2000 Mathematics Subject Classifications : 11FXX, 11F66, 11F67

1 Introduction

1.1 Les symboles de Manin

Soit N un entier >0. Soit f une forme modulaire parabolique de poids k = 2
pour le groupe de congruence Γ1(N). Dans [10], Yu. Manin lui associe une
fonction ξf : (Z/NZ)2 → C dont les valeurs sont les symboles de Manin de f .
Cette fonction est définie ainsi.

Soit (u, v) ∈ (Z/NZ)2. On pose ξf (u, v) = 0 si (u, v) n’est pas d’ordre N
dans le groupe additif (Z/NZ)2. Sinon on considère une matrice g =

(
a b
c d

)
∈

SL2(Z) telle que (c, d) ∈ (u, v) et on pose

ξf (u, v) = −i
∫ g∞

g0

f(z)dz,

Y. Tschinkel and Y. Zarhin (eds.), Algebra, Arithmetic, and Geometry, 283
Progress in Mathematics 270, DOI 10.1007/978-0-8176-4747-6_9,
c© Springer Science+Business Media, LLC 2009
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où l’intégrale est prise le long d’un chemin continu du demi-plan de Poincaré.
L’application f �→ ξf est injective. On peut même être plus précis. Si on pose
ξ+f (u, v) = (ξf (u, v) + ξf (−u, v))/2 et ξ−f (u, v) = (ξf (u, v) − ξf (−u, v))/2, les
applications f �→ ξ+f et f �→ ξ−f sont injectives [10].

Rappelons en quoi cette construction est utile à l’étude des symboles mo-
dulaires : elle a notamment permis a Manin d’établir sa loi de réciprocité
[10, 11, 14] et est souvent le fondement des calculs sur ordinateur concernant
les formes modulaires (voir [5] et les tables de W. Stein).

Par ailleurs, les expressions (si utiles en vue de construire des fonctions L
p-adique, d’établir des théorèmes de non-annulation. . .) en termes de symboles
modulaires des valeurs en s = 1 des fonctions L des tordues de f ne font pas
intervenir les symboles de Manin. C’est à ce lien manquant que fait référence
notre titre. Notre objectif est, en réalité, inverse de ce qui est obtenu par
la démarche classique : lorsque f est une forme primitive (i.e. propre pour
l’algèbre de Hecke, nouvelle et normalisée), nous exprimons les symboles de
Manin de f purement en termes des fonctions L des tordues f . Nous verrons
même qu’il suffit de tordre f par des caractères de niveaux divisant N .

1.2 Analyse de Fourier multiplicative

Supposons désormais f primitive de niveau N . Nous calculons la transformée
de Fourier multiplicative de ξf en le sens suivant.

Pour tout entier m ≥ 1, on note Σm le support de m dans l’ensemble
des nombres premiers. Supposons (u, v) ∈ (Z/NZ)2 d’ordre N . Notons N ′

l’ordre de uv dans Z/NZ. Soit S un sous-ensemble de ΣN contenant le sup-
port de u mais disjoint du support de v. Posons S̄ = ΣN − S. On identifie
(Z/NZ) à ∪d|N (Z/dZ)∗ (par w �→ wN ′

w/N (mod N ′
w), où N ′

w est l’ordre de
w dans (Z/NZ)). Les images de u et v par cette identification sont uN ′

S/NS
et vN ′̄

S
/NS̄ respectivement ; les entiers NS/N ′

S et NS̄/N ′̄
S

ne dépendent pas
du choix de S. Toute fonction ξ : (Z/NZ)2 → C s’écrit sous la forme

ξ(u, v) =
∑
α,β

cα,βα
(
N ′̄
Sv/NS̄

)
β (N ′

Su/NS) ,

où cα,β dépend seulement de ξ, α, β etN ′ et où α et β parcourent les caractères
de Dirichlet primitifs de niveaux divisant N ′. Le théorème 1 donne une forme
explicite aux coefficients cα,β lorsque ξ = ξf .

Soit χ un caractère de Dirichlet de conducteur à support dans ΣN . Notons
f ⊗χ la forme primitive dont le p-ième coefficient de Fourier est ap(f)χ(p) (p
nombre premier ne divisant pas N). Notons Nχ le niveau de f ⊗ χ. Notons
L(f ⊗ χ, s) la fonction L de f ⊗ χ. Elle admet un développement en série
de Dirichlet

∑∞
n=1 an(f ⊗ χ)/ns et en produit eulerien

∏
p Lp(f ⊗ χ, p−s), où

Lp(f ⊗χ,X) = 1/(1−ap(f ⊗χ)X+ap,p(f ⊗χ)pk−1X2) (p nombre premier) ;
on complète ce produit pour former

Λ(f ⊗ χ, s) = (2π)−sΓ (s)Ns/2
χ L(f ⊗ χ, s).
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On pose ap = ap(f) et ap,p = ap,p(f). Notons ψ le caractère de Dirichlet
vérifiant ψ(p) = ap,p(f) (p nombre premier ne divisant pas N). On pose
f̄ = f ⊗ ψ̄, et on a an(f̄) = ān(f) (n entier ≥ 1).

Lorsque T+ et T− sont des ensembles finis de nombres premiers, on prive
Λ(f ⊗ χ, s) de certains facteurs d’Euler en posant

Λ[T+,T−](f ⊗ χ, s) =
Λ(f ⊗ χ, s)∏

p∈T+ Lp(f ⊗ χ, p−s)
∏
p∈T− Lp(f̄ ⊗ χ̄, ps−k)

.

Lorsque R+ et R− sont des sous-ensembles de T+ et T− respectivement, on
pose

Λ

[
T+

R+ ,
T−
R−
]
(f ⊗ χ, s) =

Λ[T+−R+,T−−R−](f ⊗ χ, s)∏
p∈R+ Lp(f ⊗ χ, p−s−1)

∏
p∈R− Lp(f̄ ⊗ χ̄, ps−k+1)

.

Nous dirons que les nombres premiers p qui vérifient vp(N) = 1 (où vp est
la valuation p-adique) et ψ non ramifié en p sont spéciaux pour f (ils cor-
respondent aux représentations spéciales de GL2(Qp)). Notons Σf l’ensemble
des nombres premiers spéciaux pour f . Le cas qui nous intéressera est le cas
où R+ et R− sont composés de nombres premiers spéciaux pour f .

Pour S sous-ensemble de ΣN et M nombre entier ≥1 de support ΣM ⊂
ΣN , posons M = MSMS̄ où MS et MS̄ sont à supports dans S et S̄ res-
pectivement. On pose S(M) = ΣM ∩ S et S̄(M) = ΣM ∩ S̄. On note
wS(f̄ ⊗ χ) la pseudo-valeur propre de f̄ ⊗ χ pour l’opérateur d’Atkin-Lehner
associé à S (voir [1] ou la mise au point de la section 2.2). On note de plus
w(f ⊗ χ) = wΣN (f ⊗ χ) ; on a

Λ[T+,T−](f ⊗ χ, s) = ikw(f ⊗ χ)Λ[T−,T+](f̄ ⊗ χ̄, k − s).

Pour α caractère de niveau à support dans ΣN , on convient de décomposer
α sous la forme α = αSαS̄ , où αS et αS̄ sont des caractères de Dirichlet de
niveaux à supports dans S et S̄ respectivement.

Pour p ∈ ΣN et χ caractère de Dirichlet, notons mχ le conducteur du
caractère primitif associé à χ divisant N et Qp,f,χ(X) la fraction rationnelle
suivante :

Qp,f,χ(X) = (āpp1−k/2)vp(N
′/mχ)

sauf si ap = 0, vp(N ′) = 1 et vp(mχ) = 0, auquel cas on a

Qp,f,χ(X) = −χ̄(p)X−1.

Cet objet désagréable dépend de p, ap, χ(p), vp(mχ), k et vp(N ′) ; c’est donc
un objet local. De plus on note τ ′(χ) la somme de Gauss associée au caractère
primitif provenant de χ. Notons φ la fonction indicatrice d’Euler.
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Théorème 1. On a

ξf (u, v) =
w(f)

φ(N ′)

∑
χ

χS̄(mχ,S )(ψ̄S χ̄S)(mψ̄χ̄,S̄)χS(−1)
τ ′(χS)τ ′(ψ̄S̄ χ̄S̄)√

Nχ

×

⎛
⎝ ∏
p∈S(N′)

Qp,f,χ̄(1)

⎞
⎠
⎛
⎝ ∏
p∈S̄(N′)

Qp,f,χψ(1)

⎞
⎠(ψ̄S̄χ̄2

S̄

)
(Nχ,S)wS(f ⊗ χ)

×Λ

[
Σ
N′−S(mχ)

(S(N′)−S(mχ))∩Σf
,

Σ
N′−S̄(m

ψ̄χ̄
)

(S̄(N′)−S̄(m
ψ̄χ̄

))∩Σf

]
(f ⊗ χ, 1)(ψ̄χ̄)

(
N ′̄
S
v

NS̄

)
χ

(
N ′
Su

NS

)
,

où χ parcourt les caractères de Dirichlet primitifs tels que mχ,Smψχ,S̄ |N ′. La
formule analogue pour ξ+f (resp. ξ−f ) est obtenue en faisant disparaître les
termes pour χ impair (resp. pair).

1.3 Interprétation arithmétique

La formule du théorème 1 est si peu aisément manipulable, si inapte à s’insérer
dans le langage naturel, que le lecteur séduit par le point de vue exposé par
Manin dans son essai “Mathematics as Metaphor” [12] pourrait penser qu’elle
présente bien peu d’intérêt. Nous espérons que les conséquences qui suivent
peuvent effacer cette impression.

Il procède d’un examen superficiel du théorème 1 et de l’injectivité des
applications f �→ ξ+f et f �→ ξ−f l’énoncé suivant.

Corollaire 2. La forme modulaire f primitive de poids 2 pour Γ1(N) est ca-
ractérisée par les données suivantes, où on fait parcourir à χ les caractères de
Dirichlet pairs (resp. impairs) de conducteurs divisant N :

(i) le caractère de f ,
(ii) les niveaux des formes primitives f ⊗ χ,
(iii) les pseudo-valeurs propres wS(f ⊗ χ),
(iv) les facteurs d’Euler Lp(f ⊗ χ, p−s), pour p ∈ ΣN et
(v) les nombres complexes Λ(f ⊗ χ, 1).

Nous sommes donc tentés de voir la fonction ξf comme une façon commode
de comprimer et de manipuler les données (i), (ii), (iii), (iv) et (v).

On pourrait rendre l’énoncé et la démonstration du théorème 1 plus
agréables en employant le langage adélique. Les données (i), (ii) (iii) et (iv)
sont équivalentes à celles issues des facteurs d’Euler et des facteurs ε associés
aux représentations irréductibles de GL2(Qp) provenant de f après torsion
par des caractères de Q∗

p de conducteur ≤ vp(N), pour p ∈ ΣN .
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On est tenté de rapprocher le corollaire 2 du théorème de Hecke–Weil
[17] sur la caractérisation, par les prolongements analytiques et les équations
fonctionnelles, des séries de Dirichlet qui proviennent des formes modulaires,
voir la section 3.3. Nous avons à l’esprit tout spécialement la version précise
due à W. C. W. Li [8] qui, comme le corollaire 2, ne fait intervenir que les
tordues par les caractères de conducteur divisant le niveau N . On précisera
dans la section 3.2, comment, à partir de ξf , on peut retrouver les invariants
(i), (ii), (iii), (iv) et (v) notamment lorsque f est de niveau minimal parmi ses
tordues par des caractères de Dirichlet, auquel cas nous essaierons d’indiquer
en quoi l’information contenue dans ξf est optimale.

Notre travail ne semble pas présenter de lien avec le théorème de Luo et
Ramakrishnan [9] qui caractérise f par les nombres complexes L(f ⊗χ, 1) où
χ parcourt une infinité de caractères quadratiques.

Il résulte du théorème 1 un énoncé de théorie analytique des nombres.

Corollaire 3. Il existe des caractères de Dirichlet χ+ et χ−, pair et impair
respectivement, de conducteurs divisant N et tels que L(f ⊗ χ+, 1) �= 0 et
L(f ⊗ χ−, 1) �= 0.

En raison de la modularité des courbes elliptiques [3] et des résultats obte-
nus par Kato [6] sur la conjecture de Birch et Swinnerton-Dyer et ses variantes,
on obtient des conséquences diophantiennes dont voici l’exemple type.

Corollaire 4. Soit E une courbe elliptique sur Q de conducteur N . Soit
Q(μN ) une extension cyclotomique de Q engendrée par une racine primitive
N -ième de l’unité. Notons Q(μN )+ le plus grand sous-corps totalement réel
de Q(μN ). La représentation régulière du groupe de Galois Gal(Q(μN )+/Q)
n’intervient pas dans le Gal(Q(μN )+/Q)-module E(Q(μN )+).

Le lecteur pourra trouver des généralisations du corollaire 4 pour les
groupes de Selmer p-adiques des motifs associés aux formes modulaires, en
s’appuyant sur [6]. Nous nous demandons s’il existe une direction directe (i.e.
ne faisant pas appel aux formes modulaires) du corollaire 4.

1.4 Perspectives

Comme ξf détermine f , on peut, en principe, exprimer tout invariant associé à
f en terme de ξf , puis en combinant avec le théorème 1, en terme des données
(i), (ii), (iii), (iv) et (v). Ce principe appliqués aux valeurs de fonctions
L construites à partir de f (via des puissances tensorielles, la torsion par
des caractères etc) produirait alors des identités numériques entre valeurs de
fonctions L. Nous donnons un exemple de telles identités dans la section 4.
Dans sa thèse, F. Brunault exprime L(f, 2) en termes des ξf [4], qu’on peut
combiner avec le théorème 1. Y a-t-il une théorie systématique ?
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2 Formulaire préliminaire

Cette section consiste en des mises au points concernant des questions essen-
tiellement déjà connues. Elles concernent en 2.1 la suppression des facteurs
d’Euler des fonctions L, en 2.2 les opérateurs d’Atkin–Lehner, en 2.3 et 2.4 la
torsion des formes modulaires par des caractères non nécessairement primitifs,
en 2.5 la translation des formes modulaires par des nombres rationnels. Dans
les sections 2.6 à 2.8, qui ne seront pas utiles avant la section 3.2, nous rap-
pelons ce qui est connu sur le comportement aux mauvaises places des formes
modulaires tordues. Pour tout cela nous avons trouvé une aide précieuse dans
un article d’Atkin et Li [2].

2.1 Suppression des facteurs d’Euler

On note GL2(Q)+ le sous-groupe de GL2(Q) formé par les matrices de dé-
terminant >0. On pose, pour

(
A B
C D

)
∈ GL2(Q)+, et F forme primitive de

poids k et de niveau M :

F
|
(
A B
C D

)(z) =
(AD −BC)k/2

(Cz +D)k
F

(
Az +B

Cz +D

)
.

Cette opération s’étend C-linéairement à C[GL2(Q)+] ; elle se factorise par
C[PGL2(Q)+]. Gardons à l’esprit la formule suivante

(2π)−sΓ (s)L(F, s) =
∫ ∞

0

F (iy)ys
d y

y
.

On a, pour h =
(
A 0
0 D

)
∈ GL2(Q)+,

∫ ∞

0

F|h(iy)y
s d y

y
=
(
A

D

)k/2−s∫ ∞

0

F (iy)ys
d y

y
=
(
A

D

)k/2−s
(2π)−sΓ (s)L(F, s).

Soient T+ et T− deux ensembles de nombres premiers. On pose

F [T+,T−] = F
|
∏

p∈T+ Lp

(
F,p−k/2

(
p 0
0 1

))−1∏
p∈T− Lp

(
F̄ ,p−k/2

(
1 0
0 p

))−1 ,

de telle sorte que
∫ ∞

0

F [T+,T−](iy)ys
d y

y
=

(2π)−sΓ (s)L(F, s)∏
p∈T+ Lp(F, p−s)

∏
p∈T− Lp(F̄ , ps−k)

= M−s/2Λ[T+,T−](F, s).
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On pose, lorsque R+ et R− sont des sous-ensembles de T+ et T−

respectivement,

F

[
T+

R+ ,
T−
R−
]

= F
[T+−R+,T−−R−]

|
∏

p∈R+ Lp

(
F,p1−k/2

(
p 0
0 1

))−1∏
p∈R− Lp

(
F̄ ,p1−k/2

(
1 0
0 p

))−1

si bien que
∫ ∞

0

F

[
T+

R+ ,
T−
R−
]
(iy)ys

d y

y
= M−s/2Λ

[
T+

R+ ,
T−
R−
]
(F, s).

2.2 Opérateurs d’Atkin–Lehner

Mettons au point les normalisations pour les opérateurs d’Atkin-Lehner.
Notons ψ′ le caractère de nebentypus de F . Notons M ′ le conducteur
de ψ′. Supposons que M soit à support dans ΣN . Soit S un sous-ensemble de
ΣM . Notons S̄ = ΣM−S. PosonsM = MSMS̄ et M ′ = M ′

SM
′̄
S

et ψ′ = ψ′
Sψ

′̄
S
.

Soit
(
A B
C D

)
∈ M2(Z) telle que MS |A, MS |D, M |C, MS̄ |B, AD−BC = MS ,

A ≡ MS (mod M ′) et B ≡ 1 (mod M ′
S) ; on pose alors, comme Atkin et

Li dans [2], WSF = F
|
(
A B
C D

) et il existe un nombre complexe wS(F ) de

module 1 tel que WSF = wS(F )F ⊗ ψ̄′
S . Lorsque

(
A B
C D

)
∈ M2(Z) avec

MS |A, MS|D, M |C, MS̄|B et AD −BC = MS , on a de plus [2]

F
|
(
A B
C D

) = ψ′
S(B)ψ ′̄

S(A/MS)WSF.

Lorsque M |NN ′, M ′|N et lorsque
(
A B
C D

)
∈ M2(Z) vérifie les conditions

NSN
′
S |A,NSN ′

S|D, NN ′ ∣∣C,NS̄N ′̄
S

∣∣B et AD −BC = NSN
′
S , on a

F
|
(
A B
C D

) = wS(F )ψ̄′
S(B)ψ̄ ′̄

S (A/(NSN ′
S))F

|
(
NSN

′
S/MS 0
0 1

).

Lorsque S est égal au support de M , on pose wS(F ) = w(F ).
On a de plus [2] proposition 1.1,

wS(F )wS
(
F ⊗ ψ̄′

S

)
= ψ′

S(−1)ψ̄ ′̄
S(MS). (1)

Mentionnons enfin la formule, pour S1 et S2 deux sous-ensembles disjoints
de ΣM ,

WS2(WS1F ) = ψ′
S2

(MS1)WS1∪S2F.

Cela permet de ramener le calcul de wS(F ) aux cas où S est un singleton.
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Ajoutons la formule suivante. Soit p un nombre premier tel que ap(F ) �= 0
(c’est le cas si et seulement si vp(M) = vp(mψ) ou si vp(M) ≤ 1). On a

w{p}(F ) =
pvp(N)(k/2−1)τ (ψ′

S)
ap(F )vp(N)

où τ (ψ′
S) est la somme de Gauss du caractère (non nécessairement primitif)

ψ′
S . Si p est spécial pour F , on a ap(F )āp(F ) = pk−2.

2.3 Torsion des formes modulaires par des caractères quelconques

Revenons maintenant sur la torsion des formes modulaires par des caractères.
Soit α un caractère de Dirichlet de niveaum, de caractère de Dirichlet primitif
associé ω, lui-même de conducteur mω. Notons f̄α la forme modulaire (non
nécessairement primitive) donnée par le développement

f̄α(z) =
∞∑
n=1

ānα(n)qn.

Elle est liée à la forme primitive f̄ ⊗ ω par la formule

f̄α = (f̄ ⊗ ω)[Σm,∅].

Posons de plus
Sαf̄ =

∑
amodm

ᾱ(a)f̄
|
(

1 a/m
0 1

).

On a, lorsque α est primitif (et donc égal à ω),

Sω f̄ = τ(ω̄)f̄ω.

Soit p un nombre premier divisant m/mω. Notons β le caractère de Dirichlet
de niveau m/p qui coïncide avec α sur les entiers premiers à p. On a

Sαf̄ = āpp
1−k/2(Sβ f̄)

|
(
p 0
0 1

) − β̄(p)Sβ f̄ .

Posons, dans C[X ],

Rp(X) = (āpp1−k/2X)vp(m/mω)−1(āpp1−k/2X − ω̄(p)). (2)

Par une application répétée de la formule 2, on obtient

Sαf̄ = τ(ω̄)(f̄ω)
|
∏

p
Rp

((
p 0
0 1

)),

où le produit porte sur les nombres premiers divisant m/mω.
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Il est nécessaire maintenant de distinguer plusieurs cas. Si vp(m/mω) = 0,
on a Rp = 1. Si vp(m/mω) = 1 et ap = 0, on a Rp = 0. Si vp(m/mω) > 1 et
ap = 0, on a Rp = −ω̄(p).

Or on a, lorsque ap �= 0 et p|N non spécial pour f̄ , apāp = pk−1 et donc,
lorsque de plus p|m on a, dans C[PGL2(Q)+],

Rp

((
p 0
0 1

))
=
(
āpp

1−k/2
(
p 0
0 1

))vp(m/mω) (
1 − ω̄(p)app−k/2

(
1 0
0 p

))
.

Cette dernière formule est encore valable lorsque ap = 0 et vp(m) > 1.
Lorsque p|(m/mω) et p est spécial pour f̄ , on a apāp = pk−2 (et donc

ap �= 0). On a donc

Rp

((
p 0
0 1

))
=
(
āpp

1−k/2
(
p 0
0 1

))vp(m/mω) (
1 − ω̄(p)app1−k/2

(
1 0
0 p

))
.

Lorsque ap = 0, vp(m) = 1 et vp(mω) = 0, on a

Rp

((
p 0
0 1

))
= −ω̄(p).

On a donc

Sαf̄ = τ(ω̄)(f̄ ⊗ ω)

[
Σm,

Σm/mω
Σm/mω

∩Σf

]

|
∏

p
Pp

((
p 0
0 1

)), (3)

où le monôme Pp(X) vaut (āpp1−k/2X)vp(m/mω) sauf si ap = 0, vp(m) = 1 et
vp(mχ) = 0, auquel cas on a Pp

((
p 0
0 1

))
= −ω̄(p).

2.4 La torsion des formes modulaires par des caractères de
niveaux divisant N

Reprenons la situation laissée en 2.3 en nous plaçant dans le cas où N ′ = m
est un diviseur de N .

Lemme 5. Soit p un nombre premier tel que p|mω et p|(N ′/mω). On a

(f̄ ⊗ ω)[∅,p]∣∣∣Pp
((

p 0
0 1

)) = (f̄ ⊗ ω)∣∣∣Pp
((

p 0
0 1

)) .

Démonstration. Il suffit de montrer que Pp = 0 ou que ap(f̄ ⊗ ω) = 0 =
ap,p(f̄⊗ω). Supposons Pp �= 0. Si ap = 0, on a vp(mω) = 0 et vp(N ′) = 1, ce qui
entraîne ap(f̄⊗ω) = 0 = ap,p(f̄⊗ω). Restreignons maintenant notre attention
au cas où ap �= 0. Rappelons d’abord que cela entraîne que le conducteur de
ψ a pour valuation p-adique vp(N) (ce qui entraîne ap,p(f̄ ⊗ ω) = 0) ou que
vp(N) = 1. Les hypothèses excluent le cas vp(N) = 1. On a de plus ap(f̄⊗ω) �=
0 si et seulement si ω est de conducteur premier à p (impossible par hypothèse)
ou ψ̄/ω est de conducteur premier à p ; ce dernier cas est impossible, en effet
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on a p|(N ′/mω), et donc p|(N/mω) et les valuations p-adiques des conducteurs
de ψ et ψ̄/ω sont égales et donc non nulles. On a bien ap(f̄ ⊗ ω) = 0.

On a donc, par applications répétées du lemme 5 à la formule 3,

Sαf̄ = τ(ω̄)(f̄ ⊗ ω)

[
ΣN′ ,

Σ
N′−Σmω

(Σ
N′−Σmω)∩Σf

]

|
∏

p
Pp

((
p 0
0 1

)) , (4)

2.5 La torsion des formes modulaires par des caractères additifs

Soit n ∈ Z. Récrivons la forme modulaire f̄
|
(

1 n/N
0 1

) comme combinaison

linéaire de F( d 0
0 1

) où d parcourt les diviseurs de N et où F parcourt les

formes primitives de niveau divisant N2/d. Nous ne savons pas si un pareil
calcul a déjà été rédigé. Notons n′ le nombre entier et N ′ le diviseur > 0 de
N qui vérifient n′/N ′ = n/N . On a, par inversion de Fourier,

f̄
|
(

1 n′/N ′

0 1

) =
∑
α

α(n′)
φ(N ′)

Sαf̄ ,

où α parcourt les caractères de Dirichlet de niveau N ′. En combinant avec la
formule 4, on obtient

f̄
|
(

1 n/N
0 1

) =
∑
ω

ω(n′)
φ(N ′)

τ(ω̄)(f̄ ⊗ ω)

[
ΣN′ ,

Σ
N′−Σmω

(Σ
N′−Σmω)∩Σf

]

|
∏

p
Pp

((
p 0
0 1

)) (5)

où ω parcourt les caractères de Dirichlet primitifs de conducteur mω divisant
N ′, le produit portant sur les nombres premiers divisant N ′/mω.

2.6 Invariants locaux des tordues de formes modulaires,
première analyse

On reprend les notations de 2.1 et 2.2. Soient n un entier > 0. Supposons mχ

et NS premiers entre eux. On a an(f ⊗ χ) = anχ(n) et

wS(f ⊗ χ) = χ̄(mχ)wS(f).

De plus siN est premier àmχ, le caractère de f⊗χ est ψχ2 et on aNχ = Nm2
χ.

Nous allons maintenant étudier les cas oùmχ,NS et n ne sont pas premiers
entre eux.

Soit p un nombre premier. On dit que f est p-primitive par torsion si pour
tout caractère de Dirichlet χ de conducteur une puissance de p, le niveau de
f ⊗ χ est ≥ N . C’est évidemment une propriété locale, qui serait peut-être
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davantage mise en valeur par le langage adélique. On suppose que mχ, NS et
n sont des puissances de p et que f est p-primitive par torsion.

Notons (ψχ)0 le caractère primitif associé à ψχ. On a

Lp(f ⊗ χ,X)−1 = 1 − āp(ψχ)0(p)
p

X.

Comme on a
fχ = f ⊗ χ

|Lp
(
f⊗χ,

(
p 0
0 1

))−1 .

On a donc, puisque χ est primitif,

f ⊗ χ = fχ
|
(

1− āp(ψχ)(p)
p

(
p 0
0 1

))−1 .

Pour progresser dans l’étude des invariants de f ⊗ χ, il faut distinguer deux
cas [2],
– on a ap(f) �= 0 (cas de série principale), cela assure que f est primitive par
torsion, ou
– on a ap(f) = 0 et le conducteur du caractère de Dirichlet primitif associé
à ψ est de valuation p-adique ≤ vp(N)/2 (cas supercuspidal). (Cette dernière
condition n’entraîne pas que f est p-primitive, voir [2].)

2.7 Invariants locaux des tordues de formes modulaires, cas de
série principale

Reprenons la situation laissée en 2.6 en supposant ap �= 0. On suppose χ non
trivial. Le niveau Nχ de f ⊗ χ est donné par la recette suivante [2]. On a

vp(Nχ) = vp(mχmψχ).

On a [2] théorème 4.1,

wS(f ⊗ χ) = ψ̄S̄(mχ)χ(−1)
τ(ψSχ)
τ(χ̄)

si vp(mχ) ≥ vp(N) et vp(mχψ) = vp(mχ). On a de plus, [2] théorème 4.2,

wS(f ⊗ χ) = ψ̄S̄(mχ)χ(−1)
(
NS
mχ

)k/2−1
τ(ψSχ)

aNS/mχ(f)τ(χ̄)

si vp(mχ) < vp(N). On a enfin, [2] corollaire 4.2,

wS(f ⊗ χ) = ψ̄S̄(mχ)χ(−1)
τ(ψSχ)
τ(χ̄)

si vp(mχ) = vp(N) et vp(mχψ) < vp(mχ).
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2.8 Invariants locaux des tordues de formes modulaires, cas
supercuspidal

Reprenons la situation laissée en 2.6 en supposant ap = 0. On a

vp(Nχ) = max
(
vp
(
m2
χ

)
, vp(mψmχ), vp(N)

)

Posons au préalable, pour tout caractère de Dirichlet primitif ω m′
ω = mω si

ω(p) �= 0 et m′
ω = pmω si ω(p) = 0 On a, [2] théorème 4.1,

wS(f ⊗ χ) = ψ̄S̄(mχ)χ(−1)
τ(ψSχ)
τ(χ̄)

si vp(mχ) ≥ vp(N). On a enfin, [2] théorème 4.5,

wS(f ⊗ χ) = wS(f)
ψS̄(NS/mχ)χ(−1)ψS(−1)(
N ′′
χ,S/NS

)
φ(NS/mχ)

1
τ(χ̄)

∑
ω

τ(ω)τ(χψSω)wf⊗ψ̄S ω̄

si vp(mχ) < vp(N), où N ′′
χ,S = max

(
NS , NSmψ/mχ, N

2
S/m

2
χ

)
et où ω

parcourt les caractères de Dirichlet tels que m′
ω = NS/mχ et mχψSω =

N ′′
χ,Smχ/NS. En particulier, lorsque vp(mχ) > vp(N)/2, wS(f ⊗ χ) se dé-

duit de la collection des wS(f ⊗ ω), pour ω caractère vérifiant m2
ω|NS ; en

particulier, lorsque vp(mχ) > vp(N)/2, wS(f ⊗ χ) se déduit de la collection
des wS(f ⊗ ω) pour Nω,S = NS .

2.9 Invariants locaux des tordues de formes primitives
par torsion, conclusion

Supposons f primitive par torsion (c’est-à-dire p-primitive par torsion pour
tout nombre premier p). La donnée de ap(f) et de wS(f ⊗ ω) (p ∈ ΣN ,
S ⊂ ΣN , et ω caractère primitif tel que Nω = N et ar(f) = 0 (r ∈ S et
r|mχ)) détermine Nχ, ap(f ⊗ χ), wS(f ⊗ χ) (p ∈ ΣN , S ⊂ ΣN ).

3 Le théorème 1 et ses corollaires

3.1 La démonstration du théorème 1

Soit g =
(
a b
c d

)
∈ SL2(Z) telle que la classe modulo N de (c, d) soit égale à

(u, v).
On peut comprendre notre démarche ainsi. La fonction f|g est une forme

modulaire pour le groupe de congruence Γ (N), si bien que la fonction
f
|g
(
N 0
0 1

) est modulaire pour le groupe de congruence Γ1(N)∩Γ0(N2). Cette

dernière forme modulaire s’écrit donc comme combinaison linéaire de fonctions
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du type F
|
(
d 0
0 1

), où F parcourt les formes primitives de niveau M divisant

N2 et d les entiers divisant N2/M . Nous allons montrer que les formes primi-
tives qui interviennent dans cette écriture sont de la forme f⊗χ, où χ parcourt
les caractères de Dirichlet de niveau divisant N et donner explicitement les
coefficients de cette combinaison linéaire.

Lorsque k = 2, on a ξf (u, v) =
∫∞
0 f|g(iy) dy. Lorsque, de plus, s = 1 et

h est une matrice diagonale de PGL2(Q)+, et χ est un caractère de Dirichlet
de conducteur divisant N , on a

∫ ∞

0

(f ⊗ χ)|h(iy)d y =
1
2π
L(f ⊗ χ, 1) =

1√
Nχ

Λ(f ⊗ χ, 1).

C’est pourquoi le théorème 1 se déduit de la proposition 6 suivante, par in-
tégration de chaque membre de l’égalité ci-dessous le long de la géodésique
reliant 0 à ∞ dans le demi-plan de Poincaré.

Remarquons que la proposition 6 permet de démontrer des analogues du
théorème 1 pour les formes modulaires de poids �= 2. (Voir par exemple la
thèse de F. Martin lorsque k = 1 [13].)

Proposition 6. On a

f|g =
w(f)
φ(N ′)

∑
χ

χS̄(mχ,S)(ψ̄Sχ̄S)(mψχ,S̄)(ψSχS)(−1)τ ′(χS)τ ′(ψ̄S̄χ̄S̄)

(
ψ̄S̄χ̄

2
S̄

)
(Nχ,S)wS(f ⊗ χ)(ψ̄χ̄)

(
N ′̄
S
v

NS̄

)
χ

(
N ′
Su

NS

)

(f ⊗ χ)

[
Σ
N′−S(mχ)

(S(N′)−S(mχ))∩Σf
,

Σ
N′−S̄(m

ψ̄χ̄
)

(S̄(N′)−S̄(m
ψ̄χ̄

))∩Σf

]

|

(
N′
S̄

Nχ,SNS̄mψχ,S̄
0

0
N′
S

NSmχ̄,S

)
(∗∗)

,

où χ parcourt les caractères de Dirichlet primitifs tel que mχ,Smψχ,S̄ |N ′ et où

∗∗ =
∏

p∈S(N ′)

Qp,f,χ̄

(
1 0
0 p

) ∏

p∈S̄(N ′)

Qp,f,χψ

(
p 0
0 1

)
.

Démonstration. Considérons
(
A B
C D

)
∈ M2(Z) telle que NSN ′

S |A,NSN ′
S |D,

NN ′ ∣∣C,NS̄N ′̄
S

∣∣B, AD − BC = NSN
′
S , A ≡ uN ′

S (mod NS̄) et B ≡ v/NS̄
(mod NS). Soit k ∈ Z tel que n ≡ uv (mod NS̄) et n ≡ −uv (mod NS).
Notre point de départ réside dans l’identité

Γ1(N)g = Γ1(N)
(

0 −1
N 0

)(
1 n/N
0 1

)(
A B
C D

)(
NN ′

S 0
0 NS

)−1

,
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que le lecteur vérifiera grâce au lemme chinois. Comme w(f)f̄ = f
|
(

0 1
−N 0

),

on a la formule

f|g = w(f)f̄
|
(

1 n/N
0 1

)(
A B
C D

)(
NN ′

S 0
0 NS

)−1 ,

et donc, d’après la formule 5,

f|g = w(f)
∑
ω

ω(n′)
φ(N ′)

τ(ω̄)(f̄ ⊗ ω)

[
ΣN′ ,

Σ
N′−Σmω

(Σ
N′−Σmω)∩Σf

]

|
∏

p
Pp

((
p 0
0 1

))(
A B
C D

)(
NN ′

S 0
0 NS

)−1

(6)
où ω parcourt les caractères de Dirichlet primitifs de conducteur mω divisant
N ′, le produit portant sur les nombres premiers divisant N ′.

Appliquons les formules de 2.2 à F = f̄ ⊗ ω : on a M = Nω, ψ′ = ψ̄ω2 et
F ⊗ ψ̄′

S = f̄ ⊗ ωψSω̄
2
S = f̄ ⊗ ψSω̄SωS̄ = f ⊗ ψ̄S̄ω̄SωS̄ .

Soit p ∈ ΣN . Soit r un entier ≥ 0. On a

(f̄ ⊗ ω)
|
(
pr 0
0 1

)(
A B
C D

) = (f̄ ⊗ ω)
|
(
prA B
C D/pr

)(
1 0
0 pr

)

si p ∈ S et

(f̄ ⊗ ω)
|
(
pr 0
0 1

)(
A B
C D

) = (f̄ ⊗ ω)
|
(

A prB
C/pr D

)(
pr 0
0 1

)

si p ∈ S̄. On a de plus les formules

(f̄ ⊗ ω)
|
(
prA B
C D/pr

) =
(
ψSω̄

2
S

)
(B)

(
ψS̄ω̄

2
S̄

)
(prA/ (NSN ′

S))

wS(f̄ ⊗ ω)(f̄ ⊗ ωS̄ω̄SψS)
|
(
NSN

′
S/Nω̄,S 0
0 1

)

lorsque pr| (NSN ′
S/Nω,S) et

(f̄ ⊗ ω)
|
(

A prB
C/pr D

) =
(
ψSω̄

2
S

)
(prB)

(
ψS̄ω̄

2
S̄

)
(A/ (NSN ′

S))

wS(f̄ ⊗ ω)(f̄ ⊗ ωS̄ω̄SψS)
|
(
NSN

′
S/Nω̄,S 0
0 1

)

lorsque pr| (NS̄N ′̄
S
/Nω,S̄

)
. Soit P ∈ C[X ]. On a alors

(f̄ ⊗ ω)
|P
(
p 0
0 1

)(
A B
C D

) =
(
ψSω̄

2
S

)
(B)

(
ψS̄ω̄

2
S̄

)
(A/ (NSN ′

S))wS(f̄ ⊗ ω)

(f̄ ⊗ ωS̄ω̄SψS)
|P
(
(ψS̄ ω̄2

S̄
)(p)
(

1 0
0 p

))( NSN
′
S

Nω̄,S
0

0 1

).
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si p ∈ S et P de degré ≤ vp (NSN ′
S/Nω,S) et on a

(f̄ ⊗ ω)
|P
(
p 0
0 1

)(
A B
C D

) =
(
ψS ω̄

2
S

)
(B)

(
ψS̄ ω̄

2
S̄

) (
A/
(
NSN

′
S

))
wS(f̄ ⊗ ω)

(f̄ ⊗ ωS̄ω̄SψS)
|P
(
(ψS ω̄2

S)(p)
(
p 0
0 1

))( NSN
′
S

Nω̄,S
0

0 1

).

si p ∈ S̄ et P de degré ≤ vp
(
NS̄N

′̄
S
/Nω,S̄

)
.

On en déduit que

(f̄ ⊗ ω)[{p},∅]
|
(
A B
C D

) =
(
ψS ω̄

2
S

)
(B)

(
ψS̄ω̄

2
S̄

)
(A/ (NSN ′

S))

wS(f̄ ⊗ ω)(f̄ ⊗ ωS̄ω̄SψS)[∅,{p}]
|
(
NSN

′
S/Nω̄,S 0
0 1

)

si et p ∈ S et

(f̄ ⊗ ω)[{p},∅]|
(
A B
C D

)
=
(
ψS ω̄

2
S

)
(B)

(
ψS̄ω̄

2
S̄

)
(A/ (NSN ′

S))

wS(f̄ ⊗ ω)(f̄ ⊗ ωS̄ω̄SψS)[{p},∅]
|
(
NSN

′
S/Nω̄,S 0
0 1

)

si p ∈ S̄. Un calcul analogue donne les formules

(f̄ ⊗ ω)[∅,{p}]
|
(
A B
C D

) =
(
ψS ω̄

2
S

)
(B)

(
ψS̄ω̄

2
S̄

)
(A/ (NSN ′

S))

wS(f̄ ⊗ ω)(f̄ ⊗ ωS̄ω̄SψS)[{p},∅]
|
(
NSN

′
S/Nω̄,S 0
0 1

)

si et p ∈ S et

(f̄ ⊗ ω)[∅,{p}]|
(
A B
C D

)
=
(
ψSω̄

2
S

)
(B)

(
ψS̄ω̄

2
S̄

)
(A/ (NSN ′

S))

wS(f̄ ⊗ ω)(f̄ ⊗ ωS̄ω̄SψS)[∅,{p}]
|
(
NSN

′
S/Nω̄,S 0
0 1

)

si p ∈ S̄.
Dans les quatre formules qui précèdent, on peut remplacer, partout où il

intervient, le symbole {p} par {p}
{p}∩Σf .

Remarquons qu’on a, dans C(X), Qp,f,ω(X) = X−vp(N ′/mχ)Pp(X). On a
∏

p∈S(N′)

Pp

((
ψS̄ ω̄

2
S̄

)
(p)

(
1 0
0 p

)) ∏
p∈S̄(N′)

Pp

((
ψSω̄

2
S

)
(p)

(
p 0
0 1

))

=
(
ψS̄ ω̄

2
S̄

) (
N ′
S/mω,S

) (
ψS ω̄

2
S

) (
N ′̄
S
/mω,S̄

)(N ′̄
S
/mω,S 0
0 N ′

S/mω,S̄

)

×
∏

p∈S(N′)

Qp,f,ω

((
ψS̄ω̄

2
S̄

)
(p)

(
1 0
0 p

)) ∏
p∈S̄(N′)

Qp,f,ω

((
ψSω̄

2
S

)
(p)

(
p 0
0 1

))
.
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Revenons à la formule 6. On a

(f̄ ⊗ ω)

[
ΣN′ ,

Σ
N′−Σmω

(Σ
N′−Σmω)∩Σf

]

|
∏

p
Pp(

(
p 0
0 1

)
)

(
A B
C D

)(
NN ′

S 0
0 NS

)−1

=
(
ψSω̄

2
S

)(N ′̄
S
B

mω,S̄

)(
ψS̄ω̄

2
S̄

)( A

NSmω,S

)

wS(f̄ ⊗ ω)(f̄ ⊗ ωS̄ω̄SψS)

[
Σ
N′−S(mχ)

(S(N′)−S(mχ))∩Σf
,

Σ
N′−S̄(m

ψ̄χ̄
)

(S̄(N′)−S̄(m
ψ̄χ̄

))∩Σf

]

|

(
N′
S̄

Nω̄,SNS̄mω,S̄
0

0
N′
S

NSmω,S

)
(∗∗)

, (7)

où

∗∗ =
∏

p∈S(N′)

Qp,f,ω

((
ψS̄ ω̄

2
S̄

)
(p)

(
1 0
0 p

)) ∏
p∈S̄(N′)

Qp,f,ω

((
ψSω̄

2
S

)
(p)

(
p 0
0 1

))
.

Par ailleurs, on a les formules
(
ψSω̄

2
S

) (
N ′̄
SB
)

=
(
ψSω̄

2
S

) (
N ′̄
Sv/NS̄

)
,
(
ψS̄ω̄

2
S̄

)
(A/NS) =

(
ψS̄ω̄

2
S̄

)
(uN ′

S/NS)

et

ω(n′) = ω(nN ′/N) = ωS(nN ′/N)ωS̄(nN ′/N) = ωS(−uvN ′/N)ωS̄(uvN ′/N)

et donc
ω(n′) = ωS(−1)ω (uN ′

S/NS)ω
(
vN ′̄

S/NS̄
)
.

On a donc la simplification

ω(n′)
(
ψS ω̄

2
S

) (
N ′̄
SB
) (
ψS̄ω̄

2
S̄

)( A

NS

)
= ωS(−1)ψS ω̄SωS̄

(
N ′̄
Sv

NS̄

)
ψS̄ω̄S̄ωS

(
N ′
Su

NS

)
.

De plus on a

Qp,f,ω

((
ψS̄ω̄

2
S̄

)
(p)
(

1 0
0 p

))
= Qp,f,ω̄S̄ωSψS̄

((
1 0
0 p

))

si p ∈ S et

Qp,f,ω

((
ψSω̄

2
S

)
(p)
(
p 0
0 1

))
= Qp,f,ωS̄ω̄SψS

((
p 0
0 1

))

si p ∈ S̄.
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En combinant avec la formule 7, on obtient

f|g =
w(f)

φ(N ′)

∑
ω

(
ψ̄S̄ω

2
S̄

)
(mω,S)

(
ψ̄Sω

2
S

)
(mω,S̄)(ψSω̄SωS̄)

(
N ′
S̄
v

NS̄

)
(ψS̄ ω̄S̄ωS)

(
N ′
Su

NS

)

×τ(ω̄)ωS(−1)wS(f̄⊗ω)(f̄⊗ωS̄ω̄SψS)

[
Σ
N′−S(mχ)

(S(N′)−S(mχ))∩Σf
,

Σ
N′−S̄(m

ψ̄χ̄
)

(S̄(N′)−S̄(m
ψ̄χ̄

))∩Σf

]

|

(
N′
S̄

Nω̄,SNS̄mω,S̄
0

0
N′
S

NSmω,S

)
(∗∗)

,

(8)
où ω parcourt les caractères de Dirichlet primitifs de conducteur divisant N ′

et où

∗∗ =
∏

p∈S(N ′)

Qp,f,ω̄S̄ωSψS̄

(
1 0
0 p

) ∏
p∈S̄(N ′)

Qp,f,ωS̄ω̄SψS

(
p 0
0 1

)
.

Simplifions encore cette formule. On a la relation entre sommes de Gauss

τ(ω̄) = ω̄S(mω̄,S̄)ω̄S̄(mω̄,S)τ(ω̄S)τ(ω̄S̄).

Cela donne

τ (ω̄)
(
ψ̄S̄ω

2
S̄

)
(mω,S)

(
ψ̄Sω

2
S

)
(mω,S̄) = τ (ω̄S)τ (ω̄S̄)(ψ̄S̄ωS̄)(mω,S)(ψ̄SωS)(mω,S̄).

Récrivons 8 en notant χ le caractère de Dirichlet primitif associé à ωS̄ω̄Sψ̄S̄ .
On a donc χS = ω̄S et χS̄ = ωS̄ψ̄S̄ , S(mω) = S(mχ), S̄(mω) = S̄(mψχ),
Nω̄,S = Nχ,S et ωS(−1) = χS(−1).

On obtient

f|g =
w(f)

φ(N ′)

∑
χ

τ ′(χS)τ ′(ψ̄S̄ χ̄S̄)χS(−1)χS̄)χS̄(mχ,S)(ψ̄S χ̄S)(mψχ,S̄)

(ψ̄χ̄)

(
N ′̄
S
v

NS̄

)
χ

(
N ′
Su

NS

)
wS(f⊗ψ̄S χ̄SχS̄)(f⊗χ)

[
Σ
N′−S(mχ)

(S(N′)−S(mχ))∩Σf
,

Σ
N′−S̄(m

ψ̄χ̄
)

(S̄(N′)−S̄(m
ψ̄χ̄

))∩Σf

]

|

(
N′
S̄

Nχ,SNS̄mψχ,S̄
0

0
N′
S

NSmχ̄,S

)
(∗∗)

,

(9)

où χ parcourt les caractères de Dirichlet primitifs de conducteur divisant N ′

et où
∗∗ =

∏
p∈S(N ′)

Qp,f,χ̄

(
1 0
0 p

) ∏
p∈S̄(N ′)

Qp,f,χψ

(
p 0
0 1

)
.

Appliquons la relation 1 pour F = f ⊗ χ (et donc ψ′ = ψχ2). On obtient

wS(f ⊗ χ)wS(f ⊗ ψ̄Sχ̄SχS̄) = ψS(−1)
(
ψ̄S̄χ̄

2
S̄

)
(Nχ,S).

Cela permet de substituer wS(f ⊗ ψ̄Sχ̄SχS̄) dans 9 pour obtenir la
proposition 6.
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3.2 Réciproque du corollaire 2 et observations algorithmiques sur
les aspects locaux

Le lecteur vérifiera sans peine que les termes qui apparaissent dans la formule
du théorème 1 se déduisent des invariants dont la liste est donnée dans le
corollaire 2.

Nous nous proposons dans cette section d’étudier la réciproque : comment
la fonction ξf permet de retrouver les données (i), (ii), (iii), (iv), et (v). La
procédure à suivre pour cette étude nous paraît plus agréable lorsque ξf est
primitive par torsion.

a. Les invariants de f en termes de la fonction ξf

On obtient le caractère de nebentypus ψ de f grâce à la formule ξf (λu, λv) =
ψ̄(λ)ξf (u, v) (u, v ∈ (Z/NZ), λ ∈ (Z/NZ)∗). On peut déterminer apξf (et
donc Lp(f, p−s)) et ξWSf lorsque p est un nombre premier et S un sous-
ensemble de ΣN grâce aux formules données dans [15], théorèmes 2 et 5.

b. Torsion de f par des caractères ω tels que N = Nω

Supposons f primitive par torsion.

Proposition 7. Soit ω un caractère de Dirichlet primitif tel que N = Nω
et tel que pour tout nombre premier p divisant mω on a ap(f) = 0. Soit
(u, v) ∈ (Z/NZ)2 d’ordre N . Choisissons un sous-groupe cyclique C d’ordre
mω de (Z/NZ)2 tel que C ∩ Z(u, v) = {0}. On a alors

w(f)w(f̄ ⊗ ω̄)ξf⊗ω(u, v) =
1

τ(ω)

∑
(x,y)∈(u,v)+C

ω((yu− xv)m/N)ξf (x, y).

Démonstration. Puisque f est primitive par torsion, et que ap(f) = 0 pour
tout nombre premier p divisantmω, on a f⊗ω̄ = fω̄. Appliquons la section 2.3,

f ⊗ ω̄ = fω̄ =
1

τ(ω)
Sω̄f =

1
τ(ω)

m−1∑
t=0

ω(t)f
|
(

1 t/m
0 1

).

On a donc, puisque Nω = N ,

w(f)w(f̄ ⊗ ω̄)f ⊗ ω =
1

τ(ω)

m−1∑
t=0

ω(t)f
|
(

0 −1
N 0

)(
1 t/m
0 1

)(
0 −1
N 0

)

=
1

τ(ω)

m−1∑
t=0

ω(t)f
|
(

1 0
−tN/m 1

).
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Soit
(
a b
c d

)
x ∈ SL2(Z) telle que (c, d) ∈ (u, v). On a

w(f)w(f̄ ⊗ ω̄)f ⊗ ω
|
(
a b
c d

) =
1

τ(ω)

m−1∑
t=0

ω(t)f
|
(

1 0
−tN/m 1

)(
a b
c d

).

Cela se traduit par la formule :

w(f)w(f̄ ⊗ ω̄)ξf⊗ω(u, v) =
1

τ(ω)

m−1∑
t=0

ω(t)ξf (c− atN/m, d− btN/m).

Posons (x, y) = (c−atN/m, d− btN/m) dans (Z/NZ)2. On a alors la relation
xv− yu = −tN/m. Lorsque t décrit les entiers de 0 à m− 1, (atN/m, btN/m)
décrit bien un sous-groupe C comme indiqué dans l’énoncé de la proposition.

c. Les invariants locaux des tordues de f par des caractères χ tels
que Nω = N

Soit ω un caractère de Dirichlet tel que Nω = N et tel que pour tout nombre
premier p divisant mω on a ap(f) = 0. Supposons f primitive par torsion.
L’étape b. permet de connaître la fonction ξf⊗ω à multiplication par un sca-
laire près. Cela permet de déterminer le facteur Lp(f ⊗ χ, p−s) et wS(f ⊗ χ)
pour p ∈ ΣN et S ⊂ ΣN grâce encore à [15], théorèmes 2 et 5.

d. Les invariants locaux des tordues de f ⊗ χ pour χ caractère
quelconque

Supposons encore f primitive par torsion. Les invariants locaux de f ⊗ χ,
pour χ caractère quelconque, se déduisent des invariants locaux de f⊗ω pour
ω parcourant les caractères tels que Nω = N , d’après la conclusion 2.9 des
sections 2.6, 2.7, et 2.8.

e. Les nombres Λ(f ⊗ χ, 1) pour χ caractère de niveau divisant N

Supposons encore f primitive par torsion. Après l’étape d, tous les termes
qui interviennent dans la formule du théorème 1 sont déterminés, excepté
les valeurs Λ(f ⊗ χ, 1) pour χ caractère de niveau divisant N . Ces derniers
nombres sont eux aussi déterminés par le théorème 1, il suffit de s’assurer
qu’ils interviennent au moins une fois précédés d’un coefficient non nul. C’est
bien le cas, si on choisit u et v tels que N ′ = mχ.

f. Que faire lorsque f n’est pas primitive par torsion ?

Indiquons succinctement comment on peut ramener le cas général (i.e. f n’est
pas primitive par torsion) au cas où f est primitive par torsion. Pour cela il
faut déterminer quel caractère χ0 est tel queNχ0 soit minimal, puis déterminer
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Nχ0 et la fonction ξf⊗χ0 : (Z/Nχ0Z)2 → C. Pour cela on peut considérer tous
les caractères χ de niveau divisant N et les formes modulaires fχ qui sont
propres pour presque tous les opérateurs de Hecke d’indice premiers. On peut
déterminer les symboles de Manin associés à fχ.

Le problème revient, alors à la question suivante. Soit F une forme modu-
laire propre pour presque tout opérateur de Hecke d’indice premier de forme
primitive associée F0. Étant donné ξF , comment trouver F0 ? C’est possible
si on connaît l’action des morphismes de dégénérescence sur les symboles de
Manin. Les formules dans ce sens sont données dans [15], proposition 15, 16
et 17. Cette manipulation est moins agréable que celles que nous avons faites
lorsque f est primitive par torsion.

3.3 Équations fonctionnelles et relations de Manin

Dans [10], Manin décrit deux familles d’équations fonctionnelles satisfaites par
ξf (dites relations de Manin) :

ξf (u, v) + ξf (−v, u) = 0 (10)

et
ξf (u, v) + ξf (v,−u− v) + ξ(−u− v, u) = 0 (11)

((u, v) ∈ (Z/NZ)2). Observons comment se traduit la relation 10 en utilisant
la formule du théorème 1. Pour cela remarquons que le théorème 1 a la forme
suivante :

ξf (u, v) =
∑
χ

cχ,Scψ̄χ̄,S̄χS(−1)
(
ψ̄S̄χ̄

2
S̄

)
(Nχ,S )wS(f ⊗ χ)

Λ

[
Σ
N′−S(mχ)

(S(N′)−S(mχ))∩Σf
,

Σ
N′−S̄(m

ψ̄χ̄
)

(S̄(N′)−S̄(m
ψ̄χ̄

))∩Σf

]
(f ⊗ χ, 1)(ψ̄χ̄)

(
N ′̄
S
v

NS̄

)
χ

(
N ′
Su

NS

)
,

où χ parcourt les caractères de Dirichlet primitifs tels que mχ,Smψχ,S̄ |N ′ et
où cχ,S et cψ̄χ̄,S̄ dépendent de f , χ, N ′ et S mais pas de (u, v) et sont échangés
par (χ, S) �→ (χ̄ψ̄, S̄).

On peut appliquer le théorème 1 à ξ(u, v) et ξ(−v, u). L’identité 10 se tra-
duit alors par une identification des χ-èmes termes pour chaque caractère χ.
Après échanges simultanés de u et −v, de S et S̄ et des termes correspondant à
χ et ψ̄χ̄ on retrouve alors l’équation fonctionnelle de la fonction s �→ Λ(f⊗χ, s)
en s = 1. Après vérification de la non nullité de suffisamment de coefficients
(comme dans la section 3.2 étape e), on peut même établir qu’il y a équivalence
entre la relation 10 et la totalité des équations fonctionnelle des Λ(f ⊗ χ, s)
en s = 1 pour χ parcourant les caractères de Dirichlet de conducteurs
divisant N .

On peut se demander, en ayant à l’esprit les théorèmes inverses, com-
ment interpréter la relation 11 en termes de fonctions L. Nous n’avons de
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réponse satisfaisante à cette question. Nous pouvons tout juste rappeler que
les relations 10 et 11 sont équivalentes à 10 et

ξf (u, v) − ξf (v, u + v) − ξ(u+ v, v) = 0 (12)

((u, v) ∈ (Z/NZ)2). La famille de relations 12 a été mise en évidence par
Lewis [7].

4 Produit de formes modulaires

4.1 Le produit scalaire de Petersson

Soit Γ un sous-groupe d’indice fini de SL2(Z). Soient f1 et f2 deux formes
modulaires paraboliques de poids 2 pour Γ . Rappelons que le produit scalaire
de Petersson de f1 et f2 est donné par la formule :

〈f1, f2〉 =
1

[SL2(Z) : Γ ]

∫

DΓ

f1(z)f2(z)dx dy,

où DΓ est un domaine fondamental pour Γ dans le demi-plan de Poincaré H.
Posons τ =

(
0 −1
1 −1

)
et σ =

(
0 −1
1 0

)
. Posons de plus ρ = e2iπ/3 ∈ H. Soit R

un système de représentants de Γ\SL2(Z).

Théorème 8. On a

〈f1, f2〉 =
1

2i[SL2(Z) : Γ ]

∑
g∈R

∫ g∞

g0

f1(z) dz
∫ gρ

gi

f2(z) dz,

et

〈f1, f2〉

=
−i

12[SL2(Z) : Γ ]

∑
g∈R

∫ gτ∞

gτ0

f1(z) dz

∫ g∞

g0

f2(z) dz −
∫ g∞

g0

f1(z) dz

∫ gτ∞

gτ0

f2(z) dz.

Démonstration. Posons ω1 = f1(z) dz et ω2 = f2(z) dz. Pour g dans SL2(Z),
posons ωj |g = fj |g dz (j ∈ {1, 2}). Considérons le domaine fondamental D0

pour SL2(Z) constitué par le triangle hyperbolique de sommets ∞, 0 et ρ.
On a

〈f1, f2〉 =
1

2i[SL2(Z) : Γ ]

∫

DΓ

ω1 ∧ ω2 =
1

2i[SL2(Z) : Γ ]

∑
g∈R

∫

D0

ω1|g ∧ ω2|g.
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Posons Fg(z) =
∫ z
ρ
f2|g(u) du. On a df1|gFg(z) dz = ω1 ∧ ω2. Cela donne, par

la formule de Stokes,

2i[SL2(Z) : Γ ] 〈f1, f2〉 =
∑
g∈R

∫

∂D0

f1|gFg(z) dz

=
∑
g∈R

∫ 0

∞
f1|gFg(z) dz +

∫ ρ

0

f1|gFg(z) +
∫ ρ

0

f1|gFg(z).

Utilisons que σ est d’ordre 2 dans PSL2(Z) et qu’on a τρ = ρ et τ∞ = 0.
Cela donne

2i[SL2(Z) : Γ ] 〈f1, f2〉

=
1
2

∑
g∈R

∫ 0

∞
f1|gFg(z) dz +

∫ 0

∞
f1|gσFgσ(z) dz +

∑
g∈R

∫ ρ

∞
f1|gFg(z) dz

+
∫ ∞

ρ

f1|gτFgτ (z) dz.

Utilisons la relation Fgh(hz) =
∫ z
h−1ρ f2|g(u) du. On obtient

2i[SL2(Z) : Γ ] 〈f1, f2〉 =
1
2

∑
g∈R

∫ 0

∞
ω1|g

∫ ρ

σρ

ω2|g +
∫ ∞

ρ

ω1|gτ

∫ ρ

τ2ρ

ω2|g.

Le dernier terme est nul. Décomposons le deuxième facteur du premier terme.
On a

2i[SL2(Z) : Γ ] 〈f1, f2〉 =
1
2

∑
g∈R

∫ ∞

0

ω1|g

(∫ σi

σρ

ω2|g +
∫ ρ

σi

ω2|g

)
.

Comme σi = i, et comme
∫∞
0
ω1|g

(∫ σi
σρ
ω2|g

)
=
∫∞
0
ω1|gσ

(∫ ρ
i
ω2|gσ

)
, on a la

première formule du théorème.
Démontrons maintenant la deuxième formule. On a

2i[SL2(Z) : Γ ] 〈f1, f2〉 =
∑
g∈R

∫ ∞

0

ω1|g

∫ ∞

i

ω2|g −
∫ ∞

0

ω1|g

∫ ∞

ρ

ω2|g.

Calculons séparément les deux séries de termes. On a

∑
g∈R

∫ ∞

0

ω1|g

∫ ∞

i

ω2|g =
1
2

∑
g∈R

∫ ∞

0

ω1|g

∫ ∞

i

ω2|g +
∫ ∞

0

ω1|gσ

∫ ∞

i

ω2|gσ,

et comme σ∞ = 0,

∑
g∈R

∫ ∞

0

ω1|g

∫ ∞

i

ω2|g =
1
2

∑
g∈R

∫ ∞

0

ω1|g

∫ ∞

0

ω2|g.
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Par ailleurs, on a
∫ ∞

0

ω1|g

∫ ∞

ρ

ω2|g

=
1
3

∑
g∈R

∫ ∞

0

ω1|g

∫ ∞

ρ

ω2|g +
∫ ∞

0

ω1|gτ

∫ ∞

ρ

ω2|gτ +
∫ ∞

0

ω1|gτ2

∫ ∞

ρ

ω2|gτ2 .

Remarquons qu’on a
∫∞
0
ω1|g+

∫∞
0
ω1|gτ +

∫∞
0
ω1|gτ2 = 0. C’est pourquoi on a

∫ ∞

0

ω1|g

∫ ∞

ρ

ω2|g

=
1

3

∑
g∈R

∫ ∞

0

ω1|gτ

(∫ ∞

ρ

ω2|gτ −
∫ ∞

ρ

ω2|g

)
+

∫ ∞

0

ω1|gτ2

(∫ ∞

ρ

ω2|gτ2 −
∫ ∞

ρ

ω2|g

)
.

Comme
(∫∞

ρ
ω2|gτ −

∫∞
ρ
ω2|g

)
= − ∫∞

0
ω2|g et comme

∫∞
ρ
ω2|gτ2 −∫∞

ρ
ω2|g =∫∞

0
ω2|gτ2 , on obtient, en posant λj(g) =

∫∞
0
ωj (j ∈ {1, 2}),

∫ ∞

0

ω1|g

∫ ρ

i

ω2|g =
1
2

∑
g∈R

λ1(g)λ2(g)+
1
3

∑
g∈R

λ1(gτ)λ2(g) − 1
3

∑
g∈R

λ1(gτ)λ2(g)

=
1
6

∑
g∈R

λ1(g)λ2(g) +
1
3

∑
g∈R

λ1(gτ)λ2(g).

En utilisant la relation λ1(g) + λ1(gτ) + λ1(gτ2) = 0, on obtient finalement
∫ ∞

0

ω1|g

∫ ρ

i

ω2|g =
1
6

∑
g∈R

λ1(gτ)λ2(g) − 1
6

∑
g∈R

λ1(gτ)λ2(gτ2).

Cela achève la démonstration.

Corollaire 9. Supposons qu’on ait Γ = Γ1(N), on a

〈f1, f2〉
=

i

12[SL2(Z) : Γ1(N)]

∑
(u,v)∈(Z/NZ)2

ξf1 (v,−u− v)ξf2 (u, v) − ξf1(u, v)ξf2 (v,−u− v).

Démonstration. C’est une application directe de la deuxième formule du
théorème 8, en tenant compte de la formule (j ∈ {1, 2})

ξfj (u, v) = −i
∫ g∞

g0

fj(z) dz,

où g =
(
a b
c d

)
∈ SL2(Z) vérifie (c, d) ∈ (u, v).
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4.2 La fonction L du carré tensoriel

Supposons la forme modulaire f de caractère de nebentypus trivial et de
niveau N premier. Considérons la série de Dirichlet

L(f ⊗ f, s) =
∞∑
n=1

a2
n

ns
.

Elle admet un prolongement méromorphe au plan complexe, avec un pôle
simple en s = 2 et on a [16] (notre normalisation pour le produit scalaire de
Petersson est en rapport π/3 = vol(SL2(Z)\H) avec celle de [16])

Ress=2L(f ⊗ f, s) = 12π 〈f, f〉 .
Théorème 10. On a

Ress=2L(f ⊗ f, s) =
2πi

(N + 1)(N − 1)2
∑

χ,χ′,χχ′(−1)=−1

Λ(f ⊗ χ′, 1)Λ(f ⊗ χ, 1)
τ(χχ′)

,

où χ et χ′ parcourent les caractères de Dirichlet primitifs de conducteur N
tels que χχ′ soit impair.

Démonstration. Partons de la formule donnée dans le corollaire 9. On a,
puisque N est premier, [SL2(Z) : Γ1(N)] = (N2 − 1) et donc

〈f, f〉 =
i

12(N2 − 1)

∑
(u,v)∈(Z/NZ)2

ξf (v,−u−v)ξf (u, v)−ξf(u, v)ξf (v,−u− v).

Venons-en à la fonction ξf . Puisque le nebentypus de f est trivial, la fonc-
tion ξf est homogène. C’est pourquoi on pose, pour u/v ∈ P1(Z/NZ) =
Z/NZ ∪ {∞},

ξf (u/v) = ξf (u, v).

Cela permet d’écrire

〈f, f〉 =
i

12(N + 1)

∑
x∈P1(Z/NZ)

ξf

(
− 1
x+ 1

)
ξf (x) − ξf (x)ξf

(
− 1
x+ 1

)
.

Utilisons la relation de Manin ξf (x) + ξf (−1/x) = 0 (x ∈ P1(Z/NZ)). On
obtient

〈f, f〉 =
i

12(N + 1)

∑
x∈P1(Z/NZ)

ξf (x)ξf (x+ 1) − ξf (x+ 1)ξf (x).

Le terme correspondant à x = ∞ est nul dans la somme qui précède. Par
application des relations de Manin, on a les relations ξf (1/0) + ξf (0/1) = 0
et ξf (1/0) + ξf (0/1) + ξf (−1/1) = 0. On en déduit ξf (−1) = 0 et ξf (1) = 0.
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C’est pourquoi on a également la nullité des termes correspondant à x = 0 et
x = −1. On a donc, si on ne conserve que les termes correspondant à x �= 0,
x �= 1 et x �= ∞ et si on change de plus x en −x,

〈f, f〉 =
i

12(N + 1)

∑
x∈(Z/NZ)∗−{1}

ξf (−x)ξf (1 − x) − ξf (1 − x)ξf (−x).

Comme N est premier, rendons plus explicite le théorème 1. On a, pour
x ∈ (Z/NZ)∗, N ′ = N et on peut choisir S = ∅ et S̄ = {N}. Le terme associé
au caractère χ dans la formule du théorème 1 est nul lorsque χ = 1, car N est

spécial pour f et on a que Λ
[ {N}

∅ , {N}
{N}
]
(f, 1) est multiple de (1 − aN )Λ(f, 1)

qui est nul (en effet aN = −w(f) et Λ(f, 1) = 0 si w(f) �= −1). Lorsque χ
est non trivial, le terme associé à χ se simplifie car on a χS = 1, Qp,f,χ = 1,
Nχ = N2, Lp(f ⊗ χ,X) = 1. On obtient, pour x ∈ Z/NZ∗,

ξf (x) =
w(f)
N − 1

∑
χ
=1

τ(χ̄)
N

χ(x)Λ(f ⊗ χ, 1)

où la somme porte sur les caractères de Dirichlet primitifs de conducteur N .
Comme f est de nebentypus trivial, on a

Λ(f ⊗ χ, 1) = Λ(f ⊗ χ̄, 1).

On en déduit, en utilisant que |w(f)| = 1,

〈f, f〉
=

i

12(N + 1)(N − 1)2N2

∑
x∈(Z/NZ)∗−{1}

∑
χ,χ′

τ(χ̄)τ(χ̄′)Λ(f ⊗ χ, 1)Λ(f ⊗ χ̄′, 1))F (χ, χ′),

où
F (χ, χ′) =

∑
x∈(Z/NZ)∗−{1}

(χ(−x)χ̄′(1 − x) − χ(1 − x)χ̄′(−x)).

Changeons χ′ en χ̄′ dans la somme. On obtient, en tenant compte de l’égalité
τ(χ′) = χ′(−1)τ(χ̄′),

〈f, f〉
=

i

12(N + 1)(N − 1)2N2

∑
χ,χ′

τ(χ̄)τ(χ̄′)χ′(−1)Λ(f ⊗ χ′, 1)Λ(f ⊗ χ, 1)F (χ, χ̄′).

Cette somme est antissymétrique (resp. symétrique) en χ et χ′ lorsque
χ′(−1) = χ(−1) (resp. χ′(−1) = −χ(−1)). C’est pourquoi on a

〈f, f〉
=

i

6(N + 1)(N − 1)2N2

∑
χ,χ′,χχ′(−1)=−1

τ(χ̄)τ(χ̄′)χ′(−1)Λ(f⊗χ′, 1))Λ(f⊗χ, 1))E(χ, χ′),
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où E(χ, χ′) =
∑
x∈(Z/NZ)∗−{1} χ(−x)χ′(1 − x). On reconnaît dans cette

dernière expression une somme de Jacobi donnée par la formule

E(χ, χ′) = χ(−1)
τ(χ)τ(χ′)
τ(χχ′)

.

On obtient donc, en tenant compte de l’imparité de χχ′,

〈f, f〉

=
i

6(N + 1)(N − 1)2N2

∑
χ,χ′,χχ′(−1)=−1

τ(χ)τ(χ′)τ(χ̄)τ(χ̄′)
τ(χχ′)

Λ(f ⊗ χ′, 1)Λ(f ⊗ χ, 1).

Utilisons les identités τ(χ)τ(χ̄) = χ(−1)N = −χ′(−1)N = −τ(χ′)τ(χ̄′). On
obtient

〈f, f〉 =
i

6(N + 1)(N − 1)2
∑

χ,χ′,χχ′(−1)=−1

Λ(f ⊗ χ′, 1)Λ(f ⊗ χ, 1)
τ(χχ′)

.

Cela donne la formule annoncée lorsque l’on combine avec l’identité rappelée
avant l’énoncé du théorème 10.
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Summary. Motivated by the problem of deformation quantization we introduce
and study directed graph complexes with oriented loops and wheels – differential
graded (dg) wheeled props. We develop a new technique for computing cohomology
groups of such graph complexes and apply it to several concrete examples such
as the wheeled completion of the operad of strongly homotopy Lie algebras and
the wheeled completion of the dg prop of Poisson structures. The results lead to a
new notion of a wheeled Poisson structure and to a new theorem on deformation
quantization of arbitrary wheeled Poisson manifolds.
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1 Introduction

The first instances of graph complexes were introduced in the theory of oper-
ads and props, which have found recently many applications in algebra, topol-
ogy, and geometry. Another set of examples was introduced by Kontsevich
[Kon93, Kon02] as a way to expose highly nontrivial interrelations between
certain infinite-dimensional Lie algebras and topological objects, including
moduli spaces of curves, invariants of odd-dimensional manifolds, and the
group of outer automorphisms of a free group.

Motivated by the problem of deformation quantization we introduce and
study directed graph complexes with oriented loops and wheels. We show that
universal quantizations of Poisson structures can be understood as morphisms
of dg props, Q : P〈D〉 → Lie1B�

∞, where
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• P〈D〉 is the dg free prop whose representations in a vector space V describe
Maurer–Cartan elements of the Hochschild dg Lie algebra on OV := ̂�•V ∗

(see Section 2.7 for a precise definition), and
• Lie1B�

∞ is the wheeled completion of the minimal resolution, Lie1B∞, of the
prop, Lie1B, of Lie 1-bialgebras; it is defined explicitly in Section 2.6 and is
proven to have the property that its representations in a finite-dimensional
vector space V correspond to Maurer–Cartan elements in the Schouten Lie
algebra ∧•TV , where TV := DerOV .

In the theory of props one is most interested in those directed graph com-
plexes that contain no loops and wheels. A major advance in understand-
ing the cohomology groups of such complexes was recently accomplished in
[Kon02,MV03,V] using key ideas of 1

2prop and Koszul duality. In particular,
these authors were able to compute cohomologies of directed versions (without
loops and wheels though) of Kontsevich’s ribbon graph complex and the “com-
mutative” graph complex, and show that both are acyclic almost everywhere.
This paper is an attempt to extend some of the results of [Kon02,MV03,V] to
a more difficult situation in which the directed graphs are allowed to contain
loops and wheels (i.e., directed paths that begin and end at the same vertex).
In this case the answer differs markedly from the unwheeled case: we prove,
for example, that while the cohomology of the wheeled extension, Lie�

∞, of
the operad of Lie∞-algebras remains acyclic almost everywhere (see Theo-
rem 4.1.1 for a precise formula for H• (Lie�

∞
)

), the cohomology of the wheeled
extension of the operad Ass∞ gets more complicated. Both these complexes
describe irreducible summands of directed “commutative” and, respectively,
ribbon graph complexes with the restriction on absence of wheels dropped.

The wheeled complex Lie�
∞ is a subcomplex of the above-mentioned graph

complex Lie1B�
∞, which plays a central role in deformation quantizations of

Poisson structures. Using Theorem 4.1.1 on H• (Lie�
∞
)

we show in Section 4.2
that a subcomplex of Lie1B�

∞ that is spanned by graphs with at most genus-
1 wheels is also acyclic almost everywhere. However, this acyclicity breaks
down for graphs with higher-genus wheels: we find an explicit cohomology
class with three wheels in Section 4.2.4, which proves that the natural epi-
morphism Lie1B∞ → Lie1B fails to stay a quasi-isomorphism when extended
to the wheeled completions Lie1B�

∞ → Lie1B�.
This paper grew out of the project on props and quantizations that was

launched in 2004 with an attempt to create a prop profile of deformation
quantization of Poisson structures (and continued on with [MMS] on minimal
wheeled resolutions of the main classical operads and with [Mer06a] on a
propic proof of a formality theorem associated with quantizations of Lie bial-
gebras). It is organized as follows. In Section 2 we recall some basic facts
about props and graph complexes and describe a universal construction that
associates dg props to a class of sheaves of dg Lie algebras on smooth formal
manifolds, and apply that construction to the sheaf of polyvector fields and
the sheaf of polydifferential operators, creating thereby associated dg props
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Lie1B∞ and, respectively, P〈D〉. In Section 3 we develop new methods for com-
puting cohomology of directed graph complexes with wheels, and prove sev-
eral theorems on cohomology of wheeled completions of minimal resolutions
of dioperads. In Section 4 we apply these methods and results to compute
cohomology of several concrete graph complexes. In Section 5 we use ideas of
cyclic homology to construct a cyclic multicomplex computing cohomology of
wheeled completions of dg operads.

A few words about our notation. The cardinality of a finite set I is denoted
by |I|. The degree of a homogeneous element a of a graded vector space is
denoted by |a| (this should never lead to confusion). Sn stands for the group
of all bijections [n] → [n], where [n] denotes (here and everywhere) the set
{1, 2, . . . , n}. The set of positive integers is denoted by N

∗. If V = ⊕i∈ZV
i is

a graded vector space, then V [k] is a graded vector space with V [k]i := V i+k.
We work throughout over a field k of characteristic 0.

2 Dg Props Versus Sheaves of dg Lie Algebras

2.1. Props. An S-bimodule E is, by definition, a collection of graded vector
spaces {E(m,n)}m,n≥0 equipped with a left action of the group Sm and with a
right action of Sn that commute with each other. For any graded vector space
M, the collection End〈M〉 = {End〈M〉(m,n) := Hom(M⊗n,M⊗m)}m,n≥0 is
naturally an S-bimodule. A morphism of S-bimodules φ : E1 → E2 is a
collection of equivariant linear maps {φ(m,n) : E1(m,n) → E2(m,n)}m,n≥0.
A morphism φ : E → End〈M〉 is called a representation of an S-bimodule E
in a graded vector space M .

There are two natural associative binary operations on the S-bimodule
End〈M〉,
⊗

: End〈M〉(m1, n1) ⊗ End〈M〉(m2, n2) −→ End〈M〉(m1 +m2, n1 + n2),
◦ : End〈M〉(p,m) ⊗ End〈M〉(m,n) −→ End〈M〉(p, n),

and a distinguished element, the identity map 1 ∈ End〈M〉(1, 1).
Axioms of prop (“products and permutations”) are modeled on the prop-

erties of (
⊗

, ◦,1) in End〈M〉 (see [McL65]).

2.1.1. Definition. A prop E is an S-bimodule E = {E(m,n)}m,n≥0 equipped
with the following data:

• a linear map called horizontal composition,
⊗

: E(m1, n1) ⊗ E(m2, n2) −→ E(m1 +m2, n1 + n2),
e1 ⊗ e2 −→ e1

⊗

e2,
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such that (e1
⊗

e2)
⊗

e3 = e1
⊗

(e2
⊗

e3) and e1
⊗

e2 = (−1)|e1||e1| σm1,m2

(e2
⊗

e1) σn2,n1 where σm1,m2 is the following permutation in Sm1+m2 :
(

1 , . . . , m2 , m2 + 1 , . . . , m2 +m1

1 +m1 , . . . , m2 +m1 , 1 , . . . , m1

)

;

• a linear map called vertical composition,

◦ : E(p,m) ⊗ E(m,n) −→ E(p, n),
e1 ⊗ e2 −→ e1 ◦ e2,

such that (e1 ◦ e2) ◦ e3 = e1 ◦ (e2 ◦ e3) whenever both sides are defined;
• an algebra morphism in : k[Sn] → (E(n, n), ◦) such that (i) for any σ1 ∈

Sn1 , σ2 ∈ Sn2 one has in1+n2(σ1 × σ2) = in1(σ1)
⊗

in2(σ2), and (ii) for
any e ∈ E(m,n) one has 1⊗m ◦ e = e ◦ 1⊗n = e, where 1 := i1(Id).

A morphism of props φ : E1 → E2 is a morphism of the associated S-
bimodules that respects, in the obvious sense, all the prop data.

A differential in a prop E is a collection of degree-1 linear maps {δ :
E(m,n) → E(m,n)}m,n≥0 such that δ2 = 0 and

δ(e1
⊗

e2) = (δe1)
⊗

e2 + (−1)|e1|e1
⊗

δe2,

δ(e3 ◦ e4) = (δe3) ◦ e4 + (−1)|e3|e3 ◦ δe4,

for any e1, e2 ∈ E and any e3, e4 ∈ E such that e3 ◦ e4 makes sense. Note that
d1 = 0.

For any dg vector space (M,d) the associated prop End〈M〉 has a canoni-
cally induced differential, which we always denote by the same symbol d.

A representation of a dg prop (E, δ) in a dg vector space (M,d) is, by
definition, a morphism of props φ : E → End〈M〉 that commutes with dif-
ferentials: φ ◦ δ = d ◦ φ. (Here and elsewhere ◦ stands for the composition
of maps; it will always be clear from the context whether ◦ stands for the
composition of maps or for the vertical composition in props.)

2.1.2. Remark. If ψ : (E1, δ) → (E2, δ) is a morphism of dg props, and
φ : (E2, δ) → (End〈M〉, d) is a representation of E2, then the composition
φ ◦ ψ is a representation of E1. Thus representations can be “pulled back.”

2.1.3. Free props. Let G↑(m,n), m,n ≥ 0, be the space of directed (m,n)-
graphs G, that is, connected 1-dimensional CW complexes satisfying the fol-
lowing conditions:

(i) each edge (that is, 1-dimensional cell) is equipped with a direction;
(ii) if we split the set of all vertices (that is, 0-dimensional cells) that have

exactly one adjacent edge into a disjoint union Vin � Vout, with Vin being
the subset of vertices with the adjacent edge directed from the vertex
and Vout the subset of vertices with the adjacent edge directed toward
the vertex, then |Vin| ≥ n and |Vout| ≥ m;
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(iii) precisely n of vertices from Vin are labeled by {1, . . . , n} and are called
inputs;

(iv) precisely m of vertices from Vout are labeled by {1, . . . ,m} and are called
outputs;

(v) there are no oriented wheels, i.e., directed paths that begin and end at the
same vertex; in particular, there are no loops (oriented wheels consisting of
one internal edge). Put another way, directed edges generate a continuous
flow on the graph, which we always assume in our pictures to go from
bottom to the top.

Note that G ∈ G↑(m,n) may not be connected. Vertices in the comple-
ment,

v(G) := inputs � outputs,

are called internal vertices. For each internal vertex v we denote by In(v)
(resp., by Out(v)) the set of those adjacent half-edges whose orientation is di-
rected toward (resp., from) the vertex. Input (resp., output) vertices together
with adjacent edges are called input (resp., output) legs. The graph with one
internal vertex, n input legs, and m output legs is called the (m,n)-corolla.

We set G↑ := �m,nG↑(m,n).
The free prop P〈E〉 generated by an S-module E = {E(m,n)}m,n≥0 is

defined by (see, e.g., [MV03,V])

P〈E〉(m,n) :=
⊕

G∈G↑(m,n)

⎛

⎝

⊗

v∈v(G)

E(Out(v), In(v))

⎞

⎠

AutG

,

where

• E(Out(v), In(v)) := Bij([m], Out(v)) ×Sm E(m,n)×Sn Bij(In(v), [n]) with
Bij standing for the set of bijections,

• Aut(G) stands for the automorphism group of the graph G.

An element of the summand above,G〈E〉:=
(

⊗

v∈v(G)E(Out(v), In(v))
)

AutG
,

is often called a graph G with internal vertices decorated by elements of E, or
just a decorated graph.

A differential δ in a free prop P〈E〉 is completely determined by its values,

δ : E(Out(v), In(v)) −→ P〈E〉(|Out(v)|, |In(v)|),

on decorated corollas (whose unique internal vertex is denoted by v).
The prop structure on an S-bimodule E = {E(m,n)}m,n≥0 provides us,

for any graph G ∈ G↑(m,n), with a well-defined evaluation morphism of
S-bimodules,

ev : G〈E〉 −→ E(m,n).

In particular, if a decorated graph C ∈ P〈E〉 is built from two corollas C1 ∈
G(m1, n1) and C2 ∈ G(m2, n2) by gluing the jth output leg of C2 to ith input
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leg of C1, and if the vertices of these corollas are decorated, respectively, by
elements a ∈ E(m1, n1) and b ∈ E(m2, n2), then we reserve a special notation,

a i ◦j b := ev(C) ∈ E(m1 +m2 − 1, n1 + n2 − 1),

for the resulting evaluation map.

2.1.4. Completions. Any free prop P〈E〉 is naturally a direct sum P〈E〉 =
⊕n≥0Pn〈E〉 of subspaces spanned by the number of vertices of the underlying
graphs. Each summand Pn〈E〉 has a natural filtration by the genus g of the
underlying graphs (which is, by definition, equal to the first Betti number of
the associated CW complex). Hence each Pn〈E〉 can be completed with respect
to this filtration. Similarly, there is a filtration by the number of vertices. We
shall always work in this paper with free props completed with respect to
these filtrations and hence use the same notation, P〈E〉, and the same name,
free prop, for the completed version.

2.2. Dioperads and 1
2props. A dioperad is an S-bimodule, E =

{E(m,n)} m,n≥1
m+n≥3

, equipped with a set of compositions

{ i◦j : E(m1, n1) ⊗ E(m2, n2) −→ E(m1 +m2 − 1, n1 + n2 − 1)} 1≤i≤n1
1≤j≤m2

that satisfy the axioms imitating the properties of the compositions i◦j in
a generic prop. We refer to [Gan03], where this notion was introduced, for a
detailed list of these axioms. The free dioperad generated by an S-bimodule
E is given by

D〈E〉(m,n) :=
⊕

G∈T(m,n)

G〈E〉,

where T(m,n) is a subset of G(m,n) consisting of connected trees (i.e., con-
nected graphs of genus 0).

Another and less obvious reduction of the notion of prop was introduced
by Kontsevich in [Kon02] and studied in detail in [MV03]: a 1

2prop is an
S-bimodule E = {E(m,n)} m,n≥1

m+n≥3
equipped with two sets of compositions,

{ 1◦j : E(m1, 1) ⊗ E(m2, n2) −→ E(m1 +m2 − 1, n2)}1≤j≤m2

and

{ i◦1 : E(m1, n1) ⊗ E(1, n2) −→ E(m1 +m2 − 1, n2)}1≤i≤n1
,

satisfying the axioms that imitate the properties of the compositions 1◦j and
i◦1 in a generic dioperad. The free 1

2prop generated by an S-bimodule E is
given by

1
2
P〈E〉(m,n) :=

⊕

G∈ 1
2 T(m,n)

G〈E〉,
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where 1
2T(m,n) is a subset of T(m,n) consisting of those directed trees that,

for each pair of internal vertices (v1, v2) connected by an edge directed from
v1 to v2 have either |Out(v1)| = 1 or/and |In(v2)| = 1. Such trees have at
most one vertex v with |Out(v)| ≥ 2 and |In(v)| ≥ 2.

Axioms of the dioperad (resp., 1
2prop) structure on an S-bimodule E ensure

that there is a well-defined evaluation map

ev : G〈E〉 −→ E(m,n)

for each G ∈ T(m,n) (resp., G ∈ 1
2T(m,n)).

2.2.1. Free resolutions. A free resolution of a dg prop P is, by definition,
a dg free prop (P〈E〉, δ) generated by some S-bimodule E together with a
morphism of dg props α : (P〈E〉, δ) → P , which is a homology isomorphism.

If the differential δ in P〈E〉 is decomposable (with respect to the prop’s
vertical and /or horizontal compositions), then α : (P〈E〉, δ) → P is called a
minimal model of P .

Similarly one defines free resolutions and minimal models (D〈E〉, δ) → P
and

(

1
2P〈E〉, δ

)

→ P of dioperads and 1
2props.

2.2.2. Forgetful functors and their adjoints. There is an obvious chain
of forgetful functors Prop −→ Diop −→ 1

2Prop. Let

Ω 1
2P→D :

1
2
Prop −→ Diop, ΩD→P : Diop −→ Prop, Ω 1

2P→P :
1
2
Prop −→ Prop,

be the associated adjoints. The main motivation behind introducing the notion
of 1

2prop is the very useful fact that the functorΩ 1
2 P→P is exact [Kon02,MV03],

i.e., it commutes with the cohomology functor, which in turn is due to the
fact that for any 1

2prop P , there exists a kind of PBW lemma that represents
Ω 1

2P→P〈P 〉 as a vector space freely generated by a family of decorated graphs

Ω 1
2P→P〈P 〉(m,n) :=

⊕

G∈G(m,n)

G〈E〉,

where G(m,n) is a subset of G(m,n) consisting of so-called reduced graphs G
that satisfy the following defining property [MV03]: for each pair of internal
vertices (v1, v2) of G that are connected by a single edge directed from v1 to
v2 one has |Out(v1)| ≥ 2 and |In(v2)| ≥ 2. The prop structure on Ω 1

2P→P〈P 〉
is given by

(i) horizontal compositions := disjoint unions of decorated graphs,
(ii) vertical compositions := graftings followed by 1

2prop compositions of all
those pairs of vertices (v1, v2) that are connected by a single edge directed
from v1 to v2 and have either |Out(v1)| = 1 or/and |In(v2)| = 1 (if there
are any).
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2.3. Graph complexes with wheels. Let G�(m,n) be the set of all di-
rected (m,n)-graphs that satisfy conditions 2.1.3(i)–(iv), and set G� :=
�m,nG(m,n). A vertex (resp., edge or half-edge) of a graph G ∈ G� that
belongs to an oriented wheel is called a cyclic vertex (resp., edge or half-
edge).

Note that for each internal vertex of G ∈ G�(m,n) there is still a well-
defined separation of adjacent half-edges into input and output ones, as well
as a well-defined separation of legs into input and output ones.

For any S-bimodule E = {E(m,n)}m,n≥0, we define an S-bimodule

P�〈E〉(m,n) :=
⊕

G∈G(m,n)

⎛

⎝

⊗

v∈v(G)

E(Out(v), In(v))

⎞

⎠

AutG

,

and notice that P�〈E〉 has a natural prop structure with respect to disjoint
union and grafting of graphs. Clearly, this prop contains the free prop P〈E〉
as a natural subprop.

A derivation in P�〈E〉 is, by definition, a collection of linear maps δ :
P�〈E〉(m,n) → P�〈E〉(m,n) such that for any G ∈ G and any element of
P�〈E〉(m,n) of the form

e = coequalizer
orderings of v(G)

(

e1 ⊗ e2 ⊗ · · · ⊗ e|v(G)|
)

,

with ek ∈ E(Out(vk), In(vk) for 1 ≤ k ≤ |v(G)|, one has

δe = coequalizer
orderings of v(G)

⎛

⎝

|v(G)|
∑

k=1

(−1)|e1|+···+|ek−1|e1 ⊗ · · · ⊗ δek ⊗ · · · ⊗ e|v(G)|

⎞

⎠ .

Put another way, a graph derivation is completely determined by its values
on decorated corollas

a

����
���
. . .���

����
1 2 m

���
�
��
�
. . .�
�� ���
�

1 2 n

a ∈ E(m,n),

that is, by linear maps

δ : E(m,n) −→ P�〈E〉(m,n).

A differential in P�〈E〉 is, by definition, a degree-1 derivation δ satisfying
the condition δ2 = 0.

2.3.1. Remark. If (P〈E〉, δ) is a free dg prop generated by an S-bimodule E,
then δ extends naturally to a differential on P�〈E〉, which we denote by the
same symbol δ. It is worth pointing out that such an induced differential may
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not preserve the number of oriented wheels. For example, if δ applied to an
element a ∈ E(m,n) (which we identify with the a-decorated (m,n)-corolla)
contains a summand of the form

δ

⎛

⎝ a

�������. . .			 




i1 i2





��. . .�
�� ����

j1 j2

⎞

⎠ = · · · + b

����
... ...

������ 




i1 i2





���... �
�� ����

j2

c
��� ��

��
���

j1
...

...

...

+ · · · ,

then the value of δ on the graph obtained from this corolla by gluing output
i1 to input j1 into a loop,

δ

⎛

⎝ a

��... ��� ����
i2

��... �
� ����

j2

��

⎞

⎠ = · · · + b

������... ...

������ 




i2





���... �
�� ����

j2

c

���
���

� ��
��

���

...

...

...

+ · · · ,

contains a term with no oriented wheels at all. Thus propic differential can, in
general, decrease the number of wheels. Notice in this connection that if δ is
induced on P�〈E〉 from the minimal model of a 1

2prop, then such summands
are impossible, and hence the differential preserves the number of wheels.

The vector spaces P〈E〉 and P�〈E〉 have a natural positive gradation

P〈E〉 =
⊕

k≥1

Pk〈E〉, P�〈E〉 =
⊕

k≥1

P�〈E〉,

by the number k of internal vertices of the underlying graphs. In particular,
P1〈E〉(m,n) is spanned by decorated (m,n)-corollas and can be identified
with E(m,n).

2.3.2. Representations of P�〈E〉. Any representation φ : E → End〈M〉
of an S-bimodule E in a finite-dimensional vector space M can be naturally
extended to representations of props P〈E〉 → End〈M〉 and P�〈E〉 → End〈M〉.
In the latter case, decorated graphs with oriented wheels are mapped into
appropriate traces.

2.3.3. Remark. The prop structure on an S-bimodule E = {E(m,n)} can
be defined as a family of evaluation linear maps

μG : G〈E〉 −→ E(m,n), ∀ G ∈ G↑,

satisfying a certain associativity axiom (cf. Section 2.1.3). Analogously, one
can define a wheeled prop structure on E as a family of linear maps

μG : G〈E〉 −→ E(m,n), ∀ G ∈ G�,
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such that

(i) μ(m,n)−corolla = Id,
(ii)μG = μG/H ◦μH for every subgraph H ∈ G� of G, where G/H is obtained

from G by collapsing to a single vertex every connected component of H ,
and μH : G〈E〉 → G/H〈E〉 is the evaluation map on the subgraph H and
the identity on its complement.

Claim. For every finite-dimensional vector space M, the associated
endomorphism prop End〈M〉 has a natural structure of a wheeled prop.

The notion of representation of P�〈E〉 in a finite-dimensional vector space
M introduced above is just a morphism of wheeled props P�〈E〉 → End〈M〉.
We shall discuss these issues in detail elsewhere, since in the present paper
we are most interested in computing cohomology of free dg wheeled props
(P�〈E〉, δ), where the composition maps μG are tautological.

2.4. Formal graded manifolds. For a finite-dimensional vector space M,
we denote by M the associated formal graded manifold. The distinguished
point of the latter is always denoted by ∗. The structure sheaf OM is (non-
canonically) isomorphic to the completed graded symmetric tensor algebra
�̂M∗. A choice of a particular isomorphism φ : OM → �̂M∗ is called a choice
of a local coordinate system on M. If {eα}α∈I is a basis in M and {tα}α∈I

the associated dual basis in M∗, then one may identify OM with the graded
commutative formal power series ring R[[tα]].

Free modules over the ring OM are called locally free sheaves (= vector
bundles) on M. The OM-module TM of derivations of OM is called the tan-
gent sheaf on M. Its dual Ω1

M is called the cotangent sheaf. One can form
their (graded skew-symmetric) tensor products such as the sheaf of polyvec-
tor fields ∧•TM and the sheaf of differential forms Ω•

M = ∧•Ω1
M. The first

sheaf is naturally a sheaf of Lie algebras on M with respect to the Schouten
bracket.

One can also define a sheaf of polydifferential operators, DM ⊂ ⊕i≥0

HomR

(

O⊗i
M,OM

)

. The latter is naturally a sheaf of dg Lie algebras on M
with respect to the Hochschild differential dH and brackets [ , ]H .

2.5. Geometry ⇒ graph complexes. We shall sketch here a simple trick
that associates a dg prop P�〈EG〉 generated by a certain S-bimodule EG to a
sheaf of dg Lie algebras GM over a smooth graded formal manifold M.

We assume that

(i) GM is built from direct sums and tensor products of (any order) jets of
the sheaves T ⊗•

M ⊗ Ω1
M

⊗• and their duals (thus GM can be defined for
any formal smooth manifold M, i.e., its definition does not depend on the
dimension of M);

(ii) the differential and the Lie bracket in GM can be represented, in a local
coordinate system, by polydifferential operators and natural contractions
between duals.
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The motivating examples are ∧•TM, DM, and the sheaf of Nijenhuis dg Lie
algebras on M (see [Mer05]).

By assumption (i), a choice of a local coordinate system on M identifies
GM with a subspace in

⊕

p,m≥0

�̂•
M∗ ⊗ Hom(M⊗p,M⊗m) =

∏

p,q,m≥0

Hom(�pM ⊗M⊗q,M⊗m)

⊂
∏

m,n≥0

Hom(M⊗n M⊗m).

Let Γ be a degree-1 element in GM. Denote by Γm
p,q the bit of Γ that lies

in Hom(�pM ⊗M⊗q,M⊗m) and set Γm
n := ⊕p+q=nΓ

m
p,q ∈ Hom(M⊗n M⊗m).

There exists a uniquely defined finite-dimensional S-bimodule EG =
{EG(m,n)}m,n≥0 whose representations in the vector space M are in one-
to-one correspondence with Taylor components Γm

n ∈ Hom(M⊗n M⊗m) of a
degree-1 element Γ in GM. Set P�〈G〉 := P�〈EG〉 (see Section 2.3).

Next we employ the dg Lie algebra structure in GM to introduce a differ-
ential δ in P�〈G〉. The latter is completely determined by its restriction to the
subspace of P�

1 〈G〉 spanned by decorated corollas (without attached loops).
First we replace the Taylor coefficients Γm

n of the section Γ by the deco-
rated (m,n)-corollas

• with the unique internal vertex decorated by a basis element, {er}r∈J , of
EG(m,n),

• with input legs labeled by basis elements {eα} of the vector space M and
output legs labeled by the elements of the dual basis {tβ}.

Next we consider a formal linear combination

Γ
m

n =
∑

r

∑

α1,...,αn
β1,...,βm

er

����
���
. . .���

����
tβ1 tβ2 tβm

���
�
��
�
. . .�
�� ���
�

eα1eα2 eαn

tα1 ⊗ . . .⊗ tαn ⊗ eβ1 ⊗ · · · ⊗ eβm

∈ P�
1 〈G〉 ⊗ Hom(M⊗n,M⊗m).

This expression is essentially a component of the Taylor decomposition of Γ ,

Γm
n =

∑

α1...αn
β1...βm

Γ β1...βm
α1...αn

tα1 ⊗ · · · ⊗ tαn ⊗ eβ1 ⊗ · · · ⊗ eβm ,

in which the numerical coefficient Γ β1...βm
α1...αn

is a replacement for the decorated
labeled graph. More precisely, the interrelation between Γ = ⊕m,n≥0Γ

m

n and
Γ = ⊕m,n≥0Γ

m
n ∈ GM can be described as follows: a choice of any particular

representation of the S-bimodule EG ,

φ :
{

EG(m,n) → Hom(M⊗n,M⊗m)
}

m,n≥0
,
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defines an element Γ = φ(Γ ) ∈ GM that is obtained from Γ by replacing each
graph

er

����
���
. . .���

����
tβ1 tβ2 tβm

���
�
��
�
. . .�
�� ���
�

eα1eα2 eαn

by the value
r

Γ
β1...βm

α1...αn
∈ R, of φ(er} ∈ Hom(M⊗n,M⊗m) on the basis vector

eα1 ⊗ · · · ⊗ eαn ⊗ tβ1 ⊗ · · · ⊗ tβm (so that Γ β1...βm
α1...αn

=
∑

r

r

Γ
β1...βm

α1...αn
) .

In a similar way one can define an element

[· · · [[dΓ, Γ ], Γ ] · · · ] ∈ P�
n 〈G〉 ⊗ Hom(M⊗•,M⊗•)

for any Lie word
[· · · [[dΓ, Γ ], Γ ] · · · ]

built from Γ , dΓ , and n − 1 Lie brackets. In particular, there are uniquely
defined elements

dΓ ∈ P�
1 〈G〉 ⊗ Hom(M⊗•,M⊗•),

1
2
[Γ, Γ ] ∈ P�

2 〈G〉 ⊗ Hom(M⊗•,M⊗•),

whose values φ(dΓ ) and φ
(

1
2 [Γ, Γ ]

)

for any particular choice of representation

φ of the S-bimodule EG coincide respectively with dΓ and 1
2 [Γ, Γ ].

Finally, one defines a differential δ in the graded space P�〈G〉 by setting

δΓ = dΓ +
1
2
[Γ, Γ ], (		)

i.e., by equating the graph coefficients of both sides. That δ2 = 0 is clear from
the following calculation,

δ2Γ = δ

(

dΓ +
1
2
[Γ, Γ ]

)

= δdΓ +
[

dΓ +
1
2
[Γ, Γ ], Γ

]

= −d
(

dΓ +
1
2
[Γ, Γ ]

)

+ [dΓ, Γ ] +
1
2
[[Γ, Γ ], Γ ]

= −[dΓ, Γ ] + [dΓ, Γ ]
= 0,

where we used both the axioms of dg Lie algebra in GM and the axioms of
the differential in P�〈G〉. This completes the construction of (P�〈G〉, δ)1.

1As a first approximation to the propic translation of nonflat geometries (Yang–
Mills, Riemann, etc.) one might consider the following version of the “trick”: in
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2.5.1. Remarks. (i) If the differential and Lie brackets in GM contain no
traces, then the expression dΓ + 1

2 [Γ, Γ ] does not contain graphs with oriented
wheels. Hence formula (		) can be used to introduce a differential in the free
prop P〈G〉 generated by the S-bimodule EG .

(ii) If the differential and Lie brackets in GM contain no traces and are
given by first-order differential operators, then the expression dΓ + 1

2 [Γ, Γ ] is
a tree. Therefore formula (		) can be used to introduce a differential in the
free dioperad D〈G〉.

2.5.2. Remark. The above trick also works for sheaves

(GM, μn : ∧nGM → GM[2 − n], n = 1, 2, . . .)

of L∞ algebras over M. The differential in P�〈G〉 (or in P〈G〉, if appropriate)
is defined by

δΓ =
∞
∑

n=1

1
n!
μn(Γ, . . . , Γ ).

The term μn(Γ, . . . , Γ ) corresponds to decorated graphs with n internal
vertices.

2.5.3. Remark. Any sheaf of dg Lie subalgebras G′
M ⊂ GM defines a dg prop

(P�〈G′〉, δ) that is a quotient of (P�〈G〉, δ) by the ideal generated by decorated
graphs lying in the complement P�〈G〉 \ P�〈G′〉. A similar observation holds
true for P〈G〉 and P〈G′〉 (if they are defined).

2.6. Example (polyvector fields). Let us consider the sheaf of polyvector
fields ∧•TM :=

∑

i≥0 ∧iTM[1 − i] equipped with the Schouten Lie bracket
[ , ]S and vanishing differential. A degree-one section Γ of ∧•TM decomposes
into a direct sum ⊕i≥0Γi with Γi ∈ ∧iTM having degree 2− i with respect to
the grading of the underlying manifold. In a local coordinate system Γ can
be represented as a Taylor series

Γ =
∑

m,n≥0

∑

α1...αn
β1...βm

Γ β1...βm
α1...αn

(eβ1 ∧ · · · ∧ eβm) ⊗ (tα1 � · · · � tαn).

Since Γ β1...βm
α1...αn

= Γ
[β1...βm]
(α1...αn) has degree 2 −m, we conclude that the associated

S-bimodule E∧•T is given by

E∧•T (m,n) = sgnm ⊗ 1n[m− 2], m, n ≥ 0,

addition to a generic element Γ ∈ GM of degree 1 take into consideration a (probably
nongeneric) element F ∈ GM of degree 2, extend appropriately the S-bimodule
EG to accommodate the associated “curvature” F -corollas, and then (attempt to)
define the differential δ in P�〈EG〉 by equating graph coefficients in the expressions

δΓ = F + dΓ + 1
2
[Γ, Γ ] and δF = dF + [Γ, F ].
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where sgnm stands for the one-dimensional sign representation of Σm, and 1n

stands for the trivial one-dimensional representation of Σn. Then a generator
of P〈∧•T 〉 can be represented by the directed planar (m,n)-corolla

•
������

����
. . . ����

������

1 2 m−1 m

���
���
��
��
. . . ��

��
���

���

1 2 n−1 n

with skew-symmetric outgoing legs and symmetric ingoing legs. The formula
(		) in Section 2.5 gives the following explicit expression for the induced
differential δ in P〈∧•T 〉:

δ •
������

����
. . . ����

������

1 2 m−1 m

���
���
��
��
. . . ��

��
���

���

1 2 n−1 n

=
∑

I1�I2=(1,...,m)
J1�J2=(1,...,n)
|I1|≥0,|I2|≥1
|J1|≥1,|J2|≥0

(−1)σ(I1�I2)+|I1||I2| •
������

����
. . . ����

��������

︷ ︸︸ ︷

I1

���
���
��
��
. . . ��

��
���

���

︸ ︷︷ ︸

J1

•
������

����
. . . ����

					

︷ ︸︸ ︷

I2

��
��
�
. . . �

��
�






︸ ︷︷ ︸

J2

where σ(I1 � I2) is the sign of the shuffle I1 � I2 = (1, . . . ,m).

2.6.1. Proposition. There is a one-to-one correspondence between represen-
tations

φ : (P〈∧•T 〉, δ) −→ (End〈M〉, d)

of (P〈∧•T 〉, δ) in a dg vector space (M,d) and Maurer–Cartan elements γ in
∧•TM, that is, degree-one elements satisfying the equation [γ, γ]S = 0.

Proof. Let φ be a representation. Images of the above (m,n)-corollas under
φ provide us with a collection of linear maps Γm

n : �nM → ∧mM [2−m] that
we assemble, as in Section 2.5, into a section Γ =

∑

m,n Γ
m
n , of ∧•TM.

The differential d in M can be interpreted as a linear (in the coordinates
{tα}) degree-one section of TM, which we denote by the same symbol.

Finally, the commutativity of φ with the differentials implies

[−d+ Γ,−d+ Γ ]S = 0.

Thus setting γ = −d+ Γ, one gets a Maurer–Cartan element in ∧•TM.
Conversely, if γ is a Maurer–Cartan element in ∧•TM, then decomposing

the sum d+γ into a collection of its Taylor series components as in Section 2.5,
one gets a representation φ. �

Let ∧•
0TM =

∑

i≥1 ∧i
0TM[1− i] be a sheaf of Lie subalgebras of ∧•TM con-

sisting of those elements that vanish at the distinguished point ∗ ∈ M, have
no ∧0TM[2]-component, and whose ∧1TM[1]-component is at least quadratic
in the coordinates {tα}. The associated dg free prop P〈∧•

0T 〉 is generated by
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(m,n)-corollas with m,n ≥ 1, m + n ≥ 1, and has a surprisingly small co-
homology, a fact that is of key importance for our proof of the deformation
quantization theorem.

2.6.2. Theorem. The cohomology of (P〈∧•
0T 〉, δ) is equal to a quadratic prop

Lie1B, which is a quotient

Lie1B =
P〈A〉

Ideal〈R〉
of the free prop generated by the following S-bimodule A:

• all A(m,n) vanish except A(2, 1) and A(1, 2),

• A(2, 1) := sgn2 ⊗ 11 = span
(

����
◦
1

21

= − ����
◦
1

12
)

• A(1, 2) := 11 ⊗ 12[−1] = span

(

����•
1

21

= ����•
1

12

)

modulo the ideal generated by the following relations R:

R1 : ◦��
��◦��

��
3

21

+ ◦��
��◦��

��
2

13

+ ◦��
��◦��

��
1

32

∈ P〈A〉(3, 1),

R2 : •����•  !! 3
21

+ •����•  !! 2
13

+ •����•  !! 1
32

∈ P〈A〉(1, 3),

R3 :
����◦

•
"" #
#

21

1 2

− ��
��
◦
•$$$

1
2

2

1

+ ��
��
◦
•$$$

1
2

1

2

− ��
��
◦
•$$$

2
1

2

1

+ ��
��
◦
•$$$

2
1

1

2

∈ P〈A〉(2, 2).

Proof. The cohomology of (P 〈∧•
0T 〉 , δ) cannot be computed directly. At the

dioperadic level, the theorem was established in [Mer06b]. That this result
extends to the level of props can be shown easily using either ideas of per-
turbations of 1/2 props and path filtrations developed in [Kon02, MV03] or
the idea of Koszul duality for props developed in [Val03]. One can argue, for
example, as follows: for any f ∈ P 〈∧•

0T 〉, define the natural number

|f | :=
number of directed paths in the graph f
that connect input legs with output ones,

and notice that the differential δ preserves the filtration

FpP 〈∧•
0T 〉 := {span f ∈ P 〈∧•

0T 〉 : |f | ≤ p} .

The associated spectral sequence {ErP 〈∧•
0T 〉 , δr}r≥0 is exhaustive and

bounded below, so that it converges to the cohomology of (P 〈∧•
0T 〉 , δ).

By Koszulness of the operad Lie and exactness of the functor Ω 1
2P→P, the

zeroth term of the spectral sequence, (E0P 〈∧•
0T 〉 , δ0), is precisely the minimal
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resolution of a quadratic prop Lie1B′ generated by the S-bimodule A modulo
the ideal generated by relations R1, R2, and the following one:

R′
3 :

����◦
•
"" #
#

21

1 2

= 0.

Since the differential δ vanishes on the generators of A, this spectral sequence
degenerates at the first term, (E1P 〈∧•

0T 〉 , d1 = 0), implying the isomorphism

⊕

p≥1

Fp+1H (P 〈∧•
0T 〉 , δ)

FpH (P 〈∧•
0T 〉 , δ) = Lie1B′.

There is a natural surjective morphism of dg props p : (P 〈∧•
0T 〉 , δ) → Lie1B.

Define the dg prop (X, δ) via an exact sequence

0 −→ (X, δ) i−→ (P 〈∧•
0T 〉 , δ) p−→ (Lie1B, 0) −→ 0.

The filtration on (P 〈∧•
0T 〉 , δ) induces filtrations on sub- and quotient com-

plexes,

0 −→ (FpX, δ)
i−→ (FpP 〈∧•

0T 〉 , δ) p−→ (FpLie1B, 0) −→ 0,

and hence an exact sequence of 0th terms of the associated spectral sequences,

0 −→ (E0X, δ0)
i0−→ (E0P 〈∧•

0T 〉 , δ0)
p0−→

⎛

⎝

⊕

p≥1

Fp+1Lie1B

FpLie1B
, 0

⎞

⎠ −→ 0.

By the above observation,

E1P 〈∧•
0T 〉 =

⊕

p≥1

Fp+1H (P 〈∧•
0T 〉 , δ)

FpH (P 〈∧•
0T 〉 , δ) = Lie1B′.

On the other hand, it is not hard to check that

⊕

p≥1

Fp+1Lie1B

FpLie1B
= Lie1B′.

Thus the map p0 is a quasi-isomorphism implying vanishing of E1X and hence
acyclicity of (X, δ). Thus the projection map p is a quasi-isomorphism. �
2.6.3. Corollary. The dg prop (P 〈∧•

0T 〉 , δ) is a minimal model of the prop
Lie1B: the natural morphism of dg props

p : (P 〈∧•
0T 〉 , δ) −→ (Lie1B, vanishing differential)
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that sends to zero all generators of P 〈∧•
0T 〉 except those in A(2, 1) and A(1, 2)

is a quasi-isomorphism. Hence we can and shall by denote P 〈∧•
0T 〉 Lie1B∞.

2.7. Example (polydifferential operators). Let us consider the sheaf of
dg Lie algebras

DM ⊂
⊕

k≥0

Hom
(

O⊗k
M ,OM

)

[1 − k]

consisting of polydifferential operators on OM that for k ≥ 1, vanish on every
element f1 ⊗ · · · ⊗ fk ∈ O⊗k

M with at least one function, fi, i = 1, . . . , k,
constant. A degree-one section Γ ∈ DM decomposes into a sum

∑

k≥0 Γk

with Γk ∈ Hom2−k

(

O⊗k
M ,OM

)

. In a local coordinate system (tα, ∂/∂tα � eα)
on M, Γ can be represented as a Taylor series

Γ =
∑

k≥0

∑

I1,...,Ik,J

Γ I1,...,Ik

J eI1 ⊗ · · · eIk
⊗ tJ ,

where for each fixed k and |J | only a finite number of coefficients Γ I1,...,Ik

J

are nonzero. The summation runs over multi-indices I := α1α2 . . . α|I| and
eI := eα1 � · · ·� eα|I| , t

I := tα1 � · · ·� tα|I| . Hence the associated S-bimodule
ED is given by

ED(m,n) = E(m) ⊗ 1n, m, n ≥ 0,

where

E(0) := R[−2],

E(m ≥ 1) :=
⊕

k≥1

⊕

[m]=I1�...�Ik
|I1|,...,|Ik|≥1

IndSm

S|I1|×···×S|Ik|1|I1| ⊗ · · · ⊗ 1|Ik|[k − 2].

The basis of P1〈D〉(m,n) can be represented by directed planar corollas of
the form

%%%%
&&&& '''
((((

...
...
%%%%
&&&& '''
((((

... %%%%
&&&& '''
((((

...
...

%%%%
&&&& '''
((((

...

))
)
**
*
''
' ... ++

+
,,
,

--
-

I1 Ii Ii+1 Ik

1 2 3 . . . n

� Γ I1,...,Ik

J ,

where

• the input legs are labeled by the set [n] := {1, 2, . . . , n} and are symmetric
(so that it does not matter how labels from [n] are distributed over them);

• the output legs (if there are any) are labeled by the set [m] partitioned
into k disjoint nonempty subsets

[m] = I1 � · · · � Ii � Ii+1 � · · · � Ik,

and legs in each Ii-bunch are symmetric (so that it does not matter how
labels from the set Ii are distributed over legs in the Iith bunch).
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The Z-grading in P〈D〉 is defined by associating degree 2−k to such a corolla.
The formula (		) in Section 2.5 provides us with the following explicit expres-
sion for the differential δ in P〈D〉:

δ

⎛

⎜

⎜

⎜

⎝

%%%%
&&&& '''
((((

...
...
%%%%
&&&& '''
((((

... %%%%
&&&& '''
((((

...
...

%%%%
&&&& '''
((((

...

))
)
**
*
''
' ... ++

+
,,
,

--
-

I1 Ii Ii+1 Ik

1 2 3 . . . n

⎞

⎟

⎟

⎟

⎠

=
k
∑

i=1

(−1)i+1

%%%%
&&&& '''
((((

...
...
....
+++
&&&&

... ////
)))
0000

...
...

%%%%
&&&& '''
((((

...

))
)
**
*
''
' ... ++

+
,,
,

--
-

I1 Ii� Ii+1 Ik

1 2 3 . . . n

+

∑

p+q=k+1
p≥1,q≥0

p−1
∑

i=0

∑

Ii+1=I′
i+1�I′′

i+1
.......................
Ii+q=I′

i+q
�I′′

i+q

∑

[n]=J1�J2

∑

s≥0

(−1)(p+1)q+i(q−1)

1
s!

%%%%
&&&& '''
((((

...
...
%%%%
&&&& '''
((((

... �������

11111
...

... &&&& '''
((((

...

))
)
**
*
''
'
22
2 . . . . . . . . . ++

+
,,
,

--
-

33
3

︸ ︷︷ ︸

J1

I1 Ii I′
i+1 I′

i+q

��������

!!!!!!!!!

�����������

...s

%%%%
&&&& 444
((((

...
· · ·

%%%%
&&&& '''
((((

...
I′′

i+1 I′′
i+q

55 66 ... 7788
︸ ︷︷ ︸

J2

%%%%
&&&& '''
((((

...
...

%%%%
&&&& '''
((((

...
Ii+q+1 Ik

where the first sum comes from the Hochschild differential dH, and the second
sum comes from the Hochschild brackets [ , ]H. The s-summation in the latter
runs over the number s of edges connecting the two internal vertices. Since
can be zero, the right-hand side above contains disconnected graphs (more
precisely, disjoint unions of two corollas).

2.7.1. Proposition. There is a one-to-one correspondence between represen-
tations

φ : (P〈D〉, δ) −→ (End〈M〉, d)

of (P〈D〉, δ) in a dg vector space (M,d) and Maurer–Cartan elements γ in
DM, that is, degree-one elements satisfying the equation dHγ + 1

2 [γ, γ]H = 0.

Proof The proof is similar to the proof of Proposition 2.6.1.

2.8. Remark. Kontsevich’s formality map [Kon03] can be interpreted as a
morphism of dg props

F∞ : (P〈D〉, δ) −→ (P〈∧•T 〉�, δ).

Conversely, any morphism of the above dg props gives rise to a universal
formality map in the sense of [Kon03]. Note that the dg prop of polyvector
fields P〈∧•T 〉 appears above in the wheel extended form P〈∧•T 〉�. This is
not accidental: it is not hard to show (by quantizing, e.g., a pair consisting
of a linear Poisson structure and quadratic homological vector field) that



Graph Complexes with Loops and Wheels 329

there does not exist a morphism between ordinary (i.e., unwheeled) dg props
(P〈D〉, δ) −→ (P〈∧•T 〉, δ) satisfying the quasiclassical limit. Thus wheeled
completions of classical dg props are absolutely necessary at least from the
point of view of applications to geometric problems.

We shall next investigate how wheeled completion of directed graph
complexes affects their cohomology.

3 Directed Graph Complexes with Loops and Wheels

3.1. G� versus G↑. One of the most effective methods for computing coho-
mology of dg free props (that is, G↑-graph complexes) is based on the idea
of interpreting the differential as a perturbation of its 1

2propic part, which, in
this G↑-case, can often be singled out by the path filtration [Kon02,MV03].
However, one cannot apply this idea directly to graphs with wheels—it is
shown below that a filtration that singles out the 1

2propic part of the differ-
ential does not exist in general even for dioperadic differentials. Put another
way, if one takes a G↑-graph complex (P〈E〉, δ), enlarges it by adding deco-
rated graphs with wheels while keeping the original differential δ unchanged,
then one ends up in a very different situation in which the idea of 1

2props is
no longer directly applicable.

3.2. Graphs with back-in-time edges. Here we suggest the following trick
to solve the problem: we further enlarge our set of graphs with wheels, G� �
G+, by putting a mark on one (and only one) of the edges in each wheel, and
then study the natural “forgetful” surjection G+ → G�. The point is that
G+-graph complexes again admit a filtration that singles out the 1

2prop part
of the differential, and hence their cohomology is often easily computable.

More precisely, let G+(m,n) be the set of all directed (m,n)-graphs G that
satisfy conditions 2.1.3(i)–(iv) and the following one:

(v) every oriented wheel in G (if any) has one and only one of its internal
edges marked (say, dashed) and called the back-in-time edge.

For example,

����◦
•
"" #
#

•
!!!

◦
999

��

,

��◦
•
"" #
#

•

◦
��

,

����◦
•##

•

◦
��

, and
����◦

•
"" #
#

•

◦
��

are four different graphs in G+(1, 1).

Clearly, we have a natural surjection

u : G+(m,n) −→ G�(m,n),
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which forgets the markings. For example, the four graphs above are mapped
under u into the same graph

����◦
•
"" #
#

•
!!!

◦
999

��

∈ G�(1, 1),

and in fact, span its preimage under u.

3.3. Graph complexes. Let E = {E(m,n)}m,n≥1,m+n≥3 be an S-bimodule
and let (P〈E〉, δ) be a dg free prop on E with the differential δ that preserves
connectedness and genus, that is, δ applied to any decorated (m,n)-corolla
creates a connected (m,n)-tree. Such a differential can be called dioperadic,
and from now on we restrict ourselves to dioperadic differentials only. This
restriction is not that dramatic: every dg free prop with a nondioperadic but
connected2 differential always admits a filtration that singles out its diop-
eradic part [MV03]. Thus the technique we develop here in Section 3 can,
in principle, be applied to a wheeled extension of any dg free prop with a
connected differential.

We enlarge the G↑-graph complex (P〈E〉, δ) in two ways:

P�〈E〉(m,n) :=
⊕

G∈G�(m,n)

⎛

⎝

⊗

v∈v(G)

E(Out(v), In(v))

⎞

⎠

AutG

,

P+〈E〉(m,n) :=
⊕

G∈G+(m,n)

⎛

⎝

⊗

v∈v(G)

E(Out(v), In(v))

⎞

⎠

AutG

,

and notice that both P�〈E〉 := {P�〈E〉(m,n)} and P+〈E〉 := {P�〈E〉(m,n)}
have a natural structure of dg prop with respect to disjoint unions, grafting
of graphs, and the original differential δ. Clearly, they contain (P〈E〉, δ) as a
dg subprop. There is a natural morphism of dg props

u : (P+〈E〉, δ) −→ (P�〈E〉, δ)

that forgets the markings. Let (L+〈E〉, δ) := Ker u and denote the natural
inclusion L+〈E〉 ⊂ P+〈E〉 by i.

3.4. Fact. There is a short exact sequence of graph complexes

0 −→ (L+〈E〉, δ) i−→ (P+〈E〉, δ) u−→ (P�〈E〉, δ) −→ 0,

2A differential δ in P〈E〉 is called connected if it preserves the filtration of P〈E〉
by the number of connected (in the topological sense) components.



Graph Complexes with Loops and Wheels 331

where u is the map that forgets markings. Thus, if the natural inclusion of
complexes i : (L+〈E〉, δ) → (P+〈E〉, δ) induces a monomorphism in cohomology
[i] : H(L+〈E〉, δ) → H(P+〈E〉, δ), then

H(P�〈E〉, δ) =
H(P+〈E〉, δ)
H(L+〈E〉, δ) .

Put another way, if [i] is a monomorphism, then H(P�〈E〉, δ) is obtained from
H(P+〈E〉, δ) simply by forgetting the markings.

3.5. Functors that adjoin wheels. We are interested in this pa-
per in dioperads D that are either free, D〈E〉, on an S-bimodule E =
{E(m,n)}m,n≥1,m+n≥3, or are naturally represented as quotients of free
dioperads

D =
D〈E〉
〈I〉 ,

modulo ideals generated by some relations I ⊂ D〈E〉. Then the free prop
ΩD→P 〈E〉 generated by D is simply the quotient of the free prop P〈E〉,

ΩD→P〈D〉 :=
P〈E〉
〈I〉 ,

by the ideal generated by the same relations I. Now we define two other props3

ΩD→P�〈D〉 :=
P�〈E〉
〈I〉� , ΩD→P+〈D〉 :=

P+〈E〉
〈I〉+ ,

where 〈I〉� (resp., 〈I〉+) is the subspace of those graphs G in P�〈E〉 (resp., in
P+〈E〉) that satisfy the following condition: there exists a (possibly empty)
set of cyclic edges whose breaking up into two legs produces a graph lying in
the ideal 〈I〉 that defines the prop ΩD→P 〈D〉.

Analogously, one defines functors Ω 1
2P→P� and Ω 1

2P→P+.

From now on we abbreviate notation as

D↑ := ΩD→P〈D〉, D+ := ΩD→P+〈D〉, D� := ΩD→P�〈D〉,

for values of the above-defined functors on dioperads, and respectively

D↑
0 := Ω 1

2P→P〈D0〉, D+
0 := Ω 1

2P→P�〈D0〉, D�
0 := Ω 1

2P→P�〈D0〉

for their values on 1
2props.

