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Preface 

B a s i c  p h i l o s o p h y  

Algebra, as we know it today, consists of many different ideas, concepts and results. 
A reasonable estimate of the number of these different "items" would be somewhere 
between 50000 and 200000. Many of these have been named and many more could 
(and perhaps should) have a "name" or a convenient designation. Even the nonspecialist 
is likely to encounter most of these, either somewhere in the literature, disguised as a 
definition or a theorem or to hear about them and feel the need for more information. 
If this happens, one should be able to find at least something in this Handbook and 
hopefully enough to judge if it is worthwhile to pursue the quest. In addition to the 
primary information, references to relevant articles, books or lecture notes should help 
the reader to complete his understanding. To make this possible, we have provided an 
index which is more extensive than usual and not limited to definitions, theorems and 
the like. 

For the purpose of this Handbook, algebra has been defined, more or less arbitrarily 
as the union of the following areas of the Mathematics Subject Classification Scheme: 

- 20 (Group theory) 
- 19 (K-theory; will be treated at an intermediate level; a separate Handbook o f / ( -  

theory which goes into far more detail than the section planned for this Handbook 
of Algebra is under consideration) 

- 18 (Category theory and homological algebra; including some of the uses of cate- 
gories in computer science, often classified somewhere in section 68) 

- 17 (Nonassociative rings and algebras; especially Lie algebras) 
- 16 (Associative rings and algebras) 
- 15 (Linear and multilinear algebra, Matrix theory) 
- 13 (Commutative rings and algebras; here there is a fine line to tread between 

commutative algebras and algebraic geometry; algebraic geometry is not a topic 
that will be dealt with in this Handbook; a separate Handbook on that topic is 
under consideration) 

- 12 (Field theory and polynomials) 
- 11 (As far as it used to be classified under old 12 (Algebraic number theory)) 
- 0 8  (General algebraic systems) 
- 0 6  (Certain parts; but not topics specific to Boolean algebras as there is a separate 

three-volume Handbook of Boolean Algebras) 
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Planning  

Originally, we hoped to cover the whole field in a systematic way. Volume 1 would 
be devoted to what we now call Section 1 (see below), Volume 2 to Section 2 and 
so on. A detailed and comprehensive plan was made in terms of topics which needed 
to be covered and authors to be invited. That turned out to be an inefficient approach. 
Different authors have different priorities and to wait for the last contribution to a volume, 
as planned originally, would have resulted in long delays. Therefore, we have opted for 
a dynamically evolving plan. This means that articles are published as they arrive and 
that the reader will find in this first volume articles from three different sections. The 
advantages of this scheme are two-fold: accepted articles will be published quickly and 
the outline of the series can be allowed to evolve as the various volumes are published. 
Suggestions from readers both as to topics to be covered and authors to be invited are 
most welcome and will be taken into serious consideration. 

The list of the sections now looks as follows: 

Section 1: Linear algebra. Fields. Algebraic number theory 
Section 2: Category theory. Homological and homotopical algebra. Methods from logic 
Section 3: Commutative and associative rings and algebras 
Section 4: Other algebraic structures. Nonassociative rings and algebras. Commutative 

and associative rings and algebras with extra structure 
Section 5: Groups and semigroups 
Section 6: Representations and invariant theory 
Section 7: Machine computation. Algorithms. Tables 
Section 8: Applied algebra 
Section 9: History of algebra 

For a more detailed plan, the reader is reffered to the Outline of the Series following 
the Preface. 

The individual  chapters  

It is not the intention that the handbook as a whole can also be a substitute undergraduate 
or even graduate, textbook. The treatment of the various topics will be much too dense 
and professional for that. Basically, the level is graduate and up, and such material as 
can be found in EM. Cohn's three-volume textbook "Algebra" (Wiley) will, as a rule, be 
assumed. An important function of the articles in this Handbook is to provide professional 
mathematicians working in a different area with sufficient information on the topic in 
question if and when it is needed. 

Each chapter combines some of the features of both a graduate-level textbook and a 
research-level survey. Not all of the ingredients mentioned below will be appropriate in 
each case, but authors have been asked to include the following: 

- Introduction (including motivation and historical remarks) 
- Outline of the chapter 
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- Basic concepts, definitions, and results (proofs or ideas/sketches of the proofs are 
given when space permits) 

- Comments on the relevance of the results, relations to other results, and applications 
- Review of the relevant literature; possibly supplemented with the opinion of the 

author on recent developments and future directions 
- Extensive bibliography (several hundred items will not be exceptional) 

T h e  f u t u r e  

Of course, ideally, a comprehensive series of books like this should be interactive and 
have a hypertext structure to make finding material and navigation through it immediate 
and intuitive. It should also incorporate the various algorithms in implemented form as 
well as permit a certain amount of dialogue with the reader. Plans for such an interactive, 
hypertext, CD-Rom-based version certainly exist but the realization is still a nontrivial 
number of years in the future. 

Bussum, September 1995 Michiel Hazewinkel 

Kaum nennt man die Dinge beim richtigen Namen, 
so verlieren sie ihren gef'~ihrlichen Zauber 

(You have but to know an object by its proper name 
for it to lose its dangerous magic) 

E. Canetti 
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Outline of the Series 

Chapters which have a named author have been written and are ready for publication. 
The numbers after the title indicate in which volume the chapter either will appear or has 
appeared. Topics printed in italics already have an author commissioned, and are in the 
process of being written. For topics printed in roman type no author has been contracted 
as yet. 

No definite plans have been made for Sections 7, 8 and 9 at this stage. 

Section 1. Linear algebra. Fields. Algebraic number theory 

A. Linear Algebra 

G.P. Egorychev, Van der Waerden conjecture and applications (1) 
V.L. Girko, Random matrices (1) 
A.N. Malyshev, Matrix equations. Factorization of matrix polynomials (1) 
L. Rodman, Matrix functions (1) 
Linear inequalities (also involving matrices) 
Orderings (partial and total) on vectors and matrices (including positive matrices) 
Matrix equations. Factorization of matrices 
Special kinds of matrices such as Toeplitz and Hankel 
Integral matrices. Matrices over other rings and fields 

B. Linear (In)dependence 

J.ES. Kung, Matroids (1) 

C. Algebras Arising from Vector Spaces 

Clifford algebras, related algebras, and applications 

D. Fields, Galois Theory, and Algebraic Number Theory 

(There is an article on ordered fields in Section 4) 
J.K. Denevey and J.N. Mordeson, Higher derivation Galois theory of inseparable 

field extensions (1) 

ix 
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I.B. Fesenko, Complete discrete valuation fields. Abelian local class field 
theories (1) 

M. Jarden, Infinite Galois theory (1) 
R. Lidl and H. Niederreiter, Finite fields and their applications (1) 
W. Narkiewicz, Global class field theory (1) 
H. van Tilborg, Finite fields and error correcting codes (1) 
Skew fields and division rings. Brauer group 
Topological and valued fields. Valuation theory 
Zeta and L-functions of fields and related topics 
Structure of Galois modules 
Constructive Galois theory (realization of groups as Galois groups) 

E. Nonabelian Class Field Theory and the Langlands Program 

(To be arranged in several chapters by Y. Ihara) 

F. Generalizations of Fields and Related Objects 

U. Hebisch and H.J. Weinert, Semi-rings and semi-fields (1) 
G.E Pilz, Near-rings and near-fields (1) 

Section 2. Category theory. Homological and homotopical algebra. Methods from 
logic 

A. Category Theory 

S. MacLane and I. Moerdijk, Topos theory (1) 
R.H. Street, Categorical structures (1) 
Algebraic theories 
Categories and databases 
Categories in computer science (in general) 

B. Homological Algebra. Cohomology. Cohomological Methods in Algebra. Homotopical 
Algebra 

J.E Carlson, The cohomology of groups (1) 
A.I. Generalov, Relative homological algebra. Cohomology of categories, posets, 

and coalgebras (1) 
J .E Jardine, Homotopy and homotopical algebra (1) 
B. Keller, Derived categories and their uses (1) 
A. Helemskii, Homology for the algebras of analysis (2) 
Galois cohomology 
Cohomology of commutative and associative algebras 
Cohomology of Lie algebras 
Cohomology of group schemes 
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C. Algebraic K-theory 

Grothendieck groups 
K2 and symbols 
Algebraic K-theory of C*-algebras, EXT, etc. 
Hilbert C*-modules 
Index theory for elliptic operators over C*-algebras 
Algebraic If-theory (including the higher Kn) 
Simplicial algebraic K-theory 
Chern character in algebraic K-theory 
K K-theo ry 
Noncommutative differential geometry 
K-theory of noncommutative rings 
Algebraic L-theory 
Cyclic cohomology 

D. Logic versus Algebra 

Methods of logic in algebra 
Logical properties of fields and applications 
Recursive algebras 
Logical properties of Boolean algebras 

E. Rings up to Homotopy 

Rings up to homotopy 

Section 3. Commutative and associative rings and algebras 

A. Commutative Rings and Algebras 

J.-P. Lafon, Ideals and modules (1) 
General theory. Radicals, prime ideals etc. Local rings (general). Finiteness and 

chain conditions 
Extensions. Galois theory of rings 
Modules with quadratic form 
Finite commutative rings and algebras 
Homological algebra and commutative rings. Ext, Tor, etc. Special properties (p.i.d., 

factorial, Gorenstein, Cohen-Macauley, Bezout, Fatou, Japanese, Excellent, Ore, 
Prtifer, Dedekind .... and their interrelations) 

Lifting (Hensel properties) and Artin approximation 
Localization. Local-global theory 
Rings associated to combinatorial and partial order structures (straightening laws, 

Hodge algebras, shellability .... ) 
Witt rings, real spectra 
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B. Associative Rings and Algebras 

P.M. Cohn, Polynomial and power series rings. Free algebras, firs and semifirs (1) 
V.K. Kharchenko, Simple, prime, and semi-prime rings (1) 
V.K. Kharchenko, Fixed rings and noncommutative invariant theory (2) 
A.R.P. van den Essen, Algebraic microlocalization and modules with regular singu- 

larities over filtered rings (1) 
E van Oystayen, Separable algebras (2) 
K. Yamagata, Frobenius rings (1) 
Classification of Artinian algebras and rings 
General theory of associative rings and algebras 
Rings of quotients. Noncommutative localization. Torsion theories 
yon Neumann regular rings 
Lattices of submodules 
PI rings 
Generalized identities 
Endomorphism rings, rings of linear transformations, matrix rings 
Homological classification of (noncommutative) rings 
Group rings and algebras 
Dimension theory 
Duality. Mo rita-duality 
Groups acting on associative algebras. Noncommutative invariant theory 
Commutants of differential operators 
Rings of differential operators 
Graded and filtered rings and modules (also commutative) 
Goldie's thec,. "~rn, Noetherian rings and related rings 

C. Co-algebras 

Co-algebras and bi-algebras 

D. Deformation Theory of Rings and Algebras (Including Lie Algebras) 

Deformation theory of rings and algebras (general) 
Deformation theory of Lie algebras 

Section 4. Other algebraic structures. Nonassociative rings and algebras. Commu- 
tative and associative rings and algebras with extra structure 

A. Lattices and Partially Ordered Sets 

Lattices and partially ordered sets 
Frames and locales 
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B. Boolean Algebras 

C. Universal Algebra 

D. Varieties of Algebras, Groups .... 

V.A. Artamanov, Varieties of algebras (2) 
Varieties of groups 
Quasi-varieties 
Varieties of semigroups 

E. Lie Algebras 

Yu.A. Bahturin, M.V. Zaitsev and A.A. Mikhailov, Infinite dimensional super Lie 
algebras (2) 

General structure theory. Free Lie algebras 
Classification theory of semisimple Lie algebras over R and C 
The exceptional Lie algebras 
Nilpotent and solvable Lie algebras 
Universal envelopping algebras 
Modular (ss) Lie algebras (including classification) 
Infinite dimensional Lie algebras (general) 
Kac-Moody Lie algebras 

E Jordan Algebras (finite and infinite dimensional and including their cohomology the- 
ory) 

G. Other Nonassociative Algebras (Malcev, alternative, Lie admissible .... ) 

H. Rings and Algebras with Additional Structure 

Ordered and lattice-ordered groups, rings and algebras 
)~- rings, "y-rings .... 
Difference and differential algebra. Abstract (and p-adic) differential equations. Dif- 

ferential extensions 
Ordered fields 
Graded and super algebras (commutative, associative and Lie) 
Topological rings 
Hopf algebras 
Quantum groups 
Formal groups 
Rings and algebras with involution. C*-algebras 

J. The Witt Vectors 
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Section 5. Groups and semigroups 

A. Groups 

Simple groups, sporadic groups 
Abelian groups 
"Additive" group theory 
Abstract (finite) groups. Structure theory. Special subgroups. Extensions and decom- 

positions 
Solvable groups, nilpotent groups, p-groups 
Infinite soluble groups 
Word problems 
Burnside problem 
Combinatorial group theory 
Free groups (including actions on trees) 
Formations 
Infinite groups. Local properties 
Algebraic groups. The classical groups. Chevalley groups 
Chevalley groups over rings 
The infinite dimensional classical groups 
Other groups of matrices. Discrete subgroups 
Reflection groups. Coxeter groups 
Groups with BN-pair, Tits buildings .... 
Groups and (finite combinatorial) geometry 
Probabilistic techniques and results in group theory 

B. Semigroups 

Semigroup theory. Ideals, radicals, structure theory 
Semigroups and automata theory and linguistics 

C. Algebraic Formal Language Theory 

D. Loops, Quasigroups, Heaps .... 

E. Combinatorial Group Theory and Topology 

Section 6. Representations and invariant theory 

A. Representations 

A.U. Klimyk, Infinite dimensional representations of quantum algebras (2) 
Representations of quantum groups 
Representation theory of rings, groups, algebras (general) 
Modular representation theory (general) 
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Representation theory of finite groups in characteristic zero 
Modular representation theory of finite groups. Blocks 
Representation theory of the symmetric groups (both in characteristic zero and mod- 

ular) 
Representation theory of the finite Chevalley groups (both in characteristic zero and 

modular) 
Representation theory of the classical groups. Classical invariant theory 
Classical and transcendental invariant theory 
Finite dimensional representation theory of the ss Lie algebras (in characteristic zero); 

structure theory of semi-simple Lie algebras 
Infinite dimensional representation theory of ss Lie algebras. Verma modules 
Representations of solvable and nilpotent Lie algebras. The Kirillov orbit method 
Orbit method, Dixmier map .... for ss Lie algebras 
Modular representation theory of Lie algebras 
Representation theory of Kac-Moody algebras 
Representations of semigroups 
Representations of rings and algebras by sections of sheafs 
Representation theory of algebras (Quivers, Auslander-Reiten sequences, almost split 

sequences .... ) 
Invariants of nonlinear representations of Lie groups 

B. Representations, Commutative Algebra and Combinatorics 

C. Abstract Representation Theory 

Section 7. Machine computation. Algorithms. Tables 

Some notes on this volume: Besides some general article(s) on machine computation in 
algebra, this volume should contain specific articles on the computational aspects of the 
various larger topics occurring in the main volume, as well as the basic corresponding 
tables. There should also be a general survey on the various available symbolic algebra 
computation packages. 

Section 8. Applied algebra 

Section 9. History of algebra 
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Van der Waerden conjecture and applications 5 

Abstract 

This chapter gives a proof and applications of the well known van der Waerden conjecture 
about minimum permanents of a doubly stochastic matrix. The conjecture was proved in 
the early 80s by G.R Egorychev and the Kiev mathematician D.I. Falikman independently. 

1. Basic notations and concepts 

Some notation, per(A) is the permanent of a matrix A (for a definition see Section 2 
below). 

D ( A 1 , . . . ,  An) is the mixed discriminant of the matrices A 1 , . . . ,  An. 
V ( K 1 , . . . , K n )  is the mixed volume of convex compacts /(1,..- ,Kn in R n. 
Y2n is the set of all doubly stochastic n x n matrices. 
A~ is the set of all (0, 1)-matrices of order n which have exactly k units in each row 

and column. 
P, Q are the permutation matrices of order n. 
E~,j is the matrix having 1 at place (i, j )  and all other elements equal to 0. 
e is the n-row of which each element is 1. 
aj, cti are the j-th column and the i-th row of the matrix A, respectively. 
O, In are the null and identity n x n matrices, respectively. 
Jn is the (n x n) matrix with each element equal to 1/n. 
A T, A, A* are the transpose, adjoint and complex conjugate matrices to the matrix A, 

respectively. 
A( i / j )  is the ( n -  1) x ( n -  1) matrix derived from A by deleting the i-th row and 

the j-th column. 

A(: :) 
is the matrix of order n derlved from A by replacing the i-th column by the n-vector x 
and the j-th column by the n-vector y. 

Definitions. A matrix of order n with non-negative elements is called doubly stochastic 
if eA = e, Ae T -- eT; a matrix A E g2n is called minimizing if 

min per(X) - per(A). 
XE S2,~ 

Let A = (aij) be a non-negative matrix of order n. The matrix A is called fully 
indecomposable if it doesn't contain a k x (n - k) null submatrix for k = 1 , . . . ,  n - 1. 
The matrix A is called partially decomposable if it contains k x ( n -  k) null submatrix. 
Matrix A is called nearly decomposable if it is fully indecomposable and such that for 
each positive element of the matrix A the matrix A -  aijEij is partially decomposable. 
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2. Introduction: some words about permanents 

The concept of the permanent was first introduced independently and practically simul- 
taneously in the well known memoirs of J. Binet (1812) and A. Cauchy (1812). It was 
at this time that Binet introduced the term "permanent". 

The permanent of a square n x n matrix A is defined to be the sum 

per(A) "-  ~ ala(1)" ' 'ana(n),  (2.1) 
aES~ 

where the sum is taken over all permutations of the set { 1 , . . . ,  n} or, which is the same, 
over all diagonals of the matrix A. 

The permanent as a matrix function has the following characteristic properties (Ego- 
rychev, 1980): if f (A) is a complex-valued function of n x n-matrix A over the field C, 
then f (A) = per A, iff: 

(a) f (A) is a homogeneous polynomial of degree n from the elements of the matrix A. 
(b) f (A) is polyadditive and symmetric with respect to vector-rows and vector-columns 

of matrix A. 
(c) f ( I n ) -  1. 
For the last decade and a half the theory of permanents has been intensively develop- 

ing, undergoing essential structural modifications. Among the most important achieve- 
ments of this period are, in our opinion, the proof of the van der Waerden conjecture 
on permanents (Egorychev, 1980, 1981 ; Falikman, 1981), the proof of the Tverberg con- 
jecture on permanents (Friedland, 1982); remarkable results by V. Schevelev (1992) and 
A. Kamenetsky (1990, 1991) concerned with the problem of calculation of the perma- 
nents of cyclic matrices and, finally, the fundamental results by A. Razborov (1985) and 
A. Andreev (1985) about lower estimates of complexity for the permanent of logical 
matrices. 

Many difficult problems of combinatorial analysis, graph theory, linear and polylinear 
algebra, other areas of mathematics, statistical physics and physical chemistry can be 
stated and solved in term~ of permanents. They basically make use of the major combi- 
natorial properties of permanents of (0, 1)-matrices to count the number of systems of 
different representatives (transversals) of sets. 

It is common knowledge that det A can be computed in poly(n) time. On the other 
hand, the fastest algorithm known for computing per A runs in n2 n-I time (Wilf, 1968; 
Ryser, 1963). Solid grounds for arguing that computing per A even for (0, 1)-matrices is 
an inherently difficult problem were first provided by L. Valiant (1979) who showed that 
the problem is P-complete. One implication of this result is that if P # N P  then there 
is no poly(n) time algorithm for computing per A. 

From there rises the problem of the development of new fundamental algebraic, ge- 
ometric, theoretical-functional and calculating ideas and methods of computation and 
estimation of permanents for various classes of matrices. The celebrated van der Waer- 
den conjecture giving a precise lower estimate for the permanents on the convex compact 
set X2,~ for a long time occupied a key position in this circle of questions. This problem, 
in spite of many efforts, remained unresolved for over 50 years. 
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3. Origin of the van der Waerden conjecture 

Biographical data about van der Waerden were given by A.I. Borodin and A.S. Bugai 
(1979, p. 95): 

"Barten Leendert van der Waerden is a Dutch mathematician. He was born in Am- 
sterdam on February 2, 1903. He was a professor at the universities of Groningem, 
Leipzig, Amsterdam, Ztirich and was involved in algebra, algebraic geometry, applica- 
tions of methods of group theory to quantum theory and mathematical statistics (van der 
Waerden criterion). His work also dealt with the history of mathematics and astronomy 
in Ancient Egypt, Babylon and Greece. In 1959 his book "Science Awakening" was 
translated into Russian. The book "Modern Algebra" (1930-1931)marked the culmina- 
tion of the creative period in "abstract algebra" developed by his teachers E. Noether, 
E. Steinitz and E. Artin. This book had major influence in the training of specialists 
in algebra everywhere in the world, defining the character and partially the directions 
of further research in algebra. An expanded and modernized version titled "Algebra" 
was published in 1976. B.L. van der Waerden applied the modern algebraic apparatus 
to strong justification of basic concepts in algebraic geometry. His book "Mathematical 
Statistics" (1957) is also widely known. 

Van Lint, a well-known Dutch mathematician, wrote (1982, p. 72-76) about the pre- 
vious history of the van der Waerden conjecture: 

"Much of the work on permanents is in some way connected to this conjecture and 
about 75% of the work on permanents is less than 20 years old! . . .  In 1926 B.L. van der 
Waerden proposed as a problem (!) to determine the minimal permanent among all doubly 
stochastic matrices. It was natural to assume that this minimum is per Jn = n!n  -n .  Let 
us denote by J2n the set of all doubly stochastic matrices. The assertion 

(A c FL~ N A :/: Jn) ~ (per A > per Jn) 

became known as the van der Waerden conjecture. Sometimes just showing that n!n  - n  
is the minimal value is referred to as the conjecture. 

"This note allows me to save for posterity a humorous experience of the late sixties. 
Van der Waerden, retired by then, attended a meeting on combinatorics, a field he had 
never worked in seriously. A young mathematician was desperate to present his thesis 
in 20 minutes. I was sitting in the front row next to van der Waerden when the famous 
conjecture was mentioned by the speaker and the alleged author inquired what this famous 
conjecture stated!! The exasperated speaker spent a few seconds of his precious time to 
explain and at the end of his talk wandered over to us to read the badge of the person 
who had asked this inexcusable question. I could foresee what was to happen and yet, 
I remember how he recoiled. You needn't worry - he recovered and now is a famous 
combinatorialist. The lesson for the reader is the following. If you did not know of the 
"conjecture" then it is comforting to realize that it was 40 years old before van der 
Waerden heard that it had this name. 

"What is the origin of the problem? Upon my request van der Waerden went far back 
in his memory and came up with the following. One day in 1926 during the discussion 
that took place daily in Hamburg O. Schreier mentioned that G.A. Miller had proved that 
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there is a mutual system of representatives for the right and left cosets of a subgroup H 
of a finite group G. At this moment van der Waerden observed that this was a property 
of any two partitions of a set of size #n into # subsets of size n. This theorem was 
published in "Hamburger Abhandlungen" in 1927. In the note, added in the proof, van 
der Waerden acknowledged that he had rediscovered the theorem which is now known 
as the K6nig-Hall theorem.. .  

"In the terminology of permanents we can formulate the problem Schreier and van 
der Waerden were considering as follows. Let A~ (1 <~ i ~< #) and Bk (1 <~ k ~< #) be 
the subsets in two partitions and let a~k :-- IA~ N Bk]. Then, A = (a~k) is a matrix with 
constant line sums (= n). The assertion that there is a mutual system of representatives 
of the sets A~ respectively of the sets Bk is the same as to say that perA > 0. At this 
point van der Waerden wondered what the minimal permanent, under the side condition 
that all line sums are 1, is? He posed this as a problem in Jber. d. D.M.V. 35 and thus 
the van der Waerden conjecture was born." 

4. Summary of results 

Most essential in proving the van der Waerden conjecture were the results obtained by 
M. Marcus and M. Newman (1959). They show that: 

(a) I f  A is a minimizing matrix, then per(A( i / j ) )  = pe r (A) fo r  Vi , j  E { 1 , . . . , n } ,  
where a~,j > O; 

(b) I f  A is minimizing then it is fully indecomposable; 
(c) The permanent has a strong local minimum at point Jn; 
(d) I f  all elements of  the minimizing matrix are positive, then it is equal to jn. 
Using these results D. London (1971) proved that if A is a minimizing matrix, then 

per (A( i / j ) )  >~ per(A) for all i , j  c { 1 , . . . ,  n}. In 1976 T. Bang announced and in 1979 
T. Bang and S. Friedland proved lower bounds for the permanent on J2n, which are 
essentially of the same order as the bound of van der Waerden. 

D. K6nig (1916) stated that the permanent of a doubly stochastic matrix A is always 
positive; if A E A,~, then per(A) > k. G. Frobenius (1917) proved that per A of a 
non-negative matrix is equal to 0 if and only if A contains a null submatrix of order 
k x ( n -  k + 1 ). D. K6nig in his book (1936) devoted to graph theory and its applications 
mentioned the van der Waerden problem as an unresolved one. Birkhoff in 1946 showed 
that f2,~ forms a convex polyhedron with the permutation matrices as vertices. This result 
implies that per(A) ~> l / ( ( n -  1) 2 + 1) n-~ for all A r f2n. M. Marcus and H. Minc 
improved this bound in 1962 to n -n,  in 1974 O. Rothaus improved is to (n!) -n,  and 
S. Friedland (1979) obtained the substantially better bound of l /n! .  

M. Marcus and M. Newman (1959) proved the validity of the van der Waerden conjec- 
ture for n = 3; P. Eberlein and G. Mudholkar (1968) and A. Gleason (1970) proved it for 
n - 4; E Eberlein (1969) for n -- 5. In 1962 M. Marcus and M. Newman proved the con- 
jecture for positive semi-definite symmetric matrices, and D. Sasser with M. Slater (1967) 
extended this theorem to normal matrices of a certain type. The last result was somewhat 
improved by M. Marcus and H. Minc (1968) and extended to a larger class of matrices 



Van der Waerden conjecture and applications 9 

by S. Friedland (1974). (For other results related to the van der Waerden conjecture until 
1977 see the comprehensive bibliography in the book by Minc (1978).) 

A proof of the van der Waerden conjecture appeared in 1980-1981. In his article of 
1981 D. Falikman, by a method different from that of G. Egorychev (1980, 1981), ob- 
tained the answer to the van der Waerden's question about the minimum of the permanent 
on g2n, but he didn't prove the uniqueness statement of the conjecture. Another attempt 
to prove this hypothesis was made by V. Reva (1981). 

The proof of the Marcus-Newman and van der Waerden conjectures given here is 
typical for the theory of mixed volumes. It is, on the one hand, connected with the inves- 
tigation of the structure of the minimizing matrix based on the results of D. K6nig (1916), 
M. Marcus and M. Newman (1969), D. London (1971). On the other hand, this proof 
uses geometric inequalities for the permanent as a mixed discriminant (mixed volume) 
which are a particular case of the well-known Aleksandrov's inequalities for mixed dis- 
criminants (1937-1938). This interpretation of the permanent was used in the work of 
Egorychev (1979-1980) dealing with obtaining a series of polynomial identities and 
characteristic properties of permanents for plane and space matrices. The role of the 
geometric inequalities in the theory of permanents was found to be identical to that of 
Aleksandrov-Fenchel inequalities for mixed volumes, which allow the solving of many 
important extremal problems and problems of uniqueness for convex bodies in/t~ n (see 
Buseman, 1960; Leichtweiss, 1980; Burago and Zalgaller, 1990; Mitrinovi~, Pe6ari6 and 
Volenec, 1989). 

The proof given here of the permanent conjectures is fairly simple and is accessible 
to any reader familiar with the fundamentals of the linear algebra. 

5. Structure of the minimizing matrix: the necessary conditions 

This section considers several fine assertions on the structure of the minimizing matrix 
that led D. London to his result (1971). The reader can find the proofs of the well- 
known facts omitted here in, for example, the work of M. Marcus and H. Minc (1972), 
A. Marshall, J. Olkin (1983), R. Rockafellar (1970), H. Minc (1978). 

THEOREM 5.1 (Birkhoff, 1946). A set o f  n • n doubly stochastic matrices forms a convex 
polyhedron with permutation matrices as vertices. In other words, if  A E ~n,  then 

A - ~ O~P~, (5.1) 
i = l  

where P I , . . - ,  Ps are permutation matrices and 0 1 , . . . ,  Os >~ O, ~S=l  Oi - 1. 

This theorem has many applications and is one of the main results in the theory of 
doubly stochastic matrices. The next theorem is one of the most important results in the 
theory of non-negative matrices. 

THEOREM 5.2 (Frobenius-K6nig, 1917). Let A be an n • n matrix. A necessary and 

sufficient condition fo r  every diagonal o f  A to contain a zero entry is that A contains an 
s • t zero submatrix such that s + t = n + 1. 
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In other words, if A is an n x n matrix, then per A = 0 iff A contains an s • t zero 
submatrix such that s + t - n + 1. (For the history of this theorem see (Minc, 1978, 
pp. 31-34) . )  

THEOREM 5.3 (K6nig, 1916). If A c f2n, then per A > 0. 

ASSERTION 5.4 (London, 1971). If  A - (aij) is a minimizing matrix, then 

per (A( i / j ) )  >~ per(A) for all i , j  E 1 , . . . ,  n. (5.2) 

ASSERTION 5.5. A non-negative matrix A of order n, n >~ 2, is fully indecomposable iff 
per(A( i / j ) )  > 0 for all i, j E 1, n. 

ASSERTION 5.6 (Marcus and Newman, 1959). 
(a) I f  A is a minimizing matrix, then A is fully indecomposable. 
(b) l f  A - (aij) is a minimizing matrix and some a~j > O, then per(A( i / j ) )  - per(A). 
(c) If  the minimizing matrix is positive, then A - Jn. 

It is easy to see that Theorem 5.3 is equivalent to the following assertion: any matrLr 
A ~ S2~ contains at least one diagonal with positive terms, thus, Theorem 5.3 follows 
from the Birkhoff theorem. 

The proof of Assertion 5.6(b) in the work by Marcus and Newman (1959) used to 
prove Assertion 5.4 adapted the classical Lagrange multipliers method assuming A E Qn. 

The result of Assertion 5.5 is a direct corollary of the Frobenius-K6nig theorem. 
Assertion 5.4 is proved by taking derivatives in all directions in a neighborhood of a 

minimizing matrix A. For any n x n permutation matrix P = (Pij), 0 ~< 0 <~ 1, define 
the function fp(O) = per((1 - O)A + OP). 

Since A is a minimizing matrix, then f ) ( 0 ) / >  0 for any P.  But 

71, 

f ' p (O) -  ~ ( -as t  + P, t )per(A(s / t ) )  
s , t = !  

n 

= ~ P ~ t p e r ( A ( s / t ) ) -  n per(A) 
s , t = l  

11, 

= Z per (A(s /a ( s ) ) )  - n per(A), 
s - - I  

where o is the permutation corresponding to P.  Hence, 

?t 

per (A(s /a ( s ) )  ) >1 n per A, (5.3) 
s = i  

for every o-. Since the matrix A must be fully indecomposable (Assertion 5.6(a)), therefore 
(Assertion 5.5) any entry of A lies on a diagonal all of whose other entries are positive. 
Thus, for every (i, .7") there exists a permutation cr such that j = or(i) and a,,~(s) > 0 for 
a l l s E  1,. . . ,n,  s ~ i .  

Now, however, Assertion 5.6(b) ensures that per(A(s/er(s))) = per A for the same s. 
Hence, from (5.3) and j = or(i) follows that per(A(i / j ) )  >~ per(A). 
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6. Mixed discriminants (volumes) and geometric inequalities for permanents 

Consider m quadratic forms 

n 

i,j=l 

in the variables Xl , . . .  , X n .  Any linear combination 

m 

f -- ~ A k f k  
k = l  

is again a quadratic form with coefficients 

m 

k = l  

The discriminant of the form f is a homogeneous polynomial of degree n with respect 
to A1, . . . ,  Am with coefficients D ( f k ~ , . . . ,  fk~) of Akt . . .  Ak,~ chosen not to depend on 
the order k l , . . . ,  kn. These coefficients, studied by Aleksandrov (1937-1938), are called 
mixed discriminants. They are expressed in terms of coefficients of the given forms as 
follows 

. . .  a l n  

1 ~ det " " . (6.1) 
D ( f l ,  . . . , fn)  -- ~ ~=(~, ..... ,r,~)~S,~ \ a ~  . . .  a ~ , ]  

Because of (6.1) the mixed discriminants are symmetric and polyadditive functions of 
its arguments and possess a series of other interesting properties (see also (Bapat, 1987)). 
For us the most important is the following 

LEMMA 6.1 (Aleksandrov inequalities for mixed discriminants, 1937-1938). 
(a) Let ( f i ) ,  i - 1 , . . . ,  n -  1, be n -  1 positive definite quadratic forms and let ~ be 

an arbitrary quadratic form. Then, 

D2( Ol" f n -1 ,  ~) >/D(c~; fn -1 ,  fn-1)D(c~; g, ~), (6.2) 

where o~ "-  ( f l , . . . ,  fn-2) .  
(b) Equality holds in (6.2) iff 

f J -  A fn -1 ,  A a constant. (6.3) 

Taking suitable limits in (6.2) of  the coefficients in the forms, assertion (a) of  Lemma 6.1 
carries over to the case in which the (fi), i - 1 , . . .  , n -  1, are non-negative definite 
forms. 
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LEMMA 6.2 (Geometric inequalities for permanents, Egorychev, 1980, 1981). 
(a) Let (fi), i -- 1 , . . . ,  n -  1, be n-vectors with non-negative components and let 

be an arbitrary n-vector. Then, 

per2(c~; f n - 1 ,  l~) ~ per(c~; f n - l ,  fn-1)per(c~; g, g). (6.4) 

(b) Let ( f i ), i = 1 , . . . ,  n - 1, be n-vectors with positive components and let g be an 
arbitrary n-vector. Equality holds in (6.4) iff  

l~ = /~ f n-- l , ,,~ a constant. (6.5) 

The results of Lemma 6.2 follow directly from formulas (6.2), (6.3) if we note that 

per A = n ! D ( f l , . . . ,  fn ) ,  (6.6) 

where fi is the quadratic form with matrix Ai = d iag(a l i , . . . ,  ani), i = 1 , . . . ,  n. Indeed, 

n n 

f = ~ Akfk  - ~ ( ) ~ , a i l  - t - . . . - J r - / ~ n a i n ) X 2 i  
k=l  i = l  

and 

det A = det diag Aj aij, . . . , /~j anj - /~j aij , 
j=! j=l i=! j=l 

and it is easy to see that (cf. (6.1)) the coefficient at Al , . . .  ,An in the last expression is 
equal to per (A) /n ! .  

D. Falikman (1981) obtained an inductive proof of permanent inequalities equivalent 
to inequalities (6.4). 

Papers by A. Panov (1984, 1985) and R. Bapat (1989) investigated the case of equality 
in (6.2) for non-negative definite forms and D. Knuth (1981) corrected the case of equality 
in (6.4) by assumptions weaker than in (6.5). R. Bapat also obtained the combinatorial 
interpretation of mixed discriminants from (0, 1)-matrices, and proved a generalization 
of the well-known K6nig theorem. 

Let c~ be a finite-dimensional linear space over R and cp be a symmetrical bilinear 
form on o~. If ~ has one positive eigenvalue and n -  1 negative eigenvalues we shall 
speak of a Minkovsky (Lorentz) space. 

ASSERTION 6.3 (van Lint, 1981; Rybnikov, 1985). I f  the vector-columns al, . . .  , a n - 2  

have positive components, then, the quadratic form qa(x, x) = pe r ( a l , . . . ,  an-2,  x, x), 
x C IR n, has the signature o f  Minkovsky space. Under the same assumptions the inequal- 
ities (6.4), (6.5) turn into the Cauchy-Bounjakowsky-Schwarz  inequalities in Minkovsky 
space. 

In conclusion of this section we'll give the representation of the permanent as a mixed 
volume yielding a family of geometric inequalities for the permanent as a mixed volume. 
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Let A + B = {a + b: a E A, b E B} denote the vector sum (Minkovsky sum) of the 
subsets A and B of Euclidean space R n, and let ,~A = {)~a: a E A} is the result of the 
homothety of A with coefficients ,~. 

THEOREM 6.4 (Minkovsky, 1911). The volume of the linear combination of nonempty 
convex compact sets K 1 , . . .  , K ,  (s 5r n, in general) with non-negative coefficients 
)~l , . . . ,  )~s is a homogeneous polynomial of  degree n with respect to /~1, . . . ,  As: 

V AiKi . . . .  ( K i , , . . .  ,Ki, ,)Ai, . . . )~i, . ,  
i=l il=l in=l 

(6.7) 

where it is assumed that for the products of  )~i which differ only in the order of the 
factors the coefficients have the same numerical value. The coefficients V ( K 1 , . . . ,  Kn) 
in the expansion (6.7) are called the mixed volumes of  convex compact sets K1,. . . , Bin 
in I~ n. 

Let A be a non-negative matrix of order n and let Ki, i E 1 , . . . ,  n, be the family of 
rectangular parallelopipeds in R n induced by it 

Ki = {x  - ( X , , . . . , X n )  E R n, 0 <~ Xj < aij, j E 1 , . . . , n } .  (6.8) 

In analogy with the representation (6.6) of the permanent as a mixed discriminant it 
is easy to see that (Egorychev, 1980-1981) 

per(A) = n!V(K1,  . . . , Kn). (6.9) 

Indeed, the volume of a rectangular parallelopiped 

K -  ~ ) k i g  i -- x -  (Xl , . . . ,Xn)  E I~ n, 0 ~ x j  ~ )~iaij 
i--1 -- 

is equal to the product of the lengths of its sides 

) V ( K ) -- .~I~l= j=l ~ i a i j , 

and the coefficient by /~1""" )in is equal to per(A)/n!. 
Formula (6.9) allows one to obtain the following assertion for permanents of a non- 

negative matrix. 

THEOREM 6.5 (cf. Egorychev, 1983). If  A is a non-negative matrix, then, for per(A) 
there hold the analogs of the Brunn-Minkovsky, Aleksandrov-Fenchel, Shephard, Santalo 
and other inequalities, including the vector inequalities for mixed volumes in R n, as well 
as the corresponding analogs of the results for the various cases of equality (see Burago 
and Zalgaller, 1984, Ch. 4). 
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The papers of G. Ewald (1985), B. Kind and E Kleinschmidt (1979), E McMullen 
and G. Shephard (1971), M. Hochster (1972), R. Stanley (1980, 1981), L. Billera and 
C. Lee (1981), A. Kouchnirenko (1976), D. Bernstein (1976), B. Teissier (1979, 1982) 
contain several combinatorial connections of mixed volumes with combinatorial geometry 
which by virtue of (6.9) are valid for the permanents of non-negative matrices as well. 

7. Structure of the minimizing matrix: uniqueness of the solution and proof of the 
conjectures 

For the readers' convenience we repeat the assertions used to prove the conjectures. 

LEMMA 7.1 (Egorychev, 1980, 1981 - geometrical inequalities for permanents). 
(a) Let ai, i = 1 , . . . ,  n -  1, be a set of  n -  1 n-vectors with non-negative components 

and let g be an arbitrary n-vector Then, 

per2(c~; an - l ,  g) ~> per(c~; an- l ,  an_l)per(c~; g, g), (7.1) 

where o~ := ( a l , . . . ,  an-2). 
(b) Let (ai), i = 1 , . . . ,  r t -  l, be n-vectors with positive components and let ~ be an 

arbitrary n-vector. Equality holds in (7.1) iff 

g = Aan-1, A a constant. (7.2) 

THEOREM 7.2 (K6nig, 1916). If  A E S2n, then, per(A) > 0. 

ASSERTION 7.3 (London, 1971). I f  A is a minimizing matrix, then 

p e r ( a ( i / j ) )  >1 perA for  all i, j = 1 , . . . ,  n. (7.3) 

THEOREM 7.4 (Egorychev, 1980). (Proof of the Marcus-Newman conjecture on perma- 
nents (1965).) If  A E g2n and the inequalities 

p e r ( A ( i / j ) )  >~ per a for  all i, j E { 1 , . . . ,  n}, (7.4) 

are valid, then, 

p e r ( A ( i / j ) )  = perA for  all i , j  E { 1 , . . . , n } .  (7.5) 

THEOREM 7.5 (Egorychev, 1980). (Proof of the van der Waerden conjecture on perma- 
nents (1926).) 

min (per(X)) = n ! / n  n (7.6) 
XE~ 

X E ~'2n and p e r ( X ) =  n ! / n  n iff X = Jn. (7.7) 

PROOF OF THEOREM 7.4. Expanding 

per(A(a  o<)) per(A(o; 
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by the Laplace formula, over the j-th and i-th columns, respectively, and using (7.1) we 
get 

p e r Z A = p e r 2 ( A ( : /  J j ) ) > ~ p e r ( A ( : i  J i ) ) p e r ( A ( :  9 

= ( ~ a k i p e r ( A ( k / j ) ) ) ( ~ k a k j p e r ( A ( k / i ) ) )  

for all i , j  E {1 , . . . , n} .  

:J)) 

(7.8) 

Inequalities (7.8) combined with assumption (7.4) give a system of n 2 inequalities for 
the n 2 numbers per(A(i/j)), i, j E { 1,... ,  n}. 

We show that in this case per(A(i/j)) = per A, i, j E { 1 , . . . ,  n}. Assume the opposite, 
i.e. that there exists a pair r, s E { 1 , . . . ,  n} such that per(A(r/s)) > per A. Since A E Y2n 
there is some t E { 1 , . . . ,  n} such that art > 0. Then, by (7.8), 

per2A per2 (A (:s :,)) 
>~ ( ~aksper(A(k/ t ) )  ) ( ~k aktper(A(k/s)) ) 

= (~--~ aksper(A(k/t)))(artper(A(r/s))+ ~ aktper(A(k/s))) 
k k r  

> (Z aksper(A))(~-~ amper(A))-per2A, 
k k 

where the strict inequality follows from inequalities (7.4), art > O, per(A(r/s)) > 
per(A), per A > 0 (Theorem 7.2), and A E Y2n. The contradiction obtained proves the 
theorem. [2 

Let A be a minimizing matrix. Then, by London's result, the inequalities (7.4) hold. 
From Theorem (7.4) follows 

LEMMA 7.6 (Egorychev, 1980). If A is a minimizing matrix, then 

per(A(i/j)) = perA, for all i, j E {1, . . . , n}. (7.9) 

LEMMA 7.7 (Egorychev, 1980). If A is a minimizing matrix, then for each i,j  E 
{ 1 , . . . , n )  

A o - A (  i 
Oa~ + (1 -O)aj 

J ) 
(1- O)a~ +Oaj  ' 

0 ~ 0 ~ 1 ,  

will be also minimizing matrix. Ao is obtained from the matrix A with the help of a 
"O-transform" of the i-th and j-th columns of the matrix A. 
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PROOF. It is easy to see that A' E g2n. The equality per(A0) = per(A) follows immedi- 
ately from the fact that per(A) is a multilinear symmetric function of the columns of the 
matrix A, the Laplace formulas, the equalities (7.9), and A E On. C-1 

PROOF OF THEOREM 7.5. It is clear that a minimizing matrix cannot be (up to permutation 
of rows and columns) a matrix of the form 

0) 
A = An-1 

where An-I E On- l ,  since in this case (Lemma 7.6) per(A(1/1)) = per(A(1/i)) - 0 
for all i E { 2 , . . . ,  n}, i.e. per A = 0, a contradiction with Theorem 7.2. 

Now we show that if A is a minimizing matrix, then A = Jn. Let some column of 
the matrix A, say an, be different from the n-column e TIn. Then, it is easy to see that 
by Lemma 7.7 for all i, j E { 1 , . . . ,  n -  1 }, i r j ,  we can obtain in a finite number of 
steps a minimizing matrix B = (bl,..., bn-l, an), in which every component of the first 
n -  1 columns is positive. This follows from the fact that A does not contain a 1. From 
the inequalities (7.1), we have 

per 2 (B (bii a : ) )  )per (B (bii b n ) ) p e r  (B (ain ann)). (7.10) 

By virtue of equalities (7.9) the minimizing matrix B (Lemmas 7.6 and 7.7) we obtain 
equality in (7.10). The positivity of the components bI,...,bn-1 allows us to assert 
immediately (Lemma 7.1, the case of equality) that-an = )~ibi for all i E { 1 , . . . ,  n - 1 }. 
Since the sum of the components of the vector bi as well as of the vector an is equal 
to 1, we have an = bi for all i E { 1,..., n -  1 }. Since B E On, we have 

bl = b2 . . . .  = bn-l = an = eT/n, 

a contradiction. Thus, A = Jn and the proof of the theorem is complete. Ul 

REMARK 7.8. The reduction from Theorem 7.4 to Theorem 7.5 was well known (see, for 
example, Minc (1978, p. 101, Problem 18)). Here we gave a simple geometric proof Of 
this reduction. 

The proof of conjectures given here, from the necessary conditions to geometric in- 
equalities (7.1), (7.2), is typical for the theory of mixed volumes in the solution of 
isoperimetric problems. However, specialists usually use such mixed discriminants (vol- 
umes) where only two, sometimes three, forms (convex compacts) are different: in our 
proof all forms are used equally. 

8. Direct corollaries 

As a direct corollary of Theorem 7.5 we obtain the validity of some facts for permanents 
(see Conjectures 2, 8, 16 and Problem 9 in the list of conjectures and problems in 
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(Minc, 1978); also a generalization of the van der Waerden conjecture in (Gleason, 1970)). 
Another direct corollary of Theorem 7.5 is that we obtain lower estimates for some 
important combinatorial quantities previously expressed by other authors assuming the 
validity of van der Waerden conjecture. These quantifies admit representations in terms 
of permanents of block (0, 1)-matrices from A~. Among them are the lower bounds 
for the number of Latin rectangles and squares (see also (Erd6s and Kaplansky, 1946; 
Yamamoto, 1951, 1956; Gessel 1987; Denes and Keedwell, 1991)etc.) for the number 
of nonisomorphic Steiner triples (Wilson, 1974) and for the key constant )~d in the 
d-dimensional dimer problem (Hammersley, 1968, 1969; Dubois, 1974; Minc, 1978a, 
1980). These bounds are essential improvements of previously known bounds. 

The results mentioned above brought about a structural reorganization of sections of 
combinatorial theory connected with permanents. We should also note that the problem 
of estimating )~d belongs to an extensive class of mathematical and physical problems 
connected with finding the number of dimer coverings of the lattice that can be realized 
by the permanent of special (0, 1)-matrices (see, for example, the surveys (Percus, 1971) 
and (Montroll, 1964) about applications of permanents in statistical mechanics and the 
two-dimensional Ising model in ferromagnetism). 

9. Further results and new hypotheses 

One of the reasons for the interest in computing per(A) is that a (0, 1)-matrix A = (aij) 
can be viewed as an adjacency matrix of a bipartite graph, H = (X, Y, E), where 
X corresponds to the rows in A, Y to the columns in A, and aij -- 1 if there is an 
edge between Xi and Yj. The value per(A) is exactly the number of perfect match- 
ings (1-factors) in H. This matter finds numerical applications in operations research. 
A. Schrijver (1982, 1983) published a survey on recent developments of lower and upper 
bounds for permanents including his interpretation of the van der Waerden conjecture and 
the well-known Br6gman-Minc upper bound (Br6gman, 1973; Minc, 1978, Ch. 6). He 
applied these results to obtain a series of new and hypothetical bounds for the number 
of perfect matchings, 1-factorizations (edge-colorings), bipartite graphs, and the num- 
ber of Eulerian orientations of graphs. The reader can find other applications of the 
permanent of (0,1)-matrices in estimating characteristics of various types of graphs in 
numerous papers (see, for example, (Caianiello, 1953, 1956; Harary, 1969; Hartfiel and 
Spellman, 1972; Dubois, 1974)). 

D. London (1982) used the result of Theorem 7.6 to characterize real zeros of a 
polynomial defined by the composition of two polynomials and T. Ando (1989) used it 
to analyze majorization problems. 

The van der Waerden conjecture, proved in the early 80s, generated numerous papers 
(van Lint, 1981, 1982, 1983; Janog, 1977; Lagaris, 1982; Minc, 1982, 1983; Schri- 
jver, 1982, 1983; Friedland, 1982; Bapat, 1984, 1986; Rybnikov, 1985; London and 
Minc, 1989) etc., discussing the history of the problem and giving improved and modi- 
fied versions of the proofs of Egorychev (1980) and Falikman (1981). 

The main result and the method used in the work by Egorychev (1980) were essen- 
tially used and developed to solve the problem of the permanent minimum at various 
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faces of Y2n (see the extensive survey of the current state of the problem in (Seok-Zun 
Song, 1988, and Minc, 1987; also Knopp and Sinkhorn, 1982; Chang, 1984a; Minc, 1984; 
Brualdi, 1985; Hwang, 1985; Foregger and Sinkhorn, 1986; Foregger, 1987; London and 
Minc, 1989) etc.) An elegant conjecture for which the method proposed there didn't work 
was stated by D. London and H. Minc (1989). Let Y2 ~ denote a set of n x n doubly 
stochastic matrices with zero main diagonal; jo  = ( 1 -  c r i j ) / ( n -  1) E Y2 ~ where aij 
is Kronecker symbol. If A E Y2 ~ then 

per(A) >> per(J~ = ( n - 1 )  n 1 +  ~ ( - 1 ) k / k !  . (9.1) 
k = l  

What's more, equality in (9.1) holds only for A = jo. 
Generalizing the previously obtained results, S. Hwang (1985) introduced for a 

(0, 1)-matrix A = (aij) of order n the concept of the barycenter matrix .4 "= 
(ai jper(A(i / j ) ) ) /per(A)  E J2n and the staircase matrix, and A. Brualdi (1985)stated the 
problem of the characterization of these classes of matrices and formulated a question 
of the characterization of faces at g2n where the permanent minimum is achieved on the 
barycenter matrix (see also (Minc, 1987; Hwang, 1985)). 

Finally, the main result and the methods of G. Egorychev (1980), including applications 
of the geometric inequalities (7.1), (7.2), were efficiently used in numerous articles to 
prove extremal conjectures for the permanent and other matrix functions on Y2n and 
for other classes of matrices. Most successful in this direction was S. Friedland (1982) 
proving the Tverberg conjecture (1963) about the minimum of the function ak(A), 1 
k <~ n, equal to the sum of the permanents for all k x k submatrices of a matrix A. That 
article efficiently used a representation of function ak(A) by the permanent on Y2n faces. 

The next nontrivial generalization of the van der Waerden conjecture was proposed by 
E. Dittert (Minc, 1983, Conjecture 28): let Kn be the set of non-negative n x n matrices 
the sum of whose entries is n. Then, 

max ci + rj - per(A) A C Kn = 2 -  n ! /n  n, (9.2) 
i=1 j=l 

where ci and rj denote the i-th row and the j-th column sums of the matrix A, respec- 
tively. Equality holds in (9.2) iff A = Jn. Partial progress in the proof of this conjecture 
was achieved as the basis of Theorem 7.5 and inequalities (7.1), (7.2) (Sinkhorn, 1984; 
Hwang, 1986, 1986a, 1987, 1989, 1990; Egorychev, 1994). 

Many elegant problems and conjectures for permanents and related matrix functions 
on various classes of matrices were published recently (Minc, 1978, 1993; Marcus, 
Minc, 1965; Grone and Merris, 1987; Minc, 1978; book "Permanents: theory and appli- 
cations", Krasnoyarsk, 1990; Egorychev, 1994). Among them is an explicit representation 
of a "problem of the century" and a dominant conjecture for Schur functions ("domi- 
nance conjecture"). The problems and conjectures for permanents have as a rule a simple 
formulation but often are very difficult to solve, as is often the case with problems of 
discrete mathematics. The difficulty in solving them lies not only and not so much in 
enumerating a lot of variants but is inherent in combinatorial analysis as a whole. The 
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practice of solving them shows that some conjectures appearing almost obvious from 
their formulation turn out to be invalid. Practice shows also that to solve problems and 
conjectures it is often necessary to use the apparatus of a series of fundamental models 
and methods from various sections of modern mathematics. 

10.  P r o s p e c t s  f o r  i n v e s t i g a t i o n  a n d  c o n c l u s i o n  

The analysis of the conjectures and problems for permanents allows us to conclude that 
research in this field holds much promise in the following interconnected directions: 

- to study inequalities for permanents and mixed discriminants, including the case of 
equality for (non-negative, symmetrical) matrices of arbitrary signature. These questions 
arise in the analysis of necessary conditions in problems of extremality for matrix com- 
binatorial functions, and tuin out to be immediately connected to various definitions of 
convexity as applied to quadratic functions in 1R n (see Ponstein, 1967; Cottle and Fer- 
land, 1971, 1972; Martos, 1969, 1971; Ferland, 1980). The latter direction emerged, in its 
turn, from consideration of the problems of quadratic programming and approximation 
theory (Micchelli, 1986) and finds application in probability theory (Bapat, 1988, 1989a). 
Making use of several characterizations of the class of subpositive definite quadratic forms 
(see, for example, (Ferland, 1980)), Bapat (1984) gave some improvement of the result 
of Theorem 7.5. This research belongs to one of the more promising lines of the matrix 
combinatorial analysis which has seen rapid progress in recent years (see Maybee, 1988; 
Johnson, 1988; Brualdi, 1990 etc.); 

- to pass to space matrices and the consideration of matrix functions. Analysis of 
certain problems for permanents shows them to appear more natural when viewed in 
terms of a problem for a space matrix permanent. This isn't surprising if for no other 
reason than the representation (6.6) of the permanent as a mixed discriminant from ma- 
trices A l , . . . ,  An can be considered as a representation of a space matrix with sections 
A1, . . .  ,An. A. Gasparyan (1984) and A. Hovansky (1984) found a series of new in- 
equalities for hyperbolic forms (polynomials) for space matrices, while B. Bapat (1986) 
wrote down analogs of the inequalities (7.1) for "mixed Schur functions"; 

- it was Gilbert who noted that the relations of the mixed volumes with other fields of 
mathematics have been settled completely. Aleksandrov (1937-1938) already noted that 
the coefficients of the characteristic polynomial of a matrix A are mixed discriminants 
of it and the unit matrix. However, this relationship remained unexploited in research 
in linear and polylinear algebra. G. Egorychev (1990, 1993, 1994a) develops matrix 
analysis on numerical fields with nontrivial operations. Introduced and studied are notions 
and properties for a certain class of (p-mixed discriminants, polyadditive relative to the 
operations introduced (for numbers and matrices); there are in particular relations with 
the operation of parallel summation of matrices and the problem of ordering non-negative 
definite matrices (Meenakshi, 1987; Anderson and Duffin, 1969; Mitra, 1991); 

- to study definitions, properties, and inequalities of permanents and mixed discrim- 
inants of matrices over different (partially ordered) algebraic systems. Permanents of a 
distributive lattice emerged in the work of Skornyakov and Egorova (1984); for perma- 
nents with logical variables, see (Razborov, 1985); permanents over finite fields emerged 
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in investigations of the four-color problem (see Shor, 1990); permanents over (partially) 
ordered fields turned up in the work of Golovanov, Egorychev and Moiseenko (1987). 
Still more permanents arise in studies of many other authors in the most varied fields 
of mathematics. Y. Egorychev and Ja. Nuzhin, for example (in press), gave a definition 
and studied the properties of permanents over noncommutative rings. Studies of qo-mixed 
discriminants mentioned in the previous paragraph also allow one, in the opinion of the 
author, to touch upon different aspects of the theory of matrix functions over different 
algebraic systems presented in many articles of Vol. 1 of this series "Handbook of Al- 
gebra". They also reveal relations with the classical spectral theory of matrices, graph 
theory and electrical engineering (see, for example, (Egorychev and Moiseenko, 1990a; 
the survey by Tsvetkovich, 1984, and Strok, 1990, on spectral theory of matrices; Ando 
and Kubo, 1989, 1990)); 

- and, finally, of promise for the development of the geometric theory of mixed dis- 
criminants (and permanents) is the research making use of their representation as the 
valuation function in valuation rings (see the survey (MacMillan and Schneider, 1983; 
Rota, 1973; Barnabei, Brini and Rota, 1986)). This research based on fundamental studies 
of geometric nature going on for the last two centuries can, in my opinion, essentially 
enrich the apparatus of enumerative combinatorial analysis as a whole. 

The author is grateful to the participants of the seminar on discrete mathematics in 
Krasnoyarsk for useful remarks concerning this chapter. 
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Introduction 

In this part of the Handbook of Algebra the main results of the theory of random matrices 
are collected. Distributions of random matrices arise in many applications areas; perhaps 
the most well-known areas are nuclear physics, multivariate statistics, and test matrices for 
numerical algorithms. See [1-34] for references to some of these numerous applications. 

Note that applications of random matrix theory are not exhausted by the application 
in physics, in multivariate statistical analysis, and in the theory of nonordered structures. 
At the moment, the theory of random matrices is also used in the theory of stability of 
solutions of stochastic systems, in linear stochastic programming, in molecular chemistry, 
in the theory of experiment planning, and in the theory of ring accelerators. 

This part of the Handbook of Algebra is designed for statisticians, mathematicians 
and physicists, scientists and engineers of different specialities, who use matrix and 
probability theoretical methods in their work. 

I. Distribution function of random matrices 

A random matrix is a matrix with random entries. Its distribution function is a function 
of the distributions of all its entries. The majority of formulas for the distribution of some 
functions of random matrices contain some integrals with respect to invariant measure; 
therefore, in order to study them, one needs to know properties of invariant measure. 

Let G be a separable topological locally compact group, and let E be a space on which 
the group of transformations G acts. A measure it(A) defined on the Borel a-algebra B 
of the space E is called invariant with respect to G if for any A c B and s E G, such 
that the sA is measurable, it(sA) = it(A). Here, sA is the set {sg: g E A}. 

If the function f (p) ,  p c E, is measurable with respect to the a-algebra B and 
non-negative, then, under the assumption that at least one of these integrals exists, 

:(p) it(dp) = / :(sp) it(dp). 

We call the measure it a left-invariant Haar measure (left Haar measure) if the equations 
it(sA) = it(A) and 

if( m) ~(dx) : J f (sx) it(dx) 
hold. If it is a left Haar measure, then the function u defined by. the equality u(K) = 
# ( K  -1) on a a-algebra of measurable subsets of K of G elements is a right Haar 
measure. By the set K -1 we mean {K -1" k E E}. Obviously, if # is a right Haar 
measure, u is a left Haar measure. 

We now state the basic results on Haar measures. 
A left Haar measure exists on any separable topological locally compact group T. If 

# and it~ are two left Haar measures on T, then #~ -- c#, where c is a positive number. 
We shall now give some examples of Haar measures on groups of matrices. 
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Let G be the locally compact group of invertible real matrices of order n, and B the 
a-algebra of Borel sets on it. There are left and right Haar measures defined on the group 
G. The density of a Haar measure on G with respect to Lebesgue measure on G is equal 
to el detxl -n ,  x ~ G. 

Similarly, we consider Haar measure on the group K of complex invertible matrices 
of order n. Here the densities of the left and right Haar measures, with respect to the 
Lebesgue measure on K,  are equal to Idetx1-2n, x ~ K,  up to a constant positive 
coefficient. Let T be the group of lower real triangular matrices of order n with positive 
entries on the main diagonal, and let B be the a-algebra of Borel sets on it. The density 
of the left Haar measure is 

n 

I I -  C Xii 
i=1 

( n + l - i )  
, Xii > 0, 

where c > 0 is some constant. The density of the right Haar measure with respect to the 
Lebesgue measure on T, is 

n 

1-l - i  C Xii 
i=1 

xii > 0, 

where c > 0 is an arbitrary constant. 

2. Haar measure on the group of orthogonal matrices 

Let G be the group of real orthogonal matrices of order n and let # be the invariant 
normalized Haar measure on it. The entries of a matrix H C G satisfy n ( n -  1)/2 
equations. Solving these equations, we obtain n ( n -  1)/2 independent parameters of the 
matrix H. The so-called Euler angles are rather convenient parameters of the group G. 
First, the functions by which the entries of the matrix H are expressed in terms of the 
Euler angles, are almost everywhere differentiable with respect to these angles. Second, 
the Haar measure expressed in terms of the Euler angles has a simple form. 

The Haar measure/~ of the group G of the matrices H, defined by means of the Euler 
angles 69ks is absolutely continuous with respect to the Lebesgue measure given on a set 
of variations of Euler angles 6~ks with density 

n--I  n 

an H I I  sinn-i(Oki); 
k--I i--lWk 

O<Okn <27r, 0 < 0 k i  <Tr, k E  { 1 , . . . , n , } ,  i E { k + l , . . . , n - 1 } ,  

where 

n - I  

Cn = 2 - n + l  I I / ' ~ ( ( n -  k n t- 1)/2)7r -(n-k+l)/2 
k=l  
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3. Maximum likelihood estimates of the parameters of a multivariate normal dis- 
tribution 

In this section we consider the mean and covariance matrix formed from a sample from 
a multivariate normal distribution. A normal distribution of random vectors is 

1 (:~ _ g)TR_ , (:g _ d) } (27r) -m/2 detR -1/2 exp - ~  

We will assume throughout Sections 3-5 that R is a positive definite matrix. Let 
:g l , . . . ,  Xn be independent Nm(g, R) observations of a normally Nm(g, R) distributed 
random vector. Then the sample mean vector is 

n 

a n xk, 
k=l  

and the sample empirical covariance matrix is 

n 
/ ~ - - ( n -  1 ) - 1 ~ - - ~  (~,k - ~ ) (Xk  - - a )  T. 

k=l 

The vector a and matrix/~ are stochastically independent. 
For n > m the maximum likelihood estimates of d and R are ~ and ( n -  1)n -~/~. 

4. The Wishart density 6On(a, R) 

If :g l , . . . ,  :gn are independent observations of normally Nm(g, R) distributed random 
vectors and n > m then the Wishart density function of the distribution of the sample 
covariance matrix 

n + l  n + l  
where - -l e  

i= l  k=l  

[l~m(2) detRn/2]-l(ln) mn/2 { ' } exp - ~ T r n R - I  S (det s) (n-m-1) /2, 

where S is positive definite matrix of order m, and/-'m (') denotes the multivariate gamma 
function 

f i  ( 1 ( i -  1)) ' l "m(a ) --- 7r m(m-1) /4  1" a -  -~ 
i=1 

1) R e a > ~  



32 V.L. Girko 

5. Generalized variance 

If a multivariate distribution has covariance matrix R then one overall measure of the 
spread of the distributions is the scalar quantity det R, called the generalized variance by 
Wilks. 

If the mat r ix /~  has Wishart density Wn(a, Rm), where n >~ m then d e t / ~ / d e t R  has 
the same distribution as 

m 

II 2 Xn-i+l, 
i=1 

where the 2 Xn-i+l for i = 1 , . . . ,  m denote independent X 2 random variables with n - i +  1 
degrees of freedom respectively. 

This result gives a tidy representation for the distribution of generalized variance, it is 
not an easy matter to obtain the density function of a product of independent X 2 random 
variables. It is, however, easy to obtain an expression for the moments m{ [ ] [ ]} 

E [ n  mdet /~]k  = d e t R  k /~ l  2k/-' n - i + l  n - i + l  2 + k  F - l  2 ' 

k = 1,2, . . . .  

6. Moments of random Vandermonde determinants 

The determinant of a matrix ( ~ ) ,  i = 1 , . . . ,  n, j = 0 , . . . ,  n -  1, where ~i, i - 1,2, . . . .  
are random variables is called a random Vandermonde determinant. 

If the random variables ~i, i = 1 , . . . ,  n, are independent, identically distributed, and 
have a 13-distribution with density 

[ S ( o ~ , / ~ ) ] - l x ~ - I  (1 - x) ~ - l ,  0 < x < 1, a > 0, /3 > 0, 

then for n -  2 , 3 , . . . ,  

E [ det ((~)] 2k 

where 

[ ]2k 
=E H 

I<<.i<j~n 
n 

= H {r(1 + j k ) r (a  + (j - 1)k)F( f l  + (j - 1)k) 
j=l  

x [F(1 + k) l - ' (a  + fl + (n + j -- 2 ) k ) ] - l } B - n ( a ,  fl), 

R e a  > 0, Rel3 > 0, Rek  > - m i n  { n - ' ,  R e a ( n -  1 ) - ' ,  R e / 3 ( n -  1 ) - ' } .  
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The second moments of complex random Vandermond matrices (~ -1 ) ,  i , j  = 
1 , . . . ,  n, where ~p - Up + i#p, Up, #p, p - 1 , . . . ,  n, are independent random variables 
distributed according to the standard normal law, are equal to 

E I det (~- ' )  12 i,j=l ..... n 

n--1 
-- 2n(n- l ) /2n!  H j!" 

j--l 

If the random variables 0i, i = 1 , . . . ,  n, are independent and have a uniform distri- 
bution on the interval (0, 27r), then for any integer k ~> 0, 

( ~ k n )  I ( -2k)] - n  E H I eiOp - eiOll k = 1~ 1 -4- I ~ 1 -4- 
p,l= l ,...,n, p#l 

7. Polar decomposition of random matrices 

Let ~ = (~ij), i = 1 , . . .  ,n, j = 1 , . . .  ,m, m ~> n, be a real rectangular random matrix. 
We suppose that there is a joint distribution density of the entries ~ij, equal to p(X) ,  
where X is a real rectangular matrix. The polar decomposition of ~ is a representation 
of ~ in the form ~ - SU, where S = 4 ~ , ~  T and U - S - l ~ .  Let K1 be the set of 
real (m x n) matrices,/s the set of non-negative definite (n x n) matrices, K3 the set 
of real orthogonal (m • m) matrices, B1 and B2 the a-algebras of Borel sets in K2 and 
K3. Let G be the group of real orthogonal ( m x  m) matrices and # normalized Haar 
measure on it. Then the joint distribution of ~ ,~T and ( ~ T ) - 1 / 2 ~  is equal to 

p {,..., ,_,==T E L,, ( z z T )  -1/2=- EL2}  

= Cn,m f p ( x ~ n H  (n)) d e t Z ( m - n - 1 ) / 2 # ( d U ) d Z ,  
dz  ~EL1, H(n) EL2 

where L~ E B1, L2 E B2, H = (hij) c G, H (n) = (h~j), i = 1 , . . .  ,n, j = 1 , . . . ,  m, 

7rn(n_l~/4_nm/2 m + 1 - i a -zi,j .  
Cn,m = 2 

i=l i,j 

If p ( x / ~ n H  (n)) - q(Zn), in addition to the previous hypotheses, then ~ = T  and 
( ,~ .~T)- l /2~ are stochastically independent and have the distributions 

P { ~ , Z  T C Ml} = r  
EM1 

q ( Z n ) d e t Z ( m - n - ' ) / 2 d Z n ,  
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8. Symmetric and Hermitian random matrices 

Let ="~ be a real symmetric (n • n) random matrix whose entries (ij,  i >1 j, i, j - 
1 , . . . ,  n, have joint distribution density, which we denote in what follows by p(Zn),  
where Zn = (zij) is a real symmetric matrix: let A1 ~> .- .  ~> An be the eigenvalues 

of '"-n, and let 0i be the corresponding eigenvectors whose first nonzero component is 
positive. If some eigenvalues Ai (i = 1 , . . . , n )  coincide, then we can choose the 0i 
uniquely by fixing in addition some of their components. 

The eigenvalues Ai (i = 1 , . . . ,  n) of ""-'n are distinct with probability 1. 

Let On be the random matrix whose column vectors are equal to Oi, i = 1 , . . . ,  n; let 
G be the group of real n • n matrices; B the a-algebra of Borel sets of orthogonal n • n 
matrices on it, and # normalized Haar measure on G. 

If a real symmetric random matrix ~. has density p(Zn),  then for any subset E of B 
and any real numbers ai, /3i (i = 1 , . . . ,  n) 

P{6kn E E,  ai < )~i </3i ,  i = 1 , . . . , n }  

= Cln f p(XnYnXTn) 1 - I ( Y i -  y j ) # ( d X n ) d Y n ,  
i>j 

where the integral is over the domain 

{Yl > Y2 > "'" > Yn, ai < Yi < fli, i = 1 , . . .  ,n ,  xli > 0, i = 1 , . . .  ,n ,  

Xn E E},  

n 

Yn = (~ijYj), dYn = 1-I dyi, 
i=l 

n 

2nrn(n+l)/4 Cln --" H { / ' [ ( n -  i -q- 1) /2]  } - l  
i=l 

If p(Hn ZnH~)  = fi(Zn) for all Hn E G and Zn, then ~gn is stochastically independent 
of the eigenvalues of ~ and has the following distribution: 

P(~gn E E} - 2 n fH~EE, h,i>0, i=l  ..... n #(dHn) .  

The distribution density of the eigenvalues of ="~ is 

2 -n ClnP(Yn) H (Yi -- Yj), 
i<j 

Yl > Y2 > "'" > Yn. 

Let Hn = (~ij) be a Hermitian n • n matrix whose entries are complex random 
variables, and let Xn  be a nonrandom Hermitian n • n matrix. We assume that the real 
and imaginary parts of entries of the matrix Hn located on the diagonal and above have 
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the joint distribution density p(Xn)  (the function p(Xn)  depends on the imaginary and 
real parts of the Xn entries). The eigenvalues A1 /> . . .  /> An of the matrix are real, do 
not coincide with probability 1, and are random variables. The matrix 0 - (0ij) whose 

. . +  

columns are the eigenvectors of Hn is unitary. The eigenvectors Oi with probability 1 
are defined from the system of equations 

(Hn - AiI)O-'i = O, (~,  ~ )  = 1. 

The vectors 0i can be chosen uniquely by fixing an argument of some nonzero element of 
each vector 0i. We consider the matrix On being chosen so that arg 01i = ci, i = 1 , . . . ,  n, 
where ci are nonrandom values, 0 ~< ci <~ 27r, i = 1 , . . . ,  n. 

If a Hermitian random matrix Hn has the distribution density p ( X n ) ,  then 

P {On E E, c~i < Ai </3i, i = 1 , . . . , n }  

[ p ( U n g n g n )  I I ( y i -  yj)2u(dUn ] arguli - ci, i - 1 , . . .  , n )dYn ,  C2n 
i>j 

where the integration is over the domain yl > "'" > Yn, Un E E C B, cei < yi < 
/3~, i = 1 , . . . , n ;  u(U I argul~ - c~, i = 1 , . . . , n )  is the regular conditional Haar 
measure, and 

[ C2n : 7r--n 2+n/2 j! . 

j=0  

If p(UnYnU~) - P(Yn) for all unitary matrices Un C F, then 0 n is stochastically 
independent of the eigenvalues of Hn and has the following distribution 

P{On C E} = s v(dUn I arg Uli - -  Ci, i - - "  1 , . . . ,  n) .  

The density of the eigenvalues is 

c2nP(Yn) H (yp -- yl)2, 
p>l 

Yl > ' " > Y n .  

An important special case of Hermitian random matrices are the matrices Hn for which 
the real and imaginary parts of their entries are independent and distributed according to 
standard normal laws. In this case the density of Hn is 

p ( Z n )  - 2-n/27r -n2 exp ( - 2-1Tr X n X n )  , 

and the density of the eigenvalues has the form 

' exp - 2-1 2 C2n Yi (Yi - yj)2, 
"= i>j 

C2n J! 
j=l 

-1 
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9. Nonsymmetric random matrices 

Let .-.'~ - (~ij) be a real square random matrix with distribution density p ( X n ) ,  where 
X n  = (xij) is a real (n x n) matrix. We introduce some notation: Ak + i#k, Ak - 
i#k (k = 1 , . . . ,  s), At (l = s + 1 , . . . ,  n - 2s) are the eigenvalues of "-"-'n, Zk = :gk + iffk, 
z-'k = xk- - i f fk  ( k -  1 , . . . , s ) ,  ~ (l = s +  1 , . . . , n - 2 s ) a r e  the eigenvectors of 
_--~. We arrange the complex eigenvalues of .-."~ in increasing order of their moduli. 
If some of these complex numbers (among which there are no conjugate pairs) have 
equal moduli, then we arrange them in increasing order of their arguments. Among 
pairs of conjugate complex numbers the first is the number with positive imaginary part. 
The real eigenvalues are arranged in increasing order. The eigenvalues thus chosen are 
random variables. There are many other ways of ordering the eigenvalues, but we adhere 
to this one as the most natural. We require that the vectors :gk, gk (k - 1 , . . . , s ) ,  
x~ (l - s + 1 , . . . ,  n -  2s) are of unit length and the first nonzero component of every 
vector is positive. With probability 1, &-'n can be represented in the following form: 

~--n = T d i a g { (  AI 
-#1  )~1 ' ' ' ' '  - - ~ s  

Aslg8 ) ' "~s+l '  " " " ' ) ~ n - 2 s  ) T - 1  

T being a real matrix that is nondegenerate with probability 1 whose column vectors are 
the :gk, ffk (k = 1 , . . . , s ) ,  :gt (l = s + 1 , . . . , n - 2 s ) .  

Let K be the group of real nondegenerate (n x n) matrices, B the a-algebra of Borel 
subsets of K,  and 0i (i = 1 , . . . ,  n) the eigenvalues of :""n chosen as described above. 

If a random matrix &"~ has density p ( X n ) ,  then for any subset E C B and any real 
numbers ai ,  f3i (i = 1 , . . . ,  n) 

P{Tn E E, Re0, < ai, Im0, </3,, i =  1 , . . . , n }  

In/2] 

s - - O  s 

p ( X n Y s X ~ ' ) J s ( Y s ) ~ ( Y s )  Idet Xnl -n  

x ~ 1 - z~ dXn dye, 
�9 j - -2  

where the domain of integration K8 is 

X n  E E , x l i - 1 -  x2i , 

j - -2  

n 

~ ' x 2 i  ~ l ( i -  1 , . . . , n ) ,  
j = 2  

Xl ~ Cgl, Yl < /~l , . . . ,  Xs ~ Cg2s-1, - Y s  < O~2s, X s + l  ~ C~2s+l, 

0 < ~32~+1, . . . ,  xn-2~ < an, 0 < ~3n, 

: diag{( 
--Yl 

y,) (xs 
Xl  ~ " " " ' - Y s  

ys) ) 
Xs ~ X s T 1  ~ �9 �9 �9 ~ X n - 2 s  
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= H ( q v  - q t )  

i--l,...,n, j=l,...,n 

the qp (p = 1 , . . . ,  n) are the eigenvalues of Ys, and 

v(y ) = 

if the eigenvalues xk +iyk,  xk-- iyk  (k = 1 , . . . ,  s) are in in- 
creasing order of their moduli and among any two conjugate 
numbers the first is that with Yk ~> O, and the eigenvalues 
xt (l = s + 1 , . . . ,  n -  2s) are ordered in increasing order; 

otherwise 

and the cs are some constants. 
Suppose that ~-n = ((pt + iTlpl) is a complex random n • n matrix of random variables 

(pt and 71pt (p, 1 = 1 , . . . ,  n) which have a joint distribution density, which is denote by 
p(Zn),  where Zn is a complex nonrandom (n • n) matrix. We assume that the eigenvalues 

Ai (i = 1 , . . . ,  n) of .-.'~ are ordered in increasing order of their arguments. Let 0 1 , . . . ,  On 
be the matrix whose column vectors are 0i (i = 1 , . . . ,  n). With probability 1 we can 
represent .-'."~ in the form ~-'-'n = OnAnO~ -1 , where An - (AiSij). For On to be uniquely 

_ 

determined with probability 1, we require that (Op, Op) - 1 and arg0tp - cp (p - 
1 , . . . ,  n),  where the cp (0 ~ cp <~ 27r) are arbitrary real numbers. 

We denote by K the group of nonsingular complex (n • n) matrices and by B the 
Borel a-algebra of K.  

If ~n  has density p(Zn),  then for any E c B and complex numbers ai ,  /3i (i = 
1 , . . .  ,n)  

P{On C E, R e a k  < ReAk < Reflk,  I m a k  < ImAk < Imflk, k = 1 , . . . , n }  

an / p ( X n Y n X n  1) H lYi - 
yjl 2 IdetZn1-2n 

J i#j 

• H rij drij d~ij dYn, 
i=2,...,n,j--1,...,n 

where Xn = (rpte i~~ TIt = cz (1 = 1 , . . . , n ) ,  

r l i -~ 1 - r2i 
j = 2  

and the integral is over the domain 

a r g  Yl > arg Y2 > " " " > arg Yn, 
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Re ak < Re Yk < Re/3k, Imak < Imyk < ImC/k, k = 1 , . . . ,  n, 

Xn E E, 
n 

j=2 
i -- 1 , . . . , n ,  0 ~< qoij ~< 27r, i r 1, 

n 

dYn - H dReykdImYk,  Yn = (Splyt). 
k = l  

The constant cn is determined by the condition that the integral over the domain 

~ l l  - -  el ,  X n  E K, arg Yl > �9 �9 �9 > arg Yn, 
n 

E r ~ i < ~ l  
j = 2  

equals 1. 

10. Reduction of random matrices to triangular form 

The following theorem of Schur is well known in matrix theory. If A is a complex 
(n x n) matrix, then there is a unitary (n x n) matrix Un such that T = U*AU is upper 
triangular and the entries on the main diagonal of T are the eigenvalues of A. If A is 
real with real eigenvalues, then U can be chosen to be real orthogonal. A is normal if 
and only if T is diagonal. If the eigenvalues of A are distinct and arranged in any order 
and the arguments of any nonzero component of every column vector of U are fixed, 
then the representation A = UTU* of A is unique. 

Suppose that ."."~ is a complex (n x n) random matrix and its entries have the distri- 
bution density p(X).  Let "-.-~ - U SU* be the Schur representation of ~n, the diagonal 
entries sii (i = 1 , . . . , n )  of S being chosen so that their arguments are arranged in 
nonincreasing order, arg uli = ci (i = 1, . . . ,  n), where ci (0 <~ ci <~ 27r) are arbitrary 
real numbers. We denote by F the group of unitary (n x n) matrices, by B the Borel 
a-algebra of F, and by u the normalized Haar measure on F. 

For any E c B and any measurable set C of complex upper triangular (n x n) matrices 

P{U E, s c} 

c / p ( H Y H * )  H lYpp-Yu lu (dH l a rgh lp -  Cp, p -  1 , . . . , n )  dY, 
, I  pet 

where the integration is over the domain arg yll > " ' "  > arg Ynn, 

Y E C ,  H E  E, d Y - H d R e y i j d I m  yij, 
i>~ j 

C m [ (27r)-n(n-l)/22n(n+l)/2n! j! 
. _ _  
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11. Gaussian random matrices 

Let 2n = U S U *  be the Schur representation of "."~, the diagonal entries sii (i - 
1 , . . . ,  n) of S being chosen so that their arguments are arranged in nonincreasing order, 
arg U l i - -  Ci ( i  - -  1 , . . . ,  T/,), where c~ (0 ~ ci ~ 27r) are arbitrary real numbers. 

If the distribution density of the random complex matrix ~-n is invariant under a unitary 
transformation X = U T U * ,  then the distribution density of S is 

C~nP(Y) H lYpp - Y u l ,  
p # l  

a r g  Y l l  > �9 �9 �9 > arg Y n n ,  

t __ ( n - 1 ) n / 2  2 n ( n + l ) / 2  
C n (27r) j! ; 

. _ _  

further, U is stochastically independent of S and has the distribution 

P{U E E} - s u(dH I arg h i p  - -  C p ) ,  p - - 1 , . . . , n .  

If the real and imaginary parts of the entries of •n are independent and distributed 
according to the normal law N(0, 1), then the distribution density of the eigenvalues 
A1, . . . ,  An of ,E'n is 

exp{ 1 n 2 / Z lyk I I  lypp- y.I, 
k = l  p # l  

a r g  Y l l  > �9 " " > arg Y n n ,  

[ fI 1' I I  ~ - - n  % 7r r ( j )  
j = l  

the real and imaginary parts of the entries sij ,  i > j ,  of S are independent, do not 
depend on sii and U, and are distributed according to the normal law N(0, 1). 

The eigenvalues IAll , . . . ,  ]An[, IAll > -.. > I~nl, are distributed as corresponding 
members of order statistics, as obtained from independent random variables X 2 i - 2i 

1 , . . . ,  n, with 2i degrees of freedom. 
Let us consider the distribution of the eigenvalues of an asymmetric real random matrix 

3n  whose entries are independent and distributed according to the standard normal law. 
The density of such a matrix is 

{1 } 
p ( X )  - (27r) -n~/zexp - ~  S p X X  t . 
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Let An be the matrix of the eigenvalues of ='n whose form is given in Section 9. If 
En denotes the mathematical expectation or the number of real eigenvalues of random 
matrix ="n, then 

lim En _ 

r~--+ cx:) ~ 

Let A1,. . . ,  Ak be the real eigenvalues of the matrix .'-.'-'~, let ~ be the average real 
eigenvalue with distribution function 

k 

= E < x )  

i= l  

If ( denotes a real eigenvalue of the random matrix ~n, then as n --+ c~, (/v/-n is 
uniformly distributed on the interval [-1,  1]. 

Exact formulas for En, where n is even: 

n • l  ( 4 k -  1)!! 
E n =  V/-2 (4k)!! 

k=O 

while if n is odd, 

En = 1 + V/-2 
( n ~ / 2  (4k - 3)!! 

k=l  ( 4 k -  ~!!" 

The probability that a random matrix ~n has all real eigenvalues is 

Pn,n -- 1/2 n(n-l)/4. 

The joint density of the ordered real eigenvalues Aj and ordered complex eigenvalue 
pairs xj + iyj, yj > 0, given that "--'n has k real eigenvalues is 

2 l - n ( n + l ) / 4  
n 

I-Ii=, F(i/2) 
Aexp 

n--k n--k 

(y2 _ x 2) _ A 2/2 erfc (yi x/~), 
"= i=1 i=1 

where ,4 is the magnitude of the product of the differences of the eigenvalues of A. 
Integrating this formula over the Aj, xj and yj > 0 gives the probability that a matrix 
~n has exactly k real eigenvalues. 

The density of an average random complex eigenvalue of a normally distributed matrix 
is 

Pn (X, y )  -- V /2) ' f f y  e y2-x2 erfc  ( y V / 2 ) e n _ 2  (x  2 -q-- y2) , 
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where 

n 

en(Z) = E zk/k!" 
k=0 

Consider the generalized eigenvalue problem 

det(M1 - AM2) = 0, 

where M1 and ME are independent random matrices, whose entries are independent and 
distributed by a standard normal law. If A denotes an average real generalized eigenvalue 
of this pair of independent random matrices, then its probability density is given by 

! (1 -[- ,~2)--1 
71" 

that is, A obeys the standard Cauchy distribution. 

12. Unitary random matrices 

The entries of a unitary matrix Un can be expressed as almost everywhere continu- 
ously differentiable functions of its Euler angles qoi (i = 1 , . . . ,  n2). The set D of 
values of the qoi can be split into subsets so that in every measurable subset the an- 
gles qoi characterize .-.'-'~ uniquely. Suppose that the random variables qoi have joint 
distribution density p(a:l,..., Ocn2). The density p(a:l,..., OCn=) can be represented as 
p(OCl,...,OCn= ) = p(rn(oCl , . . . ,ocn=))  , where Tn is a unitary matrix determined by the 
angles xi, since the Euler angles a:i can be expressed in terms of the entries of Un. The 
distribution of Un is 

P e B} = L . e B  p(Hn)dHn, 

where B is a measurable subset of/-'n, 

n 2 

dHn = H dxi, 
i = l  

and the aci are the Euler angles of/am. The group Fn is compact, therefore, there is 
normalized Haar measure # on/"n,  which can be represented as follows: 

,~EB 

where q(Hn) is a function of the :ci, which we call the density of #. 
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Any unitary matrix Un can be represented as follows: Un - H n O H ~ ,  where Hn is 
a unitary matrix, On - (exp(iOp)@t), and the exp(i0p) are the eigenvalues of Un. We 
arrange the arguments of the eigenvalues in nonincreasing order 0 <~ 01 <~ 02 <~ . . .  <~ 
On <~ 27r. The eigenvalues thus chosen are random variables. To fix the eigenvectors h v 
uniquely we require that argh w = cp (p - 1 , . . .  ,n ) ,  where the cp, 0 <~ cp <~ 27r, are 
nonrandom numbers. 

Let F be the group of unitary (n x n) matrices, u normalized Haar measure on it and 
B the a-algebra of Borel sets of F. 

If the Euler angles of a random matrix Un have the distribution density p(Hn) ,  then 
for any E E B and any real numbers ai,  13i (i = 1 , . . . ,  n) 

P { H n  E E,  ak < Ok < ~k, k -  1 , . . . , n }  

-- Cn f [p(XnYnXn) / ( t (XnYnZn)  ] 

• H [eiy~ - eiy'12 u ( d X n  I argxlp - Cp, p = 1 , . . . , n )  dYn, 
k<l 

where q is the density of the Haar measure u, 

n 

d Y n = H d y i ,  Yn=(eiUp(Spl),  
i=1  

and the integration is over the domain 

0 < Yl < Y2 < "'" < Yn < 2rr, ak < Yk < /3k, k -- 1 , . . . ,  n. 

Xn c E, c , ~ -  (n! (2rr)n) - '  

If the distribution density of the Euler angles of Un is equal to the density of the Haar 
measure u, then the eigenvectors of Un are stochastically independent of its eigenvalues. 
The distribution density of the arguments of the eigenvalues of Un is 

( n ! ( 2 r r ) n ) - l H l e  iyk - eiy' 12 , 

k<l 
0 < Yl < "'" < Yn < 27r. 

The distribution of Hn is 

P{H. c E} u(dXn ] a r g x l p = C p ,  p -  1, . . . , n) .  

If the distribution of the Un is absolutely continuous relative to the Haar measure u 
with density p satisfying 

p ( X n Y n X * )  - / 3 ( Y n ) ,  where X n  C F, Yn -- (eiyp(~pl), 
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then the eigenvalues of Un are stochastically independent of its eigenvectors. The distri- 
bution density of the eigenvalues of Un is 

1-I ] eiyk -- eiy' [2p(Yn)(n!(2rr)n) - l  
k>l 

O < y l  < . ' -  < yn < 2rr. 

13. Distribution of eigenvalues and eigenvectors of  orthogonal random matrices 

Let Hn be a real orthogonal (n x n) random matrix. Suppose that there is a joint 
distribution density p ( x l , . . . ,  Xn(n-l)/2) of its Euler angles qoi. For almost all values of 
xi we can write p - ~(Tn(xi, i - 1 , . . .  , n ( n -  1)/2)), since the Euler angles qoi can be 
expressed in terms of the entries of the orthogonal matrix Tn(xi, i - 1 , . . . ,  n ( n -  1)/2). 

It is easy to check that when the distribution density of the Euler angles of Hn 
exists, then the arguments of the eigenvalues of Hn are distinct with probability 1. 
The eigenvalues of Hn are {e +i'xk, k - 1 , . . .  , n /Z}  if n is even and {e +i'xk, k - 
1 , . . . , ( n -  1)/2} i f n  is odd, where the Ak are real numbers with 0 ~< Ak ~< 2rr. 
Let 0k be the eigenvectors that correspond to the eigenvalues e +i'xk . The vectors 0k 
corresponding to nonconjugate eigenvalues are orthogonal. 

We order the eigenvalues as follows: 

{e i)~ , e - i X ' , . . . ,  e i~ /2 ,  e -i'~n/2, 2rr >~ /~1 ~ " "  ~ )kn/2 ~ O} 

if n is even, and it can happen that some eigenvalues are +1. Since the eigenvalues 
Ak are distinct with probability 1, the case of interest to us is that when two of the 
eigenvalues Ak are + 1 and -1 .  In this case we order the eigenvalues as follows: 

{ e i'x~ e -i'x~ e i'k(n-2)/2 e -i'k(r~-2)/2 ~ 1 

27r ~> A1 ~>"" ~> A(n-2)/2 ~> 0}. 

- 1 ,  

For odd n we order them as follows 

{e iAl , e - i A ' , . . .  ,e  iA('~-')/2, e -i'k(~-')/2, ~, 27r ~> ,~1 ~ ' ' "  ~ )~(n-1)/2 ~ 0},  

the last eigenvalue ~ is a random variable which takes the values + 1. 
The matrix Hn can be represented almost surely in the following form: 

H n -  O,~diag { ( c o s A 1  
- sin/~1 

x O  T 

s inA1)  (cOSAq s inAq)  
cosA1 " " '  --sinAq cOSAq ' +1 '  

for even n and 

--1 

 ndiag{(c~ sinai)(cos p sin p) 
-s inA1 cosA1 " ' "  --sinAp cOSAp 

}<, 
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p = ( n -  1)/2,  

for odd n, where On is an orthogonal matrix whose column vectors are Re Ok, Im Ok. 
In the first of these equalities there may be no eigenvalues + 1 or - 1 .  However, such 
a representation is not unique. To make it unique we must fix some entries of On. Let 
Op = :~p n t- iffp. Then 

Hns  = cos Aps - sin Apffp, Hnffp = sin Aps + cos Apffp. 

From these equalities we find that Xp and yp are orthogonal and 

[(Hn - cos ApI)  2 + I sin 2 Ap] ffp = 0. 

The matrix (Hn = cos AvI)  2 has real eigenvalues - s i n  2 A v of multiplicity 2. Therefore, 
we can require that (x v, :~v) = 1, (fly, fir) = 1 and x lv = Cp, where c v is a fixed number 
with ]Cp[ ~ 1. 

If n is even and Hn has no eigenvalues + 1, or - 1 then we put zip = cv (P - 2 , . . . ,  n) 
if n is even, and if Hn has the eigenvalues + 1 and - 1 ,  then we put 

Xlp -- Cp (p = 2 , . . . ,  n -  2), X l n - I  ) O, X ln  ~ O, 

if n is odd, we put Zip = Cp (p = 2 , . . . ,  n - 1), X ln ~/> O. 
Let G be the group of real orthogonal (n x n) matrices, # the normalized Haar measure 

of G, B the a-algebra of Borel subsets of G, and n an odd integer. 
If the Euler angles of a random matrix Hn have the distribution density p, then for 

any E E B and real numbers hi, ~i (i = 1 , . . . ,  (n - 1)/2) where 0 ~< hi,  fli < 27r, 

P{On c E,  c~k < Ak </3k, k -  1 , . . . ,  ( n -  1)/2, ~ = +1} 

+ f L  ' l (Tn  + ' - - C n  p(TnYna:Tn)q - Yn rn )  
i 

x I I  sin 2 -~-(1 + 1) + cos 2 --~-(1 q: 1) Isin x~l 
s----I 

x I I  sin2 Xs - Xm sin2 Xs + Xm 
2 2 s ~ m  

x I l d x ~ # ( d Y n  ]t ip - cp, p -  2 , . . . , ( n -  1), t ,n /> 0), 
8 

dia { (cos l 
- sin xl 

where c~ are some constant. 

s i n x l )  ( cosx(n-1)/2 
cosxl  " ' "  -- sin x(n_l)/2 

sin m(n_l)/2 ) =1=1} 
COS X(n_l)/2 ' 
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14. Distribution of roots of algebraic equations with random coefficients 

In general, the entries of the random matrices can have no distribution density, but in 
some cases the coefficients of the characteristic equation do have a distribution density. 
Therefore, it is of interest to find the distribution of  roots of random polynomials. 

Let f ( t ) :  t '~ + ( i t  n+l + . . .  + (n = 0 be the algebraic equation whose coefficients 
(i,  i = 1 , . . . ,  n, are random variables. Consider the solution of  such an equation in the 
field of  complex numbers. It is known from algebra that the equation f ( t )  = 0 has n 
roots vi, i = 1 , . . . ,  n, and the roots vi, i = 1 , . . . ,  n, are continuous functions of  the 
coefficients (i, i = 1 , . . . , n .  Therefore, the roots vi, i = 1 , . . . ,  n, can be selected in 
such a way that they will be random variables. 

The roots of  the equation f ( t )  = 0 have the following form: 

L"I "-- A1 + i#l ,  v2 = A1 - - i # ~ ,  . . . ,  V2k-I = /kk + i/Zk, 
V2k --" Ak --  i#k, V2k+l  = r l ,  . . . ,  Vn = rn -- 2k, 

where Ai, #i, i = 1 , . . . ,  n, Tj, j = 1 , . . . ,  n -- 2k, are real variables, and the index k is 
a random variable taking values from 0 to [n/2]. 

Arrange the complex roots in increasing order of their moduli. If the moduli of the 
complex roots coincide, then we arrange them in increasing order of  their arguments; 
among the conjugate pairs of roots, the one with flegative imaginary part comes first. 
Real roots are arranged in increasing order. Roots selected in such a way are random 
variables. Of course, there are many other ways of ordering eigenvalues, but we adhere 
to this one as the most natural procedure. 

If the random coefficients ~i, i = 1 , . . . ,  n, of the equation f ( t )  = 0 have a joint 
distribution density p ( x l , . . .  ,Xn), then for any real numbers a i , /~ i ,  i = 1 , . . .  ,n ,  

P { R e v i  < ai, Imvi  </3i ,  i = 1 , . . . , n }  

[n/2] 
P 

p(A,,  I I ( z ,  - zj) 2 * 
s--0 8 i > j  

fI x dxidyi  H dzi 
i--1 i = 2 s + l  

w h e r e  Z 2 p - l  - -  X p  + i y p ,  Z2p = X p  - i y p ,  p = 1 , . . .  ,s; zl, l = 2s + 1 , . . .  ,n, are real 
variables, the domain of integration L s is equal to 

{xi, yi,zi: xl < a l ,  yl < f l l , . . . , x s  < a 2 s , - y s  </~2s, 

Z 2 s + l  < r O < / ~ 2 s + l , - . - ,  Z n  < a n ,  O < / ~ n } ,  

and the 

(-1) --- Zi I ~ Zi2 ~ �9 . . ~ Zik  

il <i2 < ' " < i k  

are the symmetric functions of the variables zi, i = 1 , . . . , n ;  ~ ( Z l , . . .  , Z n )  -"  1, if the 
values zi, i = 1 , . . . ,  n, are ordered as described above, and ~ ( Z l , . . . ,  Zn) = 0 otherwise. 
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The probability that the equation f ( t )  -- 0 has exactly s pairs of conjugate complex 

roots is 

2s f R n P ( A l " " ' A n ) q O ( Z l " ' " Z n )  I i  ( zi - z j )  
i>j 

i ~  n dxi dyi H dzi. 
i=l i=2s+l 

Let C be some measurable set of the complex plane whose Lebesgue measure given 
on this plane is equal to zero and such that the linear measure of the Lebesgue set which 
is equal to the intersection of the set C with the real line is also zero. Then the roots of 
the equation f ( t )  = 0 get into C with zero probability. The probability that the roots of 
the equation f ( t )  = 0 are on the real line is 

'19., 
f~ p( A , , , A .  ) I I  ( z, - z, ) I I  dz, 

l>'">zn i>j i=1 

Suppose that the coefficients of the equation f ( t )  = 0 are complex random variables. 
The roots of such an equation vi, i = 1 , . . . ,  n, will be complex. Order the roots ui, i = 
1 , . . . ,  n, in increasing order of their arguments. The density of the real and imaginary 
parts of coefficients ~i, i = 1 , . . . , n ,  will be denoted by p(Rezi,  Imzi ,  i = 1 , . . . , n ) ,  
where zi, i -- 1 , . . . , n ,  are complex variables. Then the density of the roots ui, i = 

1 , . . . , n ,  is 

, 12 p(Re Ai Im Ai) Y I  Izi - zj , 
i>j 

arg z l > �9 �9 �9 > arg zr, 

where the Ai,  i = 1 , . . . , n ,  are the elementary symmetric functions of the complex 

variables zi , i = 1 , . . . ,  n. 
Let the real function f ( t )  be continuous on the segment c~ <~ t ~< b, let it have 

continuous derivatives be on the interval c~ < t < b, and have a finite number of points 
in which the derivative f ( t )  vanishes. Then the number of zeroes of the function f ( t )  
on the interval (a, b) is equal to 

b 
.(o, b) - (2.)- .  f dy cos [y:(,)] I:'(')I d, 

Moreover,  a multiple zero is counted once but a zero coinciding with a or b gives the 
contribution in n(a, b), equal to 1/2. With the help of this formula the following result 
was obtained. If En denotes the mathematical expectation of the number of real roots 
of an algebraic equation with independent normally N(0 ,  1) distributed coefficients, then 
l i m n ~  En/In  n = 27r - l .  
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15. T h e  l o g a r i t h m i c  l a w  

For each n let the random elements ,c!?) i, j - 1 n, of a matrix F-n be independent, 

= - ft'.t?)] 4 "  3, and for some 6 > O, E f!?) 0, V~i (n) 1 E L-~a 

sup sup E l,C!.~)14+a 
"z3 < (X?. 

n i , j = l , . . . , n  

Then 

limc, aP{ [ln det.--.n~2 _ _  l n ( n -  1)!] (21nn)  -1/2 < x} 

f = (2rr) -1/2 e x p ( - -  y 2 / 2 ) d y ,  
oo 

lim P {sign det "-"-n - + 1 } = 1 / 2 ,  
n--+ oo 

lim P{sign det ~ n  - - 1 } = 1 / 2 .  
n--+(x) 

16. L i m i t  t h e o r e m s  for  r a n d o m  d e t e r m i n a n t s  

Let us call a set of random variables t:!? ) i, j = 1 n, asymptotically constant if 

there can be found nonrandom numbers '~ij"(n), such that for all r > O, 

lim sup 
n--+cx~ k , l = l , . . . , n  

P{ IC (n)kz - a(k~)l ~ ~} : 0 

_.+ 

The random vectors ~nk, k - -  1 , . . . ,  n, n = 1 , 2 , . . . ,  are called asymptotically con- 
stant if there are constant vectors gnk, k - 1 , . . . ,  n, such that for all ~ > 0, 

lim sup 
n---+ cxz k = l , . . . , n  

P {  ((nk - a n k ,  ( n k  - -  a n k )  >/ 6 }  - -  O. 

Let us consider the random variables - (n) = f!?) ..(n) _(n) where v'iJ "~3 - -  t~i j  - -  P i j  ' 

,..,(n) X dFij (x + t~ij }, 
la i j  - -  I < r  

r > 0 is an arbitrary constant, and Fij (x)  = P l 'f!? ) < x}. The square matrix Bn "= l-,~z 3 

..(n) _(n) (b12)) is composed of the b}~. ) " -  Pij + %j �9 
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If for each n, the vectors (,c!. ~) ,c!. ~)) i ~> j,  i j = 1 n, are independent and the 

"" (F!n.)) are asymptotically constant, column vectors and row vectors of the matrix =n = "',3 

f 
lim lim P 

h--+ oo  n---+ cx3 ( 
i - -1  

n } 
~3 >/h = 0; 

i ,j=l 

sup [ ITr Bnl + Tr B~B w] < c~, 
n 

then 

det(I + ~n)  "~ det(I + Bn) 
n n 

. (n) 
H ( 1 -  v~)vJ~ )) H (1 + vii ), 

i>j, i , j=l i = l  

where the symbol ",,~" means that for any sequences of random variables ~n and r/n and 
for almost all x 

lim [P{~n < x}  - P{~% < x}] = O. 
n---+ cx) 

17. The spectral  function of  random matrices  

Let "-"n be a complex random matrix. Denote its eigenvalues by Ai, i = 1 , . . . ,  n. By 
the spectral function of the matrix ""-n is meant the expression 

n 

#n(x, y) = c~' ~ F(x - Re(,kk/bn))F(y - Im(,kk/bn)), 
k---I 

where F(x) = 0 as x < 0, and F(x) = 1 as x >~ 0, and cn, bn are certain nonrandom 
numbers. If cn = n, then /zn(x, y) is the normalized spectral function of the matrix 
~,nbn I. If the eigenvalues Ai of the matrix ~n are real, then the normalized spectral 
function of the matrix ="~ takes the form 

n 

#n(x) = n- '  ~~ F ( x -  Ai). 
i--l 

Obviously, the distribution functions are realizations of the function #n (x). 
A random determinant can be represented in the form 

j ~ f  
c~" In det (~nb~") = ln(x + iy)d#n(x,  y), 

assuming that the integral on the right-hand side of the equation exists. 
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Let --.'~ be a real random matrix, Ai, i = 1 , . . . ,  n, the eigenvalues of the matrix 
=" ~'  exp( -2an) .  Denote the spectral function by 

"----' Tb " - "  n 

n 

un(x)-- (2bn)-I E F ( x -  Ai)qo(Ai), 
i = 1  

where ~(x) is a continuous function on ( -oo ,  o0). 
Then 

[In Idet-. '~1- a~]b-~ l ( ))-' = lnx ~(x dvn(X), 

under the condition that the integral on the right-hand side of the equation exists. 
By the notation #n(X) =~ It(x) {Itn(x) ~---+ It(x))is meant the convergence of 

the finite-dimensional distributions of the random spectral functions Itn (x) to the corre- 
sponding finite-dimensional distributions of random spectral function It(x) (at the points 
of the stochastic continuity of the latter function). 

Let the function f(x)(-c~ < x < c~) be continuous and bounded on the whole real 
line R1, let the Itn(X) be the normalized spectral functions of the symmetric random 
matrices ,~n, Itn(X) =:~ It(X) on some everywhere dense set C of the real line Rl, 
Itn(-Oo) ~ I t ( -co) ,  Itn(+Oo) ~ It(+oo), where It(x) is a random distribution function. 
Then 

f f(x) dItn(X) =~ / f(x) dIt(x). 

Let the function f(x) be continuous on the real line R1; Itn(X) :=~ It(X) on some 
everywhere dense set C of the real line Rl; Itn(-Oo) => I t ( - ~ ) ,  Itn(+oo) => It(+oo) 
for some a > O, 

supEf  If(x)l l+~d#n(X) < c~. 

Then f f dpn =~ f f d#. 
Let the .".'~ be symmetric random matrices, # .  (x) their normalized spectral functions, 

#.(x) => #(x) on some everywhere dense set C of the real line R1, #.(-oo) => 
# ( - o o ) ,  #,(+cx~) => #(+cx~) for some a > 0, 

s u p n - l E T r  I In I nll 
n 

<oo .  

Then 

n -1 In Idet:%l ~ /In Ixl d~(x). 
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It is convenient to prove limit theorems for #n (x), un (x) with the help of the Stieltjes 
transformation: 

(x - z ) - '  d#n(X) = n - l  Tr(E - z I ) - '  

where z is a complex number, Im z # 0, E is a symmetric random matrix, and #n (x) 
is its normalized spectral function. 

Write 

n (t) = f (1  + itx)  - l  dttn(X), {n(Z) = / ( x -  z)- '  d#n(x),  Imz r 

The inversion formula at points of stochastic continuity xl and z2 of the function tin (x) 
has the form 

P { # n ( X 2 ) - # n ( Z , ) < u } =  limP 7T - 1  I m { n ( y + i e ) d y < u  . 
e-~O 2 

Analogously, we obtain the inversion formula for finite dimensional distributions of 
the function tin (x) 

P{#n(X2 k) - #n(X~) < Uk, k = 1 , . . . , m }  

{ c } = l i m P  rr - l  Im{n(y+ie)dy  < uk, k =  1 , . . . , m  , 
~-+o & t  

where x~, x2 k, k = 1 , . . . ,  m, are points of stochastic continuity of the function #n(Z). 
Let #n(x) be a sequence of the random spectral functions and with probability 1, 

lim sup E #n (h) = 0. 
h - - + -  c ~  n 

Then, in order that #n(X) ~--+ #(x), where #(x) is some random spectral function, it is 
necessary and sufficient that ~n(z) ~ ~(z), Im z # 0. 

Let/zn (x) be a sequence of the random spectral functions and 

lim sup E #n (h) = 0. 
h - + - o o  n 

Then 
a) in order that #n(x) "~--+ #(x), where #(x) is some random spectral function, it is 

necessary and sufficient that tin(t) ~ r/(t); 
b) in order that at every point of the continuity of the nonrandom distribution func- 

tion #(z)plim,~__+oo #n(z)  = #(z), it is necessary and sufficient that for every t, 
p limn-+oo r/n (t) = r/(t) where 

,7(t) = f ( 1  + itx)-' dl,(x). 
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Let/zn (x) and Am (x) be sequences of random spectral functions given on a common 
probability space, and with probability 1 

lim sup/Z,* (h) = 0, lim sup )~,* (h) = 0, 
h - - > - - c ~  n h - + - c ~  n 

m n  (t) - / (1 + i t x ) - I  d/z,*, p , * ( t ) -  f ( 1  + itz) - I  dan.  

Then 
a) in order that/zn (x) ,'~ An (X) on some everywhere dense set C, it is necessary and 

sufficient that m n ( t )  ~ pn(t) ,  --00 < t < ~ ;  
b) in order that p l imn+~[ / zn (X)  -- A,*(X)] = 0 for all x from some everywhere dense 

set C, it is necessary and sufficient that for each t, p l imn- .oo[mn( t )  - p,*(t)] = 0. 
Let/zn(X) and An(x)  be the sequences of random spectral functions and with proba- 

bility 1, l i m h + _ ~  sup,* E/z,, (h) = 0. In order that at every point of continuity of some 
nonrandom distribution function/z(x) whose Stieltjes transformation equals 

v(t) - f ( 1  + i tz )  -1 d/z(z), l i m  /zn(~) =/Z(x), 
n---+ (x) 

it is necessary and sufficient that with probability 1 for every t, lim,*+o~ r/,* (t) = ~7(t). 

18. Canonica l  spectral  equat ion 

A peculiar feature of the normalized spectral functions of a symmetric random matrix 
with independent entries on the diagonal and above is their convergence to some non- 
random function of distribution under the condition that the dimension of the matrices 

,-, (•!n)) be a symmetric random matrix and/Zn(Z) its normalized is increasing. Let =n  - "~3 
spectral function. 

If for every n the vectors ~-~ - (E (n) t:(,*) F (,*) ,-ii , , , i i+ l , . - . , - i , *  ), i = 1 , . . . , n ,  are given by 

independent, random values t~! ~) i, j,  n - 1 2, on a common probability space, and 
there exists a limit 

lim ?z- lEWr( / -~- i ron)  -1 = re(t)  
n---+ (x) 

and the function re(t)  is continuous at zero, then with probability 1, limn+oo/Zn(X) = 

/z(x) at every point of continuity of the nonrandom function/z(x),  whose Stieltjes trans- 
formation is equal to 

(1 -+- i tx)  -1 d#~ - re(t).  
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For every n, let the random entries ~i'~, i ~> j, i, j = 1 , . . . ,  n, of the matrix .'-.'~ = 

(~ c!. ~) - a ~  )) be independent, infinitesimal, 
-,~z 3 

f 
= [ x dP{~ij < x}, aij 

Jl~ I<r 
T > 0, is an arbitrary constant, 

Kn (u, v, z) =,. K (u, v, z), where 

K~(u, v,z) = n y2(1 + y2)- l  dP{~ij - aij < y}; 
o o  

i /n  <~ u < (i + 1)/n; j / n  <<. v < (j + 1)/n, 

with the K(u, v, z) a nondecreasing function with bounded variation on z and continuous 
on u and v in the domain 0 <~ u, v < 1. Then with probability 1 for almost all x 

lim # n ( x ) =  F(x), 
n---), o o  

where F(x) is a distribution function whose Stieltjes transformation equals 

/ ( l  + itx)-l dF(x) = lim / l  xdG~(x ,z , t )dz ,  

where G~(x, z, t) is a distribution function on x (0 ~< x <~ 1, 0 ~ z ~< 1, -cxD < t < ~ ) ,  
satisfying the canonical spectral equation at the points of continuity 

G~(x,z, t)  = P{[1 + t2~a(G~(.,.,t),z)] -1 < x}, 

and ~ ( G ~ ( . ,  . , t),z) is a random functional whose Laplace transformation of one di- 
mensional distributions equals 

E exp ( - s~ (G(., . ,  t), z) } 

{/0'1'/0 = e x p  ( e x p { - s y x 2 ( 1  + a l x l )  -2} - 1 )  

•  d K ( v , z , x ) ] d G ( y , v , t ) d v } ,  a>O,  s>~O. 

The solution of the canonical spectral equation exists and is unique in the class L of 
the functions G(x, z, t), which are distribution functions on x (0 ~< x ~< 1) for any fixed 
0 ~< z < 1 , - o c  < t < oo and such that for any integer k > 0 and z the functions 
f xkdG~(x, z, t) are analytical on t (excluding, perhaps, the point zero). 
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19. The Wigner  semicircle law 

- (F!~) ) .  Let "-'n = ,~z3 " ' "  i , j=l ,  n = l, 2, be symmetric matrices, 

#n(x)=n-1 E 1, 
,ki,~ < x  

where Ain, i = 1, , n, are the eigenvalues of ~"~, and the random variables ,c!. ~) i j = 
�9 " " ~3 ' 

1 , . . . ,  n, n = 1 , 2 , . . . ,  given on a common probability space. 
A semicircle law is any assertion which states that the normalized spectral function 

#n(x) converges, with probability 1 or in probability, to a nonrandom spectral function 
#(x)  whose density has the semicircle form: 

(2fro-2) 1V/4cr 2 -- x2, 

~"(~) = o, 
Izl ~ 2or, 
Ixl > 2~, ~ > 0. 

If the random variables ,c!. n) i ~> j ,  i j = 1 n, are independent for each 
~ . Z  3 ~ , ~ �9 . . , 

n, E~c!~)~3 = 0, and V a r ~  3~c!. ~) = cr2/n, and 0 < cr 2 < oc, then lim,~__,oo /zn(x) = /z(x) 
with probability 1 if and only if for every r > 0 

n 

lim n - '  ~ E[s 1 ,~ , ,  > v) : 0. 
n - - - - ~  ( : x )  

i , j=l  

20. Limit  theorems for determinants  of  random Jacobi  matrices  

Many problems o f  theoretical physics and numerical analysis can be reduced to the 
determination of the distribution function F(x) of the eigenvalues of a random Jacobi 
matrix 

~---,n -" (~i(~ij Jr-77i~ij-I "q- ~i(~ij+l ), 

where 

J" o, i # j ,  5q 
l, i = j ,  

is the Kronecker symbol. 
In particular limit theorems for det ~'n are very important. 
For each n, let the random 3-vectors ((k, r/k, (k), k = 1 , . . . ,  n, be independent and 

with probability 1, 

~k--1~Tk(k[t> 1, [~Tk- l (k- l l~  1, ( n ~  1, "k - -1 ,  . . . , n, n - - l , 2 , . . . ;  
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sup sup 
n k--- 1 , . . . , n  

E In 2 (~k -4-I~kffkl i I~k-,ffk-,  I) < ~ -  

Then 

p lim n-1 (In det ='-'n - E In det ~n)  : 0. 
n---+ (x) 

21. The Dyson equation 

Let the random variables ~i, i - 1,2, . . . .  of the matrices 

.vn = ((2 + ~ ) ~ j  - ~ j _ ,  - ~ j + , )  

be independent, non-negative, and identically distributed, let the sequence of sums 

n 

k = l  

n = 1 , 2 , . . . ,  

tend in probability to infinity, and let for some 6 > 0, 

E Iln~l[ l+~ < o0. 

Then 

f l  x) 
p lim n - l l n d e t ~ n  = lnxdF(x) ,  

n----~ (x) 

where the distribution function F(z)  satisfies the Dyson integral equation 

F(:) =/~+~,_~_,<: d F ( z )  dP{(l < y}. 

22. The stochastic Sturm-Liouville problem 

Let us study the distribution of eigenvalues of the differential equation 

u"(t) + (~(t) + A)u(t) = 0; u(0) - u(1) : 0, 

where ~(t) is a real, continuous and bounded from below random process defined on 

[0,L]. 
Sometimes, instead of boundary conditions, we use the following conditions 

u(O) cos c~ - u' (0) sin c~ = O, 
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u(L) cos ~ - u'(L) sin fl = 0. 

In the case when such differential equation can be approximately reduced to a difference 
equation in order to solve the stochastic Sturm-Liouville problem, it is necessary to use 
limit theorems for determinants of random Jacobi matrices 

.-.,='n(A) = { ' i j ( 2 + n 2 ( , ( i )  + A ) ) - ' i j -  1 -- 5ijd-I } .  

The matrix -L-'n is a non-negative-positive definite matrix. Consider the random process 

n 

An (x) = E A:~ F(x - Ai,~), 
i--l 

where Aln /> A2n ~>''" ~> Ann are the eigenvalues of the matrix .-L"n(0). It is obvious 
that 

f0 ~ d (1 + Ax) -1 dAn(X) = ~ lndet.-.n(A). 

Let ~(t) be a measurable process on [0, L] such that 

P{ inf ~ ( t ) > O } - I  
O<~ t ~ L  

lim P~f sup ~( t )~>h~=O.  
h-+ oo I, O <~ t <~ L ) 

Then for all A/> 0, 

~0L{ [ { l~0t } ] } - 2  n -1 lndet.-.-n(A) =~ E exp - ~  (~(x) + A)wE(x)dx ~or dr, 

o < �9 < 

where A(x) is a nondecreasing, random process, bounded with probability 1, whose 
Stieltjes transform is 

fo ~176 (1 + dA(x) t x )  -1  

L 1 t -2 
= ddt In ~o {E [exp { - ~  ~o (~(x)+ A)w2(x)dx}/a]} dt. 

as n --+ cr where w(x) is a Brownian motion process which is independent of ~(t), 
and a is the minimal a-algebra, with respect to which the process ~(x) is measurable, 
x e [o, L]. 
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In order to find the limiting spectral functions of random Jacobi matrices, we have to 
invert their Stieltjes transform, which is the solution of the Dyson equation. Note that 
such an inversion, in general, is a very difficult task. The Sturm oscillation theorem makes 
it possible to avoid this operation in some cases. We shall give one of its generalizations. 

Let An be a symmetric real matrix of order n and let det Ai, i = 1 , . . . ,  n, (det Ao -- 1) 
be the sequence of its main minors, det Ai ~- 0, i = 0 , . . . ,  n. 

Then the number of negative eigenvalues of matrix A is equal to the number of changes 
of the sign in the sequence det Ai, i = 0 , . . . ,  n. 

Let ~,~- = ,',,3(t~! ~)) be a random real symmetric matrix of order n, let det~0 -- 1 
det ~-i, i = 0 , . . . ,  n, be its main minors, #n (x) the normalized spectral function of ~n- 

If the random entries ,c!. n) i ~> j,  i j = 1 . n, are independent and have continuous 
-sz 3 ~ ~ ~ �9 . 

distributions for every n, 

lim sup E #n (h) = 0, 
h - - + -  cx) n 

then with probability 1 for almost all x, 

lim (#.(x) - E p(x) )  = 0, 
n--+(x)  

where 

n 

E ~[.Ln(x ) = 71, - 1 E P  { d e t ( ~ i - l -  I x ) ( d e t ( Z i -  Ix)) < 0}. 
i - ' l  

23. The central  l imit theorem for determinants  of random Jacobi  matrices  

Let ~,~ = (~i6ij + ~Ticfij-i + r ), and let O-k be the minimal O.-algebra with respect 
to which the random variables ~t r/t, Q, l = k + 1 , . . . ,  n, are measurable. Suppose that 
E In 2 ] det ~'nl exists. Then 

In I det ""~ I - E In I det ~'~ I 

. . . . . .  O ' k -  1 - E In r /k- l~k-I  dk-I  bn-(k+l) 
k = l  

- E  [In l -  r /k - l f fk - lda-2d~l l  + ~k - rlk~kb,~-(k+2)bnl_(k+l)l/o-k] }, 

where 

dk = det(~iSij + ~Ti~ij-I + ~jcfij+l), i , j  = 1 , . . . ,  k, 

bn-k = det(~i6ij + rli6ij-1 + ~j6ij+l ), i, j = k , . . . ,  n. 

On the basis of such representation the following assertion holds. 
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Let the random variables ~i, i = 1,2, . . . .  of the matrix 

~n = ((2 + ~,)6ij - ~ij+l --  ~ i j - - 1 )  

be independent, non-negative, identically distributed, and suppose E In 2 (1 < cx3, and 
0.2 > 0, where 

0 . 2 . -  ln(--z -I  + 2 + u -  x -1) d a ( x )  

-- In ( - -  z -1  -~- 2 -'1- U -  X - 1 )  dG(z)dF(u 

with the distribution function G(z) satisfying the integral equation 

dF(u) dG(z), 

a(z) = ff2+u-z-, <~, ~>~1 
dG(z) dF(y), F(y) = P{~I < Y}. 

Then 

lim P{ n - 1 / 2 a - - 1  [ln det "-"n - E In det ~n] < x } 
n--+oo 

f = (27r) - ' / 2  exp ( -  y2 /2)dy .  
oo 

24. The Fredholm random determinants 

Let &"~ be a square random matrix. We call the random function det(I  + t~n) ,  where t is 
a real or complex variable, the Fredholm random determinant of the matrix .-.'-'~. Fredholm 
random determinants carry important information about random matrices. With their help, 
the limiting distributions for eigenvalues of the random matrices can be found. In this 
section, on the basis of limit theorems for Fredholm random determinants, limit theorems 
for the eigenvalues of symmetric and nonsymmetric random matrices are given. 

Let ""n" = ""~3bc!" ~)) be square random matrices of the order n. Arrange the eigenvalues of 
the matrix "n---n" _~T in nonincreasing order ,~ln ~> )~2n ~> "'" >f )~nn. Consider the random 
process An (x) equal to the sum of eigenvalues belonging to the semi-interval [0, x). If 
with probability 1 Tr -~ _~T , " - - ' n ' - - ' n  < o0, then 

f 0  C~) 
(1 + tx)-ldA~(x) = dlndet  ( I  + .-...-.n)/dt := r/ .(t)  

If 

l i m  L i m n ~ P { , ~ n ( + O o )  ~> h} = 0, 
h---too 
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then in order that An(X) -~-+ A(x), x >~ 0, where A(x) is a random function, nonde- 
creasing and of bounded variation with probability 1, it is necessary and sufficient that 
rln(t ) =~ ~7(t), t >t O, where r/(t) is some random function. 

25. Limit  theorems for eigenvalues of random matrices  

Let .".n" = ,',,3(E!? )) be square random matrices of the order n. Arrange the eigenvalues 
of the matrix =" _~T in nonincreasing order AI~ ) A2,~ /> -. .  /> An,~ See notation in 
Section 16. 

For every n let the random entries ~!.n) i, j = 1 n, of the matrix .-.'-n be in- 
dependent; let the vector rows and vector columns of the matrix ~n be asymptotically 
constant, 

lim Tr BnB T = 0, 
n---+ o o  

n 

[ 1 -  g(~)(z)] ~ K(z) ,  
i , 3 = 1  

z>~O, 

where ~F(~ ) (z) = P {vi 2 < z}, and the function K ( z ) i s  continuous and bounded for all 
z > 0 .  

Then for all integers kl > k2 > . . .  > k m  > 0 and real numbers xm/> Xm-l ~> .." ~> 
Xl > 0 ,  

lim P{Ak, n < X l , . . . ,Ak, , ,n < xm} 
n - - + o o  

-- (--1)m [(kin_l)!] -1 exp(  - / ~ ( Z l ) )  d g ( z l )  

X [ ( k i -  ki+l- 1)!] -1 
i = 1  

x [ K ( z i ) -  K(zi+l)] k'-k'+'-I dK(zi+l)  [K(zm)] am- ' .  
,! z i  

From this formula it follows that 

l i m  P{,Xkn < z} - - [ ( k -  1)!] e x p [ - K ( z ) ] [ K ( z ) ] k - l d K ( z ) ,  

x > O ,  

and for e v e r y k > m ,  O < x < y ,  

lim P {Akn < x, Amn < Y} 
n--+cx~ 

= [(fr~- 1)!(k -- r n -  1)!] -1 exp [ - -  K(zl)]  dK(zl )  
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~ y  • [ K ( z l )  - K(Z2)] k - m - 1  [K(z2)] m--1 dK(z2). 
l 

If the function K ( z )  is differentiable, then 

k - I  
nlim P {)kkn < X} -- exp ( - K ( x ) )  ~ (m!)  - 1 K m ( x ) .  

m - - 0  

Let Am,~ < "-" < A1 be the eigenvalues of the covariance matrix Rm,~ and let the vec- 
tors :g l , . . . ,  :gn be independent observations of a random vector (distributed according 
to the normal law N ( d ,  Rm,~), and/~m,~ is the empirical covariance matrix" 

n+l  
/~m,~ -- n - 1  ~ (:Ok -- ~) (Xk -- ~) T 

k=l 

^ 

and ~ is the empirical expectation: 

n 

a n ~_k. 
k=l 

Assume that the conditions limsupn_~o o m n n  -1 < 1, Ak(Rmn) ~ c < (x~ hold. Then 

p lim [/~1-o~2]-0,  p lim [,~m- CZl]-0, 
n - - - +  o o  n - - - +  ( x )  

where 

cei vi(1 7) 1 . . . .  ,')//]2()~ k -- Lti) - I  ' 
m k=l 

")' = m n n  -1 i -- 1 2 

/]1 -- min{y~}, u2 -- max{y~} and the y~ are the real solutions of the equation 

N 7 - -  

2 m 

~ - ~ , ) , y i ( A k _ y i ) _ l _  1 ~  
o 

m - - y )-2 
k = l  k=l 

If, in addition, Ak (Rm,~) = 1, k = 1 , . . . ,  m ,  then 

p nlimoo [Am (/~m,,) - (1 - x/~) 2] - 0, p l i m  [A1 (/~mn) -- (1 + V/-~) 2] = 0, 

p lim [Ak(/~m,,)--ck] = 0 ,  k #  1 m 

where ck is the unique real solution of the equation 

(k - 1)m -1 = (27r-,/) -1 y - l  { [y _ (1 - x/~) 2] 
1_v~)2 
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x [ ( l  + v / - 7 ) 2 - y ] } ' / 2 d y ,  k = 2 , . . . , m n - 1 .  

'--  ( ~ ! n . )  n 2, . . . .  Consider the sequence of symmetric random matrices =,~ = ,-~3 )i , j=l ,  n = 1, 

whose entries ~!.n) i ) j ,  i j = 1, , n, are independent for every n, and let 
-~z 3 ) ) �9 . . 

rlc!.n)] 2 1 a 2  E t:!~. ) = a n)~ij E L~*3 = a2n - O < < cx3 

and for some/3  > 0 

sup sup 
n i , 3 = 1  . . . . .  n 

( n ) . . .  1 / 2 1 4 + / 3  E I~i3 '* < c~, 

and SUPn supi= 1 ..... n [a~n)[ < ~ "  Let A1 f> " "  i> An be the eigenvalues of this random 
matrix. Then 

p lim(Al - r l )  = O, p lim(An - r2) = O, 
n---+oo n - - + o o  

where 

ri = yi + - i f 2  ( Y i -  a ) , 
n 

k = l  

Y, = max{v/} ,  V2 = min{ui},  and vi are the real solutions of the equation 

n 

n - '  E ( x -  a ( " ) ) - 2 a 2  = 1. 

k = l  

If in addition a~ n) = 0, i = 1 , . . . ,  n, o .2-- 1, then 

p lim A1 = 2, p lim An = - 2 ,  
n - - } o o  n---t, oo  

p l i m  I Ak - bkl = 0, k # n, 
n - - ~ o o  

where the value bk, k = 1 , . . . ,  n -  1, is the unique real solution of the equation 

(27r)-lbk (1 - b2k/4) '/2 + 7r-' arcsin(bk/2)  + 1/2 = k n - ' .  

26. The systems of linear algebraic equations with random coefficients 

By a system of linear random algebraic equations we mean a equality ~ s  - ~(w), 
where ~ = (~ij) is a random matrix, ~(w) is a random vector, and s is a desired 
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vector from some set D of random vectors whose dimension is the same as that of the 
vector ~(w). 

We call the system of equations ~s = if(w) normal if the entries of matrix ~ or of 
the vector ff or if the entries of both of them are distributed according to a joint normal 
law. 

The equation ~:~(w) = if(w) has a unique solution if . ~  is a square matrix and 
P { d e t ~  = 0} = 0. If the square matrix .-."n and the vector r7 have the joint distribution 
density p(Zn, x) then the distribution density of the solution of equations ~ = ff is 
equal to 

S P(Zn, Z Y-31 det Znl dZn, 

on the assumption that this integral exists. 
If the vector fin does not depend on the matrix ='~ and is distributed according to a 

nondegenerate normal law with parameters fin, Tn and P{det~'~ = O} = O, then the 
distribution density of the solution :~n (w) of the system ~n:~n (w) = fin (w) is equal to 

P(ffn) := (27r) -n/2 det Tnl/2Ei det.-.'n[ 

x exp { - 0.5 (Tn 1 (~-,nYn -- an ) ,  (,--,~nYn -- a n ) ) } .  

In this formula, we suppose the distribution of matrix ="~ to be such that the density 
p(ffn) exists. For example, we can require that 

E ldet=-~l < oo .  

In particular the density of the solutions of some systems of normal linear algebraic 
equations has an explicit form: 

Let the vector r/n be normally distributed N(0,  1), the column vectors (i = 
( ( i l , . . . ,  ~in), i = 1 , . . . ,  n, of matrix ='-'n be independent, not depending on the vector 
r/, and let they be normally N(0,  Rn) distributed (the matrix Rn nondegenerate). Then 
the distribution density of the solution ~n of the system of equations .-.'-~x~ = fin is equal 
to 

112 -(n+l)12 -(n+ 1)12 P(ffn) = F((n + 1)/2) de tR n 7r [1 -p- (Rnffn, f i n ) ]  �9 

27. The arctangent law 

_ _ . ,  , - 

Let us consider systems of linear algebraic equations .".nXn = qn where " " n  - -  "'~3 
is a real random square matrix of order n, and fin -- ( r / l , . . . ,  r/n) is a random vector. If 

.----1 "-" O, det • ~ O, then the solution of this system exists and equals s = " n  fin; if det- .n  = 

then the solution cannot exist. Suppose, that the components x (n) of the vector xn are 
equal to some constant if det(~n) = O. 
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For every n, let the random variables ~ij, r/i, i, j - 1 , . . . ,  n, be independent, E ~ij = 
0, E r/i - 0, Var  ~ij = Var  r/i = o -2, 0 < o -2 < o<3, i, j -- 1 , . . . ,  n, for some 3 > 0 

sup E [l~ijl 4+~ + Ir/il 4+~] < c~. 
n, i , j  

Then for any k r l, k, l - 1 , . . . ,  n, 

lim P { x ? ) <  z} lim P{x  (n)" (n) = I X  z < z } -  1/2+~- larctgz ,  
n ---~oo n---~cx3 

,.r.(n) 
lim P{x !n) < Yl . . .  ,~ i k  < Yk}  

n---+ c<) t I i  

= 7r - (k+l ) /2F( (k  + 1)/2)  

k 

x . . .  (1  Jr- z21 J r - ' "  + z 2 )  - ( k + l ) / 2  d z l ,  

cx:) (:x:) i -  l 

where i l , . . . ,  ik are any distinct integer numbers from 1 to n. 

28. The circle law 

For every n, let the random entries ~(~), l, p = 1 , . . . ,  n, of a complex matrix H n  = 

,(n) --1/2 -- 0, E I = a2, 0 < a < ~ and let the quantities ~pl n ) be independent, E ~plf:(n) ~pl;(n) 2 

Re,,ktc(n), Im,,mx(n) have distribution densities pro (x )  and q i k ( x )  satisfying the condition: 
for some/3  > 1, 

sup sup i [P~z(x )+qk~(x ) ]dx<c~ '  
n k , l=l , . . . ,n  

and for some di > 0, 

sup sup E 'l r 2 + g  
'~pl I < (X). 

n k , l=l , . . . ,n  

Then for any x and y, 

p lim un (x, y) = u(x, y), 
n--+ cx3 

where 

y)/ xoy] - 
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for  x 2 -+- y2 < 0.2, _ 0, x 2 a t- y2 ~> 0.2, 

n 

un(x, y) = n - '  ~ x(Re ,kk < x )x ( Im ,,kk < y), 
k=l 

Ak are the eigenvalues of the matrix Hn. 

29. The elliptic law 

Assume that the random entries ~p(~) and ~p)  of the matrix Hn - ( ~ : ( n )  ~,',pt ) are dependent. 

Suppose that for every m - l, 2, . . .  the random vectors V',pt(~:(n),~{p)), p >~ l ( p , l -  
1 , . . . ,  n) are stochastically independent, 

EI Jc(n) 2 1 r ~;) "~pt [ = n -  , E~,p I ~ = p /n ,  0 ~< ]p[ < 1, p ~ l, 

and that the real and imaginary parts of random elements ~p(~), ~p)  have distribution 
densities qpt(Xl, x2, Yl, y2) satisfying the condition 

sup sup sup qpt (x, y) < c ~ ,  
n p , l = l , . . . , n  y , x  

where 

qpz(x, v) = f f  q(x, x,, v, v,) d~, dr,. 

Then 

where 

p lim Un (x, y) - A(x, y), 
n - - + o o  

(O2/axOy)A(x ,y )  =Tr -1 [1 - (a 2 + b2)2] - '  

• x[(bx - ay)2(1 - a 2 - b2)-2(a 2 + b2) -1 + (ax + by) 2 

• (1 + a ~ + b~) -~(a ~ + b~) - '  < 1], 

a = Re pl/2 b -  Im pl/2 



64 V.L. Girko 

30. The unimodal law 

Suppose that for every n the entries of the random matrices An - (t~!n)) n B n  -- x'~z3 i , j =  l 

(n) i,j=l are independent, and Vii )n 

E l:!~. ) = E . . (n) = O, 
"~z3 U i j  

E [F!.n)] 2 2 r (n) 2 2 
~-,~: = ~in, E Lrlij ] = ain,  

2 0 < c~ <~ ~2  <~ c2 < c~, O < cl <~ ain <~ c2 < ~ ,  

and that for the random entries c(n) _(n) the condition �9 ~',pl ~ t l i j  ' 

sup sup 
n i , j = l , . . . , n  

E[IF!~)I4+~ I (n) 14+6 ] + Irlij < c~ 

is satisfied, 6 > 0. 
Then for almost all x, y, 

[ f F  ] p lim ~n (x,  y)  - -  Pn (U, V) du  dv  - 0, 
71,--+OO OO OO 

where 

n 

p (u, v)= n-' G + (u + v: )4 . ]  -:  
k= l  

Cr  71"n -1  r y k 2 ~ k  2 

k = l  

- 1  

n 

# n ( x ,  y) = n - l  y ~  x(Re ~ k n  < x)x(Im Ak < y), 
k = l  

and the/kkn are the eigenvalues of the matrix An I Bn. 

31. The distribution of eigenvalues and eigenvectors of random matrix-valued pro- 
cesses 

Let ~n (t) be a random symmetric square matrix of order n, with real random processes 

( i j ( t ) ,  t >~ 0, be as its elements. L e t / k l ( t ) , . . . , ~ n ( t ) ,  O l ( t ) , . . . , O n ( t ) ,  be respectively 
the eigenvalues and eigenvectors of the matrix ~'~(t). We arrange the eigenvalues so 
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that )~l(t)  /> " '"  ) An(t) for every t and choose the eigenvectors 0-~(t), i = 1 , . . .  ,n, 
in such a way that their first nonzero component be positive. Assume that the finite- 
dimensional k-th dimensional distributions of the random process "-"n (t) have the densi- 
ties p ( t l , . . . ,  tk, X l , . . . ,  Xk) ,  where t l , . . . ,  tk are some values of the time parameter, 
and the Xi, i = 1 , . . . ,  k, are real symmetric matrices of order n. The density of the 
finite-dimensional k-dimensional distributions of the eigenvectors {A1 ( t ) , . . . ,  An(t)} is 
equal to 

q(tl ,  . . . , tk, Y1, . . . , Yk) 
f f 

C k 

J" " "Jy h (s)>O, s = l  . .  k ls>'">Yns,  In ' "' 

k k 

x H H(Yis  - Yj,) H #(dH,) ,  
s = l  i>j  s--1 

p ( t l , . . .  , tk, H1YI H[, . . . , Hk YkH~ ) 

where ITs = (6ijYis), Hs = (h}ff)) are real orthogonal matrices of order n, 

n 

~ 7rn(n+l)/4 H { / - ' ( ( ~ -  i n t- 1)/2)}--1. 
i=1 

32. Perturbation formulas 

If we assume the existence of a distribution density of a random matrix, its eigenvalues 
with probability 1 will be different. Therefore, we need formulas for the perturbations of 
different eigenvalues of matrices. 

Let Ai(A + e B)  and l j ( A  + eB)  be the eigenvalues and eigenvectors of the matr ixA,  
where e is some arbitrary real parameter, with the eigenvalues Aj(A + eB) ,  satisfying the 
relation l i m ~ 0  Aj(A + eB)  = Aj. The coefficients of the characteristic equation for the 
matrix A + e B  are analytical functions of e. Therefore, the eigenvalues of such a matrix 
are analytical functions of e having only algebraic singularities. Then for e sufficiently 
small, the following expansions hold: 

m--O 

0(3 

l j ( A  + e B )  = ~ tj'(m)em, lJ.O) = lj. 
rn=O 

If Ai r Aj, i r j, then 

(m) 
Aj = ~ T r ( S j B ) ~ ' E j B ( S j B ) ~ : E j B ( S j B )  ~3 

slTs2+s3=m--2, s i l O  

+ Tr E j B ( S j B )  m - l ,  m >~ 2, 
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(. m )  _ (SjB)*'EjB(SjB)*:Sj + (SjB)m-'Ej, 
s ! + s 2 = m - - I ,  s>/0 

where 

Sj = ~ Ek()~k - )~j)- ' ,  Ek = lkl~. 
k ~ j , k = l  . . . . .  n 

33. Forward and backward spectral Koimogorov equations for distribution densi- 
ties of eigenvalues of random matrix processes with independent increments 

Let Wn (t) be the symmetric matrix process of Brownian motion of order n, i.e. the ele- 
ments of the matrix wn(t) are random processes of the form 5ij#i + wij(t)(1 + &j)/2,  
where the wij(t) ,  i >~ j ,  are independent processes of Brownian motion, and the 
#1 > /*2 > "'" > #n are arbitrary real nonrandom values. For the Markov process 
A(t) = {)~l(t), . . .  ,An( t ) ;  ,kl(t) t> ~2(t) > / - . .  ~> An(t)} the transition probability den- 
sity exists, 

p(~, e, t, ~), e = (x~,. . . ,  ~,) ,  ~ = (y , , . . . ,  y,). 

Let f(:~) be continuous and bounded, 

u(s, ~.) "=/R' ,  f (ff)p(s, Z, t, ff) dff, 

M n := {:~: xi ~ xj, i ~ j} .  

Then u(s, ~) for ~ E M n, s E (0, t) satisfies the equation 

i~s i=l i=l 

where 

ai(~) - ~ [1//(xi - xk)] 

and the boundary condition lims,t u(s, ~) = f (Z) .  
The function p(s, ~, t, if) in the domain s E (t, T) ,  ~ c Rn, ff E M n satisfies the 

equation 

ap(,, e, t, y) n n 

= - : - ' E  ~ , , ~.2P(S,x,t ,Y- ')  �9 ~-~ ~ [~(~)p(,  e , t  ~)] + 2 -~ 
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This is the forward Kolmogorov equation for p(s, s t, if) which is also called the Fokker- 
Planck or Einstein-Smoluchowski equation. 

For any fixed s, the solution of this equation exists and is unique for all initial func- 
tions p(s, ~, t, if) belonging to the class of functions that are everywhere compact in the 
metric of uniform convergence on the space of all continuous and differentiable functions 
p(s, ~, t, if), once with respect to s and twice with respect to Vi, i - 1 , . . . ,  n. 

34. Spectral stochastic differential equations for random symmetric matrix pro- 
cesses with independent increments 

Let Wn (t) be a symmetric matrix process of Brownian motion. The eigenvalues Ak(t) 
satisfy a system of spectral stochastic differential equations 

1 
dAk(t) = ~  E (Ak (t) - )ira (t)) - 1  

m # k  

dt + dwk(t), 

Ak(O)=/zk,  k =  1 , . . . , n ,  

where wk(t) are independent random processes of Brownian motion. A weak solution 
of the system of this equations exists and is unique in a strong sense. 

35. Spectral stochastic differential equations for random matrix-valued processes 
with multiplicative independent increments 

Let w~ be a random matrix-valued process of dimension m x m satisfying the following 
conditions; for any 0 < tl < t2 < . . .  < tk < s, 

t, t2 ~ w ~  w ~ = I ,  W ~ = 113 0 113 t l " " " "tOt k 

the random matrices w~ +1,  i = 1,2, . . . ,  are independent, and their distributions depend 
only on the difference ti+l - ti, A is a real deterministic matrix, the eigenvalues c~i of 
the matrix AA'  are different, 0/1 ) C~2 > " ' "  ) OLn, 

lim Ew~ +At ~ - A 
At$0 

for any vectors :g and ff of dimension m, and 

lim (A t ) - lE[  ( (w~ + A t -  w~)s ff) 2/w~] --(:g,:g)(ff, w~(w~)*~7). 
At-+0 

Let Ak(t) and lk(t), respectively, be the eigenvalues and eigenvectors of the process 
~(t) "= w~(w~)*. 
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Let L = {X "= Ai(X) # Aj(X),  i -Tz: j} ,  where X are non-negatively definite 
matrices of dimension m x m, 

v = in f{ t  i> O: w ( t )  E L}. 

By using the perturbation formulas for the eigenvalues, we have that the eigenvalues 
Ak(t) satisfy the following system of stochastic differential equations as t < v, 

= Z >,,(t))-' 
s # k  

dt + n dt + dwk(t), 

Ak(O)  = a k ,  k = l ,  . . . , n ,  

where the wk (t) are independent processes of Brownian motion. 

36. The stochastic Ljapunov problem for systems of stationary linear differential 
equations 

Let s = A~(t),  s = s s ~: 0 be a system of linear differential equations with 
a random matrix of coefficients A. The stochastic Ljapunov problem for such systems is 
that of finding the probability of the event 

{w: e(t)  6, t --+ 

Let us consider a system ( d / d t ) s  = A ~ ( t ) ,  ~(0) = ~oflinear differential equations 
with constant real coefficients, where A is a square matrix of order n, and :~ and ff are 
n-vectors. The solution of such an equation converges to the null vector, as t ~ cr for 
any vector ff ~- 13 if and only if Re Ai < 0 where the Ai are the eigenvalues of A. A 
matrix A for which Re Ai < 0 will be said to be s tab le .  To prove the stability of A we 
can use Ljapunov's theorem" A is stable if and only if the matrix Y determined by the 
equation A ' Y  + Y A  = - 1  is positive-definite. However, if A is a random matrix, this 
stability criterion is inefficient. 

Let ~ be a random symmetric matrix of order n with probability density p ( X )  and 
let Ai be its eigenvalues. Then, 

P(Ai < O, i = 1 , . . .  , n )  =  fp(- 
where Znx(n+l ) is an n x (n + 1) real matrix, and 

n 
C "-- 7F -n(n+3)/4 H / ' [ ( i  -+" 1 ) /2 ] ,  d Z n x ( n + l  ) - H dZ i j .  

i=l i--1,...,n, j=l , . . . ,n+l  
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If the entries ~ij, i ) j ,  of the symmetric matrix ~. are independent and have 
N(aij ,  ai 2.) distributions (ai 2. r 0), then 

P{~i < O, i =  1 , . . . , n }  

f ... f exp { 
i) j  

• ~. . o'i-j 2 aij - Ek:l Z i k Z j k  - -  

• H dzij. 
i--1,...,n, j - - l , . . . , n T l  

in ( n l)2} 
E 2 O.ii2 aii -- Zik 

i = 1  k = l  

37. Equation for the resoivent of empirical covariance matrices if the Lindeberg 
condition holds 

Let Rmn be the covariance matrix of the mn-dimensional  random vector ~, E (  = d. The 
expression 

mr~ 

~m,~ (X, R)  .~ m n  I E F ( x  - ~k) 
k = l  

is called the normalized spectral function of the matrix Rm,~, where F(x  - Ak) = 1 if 
Ak < x and F(x  - Ak) = 0 if Ak /> x, and Ak are roots of the characteristic equation 

de t ( Iz  - R) = O. 

Let ~1, s �9 �9 �9 s be the observations of the m-dimensional random vector ~. Suppose 
this vector has covariance matrix Rm, ,  

(i = ((ij, j = 1 , . . . , m )  T = HRmU2(~i - ~ ) ,  

where H - ( h i , . . . ,  hm), hp is an eigenvector corresponding to the eigenvalue Ap, and 
the random variables (ij  are independent, 

0 < c l  ~ < A k < ~ c 2 < c ~ ,  

lim mn n-1 __. C, 0 < c < 1. 
n - + o o  

Then, in order that for every t > 0, 

[/0 ] p lim (t + x) - l  d/z(x, Rm.)  - am~ (t) - 0, 
n----~ oo 
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where 

n 

/~m : ( n -  1)-I  E (Xk -- ~)(Xk -- ~ ) T  
k--I 

n 

- - 1 E  --, x = n  xk, 
k=l 

and the am,~ (t) a r e  non-negative analytical functions satisfying the equation 

am. ( t )  - {t  + [(1 - m n n  -1 + m n n - l t a , ~ . ( t ) ] x } - l d # m . ( x ,  R m . ) ,  

t >~ O, 

it is sufficient, and in the case of symmetric variables ~ij, it is also necessary, that the 
Lindeberg condition holds, i.e. for every "r > O, 

m n  n 

l i rn  m ~  l E E E  I ( i j ( n - 1 ) - l / 2 1 2 X ( l ~ i j l ( n - 1 ) - 1 / 2 >  T ) -  0. 
i=l j--l 

38. Equation for the Stieitjes transformation of normalized spectral functions of the 
empirical covariance matrix pencil 

Let RI and R2 be nonsingular covariance matrices of two independent m-dimensional 

random vectors ~l and the ~c2, gl - E ~jl, ff2 = E ~2. 
The expression 

m 

]-l,n(Xl , R l ,  R2) = m-1 E F ( x  - ,~k) 
k---l 

is called the normalized spectral function of the RI and R2 covariance pencil, where 
F ( x -  Ak) = 1 if Ak < x, and F ( x -  Ak) = 0 if Ak >~ x; Ak are roots of the 
characteristic equation 

d e t ( R l z -  R 2 ) =  0, 0 < dl ~< /~k ~< d2 < 00. 

Let x l , . . . ,  Xn I , Y l , . . . ,  Yn2 be observations of the random vectors ~1 and ~2, 

~i -- (~ij, j -- 1 , . . . , m )  T = R I  l/2(x,i - al), 

r / i -  (r/ij, j - 1 , . . . , r e ) T =  R21/2(ffi - a 2 ) ,  

let the random variables ~ij, r/ij, i, j - 1,2, . . . .  be independent 

lim m -1 ~ 1, C 1 r 1, cl, lim m . . . .  c2, c I + c~ -1 
m-~cx~ nl n--~oo n2 
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and let the Lindeberg condition be fulfilled, i.e. we have 

m 

lim E E I ( , , ( n , -  1)-l/212x([~il](n1- 1) -1/2 > r )  
n - - +  ( x )  

i=1 

m 

+ m ~  1~?~El~Ti1(n2 1)-1/212 -- X(l~Tiil(n2- 1) -1/2 > T) --O, 
i=1 

for every r > 0. Then 

[/0 ] p lim (t + x) -1 d/zm(X,/~1,/~2) - am(t) = O, 
m - - - + o o  

t > 0 ,  

where the function am(t), t > 0, is equal to 

am (t) -- - ~-~ bm (t, x) dx, 

and the function bin(t, x) satisfies the equation 

bin(t, a ) =  [a + t(1 + tClbm(t, Ce)) -1 + x [ 1 - C 2  + OlC2 

• bm( t ,a ) (a  + tc, bm( t , a ) ) - l dpm(x ,  R1,R2). 

39. Consistent estimates of generalized variance 

Let the independent observations :F1,.. . ,~'m of the ran-dimensional random vector 
...) 

( ,  n > ran, be given, 

n 

�9 : ( n -  ~/-1~ (e~ - ~)(e~ - ~ )  ~ 

k=l  

n 

m -1 E x n :~_k. 
k=l  

The expression de tR is called a generalized variance. If the vectors xi, i - 1 , . . . ,  n, 
are independent and distributed according to the multidimensional normal law N(a,  R), 
then 

n - I  

d e t R ~ d e t R ( n - 1 )  -m H X2, 
i - - n - m  

where X 2 are independent random variables distributed according to the X2-1aw with 
i degrees of freedom. In the general case, the distribution of det/~ is difficult to find, 
and therefore finding consistent estimates for de tR is a very complicated problem. It 
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is proved, that under certain conditions the G-estimates for the variables Cn 1 In det R, 
where Cn is a sequence of constants such that 

lim %2 In n(n - mn )-  I = O ,  
n--+ oo 

can be represented in the form 

GI(R) "= c~l{ In det R + In [ ( n -  1)m (A~_l) -I n(n-mn)- l } ,  

where Anm_, = (n - 1 ) - . .  (n - m) .  

For every value n > ran, let the random ran-dimensional vectors xl n),. . . ,  X(n n) be in- 
dependent  and identically distributed with a mean vector g and nondegenerate covariance 
matrices Rmn, such that for a certain ~ > 0 

sup sup 
n i = l , . . . , n ,  3 = 1  . . . .  , ran  

E lel;'.)l 4+' < oo, 

R-'l=(xl a) where the *ij  are the vector components of :~i = m,, - , 

lim (n - ran) = oo, lim nm~'  >1 1; 
n--+(x) n--+oo 

and for each value of n > ran, the random variables ...(n) *ij , / =  1 , . . . , n , j =  1 , . . . , r a n ,  
are independent. 

Then 

p lim [GI (/~m,,) - Cn lln det Rmn] = O. 
n---+ oo 

If, in addition to the previous condition, 

E ( x ~ ) )  4 ~-- 3 ,  i = l , . . . , n ,  j - - - 1 , . . . , m n ,  

then 

lim P{ (cnC, ([tm.) -- lndetRm,~) ( - 21n (1 - m n n - ' ) )  - ' / z  
n---+ oo 

F = (2rr) -1/2 e-U 2/2 dy. 
oo 

<x} 
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40. Consistent estimates of the Stieltjes transform of the normalized spectral func- 
tion of covariance matrices 

Consider the main problem of statistical analysis of observations of large dimension: the 
estimation of the Stieltjes transforms of normalized spectral functions 

mr~ 

k=l 

of the covariance matrices R~n from observations of the random vector ~ with covariance 
matrix Rmn, where the Ak are the eigenvalues of the matrix Rm,. Note that many analytic 
functions of the covariance matrices that are used in multivariate statistical analysis can 
be expressed through the spectral functions #m,~ (x). For example, 

f0 ~ m~lTr f (Rm.)  = f(x)  d#m. (x), 

where f(x) is an analytic function. 
The expression 

f0 ~176 
qD(t, Rm.) = (1 + tx) -1 d#m. = mnlTr(I  + tRine) -1 

is called the Stieltjes transform of the function #mn (X). The consistent estimate of the 
Stieltjes' transform r Rm,~) is by definition the following expression: G2(t, Rmn) - 
qo(t~n (t), hm,~), where t~n (t) is the positive solution of the equation 

0(1 - m n ( n -  1)- '  + m n ( n -  1 ) - l q o ( 0 , / ~ . ) )  -- t, t ~> 0. 

It is obvious that the positive solution of this equation exists and is unique as t ~> 0, 
ran(n-  1) -1 < 1. 

Let the independent observations s  s of the ran-dimensional random vector 
be given, and let the G-condition be fulfilled: 

limsupmnn -1 < 1, 0 < c l  ~<Ai ~<c2 < c ~ ,  i -  1 , . . . , ran ,  
n--+cx~ 

let the components of the vector (~71k ~Tm,~k) f r~-l/2 , . . . ,  = ~mn ( ( -  E 0  be independent, 
and 

sup sup sup El~7~k 14+6 < c~, 6 2> 0. 
n k = l , . . . , n i = l , . . . , m n  

Then 

lirn P (  [ G 2 -  qo(t, Rm~)] v/(n - 1)m~a~(t)+ Cn(~;) < X} 
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f = (27r)-1/2 e-U 2/2 dy, 
( 3 O  

for t > O, where a, ( t )  and cn(t) are some bounded functions. 

41. Stochastic condition of complete controllability 

The basis of the theory of linear stationary controllable systems is the following mathe- 
matical model, 

ds 
= A s  s 1 6 3  

dt 

where :f(t) = ( x l ( t ) , . . . , x n ( t ) )  T is the state vector; if(t) = (UI( t ) , . . . ,Ur( t ) )  T is the 
input of the system, or control; 7.(t) = (zl ( t ) , . . . ,  zm(t)) T is the output of the system, or 
observation; A = (aij) is an n x n matrix;/3 = (bij) is an n x r matrix; and C -  (cij) 
is an m x n matrix. 

This system is "in general position" if and only if 

d e t ( b i , A b i , . . . , A " - ' b i )  ~ 0, i =  1 , 2 , . . . , r ,  

where bi is the i-th column of the matrix B. 
If B = b is a vector, i.e. r = 1, then the condition 

det (bAb. . . A n - '  b -) # 0, 

is a criterion for the system's complete controllability. 
Thus the quantity det(b', Ab ' , . . . ,  An-~b ') = Dn plays a central role in the theory of 

stationary controllable systems. 
However, in real systems, because of a number of always existing factors (obstacles, 

noise, inaccuracies in measurings, wrong information), the elements of the matrix A and 
....t 

of the vector b cannot be regarded as deterministic quantities. 
Obviously, if the elements of the matrix A and the vector b are continuous random 

variables, then P{D,~ ~ 0} = 1. A much more interesting (but rather complicated) 
problem is to find the probability 

P{ID.I > > 0 

This problem, in general, is far from being solved. We shall consider only one particular 
important case. 

Let A be a random symmetric matrix which does not depend on the vector b, and 
such that the entries on the main diagonal and above it, are independent and distributed 
according to the normal law N(0, 1); and such that the components of the vector b are 
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also independent and distributed according to the standard normal law. Then for every 
k = 0, 1 ,2 , . . .  

E I D n l  k = 

(k+l)j) 
2n(k+2)/2 7r-n(n+l)/4 ~ 1" 1 + 2 

n! (k + 1)n 11  F ( j / 2 )  
j=l 

42. Random matrices in physics: Spacing of eigenvalues 

Energy levels of heavy atomic nuclei under high energy are arranged rather close to one 
another, and it is practically impossible to find them even if the Hamiltonian of system is 
known. In this connection, Wigner proposed a statistical model of highly excited states 
of heavy atomic nuclei in which complex nuclei are regarded as some "black cavity", 
and the particles, which make up a nucleus, interact according to an unknown random 
law. The central problem is the choice of a mathematical model for such systems. As 
a model of an ensemble of complex nuclei, Wigner chose a Hermitian matrix of large 
dimension, the elements of which were independent random variables with zero mean, 
identical variances, and bounded moments. 

Wigner proposed the following hypothesis: In a sequence of a great numbers of levels, 
on the average separated by distance D from one another and having identical values 
for all quantum numbers considered for identification such as moments of the amount of 
movement and even parity, the probability to find two levels at a distance between t and 
t + At is equal to 

Q(t)  dt . -  (2D) -17rt exp ( - 7rt24 -1D -2) dr. 

As the mathematical model for checking this Hypothesis, again Wigner's model was 
chosen. Mehta and Gaudin obtained the density p(t)  of the distance between two neigh- 
boring eigenvalues of a random Hermitian matrix, of which the elements on the diagonal 
and above it were independent and distributed according to the standard normal law. This 
density differs from the value Q(t)  but not too much, IO(t) - p ( t ) l  ~< 0.0162. 

Let A1 ) A2 ~> .-- ~> An be the eigenvalues of a symmetric random matrix ~ and 
suppose ~ is such that the random variables Ai have density p ( x l , . . .  ,Xn), Xl > "'" > 
xn,  and the function p is symmetric, i.e. p is invariant under a simultaneous permutation 
of the variables. We consider the spectral function for spacing of the eigenvalues of the 
random matrix 

n-1 
O n ( X )  - -  n ZEF(  - 

i=1 

where 

1, x > O ,  
F ( z )=  O, z<~O. 
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Then 

On(X) = n  -1 OuOv p(u, v)u=v, v=z+u dy dz 

where p(u, v) is the probability that all eigenvalues lie outside the interval (u, v). 
If ~ is a Gaussian Hermitian random matrix, then the limit of the probability that the 

eigenvalues Ai of E do not lie in the interval (om-1/2,~n -1/2) is equal to 

[E exp ( s r/2(z) dz l ]  -2 
oo 

-- H ( 1  - #,), 
i = l  

where/zi are the eigenvalues of the integral equation 

s 71 " - 1  ( X -  y)--l s i n ( x -  y)t(y) dy = At(x), x e (a, ~). 

43. Band random matrices 

The study of the characteristic properties of quantum systems whose classical limit is 
chaotic has led to increased interest in Random Matrix Theory. A lot of interesting 
problems in physics are described by matrices with a band-like structure. For example, the 
quantum kicked rotator, which is the most popular model in quantum chaos, is described 
by a unitary matrix which is very close to a band symmetric matrix: ~ = 0:!n))i~,j= 1 x-,~z 3 

where [!.n) = 0 if l i - J l > m ,  m = 1 2, 

_ = F !  ~ )  _ Let ,c!. n) li Jl < m, i/> j, be independent random variables, E ~ )  0, Var,z 3 - 
~z 3 

2 cri3, li -JE > m, for every i 

E 2 =  1 O'i j  

li-Jl<,m 

and let the following Lindeberg conditions be fulfilled: for every 7- > 0 

lim -1 
n--+oo n 

li-jl<<.m, i , j = l  . . . . .  n 

E~jX(I~,r > T) = 0. 

Then with probability 1 for every x 

n 

l im n - 1  E X(~k < X)~-  1 / y  
n-+oo ~ <~)n(Ivl<2) 

k = l  

V/4 - y2dy, 

where the ~k are the eigenvalues of the matrix ~n. 
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This chapter is devoted to the main results and methods in the theory of matrix 
equations. The problem of factorization of matrix polynomials is essentially a problem 
concerning special systems of matrix equations. It is not easy to describe the scope of 
the theory of matrix equations. Rather the subject consists of a set of concrete equations 
and algorithms to solve them. These algorithms are often useful for the theoretical study 
of matrix equations and properties of their solutions. 

The theory of such highly structured matrix equations as the Lyapunov and Riccati 
equations, which are widely used in applications, represents an advanced part of matrix 
analysis. A great many books and papers on this subject have already been published, 
but the bibliography is still rapidly growing, mainly in publications on automatic control 
and scientific computation. 

Our attention here wilt be primarily directed to algebraic aspects of the theory of matrix 
equations and matrix polynomials. As a rule, our main tool will be the use of invariant 
subspaces of certain associated matrices and linear matrix pencils, thus reducing the 
problem of solving matrix equations to certain spectral matrix problems. Nevertheless, it 
is worthwhile to point out that more efficient approaches in one or other sense may be 
applied to some highly structured problems. 

This chapter is organized as follows. Section 1 prepares the ground for the sections that 
follow. Mostly attention is paid to the definitions and properties of invariant subspaces 
of regular linear matrix pencils, which are a straightforward generalization of invariant 
subspaces of matrices. 

Linear matrix equations are treated in Section 2. A brief survey of the theory of 
linear matrix equations is followed by a summary of the main results on the Lyapunov 
equations. 

Nonlinear matrix equations are studied in Section 3. First the approaches based on 
perturbation theory and iterative methods are discussed. Then the methods of reduction 
of quadratic and other nonlinear equations to spectral problems for linear matrix pencils 
are presented in detail. Considerable attention is paid to the algebraic Riccati equations. 

Section 4 deals with the theory of factorization of matrix polynomials. It includes 
a description of necessary and sufficient conditions for the existence of divisors and a 
theoretical algorithm for computation of right polynomial divisors. Then the theorems 
on symmetric factorization of self-adjoint matrix polynomials are discussed. 

All scalars, vectors, and matrices in this chapter are complex. 

1. Spectral characteristics of a regular linear matrix pencil 

A regular linear matrix pencil is a A-matrix AB - A with N x N matrices A and/3  
provided that the scalar polynomial p(A) = det(AB - A) is not identically zero. 

THEOREM 1 (The Weierstrass canonical form). For any regular matrix pencil AB - A 
there exist nondegenerate matrices U and V such that 

I" 1 

A B - A = V  [ A I - J F  0 | U_ 1 (1) [ o A J o o - l J  ' 
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where JR, Jo~ are in the Jordan canonical form and Jo~ is nilpotent, i.e. it has only zero 
eigenvalues. 

THEOREM 2 (The Schur canonical form). For any regular matrbc pencil ,kB - A there 
exist unitary matrices U and V such that 

)~B - A = V(ATB - T A ) U  -1 , (2) 

where TA, TB are a pair either of upper triangular matrices or of lower triangular ones. 

The roots of the polynomial p(A) = det(,kB - A) are called the finite eigenvalues of 
a pencil AB - A. The set of all finite eigenvalues of a pencil AB - A will be referred 
to as the finite spectrum of ) ~ B -  A. It is clear from (1) that the finite spectrum of 
/kB - A is precisely the set of all eigenvalues of JR. The Schur form (2) also yields 
finite eigenvalues of the pencil A B - A :  let a i  and/3i be equally located diagonal elements 
of the triangular matrices TA and TB respectively, then the finite spectrum of AB - A 
consists of all numbers ai /~i  with/3i -r 0. 

If the degree of the polynomial p(A) is less than N then the pencil AB - A is said to 
have an infinite eigenvalue. Strictly speaking, the zero eigenvalues of the pencil 13-  #A  
are the infinite eigenvalues of A B -  A and vice versa. Henceforth the matrix pencil 
B -  #A is referred to as the dual pencil to A B -  A. From (1) we derive that J ~  
corresponds to the infinite spectrum of AB - A, i.e. all infinite eigenvalues of the pencil 
,kB - A. The set of all eigenvalues of a pencil )~B - A is called the spectrum of/kB - A 
and consists of the finite and infinite spectra of the pencil. 

Let )~0 be a finite eigenvalue of a regular matrix pencil , k B -  A. A sequence of vectors 
XO, X l , . . . ,  Xl--I E C N, x 0 r 0, forms a right Jordan chain of AB - A corresponding to 
A0 if 

(AoB - A)xo = O, ( ) ~ o B - A ) x i + B x i - i  = 0 ,  i =  1 , 2 , . . . , 1 - 1 .  

Analogously, a sequence of vectors x0, x l , . . . ,  Xl-I  E C N, xo ~ O, forms a right Jordan 
chain of AB - A corresponding to the infinite eigenvalue if 

Bxo = O, Bx i  - Az~_l =0 ,  i =  1 , 2 , . . . , l - 1 .  

Left Jordan chains are defined in a similar way. 
It is not hard to verify that the columns of the matrix U in (1) are composed of right 

Jordan chains of AB - A, and the columns of V consist of left Jordan chains. 
Now we introduce the important notion of invariant subspace of a regular pencil 

AB - A. A linear subspace s C C u is called a right invariant subspace of AB - A if 

d im(A/:  + BE) <~ dim/2,  (3) 

where A/:  + B E  = {x C C N [ X = Ay + Bz ,  y c s z E s One can show that by 
virtue of the regularity of the pencil ~B - A only the equality sign occurs in (3). We 
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note that a right invariant subspace/2 of A B -  A is an invariant subspace of the matrix A 
if B = I, and is invariant for the matrix B if A = I. Moreover, if Q is a nondegenerate 
matrix then the pencils AB - A and A QB  - Q A  have the same invariant subspaces. 

Left invariant subspaces of a regular pencil AB - A are defined in a similar way. In 
what follows the word "right" before "invariant" will be often omitted. 

We shall say that an N • d matrix X of rank d is a basis matrix for a d-dimensional 
subspace/2 C C N if the linear span of the columns of X equals E. 

Let X be a basis matrix for a d-dimensional invariant subspace Z2 of a pencil A B -  A 
and let the linear span of the columns of an N • d matrix Y contain the subspace 
A/2 + BE .  Since A/2 C A E  + B/2 and B E  c A/2 + B/2, there exist d x d matrices AL 
and B z: such that 

A X  = YAr. ,  B X  = YBr. .  (4) 

Conversely, if (4) holds and rank(X) = d, then for the subspace E C C N with basis 
matrix X we obtain that dim(A/2 + B E )  <~ rank Y <~ dim/2. Thus, (4) with a matrix X 
of full rank is shown to be an equivalent definition of the invariant subspace/2 of the 
pencil AB - A with basis matrix X. 

The spectral characteristics of the d • d matrix pencil ABL - AL are restrictions of 
the spectral characteristics of the regular pencil AB - A. Indeed, the pencil ABL - AL 
is regular, the eigenvalues of ABL - AL are eigenvalues of the pencil AB - A, i.e. 
the spectrum of ABe - Ac is a subset of the spectrum A B -  A. If zo, z,1,... ,Zl-1 is 
a Jordan chain of the pencil ABL - Ac corresponding to an eigenvalue A0, then Xzo,  
X z l , . . . ,  X zi_l is a Jordan chain of AB - A corresponding to the eigenvalue A0. 

It is clear that full information on an invariant subspace/2 and the spectral properties 
of the original regular pencil AB - A restricted to 12 is given by the four matrices 
(X ,  Y, AL,  Be) .  But this structure is too inconvenient for our purposes, and we introduce 
the following 

DEFINITION. A pair (X; T) consisting of an N x d matrix X of rank d and a d x d 
matrix T is a monic block eigenpair of dimension d for a regular matrix pencil A/3 - A 
if A X  - B X T .  

This definition implies that A X  = Y T ,  B X  = Y, i.e. AL = T, BL -- I.  Therefore, 
X is a basis matrix of an invariant subspace/2 of the pencil A B -  A. It is obvious that the 
invariant subspace E can be represented by a monic block eigenpair (X; T) if and only 
if the matrix BL of the four matrices ( X , Y ,  At_., Br_.) satisfying (4) is nondegenerate. 

It is important to observe the fact that if two pairs ( X ; T )  and ( X ' , T ' )  generate 
the same invariant subspace s then there exists a nondegenerate matrix Q such that 
X '  = X Q ,  T '  = Q - 1 T Q .  As a consequence, monic block eigenpairs ( X ; T )  and 
( X ' ; T ' )  are called similar when X '  = X Q ,  T '  = Q - 1 T Q  with some nondegenerate 
matrix Q. 

DEFINITION. A pair (X; T) consisting of an N • d matrix X of rank d and a d • d matrix 
T is referred to as a comonic block eigenpair of dimension d for a regular matrix pencil 
AB - A if A X T  = B X .  
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In this case, As = I, Bs = T, Y = A X .  A comonic block eigenpair (X; T) can be 
used if and only if the matrix Ac of the four matrices (X, Y, AL, Bz:) is nondegenerate. 
Two comonic block eigenpairs (X; T) and (X'; T') are called similar when there exists a 
nondegenerate matrix Q such that X '  = X Q ,  T'  = Q - 1 T Q .  It is also obvious that if the 
matrix T of a comonic block eigenpair (X; T) is nondegenerate then the pair (X; T -1) 
is a monic block eigenpair for the dual pencil B - /zA.  

DEFINITION. If the matrix T of a monic (or comonic) block eigenpair (X; T) for a pencil 
AB - A is a Jordan matrix, then such a matrix pair (X; T) will be called a monic 
(comonic) block Jordan pair. 

Let (X; T) be a monic block Jordan pair of a regular matrix pencil AB - A and 
T = block diag[Tl, T2 , . . . ,  Tk] be the partition of T into the Jordan blocks Tj of order 
lj, j = 1 ,2 , . . . ,  k, respectively. Let us also partition X = [ X I X 2 . . .  Xk] into blocks 
consistent with the partition of T, i.e. Xj will be a matrix of size N x lj. Then the 
columns of the matrix Xj form a Jordan chain corresponding to an eigenvalue of the 
matrix Tj. The structure of a comonic block Jordan pair is analogous. 

Yet it is not possible to represent all invariant subspaces of an arbitrary regular matrix 
pencil AB - A by monic and comonic block eigenpairs only. It is instructive here to 
exhibit the structure of an arbitrary invariant subspace E of a pencil AB - A. Let X 
be a basis matrix of s and A X  = Y A s  B X  = Y B s  We make use of the canonical 
Weierstrass decomposition of ABz: - Az:: 

Then 

o) 
A X U  = Y V  , B X U  = Y V  J ~  . 

The matrices X U  and Y V  are partitioned consistently with the sizes of the two blocks 
JF and J~ :  X U  = [XFXoo], Y V  = [YFYoo]. Hence, A X F  - YFJF, B X F  - YF, 
AXoo -- Yoo, BXoo = Y~Joo. Thus, we have defined a monic block Jordan pair 
(XF; JF) and a comonic block Jordan pair (Xoo; Joo) of the pencil AB - A, with the 
columns of the composed matrix [XF Xoo] being a basis of/2. If JF ~ 0 and Joo :/: 0 
then, obviously, the subspace/2 cannot be described only by means of monic or comonic 
block eigenpairs. 

DEFINITION. A pair (Xl,X2",Tl ,  T2) consisting of an N x dl matrix Xl ,  an N x d2 
matrix X2, a dl x dl matrix T1 and a dE • dE matrix T2 is referred to as a decomposable 
block eigenpair of dimension d = d l  + d2 for a regular linear matrix pencil AB - A if 
rank[Xl X2] = d and A X I  = BX1TI ,  AXET2 = BX2.  

As was shown above, every invariant subspace of a regular pencil / k B -  A can be 
represented by means of a certain decomposable block eigenpair, and, vice versa, every 
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decomposable block eigenpair (XI, X2; T1, T2) corresponds to the invariant subspace 
with the basis matrix [X1 X2]. 

Monic and comonic block eigenpairs of a pencil AB - A are, evidently, particular 
cases of decomposable block eigenpairs. 

As distinct from the case of monic and comonic block eigenpairs, when all the pairs 
corresponding to thesame invariant subspace/Z are uniquely determined with due regard 
for similarity, decomposable pairs associated with the same invariant subspace generally 
are not uniquely determined up to similarity. However, if for two decomposable pairs 
(X1, X2; T1, T2) and (X~, X~; T~, T~) the spectrum of Ti, i = 1,2, coincides with the 
spectrum of 7"/' and the spectrum of Tl does not intersect with the spectrum of T2 then 
there exist nondegenerate matrices Ql and Q2 such that 

= = X 2 Q 2 ,  T~ = Q-~ITIQ1, T~ = Q~lT2Q2. 

Finally, we introduce several more definitions. An invariant subspace s of a regular 
matrix pencil A B -  A will be called a spectral invariant subspace if the spectrum of the 
pencil ABL - Az: with the multiplicities taken into account does not intersect with its 
complement to the spectrum of AB - A with its multiplicities. In other words, s is a 
spectral invariant subspace of a regular pencil AB - A if and only if/~ is a root subspace 
of AB - A or the sum of several root subspaces. We remind that the root subspace of a 
regular pencil AB - A corresponding to an eigenvalue A0 designates the linear span of 
all Jordan chains of AB - A corresponding to the eigenvalue A0. In view of the above 
observations we shall say that a spectral invariant subspace/2 corresponds to the part of 
the spectrum of AB - A which is equal to the spectrum of ABz: - Az:. If the spectrum of 
AB - A is the union of two disjoint sets A1 and A2, then, obviously, there exists a unique 
spectral invariant subspace s of the pencil AB - A corresponding to A1. Respectively, 
there exists a spectral invariant subspace/Z2 corresponding to A2, with C N being equal 
to the direct sum of the spectral invariant subspaces s Z~2 of the pencil AB - A. For 
instance, the finite and the infinite spectra of AB - A can be used as A1 and A2. 

We shall say also that (X; T) is a block eigenpair of a matrix A when (X; T) is a 
monic block eigenpair for the matrix pencil AI - A. 

Notes and references 
A proof of Theorem I, which is really a suitable application of the classical theorem on 
the Jordan canonical form of matrices, can be found in [ 13, 39]. Theorem 2 and methods 
to compute the Schur form are discussed in [34]. It should be noted that in the literature 
on numerical linear algebra the invariant subspaces for regular linear pencils are often 
called the deflating subspaces [40, 41, 10, 27]. 

Block eigenpairs are intensively used in [18]. 
We do not discuss at all here the continuity properties of invariant subspaces of A B -  A 

with respect to perturbations of the elements of the matrices A, B. These are extremely 
important for computational mathematics. General qualitative results on this subject are 
presented in [19]; some quantitative estimates of the Lipschitz continuity for spectral 
invariant subspaces can be found in [ 10, 39, 30]. 
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2. Linear matrix equations 

Let us consider the linear matrix equation of a general form with respect to X: 

A1XB1 + A2XB2 + . . .  + A n X B n  = C, (5) 

where Ai, Bi are of size M • M, N • N, respectively. The way used to study (5) is 
to represent the matrices X and C as vectors in C MN, with the linear operator in the 
left-hand side of (5) being an M N  x M N  matrix. 

Denote the columns of the matrix X by x l , x 2 , . . . , x N  E C M and introduce the 
operation vec(X) = [x~ x T . . .  xT] T to represent a matrix X in column vector form. 
Then vec (AXB)  = (B T | A)vec(X), where the Kronecker product Ml @ M2 is by 
definition the following block matrix: 

Ml | M2 = I 
(MI)IIM2 (MI)I2M2 . . .  (MI)I/M2] 

(MI)21 M2 . . . . . . . . . . . .  (MI)22M2 . . .  (M1)2IM2I. 

k(Ml)klM2 (MI)k2M2 . . .  (Ml)mM2J 

Here k x l is the size of Ml. Thus, 

vec A, X B i  = ~ (BTi | A,) vec(X),  
i = 1  i = 1  

i.e. equation (5) is equivalent to the system of linear equations in the usual form: 

(~~=, B T | A~) vec(X) = vec(C). (6) 

The properties of the operator of equation (5) are entirely defined by properties of the 
matrix 

n 

i = 1  

which are, in general, "hidden" at first glance. 
Let us consider the problem in case n - 2, that is the equation 

AIXB1 - A2XB2 = C. (7) 

For convenience in the formulations of the subsequent results we put the minus sign in 
(7). It is possible to simplify the structure of the matrix B T | A1 - B T @ A2 by taking 
advantage of the triangular canonical forms of the pencils A1 - ~A2 and AB1 - B2. We 
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suppose that these pencils are regular and use the Weierstrass canonical form (Theorem t). 
Similar results can be also obtained with the aid of the Schur form from Theorem 2. 

So, using 

Al - AA2 = V A ( T A I  -- ~ T A 2 ) U A  1 , AB1 -- e 2 = V B ( ~ T B I  -- T B 2 ) U B  1 (8) 

with nondegenerate VA, VB, UA, UB and triangular TAI  , TA2 , T e l  , TB2 , (7) can be 
rewritten as 

VA TA, UA1XVBTBI UB 1 -  VA TA2 UAI XVBTB2 UB ' --~ C. 

Therefore, 

TA, XTB,  - TA~XTB~ = c ,  (9) 

where X = UAIXVB, 0 -- Vs . Now 

[TTI @ TAI  -- TT2 @ TA2 ] vec(X) = vec(C), 

vec()() = [V./~ @ U.A 1 ] vec(X), 

vec(C) = [U T | V s  1] vec(C). 

As a result, we have 

B~ | A1 - B~' | A2 

: [UB T | -1 [TB T, | -- TI~ 2 | [V~3 | 

with nondegenerate matrices U T | V A l, vBT | UA 1 " If, for instance, 

VA = UA, VB = U s ,  

then U~ | V A '  = Vff @ UA', and the matrices B~ @ A, - B2 T @ A2 and TT @ TAt -- 
T~ 2 | TA2 are similar. 

In any case, the solvability of equation (7) is equivalent to the solvability of equation 
(9), i.e. (in general) to nondegeneration of the matrix TT @ TA, -- TT2 @ TA2. Without 
loss of generality we assume that the matrices TA~ and TA2 are upper triangular and that 
the matrices TB~, TB2 are lower triangular. The matrix T~ @ TA, --T~2 @ TA2 is then 
upper triangular. 

Using the triangularity of the matrices involved we are able to analyze conditions for 
the matrix T~ @ TA1 -- TT 2 @ TA2 to be nondegenerate. Since TA1 -- ATA2 and ATB, - TBz 
are in Weierstrass canonical form, any pair of equally placed diagonal elements of the 
matrices TA~ and TA2 is of the form (AA, 1) for a finite eigenvalue of the pencil A1 -AA2 
and (1,0) for an infinite one. Analogously, a pair of equally placed diagonal elements 
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of the matrices TBI, TB2 is of the form (1, AB) for a finite eigenvalue of the pencil 
AB1 - B2 and (0, 1) for an infinite one. As a result, we obtain the following table of all 
possible cases: 

eigenvalue of  type of an eigenvalue type of an eigenvalue 

t~ TA1 -- T T  2 ~ TA2 of Al  - )kA2 of /~B1 - B2 

A -- /~B finite )kA finite ~ B 

l finite infinite 

l infinite finite 

0 infinite infinite 

Thus, the matrix B T @ Al - BE T @ A2 is nondegenerate if and only if the set of all 
eigenvalues of the pencil Al - /~A2 does not intersect with the set of all eigenvalues of 
the pencil/~B1 - BE. 

A particular case of equation (7) is the Sylvester equation frequently arising in matrix 
analysis: 

A X -  X B  = C. (10) 

In order to obtain (10) one has to put A1 = A, A2 = I, BI -- I, B2 = B in (7). 
Hence, VA = UA, VB = UB, and the Kronecker product matrices I | A - B T | I and 
I | TA -- T ~  | I are similar. The eigenvalues of the matrix I @ A - B T | I are equal 
to all possible differences of the form ,~A --  /~B, where AA, AB are eigenvalues of the 
matrices A and B respectively. Therefore, (10) is solvable if and only if the spectra of 
A and B are disjoint. 

There is an integral formula for the unique solution of (10). Indeed, let -y be a rectifiable 
finite contour in the complex plane containing the eigenvalues of the matrix A inside 
and the eigenvalues of B outside, then 

X 1 f~(Ai - A ) - ' C ( A I  - B ) - '  dA 
27ri 

is the unique solution of equation (10). 

2.1. The Lyapunov equations 

We pay special attention to a particular case of equation (1), which is the so-called matrix 
Lyapunov equation X" 

A * X  + X A  = - C .  (11) 

Here A, X and C are N x N matrices. The previous arguments yield the following 
necessary and sufficient condition for the unique solvability of equation (11): ,kl + ,~2 ~- 0 
for any eigenvalues )~l and )~2 of the matrix A. This condition obviously holds if all 



Factorization of matrix polynomials 89 

eigenvalues of the matrix A lie in the open left half-plane, Re Aj < 0; in this case, A is 
said to be a stable matrix. 

THEOREM 3 (Lyapunov). 1) I f  the matrix A is stable then equation (11) has a unique 
solution for  every right-hand side C, and the solution can be represented as 

~0 ~176 
S -- e tA* Ce tA dr. 

Furthermore, if  C = C* > O, then the solution X of  equation (11) satisfies X = X*  > O. 
2) I f  equation (11) holds for  some matrix X = X*  > 0 and C = C* > O, then the 

matrix A is stable. 

A more general result is contained in the following 

THEOREM 4 (Ostrowsky-Schneider). The matrix A has no pure imaginary eigenvalues 
if  and only if  (11) has a solution for  some Hermitian positive definite matrix C. I f  X is a 
Hermitian solution of  (11)for some Hermitian positive definite matrix C then the number 
of  eigenvalues of  the matrix A with negative (positive) real part equals the number of  
positive (negative) eigenvalues of  the matrix X .  

There is another important generalization of Lyapunov's results. Consider the system of 
matrix equations with respect to a pair of matrices P and X: 

p2_ P - O ,  
A P -  P A  = O, 

X P -  P * X  = O, 

A * X  + X A  = - P * C P  + ( I -  P * ) C ( I -  P).  

(12) 

THEOREM 5 (Godunov-Bulgakov). 1) I f  the matrix A has no pure imaginary eigenvalues, 
then (12) has a unique solution (P, X )  for  every matrix C. Moreover, if  C = C* > O, 
then X = X* >0.  

2) I f  the system (12) is satisfied for  some P, X and C, where X = X* > 0 and 
C = C* > O, then the matrix A has no pure imaginary eigenvalues and P is the 
spectral projector onto the invariant subspace of  the matrix A corresponding to the 
eigenvalues in the left half-plane. 

We recall that the spectral projector P onto the invariant subspace of a matrix A corre- 
sponding to an isolated group of spectrum points is the linear operator 

'L P = 27ri ( M -  A) -1 dA, (13) 

where the integration is carried out along a rectifiable closed contour "7 enclosing the 
isolated group of spectrum points and leaving the rest of the spectrum outside "7. 



90 A.N. Malyshev 

In the discrete case the Lyapunov equation takes the form 

A * X A -  X = - C .  (14) 

This is a particular case of equation (7) with AI = A*, B1 - A, A2 = B2 = I. The 
eigenvalues of the matrix A T | A * - I  | I are all possible expressions Ai~j - 1, where the 
Ai, Aj are eigenvalues of the matrix A. Hence equation (14) has a solution (for arbitrary 
C) if and only if AiAj - 1 -7(: 0 for any eigenvalues Ai, Aj of A. This condition obviously 
holds if all eigenvalues of the matrix A lie in the open unit disk JAil < 1. A matrix A is 
said to be discrete stable if all its spectrum lies in the open unit disk. 

In the discrete case there are also analogs of the theorems by Lyapunov and Ostrowsky- 
Schneider. Indeed, one has to substitute in the formulations for the continuous case: stable 
by discrete stable, the integral 

fo ~ e tA* Ce tA dt 

by 

OO 

~ ( A * ) k C A  k, 

k=O 

the imaginary axis by the unit circle, negative (positive) real parts of eigenvalues by 
the condition to lie inside (outside) the open unit disk. Generalizations of the Godunov- 
Bulgakov theorem to the discrete case are rather nontrivial. 

Notes  and references 
Linear matrix equations of the form (5) and the Kronecker products of matrices are 
considered in most textbooks on matrix analysis [3, 21, 25]. 

The canonical Schur form is always used in practice instead of the canonical Weier- 
strass form for numerical solution of equation (7) and its particular cases. This is ac- 
counted for by the instability of the computation of the Weierstrass form. The method of 
solution of (7) with the aid of the Schur form is called the Bartels-Stewart method [1]. 
Some additional developments of the idea of [1] are discussed in [20]. 

A description of all solutions of the equation A X  - X B can be found in [13, 25]. 
Together with the necessity to solve just the equation (5) or (7), the need to study 

and solve more general systems of linear matrix equations often appears. For example, 
when studying perturbations of spectral invariant subspaces of regular matrix pencils or 
singular subspaces of matrices, the generalized Sylvester equation 

A 1 X  - Y B I  = Cl ,  

A 2 X  - Y B 2  = C2 
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is widely used [10, 39]. The technique of the Kronecker products is also useful for the 
generalized Sylvester equation: indeed, 

[ff | 

| 
rvec   l= [vec  l l 

- B 2  x | Lvec(Y)J Lvec(C2)J " 

The continuous Lyapunov equation (11) naturally arises in the study of stability in the 
Lyapunov sense of a system of ordinary differential equations 

dx 
- -  = A x  
dt 

by the Lyapunov method of quadratic functions. The idea of this method consists in the 
selection of a self-adjoint positive definite matrix X such that the quadratic form (Xx,  x) 
would decay along the solutions x(t) of the system 

dx 
m = A x .  
dt 

Since 

d ( x x  x) - ([A*X + XAlx,  x) 
dt ' 

the self-adjoint matrix C = - [A*X + XA] is necessarily positive definite. 
When studying the Lyapunov stability of solutions of a finite difference equation 

xn = Axn, the discrete Lyapunov equation (14) arises. Indeed, since 

( Z X n + l ,  X,n+l ) -- ( X n ,  X n )  --  ([A*XA - I ] x n ,  X n )  , 

the matrix C = - [ A * X A -  I] has to be positive definite. 
A thorough study of the Lyapunov equation is found in [13, 25]. The Ostrowsky- 

Schneider theorem, published first in [36], is discussed in detail in [25]. 
The generalized Lyapunov equation (12) appeared for the first time in [14], then in 

[6] the ultimate form (12) was derived. Discrete generalized Lyapunov equations were 
derived and thoroughly studied in [30]. 

Special attention should be paid to one of the main directions in modern matrix anal- 
ysis: the study of the conditioning of matrix equations. By conditioning in numerical 
linear algebra we mean a quantitative characterization of a problem that reflects the de- 
gree of continuity of its solution to perturbations (mainly, infinitely small) of the problem 
data (coefficients of equations and right-hand sides). For a discussion of the notion of 
conditioning see, e.g., [42, 39]. For equations of the form (5) the condition number is 

n commonly defined as the condition number of the matrix M = }-~i=l B~ | Ai" 

cond M = IIMII IIM -1 II (15) 
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with an appropriate matrix norm. However, the condition number (15) is not always easy 
for computations, and from time to time a great many attempts were undertaken to find 
other condition numbers which are easier for computations; for the Lyapunov equations 
see [5, 27]. 

While developing the approaches from [ 14, 6], it became possible to obtain condition 
numbers for the generalized Lyapunov equations (12) and its discrete analogs [30]. 

3. Nonlinear matrix equations 

It is worthwhile mentioning first a linearization method coupled with a perturbation 
theory. This approach is rather general but only permits local, in a certain sense, results. 
'To demonstrate this, consider the equation 

E ( X )  + f ( X )  = C, (16) 

which inherits properties of the quadratic equation A X  - X B  - X D X  = C. The linear 
operator/2: C MN --+ C MN is supposed to be invertible. The continuous mapping f 
satisfies the following estimates: 

a) IIf(X)ll ~< KIIXII with some constant K;  
b) I l l (X)  - f(Y)II ~ 2 K  max{llXll, IIYII}IIX - YII with the same constant K. 

Any consistent matrix norm will do as the norm I1" II. 

THEOREM 6 (G.W. Stewart). I f  k = KIICll I1s < 1/4, then the matrix sequence 

X o = O ,  Xk+,  -- E - '  (C - f ( X k ) ) ,  k - O, 1 , . . . ,  

converges to the unique solution X of  equation (16) in the ball 

I lXl l  ~ 1 - x / 1  - 4 k  2k IlCll IlzZ-~ll < 21lOll IlzZ-~ll �9 (17) 

Furthermore, i f  equation (16) has a solution that does not belong to the ball (17), then 
such a solution must be found outside the ball IlXll/> (1 + v/1 -4k)/(211zZ-lllK). 

Now we start to present the method of invariant subspaces for companion linear matrix 
pencils which allows one in many cases to obtain global results. This method is applicable 
to matrix equations with a certain structure, which, fortunately, include several important 
matrix equations. 

Consider the matrix equation 

A2 
(18) 
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with matrices Ai, Bj, X, A of appropriate size. This equality means that the pencil 

A2 A (B: BB:)- (A: A4) 

has an invariant subspace with basis matrix 

Suppose, for instance, that B1 + B2X is an invertible matrix, then, obviously, A = 
(B1 + B2X)-I(A1 + A2X) and 

A3 + A4X = (B3 + B4X)(B, + B2X) -1 (A, + A2X). (19) 

Conversely, if equation (19) is satisfied, then equality (18) holds with 

A = (B1 + B2X) -1 (A1 + AzX). 

Thus, solving equation (19) is reduced to finding invariant subspaces of the matrix pencil 

m 9 

B3 B4 A3 A4 

which possess basis matrices of the form 

for some matrix X. All such matrices X are solutions of equation (19). 
Let 

B1 B2) = I 
B3 B4 

in (19), then (19) turns into a quadratic equation (sometimes called the Riccati equation; 
but we reserve the name of Riccati for equations of a more special kind): 

A3 + A4X - XA1 - XA2X = O. (20) 

As was shown above, X is a solution of (20) if and only if the matrix 

A2 (A: A4) 
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has an invariant subspace with a basis matrix of the form 

3.1. The Riccati equation 

In applications structured nonlinear matrix equations often arise. One of the most impor- 
tant such equations, the Riccati algebraic matrix equation, is widely used in the theory 
of optimal control. 

3.1.1. Continuous case 
Let the state of a linear system be governed by the differential equation 

_d x(t) = Ax(t)  + Bu(t) 
dt 

(21) 

where A is an N x N matrix, B is an N x M matrix. The cost of a control is defined 
by the functional 

z 
o o  

~b(u) = [(Qx, x) + (Ru, u)] dt, (22) 

where R and Q are self-adjoint matrices, R is positive definite, and Q is non-negative 
definite. 

The matrix Riccati equation 

X B R - ~ B * X _ A * X - X A - Q = O  (23) 

is associated to the system (21), (22). 

DEFINITION. 
1) A pair of matrices (A, B) is called stabilizable if 

rank([)~I - A B l) - N 

for all eigenvalues A of A with Re A/> 0. 
2) A pair of matrices (C, A) is called detectable if 

ran  al) 
for all eigenvalues A of A with Re A/> 0. 



Factorization of matrix polynomials 95 

THEOREM 7. I f  the matrix pair (A, B) is stabilizable and the pair (C, A) is detectable, 
where C is any matrix satisfying the equality C*C = Q, then equation (23) has a 
unique self-adjoint solution Xo and the optimal control u*(t) is given by the formula 
u* = - R - I  B*Xox.  In addition, the closed loop matrix A - A - / 3 R - 1 / 3 * X o  is stable, 
and the minimal value of  the cost equals ~ m i n  - -  (2037(0), X(0)). 

We also associate to equation (23) the block matrix of order 2N 

(A 
H - - A *  " (24) 

Since 

_ [ A -  B R - 1 B * X  - T ] 

X / 3 R - 1 / 3 * X  - A * X  - X A -  Q + X ( A  - B R - 1 / 3 * X  - T)  

solving (23) is equivalent to finding an invariant subspace of the matrix H with a block 
eigenpair of the form 

The matrix H is Hamiltonian, i.e. j - 1 H * J  = - H  with 

�9 - ~  0 

This implies that together with every eigenvalue )~ the matrix H has an eigenvalue - ~  
of the same multiplicity. The conditions of Theorem 7 imposed on the matrices A, /3, 
Q guarantee that H has no pure imaginary eigenvalues. Moreover, the matrix H has a 
unique invariant subspace with the block eigenpair 

A) 
where A is a stable matrix and X is a solution of equation (23). Thus, solving (23) is 
reduced to finding a basis matrix of the invariant subspace of the Hamiltonian matrix H 
corresponding to the eigenvalues in the open left half-plane. If, for instance, this basis 
matrix is equal to 

Ix1] 
X2 ' 
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then, obviously, the matrix X l  is invertible and X = X2Xl  1. 
There exists another variant of the reduction of equation (23) to the problem of finding 

invariant subspaces of regular matrix pencils. Namely, consider the pencil 

Ii~176 ~ il AH2 - H~ - A I - - A *  (25) 

0 /3* 

and note the following identity 

-A,,,~ il Iil - iiOilo, Iil T 

I A -  BR-~B*X - T + B(R-~B*X + Z) ] 
= - Q -  A ' X -  XA + XBR-~B*X + X ( A -  B R - 1 B * X -  T) ] R ( R - ' B * X + Z )  

Under the conditions of Theorem 7 the pencil AH2 - Hi has M infinite eigenvalues, N 
finite eigenvalues in the open left half-plane and N finite eigenvalues in the open right 
half-plane. In fact, 

i,o 1 iio0  IA oRl , 0 0 I 0 ( A H 2 - H , )  = A  I - - Q  - A *  0 

0 0 I 0 0 B* R 

and, therefore, the set of all eigenvalues of the pencil AH2 - Hi coincides with the 
union of the spectra of the pencils A I -  H and A 0 -  R. As a result, finding a solution 
X = X *  of efluation (23) is reduced to finding the unique invariant subspace of the 
pencil AH2 - Hi with a monic block eigenpair of the form 

/iil A / 
where A is stable. 

3.1.2. Discrete case 
Let the state of a discrete linear system be governed by the finite difference equation 

x(k + 1) -- Ax(k) + Bu(k), (26) 
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where A is an N x N matrix and B is an N x M matrix. The cost of control for (26) 
is given by the functional 

OO 

g'(u) = ~ [(Qx(k),x(k)) + (Ru(k), u(k))] ,  
k=O 

(27) 

where R = R* is positive definite and Q = Q* is non-negative definite. 
The discrete algebraic matrix Riccati equation 

A * X A -  X - A*XB(R  + B * X B ) - ~ B * X A  + Q = o (28) 

corresponds to (26), (27). 

DEFINITION. 

1) A pair of matrices (A,/3) is discrete stabilizable if 

r a n k ( [ M -  A B]) = N 

for all eigenvalues )~ of A with I)~1 ~> 1. 
2) A pair of matrices (C, A) is discrete detectable if 

for all eigenvalues )~ of A with I~1 ~ 1. 

THEOREM 8. If the matrix pair (A, B) is discrete stabilizable and the pair (C, A) is 
discrete detectable, where C is any matrix satisfying C*C = Q, then there exists a 
unique self-adjoint solution Xo of equation (28). Additionally, the optimal control is 
expressed by the formula 

u*(k) = - ( R  + B*XoB)- 'B*XoAx(k) ,  

the closed loop matrix A = A -  B(R + B*XoB) -1B*XoA is discrete stable, and the 
minimal value of ~b(u) is equal to (Xox(O), x(0)). 

Equation (28) is associated with the regular matrix pencil 

~ $ 2 - 8 1 = ) ~ ( ~  BR-IB*)-A* - (Q 71 )  , ( 2 9 )  

so that the identity 

BR-1B*'~ 
A, , 

T 
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_ [(I  + B R - 1 B * X ) [ A -  B(R + B * X B ) - I B * X A -  T]] 

[ F(X)  - A * X [ A -  B(R + B * X B ) - I B * X A -  T] J 

holds, where F(X)  stands for Q - X + A * X A -  A * X B ( R  + B * X B ) - ~ B * X A .  
The regular 2N x 2N matrix pencil AB - A will be called symplectic if AJ  -1 A* - 

B J  -l  B* with 

 =io 1 --IN 0 

Obviously, the pencil AS2 - Sl is symplectic. By virtue of this property, if the pencil has 
an eigenvalue A, then 1/A is also an eigenvalue of this pencil with taking into account 
multiplicities, i.e. the spectrum of a symplectic matrix pencil is located symmetrically 
with respect to the unit circle. 

Summarizing, finding a solution X = X* of equation (28) under the conditions of 
Theorem 8 is reduced to finding the unique invariant subspace of the pencil (29) with a 
monic block eigenpair of the form 

A) 
where A is discrete stable. 

Finally, let us form the matrix pencil 

I! o !1 Ii o il ~$2- SI -- ~ - A *  - - I  (30)  

- B *  0 

for which the identity 

[A 0 ;] [i] [i 0 i] [i] Q - /  - -A* T 0 0 -B* 
I [A-  B(R + B * X B ) - I B * X A -  T] + B[(R + B*XB)-IB*XA + Z] ] 

= F(X) - A*X[A- B(R + B*XB)-IB*XA - T] ] -B*X[A - B(R + B * X B ) - I B * X A -  T] + R[(R + B*XB)-IB*XA + Z] 

holds. By virtue of the identity 

iio  R11 I' Ii o , o ( ~ s ~ -  s l )  - ~ o - A *  - - I  , 

0 I 0 - B *  0 
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the spectrum of AS2-  $1 is the union of the spectra of AS2-  S1 and A 0 -  R taking into 
account the multiplicities�9 Therefore, in order to find a solution X = X* of equation 
(28) satisfying Theorem 8 one has to find the unique monic block eigenpair 

/iil A / 
with a discrete stable A. 

3.2. Polynomial matrix equations 

A polynomial matrix equation for an N x N matrix X looks as follows 

Ao + A~X + . . .  + An Xn  - 0 (31) 

with N x N matrix coefficients Ai, i = 0, 1 , . . . ,  n. Let us associate to (31) the companion 
regular linear matrix pencil 

0 

I 

A C 2 - C 1  = A ".. 

I 

An 

Since, obviously, 

C1 

0 I 

0 

-Ao  -A1 

0 

- A n - 2  

I 

m A n -  1. 

X ~ - l  

I 

1 

m 

X - T  

X ( X  - T) 

Ao - A1X - . . . -  An x n  -+- A n X n - I ( X  - T)  

(32) 
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solving equation (31) is equivalent to finding invariant subspaces of the pencil (32) with 
monic block eigenpairs of the form 

UI 

U2 , A 

with an invertible matrix U1. In this case the matrix X = U2U~ 1 
solution of equation (31). 

To conclude, we mention the following simple result. 

= Ul AU~ 1 will be a 

THEOREM 9. A matrix X is a solution of (31) if and only if the matrix polynomial 
A(A) = Ao + Al A + . . . +  AnA n has the right divisor A I -  X,  i.e. A(A) = A2(A)(IA- X) 
for  an appropriate matrix polynomial A2(A). 

Notes and references 
G.W. Stuart's theorem is proven in, e.g., [39]. Some applications of this theorem are in 
[10, 39, 31]. 

A vast bibliography has been devoted to iterative methods of solution of nonlinear 
equations whose particular case is (16). A detailed treatment of such methods is found, 
e.g., in [35]. 

The quadratic equation (20) has been studied in many papers. A thorough treatment 
of the theory of this equation, including such questions as continuity and analyticity of 
its solution with respect to the coefficients Ai, i = 1,2, 3, 4, is contained in [19]. 

The algebraic Riccati equations are probably the most deeply studied structured matrix 
equations after the Lyapunov equations. Among the monographs entirely devoted to the 
theory of the Riccati equations are [38, 33]. Of the articles on this subject we mention 
[26, 37, 40, 32, 27, 15, 17]. Theorems about the Riccati equation are proven, e.g., in [43]. 
A vast bibliography about the Riccati equations is found in [38]. 

The use of the pencils (25), (30) is stimulated by the possibility of avoiding the inver- 
sion of the matrix R, when forming the pencil. Details of the numerical implementation 
of such an approach are discussed in [40]. 

Polynomial equations, as Theorem 9 (proved in [13]) shows, give rise to a particular 
case of the problem of factorization of matrix polynomials. A nice exposition of the 
theory of polynomial matrix equations is in [25]. 

4. Factorization of matrix polynomials 

4.1. Spectral characteristics of matrix polynomials 

We consider only regular matrix polynomials A(A) = Ao + A1/~ + " "  + An,~ n, i.e. 
polynomials such that detA(A) ~ 0. If An = I, then such a polynomial A(A) is called 
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monic. If A0 = I then A('k) is called comonic. In general, we admit the possibility of 
An being equal to the zero matrix, but, usually, An ~ 0, and in this latter case n is 
referred to as the degree of the polynomial A(A), n = deg A('k). 

The roots of the scalar polynomial detA('k) are called finite eigenvalues of A('k). 
A polynomial A('k) is said to have infinite eigenvalue if the dual polynomial A(#) = 
#hA(1/#)  has zero eigenvalue. 

Finite elementary divisors of the .k-matrix A('k) are supplemented by infinite ele- 
mentary divisors which are defined as elementary divisors of the form #n of the dual 
polynomial A(#). Thus, the multiplicities of eigenvalues of the polynomial A('k) are 
accounted for by the elementary divisors of A('k) in a proper way. 

A set of vectors xo, x l , . . .  ,xz-1 E C N, xo ~ 0, is a right Jordan chain of A('k) 
corresponding to a finite eigenvalue 'k0 if 

1 A(l) 1 A(i) A('ko)xi + ~. ( ' k 0 ) X i - - 1  -a t - . . .  -I" ~.l ( ' k 0 ) X 0  = 0 ,  

i - - O , . . . , l -  1. (33) 

Here A(P)('k) stands for the p-th derivative of A(.k) with respect to 'k. Similarly, 
x0, Xl , . . .  ,xz-1 E C N, xo ~ O, is a right Jordan chain of A('k) corresponding to the 
infinite eigenvalue if 

1 ~(i)  
fi(O)xi + 1A(1)(0)Xi-ll! + " "  + ~ (0)xo =-0, 

i - - O , . . . , l -  1. (34) 

Left Jordan chains of the polynomial A('k) are defined analogously. Henceforward we 
usually omit the word "right" before "Jordan chains". 

One of the main tools for the study of spectral properties of matrix polynomials is the 
companion linear matrix pencil 

0 - I  I 
�9 . " - .  

C A ( ) , )  - -  " " + " ) , ,  (35) 
0 - I  I 

Ao . . .  An-2 An-1 A,  

which is equivalent to the following A-matrix 

I I 

I I 

" . .  ~__ " . .  

I I 

A('k) A1 A2 . . .  An-1 + An'k 
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I - I  0 AI 
f " y  / '  'IL \ • �9 . t-"At, A)  . . �9 

Oo " .  " .  �9 

AI - I  ~ A ~-I 

Due to this equivalence the set of elementary divisors of A(A) coincides with the set of 
those of CA(A). 

A decisive reason to introduce the companion linear matrix polynomial CA (A) is the 
structure of block eigenpairs for CA (A), particularly, that of block Jordan pairs. 

THEOREM 10. A decomposable block eigenpair of dimension d for the pencil CA(A) has 
the following structure: 

x,  
XITI. , [X2T;-2/. 

LXlrC-' k j 

;TI ,  T2 , 

where 

A o X I  + A I X I T I  + " "  + A n X I T ~  = 0 

and 

A o X 2 T ~  + A l X 2 Y ~ -  1 + . . .  .~_ AnX2 --  O. 

Here X], X2, TI and T2 are matrices of sizes N x d], N x d2, dl x dl, d2 • d2, respectively, 
where d2 = d -  d], 

The proof of this theorem is obvious�9 

DEFINITION. A pair (XI, X2; TI, T2) consisting of an N x d] matrix X1, a N x d2 matrix 
X2, a dl x d] matrix TI, a d2 x d2 matrix T2 is a decomposable block eigenpair of 
dimension d for the matrix polynomial A(A) if 

Xl X2T~ -1 

rank i i - d - d l + d2 

X l T ~  -1  X 2  

and 

AoXl + A]X1T] + . . .  + AnX1T~ = O, 
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AoX2T~ + A 1 X 2 T ~ -  1 + . . .  + AnX2 --" O. 

If d2 = 0, then such a pair is called monic and it is called comonic when dl --- 0. Such a 
(co)monic eigenpair is denoted by (X; T), where X - X1, T - 7'1 for the former case 
and X - X2, T = T2 for the latter one. 

By Theorem 10, block eigenpairs of A(A) are nothing other than generators of the 
block eigenpairs for CA (A). 

The decomposable eigenpairs (X1, X2; T1, T2) and (X~, X~; T(, T~) for a polynomial 
A(A) are said to be similar if there exist Q1 and Q2 such that X~ - XIQ1, T( = 
QllT1Q1, x6  - X2Q2, T~ - Q21T2Q2 . It is easy to show that similar eigenpairs define 
the same invariant subspace of the companion linear pencil. 

If the matrices J1 and J2 in a decomposable block eigenpair (X1,X2; J1, J2) are 
Jordan, then such a pair is called a block Jordan pair for the polynomial A(A). 

Let 

Jl~ 

J 1 -  ".. , 

Jlk~ 

where the Jlj are Jordan blocks, then, partitioning X 1 - -  [ X l l  . . .  Xlkl], we obtain that 
the columns of XIj form a Jordan chain of A(A) corresponding to the eigenvalue of the 
block Jlj. The matrix X2 has an analogous structure corresponding to the Jordan blocks 
in J2. 

Similar to the case of linear matrix pencils one can define block eigenpairs for a 
matrix polynomial A(A) which are associated with isolated parts of the spectrum of 
A(A), for instance the finite spectrum, i.e. with all finite eigenvalues of A(A). Indeed, if 
the spectrum of A(A) is the union of two disjoint sets A1 and A2 with the multiplicities 
taken into account, then a decomposable block eigenpair (X1, X2; T1, T2) is associated 
with A1 when thespectrum of the pencil 

including the multiplicities coincides with A1. 

4.2. The factorization problem 

DEFINITION. A matrix polynomial A1 ()~) = A10 + " "  + Aln, A TM of order nl is called 
a right divisor of a polynomial A(A) of order n if there exists a matrix polynomial 
Az(A) = A20 +- -"  + Azn2A TM of order n2, n2 ~> n -  nl such that A(A) - A2(A)A1 (A). 
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THEOREM 11. Let (XF,  TF) be a monic block eigenpair of  a matrix polynomial A1 (A) 
corresponding to the finite spectrum of  A1 (A). The matrix polynomial A1 (A) is a right 
divisor of  the polynomial A(A) if and only if 

AoXF %- A I X F T F  + " "  %- AnXFT,~ -- O. (36) 

PROOF. Since 

n2 -- 1 

A(A) = ~ A:j(Aio + " "  + Ain, An')A j, 
j=O 

then 

AoXF %- A i X F T F  %-"" %- A n X F T ~  

n2-  l 

= Z A2:i( AI~  %-"" %- Aln'XFT~')TJF" 
j=0 

The inverse statement is more nontrivial. First of all, we carry out, if necessary, a 
change of the variable A by a transformation A = A' + c~, in order that the coefficient 
A]0 - A' 1 (0) of the polynomial A] (A') - A1 (A' + ~) is a nondegenerate matrix. Such 
a transformation conserves the property of being a divisor: A(A) = A2(A)AI(A) is 
equivalent to A'(A') = A~(A')A] (A'). At the same time the pair (XF,  TF -- c~I) is a 
monic eigenpair for the polynomial A' l (A') corresponding to the finite eigenvalues, and 
the equality A o X F + . . . + A n X F T , ~  - 0 holds iff the equality A ' o X F + . . . + A ' ~ X F ( T F -  
c~I) n -- 0 holds. Therefore, without loss of generality, we can suppose in what follows 
that A1 (0) is a nondegenerate matrix. 

By virtue of the nondegeneration of Ai (0) the matrix TF is also nondegenerate. Hence 
the pair (XF, TF ~ ) is a monic block eigenpair for the dual polynomial A~ (#) = Alo# TM %- 
�9 "" + Ainu, corresponding to all nonzero eigenvalues. Let (X~;  Too) be a monic block 
eigenpair for the polynomial fi-1 (#) corresponding to the zero eigenvalue, then the matrix 
Too is, evidently, nilpotent, i.e. T~  = 0 for some positive integer u. 

Let us divide the polynomial #~'fi,(#) by Al(#)  with remainder: #~'.A(#) = 
. ~ 2 ( ~ ) A I  (~) %- ]~(#). Here 5,(#) = A0# n + . . .  + An is the dual to the polynomial 

A(A) and the degree of the polynomial R(#) = Ro# TM + . . .  + Rn3 is n3, n3 < nl. It fol- 
lows from the conditions of Theorem 11 that A o X F T F  n + . . .  + A n X F  = 0. Therefore, 
A o X F ( T F ' )  n+~' %-... %- A n X F ( T F ' )  ~' = O. Since T L = O, 

AoXo,:,T n+~' + . . .  + A n X ~ ( T ~ )  ~' - O. 

As a result, we obtain from/~(#) = #~'.A(#) - -A2(#)-41 (#) that 

R o X F ( T F 1 )  TM % - . . .  %- R n 3 X F  :- O, Ro Xoo ( Too ) TM %-... %- Rn 3 X ~  - O . 
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It remains now to observe that these two equalities can be rewritten in a block form 
a s  

[Ro RI 

XFTF n3 Xcx:)Tc~ 

�9 ~ 0 1  

Rn3] [ XFTFI X~T~ 

l 

and that the matrix 

I 
XF Xoo J 

is nondegenerate. The nondegeneration of this matrix is a consequence of the fact that 
the pair 

is a monic block eigenpair of dimension nlN for the polynomial -AI(#). As a result, 

Ro : R1 . . . . .  Rn3 : 0 and R(;z) - 0. 
From the identity #~'A(p) = A2(p)A2(#) it follows that the polynomial A2(A), being 

dual to A2(#), is the quotient of division of A(A) by Al(A) with no remainder. The 
degree of the polynomial A2(A) equals to n2 - n + u - nl.  v1 

Using this theorem we consider the problem of the description of all right divisors for 
a given matrix polynomial A(A) - A0 + . . . +  AnA n. Let us choose an invariant subspace 
of the companion pencil CA(A) with a monic block eigenpair (X; T) of dimension d 
such that 

O(3 

N Ker(XTk)  : 0. 
k=O 

(37) 

Denote by n l the minimal integer for which 

n l  - - I  

N K e r ( x T k )  -- O, 
k--O 
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then obviously, 

X 

X T  
rank . - d <<. n l  N .  (38) 

X T n ~ - I  

According to Theorem 11 the following auxiliary problem arises: given a pair of 
matrices X of size N • d and T of size d x d satisfying (38), one needs to construct 
a matrix polynomial AI(A) of degree nl, for which ( X ; T )  will be a monic block 
eigenpair corresponding to the finite spectrum of Al (A). It turns out that this auxiliary 
problem is always solvable. Furthermore, all its solutions are described by the formula 
AI(A) = Q(A)AI (A), where ./~1 ('~) is a particular solution and Q(A) is any unimodular 
A-matrix, i.e. det Q (A) -_- const -r 0. 

By Theorem 11 the polynomial AI(A), which is one of solutions to the auxiliary 
problem, is a right divisor of A(A). 

The most important is the case of d = N n l  in (38). Then a particular solution -A1 (A) 
of the auxiliary problem can be chosen as a monic polynomial B0 + BI A + . . .  + !)~ TM 

with coefficients Bi, i - 0, 1 , . . . ,  nl - 1, calculated by the formula 

- I  
X 

X T  
[Bo B l  . . .  B n , - l ] - - X T  TM . , (39) 

XTnI-I  

which is derived from the identity 

0 - I  X X 

�9 . .. X T  X T  
�9 . , + , 

0 - I  : . 

BO .. .  Bnz-2 Bni-I X T n I - 1  XTnl - I  

T = 0 .  

Thus, when d = N n l ,  it is possible to find a unique monic right divisor of A(A) with 
monic block eigenpair (X; T) of dimension Nnl .  

This case also admits the following interesting geometric characterization. Namely, 
there is a bijective correspondence between monic right divisors of the matrix polynomial 
A(A) and invariant subspaces of the companion linear pencil C A ( A )  which satisfy two 
properties: 

a) the dimension d of the invariant subspace is a multiple of N, i.e. d = n l N  for 
some integer nl; 
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b) if 

is any basis matrix of the invariant subspace, where Xl is a d • d matrix, then X 1 is 
nondegenerate. 

The following uniqueness theorem is a consequence of this bijective correspondence. 

THEOREM 12 (Uniqueness of a monic divisor). Let A(A) - A2(A)A, (A) = A~(A)A~ (A), 
where A~ and A] are monic. Suppose that the spectrum of A~ (A) does not intersect with 
the spectrum of A2(A), the spectrum of A1 (A) coincides with the spectrum of A~ (A), and 
the spectrum of A2(A) coincides with the spectrum of A~(A). Then A1 (A) - A~ (A). 

Now we formulate a theorem about factorization of a monic N • N matrix polynomial 
A(A) of degree n into linear monic divisors. 

THEOREM 13. Let ( X ; T )  be a monic block eigenpair of dimension n N  for a monic 
polynomial A(A), where T can be diagonalized by similarity transformations; that is, 
all elementary divisors of T are linear as well as elementary divisors of the polynomial 
A(A) itself Then there exist matrices T1, T2 , . . . ,  Tn such that 

A(A) : ( I I -  T n ) . . .  ( I I -  T z ) ( I A -  T~). 

The proof of Theorem 13 is based on the fact that out of the matrix 

X 

XT 

XT~-I 

where T is diagonal, one can pick out a nondegenerate submatrix 

S" 

S-Tn-2 

where X is an N • [ N ( n -  1)] submatrix of X and T is a submatrix of T, thus defining 
a left monic divisor of degree n -  1 for A(A). 
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Finally, we give a sketch of the solution to the auxiliary problem. We recall that we 
are given a matrix pair (X, T) consisting of an N x d matrix X and d x d matrix T and 
satisfying the following condition: 

rank . = d < l N  for somel .  

Lx '-lj 
First, one needs to construct a decomposable block eigenpair (X, Xoo; T, Too) of dimen- 
sion l N  with a nilpotent matrix Too. To this end, we consider a construction where Too 
is of the shape of a Jordan matrix with zero eigenvalues. 

It is not very hard to understand that it is sufficient to construct a sequence of matrices 
~ - l , . . . ,  Yo of full column rank such that Yj = [Yj+l Zj], j = 1 , 2 , . . . ,  l, and satisfying 
the following properties: the sum of the linear span of the columns of the matrix 

�9 -..j - -  

1 0 

~r'~_ 2 

*., 

and the linear span of the columns of the matrix 

Aj = 

X 

X T  

is equal to all of the s p a c e  C iN, and the intersection of these two linear spans equals the 
null space {0}. Such a sequence Yj is constructed recursively. For j = 1 the columns 
of the matrix X must simply be supplemented by a minimal set of vectors, which are 
columns of Zt- l  - ~ - l ,  to a vector system linearly spanning C g.  

Let the matrices ~ - i  have been constructed for all i = 1 , 2 , . . . , j ,  1 <~ j ~< l. It is 
somewhat nontrivial to observe that the intersection of the linear span of the columns of 
the matrix 

[o o] 
with the linear span of the columns of the matrix A j +  1 is equal to the null space {0}. Let 
us augment the direct sum of these two linear spans by a minimal set of vectors, which 
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are columns of the matrix Zz- j - l ,  to a vector system linearly generating C N(j+I). Due 

to the completeness of the columns of the matrix [Aj ~.j] in C jN the matrix Z l - j - I  can 
be taken to be of the following form 

 !ji 1 
Having concluded the recursive procedure we obtain the following nondegenerate 

square matrix 

[at ~z]= 

X I6-1 0 

X T  Yl-2 

X l-1 0 go 

After a suitable permutation of the columns of the matrix -~t one can define matrices 
Xoo and Too such that after a column permutation the matrix Et looks like 

The second step in the proof of the auxiliary proposition is to recover the matrix 
polynomial A(A) = Ao + A1A + . . . +  AzA t from the matrix pair (X,  Xoo; T, Too) so that 
this pair will be a decomposable block eigenpair for A(A). Getting ahead of ourselves, 
we remark that this problem is always solvable; furthermore, if A(A) and A'(A) are 
any two solutions of the problem, then there exists such a nondegenerate matrix Q that 
A'(A) = QA(A). 

So, to solve the question at hand one has to find matrices Ao, A1, . . . ,  At, W satisfying 
the equation 

-AI - I  

AI - I  
�9 ~ 

�9 ~ 

�9 ~ 

AI - I  

Ao A1 . . .  Al-2 

0 AToo - ' 

Az_l + AAz 

(40) 
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where 

X X ~ T ~  - l  

s -  �9 i , M -  

X T z- I Xo,:, 

X 

X T  

X T l - 2  

X~176 

Xooj 

and the matrix 

is nondegenerate. There results the equivalent matrix system 

,Ao a, a, O )  

_~(i o) 
[0 0 . . .  0 At]S \ 0  Too " 

Having solved the latter equation with respect to At and W, the matrices A0, 
A l , . . . ,  Az-l are uniquely determined from the former one because S is nondegenerate. 

The matrix M is of full rank as o c is nondegenerate. Let us choose a matrix V such 

that 

is nondegenerate. Define the matrices Z and At from the equality 

~ ' 

As the matrix W we take W - V -  ZM.  Then with the aid of the obvious identity 

('0 ~ l, 0/~ M Too 

the following chain of equalities is deduced: 

= ( Z  A z ) S - ( Z  0 ) S - ( 0  . . .  0 At). 
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Since 

the matrix 

is nondegenerate. 
Further, let A()~) satisfy (40) for some W. Assume that M - (L 0)U with nonde- 

generate L and U, and, therefore, W - (W1 W2)U. By virtue of the nondegeneration 
of 

the N • N matrix W2 is also nondegenerate. The identity 

~(~ ~~ ~, 0>~ 
implies that 

for suitable Z1, Z2. Therefore, 

= ( W I L  -1 + W2Z1 

From this we have W1 - - W2Z1 L, W - W2 ( -  Z1L 

(~ o) 
- (w~ w2)u T~ s-~ 

W:Z:). 

I )U.  As a result, 

[Ao A1 . . .  Az-1] = W 2 ( - Z 1 L  ) 

If A' ()~) is another matrix polynomial with the same decomposable block eigenpair, and, 
consequently, with the same Z1, Z2, L, U, then 

[ A~o A'  1 . . .  A'z_ , ] : W~ ( -  Z1L o)s_, 



112 A.N. Malyshev 

A~ = W~Z2. Hence A'(A) = QA(A) with Q -  W~W21.  

4.3. Facwrization of  self-adjoint matrix polynomials 

Let A(/~) = I/~ 2n + A2n-l/~ 2n-1 + " "  + Ao be a monic matrix polynomial, whose 
coefficients are self-adjoint matrices, i.e. A~ = Aj ,  j = 0 , 1 , . . . ,  2n - 1. We also assume 
that A()~) has no eigenvalues on the real axis. Since the coefficients of A()~) are self- 
adjoint, the spectrum of the polynomial A(/~) is symmetric with respect to the real axis. 

THEOREM 14. A self-adjoint monic matrix polynomial A(A) which has no eigenvalues 
on the real axis factorizes into the product A()~) = L*()~)L()Q, where the polynomial 

L()~) = I)~ n + . . .  + Lo 

has all its spectrum above the real axis and 

L*( )~) = I,k n + . . .  + L~). 

PROOF. All arguments are based on the fact that GC = C* G, where 

C ~ .  

0 - 1  

~ 1 7 6 1 4 9  

Ao . . .  

~ 

0 

A2n-2 

- I  

A2n-I 

�9 .. A2n-l  
�9 oo 1 

, G = . . ( 4 1 )  

�9 ~ 

Let 

be a Jordan decomposition of the matrix C, with J containing all eigenvalues above the 
real axis. Write 

where P = P* and R = R* are matrices of size N n  x Nn ,  and obtain from the identity 
G'C = C*G the following system of matrix equations: 

I P J  - J * P  = O, 

R J* - J R  = O, 

Q J * - J * Q = O .  
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Since the spectra of the matrices J and J* do not intersect one another, it follows from 
the first two matrix equations that P = R -- 0. By virtue of the nondegeneration of the 
matrix G, the matrix Q is nondegenerate. Introduce the matrix 

-1 

then 

(o o ) C =  V Q j ,  Q-1 V -1, G -  V -  (42) 

Let V = [Vl V2] be the block partition consistent with the blocks in (42), then 
CV1 = V1 J,  VI*GV1 = 0. It is necessary for the existence of a right monic divisor 
having its spectrum coinciding with the spectrum of J that the square matrix Vll in the 
representation 

Iv,,] 
v, = LV lj 

be nondegenerate. Nondegeneration of Vii follows from the identity Vl* GV1 = 0 and the 
structure of the matrices G and V1. Indeed, assume the opposite�9 Let x E Ker Vll, x r 0. 
Since 

V I  ---" 

X 

X J 2 ~ - I  

Vlx  = y = 

Y0 

Y2 1 

where yi = X J i x ;  moreover, yo = yl . . . . .  Yn-1 = 0. Writing 

Gll GI2) 
G = k G21 0 
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we obtain the equality V1] Gll VII if- V1] G12V21 -[- V2~ G21 Vii -- 0, and 

0 = V1] G12V21X = [X* J ' X *  . . .  (J*)n-lX*]G12 

Yn 

Y2 - l  

Now calculate the scalar product of the latter identity with J x  to obtain 

Yn 

o = ( o  . . .  o y ; , ) a , 2  = y ; y , , ,  

Y2 -~ 

which implies Yn = 0. Multiplying then by j 3x  we obtain Yn+lYn+l = 0. Proceeding 
similarly we find the equality y = 0. This contradicts the condition that rank (V1) = nN.  

Finally, let L()~) be a right monic divisor of A(~). From the equality A()~) -- 
LI(~)L()~) we deduce the equality A()~) = A*()~) = L*()~)L'{(~). By the uniqueness 
theorem L~(,k) = L(,k), therefore, A(,k) = L*(~)L(~). 1--I 

There is another important result on self-adjoint matrix polynomials. Given a trigono- 
metric self-adjoint matrix polynomial 

n 

A(r = Z Akeikr 
k~.mn 

where A-k  = A~, and A(r is nondegenerate for any real r Then there exists 
a unique trigonometric polynomial B(r  = B0 + Ble ir + . . .  + Bne inr such that 
A(r = [B (r * B (r and B(A) = Bo + B21A + ' ' " - k -  Bn/~ n has all its eigenvalues 
inside the unit circle. 

Notes and references 
The main source of references for the theory of matrix polynomials is [ 18]. Other relevant 
publications are [28, 23, 24, 29, 25, 19]. 

More general results about factorization of self-adjoint matrix polynomials can also 
be found in [18] and references therein. A proof of the theorem on factorization of 
trigonometric self-adjoint matrix polynomials is given, e.g., in [29]. 

The questions about continuity and analyticity of monic divisors are discussed in detail 
in [ 19]. 

A stable algorithm for numerical factorization of matrix polynomials is proposed 
in [30]. 

Additionally, in [ 18] there are results on the least common multiple and the greatest 
common divisor of matrix polynomials. 
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In this chapter we take the point of view according to which matrices are considered 
as changing quantities (rather than given and constant). We consider a matrix as an 
independent variable and study functions of that matrix; on the other hand we also can 
consider the set of matrices as the target space of a function, in which case a matrix 
valued function appears. And, of course, one can combine both approaches and study 
matrix valued functions of a matrix argument. We encompass all these situations by using 
the term "matricial functions". 

The need for matricial functions and their theory is apparent in many applications in 
mathematics, sciences and engineering. The first such instance appears in the study of 
systems of first order linear differential equations with constant coefficients 

dx 
d---t = Ax( t ) ,  

where A is an n x n matrix. The solution is given in terms of the initial value x(0) by the 
matrix exponential x(t)  = exp{tA}x(O).  The theory of vibrating systems (mechanical 
or electrical) with a finite number of degrees of freedom involves matrix polynomials 
A2A2+ AA1 +Ao, where A2, A1, A0 are n x n matrices with certain symmetry properties 
(for example, positive definite). In engineering, the transfer function of a linear time 
invariant multivariable control system is a matrix valued rational function. In numerical 
analysis, one is often interested in the behaviour of various quantities derived from a 
matrix (such as eigenvalues, singular values, eigenvectors, invariant subspaces etc.) if 
the matrix is subject to small perturbations; in other words, the matrix is considered as 
a variable quantity. 

Driven by these and many other applications, as well as a simple mathematical interest, 
the recent 30 years or so witnessed an explosion of research works on matricial functions, 
scattered in mathematical, physical and engineering literature. In particular, several books 
devoted solely to various aspects of matricial functions appeared recently. It is clear 
therefore that the material selected for this chapter has to be severely restricted and 
represents only a small fraction of the material available in the literature. For one thing, 
we shall put aside all applications, and focus on the theoretical aspects of matricial 
functions. It is hoped, however, that practitioners interested mostly in applications will 
be able to relate at least some of the material to their needs. Even so, many interesting and 
important theoretical developments are excluded from this chapter as well; in particular, 
the perturbation theory of matrices and their derived quantities is not considered here 
(the reader is referred to the texts Stewart and Sun (1990), Kato (1982), Bhatia (1987) 
for this theory). A reasonably extensive bibliography (again, far from being complete), 
should compensate somewhat for these exclusions. 

Only finite matrices with entries in a fixed field F will be considered; since analytical 
properties (such as continuity, differentiability etc.) of matricial functions will be impor- 
tant here, the field often must be topological in this chapter. Simplicity of exposition and 
uses in applications make it natural to choose either the real field F = / ~  or the complex 
field F = C. 
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Some notation which will be frequently used: I (or ln) stands for the n x n identity 
matrix. The linear space of all m x n matrices with entries in a field F will be denoted 
Mm• For an m x n matrix A, we write 

K e r A = { x E F  n" Ax  = O } , Range A = {Ax: x E F '~}. 

A T (resp. A*) stands for the transpose (resp. conjugate transpose) of a matrix A. 

2. Functions of matrices 

2.1. Basic definitions and properties 

The simplest functions of an n x n matrix A are polynomials: for 

m 

= e F ,  

j=O 

define 

m 

f ( A )  = ~ qjA j = aoI + a ,A + . . .  + areA m. 
j=O 

(2.1) 

The definition makes good sense for matrices over an arbitrary (commutative) field F,  
or, more generally, for matrices over a unital ring (provided the coefficients aj belong 
to the center of that ring). 

Several basic properties of polynomials of matrices are summarized in the following 
theorem. We denote by pA(A) = d e t ( A I -  A) the characteristic polynomial of A E 
Mn x n (F). The spectrum, or the set of eigenvalues of A E Mn x n (F) will be denoted 
a(A); thus, 

a(A) = {,k E Fo IPA()~) = 0}, 

where F0 is a fixed algebraic closure of the field F. 

THEOREM 2.1. Let F be a field, and let A be a fixed n x n matrix over F. 
(a) The map f ~ f(A) defined by (2.1) is an algebra homomorphism from the algebra 

F[A] of polynomials in one variable with coefficients in F into the algebra of all n • n 
matrices over F. 

(b) f(a(A))= a( f (A ) )  for every f E/7'[A]. 
(c) f ( T - ~ A T )  = T - l  f ( A ) T  forany nonsingularT E Mnxn(FO), where Fo is a fixed 

algebraic closure of F. 
(d) PA (A) = 0 (Cayley-Hamilton theorem). 
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PROOF. The parts (a) and (c) are easily verified. For part (b), recall a basic result in 
linear algebra that for any A E Mnxn(F) there is an invertible T E Mnxn(Fo) such 
that T -1AT is in the Jordan normal form: 

T - ' A T =  Jm,(A1)@...@Jmk(Ak), (2.2) 

where A1, . . . ,  Ak are (possibly with repetitions) all the elements in a(A), and where 
Jm(AO) stands for the m x m upper triangular Jordan block with eigenvalue A0: 

Ao 1 0 . . .  0 
0 Ao 1 . . .  0 

Jm(AO) = " : ".. " . (2.3) 

1 
0 0 . . .  Ao 

Rewriting the polynomial f(A) in the form 

m 

=  0)j 
~=o J! 

it easily follows by the definition of f ( T  -1AT) that 

f ( T - ' A T )  - -  f(Jm,(/~l)) 0 " "  �9 f(Jmk(.,~k)), (2.4) 

where 

t~ O Ot j , . . .  Ot j m j _ ,  

f(Jm~(Aj)) = ajo ajm~-2 
�9 , . 

0 0 ajo 

CUp = ~ .  (2.5) p! 

In particular, a ( f ( T - ' A T ) ) =  {alo, a2o, . . . ,akO} = { f (A1) , . . . , f (Ak)} .  But in view 
of (c), o ( f ( T - ' A T ) )  = o(f(A)) ,  and (b) follows. 

Finally, to prove (d), let B(A) be the algebraic adjoint of A I -  A; in other words, the 
(i, k) element of B(A) is equal to ( - l )  i+k {determinant of the ( n -  l) • ( n -  l) matrix 
obtained from A I -  A by crossing out the k-th row and i-th column}. The properties of 
the determinant ensure that 

( M -  A)B(A) = B(A)(M - A) = pA(/~)I. (2.6) 

The right-hand side of (2.6) is a polynomial with matrix coefficients which is divisible by 
A / - A .  The Bezout theorem (which is applicable in this situation as one can easily check 
by using long division of polynomials with matrix coefficients) gives [PA (/~)/] ~ , = a  "-- 0 ,  

i.e. PA (A) = O. [3 
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Observe that the parts (a), (c) and (d) of Theorem 2.1 are valid also for polynomials 
of matrices over unital commutative rings (see, e.g., Brewer et al. (1986)). 

Let us remark that the Jordan normal form (2.1) is a particular case of a more general 
and very useful Kronecker normal form of linear matrix functions AA+B, under the group 
of transformations AA + B ~ P(AA + B)Q. Here A, B E Mmxn(F), P E Mmxm(F), 
Q E Mm• and P and Q are invertible. (The field F is assumed to be algebraically 
closed.) We refer the reader to Gantmacher (1959), Gohberg et al. (1982b) for a full 
description of the Kronecker normal form. 

From now on until the end of Subsection 1.2 we assume F -- C. 
We now extend the definition of functions of matrices to more general classes of 

functions (beyond polynomials). The possibilities for such extensions are suggested by 
the formulas (2.4), (2.5). Let A E Mnxn(C), and let .A(A) be the class of complex 
valued functions which are defined and analytic in a neighborhood of a(A). If 

T - ' A T  = Jm, (A1) @"" @ Jmk (At:) (2.7) 

is the Jordan form of A, then for f E .A(A) define 

f (A)  = T( f (Jm, (A , ) )  @. . .@ f ( J m , ( ~ k ) ) ) T  -~, (2.8) 

where f(J,n,(Al)) is given by (2.5). This definition is correct, i.e. does not depend on 
the choice of the nonsingular matrix T that reduces A to its Jordan form. Indeed, we 
have 

f (A) = ~ f (A)(AI - A ) - '  ds (2.9) 

where the contour F consists of a small circle around each eigenvalue of A; to verify 
(2.7), use the reduction of A to its Jordan form and the easily verified formula 

( , x -  ,X0) -~ ( , x -  ,X0) -2  . . .  ( , X -  ,X0) - k  
0 ( , x -  ,Xo) -~ . . .  ( ,X-  ,x0) - k + l  

, . �9 �9 

o o . . .  ( , x -  ,x0) -~ 

Thus, in view of (2.9), f (A)  depends on A and f(A) only. The properties (a), (b), (c) of 
Theorem 2.1 remain valid for f E A(A). 

As it follows from (2.8), we have f (A)  = 9(A) for every f, 9 E A(A) such that 

f (m)(Aj)=g(m)(Aj);  m - O , . . . , r j - 1 ;  j = 1 , . . . , p ,  (2.10) 

where AI,..., Ap are all the distinct eigenvalues of A and rj  is the maximal size of the 
Jordan blocks corresponding to Aj (j - 1 , . . . , p ) .  This observation allows us to write 
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f ( A )  as a linear combination of certain polynomials of A, as follows. Let 

P 

q()~)_ H ( / ~ _  ,~j)r~ 
j = l  

be the minimal polynomial of A, with distinct roots /~l,...,,kp. For j = 1 , . . . , p  and 
k - 0 , . . . ,  rj  - 1 denote by ~jk()~) the polynomial of minimal degree such that 

• ( k )  ( A j ) -  1" ,~(e) (Aj) - 0  for g -  O, 1 and g ~: k; jk , ~'jk . . . , r j  - 

4~(e)(As)_0; f o r g - 0 ,  r s - 1  a n d s -  1 p; s ~ j  
j k  " ' ' ~  ~ ' ' ' ~  �9 

Clearly, such qojk()~) exists; in fact, qDjk has the form 

s#j 

for some polynomial ~bj(A) of degree less that rj. Let 

Zjk = ~jk(A).  

The matrices Zjk are called components of A. Being polynomials in A, the matrices 
Zjk commute with every matrix that commutes with A. One can show that Zjk (j -- 
1 , . . . ,  p; k -- 0 , . . . ,  rj - 1) are linearly independent. Now given f c M(A), let 9(A) be 
the polynomial defined by 

p r j - -1 

j = l  k=O 

Because of the construction of qDjk(A), the equalities (2.10) hold, and we have 

p r j - - 1  

f ( A )  - ~ ~ f(k)(Aj)Zjk.  
j=l k=0 

(2.11) 

This formula is convenient if many functions of the same A are to be studied, as, for 
example, is the case when f(A) depends on parameters. 

Besides the formulas (2.9) and (2.11), for many important functions a useful power 
series representation is available. Thus, let f(A) be an analytic function given by a power 
series 

o o  

f (A) -- E f J(/~ - /k~ 
j = O  
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which converges in a disc D = {I,~- )~0l < r}. Then for any matrix A E Mnxn(C) 
all eigenvalues of which are in the disc D we have f E A(A) and therefore f (A) is 
defined. It turns out that in fact 

O 0  

f (A)  = Z f j (A - ,koI) j 
j = 0  

(2.12) 

and the matrix series in the right hand side is absolutely convergent. One can verify (2.12) 
by reduction of A to the Jordan form and by using the formula (2.5). For example, we 
have the power series 

oo An oo , t 2 m + l  

e A--  y ~  ~ . ;  s i n A =  ~--~(_l)m (2m'a + 1)! 
try=0 rn,---0 

valid for every n x n matrix A. The algebraic relations for scalar functions continue to 
be valid when the variable is a matrix; for example 

(sin A) 2 + (cos A) 2 = I 

for any n x n matrix A. 
For many applications the class .A(A) is not sufficiently wide, and one would like 

to extend the definition of f (A) to a wider class of functions. To do this in a coherent 
fashion, we have to restrict the class of matrices. Let 12 be an open interval of a straight 
line in the complex plane, and denote by C'P(12) the class of/9" times differentiable 
complex valued functions on g2 (differentiability is understood in the sense of 12: 

f'(to) = lim f( t)  - / ( t o )  to E g2) 
t-~to t --  tO 
t E D  

Then for any A E Mnxn(C) with eigenvalues in 12, and any f E CP--1(12), where p 
is the biggest size of a Jordan block in the Jordan form of A, we can define f (A)  by 
the same formulas (2.8), (2.5), where the Jordan form of A is given by (2.7). Again, the 
basic functorial properties (Theorem 2.1(a), (b),(c)) are valid for the class C p-1 (12). The 
formula (2.11) is valid also, which proves, in particular, that f (A) is correctly defined 
(i.e. is independent of the choice of the order of Jordan blocks in the Jordan form of A, 
and of the choice of the similarity transformation that reduces A to its Jordan form). 

Literature guide. The material of Section 2.1 is fairly standard and various parts of it 
can be found in many texts (see, e.g., Bellman (1970), Wedderburn (1964), Pease (1965), 
Gohberg et al. (1986a)). More or less complete and detailed expositions of this and related 
material are given in Gantmacher (1959), Lancaster and Tismenetsky (1985), Horn and 
Johnson (1991). A thorough exposition of old and new results concerning solutions X 
of the equation f ( X )  = A, where f(A) is a given analytic function and A E Mnx,~(F), 
F = IR or F = C, is a given matrix, is found in Evard and Uhlig (1992). 
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2.2. Formulas for the derivative of a function of matrices 

Let A(t) be an n x n matrix depending on a real parameter t E (a, b). In this subsection 
we will give formulas for the derivative of the composite function f(A(t)), where f(A) 
belongs to a suitable class of functions. 

In the next theorem it will be assumed that A(t) is continuously differentiable. 
o 

THEOREM 2.2. (a) Assume that, for a fixed to E (a, b), f ()~) is an analytic function in an 
open set containing the eigenvalues of A(to). Then 

1 s  _ 
d~ : (A( t ) )  = ~ : ( ) ~ ) ( M -  A(t)) 'A ' ( t ) ( )~ I -  A(t)) -1 d)~, (2.13) 

for all t sufficiently close to to, where 1" is a simple closed rectifiable curve that encloses 
all the eigenvalues of A(to). 

(b) Assume that all eigenvalues of A(t) lie in an open-ended interval g2 C C, and 
assume that f(/~) is a complex valued continuously differentiable function of/~ E ~. 
Assume, in addition, that A(t) is diagonalizable for all t E (a, b). Then 

d ~ f ( A j ) -  f(/~k) 
~ f  (A(t)) = Aj - )~k 

j,k=l 
PjA' (t)Pk, (2.14) 

where )~, = )~1 ( t ) , . . . ,  As = )~s(t) are all the distinct eigenvalues of A(t) and 

PJ = 2--7 -,x,l=~ 
( ~ I -  A) -~ dA (e > 0 sufficiently small), 

is the Riesz projector corresponding to the eigenvalue )~j. 

The quotient (~j - )~k)- l ( f ( /~j ) -  f()~k)) in (2.14)is interpreted as f ' (~ j )  if j = k. 
We emphasize that under the hypothesis of Theorem 2.2(b) the multiplicities of the 

eigenvalues ,~j(t), as well as their number s, may depend on t. 
Formula (2.13) is a rather simple consequence of (2.9). Formula (2.14) is a special 

case of a general formula for d f(A(t)) obtained in Daleckii (1965) (without the diag- 
onalizability assumption). An analogous formula for hermitian operators was obtained 
in Daleckii and Krein (1965). Formulas for the second derivative of f (A( t ) )  are given 
in Chapter 6 of Horn and Johnson (1991). The book Rogers (1980) contains formulas 
for the derivative of scalar or matrix functions of a matrix variable, and several useful 
applications, for example, the derivative of the generalized inverse, and the derivatives 
of elementary symmetric functions. 

2.3. Entrywise functions of matrices 

In this subsection we adopt a completely different approach to define a function of a 
matrix. We assume here F = R, as this is the case studied mostly (if not exclusively) 
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in the literature. Given a function f:  R ~ R, we define for every m x n real matrix 
A = [ai j]  m ' n  

i=1 , j=l 

f(A) = [ f (ai j )]  m'n 
i -- l , j=l" (2.15) 

With this definition, a functorial property analogous to Theorem 2.1 (a) holds with respect 
to entrywise multiplication (also called Hadamard multiplication) of matrices" 

[ a i j ] m , n  m , n  m , n  
/--1,j--10 [bij]i=l,j=l = [aijbij]i=l,j=l. 

We present here several results concerning entrywise functions of matrices which are, 
in a sense, typical of problems that have been studied for such functions. 

THEOREM 2.3. Let A E M n x n ( R )  be positive semidefinite with non-negative entries 
(n >~ 2), and let f ( x )  = x ~. I f  a >. n - 2, then f ( A )  defined by (2.15) is positive 
semidefinite. I f  0 < c~ < n -  2 and c~ is not a positive integer, then for  some positive 
semidefinite Ao E Mn• with non-negative entries the matrix f (Ao)  is not semidef- 
inite. 

Theorem 2.3 was proved in FitzGerald and Horn (1977), (see also Section 6.3 in Horn 
and Johnson (1991)). 

Observe that (under the hypotheses of Theorem 2.3) f ( A )  is positive semidefinite for 
every integer a >~ 0. This follows from the general and very important result (due to 
Schur (1891)): 

THEOREM 2.4. The entrywise product of  two positive (semi)definite matrices is again 
positive (semi)definite. 

A proof can be given by using the spectral theorem for a positive semidefinite n • n 
matrix A: 

A 

n 

Z jPj, 
j= l  

where Aj ~> 0 and P 1 , . . . , P n  are one-dimensional orthogonal projectors which are 
orthogonal to each other. For a detailed proof see, e.g., Section 5.2 in Horn and Johnson 
(1991) or Section 7.5 in Horn and Johnson (1985). 

Another useful result concerns the entrywise exponential. An n x n hermitian matrix 
A is called conditionally positive semidefinite if x* Ax  >1 0 for every 

z -  ( z , , z 2 , . . . , z ~ )  r ~ C ~ 

such that 

n 

E xj  = 0 .  
j = l  
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THEOREM 2.5. Let A = [ a i j ]  n be a hermitian matrix. Then the entrywise exponential i,j=l 
[exp(taij)]~,j=l is positive semidefinite for all t > 0 if and only if A is conditionally 
positive semidefinite. 

PROOF�9 The proof of the "if" part is found in Section 6.3 of Horn and Johnson (1991). For 
the "only if" part observe that the positive semidefiniteness of [exp(taij)]i~,j=~ implies 

the conditional positive semidefiniteness of t-l[exp(taij)]i~,j=l . It remains to pass to the 
limit when t --+ 0. See also Section 1 in Parthasarathy and Schmidt (1972). v1 

We conclude this subsection with a result concerning spectral radii of entrywise func- 
tions of matrices�9 Denote by p(A) the spectral radius (i.e. the maximal modulus of 
eigenvalues) of an n x n matrix A, and denote f ( A )  by (2.10), i.e. entrywise. 

THEOREM 2.6. A function f: {x E R: x >~ 0} --+ {x C R: z >~ 0} satisfies the inequality 

p ( f ( A ) )  <. f ( p ( A ) )  

for any n x n matrix A with real non-negative entries, and for any size n, if and only if 
the following two conditions are satisfied: 

(i) f (a) + f (b) <~ f (a + b) for all a, b >~ O, 
(ii) ( f (a ) f (b ) )  1/2 <~ f((ab) 1/2) for all a, b >10. 

Theorem 2.6, as well as its generalization to functions of several real variables, and 
a characterization of functions f satisfying the opposite inequality p( f (A) )  >~ f (p (A) ) ,  
are proved in Elsner et al. (1990). 

Literature guide. For additional information concerning entrywise powers of matrices, 
with applications to infinitely divisible matrices, see Horn (1967, 1969). Various ap- 
plications of Theorem 2.5 and related properties of conditionally positive semidefinite 
matrices are found in Bapat (1988), Parthasarathy and Schmidt (1972) (probability the- 
ory), Donoghue (1974) and Micchelli (1986) (two dimensional data fitting). An in-depth 
discussion of Theorem 2.4 and related results is given in Horn (1990). 

2.4. Monotone matrix functions 

Here we consider functions of hermitian matrices. An n x n hermitian matrix A is 
diagonalizable with real eigenvalues; moreover, there exists a unitary matrix U such that 

U*AU = U-1AU = 

,Xl 0 . . .  0 
0 A2 . . .  0 

�9 , , ,  �9 

�9 

0 0 . . .  ~ 
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where A1, . . . ,  )~n are (not necessarily distinct) eigenvalues of A. These properties allow 
us to define f(A) for any complex valued function f(/~) whose domain of definition 
contains a(A),  by a formula analogous to (2.3): 

f(/~l) 0 . . .  0 
0 f( 2) . . .  0 

f ( A )  = U . . ". . U - '  
�9 �9 

o o , .  

We assume in this section that f()~) is real valued (this guarantees that f ( A )  is hermitian 
as well) and is defined on a real interval (a, b) ( - c o  <~ a < b <~ co). 

There is a natural partial order (sometimes called Loewner partial order) on the set Hn 
of all n • n hermitian matrices. Namely, for A, B E Hn we define A <~ B (or B ~> A) 
to mean that B -  A is positive semidefinite. A real function f(A), )~ E (a, b), is called a 
monotone matrix function on Hn with respect to (a, b) if A ~< B, where A, B e Hn and 
a(A)  U a ( B )  is contained in (a, b), implies that f ( A )  <~ f ( B ) .  Some important examples 
of monotone matrix functions on Hn (for all n = l, 2 , . . . )  are: 

l) f ( s  = - A  - l  with respect to (0, co) as well as with respect to ( - c o ,  0); 
2) f(/k) = ~/~ with respect to (0, co); 
3) f(/~) = log ,~ with respect to (0, co), where the branch of the logarithm is chosen 

so that f(,~) is real valued for real positive ,~. 
Functions that are matrix monotone on Hn for all n can be characterized as follows: 

THEOREM 2.7. The following statements are equivalent for  a real valued function f ()~), 
)~ e (a,b). 

(i) f(,~) is a monotone matrix function on Hn with respect to (a, b), for all n = 
1 , 2 , . . . ;  

(ii) f()~) is analytic on (a, b), admits analytic continuation to the open upper halfplane 
and the open lower halfplane, and (unless f (A) is constant) f (,~o) has positive imaginary 
part for  every ,~o in the open upper halfplane; 

(iii) f(,~) admits an integral representation 

/? ()~) = c~,X + 3 + [(t - )~)-1 _ t ( t 2 +  1) -l] dIx(t), (2.16) 
OO 

where )~ >~ O, 3 real and Ix(t) is a positive Borel measure on the real t-axis which has 
no mass on (a, b) and such that 

f 5  (t + 1)d#( t )  < co. 
O 0  

The equivalence (i) r162 (ii) is known as Loewner's theorem (Loewner (1934)). The 
functions f (A) which are analytic in the open upper halfplane and map this halfplane into 
itself are called Pick functions. The formula (2.16) is a well-known integral representation 
of Pick functions, taking into account the additional analytic continuation properties stated 
in (ii). 



Matrix functions 129 

We now restrict the matrix monotonicity property to a fixed Hn: 

THEOREM 2.8. Let f (A) be a continuously differentiable real valued function on (a, b). 
Then f(A) is matrix monotone on Hn with respect to (a,b) if and only if for all 
A1, . . . , An  E ( a ,  b) the matrix 

i n  -1 (f(Ai) - f (Aj))  i,j=l 

is positive semidefinite. (If Ai = Aj, the expression (Ai - A j ) - l ( f (A i )  - f (Aj ) )  is 
interpreted as f '(Ai).)  

Theorem 2.8 is again due to Loewner (1934) (in fact, every matrix monotone function 
on Hn is ( 2 n -  3) times continuously differentiable; thus, the differentiability hypothesis 
in Theorem 2.8 is superfluous if n >~ 2). A relatively easy proof of Theorem 2.8 based on 
formula (2.14) and on Schur's theorem 2.4 is found in Section 6.6 in Horn and Johnson 
(1991). 

Literature guide. The book Donoghue (1974) contains a full proof of Loewner's the- 
orems, as well as several important related results and subsequent developments. For 
several other criteria (besides Theorem 2.7) for matrix monotonicity on Hn see Section 
6.6 in Horn and Johnson (1991) and Bendat and Sherman (1955). Additional sources con- 
taining information on monotone matrix functions include Davis (1963), Horn (1990). 
A real function f (x ) ,  x E R, is called matrix convex if 

f ( (1  - A)A + AB) ~< (1 - A)f (A)  + A f (B)  

for every pair of n • n hermitian matrices A and B and every A E [0, 1]. This class 
of functions is closely related to matrix monotone functions (see Krauss (1936), Davis 
(1963), Bendat and Sherman (1955), Section 16E in Marshall and Olkin (1979) and 
Section 6.6 in Horn and Johnson (1991) for the basic results on matrix convex functions). 

3. Matrices dependent on parameters 

Let A(t) be an n x n complex matrix depending on parameters t. In applications, it is often 
desirable to find out what is the nature of dependence of t of many important quantities 
associated with A(t), such as eigenvalues, eigenvectors, Jordan form, triangular (Schur) 
form, singular values, basis in Ker A(t), basis in Range A(t) etc. Without attempting to 
cover, or even mention, many important results in that area, we present here some basic 
facts and ideas. 

3.1. Analytic matrix functions 

We start with the complex analytic dependence on t. Thus, assume that A(t) (i.e. every 
entry of A(t)) is an analytic function of the complex variable t E g2, where g2 is a 
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domain in the complex plane. Easy examples show that the eigenvalues of A(t) need not 
be analytic functions of t (even if one allows for an arbitrary permutation of eigenvalues 
for each t). Moreover, when the eigenvalues of A(t) are analytic (even constant) the 
Jordan form of A(t) need not be analytic: 

EXAMPLE 3.1. The Jordan form of 

0 1 O) 
A ( t ) =  0 0 0 

t 0 0 
, t E C ,  

(010) (0l 0) 
0 0 1 i f t r  and 0 0 0 
0 0 0 0 0 0 

if t = 0 .  

The set of points to E 12 at which the continuity of the Jordan form of A(t) breaks 
down is at most countable with limit points (if any) on the boundary of 12. Denote this 
set .(20. 

THEOREM 3.1 (see Baumgartel (1985)). The eigenvalues (suitably ordered) Al (t), . . . , 
An(t) of A(t) are given in a neighborhood U(to) of every to E ~ by the fractional 
power series (p is a positive integer) 

130 

a , ( t )  = to)k/'; e c .  
k=O 

(3.1) 

A basis x l ( t ) , . . .  ,Xn(t) in C n consisting of chains of eigenvectors and generalized 
eigenvectors (Jordan chains) of A(t) exists which is given by fractional Laurent series 

o o  

x j ( t )  -  jk(t- t0)k/ ; e c "  
k = - q  

for t E U(to)\{to} (here q >1 0 is an integer). Moreover, if to r 12o, then p = 1, and 
q = O, i.e. Aj(t) and xj( t )  are in fact analytic at to. 

A generalization of Theorem 3.1 to matrices depending analytically on several complex 
parameters is obtained in Baumgartel (1974). 

Behaviour of eigenvalues and their multiplicities of analytic matrix functions under 
small analytic perturbations was studied for hermitian valued function in Gohberg et al. 
(1985, 1986b) (see also Gohberg et al. (1983) and references there), and for general 
functions in Najman (1986), Langer and Najman (1989) (where the results and proofs 
are given using Newton diagrams). 

Since the Jordan form of A(t) is not necessarily analytic on .(2, a natural question 
arises: find a simplest possible form of A(t) (for every t E ~2) which is guaranteed to 
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be analytic on t, at least in a neighborhood of every t E ~2. The answer is given by the 
following result. 

THEOREM 3.2 (Arnold (1971)). Let to E Y2, and assume that A(to) is the Jordan form 

A(to) = Jm~,(A1) @ . . .  @ Jm, n (A1) @ " "  @ Jingo(As) |  �9 J , ~  (As), 

where A1 , . . . ,As  are the distinct eigenvalues of A(to), and rail >~ . . .  >~ rnir, (i = 
1, . . .  ,s). (Jm(Ao) is defined by (2.2)). Then there exists an invertible matrix S(t)  de- 
pending analytically on t in a neighborhood of to such that S ( t )A( t )S ( t )  -1 has the 
form 

S( t )A( t )S ( t )  -1 = K1 @. . .  @ Ks. (3.2) 

Here K j  has the same size as Jmjl (A1) @ " "  @ Jm~.j (Aj) and its structure is given by 

p,q=l 

where K~ pq) is a rnjp x rnjq matrix having all entries zero with the possible exception 
of the bottom min(mjp, rnjq) entries in the first column. 

Theorem 3.2 holds verbatim for matrix functions that are analytic functions of several 
complex variables. 

A refinement of (3.2) is given in Kashchenko (1988) under additional hypotheses on 
A(t). Other special cases are studied in Tovbis (1992). 

In Krein and Tovbis (1990), Tovbis (1992) various forms are described that can be 
obtained from A(t) by applying similarities S( t )A( t )S ( t )  -1 or transformations of the 
form 

A(t) ~ S ( t ) - l A ( t ) S ( z ) -  z~S( t ) - lS ' ( t ) ,  

where the invertible matrix S(t) is assumed to depend meromorphically on t, or have 
expansion in fractional powers, in a neighborhood of a given point. The study of these 
forms is motivated by transformations of systems of linear differential equations. 

Another approach for studying analytic matrix functions concerns characterizations of 
various types of similarities between such functions. We say that n • n matrix functions 
A(A) and B(A) analytic at A0 are pointwise similar if A(A) is similar to B(A) for every 
A sufficiently close to A0; A(A) and B(X) are called analytically similar if A(A) -- 
T ( A ) - l B ( A ) T ( A )  for some matrix function T(A) which is analytic and invertible at 
A0. The pointwise similarity does not always imply analytic similarity. An important 
problem (that arises in the study of singular ordinary differential equations) is to find 
conditions on A(A) that guarantee the equivalence of pointwise and analytic similarity. 
This problem was studied in Wasow (1962), Friedland (1980a, 1980b). Some of the results 
of these papers have been interpreted and generalized in the framework of matrices over 
commutative rings Guralnick (1981). 
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3.2. Real analytic matrix functions 

For some important classes of matrix functions (e.g., hermitian matrix valued) it is natural 
to consider dependence on real rather than complex parameter. Here the main result 
concerns analytic behaviour of eigenvalues and eigenvectors, and (as a consequence) of 
a triangular form: 

THEOREM 3.3. Let A(t)  be an n x n matrix which is an analytic function of a real 
parameter t E (a, b), - o o  <<. a < b <~ oo. Assume that all the eigenvalues of  A(t), for  
all t E (a, b), lie on a differentiable (i.e. having tangent at each point) curve F C C. 
Then there exists an analytic (on t E (a, b)) n • n matrix function U(t) such that 

U(t)*U(t)  = I 

(i. e. U (t) is unitary valued) and 

n 

U(t)*A( t )U( t )  = [xij(t)]i,j= l (3.3) 

is triangular: xi j ( t )  - O f  or i > j. 

PROOF. Let to E (a,b). By Theorem 3.1 the eigenvalues Aj(t) of A(t)  are given by 
fractional power series (3.1) in a neighborhood of to. Assume that p ~> 2 and that at 
least one of the coefficients cuk, k not a multiple of p, is nonzero. Let k0 be the smallest 
integer, not a multiple of p, such that ajko ~ 0. Then letting t ~ To firstly for t > to 
and secondly for t < to we obtain 

lim [,~j (t) - )~j (to)] ( t -  to)-k~ ajko, 

lim [)~j (t) - ,~j (to)] (t - to) - k~  ( -  1)k~ . 

Clearly, the numbers ajk0 and (--1)k~ have arguments that either coincide with 
the tangential direction to F at Aj(t0), or are opposite to this direction. Hence ( - 1 )  k~ 
must be real, a contradiction. We have proved that the eigenvalues (suitably ordered) 
of A(t)  are analytic in a neighborhood of to. By analytic continuation, the eigenvalues 
)~l( t) , . . .  ,)~n(t) of A(t)  are analytic on t E (a, b). Now we use a result (see, e.g., 
Theorem 5.6.1 in Gohberg et al. (1978c)) according to which an analytic (on t E (a, b)) 
column vector valued function yl(t)  can be found such that yl(t) ~: 0 and ( A ( t ) -  
~ l ( t ) I )y l ( t )  = 0 for all t E (a,b). In other words, yl(t) is an eigenvector of A(t)  
corresponding to )~l (t). By the same result, there exists an analytic basis y2( t ) , . . . ,  yn(t) 
in Ker(y1(t))* (at this point we use the fact that t is a real variable and therefore 
(yl (t))* is analytic on t as well). Performing the Gram-Schmidt orthonormalization on 
y~ ( t ) , . . . ,  yn(t) (which does not spoil the analyticity) we obtain a unitary analytic (on 
t E (a, b)) matrix function U1 (t) whose first column is a scalar multiple of Yl (t). Clearly, 

Ul (t)* A(t)Ul (t) - (,~lo(t) .) 
Al(t)  
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for some ( n -  1) x ( n -  1) analytic matrix function Al (t), and so on, until the proof is 
completed. U] 

The most important particular cases of Theorem 3.3 are when / '  is a straight line 
(e.g., the real axis) or a unit circle, or when A(t) satisfies additional hypotheses (e.g., 
being hermitian valued, or unitary valued) that make the hypothesis on the location 
of eigenvalues of A(t)  satisfied automatically. For hermitian valued A(t) the result of 
Theorem 3.3 goes back to Rellich (1937, 1953); see also Porsching (1968), Kato (1966, 
1982), Gohberg et al. (1978c), Gingold and Hsieh (1992). 

Note that Theorem 3.3 is false if A(t) depends analytically on more than one real vari- 
able. The following well-known example illustrating this fact can be found, for example, 
in Section 11.5.7 of Kato (1966): 

EXAMPLE 3.2. Let 

( t l  t2 ) 
A(t l , t2)  -- t2 - t l  " 

A(t l ,  t2) is obviously analytic and hermitian as function of (tl, t2) E I~ 2. However, the 
eigenvalues + ( t  2 + t~) 1/2 are not analytic at tl - t2 - 0. 

3.3. Matrices with entries in a function algebra 

Let K C IR n be a connected compact set, and let X be an algebra (over C) of continuous 
complex valued functions on K with the following properties: 

(i) X admits partitions of unity: for every relatively open finite covering {Vj }~=1 of 
K there exist non-negative functions qal ( t ) , . . . ,  qar(t) in X such that 

j--1 
= 1  

and qaj (t) = 0 for t c K\Vj .  
(ii) if f ( t )  c X and f ( t )  # 0 for all t c K, then (f( t ) )  -1 c X. 

Denote by M m x p ( X )  the set of ra x p matrices with entries in X. 
A typical question one is interested in when studying matrices with entries in X is 

whether a certain quantity associated with a matrix can be expressed in terms of the 
algebra X. We state here one result in this spirit concerning the kernel and the range of 
a matrix. 

THEOREM 3.4 (Gochberg and Leiterer (1976)). Let A(t)  c M m x p ( X ) ,  t E K, and as- 
sume that the dimension of Ker A(t) (and therefore also the dimension of Range A(t)  
is independent of t E K. If  K is contractible, or if n <~ 2, then there exist a ba- 
sis Xl ( t ) , . . . ,  Xs(t) in KerA(t) and a basis yl ( t ) , . . . ,  yq(t) in RangeA(t)) such that 
Xj E Mpx  l (X) (for k = 1 , . . . ,  s) and Yk c M m x  l (X)  (for k = 1 , . . . ,  q). 
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A example is given in Evard (1990) of a 2 x 2 hermitian valued matrix function A(t) 
which is infinitely differentiable for parameter t E K,  where K is the unit sphere in R 3, 
and such that rank A(t) - 1 for all t E K;  nevertheless, there is no continuous vector 
function z(t) which is a basis in Ker A(t) for all t E K.  