3These props are particular examples of wheeled props, which will be discussed
in detail elsewhere.
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3.5.1. Facts. (i) If D is a dg dioperad, then both D� and D+ are naturally
dg props. (ii) If D is an operad, then both D� and D+ may contain at most
one wheel.

3.5.2. Proposition. Any finite-dimensional representation of the dioperad D
lifts to a representation of its wheeled prop extension D�.

Proof. If φ : D → End〈M〉 is a representation, then we first extend it to
a representation φ� of P�〈E〉 ⊂ as in Section 2.3.2 and then notice that
φ�(f) = 0 for any f ∈ 〈I〉�. �
3.5.3. Definition. Let D be a Koszul dioperad with (D∞, δ) → (D, 0) being
its minimal resolution. The dioperadD is called stably Koszul if the associated
morphism of the wheeled completions,

(

D�
∞, δ
)

−→ (D�, 0),

remains a quasi-isomorphism.

3.5.4. Example. The notion of stable Koszulness is nontrivial. Just adding
oriented wheels to a minimal resolution of a Koszul operad while keeping the
differential unchanged may alter the cohomology group of the resulting graph
complex, as the following example shows.

Claim. The operad Ass of associative algebras is not stably Koszul.

Proof. The operad Ass can be represented as a quotient

Ass =
Oper〈E〉
Ideal〈R〉

of the free operad Oper〈E〉 generated by the following S-module E:

E(n) :=

⎧

⎨

⎩

k[S2] = span
(

����◦
21

,
����◦
12
)

for n = 2,

0 otherwise,

modulo the ideal generated by the relations

◦��
��◦��

��
σ(3)

σ(2)σ(1)

− ◦��
�� ◦
:: ��σ(1)

σ(2)σ(3)

= 0, ∀σ ∈ S3.

Hence the minimal resolution (Ass∞, δ) of Ass contains a degree-1 corolla ����
◦
2 31

such that

δ
����◦

2 31

= ◦��
��◦��

��
3

21

− ◦��
�� ◦
:: ��1
2 3

.
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Therefore, in its wheeled extension
(

Ass�
∞, δ
)

, one has

δ
����

◦
21

�� = ◦��
��◦��

��
2

1

�� − ◦��
�� ◦
:: ��1

2

��

= ◦��
��◦��

��
2

1

�� − ◦��
��◦��

��
2

1

��

= 0,

implying the existence of a nontrivial cohomology class ����
◦

21

�� in H
(

Ass�
∞, δ

)

that does not belong to Ass�. Thus Ass is Koszul, but not stably Koszul. �

It is instructive to see explicitly how the map [i] : H(L+〈Ass∞〉, δ) →
H(P+〈Ass∞〉, δ) fails to be a monomorphism. As L+〈Ass∞〉 does not contain
loops, the element

a := ◦��
��◦��

��
2

1

�� − ◦��◦��
��

2
1

��

defines a non-trivial cohomology class, [a], in H(L+〈Ass∞〉, δ), whose image,
[i]([a]), in H(P+〈Ass∞〉, δ) vanishes.

3.6. Koszul substitution laws. Let P = {P (n)}n≥1 and Q = {Q(n)}n≥1

be two quadratic Koszul operads generated,

P :=
P〈EP (2)〉
< IP >

, Q :=
P〈EQ(2)〉
< IQ >

,

by S2-modules EP (2), and, respectively, EQ(2).

One can canonically associate [MV03] to such a pair the 1
2prop, P � Q†,

with

P �Q†(m,n) =

⎧

⎨

⎩

P (n) for m = 1, n ≥ 2,
Q(m) for n = 1,m ≥ 2,
0 otherwise,

and the 1
2prop compositions,

{

1◦j : P �Q†(m1, 1) ⊗ P �Q†(m2, n2) −→ P �Q†(m1 +m2 − 1, n2)
}

1≤j≤m2
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being zero for n2 ≥ 2 and coinciding with the operadic composition in Q for
n2 = 1, and
{

i◦1 : P �Q†(m1, n1) ⊗ P �Q†(1, n2) −→ P �Q†(m1 +m2 − 1, n2)
}

1≤i≤n1

being zero for m1 ≥ 2 and otherwise coinciding with the operadic composition
in P for m1 = 1.

Let D0 = Ω 1
2P→D〈P � Q†〉 be the associated free dioperad, D!

0 its
Koszul dual dioperad, and

(

D0∞ := DD!
0, δ0

)

the associated cobar con-
struction [Gan03]. As D0 is Koszul [11, MV03], the latter provides us with
the dioperadic minimal model of D0. By exactness of Ω 1

2P→P, the dg free

prop,
(

D↑
0∞ := ΩD→P〈D0∞〉, δ0

)

, is the minimal model of the prop D↑
0 :=

ΩD→P〈D0〉 � Ω 1
2P→P〈P �Q†〉.

3.6.1. Remark. The prop D↑
0 can equivalently be defined as the quotient,

P ∗Q†

I0

where P ∗ Q† is the free product of props associated to operads P and4 Q†,
and the ideal I0 is generated by graphs of the form

I0 = span

〈 ����◦
•
"" #
#

〉

� D0(2, 1) ⊗D0(1, 2) = EQ(2) ⊗ EP (2)

with white vertex decorated by elements of EQ(2) and black vertex decorated
by elements of EP (2).

Let us consider a morphism of S2-bimodules

λ : D0(2, 1) ⊗D0(1, 2) −→ D0(2, 2)

span

〈 ����◦
•
"" #
#

〉

−→ span

〈

��
��
◦
•$$$ , ��

��
◦

•
���

〉

and define [MV03] the dioperad Dλ as the quotient of the free dioperad
generated by the two spaces of binary operations D0(2, 1) = EQ(2) and
D0(1, 2) = EP (2) modulo the ideal generated by relations in P , relations
in Q, as well as the followings ones:

Iλ = span{f − λf : ∀f ∈ D0(2, 1) ⊗D0(1, 2)}.

Note that in the notation of Section 3.6.1, the associated prop D↑
λ :=

ΩD→P 〈Dλ〉 is just the quotient P ∗Q†/Iλ.
4the symbol † stands for the functor on props P = {P (m,n)} → P † =

{P †(m, n)} that reverses “time flow,” i.e., P †(m,n) := P (n, m).
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The substitution law λ is called Koszul if Dλ is isomorphic to D0 as an S-
bimodule, which implies that Dλ is Koszul [Gan03]. Koszul duality technique
provides DD!

0 � DD!
λ with a perturbed differential δλ such that

(

DD!
0, δλ

)

is the minimal model (Dλ∞, δλ) of the dioperad Dλ.

3.7. Theorem [MV03, V]. The dg free prop D↑
λ∞ := ΩD→P 〈Dλ∞〉 is the

minimal model of the prop D↑
λ, i.e., the natural morphism

(

D↑
λ∞, δλ

)

−→
(

D↑
λ, 0
)

,

which sends to zero all vertices of D↑
λ∞ except binary ones decorated by ele-

ments of EP (2) and EQ(2), is a quasi-isomorphism.

Proof. The main point is that

Fp :=
{

span
〈

f ∈ D↑
λ∞

〉

: number of directed paths in the graph f
that connect input legs with output ones ≤ p

}

defines a filtration of the complex D↑
λ∞. The associated spectral sequence

{Er, dr}r≥0 is exhaustive and bounded below, so that it converges to the

cohomology of
(

D↑
λ∞, δλ

)

.

The zeroth term of this spectral sequence is isomorphic to
(

D↑
0∞, δ0

)

, and
hence by Koszulness of the dioperad D0 and exactness of the functor Ω 1

2P→P

has the cohomology E1 isomorphic to D↑
0 , which, by Koszulness of Dλ, is

isomorphic to D↑
λ as an S-bimodule. Since {dr = 0}r≥1, the result follows

along the same lines as in the second part of the proof of Theorem 2.6.2. �
3.8. Cohomology of graph complexes with marked wheels. In this
section we analyze the functor Ω 1

2 P→P+. The following statement is one of the
motivations for its introduction (it does not hold true for the “unmarked”
version Ω 1

2P→P�).

3.8.1. Theorem. The functor Ω 1
2 P→P+ is exact.

Proof. Let T be an arbitrary dg 1
2
prop. The main point is that we can

use 1
2
prop compositions and presence of marks on cyclic edges to represent

Ω 1
2P→P+〈T 〉 as a vector space freely generated by a family of decorated graphs

Ω 1
2 P→P+〈T 〉(m,n) =

⊕

G∈G+(m,n)

G〈P 〉,

where G+(m,n) is a subset of G+(m,n) consisting of so-called reduced graphs
G that satisfy the following defining property: for each pair of internal vertices
(v1, v2) of G that are connected by an unmarked edge directed from v1 to v2
one has |Out(v1)| ≥ 2 and |In(v2)| ≥ 2. Put another way, given an arbitrary



336 S.A. Merkulov

T -decorated graph with wheels, one can perform 1
2prop compositions (“con-

tractions”) along all unmarked internal edges (v1, v2) that do not satisfy the
above conditions. The result is a reduced decorated graph (with wheels) that
is uniquely defined by the original one. Notice that marks are vital for this
contraction procedure, e.g.,

•
•
•

•
•

��

��;;;;

��

��

��		
		
	

−→ ••
<<
<<
<

��
��
==
= >>
>
$$
$$

��
,

to be well defined.

Then we have

H∗
(

Ω 1
2P→P+〈T 〉(m,n)

)

= H∗

⎛

⎝

⊕

G∈Ḡ+(m,n)

⎛

⎝

⊗

v∈v(G)

T (Out(v), In(v))

⎞

⎠

AutG

⎞

⎠

(by Maschke’s theorem) =
⊕

G∈Ḡ+(m,n)

H∗

⎛

⎝

⊗

v∈v(G)

T (Out(v), In(v))

⎞

⎠

AutG

(by the Künneth formula) =
⊕

G∈Ḡ+(m,n)

⎛

⎝

⊗

v∈v(G)

H∗(T )(Out(v), In(v))

⎞

⎠

AutG

= Ω 1
2P→P+〈H∗(T )〉(m,n).

In the second line we used the fact that the group AutG is finite. �
Another motivation for introducing graph complexes with marked wheels

is that they admit a filtration that singles out the 1
2propic part of the differ-

ential, a fact that we use heavily in the proof of the following theorem.

3.8.2. Theorem. Let Dλ be a Koszul dioperad with Koszul substitution law
and let (Dλ∞, δ) be its minimal resolution. The natural morphism of graph
complexes

(

D+
λ∞, δλ

)

−→
(

D+
λ , 0
)

is a quasi-isomorphism.

Proof. Consider first a filtration of the complex
(

D+
λ∞, δλ

)

by the number of
marked edges, and let

(

D+
λ∞, b

)

denote the 0th term of the associated spectral
sequence (which, as we shall show below, degenerates at the first term).

To any decorated graph f ∈ D+
λ∞ = ΩD→P+〈Dλ∞〉 one can associate a

graph without wheels f ∈ ΩD→P 〈Dλ∞〉 by breaking every marked cyclic edge
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into two legs (one of which is input and the other, output). Let |f | be the
number of directed paths in the graph f that connect input legs with output
ones. Then

Fp :=
{

f ∈ D+
λ∞ : |f | ≤ p

}

defines a filtration of the complex
(

D+
λ∞, b

)

.
The zeroth term of the spectral sequence {Er, dr}r≥0 associated to this

filtration is isomorphic to
(

Ω 1
2P→P+

〈

D0
∞
〉

, δ0

)

and hence, by Theorem 3.8.1,

has the cohomology E1 equal to D+
0 := Ω 1

2P→P+〈D0〉, which by Koszulness
of Dλ is isomorphic as a vector space to D+

λ . Since differentials of all higher
terms of both our spectral sequences vanish, the result follows. �
3.8.3. Remark. In the proof of Theorem 3.8.2, the 1

2propic part δ0 of the
differential δλ was singled out in two steps: first we introduced a filtration by
the number of marked edges, and then a filtration by the number of paths
|f̄ | in the unwheeled graphs f . As the following lemma shows, one can do it
in one step. Let w(f) stand for the number of marked edges in a decorated
graph f ∈ D+

λ∞.

3.8.4. Lemma The sequence of vector spaces spaces p ∈ N,

Fp :=
{

span
〈

f ∈ D+
λ∞
〉

: ‖f‖ := 3w(f)|f | ≤ p
}

,

defines a filtration of the complex
(

D+
λ∞, δλ

)

whose spectral sequence has 0th
term isomorphic to

(

D+
0∞, δ0

)

.

Proof. It is enough to show that for any graph f in D+
λ∞ with w(f) �= 0 one

has ‖δλf‖ ≤ ‖f‖.

We can, in general, split δλf into two groups of summands,

δλf =
∑

a∈I1

ga +
∑

b∈I2

gb,

where w(ga) = w(f) ∀a ∈ I1, and w(gb) = w(f) − pb for some pb ≥ 1 and all
b ∈ I2.

For any a ∈ I1,

‖ga‖ = 3w(f)|ga| ≤ 3w(f)|f | = ‖f‖.

So it remains to check the inequality ‖gb‖ ≤ ‖f‖, ∀b ∈ I2.
We can also split δλf into two groups of summands

δλf =
∑

a∈I1

ha +
∑

b∈I2

hb,
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where {hb}b∈I2 is the set of all those summands that contain two-vertex sub-
graphs of the form

??

...

y...
x
...

...

that contain half-edges of the type x and y corresponding to broken wheeled
paths in f . Every graph gb is obtained from the corresponding hb by gluing
some number of output legs connected to y with the same number of input
legs connected to x into new internal noncyclic edges. This gluing operation
creates pb new paths connecting some internal vertices in hb, and hence may
increase the total number of paths in hb, but by no more than the factor of
pb + 1, i.e., |gb| ≤ (pb + 1)|hb|, ∀b ∈ I2.

Finally, we have

‖gb‖ = 3w(f)−pb|gb| ≤ 3w(f)−pb(pb + 1)|hb| < 3w(f)|f | = ‖f‖, ∀b ∈ I2.

The part of the differential δλ that preserves the filtration must in fact preserve
both the number of marked edges w(f) and the number of paths |f | for any
decorated graph f . Hence this is precisely δ0. �
3.9. Graph complexes with unmarked wheels built on 1

2
props. Let

(

T = 1
2
P〈E〉/〈I〉, δ

)

be a dg 1
2
prop. In Section 3.5 we defined its wheeled

extension
(

T� :=
P�〈E〉
〈I〉� , δ

)

.

Now we specify a dg subprop, Ωno−oper〈T 〉 ⊂ T�, whose cohomology is easy
to compute.

3.9.1. Definition. Let E = {E(m,n)}m,n≥1,m+n≥3 be an S-bimodule, and
P�〈E〉 the associated prop of decorated graphs with wheels. We say that
a wheel W in a graph G ∈ P�〈E〉 is operadic if all its cyclic vertices are
decorated either by elements of {E(1, n)}n≥2 only or by elements E(n, 1)n≥2

only. Vertices of operadic wheels are called operadic cyclic vertices. Notice
that operadic wheels can be of geometric genus 1 only.

Let P�
no−oper〈E〉 be the subspace of P�〈E〉 consisting of graphs with no

operadic wheels, and let

Ωno−oper〈T 〉 =
P�

no−oper〈E〉
〈I〉�

be the associated dg subprop of (T�, δ).
Clearly, Ωno−oper is a functor from the category of dg 1

2props to the cate-
gory of dg props. It is worth pointing out that this functor cannot be extended
to dg dioperads, since the differential can, in general, create operadic wheels
from nonoperadic ones.
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3.9.2. Theorem. The functor Ωno−oper is exact.

Proof. Let (T, δ) be an arbitrary dg 1
2prop. Every wheel in Ωno−oper〈T 〉

contains at least one cyclic edge along which 1
2prop composition in T is not

possible. This fact allows one to unambiguously perform such compositions
along all those cyclic and noncyclic edges at which such a composition makes
sense, and hence represent Ωno−oper〈T 〉 as a vector space freely generated by
a family of decorated graphs,

Ωno−oper〈T 〉(m,n) =
⊕

G∈G�(m,n)

G〈T 〉,

where G�(m,n) is a subset of G�(m,n) consisting of reduced graphs G that
satisfy the following defining properties: (i) for each pair of internal vertices
(v1, v2) of G that are connected by an edge directed from v1 to v2 one has
|Out(v1)| ≥ 2 and |In(v2)| ≥ 2; (ii) there are no operadic wheels in G. The
rest of the proof is exactly the same as in Section 3.8.1. �

Let P and Q be Koszul operads and let D0 be the associated Koszul
dioperad (defined in Section 3.6), whose minimal resolution is denoted by
(D0∞, δ0).

3.9.3. Corollary. H(Ωno−oper〈D0∞〉, δ0) = Ω 1
2P→P 〈D0〉.

Proof. By Theorem 3.9.2,

H(Ωno−oper〈D0∞〉, δ0) = Ωno−oper〈H(D0∞, δ0)〉 = Ωno−oper〈D0〉.
But the latter space cannot have graphs with wheels, since any such wheel
would contain at least one “nonreduced” internal cyclic edge corresponding
to composition,

◦1,1 : D0(m, 1) ⊗D0(1, n) −→ D0(m,n),

which is zero by the definition of D0 (see Section 3.6). �
3.10. Theorem. For any Koszul operads P and Q,

(i) the natural morphism of graph complexes
(

D�
0∞, δ0

)

−→
(

D�
0 , 0
)

is a quasi-isomorphism if and only if the operads P and Q are stably Koszul;
(ii) there is, in general, an isomorphism of S-bimodules

H
(

D�
0∞, δ0

)

=
H (P�

∞) ∗H (Q�
∞)†

I0
,

where H (P�
∞) and H (Q�

∞) are cohomologies of the wheeled completions of
the minimal resolutions of the operads P and Q, ∗ stands for the free product
of PROPs, and the ideal I0 is defined in Section 3.6.1.
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Proof. (i) The necessity of the condition is obvious. Let us prove its
sufficiency.

Let P and Q be stably Koszul operads such that the natural morphisms
(

P�
∞, δP

)

→ P� and
(

Q�
∞, δQ

)

→ Q�

are quasi-isomorphisms, where (P∞, δP ) and (Q∞, δQ) are minimal resolutions
of P and Q respectively.

Consider a filtration of the complex
(

D�
0∞, δ0

)

,

Fp :=
{

span
〈

f ∈ D�
0∞
〉

: |f |2 − |f |1 ≤ p
}

,

where

• |f |1 is the number of cyclic vertices in f that belong to operadic wheels;
• |f |2 is the number of noncyclic half-edges attached to cyclic vertices in f

that belong to operadic wheels.

Note that |f |2 − |f |1 ≥ 0. Let {Er, dr}r≥0 be the associated spectral se-
quence. The differential d0 in E0 is given by its values on the vertices as
follows:

(a) on every noncyclic vertex and on every cyclic vertex that does not belong
to an operadic wheel one has d0 = δ0;

(b) on every cyclic vertex that belongs to an operadic wheel one has d0 = 0.

Hence modulo the action of finite groups (which we can ignore by
Maschke’s theorem) the complex (E0, d0) is isomorphic to the complex
(Ωno−oper〈D0∞〉, δ0), tensored with a trivial complex (i.e., one with vanishing
differential). By Corollary 3.9.3 and the Künneth formula we obtain,

E1 = H(E0, d0) = W1/h(W2),

where

• W1 is the subspace of P�
〈

EP ⊕ E†
Q

〉

consisting of graphs whose wheels

(if any) are operadic; here the S-bimodule EP ⊕ E†
Q is given by

(

EP ⊕ E†
Q

)

(m,n) =

⎧

⎨

⎩

EP (2), the space of generators of P, if m=1, n=2,
EQ(2), the space of generators of Q, if m=2, n=1,
0, otherwise;

• W2 is the subspace of P�
〈

EP ⊕ E†
Q ⊕ IP ⊕ I†Q

〉

consisting of graphs G
whose wheels (if any) are operadic and satisfy the following condition: the
elements of IP and I†Q are used to decorate at least one noncyclic vertex in
G. Here IP and I†Q are S-bimodules of relations of the quadratic operads
P and Q† respectively.
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• the map h : W2 →W1 is defined to be the identity on vertices decorated by
elements of EP ⊕E†

Q, and the tautological (in the obvious sense) morphism
on vertices decorated by elements of IP and I†Q.

To understand all the remaining terms {Er, dr}r≥1 of the spectral sequence
we step aside and contemplate for a moment a purely operadic graph complex
with wheels, say (P�

∞, δP ).
The complex (P�

∞, δP ) is naturally a subcomplex of
(

D�
0∞, δ0

)

. Let

Fp :=
{

span
〈

f ∈ P�
∞
〉

: |f |2 − |f |1 ≤ p
}

be the induced filtration, and let
{

EP
r , d

P
r

}

r≥0
be the associated spectral

sequence. Then EP
1 = H

(

EP
0 , d

P
0

)

is a subcomplex of E1.
The main point is that modulo the action of finite groups, the spectral

sequence {Er, dr}r≥1 is isomorphic to the tensor product of spectral sequences
of the form

{

EP
r , d

P
r

}

r≥1
and

{

EQ
r , d

Q
r

}

r≥1
. By assumption, the latter con-

verge to P� and Q� respectively, which implies the result.
(ii) The argument is exactly the same as in (i) except for the very last

paragraph: the spectral sequences of the form
{

EP
r , d

P
r

}

r≥1
and

{

EQ
r , d

Q
r

}

r≥1

converge, respectively, to H (P�
∞) and to H (Q�

∞) (rather than to P�

and Q�). �
3.11. Operadic wheeled extension. Let Dλ be a dioperad and Dλ∞ its
minimal resolution. Let D�

λ∞ be a dg subprop of D�
λ∞ spanned by graphs with

at most operadic wheels (see Section 3.9.1). Similarly, one defines a subprop
D�

λ of D�
λ .

3.11.1. Theorem. For any Koszul operads P and Q and any Koszul substi-
tution law λ,

(i) the natural morphism of graph complexes
(

D�
λ∞, δλ

)

−→ D�
λ

is a quasi-isomorphism if and only if the operads P and Q are both stably
Koszul;

(ii) there is, in general, an isomorphism of S-bimodules

H
(

D�
λ∞, δλ

)

= H
(

D�
0∞, δ0

)

=
H (P�

∞) ∗H (Q�
∞)†

I0
,

where H (P�
∞) and H (Q�

∞) are cohomologies of the wheeled completions of
the minimal resolutions of the operads P and Q.

Proof. Use the spectral sequence of a filtration {Fp} defined similarly to the
one introduced in the proof of Theorem 3.10. We omit full details, since they
are analogous to Section 3.10. �

In the next section we apply some of the above results to compute coho-
mology of several concrete graph complexes with wheels.
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4 Examples

4.1. Wheeled operad of strongly homotopy Lie algebras. Let (Lie∞, δ)
be the minimal resolution of the operad Lie of Lie algebras. It can be identi-
fied with the subcomplex of (Lie1B∞, δ) spanned by connected trees built on
degree-one (1, n)-corollas, n ≥ 2,

••
<<
<<
<

��
��
... $
$$
$

@@
@@

@

1 2 n-1 n

with the differential given by

δ ••
<<
<<
<

��
��
... $
$$
$

@@
@@

@

1 2 n-1 n

=
∑

[n]=J1�J2
|J1|≥2,|J2|≥1

••
��
��
��

•
""
"" ��
��

AA
AA
...

︸ ︷︷ ︸

J1

︸ ︷︷ ︸

J2

��
��
... .
..

.





Let Lie�
∞ and Lie� be wheeled extensions of Lie∞ and, respectively, Lie (see

Section 3.5 for precise definitions).

4.1.1. Theorem. The operad Lie of Lie algebras is stably Koszul, i.e.,
H
(

Lie�
∞
)

= Lie�.

Proof. We shall show that the natural morphism of dg props
(

Lie�
∞, δ
)

−→ (Lie�, 0)

is a quasi-isomorphism. Consider a surjection of graph complexes (cf.
Section 3.4)

u :
(

Lie+
∞, δ

)

−→
(

Lie�
∞, δ

)

,

where Lie+
∞ is the marked extension of Lie�

∞, i.e., the one in which one cyclic
edge in every wheel is marked. This surjection respects the filtrations

FpLie+
∞ :=

{

span
〈

f ∈ Lie+
∞
〉

: total number of cyclic vertices in f ≥ p
}

,

FpLie�
∞ :=

{

span
〈

f ∈ Lie�
∞
〉

: total number of cyclic vertices in f ≥ p
}

,

and hence induces a morphism of the associated 0th terms of the spectral
sequences

u0 :
(

E+
0 , ∂0

)

−→
(

E�
0 , ∂0

)

.

The point is that the (pro-)cyclic group acting on
(

E+
0 , ∂0

)

by shifting
the marked edge one step further along according to the orientation com-
mutes with the differential ∂0, so that u0 is nothing but the projection to
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the coinvariants with respect to this action. Since we work over a field of
characteristic 0, coinvariants can be identified with invariants in

(

E+
0 , ∂0

)

.
Hence we get, by Maschke’s theorem,

H
(

E�
0 , ∂0

)

= cyclic invariants in H
(

E+
0 , ∂0

)

.

The next step is to compute the cohomology of the complex
(

E+
0 , ∂0

)

.
Consider its filtration

Fp :=
{

span
〈

f ∈ E+
0

〉

:
total number of noncyclic input
edges at cyclic vertices in f ≤ p

}

,

and let {Er, δr}r≥0 be the associated spectral sequence. We shall show below
that the latter degenerates at the second term (so that E2 � H

(

E+
0 , ∂0

)

). The
differential δ0 in E0 is given by its values on the vertices as follows:

(i) on every noncyclic vertex one has δ0 = δ, the differential in Lie∞;
(ii) on every cyclic vertex, δ0 = 0.

Hence the complex (E0, δ0) is isomorphic to the direct sum of tensor products
of complexes (Lie∞, δ). By the Künneth theorem, we get

E1 = V1/h(V2),

where

• V1 is the subspace of Lie+
∞ consisting of all those graphs whose every

noncyclic vertex is ����• ;

• V2 is the subspace of Lie+
∞ whose every noncyclic vertex is either ����• or ����•

with the number of vertices of the latter type ≥ 1;
• the map h : V2 → V1 is given on noncyclic vertices by

h
(

����•
)

= ����• , h

(

����•
2 31

)

= •����•  !! 3
21

+ •����•  !! 2
13

+ •����•  !! 1
32

,

and on all cyclic vertices, h is set to be the identity.

The differential δ1 in E1 is given by its values on vertices as follows:

(i) on every noncyclic vertex one has δ1 = 0;
(ii) on every cyclic (1, n + 1)-vertex with cyclic half-edges denoted by x and

y, one has

δ1 •

y

•
<<
<<
<

��
��
... $
$$
$

@@
@@

@

1 2 n x

=
∑

[n]=J1�J2
|J1|=2,|J2|≥0

•

y

•
��
��
��

•
BBB C
CC

︸︷︷︸

J1

︸ ︷︷ ︸

J2

��
��
... .
..

.





x

.
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To compute the cohomology of (E1, δ1) let us step aside and compute the
cohomology of the minimal resolution (Lie∞, δ) (which we of course already
know to be equal to Lie) in a slightly unusual way:

F Lie
p := {span 〈f ∈ Lie∞〉 : number of edges attached to the root vertex of f≤p}

is clearly a filtration of the complex (Lie∞, δ). Let
{

ELie
r , dLie

r

}

r≥0
be the as-

sociated spectral sequence. The cohomology classes of ELie
1 = H

(

ELie
0 , dLie

0

)

resemble elements of E1: they are trees whose root vertex may have any num-
ber of edges while all other vertices are binary, ����• . The differential dLie

1 is
nontrivial only on the root vertex, on which it is given by

dLie
1 ••

<<
<<
<

��
��
... $
$$
$

@@
@@

@

1 2 n-1 n

=
∑

[n]=J1�J2
|J1|=2,|J2|≥1

•

y

•
��
��
��

•
BBB C
CC

︸︷︷︸

J1

︸ ︷︷ ︸

J2

��
��
... .
..

. .

The cohomology of
(

ELie
1 , dLie

1

)

is equal to the operad of Lie algebras. The
differential dLie

1 is identical to the differential δ1 above except for the term
corresponding to |J2| = 0. Thus let us define another complex

(

ELie+
1 , dLie+

1

)

by adding to ELie
1 trees whose root vertex is a degree-(−1) corolla • while all

other vertices are binary ����• . The differential dLie+
1 is defined on root (1, n)-

corollas with n ≥ 2 by formally the same formula as for dLie
1 except that the

summation range is extended to include the term with |I1| = 0. We also set
dLie+
1 • = 0.

Claim. The cohomology of the complex
(

ELie+
1 , dLie+

1

)

is a one-dimensional
vector space spanned by •.

Proof of the claim. Consider the 2-step filtration F0 ⊂ F1 of the complex
(

ELie+
1 , dLie+

1

)

by the number of •’s . The zeroth term of the associated spectral
sequence is isomorphic to the direct sum of the complexes,

(

ELie
1 , dLie

1

)

⊕
(

ELie
1 [1], dLie

1

)

⊕ (span〈•〉, 0),

so that the next term of the spectral sequence is

Lie ⊕ Lie[1] ⊕ 〈•〉

with the differential being zero on Lie[1]⊕〈•〉 and the the natural isomorphism

Lie −→ Lie[1]

on the remaining summand. Hence the claim follows.
The point of the above claim is that the graph complex (E1, δ1) is isomor-

phic to the tensor product of a trivial complex with complexes of the form
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(

ELie+
1 , dLie+

1

)

, which immediately implies that E2 = E∞ � H
(

E+
0 , ∂0

)

is the
direct sum of Lie and the vector space spanned by marked wheels of the type

•
•
•

•
•

��

��;;;;

��

��D
DD
D

��		
		
	

whose every vertex is cyclic. Hence the cohomology group H
(

E�
0 , ∂0

)

= E�
1

we started with is equal to the direct sum of Lie and the space Z spanned by
unmarked wheels of the type

•
•
•

•
•

��

��;;;;

��

��D
DD
D

��		
		
	

whose every vertex is cyclic. Since every vertex is binary, the induced differen-
tial ∂1 on E�

1 vanishes, the spectral sequence by the number of cyclic vertices
we began with degenerates, and we conclude that this direct sum Lie ⊕ Z is
isomorphic to the required cohomology group H

(

Lie�
∞, d

)

.
Finally, one checks using Jacobi identities that every element of Lie� con-

taining a wheel can be uniquely represented as a linear combination of graphs
from Z, implying

Lie� � Lie ⊕ Z � H
(

Lie�
∞, d

)

and completing the proof. �

4.2. Wheeeled prop of polyvector fields. Let Lie1B be the prop of Lie
1-bialgebras and (Lie1B∞, δ) its minimal resolution (see Section 2.6.3). We
denote their wheeled extensions by Lie1B� and

(

Lie1B�
∞, δ

)

respectively (see
Section 3.5), and their operadic wheeled extensions by Lie1B� and

(

Lie1B�
∞, δ

)

(see Section 3.11). By Theorems 3.11.1 and 4.1.1, we have the followings result.

4.2.1. Proposition. The natural epimorphism of dg props
(

Lie1B�
∞, δ
)

−→ (Lie1B�, 0)

is a quasi-isomorphism.

We shall study next a subcomplex (not a subprop!) of the complex
(

Lie1B�
∞, δ

)

that is spanned by directed graphs with at most one wheel, i.e., with at most
one closed path that begins and ends at the same vertex. We denote this sub-
complex by Lie1B◦

∞. Similarly we define a subspace Lie1B◦ ⊂ Lie1B� spanned
by equivalence classes of graphs with at most one wheel.
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4.2.2. Theorem. H (Lie1B◦
∞, δ) = Lie1B◦.

Proof. (a) Consider a two-step filtration F0 ⊂ F1 := Lie1B◦
∞ of the complex

(Lie1B◦
∞, δ), with F0 := Lie1B∞ being the subspace spanned by graphs with

no wheels. We shall show below that the cohomology of the associated direct
sum complex

F0

⊕ F1

F0

is equal to Lie1B
⊕ Lie1B◦

Lie1B . In fact, the equality H(F0) = Lie1B is obvious, so
that it is enough to show below that the cohomology of the complex C := F1

F0

is equal to Lie1B◦
Lie1B .

(b) Consider a filtration of the complex (C, δ),

FpC := {span〈f ∈ C〉 : number of cyclic vertices in f ≥ p} ,
and a similar filtration

FpC
+ :=

{

span〈f ∈ C+〉 : number of cyclic vertices in f ≥ p
}

of the marked version of C. Let {Er, ∂r}r≥0 and {E+
r , ∂r}r≥0 be the associated

spectral sequences. There is a natural surjection of complexes

u0 :
(

E+
0 , ∂0

)

−→
(

E�
0 , ∂0

)

.

It is easy to see that the differential ∂0 in E+
0 commutes with the action of the

(pro-)cyclic group on
(

E+
0 , δ0

)

by shifting the marked edge one step further
along according to the orientation, so that u0 is nothing but the projection
to the coinvariants with respect to this action. Since we work over a field of
characteristic 0, we get by Maschke’s theorem

H
(

E�
0 , ∂0

)

= cyclic invariants in H
(

E+
0 , ∂0

)

,

so that at this stage we can work with the complex
(

E+
0 , ∂0

)

. Consider a
filtration of the latter,

Fp :=
{

span
〈

f ∈ E+
0

〉

: total number of noncyclic input
edges at cyclic vertices in f ≤ p

}

,

and let {Er, dr}r≥0 be the associated spectral sequence. The differential δ0 in
E0 is given by its values on the vertices as follows:

(i) on every noncyclic vertex one has d0 = δλ, the differential in Lie1B∞;
(ii) on every cyclic vertex, d0 = 0.

Hence the complex (E0, d0) is isomorphic to the direct sum of tensor products
of complexes (Lie∞, δ) with trivial complexes. By the Künneth theorem, we
conclude that E1 = H(E0, d0) can be identified with the quotient of the sub-
space in C spanned by graphs whose every noncyclic vertex is ternary, e.g.,
either ����• or ����• , with respect to the equivalence relation generated by the
following equations among noncyclic vertices:
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(	) •��
��•��

��
3

21

+ •��
��•��

��
2

13

+ •��
��•��

��
1

32

= 0 , •����•  !! 3
21

+ •����•  !! 2
13

+ •����•  !! 1
32

=

0 ,
����

•
•
"" #
#

21

1 2

= 0.

The differential d1 in E1 is nonzero only on cyclic vertices,

d1 •
������

����
... ����

1 2 m

•
���

���
��
��
... �
��

�

1 2 n

=
∑

[m]=I1�I2
|I1|≥0,|I2|=2

(−1)σ(I1�I2)+1 •
������

����
&&&

... EEEE

•
... 000

︷︸︸︷

I2

︷︸︸︷

I1

•
���

���
��
��
... �
��

�

1 2 n

+
∑

[n]=J1�J2
|J1|=2,|J2|=2

•
���

���
EE
EE
//
/

... ��
��

•
00
0 ..
.

︸︷︷︸

J2

︸︷︷︸

J1

•
������

����
... ����

1 2 n

+
∑

[m]=I1�I2
[n]=J1�J2

|I1|≥0,|I2|=1
|J1|≥0,|J2|=1

(−1)σ(I1�I2) •
������

����
... ///

FFFFFFFFF

•CCC
I2

J2

︷ ︸︸ ︷

I1

︸ ︷︷ ︸

J1

•
���

���
��
��
... &

&&

+
∑

[m]=I1�I2
[n]=J1�J2

|I1|=1,|I2|≥0
|J1|=1,|J2|≥0

(−1)σ(I1�I2)+m •
����
... ///•

���
���

◦
��

I1

J1

︷︸︸︷

I2

︸︷︷︸

J2

��
��
... &

&&

where cyclic half-edges (here and below) are dashed. Then E1 can be inter-
preted as a bicomplex

(

E1 =
⊕

m,n Em,n
1 , d1 = ∂ + ∂̄

)

with, say, m counting
the number of vertices attached to cyclic vertices in an “operadic” way (as
in the first two summands above), and n counting the number of vertices at-
tached to cyclic vertices in a “nonoperadic” way (as in the last two summands
in the above formula). Note that the assumption that there is only one wheel
in C is vital for this splitting of the differential d1 to have sense. The differen-
tial ∂ (respectively, ∂̄) is equal to the first (respectively, last) two summands
in d1.

Using the claim in the proof of Theorem 4.1.1, it is not hard to check that
H(E1, ∂) is isomorphic to the quotient of the subspace of C spanned by graphs
whose

— every noncyclic vertex is ternary (i.e., the total number of attached
half-edges equals 3), e.g., either ����• or ����• ;

— every cyclic vertex is either
��
• or ��• , or

��
��• ,
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with respect to the equivalence relation generated by equations (	) and the
following ones:

(		) •
��•��

��

= 0 , •��•  !!
= 0 , •��

��•��
��

= 0 , •
��
��•  !!

= 0 .

The differential ∂̄ is nonzero only on cyclic vertices of the type
��
��• , on which

it is given by

∂̄
��
��• = − •

��•�� − •��•
��

Hence A := H(H(E1, ∂), ∂̄) can be identified with the quotient of the subspace
of C spanned by graphs whose

— every noncyclic vertex is ternary, e.g., either ����• or ����• ;

— every cyclic vertex is also ternary, e.g., either
��• or ��•

with respect to the equivalence relation generated by equations (	), (		), and,
say, the following one:

•
��•�� = 0 .

Since all vertices are ternary, all higher differentials in our spectral sequences
vanish, and we conclude that

H(C, δ) � A,

which proves the theorem. �
4.2.3. Remark. As an independent check of the above arguments one can
show using relations R1 −R3 in Section 2.6.2 that every element of Lie1B◦

Lie1B can
indeed be uniquely represented as a linear combinations of graphs from the
space A.

4.2.4. Remark. Proposition 4.2.1 and Theorem 4.2.2 cannot be extended to
the full wheeled prop Lie1B�

∞, i.e., the natural surjection

π :
(

Lie1B�
∞, δ

)

−→ (Lie1B, 0)

is not a quasi-isomorphism. For example, the graph

•��
•

��
��
�

���������

•
CCC

��

��

��

−
• GGG

•��

HHHHHH•
CCC

��

����

+
• III

•��

JJ
JJ

JJ•BBB

��

����

represents a nontrivial cohomology class in H1
(

Lie1B�
∞, δ
)

.

4.3. Wheeled prop of Lie bialgebras. Let LieB be the prop of Lie bial-
gebras that is generated by the dioperad very similar to Lie1B except that
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both generating Lie and coLie operations, are in degree zero. This dioperad is
again Koszul with Koszul substitution law, so that the analogue of Proposition
4.2.1 holds true for the operadic wheelification LieB�

∞. In fact, the analogue
of Theorem 4.2.2 holds true for LieB◦

∞.

4.4. Prop of infinitesimal bialgebras. Let IB be the dioperad of infinites-
imal bialgebras [MV03] that can be represented as a quotient

IB =
D〈E〉

Ideal〈R〉

of the free prop generated by the following S-bimodule E:

• all E(m,n) vanish except E(2, 1) and E(1, 2),

• E(2, 1) := k[S2] ⊗ 11 = span
(

����
•
1

21

,
����

•
1

12
)

,

• E(1, 2) := 11 ⊗ k[S2] = span

(

����•
1

21

, ����•
1

12

)

,

modulo the ideal generated by the associativity conditions for ����• , coassocia-
tivity conditions for ����• , and

����•
•
"" #
# − ��

��
•
•$$$ − ��

��
•

•
��� = 0.

This is a Koszul dioperad with a Koszul substitution law. Its minimal
prop resolution (IB∞, δ) is a dg prop freely generated by the S-bimodule
E = {E(m,n)}m,n≥1,m+n≥3, with

E(m,n) := k[Sm] ⊗ k[Sn][3 −m− n] = span

〈

•
������

����
. . . ����

������

1 2 m−1 m

���
���
��
��
. . . ��

��
���

���

1 2 n−1 n

〉

.

By Claim 3.5.4, the analogue of Proposition 4.2.1 does not hold true for IB�
∞.

Moreover, it is not hard to check that the graph

•
���

���
������ ��

− •
���

���
��������

represents a nontrivial cohomology class in H−1
(

IB�
∞
)

. Thus the analogue of
Theorem 4.2.2 does not hold true for IB◦

∞, nor is the natural surjection IB�
∞ →

IB� a quasi-isomorphism. This example is of interest because the wheeled dg
prop IB�

∞ controls the cohomology of a directed version of Kontsevich’s ribbon
graph complex.
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4.5. Wheeled quasiminimal resolutions. Let P be a graded prop with
zero differential admitting a minimal resolution

π : (P∞ = P〈E〉, δ) → (P, 0).

We shall use in the following discussion of this pair of props P∞ and P a Tate–
Jozefak grading,5 which, by definition, assigns degree zero to all generators
of P and hence makes P∞ into a nonpositively graded differential prop P∞ =
⊕

i≤0 Pi
∞ with cohomology concentrated in degree zero, H0(P∞, δ) = P. Both

props P∞ and P admit canonically wheeled extensions,

P�
∞ :=

⊕

G∈G�
G〈E〉,

P� := H0
(

P�
∞, δ
)

.

However, the natural extension of the epimorphism π,

π� :
(

P�
∞, δ

)

→ (P, 0),

fails in general to stay a quasi-isomorphism.
Note that the dg prop (P�

∞, δ) defined above is a free prop

P�
∞ :=

⊕

G∈G↑
G〈E�〉

on the S-bimodule E� = {E(m,n)}m,n≥0,

E�(m,n) :=
⊕

G∈G�
indec

(m,n)

G〈E〉,

generated by indecomposable (in the propic sense) decorated wheeled graphs.
Note that the induced differential is not quadratic with respect to the gener-
ating set E�.

4.5.1. Theorem–definition. There exists a dg free prop ([P�]∞, δ) that fits
into a commutative diagram of morphisms of props,

[P�]∞
qis

		K
KK

KK
KK

K
α �� P�

∞

π�




P�

where α is an epimorphism of (nondifferential) props and q is a quasi-
isomorphism of dg props. The prop [P�]∞ is called a quasiminimal resolution
of P�.

5The Tate–Josefak grading of props Lie1B∞ and Lie1B, for example, assigns to
generating (m,n) corollas degree 3 − m − n.
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Proof. Let s1 : H−1 (P�
∞) → P�

∞ be any representation of degree-(−1) coho-
mology classes (if there are any) as cycles. Set E1 := H−1 (P�

∞) [1] and define
a differential graded prop

P1 := P〈E� ⊕ E1〉

with the differential δ extended to new generators as s1[1]. By construction,
H0(P1) = P� and H−1(P1) = 0.

Let s2 : H−2(P1) → P1 be any representation of degree-(−2) cohomol-
ogy classes (if there are any) as cycles. Set E2 := H−2(P1)[1] and define a
differential graded prop

P2 := P〈E� ⊕ E1 ⊕ E2〉

with the differential δ extended to new generators as s2[1]. By construction,
H0(P2) = P� and H−1(P2) = H−2(P2) = 0.

Continuing by induction, we construct a dg free prop [P�]∞ := P〈E� ⊕
E1 ⊕ E2 ⊕ E3 ⊕ · · · 〉 with all the cohomology concentrated in Tate–Jozefak
degree 0 and equal to P�. �
4.5.2. Example. The prop [Ass�]∞ has been explicitly described in [MMS]
(it is denoted there by Ass�

∞).

5 Wheeled Cyclic Complex

5.1. Genus-1 wheels. Let (P〈E〉, δ) be a dg free prop, and let (P�〈E〉, δ)
be its wheeled extension. We assume in this section that the differential δ
preserves the number of wheels.6 Then it makes sense to define a subcomplex
(T�〈E〉 ⊂ P�〈E〉 spanned by graphs with precisely one wheel. In this section
we use the ideas of cyclic homology to define a new cyclic bicomplex that
computes cohomology of (T�〈E〉, δ).

All the above assumptions are satisfied automatically if (P〈E〉, δ) is the
free dg prop associated with a free dg operad.

We denote by T+〈E〉 the obvious “marked wheel” extension of T�〈E〉 (see
Section 3.2).

5.2. Abbreviated notation for graphs in T+〈E〉. The half-edges attached
to any internal vertex of split into, say m, ingoing and, say n, outgoing ones.
The differential δ is uniquely determined by its values on such (m,n)-vertices
for all possible m,n ≥ 1. If the vertex is cyclic, then one of its input half-edges
is cyclic and one of its output half-edges is also cyclic. In this section we show
in pictures only those (half-)edges attached to vertices that are cyclic (unless
otherwise explicitly stated), so that

6This is not that dramatic a loss of generality in the sense that there always
exists a filtration of (P�〈E〉, δ) by the number of wheels whose spectral sequence
has zeroth term satisfying our condition on the differential.
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• e stands for a noncyclic (m,n)-vertex decorated by an element e ∈
E(m,n);

• e is a decorated cyclic (m,n)-vertex with no input or output cyclic

half-edges marked;

• e is a decorated cyclic (m,n)-vertex with the output cyclic half-edge

marked;

• e is a decorated cyclic (m,n)-vertex with the input cyclic half-edge

marked.

The differential δ applied to any vertex of the last three types can be
uniquely decomposed into the sum of the following three groups of terms:

δ e =
∑

α∈I1

ea′

ea′′

+
∑

a∈I2

ea′
??
ea′′

+
∑

b∈I3

eb′
LL
eb′′

where we have shown also noncyclic internal edges in the last two groups of

terms. The differential δ applied to e and e is given by exactly the same

formula except for the presence/position of dashed markings.

5.3. New differential in T+〈E〉. Let us define a new derivation b in T+〈E〉:
as follows:

• b e := δ e ,

• b e := δ e ,

• b e = δ e ,

• b e := δ e +
∑

α∈I1
ea′

ea′′

.

5.3.1. Lemma. The derivation b satisfies b2 = 0, i.e., (T+〈E〉, b) is a complex.
The proof is a straightforward but tedious calculation based solely on the

relation δ2 = 0.

5.4. Action of cyclic groups. The vector space T+〈E〉 is naturally bigraded,

T+〈E〉 =
∑

m≥0,n≥1

T+〈E〉m,n,

where the summand T+〈E〉m,n consists of all graphs with m noncyclic and
n cyclic vertices. Note that T+〈E〉m,n is naturally a representation space of
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the cyclic group Zn whose generator t moves the mark to the next cyclic
edge along the orientation. Define also the operator N := 1 + t + · · · + tn :
T+〈E〉m,n → T+〈E〉m,n, which symmetrizes the marked graphs.

5.4.1. Lemma. δ(1 − t) = (1 − t)b and Nδ = bN .
The proof is a straightforward calculation based on the definition of b.

Following the ideas of the theory of cyclic homology (see, e.g., [Lod98]),
we introduce a fourth quadrant bicomplex

Cp,q := Cq, Cq :=
∑

m+n=q

T+〈E〉m,n, p ≤ 0, q ≥ 1,

with the differentials given by the following diagram:

. . . . . . . . . . . .
-

⏐

⏐b

-

⏐

⏐δ

-

⏐

⏐b

-

⏐

⏐δ

. . .
N−→ C4

1−t−→ C4
N−→ C4

1−t−→ C4
-

⏐

⏐b

-

⏐

⏐δ

-

⏐

⏐b

-

⏐

⏐δ

. . .
N−→ C3

1−t−→ C3
N−→ C3

1−t−→ C3
-

⏐

⏐b
-

⏐

⏐δ
-

⏐

⏐b
-

⏐

⏐δ

. . .
N−→ C2

1−t−→ C2
N−→ C2

1−t−→ C2
-

⏐

⏐b

-

⏐

⏐δ

-

⏐

⏐b

-

⏐

⏐δ

. . .
N−→ C1

1−t−→ C1
N−→ C1

1−t−→ C1

5.4.2. Theorem. The cohomology group of the unmarked graph complex
H(T�〈E〉, δ) is equal to the cohomology of the total complex associated with
the cyclic bicomplex C•,•.

Proof. The complex (T�〈E〉, δ) can be identified with the cokernel C•/(1−t)
of the endomorphism (1 − t) of the total complex C• associated with the
bicomplex C•,•. Since the rows of C•,• are exact [Lod98], the claim follows. �

Acknowledgment. It is a pleasure to thank Sergei Shadrin and Bruno Vallette for
helpful discussions.
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Summary. We construct a real-analytic CR supermanifold R, holomorphically em-
bedded into a superquadric Q ⊂ P3|3 × P∗3|3. A CR distribution F on R enables
us to define a tangential CR complex

(
Ω•

F , ∂̄
)
.

We define a ∂̄-closed trace functional
∫

: Ω•
F → C and conjecture that a

Chern-Simons theory associated with a triple
(
Ω•

F ⊗ Matn, ∂̄,
∫

tr
)

is equivalent to
N = 3, D = 4 Yang–Mills theory with a gauge group U(n). We give some evidences
to this conjecture.

Key words: supersymmetry, Lagrangian, Yang–Mills theory, supermanifold

2000 Mathematics Subject Classifications: 53C80, 53C28, 81R25, 32C11,
58C50

1 Introduction

Twistor methods in gauge theory have a long history (summarized in [P90]).
A common feature of these methods is that spacetime is replaced by a twistor
(or ambitwistor) analytic manifold T. Equations of motion “emerge” (in the
terminology of Penrose) from complex geometry of T.

The twistor approach turns out to be a very useful technical innovation.
For example, difficult questions of classical gauge theory, e.g., those that ap-
pear in the theory of instantons, admit a translation into considerably more
simple questions of analytic geometry of space T. In this way classification
theorems in the theory of instantons has been obtained [AHDM].

Quantum theory has not been given a simple reformulation in the lan-
guage of geometry of the space T so far. One of the reasons is that the
quantum theory formulated formally in terms of a path integral requires a
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Lagrangian. Classical theory, as was mentioned earlier, provides only equa-
tions of motion whose definition needs no metric. In contrast, a typical La-
grangian requires a metric in order to be defined. Thus a task of finding the
Lagrangian in (ambi)twistor setup is not straightforward. In this paper we
present a Lagrangian for N = 3 D = 4 Yang–Mills (YM) theory formulated
in terms of ambitwistors.

Recall that N = 3 YM theory coincides in components with N = 4 YM
theory. The easiest way to obtain N = 4 theory is from N = 1 D = 10
YM theory by dimensional reduction. The Lagrangian of this ten-dimensional
theory is equal to

(〈Fij , Fij〉 + 〈D/χ, χ〉)dvol. (1)

In the last formula, Fij is a curvature of connection ∇ in a principal U(n)-
bundle over R

10. An odd field χ is a section of S ⊗ Ad, where S is a complex
sixteen-dimensional spinor bundle, Ad is the adjoint bundle, D/ is the Dirac
operator, 〈., .〉 is a Killing pairing on u(n). The measure dvol is associated
with a flat Riemannian metric on R10, Fij are coefficients of the curvature
in global orthonormal coordinates. The N = 4 theory is obtained from this
by considering fields invariant with respect to translations in six independent
directions. The theory is conformally invariant and can be defined on any
conformally flat manifold, e.g., S4 with a round metric.

In 1978, E. Witten [W78] discovered that it is possible to encode solutions
of the N = 3 supersymmetric YM-equation by holomorphic structures on a
vector bundle defined over an open subset U in a superquadric Q. We shall call
the latter a complex ambitwistor superspace. In this description the action of
N = 3 superconformal symmetry on the space of solutions is manifest. The
symbol n|m denotes the dimension of a supermanifold. More precisely, the
quadric Q ⊂ P3|3 × P∗3|3 is defined by the equation

3∑

i=0

xix
i +

3∑

i=1

ψiψ
i = 0, (2)

in bihomogeneous coordinates

x0, x1, x2, x3, ψ1, ψ2, ψ3; x0, x1, x2, x3, ψ1, ψ2, ψ3 (3)

in P3|3×P∗3|3 (xi, xj even, ψi, ψj odd, the symbol ∗ in the superscript stands
for the dual space). The quadric is a complex supermanifold. It makes sense
therefore to talk about differential (p, q)-forms Ωp,q(Q).

Let G be a holomorphic vector bundle on U . Denote by

Ω0•EndG, (4)

a differential graded algebra of smooth sections of EndG with coefficients in
(0, p)-forms.
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Let ∂̄ and ∂̄′ be two operators corresponding to two holomorphic structures
in G. It is easy to see that (∂̄′ − ∂̄)b = ab, where a ∈ Ω0,1EndG. The integra-
bility condition ∂̄′2 = 0 in terms of ∂̄ and a becomes a Maurer–Cartan (MC)
equation:

∂̄a+
1
2
{a, a} = 0. (5)

A first guess would be that the space of fields of the ambitwistor version
of N = 3 YM is Ω0,1(U)EndG, where G is a vector bundle on U of some
topological type. Witten suggested [W03] that the Lagrangian in question
should be similar to a Lagrangian of holomorphic Chern–Simons theory

CS(a) =
∫

tr
(

1
2
a∂̄a+

1
6
a3

)
Vol (6)

where Vol is some integral form. The action (6) reproduces equations of mo-
tion (5). The hope is that perturbative analysis of this quantum theory will
give some insights on the structure of N = 3 YM.

The main result of the present note is that we give a precise meaning to
this conjecture.

Introduce a real supermanifold R ⊂ Q of real superdimension 8|12. It is
defined by the equation

x1x̄
2 − x2x̄

1 + x3x̄
4 − x4x̄

3 +
3∑

i=1

ψiψ̄
i = 0. (7)

In Section 5.1 we discuss the meaning of reality in superalgebra and geometry.

Definition 1. Let M be a C∞ supermanifold, equipped with a subbundle H
of the tangent bundle T. We say that M is equipped with a CR structure if H
carries a complex structure defined by a fiberwise transformation J.

The operator J defines a decomposition of the complexification HC into a
direct sum of eigensubbundles F + F̄ .

We say that the CR structure J is integrable if the sections of F form a
Lie subalgebra of TC under the bracket of vector fields.

The tautological embedding of R into the complex manifold Q induces a
CR structure specified by the distribution F . Properties of this CR structure
are discussed in Section 2.1. A global holomorphic supervolume form vol on Q
is constructed in Proposition 12. When restricted on R it defines a section of
intΩ−3

F , a CR integral form. Functorial properties of this form are discussed in
Section 5.3. For any CR holomorphic vector bundle G we define a differential
graded algebra Ω•

FEnd(G). It is the tangential CR complex. We equip it with
the trace ∫

: a→
∫

R
tr(a) vol (8)

We define a CS-action of the form (6), where we replace an element of
Ω0•(U)End(G) by an element of Ω•

F (R)End(G). The integral is taken with
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respect to the measure vol. We make some assumptions about the topology of
G as it is done in classical twistor theory. The space S is a superextension of a
four dimensional sphere S4 (see Section 2.2 for details). There is a projection

p : R → S. (9)

We require that G be topologically trivial along the fibers of p. It is an easy
exercise in algebraic topology to see that topologically, all such bundles are
pullbacks from S4. On S4, unitary vector bundles are classified by their second
Chern classes.

Conjecture 2. Suppose G is a CR holomorphic vector bundle on R of rank n.
Under the above assumptions, a CS theory defined by the algebra Ω•

FEnd(G)
is equivalent to N = 3 YM theory on S4 in a principal U(n) bundle with the
second Chern class equal to c2(End(G)).

For perturbative computations in YM theory it is convenient to work in
BV formalism. See [Sch00] for mathematical introduction and [MSch06] for
applications to YM.

Conjecture 3. In the assumptions of Conjecture 2 we believe that N = 3 YM
theory in the BV formulation is equivalent to a CS theory defined by the algebra
Ω•

FEnd(G), where the field a ∈ Ω•
FEnd(G) has a mixed degree.

The following abstract definition will be useful.

Definition 4. Suppose we are given a differential graded algebra (dga)(A, d)
with a d-closed trace functional

∫
. We can consider A as a space of fields in

some field theory with Lagrangian defined by the formula

CS(a) =
∫ (

1
2
ad(a) +

1
6
a3

)
. (10)

We call it a Chern–Simons CS theory associated with a triple (A, d,
∫

).
We say that two theories (A, d,

∫
) and (A′, d′,

∫ ′) are classically (formally)
equivalent if there is a quasi-isomorphism of algebras with trace f : (A, d,

∫
) →

(A′, d′,
∫ ′).

See the appendix of [MSch05] for an extension of this definition to A∞
algebras with a trace.

Thus the matrix-valued Dolbeault complex
(
Ω•

F (R) ⊗ Matn, ∂̄
)

with a
trace defined by the formula

∫
(a) =

∫
R tr(a)vol is an example of such, al-

gebra.
We shall indicate existence of classical equivalence of N = 3 YM defined

over Σ = R4 ⊂ S4 and a CS theory defined over p−1(U), where U is an open
submanifold of S with Ured = Σ.

Here is the idea of the proof.
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We produce a supermanifold Z and an integral form Vol on it. We show
that a CS theory constructed using differential graded algebra with a trace
A(Z), associated with manifold a Z is classically equivalent to N = 3 YM
theory. We interpret the algebra A(Z) as a tangential CR complex on Z.

We shall construct a manifold Z and algebra A in two steps.
Here is a description of the steps in more details:
Step 1. We define a compact analytic supermanifold Π̃F and construct

an integral form μ on it in the spirit of [MSch05]. Let Apt be the Dolbeault
complex of Π̃F . Integration of an element a ∈ Apt against μ over Π̃F defines a
∂̄-closed trace functional on Apt . Recall that there is a canonical isomorphism
of Lie algebras Lie(U(n))⊗C ∼= Matn. We show that the Chern–Simons theory
associated with dga (Apt⊗Matn, ∂̄,

∫
trMatn

) is classically equivalent to N = 3
Yang–Mills theory with gauge group U(n) reduced to a point.

Step 2. From the algebra Apt we reconstruct a differential algebra A. The
algebra A ⊗ Matn conjecturally encodes full N = 3 Yang–Mills theory with
gauge group U(n) in the sense of Definition 4. If we put aside the differen-
tial d, A is equal to Apt ⊗ C∞(Σ). The integral form we are looking for is
equal to Vol = μdx 1dx 2dx 3dx 4, where Σ is equipped with global coordinates
x1, x2, x3, x4.

The manifold Z is a CR submanifold. We identify it with an open subset
of R.

Finally, we would like to formulate an unresolved question. The restriction
of a holomorphic vector bundle G over U on U ∩R defines a CR vector bundle
over the intersection. Is it true that every CR holomorphic vector bundles
can be obtained this way? The answer would be affirmative if we impose
some analyticity conditions on the CR structure on G. Presumably, super
Levi forms will play a role in a solution of this problem.

It is tempting to speculate that there is a string theory on Q and R defines
a D-brane in it.

We need to say a few words about the structure of this note. In Section 2 we
make some definitions and provide some constructions used in the formulation
of conjectures 2 and 3.

In Section 3 we give a geometric twistor-like description of N = 3 YM
theory reduced to a point (Step 1). In Section 4 we do Step 2.

The appendix contains some useful definitions concerning reality in super-
algebra and CR structures.

2 Infinitesimal constructions

In this section we shall show that the space R is homogeneous with respect to
the action of a real form of the N = 3 superconformal algebra gl(4|3). Here we
also collect facts that are needed for a coordinate-free description of the space
R in terms of Lie algebras of the symmetry group and isotropy subgroup.
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2.1 Real structure on the Lie algebra gl(4|3)

In this section we describe a graded real structure on gl(4|3). It will be
used later in the construction of the CR structure on the real super-
ambitwistor space.

The reader might wish to consult Section 5.1 for the definition of a graded
real structure. There the reader will find an explanation of some of our no-
tations. By definition, gl(4|3) is a super Lie algebra of endomorphisms of
C

4|3 = C
4 + ΠC

3. The symbol Π stands for parity change. This Lie alge-

bra consists of matrices of block form
(
A B
C D

)
with A ∈ Mat(4 × 4,C), D ∈

Mat(3×3, C), C ∈ Mat(3×4,C), B ∈ Mat(4×3, C). The elements
(
A 0
0 D

)

belong to the even part gl0(4|3), the elements
(

0 B
C 0

)
to the odd gl1(4|3).

In the following, the symbol g(K) will stand for a Lie algebra defined over
a field K. If the field is not present, it means that the algebra is defined over
C. The same applies to Lie groups.

Let g be a complex super Lie algebra. By definition, a map ρ defines
a graded real structure on a super Lie algebra g if ρ is a homomorphism:
ρ[a, b] = [ρ(a), ρ(b)]. In [Man], Yu. I. Manin suggested several definitions of
a real structure on a (Lie) superalgebra. In the notation of [Man], these def-
initions are parametrized by a triple (ε1, ε2, ε3), εi = ±. Our real structure
corresponds to the choice ε1 = −, ε2 = ε3 = +.

The reader will find a complete classification of graded real structures of
simple Lie algebras in [Serg].

Define a matrix J as:

J =
(

0 id
−id 0

)
(11)

where id is the 2 × 2 identity matrix. A map ρ is defined as

ρ

(
A B
C D

)
=

(
J 0
0 id

) (
A B
C D

) (
−J 0
0 id

)
=

(
−JAJ JB
−CJ D

)
. (12)

The identity1 ρ2 = sid is a corollary of equation J2 = −id.
It is useful to analyze the Lie subalgebra gl0(4|3)ρ of real points in

gl0(4|3) = gl(4,C) × gl(3,C). Because of (12), we have gl(3)ρ = gl(3,R).
To identify glρ(4) we interpret C4 = C2 + C2 (whose algebra of endomor-
phisms is gl(4)) as a two-dimensional quaternionic space H + H. Let 1, i, j, k
be the standard R-basis in quaternions, 〈e1, e2〉 an H-basis in H + H. The
space H + H = C2 + C2 has a complex structure defined by right multiplica-
tion on i. Right multiplication on j defines an i-antilinear map. In a C-basis
e1, e2, e1j, e2j, a matrix of right multiplication on j is equal to J . From this
it is straightforward to deduce that glρ(4) = gl(2,H).

1The operator sid is defined in the appendix in Definition 24.
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Definition 5. Let M be a C∞ supermanifold with the tangent bundle T. Let
H ⊂ T be a subbundle equipped with a complex structure J. This data defines
a (nonintegrable) CR structure on M. There is a decomposition2 HC = F+F.
A CR structure (H, J) is integrable if a space of sections of F is closed under
the commutator. In this case we also say that F is integrable.

Definition 6. Let Mred denote the underlying manifold of supermanifold M.

If M is a real submanifold of a complex supermanifold N , then at any
x ∈M the tangent space Tx to M contains a maximal complex subspace Hx.
If rankHx is constant alongM , then a family of spacesH defines an integrable
CR structure. In our case the manifold R ⊂ Q is defined by equation (7).

Denote by GL(4|3) an affine supergroup with Lie algebra Lie(GL(4|3))
equal to gl(4|3).3 We will show later that R is a homogeneous space of the real
form of GL(4|3) described above. The induced CR structure is real-analytic
and homogeneous with respect to the group action.

A CR structure on a supermanifold enables us to define an analogue of
the Dolbeault complex. Suppose a supermanifold M carries a CR structure
F ⊂ T C. A space of complex 1-forms Ω1

M contains a subspace I of forms
pointwise orthogonal to F . It is easy to see that F is integrable iff the ideal (I)
is closed under d. Define the tangential CR complex

(
Ω•

F , ∂̄
)

to be (Ω•/(I), d).
A vector bundle G is CR holomorphic if the gluing cocycle gij satisfies

∂̄gij = 0. In such a case we can define a G-twisted CR complex Ω•
FG.

Remark 7. Denote by σ the operation of complex conjugation. Define an an-
tilinear map

s = σ ◦
(
J 0
0 id

)
: C

4|3 → C
4|3. (13)

The map a → sas−1, a ∈ gl(4|3), coincides with the real structure ρ. Let
us think about the left-hand side of equation (2) as a quadratic function
associated with an even bilinear form (a, b). It is easy to see that the left-hand
side of equation (7) is equal to (a, s(a)) = 0. Naively, it would appear that the
centralizer of the operator s would be precisely the real form of (gl(4|3), ρ) and
that it would preserve equations (2) and (7). The problem is that we cannot
work pointwise in supergeometry. Instead, we consider equations (2), (7) as a
system of real algebraic equations. We interpret them as a system of sections
of some line bundles on the CH manifold M = P3|3 × P∗3|3 × P

3|3 × P
∗3|3

(see Section 5.1 for a discussion of reality in supergeometry). The space M
carries the canonical graded real structure ρ that leaves the space of equations
invariant. The ρ-twisted diagonal action of gl(4|3) also leaves the equations
invariant.

The graded real structure induces a graded real structure ρ on gl(4|3)ρ

and makes a supermanifold R an algebraic graded real supermanifold.
2In the following, the letter C in a superscript denotes complexification.
3For a global description of (GL(4|3), ρ) see [Pel].
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Fig. 1.

2.2 Symmetries of the ambitwistor space

We define the space RGL(4|3) as the homogeneous space of a real supergroup
(GL(4|3), ρ). In this section we establish an isomorphism RGL(4|3) ∼= R.

In Figure 1 the reader can see a graphical presentation of some matrix(
A B
C D

)
∈ gl(4|3).

The isotropy subalgebra a ⊂ gl(4|3) of a base point in the space RGL(4|3) is
defined as a linear space of matrices whose nonzero entries are in the darkest
shaded area of the matrix in Figure 1.

Lemma 8. The subspace a ⊂ gl(4|3) is a ρ-invariant subalgebra.

Proof. Direct inspection. �

Let A be an algebraic subgroup of GL(4|3) with the Lie algebra a.
The space RGL(4|3) carries a homogeneous CR structure (see Section 5.2

for a related discussion). Define a subspace p ⊂ gl(4|3) as a set of matrices
with nonzero entries in the gray and the dark gray areas in Figure 1.

Lemma 9. The subspace p ⊂ gl(4|3) is a subalgebra. It satisfies p∩ ρ(p) = a.

Proof. Direct inspection. �

Let P denote an algebraic subgroup with Lie algebra p. A complex super-
manifold X = GL(4|3)/P has an explicit description.

Equation (2) is preserved by the action of GL(4|3).

Proposition 10. There is a GL(4|3)-equivariant isomorphism X = Q.
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Proof. We can identify the quadric Q with the space of partial flags C
4|3 as

it is done in the purely even case (see [GH], for example). A spaces Q is a
connected component of the flag space containing the flag

F1 ⊂ F2 ⊂ C
4|3 (14)

with F1
∼= C

1|0 and F2
∼= C

3|3. This flag can be interpreted as a pair of points
F1 ∈ P3|3, F2 ∈ P∗3|3. The condition (14) is equivalent to (2).

Let us choose a standard basis e1, . . . , e7 of C4|3 such that the parities of
elements are ε(e1) = ε(e2) = ε(e3) = ε(e7) = 1, ε(e4) = ε(e5) = ε(e6) = −1.
In this notations the standard flag F has the following description:

F1 = span〈e7〉
F2 = span〈e2, . . . e7〉.

(15)

The flag defines a point in the space Q. It is easy to compute the shape of
the matrix of an element from the stabilizer PF of F . The following picture
is useful:

gl(2|3)

C∗2|3 C

C rad

C1|0

C2|3

(16)

The Lie algebra pF of the stabilizer PF is formed by matrices with zero en-
tries below the thick solid line in picture (16). Conjugating with a suitable
permutation of coordinates t we see that ptF = p. �

Remark 11. The transformation s defined in equation (13) acts on the space
of flags. By definition, an s-invariant flag belongs to the subvariety R. Direct
inspection shows that the nonzero entries of the matrix of an element of the
stabilizer are located in the darkest shaded area of Figure 1. The manifold
Rred fibers over P3 with connected fibers. Thus R is connected. From this
and a simple dimension count we conclude that the subvariety R coincides
with RGL(4|3). Identification of the CR structure also follows from this.

The Lie algebra gl(4|3) contains a subalgebra l. The elements of this subalge-
bra have nonzero entries in the darkest area of Figure 1 and also the points
marked by ∗. This algebra is invariant with respect to the real structure ρ.
Denote by L an algebraic subgroup of GL(4|3) with the Lie algebra l.
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The quotient (SGL(4|3), ρ) = ((GL(4|3)/L), ρ) is a supermanifold with
(SGL(4|3))

ρ
red = S4. Indeed, the real points Lρred of the group Lred are con-

jugated to quaternionic matrices of the form
(
a b
0 d

)
∈ GL(2,H). Thus the

quotient space GL(2,H)/Lρred = HP1 is isomorphic to S4. Denote by p the
projection

RGL(4|3) → SGL(4|3). (17)

An easy local exercise with Lie algebras reveals that the fibers of the projection
p are CR holomorphic and are isomorphic to P1 × P1.

The following direct geometric description of ambitwistor space will be use-
ful. Let M be a C∞ 4-dimensional Riemannian manifold. A metric g defines a
relative quadric (the ambitwistor space) in the projectivisation of a complex-
ified tangent bundle A(M) ⊂ P(TC). By construction there is a projection
p : A(M) → M . The space A(M) carries a CR structure (it could be noninte-
grable). Indeed, a fiber of the distribution F at a point x ∈ A(M) is a direct
sum of the holomorphic tangent space to the fiber through x and a complex
line in T C(M) spanned by x. From the point of view of topology, the space
A(M) coincides with a relative Grassmannian of oriented 2-planes in TM . A
constructed complex distribution depends only on the conformal class of the
metric. From this we conclude that A(S4) (S4 has a round metric induced
by the standard embedding into R5) is a homogeneous space of Conf(S4) =
PGL(2,H), A(S4) = PGL(2,H)/Aρred, and the CR structure is integrable.

An appropriate super generalization of this construction is as follows. We
have an isomorphism

Wl ⊗Wr

Γ∼= TC

M . (18)

In the last formula, Wl,Wr are complex two-dimensional spinor bundles on
M (we assume that M has a spinor structure). The isomorphism Γ is de-
fined by Clifford multiplication. Let T be a 3-dimensional linear space. This
vector space will enable us to implement N = dim(T ) = 3 supersymme-
try. To simplify notations we keep Wl ⊗ T + Wr ⊗ T ∗ for the pullback
p∗(Wl ⊗ T + Wr ⊗ T ∗). Define a split, holomorphic in odd directions4 su-
permanifold Ã(M) associated with a vector bundle Π(Wl ⊗ T + Wr ⊗ T ∗)
overA(M). To complete the construction we define a superextension of the CR
structure. Introduce odd local coordinates θiα, θ̃

jβ (1 ≤ i, j ≤ 2, 1 ≤ α, β ≤ 3)
on fibers of Π(Wl ⊗T +Wr ⊗T ∗). We decompose local complex vector fields
Γ

(
∂
∂θi

α
⊗ ∂

∂θ̃jβ

)
in a local real basis ∂

∂xs as δβαΓ
s
ij

∂
∂xs , 1 ≤ s ≤ 4. The odd

part of the CR distribution F is locally spanned by vector fields

∂

∂θiα
+ θ̃jαΓ

s
ij

∂

∂xs
,

∂

∂θ̃jα
+ θjαΓ sij

∂

∂xs
.

(19)

4The reader might wish to consult Section 5.1 about this.
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This construction of a superextension of the ordinary CR structure depends
only on the conformal class of the metric. It is convenient to formally add the
complex conjugate odd coordinates. This way we get A(M) = Π(Wl ⊗ T +
Wr ⊗ T ∗ +Wl ⊗ T +Wr ⊗ T ∗), equipped with a graded real structure. As in
the even case the symmetry analysis allows us to identify the CR space A(S4)
with R.

The tangent space m to the quadric Q at a point fixed by p is formed
by elements with nonzero entries below the thick solid line in the picture
(16). It decomposes into a sum C

2|3 + C
∗2|3 + C

1|0 of irreducible GL(2|3)
representations.

The elements a21, a31, α41, α51, α61, a71, a72, a73, α74, α75, α76 stand for ma-
trix coordinate functions on the linear space m (coordinates a are even, α are
odd).

Proposition 12. An element

vol = da21∧da31 ∧dα41 ∧dα51 ∧dα61 ∧da71 ∧da72 ∧da73 ∧dα74 ∧dα75 ∧dα76

(20)
belongs to the Berezinian Ber(m∗). It is invariant with respect to the action
of P.

Proof. Simple weight count. �
We spread a generator of Ber(m∗) by the action of GL(4|3) over Q and

form a GL(4|3)-invariant section vol of the Berezinian bundle BerC(Q).

3 Reduced theory

As a preliminary step in the construction of the superspace Z we introduce a
“holomorphic” manifold Π̃F and an integral form on it (see Section 3.2 for an
explanation of the quotation marks). The form defines a functional

∫
on the

Dolbeault complex of this manifold. We prove that the CS theory constructed
by the triple (Ω0•(Π̃F )⊗Matn, ∂̄,

∫
trMatn

) is classically equivalent to N = 3
YM theory with the gauge group U(n) reduced to a point.

3.1 The manifold ΠF

A manifold Π̃F is a deformation of a simple manifold ΠF . In this section we
give relevant definitions concerning ΠF .

Denote a product P1 ×P1 by X . It has two projections pi : X → P1, i =
l, r. Let O(1) denote the dual to the Hopf line bundle over P1. The Picard
group of X is Z + Z. It is generated by the classes of line bundles π∗

l O(1) =
Ll, π∗

rO(1) = Lr which can serve as coordinates in Pic(X). Let O(a, b) denote
a line bundle L⊗a

l ⊗ L⊗b
r .

Convention. We denote by H•(Y,G) the cohomology of the (su-
per)manifold Y with coefficients in the vector bundle G. It can be computed
as cohomology of the Dolbeault complex Ω0•(Y )G. It is tacitly assumed that
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in Section 3, the omitted argument Y in Ω0•(Y )G implies Y = X . If the
G-argument is missing, we assume that G = O.

Denote by SymV,ΛV symmetric and exterior algebras of a vector space
(bundle).

Denote by Θ a line bundle isomorphic to O(1, 1). We construct a vector
bundle F over X as a direct sum:

F = T ⊗ Ll + T ∗ ⊗ Lr +Θ∗,
H = T ⊗ Ll + T ∗ ⊗ Lr.

(21)

As before, T is a three-dimensional vector space.
The reader may have noticed that the manifold X has also appeared as a

fiber of projection (9). We shall see that this is not accidental.

3.2 Properties of the manifold ΠF

In this section we devise an infinitesimal deformation of a complex structure
on ΠF . This deformation will be promoted to the actual deformation, and
denote the corresponding complex main fold by Π̃F . The algebra Apt from
the introduction is equal to Ω0•(Π̃F ). We construct on Π̃F an integral form
that will enable us to define a functional

∫
D : Ω0•(Π̃F ) → C.

The manifold ΠF is a complex split supermanifold. The Dolbeault com-
plex (Ω0•(ΠF ), ∂̄) is defined on the supermanifoldΠF , considered as a graded
real supermanifold. The complex (Ω0•(ΠF ), ∂̄) contains as a differential sub-
algebra the Dolbeault complex Ω0•ΛF ∗.

Proposition 13. The differential algebras Ω0•(ΠF ) and Ω0•ΛF ∗ are quasi-
isomorphic.

Proof. The same as the proof of Proposition 26. �
The canonical line bundle KX is equal to O(−2,−2). There is a nontriv-

ial cohomology class, the “fundamental” class: α ∈ H2(X,O(−2,−2))
id
⊂

H2(X,O(−2,−2) ⊗ T ⊗ T ∗) ⊂ H2(X,Λ2(H∗) ⊗ Θ∗) ⊂ H2(X,ΛF ∗ ⊗ Θ∗).
We interpret Λ(F ∗) ⊗ Θ∗ as a sheaf of local holomorphic differentiations of
ΠF in the direction of Θ∗.

A representative α = fd z̄ldz̄r ∂∂θ (zl, zr are local coordinates on X) of the
class [α] can be extended to a differentiation of Ω0•(ΠF ). The main properties
of D = ∂̄ + α are:

(1) it is a differentiation of Ω0•(ΠF ),
(2) the equation D2 = 0 holds.

These are corollaries of the ∂̄-cocycle equation for α. The operator D defines
a new “holomorphic” structure on ΠF .5 This new complex manifold will be
denoted by Π̃F .

5This definition is not standard, because usually a deformation cocycle α is an
element of Ω0,1T (T is a holomorphic tangent bundle), whereas in our case α ∈
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The manifold ΠF is Calabi–Yau. By this we mean that BerC is trivial.
Indeed, the determinant line bundle of F is equal to det(T ⊗ Ll) ⊗ det(T ∗ ⊗
Lr)⊗det(O(−1,−1)) = O(3, 0)⊗O(0, 3)⊗O(−1,−1) = O(2, 2); BerCΠF =
KX ⊗ detF = O is trivial.

It implies that the bundle BerCΠF admits a nonvanishing section volΠF .
This section is SO(4)-invariant. The action of u = C + C, the unipotent

subgroup of the Borel subgroup B ⊂ SO(4) on the large Schubert cell of X ,
is transitive and free.

Hence the section of BerCΠF in u-coordinates is

volΠF = dzl ∧ dzr ∧ dα1 ∧ dα2 ∧ dα3 ∧ dα̃1 ∧ dα̃2 ∧ dα̃3 ∧ dθ,

where α1, . . . , α̃3, θ are u-invariant coordinates on the odd fiber. The section
volΠF is in the kernel of D by construction.

We can construct on manifold ΠF a global holomorphic integral −2-
form in the way explained in remark (9). In our case it is equal to cΠF =
α1 . . . α̃3θdα1 ∧ · · · ∧ dα̃3 ∧ dθ.

Proposition 14. The form μ = volΠF ⊗ c̄ΠF is a D-closed nontrivial integral
(0,−2)-form on the underlying real graded ΠF .

Proof. Direct inspection in local coordinates. �

An integral form μ defines a (∂̄ + α)-closed trace on Ω0•(ΠF ) ⊗ Matn,
∫
a =

∫

ΠF

tr(a)μ.

Definition 15. By definition, an A∞ algebra is a graded linear space,
equipped with a series of maps μn : A⊗n → A, n ≥ 1, of degree 2 − n
that satisfy the quadratic relation

∑

i+j=n+1

∑

0≤l≤i
ε(l, j)

× μi(a0, ..., al−1, μj(al, ..., al+j−1), al+j , ..., an) = 0,
(22)

where am ∈ A, and ε(l, j) = (−1)j
∑

0≤s≤l−1 deg(as)+l(j−1)+j(i−1). In particular,
μ2

1 = 0.

Remark 16. Suppose we have an A∞ algebra A equipped with a projector π.
A homotopy H such that {d,H} = id − π can be used as input data for
construction of a new A∞ structure on Im π (see [Kad], [Markl] for details).
The homotopy H is not unique. The resulting A∞ algebras will have different

Ω0,2T . We, however, continue to use traditional wording and call it a deformation
of a complex structure, though a more precise term would be deformation of the
Dolbeault algebra (Ω0•, ∂̄). This algebra in our approach becomes a substitute for
the underlying manifold.
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multiplications, depending on H . All of them will be A∞ equivalent. An ad-
ditional structure on A helps to prevent ambiguity in the choice of H . In our
case, the algebra A is a Dolbeault complex of a manifold with the operator
π being an orthogonal projection on cohomology. If the manifold is compact,
Kähler, and G-homogeneous, there is a natural choice of H : H = ∂̄∗/Δ′. The
operators ∂̄∗, Δ′ are constructed by a G-invariant metric. The operator Δ′ is
equal to Δ on KerΔ⊥ and equal to the identity on KerΔ.

Remark 17. The construction described in Remark 16 admits a generaliza-
tion. Suppose an A∞ algebra A has a differential d that is the sum of two
anticommuting differentials d1 and d2. Assume that {d1, H} = id− π and the
composition d2H is a nilpotent operator. Then Im π carries the structure of
an A∞ algebra quasi-isomorphic to A. The same statement is true for A∞
algebras with a trace. The proof goes along the same lines as in [Markl], but
we allow two-valent vertices.

Technically, it is more convenient to work not with algebra Ω0•(Π̃F ) but
with a quasi-isomorphic subalgebra (Ω0•ΛF,D).

In application of the constructions from the remarks (3), (4) we choose π to
be an orthogonal projector from Hodge theory, corresponding to the SO(4,R)-
invariant metric on X . We also use the decomposition D = d1 + d2 = ∂̄ + α.

The algebra of cohomology of (Ω0•ΛF, ∂̄) carries an A∞-algebra struc-
ture. We denote it by C = H•(X,Λ(H∗) ⊗ Λ(Θ)). Denote by ψ a quasi-
isomorphism (Ω0•ΛF, ∂̄) → C. We shall describe some properties of C. Let
Wl, Wr be spinor representations of SO(4). The vector representation V is
equal to Wl ⊗Wr.

The differential α induces a differential [α] on C. The ghost grading of the
group H i(X,Λk(H∗)⊗Λs(Θ)) is equal to i+s; the additional grading is equal
to k+ 2s (preserved by ∂̄ and α). We used a nonstandard ghost grading that
differs from the one used in physics by a shift by one. In particular, the ghost
grading of the gauge (labeled by V ) and spinor (labeled by spinors Wl, Wr)
and matter (SO(4) action is trivial) fields is equal to one. In the table below
you will find the field content (representation theoretic description) of C:

gh deg gh deg
0 0 H0(X,Λ0(H∗)) = C 1 2 H0(X,Λ0(H∗) ⊗Θ) = V
1 2 H1(X,Λ2(H∗)) = Λ2(T ) + Λ2(T∗) 1 3 H0(X,Λ1(H∗) ⊗Θ) = Wl ⊗ T

+Wr ⊗ T∗

1 3 H1(X,Λ3(H∗)) = Wl +Wr 1 4 H0(X,Λ2(H∗) ⊗Θ) = T ⊗ T∗

2 4 H2(X,Λ4(H∗)) = T ⊗ T∗ 2 5 H1(X,Λ3(H∗) ⊗Θ) = Wl +Wr

2 5 H2(X,Λ5(H∗)) = Wl ⊗ Λ2(T ) +Wr ⊗ Λ2(T∗) 2 6 H1(X,Λ4(H∗) ⊗Θ) = T + T∗

2 6 H2(X,Λ6(H∗)) = V 3 8 H2(X,Λ6(H∗) ⊗Θ) = C

(23)
The groups H0(X,Λ2(H∗) ⊗ Θ) and H2(X,Λ4(H∗)) are contracting pairs,
they are killed by the differential [α] and should be considered as auxiliary
fields in the related CS theory.

An A∞ algebra C has, besides, the differential [α] and multiplication, a
higher multiplication on three arguments (corresponding to the cubic nonlin-
earity of the YM equation). However operations in more than three arguments
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are not present. This can be deduced from the homogeneity of ∂̄ and α with
respect to the additional grading. Finally, representation theory fixes structure
maps up to a finite number of parameters. The integral

∫
defines a nonzero

map tr : H2(X,Λ6(H∗) ⊗Θ) → C.
Presumably, it is possible to complete this line of arguments to a full

description of multiplications in C. We prefer do it indirectly through the
relation to the Berkovits construction [Berk].

Remark 18. Let R
10 be a linear space, equipped with a positive definite dot

product. Denote by S an irreducible complex spinor representation of the
orthogonal group SO(10). Denote by Γ iαβ the coefficients of the nontrivial
intertwiner Sym2(S) → C10 in some basis of S and an orthonormal basis of
C10. We assume that the C10-basis is real.

On a superspace (R10+ΠS)⊗u(n) we define a superfunction (Lagrangian)

S(A,χ) =
∑

i<j

tr([Ai, Aj ][Ai, Aj ]) +
∑

αβi

tr(Γ iαβ [Ai, χ
α]χβ); (24)

A1, . . . , A10 is a collection of anti-hermitian matrices labeled by the basis of
C10. Similarly, odd matrices χ1, . . . , χ16 are labeled by the basis of S. This
can be considered as a field theory, obtained from D = 10, N = 1 YM theory
by reduction to zero dimensions. We call it IKKT after the paper [IKKT],
where it has been studied. IKKT theory has a gauge invariance: invariance
with respect to conjugation. A BV version of IKKT coincides with a CS theory
associated with the A∞ algebra AIKKT that we shall introduce presently.

Definition 19. An A∞ algebra AIKKT can be considered as a vector space
spanned by symbols xk, ξα, c, x∗k, ξ∗α, c

∗, 1 ≤ k ≤ 10, 1 ≤ α ≤ 16, with oper-
ations μ2 (multiplication), μ3 (Massey product) defined by the following for-
mulas:

μ2(ξα, ξβ) = Γαβk x∗k, (25)

μ2(ξα, xk) = μ2(xk, ξα) = Γαβk ξ∗β , (26)

μ2(ξα, ξ∗β) = μ2(ξ∗β , ξ
α) = c∗, (27)

μ2(xk, x∗k) = μ2(x∗k, xk) = c∗, (28)

μ3(xk, xl, xm) = δklx
∗m − δkmx

∗l, (29)
μ2(c, •) = μ2(•, c) = •. (30)

All other products are equal to zero. An element c is a unit.
All operations μk with k �= 2, 3 vanish. The algebra carries a trace func-

tional tr equal to one on c∗ and zero on the rest of the generators. It induces
a dot product by the formula (a, b) = tr(μ2(a, b)), compatible with μk.
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By definition, an A∞ algebra has a grading (we call it a ghost grading)
such that the operation μn has degree 2− n. An A∞ algebra might also have
an additional grading such that all operations have degree zero with respect
to it. See [MSch05] for details on gradings of AIKKT .

Proposition 20. A differential graded algebra with a trace (Ω0•(Π̃F ), ∂̄ +
α, trμ) is quasi-isomorphic to AIKKT .

Proof. We shall employ methods developed in [MSch05]. Recall that the man-
ifold of pure spinors in dimension ten is equal to P = SO(10,R)/U(5). As a
complex manifold it is defined as the space of solutions of homogeneous equa-
tions Γ iαβλ

αλβ = 0, where λα are homogeneous coordinates on P15. A space
P15 is the projectivisation of the irreducible complex spinor representation of
Spin(10,R). We denote by R the restriction on P of the twisted tangent bun-
dle TP15(−1). Denote by A the coordinate algebra C[λ1, . . . , λ16]/Γ iαβλ

αλβ of
P . Denote by B the Koszul complex A⊗Λ[θ1, . . . θ16] with differential λα ∂

∂θα .
The algebra B can be equipped with various gradings. The cohomological

grading is defined on generators as |λα| = 2, |θα| = 1; the grading by the
degree (or homogeneous grading) is degλα = degθα = 1. The differential
has degree one with respect to ‖ and zero with respect to deg. As a result,
the cohomology groups are bigraded: H(B) = H ij , where i corresponds to
‖-grading, j corresponds to deg.

In [MSch05] we proved that
⊕

i−j=k H
ij (B) = Hk(Ω0•(P)Λ(R∗)). In fact,

we proved that the identification map is a quasi-isomorphism of differential
graded algebras with a trace. In the language of supermathematics we may
say that cohomology Hk(Ω0•(P)Λ(R∗)) is Dolbeault cohomology of a split
supermanifold ΠR.

In the course of the proof of quasi-isomorphism we have identified the
algebra of functions on the fiber of the projection

ΠR → P (31)

over a point pt = (λα0 ) ∈ P with cohomology of the algebra B•
pt =

(Λ[θ1, . . . θ16], d), where d = λα0
∂
∂θα . An analogue of the complex B•

pt can be
defined for any subscheme U of P as a tensor product B•

U = AU⊗Λ[θ1, . . . θ16].
The algebra AU is equal to

⊕
i≥0H

0(U,O(i)). The cohomology of BU is equal
to H•Bpt ⊗O(U) if O(1) is trivial on U .

We proved in [MSch06] that the algebra B with Berkovits trace tr is quasi-
isomorphic to the algebra AIKKT .

We need to present a useful observation from [MSch05]. Let us decompose
the set {λ1, . . . , λ16} into a union {λα1 , . . . , λαs} ∪ {λβ1 , . . . , λβk} such that
{λα1 , . . . , λαs} is a regular sequence. Then the algebras (B, d) and (B′, d) =
(A/(λα1 , . . . , λαs) ⊗ Λ[θβ1 , . . . , θβk ], d) are quasi-isomorphic.

The following construction has been described in [MSch05]. The spin rep-
resentation S of so(10) splits after restriction on gl(3) × sll(2) × slr(2) into
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T ⊗Wl + T ∗ ⊗Wr + Wl + Wr . We choose coordinates on Wl + Wr− equal
to (λαi) =

(
w̃+
l , w̃

−
l , w̃

+
r , w̃

−
r

)
. They form a regular subsequence of λα. The

manifold corresponding to A/(λαi) is equal to Q ∩ P(T ⊗Wl + T ∗ ⊗Wr).
The intersection is isomorphic to F (1, 2) × X . The algebra of homogeneous
functions A′ = A(F (1, 2) × X) on F (1, 2) × X is generated by siα, tjα(1 ≤
αβ ≤ 3, 1 ≤ ij ≤ 2). The relations are

∑

α

siαtjα = 0, det(siα) = 0, det(tjα) = 0. (32)

In the formula det stands for a row of 2 × 2 minors of a 2 × 3 matrix.
We plan to follow almost the same method of construction of supermani-

fold as for the Koszul complex of pure spinors. Denote by g a projection

g : F (1, 2) ×X → X

We fix a point x ∈ X . The algebra A′
g−1(x) is isomorphic to C[p1, . . . , p3,

u1, . . . , u3]/(piui). The algebra B′
p−1(x) is isomorphic to

A′
g−1(x) ⊗ Λ[π1, . . . , π3, ν

1, . . . , ν3, π̃1, . . . , π̃3, ν̃
1, . . . , ν̃3], d (33)

with a differential
d = pi

∂

∂π̃i
+ ui

∂

∂ν̃i
(34)

The cohomology of this differential is equal to

Λ[Ex] = Λ[π1, . . . , π3, ν
1, . . . , ν3, θ]

The induced A∞ algebra structure on cohomology has no higher multiplica-
tions. The element θ is represented by a cocycle π̃iui. The linear space Ex
coincides with the fiber Fx of the vector bundle F (21). The main distinction
between this computation and a computation with pure spinors is that we
encountered a noncanonical A∞ morphism ι : B′

p−1(x) → Λ[Ex], which may
not be a homomorphism of associative algebras.

Recall that we viewed the cohomology of Bpt as functions of the fiber
of projections p : ΠR → P . We have a natural identification of fibers over
different patches of P . It gives us a consistent construction of a split manifold
ΠR.

In the case of the manifold X , if we ignore the issues related to ambiguities
of choice of morphism ι, it is not hard to see that an isomorphism of fibers
Fx ∼= Hx can be extended to a Spin(4) equivariant isomorphism of the vector
bundles Fx ∼= Hx (use homogeneity of both vector bundles with respect to
sll(2) × slr(2) action).

In this way, we recover the manifold ΠF . In reality, when we try to glue
rings of functions on different patches, the structure isomorphisms will be A∞-
morphisms. We may claim on general grounds that we get an A∞ structure
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on the space of Čech chains of ΠH ∼= ΠF . This structure can be trivialized
by a twist on a local A∞-morphism (reduced to the standard multiplication
in the Grassmann algebra) on every double intersection Uij of patches (if
Uij ⊂ X is sufficiently small). An ambiguity in the choice of such a twist leads
to the appearance of a Čech 2-cocycle βijk with values in infinitesimal (not
A∞) transformations of the fiber ΠF . In the Dolbeault picture this cocycle
corresponds to α. Finally, we use Čech–Dolbeault equivalence. This proves
the claim. �
Remark 21. The algebra C carries a differential d = [α]. The minimal model
of C (by definition it is a quasi-isomorphic A∞ algebra without a differential)
constructed for an obvious homotopy of the differential d = [α] is quasi-
isomorphic to AIKKT . If we ask for a quasi-isomorphism to be compatible
with all gradings that exist on both algebras this quasi-isomorphism is an
isomorphism.

From this it is quite easy to recover all multiplications in the algebra C.

4 Nonreduced theory

A manifold Z with an integral form is constructed in this section.

4.1 Construction of the algebra A(Z)

In this section we construct an algebraA(Z). It will be a linking chain between
YM theory and ambitwistors.

We construct a manifold Z as a direct product ΠF ×Σ. Intuitively speak-
ing, the algebraΩ0•(Π̃F ) carries all the information about YM theory reduced
to a point, whereas the algebra C∞(Σ) contains similar information about the
space Σ. The idea is that a tensor product Ω0•(Π̃F ) ⊗ C∞(Σ) with a suit-
ably twisted differential will contain all information about 4-D YM theory.
Later we will interpret the same complex as tangential CR complex on the
manifold Z.

The linear space
ΣC = V = Wl ⊗Wr (35)

has coordinates xij , 1 ≤ i, j ≤ 2. The vector space V has an SO(4,C) action
compatible with the decomposition (36). It is induced from the SO(4,R) action
on Σ.

Define a differentiation of Ω0•(Π̃F ) ⊗ C∞(Σ) as follows.
There is an SO(4,C) action compatible with decomposition (36). It is

induced from the SO(4,R) action on Σ.
Define a differentiation of Ω0•(Π̃F ) ⊗ C∞(Σ) as follows.
There is an O(4) equivariant isomorphism V ∼= H0(O(1, 1)). The line

bundle O(1, 1) is generated by its global sections. We have a short exact
sequence:

0 →M → V
m→ Θ = O(1, 1) → 0 (36)
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where V is considered as a trivial vector bundle with fiber V . The differenti-
ation δ of Ω0•(Π̃F ) ⊗ C∞(Σ) is equal δ = m(xij ) ∂

∂xij . We interpret ∂
∂xij as

global sections of TCΣ.
Recall that the differential D in Ω0•(Π̃F ) is equal to ∂̄ + α. It becomes

clear from explicit computation of cohomology that the coefficients βij in
{α, δ} = βij ∂

∂xij are ∂̄-exact.
Choose γij such that ∂̄γij = −βij . We define a differentiation γ of

Ω0•(Π̃F ) ⊗ C∞(Σ) as γij ∂
∂xij and zero on the rest of the generators.

It follows from our construction that Dext = D + δ + γ satisfies D2
ext = 0.

Set D′ = δ + γ.
By definition, the integral form on the manifold Π̃F ×Σ is

Vol = μ⊗
2⊗

i,j=1

dxij . (37)

Proposition 22. Vol is invariant with respect to D, D′ and therefore with
respect to Dext .

Proof. Direct inspection. �

4.2 Proof of the equivalence

Proposition 23. Define Z = ΠF × Σ. We equip the algebra A(Z) =
Ω0•(Π̃F ) ⊗ C∞(Σ) ⊗ Matn with a trace

∫
a =

∫

Z

tr(a)Vol (38)

The CS theory constructed by the triple (A(Z), Dext ,
∫
) is classically equiv-

alent to N = 3 euclidean YM with a gauge group U(n).

The equivalence should hold also on the quantum level.

Proof. We shall only outline the basic ideas.
A precise mathematical statement is about quasi-isomorphism of certain

A∞ algebras. One of them is A(Z). The reader should consult [MSch06] for
information about A∞ algebras with a trace corresponding to N = 3 YM
theory.

Suppose ψ : A→ B is a quasi-isomorphism of two A∞ algebras. Let m be
an associative algebra. Then we have a quasi-isomorphism of tensor products
ψ : A ⊗ m → B ⊗ m. Let a be a solution of the MC equation in A ⊗ m
(the reader may consult [MSch05] for the definition). The map ψ transports
a solution a to a solution ψ(a) of the MC equation in B ⊗m.

In a formal interpretation of structure maps of the A∞ algebra A as the
Taylor coefficients of the noncommutative vector field on noncommutative
space A, a solution a of the MC equation corresponds to a zero of the vector
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field. We can expand the vector field into series at a and get some new A∞
algebra. This construction is particularly transparent in the case of a dga. A
solution of the MC equation defines a new differential d̃x = dx + [a, x]. It
corresponds to a shift of a vacuum in physics jargon. Denote by Aa an A∞
algebra constructed by the element a.

It is easy to see that the map ψ defines (under some mild assumptions in
a) a quasi-isomorphism

ψ : A⊗ma → B ⊗mψ(a).

Denote by Diff(Σ) an algebra of differential operators on Σ. We would like
to apply the construction from the previous paragraph to the tensor products
Ω0•(Π̃F )⊗Diff(Σ) and C ⊗Diff(Σ). We can interpret δ+ γ as a solution of
the MC equation for the algebra Ω0•(Π̃F ) with coefficients in Diff(Σ). The
quasi-isomorphism ψ maps δ + γ into an element yij ∂

∂xij , where yij is a basis
of H0(X,Λ0(H∗) ⊗Θ) ⊂ C.

The rest is a matter of formal manipulations. It is straightforward to see
that C ⊗Diff(Σ)ψ(a) is an A∞ mathematics counterpart of the YM equation
where the gauge potential, spinors and matter fields have their coefficients not
in functions on Σ but in Diff(Σ). This is not precisely what we had hoped to
obtain. We shall address this issue presently.

Suppose an associative algebra m contains a subalgebra m′. The previous
construction has a refinement. The noncommutative vector field on a space Am

corresponding to the A∞ algebra A⊗m is tangential to the noncommutative
subspace Am′ (because m′ is closed under multiplication). We say that a
solution of the MC a ∈ A⊗m is compatible with m′ if the vector field defined
by the algebra A⊗m is tangential to the space a+ Am′ ⊂ Am. This is merely
another way to say that a linear space A ⊗m′ is a subalgebra of (A ⊗m)a.
If a is compatible with m′, the map ψ (under some mild assumptions on a)
induces a quasi-isomorphism ψ : A⊗m′ → B ⊗m′

ψ(a).
We apply this construction to the subalgebra C∞(Σ) ⊂ Diff(Σ) for which

the above mentioned condition on δ + γ is met.
Suppose in addition that the algebras A,B,m′ have a traces and a mor-

phism ψ : A → B is compatible with the traces. Assume, moreover, that the
induced A∞ structure A⊗m′

a is compatible with the trace. Then the induced
morphism ψ : A⊗m′

a → B ⊗m′
ψ(a) is compatible with traces.

In our case, the operator D′ preserves the integral form Vol, and the above
conditions are met.

The CS theory associated with the algebra C ⊗ C∞(Σ) has the following
even part of the Lagrangian:

〈Fij , Fij〉 + 〈∇iφ
α,∇iφα〉 + 〈[φα, φβ ],Kβ

α〉 + 〈Kβ
α,K

α
β 〉.

We interpret Fij as coefficients of the curvature of a connection ∇i in a princi-
pal U(n) bundle, φα, φβ as the components of a matter field φ ∈ Ad⊗T, φ∗ ∈
Ad⊗ T ∗, Kβ

α as the components of an auxiliary field K ∈ Ad ⊗ T ⊗ T ∗. This
theory is equivalent toN = 3 YM as the odd parts of the Lagrangians coincide.

�



Yang–Mills Theory and a Superquadric 375

4.3 Relation between a CR structure on Z and an algebra A(Z)

In this section we give a geometric interpretation of the algebra A =
Ω0•(Π̃F ) ⊗ C∞(Σ).

The fibers of the projection

p : X ×Σ → Σ (39)

have a holomorphic structure. Denote by Tvert a bundle of p-vertical vector
fields. We define a distribution G as T 1,0

vert ⊂ TC
vert.

Choose a linear basis e1, . . . , e4 ∈ Σ. Define ∂
∂xs as differentiation in the

direction of es. Restrict the map m from the short exact sequence (37) to
Σ ⊂ V , then m(es) is a set of holomorphic sections of Θ.

For any point x ∈ X we have a subspace Hx ⊂ TC

Σ spanned by
4∑

i=1

m(es)x
∂

∂xd
. (40)

A union of such subspaces defines a complex distribution H on X ×Σ.
Define an integrable distribution F = G + H ⊂ TC

X×Σ.
The reader can see that the CR structure on the space X × Σ literally

coincides with the CR structure on the ambitwistor space A(Σ) defined in
Section 2.2.

In light of this identification, an element θ (a local coordinate on Θ∗) can
be interpreted as a local CR form with nonzero values on H.

The restriction of the vector bundle H∗ (used in the construction of the
supermanifold F in equation (21)) to X × Σ is holomorphic along F . Addi-
tionally, we can interpret the component α in the differential D on Ω0•(Π̃F )
as a contribution from a superextension of the CR structure defined in (19).

From this we deduce that the algebra A(Z) = (Ω0•(Π̃F )⊗C∞(Σ), Dext)
we have constructed coincides with the CR tangential complex on an open
subset of the manifold RGL(4|3).

The integral form Vol is the only CR holomorphic form invariant with
respect to SU(2) × SU(2) � R

4.
From this we deduce that it coincides (up to a multiplicative constant)

with the integral form defined by vol.
It is possible to reconstruct an action of the super Poincaré group SP on

A. The reader will find explanations of why the measure is not invariant with
respect to the full superconformal group in Section 5.3.

5 Appendix

5.1 On the definition of a graded real superspace

A tensor category of complex superspaces CC (see [DMiln] for an introduction
to tensor categories) has two real forms. The first is a category of real super-
spaces CR. It is more convenient to think about objects of this category as of
complex superspaces, equipped with an antiholomorphic involution σ.
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Another tensor category related to CC is formed by complex superspaces
equipped with an antilinear map ρ.

Definition 24. Suppose V is a Z2-graded vector space over the complex num-
bers. An antilinear map ρ : v → v̄ is a graded real structure if

ρ2 = sid,

sid(v) = (−1)|v|v.
(41)

We denote by |v| the parity of v.
An element v is real iff v̄ = v. Only even elements can be real with respect

to a graded real structure. A graded real superspace is a pair (V, ρ). Graded
real superspaces form a tensor category CH.

We shall be mostly interested in categories CC and CH.
The categories CC, CH are related by tensor functors.
The first functor is the complexification CH ⇒ CC, V ⇒ V C. It forgets

about the map ρ.
The second functor is CC ⇒ CH, V ⇒ V H. The object V H is the direct sum

V +V . There is an antilinear isomorphism σ : V → V . For v = a+ b+ c+ d ∈
V 0 + V 1 + V

0
+ V

1
define

ρ(a+ b+ c+ d) = σ−1(c) − σ−1(d) + σ(a) + σ(b). (42)

By construction, ρ2 = sid.
The language of tensor categories can be used as a foundation for develop-

ing commutative algebra and algebraic geometry. If we start off in this direc-
tion with a category CC, the result will turn to be algebraic super-geometry.

The category CH provides us with a real form of this geometry.
First of all, a CH or a real graded manifold is an algebraic supermanifold

M defined over C. The manifold M carries some additional structure. The
manifold Mred is equipped with an antiholomorphic involution ρred. There is
also an antilinear isomorphism of sheaves of algebras

ρ : ρ∗redO → O (43)

such that ρ2 = sid.
There is a C∞ version of a CH manifold. It basically mimics the structure

of the C∞ completion of the algebraic CH manifold at the locus of ρred fixed
points. Any C∞ manifold admits a noncanonical splitting: M ∼= ΠE, where
E is some complex vector bundle over Mred. A CH-structure manifests itself
in an antilinear automorphism ρ of E that satisfies ρ2 = −id. Observe that ρ,
together with multiplication on i, defines a quaternionic structure on E.

For any complex algebraic supermanifold M there is the underlying CH

manifold. As an algebraic supermanifold it is equal to M ×M . There is a
canonical anti-involution on (M ×M)red. The morphism of sheaves (44) in
local charts is defined by formulas similar to (43).
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This construction manifests itself in the C∞-setting as follows. Any com-
plex supermanifold M defines a C∞ supermanifold M̃ that is holomorphic
in odd directions. It is a C∞-completion of M × M red near diagonal of
Mred ×Mred. Suppose ΠE is a splitting of M̃ , where E is a complex vector
bundle on M̃red. The vector bundle E + E has a natural quaternionic struc-
ture and defines a C∞ CH-manifold Π(E + E). This manifold is isomorphic
to completion of M ×M . Sometimes it is more convenient to work with the
manifold M̃ .

5.2 On homogeneous CR-structures

Suppose we are given an ordinary real Lie group and a closed subgroup A ⊂ G
with Lie algebras a ⊂ g. Additionally we have a complex subgroup P ⊂ GC

in complexification of G, with Lie algebras p ⊂ gC. We assume that the map

p : G/A→ GC/P (44)

is a local embedding. By construction GC/P is a holomorphic homogeneous
space. It tangent space Tx, x ∈ G/A contain a subspace Hx = Tx ∩ JTx.
The operator J is an operator of complex structure on GC/P . Due to G-
homogeneity spaces Hx have constant rank and form a subbundle H ⊂ T . We
can decompose H⊗C = F +F . It follows from the fact that p is a subalgebra
that the constructed distribution F is integrable and defines a CR-structure.

A condition that the map p (44) is a local embedding is equivalent to
g ∩ p = a. In other words

p ∩ p̄ = aC (45)

It is easy to see that a fiber Fx at a point x is isomorphic to p/aC

This construction of CR-structure can be extended to a supercase. A con-
sistent way to derive such extension is to use a functorial language of ref.
[DM].

However since this exercise, which we leave to the interested reader, is
quite straightforward we provide only the upshot.

We start off with description of a data that defines a homogeneous space
of a supergroup.

A complex homogeneous space X of a complex supergroup G with Lie
algebra g is encoded by:

1. Global data: An isotropy subgroup H ⊂ Gred (closed, analytic,
possibly nonconnected). This data defines an ordinary homogeneous space
Xred = Gred/H ;

2. Local data: a pair of complex super Lie algebras p ⊂ g such that
p0 = Lie(H), Lie(Gred) = g0.

In the cases when we specify only Lie algebra of isotropy subgroup is clear
from the context.

A real graded structure on a homogeneous space X = G/A is encoded by
an antiholomorphic involution on Gred that leaves subgroup Ared invariant; a
graded real structure ρ on g,such that ρ(a) ⊂ a.
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If we are given a real subalgebra (a, ρ) ⊂ (g, ρ) and a complex subalgebra
p ⊂ g such that a = p ∩ ρ(p), we claim that a supermanifold G/A carries a
(G, ρ)-homogeneous CR structure.

5.3 General facts about CR structures on supermanifolds

In this section we will discuss mostly general facts about CR structures specific
to supergeometry. Suppose M is a supermanifold equipped with an integrable
CR distribution F . We present some basic examples of F -holomorphic vector
bundles on M .

Example 25. Sections of the vector bundle TC/F form a module over the Lie
algebra of the sections of F . Thus the gluing cocycle of this bundle is CR
holomorphic. It implies that the bundle Ber((TC/F)∗) is also CR holomorphic.

Suppose we have a trivial CR structure on Rn1|n2 × Cm1|m2 . We assume
that the space is equipped with global coordinates xi, ηj , zk, θl. The algebra
of the tangential CR complex Ω•

F (Rn1|n2 × C
m1|m2) has topological gener-

ators xi, ηj , zk, θl, z̄k, θ̄l, dz̄k, dθ̄l. Denote by A the subalgebra generated by
xi, ηj , zk, θl, z̄k, , dz̄k and by K the subalgebra generated by θ̄l, dθ̄l. We have
Ω0• = A⊗K. The algebraK has trivial cohomology. As a result the projection
Ω0• → A is a quasi-isomorphism.

It turns out that this construction exists in the more general context of an
arbitrary CR manifold. Informally, we may say that a super-CR manifold is
affine in holomorphic odd directions. It parallels with the complex case.

The construction requires a choice of C∞-splitting of the CR manifold M .
Suppose Y is an ordinary manifold, E a vector bundle. Let ΠE denote the

supermanifold whose sheaf of functions coincides with the sheaf of sections of
the Grassmann algebra of the bundle E∗. Such a supermanifold is said to be
split. By construction, it admits a projection p : ΠE → Y . Any C∞ manifold
is split, but the splitting is not unique. A space of global functions on ΠE is
isomorphic to a space of sections of the Grassmann algebra ΛE∗ of the vector
bundle E.

To make a connection with our considerations we identify Y = Mred.
Define F red = F0

red + F1

red, the restriction of F to Mred. In terms of the
splitting operator, ∂̄ can be encoded by a pair of operators of the first order
∂̄ev : C∞(Mred) → ΛE∗ ⊗F red, ∂̄odd : E∗ → ΛE∗ ⊗F red.

The lowest degree component in powers ΛiE∗ of the operator ∂̄odd is
∂̄0
oddE

∗ → F1

red. It is a C∞(Y ) linear map of constant value. The image
S0 of a splitting F1

red → E∗ can be used to generate a differential ideal (S) of
ΩF . Denote the quotient ΩF/S by ΩsF .

The complex ΩsF is a differential graded algebra. We can interpret it as
a space of functions on some superspace L. A possibility to split ∂̄0

odd implies
smoothness of L.

Proposition 26. The map ΩF → ΩsF is a quasi-isomorphism.
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Proof. Follows from consideration of a spectral sequence associated with
filtration F iΩpF = (S0)i−pΩ

p
F (we denote by (S0)k the k-th power of the

ideal generated by S0). �

A CR manifold M is locally embeddable to C
m|n if, in a neighborhood of a

point, there is a collection of z1, . . . , zm even and θ1, . . . , θn odd function that
are annihilated by ∂̄ and whose Jacobian is nondegenerate.

Definition 27. Let us assume that F1
∣∣
∣Mred + F1

∣∣
∣
Mred

= TC1 (the super-

script 1 denotes the odd part), i.e., the dimension of the odd part of the CR
distribution is the greatest possible.

We can locally generate the ideal S0 by elements θ1, . . . , θn and take S
as the ∂̄ closure of S0. It is not hard to check that under such assumptions,
Proposition 26 holds. Denote by sM a submanifold specified by S0.

Remark 28. The Lie algebra of infinitesimal automorphisms of the CR struc-
ture is equal to AutF = {a ∈ TC|[a, b] ∈ F , for all b ∈ F}} with
OutF = AutF/F . In the purely complex case the quotient construction can be
replaced by Outcomplex = {a ∈ F|[a, b] ∈ F , for all b ∈ F}} and the extension

0 → InnF → AutF → OutF → 0 (46)

has a splitting. By construction, the elements θ1, . . . , θn are invariant along
vector fields from the distribution F . We can guarantee that the differential
ideal generated by θi is invariant with respect to the elements of Outcomplex.
As a result we can push the action of Outcomplex to Ω•

sF , this is a familiar fact
from super complex geometry. This contrasts with absence of the action of
AutF or OutF on the ideal S and on Ω•

sF for a general CR structure. One can
prove, however, that Ω•

sF admits an A∞ action of AutF . A partial remedy is
to consider the subalgebra ÕutF = {a ∈ F|[a, b] ∈ F , for all b ∈ F}} ⊂ OutF .
This subalgebra acts on Ω•

sF . However, this algebra is trivial if the Levi form
of F is not degenerate.

Supergeometry provides us with a complex of CR integral forms. Let ΛF
be the super Grassmann algebra of F . Let Ber be the Berezinian line bundle
of a real manifold M . Denote intΩ

−p
F the tensor product Ber ⊗ ΛF . There is

a pairing (ω, ν) =
∫
M
〈ω, ν〉 between sections ω ∈ ΩpF and ν ∈ intΩ

−p
F . The

symbol 〈., .〉 denotes contraction of a differential form with a polyvector field.
The operation 〈., .〉 takes values in sections of Ber. The value 〈ω, ν〉 can be
used as an integrand for integration over M .

The orthogonal complement to the ideal S ⊂ ΩpF is a subcomplex intΩ
−p
sF ⊂

intΩ
−p
F . It is a differential graded module over ΩpsF .

Proposition 29. Let M be a supermanifold with a CR distribution F of di-
mension (n|k). There is an isomorphism i : intΩ

p−n
sF → ΩpsFBer((TC/F)∗)

compatible with a stricture of Ω•
sF -module. The isomorphism is unique.
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Proof. Using C∞ splitting we can identify Ω•
sFBer((TC/F)∗) and intΩ

p−n
sF

with sections of some vector bundles Ap and Bp overMred. It is fairly straight-
forward to establish an isomorphism of Ap and Bp with the help of the split-
ting. In particular there is a C∞ isomorphism Ber((TC/F)∗) = intΩ

−n
sF .

One can think about Ω0
sF as a space of functions on a supermanifold sM.

Then the space of sections Ber(sM ) coincide with ΩnsFBer((TC/F)∗)). Its
elements can be integrated over sM. The integral defines a pairing (., .)s :

Ω•
sF ⊗Ω•

sFBer((TC/F)∗))
∫ 〈.,.〉s→ C, which is nondegenerate.

An element a ∈ intΩ
0
sF defines a functional f →

∫
M af (f ∈ C∞(sM )). We

may think about it as an integral
∫
sM fi(a), where i(a) ∈ ΩnsFBer((TC/F)∗).

Such an interpretation of the integral uniquely specifies the map i. SinceΩnsF is
invertible, the induced isomorphism i : Ber((TC/F)∗) = intΩ

−n
sF is compatible

with ∂̄ (use pairings (., .), (., .)s to check this). �

Suppose that a super CR manifold M is CR embedded into a complex super
manifold N . Denote by J an operator of complex structure in the tangent
bundle TN. We assume that TM + JTM = TN |M . Denote by BerC(N) the
complex Berezinian of N . An easy local computation shows that BerC(N)|M
is isomorphic to Ber((TC/F)∗). Suppose N is a Calabi–Yau manifold, i.e., it
admits a global nonvanishing section vol of BerC(N). The restriction of vol to
M defined a global CR holomorphic section of Ber((TC/F)∗). An isomorphism
of Proposition 29 provides a ∂̄ closed section of intΩ

−n
sF ⊂ intΩ

−n
F .

Remark 30. The proof Proposition 29 parallels the proof of Serre duality in the
super case given in [HW]. Haske and Wells used a sheaf-theoretic description
of a complex supermanifold, which significantly simplifies the argument. The
main simplification comes from the local Poincaré lemma, which is absent in
the CR case.

It is worthwhile to mention that there is no canonical (AutF or OutF
equivariant) map Ω•

FBer((TC/F)∗) → intΩ
•
F [−n]. This seems to be one of

fundamental distinctions of the purely even and super cases.
We think the reason is that the only known construction of this map is

through the intermediate complex Ω•
sFBer((TC/F)∗). As have have already

mentioned in Remark 28, the complex Ω•
sF carries only the A∞ action of

AutF .
A real line bundle Ber on a complex super manifold is a tensor product

BerC ⊗ BerC, where BerC is a holomorphic Berezinian.
A decomposition TC = T = T implies that

intΩ−k = Ber ⊗ Λk(T ) =

=
⊕

i+j=k

BerC ⊗ Λi(TC) ⊗ BerC ⊗ Λj(T C) =
⊕

i+j=k

intΩ−i,−j .(47)
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Remark 31. Suppose M is a complex n-dimensional manifold, E is a k-
dimensional vector bundle. On the total space ΠE there is a canonical section
of cΠE ∈ BerC ⊗ Λn(T ). In local odd fiberwise coordinates θi, it is equal to

cΠV = θ1 . . . θkdθ1 ∧ · · · ∧ dθk. (48)

Proposition 32. The forms cΠV and c̄ΠV are ∂̄-closed.

Proof. Since the formula (49) does not depend on the choice of coordinates
on M , one can do a local computation, which is trivial. �

6 Acknowledgments

The author would like to thank P. Candelas, P. Deligne, M. Kontsevich, L.
Maison, A.S. Schwarz for useful comments and discussions. This paper was
written while the author was staying at Mittag-Leffler Institut, Max Planck
Institute for Mathematics, and the Institute for Advanced Study. The author
is grateful to these institutions for their hospitality and support. After the
preprint version of this paper [Mov] had been published, the author learned
about the work by L.J. Mason and D. Skinner [MS], where they treat a similar
problem.

References

[AHDM] M. F. Atiyah, N. J. Hitchin, V. G. Drinfel’d, Yu. I. Manin, Construc-
tion of instantons Phys. Lett. A 65 (1978), no. 3, 185–187.

[Berk] N. Berkovits, Covariant Quantization of the Superparticle Using Pure
Spinors JHEP 0109 (2001) 016, hep-th/0105050.

[DMiln] P. Deligne, J. S. Milne, Tannakian categories, in Hodge cycles, motives
and Shimura varieties, LNM 900, 101–228.

[DM] P. Deligne, J. W. Morgan, Notes on supersymmetry (following Joseph
Bernstein). Quantum fields and strings: a course for mathematicians,
Vol. 1, 2 (Princeton, NJ, 1996/1997), 4197, Amer. Math. Soc., Provi-
dence, RI, 1999.

[FP02] J. Frauendiener, R. Penrose, Twistors and general relativity. Mathe-
matics unlimited—2001 and beyond, 479–505, Springer, Berlin, 2001.

[GH] Ph. Griffiths, J. Harris, Principles of algebraic geometry. Pure and
Applied Mathematics. Wiley-Interscience, John Wiley & Sons, New
York, 1978. xii+813 pp.

[HW] C. Haske, R. O. Wells, Jr., Serre duality on complex supermanifolds
Duke Math. J. 54, no. 2 (1987), 493–500.

[IKKT] N. Ishibashi, H. Kawai, I. Kitazawa, A. Tsuchiya, A large-N reduced
model as superstring Nucl. Phys. B492 (1997).

[Kad] T. Kadeishvili, The algebraic structure in the homology of an A∞-algebra
Soobshch. Akad. Nauk Gruzin. SSR, 1982.



382 Mikhail V. Movshev

[Man] Yu. I. Manin, Gauge field theory and complex geometry Grundlehren der
Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin, 1997.

[Markl] M. Markl, Transferring A∞ (strongly homotopy associative) structures
math.AT/0401007.

[MS] L. J. Mason, D. Skinner, An ambitwistor Yang-Mills Lagrangian Phys.
Lett. B636 (2006) 60–67, hep-th/0510262.

[Mov] M. Movshev, Yang–Mills theory and a superquadric hep-th/0411111.
[MSch05] M. Movshev, A. Schwarz, On maximally supersymmetric Yang–Mills

theories Nuclear Physics B, 681, no. 3, 324–350.
[MSch06] M. Movshev, A. Schwarz, Algebraic structure of Yang–Mills theory, The

Unity of Mathematics, 473–523, Progr. Math., 244, Birkhäuser Boston,
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1 Introduction

Let A be an associative algebra over the complex numbers. Let A = (aij)n
i,j=1

be an n×n matrix with entries in A. The row determinant of A is defined by
the formula

rdet(A) :=
∑

σ∈Sn

sgn(σ)a1σ1 · · · anσn .

Let xij , i, j = 1, . . . , M , be commuting variables. Let ∂ij = ∂/∂xij ,

Eij =
M∑

a=1

xia∂ja. (1)

Let X = (xij)M
i,j=1 and D = (∂ij)M

i,j=1 be M × M matrices.
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The classical Capelli identity [C1] asserts the following equality of
differential operators:

rdet
(
Eji + (M − i)δij

)M

i,j=1
= det(X) det(D). (2)

This identity is a “quantization” of the identity

det(AB) = det(A) det(B)

for any matrices A, B with commuting entries.

The Capelli identity has the following meaning in representation theory.
Let C[X ] be the algebra of complex polynomials in the variables xij . There are
two natural actions of the Lie algebra glM on C[X ]. The first action is given
by operators from (1), and the second action is given by operators Ẽij =∑M

a=1 xai∂aj . The two actions commute and the corresponding glM ⊕ glM
action is multiplicity-free.

It is not difficult to see that the right-hand side of (2), considered as a
differential operator on C[X ], commutes with both actions of glM and there-
fore lies in the image of the center of the universal enveloping algebra UglM
with respect to the first action. Then the left-hand side of the Capelli identity
expresses the corresponding central element in terms of UglM generators.

Many generalizations of the Capelli identity are known. One group of gen-
eralizations considers other elements of the center of UglM , called quantum
immanants, and then expresses them in terms of glM generators; see [C2],
[N1], [O]. Another group of generalizations considers other pairs of Lie al-
gebras in place of (glM , glM ), e.g., (glM , glN ), (sp2M , gl2), (sp2M , soN ); see
[MN], [HU]. The third group of generalizations produces identities correspond-
ing not to pairs of Lie algebras, but to pairs of quantum groups [NUW] or
superalgebras [N2].

In this paper we prove a generalization of the Capelli identity that seem-
ingly does not fit the above classification.

Let z = (z1, . . . , zN), λ = (λ1, . . . , λM ) be sequences of complex numbers.
Let Z = (ziδij)N

ij=1, Λ = (λiδij)M
ij=1 be the corresponding diagonal matrices.

Let X and D be the M × N matrices with entries xij and ∂ij , i = 1, . . . , M ,
j = 1, . . . , N , respectively. Let C[X ] be the algebra of complex polynomi-
als in variables xij , i = 1, . . . , M , j = 1, . . . , N . Let E

(a)
ij = xia∂ja, where

i, j = 1, . . . , M, a = 1, . . . , N .
In this paper we prove that

N∏

a=1

(u − za) rdet

(
(∂u − λi)δij −

N∑

a=1

E
(a)
ji

u − za

)M

i,j=1

= rdet
(

u − Z Xt

D ∂u − Λ

)
.

(3)

The left-hand side of (3) is an M ×M matrix, while the right-hand side is an
(M + N) × (M + N) matrix.
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Identity (3) is a “quantization” of the identity

det
(

A B
C D

)
= det(A) det(D − CA−1B),

which holds for any matrices A, B, C, D with commuting entries, for the case
when A and D are diagonal matrices.

By setting all zi, λj , and u to zero, and N = M in (3), we obtain the
classical Capelli identity (2); see Section 2.4.

Our proof of (3) is combinatorial and reduces to the case of 2×2 matrices.
In particular, it gives a proof of the classical Capelli identity, which may be
new.

We invented identity (3) to prove Theorem 6 below, and Theorem 6 in
turn was motivated by results of [MTV2]. In Theorem 6 we compare actions
of two Bethe subalgebras.

Namely, consider C[X ] as a tensor product of evaluation modules over the
current Lie algebras glM [t] and glN [t] with evaluation parameters z and λ,
respectively. The action of the algebra glM [t] on C[X ] is given by the formula

Eij ⊗ tn =
N∑

a=1

xia∂jazn
a ,

and the action of the algebra glN [t] on C[X ] is given by the formula

Eij ⊗ tn =
M∑

a=1

xai∂ajλ
n
a .

In contrast to the previous situation, these two actions do not commute.
The algebra UglM [t] has a family of commutative subalgebras G(M, λ)

depending on parameters λ and called the Bethe subalgebras. For a given λ,
the Bethe subalgebra G(M, λ) is generated by the coefficients of the expansion
of the expression

rdet
(
(∂u − λi)δij −

N∑

a=1

∞∑

s=1

(
E

(a)
ji ⊗ ts

)
u−s−1

)M

i,j=1
(4)

with respect to powers of u−1 and ∂u; cf. Section 3. For different versions of
definitions of Bethe subalgebras and relations between them, see [FFR], [T],
[R], [MTV1].

Similarly, there is a family of Bethe subalgebras G(N, z) in UglN [t] de-
pending on parameters z.

For fixed λ and z, consider the action of the Bethe subalgebras G(M, λ)
and G(N, z) on C[X ] as defined above. In Theorem 6 we show that the actions
of the Bethe subalgebras on C[X ] induce the same subalgebras of endomor-
phisms of C[X ].
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The paper is organized as follows. In Section 2 we describe and prove
formal Capelli-type identities, and in Section 3 we discuss the relations of the
identities to the Bethe subalgebras.

Acknowledgment. We thank the referee for bringing to our attention the
papers [KS] and [GR], which relate the Capelli identity to Jordan algebras
and “quasideterminants,” respectively.

Research of E.M. is supported in part by NSF grant DMS-0601005.
Research of A.V. is supported in part by NSF grant DMS-0555327.

2 Identities

2.1 The main identity

We work over the field of complex numbers. However, all results of this paper
hold over any field of characteristic zero.

Let A be an associative algebra. Let A = (aij)n
i,j=1 be an n × n matrix

with entries in A. Define the row determinant of A by the formula:

rdet(A) :=
∑

σ∈Sn

sgn(σ)a1σ1 · · · anσn ,

where Sn is the symmetric group on n elements.
Fix two natural numbers M and N and a complex number h ∈ C. Consider

noncommuting variables u, pu, xij , pij , where i = 1, . . . , M , j = 1, . . . , N , such
that the commutator of two variables equals zero except

[pu, u] = h, [pij , xij ] = h,

i = 1, . . . , M , j = 1, . . . , N .
Let X, P be two M × N matrices given by

X : = (xij)
j=1,...,N
i=1,...,M , P : = (pij)

j=1,...,N
i=1,...,M .

Let A(MN)
h be the associative algebra whose elements are polynomials in

pu, xij , pij , i = 1, . . . , M , j = 1, . . . , N, with coefficients that are rational
functions in u.

Let A(MN) be the associative algebra of linear differential operators in
u, xij , i = 1, . . . , M , j = 1, . . . , N , with coefficients in C(u) ⊗ C[X ].

We often drop the dependence on M, N and write Ah, A for A(MN)
h and

A(MN), respectively.
For h �= 0, we have the isomorphism of algebras

ιh : Ah → A, (5)
u, xij �→ u, xij ,

pu, pij �→ h
∂

∂u
, h

∂

∂xij
.
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Fix two sequences of complex numbers z = (z1, . . . , zN ) and λ =
(λ1, . . . , λM ).

Define the M×M matrix Gh = Gh(M, N, u, pu, z, λ, X, P ) by the formula

Gh : =

(
(pu − λi) δij −

N∑

a=1

xjapia

u − za

)M

i,j=1

. (6)

Theorem 1. We have

N∏
a=1

(u − za) rdet(Gh) =
∑

A,B,|A|=|B|(−1)|A| ∏
a�∈B

(u − za)
∏

b�∈A

(pu − λb) det(xab)b∈B
a∈A det(pab)b∈B

a∈A,

where the sum is over all pairs of subsets A ⊂ {1, . . . , M}, B ⊂ {1, . . . , N}
such that A and B have the same cardinality, |A| = |B|. Here the sets A, B in-
herit the natural ordering from the sets {1, . . . , M}, {1, . . . , N}. This ordering
define the determinants in the formula.

Theorem 1 is proved in Section 2.5.

2.2 A presentation as a row determinant of size M + N

Theorem 1 implies that the row determinant of G can be written as the row
determinant of a matrix of size M + N .

Namely, let Z be the diagonal N × N matrix with diagonal entries
z1, . . . , zN . Let Λ be the diagonal M × M matrix with diagonal entries
λ1, . . . , λM :

Z : = ( ziδij )N
i,j=1 , Λ : = (λiδij )M

i,j=1 .

Corollary 2. We have

N∏

a=1

(u − za) rdet G = rdet
(

u − Z Xt

P pu − Λ

)
,

where Xt denotes the transpose of the matrix X.

Proof. Define

W : =
(

u − Z Xt

P pu − Λ

)
,

The entries of the first N rows of W commute. The entries of the last M rows
of W also commute. Write the Laplace expansion of rdet(W ) with respect to
the first N rows. Each term in this expansion corresponds to a choice of N
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columns in the N × (N +M) matrix (u−Z, XT ). We label such a choice by a
pair of subsets A ⊂ {1, . . . , M} and B ⊂ {1, . . . , N} of the same cardinality.
Namely, the elements of A correspond to the chosen columns in XT , and the
elements of the complement to B correspond to the chosen columns in u−Z.
Then the term in the Laplace expansion corresponding to A and B is exactly
the term labeled by A and B in the right-hand side of the formula in Theorem
1. Therefore, the corollary follows from Theorem 1. �

Let A, B, C, D be any matrices with commuting entries of sizes N × N, N ×
M, M × N , and M × M , respectively. Let A be invertible. Then we have the
equality of matrices of sizes (M + N) × (M + N):

(
A B
C D

)
=

(
A 0
C D − CA−1B

) (
1 A−1B
0 1

)

and therefore

det
(

A B
C D

)
= det(A) det(D − CA−1B). (7)

The identity of Corollary 2 for h = 0 turns into identity (7) with diagonal
matrices A and D. Therefore, the identity of Corollary 2 may be thought of
as a “quantization” of identity (7) with diagonal A and D.

2.3 A Relation Between Determinants of Sizes M and N

Introduce new variables v, pv such that [pv, v] = h.
Let Āh be the associative algebra whose elements are polynomials in

pu, pv, xij , pij , i = 1, . . . , M , j = 1, . . . , N, with coefficients in C(u) ⊗ C(v).
Let e : Āh → Āh be the unique linear map that is the identity map on the

subalgebra of Āh generated by all monomials that do not contain pu and pv

and that satisfies

e(apu) = e(a)v, e(apv) = e(a)u,

for any a ∈ Āh.
Let Ā be the associative algebra of linear differential operators in u, v, xij ,

i = 1, . . . , M , j = 1, . . . , N , with coefficients in C(u)⊗C(v)⊗C[xij ]. Then for
h �= 0, we have an isomorphism of algebras extending the isomorphism (5):

ῑh : Āh → Ā,

u, v, xij �→ u, v, xij ,

pu, pv, pij �→ h
∂

∂u
, h

∂

∂v
, h

∂

∂xij
.

For a ∈ Ā and a function f(u, v) let a·f(u, v) denote the function obtained
by the action of a considered as a differential operator in u and v on the
function f(u, v).
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We have
ῑh(e(a)) = exp(−uv/h)ῑh(a) · exp(uv/h)

for any a ∈ Āh such that a does not depend on either pu or pv.
Define the N × N matrix Hh = Hh(M, N, v, pv, z, λ, X, P ) by

Hh :=

(
(pv − zi)δij −

M∑

b=1

xbjpbi

v − λb

)N

i,j=1

; (8)

cf. formula (6).

Corollary 3. We have

e

(
N∏

a=1

(u − za) rdet(Gh)

)
= e

(
M∏

b=1

(v − λb) rdet(Hh)

)
.

Proof. Write the dependence on the parameters of the matrix G: Gh =
Gh(M, N, u, pu, z, λ, X, P ). Then

Hh = Gh(N, M, v, pv, λ, z, XT , PT ).

The corollary now follows from Theorem 1. �

2.4 A relation to the Capelli identity

In this section we show how to deduce the Capelli identity from Theorem 1.
Let s be a complex number. Let αs : Ah → Ah be the unique linear map

that is the identity map on the subalgebra of Ah generated by all monomials
that do not contain pu and that satisfies

αs(aupu) = sαs(a)

for any a ∈ Āh.
We have

ῑh(αs(a)) = u−s/hῑh(a) · us/h

for any a ∈ Āh.
Consider the case z1 = · · · = zN = 0 and λ1 = · · · = λM = 0 in Theorem 1.
Then it is easy to see that the row determinant rdet(G) can be rewritten

in the following form:

uM rdet(Gh) = rdet
(
h(upu − M + i)δij −

N∑

a=1

xjapia

)M

i,j=1
.

Applying the map αs, we get

αs(uM rdet(Gh)) = rdet
(
h(s − M + i)δij −

N∑

a=1

xjapia

)M

i,j=1
.
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Therefore, applying Theorem 1, we obtain the identity

rdet
(
h(s − M + i)δij −

N∑
a=1

xjapia

)M

i,j=1

=
∑

A,B,|A|=|B|
(−1)|A|

M−|A|−1∏
b=0

(s − bh) det(xab)b∈B
a∈A det(pab)b∈B

a∈A.

In particular, if M = N and s = 0, we obtain the famous Capelli identity:

rdet

(
M∑

a=1

xjapia + h(M − i)δij

)M

i,j=1

= detX detP.

If h = 0 then all entries of X and P commute, and the Capelli identity reads
det(XP ) = det(X) det(P ). Therefore, the Capelli identity can be thought
of as a “quantization” of the identity det(AB) = det(A) det(B) for square
matrices A, B with commuting entries.

2.5 Proof of Theorem 1

We define
Eij,a := xjapia/(u − za).

We obviously have

[Eij,a, Ekl,b] = δab(δkj(Eil,a)′ − δil(Ekj,a)′),

where the prime denotes formal differentiation with respect to u.
Define also F 1

jk,a = −Ejk,a and F 0
jj,0 = (pu − λj).

Expand rdet(G). We get an alternating sum of terms,

rdet(Gh) =
∑

σ,a,c

(−1)sgn(σ)F
c(1)
1σ(1),a(1)F

c(2)
2σ(2),a(2) · · ·F c(M)

Mσ(M),a(M), (9)

where the summation is over all triples σ, a, c such that σ is a permutation of
{1, . . . , M} and a, c are maps a : {1, . . . , M} → {0, 1, . . . , N}, c : {1, . . . , M} →
{0, 1} satisfying c(i) = 1 if σ(i) �= i; a(i) = 0 if and only if c(i) = 0.

Let m be a product whose factors are of the form f(u), pu, pij , xij , where
f(u) are some rational functions in u. Then the product m will be called
normally ordered if all factors of the form pu, pij are to the right of all factors
of the form f(u), xij . For example, (u−1)−2x11pup11 is normally ordered and
pu(u − 1)−2x11p11 is not.

Given a product m as above, define a new normally ordered product
: m : as the product of all factors of m in which all factors of the form
pu, pij are placed to the right of all factors of the form f(u), xij . For example,
: pu(u − 1)−2x11p11 := (u − 1)−2x11pup11.
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If all variables pu, pij are moved to the right in the expansion of rdet(G),
then we get terms obtained by normal ordering from the terms in (9) plus
new terms created by the nontrivial commutators. We show that in fact all
new terms cancel in pairs.

Lemma 4. For i = 1, . . . , M , we have

rdet(Gh) =
∑

σ,a,c

(−1)sgn(σ)F
c(1)
1σ(1),a(1) . . . F

c(i−1)
(i−1)σ(i−1),a(i−1)

×
(

: F
c(i)
iσ(i),a(i) . . . F

c(M)
Mσ(M),a(M) :

)
, (10)

where the sum is over the same triples σ, a, c as in (9).

Proof. We prove the lemma by induction on i. For i = M the lemma is a
tautology. Assume that it is proved for i = M, M − 1, . . . , j, and let us prove
it for i = j − 1.

We have

F 1
(j−1)r,a : F

c(j)
jσ(j),a(j)

· · ·F c(M)
M,σ(M),a(M)

:= F 1
(j−1)r,aF

c(j)
jσ(j),a(j) · · ·F c(M)

Mσ(M),a(M) :

+
∑

k

: F
c(j)
jσ(j),a(j) · · · (−Ekr,a)′ · · ·F c(M)

Mσ(M),a(M) : , (11)

where the sum is over k ∈ {j, . . . , M} such that a(k) = a, σ(k) = j − 1, and
c(k) = 1.

We also have

F 0
(j−1)(j−1),0 : F

c(j)
jσ(j),a(j) · · ·F c(M)

Mσ(M),a(M)

:= F 0
(j−1)(j−1),0F

c(j)
jσ(j),a(j) · · ·F c(M)

Mσ(M),a(M) :

+
∑

k

: F
c(j)
jσ(j),a(j) · · · (−Ekσ(k),a(k))′ · · ·F c(M)

Mσ(M),a(M) : , (12)

where the sum is over k ∈ {j, . . . , M} such that c(k) = 1.
Using (11), (12), rewrite each term in (10) with i = j. Then the k-th term

obtained by using (11) applied to the term labeled by σ, c, a with c(j − 1) = 0
cancels with the k-th term obtained by using (12) applied to the term labeled
by σ̃, c̃, ã defined by the following rules:

σ̃(i) = σ(i) (i �= j − 1, k), σ̃(j − 1) = j − 1, σ̃(k) = σ(j − 1),

c̃(i) = c(i) (i �= j − 1), c̃(j − 1) = 0,

ã(i) = a(i) (i �= j − 1), ã(j − 1) = 0.

After this cancellation we obtain the statement of the lemma for i = j−1. �
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Remark 5. The proof of Lemma 4 implies that if the matrix σGh is obtained
from Gh by permuting the rows of Gh by a permutation σ, then rdet(σGh) =
(−1)sgn(σ) rdet(Gh).

Consider the isomorphism of vector spaces φh : Ah → A0 that sends any
normally ordered monomial m in Ah to the same monomial m in A0.

By (10) with i = 1, the image φh(rdet(Gh)) does not depend on h and
therefore can be computed at h = 0. Therefore Theorem 1 for all h follows
from Theorem 1 for h = 0. Theorem 1 for h = 0 follows from formula (7).

3 The (glM, glN) Duality and the Bethe Subalgebras

3.1 Bethe subalgebra

Let Eij , i, j = 1, . . . , M , be the standard generators of glM . Let h be the
Cartan subalgebra of glM ,

h = ⊕M
i=1C · Eii.

We denote by UglM the universal enveloping algebra of glM .
For μ ∈ h∗, and a glM module L denote by L[μ] the vector subspace of L

of vectors of weight μ,

L[μ] = {v ∈ L | hv = 〈μ, h〉 v for any h ∈ h}.
We always assume that L = ⊕μL[μ].

For any integral dominant weight Λ ∈ h∗, denote by LΛ the finite-
dimensional irreducible glM -module with highest weight Λ.

Recall that we fixed sequences of complex numbers z = (z1, . . . , zN) and
λ = (λ1, . . . , λM ). From now on we will assume that zi �= zj and λi �= λj if
i �= j.

For i, j = 1, . . . , M,, a = 1, . . . , N , let E
(a)
ji = 1⊗(a−1) ⊗ Eji ⊗ 1⊗(N−a) ∈

(UglM )⊗N .
Define the M × M matrix G̃ = G̃(M, N, z, λ, u) by

G̃(M, N, z, λ, u) :=

((
∂

∂u
− λi

)
δij −

N∑

a=1

E
(a)
ji

u − za

)M

i,j=1

.

The entries of G̃ are differential operators in u whose coefficients are rational
functions in u with values in (UglM )⊗N .

Write

rdet(G̃(M, N, z, λ, u)) =
∂M

∂uM
+ G̃1(M, N, z, λ, u) ∂M−1

∂uM−1 + · · ·
+G̃M (M, N, z, λ, u).
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The coefficients G̃i(M, N, z, λ, u), i = 1, . . . , M , are called the transfer ma-
trices of the Gaudin model. The transfer matrices are rational functions in u
with values in (UglM )⊗N .

The transfer matrices commute:

[G̃i(M, N, z, λ, u), G̃j(M, N, z, λ, v)] = 0,

for all i, j, u, v; see [T] and Proposition 7.2 in [MTV1].
The transfer matrices clearly commute with the diagonal action of h on

(UglM )⊗N .
For i = 1, . . . , M , it is clear that G̃i(M, N, z, λ, u)

∏N
a=1(u−za)i is a poly-

nomial in u whose coefficients are pairwise commuting elements of (UglM )⊗N .
Let G(M, N, z, λ) ⊂ (UglM )⊗N be the commutative subalgebra generated by
the coefficients of polynomials G̃i(M, N, z, λ, u)

∏N
a=1(u− za)i, i = 1, . . . , M .

We call the subalgebra G(M, N, z, λ) the Bethe subalgebra.
Let G(M, λ) ⊂ UglM [t] be the subalgebra considered in the introduction.

Let UglM [t] → (UglM )⊗N be the algebra homomorphism defined by Eij ⊗
tn �→ ∑N

a=1 E
(a)
ij zn

a . Then the subalgebra G(M, N, z, λ) is the image of the
subalgebra G(M, λ) under that homomorphism.

The Bethe subalgebra clearly acts on any N -fold tensor product of glM
representations.

Define the Gaudin Hamiltonians Ha(M, N, z, λ) ⊂ (UglM )⊗N , a =
1, . . . , N , by the formula

Ha(M, N, z, λ) =
N∑

b=1,b�=a

Ω(ab)

za − zb
+

M∑

b=1

λbE
(a)
bb ,

where Ω(ab) :=
∑M

i,j=1 E
(a)
ij E

(b)
ji .

Define the dynamical Hamiltonians H∨
a (M, N, z, λ) ⊂ (UglM )⊗N , a =

1, . . . , M , by the formula

H∨
a (M, N, z, λ) =

M∑

b=1, b�=a

(
∑N

i=1 E
(i)
ab )(

∑N
i=1 E

(i)
ba )−∑N

i=1 E
(i)
aa

λa − λb
+

N∑

b=1

zbE
(b)
aa .

It is known that the Gaudin Hamiltonians and the dynamical Hamiltonians
are in the Bethe subalgebra; see, e.g., Appendix B in [MTV1]:

Ha(M, N, z, λ) ∈ G(M, N, z, λ), H∨
b (M, N, z, λ) ∈ G(M, N, z, λ),

a = 1, . . . , N , b = 1, . . . , M .
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3.2 The (glM , glN) Duality

Let L
(M)
• = C[x1, . . . , xM ] be the space of polynomials in M variables. We

define the glM -action on L
(M)
• by the formula

Eij �→ xi
∂

∂xj
.

Then we have an isomorphism of glM modules

L
(M)
• =

∞⊕

m=0

L(M)
m ,

the submodule L
(M)
m being spanned by homogeneous polynomials of degree

m. The submodule L
(M)
m is the irreducible glM module with highest weight

(m, 0, . . . , 0) and highest-weight vector xm
1 .

Let L
(M,N)
• = C[x11, . . . , x1N , . . . , xM1, . . . , xMN ] be the space of polyno-

mials of MN commuting variables.
Let π(M) : (UglM )⊗N → End(L(M,N)

• ) be the algebra homomorphism
defined by

E
(a)
ij �→ xia

∂

∂xja
.

In particular, we define the glM action on L
(M,N)
• by the formula

Eij �→
N∑

a=1

xia
∂

∂xja
.

Let π(N) : (UglN )⊗M → End(L(M,N)
• ) be the algebra homomorphism

defined by

E
(a)
ij �→ xai

∂

∂xaj
.

In particular, we define the glN action on L
(M,N)
• by the formula

Eij �→
M∑

a=1

xai
∂

∂xaj
.

We have isomorphisms of algebras
(
C[x1, . . . , xM ]

)⊗N→ L
(M,N)
• , 1⊗(j−1) ⊗ xi ⊗ 1⊗(N−j) �→ xij ,

(
C[x1, . . . , xN ]

)⊗M→ L
(M,N)
• , 1⊗(i−1) ⊗ xj ⊗ 1⊗(M−i) �→ xij . (13)

Under these isomorphisms the space L
(M,N)
• is isomorphic to

(
L

(M)
•

)⊗N

as a

glM module and to
(
L•(N)

)⊗M

as a glN module.
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Fix n = (n1, . . . , nN ) ∈ Z
N
≥0 and m = (m1, . . . , mM ) ∈ Z

M
≥0 with

∑N
i=1 ni =

∑M
a=1 ma. The sequences n and m naturally correspond to in-

tegral glN and glM weights, respectively.
Let Lm and Ln be glN and glM modules, respectively, defined by the

formulas
Lm = ⊗M

a=1L
(N)
ma

, Ln = ⊗N
b=1L

(M)
nb

.

The isomorphisms (13) induce an isomorphism of the weight subspaces,

Ln[m] � Lm[n]. (14)

Under the isomorphism (14) the Gaudin and dynamical Hamiltonians in-
terchange,

π(M)Ha(M, N, z, λ) = π(N)H∨
a (N, M, λ, z) ,

π(M)H∨
b (M, N, z, λ) = π(N)Hb(N, M, λ, z) ,

for a = 1, . . . , N , b = 1, . . . , M ; see [TV].
We prove the stronger statement that the images of glM and glN Bethe

subalgebras in End
(
L

(M,N)
•

)
are the same.

Theorem 6. We have

π(M)(G(M, N, z, λ)) = π(N)(G(N, M, λ, z)).

Moreover, we have

N∏

a=1

(u − za)π(M) rdet(G̃(M, N, z, λ, u)) =
N∑

a=1

M∑

b=1

A
(M)
ab ua ∂b

∂ub
,

M∏

b=1

(v − λb)π(N) rdet(G̃(N, M, λ, z, v)) =
N∑

a=1

M∑

b=1

A
(N)
ab vb ∂a

∂va
,

where A
(M)
ab , A

(N)
ab are linear operators independent of u, v, ∂/∂u, and ∂/∂v,

and furthermore,
A

(M)
ab = A

(N)
ab .

Proof. We obviously have

π(M)(G̃(M, N, z, λ, u)) = īh=1(Gh=1),

π(N)(G̃(N, M, λ, z, v)) = īh=1(Hh=1),

where Gh=1 and Hh=1 are matrices defined in (6) and (8). Then the coef-
ficients of the differential operators

∏N
a=1(u − za)π(M) rdet(G̃(M, N, z, λ, u))

and
∏M

b=1(v−λb)π(N) rdet(G̃(N, M, λ, z, v)) are polynomials in u and v of de-
grees N and M , respectively, by Theorem 1. The rest of the theorem follows
directly from Corollary 3. �
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3.3 Scalar Differential Operators

Let w ∈ Ln[m] be a common eigenvector of the Bethe subalgebra
G(M, N, z, λ). Then the operator rdet(G̃(M, N, z, λ, u)) acting on w de-
fines a monic scalar differential operator of order M with rational coefficients
in the variable u. Namely, let Dw(M, N, λ, z) be the differential operator
given by

Dw(M, N, z, λ, u)=
∂M

∂uM
+G̃w

1 (M, N, z, λ, u)
∂M−1

∂uM−1
+· · ·+G̃w

M (M, N, z, λ, u),

where G̃w
i (M, N, z, λ, u) is the eigenvalue of the ith transfer matrix acting on

the vector w:

G̃i(M, N, z, λ, u)w = G̃w
i (M, N, z, λ, u)w.

Using isomorphism (14), consider w as a vector in Lm[n]. Then by The-
orem 6, w is also a common eigenvector for the algebra G(N, M, λ, z). Thus,
similarly, the operator rdet(G̃(N, M, λ, z, v)) acting on w defines a monic
scalar differential operator of order N , Dw(N, M, λ, z, v).

Corollary 7. We have
N∏

a=1

(u − za)Dw(M, N, z, λ, u) =
N∑

a=1

M∑

b=1

A
(M)
ab,w ua ∂b

∂ub
,

M∏

b=1

(v − λb)Dw(N, M, λ, z, v) =
N∑

a=1

M∑

b=1

A
(N)
ab,w vb ∂a

∂va
,

where A
(M)
ab,w, A

(N)
ab,w are numbers independent of u, v, ∂/∂u, ∂/∂v. Moreover,

A
(M)
ab,w = A

(N)
ab,w.

Proof. The corollary follows directly from Theorem 6. �
Corollary 7 was essentially conjectured in Conjecture 5.1 in [MTV2].

Remark 8. The operators Dw(M, N, z, λ) are useful objects; see [MV1],
[MTV2], [MTV3]. They have the following three properties:

(i) The kernel of Dw(M, N, z, λ) is spanned by the functions pw
i (u)eλiu, i =

1, . . . , M , where pw
i (u) is a polynomial in u of degree mi.

(ii) All finite singular points of Dw(M, N, z, λ) are z1, . . . , zN .
(iii) Each singular point zi is regular and the exponents of Dw(M, N, z, λ) at

zi are 0, ni + 1, ni + 2, . . . , ni + M − 1.

A converse statement is also true. Namely, if a linear differential oper-
ator of order M has properties (i)–(iii), then the operator has the form
Dw(M, N, z, λ) for a suitable eigenvector w of the Bethe subalgebra. This
statement may be deduced from Proposition 9 below.

We discuss the properties of such differential operators in [MTV4]; cf. also
[MTV2] and Appendix A in [MTV3].
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3.4 The Simple Joint Spectrum of the Bethe Subalgebra

It is proved in [R] that for any tensor product of irreducible glM modules and
for generic z, λ the Bethe subalgebra has a simple joint spectrum. We give
here a proof of this fact in the special case of the tensor product Ln.

Proposition 9. For generic values of λ, the joint spectrum of the Bethe sub-
algebra G(M, N, z, λ) acting in Ln[m] is simple.

Proof. We claim that for generic values of λ, the joint spectrum of the
Gaudin Hamiltonians Ha(M, N, z, λ), a = 1, . . . , N , acting in Ln[m] is sim-
ple. Indeed, fix z and consider λ such that λ1 � λ2 � · · · � λM � 0.
Then the eigenvectors of the Gaudin Hamiltonians in Ln[m] will have the
form v1 ⊗ · · · ⊗ vN + o(1), where vi ∈ Lni [m(i)] and m =

∑N
i=1 m(i). The

corresponding eigenvalue of Ha(M, N, z, λ) will be
∑M

j=1 λjm
(a)
j + O(1).

The weight spaces L
(M)
ni [mi] all have dimension at most 1, and therefore

the joint spectrum is simple in this asymptotic zone of parameters. Therefore
it is simple for generic values of λ. �

References
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Summary. It is (almost) known that the Galois action on etale cohomology of a
Hilbert modular variety extends to an action of a bigger group. We show that this
bigger group acts on the set of CM points.
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0 Introduction

0.1

Let F be a totally real number field of degree d. It is well known that one
can associate to any cuspidal Hilbert eigenform f over F of parallel weight 2
a compatible system of two-dimensional l-adic Galois representations Vl(f) of
ΓF = Gal(Q/F ) over Ql (having fixed embeddings Q ↪→ C and Q ↪→ Ql).

0.2

On the other hand, the Shimura variety X associated to RF/QGL(2)F has re-
flex field Q, which means that its étale cohomology groups give rise to l-adic
representations of ΓQ = Gal(Q/Q). The action of ΓQ on the intersection
cohomology of the Baily–Borel compactification X∗ of X was determined, up
to semi-simplification, by Brylinski and Labesse [BL84]: non-primitive coho-
mology (into which we include IH0) occurs in even degrees and decomposes as

IH2j
et (X∗ ⊗Q Q,Ql)non-prim

∼−→
⊕

χ

χ(−j),

Y. Tschinkel and Y. Zarhin (eds.), Algebra, Arithmetic, and Geometry, 399
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where each χ is a finite-order character of ΓQ. Primitive cohomology occurs
only in degree d; it decomposes as

IHd
et(X

∗ ⊗Q Q,Ql)prim
∼−→

⊕

f

π(f)⊗Wl(f),

where f is as above, π(f) is the (non-archimedean part of the) automorphic
representation of GL(2, AF ) associated to f , and Wl(f) is a 2d-dimensional
l-adic representation of ΓQ whose semi-simplification Wl(f)ss is isomorphic to
the tensor induction of Vl(f),

⊗
IndF/QVl(f),

which is defined as follows. A choice of coset representatives

ΓQ =
d∐

i=1

giΓF (0.2.1)

defines an injective group homomorphism (see Section 1.1 below)

ΓQ ↪→ Sd � Γ d
F , g �→ (σ, (h1, . . . , hd)), ggi = gσ(i)hi, (0.2.2)

and
⊗

IndF/QVl(f) is obtained from the (Sd � Γ d
F )-module Vl(f)⊗d by pull-

back via the map (0.2.2).

0.3

In particular, the action of ΓQ on IHd
et(X∗ ⊗Q Q,Ql)ssprim extends to an ac-

tion of Sd � Γ d
F . The same should be true for the action on IHd

et(X
∗ ⊗Q

Q,Ql)prim, since general conjectures predict that ΓQ should act semi-simply
on IH∗

et(Y ⊗Q Q,Ql), for any proper scheme Y over Spec(Q).
The representations χ(−j) of ΓQ occurring in the non-primitive cohomol-

ogy of X∗ do not extend to representations of Sd � Γ d
F , but they extend to

representations of the group (Sd � Γ d
F )0, which is defined as the fibre product

(Sd � Γ d
F )0 −→ Sd � Γ d

F

↓ ↓
Γ ab

Q

VF/Q−→ Γ ab
F ,

(0.3.1)

where the right vertical arrow is trivial on Sd and is given by the product map
on Γ d

F . Since the field F is totally real, the transfer map VF/Q is injective (see
1.2.5 below), which means that we can (and will) consider (Sd � Γ d

F )0 as
a subgroup of Sd � Γ d

F . The inclusion (0.2.2) factors through an inclusion
ΓQ ↪→ (Sd � Γ d

F )0.

Question 0.4 To sum up: the results of [BL84] combined with the semi-
simplicity conjecture imply that the action of ΓQ on IH∗

et(X
∗⊗QQ,Ql) should

extend to an action of (Sd � Γ d
F )0. Is there a geometric explanation of this

hidden symmetry of IH∗
et(X∗ ⊗Q Q,Ql)?
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0.5

This question admits a more invariant formulation. Recall that the inclusion
(0.2.2) depends on the choice of coset representatives (0.2.1). The same choice
defines an isomorphism of F -algebras

F ⊗Q Q ∼−→ F
d
, a⊗ b �→ (a⊗ g−1

i (b))i,

hence a group isomorphism

Sd � Γ d
F

∼−→ AutF−alg(F ⊗Q Q), (0.5.1)

the composition of which with (0.2.2) coincides with the canonical injective
map

ΓQ = AutQ−alg(Q) ↪→ AutF−alg(F ⊗Q Q), g �→ idF ⊗ g. (0.5.2)

The subgroup AutF−alg(F ⊗Q Q)0 of AutF−alg(F ⊗Q Q) corresponding to
(Sd �Γ d

F )0 under the isomorphism (0.5.1) is independent of any choices, which
means that we should restate Question 0.4 as follows.

Question 0.6 Is there a geometric explanation of the fact that the action of
ΓQ on IH∗

et(X∗⊗Q Q,Ql) extends to an action of AutF−alg(F ⊗Q Q)0? For
example, does X∗⊗QQ (or a related space) admit an action of AutF-alg(F⊗Q

Q)0?

0.7 Idle speculation

The recipe (0.2.2) defines an inclusion

G ↪→ Sd � Hd (0.7.1)

(depending on chosen coset representatives of H in G) whenever H is a sub-
group of index d of a group G.

If p : Y −→ Z is an unramified covering of degree d between “nice”
connected topological spaces and H = π1(Y, y), G = π1(Z, p(y)), then there
are at least two geometric incarnations of (0.7.1).
Firstly, if Z̃ is the universal covering of Z, then

G
∼−→ Aut(Z̃/Z), Sd � Hd ∼−→ Aut(Y ×Z Z̃/Y ),

and (0.7.1) comes from the canonical map

Aut(Z̃/Z) −→ Aut(Y ×Z Z̃/Y ), g �→ idY × g. (0.7.2)

In our situation, the rôle of p (resp., by Z̃) is played by the structure map
Spec(F ) −→ Spec(Q) (resp., by Spec(Q)), and (0.7.2) is nothing but (0.5.2).
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Secondly, Sd � Hd is closely related to π1(Y d/Sd, p
−1(p(y))), and there is

a canonical map
Z −→ Y d/Sd, z �→ p−1(z). (0.7.3)

In other words, the map induced by (0.7.3),

π1(Z, z) −→ π1(Y d/Sd, p
−1(z)),

is an approximate version of (0.7.1).
In our situation, in which the role of Y (resp., of Z) is played by Spec(F )

(resp., by Spec(Q)), we are confronted with the fact that the analogue of
Y d/Sd should be the dth symmetric power of Spec(F ) over the elusive abso-
lute point Spec(F1). A Grothendieckean approach to Question 0.6 would then
involve

• making sense of the dth symmetric power Symd(F/F1) of Spec(F ) over
Spec(F1);

• extending X∗ to an object X̃∗ defined over (a desingularisation of)
Symd(F/F1);

• relating l-adic intersection cohomology groups of X∗ and X̃∗.1

At present, this seems beyond reach, but as A. Genestier pointed out to
us, everything makes sense for Drinfeld modular varieties over global fields of
positive characteristic.

0.8

Leaving speculations aside, in the present article we test Question 0.6 by
studying the action of ΓQ on the set of CM points. It is convenient to re-
place RF/QGL(2)F by the group G defined as the fibre product

G −→ RF/Q(GL(2)F )⏐⏐�
⏐⏐�det

Gm,Q −→ RF/Q(Gm,F ),

since the corresponding Shimura variety is a moduli space for polarised
Hilbert–Blumenthal abelian varieties (HBAV) equipped with adelic level
structures.

The first main result of the present article (see 2.2.5 below) is the following.

Theorem 0.9 The group AutF−alg(F⊗QQ)0 acts naturally on the set of CM
points of the Shimura variety Sh(G, X ) associated to G. This action extends
the natural action of ΓQ and commutes with the action of G(Af ) = G(Q̂) on
Sh(G, X ).

1Establishing a relation between de Rham cohomology of X∗ and X̃∗ would
also be of interest, in view of potential applications to period relations for Hilbert
modular forms.
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The key point in the proof is to show that the (reverse) 1-cocycle fΦ:
ΓQ −→ K̂∗/K∗ (“the Taniyama element”), which describes the Galois ac-
tion on the set of CM points by K, naturally extends to a 1-cocycle f̃Φ :
AutF -alg(F ⊗Q Q)0 −→ K̂∗/K∗ (above, K is a totally imaginary quadratic
extension of F , K̂ is the ring of finite adèles of K and Φ is a CM type of
K). In fact, fΦ extends to a 1-cocycle f̃Φ defined on a slightly bigger sub-
group AutF -alg(F ⊗Q Q)1 of AutF -alg(F ⊗Q Q), which corresponds to the
fibre product

(Sd � Γ d
F )1 −→ Sd � Γ d

F⏐⏐�
⏐⏐�(1,prod)

Γ ab
Q /〈c〉 V F/Q

↪→ Γ ab
F /〈c1, . . . , cd〉,

where c ∈ Γ ab
Q (resp., c1, . . . , cd ∈ Γ ab

F ) is the complex conjugation (resp., are
the complex conjugations at the infinite primes of F ). We have

AutF -alg(F ⊗Q Q)1/AutF -alg(F ⊗Q Q)0
∼−→ (Z/2Z)d−1,

but only the elements of AutF -alg(F ⊗Q Q)0 preserve the positivity of the
polariations.

0.10

A more abstract formulation of this result (Section 2.4) involves a gen-
eralisation of the Taniyama group T and its finite-level quotients KT .
More precisely, in the special case that K is a Galois extension of Q, the
maps f̃Φ factor through AutF -alg(F ⊗Q Kab)1 = Im

(
AutF -alg(F ⊗Q Q)1 −→

AutF -alg(F ⊗Q Kab)
)

and can be put together, yielding a 1-cocycle

f̃ : AutF -alg(F ⊗Q Kab)1 −→ KS (K̂)/KS (K), (0.10.1)

where KS is the Serre torus associated to K (see Section 1.5).
Our second main result (see 2.4.2–3 below) states that the coboundary of

f̃ gives rise to an exact sequence of affine group schemes over Q,

1 −→ KS
ı̃−→ KT̃

π̃−→ AutF−alg(F ⊗Q Kab)′1 −→ 1, (0.10.2)

where AutF -alg(F ⊗Q Kab)′1 is a certain F/Q-form of the constant group
scheme AutF -alg(F ⊗Q Kab)1. Moreover, there is a group homomorphism s̃p :
AutF -alg(F ⊗Q Kab)1 −→ KT̃ (F̂ ) satisfying π̃ ◦ s̃p = id. The pull-back of
(0.10.2) to AutQ−alg(Kab) = Gal(Kab/Q) is the level-K Taniyama extension

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1.
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For varying K, the 1-cocycles f̃ are compatible. When put together, they give
rise to an exact sequence of affine group schemes over Q,

1 −→ S −→ T̃ −→ lim−→F AutF -alg(F ⊗Q Q)′1 −→ 1 (0.10.3)

(where S is the inverse limit of the tori KS with respect to the norm maps,
and the direct limit is taken with respect to the transition maps idF ′ ⊗F −,
for F ⊆ F ′), whose pull-back to ΓQ coincides with the Taniyama extension

1 −→ S −→ T −→ ΓQ −→ 1.

Question 0.11 As shown in [Del82], the Taniyama group T has a natural
Tannakian interpretation. Does T̃ , or its subgroup scheme T̃0 ⊂ T̃ sitting in
the exact sequence

1 −→ S −→ T̃0 −→ lim−→
F

AutF−alg(F ⊗Q)′0 −→ 1,

have a similar interpretation?

0.12

If A is a polarised HBAV over Q, then H1
dR(A/Q) is a free F ⊗Q Q-module

of rank 2, and for each prime p the F ⊗Q Q⊗Q Qp-module H1
dR(A/Q)⊗Q Qp

has an additional crystalline structure. The comparison theorems between
étale and crystalline cohomology together with Faltings’s isogeny theorem
imply that the F -linear isogeny class of A is determined by H1

dR(A/Q) with
this additional structure. It is very likely (even though we have not checked
this) that the action (0.9) of AutF -alg(F ⊗Q Q)0 on the set of CM points of
Sh(G, X ) is compatible, via the functor A �→ H1

dR(A/Q), with the natural
action of AutF -alg(F ⊗Q Q) on the category of F ⊗Q Q-modules.

Question 0.13 What happens for non-CM points? In other words, for what
g ∈ AutF-alg(F ⊗Q Q)0 is there a polarised HBAV A′ over Q such that

H1
dR(A′/Q) = g∗ H1

dR(A/Q),

with all the additional structure?

1 Background material

In Sections 1.4–1.7 of this chapter we recall the main results of the theory of
complex multiplication. In Section 1.1–1.3 we collect some elementary back-
ground material.
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Notation and conventions: An action of a group on a set always means a
left action. We write A⊗B instead of A⊗Z B and denote by Q the algebraic
closure of Q in C. By a number field we always understand a subfield of
Q of finite degree over Q. The ring of integers of a number field k will be
denoted by Ok. For each subfield L of Q we put ΓL = Gal(Q/L) and X(L) =
HomQ−alg(L,Q). The restriction map g �→ g|L defines an isomorphism of left
ΓQ-sets ΓQ/ΓL

∼−→ X(L). Denote by c ∈ ΓQ the complex conjugation. For
any abelian group A, put Â = A⊗ Ẑ. If A is a ring, so is Â (if k is a number
field, then k̂ is the ring of finite adèles of k).

1.1 Wreath products and Galois theory

1.1.1 Notation

If X and Y are sets, we denote by Y X = {f : X −→ Y } the set of maps from
X to Y . If Y is a group, so is Y X . The group of permutations of the set X ,
denoted by SX = {bijective maps σ : X −→ X}, acts on Y X by σf = f ◦σ−1.
For any group H , the semidirect product of HX and SX (with respect to this
action of SX on HX) is equal to

SX �HX = {(σ, h) | σ ∈ SX , h : X −→ H}, (σ, h)(σ′, h′) = (σσ′, (h◦σ′)h′).

If Y is a left H-set, then Y X is a left (SX � HX)-set via the action

(σ, h)(y) = (hy)◦σ−1, h ∈ HX , y ∈ Y X , (hy)(x) = (h(x))(y(x)).
(1.1.1.1)

1.1.2 Basic construction

Let H be a subgroup of a group G. Fix a section s : X = G/H −→ G of
the natural projection G −→ G/H . Left multiplication by g ∈ G defines a
permutation σ = (x �→ gx) ∈ SX . For each x ∈ X ,

gs(x) = s(gx)h(x), h(x) ∈ H,

and the map

g �→ (σ, h) = ((x �→ gx), (x �→ s(gx)−1gs(x))) ∈ SX � HX

is an injective group homomorphism

ρs : G ↪→ SX � HX (X = G/H). (1.1.2.1)

If s′ : X = G/H −→ G is another section, then s′ = st, t ∈ HX , and

∀g ∈ G, ρs′(g) = (1, t)−1ρs(g)(1, t). (1.1.2.2)
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If (G : H) <∞, then the diagram

G
ρs−→ SX � HX⏐⏐�

⏐⏐�(1,prod)

Gab V−→ Hab

(1.1.2.3)

is commutative, where prod is the product map h �→∏
x∈X h(x) (mod [H, H ])

and V is the transfer. The map ρs factors through an injective group homo-
morphism

G ↪→ (SX � HX)0,

where (SX � HX)0 is the group defined as the fibre product

(SX � HX)0 −→ SX � HX
⏐⏐�

⏐⏐�(1,prod)

Gab V−→ Hab.

(1.1.2.4)

If V is injective, we can (and will) identify (SX � HX)0 with its image in
SX � HX .

Proposition 1.1.3 Let k′/k be a Galois extension (not necessarily finite)
and X a finite set. The action of Γk′/k = Gal(k′/k) = Autk−alg(k′) on k′

gives rise, as in (1.1.1.1), to an action of SX � Γ X
k′/k on (k′)X by k-algebra

automorphisms, and each k-algebra automorphism of (k′)X arises in this way:

SX � Γ X
k′/k = Autk−alg((k′)X), (σ, h) �→ (a �→ (ha) ◦ σ−1).

Proof. Any k-algebra automorphism f of (k′)X must permute the set of ir-
reducible idempotents {1x | x ∈ X} of (k′)X : f(1x) = 1σ(x), σ ∈ SX . This
implies that (σ, 1)◦f preserves the decomposition (k′)X =

∏
x∈X k′ ·1x; hence

(σ, 1) ◦ f ∈ Autk−alg(k′)X = Γ X
k′/k, which implies that f ∈ SX � Γ X

k′/k.

Proposition 1.1.4 Let k′/k be as in Proposition 1.1.3. Let F/k be a finite
subextension of k′/k; put X = Homk−alg(F, k′). Fix a section s : X −→ Γk′/k

of the restriction map Γk′/k −→ Γk′/k/Γk′/F = X, g �→ g|F . The chosen
section induces an isomorphism of k-algebras

s : (k′)X −→ (k′)X , u �→ (x �→ s(x)(u(x))).

(i) The map

α : F ⊗k k′ −→ (k′)X , a⊗ b �→ (x �→ x(a)b)

is an isomorphism of k-algebras.
(ii) The map

βs : F ⊗k k′ α−→ (k′)X s←− (k′)X , a⊗ b �→ (x �→ as(x)−1(b))

is an isomorphism of F -algebras.
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(iii) The map βs satisfies

∀g ∈ Autk−alg(k′) = Γk′/k βs ◦ (idF ⊗ g) = ρs(g)βs,

hence induces a group isomorphism

βs∗ : AutF-alg(F ⊗k k′) ∼−→ AutF-alg((k′)X) = SX �Γ X
k′/F , f �→ βs ◦f ◦β−1

s

satisfying βs∗(idF ⊗ g) = ρs(g), for all g ∈ Γk′/k.
(iv) If s′ = st : X −→ Γk′/k is another section of the restriction map g �→ g|F
(t : X −→ Γk′/F ), then

∀g ∈ AutF-alg(F ⊗k k′) βs′∗(g) = (1, t)−1 βs∗(g) (1, t),

i.e., βs∗ = Ad(1, t) ◦ βs′∗.

Proof. (i) This is a well-known fact from Galois theory.

(ii) The map βs is an isomorphism of k-algebras, by (i). For each a ∈ F , we
have βs(a) : x �→ a, which means that βs is a morphism of F -algebras.

(iii) Let a ∈ F , b ∈ k′, g ∈ Γk′/k = G, H = Γk′/F ; put ρs(g) = (σ, h). For
each x ∈ X we have σ(x) = gx and

h(x) = s(gx)−1gs(x) = s(σ(x))−1gs(x) ∈ H, βs(a⊗ b)(x) = as(x)−1(b),

hence
βs ◦ (idF ⊗ g)(a⊗ b) = βs(a⊗ g(b)) : x �→ as(x)−1(g(b)).

On the other hand,

(σ, h) ◦ βs(a⊗ b) : x �→ h(σ−1(x))
(
a s(σ−1(x))−1(b)

)
= a

(
s(x)−1g

)
(b),

which proves that βs ◦ (idF ⊗ g) = ρs(g) ◦ βs, as claimed.

(iv) We have βs′ = t−1βs, since

∀x ∈ X βs′(a⊗ b)(x) = at(x)−1 ◦ s(x)−1(x) = t(x)−1
(
as(x)−1(b)

)

= t(x)−1 (βs(a⊗ b)(x)) ,

in the notation of the proof of (iii). It follows that

βs′∗(g) = βs′ ◦ g ◦ β−1
s′ = t−1βs ◦ g ◦ β−1

s t = t−1βs∗(g)t,

as claimed.
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1.1.5

To sum up the discussion from 1.1.3–4, the natural map

(idF ⊗−) : Γk′/k = Autk−alg(k′) −→ AutF -alg(F ⊗k k′), g �→ idF ⊗ g

is a canonical incarnation of the morphism ρs : Γk′/k ↪→ SX � Γ X
k′/F , since

βs∗ ◦ (idF ⊗−) = ρs.

Proposition 1.1.6 Let k ⊂ F ⊂ k′ and s : X −→ Γk′/k be as in
Proposition 1.1.4. Given ũ ∈ Γk′/k, put u = ũ|F , F ′ = u(F ), and X ′ =
Homk-alg(F ′, k′). The bijection X

∼−→ X ′ (x �→ x′ = xu−1) gives rise
to a section s′ : X ′ −→ Γk′/k of the restriction map g �→ g|F ′ , given by
s′(x′) = s(x)ũ−1.
(i) The map

ũ∗ : SX � Γ X
k′/F −→ SX′ � Γ X′

k′/F ′ , (σ, h) �→ (σ′, h′),

σ′(x′) = σ(x)′ (⇐⇒ σ′(xu−1) = σ(x)u−1),
h′(x′) = ũh(x)ũ−1 (⇐⇒ h′(xu−1) = ũh(x)ũ−1)

is a group isomorphism satisfying ũ∗ ◦ ρs = ρs′ .
(ii) ∀ũ, ũ′ ∈ Γk′/k, ũ′∗ũ∗ = (ũ′ũ)∗.

Proof. Easy calculation.

Proposition 1.1.7 In the situation of Proposition 1.1.6,
(i) the map

[u] : AutF-alg(F ⊗k k′) −→ AutF ′-alg(F ′ ⊗k k′)
g �→ (u⊗ idk′) ◦ g ◦ (u−1 ⊗ idk′ )

is a group isomorphism satisfying [u′u] = [u′] ◦ [u] and

∀g ∈ Γk′/k [u](idF ⊗ g) = idF ′ ⊗ g.

(ii) The following diagram is commutative:

AutF-alg(F ⊗k k′)
βs∗−→ SX � Γ X

k′/F⏐⏐�[u]

⏐⏐�ũ∗

AutF ′-alg(F ′ ⊗k k′)
βs′∗−→ SX′ � Γ X′

k′/F ′

(iii) If F ′ = F , then the group automorphism

βs∗ ◦ [u] ◦ β−1
s∗ : SX � Γ X

k′/F −→ SX � Γ X
k′/F

is given by the formula (σ, h) �→ (σu, hu), where for each x ∈ X,

σu(x) = σ(xu)u−1, hu(x) = s (σu(x))−1
s (σu(x)u) h(xu)s(xu)−1s(x).

(iv) If F is a Galois extension of k, then the maps [u] define an action of
ΓF/k on AutF−alg(F ⊗k k′), whose set of fixed points is equal to idF ⊗ Γk′/k.
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Proof. (i) Straightforward. (ii) Let g ∈ AutF -alg(F ⊗k k′); put (σ, h) = βs∗(g)
and (σ′, h′) = ũ∗(σ, h). For a⊗ b ∈ F ⊗k k′, write g(1⊗ b) =

∑
ai ⊗ bi; then

g(a⊗ b) =
∑

aai ⊗ bi. Since βs(a⊗ b)(x) = as(x)−1(b), the equalities

βs(g(a⊗ b))(x) = ((σ, h)βs(a⊗ b))(x) (x ∈ X)

read as
∑

aais(x)−1(bi) = ah(σ−1(x))s(σ−1(x))−1(b) (x ∈ X). (1.1.7.1)

Since ([u](g))(1 ⊗ b) =
∑

u(ai)⊗ bi, the statement to be proved, namely

∀x′ ∈ X ′ ∀a′ ∈ F ′ ∀b ∈ k′, βs′(([u](g))(a′⊗b))(x′) ?= ((σ′, h′)βs′(a′⊗b))(x′),

reads as
∑

a′u(ai)s′(x′)−1(bi)
?= a′h′(σ′−1(x′))s′(σ′−1(x′))−1(b),

which is obtained from (1.1.7.1) (with x = x′u) by applying u, since

s′(x′)−1 = ũs(x)−1, s′(σ′−1(x′))−1 = ũs(σ−1(x))−1,

h′(σ′−1(x′)) = ũh(σ−1(x))ũ−1.

(iii) The assumption F ′ = F implies that s′ = st, where t : X −→ Γk′/F

is given by t(x) = s(x)−1s(xu)ũ−1. It follows from (ii) and Proposition1.1.4
(iv) that

βs∗ ◦ [u] ◦ β−1
s∗ = βs∗ ◦ β−1

s′∗ ◦ ũ∗ = Ad(1, t) ◦ ũ∗;

hence

(σu, hu)= (1, t)(σ′, h′)(1, t)−1 = (σ′, (t◦σ′)h′t−1), σu(x) = σ′(x) = σ(xu)u−1,

hu(x) = t(σu(x))h′(x)t(x)−1 = s (σu(x))−1
s (σu(x)u) h(xu)s(xu)−1s(x).

Proposition 1.1.8 In the situation of Proposition 1.1.4, let F ′/F be a subex-
tension of k′/F ; put X ′ = Homk−alg(F ′, k′) and fix a section s′ : X ′ −→ Γk′/k

of the restriction map g �→ g|F ′ . For each x′ ∈ X ′, define t(x′) ∈ Γk′/F by the
relation s′(x′) = s(x′|F )t(x′).
(i) The map

ρs,s′ : SX � Γ X
k′/F −→ SX′ � Γ X′

k′/F ′ , (σ, h) �→ (σ′, h′),

σ′(x′) = s(σ(x))h(x)s(x)−1x′, h′(x′) = t(σ′(x′))−1h(x)t(x′), x = x′|F
is a group homomorphism satisfying

σ′(x′)|F = σ(x), s′(σ′(x′))h′(x′)s′(x′)−1 = s(σ(x))h(x)s(x)−1 .

(ii) The following diagram is commutative:

AutF-alg(F ⊗k k′)
βs∗−→ SX � Γ X

k′/F⏐⏐�(idF ′⊗F −)

⏐⏐�ρs,s′

AutF ′-alg(F ′ ⊗k k′)
βs′∗−→ SX′ � Γ X′

k′/F ′
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Proof. (i) Easy calculation. (ii) As in the proof of Proposition1.1.7, fix a⊗b ∈
F ⊗k k′, g ∈ AutF−alg(F ⊗k k′) and put (σ, h) = βs∗(g). Writing g(1 ⊗ b) =∑

ai ⊗ bi, then (1.1.7.1) (for σ(x) instead of x) reads as
∑

ais(σ(x))−1(bi) = h(x)s(x)−1(b) (x ∈ X). (1.1.8.1)

Define (σ′, h′) := ρs,s′(σ, h); we must show that, for all x′ ∈ X ′, a′ ∈ F ′, b ∈ k′,

βs′ ((idF ′ ⊗F g)(a′ ⊗ b)) (x′) ?= ((σ′, h′)βs′(a′ ⊗ b))(x′),

which can be rewritten (again using (1.1.7.1) and replacing x′ by σ′(x′)) as
follows:

∑
a′ais

′(σ′(x′))−1(bi)
?= a′h′(x′)s′(x′)−1(b) (x′ ∈ X ′). (1.1.8.2)

Since σ′(x′)|F = σ(x′|F ), the equality (1.1.8.2) is obtained by multiplying
(1.1.8.1) (for x = x′|F ) by t(σ′(x′))−1 on the left.

1.2 Class Field Theory

1.2.1

Let k be a number field. Denote by

k∗
+ = Ker (k∗ −→ π0((k ⊗R)∗)) , O∗

k,+ = O∗
k ∩ k∗

+,

the set of totally positive elements and the set of totally positive units of k,
respectively. Let Ak be the adèle ring of k and Ck = A∗

k/k∗ the idèle class
group of k. The reciprocity map

reck : Ck −→ Γ ab
k

will be normalised by letting local uniformisers correspond to geometric
Frobenius elements. Since reck induces an isomorphism π0(Ck) ∼−→ Γ ab

k , its
restriction to the group of finite idèles gives rise to a surjective continuous
morphism

rk : k̂∗/k∗
+ −→ Γ ab

k .

1.2.2

It follows from the structure of the connected component of Ck [AT68, ch. 9,
Thm. 3] that the kernel of rk is isomorphic, as an Aut(k/Q)-module, to O∗

k,+⊗
(Ẑ/Z) = O∗

k,+ ⊗ (Q̂/Q).
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1.2.3

For k = Q, the map rQ is an isomorphism, and its composition with the
canonical isomorphism Ẑ∗ ∼−→ Q̂∗/Q∗

+ (induced by the inclusion of Ẑ into Q̂)
is inverse to the cyclotomic character

χ : Γ ab
Q

∼−→ Ẑ∗, g(ζ) = ζχ(g) (∀ζ a root of unity in Q).

1.2.4

If k′/k is a finite extension of number fields, then the inclusion k ↪→ k′ and
the norm Nk′/k : k′∗ −→ k∗ induce commutative diagrams

k̂∗/k∗
+

ik′/k−→ k̂′∗/k′∗
+

↓ rk ↓ r′k
Γ ab

k

Vk′/k−→ Γ ab
k′

k̂′∗/k′∗
+

Nk′/k−→ k̂∗/k∗
+

↓ r′k ↓ rk

Γ ab
k′

jk′/k−→ Γ ab
k ,

(1.2.4.1)

where Vk′/k is the transfer map and jk′/k is given by the restriction map
g �→ g|kab .

Proposition 1.2.5 For any number field L,

Ker
(
VL/Q : Γ ab

Q −→ Γ ab
L

)
=

{ {1, c}, if L is totally complex,
{1}, otherwise.

Proof. Let L′ be the Galois closure of L over Q. As

Im
(
iL/Q

) ∩Ker(rL) ⊆
(
O∗

L′,+ ⊗ Q̂/Q
)Gal(L′/Q)

= Z∗
+ ⊗ Q̂/Q = {1},

the first commutative diagram (1.2.4.1) for L/Q implies that i−1
L/Q (Ker(rL)) =

Ker(rL ◦ iL/Q) is equal to

Ker
(
iL/Q

)
=

(
Q∗ ∩ L∗

+

)
/Q∗

+ =
{

Q∗/Q∗
+ = {±1}, L totally complex,

{1}, otherwise.

As rQ is an isomorphism and rQ(−1) = c, the statement follows.

1.3 CM fields

Let K be a CM number field; let F be its maximal totally real subfield (in
other words, c(K) = K, τc = cτ �= τ for all τ ∈ X(K), and F = Kc=1). Put
X = X(F ).
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1.3.1 Complex conjugations

Fix a section s : X −→ ΓQ of the restriction map g �→ g|F . For each x ∈ X ,
the image of the element s(x)−1cs(x) ∈ ΓF in Γ ab

F is independent of the chosen
section; denote it by cx ∈ Γ ab

F (this is the complex conjugation defined by the
real place x of F ). Denote by 〈cX〉 the subgroup of Γ ab

F generated by all cx

(x ∈ X). The signs at the real places induce an isomorphism

(sgn ◦ x)x∈X : F ∗/F ∗
+

∼−→ {±1}X .

Compatibility of the local and global reciprocity maps implies that

∀a ∈ F ∗ rF (aF ∗
+) =

∏

x∈X

cax
x , (−1)ax = sgn(x(a)).

As Ker(rF ) is a Q-vector space, we have Ker(rF )∩F ∗/F ∗
+ = {1}, which means

that rF induces an isomorphism F ∗/F ∗
+

∼−→ 〈cX〉.

1.3.2 Transfer maps

If we denote by

R : ΓF −→ ΓK , g, cg �→ g (g ∈ ΓK)

the “retraction map” from ΓF to ΓK , then

∀h ∈ ΓF VK/F (h|F ab) = VK/F (ch|F ab) = hchc|Kab = 1+c (R(h)|Kab) .
(1.3.2.1)

As noted in 1.2.5,

Ker
(
VK/Q : Γ ab

Q −→ Γ ab
K

)
= rQ

(
Ker(iK/Q)

)
= rQ

(
Q∗/Q∗

+

)
= {1, c} = 〈c〉.

(1.3.2.2)
The equality Ker(rF ) = O∗

F,+⊗Q̂/Q = O∗
K⊗Q̂/Q = Ker(rK) implies, thanks

to (1.2.4.1), that

Ker
(
VK/F : Γ ab

F −→ Γ ab
K

)
= rF

(
Ker(iK/F )

)
= rF

(
F ∗/F ∗

+

)
= 〈cX〉.

(1.3.2.3)
As a result, the map

V F/Q : Γ ab
Q /〈c〉 ↪→ Γ ab

F /〈cX〉 (1.3.2.4)

induced by VF/Q is injective and

{h ∈ Γ ab
F | VK/F (h) ∈ VK/Q(Γ ab

Q )} = 〈cX〉VF/Q(Γ ab
Q ). (1.3.2.5)

It also follows that

VF/Q(Γ ab
Q ) ∩ 〈cX〉 = 〈VF/Q(c)〉 (1.3.2.6)

is the cyclic group of order 2 generated by VF/Q(c) =
∏

x∈X cx.
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1.3.3

As observed in [Tat81, Lemma 1], the finiteness of O∗
K/O∗

F,+ implies that c
(resp., 1 + c) acts trivially (resp., invertibly) on the Q-vector space Ker(rK).

Proposition 1.3.4 (i) The continuous homomorphism (induced by rK)

{a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗ −→ {g ∈ Γ ab
K | g|F ab ∈ 〈cX〉VF/Q(Γ ab

Q )}
is bijective. Denote by K its inverse; then 1+cK(g) = χ(u(g))K∗, where
u(g) ∈ Γ ab

Q /〈c〉 is the (unique) element satisfying V F/Q (u(g)) = 〈cX〉g|F ab

(equivalently, VK/Q (u(g)) = 1+cg).
(ii) More precisely, if g ∈ Γ ab

K satisfies

g|F ab = VF/Q(u(g))
∏

x∈X

cax
x (u(g) ∈ Γ ab

Q , ax ∈ Z/2Z),

then NK/F (K(g)) = χ(u(g))αF ∗
+ ∈ F̂ ∗/F ∗

+, where α ∈ F ∗ and

∀x ∈ X sgn(x(α)) = (−1)ax .

(iii) The canonical morphism (induced by the inclusion ÔK ↪→ K̂)

{x ∈ Ô∗
K | 1+cx ∈ Ẑ∗} −→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗

has finite kernel and cokernel.
(iv) The morphism K defined in (i) admits a lift

̃K : {g ∈ Γ ab
K | g|F ab ∈ 〈cX〉VF/Q(Γ ab

Q )} −→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗},
which is a homomorphism when restricted to a suitable open subgroup.

Proof. (i) In the following commutative diagram the right column is exact
and rQ is an isomorphism:

0
↓

Ker(rK)
↓

Ẑ∗ −→ K̂∗/K∗

↓ rQ ↓ rK

Γ ab
Q

VK/Q−→ Γ ab
K

↓
0

As 1 + c acts invertibly on Ker(rK), the snake lemma implies that rK

induces an isomorphism between Ker
(
1 + c : K̂∗/K∗ −→ K̂∗/K∗Ẑ∗

)
and

Ker
(
1 + c = VK/F ◦ jK/F : Γ ab

K −→ Γ ab
K /VK/Q(Γ ab

Q )
)
;
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by (1.3.2.5), the latter group is equal to {g ∈ Γ ab
K | g|F ab ∈

〈cX〉VF/Q(Γ ab
Q )}. The remaining statement follows from the fact that

rK

(
1+cK(g)

)
= 1+cg = VK/F ◦ jK/F (g) = VK/F (g|F ab)
= VK/F ◦ VF/Q (u(g)) = VK/Q (u(g))

= rK ◦ iK/Q ◦ r−1
Q (u(g)) = rK (χ(u(g))) .

(ii) Let a ∈ K̂∗ be a lift of K(g) such that 1+ca = bα′, where b ∈ Ẑ∗,
α′ ∈ K∗; then α′ ∈ (K∗)c=1 = F ∗. As

g|F ab = rF (NK/F (a)) = rF (b)rF (α′) = VF/Q(rQ(b))
∏

x∈X

c
a′

x
x ,

where (−1)a′
x = sgn(x(α′)), it follows from (1.3.2.6) that there is t ∈

Z/2Z such that

u(g) = rQ(b)ct, ∀x ∈ X a′
x = ax + t.

This implies that χ(u(g)) = b(−1)t and

NK/F (K(g)) = 1+caF ∗
+ = χ(u(g))αF ∗

+

with α = α′(−1)t; hence

∀x ∈ X sgn(x(α)) = sgn(x(α′))(−1)t = (−1)a′
x+t = (−1)ax .

(iii) This follows from the finiteness of the groups Ker, Coker(1 + c : O∗
K −→

O∗
K) and ClK = K̂∗/Ô∗

KK∗, combined with the snake lemma applied to
the diagrams

0 −→ O∗
K −→ Ô∗

K −→ Ô∗
K/O∗

K −→ 0⏐⏐�1+c

⏐⏐�1+c

⏐⏐�1+c

0 −→ O∗
K/Z∗ −→ Ô∗

K/Ẑ∗ −→ Ô∗
K/Ẑ∗O∗

K −→ 0

and

0 −→ Ô∗
K/O∗

K −→ K̂∗/K∗ −→ ClK −→ 0⏐⏐�1+c

⏐⏐�1+c

⏐⏐�1+c

0 −→ Ô∗
K/Ẑ∗O∗

K −→ K̂∗/Ẑ∗K∗ −→ ClK −→ 0.

Above, Ô∗
K is a shorthand for (ÔK)∗. Note also that Ẑ∗ ∩ O∗

K = Z∗

inside Ô∗
K .
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(iv) By (i) and (iii), rK induces a continuous homomorphism of profinite
abelian groups

f :A = {x ∈ Ô∗
K | 1+cx ∈ Ẑ∗}−→B = {g ∈ Γ ab

K | g|F ab ∈ 〈cX〉VF/Q(Γ ab
Q )}

with finite kernel and cokernel. This implies that there exists an open
subgroup (= a compact subgroup of finite index) A′ ⊂ A such that
A′∩Ker(f) = {1}. Then B′ = f(A′) is a compact subgroup of finite index
(= an open subgroup) of B, and f induces a topological isomorphism
f ′ : A′ ∼−→ B′. Fix coset representatives B =

⋃
i biB

′ (disjoint union)
and lifts ãi ∈ K̂∗ of K(bi) ∈ K̂∗/K∗ such that bi0 = 1 and ãi0 = 1; the
map

̃K : B −→ K̂∗, bif
′(a′) �→ ãia

′ (a′ ∈ A′)

has the required properties.

1.4 Tate’s construction

Let Φ be a CM type of K, i.e., a subset Φ ⊂ X(K) such that X(K) = Φ ∪ cΦ
(disjoint union).

1.4.1 Tate’s half-transfer

Tate’s half-transfer [Tat81] is the continuous map FΦ : ΓQ −→ Γ ab
K defined

by the formula

FΦ(g) =
∏

ϕ∈Φ

w(gϕ)−1gw(ϕ) (mod ΓKab), (1.4.1.1)

where w : X(K) −→ X(Q) = ΓQ is any section of the restriction map g �→ g|K
satisfying w(cy) = cw(y), for all y ∈ X(K).

The restriction map g �→ g|F defines a bijection Φ
∼−→ X(F ). Composing

its inverse with w, we obtain a section t : X(F ) −→ X(Q) = ΓQ of the
restriction map to F , which implies that

FΦ(g)|F ab =
∏

x∈X(F )

t(gx)−1ca(g,x)gt(x) (mod ΓF ab) ∈ 〈cX〉VF/Q(g) (1.4.1.2)

(for some a(g, x) ∈ Z/2Z). The maps FΦ satisfy

FΦ(gg′) = Fg′Φ(g)FΦ(g′) (g, g′ ∈ ΓQ) (1.4.1.3)

and
u ◦ FΦ(g) ◦ u−1 = FΦu−1(g) (g ∈ ΓQ), (1.4.1.4)

for any isomorphism of CM number fields u : K
∼−→ K ′. In addition, if K ′ is

a CM number field containing K and Φ′ = {y ∈ X(K ′) | y|K ∈ Φ} is the CM
type of K ′ induced from Φ, then

FΦ′(g) = VK′/K (FΦ(g)) (g ∈ ΓQ). (1.4.1.5)
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1.4.2 The Taniyama element

The Taniyama element is the map fΦ : ΓQ −→ K̂∗/K∗ defined as

fΦ(g) = K (FΦ(g)) , (1.4.2.1)

where

K : {g ∈ Γ ab
K | g|F ab ∈ 〈cX〉VF/Q(Γ ab

Q )} ∼−→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗

is the morphism from 1.3.4(i). It follows that

1+cFΦ(g) = VK/F (FΦ(g)|F ab) = VK/F ◦ VF/Q(g) = VK/Q(g)

= rK ◦ iK/Q ◦ r−1
Q

(
g|Qab

)
= rK(χ(g)).

As in the proof of 1.3.4(i), this implies that

1+cfΦ(g) = χ(g)K∗, rK (fΦ(g)) = FΦ(g). (1.4.2.2)

In Tate’s original definition, the properties (1.4.2.2) were used to characterise
fΦ(g).

The identities (1.4.1.3)–(1.4.1.5) imply that

fΦ(gg′) = fg′Φ(g)fΦ(g′) (g, g′ ∈ ΓQ), (1.4.2.3)
ufΦ(g) = fΦu−1(g) (g ∈ ΓQ, u : K

∼−→ K ′) (1.4.2.4)

and

fΦ′(g) = iK′/K (fΦ(g)) (K ⊂ K ′, Φ′ induced from Φ). (1.4.2.5)

1.4.3

Tate [Tat81] conjectured that the idèle class fΦ(g) determines the action of
g ∈ ΓQ on abelian varieties with complex multiplication and on their torsion
points (this was, essentially, the zero-dimensional case of an earlier conjecture
of Langlands [Lan79] about conjugation of Shimura varieties). Building on
earlier results of Shimura and Taniyama, Tate proved his conjecture up to an
element of F̂ ∗ of square 1. The full conjecture was subsequently proved by
Deligne [Lan83, ch. 7, Section 4].

More precisely, if A is a CM abelian variety of type (K, Φ, a, t) in the
sense of [Lan83, ch. 7, Section 3] (see 2.2.5 below), then gA is of type
(K, gΦ, af, tχ(g)/1+cf), where f ∈ K̂∗ is any lift of fΦ(g). Furthermore, for
each complex uniformisation

θ : CΦ/a
∼−→ A(C),
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there is a unique uniformisation

θ′ : CgΦ/af
∼−→ gA(C),

such that the action of g on A(Q)tors = A(C)tors is given by

g : A(Q)tors
θ−1−→ K/a

[×f ]−→ K/af
θ′−→ gA(Q)tors.

This implies that, for each full level structure η : (F/OF )2 ∼−→ A(Q)tors, the
level structure gη is equal to

gη : (F/OF )2
η−→ A(Q)tors

θ−1−→ K/a
[×f ]−→ K/af

θ′−→ gA(Q)tors. (1.4.3.1)

1.5 The Serre torus

Let K be as in 1.3.

1.5.1

The torus KT=RK/Q (Gm) represents the functor A �→ KT (A)= (K ⊗Q A)∗

on Q-algebras A. The ΓQ-equivariant bijections
(
K ⊗Q Q

)∗ ∼−→ HomSets(X(K),Q
∗
) ∼−→ HomZ(Z[X(K)],Q

∗
)

a⊗ b �→ (y �→ y(a)b) (y ∈ X(K))

imply that the character group of KT is equal to

X∗(KT ) = Z[X(K)] =

⎧
⎨

⎩
∑

y∈X(K)

ny[y] | ny ∈ Z

⎫
⎬

⎭ ,

with g ∈ ΓQ acting on X∗(KT ) by

λ =
∑

ny[y] �→ gλ =
∑

ny[gy] =
∑

ng−1y[y]. (1.5.1.1)

1.5.2

The Serre torus of K is the quotient KS of KT (defined over Q) whose
character group is equal to

X∗(KS ) = {λ ∈ X∗(KT ) | 1+cλ ∈ Z ·NK/Q} (NK/Q =
∑

y∈X(K)

[y]).

Each CM type Φ of K defines a character λΦ ∈ X∗(KS ): λΦ(y) = 1 (resp.,
= 0) if y ∈ Φ (resp., if y ∈ cΦ). Moreover, the abelian group X∗(KS ) is
generated by the characters λΦ [Sch94, 1.3.2], and

∀g ∈ ΓQ, gλΦ = λgΦ.
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1.5.3

Tate’s half-transfer satisfies the following identity: if n is a function

n : {CM types of K} −→ Z, Φ �→ nΦ,

such that
∑

Φ nΦλΦ = 0, then

∀g ∈ ΓQ

∏

Φ

FΦ(g)nΦ = 1 ∈ Γ ab
K . (1.5.3.1)

Applying K , we deduce from (1.5.3.1) that

∀g ∈ ΓQ

∏

Φ

fΦ(g)nΦ = 1 ∈ K̂∗/K∗. (1.5.3.2)

1.5.4

In the special case when K is a Galois extension of Q, the action (1.5.1.1) of
ΓQ factors through Gal(K/Q), which implies that the tori KT and KS are
split over K.

In addition, the action of Gal(K/Q) on K induces an action of Gal(K/Q)
on the Q-group scheme KT , which will be denoted by t �→ g ∗ t (g ∈
Gal(K/Q)). The corresponding action on the character group

(h ∗ λ)(t) = λ(h−1 ∗ t) (λ ∈ X∗(KT )) (1.5.4.1)

is given by

λ =
∑

ny[y] �→ h ∗ λ =
∑

ny[yh−1] =
∑

nyh[y].

The two actions are related by

ι(hλ) = h ∗ ι(λ) (h ∈ Gal(K/Q), λ ∈ X∗(KT )), (1.5.4.2)

where

ι : X∗(KT ) −→ X∗(KT ),
∑

ny[y] �→
∑

ny[y−1] =
∑

ny−1 [y]
(1.5.4.3)

is the involution induced by the inverse map g �→ g−1 on Gal(K/Q) = X(K).
As ι(λΦ) = λΦ−1 , the involution ι and the action (1.5.4.1) preserve X∗(KS ),
and we have

h ∗ λΦ = λΦh−1 . (1.5.4.4)

We denote by
ι : KSK = KS ⊗Q K −→ KSK

the morphism corresponding to ι.
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1.6 Universal Taniyama elements [Mil90], [Sch94]

In this section we assume that K is a CM number field which is a Galois
extension of Q.

1.6.1

The two actions of Gal(K/Q) on X∗(KS ) correspond to two actions of
Gal(K/Q) on KS (K̂):
the Galois action t �→ gt and the algebraic action t �→ h ∗ t, which commute
with each other and satisfy

(gλ)(gt) = g(λ(t)), (h ∗ λ)(h ∗ t) = λ(t) (λ ∈ X∗(KS ), t ∈ KS (K̂)),

respectively.

Proposition 1.6.2 (i) There is a unique map f ′ : ΓQ −→ KS (K̂)/KS (K)
such that λΦ ◦ f ′ = fΦ, for all CM types Φ of K. The map f ′ factors through
Gal(Kab/Q).
(ii) For each λ ∈ X∗(KS ), put f ′

λ = λ◦ f ′ : ΓQ −→ K̂∗/K∗; then f ′
λ+μ(g) =

f ′
λ(g)f ′

μ(g).
(iii) ∀λ ∈ X∗(KS ) ∀g, g′ ∈ ΓQ, f ′

λ(gg′) = f ′
g′λ(g)f ′

λ(g′).
(iv) ∀h ∈ Gal(K/Q), h(f ′

λ(g)) = f ′
h∗λ(g).

Proof. (i) As the torus KS is split over K and X∗(KS ) is a free abelian
group generated by the CM characters λΦ, we have

KS (K̂)/KS (K) = HomZ(X∗(KS ), K̂∗)/HomZ(X∗(KS ), K∗)

= HomZ(X∗(KS ), K̂∗/K∗)

= {α : {CM types of K} −→ K̂∗/K∗∣∣ ∏
α(Φ)nΦ

= 1 whenever
∑

nΦλΦ = 0}.
The existence and uniqueness of f ′ then follow from (1.5.3.2). As K is a Galois
extension of Q, the maps FΦ (hence fΦ, too) factor through Gal(Kab/Q).

(ii) This is a consequence of (the proof of) (i).
(iii), (iv) If λ = λΦ, the statement of (iii) (resp., of (iv)) is just (1.4.2.3)

(resp., (1.4.2.4)). The general case then follows from (ii).

Proposition 1.6.3 (i) Define the map f : ΓQ −→ KS (K̂)/KS (K) by the
formula f(g) = (ι (f ′(g)))−1. The map f factors through Gal(Kab/Q) and has
the following properties:
(ii) The maps fλ = λ ◦ f : ΓQ −→ K̂∗/K∗ (λ ∈ X∗(KS )) satisfy

fλ+μ(g) = fλ(g)fμ(g), fλ(g) = f ′
ι(λ)(g)−1, fλ(gg′) = fg′∗λ(g)fλ(g′).

(iii) ∀h ∈ Gal(K/Q), ∀g ∈ ΓQ, h(fλ(g)) = fhλ(g), h(f(g)) = f(g).
(iv) ∀g, g′ ∈ ΓQ, f(gg′) =

(
g′−1 ∗ f(g)

)
f(g′).
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Proof. The statements of (i), (ii), and the first part of (iii) are immediate
consequences of 1.6.2, thanks to (1.5.4.2). The second part of (iii) follows
from

(
hλ

) (
h(f(g))

)
= h(λ (f(g)))

(iii)
=

(
hλ

)
(f(g)) (λ ∈ X∗(KS )),

while (iv) is a consequence of the last formula from (ii) and

λ
(
g′−1 ∗ f(g)

)
= (g′ ∗ λ) (f(g)) .

1.6.4

For each CM type Φ of K, the map fλΦ is given by

fλΦ(g) = fΦ−1(g)−1,

which implies that
rK ◦ fλΦ(g) = FΦ−1(g)−1.

In the notation of [Sch94, 4.2], we have fλ(g) = fK(g, λ). The map f is the
“universal Taniyama element” of [Mil90, I.5.7].

Proposition 1.6.5 If K ′ is a CM number field, which is a Galois extension
of Q and contains K, then the universal Taniyama elements fK : ΓQ −→
KS (K̂)/KS (K) and fK′ : ΓQ −→ K′S (K̂ ′)/K′S (K ′) over K and K ′,
respectively, satisfy fK = NK′/K ◦ fK′ .

Proof. As the map iK′/K : K̂∗/K∗ −→ K̂ ′∗/K ′∗ is injective, it is enough to
check that, for any CM type Φ of K and g ∈ ΓQ,

iK′/K ◦ λΦ ◦ fK(g) ?= iK′/K ◦ λΦ ◦NK′/K ◦ fK′(g) ∈ K̂ ′∗/K ′∗,

which follows from (1.4.2.5), since

iK′/K ◦ λΦ ◦ fK(g) = iK′/K

(
fΦ−1(g)−1

) (1.4.2.5)
= fΦ′−1(g)−1 = λΦ′ ◦ fK′(g)

= iK′/K ◦ λΦ ◦NK′/K ◦ fK′(g),

where Φ′ is the CM type of K ′ induced from Φ.

1.7 The Taniyama group [Mil90], [MS82], [Sch94]

Let K be as in Section 1.6.
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1.7.1

The Taniyama group of level K sits in an exact sequence of affine group
schemes over Q,

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1,

such that the action of (the constant group scheme) Gal(Kab/Q) on KS
defined by this exact sequence is given by the algebraic action (g, t) �→ g ∗ t.
In addition, there exists a continuous group homomorphism

sp : Gal(Kab/Q) −→ KT (Q̂)

satisfying π ◦ sp = id.

1.7.2

Choose a section

α : Gal(Kab/Q) −→ KT (K)

of the map KT (K) −→ Gal(Kab/Q) (which is surjective, since the torus KS
is split over K and H1(K,Gm) = 0); the map

b : Gal(Kab/Q) −→ KS (K̂), b(g) = sp(g)α(g)−1,

has the following properties:

(1.7.2.1) The induced map b : Gal(Kab/Q) −→ KS (K̂)/KS (K) does not
depend on the choice of α.
(1.7.2.2) ∀g, g′ ∈ Gal(Kab/Q), b(gg′) =

(
g′−1 ∗ b(g)

)
b(g′).

(1.7.2.3) ∀h ∈ Gal(K/Q) ∀g ∈ Gal(Kab/Q), h
(
b(g)

)
= b(g).

(1.7.2.4) The “coboundary” dg,g′ =
(
g′−1 ∗ b(g)

)
b(g′) b(gg′)−1 is a locally

constant function on Gal(Kab/Q)2.

1.7.3

Conversely, any map b satisfying (1.7.2.1)–(1.7.2.4) gives rise to an object
from 1.7.1 [MS82, Prop. 2.7]: firstly, the reverse 2-cocycle dg,g′ with values in
KS (K) defines an exact sequence of affine group schemes over K,

1 −→ KSK
i−→ G′ π−→ Gal(Kab/Q) −→ 1, (1.7.3.1)

equipped with a section α : Gal(Kab/Q) −→ G′(K) such that

∀g, g′ ∈ Gal(Kab/Q), α(gg′) = α(g)α(g′)dg,g′ .
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Secondly, the map

sp : Gal(Kab/Q) −→ G′(K̂), sp(g) = b(g)α(g),

is a group homomorphism satisfying π◦sp = id. Thirdly, each element h ∈ ΓK

acts on G′(Q) by
h(s α(g)) = hs α(g) (s ∈ KS (Q)). (1.7.3.2)

In order to descend the sequence (1.7.3.1) to an exact sequence of group
schemes over Q,

1 −→ KS
i−→ G

π−→ Gal(Kab/Q) −→ 1,

it is enough to extend the action of ΓK from (1.7.3.2) to an action of ΓQ com-
patible with i and π. This is done by putting, for h ∈ ΓQ and g ∈ Gal(Kab/Q),

h(s α(g)) = ch(g) hs α(g), ch(g) = b(g) h(b(g))−1 ∈ KS (K).

As h(sp(g)) = sp(g) for all h ∈ ΓQ and g ∈ Gal(Kab/Q), the map sp has
values in G(Q̂). Up to isomorphism, the quadruple (G, i, π, sp) obtained by
this method depends only on b, not on its lift b.

1.7.4

The Taniyama group KT of level K is defined by applying the construction
from 1.7.3 to the universal Taniyama element f , which satisfies (1.7.2.2)–
(1.7.2.3), by Proposition1.6.3. The existence of a lift b of f satisfying (1.7.2.4)
is established in the following proposition.

Proposition 1.7.5 There exists a lift b : Gal(Kab/Q) −→ KS (K̂) of f
whose “coboundary” dg,g′ =

(
g′−1 ∗ b(g)

)
b(g′) b(gg′)−1 is a locally constant

function on Gal(Kab/Q)2.

Proof. Let ̃K be as in 1.3.4(iv). As the maps FΦ (which factor through
Gal(Kab/Q)) are continuous, there exists an open subgroup U ⊂ Γ ab

K such
that ̃K , when restricted to

⋃
Φ FΦ(U), is a homomorphism. If nΦ ∈ Z satisfy∑

Φ nΦλΦ = 0, then the relation (1.5.3.1) implies that

∀u ∈ U
∏

Φ

̃K (FΦ(u))nΦ = 1 ∈ K̂∗.

As in the proof of 1.6.2(i), we conclude that, for each u ∈ U , there exists a
unique element b′(u) ∈ KS (K̂) satisfying λΦ(b′(u)) = ̃K (FΦ(u)). Fix coset
representatives Gal(Kab/Q) =

⋃
j giU (disjoint union) and lifts s̃j ∈ KS (K̂)

of f ′(gj) ∈ KS (K̂)/KS (K) such that gj0 = 1 and s̃j0 = 1; define a map
b′ : Gal(Kab/Q) −→ KS (K̂) by

b′(gju) = s̃jb
′(u) (u ∈ U).

The map b(g) := (ι(b′(g)))−1 then has the required property.
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1.7.6

Proposition1.6.5 implies that the pull-backs of the group schemes KT via
ΓQ −→ Gal(Kab/Q) form, for varying K, a projective system compatible
with the norm maps NK′/K : K′S −→ KS . In the limit, they give rise to an
exact sequence

1 −→ S
i−→ T

π−→ ΓQ −→ 1 (1.7.6.1)

equipped with a splitting sp : ΓQ −→ T (Q̂). The main result of [Del82] states
that the affine group scheme T (= the Taniyama group) is the Tannaka dual
of the category CMQ of CM motives (for absolute Hodge cycles) defined over
Q. The group scheme KT corresponds to the full Tannakian subcategory of
CMQ consisting of objects with reflex field in K.

2 Hidden symmetries in the CM theory

Throughout this chapter, K and F are as in 1.3. Put X = X(F ). In Section 2.1
(resp., Section 2.2) we extend Tate’s half-transfer FΦ (resp., the Taniyama
element fΦ) from ΓQ to AutF -alg(F ⊗ Q) (resp., to AutF -alg(F ⊗ Q)1). In
Section 2.3–2.4 we use our generalisation of the Taniyama element to construct
a generalised Taniyama group.

2.1 Generalised half-transfer

2.1.1

Fix a section s : X −→ ΓQ of the restriction map g �→ g|F . As in 1.1.2–1.1.4,
the choice of s determines the following objects:

(2.1.1.1) An injection ρs : ΓQ ↪→ SX � Γ X
F .

(2.1.1.2) An isomorphism βs∗ : AutF -alg(F ⊗Q) ∼−→ AutF -alg(Q
X

) = SX �

Γ X
F satisfying βs∗(idF ⊗ g) = ρs(g).

In addition, we obtain
(2.1.1.3) A bijection between (Z/2Z)X and the set of CM types of K: a func-

tion α : X −→ Z/2Z corresponds to the CM type {cα(x)s(x)|K =
s(x)cα(x)|K}x∈X .

(2.1.1.4) A section ws : X(K) −→ ΓQ of the restriction map g �→ g|K sat-
isfying ws(cy) = cws(y), namely ws(cas(x)|K) = cas(x) (x ∈ X ,
a ∈ Z/2Z).

For h ∈ Γ X
F , we denote by h : X −→ Z/2Z the image of h in

Gal(K/F )X ∼−→ (Z/2Z)X . In other words,

∀x ∈ X, h(x)|K = ch(x), R(h(x)) = ch(x)h(x),
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where R : ΓF −→ ΓK is the retraction map from 1.3.2. We let SX � Γ X
F act

on (Z/2Z)X via (1.1.1.1) and the natural projection (σ, h) �→ (σ, h):

(σ, h)α = (α + h) ◦ σ−1. (2.1.1.5)

2.1.2 Rewriting Tate’s Half-Transfer in Terms of ρs

Let Φ be a CM type of K. If g ∈ ΓQ, then ρs(g) = (σ, h) ∈ SX � Γ X
F , where

∀x ∈ X, σ(x) = gx, h(x) = s(gx)−1gs(x) = s(σ(x))−1gs(x) ∈ ΓF .

Let α ∈ (Z/2Z)X correspond to Φ, as in (2.1.1.3). For each x ∈ X , the element

ϕx = cα(x)s(x)|K = s(x)cα(x)|K ∈ Φ

satisfies ws(ϕx) = cα(x)s(x) and

gϕx = gs(x)cα(x)|K = s(σ(x))h(x)cα(x) |K = cα(x)+h(x)s(σ(x))|K ,

which implies that ws(gϕx) = cα(x)+h(x)s(σ(x)) and

ws(gϕx)−1gws(ϕx) = s(σ(x))−1cα(x)+h(x)gcα(x)s(x)

= s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x)

=
[
s(σ(x))−1cα(x)+h(x)s(σ(x))cα(x)+h(x)

]

×
[
cα(x)+h(x)h(x)cα(x)

]
·
[
cα(x)s(x)−1cα(x)s(x)

]
.

Denote by γx,s the image of s(x)−1cs(x)c ∈ ΓK in Γ ab
K . Since each of the three

elements in square brackets lies in ΓK , we have

FΦ(g) =
∏

x∈X

ws(gϕx)−1gws(ϕx)|Kab

=
∏

x∈|(σ,h)α|
γx,s

∏

x∈|α|
γ−1

x,s

∏

x∈X

cα(x)R(h(x))cα(x)|Kab ,

where we have denoted by |α| = {x ∈ X | α(x) �= 0} the support of α. This
calculation justifies the following:

Proposition–Definition 2.1.3 For each α ∈ (Z/2Z)X , the formula

sF̃α(σ, h) =
∏

x∈X

s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x)|Kab

=
∏

x∈|(σ,h)α|
γx,s

∏

x∈|α|
γ−1

x,s

∏

x∈X

cα(x)R(h(x))cα(x)|Kab

defines a map
sF̃α : SX � Γ X

F −→ Γ ab
K

(depending on s and α) satisfying sF̃α ◦ ρs = FΦ, where Φ is the CM type
corresponding to α, as in (2.1.1.3).
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Proposition 2.1.4 The maps sF̃α have the following properties:
(i) ∀g, g′ ∈ SX � Γ X

F , sF̃α(gg′) = sF̃g′α(g) sF̃α(g′).
(ii) For each (σ, h) ∈ SX � Γ X

F ,

sF̃α(σ, h)|F ab =
∏

x∈|(σ,h)α|
cx

∏

x∈|α|
cx

∏

x∈X

h(x)|F ab ,

1+c
(

sF̃α(σ, h)
)

= ṼK/F (σ, h) =
∏

x∈X

1+cR(h(x))|Kab ,

where ṼK/F (σ, h) =
∏

x∈X VK/F (h(x)|F ab ).
(iii) Each map sF̃α factors through SX � Gal(Kab/F )X .
(iv) If g = (σ, h) ∈ SX � Γ X

F satisfies gα = α, then

sF̃α(g) =
∏

x∈X

cα(x)R(h(x))cα(x)|Kab .

(v) ∀(σ, h) ∈ SX � Γ X
K , sF̃0(σ, h) =

∏
x∈X h(x)|Kab .

(vi) ∀α ∈ (Z/2Z)X , sF̃0(1, cα) =
∏

x∈|α| γx,s.

Proof. (i) If g = (σ, h) and g′ = (σ′, h′), then gg′ = (σσ′, (h ◦ σ′)h′) and
α′ := g′α = (α + h

′
) ◦ σ′−1, which implies that sF̃α(gg′) sF̃α(g′)−1

sF̃g′α(g)−1

is equal to
∏

x∈X

(
cα(x)+h(σ′(x))+h

′
(x)h(σ′(x))h′(x)cα(x)

)

×
(
cα(x)+h

′
(x)h′(x)cα(x)

)−1

·
(
cα′(x)+h(x)h(x)cα′(x)

)−1

=
∏

x∈X

(
cα′(σ′(x))+h(σ′(x))h(σ′(x))cα′(σ′(x))

) (
cα′(x)+h(x)h(x)cα′(x)

)−1

=1.

(ii) The first formula is a consequence of the fact that

∀x ∈ X, γx,s|F ab = cxc, cα(x)R(h(x))cα(x)|F ab = ch(x)h(x)|F ab ;

applying (1.3.2.1), we obtain the second formula.

The statements (iii)–(vi) follow directly from the definitions.

2.1.5 Change of s

Let s, s′ −→ ΓQ be two sections of the restriction map g �→ g|F . We have s′ =
st, where t : X −→ ΓF . As in 2.1.1, we write, for each x ∈ X , t(x)|K = ct(x)

(t(x) ∈ Z/2Z); then R(t(x)) = ct(x)t(x) ∈ ΓK . The recipe (2.1.1.3), applied
to s and s′, respectively, associates to each CM type Φ of K two functions
α = αΦ,s, α

′ = αΦ,s′ : X −→ Z/2Z such that

Φ = {cα(x)s(x)|K} = {cα′(x)s′(x)|K} (=⇒ α′ = α + t).
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According to Proposition1.1.4, the following diagram is commutative:

SX � Γ X
F

Ad(1,t)−1

��

ΓQ

ρs

���������������������������� ��

ρs′

���������������������������� AutF−alg(F ⊗Q)

βs∗

���������������

βs′∗

���������������

SX � Γ X
F

(2.1.5.1)

For (σ, h) ∈ SX � Γ X
F , put

(σ′, h′) := Ad(1, t)−1(σ, h) = (1, t)−1(σ, h)(1, t) = (σ, (t ◦ σ)−1ht) ∈ SX � Γ X
F .

(2.1.5.2)
The map ṼK/F from Proposition 2.1.4(ii) satisfies ṼK/F (σ, h) = ṼK/F (σ′, h′),
which means that the map

ṼK/F ◦ βs∗ : AutF−alg(F ⊗Q) −→ Γ ab
K (2.1.5.3)

does not depend on s; we denote it again by ṼK/F . The equalities

(σ, h)α = (α+h)◦σ−1, (σ′, h′)α′ = (α′+h
′
)◦σ−1 = (α+h)◦σ−1+t ∈ (Z/2Z)X

imply that the action of SX � Γ X
F on (Z/2Z)X defined in (2.1.1.5) gives rise

to an action of the group AutF -alg(F ⊗Q) on the set of CM types of K, which
is characterised by

∀g ∈ AutF -alg(F ⊗Q) αgΦ,s = βs∗(g)αΦ,s, (2.1.5.4)

but which does not depend on s.

Proposition 2.1.6 sF̃α(σ, h) = s′ F̃α′(σ′, h′) ∈ Γ ab
K , in the notation of

(2.1.5.2).

Proof. The relations s′ = st, (σ′, h′) = (σ, (t ◦ σ)−1ht), h
′

= h + t + t ◦ σ,
α′ = α + t, (σ, h)α = (α + h) ◦ σ−1, and (σ′, h′)α′ = (σ, h)α + t imply that

s′ F̃α′(σ′, h′)

=
∏

x∈X

t(σ(x))−1s(σ(x))−1c(α+h)(x)+t(σ(x))s(σ(x))h(x)s(x)−1c(α+t)(x)s(x)t(x)|Kab

=
∏

x∈X

A′((σ, h)α, x)−1B(α, x)A′(α, x),
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where

A′(α, x) = cα(x)s(x)−1c(α+t)(x)s(x)t(x)|Kab , B(α, x)=cα(x)R(h(x))cα(x)|Kab .

As
sF̃α(σ, h) =

∏

x∈X

A((σ, h)α, x)−1B(α, x)A(α, x),

where
A(α, x) = cα(x)s(x)−1cα(x)s(x)|Kab ,

the equality sF̃α(σ, h) = s′ F̃α′(σ′, h′) follows from the fact that

∀x ∈ X, A(α, x)−1A′(α, x) = s(x)−1ct(x)s(x)t(x)|Kab

does not depend on α.

Proposition–Definition 2.1.7 In the notation of 2.1.5, the map

F̃Φ = sF̃α(σ, h) ◦ βs∗ : AutF−alg(F ⊗Q) −→ Γ ab
K

depends on Φ, but not on s; it has the following properties:
(i) ∀g ∈ ΓQ, F̃Φ(idF ⊗ g) = FΦ(g).
(ii) ∀g, g′ ∈ AutF−alg(F ⊗Q), F̃Φ(gg′) = F̃g′Φ(g)F̃Φ(g′).
(iii) ∀g ∈ AutF−alg(F ⊗ Q), 1+cF̃Φ(g) = ṼK/F (g) (in the notation of
(2.1.5.3)).

Proof. The independence of F̃Φ of the choice of s follows from Proposition2.1.6
and the commutative diagram (2.1.5.1). The remaining statements are conse-
quences of Proposition2.1.4.

2.1.8 Galois functoriality of F̃Φ

Given an element ũ ∈ ΓQ, define u := ũ|K , uF := u|F , K ′ := u(K), F ′ =
uF (F ) and X ′ = X(F ′). As in Proposition1.1.6 (for k = Q and k′ = Q),
a fixed section s : X −→ ΓQ of the restriction map g �→ g|F defines a section
s′ : X ′ −→ ΓQ of the restriction map g �→ g|F ′ , given by

s′(x′) = s′(xu−1
F ) = s(x) ◦ ũ−1 (x ∈ X).

Proposition 2.1.9 For each α : X −→ Z/2Z, the diagram

SX � Γ X
F

sF̃α−→ Γ ab
K⏐⏐�ũ∗

⏐⏐�u

SX′ � Γ X′
F ′

s′ F̃α′−→ Γ ab
K′

is commutative, where ũ∗ is the map defined in Proposition 1.1.6, α′ : X ′ −→
Z/2Z is given by α′(x′) = α(x) (x = x′uF ), and the right vertical map (which
depends only on u) is given by g �→ ũgũ−1.
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Proof. For (σ, h) ∈ SX � Γ X
F , we have ũ∗(σ, h) = (σ′, h′), where σ′(x′) =

σ(x)u−1
F , h′(x′) = ũh(x)ũ−1 (x′ = xu−1

F ). The relations α′(x′) = α(x),
s′(σ′(x′)) = s(σ(x))ũ−1, s′(x′) = s(x)ũ−1, and h

′
(x′) = h(x) imply that

s′ F̃α′(σ′, h′) is equal to
∏

x′∈X′
s′(σ′(x′))−1cα′(x′)+h

′
(x′)s′(σ′(x′))h′(x′)s′(x′)−1cα′(x′)s′(x′)|K′ab

= ũ
∏

x∈X

s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x)|Kab ũ−1

= u
(

sF̃α(σ, h)
)

.

Corollary 2.1.10 For each CM type Φ of K, the diagram

AutF-alg(F ⊗Q) F̃Φ−→ Γ ab
K⏐⏐�[uF ]

⏐⏐�u

AutF ′−alg(F ′ ⊗Q)
F̃Φu−1−→ Γ ab

K′

is commutative, where [uF ] is the map defined in Proposition 1.1.7(i).

Proof. This follows from Proposition2.1.9 combined with Proposition 1.1.7 (ii)
(for k = Q and k′ = Q), if we take into account the fact that

{cα′(x′)s′(x′)|K′}x′∈X′ = {cα(x)s(x)|K u−1}x∈X .

2.2 Generalised Taniyama elements

2.2.1

Let (SX � Γ X
F )1 be the group defined as the fibre product

(SX � Γ X
F )1 −→ SX � Γ X

F⏐⏐�
⏐⏐�(1,prod)

Γ ab
Q /〈c〉 V F/Q

↪→ Γ ab
F /〈cX〉.

As the morphism V F/Q is injective (1.3.2.4), we can (and will) identify (SX �

Γ X
F )1 with its image in SX �Γ X

F . The group (SX �Γ X
F )0, defined in (1.1.2.4),

sits in an exact sequence

1 −→ (SX � Γ X
F )0 −→ (SX � Γ X

F )1 −→ 〈cX〉/VF/Q(〈c〉) −→ 1.

For i = 0, 1, the subgroups β−1
s∗

(
(SX � Γ X

F )i

)
of AutF−alg(F ⊗Q) are inde-

pendent of the choice of a section s : X −→ ΓQ; we denote them by

AutF -alg(F ⊗Q)0 ⊂ AutF -alg(F ⊗Q)1 ⊂ AutF -alg(F ⊗Q).
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Definition 2.2.2 For each CM type Φ of K, define a map

f̃Φ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗

by
f̃Φ(g) = K

(
F̃Φ(g)

)
,

where K is the morphism from Proposition 1.3.4(i). [This definition makes
sense, by Proposition 2.1.4(ii).]

Proposition 2.2.3 The maps f̃Φ have the following properties:
(i) rK ◦ f̃Φ = F̃Φ.
(ii) ∀g ∈ ΓQ, f̃Φ(idF ⊗ g) = fΦ(g).
(iii) Each map f̃Φ factors through

AutF−alg(F ⊗Kab)1 := Im
(
AutF-alg(F ⊗Q)1 −→ AutF-alg(F ⊗Kab)

)
.

(iv) ∀g, g′ ∈ AutF-alg(F ⊗Q)1, f̃Φ(gg′) = f̃g′Φ(g)f̃Φ(g′).
(v) If u : K

∼−→ K ′ is an isomorphism of CM number fields, then

f̃Φu−1 ◦ [u|F ] = u ◦ f̃Φ.

(vi) For g ∈ AutF-alg(F ⊗Q)1, denote by u(g) ∈ Γ ab
Q /〈c〉 the unique element

satisfying VK/Q(u(g)) = 1+cF̃Φ(g); then 1+cf̃Φ(g) = χ(u(g))K∗.
(vii) For g ∈ AutF−alg(F⊗Q)0, denote by u(g) ∈ Γ ab

Q the unique element sat-
isfying VF/Q(u(g)) = F̃Φ(g)|F ab ; then NK/F (f̃Φ(g)) = χ(u(g))αF ∗

+ ∈ F̂ ∗/F ∗
+,

where α ∈ F ∗ satisfies

∀x ∈ X sgn(x(a)) =
{

1, if Φ and gΦ agree at x,
−1, if Φ and gΦ do not agree at x

(we say that two CM types Φ and Φ′ of K agree at x ∈ X if the unique element
of Φ whose restriction to F is x is equal to the unique element of Φ′ whose
restriction to F is x).

Proof. Statement (i) holds by definition, while (ii)–(v) follow from the corre-
sponding assertions for F̃Φ, proved in Proposition2.1.7 and Corollary2.1.10.
Property (vi) (resp., (vii)) is a consequence of Proposition1.3.4(i) (resp.,
1.3.4(ii)) combined with the second (resp., the first) formula in Proposi-
tion 2.1.4(ii).

Proposition 2.2.4 Let K ′ be a CM number field containing K; put X ′ =
X(F ′), where F ′ is the maximal totally real subfield of K ′. If Φ is a CM type
of K and Φ′ is the induced CM type of K ′, then:
(i) ∀g ∈ AutF-alg(F ⊗Q), F̃Φ′(idF ′ ⊗F g) = VK′/K

(
F̃Φ(g)

)
∈ Γ ab

K′ .

(ii) ∀i = 0, 1 ∀g ∈ AutF-alg(F ⊗Q)i, idF ′ ⊗F g ∈ AutF ′−alg(F ′ ⊗Q)i.

(iii) ∀g ∈ AutF-alg(F ⊗Q)1, f̃Φ′(idF ′ ⊗F g) = iK′/K

(
f̃Φ(g)

)
∈ K̂ ′∗/K ′∗.



430 Jan Nekovář

Proof. (i) Fix a section s : X −→ ΓQ; let α : X −→ Z/2Z correspond to
Φ, as in (2.1.1.3). The sets ΓK/ΓK′ and ΓF /ΓF ′ are canonically identified.
Fix a section u : ΓK/ΓK′ = HomK−alg(K ′,Q) −→ ΓK of the restriction map
g �→ g|K and define a section s′ : X ′ −→ ΓQ by

s′(s(x)y|F ′ ) = s(x)u(y) (x ∈ X, y ∈ ΓF /ΓF ′);

then Φ′ corresponds to α′ = α ◦ p : X ′ −→ Z/2Z, where we have denoted by
p : X ′ −→ X the restriction map g �→ g|F . Proposition1.1.8 implies that the
elements

(σ, h) = βs∗(g) ∈ SX � Γ X
F , (σ′, h′) = βs′∗(idF ′ ⊗F g) ∈ SX′ � Γ X′

F ′

are related by

σ′(s(x)y|F ′ ) = s(σ(x))h(x)y|F ′ , s′(σ′(s(x)y|F ′)) = s(σ(x))u(h(x)y),
h′(s(x)y|F ′) = u(h(x)y)−1h(x)u(y) (x ∈ X, y ∈ ΓF /ΓF ′)

hence h
′
= h ◦ p. For x ∈ X and x′ ∈ X ′, put

k(x) = s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x) ∈ ΓK ,

k′(x′) = s′(σ′(x′))−1cα′(x′)+h
′
(x′)s′(σ′(x′))h′(x′)s′(x′)−1cα′(x′)s′(x′) ∈ ΓK′ .

By definition,

F̃Φ(g) = sF̃α(σ, h) =
∏

x∈X

k(x)|Kab ∈ Γ ab
K ,

F̃Φ′(idF ′ ⊗F g) = s′ F̃α′(σ′, h′) =
∏

x′∈X′
k′(x′)|K′ab ∈ Γ ab

K′ .

For each x ∈ X and y ∈ ΓF /ΓF ′ ,

k′(s(x)y|F ′) = u(h(x)y)−1k(x)u(y) ∈ ΓK′ ,

which implies that k(x)y = k(x)u(y)|K′ = u(h(x)y)|K′ = h(x)y; hence
u(h(x)y) = u(k(x)y) and

∏

x′∈p−1(x)

k′(x′)|K′ab =
∏

y∈ΓK/ΓK′

u(k(x)y)−1k(x)u(y)|K′ab = VK′/K (k(x)|Kab) .

Taking the product over all x ∈ X yields (i). The statement (ii) follows from
the fact that, in the notation used in the proof of (i),

∏

x′∈p−1(x)

h′(x′)|F ′ab =
∏

y∈ΓF /ΓF ′

u(h(x)y)−1h(x)u(y)|F ′ab = VF ′/F (h(x)|F ab) .

Finally, (iii) follows by applying K′ to the statement of (i) (which makes
sense, by (ii) for i = 1).
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2.2.5 Action of AutF -alg(F ⊗ Q)0 on CM points of Hilbert
modular varieties

In this section we prove Theorem 0.9. Given a polarised HBAV (Hilbert–
Blumenthal abelian variety) A relative to F with CM, then A is defined over
Q, and there exist

• a CM field K of degree 2 over F ;
• a CM type Φ of K (which defines an embedding K ↪→ CΦ, α �→ (ϕ �→

ϕ(α))ϕ∈Φ);
• a fractional ideal a of K;
• an element t ∈ K∗ such that t �∈ F ∗, t2 ∈ F ∗, and ∀ϕ ∈ Φ, Im(ϕ(t)) < 0;
• an OK -linear isomorphism θ : CΦ/a

∼−→ A(C) such that the Riemann
form of the pull-back of the polarisation of A by θ is induced by the form
Et(x, y) = TrK/Q(tx cy) on K.

One says that A is a CM abelian variety of type (K, Φ, a, t) (via θ). The type is
determined up to transformations (K, Φ, a, t) �→ (K, Φ, aα, t/1+cα) (α ∈ K∗),
and it determines A with its polarisation up to isomorphism.

Given g ∈ AutF -alg(F ⊗Q)0, let u(g) ∈ Γ ab
Q be as in Proposition2.2.3(vii).

Fix a lift f̃ ∈ K̂∗ of f̃Φ(g) ∈ K̂∗/K∗ and define A′ = CgΦ/af̃ , with polarisa-
tion given by Et′ , where

t′ = t χ(u(g))/1+cf̃ ∈ K∗

(t′ satisfies t′ �∈ F ∗, t′2 ∈ F ∗ and ∀ϕ′ ∈ gΦ, Im(ϕ′(t′)) < 0, the last condition
by Proposition2.2.3(vii)).

Given, in addition, a full level structure η : (F/OF )2 ∼−→ A(Q)tors of A

under which the Weil pairing associated to the given polarisation is a Q̂∗-
multiple of the standard form TrF̂ /Q̂ ◦detF̂ on F̂ 2, let η′ be the following level
structure of A′:

η′ : (F/OF )2
η−→ A(C)tors

θ−1−→ K/a
[×f̃ ]−→ K/af̃ = A′(C)tors.

The isomorphism class of the triple (A′, Et′ , η
′) depends only on g and on the

isomorphism class [(A, Et, η)] of (A, Et, η). Proposition2.2.3 implies that the
assignment

g[(A, Et, η)] = [(A′, Et′ , η
′)]

defines an action of AutF -alg(F ⊗Q)0 on the isomorphism classes of polarised
HBAV (relative to F ) with CM, equipped with a full level structure. Moreover,
this action commutes with the action of G(F̂ ) on η (by γ : η �→ η ◦ γ), where
G is the fibre product

G −→ RF/Q(GL(2)F )

↓
⏐⏐�det

Gm,Q −→ RF/Q(Gm,F ).
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In view of the results of Tate and Deligne that were recalled in 1.4.3, it fol-
lows from Proposition 2.2.3 that the action of AutF−alg(F ⊗Q)0 we have just
defined extends the usual Galois action of ΓQ.

Recall that f̃Φ(g) is defined even for g ∈ AutF−alg(F ⊗Q)1. However, the
positivity of polarisations implies that the above recipe makes sense only if the
conlusion of Proposition2.2.3(vii) is satisfied, namely if g ∈ AutF−alg(F⊗Q)0.

Proposition–Definition 2.2.6 Fix s : X −→ ΓQ as in 2.1.1; then X(K) =
{s(x)ca|K | x ∈ X, a ∈ Z/2Z}.
(i) Let g ∈ AutF-alg(F ⊗Q); put (σ, h) = βs∗(g) ∈ SX � Γ X

F . The formula

g (s(x)ca|K) := s(σ(x))ch(x)+a|K = s(σ(x))h(x)ca |K
defines an action of AutF-alg(F ⊗ Q) on X(K). The action of g on X(K)
depends only on the image of (σ, h) in SX � Gal(K/F )X .
(ii) This action does not depend on the choice of s.
(iii) For each CM type Φ ⊂ X(K) of K, the set gΦ = {gy | y ∈ Φ} coincides
with gΦ, defined in (2.1.5.4).
(iv) If g = idF ⊗ u, u ∈ ΓQ, then gy = u ◦ y = uy, for each y ∈ X(K).

Proof. Easy calculation.

Corollary–Definition 2.2.7 (i) The induced action of AutF-alg(F ⊗Q) on
X∗(KT ) = Z[X(K)],

λ =
∑

ny[y] �→ gλ =
∑

ny[gy] (g ∈ AutF−alg(F ⊗Q)),

extends the action (1.5.1.1) of ΓQ and leaves stable the subgroup X∗(KS ) of
X∗(KT ) spanned by the CM characters λΦ.
(ii) In the special case that K is a Galois extension of Q, the involution ι
from (1.5.4.3) gives rise to another action of AutF−alg(F ⊗Q) on X∗(KT ),
namely

g ∗ ι(λ) = ι(gλ) (λ ∈ X∗(KT )).

This action extends the action (1.5.4.1) of ΓQ and leaves stable X∗(KS ).

Proposition 2.2.8 Let n : {CM types of K} −→ Z be a function satisfying
∑

Φ

nΦλΦ = w ·NK/Q = w
∑

y∈X(K)

[y] ∈ X∗(KS ) (w ∈ Z).

Then: (i) ∀g ∈ AutF−alg(F ⊗Q),
∏

Φ F̃Φ(g)nΦ = ṼK/F (g)w.
(ii) If w = 0, then ∀g ∈ AutF−alg(F ⊗Q)1,

∏
Φ f̃Φ(g)nΦ = 1 ∈ K̂∗/K∗.
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Proof. (i) Fix s : X −→ ΓQ as in 2.1.1, and parameterize the CM types by
functions α : X −→ Z/2Z, as in (2.1.1.3): we write Φα = {s(x)cα(x)|K}x∈X ,
nα = nΦα and λα = λΦα . The condition

∑
Φ nΦλΦ = w ·NK/Q is equivalent

to
∀x ∈ X

∑

α

nαλα(x) =
∑

α

nα(1− λα(x)) = w.

Statement (i) follows from the fact that, for each g = (σ, h) ∈ SX � Γ X
F ,

∏

α

sF̃α(g)nα =
∏

x∈X

γ
∑

α(nαλgα(x)−nαλα(x))
x,s R(h(x))

∑
α nα(1−λα(x)) ·

×
∏

x∈X

(cR(h(x)))
∑

α nαλα(x)

=
∏

x∈X

1+cR(h(c))w = ṼK/F (g)w.

If w = 0, statement (ii) follows by applying K to (i).

2.3 Generalised universal Taniyama elements

As in Section 1.6, we assume that K is a CM number field which is a Galois
extension of Q.

Proposition 2.3.1 (i) There exists a unique map f̃ ′ : AutF-alg(F ⊗Q)1 −→
KS (K̂)/KS (K) such that λΦ ◦ f̃ ′ = f̃Φ, for all CM types Φ of K. The map
f̃ ′ factors through AutF−alg(F ⊗Kab)1.
(ii) For each λ ∈ X∗(KS ), put f̃ ′

λ = λ ◦ f̃ ′ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗;
then f̃ ′

λ+μ(g) = f̃ ′
λ(g)f̃ ′

μ(g).
(iii) ∀λ ∈ X∗(KS ) ∀g, g′ ∈ AutF−alg(F ⊗Q)1, f̃ ′

λ(gg′) = f̃ ′
g′λ(g)f̃ ′

λ(g′).
(iv) ∀u ∈ Gal(K/Q), u(f̃ ′

λ(g)) = f̃ ′
u∗λ([u|F ]g).

(v) ∀g ∈ ΓQ, f̃ ′(idF ⊗ g) = f ′(g).

Proof. Statements (i) and (ii) follow from Proposition2.2.8(ii) by the same
argument as in the proof of Proposition1.6.2. If λ = λΦ, then (iii) (resp., (iv))
is just the statement of Proposition2.2.3 (iv) (resp., (v)); the general case
follows from (ii). Finally, (v) is a consequence of the uniqueness of f ′, since

∀Φ λΦ(f̃ ′(idF ⊗ g)) = f̃Φ(idF ⊗ g) = fΦ(g) = λΦ(f ′(g)),

by Proposition2.2.3(ii).

Proposition 2.3.2 (i) Let f̃ : AutF-alg(F ⊗ Q)1 −→ KS (K̂)/KS (K) be
the map defined by the formula f̃(g) = (ι(f̃ ′(g)))−1. This map factors through
AutF-alg(F ⊗Kab)1 and has the following properties:
(ii) The maps f̃λ = λ ◦ f̃ : AutF-alg(F ⊗Q)1 −→ K̂∗/K∗ (λ ∈ X∗(KS ))
satisfy

f̃λ+μ(g) = f̃λ(g)f̃μ(g), f̃λ(g) = f̃ ′
ι(λ)(g)−1, f̃λ(gg′) = f̃g′∗λ(g)f̃λ(g′).
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(iii) ∀u ∈ Gal(K/Q) ∀g ∈ AutF-alg(F ⊗ Q)1, u(f̃λ(g)) = f̃uλ([u|F ]g),
u(f̃(g)) = f̃([u|F ]g).
(iv) ∀g, g′ ∈ AutF-alg(F ⊗Q)1, f̃(gg′) = (g′−1 ∗ f̃(g)) f̃(g′).
(v) ∀g ∈ ΓQ, f̃(idF ⊗ g) = f(g).

Proof. As in the proof of Proposition1.6.3, everything follows from Proposi-
tion 2.3.1.

Proposition 2.3.3 There exists a lift b̃ : AutF-alg(F⊗Kab)1 −→ KS (K̂) of
f̃ whose “coboundary” d̃g,g′ = (g′−1 ∗ b̃(g)) b̃(g′) b̃(gg′)−1 is a locally constant
function on (AutF-alg(F ⊗Kab)1)2.

Proof. The argument from the proof of Proposition1.7.5 applies.

Proposition 2.3.4 If K ′ is a CM number field, which is a Galois extension
of Q and contains K, then the generalised universal Taniyama elements f̃K :
AutF-alg(F ⊗Q)1 −→ KS (K̂)/KS (K) and f̃K′ : AutF ′−alg(F ′ ⊗ Q)1 −→
K′S (K̂ ′)/K′S (K ′) over K and K ′, respectively, satisfy

∀g ∈ AutF−alg(F ⊗Q)1 f̃K(g) = NK′/K

(
f̃K′(idF ′ ⊗F g)

)
.

Proof. This follows from Proposition 2.2.4(iii), as in the proof of Proposi-
tion 1.6.5.

2.4 Generalised Taniyama group

Let K be as in Section 2.3.

2.4.1

Let us try to apply the method of [MS82, Prop. 2.7] (see 1.7.3 above) to the
generalised universal Taniyama element f̃ and its lift b̃. The reverse 2-cocycle
d̃g,g′ with values in KS (K) gives rise to an exact sequence of affine group
schemes over K,

1 −→ KSK
ı̃−→ G̃′ π̃−→ AutF -alg(F ⊗Kab)1 −→ 1 (2.4.1.1)

(where the term on the right is considered as a constant group scheme),
equipped with a section α̃ : AutF -alg(F ⊗Kab)1 −→ G̃′(K) such that

∀g, g′ ∈ AutF -alg(F ⊗Kab)1, α̃(gg′) = α̃(g)α̃(g′)d̃g,g′ .

The map

s̃p : AutF -alg(F ⊗Kab)1 −→ G̃′(K̂), s̃p(g) = b̃(g)α̃(g),

is a group homomorphism satisfying π̃ ◦ s̃p = id.
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2.4.2

Each element u ∈ ΓK acts on G̃′(Q) by

u(s α̃(g)) = us α̃(g) (s ∈ KS (Q)). (2.4.2.2)

We extend this action to an action of ΓQ: for u ∈ ΓQ and g ∈ AutF -alg(F ⊗
Kab)1, put

c̃u(g) = b̃([u|F ]g) u(̃b(g))−1 ∈ KS (K).

As

∀u, u′ ∈ ΓQ ∀g ∈ AutF -alg(F ⊗Kab)1, c̃uu′(g) = c̃u([u′|F ]g) u(c̃u′ (g)),

the formula

u(s α̃(g)) = c̃u(g) us α̃(g) (s ∈ KS (Q), g ∈ AutF−alg(F ⊗Kab)1)
(2.4.2.3)

defines an action of ΓQ on G̃′(Q) which extends the action (2.4.2.2) of ΓK .
We define KT̃ to be the affine group scheme over Q such that KT̃ (Q) =

G̃′(Q), with the ΓQ-action given by (2.4.2.3). The exact sequence (2.4.1.1)
descends to an exact sequence

1 −→ KS
ı̃−→ KT̃

π̃−→ AutF -alg(F ⊗Kab)′1 −→ 1, (2.4.2.4)

where we have denoted by AutF -alg(F ⊗Kab)′1 a twisted form of the constant
group scheme AutF -alg(F ⊗Kab)1, for which u ∈ ΓQ acts on

AutF -alg(F ⊗Kab)′1(Q) = AutF -alg(F ⊗Kab)1

by [u|F ]. Note that

AutF -alg(F ⊗Kab)′1(Q) = idF ⊗Gal(Kab/Q), (2.4.2.5)

by Proposition1.1.6(iv).

2.4.3

As f̃ extends f (and the restriction of b̃ to Gal(Kab/Q)2 satisfies 1.7.5), there
is a commutative diagram of affine group schemes over Q with exact rows:

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1∥∥∥
⏐⏐�

⏐⏐�(idF ⊗−)

1 −→ KS
ı̃−→ KT̃

π̃−→ AutF−alg(F ⊗Kab)′1 −→ 1.
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Moreover, there is a commutative diagram of groups

KT (Q̂)
sp←− Gal(Kab/Q)⏐⏐�

⏐⏐�(idF ⊗−)

KT̃ (K̂)
s̃p←− AutF−alg(F ⊗Kab)1

such that π ◦ sp = id, π̃ ◦ s̃p = id. As

us̃p(g) = u(̃ b(g)α̃(g)) = c̃u(g) ũb(g) α̃([u|F ]g) = b̃([u|F ]g) α̃([u|F ]g) = s̃p([u|F ]g)

for all u ∈ ΓQ and g ∈ AutF−alg(F ⊗Kab)1, the map s̃p is ΓQ-equivariant. As
[u|F ] depends only on the image of u in Gal(F/Q), it follows that the image
of s̃p is contained in KT̃ (F̂ ), and that s̃p is Gal(F/Q)-equivariant.

2.4.4

Proposition2.3.4 implies that the pull-backs of K′T̃ to AutF -alg(F ⊗Q)′1 (for
varying K ′ ⊃ K) give rise to an extension of AutF−alg(F ⊗Q)′1 by S . These
extensions for varying F are again compatible; they give rise to an extension
of affine group schemes over Q,

1 −→ S −→ T̃ −→ lim−→F AutF−alg(F ⊗Q)′1 −→ 1,

whose pull-back to ΓQ coincides with (1.7.6.1). The direct limit is taken with
respect to the transition maps idF ′ ⊗F − (for F ⊆ F ′).