Literature guide. The theory of matrices with entries in function algebras is only at the 
beginning of its systematic development. Gochberg and Leiterer (1976) is an early paper 
on this subject, and some later work in this direction includes Gingold (1979), Evard 
(1990), Evard and Gracia (1990). In particular, the following result is proved in Evard 
and Gracia (1990): Let A(t) and B(t), t E J2 be two n x n matrix functions of the C p 
class, where ~ C_ R q is an open set CP-diffeomorphic to R q, such that A(t) and B(t) 
have constant Jordan structure for all t E ~,  and for every fixed to E J2 the matrices 
A(to) and B(to) are similar (here p is a non-negative integer or c~). Then there is a C p 
class similarity between A(t) and B(t). A related result (known as Dole~al's theorem, 
Dole2al (1964)) states that the kernel of a CP-class matrix function A(t), t E [0, c~) with 
constant rank can be transformed to a constant subspace by means of a CP-class invertible 
matrix function. This theorem and its generalizations are well-known and widely used 
in control systems: Silverman and Bucy (1970), Weiss and Falb (1969). A far reaching 
generalization of this result was obtained in Guralnick (1991) for matrices over certain 
commutative reduced rings R. Without setting up the precise framework for such a 
generalization, we just mention that the key property of the ring R needed here is that 
every finitely generated projective R-module is free. Many results concerning matrices 
whose entries are continuous or analytic functions are exposed in Gohberg et al. (1986a). 
A completely different problem - positive semidefinite completions of partial matrices 
- was treated in Johnson and Rodman (1988) from the point of view of matrices over 
function rings. 

Analytic properties of singular values and singular value decompositions of analytic 
matrix valued functions are studied in Boyd and Balakrishnan (1992), Bunse and Ger- 
stner et al. (1992), Boyd and De Moor (1990). Derivatives (sensitivities) of eigenvalues 
and eigenvectors of matrix functions depending analytically on several real or complex 
variables are studied in Sun (1990), Andrew et al. (1992); and see Burke and Overton 
(1991) for analogous questions concerning the maximum real part and the maximum 
modulus of eigenvalues. We note also the paper Overton (1992) (and references therein), 
devoted to the problem of minimization of the maximum eigenvalue of A(z) subject to 
linear constraints and bounds on z E Rq; here A(z) is a real symmetric matrix function 
of z which is continuously differentiable. 

4. Matrix polynomials 

Let F be a field, F[A] the algebra of polynomials in one variable A with coefficients in 
F.  Matrices with entries in F[A] are called matrix polynomials, or polynomial matrices. 
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4.1. The Smith form 

We start with the Smith canonical form which plays an important role in the analysis of 
matrix polynomials�9 

THEOREM 4.1�9 Let A(~) E Mmxn(F[A]) be a matrix polynomial. Then A(A) admits the 
representation 

A(A) = EI(A)D(A)E2(A), (4.1) 

where 

D(A) - 

( dl (A) 0 . . . . . .  0 s 
o . . . . . .  o 

�9 �9 , , , 

. . .  

0 

~, 0 0 . . . . . .  0 

(4.2) 

is a diagonal matrix polynomial with monic (i.e. having leading coefficient 1) scalar 
polynomials dj(A) E F[A] such that di(A) is divisible by di-1 (A) (i = 2 , . . . ,  r); E1 (A) E 
Mmxm(F[A]) and E2(A) E Mnxn(F[A]) have constant (i.e. independent of A) nonzero 
determinants. Moreover, the polynomials dl (A), dz (A) , . . . ,  dr(A) as well as their number 
r, are uniquely determined by A(A). 

The proof of Theorem 4.1 is accomplished by applying elementary row and column 
operations (see, e.g., Thrall and Tornheim (1957), MacDuffee (1946), Gantmacher (1959) 
or Gohberg et al. (1982a) for the proof). The book Newman (1972) contains a detailed 
exposition of the Smith form (4.1) as well as of other related forms. 

The polynomials di(A) are called the invariant polynomials of A(A). They can be 
determined by A(A) as follows: Let r x r be the maximal size of a square submatrix in 
A(A) with not identically zero determinant, and for i = 1 , . . . ,  r, let Di(A) be the monic 
greatest common divisor of all i x i minors (-- determinants of i x i submatrices) of 
A(A). Then 

d,(A) - Di(A)/Di_I(A),  i - 1 , . . . , r ,  

where we put Do(A) - 1. 
Two matrix polynomials A(A), B(A) E Mm• are called equivalent if A(A) - 

El(A)B(A)E2()~) for some El(A) E Mm• and E2(A) E Mm• with 
constant nonzero determinants. Theorem 4.1 can be recast in the following alternative 
form: A(A),B(A) E Mmxn(F[A]) are equivalent if and only if they have the same 
invariant polynomials�9 

The Smith form (4.1) has been studied in the more general framework of matrices 
over rings�9 We call a commutative unital ring R without divisors of zero a Smith domain 
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if every matrix A over R has the Smith form: i.e. a representation A = E1 DE2, where 
E1 and E2 are invertible matrices (over R) and D = d iag(dl , . . . ,  dr, 0 , . . . ,  0), dj E R 
is diagonal where di is divisible by di-1 (i = 2 , . . . ,  r). It is known that every principal 
ideal domain is a Smith domain (see Section III.8 of Jacobson (1964)); on the other hand, 
every Smith domain is a Bezout domain, i.e. every finitely generated ideal is principal. 
The ring Z[A] is an example of a Smith domain which is not a PID. These and other 
properties of Smith domains and related rings are found in Brewer et al. (1986), Den 
Boer (1981); see Kaplansky (1949) for results concerning rings admitting the Smith form 
(in the general framework of not necessarily commutative rings possibly having divisors 
of zero). The question whether every Bezout domain is a Smith domain seems to be still 
open. 

Since F[A] is a principal ideal domain, the ring Mnxn(F[A]) enjoys the divisibility 
properties common to matrix rings over principal ideal domains (or, more generally, 
Bezout domains). Namely, every pair of n x n matrix polynomials A(A) and B(A) has a 
greatest common right divisor D(A) (which also belongs to Mnxn(F[)q)), and moreover 
D(A) can be expressed in the form 

D(A) = X(A)A(A) + Y(A)B(A) 

for some X, Y E Mnx,(F[A]). Also, every pair of n x n matrix polynomials A(A) and 
B(A) which are not divisors of zero in Mn• have a least common left multiple 
C(A) E M,~xn(F[A]); moreover, C(A) is unique up to left factor with constant nonzero 
determinant. Proof of these facts can be found, for example, in MacDuffee (1946). In 
the next section, we will study divisibility and factorization of matrix polynomials from 
a different (geometric) point of view based on invariant subspaces. 

4.2. Factorization of matrix polynomials 

One of the main problems in the theory of matrix polynomials is the problem of factor- 
ization: 

A(A) = B(A)C(A), (4.3) 

where A(A), B(A) and C(A) are n x n matrix polynomials. In the sequel we consider 
factorization of matrix polynomials which are monic, i.e. with the leading coefficient I. 

In contrast with scalar polynomials, even when F is algebraically closed, not ev- 
ery monic matrix polynomial admits a factorization (4.3) into product if monic matrix 
polynomials of smaller degrees: 

EXAMPLE 4.1. 

A2 
A(A) = 0 

1 .) 
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has no factorization (4.3), where B(A) and C(A) are monic nonconstant polynomials�9 
This follows easily from the nonexistence (over any field containing F) of a square root 
of the matrix 

0 1 
( 0  0 ) "  

Let 

m-1  

A(A) = AmI + E AJAj, Aj e Mn• (4.4) 
j=0  

The mn • nm matrix 

0 I 0 . . .  0 
0 0 I . . .  0 

CA = (4.5)  
, , �9 

~ �9 �9 1 

-Ao  -A1 -A2  ...  -Am-1  

is called the companion matrix associated with A(A). It turns out that the factorization of 
A(A) can be described in terms of certain Ca-invariant subspaces. A subspace M C_ F nm 
is called CA-invariant if Cax E M for every x E M, where CA is considered in the 
natural way as a linear transformation F nm --+ f rim. 

For A(A) E Mm• with the invariant polynomials dl (A) , . . . ,  d,.(A), the roots of 
dj(A) (in some algebraic closure of F)  will be called the zeros of A(A); the multiplicities 
of Ao as a root of dl (A) , . . . ,  d,.(A) are called the partial multiplicities of Ao as a zero of 
A(A). 

THEOREM 4.2. Let be given monic matrix polynomial A(A) (4.4) with its companion ma- 
trix (4.6). Then the factorizations (4.3) with monic matrix polynomials B(A) and C(A), 
where B(A) has degree k and C(A) has degree m -  k, are in one-to-one correspondence 
with CA-invariant subspaces M such that M is a direct complement to the subspace 

{x E F ran" the first ( m -  k)n components of x are zeros}. (4.6) 

Moreover, the zeros of C(A) coincide with the eigenvalues of the restriction CA I M, 
and the partial multiplicities of a zero Ao of C(A) coincide with the multiplicities of Ao 
as an eigenvalue of CA I M. Given the subspace M as above, the corresponding matrix 
polynomials B(A) and C(A) are given by the formulas 

= [I 0 . . .  0](CA I M)m-k[V  + + . . .  + 

where 

0) ] M) -l', (4.7) 
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B()Q =/~kI- (Zl -1- Z2)~ --[-...-[- ZkAk-1)pc~tPY, 

where 

r ~ .  

0 

o ' 

1 

P is the projector on the subspace (4.6) along M (understood as a linear transformation 
from F mn onto (4.6)), and 

Zl 

Z2. = [PY, P C A P Y ,  . . . , pCkA_ 1 p y ]  - I  

Zk 

(4.8) 

Observe that the existence of inverses in (4.7) and (4.8) is guaranteed by the condition 
that M is a direct complement to (4.6). 

The proof on Theorem 4.2 is given in Gohberg et al. (1978c) (see also Chapter 3 in 
Gohberg et al. (1982b)) for the case F = C; the general case is proved in the same way. 

Of special interest are right divisors of A(A) of the form A I -  Z, Z E Mnxn(F) .  This 
happens if and only if Z is a right solvent of A(A), i.e. 

m-I  
Z m + ~ A j Z  ~ = O. 

j=O 

Right solvents of matrix polynomials are studied in Markus and Mereutsa (1973), Goh- 
berg et al. (1978a), Maroulas (1985) using generalized Vandermonde matrices. In this 
connection we note a result proved in Krupnik (1991) according to which A(A) admits 
factorization 

m 

H zj Mn• 
j=l 

provided all elementary divisors of A(A) are either linear or quadratic (F  is assumed 
algebraically closed here). 

Theorem 4.2 allows one to reduce factorization problems to invariant subspace prob- 
lems. This approach is especially useful when F is algebraically closed, or when A(A) 
has a special structure. We shall illustrate this approach for an important class of matrix 
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polynomials (over C) with hermitian coefficients. 

THEOREM 4.3. Let A(A) E Mnxn (C[A]) be a matrix polynomial given by (4.4) and as- 
sume that Aj (j = 0 , . . . ,  m -  1) are hermitian matrices. Then A(A) admits factorizations 

A(A) = B(A)C(A) (4.9) 

where C(A) is a monic matrix matrix polynomial of degree [m+___21] such that all zeros 
of C(A) have nonpositive imaginary part, and all zeros of B(A) have non-negative 
imaginary part. 

PROOE We provide only an outline of the proof, and refer the reader to Section II.3.2 in 
Gohberg et al. (1983) for the full proof. 

Let CA be the companion matrix of A(A), and let 

A1 A2 . . .  I 
A2 0 

H A -  " i " E m m n x m n ( C ) .  (4.10) 

I 0 
I 0 . . .  0 0 

Clearly, HA is invertible and hermitian. A straightforward calculation shows that 

HA CA = C~4 HA. (4.11) 

This equality can be interpreted in the following way: Introduce the indefinite scalar 
product [., .] on C mn by 

[x, y] = y*HAx, x,  y E C ran. 

The equality (4.11) means that CA is selfadjoint with respect to [., .]: 

[CAx, y ] -  [x, CAy], x,  y E C rnn. 

Now the theory of linear transformations that are selfadjoint in an indefinite scalar prod- 
uct (see, e.g., Gohberg et al. (1983)) guarantees existence of an [m+---2]n-dimensional 
CA-invariant subspace M C C mn with the additional properties that 

[x, x] /> 0 for all x e M, 

and that all eigenvalues of the restriction CA [ M lie in the closed lower halfplane. 
Moreover, it turns out that every such M is a direct complement to the subspace (4.6), 
where k - [~] .  It remains to apply Theorem 4.2. [:3 

Under the hypotheses of Theorem 4.3, A(A) also admits factorizations (4.9) with all 
zeros of C(A) having non-negative imaginary part. 
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Of special interest are matrix polynomials which are positive semidefinite on the real 
line: 

THEOREM 4.4. The following statements are equivalent for a matrix polynomial (4.4) 
(over C): 

(i) A()~) is positive semidefinite for every real/~; 
(ii) A()~) admits factorization of the form 

A(,k) = (M(~))*M(,k), 

where M(A) is an n x n matrix polynomial; 
(iii) the degree m of A(A) is even, and, letting CA and HA be matrices defined 

by (4.5) and (4.10) respectively, there exists a CA-invariant m~-dimensional subspace 
M c C mn which is HA-neutral: y* H A l  = 0 for all x, y E M. 

(iv) all partial multiplicities of real zeros (if any) of A(A) are even. 

The proof of Theorem 4.4 is found in Section 11.3.2 of Gohberg et al. (1983). 

Literature guide. Much of the development of the theory of matrix polynomials (with 
real or complex coefficients) was motivated by applications in mechanical and electrical 
systems with finite number of degrees of freedom (see, e.g., Whittaker (1952), Frazer 
et al. (1955) and especially Lancaster (1966)). Other important applications of matrix 
polynomials are found in modern control theory (see the books Barnett (1983), Kailath 
(1980), Rosenbrock (1970)). The spectral analysis of matrix polynomials (leading, in 
particular, to Theorem 4.2) has been initiated in Gohberg et al. (1978c, 1978d); a com- 
prehensive exposition of this theory (including nonmonic matrix polynomials) is given 
in Gohberg et al. (1982b); see also Lancaster and Tismenetsky (1985), Gohberg et al. 
(1986a). Perturbation theory for divisors of monic matrix polynomials was developed in 
Gohberg et al. (1979) in the context of both continuous and analytic perturbations. For 
the theory of common multiples and divisors of matrix polynomials from the spectral 
analysis point of view, see Gohberg et al. (1978a, 1978b, 1981, 1982a), also the book 
Gohberg et al. (1982b). The book Kazimirskii (1981) contains the factorization theory 
of matrix polynomials over a general field, from the algebraic point of view. 

Matrix polynomials with hermitian coefficients, as well as with other symmetries, are 
of special interest because of numerous applications, especially in vibrating systems and 
linear control systems: Lancaster (1966), Coppel (1972), Gohberg et al. (1983). The com- 
prehensive spectral theory of hermitian matrix polynomials was developed starting with 
Gohberg et al. (1980), also Gohberg et al. (1982c, 1982d) (it should be noted, however 
that the spectral theory for certain classes of operator polynomials with selfadjoint coef- 
ficients was developed before, see Krein and Langer (1978), Langer (1976)). The book 
Gohberg et al. (1983) contains an exposition of this theory, as well as many applications; 
see also the review papers Lancaster (1982), Rodman (1987). 

Matrix polynomials of second degree with hermitian coefficients are especially im- 
portant in applications. Besides the above references, we mention here Gohberg et al. 
(1986b) and Lancaster and Maroulas (1988), where the behaviour of zeros of such poly- 
nomials is studied under analytic perturbations of the linear term and under feedback, 
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respectively, and Lancaster and Maroulas (1987), where the problems concerning the 
determination of such polynomials from the knowledge of their spectral properties are 
studied. 

We conclude with a brief mention of some other aspects of the theory of matrix poly- 
nomials. The volume Kagstr6m and Ruhe (1983) is devoted mainly to the computational 
aspects of matrix polynomials; among numerous papers on this subject we mention only 
Belyi et al. (1989), Khazanov and Kublanovskaya (1988), Van Dooren and Dewilde 
(1983) (see also references in those papers), where algorithms are given for comput- 
ing the zero structure of rectangular matrix polynomials. Orthogonal matrix polynomials 
have been studied in Delsarte et al. (1978), Fuhrmann (1987) and in the volume Gohberg 
(1988a), (among others); in Gohberg and Lerer (1988) the spectral analysis of matrix 
polynomials, and in particular connections with coprime and Wiener-Hopf factorizations, 
play a prominent role. 

4.3. Bezoutian o f  matrix polynomials  

Let 

t m 

a()~) = E ai)d,  b()~) = E biAi (rn <. g) 
i = 0  i = 0  

be scalar polynomials with coefficients in the field F (we assume at 7/= 0, bm --/= 0). 
The concepts of the resultant and Bezoutian matrices of a(,~) and b(,~) are classical. The 
resultant is the (g + m) x (g + m) matrix 

Res(a, b) = 

/ ao al . . .  
0 ao al 

�9 o 

0 0 
bo bl  . . .  

0 bo . . .  

�9 o 

\ 0  0 . . .  

at  0 . . .  0 
�9 . .  a t  . . .  0 

�9 . .  a o  . . .  at 
b m  0 . . .  0 

bm . . .  0 

bo . . .  bm 

, ( 4 . 1 2 )  

and the Bezoutian is the g x g matrix Bez(a, b) = [xij] t -1  i,j=o defined by 

s  

Ai#j=()~ tt)-l[a(~,)b(tt) a(tt)b(A)]. E X i j  - -  - -  

i , j - -O 

(4.13) 

The fundamental property of these matrices is that the dimension of Ker Res(a, b), as 
well as the dimension of Ker Bez(a, b) is equal to the degree of the greatest common 
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divisor of a(/k) and b(A). This property has been used, in particular, to prove various root 
separation and inertia results for scalar polynomials (with real or complex coefficients). 

Recently, the concepts of resultant and Bezoutian matrices and their fundamental prop- 
erty have been extended to matrix polynomials. We will focus here on the Bezoutian 
matrix. 

Let L1 (/k) and L(,k) be two n x n  matrix polynomials with det LI(A) 7~ 0, det L(A) ~ 0. 
Since L1 and L generally do not commute, we cannot use the same definition as in the 
scalar case based on (4.13). However, there exists a common left multiple of L1 and 
L, i.e. n x n matrix polynomials MI(A) and M(,X) exist such that detMl(A) ~ 0, 
det M(,k) ~ 0 and the equality 

M1 (~)L, ()~) = M(A)L()~) (4.14) 

holds. The Bezoutian associated with the equality (4.14) is defined as the block matrix 

I F . . ] m - l , s  
B = t ~ ~3Ji=0,j=o (4.15) 

where the block entries/ ' ij  are given by 

m - I  s 

Z FiJA'#J = (/~ - #)-1 [M, (s (#) - M(A)L(#)],  
i=o j=o 

and where g (respectively, m) is the maximal degree of L and Ll (respectively, of M 
and M1). 

The fundamental property of the matrix Bezoutian can be stated as follows: 

THEOREM 4.5. Assume that one of the matrix polynomials L()~) and L1 ()~) has invertible 
leading coefficient, and one of them has invertible constant term. Further assume that 
(4.14) holds. Then 

dim Ker B = degree (det L0(~)), (4.16) 

where Lo()~) is the greatest common divisor of L(~) and Ll (~). 

This result as well as its analogue for the case when the hypotheses on the invertibility 
of coefficients is omitted (in this case the equality (4.16) should be modified), was proved 
in Lerer and Tismenetsky (1982). (It was assumed there F = C, the generalization for 
any field is immediate.) Furthermore, a description of Ker B in terms of the zeros of 
L0()~) and the corresponding eigenvectors and generalized eigenvectors is given also in 
Lerer and Tismenetsky (1982). 

Literature guide. For the theory and applications of resultant and Bezoutian matrices 
for scalar polynomials see, e.g., the books Uspensky (1978), Lancaster and Tismenetsky 
(1985) and review papers Krein and Naimark (1981), Helmke and Fuhrmann (1989). 
The definition of the Bezoutian for matrix polynomials based on (4.14) was introduced 
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in Anderson and Jury (1976), Bitmead et al. (1978), inspired by some problems in linear 
control systems. The theory of Bezoutians for matrix polynomials and its applications and 
connections to inertia and root separation of matrix polynomials and to various matrix 
equations have been developed in a series of papers Lerer and Tismenetsky (1982, 1984, 
1988), Lerer (1989), Lerer et al. (1991) (see also references in these papers). Other 
applications of the Bezoutian are found in Barnett (1972), Wimmer (1988) (factorization 
of matrices) and in Lerer and Tismenetsky (1986), Gohberg and Shalom (1990) (inversion 
of structured matrices; the idea of this application goes back to Lander (1974)). See 
Kailath and Sayed (1996), and the extensive bibliography therein, for applications of 
Bezoutians and related matrix functions in developing fast computational algorithms for 
structured matrices. Another concept of Bezoutian for matrix polynomials LI(A) and 
L(A) based on the equality 

l~ij~i#j __ (/~ __ ~ ) - - I  [L1 (A) | L(#) - L1 (#) | L(A)] 
ij 

was also studied in the literature: Bitmead et al. (1978), Barnett and Lancaster (1980), 
Heinig (1979), and see Wimmer (1989) for the concept of Bezoutian based on pairs 
of coprime matrix polynomials. Very recently, the notion of the Bezoutian, and its key 
properties and applications have been extended to rational matrix functions in Lerer and 
Rodman (1996). 

For results concerning generalization of the resultant matrix to the case of matrix 
polynomials see Barnett (1969), Gohberg and Heinig (1975), Gohberg and Lerer (1976), 
Gohberg et al. (1982a), Lerer and Tismenetsky (1982). In Helton and Rodman (1987) 
the resultant matrices have been studied from the abstract point of view of matrices over 
tings. 

5. Rational matrices 

In this section we study r • n matrices W()~) whose elements are rational functions over 
a fixed field F. Thus, 

W ( A )  = [p i j (A) /q i j (A)]  r'n 
i = l , j = l  (5.1) 

where pij()~) E F[A], qij()~) E F[A] and qij are not identically zero. The matrices of the 
form (5.1) are called rational matrices (over F). 

Rational matrices appear in linear systems theory as follows (in this paragraph we 
assume F = C): Consider a system of linear differential equations 

dx = Ax( t )  + Bu(t)" -d  

y(t) = Cx(t) + Du(t); 

z(0) = 0; t /> 0, 
(5.2) 

where A e Mmxm(C) ,  B e Mmxn(C) ,  C e Mr• D e M ,  xn(C) are constant 
(i.e. independent of t), u(t) is an n-dimensional vector function that is at our disposal 



144 L. Rodman 

and is referred to as the input (or control), and y(t) is the output. Taking the Laplace 
transform 

f0 ~ Z(A) = e-XSz(s) ds 

and denoting by the capital Roman letter the Laplace transform designated by the corre- 
sponding small letter, the system (5.2) becomes 

AX(A) = AX(A) + BU()O, 
Y(A) = C X ( A ) +  DU(A), 

which can be solved for Y(A) in terms of U(A): 

Y(A) = [D + C ( M  - A) - 'B]U(A) .  (5.3) 

The matrix W(A) = D + C ( A I - A )  -I B, called the transfer function of (5.2), is obviously 
rational. Thus, the input-output map of a linear time invariant system of differential 
equations is given (after Laplace transforms) in terms of a rational matrix. This fact, and 
an analogous fact concerning systems of difference equations, explains the crucial role 
the theory of rational matrices is playing in modern linear systems theory. 

Let W(A) be a rational r x n matrix over the field F. A representation of the form 

W(A) = D + C ( A I -  A) -1 B, (5.4) 

where D e Mr x . (F) ,  C e Mr xm(F), A e Mmxm(F), D e Mmx.(F) ,  is called a 
realization of W(A) (cf. formula (5.3)). 

THEOREM 5.1. W(A) admits a realization if and only if W(A) is finite at infinity, i.e. 

degreepij(A) <~ degreeq/j(A) (5.5) 

for every pair of indices i , j  (1 <~ i <<. r, 1 <<. j <<. n) such that pij(A) ~- 0. 

PROOF. If W(A) has a realization (5.4), then the representation 

( A I -  A) -~ A d j ( M -  A) 
= de t (AI -  A) '  (5.6) 

where Adj(AI-A)  is the algebraic adjoint of A I - A ,  shows that (5.5) holds. Conversely, 
assume that W(A) is finite at infinity. Let p(A) be a monic scalar polynomial such 
that p(A)W(A) is a (matrix) polynomial. Denoting H(A) = p(A)(W(A)-  W(c~)), 
L(A) = p(A)In, we have 

W(A) = W(oo) + C(AI - A) -l B, (5.7) 
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where 

0 

B =  0 , A =  

I 

0 I . . .  0 
�9 . o 

o o ' 

- L o  - L l  . . .  Le-1 

C -- [Ho, H , , . . . , H t _ , ] ,  

and where the matrices Hj and Lj are the coefficients of H(A) and L(A)" 

s ~--1 

H(A) = ~ AJHj, L(A) = AeJ + ~ AJLj. 
j =o j =o 

A full proof of (5.7) is found in Bart et al. (1979) and in Gohberg et al. (1986a). [:3 

A realization (5.4) is far from being unique�9 For example, one can replace A, B and C 
in (5.4) by S - 1AS ,  S - 1 B  and CS, where S is an invertible matrix (this transformation 
is called similarity. There is an important class of minimal realizations (to be defined 
below), which enjoy many useful properties, and in particular, any two minimal realiza- 
tions are similar. A realization (5.4) is called minimal if the size m of the matrix A is 
minimal among all realizations of W(A). The basic properties of minimal realizations 
are summarized in the following theorem. 

THEOREM 5.2. (a) A realization (5.4) is minimal if and only if 

rank [B, A B , . . . ,  Ap-IB] -- rank 

C 
CA 

. = m 

CA  p-1 

for sufficiently large integers p. 
(b) If  (5.4) is a (not necessarily minimal) realization of W(A), then, after a suitable 

similarity transformation, A, B and C have the form 

(') > ( ' ' ' )  
B =  B1 , C =  0 Cl * A =  0 A1 * , , ( 5 . 8 )  

0 0 0 * 

where 

W(A) = D + C1 (AI - A1)-I B1 

is a minimal realization (the stars in (5.8) denote block entries of no immediate interest). 
(c) Let 

W(A) = D + Cj(AI  - A j ) - I B j  (j = 1,2) (5.9) 
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be two minimal realizations of  W(A). Then there exists a unique invertible matrix S such 
that 

A1 = S-1A2S,  BI - S-1B2, C1 - C2S. (5.10) 

The matrix S is given by 

C2 - L  Cl 

C2A2 ClA1 
S ~ , , 

C2A  

= [B2, A 2 B 2 , . . . ,  A~-IB2] �9 [B1,A1B1, . . . ,  A~-IB1] - n  (5.11) 

where the subscripts " - L "  and " - R "  denote left inverse and right inverse, respectively, 
and the integer p is large enough so that the existence of  the one-sided inverses is 
guaranteed (by the part (a)). 

PROOF. We prove the part (c) only (see, e.g., Section 7.1 in Gohberg et al. (1986a) for a 
complete proof). Using formula (5.6), we develop ( A I -  Aj)  -1 into formal power series 

OO 

(AI - A j ) - '  = y ~  A-kAjk  (j = 1,2). 
k=l 

Write 

OO 

I = (AI - A j ) ~  A-kAjk  
k=l 

k - I  and compare coefficients; it follows that Ajk = Aj  . Now (5.9) takes the form 

C1A~BI = C2Ak2B2, k = O, l, . . . .  

For j = 1,2, let 

Y2j = 

CjA .-' 
Aj  = [Bj, A j B j ,  . . . , A p- '  Bj] . 

We have g21Al = J'22A 2. Premultiplying by g2] -L and postmultiplying by A2, we  verify 
the second equality in (5.1 1). Now define S as in (5.11). The formulas 

(f2?Lf22)S = I, S(A,  A2R ) = I (5.12) 
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hold; therefore, S is invertible. Furthermore, 

.Q2A2A2 = ~22A2AIRA1A1, 

which (in view of (5.12)) implies A2S = SA1. The other two equalities in (5.10) can be 
verified directly. Finally, if S satisfies (5.10), then 

S[B1 ,A1B1 , . . . ,A~- IB1]  = [Bz, A2B2 , . . . ,A~- IB2] .  (5.~3) 

By the part (a), 

rank [/31,A1B1,...  ,A~- lBl ]  = {the size of A1} = {the size of A2}, 

and therefore the matrix S satisfying (5.13) is unique. [2 

We pass to factorization of rational matrices. Here, the concept of a McMillan degree 
will be fundamental. Let W(,~) be an r x n rational matrix (not necessarily finite at 
infinity), and write 

W(A) = P ( A ) +  Wo(A), 

where P(A) is a polynomial, and Wo(A) is finite at infinity. By Theorem 5.1 there exists 
minimal realizations 

P(A -1) - D1 4- C1 (h i  - A1 )--1 B1, 

Wo(A) = D2 + C2(M - A2) -1/32, 

where A1 (resp. A2) is ml • ml (resp. m2 x m2). The sum ml +m2 is called the McMillan 
degree of W(/~) and will be denoted 6(W). A factorization W(,~) = W1 ()~)W2()~) of 
rational matrices is called minimal if 6(W) = 6(W1) + 6(W2). Informally, it means 
that there is no pole-zero cancellation between the factors W1 and W2, and represents a 
natural extension of factorization of matrix polynomials to the class of rational matrices. 

It turns out that minimal factorizations can be described in terms of certain subspace 
decompositions. For simplicity, we present here such description in case W()~) takes 
value I at infinity; then W()~) admits a minimal realization 

W(,k) = 1 4- C ' ( /~I -  A) -1 B, 

where A is m x m. Let AX = A -  B6'. We say that a direct sum decomposition 

F m = / 2  4-JV" (5.14) 

is a supporting decomposition for W(,~) if the subspace/2 is A-invariant, and the subspace 
A/" is A X_invariant. 

THEOREM 5.3. Let (5.14) be supporting decomposition for W()~). Then W(A) admits a 
minimal factorization 

W(,X) = [I + CTrr.(,kI - A)-l~rz:B] [I + CTrjv'()~I - A)-'lrjv'B] 
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= [I + C ( M  - A ) - '  7rLB] [I + C r N ( M  - A ) - '  B] (5.15) 

where 7rz. is the projector on s along Jq', and 7rjr = I -  rs Conversely, for every 
minimal factorization W(zk) = WI(/k)W2(A) where the factors are rational matrices 
with value I at infinity there exists a unique supporting decomposition F m = s -i- iV" 
such that 

Wl (,k) = I + C r s  - A ) - l r s  W2 = I + CTr~v(M - A) -~ 7r~vB. 

Note that the second equality in (5.15) follows from the relations 7rz:ATrz: = ATrc and 
7rxATrN = 7rNA, which express the A-invariance of/2. 

Theorem 5.3 (for the case F = C) is proved in Bart et al. (1979); see Section 7.3 of 
Gohberg et al. (1986a) for another variant of this result that involves three factors. The 
proofs given in these books for the case F = C are applicable verbatim to any field F.  
Other relevant references are Bart et al. (1980) and Gohberg et al. (1984). The importance 
of minimal factorizations is widely recognized and used in the modern theory of linear 
systems; we refer to Van Dooren and Dewilde (1981), Vanderwalle and Dewilde (1978), 
where minimal factorizations are studied from this point of view. 

Literature guide. Realization theory is a major tool in modern control systems theory, 
and is developed and used in many texts on control systems (Brockett (1970), Barnett 
and Cameron (1985), Kailath (1980), Kalman et al. (1969), Rosenbrock (1970), Anderson 
and Vongpanitlerd (1973) is a representative sample). The theory of rational matrices, in 
particular, problems concerning various types of factorization and interpolation, and the 
applications of this theory (notably in Hoo-control) has been extensively developed during 
the last twenty years or so. This development is based on the realization representation 
of rational matrices. The theory and its applications are to be found in the books Bart 
et al. (1979), Gohberg et al. (1983, 1986a), Ball et al. (1990a), several collections of 
papers Gohberg (1988a, 1988b, 1990), Gohberg and Kaashoek (1986), and see also the 
special issues Ball et al. (1990b), Fuhrmann et al. (1989) where many papers on this 
subject appear. Besides these volumes, we will mention here only few selected topics 
and references. 

Rational matrices which enjoy certain symmetries (such as having hermitian values 
on the imaginary axis, having unitary values on the unit circle, or having real coeffi- 
cients, etc.) play an important role in applications (see, e.g., Anderson and Vongpanitlerd 
(1973)), and therefore attracted considerable attention in the engineering literature. Eft- 
mov and Potapov (1973) is an early work on the factorization theory for a certain class 
of symmetric matrix functions (motivated by applications in circuit theory). From the 
standpoint of realization representations, the factorization and interpolation problems of 
rational matrices with various symmetries have been studied in Ran (1982), Fuhrmann 
(1983), Genin et al. (1983), Alpay and Gohberg (1988), Alpay et al. (1990, 1992); see 
also the books Anderson and Vongpanitlerd (1973), Ball et al. (1990), Gohberg et al. 
(1983). 

The geometric approach to the minimal factorizations (Theorem 5.3) was extended 
in Ball et al. (1987), where they have been described in terms of local pole and zero 
structure of the rational matrices. Cascade decompositions of linear systems of the type 
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(5.2) correspond to factorizations in a linear fractional form of the corresponding transfer 
functions. In Helton and Ball (1982), such minimal linear fractional factorizations have 
been characterized in terms of generalized invariant subspaces (see also Gohberg and 
Rubinstein (1986)). In another direction, the result of Theorem 5.3 has been extended 
to more general classes of rational matrices (not necessarily of square size and having 
invertible value at infinity), see Cohen (1983), Van Dooren (1984). 

Canonical factorization (defined below) is a very important special case of minimal 
factorization (when applied to a rational matrix function). Let /~ be a simple closed 
rectifiable contour in C tO { ~ }  dividing the set (C tO {c~})\/" into two disjoint open sets 
F+ and F_. A matrix function W(A) is said to admit canonical factorization if it can be 
represented in the form W(A) = W_ (A)W+(A), where W• is analytic in F• and is 
continuous and takes invertible values on F• tO/'. Canonical factorizations, as well as the 
more general Wiener-Hopf factorizations W(A) = W_(A)D(A)W+ (A), where D(A) is 
a diagonal rational matrix function with poles and zeros allowed only in two preselected 
points A• E/-'• are studied in numerous books and papers, of which we mention here 
only Bart et al. (1979), Clancey and Gohberg (1981), Gohberg and Kaashoek (1986), 
Litvinchuk and Spitkovskii (1987)~ 

For a description of poles and zeros (including multiplicities) of a rational matrix in 
module theoretic terms see the expository paper Wyman et al. (1991) and references 
therein. 

For the purpose of reference, the papers "to appear" are arbitrarily assigned year 
(1996). The letters (a), (b) etc., are used to distinguish references having the same year 
and the same authors (or the same first author if the number of authors is three or more). 
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1. Dependence 

Just as group axioms formalize the intuitive notion of symmetry, matroid axioms for- 
malize the notion of dependence. Steinitz in 1910 wrote down the defining properties of 
a matroid in a recognizable form. His paper [280] was edited and reprinted as a book 
in 1930 and through R. Baer (see [6]), it probably exerted a strong influence. Nakasawa 
[235] and Whitney [328] postulated axiom systems for matroids in 1935. While Naka- 
sawa's paper fell into obscurity, Whitney's paper founded a new subject in mathematics. 

In this chapter, we will survey matroid theory with an algebraist's eye. We begin 
with the basic axiom systems in Section 2. In Section 3, we take a geometric approach 
and introduce exchange closures and geometric lattices. Two fundamental constructions- 
minor and orthogonal duality- are the topics of Section 4. Sections 5 and 6 are concerned 
with examples. Many important families of matroids are minor-closed. These families are 
the subject of Section 6. Matroid theory is related to classical invariant theory through 
basis exchange properties: this connection is explained in Section 7. Another connection, 
described in Section 8, is with synthetic geometry and "geometric algebra". In Section 9, 
we describe three commonly used categories, weak maps or specializations, strong maps, 
and comaps. Finally, in Section 10, we survey enumerative results; these results form a 
major area of algebraic combinatorics. Applications of matroids to combinatorics, graph 
theory, and optimization will be mentioned briefly. Some books about matroids are [37, 
53, 77, 186, 248, 299, 311,321-323]. Some general survey articles are [52, 66, 76, 118, 
253, 297, 340]. 

2. Cryptomorphisms 

One of the distinctive features of matroids is that they have many equivalent axiomati- 
zations, or, in Birkhoff's terminology [15], p. 154, Cryptomorphisms. In [328], Whitney 
gave axiom systems for matroids in terms of rank, independent sets, bases, and circuits. 

2.1. Rank. A matroid M on the set S is specified by a rank function r from 2 s, the 
collection of all subsets of S, to the non-negative integers N satisfying the following 
axioms" 

(RI) r (~ )  -- 0. 
(R2) If a C S and A c_ S, then r(A) <~ r(A U {a}) <~ r(A) + 1. 
(R3) Submodularity. If A, t3 Q_ S, then r(A U 13) + r(A n 13) ~ r(A) + r(B). 

The rank r(M) of a matroid Mon S' is the rank r(S) of its set of elements. By definition, 
r(M) is finite. 

2.2. Independent sets. A matroid M on the set S is specified by a collection Z of finite 
subsets of S called independent sets satisfying the following axioms: 

(I1) O E Z. 
(12) I f J C _ I a n d l E Z ,  then J E Z .  
(13) Independent set augmentation. If I and J are independent and ]II < ]J], then 

there exists an element a in J but not in I such that I U {a} is independent. 
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2.3. Bases. A matroid M on the set S' is specified by a collection B of finite subsets 
of S called bases satisfying the following axioms: 

(B1) If/31 and/32 are bases, then/31 ~/32.  
(B2) Basis replacement. If/31 and/32 are bases and a is any element in Bl, then there 

exists an element a' in/32 such that (/31\{a})to {a'} is a basis. 

2.4. Circuits. A matroid M on the set S is specified by a collection C of finite nonempty 
subsets of S' called circuits satisfying the following axioms: 

(C1) If C1 and G'2 are circuits, then C1 r C2. 
(C2) Circuit elimination. If C1 and C2 are circuits and a E C1 N C2, then there exists 

a circuit C3 contained in (C, to C2) \ {a}. 
By rephrasing proofs from linear algebra, it is not hard to prove that these axiom sys- 

tems are equivalent. Start with the independent set axioms as the standard axiomatization 
and use the following translations: r(A) = size of a maximal independent set contained 
in A, bases are maximal independent sets, and circuits are minimal dependent sets. 

One of Whitney's examples in [328] is the linear matroid MT on the set of columns 
of a matrix T with independent sets the linearly independent sets. Thus, he considered 
matroids to be combinatorial variants of matrices and therefore named them "matroids". 
Despite attempts to rename ma t ro ids -  "independence structures" and "combinatorial 
pregeometries" have been suggested-  they will perhaps always be called "matroids". 

The other example in [328] arises from graphs. Le t / "  be a graph on a finite vertex set 
V and edge set 5'. The cycle or polygon matroid M(I ' )  of/~ is the matroid on S with 
circuits the cycles of /" .  Cycle matroids suggest the following terminology. A loop is an 
element a such that r({a}) = 0, or, equivalently, {a} is a circuit. In MT, the loops are 
the columns all of whose entries are zero. Two elements a and b which are not loops 
are said to be parallel if r({a,  b}) = 1. In M( / ' ) ,  two edges are parallel whenever they 
have the same endpoints. In MT, two nonzero columns are parallel if and only if they 
are scalar multiples of each other. A (combinatorial) geometry or simple matroid is a 
matroid containing no loops or parallel elements. 

Another natural way to axiomatize matroids is use the exchange and transitivity prop- 
erties of dependence relations [139, 280, 235, 305]. 

2.5. Dependence relation. A matroid on the set S is specified by a relation in ,5' • 2 s, 
a is dependent on A, satisfying the following axioms" 

(D1) If a E A, then a is dependent on A. 
(D2) Exchange. If a is dependent on A to {b} but a is not dependent on A, then b is 

dependent on A to {a}. 
(D3) Transitivity. If a is dependent on A and every element in A is dependent on/3 ,  

then a is dependent on/3.  
(D4) Finite rank. If a is dependent on A, then there exists a finite subset Ao c A such 

that a is dependent on Ao. 
A radically different axiomatization for finite matroids was discovered by Ed- 

monds [103]. Let S' be a finite set, Z a collection of subsets of S' containing 0,  and 
w: S ~ R + a positive real-valued "weight" function on S. If E C_ S, the weight w(E) 
is defined to be the sum Y~'~ae E w(a) of the weights of its elements. The greedy algorithm 
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attempts to find a subset I in Z of maximum weight in the following way" Start with 
I - O. Suppose that l has been chosen. Among all the elements in S\1, choose an 
element a such that I U {a} c Z and w(a) is maximum. Replace I by I U {a}. Continue 
until I is a maximal subset in Z. 

2.6. Greedy algorithm. A matroid M on the finite set S is specified by a collection Z 
of subsets of 5' called independent sets satisfying (I1), (I2), and 

(Gr) The greedy algorithm outputs a subset in Z of maximum weight for every weight 
function w: S --+ 1~ +. 
This axiomatization is one of the reasons why matroids and, more generally, submod- 
ular functions are important in combinatorial optimization. Key papers in this area 
are [102, 103]; [313, 106] are useful surveys. Greedoids are matroid-like structures mo- 
tivated originally by how certain maximum-weight sets are constructed using the greedy 
algorithm [ 170, 171]. A greedoid on the set 5' is specified by a collection Z of subsets 
of S satisfying (I1), (I3) and the following weaker version of (12): If J is a nonempty 
subset in Z, then there exists an element e E J such that J \{e}  E Z. Many dependence 
structures in algebra which are not matroids are greedoids. Much work has been done 
on greedoids; see [24] and [172] for an introduction to the subject. 

Other axiomatizations of dependence have been studied. A very small sample can be 
found in [51, 62, 99, 100, 123, 243]. Model- and recursion-theoretic aspects of depen- 
dence structures not having the finite rank property are discussed in the survey [7]. 

3. Geometric lattices and exchange closures 

A geometric way of defining matroids is to abstract the properties of taking linear span 
[217]. A closure (operator) on a partially ordered set P is a function z ~+ Y: defined 
from P to itself satisfying: x <~ ~, Y: = ~, and z ~< y ::> Y: <~ 9. 

3.1. Exchange closure. A matroid M on the set S is specified by a closure A ~-+ A on 
2 a (partially ordered by containment) satisfying the following axioms" 

(CL1) MacLane-Steinitz exchange property. Let a and b be elements not in A. Then 

a ~ A U {b} implies that b E A U {a}. 
(CL2) Finite rank. For every subset A c S, there exists a finite subset A0 such that 

A = Ao. 
A subset X C_ S is a flat or closed set if X = X.  The flats of a matroid M form a 

lattice L(M) called the lattice offlats of M under the partial order of set containment. 
The meet and joint in L(M) are given by" X V Y = X U Y and X A Y = X n Y. The 

minimum 0 of L(M) is ~ and the maximum 1 is A'. A flat Y covers a flat X if Y > X 
and there is no flat Z such that Y > Z > X; equivalently, Y covers X if Y - X U {a} 
for some element a. 

A 

A point or atom is a flat covering 0. A copoint is a flat covered by the maximum flat S. 
A bond or cocircuit is the set-theoretic complement of a copoint. A subset is spanning 
if its closure is the entire set 5'. A matroid can be completely described in many ways: 
by its rank function, its independent sets, its circuits, its copoints, its bonds, its spanning 
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sets, etc. The algorithmic complexity of converting from one description to another is 
studied in [ 141 ]. 

Lattices of fiats satisfy two important properties" 
(LI) Semimodularity. If X and Y cover X A Y, then X V Y covers X and Y. 
(L2) Atomicity. Every flat is a join of points. 

A chain X0 < Xl < X2 < . . .  < Xr of flats is saturated if for every i, Xi+l covers Xi. 
It follows from semimodularity that if Y and X are flats, then every saturated chain 
Y = X0 < Xl < X2 < . . .  < Xl -- X from Y to X has the same length 1. The rank 

A 

r(X) of a flat X in the matroid M equals the length of a saturated chain from 0 to X. 
Because r(S) is finite, L(M) satisfies the additional property" 

(L3) Finite rank. Every saturated chain from 0 to 1 is finite. 
A lattice satisfying (L1), (L2), and (L3) is said to be geometric. 

THEOREM 3.1. The lattice L(M) of flats of a matroid M is a geometric lattice. Con- 
versely, a geometric lattice L defines a geometry G on the set S of points in L such that 
L and L(G) are isomorphic lattices. 

The geometry G is defined by the closure relation: for a set A of points, 

{ aYA} A =  b: b i s a p o i n t a n d b < ~  a . 

If M is a matroid, then the geometry G defined on the points of L(M) is called the 
simplification of M; G is the unique geometry (up to isomorphism) such that L(M) ~- 
L(G); G can be obtained from M by removing all the loops and all but one element 
from each class of parallel elements. 

The lattice-theoretic approach to matroids was initiated by Birkhoff [13, 15]; [80-82, 
169, 336, 338] are some early papers using this approach. Topological geometric lattices 
are studied in [337, 132, 133]. See also [140]. Work has also been done on nonatomic 
lattices satisfying semimodularity or analogous properties. See [105, 122, 257, 281,304]. 

4. Minors, direct sums, and orthogonal duals 

Let M be a matroid on the set S with rank function r M .  If T C_ S, the restriction MIT 
of M to T is the matroid on T with rank function" rMIT(A ) = rM(A ) for A C_ T. Three 

other ways of describing this situation are: (a) MIT is a submatroid of M, (b) M is an 
extension of MIT by the elements in S\T,  and (c) MIT equals the deletion M\ (S \T ) .  

Now let U C_ S. The contraction M/U of M by U is the matroid on S\U with rank 
function: 

rM/u(A ) = rM(A U U) - rM(U ) for A C S\U. 

Its lattice L(M/U) of flats is isomorphic to the upper interval 

~ , ~  = {Z E L(M)" Z >I U}. 
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If e is an edge with two distinct endpoints in the graph/",  then M(P)/{e}  is isomorphic 
to M(P/{e}),  where P/{e} is the graph obtained from/- '  by deleting the edge e and 
identifying the endpoints of e. If a is a nonzero column of a matrix T, then MT/{a} is 
the linear matroid of the matrix obtained as follows" (a) Reduce T by row operations so 
that all but one of the entries in a, say the entry at row u, are zero, and, (b) Delete row 
u and column a. 

Contraction and deletion commute, in the sense that if T and U are disjoint subsets 
of S, then (M/U) \T  and (M\T) /U  are the same matroid on S \ (T  U U). A minor of 
M is a matroid obtainable from M by a sequence of contractions and deletions [295]. 

If M and N are matroids on disjoint sets S and T with rank functions r M and r N, 
the direct sum M @ N is the matroid on S U T with rank function rM(gN given by: for 
A c _ S u T ,  

rMcN(A) -- rM(A N S) + rN(A n T). 

If M = M1 @ M2, then the lattice L ( M )  is the direct product L(Ml) x L(M2) [83]. 
A subset A c_ S is a separator of a matroid M on S if M = MIA G MI(S\A).  An 
element a is an isthmus if r({a}) = 1 and {a} is a separator. A matroid M on S is 
connected if M does not have any separators apart from O and S, or, equivalently, given 
any two distinct elements a and b in S, there exists a circuit of M containing a and b. 
Motivated from graph theory, notions of k-connectivity have been defined. See [298]. 

Let M be a matroid on a finite set S with rank function r. Then, the formula 

r• = IAI + r ( S \ A ) -  r(S) for A c_ S 

defines the rank function r • of a matroid M • on S called the (orthogonal) dual of M.  

The dual M~. of the linear matroid MT of a matrix T is the linear matroid of any matrix 
whose rows span the orthogonal complement of the row space of T. Duality can also be 
defined using other cryptomorphisms ([328]). Three such definitions are: 

(1) I is an independent set of M r S \ I  is a spanning set of M • 
(2) B is a basis of M r S \ B  is a basis of M • 
(3) C is a circuit of M r C is a bond of M • 
Minty [231] has given a self-dual axiomatization of matroids in terms of circuits and 

bonds. Duality is involutory, i.e. (M •177 = M, and interchanges deletion and contraction, 
i.e. 

(M/T) • : (MI)\T and (M\T) • : (Mi)/T. 

These two properties characterize duality [ 179, 27]. 
The cocycle or bond matroid M• o f / "  is the dual of the cycle matroid M(f').  

Whitney [325, 327] characterized planarity of graphs using duality. 

THEOREM 4.1. A finite graph P can be drawn on the plane if and only if its bond matroid 
M• is isomorphic to the cycle matroid of a graph A. 

The graph A is the dual graph formed on the regions of a planar drawing o f / ' .  



164 J. P S. Kung 

A clutter C on the set 5' is a collection of subsets of S such that if Cl and C2 are in 
C, then C'l ~ G'2. The collection of circuits of a matroid is a clutter. Some papers on 
matroids as clutters are [68, 203, 250, 265, 266]. 

5. Some examples 

5.1. Projective geometries and modular lattices. Matroid theory differs from projective 
geometry in that the intersection of two fiats may not have the rank predicted by linear 
algebra. A pair X and Y of elements in a lattice is a modular p a i r -  symbolically, 
(X, Y ) M  - if for every element Z <~ X, (X A Y) V Z = X A (Y V Z). Symmetry of 
the relation of being a modular pair [that is, (X, Y ) M  implies (]I, X)M] is equivalent 
to semimodularity. See [338, 222]. In a geometric lattice, (X, Y ) M  if and only if 

r ( X  V Y) + r ( X  A Y) = r(X)  + r(Y).  

A flat X which forms a modular pair with every flat is said to be modular. A modular 
lattice is one in which every element is modular. 

The lattice L(n, IF) of subspaces of the n-dimensional vector space IF n over a skew 
field IF is a modular geometric lattice. The matroid defined on the points of L(n, IF) is the 
projective geometry P G ( n -  1, IF). Birkhoff [14] showed that a geometry has a modular 
lattice of flats if and only if it is a direct sum of projective geometries and points. See 
also [58]. 

5.2. Linear matroids. A representation of a matroid M on S over the skew field IF 
is a function p defined from S to an IF-vector space V such that for all 1 C_ S, 1 is 
independent in M if and only if Ip(Z)l -- III and p(I) is linearly independent. A matroid 
is said to be (IF-)linear if it has a representation (over IF). 

5.3. Algebraic matroids. Let K be an extension field of the field IF. A set {zl, z 2 , . . . ,  
zn } of elements is algebraically dependent over IF if there exists a nonzero polynomial 
with coefficients in IF such that p ( z l , X 2 , . . .  ,xn)  = 0. If IK has finite transcendence 
degree over IF, then any subset S C_ K has a matroid structure given by algebraic 
dependence. Such matroids are said to be algebraic. Much work has been done on finding 
conditions on a matroid to be algebraic [150, 208, 209, 211]. The algebraic closure 
geometry G(IK/IF) is the simplification of the algebraic matroid on K. These matroids 
are analogues of projective geometries. MacLane [217-219] used them to find invariants 
of field extensions. More recent work can be found in [22, 93, 104, 146, 147, 207]. Other 
papers on algebraic matroids are [120, 121,204, 206, 210-213, 308]. 

5.4. Transversal matroids. Let R C 5' • T be a relation between 5' and T = 
m 

{ 1 , 2 , . . . , m } .  A partial transversal in R is a subset 1 c_ 5' for which there exists 
an injection f :  I --+ T such that the ordered pairs (a, f(a)) are in R. The transversal 
matroid T(R) of the relation R is the matroid on fi' with independent sets the partial 
transversals. The matroid T(R) can be represented over every "sufficiently large" field 
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IF [111,233]. Let {X(a,i )" (a,/) E /~} be a set of elements algebraically independent 
over the prime field of IF. Then the function 5' -+ IF m, a ~ (a l ,a2 , . . . , am) ,  where 
ai = X(a,i) if (a, i) E R and 0 otherwise is a representation of T(R)  over IF. Matroids 
play a central rSle in transversal theory. For example, a unifying result in transversal 
theory is Rado's extension of the marriage theorem [254]: 

Let M be a matroid on S with rank function r and let R C_ S • T be a relation. 
Then there exists an independent transversal I of size m if and only if for all subsets 
J C { 1 , 2 , . . . , m } ,  

jEJ 

Here, R(j)  is the subset of elements in S related to j E T. 

See [35, 36, 214, 232, 233] for surveys. 

5.5. Arrangements of hyperplanes. A hyperplane H in IF n is a subspace of codimen- 
sion 1; equivalently, H is the kernel of a nonzero linear functional. An arrangement 
of hyperplanes Jt is a finite collection of hyperplanes. The (intersection) lattice L(.A) 
of r is the lattice formed by all intersections of hyperplanes in .At under reverse set- 
inclusion. L(.A) is a geometric lattice. Its associated geometry is the linear geometry on 
the hyperplanes in j t  considered as linear functionals. Many topological invariants of 
arrangements (such as the singular cohomology ring of the complement of a complex 
arrangement [240]) depend only on the lattice of intersection. See [63, 239, 241, 343] 
for surveys. 

5.6. Simplicial matroids. Simplicial matroids are generalizations of cycle matroids of 
graphs where the "edges" are k-element subsets of vertices. Dependence in simplicial 
matroids is defined using a boundary operator. Two key papers are [78, 70]. 

6. Minor-closed classes 

A minor-closed class C is a collection of matroids satisfying the conditions: 
(Min~) If M E C and the lattice L(N)  of flats is isomorphic to L(M),  then N E C. 
(Min2) If N is a minor of M and M E C, then N E C. 
Examples of minor-closed classes are the class s of IF-linear matroids and the class 

G of cycle matroids of graphs. The class s where GF(q) is the finite field of 
order q, is usually denoted by s A matroid is regular if it can be represented over 
any field. The class 7r of regular matroids is minor-closed and equals the intersection 

/2(IF). Two papers on matroid classes are [273, 303]. 

6.1. Forbidden minors. Let {N~} be a collection of matroids. Then the class C?((N~) 
of matroids not having any of the matroids N,~ as minors is a minor-closed class. Con- 
versely, taking {N~ } to be all the matroids not in C, every minor-closed class is of this 
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form. A matroid N is a forbidden minor for (7 if N is not in C but every proper minor 
of N is in C. The classical forbidden-minor theorem is Kuratowski's theorem for planar 
graphs [194]. In matroid terminology, this states: A graph 1" can be drawn on the plane 
if and only if its cycle matroid does not contain as minors the cycle matroids M(Ks)  and 
M(K3,3). (The complete graph/s is the graph on {vl, "02, "03, V4, V5} and all 10 edges 
between distinct vertices; the graph K3,3 is the graph on ("01, "02, "03, ul, u2, u3} with all 
9 edges between "0i and uj.) 

A major research area is to determine whether the set of forbidden minors for the 
classes s is finite. The answer is known for/2(2), the class of binary matroids [295], 
and s the class of ternary matroids [17, 161, 165, 267, 288]. The uniform matroid 
U,-,s is the rank-r matroid consisting of s points "in general position": more specifically, 
it is the matroid with s elements in which all the r-element subsets are bases. 

THEOREM 6.1. s  has one forbidden minor, the 4-point line U2,4. 

The Fano plane F7 is the binary projective plane PG(2, 2). 

THEOREM 6.2. s  has four forbidden minors: the 5-point line U2,5, its dual U3,5, the 
Fano plane F7, and its dual F~. 

The forbidden minors are also known for the classes ~ and ~. Using a homotopy 
theorem on a graph formed from the copoints, Tutte [295] found the forbidden minors 
for R. See [16, 117, 267] for shorter proofs or extensions. Some papers on regular 
matroids or generalizations are [5, 142, 187, 188, 193, 201,202, 335]. 

THEOREM 6.3. ~ has three forbidden minors: U2,4, F7, and F7 • 

It follows from (6.3) that 7"r = /2(2) N E(3). Direct proofs can be found in [42, 267]. 
The next theorem [296] is an extension of Kuratowski's theorem. See also [268, 306]. 

THEOREM 6.4. ~ has five forbidden minors: U2,4, F7, Fr and the cocycle matroids of 
the Kuratowski graphs, M •  and M• 

The set of isomorphism classes of matroids is partially ordered by the relation of being 
a minor. Robertson and Seymour [259] have shown that graphic matroids under the minor- 
order is a well-quasi-order, that is, it is a partial order with no infinite strictly descending 
chains or antichains (i.e. sets of mutually incomparable elements). This result shows that 
every minor-closed class of graphic matroids has finitely many forbidden minors. 

6.2. Gain-graphic matroids. Let el, e2 , . . . ,  en be a basis in the projective geometry 
P G ( n -  1, F). The rank-n Dowling geometry Qn(F • over the multiplicative group F • 
is the matroid consisting of the points e l , e 2 , . . . ,  en, and e i -  c~ej in P G ( n -  1,F), for 
all pairs i -r j and all ~ E F • . Because the poinl~s in Qn(F • ) are linear combinations of 
at most two basis elements, the dependencies can be specified combinatorially without 
using the additive structure of F. Thus, one can define a Dowling geometry Qn(A) for 
any group A [86, 87]. See also [10, 29-31,164,  193]. A matroid M is said to be gain- 
graphic (with gains in the group A) if M is a restriction of Qn(A) for some n. The 
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class Z(A)  of all gain-graphic matroids over a group A is a minor-closed class. Some 
papers in this area are [343, 345, 346]. 

A variety )2 is a class closed under minors and direct sums satisfying: for every non- 
negative integer n, there exists a unique geometry Tn such that the simplification of 
every rank-n matroid in V is a submatroid of Tn. The geometries Tn can be regarded as 
"ambient spaces" for )2. 

CLASSIFICATION OF VARIETIES 6.5 ([163]). There are five families of  varieties of  finite 
matroids: three degenerate varieties constructed from lines, s and Z(A).  

Two papers on varieties are [ 184, 134]. 

6.3. Regular matroids and decomposition theory. Examples of regular matroids are 
cycle and bond matroids of graphs. Seymour [269] proved a decomposition theorem for 
regular matroids: every regular matroid can be put together by taking 1-, 2- or 3-sums 
(roughly speaking, gluing two matroids together at an empty set, a point, or a line) of  
graphic matroids, cographic matroids, and copies of a l O-element rank-5 matroid Rio. 
This result is the first of many decomposition theorems [245-247, 270, 272, 291,292]. 

Seymour's theorem implies that cycle matroids of the complete graph Kn+l are the 
rank-n regular matroids having the maximum number (n+l) of points. This was proved 
earlier in Heller's paper [142]. This paper initiated extremal matroid theory which is 
concerned with determining the maximum number h(n) of points in a rank-n matroid in 
a given class C of matroids. This area is surveyed in [ 189]. 

7. Basis exchange, matroid partitions, and determinantai identities 

The best known application of the basis replacement axiom is to prove the following 
elementary result. 

THEOREM 7.1. Bases of a matroid have the same size. 

To prove that two bases B and B'  have the same size, one starts with B, and, using the 
basis replacement axiom, constructs a sequence of bases B -- B1, B 2 , . . . ,  Bk -- B t such 
that Bi and Bi+l differ in one element. The basis graph of a matroid M is the graph 
with vertex set the set B of bases of M with two bases/3 and B'  joined by an edge if 
and only if B and B'  differ in exactly one element. See [224] for results (including a 
homotopy theorem for paths) on basis graphs. 

A deep result which can be proved by using basis exchanges is the following theorem 
due to Edmonds [ 148, 101 ]. 

MATROID PARTITION THEOREM 7.2. Let M1, M2,..., Mm be matroids with rank function 
ri on the finite set S. Then there exists a partition $1 LJ... t_J Sm = S such that Si is 
independent in Mi if and only if for every subset A C_ S, 

m 

r ,(A) >1 IAI. 
i - -1  
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The basis monomial ring of a matroid M on the set S is the subring of the ring k[Xa] of 
polynomials in ISi indeterminates Xa, a E S, over a field k generated by the monomials 
(l-IaeB Xa" B is a basis of M}. White [319] has used Theorem 7.2 to show that basis 
monomial rings are Cohen-Macauley. Applying Theorem 7.2 to the matroids M and 
N -L, one obtains the matroid intersection theorem [102]" 

Let M and N be matroids with rank function r M and r N on the same finite set S. Then 
the maximum size of a subset I independent in both M and N equals 

min { rM(A  ) + rN(B  )" A kJ B = S} .  

The basis replacement axiom can be regarded as an abstraction of Laplace's expansion 
for determinants. Let V be a vector space of dimension n. If x l, z 2 , . . . ,  xn are n vectors 
in V, their bracket is defined by" 

[Xl, X 2 , . . . ,  Xn] -- det(xij)l~<i,j~<n, 

where xi = (xij) relative to a chosen coordinate system. Brackets satisfy Laplace's 
expansion" 

n 
[ X l , . . . , X n ] [ Y l , . . . , y n ]  -- ~ [ y i ,  x 2 , . . . , X n ] [ Y l , . . . , Y i - l , X l , Y i w l , . . . , Y n ] .  

i=l 

If {xl , .  �9 �9 Xn } and {yl, �9 �9 �9 Yn } are bases, then the left hand side of Laplace's expansion 
is nonzero. This implies that for some i, the i-th term on the right hand side is nonzero, 
that is, both {yi, x 2 , . . . , x n }  and { Y l , . . . , Y i - l , x l , y i + l , . . . , Y n }  are bases. This is the 
(symmetric) basis exchange property, a strong form of the basis replacement axiom 
which holds in all matroids. Which determinantal identities translate combinatorially into 
exchange properties holding in all matroids? There are two results in this direction: the 
multiple exchange property [84, 125, 227, 341] (which allows subsets to be exchanged) 
and the alternating exchange property [127, 174] (based on the fact that an alternating 
multilinear form is zero on any dependent set of vectors). See [182] for a survey. 

The fundamental theorems of classical projective invariant theory [314, 324] say that 
(1) Brackets generate the relative invariants of the general linear group GL(V), and 
(2) Every identity amongst brackets can be derived algebraically from Laplace's ex- 
pansion. Thus, structures similar to matroids can be defined for other classical group 
actions [263]. For GL(V) acting on both vectors and dual vectors in V, one abstracts 
the properties of nonsingularity of submatrices of a matrix to obtain a bimatroid or link- 
ing system ([ 173, 264]; see also [64, 145, 234]). Many matrix properties can be carried 
over to bimatroids; for example, using the Cauchy-Binet identity for determinants and 
matroid intersection, one can define an analogue of matrix multiplication. Two structures 
have been proposed for the orthogonal group: symmetric bimatroids [173] and metroids 
(or metric matroids) [33, 91, 92]. Both abstract nonsingularity properties of Gramians. 
For the symplectic group, one has Pfaffian structures [173]. Another approach, using 
greedoids, can be found in [ 115, 112, 113]. 
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Over an ordered field, one can also take into account the sign of the bracket. 

7.1. Orientation. An rank-n oriented matroid M on the set S is given by a sign func t ion  
qa defined from n-tuples of elements in S to { - ,  0, +} (with the usual multiplication) 
satisfying the following axioms: 

(Or0) qo is not identically zero. 
(Or1) Alternation.  For any permutation a, 

qD[Xl, X2, . . . ,  X n ]  = sgn(a)qo[x,,(1), x ~ ( 2 ) , . . . ,  x~(n)]. 

(Or2) Signed basis exchange. If qO[Xl,X2,... , Xn]~[Yl , Y2, . . . , Yn] = - 
exists i such that 

, then there 

~ [ y i ,  x 2 ,  . . . , X n J ~ [ Y l  , Y 2 ,  . . . , Y i - l ,  X l ,  Y i + l ,  . . . , X n ]  = - - .  

This axiomatization was discovered by Gutierrez Novoa [135] in 1965. Oriented matroids 
were rediscovered in the 1970's [110, 28, 196, 198]. See also [98]. Oriented matroids 
are used in linear programming [26] and the theory of combinatorial differential mani- 
folds [ 116]. An application of algebraic geometry to oriented matroids can be found in 
[2]. See [25] for a comprehensive account of oriented matroids. 

8. Geometric algebra and linear representability 

8.1. Geometr ic  algebra. The problem of representability was first considered by Whit- 
ney in [328]. He showed that the Fano plane/77 is representable over a field F if and 
only if F has characteristic 2. Using a method of von Staudt [279] which converts ad- 
dition and multiplication into geometric configurations, MacLane [216] showed that any 
algebraic equation can be coded by a configuration. Hence given an algebraic number 
c~, there exists a matroid representable only over fields containing c~. 

An easy way to obtain matroids not representable over any field is to code the equa- 
tions m - 0, but k ~ 0 for 1 ~< k < m, where m is a positive composite integer 
[ 124, 187, 256]. Another method is to start with a "suitable" theorem of projective ge- 
ometry, convert it into a geometric configuration, and modify the configuration so that 
it remains a matroid but no longer satisfies the theorem. For example, by declaring the 
three points on one of the lines in the Desargues configuration independent, one obtains 
a nonrepresentable matroid. The informal method, called "relaxing a circuit", has yield 
many useful examples. Some papers in this area are [149, 199, 220, 119]. 

8.2. Characterist ic sets. The characteristic set x ( M )  of a matroid M is the set of 
characteristic of fields over which M has a representation. Thus, x ( M )  C_ 7")tO (0),  
where P is the set of primes. Using algebraic number theory, Rado [255] proved that 
if M is finite and 0 E x (M) ,  then x ( M )  contains all sufficiently large primes. On the 
other hand, the compactness theorem in logic implies that for a finite matroid M,  x ( M )  
is infinite implies 0 E x ( M )  [301,200, 308]. Kahn [160] showed that every finite subset 
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of primes is the characteristic set of some finite matroid. Related results can be found in 
[47, 120, 121,204, 206]. 

8.3. Bracket rings and abstract coordinates. Suppose M is a rank-n matroid on the 
set S. Let R be the polynomial ring over Z whose variables are symbolic brackets 
[Xl, x 2 , . . . ,  Xn], where Xl, x 2 , . . . ,  xn ranges over all n-tuples of distinct elements in 
S. The bracket ring BM is the quotient of R by the relations: (a) [x l ,x2 , . . .  ,Xn] -- 
sgn(a)[x,,(l),X,~(2),... ,x~(n)] for any permutation a, (b) [x l ,x2 , . . . ,Xn]  = 0 if 
{Xl ,X2, . . . ,Xn} is dependent in M, and (c) Laplace's expansion. A representation 
p: S --+ IF 'n of M defines a homomorphism r/: BM --+ F such that r/([Xl, x 2 , . . . ,  Xn]) r 0 
if and only if {Xl,X2,. . .  ,Xn} is a basis in M, and conversely [318]. There are two other 
rings with similar universal properties [300, 108]. These rings allow methods of compu- 
tational algebra (such as straightening and Gr6bner bases) to be applied to the problem of 
characterizing linear matroids [59-61,258]. (See also [320, 284].) Any purely matroid- 
theoretic characterization must be complicated, since it is known that (a) there does not 
exist a finite set of first-order axioms for the theory of linear matroids ([302]; see also 
[7]), (b) the number of forbidden minors for the class of linear matroids is infinite (the 
earliest reference is [216]), and (c) deciding linearity is highly complex algorithmically 
[ 159, 260, 289]. Brackets are abstract coordinates; other ways to introduce abstract co- 
ordinates can be found in [90, 94-98, 166, 307, 315-317]. Other papers on embeddings 
and representations are [41, 48, 54, 82, 162, 167, 168, 252, 290, 309]. 

9. Categories of matroids 

9.1. Weak maps. Weak maps formalize the idea of special position. To allow the ana- 
logue of mapping a nonzero vector to the zero vector, we need to add a loop to every 
matroid. This is done as follows: Let M be a matroid on the set S. Then Mo is the 
matroid M @ {o} on the disjoint union S u {o}, where {o} is the matroid of rank zero 
on the set {o}. Suppose that M is a matroid on the set S and N is a matroid on T. 
A weak map r from M to N is a function r: S t 0 { o }  --+ T t 3 { o }  mapping o to o 
and satisfying the following condition: For every subset A c_ S, rso (T(A)) <~ rM(A ) 
[143]. When S = T and 7- is the identity function, we.say that N is a specialization or 
weak map image of M and write M --+ N. In particular, M --+ N if and only if every 
N-independent set is also M-independent. The classical example of a specialization is 
obtained by imposing extra algebraic relations on the coordinates of a set of vectors. 
More precisely, let M be a matroid on a set S of elements in a module U over the 
integral domain R under R-linear dependence and let P be a prime ideal in R. Then 
the matroid obtained by regarding S as a subset of U | R / P  is a specialization of M. 
Specializations define a partial order, called the weak order, on the set of all matroids 
on a given set S' by: M 1> N whenever M --+ N. 

The weak cut of the specialization M --+ N is defined to be the collection of sets 
independent in M but dependent in N. Weak cuts have been characterized. This charac- 
terization can be used to construct all the minimal weak cuts containing a given collection 
of independent sets. See [176, 191,238]. A specialization M --+ N is simple if M covers 
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N in the weak order. Lucas [215] determined the structure of simple specializations of 
binary matroids. 

THEOREM 9.1. Let M be a binary matroid on the set S and let N be a simple special- 
ization of M having the same rank as M. Then there exists a subset F C_ S such that 
U - M / F  @ MIF.  

Other results about weak maps can be found in [215, 237, 284, 316]. Weak maps 
can be defined for oriented matroids [ 116] and are used in combinatorial calculations in 
differential geometry. 

9.2. Strong maps. Another category is obtained by abstracting the properties of linear 
transformations. A strong map a from M to N is a function or: S U {o} --+ T U {o} 
mapping o to o and satisfying the condition: the inverse image of any closed set of No 
is closed in Mo. The two basic examples of strong maps are injections and contractions. 
Let M be a matroid on S and T c_ S. The injection T U {o} ~ S U {o} is a strong 
map from the restriction M I T  to M. The function or" S U {o} --+ ( S \ T ) U  {o} defined 
by ~r(a) equals o if a c T and a otherwise is a strong map from M to the contraction 
M/T 

THE FACTORIZATION THEOREM FOR STRONG MAPS 9.2. Every strong map can be fac- 
tored into an injection followed by a contraction. 

This result [144] implies that injections and contractions generate all strong maps, and 
hence, strong maps form the smallest category with minors as subobjects. 

When S - T and r is the identity function, we say that N is a quotient of M. Quotients 
can be represented by bimatrmid products [173]. If r (N)  >~ r ( M )  - 1, then N is said 
to be an elementary quotient if M. Elementary quotients have been intensively studied. 
Their weak cuts are called modular cuts and there are natural one-to-one correspondences 
between elementary quotients, extensions by a single element, and modular cuts [71, 144]. 
A useful result proved using strong maps is the scum theorem [144]: 

Let N be a simple minor of M. Then there exists an upper interval [U, 1] in L ( M )  such 
that N is a submatroid of  the simplification of M / U .  

Two surveys are [49] on constructions and [183] on strong maps. Some recent papers 
are [48, 67, 137, 221, 225, 226, 236, 293, 331, 334]. The automorphism group of a 
matroid is studied in [32, 138, 228-230, 311]. 

9.3. Comaps. The third category has geometric lattices as objects. Let K and L be 
geometric lattices. A (normalized) comap is a function 3': K --+ L satisfying the following 
conditions: 

(Cm0) 3"(0) - 0. 
( r  If X covers Y, then 3'(X) covers or equals 3"(Y). 
(Cm2) If X and Y form a modular pair i n /4 ,  then 3"(X A Y) = 3"(X) A 3"(Y). 
Injections of submatroids are comaps. The retraction of K to a modular flat Z in K 

is the function p: K -+ [0, Z], X ~ X A Z. Injections and retractions generate all 
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comaps; indeed, any normalized comap can be factored into an injection followed by a 
retraction to a modular flat [178]. The proof uses Crapo's construction [73] "joining" 
two geometric lattices along a comap. 

I0. Enumeration 

10.1. MObius functions, characteristic polynomials, and Whitney numbers. The MObius 
function #: P x P --+ Z of a finite partially ordered set P is defined recursively by: 

# ( x , y ) = O  i f x ~ y ,  # ( x , x ) =  1 

and 

# ( x , z ) = O  f o r x < y .  
z: x<~z~y 

M6bius functions are used to invert summations. Let f, g: P --+ R, where R is a 
commutative ring with identity. Then 

g(x) = E f (Y) r S(x) = E 9(y)#(y, x). 
y: y<<.x y: y ~ x  

Some papers on M6bius functions are [9, 126, 262, 275]. 

ROTA'S THEOREM 10.1 ([262]). Let X be a flat in a finite geometric lattice. Then 
(-- 1)r(X)#(~, X) > O. 

The characteristic polynomial x(L; A) of a finite rank-n geometric lattice L is the 
polynomial in the indeterminate A defined by: 

n 

X(/; '~) = E ~(~' X ) / ~ n - r ( X )  -- E ( -  1)m 
X E  L m=O 

W m  ,~n-  m 

The coefficients wm are called Whitney numbers of the first kind. By Theorem 10.1, 
wm is positive. The Whitney numbers Wm have many combinatorial and homological 
interpretations. For example, they count the number of m-simplices in the "broken-circuit 
complex" [8, 11, 12, 45, 55, 56, 23, 158, 326, 339] and they are the dimensions of the 
m-graded part of a quotient of the exterior algebra on the points [107, 240, 287]. (See 
also [261 ].) They also count acyclic orientations and similar objects [69, 130]. In addition, 
wo(L) = 1#(0, 1)[, the MObius invariant of L, also has homological interpretations [4, 
18, 19, 109, 114, 262]. See [21] for a survey. 

Stanley [277] showed that if X is a modularflat of L, then X([0, X]; A) divides x(L; A). 
In particular, if L is supersolvable, that is, L contains a saturated chain of modular flats, 
then all the roots of x(L; A) are positive integers [278]. Some papers in this area are 
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[40, 45, 55, 56, 23, 128, 136, 157, 158, 164, 190, 243,244, 276, 283,285, 286, 309, 348- 
350]. 

For the lattice L of fiats of the cycle matroid of a graph F with k connected compo- 
nents, ckx(L; c) equals the number of ways of assigning c colors to the vertices o f / "  
so that no two adjacent vertices are assigned the same color [262]. The critical problem 
of Crapo and Rota [77] is a geometric variant of the graph coloring problem. Let S be 
a set of nonzero vectors in the finite vector space [GF(q)] n. A c-tuple (L1, L2 , . . . ,  Lc) 
of linear functionals distinguishes S if for all vectors a E S, there exists i such that 
Li(a) # O. The critical exponent of S is the minimum number c such that there exists a 
c-tuple of linear functionals distinguishing S. 

THEOREM 10.2. Let S be a spanning set of nonzero vectors in [GF(q)] n and let L be the 
lattice of flats of the linear matroid on S. Then x(L; qC) equals the number of c-tuples 
of linear functionals distinguishing S. 

Finding critical exponents includes the fundamental problem of linear coding theory 
(to determine given n and t the maximum dimension k of a code in [GF(q)] n having 
minimum weight greater than t) [85] and finding nowhere-zero flows on graphs [151]. 
Other papers on critical exponents are [34, 50, 152, 177, 185, 192, 223, 242, 310, 312, 
329, 330, 332, 333]. 

The Whitney number Wk of the second kind of a finite geometric lattice L is the 
number of rank-k fiats in L. There are many quite difficult conjectures about the Whitney 
numbers of both kinds, chief among them is the logarithmic unimodality conjecture: 
Wk- lWk+l  ~ W 2 and Wk-1Wk+l <. W 2. See [282, 271]. For the Whitney numbers Wn, 

Dowling and Wilson has obtained the following inequalities [89]: In a geometric lattice 
of rank n, 

W0 + W~ + . . .  + Wk ~< Wn_k + Wn-k+l + - ' "  + Wn_~ + Wn 

for all k <<. n/2. See [1, 131,181] for surveys of this and related areas. Other papers on 
Whitney numbers are [3, 88, 44, 175, 180, 190, 344]. 

10.2. Tutte invariants. A function f defined from the class of finite matroids to a 
ring R is said to be a Tutte or Tutte-Grothendieck invariant if it satisfies the following 
conditions: 

(TG0) If M1 is isomorphic to M2, then f (M1) = f (M2). 
(TG1) Direct-sum rule. f (M1 �9 M2) = f (M1) f (M2). 
(TG2) Deletion-contraction rule. For every point e that is neither a loop nor an isthmus, 

f (M) = f (M\e)  + f (M/e). 
The Tutte polynomial t(M; x, y) of a matroid M on S with rank function r is the 

polynomial in the variables x and y defined by 

t(M; x, y) = Z (x - l) r(M)-r(A) (y - 1)  [ A [ - r ( A )  

A C S  
m 
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THEOREM 10.3. Every  Tutte invariant  is an evaluat ion o f  the Tutte polynomial .  

Theorem 10.3 is due to Brylawski  [38, 39]; it is implicit  in [75, 294]. (See also [274].) 

Theo rem 10.3 can be proved by defining a Grothendieck ring. This is the method used 

in Tutte 's  1947 paper  [294] which is perhaps the earliest paper  in K- theory .  

Many  numerical  invariants are Tutte invariants. These include the number  of bases of a 

matroid  and the characteristic polynomial  x ( L ( M ) ;  )~) of the lattice of flats. The number  

of  regions and the number  of bounded regions in the complement  of an arrangement  ,A 

of hyperplanes  are Tutte invariants [43, 342]. The weight enumerator  of a linear code is 

related to a Tutte invariant of  the linear matroid of its generator  matrix [ 129]. Finally, the 

Tutte po lynomia l  is related to polynomials  in knot theory [153, 156, 205, 347]. See [46] 

for a survey. Related papers are [65, 72, 74, 154, 155, 177, 195, 197, 244, 251 ,347] .  
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Introduction 

Let L / K  denote a field extension of characteristic p r 0. If L is inseparable algebraic 
over K,  then there will not be sufficient automorphisms to construct a complete cor- 
respondence between subgroups of A m ( L / K )  and the intermediate fields. Indeed, if L 
is purely inseparable over K,  the group A m ( L / K )  will be trivial. This problem was 
the motivation for developing derivations and higher derivations, but as we shall see 
these maps not only provided information on the correspondence problem, but have led 
to an understanding of the structure of inseparable field extensions, both algebraic and 
transcendental. 

A derivation d on L is an additive map of L into L such that d(ab) = d(a)b + ad(b). 
The constants of a set of derivations will be a subfield of L containing L p. It had been 
known that DerK(L), the space of derivations on L trivial on K,  had field of constants 
K ( L  p) and moreover that any intermediate field of L / K ( L  p) would be the field of 
constants of a subspace. The problem of determining when a subspace was the space 
of all derivations over its field of constants was first solved by Jacobson [55] for the 
finite dimensional case and Gerstenhaber [38] for the infinite dimensional case. A key 
ingredient for the higher exponent theory is the notion of a higher derivation due to Hasse 
and Schmidt [45]. A rank t higher derivation on L is a sequence d = {di ] 0 <~ i < t + 1 } 
of additive maps of K into K such that 

d~(ab) - ~ {di(a)d~(b) l i + j - r} 

and do is the identity map. For purely inseparable Galois theory, higher derivations of 
finite rank are used. Weisfeld [101] characterized the fields of constants of groups of 
finite rank t higher derivations as those F over which L has a subbasis C, i.e. C = {x,~ } 
and L is the tensor product over F of the simple extensions F(xa).  One of the most 
useful ingredients in the theory was provided by Sweedler [92]. He established that L 
having a subbasis over F was equivalent to L p" and F being linearly disjoint 1 over 
their intersection for all n. This has proven versatile for two main reasons. Firstly, the 
definition applies to arbitrary field extensions of characteristic p > 0, ones satisfying the 
condition now being called modular. Secondly, Waterhouse [99] established the principle 
that linear disjointness is preserved by intersections. These results have been the keys to 
determining the structure of inseparable extensions which we shall discuss shortly. 

Let L be a finitely generated purely inseparable modular extension of K.  Then, as 
noted, any intermediate field over which L is modular will be the field of constants of a 
group of higher derivations and the remaining obstruction to establishing a Galois type 
correspondence was to determine when a subgroup was actually a full group. This was 
established by Gerstenhaber and Zaromp [40] and Heerema and Deveney [53] by deter- 
mining certain canonical generating sets. There is also a theory for special intermediate 
fields and this is discussed in section two of the paper. 

I Two subextensions L/K, H/K of a containing extension N/K are linearly disjoint over K if there is 
a basis of L over K that is still independent over H (or vice versa). Or, equivalently if the natural map 
L | K H ~ LH of the tensor product to the compositum is an isomorphism. 
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Heerema [49] developed a theory which incorporated both the classical Galois theory 
and the purely inseparable Galois theory in a single framework. The groups are essentially 
groups of higher derivations where the first map of a higher derivation is allowed to 
be an automorphism and not just the identity map. The fields of constants F of such 
a group is characterized by the conditions that L is a normal modular extension of 
F of bounded exponent. Mordeson [67] has developed a theory relating invariance of 
subgroups to the structure of intermediate fields. The concept of linear disjointness and 
its intersection preservation is also applied to extend the theory of distinguished subfields 
to this setting. 

The basic properties of infinite rank higher derivations, especially the iterative ones, 
were developed by Zerla [103]. The fields of constants of these higher derivations are 
the subfields F of L over which L is regular (separable and algebraically closed) and 

N F(L.~ 
As such, they do not properly belong to the study of inseparable Galois theory. However, 
Heerema [51] was able to combine both finite rank and infinite rank higher derivations 
in a single group, the group of pencils, by using a direct limit technique. The fields 
of constants in this theory are the fields F which are separably algebraically closed 
in L and over which L is modular and of finite inseparability exponent. The charac- 
terization of the full subgroups is once again in terms of certain canonical generating 
sets. 

Aside from the intrinsic value of having a Galois type correspondence, the information 
obtained on the structure of the fields involved is also important. The Galois theories 
of higher derivations and the concepts developed along the way have given a nice pic- 
ture of the structure of inseparable field extensions. As an illustration, let L be a finite 
dimensional extension of K.  If L is modular over K,  then L = J t~) K D where D 
is separable over K and d is a tensor product of simple purely inseparable extensions 
of K.  In general, one uses Sweedler's characterization of modularity and Waterhouse's 
results to find a unique minimal intermediate field Q* over which L is modular. If 
Q* is separable over K,  then Q* is the unique minimal field over which L splits as 
above. 

Throughout this section L/K denotes an arbitrary field extension of characteristic p > O. 
If L/K is not separable, then L/K is called inseparable. 

DEFINITION 1.1. If 3 a non-negative integer e such that K(LPe)/K is separable, then 
the smallest such non-negative integer is called the inseparability exponent of L/K and 
is denoted by inex(L/K). 

DEFINITION 1.2. If 

min {[L'S]]S is a maximal separable intermediate field of L/K} < oo, 
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then this number is called the inseparability order of L / K  and is denoted by inor(L/K). 

Maximal separable intermediate fields of L / K  exist. If L / K  is finitely generated, then 
inor(L/K) exists as does inex(L/K). 

DEFINITION 1.3. If L / K  has a maximal separable intermediate field D such that L C_ 

K p (D), then D is called distinguished. 

It is shown in [ 13] that not every field extension has a distinguished maximal separable 
intermediate field. 

THEOREM 1.4 ([35]). Suppose that L / K  has finite inseparability exponent e. Then L / K  
has distinguished maximal separable intermediate fields D. If D is a distinguished max- 
imal separable intermediate field of L/K, then K(L p`) = K(DP~). 

PROOE From a relative p-basis 2 X of L / K  select a subset Y such that Yv" is a relative 

p-basis of K(LPe)/K. Since the latter extension is separable, Y is algebraically inde- 
pendent over K and since K(LPe)/K(Y p`) is separable so is K(LV~)(Y)/K(Y).  Then 
D = K(LV')(Y) is a distinguished maximal separable intermediate field of L/K.  [3 

Although every field extension L / K  has a maximal separable intermediate field S, 
not every such S need be distinguished [35]. Necessary and sufficient conditions for this 
to be the case can be found in [27, 33]. In [52, 31, 34], conditions are determined for 
the maximal separable intermediate fields to be of bounded codegree. For L / K  such that 
inor(L/K) < ~ ,  intermediate fields L' of L / K  with the property that inor(L'/K) = 
inor(L/K) are characterized in [24]. Other properties of distinguished maximal separable 
intermediate fields are determined in [28, 30, 32, 50]. 

THEOREM 1.5 ([62]). Suppose that L / K  is finitely generated. Then for every distin- 
guished maximal separable intermediate field D of L/K,  inor(L/K) = [L " D]. 

PROOF. Let S be a maximal separable intermediate field of L/K.  Let r = inex(L/S). 
Let D be a distinguished maximal separable intermediate field of L/K.  Since r ~> e 
where e = inex(L/K), K(S  p~) C_ K(DPr). Thus 

[L" S][S"  K ( D F ) ]  - [L" D I [D" K(DP~)] .  

Now with t -  trans.deg.(L/K), 

[D. K(DPr)] _prt  = [S. K(SVr)] >i [S. K(DP')]. 

Thus [L" S] >1 [L" D]. 

2 A relatively p-independent subset B of L/K is a subset B of L such that for all proper subsets B' of 
B, K(LP, B') C K(LP, B). A relative p-basis for L/K is a relatively p-independent subset B such that 
L = K(LP,B). 
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DEFINITION 1.6. L / K  is said to split if and only if L = J @K D, i.e. L is the field 
composite JD and J and D are linearly disjoint over K ,  where J and D are intermediate 
fields of L / K  such that J / K  is purely inseparable and D / K  is separable. 

DEFINITION 1.7. L / K  is said to be modular if and only if K and L p" are linearly disjoint 

over K n L p~ for i = 1,2, . . . .  

As we will see in the next section, finite modular purely inseparable field extensions play 
a role like that of finite separable extensions which are their own splitting field. 

THEOREM 1.8 ([68]). L / K  splits if and only if L / K  has a distinguished maximal sepa- 
rable intermediate field and L~ J is separable where J is the maximal purely inseparable 
intermediate field of L/K.  

PROOF. If L / K  has a distinguished maximal separable intermediate field D and L / J  is 
separable, then 

L(K" = L 

and so 

LC_ K p-~176 | D = K p-~ | (J | D) 
C_ K p-~176 | L C_ K p-~176 | (J |  D). 

Thus L = J|  D. 0 

In [13] an example is given showing that there exist L / K  such that L / J  is separable, 
but L / K  does not split. 

COROLLARY 1.9 ([63]). If L / J  is separable and J / K  is of bounded exponent, then L / K  
splits. 

PROOF. The result here follows from Theorems 1.4 and 1.8. 

COROLLARY 1.10. Suppose that L / K  is modular. Then L / K  splits if and only if L / K  
has a distinguished maximal separable intermediate field. 

PROOF. Since L / K  is modular it follows that L/ (K  p-' NL) is modular for i = 1,2, . . . .  
Thus L / J  is modular and so separable. [2 

THEOREM 1.11 ([54]). If L / J  has separating transcendence basis 3 where J is the max- 
imal purely inseparable intermediate field of L/K,  then L / K  splits. 

PROOF. Let X be a separating transcendence basis of L / J  and let S be the maximal 
separable intermediate field of L/K(X) .  Then L/J(S)  is separable algebraic and purely 
inseparable. V1 

3 A separating transcendency basis for L/J is a transcendency basis B such that L/J(B) is separable. 
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THEOREM 1.12 ([54]). L / K  is modular if and only if L / J  is separable and J / K  is 
modular where J is the maximal purely inseparable intermediate field of L /K.  

�9 

PROOF. J n L p" = JP', i = 1,2, . . . .  The result follows from definitions and [56], 
Lemma,  p. 162. [3 

THEOREM 1.13 ([68, 97]). Suppose that L / K  has a distinguished maximal separa- 
ble intermediate field. Then there exists a unique minimal intermediate field J* of 
KP-~176 where J is the maximal purely inseparable intermediate field of L / K  such 
that L (J* ) /K  splits. J* has the following properties: 

1. J* is the unique minimal purely inseparable field extension of J such that for every 
distinguished maximal separable intermediate field D of L /K,  L C_ J* | D. 

2. J* is the unique minimal purely inseparable field extension of J such that L(J* ) / J* 
is separable. 

3. If L / K  has finite inseparability exponent e, then J* /K  has exponent e. 
4. If inor(L/K) < c~, then [J* �9 K] < cx~. 

PROOF. L(K p-~176 -- K p-~176 | D where D is a distinguished maximal separable inter- 
mediate field of L/K .  Thus 

3" = { J ' l J '  is an intermediate field of K p-~176 such that L ( J ' ) / K  splits} 

is not empty. It follows that 

j*= n ( s l s  e J}, 

i.e. J* is the unique minimal purely inseparable field extension of J such that L(J*) /K  
splits. If inex(L/K) = e, then J * / K  has exponent e since V C_ L C_ V(J*) C_ D(KV-') .  
If [L �9 D] < c~, then 3 a finite subset X c_ J* such that L C_ D(K(X)) .  By the 
minimality of J*,  J*  = K(X) .  [3 

THEOREM 1.14 ([53, 99]). Let K and Ft be subfields of some common field and suppose 
that K is linearly disjoint from each Ft. Then K is linearly disjoint from n Ft. 

PROOF. Suppose 

3 X l , . . . ~ x n  E A F t  

linearly independent over K n F ,  but linearly dependent over K where F = n Ft. We 
assume n is minimal. Now 

~-~ kixi = 0 

with ki E K not zero. We may take kl = 1. With kl = 1, the ki are unique. Since the xi 
are each in Ft, they are linearly.dependent over each K n Ft. Since the ki are unique, 
the ki E K n Ft and so the ki E K n F ,  a contradiction. [3 
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THEOREM 1.15 ([92, 68]). In any field containing L (K  p-~176 3 a unique minimal field 
extension L m / L  such that L m / K  is modular Lm/L  is necessarily purely inseparable. 

PROOF. L(KP-~176  is modular since L(KP-CC)/KP-~ is separable and KP-~ is 
purely inseparable and modular. Thus 

C = { L ' I L '  is an intermediate field of L(KP-~176  and L ' / K  is modular} 

is not empty. 

L m = N { L ' I L '  e f-} 

is the desired field, vl 

We call L m the modular closure of L / K .  

THEOREM 1.16 ([68]). Suppose that L / K  has a distinguished maximal separable inter- 
mediate field. Let L m be the modular closure of L /K .  Then every distinguished maximal 
separable intermediate field D of L / K  is one of L m / K  and L m = j . m  | D where 
j . m  is the modular closure of J* /K.  Furthermore, 

l) if L / K  has finite inseparability exponent e, then L m / K  has inseparability expo- 
nent e; 

2) if inor(L/K) < oo, then inor(Lm/K) < oo. 

- - o o  

PROOF. D C_ L C_ L m C_ K p | D and so D is a distinguished maximal separable 
intermediate field of L m / K .  Since L m / K  is modular and has a distinguished maximal 
separable intermediate field D, L m / K  splits, say L m = J' | D where J ' / K  is purely 
inseparable and modular. It follows that j , m  = j, .  V1 

THEOREM 1.17 ([18, 53]). 3 unique minimal intermediate fields H*, C*, and Q* of L / K  
such that L /H* is regular, L/C* is separable, and L/Q* is modular. These intermediate 

. . . .  

fields satisfy the properties H* D_ C* 2 Q*, H* = C* = Q* (the algebraic closure of 
C*, Q* in L, respectively), C*/Q* is purely inseparable modular, and H* - S | C* 
where S is the maximal separable intermediate field of H*/Q*. 

PROOF. Let 7-I = {HI H is an intermediate field of L / K  such that L / H  is regular). 
Now L e 7-I and L p and H are linearly disjoint over H p for all H e 7-/. An application 
of Theorem 1.14 yields L p and 

N{HIH X} 
are linearly disjoint over 

(N  x I x 
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It follows that 

= 1 x 7 , }  

The existence of C* and Q* follow in a similar manner. D 

DEFINITION 1.18. 1. If L / K ( M )  is separable algebraic for every relative p-basis M of 
L / K ,  then L / K  is called relatively separated. 

2. If L = K ( M )  for every relative p-basis M of L/K ,  then L / K  is called reliable. 

The characterization of relatively separated and reliable field extensions can be found 
in [57]. 

THEOREM 1.19 ([18]). If L* /K  is relatively separated, then C* has the following prop- 
erties: 

1. C* is a maximal intermediate field which is reliable over K; 
2. C* is the only intermediate field of L / K  such that L/C* is separable and C*/K  

is reliable. 

THEOREM 1.20 ([54, 18]). Suppose that C* /K  is reliable. Then L/Q* has finite in- 
separability exponent, C*/Q* is purely inseparable modular with bounded exponent, 
and L = F | (S @p. C*) where S is the maximal separable intermediate field of 
H*/Q* and F is an intermediate field of L / S  which is regular over S and separable 
over Q*. 

The representation of L / K  in Theorems 1.17 and 1.20 display the intermediate fields 
H*, C*, and Q* which are related to the Galois theories discussed below. 

THEOREM 1.21 ([18]). Suppose that L / K  is algebraic and let S denote the maximal 
separable intermediate field of L /K.  Then L / S  is modular if and only if Q* is the 
maximal separable intermediate field of C*/K. If L / S  is modular then Q* is the unique 
minimal intermediate field over which L splits. 

PROOF. L/Q* splits since L/Q* is modular and algebraic. Suppose that L / S  is modular 
and L/Q splits where Q is an intermediate field of L/K ,  say L = C | S'  where C 
and S' are intermediate fields of L/Q such that C/Q is purely inseparable and S' /Q 
is separable algebraic. Let Q' be the maximal separable intermediate field of Q/K.  It 
follows that L = C @Q, S" where S" is an intermediate field of S/Q' such that S " / K  
is separable algebraic. Since L/S"  is purely inseparable and S" C S, S" - S. Since 
L / S  is modular, Q* c_ S n C* C_ S N C - Q'. Thus Q* c_ Q. D 

Results concerning the transitivity of modularity can be found in [54]. A discussion 
of modularly perfect fields, i.e. fields which have only modular extensions can be found 
in [63, 25]. 
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5 

DEFINITION 2.1. A derivation on a field L is an additive map d: L --+ L such that 
d(ab) = d(a)b + ad(b). 

An element c such that d(c) = 0 is called a constant of d. Since d(x n) = nxn- ld (x ) ,  
elements of L p are always constants. If S is a set of derivations on L, the set of constants 
of S is {x I d(x) = 0 for all d in S}. It is straightforward that the set of constants of S 
is a subfield of L which contains L p. 

THEOREM 2.2 ([47]). Let L / K  be a field extension and let B be a relative p basis of 
L / K .  Let 5: B --+ L be an arbitrary map from B to L. Then there is one and only one 
derivation d of L over K such that d(x) = 5(x) for every x E B. 

Let L be purely inseparable exponent one over a subfield K and suppose B is a finite 
relative p-basis for L over K.  If x is an element of L not in K,  then x is part of a 
relative p-basis B' of L over K and hence by the last theorem is not a constant for 
some derivation of L over K.  Thus K is the field of constants of 79(L/K),  the set 
of all derivations of L over K.  However, K could also be the field of constants of a 
smaller set of derivations. Thus to establish a Galois type correspondence it is necessary 
to determine when a set of derivations is as large as possible. 

DEFINITION 2.3. A set of derivations 79 is called a restricted p-Lie algebra if 
1) 79 is closed under addition; 
2) 79 is closed under left multiplication by elements of L; 
3) 79 is closed under pth powers; 
4) 79 is closed under Lie commutation, [did2] = did2 - d2dl. 

THEOREM 2.4 ([55]). Let L be a fieM of characteristic p ~ 0 and let l)  be a restricted 
Lie algebra of  derivations on L which is of  finite dimension m as a vector space over 
L. I f  K is the field of  constants of D, then L is purely inseparable of exponent <<. 1 over 
K and [L : K] = pro. If  d is any derivation of L over K, then d E D. 

Gerstenhaber [38] has generalized this Galois theory to the infinite case and showed 
that with the natural Krull-topology on DerL,  there is a bijective correspondence between 
closed restricted Lie algebras of derivations and subfields of L containing L p. Ojanguren 
and Sridharan [74] show that a subspace which is closed under pth powers is automatically 
closed under Lie product. 

DEFINITION 2.5. A rank t higher derivation on a field L is a sequence 

d =  {di [0~< i < t +  l} 

of additive maps of L into L such that 

d~(ab) = E {di(a)dj(b) [ i + j = r} 
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and do is the identity map. 

Let x be an indeterminate and form L[x]/(xt+l). There is a 1-1 correspondence 
between finite rank t higher derivations d of L and algebra homomorphisms p: L --+ 
L[x]/(x t+l) such that p ( a ) -  a has zero constant term. If p is given by 

p(ao) = a + alx  + . . .  + atx t, 

then d is specified by di(a) = ai. For infinite rank d one uses homomorphisms as above 
from L to L[[x]]. 

If S is a set of rank t higher derivations, the field of constants of S is 

{a C L ldi(a) = O, i > O, (di) E S} .  

THEOREM 2.6. 1. ([47]). Let B be a p-basis for  L and let f:  Z x B --+ L be an arbitrary 
function. There is a unique (di) such that for each b E B and i ~ z,  d~(b) = f (i, b). 

2. ([101]). dip(a p) = (di(a)) p and if p and j are relatively prime, then dj(a p) = O. 

THEOREM 2.7 ([92]). Let L be a purely inseparable extension of  K of  finite exponent. 
The following are equivalent. 

1. L is the tensor product of  simple extensions of  K.  
2. K is the field of  constants of  a set of  higher derivations on L. 
3. L p" and K are linearly disjoint over L p" n K for  all positive n. 

PROOF. (1) implies (2). Since the field of constants of a set of higher derivations is the 
intersection of the respective fields of constants, it suffices to show if L = K ( x )  with 

X pn  --- I ~  

then K is the field of constants of a higher derivation on L. Let 

( x P n } U B  

be a p-basis of K and define a higher derivation (di) on L where dl (x) = 1, dl (b) -- 0 
for all b E B,  di(y) = 0, y E { x } U B ,  i ~ 1. The r ankpn-1  higher derivation 
d = {di I 0 ~< i < pn-1 + 1 } will have field of constants K.  

(2) implies (3). If they are not linearly disjoint, we can find a minimal length relation 
of the form 0 = xl + a2x2 + . . .  + a t x t  where {xi}  C K is independent o v e r  L p'~ n 1~ 
and ai E L pn with t ~> 2. Since {xi}  is independent over L p" N K,  we can assume 
a2 ~ LPnNK. Thus there is a higher derivation (d) with dm(a2) ~ 0, m ~> 1. Theorem 2.6 
shows L p'~ is invariant under (d) and applying dm to the relation we get one of shorter 
length. 

(3) implies (1). If n ) 1, the linear disjointness condition implies that if S is a p-basis 
for K p-'~ NL over K p-n+~ NL, then S p is p-independent in K v-"+l K v-n+~ NL over NL. 
This condition allows one to construct a set of elements which will be the generators for 
the single factors in the tensor product, t-] 
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[101] provides the following example which shows not every purely inseparable ex- 
tension is modular. Let Zp be the prime field, and x, y, z be indeterminates. Let 

K - Zp(x p , yp , z  p2) and L = K(z ,  xz  + y). L has exponent 2 over K and is not 
modular. 

If modularity for purely inseparable extensions is to correspond to normality for sep- 
arable extensions, then there should be a minimal extension of a purely inseparable 
extension which is modular. This is the content of the next result due to Sweedler. 

THEOREM 2.8 ([92]). Let L be a purely inseparable extension of  K of  exponent n. There 
is a unique minimal field extension M of  L which is modular over K.  M is purely 
inseparable of  exponent n over K.  If  [L: K] < cx~, [M:  K] < c~. 

PROOF. K p-n can be seen to be modular over K by using the linear disjointness condition 

of Theorem 2.7. K p-n D L and the intersection of all subfields of K p-" which contain 
L and are modular over K will be M. If [L : K] is finite, then a set of generators of L 

over K will involve only a finite number of tensor product generators of K p-'~ over K,  
and L will be contained in a finite dimensional modular extension of K. 

The maps which give the Galois correspondence when the exponent is greater than one 
are the higher derivations. The set Ht(L)  of all rank t higher derivations of L is a group 
with respect to the composition d o e = f where f j  - ~-'~{dmen I m + n = j} [48]. The 
first nonzero map of positive subscript is a derivation. If d = (di) is a higher derivation 
ofrank t, the s-section of d is the higher derivation e = {di I i = 0, 1 , . . .  ,s}, 1 ~< s < t. 

D 

DEFINITION 2.9. The index i(d) for a nonzero higher derivation is either 1 or, if d has 
the property dq ~ 0 and dj = 0 if q ~ j ,  then i(d) = q. A d E H~ is iterative of 
index q if 

( j )  dqi = dqidq(i-J) 

for all i and j ~< i, whereas dm = 0 if q { m. A finite rank t higher derivation is iterative 
if it is the t-th section of an infinite higher derivation. If d has index q, and a E L, then 
ad = e where eqi = a idqi a n d e j = 0 i f q ~ j .  

A complete description of iterative higher derivations has been given by Zerla [103]. 
However, it should be noted that his finite rank iterative higher derivations are only 
required to satisfy the combinatorial identity and not be sections of infinite ones. This 
extra requirement is needed to control the last map in a finite rank iterative higher 

derivation. A set F - {d ~ ] a  E A} of higher derivations is abelian if d~d~ - d~d'~ 
for all a,  fl E A. A set of nonzero higher derivations is independent if the set of first 
nonzero maps of F with positive subscript is independent over L. 

Before beginning the higher derivation Galois theory, we give a reformulation of the 
exponent one theory which follows the intended approach. 
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THEOREM 2.10 ([40, 53]). Let F = { P l , . . .  ,Pn} be derivations on L. The following are 
equivalent. 

1. F is abelian, independent, and pP = 0, 1 ~ i <, n. 
2. L = K ( x l , . . . , X n )  where K is the field of constants o f f  and pi(xj)  = 3ij. 
The set { x l , . . . ,  Xn} is a relative p-basis of L / K .  

PROOF. (1) implies (2). The idea is to induct on n. For a single derivation p, choose x 
with p(x) 7~ O. Since pP = 0, there is an n < p such that pn(x) ~ 0 and pn+l (x) -- O. 
Then p(pn-2(x ) /pn- l ( x )  = 1, so there is a y with p(y) = 1. If K is the field of 
constants of p, then L = K(y) .  For if x is a nonconstant, let pr be the least power of p 
which does not map x to 0. Then 

p (x) ) 
p~ x - 0 .  

r! 

Continuing this approximation process will express z as a linear combination of 
{ 1, y , . . . ,  y p - l }  with p-constant coefficients. 

Inductively, one can find X l , . . .  ,Xn-I a relative p-basis of L over K1, the field of 
constants of P l , . . . ,  Pn-1- By commutativity, pn(Kl)  C K1 and hence by induction K1 = 
g ( x n )  with pn(Xn) = 1 and pi(Xn) -- 0 for i ~= n. Also by commutativity, pn(xi) E t(n. 
By a similar approximation process as above, one can subtract an element zi of Kn from 
each xi to force pn(Xi - zi) = 0. The reverse implication is straightforward. [2 

DEFINITION 2.11. A relative p-basis for L over K as in Theorem 2.10 will be called a 
dual p-base with respect to { p l , . . . ,  Pn}. 

The group generated over L by a subset F of higher derivations (or derivations) is the 
subgroup generated by { a d l a  c L, d ~ F} .  

In view of Theorem 2.10, the exponent one Galois theory could be restated as: a 
finite-dimensional subspace of Der(L)  is Galois if and only if it is generated by a set 
{ p l , . . . ,  pn} of commuting independent derivations such that pP -- 0, 1 ~ i ~< n. 

DEFINITION 2.12. For d 5r 0 in H t (L) with first nonzero map dr, 

p(d) = min{s I pSr > r}. 

An iterative d of rank t is normal if for some j > 0, i(d) is [tip j] + 1, where [tip j] is 
the greatest integer less than one equal to t ltd. 

THEOREM 2.13 ([53]). Let F = { d ( l ) , . . . ,  d (n) } be an abelian set of independent itera- 
tive derivations of finite rank t and let K be the field of constants of F. Then 

[L " K] - p p(d(~))+'''+p(d(")). 

PROOF. The proof is by induction and the consequence of Theorem 2.6 that for any d 7~ 0 
in Ht(L) ,  p(d) is the exponent of L over the field of constants of d. For an iterative 
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higher derivation the first nonzero map is a derivation d with d p - 0. Thus if K1 is 
the field of constants of d, L = KI (x) and [L : K] = p. Since the higher derivation is 
abelian, K1 is an invariant field and if the first nonzero map has subscript r, the first 
nonzero map of the higher derivation restricted to K1 has subscript pr. v1 

DEFINITION 2.14. Let F = { d ( l ) , . . .  ,d  (n)} be a set of rank t higher derivations on L. 
{x 1 , . . . ,  Xn} is a dual basis for F if 

1) L - K ( x l , . . .  ,Xn),  K the field of constants of F,  
z(i) 2) ,~r, (xi)  = l, where ,~r,'/(i) is the first nonzero map of d (i) and all other maps in F 

with nonzero subscript take xi to zero. 

THEOREM 2.15 ([53]). Let F = {d( l ) , . . .  ,d (n)} be a subset o f  l i t ( L ) .  The following are 
equivalent. 

1. F is an abelian set o f  independent iterative higher derivations. 
2. F has a dual basis { X l , . . . , Xn }. I f  { X l , . . . , Xn ) is a dual basis, then 

L = K ( x l ) | 1 7 4  

Ki = K ( X l ,  �9 �9 �9 , X i ,  �9 �9 �9 , Xn) is the f ield o f  constants o f  d (i). 

PROOE The proof proceeds by induction. For a single abelian iterative higher derivation 
d = ( d o , . . . ,  dr} with first nonzero map d,., d,~ is a derivation with d~ = 0. A lengthy 
approximation process [103], Theorem 2, p. 41 l, is used to determine a dual basis for a 
single higher derivation. Commutativity of the maps allows the induction to proceed. 

Given d E H t ( L )  of index q, v(d) = e E H t ( L )  where e(q+l)i = dqi for (q + 1)/~< t 
and ej = 0 if q + 1 t J. The v closure ~(F) of a set F in H i ( L )  is F td {vi(d) [ d c 
F, i ~> 1}. A subgroup G of H t ( L )  with field of constants K,  [L : K] < c~, will be 
called Galois if G is the group of all higher derivations in H t ( L )  which contain K in 
their fields of constants. V1 

THEOREM 2.16. A subgroup G of  H t ( L )  is Galois i f  and only if  G is generated over L 
by ~)(F) where F is a finite normal independent iterative subset o f  n t ( L ) .  

PROOF. Let G have field of constants K. By Theorem 2.7, 

L = K ( x l )  • K ( x 2 ) |  Q K(Xn) .  

Let F be a normal set of higher derivations with dual basis { X l , . . .  ,Xn). Normality 
insures that the first nonzero map of d (i) has lowest possible positive subscript for a map 
which does not map xi to zero. The idea of the proof is to show that all higher derivations 
can be obtained from F by using the v operation, scalar multiplication, and the group 
operation. If d is an arbitrary higher derivation on L over K,  the first nonzero map of 
d is a derivation and as such is uniquely determined by where it maps {x 1 , . . . ,  Xn}. 
By using the v operation, scalar multiplication and product of elements in F one creates 
a higher derivation e which has the same first nonzero map as d. The process is then 
applied to de -1 which has first nonzero map of higher subscript. [2 
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Intermediate theory 

If the higher derivation theory were to exactly parallel the classical Galois theory of au- 
tomorphisms, the distinguished intermediate fields F should be those which are invariant 
under all higher derivations of L over K and such that all higher derivations on F over 
K could be extended to L. 

THEOREM 2.17 ([11]). Let F be a Galois subfield of a Galois extension L / K .  Then F 
is invariant under HtK(L) of  and only if F = K ( L  p') for some r. 

PROOF. Theorem 2.6 shows K ( L  p') is an invariant subfield. To show the converse, 

assume F c_ K ( L  p" but ~ K ( L  p'+~) (otherwise F - K and let x E L \ K(Lp~+I). 
Using the'generating set F one constructs a higher deriv.ation (d) of index s such that 
ds r(x) ~ O. For any a E L, (ad) has sp r map a p'dspr. F being invariant forces 
a ~ E F,  i.e. F = K(LP') .  D 

THEOREM 2.18 ([11]). Let F be a Galois subfield of a Galois extension L / K  and assume 
F is modular over K. Then every rank t higher derivation on F / K  extends to L if and 
only if L = F @K J for some modular extension J of K. 

DEFINITION 2.19. Let F be a Galois subfield of L containing K.  F is distinguished if 
and only if there exists a standard generating set for HtK(L) which leaves F invariant. 

DEFINITION 2.20. L is an equiexponential modular extension of K if and only if L has 
a subbasis over K all of whose elements have the same exponent over K.  

THEOREM 2.21. Assume L is an equiexponential modular extension of K. I f  L is modular 
over an intermediate field F, then F is also modular over K. 

PROOF. For a modular extension a subbasis is a relative p-basis of minimal total exponent 
and hence for an equiexponential modular extension any relative p-basis is a subbasis. Let 
{ x l , . . . ,  xr} be a subbasis of L over F where xi has exponent ri. Let { y l , . . . ,  Yt} C F 
be such that {x 1 , . . . ,  xr, y l , . . . ,  yt} is a relative p-basis, hence subbasis, of L over K.  
A dimension argument shows 

r. I r, v } 
X pl ~...~xPr ,Yl~.. .~Yt 

is a subbasis of F over K.  [3 

THEOREM 2.22 ([ 11 ]). An intermediate field F is distinguished if and only if L has a 
subbasis T1 tA . . .  t_J Tn over K, the elements of Ti being of exponent i over K, and 

F =  F N K ( T I ) | 1 7 4  

and K(Ti )  is modular over F A K(T1) for all i. 
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0 

In this section we exhibit an automorphism group invariant field correspondence which 
incorporates both the Krull infinite Galois theory [56], p. 147, and the purely inseparable 
theory of the second section. The invariant subfields K of L are those for which L / K  
is algebraic, normal, modular and the purely inseparable part has finite exponent. The 
associated automorphism groups are subgroups of the automorphism group of the local 
ring described below. They can also be described as groups of rank pe higher derivations 
with the modification that do is an automorphism of L rather than restricting do to be 
the identity map. Let A denote the group of all automorphisms c~ of the local ring 

L[g:] - L[x]/x W+' L[x] 

such that o~(:2) = :2 where x is an indeterminate over L, e is a non-negative integer, 
+! 

X pe L[x] is the ideal in L[x] generated by X pe+l , a n d  :2 is the coset 

e+! 
x + x p L[x]. 

We use the following notation: For a subgroup G of A, 

GL = {a 6 G [ a(L)  C_ L}, 

Go = {c~ e G I ~(c) - c e :2L[i] Vc 6 L}, 

and 

L G - {c e L]c~(c) - c Vo~ e G}. 

For K a subfield of L, 

c K = �9 c I = w g } .  

For f(:2) in L[:2], let ~(f(:2)) = f(0).  Then, for c~ 6 A, c~c(= flaiL) is an auto- 
morphism of L. For/3 an automorphism of L, /3  e will denote its unique extension to 
A. The map c~ ~ c~ ce is a homomorphism of A onto AL. With a subgroup G of A 
we associate the groups G ~ = { ~  Ic~ E G} and G ~ = { ~  Ic~ 6 G}. Recall that 
d = {di I 0 <~ i ~ pe} denotes a rank pe higher derivation of L into L. Let 7-I denote 
the group of all rank p~ higher derivations on L. 

PROPOSITION 3.1. The map 5: 7-l ~-+ Ao given by 

and 5(d)(:2) = 2, is an isomorphism of 7-{ with Ao. 
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PROOF. For a E A0 and c E L, 

a(c) = ~ ci2 i 

and co - c. For i - 0 , . . . , p ~ ,  let d~(c) = ci. Then d - { d ~ 1 0  <~ i ~< p~} c 7-I and 
5(d) = a.  This and the fact that ~ ~,id i is an isomorphism for d in 7-/can be found in 

[45]. Also 

For K; a subgroup of ~ ,  let 

L ~ -  { c c L l d i ( c  ) - 0 ,  i > O ,  V d c K , } .  

For K a subfield of L, let 

u K - c u I - o, i > o, K } .  

PROPOSITION 3.2. For 1~ a subgroup of  ~ ,  L Ic = L 6x:, and for  K a subfield of  L, 
5 ( ~  K) = Ao K. 

Let L ~ = L c where G is the group generated by a in G. 

PROPOSITION 3.3. L p`+' c_ L ~ for  a E Ao. 

PROPOSITION 3.4. Each a C A has a unique representation as a product /~,, /3 c 
AL, 3' E Ao. In fact, / 3 -  a ~ and thus 9 / -  ( a ~ )  - l a .  

PROPOSITION 3.5. L ~ -- L ~c" Cq L (~c')- '~. 

COROLLARY 3.6. For G a subgroup of  A, let H be the group generated by G ~ and G. 
Then L H - L c - L Hz N L H~ 

PROPOSITION 3.7. I f  L / K  is normal and L pe C_ S for  some non-negative integer e, then 
L -  S @K J where JPe C_ K.  

PROOF. The proof follows from Corollary 1.9 and [56], Theorem 13, p. 52. 

PROPOSITION 3.8. Let K be a subfield of  L such that L / K  is algebraic. 
1. a (L  C~ = L C~ for  cr E G c. 
2. L is a normal extension of  L C. 
3. L G' = J where G1 is the group of  extensions to A of  the automorphism group of  

S / K  and J is the maximal purely inseparable intermediate field of  L / K .  
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PROOF. 1. Suppose for some cr E G c and c E L C~ that or(c) = b ~ L G~ Choose a E Go 
for which cz(b) # b. Then/3 = (cre)-lcztre E Go while/3(c) # c, a contradiction. Thus 
cr(L Co) C_ L Go and tr-1 (L C~ C_ L Co. Hence ~r(L G~ = Lc~ 

2. By (1), the restriction to L C~ of c~ in G c is an automorphism. Let H be the group 
of all such automorphisms on L c~ Since L C = L cL f3 L C~ and GL = Gee, the subfield 
of L C~ invariant under H is L C. Thus L G~ C is normal separable. By Proposition 3.3, 

L p*+' C_ L G~ from which we conclude that L C~ is the separable closure of L C in L. Let 
c E L and let f ( z )  be its minimal polynomial over L C. Then f ( z )  = 9(z p~) where r is 
the exponent of inseparability of c over L C and so 9(z) is separable over L C. Since 9(z) 
has c p" in L c~ as a root, 9(z) splits over L c0. It thus follows that f ( z )  splits over K.  

3. Clearly J C  Lct  I f c E  L C' then s i n c e K ( L  p~+') C_ S, c p~+' L G' �9 , ESn = K .  

Hence c E J and so L G' = J. 

LEMMA 3.9. Suppose L / K  is an algebraic field extension such that L = d | S where 
S is the maximal separable intermediate field of L / K  and d is the maximal purely 
inseparable intermediate field of L / K .  Then the following conditions are equivalent: 

1. L / K is modular; 
2. L / S is modular; 
3. J / K  is modular 

PROOF. One first shows that (KNLP' ) (S  p') = S N L  p' , i = 1,2, . . . .  Then an application 
of [56], Lemma, p. 162, yields the equivalence of (1) and (2). The equivalence of (1) 
and (3) follows from [72], Lemma 1.61 (c), p. 56. 

We now give the Galois correspondence. 

THEOREM 3.10 ([49]). Let K be a subfield of L such that L / K  is algebraic. The follow- 
ing four conditions are equivalent. 

1. K = L C for a subgroup G of A. 
2. L is a normal modular extension of K such that K(Lpe+I)/K is separable. 

3. There are intermediate fields S and J such that dpe+l C K, J / K  is modular, S / K  
is normal separable, and L = S | J. 

4. There are intermediate fields S and J such that S / K  is normal separable, J is 
the tensor product over K of simple purely inseparable extensions of K having degree 
~< p~+l and L = S @K J. 

If  L satisfies one of (1)-(4) and G = A K, then S = L G~ and J = L GL where S and 
J are given by (3) or (4). 

PROOF. (1) implies (2): L / K  is normal by Proposi[ion 3.8 (2). The field of constants of the 
group d; - l  (Go) of higher derivations is L G~ and thus L / L  G~ is modular by Theorem 2.7. 
An application of Proposition 3.7 and Lemma 3.9 yield the modularity of L / K .  

(2) implies (3): The result here follows from Proposition 3.7 and Lemma 3.9. 
(3) implies (4): The result here follows from Theorem 2.7 and Lemma 3.9. 



Galois theory of  inseparable field extensions 205 

(4) implies (1)" Let 7-tl represent the group of all rank pe higher derivations of J 
into J which are trivial on K.  Each d E N l has a unique extension to L since L / J  is 
separable algebraic [47], Theorem 3. Then 

7-t = {d[ d is an extension to L of an element of 7-tl } 

is a group of rank p~ higher derivations on L with the property S C_ L ~t. Let G be the 
subgroup of A generated by G1 and ~7-t. By Corollary 3.6, 

L a = L a~ M L a~ = J M L  n = K .  

In establishing that (1) implies (2) it was shown that L a~ = S. Proposition 3.8 (3) 
yields L aL = J.  

DEFINITION 3.11. A subgroup G of A is Galois if G = A K for a subfield K of L such 
that L / K  is algebraic. 

DEFINITION 3.12. A subfield K of L is Galois if 
1) L / K  is algebraic, and 
2) K = L C for a subgroup G of A. 

Theorem 3.10 identifies those subfields of L which are Galois. The Krull infinite Galois 
theory asserts that a subgroup G of A L  is Galois if and only if G e is compact in the 
finite topology [56], Example 5, p. 151. For [L �9 K] < cxz, those subgroups of 7-/having 
the form N K and hence, via ~, those subgroups of A0 which are Galois have been 
characterized in [7-9]. 

THEOREM 3.13 ([49]). A subgroup G o f  A is Galois i f  and  only i f  
1) G ee C_ G, and 

2) G ee and Go are Galois. 

PROOF. Suppose that G is Galois. Then G 2) A s and G D_ A J where L = J |  S .  For 

a E A S, a c is an automorphism on L which is the identity on L ve+~ C_ S and hence 
the identity on L. Thus a E Ao or A S c_ Go. By Theorem 3.10, Go c A S. Let a E A J 

and 13 = (ace) - l  a. Then L / L  ~ is separable algebraic since J c_ L ~ by Proposition 3.5. 
Since L ~ is the field of constants of a finite higher derivation, L = L ~, a E AL or 
A J C A L  CI G = GL.  Hence G ce -- GL  = A J and G ee is Galois. Conversely, suppose 

that G satisfies (1) and (2). Using Proposition 3.8 (1) and the fact that L pe+' C_ L Go, it 
follows that L / L  a is algebraic. Let K = L a and H = A K. Then G C_ H ,  G c C_ H c, 

and Go C_ H0. By Theorem 3.10, L = J | S, J = L a'~ = L HL and S = L a~ = L H~ 

But L GL and L HL are the fields of invariants of G c and H c, respectively, and since G c is 
Galois, G c D_ H c. Hence G c = H c. Similarly, Go = Ho and G = GCeGo = H C e H  o = H .  

D 

DEFINITION 3.14. Given subgroups H1 and Ha of a group H,  we say H1 is Ha invariant  
if for a E H2, a - l  H l a  C_ H1. 
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Let H1 be a subgroup of AL and/ /2  a subgroup of A0. Then H1 and H2 are compatible 
in the sense that there is a group G in A for which G L = H1 and Go - H2 if and only 
if HzH1 is such a group, and since H2 must be an invariant subgroup of G, H2 and H1 
will be compatible if and only if H2 is H1 invariant. 

Let G be the set of groups of automorphisms on L and 79 the set of groups of rank pe 
higher derivations on L. 

DEFINITION 3.15. A pair (H, D) in G x 79 is compatible if there is a subgroup G of A 
such that G c - H and Go = ~(D). A pair (H, D) is Galois if it is compatible and 
Heh(D)  is Galois. 

Given ( H ,  D) in G • 79, D is invariant under H if given cr E H and d = {di} E D, 
then cr-ldcr = { a - l d i a }  E D. 

PROPOSITION 3.16. A pair (H, D) in G x 79 is compatible if and only if  D is H invariant. 
A compatible pair (H, D) is Galois if  and only if H e and ~(D) are Galois. 

We now consider the subgroup subfield correspondence. Let H C_ G be Galois subgroups 
of A. We consider the consequences for L H / L  a of invariance of H0 in GL and of HL 
in G L. The objective is the identification of conditions on H relative to G equivalent to 
L H / L  a being Galois. 

THEOREM 3.17 ([49]). Let G be a Galois subgroup of  A. Then GL is Go invariant if and 
only if  G L is G or {1}. 

PROOF. If GL is Go invariant, then GL is invariant in G. Hence since GL M Go - {1}, 
G is the direct product of GL and Go. Thus for d E ~-l(Go) and a E G~, adi - dia, 
i = 1 , . . .  ,pe. Assume that GL and Go are nontrivial. By Theorem 3.10 (4), J / K ,  where 

K = L a, has a subbasis B and C = {b ~' [ b E B, i is the exponent of b over K} is 
p-independent in K.  Extend C to a p-basis C U Cl of S. Then B U Cl is a p-basis of 
L. By Theorem 2.6, a higher derivation d is determined by its action on a p-basis and 
this action may be arbitrarily prescribed for each d. We defined d by the requirement 
di(c) - 0 for c E B U C l and i < pe. For cl E B, we let dp~(Cl) - s E S, s ~ J, 
and let dp, map every other element of B U Cl to 0. Clearly d is trivial on B U C1 
and hence 5(d) E Go since Go is Galois. However, a(c) ~ c for some c in GL and 
adp~(Cl) = a(c) ~ c = dp, a(Cl). Thus if GL is Go invariant, either Go or GL must be 
the trivial group. 

THEOREM 3.18 ([49]). Let H C_ G be Galois subgroups of  A. Let L = J ~ L  G S as in 
Theorem 3.10. Then L H = Jl (~L a Sl with Sl C S and J! C J if and only if Ho is GL 
invariant. Moreover, if L H - Jl | a Sl, then L H~ - J1 (~L G S and L HL - J (~L a S1. 

PROOF. Suppose that L H - J! (~L a S l .  Then L H~ D J1 | S and L HL D_ J | S1. But 

L = L H~ |  LHL = (J1  Q S ) |  (J  | $1). 

Hence L H~ - Jl | S and L HL = J | Sl .  If a E GL, then a(L)  C_ L and a l j  is 
the identity. Hence a ( L  H~ - L H~ from which it follows that if d E 5-1(Ho), then 
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a - l d c t  E 5 - 1 ( g 0 )  or H0 is GL invariant. Conversely, assume that H0 is GL invariant. 
By Theorem 3.13, GL and H0 are Galois. Since (GLHo) ce = (GL)Ce(Ho) ~ - GL 
and (GLHo)o = Ho, GLHo is also Galois. It follows that L H~ = Jl |  S where 
Jl - L H~ n L aL and L HL - J |  Sl where Sl = L Hz n L C'', [49], Lemma 3, p. 199. 
Now 

L H = L HL n L H~ = (J  | S1) @ (J1 | S) = Jl @ Sl. 
[2 

As a Corollary to Theorem 3.18, it is shown in [49] that if H is an invariant subgroup 
of G, then L H / L  G is normal, but not conversely. Let H C_ G be Galois subgroups of 
A. We determine a necessary and sufficient condition for H to be G invariant. 

LEMMA 3.19. Let E l K  be a field extension and F an intermediate field. I f  E / i f  and 
E / F  are modular, then E / K ( F  N E rp ) is modular for  j = O, 1, . . . .  

PROOF. Let j be a fixed non-negative integer. Suppose i is an integer such that i ~> j .  
Then 

F N E p' = F N E pj N E p' C K ( F N E pS) N E p' C_ F N E p'. 

Thus 

K ( F  N E pj) n E p~ - F n E p~. 

Since also F D_ K ( F  O E p' ) and E / F  are modular, K ( F  O E p" ) and E p' are linearly 
�9 . . 

disjoint over F N E  p'. Now suppose i < j .  That K ( F N E  p') and E p~ are linearly disjoint 

over (K  N EP~)(F N E pj ) follows from the modularity E / i f  and use of [56], Lemma, 
p. 162. [-1 

LEMMA 3.20. Let J / K  be a purely inseparable field extension of  bounded exponent e 
and let F be an intermediate field of  J / t f .  I f  J / I f  and F / K  are modular and if for  
every subbasis B of  J / I f  every b E 13 has the same exponent over F that it has over 
K,  then F -  K. 

PROOF. We first prove the result when F / K  has exponent ~ 1. There does not exist 

c c (F n JP~) - K ( K  p-I N JP~+~) else it follows that c p-~ is in a subbasis of J / K  [72], 
Proposition 1.55 (c), p. 49, and has exponent i + 1 over K and exponent i over F.  Since 

J / K  is modular, K and F n JP' are linearly disjoint over K n JP~, i = 0, 1, . . . .  Also 

since J / F  is modular, F and K ( J  p~+I) are linearly disjoint over K ( F  n JP~+'), i - 
0, 1 , . . . ,  by [72], Lemma 1.60 (c), p. 55. It follows that 

K(F n J§ c K(F n H) K(H +') 

and so K ( F  n JP') = K ( F  n JP'+~) for i - 0, 1 , . . . ,  e. Thus 

F = K ( F  n .IP) . . . . .  ~"(P n .IP~ = 
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Now suppose F has arbitrary exponent (<~ e) over K and F D K.  Clearly every subbasis 
of J / K  has the same property concerning exponents over any intermediate field of F / K .  
There exists a non-negative integer i such that K(FNJ~")  ~ K and K ( F N J  p'+') c_ K. 

�9 

Then K ( F  M JP ' ) /K  has exponent 1 and J / K ( F  N JP~) is modular by Lemma 3.19. 

By the exponent 1 argument, K ( F  M JP') = K,  a contradiction. Thus F = K. 

THEOREM 3.21 ([67]). Let H C_ G be Galois subgroups of A and let S denote the 
maximal separable intermediate field of L / L  G. Then H is G invariant if and only if 
either L n C S and HL is GL invariant, or L n D_ S, L H / L  G splits, and Ho is Go 
invariant. 