2.4.5

It would be of interest to give an “abstract” definition of T̃ along the lines of
[Del82]. As observed in 2.2.5, it is the group AutF−alg(F ⊗Q)0 rather than
AutF−alg(F ⊗Q)1 which has a geometric significance, which means that one
should rather consider the subgroup scheme T̃0 ⊂ T̃ sitting in the exact
sequence

1 −→ S −→ T̃0 −→ lim−→F AutF -alg(F ⊗Q)′0 −→ 1.
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Summary. Let X be an algebraic K3 surface with Picard lattice N(X), and MX(v)
the moduli space of sheaves on X with given primitive isotropic Mukai vector
v = (r, H, s). In [14] and [3], we described all the divisors in moduli of polarized
K3 surfaces (X, H) (that is, all pairs H ∈ N(X) with rankN(X) = 2) for which
MX(v) ∼= X. These provide certain Mukai self-correspondences of X.

Applying these results, we show that there exists a Mukai vector v and a
codimension-2 subspace in moduli of (X, H) (that is, a pair H ∈ N(X) with
rankN(X) = 3) for which MX(v) ∼= X, but such that this subspace does not extend
to a divisor in moduli having the same property. There are many similar examples.

Aiming to generalize the results of [14] and [3], we discuss the general problem of
describing all subspaces of moduli of K3 surfaces with this property, and the Mukai
self-correspondences defined by these and their composites, in an attempt to outline
a possible general theory.

Key words: K3 surfaces, moduli of sheaves, moduli of vector bundles,
algebraic cycles, correspondences, integral quadratic forms
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1 Introduction

We consider algebraic K3 surfaces X over C; recall that a nonsingular projec-
tive algebraic (or compact Kähler) surface X is a K3 surface if its canonical
class KX is zero and its irregularity q = dimΩ1[X ] is 0. We write N(X) for
the Picard lattice of X , ρ(X) = rankN(X) for its rank, and T (X) for the
transcendental lattice.
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Consider a primitive isotropic Mukai vector on X ,

v = (r, l, s), with r ∈ N, s ∈ Z and l ∈ N(X) such that l2 = 2rs, (1)

and denote by Y = MX(v) = MX(r, l, s) the K3 surface obtained as the
minimal resolution of singularities of the moduli space of sheaves on X with
Mukai vector v. For details, see Mukai [4]–[7] and Yoshioka [19]. Under these
assumptions, by results of Mukai [5], the quasi-universal sheaf on X × Y
and its Chern class defines a 2-dimensional algebraic cycle on X × Y and a
correspondence between X and Y with nice geometric properties. For more
details, see Section 5.

If Y ∼= X , this provides an important 2-dimensional algebraic cycle on
X × X , and a correspondence from X to itself; the question of when Y ∼= X
is thus very interesting. The answer when ρ(X) = 1, probably already known
to specialists, is given in Section 2.

Tensoring by any D ∈ N(X) gives a natural isomorphism

TD : MX(r, l, s) ∼= MX(r, l + rD, s + 1
2rD2 + D · l)

defined by E �→ E ⊗ O(D).

For r, s > 0, we have an isomorphism called reflection,

δ : MX(r, l, s) ∼= MX(s, l, r);

see for example [5] and [16], [17], [20]. For integers d1, d2 > 0 with (d1, d2) =
(d1, s) = (r, d2) = 1, we have an isomorphism

ν(d1, d2) : MX(r, l, s) ∼= MX(d2
1r, d1d2l, d

2
2s)

and its inverse ν(d1, d2)−1; see [5], [6], [14], [3].
In Theorem 2.1 and Corollary 2.2, we show that if ρ(X) = 1 and X is

general, then for two primitive isotropic Mukai vectors v1 and v2, the moduli
spaces MX(v1) and MX(v2) are isomorphic if and only if there exists an
isomorphism between them obtained by composing the above three natural
isomorphisms. They give universal isomorphisms between moduli of sheaves
on X .

For l ∈ N(X) with ±l2 > 0, it is known that we have a Tyurin isomorphism
(see for example Tyurin [17])

Tyu = Tyu(±l) : MX(±l2/2, l,±1) ∼= X . (2)

Corollary 2.6 shows that if ρ(X) = 1, then MX(r, H, s) and X are iso-
morphic if and only if there exists an isomorphism between them that is
a composite of the above three universal isomorphisms between moduli of
sheaves, and a Tyurin isomorphism (see also Remark 3.4). Compare [14] for
a similar result.

We showed in [14] and interpreted geometrically in [3] (together with Carlo
Madonna) that analogous results hold if ρ(X) = 2 and X is general with its
Picard lattice, i.e., the automorphism group of the transcendental periods
is trivial: Aut

(
T (X), H2,0(X)

)
= ±1. (See also [1], [2], [13] about impor-

tant particular cases of these results.) We review these results in Section 3;
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see Theorems 3.1, 3.2, and 3.3 for precise statements. These results show
that in this case (i.e., when ρ(X) = 2 and X is general with its Picard lat-
tice), MX(r, H, s) ∼= X if and only if there exists an isomorphism between
MX(r, H, s) and X that is a composite of the universal isomorphisms TD,
δ, and ν(d1, d2) between moduli of sheaves on X and a Tyurin isomorphism
between moduli spaces of sheaves on X and X itself. The above results for
ρ(X) = 1 clarify the appearance of the natural isomorphisms TD, δ, ν(d1, d2),
Tyu in these results for Picard number 2.

The importance of the results for ρ(X) = 2 and general X is that they de-
scribe all the divisorial conditions on moduli of algebraic polarized K3 surfaces
(X, H) that imply MX(r, H, s) ∼= X . More exactly, the results for ρ(X) = 2
describe all abstract polarized Picard lattices H ∈ N with rankN = 2 such
that H ∈ N ⊂ N(X) and N ⊂ N(X) is primitive implies MX(r, H, s) ∼= X .
Recall that such X have codimension 1 in the 19-dimensional moduli of po-
larized K3 surfaces. Applying these results, we give in Theorems 3.6 and 3.8
a necessary condition on a Mukai vector (r, H, s) and a polarized K3 surface
X in order for the isomorphism MX(r, H, s) ∼= X to follow from a divisorial
condition on the moduli of X . In Example 3.7, we give an exact numerical ex-
ample when this necessary condition is not satisfied. Thus for the K3 surfaces
X in this example, the isomorphism MX(r, H, s) ∼= X is not a consequence of
any divisorial condition on moduli of polarized K3 surfaces. In other words,
MX(r, H, s) ∼= X , but this isomorphism cannot be deduced from any divisorial
condition on K3 surfaces X ′ implying MX′(r, H, s) ∼= X ′.

Applying these results, in Section 4, Theorem 4.1, we give an exact example
of a type of primitive isotropic Mukai vector (r, H, s) and a pair H ∈ N of
an (abstract) polarized K3 Picard lattice with rankN = 3 such that for any
polarized K3 surface (X, H) with H ∈ N ⊂ N(X) and primitive N ⊂ N(X)
one has MX(r, H, s) ∼= X , but this isomorphism does not follow from any
divisorial condition (i.e., from Picard number 2) on the moduli of polarized
K3 surfaces. Thus these polarized K3 surfaces have codimension 2 in moduli,
and they cannot be extended to a divisor in moduli of polarized K3 surfaces
preserving the isomorphism MX(r, H, s) ∼= X . This is the main result of this
paper. Section 4 gives many similar examples for Picard numbers ρ(X) ≥ 3.

These results give important corollaries for higher Picard numbers
ρ(X) ≥ 3 of the above results for Picard numbers 1 and 2; they also show
that the case ρ(X) ≥ 3 is very nontrivial. These are the main subjects of this
paper. Another important aim is to formulate some general concepts, and
predict the general structure of possible results for higher Picard numbers
ρ(X) ≥ 3.

At the end of Section 4, for a type (r, H, s) of primitive isotropic Mukai
vector, we introduce a notion of critical polarized K3 Picard lattice H ∈ N
(critical for the problem of K3 self-correspondences). Roughly speaking, it
means that MX(r, H, s) ∼= X for any polarized K3 surface X with H ∈ N ⊂
N(X) where N ⊂ N(X) is primitive, but the same does not hold for any
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primitive strict sublattice H ∈ N1 ⊂ N . Thus the corresponding moduli
space of K3 surfaces has dimension 20 − rankN , and is not a specialization
of higher-dimensional moduli spaces of K3 surfaces.

The classification of critical polarized K3 Picard lattices is the main prob-
lem of self-correspondences of a K3 surface via moduli of sheaves. Our results
for ρ = 1 and ρ = 2 can be interpreted as a classification of all critical po-
larized K3 Picard lattices of ranks one and two. The example of Theorem 4.1
mentioned above gives an example of a rank-3 critical polarized K3 Picard
lattice N . In Theorem 4.10 we prove that a critical polarized K3 Picard lat-
tice N has rankN ≤ 12. In Problem 4.11, we raise the problem of the exact
bound for the rank of a critical polarized K3 Picard lattice for a fixed type
of primitive isotropic Mukai vector. This problem is now solved only for very
special types: we know all primitive isotropic Mukai vectors when the exact
bound is one.

In Section 5, we interpret the above results in terms of isometric actions of
correspondences and their composites on H2(X, Q). For example, the Tyurin
isomorphisms of (2) give reflections in elements l ∈ N(X), and generate the
full automorphism group O(N(X)⊗Q). Every isotropic primitive Mukai vector
(r, H, s) on X with MX(r, H, s) ∼= X then generates some class of isometries in
O(N(X)⊗Q). See Section 5 for exact statements. Thus the main problem of
self-correspondences of X via moduli of sheaves is to find all these generators
and the relations between them. In this connection, we state problems (1–4)
at the end of Section 5; these show that in principle, the general results for
any ρ(X) should look similar to the now known results for ρ(X) = 1, 2.

Our general idea should be clear: for a K3 surface X that is general for
its Picard lattice, the very complicated structure of self-correspondences of
X via moduli of sheaves is hidden inside the abstract lattice N(X); we try
to recover this structure. This should lead to some nontrivial constructions
involving the abstract Picard lattice N(X), and should relate it more closely
to the geometry of the K3 surface.

Acknowledgments. I am grateful to D.O. Orlov for useful discussions. I also
would like to thank the referees for many helpful suggestions. This work was
supported by EPSRC grant EP/D061997/1.

1.1 Preliminary Notation for Lattices

We use the notation and terminology of [10] for lattices, and their discriminant
groups and forms. A lattice L is a nondegenerate integral symmetric bilinear
form. That is, L is a free Z-module of finite rank with a symmetric pairing
x · y ∈ Z for x, y ∈ L, assumed to be nondegenerate. We write x2 = x · x.
The signature of L is the signature of the corresponding real form L ⊗ R.
The lattice L is called even if x2 is even for any x ∈ L. Otherwise, L is
called odd. The determinant of L is defined to be detL = det(ei · ej), where
{ei} is some basis of L. The lattice L is unimodular if detL = ±1. The dual
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lattice of L is L∗ = Hom(L, Z) ⊂ L ⊗ Q. The discriminant group of L is
AL = L∗/L; it has order | detL|, and is equipped with a discriminant bilinear
form bL : AL × AL → Q/Z and, if L is even, with a discriminant quadratic
form qL : AL → Q/2Z. To define these, we extend the form on L to a form on
the dual lattice L∗ with values in Q.

An embedding M ⊂ L of lattices is called primitive if L/M has no torsion.
Similarly, a nonzero element x ∈ L is called primitive if Zx ⊂ L is a primitive
sublattice.

2 Isomorphisms Between MX(v) and X for a General
K3 Surface X and a Primitive Isotropic Mukai Vector v

We consider algebraic K3 surfaces X over C. Further, N(X) denotes the Pi-
card lattice of X , and T (X) its transcendental lattice. We consider primitive
isotropic Mukai vectors (1) on X . We denote by Y = MX(v) = MX(r, l, s)
the K3 surface obtained as the minimal resolution of singularities of the mod-
uli space of sheaves on X with Mukai vector v. Compare Mukai [4]–[7] and
Yoshioka [19].

In this section, we say that an algebraic K3 surface is general if its Picard
number ρ(X) = rankN(X) is 1 and the automorphism group of the trans-
cendental periods of X is trivial over Q: Aut

(
T (X) ⊗ Q, H2,0(X)

)
= ±1.

We now consider the following question: for a general algebraic K3 sur-
face X and two primitive isotropic Mukai vectors v1 = (r1, l1, s1) and
v2 = (r2, l2, s2), when are the moduli spaces MX(v1) and MX(v2) isomorphic?

We have the following three universal isomorphisms between moduli spaces
of sheaves over a K3 surface. (Here universal means that they are valid for all
algebraic K3 surfaces.)

Let D ∈ N(X). Then one has the natural isomorphism given by the tensor
product

TD : MX(r, l, s) ∼= MX(r, l + rD, s + r(D2/2) + D · l), E �→ E ⊗ O(D).

Moreover, here the Mukai vectors

v = (r, l, s) and TD(v) = (r, l + rD, s + r(D2/2) + D · l)

have the same general common divisor and the same square under the Mukai
pairing. In particular, one is primitive and isotropic if and only if the other is.

Taking D = kH for H a hyperplane section and k>0, using the
isomorphisms TD, we can always replace MX(r, l, s) by an isomorphic
MX(r, l′, s′) where l′ is ample, so that l′2 > 0. Thus in our problem, we can
also assume that v = (r, l, s), where r > 0 and l is ample. Then l2 = 2rs > 0
and r, s > 0.
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For r, s > 0, one has an isomorphism called reflection:

δ : MX(r, l, s) ∼= MX(s, l, r).

See, for example, [5] and [16], [17], [20]. Thus using reflection, we can also
assume that 0 < r ≤ s.

For integers d1 > 0, d2 > 0 such that (d1, d2) = (d1, s) = (r, d2) = 1, one
has an isomorphism

ν(d1, d2) : MX(r, l, s) ∼= MX(d2
1r, d1d2l, d

2
2s)

and its inverse ν(d1, d2)−1; see [5], [6], [14], [3]. Using the isomorphisms
ν(d1, d2), ν(d1, d2)−1 and reflection δ, we can always assume that the primitive
isotropic Mukai vector v = (r, l, s) satisfies

0 < r ≤ s, l2 = 2rs, and l ∈ N(X) is primitive and ample. (3)

We call such a primitive isotropic Mukai vector a reduced primitive isotropic
Mukai vector (for ρ(X) = 1).

We have the following result.

Theorem 2.1. Let X be a general algebraic K3 surface, i.e., N(X) = ZH,
where H is a primitive polarization of X and Aut

(
T (X)⊗Q, H2,0(X)

)
= ±1.

Let v = (r, H, s) and v′ = (r′, H, s′) be two reduced primitive isotropic Mukai
vectors on X (see (3)), i.e., 0 < r ≤ s and 0 < r′ ≤ s′.

Then MX(v) ∼= MX(v′) if and only if v = v′, i.e., r′ = r, s′ = s.

It follows that the above universal isomorphisms TD, δ, and ν(d1, d2) are
sufficient to find all the isomorphic moduli spaces of sheaves with primitive
isotropic Mukai vectors for a general K3 surface.

Corollary 2.2. Let X be a general algebraic K3 surface and v, v′ primitive
isotropic Mukai vectors on X. Then MX(v) ∼= MX(v′) if and only if there
exists an isomorphism between MX(v) and MX(v′) that is a composite of the
universal isomorphisms TD, δ and ν(d1, d2).

Proof. The following considerations are similar to the more general and diffi-
cult calculations of [14], Section 2.3. We have

N(X) = ZH =
{
x ∈ H2(X, Z)

∣
∣ x · H2,0(X) = 0

}
,

and the transcendental lattice of X is

T (X) = N(X)⊥H2(X,Z).

The lattices N(X) and T (X) are orthogonal complements to one another
in the unimodular lattice H2(X, Z), and N(X) ⊕ T (X) ⊂ H2(X, Z) is a
sublattice of finite index; here and in what follows ⊕ denotes the orthogonal
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sum. Since H2(X, Z) is unimodular and N(X) = ZH a primitive sublattice,
there exists u ∈ H2(X, Z) such that u · H = 1.

We denote the dual lattices by N(X)∗ = Z · 1
2rsH ⊂ N(X) ⊗ Q and

T (X)∗ ⊂ T (X)⊗ Q. Then H2(X, Z) ⊂ N(X)∗ ⊕ T (X)∗, and

u = 1
2rsH + t∗(H) with t∗(H) ∈ T (X)∗.

The element

t∗(H) mod T (X) ∈ T (X)∗/T (X) ∼= Z/2rsZ

is canonically defined by the primitive element H ∈ H2(X, Z). Obviously,

H2(X, Z) =
[
N(X), T (X), u = 1

2rsH + t∗(H)
]
,

where [ · ] means “generated by.” The element t∗(H) mod T (X) distinguishes
the different polarized K3 surfaces with Picard number one and the same tran-
scendental periods; more precisely, for another polarized K3 surface (X ′, H ′)
with transcendental periods

(
T (X ′), H2,0(X ′)

)
, the periods of X and X ′ are

isomorphic (and then X ∼= X ′ by the global Torelli theorem [15]) if and only
if there exists an isomorphism of transcendental lattices φ : T (X) ∼= T (X ′)
such that (φ ⊗ C)(H2,0(X)) = H2,0(X ′) and

(φ ⊗ Q)(t∗(H)) mod T (X) = t∗(H ′) mod T (X ′).

Thus the calculation of the periods of X in terms its transcendental periods
is contained in the following statement.

Proposition 2.3. Let (X, H) be a polarized K3 surface with a primitive po-
larization H such that H2 = 2rs. Assume that N(X) = ZH (i.e., ρ(X) = 1).
Then

H2(X, Z) =
[
N(X) = ZH, T (X), 1

2rsH + t∗(H)
]
,

where t∗(H) ∈ T (X)∗. The element t∗(H) mod T (X) is uniquely defined.
Moreover, H2,0(X) ⊂ T (X)⊗C. (More generally, for ρ(X) ≥ 1, one should

replace T (X) by H⊥
H2(X,Z).)

Let Y = MX(r, H, s). We calculate the periods of Y . The Mukai lattice of
X is defined by

H̃(X, Z) = H0(X, Z) + H2(X, Z) + H4(X, Z) = U ⊕ H2(X, Z),

where + is direct sum, and ⊕ the orthogonal direct sum of lattices. Here
H2(X, Z) is the cohomology lattice of X with its intersection pairing and
U = Ze1 + Ze2 is the hyperbolic plane, where canonically Ze1 = H0(X, Z)
and Ze2 = H4(X, Z) with the Mukai pairing e2

1 = e2
2 = 0 and e1 · e2 = −1.

We have
v = re1 + se2 + H. (4)
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By Mukai [5], we have
H2(Y, Z) = v⊥/Zv, (5)

and H2,0(Y ) = H2,0(X) by the canonical projection. This determines the
periods of the K3 surface Y and its isomorphism class (by the global Torelli
theorem [15]). We calculate the periods of Y as in Proposition 2.3.

Any element f of H̃(X, Z) can be written in a unique way as

f = xe1 + ye2 + α 1
2rsH + βt∗, with x, y, α ∈ Z and t∗ ∈ T (X)∗.

We have f · v = −sx− ry + α, so f ∈ v⊥ if and only if −sx− ry + α = 0, and
then

f = xe1 + ye2 + (sx + ry) 1
2rsH + βt∗.

By Proposition 2.3, f ∈ H̃(X, Z) if and only if t∗ = (sx+ry)t∗(H) mod T (X).
Since T (X) ⊂ v⊥, we can write

f = xe1 + ye2 + (sx + ry)
(

1
2rsH + t∗(H)

)
mod T (X) with x, y ∈ Z.

Set
c = (r, s), a = r/c, b = s/c.

Then (a, b) = 1. We have h = −ae1 + be2 ∈ v⊥ and h2 = 2ab = 2rs/c2.
Moreover, h ⊥ T (X) and then h ⊥ H2,0(X). Thus

h mod Zv = −ae1 + be2 mod Zv (6)

gives an element of the Picard lattice N(Y ). We have

e1 =
v − ch − H

2r
, e2 =

v + ch − H

2s
.

It follows that

f =
sx + ry

2rs
v +

c(−sx + ry)
2rs

h + (sx + ry)t∗(H) mod T (X), (7)

for some x, y ∈ Z. Here f mod Zv gives all the elements of H2(Y, Z), and
H2,0(Y ) = H2,0(X) ⊂ T (X) ⊗ C.

It follows that f mod Zv ∈ T (Y ) (where Zv gives the kernel of v⊥ and
H2(Y, Z) = v⊥/Zv) if and only if −sx + ry = 0. Equivalently, −bx + ay = 0,
or (since (a, b) = 1) x = az, y = bz, where z ∈ Z, and then

(sx + ry)t∗(H) = z(sa + rb)t∗(H) = z 2abc t∗(H) for some z ∈ Z.

It follows that
T (Y ) = [T (X), 2abc t∗(H)]. (8)

Since t∗(H) mod T (X) has order 2rs = 2abc2 in T (X)∗/T (X) ∼= Z/2rsZ, it
follows that [T (Y ) : T (X)] = c (this is a result of Mukai [5]).
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By (7) and (8), we have f ⊥ H2,0(Y ) = H2,0(X), that is, f mod Zv ∈
N(Y ), if and only if

f =
sx + ry

2rs
v +

c(−sx + ry)
2rs

h,

where sx + ry ≡ 0 mod 2abc. Thus acx + bcy ≡ 0 mod 2abc and ax + by ≡ 0
mod 2ab. Since (a, b) = 1, it follows that x = bx̃, y = aỹ, where x̃, ỹ ∈ Z, and
x̃ + ỹ ≡ 0 mod 2. Thus ỹ = −x̃ + 2k, where k ∈ Z. It follows that

f =
k

c
v + (−x̃ + k)h, for some x̃, k ∈ Z.

Thus h mod Zv generates the Picard lattice N(Y ), and we can consider h
mod Zv as the polarization of Y (or −h mod Zv, which makes no difference
from the point of view of periods and isomorphism class of Y ).

Let us calculate t∗(h) ∈ T (Y )∗. Then in (7) we should take an element f
with c(−sx+ ry)/(2rs) = 1/(2ab). Thus −sx+ ry = c or −bx+ ay = 1. Then

t∗(h) = (sx + ry)t∗(H) mod T (Y ).

By (8), T (Y )∗ = [T (X), ct∗(H)] and T (Y )∗/T (Y ) ∼= Z/2abZ.
Thus t∗(h) = (bx + ay)

(
ct∗(H) mod [T (X), 2ab (ct∗(H))]

)
is defined by

m ≡ bx + ay mod 2ab. Since −bx + ay = 1, we have m ≡ 2ay − 1 ≡ −1
mod 2a and m ≡ 2bx + 1 ≡ 1 mod 2b. This defines m mod 2ab uniquely.
We call such m mod 2ab a Mukai element (compare with [6]). Thus m(a, b)
mod 2ab is called a Mukai element if

m(a, b) ≡ −1 mod 2a and m(a, b) ≡ 1 mod 2b. (9)

Thus t∗(h) = m(a, b) ct∗(H) mod [T (X), 2abc t∗(H)].
Thus we have finally completed the calculation of the periods of Y in terms

of those of X (see Proposition 2.3).

Proposition 2.4. Let (X, H) be a polarized K3 surface with a primitive po-
larization H such that H2 = 2rs with r, s > 0. Assume that N(X) = ZH
(i.e., ρ(X) = 1). Let Y = MX(r, H, s) and set c = (r, s) and a = r/c, b = s/c.

Then N(Y ) = Zh, where h2 = 2ab,

T (Y ) = [T (X), 2abc t∗(H)], T (Y )∗ = [T (X), ct∗(H)],

and t∗(h) mod T (Y ) = m(a, b)ct∗(H) mod T (Y ), where m(a, b) mod 2ab is
the Mukai element: m(a, b) ≡ −1 mod 2a, m(a, b) ≡ 1 mod 2b. Thus

H2(Y, Z) =
[
N(Y ), T (Y ), 1

2abh + t∗(h)
]

=
[
Zh, [T (X), 2abc t∗(H)], 1

2abh + m(a, b)ct∗(H)
]
.

(More generally, when ρ(X) ≥ 1, one should replace T (X) by H⊥
H2(X,Z) and

T (Y ) by h⊥
H2(Y,Z).)
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Now let us prove Theorem 2.1. We need to recover r and s from the
periods of Y . By Proposition 2.4, we have N(Y ) = Zh, where h2 = 2ab. Thus
we recover ab. Since c2 = 2rs/2ab, we recover c.

We have (T (X)⊗Q, H2,0(X)) ∼= (T (Y )⊗Q, H2,0(Y )). Since X is general,
there exists only one such isomorphism up to multiplication by ±1. It follows
that (up to multiplication by ±1) there exists only one embedding T (X) ⊂
T (Y ) of lattices that identifies H2,0(X) and H2,0(Y ). By Proposition 2.4,
then t∗(h) mod T (Y ) = m̃(a, b)ct∗(H) mod T (Y ), where m̃(a, b) ≡ ±m(a, b)
mod 2ab and m(a, b) is the Mukai element. Assume pα | ab and pα+1 does not
divide ab, where p is prime and α > 0. Then m̃(a, b) ≡ ±1 mod 2pα. Clearly,
only one sign ±1 is possible here; we denote by a the product of all the pα

having m̃(a, b) ≡ −1 mod 2pα, and by b the product of all the other pα having
m̃(a, b) ≡ 1 mod 2pα. If a > b, we must exchange a and b. Thus we recover a
and b and the reduced primitive Mukai vector (r, H, s) = (ac, H, bc) such that
the periods of MX(r, H, s) are isomorphic to the periods of Y .

This completes the proof. �
Remark 2.5. Propositions 2.3 and 2.4 and their proofs remain valid for
any algebraic K3 surface X and a primitive element H ∈ N(X) with
H2 = 2rs �= 0, provided we replace T (X) by the orthogonal complement
H⊥

H2(X,Z).

As an example of an application of Theorem 2.1, let us consider the case
that MX(r, l, s) ∼= X . It is known (see for example [17]) that for l ∈ N(X)
and ±l2 > 0, one has the Tyurin isomorphism

Tyu = Tyu(±l) : MX(±l2/2, l,±1) ∼= X . (10)

The existence of such an isomorphism follows at once from the global Torelli
theorem for K3 surfaces [15] using Propositions 2.3, 2.4 and Remark 2.5.

Thus for a general K3 surface X and a primitive isotropic Mukai vector
v = (r, H, 1), where r = H2/2, we have MX(r, H, 1) ∼= X . By Theorem 2.1,
we then obtain the following result, where we also use the well-known fact
that Aut

(
T (X), H2,0(X)

)
= ±1 if ρ(X) = 1 (see (33) below); it is sufficient

to consider the automorphism group over Z for this result.

Corollary 2.6. Let X be an algebraic K3 surface with ρ(X) = 1, i.e.,
N(X) = ZH, where H is a primitive polarization of X. Let v = (r, H, s)
be a reduced primitive isotropic Mukai vector on X (see (3)), i.e., 0 < r ≤ s.

Then MX(v) ∼= X if and only if v = (1, H, H2/2), i.e., r = 1, s = H2/2.

3 Isomorphisms Between MX(v) and X for X
a General K3 Surface with ρ(X) = 2

We now consider general K3 surfaces X with ρ(X) = rankN(X) = 2; here
a K3 surface X is called general with its Picard lattice if the transcendental
periods have trivial automorphism group, Aut

(
T (X), H2,0(X)

)
= ±1.
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For ρ(X) ≥ 2, we do not know when MX(v1) ∼= MX(v2) for primitive
isotropic Mukai vectors v1 and v2 on X . But we still have the universal iso-
morphisms TD, D ∈ N(X), the reflection δ, the isomorphism ν(d1, d2), and
the Tyurin isomorphism Tyu considered in Section 2. They are universal iso-
morphisms, i.e., they are defined for all K3 surfaces.

We start by reviewing the results of [14] and [3], where we found all the
primitive isotropic Mukai vectors v with MX(v) ∼= X for general K3 surfaces
X with ρ(X) = 2. In particular, we know when MX(v1) ∼= MX(v2) in the case
that both moduli spaces are isomorphic to X . The result is that MX(v) ∼= X
if and only if there exists such an isomorphism that is a composite of the
universal isomorphisms δ, TD, and ν(d1, d2) between moduli of sheaves over
X and the Tyurin isomorphism Tyu between moduli of sheaves over X and X
itself. More exactly, the results are as follows.

Using the universal isomorphisms TD, we can assume that the primitive
isotropic Mukai vector is

v = (r, H, s), with r > 0, s > 0 and H2 = 2rs.

(We can even assume that H is ample.) We are interested in the case that
Y = MX(r, H, s) ∼= X .

We set c = (r, s) and a = r/c, b = s/c. Then (a, b) = 1. Suppose that H

is divisible by d ∈ N, where H̃ = H/d is primitive in N(X). The primitivity
of v = (r, H, s) means that (r, d, s) = (c, d) = 1. Since H̃2 = 2abc2/d2 is even,
we have d2 | abc2. Since (a, b) = (c, d) = 1, it follows that d = dadb, where
da = (d, a), db = (d, b), and we can introduce integers

a1 =
a

d2
a

and b1 =
b

d2
b

,

obtaining H̃2 = 2a1b1c
2. Define γ = γ(H̃) by H̃ ·N(X) = γZ, in other words,

H · N(X) = γdZ. Clearly, γ | H̃2 = 2a1b1c
2. We write

n(v) = (r, s, dγ) = (r, s, γ). (11)

By Mukai [5], we have T (X) ⊂ T (Y ), and

n(v) = [T (Y ) : T (X)], (12)

where T (X) and T (Y ) are the transcendental lattices of X and Y . Thus

Y ∼= X =⇒ n(v) = (r, s, dγ) = (c, dγ) = (c, γ) = 1. (13)

Assuming that Y ∼= X and then n(v) = 1, we have γ | 2a1b1, and we can
introduce

γa = (γ, a1), γb = (γ, b1), and γ2 =
γ

γaγb
. (14)

Clearly, γ2 | 2.
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In [14], Theorem 4.4, we obtained the following general theorem (see
important particular cases of it in [1], [2], and [13]). In the theorem, we use
the notation c, a, b, d, da, db, a1, b1 introduced above. The same notation
γ, γa, γb, and γ2 as above is used when we replace N(X) by a 2-dimensional
primitive sublattice N ⊂ N(X), e.g., H̃ · N = γZ with γ > 0. We write
detN = −γδ and Zf(H̃) for the orthogonal complement to H̃ in N .

Theorem 3.1. Let X be a K3 surface and H a polarization of X such that
H2 = 2rs, where r, s ∈ N. Assume that the Mukai vector (r, H, s) is primitive.
Let Y = MX(r, H, s) be the K3 surface that is the moduli of sheaves over X

with isotropic Mukai vector v = (r, H, s). Let H̃ = H/d for d ∈ N be the
corresponding primitive polarization.

We have Y ∼= X if there exists h̃1 ∈ N(X) such that H̃ and h̃1 belong to
a 2-dimensional primitive sublattice N ⊂ N(X) such that H̃ ·N = γZ, γ > 0,
(c, dγ) = 1, and the element h̃1 belongs to the a-series or the b-series described
below:

h̃1 belongs to the a-series if

h̃2
1 = ±2b1c, H̃ · h̃1 ≡ 0 mod γ(b1/γb)c, f(H̃) · h̃1 ≡ 0 mod δb1c (15)

(where γb = (γ, b1));
h̃1 belongs to the b-series if

h̃2
1 = ±2a1c, H̃ ·h̃1 ≡ 0 mod γ(a1/γa)c, f(H̃)·h̃1 ≡ 0 mod δa1c (16)

(where γa = (γ, a1)).

These conditions are necessary to have Y ∼= X if ρ(X) ≤ 2 and X is a
general K3 surface with its Picard lattice.

In [3], we interpreted Theorem 3.1 geometrically as follows.

Theorem 3.2. Let X be a K3 surface and H a polarization of X such that
H2 = 2rs, where r, s ∈ N. Assume that the Mukai vector (r, H, s) is primitive.
Let Y = MX(r, H, s) be the K3 surface that is the moduli of sheaves over X

with isotropic Mukai vector v = (r, H, s). Let H̃ = H/d with d ∈ N be the
corresponding primitive polarization.

Assume that there exists h̃1 ∈ N(X) such that H̃ and h̃1 belong to a
2-dimensional primitive sublattice N ⊂ N(X) such that H̃ · N = γZ, γ > 0,
(c, dγ) = 1, and the element h̃1 belongs to the a-series or to the b-series
described in (15) and (16) above.

If h̃1 belongs to the a-series, then

h̃1 = d2H̃ + b1cD for some d2 ∈ N, D ∈ N, (17)
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which defines an isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · δ · ν(da, db)−1 : Y = MX(r, H, s) ∼= X. (18)

If h̃1 belongs to the b-series, then

h̃1 = d2H̃ + a1cD for some d2 ∈ N, D ∈ N, (19)

which defines an isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · ν(da, db)−1 : Y = MX(r, H, s) ∼= X. (20)

Since the conditions of Theorems 3.1, 3.2 are necessary for general K3
surfaces with ρ(X) ≤ 2, we obtain the following result.

Theorem 3.3. Let X be a K3 surface with a polarization H such that H2 =
2rs, r, s ≥ 1 and the Mukai vector (r, H, s) is primitive. Let Y = MX(r, H, s)
be the moduli space of sheaves over X with isotropic Mukai vector (r, H, s).
Assume that ρ(X) ≤ 2 and X is general with its Picard lattice. Let H̃ = H/d,
d ∈ N, be the corresponding primitive polarization.

Then Y = MX(r, H, s) is isomorphic to X if and only if there exist d2 ∈ N

and D ∈ N = N(X) such that either

h̃1 = d2H̃ + b1cD has h̃2
1 = ±2b1c, (21)

defining an isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · δ · ν(da, db)−1 : Y = MX(r, H, s) ∼= X, (22)

or
h̃1 = d2H̃ + a1cD has h̃2

1 = ±2a1c, (23)

defining an isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · ν(da, db)−1 : Y = MX(r, H, s) ∼= X. (24)

Theorem 2.1 clarifies the appearance of the isomorphisms TD, δ, ν(d1, d2),
and Tyu in these results for Picard number 2. These are universal and exist for
all K3 surfaces; moreover, they are all the isomorphisms that are necessary to
obtain all isomorphisms from moduli spaces MX(v) to X for isotropic Mukai
vectors v on a general K3 surface X (i.e., with ρ(X) = 1). Thus the appearance
of the isomorphisms TD, δ, ν(d1, d2), and Tyu is very natural in the above
results.

Remark 3.4. For Picard number ρ(X) = 1, Theorems 3.1, 3.2, and 3.3 are
formally equivalent to Corollary 2.6. In fact, for ρ(X) = 1 we have γ =
2a1b1c

2. Thus (γ, c) = 1 implies that c = 1. Then γ = 2a1b1 and γ2 = 2,
γa = a1, γb = b1. The conditions of Theorem 3.1 can be satisfied only for
h̃1 = H̃ , which implies that a1 = 1 for the a-series and b1 = 1 for the b-series
(we can formally put f(H̃) = 0).

Thus for ρ(X) = 1 we have Y ∼= X if and only if c = 1 and either a1 = 1
or b1 = 1. This is equivalent to Corollary 2.6.
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Under the conditions of Theorem 3.1, assume that for a primitive rank-2
sublattice N ⊂ N(X) an element h̃1 ∈ N with h̃2

1 = ±2b1c belongs to the
a-series. This is equivalent to the condition (17) of Theorem 3.2. Replacing
h̃1 by −h̃1 if necessary, we see that (17) is equivalent to

h̃1 = d2H̃ + b1cD̃, d2 ∈ Z, D̃ ∈ N. (25)

Since H̃ is primitive, the lattice N has a basis H̃ , D ∈ N , i.e., N = [H̃, D].
Since H̃ · N = γZ where (γ, c) = 1, the matrix of N in this basis is

(
H̃2 H̃ · D

H̃ · D D2

)

=
(

2a1b1c
2 γk

γk 2t

)
, (26)

where k, t ∈ Z and γ | 2a1b1, (γ, c) = 1 and (2a1b1c
2/γ, k) = 1.

The condition of a-series (25) is then equivalent to the existence of h̃1 ∈
[H̃, b1cN ] = [H̃, b1cD] with h̃2

1 = ±2b1c. Thus the lattice N1 = [H̃, b1cD] with
the matrix (

2a1b1c
2 b1cγk

b1cγk b2
1c

22t

)
(27)

must have h̃1 with h̃2
1 = ±2b1c. Writing h̃1 as h̃1 = xH̃ + yb1cD, we obtain

that the quadratic equation a1cx
2 + γkxy + b1cty

2 = ±1 must have an in-
tegral solution. Similarly, for b-series we obtain the equation b1cx

2 + γkxy
+a1cty

2 = ±1. Thus we finally obtain a very elementary reformulation of the
above results.

Lemma 3.5. For the matrix (26) of the lattice N in Theorems 3.1, 3.2, and
3.3, the conditions of a-series are equivalent to the existence of an integral
solution of the equation

a1cx
2 + γkxy + b1cty

2 = ±1, (28)

and for b-series of the equation

b1cx
2 + γkxy + a1cty

2 = ±1. (29)

This calculation has a very important corollary. Assume that p | γb =
(γ, b1) for a prime p. Then (28) gives a congruence a1cx

2 ≡ ±1 mod p. Thus
±a1c is a quadratic residue mod p. Similarly, for the equation (29), we obtain
that ±b1c is a quadratic residue mod p for a prime p | γa = (γ, a1).

We thus obtain an important necessary condition for Y = MX(v) ∼= X
when ρ(X) = 2.

Theorem 3.6. Let X be a K3 surface with a polarization H such that H2 =
2rs, r, s ≥ 1, and the Mukai vector (r, H, s) is primitive. Let Y = MX(r, H, s)
be the moduli of sheaves over X with isotropic Mukai vector (r, H, s). Assume
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that ρ(X) ≤ 2 and X is general with its Picard lattice. Let H̃ = H/d, d ∈ N,
be the corresponding primitive polarization, H̃ · N(X) = γZ and (γ, c) = 1.

Then Y = MX(r, H, s) ∼= X implies that for one of ± either

∀ p | γb =⇒
(±a1c

p

)
= 1 (30)

or

∀p | γa =⇒
(±b1c

p

)
= 1. (31)

Here p means any prime, and
(

x
2

)
= 1 means that x ≡ 1 mod 8.

Thus if for either choice of ±1,

∃p | γb such that
(±a1c

p

)
= −1 and ∃p | γa such that

(±b1c

p

)
= −1,

(32)
then Y = MX(r, H, s) is not isomorphic to X for X a K3 surface with
ρ(X) ≤ 2 that is general with its Picard lattice.

Example 3.7. Assume that a1 = 5, b1 = 13, c = 1, and γ = 5 · 13 (or
γ = 2 · 5 · 13). Then (32) obviously holds. Thus for

v = (5, H, 13), H2 = 2 · 5 · 13, and γ = 5 · 13 or 2 · 5 · 13

(then H is always primitive), for any general K3 surface X with ρ(X) = 2
and any H ∈ N(X) with H2 = 2 ·5 ·13 and H ·N(X) = γZ, the moduli space
Y = MX(v) is not isomorphic to X .

There are many such Picard lattices given by (26).

In [13], we showed that any primitive isotropic Mukai vector v = (r, H, s)
with H2 = 2rs and γ = 1 is realized by a general K3 surface with Picard
number 2 and Y = MX(v) ∼= X . Theorem 3.6 may possibly give all the
necessary conditions for a similar result to hold for any γ; we hope to return
to this problem later.

The importance of these results for general K3 surfaces X with ρ(X) = 2 is
that they describe all divisorial conditions on moduli of polarized K3 surfaces
that imply Y = MX(r, H, s) ∼= X. Let us consider the corresponding simple
general arguments.

It is well known (see [9] and [11] where, it seems, it was first observed)
that Aut

(
T (X), H2,0(X)

) ∼= Cm is a finite cyclic group of order m > 1, and
its representation in T (X) ⊗ Q is the sum of irreducible representations of
dimension φ(m) (where φ is the Euler function). H2,0(X) is a line in one of
the eigenspaces of Cm. In particular, φ(m) | rankT (X), and if m > 2 the
dimension of moduli of these X is equal to

dim Mod(X) = rankT (X)/φ(m) − 1. (33)

If m = 2, then dim Mod(X) = rankT (X)− 2.
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Consider polarized K3 surfaces (X, H) with H2 = 2rs and a primitive
Mukai vector (r, H, s) with r, s > 0. Assume Y = MX(r, H, s) ∼= X .

If ρ(X) = 1, then rankT (X) = 21 and φ(m) | 21. Since 21 is odd, it
follows that m = 2. Thus Aut

(
T (X), H2,0(X)

)
= ±1, and then c = 1 and

either a1 = 1 or b1 = 1 by Corollary 2.6 (or Remark 3.4). By the specialization
principle (see [14], Lemma 2.1.1), then Y ∼= MX(r, H, s) for all K3 surfaces X
and a Mukai vector with these invariants:

c = 1 and either a1 = 1 or b1 = 1. (34)

Now assume that (r, H, s) does not satisfy (34), but Y = MX(r, H, s) ∼= X ;
then ρ(X) �= 1 by Corollary 2.6. Hence ρ(X) ≥ 2 and

dim Mod(X) ≤ 20 − ρ(X) ≤ 18.

Thus a divisorial condition on moduli or polarized K3 surfaces (X, H) to have
Y = MX(r, H, s) ∼= X means that ρ(X) = 2 for a general K3 surface satisfying
this condition. All these conditions are described by the isomorphism classes
of H ∈ N(X) where rankN(X) = 2 and H ∈ N(X) satisfies Theorems 3.1,
3.2, or 3.3 (which in this case are all equivalent). If H ∈ N ⊂ N(X) is a prim-
itive sublattice of rank two and H ∈ N satisfies the equivalent Theorems 3.1
and 3.2, then Y = MX(r, H, s) ∼= X by the specialization principle. This
means that X belongs to the closure of the divisor defined by the moduli of
polarized K3 surfaces (X ′, H) with Picard lattice N(X ′) = N of rank two.
Thus Y ′ = MX(r, H, s) ∼= X ′ because X ′ satisfies the divisorial condition
H ∈ N , where H ∈ N ⊂ N(X ′).

By Theorem 3.6 we obtain the following result.

Theorem 3.8. For r, s ≥ 1 let

v = (r, H, s), d, H2 = 2rs, (c, d) = 1, d2|ab

be a type of primitive isotropic Mukai vector on K3, and γ | 2a1b1 and
(γ, c) = 1.

Then if (32) holds, there does not exist any divisorial condition on mod-
uli of polarized K3 surfaces (X, H) that implies Y = MX(r, H, s) ∼= X
and H · N(X) = γZ. Thus these K3 surfaces have codimension ≥ 2 in the
19-dimensional moduli space of polarized K3 surfaces (X, H).

For example, this holds for r = 5, s = 13 (then H is primitive and d = 1),
and γ = 5 · 13 (or γ = 2 · 5 · 13).

In the next section, we will show that the numerical example of
Theorem 3.8 can be satisfied by K3 surfaces X with ρ(X) = 3 and
Y = MX(r, H, s) ∼= X . Thus these K3 surfaces define a 17-dimensional sub-
manifold in the moduli of polarized K3 surfaces that does not extend to a
divisor in moduli preserving the condition Y = MX(r, H, s) ∼= X .
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4 Isomorphisms Between MX(v) and X for a General
K3 Surface X with ρ(X) ≥ 3

Here we show that it is interesting and nontrivial to generalize the results of
the previous section to ρ(X) ≥ 3.

Let K = [e1, e2, (e1 + e2)/2] be a negative definite 2-dimensional lattice
with e2

1 = −6, e2
2 = −34, and e1 ·e2 = 0. Then ((e1 + e2)/2)2 = (−6−34)/4 =

−10 is even, and the lattice K is even. Since 6x2 + 34y2 = 8 has no integral
solutions, it follows that K has no elements δ ∈ K with δ2 = −2. Consider
the lattice

S = ZH ⊕ K,

which is the orthogonal sum of ZH with H2 = 2 · 5 · 13 and the lattice K. By
standard results about K3 surfaces, there exists a polarized K3 surface (X, H)
with the Picard lattice S and the polarization H ∈ S. (E.g., see [15] and [9].)
We then have H · S = 2 · 5 · 13 Z. Thus γ = 2 · 5 · 13.

Let Y = MX(5, H, 13). We have the following result, perhaps the main
result of the paper.

Theorem 4.1. For any polarized K3 surface (X, H) with N(X) = S, where S
is the hyperbolic lattice of rank 3 defined above, one has Y =MX(5, H, 13) ∼= X,
which gives a 17-dimensional moduli space MS of polarized K3 surfaces (X, H)
with Y = MX(5, H, 13) ∼= X.

On the other hand, MS is not contained in any 18-dimensional moduli
space MN of polarized K3 surfaces (X ′, H) where H ∈ N(X ′) = N ⊂ S is a
primitive sublattice of rankN = 2 and MX′(5, H, 13) ∼= X ′. Thus MS is not
defined by any divisorial condition on moduli of polarized K3 surfaces (X, H),
implying MX(5, H, 13) ∼= X. (That is, MS is not a specialization of a divisor
with this condition.)

Proof. For this case, c = (5, 13) = 1 and (γ, c) = 1. By Mukai’s results (5)
and (12), the transcendental periods (T (X), H2,0(X)) and (T (Y ), H2,0(Y ))
are then isomorphic. The discriminant group AS = S∗/S of the lattice S =
T (X)⊥ is a cyclic group Z/(2 · 5 · 13 · 3 · 17). Thus the minimal number
l(AS) of generators of AS is one. Thus l(AS) ≤ rankS − 2. By [10], Theorem
1.14.4, a primitive embedding of T (X) into the cohomology lattice of K3
(which is an even unimodular lattice of signature (3, 19)) is then unique, up to
isomorphisms. It follows that the isomorphism between transcendental periods
of X and Y can be extended to an isomorphism of periods of X and Y . By
the global Torelli theorem for K3 surfaces [15], the K3 surfaces X and Y are
isomorphic. (These considerations are now standard.)

Let H ∈ N ⊂ S be a primitive sublattice with rankN = 2. Since H · S =
H · HZ = 2 · 5 · 13Z, it follows that H · N = 2 · 5 · 13Z, and the invariant γ =
2 · 5 · 13 is the same for any sublattice N ⊂ S containing H . By Theorem 3.8,
MX′(r, H, s) is not isomorphic to X ′ for any general K3 surface (X ′, H) with
N(X ′) = N .

This completes the proof. �
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Similar arguments can be used to prove the following general statement for
ρ(X) ≥ 12. This shows that there are many cases in which Y = MX(r, H, s) ∼=
X , that do not follow from divisorial conditions on moduli. Its first statement
is well known (see for example [1], Proposition 2.2.1).

Theorem 4.2. Let (X, H) be a polarized K3 surface with ρ(X) ≥ 12, and
for r, s ≥ 1, let (r, H, s) be a primitive isotropic Mukai vector on X, i.e.,
H2 = 2rs and (c, d) = 1. Assume that H · N(X) = γZ.

Then Y = MX(r, H, s) ∼= X if (γ, c) = 1 (Mukai’s necessary condition).
On the other hand, if (32) holds, the isomorphism Y = MX(r, H, s) ∼= X

does not follow from any divisorial condition on moduli of polarized K3 sur-
faces. That is, for any primitive 2-dimensional sublattice H ∈ N ⊂ N(X),
there exists a polarized K3 surface (X ′, H) with N(X ′) = N such that
Y ′ = MX′(r, H, s) is not isomorphic to X ′.

Proof. Since ρ(X) ≥ 12,

rankT (X) ≤ 22 − 12 = 10 and l(AT (X)) ≤ rankT (X) = 10.

Since N(X) and T (X) are orthogonal complements to one another in the
unimodular lattice H2(X, Z), it follows that AN(X)

∼= AT (X) and l(AN(X)) ≤
10 ≤ rankN(X)−2. By [10], Theorem 1.14.4, a primitive embedding of T (X)
into the cohomology lattice of K3 is then unique up to isomorphisms. As in
the proof of Theorem 4.1, it follows that Y ∼= X .

We prove the second statement. Since H ·N(X) = γZ and H ∈ N ⊂ N(X),
it follows that H ·N = γ(N)Z, where γ | γ(N). Let X ′ be a general K3 surface
with N(X ′) = N . If (c, γ(N)) > 1, then Y ′ = MX′(r, H, s) is not isomorphic
to X ′ because [T (Y ′) : T (X ′)] = (c, γ(N)) > 1 by Mukai’s result (12). Assume
(c, γ(N)) = 1. Obviously, (32) for γ implies (32) for γ(N). By Theorem 3.6,
Y ′ = MX′(r, H, s) is not isomorphic to X ′.

This completes the proof. �
Theorems 4.1 and 4.2 can be unified in the answer to the following ques-

tion, which is the most general known: when does Y = MX(r, H, s) ∼= X
hold for any primitive isotropic Mukai vector on X satisfying Mukai’s nec-
essary condition? We read that two lattices have the same genus if they are
isomorphic over R and rings Zp of p-adic integers for all prime p.

Theorem 4.3. Let X be a K3 surface. Assume that the Picard lattice N(X)
is unique in its genus, and the natural homomorphism

O(N(X)) → O(qN(X))

is surjective, where qN(X) is the discriminant quadratic form of N(X). Equiv-
alently, any isomorphism of the transcendental periods of X and another K3
surface extends to an isomorphism of the periods of X and the other K3
surface.
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Then for any primitive isotropic Mukai vector v = (r, H, s) on X such that
(c, γ) = 1 (Mukai’s necessary condition), one has Y = MX(r, H, s) ∼= X.

On the other hand, if X is general with its Picard lattice and (32) holds,
then the isomorphism Y = MX(r, H, s) ∼= X does not follow from any divi-
sorial condition on moduli of polarized K3 surfaces (X, H). That is, for any
primitive 2-dimensional sublattice H ∈ N ⊂ N(X), there exists a polarized
K3 surface (X ′, H) with N(X ′) = N such that Y ′ = MX′(r, H, s) is not
isomorphic to X ′.

These results and those of Section 3 suggest the following general notions.
Let r ∈ N and s ∈ Z. We formally put H2 = 2rs and introduce c = (r, s) and
a = r/c, b = s/c. Let d ∈ N, (d, c) = 1 and d2 | ab. We call

(r, H, s), H2 = 2rs, d, (35)

a type of primitive isotropic Mukai vector for a K3. Clearly, a Mukai vector of
type (35) on a K3 surface X is just an element H ∈ N(X) such that H2 = 2rs

and H̃ = H/d is primitive. As above, we introduce da = (d, a), db = (d, b) and
put a1 = a/d2

a, b1 = b/d2
b . Then H̃2 = 2a1b1c

2.
Let N be a lattice that embeds primitively into the Picard lattice of some

algebraic K3 surface (equivalently, there exists a Kähler K3 surface with this
Picard lattice). It is equivalent to say that N is either negative definite, or
negative semi-definite with 1-dimensional kernel, or hyperbolic (i.e., N has
signature (1, ρ − 1)), and has a primitive embedding into an even unimod-
ular lattice of signature (3, 19). Moreover, we say that N is an abstract K3
Picard lattice (or just a K3 Picard lattice). Let H ∈ N ; we say that H ∈ N
is a polarized (abstract) K3 Picard lattice (despite the fact that H2 can be
nonpositive). We consider such pairs up to natural isomorphism. Another po-
larized K3 Picard lattice H ′ ∈ N ′ is isomorphic to H ∈ N if there exists an
isomorphism f : N ∼= N ′ of lattices with f(H) = H ′.

Definition 4.4. Fix a type (35) of primitive isotropic Mukai vector of K3.
A polarized K3 Picard lattice H ∈ N is critical for self-correspondences of a
K3 surface via moduli of sheaves for the type (35) of Mukai vector if H2 = 2rs

and H̃ = H/d ∈ N is primitive and H ∈ N satisfies the following two condi-
tions:

(a) For any K3 surface X such that H ∈ N ⊂ N(X) is a primitive sublattice,
one has Y = MX(r, H, s) ∼= X .

(b) The above condition (a) does not hold if one replaces H ∈ N by H ∈ N1

for any primitive sublattice H ∈ N1 ⊂ N of N of strictly smaller rank
rankN1 < rankN .

In what follows we abbreviate this, saying that H ∈ N is a critical polarized
K3 Picard lattice for the type (35).

On the one hand [14], Theorem 2.3.3 gives a criterion for a polarized
K3 Picard lattice H ∈ N , for a general (and then any) K3 surface with
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H ∈ N = N(X) to have Y = MX(r, H, s) ∼= X . On the other hand, by the
specialization principle (Lemma 2.1.1 in [14]), if this criterion is satisfied, then
Y = MX(r, H, s) ∼= X for any K3 surface X such that H ∈ N ⊂ N(X) is a
primitive sublattice. Thus for the problem of describing, in terms of Picard
lattices, all K3 surfaces X such that Y = MX(r, H, s) ∼= X , the main problem
is as follows.

Problem 4.5. For a given type of primitive isotropic Mukai vector (35) for a
K3, describe all critical polarized K3 Picard lattices H ∈ N (for the problem
of self-correspondences of a K3 surface via moduli of sheaves).

Now we have the following examples of solutions of this problem.
By (10), or Corollary 2.6, or Remark 3.4, we have classified the critical

polarized K3 Picard lattices of rank one.

Example 4.6. For the type (r, H, s), H2 = 2rs, d where c = 1 and either
a1 = 1 or b1 = ±1, we obtain that N = ZH̃ where H̃2 = 2a1b1 gives all
critical polarized K3 Picard lattices H = dH̃ ∈ N of rank one.

Example 4.7. For the type of Mukai vector that is different from Example
4.6, classification of the critical polarized K3 Picard lattices of rank 2 is given
by equivalent Theorems 3.1, 3.2, and 3.3.

Example 4.8. For the Mukai vector of type (5, H, 13) with H2 = 2 · 5 · 13
and d = 1, the polarized Picard lattice H ∈ S of Theorem 4.1 is critical with
rankS = 3, by Theorem 4.1. Obviously, there are plenty of similar examples.
It would be very interesting and nontrivial to find all critical polarized K3
Picard lattices H ∈ S of rank 3.

Example 4.9. By Theorem 4.2, we should expect that there exist critical
polarized K3 Picard lattices of the rank more than 3. On the other hand, the
same Theorem 4.2 gives that the rank of a critical polarized K3 Picard lattice
is ≤ 12.

Theorem 4.10. For any type (r, H, s), H2 = 2rs, and d of a primitive
isotropic Mukai vector of K3, the rank of a critical polarized K3 Picard lattice
H ∈ N is at most 12: we have rankN ≤ 12.

Proof. Let H ∈ N be a critical polarized K3 Picard lattice of this type
and rankN ≥ 13. Let us take any primitive sublattice H ∈ N ′ ⊂ N of
rankN ′ = 12 such that H̃ ·N ′ = H̃ ·N . Obviously, it does exist. Let X be an
algebraic K3 surface such that H ∈ N ′ ⊂ N(X). Then rankN(X) ≥ 12 and
Y = MX(r, H, s) ∼= X by Theorem 4.2.

Then the condition (b) of Definition 4.4 is not satisfied, and we get a
contradiction. Thus rankN ≤ 12.

This completes the proof. �
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It would be very interesting to give an exact estimate for the rank of
critical polarized K3 Picard lattices.

Problem 4.11. For a given primitive isotropic Mukai vector of K3 of type
(35), give the exact estimate of rankH? of a critical polarized K3 Picard
lattice H ∈ N of this type (for the problem of self-correspondences of K3
surfaces).

We don’t know the answer to this problem for any type (35) different from
Example 4.6.

5 Composing Self-Correspondences of a K3 Surface
via Moduli of Sheaves and the General Classification
Problem

We want to interpret the above results in terms of the action of cor-
respondences on the 2-dimensional cohomology lattice of a K3 surface.
Moreover, we attempt to formulate the general problem of classification of
self-correspondences of a K3 surface via moduli of sheaves.

Let v = (r, H, s) be a primitive isotropic Mukai vector on a K3 surface X
and Y = MX(r, H, s). Write πX , πY for the projections of X × Y to X and
Y . By Mukai [5], Theorem 1.5, the algebraic cycle

ZE = (π∗
X

√
tdX) · ch(E) · (π∗

Y

√
tdY )/σ(E) (36)

arising from the quasi-universal sheaf E on X × Y defines an isomorphism of
the full cohomology groups

fZE : H∗(X, Q) → H∗(Y, Q), t �→ πY ∗(ZE · π∗
X t) (37)

with their Hodge structures (see [5], Theorem 1.5, for details). Moreover,
according to Mukai, it defines an isomorphism of lattices (an isometry)

fZE : v⊥ → H4(Y, Z) ⊕ H2(Y, Z),

where fZE (v) = w ∈ H4(Y, Z) is the fundamental cocycle, and the orthogonal
complement v⊥ is taken in the Mukai lattice H̃(X, Z). This gives the relation
(5) already used in Section 2.

In particular, composing fZE with the projection π : H4(Y, Z)⊕H2(Y, Z) →
H2(Y, Z) gives an embedding of lattices

π · fZE : H⊥
H2(X,Z) → H2(Y, Z)

that extends to an isometry

f̃ZE : H2(X, Q) → H2(Y, Q) (38)
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of quadratic forms over Q by Witt’s theorem. If H2 = 0, this extension is
unique.

If H2 �= 0, there are two such extensions, differing by ±1 on ZH . We agree
to take

f̃ZE (H̃) = ch, (39)

where h is defined in (6), and we use Proposition 2.4 to relate the periods of
X and Y .

The Hodge isometry (38) can be viewed as a minor modification of Mukai’s
algebraic cycle (36) to give an isometry in H2. It is also clearly defined by
some algebraic cycle, because it changes the Mukai isomorphism (37) in only
the algebraic part.

By Proposition 2.4, the isomorphism f̃ZE is given by embeddings

H̃⊥ ⊂ h⊥ =
[
H̃⊥, 2a1b1ct

∗(H̃)
]
, ZH̃ ⊂ Zh, H̃ = ch,

and H2,0(X) = H2,0(Y ).
(40)

This identifies the quadratic forms H2(X, Q) = H2(Y, Q) over Q, and the
lattices H2(X, Z), H2(Y, Z) as two sublattices of this. Let

O(H2(X, Q))0 =
{
f ∈ O(H2(X, Q))

∣
∣ f |T (X) = ±1

}

∼= O(N(X) ⊗ Q) × {±1T (X)

}
,

and
O(H2(X, Z))0 = O(H2(X, Z)) ∩ O(H2(X, Q))0.

By the global Torelli theorem for K3 surfaces of [15], we obtain at once the
following:

Proposition 5.1. If a K3 surface X is general with its Picard lattice, then
Y = MX(r, H, s) ∼= X if and only if there exists an automorphism φ(r, H, s) ∈
O(H2(X, Q))0 such that φ(H2(X, Z)) = H2(Y, Z).

If Y ∼= X we can give the following definition.

Definition 5.2. If Y = MX(r, H, s) ∼= X and X is general with its Picard
lattice, then the isomorphism of Proposition 5.1,

φ(r, H, s) mod O(H2(X, Z))0 ∈ O(H2(X, Q))0/O(H2(X, Z))0,

is called the action on H2(X, Q) of the self-correspondence of a general K3 sur-
face X (general with its Picard lattice) via moduli of sheaves Y = MX(r, H, s)
with primitive isotropic Mukai vector v = (r, H, s).

By the global Torelli theorem for K3 surfaces [15], the group O(H2(X, Z))0
mod ±1 can be considered as generated by correspondences defined by graphs
of automorphisms of X and by the reflections in elements δ ∈ N(X) with
δ2 = −2 given by sδ : x �→ x+(x·δ)δ for x ∈ H2(X, Z). By the Riemann–Roch
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theorem for K3 surfaces, ±δ contains an effective curve E. If Δ ⊂ X × X is
the diagonal, the effective 2-dimensional algebraic cycle Δ + E ×E ⊂ X ×X
acts as the reflection sδ in H2(X, Z) (I learned this from Mukai [8]). Thus
considering actions of correspondences modulo O(H2(X, Z)) mod ± 1 is very
natural.

Consider the Tyurin isomorphism (10) defined by the Mukai vector v =
(±H2/2, H,±1), where H ∈ N(X) has ±H2 > 0. Then MX(±H2/2, H,±1) ∼=
MX(±H̃2/2, H̃,±1), where H̃ = H/d is primitive.

Then c = 1, a1 = ±H̃2/2 and b1 = ±1, m(a1, b1) ≡ −1 mod 2a1b1, h = H̃ ,
and we have

H2(X, Z) =
[
ZH̃, H̃⊥, H̃ + t∗(H̃)

]
and H2(Y, Z) =

[
ZH̃, H̃⊥, H̃ − t∗(H̃)

]
.

Then the reflection sH̃ in H̃ ,

sH̃(x) = x − 2(x · H̃)H̃

H̃2
for x ∈ H2(X, Q),

belongs to O(H2(X, Q))0, and sH̃(H2(X, Z)) = H2(Y, Z). Moreover, the re-
flections sH and sH̃ coincide.

This gives the following result.

Proposition 5.3. For a K3 surface X and H ∈ N(X) with ±H2 > 0, the
Tyurin isomorphism

MX(±H2, H,±1) ∼= X

defines a self-correspondence of X with the action

sH mod O(H2(X, Z)0),

where sH is the reflection in H.

By classical and well-known results, their composites generate the full
group O(H2(X, Q))0 mod ± 1.

5.1 General Problem of Classifying Self-Correspondences
of a K3 Surface via Moduli of Sheaves

We need some notation. For a primitive sublattice N ⊂ N(X), we introduce

O(N ⊗ Q)0 =
{

f ∈ O(H2(X, Q))
∣
∣ f |N⊥

H2(X,Z) = ±1
}

and
O(N)0 = O(H2(X, Z)) ∩ O(N ⊗ Q)0.

We denote by [ · ]pr ⊂ L the primitive sublattice of L generated by.
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Let X be a K3 surface that is general with its Picard lattice N(X). From
our current point of view, the problem of classifying self-correspondences of
X via moduli of sheaves consists of the following problems:

(1) Find all primitive isotropic Mukai vectors (r, H, s) on X such that Y =
MX(r, H, s) ∼= X .

(2) For a primitive isotropic Mukai vector (r, H, s) as in (1), find all primitive
critical polarized Picard sublattices H ∈ N(r, H, s) ⊂ N(X).

For either of these problems, the action φ(r, H, s) of Definition 5.2 can be
taken to be in O(N(r, H, s) ⊗ Q)0. We denote it by φN(r,H,s), and it looks
like a reflection with respect to N(r, H, s). For two critical polarized Picard
sublattices H ∈ N(r, H, s) and H ′ ∈ N ′(r, H, s) as in (2), the automorphisms
φN(r,H,s) and φN ′(r,H,s) differ by an automorphism in O(H2(X, Z))0.

(3) The structures (1) and (2) are important for the following reason: given
any two primitive isotropic Mukai vectors (r, H, s) and (r′, H ′, s′) as in
(1) and two critical polarized Picard sublattices H ∈ N(r, H, s) and
H ′ ∈ N(r′, H ′, s′) for them as in (2), the isomorphism

φ(r′, H ′, s′) ◦ φ(r, H, s)−1 : MX(r, H, s) → MX(r′, H ′, s′)

comes from K3 surfaces with the Picard sublattice

[N(r, H, s) + N(r′, H ′, s′)]pr ⊂ N(X),

and it can be viewed as a natural isomorphism between these moduli.
(4) All these generators φN(r,H,s) mod O(N(r, H, s))0 can be considered as

natural generators for self-correspondences of X via moduli of sheaves,
together with automorphisms of X and reflections sδ, δ ∈ N(X), and
δ2 = −2. They and their relations are the natural subject to study.

Problems (1)–(4) are solved for ρ(X) = 1 and 2 in Sections 2 and 3. The
results of Section 4 show that these problems are very nontrivial for ρ(X) ≥ 3.

As an example, take a general K3 surface X with the rank-3 Picard lattice
N(X) = S of Theorem 4.1 (or any other Picard lattice of rank 3 satisfying
Theorem 4.3). Let v = (r, H, s) be a primitive isotropic Mukai vector on X .
Then Y = MX(r, H, s) ∼= X if and only if (γ, c) = 1, where H̃ · S = γZ.
Moreover, we have three cases:

(a) If c = 1 and either a1 = 1 or b1 = ±1 (Tyurin’s case), then the critical
sublattice is N(v) = ZH̃ ; it has rank one and is unique. The corresponding
φN(v) is equal to sH mod O(H2(X, Z))0.

(b) If v = (r, H, s) is different from (a), but the critical sublattice N(v) has
rank two (the divisorial case), then all critical sublattices N(v) are prim-
itively generated by H̃ and h̃1 ∈ [H̃, a1cN(X)] with h̃2

1 = ±2a1c or
h̃1 ∈ [H̃, b1cN(X)] with h̃2

1 = ±2b1c (see the theorems of Section 3).
All these N(v) give automorphisms φN(v) that differ by elements of
O(H2(X, Z))0.
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(c) If v = (r, H, s) is different from (a) and (b), then the critical sublattice
N(v) = N(X) has rank 3. These cases really happen by Theorem 4.1. We
get φN(v) mod O(H2(X, Z))0.

Any two v1, v2 satisfying one of these conditions (a–c), together with any
two critical sublattices N(v1), N(v2) for them, generate natural isomorphisms
φN(v2) ◦ φ−1

N(v1) between the corresponding moduli spaces of sheaves over X

(all of which are isomorphic to X), which are specializations of isomorphisms
from the Picard sublattice [N(v1) + N(v2)]pr ⊂ N(X).
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Summary. In moduli spaces of abelian varieties and of p-divisible groups in charac-
teristic p we have various foliations and statifications. In this paper we compute the
dimensions of central leaves. We give three different proofs of these results, where ev-
ery proof presents a different flavour of this beautiful topic. Components of Newton
polygon strata for one fixed Newton polygon may have various different dimensions,
according to properties of the polarizations considered; we show which dimensions
do appear for a given Newton polygon. Hence dimensions of isogeny leaves can be
computed this way.

Key words: moduli of abelian varieties, p-divisible groups, stratifications
and foliations of moduli spaces, truncated Barsotti-Tate groups
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Introduction

In the theory of foliations in moduli spaces of abelian varieties, as developed
in [32], we study central leaves. Consider a p-divisible group X0 over a field
K, and let Def(X0) = Spf(Γ ) and D(X0) = Spec(Γ ). Consider g ∈ Z>0 and
consider Ag⊗Fp, the moduli space of polarized abelian varieties (in this paper
to be denoted by Ag); choose [(A, λ)] = x ∈ A and (A, λ)[p∞] = (X,λ). Here
is the central question of this paper: determine

unpolarized case: what is dim(CX0(D(X0)));

polarized case: what is dim(C(X,λ)(A))?

For the notation C−(−) see 1.7. We give a combinatorial description of certain
numbers associated with a Newton polygon, such as “dim(−),” “sdim(−),”
“cdu(−),” “cdp(−)”. We show that these give the dimension of a stratum or
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a leaf, in the unpolarized and in the principally polarized cases. We give three
different proofs that these formulas for the dimension of a central leaf are
correct:

dim(CY (D(X))) = cdu(β), β := N (Y ), see Theorem 4.5, and

dim
(C(X,λ)(Ag)

)
= cdp(ξ), ξ := N (X), see Theorem 5.4.

One proof is based on the theory of minimal p-divisible groups, as devel-
oped in [36], together with a result by T. Wedhorn, see [42], [43]; this was the
proof I first had in mind, written up in the summer of 2002.

The second proof is based on the theory of Chai about Serre-Tate coordi-
nates, a generalization from the ordinary case to central leaves in an arbitrary
Newton polygon stratum, see [2]. This generalization was partly stimulated
by the first proof, and the question to “explain” the dimension formula that
came out of my computations.

A third proof, in the unpolarized case and in the polarized case (p > 2), is
based on recent work by E. Viehmann, see [40], [41], where the dimension of
Rapoport-Zink spaces, and hence the dimension of isogeny leaves, is computed
in the (un)polarized case; the almost product structure of an open Newton
polygon stratum by central and isogeny leaves, as in [32], see 7.17, finishes a
proof of the results.

These results enable us to answer a question, settle a conjecture, about bounds
of the dimension of components of a Newton polygon stratum; see Section 6.

These results find their natural place in joint work with Ching-Li Chai, which
we expect finally to appear in [5]. I thank Chai for the beautiful things I
learned from him, in particular for his elegant generalization of Serre-Tate
canonical coordinates used in the present paper.

The results of this paper were already announced earlier, e.g., see [32] 3.17,
[1] 7.10, 7.12.

Historical remarks. Moduli for polarized abelian varieites in positive charac-
teristic were studied in fundamental work by Yuri Manin, see [21]. That paper was
and is a great source of inspiration.

In summer 2000 I gave a talk in Oberwolfach on foliations in moduli spaces of

abelian varieties. After my talk, in the evening of Friday 4-VIII-2000, Bjorn Poonen

asked me several questions, especially related to the problem I raised to determine

the dimensions of central leaves. Our discussion resulted in Problem 21 in [8]. His

expectations coincided with computations I had made of these dimensions for small

values of g. Then I jumped to the conclusion what those dimensions for an arbitrary

Newton polygon could be; that is what was proved later, and reported on here,

see 4.5, 5.4. I thank Bjorn Poonen for his interesting questions; our discussion was

valuable for me.
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A suggestion to the reader. The results of this paper are in sections 4,
5, and 6; we refer to the introductions of those sections. The reader could
start reading those sections and refer to other sections whenever definitions
or results are needed. In Section 1 we explain some of the concepts used in
this paper. In sections 2 and 3 we describe preliminary results used in the
proofs. In Section 7 we list some of the well-known methods and results we
need for our proofs.

Various strata NP - EO - Fol. Here is a short survey of strata and folia-
tions, to be defined, explained, and studied below. For an abelian variety A
with a polarization (sometimes supposed to be principal) we can study the
following objects:

NP A �→ A[p∞] �→ A[p∞]/ ∼k over an algebraically closed field:
the isogeny class of its p-divisible group; by the Dieudonné - Manin theorem,
see 7.2, we can identify this isogeny class of p-divisible groups with the Newton
polygon of A. We obtain the Newton polygon strata, see 1.4 and 7.8.

EO (A, λ) �→ (A, λ)[p] �→ (A, λ)[p]/ ∼=k over an algebraically
closed field: we obtain EO-strata; see [30] and 1.6. Important feature (Kraft,
Oort): the number of geometric isomorphism classes of group schemes of a
given rank annihilated by p is finite.

Fol (A, λ) �→ (A, λ)[p∞] �→ (A, λ)[p∞]/ ∼=k over an algebraically
closed field: we obtain a foliation of an open Newton polygon stratum; see [32]
and 1.7. Note that for f < g − 1 the number of (central) leaves is infinite.

Note: X ∼= Y ⇒ N (X) = N (Y ); conclusion: every central leaf in Fol is
contained in exactly one Newton polygon stratum in NP.
Note: X ∼= Y ⇒ X [p] = Y [p]; conclusion: every central leaf in Fol is
contained in exactly EO-stratum in EO.

However, a NP-stratum may contain many EO-strata, and an EO-stratum
may intersect several NP-strata, see 8.6. Whether an EO-stratum equals a
central leaf is studied and answered in the theory of minimal p-divisible groups,
see 1.5 and 7.5.

Isogeny correpondences are finite-to-finite above central leaves, but may
blow up and down subsets of isogeny leaves; see 7.23 and Section 6.

1 Notations

We fix a prime number p. All base schemes and base fields will be in char-
acteristic p. We write K for a field, and we write k and Ω for algebraically
closed fields of characteristic p.
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We study the (coarse) moduli scheme Ag of polarized abelian varieties of
dimension g in characteristic p; this notation is used instead of Ag ⊗ Fp. We
write Ag,1 for the moduli scheme of principally polarized abelian varieties of
dimension g in characteristic p. We will use letters like A, B to denote abelian
varieties.

For the notion of a p-divisible group we refer to the literature, e.g., [13];
see also [3], 1.18. Instead of the term p-divisible group, the equivalent notion
“Barsotti-Tate group” is used. We will use letters like X , Y to denote a
p-divisible group. For an abelian variety A, or an abelian scheme, and a prime
number p we write A[p∞] = ∪iA[pi] = X for its p-divisible group.

For finite group schemes and for p-divisible groups over a perfect field in
characteristic p we use the theory of covariant Dieudonné modules. In [21] the
contravariant theory was developed. However, it turned out that the covariant
theory was easier to handle in deformation theory; see [30], 15.3 for references.

A warning and a remark on notation. Under the covariant Dieudonné mod-
ule theory the Frobenius morphism on a group scheme is transformed into the
Verschiebung homomorphism on its Dieudonné module; this homomorphism
is denoted by V ; the analogous statement for V being transformed into F ; in
shorthand notation D(F ) = V and D(V ) = F , see [30], 15.3. In order not to
confuse F on group schemes and the Frobenius on modules we have chosen
the notation F and V . An example: for an abelian variety A over a perfect
field, writing D(A[p∞]) = M we have D(A[F ]) = M/VM .

1.1. Newton polygons. Suppose we are given integers h, d ∈ Z≥0; here h =
“height,” d = “dimension.” In case of abelian varieties we will choose h = 2g,
and d = g. A Newton polygon γ (related to h and d) is a polygon γ ⊂ Q × Q

(or, if you wish, in R × R), such that

• γ starts at (0, 0) and ends at (h, d);
• γ is lower convex;
• any slope β of γ has the property 0 ≤ β ≤ 1;
• the breakpoints of γ are in Z × Z; hence β ∈ Q.
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Note that a Newton polygon determines (and is determined by)

β1, · · · , βh ∈ Q with 0 ≤ β1 ≤ · · · ≤ βh ≤ 1 ↔ ζ.
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Sometimes we will give a Newton polygon by data
∑

i (mi, ni); here mi, ni ∈
Z≥0, with gcd(mi, ni) = 1, and mi/(mi + ni) ≤ mj/(mj + nj) for i ≤ j,
and h =

∑
i (mi + ni), d =

∑
imi. From these data we construct the

related Newton polygon by choosing the slopesmi/(mi+ni) with multiplicities
hi = mi + ni. Conversely clearly any Newton polygon can be encoded in a
unique way in such a form.

Let ζ be a Newton polygon. Suppose that the slopes of ζ are 1 ≥ β1 ≥ · · · ≥
βh ≥ 0; this polygon has slopes βh, · · · , β1 (nondecreasing order), and it is
lower convex. We write ζ∗ for the polygon starting at (0, 0) constructed using
the slopes β1, · · · , βh (nonincreasing order); note that ζ∗ is upper convex, and
that the beginning and end point of ζ and of ζ∗ coincide. Note that ζ = ζ∗ iff
ζ is isoclinic (i.e., there is only one slope).

We say that ζ is symmetric if h = 2g is even and the slopes 1 ≥ β1 ≥ · · · ≥
βh ≥ 0 satisfy βi = 1 − βh−i+1 for 1 ≤ i ≤ h. We say that ζ is supersingular,
and we write ζ = σ, if all slopes are equal to 1/2. A symmetric Newton
polygon is isoclinic this is the case iff the Newton polygon is supersingular.

1.2. We will associate to a p-divisible group X over a field K its Newton poly-
gon N (X). This will be the “Newton polygon of the characteristic polynomial
of Frobenius on X”; this terminology is incorrect in case K is not the prime
field Fp. Here is a precise definition.

Let m,n ∈ Z≥0; we are going to define a p-divisble group Gm,n. We write
G1,0 = Gm[p∞] and G0,1 = Qp/Zp. For positive, coprime values of m and n

we choose a perfect field K, we write Mm,n = RK/RK(Vn −Fm), where RK
is the Dieudonné ring. We define Gm,n by D(Gm,n) = Mm,n. Note that this
works over any perfect field. This p-divisible group is defined over Fp and we
will use the same notation over any field K, instead of writing (Gm,n)K =
(Gm,n)Fp ⊗ K. Note that Mm,n/V·Mm,n is a K-vector space of dimension
m. Hence the dimension of Gm.n is m. We see that the height of Gm,n is
h = m+ n. We can show that under Serre-duality we have Gtm,n = Gn,m.

We define N (Gm,n) as the polygon that has slope m/(m + n) with mul-
tiplicity h = m + n. Note this is the F -slope on Gm,n, and it is the V-slope
on Mm,n. Indeed, over Fp the Frobenius F : Gm,n → Gm,n has the property
Fm+n = FmV m = pm.

Let X be a p-divisble group over a field K. Choose an algebraic closureK ⊂ k.
Choose an isogeny Xk ∼ Πi (Gmi,ni); see 7.1 and 7.2. We define N (X) as
the “union” of these N (Gmi,ni), i.e., take the slopes of these isogeny factors,
and order all slopes in nondecreasing order. By the Dieudonné-Manin theo-
rem we know that over an algebraically closed field there is a bijective corre-
spondence between isogeny classes of p-divisible groups on the one hand, and
Newton polygons on the other hand; see 7.2. For an abelian variety A we write
N (A) instead of N (A[p∞]).



470 Frans Oort

For a commutative group scheme G over a field K we define the number
f = f(G) by Hom(μp, Gk) ∼= (Z/p)f , where k is an algebraically closed field.
For a p-divisble group X , respectively an abelian variety A, the number f(X),
respectively f(A), is called the p-rank. Note that in these cases this number
is the multiplicity of the slope equal to one in the Newton polygon.

For an abelian variety A, its Newton polygon ξ is symmetric; by definition this
means that the multiplicity of the slope β in ξ is the same as the multiplicity
of the slope 1 − β. This was proved by Manin over finite fields. The general
case follows from the duality theorem [28] 19.1; we see that At[p∞] = A[p∞]t;
using, moreover, (Gm,n)t = Gn,m and the definition of the Newton polygon
of a p-divisible group, we conclude that N (A) is symmetric.

1.3. The graph of Newton polygons. For Newton polygons we introduce
a partial ordering.

We write ζ1  ζ2 if ζ1 is “below” ζ2,
i.e., if no point of ζ1 is strictly above ζ2.
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1.4. Newton polygon strata. If S is a base scheme and X → S is a p-
divisible group over S, we write

Wζ(S) = {s ∈ S | N (Xs) ≺ ζ} ⊂ S

and
W0
ζ (S) = {s ∈ S | N (Xs) = ζ} ⊂ S.

Grothendieck showed in his Montreal notes [11] that “Newton polygons go up
under specialization.” The proof was worked out by Katz, see 7.8.

1.5. Minimal p-divisible groups. See [36] and [37]. In the isogeny class of
Gm,n we single out one p-divisible group Hm,n specifically; for a description
see [15], 5.3 - 5.7; the p-divisible group Hm,n is defined over Fp, it is isogenous
with Gm,n, and

the endomorphism ring End(Hm,n ⊗ k) is the maximal order
in the endomorphism algebra End(Hm,n ⊗ k) ⊗ Q;

these conditions determine Hm,n ⊗ Fp up to isomorphism. This p-divisible
group Hm,n is called minimal.
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One can define Hm,n over Fp by defining its (covariant) Dieudonné module
by D(H(m,n),Fp

) = M(m,n),Fp
; this module has a basis as a free module over

W = W∞(Fp) given by {e0, · · · , eh−1}, where h = m + n, write p·ei = ei+h
inductively for all i ≥ 0, there is an endomorphism π ∈ End(H(m,n),Fp

) with
π(ei) = ei+1, and πn = F ∈ End(H(m,n),Fp

) and πm = V ∈ End(H(m,n),Fp
),

hence πh = p ∈ End(H(m,n),Fp
).

If ζ =
∑

i(mi, ni) we write H(ζ) :=
∑
iHmi,ni , the minimal p-divisible

group with Newton polygon equal to ζ. We write G(ζ) = H(ζ)[p], the minimal
BT1 group scheme attached to ζ.

In case μ ∈ Z>0 we write

Hd,c = (Hm,n)
μ
, where d := μm, c := μn, gcd(m,n) = 1.

For further information see 7.3.

1.6. EO-strata. Basic reference: [30]. We say that G is a BT1 group scheme
or a p-divisible group truncated at level one if is is annihilated by p, and the
image of V and the kernel of F are equal; for more information see [13], 1.1.
Let X → S be a p-divisble group over a base S (in characteristic p). We write

SG(S) := {s ∈ S | ∃Ω Xs[p] ⊗Ω ∼= G⊗Ω}.
This is called the Ekedahl-Oort stratum defined by X/S. This is a locally
closed subset in S. Polarizations can be considered, but are not taken into
account in the definition of SG(−). See [30], Section 9, for the case of principal
polarizations.

Let G be a BT1 group scheme over an algebraically closed field that is sym-
metric in the sense of [30], 5.1, i.e., there is an isomorphism G ∼= GD. To G we
attached in [30], 5.6, an elementary sequence, denoted by ES(G). An impor-
tant point is the fact (not easy in case p = 2) that a “principally polarized”
BT1 group scheme over an algebraically closed field is uniquely determined
by this sequence; this was proved in [30], Section 9; in case p > 2 the proof
is much easier, and the fact holds in a much more general situation, see [26],
Section 5, in particular Corollary 5.4.

1.7. Foliations. Basic reference: [32]. Let X be a p-divisible group over a
field K and let Y → S be a p-divisible group over a base scheme S. We write

CX(S) = {s ∈ S | ∃Ω, ∃Ys ⊗Ω ∼= X ⊗Ω};
here Ω is an algebraically closed field containing κ(s) and K. Consider a
quasi-polarized p-divisible group (X,λ) over a field. Let (Y, μ) → S be a
quasi-polarized p-divisible group over a base scheme S. We write

C(X,λ)(S) = {s ∈ S | ∃Ω, ∃(Y, μ)s ⊗Ω ∼= (X,λ) ⊗Ω}.
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In [4] we find a more precise definition, which also takes care of the behavior
of the polarization at places prime to p. See 7.12 for the fact that any central
leaf is closed in an open Newton polygon stratum.

We write IX(S) and I(X,λ)(S) for the notion of isogeny leaves introduced in
[32], Section 4, see 4.10 and 4.11. We recall the definition in the polarized case
S = Ag⊗Fp. Let x = [(X,λ)] be given over a perfect field. Write Hα(x) for the
set of points in Ag⊗Fp connected to x by iterated αp-isogenies (over extension
fields). In general this is not a closed subset of Ag⊗Fp. However, the union of
all irreducible components of Hα(x) containing x is a closed subset; this subset
with the induced reduced scheme structure is denoted by I(X,λ)(Ag ⊗Fp); for
the definition in the general (un)polarized case, and for existence theorems,
see [32], Section 4. Note that formal completion of I(X,λ)(Ag ⊗ Fp) at the
point x is the reduced, reduction mod p of the related Rapoport-Zink space;
an analogous statement holds for the unpolarized case; for the definition of
these spaces see [39], Section 2 for the unpolarized case and Chapter 3 for the
polarized case.

1.8. Isogeny correspondences. Suppose X → S and Y → T are p-divisible
groups. Consider triples (f : U → S, g : U → T, ψ : Xf → Yg), where
f : U → X and g : U → T are morphisms, and where ψ : Xf = X ×U S →
Yg = Y ×U S is an isogeny. An object representing such triples in the category
of schemes over S × T is called an isogeny correspondence.

Consider polarized abelian schemes (A, μ) → S and (B, ν) → T . Triples
(f : U → X, g : U → T, ψ : Af → Bg) such that f∗(μ) = g∗(ν)
define isogeny correspondences between families of polarized abelian varieites.
These are also called Hecke correspondences. See [9], VII.3, for a slightly more
general notion. See [3] for a discussion.

One important feature in our discussion is the fact that isogeny corre-
spondence are finite-to-finite above central leaves. But note that isogeny cor-
respondences in general blow up and down as correspondences in (Ag ⊗Fp)×
(Ag ⊗ Fp).

1.9. Local deformation spaces. Let X0 be a p-divisible group over a field
K. We write Def(X0) for the local deformation space in characteristic p of X0.
By this we mean the following. Consider all local Artin rings R with a residue
class homomorphism R → K such that p·1 = 0 in R. Consider all p-divisble
groups X over Spec(R) plus an identification X ⊗RK = X0. This functor on
the category of such algebras is prorepresentable. The prorepresenting formal
scheme is denoted by Def(X0).

The prorepresenting formal p-divisible group can be written as X →
Def(X0) = Spf(Γ ). This affine formal scheme comes from a p-divisible
group over Spec(Γ ), e.g., see [14], 2.4.4. This object will be denoted by
X → Spec(Γ ) =: D(X0).

An analogous definition can be given for the local deformation space
Def(X0, μ0) = Spf(Γ ) of a quasi-polarized p-divisible group. In this case we
will write D(X0, μ0) = Spec((Γ ).
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Consider the local deformation space Def(A0, μ0) of a polarized abelian
variety (A0, μ0). By the Chow-Grothendieck algebraization theory, see [10],
III1.5.4, we know that there exists a polarized abelian scheme (A, μ) →
D(A0, μ0) := Spec(Γ ) of which the corresponding formal scheme is the prorep-
resenting object of this deformation functor.

2 Computation of the dimension of automorphism
schemes

Consider minimal p-divisible groups as in 1.5, and their BT1 group schemes
Hd,c[p]. Consider homomorphism group schemes between such automorphism
group schemes and their dimensions. These automorphism group schemes are
as defined in [42], 5.7, and the analogous definition for homomorphism group
schemes. In this section we compute the dimensions of Hom-schemes and of
Aut-schemes. In order to compute these dimensions it suffices to compute the
dimension of such schemes of homomorphisms and automorphisms between
Dieudonné modules, as explained in [42], 5.7. These computations use methods
of proof, as in [23], Sections 4 and 5, [25], [37], 2.4. We carry out the proof of
the first proposition, and leave the proof of the second, which is also a direct
verification, to a future publication.

2.1. Proposition. Suppose a, b, d, c ∈ Z≥0; assume that a/(a+b) ≥ d/(d+c).
Then:

dim (Hom(Ha,b[p], Hd,c[p])) = bd = dim (Hom(Hd,c[p], Ha,b[p)) ;

dim (Aut(Hd,c[p])) = dc.

In fact, much more is true in case of minimal p-divisible groups. For I, J ∈ Z>0

we have

dim(Hom(Ha,b[pI ], Hd,c[pJ ])) = dim(Hom(Ha,b[p], Hd,c[p])).

Proof. If a′ = μ·a and b′ = μ·b, we have Ha′,b′ ∼= (Ha,b)μ. Hence it suffices to
compute these dimensions in case gcd(a, b) = 1 = gcd(d, c). From now on we
suppose we are in this case. We distinguish three possibilities:

(1) 1/2 ≥ a/(a+ b);
(2) a/(a+ b) ≥ 1/2d/(d+ c):
(3) a/(a+ b) ≥ d/(d+ c) ≥ 1/2.

We will see that a proof of (2) is easy. Note that once (1) is proved, (3)
follows by duality; indeed, (Ha,b)D = Hb,a. Most of the work will be devoted
to proving the case (1).

We remind the reader of some notation introduced in [37]. Finite words with
letters F and V are considered. They are treated in a cyclic way, finite cyclic
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words repeat itself infinitely often. For such a word w a finite BT1 group
scheme Gw over a perfect field K is constructed by taking a basis for D(Gw) =∑

a≤i≤hK.zi of the same cardinality as the number h of letters in w. For
w = L1 · · ·Lh we define

Li = F ⇒ Fzi = zi+1, Vzi+1 = 0;

Li = V ⇒ Vzi+1 = zi, Fzi = 0;
i.e., the Li = F acting clockwise in the circular set {zi, · · · , zh} and V acting
counterclockwise; see [37], page 282. A circular word w defines in this way a
(finite) BT1 group scheme. Moreover, over k a word w is indecomposable iff
Gw is indecomposable, see [37], 1.5. By a theorem of Kraft, see [37] , 1.5, this
classifies all BT1 group schemes over an algebraically closed field.

We define a finite string σ : w′ → w between words as a pair
((VsF), (FsV)) (see [37] page 283), where s is a finite noncyclic word,
(VsF) is contained in w′ and (FsV) is contained in w; note that “contained
in w” means that it is a subword of · · ·www · · · . In [37], 2.4, we see that for
indecomposable words w′, w a k-basis for Hom(Gw′ , Gw) can be given by the
set of strings from w′ to w. From this we conclude that

dim (Hom(Gw′ , Gw)) equals the number of strings from w′ to w.

For Gw′ = Ha,b we write D(Ha,b) = W ·e0 ⊕ · · · ⊕W ·ea+b−1, with Fei = ei+b
and Vei = ei+a. For Gw′= = Hd,c we write

D(Ha,b) = W ·f0 ⊕ · · · ⊕W ·fd+c−1,

Fei = ei+c,Vei = ei+d.

The number of symbols V in w′ equals b; we choose some numbering {V |
V in w′} = {ν1, · · · , νb}. Also we choose {F | F in w} = {ϕ1, · · · , ϕd}.

Claim. For indices 1 ≤ i ≤ b and 1 ≤ j ≤ d there exists a unique noncyclic
finite word s such that ((νi s F), (ϕj s V)) is a string from w′ to w. This gives
a bijective map

{ν1, · · · , νb} × {ϕ1, · · · , ϕd} −→ {string w′ → w}.
Note that the claim proves the first equality in 2.1.

Proof of the Claim, case (2). In this case b ≥ a and d ≥ c. We see that
every F in w′ is between letters V , and every V in w is between letters F .
This shows that a string ((VsF), (FsV)) can appear in this case only with the
empty word s, and that any (νi F) and any j gives rise to a unique string
((νi F), (ϕj V)). Hence the claim follows in this case.

Proof of the Claim, case (1). First we note that for a finite word t of length
at least the greatest common divisor C of a + b and d + c there is no string
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((VtF), (FtV)) from w′ to w. Indeed, after applying the first letter, and then
C letters in t we should obtain the same action on the starting base elements
of the string in D(Gw′) and in D(Gw), a contradiction with V �= F .

We start with some V in w′ and some F in w and inductively consider
words t such that (Vt) is a subword of w′. We check whether (Ft) is a subword
of w. We know that this process stops. Let s be the last word for which
Fs is a subword of w. We are going to show that under these conditions
((VsF), (FsV)) is a string from w′ to w. Indeed, we make the following claim

(1a) If (VtV) is contained in w′ and (Ft) is contained in w then (FtV) is
contained in w.

Note that this fact implies the claim; indeed, the first time the inductive
process stops it is at (VsF) in w′ and (FsV) in w.

Suppose that in (1a) the letter F appears γ times in t and V appears δ times
in t. We see that

V(ex)tV = eN =⇒ N = x− 2a+ γb− δa ≥ 0.

Let us write

F(fy)t = fM ; hence M = y + c+ γc− δd.

We show that
N ≥ 0 &

d

c
≥ a

b
=⇒ M > d.

Indeed, since x ≤ a+ b− 1, we conclude that

N ≥ 0 ⇒ a+ b− 1 − 2a+ γb− δa ≥ 0 ⇒

⇒ (γ + 1)b ≥ (δ + 1)a ⇒ d

c
≤ a

b
<
γ + 1
δ + 1

.

Hence
M = y + (γ + 1)c− δa ≥ (γ + 1)c− δa > d.

We see that F(fM ) is not defined; since (Ft) is contained in w, say F(fz)t =
fy, we see that F(fz)tV is defined, i.e., (FtV) is contained in w. We see that
claim (1a) follows. This ends the proof of the first equality in all cases.

For the proof of the second equality we number the symbols F in w′, number
the symbols V in w, and perform a proof analogous to the proof of the first
equality. This shows the second equality.

For the third equality we observe that dim (Aut(Hd,c[p])) equals the num-
ber of finite strings involved, and the result follows. This ends the proof of the
proposition. �
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2.2. Proposition Suppose d, c ∈ Z≥0 with d > c. Let λ be a principal quasi-
polarization on Hd,c ×Hc,d. Then

dim(Aut((Hd,c ×Hc,d, λ)[p])) = c(c+ 1) + dc.

Moreover
dim(Aut(((H1,1)r, λ)[p])) =

1
2
·r(r + 1)

for a principal quasi-polarization λ.

The proof is a direct verification, with methods as in [23], Sections 4 and 5,
[25], [37], 2.4. �

3 Serre-Tate coordinates

See [2] and see [1], §7. For moduli of ordinary abelian varieties there exist
canonical Serre-Tate parameters. Ching-Li Chai showed how to generalize
that concept from the ordinary case to Serre-Tate parameters on a central
leaf in Ag,1. Results in this section are due to Chai.

3.1. The Serre-Tate theorem. Let A0 be an abelian variety, and
X0 = A0[p∞]. We obtain a natural morphism

Def(A0)
∼−→ Def(X0), A �→ A[p∞];

a basic theorem of Serre and Tate says that this is an isomorphism. An
analogous statement holds for (polarized abelian variety) �→ (quasi-polarized
p-divisible group). See [20], 6.ii; a proof first appeared in print in [22]; also see
[7], [16]. See [3], Section 2.

3.2. Let (A, λ) be an ordinary principally polarized abelian variety; write
(X,λ) = (A, λ)[p∞]. Deformations of (A, λ) are described by extensions of
(X,λ)et by (X,λ)loc. This shows that Def(X,λ) has the structure of a formal
group. Let n ∈ Z≥3 be not divisible by p and let [(A, λ, γ)] = a ∈ Ag,1,n ⊗Fp.
Write (Ag,1,n ⊗ Fp)

/a for the formal completion at a. Using the Serre-Tate
theorem, see 3.1, we see that we have an isomorphism

(Ag,1,n ⊗ Fp)
/a ∼= (Gm[p∞])g(g+1)/2

,

canonically up to Zp-linear transformations: the Serre-Tate canonical coordi-
nates; see [18]; see [24], Introduction.

Discussion. One can try to formulate an analogous result around a nonordi-
nary point. Generalizations of Serre-Tate coordinates run into several difficul-
ties. In an arbitrary deformation there is no reason that the slope filtration on
the p-divisible group should remain constant (as it does in the ordinary case).
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Even supposing that the slope filtration remains constant or supposing that
the slope subfactors remain constant does not give the desired generalization.
However, it turns out that if we suppose that under deformation the geomet-
ric isomorphism type of the p-divisible group remains geometrically constant,
the slope filtration exists and is constant. Describing extensions, Chai arrives
at a satisfactory generalization of Serre-Tate coordinates. Note that for the
ordinary case and for f = g − 1 the leaf is the whole open Newton polygon
stratum; however, for p-rank = f < g− 1, the inclusion C(x) ⊂Wξ is proper;
this can be seen by observing that in these cases isogeny leaves are positive-
dimensional, or by using the computation of dimensions we carry out in this
paper.

The input for this generalization is precisely the tool provided by the the-
ory of central leaves as in [32]. We follow ideas basically due to Ching-Li Chai:
we extract from [2], and from [1], §7, the information we need here.

Let Z be a p-divisible group, Def(Z) = Spf(Γ ) and D(Z) = Spec(Γ ). Suppose
that Z = X1 × · · · × Xu, where the summands are isoclinic of slopes ν1 >
· · · > νu. Write Zi,j = Xi ×Xj .

3.3. Proposition.

dim (CZ(D(Z))) =
∑

1≤i<j≤u
dim

(CZi,j (D(Z(i,j)))
)
.

Note that the “group-like structure” on the formal completion at a point of
the leaf CZ(D) can be described using the notion of “cascades” as in [24], 0.4.

Let (Z, λ) be a principally quasi-polarized p-divisible group, and consider
D = D(Z, λ). Suppose that Z = X1 × · · · × Xu, where the summands are
isoclinic of slopes ν1 > · · · > νu. Then the heights of Xi and Xu+1−i are equal
and νi = 1 − νu+1−i. We have the following pairs of summands:

Xi +Xj , with 1 ≤ i < j < u+ 1 − i and Xu+1−j +Xu+1−i, and
Xi +Xu+1−i for 1 ≤ i ≤ t/2.

In this way all pairs are described. Note that
Zi,j := Xi +Xj +Xu+1−j +Xu+1−i for 1 ≤ i < j < u+ 1 − i, and
Si := Xi +Xu+1−i for 1 ≤ i ≤ u/2, and S(u+1)/2 if u is odd

are principally quasi-polarized p-divisible groups (write the induced polariza-
tion again by λ on each of them).

3.4. Proposition.
dim

(C(Z,λ)(D(Z, λ))
)

=

=
∑

1≤i<j<u+1−i
dim

(CZ(i,j) (D(Z(i,j))
)

+
∑

1≤i≤u/2
dim

(C(Si,λ)(D(Si, λ))
)
.
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Note that

{(i, j) | 1 ≤ i < j < u+1−i} ∼−→ {(I, J) | 1 ≤ I < J and u+1−I < J ≤ u}

is a bijection under the map (i, j) �→ (I = u + 1 − j, J = u + 1 − i). Indeed
i < j implies I < J and j < u+ 1 − i gives j = u+ 1 − I < J = u+ 1 − i. In
this case λ gives an isomorphism Xi ×Xj

∼−→ XJ ×XI .

An example. The group structure on a leaf can be easily understood in
the case of two slopes. This was the starting point for Chai to describe the
relevant generalization of Serre-Tate coordinates from the ordinary case to
the arbitrary case.

3.5. Theorem (Chai). Let X be isoclinic of slope νX , height hX and Y iso-
clinic of slope νY and height hY . Suppose νY > νX . Write Z = Y × X. At
every point of the central leaf C = CZ(D(Z)) the formal completion has the
structure of a p-divisible group, isoclinic of slope νY − νX , of height hX ·hY ,
and

dim (CZ(D(Z))) = (νY − νX)·hX ·hY .
Suppose, moreover, that there exists a principal quasi-polarization λ on Z;
this implies hX = hY and νX = 1 − νY . The central leaf C(Z,λ)(Def(Z, λ))
has the structure of a p-divisible group, isoclinic of slope νY − νX , of height
hX ·(hX + 1)/2, and

dim
(C(Z,λ)(D(Z, λ)

)
=

1
2
(νY − νX)·hX ·(hX + 1).

See [1], 7.5.2.

3.6. Let Z be an isoclinic p-divisible group. Then dim (CZ(D(Z))) = 0. This
can also be seen from a generalization of the previous theorem: take νY = νX .
This fact was already known as the isogeny theorem, see [15], 2.17.

4 The dimension of central leaves, the unpolarized case

In this section we compute the dimension of a central leaf in the local defor-
mation space of an (unpolarized) p-divisible group.

4.1. Notation. Let ζ be a Newton polygon, and (x, y) ∈ Q × Q. We write
(x, y) ≺ ζ if (x, y) is on or above ζ,
(x, y) � ζ if (x, y) is strictly above ζ,
(x, y)  ζ if (x, y) is on or below ζ,
(x, y) � ζ if (x, y) is strictly below ζ.
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4.2. Notation. We fix integers h ≥ d ≥ 0, and we write c := h − d. We
consider Newton polygons ending at (h, d). For such a Newton polygon ζ we
write

♦(ζ) = {(x, y) ∈ Z × Z | y < d, y < x, (x, y) ≺ ζ},
and we write

dim(ζ) := #(♦(ζ)).

See 7.10 for an explanation of why we did choose this terminology.

Example:

�������
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�
�

�

�

�

�

�
�

�
�

�

� � � �

� � � � �

� � � � �

� � � � � �x = y (h, d)

ζ

ζ = 2 × (1, 0) + (2, 1) + (1, 5) =

= 6 × 1
6 + 3 × 2

3 + 2 × 1
1 ; h = 11.

Here dim(ζ) = #(♦(ζ)) = 22.

See 7.10.

4.3. Notation. We write

♦(ζ; ζ∗) := {(x, y) ∈ Z × Z | (x, y) ≺ ζ, (x, y) � ζ∗},

cdu(ζ) := # (♦(ζ; ζ∗)) ;

“cdu” = dimension of central leaf, unpolarized case; see 4.5 for an explanation.

We suppose ζ =
∑

1≤i≤u μi·(mi, ni), written in such a way that gcd(mi, ni)=1
for all i, and μi ∈ Z>0, and i < j ⇒ (mi/(mi + ni)) > (mj/(mj + nj). Write
di = μi·mi and ci = μi·ni and hi = μi·(mi + ni); write νi = mi/(mi + ni) =
di/(di + ci) for 1 ≤ i ≤ u. Note that the slope νi equals slope(Gmi,ni) =
mi/(mi+ni) = di/hi: this Newton polygon is the “Frobenius-slopes” Newton
polygon of

∑
(Gmi,ni)μi . Note that the slope νi appears hi times; these slopes

with these multiplicities give the set {βj | 1 ≤ j ≤ h := h1 + · · · + hu} of all
slopes of ζ.

4.4. Combinatorial Lemma, the unpolarized case. The following num-
bers are equal

# (♦(ζ; ζ∗)) =: cdu(ζ) =
i=h∑

i=1

(ζ∗(i) − ζ(i)) =

=
∑

1≤i<j≤u
(dicj − djci) =

∑

1≤i<j≤u
(dihj − djhi) =

∑

1≤i<j≤u
hj ·hi·(νi − νj).
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(0, 0) (h, 0)

(h, d)(0, d)

h = h1 + · · · + hu

d = d1 + · · · + du
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ζζ∗

A proof for this lemma is not difficult. The equality cdu(ζ) =
∑

(ζ∗(i) − ζ(i))
can be seen as follows. From every break point of ζ∗ draw a vertical line up,
and a horizontal line to the left; from every break point of ζ draw a vertical
line down and a horizontal line to the right. This divides the remaining space
of the h × d rectangle into triangles and rectangles. Pair opposite triangles
to a rectangle. In each of these take lattice points, in the interior and in the
lower or right hand sides; in this way all lattice points in the large rectangle
belong to precisely one of the subspaces; for each of the subspaces we have the
formula that the number of such lattice points is the total length of vertical
lines. This proves the desired equality for cdu(ζ). The other equalities follow
by a straightforward computation. �

4.5. Theorem. (Dimension formula, the unpolarized case.) Let X0 be a p-
divisible group, D = D(X0); let y ∈ D, let Y be the p-divisible group given by
y with β = N (Y )  N (X0);

dim(CY (D)) = cdu(β).

Example:
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ζζ∗

�� � � �

� � � � �

� � � � �

� � � �

dim(CX(D)) = # ((♦(ζ; ζ∗)) ; (4
5 − 1

6 )·5·6 = 19,

d1h2 − d2h1 = 4·6 − 1·5 = 19; d1c2 − d2c1 = 4·5 − 1·1 = 19.
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First proof. It suffices to prove this theorem in case Y = X0. Write N (Y ) =
ζ. By 7.20 it suffices to prove this theorem in case Y = H(ζ). By 7.4, see
7.5, we know that in this case CY (D) = SY [p](D). Let β =

∑
μi·(mi, ni);

we suppose that i < j ⇒ mi/(mi + ni) > mj/(mj + nj); write di = μi·mi

and d =
∑
di; write ci = μi·ni and c =

∑
ci. We know that dim(Def(Y )) =

dimY ·dimY t = dc. By 7.28, using 2.1 and 4.4, we conclude that

dim(CY (D)) = dim(SH(β)[p](D)) = dim(Def(Y )) − dim(Aut(H(β)[p])) =

= (
∑

di)(
∑

ci) − (
∑

i

di·ci) − 2·
∑

i<j

(ci·dj) =
∑

i<j

(dihj − djhi) = cdu(β).

�4.5

Second proof. Assume, as above, that Y = X0 = Hβ . Write Zi,j = Hdi,ci ×
Hdj ,cj . A proof of 4.5 follows from 3.5 using 3.3 and 7.20:

dim(CY (D)) =
∑

i<j

dim(CZi,j (D(Zi,j))) =
∑

i<j

hj ·hi·(νi − νj),

where νi = di/(di + ci) = mi/(mi + ni) and hi = di + ci. Conclude by
using 3.3. �4.5

4.6. Remark. A variant of the first proof can be given as follows. First prove
4.5 in the case of two slopes, as was done above. Then conclude using 3.3.

4.7. Remark: a third proof. We use a recent result by Eva Viehmann; see
[40]. Write

ζ =
∑

j

(mj , nj), gcd(mi, nj) = 1, hj = mj + nj ,

λj = mj/hj, d =
∑

mj , c =
∑

nj , j < s⇒ λj ≥ λs.

We write idu(ζ) for the dimension of the isogeny leaf, as in [32], of Y = X0 in
D = D(X0). By the theory of Rapoport-Zink spaces, as in [39], we see that
the reduction modulo p completed at a point gives an isogeny leaf completed
at that point. Hence idu(ζ) is also the dimension of that Rapoport-Zink space
modulo p defined by X0. This dimension is computed in [40], Theorem B:

idu(ζ) =
∑

i

(mi − 1)(ni − 1)/2 +
∑

i>j

minj .

Let ρ be the ordinary Newton polygon, equal to d(1, 0) + c(0, 1) in the case
studied here. Note that

{(x, y) | ρ∗ � (x, y) ≺ ζ∗} ∪ {(x, y) | ζ∗ � (x, y) ≺ ζ} =

= {(x, y) | ρ∗ � (x, y) ≺ ζ}.
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We know that dim(ζ) = cdu(ζ) + idu(ζ) by the “almost product structure”
on Newton polygon strata, see 7.17. By the computation of Viehmann we see
that

idu(ζ) = # ({(x, y) | ρ∗ � (x, y) ≺ ζ∗}) .
Hence the dimension of the central leaf in this case equals

# ({(x, y) | ζ∗ � (x, y) ≺ ζ}) .
This proves Theorem 4.5. �

5 The dimension of central leaves, the polarized case

In this section we compute the dimension of a central leaf in the local de-
formation space of a polarized p-divisible group, and in the moduli space of
polarized abelian varieties.

5.1. Notation. We fix an integer g. For every symmetric Newton polygon ξ
of height 2g we define

�(ξ) = {(x, y) ∈ Z × Z | y < x ≤ g, (x, y) on or above ξ},
and we write

sdim(ξ) := #(�(ξ)).

See 7.11 for explanation of notation.
Example:
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x = y

(g, g)

������			��

� � � �

� � � � � �

� � � � � � � �

� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

ξ

dim(Wξ(Ag,1 ⊗ Fp)) = #(�(ξ)),
ξ = (5, 1) + (2, 1) + 2·(1, 1) + (1, 2) + (1, 5), g = 11;
slopes: {6 × 5

6 , 3 × 2
3 , 4 × 1

2 , 3 × 1
3 , 6 × 1

6}.
This case: dim(Wξ(Ag,1 ⊗ Fp)) = sdim(ξ) = 48.

5.2. Let ξ be a symmetric Newton polygon. For convenience we adapt notation
to the symmetric situation:

ξ = μ1·(m1, n1) + · · ·+μs·(ms, ns) + r·(1, 1) + μs·(ns,ms) + · · ·+ μ1·(n1,m1)
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with
mi > ni and gcd(mi, ni) = 1 for all i,
1 ≤ i < j ≤ s⇒ (mi/(mi + ni)) > (mj/(mj + nj)),
r ≥ 0 and s ≥ 0.

We write di = μi·mi, and ci = μi·ni, and hi = di + ci. Write g :=(∑
1≤i≤s(di + ci)

)
+ r and write u = 2s+ 1.

We write

�(ξ; ξ∗) := {(x, y) ∈ Z × Z | (x, y) ≺ ξ, (x, y) � ξ∗, x ≤ g},

cdp(ξ) := # (�(ξ; ξ∗));

“cdp” = dimension of central leaf, polarized case.

Write ξ =
∑

1≤i≤u μi·(mi, ni), i.e., (mj , nj) = (nu+1−j ,mu+1−j) for s < j ≤ u
and r(1, 1) = μs+1(ms+1, ns+1). Write νi = mi/(mi+ni) for 1 ≤ i ≤ u; hence
νi = 1 − νu+1−i for all i.

5.3. Combinatorial Lemma, the polarized case. The following numbers
are equal

# (�(ξ; ξ∗)) =: cdp(ξ) =
1
2
cdu(ξ) +

1
2
(ξ∗(g) − ξ(g)) =

∑

1≤j≤g
(ξ∗(j) − ξ(j)) =

=
∑

1≤i≤s

(
1
2
·di(di + 1) − 1

2
·ci(ci + 1)

)
+

j≤s∑

1≤i<j
(di−ci)hj+

(
i=s∑

i=1

(di − ci)

)

·r =

=
1
2

∑

1≤i≤s
(2νi − 1)hi(hi + 1) +

1
2

∑

1≤i<j �=u+1−i
(νi − νj)hihj .

Example:
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� (g, ξ(g))
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A proof of this lemma is not difficult. The first equalities follow from the
unpolarized lemma, and from the definitions of cdu(-) and cdp(-). For a proof
of the penultimate equality draw vertical lines connecting breakpoints, and
then draw lines from the breakpoints of ξ with slopes and lengths as in ξ∗;
this divides �(ξ; ξ∗) into subspaces, where lattice points are considered in the
interior, and on the lower and righthand sides of the triangles and parallel-
ograms created. Counting points in each of these gives all summands of the
right hand side of the last equality.

For the last equality we see that

1
2
·di(di + 1) − 1

2
·ci(ci + 1) =

1
2
(di − ci)(di + ci + 1) =

1
2
(2νi − 1)hi(hi + 1);

for 1 ≤ i ≤ s we have

2·(di − ci)·r =
(

(νi − 1
2
) + (

1
2
− νu+1−i)

)
·hi·2r =

= (νi − νs+1)hihs+1 + (νs+1 − νu+i−1)hs+1hi;

for 1 ≤ i < j ≤ s we have

2(di − ci)hj = 2((dicj − cidj) + (didj − cicj)) =

= (νi−νj)hihj+(νi−νu+1−j)hihj+(νj−νu+1−i)hihj+(νu+1−j−νu+1−i)hihj ;

this shows that
∑j≤s

1≤i<j(di − ci)hj = 1
2

∑
1≤i<j �=u+1−i, i�=s+1, j �=s+1 (νi − νj)hihj .

Hence the last equality is proved. �

5.4. Theorem (Dimension formula, the polarized case). Let (A, λ) be a po-
larized abelian variety. Let (X,λ) = (A, λ)[p∞]; write ξ = N (A); then

dim
(C(X,λ)(A ⊗ Fp)

)
= cdp(ξ).

Example:
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dim(C(A,λ)(Ag ⊗ Fp)) =
∑

0<i≤g (ξ∗(i) − ξ(i)),
slopes 1/5, 4/5, h= 5: 1

24·5 − 1
21·2 = 9,

slopes 1/3, 2/3, h= 3: 1
22·3 − 1

21·2 = 2,
(d1 − c1)h2 = 3·3 = 9,
(d1 + d2 − c1 − c2)r = 4·2 = 8,
dim(C(A,λ)(Ag ⊗ Fp)) = # (�(ζ; ζ∗)) = 28.

5.5. Notation used in the proof of 5.4. Using 7.7 and 7.22 we need only
prove Theorem 5.4 in case λ is a principal polarization on

A[p∞] = H(ξ) =: Z = Z1 × · · · × Zs × Zs+1 × Zs+2 × · · · × Zu,

Yi := Zi = Hdi,ci , Zs+1 = Ss+1 = (H1,1)r,

Xi := Zu+1−i = Hci,di 1 ≤ i ≤ s+ 1.

Write Si = Hdi,ci × Hci,di for i ≤ s, and we write λ for the induced quasi-
polarization on Si for 1 ≤ i ≤ s+ 1; note that r ≥ 0. We have

Z = Y1 × · · · × Ys × Zs+1 ×Xs × · · · ×X1.

First proof. We have

dim(Aut((Z, λ)[p])) =∑
i≤s+1 dim(Aut((Si, λ)[p])) + 1

2 ·
∑

i�=j �=u+1−i dim(Hom(Zi, Zj)) =

=
∑
i≤s+1 dim(Aut((Si, λ)[p])) +

∑
1≤i<j �=u+1−i dim(Hom(Zi, Zj)).

Using 2.1 and 2.2 and using the notation introduced, a computation shows:

cdp(ξ) + dim(Aut((Z, λ)[p])) =
1
2
·g(g + 1).

Indeed, write

I =
∑

1≤i≤s

(
1
2
·di(di + 1) − 1

2
·ci(ci + 1)

)
,

II =
j≤s∑

1≤i<j
(di − ci)hj , III =

(
i=s∑

i=1

(di − ci)

)

·r.

Note that
1 ≤ i < j ≤ s : dim(Hom(Yi, Yj)) = ci·dj ,

1 ≤ i < j = s+ 1 : dim(Hom(Yi, Zs+1)) = ci·r,
1 ≤ i < s < j : dim(Hom(Yi, Zj)) = ci·cu+1−j , Zj = Xu+1−j ,

i = s+ 1 < j : dim(Hom(Zs+1, Zj)) = r·cu+1−j ,

s < i < j : dim(Hom(Zi, Zj)) = du+1−i·cu+1−j .
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Direct verification gives

I + II + III +
∑

i≤s
(dici + ci(ci + 1)) +

1
2
·r(r + 1) +

+
1
2
·

∑

i�=j �=u+1−i
dim(Hom(Zi, Zj)) =

= (d1 + · · · + ds + r + cs + · · · + c1)(d1 + · · · + ds + r + cs + · · · + c1 + 1)/2.

First we suppose p > 2, and prove the theorem in this case. Indeed, using 7.6
and 7.29 we see that

dim
(C(X,λ)(A⊗ Fp)

)
= dim(A⊗ Fp) − dim(Aut((Z, λ)[p])) = cdp(ξ).

Hence Theorem 5.4 is proved in case p > 2.
Let p and q be prime numbers, let ξ be a symmetric Newton polygon, and

let H(p)(ξ) respectivelyH(q)(ξ) be this minimal p-divisible group in character-
istic p, respectively in characteristic q, both with a principal quasi-polarization
λ. Their elementary sequences as defined in [30] are equal:
Claim.

ϕ((H(p)(ξ), λ)[p]) = ϕ((H(q)(ξ), λ)[q]).

The proof is a direct verification: in the process of constructing the canonical
filtration, the characteristic plays no role. �Claim

In order to conclude the proof of Theorem 5.4 in case p = 2 we can follow two
different roads. One is by using 7.6 and 7.29 we see that

dim
(C(X,λ)(A ⊗ Fp)

)
=

= dim(A⊗ Fp) − dim(Aut((Z, λ)[p])) = cdp(ξ).

This argument in the proof of 5.4 works in all characteristics by the general-
ization of Wedhorn’s 7.29, see 7.30, see [43]; QED for 5.4.

One can also show that once 5.4 is proved in one characteristic, it follows in
every characteristic. Here is the argument.
Next we assume p > 2 and q = 2, and we prove the theorem in characteristic
q = 2. We have seen that the theorem holds in the case p > 2. In that case
we know, using 7.6 and [30], Theorem 1.2, that

cdp(ξ) = dim
(C(X,λ)(A⊗ Fp)

)
= dim

(
S(X,λ)[p](A⊗ Fp)

)
;

we see that
cdp(ξ) =| ES((H(p)(ξ), λ)[p]) | .
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Hence

dim
(C(X,λ)(A⊗ Fq)

)
= ϕ((H(q)(ξ), λ)[q]) = ϕ((H(p)(ξ), λ)[p]) = cdp(ξ).

This ends the first proof of Theorem 5.4.

5.6. (A proof of 5.4 in the case of two slopes). Suppose ξ = (d, c)+(c, d)
with d > c, i.e., s = 1 and r = 0 in the notation used above, i.e., the case of
a symmetric Newton polygon with only two different slopes. Write g = d+ c.
In this case,

cdp(ξ) =
1
2
d(d+ 1) − 1

2
c(c+ 1) =

=
1
2
·(d− c)(d+ c+ 1) = (1 + · · · + g)

(
d

d+ c
− c

d+ c

)
.

We choose X = Hd,c × Hc,d, and G = X [p]; let λ be the principal quasi-
polarization on X over k. Note that this is unique up to isomorphism, see
[32], Proposition 3.7. Let ϕ(G) = ES(G) be the elementary sequence of G, in
the notation and terminology as in [30]. Then

ϕ = {0, · · · , ϕ(c) = 0, 1, 2, · · · , ϕ(d) = d− c, d− c, · · · , d− c}.
Hence in this case,

dim
(C(X,λ)(A⊗ Fp)

)
= c·0 + (1 + · · · + d− c) + c·(d− c) = cdp(ξ).

Proof. In order to write down a final sequence for (Hm,n ×Hn,m)μ it suffice
to know a canonical filtration for Z = (Hm,n × Hn,m). Write D(Hm,n) =
Mm,n, the covariant Dieudonné module; there is a W -basis Mm,n = W ·e0 ⊕
· · · ⊕W ·em+n−1, and F(ei) = ei+n, and V(ei) = ei+m, with the convention
ej+m+n = pej . Also we have D(Hn,m) = Mn,m = W ·f0 ⊕ · · · ⊕W ·fm+n−1,
and F(fj) = fj+n and V(fj) = fi+m; the quasi-polarization can be given by
〈ei, fj〉 = δi,m+n−1−j . Consider the k-basis for V(D(Z[p])) given by

{x1 = em+n−1, · · · , xn = em, xn+1 = em−1, · · · , xm = en,

xm+1 = fm+n−1, · · · , xm+n = fm};
this can be completed to a symplectic basis for D(Z[p]); write Nj = k·x1⊕· · ·⊕
k·xj for 1 ≤ j ≤ m+ n. Direct verification shows that 0 ⊂ N1 ⊂ · · · ⊂ Nm+n

plus the symplectic dual filtration is a final filtration of D(Z[p]). From this we
compute ϕ as indicated, and the result for Hm,n ×Hn,m follows. This proves
the lemma. �

Remark. It seems attractive to prove 5.4 in the general case along these
lines by computing | ϕ |. There is an algorithm for determining the canonical
filtration in general, but I do not know a closed formula in ξ for computing
| ϕ |, with ϕ = ES(H(ξ)). Therefore, in the previous proof of 5.4 we made a
detour via 7.28.
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5.7. Lemma. Let (Z = Y ×X,λ) be a principally quasi-polarized p-divisible
group, where X is isoclinic of slope νX , height hX , and Y isoclinic of slope νY
and height hY . Suppose 1 ≥ νY > 1

2 > νX = 1 − νY ≥ 0. Write dx = hX ·νX ,
and νX = dX/cX ; analogous notation for dY and cY ; write d = dY = cX , and
c = cY = dX and g = d+ c. Then

dim
(C(Z,λ)(D(Z, λ))

)
=

1
2
(νY − νX)·hX ·(hX + 1) =

1
2
d(d+ 1) − 1

2
c(c+ 1).

First proof. By 7.22 it suffices to prove this lemma in case X = Hc,d and
Y = Hd,c. By 5.6 the result follows.
Second proof. The result follows from 3.5. �5.7

5.8. Second proof. This proof of 5.4 follows from 3.4 using Lemma 4.5 and
Lemma 5.7.

�5.4

5.9. Remark. Third proof in the polarized case; p > 2. In [41] the
dimension of Rapoport-Zink spaces in the polarized case is computed. Here
p > 2. Using our computation of cdp(−), analogous to 4.7, a proof of 5.4
follows from this result by Viehmann.

6 The dimension of Newton polygon strata

The dimension of a Newton polygon stratum in Ag,1 is known, see 7.27. How-
ever, it was unclear what the possible dimensions of Newton polygon strata
in the non-principally polarized case could be. In this section we settle this
question, partly solving an earlier conjecture.

6.1. We know that dim(Wξ(Ag,1)) = sdim(ξ), see 5.1 and 7.11. We like to
know what the dimension could be of an irreducible component of W0

ξ (Ag).
Note that isogeny correspondences blow up and down in general, hence various
dimensions a priori can appear.

Write Vf (Ag) for the moduli space of polarized abelian varieties having p-rank
at most f ; this is a closed subset, and we give it the induced reduced scheme
structure. By [27], Theorem 4.1 we know that every irreducible component of
this space has dimension exactly equal to (g(g+1)/2)−(g−f) = ((g−1)g/2)+f
(it seems a miracle that under blowing up and down this locus after all has
only components of exactly this dimension).

Let ξ be a symmetric Newton polygon. Let its p-rank be f = f(ξ). This is the
multiplicity of the slope 1 in ξ; for a symmetric Newton polygon it is also the
multiplicity of the slope 0. Clearly

W0
ξ (Ag) ⊂ Vf(ξ)(Ag).
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Hence for every irreducible component

T ⊂ W0
ξ (Ag) we have dim(T ) ≤ 1

2
(g − 1)g + f.

In [31], 5.8, we find the conjecture that

for any ξ we expect there would be an irreducible component
T of W0

ξ (Ag) with dim(T ) = ((g − 1)g/2) + f(ξ).

In this section we settle this question completely by showing that this is
true for many Newton polygons, but not true for all. The result is that a
component can have the maximal possible (expected) dimension: for many
symmetric Newton polygons the conjecture is correct (for those with δ(ξ) = 0,
for notation see below), but for every g > 4 there exists a ξ for which the
conjecture fails (those with δ(ξ) > 0); see 6.3 for the exact statement.

6.2. Notation. Consider W0
ξ (Ag) and consider every irreducible component

of this locus; let minsd(ξ) be the minimum of dim(T ), where T ranges through
the set of such irreducible components of W0

ξ (Ag), and let maxsd(ξ) be the
maximum. Write

δ = δ(ξ) := �(ξ(g))� − # ({(x, y) ∈ Z × Z | f(ξ) < x < g, (x, y) ∈ ξ}) − 1,

where �b� is the smallest integer not smaller than b. Note that ξ(g) ∈ Z iff the
multiplicity of (1, 1) in ξ is even. Here δ stands for “discrepancy.” We will see
that δ ≥ 0. We will see that δ = 0 and δ > 0 are possible.

6.3. Theorem.
sdim(ξ) = minsd(ξ),

and
maxsd(ξ) = cdp(ξ) + idu(ξ) =

1
2
(g − 1)g + f(ξ) − δ(ξ).

6.4. Corollary/Examples. Suppose ξ =
∑

(mi, ni) with gcd(mi, ni) = 1 for
all i. Then

δ(ξ) = 0 ⇐⇒ min(mi, ni) = 1, ∀i.
We see that 0 ≤ δ(ξ) ≤ �g/2� − 2. We see that

maxsd(ξ) =
1
2
(g − 1)g/2 + f ⇐⇒ δ(ξ) = 0.

We see that δ(ξ) > 0 for example in the following cases:
g = 5 and δ((3, 2) + (2, 3)) = 1, g = 8 and δ((4, 3) + (1, 1) + (3, 4)) = 2,
more generally, g = 2k + 1, and δ((k + 1, k) + (k, k + 1)) = k − 1,
g = 2k + 2, and δ((k + 1, k) + (1, 1) + (k, k + 1)) = k − 1.

Knowing this theorem, one can construct many examples of pairs of symmetric
Newton polygons ζ ≺ ξ such that

W0
ζ (Ag) �⊂ (W0

ξ (Ag)
)Zar

.
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6.5. Proof of 6.3. Let T be an irreducible component of W0
ξ (Ag) ⊗ k. Let

η ∈ T be the generic point. There exist a finite extension [L1 : k(η)] <∞ and
(B,μ) over L1 such that [(B,μ)] = η. There exist a finite extension [L : L1] <
∞ and an isogeny ϕ : (BL, μL) → (C, λ), where (C, λ) is a principally polarized
abelian variety over L. Let T ′ be the normalization of T in k(η) ⊂ L. Let
N = Ker(ϕ). By flat extension there exists a dense open subscheme T 0 ⊂ T ′,
and a flat extension N ⊂ B0 → T 0 of (N ⊂ BL)/L. Hence we arrive at a
morphism (B0, μ) → (C, λ), with C := B0/N , of polarized abelian schemes
over T 0. This gives the moduli morphism ψ : T 0 → W0

ξ (Ag,1) ⊗ k.

We study Isogg as in [9], VII.4. The morphism ψ : T 0 → W0
ξ (Ag,1) ⊗ k

extends to an isogeny correspondence. This is proper in both its projections
by [9], VII.4.3. Since T is an irreducible component of W0

ξ (Ag)⊗k this implies
that the image of ψ is dense in a component T ′′ of W0

ξ (Ag,1) ⊗ k. Hence
dim(T ) ≥ dim(T ′′). By 7.11 we have dim(T ′′) = sdim(ξ). This proves the first
claim of the theorem.

Let (A0, μ0) ∈ W0
ξ (Ag) ⊗ k, and define (X0, μ0) = (A0, μ0)[p∞]. We obtain

Def(A0, μ0) = Def(X0, μ0) ⊂ Def(X0),

the first equality by the Serre-Tate theorem, and the inclusion is a closed
immersion. Moreover, I(A0,μ0)(D(A0, μ0)) ⊂ IX0(D(X0)). This shows that

maxsd(ξ) ≤ cdp(ξ) + idu(ξ).

We show that in certain cases, for certain degrees of polarization, equality
holds.

We choose A0 such that X0 = A0[p∞] is minimal. Let J be an irreducible
component of IX0(D(X0)). Let ϕ : (Y0×J) → X be the universal family over
J defining this isogeny leaf. Let q = pn be the degree of ϕ. Define r = p2gn.
We are going to prove that in IX0

(
W0
ξ ((Ag,r)k)

)
there exists a component

I with I = J . Hence inside W0
ξ ((Ag,r)k) there is a component of dimension

cdp(ξ)+idu(ξ). Choose [(A0, μ0)] ∈ W0
ξ ((Ag,r)k) such that Ker(μ0) = A0[pn];

since X0 is minimal, this is possible by [32], 3.7.

Claim. In this case,

I(A0,μ0)(D(A0, μ0)) ⊃ I = J ⊂ IX0(D(X0)).

Let τ be the quasi-polarization on Y0 obtained by pulling back μ0 via Y0 →
X0. Note that the kernel of ϕ is totally isotropic under the form given by
τ = ϕ∗(μ). Hence the conditions imposed by the polarization do not give
any restrictions and we have proved the claim. This finishes the proof of
maxsd(ξ) = cdp(ξ) + idu(ξ).



Foliations in Moduli Spaces 491

By 4.5 and 7.17 and by 5.4 we see that maxsd(ξ) = cdp(ξ) + idu(ξ) is the
cardinality of the set of (integral points) in the following regions:

�(ξ)∪{(x, y) | (x, y) � ξ∗, g < x, y < g}∪{(x, y) | (x, y) ∈ ξ∗, g < x, y < g}.
Note that

{(x, y) | (x, y) � ξ∗, g < x, y < g} ∼= {(x, y) | (x, y) � ξ, x < g, y > 0},
and

{(x, y) | (x, y) ∈ ξ∗, g < x, y < g} ∼= {(x, y) | (x, y) ∈ ξ, f(ξ) < x < g}.
Hence

cdp(ξ) + idu(ξ) =
1
2
(g − 1)g + f − δ(ξ).

�6.3

Remark. Let q = pn be as above. Actually, we can already construct inside
W0
ξ (Ag,q) ⊗ k a component of dimension equal to maxsd(ξ); in this way the

relevant part of the proof above can be given.

6.6. Explanation. We see the curious fact that on a Newton polygon stratum
the dimension of a central leaf is independent of the degree of the polarization
(which supports the “feeling” that these leaves look like moduli spaces in
characteristic zero), while the dimension of an isogeny leaf in general depends
on the degree of the polarization. As we know, Hecke correspondences are
finite-to-finite above central leaves, and may blow up and down subsets of
isogeny leaves.

7 Some results used in the proofs

7.1. A basic theorem tells us that the isogeny class of a p-divisible group over
an algebraically closed field k ⊃ Fp is “the same” as its Newton polygon, see
below. Let X be a simple p-divisible group of dimension m and height h over
k. In that case we define N (X) as the isoclinic polygon (all slopes are equal) of
slope equal to m/h with multiplicity h. Such a simple p-divisible group exists,
see the construction of Gm,n, [21], page 50; see 1.2; in the covariant theory
of Dieudonné modules this group can be given (over any perfect field) by the
module generated by one element e over the Dieudonné ring, with relation
(Vn − Fm)e. Any p-divisible group X over an algebraically field closed k is
isogenous with a product

X ∼k Πi (Gmi,ni),

where mi ≥ 0, ni ≥ 0, and gcd(mi, ni) = 1 for every i. In this case the Newton
polygon N (X) of X is defined by all slopes mi/(mi + ni) with multiplicity
hi := mi + ni.
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7.2. Theorem (Dieudonné and Manin), see [21], “Classification theorem” on
page 35.

{X}/ ∼k ∼−→ {Newton polygon}, X �→ N (X).

This means that for every p-divisible groupX over a field we define its Newton
polygon N (X); over an algebraically closed field, every Newton polygon comes
from a p-divisible group and

X ∼k Y ⇐⇒ N (X) = N (Y ).

7.3. Minimal p-divisible groups. In [36] and [37] we study the following
question:

Starting from a p-divisible group X we obtain a BT1 group scheme
[p] : {X | a p-divisible group}/ ∼=k−→ {G | a BT1}/ ∼=k;X �→ G := X [p].

This map is known to be surjective. DoesG = X [p] determine the isomorphism
class of X? This seems a strange question, and in general the answer is “no”.
It is the main theorem of [36] that the fiber of this map over G up to ∼=k is
precisely one p-divisible group X if G is minimal:

7.4. Theorem. If G = G(ζ) is minimal over k, and X and Y are p-divisible
groups with X [p] ∼= G ∼= Y [p], then X ∼= Y ; hence X ∼= H(ζ) ∼= Y . �

For the notation H(ζ) see 1.5.

However, things are different if G is not minimal; it is one of the main results
of [37] that for a non-minimal BT1 group scheme G there are infinitely many
isomorphism classes X with X [p] ∼= G.

Note the following important corollaries.

7.5. Suppose X is a p-divisible group and G = X [p]; let D = D(X). Study
the inclusion CX(D) ⊂ SG(D). Then

X is minimal ⇒ CX(D) = SG(D).

�
7.6. Corollary. Let (A0, μ) be a polarized abelian variety. If A0[p] is minimal,
then every irreducible component of C(A0,μ)[p∞](Ag) is an irreducible compo-
nent of SA[p](Ag). �
7.7. Remark. Let (X,λ′) be a quasi-polarized p-divisible group over k, with
N (X) = ξ. There exists an isogeny between (X, ξ′) and (H(ξ), λ), where λ is
a principal quasi-polarization.

See [32], 3.7.
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7.8. Newton polygon strata. A theorem by Grothendieck and Katz, see
[17], Th. 2.3.1 on page 143, says that for any X → S and for any Newton
polygon ζ

Wζ(S) ⊂ S is a closed set.

Hence

W0
ζ (S) ⊂ S is a locally closed set.

Notation. We do not know a natural way of defining a scheme structure on
these sets. These set can be considerd as schemes by introducing the reduced
scheme structure on these sets.

Sometimes we will write Wξ = Wξ(Ag,1) and W 0
ξ = W0

ξ (Ag,1) for a sym-
metric Newton polygon ξ and the moduli space of principally polarized abelian
varieties.

7.9. Remark. For ξ = σ, the supersingular Newton polygon, the locusWσ has
many components (for p� 0), see [19], 4.9. However in [4] we find that for a
non-supersingular Newton polygon the locus Wξ = Wξ(Ag,1) is geometrically
irreducible.

7.10. Theorem (the dimension of Newton polygon strata in the unpolarized
case), see [29], Theorem 3.2 and [31], Theorem 2.10. Let X0 be a p-divisible
group over a field K; let ζ  N (X0). Then:

dim(Wζ(D(X0))) = dim(ζ).

See 4.2 for the definition of dim(ζ). �

7.11. Theorem (the dimension of Newton polygon strata in the principally
polarized case), see [29], Theorem 3.4 and [31], Theorem 4.1. Let ξ be a sym-
metric Newton polygon. Then

dim (Wξ(Ag,1 ⊗ Fp)) = sdim(ξ).

�
See 5.1 for the definition of sdim(ξ). See Section 6 for what happens for non-
principally polarized abelian varieties and Newton polygon strata in their
moduli spaces.

7.12. Theorem. see [32], Theorem 2.3.

CX(S) ⊂ W0
N (X)(S)

is a closed set.
A proof can be given using 7.13, 7.14, and 7.15. �



494 Frans Oort

7.13. Definition. Let S be a scheme, and let X → S be a p-divisible group.
We say that X/S is geometrically fiberwise constant, abbreviated gfc if there
exist a field K, a p-divisible group X0 over K, a morphism S → Spec(K),
and for every s ∈ S an algebraically closed field k ⊃ κ(s) ⊃ K containing the
residue class field of s and an isomorphism X0 ⊗ k ∼=k Xs ⊗ k.

The analogous terminology will be used for quasi-polarized p-divisible groups
and for (polarized) abelian schemes.

See [32], 1.1.

7.14. Theorem (T. Zink & F. Oort). Let S be an integral, normal Noetherian
scheme. Let X → S be a p-divisible group with constant Newton polygon. Then
there exist a p-divisible Y → S and an S-isogeny ϕ : Y → X such that Y/S
is gfc.

See [44], [38], 2.1, and [32], 1.8. �

7.15. Theorem. Let S be a scheme that is integral and such that the normal-
ization S′ → S gives a noetherian scheme. Let X → S be a p-divisible group;
let n ∈ Z≥0. Suppose that X → S is gfc. Then there exists a finite surjective
morphism Tn = T → S such that X [pn] ×S T is constant over T .

See [32], 1.3. �

Note that we gave a “point-wise” definition of CX(S); we can consider CX(S) ⊂
S as a closed set, or as a subscheme with induced reduced structure; however
is this last definition “invariant under base change”? It would be much better
to have a “functorial definition” and a naturally given scheme structure on
CX(S).

Note that the proof of Theorem 7.12 is quite involved. One of the ingredi-
ents is the notion of “completely slope divisible p-divisible groups” introduced
by T. Zink, and theorems on p-divisible groups over a normal base, see [44]
and [38].

Considering the situation in the moduli space with enough level structure
in order to obtain a fine moduli scheme, we see that C(x) = C(A,λ)[p∞](Ag,∗,n⊗
Fp) is regular (as a stack, or regular as a scheme in case sufficiently high level
structure is taken into account).

We write Cx for the irreducible component of C(A,λ)[p∞]A passing through
[(A, λ)] = x.
Remark/Theorem (C.-L. Chai and F. Oort). In fact, for N (A) �= σ, i.e., A
is not supersingular, it is known that C(A,λ)[p∞](A) is geometrically irreducible
in every irreducible component of Ag; see [4].

7.16. We study central and isogeny leaves in a deformation space. We give
additional results on deformation spaces of p-divisible groups analogously to
the results in the polarized case in [32]. We choose a p-divisible group over a
perfect field K. We write D = D(X).
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7.17. Proposition. The central leaf CX(D) ⊂ D is closed. There exists an
isogeny leaf (a maximal Hα-subscheme as in [32], §4), IX(D) = I(X) ⊂ D.
The intersection CX(D) ∩ I(X) ⊂ D equals the closed point [X ] = 0 ∈ D.
There is a natural, finite epimorphism CX(D) × I(X) → D. Hence

cdu(ζ) + iduX(ζ) = dim(D).

Here iduX(ζ) is the dimension of I(X) ⊂ D.
The proof of this proposition follows as in [32], §4, (5.1), (5.3). �

7.18. Corollary. Let ζ be a Newton polygon. There exists a number idu(ζ)
such that for every X with N (X) = ζ the isogeny leaf in D = D(X) has pure
dimension equal to idu(ζ).

This follows because dim(CX(D)) and dim(D) depend only on ζ, see 4.5 and
7.22. �

7.19. Theorem. Isogeny correspondences, unpolarized case. Let ψ :
X → Y be an isogeny between p-divisible groups. Then the isogeny correspon-
dence contains an integral scheme T with two finite surjective morphisms

CX(D(X)) � T � CY (D(Y ))

such that T contains a point corresponding with ψ.

7.20. The dimension of CX(D(X)) depends only on the isogeny class
of X. �

7.21. Isogeny correspondences, polarized case. Let ψ : A → B be an
isogeny, and let λ respectively μ be a polarization on A, respectively on B,
and suppose there exists an integer n ∈ Z>0 such that ψ∗(μ) = n·λ. Then
there exist finite surjective morphisms

C(A,λ)[p∞](Ag ⊗ Fp) � T � C(B,μ)[p∞](Ag ⊗ Fp).

See [32], 3.16.

7.22. The dimension of C(X,λ)(Ag ⊗ Fp) only depends on the isogeny class of
(X,λ). �

Remark/Notation. In fact, this dimension depends only on the isogeny class
of X . We write

c(ξ) := dim
(C(X,λ)(Ag ⊗ Fp)

)
, X = A[p∞], ξ := N (X);

this is well defined: all irreducible components have the same dimension.

A proof of all previous results on isogeny correspondences and the indepen-
dence of the dimension of the leaf in an isogeny class can be given using 7.13,
7.14, and 7.15; see [32], 2.7 and 3.13.
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7.23. Remark. Isogeny correspondences in characteristic p in general blow
up and down in a rather wild pattern. The dimensions of Newton polygon
strata and of EO-strata in general depends very much on the degree of the
polarization under consideration. However, for p-rank strata the dimension in
the whole of Ag ⊗ Fp depends solely on the p-rank; see [27], Theorem 4.1. It
seems a miracle that the dimension on central leaves does not depend on the
degree of a polarization. See 6.6.

In [32] we also find the definition of isogeny leaves, and we see that any
irreducible component of Wξ(Ag ⊗ Fp) up to a finite morphism is isomorphic
to the product of a central leaf and an isogeny leaf; see [32], 5.3. Note that
all central leaves with the same Newton polygon have the same dimension;
see 7.20 and 7.22. However, for Newton polygon strata, and hence also for
isogeny leaves, the dimension in general depends very much on the degree of
the polarization; for more information see Section 6.

7.24. Cayley-Hamilton. See [29]. We would like to compute the dimension
of a Newton polygon stratum. In 7.10 and 7.11 we have seen “easy” formulas
to compute these dimensions (in the unpolarized or in the principally polarized
case). However, up to now there seems to be no really easy proof that these
are indeed the correct formulas. In [19] the dimension of the supersingular
locus Wσ ⊂ Ag,1 ⊗ Fp is computed: every irreducible component of Wσ has
dimension equal to [g2/4]. Using purity, see [15], and if we knew we would
have a proof that Newton polygon strata in Ag,1 ⊗Fp are nested as predicted
by the Newton polygon graph, we would have a proof of 7.11. However, proofs
work the other way around.

7.25. For a group scheme G over a perfect field K we write a(G) :=
dimK (Hom(αp, G)). For a local-local p-divisible group X the fact a(X) = 1
implies that this Dieudonné module D(X) is generated by one element over the
Dieudonné ring. It turns out that Newton polygon strata are smooth around
points where a = 1 (in the local deformation space in the unpolarized case,
and in the principally polarized case). In this case the local dimension of the
deformation space is computed in [29]. More precisely:

7.26. Theorem (CH - unpolarized). Let X0 be a p-divisible group over a
perfect field K. Suppose a(X0) = 1. Let γ = N (X0), and let γ ≺ β. Let ρ be
the ordinary Newton polygon of the same dimension and height as X0. Define
Rβ by

Wβ(Def(X0)) = Spf(Rβ);

then

Rβ ∼= K[[zx,y | (x, y) ∈ ♦(ρ)]]
(zx,y | (x, y) �∈ ♦(β))

∼= K[[zx,y | (x, y) ∈ ♦(β)]].

�
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7.27. Theorem (CH - polarized). Let (A0, λ) be a principally polarized
abelian variety over a perfect field K. Suppose a(A0) = 1. Let ζ = N (A0),
and let ζ ≺ ξ. Let ρ be the ordinary Newton polygon. Define Rξ by

Wξ(Def(A0, λ0)) = Spf(Rξ);

then

Rξ ∼= K[[zx,y | (x, y) ∈ �(ρ)]]
(zx,y | (x, y) �∈ �(β))

∼= K[[zx,y | (x, y) ∈ �(β)]].

�
A theorem by Torsten Wedhorn on the dimension of EO-strata, see [42]. Let X
be a p-divisible group, and G := X [p]. Consider the EO-stratum SG(D(X)).

7.28. Theorem (Wedhorn).

dim(SG(D(X))) = dim(Def(X)) − dim (Aut(G)) .

See [42], 6.10. �

Let(X,λ) be a principally quasi-polarized p-divisible group over a field of
characteristic char(k) = p > 2. Write (G, λ) = (X,λ)[p].

7.29. Theorem (Wedhorn) p > 2 .

dim(S(G,λ)(D(X,λ))) = dim(Def(X,λ)) − dim (Aut((G, λ))) .

See [42], 2.8 and 6.10. �
7.30. In [43] we find a theorem that shows that the previous result also holds
in case the characteristic of the base field equals 2.

8 Some questions and some remarks

8.1. In general, the number of lattice points in a region need not be equal
to its volume. For example, in the case ρ = g(1, 0) + g(0, 1) and �(ρ). The
same remark holds for ♦(β) and for �(ξ; ξ∗). However, we make the following
observation.

Remark (I thank Cathy O’Neil for this observation). The number
#(♦(ζ; ζ∗)) = cdu(ζ) as defined and computed in Section 2 is equal to
the volume of the region between ζ∗ and ζ for every ζ.

8.2. Remark. Using the result 7.8 by Grothendieck and Katz we have defined
open and closed Newton polygon strata. Suppose we have symmetric Newton
polygons ζ ≺ ξ. Then by the definitions we see that

W0
ζ (Ag) ⊂ Wξ(Ag) ⊃ W0

ξ (Ag).
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In general, the last inclusion is not an equality. For example, for ζ = σ, the
supersingular Newton polygon, and for ξ = (2, 1) + (1, 2) we can see that
W0
σ(A3,p3) = Wσ(A3,p3) is not contained in the closure of W0

ξ (A3,p3). Using
the results of Section 6 we see that many more such examples do exist.

However, for every symmetric ξ in the principally polarized case we have

Wξ(Ag) = W0
ξ (Ag).

We consider the central leaf CY (D(X0) ⊂ D(X0). Can we describe this locus in
the coordinates zx,y given as in 7.26? I.e., does the inclusion �(β;β∗) ⊂ �(β)
induce the inclusion CY (D) ⊂ Wβ(D) ?

8.3. Question. Under the identification given in 7.26 can the formal comple-
tion C of the central leaf CY (D(X0)) be described by

C
?= Spf(K[[zx,y | (x, y) ∈ ♦(β;β∗)]]) ⊂ Wβ(D)?

Here Wβ(D) = Spf(K[[zx,y | (x, y) ∈ ♦(β)]]).

8.4. Question. Under the identification given in 7.27 is it true that the formal
completion C of the central leaf C(B,μ)(D(A0, λ)) can be described by

C
?= Spf(K[[zx,y | (x, y) ∈ �(ξ, ξ∗)]]) ⊂ Wξ(D)?

Here Wξ(D) = Spf(K[[zx,y | (x, y) ∈ �(ξ)]]).

8.5. It seems desirable to have an explicit formula for the elementary sequence
of a principally quasi-polarized minimal p-divisible group. If there are only
two slopes this is easy. For every explicitly given Newton polygon this can be
computed. In case there are more than two slopes, I do not know a general
formula. However Harashita has proven, see [12], that for symmetric Newton
polygons ζ ≺ ξ and their minimal p divisible groups we have ES(H(ζ)) ⊂
ES(H(ξ)).

8.6. Problem. Give a simple criterion, in terms of ϕ and ξ, which decides
when an elementary sequence ϕ appears on an open Newton polygon stratum,
i.e., when Sϕ ∩W 0

ξ �= ∅.
Added in proof. It seems that this is settled now completely (S. Harashita, T.
Wedhorn).

8.7. Conjecture. Let ψξ = ES(H(ξ)). I expect:

Sϕ ∩W 0
ξ �= ∅ ⇒ ψξ ⊂ ϕ.

The notation ψξ ⊂ ϕ stands for Sψξ
⊂ Sϕ, see [30], 14.3.

Added in proof. S. Harashita has proved this conjecture to be true.
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Etude cohomologique des faisceaux cohérents. Publ. Math. 11, IHES 1961.
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14. A. J. de Jong – Crystalline Dieudonné module theory via formal rigid geometry.
Publ. Math. IHES 82 (1995), 5–96.

15. A. J. de Jong & F. Oort – Purity of the stratification by Newton polygons. Journ.
Amer. Math. Soc. 13 (2000), 209–241. See: http://www.ams.org/jams

16. N. M. Katz – Appendix to Expose V. In: Surfaces algébriques (Ed. J. Giraud,
L. Illusie, M. Raynaud). Lect. Notes Math. 868, Springer–Verlag, Berlin 1981;
pp. 127 – 137.

17. N. M. Katz – Slope filtration of F–crystals. Journ. Géom. Alg. Rennes, Vol. I,
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Summary. In this paper we establish an equivalence between the category of
graded D-branes of type B in Landau–Ginzburg models with homogeneous super-
potential W and the triangulated category of singularities of the fiber of W over
zero. The main result is a theorem that shows that the graded triangulated category
of singularities of the cone over a projective variety is connected via a fully faithful
functor to the bounded derived category of coherent sheaves on the base of the cone.
This implies that the category of graded D-branes of type B in Landau–Ginzburg
models with homogeneous superpotential W is connected via a fully faithful functor
to the derived category of coherent sheaves on the projective variety defined by the
equation W = 0.

Key words: Triangulated categories of singularities, derived categories of
coherent sheaves, branes, Landau–Ginzburg models
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Introduction1

With any algebraic variety X one can naturally associate two triangulated
categories: the bounded derived category Db(coh(X)) of coherent sheaves and
the triangulated subcategory Perf(X) ⊂ Db(coh(X)) of perfect complexes
on X . If the variety X is smooth, then these two categories coincide. For
singular varieties this is no longer true. In [22] we introduced a new invariant of
a variety X the triangulated category DSg(X) of the singularities of X as the
quotient of Db(coh(X)) by the full subcategory of perfect complexes Perf(X).
The category DSg(X) captures many properties of the singularities of X .
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Similarly we can define a triangulated category of singularities DSg(A)
for any Noetherian algebra A. We set DSg(A) = Db(mod-A)/Perf(A),
where Db(mod-A) is the bounded derived category of finitely generated right
A-modules and Perf(A) is its triangulated subcategory consisting of objects
that are quasi-isomorphic to bounded complexes of projectives. We will again
call Perf(A) the subcategory of perfect complexes, but usually we will write
Db(proj-A) instead of Perf(A), since this category can also be identified with
the derived category of the exact category proj-A of finitely generated right
projective A-modules (see, e.g., [19]).

The investigation of triangulated categories of singularities not only is
connected with a study of singularities but is mainly inspired by the homo-
logical mirror symmetry conjecture [20]. More precisely, the objects of these
categories are directly related to D-branes of type B (B-branes) in Landau–
Ginzburg models. Such models arise as a mirrors to Fano varieties [15]. For
Fano varieties one has the derived categories of coherent sheaves (B-branes),
and given a symplectic form, one can propose a suitable Fukaya category (A-
branes). Mirror symmetry should interchange these two classes of D-branes.
Thus, to extend the homological mirror symmetry conjecture to the Fano case,
one should describe D-branes in Landau–Ginzburg models.

To specify a Landau–Ginzburg model in general one needs to choose a
target space X , and a holomorphic function W on X called a superpotential.
The B-branes in the Landau–Ginzburg model are defined as W-twisted Z2-
periodic complexes of coherent sheaves on X . These are chains {· · · d→ P0

d→
P1

d→ P0
d→ P1

d→ P0
t−→ · · · } of coherent sheaves in which the composition of

differentials is no longer zero, but is equal to multiplication by W (see, e.g.,
[17, 22, 23]). In the paper [22] we analyzed the relationship between the cate-
gories of B-branes in Landau–Ginzburg models and triangulated categories of
singularities. Specifically, we showed that for an affine X the product of the
triangulated categories of singularities of the singular fibers of W is equivalent
to the category of B-branes of (X, W ).

In this paper we consider the graded case. Let A =
⊕

i Ai be a graded
Noetherian algebra over a field k. We can define the triangulated category
of singularities Dgr

Sg(A) of A as the quotient Db(gr-A)/Db(grproj-A), where
Db(gr-A) is the bounded derived category of finitely generated graded right
A-modules and Db(grproj-A) is its triangulated subcategory consisting of ob-
jects that are isomorphic to bounded complexes of projectives.

The graded version of the triangulated category of singularities is closely
related to the category of B-branes in Landau–Ginzburg models (X, W )
equipped with an action of the multiplicative group k∗ for which W is semi-
invariant. The notion of grading on D-branes of type B was defined in the
papers [16,28]. In the presence of a k∗-action one can construct a category of
graded B-branes in the Landau–Ginzburg model (X, W ) (Definition 30 and
Section 3.3). Now our Theorem 39 gives an equivalence between the category
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of graded B-branes and the triangulated category of singularities Dgr
Sg(A),

where A is such that Spec(A) is the fiber of W over 0.
This equivalence allows us to compare the category of graded B-branes

and the derived category of coherent sheaves on the projective variety that is
defined by the superpotential W . For example, suppose X is the affine space
A

N and W is a homogeneous polynomial of degree d. Denote by Y ⊂ P
N−1

the projective hypersurface of degree d that is given by the equation W = 0.
If d = N , then the triangulated category of graded B-branes DGrB(W ) is
equivalent to the derived category of coherent sheaves on the Calabi–Yau
variety Y . Furthermore, if d < N (i.e., Y is a Fano variety), we construct a
fully faithful functor from DGrB(W ) to Db(coh(Y )), and if d > N (i.e., Y is a
variety of general type), we construct a fully faithful functor from Db(coh(Y ))
to DGrB(W ) (see Theorem 40).

This result follows from a more general statement for graded Gorenstein
algebras (Theorem 16). It gives a relation between the triangulated cate-
gory of singularities Dgr

Sg(A) and the bounded derived category Db(qgrA),
where qgrA is the quotient of the abelian category of graded finitely gener-
ated A-modules by the subcategory of torsion modules. More precisely, for
Gorenstein algebras we obtain a fully faithful functor between Dgr

Sg(A) and
Db(qgrA), and the direction of this functor depends on the Gorenstein pa-
rameter a of A. In particular, when the Gorenstein parameter a is equal to
zero, we obtain an equivalence between these categories. Finally, the famous
theorem of Serre that identifies Db(qgrA) with Db(coh(Proj (A))) when A is
generated by its first component allows us to apply this result to geometry.

I am grateful to Alexei Bondal, Anton Kapustin, Ludmil Katzarkov,
Alexander Kuznetsov, Tony Pantev, and Johannes Walcher for very useful
discussions.

1 Triangulated Categories of Singularities
for Graded Algebras

1.1 Localization in Triangulated Categories and Semiorthogonal
Decomposition

Recall that a triangulated category D is an additive category equipped with
the following additional data:

(a) an additive autoequivalence [1] : D −→ D, which is called a translation
functor,

(b) a class of exact (or distinguished) triangles

X
u−→ Y

v−→ Z
w−→ X [1],

which must satisfy a certain set of axioms (see [27], also [12, 19, 21]).
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A functor F : D −→ D′ between two triangulated categories is called
exact if it commutes with the translation functors, i.e., F ◦ [1] ∼= [1] ◦ F, and
transforms exact triangles into exact triangles.

With any pair N ⊂ D, where N is a full triangulated subcategory in a
triangulated category D, we can associate the quotient category D/N . To
construct it let us denote by Σ(N ) a class of morphisms s in D fitting into
an exact triangle

X
s−→ Y −→ N −→ X [1]

with N ∈ N . It can be checked that Σ(N ) is a multiplicative system.
Define the quotient D/N as the localization D[Σ(N )−1] (see [10, 12, 27]).
It is a triangulated category. The translation functor on D/N is induced from
the translation functor in the category D, and the exact triangles in D/N
are the triangles isomorphic to the images of exact triangles in D. The quo-
tient functor Q : D −→ D/N annihilates N . Moreover, any exact functor
F : D −→ D′ between triangulated categories for which F (X) � 0 when
X ∈ N factors uniquely through Q. The following lemma is obvious.

Lemma 1. Let N and N ′ be full triangulated subcategories of triangulated
categories D and D′ respectively. Let F : D → D′ and G : D′ → D be an
adjoint pair of exact functors such that F (N ) ⊂ N ′ and G(N ′) ⊂ N . Then
they induce functors

F : D/N −→ D′/N ′, G : D′/N ′ −→ D/N ,

which are adjoint as well. Moreover, if the functor F : D → D′ is fully faithful,
then the functor F : D/N −→ D′/N ′ is also fully faithful.

Now recall some definitions and facts concerning admissible subcategories
and semiorthogonal decompositions (see [7, 8]). Let N ⊂ D be a full triangu-
lated subcategory. The right orthogonal to N is the full subcategory N⊥ ⊂ D
consisting of all objects M such that Hom(N, M) = 0 for any N ∈ N . The left
orthogonal ⊥N is defined analogously. The orthogonals are also triangulated
subcategories.

Definition 2. Let I : N ↪→ D be an embedding of a full triangulated sub-
category N in a triangulated category D. We say that N is right admissible
(respectively left admissible) if there is a right (respectively left) adjoint functor
Q : D → N . The subcategory N will be called admissible if it is right and left
admissible.

Remark 3. For the subcategory N the property of being right admissible
is equivalent to requiring that for each X ∈ D there be an exact triangle
N → X →M , with N ∈ N , M ∈ N⊥.

Lemma 4. Let N be a full triangulated subcategory in a triangulated
category D. If N is right (respectively left) admissible, then the quotient
category D/N is equivalent to N⊥ (respectively ⊥N ). Conversely, if the quo-
tient functor Q : D −→ D/N has a left (respectively right) adjoint, then D/N
is equivalent to N⊥ (respectively ⊥N ).
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If N ⊂ D is a right admissible subcategory, then we say that the category
D has a weak semiorthogonal decomposition

〈
N⊥,N

〉
. Similarly, if N ⊂ D

is a left admissible subcategory, we say that D has a weak semiorthogonal
decomposition

〈
N ,⊥N

〉
.

Definition 5. A sequence of full triangulated subcategories (N1, . . . ,Nn) in
a triangulated category D will be called a weak semiorthogonal decomposition
of D if there is a sequence of left admissible subcategories D1 = N1 ⊂ D2 ⊂
· · · ⊂ Dn = D such that Np is left orthogonal to Dp−1 in Dp. We will write
D = 〈N1, . . . ,Nn〉. If all Np are admissible in D then the decomposition D =
〈N1, . . . ,Nn〉 is called semiorthogonal.

The existence of a semiorthogonal decomposition on a triangulated cate-
gory D clarifies the structure of D. In the best scenario, one can hope that D
has a semiorthogonal decomposition D = 〈N1, . . . ,Nn〉 in which each elemen-
tary constituent Np is as simple as possible, i.e., is equivalent to the bounded
derived category of finite-dimensional vector spaces.

Definition 6. An object E of a k-linear triangulated category T is called
exceptional if Hom(E, E[p]) = 0 when p 
= 0, and Hom(E, E) = k. An ex-
ceptional collection in T is a sequence of exceptional objects (E0, . . . , En) sat-
isfying the semiorthogonality condition Hom(Ei, Ej [p]) = 0 for all p when
i > j.

If a triangulated category D has an exceptional collection (E0, . . . , En) that
generates the whole of D then we say that the collection is full. In this case D
has a semiorthogonal decomposition with Np = 〈Ep〉. Since Ep is exceptional,
each of these categories is equivalent to the bounded derived category of finite-
dimensional vector spaces. In this case we write D = 〈E0, . . . , En〉.

Definition 7. An exceptional collection (E0, . . . , En) is called strong if in ad-
dition, Hom(Ei, Ej [p]) = 0 for all i and j when p 
= 0.

1.2 Triangulated Categories of Singularities for Algebras

Let A =
⊕

i≥0 Ai be a Noetherian graded algebra over a field k. Denote by
mod-A and gr-A the category of finitely generated right modules and the
category of finitely generated graded right modules respectively. Note that
morphisms in gr-A are homomorphisms of degree zero. These categories are
abelian. We will also use the notation Mod-A and Gr-A for the abelian cate-
gories of all right modules, and all graded right modules and we will often omit
the prefix “right.” Left A-modules are will be viewed as right A◦-modules and
A-B bimodules as right A◦-B-modules, where A◦ is the opposite algebra.

The twist functor (p) on the category gr-A is defined as follows: it takes a
graded module M = ⊕i Mi to the module M(p) for which M(p)i = Mp+i and
takes a morphism f : M −→ N to the same morphism viewed as a morphism
between the twisted modules f(p) : M(p) −→ N(p).
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Consider the bounded derived categories Db(gr-A) and Db(mod-A). They
can be endowed with natural structures of triangulated categories. The cate-
gories Db(gr-A) and Db(mod-A) have full triangulated subcategories consist-
ing of objects that are isomorphic to bounded complexes of projectives. These
subcategories can also be considered as the derived categories of the exact cat-
egories of projective modules Db(grproj-A) and Db(proj-A) respectively (see,
e.g., [19]). They will be called the subcategories of perfect complexes. Observe
also that the category Db(gr-A) (respectively Db(mod-A)) is equivalent to the
category Db

gr-A(Gr-A) (respectively Db
mod−A(Mod-A)) of complexes of arbi-

trary modules with finitely generated cohomologies (see [5]). We will tacitly
use this equivalence throughout our considerations.

Definition 8. We define triangulated categories of singularities Dgr
Sg(A) and

DSg(A) as the quotient Db(gr-A)/Db(grproj-A) and Db(mod-A)/Db(proj-A)
respectively.

Remark 9. As in the commutative case [22, 23], the triangulated categories
of singularities Dgr

Sg(A) and DSg(A) will be trivial if A has finite homological
dimension. Indeed, in this case any A-module has a finite projective resolution,
i.e., the subcategories of perfect complexes coincide with the full bounded
derived categories of finitely generated modules.

Homomorphisms of (graded) algebras f : A→ B induce functors between
the associated derived categories of singularities. Furthermore, if B has a finite

Tor-dimension as an A-module, then we get the functor
L
⊗A B between the

bounded derived categories of finitely generated modules that maps perfect
complexes to perfect complexes. Therefore, we get functors between triangu-
lated categories of singularities

L
⊗A B : Dgr

Sg(A) −→ Dgr
Sg(B) and

L
⊗A B : DSg(A) −→ DSg(B).

If, in addition, B is finitely generated as an A-module, then these functors have
right adjoints induced from the functor that sends a complex of B-modules
to itself considered as a complex of A-modules.

More generally, suppose AM
�

B is a complex of graded A-B bimodules that
as a complex of graded B-modules is quasi-isomorphic to a perfect complex.
Suppose that AM

�

has a finite Tor-amplitude as a left A-module. Then we can

define the derived tensor product functor
L
⊗A M

�

B : Db(gr−A) −→ Db(gr−B).
Moreover, since M

�

B is perfect over B, this functor sends perfect complexes
to perfect complexes. Therefore, we get an exact functor

L
⊗A M

�

B : Dgr
Sg(A) −→ Dgr

Sg(B).

In the ungraded case we also get the functor
L
⊗A M

�

B : DSg(A) −→ DSg(B).
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1.3 Morphisms in Categories of Singularities

In general, it is not easy to calculate spaces of morphisms between objects in
a quotient category. The following lemma and proposition provide some infor-
mation about the morphism spaces in triangulated categories of singularities.

Lemma 10. For any object T ∈ Dgr
Sg(A) (respectively T ∈ DSg(A)) and for

any sufficiently large k, there is a module M ∈ gr-A (respectively M ∈ mod-A)
depending on T and k and such that T is isomorphic to the image of M [k]
in the triangulated category of singularities. If, in addition, the algebra A has
finite injective dimension, then for any sufficiently large k the corresponding
module M satisfies Exti

A(M, A) = 0 for all i > 0.

Proof. The object T is represented by a bounded complex of modules T
�

.
Choose a bounded-above projective resolution P

� ∼→ T
�

and a sufficiently
large k  0. Consider the stupid truncation σ≥−k+1P

�

of P
�

. Denote by
M the cohomology module H−k+1(σ≥−k+1P

�

). Clearly T ∼= M [k] in Dgr
Sg(A)

(respectively DSg(A)).
If now A has finite injective dimension, then morphism spaces

Hom(T ·, A[i]) in Db(gr-A) (respectively Db(mod-A)) are trivial for all but
finitely many i ∈ Z. So if M corresponds to T and a sufficiently large k, then
we will have Exti

A(M, A) = 0 for all i > 0. �

Proposition 11. Let M be an A-module such that ExtiA(M, A) = 0 for all
i > 0. Then for any A-module N we have

HomDSg(A)(M, N) ∼= HomA(M, N)/R,

where R is the subspace of elements factoring through a projective module i.e.,
e ∈ R iff e = βα with α : M → P and β : P → N, where P is projective. If
M is a graded module, then for any graded A-module N ,

HomDgr
Sg(A)(M, N) ∼= Homgr-A(M, N)/R.

Proof. We will discuss only the graded case. By the definition of localization
any morphism from M to N in Dgr

Sg(A) can be represented by a pair

M
a−→ T

� s←− N (1)

of morphisms in Db(gr-A) such that the cone C
�

(s) is a perfect complex. Con-
sider a bounded-above projective resolution Q

�

→ N and its stupid truncation
σ≥−kQ

�

for sufficiently large k. There is an exact triangle

E[k] −→ σ≥−kQ
�

−→ N
s′
−→ E[k + 1],
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where E denotes the module H−k(σ≥−kQ
�

). Choosing k to be sufficiently
large, we can guarantee that Hom(C

�

(s), E[i]) = 0 for all i > k. Using the
triangle

C
�

(s)[−1] −→ N
s−→ T

�

−→ C
�

(s),

we find that the map s′ : N → E[k +1] can be lifted to a map T
�

→ E[k +1].
The map T

�

→ E[k + 1] induces a pair of the form

M
a′
−→ E[k + 1] s′

←− N, (2)

and this pair gives the same morphism in DSg(A) as the pair (1). Since
Exti(M, P ) = 0 for all i > 0 and any projective module P , we obtain

Hom(M, (σ≥−kQ
�

)[1]) = 0.

Hence, the map a′ : M → E[k + 1] can be lifted to a map f that completes
the diagram

M
f ��

a′
�����

��
��

�� N

s′
����

���
��

��

E[k + 1]

Thus, the map f is equivalent to the map (2) and, as a consequence, to the
map (1). Hence, any morphism from M to N in Dgr

Sg(A) is represented by a
morphism from M to N in the category Db(gr-A).

Now if f is the 0-morphism in Dgr
Sg(A), then without loss of generality we

can assume that the map a is the zero map. In this case we will have a′ = 0 as
well. This implies that f factors through a morphism M → σ≥−kQ

�

. By the
assumption on M , any such morphism can be lifted to a morphism M → Q0.
Hence, if f is the 0-morphism in Dgr

Sg(A), then it factors through Q0. The
same proof works in the ungraded case (see [22]). �

Next we describe a useful construction utilizing the previous statements. Let
M

�

and N
�

be two bounded complexes of (graded) A-modules. Assume that
Hom(M

�

, A[i]) in the bounded derived categories of A-modules are trivial
except for a finite number of i ∈ Z. By Lemma 10, for sufficiently large k
there are modules M, N ∈ gr-A (resp. M, N ∈ mod-A) such that M

�

and
N

�

are isomorphic to the images of M [k] and N [k] in the triangulated cat-
egory of singularities. Moreover, it follows immediately from the assumption
on M

�

and the construction of M that for any sufficiently large k we have
Exti

A(M, A) = 0 whenever i > 0. Hence, by Proposition 11, we get

HomDgr
Sg(A)(M

�

, N
�

) ∼= HomDgr
Sg(A)(M, N) ∼= HomA(M, N)/R,

where R is the subspace of elements factoring through a projective module.
This procedure works in the ungraded situation as well.
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2 Categories of Coherent Sheaves and Categories
of Singularities

2.1 Quotient Categories of Graded Modules

Let A =
⊕

i≥0 Ai be a Noetherian graded algebra. We suppose that A is
connected, i.e., A0 = k. Denote by tors-A the full subcategory of gr-A, which
consists of all graded A-modules that are finite-dimensional over k.

An important role will be played by the quotient abelian category qgrA =
gr-A/ tors-A. It has the following explicit description. The objects of qgrA are
the objects of gr-A (we denote by πM the object in qgrA that corresponds
to a module M). The morphisms in qgrA are given by

Homqgr(πM, πN) := lim
−→
M ′

Homgr (M ′, N), (3)

where M ′ runs over submodules of M such that M/M ′ is finite-dimensional.
Given a graded A-module M and an integer p, the graded A-submodule⊕

i≥p Mi of M is denoted by M≥p and is called the pth tail of M . In the same
way, we can define the pth tail M

�

≥p of any complex of modules M
�

. Since A
is Noetherian, we have

Homqgr(πM, πN) = lim
p→∞ Homgr (M≥p, N).

We will also identify Mp with the quotient M≥p/M≥p+1.
Similarly, we can consider the subcategory Tors-A ⊂ Gr-A of torsion mod-

ules. Recall that a module M is called torsion if for any element x ∈M one has
xA≥p = 0 for some p. Denote by QGrA the quotient category Gr-A/ Tors-A.
The category QGrA contains qgrA as a full subcategory. Sometimes it is
convenient to work in QGrA instead of qgrA.

Denote by Π and π the canonical projections of Gr-A to QGrA and of gr-A
to qgrA respectively. The functor Π has a right adjoint Ω, and moreover, for
any N ∈ Gr-A,

ΩΠN ∼=
∞⊕

n=−∞
HomQGr(ΠA, ΠN(n)). (4)

For any i ∈ Z we can consider the full abelian subcategories Gr−A≥i ⊂ GrA
and gr-A≥i ⊂ grA, which consist of all modules M such that Mp = 0 when
p < i. The natural projection functor Πi : Gr-A≥i −→ QGr -A has a right
adjoint Ωi satisfying

ΩiΠiN ∼=
∞⊕

n=i

HomQGr(ΠA, ΠiN(n)).

Since the category QGrA is an abelian category with enough injectives, there
is a right derived functor

RΩi : D+(QGrA) −→ D+(Gr-A≥i)
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defined as

RΩiM ∼=
∞⊕

k=i

RHomQGr(ΠA, M(k)). (5)

Assume now that the algebra A satisfies condition “χ” from [1, Sec. 3]. We
recall that by definition, a connected Noetherian graded algebra A satisfies
condition “χ” if for every M ∈ gr-A the grading on the space Exti

A(k, M)
is right bounded for all i. In this case it was proved in [1, Prop. 3.14] that
the restrictions of the functors Ωi to the subcategory qgrA give functors
ωi : qgrA −→ gr−A≥i that are right adjoint to πi. Moreover, it follows from
[1, Th. 7.4] that the functor ωi has a right derived

Rωi : D+(qgrA) −→ D+(gr-A≥i)

and all Rjωi ∈ tors-A for j > 0.
If, in addition, the algebra A is Gorenstein (i.e., if it has a finite injective

dimension n and D(k) = RHomA(k, A) is isomorphic to k(a)[−n]), we obtain
the right derived functor

Rωi : Db(qgrA) −→ Db(gr-A≥i)

between bounded derived categories (see [30, Cor. 4.3]). It is important to
note that the functor Rωi is fully faithful because πiRωi is isomorphic to the
identity functor ([1, Prop. 7.2]).

2.2 Triangulated Categories of Singularities
for Gorenstein Algebras

The main goal of this section is to establish a connection between the trian-
gulated category of singularities Dgr

Sg(A) and the derived category Db(qgrA),
in the case of a Gorenstein algebra A.

When the algebra A has finite injective dimension as 60th a right and left
module over itself (i.e., A is a dualizing complex for itself) we get two functors

D := RHomA (−, A) : Db(gr-A )◦ −→ Db(gr-A◦), (6)

D◦ := RHomA◦(−, A) : Db(gr-A◦)◦ −→ Db(gr-A ), (7)

which are quasi-inverse triangulated equivalences (see [29, Prop. 3.5]).

Definition 12. We say that a connected graded Noetherian algebra A is
Gorenstein if it has a finite injective dimension n and D(k) = RHomA(k, A)
is isomorphic to k(a)[−n] for some integer a, which is called the Gorenstein
parameter of A. (Such an algebra is also called AS-Gorenstein, where “AS”
stands for “Artin–Schelter.”)



Derived Categories of Coherent Sheaves 513

Remark 13. It is known (see [30, Cor. 4.3]) that any Gorenstein algebra
satisfies condition “χ” and for any Gorenstein algebra A and for any i ∈ Z we
have derived functors

Rωi : Db(qgrA) −→ Db(gr-A≥i)

that are fully faithful.

Now we describe the images of the functors Rωi. Denote by Di the sub-
categories of Db(gr-A) that are the images of the composition of Rωi and
the natural inclusion of Db(gr-A≥i) to Db(gr-A). All Di are equivalent to
Db(qgr -A). Further, for any integer i denote by S<i(A) (or simply S<i) the
full triangulated subcategory of Db(gr-A) generated by the modules k(e) with
e > −i. In other words, the objects of S<i are complexes M

�

for which the
tail M

�

≥i is isomorphic to zero. Analogously, we define S≥i as the triangulated
subcategory that is generated by the objects k(e) with e ≤ −i. In other words,
the objects of S≥i are complexes of torsion modules from gr-A≥i. It is clear
that S<i

∼= S<0(−i) and S≥i
∼= S≥0(−i).

Furthermore, denote by P<i the full triangulated subcategory of Db(gr-A)
generated by the free modules A(e) with e > −i and denote by P≥i the
triangulated subcategory that is generated by the free modules A(e) with
e ≤ −i. As above, we have P<i

∼= P<0(−i) and P≥i
∼= P≥0(−i).

Lemma 14. Let A =
⊕

i≥0 Ai be a connected graded Noetherian algebra.
Then the subcategories S<i and P<i are left and respectively right admissi-
ble for any i ∈ Z. Moreover, there are weak semiorthogonal decompositions

Db(gr-A) = 〈S<i,Db(gr-A≥i)〉, Db(tors-A) = 〈S<i,S≥i〉, (8)

Db(gr-A) = 〈Db(gr-A≥i),P<i〉, Db(grproj-A) = 〈P≥i,P<i〉. (9)

Proof. For any complex M
�

∈ Db(mod-A) there is an exact triangle of the
form

M
�

≥i −→M
�

−→M
�

/M
�

≥i.

By definition, the object M
�

/M
�

≥i belongs to S<i, and the object M
�

≥i is in the
left orthogonal ⊥S<i. Hence, by Remark 3, S<i is left admissible. Moreover,
M

�

≥i also belongs to Db(gr−A≥i), i.e., Db(gr−A≥i) ∼= ⊥S<i in the category
Db(gr-A). If M

�

is a complex of torsion modules, then M
�

≥i belongs to S≥i.
Thus, we obtain both decompositions of (8).

To prove the existence of the decompositions (9) we first note that due
to the connectedness of A, any finitely generated graded projective A-module
is free. Second, any finitely generated free module P has a canonical split
decomposition of the form

0 −→ P<i −→ P −→ P≥i −→ 0,
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where P<i ∈ P<i and P≥i ∈ P≥i. Third, any bounded complex of finitely
generated A-modules M

�

has a bounded-above free resolution P
�

→M
�

such
that P−k ∈ P≥i for all k  0. This implies that the object P

�

<i ∈ P<i from
the exact sequence of complexes

0 −→ P
�

<i −→ P
�

−→ P
�

≥i −→ 0

is a bounded complex. Since P
�

is quasi-isomorphic to a bounded complex,
the complex P

�

≥i is also quasi-isomorphic to some bounded complex K
�

from
Db(gr-A≥i). Thus, any object M

�

has a decomposition

P
�

<i −→M
�

−→ K
�

,

where P
�

<i ∈ P<i and K
�

∈ Db(gr-A≥i). This proves the decompositions (9).
�

Lemma 15. Let A =
⊕

i≥0 Ai be a connected graded Noetherian algebra that
is Gorenstein. Then the subcategories S≥i and P≥i are right and respectively
left admissible. Moreover, for any i ∈ Z there are weak semiorthogonal decom-
positions

Db(gr-A≥i) = 〈Di,S≥i〉, Db(gr-A≥i) = 〈P≥i, Ti〉, (10)

where the subcategory Di is equivalent to Db(qgrA) under the functor Rωi,
and Ti is equivalent to Dgr

Sg(A).

Proof. The functor Rωi is fully faithful and has the left adjoint πi. Thus, we
obtain a semiorthogonal decomposition

Db(gr-A≥i) = 〈Di,
⊥Di〉,

whereDi
∼= Db(qgrA). Furthermore, the orthogonal ⊥Di consists of all objects

M
�

satisfying πi(M
�

) = 0. Thus, ⊥Di coincides with S≥i. Hence, S≥i is right
admissible in Db(gr−A≥i), which is right admissible in all of Db(gr-A). This
implies that S≥i is right admissible in Db(gr-A) as well.

The functor D from (6) establishes an equivalence of the subcategory
P≥i(A)◦ with the subcategory P<−i+1(A◦), which is right admissible by
Lemma 14. Hence, P≥i(A) is left admissible and there is a decomposition
of the form

Db(gr−A≥i) = 〈P≥i, Ti〉

with some Ti.
Now applying Lemma 1 to the full embedding of Db(gr−A≥i) to Db(gr−A)

and using Lemma 4, we get a fully faithful functor from Ti
∼= Db(gr−A≥i)/P≥i

to Dgr
Sg(A) = Db(gr−A)/Db(grproj-A). Finally, since this functor is essentially

surjective on objects, it is actually an equivalence. �
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Theorem 16. Let A =
⊕

i≥0 Ai be a connected graded Noetherian algebra
that is Gorenstein with Gorenstein parameter a. Then the triangulated cate-
gories Dgr

Sg(A) and Db(qgrA) are related as follows:

(i) if a > 0, there are fully faithful functors Φi : Dgr
Sg(A) −→ Db(qgrA) and

semiorthogonal decompositions

Db(qgrA) = 〈πA(−i− a + 1), . . . , πA(−i), ΦiD
gr
Sg(A)〉,

where π : Db(gr−A) −→ Db(qgrA) is the natural projection;
(ii) if a < 0, there are fully faithful functors Ψi : Db(qgrA) −→ Dgr

Sg(A) and
semiorthogonal decompositions

Dgr
Sg(A) = 〈qk(−i), . . . , qk(−i + a + 1), ΨiDb(qgrA)〉,

where q : Db(gr−A) −→ Dgr
Sg(A) is the natural projection;

(iii) if a = 0, there is an equivalence Dgr
Sg(A) ∼−→ Db(qgrA).

Proof. Lemmas 14 and 15 gives us that the subcategory Ti is admissible in
Db(gr-A) and the right orthogonal T ⊥

i has a weak semiorthogonal decompo-
sition of the form

T ⊥
i = 〈S<i,P≥i〉. (11)

Now let us describe the right orthogonal to the subcategory Di. First, since
A is Gorenstein, the functor D takes the subcategory S≥i(A) to the sub-
category S<−i−a+1(A◦). Hence, D sends the right orthogonal S⊥≥i(A) to the
left orthogonal ⊥S<−i−a+1(A◦), which coincides with the right orthogonal
P⊥

<−i−a+1(A
◦) by Lemma 14. Therefore, the subcategory S⊥≥i coincides with

⊥P≥i+a. On the other hand, by Lemmas 14 and 15 we have that

⊥P≥i+a = S⊥≥i
∼= 〈S<i,Di〉.

This implies that the right orthogonal D⊥
i has the following decomposition:

D⊥
i = 〈P≥i+a,S<i〉. (12)

Assume that a ≥ 0. In this case, the decomposition (12) is not only
semiorthogonal, but is in fact mutually orthogonal, because P≥i+a ⊂
Db(gr−A≥i). Hence, we can interchange P≥i+a and S<i, i.e.,

D⊥
i = 〈S<i,P≥i+a〉.

Thus, we obtain that D⊥
i ⊂ T ⊥

i and, consequently, Ti is a full subcategory of
Di. Moreover, we can describe the right orthogonal to Ti in Di. In fact, there
is a decomposition

P≥i = 〈P≥i+a,Pa
i 〉,
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where Pa
i is the subcategory generated by the modules A(−i−a +

1), . . . , A(−i). Moreover, these modules form an exceptional collection. Thus,
the category Di has the semiorthogonal decomposition

Di = 〈A(−i− a + 1), . . . , A(−i), Ti〉.

Since Di
∼= Db(qgrA) and Ti

∼= Dgr
Sg(A), we obtain the decomposition

Db(qgrA) ∼= 〈πA(−i− a + 1), . . . , πA(−i), ΦiD
gr
Sg(A)〉,

where the fully faithful functor Φi is the composition Dgr
Sg(A) ∼→ Ti ↪→

Db(gr−A) π→ Db(qgrA).
Assume now that a ≤ 0. In this case, the decomposition (11) is not only

semiorthogonal but is in fact mutually orthogonal, because the algebra A
is Gorenstein and RHomA(k, A) = k(a)[−n] with a ≤ 0. Hence, we can
interchange P≥i and S<i, i.e.,

T ⊥
i = 〈P≥i,S<i〉.

Now we see that T ⊥
i ⊂ D⊥

i−a, and consequently, Di−a is the full subcategory
of Ti. Moreover, we can describe the right orthogonal to Di−a in Ti. In fact,
there is a decomposition of the form

S<i−a = 〈S<i,k(−i), . . . ,k(−i + a + 1)〉.

Therefore, the category Ti
∼= Dgr

Sg(A) has a semiorthogonal decomposition of
the form

Ti = 〈k(−i), . . . ,k(−i + a + 1),Di−a〉. (13)

Since Di−a
∼= Db(qgrA) and Ti

∼= Dgr
Sg(A), we obtain the decomposition

Dgr
Sg(A) ∼= 〈qk(−i), . . . , qk(−i + a + 1), ΨiDb(qgrA)〉,

where the fully faithful functor Ψi can be defined as the composition Db(qgrA)
∼→ Di−a ↪→ Db(gr−A)

q→ Dgr
Sg(A). If a = 0, then we get equivalence. �

Remark 17. It follows from the construction that the functor Ψi+a from
the bounded derived category Db(qgrA) to Dgr

Sg(A) is the composition of
the functor Rωi : Db(qgrA) −→ Db(gr−A≥i), which is given by formula
(5), the natural embedding Db(gr−A≥i) ↪→ Db(gr−A), and the projection
Db(gr−A)

q→ Dgr
Sg(A).

Let us consider two limiting cases. The first case is that the algebra A
has finite homological dimension. In this case the triangulated category of
singularities Dgr

Sg(A) is trivial, and hence the Gorenstein parameter a is non
negative and the derived category Db(qgrA) has a full exceptional collection
σ =

(
πA(0), . . . , πA(a − 1)

)
. More precisely, we have the following:
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Corollary 18. Let A =
⊕

i≥0 Ai be a connected graded Noetherian algebra
that is Gorenstein with Gorenstein parameter a. Suppose that A has finite
homological dimension. Then, a ≥ 0 and the derived category Db(qgrA) has
a full strong exceptional collection σ = (πA(0), . . . , πA(a− 1)) . Moreover,
the category Db(qgrA) is equivalent to the derived category Db(mod−Q(A))
of finite (right) modules over the algebra Q(A) := Endgr−A

(⊕a−1
i=0 A(i)

)
of

homomorphisms of σ.

Proof. Since A has finite homological dimension, the category Dgr
Sg(A) is triv-

ial. By Theorem 16 we get that a ≥ 0 and that Db(qgrA) has a full exceptional
collection σ = (πA(0), . . . , πA(a− 1)) . Consider the object Pσ =

⊕a−1
i=0 πA(i)

and the functor
Hom(Pσ,−) : qgrA −→ mod- Q(A),

where

Q(A) = Endqgr−A

(
a−1⊕

i=0

πA(i)

)

= Endgr−A

(
a−1⊕

i=0

A(i)

)

is the algebra of homomorphisms of the exceptional collection σ. It is easy to
see that this functor has a right derived functor

RHom(Pσ ,−) : Db(qgrA) −→ Db(mod- Q(A))

(e.g., as a composition Rω0 and Hom
(⊕a−1

i=0 A(i),−
)
). The standard rea-

soning (see, e.g., [6] or [7]) now shows that the functor RHom(Pσ,−) is an
equivalence. �

Example 19. As an application we obtain a well-known result (see [4]) as-
serting the existence of a full exceptional collection in the bounded derived
category of coherent sheaves on the projective space P

n. This result follows
immediately if we take A = k[x0, . . . , xn] with its standard grading. More
generally, if we take A to be the polynomial algebra k[x0, . . . , xn] graded by
deg xi = ai, then we get a full exceptional collection

(
O, . . . ,O(

∑n
i=0 ai − 1)

)

in the bounded derived category of coherent sheaves on the weighted projec-
tive space P(a0, . . . , an) considered as a smooth orbifold (see [2, 3]). It is also
true for noncommutative (weighted) projective spaces [2].

Another limiting case is that the algebra A is finite-dimensional over the
base field (i.e., A is a Frobenius algebra). In this case the category qgrA is
trivial, and hence the triangulated category of singularities Dgr

Sg(A) has a full
exceptional collection (compare with [13, 10.10]). More precisely, we get the
following:

Corollary 20. Let A =
⊕

i≥0 Ai be a connected graded Noetherian algebra
that is Gorenstein with Gorenstein parameter a. Suppose that A is finite-
dimensional over the field k. Then a ≤ 0, and the triangulated category of
singularities Dgr

Sg(A) has a full exceptional collection (qk(0), . . . , qk(a + 1)) ,
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where q : Db(gr-A) −→ Dgr
Sg(A) is the natural projection. Moreover, the trian-

gulated category Dgr
Sg(A) is equivalent to the derived category Db(mod-Q(A))

of finite (right) modules over the algebra Q(A) = Endgr−A

(⊕0
i=a+1 A(i)

)
.

Proof. Since A is finite-dimensional, the derived category Db(qgrA) is trivial.
By Theorem 16 we get that a ≤ 0 and Dgr

Sg(A) has a full exceptional collection
(qk(0), . . . , qk(a + 1)) . Unfortunately, this collection is not strong. However,
we can replace it by the dual exceptional collection, which is already strong
(see Definition 7). By Lemma 15 there is a weak semiorthogonal decomposition
Db(gr-A≥0) = 〈P≥0, T0〉, where T0 is equivalent to Dgr

Sg(A). Moreover, by
formula (13) we have the following semiorthogonal decomposition for T0:

T0 = 〈k(0), . . . ,k(a + 1)〉.
Denote by Ei, where i = 0, . . . ,−a−1, the modules A(i+a+1)/A(i+a+1)≥a.
These modules belong to T0 and form a full exceptional collection

T0 = 〈E0, . . . , E−(a+1)〉.
Furthermore, this collection is strong, and the algebra of homomorphisms of
this collection coincides with the algebra Q(A) = Endgr−A

(⊕0
i=a+1 A(i)

)
.

As in the previous proposition, consider the object E =
⊕−(a+1)

i=0 Ei and the
functor

RHom(E,−) : T0 = Dgr
Sg(A) −→ Db(mod- Q(A)).

Again the standard reasoning from [6,7] shows that the functor RHom(E,−)
is an equivalence of triangulated categories. �

Example 21. The simplest example here is A = k[x]/xn+1. In this case the
triangulated category of singularities Dgr

Sg(A) has a full exceptional collection
and is equivalent to the bounded derived category of finite-dimensional rep-
resentations of the Dynkin quiver of type An : • − • − · · · − •

︸ ︷︷ ︸
n

, because in this

case the algebra Q(A) is isomorphic to the path algebra of this Dynkin quiver.
This example is considered in detail in the paper [26].

Remark 22. There are other cases in which the triangulated category of sin-
gularities Dgr

Sg(A) has a full exceptional collection. It follows from Theorem
16 that if a ≤ 0 and the derived category Db(qgrA) has a full exceptional
collection, then Dgr

Sg(A) has a full exceptional collection as well. It happens,
for example, in the case that the algebra A is related to a weighted projective
line, an orbifold over P

1 (see, e.g., [11]).

2.3 Categories of Coherent Sheaves for Gorenstein Schemes

Let X be a connected projective Gorenstein scheme of dimension n and let
L be a very ample line bundle. Denote by A the graded coordinate algebra⊕

i≥0 H0(X,Li). The famous Serre theorem [25] asserts that the abelian cat-
egory of coherent sheaves coh(X) is equivalent to the quotient category qgrA.



Derived Categories of Coherent Sheaves 519

Assume that the dualizing sheaf ωX is isomorphic to L−r for some r ∈ Z

and assume also that Hj(X,Lk) = 0 for all k ∈ Z when j 
= 0, n. (For exam-
ple, if X is a complete intersection in P

N then it satisfies these conditions.)
In this case, Theorem 16 allows us to compare the triangulated category of
singularities Dgr

Sg(A) with the bounded derived category of coherent sheaves
Db(coh(X)). To apply that theorem we need the following lemma.

Lemma 23. Let X be a connected projective Gorenstein scheme of dimension
n. Let L be a very ample line bundle such that ωX

∼= L−r for some r ∈ Z

and Hj(X,Lk) = 0 for all k ∈ Z when j 
= 0, n. Then the algebra A =⊕

i≥0

H0(X,Li) is Gorenstein with Gorenstein parameter a = r.

Proof. Consider the projection functor Π : Gr−A → QGrA and its right
adjoint Ω : QGrA→ Gr−A which is given by the formula (4)

ΩΠN ∼=
∞⊕

n=−∞
HomQGr(ΠA, ΠN(n)).

The functor Ω has a right derived RΩ that is given by the formula

RjΩ(ΠN) ∼=
∞⊕

n=−∞
Extj

QGr(ΠA, ΠN(n))

(see, e.g. [1, Prop. 7.2]). The assumptions on X and L imply that RjΩ(ΠA) ∼=
0 for all j 
= 0, n. Moreover, since X is Gorenstein and ωX

∼= L−r, Serre duality
for X yields that

R0Ω(ΠA) ∼=
∞⊕

i=−∞
H0(X,Li) ∼= A and RnΩ(ΠA) ∼=

∞⊕

i=−∞
Hn(X,Li) ∼= A∗(r),

where A∗ = Homk(A,k). As X is irreducible, the algebra A is connected.
Since Π and RΩ are adjoint functors we have

RHomGr(k(s),RΩ(ΠA)) ∼= RHomQGr(Πk(s), ΠA) = 0

for all s. Furthermore, we know that RHomA(k, A∗) ∼= RHomA(A,k) ∼= k.
This implies that RHomA(k, A) ∼= k(r)[−n − 1]. This isomorphism implies
that the affine cone SpecA is Gorenstein at the vertex and the assumption
on X now implies that SpecA is Gorenstein scheme ([14, V, §9,10]). Since
SpecA has a finite Krull dimension, the algebra A is a dualizing complex for
itself, i.e. it has a finite injective dimension. Thus, the algebra A is Gorenstein
with parameter r. �

Theorem 24. Let X be an connected projective Gorenstein scheme of di-
mension n. Let L be a very ample line bundle such that ωX

∼= L−r for
some r ∈ Z. Suppose Hj(X,Lk) = 0 for all k ∈ Z when j 
= 0, n.
Set A :=

⊕
i≥0 H0(X,Li). Then the derived category of coherent sheaves
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Db(coh(X)) and the triangulated category of singularities Dgr
Sg(A) are related

as follows:

(i) if r > 0, i.e., if X is a Fano variety, then there is a semiorthogonal
decomposition

Db(coh(X)) = 〈L−r+1, . . . ,OX ,Dgr
Sg(A)〉;

(ii) if r < 0, i.e., if X is a variety of general type, then there is a semiorthog-
onal decomposition

Dgr
Sg(A) = 〈qk(r + 1), . . . , qk,Db(coh(X))〉,

where q : Db(gr−A) −→ Dgr
Sg(A) is the natural projection;

(iii) if r = 0, i.e., if X is a Calabi–Yau variety, then there is an equivalence

Dgr
Sg(A) ∼−→ Db(coh(X)).

Proof. Since L is very ample, Serre’s theorem implies that the bounded de-
rived category Db(coh(X)) is equivalent to the category Db(qgrA), where
A =

⊕
i≥0 H0(X,Li). Since Hj(X,Lk) = 0 for j 
= 0, n and all k ∈ Z, Lemma

23 implies that A is Gorenstein. Now the theorem immediately follows from
Theorem 16. �

Corollary 25. Let X be an irreducible projective Gorenstein Fano variety of
dimension n with at most rational singularities. Let L be a very ample line
bundle such that ω−1

X
∼= Lr for some r ∈ N. Set A =

⊕
i≥0 H0(X,Li). Then

the category Db(coh(X)) admits a semiorthogonal decomposition of the form

Db(coh(X)) = 〈L−r+1, . . . ,OX ,Dgr
Sg(A)〉.

Proof. The Kawamata–Viehweg vanishing theorem (see, e.g., [18, Th. 1.2.5])
yields Hj(X,Lk) = 0 for j 
= 0, n and all k. Hence, we can apply Theorem
24(i). �

Corollary 26. Let X be a Calabi–Yau variety. That is, X is an irreducible
projective variety with at most rational singularities, with trivial canonical
sheaf ωX

∼= OX and such that Hj(X,OX) = 0 for j 
= 0, n. Let L be some
very ample line bundle on X. Set A =

⊕
i≥0 H0(X,Li). Then there is an

equivalence
Db(coh(X)) ∼= Dgr

Sg(A).
Proof. The variety X has rational singularities hence it is Cohen–Macaulay.
Moreover, X is Gorenstein, because ωX

∼= OX . The Kawamata–Viehweg van-
ishing theorem ([18, Th. 1.2.5]) yields Hj(X,Lk) = 0 for j 
= 0, n and all
k 
= 0. Since by assumption Hj(X,OX) = 0 for j 
= 0, n, we can apply
Theorem 24 (iii). �

Proposition 27. Let X ⊂ P
N be a complete intersection of m hypersurfaces

D1, . . . , Dm of degrees d1, . . . , dm respectively. Then X and L = OX(1) satisfy
the conditions of Theorem 24 with Gorenstein parameter r = N +1−

∑m
i=1 di.
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Proof. Since the variety X is a complete intersection, it is Gorenstein. The
canonical class ωX is isomorphic to O(

∑
di −N − 1). It can be easily proved

by induction on m that Hj(X,OX(k)) = 0 for all k and j 
= 0, n, where
n = N −m is the dimension of X. Indeed, the base of the induction is clear.
For the induction step, assume that for Y = D1∩· · ·∩Dm−1 these conditions
hold. Then, consider the short exact sequence

0 −→ OY (k − dm) −→ OY (k) −→ OX(k) −→ 0.

Since the cohomologies Hj(Y,OY (k)) ane 0 for all k and j 
= 0, n + 1, we
obtain that Hj(X,OX(k)) = 0 for all k and j 
= 0, n. �

Theorem 24 can be extended to the case of quotient stacks. To do this we
will need an appropriate generalization of Serre’s theorem [25]. The usual Serre
theorem says that if a commutative connected graded algebra A =

⊕
i≥0 Ai is

generated by its first component, then the category qgrA is equivalent to the
category of coherent sheaves coh(X) on the projective variety X = ProjA.
(Such equivalence holds for the categories of quasicoherent sheaves Qcoh(X)
and QGr A too.)

Consider now a commutative connected graded k-algebra A =
⊕

i≥0 Ai

that is not necessarly generated by its first component. The grading on A
induces an action of the group k∗ on the affine scheme SpecA. Let 0 be the
closed point of SpecA that corresponds to the ideal A+ = A≥1 ⊂ A. This
point is invariant under the action.

Denote by ProjA the quotient stack
[
(SpecA\0)

/
k∗]. (Note that there is

a natural map ProjA→ ProjA, which is an isomorphism if the algebra A is
generated by A1.)

Proposition 28. (see also [2]) Let A = ⊕i≥0 Ai be a connected graded finitely
generated algebra. Then the category of (quasi)coherent sheaves on the quotient
stack Proj (A) is equivalent to the category qgrA (respectively QGrA).
Proof. Let 0 be the closed point on the affine scheme SpecA that corre-
sponds to the maximal ideal A+ ⊂ A. Denote by U the complement SpecA\0.
We know that the category of (quasi)coherent sheaves on the stack ProjA is
equivalent to the category of k∗-equivariant (quasi)coherent sheaves on U.
The category of (quasi)coherent sheaves on U is equivalent to the quotient
of the category of (quasi)coherent sheaves on SpecA by the subcategory of
(quasi)coherent sheaves with support on 0 (see [9]). This is also true for the
categories of k∗-equivariant sheaves. But the category of (quasi)coherent k∗-
equivariant sheaves on SpecA is just the category gr-A (resp. Gr-A) of graded
modules over A, and the subcategory of (quasi)coherent sheaves with support
on 0 coincides with the subcategory tors-A (resp. Tors-A). Thus, we obtain
that coh(ProjA) is equivalent to the quotient category qgrA = gr-A/ tors-A
(and Qcoh(ProjA) is equivalent to QGrA = Gr-A/ Tors-A). �
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Corollary 29. Assume that the Noetherian Gorenstein connected graded al-
gebra A from Theorem 16 is finitely generated and commutative. Then in place
of the bounded derived category Db(qgrA) in Theorem 16 we can substitute the
category Db(coh(ProjA)), where ProjA the quotient stack

[
(SpecA\0)

/
k∗] .

3 Categories of Graded D-branes of Type B
in Landau–Ginzburg Models

3.1 Categories of Graded Pairs

Let B =
⊕

i≥0 Bi be a finitely generated connected graded algebra over a field
k. Let W ∈ Bn be a central element of degree n that is not a zero-divisor,
i.e., Wb = bW for any b ∈ B and bW = 0 only for b = 0. Denote by J the
two-sided ideal J := WB = BW and denote by A the quotient graded algebra
B/J.

With any such element W ∈ Bn we can associate two categories: an exact
category GrPair(W ) and a triangulated category DGrB(W ).2 Objects of these
categories are ordered pairs

P :=
(

P1

p1 ��
P0

p0
��

)
,

where P0, P1 ∈ gr−B are finitely generated free graded right B-modules, p1

is a map of degree 0, and p0 is a map of degree n (i.e., a map from P0 to
P1(n)) such that the compositions p0p1 and p1(n)p0 are the left multiplications
by the element W . A morphism f : P → Q in the category GrPair(W ) is
a pair of morphisms f1 : P1 → Q1 and f0 : P0 → Q0 of degree 0 such
that f1(n)p0 = q0f0 and q1f1 = f0p1. The morphism f = (f1, f0) is null-
homotopic if there are two morphisms s : P0 → Q1 and t : P1 → Q0(−n)
such that f1 = q0(n)t+ sp1 and f0 = t(n)p0 + q1s. Morphisms in the category
DGrB(W ) are the classes of morphisms in GrPair(W ) modulo null-homotopic
morphisms.

In other words, objects of both categories are quasi–periodic infinite se-
quences

K
�

:= {· · · −→ Ki ki

−→ Ki+1 ki+1

−→ Ki+2 −→ · · · }

of morphisms in gr-B of free graded right B-modules such that the composition
ki+1ki of any two consecutive morphisms is equal to multiplication by W . The
quasi–periodicity property here means that K

�

[2] = K
�

(n). In particular,

K2i−1 ∼= P1(i · n), K2i ∼= P0(i · n), k2i−1 = p1(i · n), k2i = p0(i · n).

2One can also construct a differential graded category whose homotopy category
is equivalent to DGrB .
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A morphism f : K
�

−→ L
�

in the category GrPair(W ) is a family of mor-
phisms f i : Ki −→ Li in gr-B that is quasiperiodic, i.e., f i+2 = f i(n), and
that commutes with ki and li, i.e., f i+1ki = lif i.

Morphisms in the category DGrB(W ) are morphisms in GrPair(W ) mod-
ulo null-homotopic morphisms, and we consider only quasiperiodic homo-
topies, i.e., families si : Ki −→ Li−1 such that si+2 = si(n).

Definition 30. The category DGrB(W ) constructed above will be called the
category of graded D-branes of type B for the pair (B =

⊕
i≥0 Bi, W ).

Remark 31. If B is commutative, then we can consider the affine scheme
SpecB. The grading on B corresponds to an action of the algebraic group k∗

on SpecB. The element W can be viewed as a regular function on SpecB
that is semi-invariant with respect to this action. This way, we get a singular
Landau–Ginzburg model (SpecB, W ) with an action of the torus k∗. Thus,
Definition 30 is a definition of the category of graded D-branes of type B for
this model (see also [16, 28]).

It is clear that the category GrPair(W ) is an exact category (see [24] for the
definition) with monomorphisms and epimorphisms being the componentwise
monomorphisms and epimorphisms. The category DGrB(W ) can be endowed
with a natural structure of a triangulated category. To exhibit this structure
we have to define a translation functor [1] and a class of exact triangles.

The translation functor is usually defined as a functor that takes an object
K

�

to the object K
�

[1], where K[1]i = Ki+1 and d[1]i = −di+1, and takes a
morphism f to the morphism f [1], which coincides with f componentwise.

For any morphism f : K
�

→ L
�

from the category GrPair(W ) we define a
mapping cone C

�

(f) as an object

C
�

(f) = {· · · −→ Li ⊕Ki+1 ci

−→ Li+1 ⊕Ki+2 ci+1

−→ Li+2 ⊕Ki+3 −→ · · · }
such that

ci =
(

li f i+1

0 −ki+1

)

.

There are maps g : L
�

→ C
�

(f), g = (id, 0) and h : C
�

(f) → K
�

[1], h =
(0,−id).

Now we define a standard triangle in the category DGrB(W ) as a triangle
of the form

K
� f−→ L

� g−→ C
�

(f) h−→ K
�

[1]

for some f ∈ GrPair(W ).

Definition 32. A triangle K
�

→L
�

→M
�

→K
�

[1] in DGrB(W ) will be called
an exact (distinguished) triangle if it is isomorphic to a standard triangle.

Proposition 33. The category DGrB(W ) endowed with the translation func-
tor [1] and the above class of exact triangles becomes a triangulated category.

We omit the proof of this proposition, which is more or less the same as the
proof of the analogous result for a usual homotopic category (see, e.g., [12]).
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3.2 Categories of Graded Pairs and Categories of Singularities

With any object K
�

as above, one associates a short exact sequence

0 −→ K−1 k−1

−→ K0 −→ Coker k−1 −→ 0. (14)

We can attach to an object K
�

the right B-module Coker k−1. It can be
easily checked that the multiplication by W annihilates it. Hence, the module
Coker k−1 is naturally a right A-module, where A = B/J with J = WB =
BW. Any morphism f : K

�

→ L
�

in GrPair(W ) induces a morphism between
cokernels. This construction defines a functor Cok : GrPair(W ) −→ gr-A.
Using the functor Cok we can construct an exact functor between triangulated
categories DGrB(W ) and Dgr

Sg(A).

Proposition 34. There is a functor F that completes the following commu-
tative diagram:

GrPair(W ) Cok−−−−→ gr-A
⏐
⏐
�

⏐
⏐
�

DGrB(W ) F−−−−→ Dgr
Sg(A).

Moreover, the functor F is an exact functor between triangulated categories.
Proof. We have the functor GrPair(W ) −→ Dgr

Sg(A), which is the composition
of Cok and the natural functor from gr-A to Dgr

Sg(A). To prove the existence
of a functor F we need to show that any morphism f : K

�

→ L
�

that is
null-homotopic goes to the 0-morphism in Dgr

Sg(A). Fix a homotopy s = (si)
with si : Ki → Li−1. Consider the following decomposition of f :

K−1

(s−1,f−1)

��

k−1
�� K0

(s0,f0)

��

�� Coker k−1

��
L−2 ⊕ L−1

pr

��

u−1
�� L−1 ⊕ L0

pr

��

�� L0 ⊗B A

��
L−1 l−1

�� L0 �� Coker l−1

where u−1 =
(
−l−2 id

0 l−1

)

,

This yields a decomposition of F (f) through a locally free object L0 ⊗B A.
Hence, F (f) = 0 in the category Dgr

Sg(A). By Lemma 36, which is proved
below, the tensor product K

�

⊗B A is an acyclic complex. Hence, there is an
exact sequence 0→ Coker k−1 → K1⊗BA→ Coker k0 → 0. Since K1⊗BA is
free, we have Coker k0 ∼= Coker k−1[1] in Dgr

Sg(A). But Coker k0 = F (K
�

[1]).
Hence, the functor F commutes with translation functors. It is easy to see
that F takes a standard triangle in DGrB(W ) to an exact triangle in Dgr

Sg(A).
Thus, F is exact. �
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Lemma 35. The functor Cok is full.

Proof. Any map g : Coker k−1 → Coker l−1 between A-modules can be con-
sidered as the map of B-modules and can be extended to a map of short exact
sequences

0 −−−−→ K−1 k−1

−−−−→ K0 −−−−→ Coker k−1 −−−−→ 0

f−1

⏐
⏐
�

⏐
⏐
�f0

⏐
⏐
�g

0 −−−−→ L−1 l−1

−−−−→ L0 −−−−→ Coker l−1 −−−−→ 0,

because K0 is free. This gives us a sequence of morphisms f = (f i), i ∈ Z,
where f2i = f0(in) and f2i−1 = f−1(in). To prove the lemma it is sufficient
to show that the family f is a map from K

�

to L
�

, i.e., f1k0 = l0f0. Consider
the sequence of equalities

l1(f1k0 − l0f0) = f2k1k0 −Wf0 = f2W −Wf0 = f0(2)W −Wf0 = 0.

Since l1 is an embedding, we obtain that f1k0 = l0f0. �

Lemma 36. For any sequence K
�

∈ GrPair(W ) the tensor product K
�

⊗B A
is an acyclic complex of A-modules and the A-module Coker k−1 satisfies the
condition

ExtiA(Coker k−1, A) = 0 for all i > 0.

Proof. It is clear that K
�

⊗B A is a complex. Applying the snake lemma to
the commutative diagram

0 −−−−→ Ki−2 ki−2

−−−−→ Ki−1 −−−−→ Coker ki−2 −−−−→ 0

W

⏐
⏐
�

⏐
⏐
�W

⏐
⏐
�0

0 −−−−→ Ki ki

−−−−→ Ki+1 −−−−→ Coker ki −−−−→ 0,

we obtain an exact sequence

0→ Coker ki−2 −→ Ki ⊗B A
ki|W−→ Ki+1 ⊗B A −→ Coker ki → 0.

This implies that K
�

⊗B A is an acyclic complex.
Further, consider the dual sequence of left B-modules K

�∨, where K
�∨ ∼=

HomB(K
�

, B). For the same reasons as above, A⊗BK
�∨ is an acyclic complex.

On the other hand, the cohomologies of the complex {(K0)∨ −→ (K−1)∨ −→
(K−2)∨ −→ · · · } are isomorphic to Exti

A(Coker k−1, A). And so, by the
acyclicity of A⊗B K

�∨, they are equal to 0 for all i > 0. �

Lemma 37. If FK
� ∼= 0, then K

� ∼= 0 in DGrB(W ).
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Proof. If FK
� ∼= 0, then the A-module Coker k−1 is perfect as a complex of

A-modules. Let us show that Coker k−1 is projective in this case. Indeed, there
is a natural number m such that Exti

A(Coker k−1, N) = 0 for any A-module
N and any i ≥ m. Considering the exact sequence

0 −→ Coker k−2m−1 −→ K−2m ⊗B A −→ · · · −→ K−1 ⊗B A −→ K0 ⊗B A

−→ Coker k−1 −→ 0

and taking into account that all A-modules Ki ⊗B A are free, we find
that for all modules N , ExtiA(Coker k−2m−1, N) = 0 when i > 0. Hence,
Coker k−2m−1 is a projective A-module. This implies that Coker k−1 is also
projective, because it is isomorphic to Coker k−2m−1(−mn).

Since Coker k−1 is projective, there is a map f : Coker k−1 → K0 ⊗B A
that splits the epimorphism pr : K0 ⊗B A→ Coker k−1. It can be lifted to a

map from the complex {K−1 k−1

−→ K0} to the complex {K−2 W−→ K0}. Denote
the lift by (s−1, u). Consider the following diagram:

K−1 k−1

−−−−→ K0 −−−−→ Coker k−1

s−1

⏐
⏐
�

⏐
⏐
�u

⏐
⏐
�f

K−2 W−−−−→ K0 −−−−→ K0 ⊗B A

k−2

⏐
⏐
�

⏐
⏐
�id

⏐
⏐
�pr

K−1 k−1

−−−−→ K0 −−−−→ Coker k−1.

Since the composition pr f is identical, the map (k−2s−1, u) from the pair

{K−1 k−1

−→ K0} to itself is homotopic to the identity map. Hence, there is a
map s0 : K0 → K−1 such that

idK−1 − k−2s−1 = s0k−1 and k−1s0 = idK0 − u.

Moreover, we have the following equalities:

0 = (uk−1 −Ws−1) = (uk−1 − s−1(n)W ) = (u− s−1(n)k0)k−1.

This gives us that u = s−1(n)k0, because there are no maps from Coker k−1

to K0. Finally, we get the sequence of morphisms si : Ki −→ Ki−1, where
s2i−1 = s−1(in), s2i = s0(in), such that ki−1si + kisi+1 = id. Thus the iden-
tity morphism of the object K

�

is null-homotopic. Hence, the object K
�

is
isomorphic to the zero object in the category DGrB0(W ). �

Theorem 38. The exact functor F : DGrB(W ) −→ Dgr
Sg(A) is fully faithful.

Proof. By Lemma 36 we have Exti
A(Coker k−1, A) = 0 for i > 0. Now, Propo-

sition 11 gives an isomorphism
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HomDgr
Sg(A)(Coker k−1, Coker l−1) ∼= Homgr−A(Coker k−1, Coker l−1)/R,

where R is the subspace of morphisms factoring through projective modules.
Since the functor Cok is full, we get that the functor F is also full.

Next we show that F is faithful. The reasoning is standard. Let f : K
�

→
L

�

be a morphism for which F (f) = 0. Include f in an exact triangle K
� f−→

L
� g−→M

�

. Then the identity map of FL
�

factors through the map FL
� Fg−→

FM
�

. Since F is full, there is a map h : L
�

→ L
�

factoring through g : L
�

→
M

�

such that Fh = id. Hence, the cone C
�

(h) of the map h goes to zero under
the functor F . By Lemma 37 the object C

�

(h) is the zero object as well, so h
is an isomorphism. Thus g : L

�

→M
�

is a split monomorphism and f = 0. �

Theorem 39. Suppose that the algebra B has a finite homological dimension.
Then the functor F : DGrB(W ) −→ Dgr

Sg(A) is an equivalence.
Proof. We know that F is fully faithful. To prove the theorem we need to show
that each object T ∈ Dgr

Sg(A) is isomorphic to FK
�

for some K
�

∈ DGrB(W ).
The algebra B has a finite homological dimension and as a consequence,

it has a finite injective dimension. This implies that A = B/J has a finite
injective dimension too. By Lemma 10 any object T ∈ Dgr

Sg(A) is isomorphic
to the image of an A-module M such that ExtiA(M, A) = 0 for all i > 0.
This means that the object D(M) = RHomA(M, A) is a left A-module. We
can consider a projective resolution Q

�

→ D(M). The dual of Q
�

is a right
projective A-resolution

0 −→M −→ {P 0 −→ P 1 −→ · · · }.

Consider M as B-module and chose an epimorphism K0 � M from the free
B-module K0. Denote by k−1 : K−1 → K0 the kernel of this map.

The short exact sequence 0 → B
W→ B → A → 0 implies that for a

projective A-module P and any B-module N we have equalities Exti
B(P, N) =

0 when i > 1. This also yields that Exti
B(M, N) = 0 for i > 1 and any B-

module N, because M has a right projective A-resolution and the algebra B
has finite homological dimension. Therefore, ExtiB(K−1, N) = 0 for i > 0 and
any B-module N, i.e., B-module K−1 is projective. Since A is connected and
finitely generated, any graded projective module is free. Hence, K−1 is free.

Since the multiplication on W gives the zero map on M, there is a map
k0 : K0 → K−1(n) such that k0k−1 = W and k−1(n)k0 = W . This way, we
get a sequence K

�

with

K2i ∼= K0(i · n), K2i−1 = K−1(i · n), k2i = k0(i · n), k2i−1 = k−1(i · n),

and this sequence is an object of DGrB(W ) for which FK
� ∼= T . �

3.3 Graded D-branes of Type B and Coherent Sheaves

By a Landau–Ginzburg model we mean the following data: a smooth variety
X equipped with a symplectic Kähler form ω, a closed real 2-form B, which
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is called a B-field, and a regular nonconstant function W on X . The function
W is called the superpotential of the Landau–Ginzburg model. Since for the
definition of D-branes of type B a symplectic form and B-field are not needed,
we do not fix them.

With any point λ ∈ A
1 we can associate a triangulated category DBλ(W ).

We give a construction of these categories under the condition that X =
Spec(B) is affine (see [17, 22]). The category of coherent sheaves on an
affine scheme X = Spec(B) is the same as the category of finitely gen-
erated B-modules. The objects of the category DBλ(W ) are ordered pairs

P :=
(

P1

p1 ��
P0

p0
��

)
, where P0, P1 are finitely generated projective B-

modules and the compositions p0p1 and p1p0 are the multiplications by the
element (W −λ) ∈ B. The morphisms in the category DB(W ) are the classes
of morphisms between pairs modulo null-homotopic morphisms, where a mor-
phism f : P → Q between pairs is a pair of morphisms f1 : P1 → Q1 and
f0 : P0 → Q0 such that f1p0 = q0f0 and q1f1 = f0p1. The morphism f is
null-homotopic if there are two morphisms s : P0 → Q1 and t : P1 → Q0 such
that f1 = q0t + sp1 and f0 = tp0 + q1s.

We define a category of D-branes of type B (B-branes) on X = Spec(B)
with the superpotential W as the product DB(W ) =

∏
λ∈A1 DBλ(W ).

It was proved in the paper [22, Cor. 3.10] that the category DBλ(W )
for smooth affine X is equivalent to the triangulated category of singulari-
ties DSg(Xλ), where Xλ is the fiber over λ ∈ A

1. Therefore, the category of
B-branes DB(W ) is equivalent to the product

∏
λ∈A1 DSg(Xλ). For nonaffine

X the category
∏

λ∈A1 DSg(Xλ) can be considered as a definition of the cat-
egory of D-branes of type B. Note that in the affine case, Xλ is Spec(Aλ),
where Aλ = B/(W − λ)B, and hence the triangulated categories of singular-
ities DSg(Xλ) is the same as the category DSg(Aλ).

Assume now that there is an action of the group k∗ on the Landau–
Ginzburg model (X, W ) such that the superpotential W is semi-invariant
of weight d. Thus, X = Spec(B) and B =

⊕
i Bi is a graded algebra. The

superpotential W is an element of Bd. Let us assume that B is positively
graded and connected. In this case, we can consider the triangulated cate-
gory of graded B-branes DGrB(W ), which was constructed in Section 3.1 (see
Definition 30).

Denote by A the quotient graded algebra B/WB. We see that the affine va-
riety Spec(A) is the fiber X0 of W over the point 0. Denote by Y the quotient
stack [(Spec(A) \ 0)/k∗] , where 0 is the point on Spec(A) corresponding to
the ideal A+. Theorems 16, 39 and Proposition 28 allow us to establish a
relation between the triangulated category of graded B-branes DGrB(W ) and
the bounded derived category of coherent sheaves on the stack Y.

First, Theorem 39 gives us the equivalence F between the triangulated
category of graded B-branes DGrB(W ) and the triangulated category of sin-
gularities Dgr

Sg(A). Second, Theorem 16 describes the relationship between
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the category Dgr
Sg(A) and the bounded derived category Db(qgrA). Third,

the category Db(qgrA) is equivalent to the derived category Db(coh(Y )) by
Proposition 28. In the particular case, that X is the affine space A

N with the
standard action of the group k∗, we get the following result.

Theorem 40. Let X be the affine space A
N and let W be a homogeneous

polynomial of degree d. Let Y ⊂ P
N−1 be the hypersurface of degree d that is

given by the equation W = 0. Then, there is the following relation between the
triangulated category of graded B-branes DGrB(W ) and the derived category
of coherent sheaves Db(coh(Y )):

(i) if d < N , i.e. if Y is a Fano variety, there is a semiorthogonal decompo-
sition

Db(coh(Y )) = 〈OY (d−N + 1), . . . ,OY , DGrB(W )〉;

(ii) if d > N , i.e., if X is a variety of general type, there is a semiorthogonal
decomposition

DGrB(W ) = 〈F−1q(k(r + 1)), . . . , F−1q(k),Db(coh(Y ))〉,

where q : Db(gr−A) −→ Dgr
Sg(A) is the natural projection, and F :

DGrB ∼−→ Dgr
Sg(A) is the equivalence constructed in Proposition 34.

(iii) if d = N , i.e., if Y is a Calabi–Yau variety, there is an equivalence

DGrB(W ) ∼−→ Db(coh(Y )).

Remark 41. We can also consider a weighted action of the torus k∗ on the
affine space A

N with positive weights (a1, . . . , aN ), ai > 0 for all i. If the
superpotential W is quasi–homogeneous, then we have the category of graded
B-branes DGrB(W ). The polynomial W defines an orbifold (quotient stack)
Y ⊂ P

N−1(a1, . . . , aN ). The orbifold Y is the quotient of Spec(A)\0 by the
action of k∗, where A = k[x1, . . . , xN ]/W. Proposition 28 gives the equivalence
between Db(coh(Y )) and Db(qgrA). And Theorem 16 shows that we get an
analogue of Theorem 40 for the weighted case as well.
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Summary. We develop explicit formulas for Hecke operators of higher genus in
terms of spherical coordinates. Applications are given to summation of various gen-
erating series with coefficients in local Hecke algebras and in a tensor product of
such algebras. In particular, we formulate and prove Rankin’s lemma in genus two.
An application to a holomorphic lifting from GSp2 × GSp2 to GSp4 is given using
Ikeda–Miyawaki constructions.
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1 Introduction: Generating Series
for the Hecke Operators

Let p be a prime. The Satake isomorphism [Sa63] relates p-local Hecke algebras
of reductive groups over Q to certain polynomial rings. Then one can use
a computer in order to find interesting identities between Hecke operators,
between their eigenvalues, and relations to Fourier coefficients of modular
forms of higher degree.

The purpose of the present paper is to extend Rankin’s lemma to the
summation of Hecke series of higher genus using symbolic computation. We
refer to [Ma-Pa77], where Rankin’s lemma was used in the elliptic modular
case for multiplicative and additive convolutions of Dirichlet series. That work
was further developped in [Pa87], [Pa02]; see also [Ma-Pa05].
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Recall that a classical method to produce L-functions for an algebraic
group G over Q uses the generating series

∞∑

n=1

λf (n)n−s =
∏

p primes

∞∑

δ=0

λf (pδ)p−δs

of the eigenvalues of Hecke operators on an automorphic form f on G. We
study the generating series of Hecke operators T(n) for the symplectic group
Spg, and λf (n) = λf (T(n)).

Let Γ = Spg(Z) ⊂ SL2g(Z) be the Siegel modular group of genus g, and
let [p]g = pI2g = T(p, . . . , p︸ ︷︷ ︸

2g

) be the scalar Hecke operator for Spg. According

to Hecke and Shimura,

Dp(X) =
∞∑

δ=0

T(pδ)Xδ

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 − T(p)X + p[p]1X2

, if g = 1

(see [Hecke], and [Shi71], Theorem 3.21),

1 − p2[p]2X2

1 − T(p)X + {pT1(p2) + p(p2 + 1)[p]2}X2 − p3[p]2T(p)X3 + p6[p]22X4

if g = 2 (see [Shi63], Theorem 2),

where T(p), Ti(p2) (i = 1, . . . , g) are the g+1 generators of the corresponding
Hecke ring over Z for the symplectic group Spg, in particular, Tg(p2) = [p]g.

It was established by A. N. Andrianov that there exist polynomials

E(X), F (X) ∈ Q[T(p),T1(p2), . . . ,Tg(p2), X ]

such that

D(X) =
∞∑

δ=0

T(pδ)Xδ =
E(X)
F (X)

,

with a polynomial F (X) =
∑2g

j=0 qjX
j of degree 2g, and such that E(X) =

∑2g−2
j=0 ujX

j is a polynomial of degree 2g − 2 with leading term

(−1)g−1pg(g+1)2g−2−g2
[p]2

g−1−1X2g−2

(as stated in Theorem 6 on p. 451 of [An70] and on p. 61 of §1.3, [An74]).
In the present paper we study explicit formulas for Hecke operators in

higher genus in terms of spherical coordinates. Applications are given to sum-
mation of various generating series with coefficients in local Hecke algebras.
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The question of computing such series explicitly was raised by Prof. S. Fried-
berg during the first author’s talk at the conference “Zeta Functions” (The
Independent Moscow University, September 18–22, 2006).

In particular, we formulate and prove Rankin’s lemma in genus two for
generating series with coefficients in a tensor product of local Hecke algebras.

We prove in Theorem 4 that for g = 2,
∞∑

δ=0

T(pδ) ⊗ T(pδ)Xδ =
(1 − p6[p] ⊗ [p]X2) · R(X)

S(X)
,

for certain two polynomials

R(X) = 1 + r1X + · · · + r11X
11 + r12X

12 with r1 = r11 = 0,

S(X) = 1 + s1X + · · · + s16X
16,

with coefficients explicitly expressed through Hecke operators given in the
appendix. A motivic interpretation of the polynomial S is given in terms of
the tensor product of motives.

For the group Gl(n), a simpler result could be obtained using the Tama-
gawa generating series (see [Tam]) and its expansion into simple fractions:

1
(1 − x1X) · · · (1 − xnX)

=
n∑

i=1

αi

1 − xiX
, where αi =

xn−1
i∏n

j �=i(xj − xi)
,

see Remark 6.
Also, it is helpful for the reader to remember cases in which the Hecke

series do have simple numerators: Andrianov (GSp(2), see [An74]), Tamagawa
(GL(n), see [Tam]), Böcherer (for standard-L-function, see [BHam]).

2 Results

2.1 Preparation: A Formula for the Total Hecke Operator
T(pδ) of Genus 2

We establish first the following useful formula (in spherical variables
x0, x1, x2):

Ω(2)
x (T(pδ)) (1)

= p−1 x δ
0 (p x (3+δ)

1 x2 − p x (2+δ)
1 − p x (3+δ)

1 x (2+δ)
2 + p x (2+δ)

1 x (3+δ)
2

− p x1 x (3+δ)
2 + p x (2+δ)

2 + p x1 − p x2 − x (2+δ)
1 x 2

2 + x (1+δ)
1 x2

+ x (2+δ)
1 x (1+δ)

2 − x (1+δ)
1 x (2+δ)

2 + x 2
1 x (2+δ)

2 − x1 x (1+δ)
2 − x 2

1 x2 + x1 x 2
2 )/

((1 − x1) (1 − x2) (1 − x1 x2) (x1 − x2))

= −p−1 x δ
0 ((1 − x1 x2) (p x1 − x2) x (δ+1)

1 + (1 − x1 x2) (x1 − p x2) x (δ+1)
2

− (1 − p x1 x2) (x1 − x2) (x1 x2)(δ+1) − (p − x1 x2)(x1 − x2))/
((1 − x1) (1 − x2) (1 − x1 x2) (x1 − x2)).
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Andrianov’s Generating Series

The expression (1) comes from Andrianov’s generating series

∞∑

δ=0

Ω(2)
x (T(pδ))Xδ =

1 − x2
0 x1 x2

p X2

(1 − x0 X) (1 − x0 x1 X) (1 − x0 x2 X) (1 − x0 x1 x2 X)

after developing and a simplification using change of summation.
Note that the formula (1) makes it possible to treat higher generating

series of the following type:

Dp,m(X) =
∞∑

δ=0

Ω(2)
x (T(pmδ))Xδ (m = 2, 3, . . . )

(in spherical variables x0, x1, x2).

2.2 Rankin’s Generating Series in Genus 2

Let us use the spherical variables x0, x1, x2 and y0, y1, y2 for the Hecke oper-
ators.

Note that there are two types of convolutions: the first one is defined
through the Fourier coefficients (it was used by [An-Ka] for the analytic con-
tinuation of the standard L- function), and the second one is defined through
the eigenvalues of Hecke operators, and it is more suitable for treating the
L-functions attached to tensor products of representations of the Langlands
group. However, a link between the two types is known only for g = 1.

In order to state a multiplicative analogue of Rankin’s lemma in genus two
we need to write the corrseponding formula for the Hecke operator T(pδ) (in
spherical variables y0, y1, y2):

Ω(2)
y (T(pδ)) = p−1 yδ

0 (p y(3+δ)
1 y2 − p y(2+δ)

1 − p y(3+δ)
1 y(2+δ)

2 + p y(2+δ)
1 y(3+δ)

2

−p y1 y(3+δ)
2 + p y(2+δ)

2 + p y1 − p y2 − y(2+δ)
1 y2

2 + y(1+δ)
1 y2

+y(2+δ)
1 y(1+δ)

2 − y(1+δ)
1 y(2+δ)

2 + y2
1 y(2+δ)

2 − y1 y(1+δ)
2 − y2

1 y2

+y1 y2
2 )/((1 − y1) (1 − y2) (1 − y1 y2) (y1 − y2))

Then we have that the product of the above polynomials is given by

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))

= p−2 x δ
0 yδ

0 (p x (3+δ)
1 x2 − p x (2+δ)

1 − p x (3+δ)
1 x (2+δ)

2 + p x (2+δ)
1 x (3+δ)

2

−p x1 x (3+δ)
2 + p x (2+δ)

2 + p x1 − p x2 − x (2+δ)
1 x 2

2 + x (1+δ)
1 x2

+x (2+δ)
1 x (1+δ)

2 − x (1+δ)
1 x (2+δ)

2 + x 2
1 x (2+δ)

2 − x1 x (1+δ)
2 − x 2

1 x2 + x1 x 2
2 )

·(p y(3+δ)
1 y2 − p y(2+δ)

1 − p y(3+δ)
1 y(2+δ)

2 + p y(2+δ)
1 y(3+δ)

2
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−p y1 y(3+δ)
2 + p y(2+δ)

2 + p y1 − p y2 − y(2+δ)
1 y2

2 + y(1+δ)
1 y2

+y(2+δ)
1 y(1+δ)

2 − y(1+δ)
1 y(2+δ)

2 + y2
1 y(2+δ)

2 − y1 y(1+δ)
2 − y2

1 y2 + y1 y2
2 )/

((1 − x1)(1 − x2)(1 − x1x2)(x1 − x2)(1 − y1)(1 − y2)(1 − y1y2)(y1 − y2)).

We wish to compute the generating series

∞∑

δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ ∈ Q[x0, x1, x2, y0, y1, y2][[X ]].

The answer is given by the following multiplicative analogue of Rankin’s
lemma in genus two:

Theorem 1. The following equality holds:
∞∑

δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ = (2)

− (p x1 − x2) (1 − p y1 y2) x1 y1 y2

p2 (1 − x1) (1 − x2) (x1 − x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 x1 y0 y1 y2 X)

+
x2 y1 (x1 − p x2) (p y1 − y2)

p2 (1 − x1) (1 − x2) (x1 − x2) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 x2 y0 y1 X)

+
x2 y2 (x1 − p x2)(y1 − p y2)

p2 (1 − x1) (1 − x2) (x1 − x1) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 y0 x2 y2 X)

− x2 y1 y2 (x1 − p x2) (1 − p y1 y2)

p2 (1 − x1) (1 − x2) (x1 − x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 x2 y0 y1 y2 X)

− x1 (p x1 − x2) (p − y1 y2)

p2 (1 − x1) (1 − x2) (x1 − x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 x1 y0 X)

− x1 x2 y1(1 − p x1 x2) (p y1 − y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 x1 x2 y0 y1 X)

− x1 x2 y2 (1 − p x1 x2) (y1 − p y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 x1 x2 y0 y2 X)

+
y1 y2 (p − x1 x2) (1 − p y1 y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 y0 y1 y2 X)

+
x1 x2 (1 − p x1 x2) (p − y1 y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 x1 x2 y0 X)

− x1 y1 (p x1 − x2) (p y1 − y2)

p2 (1 − x1) (1 − x2) (x1 − x2) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 x1 y0 y1 X)

+
x1 y2 (p x1 − x2) (y1 − p y2)

p2 (1 − x1) (1 − x2) (x1 − x2) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 x1 y0 y2 X)

− x2 (x1 − p x2) (p − y1 y2)

p2 (1 − x1) (1 − x2) (x1 − x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 x2 y0 X)

+
x1 x2 y1 y2 (1 − p x1 x2) (1 − p y1 y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 x1 x2 y0 y1 y2 X)

+
(p − x1 x2) (p − y1 y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (1 − y1 y2) (1 − x0 y0 X)
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− y1 (p − x1 x2) (p y1 − y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 y0 y1 X)

− y2 (p − x1 x2) (y1 − p y2)

p2 (1 − x1) (1 − x2) (1 − x1 x2) (1 − y1) (1 − y2) (y1 − y2) (1 − x0 y0 y2 X)
.

Remark 2 (On the denominator of series (2)). One finds using a com-
puter that the polynomials not depending on X in the denominators of (2)
cancel after the simplification in the ring Q[x0, x1, x2, y0, y1, y2][[X ]], so that
the common denominator becomes

(1 − x0 y0X)(1 − x0 y0 x1 X)(1 − x0 y0 y1 X)(1 − x0 y0 x2 X)(1 − x0 y0 y2 X)
(1 − x0 y0 x1 y1 X)(1 − x0 y0 x1 x2 X)(1 − x0 y0 x1 y2 X)(1 − x0 y0 y1 x2 X)
(1 − x0 y0 y1 y2 X)(1 − x0 y0 x2 y2 X)(1 − x0 y0 x1 y1 x2 X)(1 − x0 y0 x1 y1 y2 X)
(1 − x0 y0 x1 x2 y2 X)(1 − x0 y0 y1 x2 y2 X)(1 − x0 y0 x1 y1 x2 y2 X).

Remark 3 (Comparison with g = 1). It turns out by direct computation
that the numerator of the rational fraction (2) is a product of the factor
1 − x 2

0 y2
0 x1y1x2y2X

2 by a polynomial of degree 12 in X with coefficients in
Q[x0, x1, x2, y0, y1, y2] with the constant term equal to 1 and leading term

x12
0 y12

0 x6
1x

6
2y

6
1y

6
2

p2
X12.

Moreover, the factor of degree 12 does not contain terms of degree 1 and 11
in X . The factor of degree 2 in X is very similar to one in the case g = 1 (this
series was studied and used in [Ma-Pa77]):

∞∑

δ=0

Ω(1)
x (T(pδ)) · Ω(1)

y (T(pδ))Xδ =
∞∑

δ=0

x δ
0 (1 − x (1+δ)

1 )
1 − x1

· yδ
0 (1 − y(1+δ)

1 )
1 − y1

Xδ

=
1

(1 − x1) (1 − y1) (1 − x0 y0 X)
− y1

(1 − x1) (1 − y1) (1 − x0 y0 y1 X)

− x1

(1 − x1) (1 − y1) (1 − x0 y0 x1 X)
+

x1 y1

(1 − x1) (1 − y1) (1 − x0 y0 x1 y1 X)

=
1 − x 2

0 y2
0 x1 y1 X2

(1 − x0 y0 x1 y1 X) (1 − x0 y0 x1 X) (1 − x0 y0 y1 X) (1 − x0 y0 X)
.

2.3 Symmetric Square Generating Series in Genus 2

Using the same method, one can evaluate the symmetric square generating
series and the cubic generating series of higher genus. Note that this series,
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written here in spherical variables x0, x1, x2, is different from the one studied
by Andrianov–Kalinin, and has the form

∞∑

δ=0

Ω(2)
x (T(p2δ))Xδ =

(
1 − x 2

0 x1x2

p
X

)

× (1 + x 2
0 x1X + x 2

0 x2X + 2x 2
0 x1x2X + x 2

0 x1x 2
2 X + x 2

0 x 2
1 x2X + x 4

0 x 2
1 x 2

2 X2)
(1 − x 2

0 x 2
1 x 2

2 X)(1 − x 2
0 x 2

1 X)(1 − x 2
0 x 2

2 X)(1 − x 2
0 X)

.

2.4 Cubic Generating Series in Genus 2

The cubic generating series of higher genus, written here in spherical variables
x0, x1, x2, has the form

∞∑

δ=0

Ω(2)
x (T(p3 δ))Xδ = p−1(−p + x 6

0 x 4
1 x 2

2 X2 + x 6
0 x 2

1 x 4
2 X2 + 2 x 6

0 x 2
1 x 3

2 X2

− p x 6
0 x 4

1 x 4
2 X2 − p x 6

0 x 2
1 x 4

2 X2 − 2 p x 3
0 x 2

1 x2 X + x 6
0 x1 x 3

2 X2

+ x 6
0 x 3

1 x2 X2 + x 6
0 x 3

1 x 5
2 X2 + x 6

0 x 5
1 x 3

2 X2 + 3 x 6
0 x 3

1 x 3
2 X2

+ x 6
0 x 2

1 x 2
2 X2 + 2 x 6

0 x 3
1 x 2

2 X2 − p x 3
0 x 2

1 X − p x 3
0 x 2

2 X − p x 6
0 x 4

1 x 2
2 X2

− 2 p x 3
0 x1 x 2

2 X − p x 6
0 x 2

1 x 2
2 X2 + x 3

0 x 2
1 x 2

2 X + x 3
0 x1 x2 X

− p x 6
0 x 2

1 x 3
2 X2 − p x 6

0 x 3
1 x 2

2 X2 − p x 3
0 x 2

1 x 3
2 X − p x 3

0 x 3
1 x 2

2 X

− 2 p x 3
0 x 2

1 x 2
2 X − p x 3

0 x 3
1 x2 X + x 3

0 x 2
1 x2 X + x 9

0 x 4
1 x 4

2 X3

− 2 p x 6
0 x 3

1 x 3
2 X2 − 2 p x 3

0 x1 x2 X + x 9
0 x 4

1 x 5
2 X3 + x 9

0 x 5
1 x 4

2 X3

− p x 6
0 x 3

1 x 4
2 X2 + x 3

0 x1 x 2
2 X + x 9

0 x 5
1 x 5

2 X3 + x 6
0 x 4

1 x 4
2 X2

− p x 6
0 x 4

1 x 3
2 X2 − p x 3

0 x1 x 3
2 X − p x 3

0 x2 X − p x 3
0 x1 X + 2 x 6

0 x 4
1 x 3

2 X2

+ 2 x 6
0 x 3

1 x 4
2 X2)/((1 − x 3

0 X)(1 − x 3
0 x 3

1 X)(1 − x 3
0 x 3

2 X)(1 − x 3
0 x 3

1 x 3
2 X)).

3 Proofs: Formulas for the Hecke Operators of Spg

3.1 Satake’s Spherical Map Ω

Our result is based on the use of the Satake spherical map Ω, by apply-
ing the spherical map Ω to elements T(pδ) ∈ LZ of the Hecke ring LZ =
Z[T(p),T1(p2), . . . ,Tn(p2)] for the symplectic group; see [An87], Chapter 3.

• Case T1(p2): In genus 2 (in spherical variables x0, x1, x2), we obtain using
Andrianov’s formulas

Ω(T1(p2)) =
x 2
0 ((x 2

1 x2 + x1 x 2
2 ) p2 + x1 x2 p2 − x1 x2 + (x1 + x2) p2)

p3
.

• Cases T2(p2) = [p]2 and T(p):

Ω(T2(p2)) =
x 2
0 x1 x2

p3
, Ω(T(p)) = x0(1 + x1)(1 + x2).
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3.2 Use of Andrianov’s Generating Series in Genus 2

We refer to [An87], p. 164, (3.3.75), for the following celebrated summation
formula:

∞∑

δ=0

Ω(2)(T(pδ))Xδ =
1 − x2

0 x1 x2

p X2

(1 − x0 X) (1 − x0 x1 X)(1 − x0 x2 X) (1 − x0 x1 x2 X)

(3)

gives after development and simplification the formula

Ω(2)(T(pδ)) = p−1 x δ
0 (p x (3+δ)

1 x2 − p x (2+δ)
1 − p x (3+δ)

1 x (2+δ)
2 + p x (2+δ)

1 x (3+δ)
2

− p x1 x (3+δ)
2 + p x (2+δ)

2 + p x1 − p x2 − x (2+δ)
1 x 2

2 + x (1+δ)
1 x2

+ x (2+δ)
1 x (1+δ)

2 − x (1+δ)
1 x (2+δ)

2 + x 2
1 x (2+δ)

2 − x1 x (1+δ)
2 − x 2

1 x2 + x1 x 2
2 )/

((1 − x1) (1 − x2) (1 − x1 x2) (x1 − x2)).

Then we use two groups of variables x0, . . . , xn and y0, . . . , yn in two copies
Ωx, Ωy of the sperical map in order to treat the tensor product of two local
Hecke algebras.

Next, in order to carry out the summation of the series
∞∑

δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ

on a computer, we used a subdivision of each summand (over δ) into smaller
parts. These parts correspond to symbolic monomials in xδ

1, yδ
1, xδ

2, yδ
2, (x1x2)δ,

(y1y2)δ.

3.3 Rankin’s Lemma of Genus 2 (Compare with [Jia96])

Let us compute the series

Dp(X) =
∞∑

δ=0

T(pδ) ⊗ T(pδ)Xδ ∈ L2,Z ⊗ L2,Z[[X ]]

in terms of the generators of the Hecke algebra L2,Z ⊗ L2,Z given by the
following operators:

T(p) ⊗ 1,T1(p2) ⊗ 1, [p] ⊗ 1, 1 ⊗ T(p), 1 ⊗ T1(p2), 1 ⊗ [p] ∈ L2,Z ⊗ L2,Z[[X ]].

Theorem 4. For g = 2, we have the following explicit representation:

Dp(X) =
∞∑

δ=0

T(pδ) ⊗ T(pδ)Xδ =
(1 − p6[p] ⊗ [p]X2) · R(X)

S(X)
,
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where
R(X), S(X) ∈ L2,Z ⊗ L2,Z[X ]

are given by the equalities (4) and (5):

R(X) = 1 + r2X
2 + · · · + r10X

10 + r12X
12 ∈ L2,Z ⊗ L2,Z[X ] (4)

with r1 = r11 = 0,

S(X) = 1 + s1X + · · · + s16X
16 (5)

= 1 − (T(p) ⊗ T(p))X + · · · + (p6[p] ⊗ [p])8X16 ∈ L2,Z ⊗ L2,Z[X ],

with ri and si given in the Appendix. Moreover, there is an easy functional
equation (similar to [An87], p. 164, (3.3.79)):

s16−i = (p6[p] ⊗ [p])8−isi (i = 0, . . . , 8).

Remark 5 (Comparison with the case g = 1). . The corresponding result
in the case g = 1, written in terms of Hecke operators, looks as follows:

∞∑

δ=0

T(pδ) ⊗ T(pδ)Xδ = (1 − p2[p] ⊗ [p]X2)/

(1 − T(p) ⊗ T(p)X +
(
p(T(p)2 ⊗ [p] + [p] ⊗ T(p)2) − 2p2[p] ⊗ [p]

)
X2

− p2T(p)[p] ⊗ T(p)[p]X3 + p4[p]2 ⊗ [p]2X4).

Indeed, this follows directly from Remark 3.

Remark 6. For the group GL(n), a simpler result could be obtained using
the Tamagawa generating series (see [Tam]) and its expansion into simple
fractions:

1
(1 − x1X) . . . (1 − xnX)

=
n∑

i=1

αi(x)
1 − xiX

=
n∑

i=1

∞∑

r=0

αi(x)(xiX)r,

1
(1 − y1X) . . . (1 − ynX)

=
n∑

j=1

αj(y)
1 − yjX

=
n∑

j=1

∞∑

r=0

αj(y)(yjX)r,

where

αi(x) =
xn−1

i∏n
k �=i(xk − xi)

, αj(y) =
yn−1

j∏n
l �=j(yl − yj)

,

hence
n∑

i,j=1

∞∑

r=0

αi(x)αj(y)(xiyjX)r =
n∑

i,j=1

αi(x)αj(y)
1 − xiyjX

.

If n = 3, this gives after simplification the following fraction:

(y2
2 x2

2 y2
1 x2

3 y2
3 x2

1 X6 − y2 x2 y1 y2
3 x1 x2

3 X4 − y2 x2
2 y1 y3

2 x1 x3 X4
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− y2 x2 y1 x2
1 x3 y3

2 X4 − y2
2 x2 y1 y3 x1 x3

2 X4 − y2
2 x2

2 y1 y3 x1 x3 X4

− y2
2 x2 y1 x2

1 x3 y3 X4 − y2 x2
2 y2

1 x3 y3 x1 X4 − y2 x2 y2
1 x2

3 y3 x1 X4

− y2 x2 y2
1 x3 x2

1 y3 X4 + y2 x3 y1 x2
1 y3 X3 + y2 x2 y2

3 x1 x3 X3

+ y2
2 x2 y3 x1 x3 X3 + y3 x2 y2

1 x3 x1 X3 + y2 x2 y1 x2
1 y3 X3

+ y2 x2 y1 y3 x2
3 X3 + y2 x2

2 y1 y3 x3 X3 + y2
2 x2 y1 x1 x3 X3

+ 4 y2 x2 y1 y3 x1 x3 X3 + y2 x2
2 y1 y3 x1 X3 + y2 x2

3 y1 y3 x1 X3

+ y2 x2 y2
1 x3 x1 X3 + x2 y1 y2

3 x3 x1 X3 − y2 x2 y1 x3 X2 − y3 x2 y1 x1 X2

− y2 x2 y3 x1 X2 − y2 x3 y3 x1 X2 − y2 x3 y1 x1 X2 − y3 x3 y1 x1 X2

− y3 x2 y1 x3 X2 − y2 x2 y1 x1 X2 − y2 x2 y3 x3 X2 + 1)
/

((1 − x3 y3 X)

(1 − x2 y3 X) (1 − x1 y3 X)(1 − x3 y2 X) (1 − x2 y2 X) (1 − x1 y2 X)
(1 − x3 y1 X) (1 − x2 y1 X) (1 − x1 y1 X)).

4 Relations with L-Functions and Motives for Spn

The modest purpose of this section is to recall the motivic origin of the
L-function produced by the denominator of our Hecke series.

L-functions, Functional Equation, and Motives for Spn (see [Pa94],
[Yosh01])

One defines

• Qf,p(X) = (1 − α0X)
n∏

r=1

∏

1≤i1<···<ir≤n

(1 − α0αi1 · · ·αirX),

• Rf,p(X) = (1 − X)
n∏

i=1

(1 − α−1
i X)(1 − αiX) ∈ Q[α±1

0 , . . . , α±1
n ][X ].

Then the spinor L-function L(Sp(f), s) and the standard L-function
L(St(f), s, χ) of f (for s ∈ C, and for all Dirichlet characters χ) are defined
as the Euler products

• L(Sp(f), s, χ) =
∏

p

Qf,p(χ(p)p−s)−1,

• L(St(f), s, χ) =
∏

p

Rf,p(χ(p)p−s)−1.