PROOF. Suppose that L / L  G is inseparable, but not purely inseparable. Let J denote the 
maximal purely inseparable intermediate field of L / L  a. Assume H is G invariant. Then 
L H/L  C is normal by [49], Corollary 4.4, p. 200, and so L H/L  G splits. Also H0 is Go 
invariant and Ht, is C,t, invariant. Suppose L H ~ S and L H ~ S. Since L H ~_ S, 
L H M J D L G. Since H is Galois, L HJ is modular over L H by Theorem 3.10. Thus 
J / ( L  H M J) is modular by Lemma 3.9. By Lemma 3.20, there exists a subbasis M of 
J / L  G and an element m of M such that m has exponent n over L a and exponent t 
over L H M J with n > t. There exists a subset X of L a such that X U M is a p-basis 
of J .  Since L / J  is separable algebraic, X U M is a p-basis of L. Set B = X U M and 

C = {b p' I b 6 B, i is the exponent of b over Lc}.  Then C is a p-basis of L G by 
[72], Proposition 1.22, p. 14. Since L H ~ S, S D L H f3 S. Let s e S -  L H N S. Let 
q be an integer such that pe-n < q << p~-n+l. Then 3d = {di I i = 0, 1 , . . . , p~}  in 
7-I such that d~(m) = o, i = 1 , . . . , q -  1, d q ( m )  = s, and di(b) = O(i = 1, . . .  ,p~) 
for all b e B -  {m}. For all c e C -  {mr'"}, di(c) = 0 for i = 1 , . . . , p~ .  Now 
di(m p") = (dj(m))  p" if i = jpn for some j and di(m p") = 0 otherwise. Consider those 

i such that i = jpn. Then 1 <~ j <<. pe-n < q whence di(m p") = 0. Thus d 6 7/Lc. 
Since s q~ L H, there exists hi 6 HL such that hi(s) = s' 6 S with s' ~ s. Now 
pe-n+t < qpt < pe-n+t+l <~ pe and so dqpt is defined. Also mpt 6 L H f] J, rr~ pt ~ L G, 

and dqp, (mp') = ( d q ( m ) F '  = s~'. For any integer i such that 1 <~ i < qpt, we have that 

di(m p') = (dj(m)) p' if i = jpt for some j and di(m p') = 0 otherwise. For those i such 

that i = jpt, jpt < qpt so j < q. Thus di(m pt) = 0 when 1 ~< i < qpt. One can show 

hlgo(m p') ~ 9o(m p') where 90 = 6(d) and thus n is not G invariant, a contradiction. 
Thus either L H C_ S or L H D S. Conversely, suppose L H C_ S and HL is GL invariant. 
One uses Proposition 3.4 to show H is G invariant. Now suppose L H D_ S, L H/L  G 
splits, and H0 is Go invariant. Since L H/L  G splits, we have that H0 is GL invariant by 
Theorem 3.18. From this and the fact that Ho is Go invariant, it follows that H0 -- H is 
G invariant. [] 

[20], Theorem, p. 277, can be applied to Theorem 3.21 to give a necessary and suffi- 
cient condition concerning group invariance. 

Let H C_ G be Galois subgroups of A. Let G H denote the group of all automorphisms 

9H for 

L H [~1 = L H [x]/x p'+' L H [x] 
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such that 9H(X,) ---- Y~ and gH is the identity on L G. The proof of the next result follows 
along lines similar to that of classical Galois theory. 

THEOREM 3.22 ([67]). Let H C_ G be Galois subgroups of A. If  H is G invariant and 
Ho = Go, then G / H  "~ GH. 

PROPOSITION 3.23. Let H C_ G be Galois subgroups of A. If  H is G invariant and 
Ho = H, then GL "~ (GH)Ln. 

Let G' = {g e G Ig(LH[~]) = LH[:~]} where H c_ G are Galois subgroups of A. Then 
G' is a subgroup of G and H c_ G'. 

PROPOSITION 3.24. Let H C_ G be Galois subgroups of A such that H is G invariant 
and Ho = H. If L - L n @s J' for some intermediate field J~ of L / S  such that L n / S  
and J ' / S  are modular, then G ' / H  ~ GH. 

LEMMA 3.25. Let F / K  be an inseparable but not purely inseparable, algebraic field 
extension such that F = S | J where S is the maximal separable intermediate field of 
F / K  and J is the maximal purely inseparable intermediate field of F / K  and J / K  has 
a subbasis. Then there exists an intermediate field of F / K  over which F is modular and 
which is an exceptional [86] and reliable extension of K if and only if (K p-~ fq J ) / K  
is not simple. 

THEOREM 3.26 ([67]). Suppose K is a Galois subfield of L. Then the following conditions 
are equivalent. 

1. Every Galois intermediate field of L / K  splits over K. 
2. Every intermediate field of L / K  splits over K. 
3. Every intermediate field of L / K  is Galois and splits over K. 
4. Every intermediate field of L / K  is Galois, splits over K, and is modular over K. 
5. L / S  is simple where S is the maximal separable intermediate field of L / K .  

COROLLARY 3.27. Suppose G is a Galois subgroup of A. Then L / S  is simple where S 
is the maximal separable intermediate field of L / L  C if and only if for every subgroup 
H of G which is Galois, Ho is G L invariant. 

The description of a necessary and sufficient condition for every intermediate field of 
L / K  to be Galois where K is a Galois subfield of L can be found in [67], Section 4. 

We now give a new characterization of the distinguished subfields for the purely insep- 
arable case in terms of linear disjointness properties to incorporate the purely inseparable 
intermediate theory as a special case of the inseparable theory developed here. 

Throughout the remainder of this section, K will be a given Galois subfield of L with 
Galois group G. Let L C~ = S, L cL - J ,  and 6(7-/s) = Go. We assume [L" S] < c~ in 
order to apply the Galois theory in Section 2. In particular, S is normal over K and is 
the maximal separable intermediate field of L / K ,  and J is a finite dimensional purely 
inseparable modular extension of K.  
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LEMMA 3.28. Assume L / K  is purely inseparable modular of  exponent e. Let 

T~uT~_~ u...uT1 

be a subbasis for  L / K  where the elements of  Ti are of exponent i over K. Let 

{bl ., br} C_ L be such that {b~ ~ ~ -~ , . .  , . . . , ~  } is relatively p-independent in K p O L 

over ( K  p-`+l N L)(LP'+~N K p- ). Then there exist D {bl, br} such that T~s+i - " " , 

Te  U . . . U T s + i +  1 U T I s + i  U . . . U T1 

is also a subbasis for  L / K .  

PROOF. Te is a relative p-basis for L / ( K  p-'+~ N L). Since T~ U . . .  U Tl is assumed to 
be a subbasis for L / K ,  we can proceed to the stage of constructing a relative p-basis for 
Kp-(~+ ~) Kp-(~+8)+ ~ n L over n L. Since L / K  is modular, 

T p,-(~+~) U �9 . .  U TP+s+I  

is p-independent [92], Theorem 1, p. 403, and in fact is a relative p-basis for 

(Kp-(~+,)+! (i+~) n L)(L  n tc - ) 

over K p-('+s)+~ N L. The set { b l , . . .  ,br} is in K p-('+`) N L since 

' i s 

{ b ~ ' , . . . , ~ } C _ K  p- N L .  

Moreover, it is p-independent over 

(Kp-(i+,)+~ (i+, N L ) ( L  p N K  p-' )). 

Thus { b l , . . . ,  b,.} can be completed to a relative p-basis T~+ 1 for K p-r N L over 

( K p - ( i + s ) + l  (i+s n L)(L, '). 

Thus Te U . . .  U 7'[+ s is part of a subbasis for L / K .  In constructing a relative p-basis for 
--h --hq-I 

g p N L over K p N L where h < i + s, 

T Z  e - h  T t p  ( i+ s ) -h  
U . . . U i + s  U . . . U T ~ + ~  

will be a relative p-basis for (KP-h+' n L)(L  v n K v-h) over K p-h+' 
be completed to a relative p-basis with Th. 

N L and hence can 

IS] 
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LEMMA 3.29. Assume L D_ M D K where L is purely inseparable modular of  exponent 
e over K. If  

1) K p-€ n L and M are linearly disjoint over K v-€ N M for all r, and 
2) (K  p-" n L)(L p'+~ n K p-~-~) and (K p-~ N L)(L p' n K p-~-~ n M)  are linearly 

disjoint over (K v-€ N L)(L  v~+~ n K p-€ n M)  for all i and r, then any relative p-basis 
for (K  p-~ N M ) ( L  v' n K p - ' - I  " " - '  n M) over (K p- N M ) ( L  p~+' G K p- N M)  remains 
p-independent over (K  p-~ m L)(L p~+' a K p-€ 

PROOF. The proof here uses [56], Lemma, p. 162. ff] 

THEOREM 3.30 ([23]). Assume L D_ M D_ K where L is purely inseparable modular of 
exponent e over K. Then there is a subbasis /3 of L over I f  and a subset B'  o f /3  such 
that C = { ~  I b E B',  r is the exponent of b over M }  is a subbasis of  M over K if 
and only if 

- - r  7.. 

1) K p n L and M are linearly disjoint over K p- m M for all r; 
2) ( K P - ' N  L)(Lp~+IN I fP- ' - ' )  and ( I f v - ~ n  L)(LP~N I fP-~-~n M)  are linearly 

disjoint over (K p-€ n L)(LP~+' N KP-'-~ N M ) f o r  all r, i. 

PROOF. The idea of the proof is to simultaneously construct subbases for L / K  and M / K  
with the desired property. Assume conditions (1) and (2) hold. Then M is modular over 
If ,  [99], Proposition 1.4, p. 41. Let A~ be a relativep-basis for M over Ifp-~+l AM.  By 

(1), Ae remains p-independent over Kv-'+~G L and hence can be completed to a relative 
p-basis for K p-~ n L L over IfP-~+~ 

- -  N L with Be1. We now construct a relative p-basis 
- - e + l  - -  e-~-2 

for K p n M over IfP n M. AVe is p-independent in 

Kp-e+2 e + l  e + 2 '  nM)(LPnK p- nM)/(K p- r i M )  

since L / K  is modular. Using Lemma 3.29, there exists Cel ~ L such that A~ U C~Pl is 

p-independent in (K p-`+2 n L)(L p n K p-`+') over 

Kp-e+2 --e+2 n L - (K  p n M ) ( L  p2 N K p-'+' n M)  

and hence by Lemma 3.28, Ae U 13el can be replaced with A~ U 6Vel U/3e2. Let Ae-1 be 
- - e q - 1  

a relative p-basis for K p m M over 

Kp-e+2 eq-1 n M ) ( L  p n K  r'-' r i M ) .  

By Lemma 3.29, Ae-1 is p-independent in K p-e+l NL over (Kp-e+2 NL)(Lp N K  p-`+l ), 

and hence AP~UCePl U B~P2 U A~_I is p-independent over K p-e+2 NL and can be completed 

to a relative p-basis for K p-~+l K p-~+2 n L over n L with B~-l,1. Thus we now have 
T~ - Ae U C~l U Be2, Te-1 = Ae-1 U Be-l,1 as part of a subbasis for L / K  and 
Tie - Ae, T~_ 1 = C~Pl U A~-l as part of a subbasis for M / K .  We assume that after the 
completion of the (i - 1) stage, we have constructed partial subbases 

T,. = A,. u C,.1 u . . -U C,.,~-~+,.-2 U B,.,~_~+r-1 
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and 

, - r - l , l  ~ 

e >1 r >1 e - i + 2 .  We now construct a relative p-basis for KP-e+i-~MM over K p-e+i 
This is done in i steps via the intermediate fields 

riM. 

(K p-'+' f l  M)(Lp' f'l K p-'+'-' f l  M)/(K p-'+' f l  M)(L rg+l 

flKP-'+'-' M M), i -  l >~ j ) O, 

and is done in descending order of j .  Since L / K  is of bounded exponent e, the desired 
subbases are constructed in a finite number of steps. 

DEFINITION 3.31. Let G = A g and let B = { X l l , . . . , X l j l , . . . , X n l , . . . , x n j n }  be a 
subbasis for L / S  where xij has exponent i over S. Let 

B g = { d i J l l  ~<n, l ~ < j ~ < j i }  

be the set of rank p~ higher derivations defined on L by d~ (xrs) = 5(i,j),(r,s) if u = 
pe--i _q_ 1 and 0 otherwise, and 5(i,j),(r,s) = 1 if i = r, j = s, and is 0 otherwise. Let 
n J = ~(BJ).  Then G L H  J = {a<f(d ij) [ a E GL, <f(d ij) E n J} is called a standard 
generating set for G with respect to B. An intermediate field F is distinguished if and 
only if F[~] is invariant under some standard generating set. 

The linear disjointness conditions of Theorem 3.30 yield a characterization of the dis- 
tinguished subfields. We now derive a characterization of the distinguished subfields for 
the inseparable Galois theory. 

THEOREM 3.32 ([23]). Let K be a Galois subfield of L such that [L : S] < ~ .  Let 
G = A K and let F be a Galois intermediate field of L / K .  Then the following conditions 
are equivalent. 

1. F / K  is normal and F M J is homogeneous in J / K .  
2. F[Y~] is invariant under a standard generating set for G. 
3. F / K  is normal and S F  is homogeneous in L /S .  

PROOF. (1) implies (2): Let 

B = { X l l , . . . , Z l j , , . . . , x ~ l , . . . , x , j . }  

be a subbasis of J / K  such that for kl ~< j l , . . . ,  kn <~ in, 

pell pelkl peril penkn 
C :  {Xll , . . . , X l k  I , . . . , X n l  , . . . , X n k  n } 

is a subbasis of ( F N J ) / K .  Let G L H  J be a standard generating set for G with respect to 
B and a f i j  E G L H  J where f i j  = 5(diJ) .  Since C generates F over S M F,  it suffices to 
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show a f  ij (xPs ~ ) e F[,~] and aS ij (s) e F where s e S f-1F. Clearly aS ij (s) e S n F 
since f i j  is the identity on S and (S n F ) / K  is necessarily normal. It follows that 
a f  ij (xP: ~ ) E (F M J)[:~] since a is the identity on J[ff:]. 

(2) implies (3): Let GLH J be the standard generating set. Since the identity map is 
in GL, FLY:] is invariant under H J. Thus F[5:] is invariant under GL. Since also L is 
invariant under GL, F [ ~ ] n L  = F is invariant under GL and F / K  is normal. Since F[~] 
is invariant under H J and every element of H J is the identity on S, SF[Y,] is invariant 
under H J. Thus S F  is invariant under 5 -1 (H J) which is a standard generating set for 
L/S .  Thus S F  is homogeneous in L/S .  

(3) implies (1): We show that F n J = M satisfies conditions (1) and (2) of Theo- 
rem 3.30. Condition (1) follows using the fact that S F  is homogeneous in L/S .  To show 
condition (2), we have (S p-r n L)(L p'+~ n S p-€ ) and (S p-r n L)(L p' n S p-r-l n SF)  

are linearly disjoint over (S p-€ f3 L)(L p~+~ n S p-~-~ n SF)  since S F  is homogeneous 

in L/S .  Since S p-~ n L = S ( K  p-~ n J) and S = S p'+~ | K,  it follows that 

(S p-" I"-1 L) (L  p'+' n S p- ' - '  f ' l  SF)  = S (K p-" 1"-1 J)(JP'+' f'l K p- ' - '  f-1 M).  

Similarly, 

n L) (L. .+.  . = -. n s .  ) s (K n j ) ( j .  TM n u .  ) 

and 

(S p-r n L) (L  v' n S p-r-' f ' l  F) = S (K p-~ I'q J)(JP'  f-1 K p-~-' I"-1 M).  

It follows that (K p-" n J)(JP'+' n K p- ' - ' )  and (K p-" n J)(JP' n K p- ' - '  n M)  are 
linearly disjoint over (K p-" n J)(JP~+~ n K p-'-~ n M). Thus M = F n J satisfies (1) 
and (2) of Theorem 3.30. Hence F n J is homogeneous in J / K .  F! 

COROLLARY 3.33. Let K be a Galois subfield of L. Let G = A r ,  S = L C~ and 
J = L G~'. Let F be a Galois intermediate field. Then F is distinguished if and only if 
F = SI | J1 where S1 is normal over K and there exists a subbasis { x l , . . .  ,Xn} for 
J over K such that {x~ TM , . . . ,  xVs ~8 } is a subbasis of J1 over K, s <~ n. 

0 

THEOREM 4.1 ([53]). Let H be the field of constants of a set of infinite rank higher 
derivations on L. Then L is regular over H. 

PROOF. We show L p and H are linearly disjoint over H p. Let {Zl , . . . ,  2n} C H be 
independent over H p and assume we can find a relation of the form zl d-a~zEA-...+aPsgs 
of minimal length with ai E L, a2 r H. If dj is a map of some higher derivation with 
dj(a2) 7 ~ 0, applying dip to the relation yields a shorter one. Thus L is separable over 



214 J.K. Deveney and J.N. Mordeson 

H. An element of L separable algebraic over H can be expressed as an arbitrarily high 
pn-th power, and hence is mapped to zero by any map in a higher derivation. 1--t 

The dimension of an infinite rank higher derivation is the transcendence degree of L 
over its field of constants. 

The following result is the infinite analogue of Theorem 2.10. 

THEOREM 4.2 ([53]). Let P = {d(1),. . .  ,d (n)} be an abelian set of one-dimensional 
higher derivations on L over M and let their field of constants be H. Then 

1) tr .d(L/n)  <~ n; 
2) if F is independent, then tr.d(g/H) = n. 

PROOF. For (1) we use induction. Let H1 be the field of constants of d (l) and Hn-1 the 
field of constants of {d(2), . . .  ,d(n)}. By induction the transcendence degree of L over 
H1 is one and over Hn-l  is at most n -  1 and H = H1 N Hn-I.  The abelian condition 
is used to show H1 and Hn-1 are linearly disjoint, and hence flee. Let Hl,r be the field 
of constants of the first pr maps of d (l) and let Hn-1,r = Hl,r fq Hn-I.  Then Hn-1 is 
purely inseparable over Hn-l,r and since {d(2),. . .  ,d (n)} restricted to Hl,~ have field 
of constants Hn-l,r, Hl,r is a regular extension of Hn-l,r. Thus Hl,r and Hn-l  are 
linearly disjoint for all r and hence ~ Hl,r = H1 and Hn-I are linearly disjoint. (2) 
follows since the dimension of the space of derivations of L over H is n. [3 

We assume L is finitely generated over M. 
The fields of constants in this section will be the fields of constants of sets of higher 

derivations of finite or infinite rank. If S is such a set and Sn denotes the set of n-th 
sections of S, the field of constants of S will be the intersection of the fields of constants 
of the Sn. Since L is modular over L s~, L is modular over L s. Since L / L  s is finitely 
generated and modular, L = H| s M where L / H  is regular, H / L s  is purely inseparable 
modular of finite exponent. 

DEFINITION 4.3. A set { x l , . . . ,  Xn} C L will be called a tensor basis of L / M  if 

L = M ( L P ' ) ( x , ) | 1 7 4  M(LPt(xn))  

for all t t> 1, tensor product being over M(LPt). 

THEOREM 4.4 ([49]). If M is separably algebraically closed in L then M is a field of 
constants if and only if L / M  has a tensor basis. The tensor basis of L / M  are the sets 
SUT  where S is a tensor basis (subbasis) for M / M  and T is a separating transcendence 
basis of L / M. 

PROOF. The idea of the proof is that L is modular over H and as such splits as a tensor 
product M |  R where M is purely inseparable with a subbasis over H and R has a 
separating transcendence basis over H. Vl 

To establish a Galois type correspondence it is necessary to make a group gener- 
ated by H n ( L / M )  and H~ For simplicity, [49] uses only the HF' (L /M) .  
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Define the maps Vm,n " HPn(L/M) "-> H P " ( L / M )  where m > n by Vm,n(d) = ( f ) ;  
fpm-,~, = di for 1 <~ i <~ pn, and f j  = 0 for 1 <~ j <~ pm and j ~ pm-n. Then 

1) Vm,n(f g) = Vm,n(f)Vm,n(g); 
2) Vm,n is injective; 
3) V,- ,~Vm,n = Y,.,n. 
Thus { g  pn (L/M),  Vm,n In >~ O, m >t l} is a directed set of groups. Let 'H(L/M) 

be the direct limit of this system. Let d be the element of H ( L / M )  containing d. d is 
called the pencil of d. A d in H pn (L /M)  is noncontractible if d does not have the form 
Vm,n(f) for some n and f .  The rank of the unique noncontractible d in any pencil is 
the rank of the pencil. 

A higher derivation d of rank n is the n-th section of f if rank f ~> n and di = fi, 
1 < i <~ n. d is a section of f if each d E d is a section of some f E f .  The extended rank 
of d = sup{rankf I d is a section of f} .  Let -H~176 - { d e  -H(L/M)[ extended 
rank d = oc}. 

THEOREM 4.5 ([49]). I f -H(L/M) is nontrivial, -~c~ (L /M)  = -H(L/H), where as usual 
H is the unique minimal intermediate field of L / M  over which L is regular. 

PROOF. If x is purely inseparable over M of exponent m, then 

o = (xp TM) = ( d j ( x ) ) " "  

for any map djp,~ of a higher derivation. Thus if dj is a section of f E H pm (L /M)  for 

arbitrary m > 0, dj(x) = 0. Thus -H~176 c -H(L/H). The other containment is 
straightforward. [:3 

The fields of constants of our subgroups will be the subfields M over which L has 
a tensor basis. Thus it remains to determine when a subgroup will be a full group. The 
characterization will be similar to that in Section 2. However, in this section iterative 
higher derivations are required to have index 1 or to be normal, i.e. dl ~ 0. A higher 
derivation d on L with constant field M is one dimensional if L has a tensor basis of 1 
element. The proofs of the next two results are similar to those of Section 2. 

PROPOSITION 4.6. Let d be an iterative higher derivation on L with constant field M. 
The following are equivalent. 

1. d is one dimensional. 
2. The constant field of the pn-th section of d is M ( L  p"+~) for all n >~ O. 
3. The constant field of the pn-th section of d is M ( L  p'~+~ ) for some n ~ O. 

If A is a finite set of normal one dimensional higher derivations, let At = {d[ d E A 
and rank d <<. pt or d is the pt-th section of some f in A}. 

THEOREM 4.7 ([49]). Let A be a finite set of one dimensional higher derivations on L. 
The following are equivalent. 

1. A is an abelian independent set of iterative higher derivations. 
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2. At has a dual basis A~ (see Section 2) for  all t > O. If A satisfies (1) or (2), then 
A~ is a tensor basis of L over the constant field of At. 

DEFINITION 4.8. A finite set of higher derivations satisfying the conditions of Theo- 
rem 4.7 is called a standard set of generators. 

Obtaining a set of generators of a Galois group from a standard set of generators 
requires the following constructions and definitions. If d has rank t and q > 0 is an 
integer then vq(d) = f where rank f = qt, fqi = di and fi  = 0 if q r j .  If pm <~ qt 
then d(q,m ) is the pm-th section of vg(d). Given a in L and a higher derivation d, then 
ad = {a~di} is a higher derivation. Given a set D of higher derivations on L, let (LD)m 
be the group of rank pm higher derivations generated by the set of all (ad)(q,m) for 

a E L, d E D and any allowable q. (LD) represents the group of pencils generated by 
{ d i d  E (LD)m for some m >t 0). 

m 

THEOREM 4.9 ([49]). Let L / K  be finitely generated. A subgroup H of H ( L / K )  has 
the form H ( L / M )  if and only if  H = (LA)  where A is a standard set of generators 
constant on M. Let .7 r = { M  [ L D M D K with L / M  Galois} and ~ = {(LA) I A 
a standard set of generators on L with constant fieM LA ~ K} .  The map a: ~ ~ G 
where a ( M )  = H ( L / M )  and r: ~ ~ ~r where T((LA))  = LA are inverse bijections. 

PROOF. The proof is an approximation process similar to that of Theorem 2.16, with 
however many more technical obstacles to be overcome. El 

Heerema developed the theory in the situation where L is finitely generated over M. 
He also proved the following results on the intermediate theory in this situation. 

THEOREM 4.10 ([49]). Let L / M  be Galois. An intermediate field H is invariant under 
H ( L / M ) ,  the set of  all higher derivations on L / M  if and only if H = M ( L  p€ for some 
r>~O. 

THEOREM 4.11 ([49]). Given L / H  and H I M  Galois, every higher derivation on H I M  
into L extends to a higher derivation on L if and only if there is a finite purely inseparable 
modular extension T of  M in K such that H ( T )  = H | T and L / H ( T )  is regular 

It is natural to attempt to extend the Galois theory of pencils of higher derivations to 
the situation where L / M  is not finitely generated. 

PROPOSITION 4.12 ([21]). Let K be a subfield of L. K is the field of constants of a set 
(and hence a group) of pencils on L if and only if L / K  is modular and An K(  Lpn ) - K. 

COROLLARY 4.13 ([21]). Let K be any subfield of L. The field of constants of the group 
of all pencils on L over K is ~ Q * ( L  p') where Q* is the unique minimal intermediate 
field over which L is modular 

The following result gives the most general situation where a complete theory could 
be developed. 
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THEOREM 4.14 ([21]). Suppose L / K  is modular. Then every intermediate field F such 
that L / F  is modular and F is separably algebraically closed in L is the field of constants 
of a group of pencils on L if and only if K ( L  p`) has a finite separating transcendence 
basis over K for some non-negative e. 

PROOF. The essence of the proof is to construct two examples. The first is to show if L 
is purely inseparable modular over K with a subbasis of unbounded exponent, then there 
is a proper intermediate field F with L modular and relatively perfect, (L = F(LP)), 
over F.  Let B = U Bi with the elements of Bi of exponent i over K.  Let xij E B be 
such that xij has exponent ij over K,  ij ~ i j+l,  1 ~< j < c~. Then 

x P i 2  -- i 1 F -  K ( B  \ {x, j ,xi ,  - ,2 , ' " }  

is the desired proper intermediate field since [72], p. 20, shows the intermediate fields 
are chained and infinite in number. [:3 

The second is to show that if L is regular over K with an infinite separating tran- 
scendence basis, then there is a proper intermediate field F with L regular and relatively 
perfect over F.  We can assume L has {z/ I 1 ~ i < c~} as a separating transcendence 
basis. The {zi} is a relative p-basis of L over K.  But {ZlZ~,X2Z~,...} is also a rel- 
ative p-basis. Thus L is separable over K({x lx~ ,x2x~, . . . } ) .  But {XlX~,X2X~,...} is 
algebraically independent over K,  and hence L is regular and relatively perfect over the 
algebraic closure of K({x lx~ ,x2x~ , . . . } )  in L. 

Let K C F be Galois subfields of L. [21] and [22] examine the question of when the 
group of pencils of L / F  will be a normal subgroup of the group of pencils of L / K .  If 
the characteristic of L is not 2, [22] shows that a necessary and sufficient condition is 
that F = K ( L p'~ ) for some n. 

Let K be a Galois subfield of L and K the algebraic closure of K in L. It is always 
true that K is Galois over K.  In the situation where K ( L  p`) has a finite separating 
transcendence basis over K,  it is also true that L / K  is Galois and L / K  splits as a tensor 
product of a purely inseparable modular extension and a regular extension. However, in 
a general setting this is no longer true. L need not be Galois over K [22] and even if it 
is, L / K  need not split as a tensor product [22]. 
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Local behaviour of a 1-dimensional scheme X near a "nice" point x is described by 
the local ring Ox,~ whose completion is a complete discrete valuation ring with residue 
field k(x). When the latter is finite this ring is the ring of integers of a local field. 

The first local fields in characteristic z e r o -  the p-adic fields Qp and their finite 
extensions for a prime p were introduced by Hensel in a series of papers beginning from 
1897. These fields possess some properties similar to those of formal power series fields 
IFq((X)) over a finite field IF'q, q = pY, f ~> 1. Though there are essential distinctions, 
common features are crucial. Numerous profound theories were borned as an attempt 
to translate an existing theory from positive characteristic to characteristic zero and 
conversely. 

In general, the class of complete discrete valuation fields seems to be the next in 
importance and comparatively simple after the class of finite fields. It is closely connected 
with global fields - algebraic number and rational function fields. The famous Hasse 
local-global principle solves global problems by appealing to local ones. 

Local class field theory is one of the highest tops of classical algebraic number theory. 
It establishes a 1-1 correspondence between abelian extensions of a complete discrete 
valuation field F whose residue field is finite and subgroups in the multiplicative group 
F*. Historically this theory appeared as a consequence of the global one in the 1930's 
in the work of Hasse. Later F.K. Schmidt and Chevalley found an independent of global 
exposition. Postwar period of the theory may be characterized as comprising the incor- 
poration of cohomological methods. A modern statement of class field theory employs 
calculations in cohomology groups (see, e.g., [Se2]). 

One can now observe a new period in evolution of class field theory. The first work 
in this direction was a paper of Dwork [Dw]. He pointed out a way to compute values 
of the reciprocity map. This trend was continued by Hazewinkel [Hazl, Haz2], who 
gave a noncohomological exposition of the theory. A still more simple construction 
for local and global fields was proposed by Neukirch [N3, N4]. The Hazewinkel and 
Neukirch constructions were generalized for the case of arbitrary residue field of positive 
characteristic (perfect [Fe5] and imperfect [Fe7]). As corollaries utmost generalizations 
of classical results follow. 

Proper objects which describe local behaviour of an n-dimensional scheme near a 
closed point are so-called n-discrete valuation fields studied by Parshin and Kato in the 
middle of the 1970-s. They developed two independent approaches to higher local class 
field theory. Abelian extensions of complete n-discrete valuation fields are described 
by closed subgroups in topological if-groups. Later Koya found by using Lichtenbaum 
complex a 2-dimensional formation classes approach. An easy and explicit higher local 
class field theories is yielded if one extends the Hazewinkel and Neukirch constructions 
[Fe3, Fe4, Fe9]. 

We discuss in this review only main topics connected with local fields. For proofs and 
details see [FV]. For more details about higher local fields see [Fe7]. The bibliography 
gives references to some topics uncovered in this review. 

I am grateful to many mathematicians for their remarks on a preliminary version of 
this work [Fe8] published in 1992. 
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1. Discrete valuat ion fields 

1.1. Definitions and examples 

1.1.1. Le t / - '  be an additively written totally ordered group. D e n o t e / "  = /-' U {+c~) ,  
where + c o  is a formal element with properties: a ~< +c~,  +c~  <~ +c~,  a + ( + c ~ )  - +c~,  
(+c~)  + (+c~)  = +c~.  Let F be a field. A map v: F - + / " '  with the properties: 

v ( a )  = + ~  r  a = O, 

~(~z) = v(~) + v(~), 

v(c~ +/3)  >/min (v(c~), v(/3)) 

is called a valuation on F, F is called a valuation field. The map v induces a homomor- 
phism of F* to F.  If v(F*) = {0} then v is called a trivial valuation. 

1.1.2. For any valuation v one can define the ring of integers 

o~ = {~ e F*- , (~)  ~> o} 

and its ideal 

~ .  = {~ e F*. , (~)  > o}. 

Then 9Xv is the unique maximal ideal of Dv and the field Fv = D,, /9~v is called the 
residue field of F with respect to v. The image of an element c~ E Dv in F,, is denoted by 

and is called the residue of c~ in Fv. The set Uv = D v -9Ytv forms the multiplicative 
group of invertible elements of Dv and is called the group of units. 

l ' for the least index i with mi # m i. 1.1.3. Let ( m l , . . . ,  mn)  < ( m ~ , . . . ,  m ' )  if mi < m i 
Then the group 

( z ) "  = z e . . .  �9 
n times 

is ordered lexicographically. A valuation v is called n-discrete if the group/- '  is iso- 
morphic as an ordered abelian group with (Z) n for some n 1> 1. The classical case is 
n = 1, then v is called 1-discrete or discrete. It is convenient to assume that the map 
v: F* -+ (Z) n is surjective. 

1.1.4. Examples. 1, For an integer n put vp(n) = k, where k is the highest integer such 
that pk divides n. For rational m / n  # 0 with integer m, n put Vp(m/n) = vp(m)-Vp(n). 
Then Vp is well defined and the map Vp" Q* --+ Z is 1-discrete valuation which is called 
p-adic. The ring of integers is 

.o,,,, = { m / n :  m, ~ e Z, (~, p) = 1 } 
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and the residue field is IFp. The well-known Ostrowsky's theorem asserts that any metric 
on Q is equivalent to the usual absolute value I I or to a metric Ic~lp = p-V,,(o,) induced 
by the p-adic valuation for some prime p. 

2. Let F be a field of rational functions over a coefficient field K, F - K ( X ) .  Then 
there is the 1-discrete valuation v l /x  on F: 

Vl / x (p (X) /q (X) )  - -deg  p ( X ) -  deg q(X) for p(X) ,  q(X) E K [X  I. 

The ring of integers with respect to Vl/X is K[X] and the residue field is isomorphic 
with K.  For each monic irreducible polynomial p(X)  of positive degree over K there is 
the 1-discrete valuation Vp(x) on F which is an analog of the p-adic valuation: 

( f ( x ) )  = k, 

where k is the highest integer such that p(X)  k divides f ( X ) .  The residue field with 
respect to vp(x) is the field K[X]/p(X)K[X]  which is a finite extension of K.  It is 
obtained by adjoining a root of p(X).  Any discrete valuation on F which is trivial on 
K coincides with some vp(x) or vl /x .  

3. Let vi: F* --+ (Z) TM, 1 ~< i ~< k be hi-discrete valuations. Then 

V = ( V l , . . . ,  Vk)" F* -+ (Z)  n 

is n-discrete valuation with n - -  n l  + ' ' "  + nk. 
4. Let v -- (v (n ) , . . . ,  v(1)): F* -+ (Z) n be an n-discrete valuation. Then F is 1-dis- 

crete with respect to the first component v (n) of v and the residue field Fn-1 = Fv(n) is an 
(n-1)-discre te  valuation field with respect to the induced valuation from v ( n - 1 ) , . . . ,  v (1) . 
Continuing in this way we get a tower of discrete valuation fields F = Fn, Fn-1 , . . . ,  F1 
such that Fi is the residue field of Fi+l with respect to a 1-discrete valuation and the 
residue field F0 of F1 coincides with Fv. 

5. Let F be a field with a valuation v. 
a) For a polynomial f ( X )  - o~mX m + . . .  + o~MX M E F[X] with C~m # 0, m ~< M 

put 

v . ( f ( x ) )  : (m. z • . ( F . )  

One can naturally extend v* to F(X) .  Ordering the group Z x v(F*) lexicographically 
we get a valuation v* on F(X)  with residue field isomorphic with Fv. 

b) For a polynomial f ( X )  = o~mX m + . . .  + o~mS M E F[X] with C~m # 0, m < M 
put 

w(f(X))= min v(c~i). 
m~i<~ M 

The residue field of the extension w to F ( X )  is Fv(X) .  
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c) For a polynomial f ( X )  = a m X  m + . . .  + a M X  M E F[X] with am # O, m <~ M 
put 

v . ( f ( X ) )  = min (v(ai) i) E v(F*) x Z, 
m<.i<.M 

where v(F*) • Z is ordered lexicographically. Then the map v. can be extended to F(X)  
and the residue field with respect to v. is isomorphic with Fv. 

6. A valuation v on F is said to be p-valuation of rank d for a prime p if char(F) - 0, 
char(F) = p > 0 and Dv/pD~ is of order pd. F is said to be a formally p-adic field if 
it admits a nontrivial p-valuation. See [PR, Po]. 

1.1.5. Prime elements. Let F be a field and v be an n-discrete valuation. Let 
v(Trn,..., 7rl) -- ( 1 , . . . ,  1) E (Z) n. Then the elements 7rn, . . . ,  7rl are called local param- 
eters of F with respect to v. The maximal ideal 9X~ coincides with the ideal generated by 
7rn , . . . ,  7rl. For n = 1 such an element 7r = 7rl is called a prime (uniformizing) element 
of F.  The ring of integers L3~ is a principal ideal ring only for n = 1 and in this case 
any proper ideal of D v can be written as 7rinD v, m > O. 

Any element a E F* can be uniquely written as 

7r~ . . . .  7r~'~ w i t h a i E X ,  e E U v ,  

and we get a noncanonical decomposition F* _~ (Z) n x Uv. 

1.2. Completion 

1.2.1. Let F be discrete valuation field with respect to v. A sequence (a,~)m~>0 of 
elements in F is called Cauchy if for any integer c there exists m such that v ( ~ k - a z )  ~> c 
for k, 1 ~> m. Then there exists lim V(am) E ZU{+oc} .  The set of all Cauchy sequences 
forms a ring R with respect to componentwise addition and multiplication. The set of 
all Cauchy sequences (am)m~>0 such that lim v(am) = +oc forms a maximal ideal I. 

The field Fv = F = R/1  admits the discrete valuation 9: 9((am))  - l imv(am).  This 

field Fv is called the completion of F with respect to v. F can be identified with a dense 
subfield in Fv under the map: a --~ (a)m>~0 E Fv. The ring of integers L3v is dense in 

L3 v,  the residue field Fv coincides with the residue field of Fv with respect to ~'. 
A field F is called complete if any Cauchy sequence (am)m~>0 is convergent, i.e. there 

exists a = lim am E F with respect to v. The completion of F can be treated as the 
minimal up to an isomorphism over F complete field which contains F. 

An n-discrete valuation field F for n > 1 is called complete if it is complete with 
respect to the first component v (n) of v and the residue field Fv(n) is complete. The 
completion of F is the minimal (up to an isomorphism over F)  complete n-discrete 
valuation field. 

1.2.2. Examples. 1. (See Example 1 in 1.1.4.) The completion of Q with respect to p- 
adic valuation vp is denoted by Qp and is called the p-adic field. Note that the completion 
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of Q with respect to [ ] is IR. Imbedding Q in Qp for all primes p and in IR permits 
the solving of many problems. The famous Hasse local-global principle for a variety V 
over Q declares that the existence of nontrivial R- and Qv-points in V for all prime p is 
equivalent to the existence of a nontrivial Q-point in V. In general this principle doesn't 
hold but there are important instances where it works. For example, this principle holds 
for conics defined by an equation ~ aijXiXj = 0. Note that from the point of view of 
model theory the complex number field C is locally equivalent for any prime p with the 
algebraic closure Qplg of Qp, see [Roq2]. 

The ring of integers of Qp is denoted by Zp and is called the ring of p-adic integers. 
2. (See Example 2 in 1.1.4.) The completion of K(X)  with respect to vx is the formal 

power series field K((X)) of all formal power series 

-~-OO 

Z o~nXn, 
- -  O O  

an -- 0 for n < no. 
3. (See Example 5 in 1.1.4.) Let F be a field with an n-discrete valuation v, and let 

Fv be its completion. Then the field F~((X)) and the field Fv{{X)}  of all formal power 
series 

-~- (X) 

~ o~m Xrn , 
r e ( X )  

am C F* such that inf{~'(am)) > - o 0  and ~(am) -~ +cx) when m --+ - o c  are com- A 
plete (n + 1)-discrete with respect to v*, v.. The field F.(X) is an n-discrete complete 
valuation field with respect to w. 

A 

1.2.3. The completion F,, of F with respect to a 1-discrete valuation v coincides with 
the completion of F with respect to the 93tv-adic topology (i.e. regarding 93I~, m >/0 as 
a basis of neighborhoods of 0). In this case the ring of integers L3.~ is isomorphic alge- 
braically and topologically to lim k3 v/Tr ink3,, with the discrete topology on 23 ~/Tr ms v. 

+ - - -  

1.2.4. Let F be a n-discrete valuation field with the residue field Fv. Let r: Fv --+ k3v, 
r(0) - 0 be a map such that its composition with the residue map Dv --+ Fv is the 
identity map. The set R = r(F,) is called a set of representatives (of Fv in F).  If n - 1 
and F is complete then there is a map 

OR--+ F, (ai)i>.io --+ Z aiTri' 

where 7r is prime in F.  This map is a topological bijection with respect to the discrete 
topology on R. In general, one can introduce, following Parshin [Pa4], a topology on 
a complete n-discrete valuation field F,  which takes into consideration the topologies 
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on the residue fields Fn-1 . . . . .  F1. Assume that char(Fv(,~)) r 0. This topology is the 
strongest one in which any element c~ E F is uniquely expressed as a convergent sum 

E ... E o, ...... 
in i n - l > / I n - l ( i n )  il>/II(i . . . . . .  i2) 

where 7rn . . . .  ,7rl are local parameters, Oi ...... i, E R, ( i n , . . . ,  il) >~ ( a n , . . . ,  al) E (Z) n. 
The multiplicative group F* "~ (Z) n x Uv is equipped with the product of the discrete 

topology on (Z) n and the induced one from F on Uv. For n />  2 F* is not a topological 
group with respect to this topology but the multiplication is sequentially continuous. 

From now on we confine our attention to discrete (1-discrete) valuation fields until 
Sections 6 and 7. 

1.3. The group o f  units 

m 

Let F be a discrete valuation field, U = Uv, D = L3v, 97l = 9Try, F = Fv. Put 
Ui = 1 + 9Y[ i. U1 is called the group of  principal units. 

S ~  ~ ~ 1.3.1. Fix a prime element 7r and introduce maps A0: U --+ Ai Ui -4 -ff by the 
formulas A0(a) = ~, Ai(1 + 7rif~) = ~ for a E U,/7 E D. They induce isomorphisms 

A0" U/Ul ~ -F*, Ai: U ~ l V ~ + l  "" -F. 

Therefore, the group Ul is uniquely/-divisible for (/, char(F))  = 1. 

1.3.2. We are interested in a description of the raising to p-th power, I"P, with respect 
to the filtration Ui. If char(F)  = p then (1 + c~)p -- 1 + c~p and therefore the following 
diagram 

+~ u~i / u~ + , u~/ui+l - - - > -  

is commutative. 
If char(F)  - 0 then (1 + a)  p - 1 + cd' + pc~ + . . . ,  c~ E 971:, where dots denote terms 

of higher order than the preceding. Put e = v(p), el - e~ ( p -  1). Let p - rpr e E 931: e+l 
for a suitable 77 E D. Then the following diagrams are commutative: 

~ , / u i + ~  --- 

f o r i < e ,  ,x, 1 l,xp, , 

F tp ~ F 
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f o r i  = e l  

tp Upei /Upe i U~,lU~,+l > + l  

F " >  F 

f o r i  > e l  

u~/u~+l ,v> u~+~/u~+~+~ 

~'1_ ~ ~  _l ~'+~ 
F ~" F 

1.3.3. Assume that F is complete with respect to its discrete valuation. Then it follows 
from 1.3.1 that any element a E U1 can be uniquely expressed as a convergent product 

H ( 1  + OiTri), Oi E R.  O~ 

If char (F)  = p > 0 then the group of principal units U1 can be seen as a multiplicative 
Zp-module: for a = lim an E Zr,, an E Z put e a = lim e a ' .  The commutative diagrams 
of  1.3.2 imply that U1 is a free Zv-module of infinite rank when char (F)  = p and is a 
Zv-module of  rank n (resp. n + 1 with one relation) if F is a p-adic field of degree n 
over Qv and a primitive p-th root of unity doesn ' t  belong (resp. belongs) to F .  

m 

1.3.4. Assume that F is complete with respect to a discrete valuation and char (F)  = 
p > 0. A representative a E D of ~ E F is called multiplicative if 

a E  N 9  v'. 
m/>l 

The set of nonzero multiplicative representatives forms a group which is isomorphically 
mapped onto the maximal perfect subfield 

if0 = ~ ' ] F  v'~ 

in F .  If the residue field F is perfect then any element ~ E F has a multiplicative 
representative a E 7?,. in F .  The corresponding map r: ~ --4 a is called the Teichmiiller 
map. It induces an isomorphism of groups F "~ r (F*)  = and an isomorphism of 
fields F "~ 7"r when char (F)  = p. The group U is canonically decomposed as the product 
7r x U1. 

1.4. The Witt ring 

Let a = ~ OiTr i, /3 - ~ zliTr i be expansions with Oi, r/i E 7~. Then a description of  
coefficients of  a + /3 ,  a ~  naturally leads to the notion of the Witt vectors (see [Se2], 
Chapter 2, w 
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1.4.1. Let S be an arbitrary commutative ring with unity. For (as)s~o, as E S,  put 
(a (s)) - (wo(ao),  Wl (ao, al ), . . .), where 

n 

w n ( X o , . . . , X n )  - E p i X  p n - ' .  

s = o  

The map (as) -+ (a (s)) is a bijection of (S) + ~  with (S) + ~  if p is invertible in S. In this 
case one can transfer the ring structure from (a (s)) E (S) +~176 under the componentwise 

+ o o  addition and multiplication to (as) E (S) +~176 Then for (as), (hi) E (S)0 

I *) bo bl) ) . - - + o r .  • (as)* (bs) = (w (*)(ao,bo),w (ao, a , ,  , , . . .  , = . 

Here w~ *) is the image of the polynomial u~ *) E Z[X0, X , , . . . ,  Y0, Yl, . . . ]  under the 

canonical homomorphism Z ~ S, where " (*) "i are defined by the equations 

w n ( Z o ,  . . . , X n )  , w n ( Y o ,  . . . , Y n )  

(v~ *) �9 v(*)(Xo, X n ' Y o  . . .  ]In)) - -  W n  ~ . .  ~ . . . ~  , ~ (*) 

The sequences (ai)i~>0 are called Witt vectors and the a (i) for i ~> 0 are called the ghost 
components of (ai)s~>0. The set of Witt vectors is then a commutative ring. This is still 
the case if p is not necessarily invertible. Indeed one shows without much trouble that 

the polynomials u~ *), �9 - +,  x defined by ( . )  above have their coefficients in Z. Thus, 
the set of Witt vectors is a commutative ring with unity (1 ,0 , . . . ) .  This ring is called 
the ring of Witt vectors W ( S )  of S. For ramified Witt vectors see [Haz4] and [FV], 
Chapter I, Section 7. 

1.4.2. Assume that p = 0 in S. Then one can define maps 

~o s -~ w ( s ) ,  

V" W ( S )  --4 W ( S )  (the "Verschiebung" map), 

F" W ( S ) - - 4  W ( S )  (the "Frobenius" map) 

by the formulas 

~0(a) = (a, 0, 0 , . . . ) ,  V(a0, a , , . . . )  = (0, a0, a~ , . . . ) ,  

r(a0, a , , . . . )  - (a~, a ~ , . . . ) .  

Then F is a ring homomorphism and VF(a )  = FV(a )  = pa .  The ring W n ( S )  - 
W ( S ) / V n W ( S )  consists of the Witt vectors (a0 , . . .  , a n - l )  of length n. 
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1.4.3. Assume that S = K is a perfect field of characteristic p. For a Witt vector 
c~-  (ao, a l , . . . )  E W ( K )  put 

v(c~) = min {i: a E V i W ( K ) ,  c~ q~ V i + I W ( K ) } ,  v(O) = +o0. 

Then the field of fractions F0 of W ( K )  is a complete discrete valuation field of char- 
acteristic 0 with respect to the extension of v. The element p is a prime element of F0 
and its residue field is isomorphic with K. The set of multiplicative representatives 7~ 
coincides with ro(K). In particular, W ( F p ) =  Zp. 

2. Extensions of discrete valuation fields 

2.1. The Hensel Lemma 

Let F be a valuation field with ring of integers D, maximal ideal 93~ and residue field F. 
For a polynomial f (X)  = a n X  n + ' "  + c~o E D[X] we shall denote by f (X)  c F[X] 
the polynomial ~ n X  n + . . .  + ~0. We shall write 

f (X)  -- 9(X)  (mod 9")t m) 

if f (X)  - g(X)  e 9JtmO[x]. 

2.1.1. PROPOSITION. Let F be a complete discrete valuation field. Let f ( X ) ,  9o(X), 
ho(X) be polynomials over L3 and let f ( X ) ,  9o(X) be monic polynomials. Let the 
resultant R(go(X), ho(X)) r 9Jt s+l and 

f ( X )  =_ 9o(X)ho(X) (mod 9~ 2s+l) 

for an integer s >~ O. Then there is a polynomial h(X)  and a monic polynomial 9(X)  
over 23 such that f (X)  = 9 ( X ) h ( X )  and 

9(X) = go(X) (mod 9Y~+'), h(X)  - ho(X) (mod 9Y~+l), 

deg g(X)  = deg 9o(X). 

The proof is carried out by constructing polynomials 9i(X),  h i (X)  over L3 with the 
properties: the 9i(X) are monic polynomials, deg9i(X) = deg90(X), 

9i(X) = gi-,  (X) (mod ffJli+~), 

hi(X)  - h~_l(X) (mod 9Y~i+~), 

f ( x )  = (mod 
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and proceeding by induction on i. Then 9(X) - lim 9i(X), h(X)  - lim hi(X) are the 
desired polynomials. 

m 

2.1.2. COROLLARY (Hensel Lemma). Let F be as in 2.1.1 and F be the residue field of 
m 

F. Let f (X ) ,  go(X), ho(X) be monic polynomials over L3 and f ( X )  = -ffo(X)ho(X). 
m 

Let -fro(X), ho(X) be relatively prime in F[X]. Then there are monic polynomials g(X), 
m 

h (X)  with coefficients in L3 such that f (X) = g (X)h (X)  and-ff = -fro, h = ho. 

Valuation fields satisfying the assertion of this corollary are called Henselian. 

2.1.3. COROLLARY. Let F be as in 2.1.1 and f ( X )  be a monic polynomial over O. Let 
f(o~o) E 93]: 2s+1, f'(o~o) ~ 9Y~ s+l for some so E L3, s >. O. Then there is ~ E L3 such 
that oz-  so E 93t s+l and f (a )  = O. 

Other characterizations of Henselian fields can be found in [Bou, Ra]. 

2.2. Extensions 

2.2.1. Let F be a field and L be an extension of F with a valuation w" L* ~ F.  Then w 
induces a valuation w0" F* --+/-' on F .  In this context the extension L / F  is said to be an 
extension of valuation fields. The group wo(F*) is a totally ordered subgroup of w(L*) 
and the index of w(F*) in w(L*) is called the ramification index e(L/F, w). The ring of 
integers L'9~o0 is a subring in Dw and 931wo coincides with 9J~w M Dwo. Hence the residue 
field Fwo can be regarded as a subfield of the residue field L~. The residue of an element 
c~ E Dwo in F~, o can be identified with the image of c~ E Ow in Lw. The degree of 
the extension L~o/Fw0 is called the residue degree f (L/F, w). This immediately implies 
that for F C M c L and the induced valuation wo on M from w on L 

e(L/F, w) = e(L/M, w)e(M/F,  wo), 

f ( L / F ,  w) = f ( L / M ,  w ) f ( M / F ,  wo). 

If L / F  is a finite extension and w0 is discrete for a valuation w on L then w is discrete. 
In what follows we shall consider discrete valuations. 

2.2.2. Let F and L be fields with discrete valuations v, w, F C L. The valuation w is 
said to be an extension of v if the topology defined by w0 is equivalent with the topology 
defined by v. In this case we write wlv and use the notations e(wlv ), Y(wlv) instead of 
e(L/F, w), f ( L / F ,  w). Then e(w[v) = IZ: w(F*)[  and if Try, 7rw are prime elements 

e(~olv) with respect to v, w then 7% = 7rw e with e E U~o. 
If L is a finite extension of F then e(w[v)f(w[v) <~ [L: F[. 

For instance if L is a finite extension of F in the completion Fv then e(wIv) = 
f(wlv) = 1. Therefore, in general the inequality is not an equality. However, if L is a 
finite extension of  a complete discrete valuation field F then L is complete and 

e (w lv ) f (w lv )  = I L F I .  
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Moreover, if 0 1 , . . . ,  Of are elements of Dw of which the residues form a basis of L~o over 
Fv  and 7r~o is prime in L then O~o = Ov[{OiTr~}], L - 17({0i7r~}) with 1 ~ i <~ f (w lv ) ,  
0 < j <~ e(wlv ) - 1. 

2.2.3. Complete discrete valuation fields also possess the following property: there is 
exactly one extension w of the discrete valuation v of 17 to a finite extension L of F.  
It is defined by the formula w = ( 1 / f ) v  o NL/F  with f = f (w lv ) ,  where NL/F  is the 
norm map from L to F,  see [CF, Bou]. 

A general case now can be deduced from this one. 

A 

2.2.4. PROPOSITION. Let 17 be a field with the discrete valuation v, F the completion 
of  F with respect to v. Let L - 17(~) be a finite extension of  17 and f ( X )  the monic 
irreducible polynomial o f  c~ over 17. Let 

k 

f ( x )  - M g,(x) 
i=1  

A 

be the decomposition of  the polynomial f (X )  into irreducible monic factors in FIX]. Let 

c~i be a root o f  the polynomial g i (X )  (Cel -- c~) and Li -- F(c~i). Let wi be the unique 
extension of  ~ to Li. Then L is embedded as the dense subfield in the complete discrete 
valuation field Li under F ~ F, ~ ~ c~i. The restriction wi of  wi to L is a discrete 
valuation on L which extends v. The valuations wi are distinct and any extension of  v 
on L coincides with some wi for  1 <~ i <<. k. 

Thus, this assertion establishes a connection between extensions of a discrete valuation 
and the decomposition of the irreducible polynomial over the completed field. 

In particular, there is a unique extension of a discrete valuation v of F on L for purely 
inseparable extension L / F .  Indeed, in this case L - F(c~) and f ( X )  decomposes as 
(X - a)P~ in the fixed algebraic extension of F,  therefore k - 1. 

Now we are able to describe extensions of discrete valuations on Henselian fields. 

2.2.5. PROPOSITION. The following conditions are equivalent: 
1) F is a Henselian field with respect to a discrete valuation v. 
2) The discrete valuation extends uniquely to a finite algebraic extension L of  F. 
3) I f  L is a finite separable extension o f F  of  degree n then n -- e(wlv) f (w[v ), where 

w is the extension of  v on L. 
A 

4) F is separably closed in F. 

A proof follows from 2.2.4. The separable closure of a discrete valuation field F in 
/~ is called the henselization F h of F,  it is the minimal Henselian field which contains 
F.  For instance, ' the elements in Qp algebraic over Q form a Henselian countable field, 
but Qp is uncountable. 

2.2.6. COROLLARY. Let F be a Henselian discrete valuation field and L an algebraic 
extension of  F. Then there is a unique valuation w: L* -+ Q (not necessarily discrete) 
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such that the restriction WlF coincides with the discrete valuation v on 17. Moreover, w 
is Henselian. 

2.2.7. COROLLARY. Let F be a Henselian discrete valuation field and L / F  a finite sep- 
arable extension. Let w be a discrete valuation on L and a: L -+ 17alg be an imbedding 
of L in a fixed algebraic closure F alg over F. Then w ocr -1 is a discrete valuation on 
aL  and ~('aL = O'~I'~L, D a L  = O'DL. 

2.3. Unramified and ramified extensions 

Let 17 be a Henselian discrete valuation field and L be an algebraic extension over F. 
If the unique extension w of the valuation v on F is discrete on L then we shall write 
e(LIF ), f ( L I F  ) instead of e(w[v), f (wlv) .  We shall write 23 or L3F, 9Y~ or 93q:F, U or 
UF, 7r or 7rE, and 17 instead of L3v, 92tv, Uv, Try, and Fv. 

2.3.1. A finite extension L of F is called unramified if L / F  is separable of the same 
degree as L / F .  A finite extension L / F  is called totally ramified if f(LI17 ) - 1. A finite 

extension L/17 is called tamely unramified if L / F  is separable and if p = char(F) > 0 
then (p, e(LIF)) = 1, e(LI17 ) < oo. 

Then it follows from 2.2.2, 2.2.3 that f(LIF) - IL" FI  when L / F  is unramified and 
e(LI F) <~ [L " F[ if L / F  is totally ramified. 

2.3.2. We first treat the case of unramified extensions. The next assertion follows from 
the Hensel Lemma. 

PROPOSITION. 1) Let L / F  be an unramified extension and L = F(O) for some 0 E L. 
Let a E L3L be such that -~ = O. Then L = F(a)  is separable over F and L3L = L3F[C~]. 

u 

0 is a simple root of the irreducible over 17 polynomial f ( X ) ,  where f ( X )  E L3F[X] is 
the monic irreducible polynomial of a over F. 

2) Let 9 (X)  be a monic separable polynomial over 17 and f (X)  a monic polynomial 
over L3F, - f (X)  = 9(X) .  If a is a root of f ( X )  in F alg then the extension L / F  for 
L = F(a)  is unramified and L = 17(0) for a root 0 = -~ of the polynomial 9(X).  

COROLLARY. 1) If  M / F ,  L / M  are unramified then L / F  is unramified. 
2) If  L l / F ,  LE/F are unramified then LILE/F  is unramified. 

2.3.3. An algebraic extension L of a Henselian discrete valuation field F is called un- 
ramified if L / F ,  L / F  are separable extensions and e(LIF) = 1. The compositum of all 
finite unramified extensions of F in a fixed algebraic closure F alg is unramified and this 
field is a Henselian discrete valuation field (not complete in general). This field is called 
the maximal unramified extension F ur of F.  For instance, Q~r is obtained from Qp by 
adjoining of all roots of unity of order relatively prime to p. 

2.3.4. By using Corollary 2 in 2.2.7 and the Hensel Lemma we deduce 
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PROPOSITION. 1) Let L / F  be unramified and L / F  be Galois. Then L / F  is Galois. 
2) Let L / F  be unramified Galois. Then L / F  is Galois. Let for an automorphism 

cr C Gal(g /F)  the automorphism -5 in Gal(L/F)  satisfy the relation -#(-5) -- or(a)for 
a E L~L. Then the map ~r ~-+ -5 induces an isomorphism of Gal(L/F)  onto Gal(L/F).  

COROLLARY. The residue field of F ur coincides with the separable closure ~sep of"ff and 

Gal (FUr/F) "~ Gal (ffsep/~). 

If  L is an algebraic extension of F and L is a discrete valuation field then L ur -- L F  ur 
and Lo = L N F ur is the maximal unramified subextension of F in L. 

2.3.5. Now we consider tamely ramified extensions. 

PROPOSITION. 1) Let L be a finite separable tamely ramified extension of a Henselian 
discrete valuation field F and Lo /F  be the maximal unramified subextension in L /F .  
Then L = Lo(Tr) and L~L = L~go[7r] with a prime element 7r in L satisfying an equation 
X e - 7to = 0 for a proper prime element 7to in Lo, where e = e(LIF ). 

2) Let L / F  be a finite unramified extension and L = Lo(a) with a e = fl c Lo, 
(p, e) = 1 if p = char(F) > 0. Then L / F  is separable tamely ramified. 

The proof follows from writing zq - 7r~r for prime elements 71" L in L, 7rl in L0 and 
c UL and the e-divisibility of the group of principal units. 
The field L0 is called the inertia subfield of the extension L / F .  

COROLLARY. l) If M / F ,  L / M  are separable tamely ramified then L / F  is also tamely 
ramified. 

2) If  L1/F,  L2 /F  are separable tamely ramified then so is L1L2/F. 

2.3.6. The last and most complicated case concerns totally ramified extensions. 
Let F be a Henselian discrete valuation field. A polynomial 

f ( X )  = X ~ + a ~ _ l X  ~-1 + . . .  + ao 

over D is called an Eisenstein polynomial if a 0 , . . . ,  an-1 E 9Jr, a0 r ~)' t2.  

PROPOSITION. 1) An Eisenstein polynomial f (X)  is irreducible over F. If  a is a root of 
f (X)  then F ( a ) / F  is a totally ramified extension of degree n and a is a prime element 
in F(a),  ~--~F(a)= ~-~F[O~] �9 

2) Let L / F  be a separable totally ramified extension of degree n and lr be a prime 
element in L. Then 7r is a root of an Eisenstein polynomial over F of degree n. 

Note that properties analogous to those in Corollary 2.3.2, 2.3.5 don't hold for totally 
ramified extensions. 
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2.4. Galois extensions and ramification groups 

Let F be a Henselian discrete valuation field. 

2.4.1. Let L be a finite Galois extension of F,  G = Gal(L/F). Put for an integer i /> - 1  

Gi = {a E G: aoz -  oz E 9)IiL +, for all c~ C D L }. 

Then G_I = G and Gi is a normal subgroup of G. If L / F  is separable then the 
subgroup 670 corresponds to the field L0 which was defined in 2.3.5 and is called the 
inertia subgroup of 67. In this case the group GI corresponds to the maximal tamely 
ramified extension of F in L. 

The definitions imply that Gi = {a E G: a T r -  7r E 9Yt~ +l } for a prime 7r in L, 
Gi = { 1 } for sufficiently large i. 

m 

2.4.2. Let L be a finite Galois extension of F,  L separable over F.  Let 7r be prime in 
L. Introduce maps 

�9 Z * ~ " r Go--~ r Gi--~ L (i > O) 

by the formulas r = Ai(aTr/Tr), where the maps Ai were defined in 1.3.1�9 Then the 

r i > 0, induce injective homomorphisms Go/Gl ---> -L*, Gi/Gi+l ~ -L for i > 0. By 

the structure of the groups L*, L this implies that the group Go/Gl is cyclic of order 
relatively prime with char(F) if char(F) > 0. If char(F) = 0 then Gl = 1 and 670 is 
cyclic. If char(F) = p > 0 then Gi/Gi+l are abelian p-groups and Gl is the maximal 
p-subgroup of Go. Therefore, Go is a solvable group and G is solvable if Gal(L/F) is 
solvable. 

2.4.3. For further properties of ramification groups see [Se2], Chapter 4, [Senl, Sen2]. 
There exists a metatheorem which claims that an assertion about properties of ramification 
groups of totally ramified extensions which holds for a perfect residue field is true for a 
finite residue field as well, see [Lau 1 ]. A case of an imperfect residue field is treated in 
[Lo, Hy, Kat5]. 

2.5. Structure theorems for complete fields 

m 

Let F be a discrete valuation field�9 If char(F) = p > 0 then p = 0 in F and char(F) = p. 
Therefore, there are the equal-characteristic cases char(F) = char(F) = 0 or char(F) - 
char(F) - p > 0 and the unequal-characteristic case char(F) = 0, char(F) - p. For 
proofs of the following assertions see [Coh]. 

Now let F be a complete discrete valuation field. 

2.5.1. The simplest case is char(F) = char(F) - 0. In this case there exists a (not 
unique in general) field in D F which isomorphically mapped onto F. This field is a 
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maximal one which is contained in D F and its existence is verified by using the Hensel 
Lemma. Therefore, the field F is isomorphic algebraically and topologically to the field 
F((X)),  where X corresponds to a prime element 7r in F.  

2.5.2. The next case is char(F) = char(F) = p. If F is perfect then the set of mul- 
tiplicative representatives as was noticed in 1.3.3 is a field in D F which is mapped 
isomorphically onto F.  This field is the unique one which has this property. By using 
the notion of a p-basis the existence of such a field can also be proved for F not perfect 
(in this case there are many such fields). Therefore, in this case the field F is isomorphic 
and homeomorphic with the field of formal power series F((X)).  

2.5.3. The most complicated case is char(F) = 0, char(F) = p. In this case e(F) = v(p) 
is called the absolute index of ramification of F.  

The preceding assertions show that in the equal-characteristic cases for an arbitrary field 
K there exists a complete discrete valuation field F,  whose residue field is isomorphic 
to K.  The same assertion holds for the unequal-characteristic case: if K is a field of 
characteristic p then there is a complete discrete valuation field F of characteristic 0 with 
prime element p and residue field K. If K is perfect then one can take the quotient field 
of W(K)  by using 1.4.3. If K is imperfect, let 

K~ = U K1/p" 
n>~O 

be its extension. Then K I is perfect and one can take the subring S in W ( K  ~) generated 
by the multiplicative representatives of K.  Then the quotient field of S is complete with 
prime p and its residue field is K.  

2.5.4. Now let F,  L be complete discrete valuation fields of characteristic 0 with the 
residue field F of characteristic p and F = L. Let p be prime in F.  Then there is a 
homomorphism qo" F ~ L such that VL o qo = e(L)vg and qo(a) = ~. We deduce that 
L can be regarded as a totally ramified extension of degree e over F.  In particular, if 
L is perfect then L can be regarded as a finite totally ramified extension of the quotient 
field of W(L). If p is prime also in L then qo is an isomorphism. For more details see 
[FV], Chapter II, Section 5. 

3. T h e  n o r m  

From now on we treat complete discrete valuation fields. 

3.1. Cyclic extensions of prime degree 

To describe the action of the norm map NL/F with respect to the filtration of 1.3 there 
are four cases to consider: L / F  is unramified, L / F  is tamely and totally ramified, 
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L / F  is totally ramified of degree p - cha r (F )  > 0, L / F  is inseparable of degree 
p - cha r (F )  > 0 and e(LIF) = 1. We confine our attention to the first three cases. 

3.1.1. For the proposit ion to follow it is convenient  to use the next assertion" If L / F  is 
a separable finite extension and 7 E D L then 

NL/F(1 + "7) = 1 + NL/F('?) + TrL/F( 'y)  + TrL/F(5)  

for some 5 E DL with VL(6) >~ 2VL(')'), where NL/F is the norm map, TrL/F is the 
trace map. 

3.1.2. PROPOSITION. Let L / F  be an unramified extension of  degree n. Then a prime 
element rrF in F is prime in L. Let Ui,L = 1 + 7riFDL, Ui,F -- 1 + rriFDF and Ai,F, 
Ai,L for  F and L be as in 1.3.1. Then the following diagrams are commutative: 

L* v r Xo, z _s > Z UL > 

F* ~,F "~ Z UF XO, F> y ,  

Ui,L Xi,L > _~, 

NL/FI hi ]rrL/ 
,F 

gi,F . Y 

F, i> /1 .  

3.1.3. PROPOSITION. Let L / F  be a totally and tamely ratified Galois extension of  degree 
n. Then for  some prime element 7rL in L the element 7rF -- 7r~ is prime in F. Let 
Ui,L = 1 + 7r~DL, Ui,F = 1 + 7riFDF and Ai,F, Ai,L for  F and L be as in 1.3.1. Then 
the following diagrams are commutative: 

L* v L > Z U L ~"' ~ -s = -if* 

VF XO, F 
F* . z UF > y *  

if i>~1 

Uni L Xni,L -- - -  , > L - F  

NL/F 1 1 x~ 
~i,F 

U~,F ~ y 

where id is the identity map, $ n is raising to the n-th power, 
~ E F .  

x ~ is multiplication by 



Local fields 239 

3.1.4. PROPOSITION. Let L / F  be a totally ratified Galois extension o f  degree p = 
char (F)  > 0. Let cr be a generator o f  G a I ( L / F )  and for  a prime element 7rL in L 

cr(TrL)/TrL = 1 + ~77rsL with 71 e UL, s >~ 1. 

Then s doesn't depend on the choice of  7r L. Let 7rF -- NL/FTrL, then 7rF is prime in F. 
Let Ui,L = 1 + 7r~DL, Ui,F = 1 + 7r~DF and/ki,F, )~i,g for  F and L be as in 1.3.1. 
Then the following diagrams are commutative: 

L* vL ~ Z UL ~o,L > ~ .  

NL/F 1 I id NL/F 1 1 Ntp 
r XO,F ._~. F* vF ._ Z UF ~" 

i f l  < ~ i < s  

Ui,L 

NL/F 1 
Ui,F 

) k i , L  ~ w 
> L - F  Us,L 

ISP NL/F 1 
~ i , F  :~ F Us,F 

> L - F  

Xs,F ) -~* 

i f i>o  

Us+pi,L 

NL/F 1 
gs+i,F 

~ s + p i , L  - -  - -  
> L - F  

I x ( - ~  -1 ) 

) k s + i , F >  F 

where ~ (-0) -- -0 p -- -0~ p -1. 

In particular, Us+I,F C_ NL/FUsw1, L. 

3.2. The Hasse-Herbrand function 

We now assume that F is a complete discrete valuation field whose residue field is 
perfect. 

E 
3.2.1. Let the residue field F of F be infinite. Let L / F  be a finite Galois extension, 
N - NL /F .  The commutative diagrams of 3.1 and the solvability of Go in 2.4.2 imply 
that there exists the unique function h - hL/F" N ~ N such that h(0) - 0 and 

N (Uh(O,L) C_ Ui,F, N (Uh(O,L) ~= Ui+,,F, N (Uh(i)+l,L) C_ Vi+l, F. 
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Then hL/F -- hL/Lo. For the case of finite residue fields we put hL/F -- h~u,/~u,, 
A 

where F ur is the completion of the maximal unramified extension F ur of F. If M is a 
subextension in L / F  then hg/F -- h L / u  o hU/F .  Consequently, for a finite separable 

extension L / F  we put hL/F -- hE} L o hE/F for a finite Galois extension ElF ,  L c_ E. 
Then hL/F is well-defined. 

3.2.2. It is more convenient to extend the Hasse-Herbrand function to be defined not 
only for natural numbers. For real a i> 0 one sets h(a) = a, h(a) = ]L" Fla, 

t "  

h(a) = ~a, a <<. s, 
( s ( 1 - p ) + p a ,  a>ls ,  

for L / F  unramified, Galois totally ramified of degree prime to p = char(F) if char(F) > 
0, Galois totally ramified of degree p = char(F) > 0, respectively. Then 

hL/F: R>~O --~ R>~O 

is determined by employing these building block functions for any Galois or separa- 
ble extension. The function hg/F is a well-defined, piecewise linear, continuous and 
increasing [FV], Chapter III. 

, 

3.2.3. Let L / F  be a finite Galois extension, G = GaI(L/F), h = hL/F. Let Ga for a 
real a t> 0 denote the ramification group Gin, where m is the smallest natural >/a. Let 
h~, h~ be the left and the right derivatives of h. Then 

h~(a) = IG0" Gh( )l, h~r(a) = IGo " Gh(a)I 

h~(a) = IGo" if h(a) c N. 

if h(a) q~ N, 

3.2.4. The traditional notation for hL/F is I/)L/F. We call it Hasse-Herbrand, since 
Hasse introduced it in this form and Herbrand was the first who studied it (in a different 
form). This is the inverse function to qOL/F which plays a central role in expositions of 
ramification theory, see [Kawl, Kaw2, Se3, Senl, Sen2, CF, Laul, Lau2, Lau3, Marl, 
Mar2, Maul,  Mau2, Mau3, Mau4, Mau5, Win l, Win2]. Introduce an upper numbering 
of the ramification groups by setting G a = Gh(a), a >~ O. Then for a normal subgroup 
H in G one can deduce by using the properties of h that (G/H) a - GaH/H for a ~> 0. 
For an infinite Galois extension L / F  with group G the upper numbering is defined as 
G a = lim G(M/F) a, where M / F  runs over all finite subextensions in L/F.  

+ - - - -  

3.3. The norm and ramification groups 

Let F be as in 3.2. 
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3.3.1. Let L / F  be a finite Galois totally ramified extension, G = Gal(L/F), h = hL/F. 
Then for any integer i ~> 0 the sequence 

Ni 
1 ~ Gh(i)/Gh(i)+l Ch(~ Vh(i),L/Vh(i)+l, L ) Vi,F/Vi+l,F 

is exact, where ~)h(i) is induced by the homomorphisms of 2.4.2, Ni is induced by NL/F. 

3.3.2. Abelian extensions have some additional properties. 

THEOREM (Hasse-Arf). Let L / F  be a finite abelian extension with group G = Gal(L/F). 
Then Gj = Gj+l for j E N such that j r hL/F(I~ ). 

For an assertion converse to the Hasse-Arf theorem see [Fe6]. 

3.4. The Fontaine-Wintenberger fields of norms 

Let F be as in 3.2. 

3.4.1. Let L be a separable extension of F with a finite residue field extension L/F.  
Let L be the union of an increasing directed family of subfields Li, i >>. O, which are 
finite extensions of F.  The extension L / F  is said to be arithmetically profinite if the 
composition . . .  o hL~/L~_1 o . . .  can be defined. In other words, taking into consideration 
3.2.3 for any real c > 0 there is an integer j such that 

hL,/L~(a) = a for a < hLj/F(C), i > j. 

We put hL/F . . . .  ohL,/Li_l o . . . .  Then the function hL/F doesn't depend on the choice 
of Li and is piecewise linear, continuous, increasing. If M / F  is a subextension in L / F  
then M / F  is arithmetically profinite. If, in addition, M / F  is finite then hL/F = hL/M o 
hM/F. An extension L / F  is arithmetically profinite if and only if G(Fsep/L)G(Fsep/F)  a 
is of finite index in G(Fsep/F) for any a >~ 0. 

An important example of infinite arithmetically profinite extensions is a Galois exten- 
sion L / F  with a finite residue field extension whose Galois group Gal(L/F) is a p-adic 
Lie group, see [Sen2, Win 1 ]. 

A Galois totally ramified extension L of a local field F with finite residue field is 
arithmetically profinite if and only if G(L/F)  has a discrete set of breaks with respect 
to the upper numbering. 

3.4.2. Let L be an infinite arithmetically profinite extension of F and Li be an increasing 
directed family of subfields which are finite extensions of F,  L -- (.J Li. Let 

N(LIF)* = l i m  L*  
+ - - -  

be the projective limit of the multiplicative groups with respect to norm homomorphisms 
NL, /L  ~, i >/ j .  Put N(LIF) = N(LIF)*t2 {0}. Then N(LIF)* doesn't depend on 
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the choice of Li. Let A - (aL,)i ,  B = (/3L,)i be elements of N(LIF ). Then the 
sequence NLj/L,(C~Lj +/3Lj), j --+ C~ is convergent in Li. Let ")'L, be its limit. Then 
put (7 = (3'L,)i = A + B. The set N(LIF ) possesses the structure of a field under the 
multiplication and addition thus defined. 

For A = (aL,)i put v(A) = v(C~Lo), where Lo is the maximal unramified subextension 
in L/F. Then the map v is a discrete valuation and N(LIF ) is complete of character- 
istic p. There is an isomorphism of L onto a subfield in N(L[F) which is mapped 
isomorphically onto the residue field of N(LIF ). 

3.4.3. If M / F  is a finite subextension in L/F  then N(L[F) : N(LIM ). On the other 
hand, if E/L  is a finite separable extension then N(LIF ) can be identified with a subfield 
of N(E[F) and N(EIF)/N(LIF) is an extension of complete discrete valuation fields. 

3.4.4. For an arbitrary separable extension E/L  denote by N(E, LIF ) the injective 
limit of N(E'IF ) for a finite separable subextension E'/L in ElL. If ElL is finite 
then N(E, LIF) = N(EIF). If ElL  is Galois extension then Gal(E/L)is isomorphic 
with the Galois group of N(E, LIF) over N(L[F). Moreover, the group Gal(Fsep/L) 
is isomorphic with the Galois group of N(L[F) sep over N(LIF ). 

Further properties of fields of norms can be found in [Win l, Win2, Win3, Lau4, Ke]. 
For some connections between complete discrete valuation fields of characteristic 0 and 
p see [Del]. The objects that have been discussed are closely related with the theory of 
p-adic representations and p-adic periods, see [Win3, Fol, Fo2, FI]. 

4. Local class field theory 

We describe here abelian extensions of some classes of discrete valuation fields. In 4.1- 
4.5 we assume that F is a complete discrete valuation field with finite residue field. 

4.1. Complete discrete valuation fields with a finite residue field 

For a finite field Fq its absolute Galois group GaI(F~ep/Fq) is isomorphic with Z and 
ll~sep ll~sep topologically generated by the automorphism ~: ~,q ~ ,,q , ~(0) = 0 q 

4.1.1. Let T = ~q for q - pY, p = char(F), f is called the absolute inertia degree of F. 
It follows from 2.5 that either char(F) = 0 or char(F) -- p. In the first case e - v(p) > 0 
and the restriction of v to Q is equivalent to p-adic valuation by 1.1.4. Then F can be 
regarded as containing the field Qp and F/Qp is a finite extension of degree n - ef .  
Such a field is called a p-adic field. Fields of the second class are called local function 
fields, they are isomorphic with Fq((X)).  Complete discrete valuation fields with perfect 
residue fields are often called local. 

4.1.2. The ring of integers L3 of F and the unit group U are compact with respect to the 
valuation topology, F is locally compact. The commutative diagrams of 1.3.2 imply that 
subgroups of finite index n in F* are open if char(F) = 0 or if char(F) = p, (n, p) -- 1. 



Local fields 243 

Thus, topological properties of p-adic fields are determined by their algebraic structure. 
This is not the case for local function fields. 

4.1.3. One can deduce from 2.3.2 that there exists a uniquely determined unramified 
extension L of F of degree n ~> 1: L = F(#q , - l ) ,  where #q,~-I is the group of all 
(qn _ 1)-th roots of unity in F sep. The extension L / F  is cyclic and by 2.3.4 and the 
previous remark the maximal unramified extension F ur of F is Galois with the group 

A 

isomorphic to Z and topologically generated by an automorphism qDF such that 

qaF(C~) -- C~ q (mod 9Y~Fur) for c~ E L3F,r. 

The automorphism ~F is called the Frobenius automorphism of F. 

4.1.4. By using 1.3.2 one can deduce that if char(F) - p then any element c~ E U1 can 
be uniquely expressed as a convergent product 

OL -- ~ I  I ~  (1 -~- Oij7ri)aiJ 
(i,p)=l jE g 

i/>l 

with the index-set J enumerating f elements in L3F of which the residues form a basis 
of F over Fp, the elements Oij belonging to this set, 7r is a prime element in F,  aij E Zp. 

Denote the polynomial X p - X by go(X). Note that the subgroup go(F) is of index p 
in F.  If char(F) - 0 then any element c~ E U1 can be expressed as a convergent product 

iEI jEJ 

with I -- {1 <~ i < p e / ( p -  1), (i,p) -- 1}, the index-set J and Oij being as above, 
aij E Zp. If there is no primitive p-th root of unity in F then w. = 1, a -- 0 and the 
writing is unique. If there is a primitive p-th root of unity in F then w. -- 1 -~-O.7r pe/(p-1) 
such that w. ~ F *p, a E •p. In this case the expression above isn't unique. 

4.1.5. The commutative diagrams of 3.1 imply that the norm group NL/FL* is of index 
1 -- IL" FI in F* for a cyclic extension L / F  of degree 1. 

4.2. The Neukirch construction of the reciprocity map 

4.2.1. Let L I E  be a finite Galois extension. Denote by r  ) the set of those auto- 
morphisms ~ in Gal(LUr/F) for which ~lF,r is a positive integer power of q0F. Then 
the set r  ) is closed with respect to multiplication, but 1 ~ r  ). The map 
r  ) --+ Gal(L/F): ~ --+ alL is surjective. The fixed field Z of ~ E r  ) is of 
finite degree over F and ~ is the Frobenius automorphism of S ,  S ur -- L ur. 
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4.2.2. Let L IF be a finite Galois extension. Introduce the map 

TilE: r  ~ F*INL/FL* 

by the formula 

:FLIF('a) = NEIFlr~ (mod NLIFL*), 

where S is the fixed field of K E r ~r~ is prime in 2J. Then the map TL/F is well 
defined. 

The next assertion is of great importance in this exposition: let al ,  a2 E r  and 
a3 = a2ai E r  ) then 

N,V,31F'X3 -- N.,V, IF'XI N.,v,21F'X2 (mod NLIFL*) , 

where 7ri is a prime element in the fixed field Zi of Yi. This assertion is verified by 
technical but not complicated computations, see [N3]. The congruence can be proved 
easier if the Hazewinkel construction of the reciprocity map (4.3) comes into play. It 
shows that the map TL/F induces a homomorphism 

TLIF" Gal(L/F)-~ F*/NLIFL*, 

where TL/F(a) = TL/F(a) and Y be any element of r  ) such that alL = a. 

4.2.3. The homomorphism TL/F has natural properties. If L/F  is an unramified finite 
extension then TL/F is an isomorphism and TL/F(99FIL) -- 7rF (mod NL/FL* ) for a 
prime element 71" F in F.  

If M / F  is a finite separable extension and L/M a finite Galois extension, 

a E Gal(FSep/F) 

then the diagram 

Gal(L/M) TL/M > M*/NL/ML* 

Gal(oL/crM) r<,s.,/,,M > (aM)*/N<,.L/,:,.M(aL)* 

is commutative, where a*(T) = aTa-ll~L for T E Gal(L/M).  
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If M/F, E /L  are finite separable extensions and L/F, E l M  are finite Galois exten- 
sions then the diagram 

Gal(E/M) a"S/M M*/NE/ME* 

GaI(L/F) rL/l  . F*/NL/FL* 

is commutative, where the left vertical homomorphism is the restriction filL of a E 
Gal(E/M) and the right vertical homomorphism is induced by the norm map NM/F. 

As the image of TL/F is abelian, one can define a homomorphism 

TL/F: Gal(L/F) ab + F*/NL/FL*, 

where Gal(L/F) ab is the maximal abelian quotient of Gal(L/F). 
If L/F  is a finite Galois extension and M / F  a subextension in L/F  then the diagram 

Gal(L/F)ab a"L/F , , :, F /NL/FL 

verl 1 
Gal(L/M)ab YL/M " M*/NL/ML* 

is commutative, where the right vertical homomorphism is induced by the imbedding 
F ~-+ M and Ver is the transfer map (Verlagerung) for finite groups. 

4.2.4. It is easy to verify by using 4.1.5 that TL/F is an isomorphism for a cyclic 
extension L/F. By induction on degree one can show that YL/F is an isomorphism for 
an abelian extension L/F. Thus, the Neukirch map 

YL/F: Gal(L/F) ab --~ F*/NL/FL* 

is an isomorphism. 

4.2.5. The inverse to TL/F homomorphism induces a surjective homomorphism 

( , L/F): F* --+ Gal(L/F) ab. 

Denote by F ab the maximal abelian extension of F in F sep. Passing to the projective 
limit via 4.2.3 we get a well defined homomorphism 

~F: F* -4 Gal(Fab/F), 

which is called the reciprocity map. Its image is dense in Gal(Fab/F) and its kernel 
coincides with the intersection of all norm subgroups NL/FL* in F* for finite Galois 
extensions L / F .  
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If L / F  is a finite Galois extension then g'F(C~) for c~ E F* acts trivially on L N F ab 
if and only if c~ E NL/F L*. 

For a E F* 

vF(~) 
= 

The reciprocity map possesses natural functorial properties analogous to those in 4.2.3. 

4.3. The Hazewinkel construction of the reciprocity map 

Let, for simplicity, L / F  be a cyclic totally ramified extension. Let e E UF. By using the 

surjectivity of the norm map N" U~-;; ~ U ~ ,  where L ur, F ur are the completions of L ur, 
Fur, it can be verified that there exists an element f /E U ~  such that Nfl  = e. Let 9~ be a 

continuous extension of the Frobenius automorphism (PL on L ur. Then N(qa(t~)/~) - 1. 
By the Hilbert 90 theorem there exists an element a E L ur such that a(a) /a  - qa(~)/~, 
where cr is a generator of Gal(L/F). Moreover, if 7r is prime in L then cr (a) /a  can be 
written as (T(Tr)/vr)(a(e)/e) for some 7" E GaI(L/F), e E U-~. Then the map e --+ T 
induces the homomorphism 

UF/NL/FUL ~ Gal(L/F) 

which is an isomorphism and inverse to TL/F, see [Hazl, Haz2, Iw5]. 

4.4. Cohomological approach 

Another construction of the reciprocity map follows also from considerations of the 
Brauer group Br(F).  A Theorem of Hasse asserts that Br(F)  '-' Q/Z.  There is a pairing 
for char(F) = 0: 

Hom(GaI(FSeP/F) ,  Q /Z)  • F* -+ H '  (F, Q /Z)  • lim H '  (F, #n) -+ 

lim H2(F, lzn) ~- Q/Z 
.---.+ 

where the injective limit is taken with respect to the natural maps #n --+ #nm, m >/ 1 
(there is also a pairing for char(F) = p, see 7.2.4). This pairing induces a homomorphism 

F* --+ Hom (Hom (Gal(FSep/F), Q /Z) ,  Q /Z)  = Gal(Fab/F), 

which coincides with the reciprocity map. For details see [Se3, Se4, CF]. 

4.5. Existence theorem 

This theorem makes the description of abelian extensions more precise: there is a one- 
to-one correspondence between open subgroups of finite index in F* and the norm 
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subgroups NL/FL* of finite abelian extensions L/F. If L1, L2 are finite abelian ex- 
tensions over F then LI c_ L2 if and only if NL2/FL2* C_ NLI/FLI*. If L3 -- L1L2, 
L4 = L1 f'l L2 then 

NL3/FL3 * = NLI/FLI* CI NL2/FL2* , N L 4 / F L 4 *  : NL,/FLI*NL2/FL2 *. 

The proof employs the fact that any open subgroup of prime index in F* is a norm 
group NL/rL* for a suitable cyclic extension L/F, see below 5.1.2, 5.3.2, 5.4.1. 

Existence Theorem implies that the reciprocity map ~F is injective and continuous. 

4.6. Generalizations 

4.6.1. Existence Theorem can be extended to the case of abelian (not necessarily finite) 
extensions of F.  For an abelian extension L/F put 

NL/FL* = N NM/FM*, 
M 

where M runs over all finite subextensions in L/F. In particular, ~'F maps the group Ui,F 
isomorphically onto the ramification group Gal(Fab/F) i, where the upper numbering was 
defined in 3.2.4. See also 5.4.1 below. 

4.6.2. The same theory can be established for a complete discrete valuation field F 
whose residue field is quasi-finite, i.e. 

Gal (ffsep/~) ,.~ ~,  

see [Mo 1, Mo2, Mo3, Whl ,  Wh2, Wh3, Wh4]. A distinction is that there are no canonical 
generators of Gal(Fsep/F) as in the case of a finite residue field and an open subgroup 
of finite index in F* isn't in general a norm subgroup and one has introduce a notion of 
a normic subgroup, see [Whl]. 

4.6.3. If .7" is an infinite separable extension of F with finite residue extension then put 
.7 TM -- lim M*, where M runs all finite subextensions of F in .7" and the projective limit 

+._.__ 

is taken with respect to the norm maps. For a finite separable extension/2/.7" one can 
define the norm map .M'c/~: s  __+ .7-x. There is an isomorphism 

Ts Gal(/Z/.T') ab --->..T'X/.AfE/y'/2 x . 

For more details see [Sch, Kaw2, N3], Chapter 2, w This isomorphism is compatible 
with the construction of fields of norms in 3.4. 

4.6.4. The same theory can be established for Henselian discrete valuation fields with a 
quasi-finite residue field (existence theorem is different!), see [FV], Chapter V. 
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4.6.5. Let F be a complete discrete valuation field with an algebraically closed residue 
field. Serre's geometric class field theory describes abelian extensions of F in terms 
of the fundamental subgroup 7rl (UF) regarding UF as a pro-algebraic group, see [Se2, 
Hazl]. 

4.6.6. Generalizations for the case of a perfect residue field can be found in [Hazl] 
(via Serre's theory). Another approach is described in [Fe5]. Let F be a local field 
with perfect residue field F of characteristic p. Denote by F the maximal abelian un- 
ramified p-extension of F. Then for a finite abelian totally ramified extension L/F 
the group Homeont(G(F/F), G(L/F)) of continuous homomorphisms from the profinite 

group G ( F / F )  (we assume F # F)  to the discrete finite group G ( L / F )  is canonically 
isomorphic to the quotient group UI,F/NL/FUI,L [Fe5]. 

4.6.7. For the case of imperfect residue field see [Fe7] and Section 7 below. 

4.6.8. Let K be a local field with finite residue field and let L be a Galois totally 
ramified extension of K. Let F be a formal group over D K which is isomorphic to Ga~ 
over the maximal unramified extension. Let N(F),L/K be the formal norm from F(gY~L) 
to F(gJ~K) (see Subsection 5.4.1 below). Then, according to Mazur [Maz] there is a 
canonical isomorphism of the group F(gY~K)/N(F),L/KF(gY[L ) onto the group 

(G(L/K)ab)d/(E- M)(G(L/K)ab) d, 

where M E GLd(Zv) is a twisted matrix of F. Its construction (see also [LR]) is a 
generalization of the Hazewinkel homomorphism. 

4.6.9. Using the theory of fields of norms one can derive (Koch, de Shalit) overcoming 
technical difficulties the so-called metabelian local class field theory which describes a 
maximal abelian extension of the maximal abelian extension of F. 

5. Pairings on the multiplicative group 

We assume that F is a complete discrete valuation field with a finite residue field. 

5.1. The Hilbert symbol 

5.1.1. Let the group #n of all n-th roots of unity in ffsep be contained in F and n 
be relatively prime with p if char(F) = p > 0. The Hilbert norm residue symbol 
( , )n"  F* x F* --4 #n is defined by the formula 

(a,/3)n = 7-1ffrF(a)(7), where ,),n __ /~, ,), E F sep. 

PROPOSITION. The Hilbert symbol is well defined. It possesses the following properties: 
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1) ( , ) n  is bilinear; 
2) (1 - a ,  a ) ,  = 1 for ot E F*, ~ # 1 (Steinberg property); 
3) ( - a ,  O g ) n  - "  1 for a E F*; 
4) (a, 13). = (/3, a)~';  
5) (a, 13). = 1 if and only if a E NF( ~/-~)/FF( ~z-fl)* and if and only if fl E 

UF( W-d)/FF( ~fa)*" 
6) (a,/3)n = 1 for all fl E F* if and only if a E F'n;  
7) (a, 13)r~m = (a, /3)n for m >~ 1; 
8) (a, fl)n,L = (NL/Fa, fl)n,F for a E L*, /3 E F*; 
9) (o'c~, al3)n,aL = a ( a ,  ~)n,L, where L is a finite separable extension of F, ~r E 

Gal(Fsep/F), #n C L*. 

Thus, the Hilbert symbol induces a nondegenerate pairing 

( , ) . "  F*/F*"  • F*/F*" --+ # . .  

5.1.2. Let #n C F* and n be as in 5.1.1. The theory of Kummer extensions (see 
[Lal], Chapter 8) asserts that abelian extensions L / F  of exponent n are in one-to-one 
correspondence with subgroups B L C_ F* with F*" C_ B z" 

and the group B L / F  *n has the same structure as Gal(L/F).  
Now let A be a subgroup in F* such that F*"  C_ A. Denote by B = A • its orthogonal 

supplement with respect to the Hilbert symbol. Then A = NL/F L*, where L = F(~r-~).  
Conversely, if B is a subgroup in F* such that F*" C_ B then its orthogonal supplement 
A = B • coincides with NL/FL* for L = F(~r-~).  It follows that any subgroup of a 
prime index l in F*,  l # char(F) if char(F) > 0, is a norm subgroup. 

5.1.3. Hilbert's 9th Problem is to find explicit formulas for the global norm residue 
symbol. In the case under consideration this means to discover a formula for the Hilbert 
symbol (a, [3), in terms of elements a,  [3 of the field F.  

There is a simple answer to this question when n is relatively prime with char(F) 
Then (a, COn = t (a ,  ~)(q-1)/n, where t: F* • F* --+ #q- l  is the tame symbol defined 
by the formula 

t(a, 13) -- Pr (evF(~) ~--vF(~) (--1) vF(~)vF(f~) ) 

with the projection pr: UF --+ #q-1 induced by the decomposition UF "~ #q-1 x U1,F 
as in 1.3.3. 

5.2. Explicit formulas for the Hilbert pn-th symbdl 

In his celebrated work [Sha2] Shafarevich proposed an explicit formula for the Hilbert 
p-th symbol in terms of his basis of the group of principal units. His idea was then to 
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apply this formula pairing for an independent construction of local class field theory. At 
the end of the 70's Vostokov obtained explicit formulas for the Hilbert pn-th symbol, 
p > 2 .  

Let F be a p-adic field, (p,, a primitive pn-th root of unity which is contained in F, 
n t> 1. Let Do be the ring of integers of the field F0 = F N Q~r. Let 7r be a fixed prime 
element in F. 

For an element a E F* let r  E 1 + XD0[[X]] be such that 7rm0r = a, where 
m e Z, 0 e #q_,. Put a (X)  = xmor  

Put 

= ( m Z3Xp ) log r  

where 

log(1 + X ) =  E ( - 1 ) i - ' x i / i ,  Z I x ( E a i X  i) = Eqa(ai)XPi, 

ai E Do, and cp is the Frobenius automorphism of Qv. 
For a,/3 E F* put 

�9 = Zx ( z ( x ) ) '  - 

+ 

Let z(X) c 1 + XD0[[X]] be such that z(Tr) = (p,,. Put s(X) = z(X) pn - 1. 
Let p > 2. Employing Shafarevich's canonical basis of the group of principal units, 

Vostokov ([V1, V2]) established the following explicit formula for the pn-th Hilbert 
symbol: 

where 

res ( E a iXi )  = a_l , Tr = TrFo/Qp. 

For p = 2 the formulas are more complicated, see [VF, Fel, Fe2]. Details are in [FV], 
Chapter VII. 

Among various applications of the explicit formulas there is an exposition of the 
correspondence between Kummer's extensions of F and open subgroups in F* that is 
independent of class field theory, see [FV], Chapter VII. Independently, approximately 
the same formula was obtained by Brtickner [Brul, Bru2] by using different methods. 

This formula can be generalized for complete discrete valuation fields with quasi-finite 
residue field. For other formulas for the Hilbert symbol in general and special cases see 
[AH1, AH2, Kn, Iw3, Hennl, Henn2, Sen3]. 
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5.3. Pairings using the Witt vectors 

Let F be a local function field with F = Fq. We shall consider an~analog of  the Hilbert 
symbol for such a field. 

5.3.1. Define a map 

( ,  ]" F*  • F - + F p  

by the formula (c~,/3] = g'F(C~)(7) -- "7, where fa(7) -- 7 p - 7 = /3 ,  -,/e F sep, see  4.1.4. 

PROPOSITION. This map is well defined and has the following properties: 
1) (c~1 c~2,/3] -- (c~,,/3] + (c~2, ~], (c~,/31 +/~2]  - (c~,/~, ] + (c~,/32]; 
2) (-c~, c~] -- 0 for c~ E F*; 
3) (c~,/3] - - 0  if and only if c~ e NF(,~)/FF(7)*, where fa(~/) =/3; 
4) (c~,/3] ---0 for all c~ C F* if and only if ~ E ga(F); 
5) (c~,/3] = 0 for all/3 c F if and only if c~ E F *p. 

Thus, this map determines the nondegenerate pairing 

F * / F  *p • F / v ( F )  --+ F v. 

5.3.2. Any open subgroup A in F* of index p coincides with NL/FL*,  where L - 
F(3': ~0(7) c B) and B - A • is the orthogonal supplement of A with respect to ( ,  ]. 
This assertion is applied for the proof of the Existence Theorem in 4.5. 

5.3.3. There is a formula for the pairing ( , ]" 

(c~, ~] : TrF~/~  res ( s  

where a ( X )  e Fq( (X)) ,  f l (X)  E Fq((X))  such that a(Tr) = a,  fl(Tr) = fl, 7r prime in 
F .  Compare this formula with 5.2. 

5.3.4. The pairing ( , ] can be generalized using the ring of Witt vectors: 

( , In: F *  x Wn(F)~ Wn(]Fp)~ Z/pnZ, 

(see 1.4.2) by the formula (c~, Y]n = gtY(C~)(z) -- z, where z E Wn(FSep), ga(z) - y. 
By using this pairing one can construct the reciprocity map independently, see [Sekl,  

Sek2]. 

5.4. Pairings using formal groups 

m 

5.4.1. Let K be a p-adic field, K = Fq, 7r be prime in K .  
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Denote by .T'~r the set of formal power series f (X )  E XDK[[X]I such that f (X)  - 
7rX + X2g(X) with g(X) E DK[[X]] and f (X)  = Xq + 7rh(X) with h(X) E DK[[X]]. 
Then there exists a unique formal power series F(X, Y) E DK[[X, Y]] (Lubin-Tate 
formal group) such that F(f (X) ,  f (Y))  = f (F(X,  Y)) and 

F(X,  O) = F(O,X) = O, 

F(X,  Y) = F(Y, X).  

F (X, F(Y, Z)) = F (F(X, Y), Z), 

In particular, if 7r = p then there is the multiplicative formal group Fm (X, Y) = X + 
Y + XY,  which corresponds to multiplication. 

Denote by End~ K (F)  the set 

{g(X) E DK[[XI]" F(g(X), g(Y)) = g(F(X, Y)) }. 

There is a ring homomorphism DK ~ End~K (F): ot --+ [CZ]F such that 

= a s  + . . . ,  

f = [Tr]F, see [CF], Chapter 6, [Iw5], w [N4], Chapter 3. 
Let L be an algebraic extension of K. One can define on the set 9XL a structure of 

DK-module F(gXL): 

a + B = F ( a , B ) ,  a a = [ a l E ( a ) ,  a E D K ,  a, BEgXL. 

Denote by ~n the group of 7m-division points {a E 9XK~: [Trn]F(a) = 0}. 
Then the field Ln = K(e~n) is a totally ramified abelian extension of degree qn-1 (q_ 1) 

over K and corresponds to the subgroup (Tr) x Un,K in K*. GaI(Ln/K) is isomorphic 
with UK/Un,K. Put 

K~ = U Ln. 
n>~l 

Then the field K,r corresponds to the subgroup generated by 7r and 

Gal(Kab/K) "-' Gal(KUr/K) x Gal(K~r/K), 

OK (Tr"e) ({) = [e- l iE(()  for ( E U an, a E Z, e E UK. 
n>~l 

In particular, putting K = Qp, F -- Fro, we deduce the local Kronecker-Weber theorem: 
Qpb is generated by all roots of unity. 

5.4.2. Let 7to be prime in K, F(X, Y) be a formal Lubin-Tate group for f (X)  E .T'~ o. 
Let L / K  be a finite extension such that ~;n C L. Define the generalized Hilbert pairing 

( , )f,n: L* x F(gXL) --+ e;. 
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by the formula 

(a, ~)F,n = F(~F(O0(7), [-- l lF(7)) ,  

where 7 e F(gTIK~,) with [7r~](7) =/~. 
Explicit formulas for ( , )F,n and applications can be found in [V2, V3, VF, Fe2, 

CW1, Wil, Kol, Col l, Co12, Co13, dShl, dSh2, Sue]. This pairing can be generalized to 
the case of Honda formal groups with corresponding explicit formulas, see [BeV]. 

6. The Milnor K-groups of local fields 

6.1. The Milnor K-groups 

6.1.1. Let F be a field. The n-th Milnor K-group of a field F is defined as 

K,~(F) = (F* |  | F*)/In, 

where In is the subgroup generated by the elements al  | -.- | an  with ai  + a j  = 1 
for some i ~ j .  Put Ko(F) = Z. The image of al  |  | an in Kn(F) is denoted by 
{ a l , . . . ,  an}. There is a natural map Kn(F) • KIn(F) --+ Kn+m(F). 

An imbedding of fields F ,---> L induces a map JF/L: Kn(F) --+ Kn(L). The norm 
map NL/F: L* -4 F* for a finite extension L / F  induces a norm map 

NL/F" Kn(L)-+ Kn(F) 

with the following properties: NL/F acts on Ko(L) = Z as multiplication by [L" F l, on 
K1 (L) = L* as the norm map; NL/F o JF/L = IL " FI; if L / F  is Galois then 

jF/L o NL/F -- E O'i, 
aieGal(L/F) 

where ai" Kn(L) --> Kn(L) is induced by a i e  Gal(L/F). 

6.1.2. If F is a discrete valuation field, v its valuation, Fv its residue field then there is 
a homomorphism 

~)~" Kn(F) --+ K,~ (-Fv) | Kn-,  (-Fv) 

defined by the formula 

+ On- l} )  = 

where 7r is prime in F, ei, rh E Uv. The second component i3,, of a~ doesn't depend on 
the choice of 7r. If F is a complete discrete valuation field with finite residue field then 
i3v{C~,/3} = t(c~,/3), where t is the tame symbol defined in 5.1.3. 
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6.2. The Milnor K-groups of a complete discrete valuation field 

Let F be a complete discrete valuation field, f f  = Fq, q - pf.  A new role of the Hilbert 
symbol consists in its application for a description of the Milnor K-groups. 

6.2.1. The properties in 5.1.1 imply that the Hilbert symbol ( , )n induces a surjective 
homomorphism Hn" K2(F)  --+ #n. 

PROPOSITION (C. Moore). Let m be the cardinality of the torsion group in F*. Then Hm 
induces an exact splitting sequence 

0--+ mKz(F)  --+ K2(F)  --+ #m --+ 1. 

The group mK2(F)  is divisible. 

6.2.2. Let a primitive l-th root of unity Q be contained in F. A general conjecture of 
Tate for arbitrary field F asserts that if lx = 0 for x E Kn (F) then x = {~t }y for some 
y c Kn- I  (F). It was proved for n = 2 by Suslin ([Sus3]). For a field F such as under 
consideration here this assertion for 1 relatively prime with p was elementarily verified by 
Carroll ([Car]) and for l = p was deduced by Tate from a similar result for global fields 
([T6]). Employing this assertion Merkurjev proved that mK2(F)  is a uniquely divisible 
uncountable group ([Me]). 

Sivitskii showed that Kn(F)  for n ~> 3 is a uniquely divisible uncountable group 
([Si]). For details and proofs see [FV], Chapter IX. 

6.3. The Milnor K-groups of a complete n-discrete valuation field 

6.3.1. Let F be a complete n-discrete valuation field with a finite residue field (see 
1.2.1). Let T be the strongest topology on Km (F) for which the map 

F* •215  F*- ,  KIn(F) 
m times 

is sequentially continuous with respect to the topology on F* defined in 1.2.4 and xi + 
yi --+ x + y, - x i  --+ - x  in KIn(F) if xi --+ x, Yi ~ Y. Let Am(F) be the intersection 
of all neighborhoods of 0 in Km(F).  Parshin introduced the topological K-groups as 

Ktm~ K m ( F ) / A m ( F )  

for fields of characteristic p. The same definition is valid for char(F) - 0, char(Fn_ ~) = 
p. In the general case 

Am(F) : A zgm(F) 
l / > l  
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is the maximal divisible subgroup of KIn(F), see [Fe9]. 
~(top h.top Then "~o (F)  = Ko(F), KI~ = K1 ( F ) , - - n + l  (F) '~ #F, where ~F is the torsion 

Km (F)  = 0 if m ) n + 2. group of F*, top 

6.3.2. Let v be n-discrete valuation on F.  For elements c~,/3 E 9Xv the following equality 
holds: 

{ 1 - t ~ , l - f l } = - { 1  + og3(1-  Ol)- l ,  O l } -  {1 + ~ / 3 ( 1 -  O0-1 ,  1 - - j ~ } .  

/(top [~-,~ Then the definition of ,,~ ~ , j  and 1.2.4 imply that this group is topologically generated 
by the elements { 1 + 07r~"... 7r~', 7rjl , . . .  , 7rj,,,_, }, where 7rn . . . . .  7rl are local parameters, 
0 C R, R is a set of representatives of F0 = Fq in F,  1 ~< j l , . . . ,  jm- l  <~ n. 

6.3.3. If char(F) = 0 then the conjecture of 6.2.2 holds for Kt~ see [Fe3, Fe4]. If 
h,,-top char(F) -- p then there is no nontrivial p-torsion in --m (F) and a full description of 

these groups can be obtained by generalizing the pairings of 5.3, see [Pa4]. 

6.3.4. One can define surjective homomorphisms 

�9 top ( F n _ l )  __} . . .  __+ Ko(Fo) ,,., WF h~t~ --+ Kn_  1 

induced by Or" KIn(F) --+ Km- , (Fv) ,  see 6.1.2. 

7. Higher local class field theory 

7.1. Origins 

Let k be a finite field. Then there is an injective homomorphism 

Ko(k) - ~ -+ Gal(kab/k) "~ Z, 

where ]r ab -- k sep is the maximal abelian extension of k. 
Let K be a 1-dimensional complete discrete valuation field. Then there is an injective 

homomorphism (the reciprocity map) 

K1 (K)  = K* --4 Gal (Kab/K) ,  

and the image of h"t~ "'1 (K) is dense in Gal(Kab/K). 
We shall show that for a complete n-discrete valuation field there is a homomorphism 

K~P(F)  --+ Gal(Fab/F), 

which is injective and such that the image is dense in Gal(Fab/F). 
The K-theoretic generalization of class field theory (not only local but global too) was 

first studied by Parshin ([Pal, Pa2, Pa3, Pa4, Pa5]). A cohomological approach to such 
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a theory was proposed by Kato ([Katl, Kat2, Kat3, KtS]). For another construction of 
the reciprocity map via an extension of the Neukirch map, see [Fe3, Fe4, Fe9]. 

Note that the residue field of a complete n-discrete valuation field F when regarding 
it as 1-discrete is imperfect if n > 1, char(Fn_l) = p > 0. So higher local class field 
theory may imply a description of abelian extensions of a complete discrete valuation 
field with arbitrary residue field. For a class field theory of such fields without K-groups 
see [Fe7]. 

7.2. The reciprocity map 

Let F be a complete n-discrete valuation field with the residue field Fq, q = pf. 

7.2.1. For any finite extension L of F there is a unique extension of the n-discrete 
valuation to L. A separable extension L/F is called purely unramified if its degree 
coincides with those of L/F. There is an analog of the assertion of 2.3.2 for purely 
unramified extensions. The compositum of all finite purely unramified extensions of F 
in a fixed separable closure is denoted by F pur. Then 

F pur = U F(r 
(z,v)=l 

where 0 is a primitive l-th root of unity. A generator ~ F  of GaI(Fpur/F) which is 
mapped on the generator qo of Gal(Fq ep/Fq) is called the Frobenius automorphism of F. 

7.2.2. Let L/F be a finite Galois extension, a E GaI(L/F). Let Y be an element of 
GaI(Lpur/F) such that alL = a and alFpu, is a positive integer power of the Frobenius 
automorphism qOF. Let Z' be the fixed field of Y and 7r~: E Kt~ be a "prime" element 
of Ktn~ i.e. w,v(Tr,v) = 1 (see 6.3.3). 

Then the map 

cr ~ N U,/FTrE (mod N r,,-top LIF",~ (L)) 

is well defined and is a homomorphism, where NL/F for topological K-groups is in- 
duced by the norm map for the Milnor K-groups. Moreover, this map determines an 
isomorphism 

GaI(L/F) ab,.-, Ktn~176 

This isomorphism possesses natural functorial properties analogous to 4.2.3. The inverse 
homomorphism induces a reciprocity map 

~PF: Ktn~ -+ Gal(Fab/F). 

It is injective and continuous. This shows that An(F) is exactly the kernel of the homo- 
morphism Kn(F) --~ Gal(Fab/F). 
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In particular, the diagram 

top grF g n  (F) ~ Gal(Fab/F) 

1 1 
top ~T Gal ( aU/F --) 

is commutative, where the left vertical homomorphism is induced by 0,,(n), see 6.1.2, 
and v (n) is the first component of v. 

Existence Theorem for the fields under consideration asserts that any open subgroup of 
rx-top mr r,,'top finite index in . .n  (F) is a norm subgroup I,L/F~,n (L) for a suitable abelian extension 

L / F ,  see [Fe3, Fe4]. 

7.2.3. Parshin constructed the reciprocity map for the fields of positive characteristic 
[Pa4, Pa5] especially elegant via his generalization of Artin-Schneider-Witt pairings and 
Kawada-Satake's theory [KwS]. 

7.2.4. Another construction of the reciprocity map follows from cohomological consid- 
erations due to Kato ([Katl, Kat2, Kat3, Kat4]). 

If char(F) = 0 put 

Hm(F)  = lim H m (F, ~nN(m--1)), 

where #n is the group of all n-th roots of unity in F sep, /-,,n' | is the (m-- 1)-th tensor 
power over Z/nZ,  n i> 1, and the homomorphisms of the injective system are induced 

, | when n divides d. If char(F) = p > 0 by the canonical injections #~(m-1) ~ ~d 
put 

Hm(F)  - lim Hm(F,#~ (m-')) @ l im Hp"I(F), 
------+ .b----- 

where n runs over all positive integers prime to p, d runs over all positive integers. Here 

Hp'~I(F) = Wd(F) @ (F* |  | F*) /J,  

m-- 1 times 

where J is the subgroup generated by the elements (Fy - y )  @ fll |  | tim--l, where 
y C Wd(F), ~i E F*, F as in 1.4.2; yi(/~l)N/~1 |  | where 

Yi(fl l)  = ( 0 , . . . ,  0, i l l ,  0 , . . . ,  0) E Wd(F), 

i times 

0 ~ < i < d ;  

y | | 1 7 4  ~m-1, where ~i = flj for some i r j .  
For any field F the group H 1 (F) is isomorphic to the group of all continuous homo- 

morphisms Gal(Fab/F) --+ Q / z  and H2(F) is isomorphic to Br(F). 
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If F is a complete n-discrete valuation field with a finite residue field then the canonical 
homomorphism H n+l (F)  ~ Q / Z  is an analog of 4.5. Then by using the canonical pairing 

H i ( F )  x K . ( F )  --+ H ' ( F )  x H n ( F )  --+ H n + I ( F )  ~_ Q / Z  

one obtains a homomorphism K n ( F )  --+ Gal(Fab/F) ,  which coincides with the reci- 
procity map up to the projection K n ( F )  --+ Kt.~ 

7.2.5. The Kato theory can be treated as a generalization of Tate's approach in classical 
class field theory. Koya found a generalization of class formations to higher class field 
theory using bounded complexes of Galois modules and their modified hypercohomology 
groups [Koyl,  2]. For a 2-dimensional field a shifted Lichtenbaum complex satisfies 
generalized axioms of formation classes, and thus 2-dimensional class field theory fol- 
lows. 

7.2.6. For a description of abelian totally ramified p-extensions of an n-dimensional 
complete field with arbitrary perfect residue field see [Fe9]. 

8. Absolute Galois group of a local field 

Let F be a complete discrete valuation field with residue field Fq. 

8.1. The maximal tamely ramified extension 

Let F sep be a fixed separable closure of F and GF = GaI(FSep/F). Let F tr be the 
maximal tamely ramified extension of F in F sep. Then 

f f t r  = U Fur(~r~')' 
(/,p)=l 

where 7r is a prime element in F.  
Let nl < n2 < . . .  be a sequence of natural numbers such that ni+l is divisible by 

ni and for any natural m there exists an index i for which ni is divisible by m. Put 

li = qn~ _ 1. Choose primitive/i-th roots of unity Q, and roots ~ such that ~ll~ l-~l- -- ~li, 

~tJ t / -~  - ~ for j > i. Take a E Gal (Ftr /F)  such that a(~x/~) - ~x/-~, o'((t,) = (t q 

and T C Gal (F t r /F)  such that T(~V/-~) = (t, ~V/-~, T(ft,) = 0, .  Then olF,r coincides with 
the Frobenius automorphism of F and aTa  -1 = T q. The theorem of Hasse-Iwasawa 
(see [Hasl2, Iwl])  asserts that Gtr - - G a l ( F t r / F )  is topologically generated by cr and -l- 
with a relation O'TCr -1 = Tq. 
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8.2. Absolute Galois group 

8.2.1. Now let I be an index-set and FI be the free profinite group with a basis zi, 
i C I. Let F1 * Gtr be the free profinite product of F1 and Gtr, see [N2, BNW]. Let H 
be the normal closed subgroup of FI * Gtr generated by (zi)iei and K be the normal 
closed subgroup of H such that the quotient group H / K  is the maximal p-factor group 
of H. Put F(I ,  Gtr) = (Fn+l * G ) / K  and denote by xi the image of zi in F(I ,  Gtr). 
The group F(I ,  Gtr) has topological generators a, T, Xi, i E I with a relation aTa -1 = 
T q . 

8.2.2. Assume first that char(F) - p (the function field case). Then Koch's Theo- 
rem (see [Ko3]) asserts that the group GF is topologically isomorphic with F(N,  Gtr). 
Note that in this case U1,F is a free Zp-module of rank = cardinality of N, 
see 1.3.3. 

8.2.3. Assume next that char(F) = 0 and there is no a nontrivial p-torsion in F*. 
Shafarevich's Theorem ([Sha2, JW]) implies that the group GF is topologically iso- 
morphic to F(n,  Gtr), where n = IF : Qp[. See also [sen, Mikl,  Mar2] for a case 
of a perfect residue field. Note that in this case U1,F is a free Zp-module of rank n, 
see 1.3.3. 

8.2.4. Assume finally that char(F) - 0 and r ~> 1 is the maximal integer such that 
pp. C F*. This is the most complicated case. Let X0 be the homomorphism of Gtr onto 

(Z/prZ)  * such that p(fv~) - (pxo(p) for p E Gtr, where (p. is a primitive p"-th root of 
unity. Let X: Gtr --+ Z v be a lifting of X0. Let 1 be prime, {Pl, p2 , . . . }  be a set of all 
primes ~ I. For m / >  1 there exist integers am, bm such that 1 - aml m +bmp'~p'~. . .  Pro" 
Put 

A 

7rl lim m m m = bmPl  P2 " " P r o  E Z .  

For an element p E Gtr and ~ C F ( I ,  Gtr) put 

(~, p) _ (~x(l) p~X(p) p . . . ~x(p "-2) p)~' / (P- ' )  , 

If n = IF �9 Qpl is even, put 

1 p , -  - 1 . . 

)k - -  O'XoIO'- - I (zo ,  T)  X(a) -  X 1 Z l X 2 X  1 X 2 1 X 3 X 4 z ; l x 4 1  " " X n _ l X n X n l  l X n  1 _  

If n -- I F �9 Qp[ is odd, let a, b be integers such that -X0(cr'r '~) is a square modp and 
--Xo(aT b) isn't. Put 

• { {x,, }, } V 
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where 0" 2 - - - 0 " 7 r 2 ,  7"2 - - T  rr2 �9 Put 

- - - -  " " " X n - - 1  - - 1  " 

For n + 1 we choose the index set 1 = {0 , . . . ,  n}. 
Jakovlev's theorem and Jannsen-Wingberg's theorem (see [Jal, Ja2, Ja3, Ja4, 

Ja5], Koch [Kol, Ko2, Ko4, Ko5], [Jan, Wig, JW], Demushkin [Deml, Dem2], 
Labute [Lab]) assert that for p > 2 the group GF is topologically isomorphic to 
F(n  + 1, Gtr)/(A), where (A) is the closed normal subgroup of F(n + 1, Gtr) gen- 
erated by A. Note that Ui,F is a Zv-module of rank n + 1 with one relation, 
see 1.3.3. 

8.2.5. For the case p = 2, x/Ei " E F see [Di, Ze]. See also [Gor, JR2] and [Mik2, Kom] 
for a brief discussion of proofs. Jarden and Ritter ([JR1, Rit]) showed that two absolute 
Galois groups G F and G L for p-adic fields F and L are topologically isomorphic if 
and only if I F  �9 Qvl  - IL �9 Qv[ and F f3 Qpab = L f-)Qpab (for p > 2 or p = 2, 
vfL-T E F, L). 
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The main problem of Galois theory is to find out whether or not each finite group 
occurs as a Galois group over the field Q of rational numbers. The solution of this one 
hundred years old problem is still out of reach. Yet one hopes for an affirmative solution. 
This hope is based on a long list of finite groups which have been realized over Q. 
Cyclotomic extensions supply all finite abelian groups as Galois groups over Q. The 
Hilbert irreducibility theorem combined with the Riemann existence theorem gives many 
nonabelian simple groups and quasi simple groups. 

To go beyond this list, one has to solve 'embedding problems'. Here one starts with 
a finite Galois extension L/Q and an epimorphism c~: G --+ G(L/Q)  with G finite, and 
one looks for a Galois extension N of Q which contains L and for an isomorphism 
7: ~ ( N / Q )  -+ G such that c~ o 7 = resL. Not every embedding problem over Q is 
solvable. So, in order to realize G one has to find another Galois extension L'/Q with 
the same Galois group as L/Q such that the corresponding embedding problem has a 
solution. 

This method has led Scholz, Reichardt and Shafarevich to realize each finite/-group 
(1 is a prime) and eventually each finite solvable group over Q. 

Solving embedding problems with a nonabelian kernel is in some cases simpler. If a 
finite nonabelian group C can be realized with some extra conditions (GAR-realization), 
then each embedding problem as above with Ker(c~) ~ C" is solvable. For example, all 
An with n ~> 5 and n ~ 6 and all sporadic groups with the possible exception of M24 
have GAR-realization over Q. 

One therefore faces the possibility to continue solving embedding problems infinitely 
many times. In this way one arrives at infinite Galois extensions N of Q and eventually 
at the algebraic closure Q of Q. We call G(Q/Q~) the absolute Galois group of Q and 
denote it by G(Q). This group is the inverse limit of all Galois groups of finite Galois 
extensions L/Q. It is a profinite group. As such it is compact, Hausdorff, and totally 
disconnected. In particular, G(Q) carries a natural unique Haar measure. Since not each 

A 

finite embedding problem over Q is solvable, G(Q) is not a free profinite group F~ 
on countably many generators (Iwasawa). The main problem of Galois theory becomes 
therefore a partial problem of the more general problem about the structure of G(Q) as 
a profinite group. Namely, are all finite groups quotients of G(Q)? 

We are very far from understanding G(Q). Nevertheless, we know quite a bit about it: 
(la) The only elements of finite order of G(Q) are involutions. They are conjugate to 

each other. The closed subgroup generated by the involutions is isomorphic to the free 
product of groups of order 2 over the Cantor set. 

(lb) Each open subgroup of G(Q) (i.e. each absolute Galois group of a number field) 
which contains no involutions has cohomological dimension 2. 

(1 c) The only closed abelian subgroups are procyclic (i.e. generated as profinite groups 
by one element). 

(ld) Almost all e-tuples (cr l , . . . ,  ~re) of G(Q) generate a free profinite group of rank e. 

Moreover, the closed normal subgroup generated by almost all (c r i , . . . ,  o-e) is F~, which 
is the free profinite group on countably many generators. 
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(le) The maximal abelian quotient of G(Q) (i.e. ~(Qab/Q)) is isomorphic to the 
direct product 17I Zt x , where l ranges over all primes l, and where Zz is the ring of l-adic 
integers. 

(If) There is a short exact sequence 

A O O  

1 > F~ >G(Q) > H S n  > 1. 
n = 2  

(lg) G(Q) has no closed normal nontrivial prosolvable subgroup. In particular, its 
Frattini group and its center are trivial. 

(lh) Every isomorphism between open subgroups of G(Q) is induced by an inner 
automorphism. In particular every automorphism of G(Q) is inner. So, every closed 
normal subgroup of G(Q) is characteristic. 

Infnite Galois theory extends the question about the structure of G(Q) to a question 
about the structure of absolute Galois groups of other distinguished fields. In some cases 
we have the full answer: 

(2a) G(R) ~- Z/2Z if R is real closed; 
(2b) G(K) =~ Z if K is a finite field or if K ~ C((t)) with C algebraically closed of 

characteristic 0; 
(2c) For each prime p, G(Qao ) is generated by 4 elements. If p r 2, generating relations 

between them are explicitly given; 
(2d) If C is an algebraically closed field, then G(C(t)) is the free profinite group of 

rank card(C); 
(2e) G(R(t)) is real free; 
(2f) Let S be a finite set of rational primes and possibly c~. Denote the maximal 

Galois extension of Q in which each p 6 S totally splits by Qtot,S. If S consists of one 
finite prime p, we write Qtp instead of Qtot,S. If S = {c~}, we also write Qtr for Qtot,S. 
Then G(Qtot,S) is the free product of the groups G(Qtp), p 6 S, and each G(Qtp) is a 
free product of isomorphic copies of G(Qp), p 6 S (and where Q ~  = IR). 

We have a partial knowledge about few other absolute Galois groups. They should be 
next in line to be studied. 

(3a) The maximal prosolvable quotient of G(Qab) is the free prosolvable group on 
A 

countably many generators. Shafarevich's conjecture says that G(Qab) ~ F~. 
(3b) Each finite group occurs as a Galois group over Qp(t) but the cohomological 

dimension of G(Qr,(t)) is 3. 
(3c) Again, each finite group occurs as a Galois group over C(tl, t2) and the cohomo- 

logical dimension of C(tl, t2) is 2. 
(3d) The same goes for C((tl ,  t2)). 
(3e) The field lFp((t)) plays the analog to Qp in characteristic p. Its absolute Galois 

group is prosolvable, and of infinite rank. 
The theory of finite groups partially emerged out of Galois theory and has become 

a subject of research in its own right. The theory of profinite groups is an outcome of 
infinite Galois theory. As for finite groups, each profinite group occurs as a Galois group 
of some Galois extension. The inverse problem of infinite Galois theory is to characterize 
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those profinite groups which occur as absolute Galois groups of fields. 
There exist several partial results in this direction. They play off projectivity of groups 

against pseudo finiteness of fields: 
(4a) A profinite group G is isomorphic to the absolute Galois group of a PAC (resp. 

PRC, PpC) field/if and only if G is projective (resp. real projective, p-adically projective). 
In particular, every free profinite group is projective and therefore occurs as the absolute 
Galois group of a PAC field. 

(4b) A profinite group G of at most countable rank is isomorphic to the absolute Galois 
group of a PAC (resp. PRC, PpC) field which is algebraic over Q if and only if G is 
projective (resp. real projective, p-adically projective). 

A good knowledge of the absolute Galois group of a field or of a family of fields is a 
vital ingredient in the study of their model theory. For example, the Riemann hypothesis 
for function fields of one variable over finite fields (= Weil's theorem) combined with 

A 

G(IFq) ~ Z are the basic facts in the decidability of the theory of finite fields. Likewise, 
the indecidability of the theory of PAC fields is based on (4a). 

The purpose of this survey is to expand the above mentioned points to the story 
of infinite Galois theory as it stands when these lines are written. We have put the 
main emphasis on the absolute Galois group of fields. Therefore, we have not covered 
interesting results on relative Galois groups, like Wingberg's work on Galois extensions 
of number fields and F-extensions of number fields or the Galois groups of maximal 
pro-2 extensions and their connection to quadratic forms. 

Acknowledgement. The author is indebted to Ido Efrat, Wulf-Dieter Geyer, Dan Haran, 
and Aharon Razon for thorough reading and constructive criticism. He also thanks Helmut 
V61klein and Michael Fried for useful remarks. 

1. Infinite Galois theory 

Consider a Galois extension N of a field K.  This is the splitting field of a set of separable 
polynomials in K[X] over K.  Let G = G(N/K)  be the group of all automorphisms of 
N that fix each element of K.  This is the Galois group of N / K .  For each subgroup H 
of G let 

N(H)  = {x C N [ crz = x for each (r C H} 

be the fixed field of H in N. Unlike in the case where N / K  is a finite extension, there 
need not exist an intermediate field M between K and N such that G(N/M)  = H [Rib], 
p. 3. Krull restored the Galois correspondence between subgroups and intermediate fields 
by introducing a topology to G. A basis for the neighborhoods of 1 in this topology are 
all the subgroups G(N/L),  where L ranges over all finite Galois extensions of K which 
are contained in N. Under this Krull topology G is a Hausdorff, totally disconnected, 
compact group [Rib], p. 7. It turns out that the fundamental theorems of Galois theory 
of finite extensions remain unchanged if we replace each occurrence of 'subgroup' by 
'closed subgroup': 
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1.1. THEOREM ([FrJ], Proposition 1.8). Let N be a Galois extension of a field K. Then 
the map M ~-+ G(N/M) is a bijection from the family of fields lying between K and N 
onto the family of closed subgroups of ~(N/K).  The inverse map is given by H ~-~ N(H). 

As in finite Galois theory [La2], pp. 192-199, Theorem 1.1 gives the following rules 
for the Galois correspondence: 

(la) Ml C_ M2 if and only if G(N/M2) <<. ~(N/M1); 
(1 b) Hi ~< H2 if and only if N (H2) C_ N (HI); 
(lc) N(H1) fq N(H2) = N((HI,H2)), where (HI,H2) is the closed subgroup of G 

generated by the closed subgroups H1 and H2; 
(ld) N(H1 N H 2 ) -  N(HI)N(H2); 
(le) ~(g /Ml  f3 M2) = (~(N/M1), ~(N/M2)); 
(lf) G(N/M1M2) = G(N/Ml) N G(N/M2); 
(lg) g ( a H a  -1) - aN(H); 
(lh) G(N/aM) = aG(N/M)a -l, for each a e G; 
(li) A closed subgroup H of G is normal if and only if L = N(H) is a Galois 

extension of K;  
(l j) If M is a Galois extension of K and M C_ N, then the map 

res" G(N/K) -+ G(M/K) 

that assigns to each cr E G(N/K) its restriction to M is a continuous open epimorphism 
with kernel G(N/M) and we have ~(M/K)  ~- G(N/K) /~(N/M);  

(lk) If E is any extension of K, then res: G(NE/E)  --+ G(N/N N E) is an isomor- 
phism; and 

(ll) If in (lk), E is also a Galois extension of K, then the map o" ~-~ (resNcr, resEo-) 
is an isomorphism 

G ( N E / N  N E) ~- G(N/N A E) x ~ (E /N  N E), 

where the right hand side is equipped with the product topology, and 

G(NE/K)  -~ { (a, T) E G(N/K) • G(E/K) I resNnEa = resNnET}, 

that is, g ( N E / K )  is the fiber product G(N/K) X9(NnE/K) g (E/K) .  
This correspondence holds in particular in the case where N is the separable closure 

Ks of K. We denote G(Ks/K) by G(K) and call it the absolute Galois group of K. 

We also denote the algebraic closure of K by K and the maximal purely inseparable 
extension of K by Kins. If char(K) is p, then 

K i n s -  {al/p" l a E K, n -  0 ,1 ,2 , . . . } , .  

It is a perfect field and res" G(Kins) -+ G(K) is an isomorphism. So, when studying 
absolute Galois groups of a field we may assume that it is perfect. 
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2. Profinite groups 

Profinite groups are intimately connected to general Galois theory in the same way that 
finite groups are linked to Galois theory of finite extensions. One considers a set I with 
a partial order such that for each i, j E I there exists k E I with i, j <~ k. An inverse 
system of finite groups over (I, ~<) is a system (Gi, 7rji)i,jEI where Gi is a finite group 
and 7rji: Gj -+ Gi is a homomorphism whenever j ~> i. These objects satisfy the rules 
7rii = Identitya~ and 7rki = 7rji o 7rkj if i ~< j <~ k. The inverse limit of this system is the 
subgroup G = lim Gi of the direct product (equipped with the product topology) 1-Iie I Gi 

< 

consisting of all elements 9 = (gi)ieI such that 7rji9j = gi if j ~> i. This is a profinite 
group. The group G is closed in 1-Ii~t Gi and is therefore compact. It is also Hausdorff 
and totally disconnected [FrJ], Lemma 1.2. More precisely, the closed subgroups of G 
of a finite index (= open subgroups) form a basis for the open neighborhoods of 1 in G. 