Motivic L-Functions

Following [Pa94] and [Yosh01], these functions are conjectured to be mo-
tivic for all k > n: L(Sp(f), s, χ) = L(M(Sp(f))(χ), s), L(St(f), s) =
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L(M(St(f))(χ), s), where the motives M(Sp(f)) and M(St(g)) are con-
jectured to be pure if f is a genuine cusp form (not coming from a lifting of
a smaller genus):

• M(Sp(f)) is a motive over Q with coefficients in Q(λf (n))n∈N of rank 2n,
of weight w = kn − n(n + 1)/2, and of Hodge type ⊕p,qH

p,q, with

p = (k − i1) + (k − i2) + · · · + (k − ir), (6)
q = (k − j1) + (k − j2) + · · · + (k − is), where r + s = n,

1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ j1 < j2 < · · · < js ≤ n,

{i1, . . . , ir} ∪ {j1, . . . , is} = {1, 2, . . . , n};
• M(St(g)) is a motive over Q with coefficients in Q(λf (n))n∈N of rank 2n+

1, of weight w = 0, and of Hodge type H0,0⊕n
i=1 (H−k+i,k−i ⊕Hk−i,−k+i).

A Functional Equation

Following Deligne’s general conjecture [De79] on the motivic L-functions, the
L-functions satisfy a functional equation determined by the Hodge structure
of a motive:

Λ(Sp(f), kn− n(n + 1)/2 + 1 − s) = ε(f)Λ(Sp(f), s),

where

Λ(Sp(f), s) = Γn,k(s)L(Sp(f), s), ε(f) = (−1)k2n−2
,

Γ1,k(s) = ΓC(s) = 2(2π)−sΓ (s), Γ2,k(s) = ΓC(s)ΓC(s − k + 2),

and Γn,k(s) =
∏

p<q ΓC(s−p)Γ a+
R

(s−(w/2))ΓR(s+1−(w/2))a− for some non-
negative integers a+ and a−, with a+ + a− = w/2 and ΓR(s) = π−s/2Γ (s/2).

Motive of the Rankin Product of Genus g = 2

Let f and g be two Siegel cusp eigenforms of weights k and l, k > l, and let
M(Sp(f)) and M(Sp(g)) be the spinor motives of f and g. Then M(Sp(f))
is a motive over Q with coefficients in Q(λf (n))n∈N of rank 4, of weight w =
2k − 3, and of Hodge type H0,2k−3 ⊕ Hk−2,k−1 ⊕ Hk−1,k−2 ⊕ H2k−3,0, and
M(Sp(g)) is a motive over Q with coefficients in Q(λg(n))n∈N of rank 4, of
weight w = 2l−3, and of Hodge type H0,2l−3⊕H l−2,l−1⊕H l−1,l−2⊕H2l−3,0.

The tensor product M(Sp(f)) ⊗ M(Sp(g)) is a motive over Q with coef-
ficients in Q(λf (n), λg(n))n∈N of rank 16, of weight w = 2k + 2l − 6, and of
Hodge type

H0,2k+2l−6 ⊕ H l−2,2k+l−4 ⊕ H l−1,2k+l−5 ⊕ H2l−3,2k−3

⊕ Hk−2,k+2l−4 ⊕ Hk+l−4,k+l−2 ⊕ Hk+l−3,k+l−3
+ ⊕ Hk+2l−5,k−1

⊕ Hk−1,k+2l−5 ⊕ Hk+l−3,k+l−3
− ⊕ Hk+l−2,k+l−4 ⊕ Hk+2l−4,k−2

⊕ H2k−3,2l−3 ⊕ H2k+l−5,l−1 ⊕ H2k+l−4,l−2 ⊕ H2k+2l−6,0.
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Motivic L-Functions: Analytic Properties

Following Deligne’s conjecture [De79] on motivic L-functions, applied to a
Siegel cusp eigenform F for the Siegel modular group Sp4(Z) of genus n = 4
and of weight k > 5, one has Λ(Sp(F ), s) = Λ(Sp(F ), 4k − 9 − s), where

Λ(Sp(F ), s) = ΓC(s)ΓC(s − k + 4)ΓC(s − k + 3)ΓC(s − k + 2)ΓC(s − k + 1)
×ΓC(s − 2k + 7)ΓC(s − 2k + 6)ΓC(s − 2k + 5)L(Sp(F ), s)

(compare this functional equation with that given in [An74], p. 115).

On the other hand, for n = 2 and for two cusp eigenforms f and g for
Sp2(Z) of weights k, l, k > l + 1, Λ(Sp(f) ⊗ Sp(g), s) = ε(f, g)Λ(Sp(f) ⊗
Sp(g), 2k + 2l − 5 − s), |ε(f, g)| = 1, where

Λ(Sp(f) ⊗ Sp(g), s) = ΓC(s)ΓC(s − l + 2)ΓC(s − l + 1)ΓC(s − k + 2)
×ΓC(s − k + 1)ΓC(s − 2l + 3)ΓC(s − k − l + 2)
×ΓC(s − k − l + 3)L(Sp(f) ⊗ Sp(g), s).

We used here the Gauss duplication formula ΓC(s) = ΓR(s)ΓR(s + 1). Notice
that a+ = a− = 1 in this case, and the conjectural motive M(Sp(f)) ⊗
M(Sp(g)) does not admit critical values.

5 A Holomorphic Lifting from GSp2 × GSp2 to GSp4:
A Conjecture

(compare with constructions in [BFG06], [BFG92], [Jia96] for generic auto-
morphic forms.)

Our computation makes it possible to compare the spinor Hecke series
of genus 4 given in [VaSp4] (in variables u0, u1, u2, u3, u4) with the Rankin
product of two Hecke series of genus 2 (in variables x0, x1, x2, y0, y1, y2). It
follows from our computation that if we make the substitution u0 = x0y0, u1 =
x1, u2 = x2, u3 = y1, u4 = y2, then the denominator of the series

∞∑

δ=0

Ω(4)
u (T(pδ))Xδ

coincides with the denominator of the Rankin product
∞∑

δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ ∈ Q[x0, x1, x2, y0, y1, y2][[X ]].

On the basis of this equality we would like to push forward the following
conjecture.
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Conjecture 7 (on a lifting from GSp2 × GSp2 to GSp4). Let f and g be
two Siegel modular forms of genus 2 and of weights k > 4 and l = k − 2.
Then there exists a Siegel modular form F of genus 4 and of weight k with
the Satake parameters

γ0 = α0β0, γ1 = α1, γ2 = α2, γ3 = β1, γ4 = β2,

for a suitable choice of Satake’s parameters α0, α1, α2 and β0, β1, β2 of f
and g.

Remark 8. Evidence for the conjecture comes from Ikeda–Miyawaki con-
structions ([Ike01], [Mur02], [Ike06]): let k be an even positive integer, h ∈
S2k(Γ1) a normalized Hecke eigenform of weight 2k, F2(h) ∈ Sk+1(Γ2) =
Maass(h) the Maass lift of h, and F2n ∈ Sk+n(Γ2n) the Ikeda lift of h (we
assume k ≡ n mod 2, n ∈ N).

Next let f ∈ Sk+n+r(Γr) be an arbitrary Siegel cusp eigenform of genus r
and weight k + n + r, with n, r ≥ 1. Then according to Ikeda–Miyawaki (see
[Ike06]) there exists a Siegel eigenform Fh,f ∈ Sk+n+r(Γ2n+r) such that

L(s,Fh,f , St) = L(s, f, St)
2n∏

j=1

L(s + k + n − j, h) (7)

(under a nonvanishing condition; see Theorem 2.3 on p. 63 in [Mur02]). The
form Fh,f is given by the integral

Fh,f (Z) = 〈F2n+2r(diag(Z, Z ′), f(Z ′)〉Z′ .

If we take n = 1, r = 2, k := k + 1, then an example of the validity of the
conjecture is given by g = F2(h),

(f, g) = (f, F2(h)) �→ Ff,h ∈ Sk+3(Γ4),
(f, g) = (f, F2(h)) ∈ Sk+3(Γ2) × Sk+1(Γ2).

Remark 9. Notice that the Satake parameters of the Ikeda lift F = F2m(h)
of h can be taken in the form β0, β1, . . . , β2m, where

β0 = pmk−m(m+1)/2, βi = αpi−1/2, βm+i = α−1pi−1/2 (i = 1, · · · , m),

and

(1 − αpk−1/2X)(1 − α−1pk−1/2X) = 1 − a(p)X + p2k−1X2, h =
∞∑

n=1

a(n)qn;

see [Mur02].

The L-function of degree 16 in Conjecture 7 is related to the tensor product
L-function as in [Jia96]. In the example of Remark 8 it coincides with the
product of two shifted L-functions of degree 8 of Boecherer–Heim [BoeH06].
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Conjecture 10 (on a lifting from GSp 2m × GSp 2m to GSp 4m).
Here is a version of Conjectire 7 for any even genus r = 2m. Let f and g be
two Siegel modular forms of genus 2m and of weights k > 2m and l = k−2m.
Then there exists a Siegel modular form F of genus 4m and of weight k with
the Satake parameters γ0 = α0β0, γ1 = α1, γ2 = α2, . . . , γ2m = α2m, γ2m+1 =
β1, . . . , γ4m = β2m for suitable choices α0, α1, . . . , α2m and β0, β1, . . . , β2m of
Satake’s parameters of f and g.

One readily checks that the Hodge types of M(Sp(f)) ⊗ M(Sp(g)) and
M(Sp(F )) are again the same (of rank 24m) (it follows from the above de-
scription (6), and from Künneth-type formulas).

Evidence for this version of the conjecture comes again from Ikeda–Miyawaki
constructions ([Ike01], [Mur02], [Ike06]): let k be an even positive integer,
h ∈ S2k(Γ1) a normalized Hecke eigenform of weight 2k, F2n ∈ Sk+n(Γ2n) the
Ikeda lift of h of genus 2n (we assume k ≡ n mod 2, n ∈ N).

Next let f ∈ Sk+n+r(Γr) be an arbitrary Siegel cusp eigenform of genus
r and weight k + n + r, with n, r ≥ 1. If we take in (7) n = m, r = 2m,
k := k + m, k + n + r := k + 3m, then an example of the validity of this
version of the conjecture is given by

(f, g) = (f, F2m(h)) �→ Fh,f ∈ Sk+3m(Γ4m),
(f, g) = (f, F2m) ∈ Sk+3m(Γ2m) × Sk+m(Γ2m).

Further evidence comes from Siegel–Eiseinstein series

f = E2m
k and g = E2m

k−2m

of even genus 2m and weights k and k − 2m: we have then

α0 = 1, α1 = pk−2m, . . . , α2m = pk−1,

β0 = 1, β1 = pk−4m, . . . , β2m = pk−2m−1,

and then we have that

γ0 = 1, γ1 = pk−4m, . . . , γ2m = pk−1,

are the Satake parameters of the Siegel–Eisenstein series F = E4m
k .

Remark 11. If we compare the L-function of the conjecture (given by the
Satake parameters γ0 = α0β0, γ1 = α1, γ2 = α2, . . . , γ2m = α2m, γ2m+1 =
β1, . . . , γ4m = β2m for suitable choices α0, α1, . . . , α2m and β0, β1, . . . , β2m

of Satake’s parameters of f and g), we see that it corresponds to the
tensor product of spinor L-functions and is not of the same type as that
of the Yoshida’s lifting [Yosh81], which is a certain product of Hecke’s
L-functions.
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We would like to mention in this context Langlands’s functoriality: The de-
nominators of our L-series belong to local Langlands L-factors (attached to
representations of L-groups). If we consider the homomorphisms

LGSp2m = GSpin(4m + 1) → GL22m , LGSp4m = GSpin(8m + 1) → GL24m ,

we see that our conjecture is compatible with the homomorphism of L-groups

GL22m × GL22m → GL24m , (g1, g2) �→ g1 ⊗ g2, GLn(C) = LGLn.

However, it is unclear to us whether Langlands’s functoriality predicts a
holomorphic Siegel modular form as a lift.

Appendix: Coefficients of the Polynomials R(X)
and S(X)

We give here explicit expressions for the coefficients of the polynomials R(X)
and S(X) from Theorem 4. From these formulas one can observe some nice
divisibility properties (by certain powers of p and the elements [p] ⊗ [p] ∈
L2,Z ⊗ L2,Z):

R(X) = 1 + r2X
2 + · · · + r10X

10 + r12X
12 ∈ L2,Z ⊗ L2,Z[X ]

with r1 = r11 = 0,

S(X) = 1 + s1X + · · · + s16X
16

= 1 − (T(p) ⊗ T(p))X + · · · + (p6[p] ⊗ [p])8X16 ∈ L2,Z ⊗ L2,Z[X ],

with ri and si given as follows:

r2 = p2((2p − 1)(p2 + 1)[p] ⊗ [p] − (p2 − p + 1)(T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))

− (T1(p
2) ⊗ T1(p

2) + T(p)2 ⊗ [p] + [p] ⊗ T(p)2),

r3 = p3(p + 1)(2[p] ⊗ [p] + T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T(p)⊗ T(p) ,

r4 = −p5((p7 + 2p6 − 2p5 + 6p4 + p3 + 6p2 + p + 2)[p]2 ⊗ [p]2

− (p2 + 1)(p3 − 3p2 − p − 3)(T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))[p] ⊗ [p]

+ (p + 4)(p2 + 1)T1(p
2)[p] ⊗ T1(p

2)[p] − (p3 − p2 − 1)(T1(p
2)2 ⊗ [p]2

+ [p]2 ⊗ T1(p
2)2) + (T1(p

2) ⊗ [p] + [p] ⊗ T1(p
2))T1(p

2) ⊗ T1(p
2)

− p(p3 + 2p2 − p + 2)(T(p)2 ⊗ [p] + [p] ⊗T(p)2)[p] ⊗ [p] − 2p(T(p)2 ⊗ T1(p
2)

+ T1(p
2) ⊗ T(p)2)[p] ⊗ [p] + p2(T(p)2T1(p

2) ⊗ [p]2 + [p]2 ⊗T(p)2T1(p
2))

+ (p + 2)T(p)2[p] ⊗ T(p)2[p]) ,

r5 = −p7(2(p + 1)(2p4 − p3 + p2 − 1)[p] ⊗ [p] + (p + 1)(p − 2)(T1(p
2) ⊗ [p]

+ [p] ⊗ T1(p
2)) − 2T1(p

2) ⊗ T1(p
2) − p(p + 1)(T(p)2 ⊗ [p]

+ [p] ⊗ T(p)2))T(p)[p] ⊗ T(p)[p] ,
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r6 = −p10 (p (p2 + 1)(p5 − 2p3 − 8p2 − p − 4)[p]3 ⊗ [p]3

− p (p5 + 4p4 + 2p3 + 12p2 + p + 6)(T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))[p]2 ⊗ [p]2

+ p (p − 4)(p2 + 1)T1(p
2)[p]2 ⊗ T1(p

2)[p]2

− p (p + 4)(p2 + 1)(T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2)[p] ⊗ [p]

− p (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T1(p
2)[p] ⊗ T1(p

2)[p]

− p (T1(p
2)3 ⊗ [p]3 + [p]3 ⊗ T1(p

2)3)

− (p5 − 4p2 − p − 2)(T(p)2 ⊗ [p] + [p] ⊗ T(p)2)[p]2 ⊗ [p]2

+ (p2 + 3)(T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗T(p)2)[p]2 ⊗ [p]2

+ (T(p)2[p] ⊗T1(p
2)2 + T1(p

2)2 ⊗ T(p)2[p])[p] ⊗ [p]

+ (p3 + 3p2 + p + 1)(T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗ T(p)2T1(p

2))[p] ⊗ [p]

+ (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)T1(p
2)[p] ⊗ T1(p

2)[p]

+ (p2 + 1)T(p)2[p]2 ⊗ T(p)2[p]2) ,

r7 = −p13 (2(p + 1)(p3 + p − 1)[p] ⊗ [p] − (p + 1)(p2 − 2p + 2)(T1(p
2) ⊗ [p]

+ [p] ⊗ T1(p
2)) − 2T1(p

2) ⊗ T1(p
2) − (p + 1)(T(p)2 ⊗ [p]

+ [p] ⊗ T(p)2))T(p)[p]2 ⊗ T(p)[p]2 ,

r8 = −p16(p (2p6 + 3p5 + 6p4 − p3 + 6p2 − p + 2)[p]2 ⊗ [p]2

+ p (p2 + 1)(p3 + 3p2 − p + 3)(T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))[p] ⊗ [p]

+ p (p + 4)(p2 + 1)T1(p
2)[p] ⊗ T1(p

2)[p]

+ p (p2 − p + 1)(T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2)

+ p (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T1(p
2) ⊗T1(p

2)

− p (2p3 + p2 + 2p − 1)(T(p)2 ⊗ [p] + [p] ⊗ T(p)2)[p] ⊗ [p]

− 2p2(T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗ T(p)2)[p] ⊗ [p]

+ p (T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗T(p)2T1(p

2))

+ (2p + 1)T(p)2[p] ⊗T(p)2[p])[p]2 ⊗ [p]2 ,

r9 = p20(p + 1)(2[p] ⊗ [p] + T1(p
2) ⊗ [p] + [p] ⊗T1(p

2))T(p)[p]3 ⊗T(p)[p]3

r10 = p24((p2 + 1)(p4 + 2p3 − p2 − 1)[p] ⊗ [p] + (p3 − p2 − 1)(T1(p
2) ⊗ [p]

+[p] ⊗T1(p
2))−T1(p

2) ⊗ T1(p
2) − p2(T(p)2 ⊗ [p] + [p] ⊗ T(p)2))[p]4 ⊗ [p]4,

r11 = 0,

r12 = p34[p]6 ⊗ [p]6.

As for the coefficients of S(X), one has

S(X) = 1 − (T(p) ⊗ T(p))X + · · · + (p6[p] ⊗ [p])8X16 ∈ L2,Z ⊗ L2,Z[X ],

where

s1 = −T(p) ⊗ T(p),

s2 = −p(2 p (p2 + 1)2 [p] ⊗ [p] + 2 p (p2 + 1) (T1(p
2) ⊗ [p] + [p] ⊗T1(p

2))
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+ 2 pT1(p
2) ⊗T1(p

2) − (p2 + 1) (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)

− (T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗ T(p)2)),

s3 = p2((2p4 + 4 p2 − 1) [p] ⊗ [p] + (2 p2 − 1) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))

− T1(p
2) ⊗ T1(p

2) − p (T(p)2 ⊗ [p] + [p] ⊗T(p)2), )T(p) ⊗T(p)),

s4 = p4((p8 + 12 p6 + 10 p4 + 4 p2 + 1) [p]2 ⊗ [p]2

+ 2 (3 p6 + 5 p4 + 3 p2 + 1) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))[p] ⊗ [p]

+ 4 (p2 + 1)2 T1(p
2)[p] ⊗T1(p

2)[p]

+ (3 p4 + 2 p2 + 1) (T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2)

+ 2 (p2 + 1) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T1(p
2) ⊗ T1(p

2)

+ T1(p
2)2 ⊗T1(p

2)2

− 2 p (p4 + 4 p2 + 1) (T(p)2 ⊗ [p] + [p] ⊗ T(p)2) [p] ⊗ [p]

− 4 p (p2 + 1) (T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗ T(p)2)[p] ⊗ [p]

− 2 p (T(p)2[p] ⊗T1(p
2)2 + T1(p

2)2 ⊗T(p)2[p])

− 4 p3 (T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗ T(p)2T1(p

2))

+ (p2 + 2)T(p)2[p] ⊗ T(p)2[p]

+ (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T(p)2 ⊗ T(p)2

+ p2 (T(p)4 ⊗ [p]2 + [p]2 ⊗ T(p)4)),

s5 = −p6((6 p6 + 2 p4 − p2 + 2) [p]2 ⊗ [p]2

+ (p4 − p2 + 3) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))[p] ⊗ [p]

+ (3 p2 + 4)T1(p
2)[p] ⊗ T1(p

2)[p]

− (2 p2 − 1) (T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2)

+ (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T1(p
2) ⊗ T1(p

2)

− p (2 p2 + 1) (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)[p] ⊗ [p]

− 2 p (T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗T(p)2)[p] ⊗ [p]

+ p (T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗ T(p)2T1(p

2))

+ T(p)2[p] ⊗ T(p)2[p])T(p) ⊗ T(p)),

s6 = −p8(2 p2 (p8 + 6 p6 + 11 p4 + 8 p2 + 2) [p]3 ⊗ [p]3

+ 2 p2 (5 p4 + 12 p2 + 6)T1(p
2)[p]2 ⊗ T1(p

2)[p]2

+ (3 p4 + 10 p2 − 1)T(p)2[p]2 ⊗T(p)2[p]2 − T(p)2T1(p
2)[p] ⊗ T(p)2T1(p

2)[p]

+ 2 p2 (3 p6 + 11 p4 + 12 p2 + 4) (T1(p
2) ⊗ [p] + [p] ⊗T1(p

2)) [p]2 ⊗ [p]2

+ 6 p2 (p2 + 1)2 (T1(p
2)2 ⊗ [p]2 + [p]2 ⊗T1(p

2)2)[p] ⊗ [p]

+ 6 p2 (p2 + 1) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T1(p
2)[p] ⊗ T1(p

2)[p]

+ 2 p2 (p2 + 1) (T1(p
2)3 ⊗ [p]3 + [p]3 ⊗ T1(p

2)3)

+ 2 p2 (T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2)T1(p
2) ⊗ T1(p

2)
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− p (5 p6 + 13 p4 + 10 p2 + 2) (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)[p]2 ⊗ [p]2

− p (7 p4 + 12 p2 + 4) (T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗ T(p)2)[p]2 ⊗ [p]2

− 3p ( p2 + 1) (T(p)2[p] ⊗T1(p
2)2 + T1(p

2)2 ⊗ T(p)2[p])[p] ⊗ [p]

− p (T(p)2[p]2 ⊗ T1(p
2)3 + T1(p

2)3 ⊗ T(p)2[p]2)

− 2 p (3 p4 + 4 p2 + 1) (T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗T(p)2T1(p

2))[p] ⊗ [p]

− 2 p (3 p2 + 1) (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)T1(p
2)[p] ⊗ T1(p

2)[p]

− p (p2 + 1) (T(p)2T1(p
2)2 ⊗ [p]3 + [p]3 ⊗T(p)2T1(p

2)2)

− p (T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗ T(p)2T1(p

2))T1(p
2) ⊗ T1(p

2)

+ (5 p2 − 1) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T(p)2[p] ⊗ T(p)2[p]

+ 2 p2 (p2 + 1) (T(p)4 ⊗ [p]2 + [p]2 ⊗ T(p)4)[p] ⊗ [p]

+ 2 p2 (T(p)4 ⊗ T1(p
2)[p] + T1(p

2)[p] ⊗T(p)4) [p] ⊗ [p]

− p (T(p)4 ⊗T(p)4[p] + T(p)4[p] ⊗T(p)4) [p] ⊗ [p]),

s7 = p11(p (5 p6 − 2 p4 + 2)T(p)[p]3 ⊗T(p)[p]3

+ 8 pT(p)T1(p
2)[p]2 ⊗ T(p)T1(p

2)[p]2

+ pT(p)3[p]2 ⊗ T(p)3[p]2

− p (p4 − 3) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T(p)[p]2 ⊗ T(p)[p]2

− p (T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2)T(p)[p]⊗ T(p)[p]

+ 2 p (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T(p)T1(p
2)[p] ⊗ T(p)T1(p

2)[p]

− p (T1(p
2)3 ⊗ [p]3 + [p]3 ⊗ T1(p

2)3)T(p)⊗ T(p)

− (3 p4 − 3 p2 + 2) (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)T(p)[p]2 ⊗ T(p)[p]2

+ (p2 − 3) (T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗ T(p)2)T(p)[p]2 ⊗ T(p)[p]2

− (T(p)2[p] ⊗ T1(p
2)2 + T1(p

2)2 ⊗ T(p)2[p])T(p)[p] ⊗ T(p)[p]

+ (2 p2 − 1) (T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗ T(p)2T1(p

2))T(p)[p]⊗ T(p)[p]

− (T(p)2 ⊗ [p] + [p] ⊗T(p)2)T(p)T1(p
2)[p] ⊗ T(p)T1(p

2)[p]),

s8 = p14(2 p2 (2 p8 + 4 p6 + 14 p4 + 12 p2 + 3) [p]4 ⊗ [p]4

+ 4 p2 (p6 + 7 p4 + 9 p2 + 3) (T1(p
2) ⊗ [p] + [p] ⊗T1(p

2)) [p]3 ⊗ [p]3

+ 16 p2 (p2 + 1)2 T1(p
2)[p]3 ⊗ T1(p

2)[p]3

+ 2 p2 (3 p4 + 10 p2 + 5) (T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2) [p]2 ⊗ [p]2

+ 8 p2 (p2 + 1) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T1(p
2)[p]2 ⊗ T1(p

2)[p]2

+ 4 p2 T1(p
2)2[p]2 ⊗ T1(p

2)2[p]2

+ 4 p2 (p2 + 1) (T1(p
2)3 ⊗ [p]3 + [p]3 ⊗ T1(p

2)3) [p] ⊗ [p]

+ p2 (T1(p
2)4 ⊗ [p]4 + [p]4 ⊗ T1(p

2)4)

− 4 p (2 p6 + 3 p4 + 4 p2 + 1) (T(p)2 ⊗ [p] + [p] ⊗T(p)2)[p]3 ⊗ [p]3

− 8 p (p2 + 1)2 (T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗ T(p)2)[p]3 ⊗ [p]3

− 4 p (p2 + 1) (T(p)2[p] ⊗T1(p
2)2 + T1(p

2)2 ⊗ T(p)2[p])[p]2 ⊗ [p]2
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− 4 p (p4 + 4 p2 + 1) (T(p)2T1(p
2) ⊗ [p]2 + [p]2 ⊗ T(p)2T1(p

2))[p]2 ⊗ [p]2

− 8 p (p2 + 1) (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)T1(p
2)[p]2 ⊗ T1(p

2)[p]2

− 4 p (T(p)2 ⊗ T1(p
2) + T1(p

2) ⊗ T(p)2)T1(p
2)[p]2 ⊗ T1(p

2)[p]2

− 4 p3 (T(p)2T1(p
2)2 ⊗ [p]3 + [p]3 ⊗ T(p)2T1(p

2)2) + [p] ⊗ [p]

+ 2 (5 p4 + 2 p2 + 2) T(p)2[p]3 ⊗ T(p)2[p]3

+ 2 (p2 + 2) (T1(p
2) ⊗ [p] + [p] ⊗ T1(p

2))T(p)2[p]2 ⊗T(p)2[p]2

+ 2T(p)2T1(p
2)[p]2 ⊗ T(p)2T1(p

2)[p]2

+ (T1(p
2)2 ⊗ [p]2 + [p]2 ⊗ T1(p

2)2)T(p)2[p] ⊗ T(p)2[p]

+ (3 p4 + 2 p2 + 1) (T(p)4 ⊗ [p]2 + [p]2 ⊗ T(p)4)[p]2 ⊗ [p]2

+ 2 (p2 + 1) (T(p)4 ⊗ T1(p
2)[p] + T1(p

2)[p] ⊗T(p)4) [p]2 ⊗ [p]2

+ (T(p)4 ⊗ T1(p
2)2 + T1(p

2)2 ⊗ T(p)4) [p]2 ⊗ [p]2

− 2 p (T(p)2 ⊗ [p] + [p] ⊗ T(p)2)T(p)2[p]2 ⊗ T(p)2[p]2).

Then we find the remaining coefficients s9, . . . , s16, using an easy functional
equation (similar to [An87], p. 164, (3.3.79)):

s16−i = (p6[p] ⊗ [p])8−isi (i = 0, . . . , 8).

To conclude, we give the Newton polygons of R(X) and S(X) with respect
to powers of p and X (see Figure 1). It follows from our comutation that
all slopes are integral. We hope that these polygons might help to find some
geometric objects attached to the polynomials R(X) and S(X), in the spirit
of a recent work of C. Faber and G. Van Der Geer [FVdG].
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Fig. 1. Newton polygons of R(X) and S(X) with respect to powers of p and X,
of heights 34 and 48, resp.
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To Yuri Ivanovich Manin on the occasion of his 70th birthday
Summary. An ind-Grassmannian X = lim

→
G(ki; V

ni) is linear if almost all defin-

ing embeddings ϕm : G(km; V nm )−→G(km+1; V
nm+1) are of degree 1, and is twisted

if infinitely many defining embeddings ϕm are of degree higher than 1. In this
paper we give a complete description of finite-rank vector bundles on any linear
ind-Grassmannian, and prove that any vector bundle of rank 2 on a twisted ind-
Grassmannian is trivial. Our work extends work by W. Barth, J. Donin, I. Penkov,
E. Sato, A. Tyurin, and A. Van de Ven.

Key words: ind-Grassmannian, vector bundle

2000 Mathematics Subject Classifications: 14M15, 14F05, 14M17, 32L10

1 Introduction

The simplest example of an ind-Grassmannian is the infinite projective space
P∞. The Barth–Van de Ven–Tyurin (BVT) theorem, proved more than 30
years ago [BV], [T], [Sa1] (see also a recent proof by A. Coandă and G.
Trautmann, [CT]), claims that any vector bundle of finite-rank on P∞ is
isomorphic to a direct sum of line bundles. In the last decade, natural ex-
amples of infinite flag varieties (or flag ind-varieties) have arisen as homoge-
neous spaces of locally linear ind-groups, [DPW], [DiP]. In the present note
we concentrate our attention on the special case of ind-Grassmannians, i.e.,
inductive limits of Grassmannians of growing dimension. If V =

⋃
n>k V n

is a countable-dimensional vector space, then the ind-variety G(k; V ) =
lim→ G(k; V n) (or simply G(k;∞)) of k-dimensional subspaces of V is of course

an ind-Grassmannian: this is the simplest example beyond P∞ = G(1;∞).

Y. Tschinkel and Y. Zarhin (eds.), Algebra, Arithmetic, and Geometry, 555
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A significant difference between G(k; V ) and a general ind-Grassmannian
X = lim→ G(ki; V ni) defined via a sequence of embeddings

G(k1; V n1)
ϕ1−→ G(k2; V n2)

ϕ2−→ · · · ϕm−1−→ G(km; V nm)
ϕm−→ · · · (1)

is that in general, the morphisms ϕm can have arbitrary degrees. We say that
the ind-Grassmannian X is twisted if deg ϕm > 1 for infinitely many m, and
that X is linear if deg ϕm = 1 for almost all m.
Conjecture 1.1. Let the ground field be C, and let E be a vector bundle
of rank r ∈ Z>0 on an ind-Grassmannian X = lim→ G(km; V nm), i.e., E =

lim← Em, where {Em} is an inverse system of vector bundles of (fixed) rank r

on G(km; V nm). Then

(i) E is semisimple: it is isomorphic to a direct sum of simple vector bundles
on X, i.e., vector bundles on X with no non trivial subbundles;

(ii) for m � 0 the restriction of each simple bundle E to G(km, V nm) is a
homogeneous vector bundle;

(iii) each simple bundle E′ has rank 1 unless X is isomorphic to G(k;∞)
for some k: in the latter case, E′, twisted by a suitable line bundle, is
isomorphic to a simple subbundle of the tensor algebra T ·(S), S being
the tautological bundle of rank k on G(k;∞);

(iv) each simple bundle E (and thus each vector bundle of finite-rank on X)
is trivial whenever X is a twisted ind-Grassmannian.

The BVT theorem and Sato’s theorem about finite-rank bundles on G(k;∞),
[Sa1], [Sa2], as well as the results in [DP], are particular cases of the above
conjecture. The purpose of this note is to prove Conjecture 1.1 for vector
bundles of rank 2, and also for vector bundles of arbitrary rank r on linear
ind-Grassmannians X.

In the 1970s and 1980s, Yuri Ivanovich Manin taught us mathematics in
(and beyond) his seminar, and the theory of vector bundles was a recurring
topic (among many others). In 1980, he asked one of us (I.P.) to report on
A. Tyurin’s paper [T], and most importantly to try to understand this paper.
This current note is a very preliminary progress report.

Acknowledgments. We acknowledge the support and hospitality of the Max
Planck Institute for Mathematics in Bonn, where the present note was con-
ceived. A. S. T. also acknowledges partial support from Jacobs University
Bremen. Finally, we thank the referee for a number of sharp comments.

2 Notation and Conventions

The ground field is C. Our notation is mostly standard: if X is an algebraic
variety (over C), OX denotes its structure sheaf, Ω1

X (respectively TX) denotes
the cotangent (resp. tangent) sheaf on X under the assumption that X is
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smooth etc. If F is a sheaf on X , its cohomologies are denoted by Hi(F ),
hi(F ) := dimHi(F ), and χ(F ) stands for the Euler characteristic of F . The
Chern classes of F are denoted by ci(F ). If f : X → Y is a morphism, f∗ and
f∗ denote respectively the inverse and direct image functors of O-modules.
All vector bundles are assumed to have finite-rank. We denote the dual of
a sheaf of OX -modules F (or that of a vector space) by the superscript ∨.
Furthermore, in what follows, for any ind-Grassmannian X defined by (1), no
embedding ϕi is an isomorphism.

We fix a finite-dimensional space V and denote by X the Grassmannian
G(k; V ) for k < dim V . In the sequel we sometimes write G(k; n) to indi-
cate simply the dimension of V . Below, we will often consider (parts of) the
following diagram of flag varieties:

Z := Fl(k − 1, k, k + 1; V )

π1

��

π2 �� X := G(k; V )

Y := Fl(k − 1, k + 1; V )

p1

��

p2 �� Y 2 := G(k + 1; V )

Y 1 := G(k − 1; V )

(2)

under the assumption that k + 1 < dim V . Moreover, we reserve the letters
X, Y, Z for the varieties in the above diagram. By Sk, Sk−1, Sk+1 we denote
the tautological bundles on X , Y , and Z, whenever they are defined (Sk is
defined on X and Z, Sk−1 is defined on Y 1, Y , and Z, etc.). By OX(i), i ∈ Z,
we denote the isomorphism class (in the Picard group PicX) of the line bundle
(Λk(S∨k ))⊗i, where Λk stands for the kth exterior power (in this case the
maximal exterior power as rkS∨k = k). The Picard group of Y is isomorphic
to the direct product of the Picard groups of Y 1 and Y 2, and by OY (i, j)
we denote the isomorphism class of the line bundle p∗1(Λ

k−1(S∨k−1))
⊗i ⊗OY

p∗2(Λ
k+1(S∨k+1))

⊗j .
If ϕ : X = G(k; V ) → X ′ := G(k; V ′) is an embedding, then ϕ∗OX′(1) �

OX(d) for some d ∈ Z≥0: by definition, d is the degree deg ϕ of ϕ. We say
that ϕ is linear if deg ϕ = 1. By a projective subspace (in particular a line,
i.e., a 1-dimensional projective subspace) of X we mean a linearly embedded
projective space into X . It is well known that all such are Schubert varieties
of the form {V k ∈ X |V k−1 ⊂ V k ⊂ V t} or {V k ∈ X |V i ⊂ V k ⊂ V k+1},
where V k is a variable k-dimensional subspace of V , and V k−1, V k+1, V t,
V i are fixed subspaces of V of respective dimensions k − 1, k + 1, t, i. (Here
and in what follows V t always denotes a vector space of dimension t). In
other words, all projective subspaces of X are of the form G(1; V t/V k−1) or
G(k − i, V k+1/V i). Note also that Y = Fl(k − 1, k + 1; V ) is the variety of
lines in X = G(k; V ).
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3 The Linear Case

We consider the cases of linear and twisted ind-Grassmannians separately.
In the case of a linear ind-Grassmannian, we show that Conjecture 1.1 is
a straightforward corollary of existing results combined with the following
proposition. We recall [DP] that a standard extension of Grassmannians is an
embedding of the form

G(k; V )→ G(k + a; V ⊕ Ŵ ), {V k ⊂ C
n} 
→ {V k ⊕W ⊂ V ⊕ Ŵ}, (3)

where W is a fixed a-dimensional subspace of a finite-dimensional vector
space Ŵ .

Proposition 3.1. Let ϕ : X = G(k; V ) → X ′ := G(k′; V ′) be an embedding
of degree 1. Then ϕ is a standard extension, or ϕ factors through a standard
extension Pr → G(k′; V ′) for some r.

Proof. We assume that k ≤ n − k, k ≤ n′ − k′, where n = dimV and n′ =
dim V ′, and use induction on k. For k = 1 the statement is obvious, since the
image of ϕ is a projective subspace of G(k′; V ′) and hence ϕ is a standard
extension. Assume that the statement is true for k − 1. Since deg ϕ = 1, ϕ
induces an embedding ϕY : Y → Y ′, where Y = Fl(k − 1, k + 1; V ) is the
variety of lines in X and Y ′ = Fl(k′ − 1, k′ + 1; V ′) is the variety of lines in
X ′. Moreover, clearly we have a commutative diagram of natural projections
and embeddings

Z
ϕZ ��

π1

����
��

��
�� π2

���
��

��
��

� Z ′
π′
1

����
��

��
�� π′

2

���
��

��
��

�

Y

���
��

��
��

� X

���
��

��
��

� Y ′ X ′,

ϕY

��

		��������
ϕ

��



��������

where Z := Fl(k − 1, k, k + 1; V ) and Z ′ := Fl(k′ − 1, k′, k′ + 1; V ′).
We claim that there is an isomorphism

ϕ∗YOY ′(1, 1) � OY (1, 1). (4)

Indeed, ϕ∗YOY ′(1, 1) is determined up to isomorphism by its restriction to the
fibers of p1 and p2 (see diagram (2)), and therefore it is enough to check that

ϕ∗YOY ′(1, 1)|p−1
1 (V k−1) � Op−1

1 (V k−1)(1), (5)

ϕ∗YOY ′(1, 1)|p−1
2 (V k+1) � Op−1

2 (V k+1)(1) (6)

for some fixed subspaces V k−1 ⊂ V , V k+1 ⊂ V . Note that the restriction of
ϕ to the projective subspace G(1; V/V k−1) ⊂ X is simply an isomorphism of
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G(1; V/V k−1) with a projective subspace of X ′; hence the map induced by ϕ
on the variety G(2; V/V k−1) of projective lines in G(1; V/V k−1) is an isomor-
phism with the Grassmannian of 2-dimensional subspaces of an appropriate
subquotient of V ′. Note furthermore that p−1

1 (V k−1) is nothing but the variety
of lines G(2; V/V k−1) in G(1; V/V k−1), and that the image of G(2; V/V k−1)
under ϕ is nothing but ϕY (p−1

1 (V k−1)). This shows that the restriction of
ϕ∗YOY ′(1, 1) to G(2; V/V k−1) is isomorphic to the restriction of OY (1, 1) to
G(2; V/V k−1), and we obtain (5). The isomorphism (6) follows from a very
similar argument.

The isomorphism (4) leaves us with two alternatives:

ϕ∗YOY ′(1, 0) � OY or ϕ∗YOY ′(0, 1) � OY (7)

or
ϕ∗YOY ′(1, 0) � OY (1, 0) or ϕ∗YOY ′(1, 0) � OY (0, 1). (8)

Let (7) hold; more precisely, let ϕ∗YOY ′(1, 0) � OY . Then ϕY maps each
fiber of p2 into a single point in Y ′ (depending on the image in Y 2 of this
fiber), say ((V ′)k′−1 ⊂ (V ′)k′+1), and moreover, the space (V ′)k′−1 is con-
stant. Thus ϕ maps X into the projective subspace G(1; V ′/(V ′)k′−1) of X ′. If
ϕ∗YOY ′(0, 1) � OY , then ϕ maps X into the projective subspace G(1; (V ′)k′+1)
of X ′. Therefore, the proposition is proved in the case that (7) holds.

We assume now that (8) holds. It is easy to see that (8) implies that ϕ
induces a linear embedding ϕY 1 of Y 1 := G(k − 1; V ) into G(k′ − 1; V ′) or
G(k′ + 1; V ′). Assume that ϕY 1 : Y 1 → (Y ′)1 := G(k′ − 1; V ′) (the other
case is completely similar). Then, by the induction assumption, ϕY 1 is a
standard extension or factors through a standard extension P

r → (Y ′)1. If
ϕY 1 is a standard extension corresponding to a fixed subspace W ⊂ Ŵ , then
ϕ∗Y 1Sk′−1 � Sk−1⊕(W ⊗C OY 1) and we have a vector bundle monomorphism

0→ π∗1p∗1ϕ
∗
Y 1Sk′−1 → π∗2ϕ∗Sk′ . (9)

By restricting (9) to the fibers of π1 we see that the quotient line bundle
π∗2ϕ∗Sk′/π∗1p∗1ϕ

∗
Y 1Sk′−1 is isomorphic to Sk/Sk−1 ⊗ π∗1p∗1L, where L is a line

bundle on Y 1. Applying π2∗, we obtain

0→W ⊗C OX → π2∗(π∗2ϕ∗Sk′) = ϕ∗Sk′ → π2∗((Sk/Sk−1)⊗ π∗1p∗1L)→ 0.
(10)

Since rkϕ∗Sk′ = k′ and dimW = k′−k, we have rkπ2∗((Sk/Sk−1)⊗π∗1p
∗
1L) =

k, which implies immediately that L is trivial. Hence (10) reduces to 0 →
W ⊗C OX → ϕ∗Sk′ → Sk → 0, and thus

ϕ∗Sk′ � Sk ⊕ (W ⊗C OX) , (11)

since there are no nontrivial extensions of Sk by a trivial bundle. Now (11)
implies that ϕ is a standard extension.
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It remains to consider the case that ϕY 1 maps Y 1 into a projective
subspace P

s of (Y ′)1. Then Ps is of the form G(1; V ′/(V ′)k′−2) for some
(V ′)k′−2 ⊂ V ′, or of the form G(k′ − 1; (V ′)k′

) for some (V ′)k′ ⊂ V ′. The
second case is clearly impossible because it would imply that ϕ maps X into
the single point (V ′)k′

. Hence P
s = G(1; V ′/(V ′)k′−2) and ϕ maps X into the

Grassmannian G(2; V ′/(V ′)k′−2) in G(k′; V ′). Let S′2 be the rank-2 tautolog-
ical bundle on G(2; V ′/(V ′)k′−2). Then its restriction S′′ := ϕ∗S′2 to any line
l in X is isomorphic to Ol ⊕ Ol(−1), and we claim that this implies one of
two alternatives:

S′′ � OX ⊕OX(−1) (12)

or

S′′ � S2 and k = 2, or S′′ � (V ⊗C OX)/S2 and k = n− k = 2. (13)

Let k ≥ 2. The evaluation map π∗1π1∗π∗2S′′ → π∗2S′′ is a monomorphism of the
line bundle π∗1L := π∗1π1∗π∗2S′′ into π∗2S′′ (here L := π1∗π∗2S′′). Restricting
this monomorphism to the fibers of π2, we see immediately that π∗1L is trivial
when restricted to those fibers and is hence trivial. Therefore L is trivial, i.e.,
π∗1L = OZ . Pushdown to X yields

0→ OX → S′′ → OX(−1)→ 0, (14)

and hence (14) splits as Ext1(OX(−1),OX) = 0. Therefore (12) holds. For
k = 2, there is an additional possibility for the above monomorphisms to
be of the form π∗1OY (−1, 0) → π∗2S (or of the form π∗1OY (0,−1) → π∗2S if
n− k = 2), which yields the option (13).

If (12) holds, ϕ maps X into an appropriate projective subspace of
G(2; V ′/(V ′)k′−2), which is then a projective subspace of X ′, and if (13) holds,
ϕ is a standard extension corresponding to a zero-dimensional space W . The
proof is now complete. �

We are ready now to prove the following theorem.

Theorem 3.2. Conjecture 1.1 holds for any linear ind-Grassmannian X.

Proof. Assume that deg ϕm = 1 for all m, and apply Proposition 3.1. If in-
finitely many ϕm’s factor through respective projective subspaces, then X is
isomorphic to P∞ and the BVT theorem implies Conjecture 1.1. Otherwise,
all ϕm’s are standard extensions of the form (3). There are two alternatives:
limm→∞ km = limm→∞(nm − km) = ∞, or one of the limits limm→∞ km or
limm→∞(nm − km) equals l for some l ∈ N. In the first case, the claim of
Conjecture 1.1 is proved in [DP]: Theorem 4.2. In the second case X is iso-
morphic to G(l;∞), and therefore Conjecture 1.1 is proved in this case by E.
Sato in [Sa2]. �
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4 Auxiliary Results

In order to prove Conjecture 1.1 for rank-2 bundles E on a twisted ind-
Grassmannian X = lim→ G(km; V nm), we need to prove that the vector bundle
E = lim← Em of rank 2 on X is trivial, i.e., that Em is a trivial bundle on

G(km; V nm) for each m. From this point on, we assume that none of the
Grassmannians G(km; V nm) is a projective space, since for a twisted pro-
jective ind-space, Conjecture 1.1 is proved in [DP] for bundles of arbitrary
rank r.

The following known proposition gives a useful triviality criterion for vector
bundles of arbitrary rank on Grassmannians.

Proposition 4.1. A vector bundle E on X = G(k; n) is trivial iff its restric-
tion E|l is trivial for every line l in G(k; n), l ∈ Y = Fl(k − 1, k + 1; n).

Proof. We recall the proof given in [P]. It uses the well known fact that the
Proposition holds for any projective space, [OSS, Theorem 3.2.1]. Let first
k = 2, n = 4, i.e. X = G(2; 4). Since E is linearly trivial, π∗2E is trivial
along the fibers of π1 (we refer here to diagram (2)). Moreover, π1∗π∗2E is
trivial along the images of the fibers of π2 in Y . These images are of the
form P1

1 × P1
2, where P1

1 (respectively P1
2) are lines in Y 1 := G(1; 4) and

Y 2 := G(3; 4). The fiber of p1 is filled by lines of the form P
1
2, and thus

π1∗π∗2E is linearly trivial and hence trivial along the fibers of p1. Finally the
lines of the form P

1
1 fill Y 1, hence p1∗π1∗π∗2E is also a trivial bundle. This

implies that E = π2∗π∗1p∗1(p1∗π1∗π∗2E) is also trivial.
The next case is the case when k = 2 and n is arbitrary, n ≥ 5. Then

the above argument goes through by induction on n since the fiber of p1 is
isomorphic to G(2; n−1). The proof is completed by induction on k for k ≥ 3:
the base of p1 is G(k − 1; n) and the fiber of p1 is G(2; n− 1). �

If C ⊂ N is a smooth rational curve in an algebraic variety N and E is
a vector bundle on N , then by a classical theorem of Grothendieck, E|C is
isomorphic to

⊕
iOC(di) for some d1 ≥ d2 ≥ · · · ≥ drkE . We call the ordered

rkE-tuple (d1, . . . , drkE) the splitting type of E|C and denote it by dE(C). If
N = X = G(k; n), then the lines on N are parametrized by points l ∈ Y , and
we obtain a map

Y → ZrkE : l 
→ dE(l).

By semicontinuity (cf. [OSS, Ch.I, Lemma 3.2.2]), there is a dense open set
UE ⊂ Y of lines with minimal splitting type with respect to the lexicographical
ordering on ZrkE . Denote this minimal splitting type by dE . By definition,
UE = {l ∈ Y | dE(l) = dE} is the set of non-jumping lines of E, and its
complement Y \ UE is the proper closed set of jumping lines.

A coherent sheaf F over a smooth irreducible variety N is called normal
if for every open set U ⊂ N and every closed algebraic subset A ⊂ U of
codimension at least 2 the restriction map F (U) → F (U � A) is surjective.
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It is well known that, since N is smooth, hence normal, a normal torsion-free
sheaf F on N is reflexive, i.e. F∨∨ = F . If in addition F has finite rank, then
F is necessarily a line bundle (see [OSS, Ch.II, 1.1.12 and 1.1.15]).

Theorem 4.2. Let E be a rank r vector bundle of splitting type dE =
(d1, ..., dr), d1 ≥ ... ≥ dr, on X = G(k; n). If ds − ds+1 ≥ 2 for some s < r,
then there is a normal subsheaf F ⊂ E of rank s with the following properties:
over the open set π2(π−1

1 (UE)) ⊂ X the sheaf F is a subbundle of E, and for
any l ∈ UE

F|l �
s⊕

i=1

Ol(di).

Proof. It is similar to the proof of Theorem 2.1.4 in [OSS, Ch. II]. Consider the
vector bundle E′ = E

⊗OX(−ds) and the evaluation map Φ : π∗1π1∗π∗2E′ →
π∗2E′. The definition of UE implies that Φ|π−1

1 (UE) is a morphism of constant
rank s and that its image imΦ ⊂ π∗2E′ is a subbundle of rank s over π−1

1 (UE).
Let M := π∗2E′/imΦ, let T (M) be the torsion subsheaf of M , and F ′ :=
ker(π∗2E′ → M ′ := M/T (M)). Consider the singular set Sing F ′ of the sheaf
F ′ and set A := Z�SingF ′. By the above, A is an open subset of Z containing
π−1

1 (UE), and f = π2|A : A → B := π2(A) is a submersion with connected
fibers.

Next, take any point l ∈ Y and put L := π−1
1 (l). By definition, L � P1,

and we have
TZ/X |L � OL(−1)⊕(n−2), (15)

where TZ/X is the relative tangent bundle of Z over X. The construction of
the sheaves F ′ and M implies that for any l ∈ UE : F ′∨|L = ⊕s

i=1OL(−di +
ds), M ′|L = ⊕r

i=s+1OL(di − ds). This, together with (15) and the condition
ds − ds+1 ≥ 2, immediately implies that H0(Ω1

A/B ⊗ F ′∨ ⊗M ′
|L) = 0. Hence

H0(Ω1
A/B ⊗ F ′∨ ⊗M ′

|π−1
1 (UE)

) = 0, and thus, since π−1
1 (UE) is dense open in

Z, Hom(TA/B,Hom(F ′, M ′
|A)) = H0(Ω1

A/B ⊗F ′∨⊗M ′
|A) = 0. Now we apply

the descent lemma (see [OSS, Ch. II, Lemma 2.1.3]) to the data (f|π−1
1 (UE) :

π−1
1 (UE) → VE , F ′|π−1

1 (UE)
⊂ E′|π−1

1 (UE)
). Then F := (π2∗F ′) ⊗ OX(−ds) is

the desired sheaf. �

5 The Case rkE = 2

In the following, considering a twisted ind-Grassmannian X = lim→ G(km; V nm),

we set G(km; V nm) = Xm. Theorem 4.2 now yields the following corollary.

Corollary 5.1. Let E = lim← Em be a rank-2 vector bundle on a twisted ind-

Grassmannian X = lim→ Xm. Then there exists m0 ≥ 1 such that dEm = (0, 0)
for any m ≥ m0.
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Proof. Note first that the fact that X is twisted implies

c1(Em) = 0, m ≥ 1. (16)

Indeed, c1(Em) is nothing but the integer corresponding to the line bun-
dle Λ2(Em) in the identification of PicXm with Z. Since X is twisted,
c1(Em) = deg ϕm deg ϕm+1 · · · deg ϕm+kc1(Em+k+1) for any k ≥ 1; in other
words, c1(Em) is divisible by larger and larger integers and hence c1(Em) = 0
(cf. [DP, Lemma 3.2]). Suppose that for any m0 ≥ 1 there exists m ≥ m0

such that dEm = (am,−am) with am > 0. Then Theorem 4.2 applies to Em

with s = 1, and hence Em has a normal rank-1 subsheaf Fm such that

Fm|l � Ol(am) (17)

for a certain line l in Xm. Since Fm is a torsion-free normal subsheaf of
the vector bundle Em, the sheaf Fm is a line bundle, i.e., Fm � OXm(am).
Therefore we have a monomorphism

0→ OXm(am)→ Em, am ≥ 1. (18)

This is clearly impossible. In fact, this monomorphism implies in view of (16)
that any rational curve C ⊂ Xm of degree δm := deg ϕ1 . . . deg ϕm−1 has
splitting type dEm(C) = (a′m,−a′m), where a′m ≥ amδm ≥ δm. Hence, by
semiconinuity, any line l ∈ X1 has splitting type dE1(l) = (b,−b), b ≥ δm.
Since δm →∞ as m0 →∞, this is a contradiction. �

We now recall some standard facts about the Chow rings of Xm =
G(km; V nm) (see, e.g., [F, 14.7]):

(i) A1(Xm) = Pic(Xm) = Z[Vm], A2(Xm) = Z[W1,m] ⊕ Z[W2,m], where
Vm, W1,m, W2,m are the following Schubert varieties: Vm :=

{
V km ∈

Xm| dim(V km ∩V nm−km
0 ) ≥ 1 for a fixed subspace V nm−km−1

0 of V nm},
W1,m :=

{
V km ∈ Xm| dim(V km ∩ V nm−km−1

0 ) ≥ 1 for a fixed subspace

V nm−km−1
0 in V nm}, W2,m :=

{
V km ∈ Xm| dim(V km ∩ V nm−km+1

0 ) ≥ 2

for a fixed subspace V nm−km+1
0 of V nm};

(ii) [Vm]2 = [W1,m] + [W2,m] in A2(Xm);

(iii) A2(Xm) = Z[P2
1,m]⊕Z[P2

2,m], where the projective planes P
2
1,m (called α-

planes) and P2
2,m (called β-planes) are respectively the Schubert varieties

P2
1,m :=

{
V km ∈ Xm| V km−1

0 ⊂ V km ⊂ V km+2
0 for a fixed flag V km−1

0 ⊂
V km+2

0 in V nm}, P2
2,m :=

{
V km ∈ Xm| V km−2

0 ⊂ V km ⊂ V km+1
0 for a

fixed flag V km−2
0 ⊂ V km+1

0 in V nm} ;

(iv) the bases [Wi,m] and [P2
j,m] are dual in the standard sense that [Wi,m] ·

[P2
j,m] = δi,j .
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Lemma 5.2. There exists m1 ∈ Z>0 such that for any m ≥ m1 one of the
following holds:

(1) c2(Em|P2
1,m

) > 0, c2(Em|P2
2,m

) ≤ 0,
(2) c2(Em|P2

2,m
) > 0, c2(Em|P2

1,m
) ≤ 0,

(3) c2(Em|P2
1,m

) = 0, c2(Em|P2
2,m

) = 0.

Proof. According to (i), for any m ≥ 1 there exist λ1m, λ2m ∈ Z such that

c2(Em) = λ1m[W1,m] + λ2m[W2,m]. (19)

Moreover, (iv) implies

λjm = c2(Em|P2
j,m

), j = 1, 2. (20)

Next, (i) yields

ϕ∗m[W1,m+1] = a11(m)[W1,m] + a21(m)[W2,m], (21)
ϕ∗m[W2,m+1] = a12(m)[W1,m] + a22(m)[W2,m], (22)

where aij(m) ∈ Z. Consider the 2 × 2 matrix A(m) = (aij(m)) and the
column vector Λm = (λ1m, λ2m)t. Then, in view of (iv), the relation (21)
gives Λm = A(m)Λm+1. Iterating this equation and denoting by A(m, i) the
2× 2 matrix A(m) · A(m + 1) · · ·A(m + i), i ≥ 1, we obtain

Λm = A(m, i)Λm+i+1. (23)

The twisting condition ϕ∗m[Vm+1] = deg ϕm[Vm] together with (ii) implies
ϕ∗m([W1,m+1] + [W2,m+1]) = (deg ϕm)2([W1,m] + [W2,m]). Substituting (21)
into the last equality, we have a11(m) + a12(m) = a21(m) + a22(m) =
(deg ϕm)2, m ≥ 1. This means that the column vector v = (1, 1)t is an
eigenvector of A(m) with eigenvalue (deg ϕm)2. Hence, it is an eigenvector
of A(m, i) with the eigenvalue dm,i = (deg ϕm)2(deg ϕm+1)2 · · · (deg ϕm+i)2 :

A(m, i)v = dm,iv. (24)

Notice that the entries of A(m), m ≥ 1, are nonnegative integers (in fact,
from the definition of the Schubert varieties Wj,m+1 it immediately follows
that ϕ∗m[Wj,m+1] is an effective cycle on Xm, so that (21) and (iv) give 0 ≤
ϕ∗m[Wi,m+1] · [P2

j,m] = aij(m)); hence also the entries of A(m, i), m, i ≥ 1, are
nonnegative integers). Besides, clearly dm,i → ∞ as i → ∞ for any m ≥ 1.
This, together with (23) and (24), implies that for m � 1, λ1m and λ2m

cannot both be nonzero and have the same sign. This together with (20) is
equivalent to the statement of the lemma. �

In what follows we denote the α-planes and the β-planes on X = G(2; 4)
respectively by P2

α and P2
β .
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Proposition 5.3. There exists no rank-2 vector bundle E on the Grassman-
nian X = G(2; 4) such that

(a) c2(E) = a[P2
α], a > 0,

(b) E|P2
β

is trivial for a generic β-plane P
2
β on X.

Proof. Now assume that there exists a vector bundle E on X satisfying con-
ditions (a) and (b) of the proposition. Fix a β-plane P ⊂ X such that

E|P � O⊕2
P . (25)

Since X is the Grassmannian of lines in P3, the plane P is the dual plane
of a certain plane P̃ in P

3. Next, fix a point x0 ∈ P
3

� P̃ and denote by S
the variety of lines in P

3 that contain x0. Consider the variety Q = {(x, l) ∈
P

3 ×X | x ∈ l ∩ P̃} with natural projections p : Q→ S : (x, l) 
→ Span(x, x0)
and σ : Q → X : (x, l) 
→ l. Clearly, σ is the blowing up of X at the plane
P , and the exceptional divisor DP = σ−1(P ) is isomorphic to the incidence
subvariety of P×P̃ . Moreover, one easily checks that Q � P(OS(1)⊕TS(−1)),
so that the projection p : Q → S coincides with the structure morphism
P(OS(1) ⊕ TS(−1)) → S. Let OQ(1) be the Grothendieck line bundle on Q
such that p∗OQ(1) = OS(1)⊕ TS(−1). Using the Euler exact triple on Q,

0→ Ω1
Q/S → p∗(OS(1)⊕ TS(−1))⊗OQ(−1)→ OQ → 0, (26)

we find the p-relative dualizing sheaf ωQ/S := det(Ω1
Q/S):

ωQ/S � OQ(−3)⊗ p∗OS(2). (27)

Set E := σ∗E. By construction, for each y ∈ S the fiber Qy = p−1(y) is a
plane such that ly = Qy ∩DP is a line, and, by (25),

E|ly � O⊕2
ly

. (28)

Furthermore, σ(Qy) is an α-plane in X , and from (28) it follows clearly that
h0(E|Qy

(−1)) = E∨|Qy
(−1)) = 0. Hence, in view of condition (a) of the propo-

sition, the sheaf E|Qy
is the cohomology sheaf of a monad

0→ OQy(−1)⊕a → O⊕(2a+2)
Qy

→ OQy(1)⊕a → 0 (29)

(see [OSS, Ch. II, Ex. 3.2.3]). This monad immediately implies the equalities

h1(E|Qy
(−1)) = h1(E|Qy

(−2)) = a, h1(E|Qy
⊗Ω1

Qy
) = 2a + 2, (30)

hi(E|Qy
(−1)) = hi(E|Qy

(−2)) = hi(E|Qy
⊗Ω1

Qy
) = 0, i �= 1.
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Consider the sheaves of OS-modules

E−1 := R1p∗(E ⊗ OQ(−2)⊗ p∗OS(2)), (31)
E0 := R1p∗(E ⊗Ω1

Q/S), (32)

E1 := R1p∗(E ⊗ OQ(−1)). (33)

The equalities (30) imply via base change [H] that E−1, E1, and E0 are locally
free OS-modules, and rk(E−1) = rk(E1) = a, and rk(E0) = 2a + 2. Moreover,

Rip∗(E ⊗ OQ(−2)) = Rip∗(E ⊗Ω1
Q/S) = Rip∗(E ⊗ OQ(−1)) = 0 (34)

for i �= 1. Note that E∨ � E as c1(E) = 0 and rkE = 2. Furthermore, (27)
implies that the nondegenerate pairing (p-relative Serre duality) R1p∗(E ⊗
OQ(−1)) ⊗ R1p∗(E∨ ⊗ OQ(1) ⊗ ωQ/S) → R2p∗ωQ/S = OS can be rewritten
as E1 ⊗ E−1 → OS , thus giving an isomorphism

E−1 � E∨1 . (35)

Similarly, since E∨ � E and Ω1
Q/S � TQ/S ⊗ ωQ/S , p-relative Serre duality

yields a nondegenerate pairing E0⊗E0 = R1p∗(E⊗Ω1
Q/S)⊗R1p∗(E⊗Ω1

Q/S) =
R1p∗(E ⊗ Ω1

Q/S) ⊗ R1p∗(E∨ ⊗ TQ/S ⊗ ωQ/S) → R2p∗ωQ/S = OS . Therefore
E0 is self-dual, i.e., E0 � E∨0 , and in particular, c1(E0) = 0.

Now let J denote the fiber product Q×S Q with projections Q
pr1← J

pr2→ Q
such that p ◦ pr1 = p ◦ pr2. Put F1 � F2 := pr∗1F1 ⊗ pr∗2F2 for sheaves F1 and
F2 on Q, and consider the standard OJ -resolution of the structure sheaf OΔ

of the diagonal Δ ↪→ J ,

0 → OQ(−1) ⊗ p∗OS(2) � OQ(−2) → Ω1
Q/S(1) � OQ(−1) → OJ → OΔ → 0.

(36)

Twist this sequence by the sheaf (E ⊗OQ(−1))�OQ(1) and apply the functor
Ripr2∗ to the resulting sequence. In view of (31) and (34) we obtain the
following monad for E :
0→ p∗E−1 ⊗OQ(−1) λ→ p∗E0

μ→ p∗E1 ⊗OQ(1)→ 0, ker(μ)/im(λ) = E .
(37)

Put R := p∗h, where h is the class of a line in S. Furthermore, set H := σ∗HX ,
[Pα] := σ∗[P2

α], [Pβ] := σ∗[P2
β], where HX is the class of a hyperplane section of

X (via the Plücker embedding), and respectively, [P2
α] and [P2

β] are the classes
of an α- and β-plane. Note that clearly, OQ(H) � OQ(1). Thus, taking into
account the duality (35), we rewrite the monad (37) as

0 → p∗E∨
1 ⊗OQ(−H)

λ→ p∗E0
μ→ p∗E1 ⊗OQ(H) → 0, ker(μ)/im(λ) � E .

(38)

In particular, it becomes clear that (37) is a relative version of the monad
(29).
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As a next step, we are going to express all Chern classes of the sheaves in
(38) in terms of a. We start by writing down the Chern polynomials of the
bundles p∗E1 ⊗OQ(H) and p∗E∨1 ⊗OQ(−H) in the form

ct(p∗E1⊗OQ(H))=
a∏

i=1

(1+(δi+H)t), ct(p∗E∨1 ⊗OQ(−H))=
a∏

i=1

(1−(δi+H)t),

(39)
where δi are the Chern roots of the bundle p∗E1. Thus

cR2 =
a∑

i=1

δ2
i , dR =

a∑

i=1

δi (40)

for some c, d ∈ Z. Next we invoke the following easily verified relations in
A·(Q):

H4 = RH3 = 2[pt], (41)
R2H2 = R2[Pα] = RH [Pα] = H2[Pα] = RH [Pβ] = H2[Pβ] = [pt], (42)

[Pα][Pβ ] = R2[Pβ] = R4 = R3H = 0,

where [pt] is the class of a point. This, together with (40), gives
∑

1≤i<j≤a

δ2
i δ2

j =
∑

1≤i<j≤a

(δ2
i δj + δiδ

2
j )H = 0, (43)

∑

1≤i<j≤a

δiδjH
2 =

1
2
(d2 − c)[pt], (44)

∑

1≤i≤a

(δi + δj)H3 = 2(a− 1)d[pt]. (45)

Note that since c1(E0) = 0,

ct(p∗E0) = 1 + bR2t2 (46)

for some b ∈ Z. Furthermore,

ct(E) = 1 + a[Pα]t2 (47)

by the hypotheses of the proposition. Substituting (46) and (47) into the
polynomial f(t) := ct(E)ct(p∗E1 ⊗ OQ(H))ct(p∗E∨1 ⊗ OQ(−H)), we have
f(t) = (1 + a[Pα]t2)

∏a
i=1(1 − (δi + H)2t2). Expanding f(t) in t and using

(40)–(43), we obtain

f(t) = 1 + (a[Pα]− cR2 − 2dRH − aH2)t2 + e[pt]t4, (48)

where
e = −3c− a(2d + a) + (a− 1)(a + 4d) + 2d2. (49)
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Next, the monad (38) implies f(t) = ct(p∗E0). A comparison of (48) with (46)
yields

c2(E) = a[Pα] = (b + c)R2 + 2dRH + aH2, (50)
e = c4(p∗E0) = 0. (51)

The relation (51) is the crucial relation that enables us to express the Chern
classes of all sheaves in (38) just in terms of a. More precisely, (50) and
(41) give 0 = c2(E)[Pβ ] = 2d + a, hence a = −2d. Substituting these latter
equalities into (49), we get e = −a(a− 2)/2− 3c. Hence c = −a(a− 2)/6 by
(51). Since a = −2d, (40) and the equality c = −a(a − 2)/6 give c1(E1) =
−a/2, c2(E1) = (d2−c)/2 = a(5a−4)/24. Substituting this into the standard
formulas ek := ck(p∗E1 ⊗ OQ(H)) =

∑2
i=0

(
a−i
k−i

)
RiHk−ici(E1), 1 ≤ k ≤ 4,

we obtain

e1 = −aR/2 + aH, e2 = (5a2/24− a/6)R2 + (a2 − a)(−RH + H2)/2, (52)

e3 = (5a3/24− 7a2/12 + a/3)R2H + (−a3/4 + 3a2/4− a/2)RH2

+(a3/6− a2/2 + a/3)H3,

e4 = (−7a4/144 + 43a3/144− 41a2/72 + a/3)[pt].

It remains to write down explicitly c2(p∗E0): (41), (50), and the relations
a = −2d, c = −a(a− 2)/6 give a = c2(E)[Pα] = b + c, hence

c2(E0) = b = (a2 + 4a)/6 (53)

by (46).
Our next and final step will be to obtain a contradiction by computing

the Euler characteristic of the sheaf E in two different ways. We first com-
pute the Todd class td(TQ) of the bundle TQ. From the exact triple dual
to (26) we obtain ct(TQ/S) = 1 + (−2R + 3H)t + (2R2 − 4RH + 3H2)t2.
Next, ct(TQ) = ct(TQ/S)ct(p∗TS). Hence c1(TQ) = R + 3H, c2(TQ) =
−R2 + 5RH + 3H2, c3(TQ) = −3R2H + 9H2R, c4(TQ) = 9[pt]. Substituting
into the formula for the Todd class of TQ, td(TQ) = 1 + 1

2c1 + 1
12 (c2

1 + c2) +
1
24c1c2− 1

720 (c4
1− 4c2

1c2− 3c2
2− c1c3 + c4), where ci := ci(TQ) (see, e.g., [H, p.

432]), we get

td(TQ) = 1+
1
2
R+

3
2
H +

11
12

RH +H2 +
1
12

HR2 +
3
4
H2R+

3
8
H3 +[pt]. (54)

Next, by the hypotheses of the proposition, c1(E) = 0, c2(E) = a[Pα], c3(E) =
c4(E) = 0. Substituting this into the general formula for the Chern character
of a vector bundle F yields

ch(F ) = rk(F ) + c1 + (c2
1 − 2c2)/2 + (c3

1 − 3c1c2 − 3c3)/6
+(c4

1 − 4c2
1c2 + 4c1c3 + 2c2

2 − 4c4)/24,
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ci := ci(F ) (see, e.g., [H, p. 432]), and using (54), we obtain by the Riemann–
Roch theorem for F = E ,

χ(E) =
1
12

a2 − 23
12

a + 2. (55)

In a similar way, using (52), we obtain

χ(p∗E1⊗OQ(H))+χ(p∗E∨1 ⊗OQ(−H)) =
5

216
a4− 29

216
a3− 1

54
a2+

113
36

a. (56)

Next, in view of (53) and the equality c1(E0) = 0, the Riemann–Roch theorem
for E0 easily gives

χ(p∗E0) = χ(E0) = −1
6
a2 +

4
3
a + 2. (57)

Together with (55) and (56) this yields

Φ(a) := χ(p∗E0)− (χ(E) + χ(p∗E1 ⊗OQ(H)) + χ(p∗E∨1 ⊗OQ(−H)))

= − 5
216

a(a− 2)(a− 3)
(

a− 4
5

)

.

The monad (38) now implies Φ(a) = 0. The only positive integer roots of the
polynomial Φ(a) are a = 2 and a = 3. However, (55) implies χ(E) = − 3

2 for
a = 2, and (57) implies χ(p∗E0) = 9

2 for a = 3. This is a contradiction, since
the values of χ(E) and χ(p∗E0) are integers by definition. �

We need a last piece of notation. Consider the flag variety Fl(km−2, km +
2; V nm). Any point u = (V km−2, V km+2) ∈ Fl(km−2, km+2; V nm) determines
a standard extension

iu : X = G(2; 4) ↪→ Xm, (58)

W 2 
→ V km−2 ⊕W 2 ⊂ V km+2 ⊂ V nm = V km−2 ⊕W 4 ⊂ V nm , (59)

where W 2 ∈ X = G(2; W 4) and an isomorphism V km−2 ⊕W 4 � V km+2 is
fixed (clearly iu does not depend on the choice of this isomorphism modulo
Aut(Xm)). We clearly have isomorphisms of Chow groups

i∗u : A2(Xm) ∼→ A2(X), iu∗ : A2(X) ∼→ A2(Xm), (60)

and the flag variety Ym := Fl(km − 1, km + 1; V nm) (respectively, Y :=
Fl(1, 3; 4)) is the set of lines in Xm (respectively, in X).

Theorem 5.4. Let X = lim→ Xm be a twisted ind-Grassmannian. Then any
vector bundle E = lim← Em on X of rank 2 is trivial, and hence Conjecture

1.1(iv) holds for vector bundles of rank 2.
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Proof. Fix m ≥ max{m0, m1}, where m0 and m1 are as in Corollary 5.1 and
Lemma 5.2. For j = 1, 2, let E(j) denote the restriction of Em to a projective
plane of type P

2
j,m, let T j � Fl(km − j, km + 3 − j, V nm) be the variety of

planes of the form P2
j,m in Xm, and suppose that Πj :=

{
P2

j,m ∈ T j| Em|P2
j,m

is properly unstable (i.e., not semistable)} . Since semistability is an open
condition, Πj is a closed subset of T j.

(i) Assume that c2(E(1)) > 0. Then, since m ≥ m1, Lemma 5.2 implies
c2(E(2)) ≤ 0.

(i.1) Suppose that c2(E(2)) = 0. If Π2 �= T 2, then for any P2
2,m ∈ T 2 �

Π2 the corresponding bundle E(2) is semistable; hence E(2) is trivial, since
c2(E(2)) = 0; see [DL, Prop. 2.3,(4)]. Thus, for a generic point u ∈ Fl(km −
2, km +2; V nm), the bundle E = i∗uEm on X = G(2; 4) satisfies the conditions
of Proposition 5.3, which is a contradiction.

We therefore assume Π2 = T 2. Then for any P
2
2,m ∈ T 2 the corresponding

bundle E(2) has a maximal destabilizing subsheaf 0 → OP2
2,m

(a) → E(2).

Moreover, a > 0. In fact, otherwise the condition c2(E(2)) = 0 would imply
that a = 0 and E(2)/OP2

2,m
= OP2

2,m
, i.e., E(2) would be trivial, in particular

semistable. Hence
dE(2) = (a,−a). (61)

Since any line in Xm is contained in a plane P
2
2,m ∈ T 2, (61) implies dEm =

(a,−a) with a > 0 for m > m0, contrary to Corollary 5.1.
(i.2) Assume c2(E(2)) < 0. Since E(2) is not stable for any P2

2,m ∈ T 2,
its maximal destabilizing subsheaf 0 → OP2

2,m
(a) → E(2) clearly satisfies the

condition a > 0, i.e., E(2) is properly unstable; hence Π2 = T 2. Then we
again obtain a contradiction as above.

(ii) Now we assume that c2(E(2)) > 0. Then, replacing E(2) by E(1) and
vice versa, we arrive at a contradiction by the same argument as in case (i).

(iii) We must therefore assume c2(E(1)) = c2(E(2)) = 0. Set

D(Em) := {l ∈ Ym| dEm(l) �= (0, 0)}
and

D(E) := {l ∈ Y | dE(l) �= (0, 0)}.
By Corollary 5.1, dEm = (0, 0); hence dE = (0, 0) for a generic embedding
iu : X ↪→ Xm. Then by deformation theory [B], D(Em) (resp., D(E)) is an
effective divisor on Ym (resp., on Y ). Thus,OY (D(E)) = p∗1OY 1(a)⊗p∗2OY 2(b)
for some a, b ≥ 0, where p1, p2 are as in diagram (2). Note that each fiber of
p1 (respectively, of p2) is a plane P̃2

α dual to some α-plane P2
α (respectively, a

plane P̃2
β dual to some β-plane P2

β). Thus, setting

D(E|P2
α
) := {l ∈ P̃

2
α| dE(l) �= (0, 0)},

D(E|P2
β
) := {l ∈ P̃

2
β | dE(l) �= (0, 0)},
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we obtain

O
P̃2

α
(D(E|P2

α
)) = OY (D(E))|P̃2

α
= O

P̃2
α
(b),

O
P̃2

β
(D(E|P2

β
)) = OY (D(E))|P̃2

β
= O

P̃2
β
(a).

Now if E|P2
α

is semistable, a theorem of Barth [OSS, Ch. II, Theorem 2.2.3]
implies that D(E|P2

α
) is a divisor of degree c2(E|P2

α
) = a on P

2
α. Hence a =

c2(E(1)) = 0 for a semistable E|P2
α
. If E|P2

α
is not semistable, it is unstable,

and the equality dE(l) = (0, 0) yields dE|P2α
= (0, 0). Then the maximal

destabilizing subsheaf of E|P2
α

is isomorphic to OP2
α
, and since c2(E|P2

α
) = 0,

we obtain an exact triple 0 → OP2
α
→ E|P2

α
→ OP2

α
→ 0, so that E|P2

α
� O⊕2

P2
α

is semistable, a contradiction. This shows that a = 0 whenever c2(E(1)) =
c2(E(2)) = 0. Similarly, b = 0. Therefore D(Em) = ∅, and Proposition 4.1
implies that Em is trivial. Therefore E is trivial as well. �

In [DP], Conjecture 1.1 (iv) was proved not only when X is a twisted
projective ind-space, but also for finite-rank bundles on special twisted ind-
Grassmannians defined through certain homogeneous embeddings ϕm. These
include embeddings of the form

G(k; n)→ G(ka; nb),

V k ⊂ V 
→ V k ⊗W a ⊂ V ⊗W b,

where W a ⊂ W b is a fixed pair of finite-dimensional spaces with a < b, or of
the form

G(k; n)→ G

(
k(k + 1)

2
; n2

)

,

V k ⊂ V 
→ S2(V k) ⊂ V ⊗ V.

More precisely, Conjecture 1.1 (iv) was proved in [DP] for twisted ind-
Grassmannians whose defining embeddings are homogeneous embeddings sat-
isfying some specific numerical conditions relating the degrees deg ϕm to the
pairs of integers (km, nm). There are many twisted ind-Grassmannians for
which those conditions are not satisfied. For instance, this applies to the ind-
Grassmannians defined by iterating each of the following embeddings:

G(k; n)→ G

(
k(k + 1)

2
;
n(n + 1)

2

)

,

V k ⊂ V 
→ S2(V k) ⊂ S2(V ),

G(k; n)→ G

(
k(k − 1)

2
;
n(n− 1)

2

)

,

V k ⊂ V 
→ Λ2(V k) ⊂ Λ2(V ).

Therefore the resulting ind-Grassmannians G(k, n, S2) and G(k, n, Λ2) are
examples of twisted ind-Grassmannians for which Theorem 5.4 is new.
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Summary. We show that a nondegenerate unitary solution r(u, v) of the associative
Yang–Baxter equation (AYBE) for Mat(N, C) (see [7]) with the Laurent series at
u = 0 of the form r(u, v) = 1⊗1

u
+ r0(v) + · · · satisfies the quantum Yang–Baxter

equation, provided the projection of r0(v) to slN ⊗ slN has a period. We classify all
such solutions of the AYBE, extending the work of Schedler [8]. We also characterize
solutions coming from triple Massey products in the derived category of coherent
sheaves on cycles of projective lines.

Key words: Associative Yang–Baxter equation, Quantum Yang–Baxter
equation, Belavin–Drinfeld triple, simple vector bundle

2000 Mathematics Subject Classifications: 16W30, 14F05, 18E30

Introduction

This paper is concerned with solutions of the associative Yang–Baxter
equation (AYBE)

r12(−u′, v)r13(u+u′, v+v′)−r23(u+u′, v′)r12(u, v)+r13(u, v+v′)r23(u′, v′)=0,
(1)

where r(u, v) is a meromorphic function of two complex variables (u, v) in a
neighborhood of (0, 0) taking values in A ⊗ A, where A = Mat(N,C) is the
matrix algebra. Here we use the notation r12 = r ⊗ 1 ∈ A ⊗ A ⊗ A, etc.
We will refer to a solution of (1) as an associative r-matrix. This equation
was introduced in the above form in [7] in connection with triple Massey
products for simple vector bundles on elliptic curves and their degenerations.
It is usually coupled with the unitarity condition

r21(−u,−v) = −r(u, v). (2)
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Progress in Mathematics 270, DOI 10.1007/978-0-8176-4747-6 19,
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Note that the constant version of (1) was independently introduced in [1]
in connection with the notion of infinitesimal bialgebra (where A can be any
associative algebra). The AYBE is closely related to the classical Yang–Baxter
equation (CYBE) with spectral parameter

[r12(v), r13(v + v′)] − [r23(v′), r12(v)] + [r13(v + v′), r23(v′)] = 0 (3)

for the Lie algebra slN (so r(v) takes values in slN ⊗ slN ) and also with the
quantum Yang–Baxter equation (QYBE) with spectral parameter

R12(v)R13(v + v′)R23(v′) = R23(v′)R13(v + v′)R12(v), (4)

where R(v) takes values in A⊗A. In the seminal work [3] Belavin and Drinfeld
made a thorough study of the CYBE for simple Lie algebras. In particular,
they showed that all nondegenerate solutions are equivalent to either elliptic,
trigonometric, or rational solutions, and gave a complete classification in the
elliptic and trigonometric cases. In the present paper we extend some of their
results and techniques to the AYBE. In addition, we show that often solutions
of the AYBE are automatically solutions of the QYBE (for fixed u).

We will be mostly studying unitary solutions of the AYBE (i.e., solutions
of (1) and (2)) that have the Laurent expansion at u = 0 of the form

r(u, v) =
1 ⊗ 1
u

+ r0(v) + ur1(v) + · · · . (5)

It is easy to see that in this case, r0(v) is a solution of the CYBE. Hence,
denoting by pr : Mat(N,C) → slN the projection along C · 1, we obtain that
r0(v) = (pr⊗ pr)r0(v) is a solution of the CYBE for slN . We prove that if
r(u, v) is nondegenerate (i.e., the tensor r(u, v) ∈ A⊗A is nondegenerate for
generic (u, v)) then so is r0. Thus, r0 falls within Belavin–Drinfeld classifica-
tion. Furthermore, we show that if r0 is either elliptic or trigonometric, then
r(u, v) is uniquely determined by r0 up to certain natural transformations.
The natural question raised in [7] is which solutions of the CYBE for slN ex-
tend to unitary solutions of the AYBE of the form (5). In [7] we showed that
this is the case for all elliptic solutions and gave some examples with trigono-
metric solutions. In [8] Schedler studied further this question for trigonometric
solutions of the CYBE of the form r0(v) = r+evr21

1−ev , where r is a constant so-
lution of the CYBE. He discovered that not all trigonometric solutions of the
CYBE can be extended to solutions of the AYBE, and found a nice combina-
torial structure that governs the situation (called associative BD triples). In
this paper we complete the picture by giving the answer to the above question
for arbitrary trigonometric solutions of the CYBE (see Theorem 0.2 below).
We will also prove that every nondegenerate unitary solution r(u, v) of the
AYBE with the Laurent expansion at u = 0 of the form (5) satisfies the QYBE
with spectral parameter for fixed u, provided r0(v) either has a period (i.e.,
it is either elliptic or trigonometric) or has no infinitesimal symmetries (see
Theorem 1.5). Thus, our work on extending trigonometric classical r-matrices
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(with spectral parameter) to solutions of the AYBE leads to explicit formulas
for the corresponding quantum r-matrices. The connection with the QYBE
was noticed before for elliptic solutions constructed in [7] (because they are
given essentially by Belavin’s elliptic R-matrix) and also for those trigono-
metric solutions that are constructed in [8].

An important input for our study of trigonometric solutions of the AYBE
is the geometric picture with Massey products developed in [7] that involves
considering simple vector bundles on elliptic curves and their rational degen-
erations. In that article we constructed all elliptic solutions in this way and
some trigonometric solutions coming from simple vector bundles on the union
of two projective lines glued at two points. In this paper we consider the case
of bundles on a cycle of projective lines of arbitrary length. We compute ex-
plicitly corresponding solutions of the AYBE. Then we notice that a similar
formula makes sense in a more general context and prove this by a direct
calculation. The completeness of the obtained list of trigonometric solutions
is then checked by combining the arguments of [8] with those of [3] (modified
appropriately for the case of the AYBE). It is interesting that contrary to
the initial expectation expressed in [7], not all trigonometric solutions of the
AYBE can be obtained from the triple Massey products on cycles of projec-
tive lines (see Theorem 5.5). This makes us wonder whether there is some
generalization of our geometric setup.

Another question that seems to be worth pursuing is the connection be-
tween the combinatorics of simple vector bundles on a cycle of projective
lines X and the Belavin–Drinfeld combinatorics. Namely, the discrete type
of a vector bundle on X is described by the splitting type on each compo-
nent of X . As was observed in [4], Theorem 5.3, simplicity of a vector bundle
corresponds to a certain combinatorial condition on these splitting types (see
also Lemma 3.1). In this paper we show that this condition allows us to asso-
ciate with such a splitting type a Belavin–Drinfeld triple (or rather enhanced
combinatorial data described below). It seems that this connection might pro-
vide additional insight into the problem of classifying discrete types of simple
vector bundles on X .

In [6] Mudrov constructs solutions of the QYBE from certain algebraic
data that should be viewed as associative analogues of Manin triples. Else-
where we will show how solutions of the AYBE give rise to such data and
will study the corresponding associative algebras that are related to both the
classical and quantum sides of the story.

Now let us present the combinatorial data on which our trigonometric
solutions of the AYBE depend (generalizing Belavin–Drinfeld triples with as-
sociative structure considered in [8]). Let S be a finite set. To equip S with a
cyclic order is the same as to fix a transitive cyclic permutation C0 : S → S.
We denote by ΓC0 := {(s, C0(s)) | s ∈ S} the graph of C0.
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Definition 0.1. An associative BD-structure on a finite set S is given by a
pair of transitive cyclic permutations C0, C : S → S and a pair of proper
subsets Γ1, Γ2 ⊂ ΓC0 such that (C × C)(Γ1) = Γ2, where (C × C)(i, i′) =
(C(i), C(i′)).

We can identify ΓC0 with the set of vertices Γ of the affine Dynkin dia-
gram ˜AN−1, where N = |S| (preserving the cyclic order). Then we get from
the above structure a Belavin–Drinfeld triple (Γ1, Γ2, τ) for ˜AN−1, where the
bijection τ : Γ1 → Γ2 is induced by C ×C. It is clear that τ preserves the in-
ner product. The nilpotency condition on τ is satisfied automatically. Indeed,
choose (s1, C0(s1)) ∈ ΓS \Γ1. Then for every (s, C0(s)) ∈ Γ1 there exists k ≥ 1
with Ck(s) = s1, so that (C × C)k(s, C0(s)) �∈ Γ1.

We extend the bijection τ to a bijection τ : P1 → P2 induced by C × C,
where

Pι = {(s, Ck
0 (s)) | (s, C0(s)) ∈ Γι, (C0(s), C2

0 (s)) ∈ Γι, . . . ,

(Ck−1
0 (s), Ck

0 (s)) ∈ Γι}, ι = 1, 2.

For a finite set S let us denote by AS the algebra of endomorphisms of
the C-vector space with the basis (ei)i∈S , so that AS � Mat(N,C), where
N = |S|. We denote by eij ∈ AS the endomorphism defined by eij(ek) = δjkei.
We denote by h ⊂ AS the subalgebra of diagonal matrices (i.e., the span of
(eii)i∈S). Now we can formulate our result about trigonometric solutions of
the AYBE.

Theorem 0.2. (i) Let (C0, C, Γ1, Γ2) be an associative BD-structure on a fi-
nite set S. Consider the AS ⊗AS-valued function

r(u, v) =
1

1 − exp(−v)
∑

i

eii ⊗ eii

+
1

exp(u) − 1

∑

0≤k<N,i

exp
(

ku

N

)

eCk(i),Ck(i) ⊗ eii

+
1

exp(v) − 1

∑

0<m<N,j=Cm
0 (i)

exp
(mv

N

)

eij ⊗ eji

+
∑

0<m<N,k≥1;j=Cm
0 (i),τk(i,j)=(i′,j′)

[

exp
(

−ku+mv

N

)

eji ⊗ ei′j′

− exp
(

ku+mv

N

)

ei′j′ ⊗ eji

]

,

where i, i′, j, j′ denote elements of S, and the summation in the last sum is
taken only over those (i, j) for which τk is defined on (i, j). Then r(u, v)
satisfies (1) and (2). Furthermore, let us set

R(u, v) =
(

[

exp
(u

2

)

− exp
(

−u
2

)]−1

+
[

exp
(v

2

)

− exp
(

−v
2

)]−1
)−1

·r(u, v).
(6)
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Then R(u, v) satisfies the QYBE with spectral parameter (4) (for fixed u) and
the unitarity condition

R(u, v)R21(u,−v) = 1 ⊗ 1. (7)

(ii) Assume that N > 1. Then every nondegenerate unitary solution of the
AYBE for A = Mat(N,C) with the Laurent expansion at u = 0 of the form
(5), where r0(v) is a trigonometric solution of the CYBE for slN , is equal to

c exp(λuv) exp[u(1 ⊗ a) + v(b ⊗ 1)]r(cu, c′v) exp[−u(a⊗ 1) − v(b ⊗ 1)],

where r(u, v) is obtained from one of the solutions from (i) by applying an
algebra isomorphism AS � A, λ, c, and c′ are constants (c �= 0, c′ �= 0), and
a, b ∈ h are infinitesimal symmetries of r(u, v), i.e.,

[a⊗ 1 + 1 ⊗ a, r(u, v)] = [b⊗ 1 + 1 ⊗ b, r(u, v)] = 0.

Note that the complete list of scalar unitary solutions of the AYBE was
obtained in Theorem 5 of [7]. The solution obtained from Theorem 0.2(i) in
the case N = 1 coincides with the basic trigonometric solution from that list
(up to changing v to −v).

We will also deduce the following result about solutions of the AYBE not
depending on the variable u.

Theorem 0.3. Assume that N > 1. Let r(v) be a nondegenerate unitary so-
lution of the AYBE for A = Mat(N,C) not depending on the variable u. Then

r(v) = r(v) + b⊗ 1 + 1 ⊗ b+
c · 1 ⊗ 1
Nv

,

where r(v) is equivalent to a rational nondegenerate solution of the CYBE for
slN , b ∈ slN is an infinitesimal symmetry of r(v), c ∈ C∗. Also,

R(u, v) =
(

1 +
cu

v

)−1

· (1 + ur(v))

is a unitary solution of the QYBE with spectral parameter for fixed u (hence,
the same is true for v

c r(v) = limu→∞R(u, v)).

The case of nondegenerate unitary solutions of the AYBE not depending
on v turns out to be much easier — in this case, we get a complete list of
solutions (see Proposition 1.1). Note that there are no constant nondegenerate
solutions of the AYBE for A = Mat(N,C) (unitary or not), as follows from
Proposition 2.9 of [2].

The paper is organized as follows. In Section 1 we discuss nondegeneracy
conditions for solutions of the AYBE and show how to deduce the QYBE
in Theorem 1.5. After recalling in Section 2 the geometric setup leading to
solutions of the AYBE, we calculate these solutions associated with simple
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vector bundles on cycles of projective lines in Sections 3 and 4 (the result
is given by formulas (32), (33)). Then in Section 5 we consider associative
BD-structures on completely ordered sets and classify such structures coming
from simple vector bundles on cycles of projective lines (see Theorem 5.5). In
Section 6 we prove the first part of Theorem 0.2. In Section 7 we establish a
meromorphic continuation in v for a class of solutions of the AYBE and derive
some additional information about these solutions. Finally, in Section 8 we
prove the second part of Theorem 0.2 and Theorem 0.3.

Acknowledgments. I am grateful to Pavel Etingof for crucial help with orga-
nizing my initial computations into a nice combinatorial pattern. I also thank
him and Travis Schedler for useful comments on the first draft of the paper
and the subsequent helpful discussions. Parts of this work were done while the
author enjoyed the hospitality of the Max-Planck-Institute für Mathematik in
Bonn and of the SISSA in Trieste. This work was partially supported by the
NSF grant DMS-0601034.

1 The AYBE and the QYBE

Recall that we denote A = Mat(N,C). Let r(u, v) be a meromorphic A ⊗ A-
function in a neighborhood of (0, 0). We say that r(u, v) is nondegenerate if
the tensor r(u, v) is nondegenerate for generic (u, v).

We start by collecting some facts about nondegenerate unitary solutions
of the AYBE. First, let us consider the case when r(u, v) does not depend
on v. Then the AYBE reduces to

r12(−u′)r13(u + u′) − r23(u + u′)r12(u) + r13(u)r23(u′) = 0, (8)

and the unitarity condition becomes r21(−u) = −r(u).
Let us set P =

∑

i,j eij ⊗ eji.

Proposition 1.1. All nondegenerate unitary solutions of (8) have form

r(u) = (φa(cu) ⊗ id)(P ),

where c ∈ C∗, a ∈ slN , φa(u) ∈ End(A) is the linear operator on A defined
from the equation

uφa(u)(X) + [a, φa(u)(X)] = X.

Proof. Let us write r(u, v) in the form r(u) = (φ(u)⊗ id)(e), where e ∈ A∗⊗A
is the canonical element, φ(u) : A∗ → A is an operator, nondegenerate for
generic u. Now set B(u)(X,Y ) = (X,φ(u)−1(Y )) for X,Y ∈ A. It is easy to
see that the equation (8) together with the unitarity condition are equivalent
to the following equations on B(u):

B(−u)(XY,Z) +B(−u′)(Y Z,X) +B(u + u′)(ZX, Y ) = 0, (9)
B(u)(X,Y ) +B(−u)(Y,X) = 0. (10)
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Substituting Z = 1 in the first equation we find

B(−u)(XY, 1) + (B(u+ u′) −B(u′))(X,Y ) = 0, i.e.,

B(u+ u′)(X,Y ) = ξ(u)(XY ) +B(u′)(X,Y ),

where ξ(u)(X) = −B(−u)(X, 1). Exchanging u and u′ we get that C(X,Y ) =
B(u)(X,Y ) − ξ(u)(XY ) does not depend on u. Substituting B(u)(X,Y ) =
ξ(u)(XY ) + C(X,Y ) into the previous equation we get

ξ(u+ u′) = ξ(u) + ξ(u′);

hence ξ(u) = u·ξ for some ξ ∈ A∗. Now substituting B(u)(X,Y ) = u·ξ(XY )+
C(X,Y ) into (10), we derive that ξ(XY ) = ξ(Y X) and C is skew-symmetric.
Therefore, ξ = c · tr. Finally, equation (9) reduces to the equation

C(XY,Z) + C(Y Z,X) + C(ZX, Y ) = 0.

Together with the skew-symmetry of C this implies that C(X, 1)=C(1, X)=0
and the restriction of C to slN × slN is a 2-cocycle. Hence, C(X,Y ) = l(XY −
Y X) for some linear functional l on slN . Conversely, for C of this form the
above equation is satisfied. Thus, all solutions of (9) and (10) are given by

B(u)(X,Y ) = cu tr(X,Y ) + l(XY − Y X),

where c ∈ C∗ and l is a linear functional on slN . Let us identify A with A∗

using the metric tr(XY ). Then we can view φ(u) as an operator from A to
A such that B(u)(X,Y ) = tr(Xφ(u)−1(Y )). Representing the functional l in
the form l(X) = − tr(Xa), we obtain the formula

φ(u)−1(Y ) = cuY + [a, Y ].

	


Remark 1.2. It is easy to see that φa(u) (and hence the corresponding asso-
ciative r-matrix) always has a pole at u = 0 with order equal to the maximal
k such that there exists X ∈ A with adk(a)(X) = 0 and adk−1(a)(X) �= 0. In-
deed, φa(u) cannot be regular at u = 0, since this would give [a, φa(0)(1)] = 1.
Let

φa(u) =
ψ−k

uk
+
ψ−k+1

uk−1
+ · · ·

be the Laurent expansion of φa(u). Then we have

ψi−1 + ad(a) ◦ ψi = 0

for i �= 0 and
ψ−1 + ad(a) ◦ ψ0 = id .
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Decomposing End(A) into generalized eigenspaces of the operator ψ �→ ad(a)◦
ψ, we see that ψ−1 is the component of id ∈ End(A) corresponding to the zero
eigenvalue. This immediately implies our claim. For example, if a is semisimple
then φa(u) has a simple pole at u = 0. More precisely, taking the diagonal
matrix a =

∑

i aieii, we get the associative r-matrix

r(u) =
∑

ij

1
u+ ai − aj

eij ⊗ eji.

The proofs of the next two results are parallel to those of Propositions 2.2
and 2.1 in [3], respectively.

Lemma 1.3. Let r(u, v) be a nondegenerate unitary solution of the AYBE.
Assume that r(u, v) does not have a pole at v = 0. Then r(u, 0) is still non-
degenerate, and hence has the form described in Proposition 1.1.

Proof. Let us fix v0 such that r(u, v) does not have a pole at v = v0 and
r(u, v0) is nondegenerate for generic u. Then we can define a meromorphic
function φ(u, v) with values in EndC(A) by the condition

(φ(u, v) ⊗ id)(r(u, v0)) = r(u, v).

We claim that this function satisfies the identity

φ(u + u′, v)(XY ) = φ(u, v)(X)φ(u′, v)(Y ), (11)

where X,Y ∈ A. Indeed, since r(u, v) does not have a pole at v = 0, substi-
tuting v′ = 0 in (1), we get

r12(−u′, v)r13(u + u′, v) = r23(u+ u′, 0)r12(u, v) − r13(u, v)r23(u′, 0).

Note that the right-hand side is obtained by applying φ(u, v) ⊗ id⊗ id to the
right-hand side for v = v0. Applying the above equation for v = v0, we deduce
that it is equal to

(φ(u, v) ⊗ id⊗ id)(r12(−u′, v0)r13(u + u′, v0)).

On the other hand, the left-hand side can be rewritten as

[(φ(−u′, v) ⊗ id)r(−u′, v0)]12[(φ(u + u′, v) ⊗ id)r(u + u′, v)]13.

Thus, if we write r(u, v0) =
∑

Kα(u)⊗ eα, where eα is a basis of A, then we
derive

φ(−u′, v)(Kα(−u′))φ(u + u′, v)(Kβ(u + u′)) = φ(u, v)(Kα(−u′)Kβ(u+ u′)).
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By nondegeneracy of r(u, v0) this implies (11). Taking Y = 1 in this equation,
we obtain

φ(u+ u′, v)(X) = φ(u, v)(X)φ(u′, v)(1). (12)

Similarly, we deduce that

φ(u + u′, v)(Y ) = φ(u′, v)(1)φ(u, v)(Y ).

Comparing these equations, we see that φ(u′, v)(1) commutes with φ(u, v)(X)
for any X ∈ A. Using nondegeneracy of r(u, v) we derive that φ(u, v)(1) =
f(u, v) · 1 for some scalar meromorphic function f(u, v). Furthermore, we
should have

f(u+ u′, v) = f(u, v)f(u′, v),

which implies that f(u, v) = exp(g(v)u) for some function g(v) holomorphic
near v = 0. Next, from (12) we obtain that exp(−g(v)u)φ(u, v) does not de-
pend on u. Thus, all solutions of (11) have the form φ(u, v) = exp(g(v)u)ψ(v),
where for every v, ψ(v) is an algebra automorphism of A or zero. By our as-
sumption, φ(u, v) does not have a pole at v = 0. Therefore, ψ(v) is holomor-
phic near v = 0. Now we use the fact that every algebra automorphism of A is
inner, and hence has determinant equal to 1 (it is enough to check this for the
conjugation with a diagonalizable matrix). Since, ψ(v0) = id, this implies that
detψ(v) = 1 identically. Therefore, detψ(0) = 1 and φ(u, 0) is invertible. 	


Lemma 1.4. Let r(u, v) be a nondegenerate unitary solution of the AYBE.
Assume that r(u, v) has a pole at v = 0. Then this pole is simple and
limv→0 vr(u, v) = cP for some nonzero constant c.

Proof. Let r(u, v) = θ(u)
vk + η(u)

vk−1 + · · · be the Laurent expansion of r(u, v) near
v = 0. Considering the polar parts as v′ → 0 (resp., v → 0) in (1), we get

− θ23(u+ u′)r12(u, v) + r13(u, v)θ23(u′) = 0, (13)
θ12(−u′)r13(u+ u′, v′) − r23(u+ u′, v′)θ12(u) = 0. (14)

Let V ⊂ A be the minimal subspace such that θ(u) ∈ V ⊗A (for all u where
θ(u) is defined). Then we have r13(u, v)θ23(u′) ∈ A⊗V ⊗A. Hence, from (13)
we get θ23(u+u′)r12(u, v) ∈ A⊗V ⊗A. This implies that r12(u, v) ∈ A⊗A1,
where

A1 = {a ∈ A : (a⊗ 1)θ(u) ∈ V ⊗A for all u}.
By nondegeneracy we get A1 = A, hence AV ⊂ V . Similarly, using (14) we
derive that V A ⊂ V . Thus, V is a nonzero two-sided ideal in A, so we have
V = A. Now let us prove that the order k of a pole cannot be greater that 1.
Indeed, assuming that k > 1 and considering the coefficient of v1−k in the
expansion of (1) near v = 0, we get

η12(−u′)r13(u+ u′, v′) − r23(u+ u′, v′)η12(u) + θ12(−u′)∂r
13

∂v
(u+ u′, v′) = 0.
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Now looking at polar parts at v′ = 0 we get θ12(−u′)θ13(u + u′) = 0, which
contradicts the equality V = A established above. Therefore, k = 1. Now let
us look at (13) again. Let us fix u and consider the subspace

A(u) = {x ∈ A : θ(u+ u′)(x ⊗ 1) = (1 ⊗ x)θ(u′) for all u′}.
Then from (13) we get that r(u, v) ∈ A⊗A(u). By nondegeneracy this implies
that A(u) = A for generic u, so we get the identity

θ(u + u′)(x⊗ 1) = (1 ⊗ x)θ(u′)

for all x ∈ A. Taking x = 1, we see that θ(u) = θ is constant. Finally, any
tensor θ ∈ A⊗A with the property θ(x⊗ 1) = (1 ⊗ x)θ is proportional to P .

	

Recall that if r(u, v) is a solution of the AYBE with the Laurent expansion

at u = 0 of the form (5), then r0(v) is a unitary solution of the CYBE (see
proof of Lemma 1.2 in [7], or Lemma 2.9 of [8]). The same is true for r0(v) =
(pr⊗ pr)(r0(v)) ∈ slN ⊗ slN . We will show below that the nondegeneracy of
r(u, v) implies that r0(v) is also nondegenerate; hence it is either elliptic,
trigonometric, or rational. The first two cases are distinguished from the third
by the condition that r0(v) is periodic with respect to v �→ v + p for some
p ∈ C

∗.
Recall that by an infinitesimal symmetry of an A⊗A-valued function f(x)

we mean an element a ∈ A such that [a⊗ 1 + 1 ⊗ a, f(x)] = 0 for all x.

Theorem 1.5. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion at u = 0 of the form (5), and let r0(v) =
(pr⊗ pr)(r0(v)). Then

(i) r0(v) is a nondegenerate unitary solution of the CYBE.
(ii) The following conditions are equivalent:

(a) r(u, v) satisfies the QYBE (4) in v (for fixed u);
(b) the product r(u, v)r(−u, v) is a scalar multiple of 1 ⊗ 1;
(c) d

dv (r0(v) − r0(v)) is a scalar multiple of 1 ⊗ 1.
(d) (pr⊗ pr⊗ pr)[r120 (v)r130 (v+v′)−r230 (v′)r120 (v)+r130 (v+v′)r230 (v′)] = 0.

(iii) The equivalent conditions in (ii) hold when r0(v) either admits a period
or has no infinitesimal symmetries in slN .

Remarks 1.6. 1. In fact, our proof shows that equivalent conditions in (ii)
hold under the weaker assumption that the system

[r0(v), a1 + a2] = [r0(v), b1 + b2 + va1] = [b, a] = 0

on a, b ∈ slN implies that a = 0.
2. Note that the implication (b) =⇒ (a) in part (ii) of the theorem holds for
any unitary solution of the AYBE (as follows easily from Lemma 1.8 below).
It is plausible that one can check condition (b) in other situations than those
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considered in the above theorem. For example, we have nondegenerate unitary
solutions of the AYBE of the form

r(u, v) =
ω

un
+
P

v
,

where n ≥ 1, and ω ∈ A ⊗ A satisfies ω12ω13 = 0 and ω21 = (−1)n−1ω. It is
easy to see that these solutions satisfy r(u, v)r(−u, v) = 1⊗1/v2, so they also
satisfy the QYBE. On the other hand, the solutions of the AYBE constructed
in Proposition 1.1 do not satisfy the QYBE in general.

Lemma 1.7. Assume that N > 1. Let r(u, v) be a nondegenerate unitary
solution of the AYBE with the Laurent expansion at u = 0 of the form (5).
Then r(u, v) has a simple pole at v = 0 with the residue c · P , where c ∈ C∗.

Proof. By Lemma 1.4 we only have to rule out the possibility that r(u, v) has
no pole at v = 0. Assume this is the case. Then r(u, 0) is the solution of (8)
that has a simple pole at u = 0 with the residue 1 ⊗ 1. Let φ(u) : A → A
be the linear operator such that r(u, 0) = (φ(u) ⊗ id)(P ). Then φ(u) has a
Laurent expansion at u = 0 of the form

φ(u)(X) =
tr(X) · 1

u
+ ψ(X) + · · ·

for some operator ψ : A→ A. By Lemma 1.3 and Proposition 1.1 we have

cuφ(u)(X) + [a, φ(u)(X)] = X

for some c ∈ C
∗ and a ∈ slN . Considering the constant terms of the expansions

at u = 0 we get
c tr(X) · 1 + [a, ψ(X)] = X.

It follows that [a, ψ(X)] = X for all X ∈ slN . Hence, the operator prψ|slN :
slN → slN is invertible. Taking in the above equality X ∈ slN such that
prψ(X) = a, we derive that a = 0, which leads to a contradiction. 	


The next two lemmas constitute the core of the proof of Theorem 1.5.

Lemma 1.8. For a triple of variables u1, u2, u3 (resp., v1, v2, v3) set uij =
ui − uj (resp., vij = vi − vj). Then for every unitary solution of the AYBE
one has

r12(u12, v12)r13(u23, v13)r23(u12, v23) − r23(u23, v23)r13(u12, v13)r12(u23, v12)
= s23(u23, v23)r13(u13, v13) − r13(u13, v13)s23(u21, v23)
= r13(u13, v13)s12(u32, v12) − s12(u12, v12)r13(u13, v13),

where s(u, v) = r(u, v)r(−u, v).
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Proof. In the following proof we will use the shorthand notation rij(u) for
rij(u, vij). The AYBE can be rewritten as

r12(u12)r13(u23) − r23(u23)r12(u13) + r13(u13)r23(u21) = 0. (15)

On the other hand, switching indices 1 and 2 and using the unitarity condition,
we obtain

r23(u23)r13(u12) − r12(u12)r23(u13) + r13(u13)r12(u32) = 0. (16)

Multiplying (16) by r12(u23) on the right, we get

r23(u23)r13(u12)r12(u23) − r12(u12)r23(u13)r12(u23) + r13(u13)s12(u32) = 0.

On the other hand, switching u1 and u2 in (15) and multiplying the obtained
equation by r12(u12) on the left, we obtain

s12(u12)r13(u13) − r12(u12)r23(u13)r12(u23) + r12(u12)r13(u23)r23(u12) = 0.

Taking the difference between these cubic equations gives

r23(u23)r13(u12)r12(u23) − r12(u12)r13(u23)r23(u12)
= s12(u12)r13(u13) − r13(u13)s12(u32).

The other half of the required equation is obtained by switching the indices 1
and 3 and using the unitarity condition. 	


Lemma 1.9. Let r(u, v) be a unitary solution of the AYBE with the Laurent
expansion (5) at u = 0. Assume also that r(u, v) has a simple pole at v = 0
with residue cP . Then one has

s(u, v) = r(u, v)r(−u, v) = a⊗ 1 + 1 ⊗ a+ (f(u) + g(v)) · 1 ⊗ 1

with

g(v) = − c

N
(tr⊗ tr)

(

dr0(v)
dv

)

,

f(u) =
1
N

trμ
(

∂r(u, 0)
∂u

)

,

a = prμ
(

∂r(u, 0)
∂u

)

,

where μ : A ⊗ A → A denotes the product. Furthermore, a ∈ slN is an
infinitesimal symmetry of r(u, v), and if we write

r0(v) = r0(v) + α(v) ⊗ 1 − 1 ⊗ α(−v) + h(v) · 1 ⊗ 1,

where r0(v) ∈ slN ⊗ slN and α(v) ∈ slN , then

α(v) = α(0) − v

cN
a.
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Proof. Let us write r(u, v) = cP
v + r̃(u, v), where r̃(u, v) does not have a pole

at v = 0. Then we can rewrite the AYBE as follows (where vij = vi − vj):

r13(u, v13)r23(−u+ h, v23)
= r23(h, v23)r12(u, v12) − r12(u− h, v12)r13(h, v13)
= r23(h, v23)r12(u, v12) − r12(u, v12)r13(h, v13)

+ [r12(u, v12) − r12(u− h, v12)]r13(h, v13)

=
r23(h, v23) − r23(h, v13)

v12
cP 12 + [r23(h, v23)r̃12(u, v12)

− r̃12(u, v12)r13(h, v13)] + [r̃12(u, v12) − r̃12(u− h, v12)]r13(h, v13).

Passing to the limit v2 → v1 we derive

r13(u, v)r23(−u+ h, v)

= −∂r
23

∂v
(h, v)cP 12 + [r23(h, v)r̃12(u, 0) − r̃12(u, 0)r13(h, v)]

+ [r̃12(u, 0) − r̃12(u− h, 0)]r13(h, v).

Next, we are going to apply the operator μ⊗ id : A⊗A⊗A→ A⊗A, where
μ is the product on A. We use the following easy observations:

(μ⊗ id)(x13y23) = xy,

(μ⊗ id)(x23y12 − y12x13) = 0,
(μ⊗ id)(x23P 12) = 1 ⊗ tr1(x),

where x, y ∈ A⊗A, tr1 = tr⊗ id : A⊗A→ A (the last property follows from
the identity

∑

ij eijaeji = tr(a) · 1 for a ∈ A). Thus, applying μ ⊗ id to the
above equation, we get

r(u, v)r(−u + h, v) = − c · 1 ⊗ tr1

(

∂r

∂v
(h, v)

)

+ (μ⊗ id)
(

[r̃12(u, 0) − r̃12(u− h, 0)]r13(h, v)
)

.

Finally, taking the limit h→ 0, we derive

s(u, v) = −c · 1 ⊗ tr1

(

dr0(v)
dv

)

+ μ

(

∂r(u, 0)
∂u

)

⊗ 1, (17)

where we used the equalities ∂r(0,v)
∂v = dr0(v)

dv and ∂r̃(u,v)
∂u = ∂r(u,v)

∂u . Hence, we
can write s(u, v) in the form

s(u, v) = a(u) ⊗ 1 + 1 ⊗ b(v) + (f(u) + g(v))1 ⊗ 1,

where a(u) and b(v) take values in slN , and

b(v) = −c pr tr1

(

dr0(v)
dv

)

.
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The unitarity condition on r(u, v) implies that s21(−u,−v) = s(u, v). This
immediately gives the required form of s(u, v) with some a ∈ slN , as well
as the formulas for g(v), f(u), a, and α(v). The fact that a is an infinites-
imal symmetry of r(u, v) follows from the second equality in the identity of
Lemma 1.8. 	


Lemma 1.10. Let r0(v) ∈ A ⊗ A be a unitary solution of the CYBE of the
form

r0(v) = r0(v) + α(v) ⊗ 1 − 1 ⊗ α(−v) + h(v) · 1 ⊗ 1,

where r0(v) ∈ slN ⊗ slN and α(v) ∈ slN . Then

[r0(v − v′), α(v) ⊗ 1 + 1 ⊗ α(v′)] = [α(v), α(v′)] = 0.

In particular, if α(v) depends linearly on v, i.e., α(v) = b+ v · a, then

[r0(v), a⊗ 1 + 1 ⊗ a] = [r0(v), b⊗ 1 + 1 ⊗ b+ va⊗ 1] = [b, a] = 0.

Proof. Applying pr⊗ pr⊗ pr to both sides of the CYBE, we see that r0 itself
satisfies the CYBE. Taking this into account, the equation can be rewritten as

[r120 (v12), α1(v13) + α2(v23)] + [α1(v12), α1(v13)] + c.p.(1, 2, 3) = 0,

where vij = vi − vj (the omitted terms are obtained by cyclically permuting
1, 2, 3). Applying the operator pr⊗ pr⊗ id gives

[r120 (v12), α1(v13) + α2(v23)] = 0.

Now returning to the above equality and applying pr⊗ id⊗ id, we derive that
[α(v), α(v′)] = 0. 	

Proof of Theorem 1.5. (i) In the case N = 1 the statement is vacuous, so we
can assume that N > 1. By Lemma 1.7, r0(v) has a simple pole at v = 0
with residue cP , where c ∈ C

∗. Projecting to slN , we deduce that r0(v) is
nondegenerate.
(ii) By Lemma 1.8, r(u, v) satisfies the QYBE iff

s23(u, v23)r13(2u, v13) = r13(2u, v13)s23(−u, v23).

Using the formula for s(u, v) from Lemma 1.9, we see that this is equivalent
to the equality

[r(u, v), 1 ⊗ a] = 0,

which is equivalent to a = 0 by the nondegeneracy of r(u, v). Note that by
Lemma 1.9, both conditions (b) and (c) are also equivalent to the equality
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a = 0. It remains to show the equivalence of (d) with this equality. To this
end we use the identity

r120 (v)r130 (v+v′)−r230 (v′)r120 (v)+r130 (v+v′)r230 (v′)=r121 (v)+r131 (v+v′)+r231 (v′),
(18)

deduced by substituting the Laurent expansions in the first variable into (1).
Let us denote the expression in the left-hand-side of (18) by AYBE[r0](v, v′).
Using the relation between r0(v) and r0(v) from Lemma 1.9, we obtain

−cN · (pr⊗ pr⊗ pr) (AYBE[r0](v, v′) − AYBE[r0](v, v′))
= vr120 (v)a3 + v′r230 (v′)a1 + (v + v′)r130 (v + v′)a2,

where a1 = a⊗1⊗1, etc. Note that (18) implies that (pr⊗ pr⊗ pr)AYBE[r0]
(v, v′) = 0. Therefore, it suffices to prove that the equation

vr120 (v)a3 + v′r230 (v′)a1 + (v + v′)r130 (v + v′)a2 = 0

on a ∈ slN implies that a = 0. Passing to the limit as v → 0 and v′ → 0, we
deduce from the above equality that

(pr⊗ pr⊗ pr)[P 12a3 + P 23a1 + P 13a2] = 0.

Let a =
∑

aijeij . Looking at the coefficient with eij ⊗ eji ⊗ eij , we deduce
that aij = 0 for i �= j. Finally, looking at the projection to e12 ⊗ e21 ⊗ slN , we
deduce that aii does not depend on i; hence a = 0. 	

(iii) It suffices to prove that under our assumptions the infinitesimal symmetry
a ∈ slN appearing in Lemma 1.9 is equal to zero. We only have to consider
the case in which r0 has a period, i.e., r0(v + p) = r0(v) for some p ∈ C∗. By
Lemma 1.10, it remains to check that the equation

[r0(v), b⊗ 1 + 1 ⊗ b + va⊗ 1] = 0

on a, b ∈ slN implies that a = 0. From the periodicity of r0 we derive that

[r0(v), a⊗ 1] = 0.

By the nondegeneracy of r0, it follows that a = 0. 	


2 Solutions of the AYBE Associated with Simple
Vector Bundles on Degenerations of Elliptic Curves

Now let us review how solutions of the AYBE arise from geometric structures
on elliptic curves and their degenerations. Let X be a nodal projective curve
over C of arithmetic genus 1 such that the dualizing sheaf on X is isomorphic
to OX . Let us fix such an isomorphism. Recall that a vector bundle V on X
is called simple if End(V ) = C. The following result follows from Theorems 1
and 4 of [7].
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Theorem 2.1. Let V1, V2 be a pair of simple vector bundles on X such that
Hom0(V1, V2) = Ext1(V1, V2) = 0. Let y1, y2 be a pair of distinct smooth points
of X. Consider the tensor

rV1,V2
y1,y2

∈ Hom(V ∗
1,y1

, V ∗
2,y1

) ⊗ Hom(V ∗
2,y2

, V ∗
1,y2

)

corresponding to the following composition:

Hom(V1,y1 , V2,y1)
Res−1

y1−−−−→ Hom(V1, V2(y1))
evy2−−−→ Hom(V1,y2 , V2,y2),

where Vi,y denotes the fiber of Vi at a point y ∈ X, the map

Resy : Hom(V1, V2(y))→̃Hom(V1,y, V2,y)

is obtained by taking the residue at y, and the map evy is the evaluation at
y. Then for a triple of simple bundles (V1, V2, V3) such that each pair satisfies
the above assumptions and for a triple of distinct points (y1, y2, y3) one has

(

rV3V2
y1y2

)12 (

rV1V3
y1y3

)13 − (

rV1V3
y2y3

)23 (

rV1V2
y1y2

)12
+

(

rV1V2
y1y3

)13 (

rV2V3
y2y3

)23
= 0 (19)

in Hom(V ∗
1,y1

, V ∗
2,y1

) ⊗ Hom(V ∗
2,y2

, V ∗
3,y2

) ⊗ Hom(V ∗
3,y3

, V ∗
1,y3

). In addition the
following unitarity condition holds:

(rV1V2
y1y2

)21 = −rV2V1
y2y1

. (20)

Remark 2.2. The tensor rV1,V2
y1,y2

in the above theorem is a certain triple
Massey product in the derived category of X , and the equation (19) follows
from the appropriate A∞-axiom (see [7]).

We are going to apply the above theorem for bundles Vi of the form Vi =
V ⊗ Li, where V is a fixed simple vector bundle of rank N on X and Li are
line bundles in Pic0(X), the neutral component of Pic(X). Also, we let points
yi vary in a connected component X0 of X . Uniformizations of X0 ∩ Xreg

and of Pic0(X) allow to describe Vi’s and yi’s by complex parameters. Thus,
using trivializations of the bundles V ∗

i,yj
we can view the tensor rV1,V2

y1,y2
in the

above theorem as a function of complex variables r(u1, u2; v1, v2) ∈ A ⊗ A,
where A = Mat(N,C), ui describes Vi, vj describes yj . Note that equation
(19) reduces to the AYBE in the case when r depends only on the differences
of variables, i.e., r(u1, u2; v1, v2) = r(u1 − u2, v1 − v2).

A different choice of trivializations of V ∗
i,yi

would lead to the tensor
r̃(u1, u2, v1, v2) given by

r̃(u1, u2; v1, v2)=(ϕ(u2, v1)⊗ϕ(u1, v2))r(u1, u2; v1, v2)(ϕ(u1, v1)⊗ϕ(u2, v2))−1

where ϕ(u, v) is a function with values in GLN (C). We say that tensor func-
tions r̃ and r related in this way are equivalent. Note that the condition
for functions to depend only on the differences u1 − u2 and v1 − v2 is not
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preserved under these equivalences in general. However, if (a, b) is a pair
of commuting infinitesimal symmetries of r(u1 − u2, v1 − v2) then taking
ϕ(u, v) = exp(ua + vb) we do get a tensor function r̃ that depends only on
the differences, namely,

r̃(u, v) = exp[u(1 ⊗ a) + v(b ⊗ 1)]r(u, v) exp[−u(a⊗ 1) − v(b⊗ 1)]

(this kind of equivalence shows up in Theorem 0.2(ii)).
Since we are interested in trigonometric solutions, we will be using the

multiplicative variables xi = exp(ui), yi = exp(vi). The solutions of (19)
that we are going to construct in the next section will be equivalent to those
depending only on the differences u1 − u2, v1 − v2. It will be convenient for
us also to work with the intermediate form of the AYBE

r12((x′)−1; y1, y2)r13(xx′; y1, y3) − r23(xx′; y2, y3)r12(x; y1, y2)+
r13(x; y1, y3)r23(x′; y2, y3) = 0 (21)

for the tensor r(x; y1, y2) ∈ A ⊗ A, obtained from (19) in the case when
r(x1, x2; y1, y2) = r(x1/x2; y1, y2). The corresponding unitarity condition has
form

r21(x; y1, y2) = −r(x−1; y2, y1). (22)

3 Simple Vector Bundles on Cycles of Projective Lines

Let X = X0∪X1∪· · ·∪Xn−1 be the union of n copies of P
1’s glued (transver-

sally) in a configuration of type ˜An−1, so that the point ∞ on Xj is identified
with the point 0 on Xj+1 for j = 0, . . . , n − 1 (where we identify indices
with elements of Z/nZ). A vector bundle V of rank N on X is given by a
collection of vector bundles Vj of rank N on Xj along with isomorphisms
(Vj)∞ � (Vj+1)0. Since every vector bundle on P

1 splits into a direct sum of
line bundles, we can assume that

Vj = OP1(mj
1) ⊕ · · · ⊕ OP1(mj

N )

for every j = 0, . . . , n−1. Thus, the splitting types are described by the N×n
matrix of integers (mj

i ).
Let (z0 : z1) denote the homogeneous coordinates on P1. We will use the

standard trivialization of the fiber of OP1(1) at 0 = (1 : 0) ∈ P1 (resp.,
at ∞) given by the generating section z0 (resp., z1). Note that a section
s ∈ OP1(1) is uniquely determined by its values s(0) and s(∞) (namely, s =
s(0)z0 + s(∞)z1).

Let us fix a splitting type matrix m = (mj
i ). For every λ ∈ C

∗ we define
the rank-N bundle V λ = V λ(m) on X by using standard trivializations of
Vj = ⊕n

i=1O(mj
i ) at 0 and ∞ and setting the transition isomorphisms (Vj)∞ �

(Vj+1)0 to be identical for j = 0, . . . , n− 2, and the last transition map to be

λC−1 : (V0)0 → (Vn−1)∞,
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where C is the cyclic permutation matrix Cei = ei−1, where we identify the
set of indices with Z/NZ. Note that in this definition only the cyclic order
on the indices {1, . . . , N} is used. In particular, if we cyclically permute the
rows of the matrix (mj

i ) (by replacing mj
i with mj

i+1), then we get the same
vector bundle.

Lemma 3.1 below provides a criterion for simplicity of V λ(m). This result
is well known (see [4], Theorem 5.3). For completeness we include the proof.
It is also known that every simple vector bundle on X is isomorphic to some
V λ(m) (see [4]). It will be convenient to extend the N ×n matrix (mj

i ) to the
matrix with columns numbered by j ∈ Z using the rule mj+n

i = mj
i−1.