The case where I consists of one element shows that each finite group is also a profinite 
group. The simplest infinite profinite group is the group 

Zp = lim Z/piZ 

of p-adic integers. The direct product of all Zp is the Prfifer group 

A 

Z = lim Z/nZ  
t 

[FrJ], Lemma 1.12. Here we order the set of positive integers N by divisibility. If m I n, 
then we take the map Z / n Z  --+ Z / m Z  as the natural homomorphism. 

The diagonal embedding embeds Z as a dense subgroup of Z. Thus Z is the closed 
subgroup generated by 1. Moreover, for each profinite group G  ̂and each element9 E G, 
the map 1 ~ 9 uniquely extends to a homomorphism of Z into G. Thus, Z is the 
free profinite group generated by one element. Here and in general for profinite groups, 
whenever we use the term 'homomorphism' we mean 'continuous homomorphism'. 

In general, a profinite group which is generated by one element is procyclic. It is the 
direct product 1--[ Zp, where p ranges over all primes and each Zp is either Z/pnZ for 
some n ~> 0 or Zp. 

However, the most prominent example for a profinite group is the Galois group of a 
Galois extension N / K .  Indeed, we order the finite sub-Galois extensions L / K  of N / I f  
by inclusion. If L C_ L', then we take resz" G(L' /K)  --+ G(L/K)  as the corresponding 
homomorphism. We find that G(N/K)  ~- Jim G(L/K),  as topological groups. 

Conversely, generalizing a construction of Emil Artin, Waterhouse constructed for each 
profinite group G a Galois extension N / K  with G(N/K)  TM G [FrJ], Corollary 1.11. 

The inverse problem of (finite) Galois theory is to determine which finite groups occur 
as Galois groups over the field Q of rational numbers, and more generally over other 
distinguished fields K.  In terms of infinite Galois theory this problem can be rephrased 
as "which finite groups are quotients of G(K)?"  

Infinite Galois theory deals with two basic problems" 
1. Given a distinguished field K,  describe G(K) in group theoretic terms. 
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2. Give a necessary and sufficient group theoretic conditions on a profinite group G 
to be isomorphic to the absolute Galois group of some field K.  

Both problems are very far from being settled. However, there are already quite a few 
interesting results that shed light on both problems. This article surveys some of them. 

3. Separably closed fields, real closed fields, and finite fields 

There are three classes of fields with absolute Galois groups which are easy to describe. 

3.1. Separably closed fields. A field K is separably closed if every irreducible separable 
polynomial has a root in it. If char(K) = 0, then separably closed and algebraically closed 
are the same. If char(K) = p, then these notions may differ. For example, the separable 
closure of Fv(t ) (t is transcendental over Fv) is different from its algebraic closure. The 
fundamental theorem of algebra says that the field C is algebraically closed. This theorem 
has been proved in many ways, e.g., in the theory of analytic functions as a consequence 
of Cauchy's integral formula [Car], p. 80, or by Galois theory, as a consequence of Sylow 
theorems [La2], p. 202. Finally, K is separably closed if and only if G(K)  is trivial. 

3.2. Real closed fields. A field K is formally real if - 1  is not a sum of squares in K. 
Alternatively, K admits an ordering [La2], p. 274. For example, Q and Q(t) are formally 
real but Q(v/-L-T), C and IF r, are not. If K is formally real, then char(K) = 0. 

We say that a field K is real closed if it is formally real but no proper algebraic 
extension of K is formally real. Then K admits a unique ordering. For example, I~ and 
Q N R are real closed fields. If K is a real closed field and K0 is a subfield which is 
algebraically closed in K,  then K0 is also real closed [La2], p. 280. 

The theory of Artin and Schreier says that K is a real closed field if and only if 
G(K)  is of order 2, i.e. G(K)  ~- Z/2Z.  Moreover, if K is an arbitrary field such that 
[Ks " K] < c~, then K is either separably closed or real closed [La2], pp. 223 and 224. 

The latter theorem gives the first necessary condition on a profinite group G to be 
isomorphic to the absolute Galois group of a field K" The only elements of G of finite 
order are involutions (i.e. elements of order 2). Moreover, if char(K) ~ 0, then G(K)  
is torsion free. 

3.3. Finite fields. So, we are forced now to consider fields with infinite absolute Galois 
group. The easiest to handle among them are the finite fields. Recall, that if K is a finite 
field, then it has q elements, where q is a power of p = char(K). Moreover, K is the 
splitting field over 1Fp = Z / p Z  of the polynomial x q  - X.  In particular, there is, up to 
an isomorphism, a unique field with q elements. We denote it by Fq. 

For each n the field Fq has a unique extension lFq,~ of degree n. This extension is cyclic 
(i.e. Galois with a cyclic Galois group). The map x ~ xq is a canonical generator of 
~(IFq,,/Fq). It is the Frobenius automorphism and we denote it by Frob(Fq,/Fq) [La2], 
p. 185. It follows that 

A 

- ~  ~ lim Z / n Z  = Z. G(Fq) ,im g(lFq,~/Fq) = < 
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The inverse limit of the relative Frobenius automorphisms is the absolute Frobenius 
automorphism Frobq. It is a (topological) generator of G(Fq). 

3.4. Quasifinite fields. Unlike in the case of separably closed fields and real closed 
fields, the absolute Galois group of finite fields does not characterize this class of fields. 
For example, the compositum K of all IFq~ with l prime is an infinite field with G(K) ~- 
Z. More interesting, by a theorem of Puiseux, if C is an algebraically closed field of 
characteristic 0, then the absolute Galois group of the field C((t)) of formal power series 

over K is isomorphic to Z [Sel], p. 199. In Section 12 we explain that 'almost all' 
cr E G(Q) generate a subgroup of G(Q) which is isomorphic to Z. Each perfect field 

A 

with an absolute Galois group isomorphic to Z is quasifinite. 

3.5. Model theory of algebraically closed fields. The simple structure of the absolute 
Galois groups of the three classes that we have described here has a favorable impact on 
their elementary theories. Here we assume that the reader is familiar with the basic notions 
and results of Model theory and ultraproducts, say as presented in [FrJ], Chapters 6 and 7. 
We consider the first order language,/:(ring), of the theory of rings. Given a basic field 
K,  we also add a constant symbol for each element of K to /:(ring) and denote the 
resulting language by /:(ring, K).  The elementary theory of a class .T" of fields (resp. 
that contain K)  is the set of all sentences in/ : ( r ing)  (resp./:(ring, K) )  that are true in 
each F E .T'. 

It turns out that the elementary theory of algebraically closed fields (resp. of fixed 
characteristic) is decidable. Moreover, the division algorithm for polynomials leads to 
a primitive recursive elimination of quantifiers procedure for these theories [FrJ], Sec- 
tion 8.2. Thus, there is an effective procedure that determines whether a given sentence 
of / : ( r ing)  is true in all algebraically closed fields (resp. of a given characteristic). It 
follows that this theory is model complete, that is, if F c_ F ~ are algebraically closed 
fields, then F ~ is an elementary extension of F.  

3.6. Model theory of real closed fields. Similarly, the theory of real closed fields is 
decidable and model complete. Moreover, if one adds a binary symbol for the ordering 
relation to /:(ring), then, by a theorem of Tarsky, the theory even has an elimination 
of quantifiers [Prl], p. 48, or [Coh], Section 1. As an application one proves that an 
absolutely irreducible variety V which is defined over a real closed field R has a simple 
R-rational point if and only if its function field over R is formally real [Prl], p. 59, or 
[La2], p. 282. 

3.7. Pseudo finite fields. Let C be either the class of algebraically closed fields of a fixed 
characteristic or the class of real closed fields. Then C has a complete theory. That is, all 
the fields in C satisfy exactly the same sentences (i.e. they are elementarily equivalent). 
This is obviously not the case for the class of finite fields. Moreover, there exist infinite 
models of the theory of finite fields. They are called pseudo finite fields. For example, 
each nonprincipal ultraproduct of finite fields is pseudo finite. 

Ax [Axl], p. 262, proves that a field K is pseudo finite if and only if it satisfies: 



278 M. Jarden 

(la) Each nonempty absolutely irreducible variety defined over K has a K-rational 
point; 

A 

( lb)  G(K) ~- Z; and 
(1 c) K is perfect. 
These conditions are then used to establish a (recursive) decision procedure for the the- 

ory of finite fields, for the theory of pseudo finite fields, for the theory of statements true 
in all but finitely many fields Fp, and for some more related theories [Axl ], Section 11. 

A field which satisfies Condition (1 a) is said to be pseudo algebraically closed (abbre- 
viated PAC). In Section 12 we put these decidability results in the more general context 
of decidability and undecidability results for PAC fields. 

4. M o r e  about  profinite  groups  

Several concepts and results of the theory of finite groups can be carried over to profinite 
groups by 'taking limits'. Among those are the Sylow theorems, the Frattini subgroup, 
and cohomology. 

4.1. Pro-p groups. 
is a p-group. If 

A profinite group G is a pro-p group if each of its finite quotients 

1 > A > B > C  > 1 (1) 

is a short exact sequence of finite groups, then B is a p-group if and only if A and C 
are. The same is true for pro-p groups. Each profinite group G has a p-Sylow group Gv. 
By definition, G v is a closed subgroup of G which is pro-p and which is maximal with 
this property. Every pro-p subgroup of G is contained in a p-Sylow subgroup and every 
two p-Sylow groups of G are conjugate. Finally, an epimorphism of G onto a profinite 
group H maps Gp onto a p-Sylow group of H [FrJ], Section 20.10. 

4.2. Full families. In general, if (7 is a family of finite groups, then a pro-C group is a 
profinite group all of its finite quotients belong to (7. If in (1), B belongs to C if and only 
if A and C' belong to C, then this is the case for pro-C groups. We then say that C is full. 
For example, the family abelian groups or of all finite groups, the family of p-groups, 
and the family of solvable groups are full but the family of nilpotent groups is not full. 

4.3. The Frattini group. The intersection of all closed maximal proper subgroups of 
a profinite group G is a closed characteristic subgroup of G called the Frattini group 
of G and denoted by ~b(G). As for finite groups, ~b(G) is the set of all nongenerators 
of G. That is ~b(G) is the set of all 9 E G with the following property: for each subset 
S of G, the relation (9, S) = G implies (S) = G. Here (S) is the closed subgroup of G 
generated by S [FrJ], Section 20.1. 

For example, if G is a pro-p group, then ~b(G) is the intersection of all open subgroups 
of index p. Thus ~b(G) = GV[G, G] is the closed subgroup generated by all p-powers 
and the commutators of G [FrJ], Lemma 20.36. In general ~b(G) is the direct product of 
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its p-Sylow groups. This is equivalent to saying that ~b(G) is an inverse limit of finite 
nilpotent groups. In other words, ~(G) is pronilpotent. Likewise, a prosolvable group is 
an inverse limit of finite solvable groups. 

4.4. Finitely generated profinite groups. Obviously, every finite group has a finite set 
of generators. We say that a profinite group G is finitely generated if it has elements 
X l , . . .  , X  e such that G - ( X l , . . .  , X e ) .  The minimal e with this property is the rank 
of G. If G is a finitely generated profinite group, then for each n, G has only finitely 
many open subgroups of index at most n [FrJ], Lemma 15.1. The intersection of all 
these subgroups is a characteristic open subgroup Gn of G, and the intersection of all 
Gn is 1. The former property implies, like for finite sets or for vector spaces of a finite 
dimension, that if a: G --+ G is an epimorphism of finitely generated profinite groups, 
then c~ is an automorphism [FrJ], Proposition 15.3. 

For each finite group G and a field K,  the statement 'G occurs as a Galois group over 
K '  is equivalent to the truth in K of a sentence in E(ring) [FrJ], proof of Proposition 
18.12. Hence, for each e, the statement 'the finite Galois groups over K have at most e 
generators' is equivalent to the truth in K of a conjunction of a sequence of sentences 
of/2(ring). It follows that any ultraproduct of fields with absolute Galois groups of rank 
at most e also has a Galois group of rank at most e. 

4.5. Rank of a profinite group. A theorem of Douady, says that every profinite group G 
has a system of generators X which converges to 1. That is, for each open normal sub- 
group H of G, all but finitely many elements of X belong to H [FrJ], Proposition 15.11. 
If G is not finitely generated, then the cardinality of X is equal to the cardinality of 
the set of all open normal subgroups of G. This is then the rank of G. In particular, 
if rank(G) ~< R0, then G has a descending sequence of open normal subgroups whose 
intersection is 1. Also, if G is a pro-p group, then ~b(G) is the intersection of all open 
subgroups of index p, and G/q~(G) is a vector space over IFp whose dimension is equal 
to the rank of G [FrJ], Lemma 20.36. 

4.6. Free profinite group. Given a set X, one constructs the free discrete group F on X. 
Then one considers the inverse limit F = lim F/N,  where N ranges over all normal +..__ 
subgroups of F of finite index which contain almost all elements of X. This is the free 

A 

profinite group with basis X. The group F naturally embeds in F such that X becomes 
a set of generators which converges to 1. The pair (F,  X)  has a universal property in 
the category of profinite groups similar to the one that (F, X)  has in the category of 
discrete groups. Each map a of X into a profinite group G such that c~(X) converges to 

1 uniquely extends to a homomorphism of F into G. In particular, F is determined by 
the cardinality of X up to an isomorph~m. So, for each cardinal~ number m we denote 
the free profinite group of rank m by Fro. In particular, F~o is the free profinite group 
on countably many generators. 

A 

4.7. Embedding problems. The universal property of (F,  X)  is responsible for the solv- 
A 

ability of 'embedding problems' for F. In general, an embedding problem for a profinite 
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group G is a pair 

(~o: G --+ A, o~: B --+ A), (2) 

where qo and c~ are epimorphisms of profinite groups. If qo is only a homomorphism, we 
call (2) a weak embedding problem. The kernel of the embedding problem is the kernel 
of c~. If B is finite, then the embedding problem is finite. A weak solution to (2) is a 
homomorphism "7: G --+ B such that c~ o "7 = cp. We say that "7 is a solution if it is 
surjective (then necessarily go is surjective). 

A 

4.8. Characterization of Fw by^ embedding problems. Each embedding problem 
(qo: F --+ A, c~: B --+ A) for F in which rank(B) <~ rank(F) has a solution. The 
proof of this result uses an argument of Iwasawa if rank(F) = c~ [FrJ], Lemma 24.14, 
and a Lemma of Gaschtitz if rank(F) is finite [FrJ], Proposition 15.31. Iwasawa used 

this argument to characterize F,, as a profinite group of rank R0 for which every finite 
embedding problem is solvable [FrJ], Corollary 24.2. 

4.9. Free pro-C groups. Let C be a full family of finite groups. If we put the extra 
A 

condition on N (in w in the construction of F that FIN E C, then the resulting 

inverse limit is the free pro-C group on X. We denote it by Fx (C) or also by Fm (C) if X 
is of cardinality m. The notation and results of the preceding paragraph hold if we restrict 
them to the category of pro-AC groups. If C is the family of all p-groups (resp. solvable 
groups), then we also write Fx(p) and Fro(p) (resp. Fx(solv)  and Fm(solv)) for Fx(C) 

A 

and Fm (C), respectively. 

4.10. Index and order Like for finite groups one may speak about an 'index' and an 
'order' for profinite groups. Let M be a closed subgroup of a profinite group G. Then 
(G : M)  is defined as I I  l'X(l), where l ranges over all primes and for each l, A(I) is 
the maximal power of I which divides the index (G : H) of an open subgroup H of G 
which contains M. If these powers are not bounded, we put A(/) = c~. Note that A(/) 
may be different from 0 for infinitely many l's. So, (G : M)  is a super natural number. 
The index is multiplicative: (G : N) = (G : M)(M : N )  if N ~< M <~ G. The order of 
G is defined as #G = (G : 1). For example, the order of an infinite pro-p group is p~ .  
Finally, one translates indices of profinite groups to degrees of infinite algebraic field 
extensions. If L / K  is an algebraic extension, then [L: K] - ( G ( K ) :  G(L)). 

5. Cohomology of profinite groups 

The action of profinite groups and in particular Galois groups on discrete abelian groups 
and the cohomology groups attached to this action capture valuable information about 
them. In this section we briefly survey the main concepts and results of the cohomology 
of profinite groups which enter into the study of Galois groups. 

5.1. Cohomology groups. Let G be a profinite group. A G-module is a discrete abelian 
group A (usually additive) on which G acts continuously (usually from the left). Con- 
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tinuous functions from G n to A are called (nonhomogeneous)  n-cochains [Rib], p. 95. 
They form an additive abelian group Cn(G, A). For each n there is a homomorphism 
0n+l:  Cn(G, A) --+ C n+l (G, A), known as the coboundary operator: 

(On+l f)(~rl, c r2 , . . . ,  crn) = erl f(er2, e r3 , . . . ,  ern+l) 
n 

+ ~-~ ( - 1 ) i f ( e r l ,  e r2 , . . . ,  er ier i+l , . - . ,  ern+l ) 
i=1 

q-(--1)n+l f(erl ,  e r2 , . . . ,  ern). 

It satisfies the rule: i~n+2 o i~n+l = 0. One considers the subgroup 

Bn(G, A) = Ker(i3n+l) 

of n-coboundaries and the subgroup 

z n ( a , z )  -- On (C n- ,  (C, A)) 

of n-cocycles. The n-th cohomology group of the G-module A is the quotient 
Hn(G,A) = Zn(G,A)/Bn(G,A).  

5.2. Low dimensions. In low dimensions, these groups have useful interpretation. For 
n = 0 we have n~ A) = A C = {a E A I era  - a for all er E G}. In particular, if the 
action of  G on A is trivial (i.e. era = a for all er E G and a E A), then H~ A) = A. 
For n = 1, the cocycles are crossed homomorphisms. That is functions f :  G --+ A such 
that f(er0-) - f ( e r ) +  erf(7-). A 1-coboundary is a map er ~+ e r a -  a for some fixed 
a E A. In particular, if the action of G on A is trivial, then H ~ (G, A) - Hom(G,  A). 
Finally, for n = 2, there is a natural bijection between the elements of H2(G,A) and 
equivalence classes of short exact sequences 

0 ~ A ~ G ~ G , ~ 1, (1) 

N 

where the action of G on A through conjugation induces the given action of G on A. 
Under this bijection, the zero element of H2(G, A) corresponds to a split exact sequence. 
In particular, if H2(G,A) = 0, then each short exact sequence (1) with the prescribed 
action of G on A splits. 

5.3. Functorial properties. The n-cohomology group Hn(G,A) is a contravariant 
functor in G and covariantfunctor in A. That is, to each homomorphism f :  G -+ H of 
profinite groups there corresponds a homomorphism f*:  Hn(H, A) -+ Hn(G, A) which 
satisfies the rules id* - id and (fog)* - 9" of*. Also, to each homomorphism f :  A -+ B 
of G-modules  there corresponds a homomorphism f . :  Hn(G, A) -+ H n ( G ,  B)  such that 
id. - id and ( f  o 9) .  - f .  o g. .  Accordingly, we can present the cohomology groups of 
a profinite group as a direct limit of cohomology groups of finite groups: 

Hn(G,A) = lim Hn(G/N,A N) 
) 
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with N ranging over all open normal subgroups. Similarly, for direct limits of G-modules 
we have the rul6" Hn(G l i ~  Ai) -- lim Hn(G, Ai) [Rib] p. 109 

5.4. Exact sequences. Each short exact sequence of G-modules 

0 >A > B  ~ C  >0 

naturally induces a long exact sequence 

> H n ( a ,  A) > H n ( a ,  B) > H n ( a ,  C) 

5 > H n+l (G, A) > . . . ,  n~>0 .  

The map 5 is called the connecting homomorphism. 
On the other hand, if N is a closed normal subgroup of G and A is a G-module, then 

A N is a G = G/N-module. If in addition Hi(N, A) = 0 for all 0 < i < n, then we 
have the 5-term exact sequence of Hochschild and Serre [Rib], p. 177: 

0 ) nn(-~, A N) inf) nn(G, A) res) Hn(N, A)-e 
tr ) H n+ 1 (G, AN) inf) Hn+ 1 (G,A). 

Here inf (inflation) is the homomorphism that corresponds to the canonical map G --+ G, 
res (restriction) is the homomorphism that corresponds to the inclusion map N --+ G, 

tr is a special map called transgression, and see [Rib], p. 173, for the action of G on 
Hn(N, A). One derives this sequence from a spectral sequence whose initial elements 
are the groups E~ 'q - HP(G, Hq(N,A)) and which converges to Hn(G,A) (see also 

[Sht], Section 114). 

5.5. Cup products. Another operation that connects cohomology groups of different 
dimensions is the cup product. Given G-modules A and B there is for each m and n a 
natural homomorphism a | b ~ a tO b: 

Hm(G,A) |  Hm+n(G,A | B) 

that for m - n -- 0 is the identity map, and as a functor of both A and B commutes with 
the connecting homomorphism. Moreover, the cup product is associative, it commutes 
with restriction and inflation, and satisfies a U b -  ( - 1 ) m n b  U a [Rib], pp. 178-195. 

5.6. Induced modules. A lemma of Shapiro connects the cohomology groups of a profi- 
nite group G and those of a closed subgroup H of G. Each H-module  B induces a 
G-module  

A = IndCH B = { f :  G --+ B I f(rla) = rlf(a) for all 7 /c  H and cr E G}. 

The action of G on A is given by (rf)(a) - f(aT). The lemma of Shapiro then states that 
Hn(G, A) ~- Hn(H, B) for all n. In particular, for H - 1, we have Hn(G, Ind~B)  - 0 
for all abelian groups B [Rib], p. 146. 
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5.7. Cohomological dimension. An important invariant that cohomology theory sup- 
plies is the cohomological dimension of a profinite group G. Given a prime p, cdp(G) 
is the least positive integer n such that Hq(G, A) = 0 for all q > n and all finite G- 
modules A of a p-power order. (Note that the definition in [Rib], p. 196, asks A to range 
over all torsion G-modules, but the proof of (iii) ~ (ii) on page 201 of [Rib] shows 
that it suffices to consider only finite G-modules.) Then cd(G) is the supremum over all 
cdp(G). 

Several rules help to compute the cohomological dimension of a profinite group [Rib], 
Chapter 4: 

(2a) cdp(a )  = cdp(ap) ,  where Gp is a p-Sylow group of G; 
(2b) cdp(G) = 0 if and only if Gp = 1; 
(2c) if G has an element of order p, then cdp(a )  = oo; in particular, c d ( a )  = c~ if 

G is a nontrivial finite group; 
(2d) H <~ G implies that cdp(H) ~< cdp(G); 
(2e) equality holds in (2d) if p ~ (G : H);  
(2f) if H is an open subgroup of G and G has no element of order p, then cdp(H) = 

cdp(G) [Se2], Theorem, or [Hal], Theorem A. 

5.8. Projective groups. The interpretation of the second cohomology group as a col- 
lection of equivalence classes of short exact sequences allows us to draw an important 
consequence from the assumption cd(G) ~< 1. In this case HZ(G, C) - 0  for each finite 
G-module C. Hence, each short exact sequence 

A 

1 > C  r G  >G r l  

splits. Suppose now that 

( qo" G --+ A, c~" B -+ A ) (2) 

is a finite embedding problem with an abelian kernel C. Then the fiber product G = 
B x A G gives rise to a commutative diagram of short exact sequences" 

0 > C  > G  > G  >1 

II I & 
0 >C >B a > A  >1 

The splitting of the upper exact sequence gives a homomorphism 3': G --+ B such that 
c~ o 3" - q~. Thus, (2) is weakly solvable. If this happens for each finite embedding 
problem of G, we say that G is projective. The above argument can be reversed to prove 
that, conversely, if G is projective, then cd(G) ~< 1. It turns out that if G is projective, 
then each weak embedding problem for G (i.e. one in which A, B, and C are arbitrary 
profinite groups) is weakly solvable [FrJ], Lemma 20.8. In particular, each epimorphism 

N 

7r" G --+ G has a section, i.e. a homomorphism 0: G --+ G such that 7r o 0 - id. 
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If only cdp(G) <~ 1, then each weak embedding problem for G with a pro-p kernel is 

weakly solvable [Rib], p. 211, Proposition 3.1. In particular, every epimorphism 7r: G --+ 
G with a pro-p kernel has a section. 

In Section 4, we pointed out that each finite embedding problem for a free profinite 
group F is solvable. Hence, F is projective. By (2d), each closed subgroup G of F is 
projective. Conversely, each profinite group G is a quotient of some free profinite group 
F (Douady [FrJ], Corollary 15.20). In particular, if G is projective, the conclusion of the 
preceding paragraph implies that G is isomorphic to a closed subgroup of F.  This gives 
us the third characterization of projective groups. 

The fourth characterization of projective groups comes from a theorem of Tate: Every 
projective pro-p group is free pro-p [FrJ], Proposition 20.37. This, together with (2a) and 
(2b), implies that a profinite group G is projective if and only if its p-Sylow groups are 
free pro-p for all primes p. 

Note that the intersection of all open normal subgroups H of a profinite group G such 
that G/H is a p-group is a closed normal subgroup N and GIN is the maximal pro-p 
quotient of G. That is, each epimorphism of G onto a pro-p group factors through G/N. 
If cdp(G) ~< 1, then G/N is a free pro-p group [Rib], Corollary 3.2. 

5.9. Cohomology ofpro-p groups. Cohomology is most useful to analyze pro-p groups. 
If G is a pro-p group, then cd(G) is the minimal number n such that H n+l (G, Z/pZ) = 0, 
where G acts trivially on Z/pZ. In general, each of the groups Hn(G,Z/pZ) is an- 
nihilated by p and can therefore be considered as a vector space over IFp. We have 
H 1 (G, Z /pZ)  = Hom(G, Z/pZ)  -~ G/4)(G) and dimFp H l (G, Z/pZ)  = rank(G). 
Also, dimFp HZ(G,Z/pZ) is the relation rank of G. Thus, if e = rank(G) and k = 

relation rank(G) are finite, then F~(p) has k elements r l , . . . ,  rk such that G ~- F~(p)/R, 
where R is the smallest closed normal subgroup of F~(p) that contains r l , . . . ,  rk. This 
is a presentation of G by e generators and k relations ri = 1. 

6. Galois cohomology 

Galois cohomology is the theory that applies cohomological methods to Galois groups 
and their action on various modules which come up in a natural way in field theory. 

6.1. The additive group of a field. Denote the additive group of a field by K + and its 
multiplicative group by K x. The normal basis theorem for finite Galois extensions and 
Shapiro's lemma (Section 5.6) imply that 

Hn(G(L/K),L +) =0 (1) 

for an arbitrary Galois extension L/K and each n ~> 1 [Rib], p. 246. In particular for 
char(K) = p, we may use the long exact sequence that corresponds to the short one 

0 ~ Z / p Z  >K~ P>K~ ~0 



Infinite Galois theory 285 

with ga(x) - x p - x, to conclude that H n ( G ( K ) , Z / p Z )  = 0 for all n >~ 2. Thus 
cdp(G) ~ 1. Now denote the maximal pro-p-extension of K by K (p) and observe that 
gl(K (p)/K) is the maximal pro-p quotient of G(K).  It follows that G(K(p) /K)  is a free 
pro-p group (last paragraph of w Moreover, the first part of the above long exact 
sequence shows that H o m ( G ( K ) , Z / p Z )  = K+/ga(K+). So, the rank of G(K(P)/K)  is 
the dimension d of K+/ga(K +) over Fp. In particular, every finite p-group of rank at 
most d occurs as a Galois group over K.  This is a theorem of Witt [Wit], p. 237. 

6.2. The multiplicative group of a field. The multiplicative counterpart of (1) is known 
as Hilbert's theorem 90 [Rib], p. 246" For each Galois extension L / K  

H 1 ( G ( L / K ) , L  x) - 1. 

(One uses 1 instead of 0, because L x is a multiplicative module.) If L / K  is a finite 
cyclic extension with generator a, one obtains as a consequence that the norm of an 
element a E L is 1 if and only if there exists b E L such that a -- ab/b. Also, if n 
is prime to char(K) and the group #n of n-th roots of 1 is contained in K,  we may 
consider the short exact sequence 

1 r ,un r K x n K x > 1, 

where n is the map x ~ x n. The beginning of the corresponding long exact sequence 
gives Kummer's correspondence: K x / ( K X )  n ~- Hom(G(K) ,  #n)- 

For arbitrary Galois extensions N _~ L _~ K we may write the following special case 
of the Hochschild-Serre exact sequence: 

1 ) H Z ( G ( L / K ) , L  x) inf} H 2 ( G ( N / K ) , N  x) r e s ) H 2 ( G ( N / L ) , N X ) G ( N / L )  

tr H3 x inf) H3 , NX . (G(L/K,  L )) (G(N /K)  ) 

In particular the first inflation map is injective. 
The Brauer group of a field K is the group Br(K) of all equivalence classes of finite 

dimensional central simple K-algebras. Here two such algebras A and A t are said to 
be equivalent if there exist division rings D and D t over K and positive integers n 
and n '  such that A ~- Mnxn(D) ,  A' ~- Mn, xn,(D'), and D '~g D t. The product 
of the equivalence classes of two such algebras A and B is represented by A |  
There is a canonical isomorphism Br(K) -~ H 2 ( G ( K ) , K  x ) [Sel], X5, p. 165, or [Rib], 
pp. 250-252. The latter group is the direct limit of the relative Brauer groups B r ( L / K )  - 
H2(G(L /K) ,  L X), where L ranges over all finite Galois extensions of K.  

If L / K  is a finite cyclic extension of degree n and a is a generator of G(L/K) ,  then 
the following sequence is exact: 

1 >K x > L x l--a) L x NL/~C KX ~)Br(K) res> Br(L). 

Here X 1-or --  X /X ~ NL/K is the norm map, and a associates with each a E K x the 
factor system c defined by c(a i, aJ) = 1 if i + j < n and c(a  ~, aJ)  = a if i + j ~> n 
[Deu], p. 64. 
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If Br(L) = 0 for each finite separable extension of K ,  then cd (G(K) )  <~ 1. Conversely, 
if K is perfect and c d ( G ( K ) )  ~< 1, then Br(L) = 0 for each finite extension L of K 
[Rib], p. 263. It follows that in this case, the norm map NL/K: L • --+ K • is surjective 
for each finite Galois extension L / K .  

6.3. Cohomological dimension. The rule (2) of Section 5.7 for arbitrary profinite groups 
applies also to absolute Galois groups. In particular, since elements of order p appear in 
G(K) only if p = 2 and K is formally real, Condition (2f) of Section 5 improves to the 
following one: 

(2a) If L / K  is a finite extension, then cdp(K) - cdp(L), unless p - 2, K is a formally 
real field but L is not. 

In addition we have: 
(2b) If t is transcendental over a field K and p ~- char(K),  then cdp(G(K(t)) - 

1 + cdp(G(K)) [Rib], p. 271, and [Ax2], p. 1221. 
(2c) Let (K, v) be a Henselian valued field with value group/- '  and residue field K .  

If p ~ char(K) ,  then cdp(G(K)) = dim~,(r/pr)+ cdp(G(K)) .  In particular, if v is 

discrete, then cdp(G(K)) = 1 + cdp(G(K)) [Me2], Theorem 3. 
Recall that a valued field (K, v) is Henselian if it satisfies the lemma of Hensel and 

Rychlik: Let O be the valuation ring of (K, v). If f E O[X] and a E O satisfy v(f(a)) > 
2v(f '(a)),  then there exists a unique x E O such that f (x )  = 0 and v ( x - a )  > v(f'(a)). 
Equivalently, v has a unique extension to each finite extension of K [CaF], p. 56, or 
[Jal], Proposition 11.1. For example, Qp and the field Ko((t)) of formal power series 
over an arbitrary field K0 are Henselian. 

If K is separably closed, then G(K) = 1 and therefore cdp(G(K)) - 0 for each p. By 
(2b), cdp(G(K(t))) = 1 for p r char(K).  Hence cd (G(F) )  - 1 also for all algebraic 
extensions of K(t),  except those which are separably closed. 

A 

If K is a finite field, then G(K) -~ Z is free and therefore projective. By (2b), 
cdp(G(K(t))) = 2 for all primes p r char(K).  By (2c), cdp(G(K((t)))) - 2, and 
cdp(G(Qp)) - 2. It follows from (2a), that if F is a finite extension of any of these 
three fields, then cdp(F)  - 2. 

Finally, we explain in w that if K is a number field, then cdp(K) = 2, unless p - 2 
and K is formally real. In the latter case cdz(K) = cx~. 

6.4. Connection to Milnor's algebraic K-theory. 
is the quotient 

Milnor's n-th K-group of a field F 

KM(F) = (F • |  | F•  

with n factors F x and where I is the additive subgroup generated by all elements 
X 1 @''" @ X n ,  with xi + xj - 1 for some 1 ~< i < j ~ n (one writes Milnor's groups 
additively). Milnor's conjecture states that if F contains a primitive root of 1 of order p, 
then 

KM(F)/pKM(F) ~ H n (G(F), Z/pZ).  



Infinite Galois theory 287 

For n = 1, this is the classical isomorphism F x / ( F x )  p ~- H I ( G ( F ) , Z / p Z )  (w 
Denoting the element of g 1 (G(F), ~/RTZ) which corresponds to a coset x .  (F  x)p with 
x E F x by (x), the conjectured isomorphism for arbitrary n maps 

X l @ ' ' "  @ Xn -Jr- I mod p 

to the cup product (Zl) [.J.-- I..J (Zn). So, if Sn(F) denotes the subgroup of 

H 1 (G(F), Z /pZ)  @. . .  | H 1 (G(F), Z /pZ)  

generated by all ( X l ) @ ' ' . @ ( X n )  with xi E F x a n d x i + x j  - 1 for some 1 ~< i < j ~< n, 
then the following short sequence should be exact: 

0 ) S n ( F )  ~ H 1 (G(F), Z/pZ)  |  | H 1 (G(F), Z/pZ)  

u H n > (G(F) Z/pZ)  10. 

Merkurjev and Suslin [MeS] prove Milnor's conjecture for n - 2. For n - 3, partial 
results have been obtained by Merkurjev and Suslin and independently by Rost. 

7. The field of p-adic numbers 

A study of a 'global question' often starts with the study of 'local questions' associated 
with it. In particular, a good understanding of G(Qp) leads to information about G(Q). 
The former group is much simpler than the latter. Nevertheless, the structure of G(Qp) 
is complicated enough to be the subject of numerous pieces of research. 

7.1. The field Qp. 
valuation Vp" 

The field Qp is the completion of Q with respect to the p-adic 

(a) Vp -b pn  -- n 

if a, b, n are integers and p Jf a, b. In particular, its value group is Z (so the valuation is 
discrete), its valuation ring is Zp, its unique maximal ideal is pTZp, and its residue field is 
lFp. The completeness of Qp implies that Qp is Henselian. The finiteness of the residue 
field is responsible for the compactness of Zp and hence for the local compactness of Qp 
under the p-adic topology [CaF], p. 50. Consequently, Qp has for each n only finitely 
many extensions of degree at most n [La3], p. 54. 

7.2. Henselian fields. Let (K, v) be a Henselian field with residue field K of char- 
acteristic p (which may be 0). Each finite extension L of K satisfies the formula 
[L " K] = de f ,  where f - [L" K] is the residue degree, e - (v(L• �9 v(K•  is 
the ramification index, and d is a p-power, called the defect of L / K .  This formula is due 
to Ostrowski [Rbn], p. 236. If d -  1 for each L, we say that K is defectless. 
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Denote the unique extension of v to Ks also by v and let Os be the corresponding 
valuation ring. Define the inertia group of G(K) as 

I (K)  = {o" C G(K) I v(o'x - x) > 0 for all x E Os}. 

It is a closed normal subgroup of G(K) and we denote its fixed field in Ks by Kur. For 
each o C G(Kur/K) define 6. E G(K) by 6.~ = ~ for each a c Kur with v(a) >~ O. 
Here ~ is the image of a under the residue map. The map a ~ 6" is an isomorphism 
G(Kur/K) ~- G(K) [End], Theorem 19.13. In particular, Kur is the compositum of all 
finite extensions L of K for which [L �9 K] - f is the residue degree. If K is defectless, 
Kur is the maximal unramified extension of K.  That is, Kur is the compositum of all 

finite extensions L of K for which L / K  is separable and e - 1. 
The ramification group of G(K) is 

{ , ( . x )  } 
R ( K ) =  a e C ( K ) v - - - 1  > 0 f o r a l l x e K  x . 

X 

It is a closed normal subgroup of G(K) which is contained in I (K) .  We denote its fixed 
field in Ks by Ktr. If K is defectless, then Ktr is the maximal tamely ramified extension 

of K .  That is, Ktr is the compositum of all finite extensions L of K for which L / K  
is separable and p { e. Combined with the preceding paragraph, we have the following 
exact sequence: 

m 

1 >G(Ktr/Kur) >G(Ktr/K) >G(K) > 1. (1) 

Let 1" - v ( K  x ) = v(KuXr) and let A : v(KtXr ). For each 

(7" C= ~ ( K t r / K u r )  -" I ( K ) / R ( K )  

n •  
we define a homomorphism h,r" ,4/1" --+ K s by 

ha(v(x) + 1") = crx/x, x E KtXr . 

m x  

Then the map a --+ h,, gives an isomorphism ~ ( K t r / K u r  ) '~ Hom(A/1-',K s ) [End] ,  
Theorem 20.12, or [ZaS], p. 75, (18). Moreover, 

Hom ( A / F ,  - - x  H K , ) -  z,", 

where 1 ranges over all primes -#- p and 5t = dimF~ F/1F. Thus [Me2], Theorem 1, 

~(Ktr/Kur) ~'~ H Z~t" 
l#p 

In particular, ~(Ktr/Kur) is an abelian group of order prime to p. Moreover, the exact 
sequence (1) splits. To describe the action of G(K) on G(Ktr/Kur) l e t / z ( K s )  be the 
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m m m 

group of roots of unity of Ks and let X" C(K) --~ Aut(p(Ks)) be the cyclotomic 
character: if" = ffx(~). Then the action of each 7- c G(K)  (viewed also as an element 
of G(Ktr/K)) on ~(Ktr/Kur) is given by the following formula: 

TO.T--1 _. fiX(r) O" E ~ ( g t r / K u r )  

If p -- 0, then Ktr -- Ks. Suppose therefore that p > 0. Then group G(Ktr) is a 
pro-p group [ZaS], p. 77, Theorem 24. Since the order of ~(Ktr/Kur ) is prime to p, the 
Schur-Zassenhaus theorem [FrJ], Lemma 20.45, implies that the short exact sequence 

1 ) G ( K t r )  ) G ( K u r )  ) ~ (Kt r / /Kur)  ~ 1 

splits. 
For the same reason the p-Sylow subgroup of ~(Ktr/K) are isomorphic to those of 

G(Kur/K), hence to those of G(K). It follows that they are pro-p free (w Conclude 
that c d p ( ~ ( f f t r / g ) )  ~ I (fourth paragraph of w Since G(Ktr) is a pro-p group the 
second paragraph of w implies now that the short exact sequence 

1 ; G(Ktr) >G(K)  >~(Ktr/K) > 1 

splits [KPR], Theorem 2.2. It follows that also the short exact sequence 

m 

1 ) G ( K u r )  ) G ( K )  ) G ( K )  ) 1 

splits. 

7.3. Finite extensions of Qp. We specialize now the results of w to a finite exten- 
sion K of Qp. It is defectless [CaF], p. 19, and K -- Fq where q is a power of p. 

Hence G(Kur/K) ~ Z. Moreover, the Frobenius automorphism Frobq of G(Fq) lifts 
to a generator Frob(Kur/K) of G(Kur/K). It is uniquely determined by the condition 
vp(Frob(Kur/K)a- a q) > 0, for all a E Kur with v(a) >~ O. 

Since the valuation of K is discrete, ~(Ktr/Kur ) is also procyclic. More precisely, it is 
isomorphic to r l t cp  zt [CaF], p. 31. The group G(Ktr/K) is generated by two elements 

a, r ,  where a is a lifting of Frob(Kur/K) (as such (o-) -~ Z), 7- generates ~(Ktr/Kur) 
and 

O'TO "-1 = T q. (2) 

Indeed, G(Ktr/K) is the free profinite group with two generators and the above relation. 
That is, if 7-,a are elements of a profinite group G and # ~ # - l  = ~q, then the map 
(a, 7-) ~-+ (#, 7) extends to a homomorphism ~(Ktr/K) --+ G. Relation (2) is known as 
the Hasse-lwasawa relation. 

By (5b) below, cd(G(Kur)) - 1. It follows that G(Ktr) is a free pro-p group (Section 
4.9). Its rank is R0. Since each of the three factors G(Kur/K), ~(Ktr/Kur), and G(Ktr) 
of G(K) is prosolvable, so is G(K). 
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7.4. G(K) is finitely generated. Consider now the maximal abelian extension Ktr,ab 
of Ktr. Iwasawa proves that ~(Ktr,ab/K) is generated by n + 3 elements, where n = 
[K :Qp] [Iw3], Theorem 3 and use of local class field theory. Moreover, G(/('tr,ab) is 
contained in the Frattini subgroup of G(Ktr) and therefore also of G(K). Hence, G(K) 
itself is generated by n + 3 elements [JAR], Introduction. 

Jannsen [Jan], Satz 3.6, goes one step further and presents G(K) as a quotient of a 

semidirect product Fn+l (P) >4 6(Ktr/K)  by a subgroup N which is the closed normal 
subgroup generated by one element. Thus, in addition to the Hasse-Iwasawa relation of 
G(Ktr/K), the generators of G(K) satisfy only one additional profinite relation. 

7.5. Explicit presentation of G(K) by generators and relations. Jannsen and Wingberg 
[JAW] improve earlier results of Jakovlev and Koch and give the exact structure of G(K) 
by generators and relations in the case where p -7(= 2. This depends on several invariants 
of K.  The first two are n = [K �9 Qp] and q = IKI. Then one proves that the group of 
roots of unity of a p-power order in Ktr is finite. So, it is cyclic and generated by an 
element ( of order pS. The Iwasawa generators a and T act on ~ and define two positive 
integers 9 and h modulo pS. 

r = Cg, C = r 
A 

Also, let 7r be the element of Z with /-coordinate 0 for each prime 1 -r p and with 
p-coordinate 1. In particular 7r is divisible (in the ring Z) by p -  1. Then G(K) is the 
free profinite group on the generators a, T, X0,. �9 �9 Xn with the following conditions and 
relations" 

(3a) The closed normal subgroup which is generated by xo, . . .  ,Xn is a free pro-p 
group; 

(3b) The elements a and T satisfy aTa -I -- Tq; 
(3c) If n is even, then x~" = f(xo, T ) g x ~ S ( X l , X 2 ) ( X 3 , X 4 )  " '"  (Xn-l,Xn); 
(3C ~) If n is odd, then 

x~ -- f(xo, T)gXPs(Xl, yl)(X2,X3)(X4, X5) ''" (Xn-l,Xn), 

where, 

(x, y) _ x y x - l y -  f(xo , T) = (xhV-~ TxhV- 2 T . . .  X h 7") v=~" 

and yl is an element in (xl, or, r) which is given in [JAW], p. 74. 
Diekert [Die] completes the work of Jannsen and Wingberg in the case p -- 2 and 

s > 1 (that is, K(x/'-S-1)/K is unramified). He proves that G(K) is generated by n + 3 
generators with relations (3a), (3b) and (3c) as above. Note that in this case n = [K : Q2] 
is even (argue with the index of ramification). The structure of G(K) if ~ r ff  and 
in particular if K = Q2 is not known yet. 

7.6. Characterization of finite extensions of Qv by their absolute Galois groups. The 
description of the absolute Galois group of finite extensions of Qp by generators and 
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relations leads to characterizations of these fields by their absolute Galois groups [JAR] 
and [Rit]" 

Let K and L be finite extensions of Qp. Suppose that x /S1 c K if p - 2 (actually 
we could assume that K(x/-21) /K is unramified). Then G(K) ~- G(L) if and only if 
[K �9 Qp] = [L �9 Qp] and K A Qp,ab -- L fq Qp,ab. 

7.7. Demushkin groups. A forerunner to the results of 7.5 and an important ingredient 
in their proof is the determination of the structure of the maximal pro-p-quotient of G(K) 
by Demushkin and Labute. In other words, we let K (p) be the maximal pro-p extension 
of K and study G = ~(K  (p)/K). Denote a primitive root of unity of order n by (n. If 

A 

@ ~ K,  then G ~- Fn+l(P) [Shl] and [Se3], 4.1. In particular, if K - Qp and p r 2, 

then G -~ Fz(p). 
If @ E K,  then G is isomorphic to a Demushkin group of rank n + 2. This means that 
(4a) dimFp (H 1 (G, Z/pZ))  = n + 2; 
(4b) dim~p (HZ(G, Z/pZ))  = 1 (thus HZ(G, Z/pZ)  -~ Z/pZ);  
(4c) the cup product U: HI(G,Z /pZ)  x HI (G,Z /pZ)  -+ Z /pZ  is a nondegenerate 

bilinear alternating form. 
It follows that rank(G) = n + 2, and G is generated by elements Xl, z2 , . . . ,  Zn+2 with 

a single relation. Moreover, cd(G) = 2 [Se3], 9.1. 
In order to write down this relation we consider the maximal power pS of p such that K 

contains @s. Then the maximal abelian quotient of G has the form (Z/p~Z)|  n+l . 
If p~ r 2, then the relation is: 

Ix, ,  - 1, 

where [z, y] - z-ly-lxy. If pS _ 2 and n is odd, then 

2 4 Xl x2[x2,  x3] . - .  [Xn+l ,  X n + 2 ]  - -  1 

[Se3], p. 4, or [Lbl], Theorems 7 and 8. 
In the case where pS = 2 and n is even, Labute considers L = K((4,  (s, ~ 1 6 , . . . ) .  

Then G(L/K)  is isomorphic to the group U2 of invertible elements of Z2. Moreover, 
L C_ K(2) and so restriction gives rise to the cyclotomic character X: G --+ U2. For each 
~r E G, X(a) is the element a C U2 such that ~ - (a for each root of unity of 2-power 
order. Consider the image A of X in 572. There are two cases [Lbl], Theorem 9: 

Case 1" A -  (1 + 2fz2) with f >~ 2. In this case the single relation is" 

X 2+25 [X2, X3]"""  [Xn+l ,  Xn+2] --  1. 

Case 2: A - { + I }  x (1 + 2fz2) with f >~ 2. Then the single relation of G has the 
form: 

2 y x~[x,, x2]x3 [x3, x4]'-" [Xn+,, X~+2] -- 1. 
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In particular, if K = Q2, then G is generated by 3 elements x, y, z with the single relation 

x2y4[y, z] = 1. 

If we replace the condition (4a) on G by "rank(G) = R0", we get a Demushkin group 
of rank ~o. Labute [Lb2], Theorem 5, proves that the p-Sylow group of G(K) is a 
Demushkin group of rank R0 and determines the single profinite relation that defines that 
group [Lb2], Corollaries 2 and 3. 

Mimi5 and Ware [MWl] and [MW2] determine all Demushkin groups G of a count- 
able rank which appear as the maximal pro-p Galois group over of some field F.  The 
analogous problem for Demushkin groups of finite rank is still open. 

7.8. Local class field theory. A central tool in the proof of the above statements on the 
absolute Galois group of K and its maximal p-quotient is the reciprocity law of local 
class field theory. For each finite abelian extension L of K there is an exact sequence 

1 ~NL/K L• >K • CL/~ G(L/K)  ~ 1, 

1 where NL/K is the norm map [Nel], p. 42, or [CaF], p. 140. The reciprocity map 
r behaves 'well' under extensions of L and therefore gives rise to a continuous 
homomorphism CK: K x --+ G(Kab/K), which is injective. Note that Kur C Kab. If 
7r is a prime element of K,  then CK(Tr) is a lifting of Frob(Kur/K). Let OK be the 
valuation ring of K,  let UK be its group of units, and let UK, I = 1 + rrOK be the group 
of 1-units of K.  Then CK(UK) is the inertia group of ~(Kab/K), while CK(UK,1) is 
its ramification group [CaF], pp. 142-145. 

The reciprocity map has good functorial properties. If L is a finite extension of K,  
then KabL C_ Lab and we have a commutative diagram: 

L• eL > G(Lab/L) 

K• CK " G(Kab/K) 

If a E G(K),  K"  = K',  and x e K x, then C g , ( x " )  = CK(X)" [Nel], p. 26. 

7.9. The center of G(K). The latter property may be used to extend the power of local 
class field theory beyond abelian extension. As an illustration we repeat here an argument 
of Ikeda [Ike], proof of Lemma 2.1.8, which proves that the center of G(K) is trivial. 

Let a be an element of the center of G(K) and let x E K x. Find a finite Galois 
extension L of K which contains x. Then Lab is a Galois extension of K and eL (x") = 
eL(X) ~ = eL(X). Hence x ~ = x. Conclude that a = 1. 

I Note that Neukirch [Nel], p. 22, uses the term 'reciprocity map' for the 'inverse' map r: G(L/K) --+ 
K • Lx to CL/K. 
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7.10. Cohomological dimension. The cohomological dimension of an arbitrary alge- 
braic extension L of Qp obeys the following rules [Rib], p. 291" 

(5a) cdz(G(L)) = 0 if and only if 1 r  L]; 

(5b) cdt(G(L)) = 1 if and only if I I [Qp" L] and 1 ~ I [L �9 Qp]; 
(5c) cdz(G(L)) = 2 if and only if 1 ~ J( [L �9 Qp]. 
They are used to prove that/- '  - G(K) is in some sense determined by a finite 'big' 

quotient [Ja2], Theorem 7.4: 
(6) F has a finite quotient F such that if a closed subgroup H o f / "  is a quotient of 

/-' and F is a quotient of H, then H -~ F.  

7.11. The field IFq((t)). Let q be a power of a prime number p. Then K - IFq((t)) is 
the field of all formal power series in t with coefficients in IFq. It is the completion of 
IFq(t) with respect to the zero of t and shares many properties with Qz,. 

For example, let Ktr be the maximal tamely ramified extension of K.  Then G(Ktr/K) 
is the free profinite group with the generators or, ~ and a unique defining relation (2). 
The ramification group G(Ktr) is isomorphic to F~(p). The restriction map G(K) --+ 
G(Ktr/K) splits and therefore G(K) ~- F~(p) >~ ~(Ktr/K). Moreover, the action of 
G(Ktr/K) on G(Ktr) is free in the following sense: G(K~) contains a closed subgroup 

A 

E such that (a) E ~ F~ (p), (b) G(Ktr) is the closed normal subgroup of G(K) generated 
by E, (c) if G = F >4 ~(Ktr/K) is a semidirect product and F is a pro-p group, then 
each homomorphism E ~ F uniquely extends to a homomorphism G(K) ~ G whose 
restriction to ~ ( K t r / K )  is the identity map [Koc], Satz 3. 

7.12. Arithmetically profinite extensions ofa localfield. A valued field K is local if it is 
locally compact under the topology which is determined by the valuation. If char(K) - 0, 
then K is a finite extension of Qp. If char(K) - p, then K -~ IFq((t)), for some power 
q of p [Bou], p. 433. 

Let K be a global field with a residue field K of characteristic p. Using the closed sub- 
groups of G(K) with the "upper numeration", Wintenberger [Win], p. 62, distinguishes 
among all algebraic separable extensions of K those which are strictly arithmetically 
profinite (SAPF). We do not repeat here the definition of APF extensions but rather 
quote some of its properties: 

Let M and N be separable algebraic extensions of K such that M C_ N. 
(6a) If M / K  is finite, then it is SAPF [Win], 1.2.2. 
(6b) If M / K  is finite, then N / K  is SAPF if and only if N/M is SAPF [Win], 1.2.3(i). 
(6c) If N/M is finite, then N / K  is SAPF if and only if M / K  is SAPF [Win], 1.2.3(ii). 
(6d) If N / K  is SAPE then so is M/K.  
(6e) If N / K  is a Galois extension, N is a finite field, and G(N/K) is a p-adic Lie 

group, 2 then N / K  is SAPF [Win], 1.1.2. 
(6f) If L / K  is a SAPF extension, then the maximal tamely ramified subextension of 

L / K  has a finite degree [Win], 2.1.2. In particular, L is a finite field and the value group 
of L is isomorphic to Z. 

2 For a definition of a p-adic Lie group see, e.g., [DMS], Definition 9.17. 
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(6g) For each infinite SAPF extension L / K  there is a local field XK(L) of charac- 
teristic p [Win], Theorem 2.1.3(ii), with residue field isomorphic to L and with absolute 
Galois group isomorphic to G(L) [Win], Corollary 3.2.3. Thus G(L) ~- G(L((t))). 

7.13. Infinite extensions of Qp with isomorphic Galois groups. Consider the field N -- 
Qp(~p, ~pz, ~p3,...), where ffp, is the pi-th root of unity. Then N / K  is a totally ramified 
infinite Galois extension and G(N/K)  ~ Zr~ [Sel], Chapter IV, Proposition 17. In 
particular G(N/Qp) is a p-adic Lie group. By (6e), N/Qp is a SAPF extension. By 
(6g), G(N) ~- G(I~p((t))). Also, Zr~ = Zp • A, where A ~ Z /2Z  if p - 2 and 
A ~- Z / ( p -  1)Z if p > 2. Let M be the fixed field of A in N. By (6d) (or by (6e)), 
M/Qp is also SAPF and therefore G(M) ~- G(Fp((t))) ~- G(N). Since M is a proper 
subextension of N/Qp, it is not isomorphic to N over Qp [FrJ], end of proof of Lemma 
18.19. 

7.14. CONJECTURE. For every infinite algebraic extension M of Qp which is not Qp there 
exists another algebraic extension M' of Qp such that G(M) ~- G(M t) but M ~Qp M'. 

8. Number fields 

Our knowledge of the absolute Galois group of a number field K is a consequence of 
the arithmetic of K and of the Hilbert irreducibility theorem, which K satisfies. In this 
section we survey the consequences of the arithmetic and defer the discussion of Hilbert 
irreducibility theorem to Section 11. 

8.1. Primes. A prime p of K is either an equivalence class of valuations of K or of 
archimedean absolute values. The latter correspond to the embeddings of K in C. We 

denote the completion of K at p by Kp, embed K in Kp, and let Kp,alg - K N Kp. If 
p is nonarchimedean, and lies over a rational prime p, then Kp is a finite extension of 
Qp and Kp,alg is the Henselian closure of K with respect to p. If p is archimedean, then 
Kp,alg is either a real closure of K or the algebraic closure of K.  In all cases Kp,alg is 

, . . . ,  , . . . .  

determined by p up to a K-isomorphism. Also, KKp - Kp (by Krasner's lemma if p is 
nonarchimedean). Hence res: G(Kp) --+ G(Kp,alg) is an isomorphism. So, we may and 
we will identify G(Kp) with a closed subgroup of G(K). 

8.2. Global class field theory. Local class field theory teaches us that the group K~ 
controls the abelian extensions of Kp. To control the abelian extensions of the number 
field K,  global class field theory combines all groups Kp x to the group of ideles of K: 

IK - { a C  I- I  KpX I C~P C Up for all but finitely many p}. 

Here Up is the group of units of Kp. The multiplicative group K x embeds diagonally in 
IK and CK -- 1K/K  • is the group of idele classes of K.  There is a natural topology on 
CK which makes it a locally compact group. The quotient map IK -+ CK is injective on 
each K~ < . We can therefore view K~ as a closed subgroup of CK. To each finite abelian 
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extension L/K global class field theory associates an Artin map ~)L/K: CK -+ G(L/K) 
which is surjective and with kernel NL/KCL [CaF], p. 172. The good functorial properties 
of the Artin map allow us to take inverse limits on all r and to obtain an Artin map 
r CK --+ ~(Kab/K). This map is surjective and its kernel is the connected component 
of 1. The restriction of CL/K to Kp x maps it into the decomposition group of p in Kab, 
that is into G(Kab/Kab A Kp). It coincides then with the local Artin map. 

One approach to class field theory is via Galois cohomology [CaF] (the other one is 
through analytic methods [Gol]). The cohomology of number fields is partly associated 
to the cohomology of its completions through the local global principle for the Brauer 
groups: The map 

H 2 (G(K) , /~  • res) H H2 (G(Kp), ff[; ) (1) 

where p ranges over all primes p of K and res is the product of all local restriction maps 
is injective [Ne4], p. 244. This extends also to the case where K is an arbitrary algebraic 
extension E of Q [Rib], p. 296. Similarly, the map 

H 2 (G(E), Z/pZ) res H H2 (G(Ep), Z/pZ) (2) 

is injective for each algebraic extension E of Q and each prime p (see [Se4], p. 12, for 
the case E - Q and [GJ2], proof of Lemma 4.3, for the general case). As a consequence, 
one gets the following rules for the cohomological dimension of G(E) [Rib], p. 302: 

(3a) c d p ( G ( E ) )  -- c<) if and only if p = 2 and E embeds into R; 
(3b) Assume that either p ~ 2 or E does not embed into R. Then 

(i) cdp(G(E)) = 0 if and only if p r [Q" El; 

(ii) cdp(G(E)) - 1 if and only if p I[Q" E] and p ~  I[Ep �9 Qp] for every extension 
p o f p  to E; 

(iii) cdp(G(E)) - 2 if and only if p J[Q" E] and there exists an extension p of p to 
E such that p ~  Jf[E o : Qp]. 
In particular the c0homological dimension of each number field which does not embed 
into 11~ is 2. Also, cdp(G(Qab)) = 1 for each prime p. Thus G(Qab) is a projective group. 

8.3. Closed abelian subgroups. Geyer uses the information about the cohomological 
dimension of closed subgroups of G(Q) to prove that each closed abelian subgroup of 
G(Q) is procyclic [Rib], p. 306. 

8.4. Zt-extensions. Class field theory becomes concrete in the case K = Q. The Kro- 
necker-Weber theorem states that the maximal abelian extension Qab of Q is obtained 
by adjoining all roots of unity to Q [Nel], p. 46. Consequently 

^ I I  ~ (Qab/Q) TM X x -~ Z~ <. 

l 

In particular, for each prime l, Q has a unique Galois extension N such that G(N/Q) ~ Zz 
(we call N a Zt-extension of Q). Iwasawa [Iw2], Theorem 2, considers the compositum 
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N of all Zt-extensions of an arbitrary number field K. He proves that G(N/K) is a free 
Zz-module whose rank a(K) satisfies r2 + 1 ~< a(K) ~ [K �9 Q], where r2 is the number 
of nonconjugate imaginary embeddings of K into C. 

8.5. Characterization of a number field by its absolute Galois group. The real closures 
of Q and the p-adic closures of Q are characterized by their absolute Galois groups. If E 
is an algebraic extension of Q and G(E) is isomorphic to G(IR), then E is isomorphic 
over Q to ~alg - Q f-)~ (because Q has only one ordering). Similarly, Neukirch [Ne2] 
proves that if G(E) ~- G(Qp), then E ~ Qp,a~g. He also proves that if K and L are 
Galois extensions of Q such that G(K) ~- G(L), then K = L. It follows that every open 
normal subgroup and hence every closed normal subgroup of G(Q) is characteristic. 
Uchida [Uc 1] and Iwasawa [Iw 1 ] independently generalize Neukirch's result: If K and 
L are number fields and G(K) ~- G(L), then K and L are conjugate over Q. Moreover, if 
a: G(K) --+ G(L) is an isomorphism, then cr can be extended to an inner automorphism 
of G(Q). In particular, every automorphism of G(Q) is inner. Since G(Q) has a trivial 
center (a result of EK. Schmidt; see also Section 12), this means that G(Q) is a complete 
group. The latter result is also proved by Ikeda [Ike]. 

8.6. Realization offinite solvable groups. Each embedding problem for G(K) induces 
by restriction an embedding problem for G(Kp) for each prime p of K. The local global 
principle (2) for the groups H2(.,Z/1Z) implies that a weak embedding problem for 
G(K) with a finite abelian kernel has a weak solution if and only if it has locally a weak 
solution [GJ2], Lemma 4.3. Scholz used this principle to realize each finite/-group with 
1 :/: 2 over Q [Se4], Chapter 2. Shafarevich extends this result to arbitrary number field 
K and also to 1 = 2 [Sh2], p. 96, and finally proves that each split embedding problem 
for G(K) with a nilpotent kernel is solvable [Sh2], p. 205. As a consequence he is able 
to realize each finite solvable group over K [Sh2], p. 180. 

9. p-adically closed fields 

The field Qp of p-adic numbers behaves in many respects like the field IR of real numbers. 
The 'p-adic' theory is an analog of the 'real theory', which is however more complicated. 

9.1. Definitions. To define 'formally p-adic field' one replaces -1  and squaring in the 
definition of 'formally real' (w respectively, by p and the Kochen operator: 

1 Z p - -  Z 

= p ( z , ,  - z ) 2  _ 1 

A field K is then formally p-adic if p - I  does not belong to the ring Z[7(K)]. Alter- 
natively, K is formally p-adic if it admits a p-adic valuation v. That is, v(p) is the 

least positive element of v(K • ) and Kv -~ IF'p. For example, Q and Qp are formally 
p-adic fields. A formally p-adic field K is p-adically closed if it has no proper algebraic 
formally p-adic extensions. In this case K has a unique p-adic valuation v and (K, v) is 
Henselian. 



Infinite Galois theory 297 

9.2. Model theory. A natural language for valued fields is obtained from s 
by adding a unary predicate for the valuation ring. We denote this language by 
/2(valued ring). As in the real case, the elementary theory of p-adically closed fields is 
model complete in this language. Moreover all p-adically closed fields K are elementarily 
equivalent in s ring) to Qp (Ax, Kochen and Ershov [PrR], Theorem 5.1). In par- 
ticular, since G(Qp) is finitely generated, G(K)  -~ G(Qp) (Section 4.4). Moreover, if K0 
is algebraically closed in K, then K0 is also p-adically closed and res: G(K) --+ G(Ko) 
is an isomorphism. 

Again, as for real closed fields, an absolutely irreducible variety V which is defined 
over a p-adically closed field K has a simple K-rational point if and only if its function 
field over K is formally p-adic [PrR], Theorem 7.2. 

9.3. p-adic closure. Zorn's lemma implies that each p-ad.ically valued field (K, v) has a 
p-adic closure (K, ~). That is, (K, ~) is a p-adically closed field and K / K  is an algebraic 
extension. For example, Qp,alg is the unique (up to isomorphism) p-adic closure of Q. 
Unlike in the real case, two p-adic closures of (K, v) need not be isomorphic. Macintyre's 
isomorphism theorem says that if (E, v) and (F, v) are p-adic closures of (K, v), then 
(E, v) --~K (F, v) if and only if K N E n = K N F n for all positive integers n (here 
E n - {xnl x C E}) [PrR], Corollary 3.11. As a result, the theory of p-adically closed 
fields has an elimination of quantifiers in an extension of s ring) which contains 
an n-ary predicate symbol Pn for each positive integer n (Macintyre [PrR], Theorem 5.6). 
For a p-adically closed field (K, v) one interprets Pn as the set of all n-powers of elements 
of K. 

As for real closed fields, G(Qp) characterizes Qp up to an elementary equivalence. In 
other words, if K is a field such that 

G(K) ~ G(Qp), (1) 

then K is p-adically closed and is therefore elementarily equivalent to Qp (w 
We have already mentioned (w that Neukirch proved this theorem for algebraic ex- 

tensions of Q. Pop [Po3], Theorem E9, proves that if in addition to (1), K is Henselian, 
then K is p-adically closed. Efrat [Ef5], Proof of Theorem A, (for p --/: 2) and Koenigs- 
mann [Koe], Proposition 4.4, (for arbitrary p) prove that indeed, (1) implies that K is 
Henselian. Hence, (1) implies that p-adically closed. 

The concept of 'p-adically closed field' has been extended by Prestel and Roquette 
[PrR] to take care of finite extensions of Qp.  A valuation v of a field K of characteristic 
0 is generalized p-adic 3 of rank d if its valuation ring O satisfies dim~p O/pO = d. We 
say that K is generalized p-adically closed if it admits a generalized p-adic valuation 
but no proper algebraic extension of K admits a generalized p-adic valuation with the 
same rank. For example, every finite extension K of Qp is generalized p-adically closed 
with rank [K : Qp] (This follows from the formula d = e f  [PrR], p. 15.) 

Most of the results for p-adically closed fields generalize to generalized p-adically 
closed fields. For example, if K is a finite extension of Qp and L is another field 

3 Prestel and Roquette use the term 'p-adic'. 
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with G'(L) ~- C(K),  then L is a generalized p-adically closed field of rank [ K :  Qp]. 
However, there exist pairs (E, F)  of finite extensions of Qp such that G(E) ~- G(F) but 
E ~ F;  hence E and F are not isomorphic [JAR], p. 10, and therefore not elementarily 
equivalent. (One has to use here [FrJ], Lemma 18.19, Krasner's Lemma, and a theorem 
of EK. Schmidt.) 

By the Chebotarev density theorem and a group theoretic argument [FrJ], Lemma 
12.4, the intersection of Qp,alg, where p ranges over all primes and Qp,alg is a p-adic 
closure of Q (one for each p), is Q. Suppose that K is a field with G(K) ~- G(Q). Then 
char(K) = 0 (because cdp(G(K)) <~ 1 if char(K) = p while cdp(G(Q)) ~> 2). By the 

theorem of Neukirch, Pop, Efrat and Koenigsmann, Q c'/K - Q. 

CONJECTURE. Let K be a field of characteristic O. Suppose that G(L) ~- G(K) implies 
that L is elementarily equivalent to K. Then K is an algebraically closed field, a real 
closed field, or a finite abelian extension of Qp. 

The assumption that char(K) = 0 is necessary. Indeed, Efrat [Ef5], Proposition 4.7, 
proves that for every field K of positive characteristic there exists a field L of charac- 
teristic 0 such that G(L) ~- G(K). Of course, K and L are not elementarily equivalent. 

Similarly, for each field K there exists an algebraic extension L of K(( t ) )  such that 
L / K  is regular and G(L) ~ G(K) [GJ1], Proposition 4.1. In particular L is Henselian. 
It follows that L is non-Hilbertian (w 

A theorem of Prestel [Pr3], p. 200, gives another evidence to Conjecture: Let K be 
an algebraic extension of Q. Suppose that 'G(L) ~ G(K) and LQ = L' implies that 

L is elementarily equivalent to K. Then K is isomorphic to Q, or to Q N R, or to an 
algebraic extension of Qp,.~lg for some prime number p. 

10. Funct ion  fields of  one variable  

A function field of one variable over a field K (which we shorten in this section to just a 
function field over K) is a finitely generated regular extension F of K of transcendence 
degree 1. The elements of K are referred to as constants. 

10.1. General field of constants. The arithmetic of F is due in the first place to the 
set of discrete valuations which are trivial on K. A prime p of F / K  is an equivalence 
class of such valuations. The completion Fp of F with respect to p is isomorphic to the 
field of formal power series L((u)), where L - Fp is the residue field and u is a prime 
element of F with respect to p. It is a discrete Henselian valued field, which is defectless 
[CaF], p. 19. 

Here Fp,ur = Ks Fp. By 7.2, 

res" g(Fp,ur/Fp) -+ C(L) 
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is an isomorphism. If char(K) = 0, then Fp,tr is the algebraic closure of Fp and 

~(Fp, t r /Fp ,ur  ) " Z. If char(K)  = p > 0, then 

~ ( F p , t r / F p , u r )  "~ H ~l 

and the restriction map res: G(Fp) --+ ~(Fp,tr/Fp) has a section (w 
In the latter case one checks that the set { u - i l p  Jf i} is linearly disjoint over Fp 

modulo the additive group {z p - z l x  c I fsF o}. By 6.1 the maximal pro-p quotients 
of G(Fp) and of G(Fp,ur) are free pro-p groups of infinite rank. Since, by definition, 
p ~ [Fp,tr " /v'p,ur], the maximal pro-p quotient of G(Fp,ur) is a quotient of G(Fp, t r ) .  Hence, 

rank(G(Fp,tr) ) = cxz. 

10.2. Finite field of constants. We now assume that I f  is a finite field. Class field theory 
works for F in the same way as for number fields [CaF], 162-203. In particular the idele 
class group of F controls the abelian extensions of F.  One application of class field 
theory follows Scholz and Reichardt and realizes every f ini te/-group over F ,  if 1 ~: p 
and if (t ~g F [GJ2]. One can probably follow Shafarevich and realize each / -g roup  over 
F also in the case where (t E F.  

10.3. Function fields with isomorphic absolute Galois groups. One of the distinctions 
between number fields and function fields over finite fields is that the latter have no 
smallest subfield. Thus, If(t) ~- If(x/~) although these fields do not have the same 
degree over a common field, as is the case by number fields. Nevertheless, Uchida [Uc2] 
proves that if F and F ~ are function fields of one variable over finite fields (of possibly 
different characteristic) and ~: G(F) --+ G(F') is an isomorphism, then there is a unique 
isomorphisms of fields qo: F~ --+ F" such that ~b(cr) - ~crqo -1 for each cr E G(F). In 
particular qD(F) = F ' ,  and so every automorphism of G(F) is inner. 

Pop [Po 1] proves the same result for function fields of one variable over number fields. 
He falls short however in proving the conjecture that if F and F ~ are fields which are 
finitely generated over their prime fields and G(F) ~- G(F'), then F -~ F ' .  Instead 
he adds in [Po2], Theorem 2, a certain structure to G(F) and proves that if G(F) and 
G(F ~) have isomorphic structures, then F ~- F ~. 

10.4. The absolute Galois group of C(t). Algebraic topology teaches us that the fun- 
damental group of a sphere punctured in r points is generated by r elements ~ r l , . . . ,  ~r'̀  
with the single relation crl �9 �9 �9 or'` -- 1. The theory of Riemann surfaces and in particular 
Riemann existence theorem translates this result to a theorem about Galois groups over 

c(t): 
Let F be a finite Galois extension of C(t) .  Let P l , . . .  ,P'` be the prime divisors of 

C(t)  which are ramified in F.  Then there exist generators or1, . . . ,  a'` of G(F/C(t)) with 
or1 ...or,- = 1 such that oi generates an inertia group over Pi, i -- 1 , . . . ,  r. Conversely, 
if G is a finite group generated by (71, . . . ,  a'` with (71...(7,. = 1, then C(t)  has a finite 
Galois extension F over C(t)  which is unramified outside S' -- {p~, . . .  ,p'`} such that 
cri generates an inertia group over P i , / - -  1 , . . . ,  r [Mal],  p. 31, Satz 1. 
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It is not difficult to replace C in this theorem by an arbitrary algebraically closed 
field C of characteristic 0. One then works with profinite groups to prove that the Galois 
group of the maximal extension C(t)s of C(t) which is unramified outside S is generated 
by r elements a l , . . .  ,a,. with a single relation ai . . .ar  = 1 [Vo2], Theorem 2.12. In 
particular G(C(t)s/C(t)) is isomorphic to the free profinite groups on r -  1 generators. 
Finally, one lets S range over all finite sets of prime divisors of C(t) and proves that 
G(C(t)) is isomorphic to the free profinite group of rank equal to the cardinality rn of 
C [Rib], pp. 70--80, or [Dou]. In particular, each finite grou~ occurs as a Galois group 
over C(t). Since open subgroups of Fm are isomorphic to Fm [JaL], p. 217, we have 

A 

G(F) ~- Fm for each fnite algebraic extension F of C(t). 
One may also start directly from a finite extension F of C(t). Let 9 be the genus 

of F and let S = { P i , . . . ,  Pr} be a set of r prime divisors of F.  Denote the maximal 
extension of F which is unramified outside S by Fs. Then Fs/F  is a Galois extension 
and G(Fs/F) is the group generated by f + 29 generators ai , . . . ,  a~, TI, T(,..., ra, T~ 
with the single relation 

# # 

f f l ' ' "  ~rr[Tl, Tl]""" [To, Tg] = 1. 

Moreover, for each i between 1 and r there exists a prime divisor q3i of  Fs lying over 
Pi such that ai generates the inertia group of q3i over F [Mal ], p. 31, Satz 1 and p. 34, 
Satz 2. 

10.5. The absolute Galois group of R(t). Krull and Neukirch [KrN] consider a finite 
set S of prime divisors of R(t) and the maximal Galois extension Fs of R(t) which is 
unramified outside S. They present G(Fs/R(t)) by generators and relations. Schuppar 
[Sch] replaces R in this result by an arbitrary real closed field R. If one lets S range over 
all finite sets of prime divisors of R(t), one presents G(R(t)) as a real free profinite 
group. More precisely, the set of involutions of G(R(t)) contains a closed subset X 
which bijectively corresponds to the space of orderings of R(t) and there exists a closed 
subset Y of G(R(t)) which is disjoint to X, contains 1 and bijectively corresponds to 
the set {a + bvfZ-1la, b E R and b > 0}, such that the following holds [HJ1]: 

Every continuous map qo from X t2 Y into a profinite group G such that qo(x) 2 = 1 
for each x C X and cp(1) = 1, uniquely extends to a homomorphism of G(R(t)) into 
G. The set X t_J Y is said to be a basis for G(R(t)). One also says that G is the free 
product of the groups in {(x) Ix  E X} U { ( y ) [ y  E Y} [Ha2], p. 274. 

10.6. Realization of finite groups over Fp(t). Let now C be an algebraically closed 
field of positive characteristic p. Grothendieck [Grt], XIII, Corollary 2.12, proves the 
analog of the Riemann existence theorem (10.4) for C instead of C in the case where 
p Jf IF : C(t)]. Raynaud [Ray] (for r = 1) and Harbater [Hr2] (for r ~> 1) prove a 
conjecture of Abhyankar [Abh]: Let S - { P l , . . . ,  P,-} be a set of prime divisors of C(t). 
Consider a finite group G and denote the subgroup generated by all p-Sylow subgroups 
of G by p(G). Suppose that rank(G/p(G)) <~ r -  1. Then C(t) has a Galois extension 
F with G(F/C(t)) ~- G which is unramified outside S. In particular, each finite group 
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occurs as a Galois group over C(t).  Nevertheless, unlike in characteristic 0, the structure 
of ~ ( C ( t ) s / C ( t ) )  (in the notation of 10.4) is still unknown. 

10.7. The absolute Galois group of  Fp(t). By 6.3 and in the notation of 10.6, G(C( t ) )  
is projective. Since C(t)  is Hilbertian (by 11.3), this implies, at least if C is countable, that 
the maximal prosolvable quotient of G(C( t ) )  is free. In other words, G(C(t)solv/C(t))  
F~o(solv) (by 11.12). 

Actually, we know now much more. Harbater [Hr3], Theorem 4.1, uses formal patching 
to prove that if C is an algebraically closed field (of an arbitrary characteristic) of 
cardinality m, then each finite embedding problem for C(t)  has m solutions. This implies 
that G(C( t ) )  is the free profinite group of rank m [Hr3], Theorem 4.4. In particular 
G(IFp(t)) ~- F~. 

Pop [Po5] proves the latter result by methods of rigid analytic geometry. The main 
tool in his proof is a certain strengthening of his [ Riemann existence theorem which 
we present below. 

A 

Haran and V61klein [HaV] give a third proof to the isomorphism G(C( t ) )  ~- F~, 
where C is a countable algebraically closed field. In addition to algebraic arguments, 
only basic properties of convergent power series with coefficients in C(( t ) )  are used in 
the proof. 

,1 10.8. Function fields over Henselian fields. Pop's ~ Riemann existence theorem' con- 
siders a Henselian field K with respect to a nontrivial valuation v of rank 1. That is, 
v ( K  x) is isomorphic to a subgroup of R. Let S be a finite set of prime divisors of 

K( t ) ,  none of them is a pole of t. Denote the set of all extensions of S to K ( t )  by S. 

Suppose that the set of residues of the primes in S at t can be ordered in pairs (xi, Yi), 
i - 1 , . . . ,  n such that v(xi  - yi) > v(xi  - x j )  for all i 7~ j .  Let K be the residue field 

I of K at v. If char(K) -- 0 and char(K) = p > 0, define e i to be the maximal integer 
satisfying 

- y , )  > + 
1) 

p 1 v ( p ) + v ( x i - x j )  for all i 7~ j, 

and let ei = max{0, e~}. Then K ( t )  has a Galois extension N which is ramified at most 
in S and contains Ks. The Galois group G ( N / K s ( t ) )  is the free profinite group generated 
by elements axe, Tyl , . . . , Crzn , 7"yn subjected to the relations crz~ Ty, -- 1, i -- 1 , . . . ,  n, 
and to the condition 

A 

Z i p  e' Z • 1-It#p Zz 
if char(K) -- char(K), 
if char(K) = 0 and char(K) = p > 0. 

The element ox~ (resp. rye) belongs to an inertia group corresponding to xi (resp. Yi), 
i - -  1 , . . . , n .  
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Moreover, g(N/K( t ) )  is isomorphic to the semidirect product g(N/Ks(t))  >~ G(K) 
and the action of G(K) on g(N/Ks(t)  is defined by 

, , - . _ -  , _ _ . .  , C G(K) 

A 

Here X: G(K) --+ Z x is the homomorphism defined by the action of the elements of 
G(K) on the roots of unity. 

The theorem describes a group which has approximately half of the rank of 
g(K( t )~ /K( t ) )  (where K(t)-~ is the maximal Galois extension of K(t) which is ram- 

ified at most at S). Also, S is not an arbitrary finite subset of K. So, it is not the full 
analog of Riemann existence theorem in characteristic 0. 

Nevertheless, this theorem is strong enough to deduce that each Hilbertian PAC field 
F is w-free (w and to describe the absolute Galois group of totally p-adic numbers 
as a free profinite product of copies of G(Qp) (w 

11. Hilbertian fields 

Elementary Galois theory teaches us that the Galois group of the general polynomial of 
degree n, 

f (T,  X) = X n + T1X n-' + . . .  + Tn 

is the symmetric group Sn. To explain this statement consider a polynomial 9 of degree 
n with coefficients in a field F and assume that it has n distinct roots x l , . . . ,  x,~. Then 

A 

F -- F ( x l , . . .  ,xn) is a Galois extension of V and g(F/F)  permutes Xl , . . .  ,xn. This 

gives a permutation representation of g(F/F)  into Sn. We denote the image of g(F/F)  
in Sn by g(9, F).  This is the Galois group of 9 over F. The opening statement of this 
section then means that if K is an arbitrary field, then g ( f (T ,  X),  K(T))  ~ Sn. 

11.1. Hilbert irreducibility theorem. Hilbert [Hil] proved in 1892 that it is possible to 
specialize T to an n-tuple a E Qn such that g ( f ( a ,  X),  Q) ~- Sn. By this he realized Sn 
over Q. More generally, he proved that given a polynomial f E Q[T, X] with distinct 
roots it is possible to specialize T to an n-tuple a E Qn such that 

g ( f ( a , X ) , Q )  '~ g ( f ( T ,  X ) , Q ( T ) )  

as permutation groups. This is one form of what we now call the Hilbert irreducibility 
theorem. It turns out that this theorem alone is responsible for much of the structure of 
c(Q). 

Hilbert himself and then others found that the same theorem holds for many other 
fields. Consequently, all of them share common features of their absolute Galois groups. 
They were therefore given the name 'Hilbertian fields'. 
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11.2. Separable Hilbert sets. Actually, the notion which is responsible for the structure 
of the Galois group is 'separably Hilbertian field'. To make a precise definition let K be 
a field and consider separable irreducible polynomials f l , . . . ,  fm E K(T1, . . . ,  Tr)[X] 
and a nonzero polynomial 9 E K[T1,. . . ,  T~]. Denote the set of all a E K ~ such that 
f i ( a , X )  is a separable irreducible polynomial in K[X], i = 1,. . .  ,m, and 9(a) ~ 0 
by H K ( f l , . . . ,  fro; 9) and call it a separable Hilbert subset of K r (or just separable 
Hilbert set of K). The field K is separably Hilbertian if each of its separable Hilbert 
sets is nonempty. 

If one omits the condition on the fi above to be separable, one obtains Hilbert sets 
of K.  Then K is Hilbertian if each of its Hilbert sets are nonempty. It turns out that 
/ (  is Hilbertian if and only if K is separably Hilbertian and imperfect [FrJ], Propo- 
sition 11.16. Also, denote the maximal purely inseparable extension of K by Kins. A 
simple observation shows that if K is Hilbertian, than/(ins is separably Hilbertian. Since 
res: G(Kins) -+ G(K) is an isomorphism, one may always assume for the study of the 
absolute Galois group that K is perfect. 

11.3. Examples of Hilbertian fields. The following fields are Hilbertian: Q (Hilbert 
[FrJ], Corollary 12.8, or [Lal], p. 148), Ko(T) [FrJ], Theorem 12.9, and K0( (T~ , . . . ,  T,.)) 
for r ~> 2 (Weissauer [FrJ], Example 14.3) for an arbitrary field K0. If L is a finite 
extension of a separably Hilbertian field, then each separable Hilbert subset of L r contains 
a separable Hilbert subset of K r [FrJ], Corollary 11.7. The same is true if L is a Galois 
extension of K and ~(L /K)  is finitely generated [FrJ], Proposition 15.5. In particular 
L is separably Hilbertian. If N is a Galois extension of a separably Hilbertian field 
and M is a finite proper extension of N, then M is separably Hilbertian (Weissauer 
[FrJ], Corollary 12.15). If L is an abelian extension of a separably Hilbertian field, then 
L is separably Hilbertian (Kuyk [FrJ], Theorem 15.6). The compositum of two Galois 
extensions of a separably Hilbertian field neither of which contains the other is Hilbertian 
[HJ3]. If L is an algebraic extension of a separably Hilbertian field K whose degree is 
divisible by at least two primes and L is contained in a pronilpotent extension N of K,  
then L is separably Hilbertian [Uc3], Theorem 3. 

11.4. Regular realization offinite groups. Hilbert himself proves in [Hil] that if f E 
K[T,  X] is a separable polynomial, then the set of all a E K r such that 

G ( f ( a , X ) , K )  ~- G ( f ( T , X ) , K ( T ) )  

contains a Hilbert set of K [FrJ], Lemma 12.12. Thus, if K is a separably Hilbertian 
field, each finite group which occurs over K(T)  as a Galois group also occurs ove r / s  as 
a Galois group. More interesting is the case where f (T ,  X)  is an absolutely irreducible 

A 

polynomial which is Galois in X. The latter means that the splitting field F of f (T ,  X)  
over K(T)  is already generated by each single root of f (T ,  X).  Hence 

G -  G(f (T ,  X) ,  K(T) )  TM G( f (T ,  X) ,  L(T)) 



304 M. Jarden 
A A 

for each algebraic extension L of K.  Equivalently, F is a regular extension of K,  i.e. F 

is linearly disjoint from K over K.  4 We then say that f is stable with respect to X and 
that G is regular over K. (One may also say that G has a K-regular realization over 
K(T) . )  In this case K has a linearly disjoint sequence of Galois extensions L1, L2, L3 , . . .  
such that G(Li /K)  "~ G [FrJ], Lemma 15.8. This rule applies in particular to Sn, to An 
[Se4], Section 5.5, (at least if p { n ( n -  1) where p = char(K)) and to each finite abelian 
group [FrJ], Lemma 24.46. Note also, that if G is regular over a field K,  then G is also 
regular over every extension of K.  

11.5. On the absolute Galois group of a Hilbertian field. In particular G(K) has an 
infinite rank and G(K) is not prosolvable. It follows that Ks, the maximal pro-p extension 
K (p), and the maximal prosolvable extension Ksolv of K are not Hilbertian. Hence, by 
11.3, none of these fields is the compositum of two Galois extensions of K neither 
of which contains the other. Moreover, Weissauer's theorem implies that G(K) has no 
normal prosolvable closed subgroup. In particular, the Frattini subgroup of G(K) is 
trivial, i.e. the compositum of all minimal separable algebraic extensions of K is Ks. 
Here a proper algebraic extension of K is said to be minimal if there exists no field K '  
such that K C K '  C L. Also, the center of G(K) is trivial [FrJ], p. 186, Theorem 15.10. 

Note also, that no Henselian field can be separably Hilbertian [FrJ], p. 181, Exer- 
cise 8. In particular local fields and fields of formal power series of one variable are not 
Hilbertian. 

11.6. Embedding problems. Let K be a field and let t l , . . . , t n  be independent inde- 
terminates. Let L be a finite Galois extension of K.  Then each epimorphism c~: H --+ 
G(L/K)  gives rise to two embedding problems: 

( r e s ' G ( K ) - + ~ ( L / K ) ,  I r C , r H a r G ( L / K )  ) I) (la) 

(res" G ( K ( t ) )  ~ G(L/K),  1 ~ C > H '~ ~ ( L / K )  --4 1) (lb) 

We call (la) an embedding problem for K. We call (lb) a constant field extension 
embedding problem for K(t) .  If "7 is a solution of (la) and M is the fixed field in 
Ks of Ker(7), then M is a Galois extension of K which contains L and "7 induces an 
isomorphism ~: ~ ( M / K )  --+ H such that c~ o ~ - res. We call M a solution field for 
(la). Note that the map res" G(L(t)/K(t))  --+ ~ ( L / K )  is an isomorphism. A solution 
field for (lb) is therefore a Galois extension F of K( t )  which contain L(t). We say that 
it is regular if F / L  is a regular extension. 

If K is Hilbertian, and (lb) has a solution F, then so does (la). If in addition the 
solution F is regular, then it can be specialized to an infinite sequence Ml,  M2, M3, . . .  
of solutions of (la) which are linearly disjoint over L. 

11.7. Abelian kernels. Suppose now that the embedding problems (1) split and their 
kernel C is abelian. Then (lb) has a regular solution [FrJ], Lemma 24.46, and therefore 

4 Some authors (e.g., Serre [Se4], Section 4.1) use the expression 'F is regular over K(T)' to mean that 
is regular over K. 
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(la) has a solution. In particular, every finite Abelian group appears as a Galois group 
over K.  

As a consequence consider an automorphism ~/i of G(K) which maps each a E G(K) 
to a conjugate of a. That is, �9 is locally inner. The proof of [Uc 1 ], Lemma 3, then shows 
that �9 is an inner automorphism. 

Nonsplit finite embedding problems with an abelian kernel for a Hilbertian field K are 
not always solvable. For example, Q has no Galois group L that contains Q(x/Z-T) with 
g(L/Q) ~- z / n z .  In general, for an arbitrary field K of characteristic ~ 2, a quadratic 
extension K(x/'a) can be embedded in a cyclic extension of degree 4 if and only if a is 
a sum of two squares in K [Se4], Theorem 1.2.4. 

11.8. Wreath products. Let G and C be finite groups. Consider the direct product 

Ca = H Ca 
a 6 G  

of IGI copies of C. Le t G acts on C c by (ca) r - c a~. Then, the semidirect product 
C C >4 G is known as the wreath product H - C wr G of C and G. In the notation of 
(11.6) (with C replaced by C C) let G = g(L/K)  and c~: H --+ G be the projection on 
the second factor. Assume that C is regular over K.  Then (lb) has a regular solution 
(e.g., [Ku2], p. 114, [Mal], p. 228, or [HJ2], the proof of Part B of Lemma 2.1). In 
particular, if K is Hilbertian, then (1 a) has a solution. 

Kuyk [Kul ], Theorem 3, uses this construction to prove that each embedding problem 
(la) over a Hilbertian field K can be solved after a certain 'shift'. That is, there exists 
a finite extension K ~ of K which is linearly disjoint from L over K such that the 
embedding problem (res: G(K') -+ G(LK'/K') ,  ~: H -+ g(LK' /K ' ) )  is solvable 
(see also [Ja3], Theorem 15.1). He then applies it to prove that each profinite group G of 
rank at most R0 occurs as a Galois group of a Galois extension FIE for some separable 
algebraic extension E of K [Kul], Theorem 4. 

11.9. GAR realizations. If the kernel C = Ker(c~) of the embedding problem (lb) is 
regular over K with some additional properties, then (lb) has a regular solution. We 
follow Matzat [Mal] and VSlklein [Vol] and consider a finite group C with a trivial 
center and a field K.  We say that C is GAr (resp. GARr, GATe) over K (we leave 
out the subscript r unless we wish to specify it) if there exist algebraically independent 
elements t l , . . . ,  tr over K such that Condition (GA) (resp. (GA) and (R), (GA) and (T)) 
below is satisfied: 

(GA) K( t )  has a subfield E and an extension F such that F / K  is regular, FIE is 
Galois and there exists an isomorphism of g(F/E)  onto Am(C) which maps g(F/K(t))  
onto Inn(C) ~ C. 

(R) If a finite extension E '  of E satisfies KsE t = Ks(t) ,  then E ~ is purely transcen- 
dental over E t A Ks. 5 

(T) The K vector space spanned by t l , . . . ,  t,. is invariant under G(K(t)/E). 

5 The present formulation of Condition (R) is taken from a new book of Matzat mad differs from the one that 

appears on p. 234 of [Mal].  
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Matzat [Mal], p. 235, proves that if a nontrivial finite group C is GARr over a field 
K,  then each constant field extension embedding problem (lb) for K( t )  has a regular 
solution. In general it is difficult to prove that G' is GAR over K.  However, one can 
apply induction on the order of C and assume that it is a minimal normal subgroup of 
H. Then 

i=1 

where (7i are isomorphic finite simple groups. Matzat [Mal], p. 243, proves then that if 
Cl is GAR1 over K and C'l is nonabelian simple, then C is GAR,. over K and embedding 
problem (lb) has a regular solution. 

11.10. Free pro-79 groups. Consider now a family Do of finite simple groups and let 79 
be the family of all finite groups whose composition factors are in 790. Construct the free 
pro-79 group F,o(79) = ~i m F~/N, where F~, is the free discrete group on ~0 generators 

A 

and N ranges over all normal subgroups of F,o with F~/N E 79. As in the case of F~,, a 

pro-79 group F of at most a countable rank is isomorphic to F~(79) if and only if each 
finite embedding problem for F with kernel in 79 is solvable (use [Mel ], Lemma 2.2). 

Suppose now that K is a Hilbertian field and take 790 to be the family GAR(K) of 
all finite nonabelian simple groups which are GAR over K. It follows from Matzat's 
theorem, that F~(79) occurs as a Galois group over K. 

11.11. Examples of GAR-realizations. Matzat [Ma2], Satz 1 1.4(b), lists all finite simple 
groups which were known by 1990 to be GAR over Q. Among them are: An for n -r 6, 
several other one parameter families of classical simple groups of Lie-type like PSL2(/Fp) 
for p ~ +1 mod 24, PSL2n+I(p) for p ~ - 1  mod 12 and all sporadic simple groups 

except M23. 
V61klein [Vol] proves that if a finite group C is GAT over a field K,  then C is also 

GAR over K.  He notes that if (7 is GAT over K,  then it is GAT, hence also GAR, 
over each extension of K. He then gives a two 2-parameter families of simple groups 
which are GAT over Q. These are all the groups PSLn (a s) and PUn (as), where s is odd 
and n ~> max{4,4 s-I}  is an even integer such that gcd(n,4 s - 1) = 1 [Vol], Section 
2.4, Corollary and Section 2.5, Corollary. These are the first GAR-realizations over Q of 
nonabelian simple groups with an arbitrarily large outer automorphism group. V61klein 
also proves that if q is an odd prime power and n ~> q, then the 'almost simple groups' 
PGL(q) and PUn (q) are GAT over Q. Here a group G is almost simple if G lies between 
a simple group and its automorphism group. 

11.12. Projective absolute Galois groups. Embedding problems for K become much 
easier if G(K) is projective. Indeed, each finite embedding problem for G(K) can then 
be reduced to a split finite embedding problem with the same kernel [Mall, p. 231. If 
in addition, K is Hilbertian, this leads to the solution of each finite embedding problem 
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for G(K) with abelian kernel. Thus, if in addition, K is countable, then G(Ksolv/K) ~- 
A 

F~ (solv) [FrJ], Theorem 24.50. 
Even finite embedding problems with nonabelian kernel profit from the assumption 

'G(K)  is projective'. Thus, if a finite nonabelian group C is GA1 over K, then it is also 
GAR [Mal ], p. 238 (at least if char(K) r 2). It follows that if this were the case for each 

A 

such C and K is Hilbertian and countable, then G(K) ~- F~. The latter consequence is 
a conjecture of Fried and V61klein [FV2], p. 470. However, not every finite simple group 
5' is GA1 over K, because Out(S) does not always embed into PGLz(K). So, one must 
think of an alternative way to prove the conjecture of Fried and V/31klein. 

11.13. The field Qab. The most prominent case of a countable Hilbertian field with 
projective absolute Galois group is that of Qab ([FrJ], Theorem 15.6, and w The result 

A 

G(Qab,solv/Qab) -~ F~o(solv) is due to Iwasawa [Iw3], Theorem 6, and the conjecture 
A 

that G(Qab) -~ F~o is due to Shafarevich [Bel]. Many more finite nonabelian simple 
groups belong to GAR(Qab) than to GAR(Q). They include all An, PSL2(p), other one 
parameter families [Ma2], Satz 11.3, all sporadic simple groups, and two 2-parameter 
families: PSLn (4 s) and PUn (4 ~) mentioned in 11.11. 

In the next section we discuss an important case in which the conjecture of Fried and 
V61klein is true. 

12. PAC fields 

The existence of a K-rational point on each absolutely irreducible algebraic variety has 
a decisive influence on the absolute Galois group of a field K and on its model theory. 
This section describes the main consequences of this assumption. 

12.1. DEFINITION. A field K is pseudo algebraically closed (abbreviated PAC) if one of 
the following equivalent conditions is satisfied: 

(1 a) Each nonempty absolutely irreducible variety V defined over K has a K-rational 
point. 

(1 b) For each function field F of several variables which is regular over K there exists 
a place qo: F --+ K U {o e} which fixes each element of K. 

(lc) For each absolutely irreducible polynomial f C K[X, Y] there exist a, b E K 
such that f (a ,  b) = 0 (Frey and Geyer [FrJ], Lemma 10.3). 

12.2. First examples. In particular every separably closed field is PAC. The first non- 
trivial examples for PAC fields come from Weil's theorem on rational points of absolutely 
irreducible varieties over finite fields. It implies that each infinite algebraic extension of 
a finite field and each nonprincipal ultraproduct of distinct finite fields is PAC (Ershov 
[FrJ], Corollary 10.5, and Ax [FrJ], Corollary 10.6). The method of Descent due to Weil 
implies that each algebraic extension of a PAC field is PAC (Ax and Roquette [FrJ], 
Corollary 10.7). 

12.3. Thefields Ks(tr). Each separably Hilbertian field K, in particular Q, has a host of 
algebraic extensions which are PAC. The first examples for such fields have a probabilistic 
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nature. Each profinite group G and in particular G(K) has a unique Haar measure p such 
that/z(G) = 1. We denote the fixed field in Ks of a l , . . . ,  ae E G(K) by Ks(o'). If K 
is countable and we take a l , . . . ,  ae at random (that is we leave out a set of measure0), 
then Ks(a)  is PAC [FrJ], Theorem 16.18. Moreover, G(Ks(cr)) = (or1,... ,ae) ~- Fe. 

The latter result holds without the restriction on K to be countable [FrJ], Theorem 
16.13, while the former one may become false [FrJ], Corollary 16.37. Also, if a l , . . . ,  ere 
are not chosen at random, then the above conclusion may be false. For example, if a is 
the restriction to Q of the complex conjugation, then Q(a)  is a real closure of Q. As 
such, it is not PAC [FrJ], Theorem 10.17. 

12.4. The fields K[cr]. Choose again cq , . . . ,  ae E G(K) at random. Let Ks[cr] be the 
N 

maximal Galois extension of K which is contained in Ks(~r) and let K[cr]-- Ks[O']ins. 
Then K[cr] is PAC and G(K[a] )  ~ F,o [Jan], Theorem 2.7. Hence K[a] is separably 
Hilbertian (w 

12.5. Stable fields. The basic fact that allows Galois extensions of separably Hilbertian 
fields to be PAC is the 'stability of fields'. A field K is stable if each finitely generated 
regular extension F of K of transcendence degree r has elements t l , . . . ,  t~ which are 

A 

algebraically independent over K such that F/K( t )  is separable and its Galois closure F 
is regular over K. It is known that every infinite perfect field is stable [GJ3], Corollary I. 
Also, every PAC field is stable [FrJ], Theorem 16.41. Finally, Neumann's Thesis [Neu] 
proves that every field is stable. 

12.6. Symmetric extensions of K. Suppose now that K is a perfect countable separably 
Hilbertian field. Then K has a Galois extension N which is PAC and 

O O  

G(N/K)  "~ H Sn. 
n - - l  

By Weissauer's theorem (w N is also separably Hilbertian (Remark 1 on p. 476 
of [FV2] which proves this result for char(K) = 0 also holds in the general case). 
Following this example, denote the compositum of all finite Galois extensions of K with 
symmetric (resp. alternating) Galois group by Ksymm (resp. Kalt). Then G(Ksymm) is a 
closed characteristic subgroup of G(K). By the extension theorem for PAC fields, Ksymm 
is PAC. Moreover, it is Hilbertian. It is not known if Kalt is PAC [FV2], p. 176. 

12.7. Henselian fields are not PAC. If v is a valuation of a PAC field K, then the 
Henselian closure of K with respect to v is separably closed (Frey and Prestel [FrJ], 
Theorem 10.14). This implies that Qab and Qnil (= the maximal pronilpotent extension 
of Q) are not PAC [FrJ], Corollary 10.15. However, all Henselian closures of Qsolv are 
algebraically closed. So, it is not known if Qsonv is PAC [FrJ], Problem 10.16. 

12.8. Regular realizations. Harbater [Hrl], Theorem 2.3, considers a complete local 
domain R with a quotient field F such that R ~ F. He proves that each finite group G 
is regular over F.  In particular, G is regular over Qp and over K((t)),  for an arbitrary 
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base field K.  Haran and V61klein [HaV] supply a much simpler proof of the latter result 
(see also 10.7)./'In particular, if K is PAC, then, by the Bertini-Noether theorem, G is 
also regular over K [Ja5], Theorem 2.6. Hence, if in addition K is also Hilbertian, then 
G occurs over K as a Galois group. Since a nonprincipal ultraproduct of distinct finite 
fields is PAC, there exists q0 = qo(G) such that if q >t q0 is a prime power, then G 
is regular over/~'q [Ja9] and [FV1], p. 784, Corollary 2. No upper bound is known on 
qo(G). Fried [Fri], Proposition E4, says that qo(G) is computable but gives no concrete 
formula for it. 

12.9. Hilbertian and PAC imply w-free. The regularity of finite groups over Hilbertian 
PAC fields of characteristic 0 was first obtained by Fried and V61klein by complex 
analytic methods. Starting from the Riemann existence theorem, they construct for each 
finite group G an absolutely irreducible variety N (that they call Hurwitz space) which 
is defined over Q, such that if K is a field of characteristic 0 and q E ~ ( K ) ,  then G 
is regular over K [FV1], p. 772. The existence of q E N ( K )  is guaranteed if K is in 
addition PAC. 

[FV2], p. 474, improves on that and proves that each constant field extension em- 
bedding problem over a PAC field K of characteristic 0 has a regular solution. If in 
addition, K is Hilbertian, then every finite embedding problem for K is solvable. Thus, 
by Iwasawa's theorem, if in addition K is countable, then G(K) ~- F~. 

Pop [Po4], Theorem 1, applies his ,1 Riemann existence theorem' (w to prove 

that the implication ' K  is countable PAC and Hilbertian implies G(K) ~- F~' holds in 
general. 

The converse of this result is also true. If K is a PAC field with G(K) "~ F~, then K 
is separably Hilbertian (Roquette [FrJ], Corollary 24.38). 

12.10. Characterization of projective groups. The absolute Galois group of a PAC 
field is projective (Ax and Haran [FrJ], Theorem 10.17). Conversely, if G is a projective 
group and K is a field, then there exists an extension F of K which is PAC such 
that G(F) ~- G (Lubotzky and v.d. Dries [FrJ], Corollary 20.16). Moreover, if L / K  is a 
Galois extension and a: G --+ G(L/K)  is an epimorphism, then F can be chosen together 
with an isomorphism 7: G(F) -+ G such that 7 o a = res. If in addition, rank(G) ~ R0, 
K is a countable Hilbertian field and L / K  is finite, then F can be chosen to be separable 
algebraic over K [FrJ], Proposition 20.21. Replacing the latter F by Fins we may also 
assume that F is algebraic over K and perfect. 

The characterization of projective groups as absolute Galois groups of PAC fields 
makes it possible to interpret the theory of finite graphs in the theory of PAC fields. 
Since the former one is nonrecursive (i.e. undecidable), so is the latter. Thus, there is 
no recursive decision procedure to determine whether a given sentence of the language 
of rings is true in all PAC fields (Ershov and Cherlin, v.d. Dries and Macintyre [FrJ], 
Section 22.10). 

12.11. C 1-fields. A field K is a Cl-field if each form of degree d in more than d vari- 
ables over K has a nontrivial K-zero. The absolute Galois group of K is then projective 
[Rib], p. 269. If K is a perfect PAC field and G(K) is abelian (hence, procyclic), then 
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K is C1 (Ax [FrJ], Theorem 19.16). Ax' problem, whether each perfect PAC field is 
C1 is still open. On the other hand, there are Ct fields, like finite fields (a theorem of 
Chevalley), which are not PAC fields. 

12.12. The algebraic nature of the theory of PA C fields. Let K be a countable Hilbertian 
field. The characterization of projective groups of at most countable rank as the absolute 
Galois groups of perfect PAC fields which are algebraic over K implies that the theory 
of perfect PAC fields which contain K coincides with the theory of perfect PAC fields 
which are algebraic over K [FrJ], Corollary 20.25. 

12.13. The elementary equivalence theorem. Let K be a Hilbertian field and let F be 
a perfect PAC which contains K. Then the elementary class of F is determined by the 
equivalence class of the map res: G(F) --+ G(K). Thus, if F '  is another perfect PAC 
field that contains K and there exists an isomorphism ~: G(F) --+ G(F') and ~ E G(K) 
such that resK8 o ~(cr) = resK8 (cr)~' for each cr E G(F), then F and F '  are elementarily 
equivalent as structures of s K)  [FrJ], Theorem 18.6. Note that qo maps Ks N F 
onto Ks n F'. 

12.14. Frobenius fields. There is one type of PAC fields where the isomorphism class 
of the absolute Galois group and the algebraic part of the fields determine the equivalence 
class of the field. To this end we say that a profinite group G has the embedding property 
if every finite embedding problem (qo: G --+ A, c~: B --+ A) in which B is a quotient 
of G is solvable. We say that F is a Frobenius field if it is PAC and G(F) has the 
embedding property. The elementary equivalence theorem then implies that if F and 
F '  are two perfect Frobenius fields which contain K,  then F and F '  are elementarily 
equivalent as structures of E(ring, K)  if and only if same finite groups occur as Galois 
groups over both F and F ,  and/ (8  N F ~ K~ N F'. 

It turns out that the theory of all Frobenius fields (resp. of a given characteristic) is 
decidable. Indeed, there is a primitive recursive procedure called Galois Stratification 
which is based on explicit Galois theory and Algebraic Geometry which, in some sense, 
eliminates quantifiers and allows one to determine for each given sentence of s 
whether it holds, say, in all Frobenius fields [FrJ], Theorem 25.11. 

Examples of Frobenius fields are PAC fields whose absolute Galois groups are free. 
Thus, for each m between 1 and ~o, and each prime p, Galois Stratification gives a 
primitive recursive decision procedure for the class of PAC fields F of characteristic p 
such that G(F) ~- Fm [FrJ], Theorems 25.15 and 25.17. 

12.15. The probability of a sentence to be true. For a countable Hilbertian field K,  
a sentence 0 of E(ring, K)  and a positive integer e, denote the set of all tr E G(K) c 
such that 0 is true in K( t r )  by S(O). Denote the Haar measure of G(K) ~ by #. Galois 
stratification implies that #(S(O)) is a rational number and allows us to explicitly compute 
it if K is a given global field. 

In the latter case and for e = 1, let A(O) be the set of all primes of K such that 
0 is true in the residue field Kp. The transfer theorem says that the Dirichlet density 
3(A(O)) of A(O) is equal to #(S(O)). (This is one of the main results of the thesis of the 
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author [FrJ], Theorem t8.26.) Moreover, this number is positive if and only if A(O)is 
an infinite set (Ax [FrJ], Theorem 1 8.27). 

Thus Galois Stratification gives a primitive recursive procedure for the theory of all 
sentences which are true in all but finitely many residue fields Kp. This is not very far 
from establishing a primitive recursive procedure for the theory of all finite fields [FrJ, 
Theorem 26.9]. This improves earlier recursive procedures of Ax [FrJ], Corollary 1 8.28 
aqd Theorem 1 8.29. 

13. Pseudo closed fields 

Pseudo algebraically closed fields lack any kind of arithmetic. That is, they have no 
orderings and all their Henselizations are separably closed [FrJ], Theorems 10.12 and 
10.14. In this section we generalize the concept of PAC fields and bring arithmetic into 
the game. The new definitions will involve local global principles. 

13.1. P/CC fields. Let K be a field and let/C be a family of algebraic extensions of 
K.  We say that K is pseudo E-closed (and abbreviate it by P/CC) if every nonempty 

absolutely irreducible variety V defined over K with a simple K-point for each K E/C 
has a K-rational point. 

If /C C_ {Ks}, then K is PAC. If /C is the family of all real closures of K,  then K 
is PRC (pseudo real closed). If/C is the family of all p-adic closures of K (p a fixed 
prime), then K is PpC (pseudo p-adically closed). 

In each of these cases the family /C is closed in the space of separable algebraic 
extensions of K (which we denote by Sext(K)). A basic open neighborhood for E E 
Sext(K) in this space is determined by a finite Galois extension N of K.  It is the set of 
all separable algebraic extensions of K whose intersection with N is E N N. Thus this 
space is the inverse limit of the finite spaces of all intermediate fields between K and 
N. In other words, it is a profinite space (also called Boolean space), and as such it is 
compact. 

Also, each of the above families is closed under the action of G(K). 

13.2. Relative projective groups. Let 79 be a set of closed subgroups of a profinite 
group G. A weak 79-embedding problem for G is a weak embedding problem (qo: G --> 
A, a: B ~ A), such that for each H E 79 there exists a homomorphism "7n: H ~ B 
such that a o "Tn = q0[n. We say that G is 79-projective if each finite weak 79-embedding 
problem is weakly solvable. That is, there exists a homomorphism "7: G --> B such that 
a o "7 = qo. In other words, finite weak embedding problems for G are solvable if and 
only if they are locally solvable for each H E 79. 

The set Subg(G) of all closed subgroups of G is the inverse limit of the finite spaces 
Subg(G/N) ,  where N ranges over all open normal subgroups of G. Thus Subg(G) is a 
profinite space. 

13.3. Extension theorems. Assume now that D is a closed subfamily of Subg(G) and 
that G is D-projective. If 79 is the set of all subgroups H which are isomorphic to 
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G(R) ~ Z/2Z, we say that G is real projective (that 79 is closed in this case means that 
1 is not a limit point of involutions of G). If 79 is the set of all subgroups of G which 
are isomorphic to G(Qp), then G is p-adically projective. 

Every algebraic extension of a PRC field is PRC (Prestel [Prl], Theorem 3.1). If K 
is however a PpC field and L is an algebraic extension of K, then L is PpC if and only 
if for each p-adic closure K of K we have: L C_ K or K L  = K [Ja6], Proposition 8.3. 
For example, out of the algebraic extensions of Qp only Qp and Qp are PpC. 

One uses these extension theorems in the proof of the following theorems: 

13.4. THEOREM ([HJ3], Theorem 10.4, and [HJ4], Theorems 15.1 and 15.4). A profinite 
group G is real (resp. p-adically) projective if and only if G is isomorphic to the absolute 
Galois group of a PRC (resp. PpC)field F. 

13.5. THEOREM ([HJ1], Theorem 5.1, and [Ja6], Corollary 9.4). Let K be a formally 
real (resp. p-adic) countable Hilbertian field. Then, a profinite group G of rank at most 
~o is real (resp. p-adically) projective if and only if G is isomorphic to the absolute 
Galois group of a PRC (resp. PpC)field F which is separably algebraic over K. 

13.6. On the proofs of Theorems 13.4 and 13.5. Out of the two directions involved in 
these theorems, the construction of a field F with a given absolute Galois group G is the 
more difficult. It is done along the same line as for PAC fields. Starting from a formally 
real (resp. p-adic) field K one constructs a regular extension E which is PRC (resp. PpC) 
and a Galois extension/~ such that G(E/E)  ~- G and res" G(E) -~ G(E/E)  maps the 
set of involutions (resp. closed subgroups isomorphic to G(Qp) ) of G(E) onto the set of 

involutions (resp. closed subgroups isomorphic to G(Qp)) of G(E/E).  One proves that 
res has a section and so one gets an algebraic extension F of E such that G(F) ~- G. 

These steps become more and more complicated as one moves from PAC fields to 
PRC fields and from PRC fields to PpC fields. This difficulty is partially caused by the 
growing complexity of the absolute Galois groups of the local fields associated with the 
various pseudo closed fields. For PAC fields it is the trivial group, for PRC fields it 
is the group Z/2Z, and for PpC fields it is the group G(Qp). What makes up for the 
infiniteness of the latter group is the fact that it is finitely generated, has a trivial center, 
and has a 'big' finite quotient (see (5) of Section 7). 

13.7. Examples of real (resp. p-adically) projective groups. First examples of real (resp. 
p-adically) projective groups are 'free products' of several copies of Z/2Z (resp. G(Qp)) 

A 

and of Z. In general, the free product of profinite groups G l , . . . ,  Gm is a profinite group 
G = Gl * ' "  *Gm which contains each Gi as a closed subgroup and such that each 
system of homomorphisms 

c~i:Gi--+H, i =  1 , . . . , m ,  

uniquely extend to a homomorphism c~: G --+ H. (See [FrJ], Lemma 20.18, for the 
existence and [HER] for several properties of free products.) In particular, take e copies 
G l , . . . ,  Ge of Z /2Z (resp. G(Qp)) and define De,re(real) (resp. De,re(p)) to be the free 
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product G1 * ' - .  * G~ �9 Fro. Then DF,m(real ) (resp. De,re(p)) is a real (resp. p-adically) 
projective group. 

13.8. The free product theorem. Let K be a countable Hilbertian field. For each i 
between 1 and e let Ki  be either a Henselian field or a real closed field which is 
separable algebraic over K.  For tr = ( a l , . . . ,  cry+m) E G(K) e+m consider the field 

K~ = ~ "  n . . .  N g :"  n k(a~+, , . . . ,  a~+m). 

Then, for almost all tr, 

m A 

G(K,,.) ~- G(K1) * . . . *  G(K~) �9 Fro. 

([Jal], the free product theorem, see also [Gey], Section 4.) 

w 

13.9. Examples of PRC and PpC fields. If in particular Ki is real (resp. p-adically) 
closed, i = 1 , . . . ,  e, and tr is taken at random, then G(K,,) is isomorphic to D~,m (real) 

A 

(resp. De,re(p)) and K~r is PRC (resp. PpC). ([HJ3], Proposition 5.6, and [EfJ], Inter- 
section Theorem.) The latter result enters into the proof of the Characterization theorems 
13.4 and 13.5. 

It is an open problem whether the free product theorem holds for arbitrary separable 
extensions K 1 , . . . ,  Ke with finitely generated absolute Galois groups. 

13.10. Free products of pro-p groups. Efrat and Haran [EfH], Lemma 2.2, prove that 
if pro-p groups G 1 , . . . ,  Gm are isomorphic to the absolute Galois groups of fields, then 
their free pro-p product is also isomorphic to the absolute Galois group of a field. It is 
not known if the latter statement holds for arbitrary profinite groups. 

13.11. Local primes. A local prime p of a field K is either an equivalence class of 
archimedean absolute values of K or an equivalence class of discrete valuations of K 
with finite residue fields. We refer to the first type as archimedean and to the second 
as nonarchimedean. We denote the completion of K with respect to p by Kp and let 
Kp,alg -- Ks N Kp. If p is archimedean, then Kp is either IR or C. In the first case 
Kp,alg is a real closure of K with respect to the ordering of K that Kp induces. If p is 
nonarchimedean, then Kp is locally compact [CaF], p. 41, and /~p,alg is a Henselization 
of the valuation vp associated with p. In both cases Kp,alg is determined by p up to 
K-isomorphism. 

13.12. The field of totally S-adic numbers. Consider now a finite set S of local primes 
of K.  For each p 6 S choose a field Kp,alg as abQve and let 

p6Sa6G(K) 
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This is a Galois extension of K which we call the field of totally S-adic elements of 
Ks. It is the maximal separable algebraic extension of K in which each p E S totally 
splits. Pop [Po4], Theorem | proves that Ktot,a is PSC. That is, Ktot,S is PK~C with 

K: = {Kp'r, alg I p e s, ~ G(K) }. 

In particular, take K = Q and let S consist of the unique archimedean prime of Q. In 
this case, the field Qtr -- Qtot,s of totally real numbers is PRC. Fried, Haran and VSlklein 
[FHV], Corollary 6, prove that G(Qtr) is real free (w with a basis isomorphic to the 
Cantor set consisting of involutions only. 

By Weissauer's theorem [FrJ], Corollary 12.15, any proper finite extension F of Qtr 
is Hilbertian. By Prestel's extension theorem it is PRC. If F is not formally real, it is 
PAC. It follows that G(F) ~- ff~,. For example, this is the case for F = Qtr(~--]-) .  

If S consists of a unique prime p, then Pop's theorem asserts that the field Qtp of 
totally p-adic numbers is PpC. 

Pop [Po4], Theorem 3, generalizes the theorem of Fried, Haran and V61klein to ar- 
bitrary finite sets S. For each p E S let Xp be the set of all extensions of p to a local 
prime of Ktot,S. For each q E Xp let Nq be a Henselization of Ktot,S at q (It is one of 
the fields Kp~,alg which induces q on Ktot,S.) It is possible to choose the various Nq in 
such a way that {G(Nq) I q E Xp} is closed in Subg(G(K)) (a consequence of [HJ4], 
Corollary 2.5). Theorem 3 of [Po4] then says that G(Ktot,S) is the free product of the 
G(N.) :  

GT(Kt~ = H l~ G(gq).  
pES qEXp 

This means that for every finite group A, each continuous map 

qa0: U U G(Nq)~A 
pES qEXp 

whose restriction to each G(Nq) is a homomorphism uniquely extends to a homomor- 
phism qD: C~(Ktot,S) ---+ A. 

13.13. References to the model theory of PSC fields. Like for PAC fields, the knowledge 
of the absolute Galois group of PSC fields leads to an understanding of their model theory. 
We do not elaborate on this point and refer the reader to a series of articles on this subject: 
[Pr2, Ja7] and [Ja8] for PRC fields and [Gro, Ja6, Efl, Ef2] and [Ef3] for PpC fields. 

13.14. Generalization of Theorems 13.4 and 13.5. It seems not too difficult to gener- 
alize Theorems 13.4 and 13.5 and to treat finitely many local primes and an ordering in 
characteristic 0. Pop [Po6] generalizes Theorem 13.4 even further to cover the case of 
infinitely many local primes of characteristic 0. However, a main ingredient of the proof, 
that 'relative projectivity' implies 'strong relative projectivity', has yet to be cleared up. 
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The first four problems on this lists are the basic problems of Galois theory. The results 
of this survey can be viewed as partial solutions of these problems. Problems 5-18 are 
specific problems of the theory. They are listed in the order of appearance of this survey. 

1. Given a distinguished field K,  list the set of finite groups which occur as Galois 
groups over K.  

2. Given a distinguished field K,  describe G(K) in group theoretic terms. 
3. Give necessary and sufficient group theoretic conditions on a profinite group G to 

be isomorphic to the absolute Galois group of some field K.  
4. Give a necessary and sufficient condition on a pro-p group to be isomorphic to 

{~(K (p)/K) (=  the maximal pro-p quotient of G(K)) for some field K.  
5. Is every Demushkin group of a finite rank isomorphic to the absolute Galois group 

of some field? 
6. Present the Galois group G(Q2) by generators and relations. 
7. Condition (1) below on a prosolvable group F is necessary for F to be isomorphic 

to an open subgroup of G(Qp) for some prime p [Ja2], Theorem 7.2. Is it also sufficient? 
(la) The center o f / '  is trivial; 
(lb) F is finitely generated; 
(lc) There exist distinct primes l, q such that l"t is a torsionfree nonfree pro- /group 

and Fq is a nonfree pro-q group; 
(ld) F has a finite quot ien t / '  such that if a closed subgroup H of F is a quotient of 

/" and F is a quotient of H, then H -~ F. 
8. Let K be a field with the following property" if G(L) ~- a(K), then L is elemen- 

tarily equivalent to K.  Is it true that K is real closed or a finite abelian extension of Qp, 
for some p? 

9. For every infinite algebraic extension M of Qp which is not Qp there exists another 
algebraic extension M '  of Qp such that G(M) ~ G(M') but M -~Qp M' .  

10. Let F be a function field of one variable over F r, and let S be a finite set of primes 
of F.  Denote the maximal extension of F which is unramified outside S by Fs. What 
is the structure of G(Fs/F) as a profinite group? 

11. Let K be a field,/3 a function field of one variable over K,  and S a finite set of 
primes of K.  Prove or disprove" For each positive integer n, E has a Galois extension 
F of degree at least n which is unramified outside S and regular over K.  

12. Let F = lFq(t). Describe the structure of ~(Fab/F). 
13. Let K be a field such that/(ins is separably Hilbertian. Is K separably Hilbertian? 
14. Let K be a countable separably Hilbertian field. Denote the compositum of all 

Galois extensions of K with an alternating Galois group by Kalt. Is Kalt PAC? 
15. Is Qsolv PAC? 
16. For each finite group G compute a positive integer qo(G) such that q > qo(G) is 

a prime power, then G occurs as a Galois group over IFq(t). 
17. Let K be a countable Hilbertian field and let G I , , . . ,  G~ be finitely generated 

closed subgroups of G(K). Is it true that (G~rl,..., Gg" ) ~ G1 * ' " *  Ge for almost all 
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18. S u p p o s e  that  G 1 , . . . ,  G~ are i s o m o r p h i c  to abso lu te  Ga lo i s  g roups  of  fields. Is 

G1 * . . .  * Ge also i s o m o r p h i c  to an abso lu te  Ga lo i s  g roup  of  a f ield? 
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1. Introduction 

In this brief introduction we have chosen to trace the historical development of finite 
fields, outlining some of the basic properties along the way and concluding with com- 
ments on the books on, or involving in a significant way, finite fields and applications. 
Throughout this article, Fq denotes the finite field of order q. 

The origins of finite fields reach back into the 17th and 18th centuries, with such 
eminent mathematicians as Pierre de Fermat, Leonhard Euler, Joseph-Louis Lagrange, 
and Adrien-Marie Legendre contributing to the structure theory of special finite fields, 
the finite prime fields Fp. The general theory of finite fields may be said to begin with 
the work of Carl Friedrich Gauss and Evariste Galois. Amongst the fundamental contri- 
butions of Gauss to this subject are arithmetic in polynomial rings Fv[x ], in particular 
the Euclidean algorithm and unique factorization. In 1830 in F6russac's Bulletin, Galois 
constructed finite fields in his paper "On the theory of numbers": 

"If one agrees to regard as zero all quantities which in algebraic calculations are found 
to be multiplied by p, and if one tries to find, under this convention, the solution of an 
algebraic equation F x  = 0, which Mr. Gauss designates by the notation F x  =_ O, the 
custom is to consider integer solutions only. Having been led, by my own research, to 
consider incommensurable solutions, I have attained some results which I consider new." 

Galois supposes F x  to be irreducible mod p and of degree u and asks to solve F x  =_ 0 
by introducing new 'symbols', which might be just as useful as the imaginary unit i in 
analysis. He forms p~' expressions a + al i  + . . .  + a~,_li ~'-l, where a and ak are integers 
mod p. These p~' elements form a field, nowadays called a Galois field or finite field 
of order p~'. If A is an element of that form, not all a and ak zero, he shows that 
1, A , . . . ,  A n-1 are different if n is the smallest positive integer for which A n is 1. Then 
n divides p~' - 1 and A p~-I -- 1. (One proves that there exist primitive elements for 
which n is exactly p~' - 1; all nonzero elements of the field are powers of a primitive 
element.) All elements of the field are roots of x v~ - x, and every irreducible polynomial 
F x  of degree u is a divisor of this polynomial. If a is a root of F x ,  then the others are 

�9 . ~ 13g p v - 1  . 

c~P,. At the end of his article Galois reverses the situation. He starts with a 
field in which x p~ - x can be completely factored, then restricts himself to the subfield 
generated by a primitive element i. Every such i is a root of an irreducible polynomial 
F x ,  according to Galois, and no matter which irreducible of degree u one chooses, 
one always obtains the same field Fp~ of order p~'. Gauss comments later " . . .  perhaps 
we shall have the opportunity to describe our views on this in detail", but apparently 
he never did. Richard Dedekind, in a paper of 1857 on higher congruences (i.e. finite 
fields), shows that a complete system of incongruent polynomials with respect to double 
modulus congruences (congruences mod p and mod M)  contains exactly pn elements. 
He writes such congruences as A = B modd. p, M for A, B, M in Z[x], deg(M) = n in 
Fp[x]. If M is irreducible mod p, then finite fields of order pn are constructed as residue 
class rings Fp[x] / (M) .  Thus, in his 1857 paper Dedekind put the theory of finite fields 
on a sound basis. B.L. van der Waerden notes that "E. Galois and R. Dedekind gave 
modern algebra its structure, the framework is due to them". 

Also in 1857 we see the first general statement and proof of the M6bius inversion 
formula, which can be used to show that the number of monic irreducible polynomials 
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of degree n over Fp is 

1 E #(n/d)pd" 
n 

din 

This formula was also known to Gauss. Dedekind establishes the multiplicative form 
of the MSbius inversion formula and proves that x p'~ - x equals the product of all 
monic irreducible polynomials over Fp of degree dividing n. Moreover, he shows that 
the product of all monic irreducible polynomials of degree n over Fp is 

I-[ ( - x) 
din 

which is now called Dedekind's formula. It was known by then how to construct a finite 
field of any prime-power order. E.H. Moore proved in 1893 that finite fields must have 
prime-power order and that finite fields of the same order are isomorphic. 

Galois' approach via imaginary roots and Dedekind's approach via residue class rings 
were shown to be essentially equivalent by Kronecker. It was also known then that if M 
is an irreducible polynomial over Fp, then the group of units of Fp[X]I(M) is cyclic, 
hence the existence of primitive elements for any finite field was established. By the end 
of the 19th century Dickson was able to summarize in his book [34] the basic properties 
of finite fields. These properties are: 

1. In any finite field, the number of elements is a power of a prime and this prime is 
the characteristic of the field. 

2. If p is a prime and m is a positive integer, then there is a finite field of order pm 
which is unique up to field isomorphisms. 

3. The multiplicative group Fq of nonzero elements of Fq is cyclic. Any generating 
element is a primitive element of Fq. 

4. Let q = pm. Then every subfield of Fq has order pd, where d is a positive divisor 
of m. Conversely, if d l m,  then there is exactly one subfield of Fq of order pd. 

5. Any finite field Fq is isomorphic to the splitting field of x q - x over Fp, where 
q = pm. 

6. Every element a E Fq satisfies aq = a. 
In Section 2 we shall make use of the trace function. Let p be a prime and q = p m  

with m ~> 1. Let Fq, be the extension of degree n of the finite field Fq. The Galois group 
G of Fqn over Fq is cyclic of order n and generated by the Frobenius automorphism 
cr(c~) = c~ q for a E Fq,,. The trace function of Fq,~ over Fq is defined as 

n - I  

TEG i = 0  

In Section 3 we shall need the concept of a primitive polynomial. Let f be a nonzero 
polynomial over a finite field Fq. If f (0)  ~ 0, then the least positive integer e for which 
f ( x )  divides x e - 1 is called the order ord(f)  of f .  If f (0)  = 0, then f ( x )  = xhg(x) 
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with h ~> 1 and 9(0) r 0; then ord(f) is defined to be the order of 9 - A  polynomial 
f E Fq[Z] of degree n ~> 1 is called a primitive polynomial over Fq if it is the minimal 
polynomial over Fq of a primitive element of Fq,. According to [87], Theorem 3.16, f is 
a primitive polynomial over Fq if and only if f is monic, f(0) r 0, and ord(f) - qn_  1. 

As far as applications are concerned, the following sections of this article on finite 
fields will include a number of different topics. The big area of coding will be covered 
in a separate article. A number of applications could not be included because of space 
limitations. They include: Boolean functions in n variables over finite fields, the discrete 
Fourier transform and spectral theory, digital signal processing and systems designs, 
precision measurements, radar camouflage, noise abatement, light diffusers, waveform 
and radiation patterns, and concert hall acoustics. We refer to Lidl and Niederreiter [87] 
and Schroeder [138] for some details on these topics. 

We conclude with some comments on the book literature on finite fields. Journal 
articles of a more specialized nature will be referred to in the subsequent sections. One 
of the most important early books dealing with finite fields is Dickson [34]. The books 
Lidl and Niederreiter [87, 88] and the Russian translation of [87] represented probably 
the most comprehensive treatment of finite fields at the time, although several topics 
had to be excluded because of the vastness of the subject. The books by McEliece [93] 
and Small [149] emphasize specific topics in finite field theory; the former expands 
on linear recurrences and maximal period sequences, the latter concentrates on topics 
linking finite fields with number theory and algebraic geometry. See also Ltineburg [90], 
which emphasizes cyclotomy. A number of books contain substantial parts that address 
finite field theory or applications. Pohst and Zassenhaus [133] gives an introduction to 
constructive algebraic number theory, but it is also of interest to experimental number 
theorists. Lidl and Pilz [89] contains some theory and a variety of applications of finite 
fields, among other algebraic (discrete) structures. The book by Blake et al. [9] is devoted 
entirely to finite fields, with some applications in algebraic geometry and cryptology. 
Hirschfeld [65, 66] and Hirschfeld and Thas [67] deal with projective spaces over a 
finite field. Fried and Jarden [49] cover more specialized topics involving finite fields, as 
does Nechvatal [ 106] on irreducibility, primitivity, and duality. The book by Brawley and 
Schnibben [ 14] deals with generalizations to arbitrary algebraic extensions of Fq. A very 
recent book publication is the proceedings volume edited by Mullen and Shiue [100]. For 
open problems see that book and also Lidl and Mullen [84, 85]. Another recent book is 
Jungnickel [71] which emphasizes special bases and constructive aspects of finite fields. 

The analogs in Fq [z] of the Waring problem and the Vinogradov 3-primes problem are 
the main topics of Effinger and Hayes [38]. Schmidt [137] studies solutions of equations 
over finite fields. Several books on abstract algebra or on some topics of applied discrete 
mathematics contain at least brief summaries or surveys of finite field properties, e.g., 
Schroeder [138], van Tilborg [156], and Wallis [161]. Shparlinski [146] represents a 
survey of the literature on finite fields from the computational and constructive point of 
view. 

Finally, a brief comment on computer systems with specific facilities for carrying out 
computations in finite fields. There are now a number of computer algebra packages 
available for dealing with a great variety of mathematical tasks. Large packages are, in 
alphabetical order, Aides/Sac 2, Cayley, Kant, Macsyma, Magma, Maple, Mathematica, 
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Reduce, and Scratchpad (now Axiom). They all allow computations in finite fields with 
highly variable speed, efficiency, ease of use, and capabilities. There are also some 
smaller, purpose-built packages such as APL Classlib, Galois, Macaulay, and Simath. For 
references to the literature for these packages we refer to the survey article of Lidl [83]. 

2. Bases 

Research in cryptology and coding theory, especially requirements for fast arithmetic in 
large finite fields, have motivated some of the recent advances of exhibiting properties 
of bases for finite fields. A careful choice of the representation of a finite field Fq may 
assist in the algorithms for implementing arithmetic operations in Fq; see Beth [4], Beth 
and Fumy [5], and Beth and Gollmann [7]. We shall consider various bases of Fq,~ over 
Fq. The book Blake et al. [9] contains a wealth of details on bases. 

There are 

n - I  

H - r 
i = 0  

ordered bases of Fq, over Fq, since this number represents the order of the general 
linear group GL(n,  Fq). An ordered basis a = {C~l,. . . ,  C~r~} of Fq, over Fq is called a 
polynomial basis if for some a E Fq,, we have a i  = c~ i - l ,  i = 1 , 2 , . . . ,  n. A normal 

�9 1 

basis is a basis A where c~i = aq' , i = 1 , 2 , . . . ,  n, for some a C Fq.,. If a denotes the 
Frobenius automorphism a ( a )  = aq for a C Fq,, then a normal basis is a basis consisting 
of the orbit of a suitable c~ under a. The element a is said to generate a normal basis or is 
called a normal element of Fq,, over Fq. Normal bases are useful for implementing fast 
arithmetic in Fq,, in particular exponentiation (see Itoh and Tsujii [70]), since computing 
q-th powers in Fq., is just a cyclic shift of the corresponding coordinate vectors. The 
additive order ord(c~) E Fq[x] of an element o~ c Fq, is defined as the monic generator 
of the principal ideal { f  E Fq[x]: f(cr)(a) = 0} of Fq[x]. It is a divisor of x n - -  1. An 
element a E Fq, is normal over Fq if and only if ord(a) = x n - 1. Von zur Gathen 
and Giesbrecht [53] consider several aspects of normal elements. Since the existence of 
normal bases is a classical result, attention has shifted to normal bases of special type. 
Lenstra and Schoof [82] have shown that for every extension Fq,/Fq there exists a 
primitive normal basis, i.e. a normal basis consisting of primitive elements of Fq,. For 
primes q this was established earlier by Davenport [30], see also Carlitz [17]. Bshouty 
and Seroussi [15] give a generalization of the normal basis theorem. 

Other types of bases are obtained by making use of the trace function of F = Fqn 
over K = Fq. If A = {C~l,. . . ,  c~n} and B = {/3~,... ,/3n} are ordered bases of F over 
K,  then /3  is called the dual basis of A if and only if 

Y r F / K ( O Z . i l ~ j )  - -  (~ij for 1 ~ i, j <~ n. 

The following is easy to verify. 
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THEOREM 2.1. For any given ordered basis A = { o L 1 , . . .  , O/n} o f  Fq,~ over Fq there 
exists a unique dual basis. 

It is also straightforward to show that the elements a l , . . . ,  C~r~ form a basis of Fqn 
over Fq if and only if the matrix 

Cel 0/2 �9 �9 �9 O~n 

l n - -1  qn - -1  
. . .  

is nonsingular. This implies immediately that the dual basis of a normal basis is a normal 
basis. The dual basis of a polynomial basis 

A =  { 1 , c e , . . . , c e  n - l }  

of Fqn over Fq is obtained as follows. Let 9 E Fq[x] be the minimal polynomial of a 
over Fq and 

9 ( x )  

x - o l  
X n-1 fq,-, --  ~0 -'l-/~1 x - + - � 9  �9 [x]. 

Then the dual basis of A is { ~ 0 3 ` - 1 , ~ 1 3 ` - 1 , . . .  ,fln_13`--l}, where 3' = 9'(c~). 

In a normal basis N = {c~0,. . . ,C~n-l} we assume that the elements c~i = c~ r 
i - 0, 1 , . . . ,  n - 1, are given in that order. For any 0 ~< i, j ~ n -  1 the product C~iO~ j 
is a linear combination of c~0,. . . ,  C~n-1 with coefficients in Fq. Multiplication of basis 
elements can be represented by 

Olo Olo 

0~1 OL1 

where T is an n x n matrix over Fq. The number of nonzero entries in T is called the 
complexity CN of the normal basis N.  A polynomial in Fq[x] is called an N-polynomial 
if it is irreducible over Fq and its roots are linearly independent over Fq. The elements 
in a normal basis are exactly the roots of an N-polynomial,  thus N-polynomials  describe 
a normal basis. Important questions are: given n and q, construct a normal basis of Fq,~ 
over Fq, or equivalently, construct an N-polynomial  in Fq[x] of degree n. For practical 
purposes, one is interested in constructing low-complexity normal bases�9 We shall return 
to this topic later�9 A related question is how one can find normal elements efficiently. 
The algorithmic aspects of this problem area will be described elsewhere in this series 
of volumes. Therefore, we only refer to a few papers, such as von zur Gathen and 
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Giesbrecht [53], Lenstra [81], Semaev [141], and Stepanov and Shparlinski [150]. The 
book by Shparlinski [146] contains further detailed references. 

It is shown in [87], Theorem 2.39, that c~ is a normal element of Fqn over Fq if and 
only if the polynomial 

n - - I  
Ol X n - l n t- o l  q x n - 2 n t- " " " - t-  Ol q C F q n  [x] 

is relatively prime to x n -  1. Normal elements have been investigated further by 
Pincin [132], Schwarz [139], and Semaev [141]. It is of interest to construct normal 
bases of large finite fields, given normal bases of some smaller fields. Here the following 
theorem is relevant; see Blake et al. [9], Pincin [132], Sdguin [140], and Semaev [141] 
for this result and for related ones. 

THEOREM 2.2. Let n = vt with coprime positive integers v and t and let c~ E Fq~, ~ E 
Fq,. Then a~ E Fq. is a normal element of Fq, over Fq if and only if a and/~ are 
normal elements of Fq~ and Fq,, respectively, over Fq. 

An ordered basis A of Fq. over Fq is called self-dual (or trace-orthonormal) if A is 
its own dual basis. Seroussi and Lempel [142] showed that the extension Fq./Fq has a 
self-dual basis if and only if either q is even or both q and n are odd. Self-dual normal 
bases are useful for special computational tasks. Lempel and Weinberger [79] proved 
that ]:;'q,~/Fq permits a self-dual normal basis if and only if either n is odd, or q is even 
and n - 2 mod 4. A polynomial basis of Fq,~ over Fq cannot be self-dual if n ~> 2, as 
can be seen by elementary arguments. A polynomial basis 

A =  { 1 , a , . . . , a  n - l }  

of Fq,~ over Fq is called weakly self-dual if there exists an element 3' E Fq,~ such that 
{3'/30,..., 3'/3n-1} is a permutation of the basis A, where {/30,... , /3n-l} is the dual 
of A. Geiselmann and Gollmann [54] show that A is weakly self-dual if and only if 
the minimal polynomial of c~ over Fq is either a trinomial with constant term - 1  or a 

binomial. 
Enumeration theorems for ordered bases of various types are known. The number of 

polynomial bases of Fq,~ over Fq is clearly n times the number of monic irreducible 
polynomials over Fq of degree n and so equal to 

P(n/d)q d. 
d i n  

The number of normal elements of Fq, over Fq, and thus the number of normal bases 
of Fq, over Fq, is given by ~bq(X n - 1), where ~bq(f) is the number of polynomials over 
Fq of degree less than deg(f) and relatively prime to f E Fq[x] (see [87], Chapter 3). 
According to [87], Lemma 3.69, if deg(f) = n ~> 1, then 

7" 

~bq(f) -- qn I ~  ( 1 - q - n 3  ), 
j=l 
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where n l , . . . ,  nr are the degrees of the distinct monic irreducible factors of f in Fq[x]. 
The number of normal bases of Fq,~ over Fq is also equal to the number of nonsingular 
n • n circulant matrices over Fq. The number of self-dual bases of Fq,~ over Fq is equal 
to the order of the group O(n, Fq) of orthogonal n • n matrices over Fq. This latter 
number is well known, namely 

n - - I  

l - I ( q  i - a , )  l i--I 
IO(n, Fq)[ - 2 l-I'(q i - ai) 

0 i=l 

if q even, 

if q and n odd, 

otherwise, 

where ai = 1 if i is even and ai = 0 otherwise; see Jungnickel, Menezes and Van- 
stone [72]. The number of self-dual normal bases of Fq, over Fq is equal to the order 
of the group of orthogonal n x n circulant matrices over Fq. The order of this group can 
be determined, but the formula is quite involved; see Beth and Geiselmann [6]. 

We have already introduced the complexity CN of a normal basis N of Fq, over Fq. It 
is evident that a normal basis N with low complexity CN facilitates fast arithmetic in the 
extension field Fq,. Mullin, Onyszchuk, Vanstone and Wilson [104] showed that always 
CN ~> 2 n -  1, and they called a normal basis N optimal if equality holds. Furthermore, 
they gave the following constructions of optimal normal bases. 

THEOREM 2.3. If  n + 1 is a prime and q is a primitive root modulo n + 1, then the n 
primitive (n + 1)-st roots of unity in Fq,~ are linearly independent over Fq and they form 
an optimal normal basis of Fq, over Fq. 

THEOREM 2.4. Suppose that 2n + 1 is a prime and that F~n+l is generated by - 1  and 2, 
and let ~/ be a primitive (2n + 1)-st root of unity in F22n. Then c~ = ~, + ./-1 is a normal 
element of F2,~ over F2 which determines an optimal normal basis of F2n over F2. 

Based on computer searches, it was conjectured in [104] that Theorems 2.3 and 2.4 
describe essentially all optimal normal bases. Recently, Gao and Lenstra [50] verified 
this conjecture. In fact, they confirmed the conjecture not only for finite fields, but even 
for finite Galois extensions of general fields. We refer to Ash, Blake and Vanstone [2], 
S6guin [140], and Wassermann [164] for constructions of low-complexity normal bases 
of finite fields. 

3. Irreducible and primitive polynomials and primitive elements 

We saw in Section 1 that irreducible polynomials of degree n over Fq are important for 
the construction of the field Fq,. In the constructive theory of finite fields, a problem 
of particular importance is that of the effective construction of irreducible polynomials 
over Fq. Thus for given n and q, it is desired to find an effective construction of an 
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irreducible polynomial of degree n over Fq. A similar problem can be posed for prim- 
itive polynomials of degree n over Fq, which is basically equivalent to the problem of 
effectively constructing a primitive element of the extension field Fq,.  Since the publica- 
tion of the book of Lidl and Niederreiter [87] there has been a spectacular development 
of algorithmic and constructive aspects of the theory of finite fields; some of these re- 
suits will be covered in other volumes of this Handbook series. In this section we shall 
emphasize these newer developments rather than go over the well-trodden territory of 
factorization algorithms, root-finding algorithms, or irreducibility tests that is described 
in the book Lidl and Niederreiter [87]. The book by Shparlinski [146] and several recent 
survey articles, such as Lenstra [80], Lidl [83], and Niederreiter [116, 118], refer to the 
'traditional' and the constructive aspects of finite field theory. 

There is presently no deterministic polynomial-time algorithm known for the explicit 
construction of irreducible polynomials of degree n over Fq. Adleman and Lenstra [1] 
and Evdokimov [44] developed a deterministic polynomial-time algorithm under the as- 
sumption of the generalized Riemann hypothesis. If probabilistic algorithms are allowed, 
then the problem of constructing irreducible polynomials can be solved in polynomial 
time; see Lenstra [80] and Shoup [143]. The best deterministic algorithm currently avail- 
able is due to Shoup [143], with running time approximately o ( n a p  1/2) for irreducible 
polynomials of degree n over Fp. Shoup [143] also shows that the problem can be de- 
terministically reduced in time bounded by a polynomial in n and log p to the problem 
of factoring polynomials over Fp. For sketching Shoup's approach, let n = p~l . . .  p~,  
where the Pi are distinct primes and ei 1> 1. For each 1 <~ i <~ t, one has to construct an 
irreducible polynomial of degree p~' over Fp. Thus, the critical step in Shoup's algorithm 
is to construct an irreducible polynomial of prime-power degree r e for any given prime r 
and e/> 1. The cases r = p and r I ( P -  1) are easy to tackle. The main task is achieved 
through the following result due to Shoup [143]. 

THEOREM 3.1. Let p be a prime, r ~ p an odd prime, m the multiplicative order o f  p 
modulo r, and a E Fpm an r-th nonresidue in Fpm. Given a positive integer e, let t3 be 
a root o f  x re - a. Then 

' ) t  - ~ -  

m - I  

i = 0  

has degree r e over F v. Thus, the minimal polynomial o f  ~/ over F v is an irreducible 
polynomial  over F v o f  degree r e. 

The final step in Shoup's algorithm requires the irreducible polynomials of degree 
p~' obtained from Theorem 3.1 to be combined to get an irreducible polynomial of 
degree n over F v. The paper of Shoup [143] contains also a deterministic algorithm for 
constructing irreducible polynomials over an arbitrary finite field Fq. 

A special procedure for generating irreducible polynomials over the binary field F2 of 
arbitrarily large degrees was recently analyzed by Meyn [96]. In this procedure we start 
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from a polynomial 

n 

f (x) - ~ ajx j C F2[x] 
j=0 

of degree n ~> 2 and form the Q-transform 

(1) 
fQ(x) = xn f  x + - , 

X 

which is a self-reciprocal polynomial of degree 2n. By repeated applications of the Q- 
transform we obtain a sequence f, fQ, ( fQ)Q,. . .  of polynomials. Meyn [96] has shown 
that all polynomials in this sequence are irreducible over F2 if and only if f is irreducible 
over F2 and a l = an-1 = 1. This raises the question for which degrees n ~> 2 there 
exist such f .  Let the counting function A(n) be defined as the number of irreducible f 
over F2 with deg(f)  = n and al = an - l  = 1. From a result of Hayes [61] we deduce 
an asymptotic formula for A(n), namely 

A ( n ) -  -nl 2n-2 + O (  120n)-n for some 0 < 1. 

This implies that A(n) > 0 for all sufficiently large n. An explicit formula for A(n) 
was obtained by Niederreiter [115]. It follows from the formula for A(n) that A(n) > 0 
for all n ~> 2 with n 5r 3, whereas it is seen by inspection that A(3) = 0. Thus, the 
procedure of generating irreducible self-reciprocal polynomials over F2 by iteration of 
the Q-transform can be applied exactly for all initial degrees n >~ 2 with n r 3. This 
procedure is also useful for so-called iterated presentations of infinite algebraic extensions 
of F2 (compare with Brawley and Schnibben [14], Chapter 3, and Meyn [96]). Other 
recursive procedures for generating irreducible polynomials over finite fields were studied 
by Kyuregyan [75, 76] and Varshamov [159, 160]. 

Gao and Mullen [51] construct irreducible polynomials of arbitrarily large degrees 
involving the Dickson polynomials 

[n/2J n ( n - - J ) ( _ a ) j  
Dn(x ,a )= Z n - j  j 

j=0 

x n- j c 

where n >~ 1, a C Fq, and [uj denotes the greatest integer ~ u for real u. We refer to the 
book of Lidl, Mullen and Turnwald [86] for a detailed treatment of Dickson polynomials. 
The construction of Gao and Mullen [51] is based on necessary and sufficient conditions 
for Dn (x, a) + b to be irreducible over Fq, where a, b E Fq. In addition, they show that 
if n is neither a prime power nor of the form 2 . 3  k, k ~> 1, then there are infinitely 
many primes p such that Dn(x, a) does not permute Fp for any a E Fp and there are 
no a, b c Fp so that Dn(x, a) + b is irreducible over Fp. This disproves a conjecture 
of Chowla and Zassenhaus [21]. Gao and Mullen [51] prove also that the minimal 



332 R. Lidl and H. Niederreiter 

polynomials of elements which generate the optimal normal bases in Theorem 2.4 can 
be derived from Dickson polynomials. 

Niederreiter [122, 123] studies differential equations in the rational function field Fq (x) 
over Fq which lead to new irreducibility tests and factorization algorithms. Two types 
of procedures can be followed, depending on whether one wants to work with ordinary 
derivatives or Hasse-Teichmtiller derivatives. For simplicity we describe only the first 
approach, and we refer to Niederreiter [ 123] for the second approach. The starting point 
is the ordinary differential equation 

y(p-1) + yp = 0 

of order p -  1 in Fq(x), where p is the characteristic of Fq. The left-hand side of this 
differential equation is an Fv-linear operator on Fq(x), and therefore the solutions form 
an Fp-linear subspace of Fq(x). The solution space can be described explicitly: if we fix 
a monic nonconstant f E Fq[x], then the solutions y of the form y = h / f  with h E Fq[X] 
are exactly given by 

y 

m I 

E ci g/ 
i=l gi 

with c l , . . . , c ~  E Fp, 

where g l , . . . , g m  E Fq[x] are the distinct monic irreducible factors of f over Fq and 
g~ denotes the first derivative of gi. If we keep f ~ Fq[x] with d = deg(f) /> 1 fixed 
and view h E Fq[x] as the unknown, then the differential equation is equivalent to the 
system of algebraic equations 

Mp(f)hT- + (h p)-1- : O, 

where Mp(f) is a d x d matrix over Fq, h = (ho,... ,hd-l) E Fq d is the coefficient 

vector of h, and h p - (hr~,... ,hPa_l) c= Fq a. If q = p, then h p = h, and so this system 
of algebraic equations reduces to a system of homogeneous linear equations. If q = pt 
with t ~> 2, then the system of algebraic equations can be linearized by working with a 
normal basis N, preferably a low-complexity normal basis, of Fq over Fp. One expresses 
the entries of Mp(f) and the unknowns hk, 0 ~< k ~< d -  1, as Fp-linear combinations 
of the elements of N and then carries out a comparison of coefficients of the elements 
of N. In this way one arrives at the system of homogeneous linear equations 

Kq(f, N ) H  -r = O, 

where Kq(f ,N)  is a dt x dt matrix over Fp and H E F~ at contains the unknowns 

h(k i), 0 ~ k ~< d -  1, 0 <~ i <~ t -  1, that is, the coordinates of the hk relative to the basis 
N. Because of the equivalence of this system of linear equations with the differential 
equation, the matrix Kq(f, N) has rank d t -  m. This leads to the following irreducibility 
criterion: I is irreducible over Fq if and only if gcd(f, f ' )  = 1 and Kq(f, N) has rank 
d t -  1. The case t = 1 can of course be included by formally putting Kp(f, N) = 
Mp(I) + Id with Id the d x d identity matrix over Fp. 
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We next turn to primitive polynomials of degree n over Fq. The problem of the 
efficient construction of such polynomials, which is basically equivalent to that of effi- 
ciently constructing a primitive element of the extension field Fqn, has been taken up 
only very recently. Shparlinski [ 145] has shown that for any prime p we can find in time 
O (n ~ a subset of Fp,~ of cardinality O(n l~ containing at least one primitive element 
of Fp,~, where the implied constants may depend on p. The currently best result is due 
to Shoup [144] who replaced O(n l~ by O(n6+~). 

Tables of primitive polynomials over finite fields can be found in the book Lidl and 
Niederreiter [87], Chapter 10. More recent work on the search for primitive polynomials 
was carried out by Hansen and Mullen [60] and Rybowicz [136]. Hansen and Mullen [60] 
tabulate for each prime power pn < 1050 with p ~< 97 a primitive polynomial of degree 
n over Fp. They also state a conjecture on the existence of primitive polynomials with 
one prescribed coefficient and an analogous conjecture for irreducible polynomials. The 
chief theoretical result in support of the conjecture on primitive polynomials is a theorem 
of Cohen [24] to the effect that if n ~> 2 and a E Fq with a ~ 0 if n = 2 or if n = 3 
and q = 4, then there exists a primitive polynomial over Fq of degree n for which the 
coefficient of x n-1 is equal to a. 

The paper Golomb [57] stimulated considerable research activity from 1984 on by 
posing some conjectures postulating that for sufficiently large q an element of Fq could 
always be expressed as the sum of two primitive elements. The context of these conjec- 
tures was the construction of Costas arrays, which are useful for radar. A Costas array 
is an n • n permutation matrix with the property that the (2) vectors connecting two 
l 's of the matrix are all distinct as vectors. Golomb [57] stated that all known system- 
atic constructions for Costas arrays involve the use of primitive elements in finite fields. 
Cohen and Mullen [26] provide a summary of the work related to Golomb's conjectures 
and resolve some unanswered questions. Cohen [25] gives an even more recent survey 
and shows that the first three of Golomb's conjectures can be subsumed by the following 
more general conjecture: for all q, except those in a precisely identifiable small set, and 
for all a, b E F~, there exists a primitive element c of Fq such that ac + b is also a 
primitive element of Fq. Cohen [25] uses an alliance of careful character sum analysis 
with sieve methods to obtain lower bounds for the cardinality of the set of primitive 
elements with the desired property. We refer to that paper for details. 

4. Permutation polynomials 

Every mapping ~b from Fq into itself can be represented by a polynomial g E Fq[x], in 
the sense that ~b(c) -- g(c) for all c E Fq. If we impose the condition deg(g) < q, then 
g is uniquely determined and given by the formula 

g(x) = ~ ~b(c)(1 - (x - c)q-') .  
cE Fq 

Two polynomials over Fq both represent ~b if and only if they are congruent modulo 
x q - x. Heisler [62] characterized finite fields as the only nonzero rings R for which any 
mapping from R into itself can be represented by a polynomial over R. 
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A polynomial f E Fq[X] is called a permutation polynomial of Fq if it represents a 
bijection of Fq. In other words, f is a permutation polynomial of Fq if the cardinality 
V( I )  of its value set {f(c): c E Fq} is equal to q. For small q this condition can 
be checked directly. The classical algebraic criterion for determining whether a given 
polynomial is a permutation polynomial is due to Hermite [64] for finite prime fields and 
Dickson [33] in the general case. As usual, we denote by p the characteristic of Fq. 

THEOREM 4.1. f E Fq[X] is a permutation polynomial of Fq if and only if the following 
two conditions hold: 

(i) f has exactly one root in Fq; 
(ii) for  each integer t with 1 <. t ~ q - 2  and t 7~ 0 mod p, the reduction of 

f (x) t mod (zq - z) has degree ~ q -  2. 

Condition (i) may be replaced by the requirement that the reduction of 

f (x) q-1 mod (x q - x) 

has degree q -  1. It is an immediate consequence of Theorem 4.1 that there is no 
permutation polynomial of Fq of degree d whenever d > 1 is a divisor of q -  1. To 
test whether a polynomial of degree n is a permutation polynomial of Fq, von zur 
Gathen [52] designed a probabilistic polynomial-time algorithm, i.e. one with running 
time O((nlog q)O(l)), and Shparlinski [147] developed a deterministic algorithm with 
running time O( (nq)6/7 (log nq)~ 

Obvious examples of permutation polynomials of Fq are linear polynomials. A more 
interesting class of examples is obtained from the Dickson polynomials Dn(x,a) in- 
troduced in Section 3. For a - 0 we have Dn(x,O) - x n, and this monomial is a 
permutation polynomial of Fq if and only if gcd(n, q -  1) = 1. For a -fi 0, Dn(x, a) is 
a permutation polynomial of Fq if and only if gcd(n, q2 _ 1) = 1. We note the simple 
principle that the set of permutation polynomials of Fq is closed under composition, 
which can be used to generate further examples of permutation polynomials of Fq. 

Apart from these classical examples of permutation polynomials, there are also other 
families of permutation polynomials that are known, but a complete classification of such 
polynomials seems out of reach at present. Special classes of permutation polynomials 
of Fq, such as linearized polynomials and polynomials of the form xr(g(xS)) (q-1)/s, 
are described in the book of Lidl and Niederreiter [87], Chapter 7. Some attention has 
also been devoted to permutation binomials ax n + bx k with a, b E Fq and n > k ~> 1; 
see, e.g., Niederreiter and Robinson [125] and Turnwald [158]. More recent examples 
of families of permutation polynomials can be found in Cohen [23] and Tautz, Top and 
Verberkmoes [155]. Several classes of permutation polynomials form interesting groups 
under composition; we refer again to [87], Chapter 7, as well as to the recent paper of 
Wan and Lidl [163]. 

For the deeper analysis of permutation polynomials, an important connection is that 
between permutation polynomials and exceptional polynomials. A polynomial f E Fq [x] 
of degree ) 2 is exceptional over Fq if every irreducible factor of ( f ( x ) -  f ( y ) ) / ( x -  y) 
in Fq[X, y] is reducible over some algebraic extension of Fq. 
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THEOREM 4.2. Every exceptional polynomial over Fq is a permutation polynomial of Fq. 
Conversely, if f E Fq[z] is a permutation polynomial of Fq with deg(f)  = n ) 2, if 
gcd(n, q) = 1, and if q is sufficiently large relative to n, then f is exceptional over Fq. 

A relatively elementary proof of the first part of Theorem 4.2 was recently given by 
Wan [162]. For a proof of the second part we refer to [87], Section 7.4. Methods of 
algebraic geometry lead to profound results such as the following criterion: if n is a 
positive integer, if gcd(n, q) - 1, and if q is sufficiently large relative to n, then there 
exists a permutation polynomial of Fq of degree n if and only if gcd(n, q -  1) = 1 

(see [87], Corollary 7.33). For a detailed recent treatment of exceptional polynomials we 
refer to Cohen [23]. 

The following conjecture of Carlitz on the degrees of permutation polynomials has 
attracted a lot of attention: if n is a positive even integer and q is odd and sufficiently 
large relative to n, then there are no permutation polynomials of Fq of degree n. A number 
of papers treated various special cases, but in an important breakthrough the conjecture 
was recently proved in full generality by Fried, Guralnick and Saxl [48]. Another famous 
conjecture on permutation polynomials was settled much earlier by Fried [47], namely 
Schur's conjecture to the effect that any f E Z[z] which is a permutation polynomial of 
Fp (when considered modulo p) for infinitely many primes p must be a composition of 
binomials az n + b and Dickson polynomials; see also Turnwald [ 157] for some clarifying 
remarks on Fried's result. Based on the work of Fried, Cohen [22] verified a conjecture 
of Chowla and Zassenhaus [21] by proving that if f E Fp[X] with deg(f)  = n ~> 2 and a 
prime p > (n 2 - 3n + 4) 2, then f (x)  + cx is a permutation polynomial of Fp for at most 
one c E Fp. A more general result on permutation polynomials of the form f (x) + c9(x) 
was shown by Cohen, Mullen and Shiue [27]. 

If both f (x)  and f ( x ) +  x are permutation polynomials of Fq, then f is called a 
complete mapping polynomial of Fq. This notion was studied in detail by Niederreiter and 
Robinson [125] and allows interesting applications in combinatorics (see [32]) and in the 
theory of check digits (see [37]). More generally, we can consider for any f E Fq[x] the 
number C(f)  of elements c E Fq for which I ( x )+cx  is a permutation polynomial of Fq. 
Since C(I) depends only on the mapping properties of f ,  we can assume deg(f)  < q. It 
is trivial that C(f)  = q -  1 whenever deg(f)  ~< 1. For 1 < deg(f)  < q, Chou [19, 201 
proved that 

C(f)  ~< q -  1 - d e g ( f ) ,  

and Evans, Greene and Niederreiter [43] showed that 

q - 1  ] 
C ( f )  ~ q -  d e g ( f ) - I  ' 

where [u] is the least integer ) u. The latter paper contains also the proof of the 
conjecture of Stothers which states that if C(f)  >~ [q/2],  then f has the form f ( z )  = 
az + 9(z p) for some a E Fq and 9 E Fq[z]. 
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The cardinality V(f)  of the value set of a polynomial f e Fq [x] with deg(f) - n >~ 1 
satisfies 

where the lower bound follows from the fact that a polynomial over Fq of degree n has 
at most n roots in Fq. We can have equality in both bounds, with equality in the upper 
bound corresponding of course to the case of a permutation polynomial. A discussion of 
polynomials with small value set can be found, e.g., in Gomez-Calderon and Madden [59]. 
Birch and Swinnerton-Dyer [8] proved that if f is "general", in the sense that the Galois 
group of the equation f(x) = y over Fq(y) is the symmetric group Sn, then 

n 

v ( s )  = ( - 1 ) J - '  j !  + O(q l /2)  ' 

j= l  

where the implied constant depends only on n. Mullen [99] recently proposed a refine- 
ment of the Carlitz conjecture which can be expressed in terms of V(f)" if f E Fq[x] 
has even degree n >~ 2 and q is odd with q > n ( n -  2), then 

v I/ -q Iq 11 �9 n 

Permutation polynomials have also been considered in other algebraic settings, for 
instance over residue class rings Z/NZ (see the book of Narkiewicz [105], Chapter 2) 
or over more general commutative rings with identity (see the book of Lausch and 
N6bauer [78], Chapter 4). An interesting theory can also be developed for permutation 
polynomials of matrix rings over finite fields, as the survey article by Brawley [12] 
demonstrates. 

Another extension of the theory of permutation polynomials concerns permutation 
polynomials in several indeterminates. A polynomial f c Fq[Xl,... ,Xm] is called a 
permutation polynomial in m indeterminates over Fq if the equation f ( X l  , . . . , X m )  = a 
has qm-1 solutions in F q  for each a c Fq. More generally, a system of polynomials 

f l , . . . , f k  E Fq[xl,...,xm] with 1 ~< k ~ m is orthogonal in Fq if the system of 
equations 

f i ( x l , . . . ,Xm)=a i  for 1 ~<i~<k 

has qm-k solutions in F q  for each ( a l , . . .  , a k) E Fq k. Every polynomial occurring in an 
orthogonal system is a permutation polynomial. On the other hand, a system f l , . . . ,  fk 
is orthogonal in Fq if and only if for all nonzero (b~,. . . ,  bk) E Fq k the polynomial 

k 

~ b i f i  
i=1 
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is a permutation polynomial over Fq (see [87], Corollary 7.39). Nontrivial examples of 
orthogonal systems, and thus of permutation polynomials in several indeterminates, can be 
obtained from Dickson polynomials in several indeterminates (see [87], Theorem 7.46). A 
simple principle for the construction of permutation polynomials in several indeterminates 
is the following: if f E F q [ x l , . . . ,  Xm] has the form 

f ( x l ,  . . . , X m )  = g ( x , ,  . . . , x r )  + h ( X r + l ,  . . . , X m )  

with 1 ~< r < m and if at least one of g and h is a permutation polynomial over Fq, then 
f is a permutation polynomial over Fq. Useful applications of permutation polynomials 
and orthogonal systems in several indeterminates arise in the work of Mullen [98] on 
the construction of frequency squares for experimental designs in statistics. 

Expository accounts of the theory and the applications of permutation polynomials are 
given in the survey articles of Lidl and Mullen [84, 85] and Mullen [99] and in the book 
of Lidl and Niederreiter [87], Chapter 7. 

5. Discrete logarithms 

The cyclic group Fq is generated by a primitive element b of Fq. Thus, for every a E F~ 
there exists a uniquely determined integer r with 0 ~< r ~< q -  2 and b r - a. This integer 
r is called the discre te  l ogar i thm (or the index)  of a relative to b and is denoted by 
indb(a). The computational problem of calculating indb(a) given a and b is called the 
discre te  l ogar i t hm  p r o b l e m .  Several cryptographic schemes are based on the presumed 
difficulty of the discrete logarithm problem for large q (see Section 7). The discrete 
logarithm problem can also be formulated for an arbitrary group G, in the sense that if 
g lies in the cyclic subgroup of G generated by a given h E G, then we are asked to 
find an integer s such that h s = 9. However, we will restrict the attention to the case 
G =  F q .  

If q = pt  with p being the characteristic of Fq, then indb(a) has a digit expansion 

t - 1  

indb(a) = ~ n i p  i 

i = 0  

in the base p, with integers 0 ~< ni  ~< p -  1 for 0 ~< i ~< t -  1. It suffices to know how to 
determine the least residue no of indb(a) modulo p. For if no has been calculated, then 
indb(a) = no + m p  for some integer m ~> 0, hence with c = ( a b - n ~  q/p we get 

c = (b rap) q/p b m = b m q  = 

and so m = indb(c). Continuing in this manner, we can successively calculate n l , . . . ,  
n t - 1 ,  and so we obtain the value of indb(a). There is an explicit formula for the least 
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residue of indb(a) modulo p due to Mullen and White [102], namely 

q--2 aj 

indb(a) -- --1 + ~-~ b-J - 1 mod P 
j = l  

for any a E F~ with q >~ 3. However, it is not yet clear whether this formula can somehow 
be used for the efficient computation of discrete logarithms for large q. For further work 
on explicit formulas for discrete logarithms we refer to Meletiou and Mullen [95] and 
Niederreiter [ 114]. 

If q -  1 has no large prime factors, then the Silver-Pohlig-Hellman algorithm provides 
an efficient technique for solving the discrete logarithm problem in Fq. Recall that r -- 
indb(a) satisfies 0 <~ r ~ q -  2, and so it suffices to determine r modulo q -  1. If 
q -  1 = q l ' ' ' q k  is the factorization of q -  1 into pairwise coprime prime powers, then 
in view of the Chinese Remainder Theorem it is enough to determine r modulo qh for 
1 ~ h <~ k. The latter task is solved by a procedure reminiscent of that in the previous 
paragraph, namely by a reduction to the problem of calculating the least residue of r 
modulo Ph, where Ph is the prime of which qh is a power. To determine the least residue 
so of r modulo Ph, we form 

a (q -1 ) /ph  = b (q-l)'/ph = c~ = c~ ~ 

where C h  "-- b ( q - l ) / p h  is a primitive ph-th root of unity in Fq. If the distinct powers of C h  

have been precomputed, then a (q-l)/ph uniquely determines so. For further information 
we refer to Lidl and Niederreiter [88], pp. 350-351, and McCurley [92], pp. 58-60. 

A powerful method for computing discrete logarithms in Fq is the index-calculus 
algorithm. This algorithm is of interest in the important cases where q is a large prime or 
a large power of a small prime. The algorithm proceeds in two stages. In the first stage, 
we select special elements a l , . . . ,  am of Fq and we generate identities of the form 

m 

I I  eij aj 
j = l  

= b f, 

with integers eij and fi .  These identities can be interpreted as a system of linear con- 
gruences 

m 

e q i n d b ( a j ) -  f i  mod ( q -  1). 
j--1 

If sufficiently many congruences of this type have been collected, then we can expect 
that the system can be solved uniquely for the unknowns indb(aj), 1 <~ j ~ m. In 
the second stage of the algorithm, we calculate a desired discrete logarithm indb(a) by 
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constructing an identity of the form 

m 

H gj = ab f aj 
j = l  

with integers 9j and f.  From this identity we obtain 

m 

indb(a) = ~ gjindb(aj)- f mod ( q -  1), 
j = l  

and so indb(a) is determined. The first stage of the index-calculus algorithm is a pre- 
computation and thus has to be carried out only once for each finite field Fq. 

The above paragraph describes only the rough outlines of the index-calculus algorithm. 
The real difficulties are hidden in the details, namely how to select the special elements 
a 1 , . . . ,  am in the first stage and how to generate the identities required in both stages. 
If q is large, then the generation of suitable identities can be made feasible only by a 
probabilistic algorithm. In the case where q is prime, we identify the elements of Fq with 
positive integers less than q. Then a 1 , . . . ,  am are chosen to be small primes (usually 
the first m primes) and the desired identities are obtained by canonical factorization of 
integers. If q -- pt with a prime p and an exponent t >~ 2, then we idelatify the elements of 
Fq with nonzero polynomials over Fp of degree less than t. Here we take a 1 , . . . ,  am to 
be irreducible polynomials over Fp of small degree and we obtain the desired identities 
by canonical factorization of polynomials. Detailed expositions of the index-calculus 
algorithm can be found in the survey articles of McCurley [92] and Odlyzko [128] and 
in the book of Lidl and Niederreiter [88], Chapter 9. 

For q - 2 t the best available version of the index-calculus algorithm is that of Copper- 
smith [28] which, under certain heuristic assumptions, can be shown to be a probabilistic 
algorithm with a subexponential expected running time of the form O(e ctl/3 l~ t2/3) with 
some constant c > O. For the following it is convenient to put 

L(q) - -  e (l~ q)l/2(l~ log q ) , / 2  

for any prime power q. In the case where q is prime, the index-calculus algorithm 
of Coppersmith, Odlyzko and Schroeppel [29] represents a probabilistic algorithm for 
which a heuristic analysis yields an expected running time O(L(q) 1+~ A probabilistic 
discrete logarithm algorithm that can be subjected to a rigorous complexity analysis 
was designed by Pomerance [134]. This algorithm uses the elliptic curve method for 
factoring integers as a subroutine. The algorithm of Pomerance has expected running time 
O(L(q) v5+~ if either q - 2 t or q is prime, and no unproved heuristic assumptions 
are needed to derive this result. 

For more extensive discussions of discrete logarithms, including their cryptographic 
applications, we refer to Lidl and Niederreiter [88], Chapter 9, McCurley [92], 
Odlyzko [128], and van Oorschot [130]. 
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6. L inear  recurr ing  sequences  

Let k be a positive integer and let ao, a l , . . .  ,ak-1 be fixed elements of a finite field 
Fq. A sequence so, s l , . . ,  of elements of Fq satisfying the (k-th-order) linear recurrence 
relation 

k - 1  

8n+k ~" ~_~ ai8n+i  
i=0  

for n = O, 1 , . . .  

is called a (k-th-order) linear recurring sequence in Fq. We often abbreviate the sequence 
so, s 1 , . . .  by (Sn). The sequence (Sn) is uniquely determined by the linear recurrence 
relation and by the initial values so, s l , . . . ,  sk-1. In electrical engineering, linear recur- 
ring sequences in Fq are generated by special switching circuits called "linear feedback 
shift registers" (compare with [88], Chapter 6), and so one speaks also of linear feedback 
shift-register sequences. Linear recurring sequences have been studied for centuries from 
the theoretical point of view, and in the last few decades they have become important in 
applied areas such as algebraic coding theory, cryptology, digital signal processing, and 
pseudorandom number generation. 

Any linear recurring sequence (Sn) in Fq is periodic, in the sense that there exists a 
preperiod no /> 0 and a period r /> 1 such that sn+,, = sn for all n >/no. If ao -~ O, 
then the sequence is purely periodic, i.e. we can take no = O. An easy way to prove 
the periodicity, and also to obtain an upper bound on the least period, is based on the 
consideration of the state vectors 

Sn "-- ( 8 n ,  8 n + l , . . . ,  8 n + k - l )  E F k for  n = O, 1, . . . .  

If the given linear recurring sequence is such that no state vector is the zero vector, then it 
follows from the pigeon-hole principle that sj = Sh for some h and j with 0 <~ h < j 
qk _ 1. In view of the linear recurrence relation, this implies sn+ j -h  = sn for all n >t h, 
and so the linear recurring sequence is periodic with least period r ~< j - h ~ qk _ 1. 
On the other hand, if one of the state vectors is the zero vector, then all subsequent state 
vectors are zero vectors, and so the linear recurring sequence is periodic with least period 
r = 1 ~< qk _ 1. Thus, the least period of a k-th-order linear recurring sequence in Fq is 
always at most qk _ 1. 

State vectors are linked by the k • k matrix 

m _ _  

0 0 0 . . .  0 ao 

0 0 . . .  0 al 

1 0 . . .  0 a2 

�9 ~ ~ 

0 0 . . .  1 ak-1 
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over Fq associated with the linear recurrence relation. Indeed, a straightforward induction 
shows that 

s n = s o A  n f o r n = O ,  1, . . . .  

Since A n can be calculated by O(log n) matrix multiplications using the standard square- 
and-multiply technique, the above identity leads to an efficient algorithm for computing 
remote terms of the linear recurring sequence (Sn). The currently fastest algorithm for 
this task is due to Fiduccia [45]. Note that the matrix A is nonsingular if ao ~ 0, and so 
in this case the identity sn = s0A n implies that the least period of the linear recurring 
sequence divides the order of A in the general linear group GL(k, Fq). 

From the linear recurrence relation for a linear recurring sequence (sn) we obtain the 
polynomial 

k - 1  

f (x) -- x k - ~ aix i E Fq[X], 
i = 0  

which is called a characteristic polynomial of (Sn). If A is the matrix above, then f 
is also the characteristic polynomial of A, and on the other hand, A is the companion 
matrix of f.  Let F q  be the sequence space over Fq, viewed as a vector space over Fq 
under termwise operations, and let T be the shift operator 

T(vn)--" (Vn+l) for all (vn)E F ~ .  

Then for a characteristic polynomial f of (sn) we have 

f ( T ) ( s n ) = ( O ) ,  

with the zero sequence on the right-hand side. The set 

{g E Fq[x]" g(T)(sn) -- (0)} 

of annihilating polynomials is a nonzero ideal in Fq[x] and is therefore generated by 
a uniquely determined monic polynomial over Fq, called the minimal polynomial of 
the linear recurring sequence (Sn). It is clear that the minimal polynomial divides any 
characteristic polynomial of (Sn). A characteristic polynomial of degree k is the minimal 
polynomial of (Sn) if and only if the corresponding state vectors s0, s l , . . . , s k - I  are 
linearly independent over Fq. 

The minimal polynomial contains all the information about the periodicity properties 
of a linear recurring sequence. We use the notion of the order ord(f) of a polynomial 
f over Fq introduced in Section 1. See [88], Chapter 3, for further information on the 
order of polynomials and [88], Chapter 6, for the result below. 

THEOREM 6.1. If m e Fq[x] is the minimal polynomial of the linear recurring sequence 
(Sn) in Fq, then the least period of (Sn) is equal to ord(m) and the least preperiod of 
(Sn) is equal to the multiplicity of 0 as a root of m. 
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A linear recurring sequence (Sn) in Fq whose minimal polynomial m is a primitive 
polynomial over Fq is called a maximal period sequence in Fq. If deg(m) = k, then 
by Theorem 6.1 the maximal period sequence (sn) is purely periodic with least period 
q k  1. Note that by an earlier discussion, qk_  1 is the largest value that can be achieved 
by the least period of a k-th-order linear recurring sequence in Fq. From that discussion 
it is also clear that the state vectors s0, s l , . . .  ,Sqk_2 of a k-th-order maximal period 
sequence in Fq with k = deg(m) run exactly through all nonzero vectors in Fq k. This 
property of maximal period sequences is basic for many applications of these sequences, 
such as the construction of de Bruijn sequences (compare also with Section 9). 

A very useful viewpoint in the theory of linear recurring sequences is that of generating 
functions. In the classical approach described in [88], Chapter 6, the formal power series 

t:x) 

n'-O 

is associated with the sequence so, S l , . . .  of elements of Fq. However, it is often more 
convenient to associate with this sequence the formal Laurent series 

o o  

~ 8 n x - - n - - l  E F q ( ( X - l ) ) .  

n-O 

For instance, according to Niederreiter [108] we then get the following simple charac- 
terization of linear recurring sequences with given minimal polynomial. 

THEOREM 6.2. Let m E Fq[x] be a monic polynomial. Then the sequence so, s 1,...  of 
elements of Fq is a linear recurring sequence with minimal polynomial m if and only if 

o o  

Z = 

with g e Fq[z] and gcd(g, m) = 1. 

Thus, the formal Laurent series associated with a linear recurring sequence is a rational 
function, and the monic denominator of the reduced form of this rational function is 
the minimal polynomial of the linear recurring sequence. The approach via generating 
functions yields important explicit formulas for the terms of a linear recurring sequence 
(Sn) in Fq with characteristic polynomial f E Fq[x]. Let eo be the multiplicity of 0 as a 
root of f ,  where we can have e0 - 0, and let a l , . . . ,  ah be the distinct nonzero roots 
of f (in its splitting field F over Fq) with multiplicities e l , . . . ,  eh, respectively. Then 

h e i - I  

_ , . . . ,  Sn -- tn W n for  n O, 1 
i=1 j=o J 
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where all tn E Fq, tn = 0 for n ) e.o, and all flij E F. If f is irreducible over Fq, then 
this formula can be put into the much simpler form 

.Sn = TrF/Fq (Ool. n) for n = 0, 1 , . . . ,  

where a E F is a fixed root of f and 0 E F is uniquely determined. We refer to [88], 
Chapter 6, for the proof of these formulas. 

For a monic f E Fq[x] let S( f )  be the kernel of the linear operator f (T )  on F q .  
If deg(f)  /> 1, then S( f )  consists exactly of all linear recurring sequences in Fq with 
characteristic polynomial f ,  whereas S(1) = {(0)}. Any S( f )  is a linear subspace 
of F q  of dimension deg(f).  The following result (see [88], Chapter 6, for its proof) 
characterizes the spaces S(f) .  

THEOREM 6.3. A subset E of F ~  is equal to S ( f )  for some monic f e Fq[X] if and only 
if E is a finite-dimensional subspace of F ~  which is closed under the shift operator T. 

The subspaces S( f )  of F q  are linked by various identities. For instance, for any 
monic f l , . . . ,  fh E Fq[x] we have 

S( f , )  n . . .  f lS ( fh )  = S ( g c d ( f l , . . . , f h ) )  

and 

S( f , )  + . . .  + S(fh) = S ( l c m ( f , , . . . , f h ) ) .  

In particular, if a monic f E Fq[x] is factored in the form f = g l ' ' ' g h  with pairwise 
coprime and monic g l , . . . ,  gh E Fq[X], then S( f )  is the direct sum 

S( f )  = S(gl) @ ' "  �9 S(gh). 

An important operation is that of termwise multiplication of linear recurring sequences. 

If cri - (s~)), 1 ~< i ~ h, are h sequences of elements of Fq, then their (termwise) 

(1) ..s(h) for n = 0, 1 product crl..-~rh is the sequence (Sn) with terms sn = Sn �9 , . . . .  
For monic polynomials f l , . . . ,  fh E Fq[X] let S ( f l ) . . .  S(fh) be the subspace of F q  
spanned by all products al .-.crh with cri E S(fi)  for 1 ~ i ~< h. Since S ( f l ) . . .  S(fh) 
satisfies the conditions in Theorem 6.3, it follows that 

S( f l )  " " S(fh) = S(g) 

for some monic g E Fq Ix]. The general problem of determining the polynomial g is not 
easy. There is a trivial case, namely when fi = 1 for some i, since then obviously g = 1. 
Thus we can assume that f l , . . . ,  fh are nonconstant. Let fl V - - .  V fh be the monic 
polynomial whose roots are the distinct elements of the form al  - ' ' a h ,  where each ai 
is a root of fi in the splitting field of f l " "  fh over Fq. Since the conjugates over Fq of 
such a product al  . . . a h  are again elements of this form, it follows that fl V - . .  V fh is 
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a polynomial over Fq. If each fi, 1 <~ i ~< h, has only simple roots, then we have the 
formula 

S ( f l ) " "  S ( f h )  = S ( f l  V . . .  V fh) .  

The general case is considerably more complicated and is treated in Zierler and 
Mills [ 166]. 

If a = (s,~) is a sequence of elements of Fq and d is a positive integer, then the 
operation of decimation produces the decimated sequence a (d) - (Snd). Thus, a (d) is 
obtained by taking every d-th term of a, starting from s0. It turns out that if a is a linear 
recurring sequence in Fq, then so is a (a). In fact, it follows from a general result of 
Niederreiter [110] that if f E Fq[x] is a characteristic polynomial of a and 

k 

= I I ( x -  
j=l 

is the factorization of f in its splitting field over Fq, then 

k 

j = l  

which is again a polynomial over Fq, is a characteristic polynomial of a (a). Moreover, 
if f is the minimal polynomial of a and d is coprime to the least period of a, then gd 
is the minimal polynomial of a (a). Further information on characteristic polynomials of 
a (d) can be found in Duvall and Mortick [36]. 

A linear recurring sequence a in Fq which has a characteristic polynomial f C Fq [x] 
and satisfies a (q) = a is called a characteristic sequence for f .  Characteristic sequences 
play an important role in the recent algorithm of Niederreiter for factoring polynomials 
over finite fields; see Niederreiter and G/3ttfert [ 124] for this application of characteristic 
sequences. In that paper, characteristic sequences are also described explicitly in terms 
of their generating functions: (sn) is a characteristic sequence for f if and only if its 
generating function 

oo 
~-'~ SnX 
n--O 

- - n - - !  

has the form 

m t 

-~c i  P_A 
i=l Pi 

w i t h  e l , . . .  , c m E Fq, 

where P l , . . . , P m  E Fq[x] are the distinct monic irreducible factors of f and p~ is the 
first derivative of pi. A consequence of this result is that the minimal polynomial of any 
characteristic sequence has only simple roots. 



Finite fields and their applications 345 

Linear recurring sequences in Fq can be characterized in various ways. An obvious 
criterion states that a sequence of elements of Fq is a linear recurring sequence if and only 
if it is periodic�9 Another criterion follows from Theorem 6.2, namely that the sequence 
(sn) of elements of Fq is a linear recurring sequence if and only if its generating function 

OO 

~ - ~  8 n x - - n - -  1 

n - - O  

is a rational function. Still another approach employs techniques from linear algebra. For 
an arbitrary sequence (sn) of elements of Fq and for integers n ~> 0 and b/> 1 define 
the Hankel determinant 

D (b) : 

8 n  8 n + l  �9 . . 8 n W b _  1 

8 n + l  8 n + 2  " " " 8 n + b  

8 n + b -  1 8 n + b  " " " 8 n + 2 b - 2  

Then (sn) is a linear recurring sequence in Fq if and only if there exists an integer b ~> 1 

such that D (b) - 0 for all sufficiently large n. Also, (sn) is a linear recurring sequence 
with minimal polynomial of degree k if and only if 

D (b) -- 0 for all b/> k + 1 

and k + 1 is the least positive integer for which this holds. Proofs of these results can 
be found in [88], Chapter 6. 

If a linear recurring sequence in Fq is known to have a minimal polynomial of degree 
k >~ 1, then the minimal polynomial is determined by the first 2k terms of the sequence. 
This is seen by writing down the linear recurrence relation for n = 0, 1 , . . . ,  k -  1, thereby 
obtaining a system of k linear equations for the unknown coefficients a0, a l , . . . ,  ak-1 of 

the minimal polynomial�9 The determinant of this system is D0 (k), which is ~ 0 by one of 
the criteria in the previous paragraph. Therefore, the system can be solved uniquely�9 More 
generally, if a linear recurring sequence in Fq is known to have a minimal polynomial of 
degree ~< k for some integer k ~> 1, then the minimal polynomial is determined by the first 
2k terms of the sequence. An algorithm which, under this condition, produces the minimal 
polynomial from the first 2k terms of the sequence was developed by Berlekamp [3] and 
Massey [91]. This algorithm is of importance in the decoding of cyclic codes and in 
the analysis of keystreams used in stream ciphers (compare with Section 7 for the latter 
application). 

Detailed expository accounts of the theory of linear recurring sequences in finite fields 
are given in the books of Lidl and Niederreiter [87], Chapter 8, [88], Chapter 6, and 
McEliece [93], Chapters 9-11. A fundamental paper in the area is that of Zierler [ 165]. 
A good source for applications of linear recurring sequences is the book of Golomb [56]. 
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7. Finite fields in cryptology 

Finite fields have found many applications in cryptology, the theory of data security 
and integrity, which is a subject of increasing importance in an era relying more and 
more on electronic information and communication. This is not the place to present 
an introduction to cryptology, for which we refer the reader to the textbook literature, 
such as the mathematically oriented book of van Tilborg [ 156]. However, to provide some 
background information we describe at least rudimentarily the concept of a cryptosystem, 
this being the basic tool for data security that transforms data in original form (-- plaintext 
messages) into protected data in scrambled form (= ciphertexts) and vice versa. 

Formally, a cryptosystem consists of an enciphering scheme E = { Ek ) and a decipher- 
ing scheme D = {Dk, }, both of which are families of injective functions parameterized 
by keys. Given a (plaintext) message m and a key k, the enciphering scheme produces 
the ciphertext c = Ek(m).  The deciphering scheme recovers m by using a key k' and 
producing Dk,(c) = m. If k = k', or more generally if k and k' are computationally 
equivalent in the sense that they can easily be obtained from each other, then we speak 
of a symmetric cryptosystem. In this case, both keys k and k' have to be kept secret from 
unauthorized users. Examples of symmetric cryptosystems are the well-known block ci- 
pher DES and stream ciphers. In a public-key cryptosystem, the encryption key is public 
knowledge and only the decryption key k' is kept secret. The security of a public-key 
cryptosystem is based on the assumption that it is computationally infeasible to derive 
k' from k. A standard example of a public-key cryptosystem is the RSA cryptosystem 
whose security rests on the difficulty of factoring large integers. 

Several cryptographic schemes are based on the computational complexity of the dis- 
crete logarithm problem (compare with Section 5). A simple scheme of this type is the 
key-exchange system of Diffie and Hellman [35], which can be used to distribute secret 
keys for symmetric cryptosystems. In this system, the large finite field Fq and the prim- 
itive element b of Fq are publicly known. If two participants A and B want to establish 
a common key for secret communication, they first select arbitrary integers r and s, 
respectively, with 2 <~ r, s <~ q -  2, and then A sends b '~ to B, while B transmits b s to A. 
Now they take b rs as their common key, which A computes as (bS) ~ and B as (br) ~. An 
opponent may observe b r and b ~ passing over the communication channel, but it seems 
that the only way to infer from these data the secret key b rs is to calculate the discrete 
logarithms r and s of b ~ and b ~, respectively, relative to b. If q is well chosen, then the 
discrete logarithm problem for Fq can be regarded as computationally infeasible. 

A public-key cryptosystem based on the difficulty of the discrete logarithm problem 
was designed by E1 Gamal [42]. As above, the large finite field Fq and the primitive 
element b of Fq are supposed to be public knowledge. The secret key of a typical 
participant A is an integer r with 2 ~< r <~ q - 2  and the public key of A is the element b r of 
Fq. The admissible messages are nonzero elements of Fq. If another participant B wants 
to send a message m E Fq to A, then B selects an arbitrary integer s with 2 ~< s ~< q -  2 
and transmits the pair (b s, mb ~)  to A. For decryption, A calculates b r~ = (bS) r and 
recovers m = (mb~)(br~) -l  . A different type of public-key cryptosystem using a finite 
field Fq was proposed by Chor and Rivest [18]; here q is chosen such that discrete 
logarithms in Fq can be calculated with a reasonable effort, and the security is based on 
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the difficulty of a knapsack problem. 
In view of the progress on solving the discrete logarithm problem for finite fields (see 

Section 5), more general problems have been proposed as the basis for cryptographic 
schemes. One direction of research aims to replace F~ by seemingly more compli- 
cated groups, such as the group of rational points on an elliptic curve over Fq (see 
Koblitz [73], Chapter 6) or the class group of an algebraic number field (see Buchmann 
and Williams [ 16]). Another idea is to view the elements b", r - 0, 1 , . . .  , as stemming 
from a first-order linear recurring sequence in Fq and to generalize by considering linear 
recurring sequences in Fq of arbitrary order (compare with Section 6). The appropriate 
generalization of the transition from b r to b rs is then the operation of decimation for 
linear recurring sequences, and the analog of the discrete logarithm problem is the prob- 
lem of calculating- given a characteristic polynomial f of a linear recurring sequence o- 
and a characteristic polynomial 9d of a decimated sequence cr (a) - the decimation index 
d (compare again with Section 6). A family of cryptosystems based on these principles 
was introduced by Niederreiter [ 111 ]. 

There are interesting applications of algebraic coding theory to the design of public-key 
cryptosystems. The theoretical basis for these applications is the fact that the decoding 
problem for general linear codes over Fq is NP-complete. The standard example of a 
public-key cryptosystem based on linear codes over Fq is the Goppa-code cryptosystem 
which is described in detail in [88], Chapter 9. 

Extensive use of the theory of linear recurring sequences in Fq is made in the area 
of stream ciphers. A stream cipher is a symmetric cryptosystem in which messages and 
ciphertexts are strings of elements of a finite field Fq, and encryption and decryption 
proceed by termwise addition, respectively subtraction, of the same secret string of ele- 
ments of Fq. This secret string, called the keystream, is generated by a (possibly known) 
deterministic algorithm from certain secret seed data and should possess good statistical 
randomness properties and a high complexity, so that the keystream cannot be inferred 
from a small portion of its terms. Many keystream generators use linear recurring se- 
quences in Fq as building blocks; see Rueppel [135] for a survey of algorithms for 
keystream generation. 

Since most hardware-based keystream generators produce periodic sequences, a rele- 
vant measure of complexity in this context is the linear complexity L(a), which is simply 
the degree of the minimal polynomial of a periodic, and thus linear recurring, sequence o- 
of elements of Fq. In the periodic case, only sequences with a very large linear complex- 
ity are acceptable as keystreams. A fundamental problem in the analysis of keystreams 
is that of bounding the linear complexity of sequences obtained by algebraic operations 
on periodic sequences. The following result contains the basic information. 

THEOREM 7.1. If cr + 7" and aT" denote, respectively, the termwise sum and the termwise 
product of the periodic sequences cr and 7" of elements of Fq, then 

L(a + r) <~ L(o) + L(T) and L(ar) <~ L(a)L(T). 

The first inequality follows immediately from the identity 

S(f l )  + S(f2) = S(lcm(fl ,  f2)) 
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stated in Section 6, and the second inequality can be found in Herlestam [63]. Refinements 
of Theorem 7.1 are discussed in Rueppel [135]. 

A more subtle complexity analysis, which also allows the treatment of nonperiodic 
sequences, is based on the following notions. If N is a positive integer and a is an 
arbitrary (infinite) sequence of elements of Fq or a finite string of at least N elements of 
Fq, then the N-th linear complexity LN(a) is the least linear complexity of any periodic 
sequence whose first N terms agree with those of a. Furthermore, the linear complexity 
profile of a is the sequence Ll(a) ,L2(a) , . . . ,  extended as long as LN(a) is defined. 
Since LN(a) <~ LN+l(a), the linear complexity profile is a nondecreasing sequence of 
non-negative integers. The linear complexity profile can be efficiently calculated by the 
Berlekamp-Massey algorithm mentioned in Section 6. A crucial fact for the theory of 
the linear complexity profile is the close connection with continued fraction expansions. 
For simplicity, we describe this connection only for (infinite) sequences a of elements 
so, s l , . . ,  of Fq. Let 

oo 
s = 

n--O 

be the generating function of a. Then S has a unique continued fraction expansion 

S = 1/(A1 + 1/(A2 + . . . ) )  

with partial quotients Aj E Fq[x] for which dj = deg(Aj)/> 1 for j / >  1. This expansion 
is finite if S is a rational function, i.e. if a is a periodic sequence, and infinite otherwise. 
We put dj = oo whenever Aj does not exist, and also do = 0. Now we can state the 
following special case of a result of Niederreiter [108]. 

THEOREM 7.2. With the above notation we have 

3(N) 

i=0  

for every N >~ 1, where j ( N )  >~ 0 is uniquely determined by 

j ( N ) - I  j(N) 
2 E di-[-dj(N) ~ N < 2 E di-Jr-dj(N)+l. 

i=0  i=0 

Therefore, the linear complexity profile of a has the form 

O, . . . ,O,  d l , . . . , d l , d l  + d 2 , . . . , d l  + d2, . . .  

with 0 occurring d l -  1 times and 

J 

i--1 
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occurring dj + dj+l times for all j ~> 1, where the positive integers dl, d2, . . ,  are the 
degrees of the partial quotients in the continued fraction expansion of the generating 
function of a. 

Theorem 7.2 is basic for the probabilistic theory of the linear complexity profile devel- 
oped by Niederreiter [112]. This theory describes the behavior of the linear complexity 
profile for random sequences of elements of Fq and establishes benchmarks for statistical 
randomness tests using the linear complexity profile. We mention a typical result, namely 
t h a t -  in a suitable stochastic m o d e l -  for a random sequence a of elements of Fq we 
have 

N 
LN(a) = -~- + O(log N) for all N ~> 2. 

A survey of this probabilistic theory is given in Niederreiter [119]. 
Algorithms for the generation of keystreams satisfying stronger complexity require- 

ments than those connected with linear complexity have also been developed, but the ver- 
ification of the desired properties is usually conditional on heuristic complexity-theoretic 
hypotheses. For instance, the randomness properties of the keystream generator of Blum 
and Micali [ 10] are based on the presumed difficulty of the discrete logarithm problem 
for finite prime fields. Surveys of such cryptographically strong keystream generators 
can be found in Kranakis [74] and Lagarias [77]. An algorithm for keystream generation 
based on polynomials over finite prime fields was recently designed by Niederreiter and 
Schnorr [ 126]. 

Permutation polynomials of finite fields of characteristic 2 and Boolean functions on 
such fields are of interest in the design of cryptographic functions for block ciphers. 
Desirable properties of such functions are a large deviation from linearity (which can 
be measured by the Hamming distance to the set of affine functions), equidistribution 
properties, and uncorrelatedness, among others. Recent papers on this topic, which contain 
also further references, include Meier and Staffelbach [94], Mitchell [97], Nyberg [ 127], 
and Pieprzyk [ 131 ]. 

For further information on cryptology we refer to the textbook of van Tilborg [ 156] 
and to the state-of-the-art survey articles in the book edited by Simmons [ 148]. Appli- 
cations of finite fields to cryptology are covered in more detail in the book of Lidl and 
Niederreiter [88], Chapter 9, and in the review article of Niederreiter [ 119]. 

8. Finite fields in combinatorics 

Combinatorics or combinatorial theory is a relatively young but very vigorous discipline 
of mathematics and many parts of it represent interesting applications of finite fields 
within mathematics. We shall only give some samples of these applications, such as 
Latin squares, block designs, and difference sets. 

A square array L = (aij), i , j  = 1 ,2 , . . . ,  n, is called a Latin square of order n if 
each row and each column contains every element of a set of n elements exactly once. 
Two Latin squares (aij) and (bij) of order n are said to be orthogonal if the n 2 ordered 
pairs (aij, bij) are all different. Orthogonal Latin squares were first studied by L. Euler 
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who, in 1782 in a systematic study of designs, posed the 36 Officers Problem: "Given 6 
officers from each of 6 different regiments so that a selection includes one officer from 
each of 6 ranks, is it possible for the officers to parade in a 6 • 6 formation such that 
each row and each column contains one member of each rank and one member of each 
regiment?" Euler conjectured that there is no pair of orthogonal Latin squares of order 6. 
This was verified by Tarry [154] in 1901. Euler conjectured also that there is no pair 
of orthogonal Latin squares of order n for any n = 2 mod 4. This was disproved by 
Bose and Shrikhande [ 11 ] in 1959 through the construction of a pair of orthogonal Latin 
squares of order 22. 

It is easy to see that a Latin square of order n exists for every positive integer n. 
Simply let (ai j )  be defined by aij = i + j mod n, 1 ~ a~j <. n. If a collection of Latin 
squares is orthogonal in pairs, we speak of mutually orthogonal Latin squares, or MOLS. 
It can be shown that there are at most n -  1 MOLS of order n. The following theorem 
represents an application of finite fields. Its proof is straightforward. 

THEOREM 8.1. Let n = q = pk, p a prime and k a positive integer. Let ao = O, al , a2, . . . , 

an-1 be the elements o f  Fq and define n x n arrays Lm = (a~. )), 0 <~ i, j <. n -  1, m = 

1 , 2 , . . . , n  - 1, where a ~  . = a m a i  + aj. Then the n - 1 arrays L l , . . . , L n - 1  form a 
set o f  MOLS  o f  order n. 

The following result shows, in particular, the existence of a pair of orthogonal Latin 
squares of order n for any n > 1 with n ~ 2 mod 4. 

THEOREM 8.2. Let ql . . .  qs be prime powers and let a~ i) - O, al i) ,~(~) be the 
) ) ) " " " ) " q i - - I  

e lements o f  Fq, Define bk (a (l) (s) �9 = , . . . , a  k ) f o r  0 <<. k <~ r = min)<<i<~s(q~- 1) and let 
b r+l , . .  . , bn- l  with n = ql "" "qs be the remaining s-tuples that can be formed  by taking 

in the i-th coordinate an element o f  Fq,. Then the arrays Lk = (/}~)), 0 ~< i, j ~< n -  1, 

k = 1 , 2 , . . . ,  r, with l}~ ) = bkbi + bj form a set o f  r MOLS o f  order n. 

Most of the results on Latin squares are summarized in the comprehensive book by 
D6nes and Keedwell [31]. For a recent update see D6nes and Keedwell [32]. Latin 
squares can be generalized to d-dimensional hypercubes. For d ~> 2, a d-dimensional 
hypercube of order q is a q • . . .  • q array with qd points based upon q distinct symbols. 
For 0 ~< i ~< d -  1, such a hypercube has type i if, whenever any i of the coordinates 
are fixed, each of the q symbols appears q d - i - l  times in that subarray. A collection of 
d hypercubes of dimension d is called d-orthogonal if, when superimposed, each of the 
qd possible d-tuples appears once. A set of t ~> d hypercubes is d-orthogonal if every 
subset of d hypercubes is d-orthogonal. When d - 2 and i -- 0 we obtain the notion of 
mutually orthogonal squares, and if i = 1 then they are MOLS. Golomb and Posner [58] 
showed the equivalence between a set of t MOLS of order q and a code of word length 
t + 2 and minimum distance t + 1 having q2 codewords over an alphabet with q symbols. 
Mullen and Whittle [103] generalized this result to hypercubes. Brawley and Mullen [13] 
give examples of some sets of MOLS of infinite order containing nested sets of MOLS 
of finite order by using an iterated presentation of an infinite algebraic extension of Fp 
as in Brawley and Schnibben [14]. 
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Latin squares have also been generalized in a different way as frequency squares. An 
F ( n ; A 1 , . . . , A m )  frequency square based on m symbols a l , . . . , a m  is an n x n array 
such that, for each i = 1 , 2 , . . . ,  m, the symbol ai occurs Ai times in each row and 
column. Hence n = A1 + . . .  + Am, and an F(n; 1 , . . . ,  1) frequency square is a Latin 
square. If A1 . . . . .  Am we write F(n; A) where n = Am. Two frequency squares 
/7'1(n;/~l,..-, Am) based on a l , . . . ,  am and F2(n; # 1 , . . . ,  #l) based on b l , . . . ,  bt are 
orthogonal if on superposition each of the ordered pairs (ai, bj) occurs )~iPj times for 
i = 1 , . . . ,  m, j = 1 , . . . ,  1. If each of a set of t mutually orthogonal frequency squares 
is of type F(n; ~) with n = /~m, then t <~ ( n -  1 ) 2 / ( m -  1), and a set is complete 
if equality holds. Mullen [98] gives the following construction of mutually orthogonal 
frequency squares (MOFS). Let i ~> 1 be an integer. Label the rows of a qi x qi square 
using all i-tuples over Fq. Similarly, label the columns. Then any such square may be 
viewed as a function f:  F2q i --+ Fq, where the element f ( x l , . . .  ,xzi) is placed at the 
intersection of row ( x l , . . . ,  xi) and column (Xi+ l , . . . ,  xzi). 

THEOREM 8.3. The (qi _ 1)2/(q _ 1) polynomials 

f(al ..... a 2 i ) ( X l , . . .  , X 2 i )  --- alxl + . "  + a2ix2i 

over Fq, where 
(i) ( a l , . . . , a i )  ~ ( 0 , . . . , 0 ) ,  

(ii) (a i+l , . . . ,  au)  ~r (0 , . . . ,  0), 
(iii) no two sets of a's are scalar multiples of each other, i.e. (a~ l , . . . , a~)  

c ( a l , . . . ,  azi) for any c C Fq, 
represent a complete set of MOFS of type F(qi; qi-1). 

This technique has been developed further by Suchower [153] to construct sets of 
mutually orthogonal (Youden) frequency hyperrectangles whose dimensions are prime 
powers by using the theory of subfield permutation polynomials and orthogonal subfield 
systems described in Suchower [152]. See also Mullen and Suchower [101] for a study 
of certain complete sets of mutually orthogonal Youden frequency hyperrectangles and 
their equivalence to error-correcting codes and fractional replication plans. 

We now consider block designs, finite geometries, and difference sets and note a close 
connection between them. A design based on the nonempty set V of points is a pair 
(V, B), where B = {Bi: i E I} is a nonempty family of subsets of V, called blocks. 
The terminology that is normally used in this area has its origin in the applications 
in statistics, namely the design of experiments. The points are called varieties. Usually 
their number is denoted by v and the number of blocks by b. A design in which every 
block is incident with the same number k of varieties and every variety is incident 
with the same number r of blocks is called a tactical configuration. Clearly vr = bk. 
If v = b and hence r = k, it is called symmetric. A tactical configuration is called 
a balanced incomplete block design (BIBD) if v > k >~ 2 and every pair of distinct 
varieties is incident with the same number A of blocks, and we refer to it as a BIBD with 
parameters (v, b, r, k, A). Some basic relationships between the parameters of a BIBD 
a r e : r ( k - 1 )  = A ( v -  1), A < r , v ~ < b .  
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Finite fields come into play in construction methods for BIBDs. First we introduce 
the basic definitions of finite geometries. A finite affine plane is a finite set ~ of objects 
called points, together with a set of nonempty subsets of 79 called lines, which satisfy 
the axioms: 

(A1) given any two distinct points, there is exactly one line that contains them both; 
(A2) there is a set of four points, no three of which belong to one common line; 
(A3) given any point P and any line L that does not contain P,  there is exactly one 

line that contains P and contains no point of L. 
Any finite affine plane must contain at least four points. There is a four-point plane 
denoted by AG(2,  2), which contains exactly six lines. In a finite affine plane there is 
a parameter n such that every line contains exactly n points and every point lies on 
exactly n + 1 lines. This is expressed in the notation AG(2,  n). If we identify points 
with varieties and lines with blocks, then a finite affine plane AG(2,  n) becomes a BIBD 
with parameters (n 2, n 2 + n, n + 1, n, 1). In higher dimensions we define a finite affine 
geometry AG(d,  n) of dimension d over the finite field Fn to consist of the n d vectors of 
length d over Fn, called points. If V is any k-dimensional subspace of AG(d,  n) and p 
is any member of AG(d,  n), then p + V = (p + v: v E V} is called a k-fiat. Moreover, 
1-flats are called lines. It is easy to see that an AG(d,  n) with points as varieties and 
lines as blocks forms a B IBD with parameters 

n d - l ( n  d 1) n d -  1 
n d, - , n, 1 

n - 1  n - 1  ' ~] " 

Further BIBDs are obtained by taking k-flats as blocks. 
A finite projective plane consists of a finite set 79 of points and a set of nonempty 

subsets of T' called lines, which satisfy the axioms: 
(P1) given two distinct points, there is exactly one line that contains them; 
(P2) given two distinct lines, there is exactly one point that lies in both; 
(P3) there are four points, no three of which are collinear. 

In a finite projective plane every line contains exactly n + 1 points for some parameter n. 
Such a plane is denoted by PG(2,  n). It is straightforward to show that PG(2,  n) is a 
symmetric BIBD with parameters 

v -- n2 + n + l, k = n + l, ) ~ -  1, 

if points are identified with varieties and lines with blocks. 
More generally, we define a finite projective geometry of dimension d />  2 over Fn, 

or PC(d ,  n), to be a set of points which are (d + 1)-vectors over Fn, where the zero 
vector is not allowed, and two points are considered equal if the vector of one is a scalar 
multiple of the vector of the other. Applying these rules to a (t + 1)-dimensional space, 
we obtain a t-flat, where 1 ~< t < d. Taking the t-flats of a PG(d,  n) as blocks and the 
points as varieties, we obtain a BIBD with parameters 

V --- 

nd+l _ 1 b = 1111- -t+l rid_t+ i _ 1 r -- ~ n d-t+i. -- 1 

n - -  1 ' n i -  1 ' n ~ -  1 
i = l  i = l  
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k __. 

t - 1  n d - t + i  -- 1 ?Z t + l  - -  1 ,X = H 
n - 1  ' n i - 1  

i=l 

where the last product is interpreted to be 1 if t = 1. The B IBD is symmetric in case 
t = d - 1 .  

An oval of PG(2,  q) over Fq is a set of q + 2 points, no three of which are 
collinear. An account of ovals can be found in the book by Hirschfeld [65]. Ovals 
exist in PG(2,  q) if and only if q is even. They can be written as sets { (1 , t , f ( t ) ) :  t E 
Fq } U { (0, 1,0), (0, 0, 1)} for q > 2 even, where f is a permutation polynomial of Fq of 
degree at most q - 2 satisfying f(0)  = 0, f (1)  = 1, and that for each s E Fq the poly- 
nomial f s (x)  = ( f ( x  + s) + f ( s ) ) / x  is a permutation polynomial of Fq with f~(0) = 0. 
See Glynn [55] and O'Keefe and Penttila [129] for further results. 

A set D = { d l , . . .  ,dk} of k ~> 2 distinct residues modulo v is called a ( v , k ,~ )  
difference set if for every d ~ 0 mod v there are exactly )~ ordered pairs (di, dj) with 
di, dj c D such that di - d j  = d mod v. Let D be such a difference set. Then it is easy 
to show that by interpreting all residues modulo v as varieties and with blocks given as 

Bt = {dl + t, . . . , dk + t}, t = O, 1 , . . . ,  v - 1, 

we obtain a symmetric BIBD with parameters (v, v, k, k, ~) under the obvious incidence 
relation. If D is a (v, k, 1) difference set with k ~> 3, then these varieties and blocks 
satisfy the conditions of a finite projective plane PG(2,  k -  1). Further construction 
methods can be found in Lidl and Niederreiter [87], but in much more detail in Hughes 
and Piper [68], Street and Street [151], and Wallis [161]. 

Hultquist, Mullen and Niederreiter [69] use the analog ~q of the Euler function in the 
polynomial ring Fq Ix] to construct a class of association schemes of prime-power order. 
Let f E Fq[x] be monic of degree n >~ 1 and l e t  q~q( f )  be as in Section 2. Let My 
denote the complete residue system modulo f containing all the qn polynomials over Fq 
of degree < n. Suppose f = f ~  .-.  f ~ ,  where ej >~ 1 and the fj  are distinct monic 
irreducible polynomials over Fq. Let t l , . . . ,  ts be the monic divisors of f except f itself, 
then 

r 

s = I I ( e j  + 1 ) -  1. 
j = l  

For i = 1 , . . . , s ,  let Ai = (g E MS: gcd(g , f )  = t i )  of cardinality ~ q ( f / t i ) .  Two 
polynomials g and h in MS are said to be i-th associates if g -  h c Ai. Given a set 
of v elements called treatments, a symmetric relation is an association scheme with s 
association classes if: 

(i) any two distinct treatments are i-th'associates for a unique i = 1 , . . . ,  s; 
(ii) each treatment has ni i-th associates, ni being independent of the treatment; 

k of treatments (iii) if two treatments 9 and h are k-th associates, then the number Pij  

which are i-th associates of 9 and j-th associates of h is independent of g and h. 
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Hultquist, Mullen and Niederreiter [69] prove that the relation of i-th associates of poly- 
nomials in Mf yields an association scheme with 

7" 

s :  H ( e j  + l ) -  1 
j=l 

association classes and parameters v = qn and ni = ~q(f/ti)  for 1 ~< i ~< s. They also 
show that the number of nonisomorphic association schemes constructible in this way is 
given by the number of factorization patterns of polynomials over Fq of degree n. 

Because of space limitations we can only indicate some other applications of finite 
fields in combinatorics by referring to the literature. For example, point sets in a unit cube 
of R s with special uniformity properties, called nets, are constructed in Niederreiter [ 107] 
by relating them to systems of vectors in finite-dimensional vector spaces over Fq. Finite 
fields are instrumental in the solution by Niederreiter [121] of Williams' problem on 
special experimental designs. Some books on combinatorial designs, such as Street and 
Street [151] and Wallis [161], describe the use of finite fields in the construction of 
Room squares, Hadamard matrices, and other types of designs. Applications to chemical 
balance weighing designs are referred to in Lidl and Pilz [89], Chapter 5. A separate 
article on coding theory in this Handbook of Algebra also contains relevant material. 

9. Applications to pseudorandom numbers and quasirandom points 

Finite fields are eminently useful for the design of algorithms for generating pseudoran- 
dom numbers and quasirandom points and in the analysis of the output of such algorithms. 
Pseudorandom numbers and quasirandom points are frequently employed in various tasks 
of scientific computing, such as simulation methods, computational statistics, numerical 
integration, and the implementation of probabilistic algorithms. A sequence ofpseudoran- 
dom numbers is generated by a deterministic algorithm and should simulate a sequence 
of independent and uniformly distributed random variables on the interval [0, 1]. In order 
to be acceptable, a sequence of pseudorandom numbers must pass a variety of statistical 
tests for randomness. Quasirandom points are also generated by a deterministic algo- 
rithm, but they have to satisfy only certain equidistribution properties that are required 
for special applications such as numerical integration and global optimization. For further 
background on pseudorandom numbers and quasirandom points we refer to the book of 
Niederreiter [ 117]. 

A family of classical methods for the generation of pseudorandom numbers is formed 
by shift-register methods. These are based on linear recurring sequences in finite fields, 
and in most practical implementations on maximal period sequences (compare with Sec- 
tion 6). For an integer k ~> 2 and a prime p, let y0, y l , . .  �9 be a k-th-order maximal period 
sequence in Fp; it is purely periodic with least period pk _ 1. This sequence has to be 
transformed into a sequence of elements of the interval [0, 1] to obtain pseudorandom 
numbers. One transformation method is the digital multistep method in which we choose 
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an integer m with 2 <~ m <~ k and gcd(m, pk _ 1) = 1 and put 

m 

Xn -- E Ymn+j - lP-J  
j = l  

for n = O, 1, . . . .  

Thus, we obtain the numbers Xn E [0, 1) by splitting up the sequence Y0, y l , . . ,  into 
consecutive strings of length m and then interpreting each string as the p-ary expansion 
of a number in [0, 1). The sequence x0, X l , . . .  is again purely periodic with least period 
pk _ 1. Another transformation method is the generalized feedback shift-register method 
in which we choose integers m ~> 2 and h i , . . . ,  hm ~> 0 and put 

m 

Xn = E Yn+hJP-J 
j = l  

for n = O, 1, . . . .  

This sequence x0, x l , . . ,  of numbers in [0, 1) is also purely periodic with least period 
pk _ 1. The fact that the state vectors of the sequence Y0, y l , . . ,  run exactly through all 
nonzero vectors in Fp k (see Section 6) leads to almost perfect equidistribution properties 
of pseudorandom numbers generated by shift-register methods. Detailed discussions of 
shift-register methods can be found in Niederreiter [ 113], [117], Chapter 9. 

The general family of nonlinear congruential methods was introduced by Eichenauer, 
Grothe and Lehn [39]. These methods work with a large finite prime field Fp which 
is identified with the set Zp = {0, 1 , . . . , p -  1} of integers. A sequence y0, y l , . . ,  of 
elements of Fp is generated by the recurrence relation 

Yn+l = f (Yn) f o r n = 0 , 1 , . . . ,  

where the mapping f from Fp into itself is chosen in such a way that the sequence 
Y0, Yl , . . .  is purely periodic with least period p. Corresponding pseudorandom numbers 
in [0, 1) are obtained by setting 

1 
Xn - - Yn for n = 0, 1, . . . .  

P 

One may also describe the yn by the uniquely determined polynomial g E Fp[x] such 
that Yn -- g(n) for all n C Fp and deg(g) < p. Since {yo, y l , . . .  , Y p - 1 }  - -  Fp, we 
have {g(0), g ( 1 ) , . . . ,  g ( p -  1)} = Fp, and so g is a permutation polynomial of Fp. The 
polynomial g has to be chosen carefully to obtain pseudorandom numbers of good quality. 
A recent proposal of Eichenauer-Herrmann [41], namely to take g(x) = (ax + b) p-2 
with a, b E Fp and a r 0, leads to very attractive properties. The specific choice f ( x )  = 
ax p-2 § b, with a, b E Fp, for the feedback function f in the above recurrence relation 
was suggested earlier by Eichenauer and Lehn [40]. Here there arises the problem of 
characterizing those a, b c Fp for which the generated sequence Y0, y l , . . ,  is purely 
periodic with least period p. According to a result of Flahive and Niederreiter [46], this 
property holds if and only if the quotient of the roots of the polynomial x 2 - bx - a is an 
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element of order p +  1 in the group F'p2. For further information on nonlinear congruential 
methods we refer to Niederreiter [ 117], Chapter 8. 

Multidimensional analogs of pseudorandom numbers are pseudorandom vectors, which 
can also be generated by means of finite fields. A standard algorithm is provided by the 
matrix method. For a given dimension d ~> 2 we choose a large prime p and generate a 
sequence z0 , z l , . . ,  of row vectors in Fp d by starting from an initial vector zo ~ 0 and 
using the recurrence relation 

zn+l = z n A  f o r n = 0 , 1 , . . . ,  

where A is a nonsingular d x d matrix over Fp. Then a sequence of d-dimensional 
pseudorandom vectors is derived by identifying Fp with the set Zp of integers and 
putting 

U n = - - Z n  E [0,1 f o r n = 0 , 1 ,  . . . .  
P 

The sequence u 0 , u l , . . ,  is purely periodic with least period at most p d  1. Its least 
period is pd_ 1 if and only if the characteristic polynomial of A is primitive over Fp. 
A nonlinear method for pseudorandom vector generation can be based on the recurrence 
relation 

"Yn+l = ot'Y q - 2  -t- fl fo r  n = 0, 1 , . . .  

in the finite field Fq of order q = pd, where c~, fl E Fq are selected suitably. The vector 
Zn E F d is then obtained as the coordinate vector of ")'n relative to a fixed basis of 

Fq over Fp, and pseudorandom vectors are derived as above by setting Un -- p-lZn 
for n = 0, 1, . . . .  An expository account of these methods for pseudorandom vector 
generation is given in Niederreiter [117], Chapter 10. 

Quasirandom points in [0, 1] a can be constructed by several methods based on finite 
fields. We describe the method of Niederreiter [ 109] which produces quasirandom points 
with the currently best equidistribution properties for d >/2. We choose an arbitrary finite 
field Fq and d pairwise coprime polynomials Pl,...,Pd E Fq[x] with deg(pi) -- ei >~ 1 
for 1 ~< / ~< d. For 1 ~< / ~< d and integers j ~> 1 and u/> 0 we have the Laurent series 
expansion 

X u 

pi(x)J = E a(i)(J' u 'r)x-r-I  
~ ' - - ' W  

in Fq( (x - l ) ) ,  where the integer w <~ 0 may depend on / ,  j ,  and u. Then we define 

c ( i ) = a  (i) (Q(i j ) +  l u(i j) r ) e F q  f o r l  ~<i<~d, j ~ > l  r />O,  ,, ~ ~ ~ ~ 

where j -  1 = Q(i, j)ei + u(i, j) with integers Q(i, j) and u(i, j) satisfying 0 ~< u(i, j) < 
ei. Next we choose bijections Cr, r ~> 0, from the set Zq -- {0, 1 , . . . ,  q - 1 } of integers 
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onto Fq, with r  = 0 for all sufficiently large r, and bijections rhj f rom Fq onto Zq 
for 1 <~ i <~ d and j >/ 1, with ~Tij(0) = 0 for 1 ~< i ~< d and all sufficiently large j .  For 

n = 0, 1 , . . .  let 

oo 

n = ~ a r ( n ) q  r 

r--O 

with all a~(n)  E Zq be the digit expansion of  n in base q. Then we put 

. ( i )  

r - - O  

f o r n  ~>0, 1 <<. i <~ d, j >~ 1, 

where  the sum over r is actually a finite sum since Cr(0)  -- 0 and ar (n )  = 0 for all 
sufficiently large r. Now we set 

oo 

= Ynj q 
j = l  

for n / >  0 and 1 ~< i <~ d, 

and then we obtain the quasi random points 

xn - ( x O ) , . . . , x  (a)) E [O, 1] a f o r n / > 0 .  

For fixed d and q this construction is opt imized by letting P l , . . . , P d  be the "first d" 
monic  irreducible polynomials  over Fq, i.e. the first d terms of a sequence in which all 
monic  irreducible polynomials  over Fq are listed according to nondecreasing degrees.  

An in-depth discussion of  this construction of quas i random points and of  other con- 
structions using finite fields is presented in the book of  Niederrei ter  [ 117]. A review of  
the material  in this section can also be found in Niederrei ter  [ 120]. 
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1. Introduct ion 

1.1. The aim of the class-field theory is to describe all Abelian extensions of a given 
field k and at its source lies the Kronecker-Weber Theorem, which solves this problem 
for k = Q, the field of rational numbers (L. Kronecker [72, 73], H. Weber [150]). The 
first complete proof of it has been given by D. Hilbert [57] (see also [Zber], Satz 131). 
An exposition of the early proofs is given in O. Neumann [104]. An elementary proof 
can be found in M.J. Greenberg [40] and a proof which uses local methods was given 
by I.R. Shafarevich [130]. This proof is exposed in [Na] and [Wa]. 

THEOREM 1.1 (Kronecker-Weber). Every Abelian extension of Q is contained in a cy- 
clotomic extension K/Q,  i.e. one has K = Q(~), where ~ is a root of unity. 

The problem of describing all Abelian extensions of an algebraic number field has been 
stated as the twelfth problem in the famous list of problems given by D. Hilbert [60] in his 
lecture at the Second International Congress of Mathematicians in Paris in August 1900. 
The work of H. Weber [151], D. Hilbert [58], P. Furtw~ingler [32], T. Takagi [141] and 
E. Artin [1] (subsumed in the report of H. Hasse [HBer]) in the first quarter of our 
century led to its solution. In it Abelian extensions of an algebraic number field k have 
been associated with certain ideal class-groups related to k. This classical approach will 
be described in Section 2. 

1.2. The analogy between the theory of algebraic numbers and the theory of algebraic 
functions in one variable had already been observed in 1882 (R. Dedekind and H. We- 
ber [20]). This led later to the theory of Dedekind domains and culminated in the theory 
of ideals in commutative rings. In 1931 EK. Schmidt [117] succeeded in constructing 
the analogue of the class-field theory for algebraic function fields in one variable over a 
finite field. His result gave a biunique correspondence between finite Abelian extensions 
K / k  of a given algebraic function field k and certain subgroups of the divisor group 
of k. 

1.3. Modern class-field theory begins with the invention of ideles by C. Chevalley [12] 
who in C. Chevalley [ 13] reinterpreted classical class-field theory in terms of ideles, using 
the theory of associative algebras. This approach led to a simultaneous proof of the class- 
field theory in both cases. (The book [Weil] presents such a proof using algebras.) Later 
development eliminated the use of algebras in the proofs of the main results of class-field 
theory and replaced them by the formalism of cohomology. Expositions of this method 
are given in [AT, Ch, CF, Iy]. Recently a simplification in the theory was presented by 
J. Neukirch [ 103, Ne 1, Ne2], whose axiomatical approach reduced the whole problematics 
to purely group-theoretical reasonings utilizing only rudiments of cohomology. We shall 
sketch the main ideas in Section 3 and the next sections will be devoted to a choice of 
applications of the class-field theory. 

1.4. Expositions of class-field theory can be found in [AT, CF, Ch, Ha, Iy, Ja, La2, Ne 1, 
Ne2, Wei 1 ]. 
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Generalizations of the class-field theory to the non-Abelian case (the Langlands pro- 
gram) and to other classes of fields are the subject of other chapters. 

2. The classical approach 

2.1. Let k be an algebraic number field, and let Zk be its ring of integers. Let H(k) be 
the class-group of k, i.e. the factor group of the group Id(k) of all fractional ideals of 
k by its subgroup formed by all principal ideals, let K*(k) be the narrow class-group 
of k, i.e. the factor group of Id(k) by the subgroup of all principal ideals having a 
totally positive generator, and let h(k), h*(k) be the cardinalities of n(k) and H*(k), 
respectively. A finite extension K/k  is called unramified (more precisely, unramified at 
finite places) if its relative discriminant equals the unit ideal, which is equivalent to the 
statement that for all prime ideals P of Zk the ideal PZK of ZK is square-free. The 
extension K/k  is called unramified at all places provided it is unramified at finite primes 
and moreover if 4) is an embedding of k into the field of complex numbers mapping k 
into the field R of reals and �9 is an extension of 4) to K, then ~ ( K )  C R. 

In 1898 D. Hilbert [58] formulated a series of conjectures dealing with Abelian ex- 
tensions of k: 

HILBERT' S CONJECTURES. 
(i) There exists a unique maximal unramified Abelian extension K/k. 

(ii) The Galois group of K/k  is isomorphic with H*(k). 
(iii) The decomposition in K of any prime ideal P of Zk depends only on the class 

in H*(k) to which P belongs. In particular P splits completely in K/k  if and only if P 
is a principal ideal generated by a totally positive number. 

(iv) (Principal ideal theorem, Hauptidealsatz). Every fractional ideal 1 of k becomes 
a principal ideal in K,  i.e. the ideal 1ZK is principal. 

All these statements, with the exception of (iv), were established by E Furtw~ingler [32] 
in 1907 and the last by the same author in 1930 (P. Furtw~ingler [35]). 

Hilbert called the field K occurring in (i) the class-field of k. Today this field is called 
the Hilbert class-field of k. Note that nowadays this name is often used to denote the 
field which arises if one replaces in (i) the word "unramified" by "unramified at all 
places". In that case the role of H* (k) in (ii) and (iii) is taken by the group H(k). For 
fields k in which there exist units of all signatures, and in particular for totally complex 
fields k these two notions of Hilbert class-field coincide. (Recall that a signature of a 
nonzero element z E k is defined as the sequence of signs of these conjugates of z which 
correspond to embeddings of k into the field of reals.) 

In the case k = Q it turns out that K -- Q; in fact it has been stated by L. Kro- 
necker [75] and proved by H. Minkowski [96] as a consequence of this convex body 
theorem that there are no nontrivial unramified extensions of Q. (For other proofs see 
J. Calloway [9], E. Landau [86], L.J. Mordell [99, 100], C. Mtintz [101], I. Schur [124], 
C.L. Siegel [138], H. Weber and J. Wellstein [152]). 
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2.2. The main idea of the classical version of class-field theory reveals itself even in the 
simplest case, viz. k = Q, which we shall now describe. 

If Is is Abelian and, according to the Kronecker-Weber Theorem, K is contained 
in Q((f) with (f  being a primitive root of unity of order f and f is as small as possible, 
then f is called the conductor of K.  The group G(f)  of invertible residue classes (mod f )  
can be identified with the Galois group of Q((f) ,  residue m (mod f )  corresponding to 
that element of the Galois group which maps (f  to ~ .  

THEOREM 2.1 (Class-field theory for the rational field). Let H be the subgroup of G(f)  
corresponding to Ix5 by Galois theory. Then the following assertions hold: 

(a) A rational prime p ramifies in I ( /Q if and only if p divides f. 
(b) The Galois group of K / Q  is isomorphic to G( f ) /H.  
(c) For every rational prime p the decomposition in I~ of pZI~ depends only on the 

class in G ( f ) / H  to which p (mod f )  belongs and p splits in t ( /Q  if and only if p lies 
in H. 

The first and the last assertion follow from the law of decomposition of rational primes 
in cyclotomic fields and their subfields (which can be established in an elementary way, 
see, e.g., [Na], Theorem 8.1) and the second is a trivial consequence of Galois theory. 
We have moreover: 

(d) If a positive integer f which is not congruent to 2 (mod 4) and a subgroup H of 
G(f)  is given then there exists a unique Abelian extension K / Q  for which the conditions 
(a)-(c) hold. 

(The congruence restriction is needed here, because if it is not satisfied then the fields 
Q(~y) and Q(~f/2) coincide, hence there is no Abelian extension of the rationals with 
conductor f .)  

2.3. It is convenient to express the properties (a)-(d) in terms of characters of G(f)  
(Dirichlet characters). Let X be the subgroup of the dual group of G(f),  consisting of 
characters trivializing on H. One sees easily that if we apply the same procedure starting 
with an embedding of K into an arbitrary cyclotomic field, not necessarily minimal, then 
the group X will remain essentially the same, and hence in this way we can associate 
with every Abelian extension K / Q  a group X -- X ( K )  of Dirichlet characters. To make 
this statement precise we need the notion of the conductor of a character. If m, n are 
positive integers and m divides n, then there is a natural surjection G(n) --+ G(m) and 
thus every character of G(m) has a canonical lift to a character of G(n). If X1, X2 are 
characters of G(m) and G(n) and there exists N and a character X of G(N) such that 
both X1 and X2 are such liftings of X then X1 and X2 are called equivalent. One sees 
easily that for every equivalence class C there exists a unique integer N and a character 
X of G(N) such that all characters in C are liftings of X. Such a X is called a primitive 
character (mod N) and N is called the conductor of every character in C'. One can 
assume, by identifying equivalent characters, that X (K) consists of primitive characters. 
The value X(a) of a primitive character X is well-defined for all integers a prime to the 
conductor of X- We adopt the convention that in other cases X(a) = O. 

The conditions (a)-(d) can now be reformulated in terms of character groups: 
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THEOREM 2.2. There is a one-to-one and inclusion-preserving correspondence K / Q  r 
X (K) between finite Abelian extensions of Q and finite groups of primitive characters 
X with the following properties: 

(aa) A prime p is ramified in K / Q  if and only if it divides the conductor of some 
character in X (K). 

(bb) The groups GaI(K/Q) and X ( K )  are isomorphic. 
(cc) For every rational prime p the decomposition in K of pZK depends only on the 

s e t  

{x(p): x X(K)}. 

More precisely: one has 

p z K  = . . .  

where g is the number of X E X ( K )  with X(P) - 1, e equals the index in X (K) of the 
group of characters vanishing at p and finally f = [K : Q]/eg. 

2.4. The main theorems of class-field theory for an arbitrary algebraic number field k are 
parallel to (a)-(d). To state them one needs an analogue of the groups G(f)  in arbitrary 
algebraic number fields and this has been provided by H. Weber [151] (cf. R. Fueter [31]): 

For any ideal f of Zk let G f be the group of all fractional ideals prime to f and let 
Gf,1 be its subgroup consisting of all principal ideals of Gf having a totally positive 
generator congruent to unity mod f. If G is a group lying between Gf, l and Gf then one 
says that G is defined (modf)  and the factor group H = H(G, f )  = G f / G  is called 
an ideal class-group (mod f).  Two such groups Gl, G2, defined (mod fl)  and (mod f2) 
respectively, are called equivalent, provided there is an ideal I with the property that the 
sets of ideals in Gl and G2 which are prime to I coincide. If GI and G2 are equivalent, 
then the corresponding class groups are isomorphic and for a given class-group H the 
GCD of all ideals f for which H = H(f ,  G) is called the conductor of H. 

The group Gf /Gf ,  l is called the ray-class-group (mod f) .  It forms the desired ana- 
logue of G(f) .  

Using these notions H. Weber in the second part of [151] defined the class-field K (at 
first only for quadratic k) associated with an ideal class-group H(f ,  G) as an extension 
of k such that a prime ideal P of Zk splits completely in K if and only if it lies in G, the 
principal class. He was able to establish its existence for imaginary quadratic fields k. 

2.5. The decisive step was made by T. Takagi [141]. His main results can be stated in 
the following way: 

THEOREM 2.3 (Takagi's class-field theory). Let k be an algebraic number field. 
(A) For every ideal class-group H there exists a unique class-field K = K(H) .  Two 

such class-fields coincide if and only if the corresponding principal classes are equivalent. 
(B) The extension K ( H ) / k  is Abelian and its Galois group is isomorphic to H. 
(C) A prime ideal ramifies in K ( H ) / k  if and only if it divides the conductor of H. 
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(D) The degree of prime ideals of ZK lying over an unramified prime ideal P of Zk 
equals the order of the image of P in H. In particular P splits in K / k  if and only if P 
lies in the principal class. 

(E) (The Existence Theorem) Every finite Abelian extension K / k  is a class-field for a 
suitable ideal class-group H. 

Thus all Abelian extensions of k are described in terms of ideal class-groups H. 
The class-field associated with the ray-class-group (mod f )  is called the ray-class-fieM 
(mod f )  and one sees that every Abelian extension of k is contained in a suitable ray- 
class-field. Thus the ray-class-fields play the same role as cyclotomic fields for Abelian 
extensions of the rationals. 

2.6. Actually Takagi used another definition of the class-field which is related to norm 
residues: 

An element a E k*, prime to f ,  is called a norm-residue (mod f )  in the extension K/k ,  
if in the residue class a (mod f )  there is an element of NK/kK*, i.e. the congruence 

NK/k(X) = a (mod f )  

is solvable. The norm-residues (mod f )  form a subgroup N of finite index in Gf. To 
obtain Takagi's definition of the class-field one has first to observe that the following 
inequality holds for all finite Galois extensions K/k:  

[Gf:N]  <<. [ K :  k]. ( , )  

(It is called the Second Inequality of class-field theory. Its analogue in non-Abelian 
case was later established by H. Hasse and A. Scholz [48].) 

The first proofs of this inequality were analytical, based on properties of the series 

L(s, X) = ~ X(I)N(I) -~ 
I 

where X is a character of a subgroup of G f / N .  
It has been shown by H. Weber [We] that this series converges for Re(s) >~ c (with 

a suitable c - c(K) < 1) in the case of nonprincipal X and in the case of the principal 
character X0 it converges for Re(s) > 1 and there exists a nonzero limit 

l im (s - 1 )L(s ,  Xo)- 
s - + l + 0  

Later it was established that L(s, Xo) is meromorphic in the plane with a single pole 
at s = 1 (E. Hecke [52]) and for X ~ X0 the function L(s, X) is entire (E. Hecke [53], 
where a much more general class of Dirichlet series has been dealt with). These functions 
also satisfy certain functional equations, similar to that obeyed by Riemann's (-function. 

A modern proof of Hecke's result was given in 1950 in the thesis of J. Tate, published 
in [CF]. For expositions of his proof see [Lal, Weil, Na]. 
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If one has equality in (.),  then K is called the Takagi class-field associated with N. 
(The two definitions of the class-field can be shown to be equivalent. See, e.g., [HBer].) 

The proof of (A)-(E) is first reduced by an elementary reasoning to the case of cyclic 
extensions of prime degree, which is then treated in a rather technical way. One of 
the main steps involves the proof of the First Inequality of class-field theory for cyclic 
extensions: 

[ G s : N  ] >/ [K : k]. 

The argument, which seems now to be mainly of historic interest, is exposed with all 
details in [HBer]. 

2.7. In 1923 E. Artin [ 1] established a canonical isomorphism in (B). He utilized a trick 
used first by N.G. Chebotarev [ 11] in his proof of the density theorem, with which we 
shall deal later. 

To formulate Artin's result (now called Artin's Reciprocity Law) we need certain def- 
initions, the first being due to G. Frobenius [30]: 

Let k be an algebraic number field and let K / k  be a finite Galois extension with Galois 
group G. If p is a prime ideal of Zk, the ring of integers of k, which is unramified in 
K / k  and P is a prime ideal divisor of pZK then Galois theory implies the existence of 
a unique automorphism s = s(P) E G (the Frobenius automorphism of P) satisfying 

s(x) =_ x NK/~(p) (mod P) for all x E ZK. 

One sees easily that conjugate Frobenius automorphisms correspond to conjugate prime 
ideals, and hence in the case of Abelian G the element s depends only on p. In this case 
one defines the Artin symbol by 

K / k  

THEOREM 2.4 (Artin's Reciprocity Law). If K / k  is an Abelian extension with Galois 
group Gal(K/k)  and K is the class-field with respect to H = H ( f  , G), then the map 

induces an isomorphism 

H ~- Gal(K/k).  

For the proof one has to show that 
cx) the value FK/k(P) depends only on the class in H containing p, and 
/3) if X , Y  E H and p E X,  q c Y, P E X Y  are prime ideals, then FK/k(P) = 

FK/k(p)FK/k(q), 
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the full theorem being an easy consequence of c~) and/3). These assertions are easy to 
establish in the case when k is contained in a cyclotomic field and in the general case 
their proof is based on a construction of certain auxiliary cyclotomic fields M. If the 
prime ideals pl, p2 are in the same class of H then one constructs M with the property 
that these ideals lie in the same class of the ideal class-group corresponding to kM/k .  
This is achieved by means of an elementary number-theoretic lemma and then a short 
computation leads to c0. To obtain/3) a similar procedure is used. 

The map FK/k can be extended by multiplicativity to a map (denoted again by FK/k) 
defined on the set of all ideals which do not have ramified prime divisors. This map we 
shall use later on. 

2.8. We now come to the last of Hilbert's conjectures, the Principal Ideal Theorem. It 
has been observed by E. Artin [2] that (v) can be reduced to a purely group-theoretical 
statement, which was later proved by P. Furtw~ingler [35]. It concerns the transfer map 
which we shall now define: 

Let G be a finite group and H its normal subgroup. Denote by G', H '  the commutator 
subgroups of G and H and let C be a full set of representatives of G/H. The transfer 
map (Verlagerung) 

VerG,H: G/G' --+ H/H '  

is defined in the following way: if g E G, c E C, gc E c'H then define 

h(g, c) = (c')-l gc 

and 

Ver(g, G') -- I I  h(g, c)H'. 
cEC 

The principal ideal theorem is a consequence of the triviality of the transfer map 
Verc,G,, for finite groups G with Abelian commutator group G". 

Later other proofs were provided by Z.I. Borevich [5], S. Iyanaga [63], Y. Kawada [66], 
W. Magnus [89], H.G. Schumann [123], K. Taketa [142], E. Witt [155, 156]. 

There are many generalizations and analogues of this result. See, e.g., K. Iwasawa [62], 
J.E Jaulent [64], K. Miyake [97, 98] and the references on p. 203 of [Na]. 

3. The modern approach 

3.1. To state the main theorem of class-field theory in modern form we have first to define 
the adeles and ideles. Ideles were introduced by C. Chevalley [12], who in [13] used 
them to reformulate class-field theory. Adeles occur under the name valuation vectors in 
E. Artin and G. Whaples [3] and they were named "adeles" by A. Weil [153]. 

We start with notion of restricted product of topological groups. Let Gv be a sequence 
of locally compact groups in almost all of which a compact and open subgroup Hv is 
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selected. (We use the phrase "almost all" to mean "all with at most a finite number of 
exceptions".) The restricted product of the Gv's with respect to the Hv's is defined as 
the subgroup of the direct product IX,, Gv consisting of all sequences (av)v, (av C Gv) 
with av E Hv for almost all v's. The topology in G is defined by taking for the basis of 
open sets all products I-Iv ov where Ov is open in Gv and O~ = Hv holds for almost 
all v. 

Let k be a global field, i.e. either an algebraic number field or a field of algebraic 
functions in one variable over a finite field and let V be a complete set of inequivalent 
valuations of k normalized so that the product formula 

H v(x)= 1, 
vEV 

holds for all nonzero x E X. (Note that as shown in E. Artin and G. Whaples [3] the 
existence of the product formula characterizes global fields.) Let kv be the completion 
of k with respect to v and denote the extension of v to kv by the same letter v. In the 
case of nonarchimedean v we put 

Rv = {a E kv" v(av) < 1} and Uv = {a E kv" v(av) = 1}. 

3.2. The group of adeles of k is defined as the restricted product of the additive groups 
k + with respect to R + and defining in it multiplication coordinate-wise we get the ring 
Ak of adeles of k. 

The group Ik of ideles of k is defined similarly as the restricted product of the multi- 
plicative groups k~, with respect to the groups Uv. One sees immediately that lk equals 
the group of invertible elements of Ak; however, its topology differs from that induced 
by that of Ak. 

One distinguishes two important subgroups in Ik: the group Uk of unit ideles consisting 
of all ideles (av)v with av E Uv and the group Jk of all ideles (av) satisfying 

H v(av)= 1. 
vEV 

The embedding k '--+ kv induces an injection of k + in A~- mapping k* into Jk and one 
identifies k + and k* with their images. The factor groups A+/k + and C(k) -- Ik/k* 
are called adele and idele class-groups, respectively. The adele class group is compact. 
If k is an algebraic number field and we denote by D(K) the connected component of 
the unit element of C(K), then the factor group C(K) /D(K)  is compact and totally 
disconnected. This implies in particular that every character of C(K) /D(K)  is of finite 
order. In the functional case C(K) is totally disconnected. 

If K / k  is a finite extension then the norm maps K~ -+ k~ induce a map 

NK/k: IK ~ Ik 

which in turn leads to norm map N: C(K) --+ C(k). 
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We need also the definition of the Artin map for ideles. Let a = (a~)v c Ik, and 
let a~ be a nonunit of kv for v E S where S is a finite set of valuations containing all 
Archimedean valuations. Then for v E S we may write 

av E evTr N" 

with a unit e~, and Nv E Z and if p~ denotes the prime ideal corresponding to v then we 
define the Artin map FK/k in terms of the Artin map for ideals (which in the functional 
case is defined analogously to the number case) by putting 

= H 
v~s 

3.3. The idelic formulation of the class-field theory gives the existence of a one-to-one 
correspondence (given by the norm map) between Abelian extensions of k and closed 
subgroups of finite index of C(k). More precisely we have the following assertions: 

THEOREM 3.1. I. Reciprocity Law. If K / k  is Abelian then there exists a surjective con- 
tinuous homomorphism 

r Ik --+ Gal (K/k) ,  

with kernel equal to k*NK/k(IK), hence inducing a continuous isomorphism 

C(k ) /NK/k (C(K) )  ~- Gal(K/k), 

and if a : (av)v EIk  satisfies av - 1 for all v which are either Archimedean or ramified 
in K/k ,  then 

= 

where FK/k denotes the Artin map for ideles. 
II. Existence Theorem. If N is a closed subgroup of finite index of C(k) then there 

exists a unique Abelian extension K / k  satisfying 

: N .  

This formulation is essentially due to C. Chevalley [13], who used the convenient 
language of infinite extensions: 

Let K be a field and let L / K  be an infinite Galois extension. The Galois group G 
of L / K  has a natural topology, the Krull topology in which the Galois groups of L / K  
(where M / K  runs over all finite extensions contained in L) is taken as a fundamental 
set of open neighborhoods of the unit element. In this topology G is compact and zero- 
dimensional. It has been established by W. Krull [76] that there is, as in the usual Galois 
theory, a biunique correspondence between fields lying between K and L and closed 
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subgroups of G. Denote by K ab the maximal Abelian extension of K,  i.e. the union 
(or the direct limit) of all finite Abelian extensions of K contained in a fixed algebraic 
closure, and let G be the Galois group of Kab/K. Chevalley established in the number 
field case an isomorphism between the dual groups of the Galois group of Kab/K and 
C(K)/D(K) which behaves in a nice way with regard to the arithmetical properties of 
K and from this Theorem 3.1 can be deduced. 

It was later shown by G. Hochschild and T. Nakayama [61,102] that the use of group 
cohomology leads to an essential simplification of Chevalley's proof. 

3.4. To show that the classical and idelic formulations of class-field theory in the number 
case are equivalent one establishes a topological isomorphism of the groups C(K)/D(K) 
and H ~  = liminv H(f, Gf, l). By Pontryagin duality it suffices to establish an isomor- 
phism for the corresponding (discrete) character groups. 

Every character X of C(K)/D(K) is of finite order and can be regarded as a character 
of 1K trivial on K*D(K). We can write 

= IIx (x ), 
V 

where each Xv is a character of finite order of k v, which for almost all v satisfies 
Xv(U,) = 1. If $1 denotes the set of all nonarchimedean v's, for which this equality 
holds, $2 is the set of the remaining nonarchimedean v's and pv denotes the prime ideal 
of ZK inducing v, then for v E 5'2 the value X,((x,)) depends only on v(x,). Now for 
each nonarchimedean v choose r,, E k~, generating Pv and define 

f 

J 0  if v E Sl, 
X(Pv) I Xv(Trv) i f v E  Sz. 

This defines a character of the group of all fractional ideals of K prime to 

I =  H p v ,  
vESI 

and hence is a character of a suitable H(f, Gf, l ). This leads to a homomorphism of the 
character group of C(K)/D(K) to lim dir H(f, Gf, l ) which is the dual group of H~(K). 
To show that it is in fact an isomorphism one uses the easily established isomorphism 

H(f, GI,1) ~- IK/IIUK, 

where ly denotes the group of principal ideles (xv)v with x totally positive and congruent 
to unity (mod f) .  (For details see, e.g., [Na], Chapter VII.) 

There are several ways of proving the assertions I and II. Usually one deduces them 
from the corresponding theorems of local class-field theory. Using cohomology groups 
this has been done in [AT] and an exposition can be found, e.g., in [CF]. 
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3.5. An important step towards simPlification of the class-field theory has been made 
by J. Neukirch [ 103, Nel, Ne2], who adopted an axiomatic approach utilizing only the 
first few cohomology groups. One starts with a profinite group G and a degree map deg: 
G --+ Z, where Z denotes the inverse (projective) limit of the cyclic groups Z / n Z  with 
the natural homomorphisms. The closed subgroups of G are denoted by G K where K 
runs over a set of indices. Abusing language a little one calls these indices K fields and 
the index corresponding to G is called the ground field and denoted by k. The index 
corresponding to the one-element group is denoted by/r One defines the intersection of 
a family {Ki} of fields as the index of the group corresponding to the smallest closed 
subgroup of G containing all groups GK, and the compositum of fields from this family is 
defined as the index of the intersection_ of the corresponding groups_ For every extension 
K / k  of finite degree one defines K as the compositum of K and k. 

If GL c GK then the pair (L,K)  is called a field extension and denoted by L/K .  
The degree [L �9 K] of such an extension is defined as the index [GK " GL] and if this 
index is finite then L / K  is called a finite extension. If GL is a normal subgroup of 
GK then L / K  is called a normal extension and the factor-group GK/GL is denoted by 
Gal(L/K) and called the Galois group of L/K .  

Finally let A be a multiplicative G-module and for every field K put AK = A CK , the 
set of elements invariant under GK, and for any finite extension L / K  define the norm 
map NL/K" AL --+ AK by 

NL/K(a) = I I  ag' 

where 9 runs over a system of representatives of right cosets of GK with respect to GL. 
Now we may state the axioms" 

AXIOM I. If the extension L / K  is finite and L C K (i.e. G~, C G L), then 

#H ~ (Gal(L/K), AL) -- [L " K] 

and 

#H- ' (Ga l (L /K) ,AL)  = 1. 

AXIOM II. If the extension L / K  is finite and the group Gal(L/K) is cyclic, then 

#H ~ (Gal(L/K), AL) -- [L" K] 

and 

#H-I (Gal (L /K) ,AL)  = 1. 

From these two axioms one deduces for every finite extension L / K  the existence of 
a canonical isomorphism of AK/NL/KAL and Gal(L/K) ab, the maximal abelian factor 
group of Gal(L/K). 
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To obtain the main theorems of the class-field theory for global fields let k be either 
the field of rationals or the field of rational functions in one variable over Fq and let k be 
an algebraic closure of k. One takes for G the absolute Galois group, i.e. G = Gal(k/k) 
and for the G-module A the union of the idele class groups of all finite extensions of k. 

4. Reciprocity laws 

4.1. If p is an odd prime then the unique quadratic character (modp), written after 
Legendre usually in the form (~), obeys the following Quadratic Reciprocity Law, 
stated first by L. Euler in 1772 and proved in 1801 by C.E Gauss [DA] (w 

If p, q are distinct odd primes then 

P = _ ) a ( p , q )  q ) ( q )  ( 1 , 

where a(p, q) = ( p -  1 ) ( q -  1)/4. (For its early history see [Wei2].) 

The search for the analogue of it for higher powers formed one of the main topics 
of research in number theory of the XIXth century. The case of biquadratic residues 
has been considered by C.E Gauss [36], who introduced complex integers, i.e. numbers 
of the ring Z[i] to solve the problem. G. Eisenstein [28] obtained a kind of reciprocity 
theorem (he assumed that one of the considered moduli is a rational integer) for p-th 
powers (with p prime) in the p-th cyclotomic fields. A simpler proof of his result can be 
found in [Zber] and a generalization to arbitrary exponents was given by H. Hasse [44], 
using Artin's Reciprocity Law. 

E.E. Kummer [80, 81] dealt with the reciprocity law for p-th powers in the p-th 
cyclotomic field Q((v) in the case when p is a regular prime, i.e. p does not divide 
the class-number of Q(~v). (We do not know, even today, whether there are infinitely 
many such primes, but it has been established by K.L. Jensen [65] in 1915 that there are 
infinitely many irregular primes. These numbers are related to Fermat's Last Theorem, 
which is known to be true for every regular prime exponent (E.E. Kummer [79]). It 
has been shown by E.E. Kummer [78] that a prime p is regular if and only if it does 
not divide the numerator of any nonzero Bernoulli number with index ~< p -  3.) The 
restriction on p has been removed by P. Furtwfingler [33] and the case of an arbitrary 
exponent has been settled by H. Hasse [45]. Part II of [HBer] contains all details and a 
complete bibliography up to 1929. 

The analogue of the Quadratic Reciprocity Law in arbitrary number fields has been 
given by D. Hilbert [59] and E. Hecke [He, 54]. (See also L. Auslander, R. Tolimieri 
and S. Winograd [4].) 

4.2. Artin's reciprocity law of the class-field theory gives a common generalization of 
all previously known reciprocity laws and brings several new aspects to this question. 

Let k be an algebraic number field containing all n-th roots of unity and let a E k*. 
Denote by S(a) the set of all these nonarchimedean valuations v for which v(a) = 1 and 
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let f = f(a) be the product of all prime ideals corresponding to v c S(a). Put ~9 = a 1/n 
K - k(O) and let 

FK/k: GI --+ Gal(K/k) 

be the Artin map (with Gy denoting the group of all fractional ideals prime to f) .  For 
every ideal I E Gy the number 

FK/k(I)(~)) 

is a root of unity, which we shall denote by 

n 

the n-th power-residue symbol. One sees that this symbol is a character of Gf having 
the property that if P is a prime ideal of Zk not dividing f(a), then 

( P ) n  --1 

holds if and only if the congruence 

X n - a (mod P)  

is solvable in Zk, or, which in view of Hensel's Lemma means the same, a is an n-th 
power in the completion of k, corresponding to P. 

Artin's Reciprocity Law implies that if I1, I2 are ideals prime to f(a) lying in the 
same ideal class and the ratio I1/I2 (which is principal) has a generator b which for all 
v ~ S(a) is an n-th power in k~, then 

(~ (~ 
In case n = 2, k - Q this leads after a short elementary computation to the Quadratic 

Reciprocity Law. One can also similarly recover the reciprocity laws of Gauss, Eisenstein 
and Kummer (see [HBer] for details). 

4.3. To state the reciprocity law for n-th power residues we need the local Hilbert symbol 
(a, b)v occurring in the local class-feld theory. Here a, b E k~, kv, the completion of k at 
v, is assumed to contain all n-th roots of unity and moreover the extensions kv(al/n)/kv 
and k~(bl/n)/k~ are both unramified. 

The local class-field theory gives the existence of a canonical isomorphism 

Gal(K/k~) -+ k~/NK/k(K*) 
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for all Abelian K / k v  and its inverse leads to a homomorphism 

k; ~ x ~ ( x , K / k . )  ~ Gal(K/k . ) .  

The symbol ( x , K / k v )  is called the norm-residue symbol. The local Hilbert symbol 
(a, b)v is now defined as that root ff of unity for which one has 

= o,1 . 

In the case of Archimedean v the Hilbert symbol is defined in the following way: 
Denote by Ov the embedding of k in the complex field corresponding to v and put 

- 1  
(a, b)v = 1 

if v is real and O(ab) < 0, 

otherwise. 

Now we can state: 

THEOREM 4.1 (General Reciprocity Law for n-th powers). Let a, b C k* and denote by 
A, B the principal ideals generated by them. If  A, B are relatively prime and prime to 
nZk then one has 

(a) = 

"11 

where v runs through all valuations which either are Archimedean or satisfy v(n) < 1. 

The usual proof utilizes the compatibility of the reciprocal Artin maps in the local and 
global class-field theory. (See, e.g., [HBer, Iy].) 

4.4. To be able to apply the reciprocity law for power residues one needs explicit for- 
mulas for the local Hilbert symbols. This belongs properly to the local class-field theory, 
so we restrict ourselves to few bibliographical remarks. Such formulas were given by 
I.R. Shafarevich [ 129] (see H. Hasse [46] for an exposition). Other deductions of explicit 
reciprocity have been given by M. Kneser [67], W.H. Mills [94, 95], H. Brtickner [6], 
S.V. Vostokov [146, 147, 148], S.V. Vostokov and V.A. Lecko [149], S. Sen [126], 
E. de Shalit [132, 133], S. Helou [55]. There is a recent survey by S. Helou [56]. 

5. Density theorems 

5.1. Let K be an algebraic number field and let 7:' be a set of prime ideals in its ring of 
integers ZK. One says that 79 has natural density A, provided the number of prime ideals 
in 7:' with norms not exceeding x is asymptotically equal to Ax/ log  x when x ~ co. 
It has been shown by E. Landau [84] that the density of the set of all prime ideals, as 
well as of the set of all prime ideals of degree one, equals 1 (Prime Ideal Theorem, 
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Primidealsatz). Later E. Hecke [53] proved that the density of the set of all prime ideals 
lying in a given class of Hf(K)  exists and is the same for each class (Hecke's Theorem 
on Progressions) and E. Landau [85] extended that to the classes of HT(K). 

A far-reaching generalization of these results is the following consequence of Art- 
in's Reciprocity Theorem, conjectured by G. Frobenius [30] and proved by N.G. Cheb- 
otarev [ 11 ]: 

THEOREM 5.1. Let L / K  be a finite Galois extension of an algebraic number field, denote 
by G its Galois group and let A be an arbitrary class of conjugated elements in G. Let 
PA be the set of all prime ideals P of ZK for which the Frobenius automorphism s(P) 
lies in A. Then the set PA has a natural density, which is equal to #A/#G. 

One considers first Abelian extensions L / K  and in this case Artin's Reciprocity Law 
implies that the set PA is a union of certain cosets (mod Gf,1 ) and hence Hecke's Theorem 
on Progressions (in Landau's form) may be used to obtain the assertion in this case. The 
final step consists in reducing the general case to the case of a cyclic extension and this 
is done by considering the subfield of L / K  corresponding to the cyclic group generated 
by any element of A and using the proper behaviour of the Frobenius automorphism 
with regard to subextensions. 

Chebotarev actually proved a weaker form of this theorem, since Artin's Reciprocity 
Law was not yet at his disposal. (In fact Artin's proof of his reciprocity depended on 
ideas from Chebotarev's paper.) He showed namely that the set PA has a Dirichlet density 
equal to #A/#G. 

A set P of ideals are said to have the Dirichlet density A, provided the function f (s)  
defined for Re(s) > 1 by 

1 
f ( s ) -  E N(p)s  

P 

satisfies 

1 
lim f (x ) / log  ~ = A. 

x--+l+O X -  1 

Note that the existence of the Dirichlet density does not imply the existence of the 
natural density. This implication holds, however, if the difference 

1 
t ,  ~ jks j_Alog s - 1  

can be prolonged to a function regular in the closed half-plane Re(s) ) 1. (Theorem of 
Ikehara-Delange, see H. Delange [21 ].) 

The original proof of Theorem 5.1 has been greatly simplified by O. Schreier [122], 
A. Scholz [120], M. Deuring [24] and C.R. McCluer [92]. In certain special cases there 
exist purely algebraic proofs (J. W6jcik [157], H.W. Lenstra Jr. and P. Stevenhagen [87]). 
Proofs giving an effective bound for the smallest norm of an ideal lying in ~]')A have 
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been given by J. Lagarias, H.L. Montgomery and A. Odlyzko [82], J. Lagarias and 
A. Odlyzko [83] (cf. J. Oesterl6 [109]) and V. Schulze [125]. 

Chebotarev's result immediately implies two previously known density theorems, the 
first due to L. Kronecker [74] and the second to G. Frobenius [30] (in both cases K is 
an algebraic number field): 

THEOREM 5.2 (Density Theorem of Kronecker). If L / K  is finite of degree n and 7ak 
denotes the set of all prime ideals P of ZK for which PZL has exactly k prime ideal 
divisors of the first degree, then Pk has a Dirichlet density and 

n n 

Zd :Zk   
k = O  k = l  

= 1 .  

THEOREM 5.3 (Density Theorem of Frobenius). If L / K  is Galois, 9 E Gal(L/K) and 
A is the union of conjugacy classes of all powers of 9, then the set 79A has its Dirichlet 
density equal to #A/[L : K]. 

5.2. It has been shown by J.E Serre [127] that Chebotarev's theorem can be applied in 
the theory of modular forms and elliptic curves. These applications utilize the theory of 
l-adic representations (P. Deligne [22], P. Deligne and J.P. Serre [23, Se]). 

The analogue of Chebotarev's density theorem holds also in the case of algebraic func- 
tion fields in one variable over a finite field. If one defines the Frobenius automorphism 
and Artin's symbol in the same way as in the case of number fields then the following 
assertion holds: 

THEOREM 5.4. If K is a field of algebraic functions in one variable over a finite field 
and L / K  is a finite Galois extension with Galois group G and C is a fixed conjugacy 
class in G then the set of all prime ideals of K unramified in L / K  whose Frobenius 
automorphism lies in C has Dirichlet density which is equal to #C/[L : K]. 

A special case of this theorem has been settled by H. Reichardt [113]. J.E Serre [Se] 
indicated the deduction of the general case. A proof has been given by M. Fried [29]. 
(See also [FJ], Theorem 5.6, and E Halter-Koch [42].) 

6. Kronecker's "Jugendtraum" and explicit class-fields 

6.1. The Kronecker-Weber theorem shows that every finite Abelian extension of the 
rationals is contained in an extension generated by the value of e(z) = e 27riz at a rational 
point. This leads to the problem of whether a similar result holds for other base-fields and 
clearly one can limit the attention to ray class-fields. In the case of imaginary quadratic 
base-fields this question has already been considered by L. Kronecker. 

Let k be an imaginary quadratic field and let I be a fractional ideal. Clearly I can 
be regarded as a lattice in C and hence we may associate with I an elliptic curve, viz. 
E = C/I .  Fractional ideals from different ideal classes lead to nonisomorphic curves, 
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so we get h = h(K) elliptic curves E l , . . . ,  Eh associated with k. Replacing them with 
isomorphic curves one may assume that each of them can be written in the form 

y2 _ 4X 3 _ aX - b. 

The invariant of E, j (E)  is defined by 

1728a 3 
j (E)  - a3 _ 27b2 , 

and since every elliptic curve is isomorphic to one of the form C / ( Z + z Z )  with a suitable 
z (Im(z) > 0), we obtain in this way a function j (z)  defined in the upper half-plane. It 
can also be given explicitly by the formula 

j ( z ) -  (1 + 240 ~--~.kC~=l o'3(k)qn) 3 
q I-Ik~=l (1 - qk)24 

__ q-1 + 744 + 196884q + 21493760q 2 § "--, 

where q - e 2 ~ r i z  and (r3 (n) denotes the sum of cubes of positive divisors of n. (Note that 
the coefficients 196884, 21493760 . . . .  turned out to be closely related to the degrees of 
irreducible representations of the Monster. See J. Conway and S.P. Norton [19].) 

Already L. Kronecker conjectured that every Abelian extension of an imaginary 
quadratic field k is contained in a field generated by a value of j (z)  at a point from k. 
(Kronecker's Youth Dream, Kroneckers Jugendtraum.) This conjecture is closely con- 
nected with the theory of complex multiplication, the main result of which asserts that 
the Hilbert class-field H(k) of k is generated by each of the values j(Ei),  which are 
conjugate algebraic integers of degree equal to h(k). H. Hasse [43], M. Deuring [25, 
26], cf. [De, SCM, Shi, Fu, We]. 

The original conjecture of Kronecker turned out to be not true, but it has been shown 
by H. Hasse [43] that the maximal Abelian extension of k can be obtained by adjoining 
to H(k) a sequence of values at points in k of a function r(z), which is related to the 
Weierstrass p-function. (See, e.g., [SCM].) An important result was obtained in 1964 by 
K. Ramachandra [112], who for every quadratic imaginary k constructed a holomorphic 
function, whose values at points of k generate all ray class-fields of k. 

6.2. The description of the Hilbert class-fields Hk of an imaginary quadratic field k given 
by values of the function j (z)  does not lead easily to an explicit algebraic description 
of its generators. However, in certain cases it is possible to utilize purely algebraic 
means to obtain such a description. This has been demonstrated by H. Hasse [47] in the 
cases k - Q(x/'-Ld) with d - 23,31,47. See also H. Cohn [14, 15, 16], H. Cohn and 
G. Cooke [ 17]. 

A description of Hilbert class-fields and ray class-fields for other classes of fields 
still forms in general an open problem, although there have been important advances in 
certain cases. It turned out that the generalization of complex multiplication to higher- 
dimensional varieties leads in certain cases to class-fields for totally complex extensions 
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of totally real fields (the CM-fields). (See [ST, Sh], G. Shimura [134, 135, 136].) In [Shi] 
one finds applications of modular functions to the construction of class-fields for real 
quadratic fields. 

6.3. The Kronecker-Weber theorem shows that the maximal Abelian extension of the 
rational number field is generated by the torsion points of the mappings x ~ x n of the 
multiplicative group of all algebraic numbers. (A point a is a torsion point for a map T 
provided for some n one has Tn(a) = a, where T n denotes the n-th iterate of T.) An 
analogous result in the function fields case has been obtained by D.R. Hayes [49] for 
the maximal Abelian extension of the field k = Fq(X).  It turned out that it is generated 
(modulo certain extensions of the constant fields) by torsion points of a certain family 
of maps of the additive group of the algebraic closure of k, which has been described 
by L. Carlitz [10]. 