Lemma 3.1. The vector bundle V λ(m) is simple iff the following two condi-
tions are satisfied:
(a) the differences mj

i −mj
i′ for i, i′ ∈ Z/NZ take values only {−1, 0, 1};

(b) for every i, i′ ∈ Z/NZ, i �= i′, the nN -periodic infinite sequence

(mj
i −mj

i′), j ∈ Z,

is not identically 0, and the occurrences of 1 and −1 in it alternate.
Furthermore, if (a) and (b) hold then V λ1(m) � V λ2(m) iff (λ1/λ2)N = 1.

Proof. First, we observe that if mj
i − mj

i′ = 2 then there exists a nonzero
morphism OP1(mj

i′) → OP1(mj
i ) vanishing at 0 and ∞. Viewing it as an

endomorphism of Vj , we obtain a nonscalar endomorphism of V λ. Hence, the
condition (a) is necessary. From now on let us assume that (a) is satisfied.

A morphism V λ1 → V λ2 is given by a collection of morphisms Aj : Vj →
Vj , j = 0, . . . , n− 1, such that Aj(∞) = Aj+1(0) for j = 0, . . . , n− 2 and

A0(0) =
λ1

λ2
CAn−1(∞)C−1.

We can write these maps as matrices Aj = (aj
ii′ )1≤i,i′≤N , where aj

ii′ ∈
H0(P1,O(mj

i−mj
i′)). Let us allow the index j to take all integer values by using

the rule aj+n
ii′ = aj

i−1,i′−1. Note that we still have aj
ii′ ∈ H0(P1,O(mj

i −mj
i′))

because of our convention on mj
i for j ∈ Z. Then the equations on (Aj) can

be rewritten as
aj

ii′(0) = xδ(j)aj−1
ii′ (∞) (23)

for all i, i′ ∈ Z/NZ and j ∈ Z, where x = λ1/λ2, and δ(j) = 1 for j ≡ 0(n),
δ(j) = 0 otherwise. Due to condition (a) we have the following possibilities
for each aj

ii′ :

(i) if mj
i < mj

i′ then aj
ii′ = 0;

(ii) if mj
i = mj

i′ then aj
ii′ is a constant, so aj

ii′(0) = aj
ii′ (∞);

(iii) if mj
i > mj

i′ then aj
ii′ is a section of O(1), so it is uniquely determined

by its values at 0 and ∞, and these values can be arbitrary.
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From this we can immediately derive that (b) is necessary for V λ to be
simple. Indeed, if for some i �= i′ we have mj

i = mj
i′ for all j ∈ Z, then

we can get a solution of (23) with x = 1 by setting aj
i+k,i′+k = 1 for all

j, k ∈ Z and letting the remaining entries be zero. This would give a nonscalar
endomorphism of V λ. Similarly, if for some i �= i′ and some segment [j, k] ⊂ Z

we have

(mj
i −mj

i′ ,m
j+1
i −mj+1

i′ , . . . ,mk
i −mk

i′) = (1, 0, . . . , 0, 1),

then we get a solution of (23) with x = 1 by setting

aj
ii′ = z1, a

j+1
ii′ = 1, . . . , ak−1

ii′ = 1, ak
ii′ = z0

and letting the remaining entries be zero.
Conversely, assume (a) and (b) hold. Then one can easily derive that V λ is

simple by analyzing the system (23) (with x = 1). Indeed, let us show first that
aj

ii′ = 0 for i �= i′. It follows from (b) that in the case mj
i = mj

i′ we can either
find a segment [j1, j] ⊂ Z such that mk

i = mk
i′ for j1 < k < j and mk

j1 < mk
j1 ,

or a segment [j, j2] ⊂ Z such that mk
i = mk

i′ for j < k < j2 and mk
j2 < mk

j2 .
In either case, applying iteratively (23), we derive that aj

ii′ = 0 (recall that in
this case aj

ii′ is a constant). In the case mj
i > mj

i′ we can find both segments
[j1, j] and [j, j2] as above, so that (23) implies that aj

ii′ (0) = aj
ii′(∞) = 0.

Hence, aj
ii′ = 0. The remaining part of the system (23) shows that all aj

ii are
equal to the same constant, i.e., V λ has no nonscalar endomorphisms.

The above argument also shows that a morphism (aj
ii′ ) : V λ1(m) →

V λ2(m) has aj
ii′ = 0 (assuming conditions (a) and (b) hold), while the re-

maining components aj
ii ∈ C satisfy the equations

aj
ii = xδ(j)aj−1

ii , aj+n
ii = aj

i−1,i−1,

where x = λ1/λ2. This system has a nonzero solution iff xN = 1, in which
case the solution gives an isomorphism V λ1(m) � V λ2(m). 	


4 Computation of the Associative r-Matrix
Arising as a Massey Product

Henceforward, we always assume that the matrix (mj
i ) satisfies the conditions

of Lemma 3.1. Given a pair of parameters λ1, λ2 ∈ C∗ and a pair of points
y, y′ ∈ X0 \ {0,∞}, we want to describe explicitly the maps

Resy : Hom(V λ1 , V λ2(y)) → Hom(V λ1
y , V λ2

y ),

evy′ : Hom(V λ1 , V λ2(y)) → Hom(V λ1
y′ , V

λ2
y′ ),
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and especially the composition evy′ ◦Res−1
y (for generic λ1, λ2). We will iden-

tify the target spaces of both maps with N × N matrices using trivializa-
tions of the relevant line bundles over y induced by the appropriate power of
z0 ∈ H0(P1,O(1)). We also use the global 1-form trivializing ωX that restricts
to dz/z on each P

1 \ {0,∞} (where z = z1/z0).
A morphism V λ1 → V λ2(y) is given by a collection of morphisms

A0 : V0 → V0(y), A1 : V1 → V1, . . . , An−1 : Vn−1 → Vn−1

with same equations as before. Writing these maps as matrices, we can
view Hom(V λ1 , V λ2(y)) as the space of solutions of (23), where aj

ii′ ∈
H0(P1,O(mj

i − mj
i′)) for j �≡ 0(n) and aj

ii′ ∈ H0(P1,O(mj
i − mj

i′)(y)) for
j ≡ 0(n).

Since the component X0 plays a special role, we will use a shorthand
notation mi := m0

i , aii′ := a0
ii′ . Let us also set bii′ = Resy(aii′ ). Recall that

for every pair i, i′ ∈ Z/NZ we have the following three possibilities:

(i) If mi < mi′ then we have aii′ = ybii′
z1−yz0

, so that

aii′ (0) = −bii′ , aii′(∞) = ybii′ . (24)

(ii) If mi = mi′ then aii′ = aii′ (∞)z−aii′ (0)y
z−y (where z = z1/z0), so we get the

relation
aii′(∞) − aii′ (0) = bii′ . (25)

(iii) If mi > mi′ then aii′ is uniquely determined by aii′ (0), aii′ (∞), and bii′ .
Namely, one can easily check that

aii′ =
z(bii′ + aii′(0) − yaii′(∞)) − yaii′(0)

z − y
· z0 +

zaii′(∞)
z − y

· z1.

Note that in the above three cases we also have the following expressions
for aii′ (y′):

aii′(y′) =

⎧

⎪

⎨

⎪

⎩

ybii′
y′−y , mi < mi′ ,
y′bii′
y′−y + aii′(0) = ybii′

y′−y + aii′ (∞), mi = mi′ ,
y′bii′
y′−y

+ aii′(0) + y′aii′(∞), mi > mi′ .

(26)

To compute evy′ ◦Res−1
y means to express all the entries aii′(y′) in terms

of (bii′ ). The above formula gives such an expression in the case mi < mi′ ; in
the case mi = mi′ we need to know either aii′ (0) or aii′(∞); and in the case
mi > mi′ we need to know both. Of course, in the last two cases one has to
use equations (23). Then condition (b) of Lemma 3.1 will guarantee that we
get a closed formula for aii′(y′) in terms of all the entries bii′ . To organize the
computation it is convenient to use the complete order on the set of indices
{1, . . . , N} given by
(�) i ≺ i′ if either mi < mi′ or mi = mi′ and the first nonzero term in the
sequence (mj

i −mj
i′), j = 0, 1, . . ., is negative.
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The fact that this is a complete order follows immediately from condition
(b) of Lemma 3.1. We will write (ii′) > 0 if i ≺ i′ and (ii′) < 0 if i � i′. We
will also use the notation −(i, i′) = (i′, i).

Let us define a partially defined operation on pairs of distinct indices in
Z/NZ by setting

τ(ii′) = (i− 1, i′ − 1) if (i− 1) ≺ (i′ − 1) and mj
i = mj

i′ for 0 < j < n.

Note that τ is one-to-one. We denote by τ−1 the (partially defined) inverse and
by τk the iterated maps. Condition (b) of Lemma 3.1 implies that for every
pair of distinct indices (ii′) there exists k > 0 such that τk is not defined
on (ii′).

Case 1. Assume that i ≺ i′, i.e., (ii′) > 0. Then either mi < mi′ , or there
exists j > 0 such that mj′

i = mj′
i′ for 0 ≤ j′ < j and mj

i < mj
i′ . In the first

case we can use formula (26). In the second case we have aj′
ii′ = const for

0 < j′ < j, j �≡ 0(n), while aj
ii′ = 0. Therefore, using (23) and (25) iteratively

we get the following expression for aii′ (∞):

− aii′(∞) =
∑

k≥1

x−kbτk(ii′), (27)

where the summation is only over a finite number of k’s for which τk(ii′) is
defined. This gives the formula

aii′ (y′) =
ybii′

y′ − y
−

∑

k≥1

x−kbτk(ii′) if (ii′) > 0, (28)

which works also for the case mi < mi′ (since in this case τ is not defined
on (ii′)).
Case 2. Assume that i � i′, i.e., (ii′) < 0. Then either mi > mi′ , or there
exists j < 0 such that mj′

i = mj′
i′ for j < j′ ≤ 0 and mj

i < mj
i′ . Assume first

that mi > mi′ . Note that in this case there still exists j < 0 with the above
property and in addition there is k > 0 such that mj′

i = mj′
i′ for 0 ≤ j′ < k

and mk
i < mk

i′ (by condition (b) of Lemma 3.1). Using equations (23) and
(25) we derive that (27) still holds and also we have

aii′(0) =
∑

k≥1

yε(στ−kσ(ii′))xkbστ−kσ(ii′), (29)

where σ is the transposition σ(i, i′) = (i′, i), the summation is only over
those k for which τ−kσ(ii′) is defined, ε(ii′) = 1 for (ii′) > 0, and ε(ii′) = 0
otherwise. This gives

aii′ (y′) =
y′bii′
y′ − y

+
∑

k≥1

yε(στ−kσ(ii′))xkbστ−kσ(ii′)−y′
∑

k≥1

x−kbτk(ii′) if (ii′)<0.

(30)
We observe that this formula still works in the case mi = mi′ (the second
summation becomes empty in this case).
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Case 3. Assume that i = i′. In this case we have relations

aii(0) = xai+1,i+1(0) + xbi+1,i+1

for all i ∈ Z/NZ. Solving this linear system for aii(0), we get

aii(0) = (1 − xN )−1
N

∑

k=1

xkbi+k,i+k.

Finally, we derive

aii(y′) =
y

y′ − y
bii + (1 − xN )−1

N−1
∑

k=0

xkbi+k,i+k. (31)

Formulas (28), (30), and (31) completely determine the map evy′ ◦Res−1
y ,

so we can compute the associative r-matrix corresponding to the family of
simple vector bundles V λ on X :

r(x; y, y′) = rconst(x, y/y′)

+
∑

α>0,k≥1

[−x−ke−τk(α) ⊗ eα + yε(−τ−k(α))xkeτ−k(α) ⊗ e−α

− y′x−ke−τk(−α) ⊗ e−α],

where

rconst(x, z) =
z

1 − z

∑

α>0
e−α ⊗ eα +

1
1 − z

∑

α>0
eα ⊗ e−α

+
z

1 − z

∑

i
eii⊗eii + (1 − xN )−1

∑

i

∑N−1

k=0
xkei+k,i+k ⊗ eii.

(32)

In these formulas i is an element of Z/NZ, and α denotes a pair of distinct
indices in Z/NZ. By a simple rearrangement of terms we can rewrite r(x; y, y′)
in the following way:

r(x; y, y′) = rconst(x, y/y′)

+
∑

α>0,k≥1
[xkeα ⊗ e−τk(α) − x−ke−τk(α) ⊗ eα

+ yxke−α ⊗ e−τk(−α) − y′x−ke−τk(−α) ⊗ e−α]. (33)

Recall that this is a solution of (21) with the unitarity condition (22).

Example 4.1. Assume that n > N and the only nonzero entries of (mj
i )

are mN
1 = mN−1

2 = · · · = m1
N−1 = 1. Then the domain of definition

of τ is empty, so in this case we have r(x; y, y′) = rconst(x, y/y′). Hence,
rconst(exp(u), exp(v)) is a solution of the AYBE.
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Later we will show that r(exp(u); exp(v1), exp(v2)) is equivalent to an
r-matrix depending only on the difference v1 − v2 (see Lemma 6.1), so that it
gives a solution of the AYBE.

5 Associative Belavin–Drinfeld Triples Associated
with Simple Vector Bundles

The right-hand side of (33) depends only on the parameters x, y, y′ and on a
certain combinatorial structure on the set S = {1, . . . , N}. We are going to
show that this structure consists of an associative BD-structure as defined in
the introduction together with a compatible complete order (see below). Later
we will show that one can get rid of the dependence on a complete order by
passing to an equivalent r-matrix (see Lemma 6.1). However, for purposes of
studying splitting types of simple vector bundles on cycles of projective lines
the full combinatorial structure described below may be useful.

Definition 5.1. We say that a complete order on a set S is compatible with
the cyclic order given by a cyclic permutation C0 (or simply compatible with
C0) if C0 takes every non-maximal element to the next element in this order.
In other words, if we identify S with the segment of integers [1, N ] preserving
the complete order, then C0(i) = i+ 1 (where the indices are identified with
Z/NZ). In this case we set α0 = (smax, smin) ∈ ΓC0 , where smin (resp., smax)
is the minimal (resp., maximal) element of S. A choice of a complete order
on S compatible with C0 is equivalent to a choice of an element α0 ∈ ΓC0 .
By an associative BD-structure on a completely ordered set S we mean an
associative BD-structure (C0, C, Γ1, Γ2) on S such that the complete order is
compatible with C0.

Note that a choice of an associative BD-structure on the completely or-
dered set [1, N ] such that α0 �∈ Γ1 and α0 �∈ Γ2, is equivalent to a choice of
a Belavin–Drinfeld triple in AN−1 equipped with an associative structure as
defined in [8].

We will need the following characterization of associative BD-structures
on completely ordered sets such that α0 �∈ Γ2.

Lemma 5.2. Let (S,<) be a completely ordered finite set equipped with a
transitive cyclic permutation C : S → S. Then to give an associative BD-
structure on S with α0 �∈ Γ2 is equivalent to giving a pair of subsets P1 and
P2 in the set of pairs of distinct elements of S such that (C × C)(P1) = P2

and the following properties are satisfied:

(a) For every (s, s′) ∈ P2 one has s < s′.
(b) Assume that s < s′ < s′′. If (s, s′′) ∈ P1 then (s, s′), (s′, s′′) ∈ P1. The
same property holds for P2. Also, if (s′, s) ∈ P1 then (s′, s′′), (s′′, s) ∈ P1

(resp., if (s′′, s′) ∈ P1 then (s′′, s), (s, s′) ∈ P1).

The proof is left for the reader. Let us observe only that property (b)
ensures that Pι is determined by Γι = Pι ∩ ΓC0 , where ι = 1, 2.
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Now let us check that in the setting of Section 4 we do get a completely
ordered set with an associative BD-structure.

Lemma 5.3. Let (mj
i ) be a N × n matrix satisfying the conditions of

Lemma 3.1. Equip the set S = {1, . . . , N} with the complete order ≺ given by
(�) and the cyclic permutation C(i) = i− 1. Also, let

P1 = {(ii′) | mj
i = mj

i′ for 0 < j < n and C(i) ≺ C(i′)}.

Then these data define an associative BD-structure with α0 �∈ Γ2.

Proof. We use Lemma 5.2. The only question is why property (b) holds. Let
i ≺ i′ ≺ i′′.

Assume first that (i, i′′) ∈ P2. Then mj
i+1 = mj

i′′+1 for j ∈ [1, n − 1].
Suppose there exists j ∈ [1, n − 1] such that mj

i+1 �= mj
i′+1. Consider the

maximal such j. We have eithermj
i+1 < mj

i′+1 ormj
i′+1 < mj

i′′+1. By condition
(b) of Lemma 3.1, the former assumption contradicts i ≺ i′, while the latter
contradicts i′ ≺ i′′. Hence, mj

i+1 = mj
i′+1 = mj

i′′+1 for all j ∈ [1, n − 1], so
that (i, i′), (i′, i′′) ∈ P2.

Assume that (i, i′′) ∈ P1. Then mj
i = mj

i′′ for j ∈ [1, n− 1]. Furthermore,
since i ≺ i′′ and i − 1 ≺ i′′ − 1, we should have m0

i = m0
i′′ (by condition

(b) of Lemma 3.1). Suppose there exists j ∈ [0, n − 1] such that mj
i �= mj

i′ .
Consider the minimal such j. We have either mj

i > mj
i′ or mj

i′ > mj
i′′ . But

the former contradicts i ≺ i′, and the latter contradicts i′ ≺ i′′. Therefore,
mj

i = mj
i′ = mj

i′′ for all j ∈ [0, n− 1], so that (i, i′), (i′, i′′) ∈ P1.
Finally, assume that (i′, i) ∈ P1 (resp., (i′′, i′) ∈ P1). Then mj

i = mj
i′

(resp., mj
i′ = mj

i′′) for j ∈ [1, n− 1]. Also, since i′ � i and i′− 1 ≺ i− 1 (resp.,
i′′ � i′ and i′′ − 1 ≺ i′ − 1), we necessarily have m0

i < m0
i′ (resp., m0

i′ < m0
i′′).

Hence, m0
i′ = m0

i′′ (resp., m0
i = m0

i′). Suppose there exists j ∈ [1, n− 1] such
that mj

i′ �= mj
i′′ (resp., mj

i �= mj
i′). Consider the minimal such j. Since i′ ≺ i′′

(resp., i ≺ i′), we have mj
i = mj

i′ < mj
i′′ (resp., mj

i < mj
i′ = mj

i′′). But
this contradicts condition (b) of Lemma 3.1 (applied to i and i′′). Therefore,
mj

i = mj
i′ = mj

i′′ for all j ∈ [1, n − 1]. Since m0
i′ = m0

i′′ (resp., m0
i = m0

i′),
we have i′ − 1 ≺ i′′ − 1 (resp., i − 1 ≺ i′ − 1), and hence (i′, i′′) ∈ P1 (resp.,
(i, i′) ∈ P1). Also, i′′ − 1 ≺ i − 1 (by condition (b) of Lemma 3.1), so that
(i′′, i) ∈ P1. 	


We will need below the following two operations on associative BD-
structures.

Definition 5.4. For an associative BD-structure (C0, C, Γ1, Γ2) on a finite set
S we define
(i) the opposite associative BD-structure to be (C−1

0 , C, σ(Γ1), σ(Γ2)), where
σ is the permutation of factors in S × S (note that σ(ΓC0) = ΓC−1

0
);

(ii) the inverse associative BD-structure to be (C0, C
−1, Γ2, Γ1).
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Note that under passing to the opposite associative BD-structure each set
Pι, ι = 1, 2, gets replaced with σ(Pι).

Theorem 5.5. An associative BD-structure on a completely ordered finite set
S is obtained by the construction of Lemma 5.3 from some matrix (mj

i ) (sat-
isfying the conditions of Lemma 3.1) iff α0 �∈ Γ2 and C = Ck

0 for some k ∈ Z

(relatively prime to N = |S|).
Proof. “Only if.” Let us denote by ti =

∑n−1
j=0 m

j
i , i = 1, . . . , N , the sums of

entries in the rows of the matrix (mj
i ). Then we claim that for i ≺ i′ one has

ti − ti′ =

{

−1, if i− 1 � i′ − 1,
0, otherwise.

(34)

Indeed, assume first that mj
i = mj

i′ for all j ∈ [0, n−1]. Then i−1 ≺ i′−1 and
ti = ti′ , so the above equation holds. Next, assume that mj

i �= mj
i′ for some

j ∈ [0, n− 1]. Then the first nonzero term in the sequence (mj
i −mj

i′)j∈[0,n−1]

is −1. Since −1’s and 1’s in this sequence alternate, we have ti− ti′ = 0 (resp.,
ti − ti′ = −1) iff the last nonzero term in the sequence (mj

i − mj
i′)j∈[0,n−1]

is 1 (resp., −1). But this happens precisely when the first nonzero term in
(mj

i−1 −mj
i′−1)j≥0 is −1 (resp., 1), so (34) follows.

Now assume that i ≺ i′ ≺ i′′. Then it follows from (34) that either C(i) ≺
C(i′) ≺ C(i′′) or C(i′) ≺ C(i′′) ≺ C(i) or C(i′′) ≺ C(i) ≺ C(i′). Since this
holds for every triple (i, i′, i′′), it is easy to deduce that C = Ck

0 for some
k ∈ Z.

“If.” First, note that the construction of the associative BD-structure on a
completely ordered set S given in Lemma 5.3 can be rewritten as follows.
Assume we are given a transitive cyclic permutation C of S and a matrix
(mj

s), where j ∈ [0, n], s ∈ S. Then we can extend the range of the index j to
Z using the rule mj+n

s = mj
C(s). Assuming that condition (b) of Lemma 3.1

holds for this extended matrix, we can proceed to define the complete order
by (�) and the set P1 as in Lemma 5.3. Of course, we can always identify S
with {1, . . . , N} in such a way that C(i) = i− 1, so that we get to the setup
of Lemma 5.3. The advantage of the new point of view is that we can also
consider the set S = {1, . . . , N} with the cyclic permutation C(i) = i − k,
where k ∈ Z/NZ is relatively prime to N . Then as was noted above, we have to
modify the definition of the extended matrix by using the rule mj+n

i = mj
i−k.

Note that changing (mj
i ) to (−mj

i ) changes the associative BD-structure
on S to the opposite BD-structure, and the complete order on S gets reversed.
Let us denote by w0 : S → S the permutation that reverses the order. Assume
that we have C = Ck

0 . Then conjugating by w0 the BD-structure associated
with (−mj

i ) we get a BD-structure that is obtained from the original one by
leaving the complete order the same, changing C = Ck

0 to C−k
0 , and replacing

P1 with (w0 × w0)σ(P1). Therefore, it is enough to show that Lemma 5.3
produces all associative BD-structures with C = C−k

0 , where N/2 ≤ k < N .
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Next, we describe a construction of a class of matrices (mj
i ) satisfying the

conditions of Lemma 3.1. Fix k, relatively prime to N , such that N/2 ≤ k <
N . Start with a sequence (a1, . . . , aN ) such that a1 = 1, aN = n − 1 (where
n > 1), and for every i ∈ [1, N − 1] one has either ai+1 = ai or ai+1 = ai + 1.
Then set m0

i = 1 for i ∈ [k + 1, N ], mai

k+1−i = 1 for i = 1, . . . , N , and let
the remaining entries be zero. We are going to check that this matrix satisfies
the conditions of Lemma 3.1 (with the modified definition of the extended
matrix).

It is convenient to extend the range of the index i to Z by the rule mj
i =

mj
i+N , so that we get a matrix (mj

i ) with rows and columns numbered by Z.
Let us consider the subset Λ ⊂ [k + 1 −N,N ] × [0, n− 1] defined by

Λ = ([k + 1, N ]× {0}) ∪ {(k + 1 − i, ai) | i = 1, . . . , N}.

Then we have

{(i, j) ∈ Z × Z | mj
i �= 0} = ∪a∈ZΛa, where

Λ0 = ∪b∈Z(Λ+ b(2N − k, n)), Λa = Λ0 + a(N, 0).

Note that each Λa intersects each row once, and if we denote by (i, ja(i)))
the intersection point of Λa with the ith row, then either ja(i− 1) = ja(i) or
ja(i − 1) = ja(i) + 1. In other words, as we go down one row, the point of
intersection either stays in the same column or moves one step to the right.
It follows that the intersection of Λa with each column is a line segment.
Moreover, it is easy to see that the number of elements in this intersection
is at most N . Indeed, for columns corresponding to j ≡ 0(n) the intersection
segment has N − k elements. On the other hand, for j �≡ 0(n) this number is
equal to the number of i ∈ [1, N ] such that j ≡ ai(n), so it is at most N . This
implies that Λa and Λa′ are disjoint for a �= a′. Hence, ja(i) < ja+1(i) for all
a ∈ Z and i ∈ Z.

Let us set Ei = {ja(i) | a ∈ Z} for every i ∈ Z. We have to check that
for every pair of rows, the ith and the i′th, where i < i′ < i + N , one has
Ei �= Ei′ , and the subsets Ei \ Ei′ and Ei′ \ Ei in Z alternate.

To prove that Ei �= Ei′ we recall that by the construction, for every b ∈ Z

the intersection of Λ0 with the bnth column is the segment [k+1+ b(2N−k),
N + b(2N − k)]. The intersections of other sets Λa with the same column are
obtained from the above segment by shifts in NZ. Since 2N − k is relatively
prime to N , it follows that for appropriate b ∈ Z the intersection of ∪aΛa

with the bnth column contains exactly one of the numbers i and i′. Hence, bn
belongs to exactly one of the sets Ei and Ei′ .

Finally, we have to prove that subsets Ei \ Ei′ and Ei′ \ Ei alternate.
Note that for all a we have ja(i′) ≤ ja(i). Hence, our assertion will follow
once we check that for every a ∈ Z one has ja(i) ≤ ja+1(i′). Suppose we
have ja+1(i′) < ja(i). Then the intersection of Λa+1 with the ja(i)th column
is a segment [i1, i2], where i < i1 ≤ i2 < i′. Since Λa+1 = Λa + (N, 0),
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the intersection of Λa with the ja(i)th column is [i1 − N, i2 − N ]. Hence,
i ≤ i2 −N < i′ −N , which contradicts our assumptions on i and i′.

Now given a BD-structure on a set S = {1, . . . , N} with the complete
order 1 < 2 < · · · < N and the cyclic permutation C = C−k

0 (where N/2 ≤
k < N) we define the sequence (a1, . . . , aN) as follows. Set a1 = 1, and for
i = 1, . . . , N − 1 set

ai+1 =

{

ai if αk−i ∈ Γ1,

ai + 1 otherwise

where αj = (j, j + 1) (this uniquely defines n). It is easy to check that the
corresponding matrix (mj

i ) realizes our BD-structure. 	


6 Solutions of the AYBE and Associative BD-Structures

Let (S,<,C, Γ1, Γ2) be a completely ordered finite set with an associative
BD-structure such that α0 �∈ Γ2. As in the introduction, for an element α =
(i, j) ∈ S×S we set eα = eij ∈ AS � MatN (C) (where N = |S|, the rows and
columns are numbered by S). We write (i, j) > 0 (resp., (i, j) < 0) if i < j
(resp., i > j). Also, for α = (i, j) we set −α = (j, i). Mimicking formulas (32)
and (33) we define

rconst(x, z) =
z

1 − z

∑

α>0
e−α ⊗ eα +

1
1 − z

∑

α>0
eα ⊗ e−α

+
z

1 − z

∑

i∈S
eii ⊗ eii

+ (1 − xN )−1
∑

i∈S

∑N−1

k=0
xkei,i ⊗ eCk(i),Ck(i), (35)

r(x; y, y′) = rconst(x, y/y′)

+
∑

α>0,k≥1
[xkeα ⊗ e−τk(α) − x−ke−τk(α) ⊗ eα]

+
∑

α<0,k≥1
[yxkeα ⊗ e−τk(α) − y′x−ke−τk(α) ⊗ eα]. (36)

In the last formula we use the operation τ defined on P1 ⊂ S×S; the summa-
tion is extended only over those (k, α) for which τk(α) is defined. Below we
will show that r(x; y, y′) is a solution of (21) (see Theorem 6.2). To deduce
from this Theorem 0.2(i) we will use the following simple observation.

Lemma 6.1. In the above situation the AS ⊗AS-valued function

−r
(

exp
(

u1 − u2

N

)

; exp(v1), exp(v2)
)

is equivalent to the one given in Theorem 0.2(i) for the inverse associative
BD-structure (C0, C

−1, Γ2, Γ1), where u = u1 − u2 and v = v1 − v2.
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Proof. We can assume that S = [1, N ] (the segment of natural numbers) with
the standard order. Let us set

ϕ(v)ej = exp
(

− jv
N

)

ej .

Then the corresponding equivalent matrix r̃(u1, u2; v1, v2) is obtained from
r(exp(u1−u2

N ); exp(v1), exp(v2)) by multiplying each term eij ⊗ ej′i′ by
exp( (j−i)v1−(j′−i′)v2

N
). Now we observe that rconst(x, y/y′) is a linear com-

bination of eij ⊗ ej′i′ , where j − i = j′ − i′. Such a term gets multiplied by
exp( (j−i)(v1−v2)

N ). The same is true about the terms in r(x; y, y′) not containing
y or y′. Indeed, if i < j and τk is defined on (i, j) then Ck(j)−Ck(i) = j−i. On
the other hand, the terms involving y = exp(v1) and y′ = exp(v2) are linear
combinations of ei,j ⊗ej′,i′ , where j′− i′ = j− i+N . Indeed, this follows from
the fact that if i > j and τk is defined on (i, j) then Ck(j)−Ck(i) = j− i+N
(the proof reduces to the case (i, j) = (N, 1)). The only other observation we
use to rewrite −r̃ in the form given in Theorem 0.2(i) (with C replaced by C−1

and Γ1 and Γ2 exchanged) is that for 0 < m < N and for i, j ∈ [1, N ] we have
j − i ≡ m(N) iff either i < j and j = i+m, or i > j and j = i+m−N . 	


Since for every associative BD-structure on a finite set S we can choose a
compatible complete order in such a way that α0 �∈ Γ2, Theorem 0.2(i) will
follow easily from the above lemma and the next result.

Theorem 6.2. Let (S,<,C, Γ1, Γ2) be a completely ordered finite set with an
associative BD-structure such that α0 �∈ Γ2. Then the function r(x; y, y′) given
by (36) is a solution of (21) satisfying the unitarity condition (22).

Remark 6.3. By Theorem 5.5 we already know the statement to be true if
C = Ck

0 . Also, the work [8] deals with the case in which in addition, α0 �∈ Γ1

(this fact will be used below).

The rest of this section will be occupied with the proof of Theorem 6.2 (in
the end we will also explain how to deduce Theorem 0.2(i)).

Let us denote by P =
∑

i,j eij ⊗ eji the permutation tensor. Then we can
rewrite our r-matrix in the form

r(x; y, y′) = a(x) + yb(x) − y′c(x) +
y

y′ − y
P,

where

a(x) = (1 − xN )−1
∑

i∈S

N−1
∑

k=0

xkei,i ⊗ eCk(i),Ck(i) +
∑

α>0

eα ⊗ e−α

+
∑

α>0,k≥1

[xkeα ⊗ e−τk(α) − x−ke−τk(α) ⊗ eα],
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b(x) =
∑

α<0,k≥1

xkeα ⊗ e−τk(α),

c(x) = b21(x−1) =
∑

α<0,k≥1

x−ke−τk(α) ⊗ eα.

Lemma 6.4. Assume that α0 �∈ Γ2. Let us set Γ ′
1 = Γ1 \ {α0}, Γ ′

2 = τ(Γ ′
1).

Then
a(x) +

y

y′ − y
P

is exactly the r-matrix corresponding to the associative BD-structure
(S ,< ,C , Γ ′

1).

Proof. It is easy to see that P ′
1 = {α ∈ P1 | α > 0}. Thus, the terms b(x) and

c(x) in the r-matrix associated with the new associative BD-structure vanish.
We claim that the term a(x) for the new associative BD-structure is the same
as for the old one. Indeed, it is enough to check that α ∈ P ′

1 is in the domain
of definition of τk iff it is in the domain of (τ ′)k, where τ ′ : P ′

1 → P ′
2 is the

bijection induced by τ . But this follows immediately from the fact that P2

consists only of α > 0 (due to the assumption that α0 �∈ Γ2). 	

Let us denote by AYBE[r](x, x′; y1, y2, y3) the left-hand side of (21).

Lemma 6.5. Consider the r-matrix of the form

r(x; y1, y2) = a(x) + y1b(x) − y2c(x) +
y1

y2 − y1
P, (37)

where a21(x−1)+a(x) = P and b21(x−1) = c(x). Then r satisfies the unitarity
condition (22). Also, AYBE[r] = 0 iff the following equations are satisfied:

(i) AYBE[a] = 0;
(ii) b12(x)b13(x′) = 0;
(iii) b13(x)b23(x′) = b21(x′)b13(xx′) + b23(xx′)b12(x);
(iv) c13(x)a23(x′) + a12((x′)−1)c13(xx′) = c23(xx′)a12(x) − a13(x)c23(x′).

Proof. The unitarity condition follows immediately from our assumptions on
a(x), b(x), and c(x). It is easy to check that

AYBE[a(x) + y1b(x) − y2c(x) +
y1

y2 − y1
P ](x, x′; y1, y2, y3)

= AYBE[a(x) + y1b(x) − y2c(x)](x, x′; y1, y2, y3)
−y1c21(x′)P 13 − y2c

13(x)P 23 − y1b
23(xx′)P 12.

Now the conditions (i)–(iv) are obtained by equating to zero coefficients with
various monomials in y1, y2, and y3 (of degree ≤ 2). Namely, (i) is obtained
by looking at the constant term (i.e., by substituting yi = 0). Conditions (ii),
(iii), and (iv) are obtained by looking at the coefficients with y2

1 , y1y2, and y3,
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respectively. To see that these conditions imply AYBE[r] = 0 we can use the
identity

AYBE[r](x, x′; y2, y3, y1)231 = AYBE[r]((xx′)−1, x; y1, y2, y3),

which holds for any r satisfying the unitarity condition (22). 	

Let us introduce the following notation. For every k ≥ 1 we denote by

P (k) ⊂ P1 the domain of definition of τk and by P (k)+ ⊂ P (k) (resp.,
P (k)− ⊂ P (k)) the set of all α > 0 (resp., α < 0) contained in P (k). Note
that P (1) = P1. The assumption α0 �∈ Γ2 implies that τ(P (k)) ⊂ P (k − 1)+.
Using this notation we can rewrite our formulas for a(x), b(x), and c(x) as
follows:

a(x) = (1 − xr)−1
∑

0≤k<r,i

xkei,i ⊗ eCk(i),Ck(i) +
∑

i<j

ei,j ⊗ ej,i

+
∑

(i,j)∈P (k)+

[xkei,j ⊗ eCk(j),Ck(i) − x−keCk(j),Ck(i) ⊗ ei,j ],

b(x) =
∑

k≥1,(i,j)∈P (k)−
xkei,j ⊗ eCk(j),Ck(i),

c(x) =
∑

k≥1,(i,j)∈P (k)−
x−keCk(j),Ck(i) ⊗ ei,j .

The following two combinatorial observations are also going to be useful
in the proof.

Lemma 6.6. Let (i1, i2, i3) be a triple of elements of S and let k ≥ 1. Then
the following two conditions are equivalent:

(a) (i1, i3) ∈ P (k)− and i1 < i2 (resp., i2 < i3);
(b) (i1, i2) ∈ P (k)+ and (i2, i3) ∈ P (k)− (resp., (i1, i2) ∈ P (k)− and (i2, i3) ∈

P (k)+).

The proof is straightforward and is left to the reader.

Lemma 6.7. Let k ≥ 1. Then for every (i1, i2) ∈ P (k)− one has a decompo-
sition S = S1 
 S2, where

S1 = {i | i < i1, C
k(i) > Ck(i1)}, S2 = {i | i > i2, C

k(i) < Ck(i2)}.
Proof. We can assume that S = [1, N ] with the standard order. Note that the
map Ck restricts to a bijection

[i1, N ] 
 [1, i2]→̃[Ck(i1), Ck(i2)].

Passing to the complements, we derive that the open segment (i2, i1) is the
disjoint union of its intersections with S1 and S2. Next, if i ≤ i2 then (i1, i) ∈
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P (k)− (by Lemma 6.6), so that Ck(i1) < Ck(i). Hence, [1, i2] ⊂ S1 \ S2.
Similarly, [i1, N ] ⊂ S2 \ S1. 	

Proof of Theorem 6.2. Let us check that equations (i)–(iv) of Lemma 6.5 hold
in our case. Equation (i) follows from Lemma 6.4 and Theorem 3.4 of [8]. More
precisely, one can easily check that in the case when α0 �∈ Γ1 and α0 �∈ Γ2,
our r-matrix coincides with the associative r-matrix constructed in [8] for the
opposite associative BD-structure on S. Equation (ii) follows from the fact
that for any (i, j), (i′, j′) ∈ P (1)− one has i′ > j and i > j′ (otherwise we
would have Γ1 = ΓS). To check equation (iii) we write

b13(x)b23(x′) =
∑

k≥1,m≥1;(i,j)∈P (k)−,

(i′,j′)∈P (m)− ; Ck(i) = Cm(j′)

xk(x′)mei,j ⊗ ei′,j′ ⊗ eCk(j),Cm(i′).

Note that we cannot have k = m, since this would imply that i = j′, contra-
dicting the assumption that (i, j) ∈ P (k)− ⊂ P (1)− and (i′, j′) ∈ P (m)− ⊂
P (1)−. Hence, we can split the summation into two parts: one with k > m
and one with k < m. Denoting k −m (resp., m − k) by l in the first (resp.,
second) case, we can rewrite these sums as

Σ1 =
∑

l≥1,m≥1;(i,j)∈P (m+l)−,

(i′,Cl(i))∈P (m)−

xl(xx′)mei,j ⊗ ei′,Cl(i) ⊗ eCm+l(j),Cm(i′),

Σ2 =
∑

l ≥ 1, m ≥ 1; (i′, j′) ∈ P (m + l)−,

(Cl(j′), j) ∈ P (m)−

(xx′)m(x′)leCl(j′),j⊗ei′,j′⊗eCm(j),Cm+l(i′).

On the other hand, we have

b23(xx′)b12(x) =
∑

l≥1,m≥1;(i,j)∈P (l)−,

(i′,Cl(j))∈P (m)−

xl(xx′)mei,j ⊗ ei′,Cl(i) ⊗ eCm+l(j),Cm(i′).

We claim that this is equal to Σ1. Indeed, the condition (i, j) ∈ P (m + l)−

is equivalent to the conjuction of (i, j) ∈ P (l)− and (Cl(i), Cl(j)) ∈ P (m)+.
Now our claim follows from Lemma 6.6 applied to the triple (i′, Cl(i), Cl(j))
(recall that Cl(i) < Cl(j), since (i, j) ∈ P (l)). Similarly, we check that
b21(x′)b13(xx′) = Σ2, which finishes the proof of equation (iii).

Finally, let us verify equation (iv). We can split both terms in the left-
hand side of this equation into four sums according to the four pieces that
constitute a(x):

c13(x)a23(x′) = L1+L2+L3−L4, a12((x′)−1)c13(xx′) = −L5+L6+L7−L8,

where

L1 = (1 − (x′)N )−1

×
∑

0≤m<N,k≥1;(i,j)∈P (k)−
x−k(x′)meCk(j),Ck(i) ⊗ eCN−m(j),CN−m(j) ⊗ ei,j ,

L2 =
∑

m≥1;i<j,(i′ ,j)∈P (m)−
x−meCm(j),Cm(i′) ⊗ ei,j ⊗ ei′,i,
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L3 =
∑

k≥1,m≥1;(i,j)∈P (k)+,

(i′,Ck(j))∈P (m)−

x−m(x′)keCk+m(j),Cm(i′) ⊗ ei,j ⊗ ei′,Ck(i),

L4 =
∑

k≥1,m≥1;(i,i′)∈P (m)−,

(i′,j)∈P (k)+

x−m(x′)−keCm(i′),Cm(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j ,

L5 = (1 − (x′)N )−1

×
∑

0≤m<N,k≥1;

(i,j)∈P (k)−

(x′)N−m(xx′)−keCk(j),Ck(i) ⊗ eCk+m(j),Ck+m(j) ⊗ ei,j ,

L6 =
∑

k≥1,(i,j)∈P (k)−,i′<Ck(j)
(xx′)−kei′,Ck(i) ⊗ eCk(j),i′ ⊗ ei,j ,

L7 =
∑

k≥1,m≥1;(i,j)∈P (k)− ,

(i′,Ck(j))∈P (m)+

(x′)−m(xx′)−kei′,Ck(i) ⊗ eCk+m(j),Cm(i′) ⊗ ei,j ,

L8 =
∑

k≥1,m≥1;(i,j)∈P (k)−,

(i′,j′)∈P (m)+,Cm(i′)=Ck(j)

(x′)m(xx′)−keCm(j′),Ck(i) ⊗ ei′,j′ ⊗ ei,j .

We split each of the sums L4 and L8 into three parts according to the ranges
of summation k = m, k > m, and k < m (in the last two cases we make
substitutions k �→ k +m and m �→ k +m, respectively):

L4 = L4,1 + L4,2 + L4,3, L8 = L8,1 + L8,2 + L8,3,

where

L4,1 =
∑

k≥1,(i,j)∈P (k)−,i′<j
(xx′)−keCk(i′),Ck(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j ,

L4,2 =
∑

k≥1,m≥1;(i,i′)∈P (m)−,

(i′,j)∈P (k+m)+

x−m(x′)−k−meCm(i′),Cm(i)⊗eCk+m(j),Ck+m(i′)⊗ei,j ,

L4,3 =
∑

k≥1,m≥1;(i,i′)∈P (k+m)−,

(i′,j)∈P (k)+

x−k−m(x′)−keCk+m(i′),Ck+m(i)⊗eCk(j),Ck(i′)⊗ei,j ,

L8,1 =
∑

k≥1,(i,j′)∈P (k)−,j<j′
x−keCk(j′),Ck(i) ⊗ ej,j′ ⊗ ei,j ,

L8,2 =
∑

k≥1,m≥1;(i,j)∈P (k+m)−,

(Ck(j),j′)∈P (m)+

x−k−m(x′)−keCm(j′),Ck+m(i) ⊗ eCk(j),j′ ⊗ ei,j ,

L8,3 =
∑

k≥1,m≥1;(i,Cm(i′))∈P (k)−,

(i′,j′)∈P (k+m)+

x−k(x′)meCk+m(j′),Ck(i) ⊗ ei′,j′ ⊗ ei,Cm(i′).

Making appropriate substitutions of the summation variables and using
Lemma 6.6, one can easily check that

L2 = L8,1, L3 = L8,3.
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It follows that the left-hand side of (iv) is equal to

(L1 − L5) + (L6 − L4,1) + (L7 − L4,2) − (L4,3 + L8,2).

Next, making the substitution m �→ N − k −m in the sum L5, we obtain

L1 − L5 = −
∑

0<m<k,(i,j)∈P (k)−
x−k(x′)−meCk(j),Ck(i) ⊗ eCm(j),Cm(j) ⊗ ei,j .

Also, substituting i′ by Ck(i′) in L6, switching k and m in L4,2, and using
Lemma 6.6, we find that

L6 − L4,1 =
∑

k≥1,(i,j)∈P (k)− ,

i′>j,Ck(i′)<Ck(j)

(xx′)−keCk(i′),Ck(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j ,

L7 − L4,2 =
∑

k≥1,m≥1,(i,j)∈P (k)−,

(Ck(i′),Ck(j))∈P (m)+,i′>j

x−k(x′)−k−meCk(i′),Ck(i) ⊗ eCk+m(j),Ck+m(i′) ⊗ ei,j .

Finally, we can rewrite the sum of the other remaining terms as follows:

L1 − L5 − L4,3 − L8,2 =

−
∑

k≥1,m≥1,(i,i′,j)∈Π(k,m)
x−k−m(x′)−keCk+m(i′),Ck+m(i)⊗eCk(j),Ck(i′)⊗ei,j,

where Π(k,m) is the subset of {(i, i′, j) | (i, j) ∈ P (k)−, (Ck(i), Ck(i′)) ∈
P (m)+} consisting of (i, i′, j) such that either i′ ≤ j or Ck(j) < Ck(i′). It
follows from Lemma 6.7 that

Π(k,m) = {(i, i′, j) | (i, j) ∈ P (k)−, (Ck(i), Ck(i′)) ∈ P (m)+, i′ < i}.
We deal similarly with the right-hand side of equation (iv). Namely, we

write

c23(xx′)a12(x) = R1 +R2 +R3 −R4, a13(x)c23(x′) = R5 +R6 +R7 −R8,

where the parts correspond to the summands in a(x). We also have a decom-
position R3 = R3,1 +R3,2 +R3,3 (resp., R8 = R8,1 +R8,2 +R8,3) obtained by
collecting terms with xk(xx′)−m (resp., x−k(x′)−m) with k = m, k > m and
k < m. Now one can easily check that

R6 = R3,1, R7 = R3,2.

Also, we have

R1 −R5 =
∑

m≥1,0<k≤m;

(i,j)∈P (m)−

x−k(x′)−meCk(i),Ck(i) ⊗ eCm(j),Cm(i) ⊗ ei,j.
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We denote by (R1 − R5)k=m and by (R1 − R5)k<m parts of this sum
corresponding to the ranges k = m and k < m. Then we have

(R1 −R5)k=m +R2 +R8,1

=
∑

k≥1,(i,j)∈P (k)− ,

i≤i′ or Ck(i′)<Ck(i)

(xx′)−keCk(i′),Ck(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j .

Using Lemma 6.7 it is easy to see that the condition on (i, j, i′) in this sum-
mation can be replaced by the conjunction of (i, j) ∈ P (k)−, j < i′, and
Ck(i′) < Ck(j) (same as in the formula for L6 − L4,1). Finally, we have

R8,2 − R4 =

−
∑

k≥1,m≥1,(i,j)∈P (m)−,

j′<i,(Cm(i),Cm(j′))∈P (k)+

x−k−m(x′)−meCk+m(j′),Ck+m(i) ⊗ eCm(j),Cm(j′)⊗ei,j ,

(R1 −R5)k<m +R3,3 +R8,3 =
∑

k≥1,m≥1,(i,j′,j)∈Π′(k,m)
x−k(x′)−k−meCk(j′),Ck(i)⊗eCk+m(j),Ck+m(j′)⊗ei,j,

where Π ′(k,m) is the subset of {(i, j′, j) | (i, j) ∈ P (k)−, (Ck(j′), Ck(j)) ∈
P (m)+} consisting of (i, j′, j) such that either i ≤ j′ or Ck(j′) < Ck(i). By
Lemma 6.7, we get

Π ′(k,m) = {(i, j′, j) | (i, j) ∈ P (k)−, (Ck(j′), Ck(j)) ∈ P (m)+, j < j′}.

Now it is easy to see that parts of the left-hand side and the right-hand side
of equation (iv) match as follows:

L6 − L4,1 = (R1 −R5)k=m +R2 +R8,1,

L7 − L4,2 = (R1 −R5)k<m +R3,3 +R8,3,

L1 − L5 − L4,3 − L8,2 = R8,2 −R4.

	

Proof of Theorem 0.2(i). As was already observed, the fact that r(u, v) is a
unitary solution of the AYBE follows from Lemma 6.1 and Theorem 6.2. It
follows from Theorem 1.5 that r(u, v) also satisfies the QYBE for fixed u.
It remains to check the unitarity condition for the quantum R-matrix given
by (6). In view of the unitarity of r(u, v), this boils down to proving the
identity

s(u, v) =
(

[

exp
(v

2

)

− exp
(

−v
2

)]−2

−
[

exp
(u

2

)

− exp
(

−u
2

)]−2
)

· 1 ⊗ 1.

(38)
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To this end we observe that from Theorem 1.5 and Lemma 1.9 we know that

s(u, v) = (f(u) + g(v)) · 1 ⊗ 1,

where f(u) = 1
N trμ(∂r(u,0)

∂u ) and g(v) = − 1
N (tr⊗ tr)(dr0(v)

dv ). Now (38) follows
immediately from the equalities

f(u) =
d

du

(

1
exp(u) − 1

)

= −
[

exp
(u

2

)

− exp
(

−u
2

)]−2

,

g(v) =
d

dv

(

1
exp(−v) − 1

)

=
[

exp
(v

2

)

− exp
(

−v
2

)]−2

.

	


Remark 6.8. The following interesting observation is due to T. Schedler.
Assume that Γ1 does not contain two consecutive elements of ΓC0 , say,
(C−1

0 (i0), i0) and (i0, C0(i0)). Then the function r(u, v) given by Theorem
0.2(i) is equivalent to a function of the form 1⊗1

exp(u)−1 + r(v). Indeed, let us
denote by O(i0, i) the minimal k ≥ 0 such that Ck(i0) = i. Then one can
easily check that

a =
∑

i

O(i0, i)
N

eii

is an infinitesimal symmetry of r(u, v) and

exp[u(1 ⊗ a)]r(u, v) exp[−u(a⊗ 1)] =
1 ⊗ 1

exp(u) − 1
+ r(v),

where r(v) depends only on v. Note that the fact that r(u, v) is a unitary
solution of the AYBE is equivalent to the following equations on r(v):

AYBE[r](v, v′) = r13(v + v′), r21(−v) + r(v) = 1 ⊗ 1.

7 Meromorphic Continuation

As was shown in the proof of Theorem 6 of [7] (see also Lemma 4.14 of [8]),
a unitary solution of the AYBE with the Laurent expansion (5) at u = 0
is uniquely determined by r0(v). Therefore, it is not surprising that some
of the results from [3] about solutions of the CYBE (such as meromorphic
continuation) can be extended to solutions of the AYBE.

First, we apply the above uniqueness principle to infinitesimal symmetries.

Lemma 7.1. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion (5) at u = 0. Then the algebras of infinitesimal
symmetries of r(u, v) and of r0(v) are the same (and are contained in the
algebra of infinitesimal symmetries of r0). If in addition r0 has a period, then
these coincide with the commutative algebra of infinitesimal symmetries of r0.
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Proof. Let a ∈ A be an infinitesimal symmetry of r0(v). Then for any t ∈ C

the function

exp[t(a⊗ 1 + 1 ⊗ a)]r(u, v) exp[−t(a⊗ 1 + 1 ⊗ a)]

is a solution of the AYBE with the same r0-term in the Laurent expansion at
u = 0. By the uniqueness mentioned above this implies that exp[t(a⊗1+1⊗a)]
commutes with r(u, v), so a is an infinitesimal symmetry of r(u, v). Recall that
by Theorem 1.5(i), r0(v) is nondegenerate. It is easy to see that if r0 is either
elliptic or trigonometric then the algebra of infinitesimal symmetries of r0 is
commutative. Indeed, in the elliptic case this algebra is trivial (see Lemma
5.1 of [7]). In the trigonometric case this follows from the fact proven in [3]
that there exists a pole γ of r0 such that

r0(v + γ) = (φ⊗ id)(r0(v)),

where φ is a Coxeter automorphism of slN . Thus, any infinitesimal symmetry
is contained in the commutative algebra of φ-invariant elements. 	


Proposition 7.2. Assume N > 1. Let r(u, v) be a nondegenerate unitary so-
lution of the AYBE with the Laurent expansion (5) at u = 0 such that the
equivalent conditions of Theorem 1.5(ii) hold. Then r(u, v) admits a mero-
morphic continuation to D × C, where D is a neighborhood of 0 in C. If
r(u, v) has a pole at v = γ then this pole is simple and r0(v) also has a pole
at v = γ.

Proof. Note that r0(v) has a meromorphic continuation to C with at most
simple poles by Theorem 1.1 of [3]. First, we want to deduce a meromorphic
continuation for r0(v). From the condition (c) in Theorem 1.5(ii) we know
that

r0(v) = r0(v) + b⊗ 1 − 1 ⊗ b+ h(v) · 1 ⊗ 1, (39)

where b is an infinitesimal symmetry of r0(v) (by Lemma 1.10). Note that
b is also an infinitesimal symmetry of r0(v). Hence, by Lemma 7.1, b is an
infinitesimal symmetry of r(u, v). Applying the equivalence transformation

r(u, v) �→ exp[u(1 ⊗ b)]r(u, v) exp[−u(b⊗ 1)],

we can assume that b = 0. In this case we have

AYBE[r0](v12, v23) − AYBE[r0](v12, v23)
≡ [h(v13) − h(v23)]r120 (v12) + c.p.(1, 2, 3) mod (C · 1 ⊗ 1 ⊗ 1),

where we use the notation from the proof of Theorem 1.5 (the omitted terms
are obtained by cyclically permuting (1, 2, 3); we set vij = vi − vj). Applying
pr⊗ pr⊗ id and using (18), we obtain
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[h(v + v′) − h(v′)]r120 (v) = [(pr⊗ pr)r1(v)]12 − (pr⊗ pr⊗ id)AYBE[r0](v, v′).
(40)

Note that AYBE[r0](v, v′) is meromorphic on all of C × C and has at most
simple poles at v = γ, v′ = γ, and v + v′ = γ, where γ is a pole of r0(v).
Also, by Lemma 1.7, r1(v) is holomorphic near v = 0. Choose a small disk D
around zero such that r1(v) is holomorphic in D and r0(v) has no poles or
zeros in D \ {0}. Assume that we already have a meromorphic continuation
of h(z) to some open subset U ⊂ C containing zero. Then the above formula
gives a meromorphic continuation of h(z) to U +D. Iterating this process, we
continue h(z) meromorphically to the entire complex plane. Furthermore, it
is clear from (40) that h(v) has only simple poles and is holomorphic outside
the set of poles of r0(v). Therefore, the same is true for r0(v).

Next, considering the constant terms of the Laurent expansions of the
AYBE in u′ (keeping u fixed), we get

r120 (v12)r13(u, v13)+r13(u, v13)r230 (v23)−r23(u, v23)r12(u, v12) =
∂r13

∂u
(u, v13).

(41)
Since we already know that r0(v) is meromorphic on all of C, we can use this
equation to get a meromorphic continuation of r(u, v). Indeed, assume that
r(u, v) is meromorphic in D ×D for some open disk D ⊂ C around zero. For
fixed v13 ∈ D the above equation gives a meromorphic extension of

r23(u, v21 + v13)r21(−u, v21) = −r23(u, v23)r12(u, v12)
to D × C. By the nondegeneracy of r(u, v) this allows us to extend r(u, v)
meromorphically from D × U to D × (U +D). Iterating this process, we get
the required meromorphic extension. The assertion about poles follows easily
from (41) by fixing v13 such that r(u, v) has no pole at v = v13 and r(u, v13−γ)
is nondegenerate, and considering the polar parts at v12 = γ. 	


The argument in the following lemma is parallel to that in Proposition 4.3
of [3].

Lemma 7.3. With the same assumptions as in Proposition 7.2, for every pole
γ of r0(v) there exists an algebra automorphism φγ of A and a constant λ ∈ C

such that
r(u, v + γ) = exp(λu)(φγ ⊗ id)(r(u, v)).

Proof. From Proposition 7.2 we know that the pole of r(u, v) at v = γ is
simple. Set τ(u) = limv→γ(v− γ)r(u, v). Recall that limv→0 vr(u, v) = cP for
c ∈ C∗. Let us define an operator φ(u) ∈ End(A) by the equality

τ(u) = (φ(u) ⊗ id)(cP ).

Considering polar parts near v = γ in (1), we get

τ12(−u′)r13(u+ u′, v′ + γ) = r23(u+ u′, v′)τ12(u).
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The right-hand side can be rewritten as follows:

r23(u+ u′, v′)τ12(u)
= c(φ(u) ⊗ id⊗ id)(r23(u+ u′, v′)P 12)
= c(φ(u) ⊗ id⊗ id)(P 12r13(u+ u′, v′)).

Hence, we have

τ12(−u′)r13(u+ u′, v′ + γ) = c(φ(u) ⊗ id⊗ id)(P 12r13(u+ u′, v′)). (42)

Taking the residues at v′ = 0, we obtain

τ12(−u′)τ13(u+ u′) = c2(φ(u) ⊗ id⊗ id)(P 12P 13).

This means that φ(u) satisfies the identity

φ(u1 + u2)(XY ) = φ(u1)(X)φ(u2)(Y ),

where X,Y ∈ A. Let D be a small disk around zero in C such that φ(u) is
holomorphic on D \ {0}. For every u ∈ D \ {0} we denote by I(u) ⊂ A the
kernel of φ(u). Then from the above identity we derive that I(u)A ⊂ I(u+u′)
and AI(u) ⊂ I(u+u′) whenever u, u′, u+u′ ∈ D\{0}. In particular, we deduce
that I(u) ⊂ I(u + u′), so I(u) = I ⊂ A does not depend on u ∈ D \ {0}. It
follows that I is a two-sided ideal in A. Since φ(u) is not identically zero, we
derive that I = 0. Therefore, φ(u) is invertible for every u ∈ D \ {0}. Now as
in the proof of Lemma 1.3 we derive that

φ(u) = exp(λu)φγ

for some λ ∈ C, where φγ is an algebra automorphism of A. Applying φ−1
γ ⊗

id⊗ id to (42), we derive

exp(−λu′)P 12(φ−1
γ ⊗ id⊗ id)r13(u+ u′, v′ + γ) = exp(λu)P 12r13(u + u′, v′).

This implies the required identity. 	


Lemma 7.4. Keep the same assumptions as in Proposition 7.2. Assume that
r0(v+p) = r0(v) for some p ∈ C∗. Then r(u, v+p) = exp(λu)r(u, v) for some
constant λ ∈ C.

Proof. Consider the decomposition (39) again. The identity (40) implies that
h(v+v′)−h(v′) is periodic in v′ with the period p. Hence, h(v+p) = h(v)+λ
for some λ ∈ C. It follows that r0(v + p) = r0(v) + λ · 1 ⊗ 1. Applying the
rescaling r(u, v) �→ exp(−λuv)r(u, v), we can assume that r0(v + p) = r0(v).
Now Lemma 7.3 implies that r(u, v + p) = (φp ⊗ id)r(u, v), where φp is an
automorphism of A. Since r0(v) is nondegenerate (as follows from Lemma
1.7), we derive that φp = id. 	


We will use the following result in the proof of Theorem 0.3.
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Proposition 7.5. Assume N > 1. Let r(u, v) be a nondegenerate unitary
solution of the AYBE with the Laurent expansion at u = 0 of the form (5)
such that the equivalent conditions of Theorem 1.5(ii) hold. Then one has

r0(v) = r0(v) + b⊗ 1 + 1 ⊗ b+ h(v) · 1 ⊗ 1,
h(v) = λv + ch0(c′v),

where b ∈ slN is an infinitesimal symmetry of r0(v), λ ∈ C, c, c′ ∈ C
∗, and

h0(v) is one of the following three functions: Weierstrass zeta function ζ(v)
associated with a lattice in C; 1

2 coth(v
2 ); 1

v . Furthermore, if r0(v) is equivalent
to a rational solution of the CYBE then h0(v) = 1

v .

Proof. Equation (18) implies that

[r120 (v12) + r230 (v23) + r310 (v31)]2 = x12(v12) + x23(v23) + x31(v31), (43)

where x(v) = r0(v)2 − 2r1(v) (and vij = vi − vj). On the other hand, it
is easy to see that x(v) is the constant term of the Laurent expansion of
s(u, v) = r(u, v)r(−u, v) at u = 0. Rescaling r(u, v), we can assume that its
residue at v = 0 is equal to P (see Lemma 1.7). Then we have

s(u, v) = [f(u) + g(v)] · 1 ⊗ 1,

where

f(u) =
1
N

trμ
(

∂r(u, 0)
∂u

)

, g(v) = − 1
N

(tr⊗ tr)
(

dr0(v)
dv

)

(see Lemma 1.9). If we change r(u, v) to exp(λuv)r(u, v) for some
λ ∈ C, then f(u) changes to f(u) + Nλ (this operation also changes
r0(v) to r0(v) + λv · 1 ⊗ 1). Therefore, we can assume that f(u) has no
constant term in the Laurent expansion at u = 0. In this case we obtain
x(v) = g(v) · 1 ⊗ 1. Hence, setting

T (v1, v2, v3) = r120 (v12) + r230 (v23) + r310 (v31),

we can rewrite (43) as follows:

T (v1, v2, v3)2 = [g(v12) + g(v23) + g(v31)] · 1 ⊗ 1. (44)

Viewing T (v1, v2, v3) ∈ A⊗A⊗A as an endomorphism of V ⊗ V ⊗ V , where
A = End(V ), we obtain

T (v1, v2, v3) = T0(v1, v2, v3) + [h(v12) + h(v23) + h(v31)] · idV ⊗V ⊗V , (45)

where T0 is a traceless endomorphism and h(v) is defined from the decompo-
sition (39). Note also that for fixed (generic) v2 and v3 we have

lim
v1→v2

(v1 − v2)T (v1, v2, v3) = P 12.
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The latter operator has S2V ⊗V and
∧2 V ⊗V as eigenspaces. Therefore, for

v1 close to v2 we have a decomposition

V ⊗ V ⊗ V = W1 ⊕W2,

where dimW1 = N2(N + 1)/2, dimW2 = N2(N − 1)/2, and

(T (v1, v2, v3) − λ id)(W1) = 0, (T (v1, v2, v3) + λ id)(W2) = 0,

where
λ2 = g(v12) + g(v23) + g(v31).

Comparing the traces of both sides of (45), we derive

λ = N [h(v12) + h(v23) + h(v31)].

Since g(v) = −Nh′(v), we obtain

N [h(v12) + h(v23) + h(v31)]2 + h′(v12) + h′(v23) + h′(v31) = 0.

Replacing h(v) by h(Nv) we get

[h(v12) + h(v23) + h(v31)]2 + h′(v12) + h′(v23) + h′(v31) = 0. (46)

We are interested in solutions of this equation for an odd meromorphic func-
tion h(v) in a neighborhood of zero having a simple pole at v = 0. It is easy
to see that the Laurent expansion of h(v) at v = 0 should have the form
h(v) = 1/v + c3v

3 + · · · . As shown in the proof of Theorem 5 of [7], all such
solutions of (46) have the form c·h0(cv), where h0 is one of the three functions
described in the formulation.1

Finally, if r0(v) is rational, then its only pole is v = 0 (see [3]). Therefore,
by Proposition 7.2, r0(v) also cannot have poles outside zero, which implies
that h0(v) = 1

v
. 	


Remark 7.6. In the case when r0(v) is either elliptic or trigonometric, the
assertion of the above proposition can also be deduced from the explicit formu-
las for r(u, v) (the elliptic case is discussed in [7], Section 2; the trigonometric
case is considered in Theorem 0.2).

8 Classification of Trigonometric Solutions of the AYBE

Recall (see [3]) that to every nondegenerate trigonometric solution r0(v) of
the CYBE for slN with poles exactly at 2πiZ Belavin and Drinfeld associate
an automorphism of the Dynkin diagram AN−1 by considering the class of
the automorphism φ of slN defined by

r0(v + 2πi) = (φ⊗ id)(r0(v)). (47)

1Solutions of (46) were first described by L. Carlitz in [5].
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They also show that φ is a Coxeter automorphism. The next lemma shows
that in the case of trigonometric solutions coming from a solution of the AYBE
the automorphism of the Dynkin diagram is always trivial.

Lemma 8.1. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion (5) at u = 0. Assume that r0(v) is a trigonometric
solution of the CYBE with poles exactly at 2πiZ. Then the automorphism φ
in (47) is inner.

Proof. This follows immediately from Lemma 7.3, since every algebra auto-
morphism of A is inner. 	


Now let us recall the Belavin–Drinfeld classification of trigonometric solu-
tions of the CYBE for slN corresponding to the trivial automorphism of AN−1.
Let us denote by h0 ⊂ slN the subalgebra of traceless diagonal matrices. For
every Belavin–Drinfeld triple (Γ1, Γ2, τ) for ˜AN−1 we have the corresponding
series of solutions

r̄0(v) = t+
1

exp(v) − 1
(pr⊗ pr)

∑

0≤m<N,j−i≡m(N)
exp

(mv

N

)

eij ⊗ eji

+
∑

0<m<N,k≥1;j−i≡m(N),τk(i,j)=(i′,j′)
[exp

(

−mv
N

)

eji ⊗ ei′j′

− exp
(mv

N

)

ei′j′ ⊗ eji], (48)

where t ∈ h0 ⊗ h0 satisfies

t12 + t21 = (pr⊗ pr)P 0, (49)
[τ(α) ⊗ id + id⊗α]t = 0, α ∈ Γ1, (50)

where P 0 =
∑

i eii⊗eii. The result of Belavin and Drinfeld in [3] is that every
nondegenerate unitary trigonometric solution of the CYBE for slN that has
poles exactly at 2πiZ and the residue (pr⊗ pr)P at 0 is conjugate to

exp[v(b ⊗ 1)]r0(v) exp[−v(b⊗ 1)],

where r0(v) is one of the solutions of the form (48) and b ∈ slN is an infinites-
imal symmetry of r0.

It is easy to see that the solution of the CYBE for slN obtained from the
associative r-matrix in Theorem 0.2(i) for S = [1, N ] and C0(i) = i + 1 is
given by the above formula with

t =
1
2
(pr⊗ pr)P 0 + sC , (51)

where
sC =

∑

0<k<N,i

(
1
2
− k

N
)eii ⊗ eCk(i),Ck(i) ∈ h0 ∧ h0.
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The proof of the next result is almost identical to that of Lemmas 4.19 and
4.20 in [8]. Let us denote by ei : h → C the functional on diagonal matrices
given by ei(ejj) = δij .

Lemma 8.2. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion (5), such that r0(v) is given by (48). Then there
exists a unique transitive cyclic permutation C of [1, N ] such that (51) holds.
Furthermore, for any (i, i + 1) ∈ Γ1 with τ(i, i + 1) = (i′, i′ + 1) one has
C(i) = i′ and C(i+ 1) = i′ + 1 (i.e., τ is induced by C × C).

Proof. We will make use of the identity

(pr⊗ pr⊗ pr)(AYBE[r0]) = 0 (52)

that follows from Theorem 1.5. First, considering the projection of AYBE[r0]
to h ⊗ h ⊗ h we get

(pr⊗ pr⊗ pr)(AYBE[
1

exp(v) − 1
P 0 + t]) = 0.

Using the fact that t12 + t21 ≡ P 0 mod (C · 1 ⊗ 1) this can be rewritten as

(pr⊗ pr⊗ pr)(AYBE[t]) = 0.

Therefore, we have

[(ei − e1) ⊗ (ej − e1) ⊗ (ek − e1)](AYBE[t]) = 0 (53)

for all i, j, k. Set t =
∑

i,j tijeii⊗ejj . Note that tij+tji = 0 for i �= j and tii = 1
2

for all i. Let us set t′ij = tij − t1j − ti1. Then substituting tij = t′ij + t1j − t1i

into t and then into (53) we deduce that

t′ijt
′
ik − t′jkt

′
ij + t′ikt

′
jk =

1
4
, 1 < i, j, k ≤ N. (54)

As shown in the proof of Lemma 4.20 in [8], the above equation implies that
t′ij = ± 1

2 for 1 < i, j ≤ N , i �= j, and there is a unique complete order ≺ on
[2, N ] such that t′ij = 1

2 iff i ≺ j (for i, j ∈ [2, N ], i �= j). We define the cyclic
permutation C of [1, N ] by the condition that it sends each element of [2, N ]
to the next element with respect to this complete order. As in the proof of
Lemma 4.20 in [8] this easily implies that t− 1

2P
0 ≡ sC mod (C · 1 ⊗ 1).

Next, we want to check that τ is induced by C×C. Assume that τ(i, i+1) =
(j, j+1) and consider the coefficientAijk with ei+1,i⊗ej,j+1⊗ekk in AYBE[r0].
Let us denote by 〈elm ⊗ enp, r(v)〉 the coefficient with elm ⊗ enp in r(v). Then
we have

Aijk = 〈ei+1,i ⊗ ej,j+1, r(v12)〉〈eii ⊗ ekk, r(v13)〉
−〈ejj ⊗ ekk, r(v23)〉〈ei+1,i ⊗ ej,j+1, r(v12)〉
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+〈ei+1,i ⊗ ek,k+1, r(v13)〉〈ej,j+1 ⊗ ek+1,k, r(v23)〉. (55)

Note that we cannot have τn(j+1, j) = (i+1, i), since this would imply that
Γ1 (resp., Γ2) is the complement to (j, j + 1) (resp., (i, i + 1)), N is even,
j − i ≡ N/2(N), and τ(l, l + 1) = (l + N/2, l + 1 + N/2), in which case the
nilpotency condition is not satisfied. Therefore,

〈ei+1,i ⊗ ej,j+1, r(v)〉 = exp
(

− v

N

)

,

〈ej,j+1 ⊗ ei+1,i, r(v)〉 = − exp
( v

N

)

.

Next, we claim that the third summand in the right-hand side of (55) is zero
unless k = i or k = j. Indeed, τ (resp., τ−1) cannot be defined on both (k, k+1)
and (k + 1, k). This leaves only two possibilities with k �= i and k �= j: either
τn1(i, i+1) = (k, k+1) and τn2(k, k+1) = (j, j+1), or τn1 (j+1, j) = (k+1, k)
and τn2(k+ 1, k) = (i, i+ 1) (where n1, n2 > 0). The latter case is impossible
since j �= k. In the former case we derive that τn1+n2(i, i+1) = (j, j+1), which
contradicts our assumption that τ(i, i + 1) = (j, j + 1) (since n1 + n2 ≥ 2).
Thus, recalling that

〈ei+1,i ⊗ ei,i+1, r(v)〉 =
exp( (N−1)v

N )
exp(v) − 1

,

〈ej,j+1 ⊗ ej+1,j , r(v)〉 =
exp( v

N )
exp(v) − 1

,

we can rewrite (55) as follows:

Aijk = exp
(

−v12
N

)

[

tik − tjk +
δik

exp(v13) − 1
− δjk

exp(v23) − 1

]

−δik exp
(v23
N

) exp( (N−1)v13
N )

exp(v13) − 1
+ δjk exp(−v13

N
)

exp
(

v23
N

)

exp(v23) − 1
.

Hence,
exp

(v12
N

)

Aijk = tik − tjk − δik.

Since pr⊗ pr⊗ pr(AYBE[r0]) = 0, it follows that Aijk does not depend on k.
Therefore,

tik − tjk − δik = [(ei − ej) ⊗ ek]sC − 1
2
(ei + ej , ek)

does not depend on k (note that (ei, ej) = δij), i.e.,

[(ei − ej) ⊗ α]sC =
1
2
(ei + ej, α) (56)

for all roots α ∈ Γ . Repeating the above argument for the coefficient with
ej,j+1 ⊗ ei+1,i ⊗ ekk in AYBE[r0], we derive that
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[(ei+1 − ej+1) ⊗ α]sC =
1
2
(ei+1 + ej+1, α) (57)

for all α ∈ Γ . As shown in the proof of Lemma 4.20 in [8], (56) and (57) imply
that C(i) = j and C(i+ 1) = j + 1. 	


Lemma 8.3. Assume that N > 1. Then a nondegenerate unitary solution
r(u, v) of the AYBE with Laurent expansion at u = 0 of the form (5) such
that r0(v) ≡ r0(v) mod (C·1⊗1) is uniquely determined by r0, up to rescaling
r(u, v) �→ exp(λuv)r(u, v).

Proof. This follows from the proof of Theorem 6 in [7]: one has only to observe
that r0(v) is nondegenerate by Theorem 1.5(i), so it has rank > 2 generically.

	

Proof of Theorem 0.2(ii). Let r(u, v) be a nondegenerate unitary solution of
the AYBE with the Laurent expansion at u = 0 of the form (5) such that r0(v)
is trigonometric. Changing r(u, v) to cr(cu, c′v), we can assume that r0(v)
has poles exactly at 2πiZ and limv→0 vr0(v) = (pr⊗ pr)P . Recall that we are
allowed to change r(u, v) to an equivalent solution

r̃(u, v) = exp[u(1 ⊗ a) + v(b ⊗ 1)]r(u, v) exp[−u(a⊗ 1) − v(b ⊗ 1)],

where a and b are infinitesimal symmetries of r(u, v) (note that a and b al-
ways commute by Lemma 7.1). This operation changes r0(v) to an equiv-
alent solution in the sense of Belavin–Drinfeld [3] and also changes r0(v)
to r0(v) − a ⊗ 1 + 1 ⊗ a. Therefore, in view of Lemma 8.1 and of (39),
changing r(u, v) to an equivalent solution, we can achieve that r0(v) ≡ r0(v)
mod (C · 1 ⊗ 1) and r0(v) has the form (48). Note that in this case any in-
finitesimal symmetry of r0(v) is diagonal (since it has to commute with the
corresponding Coxeter automorphism φ from (47)). It remains to use Lemmas
8.2 and 8.3. 	

Proof of Theorem 0.3. Let r(v) be a nondegenerate unitary solution of the
AYBE, not depending on u. Then one can easily check that

r(u, v) =
1 ⊗ 1
u

+ r(v)

is also a nondegenerate unitary solution of the AYBE. By Lemma 1.4, r(u, v)
(and hence, r(v)) has a simple pole at v = 0 with residue cP , where c �= 0.
Now applying Lemma 1.9 we obtain

s(u, v) = −1 ⊗ 1
u2

+ g(v) · 1 ⊗ 1,

where g(v) = − c
N (tr⊗ tr)(dr(v)

dv ). Hence, by Theorem 1.5, r(u, v) is a solu-
tion of the QYBE and r(v) is a nondegenerate solution of the CYBE. It is
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easy to see that r(v) cannot be equivalent to an elliptic or a trigonomet-
ric solution. Indeed, if this were the case then r(u, v) would have a pole of
the form u = u0 with u0 �= 0 (in the elliptic case this follows from the ex-
plicit formulas for elliptic solutions in [7], Section 2; in the trigonometric
case this follows from Theorem 0.2(ii)). Now Proposition 7.5 gives the re-
quired decomposition of r(v). Therefore, g(v) = −c2/v2, which shows that
R(u, v) = (1/u+ c/v)−1r(u, v) satisfies unitarity condition (7). 	


Remark 8.4. The function of the form r(v) = P
v

+ r, where r ∈ A⊗ A does
not depend on v, is a unitary solution of the AYBE iff r is a skew-symmetric
constant solution of the AYBE for A = Mat(N,C). Some information about
such solutions can be found in [2], Section 2 (including the classification for
N = 2, see Ex. 2.8 of [2]).
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Linnik [Li] and later Selberg [Se] put forth far-reaching conjectures concerning
cancellations due to signs of Kloosterman sums. Both point to the connection
between this and the theory of modular forms. For example, the generalization
of their conjectures to sums over arithmetic progressions imples the general
Ramanujan conjectures for GL2/Q. Selberg exploited this connection to give
a nontrivial bound to his well-known “λ1 ≥ 1

4” conjecture. Later, Kuznetzov
[Ku] used his summation formula, which gives an explicit relation between
these sums and the spectrum of GL2/Q modular forms, to prove a partial
result to Linnik’s conjecture. Given that we now have rather strong bounds
to the Ramanaujan conjectures for GL2/Q [L-R-S], [Ki-Sh], [Ki-Sa], it seems
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The Kloosterman sum S(m,n; c), for c ≥ 1,m ≥ 1, and n �= 0, is defined by

S(m,n; c) =
∑

x mod c
xx̄ ≡ 1(c)

e

(
mx+ nx̄

c

)
(1)

(here e(z) = e2πiz).
It follows from Weil’s bound [Wei] for S(m,n; p), p prime, and elementary

considerations that

|S(m,n; c)| ≤ τ(c)(m,n, c)1/2
√
c, (2)

where τ(c) is the number of divisors of c. Linnik’s conjecture asserts that for
ε > 0 and x ≥√|n|,

∑

c ≤ x

S(1, n; c)
c

�
ε
xε. (3)

Note that from (2) we have that

∑

c ≤ x

|S(m,n; c)|
c

�
ε

√
x(x(m,n))ε. (4)

On the other hand, for m,n fixed, Michel [Mi] shows that

∑

c ≤ x

|S(m,n; c)|
c

�
ε
x

1
2−ε, (5)

and hence if (3) is true it represents full “square-root” cancellation due to the
signs of the Kloosterman sums.

Selberg puts forth a much stronger conjecture, which has been replicated
in many places and which reads

For x ≥ (m,n)1/2,
∑

c ≤ x

S(m,n; c)
c

�
ε
xε. (6)

As stated, this is false (see Section 2). It needs to be modified to incorporate an
“ε-safety valve” in all parameters and not only in x and (m,n). For example,
the following modification seems okay:

∑

c ≤ x

S(m,n; c)
c

�
ε

(|mn|x)ε . (7)

We call the range x ≥√|mn| the Linnik range and x ≤√|mn| the Selberg
range. Obtaining nontrivial bounds (i.e., a power saving beyond (4)) for the
sums (3) and (7) in the Selberg range is quite a bit more difficult.
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By a smooth dyadic sum of the type (7) we mean

∑

c

S(m,n; c)
c

F
( c
x

)
(8)

where F ∈ C∞
0 (R+) is of compact support and where the estimates for (8)

as x,m, n vary are allowed to depend on F . Summation by parts shows that
an estimate for the left-hand side of (7) will give a similar one for (8), but
not conversely. In particular, estimates for (7) imply bounds for nondyadic
sums

∑
x≤c≤x+h

S(m,n;c)
c with xβ ≤ h ≤ x and β < 1. We note that for

many applications, understanding smooth dyadic sums is good enough, and
in the Linnik range these smooth dyadic sums are directly connected to the
Ramanujan conjectures; see Deshouilliers and Iwaniec [D-I] and Iwaniec and
Kowalski [I-K pp. 415–418].

Let π ∼= ⊗vπv be an automorphic cuspidal representation of GL2(Q)\
GL2(A) with a unitary central character. Here v runs over all primes p and
∞. Let μ1(πv), μ2(πv) denote the Satake parameters of πv at an unramified
place v of π. We normalize as in [Sa] and use the results described there. For
0 ≤ θ < 1

2 we denote by Hθ the following hypothesis: for any π as above,

| (μj(πv))| ≤ θ, j = 1, 2 . (9)

Thus H0 is the Ramanujan–Selberg conjecture and Hθ is known for θ = 7
64

[Ki-Sa].
Concerning (7), the main result is still that of Kuznetzov [Ku], who using

his formula together with the elementary fact that λ1(SL2(Z)\H) ≥ 1
4 proved

the following theorem (the barrier 1
6

is discussed at the end of this paper):

Theorem 1 (Kuznetzov) Fix m and n. Then

∑

c ≤ x

S(m,n; c)
c

�
m,n

x1/6(log x)1/3 .

One can ask for similar bounds when c varies over an arithmetic progression.
For this one applies the Kuznetzov formula for Γ = Γ0(q) in place of SL2(Z)
(see [D-I]) or one can use the softer method in [G-S]. What is needed is the
v = ∞ version of Hθ with θ ≤ 1

6 . This was first established in [Ki-Sh] and
leads to the following result:

Theorem 1′. Fix m,n, q. Then

∑

c ≡ 0(q)
c ≤ x

S(m,n; c)
c

�
m,n,q

x
1
6 (log x)1/3 .

Consider now what happens if m and n are allowed to be large, as asked
by Linnik and Selberg. We examine the case q = 1; the general case with q
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also varying deserves a similar investigation. We also assume that mn > 0; the
mn < 0 case is similar except that some results such as Theorem4 are slightly
weaker, since when mn > 0 we can exploit H0, which is known for the Fourier
coefficients of holomorphic cusp forms [De]. The analogue of Theorem1 that
we seek is ∑

c≤x

S(m,n; c)
c

�
ε

(
x

1
6 + (mn)

1
6

)
(mnx)ε . (10)

As with Theorem1, we show below that the exponent 1
6 in the mn aspect

constitutes a natural barrier. We will establish (10) assuming the general
Ramanujan conjectures for GL2/Q (i.e., assuming H0), and unconditionally
we come close to proving it.

Theorem 2 Assuming Hθ we have

∑

c≤x

S(m,n; c)
c

�
ε

(
x

1
6 + (mn)

1
6 + (m+ n)1/8(mn)θ/2

)
(xmn)ε .

Corollary 3 Assuming H 1
12

(and a fortiori H0), (10) is true. Uncondition-
ally, Theorem 2 is true with θ = 7/64, and in particular, (10) is true if m and
n are close in the sense that n5/43 ≤ m ≤ n or m5/43 ≤ n ≤ m.

The proof of Theorem2 uses Kuznetzov’s formula to study the dyadic sums

∑

x≤c≤2x

S(m,n; c)
c

;

see Section 2. The dyadic pieces with x = (mn)1/3 or smaller are estimated
trivially using (2) and give the (mn)1/6 term in (10). For x ≤ (mn)1/3 we
don’t have any nontrivial bound for the sum even in smooth dyadic form.
Indeed, applying the Kuznetzov formula to such smooth sums in the range
x ≤ (mn)1/2−δ for some δ > 0, one finds that the main terms on the spectral
side localize in the transitional range for the Bessel functions of large order
and argument. The analysis becomes a delicate one with the Airy function.
In this mn > 0 case the main terms involve only Fourier coefficients of holo-
morphic modular forms. This indicates that one should be able to obtain the
result backward using the Petersson formula [I-K] together with the smooth
k-averaging technique [I-L-S, p. 102]. Indeed, this is so, and we give the details
of both methods in Section 2. Another bonus that comes from this holomor-
phic localization is that we can appeal to Deligne’s theorem, that is, H0, for
these forms.

Theorem 4 Fix F ∈ C∞
0 (0,∞) and δ > 0. For mn > 0 and x ≤ (mn)

1
2−δ,

∑

c

S(m,n; c)
c

F
( c
x

)
�
F,δ

√
mn

x
.
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The bound in Theorem4 is nontrivial only in the range x ≥ (mn)1/3. To
extend this to smaller x requires establishing cancellations in short spectral
sums for Fourier coefficients of modular forms (see equation (34)), which is
an interesting challenge. In any case, this analysis of the smooth dyadic sums
explains the (mn)1/6 barrier in (10).

2 Proofs

As we remarked at the beginning, the “randomness” in the signs of the Kloost-
erman sums in the form (7) implies the general Ramanujan conjectures for
GL2/Q. Since there seems to be no complete proof of this in the literature, we
give one here. For the archimedian q-aspect, that is, the λ1 ≥ 1/4 conjecture,
this follows from Selberg [Se], since his “zeta function” Z(m,n, s) has poles
with nonzero residues in (s) > 1

2
if there are exceptional eigenvalues (i.e.,

λ < 1/4). For the case of Fourier coefficients of holomorphic modular forms
the implication is derived in [Mu, pp. 240–242]. So we focus on the Fourier
coefficients of Maass forms and restrict to level q = 1 (the case of general q
is similar). We apply Kuznetzov’s formula with m = n for Γ = SL2(Z), see
[I-K, pp. 409] for the notation:

∞∑

j=1

|ρj(n)|2 h(tj)
cosh(πtj)

+
1
4π

∞∫

−∞
|τ(n, t)|2 h(t)

cosh(πt)
dt

= g0 +
∞∑

c=1

S(m,n; c)
c

g

(
4πn
c

)
. (11)

Here h is entire and decays faster than (1 + |t|)−2−δ, with δ > 0 as t→ ±∞,
and

g0 =
1
π2

∞∫

−∞
r h(r) tanh(πr) dr

and

g(x) =
2i
π

∞∫

−∞
J2ir (x)

r h(r)
cosh(πr)

dr .

We want to prove that for a fixed j = j0, we have

ρj0(n) = Oε (|n|ε) as |n| → ∞ . (12)

It is well known how to deduce the various forms of H0 for φj0 from (12). We
choose h with h(t) ≥ 0 for t ∈ R and h(tj0) ≥ 1 and such that g ∈ C∞(0,∞) is
rapidly decreasing at ∞ and g vanishes at x = 0 to order 1. Now let |n| → ∞
in (11). Since |τ(n, t)| = Oε(|n|ε), we have

|ρj0(n)|2 � |n|ε +

∣∣∣∣∣

∞∑

c=1

S(n, n; c)
c

g

(
4πn
c

)∣∣∣∣∣ .
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If we assume (7) then we can estimate the sum on c by summing by parts,
and we obtain the desired bound (12).

We turn next to (6) and show that as stated it is false. Let x be a large
integer. For each prime p in (x, 2x) there is an integer ap such that

S(1, ap; p)√
p

≥ 1
10
. (13)

This follows from the easily verified identities

1
p

∑

a(p)

S(1, a; p)√
p

= 0 ,

1
p

∑

a(p)

(
S(1, a; p)√

p

)2

= 1 − 1
p

. (14)

We note in passing that the asymptotics of any moment 1
p

∑
a

(
S(1,a;p)√

p

)m

,
in the limit as p→ ∞, have been determined by Katz [Ka], the mth moment
being that of the Sato–Tate measure. Now let n be an integer satisfying n ≡ 0
(mod (x!)2) and n ≡ ap(mod p) for x < p < 2x. Such an n can be chosen, since
(x!)2 and the p’s are all relatively prime to each other. For 0 < c ≤ x, n ≡ 0
(mod c), and hence S(1, n; c) = μ(c), the Möbius function. For x < c < 2x
and c not a prime, we have S(1, n; c) = S(1, n; c1c2) with 1 < c1, c2 < x.
Hence n ≡ 0(mod c) and S(1, n; c) = μ(c). It follows that

∑

c ≤ 2x

S(1, n; c)
c

=
∑

c ≤ x

μ(c)
c

+
∑

x < c ≤ 2x
c not prime

μ(c)
c

+
∑

x < p < 2x

S(1, ap; c)
c

≥ 1
10

∑

x < p < 2x

1√
p

+O(log x)

≥ x1/2

log x
+O(log x) .

(15)
Hence (6) is false.

Of course the n constructed above is very large, and the right-hand side
in (12) is certainly Oε(nε) for any ε > 0. Thus with the nε in (7) this is no
longer a counterexample.

We turn next to Theorem4, that is, the analysis of the smooth dyadic
sums in the Selberg range x ≤ (mn)1/3. We need Kuznetzov’s formula [I-K].
Let f ∈ C∞

0 (R+) and

Mf(t) =
πi

sinh(2πt)

∞∫

0

(J2it(x) − J−2it (x)) f(x)
dx

x
(16)
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and

Nf (k) =
4(k − 1)!
(4πi)k

∞∫

0

Jk−1 (x) f(x)
dx

x
. (17)

Let fj,k(z), j = 1, . . . ,dimSk(Γ ), be an orthonormal basis of Hecke eigenforms
for the space of holomorphic cusp forms of weight k for Γ = SL2(Z). Let
ψj,k(n) denote the corresponding Fourier coefficients normalized by

fj,k(z) =
∞∑

k=1

ψj,k(m)m
k−1
2 e(mz) . (18)

Let τ(m, t) be the nth Fourier coefficient of the unitary Eisenstein series
E(z, 1

2
+ it). Then for mn > 0,

∑

c

S(m,n; c)
c

f

(
4π

√
mn

c

)

=
∑

j

Mf(tj) ρj(m) ρj(n) +
1
4π

∞∫

−∞
Mf (t) τ̄ (m, t) τ(n, t) dt

+
∑

k≡0(2)

Nf (k)
∑

1≤j≤dim Sk(Γ )

ψj,k(m)ψj,k(n) . (19)

For (mn)δ ≤ Y ≤ (mn)1/2 we apply (19) with

fY (x) = f0

( x
Y

)
(20)

and f0 ∈ C∞
0 (R > 0) fixed. The left-hand side of the formula is

∑

c

S(m,n; c)
c

f0

(
4π

√
mn

cY

)
=
∑

c

S(m,n; c)
c

F0

( c
X

)
,

where F0(ξ) = f0(1/ξ) and X = 4π
√

mn
Y , which is what we are interested

in when Y is large. One can analyze NfY (t) and MfY (t) as Y −→ ∞ using
the known asymptotics of the Bessel functions Jit(x) and Jk−1(x) for x and t
large. Using repeated integrations by parts one can show that the main term
comes from the holomorphic forms only, with their contribution coming from
the transition range:

Jk(Y x) , with |Y x− k| � k1/3 . (21)

Using the approximations [Wa, p. 249] by the Airy function,

Jk(x) ∼ 1
π

(
2(k − x)

3x

)1/2

K 1
3

(
23/2(k − x)3/2

3x1/2

)
for k − k1/3 � x < k (22)
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and

Jk(x) ∼ 1
3

(
2(x− k)

x

)1/2 (
J1/3 + J−1/3

)(23/2(x− k)3/2

3x1/2

)

for k < x� k + k1/3, (23)

and keeping only the leading terms of all asymptotics, one finds that

∑

c

S(m,n; c)
c

f0

(
4π

√
mn

cY

)

∼ 1
π

⎛

⎝
∞∫

−∞
Ai(ξ) dξ

⎞

⎠
∑

k

1
k
f0

(
k

Y

)
4(k − 1)!
(4πi)k

∑

1≤j≤dim SΓ (Γ )

ψj,k (m)ψj,k(n) .

(24)

Here Ai(ξ) =

∞∫

−∞
cos (t3 + ξt) dt, is the Airy function.

The above derivation is tedious and complicated, but once we see the form
of the answer and especially that it involves only holomorphic modular forms,
another approach suggests itself, and fortunately it is simpler. We start with
the Peterson formula [I-K]

Γ (k − 1)
(4π)k−1

∑

j=1,...,dim Sk(Γ )

ψj(m)ψj(n)

= δ(m,n) + 2π ik
∞∑

c = 1

S(m,n; c)
c

Jk−1

(
4π

√
mn

c

)
.

Setting

ρf (n) =
(
Γ (k − 1)
(4π)k−1

)1/2

ψf (n), (25)

we have

∑

f∈Hk(Γ )

ρf (m) ρf (n) = δ(m,n) = 2πik
∞∑

c = 1

S(m,n; c)
c

Jk−1

(
4π

√
mn

c

)
,

(26)
where Hk(Γ ) denotes any orthonormal basis of Sk(Γ ) and in particular the
Hecke basis that we choose.

In this case,
ρf (m) = ρf (1)λf (m), (27)

where |λf (m)| ≤ τ(m), by Deligne’s proof of the holomorphic Ramanujan
conjectures [De]. With this normalization, (24) reads
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∑

c

S(m,n; c)
c

f0

(
4π

√
mn

cY

)
∼ (const)

∑

k

f0

(
k

Y

) ∑

f∈Hk(Γ )

ρf (m) ρf (n) .

(28)
From (26) with m = n = 1 we have that for k large,

∑

f∈Hk(Γ )

|ρf (1)|2 = 1 + small . (29)

We use the k-averaging formula in [I-L-S, p.102], which gives forK ≥ 1, x > 0,
and h ∈ C∞

0 (R > 0) that

hk(x) :=
∑

k≡0(2)

h

(
k − 1
K

)
Jk−1(x) = −iK

∞∫

−∞
ĥ(tK) sin (x sin 2πt) dt .

(30)
From this it follows easily that if x ≥ K1+ε0, then for any fixed N ≥ 1,

∑

k ≡ 0(2)

h

(
k − 1
K

)
Jk−1 (x)�

N
K−N , (31)

while for 0 ≤ x ≤ K1+ε0 and for any fixed N ,

hk(x) = h0

( x
K

)
+

1
K2

h1

( x
K

)
+ · · · +

1
K2N

hN

( x
K

)
+ ON

(
K−2N−1

)
,

(32)
where h0(ξ) = h(ξ) and h1, . . . , hN involve derivatives of h(ξ) and are also in
C∞

0 (R > 0). From (26) we have that

∑

k ≡ 0(2)

ik h

(
k − 1
K

) ∑

f∈Hk(Γ )

ρf (m) ρf (n)

=
∑

k ≡ 0(2)

(i)k h

(
k − 1
K

)
δ(m,n) − 2π

∞∑
c=1

S(m,n; c)
c

hK

(
4π

√
mn

c

)
. (33)

We assume that (mn)δ ≤ K ≤ √
mn with δ > 0 and fixed. Then for N large

enough (depending on δ) we have from (27), (28), and (29) that

N∑

j = 0
K−2j

∑

c

S(m,n; c)
c

hj

(
4π

√
mn

cK

)

=
∑

k ≡ 0(2)

ik h

(
k − 1
K

) ∑

f∈Hk(Γ )

ρf (m) ρf (n) +O(1) . (34)

Thus the lead term j = 0 in (34) recovers the asymptotics (24) and in a much
more precise form. We can estimate the right-hand side of (34) as being at
most
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RHS ≤
∑

k

|h|
(
k − 1
K

) ∑

f∈Hk(Γ )

|λf (m)λf (n)| |ρf (1)|2 � K τ(m) τ(n) ,

(35)
by (27) and (29). It follows that

N∑

j = 0
K−2j

∑

c

S(m,n; c)
c

hj

(
4π

√
mn

cK

)
� K τ(m) τ(n) . (36)

From this it follows by estimating the j ≥ 1 sums trivially that

∑

c

S(m,n; c)
c

h

(
4π

√
mn

cK

)
� K τ(m) τ(n) +

(mn)1/4

K5/2
. (37)

Using this bound, which is now valid for h1, . . . , hN , we can feed it back into
(36) to get

∑

c

S(m,n; c)
c

h

(
4π

√
mn

Kc

)

� K τ(m) τ(n) +K−2

(
K τ(m) τ(n) +

(mn)1/4

K5/2

)

� K τ(m) τ(n) +
(mn)1/4

K5/2
. (38)

Replicating this iteration a finite number of times yields that for (mn)δ ≤
K ≤ √

mn,
∑

c

S(m,n; c)
c

h

(
4π

√
mn

Kc

)
� K τ(m) τ(n), (39)

or what is the same thing,

∑

c

S(m,n; c)
c

F
( c
x

)
�
ε

(mn)1/2 τ(m) τ(n)
x

, for x ≤ (mn)1/2−δ. (40)

This completes the proof of Theorem4. �
Finally we turn to the proof of Theorem2. The dependence on mn in

Kuznetzov’s argument was examined briefly in Huxley [Hu]. In order for us to
bring in Hθ effectively, we first examine the dyadic sums

∑
x≤c≤ 2x

S(m,n;c)
c

for x in various ranges.

Proposition 5 Assume Hθ. Then for ε > 0,

∑

x≤c≤2x

S(m,n; c)
c

�
ε

(mnx)ε

(
x1/6 +

√
mn

x
+ (m+ n)1/8(mn)θ/2

)
.
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Theorem2 follows from this proposition by breaking the sum 1 ≤ c ≤ x
into at most log x dyadic pieces y ≤ c ≤ 2y with (mn)1/3 ≤ y ≤ x and
estimating the initial segment 1 ≤ c ≤ min((mn)1/3, x) using (4). We conclude
by proving Proposition5. In formula (19) we choose the test function f to be
φ(t) depending on mn, x, and a parameter x1/3 ≤ T ≤ x2/3 to be chosen later.
The function φ is smooth on (0,∞), taking values in [0, 1] and satisfying

(i) φ(t) = 1 for a
2x ≤ t ≤ a

x where a = 4π
√
mn.

(ii) φ(t) = 0 for t ≤ a
2x+2T and t ≥ a

x−T .

(iii) φ′(t) �
(

a
x−T − a

x

)−1

.
(iv) φ and φ′ are piecewise monotone on a fixed number of intervals.

For φ chosen this way we have that
∣∣∣∣∣∣

∞∑

c=1

S(m,n; c)
c

φ

(
4π

√
mn

c

)
−

∑

x≤c≤2x

S(m,n; , c)
c

∣∣∣∣∣∣

≤
∑

x−T≤c≤x
2x≤c ≤ 2x+T

∣∣∣∣
S(m,n; c)

c

∣∣∣∣

�
ε

(mn)ε

√
x

∑

x−T≤c≤x
2x≤c ≤ 2x+T

τ(c) � (mn)ε T log x√
x

, (41)

where we have used (2) and the mean value bound for the divisor function. We
estimate

∑∞
c=1

S(m,n;c)
c φ

(
4π

√
mn

c

)
using (19), and to this end, according to

(16), we first estimate φ̂(r) = cosh(πr)Mφ(r). We follow Kuznetzov, keeping
track of the dependence on mn.

The following asymptotic expansion of the Bessel function is uniform; see
[Du]:

Jir(y) =
c eirw(y/r)+πr

2

√
y2 + r2

(
1 +

a1√
r2 + y2

+ · · ·
)
,

where c, a1 are constants and

w(s) =
√

1 + s2 + log

(
1
s
−
√

1
s2

+ 1

)
. (42)

We analyze the leading term; the lower-order terms are treated similarly and
their contribution is smaller. For |r| ≤ 1 we have

φ̂(r) � |r|−2, (43)

as is clear from the Taylor expansion for Jir when a
x

≤ 1 and from (42)
otherwise. So assume that r ≥ 1 (or ≤ −1), and making the substitution
y = rs, we are reduced to bounding
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r−1/2

∞∫

0

eirw(s)

(s2 + 1)1/4
φ(rs)

ds

s
(44)

= r−3/2

∞∫

0

(
eirw(s)rw′(s)

) φ(rs)
w′(s) s(s2 + 1)1/4

. (45)

Now w′(s) is bounded away from zero uniformly on (0,∞) and approaches
2 as s → ∞ and behaves like 1

s as s → 0. We may then apply the following
easily proven mean value estimate: If F and G are defined on [A,B] with G
monotonic and taking values in [0, 1], then

∣∣∣∣∣∣

B∫

A

F (x)G(x) dx

∣∣∣∣∣∣
≤ 2 sup

A≤C≤B

∣∣∣∣∣∣

C∫

A

F (x)dx

∣∣∣∣∣∣
. (46)

This yields that the quantity in (45) is at most O(r−3/2) and hence that

φ̂(r) � r−3/2 for |r| ≥ 1 . (47)

For r large we seek a better bound, which one gets by integration by parts
in (45). This gives

−r−3/2

∞∫

0

eirw(s) d

ds

(
φ(rs)
w′(s)s

)
ds

= O(r−5/2) + r−3/2

∞∫

0

eirw(s) θ′(s)
(s2 + 1)1/4sw′(s)

ds,

where the first term follows as in (47) and θ(s) = φ(rs). Applying the mean
value estimate to the last integral and using property (iii) of φ yields

φ̂(r) � x

T
r−5/2 . (48)

The bounds (47) and (48) are the same as those obtained by Kuznetzov,
only now they are uniform in x and nm.

For the term involving τ(m, t) in (19) and our choice of test function we
have ∞∫

−∞

φ̂(r)
|ρ(1 + 2ir)|2 dr � 1, (49)

which follows immediately from (43).
The term in (19) involving the k-sum over Fourier coefficients of holomor-

phic forms is handled using the Ramanujan conjecture for these. We find that
this sum is bounded by
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(mn)ε
∑

k ≡ 0(2)
k > 2

4(k − 1) |Nφ(k)| . (50)

Now for x ≥ √
mn it is immediate from the decay of the Bessel function

at small argument that Nφ(k) � 1/k!. Hence the sum in (50) is Oε((mn)ε),
which is a lot smaller than the upper bounds that we derive for the right-hand
side of (19).

For x ≤ √
mn we need to investigate the transition ranges for the Bessel

functions Jk(y), that is, the ranges y ≤ k− k1/3, k− k1/3 ≤ y ≤ k+ k1/3 and
y ≥ k+k1/3. We invoke the formula for the leading-term asymptotic behavior
of these in each region, (see [Ol]) for uniform asymptotics which allows one
to connect the ranges. For our φ we break the integral (16) defining Nφ(k)
into the corresponding ranges. In the range (0, k−k1/3) the Bessel function is
exponentially small, and so the contribution is negligible. In the transitional
range we use (22) and bound the integrand in absolute value. The contribution
from this part to (k−1)Nφ(k) is O(1), and since there are O

(√
mn
x

)
values of

k for which the transitional range is present, we conclude that the contribution
to the sum (50) from the transitional range is

O

(√
mn

x
(mn)ε

)
. (51)

We are left with the contribution to (50) from the range y ≥ k + k1/3 in
the integral defining Nφ(k). In this range we have

Jk(ks) ∼ eikW (s)

√
k(s2 − 1)1/4

, (52)

where
W ((s) =

√
s2 − 1 − arctan

√
s2 − 1 . (53)

In particular,

W ′(s) =
√
s2 − 1
s

. (54)

Changing variables for the integral in the range in question leads one to
consider ∞∫

1+k−2/3

φ(ks) eikW (s)

√
k s(s2 − 1)1/4

ds . (55)

We argue as with φ̂(r) and the elementary mean value estimate. It is enough
to bound

c∫

1+k−2/3

eikW (s)

s
√
k(k2 − 1)1/4

ds (56)

independent of c.
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Multiply and divide by kW ′(s) and integrate by parts. The boundary
terms are eikW (s)

/ (
k3/2(s2 − 13/4

)
evaluated at 1 + k2/3 and c. Hence they

are O(1/k). The resulting new integral is

− k−3/2

c∫

1+k−2/3

3s eikW (s)

2(s2 − 1)7/4
ds. (57)

Now bound this trivially by estimating the integrand in absolute value. This
also gives a contribution of O(1/k). The number of k’s for which this range
intersects the support of φ is again O

(√
mn
x

)
. It follows that the contribution

to the k sum from this range is

O

(
(mn)ε

√
mn

x

)
. (58)

That is, we have shown that

∑

k ≡ 0(2)

Nφ(k)
∑

1≤j≤dim Sk(Γ )

ψj,k(m)ψj,k(n) � (mn)ε

(
1 +

√
mn

x

)
. (59)

Relations (49) and (59) give us the desired bounds for the last two terms in
(19). In order to complete the analysis we must estimate the first term on
the right-hand side of (19). It is here that we invoke Hθ. Consider the dyadic
sums

∑

A≤tj≤2A

ρj(n) ρj(m)
cosh πtj

φ̂(tj). (60)

One can treat these in two ways. Firstly we can use Hθ directly, from which
it follows (for a Hecke basis of Maass forms) that

|ρj(n)| ≤ τ(n)nθ |ρj(1)| . (61)

Hence

∑

A≤tj≤2A

∣∣∣∣∣
ρj(n) ρj(m)

cosh πtj

∣∣∣∣∣ ≤ τ(n) τ(m)(nm)θ
∑

A≤tj≤2A

|ρj(1)|2
cosh πtj

. (62)

We recall Kuznetzov’s mean value estimate
∑

tj≤y

|ρj(n)|2
cosh πtj

=
y2

π
+Oε

(
y log y + ynε + n

1
2+ε
)
. (63)

Applying (63) with n = 1 in (62) yields
∣∣∣∣∣∣

∑

A≤tj≤2A

ρj(n) ρj(m)
cosh πtj

∣∣∣∣∣∣
�
ε

(nm)θ+εA2 . (64)
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Alternatively, we can estimate (60) directly using (63) via Cauchy–Schwarz
and obtain

∑

A≤tj≤2A

∣∣∣∣∣
ρj(n) ρj(m)
cosh (πtj)

∣∣∣∣∣ ≤
(

2A∑

A

|ρj(n)|2
cosh πtj

)1/2 ( 2A∑

A

|ρj(m)|2
cosh πtj

)1/2

�
ε

(A+m1/4+ε) (A + n1/4+ε) . (65)

With these we have
∣∣∣∣∣∣

∑

j

φ̂(tj)
ρj(m) ρj(n)

cosh πtj

∣∣∣∣∣∣
≤
∑

j

|φ̂(tj) ρj(n) ρj(m)|
cosh πtj

, (66)

and breaking this into dyadic pieces applying (47), (48), (64), or (65), one
obtains

2A∑

A

∣∣∣∣∣φ̂(tj)
ρj(n) ρj(m)

cosh πtj

∣∣∣∣∣� (mn)ε min
(
1,

x

TA

)

×min
(√

A(nm)θ,
√
A+

(
n

1
4 +m1/4

)
A−1/2

+(mn)
1
4 A−3/2

)
(67)

� (mn)ε min
(
1,

x

TA

) (√
A+

(
m1/8 + n1/8

)
(mn)θ/2

)
. (68)

Hence,
2A∑

A

∣∣∣∣∣φ̂(tj)
ρj(n)ρj(m)

coshπtj

∣∣∣∣∣ � (mn)ε
((
m1/8 + n1/8

)
(mn)θ/2

+ min
(√

A,
x

T
√
A

))
. (69)

Combining the dyadic pieces yields

∑

j

φ̂(tj)
ρj(n) ρj(m)

cosh πtj
� (mn)ε

((
m1/8 + n1/8

)
(mn)θ/2 +

√
x

T

)
. (70)

Putting this together with (41) and (51) in (19) yields

∑

x≤c≤2x

S(m,n; c)
c

�(xmn)ε

(
T√
x

+
√
mn

x
+
(
m1/8 + n1/8

)
(nm)θ/2 +

√
x

T

)
.

Finally, choosing T = x2/3 yields
∑

x≤c≤2x

S(m,n; c)
c

� (xmn)ε

(
x1/6 +

√
mn

x
+
(
m1/8 + n1/8

)
(mn)θ/2

)
.

(71)
This completes the proof of Proposition 5.
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In Theorem4 we explained the (mn)1/6 in Theorem2. The x1/6 barrier
is similar, that is, in the proof of Proposition5, if we want to go beyond
the exponent 1/6 (ignoring the mn dependence) we would need to capture
cancellations in sums of the type

∑

tj ∼x1/3

|ρj(1)|2
cosh πtj

xitj . (72)

This appears to be quite difficult. A similar feature appears with the exponent
of 1/3 in the remainder term in the hyperbolic circle problem, which has
resisted improvements (see [L-P] and [Iw]).

Acknowledgments

We thank D. Hejhal for his comments on an earlier draft of this paper.

References

[D-I] J. Deshouillers and H. Iwaniec, “Kloosterman sums and Fourier coefficients
of cusp forms,” Invent. Math., 70 (1982/83), no. 2, 219–288.

[De] P. Deligne, La conjecture de Weil. I (French), Inst. Hautes Études Sci. Publ.
Math, 43 (1974), 273–307.

[Du] T.M. Dunster, “Bessel functions of purely imaginary order with
applications to second order linear differential equations,” Siam Jnl. Math.
Anal., 21, No. 4 (1990).

[G-S] D. Goldfeld and P. Sarnak, “Sums of Kloosterman sums,” Invent. Math.,
71 (1983), no. 2, 243–250.

[Hu] M.N. Huxley, “Introduction to Kloosertmania” in Banach Center Publica-
tions, Vol. 17 (1985), Polish Scientific Publishers.

[Iw] H. Iwaniec, “Introduction to the spectral theory of automorphic forms,”
AMS (2002).

[I-K] H. Iwaniec and F. Kowalski, “Analytic Number Theory,” AMS, Coll. Publ.,
Vol. 53 (2004).

[I-L-S] H. Iwaniec, W. Luo and P. Sarnak, “Low lying zeros of families of L-
functions,” Inst. Hautes Études Sci. Publ. Math., 91, (2000), 55–131 (2001).

[Ka] N. Katz, “Gauss Sums, Kloosterman Sums and Monodromy,” P.U. Press
(1988).

[Ki-Sh] H. Kim and F. Shahidi, “Functional products for GL2 × GL3 and the sym-
metric cube for GL2,” Annals of Math. (2), 155, no. 3 (2002), 837–893.

[Ki-Sa] H. Kim and P. Sarnak, Appendix to Kim’s paper, “Functoriality for the
exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math.
Soc., 16 (2003), no. 1, 139–183.



On Linnik and Selberg’s Conjecture About Sums of Kloosterman Sums 635

[Ku] N. Kuznetzov, “The Petersson conjecture for cusp forms of weight zero and
the Linnik conjecture. Sums of Kloosterman sums,” Mat. Sb. (N.S), 111
(1980), 334–383, Math. USSR-Sb., 39 (1981), 299–342.

[L-P] P. Lax and R. Phillips, “The asymptotic distribution of lattice points in
Euclidean and non-Euclidean spaces,” Jnl Funct. Anal., 46, (1982), no. 3,
280–350.

[Li] Y. Linnik, “Additive problems and eigenvalues of the modular operators,”
(1963), Proc. Internat. Congr. Mathematicians (Stockholm, 1962), 270–284.

[L-R-S] W. Luo, Z. Rudnick, and P. Sarnak, “On Selberg’s eigenvalue conjecture,”
Geom. Funct. Anal., 5 (1995), no. 2, 387–401.

[Mi] P. Michel,“Autour de la conjecture de Sato-Tate pour les sommes de
Kloosterman. I” (French) [“On the Sato-Tate conjecture for Kloosterman
sums. I”], Invent. Math., 121 (1995), no. 1, 61–78.

[Mu] R. Murty, in “Lectures on Automorphic L-functions,” Fields Institute Mono-
graphs, vol. 20 (2004).

[Ol] F.W.J. Olver, “The asymptotic expansion of Bessel functions of large
order,”Philos. Trans. Royal Soc. London. Ser A, 247 (1954), 328–368.

[Sa] P. Sarnak, “Notes on the Generalized Ramanujan Conjectures,” Clay Math.
Proc., Vol. 4, (2005), 659–685.

[Se] A. Selberg, “On the estimation of Fourier coefficients of modular forms,”
Proc. Sympos. Pure Math., 8, (1965), 1–15.

[Wa] G. Watson, “A treatise on the Theory of Bessel Functions,” Cambridge
Press (1966).

[We] A. Weil, “On some exponential sums,” Proc. Nat. Acad. Sci., U.S.A., 34,
(1948), 204–207.
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affilié à la FRUMAM, FR 2291), Luminy, 13288 Marseille, France
and
Institut de Physique P.N. Lebedev, Leninsky prospekt 53, 119991, Moscou,
Russie; oleg@cpt.univ-mrs.fr

2 Laboratoire Emile Picard, UFR MIG, Université Paul Sabatier, 31062 Toulouse,
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PREMIÈRE PARTIE

FORMULES

§ 1 Introduction

1.1 Cet article est une variation sur un thème de [Jacobi].
Soit

f(x) = anx
n + an−1x

n−1 + . . .+ a0
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un polynôme de degré n > 0 à coefficients dans un corps de base k de
caractéristique 0. Rappelons que la suite de Sturm de f ,

f = (f0, f1, f2, . . .) ,

est définie par récurrence : on pose f0(x) = f(x), f1(x) = f ′(x) et pour
j ≥ 1 fj+1 est le reste de la division euclidienne de fj−1 par fj , avec le signe
opposé :

fj−1(x) = qj−1(x)fj(x) − fj+1(x), (1.1.1)

deg fj+1(x) < deg fj(x), cf. le célèbre mémoire [Sturm].
Dans cette note on propose des formules explicites pour les coefficients des

polynômes fj en termes des coefficients de f . Plus généralement, on donnera
des formules analogues pour les membres de l’algorithme d’Euclide correspon-
dant à deux polynômes quelconques f1, f2 de degrés n− 1, n− 2.

Notre point de départ est une algèbre B, quotient de l’anneau de
polynômes en variables b(i)j (i ≥ 1, j ≥ 2i) par certains rélations quadra-
tiques, cf. (1.7.1) ci-dessous. Nos formules sont des conséquences des identités
dans B, analogues des rélations de Plücker.

1.2 Pour énoncer le résultat, introduisons les quantités quadratiques

b(j)i = n

j−1∑

p=0

(i− 2p)an−pan−i+p − j(n− i+ j)an−jan+j−i,

j ≥ 1, i ≥ 2j. Ici on pose ai = 0 pour i < 0. Par exemple,

b(1)i = nianan−i − (n− i+ 1)an−1an−i+1.

1.3 Ensuite on introduit, pour m ≥ 2, les matrices (m − 1) × (m − 1)
symétriques

C(m) =

⎛

⎜⎜⎜⎜⎜⎜⎝

b(1)2 b(1)3 b(1)4 b(1)5 . . . b(1)m

b(1)3 b(2)4 b(2)5 b(2)6 . . . b(2)m+1

b(1)4 b(2)5 b(3)6 b(3)7 . . . b(3)m+2

b(1)5 b(2)6 b(3)7 b(4)8 . . . b(4)m+3

. . . . . . . .
b(1)m b(2)m+1 b(3)m+2 b(4)m+3 . . . b(m− 1)2m−2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

De plus, pour i ≥ 0 on définit une matrice “décalée” C(m)i : elle est
obtenue en remplaçant dans C(m) la dernière ligne par

(
b(1)m+i b(2)m+i+1 b(3)m+i+2 b(4)m+i+3 . . . b(m− 1)2m+i−2

)
.

Donc C(m)0 = C(m). On pose

c(m)i := detC(m)i, c(m) := c(m)0.
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En particulier,
c(2)i = b(1)i+2

Il est commode de poser

c(1)i :=
(n− i)an−i

nan
,

i ≥ 0, c(1) := c(1)0 = 1.

1.4 Puis on définit les nombres γj , j ≥ 1 par récurrence :

γ1 = nan, γ2 = − 1
n2an

, γj+1 = γj−1 · c(j − 1)2

c(j)2
,

j ≥ 2. Autrement dit,

γj = (−1)j+1εj ·
j−2∏

i=1

c(j − i)2(−1)i

,

où εj = nan si j est impair et 1/(n2an) sinon.
Les nombres γ1, . . . , γj sont donc bien définis si tous les nombres

c(2), c(3), . . . , c(j − 1) sont différents de zéro.

1.5 Théorème. Supposons que deg fj = n − j, donc deg fi = n − i pour
i ≤ j.

Alors pour tous i ≤ j, on a c(i) �= 0 et

fi(x) = γi ·
n−i∑

p=0

c(i)px
n−i−p.

En particulier, le coefficient dominant de fi(x) est égal à γic(i).

1.6 On vérifie aussitôt que

b(k)i − b(k − 1)i = c(1)k−1b(1)i−k+1 − c(1)i−kb(1)k (1.6.1)

pour tous k ≥ 2, i ≥ 2k − 2. Par exemple,

b(2)i − b(1)i = c(1)1b(1)i−1 − c(1)i−2b(1)2,
b(3)i − b(2)i = c(1)2b(1)i−2 − c(1)i−3b(1)3,

etc. Il s’en suit que tous les b(j)i, j ≥ 2, sont expressibles en termes de c(1)p

et c(2)p = b(1)p+2, p ≥ 0.
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1.7 Les formules (1.6.1) impliquent que les nombres b(i)j satisfont aux
relations quadratiques suivantes :

(
b(k)i − b(k − 1)i

)
· b(1)j

=
(
b(j)i−k+j − b(j − 1)i−k+j

)
· b(1)k −

(
b(j)k+j−1 − b(j − 1)k+j−1

)
· b(1)i−k+1

(1.7.1)

On verra que la preuve de 1.5 ne dépend que des relations (1.7.1).
On formalise la situation en introduisant une algèbre quadratique corre-

spondante, cf. §2 ci-dessous.

1.8 Maintenant soient

f1(x) = α0x
n−1 + α1x

n−2 + . . .

et
f2(x) = β0x

n−2 + β1x
n−3 + . . .

deux polynômes arbitraires de degrés n−1, n−2. On définit fj , j ≥ 3 à partir
de f1, f2 par les formules de l’algorithme d’Euclide (1.1.1).

Posons
c(1)i :=

αi

α0
, b(1)i+2 := βi, i ≥ 0.

Définissons les nombres b(k)i, k ≥ 2 par récurrence sur k, à partir des formules
(1.6.1).

Définissons les nombres c(m)i, m ≥ 2, par les formules 1.3.
Enfin, on pose :

γ̃1 = α0 , γ̃2 = 1 , γ̃j+1 = γ̃j−1
c(j − 1)2

c(j)2

Alors on a

1.9 Théorème. Supposons que deg fj = n − j, d’où deg fi = n − i pour
i ≤ j.

Alors pour tous i ≤ j, on a c(i) �= 0 et

fi(x) = γ̃i ·
n−i∑

p=0

c(i)px
n−i−p .

En particulier, le coefficient dominant de fi(x) est égal à γ̃ic(i).
Cf. [Jacobi], section 15.

1.10 Dans la Deuxième Partie on présente un exemple numérique. Là, les
déterminants de Cauchy apparaissent dans les asymptotiques des coefficients
dominants de la suite de Sturm pour les polynômes d’Euler.
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§ 2 Algèbre B

2.1 On peut réécrire les relations (1.7.1) sous la forme suivante :

det
(

b(1)j b(1)k

b(j − 1)i+j−k b(k − 1)i

)
− det

(
b(1)j b(j − 1)j+k−1

b(1)i−k+1 b(k)i

)

+ det
(

b(1)k b(j)j+k−1

b(1)i−k+1 b(j)i+j−k

)
= Δ(k, j)i −Δ′(k, j)i +Δ′′(k, j)i = 0.

(2.1.1)

2.2 On définit une algèbre quadratique B comme une k-algèbre commu-
tative engendrée par les lettres b(i)j , i, j ∈ Z, modulo les relations (2.1.1), où
i, j, k ∈ Z.

(D’ailleurs, dans tout le paragraphe qui suit on peut remplacer le corps de
base k par un anneau commutatif quelconque.)

2.3 Le but de ce paragraphe est d’écrire certaines relations entre les
déterminants n× n dans B qui généralisent (2.1.1).

On fixe un nombre entier n ≥ 2. Soient m1, . . . ,mn, i des entiers.
On définit 2n+ 2 vecteurs vj , wj ∈ kn, j = 1, . . . , n+ 1 :

w1 = (b(1)m1 , b(1)m2 , . . . , b(1)mn) ,

wj+1 = (b(1)m1 , . . . , b̂(1)mn+1−j , . . . , b(1)mn , b(1)i−mn+1),
1 ≤ j ≤ n (suivant l’usage, x̂ signifie que l’on omet la composante x).

Puis
v1 = (b(m1−1)i+m1−mn , b(m2−1)i+m2−mn , . . ., b(mn−1−1)i+mn−1−mn , b(mn−1)i),

v2 = (b(m1 − 1)m1+mn−1, b(m2 − 1)m2+mn−1, . . ., b(mn−1 − 1)mn−1+mn−1, b(mn)i),

v3 = (b(m1 − 1)m1+mn−1−1, b(m2 − 1)m2+mn−1−1, . . ., b(mn−2 − 1)mn−2+mn−1−1,

b(mn−1)mn−1+mn−1, b(mn−1)i+mn−1−mn ) ,

v4 = (b(m1 − 1)m1+mn−2−1, b(m2 − 1)m2+mn−2−1, . . ., b(mn−3 − 1)mn−3+mn−2−1,

b(mn−2)mn−2+mn−1−1, b(mn−2)mn−2+mn−1, b(mn−2)i+mn−2−mn ),

· · ·
vn = (b(m1 − 1)m1+m2−1, b(m2)m2+m3−1, b(m2)m2+m4−1, . . . , b(m2)m2+mn−1,

b(m2)i+m2−mn )

vn+1 = (b(m1)m1+m2−1, b(m1)m1+m3−1, . . . , b(m1)m1+mn−1, b(m1)i+m1−mn ).

2.4 Soit

M =

⎛

⎝
x11 . . . x1,n+1

. . . . .
xn−2,1 . . . xn−2,n+1

⎞

⎠

une matrice (n−2)×(n+1) sur B ; soit Mi, i = 1, . . . , n+1, ses sous-matrices
(n− 2) × n. Pour écrire Mi, on enlève donc la i-ième colonne de M .
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Maintenant on va définir n+ 1 matrices n× n

Dj = Dj(m1, . . . ,mn;Mn+2−j)i,

j = 1, . . . , n+ 1. On pose :

D1 =

⎛

⎝
w1

Mn+1

v1

⎞

⎠ , Dj =
(
wt

j M
t
n+2−j v

t
j

)
,

j = 2, . . . , n+ 1. Ici (.)t désigne la matrice transposée.
Enfin, on pose

Δj = Δj(m1, . . . ,mn;Mn+2−j)i = detDj(m1, . . . ,mn;Mn+2−j)i,

j = 1, . . . , n+ 1.
Considérons la somme alternée

R(n;m1, . . . ,mn;M)i =
n+1∑

j=1

(−1)j+1Δj(m1, . . . ,mn;Mn+2−j)i.