A description of Abelian extensions for arbitrary global function fields k has been given 
by V.G. Drinfeld [27], who generalized the classical theory of complex multiplication by 
introducing elliptic modules, which are certain homomorphisms of a suitable subring of k 
into the ring of additive polynomials in k[X] with composition as multiplication. Using 
these homomorphisms one can construct all ray class-fields of k. (See D. Goss [39], 
D.R. Hayes [50].) 

7. Class-field-tower problem 

7.1. For a given algebraic number-field k one can construct a sequence kl C k2 C . . .  of 
fields by putting kl = k and defining ki+l as the Hilbert class-field of ki. P. Furtw~ingler 
(see [HBer], I, p. 46) asked whether this sequence contains only finitely many distinct 
fields (class-field-tower problem, KlassenkSrperturmproblem). Were it so then we could 
infer that every algebraic number field can be embedded in a field with class-number 
one and in particular the existence of infinitely many fields whose rings of integers have 
unique factorization would follow. Unfortunately the answer to Furtwfingler's question is 
negative. At first A. Scholz [ 119] observed that the sequence ki may be arbitrarily long 
and in 1964 E.S. Golod and I.R. Shafarevich [38] proved that the class-field-tower may 
be infinite. 

Let p be a prime. For any algebraic number field k define the p-class-field-tower as 
the sequence 

k = k o c k ~  c k 2 c . . .  (1) 

of fields where ki+l is defined as the maximal unramified Abelian p-extension of ki. 
If k has a finite class-field-tower then for every p the p-class-field-tower is also finite. 
For any finite group G and prime p let dimp G be the number of p-primary factors in 
a decomposition of the maximal Abelian factor group of G into cyclic summands. If 
now the sequence (1) is finite, K denotes its last term, G = Gal(K/k )  and K ab is the 
maximal subfield of K which is Abelian over k, then class-field theory implies 

dimp G = dimp Gal(Kab/k)  - dimp H(k) .  
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Golod and Shafarevich obtained an upper bound for this dimension in the case 
of a finite class-field-tower (1). We state their result in a stronger version, obtained 
by W. Gaschtitz and E.B. Vinberg [145] (see E Roquette [CF] for a presentation of 
Gaschfitz's proof. Another proof has been given by H. Koch [68]): 

THEOREM 7.1. If  [k : Q] = n and dimpH(k)  exceeds 2(1 + v/n + 1) then k has an 
infinite p-class-field-tower. 

7.2. The proof is based on the following auxiliary group-theoretic theorem: 

THEOREM 7.2. If G is a finite p-group and 9 = 9(G) is the minimal number of generators 
of G then the minimal number r = r(G) of relations among them which define G satisfies 

r > 92/4. 

(Golod and Shafarevich had here (9 - 1)2 in place of 92.) 
The exact sequences 

1 -+ #K -+ UK - +  UK/p  K --+ 1 

and 

1 --3. UK/#K -+ IK -+ H ( K )  ~ 1 

(where UK denotes the unit group of K and #K the group of roots of unity contained 
in K) imply with the use of Tate's theorem (J. Tate [143]), stating that for n > 2 the 
groups Hn(G, IK) and Hn-2(G,  Z) are isomorphic, the isomorphisms 

H~ ~ H - ' ( G ,  UK/#K)  ~- H - ' ( G ,  IK) ~ H - 3 ( G , Z ) .  

Since for every finite p-group G one has dimp H -3 (G, Z) - r ( G ) -  9(G) and Dirichlet's 
unit theorem implies 

dimp ri~ UK) -- dimp (Uk/NK/k(Uk)) < n 

thus 

9(a) < 

and Theorem 7.2 leads finally to 

g 2 / 4 - g  < n ,  

thus in view of g(G) = d imp(G)=  dimp H(k)  the assertion follows. 
It has been conjectured (J. Mennicke [93]) that one always has r >/92/2 but it turned 

out that the bound in Theorem 8.2 cannot be essentially improved, since there is a 
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sequence Gn to p-groups for which r (Gn) /92(Gn)  tends to 1/4 (J. Wisliceny [154]). For 
previous results on this question see A.I. Kostrikin [71] and H. Koch [69]. The proof of 
Theorem 8.2 given by Golod and Shafarevich used the theory of nilpotent algebras and 
formed the basis of the solution of two old problems, obtained by E.S. Golod: 

THEOREM 7.3 (E.S. Golod [37]). (i) For every field k there exists a finitely generated 
nil-algebra which is not nilpotent, 

(ii) There exists an infinite, finitely approximated p-group every element of which has 
finite order 

Recall that a nil-algebra is an associative algebra in which all elements are nilpotent 
and an algebra A is called nilpotent, provided there exists n > 0 such that for all x E A 
one has x n = 0. (i) answers a question of J. Levitzky [88] and (ii) settles a problem posed 
in 1902 by W. Burnside [8]. (It was established later by P.S. Novikov and S.I. Adjan [105] 
that there exists a finitely generated infinite group every element of which has bounded 
order. See [Ad] for an exposition of the proof.) 

7.3. Gauss's Theorem on Genera (C.E Gauss [DA], w 286-287, see, e.g., [Na], Theo- 
rem 8.8) implies that any imaginary quadratic field with at least six ramified primes and 
any real quadratic field with at least eight such primes must have an infinite class-field- 
tower. To obtain examples of such fields with higher degree one can utilize the following 
result of A. Brumer [7]: 

THEOREM 7.4. If  [k : Q] = n and there exist a rational prime p and at least t rational 
primes q with the property that the ramification indices of  all prime ideal divisors of  q 
in k are divisible by p, then 

dimp H(k )  >~ t - n 2. 

(For improvements see E Roquette and H. Zassenhaus [114], I. Connell and D. Suss- 
mann [ 18, Na], Theorem 8.10.) 

The existence of a finite class-field-tower for a field k induces severe restrictions on 
the class-group of k. It has been shown in B.B. Venkov and H. Koch [144] that if K is 
the last field in the finite p-class-field tower of an imaginary quadratic field k (with p 
an odd prime), then the Galois group of K / k  is either cyclic or has 2 generators and 2 
relations. 

R. Schoof [121] proved the existence of infinitely many both real and imaginary 
quadratic fields with two ramified primes and an infinite class-field-tower (improving in 
the imaginary case a result of B. Schmithals [118]), and gave examples of such fields 
with only one ramified prime, e.g., Q(v / -3321607)  and Q(v/ -39345017) .  

The paper of Schoof also contains examples of cyclotomic fields Q((n)  with infi- 
nite class-field-tower, with the smallest n being equal to 363 and the smallest prime n 
being 877. It is apparently unknown whether these examples are minimal. His method 
utilizes a generalization of a result of H. Koch and B.B. Venkov [70]. 
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The negative solution of the class-field-tower problem led to the solution of another old 
problem" denote by M(n) the minimal absolute value of the discriminant of an algebraic 
number field of degree n and put 

D - lim inf M (n) 1 / n 
n - - - +  o o  

It has been conjectured that D is infinite but this contradicts Theorem 7.1. Indeed, if 

ko C k l C " "  C k n " "  

is an infinite class-field-tower, ni denotes the degree of ki and di denotes the absolute 
value of its discriminant, then the formula for the discriminant in a field-tower leads to 
di - d~ ~, because ki/ko is unramified. This shows 

! 

M ( n i )  I /n '  <~ d~/n~ -- do < oo, 

hence D ~< do. The proof of E.S. Golod and I.R. Shafarevich [38] leads to D ~< 4404.5, 
and later one got D ~ 347 (A. Brumer [7]), D ~< 92.4 (J. Martinet [90]). On the other 
hand one has D ~> 22.38 (A. Odlyzko [106, 107]) and even D ~> 44.7 (J.P. Serre [128]) if 
the General Riemann Hypothesis is true. (Cf. G. Poitou [ 110, 111 ].) These lower bounds 
are obtained by analytical means. This approach was initiated by H.M. Stark [139, 140]. 
Surveys of these methods were carried out by J. Martinet [91] and A. Odlyzko [108]. 
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1. Introduction 

One of the most appealing areas of application of abstract algebra is the theory of error- 
correcting codes. This theory dates back to the fourties, but at that time the importance 
of abstract algebra and in particular of finite fields for it was not clear at all. 

Whenever information is communicated from one place to another (say be satellite) or 
stored (e.g., on a magnetic tape or optical disc) for later retrieval - this can be viewed as 
communication in time - the receiver will sometimes be faced with errors due to noise or 
system errors. When this information is represented in a digital way, the use of so-called 
error-correcting codes makes it possible to correct these errors. 

What the full potential of error-correcting codes is, has been exactly determined in 
the fundamental work of C.E. Shannon [48]. That one is nowadays still not even close 
to those theoretical possibilities is cause for continuing and growing research in which 
finite fields play an essential role, but in which all kinds of other algebraic tools have 
been instrumental. The last few years for instance algebraic geometry has made quite an 
impact on the development of coding theory. 

In the context of this chapter there will always be two parties involved in the trans- 
mission of information: the sender of the message(s) and the receiver. The medium over 
which the information is sent, together with its characteristics, is called the channel. 
These characteristics consist of an input alphabet X-, an output alphabet Y and a transi- 
tion probability function P,  which gives the probability P(y  I x) that a symbol y in Y 
is received given that x in X was transmitted. Here we shall discuss the most common 
case: the Binary Symmetric Channel (BSC), depicted in Fig. 1. 

DEFINITION 1.1. The Binary Symmetric Channel has input and output alphabets equal to 
{0, 1 }. The probability that a received symbol is actually equal to the transmitted symbol 
is given by 1 - p ,  while the probability that they are not equal to each other is p, for 
some 0 <~ p <~ 1. If the transmitted and received symbols are not equal to each other one 
says that an error has occurred. 

It shall always be assumed here that 0 <~ p <~ �89 When using the BSC, one of course 
has to convert the information into a stream of binary data and upon arrival recover the 
original information. For that reason it is more convenient to represent the information 
sequence as a binary sequence. 

1 - p  
1- > -'1 

0 . . ~  0 
1 - p  

Figure 1. The binary symmetric channel. 
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If one wants to transmit a 1 over the BSC, with error probability p, one can increase 
the reliability of the transmission by repeating the transmission of each bit a few times, 
say fivel The receiver can use a simple majority vote on the received sequence to decide 
what the most  likely transmitted bit is. For instance, if 1, 1,0, 0, 1 is received, the most 
likely transmitted sequence is of course 1, 1, 1, 1, 1. 

With this system, it is still possible that the receiver makes an error, namely if three 
or more errors have occurred. If at most two errors occurred during the transmission 
the receiver will make the correct estimate of the transmitted information. It may also 
be clear that repeating each symbol a few times may not be the most efficient way 
of protecting the messages against errors. Transmitting more symbols than is strictly 
necessary to convey the message is called adding redundancy to the message. Regular 
languages know the same phenomenon. The redundant letters make it possible to apply 
error-correction techniques. 

DEFINITION 1.2. An In, k] binary encoder is a mapping that transforms k-tuples _a of 
binary (information) symbols to binary n-tuples _.c (called codewords). The collection of 
all possible codewords is called an In, k] binary block code C. The coordinates of the 
codewords are the input symbols for the BSC. A decoder maps a received n-tuple back to 
the most likely transmitted n-tuple ~ and further back to the original k-tuple ~ (hopefully 
_a = ~) .  

The channel, encoder and decoder together with the sender and receiver form a so- 
called communication system (depicted in Fig. 2). 

Note that the most likely transmitted codeword will be the codeword that differs from 
the received vector in the fewest number of coordinates (since p <~ 0.5). A decoder that 
always finds the closest codeword is called a maximum likelihood decoder. 

The parameter n is called the length of the code. The 2 k possible outcomes of the 
encoder are called codewords. Note that the encoder converts k-tuples to n-tuples, some- 
how adding n -  k redundant bits. The information rate R of C is the ratio k/n.  It is the 
relative information content of each transmitted bit. 

By using block codes, the sender tries to get information to the receiver in a more 
reliable way than without use of codes. By repeating each information symbol sufficiently 
many times, one can achieve this and obtain a reliability arbitrarily close to 1. However, 
the price that one pays is inefficient use of the channel: the rates of theses code tend to 
zero when their length goes to infinity! For other families of codes, the information rate 
does not go down to zero, but the fraction of errors per codeword that they are able to 

sender, I f i enc~ > channel ) [ decoder I ~ i [ [ receiver I 

Figure 2. A communication system. 



Finite fields and error-correcting codes 399 

correct tends to zero, while the BSC model gives an expected number of pn errors per 
transmitted codeword. 

What Shannon was able to prove in 1948 is that, by using sufficiently long codes, 
information can be transmitted reliably while the rate of the codes does not tend to zero. 

Let the entropy function h(p), 0 ~< p ~< 1, be defined by 

h(p) = - p  log 2 p - (1 - p) log2(1 - p), 

i f 0 < p <  1, a n d b y 0 f o r p = 0 o r  1. 
Although it will not be further discussed here, Shannon's information theory makes it 

possible to interpret h(p) as the uncertainty that the receiver of a specific binary symbol 
(transmitted over the BSC with error probability p) still has about the actually transmitted 
symbol. In other words, 1 - h(p) is the amount of information that the received symbol 
carries about the transmitted symbol. 

THEOREM 1.3 (Shannon). Consider the BSC with errorprobability p and let (7 = 1 -h(p) .  
Then, for  each rate R with R < C, an infinite sequence of  [nt, kl] codes CI exists, with 
kt = IRnt] (so Ct has rate > R), such that the corresponding maximum-likelihood 
decoding algorithm has a probability of  incorrect decoding that goes exponentially fast 
to O for l --+ c~. 

For rates R greater than C, no encodings can be made with error probabilities tending 
to zero. 

The quantity C in Theorem 1.3 is called the capacity of the channel. 
It is the ultimate goal of coding theory to find (families of) codes of which the rate 

approaches the capacity of the BSC. 
A result related to the entropy functions that can be proved by standard means and 

that will be needed later is: 

LEMMA 1.4. Let 0 <~ a <~ 0.5. Then 

[c~nJ 
~ (n) :2(h(c~)+~ 
i=0 

, n - +  c ~ .  ( 1 )  

This chapter is organized in the following way. In Section 2 the basic concepts of 
block codes are explained. Projective codes (no coordinate is a scalar multiple of another 
coordinate) of maximal size are constructed and an important relation between a linear 
code and its orthogonal complement is given. In Section 3 it is shown that ideals in 
the residue class ring of q-ary polynomials modulo x n - 1 define a very largeclass of 
codes. The zeros of the generator polynomial of such an ideal determine their error- 
correcting capability. In Section 4 generalizations of cyclic code are given by means of 
algebraic geometry. They lead to a powerful error-correcting algorithm and to codes that 
are asymptotically very interesting and may soon even be of practical value. In Section 5, 
a brief discussion of the available books on coding theory will be given. 
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2. Linear  codes 

Although the input and output alphabet of the BSC is simply the set {0, 1 }, this as- 
sumption would be too restrictive to set up the theory of error-correcting codes. On the 
other hand, assuming no structure at all about the input and output alphabet will make it 
difficult or impossible to construct codes and prove properties regarding information rate 
or error-correcting capability. For this reason, it is assumed that both the input and the 
output alphabets have cardinality q, where q = pa, for some prime number p. In this way 
the letters in the alphabet can be identified with the elements of the finite field of size q. 
This field will be denoted by GF(q) or GF(p a) for Galois Field. In many applications, 
p = 2 and a-tuples of binary symbols can now be identified with symbols in GF(2a). 

The set (GF(q)) n of q-ary sequences of length n can now be given the additional 
structure of a n-dimensional vectorspace over GF(q). This will be denoted by Vn (q). If 
one vector, also called word, is transmitted while another vector is received, the number 
of errors made is simply the number of coordinates where the two vectors differ. 

DEFINITION 2.1. The Hamming distance d(x__, y) between x__ = (xl, x2, . . .  ,Xn) and y - 
m 

(Yl, Y2, . . . ,  Yn)in Vn(q)is given by 

y) : I{1 i n Ix, l. (2) 

It is very simple to verify that (2) defines a metric on Vn (q). 
Although a code can be defined as just any subset of Vn (q), in this chapter only linear 

subspaces of Vn (q) will be considered. They are called linear codes. If a linear code C in 
Vn (q) has dimension k, one simply speaks of a q-ary In, k] code. Its elements are called 
codewords. To maximize the error-protection, one wants codewords to have sufficiently 
large mutual distance. 

DEFINITION 2.2. The minimum distance d of a nontrivial code C (i.e. of cardinality at 
least 2) is given by 

d = min {d(x__, y) Ix,  y E C, x__ -7(: y_}. (3) 

The error-correcting capability e of C is defined by 

d - 1 J (4) e- -  2 " 

The reason for the name error-correcting capability is quite obvious. If d is the minimum 
distance of a code C and if during the transmission of the codeword _.c over the channel 
at most e errors have been made, the received word r will still be closer to _c than to any 
other codeword. So a maximum likelihood decoding algorithm applied to r__ will result in 
_c. If the minimum distance d of an [n, k] code-is known, one also speaks of an In, k, d] 
code. 
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A different interpretation of Definition 2.2 is that spheres of radius e around the 
codewords are disjoint, where the sphere of radius r around z.T_, is defined by B,.(z__) = 
{y e Vn (q)[ d(E,_z) ~< r}. Clearly 

iBr(x__)l = ~ (n)(q, 1) i 

i=0 

Since all spheres with radius e around the IC] codewords are disjoint and there are only 
qn distinct words in Vn (q), one has: 

THEOREM 2.3 (Hamming bound). Let C be a q-ary [n, k] code that is e-error-correcting. 
Then 

qk ~ (n)(q_ 1)~ <~qn. 
i=0 

(5) 

For q = 2, it follows from a slight strengthening of (1) that the information rate R = k i n  
of an [n, k] e-error-correcting code C satisfies R <<. 1 -h (e /n ) .  If equality holds in (5), the 
code is called perfect. With perfect codes the spheres with radius e around the codewords 
partition the whole vector space Vn (q). In [30] the reader can find a good survey on the 
results regarding the (non-)existence of perfect codes. It turns out that all linear perfect 
codes are already known. They are the binary [24, 12, 7] and ternary [12, 6, 5] Golay 
codes, the q-ary In = qm-lq-I ' n - m ,  3] Hamming codes and the binary repetition code 
of odd length, consisting of Q and 1. The Golay and Hamming codes will be defined in 
the sequel. A full discussion can be found in for instance [37] but also in the remarkable 
one-page article [19]. Perfect codes are also of great interest to algebraists because their 
automorphisms groups are highly regular. 

It is also possible to derive a (nonconstructive) lower bound on the size of a code. 

THEOREM 2.4 (Gilbert-Varshamov bound). There exist q-ary [n, k, d] codes satisfying 

qn 
qk /> . (6) d-1  )i E,_-0 (0(q-1 

PROOF. A long as the product of the cardinality of a linear code C and the volume of a 
sphere with radius d -  1 is strictly less than qn, a word u at distance ~> d to C exists. 
It follows from the linearity of C that the entire linear span of C and _u forms a larger 
linear code with minimum distance still at least d. r-1 

It follows from (1) that for large values of n, binary [n, k, d] codes C exist with 
information rate R = k / n  satisfying R /> 1 - h ( ( d -  1)/n).  Despite the fact that 
Theorem 2.4 looks rather wasteful in its approach, it was not until [20] that a family of 
codes was constructed for which neither k i n  nor e /n  tended to zero. It was not until 
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1982 that in [53] and [54] (nonbinary) classes of codes are described that perform better 
than the Gilbert-Varshamov bound. 

The Hamming weight w(x) of a vector x__ in Vn (q) is the number of nonzero coordinates 
in x__. So w(x) = d(x, 0) and d(x, y) = d(x_.- y, Q) = w(x_. - y). The linearity of a code 
now implies that: 

THEOREM 2.5. The minimum distance of a linear code C is equal to the minimum nonzero 
weight in C. 

The extended code C ext of a code C is defined by 

C ext - -  C 1 ~ { 3 2 ~ . . . ~ C n ~ - -  Ci C ~_ C . 

i = 1  

Note that sum of the coordinates of a codeword in the extended code is zero. The extended 
code of a binary In, k, 2e + 1] code has parameters In + 1, k, 2e + 2]. 

There are two common ways of describing a k-dimensional linear code: one by means 
of k independent basis vectors, the other as the null space of n -  k linearly independent 
equations. 

DEFINITION 2.6. A generator matrix G of an In, k, d] code C is a k x n matrix, of which 
the k rows form a basis of C. 

It follows that C = {a_G ] a 6 Vk(q)}. 

DEFINITION 2.7. A parity check matrix H of an In, k, d] code C is an ( n - k )  x n matrix, 
satisfying 

c_ ~ C ~ Hc_ T = 0 T. (7) 

Let (x_., y) denote the regular inner product 

n 

E xiyi 
i = 1  

in Vn (q). We shall say that two vectors are orthogonal to each other if they have inner 
product zero. A word of warning is in place: in Vn(q) a word can be orthogonal to 
itself without being 0. For instance, in V7(2) the vector (1,0, 1,0, 0, 1, 1) is orthogonal 
to itself! 

DEFINITION 2.8. The dual code C z of an In, k, d] code C is defined by 

C • = {x__ E Vn (q) I (x__, _.c) = 0 for all _.c E C}.  (8) 

It is quite clear that C • is a linear code of dimension n -  k. Also, it is straightforward to 
check that (C •177 = C and that G • has as its generator matrix the parity check matrix 
H of C and as its parity check matrix the generator matrix G of C. 



Finite fields and error-correcting codes 403 

Since a nonzero word can be orthogonal to itself, it is possible that a nonzero vector 
can be in both (7 and C • Codes that are completely contained in their dual C • are 
called self-orthogonal. If C = C • the code is called self-dual. 

It follows from (7) that the existence of a codeword __c in a code C with parity check 
matrix H implies that the columns in H where __c has its nonzero coordinates must be 
dependent and, conversely, if a set of columns in H is dependent, then C contains a 
codeword with all its nonzero coordinates confined to the positions corresponding to 
those columns. This proves the following theorem: 

THEOREM 2.9. The minimum distance d o f  a linear code C with parity check matrix H 

satisfies: 

d = 1 + max{/I each l columns o f  H are linearly independent}. 

EXAMPLE 2.10. The matrices 

1 0 0 0  

i 
l 0 0  

0 1 0  

0 0 1  

11 

1 0  

0 1  

11 

0 

i 
and H = /i 1~ 0 1  

.11  

11 0i/ 
1 0 1  

1 0 0  

are the generator resp. parity check matrix of a binary [7, 4, 3] code. Note that since G 
has the form (I4 P),  the matrix ( _ p T  13) is indeed a parity check matrix. That d = 3 
follows directly from Theorem 2.9. 

If a linear code has small dimension, one may decode a received word by simply com- 
paring it with all possible codewords and select the closest. If the dimension is very high, 
a different technique can be used that will be explained now. 

Let the syndrome s of a received word r__ be defined by _s T - Hr_. T. Since a linear 
code C is a subgroup of Vn (q) and a word is in the code if and only if (iff) its syndrome 
is 0, it follows that two words are in the same coset iff their syndrome is the same. To 
find the closest codeword to r__, one has to find the lowest weight error pattern __e such 
that r__-__e is in C, or, equivalently, one has to find the lowest weight _e with the same 
syndrome as r__. 

ALGORITHM 2.11 (Syndrome decoding). Let r_r_ be the received vector. 

1. Compute the syndrome s T = Hr__ T o f  the received vector r__. 
2. Find the coset leader e_. o f  the coset with syndrome -s. 
3. Decode r into c = r - e. 

Often one simply makes a table of all error patterns of weight at most e together with 
their syndrome (these are all different) and does not attempt to decode if the syndrome 
of the received word does not occur in this list. The complexity of decoding a received 
word by comparing it with all possible codewords from a binary In, k] code is 2 Rn, while 
syndrome decoding has complexity 2 (1-R)n. In [14, 16] and [52] decoding algorithms 
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are described of complexity 2 an with a smaller that min{R, 1 - R}. An open question 
still is how much further the constant a in this exponent can be reduced. 

To state a surprising result in the theory of linear codes, a new definition is needed. 

DEFINITION 2.12. Let C be a code. Then the weight enumerator A(z) of C is given by 

n 

A(z) = ~ Aiz i = ~ z ~(~ 
i = 0  c E C  

So, Ai, 0 ~< i ~< n, counts the number of codewords of weight i in C. 
For instance, the code in Example 2.10 has weight enumerator 1 + 7z 3 + 7x 4 + z 7 and 

its dual code has weight enumerator 1 + 7z 4. 
In 1963, EJ. MacWilliams [36] showed that the weight enumerators of a linear code 

C and of its dual code C • are related by a rather simple formula. 

THEOREM 2.13 (MacWilliams). Let A(z) be the weight enumerator of a q-ary In, k] code 
C and let B(z) be the weight enumerator of the dual code C • Then 

1 " ), z ) . _ ,  B ( z ) = - - q - g E A i ( 1 - z  ( l + ( q - 1 )  . 
i = 0  

(9) 

The proof of Theorem 2.13 follows by evaluating 

E E 
c~C ~_ev,.,(q) 

in two different ways. Here X denotes a nonprincipal character of the additive group of 
GF(q) in the field of complex numbers. Since GF(q) has characteristic p it follows that 
X p =  1 and that 

= q ,  

o~EGF(q) 

of X is the principal character, and equal to 0 otherwise. For further details the reader is 
referred to [37]. 

For nonlinear codes with weight enumerator A(z), the right hand side of (9) can also 
be evaluated. It is not clear at all what kind of interpretation can be given to the outcome 
B(z) in this case. In particular, it would be of importance to know if the inequalities that 
hold for A(z) (like for instance the Hamming bound on IG'I = A(1) in Theorem 2.3) 
also hold for B(z). 

It follows from Theorem 2.9 that for an In, k, d] code C with parity check matrix H, d 
is greater than or equal to 2 iff H does not contain the all-zero column. Similarly, d/> 3 
iff H does not contain two columns that are linearly dependent (H generates a code that 
is often called a projective code). 
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In view of the above, we now know that the length of a q-ary In, k, 3] code is bounded 
above by the maximum number of pairwise linearly independent vectors in Vr(q), where 
r = n -  k is the redundancy of C'. This is the same as the number of distinct points 
in P G ( r -  1, q), the projective space of dimension r -  1 over GF(q). This number is 
( q r _  1 ) / ( q -  1). 

DEFINITION 2.14 (Hamming code). The q-ary Hamming code of length 

n = ( q r - 1 ) / ( q - - 1 )  

and redundancy r is defined by the parity check matrix, that has as columns all the 
projective points of PG(r - 1, q). It is a In = (q~ - 1 ) / ( q -  1), n -  r, 3] code. 

Example 2.10 gives the parity check matrix of the binary [7, 4, 3] Hamming code. That 
the Hamming codes are perfect is straightforward to check. 

The dual code of a Hamming code is called Simplex code. With the properties of 
PG(r - 1, q) in mind it is not so difficult to show that all the nonzero codewords in a 
Simplex code have weight q,--1. From the MacWilliams relations (Theorem 2.13) It now 
follows that: 

THEOREM 2.15. The weight enumerator of the q-ary Hamming code of length n = (qr 
1 ) / ( q -  1) is  given by 

A(z) - __l { (1 + (q - 1)z) n 
qr 

+ ( q "  - 1) 1 - (1 + ( q -  } (10) 

Although nonlinear codes are not further discussed in this chapter, we would like to 
draw the attention of the reader to the following recent development. 

Kerdock codes [27] and Preparata codes [42] are two families of binary nonlinear 
codes. Both have length n = 22m with m ~> 2. They have cardinality 22~-2m resp. 22m 
and minimum distance 6 resp. 2 m-1 - 2 m/2-1. Both have a larger minimum distance 
than any linear code of the same length and size. 

The product of the cardinalities of the Kerdock codes and the Preparata code of length 
n = 22m is 2 n. Further, their weight enumerators satisfy the MacWilliams relation. 
Despite their nonlinearity, the above suggests some kind of mutual duality. Based on 
intensive studies, researchers came to believe that the apparent relation between the 
Kerdock codes and the Preparata codes is purely coincidental. 

However, in 1994 Hammons, Kumar, Calderbank, Sloane and So16 [22] observed that 
both codes can be described as the image under the Gray map of two mutually dual, linear 
codes over ~4 of length 22m-1. The Gray map 4) is defined by ~b(0) -- 00, q~(1) = 01, 
q5(2) = 11, q~(3) = 10. To prove these statements one needs to develop the theory of 
Galois Rings, just as Galois Fields will be heavily needed in the next two sections. 



406 H.C.A. van Tilborg 

3. Cyclic codes 

To reduce the complexity of the encoding and decoding algorithms significantly as well 
as to be able to construct more powerful codes, linear codes that are invariant under 
cyclic shifts were the most natural to be looked at. 

DEFINITION 3.1. A linear code C is called cyclic if for each (co, C1, C2,. . . ,  Cn--1) in C 
also (cn-1, co, c l , . . . ,  Cn-2) is in C. 

In this context it is more natural to number the coordinates from 0 to n -  1 and to identify 
the words in Vn(q) with q-ary polynomials over G F ( q )  in the following way: 

(C0, Cl,a2,.. . ,Cn--1) ~ CO +ClX-I - ' ' "  +Cn-1 x n - 1 .  (11) 

So, instead of writing _.c is in C, we shall often write c(x) is in C. Notice that multiplying 
c(x)  by x gives the polynomial corresponding to the cyclic shift of _.c if the result xc(x) 
is reduced modulo x n - 1. For this reason the polynomials associated with (code)words 
will be regarded as elements in the residue class ring G F ( q ) [ x ] / ( x  n - 1). 

THEOREM 3.2. Let C be a code in Vn (q). Then C is a cyclic code iff (when viewed as a 
subset o f  G F ( q ) [ x ] / ( x  n - 1)) it is an ideal. 

There exists a unique monic polynomial g(x)  dividing x n - 1 with the property 

c(x)  is in C iff  g(x)  divides c(x).  (12) 

The polynomial  g(x)  is called the generator polynomial of  C. 

PROOF. The existence of a generator of the ideal (that C is) follows from the fact that 
G F ( q ) [ x ] / ( x  n - 1) is a principal ideal ring. The only monic generator of C dividing 
x n - 1 is the nonzero (monic) polynomial of lowest degree in C. fl 

THEOREM 3.3. Let C be a cyclic code in Vn (q) with generator polynomial g(x)  - go + 
gl x + . . . - J r  gn_kX n - k  with 9n -k  ~ O. Then C has dimension k and is generated by 

G __. 

go 91 . . . . . .  g n - k  0 0 .. �9 0 

g o  g l  . . . . . .  g n - k  0 �9 �9 �9 0 

0 g o  g l  . . . . . .  g n - k  �9 �9 �9 0 

�9 , " , ,  " , ,  " ,  

0 . . .  0 go gl . . . . . .  gn -k  
(13) 

A parity check matrix H o f  C is given by 
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n __. 

�9 .. 0 0 hk . . . . . .  hi ho 

�9 . .  0 h k  . . . . . .  h i  ho 

�9 . . 

k . . . . . .  hi ho 0 . . .  0 
(14) 

where h ( x )  = ho + hlx  + . . .  + hkx k is defined by g ( x ) h ( x )  = x n - 1 and is called the 
parity check polynomial of  C. 

Again the proof is very elementary and will be omitted here. Note that the dual code of 
a cyclic code with parity check polynomial h(x) is again cyclic and is generated by the 
reciprocal of h(x). It also follows from the above that 

c(x) is in C iff c ( x ) h ( x ) =  O. (15) 

The complete factorization of Z 1 5  - -  1 in GF(2)[x] is given by 

(X -t- 1 ) ( X  2 n t- X -1- 1 ) ( X  4 n t- X -1- 1 ) ( X  4 n t- X 3 -~- 1 ) ( X  4 "1- X 3 + Z 2 -~- X -I- 1 ) .  

Taking g(x) = (x + 1)(x 4 + x + 1) gives a [15, 101 code of which the minimum distance 
has not been determined yet. 

To be able to say something about the minimum distance of cyclic codes, it will be 
necessary to consider an extension field of GF(q) in which x n - 1 factors completely 
into linear factors. This will be GF(q m) with n dividing qm _ 1. Therefore one has to 
assume (as will be done from now on) that q and n are coprime. Let w be a primitive 
element in GF(qm).  Then a = o.1 ( q ' ~ - l ) / n  will be a primitive n-th root of unity in 
aF(q m) and 

n - 1  

x -l- I I  . 
i=0  

It follows that the generator polynomial 9(x) of a q-ary cyclic code C of length n factors 
into 

g(x) = II  ( x -  
i E I  

over GF(qm),  where I is a subset of {0, 1 , . . . ,  n -  1 }, called the defining set of C with 
respect to a. 

Let f ( x )  be an irreducible q-ary polynomial dividing z n - 1 and let a i be a zero 

of f ( x )  in GF(qm).  It is well known that its conjugates a iq, a iq2,.., are also zeros of 
f ( x ) .  Of course the exponents have to be reduced modulo n, since a n = 1. The set 
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{iq j mod n I J = 0, 1 , . . . }  consisting of the exponents modulo n of these conjugates is 
called the cyclotomic coset Ci of i modulo n. 

The set of all conjugates of the zero c~ i of an irreducible polynomial f ( x )  gives the 
complete factorization of f ( x )  into linear factors: 

s(x): II 
lEVi 

This polynomial f ( x )  is called the minimal polynomial of c~ i and will be denoted by 

What  we have shown above is that a generator polynomial of a cyclic code is the 
product of some minimal polynomials and that the defining set of  a cyclic code is the 
union of the corresponding cyclotomic cosets. A necessary and sufficient condition for 
this is that the defining set I has the property i E I =~ qi E I, where qi of course has to 
be reduced modulo n. 

EXAMPLE 3.4 (To be continued). Let q = 3 and n = 11. To find the smallest extension 
field of G F ( 3 )  that contains the 11-th roots of unity, one has to determine (the smallest) 
m with 11 [ (qm _ 1). One obtains m = 5. So 

10 

x "  - 1 = H ( x -  c~i), 
i--O 

where c~ = w (3s-1)/ll for some (each) primitive element w in GF(35) .  
There are three cyclotomic cosets. The first is Co = 0, giving rise to the ternary 

polynomial too(x) = x -  1. The other two are 

C1 = { 1 , 3 , 9 , 5 , 4 }  

and 

C_l = ( 2 , 6 , 7 ,  10, 8}. 

They correspond to the irreducible, ternary polynomials 

m l ( x ) - -  ( x - -  o t ) (x - -  ot 3 ) ( x -  o~ 9 ) ( x -  o~ 5 ) ( x -  c~ 4) 

= x 5 + x 4 - x 3 + x 2 - 1 

and 

m - l ( X ) - -  ( x -  o~ 2 ) ( x -  o~ 6 ) ( x -  o~ 7 ) ( x -  ot 1 0 ) ( x -  o~ 8) 

---~ X 5 -- X 3 4- X 2 -- X -- 1 

(or the other way around depending on the choice of w). 
The code generated by ml  (z) (or by m - i  (z)) has dimension k - 6. 
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In view of the above it is sufficient to give just one element of each cyclotomic coset in 
the defining set I -- {il, i 2 , . . . ,  it}. One now has the following equivalent descriptions 
of the cyclic code in Vn (q) with defining set 1: 

C =  {c(x) l m i ( x  ) divides c(x) for all i in I} ,  (16) 

C = {c(x) lc(a  i) = 0 for all i in I} ,  (17) 

C = {c_ E Vn(q)[Hc  T = 0 T } ,  (18) 

where 

n 

1 O~ il O~ 2il . . . . . .  Cg (n-1) i l  

i c~i2 oL2i2 . . . . . .  OL(n-- 1)i2 . 

o~it O~2il . . . . . .  t ~ ( n - 1 ) i t  

Let a be a primitive element in GF(2m). Clearly the n = 2 m -  1 elements a i, 0 <. i < n, 
are all distinct. It follows from (18) that the binary cyclic code of length n with defining 
set {1}, which is generated by ml (x), is in fact a Hamming code. 

The next (very general) class of cyclic codes will have certain guaranteed minimum 
distance properties. This class is named after R.C. Bose, D.K. Ray-Chaudhuri and A. Hoc- 
quenghem (the first two [9] found this class independently of the last [25]). 

DEFINITION 3.5. Let c~ be a primitive n-th root of unity in an extension field of GF(q) 
and let 1 be the defining set of a q-ary cyclic code C of length n. 

If I contains d s c n -  1 consecutive integers (taken modulo n), C is called a BCH 
code of designed distance dBcn.  

If I contains { 1 , 2 , . . . ,  dBCH-- 1 } as a subset, the code C will be called a narrow-sense 
BCH code. If n = qm _ 1, the BCH code C is called primitive. 

The justification of the notation dBCH will be given in the following theorem. 

THEOREM 3.6 (BCH bound). The minimum distance d of a BCH code with designed 
distance d s c n  satisfies d >~ dBCH. 

PROOF. Let I contain {i + 1, i + 2 , . . . ,  i + dBCH -- 1 }. Then the parity check matrix H 
contains the following dBCH -- 1 rows: 

n ~ 

1 oL/+1 oL 2(i+1) . . . . . .  oL ( n - 1 ) ( i + l )  

1 oL i+2 OL 2(i+2) . . . . . .  O~ ( n - l ) ( i + 2 )  

. ~ . 

1 Ol. i + d B c H - I  OL 2 ( i + d B c H - 1 )  . . . . . .  OL ( n - 1 ) ( i + d B c H - 1 )  

Now the determinant of any (dBcH -- 1) • (dBcH - -  1) submatrix of H is a nonzero 
Vandermonde determinant. It follows from Theorem 2.9 that the BCH code has minimum 
distance at least equal to dBCH. !-'] 
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How to decode up to e B C H  - -  [ ( d B c H  - -  1)/2] errors will be discussed in the next 
section. There are many cyclic codes with a minimum distance that is actually more than 
guaranteed by the BCH bound. This led researchers to look for techniques improving 
on the BCH bound. See [23, 47] and [32]. A related question of course is how to 
decode e errors algebraically if the cyclic code is indeed e > eBCH error-correcting. For 
some results, see [ 17] and [ 10]. A third open question is the information rate and error- 
correcting capability of BCH codes when n tends to infinity. See [3] and [4], Chapter 12. 

EXAMPLE 3.4 (Continued). Since the cyclic code C in Example 3.4 has a defining set 
containing 3, 4 and 5, its minimum distance is at least 4. Let G be the generator matrix 
of C consisting of six cyclic shifts of g(x) = rn~ (x). Add as 12-th coordinate a - 1  to 
each row. This new matrix generates a [12, 6, t> 4] code which is the extended code C ext 

of C. It is in this small example easy to check that C ext is a self-dual code. In particular, 
each word in C ext is orthogonal to itself. Over GF(3)  this means that the weight of 
each codeword in C ext is divisible by 3. Hence C ext is a [12, 6, 6] code and thus C is a 
[12, 6, 5] code. This code is perfect and is the ternary Golay code mentioned earlier. 

Reed-Solomon codes are defined as narrow-sense q-ary BCH codes of length n = q -  1. 
They have many additional properties that will not be discussed here (see [37], Chap- 
ter 10). In many applications RS codes are implemented with q equal to a power of 2, 
say 2 a, so that a bits at a time can be regarded as one symbol in GF(q). 

A very special class of cyclic codes is the following. 

DEFINITION 3.7. Let n be a prime such that n - +1 (mod 8) and let QR and N Q R  
denote the set of quadratic residues resp. quadratic nonresidues modulo n (2 is in QR, 
so QR and N Q R  are closed under multiplication by 2). 

Then the binary cyclic codes of length n with defining set QR resp. QR u {0} are 
both called quadratic residue codes (for short QR codes). 

Let 

q(x) = I I  ( x - a ~ )  and n ( x ) =  I I  ( x - a " ) ,  
rEQR rENQR 

where a is a primitive n-th root of unity. Then x n - 1 factors into (x - 1)q(x)n(x). 
Clearly the dimension of the two QR codes is (n + 1)/2 resp. ( n -  1)/2. Before giving 
bounds on the minimum distance a different property of QR codes will be derived. To 
this end, the coordinates of the QR code will be indexed by the elements in GF(n) and 
the extra coordinate in the extended code by cx~. That the QR code is invariant under the 
cyclic shift S: x --+ x + 1 is obvious. With some more work, one can also show that 
the extended QR code is invariant under the mapping T: x --+ - x  -1. Together, these 
two coordinate permutations generate the projective special linear group PSL(2, n), 
consisting of all mapping x ~ (ax + b)/(cx + d) with a d -  bc = 1. 

LEMMA 3.8. The extended QR code is invariant under PSL(2 ,  n). 
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Since P S L ( 2 ,  n)  is a transitive group, it follows that the number of codewords of weight 
2i - 1 and of weight 2i in the QR code are related by 2i(A2i-1 + A2i) - (n + 1)A2~_l 
(both expressions count the number of ones in the words of weight 2i in the. extended 
code). In particular, A2i-1 -- 0 iff A2i = 0 and hence the minimum distance in the QR 
code is odd. More can be said. 

THEOREM 3.9. The minimum distance d in the QR code with generator polynomial  q(x)  
is odd. Further 

1) d 2 ~>n, 

2) i f  n = - 1  (mod 8), then d 2 - d + 1 >~ n and d - 3 (mod 4). 

PROOF. Consider a codeword c(x)  of (odd) weight d in Q R ,  say 

c(x)  = x i' + z i~ + . . .  + x i~. 

Clearly c(x)  is divisible by q(x) ,  but not by x -  1. 
Let u E N Q R  and consider the coordinate permutation 7r~: i ~ ui  (mod n). Then 

7ru will map c(x)  into a word c ' ( z )  which is divisible by n ( x ) ,  but not by x -  1. Since 
q ( x ) n ( x )  = (x n - 1 ) / ( x -  1), it follows that 

c(x)c'(x) - 1 + x + . - - +  x n-1 (mod x n - 1). 

Since the left hand side has at most d 2 terms (cancellations may occur), the first statement 
follows. 

If n _= - 1  (mod 8), one can take u = - 1  above, so n ( x )  = x ( n - 1 ) / 2 q ( 1 / x ) .  This 
implies that c(x)c '  (x)  has at most d 2 -  d + 1 nonzero terms (d terms give a 1). Moreover 
terms cancel four at a time: if i u - i v  - i u , -  iv, (rood n), also i , , -  i~ _= i v , -  i,,, (mod n). 

[3 

EXAMPLE 3.10. The QR code of length 23 has parameters [23, 12,/> 7] by the above 
theorem. For d = 7, the Hamming bound holds with equality. In other words: this code 
is perfect, 3-error-correcting. It is the binary Golay code mentioned in Section 2. The 
BCH bound in this example would only give d >~ 5. 

A surprising connection between QR codes and projective planes is given by the following 
result (see [50], Chapter 3): 

LEMMA 3.11. Let the minimum distance d o f  a QR code o f  length n, n -- - 1  (mod 8) 
satisfy d 2 - d + 1 = n. Then a projective plane o f  order d -  1 exists. 

PROOF. Continuing with the last part of the proof of Theorem 3.9, define ni as the number 
of nonzero exponents in 1 + x + . . .  + x n -  1 that appear exactly i times as i~, - i~, mod n. 
Clearly the ni are zero for even i. It follows that 

d ( d - 1 ) - ~ i n i  and n - l - ~ n i .  
i odd i odd 
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So equality in d (d -  1) = n -  1 shows that ni = 0 for i ~: 1. in other words: each nonzero 
j modulo n occurs exactly once as a difference of two exponents (the set {il, i 2 , . . . ,  id} 
is a so-called difference set mod n). 

The n • n {0, 1 }-circulant with top row entries 1 at the coordinates iu, 1 <<. u <~ d, 
now is the incidence matrix of PG(2, d -  1). [3 

Apart from determining the actual minimum distance of QR codes, a completely differ- 
ent (and open) problem of course is how to decode QR codes up to their error-correcting 
capability. For some codes this problem has been solved. For the [24, 12, 7] (Golay), 
[34, 16, 8] and [44, 21, 9] (extended) QR codes, the reader is referred to [15, 44], and 
[45], respectively. 

4. Goppa and algebraic geometry codes 

In [37], Chapter 9, Section 5, it is shown that primitive BCH codes are asymptotically 
bad, in the sense that either e/n or R = k /n  tends to 0 for n to infinity. To obtain 
better asymptotical results (and possibly also shorter codes with improved performance) 
a generalization is needed. 

Now it is easy to check that the q-ary narrow sense BCH code of length n with 
designed distance dncH is equivalent under O/--+ O/-l to the code 

I n-~ Ci 
e Un (q)  x --  

i=0 
-__ 0 (mod x d ' c " - l )  ) ,  

where O/is an n-th root of unity in an extension field of GF(q) and where the denomi- 
1 simply should be interpreted as the multiplicative inverse of x - O/i modulo nator z_,~i 

x d B c H  -1" 

DEFINITION 4.1. Let L = {o/o, O/l,..., O/n--l } be a subset of GF(q m) of size n and let 
G(x) be a q-ary polynomial of degree s that is not zero in any of the elements O/i. The 
Goppa code F(L, G) is defined by 

F(L, G) = c e Vn(q) x - o/i 
i=0 

- 0 (mod G(x)) }.  (19) 

Take G(x) = x d s c H - I  and O/i = O/i, 0 <~ i < n, in relation (19) to see that Goppa 
codes contain BCH codes as a subclass. Quite clearly, Goppa codes are linear. 

In the sequel, the coordinates with either be indexed by the numbers i, 0 <~ i < n, or 
by the elements in O/i, 0 <~ i < n -  1. 

THEOREM 4.2. The Goppa code F(L, G) of length n with G(x) of degree s has param- 
eters [n,k >>. n - m s ,  d >~ s + l]. 

PROOF. i) Let __c be a codeword of weight w > 0 and let the nonzero coordinates of _c be 

at coordinates { o/i~ , O/i2,..., O/i~o }. 
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Write the summation in (19) as one fraction. Then, because the denominator has no 
factor in common with G(x), condition (19) is equivalent to 

~(_~) 

a(x)  divides E c i ,  H ( x - a i ~ ) .  
/= l  l~j<<.w, j r  

However  this numerator has degree at most w - 1. It follows that w - 1 ~> s and thus 
(by the linearity) also d ~> s + 1. 

ii) Writing 1 / (x  - c~i), 0 ~< i ~< n - 1, as polynomial 

s - 1  

C (z) = C jJ 
j=O 

modulo G(x) ,  condition (19) can be rewritten as 

n - I  

E ciGi(x) =- 0 (mod G(x)) 
i=O 

or, alternatively, by considering the coefficients of xJ, 0 ~< j <~ s - 1, 

n - 1  

E ciGij = 0 
i=O 

for 0 ~< j ~< s -  1. 

This means that F(L, G) can be defined by s linear equations over GF(q m) and thus by 
<~ ms linear equations over GF(q). Hence, F(L, G) has dimension at least n - ms. 0 

In some cases, much better bounds on the minimum distance can be given than the 
bound in Theorem 4.2. 

T H E O R E M  4.3. Let the defining Goppa polynomial G(x) of the Goppa code F(L, G) be 
a polynomial over GF(2 m) of degree s that has no multiple zeros. Then, /-'(L, G) will 
have minimum distance at least >~ 2s + 1. 

PROOF. Let __c be a codeword of weight w > 0. Note that 

n--I  

i=O 

can be written as f ' ( x ) / f ( x ) ,  with 

n - 1  

i=0  



4 14 H.C.A. van Tilborg 

So equation (19) is equivalent to G(x) divides f ' (x) .  But, because q = 2, f ' (x)  is 
a perfect square. Since G(x) has no multiple zeros, one now has that G(x) divides a 
polynomial of degree (w - 1)/2 and thus w -  1 > 2u >~ 2s. D 

Goppa codes (and thus also BCH codes and Reed-Solomon codes) can be decoded 
by an efficient decoding technique that makes use of Euclid's Algorithm. For the correct 
decoding of a received word r, which is the sum of a codeword _.c and an error pattern 
_e, one needs to know two things: where the errors occurred and what their values are. 

Define the set B of error locations by B = {ai ] ei ~ 0} and for each/3 in /3  the 
corresponding error value eo = ei, where/3 = ai.  The error locator polynomial 0.(x) 
and the error evaluator polynomial 02(x) of the error vector are defined by 

0.(x) = 1-I (x - fl), (20) 
/36B 

w(x) = E eo 1-I (x - 7). (21) 
/36 B 76 B, 7~ 

The error locations are simply the zeros of a(x). The corresponding error value follows 
from e~ = o2(/3)/o''(j3), for/3 E B. So, the decoding problem reduces to finding 0"(x) 
and 02(x) from L, G(z) and the syndrome S(z) defined by 

n - I  

ri (mod G(x)). 
i=0  

The following relation (which can be verified by simply substituting the various defi- 
nitions) plays the key role in determining 0.(x) and w(x). 

S(x)a(x) - w ( x )  (mod G(x)). (22) 

Determining 0.(x) and w(x) from (22) amounts to applying the extended version of 
Euclid's Algorithm to the polynomials G(x) and S(x). This would not uniquely define 
a(x) and w(x), except for the fact that degree (a(x)) = t = IBI, degree(w(x)) < t, and 
g c d ( o ( ~ ) , ~ ( ~ ) )  = 1. 

ALGORITHM 4.4 (Euclid's Algorithm). Let a(x) and b(x) be two q-ary polynomials, 
where degree(a(x)) ~> degree(b(x)). 

Define the sequences of polynomials si(x), ui(x), vi(x) and qi(x), where the degrees 
of si(z) are strictly decreasing, recursively as follows. 

~ o ( ~ )  - a ( ~ ) ,  ~ o ( x )  - 1, vo(x) - O, 

s ,  ( x )  = b ( x ) ,  u l  (x )  = O, vl  ( x )  - 1, 

i = 1 .  
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While si(x) ~ 0 do begin 

i : = i + 1  

write s i -2(x)  = q i ( x ) s i - , ( x )  + si(x),  

Define ui(x)  and vi(x) by 

= + u , ( x ) ,  

end 

n = i .  
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degree(si(x)) < degree(si_, (x)). 

v , _ : ( x )  = q , ( z ) v ,_ ,  + 

Then 

gcd (a(x), b(x)) = 8 n _  1 ( x )  -" U n _  1 ( x ) a ( x )  + V n _  1 ( x ) b ( x ) .  (23) 

A full discussion of the decoding algorithm of Goppa codes can be found in [38]. Here 
it shall presented without the (rather technical) proof. Note that only the vi's play a role 
and not the ui's. 

ALGORITHM 4.5 (Decoding Goppa codes). Let F(L ,  G) be a Goppa code with G(x)  of  
degree s and let r__ = (r0, r l , . . . ,  m - l )  be a received vector. 

1. Compute the syndrome 

n - 1  

ri (mod G(x)) .  
i--0 

2. Apply Euclid's Algorithm to a(x) = G(x)  and b(x) = S(x)  until degree(si(x))  < 
[s/2J for  the first time. Let u be the leading coefficient of  vi(x). Set a(x)  = v i ( x ) / u  
and w(x) = s i (x ) /u .  

3. Find the set B = {13 in GF(qm) i cr(~) = O} of error locations. 
4. Determine the error values eo = w(/3)/a'  (t3) for  all/3 in B. 
5. Determine e_ = (eo, e l , . . . ,  en-1) from ei = e~ if ~ is in B and ~ = ai and ei = 0 

otherwise. 
6. Set c - r - e. 

For BCH and Goppa codes it is known that in some/many cases the actual error-correcting 
capability e is larger than the bound given in Theorem 4.2. For BCH codes it is in some 
cases known how to decode up to e errors when e > eBCH. For Goppa codes results of 
this type are unknown. 

The code constructions thus far were asymptotically bad in the sense that either d i n  --+ 
0 or R = k i n  --+ 0 for n --+ cx). The next theorem shows that with Goppa codes that 
situation is over now. 

THEOREM 4.6. For each q there exists a sequence of  q-ary Goppa codes meeting the 
Gilbert-Varshamov bound. 
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The proof will not be given in full detail but boils down to the following reasoning. 
Take n -- qm, s, d and L = GF(qm). For each word u_u_ of weight w, w < d, there are at 
most [ ( w -  1)/sJ < dis irreducible polynomials 9(x) of degree s over GF(q m) with 
u__ E F(L, 9). So if dis times the volume of a sphere with radius d -  1 is strictly less than 
the total number of irreducible polynomials of degree s over GF(q m), one has shown that 
there are polynomials G(x) left that define Goppa codes I"(L, G) with minimum distance 
at least equal to d. Using well known estimates on the number of irreducible polynomials 
of given degree, one can show that the above mentioned inequality is satisfied if the rate 
of the Goppa code meets the Gilbert-Varshamov bound (asymptotically). 

It is important to notice that Theorem 4.6 still is nonconstructive in the sense that it 
does not say how to choose G(x). Any further results in this direction would be extremely 
important. 

How Goppa codes can be further generalized to yield codes that are asymptotically 
better than the Gilbert-Varshamov [53] will be the final topic of this section. Since 
deep results from algebraic geometry are needed, a full discussion of this important 
development is beyond the scope of this chapter. The reader is referred to [33-35, 39] 
and [55]. Here [35] is followed closely. 

For the class of q-ary Reed-Solomon codes (with parameters In = q, k, d = n -  k + 1]) 
the following yields an equivalent description: 

( ( f (0 ) ,  f(1) ,  f ( c~) , . . . ,  f(c~ n- ')  I f E GF(q)[x], degree(f) < k}, 

where c~ is a primitive n-th root of unity. Yet another notation will be needed. Consider 
X = PG(1, F), the projective line over F,  where F is the algebraic closure of GF(q). 
Its points can be described by coordinates (x, y) with x, y E F and where (x, y) and 
(xz, yz), z ~ O, denote the same point. Points on X with coordinates in GF(q) are called 
rational points. They can be represented by Pi = (ai, 1), 0 ~< i < q, and Q -- (1,0), 
where the elements cei, 0 ~< i < q, form a particular numbering of the field elements 
in GF(q). 

Let "R. be the subset of rational forms a(x, y)/b(x, y) on X (so both a(x, y) and b(x, y) 
are homogeneous polynomials of the same degree) that are defined on each/9/and have 
coefficients in GF(q). Now, the code above can be described by 

{(f(Po), f(Pl), f(P2), . . . , f(Pq-l)  l f = a/b E R., degree(a) < k)}. 

To generalize this description of Reed-Solomon codes, X will now be an irreducible, 
nonsingular projective curve in PG(N, F) of genus 9 (see [39] or [55] for precise 
definitions; here an intuitive concept of X is good enough, 9 is a number uniquely 
determined by X). 

DEFINITION 4.7. A divisor D on X is a formal sum ~ p  onX npP, where the coefficients 
np are integers and only finitely many of them can be nonzero. 

The degree of a divisor D = Y]PonX npP is defined by ~-~PonX np. 

Let f be a nonzero rational function on X and let P lie on X. Then f has order n 
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in P if P is a zero (of f )  of multiplicity n and has order - n  in P if P is a pole of 
multiplicity n. 

EXAMPLE 4.8. Take q = 4, let GF(4)  be generated by w, w 2 + w + 1 = 0, and let F 
be the algebraic closure of GF(4) .  The curve X in PG(2,  F)  is defined by the equation 
x 3 + y3 + z 3 = 0. 

The rational function f = (y2 + yz + z2)/(x 2) has order 1 in (0,w, 1) and order - 2  
in (0, 1, 1). 

Note that in Example 4.8 f can also be written as x/(y  + z), since 

y + z - + + y z  + z = x 3 / ( y  + y z  + 

but that with that description the behavior of f in P cannot be determined. 
For a divisor D = ~ e o n x  npP let s be the linear space of all rational functions f 

on X such that the order of f in any point P on X is at least equal to - n  e. For divisors 
of negative degree s only consists of 0. The Riemann-Roch theorem (a fundamental 
result in algebraic geometry; for a proof see [39], Theorem 2.5) implies that the dimension 
l(D) of s satisfies 

l(D) >~ degree(D) - q + 1. (24) 

Let X be an irreducible, nonsingular projective curve in PG(N, F) of genus g, where 
F is the algebraic closure of the finite field GF(q), and let Pi, 1 ~< i ~< n, and Q be the 
rational points on X. 

DEFINITION 4.9. In the notation of above, choose m such that 2 9 -  2 < m < n. Then 

C -  { f  -- (f(P1), f ( P 2 ) , . . . ,  f(Pn) l f E s  

is called an algebraic geometry code (AG code). 

THEOREM 4.10. The A G code C in Definition 4.9 is a q-ary [n, k >~ m - 9  + 1, d ~> n - m ]  
code. 

PROOF. C is indeed a code over GF(q), since the points Pi are rational and f has its 
coefficients in GF(q). The linearity of C is obvious. 

Consider the codeword 0. The corresponding polynomial f in /2 (mQ)  is in fact in 

s m Q -  P~ . 
i--1 

Since the divisor 

n 

m Q  - ~--~ P~ 
i=1 



418 H. C.A. van Tilborg 

has negative degree, it follows that f = 0, which implies that the dimension of C is 
the same as that of s By the Riemann-Roch theorem, this dimension is at least 
m - g + l .  

Let _.c be a codeword of weight d. The corresponding polynomial f in E(mQ) is zero 
in n -  d points Pi, say Pil, Pi2,.. . ,  Pi,_d, so in fact f is in 

n - d  ) 

s m Q - ~ P i j  �9 
j = l  

Since the divisor 

n - d  

mQ - ~ Pi~ 
i=1 

has degree m -  ( n -  d), which must be at least 0 (otherwise f would be 0), one may 
conclude that d > / n -  m. [3 

It is quite obvious that the particular choice of X above is vital in finding good AG 
codes. For the construction of asymptotically good AG codes, an infinite sequence of 
curves X is necessary. In [53] a sequence is described for q = p2r such that for n --+ ee 

g 1 
- -  -'+ ")/ - -  q l / 2 n - - 1  

For the AG codes defined by this sequence, write 5 = d/n, 7 = g/n and R = k/n  for 
n -+ c~. Then 

R = k )  m _  g 
n n n 

d g 1 
f>1 = 1 - ~ - ' y =  1 - t ~ - ~ .  (25) 

n n q l /2  _ 1 

It is now a matter of simple calculus that for q >I 49 values of R satisfying inequality (25) 
lie above the asymptotic version of the Gilbert-Varshamov bound in Theorem 2.4 in an 
appropriate subinterval of [0, ( q -  1)/q] for ~. In [35] it is shown that also the dual codes 
of the AG codes defined above exceed the Gilbert-Varshamov bound. 

That algebraic geometry codes can also be decoded efficiently, which may very well 
make them of practical use in the near future, was demonstrated for the first time in [26]. 

5. Further reading 

For the interested reader, quite a few books are available nowadays. A (very) brief 
discussion of them will be given here. 

[ 1 ] tries to minimize the role of algebra by presenting the concepts in coding theory in 
terms of gates, shift registers and elementary linear algebra; well suited for undergraduate 
students in electrical engineering and computer science. 
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[2] contains a series of papers presented at a conference on Cryptography and Coding 
in 1986. 

[4] is a thorough introduction to coding theory with an excellent chapter on finite 
fields; it also includes ingenious circuits showing how to implement various functions. 

[5] contains a collection of (reprints of) key papers in coding theory. 
[6] is a very well written introduction to coding theory, discussing also rather new 

developments as combined coding and modulation; does not assume a deep background 
in mathematics and is, as such, well suited for electrical engineers. 

[7] contains a collection of 35 "benchmark papers" on various aspects of algebraic 
coding theory. 

[8] assumes an introductory knowledge of modern algebra; it contains a chapter on 
group codes for the Gaussian channel. 

[ 11 ] is based on a series of lectures attended by mainly design theorists to present the 
(for them) relevant developments in graph theory and coding theory. 

[12] is a textbook on communications in general with chapters on coding theory and 
also cryptography. 

[13] is about digital communication but with an emphasis on coding, including soft 
decision decoding and convolutional codes. 

[18] is intended for graduate students in electrical engineering; it discusses various 
channels, some coding theory and also contains a chapter on source coding. 

[21] is an undergraduate textbook, well suited for students in electrical engineering. 
[24] is an elementary treatment of the theory of error-correcting codes; well suited for 

undergraduates in mathematics. 
[28] discusses error-control coding in general, so also burst-correcting codes and con- 

volutional codes; it includes a chapter on finite geometry codes. 
[29] is very suited for a graduate course for students in mathematics, but [31] is a 

more up to date replacement for that. 
[31] is well suited for a graduate course for students in mathematics; it contains a 

large chapter on the nonexistence of perfect codes. 
[34] is both an introduction to coding theory and algebraic geometry. 
[37] The Bible of algebraic coding theory with over 1000 references. 
[38] is an excellent graduate textbook on information theory and coding theory. 
[39] is well suited for a course in algebraic geometry ending with a discussion of 

algebraic geometry codes. 
[40] is the second edition of one of the earliest books on coding theory; it also covers 

arithmetic, burst correcting, and convolutional codes, it contains valuable tables on cyclic 
codes and on irreducible/primitive polynomials. 

[41] puts emphasis on the connections between coding theory and design theory and 
can be used for undergraduate students in mathematics. 

[43] is about codes for computer memories; it includes a chapter on asymmetric and 
unidirectional codes. 

[46] explains how the basic concepts and techniques of error control are applied to 
digital transmission and storage systems. 
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[49] is a textbook discussing topics like cyclic codes, convolutional codes, burst cor- 
recting codes, but also combined coding and modulation and some error-detection meth- 
ods. 

[51] is a textbook for coding theory, suited for students in mathematics, computer 
science and electrical engineering. 

[55] gives a introduction to algebraic curves, discusses algebraic geometry codes and 
the relevant asymptotic results. 

[56] gives a good introduction to linear codes; background in abstract algebra is not 
assumed; it emphasizes the practical considerations of efficient encoding and decoding. 

[57] is based on a course on the mathematics of communication theory for undergrad- 
uate students; it covers error-correcting codes and cryptography (including a chapter on 
complexity theory). 
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1. Basic concepts and examples 

There are many concepts of universal algebras generalizing that of a ring (R, +,- ) .  
Among them are those called semirings, which originate from rings, roughly speaking, 
by cancelling the assumption that (R, +)  has to be a group. Depending on how much other 
ring-like properties are also cancelled or added, various different concepts of semirings 
(S, + , - )  have been considered in the literature since 1934, when the first abstract concept 
of this kind was introduced by Vandiver [203]. (The list of papers given in our references 
is by no means complete, and we thank K. Glazek for his helpful collection [59].) 
Nowadays, semirings with different properties have become important in Theoretical 
Computer Science as we will see below. According to the following definition, we use 
the term semiring here in a rather general meaning and assume further properties explicitly 
if it is necessary or advisable to smooth our presentation. 

DEFINITION 1.1. a) A universal algebra S = (S, +,  .) with a nonempty set S and two 
binary operations, written as addition and multiplication, is called a semiring if (S, +)  
and (S,-) are arbitrary semigroups such that a(b + c) = ab + ac and (b + c)a = ba + ca 
hold for all a, b, c E S'. In particular, (S, + , - )  is called a proper semiring if (S, +)  is not 
a group. The meaning of an additively or multiplicatively commutative semiring is clear, 
and (S, +,  .) is called commutative if it has both properties. 

b) We denote by IAI the cardinality of a set A and call IS' I the order of the semiring 
(S', +,  .). A semiring (S, +, .) is called trivial if IS'I = 1 holds. 

c) If (S, +)  [or (S, .)] has a neutral element, it is called the zero o [the identity e] 
of the semiring (S, +,-) .  Notions as left zero and left identity are used accordingly. An 
element O of a semiring (S, +,  .) is called multiplicatively absorbing if Oa = aO = 0 
holds for all a C S. (If such an element exists, it is unique and satisfies O + O = O.) 
Note that the zero o of a semiring (S, + , - )  need not be multiplicatively absorbing (cf. 
Example 1.9 c)). Otherwise we call o briefly an absorbing zero. 

REMARK 1.2. a) Except from some remarks, we always consider semirings as univer- 
sal (2, 2)-algebras, and the class of all semirings clearly forms a variety. Consequently, 
homomorphisms (or morphisms) and congruences of  semirings are determined (cf. Def- 
inition 6.1). Moreover, each subalgebra of  a semiring is a subsemiring, and any direct 
product of  semirings is again a semiring (cf. Remark 3.13). 

b) Whereas (associative) rings are exactly those semirings (S, +,  .) for which (S, +)  
is a commutative group, there are also various semirings with a noncommutative group 
(S, +).  They have been investigated as distributive nearrings (cf. Remark 1.11) or "ad- 
ditively noncommutative rings" (cf. [81,215] and [216]). 

c) Some authors, e.g., [53, 125] and [142], use the term hemiring for additively com- 
mutative semiring (S, +,-) .  Sometimes, e.g., in [238, 26] and [197], also halfring is 
used if (S, +)  is commutative and cancellative and hence (S, +,  .) embeddable into a 
ring (cf. Theorem 5.7). In both cases, assumptions concerning a zero of (S, +,  .) may be 
added or not. Terms of this kind are hard to translate in other languages, which is one 
reason not to use them here. 
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d) Out of the scope of this chapter are topological semirings, defined by the assumption 
that both operations are continuous with respect to a (Hausdorff) topology (cf., e.g., 
[33, 35, 183, 154, 96] and [27]). 

DEFINITION 1.3. a) An element a of a semiring (S, + ,  .) is called additively [multiplica- 
tively] idempotent if it satisfies a + a = a [aa = a]. If all elements a E S have this 
property, (S, + ,  .) is called an additively [multiplicatively] idempotent semiring. 

b) Let (S, + ,  .) be a semiring with a zero o [an identity e]. If elements a, b E S' satisfy 
a + b = b + a = o [ab = ba = e], we write b = - a  [b = a -1 ] and call - a  the opposite 
element of  a [a -1 the inverse of  a]. 

c) For each semiring (S, + ,  .) we introduce the notation 

S * =  I S \ { ~  if (S, + ,  .) has a zero o 
S otherwise. (1.1) 

d) A semiring (S, + ,  .) with a zero o is called zero-sum free if a + b = o implies 
a = b = o for all a, b E S, equivalently, if (S*, +)  is either empty or a subsemigroup of 
(s, +). 

e) A semiring (S, + ,  .) is called semisubtractive if for all a,b E S such that a r b 
there is some z E S satisfying a + z = b or z + a = b or b +  z = a or z + b = a. 

REMARK 1.4. We illustrate the various elementary statements on calculations with ele- 
ments in semirings (cf. [165] or [89]) by the following one. If (S, + ,  .) has an absorbing 
zero o and a E S has an opposite element - a  E S, then all elements as and sa for 
s E S have an opposite, namely ( - a ) s  = - ( a s )  and s ( - a )  = - ( sa ) .  

DEFINITION 1.5. A nontrivial semiring (S, + ,  .) is called a semifield if (S, .) is a group 
or (S*,-)  is a subgroup of (S, .) ,  the latter clearly if (S, + , . )  has a zero o. 

REMARK 1.6. a) Whereas a zero of a semiring may also be its identity, one easily checks 
(cf., e.g., [89], 1.5) that a nontrivial semiring such that (S, .) is a group has no zero. 
Hence, using (1.1), the two cases of the above definition can be combined: a nontrivial 
semiring (S, 4 ,  .) is a semifield iff (S*, .) is a subgroup of  (S, .). 

b) Since the multiplication of a semifield is not assumed to be commutative, also the 
term division semiring is used instead of semifield (cf., e.g., [30, 193] and [196]). 

c) Sometimes also semirings consisting of one single element are considered as semi- 
fields. 

EXAMPLE 1.7. a) Clearly, each ring is a semiring and each (not necessarily commutative) 
field is a semifield. As usual, we denote by (Z, +,  .) the ring of integers and by (Q, + , - )  
and (R, + , - )  the fields of rational and real numbers. 

b) The positive as well as the non-negative integers form, again with the usual oper- 
ations, semirings (N, 4 , - )  and (No, 4 ,  .). Likewise we denote by (H, 4 ,  .) and (P, + ,  .) 
the semifields of positive rational and real numbers, and by (H0, + ,  .) and (P0, 4 ,  .) the 
corresponding semifields including the number 0. 

c) Let in be a transfinite cardinal and K the set of all cardinals less or equal to m. Then, 
with the usual operations of cardinals, (K, + ,  .) is a commutative semiring containing 



Semirings and semifields 429 

(No, +,  .) as a subsemiring. Note that each transfinite cardinal is idempotent with respect 
to both operations and that m is additively absorbing. 

EXAMPLE 1.8. a) Each distributive lattice (L, U, N) -- (L, +,  .) (and likewise (L, N, U) = 
(L, +,  .)) is a semiring, clearly commutative and idempotent with respect to both opera- 
tions. It has a zero or an identity iff it is bounded from below or above, respectively. 

b) A special case is the semiring (P(X),  U, N) of all subsets of a set X. For IXI = 1, 
it is a semifield consisting of an absorbing zero o = O and an identity e = X satisfying 
e + e = e. This semifield is important for various applications and mostly called the 
Boolean semiring B instead of Boolean semifield. 

EXAMPLE 1.9. a) Define on R another addition by a @ b = min{a, b} with respect to the 
usual total order on R and consider the usual addition a-+- b as multiplication a | b -- a + b. 
Then (R, @, | = (R, min, +) is a semifield with 0 as identity. Adjoining an absorbing 
zero (cf. Lemma 3.1), denoted in this case as c~, the semifield (R U {cx~}, min, +)  is 
one of the most important path algebras. It is used to deal with the problem of "shortest 
paths" in a finite directed valuated graph (cf. Definition 10.6). 

b) Likewise one obtains the semifields (R, max,-Jr) and (R U { -oo} ,max ,  +).  The 
latter is the path algebra corresponding to the problem of "critical paths", and also called 
the schedule algebra. 

c) Another semifield is obtained on the set P0 of non-negative real numbers by 
(P0, max, .), where �9 denotes the usual multiplication. It has 1 as identity and 0 as absorb- 
ing zero. Here the subsemiring ([0, 1], max, .) is a path algebra corresponding to the prob- 
lem of "paths of greatest reliability". Other interesting subsemirings are ([c, c~), max, .) 
for each c >/ 1, forming obviously a chain of subsemirings. Each of it has c as its spe- 
cial zero, an element which is cancellable in ([c, oe), .) and hence far away from being 
absorbing. In particular, the identity 1 of ([1, oe),max, .) is at the same time the zero of 
this semiring. (For semirings with such a "double-neutral" cf. [84].) 

EXAMPLE 1.10. a) Each semigroup (S, .) can be considered as a semiring (S, +,  .) to- 
gether with the left absorbing addition on S, defined by a + b = a for all a, b E S. 

b) Likewise, each idempotent semigroup (S, +)  is part of a semiring (S,-t-,-), where 
the multiplication can be defined by a .  b -- a for all a, b E S. 

c) A semiring (0% + , . )  is called a mono-semiring (cf. [240] and [84]) if addition 
and multiplication are the same operation. Obviously, mono-semirings correspond to 
normal (or distributive) semigroups (S, .) defined by abc= abac and bca = baca for all 
a, b, c E S (cf. [ 116, 79] and [ 100]). 

We mention already here that additively commutative semirings arise in a natural way, 
from endomorphisms of a commutative semigroup (o% +), and that each semiring of this 
kind is isomorphic to such a subsemiring of endomorphisms (cf. Result 7.5 b)). 

REMARK 1.11. a) If one demands in Definition 1.1 only one of both distributive laws, one 
obtains the concept of a (left or right distributive) seminearring (S, +,  .) and correspond- 
ingly as in Definition 1.5 that of a seminearfield (cf., e.g., [206, 205, 217] and [220]). 
Seminearrings and seminearfields share many properties with semirings and semifields, 
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and allow a common treatment of the latter and of nearrings and nearfields, defined by 
the assumption that (S, + )  is a group (cf. [155]). 

b) There are even concepts of semi(near)rings in the literature (e.g., [238, 221] and 
[222]) such that multiplication or addition is not assumed to be associative. 

c) Note that in papers dealing with projective planes sometimes another concept of 
"semifield" is used, which means in fact "nonassociative division ring" (S, + ,  .), i.e. 
(S*,-)  is a loop (cf., e.g., [97]). 

2. Cancellativity and zero-divisors 

DEFINITION 2.1. a) An element a of a semiring (S, + ,  .) is called additively [multiplica- 
tively] left cancellable if a + b = a + c =~ b = c [ab = ac =,. b = c] holds for all b, c E S, 
i.e. if a is left cancellable in the semigroup (S, +)  [(S', .)]. 

b) A semiring (S, + ,  .) is called additively [multiplicatively] left cancellative if each 
a E S [a E S'*, cf. (1.1)] is additively [multiplicatively] left cancellable. 

c) The corresponding concepts of right cancellativity and (two-sided) cancellativity 
are obvious. 

RESULT 2.2. a) I f  each element of a semiring (S, + ,  .) is additively cancellable from at 
least one side and if (S, +, .) has a zero o, then o is absorbing. 

b) Let (S, +, .) be additively cancellative. Then ab + cd = cd + ab holds for all 
a, b, c, d E S. Hence, if there is one element in S which is multiplicatively cancellable 
from one side, e.g., a one-sided identity, then (S, +) is commutative. 

DEFINITION 2.3. Let (S, + , . )  be a semiring with a (not necessarily absorbing) zero o. 
An element a E S is called a left zero-divisor of  (S, +, .) if ab = o holds for some b r o 
of S'. Moreover, (S, + ,  .) is called zero-divisor free if it has no left (and hence no right) 
zero divisors different from o, equivalently, if (S*, .) is either empty or a subsemigroup 
of (S, .). 

Note that a nonabsorbing zero o need neither be a left nor a right zero-divisor, and 
apply the next result also to the case where o is also the identity of (S', + , - ) .  

RESULT 2.4. For a semiring (,g, + ,  .) with a zero, a multiplicatively left cancellable ele- 
ment is not a left zero-divisor In particular, a multiplicatively left cancellative semiring 
is zero-divisor free. The converse statements (well known to be true for  rings) do not 
hold. 

REMARK 2.5. Concerning the latter, there are (even semisubtractive and additively com- 
mutative) semirings with an absorbing zero which are multiplicatively right cancella- 
tive and hence zero-divisor free, but not multiplicatively left cancellative. For example, 
(P0, max, .) with the multiplication defined by a.b = a for all a, b E P and a.0 = 0 .a  = 0 
for all a E P0 is such a semiring. However, suitable assumptions make the situation more 
ring-like (for b) and c) below cf. [86], w and w 
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RESULT 2.6. a) Let (S, + , - )  be a semiring with zero which is additively cancellative 
and semisubtractive. Then a E S is not a left zero-divisor i f f  it is multiplicatively left 
cancellable. Consequently, such a semiring is multiplicatively left cancellative i f f  it is 
zero-divisor free and hence iff  it is multiplicatively right cancellative. 

b) Let (S, §  have a zero and zero-sums. Then (S, § is multiplicatively left can- 
cellative i f f  it is multiplicatively right cancellative. 

c) Let (S, +, .) be a finite semiring with an absorbing zero which is zero-divisor free. 
Then (S, +, .) is either zero-sum free or a ring (and hence a commutative field). 

The following theorem characterizes multiplicatively left, right and two-sided cancella- 
tive semirings and shows that there are nine possible classes for those semirings, each of 
which is in fact not empty (cf. [219] and [89], 1.4). Typical examples for the two-sided 
class corresponding to b) are the semirings ([c, c~), max,-) considered in Example 1.9. c). 

THEOREM 2.7. A nontrivial semiring (S, § .) is multiplicatively (left) cancellative if f  one 
o f  the fol lowing statements holds: 

a) (,5', § .) has no zero, and (S, .) is (left) cancellative. 
b) (S, § .) has a zero, and (S, .) is (left) cancellative. 
c) (S, § .) has an absorbing zero, and (S'*, .) is a (left) cancellative subsemigroup 

of(S,-) .  

3. Elementary extensions of semirings 

By an extension (T, §  .) o f a  semiring (S, §  .) we mean a semiring (T, § .) containing 
(S, +,  .) as a subsemiring. At first we state that an absorbing zero can be adjoined to any 
semiring, and similarly a double-absorbing element c~. 

LEMMA 3.1. Let (S, +,  .) be a semiring and z q~ S. Extend the operations on S to those 
on T = S U { z }  by z + a = a + z = a and z . a = a . z = z f o r  all a E T. T h e n ( T , + , . )  
is an extension o f  (S, +, .) with z as absorbing zero. Clearly, (T, § .) is zero-sum free 
and zero-divisor free. 

REMARK 3.2. a) Omitting trivial statements concerning commutativity of the operations 
and the existence of an identity we only state that (T, +,  .) is additively cancellative iff 
(S, +,  .) is and has no zero os. Moreover, (T, +,  .) is multiplicatively (left) cancellative 
iff (S, + , - )  is and satisfies a) or b) of Theorem 2.7 or IS[ - 1. 

b) Clearly, Lemma 3.1 is extremely useful, and semirings with an absorbing zero are 
the most important ones. However, it does not make it superfluous to investigate also 
other semirings (cf., e.g., [ 132, 133, 161, 162] and [ 145]), in particular those ones with 
a zero which is not absorbing or only absorbing from one side. 

LEMMA 3.3. Let (S, +,  .) be a semiring and cx~ ~ S. Extend the operations on S to those 
on T = SU {cxD} by :x~ + a = a + c~ = c~ and c~ . a = a . c~ = cx~ fo r  all a E T.  Then 
(T, + , - )  is an extension o f  (S, +,  . ) fo r  which the element c~ is absorbing with respect 

to both operations. 
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For several applications it is more important to have semirings with an absorbing zero o 
and an element oo which is double-absorbing with the exception of o.  oo = c o - o  = o. 
Here we state (cf. [226], w 

LEMMA 3.4. Let (S, + ,  .) be a semiring with an absorbing zero o and cx3 ~ S. Extend 
the operations on S; to those on T = S tO {oo} by 

c ~ + a = a + c o  = c~ f o r a l l a E T ,  

cx~ . a = a . cx~ = cx~ for  all a E T \ {o}, and c x ~ - o = o - c ~ = o .  

 hen (T, +, .) is semiring and hence extension of (S, +, .) as claimed above iff 
(S, +, .) is zero-sum free and zero-divisor free. 

Next we deal with the embedding of a semiring (5', +,  .) into one with an identity. 
I f  (S, +, .) is additively not commutative, this is not always possible. Counter-examples, 
necessary and sufficient conditions and corresponding constructions are given in [66, 73] 
and [227]. However, for each semiring with commutative addition there exist extensions 
with an identity. This follows from Lemma 3.1 and the following construction which, in 
the case of rings, is due to Dorroh [48]. 

LEMMA 3.5. Let (S', +,  .) be an additively commutative semiring with an absorbing zero o 
and (No, +,  ") the semiring of  non-negative integers. Define on D -- No • S addition and 
multiplication by (n, a ) + ( m ,  b) = ( n + m ,  a+b) and (n, a) . (m,  b) = (nm,  ma+nb+ab) ,  

m where ma  means ~-'~i=l a for  m E No and a E S. Then (D, +, .) is an additively 
commutative semiring with (0, o) as absorbing zero and (1, o) as identity, and a ~-+ (0, a) 
defines an embedding of  (S, +, . )  into (D, +,.) .  

REMARK 3.6. Let us call this semiring D the Dorroh-extension of S. Corresponding to the 
same situation for rings (cf. [207]), the Dorroh-extension itself is in general not the right 
one to reduce statements on a semiring S without an identity to those with an identity. 
However, for each minimal extension T of S with an identity eT there is an epimorphism 
~: (D, +,  .) --+ (T, -+-, .) leaving S elementwise fixed, and a suitable epimorphic image T 
of this kind may share more properties with S than D does. For example, if S is 
multiplicatively cancellative, D is in general not, whereas some (uniquely determined) 
T has this property (cf. [194]). For more details also in the additively noncommutative 
case and the concept of the characteristic of  an arbitrary semiring (involved in these 
questions) we refer to [64, 65] and [218]. 

Next we turn to matrices over a semiring, defined as in the case of rings: 

LEMMA 3.7. Let (S, +,  .) be an additively commutative semiring and Mn,n(S)  the set o f  
all n x n-matrices over S. Then, provided with the usual operations, (Mn,n(S), +,  ") is a 
semiring. For lSl >/2 and n >1 2, the multiplication on Mn,n(S)  is neither left nor right 
cancellative and, apart from very restrictive assumptions on (S', +,-) ,  not commutative 
either. 
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REMARK 3.8. a) If S is nontrivial and has an absorbing zero, the same holds for Mn,n (S), 
and Mn,n (S) has zero-divisors if n />  2. Under these assumptions, an identity of S yields 
the usual identity E of Mn,n(S).  

b) The assumption in Lemma 3.7 that (S, +)  is commutative avoids all difficul- 
ties concerning the associativity of the multiplication in Mn,n(S).  Moreover, define 
(Mn,n(S),  +, ") as above over an arbitrary semiring (S, +,  .) and assume that S has an 
absorbing zero and an identity. Then (Mn,n(S),  ") is associative for some n ~> 2 only if 
(S, +)  is commutative. 

c) A hard to prove result is due to [168]: Let S be a commutative semiring with 
absorbing zero and identity and A, B E Mn,n(S).  Then A B  = E implies B A  = E. 

Now we consider polynomial semirings and other constructions of semirings. 

DEFINITION 3.9. Let S = (S ,  +,  .) be an additively commutative semiring with an ab- 
sorbing zero o and an identity e ~ o. Then an element x of an extension (T, + , - )  of 
(S, +,  .) is called an indeterminate over S if it has the following properties: 

i) ax -- xa holds for all a E S as well as ex -- x. 
ii) n n ~,~=o a~x~' = Y'~,=o b~'x'~ for a~, b~ E S implies a~, = b~, for all u = 0 , . . . ,  n. 

For each x of this kind, the subset 

S i x ]  = a ~ , z  ~ 

b'--0 

a~ES, nENo} C_T 

forms a subsemiring (S[x], +,  .) of (T, + , - )  and an extension of (S, +,  .), called the 
polynomial semiring over S in the indeterminate x. 

THEOREM 3.10. For each semiring S as above, such a polynomial semiring Six] exists 
and is, up to isomorphisms leaving S elementwise fixed, uniquely determined. 

REMARK 3.11. a) From ii) it follows that ~-]~=o c,x~ = o always implies c~, = o for all 
u - 0 , . . . ,  n. For semirings, however, the latter does not imply ii). 

b) The proof of Theorem 3.10 as well as further properties of polynomial semirings 
are more or less similar to the ring case (cf. [89], II.1). The same holds for polynomial 
semirings S[xl, X 2 , . . . ,  Xn] or even S[X] in a set X = {xi [i  E I} ~- O of independent 
indeterminates xi over S. Each polynomial semiring S[X] can also be obtained as the 
semigroup semiring over S of the free commutative semigroup with identity generated 
by X (cf. Example 9.3). 

REMARK 3.12. As known for universal algebras, each variety V of semirings contains for 
any set X ~ 0 a free V-semiring (Fv,x ,  +, ") over X .  For the variety V of all semirings, 
an elementary construction of these free V-semirings was given in [67]. For commutative 
semirings with an absorbing zero and an identity, considered as a variety V of (2, 2, 0, 0)- 
algebras, the free V-semirings over X = {xi I i E I} are just the polynomial semirings 
S[X] considered above (cf. also [15]). 
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REMARK 3.13. As already mentioned, the direct product of a family ((S/, +, "))ieI of 
arbitrary semirings is again a semiring (T, +,  .). It is defined in the usual way on the 
Cartesian product 

T:HSi 
{61 

by pointwise operations such that the projections ~i: T ~ S become epimorphisms 
7ri: (T, +,  .) --+ (Si, +,  .). However, injective homomorphisms 

ti: (Si, +,  .) -+ (T, +, .) 

can be defined only in the case that each (S i, +, .) has an element si which is idempotent 
with respect to both operations, for instance an absorbing zero oi. In the latter case, 
(T, +,  .) can be considered as an extension of each (Si, +,  .). 

REMARK 3.14. Sometimes it is useful to consider an inflation (T, + , . )  of a semiring 
(S, +,  .). According to the corresponding concept for semigroups (cf. [43], Chapter 3), 
associate to each a 6 S a set Ta such that all sets Ta and S are mutually disjoint. If 
Ta # 0, the elements of Ta are called shadows of a. Extending the operations of S to 

by a + b' = a' + b = a' + b' = a + b and a .  b' = a ' .  b = a ' .  b' = a .  b for all a ,b  c S, 
a' 6 Ta and b' 6 Tb, one obtains the extension (T, +, .). 

REMARK 3.15. Other constructions of semirings and semifields start with a set of disjoint 
semigroups (S~,, +)  [or semirings or rings (Sx, + , . ) ]  for A 6 A, where (A, +,  .) is 
assumed to be an additively [and multiplicatively] idempotent semiring. Depending on 
further assumptions, various possibilities have been investigated to extend the given 
operations to those on 

T=US~ 
A6A 

in such a way that (T, +,  .) is a semiring and ax ~ A for all ax E Sx c_ T defines 
an epimorphism of (T, +,  .) onto (A, +, - )  (cf., e.g., [210, 75, 57, 170, 58, 14, 15] and 
[159]). 

4. More about semifieids 

REMARK 4.1. Besides the field of order 2 and the Boolean semifield (cf. Example 1.8b)) 
there are four other nonisomorphic semifields (S, +,  .) of order 2 which have a zero. The 
latter are given by the tables: 
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+ o e 

0 e 

e e 

�9 o e 

o o e 

e e e 

�9 0 e 

o e e 

e e e 

�9 o e 

o o o 

e e e 

�9 0 e 

o o e 

e o e 

For each of these semifields, the identity e of the group (S*,-) - ({e},.) is neither the 
identity of (S, + , - )  nor cancellable in (S, .), and the zero o is not absorbing�9 Fortunately, 
things become much better if one assumes [5'*[ ~> 2. However, these four exceptional 
semifields show that the following two field-like theorems are not trivial�9 In fact, some 
proofs (cf. [208] and [221]) are even somewhat sophisticated. 

THEOREM 4.2. Let (S, +, .) be a semifield such that [S*[ ~> 2. Then the identity e o f  
(S*, .) is the identity o f  (S, +, .), and (5', +,  .) is multiplicatively cancellative. I f  (S, +, .) 
has a zero o, it is absorbing and (S, +,  .) is zero-divisor free. 

THEOREM 4.3. Let (S', +,  .) be a semiring such that IS*l/> 2. Then (S', +,  .) is a semifield 
iff one o f  the following statements holds: 

a) (S, +, .) has an identity e, and each a E S* is invertible in (S, .). 
b) (S, +, .) has a left identity et such that for  each a E S* there is some y E S 

satisfying ya = el. 
c) For all a E S* and b E S there are some z, y.E S satisfying az  = b and ya = b. 
d) For all a E S* and b E S there is some z E S satisfying ax = b, and S has 

a right identity. (The latter can be replaced by the existence o f  a unique multiplicative 
idempotent in S*.) 

THEOREM 4.4. Let (S, +,  .) be a semifield with a zero o and IS*[ >/ 2. Then (S, + , - )  
is either a field or zero-sum free and hence (S*, +,  .) a subsemifield of  (S, +,  .). In the 
latter case, (S, +, - )  is obtained from (5'*, + , - )  by adjoining an absorbing zero. 

REMARK 4.5. Consequently, excluding the six semifields of order 2, each proper semifield 
occurs in two corresponding versions, one without a zero and one with an absorbing zero. 
Hence investigations on proper semifields can be done considering only those with or 
only those without a zero. In the latter case one investigates all semifields (5', +,  .) 
such that (S',-) is a group. Clearly, these algebras form a variety of (2, 2, 0, 1)-algebras, 
provided that one includes the semirings of order 1 in the definition of semifields (cf. 
[99, 201] and [228]). The following both theorems are due to [208]. 

THEOREM 4.6. a) Let (S', + , - )  be a proper semifield with commutative addition such that 
Is*l >/2. Then the group (S*,-) is torsion free and hence (S, +,  .) is o f  infinite order, 
whereas the semigroup (S, +) is uniquely divisible. 

b) The finite semifields with commutative addition are the Galois-fields, the Boolean 
semifield and the four semifields of  order 2 described in Remark 4.1. 

THEOREM 4.7. Each additively commutative and idempotent semifield (S, +,-)  without a 
zero is a lattice ordered group (S,., ~<), and conversely. 

Note in this context, that a ~< b r a + b = b defines a partial order on 5' such that 
sup{a, b} = a V b - a + b and inf{a, b} = a/~ b = (a -1 + b- l )  -1 exist for all a, b E S. 
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Conversely, a + b = a V b defines an addition for (S,. ,  ~)  such that the distributive laws 
are satisfied. 

REMARK 4.8. a) There are various semifields (S, +,  .) such that (S, +)  is idempotent, but 
not commutative. For instance, the direct product (G1, .) x (G2, .) of two groups (at least 
one nontrivial) provides such a semifield defining (a~, a2) + (b~, b2) = (a~, b2). In fact, 
all finite semifields with noncommutative addition and without a zero (cf. Theorem 4.4) 
are obtained in this way (cf. [208] and [210]). 

b) For other detailed investigations on semifields, including objects such as algebraic 
or transcendental (simple) semifield extensions, we refer to [211, 118, 55,220] and [99]. 
Here we only mention the following characterization of all subsemifields of an algebraic 
number field. 

THEOREM 4.9. Let (K, +, .) be an algebraic number field and (S, +, .) a proper sub- 
semifield containing the zero 0 of  K.  Let (K' ,  +, .) be the smallest subfield of K which 
contains S. Then there exist finitely many subsemifields T 1 , . . . ,  Tr of  K '  which are 
semisubtractive, hence determined as the positive cones of all total orders on (K  ~, +,-) ,  
and the 2 ~ - 1 intersections 

T~,...,T,., T~ nT2,...,T,._~ NTr,.. . ,T! NT2 N... NTr 

are pairwise distinct subsemifields of  K '  and S is one of them. Moreover, S is a simple 
semifield extension of  H0. 

5. Extensions of semirings by quotients and differences 

Recall that a semigroup of  right quotients (briefly a Qr-semigroup) (T, .) = Qr(S, 27) 
of  a semigroup (S, .) with respect to a subsemigroup S, of (S, .) is defined as follows: 
(T, .) contains (S, .) as a subsemigroup and has an identity eT, each a E s has an 
inverse a - l  E T, and the subset {dOt -1 I a E S', Ce E 27} C_ T coincides with T. (Note 
that eT = es holds if S has an identity es.) Given (S, .) and i7, such a semigroup 
(T,-) = Qr(S,  i7) exists iff each a E 27 is cancellable in (S, .) and 

a S N a S s r  holds for a l l a E  S ,  a E S .  (5.1) 

If this is the case, (T, .) is completely described by the rules 

a o ~  - 1  = bfl - I  r  = / 3 (  and ax = b~ for some (x , ( )  E S x S 

r  au  = ~v implies au = bv for all (u, v) E S' x S, (5.2) 

ac~ - l  . b/3 -1 = (a::c)(/3~) -I  for any (z,~) E S x S 

satisfying a z  = b(. (5.3) 

This yields that a Qr-semigroup (T, .) of  (S, .) with respect to S is, up to isomorphisms 
leaving S elementwise fixed, uniquely determined by (S, .) and 27, which justifies the 
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notation (T,-) - Qr(S, 22). (For these results and most of the following ones we refer 
to [144, 209, 212] and [222].) Clearly, (5.1) holds trivially if (S, .) is commutative (or 
at least 22 is in the center of (S, .)), and in these cases (5.2) and (5.3) turn into the usual 
rules on fractions. 

DEFINITION 5.1. An extension (T, +, .) of a semiring (S, +, .) is called a Q~-semiring 
(T, +, . ) =  Qr(S, S)  of (S, +, .) with respect to a subsemigroup 22 of (S, . ) i f  (T, . ) is  
a Q~-semigroup of (S, .) with respect to Z. 

THEOREM 5.2. Let (T, +, .) : Qr(S, ~') be a Qr-semiring of a semiring (S, +, .). Then 
the addition on T is uniquely determined by the addition on S according to 

aa -1 + b~ -1 = (ax + b~)(/~) -1 for any (x, ~) E S x S 

satisfying c~x = / ~ .  (5.4) 

Conversely, let (S, +,-)  be a semiring and (T, .) = Qr(S, Z)  a Qr-semigroup of (S, .), 
then (5.4) defines an addition on T such that (T, +, .) is an extension of (S', +, .). 
Hence a Q~-semiring (T, +, .) = Q~(S, S )  of (S, +, .) exists iff each element c~ E S is 
cancellable in (S, .) and (5.1) holds, and (T, +, .) is then, up to isomorphisms leaving S 
elementwise fixed, uniquely determined by (S, +,-)  and 22. 

REMARK 5.3. The following statements on Q,.-semirings are essentially those on Q,.- 
semigroups" 

a) If (S, +,-)  is multiplicatively left or right cancellative, the same holds for each 
Q~-semiring (T, +, .) of (S, +,-). 

b) If the Q,.-semiring (T, +, .) = Qr(S, S)  of (S, +, .) exists and the left-right dual 
of (5.1)is also true, then (T, +,-)  = Q~(S, S)  is also a Qt-semiring of (S, +, .). In this 
case we write (T, +, .) - Q(S, Z) and call it a Q-semiring of (S, +, .). 

c) There may be various subsemigroups Zi of (S, .) such that (T, +, .) = Q,.(S, Zi) 
holds. In this case there is a unique greatest one among these Ei. 

d) If (S, +,-)  has a Qr-semiring, then there is a subsemigroup Sm of (S, .) such that 
(Tin, +,-)  - Q,.(S, Zm) exists and S C Sm holds for each 22 yielding a Q~-semiring 
(T, +, .) = Q~(S, 22). Clearly, (Tin, +, ") contains (an isomorphic copy of) each Q,.- 
semiring of (S, +, .). If (S,-) is commutative, Sm consists of all cancellable elements 
of (S,-). 

DEFINITION 5.4. The Qr-semiring (Tin, +, ") = Q,(S, 22m) of (S, +,-)  just described is 
called the maximal Qr-semiring of (S, +, .) and denoted by Q,.(S). In the following, we 
also write (T, + , . )  = Qr (S, 22m) = Qr (S). In particular, we call it the Qr-semifield of 
(S, + , . )  if it happens to be a semifield. 

THEOREM 5.5. Let (S, +, .) be a nontrivial semiring which is multiplicatively commuta- 
tive. Then (S, +, .) is embeddable into a semifield iff it is multiplicatively cancellative. In 
this case, the Q-semifield (T, +, .) = Q(S) = Q(S, S,m) is, unique up to isomorphisms 
leaving S elementwise fixed, the smallest semifield-extension of (S, +,.). 
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Note that 27~ = S* holds iff (S, + , - )  has an absorbing zero, and 27m - S in the other 
cases of Theorem 2.7. In particular, each semiring (S, +,  .) = ([c, cx~), max, .) with c as 
its zero (cf. Example 1.9 c)) has the Q-semifield (P, max,-) = Q(S)  which has no zero. 

THEOREM 5.6. Let (T, 4-,.) = Qr (S, .S) be a Qr-semiring of  (S, 4-,.). 
a) I f  (S', +)  is commutative, left [right] cancellative, idempotent or a group, (T, 4-) 

has the same property. In particular, if (S', + ,  .) is a ring, then (T, +,  .) = Qr(S, 27) is 
the ring of  right quotients of  (S, +, .) with respect to 27 in the usual meaning. 

b) (T, + , - )  has a zero oT iff (S', 4-, .) has a zero os which satisfies osa  = os for  all 
a E 27, and in this case OT = Osa - l  = os holds for  all a E 27. 

We apply statements on Qr-semigroups to the case that (S, +)  is a commutative 
semigroup and 6) a subsemigroup of S such that each u E 69 is cancellable in (S, +).  
Then there exists, unique up to isomorphisms leaving S elementwise fixed, a semigroup 
of  differences (briefly a D-semigroup) (T, +) = D(S,  69) of  (S, +) with respect to tO. It 
consists of all differences a -  u for a E S and u E 69 and is determined by a -  u -- 
b -  v r a + v = b + u and ( a -  u) + ( b -  v) = (a + b) - (u + v). For investigations on 
the corresponding concept of a D-semiring (T, +,  .) = D(S,  69) of  a semiring (S, +,  .) 
with respect to a subsemigroup tO of  (S, +)  we refer to [209] and [89]. Here we restrict 
ourselves to the case 6) = S: 

THEOREM 5.7. A semiring (S, +,  .) is embeddable into a ring iff (S, +)  is commutative 
and cancellative. In this case, the minimal ring-extension (R, + , . )  of (S, + , . )  is, uniquely 
up to isomorphisms leaving S elementwise fixed, given by the D-semigroup (R, +) = 
D(S,  S) of  (S, +), established with the multiplication 

(a - b) . (c - d) = (ac + bd) - (ad + bc). 

DEFINITION 5.8. The ring (R, +,  .) just described is called the ring of  differences or the 
D-ring of  the semiring (S, +, .) and denoted by (R, +,  .) = D(S,  S) = D(S).  

THEOREM 5.9. Let (R, +, .) = D(S)  be the D-ring of  a semiring (S, +,  .). Then each 
a E S which is multiplicatively (left) cancellable in (S, +, .) has the same property in 
(R, +,  .). However, if (S, +, - )  is multiplicatively (left) cancellative or even a semifield, 
(R, +,  .) = D(S)  need neither be multiplicatively (left) cancellative nor, in the second 
case, a semifield and hence a field. The first property transfers from (S', +,  .) to (R, + , - )  
iff a # b and c # d implies ad +.bc # ac + bd for all a ,b , c ,d  E S. A sufficient 
condition such that both properties transfer from (S, 4-, .) to (R, 4-, .) is that (S', + ,  .) is 
semisubtractive. 

EXAMPLE 5.10. To illustrate the negative statements of Theorem 5.9, we consider the 
residue class r ing /~  - Q[x] / (z  2) of the polynomial ring Q[z] and denote its elements 
by a+b:r. Then T = { a + b z  I a > 0} is a subsemiring of (/~, +,  .) satisfying/~ = D(T) .  
Since each a + bx E T has a -1 - ba-2x E T as its inverse, (T, +,  .) is a semifield and 
hence multiplicatively cancellative, whereas R is not even multiplicatively cancellative. 
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R E M A R K  5.11. For the semiring (N, +, .), one clearly obtains (H, +,-)  = Q(N) as its 
Q-semifield and (Z, +, .) = D(N) as its D-ring. As two second steps, the D-ring 
D(H) = D(Q(N))  turns out to be a field which contains D(N) = Z, and the Q- 
semifield Q(Z) - Q(D(N))  is a field containing Q(N) = H, two ways to obtain the 
field (Q, +,  .) = D(Q(N))  = Q(D(N)).  The first one is more appropriate in elementary 
school education (mankind has calculated in N and H thousands of years before inventing 
negative numbers), whereas the second way is preferred at universities. For this reason 
the fact that D(Q(N))  = Q(D(N))  holds, sometimes considered to be self-evident, is 
of some interest for training teachers. However, D(Q(S)) = Q(D(S)) need not be true 
if one replaces (N, +,  .) by a commutative semiring (S, +,-)  for which the Q-semifield 
(T, +, .) = Q(S) = Q(S,.~,m) and the D-ring (R, +, .) = D(S) exist (a sufficient 
condition for D(Q(S)) = Q(D(S)) is that (S, +, .) is semisubtractive). In general, the 
situation is more complicated: 

R -  D(S) = D(S, S) 

m 

Q(R) = Q(R) = R 
/ 

Q(R, Z,,~) = R = D(T) 
/ \ 

T = Q(S) = Q(S, Z,,~) 
\ / 

S 

Since (T, + , . )  - Q(S) is additively commutative and cancellative, the D-ring 
(R, +, .) = D(Q(S)) exists and is also the Q-(semi)ring Q(D(S), Zm) of (R, +,  .) = 
D(S) with respect to the subsemigroup 27m = SIn(S) of (S, .), cf. the first statement 
of Theorem 5.9. However, the subsemigroup Sin(R) of all elements a - b E R which 
are cancellable in (R, .) may contain Sm(S) properly. Even if this is the case, the maxi- 
mal Q-ring (R, + , . )  = Q(R) = Q(R, Sm(R)) of (R, + , . )  may either coincide with 

_ 

_ _ _ 

(R, +,  .) or contain it properly, and R or R may be fields or not (cf. [209] and [89], II.6, 
also for the following examples). 

E X A M P L E  5.12. a) According to Example 5.10, the ring R = Z[x]//(x 2) is the D-ring 
of its subsemifield S = {a + bx l a > 0, b ~> 0}. Then the semifield T considered in 
Example 5.10 is the Q-semifield T = Q(S), and/~ = D(T) = Q[x]/(x 2) coincides with 

the Q-ring Q(R, Zm(S)). In this case we have Zm(S) C Zm(R), but R = Q(R) = 
Q(R,•m(R)) coincides with R. 

b) Let S = N0[x] be a polynomial semiring. Then the Q-semifield T = Q(S) and the 
n 

D-ring R = Z[x] = D(S) exist, and R = D ( T ) =  Q(R, Zm(S)) holds, where Zm(S) 
w 

consists of all polynomials f (x)  ~ 0 of N0[x]. However, the Q-field R -- Q(x) = 
Q(R) = Q(R) contains R properly, such that R is merely a ring. Replacing x by any 
transcendental real number 7-, these considerations take place within the totally ordered 
field (R, + , . ,  <~). 
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6. Congruences, ideals and radicals 

DEFINITION 6.1. Let (S, +,  .) be a semiring and (T, +,  .) a (2, 2)-algebra. 
a) According to Remark 1.2 a), a mapping qo" S --+ T is called a homomorphism of  

(S, +, .) into (T, +, .), briefly denoted by qo: (S, +,  .) --+ (T, +,  .), if qo satisfies 

~(a  + b) = qo(a) + ~o(b) and ~o(a. b) = cp(a). ~(b) for all a, b E S. (6.1) 

b) Let n C_ S x S be an equivalence on S. Instead of (a, a') E n we write a n a ', and 
t~ is called a congruence on (S, +, .) if, for all a, a ~, b, b ~ E S, 

a r i a  t a n d b n b  t imply ( a + b )  n ( a  t + b  t) a n d ( a . b )  n ( a  t .b ' ) .  (6.2) 

We denote by S I n  the set of  all to-classes [a]~ -- {a t E S I a~ n a} o f  S, by n#: S --+ S I n  
the natural mapping according to n # (a) = [a],~, and by C(s,+,.) the set of all congruences 
on (S, +,  .). 

REMARK 6.2. a) The homomorphic image ~(S)  C_ T of (S, + , . )  is a subsemiring 
(~(S) ,  +, .) of (T, +, .) and shares all properties with (S, +,  .) which are defined by 
equations. Moreover, if (S, +,  .) has an (absorbing) zero o, then ~v(o) is an (absorbing) 
zero of (r +,  .), and likewise for an identity e of (S, +,  .). 

b) Note that " ( a n  a t) implies (a + b) ~ (a' + b) and (b + a) ~ (b + at) ,, is equivalent 
to the additive part of (6.2). Further, the congruences on (S, +, .) form a complete lattice 
(C(s,+,.), U, [-1), where the identical relation ~s on o ~ is the smallest and S x S the greatest 
element of C(s,+,.). Also C(s,+,.) = C(s,+) N C(s,.) holds in an obvious interpretation. 

c) If (U, +,  .) is a subsemiring of (S, +,  .), then each congruence n on (S, +,  .) induces 
a congruence n n (U  x U) on (U, +,  .). 

d) The semiring (No, +,  .) satisfies C(No,+,.) = C(s0,+). Hence each congruence n :/- ~N0 
is determined by a pair (V, 9) E No x N such that a n a' holds iff either a = a t or a = a t 
modulo 9 for a, a t t> v, and conversely. 

THEOREM 6.3. a) Let tr be a congruence on a semiring (S, +, .). Then 

[a],, + [b],, = [a + b]~ and [a]~. [b]~ = [a. b]~ (6.3) 

define operations on S i n  such that n#: (S, +,  .) -+ (S /n ,  +, .) is an epimorphism and 
hence (S /n ,  +, .) a semiring, the congruence class semiring of  (S, +, .) by n. 

b) Conversely, let (S, +,  .) be a semiring, ~p: (S, +, .) --+ (T, +, .) a homomorphism, 
and (~(S) ,  +, .) the homomorphic image. Then n =  n~, defined by a n a' r  ~p(a) - 
~(a')  is a congruence on (S, +,  .), and there is a unique isomorphism 

+, .) -+ +, .) 

such that q) = ~ o ~o n # holds, where ~ is the identical embedding of  ~p(S) into T. 
c) For hi, n2E C(s,+,.) there is a homomorphism 

~b" (S/N;1, +,  ") --~ (S//S;2,-+-, ") 

satisfying ~b o n~ = tr iff n, C_ n2 holds. 
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DEFINITION 6.4. Let (S, +, .) be a semiring. Then a subsemigroup L of (S, +)  is called 
a left ideal o f  (,5', +,  .) if sa E L holds for all s E S' and a E L. If A is a left and a right 
ideal of (S, +,  .), it is called a (two-sided) ideal of  (S, +, .). 

REMARK 6.5. a) Each semiring (S, +,  .) has S as an ideal, and if there is an ideal A 
satisfying IAJ - 1, it is unique and A - (O} consists of the multiplicatively absorbing 
element O of (S', +, .). (Note that O - o holds if there is an absorbing zero o.) If O 
exists, a left ideal L is called O-minimal if {O} C L holds and {O} C L' c_ L implies 
L ~ = L for each left ideal L'. In general, a left ideal L of S is called minimal if L' C_ L 
implies L' - L for each left ideal L' of S. 

b) Each ideal of (N, +, .) or (No, +, .) can be generated by a finite set { a l , . . . ,  an}, 
but the number n of elements needed for this purpose is not limited (cf. [12, 146] and 
[89], 1.8). 

DEFINITION 6.6. a) Let A be an ideal of an additively commutative semiring (S, +,  .). 
Then A = {~ E S I ~ + 0, E A holds for some 0, E A} defines an ideal of (S ,+ , - )  
satisfying A c_ A and A = A, called the k-closure of  A. In particular, if A = A holds, 
A is called a k-ideal of  (S, +, .) or k-closed. 

b) Likewise, A = {~ E S I~ + a + s E A + s for some a E A and s E S} defines the 
h-closure of  A and A = A an h-ideal of (S, +, .). Clearly, A c_ A c_ .A holds for each 
ideal A of (S, + , . ) .  

REMARK 6.7. a) For these and the following concepts cf. [204, 32, 94] and [101]. 
b) Note that .A and A can be defined in the same way for each subsemigroup A of a 

semigroup (S, +).  Hence Definition 6.6 applies also to left ideals. 
c) Let (S, +,  .) be a ring and A an ideal of (S, +, .) considered as a semiring, i.e. 

in the meaning of Definition 6.4. Then A is an ideal of (S, +,-)  in the ring-theoretical 
meaning iff A is k-closed. 

THEOREM 6.8. Let (S, +,-)  be an additively commutative semiring. 
a) Each ideal A of  (S, +, .) defines a congruence ~ A  o n  (S,--t-, .) by 

Z I~ A Z t r X %- 0,1 = Z t q-  0,2 for  some ai E A, (6.4) 
m m 

f or  which the k-closure A of  A is one congruence class, i.e. A = [a]~ A holds for  any 
a E A. This class is the absorbing zero of  the semiring (S /nA ,  +, .) .  Moreover, t~a 
coincides with xoA, whereas xoA- t ~  holds iff the k-ideals A and B are equal. 

b) Each ideal A of  (S, +, .) defines a congruence rlA on (S, +, .) by 

z rlA z t r z + al + s = z ~ + 0,2 + s for  some ai E A, s E S, (6.5) 

for  which the above statements hold with the h-closure ~t of  A instead of  the k-closure ft.. 
In particular, the semiring (S/~TA, +, ") is additively cancellative. 

REMARK 6.9. a) For each additively commutative semiring (T, +,-) ,  the congruence -y 
defined by y'Ty~ r y + t = yt + t for some t E T is the smallest congruence on 
(T, +,  .) such that (T/'7, +, .) is additively cancellative. Applying this to a semiring 
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(T, §  - -  (S/gA, § "), the congruence class semiring of S/Iq, A with respect to 3' is 
(isomorphic to) (S/TIA, §  "). 

b) The congruences /'i;  A and TIA coincide iff (S/e;A, +,-)  is additively cancellative, 
which in turn implies fi_ - A, but not conversely. 

c) Even for a commutative semiring (S, +,  .) with an absorbing zero and an identity, 
there are in general various ideals with the same k-closure or h-closure. On the other 
hand, there may be a lot of congruences on (S, +, .) which cannot be obtained by (6.4) 
or (6.5). For instance, all k-ideals of (No, § .) are given by raN0 for all m c No, and 
these are also all h-ideals (very few in view of Remark 6.5 b)). The corresponding 
congruences amNo are, apart from ~No, just those characterized in Remark 6.2 d) by the 
pairs (0, g) E No x N. 

Also the following result shows that, for semirings, ideals do not supply very much 
knowledge about congruences" 

RESULT 6.10. Let ~o: (S, § .) --+ (T, § .) be a surjective homomorphism of  semirings 
and assume that (T, +, .) has an absorbing zero OT. Then 

A = ~ - l (OT)  = {a E S I ~(a) = OT} 

is an ideal o f  (S, § .), often called the "kernel" of  ~. I f  (S, +) is commutative, A is 
a k-ideal. However, even in this case the congruence e;A of (6.4) is merely contained 
in the congruence e;~o belonging to r (cf. Theorem 6.3 b)), and there are various cases 
such that e;A C e;tp holds. 

Since subsemirings of rings are often used in applications, we state in this context 
(cf. [99], w and [89], 1117): 

THEOREM 6.11. Let (R, +,  .) = D ( S )  be the difference ring o f  a semiring (S, § .). 
a) Each congruence Q on (R, +, .) defines a congruence 6' = Q fq (S  • S) on (S, +, .) 

such that (S/Q',  +, .) is again additively cancellative and ( R / o ,  § ") is isomorphic to 

the difference ring D(S /Q ' )  o f  (S/Q', +, .). 
b) Each congruence e; on (S, § .) generates a congruence ~ on (R, § .) by 

rKr ~ r r - r ~ = s - s ~ for  some s, s ~ E S satisfying s ~ s ~, 

where B - {s - s' I s, s' E S and s e; s '}  is the corresponding ring ideal B - [o]~ of  
(R,+,.). 

c) Using these notations, we have (Q') = Q but merely (?~)' D_ e;, and (;;)' - e; holds iff 
(S/t~, +,-)  is additively cancellative. Hence a) defines an isomorphism of  (C(R,+,.), U, A) 
onto the lattice o f  those congruences e; on (S, +, . ) fo r  which (S/e;, +, .) is additively 
cancellative. 

REMARK 6.12. a) There are various papers investigating semiring ideals, in particular 
those called, e.g., principal, maximal, (O-)minimal, (completely) prime, primary, irre- 
ducible etc., some of them assuming different chain conditions or considering "ideal free" 
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or "congruence free" semirings (cf., e.g., [5-7, 11, 49, 53, 99, 103, 104, 108, 125, 141- 
143, 184, 188, 197, 200, 224, 235] and [231]). Also the concepts of Green's relations 
(cf., e.g., [68, 69] and [171]) and of quasi-ideals (cf. [110, 223] and [232]) have been 
transferred to semirings. 

b) We also mention various investigations on semirings (S, +, .) (or on ideals of them) 
for which (S, +) or (S, .) or both are assumed to have particular semigroup-theoretical 
properties as to be regular, inverse, orthodox, completely (O-)simple, a union of groups 
etc. (cf., e.g., [ 10, 15, 76-78, 113, 114, 156, 239, 240] and [242]). 

c) As a peculiarity we emphasize that semifields, which are clearly ideal free, may 
have various congruences. Moreover, for each semifield (S, +, .) without a zero, a certain 
set/C(s,+,.) of normal subgroups of (S, .) can be characterized in (S, +, .) such that each 
congruence ~; E C(s,+,.) corresponds uniquely to some K E /E(s,+,.), and conversely. 
Hence each homomorphism of a semifield really has a "kernel" as it is true for groups 
or rings (cf. [98, 99] and [228]). 

REMARK 6.13. a) Let (S, +, .) be an additively commutative semiring with an absorbing 
zero. The first radical for such a semiring, called the Jacobson radical J(S) ,  was intro- 
duced in [28] as the sum of all "right semiregular" (right, left or two-sided) ideals of 
(S, +, .). Another characterization of J(S)  by 

iEI  

for all "irreducible representation S-semimodules" Mi was given in [101]. Replacing 
"right semiregular" above by "right quasiregular", one obtains the semiradical a(S).  It 
was introduced in [32] using the Jacobson radical of the D-ring of (S/7 ,  +, ") (for "7 as 
defined in Remark 6.9 a)). It was claimed in [32] that the inclusion J (S)  C_ or(S) may 
be proper; in fact, J(S)  = a(S)  holds as was shown in [102]. In this context we also 
refer to [34, 126, 213, 38] and [131]. 

b) Various other radicals for (certain classes of) semirings have been investigated, in 
particular those corresponding to the nilradical, the Levitzki radical or the Brown-McCoy 
radical in ring theory (cf., e.g., [11, 16, 109, 127, 129, 147, 185, 213, 214] and [236]). 
Moreover, there are also some papers dealing with a Kurosh-Amitsur radical theory for 
suitable classes of semirings or semifields (cf. [92, 147, 148, 228-230] and [237]). 

7. Structural results on semiring semimodules and semirings 

DEFINITION 7.1. a) In the context of the following considerations, an arbitrary semigroup 
(S, +) is mostly called a semimodule. 

b) Assume that (S, +) has a zero o and let {(Si, +) I i E I} be a set of subsemimodules 
of (S, +) satisfying o E Si for all i E I. Then (S, +) is called the direct sum of the 
subsemimodules (S i, +) if a~ + aj = aj + ai holds for all i # j,  ai E Si and aj E Sj, 
and if each a E S has a unique presentation 

a = ~ ai where almost all ai E Si equal o, (7.1) 
iEI  



4A.4 U. Hebisch and H.J. Weinert 

in the obvious interpretation of (7.1) as a "formally infinite sum". For I = {1 , . . . ,  n} 
we write S = Sl @. . .  @ Sn. (Finite direct sums of this kind have been called "strong 
direct sums", e.g., in [31, 193, 196] and [232].) 

c) A semimodule (S, +) is called subcommutative if 

a + b + c + d = a + c + b + d  holds for alla,  b,c, d E S .  (7.2) 

d) Let (S, +) be a semimodule, (~, +, .) a semiring and ~2 x S --~ S a mapping which 
assigns to each (a, a) E /2 x S an element aa E S. Then (S, +) is called a semimodule 
with 12 as (left) operator domain, or a (left) f2-semimodule (t2S, +), if 

a ( a + b ) = a a + a b ,  ( a + ~ ) a = a a + ~ a  and (cefl)a=a(fla)  (7.3) 

hold for all a, ~ E 12 and a, b E S. In particular, (t2S, +) is called a unitary O- 
semimodule if (~, +,-)  has an identity r and ca = a holds for all a E S. Finally, if 
(S', +) has a zero o and (12, +, .) a zero w, it is convenient to assume that 

~oa=o  and a o = o  hold for a l l a E S a n d a E  12. (7.4) 

e) Let (t2S, +) and (oT, +) be O-semimodules. Then the meaning of an 12- 
subsemimodule of (oS, +) is clear, and a homomorphism r (S, +) --~ (T, +) is called 
an 12-homomorphism if qa(aa) = aT(a) holds for all a E ~ and a E S. In particu- 
lar, (oS, +) and (oT, +) are called operator-isomorphic or ~2-isomorphic if there is an 
O-isomorphism qa: (S, +) --+ (T, +). 

REMARK 7.2. a) Examples of ~2-semimodules are abundant. In particular, each semimod- 
ule (S, +) is an N-semimodule for (N, +, .) where na is defined by ~-~n=, a. Moreover, 
each semiring (S, + , . )  can by considered as an S-semimodule (sS, +) defining sa 
by the multiplication in (S, +, .). In this case the S-subsemimodules are just the left 
ideals of (S, +,-).  Also the semimodule (Mn,n(S),  +) of each matrix semiring is an 
S-semimodule in an obvious way, and another example is described in Remark 7.4. 

b) There are various investigations on semiring-semimodules in the literature, dealing 
with their structure or using them to investigate semirings (cf., e.g., [238, 193, 101,194, 
195, 157, 74, 111, 159] and [91]). Special objects of this kind are P-semimodules of a 
ring (R, +, .) with identity, used to investigate representations of (R, +, .) by rings of 
continuous functions (cf. [80, 51, 52, 21, 39] and [22]). The semirings (P, +, .) occurring 
in this context are certain subsemirings of (R, +, .), called "primes" or "preprimes", and 
have similar properties as positive cones of (R, +, .) (cf. Definition 8.1). 

THEOREM 7.3. Let (S, +) be a subcommutative (or even commutative) semimodule and 
End(S, +) = End(S) the set of all endomorphisms qa: (S, +) --+ (S, +). Then, for all 
T, ~ E End(S), the mapping ~o + ~b defined by 

(r + r  = qo(a) + r for all a E S (7.5) 

is, due to (7.2), again an endomorphism of (S, +), and the same holds for (~ o r -- 
r162 In this way one obtains an additively subcommutative (commutative) semiring 
(End(S), +, o) with the identical mapping Ls as identity, called the endomorphism semi- 
ring of (S, +). I f  (S, +) has a zero o, the mapping ~ defined by ~(a) = o for all a E S 
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is a left absorbing zero of  (End(S), 4-, o), whereas qo o ~ -  ~ holds for  all qa E End(S) 
satisfying go(o) -- o. 

REMARK 7.4. a) Considering the endomorphisms of (S, +) by qa(a) = qoa as (left) oper- 
ators, one obtains the endomorphism semiring (End(S), +, o) as an operator domain of  
(S, +)  and hence (End(S)S, +)  as a unitary End(S)-semimodule. If (S, +)  has a zero o, 
only ffa = o of (7.4) holds in general. If one restricts End(S) to those endomorphisms cp 
which keep o fixed, also ~o = o is satisfied. 

b) Conversely, if (aS,  +)  is any 12-semimodule, a ~+ aa  for each a E 12 and all 
a E S defines an endomorphism of (S, +). 

THEOREM 7.5. a) Let (S, +, .) be an additively subcommutative semiring and (End(S), 
+, o) the endomorphism semiring of  (S, +). Then each s E S defines by 99s(a) -- sa for  
all a E S an endomorphism cps of  (S, +), and the mapping q~: S --+ End(S) defined by 
~b(s) = qOs is a homomorphism of  (S, +, .) into (End(S), +,  o). The latter is injective iff 
for  all s, t E S the following holds: sa -- ta for  all a E S implies s = t. 

b) Together with Lemma 3.1 and Lemma 3.5 this yields that each additively commuta- 
tive semiring is isomorphic to a subsemiring of  an endomorphism semiring of  a suitable 
semimodule. 

We close this section with the following celebrated structural statements on semi- 
rings. In the form presented here, they are essentially due to [193] and [196]. However, 
basic versions of Theorem 7.8 and Theorem 7.9 (with more assumptions to obtain b) 
of Theorem 7.8 and c) of Theorem 7.9, in particular that (S, +, .) has no nilpotent left 
or right ideals except {o}) have already been published in [31]]. We also emphasize 
that (S, +,  .) has to be additively commutative in Theorem 7.8 and Theorem 7.9 as a 
consequence of Remark 3.8 b). This assumption is not made in [193] and [ 196], and not 
mentioned explicitly in [31 ]. 

RESULT 7.6. Let L be a left ideal of  a semiring (S, +,  .) which is o-minimal if (S, +, .) 
has an absorbing zero o and minimal otherwise. I f  L contains an idempotent e = e 2 
such that e E S* holds in the first case, then eL C L is a semifield with e as identity 
(where eL may consist of  one single element in the second case). 

RESULT 7.7. Let (S, +, .) be a semiring with o as absorbing zero and a right identity e, 
and assume 

S = L I |  

for  left ideals Li ~ {o} of S. Then the elements ei E L i  occurring in the presentation 
e = el + ""  + er satisfy eiej = o for i r j and eiei = ei 7 L o as well as Li - Sei for  
all i , j  E { 1 , . . . , r } .  

THEOREM 7.8. For an additively commutative semiring (S, +, - )  with an absorbing zero o 
the following statements are equivalent: 

a) (S, +,  .) has an identity and is the direct sum S = L1 |  @ Lr of  o-minimal left 
ideals Lj  of  S. 
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b) (S, +,  .) is the direct sum of  a finite number of  ideals Ai r {o} of  S, where each 
(Ai,  +,-)  is isomorphic to a matrix semiring (Mn,,n, (Ti), +,  ") over a semifield (Ti, +, .) 

for  some ni ~ 1. 

THEOREM 7.9. For an additively commutative semiring (S, +,  .) with an absorbing zero o 
the following statements are equivalent: 

a) (S, +, .) has an identity and no ideals except (o} and S, and it is the direct sum 
S = L1 @ . . .  @ Lr of  o-minimal left ideals Lj  of  S. 

b) (S, +,  .) has an identity and is the direct sum S = L1 @ . . .  @ L~ of  o-minimal 
left ideals L j  o f  S, which are, considered as S-subsemimodules of  (sS, +), two by two 
operator-isomorphic. 

c) (S, +,  .) is isomorphic to a matrix semiring (Mn,n(T),-+-, ") over a semifield 
(T, +,  .). 

For further investigations in this direction, in particular those which include quasi- 
ideals of semirings, we refer to [232, 143, 49] and [199]. 

8. Partially ordered semirings 

Despite the existence of more general investigations in the literature, we restrict ourselves 
here to semirings with commutative addition. All concepts and results in this section are 
essentially due to [56, 25, 211,212,  77] and [225]. We also refer to [89], Chapter III, 
for a detailed presentation with all proofs. 

DEFINITION 8.1. a) Let (S, +)  be a commutative semigroup and (S, ~)  a partially ordered 
(briefly p. o.) set. Then (S, +,  <~) is called ap. o. semigroup if a < b implies a + c  ~ b+c 
for all a, b, c E S. By P = {p E S I a + p >~ a for all a E S} we define the positive cone 
P and by N = {n E S I a + n <~ a for all a E S} the negative cone N of (S ,+ ,  ~<), 
both of which may be empty. In particular, (S, +, ~<) is called a totally ordered (t. o.) 
semigroup if (S, <~) is a t. o. set. Moreover, a p. o. semigroup (S, +, <~) is called positively 
[negatively] p. o. if P = S [N = S] is satisfied. 

b) A semiring (S, +,  .) is called a p. o. semiring (S, +, . ,  <.) if (S, +, <~) is a p. o. 
semigroup and if it satisfies the (multiplicative) monotony law 

a < b  implies ac<~bc and ca<~cb 

for all a, b E S and all c E P, (8.1) 

where P is the positive cone as defined above, t.o. semirings are defined correspondingly. 
c) Sometimes we will consider the strict version of (8.1) defined by 

a < b  implies a c < b c  and c a < c b  

for all a, b E S and all c E P N S*. (8.2) 

d) By M = { m  E S I a < b =~ am <~ bm and ma <<. mb for all a,b E S} and 
by W = ( w  E S I a < b =~ aw >~ bw and wa >~ wb for all a, b E S} we define the 
monotony domain M and the anti-monotony domain W of (S,.,  <~). 
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REMARK 8.2. a) Note that (8.1) is equivalent to P C_ M, and that the anti-monotony law 
N C_ W (well-known to be a consequence of P C_ M for p. o. rings) is not assumed and 
need not be true for a p. o. semiring (S, + , . ,  <~). 

b) A concept also called "partially ordered semiring" in some papers which demands 
(8.1) for all c E S is not meaningful, since it excludes any p. o. ring. 

c) Clearly, N N P is either empty or consists of the zero o of (S, + , . ,  ~).  If o exists, 
one has N = {n E S i n  ~< o} and P = {p E S [ o  <~ p}, and P is a p. o. subsemiring 
of (S, §  ~)  if o is absorbing. 

THEOREM 8.3. a) Let X be a subsemigroup of  a commutative semigroup (S, +). Then 

a <~x b r a = b or a + x = b for  some x E X (8.3) 

defines a relation on S such that (S, +, <~x) is a p. o. semigroup iff 

a + x + y -- a implies a + x -- a for  all a E S and x, y E X .  (8.4) 

I f  this is the case, X (and also X U {o} if o exists) may be properly contained in the 
positive cone P o f  (S, +, <~x), but <~x and <~p coincide. 

b) Applying a) to a subsemiring X o f  an additively commutative semiring (S, +, .), one 
obtains a p. o. semiring (S, + , . ,  <<.x) provided that P C_ M holds. Sufficient conditions 
for  the latter are: 

i) X is an ideal o f  (S, +,  .), hence in particular X - S. 
ii) (S, +, .) has a zero satisfying oX,  X o  C_ X .  (This yields X U {o} = P.) 

iii) (S, +, .) has an absorbing zero. (This yields N C_ W.) 

REMARK 8.4. a) If X = S satisfies (8.4), <~s is called the difference order on (S, +,-) .  
In this case, ~<s is a total order iff (S, +)  is semisubtractive. 

b) Let (S, +,  .) be an additively cancellative semiring with a (by Result 2.2 a) ab- 
sorbing) zero o. Then a subsemiring X satisfies (8.4) iff either o ~ X holds or (X, +,  .) 
is zero-sum flee. If this is the case, (S, + , . ,  ~ x )  is a p. o. semiring by iii) and satis- 
fies X U {o} - P and N C_ W. However, there are even commutative t. o. semirings 
(S, + , . ,  <~) of this kind, for which <~ can not be obtained by (8.3). For instance, the t. o. 
subsemiring S = {0} U {s E R l s  >/ 1} of (R, + , . ,  ~<) satisfies P = S, but ~<s is 
properly contained in <~. 

c) Let (X, +,  .) be an additively idempotent subsemiring of (S, +,  .). Then X satisfies 
(8.4), and (S, +,- ,  <~x) is a p. o. semiring according to Theorem 8.3 b) for instance if 
X is an ideal of (S, +,-) .  

d) If (S, +)  itself is idempotent, then a ~<s b and a+b = b are equivalent, and ~<s is the 
partial order turning a commutative idempotent semigroup (S, +)  into a semilattice such 
that a + b  = aVb  holds. A p. o. semiring (S, + , . ,  <~s) of this kind is a semilattice ordered 
semigroup (S,.,  ~<s) (which usually includes a(b V c) = ab V ac and (b V c)a - ba V ca, 
a stronger assumption than M - S for (S,., ~<s)), and conversely. 