2.5 Exemple. n = 2. Dans ce cas il n’y a pas de matrice M ; trois nombres
entiers sont donnés : m1,m2 et i. On aura 6 vecteurs :

w1 = (b(1)m1 , b(1)m2), w2 = (b(1)m1 , b(1)i−m2+1), w3 = (b(1)m2 , b(1)i−m2+1)

et

v1 = (b(m1 − 1)i+m1−m2 , b(m2 − 1)i), v2 = (b(m1 − 1)m1+m2−1, b(m2)i),

v2 = (b(m1)m1+m2−1, b(m1)i+m1−m2).

Il s’ensuit :

R(2;m1,m2)i = det
(

b(1)m1 b(1)m2

b(m1 − 1)i+m1−m2 b(m2 − 1)i

)

− det
(

b(1)m1 b(m1 − 1)m1+m2−1

b(1)i−m2+1 b(m2)i

)
+ det

(
b(1)m2 b(m1)m1+m2−1

b(1)i−m2+1 b(m2)i+m1−m2

)

On reconnâıt là la partie gauche de (2.1.1) pour (j, k) = (m1,m2). Il en
découle que R(2;m1,m2)i = 0.

2.6 Exemple. n = 3. Dans ce cas la matrice M se réduit à 4 éléments :

M =
(
x1 x2 x3 x4

)
.
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L’expression R(3;m1,m2,m3;M)i prend la forme

R(3; m1, m2, m3; M)i = det

(
b(1)m1 b(1)m2 b(1)m3

x1 x2 x3

b(m1 − 1)i+m1−m3 b(m2 − 1)i+m2−m3 b(m3 − 1)i

)

−det

(
b(1)m1 x1 b(m1 − 1)m1+m3−1

b(1)m2 x2 b(m2 − 1)m2+m3−1

b(1)i−m3+1 x4 b(m3)i

)

+det

(
b(1)m1 x1 b(m1 − 1)m1+m2−1

b(1)m3 x3 b(m2)m2+m3−1

b(1)i−m3+1 x4 b(m2)i+m2−m3

)

−det

(
b(1)m2 x2 b(m1)m1+m2−1

b(1)m3 x3 b(m1)m1+m3−1

b(1)i−m3+1 x4 b(m1)i+m1−m3

)
.

Calculons cette expression.
On développe le premier déterminant suivant la deuxième ligne et les

autres suivant les deuxièmes colonnes :

Δ1(3;m1,m2,m3;M4)i = −x1Δ1(2;m2,m3)i + x2Δ1(2;m1,m3)i

−x3Δ1(2;m1,m2)i+m2−m3 ,

Δ2(3;m1,m2,m3;M3)i = −x1Δ2(2;m2,m3)i + x2Δ2(2;m1,m3)i

−x4Δ1(2;m1,m3)m2+m3−1.

Puis

Δ3(3;m1,m2,m3;M2)i = −x1Δ3(2;m2,m3)i + x3Δ2(2;m1,m2)i+m2−m3

−x4Δ2(2;m1,m3)m2+m3−1

et

Δ4(3;m1,m2,m3;M1)i = −x2Δ3(2;m1,m3)i + x3Δ3(2;m1,m2)i+m2−m3

−x4Δ3(2;m1,m3)m2+m3−1.

Pour abréger les notations on introduit des vecteurs entiers :

(i1, i2, i3, i4) := (i, i, i+m2 −m3,m2 +m3 − 1),

μ = (m1,m2,m3),

μ1 = (m2,m3), μ2 = (m1,m3), μ3 = (m1,m2).

On peut réécire les formules ci-desssus sous une forme matricielle :
⎛

⎝
Δ1(3; μ; M4)i

−Δ2(3; μ; M3)i

Δ3(3; μ; M2)i

−Δ4(3; μ; M1)i

⎞

⎠ =

⎛

⎝
−Δ1(2; μ1)i1 Δ1(2; μ2)i2 −Δ1(2; μ3)i3 0

Δ2(2; μ1)i1 −Δ2(2; μ2)i2 0 Δ1(2; μ2)i4
−Δ3(2; μ1)i1 0 Δ2(2; μ3)i3 −Δ2(2; μ2)i4

0 Δ3(2; μ2)i2 −Δ3(2; μ3)i3 Δ3(2; μ2)i4

⎞

⎠ ·

⎛

⎝
x1

x2

x3

x4

⎞

⎠.
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En rajoutant :

R(3;m1,m2,m3;M)i = −x1 ·
{
Δ1(2;μ1)i1 −Δ2(2;μ1)i1 +Δ3(2;μ1)i1

}

+x2 ·
{
Δ1(2;μ2)i2 −Δ2(2;μ2)i2 +Δ3(2;μ2)i2

}

−x3 ·
{
Δ1(2;μ3)i3 −Δ2(2;μ3)i3 +Δ3(2;μ3)i3

}

+x4 ·
{
Δ1(2;μ2)i4 −Δ2(2;μ2)i4 +Δ3(2;μ2)i4

}
=0.

Le théorème ci-dessous généralise ces exemples.

2.7 Théorème. On a

R(n;m1, . . . ,mn;M)i = 0

pour tous n,m1, . . . ,mn,M et i.
Démonstration : elle se fait par récurrence sur n. Le cas n = 2 est l’exemple

2.5.
Le passage de n− 1 à n suit l’exemple 2.6.
Posons pour abréger

μ = (m1, . . . ,mn).

À partir de cela, on introduit n+ 1 vecteurs μj ∈ Z
n−1 :

μj := (m1, . . . , m̂j , . . . ,mn),

j = 1, . . . , n, et
μn+1 := (m1, . . . , m̂n−1,mn) = μn−1.

On définit le vecteur

(i1, i2, . . . , in+1) := (i, i, . . . , i︸ ︷︷ ︸
n−1 fois

, i+mn−1 −mn,mn−1 +mn − 1) ∈ Z
n+1.

En développant les déterminants Δj(n;μ,Mn+2−j)i, 2 ≤ j ≤ n + 1 suivant
la deuxième colonne et le déterminant Δ1(n;μ,Mn+1)i suivant la deuxième
ligne, on obtient :

R(n;μ;M)i =
n+1∑

j=1

(−1)jxjR(n− 1;μj ;M1j)ij .

Ici M1j est la matrice obtenue en enlevant la première ligne et la j-ième
colonne de la matrice M .
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Notre assertion en découle immédiatement par récurrence sur n.

2.8 On aura besoin d’un cas particulier de ces relations. Prenons

μ = (m1,m2, . . . ,mn) = (2, 3, . . . , n+ 1).

Pour la matrice M , prenons

M =

⎛

⎜⎜⎝

b(1)3 b(2)4 b(2)5 ... b(2)n+2 b(2)i+n+1

b(1)4 b(2)5 b(3)5 ... b(3)n+3 b(3)i+n+2

. . . . . .
b(1)n b(2)n+1 b(3)n+2 . . . b(n− 1)2n−1 b(n− 1)i+2n−2

⎞

⎟⎟⎠.

Alors le premier déterminant

Δ1(n;μ;Mn+1)i+2n = c(n+ 1)i.

On pose par définition :

c(n+ 1)′i := Δ2(n;μ;Mn)i+2n,

c(n+ 1)′′i := Δ3(n;μ;Mn−1)i+2n.

Par contre, si j ≥ 4 on voit que dans le déterminant Δj(n;μ;Mn+2−j)i+2n la
dernière colonne est égale à la (n− j + 3)-ième colonne, d’où

Δ4(n;μ;Mn−2)i+2n = Δ5(n;μ;Mn−3)i+2n = . . . = Δn+1(n;μ;M1)i+2n = 0.

Donc 2.7 entrâıne

2.9 Corollaire. Pour tous n ≥ 3

c(n)i − c(n)′i + c(n)′′i = 0.

§ 3 Début de la démonstration du théorème 1.5

3.1 On a
f(x) = anx

n + an−1x
n−1 + . . .+ a0.

La dérivée :
f1(x) = f ′(x) = nanx

n−1 + (n− 1)an−1x
n−2 + . . .+ a1

= nan

{
xn−1 + (n−1)an−1

nan
xn−2 + . . .+ a1

nan

}

= γ1(c(1)0xn−1 + c(1)1xn−2 + . . .+ c(1)n−1).

3.2 Le quotient de la division euclidienne de deux polynômes f(x) et
g(x) = a′n−1x

n−1 + a′n−2x
n−2 + . . . est égal à

an

a′n−1

x+
a′n−1an−1 − a′n−2an

(a′n−1)2
.
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On fait la division euclidienne :

f − (x/n+ an−1/n
2an)f ′ =

2nanan−2 − (n− 1)a2
n−1

n2an
xn−2

+
3nanan−3 − (n− 2)an−1an−2

n2an
xn−3 + . . .

= 1
n2an

· (b(1)2xn−2 + b(1)3xn−3 + . . .+ b(1)n)

= −γ2 · (c(2)0xn−2 + c(2)1xn−3 + . . . c(2)n−2).

Donc

f2(x) = γ2 ·
n−2∑

i=0

c(2)ix
n−2−i.

Cela démontre l’assertion 1.5 pour j = 1, 2, et l’on procède par récurrence
par j.

3.3 On suppose que l’on a déjà trouvé :

fj−1(x) = γj−1 · [c(j−1)xn−j+1 +c(j−1)1xn−j + . . .+c(j−1)ix
n−j+1−i + . . .]

et
fj(x) = γj · [c(j)xn−j + c(j)1xn−j−1 + . . .+ c(j)ix

n−j−i + . . .].

On fait la division euclidienne :

fj−1(x) −
(

γj−1c(j − 1)

γjc(j)
x + γj−1

[
c(j − 1)1 − c(j − 1)

c(j)
· c(j)1

]
· 1

γjc(j)

)
fj(x) =

=

n−j+1∑

i=2

γj−1

{
c(j − 1)i−c(j − 1)

c(j)
· c(j)i−

[
c(j − 1)1−c(j − 1)

c(j)
· c(j)1

]
· c(j)i−1

c(j)

}

·xn−j+1−i =

=
γj−1

c(j)2

n−j+1∑

i=2

{
c(j − 1)ic(j)

2 − c(j − 1)c(j)c(j)i − c(j − 1)1c(j)i−1c(j)

+c(j − 1)c(j)1c(j)i−1

}
· xn−j+1−i.

On pose :

Q(j)i : = c(j − 1)ic(j)2 − c(j − 1)c(j)c(j)i − c(j − 1)1c(j)i−1c(j)
+ c(j − 1)c(j)1c(j)i−1 (3.3.1)

Alors on a :

fj+1(x) = − γj−1

c(j)2

n−j+1∑

i=2

Q(j)ix
n−j+1−i
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Il faut montrer que

fj+1(x) = γj+1

n−j−1∑

i=0

c(j + 1)ix
n−j−1−i = γj+1

n−j+1∑

i=0

c(j + 1)i−2x
n−j+1−i

où

γj+1 = γj−1 · c(j − 1)2

c(j)2
.

Donc notre théorème est équivalent à l’identité suivante :

Q(j)i = −c(j)2c(j + 1)i. (3.3.2)

§ 4 Formule (A)

4.1 Revenons à notre algèbre B.
On considère la matrice n× n

C(n+ 1)i−2 =

⎛

⎜⎜⎜⎜⎝

b(1)2 b(1)3 . . . b(1)n b(1)n+1

b(1)3 b(2)4 . . . b(2)n+1 b(2)n+2

. . . . . . .
b(1)n b(2)n+1 . . . b(n− 1)2n−2 b(n− 1)2n−1

b(1)n+i−1 b(2)n+i . . . b(n− 1)2n+i−3 b(n)2n+i−2

⎞

⎟⎟⎟⎟⎠
.

Donc c(n+ 1)i−2 = detC(n+ 1)i−2.
Si l’on désigne par C(n + 1)i−2;p̂,q̂ la matrice C(n + 1)i−2 avec la p-ième

ligne et la q-ième colonne enlevée, on aura :

c(n) = detC(n+ 1)i−2;n̂,n̂,

c(n)i−1 = detC(n+ 1)i−2; ˆn−1,n̂.

En plus, on a :
c(n)′′i = detC(n+ 1)i−2; ˆn−2,n̂

où c(n)′′i a été introduit dans 2.9.

4.2 Théorème. Pour tous n, i ∈ Z, n ≥ 3, on a la relation suivante dans B

c(n − 1)ic(n)2 − c(n − 1)c(n)c(n)i − c(n − 1)1c(n)i−1c(n) + c(n − 1)c(n)1c(n)i−1

= −c(n − 1)2c(n + 1)i−2 (F )

On a vu que notre théorème principal 1.5 est une conséquence de (F ) : en
effet (F ) cöıncide avec la formule (3.3.2) (avec j remplacé par n).

À son tour, (F ) est une conséquence immédiate de deux formules :

c(n− 1)ic(n) − c(n− 1)1c(n)i−1 = −c(n− 1)c(n)′′i (A)
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ou bien
c(n− 1)ic(n) − c(n− 1)1c(n)i−1 + c(n− 1)c(n)′′i = 0 (A′)

et {
c(n)i + c(n)′′i

} · c(n) − c(n)1c(n)i−1 = c(n− 1)c(n+ 1)i−2. (B)
La démonstration de (B) utilise les relations quadratiques entre les lettres

b(i)j . Par contre, (A) est “élémentaire”, en ce sens que cette identité n’utilise
pas de relations entre les lettres b(i)j .

Pour démontrer (A), on applique le lemme suivant (une variante des rela-
tions de Plücker) :

4.3 Lemme. (An) Considérons n vecteurs de dimension n − 1, wi =
(wi1, . . . , wi,n−1), i = 1, . . . , n. À partir d’eux, on définit n vecteurs de di-
mension n− 2 : vi = (wi1, . . . , wi,n−2). On pose :

Wi = det(w1, . . . , ŵi, . . . , wn)t,

Vij := det(v1, . . . , v̂i, . . . , v̂j , . . . , vn)t.

Alors

Vn−2,n−1 ·Wn − Vn−2,n ·Wn−1 + Vn−1,n ·Wn−2 = 0.

(Bn) Considérons n vecteurs de dimension n − 2, vi=(vi1, . . . , vi,n−2),
i=1, . . . , n. Considérons les mineurs

Vij := det(v1, . . . , v̂i, . . . , v̂j , . . . , vn)t.

Alors pour chaque i < n− 2,

Vn−2,n−1 · Vi,n − Vn−2,n · Vi,n−1 + Vn−1,n · Vi,n−2 = 0.

En effet, en développant Wi par rapport à la dernière colonne, on obtient :
(Bn) ⇒ (An).

Par contre, pour vérifier (Bn), considérons la matrice (n − 1) × (n − 2),
W∼ = Vi. Alors on aura Vij = W∼

j , j = n, n− 1, n− 2. D’un autre côté, en
développant les mineurs dans (Bn) : Vpq, n−2 ≤ p < q ≤ n par rapport à la i-
ième ligne, on obtient les mineurs V ∼

pq , où V ∼ est obtenue deW∼ en enlevant la
dernière colonne. On vérifie que (Bn) se réduit à (An−1) correspondant à W∼.

Il s’ensuit que (An−1) ⇒ (Bn) et on conclut par récurrence.

4.4. Le lemme étant vérifié, l’assertion 4.2 (A) est 4.3 (An) pour la matrice
W égale à c(n+ 1)i−2 avec la dernière colonne enlevée.

§ 5 Formule (B)

5.1. Maintenant on s’occupe de la formule

P :=
{
c(n)i + c(n)′′i

} · c(n) − c(n)1c(n)i−1 = c(n− 1)c(n+ 1)i−2. (B)
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On introduit n vecteurs de dimension n− 1, w1, . . . , wn qui sont les lignes
de la matrice c(n+ 1)i−2 sans la dernière colonne :

W =

⎛

⎜⎜⎜⎜⎜⎜⎝

b(1)2 b(1)3 . . . b(1)n−1 b(1)n

b(1)3 b(2)4 . . . b(2)n b(2)n+1

. . . . . . .
b(1)n−1 b(2)n . . . b(n− 2)2n−4 b(n− 2)2n−3

b(1)n b(2)n+1 . . . b(n− 2)2n−3 b(n− 1)2n−2

b(1)n+i−1 b(2)n+i . . . b(n− 2)2n+i−4 b(n− 1)2n+i−3

⎞

⎟⎟⎟⎟⎟⎟⎠

et n mineurs

Wi = det(w1, . . . , ŵi, . . . , wn)t, i = 1, . . . , n.

Par exemple, Wn = c(n), Wn−1 = c(n)i−1, Wn−2 = c(n)′′i . Donc,

c(n+ 1)i−2 = b(n)2n+i−2Wn − b(n− 1)2n−1Wn−1

+b(n− 2)2n−2Wn−2 − . . .+ (−1)n−1b(1)n+1W1

= b(n)2n+i−2Wn − b(n− 1)2n−1Wn−1 +R (5.1.1)

où

R = b(n−2)2n−2Wn−2−b(n−3)2n−3Wn−3+. . .+(−1)n−1b(1)n+1W1. (5.1.2)

5.2. On a n− 1 relations linéaires entre les Wi : la i-ième est obtenue en
ajoutant à W sa i-ième colonne et en développant le déterminant = 0 par
rapport à la dernière colonne.

Explicitement :

b(n − 1)2n+i−3Wn − b(n − 1)2n−2Wn−1 + b(n − 2)2n−3Wn−2 − . . . + (−1)n−1b(1)nW1 = 0,

b(n − 2)2n+i−4Wn − b(n − 2)2n−3Wn−1 + b(n − 2)2n−4Wn−2 − . . . + (−1)n−1b(1)n−1W1=0,

. . .

b(2)n+iWn − b(2)n+1Wn−1 + b(2)nWn−2 − . . . + (−1)n−2b(2)4W2 + (−1)n−1b(1)3W1 = 0,

b(1)n+i−1Wn − b(1)nWn−1 + b(1)n−1Wn−2 − . . . + (−1)n−2b(1)3W2 + (−1)n−1b(1)2W1 = 0.

5.3. D’autre part, rappelons la matrice c(n)1 :

c(n)1 = det

⎛

⎜⎜⎜⎜⎝

b(1)2 b(1)3 . . . b(1)n−1 b(1)n

b(1)3 b(2)4 . . . b(2)n b(2)n+1

. . . . . . .
b(1)n−1 b(2)n . . . b(n− 2)2n−4 b(n− 2)2n−3

b(1)n+1 b(2)n+2 . . . b(n− 2)2n−2 b(n− 1)2n−1

⎞

⎟⎟⎟⎟⎠
.
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On développe cette quantité par rapport à la dernière colonne :

c(n)1 = b(n−1)2n−1c(n− 1) − b(n− 2)2n−3Mn−2 + . . .+ (−1)n−1b(2)n+1M2

+(−1)nb(1)nM1.

Après la multiplication par −c(n)i−1 = −Wn−1 on obtient :

−c(n)1c(n)i−1 = −b(n− 1)2n−1c(n− 1)Wn−1 (∗) +R′

où
R′ = b(n− 2)2n−3Wn−1Mn−2 − b(n− 3)2n−4Wn−1Mn−3 + . . .

+(−1)nb(2)n+1Wn−1M2 + (−1)n−1b(1)nWn−1M1.

5.4. Maintenant remplaçons dans R′ les termes (−1)ib(n− i)2n−i−1Wn−1

en utilisant les relations 5.2 :

b(n− 2)2n−3Wn−1 = b(n− 2)2n+i−4Wn + b(n− 2)2n−4Wn−2 − . . .

+(−1)n−1b(1)n−1W1,

· · ·
b(2)n+1Wn−1 = b(2)n+iWn + b(2)nWn−2 − . . .+ (−1)n−2b(2)4W2

+(−1)n−1b(1)3W1,

b(1)nWn−1 = b(1)n+i−1Wn + b(1)n−1Wn−2 − . . .+ (−1)n−2b(1)3W2

+(−1)n−1b(1)2W1.

Alors on obtient :

−c(n)1c(n)i−1 = −b(n − 1)2n−1c(n − 1)Wn−1 (∗) +
{
b(n − 2)2n+i−4Mn−2 − . . .

+(−1)nb(2)n+iM2 + (−1)n+1b(1)n+i−1M1

}
· c(n) + R′′,

où :

R′′ =

{
b(n − 2)2n−4Wn−2 − . . . + (−1)n−1b(1)n−1W1

}
· Mn−2 − . . .

+(−1)n ·
{

b(2)nWn−2 − . . . + (−1)n−2b(2)4W2 + (−1)n−1b(1)3W1

}
·M2

+(−1)n−1 ·
{

b(1)n−1Wn−2 − . . . + (−1)n−2b(1)3W2 + (−1)n−1b(1)2W1

}
·M1.

5.5. Lemme. R′′ = c(n− 1)R.
Démonstration. On introduit les vecteurs de dimension n− 2 :

W =
(
(−1)n+1W1, (−1)n+2W2, . . . ,Wn−2

)
,

M =
(
(−1)n+1M1, (−1)n+2M2, . . . ,Mn−2

)
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et
b =

(
b(1)n+1, b(1)n+2, . . . , b(1)2n−2

)
.

Alors la définition de R′′ se récrit :

R′′ = M· C(n− 1) · Wt (5.5.1)

(où c(n− 1) = detC(n− 1), la matrice C(n− 2) étant symétrique) ; de plus,

R = b · Wt.

Maintenant développons les quantités Mi par rapport à la dernière ligne :

Mi = b(1)2n−2Mi,n−2 − b(1)2n−3Mi,n−3 + . . .+ (−1)n+2b(1)n+2Mi2

+(−1)n+1b(1)n+1Mi1

=
n−2∑

j=1

(−1)n+jb(1)n+jMij , i = 1, . . . , n− 2.

On remarque que les quantités Mij sont les mineurs de la matrice (n − 2) ×
(n− 2) C(n− 1). Il vient :

M = b · Ĉ(n− 1)

où
Ĉ(n− 1) =

(
(−1)i+jMij

)
,

donc Ĉ(n− 1) · C(n− 1) = c(n− 1). En substituant dans (5.5.1) :

R′′ = b · Ĉ(n− 1) · C(n− 1) · Wt = c(n− 1) · b · Wt = c(n− 1)R,

cqfd.

5.6. Il s’ensuit que pour vérifier l’identité (B) il reste à démontrer que

c(n)i + c(n)′′i + b(n− 2)2n+i−4Mn−2 − . . .

+(−1)nb(2)n+iM2 + (−1)n+1b(1)n+i−1M1 = b(n)2n+i−2c(n− 1).
(5.6.1)

Par contre, la quantité

b(n)2n+i−2c(n− 1) − b(n− 2)2n+i−4Mn−2 + . . .+ (−1)n+1b(2)n+iM2

+(−1)nb(1)n+i−1M1

n’est autre que le développement de c(n)′i suivant la dernière colonne, donc
(5.6.1) est équivalent à

c(n)i + c(n)′′i = c(n)′i (5.6.2)

qui a été déjà prouvée, cf. Corollaire 2.9.
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Ceci achève la démonstration du théorème 4.2, et donc du 1.5.

5.7. Démonstration du théorème 1.9. En fait, nous l’avons déjà montré :
la démonstration de la récurrence principale (3.3.2) n’utilise que les relations
dans l’algèbre B.

Ces relations sont vérifiées si l’on définit les variables b(i)j à partir de
coefficients de polynômes f1(x) et f2(x) comme dans 1.8, d’où l’assertion.

DEUXIÈME PARTIE

POLYNÔMES D’EULER ET DÉTERMINANT DE CAUCHY

§ 1 Nombres β(j)i

1.1. Rappelons que pour un polynôme

f(x) = anx
n + an−1x

n−1 + . . .+ a0

les nombres b(j)i sont définis par

b(j)i = n

j−1∑

p=0

(i− 2p)an−pan−i+p − j(n− i+ j)an−jan+j−i.

On introduit les quantités :
qi :=

ai−1

ai
,

ri :=
qi−1

qi
=
aiai−2

a2
i−1

,

puis

β(j)i :=
b(j)i

(n− i+ j)an−jan+j−i
=

j−1∑

p=0

n(i− 2p)
n− i+ j

· an−pan+p−i

an−jan+j−i
− j.

1.2. Par exemple :

β(1)2 =
2n
n− 1

· anan−2

a2
n−1

− 1 =
2n
n− 1

· rn − 1,

β(1)i =
ni

n− i+ 1
· anan−i

an−1an−i+1
− 1.

On remarque que

anan−i

an−1an−i+1
=
qn−i+1

qn
= rn−i+2rn−i+1 . . . rn.
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On définit les quantités

ψ(i, j) :=
j∏

p=i

rp

(donc ψ(i, j) = 1 si i > j). Il s’ensuit :

β(1)i =
ni

n− i+ 1
· ψ(n− i+ 2, n) − 1.

1.3. De même :
anan−i

an−2an−i+2
=

anan−i

an−1an−i+1
· an−1an−i+1

an−2an−i+2
= ψ(n− i+ 2, n)ψ(n− i+ 3, n− 1).

Par exemple :

anan−4

a2
n−2

= ψ(n− 2, n)ψ(n− 1, n− 1) = rn−2r
2
n−1rn.

Il en découle :

β(2)4 =
4n
n− 2

anan−4

a2
n−2

+
2n
n− 2

an−1an−3

a2
n−2

− 2=
4n
n− 2

rn−2r
2
n−1rn

+
2n
n− 2

rn−1 − 2,

β(2)i =
ni

n− i+ 2
anan−i

an−2an−i+2
+

n(i− 2)
n− i+ 2

an−1an−i+1

an−2an−i+2
− 2

=
ni

n− i+ 2
ψ(n− i+ 2, n)ψ(n− i+ 3, n− 1)

+
n(i− 2)
n− i+ 2

ψ(n− i+ 3, n− 1) − 2.

1.4. Un autre exemple :

anan−6

a2
n−3

= ψ(n− 4, n)ψ(n− 3, n− 1)ψ(n− 2, n− 2) = rn−4r
2
n−3r

3
n−2r

2
n−1rn.

1.5. En général on pose :

φ(n, j, i) :=
anan−i

an−jan−i+j
=

j−1∏

q=0

ψ(n− i+ j + q, n− q)

et l’on aura :

β(j)i =
j−1∑

p=0

n(i− 2p)
n− i+ j

· φ(n− p, j − p, i− p) − j.
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1.6. Passons maintenant aux déterminants c(n). On commence par un
exemple :

c(4) = det

⎛

⎝
b(1)2 b(1)3 b(1)4

b(1)3 b(2)4 b(2)5

b(1)4 b(2)5 b(3)6

⎞

⎠

= det

⎛

⎝
(n − 1)a2

n−1β(1)2 (n − 2)an−1an−2β(1)3 (n − 3)an−1an−3β(1)4

(n − 2)an−1an−2β(1)3 (n − 2)a2
n−2β(2)4 (n − 3)an−2an−3β(2)5

(n − 3)an−1an−3β(1)4 (n − 3)an−2an−3β(2)5 (n − 3)a2
n−3β(3)6

⎞

⎠

= (an−1an−2an−3)
2 · det

⎛

⎝
(n − 1)β(1)2 (n − 2)β(1)3 (n − 3)β(1)4

(n − 2)β(1)3 (n − 2)β(2)4 (n − 3)β(2)5

(n − 3)β(1)4 (n − 3)β(2)5 (n − 3)β(3)6

⎞

⎠ .

1.7. En général

c(m+ 1) =
( m∏

i=1

an−i

)2

×

× det

⎛

⎜⎜⎝

(n− 1)β(1)2 (n− 2)β(1)3 . . . (n−m)β(1)m+1

(n− 2)β(1)3 (n− 2)β(2)4 . . . (n−m)β(2)m+2

. . . . . .
(n−m)β(1)m+1 (n−m)β(2)m+2 . . . (n−m)β(m)2m

⎞

⎟⎟⎠ .

§ 2 Polynômes d’Euler et fonction hypergéométrique

2.1. Suivant [Euler], on définit les polynômes

En(x) =
1
2

{
(1 + ix/2n)2n + (1 − ix/2n)2n

}
. (2.1.1)

Donc, En(x) est un polynôme de degré 2n, avec le terme constant 1, ne con-
tenant que des puissances paires de x. Plus précisément,

En(x) =
n∑

k=0

(−1)k

(
2n
2k

)
x2k

(2n)2k
. (2.1.2)

Par exemple :

E1(x) = 1 − 1
4
x2,

E2(x) = 1 − 3
8
x2 +

1
256

x4,

E3(x) = 1 − 5
12
x2 +

5
432

x4 − 1
46656

x6,

E4(x) = 1 − 7
16
x2 +

35
2048

x4 − 7
65536

x6 +
1

16777216
x8.
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2.2. Rappelons que la fonction hypergéométrique de Gauß est définie par

F (α, β, γ, x) = 1 +
αβ

1 · γ x+
α(α+ 1)β(β + 1)

1 · 2 · γ(γ + 1)
x2

+
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

1 · 2 · 3 · γ(γ + 1)(γ + 2)
x3 + . . .

=
∞∑

i=0

ci(α, β, γ)xi,

où
ci(α, β, γ) =

α(α + 1) . . . (α+ i− 1) · β(β + 1) . . . (β + i− 1)
i! · γ(γ + 1) . . . (γ + i− 1)

,

cf. [Gauß]. Il s’ensuit :

ci(−n/2,−n/2 + 1/2, 1/2)

=
(−n/2)(−n/2 + 1). . .(−n/2 + i − 1)·(−n/2 + 1/2)(−n/2 + 3/2). . .(−n/2 + i − 1/2)

i! · (1/2)(1/2 + 1). . .(1/2 + i − 1)

=
(−1)i2−in(n − 2). . .(n − 2i + 2)·(−1)i2−i(n − 1)(n − 3). . .(n − 2i + 1)

i!·2−i·1·3·5. . .(2i − 1)

=
2−i · n(n − 1)(n − 2) . . . (n − 2i + 1)

2−i · 2 · 4 . . . 2i · 1 · 3 · 5 . . . (2i − 1)
=

(
n
2i

)
.

Donc

F (−n/2,−n/2+1/2, 1/2, x2) =
[n/2]∑

i=0

(
n
2i

)
x2i =

1
2
{(1+x)n+(1−x)n}. (2.2.1)

Il en découle :

tnF (−n/2,−n/2 + 1/2, 1/2, u2/t2) =
1
2
{(t+ u)n + (t− u)n}, (2.2.2)

cf. [Gauß], no. 5, formula II.

2.3. La formule (2.2.1) implique :

En(x) = F (−n,−n+ 1/2, 1/2,−x2/4n2). (2.3.1)

2.4. Si l’on écrit

En(x) =
n∑

k=0

enkt
2k, enk := (−1)k

(
2n
2k

)
1

(2n)2k

alors

enk = (−1)k 2n(2n− 1) . . . (2n− 2k + 1)
(2k)!(2n)2k

=
(−1)k

(2k)!
· 1 ·

(
1 − 1

2n

)(
1 − 2

2n

)
. . .

(
1 − 2k − 1

2n

)
,
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d’où

lim
n→∞ enk =

(−1)k

(2k)!
,

i.e.

lim
n→∞En(x) =

∞∑

k=0

(−1)k

(2k)!
x2k = cosx,

comme il faut. En d’autres termes,

lim
n→∞F (−n,−n+ 1/2, 1/2,−x2/4n2) = cosx,

ou, comme aurait pu écrire Gauß,

F (−k, k + 1/2, 1/2,−x2/4k2) = cosx,

k étant “un nombre infiniment grand” (denotante k numerum infinite mag-
num). En fait, Gauß écrivit

F (k, k′, 1/2,−x2/4kk′) = cosx,

denotante k, k′ numeros infinite magnos, cf. [Gauß], no. 5, formula XII.

§ 3 Asymptotiques

3.1. On pose :

fn(x) =
n∑

k=0

(−1)k

(
2n
2k

)
xk

(2n)2k
=

n∑

k=0

a
(n)
k xk. (3.1.1)

Donc
En(x) = fn(x2).

On désigne les quantités b(j)i, ri, etc. qui correspondent au polynôme fn en
ajoutant l’indice (n) en haut : b(j)(n)

i , r
(n)
i , etc.

Donc on aura :

c(m + 1)(n) =

( m∏

i=1

a
(n)
n−i

)2

×

× det

⎛

⎜⎜⎝

(n − 1)β(1)
(n)
2 (n − 2)β(1)

(n)
3 . . . (n − m)β(1)

(n)
m+1

(n − 2)β(1)
(n)
3 (n − 2)β(2)

(n)
4 . . . (n − m)β(2)

(n)
m+2

. . . . . .

(n − m)β(1)
(n)
m+1 (n − m)β(2)

(n)
m+2 . . . (n − m)β(m)

(n)
2m

⎞

⎟⎟⎠ .

3.2. On a :

a
(n)
i = (−1)i

(
2n
2i

)
,
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d’où

r
(n)
i =

a
(n)
i a

(n)
i−2

a
(n)2
i−1

=
[(2i− 2)!]2[(2n− 2i+ 2)!]2

(2i)!(2n− 2i)!(2i− 4)!(2n− 2i+ 4)!

=
(2i− 2)(2i− 3)

2i(2i− 1)
· (2n− 2i+ 1)(2n− 2i+ 2)
(2n− 2i+ 3)(2n− 2i+ 4)

.

En remplaçant i par n− i,

r
(n)
n−i =

(2i+ 1)(2i+ 2)
(2i+ 3)(2i+ 4)

· (2n− 2i− 2)(2n− 2i− 3)
(2n− 2i)(2n− 2i− 1)

.

On s’interesse aux valeurs limites :

r
(∞)
∞−i := lim

n→∞ r
(n)
n−i =

(2i+ 1)(2i+ 2)
(2i+ 3)(2i+ 4)

.

Il s’ensuit :

ψ(∞− i+ 2,∞) := lim
n→∞ψ(n− i+ 2, n) =

1 · 2
(2i− 1)2i

,

ψ(∞− i+ 3,∞− 1) =
3 · 4

(2i− 2)(2i− 3)
,

ψ(∞− i+ 4,∞− 2) =
5 · 6

(2i− 4)(2i− 5)
,

etc.

3.3. Maintenant on veut calculer

β(j)(∞)
i := lim

n→∞β(j)(n)
i .

Il est commode de poser :

B(j)∞i := β(j)(∞)
i + j.

On a :
B(1)(∞)

i = i · ψ(∞− i+ 2,∞) =
1

2i− 1
d’où

β(1)(∞)
i = −2(i− 1)

2i− 1
.

Ensuite,

B(2)(∞)
i = i · ψ(∞− i+ 2,∞)ψ(∞− i+ 3,∞− 1)

+(i− 2) · ψ(∞− i+ 3,∞− 1)

= ψ(∞− i+ 3,∞− 1) ·
{
B(1)(∞)

i + i− 2
}

=
3 · 4

(2i− 2)(2i− 3)
·
{

1
2i− 1

+ i− 2
}

=
3 · 2

2i− 1
,
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d’où

β(2)(∞)
i = −4(i− 2)

2i− 1
.

De même,

B(3)(∞)
i = ψ(∞− i+ 4,∞− 2) ·

{
B(2)(∞)

i + i− 4
}

=
5 · 6

(2i− 4)(2i− 5)
·
{

3 · 2
2i− 1

+ i− 4
}

=
5 · 3

2i− 1
,

d’où

β(3)(∞)
i = −6(i− 3)

2i− 1
.

3.4. En général, la récurrence évidente fournit

B(j)(∞)
i =

(2j − 1) · j
2i− 1

et

β(j)(∞)
i = −2j(i− j)

2i− 1
.

3.5. On définit les nombres

c(m+ 1)∞ := det

⎛

⎜⎜⎜⎜⎝

β(1)(∞)
2 β(1)(∞)

3 . . . β(1)(∞)
m+1

β(1)(∞)
3 β(2)(∞)

4 . . . β(2)(∞)
m+2

. . . . . .

β(1)(∞)
m+1 β(2)(∞)

m+2 . . . β(m)(∞)
2m

⎞

⎟⎟⎟⎟⎠
.

Donc on aura :
( m∏

i=1

a
(n)
n−i

)−2

· c(m+ 1)(n) = c(m+ 1)∞ · nm +O(nm−1).

Les calculs précédents fournissent par exemple :

c(4)∞ = det

⎛

⎜⎝

− 2
3 − 4

5 − 6
7

− 4
5

− 8
7

− 12
9

− 6
7 − 12

9 − 18
11

⎞

⎟⎠ = (−1)3 · 2 · 4 · 6 · det

⎛

⎜⎝

1
3

2
5

3
7

1
5

2
7

3
9

1
7

2
9

3
11

⎞

⎟⎠

= (−1)3 · 23 · (3!)2 · det

⎛

⎜⎝

1
3

1
5

1
7

1
5

1
7

1
9

1
7

1
9

1
11

⎞

⎟⎠ .
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En général on obtient

c(m+ 1)∞ = (−1)m · 2m · (m!)2 · det

⎛

⎜⎜⎜⎜⎝

1
3

1
5 . . . 1

2m+1

1
5

1
7 . . . 1

2m+3

. . . . . .

1
2m+1

1
2m+3 . . .

1
4m−1

⎞

⎟⎟⎟⎟⎠
.

On remarque que la dernière matrice (une variante de la matrice de Hilbert)
est du type Hankel.

3.6. Le déterminant

C(m+ 1) := det

⎛

⎜⎜⎜⎜⎝

1
3

1
5 . . . 1

2m+1

1
5

1
7 . . . 1

2m+3

. . . . . .

1
2m+1

1
2m+3 . . .

1
4m−1

⎞

⎟⎟⎟⎟⎠

est un cas particulier du déterminant calculé par Cauchy (d’où le caractère C),
cf. son Mémoire sur les fonctions alternées et sur les sommes alternées,
pp. 173–182 dans [Cauchy].

Rappelons que, étant données deux suites x1, . . . , xm et y1, . . . , ym, le
théorème de Cauchy dit que

det
(
(xi + yj)−1

)m
i,j=1

=

∏
1≤i<j≤m (xj − xi)(yj − yi)∏m

i,j=1 (xi + yj)

d’où, en posant xi = 2i− 2, yi = 2i+ 1,

C(m+ 1) =

∏
1≤i<j≤m (2j − 2i)2
∏m

i,j=1 (2i+ 2j − 1)
.
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Summary. In this article we provide a uniform construction of fields with all known
u-invariants. We also obtain the new values for the u-invariant: 2r + 1, for r > 3.
The main tools here are the new discrete invariant of quadrics (so-called elemen-
tary discrete invariant), and the methods of [14] (which permit one to reduce the
questions of rationality of elements of the Chow ring over the base field to that over
bigger fields, the generic point of a quadric).

Key words: Quadratic forms, Grassmannians, Chow groups, Algebraic
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1 Introduction

The u-invariant of a field is defined as the maximal dimension of anisotropic
quadratic forms over it. The problem of describing values of this invariant
is one of the major open problems in the theory of quadratic forms. Using
elementary methods it is easy to establish that the u-invariant cannot take
the values 3, 5, and 7. The conjecture of Kaplansky (1953) suggested that the
only possible values are the powers of 2 (by that time, examples of fields with
u-invariant being any power of 2 were known). This conjecture was disproved
by A. Merkurjev in 1991, who constructed fields with all even u-invariants.
The next challenge was to find out whether fields with odd u-invariant > 1
are possible at all. The breakthrough here was made by O. Izhboldin, who in
1999 constructed a field of u-invariant 9; see [4]. Still the question of other
possible values remained open. This paper suggests a new uniform method of
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constructing fields with various u-invariants. In particular, we get fields with
any even u-invariant without using the index reduction formula of Merkur-
jev. We also construct fields with u-invariant 2r + 1, for all r � 3. It should
be mentioned that O. Izhboldin conjectured the existence of fields with such
u-invariant, and suggested ideas on how to prove the conjecture. However,
this paper employs very different new ideas. One can see the difference in
the example of the u-invariant 9. I would say that our method uses substan-
tially coarser invariants (such as the generic discrete invariant of quadrics),
while the original construction used very subtle ones (such as the cokernel
on the unramified cohomology). Thus, this paper amply demonstrates that
u-invariant questions can be solved just with the help of “coarse” invariants.
The method is based on the new so-called elementary discrete invariant of
quadrics (introduced in this paper). This invariant contains important pieces
of information about the particular quadric, and at the same time, is quite
easy to work with. The field with the given u-invariant is constructed using
the standard field tower of A. Merkurjev. And the central problem is to con-
trol the behavior of the elementary discrete invariant while passing from the
base field to a generic point of a (sufficiently large) quadric. This is done us-
ing the general statement from [14] concerning the question of rationality of
small-codimensional classes in the Chow ring of an arbitrary smooth variety
under similar passage. The driving force behind all of this comes from the
symmetric operations in algebraic cobordism [12], [15].

Acknowledgments. I am very grateful to V. Chernousov, I. Fesenko,
J. Minac, and U. Rehmann for very useful discussions and helpful sugges-
tions, and to M. Zhykhovich for finding a mistake in the original version. This
text was partially written while I was visiting Indiana University, and I would
like to express my gratitude to this institution for their support and excellent
working conditions. The support of CRDF award RUM1-2661-MO-05, INTAS
05-1000008-8118, and RFBR grant 06-01-72550 is gratefully acknowledged.
Finally, I want to thank the referees for their very useful suggestions and
remarks.

2 Elementary Discrete Invariant

In this section we assume that the base field k has characteristic different
from 2. We will fix an algebraic closure k of k.

For the nondegenerate quadratic form q we will denote by the capital
letter Q the respective smooth projective quadric. The same applies to forms
p, p′, q′, . . . . The dimension of a quadric Q will be denoted by NQ, and if
there is no ambiguity, simply by N . We also set dQ := [NQ/2] (respectively,
d := [N/2]). For the smooth variety X we will denote by CH∗(X) the Chow
ring of algebraic cycles modulo rational equivalence on X , and by Ch∗(X) the
Chow ring modulo 2 (see [3] for details).
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To each smooth projective quadric Q/k of dimension N one can assign the
so-called generic discrete invariant GDI(Q) see [13], which is defined as the
collection of subrings

GDI(Q, i) := image(Ch∗(F (Q, i))→ Ch∗(F (Q, i)|k)),

for all 0 � i � d, where F (Q, i) is the Grassmannian of i-dimensional pro-
jective subspaces on Q, and the map is induced by the restriction of scalars
k → k. Note that F (Q, 0) is the quadric Q itself, and F (Q, d) is the last
Grassmannian.

For J ⊂ I ⊂ {0, . . . , d} let us denote the natural projection between partial
flag varieties F (Q, I) → F (Q, J) by π with subindex I with J underlined
inside it. In particular, we have projections

F (Q, i)
π(0,i)← F (Q, 0, i)

π(0,i)→ Q.

The Chow ring of a split quadric is a free Z-module with basis hs, ls,
0 � s � d, where ls ∈ CHs(Q|k) is the class of a projective subspace of dimen-
sion s, and hs ∈ CHs(Q|k) is the class of a plane section of codimension s; see
[11, Lemma 8].

In CH∗(F (Q, i)|k) we have special classes: Z
i−d

j ∈ CHj , N − d− i � j �

N − i, and W
i−d

j ∈ CHj , 0 � j � d− i, defined by

Z
i−d

j := (π(0,i))∗(π(0,i))∗(lN−i−j); W
i−d

j := (π(0,i))∗(π(0,i))∗(hi+j).

Let us denote by z
i−d

j and w
i−d

j the same classes in Ch∗. We will call

classes z
i−d

j elementary. Notice, that the classes w
i−d

j always belong to
GDI(Q, i).

Let Ti be the tautological (i + 1)-dimensional vector bundle on F (Q, i).
The following proposition explains the meaning of our classes.

Proposition 2.1. For any 0 � i � d and N − d− i � j � N − i,

c•(−Ti) =
d−i∑

j=0

W
i−d

j + 2
∑

d−i<j�N−i

Z
i−d

j .

Proof. Since T0 = O(−1) on Q, the statement is true for i = 0. Consider the
projections

F (Q, i)
π(0,i)← F (Q, 0, i)

π(0,i)→ Q.

Notice that F (Q, 0, i) is naturally identified with the projective bundle
PF (Q,i)(Ti), and the sheaf π∗

(0,i)(T0) is naturally identified with O(−1). Thus,

(π(0,i))∗(π(0,i))∗(c•(−T0)) = (π(0,i))∗(c•(−O(−1))) = c•(−Ti).

��
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Remark 2.2. In particular, for i = d we get another proof of [13, Theorem
2.5(3)].

Definition 2.3. Define the elementary discrete invariant EDI(Q) as the col-

lection of subsets EDI(Q, i) consisting of those j such that z
i−d

j ∈ GDI(Q, i).

One can visualize EDI(Q) as the coordinate d×d square, where some inte-
gral nodes are marked, each row corresponds to particular Grassmannian, and
the codimension of a “node” is decreasing up and to the right. The lower row
corresponds to the quadric itself, and the upper one to the last Grassmannian.
The southwest corner is marked if and only if Q is isotropic.

Example 2.4. EDI(Q) for the 10-dimensional excellent form looks like this:

• • • • ◦

• • ◦ • ◦

• • ◦ ◦ ◦

◦ • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

The following statement puts serious constraints on possible markings.

Proposition 2.5. Let 0 � i < d and j ∈ EDI(Q, i). Then j, j − 1 ∈
EDI(Q, i + 1).

This can be visualized as follows:

• •

•
�������

Proof. The proposition easily follows from the next lemma. Let us temporarily
denote π(i,i+1) by α, and π(i,i+1) by β.

Lemma 2.6.

α∗(Z
i−d

j ) = β∗(Z
i+1−d

j ) + c1(O(1)) · β∗(Z
i+1−d

j−1 );

α∗(W
i−d

j ) = β∗(W
i+1−d

j ) + c1(O(1)) · β∗(W
i+1−d

j−1 ), 0 � j < d− i;

α∗(W
i−d

d−i ) = 2β∗(Z
i+1−d

d−i ) + c1(O(1)) · β∗(W
i+1−d

d−i−1 ),

where O(1) is the standard sheaf on the projective bundle

F (Q, i, i + 1) = PF (Q,i+1)(T ∨
i+1),

for the vector bundle dual to the tautological one.
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Proof. By definition, Z
i−d

j , W
i−d

j have the form (π(0,i))∗(π(0,i))∗(x), for
certain x ∈ CH∗(Q|k). Since the square

F (Q, i, i + 1)
π(0,i,i+1)←−−−−−− F (Q, 0, i, i + 1)

π(i,i+1)

⏐⏐�
⏐⏐�π(0,i,i+1)

F (Q, i) ←−−−−
π(0,i)

F (Q, 0, i)

is transversal Cartesian, (π(i,i+1))∗ of such an element is equal to

(π(0,i,i+1))∗(π(0,i,i+1))∗(π(0,i))∗(x) = (π(0,i,i+1))∗(π(0,i,i+1))∗(π(0,i+1))∗(x).

Variety F (Q, 0, i, i + 1) is naturally a divisor D on the transversal product
F (Q, 0, i + 1) ×F (Q,i+1) F (Q, i, i + 1) with O(D) = π∗

(0,i,i+1)(O(h)) ⊗
π∗

(0,i,i+1)(O(1)), where O(h) is the sheaf given by the hyperplane section
on Q. Then

(π(0,i,i+1))∗(π(0,i,i+1))∗(π(0,i+1))∗(x) =

c1(O(1)) · (π(i,i+1))∗(π(0,i+1))∗(π(0,i+1))∗(x)+

(π(i,i+1))∗(π(0,i+1))∗(π(0,i+1))∗(h · x).

It remains to plug in the appropriate x. ��

Notice, that the projective bundle theorem

Ch∗(PF (Q,i+1)(T ∨
i+1)) = ⊕i

l=0c1(O(1))l · Ch∗(F (Q, i + 1))

implies that the element of this group is defined over k if and only if all of it’s

coordinates are. Since the cycle z
i−d

j is defined over k, by Lemma 2.6 the

cycles z
i+1−d

j and z
i+1−d

j−1 are defined too. ��

The following Proposition describes the EDI of the isotropic quadric.

Proposition 2.7. Let p′ = p ⊥ H be isotropic quadratic form (here H is a
2-dimensional hyperbolic form 〈1,−1〉). Then EDI of P and P ′ are related
as follows: for any NP − dP − i � j � NP − i

z
i−dP

j (P ) is defined ⇔ z
i+1−dP ′

j (P ′) is defined.

In other words, EDI(P ) fits well into EDI(P ′), if we glue their N-E corners.

Proof. The quadric P can be identified with the quadric of lines on P ′ passing
through the given rational point x. Then we have natural regular embedding

e : F (P, i)→ F (P ′, i + 1), with e∗(z
i+1−dP ′

j ) = z
i−dP

j and (⇐) follows.
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We have natural maps F (P, i)
f← (F (P ′, i + 1)\F (P, i))

g→ F (P ′, i + 1),
where the map f sends (i + 1)-dimensional plane πi+1 to Tx,P ′ ∩ (x + πi+1))
(expression in the projective space), and g is an open embedding. It is an

exercise for the reader, to show that f∗(z
i−dP

j (P )) = g∗(z
i+1−dP ′

j (P ′)).
It remains to observe that F (P, i) has codimension (NP − i + 1) > j inside
F (P ′, i + 1), and thus g∗ is an isomorphism on Chj . This proves (⇒).

��
If we have a codimension-1 subquadric P of a quadric Q, the EDI’s of

them are related by the following:

Proposition 2.8.

z
i−dQ

j (Q) is defined ⇒ z
i−dP

j (P ) is defined ;

z
i−dP

j (P ) is defined ⇒ z
i+1−dQ

j (Q) is defined .

Proof. Consider the natural embedding: e : F (P, i)→ F (Q, i). Then, it follows

from the definition that e∗(z
i−dQ

j ) = z
i−dP

j . To prove the second statement
just observe that Q is a codimension-1 subquadric in P ′, where p′ = p ⊥ H

(if q = p ⊥ 〈a〉, then p′ = q ⊥ 〈−a〉), and apply Proposition 2.7. ��
Unfortunately, the Steenrod operations (see [1, 17]), in general, do not

act on EDI(Q, i), since they do not preserve elementary classes. But they
act in the lower and the upper rows: for the quadric itself, and for the last
Grassmannian. Also, it follows from [13, Main Theorem 5.8] that EDI(Q, d)
carries the same information as GDI(Q, d). The same is true about EDI(Q, 0)
and GDI(Q, 0) for the obvious reasons.

The action of the Steenrod operations on the elementary classes can be
described as follows.

Proposition 2.9. Let 0 � i � d, and N − d− i � j � N − i. Then

Sm(z
i−d

j ) =
d−i∑

k=0

(
j − k

m− k

)
z

i−d

j+m−k · w
i−d

k ,

where elementary classes of codimension more than (N − i) are assumed to
be 0.

Proof. We recall from [1] that on the Chow groups modulo 2 of a smooth
variety X one has the action of Steenrod operations S• and S•, where the
former commute with the pullbacks for all morphisms, and the latter commute
with the pushforwards for proper morphisms. The relation between the upper
and the lower operations is given by

S• = S• · c•(TX).
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From this (and the description of the tangent bundle for the quadric and the
projective space) one gets that S•(ls) = (1 + h)N−s+1ls. Since (π0,i)∗(O(1))
is the sheaf O(1) on F (Q, 0, i) = PF (Q,i)(Ti),

S•(π(0,i))∗(lN−i−j) = c•(−TF (Q,0,i)) · (1 + H)i+j+1 · (π(0,i))∗(lN−i−j),

where H = c1(O(1)). Since S• commutes with the pushforward morphisms,

S•(z
i−d

j ) = S•(π(0,i))∗(π(0,i))∗(lN−i−j)

= (π(0,i))∗(c•(−Tfiber) · (1 + H)i+j+1 · (π(0,i))∗(lN−i−j)).

Recall that if V is a virtual vector bundle of virtual dimension M , and
c•(V)(t) :=

∑
k�0 ck(V) · tM−k, then for the divisor H , c•(V ⊗ O(H))(t) =

c•(V)(t + H), and c•(V ⊗O(H)) = c•(V ⊗O(H))(1) = c•(V)(1 + H).
Since c•(−Tfiber) = c•(−Ti ⊗ O(1)), by Proposition 2.1, (mod 2) this is

equal to
∑d−i

k=0 w
i−d

k (1 + H)−i−1−k. Thus,

S•(z
i−d

j ) =

(
d−i∑

k=0

w
i−d

k

)
(π(0,i))∗(π(0,i))∗((1 + h)j−klN−i−j)

=
∑

r�0

d−i∑

k=0

(
j − k

r − k

)
z

i−d

j+r−kw
i−d

k .

��

Remark 2.10. In particular, for i = d we get a new proof of
[13, Theorem 4.1].

The following fact is well known (see, for example, [2]). We will give an
independent proof below.

Proposition 2.11. The ring CH∗(F (Q, i)|k) is generated by the classes

Z
i−d

j , N − d− i � j � N − i, and W
i−d

j , 0 � j � d− i.

Proof. For 0 � l � i, let us denote the pullback of Z
l−d

j to F (Q, 0, . . . , i)
by the same symbol. On this flag variety we have natural line bundles Lk :=
Tk/Tk−1. Let us define hk := c1(L−1

k ).

Lemma 2.12. Let E/k be some field extension. Suppose that Q|E is split.

Then the ring CH∗(F (Q, 0, . . . , i)|E) is generated by W
l−d

j , 0 � l � i,

1 � j � d− l, and Z
l−d

j , 0 � l � i, N − d− l � j � N − l.
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Proof. Induction on i. For i = 0 the statement is evident.

Statement 2.13. Let π : Y → X be a smooth morphism to a smooth variety
X. For x ∈ X(r), let Yx be the fiber over the point x. Let ζ denote the generic
point of X, and sx : CH∗(Yζ) → CH∗(Yx) the specialization map. Let B ⊂
CH∗(Y ) be a subgroup. Suppose:

(a) the map B → CH∗(Yζ) is surjective;
(b) all the maps sx are surjective.

Then CH∗(Y ) = B · π∗(CH∗(X)).

Proof. On CH∗(Y ) we have decreasing filtration F •, where F r consists of
classes, having a representative with the image under π of codimension � r.
This gives the surjection:

⊕r ⊕x∈X(r) CH∗(Yx)→ grF• CHr+∗(Y ).

Let [x] ∈ CHr(X) be the class represented by the closure of x. Clearly, the
image of π∗([x]) · B covers the image of CH∗(Yx) in F r/F r+1. ��

Consider the projection

π(0,...,i−1,i) : F (Q, 0, . . . , i− 1, i)→ F (Q, 0, . . . , i− 1).

Let Q{i},x/E(x) be the fiber of this projection over the point x. It is a split
quadric of dimension N − 2i. Thus, the condition (b) of the Statement 2.13 is
satisfied. Since [Ti|Q{i},ζ

] = [Li] + i · [O] = [O(−hi)] + i · [O] in K0(Q{i},ζ), it
follows from Proposition 2.1 that

Z
i−d

j |Q{i},ζ
= lN−2i−j , W

i−d

j |Q{i},ζ
= hj

i .

We can take B additively generated by Z
i−d

j , N − d − i � j � N − 2i,

and W
i−d

j , 0 � j � d − i. Then the condition (a) will be satisfied too. The
induction step follows. ��

Lemma 2.6 implies that the Z
l−d

j , W
l−d

j , for l < i are expressible in

terms of Z
i−d

k , W
i−d

k and hm, 0 � m � i. Let A ⊂ CH∗(F (Q, i)) be

the subring generated by Z
i−d

j , W
i−d

j . Since F (Q, 0, . . . , i) is a variety
of complete flags of subspaces of the vector bundle Ti on F (Q, i), the ring
CH∗(F (Q, 0, . . . , i)) is isomorphic to

CH∗(F (Q, i))[h0, . . . , hi]/(σr(h)− cr(T ∨
i ), 1 � r � i + 1),
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where σr(h) are elementary symmetric functions on hk. But cr(T ∨
i ) ∈ A, by

Proposition 2.1. Since A and hm, 0 � m � i generate CH∗(F (Q, 0, . . . , i)), A
must coincide with CH∗(F (Q, i)). ��

In particular, since the cycles W
i−d

j are defined over k, we have:

Corollary 2.14. The graded part of CH∗(F (Q, i)|k) of degree less than (N −
d− i) consists of classes which are defined over k.

Notice that for i = d, Ch∗(F (Q, d)|k) is generated as a ring by z
0

j , and

moreover, GDI(Q, d) is always generated as a ring by the subset of z
0

j con-
tained in it; see [13, Main Theorem 5.8].

We will need one more simple fact.

Statement 2.15. The class of a rational point on F (Q, i)|k is given by the
product

2i∏

j=i

Z
i−d

N−j .

Proof. Use induction on N . Let x be a fixed rational point on Q|k. Then
we have a natural regular embedding e : F (P, i − 1) → F (Q, i), where P
is the (N − 2)-dimensional quadric of lines on Q passing through x, with

e∗(1) = Z
i−dQ

NQ−i (Q), and e∗(Z
i−dQ

NQ−j (Q)) = Z
i−1−dP

NP−j+1 (P ). Thus the induction
step follows from the projection formula. The base of induction is trivial. ��

3 Generic Points of Quadrics and Chow Groups

Everywhere below we will assume that the base field k has characteristic 0.
Although many things work for odd characteristics as well, the use of the
algebraic cobordism theory of M. Levine and F. Morel will require such an
assumption.

In this section I would like to recall the principal result of [14]. Let Q
be a smooth projective quadric, Y a smooth quasiprojective variety, and y ∈
Chm(Y |k). This will be our main tool in the construction of fields with various
u-invariants.

Theorem 3.1. ([14, Corollary 3.5], [15, Theorem 4.3].)
Suppose m < NQ − dQ. Then

y|
k(Q)

is defined over k(Q) ⇔ y is defined over k.
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Example 3.2. Let α = {a1, . . . , an} ∈ KM
n (k)/2 be a nonzero pure symbol,

and let Qα be the respective anisotropic Pfister quadric. Then in EDI(Qα)
the marked nodes will be exactly those that live above the main (northwest
to southeast) diagonal:

◦ • • ... • •

◦ ◦ • ... • •

◦ ◦ ◦ ... • •

... ... ... ... ... ...

◦ ◦ ◦ ... ◦ •

◦ ◦ ◦ ... ◦ ◦

Indeed, over its own generic point k(Qα), the quadric Qα becomes hy-
perbolic, and so all the elementary cycles are defined there. Then the cycles
above the main diagonal were defined already over the base field, since their
codimension is smaller than NQα − dQα . On the other hand, the northwest
corner could not be defined over k, since otherwise all the elementary cycles
on the last Grassmannian of Qα would be defined over k, but by Statement
2.15, the product of all these cycles is the class of a rational point on this
Grassmannian. Since Qα is not hyperbolic over k, this is impossible. The rest
of the picture follows from Proposition 2.5.

The proof of Theorem 3.1 uses algebraic cobordisms of M. Levine and
F. Morel. Let me say few words about the latter.

3.1 Algebraic Cobordisms

In [7] M. Levine and F. Morel have constructed a universal oriented generalized
cohomology theory Ω∗ on the category of smooth quasiprojective varieties over
the field k of characteristic 0, called algebraic cobordism.

For any smooth quasiprojective variety X over k, the additive group Ω∗(X)
is generated by the classes [v : V → X ] of projective maps from smooth
varieties V subject to certain relations, and the upper grading is the codi-
mensional one. There is a natural morphism of theories pr : Ω∗ → CH∗. The
main properties of Ω∗ are:

(1) Ω∗(Spec(k)) = L = MU(pt), the Lazard ring, and the isomorphism is given
by the topological realization functor;

(2) CH∗(X) = Ω∗(X)/L
<0 ·Ω∗(X).

On Ω∗ there is the action of the Landweber–Novikov operations (see [7,
Example 4.1.25]). Let R(σ1, σ2, . . .) ∈ L[σ1, σ2, . . .] be some polynomial, where
we assume deg(σi) = i. Then SR

L−N : Ω∗ → Ω∗+deg(R) is given by

SR
L−N([v : V → X ]) := v∗(R(c1, c2, . . .) · 1V ),

where cj = cj(Nv), and Nv := −TV + v∗TX is the virtual normal bundle.
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If R = σi, we will denote the respective operation simply by Si
L−N . The

following statement follows from the definition of Steenrod and Landweber–
Novikov operations; see P. Brosnan [1], A. Merkurjev [10], and M. Levine [6].

Proposition 3.3. There is commutative square

Ω∗(X)
Si

L−N−−−−→ Ω∗+i(X)
⏐⏐�

⏐⏐�

Ch∗(X) −−−−→
Si

Ch∗+i(X),

where Si is the Steenrod operation (mod 2) [1, 17].
In particular, using the results of P. Brosnan on Si (see [1]), we get the

following:

Corollary 3.4. (1) pr ◦ Si
L−N(Ωm) ⊂ 2 · CHi+m, if i > m;

(2) pr ◦ (Sm
L−N −�)(Ωm) ∈ 2 · CH2m, where � is the square operation.

This implies that (modulo 2-torsion ) we have well-defined maps pr◦Si
L−N

2

and pr◦(Sm
L−N−�)

2 . In reality, these maps can be lifted to well-defined so-called
symmetric operations Φti−m

: Ωm → Ωm+i, see [15]. Since over an algebraically
closed field all our varieties are cellular, and thus the Chow groups of them are
torsion-free, we will not need such subtleties, but we will keep the notation
from [15], and denote our maps by φti−m

.

3.2 Beyond Theorem 3.1

Below we will need to study the relation between the rationality of y and
y|

k(Q)
for codim(y) slightly bigger than NQ − dQ. The methods involved are

just the same as are employed for the proof of Theorem 3.1.
Let Y be a smooth quasiprojective variety, Q a smooth projective quadric.

Let v ∈ Ch∗(Y ×Q) be some element, and w ∈ Ω∗(Y ×Q) its arbitrary lifting
via pr. Over k, the quadric Q becomes a cellular variety with a basis of Chow
groups and cobordisms given by the set {li, hi}0�i�dQ of projective subspaces
and plane sections. This implies that

CH∗(Y ×Q|k) = ⊕dQ

i=0(CH∗(Y |k) · li ⊕ CH∗(Y |k) · hi)

and
Ω∗(Y ×Q|k) = ⊕dQ

i=0(Ω
∗(Y |k) · li ⊕ Ω∗(Y |k) · hi);

see [16, Section 2]. In particular,

v =
dQ∑

i=0

(vi · hi + vi · li) and w =
dQ∑

i=0

(wi · hi + wi · li).

Denote by C̃h
∗

the ring CH∗ /(2, 2-torsion).
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Proposition 3.5. Let Q be a smooth projective quadric of dimension � 4n−1,
Y a smooth quasiprojective variety, and v ∈ Ch2n+1(Y × Q) some element.
Then the class

v0 + S1(v1) + v1 · vNQ−2n + v0 · vNQ−2n−1

in C̃h
2n+1

(Y |k) is defined over k.

Corollary 3.6. Let Q be a smooth projective quadric of dimension � 4n− 1,
Y a smooth quasiprojective variety, and y ∈ Ch2n+1(Y |k) defined over k(Q).
Then, either

(a) z
−dQ

2n+1 (Q|k(Y )) is defined; or
(b) for certain v1 ∈ Ch2n(Y |k), and for a certain divisor vNQ−2n ∈ Ch1(Y |k),

the element
y + S1(v1) + v1 · vNQ−2n

in C̃h
2n+1

(Y |k) is defined over k.

Proof. Since y is defined over k(Q), there is x ∈ Ch2n+1(Y |k(Q)) such that
x = y|

k(Q)
. Using the surjection CH∗(Y ×Q) � CH∗(Y |k(Q)), lift the x to an

element v ∈ Ch2n+1(Y ×Q). Then v =
∑dQ

i=0(v
i · hi + vi · li), where v0|

k(Q)
=

y|
k(Q)

. But for any extension of fields F/k (with the smaller one algebraically
closed), the restriction morphism on Chow groups (with any coefficients) is
injective by the specialization arguments. Thus, v0 = y. It remains to apply
Proposition 3.5 and observe that if vNQ−2n−1 ∈ Ch0(Y |k) = Z/2 ·1 is nonzero,

then the class lNQ−2n−1 = z
−dQ

2n+1 is defined over k(Y ). In fact, this class is
just equal to v|k(Y ). ��

Remark 3.7. One can get rid of factoring (2-torsion) in the statements above
by using the genuine symmetric operations (see [15], cf. [14]) instead of the
Landweber–Novikov operations. As was explained above, for our purposes it
is irrelevant.

Before proving the proposition let us study a bit some special power series.
Denote by γ(t) ∈ Z/2[[t]] the power series 1 +

∑
i�0 t2

i

. Then γ(t) satisfies
the equation

γ2 − γ = t

and generates quadratic extension of Z/2(t). In particular, for any m � 0,
γm = amγ + bm for certain unique am, bm ∈ Z/2(t). The following statement
is clear.

Observation 3.8. (1) am+1 = am + bm, bm+1 = tam;
(2) am and bm are polynomials in t of degree � [m− 1/2] and [m/2], respec-

tively.
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For the power series β(t) let us denote by (β)�l the polynomial
∑l

j=0 βjt
j ,

and by (β)>l the remaining part β − (β)�l.

Lemma 3.9.
am = (γm)�[m/2] = (γm)�[m−1/2].

Proof. Let m = 2k + m1, where 0 � m1 < 2k. Then γm = γ2k · γm1 =
(am1γ + bm1) + O(t2

k

) = (1 +
∑k−1

i=0 t2
i

)am1 + bm1 + O(t2
k

). Observation
3.8 implies that (γm)�[m/2] = (1 +

∑k−1
i=0 t2

i

)am1 + bm1 . On the other hand,
γ2k

= γ + (
∑k−1

j=1 t2
j

); thus γm is equal to

⎛

⎝γ +

⎛

⎝
k−1∑

j=1

t2
j

⎞

⎠

⎞

⎠ (am1γ + bm1)

= am1γ + am1t +

⎛

⎝
k−1∑

j=1

t2
j

⎞

⎠ am1γ + bm1γ +

⎛

⎝
k−1∑

j=1

t2
j

⎞

⎠ bm1

=

((
1 +

k−1∑

i=0

t2
i

)
am1 + bm1

)
γ +

⎛

⎝tam1 +

⎛

⎝
k−1∑

j=1

t2
j

⎞

⎠ bm1

⎞

⎠ .

Hence, am = ((1 +
∑k−1

i=0 t2
i

)am1 + bm1) = (γm)�[m/2]. The second equality
follows from Observation 3.8(2). ��

Lemma 3.9 implies that

γm = (γm)�[m−1/2] · γ + t(γm−1)�[m−2/2].

Lemma 3.10.
(γm)>[m/2] = tm(1 + mt) + O(tm+2)

Proof. Use induction on m and on the number of 1’s in the binary presentation
of m. For m = 2k the statement is clear. Let now m = 2k + m1, where
0 < m1 < 2k. We have (γm)>[m/2] = ((γm+1)�[m/2])>[m/2] + t((γm)�[m−1/2] ·
γ−1)>([m/2]−1) = t(am · γ−1)>[m/2]−1.

We also have am = (γm)�[m/2] = (γ2k · γm1)�[m/2] = (γm1)�[m/2] =
(am1γ + bm1)�[m/2], and since the degrees of am1 and bm1 are no more than
[m1/2], this expression should be equal to γm1 + am1t

2k

+ O(t2
k+1

). Then

am · γ−1 = γm1−1 + am1γ
−1t2

k

+ O(t2
k+1

)

= (am1−1γ + bm1−1) + am1γ
−1t2

k

+ O(t2
k+1

)

= (am1−1

(
1 +

k−1∑

i=0

t2
i

)
+ bm1−1) + t2

k

(am1−1 + am1γ
−1) + O(t2

k+1
).
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Since the degree of am1−1 is no more than [m1/2] − 1, using Observation
3.8(1), we get

(am · γ−1)>[m/2]−1 = t2
k

(am1−1 + am1γ
−1) + O(t2

k+1
)

= t2
k

(γm1−2 + am1−1γ
−1) + O(t2

k+1
)

= t2
k

γ−1(γm1−1 + (γm1−1)�[m1−1/2]) + O(t2
k+1

).

Consequently, (γm)>[m/2] = t2
k+1(γm1−1)>[m1−1/2] · γ−1 + O(t2

k+1
). And by

the inductive hypothesis, this is equal to

t2
k+1(tm1−1(1 + (m1 − 1)t))γ−1 + O(t2

k+m1+2) = tm(1 + mt) + O(tm+2).

��

Corollary 3.11.

(am · γ−1)>[m/2]−1 = tm−1(1 + mt) + O(tm+1).

Observe now that γ−1(t) =
∑

i�0 t2
i−1. Denote by δ(t) the polynomial

a2n+1(t). Then

δ(t)γ−1(t) = α(t) + t2n + t2n+1 + O(t2n+2), (1)

where δ(t) and α(t) are polynomials of degree � n. Observation 3.8(1) shows
that δ = 1 + t + · · · . For us it will be important that δ(t)γ−1(t) does not
contain monomials of degrees from (n + 1) to (2n− 1), but contains t2n and
t2n+1.

Proof (of Proposition 3.5). The idea of the proof is the following: having
some element v ∈ Ch2n(Y ×Q), we first lift it via pr to some w ∈ Ω∗(Y ×Q),
then restrict w to Y × Qs for various subquadrics Qs of Q, and apply to
these restrictions the combination of the symmetric operations φti

and (πY,s)∗
(see below) in a different order. The point is that by adding the results with the
appropriate coefficients one can get the expression in question. In particular,
all the choices made while lifting to Ω∗ will be canceled out. And the needed
coefficients are provided by the power series δ(t) above.

The case of dim(Q) � 4n− 1 can be reduced to that of dim(Q) = 4n− 1
by considering an arbitrary subquadric Q′ ⊂ Q of dimension 4n − 1, and
restricting v to Y ×Q′. So, we will assume that dim(Q) = 4n− 1.

Let Qs
es→ Q be an arbitrary smooth subquadric of Q of dimension s.

Denote by w(s) the class (id× es)∗(w) ∈ Ω2n+1(Qs × Y ). Then

w(s) =
∑

0�i�min(2n−1,s)

wi · hi +
∑

4n−s−1�j�2n−1

wj · lj−4n+s+1.

Let πY,s : Qs × Y → Y be the natural projections.
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Consider the element

u := (πY,2n+1)∗φt0(w(2n + 1)) +
2n+1∑

p=n+1

δ2n+1−pφ
t2p−(2n+1)

(πY,p)∗(w(p))

in Ch2n+1(Y ), where δj are the coefficients of the power series δ above. Let
us compute u. Since we are computing modulo 2-torsion, it is sufficient to
compute 2u, which is equal to the Chow trace of

(πY,2n+1)∗(S2n+1
L−N −�)(w(2n + 1)) +

2n+1∑

p=n+1

δ2n+1−pS
p
L−N(πY,p)∗(w(p)).

Using the multiplicative properties of the Landweber–Novikov operations,

Sa
L−N(x · y) =

∑

b+c=a

Sb
L−N(x)Sc

L−N (y),

and Proposition 3.3, we get (modulo 4)

pr(πY,2n+1)∗S2n+1
L−N (w(2n + 1)) =

2n−1∑

j=0

(
j

2n− j + 1

)
· 2 · Sj(vj)

+ pr(
(

2n + 1
1

)
· S2n

L−N(w2n−1)

+
(

2n + 2
0

)
· S2n+1

L−N (w2n−2)).

The codimension of vj is 2n + 1 − j; thus either
(

j
2n−j+1

)
is zero, or Sj(vj)

is, and our expression is equal to pr(S2n
L−N (w2n−1) + S2n+1

L−N (w2n−2)). Also,
(modulo 4),

pr(πY,2n+1)∗�(w(2n + 1)) = 2 · pr(w0w2n−2 + w1w2n−1).

In the same way (modulo 4),

prSp
L−N (πY,p)∗(w(p)) =

min(2n−1,p)∑

j=0

(
−(p + 2− j)

p− j

)
· 2 · Sj(vj)

+pr(
p−2n∑

i=0

(
−(i + 1)

i

)
Sp−i

L−N(wi+4n−1−p)).

Observe that the second sum is empty for p < 2n, is equal (modulo 4) to
prS2n

L−N (w2n−1) for p = 2n, and to prS2n+1
L−N (w2n−2) for p = 2n + 1 (we used

here Corollary 3.4).
Since the coefficient

(−(l+2)
l

)
is odd if and only if l = 2k − 1, for some k,

the first sum is equal to

2
min(2n−1,p)∑

j=0

(γ−1)p−j · Sj(vj).
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Taking into account that δ(t) = 1 + t + · · · , we get

pr

2n+1∑

p=n+1

δ2n+1−pS
p
L−N(πY,p)∗(w(p))

= 2
2n+1∑

p=n+1

min(2n−1,p)∑

j=0

δ2n+1−p(γ−1)p−j · Sj(vj)

+ (prS2n
L−N (w2n−1) + prS2n+1

L−N (w2n−2))

= 2
2n−1∑

j=0

(δ · γ−1)2n+1−jS
j(vj) + (prS2n

L−N (w2n−1) + prS2n+1
L−N (w2n−2))

= 2(v0 + S1(v1)) + (prS2n
L−N (w2n−1) + prS2n+1

L−N (w2n−2)),

in light of formula (1) and Corollary 3.4.
Putting things together (and again using Corollary 3.4), we obtain

2u = 2(v0 + S1(v1) + v1 · v2n−1 + v0 · v2n−2).

Since u is defined over the base field k, the proposition is proven. ��

There is another result that extends a bit Theorem 3.1.

Proposition 3.12. ([14, Statement 3.8]) Let Y be a smooth quasiprojective
variety, Q a smooth projective quadric over k. Let y ∈ Chm(Y |k). Suppose

z
0

NQ−dQ
(Q) is defined. Then for m � NQ − dQ,

y|k(Q) is defined over k(Q) ⇔ y is defined over k.

Proposition 3.12 extends Theorem 3.1 in the direction of the following:

Conjecture 3.13. ([14, Conjecture 3.11]) In the notation of Theorem 3.1,

suppose z
NQ−dQ−l

l (Q) is defined. Then for any m � l,

y|k(Q) is defined over k(Q) ⇔ y is defined over k.

This conjecture is known for l = NQ − dQ, NQ − 1, NQ.

3.3 Some Auxiliary Facts

For our purposes it will be important to be able (under certain conditions) to
get rid of the last term in the formula from Proposition 3.5. For this we will
need the following facts.
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Proposition 3.14. Let 0 � i � dR, and let F (R, i) α← F (R, 0, i)
β→ R be the

natural projections. Let z
i−dR

NR−i be defined. Let t ∈ ChNR−i(F (R, i)) be such

that β∗α∗(t) = 1 ∈ Ch0(R). Then β∗α∗(t · z
i−dR

NR−i ) = li ∈ Chi(R).

Proof. By the definition, z
i−dR

NR−i = α∗β∗(l0). By the projection formula,

α∗β∗(t · z
i−dR

NR−i ) = β∗α∗(t · z
i−dR

NR−i ) = β∗α∗α∗(α∗(t) · β∗(l0)).

Again by the projection formula, β∗(α∗(t) · β∗(l0)) = l0. Thus, α∗(t) · β∗(l0)
is a zero cycle of degree 1 on F (R, 0, i), and α∗(α∗(t) · β∗(l0)) is a zero cycle
of degree 1 on F (R, i). The proposition follows. ��

Let v ∈ Chm(Y ×Q) be some element. Then

v =
dQ∑

i=0

(vi · hi + vi · li).

Statement 3.15. Suppose z
NQ−m−d

m (Q) is defined. Then for any v as above,
there exists u ∈ Chm(Y ×Q) such that u0 = v0, and uNQ−m = 0.

Proof. If vNQ−m = 0, there is nothing to prove. Otherwise, the class lNQ−m ∈
ChNQ−m(Q|k(Y )) is defined. Indeed, let

ρX : Ch∗(Y ×X) � Ch∗(X |k(Y ))

be the natural restriction. Then ρQ(v) = lNQ−m plus λ · hm, if 2m = NQ

(notice that vNQ−m ∈ Ch0). This implies that the class lNQ−m = z
−dQ

NQ−m

is defined on Q|k(Y ). Using Proposition 2.5 and Statement 2.15, we get that
the class of a rational point is defined on F (Q, NQ − m)|k(Y ) (this proof is
somewhat longer than the standard one, but it does not use the theorem of
Springer (see [5])!). Let x ∈ Chdim(Y )(F (Q, NQ − m) × Y ) be an arbitrary
lifting of this class with respect to ρF (Q,NQ−m). Let

F (Q, NQ −m) α← F (Q, 0, NQ −m)
β→ Q

be the natural projections. Consider u′ := (β×id)∗(α×id)∗(x) ∈ Chm(Q×Y ).
Proposition 3.14 implies that the (defined over k) cycle

u′′ := π∗
Y (πY )∗((hNQ−m × 1Y ) · (β × id)∗(α× id)∗(x · z

NQ−m−d

m (Q)))

satisfies: u′′0 = u′0, and (evidently) u′′
NQ−m = 0. Since u′

NQ−m = 1 =
vNQ−m, it remains to take: u := v − u′ + u′′. ��
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4 Even u-invariants

The fields of any given even u-invariant were constructed by A. Merkurjev in
[9] using his index-reduction formula for central simple algebras. The idea of
such a construction is based on the so-called Merkurjev tower of fields, which
was first used in [8]. In our case, this tower is constructed as follows: Let F
be any field, and let SF be the set of all (isomorphism classes of) quadrics
over F of dimesion > (M − 2). Let F ′ := limI⊂SF F (×i∈IQi), where the
limit is taken over all finite subsets of SF via the natural restriction maps.
Then starting from an arbitrary field k one constructs the tower of fields
k = k0 → k1 → · · · → kr → · · · , where kr+1 := (kr)′. One gets the huge field
k∞ := limr kr having the property that all forms of dimension > M over it are
isotropic, and thus u(k∞) � M . But to get a field whose u-invariant is exactly
M , one has to start with some special field k, and since one wants to have some
anisotropic M -dimensional form p over k∞, it is better to have it already over
k, and then check that p will not become isotropic while passing from k to k∞.
Of course, to be able to control this, we need to know something interesting
about p. That is, we need to control some other property that implies ours.
More precisely, for a given base field k, on the set of field extensions E/k we
should define two properties A and B, where

A(E) is satisfied ⇔ p|E is anisotropic,

so that the following conditions are satisfied:

(1) B ⇒ A.
(2) B(E)⇒ B(E(Q)), for an arbitrary quadric Q/E of dimension > dim(P ).
(3) Let {Ej}j∈J be the directed system of field extensions with the limit E∞.

Then B(Ej) for all j implies B(E∞).

Then B(k)⇒ A(k∞). So if one finds a quadratic form p of dimension M over
k and some property B satisfying the above conditions (and such that B(k)
is satisfied), then k∞ will have u-invariant M .

In the case that M = 2n is even A. Merkurjev takes p ∈ I2 and the
following property B:

B(E) is satisfied ⇔ C+
0 (p|E) is a division algebra,

where C+
0 (p) is the “half” of the even Clifford algebra C0(p) = C+

0 (p)×C−
0 (p)

(both factors are isomorphic here). Of course, for B(k) to be satisfied one has
to start with some form p for which C+

0 is a division algebra over the base
field. The generic form from I2 (that is, the form 〈a1, . . . , a2n−1, (−1)na1 · · ·
a2n−1〉/k = k0(a1, . . . , a2n−1)) will do the job. The condition (1) is satisfied;
since the isotropy of p|E gives the matrix factor in C+

0 (p|E) ([5]), and the
condition (3) is clear. The only nontrivial fact here is the condition (2), which
follows from the index reduction formula of Merkurjev, claiming that over
the generic point of a quadric Q the index of a division algebra D can drop
at most by the factor 2, and the latter happens if and only if C0(q) can be
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mapped to D. Indeed, if p is of dimension 2n, then C+
0 (p) is a central simple

algebra of rank 2n−1, and C0(q) is either a simple algebra, or a product of
two simple algebras of large rank (this will not be true for odd-dimensional
p!); thus there is no ring homomorphisms C0(q) → C+

0 (p), and the index of
C+

0 (p|E) is equal to that of C+
0 (p|E(Q)).

Let me give another construction, which does not use the index reduction
formula. Instead, I will use the northwest corner of the EDI and the property

B(E) is satisfied ⇔ z
0

NP−dP
(P |E) is not defined.

Statement 4.1. Let M = dim(p) be even. Then our property B satisfies the
above conditions (1− 3).

Proof. Condition (1) follows from Proposition 2.5, since the property A(E) is
satisfied ⇔ the southwest corner of the EDI is not defined for P |E . Condition

(3) is clear, since CH∗(X |E∞) = limj CH∗(X |Ej ). Finally, suppose z
0

n−1(P |E)
is not defined. Then, by Theorem 3.1, for any form q of dimension > M ,

z
0

n−1(P |E(Q)) is not defined as well (will not work for M odd). Thus, condition
(2) is satisfied. ��

Corollary 4.2. (A. Merkurjev, [9]) For each M = 2n there is a field of the
u-invariant M .

Proof. Take any form p/k of dimension M such that z
0

n−1(P ) is not defined.
One can use the generic form; see [14, Statement 3.6]. Then B(k) is satisfied,
and hence A(k∞) is satisfied too. ��

5 Odd u-invariants

Let us analyze a bit the above construction. Instead of working with the cycle

z
−dP

NP
, the class of a rational point on a quadric P , we worked with the

(smaller codimensional!) cycle z
0

NP−dP
, and used the fact that rationality of

the former implies rationality of the latter (Proposition 2.5).

Unfortunately, for odd-dimensional forms we cannot use the class z
0

NP−dP
.

Indeed, if p is any such form, then for q := p ⊥ 〈det±(p)〉, z
0

NP−dP
(P |k(Q)) will

be defined, since the rationality of this class is equivalent to the rationality of

z
0

NQ−dQ
(Q|k(Q)), observe that

G(Q, dQ) = G(P, dP )
∐

G(P, dP ),
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and the rationality of the latter follows from the rationality of the class

z
−dQ

NQ
(Q|k(Q)) (isotropy of Q|k(Q)). So, even if we start from the form where

our class is not defined, over the generic point of some bigger-dimensional
form it will become rational, and we cannot control anisotropy of P .

But the rationality of z
−dP

NP
implies rationality not just of z

0

NP−dP
, but

of all the west edge z
−s

NP−dP +s, 0 � s � dP . So, let us use these other cycles.
Let the form p have dimension 2r + 1. In this case, one can use the next-

to-last Grassmannian and the class z
−1

2r−1+1 on it.

Theorem 5.1. Let dim(p) = 2r + 1, r � 3, and suppose EDI(P ) looks like
this:

?� ◦ ... ◦

◦ ◦ ... ◦

... ... ... ...

◦ ◦ ... ◦

Let dim(q) > dim(p). Then EDI(P |k(Q)) has the same property.

Corollary 5.2. For any r � 3 there is a field of the u-invariant 2r + 1.

Proof. Start with the generic form p over k = k0(a1, . . . , a2r+1) and the prop-
erty

B(E) is satisfied ⇔ EDI(P |E) is as in Theorem 5.1,

Then EDI(P ) is empty. This follows from Proposition 2.5 and [14, Statement
3.6]. Thus, B(k) is satisfied. Condition (1) is satisfied by the definition of A
and B. Condition (3) is satisfied since CH∗(X |E∞) = limj CH∗(X |Ej ). And
the condition (2) is equivalent to Theorem 5.1. Then, as we know, A(k∞) is
satisfied, and u(k∞) = 2r + 1. ��

Proof (of Theorem 5.1). Let d := dP = 2r−1− 1. It follows from Theorem 3.1

that the cycles z
0

j (P |k(Q)), 1 � j � d are not defined. That is, we have ◦’s
to the right of ?�. In light of Proposition 2.5, it remains only to treat the case

of z
−1

d+2 (P |k(Q)) (that is, the node just below the ?�).
This is done as follows. If this cycle is defined over k(Q), we can lift it to a

cycle v on F (P, d− 1)×Q. Over k, quadric Q becomes cellular, and our cycle
decomposes in a standard way, producing coordinates vi, vi. Using the fact
that dim(q) = 2r + 1, r � 3, one can correct v in such a way that the “last”
of these coordinates will be zero. This is done by some play with elementary
classes using Theorem 3.1, Proposition 3.12, Proposition 2.9, and other major
statements, and is the most delicate part of the proof (in particular, it is
the only place where the high specific of the dimension is used; everything
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else works for dim(q) ≡ 1 (mod4)). After this is achieved, one can apply
Proposition 3.5, and get a k-rational class on F (P, d − 1) given by the sum
of Four terms, the last of which will be zero because of our choice of v. Now,
from knowledge of the action of the Steenrod operations it is not difficult
to prove that the obtained k-rational class is nonzero. Finally, we use the
information about elementary classes on F (P, d) and the main result of [13]

to conclude that our nonzero k-rational class on F (P, d− 1) should be z
−1

d+2 .
This contradiction proves the theorem.

In more detail, suppose z
−1

d+2 (P |k(Q)) is defined. We clearly can assume
that dim(q) = dim(p) + 1 = 2r + 2. Let us denote F (P, d − 1) temporarily

by Y . We have y ∈ Chd+2(Y |k(Q)) such that y = z
−1

d+2 ∈ Chd+2(Y |
k(Q)

). Let

us lift it to v ∈ Chd+2(Y × Q) via the natural projection Chd+2(Y × Q)
ρY�

Chd+2(Y |k(Q)).

Statement 5.3. There exists v ∈ Chd+2(Y ×Q) such that v0 = y and vd =
0 ∈ Ch0(Y |k).

Proof. Let v be an arbitrary lifting of y with respect to ρY . If vd = 0, there

is nothing to prove. Otherwise, let us show that z
−1

2r−1+1(Q) is defined over k.
Suppose vd �= 0; then it is equal to 1 ∈ Ch0(Y |k). Then ρQ(v) = ld ∈

Chd(Q|k(Y )) = Z/2 · ld. Thus, z
−dQ

d+2 (Q|k(Y )) is defined. By Proposition 2.5,

z
−2

3 (Q|k(Y )) is defined too (it lives in the same column above). Let us say

that z̃ is defined if either z
−2

3 , or z
−2

3 +z
−2

2 w
−2

1 is defined. In particular,
we know that z̃(Q|k(Y )) is defined. We want to show that z̃(Q) is defined.

Consider the two towers of fibrations

Spec(k)← P ← . . .← F (P, 0, 1, . . . , d− 1),
Spec(k)← Q← . . .← F (Q, 0, 1, . . . , d− 1),

with the generic fibers quadrics P = P1, . . . , Pd, Q = Q1, . . . , Qd of dimension
2d + 1, 2d− 1, . . . , 3, and 2d + 2, 2d, . . . , 4, respectively. Let us define ka,b :=
k(F (P, 0, . . . , a− 1)× F (Q, 0, . . . , b− 1)). Then

ka+1,b = ka,b(Pa) and ka,b+1 = ka,b(Qb).

Since we have embeddings of fields

k ⊂ k(Y ) = k(F (P, d− 1)) ⊂ k(F (P, 0, . . . , d− 1)) = kd,0,

z
−2

3 (Q|kd,0) is defined. Then by Proposition 2.5, z
0

1 (Q|kd,0) is defined. By

Theorem 3.1, z
0

1 (Q) and z
0

2 (Q) = (z
0

1 (Q))2 = S1(z
0

1 (Q)) are defined.
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It follows from Propositions 2.9 and 2.11 that for arbitrary elements α, β ∈
Ch∗(F (Q, d−1)|ka−1,0

) of codimension 2 and 1, respectively, the class S1(α)+

α·β modulo classes defined over any field is either equal to 0, or to z
−2

2 w
−2

1 .
It follows from Corollary 3.6 that

z̃(Q|ka,0) is defined ⇒

⎧
⎪⎪⎨

⎪⎪⎩

either z̃(Q|ka−1,0) is defined;

or z
−dPa

3 (Pa|ka−1,d
) is defined.

and dPa � 3.

Let us show that the second case is impossible. By Proposition 2.5,

z
−dPa

3 (Pa|ka−1,d
) is defined ⇒ z

0

3−dPa
(Pa|ka−1,d

) is defined

Since 3− dPa � 2, dim(Qb) � 4, and z
0

2 (Qd) is defined, by Proposition 3.12
and Theorem 3.1,

z
0

3−dPa
(Pa|ka−1,b

) is defined ⇒ z
0

3−dPa
(Pa|ka−1,b−1 ) is defined

Then z
0

3−dPa
(Pa/ka−1,0) is defined, and z

0

3−dPa
(P ) is defined (by Theorem

3.1). This contradicts the conditions of our theorem (here we are using the
fact that r � 3). Thus,

z̃(Q|ka,0) is defined ⇒ z̃(Q|ka−1,0) is defined,

and consequently, z̃(Q) is defined. Denoting π(d−1,d) as γ, and π(d−1,d) as δ,
from Lemma 2.6, we have: γ∗(z̃) is equal either to

δ∗(z
−1

3 ) + c1(O(1)) · δ∗(z
−1

2 ), or to

δ∗(z
−1

3 + z
−1

2 w
−1

1 ) + c1(O(1)) · δ∗(z
−1

1 w
−1

1 ) + c1(O(1))2 · δ∗(z
−1

1 )

Using the arguments from the proof of Proposition 2.5, we get, in the first case,

that z
−1

3 (Q) is defined, and in the second, that z
−1

1 is defined, hence z
−1

2 =

S1(z
−1

1 )+z
−1

1 w
−1

1 is defined, and, finally, z
−1

3 = (z
−1

3 +z
−1

2 w
−1

1 )+

z
−1

2 w
−1

1 is defined. In any case, z
−1

3 (Q) is defined. Proposition 2.9 implies
that

z
−1

2r−1+1
(Q) = S2r−2

S2r−3 · · ·S2(z
−1

3 (Q))

is also defined over k. Since z
−1

2r−1+1
(Q) is defined, everything follows from

Statement 3.15. ��
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Consider v ∈ Chd+2(Y × Q) satisfying the conditions of Statement 5.3.
As above, v =

∑2r−1

i=0 (vi · hi + vi · li). Then, by Proposition 3.5, the class
v0 + S1(v1) + v1v2r−1 + v0v2r−1−1 is defined over k. But v2r−1−1 = 0. Thus
on Y we have the class v0 + S1(v1) + v1v2r−1 defined over k.

Now it is time to use the specifics of Y and v. Our Y is a Grassmannian
F (P, d − 1). In particular, it is a geometrically cellular variety, and the map

Ch∗(Y |k)→ Ch∗(Y |k(Q)) is an isomorphism. Thus, v0 = z
−1

d+2 . On the other
hand, v2r−1 = vd+1 belongs to Ch1(Y |k), and so is equal either to 0, or to

w
−1

1 . So, on F (P, d− 1) we have a class either of the form z
−1

d+2 +S1(v1), or

of the form z
−1

d+2 + S1(v1) + v1w
−1

1 defined over k. The following statement
shows that such a class should be nonzero.

Statement 5.4. Let R be a smooth projective quadric of dimension 4n − 1.

Then z
−1

NR−dR+1(R) belongs to the image of neither of the following two maps:

S1, (S1 + w
−1

1 · ) : ChNR−dR(F (R, dR − 1))→ ChNR−dR+1(F (R, dR − 1)).

Proof. We can assume that k = k. Consider the natural projections

F (R, dR − 1) α← F (R, dR − 1, dR)
β→ F (R, dR).

The map β provides F (R, dR−1, dR) with the structure of the projective bun-
dle PF (R,dR)(T ∨

dR
), and the Chern classes of TdR are divisible by 2; see Proposi-

tion 2.1 (and [13]). Thus, Ch∗(F (R, dR−1, dR)) = Ch∗(F (R, dR))[h]/(hdR+1),
where h = c1(O(1)). By Lemma 2.6,

α∗(z
−1

NR−dR+1) = β∗(z
0

NR−dR
) · h, and h = α∗(w

−1

1 ).

The first fact now is simple, since

S1(α∗(z
−1

NR−dR+1)) = S1(β∗(z
0

NR−dR
) · h) = β∗(z

0

NR−dR
) · h2,

by Proposition 2.9, and the latter element is nonzero. Thus, even α∗(z
−1

NR−dR+1)
cannot be in the image of S1, since S1 ◦ S1 = 0.

To prove the second fact, observe that

α∗(z
−1

NR−dR+1) = β∗(z
0

NR−dR
) · h = (S1 + h · )(β∗(z

0

NR−dR
)).

Let u ∈ ChNR−dR(F (R, dR−1)) be such that (S1 +w
−1

1 · )(u) = z
−1

NR−dR+1.

Then (S1 + h · )(β∗(z
0

NR−dR
) − α∗(u)) = 0. Since dR is odd, the differ-

ential (S1 + h · ) acts without cohomology on Ch∗(F (R, dR))[h]/(hdR+1).



684 Alexander Vishik

Consequently, (β∗(z
0

NR−dR
) − α∗(u)) = (S1 + h · )(w), for certain w ∈

ChNR−dR−1(F (R, dR − 1, dR)). This implies

α∗β∗(z
0

NR−dR
) = α∗(S1 + h · )(w),

since α∗α∗ = 0. Notice that α : F (R, dR − 1, dR) → F (R, dR − 1) is

a conic bundle with relative tangent sheaf α∗(O(w
−1

1 )) = O(h). Thus,

α∗(S1 + h · )(w) = S1(α∗(w)), and α∗α∗(β∗(z
0

NR−dR
)) = S1(α∗α∗(w)). But

α∗α∗(β∗(z
0

NR−dR
)) = hNR−dR−1 = hdR , and this element is not in the image

of S1, as one can easily see. The contradiction shows that u as above does not
exist. ��

It follows from Statement 5.4 that in Chd+2(F (P, d−1)|k) we have nonzero
class x defined over k. Then α∗(x) ∈ Chd+2(F (P, d − 1, d)|k) will also be
a nonzero class defined over k. But the subring of k-rational classes in
Ch∗(F (P, d − 1, d)|k) is GDI(P, d)[h]/(hd+1), and by the main result of [13],

GDI(P, d) as a ring is generated by the elementary classes z
0

j contained in

it. By the conditions of our theorem, among such classes only z
0

d+1 could be
defined over k. Then the degree = (d + 2) component of the subring of k-

rational classes in Ch∗(F (P, d− 1, d)|k) is contained in Z/2 · (β∗(z
0

d+1) · h) =

Z/2 · α∗(z
−1

d+2 ). Thus, if x is nonzero, it must be z
−1

d+2 . But this class is not
defined over k by the condition of the theorem. And this contradiction shows

that the class z
−1

d+2 is not defined over k(Q) as well. Theorem 5.1 is proven.
��
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Summary. In this paper we study principally polarized Abelian varieties that ad-
mit an automorphism of order 3. It turns out that certain natural conditions on
the multiplicities of its action on the differentials of the first kind guarantee that
those polarized varieties are not Jacobians of curves. As an application, we get an-
other proof of the (already known) fact that intermediate Jacobians of certain cubic
threefolds are not Jacobians of curves.
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1 Principally Polarized Abelian Varieties That Admit
an Automorphism of Order 3

Let ζ3 = −1+
√−3
2 be a primitive (complex) cube root of unity. It generates

the multiplicative order-3 cyclic group μ3 of cube roots of unity.
Let g > 1 be an integer and (X, λ) a principally polarized g-dimensional

abelian variety over the field C of complex numbers, δ an automorphism of
(X, λ) that satisfies the cyclotomic equation δ2 + δ + 1 = 0 in End (X). In
other words, δ is a periodic automorphism of order 3, whose set of fixed points
is finite. This gives rise to the embeddings

Z[ζ3] ↪→ End(X), 1 �→ 1X , ζ3 �→ δ,

Q(ζ3) ↪→ End0(X), 1 �→ 1X , ζ3 �→ δ.
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By functoriality, Q(ζ3) acts on the g-dimensional complex vector space Ω1(X)
of differentials of the first kind on X . This provides Ω1(X) with a structure
of a Q(ζ3) ⊗Q C-module. Clearly,

Q(ζ3) ⊗Q C = C ⊕ C,

where the summands correspond to the embeddings Q(ζ3) → C that send ζ3

to ζ3 and ζ−1
3 respectively. So, Q(ζ3) acts on Ω1(X) with multiplicities a and

b that correspond to the two embeddings of Q(ζ3) into C. Clearly, a and b
are nonnegative integers with a + b = g.

Theorem 1.1. If g+2 < 3 | a−b |, then (X, λ) is not the Jacobian of a smooth
projective irreducible genus g curve with canonical principal polarization.

Proof. Suppose that (X, λ) ∼= (J(C), Θ), where C is an irreducible smooth
projective genus g curve, J(C) its Jacobian with canonical principal polariza-
tion Θ. It follows from the Torelli theorem in Weil’s form [10, 11] that there
exists an automorphism φ : C → C that induces (by functoriality) either δ
or −δ on J(C) = X . Replacing φ by φ4 and taking into account that δ3 is
the identity automorphism of X = J(C), we may and will assume that φ
induces δ. Clearly, φ3 is the identity automorphism of C, because it induces
the identity map on J(C) and g > 1. The action of φ on C gives rise to the
embedding

μ3 ↪→ Aut(C), ζ3 �→ φ.

Let P ∈ C be a fixed point of φ. Then φ induces the automorphism of the
corresponding (one-dimensional) tangent space TP (C), which is multiplication
by a complex number cP . Clearly, cP is a cube root of unity.

Lemma 1.2. Every fixed point P of φ is nondegenerate, i.e., cP �= 1.

Proof (of Lemma 1.2). The result is well known. However, I failed to find a
proper reference.

Suppose that cP = 1. Let OP be the local ring at P and mP its maximal
ideal. We write φ∗ for the automorphism of OP induced by φ. Clearly, φ3∗ is
the identity map. Since φ is not the identity map, there are no φ∗-invariant
local parameters at P . Clearly, φ∗(mP ) = mP , φ∗(m2

P ) = m2
P . Since TP (C)

is the dual of mP /m2
P and cp = 1, we conclude that φ∗ induces the identity

map on mP /m2
P . This implies that if t ∈ mP is a local parameter at t (i.e., its

image t̄ in mP /m2
P is not zero) then t′ := t + φ∗(t) + φ2∗(t) is φ∗-invariant and

its image in mP /m2
P equals 3t̄ �= 0. This implies that t′ is a φ∗-invariant local

parameter at P . Contradiction.

Corollary 1.3. D := C/μ3 is a smooth projective irreducible curve. The map
C → D has degree 3, its ramification points are exactly the images of fixed
points of φ, and all the ramification indices are 3.

Lemma 1.4. D is biregularly isomorphic to the projective line.
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Proof (of Lemma 1.4). The map C → D induces, by Albanese functoriality,
the surjective homomorphism of the corresponding Jacobians J(C) → J(D)
that kills all the divisor classes of the form (Q) − (φ(Q)) (Q ∈ C). This
implies that it kills (1 − δ)J(C). On the other hand, 1 − δ : J(C) → J(C)
is, obviously, an isogeny. This implies that the image of J(C) in J(D) is zero
and the surjectivity implies that J(D) = 0. This means that the genus of D
is 0.

Corollary 1.5. The number h of fixed points of φ is g + 2.

Proof (of Corollary 1.5). Applying Hurwitz’s, formula to C → D, we get

2g − 2 = 3 · (−2) + 2 · h.

Lemma 1.6. Let φ∗ : Ω1(C) → Ω1(C) be the automorphism of Ω1(C) in-
duced by φ and τ its trace. Then

τ = aζ3 + bζ−1
3 .

Proof (of Lemma 1.6). Pick a φ-invariant point P0 and consider the regular
map

α : C → J(C), Q �→ cl((Q) − (P0)).

It is well known that α induces an isomorphism of complex vector spaces

α∗ : Ω1(X) ∼= Ω1(C).

Clearly,
φ∗ = α∗δ∗α∗−1,

where δ∗ : Ω1(J(C)) = Ω1(J(C)) is the automorphism induced by δ. This
implies that the traces of φ∗ and δ∗ coincide. Now the very definition of a and
b implies that the trace of φ∗ equals aζ3 + bζ−1

3 .

End of proof of Theorem 1.1. Let B be the set of fixed points of φ. We
know that #(B) = g + 2. By the holomorphic Lefschetz fixed-point formula
[2, Th. 2], [6, Ch. 3, Sect. 4] (see also [9, Sect. 12.2 and 12.5]) applied to φ,

1 − τ̄ =
∑

P∈B

1
1 − cP

,

where τ̄ is the complex conjugate of τ . Recall that every cP is a (primitive)
cube root of unity and therefore

| 1 − cP |=
√

3,

∣∣∣∣
1

1 − cP

∣∣∣∣ =
1√
3
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and
| 1 − τ̄ | ≤ g + 2√

3
.

Now

| 1 − τ̄ |2 =
(a + b + 2)2 + 3(a − b)2

4
=

(g + 2)2 + 3(a − b)2

4
.

This implies that
(g + 2)2

3
≥ (g + 2)2 + 3(a − b)2

4
.

It follows that (g + 2)2 ≥ 9(a − b)2 and we are done.

2 Cubic Threefolds

Let S : F (x0, x1, x2, x3) = 0 ⊂ P3 be a smooth projective cubic surface over
C [7]. (In particular, F is an irreducible homogeneous cubic polynomial in
x0, x1, x2, x3 with complex coefficients.) Then the equation

y3 = F (x0, x1, x2, x3)

defines a smooth projective threefold T ⊂ P4 provided with the natural action
of μ3 that arises from multiplication of y by cube roots of unity [1] (see also
[3, 8]). We have the μ3-invariant Hodge decomposition

H3(T,C) = H3(T,Z) ⊗ C = H1,2(T ) ⊕ H2,1(T )

and the μ3-invariant nondegenerate alternating intersection pairing

(, ) : H3(T,C) × H3(T,C) → C.

In addition, both H1,2(T ) and H2,1(T ) are 5-dimensional isotropic subspaces
and μ3 acts on H2,1(T ) with multiplicities (4, 1), i.e., ζ3 ∈ μ3 acts as diago-
nalizable linear operator in H2,1(T ) with eigenvalue ζ3 of multiplicity 4 and
eigenvalue ζ−1

3 of multiplicity 1 ([3, Sect. 5], [1, Sect. 2.2 and Lemma 2.6]).
(The proof is based on [5, Th. 8.3 on p. 488]; see also [4, pp. 338–339].)

Since both H1,2(T ) and H2,1(T ) are isotropic and the intersection pair-
ing is nondegenerate, its restriction to H1,2(T ) × H2,1(T ) gives rise to the
nondegenerate μ3-invariant C-bilinear pairing

(, ) : H1,2(T ) × H2,1(T ) → C. (1)

It follows that μ3 acts on H1,2(T ) with multiplicities (1, 4). (This assertion also
follows from the fact that H1,2(T ) is the complex the conjugate of H2,1(T ).)
In particular, the action of μ3 on H1,2(T ) extends to the embedding

Z[μ3] ↪→ EndC(H1,2(T )). (2)
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3 Intermediate Jacobians

Let (J(T ), θT ) be the intermediate Jacobian of the cubic threefold T [4, Sect.
3]; it is a principally polarized five-dimensional complex Abelian variety. By
functoriality, μ3 acts on J(T ) and respects the principal polarization θT . As
a complex torus,

J(T ) = H1,2(T )/p(H3(T,Z)), (3)
where

p : H3(T,C) = H3(T,Z) ⊗ C = H1,2(T ) ⊕ H2,1(T ) → H1,2(T )

is the projection map that kills H2,1(T ). The imaginary part of the Riemann
form of the polarization coincides with the intersection pairing on H3(T,Z) ∼=
p(H3(T,Z)).

It follows from (2) that the action of μ3 on J(T ) extends to the embedding

Z[μ3] ↪→ End(J(T )).

Combining (1) and (3), we conclude that the μ3-modules Ω1(J(T )) =
HomC(H1,2(T ),C) and H2,1(T ) are canonically isomorphic. Now the asser-
tions of Section 2 about multiplicities imply that Z[ζ3] acts on Ω1(J(T )) with
multiplicities (4, 1).

Since 3× | 4 − 1 | > 5 + 2, it follows from Theorem 1.1 that (J(T ), θT )
is not isomorphic to the canonically polarized Jacobian of a curve. Of course,
this assertion was proven by completely different methods in [4] for arbitrary
smooth projective cubic threefolds.
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1 Introduction

De Jong-Oort purity states that for a family of p-divisible groups X → S
over a noetherian scheme S, the geometric fibers have all the same Newton
polygon if this is true outside a set of codimension bigger than 2. A more
general result was first proved in [JO] and an alternative proof is given in
[V1]. We present here a short proof that is based on the fact that a formal
p-divisible group may be defined by a display [Z1], [Me2]. There are two other
ingredients of the proof that have been known for a long time. One is the
boundedness principle for crystals over an algebraically closed field [O], [V1],
[V2] and the other is the existence of a slope filtration for a p-divisible group
over a non-perfect field [Z2]. The last fact was already mentioned in a letter of
Grothendieck to Barsotti [G]. The boundedness property is also an important
ingredient in the proof given by Vasiu in [V1].

We discuss in detail some elementary consequences of the display structure.
The other two ingredients can be found in the literature above. Therefore we
discuss them only briefly. I thank W. Messing for pointing out the correct
formulation of Proposition 3 below. I also thank the referees of this paper for
many helpful suggestions.
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2 Frobenius Modules

We fix a prime number p. Let R be a commutative ring such that p is nilpotent
in R. The ring of Witt vectors with respect to p is denoted by W (R). We
write IR = V W (R) for the Witt vectors whose first component is 0. The Witt
polynomials are denoted by wn : W (R) → R. The truncated Witt vectors of
length n are denoted by Wn(R). If pR = 0 the Frobenius endomorphism F of
the ring W (R) induces an endomorphism F : Wn(R) → Wn(R).

Definition 1. A Frobenius module over R is a pair (M, F ), where M is a
projective finitely generated W (R)-module of some fixed rank h and F : M →
M is a Frobenius linear homomorphism such that detF = pdε locally for
the Zariski topology on R, where ε : detM → detM is a Frobenius linear
isomorphism and d ≥ 0 is some integer. We call h the height of the Frobenius
module and d the dimension.

This definition implies that the factorization detF = pdε exists even glob-
ally, but we will never use this. Since the kernel of w0 : W (R) → R is in the
radical of W (R), there is always a covering Spec R =

⋃
i Spec Rfi such that

W (Rfi)⊗W (R) M is a free W (Rfi)-module for each i. Therefore we will often
consider the case where M is a free W (R)-module. If we choose a basis of
M we may view detF as an element of W (R). Then (M, F ) is a Frobenius
module iff detF = pdη for some unit η ∈ W (R). In a question that is local on
Spec R we will consider detF as an element of W (R) without futher notice.

In this article a display over R is a 3n-display in the sense of [Z1]. The
displays of [Z1] are called nilpotent displays. If P = (P, Q, F, F1) is a display
over R then (P, F ) is a Frobenius module over R.

Let X be a p-divisible group over R and assume that p is nilpotent in R.
If we evaluate the Grothendieck-Messing crystal of X at W (R) we obtain a
finitely generated locally free W (R)-module MX , which is endowed with a
Frobenius linear map F : MX → MX . If X is the formal p-divisible group
associated to a nilpotent display P , then (MX , F ) = (P, F ) is a Frobenius
module. The pair (MY , F ) is also a Frobenius module if Y is an extension of
an étale p-divisible group by X .

If we assume, moreover, that R is a complete local noetherian ring (MX , F )
is a Frobenius module for an arbitrary p-divisible group X over R. Indeed, if
the special fiber of X has no étale part, then (MX , F ) comes from a display
and is therefore a Frobenius module. Since X is an extension of an étale p-
divisible group by a p-divisible group with no étale part in the special fiber,
we see that (MX , F ) is a Frobenius module in general.

By these remarks, any (MX , F ) appearing in this work are Frobenius
modules.

We add that Lau [L] in a forthcoming paper will associate a display to
any p-divisible group over a ring R, where p is nilpotent. Thereby he obtains
a functor from p-divisible groups to Frobenius modules. If we could use this
functor it would be more satisfying then the remark above.
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The following lemma is mainly a motivation for the definitions we are
going to make:

Lemma 2. Let P and P ′ be displays over a ring R of the same height and
dimension. Let α : P → P ′ be a homomorphism.

Locally on Spec R the element detα ∈ W (R) satisfies an equation

F det α = ε · det α,

where ε ∈ W (R)∗ is a unit.

Proof: We choose normal decompositions

P = L ⊕ T, Q = L ⊕ IRT
P ′ = L′ ⊕ T ′, Q′ = L′ ⊕ IRT ′.

Without loss of generality we may assume that L, L′, T, T ′ are free W (R)-
modules. We choose identifications

L � W (R)l � L′, T � W (R)t � T ′.

Then operators F1 and F ′
1 are given by invertible block matrices with coeffi-

cient in W (R):

F1

(
x

V y

)

=
(

X Y
Z W

) (
F x

y

)

,

F ′
1

(
x

V y

)

=
(

X ′ Y ′

Z ′ W ′

) (
F x

y

)

.

The block matrices are invertible by the definition of a display. We also rep-
resent α by a block matrix

α

(
x

V y

)

=
(

A B
V C D

) (
x

V y

)

Since α commutes with the operators F1 and F ′
1, we obtain

(
X ′ Y ′

Z ′ W ′

) (
F A p F B
C F D

)

=
(

A B
V C D

) (
X Y
Z W

)

. (1)

We see that
F

(
A B

V C D

)

=
(

F A F B
pC F D

)

has the same determinant as
(

F A p F B
C F D

)

.

But then taking determinants in (1) gives the result. �	
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Proposition 3. Let R be a noetherian ring such that Spec R is connected.
We assume that pR = 0. Let α : P → P ′ be a homomorphism of displays of
the same height h and the same dimension d.

If detα 
= 0, then there is a nonnegative integer u such that locally on
Spec R the following equation holds:

detα = puε, where ε ∈ W (R)∗, u ∈ Z≥0.

Proof: If the number u exists locally, it is clearly a locally constant function.
Therefore the question is local. We may replace Spec R by a small affine
connected neighborhood.

We set η = detα. By the last proposition we obtain

F η = ζ · η for some ζ ∈ W (R)∗. (2)

We write η = V t

ξ, such that w0(ξ) 
= 0. We claim that (2) implies:

F ξ = F t

ζ · ξ. (3)

To verify this we may assume that t > 0. We obtain

FV t

ξ = ζ V t

ξ = V t

( F t

ζξ).

Since pR = 0, the operators F and V acting on W (R) commute. Therefore
we deduce (3).

Let w0(ξ) = x and w0( F t

ζ) = e ∈ R∗. We apply w0 to equation (3) and
obtain

xp = ex. (4)

Since the product
x(xp−1 − e) = 0

has relatively prime factors, it follows that

D(x) ∪ D(xp−1 − e) = Spec R,
D(x) ∩ D(xp−1 − e) = ∅.

Hence by connectedness either D(x) = Spec R or D(x) = ∅. In the first case x
is nilpotent. But then we have x = 0, by iterating the equation (4). This is a
contradiction to our choices. Therefore D(x) = Spec R and x is a unit. Then
ξ is a unit too. We obtain

F t

η = F tV t

ξ = ptξ.

But by (2), F t

η may be expressed as the product of η by a unit. This proves
the result. �	
Definition 4. A homomorphism as in the proposition is called an isogeny of
displays.
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Let R be a ring such that pR = 0. Assume that the ideal of nilpotent elements
of R is nilpotent. Let α : P → P ′ be a homomorphism of nilpotent displays of
the same height and dimension. By the functor from the category of nilpotent
displays to the category of formal p-divisible groups ([Z1] 3.1) we obtain from
α a morphism φ : X → X ′ of p-divisible groups. It follows from Proposition 66
and Proposition 99 of [Z1] that α is an isogeny iff φ is an isogeny of p-divisible
groups.

Since pR = 0 the Frobenius endomorphism on W (R) induces a Frobenius
endomorphism on the truncated Witt vectors F : Wn(R) → Wn(R). Therefore
we may consider truncated Frobenius modules. We are going to prove a version
of Proposition 3 for truncated Frobenius modules.

Definition 5. Let R be a ring such that pR = 0. A truncated Frobenius mod-
ule of level n, dimension d, and height h over R is a finitely generated pro-
jective Wn(R)-module M of rank h equipped with a Frobenius linear operator
F : M → M such that locally on Spec R the determinant has the form

detF = pdε,

where ε : det M → detM is a Frobenius linear isomorphism.

A Frobenius module M over R induces a truncated Frobenius module, if we
tensor it by Wn(R).

Definition 6. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h. A morphism of Frobenius modules
α : M → N is called an isogeny if there is a natural number u < n such that
the determinant of α has locally on Spec R the form

F d

detα = puε, ε ∈ Wn(R)∗.

The number u is called the height of the isogeny.

Proposition 7. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h over a ring R such that Spec R is
connected and pR = 0.

Let u ≥ 0 be an integer such that n > u + d. Let α : M → N be a
homomorphism of Frobenius modules such that

F d

detα /∈ V u+1Wn−u−1(R). (5)

Then α becomes an isogeny if we truncate it to level n − d:

α[n − d] : M [n − d] → N [n − d].

Proof: We may assume that M and N are free Wn(R)-modules. We choose
isomorphisms

det M � Wn(R) � detN
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and view θ := detα as an element of W (R). Then we obtain a commutative
diagram

detM
θ−−−−→ detN

pdτMF

⏐
⏐
�

⏐
⏐
�pdτN F

detM
θ−−−−→ detN,

where τM , τN ∈ Wn(R)∗ are units. We obtain

pdτN
F θ = θpdτM . (6)

Using pd = V dF d in Wn(R), we can divide (6) by V d. We then obtain an
equality in Wn−d(R)

F d+1
θ[n − d] = F d

θ[n − d]ρ. (7)

Here θ[n − d] denotes the image of θ by the natural restriction Wn(R) →
Wn−d(R) and ρ ∈ Wn−d(R)∗ is a unit.

On the other hand we may write by assumption

F d

θ = V u1
σ, (8)

where u1 ≤ u, and w0(σ) = s0 
= 0. Clearly we may assume u = u1. Since
n − d > u we obtain from equation (7)

sp
0 = s0e

for some unit e ∈ R∗. As in the proof of Proposition 3 (see: (4)) we conclude
that s0 is a unit. Then σ is a unit too. From (8) we obtain

F d+u

θ = puσ.

We truncate this equation to Wn−d(R) and use (7) to obtain

F d

θ[n − d] = puε

for some unit ε ∈ Wn−d(R)∗. �	
Let n > u be natural numbers. It is clear that a morphism of displays

α : P → P ′ is an isogeny of height u, iff the map of the truncated Frobenius
modules α[n] : (P [n], F ) → (P ′[n], F ) is an isogeny of height u.

3 Proof of Purity

For the proof of the purity theorem of de Jong and Oort for p-divisible groups
we need to recall a few facts on completely slope divisible p-divisible groups
(abbreviated: c.s.d. groups) from [Z2] and [OZ] Definition 1.2. We will use
truncated Frobenius modules of p-divisible groups over any scheme U . These
are locally free Wn(OU )-modules.
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Lemma 8. Let Y be a c.s.d. group over a normal noetherian scheme U over
F̄p. Let n be a natural number. Then there is a finite morphism U ′ → U ,
such that the truncated Frobenius module MY [n] of Y over U ′ is obtained by
base change from a truncated Frobenius module over F̄p, i.e. we can find a
Frobenius module N over F̄p such that there is an isomorphism of Frobenius
modules

Wn(OU ′ ) ⊗Wn(OU ) MY [n] � Wn(OU ′) ⊗W (F̄p) N. (9)

Proof: This is an immediate consequence of [OZ], Proposition 1.3, since it
says that this is true if we take for U ′ the perfect hull of the universal pro-étale
cover of U . Another proof is obtained by substituting in the proof of loc.cit.
Frobenius modules. �	
Proposition 9. Let T be a regular connected 1-dimensional scheme over Fp.
Then any p-divisible group X with constant Newton polygon over T is isoge-
nous to a c.s.d. group.

Proof: This follows from the main result of [OZ], Thm. 2.1. for any normal
noetherian scheme T . But under under the assumptions made the proof is
much easier (compare [Z2], proof of Thm. 7). Indeed let K = K(T ) be the
function field of T . Then we find over K an isogeny to a c.s.d. group:

XK →
◦
Y . (10)

Let
◦
G be the finite group scheme that is the kernel of (10) and let G ⊂ X

be its scheme theoretic closure. We set Y = X/G. Using the fact that X has
constant Newton polygon one proves that Y is c.s.d. �	

The third ingredient is the boundedness principle, which seems to have
been known for a long time [M].

Proposition 10. Let k be an algebraically closed field of characteristic p. Let
h be a natural number. Then there is a constant c ∈ N with the following
property:

Let M1 and M2 be Frobenius modules of height ≤ h over k. Let n ∈ N

be arbitrary and let ᾱ : M1/pnM1 → M2/pnM2 be a morphism of truncated
Frobenius modules that lifts to a morphism of truncated Frobenius modules
M1/pn+cM1 → M2/pn+cM2. Then ᾱ lifts to a morphism of Frobenius modules
α : M1 → M2.

A weaker version of this is contained in [O], where the existence of the constant
c is asserted only for given modules M1 and M2. But one can show that for
given modules N1 resp. N2 in the isogeny class of M1 resp. M2, there are always
isogenies N1 → M1 resp. N1 → M1 whose degrees are bounded by a constant
depending only on h. This is another well-known boundedness principle. As
an alternative to this proof the reader may use the much stronger results
discussed in the introduction of [V2].
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Theorem 11. (de Jong-Oort) Let R be a noetherian local ring of Krull
dimension ≥ 2 with p · R = 0. Let U = Spec R \ {m}, the complement of
the closed point. A p-divisible group X over Spec R that has constant Newton
polygon over U has constant Newton polygon over Spec R.

Proof: It is not difficult to reduce to the case that R is complete, normal
of Krull dimension 2 with algebraically closed residue class field k = R/m
([JO]). Then U is a 1-dimensional regular scheme. We obtain by Proposition
9 a c.s.d. group Y over U and an isogeny

α : Y → X|U , (11)

Let d be the dimension of X let u be the height of α and let c be the number
from Proposition 10. We choose a natural number n > c+u+d. After a finite
extension of R we may assume by Lemma 8 that the truncated Frobenius
module of Y is constant

MY [n] � Wn(OU ) ⊗W (F̄p) N, (12)

where N is a Frobenius module over F̄p. In particular the Newton polygons
of N and Y must be the same by the boundedness principle applied to the
field K̄, where K is the field of fractions of R.

Combining (11) and (12) gives an isogeny of height u of truncated Frobe-
nius modules

Wn(OU ) ⊗W (F̄p) N → Wn(OU ) ⊗R MX [n]. (13)

By the normality of R we have Γ (U, Wn(OU )) = Wn(R). Taking the global
section of (13) over U we obtain a morphism of truncated Frobenius modules

Wn(R) ⊗W (F̄p) N → MX [n]. (14)

We know that (14) is an isogeny over K of height u. Therefore Proposition 3
is applicable to the morphism (14). We obtain therefore an isogeny of height
u of truncated Frobenius modules over R:

Wn−d(R) ⊗W (F̄p) N → MX [n − d],

It is clear that the base change of an isogeny of truncated Frobenius modules
is again an isogeny. Making the base change R → k we obtain an isogeny:

Wn−d(k) ⊗W (F̄p) N → Wn−d(k) ⊗W (R) MX [n − d] = MXk
[n − d].

The boundedness principle shows that Xk and N have the same Newton
polygon. �	
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39 (2006), 245–300.
[V2] A. Vasiu, Reconstructing p-divisible groups from their truncations of small

level, arXiv:math/0607268.
[Z1] Th. Zink, The display of a formal p-divisible group, in: Cohomologies

p-adiques et applications arithmétiques, I. Astérisque no. 278 (2002), 127–
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