Remark 8.4 b) generalizes the well-known fact that for a ring (R, +,  .) each relation <~ 
such that (R, + , . ,  <~) is a p. o. ring is uniquely determined by its positive cone P 
according to a <~ b r b - a E P. In this context we note: 
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RESULT 8.5. Let P be a subset of  a ring (R, +, .). Then there exists a relation <<. such 
that P is the positive cone of  the p. o. ring (R, +, . ,  <~) iff (P, +, .) is a subsemiring of  
(R, +, . )  which contains the zero o of  R and is zero-sum free, where the latter is equivalent 
to P N - P  = (o}. Moreover, (R, +, . ,  <.) is a t. o. ring iff (P, +, .) is semisubtractive, 
and (R, +, . ,  <.) satisfies (8.2) iff (P, +, .) is zero-divisor free. 

Finally, we give some typical results on the extension of partial orders, where the 
main part of Theorem 8.6 a) are statements on semigroups (S, .) which are also t. o. sets 
(S, ~) and their Q,.-semigroups (T, .) = Q~(S, ~)" 

THEOREM 8.6. a) Let (S, + , . ,  ~) be a t. o. semiring and (T, +, .) = Qr(S, S )  a Qr- 
semiring of  S for  which k?, can be chosen such that S C M ( S )  holds. Then the total 
order <~ on S can be extended to a partial order ~T  on T satisfying M ( S )  ~ M ( T )  
iff ~c E M ( S )  implies c E M ( S )  for  all ~ E S and c E S. I f  the latter condition holds, 
there is exactly one extension ~T  of  this kind, determined by 

ao~-I <~T b~ -I r a x  = ~x and ax ~ b~ for some (x, ~) E S • 2?, 

and ~T is in fact a total order on T. Moreover, (T, + , . ,  ~T) is a t. o. semiring. 
b) I f  one additionally assumes that k?, is in the centre of  (S, .) (in particular, if (S, .) 

is commutative), the condition (c E M ( S )  ~ c E M ( S )  is always satisfied and the total 
order ~ T  is given by aa - l  ~T  b~ - l  r at3 ~ ba. 

c) If  (S, +, . ,  ~<) is merely a p. o. semiring, the corresponding statements concerning 
the extension of  ~ to a (unique minimal) partial order ~T  on (T, +, .) = Qr(S, Z') as 
above need further assumptions even if (S, .) is commutative (cf. [90] and [89], 111.3). 

THEOREM 8.7. Let (S, +, . ,  <~) be a p. o. semiring and (R, +, .) --- D(S)  its difference 
ring. Then the partial order ~ on S can be extended to a partial order <<.R on R such 
that (R, +, . ,  ~R)  is a p. o. ring iff, for  all a, b, c, d E S, 

a < b and c < d =~ ad + bc + s <<. ac + bd + s for  some s E S. (8.5) 

The minimal extension <<.R of  this kind is uniquely determined by 

a -  u <~n b -  v v=~ a + v + s <~ b + u + s 

for  some s E S. Moreover, (R, + , . ,  ~<R) satisfies (8.2) iff the same holds for (S, + , . ,  ~<) 
and the conclusion of  (8.5) holds with < instead of  <<.. Finally, if  <~ is a total order, the 
same holds for  <~R (but not conversely); in that case it is superfluous to add some s E S 
in (8.5) and in the definition of  <~R. 

EXAMPLE 8.8. a) It is indispensable to add some s E S in (8.5) and in the definition of 
~R. An example is the p. o. subsemiring (H0, +,- ,  ~ ')  of (Q, + , . ,  ~<), the latter with 
the usual total order ~<, whereas a < '  b is defined by 0.25 ~< a < b (for details see [89], 
Beispiel III.4.10). 

b) The subsemiring S = {a + bz ] a > 0, b ~> 0} of the ring R -- Z [ x ] / ( x  2) 
considered in Example 5.12 a) is a positively t. o. semiring (S, +,- ,  <~) if one defines 
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a + bx <~ c + dx by a < c or a = c and b <~ d. Since S is multiplicatively cancellative, 
(8.2) holds, and one checks straightforwardly that (8.5) is satisfied. The extension <~R of 
~< defined in Theorem 8.7 is given by a + bx <<.n c + dx iff a < c or a = c and b ~< d 
for all a, b, c, d E Z, and (R, + , . ,  <~R) is a t. o. ring which clearly does not satisfy (8.2). 
On the other hand, S U {0} is also a positive cone of (R, +,  .), and the partial order 
~< on R mentioned before Result 8.5 yields a p. o. semiring (R, + , - ,  ~<) according to 
a + bx <~ c + dx iff a ~< c and b ~< d for all a , b , c , d  E Z. 

9. Generalized semigroup semirings and formal languages 

In the last 20 years semirings of formal power series have become an important algebraic 
tool for investigations in the theory of formal languages and automata (cf. Example 9.4), 
and in combinatorics (cf., e.g., [41]). 

DEFINITION 9.1. a) Let (S, + , - )  be a nontrivial additively commutative semiring with 
as absorbing zero, U r ~ a set, and S((U)) the set of all mappings f:  U --4 S. Define 
f + g a n d a f f o r f ,  g E S ( ( U ) )  a n d a E S b y  

( f + g ) ( u ) = f ( u ) + g ( u )  and ( a f ) ( u ) = a f ( u )  for a l l u E U .  

Then (sS( (U)) ,  +)  is an S-semimodule, in fact the direct product of [U[ copies of 
(sS,  +).  The mapping o defined by o(u) = w for all u E U is the zero of S((U)) and 
satisfies (7.4). As usual in this context, we write the elements of S((U))  in a formal way 
as (possibly infinite) sums 

f = ~ (f, u)u with f (u )  = (f, u), (9.1) 
uEU 

and call supp(f) = {u E U [ ( f , u )  # co} the support o f f .  The set S(U) of all 
f E S((U)) with finite support is an S-subsemimodule of (sS((U)), +). 

b) Now let (U, .) be a semigroup satisfying the finite factorization property, which 
means that each w E U has only a finite number of factorizations w = u.  v for u, v E U. 
Then 

f . 9 = ~ ( ~ ( f  , u)(g, v ) )w  (9.2) 
w E U  u . v - - w  

defines a multiplication on S((U)) such that (S((U)), + , . )  is a semiring with o as 
absorbing zero, called the generalized semigroup semiring of (U, .) over S. 

c) For each semigroup (U,-) there exists the semigroup semiring (S(U), +, .), defined 
on (S(U), +) by (9.2). Clearly, if (U, .) has the finite factorization property, (S(U), +, .) 
is a subsemiring of the generalized semigroup semiring (S((U)),  +,  .). However, there 
may be interesting subsemirings (T, + , - )  of (S((U)), +,- )  containing S(U) properly, 
cf. [88]. 

REMARK 9.2. Note that so far U is not a subset of S({U)). However, if (S, + ,  .) has 
a (right) identity r then each u E U can be identified with the mapping f~ defined 
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by fu(u) = e and fu(v) = w for all v r u in U. If this is done and if (U,.) has an 
identity e, also (S, +,  .) can be considered a s  a subsemiring of (S(U), +, .), identifying 
each a E S with ae ~ S(U). 

In the following we use the term monoid for a semigroup with identity. 

EXAMPLE 9.3. The free monoid over a set X ~ O, in this context usually denoted by 
X*, has the finite factorization property. The same holds for any partial commutative 
free monoid over X and for the commutative free monoid over X,  defined by assuming 
xixj  = x jx i  for certain pairs or for all elements x i , x j  E X (cf. [41]). Let us denote 
these semigroups by PCX* or CX*, respectively. Then, for every such monoid and each 
semiring S as above, the generalized semigroup semiring over S exists. In particular, 
if S has an identity (cf. Remark 9.2), (S((X*)) ,  +, .) is called the semiring of formal 
power series over S, and (S(CX*), +, .) is just the polynomial semiring (SIX], +, .) 
according to Remark 3.11 b). 

EXAMPLE 9.4. In the theory of formal languages, any (finite) set X ~ O is called an 
alphabet, and every subset L C_ X* a formal language. If for Ll,  L2 C_ X* the addition 
is defined by L1 U L2 and the multiplication by L l - L 2  = {WlW2 I wi E Li}, it is 
straightforward to check that (P(X*),  U, .) is a semiring, the semiring offormal languages 
over the alphabet X .  Now define for each L C_ X* a mapping XL from X* into the 
Boolean semifield (cf. Example 1.8 b)) by Xc (w) = e if w E L and XL (w) = o otherwise. 
Then the mapping L ~-~ XL shows that the semirings (P(X*),  U,-) and (B((X*)),  + , - )  
are isomorphic. This isomorphism was the starting point for many investigations on 
formal languages and automata theory by algebraic methods, cf. [178, 124, 24] and the 
literature cited there. 

For detailed investigations in the context of Example 9.3 we refer to [88]. Here we 
only state the following theorem, for which a weaker version is due to [50]. 

THEOREM 9.5. For each subsemiring (T, +, . ) o f  (S(('PCX*)), +,.) containing 

+,.) 

as considered in Example 9.3 (including the cases 79CX * = X* and PCX* = CX*) the 
following statements hold: 

a) (T, +,  .) is zero-divisor free iff (S, +, .) is zero-divisor free. 
b) (T, +,  .) is multiplicatively (left) cancellative iff (S, +,  .) has the same property and 

is additively cancellative. 

REMARK 9.6. For more general considerations it is convenient to write the elements of 
the semimodule A = S(U) in the form 

a = E O ~ u U  and b = E ~ v V  
uEU vEU 
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for au = a(u) and/3v = b(v). Then each mapping U x U -+ A, defined by 

W U" V -- ")'u, v w 
wEU 

with "structure constants" 7~v E S, defines a multiplication on A by 

a . b =  ~ ( ~ auflv7~,~)w. (9.3) 
wEU u,vEU 

In this way one obtains the concept of an S-semialgebra (sA, +,  .), which is a semi- 
ring iff certain associativity conditions are satisfied. Proceeding in the same way with 
A = S((U)) to obtain generalized S-semialgebras, one has to make (9.3) meaning- 
ful. One possibility to do this is to choose almost all "/~v = 03 for each w E U. This 
was done above assuming the finite factorization property for the semigroup (U, .) in 
Definition 9.1 b). Otherwise, one has to assume, according to the next section, that the 
infinite sums y'~u,v~UaUflvT~v occurring in (9.3) are defined in (S, +, - ) .  For more 
details concerning these concepts we refer to [226] and [89], V.2 and V.3. 

10. Semirings with infinite sums 

Stimulated by [54], several concepts of semirings and other algebraic systems have been 
considered in which (some or even arbitrary) infinite sums exist, cf., e.g., [233, 40, 
95, 139, 174, 120, 226, 85] and [119]. These concepts have been defined by various 
sets of axioms, where some of those definitions are equivalent and some not. For a 
comprehensive investigation also of related concepts we refer to [87] and [89], IV. Here 
we only sketch some of these concepts which are suitable for various applications. 

DEFINITION 10.1. a) Let (A, +)  be a commutative semimodule with a zero o, and 

~-~" S ~ A  

a mapping, where S denotes a class of families (ai)i~i with ai E A for arbitrary index 
sets I. Each family (ai)ieI in S will be called summable with ~~'~(ai)i61 -- ~-~'~ieI ai as 
its sum. Then (A, +,  ~"~, S), or briefly (A, +,  )-~), is called a ~-~-semimodule over (A, +)  
if the following three axioms hold: 

(F) Each finite family (ai)i~z is summable and ~-~i~zai equals the usual sum in 
(A, +) ,  i.e. a l  + ' ' "  + an for I = { 1 , . . . ,  n}, including n = 1 and ~~iez ai = o. 

(GP) If (ai)iet is summable and 

- U 
jEJ 
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is any generalized partition of I (which means I# N lj, = O for all j ~ j', but allows 
Ij  - O for some j E J), then all sums on the right hand side of 

zo, 

do also exist and the noted equality holds. 
(GP~) Let (as)sEI be a family with as E A and (10.1) any generalized partition of I 

where J is finite. Then, if all sums on the right hand side of (10.2) exist, (as)sEI is also 
summable and (10.2) is satisfied. 

b) A y'~Tsemimodule (A, § ~ )  is called countably complete if every family (ai)sEi 
with a countable index set I is summable, and complete, if every family is summable. 

REMARK 10.2. a) Let (as)iEI be summable in (A, +,  ~') and (bk)kEK obtained by bk = 
a~o(k) for a bijection qo: K --+ I. Then the above axioms imply that also (bk)kEg is 
summable and that both families have the same sum. 

b) If (as)iEI for as = o and some (infinite) 1 is summable, Y~'~seI o = o holds. 
c) A ~-semimodule  (A, +,  ~ )  may satisfy the stronger axiom (GP'), obtained from 

(GP~) by cancelling the restriction on J. If this is the case and one infinite sum as 
considered in b) exists, then (A, +)  is zero-sum free. 

d) Note that (GP') follows from (GP) if (A, +, ~ )  is complete, and also if one only 
considers countably infinite sums and (A, +, Y~'~) is countably complete. 

EXAMPLE 10.3. a) Each commutative semimodule (A, +) with a zero o can be considered 
as a ~-semimodule  (A, +, ~-~o) in a natural way" Let S ~ consist of all families (ai)iEI 
such that I' - {i E I lai ~ o} is finite and define y-~o: So _+ A by 

~ o  ai "- ~ ai 
iEI  i 6 I '  

o including ~ , E I  o - o for I '  - O. Then (A, +, ~--~o) is a ~-semimodule,  called the 
~-~-semimodule of formal infinite sums of (A, +). Note that S ~ C_ 8 holds for any 
~-~Tsemimodule (A, +,  ~ )  - (A, +,  ~ , S )  over (A, +),  and that ~ and ~-~,o coincide 
on S O . 

b) Consider the semimodule (S'((U}), +) of Definition 9.1 for a semiring (S, +,-)  and 
let (S, +,  ~ )  be any ~-semimodule over (S, +). Then the infinite sums in S define 
infinite sums in S((U)) in a natural way (cf. [226], w or [89], Satz V.l.14) such 
that (S((U)/ ,  +,  Y']~) is also a ~-~-semimodule. Moreover, the infinite sums occurring in 
the formal notation (9.1) are then defined in each y'~-semimodule (S((U)}, +, y'~) over 
(S((U}} , +)  obtained from (S, +, ~]~) in this way. Clearly, it is enough to start with the 
~-~-semimodule (S, § ~ o )  of formal infinite sums of (S, +) in order to turn (9.1) into 
well defined infinite sums. 

DEFINITION 10.4. a) An additively commutative semiring (A, +, .) with an absorbing 
zero o is called a ~-semiring (A, § ~-]~, .) if (A, +, ~-~'~) is a ~--~-semimodule and the 
following axiom is satisfied: 
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(D) If ( a i ) i E I  and (bj)jej are summable families, then (aibj)(i,j)Eix J is also 
summable and 

�9 " ( i , j ) E I x J  

holds. 
b) For every ~-semir ing (A, +, Y~, .) with an identity a partial unary operation * 

is defined by 
on A 

a* = ~--~ 

iENo 

a i iff the family (a i ) iENo is summable. 

We call (A, +, Y~, .) *-complete if a* exists for each a E A. This is clearly the case if 
(A, +,  ~-~'~, .) is countably complete. 

REMARK 10.5. a) Axiom (D) implies the one-sided axioms (Dr) and (Dr), defined by 
III = 1 or IJI = 1 in (D), respectively. The converse holds if (A, +,  ~ , - )  satisfies 
(GP') (cf. Remark 10.2 c) and d)), but not in general. 

b) Every semiring (A, +,-)  as above can be considered as a y]-semiring (A, +,  ~ o ,  .) 
with respect to Example 10.3 a), and we will do this in the following if no other infinite 
sums are defined on (A, + , . ) .  

c) A ~-semir ing (A, +, ~ ,  .) is called countably idempotent, if each family (ai)i~N 
with ai = a for all i E N is summable and 

Z a i - - a  
iEN 

holds. Clearly, this implies that (A, +, - )  is additively idempotent, but not conversely. If 
(A, +,  .) has an identity, then an equivalent condition is that e* = e holds. 

d) In Theoretical Computer Science countably complete y'~'~-semirings (A, +, y~, .) 
with identity which are countably idempotent were called closed semirings (cf. [ 119] for 
this and related concepts as (*-continuous) Kleene algebras, S-algebras, and R-algebras). 
This name originates from the following example. Let ~ ( X )  --- P (X x X) denote the 
set of all binary relations ~9 on an arbitrary set X. If addition is defined as union U and 
multiplication as composition o of relations, then it is obvious that (TZ(X), tO, [J, o) is 
a complete y~'~-semiring such that Q* is just the reflexive and transitive closure for any 
0 E 7"r Note that each semiring (P(X*), tO, .) of formal languages (cf. Example 9.4) 
is also a closed semiring. 

e) Let (A, +,  Y"~, .) be a ~-semir ing and (Mn,n(A), +, ") a matrix semiring over A. 
Then ~ can be transferred to each family (Mk)kEK of matrices Mk = (rni,j,k) E 
Mn,n(A) for which 

Z m i , j , k  = m i , j  

k E K  
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exists in (A, +, )--~'~) for all i, j E { 1 , . . . ,  n} by defining 

Mk = (mi , j ) .  
kEK 

In this way one obtains a ~-semiring (Mn,n(A), +, ~--~, "). Clearly, if (A, +, ~--~'~, .) is 
countably complete, complete, countably idempotent or satisfies (GP'), the same holds 
for any (Mn,n(A), +, ~ ,  "). The same can be proved for *-completeness provided that 
(GP') is satisfied. 

One reason for developing a theory of (countably complete) ~-semirings was to 
formulate and prove the correctness of algorithms which solve the so-called algebraic 
path problem which we are going to describe now. 

DEFINITION 10.6. a) We call a semiring (A, +, .) with absorbing zero o and identity e -7(: o 
a path algebra if (A, +)  is commutative (but not necessarily idempotent). With respect 
to Remark 10.5 b) we will always assume that it is a ~-~'~-semiring. 

b) By a finite directed graph G - (N, E) we mean a finite set N = {1 , . . . ,  n} of 
nodes and a set E C N x N of directed edges. If (A, +,  ~-~, .) is a path algebra, then 
a valuation of G - (N, E) is given by a matrix M E Mn,n(A) satisfying mi,j = o 
if (i, j )  ~ E and mi,j ~ o otherwise. For e~, = (i, j)  E E we call w(e~) = mi,j the 
value of eL,. Moreover, for every path p = ( e l , . . . ,  er) in G we define its value by the 
product w(p) = w ( e l ) . . ,  w(er). Let Pi,j be the set of all paths in G from node i to 
node j ,  including for each i E N the path {i} from i to i of order 0 with w({i}) - e 
for technical reasons. Then the algebraic path problem is to decide whether there exist 
elements di,j E A such that 

pEPs,3 

holds in (A, +, ~ , - ) ,  and to compute D = (di,j) E Mn,n(A) if possible. 

REMARK 10.7. If (A, +,  .) is additively idempotent, then it determines a partial order on 
A (cf. Remark 8.4 d)) and in this case 

pE P~,3 

is a lower or upper bound of all values w(p) for paths p from node i to node j.  For 
some concrete examples cf. Example 1.9. 

THEOREM 10.8. Under the same assumptions as in Definition 10.6 the following state- 
ments hold in the ~-~-semiring (Mn,n(A), +, ~-'~, ")" 

a) If D exists, then M* exists, too. 
b) If (A, +, ~"~'~, .) satisfies (GP'), then the converse of a) is  true. 
c) In both cases a) and b), one has D - M*. 
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In the literature, e.g., in [2, 40, 243] and [174], several algorithms were presented to 
solve the algebraic path problem. A detailed investigation using the concepts sketched 
here shows the following (cf. [87] and [89], IV.6). The proof of the correctness for 
each of these algorithms needs at least that the path algebras under consideration are 
)--~-semirings (A, +,  ~ , - )  satisfying (GP'). For some algorithms even more assumptions 
on (A, +,  ~ , - )  are indispensable, e.g., that (A, +,  Y~'~, .) has to be countably idempotent. 
Sometimes not all of these assumptions are mentioned explicitly. 
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Abstract 

Near-rings are generalized rings: commutativity of addition is not assumed, a n d -  more 
impor t an t -  only one distributive law is required. The most famous example is the 
collection of all maps from an additive group into itself w.r.t, function addition and 
composition. Compared with a standard class of rings, endomorphism rings of abelian 
groups, one sees that rings describe "linear" maps on groups, while near-rings handle 
the general nonlinear case. 

The theory of near-rings is now a sophisticated theory which has found numerous 
applications in various areas. In this article, we concentrate on a deep structure theorem 
for near-rings, the density theorem for primitive near-rings. This result is applied to 
interpolation theory, group theory and polynomials. Connections between other parts 
of near-rings (especially near-fields) and geometry come up at several places. Efficient 
block designs and codes can be constructed from finite near-rings. Finally we mention 
connections to ring theory, computer science, graph theory and other parts of the "outside 
world". 

Only some easier proofs are given. For the others, references will be given; if these 
results are available in book form, we cite this book and not the original paper. Up to 
now, three books on near-rings and one on near-fields have appeared (see [1-4] in the 
list of references). 

N, Z, I~ denote the sets if natural numbers, integers and reals, respectively, and Zn 
denotes the set of residue classes modulo n. 

1. Introduction to near-rings 

Endomorphisms h on groups fulfill the law h(x + y) - h(x) + h(y), a property which 
is very easy to check in most situations. But suppose now you have a collection M - 
{ f ,  g, h , . . . }  of maps on a group at hand. Can you find out within this system, if the 
functions are "linear" (-endomorphisms),  without referring to the arguments x, y? A 
good first guess would be that these functions are linear iff ( . )  holds: 

ml o (m2 + m3) -- ml o m2 + rr~l o m3 for all ml ,  m2, m3 E M. ( . )  

(Recall that the other distributive law (ral + m2) o m3 = ral o m3 + m2 o m3 is always 
true, just by the definition of function addition!) 

In fact, ( . )  comes pretty close to linearity, but there are "a few" situations where also 
nonendomorphisms fulfill ( .) .  The easiest example for that is the collection M - {kid I 
k E Z} of all multiples of the identity function id on a nonabelian group G. Recall that 
2 id is never an endomorphism if G is not abelian. But 

(kid) o (sid + rid) = (ks + kt) id  = (k id )o  (sid) + , ( k i d ) o  (rid) 

holds for all k, s , t  E Z. The system {kid [ k E Z} is also closed w.r.t, addition and 
composition. Hence it is a (not very typical) example of  a near-ring: 
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DEFINITION 1.1. A near-ring is a set N together with two binary operations "+"  and "o" 
such that 

(i) (N, +)  is a group (not necessarily abelian), 
(ii) ( f + g )  o h = f o h + g o h f o r a l l f ,  g, h E N ,  

(iii) ( f  o g) o h = f o (g o h) for all f ,  g, h E g .  

Hence there are two axioms missing for near-rings compared with rings: addition is 
not necessarily abelian and only one distributive law is assumed. It should be clear how 
to define concepts like subnear-rings and near-ring homomorphisms. More precisely, we 
have defined right near-rings. Using the law (ii)~: f o (g + h) = f o g + f o h would 
yield left near-rings. 

EXAMPLE 1.2. Near-rings are abundant. Let (G, +)  be a group (not necessarily abelian), 
T a topological group, V a vector space, and R a commutative ring with identity. With 
respect to addition + and composition o, the following sets are near-rings: 

M(G) := { f  I f :  G ~ G} 
Mo(a) := {f e M(G) If(O)= O} 
M~(C;) := {f e M(a) qf is constant} 
M~ont(T) := {f e M(T) l f is continuous} 
M~ff(V) := {f e M(V)  I f  is affine (= the sum of a linear and a constant map)} 
P(R) := {f  E M(R)  Lf is a polynomial function} 
R[x] (as (R[z], +, o)!) 

Of course, every ring is a near-ring. If we define �9 on any group (G, +)  by a �9 b : -  a, 
we get a near-ring (G, +,  .) .  Hence every group can be turned into a near-ring. 

More examples will follow. We now show that every near-ring can be considered as 
a subnear-ring of some M(G):  

THEOREM 1.3. For every near-ring N there is some group (71 with N c~ M(G). 

PROOF. Let G be any group containing (N, +)  properly. For n E N and g E G let en(g) 
be = n o g if g E N and = n otherwise. Then the map ~: N ~ M(G) sending n to en 
is easily seen to be a monomorphism. I-l 

Since M(G) contains an identity (the identity function id), we get from 1.3 instantly 

COROLLARY 1.4. Every near-ring can be embedded in a near-ring with identity. 

Note that 1.3 and 1.4 have their analogues in ring theory. Since every ring can be 
embedded in the endomorphism ring of some abelian group, we might view a ring as 
a "system of linear maps", while near-rings "consist of arbitrary mappings on groups". 
This reveals the basic difference between rings and near-rings, and this point will become 
even more apparent in the sequel. Unless indicated otherwise, we will, from now on, 
write "products" f o g simply as juxtaposition fg. 

While 1.3 is basically shown as in ring theory, the proof of 1.4 drastically differs from 
the one for rings (this is typical for some parts of near-ring theory). Also, it is not always 
possible (as it is for rings) to embed a near-ring as an ideal in one with identity ([15]). 
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DEFINITION 1.5. A near-ring N = (N, +, o) is a near-field if the set N* of nonzero 
elements of N forms a group w.r.t.o. 

Historically, the first near-rings considered were actually these near-fields which we 
will study in more detail in Section 2. The early 30's saw the first "proper" near-ring 
considerations. If G is a nonabelian group and hi, h2 are endomorphisms of G then 

(hi + h2)(g, + g2) = h, (g,) + h, (g2) -+- h2(gl) + h2(g2), 

which is in general not equal to 

hi (gl) -q- h2(gl) + hi (92) + h2(92) = (hi + h2)(gl) + (hi -}- h2)(g2). 

Hence the sum of two endomorphisms is rarely an endomorphism again. Fitting [24] 
studied cases in which the sum of two automorphisms is again an automorphism. We'll 
return to this question later on. 

In 1938, H. Wielandt [77] initiated a structure theory (semisimplicity) of near- 
rings (which he called "Stamm" = tribe). Much work was done by him in unpublished 
manuscripts. In a dissertation under the guidance of E. Artin, D.W. Blackett [16] stud- 
ied simple and semisimple near-rings around 1950.-A dozen years later, G. Betsch [14] 
defined and studied the first and still most important type of a Jacobson-type radical 
for near-rings. Among several nice applications of near-rings, G. Ferrero and J.R. Clay 
discovered the "down-to-earth-application" of constructing Balanced Incomplete Block 
Designs from planar near-rings in the early 70's (see Section 6.1). 

For near-rings we always have the law 0x = 0; this can be shown as for rings. The 
lack of the second distributive law, however, does not allow us to show that x0 = 0 in 
general. An easy counterexample is M(G):  not every function maps 0 into 0. 

DEFINITION 1.6. For a near-ring N, we call 
No := {n E N I n o 0 = 0} the zero-symmetric part of N, and 
N~ := {n ~ N I n o 0 = n} the constant part of N. 
N is called zero-symmetric (constant) if N = No (N = No, respectively). 

In fact, if nO = n holds then we get n m  = (nO)m = n(Om) = nO = n for each 
m ~ N; this justifies the name "constant". If we apply 1.6 to N = M ( G )  we get 
(M(G))o = Mo (G) and (M(G))c = Mc (G). No and N~ are easily seen to be subnear- 
rings of N. Moreover, (No, +)  is normal in (N, +).  The zero-symmetric near-ring No is 
"closer" to the class of rings (sometimes it actually will be a r i n g -  see, e.g., Mall(V)), 
while N~ has a trivial multiplication n m =  n, hence N~ is only interesting as a group. 

PROPOSITION 1.7. For every near-ring N,  we have N = No + Nc and No N Nc = {0}. 

n = ( n -  n o 0 )  + n o 0  does the decomposition job in 1.7. Hence (N, +)  is a semidirect 
sum of (No, +)  and (N~, +). 
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DEFINITION 1.8. For a near-ring N, 

Na := { h E  N I n ( m +  m') = r im+ rim' for all m , m '  E N} 

is the distributive part of N; each n ENd is called distributive. N is called distributively 
generated (d.g.) if Na generates (N, +) ,  and distributive if N = Na. If Na = No and if 
(N, +)  is abelian then N is called an affine near-ring. 

Clearly Na C_ No. If (N, +)  is abelian then Na is a ring. If N = Mall(V) (see 1.2) 
then No = Na = Hom(V, V), Nc = Me(V), so Man(V) is an affine near-ring. Impor- 
tant examples of d.g. near-rings will follow in Section 3. Distributive near-rings are the 
place where near-rings meet semirings (see the article "Semirings and Semifields" by 
U. Hebisch and H.J. Weinert in this volume of the Handbook of Algebra). The corre- 
sponding diagram is given by 

distributive near-rings 

semirings near-rings 

seminear-rings 

For seminear-rings see 6.7.1. We now take a brief look at ideals. 

DEFINITION 1.9. Let N be a near-ring and I a normal subgroup of (N, +).  I is called a 
right ideal iff i o n E I for all i E I, n E N, left ideal if n o (i + m) - n o m E I for 
all i E I,  n, m E N, and an ideal if I is a left and a right ideal. N is simple if has it no 
ideals besides {0} and N. 

Observe that the condition n(i + m) - n m  E ! can only be reduced to ni E I if 
n E Na. We now examine the case N = Mo(G). For proofs, see [31] or [3]. 

THEOREM 1.10. 
(i) All minimal left ideals of Mo(G) are given by 

Lg := { f E M 0 ( G )  l f ( g '  ) = O for all g' # 9} (9 E G, g # O). 

(ii) All maximal left ideals of Mo(G) are given by 

Mg .= { f E Mo(G) l f (9) : O} ( g E G ,  9 - r  

(iii) Mo(G) is simple. 
(iv) M(G) is simple unless IGI- 2. 
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THEOREM 1.11. The following are equivalent for Mo(G): 
(i) All left ideals are given by LH :-- {f  E M0(C) I fl~/- 0} with H C_ G. 

(ii) Mo(G) is the direct sum of all Lg of 1.10(i). 
(iii) Mo(G) fulfills the descending chain condition on left ideals. 
(iv) Mo(G) fulfills the ascending chain condition on left ideals. 
(v) Mo(G) isfinite. 

(vi) G is finite. 

In near-ring theory, left ideals are much more important than right ideals. This is due 
to the fact that left ideals are precisely the kernels of "N-near-module" homomorphisms 
(cf. Chapter 3), while nothing similar applies to right ideals. 

We have seen (1.3) that near-rings "describe mappings on groups". More generally, we 
might consider systems of mappings on semigroups (e.g., M(N)), vector spaces, lattices, 
and so on. Proceeding in this way, we can start with a universal algebra (A, O), form 
the collection A A of all mappings A -4 A, define the operations of O pointwisely to 
these functions, and add composition o as additional operation. We then get a "richer" 
structure M(A)  : -  (A A, O t_J {o}). Examples: 

A M(A) 

set semigroup 

semigroup seminear-ring 

group near-ring 

module ( - )  

vector space near-algebra 

ring composition ring 

near-ring ( - )  

O-group O-composition group 

lattice tri-operational lattice algebra 

( - )  means: not even a name was given to these structures. For instance, (ll~ ~, + , . ,  o) is 
a nice example of a composition ring: (ll~ ~, +, .) is a ring, ( /~ ,  +, o) a near-ring, and 
( f .  g) o h = ( f  o h ) .  (g o h) holds for all f, g, h E R R. Much remains to be done in 
these areas. 

2. Near-fields 

The whole thing started with a special class of near-rings: with near-fields. At the be- 
ginning of this century, L.E. Dickson constructed in [22] the first example of "proper" 
near-fields by "distorting" the multiplication in a field. More precisely, starting from a 
field (F, +,-)  and a coupling map ~: F* -4 Aut(F, +),  f -4 e l ,  with CfOCg = Cqbf(g).f, 
Dickson defined f .v g := Cg( f ) '9  (and f .~ 0 := 0). Then F ~ := (F, +,-~),  called the 
r of F,  is a near-field, and in general not a field. 
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DEFINITION 2.1. A near-field N is a Dickson near-field if there is some field F with 
N = F ~ (for a suitable ~). 

From the numerous deep results about near-fields we mention 

THEOREM 2.2 (B.H. Neumann [62], Karzel [39], et al.). I f  N is a near-field then (N, +)  
is abelian. 

THEOREM 2.3 (Zemmer [81]). I f  N is a near-field then Na is a field and char N = 
char Nd (which is either 0 or a prime). 

THEOREM 2.4 (Zassenhaus [79], see also [4]). A finite near-field is either a Dickson 
near-field, or it belongs to 8 exceptional near-fields o f  order 2, 52, 72, 112 (two near- 
fields), 232 , 292 or 592 . 

The exceptional near-fields of orders p2 in 2.4 can easily be described by means of 
2 • 2-matrices. The exceptional near-field of order 2 is (Z2, + ,  o) with x o y := x 
for x, y E Z2. Hence all finite near-fields can considered to be "known". The smallest 
"interesting" example is (GF(9), + ,  o) with x o y := xy  if y is a square and x o y = x3y 
otherwise. Its multiplicative group is the quaternion group. 

The constant near-field (Z2, + ,  o) mentioned above is, by the way, the only near-field 
N which is not zero-symmetric. In fact, let c be a nonzero constant element of N c. If 
n , n  ~ are in N then c o n = c = c o n~; multiplication by c -1 yields n = n t. Hence 
U = {0, 1} -~ (Z2, + ,  o). 

For many years, it was an open problem if there exist infinite non-Dicksonian near- 
fields. A new (but complicated) construction method enabled H. Zassenhaus to show 

THEOREM 2.5 (Zassenhaus [80]). There exist infinite non-Dicksonian near-fields (for ev- 
ery prime characteristic). 

From 1907 on, Veblen, Wedderburn and many successors used near-fields N to coor- 
dinatize geometric planes ~, so that the points of G are just the elements of N x N and 
the lines of G are given by all {(x, xa  + b) l x  E N }  and { ( c , x ) [ x  E N }  for a E N* 
and b, c E N.  Given any geometric plane, it is certainly a big achievement to find a 
suitable "domain" that coordinatizes it. Descartes did that for the "real plane", using the 
field 1R. For more general types of planes, more general "domains" that II~ are needed. 
Two results in this direction are given in 2.7 below. For this, we need another concept. In 
geometry, we usually want two lines y = xa + b and y = xc + d with a ~ c to intersect 
in precisely one point. Since xa + b = xc + d can be transformed into xa = xc + ( d - b ) ,  
we find it natural to give the following 

DEFINITION 2.6. A near-field N is planar (or projective) if all equations xa = xb + c 
(a, b, c E N, a ~ b) have a unique solution. 

It can be shown (see, e.g., Zemmer [81]) that all finite near-fields are planar. But there 
do exist (infinite) nonplanar near-fields [4]. 

THEOREM 2.7. Let G be an affine plane, coordinatized by N.  
(i) G is a translation plane iff N is a "Veblen-Wedderburn system" (i.e. a "multi- 

plicatively nonassociative near-field"). 
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(ii) G is a translation plane of  the "Lenz-Bartotti-type IV.a.2" iff N is 'a planar 
near-field. 

The proof of (i) is, e.g., in M. Hall's book [30], while (ii) can be found (along with 
many related results) in Dembowski [21]. 

Zassenhaus also initiated the study of the role near-rings play in group theory. A 
group G of permutations on the set X is called sharply k-transitive if for all X l , . . . ,  Xk 

of pairwise different elements of X and all pairwise different Y l , . . . ,  yk in X there is 
exactly one g E G with 9(xi)  = yi (1 ~< i ~< k). 

Sharply 1-transitive permutation groups are just the regular ones. The sharply k- 
transitive groups for k /> 4 were basically already known to C. Jordan (1872): they 
are finite and isomorphic either to a symmetric group of degree n ~> 4 or to alternating 
group of degree n ~> 6 or to one of the Mathieu groups of degree 11 or 12. Hence it 
remained to determine the sharply 2- and 3-transitive groups. For proofs and more details 
see, e.g., [44]. 

THEOREM 2.8. I f  G is a sharply 2-transitive groups then there is a "near-domain" (i.e. 
roughly spoken, an "additively nonassociative near-field") N such that G is isomorphic 
to the group of  all transformations x --+ x o a + b (a, b E N,  a ~ 0). 

Since all finite near-domains are known to be near-fields, 2.4 allows us to say that 
all finite sharply 2-transitive groups are "known". The sharply 3-transitive groups were 
shown to consist of "fractional affine transformations" 

x o a + b  

x o c + d '  
a,b,c,  d E N ,  a o d ~ b o c ,  

where N is a "Karzel-Tits-field" (i.e. a certain near-domain). This finally concluded the 
description of all sharply transitive groups. 

The transformations x ~+ x o a + b in a near-field also form important examples of 
Frobenius groups. Recall that a group/" of permutations on a set X is a Frobenius group 
if each "y E / ' ,  3' 5r id, has at most one fixed point, and if the set of all fixed-point-free 
-y, together with id, forms a transitive proper normal subgroup K r  of F.  This K r  is 
called the Frobenius-kernel of/- ' .  I f / "  is finite, K r  is known to be characteristic and 
nilpotent./" is always a semidirect product of K r  and some "Frobenius complement". 

THEOREM 2.9 (Andr6 [ 11 ]). I f  N is a planar near-field with more than two elements then 
F : -  {x -+ x o a + b la,  b E N,  a 5r 0} is a Frobenius group on N, and its Frobenius 
kernel is given by K y  = {x -+ x + bib ~ N} .  

Many important classes of Frobenius groups arise from planar near-fields in this man- 
ner. 

Another connection to geometry was developed by H. Karzel. It concerns projective 
spaces in which the collineations (= automorphisms) have a simple algebraic description: 

DEFINITION 2.10. (P, s  is a projective incidence group if (P, 12) is a projective space, 
(/9,.) a group, and each q -+ p . q  is a collineation of (P,/2). 
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THEOREM 2.11 (Karzel [39]). Let N be a near-field and F a subfield of N such that 
F* is normal in (N* , . )  a n d n o ( f  + f ' )  = n o  f + n o  f '  foral l  n E N , f , f '  E F. 
If S denotes the set of all subspaces of F N of dimension 2 then (N*/F*,  S,. ) is a 
Desarguesian projective incidence group. 

Conversely, every Desarguesian projective incidence group arises in this way: the 
near-field N is "essentially uniquely" determined by the incidence group. 

For more on the recent developments in the theory of near-fields see the surveys [12] 
and [42] and the book [4] by W/ihling. 

3. The structure of near-rings 

As in ring theory, one can learn a lot about near-rings if one studies how they behave 
on their "offsprings", i.e. on their "near-modules"" 

DEFINITION 3.1. Let N be a near-ring and (G, +) a group such that for all n E N and 
g E G a "product" ng E G is defined. Then G is called an N-group or N-near-module 
if (nl + n2)g -- nlg -t- n2g and (nln2)g = nl (n2g) hold for all nl ,  n2 E N and g E G. 

EXAMPLE 3.2. Every (ring-) N-module is an N-group, of course. Every group (F, +)  is 
a Z-group and an M(/-')-group in the natural sense. Hence every group can be considered 
as an N-group in several ways. 

DEFINITION 3.3. An N-group G is called irreducible if N G  ~ {0} and if there is no 
nontrivial subgroup H of G with NoH c._ rat. Kernels of N-group-homomorphisms 
(which are defined as expected) are called N-ideals of G. If G only has the trivial 
N-ideals then G is called N-simple. 

If one transfers ideas from ring to near-ring theory, sometimes equivalent concepts for 
rings become inequivalent for near-rings. Hence there are different possible definitions 
for "irreducible". Our definition coincides with the concept of "N-groups of type 2" in 
the literature on near-rings. 

We have to study the action of N upon its N-groups G. Especially disgusting will be 
those n E N which "kill" everything in G. Also, we shall need the "N-automorphisms" 
of G: 

DEFINITION 3.4. Let G be an N-group. 
(i) A(G) "= {n E N lng = 0 for all g E G} is called the annihilator of G. 

(ii) ~5(G) := {r E Aut(G, +) [ r  = nr  for all n E No and g E G}. 

For every N-group G, A(G) is an ideal of N. Those elements in N might be considered 
to be the "'worst" ones which "liquidate" all "small" N-groups. We collect them in the 
"radical": 

DEFINITION 3.5. The radical J (N)  of the near-ring N is the intersection of all A(G) 
where G is an irreducible N-group. N is called semisimple if J (N)  = {0}. N is primitive 
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if N has an irreducible N-group G with A(G) = {0} (we then say that N is primitive 
on G). An ideal ! of N is called a primitive ideal if N / I  is a primitive near-ring. 

As an intersection of ideals, J(N)  is itself an ideal of N. Clearly, every primitive near- 
ring is semisimple, since a primitive near-ring has A(G) = {0} for some G. Similar to the 
remark after 3.3, we have defined what is known as "2-primitivity", "2-semisimplicity" 
and the "2-radical, J2". 

If one defines subdirect products similarly to ring theory (or according to universal 
algebra) one can prove as in ring theory: 

THEOREM 3.6. 
(i) For every near-ring N, N / J ( N )  is semisimple. 

(ii) A near-ring is semisimple iff it is isomorphic to a subdirect product of primitive 
near-rings. 

So far, the theory runs along the same lines as ring theory. Theorem 3.6 tells us what 
one has to split off from an arbitrary near-ring in order to get a semisimple one. These 
near-rings, in turn, are in some way known if the primitive near-rings are known. The 
complete determination 3.8 of all primitive near-rings will be the central result of this 
chapter. We need some preparations: 

DEFINITION 3.7. Let N C M C_ M(G) and k E N. The set N is called k-fold transitive 
w.r.t. M if for all g~,. . . ,  gk E G and all m E M there is some n E N with n(g~) - m(g~) 
(1 <~ i ~< k). N is dense in M if N is k-fold transitive w.r.t. M for all k E N. 

If one introduces the "finite topology" in M by taking all 

S(m, g) "= {m' E M ] m'(g) = re(g) } 

as a subbase then the density concept of 3.7 is just the topological concept of density. 
In order to describe primitive near-rings completely, we need a new class of near-rings. 

DEFINITION 3.8. Let S be a semigroup of endomorphisms of the group (G, +).  Then 

Ms(G) := { f  E M(G)[ : (O)  = 0 and f o s = s o f for all s E S} 

is called the centralizer near-ring on G w.r.t.S. 

If S = {id} then Ms(G) = Mo(G). If R is a ring, G an R-module and 

then Ms(G) := MR(G) consists of all "homogeneous functions" f (which fulfill 
f(Ag) -- Af(g) for all A E R and g E G). This type of near-ring will be explored 
in Section 6.4. We are now able to state our fundamental structure theorem. 
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DENSITY THEOREM 3.9. Let the near-ring N with identity be primitive on G. 
Case I: No is a ring. Then G is a vector space over the skew-field F := HomN(G, G) 

and N is dense in HomF(G, G) (if N = No) or dense in Maff(G) (if N ~ No). 
Case II: No is not a ring. Then ~(G) is a fixed-point-free group of automorphisms of 

G, and if S denotes ~ ( G ) U  (0}, N is dense in Ms(G)  (if N = No) or, otherwise, dense 
in M s  (G) + Mc (G). 

The proof of 3.9 can be found in [3]. The first alternative in case I is just Jacobson's 
Density theorem for rings. 3.9 does not give a new proof of Jacobson's result; case I has 
to be split off by a careful investigation of the lattice of left ideals of N. In both cases, 
either Nc = {0} or else Arc = Me(G). 

COROLLARY 3.10. Let N be primitive on G, containing an identity and with ~(G) - 
{id). Then N is dense in one of the following near-rings: 

Case I (No a ring): N is dense in HomE(G, G), or in Man(G) ("linear case"). 
Case II (No a "nonring"): N is dense in Mo(G) (if N = No) or in M(G)  (if N ~ No) 

("nonlinear case"). 

If N fulfills the descending chain condition on left ideals then "density" is the same 
as "equality". Let us take a look now at some applications of the Density theorem. 

Given a near-ring N of mappings on a group G, it might be interesting to ask for 
k E N, for all given X l , . . . ,  xk E G (distinct) and y l , . . . ,  yk E G when is there some 
n E N with n(xi) = Yi for 1 ~< i ~< k. Obviously N fulfills this "k-interpolation 
property" iff N is a k-fold transitive subnear-ring of M(G) (see 3.7). If N is 3-fold 
transitive on G then No is 2-fold transitive on G* = G\{0}.  It is then clear that G 
cannot have a proper subgroup n with N o n  c_ n .  Since A(G) = {0}, No is primitive 
on G. It is easy to see that N is primitive on G with ~(G) = {id}. Hence Corollary 3.10 
shows the nontrivial part of 

THEOREM 3.11. Let N r No be a subnear-ring of M (G) containing id and suppose that 
No is not a ring. Then N is 3-fold transitive on G iff N is k-fold transitive on G for all 
k E N (i.e. N is dense in M(G)).  

Hence it is a consequence of the Density Theorem that "if N interpolates at 3 places 
then at all (finitely many) places". 

As remarked in Section 2, End G is in general not a ring if G is not abelian, because 
the sum of two endomorphisms is usually not an endomorphism anymore. Hence it is a 
good idea to look at the additive closure. 

DEFINITION 3.12. Let (G, +)  be a group. Let E(G), A(G) and I(G) be the additive 
closures in M(G)  of End G, Aut G and Inn G, respectively. 

It is easy to show the following statements. 

THEOREM 3.13. For each group G, E(G) ,A(G)  and I(G) are distributively (by End G, 
Aut G, Inn G, respectively) generated near-rings. So they are zero-symmetric. The E(G)-, 
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A(G)-,  and I(G)-subgroups of  G are precisely the fully invariant, the characteristic, and 
the normal subgroups, respectively. 

Hence I (G)  is primitive on G iff G is simple. If ~(G) ~ id and G is finite, then ~(G) 
contains a fixed-point-free automorphism of G of prime order. By a well-known theorem 
of Thompson, G is then nilpotent and (since G is simple) nonabelian; so E ( G )  = End G 
is a ring in this case. Similar considerations apply to A(G)  and E(G);  so we have shown 
the basic parts of 

THEOREM 3.14. Let G be a finite group, IG[ > 2. 
(i) E ( G )  = Mo(G) r G is nonabelian and characteristically simple. 

(ii) A(G)  -- Mo(G) r G is nonabelian and invariantly simple. 
(iii) I (G)  = Mo(G) r G is nonabelian and simple. 

In a "near-ring-free" language we can restate, e.g., 3.14 (iii) as 

COROLLARY 3.15. Let G be a group with more than 2 elements. Every map from G to 
G is the sum of  inner automorphisms and a constant map r G is finite, simple and 
nonabelian. 

If R is a commutative ring with identity then the near-ring P ( R )  of polynomial 
functions on R is easily seen to be primitive on (R, +)  iff R is a finite field. Then 
~b(R) = {id} and the Density Theorem gives a new proof (without using Lagrange's 
interpolation formula) of 

THEOREM 3.16. Let R be a commutative ring with identity. Every map R --+ R is a 
polynomial function r R is a finite field. 

But that brings us right away into the next section. 

4. Polynomials 

If we look at a polynomial p = ao + a lx  + a2x 2 + " " " + anX '~ over a commutative ring 
R with identity, we can view p as a "typical element which can be generated by RU {x} 
using the operations and laws of commutative rings with identity". So the "shape" of p 
depends not only on R, but also the class of algebras (commutative rings with identity, 
in our case) from which R is taken. We will give a very general definition. Recall that 
a variety of algebras is a class V of algebras of the same type which is closed w.r.t. 
homomorphic images, arbitrary direct products and subalgebras. Equivalently, V is a 
variety iff V can be "defined by identities". For instance, the classes of rings or of 
commutative rings with identity are varieties, while the class of fields is not a variety. 
For varieties and polynomials see [46]. 

DEFINITION 4.1. Let A be an algebra of a variety V. Then the polynomial algebra Av[x]  
over A in V is defined as the free union of A with the free algebra over {x} in V. 
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Hence Av[x] E V.  It is clear that Av[x] is generated by A w {x}. 

EXAMPLE 4.2. (i) Polynomials over commutative rings with identity have the usual form 
indicated above. 

(ii) Polynomials of AR[x], R = variety of all rings, are of the form 

ao + al x + xa2 + a3xa4 + zx  + asx 2 -k- . . .  (ai E A E R,  z E Z). 

(iii) Let (7 be the variety of all groups. If A E G then 

At[x]  = {ao + z , x  + a, + z2x + . . .  + znx + a,~ L ai E A, zi E Z}. 

(iv) If A = variety of abelian groups then, for A E A, 

A A [ x ] = { a + z x l  a E A ,  z E Z } .  

(v) In the variety M ( R )  of unitary R-modules (R = ring with identity) we get 

AM(R)[x] = {a + rx l a E A, r E R}. 

The following is easy to see and ties us to near-ring theory. Recall that an O-group 
(in the sense of Higgins [33]) is a group (G, +) ,  together with possibly other operations 
wi (i E I)  such that wi(O, 0 , . . . ,  O) = 0 for all i E I. 

THEOREM 4.3. If V is a variety of O-groups then Av[x] is a near-ring w.r.t, addition + 
and composition o. 

For each p E Av[x] we can associate the induced polynomial function ~: A --+ A in 
the obvious way. Let P(A)  be the set of all p (p E Av[x]). Observe that polynomials 
depend on V, while polynomial functions do not. 

THEOREM 4.4. For all A in a variety V of O-groups, (P(A),  +,  o) is a near-ring and 
the correspondence h: Av[x] --+ P(A),  p ~-~ ~ is an epimorphism. P(A)  is generated 
by the constant functions on A and the identity function. Each ~ E P(A) is compatible 
in the sense that for each congruence 0 in A, we have aOb =~ ~(a)O~(b). 

The proof is easy: since h can be considered as homomorphism from Av[x] to 
M ( A )  = A A, Im h = P(A)  is a near-ring. Since for a E A, ~ is the constant function 
with value a, and :~ = id, P(A)  is generated by the constant maps and id. Since constants 
and id are compatible, so are all polynomials. 

We examine the varieties of commutative rings with identity and of groups more 
closely. We omit V in Av[x], since the meaning of V will be clear. Of course, within 
the first variety the special case of fields deserves special interest. Proofs can be found 
in [3]. 
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THEOREM 4.5 (Clay-Straus). I f  F is an infinite field then F[x] is simple. I f  F is a finite 
field with char F ~ 2 then all ideals o f  (F[x], +,  o) are precisely all principal ideals 
(p) o f  (F[x], + ,  .) with p [ p  o q for  all q E F[x]. 

Polynomials p with p [ p o q for  all q E F[x] (F  a finite field) are precisely the Icm's 
o f  polynomials o f  the type (x qn - x) m (n, m E N). 

The case of char F = 2 is considerably more complicated, see [3]. 

THEOREM 4.6 (N6bauer). Let R be a commutative ring with identity. P ( R )  is simple 
e ,  R is a field with [R[/> 3. 

Now we turn to the variety G. If p = ao + Z l X  -[- ' ' '  n t- ZnX Jr an is zero-symmetric 
then/3(0) = 0, hence ~ ai = 0, and conversely. In this case, we are able to write 

p - -  ao -[- Zl X -Jr- a l -t- ' ' '  + Z n X  q- a n  

= (ao + ZlX - -  ao) + ((ao + al) -k- Z 2 X  - -  (ao + al))  -{- . . . .  ~ ai 

= z l ( a  0 q- z -- a0) + z 2 ( ( a  0 -~- a l )  q- z -- (a  0 + a l )  ) q - . . .  

%" Z n ( a  t + X - -  a t ) 

with a ~ - ao + al + . . .  + a n - l .  Hence we get for each G E G: 

THEOREM 4.7. P0 (G) = I (G). 

THEOREM 4.8 (Lausch and N6bauer, see [46]). P(G)  - M ( G )  -- G c r  G ~ -  7Z 2 or G 
is finite, simple, and nonabelian. 

This brings us back to the question of which functions are polynomial functions. 

DEFINITION 4.9. For n E N, let LnP(A) be the collection of all maps A -+ A which can 
be interpolated by polynomial functions on any set of <~ n places in A. 

LP(A) " -  N LnP(A) 
nEN 

is the set of local polynomial functions. Let C ( A )  be the set of all compatible functions 
(see 4.4). 

Obviously, L2P(A) C_ C(A) .  The converse can also be seen; the remaining assertions 
in 4.10 are easy: 

THEOREM 4.10. I f  A is an ~2-group then 

P ( A )  ~ LP(A) ~ - . - ~  LnP(A) ~ ' - - ~  L3P(A) 

<~ L2P(A) = C(A)  ~ L1P(A) = M ( A )  

is a chain of  near-rings (w.r.t. + and o). 
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DEFINITION 4.11. An algebra A is called locally polynomially complete if LP(A) = 
M(A)  and polynomially complete if P(A) = M(A).  

So a finite field is polynomially complete while an infinite field is "only" locally 
polynomially complete. Obviously an f2-group G is locally polynomially complete iff 
P(G) is dense in M(G). Hence we might expect some help from the Density Theorem 
if P(G) is primitive on G. Detailed considerations show that P(G) is primitive on G if 
G is a simple O-group. We then get 

THEOREM 4.12. Let G be a simple f2-group. If Po(G) is a ring then G is a vector space 
and P(G) is dense in Man(G). If Po(G) is not a ring then G is locally polynomially 
complete. 

For which simple O-groups can Po(G) be a ring (w.r.t. + and o)? We collect some 
results. Much more on this and on related subjects can be found in the substantial paper 
[73] by S.D. Scott. 

THEOREM 4.13 ([69]). 
(i) If G is a simple group then Po(G) is a ring iff G is abelian. 

(ii) If G is a simple ring then Po(G) is a ring iff G ~- Z2. 
(iii) If G is an R-(ring-)module then Po(G) is always a ring. 

Hence the local completeness of fields can also be derived from 4.12 and 4.13. 
For general algebras, LsP(A) = M(A)  implies LP(A) = M(A),  an almost total 

collapse in the chain of 4.10. If A is an g2-group, however, it can be shown (see [3]) that 
L3P(A) = M(A)  implies that P(A) is primitive on (A, +)  with ~(A) = {id}. Hence 
P(A) is dense in M(A),  which shows 

THEOREM 4.14. If A is an O-group such that L3P(A) -- M(A)  then LP(A) -- M(A), 
and A is locally polynomially complete. 

Polynomial functions are also useful to describe generated ideals in O-groups. Take 
the case of "plain" groups G, for instance. We have seen before that Po(G) consists of 
the maps 

g ~ E ( h i  + z i g -  hi). 
i 

Hence the normal subgroup (= ideal) generated by 9 �9 G is given by {P(9) I P e Po(G)}. 
This turns out to be true in general: 

THEOREM 4.15 ([69]). If G is an D-group and 9 E G, S C G, then the ideals (9), (S) 
generated by 9, S, respectively, are given by 

(g) = {p(g) I p c Po(G)} ,  

(s) = Z ( 9 ) .  
g E S  
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This is, for example, useful to get results about (sub)direct decompositions of 
f2-groups (see, e.g., [64])~ From 4.2 (ii) one instantly derives the well-known result 
that the principal ideal (a) in a ring R is given by Ra + aR + RaR  + Za (the items with 
x2 , . . ,  are redundant!). 

Polynomial near-rings are also involved in the theory of algebraic equations over 
O-groups. Intuitively we think of an algebraic equation as p = O, where p is a polynomial. 
Now "p = 0" is not an identity (except if p is the zero polynomial), but a "command" to 
find zeros of p. Since "p = 0" is completely determined by p we can more safely speak 
of "the equation p". We confine our attention to equations in a single variable. 

DEFINITION 4.16. Let A be an algebra in a variety V of g2-groups. A system of equations 
over A in V is a family (pi)ieI of polynomials in Av[x]. If B >~ A, B E V then b E B 
is called a solution of (Pi) if/3i(b) - 0 for all i c I. The system (Pi) is solvable if it 
has a solution in some suitable extension of A in V. 

If b is a solution of pl and P2, then b is also a solution of pl + P2. More generally, 
every solution of (Pi)i~I is also a solution of all p E (pi)i~I = the ideal generated by 
{Pi I i E I}. Hence solving (algebraic) equations is equivalent to finding zeros of ideals. 
For a fairly complete treatment on equations see [46]. 

There are two ties between equations and near-rings. The first is that from the last 
lines it is clear that one has to generate ideals. Theorem 4.15 is "responsible" for this 
process. The second connection is in the area of equations over groups. It turns out that 
important classes of ideals (=classes of equations) of (Av[x], +) turn out to be also 
ideals of the near-ring (Av[x], § o), see [19], and the latter ideals are known in many 
cases. We have yet just scratched the surface of this interesting interplay; much remains 
to be done. 

5. Matrix near-rings 

Matrix rings play a central role in ring theory. In some sense, matrix rings are "the stuff 
rings are made of". Hence it is natural to ask if a similar situation applies to near-ring 
theory. The answer is: no and yes. No, because Heatherly showed in [32] that if one 
starts with a near-ring N with identity and forms matrices as in the ring case, matrix 
multiplication is associative iff N is a ring. Yes, because of the following lines. For quite 
a while it was unclear how to define matrix near-rings "correctly". 

It was mainly Andries Van der Walt who came up with a "good" definition in the mid- 
80's. Observe that if Ai~,j is the matrix with r at the (i, j)-position and zeroes elsewhere 
then Arz,r (Xl,..., X n )  t --- (0, . . . ,  O, rxj ,  0, . . . ,  0) t with rxj  at the i-th position, and 
every matrix is the sum of matrices of the Air, j-type. 

CONVENTION. All near-rings in this section are zero-symmetric and have an identity. 

DEFINITION 5.1. Let R be a near-ring (zero-symmetric, with identity), n E N, r E R 
and 1 <~ i , j  <~ n. Then f~,j denotes the map from R n to R n, mapping ( X l , . . . ,  xn) to 
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( 0 , . . . ,  0, rxj ,  0 , . . . ,  0) with rxj  at the i-th position. The subnear-ring mn (R) generated 
by Fn (R) "-  { f~,j [ r E R, 1 <~ i, j <. n} of Mo(R) is called the n • n-matrix-near-ring 
over R; its elements are called (n x n)-matrices over R. 

Observe that a matrix in Mn(R)  might have different representations by elements of 
Fn(R),  in striking contrast to the ring-theoretical situation [76]. The following is easy 
to see ([59])" 

PROPOSITION 5.2. Let the notation be as in 5.1. 
a) f i~,j is distributive r r is distributive. 
b) Mn(R)  is distributively generated r  R is distributively generated. 
c) Mn(R)  is a ring r  R is a ring (in this case, Mn(R)  is isomorphic to the "usual" 

n • n-matrix ring over R). 

We now turn to ideals of Mn(R).  The nice situation in rings (all ideals of Mn(R)  are 
of the type Mn(I )  with I <1 R) breaks down a bit. 

DEFINITION 5.3. a) Let I be an ideal of R. Then 

I* :-- (I n. R n) - { f  E M , ( R )  I f ( R  ~) C_ I " } ,  

and let I + be the ideal generated by all fi~,j with r E I and 1 ~ i, j ~< n. 
b) Let J be an ideal of Mn(R).  Then let J ,  be the set of all components of 

j(xl, . . .  ,Xn) with j E J and ( x l , . . .  ,Xn) E R n. 

PROPOSITION 5.4 ([76]). Let the notation be as in 5.3. 
a) I* and I + are ideals of Mn(R),  and J,  is an ideal of R. 
b) 1 + C_ I*, and 1 + C I* might be the case (but not if R is a ring). 
c) ( J , )+  c_ J c (J,)*.  
d) M n ( R / I )  ~- Mn(R) / I* .  

Due to 5.4 c), J ,  is sometimes called the enclosing ideal of J. The following results 
on the structure of Mn(R)  (see [76, 77]) are also very satisfactory" 

THEOREM 5.5. Let R be a near-ring and n E N. 
a) Mn(R)  is simple r  R is simple. 
b) Mn(R)  is semisimple r R is semisimple. 
c) Mn(R)  is primitive r R is primitive. 
d) Mn(R)  is subdirectly irreducible r R is subdirectly irreducible. 
e) J ( M n ( R ) )  = J(R)*. 
f) J is a primitive ideal of Mn(R)  r J = I* for a primitive ideal I of R. 

Other features don't come up that nicely. In ring theory one knows that, for a division 
ring D, Mn(D)  has minimal condition, and every primitive ring with minimal condition 
is isomorphic to some Mn(D).  In contrast to that, Meyer has shown ([60]) that if R is 
an infinite near-field, but not a field, then M2(F) does not fulfill the minimal condition 
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on left ideals. And it is not true that every primitive near-ring with minimal condition 
must be isomorphic to some Mn(R).  But partial results are possible (note that, by 3.9, 
primitive near-rings are dense in near-rings of the type Ms(G)) :  

THEOREM 5.6 ([76]). Let R be a nonring, primitive on G. If  S "- EndRG has only 
finitely many orbits on G n then Mn(R)  ~- Ms(Gn).  

COROLLARY 5.7. Let R be a finite near-field which is not a field. Then Mn(R)  ~- 
MR(Rn).  

Finally, we mention a remarkable result which connects the R-subgroups G with the 
Mn (R)-groups 

THEOREM 5.8. Suppose that the R-group G has the property that for each gl, 92 E G 
there is some 9 E G with {91,92} C_ Rg. Then 

a) Each Mn (R)-ideal of G n is of the form H n for some R-ideal H of G. 
b) G is R-simple iff G n is Mn(R)-simple. 
c) EndR(G) ~ EndM,~(R)(Gn). 

For more on matrix near-rings see the nice survey article [58]. 

6. What  else near-rings can do for you 

In this last section we take brief looks at several areas inside and outside of mathematics 
which have connections to near-rings or even applications of near-rings to these fields. We 
start with a down-to-earth application to the designs of statistical experiments developed 
by G. Ferrero and J.R. Clay. 

6.1. Near-rings and experimental designs 

Certain near-rings give rise to interesting contributions to combinatorics. With a look 
back to 2.6, we define planar near-rings: 

DEFINITION 6.1.1. In a near-ring N, we let, for a, b c N, a = b iff na - n b  for all 
n C U.  Let U # "- {n c N In  ~ 0}. U is planar if I N / - I  ~> 3 and if all equations 

x a = x b + c  (a,b, c E N ,  a ~ b )  

have a unique solution. 

A planar near-ring is zero-symmetric, since for all n E N, nO and 0 are both solutions 
of :ca = x0 + 0 (for some a c N#), hence identical. See, e.g., [1] for the proof that if 
= is the identity relation in a planar near-ring then N is a planar near-field in the sense 
of 2.6. In [1] it is also shown that planar near-rings and Frobenius groups are "basically 
the same". 
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There are good construction methods for obtaining planar near-rings. We exhibit the 
following one, due to J.R. Clay, which is both easy and most useful. 

THEOREM 6.1.2. Let F be a field of  order pn, where p is a prime and let t be a nontrivial 
divisor of  pn _ 1, so st = pn _ 1 for  some s. Choose a generator 9 of  the multiplicative 
group of  F. Define 9 a "t 9 b := ga+b-[a]s, where [a]s denotes the residue class of a 
modulo s. Then N = (F, +, "t) is a planar near-ring with N # =  N\{0} .  

We will use the following example in the sequel. 

EXAMPLE 6.1.3. Let F be the field Z7. Then pn 1 = 6, we choose t = 3 and get s = 2. 
This yields the planar near-ring (7/~7, + ,  �9 3): 

+ 0 1 2 3 4 5 6 "3 

0 1 2 3 4 5 6 0 

1 2 3 4 5 6 0 1 

2 3 4 5 6 0 1 2 

3 4 5 6 0 1 2 3 

4 5 6 0 1 2 3 4 

5 6 0 1 2 3 4 5 

6 0 1 2 3 4 5 6 

0 1 2 3 4 5 6 

0 0 0 0 0 0 0 

0 1 2 1 4 4 2 

0 2 4 2 1 1 4 

0 3 6 3 5 5 6 

0 4 1 4 2 2 1 

0 5 3 5 6 6 3 

0 6 5 6 3 3 5 

DEFINITION 6.1.4. A balanced block design with parameters (v, b, r, k, A) E N 5 is a set 
P of points together with a set B of subsets (called blocks) of P such that 

(i) I P I -  v. 
(ii) IBI-  b. 

(iii) Each p E P appears in exactly r blocks of B. 
(iv) Each B E B has cardinality k. 
(v) Each pair of different points belongs to precisely ,~ blocks. 

If b = (~), the design is "complete" and rather uninteresting. Balanced incomplete 
block designs are abbreviated by "BIB-designs". 

BIB-designs are, apart from combinatorics, widely used in the design of statistical 
experiments. Several designs can be constructed from planar near-rings; an excellent 
account on that can be found in [ 1]. Most of them turn out to be of a remarkable high 
"efficiency". We concentrate on the "easiest" construction. 

THEOREM 6.1.5. Let N be a finite planar near-ring and 

B = { a N * + b l a ,  b E N ,  a ~ O } .  

Then (N, B) is a BIB-design with parameters 

( l) v, k - 1  , v -  l , k ,  , 

where b = INL and k is the cardinality of  each aN* with a ~s O. 
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So if B is constructed as in 6.1.2, we get the parameters (pn,pns ,pn - 1 , t , t -  1). 

EXAMPLE 6.1.6. The blocks of 6.1.5 are then given by all a o3 F* + b (a # 0); we write 
juxtaposition instead of o3; observe that 2F* = 4F* = 1F* and 5F* = 6F* = 3F*. 

1F* + 0 = {1,2,4} =: B1 

1 F * + l = { 2 , 3 , 5 } = : B 2  

IF*  + 2 = {3, 4,6} =: B~ 

1F* + 3 = {4, 5, 0} =: B4 

1F* + 4 = {5, 6, 1} =: /35 

IF*  + 5 = {6, 0, 2} =: B6 

1F* + 6 = {0, 1,3} =: B7 

3F* + 0 = {3, 5, 6} =: B8 

3 F * + l  = { 4 , 6 , 0 } = : B 9  

3F* + 2 = {5, 0, 1 } =: B10 

3F* + 3 = {6, 1,2} =: Bll 

3F'* + 4 = {0, 2, 3} =: B12 

3F* + 4 = { 1,3, 4} =: B13 

3F* + 4 = {2, 4, 5} =: B14. 

This is a design with parameters (v, b, r, k, A) = (7, 14, 6, 3, 2). 

Designs constructed by planar near-rings as in 6.1.5 were recently actually used for 
agricultural experiments in Scotland. The following example refers to 6.1.6. 

EXAMPLE 6.1.7. Suppose we want to test combinations of 6 out of 14 given fertilizers 
D 1 , . . . ,  D14, with each fertilizer used on exactly 3 of 7 experimental fields. Then we 
can use the design just constructed in 6.1.6. We divide our field into 7 smaller test-fields 
with numbers 0, 1 , 2 , . . . ,  6, and apply the fertilizer D1 (1 ~< i <~ 14) on each field in the 
block Bi: 

field 0 field 1 field 2 field 3 field 4 field 5 field 6 

D1 D1 D1 
DE DE D2 

D3 D3 
D4 D4 D4 

D5 D5 
D6 D6 
D7 D7 D7 

D8 D8 
D9 D9 

DlO DlO Dlo 
Dll Dll 

Dl2 Dl2 D12 
D13 D13 D13 

Din DIn DI4 

D3 

95 

D6 

98 

D9 

DI1 

Then each field is supplied with 6 fertilizers, each fertilizer is applied to 3 fields, and 
each pair of different fields has precisely A = 2 fertilizers in common. Try to write down 
such a design without any theory! 
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6.2. Efficient codes from near-rings 

Several ways have been discovered in which near-rings produce efficient error-correcting 
codes. We list methods which yield nonlinear and linear codes. 

The main goal of coding theory is the following. Given some alphabet A, a message 
over A is a word a la2 . . ,  ak of length k. If this is transmitted over a "long" channel, 
errors might occur at the receiver's end. In order to detect and correct these messages, 
they will be encoded (=prolonged)  to a l a 2 . . . a k a k + l . . . a n  before transmission. The 
test symbols a k + l , . . . ,  an are to be computed in some way from a l , . . . ,  ak so that, for 
each other message bib2. . ,  bn, the resulting codewords a l . . .  an and b l . . .  bn are "very 
distinct"; in this way, a "small" number of errors can be detected and even corrected. The 
(Hamming) distance d(al . . .  an, bl . . .  bn) of two codewords is the number of places i in 
which ai and bi differ. The (Hamming) weight wt(al . . .  an) of a l . . .  an is the number 
of places i where ai 7 ~ 0 (if 0 E A). A code C of length n is a set of codewords of 
length n; its minimal distance drain(C) is the minimal distance between two different 
codewords. If d = dmin(C) then up to d -  1 errors can be detected and up to [ @ ]  
errors can even be corrected. Of course, one wants n -  k to be small and d to be large. 
These are contradicting goals, and one seeks "optimal compromises". If A is a field and 
C a subspace of A n then G' is called a linear code. If A = Z2 then C is called a binary 
code. All our codes will be binary. For more on codes see, e.g., [52]. 

DEFINITION 6.2.1. let (P  = {P l , . . . ,Pv} ,  B = { B I , . . . , B b } )  be a BIB-design with 
parameters (v, b, r, k, A) and let MB = (mi j )  be its v x b-incidence matrix where mij  = 1 
iff Pi c Bj  and 0 otherwise. The rows and the columns can both be viewed as a binary 
code, called the row code CrowB (column code G'colB, respectively) of B. 

EXAMPLE 6.2.2. The design in 6.1.6 yields 

M B =  

~'0 0 0 1 0 1 1 0 1 1 0 1 0 0'~ 

1 0 0 0 1 0 1 0 0 1 1 0 1 0 

1 1 0 0 0 1 0 0 0 0 1 1 0 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 0 

1 0 1 1 0 0 0 0 1 0 0 0 1 1 

0 1 0 1 1 0 0 1 0 1 0 0 0 1 

0 0 1 0 1 1 0 1 1 0 1 0 0 0j 

The row code has 7 codewords of length 14, each of weight 6; the column code is also 
an equal-weight-code, consisting of 14 codewords of length 7, each having weight 3. 

PROPOSITION 6.2.3 ([27]). Let the notation be as in 6.2.1. 
a) Crow ~ has u codewords of length b, equal weight r and minimal distance 2 ( r -  ,k). 
b) C'colB has b codewords of length u, equal weight k and minimal distance (k - #), 

where 

m = max IBi N Bj  I. 
iCj 
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c) Neither Crow B nor Ccol B can be linear. 

It is easy to see that if A = 1 then also # = 1. Planar near-rings with # ~< 2 (important 
for coding theory!) are called circular (see [1, 13, 20]). 

THEOREM 6.2.4 ([27]). I f  p is prime with p = 1 (mod 6) and B is constructed as in 6.1.2 
then ( P, B)  is circular iff p ~ {7, 13, 19 }. 

DEFINITION 6.2.5. Let A(n,  d, w) be the maximal number of codewords in a code of 
length n, equal weight w and minimal distance ) d. A code C is called maximal if 
ICI = A(n ,  d, w). 

The determination of A(n,  d, w) and maximal codes is a discrete sphere packing prob- 
lem: If C is maximal then the spheres around all codewords with radius dmin(C) do not 
intersect and are maximal in number with this property. Only few formulas for A(n,  d, w) 
are actually known (see [57] and [17]). 

THEOREM 6.2.6 ([71]). Let (P, B) be a BIB-design. Then CrowB and (i fA = 1) also CcolB 
are maximal. 

COROLLARY 6.2.7. I f  p n -  1 = st then 

A(pns ,  2(p n - t ) ,p  n - 1) = pn and A ( p n , 2 ( t  - 1),t) = p n s .  

See [25] for a decoding algorithm for these types of codes. Now we take a completely 
different approach; this time we use polynomials. We identify bo + bl x + . . .  + bnx k with 
(b0, h i , . . . ,  bk) and bobl . . .  bk. 

DEFINITION 6.2.8. Let f = x + :r 2 + . . .  + x m E Z2[x]. Let a message a l a 2 . . ,  az  be 
encoded as a l f  + a z f  o x 2 .qt_ . . .  nt_ a z f  o x z, and let C(m,  z) be the resulting code. 

THEOREM 6.2.9 ([66]). C(m,  z) is a linear binary code of  length mz,  dimension z and 
7r(m) + 2 ~< dmin(C(m, z)) ~< m, where 7r(m) denotes the number of  primes ~ m. 

So far, no example is known where dmin(C(m, 2:)) < 7/'t. 
See [26] for a different method to use polynomial near-rings in coding theory. 

6.3. Near-rings, group partitions, and translation planes 

For the sake of completeness, we compile some well-known concepts of geometry. A di- 
latation of an incidence structure is an automorphism (-col l ineat ion)  which maps lines 
onto parallel lines. A translation is a dilatation which is fixed-point-free or the identity. 
An affine plane in which the translations form a group which is transitive on the points 
is called a translation plane. 

For the following considerations, we need a generalization due to C.J. Maxson [47]. 
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DEFINITION 6.3.1. The triple (P, s  consisting of a set P of points, a set 12 of subsets 
of P (the lines) and an equivalence r e l a t i o n / / o n / 2  (parallelism) is called a generalized 
translation structure if 

(i) Every two points are contained in at least one line E/2. 
(ii) There are at least two different lines, and each line has at least two points. 

(iii) Euclid's parallelism axiom holds. 
(iv) There exists an injective map �9 from P into the set of collineations of ( P , / 2 , / / )  

such that ~ ( P )  is a group which acts transitively on P. 

DEFINITION 6.3.2. Let (P, s  be a generalized translation structure. If (i) in 6.3.1 is 
replaced by (i)': Every two different points are contained in precisely one line of/2, then 
( P , / 2 , / / )  is called a translation structure (Andr6). If, moreover, all lines are equipotent, 
(P, f , / / )  is called a Sperner space (or weakly affine space). 

We now tie these things with group theory. 

DEFINITION 6.3.3. A family .T" = (Gi)iEI of proper subgroups of a group G = (G, +)  
is called a cover of G if 

UGi = G .  
i 6 I  

If no Gi is contained in another Gj,  .T" is called a geometric cover. If moreover 

Gi N G j  = {O} f o r i C j , ~  

is called a fibration of partition of G. A fibration with IG~I = IGjI for all i, j E I is 
called an equal one. If Gi + Gj = G for all i # j ,  .T" is a congruence fibration. 

For instance, if G is the vector space F 2, F a field, the collection of all lines through 
(0, 0) forms an equal congruence partition, while the set of all planes through (0, 0, 0) 
is "only" a geometric cover of G = F 3. This examples are typical, since "fibrations and 
covers come from geometry": 

THEOREM 6.3.4 (Andre [10]). (i) If  (P, /2) is a translation plane then choose an arbitrary 
point P and declare it as the zero point o. I f  the translations t, t' are the ones which take 
o to p, p', respectively, then t' o t maps o to a point which we denote by p + / .  Note that 
p, p' determine t, t ~ uniquely. In this way, (P, +) becomes a group. The lines Gi through 
o then form an equal congruence fibration of  G. 

(ii) Conversely, if ~ = (Gi)i~I is an equal congruence fibration of  a group G then 
one gets a translation plane whose points are the elements of  G, and the lines are are 
the cosets of  the Gi 's. Furthermore, (x + G i ) / / ( y  + Gj) r  i = j. 

The concepts in 6.3.1 and 6.3.2 allow us to generalize 6.3.4, using the same type of 
constructions. We get a "dictionary" between geometry and group theory. For proofs see 
[10, 38, 47] and [75]: 
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Generalized translation structure 

Translation structure 

Sperner space 

Translation plane 

Desarguesian translation plane 

6+ geometric cover 

fibration 

++ equal fibration 

+-~ equal congruence fibration 

6+ vector space with all 1-dimensional 

subspaces Gi as fibration 

Now near-rings enter the scene. The kernel E(P,  s  of a generalized translation 
structure is the set of all endomorphisms cr of (P, s  with cr(L) / /L  for all L E 12. 
If (1:', s  is a translation plane, E(P,  s  is precisely the set (even group!) of all 
dilatations; so a lot of geometric information is stored in the kernel. 

If we make the transition to the group theoretic side, 

E(P, s  - {or E End G I cr(G~) c_ G~ for all i} =" End(G,.T'), 

as one can see ([47]; notations are as in 6.3.4). Information about the kernel can thus 
be obtained both from geometry and group theory. But things now lead to rings and 
near-tings, and algebra pays back some information to geometry. We collect some basic 
results in this area. For proofs see the quoted papers. We use the group-theoretic version 
of 6.3.4 (and the following lines). 

THEOREM 6.3.5. Let .T" be a geometric cover of the abelian group G. 
(i) The kernel End(G, 9 r )  is a ring. 

(ii) If  G is elementary abelian and End(G, ~') is semisimple then ~ .T" = {0} ([41]). 
(iii) Every finite semisimple ring with identity is isomorphic to a suitable End(G, 3 r) 

with G abelian, J: geometric ([41]). 
(iv) If  ~ is a fibration then End(G, D r) is an integral domain ([ 10]). 
(v) If  (G, 3 r) is a finite fibred group then End(G, ) r )  is a finite field ([10]). 

In the last case of 6.3.5, the fact that the kernel is a finite field allows geometers 
to use this field for coordinatizing the corresponding translation structure (see [21]). If, 
however, G in 6.3.5 is not abelian, End(G, $-) is usually not a ring any more. From 3.12 
we know what we have to do now. 

DEFINITION 6.3.6. Let (G, .T') be a covered group. 

E(G, ~') "= { E +hi  I h, E End(G, 9 r )  } 

is the extended kernel of (G, .T'). 

Observe that E(G, .T') = End(G, .T') if G is abelian. Some remarkable results are: 

THEOREM 6.3.7. Let (G, +)  be a finite group with a fibration ~.  
(i) If  with each Gi E .T all conjugates 9 + Gi - 9 (9 E G) are again in .7 z then 

either E(G,  .T') = {0, id} or G is abelian ([40]). 
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(ii) E(G,U)  is always a ring. Either End(G,.T') = {0, id} (then E(G, 3 c) = 
{0, id, 2 id , . . .}  -~ Zn for some n E N) or else E(G,.T') is a (finite)field. In the latter 
case, if p -- char E(G, ~), pG = 0 and G is nilpotent of class ~< 2 ([51 ]). 

(iii) If ~ is an equal fibration and End(G, .T') 7~ {0, id} then G is a finite vector space 
([40]). 

See [51 ] for an example of a nonabelian fibred group G (nilpotent of class 2) such that 
E(G, F) is a field, but not a prime field. Observe that in the second (= interesting) case 
of 6.3.7 (ii), the elements el, e2, e3 E E(G, F) fulfill el o (e2 + e3) = el o e2 + el o e3, 
although they are not endomorphisms in general! Cf. Section 1. Much work remains to 
be done to explore the geometric significance of the appearance of fields as extended 
kernels of nonabelian groups. 

If we turn to E(G, .1:) for arbitrary covers .T" (instead of fibrations) we do get "proper" 
near-rings in general, see [41] and [53]; we mention one result from [53]: 

THEOREM 6.3.8. Let (G, ~)  be a finite covered group. Then E(G,.T') is a field iff the 
lattice Lat(G,.T') of all subgroups n of G with f (n )  C_ H for all f E E(G,J  c) contains 
a fibration and exp(G) is a prime. 

From a combinatorical view of incidence structures, or from a group-theoretic view 
of covered groups, it is also interesting to study those endomorphisms which map lines 
to possibly nonparallel lines, or "cells" E .T" to possibly other cells. Again, we use the 
group-theoretic language. 

DEFINITION 6.3.9. Let (G, .T') be a covered group. 

Mix(G,~')  := {h E EndG I Vi E I 9 j E I: h(Gi) C_ Gj}; 

M(G,.T') "= { y ~ '  +hi  I h i E  Mix(G,.T')}. 

Again, M(G, ~)  is a near-ring, but in general not a ring if G is not abelian. Even in 
the abelian case, M ( G , ~ )  is usually bigger than Mix(G,.Y'). For finite fibred groups, 
there almost always exists some m E M(G, it) which really mixes the fibers in .T': 

THEOREM 6.3.10 ([52] and [43]). If (G,J c) is afinitefibred groupthenalways E (G ,Y )  < 
M(G, JC), unless G is of the type PSL(2,pn). 

This does not remain true if .T" is allowed to be a cover. C.J. Maxson even found a 
cover of (Z2) 12 with E(G,~') = M(G, 2F) - {0, id}. 

6.4. Homogeneous maps on modules 

This topic ties together centralizer near-rings (3.8) and covered groups (6.3.3). If R 
is a ring with identity and RG a unitary R-module then it is natural to consider the 
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endomorphism f~: x --+ rx on (G, +).  If S := {Jr I r e R),  the corresponding cent- 
ralizer near-ring is given by 

Ms(G) = {f: G --+ G l f ( r g  ) -- r f (g)  Vr e R Vg c G}. 

Its elements are called the homogeneous maps on RG. If f E Ms(G) then it is clear 
that its restriction to any cyclic submodule H of G acts as an endomorphism on H. 
Hence each f E Ms(G) might be called a "piecewise endomorphism" on G. The cyclic 
submodules form a cover of (G, +). If the maximal cyclic submodules also cover G then 
they automatically form a geometric cover (6.3.3). Why not take other covers 7-/of G? 

DEFINITION 6.4.1. Let RG be a unitary R-module and 7-/a cover of G. Then the elements 
of PER(G, 7-l) := {f  E MR(G) I f / H  can be extended to some element of EndR(G) 
for each h c 7-[} are called piecewise endomorphisms on G w.r.t. 7-/. 

There are two prominent covers (if they are covers at all): C = {H I H is a maximal 
cyclic submodule of RG} and .h4 = {HI H is a maximal submodule of RG}. In both 
cases, PER(G, . . . )  is a near-ring and 

EndRG ~< PER(G, .A/l) ~< PER(G, C) <~ MR(G). 

Equalities in this chain seem to be interesting for ring and near-ring theory. For instance, 
[48] contains an example for EndRG = PER(G, .A4) < PER(G, C) = MR(G). 

DEFINITION 6.4.2. An R-module RG is an mc-module if both .A4 and C are covers and 
M # c .  

THEOREM 6.4.3 ([48]). Let RG be a semisimple mc-module. Then EndRG = PER(G, AA) 
and PER(G, C) = MR(G). 

The next two resul t s -  which can also be found in [48] - investigate PER(G, . . . )  for 
special types of rings. 

THEOREM 6.4.4. Let R be a commutative ring with identity. The following are equivalent: 
a) R is a finite direct sum of fields. 
b) R is noetherian and EndRG = PER(G, .M) for each mc-module RG. 
c) R is noetherian and PER(G, A/I) is a ring for each mc-module RG. 

THEOREM 6.4.5. Let R be a PID. Then RG is a finitely generated module iff 

PER(G, C) = MR(C). 

We now turn to a closer look at MR(G). Questions which come up naturally include: 
When is MR(G) a ring? When is MR(G) - EndRG, i.e. when is every homogeneous 
map already an endomorphism? What is the structure of MR(G)? Some results in this 
area include 
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THEOREM 6.4.6 ([50]). Let R be local and RG finitely generated. Then MR(G)d - 
EndnG. 

Let 7~ be the class of all rings with identity such that for all unitary R-modules 
G, MR(G) is a ring. 

THEOREM 6.4.7 ([29]). For a ring R with identity, R E 7a,. iff MR(G) = EndRG for all 
unitary modules riG. 

THEOREM 6.4.8 ([29]). If R is a direct product of n~ x ha-matrix rings R~ then R E 
iff each n~ >~ 2. 

In particular, a matrix ring M,~ (R) is in R. iff n >/2. For some rings, 6.4.8 is close to 
a complete characterization: 

THEOREM 6.4.9 ([29]). Let R be a semiperfect ring. Then R ETr iff R / J ( R )  is a direct 
product of  n~ x ha-matrix rings over division rings such that all n~ >~ 2. 

Definitely not in 7"r are rings which have a homomorphic image which is either com- 
mutative or integral ([29]). 

THEOREM 6.4.10 ([28]). Let R be a PID and RG be finitely generated. Then MR(G) is 
semisimple iff G is free or elementary torsion. 

Of special interest (and well studied) is the case G = R 2. 

THEOREM 6.4.11 ([56]). Let R x S be the (ring-theoretic) direct product of the rings R 
and S with identity. Then M R x s ( ( R  x S) 2) ~ MR(R 2) x Ms(S2).  

More on M R ( R  2) can be found in [54] and [55]. 

6.5. Near-rings and automata 

We now link near-rings with (semi-)automata. 

DEFINITION 6.5.1. A semiautomaton is a triple S = (Q, A, F)  where Q and A are sets 
(called the state and input set) and F is a function from Q x A into Q (called the 
state-transition function). If Q is a group (we always write it additively) we call S a 
group-semiautomaton and abbreviate this by GSA. 

For any semiautomaton (Q, A, F)  we get a collection of mappings fa: Q -+ Q, one 
for each a E A, which are given by 

fa(q) := F(q, a). 

If the input a l E A is followed by the input a2, the semiautomaton "moves" from the 
state q E Q first into fa~ (q) and then into fa2 (fa, (q)). 
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If we extend (as usual) A to the free monoid A* over A (consisting of all finite 
sequences of elements of A, including the empty sequence A), we get 

A,o, = A, o A,, 

i.e. the map a ~ f~ is an anti-monomorphism from A* into the transformation monoid 
over Q with fA = idQ. In the case of GSA's, we are also able to study the superposition 
f~, + f~2 (defined pointwisely) of two "simultaneous" inputs al, a2 E A. Hence it is 
natural to consider {f~ I a E A} U {fA} and all of its sums and products (-- composition 
of maps). This yields a subnear-ring of M(Q):  

DEFINITION 6.5.2. If S is as in 6.5.1, N(S) ,  the subnear-ring of M ( Q )  generated by all 
fa (a E A) and id, is called the syntactic near-ring of ,S. 

N ( S )  is always a near-ring with identity. If Q is finite (in particular, if S is finite), so 
is N ( S ) .  Even for linear (semi-)automata, N ( S )  is almost never a ring: 

EXAMPLE 6.5.3. Linear semiautomata. Then Q, A are vector spaces and F is supposed 
to be linear (on the product space Q x A). Because of 

fa(q) = F(q, a) = F((q,  O) + (0, a)) = F(q, O) + F(O, a), 

we get fa = f0 + a, where f0: q --+ F(q, 0) is linear and ~ is constant with value 
F(0,  a) = fa (0). Hence f~ c Maff(Q), whence N ( S )  <~ Maff(Q) for linear semiautomata 
S. Only if each F(0,  a) = 0, i.e. if no input can change the zero state, N ( S )  is a ring. 

The situation of 6.5.3 remains basically unchanged if Q, A are just abelian groups and 
F: Q x A -+ Q is a homomorphism in the first component (second component = 0). In 
this case one can show: 

PROPOSITION 6.5.4. If  S is as just described, 

N(,5) = { ~-+-fai Iaie A*}. 

The proofs of 6.5.4 and the following two results can be found in [3], Chapter 9i. 

THEOREM 6.5.5. For every near-ring N with identity there is a suitable GSA S such that 
N is isomorphic to N(S) .  

THEOREM 6.5.6. For a near-ring N with identity there is a linear semiautomaton S with 
N ~- N ( S )  iff (N, q-) is abelian and there is some n c Nd such that No is generated 
by {1, d}. 

Obviously Q is a faithful N := N(S)-group in the natural way. We say ql C Q is 
reachable from q2 C Q if ql c Nq2. The semiautomaton S is reachable or connected if 
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every state is reachable from every other state. The following is easy to see, but exhibits 
the role nearrings play in automata theory. 

PROPOSITION 6.5.7. Let S be a GSA and N := N(S) .  S is reachable r NO = Q and 
for  each q E Q, either Nq = Q or Nq = {0} holds. 

N-groups with the property of 6.5.7 are called "strictly monogenic" in the near-ring 
literature. We see from 6.5.7 that for a reachable GSA S, N must "move" 0 to each 
other state. One gets more insight if one considers what No has to say" 

DEFINITION 6.5.8. A GSA S is strictly connected if for each q, q' E Q with q # 0 there 
is some n E No(S) with n(q) = q'. 

Again, we can employ our Density Theorem 3.9. We only list the "nonlinear" case 
(the "hard one"). 

THEOREM 6.5.9 ([67]). Let S be a finite strictly connected GSA such that for N = N(S) ,  
No is not a ring. Let 

C(S)  "= {h E End Q l h f a  = fah  for all fa  E No} 

and c := IC(S)l. Then No = Mc(s ) (Q)  is primitive on Q and 

INI = IQI Q~A~-S' if N -  No, 

IQl+c-2 
INI = IQI ~-' i f N  # No. 

More information can be found, e.g., in [34] and [35], where among other things the 
"radical" of N ( S )  is used to describe "how reduced" and "how reachable" S is. 

6.6. Near-rings and dynamical systems 

DEFINITION 6.6.1. A (discrete, dynamical, time-invariant) system 27 is a quintuple S - 
(Q, A, B, F, G), where Q is a set (of states), A a set (of inputs), B a set (of outputs), 
F a function Q x A --+ Q (the state transition function) and G a function Q • A --+ B 
(the output function). 

The description of Z in Definition 6.6.1 is usually the "local description" of Z. In 
order to obtain the "global" description, we do not consider a single input, but a series 
of input signals ai, which enter the system "at time i E Z". Hence we'll consider input 
sequences (a/)/~z. It is generally assumed that the inputs don't come in "since eternity"; 
so we assume that there exists an index k E Z such that ai - 0 for all / < k. Sequences 
of this type are usually called "formal Laurent series": 
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DEFINITION 6.6.2. For any set X containing 0, let L ( X )  be the set of all sequences 
(xi)i~z, for which there is some k E Z such that xi = 0 for all i < k. The elements of 
L ( X )  are called (formal) Laurent series of elements of X.  

In this context, the interpretation is as follows. At a certain "time" k E Z (hence k 
can be negative), the system is in state qk when the first input ak arrives. The system 
produces an output bk = G(qk, ak) and changes its state qk into qk+l = F(qk, ak). Then 
ak+l arrives, and so on. 

27, as in Definition 6.6.1, is again called linear if Q, A, B are vector spaces over some 
field K and F, G are linear maps on the product spaces Q x A. In this case, F and G can 
be decomposed into linear functions a: Q --+ Q, /3:  A --+ Q, T: Q --+ B and 5: A --+ B 
such that F(q, a) = a(q) + ~3(a), G(q, a) = T(q) + (f(a) hold for all (q, a) E Q x A. If 
the vector spaces in question are finite dimensional, a,/3, T, 5 are usually represented by 
matrices. 

It is not true, however, that these decompositions are only possible for linear systems. 
We are going to introduce "separable" systems now. They are much more general than 
linear ones, allow highly nonlinear transition and output functions, but we can do with 
these systems most things we can do with linear ones. 

DEFINITION 6.6.3. 27 (as in Definition 6.6.1) is called separable if Q , A , B  are groups 
(written additively, but not necessarily abelian) and if there are maps a: Q --+ Q, -y: Q --+ 
B, and homomorphisms/3: A --+ Q, 5: A --+ B such that 

F(q, a) = a(q) + fl(a), G(q, a) = ",/(q) + 5(a) 

hold for all q c Q, a c A. We then denote 27 by (Q, A, B, a,13, "7,~) or simply by 

Clearly, each linear system is separable. Separable systems fit into the classes of 
nonlinear systems described by [1 8]. 

The map a: Q --+ Q can be extended to a map (again denoted by a) a: L(Q) --+ L(Q) 
by 

ol(qk, qk+l, . . .) = (o~(qk), c~(qk+l ) , - . .  ). 

The same can be done for/3, 3' and 3. Let s be the shinto-the-left  operator on L(Q), 
given by 

8(qk, qk+l , . . . )  = (qk-1, qk , ' '  "), 

where ' q k - 1  - -  q k ,  q k  - -  q k + l ,  . . . .  It can be shown (see [68]) that for 27 as in 6.6.3, the 
map - a  + s from L(Q) into L(Q) is always bijective. [68] also contains the proofs of 
the following results. 

THEOREM 6.6.4. Let Z be separable as in 6.6.3 and qk = O. Then an input sequence 
(ak, ak+l, . . . )  produces an output sequence (bk, bk+l , . . . )  with 

= o + o + 
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The map in brackets hence gives a way to get the outputs directly from the inputs to 
a "new" system (qk - 0) without the need to compute the various states in between. 
This is an essential feature for many concrete situations: it is often very hard or even 
impossible to conduct measurements of the internal states of systems. For instance, in 
the case of a propulsion engine of an airplane it is virtually impossible to measure all 
relevant data of the engine at any time in order to install feedback features (see below) 
to stabilize the engine. 

DEFINITION 6.6.5. In a separable system S = (a, 1~, 7, a), the map 

f s  "= 7 o (-oe + s) -1 o ~ -~- t~ 

from L(A)  into L(B)  is called the transfer function of S.  

fm describes, in a far reaching sense, S itself and sometimes one identifies f s  and 
27. If the series connection Sl  ++ E2 and the parallel connection 271 $ I72 are defined as 
usual, we get 

THEOREM 6.6.6. If  $1 and 27, are separable, the same applies to 271 ++ 2?2 and (if the 
output groups are abelian) also to 271 $ 2?2, and we then get 

fI:15s2 = fI11 + fE2, 

fzl++,~: = f,~2 o f,gl" 

Hence, if we have input group A = output group B, we get 

COROLLARY 6.6.7. If  Co(A) is the set of all separable systems with finite abelian input- 
group = output group A then (S'(A), $, ++) is a near-ring. 

In this case (and in contrast to the situation in the last subsection on automata) the 
systems themselves form a near-ring. For instance, we can then say 

COROLLARY 6.6.8. /f  (Zi ) ie ,  is a collection of separable systems with finite, abelian 
input-group = output group = A, then the set of systems which can be constructed from 
the 27i's by means of series and~or parallel connections is precisely the subnear-ring N 
of S(A)  generated by {S,~ l i ~ I}.  If  we identify Z with f,r, N is the subnear-ring of 
M ( L ( Q ) )  generated by {/~,  l i ~ I}. 

Many more topics in systems theory can then be transcribed to near-ring theory. For 
example, questions of invertibility of systems (with delay) transfer to some extent to 
questions of "von Neumann regularity" of near-rings of systems. Feedbacks and (again) 
reachability questions can also be handled with near-rings. For this and more see [68]. 

6.7. Seminear-rings and rooted trees 

We restrict our considerations to finite rooted trees, although the infinite case does not 
create essential problems. 
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Given two such trees, say 

/k I 
we can compose them in the following ways: Addition: Give T1 and 2"2 a new common 
root: 

/k 
Multiplication: Connect T2 to each final node of TI: 

It is easy to see that (7'1 + Tz)T3 = T I ~  + T2~  holds for all T1, Te, ~ .  We now 
compare TzT2 + 7'27"2 and T2(T2 + T2) in our example 

~(~+ ~) 

One clearly sees the difference, so the other distributive law does not hold. We arrive 
at a new structure (see again the article "Semirings and Semifields" by U. Hebisch and 
H.J. Weinert in this volume of the Handbook of Algebra): 

DEFINITION 6.7.1. (S, +,-)  is a seminear-ring if (S, +)  and (S, .) are semigroups and 
(81 -+" 82)83 - -  8183 "a t- '3283 holds for all "31,'32,'33 E S .  
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A prominent example is (N N, +,  o). We get 

THEOREM 6.7.2. Roo ted  trees f o r m  a seminear-r ing  w.r.t, addi t ion  and  mult ipl icat ion (as 

de f ined  above) .  

The same can be done for valued trees and similar objects. The following interpretation 
was pointed out by J.D.P. Meldrum. 

Consider a nondeterministic machine which can take "actions", one at a time. These 
are represented by nodes and lines going downward. Sometimes the machine has the 
"choice" of several actions; this is represented by splits in the trees. Hence a rooted tree 
can be though of a "computer program". In this interpretation one would identity 

I ~ 
with 

b b b 

since the choice between b and b means that the machine has to do b. So we get b + b -- 
b for all b, and the corresponding seminear-ring has idempotent addition. People in 
Computer Science (e.g., [61]) also add a "deadlock" (=  neutral element for addition), 
and so on. 

Other interpretations include decision trees, travel plans, distributions of offsprings (an 
idea of D.W. Blackett) and so on. 

This ends our trip to the wonderful world of one-sided distributive systems. If you 
want to keep in touch, please send your address to the author, and you will get a copy 
of the "Near-Ring Newsletter" about twice a year. 
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This chapter will introduce topos theory, which arose from two separate explorations; 
first, Lawvere's proposal to replace the membership axioms for set theory by axioms 
on the composition of functions; and second, the Grothendieck initiatives in algebraic 
geometry. Indeed, Grothendieck and his collaborators [SGA4] needed to use cohomo- 
logical ideas for algebraic varieties, not just for topological spaces, and in this context 
they introduced the notion of a topos as a generalized topological space. In topology the 
cohomology groups of a space, originally defined for a "constant" coefficient group, soon 
required coefficients which varied; these were codified by Leray and Cartan as sheaves 
on the space X; they were sheaves of abelian groups or of modules, but they could be 

described in terms of the more general (and simpler) sheaves of sets on the space. The 
category Cob(X) of all such sheaves of sets on X is an example of a topos. For algebraic 
geometry Grothendieck needed more general "tolopogies", defined not by open sets but 
by more general "coverings", and the sheaves of sets defined by such coverings provided 
the general notion of a "Grothendieck topos" (and the slogan: a topos is what a topologist 
needs to study, [SGA4], p. 301). 

For many purposes, a space X can be replaced by the corresponding topos Sh(X). 
For example, continuous mappings X --+ Y between spaces correspond exactly to "ge- 
ometric" morphisms Sh(X) --+ Sh(Y) of topoi. The generalization, from spaces X and 
their sheaves to Grothendieck topoi, has proved extremely useful in algebraic geometry, 
as for example in P. Deligne's 1974 solution of the famous Weil conjectures about the 
solutions of Diophantine equations. These geometric ideas will be introduced in Section 6 
(cohomologies for a topos) and Section 7 (the general fundamental group). 

But a topos is not only a generalized space; it can also be viewed as a generalized 
"universe" of sets - as indeed the sheaves on a one-point space form the classical category 
of sets. This viewpoint appeared when Lawvere and Tierney developed an axiomatic 
treatment of sheaf theory without explicit reference to the specific Grothendieck topology 
used to define these sheaves. They also discovered that the process of turning a "presheaf" 
into a sheaf was implicitly involved in the notion of forcing used by Cohen in his proof 
of the independence of the Continuum Hypothesis - and by Scott and Solovay in the 
corresponding "Boolean valued" models of set theory. This led to the discovery of the 
more general "elementary" topoi described by first order (elementary) axioms. Any such 
topos is a universe in which one can do mathematics, classical except for the restriction 
that the logic in such a topos is in general "constructive" or "intuitionistic". 

This chapter will begin with the Lawvere-Tierney definition of an elementary topos, 
followed by the definition of Grothendieck topologies and their sheaves. The third section 
of the chapter then describes the mappings between topoi, called geometric morphisms. 
Since topologies can be described in terms of open sets, with little mention of points, 
it is possible to discuss "pointless" spaces, or locales, and the corresponding topoi of 
sheaves (Section 4). The next section discusses representations of topoi in terms of 
such pointless spaces, including the theorem of Freyd showing how every topos can 
be embedded, in a suitably nice way, in the category of equivariant sheaves on some 
locale. In Section 6 the sheaf cohomology groups of an arbitrary topos are introduced. 
Certain basic spectral sequences relate these groups to 0ech cohomology and to Verdier's 
cohomology of "hypercovers". These can be employed to define certain pro-groups, which 
are the "6tale" homotopy groups of a topos, matching the Grothendieck fundamental 
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group, to be discussed in Section 7. The final section describes the intimate relation 
between a topos and its " l o g i c " -  with Heyting (not Boolean) algebras of subobjects 
and with quantifiers described as adjoints - plus the "typed" language associated with a 
topos. 

Our presentation is necessarily brief, and the interested reader is urged to consult 
further references. The material in Sections 1-4 and 8 is treated in detail in our recent 
book [MM], which also contains an extensive bibliography. Homotopy and cohomology 
of topoi are discussed extensively in [SGA1 ] (for the fundamental group), [SGA4] (vol. 2) 
and [AM]. For basic notions the reader may consult [CWM] for category theory, [M] for 
homological algebra, and [Ha] for algebraic geometry. 

1. Elementary topoi 

In any category s there are the notions of finite limits and colimits, see [CWM]. Specif- 
ically, s has all finite limits iff it has a terminal object 1 (or 1E) and pullbacks X • z Y 
for any pair of arrows X ~ Z +-- Y. For a fixed object X in such a category ,5, taking 
the product with X defines a functor X x ( - ) :  s --+ ~'. The object X is said to be 
exponentiable of this functor has a right adjoint, denoted ( _ ) x .  This means that for any 
two objects Y, Z in ,f, there is a bijective correspondence between arrows X • Z --~ Y 
and arrows Z ~ y X ,  natural in Y and Z. A cartesian closed category is a category 
which finite limits, in which each object is exponentiable. 

A subobject classifier in a category C is an object ~ ,  equipped with an arrow t: 1 --+ 
from the terminal object 1, so that for any monomorphism U --+ X in ,f there is a unique 
arrow cu: X --+ f2 which makes the square 

U ~1 

X ~ v  

into a pullback. (One thinks of ~ as an object of "truth-values", of t as "true", and of 
cu as a "characteristic function" for U.) Thus there is a natural bijection 

Sub(X) ~~ s  Y2), 

between subobjects of X and arrows X --+ ~.  

1.1. DEFINITION. An elementary topos is a cartesian closed category with a subobject 
classifier. 

1.2. REMARKS. (i) In an elementary topos s the exponential o x  is a "powerset" object 
for X,  and is also denoted P X .  Arrows Y ~ P X  in s correspond naturally to subobjects 
o f X  x Y. 

(ii) It is a consequence of the axioms that finite colimits exist in ~?, [P]. 
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1.3. EXAMPLES. Here is a short list of easiest examples of elementary topoi. 
(a) Sets: this is the category of sets and functions. In this category, the exponential y X  

is the set of all functions X --+ Y, while the subobject classifier ~2 is {0, 1}, with 
t: 1 --+ {0, 1} the function from the one-element set with value 1. For a subobject 
U ~-, X in Sets, cu: X --+ f2 is the usual characteristic function. 

(b) G-Sets: this is the category of sets with a (right) action by a fixed group G. The 
arrows in this category are functions which preserve the action ("equivariant functions"). 
For two sets with G-action X and Y, the exponential y X  is the set of all functions 
a: X --+ Y, equipped with the G-action defined as 

(oL'g)(x) "-" OL(x 'g  -1)  "g. 

In this topos, the subobject classifier ~ is again the set {0, 1}, with trivial G-action 
( 0 - g - 0 a n d  1 . g -  1 for a l l g E G ) .  

(c) Sh(X)" this is the topos of all sheaves (of sets) on a topological space X. Recall 
that a sheaf E on X is given by a set E(U) for each open set U c X, and a restriction 
operation E(U) --+ E(V),  denoted e ~ e IV,  for each inclusion V C U between open 
sets, such that the following two properties hold: 

(i) (functoriality) For inclusions W C_ V c_ U and any e E E(U), 

(e lV) lW = elw,  

and elU = e. 
(ii) (amalgamation) For any open covering U - UieI  ui, and any family ei E E(Ui) 

(for i c I)  of elements which are compatible in the sense that for any two i, j c I: 

e~lu~nuj = ~jlu~ n uj ,  

there is a unique e E E(U) with e l U ~  - e~. 

For example, for any continuous map 7r: P --+ X there is the sheaf T'p of sections 
of P,  defined for each open U C_ X by 

T'p(U) = {s: U --+ P Is is continuous, and 7rs(x) = x for all x E U}. 

It can be shown that, up to isomorphism, every sheaf on X is of the form T'p where 
7r" P --+ X is a local homeomorphism (an "6tale space over X");  up to isomorphism, this 
6tale space is uniquely determined by the sheaf. (Recall that a continuous map 7r: P --4 X 
is a local homeomorphism if for every point y C P there are open neighborhoods U of y 
and V of 7r(y) so that 7r restricts to a homeomorphism 7r: U ~ V.) 

The sheaves E on X form a category, where an arrow a: E -+ E t between sheaves 
is defined as a natural transformation, i.e. a family of functions av: E(U) --+ E'(U) 
(for all open U C_ X)  which commute with the restriction operations of E and E'. 
This category Sh(X)  is a topos. The correspondence between sheaves and 6tale spaces 
over X is an equivalence of categories, and in practice one often identifies sheaves and 
6tale spaces. 

More examples of topoi will be given below. 
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1.4. Slice topoi. An important fact is that for any topos E and any object X in s the 
comma (or "slice") category s  is again a topos. Moreover, for any arrow f: X -+ Y 
in ,f the pullback functor 

f*: C/Y -+ E/X  

preserves the topos structure (finite limits, exponentials, subobject classifier) and has a 
left adjoint ~-~f as well as a right adjoint I-If. (The functor ~ y  is simply given by 
composition with f ,  but I-If is harder to construct.) 

1.5. Constructions of elementary topoi. There are many standard constructions of new 
topoi from old ones, described in detail in any good book on the subject. We mention 
the following: For two topoi s and ,T', the product category C x ,T" is again a topos. 
If j :  12 --+ ~2 is a so-called Lawvere-Tierney topology in E then the category Cj of 
j-sheaves is again a topos. If G = (G,e, ~) is a left exact comonad on E then the 
category E~; of G-coalgebras is a topos. If C is an "internal" category object in E, then 
the category s  of diagrams on C in s is a topos. If ~' is a topos and IF is a filter of 
subobjects of 1 in s then the "filterquotient" s  (which is essentially the directed limit 
l~ueF s is again a topos. 

2. Grothendieck topoi 

The notion of a topos as originally introduced by Grothendieck is more restrictive than 
that of an elementary topos. Grothendieck's notion is based on the definition of a site: a 
category C with a generalized notion of "covers", sufficient to define "sheaves" on C. 

2.1. Grothendieck sites. Let C be a small category. A Grothendieck topology on C is 
an operation J which assigns to each object C a collection J(C) of families of arrows 
in C with codomain C, called covering families, such that the following three conditions 
are satisfied: 

(i) For any isomorphism f: D --7+ C in C, the one-element family {f: D --+ C} 
belongs to J (C) .  

(ii) (Transitivity condition) Given a covering family {f~: Ci -+ C}i~A in J(C), and 
for each index i E A another covering family {9ij: Dij --+ Ci}j~B, in d(Ci), the family 
of all composites {f~ o gij: Dij -+ C}i,j belongs to J(C). 

(iii) (Stability condition) Given a covering family {fi: Ci --+ C}i and an arrow 
g: D --+ C in C, there exists a covering family {hi: Dj --~ D}j, such that each ghj 
factors through some fi (i.e. for each index j there is an index i and an arrow k so that 
g o h j =  f iok) .  

A site is a category C equipped with a Grothendieck topology J. 

2.2. REMARK. In many examples of sites the category C has pullbacks, and the stability 
condition is satisfied in the following stronger form: Given {fi: Ci --+ C}i E J(C) and 
g: D --+ C as in (iii), the family of pullbacks {D x c  Ci --+ D}~ belongs to J(D). 
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2.3. EXAMPLES. 
(i) (Topology) Let X be a topological space. Define a category O(X) whose objects 

are the open subsets U C_ X, and with exactly one arrow U -+ V in case U c_ V. Define 
a Grothendieck topology J on O(X) by 

{ U i ~ U } E J ( U )  iff U = [ . . J U i .  

In other words, a family is covering in the sense of J iff it is covering in the usual sense. 
(ii) (Algebraic geometry) Let X be a scheme (over a fixed groundfield k), and consider 

the category E t / X ,  with all 6tale morphisms f:  Y --+ X as objects and all commuting 
triangles as arrows. One obtains a Grothendieck topology on E t / X  by defining a family 

gi 
>Y  

X 

to be covering iff 

r = U g'(Y') 
iEI 

(as sets). The site thus defined is called the (small) dtale site over the scheme X and is 
denoted X6t. (There is also a "big" 6tale site, [SGA4].) 

2.4. Sheaves. The central notion of sheaf on a topological space can now be generalized 
to any site. Let (C, J)  be a site, and call a functor P: C ~ --+ Sets a presheaf on C. 
For an arrow f:  C --+ D and an element x c P(D), one also denotes P(f ) (x )  by xlf .  
Let {fi: Ci --+ C}i~i be a covering family for the Grothendieck topology J. A family 
xi c P(Ci), i E I, is called a compatible family of elements of P if for any commutative 
diagram in C of the form 

D h ~ c i  

l 
Cj f~ . c  

the identity x~lh - x j l k  holds. An amalgamation for such a family {xi) is an x E P(C) 
so that x]fi - xi, for each arrow fi in the covering family. The presheaf P is said to 
be a sheaf (for the topology J)  when, for each covering family, each compatible family 
of elements of P has a unique amalgamation. With arrows between sheaves the natural 
transformations, these sheaves form a category, denoted 

Sh(C,J) .  
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This is the category of sheaves (of sets) on the site (C, J).  In a similar fashion one can 
define sheaves of (abelian) groups, rings, modules, etc. 

2.5. DEFINITION. A category ,f is called a Grothendieck topos if there exist a site (C, J)  
and an equivalence of categories 

,f, '~ Sh(C, J). 

For a topological space X and the associated site O(X) described in 2.3(i), the category 
of sheaves is the category Sh(X) already introduced in 1. For the small 6tale site X6t 
associated to a scheme X as in 2.3(ii), the corresponding topos Sh(X6t) is called the 
(small) dtale topos associated to the scheme X. One often simply writes Sh(X) for 
Sh(X6t), and refers to sheaves on the 6tale site X6t simply as sheaves on X. 

2.6. REMARKS. (i) For a given category s the "Giraud Theorem" gives conditions for ~" 
to be a Grothendieck topos without any reference to sites (see [MM], p. 575). 

(ii) Every Grothendieck topos is an elementary topos, but the converse is not true: An 
elementary topos C is a Grothendieck topos precisely when s has coproducts indexed by 
arbitrary sets, as well as a (small) set of generators ([MM], p. 591). 

(iii) Given a Grothendieck topos ~', there are many different sites for which there is 
an equivalence as in Definition 2.5. The "Comparison Lemma" ([MM], p. 588) gives 
conditions under which two sites (C, J)  and (C', d') give rise to the same topos (or, 
more precisely, to an equivalence of categories Sh(C, J) ~ Sh(C', d')). 

2.7. EXAMPLES. We list some more basic examples, in addition to the sheaves on a 
topological space already mentioned below 2.5. 

(i) For each small category C, there is the trivial topology T where the only covering 
families are the one-element families {f: D ~ C} where f is an isomorphism. For this 
topology T, every presheaf is a sheaf, and Sh(C, T) is the functor category Sets c~ of 
all presheaves. 

(ii) (Boolean sheaves) If I~ = (B, 0, 1, V, A) is a complete Boolean algebra ([H]), there 
is a corresponding site: the objects are the elements b E 11~; there is exactly one arrow 
b ~ b' iff b ~< U, while a family {bi --+ b} is covering iff b = Vbi in I~. This site is 
again denoted by II~, and its topos of sheaves is Sh(]~). This topos closely resembles the 
category of sets, and is related to Boolean-valued models of set theory. 

(iii) Let G be a topological group. A continuous G-set is a set S equipped with a right 
action S x G ~ S by G, which is continuous when we give S the discrete topology. 
The category of all continuous G-sets and equivariant functions is a topos denoted 13G. 
(A site for this topos has as objects the cosets G/U where U is an open subgroup of G.) 

(iv) More generally, let X be a topological space equipped with a continuous action 
by the topological group G. As above, we may identify sheaves on X with 6tale spaces 
over X, i.e. local homeomorphisms p: E --+ X. An equivariant sheaf is such an 6tale 
space p: E --+ X equipped with a continuous action E x G --+ E which makes p into an 
equivariant map. The category of all such equivariant sheaves is a Grothendieck topos 
(see [MM], p. 594), and is denoted She(X) .  
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3. Geometric morphisms 

These morphisms extend the usual notion of continuous maps between topological spaces 
(3.1 below). Let E and .T be two topoi. A geometric morphism f: .T --+ C from .T to C 
is a pair of adjoint functors (called the inverse and direct image functors) 

f* : ~' ~ . T  : f ,  

where f* is left adjoint to f , ,  with the additional property that f* is left exact (i.e. pre- 
serves finite limits). One also refers to such geometric morphisms simply as morphisms, 
or maps, from 9 v to s 

For each topos s there is an "identity-morphism" C --+ E, given by the identity functor 
on C which is adjoint to itself. And given two morphisms 9: G --+ .T and f:  .T --+ E, 
one can construct a composite geometric morphism f o g: G ~ C, simply by composing 
the adjoints: ( f  o 9)* = g* o f* while ( f  o 9),  = f* o g,. Furthermore, for two topoi E 
and .T, all the geometric morphisms from .T to E form a category 

Hom(.T, C), 

with arrows a: f -+ 9 in this category the natural transformations f* -+ g*. In this 
way one obtains a so-called 2-dimensional category, with topoi as objects, geometric 
morphisms as arrows, and such natural transformations as "2-cells". 

This 2-categorical structure is always (at least) implicitly present in topos theory. 
For example, in practice two topoi ,f and 5r" are identified when they are equivalent as 
categories (they are hardly ever isomorphic). This is already apparant in the definition of 
a Grothendieck topos, which "is" a category of sheaves on a site. Similar remarks apply, 
for example, to the construction of pullbacks of topoi. 

We next give some easy examples of geometric morphisms, using our stock of first 
examples of topoi from Sections 1 and 2. 

3.1. EXAMPLES. (i) Let f :  X --+ Y be a map between topological spaces. Then each 6tale 
space P over Y pulls back to such a space f*(P) over X, while the map f - t :  O(Y) --+ 
O(X) converts each sheaf E on X to a sheaf f , (E) := E o f -1  on Y. Thus f induces 
the so-called inverse and direct image functors on sheaves: 

f * :  Sh(Y) --~ Sh(X) : f , ,  

and f* is left exact (see almost any book on sheaf theory). These two functors define a 
geometric morphism of topoi, again denoted f :  Sh(X) --+ Sh(Y). Under mild separation 
conditions on Y (e.g., Y Hausdorff), every geometric morphism of topoi Sh(X) --+ 
Sh(Y) comes from a unique map of spaces in this way. 

(ii) A homomorphism cp: G --+ H of groups induces three functors between the 
category of G-sets and that of H-sets: 

% 
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with qo! left adjoint to ~*, and qo* in turn left adjoint to ~ . .  Indeed, for an H-Set Y, one 
defines r (Y) to be the same set Y with G-action induced by qo: G --+ H. In particular, 
H itself is a right G-set in this way, and one defines for a G-set X,  

9~,(X) = H o m a ( H , X ) ,  ~!(X) = X |  H. 

Here H o m c ( H , X )  is the set of G-equivariant functions H ~ X, while X |  H 
is the cartesian product X • H factored out by the equivalence relation ( x . g ,  h) 
(x, qo(g), h), much as for the tensor product of modules. Since this functor qo~ is left 
adjoint to qo*, the latter functor r must be left exact. Therefore the pair qo*, qo. defines 
a geometric morphism (again denoted) qo: (G-Sets) -4 (H-Sets) .  It can be shown that, 
up to isomorphism between geometric morphisms, every map (G-Sets) ~ (H-Se t s ) i s  
of this form. 

(iii) If 7r: P --+ X is 6tale over the topological space X,  a "global cross section" 
of P is just a map s: X -+ P with 7r o s = id; or, a map from the terminal object 
(id: X -+ X)  to (Tr: P --+ X) in the category of 6tale spaces over X. More generally, 
consider for a topos s the global sections functor: 

F: s --+ Sets,  

defined by 

F E  = s E) = HomE(l,  E),  

the set of all arrows from the terminal object 1 to E. If $ has small sums (e.g., if $ is a 
Grothendieck topos), then / "  has a left adjoint, the "constant sheaf functor", 

za: Sets  -+ C, za(S) : =  

sES 

This left adjoint A is left exact. So the pair (,4, F)  defines a morphism $ ~ Sets. (It 
is not difficult to see that, up to isomorphism, there can be at most one such geometric 
morphism $ --+ Sets.) 

(iv) Over a topological space, each presheaf can be made into an "associated" 
sheaf. More generally, let (C, J)  be a site, with associated topos Sh(C ,J ) ,  and 

write i: Sh(C,  J) -4 Sets  c''~ for the inclusion functor of sheaves into presheaves. 
One can prove that this functor has a left exact left adjoint, the so-called associated 
sheaffunctor a: Sets  c''p --+ Sh (C ,J ) .  The pair (a,/)  defines a geometric morphism 
Sh(C,  J) --+ Sets  C''p. 

Geometric morphisms between Grothendieck topoi are often constructed using flat 
(or filtering) functors. To explain this, let ,f and .T" be Grothendieck topoi, and let us 
fix an explicit site (C, J)  for g. (For convenience we will assume an actual equality 
s = Sh(C,  J).) Any functor 

A: C ~ "  
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can be canonically extended to a functor 

f~A)" SetsC"~ --+ jc 

by "Kan extension". (Indeed, a presheaf E on C can be viewed as a right C-modu le -  a 
set equipped with an action by C from the r ight - ,  while the covariant functor A can be 
viewed as a left C-module in .T'; then f~A)(E) is simply defined as the tensor product 
E @c A. See [MM].) Just as for modules, this "tensor product" has a hom-functor as 
right adjoint. Specifically, A induces a functor, right adjoint to f~a), 

f (A)." .T" ---+ Sets c'p, 

sending an object F E .T" to the presheaf f(A),(F) on C defined by 

f(A).(F)(C) -- Homj=(A(C), F ) .  

By definition, the functor A: C --+ .T" is said to be flat if the associated tensor product 
functor f~A) -- (--| A) is left exact. Furthermore, the functor A is said to be continuous 

if for every covering family {Ci --+ C} in the site (C, J) ,  the induced map 

A(C~) ~ A(C) 

is an epimorphism in the topos 9 r .  This ensures that the presheaf f(A).(F) is actually 
a sheaf. Thus when A is flat and continuous, the tensor-product functor f~A) restricted 
to sheaves, and the functor f(A),, together yield a geometric morphism f(A): .T" -+ 
Sh(C,  J) .  Every geometric morphism is of this form: 

3.2. PROPOSITION. The operation A ~-+ f(A) induces an equivalence of categories, be- 
tween the category of flat and continuous functors A: C -+ .~, and that of geometric 
morphisms jc __+ Sh(C, J). 

3.3. REMARK. The condition for a functor A: C ~ Y" to be flat can be made more 
explicit. In case the category C has finite limits, A is flat iff it preserves finite limits. In 
general, A is flat iff it is "filtering", as defined in [MM]. 

3.4. EXAMPLES. We mention a "mixed" case of the examples (i) and (ii) in 3.1. Let 
X be a topological space and let G be a group, viewed as a category with just one 
object. A functor A: G -+ Sh(X)  is the same thing as a sheaf (again denoted) A on X 
equipped with a left G-action. When we view the sheaf A as the sheaf of sections of 
an 6tale space p: EA --+ X (as in Example 2.7(iv)), then G acts on the fibers p-l (x) .  
The functor A: G --~ Sh(X)  is flat iff this action by G is free and transitive on each 
fiber. In other words, EA --+ X is a principal G-bundle, or a covering projection with 
group G. Thus by Proposition 3.2, mappings of topoi Sh(X)  -+ (G-Sets) correspond to 
principal G-bundles over X. One says: the topos (G-Sets) classifies principal G-bundles; 
or, (G-Sets) is a classifying topos for principal G-bundles. 
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Similarly, it can be shown that there exists a classifying topos for rings. This is a 
topos B, with a ring object R in B, such that for any other Grothendieck topos g, ring 
objects in g correspond to morphisms g --+ B. 

Many topoi can be viewed as classifying topoi for particular "structures" in this way. 
And conversely, if a structure can be defined by so-called geometric axioms, then one 
can prove that there is a classifying topos for this structure. This leads to an extensive 
theory of classifying topoi, in which Proposition 3.2 plays a central r61e. 

3.5. Morphisms of sites. Consider two sites (C, J)  and (D, K)  for which both C and 
]]) have finite limits. A morphism of sites ~: (C, J)  --+ (ID, K)  is a functor c~: C --+ D 
which preserves both finite limits and covers. (The latter means: for every covering 
family {Ci --+ C} in (C, J),  there exists a covering family {/9# --+ c~(C)} in (]D,K) 
which refines the family {c~(Ci) --+ c~(C)}, in the sense that each D# --+ o~(C) factors 
through some c~(Ci) --+ c~(C).) Such a morphism of sites yields a geometric morphism 
between the topoi of sheaves: first form the composite 

A - a o y o c ~ :  C ~>ID U>SetsD"o a Sh(D,K) .  

Here a is the associated sheaf functor (cf. 3.1 (iv)), and y is the Yoneda embedding which 
sends each object D c D to the representable presheaf ]I)(-, D). The conditions above 
on c~ ensure that A is left exact and continuous, hence (cf. 3.3) flat and continuous. 
Thus A induces a geometric morphism f = f(A), as in Proposition 3.2: 

f: Sh(ID, K ) ~  Sh(C, J). 

The direct image functor f .  can be described simply in terms of composition with ~: 
For a sheaf F on (ID, K)  and an object C E C, 

f , (F) (C)  = F(o~C). 

3.6. EXAMPLE. In algebraic geometry, each morphism between schemes f: X -+ Y 
induces by pullback a morphism of sites f#: X~t --+ Xet, and hence a geometric morphism 
between (small) 6tale topoi, (again denoted) f:  Sh(X)  -+ Sh(Y).  

3.7. Points. Motivated by the correspondence (3.1(i)) between continuous mappings 
X --+ Y between topological spaces and morphisms of topoi Sh(X)  ~ Sh(Y),  together 
with the observation that Sets is the category Sh(1) of sheaves on the one-point space, 
one defines a point of a topos g to be a geometric morphism p: Sets --+ g. A topos ,5" is 
said to have enough points if all the inverse image functors p*: g --+ Sets of points p are 
collectively faithful; or in other words, if for any two distinct parallel arrows f, 9: A --+ B 
in ,5' there exists a point p: Sets --+ g so that p*(f) and P*(9): p*(A) --+ p*(B) are still 
distinct. 

For a topos s having enough points is a useful property, because it implies that any 
statement expressible in terms of colimits and finite limits and true in Sets will be true 
in ,5'. (For general topoi, Barr's Theorem (5.3 below) provides a similar useful result.) 
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Call a site (C, J) of finite type if C has pullbacks and every covering family in J is 
finite. "Deligne's Theorem" states that any topos Sh(C,  J)  of sheaves on such a site of 
finite type has enough points. 

3.8. Constructions of topoi. The 2-dimensional category of Grothendieck topoi and ge- 
ometric morphisms has very good closure properties. For example, for two geometric 
morphisms .7:" --+ g and G --+ g the pullback .T" x E G always exists (in some sense appro- 
priate for 2-categories), see [D] and Section 8 below, and many of its basic properties 
have been studied. The same is true for limits of filtered inverse systems (see [M1 ]). 
Colimits of diagrams of Grothendieck topoi also exist, in a very general 2-categorical 
sense, and can easily be constructed explicitly. (A good exposition can be found in [MP], 
p. 108.) For example, for two maps f,  g: g ~ 5 r ,  the "lax-coequalizer" is the universal 
solution for a map of topoi q: .T" --+ ~ together with a 2-cell q o f =~ q o q (i.e. a natural 
transformation f ' q *  -+ 9* q*)- Such a universal G exists, and is simply constructed as the 
category of pairs (F, u) where F E .T" and u: f*(F) --+ 9*(F). This category is indeed 
a topos. Furthermore, for two Grothendieck topoi g and U one can also construct their 
exponential Uc,  provided g is "locally compact" in a suitable sense; see [JJ]. 

4. Locales 

Locales are like topological spaces, but without points. They play a central role in topos 
theory, partly because topoi need not have "enough" points (cf. 3.7). For example, in 
the next section we shall present various covering theorems stating that for every topos 
g there exists a "space" X and a morphism Sh(X) --+ g with good properties, but in 
general one should allow this space to be a locale. 

The formal definition starts from the properties of the open set lattice (9(T) of a 
topological space T. Define a frame to be a complete lattice A, in which binary meets 
distribute over arbitrary joins, as in the identity 

U A V ~ - V u A v i ,  (1) 
iE I  i E I  

for any U c A and any collection {V i: i E I} of elements of A. Define a morphism of 
frames r A -+/3  to be a map which preserves finite meets and arbitrary joints: 

Here 1.4 denotes the largest element of ,4 (the empty meet). This defines a category 
(Frames). 

For example, for a topological space T the lattice O(T) of open sets is a frame. And 
for a continuous mapping f:  T --+ S, the inverse image mapping f - l :  O(S) -+ O(T) 
is a morphism of frames. 
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Motivated by this change of direction between f and f - l ,  the category of locales is 
defined as the opposite (formal dual) of that of frames: 

(Locales) = (Frames) ~ 

In particular, the two categories have the same objects. However, to avoid possible 
confusion about whether we are considering a given object as a locale or as a frame, and 
to emphasize the similarity with topological spaces, we shall denote locales by X, ] i , . . .  
and their corresponding frames by O(X), O(Y), . . . .  Similarly, a morphism of locales 
will be denoted f:  X --+ Y, while the corresponding morphism of frames will be denoted 
f - l :  O(Y) -+ O(X). Thus, the two expressions 

f :  X ~ Y and f - l :  O(Y) --+ O(X)  

denote the same data, but on the left in the category of locales and on the right in that 
of frames. 

For many properties of topological spaces and mappings there are analogous properties 
for locales (but there are also surprising differences), and there is now an extensive 
literature on locales. The reader may consult [SS], or the recent survey paper [J] with its 
extensive bibliography. 

Now recall that the definition of a sheaf on a topological space (1) only made use of 
the open set lattice of the space. Thus one can define sheaves on a locale in exactly the 
same way. More explicitly, for a locale X the corresponding frame O(X) can be viewed 
as a site: its objects are the elements U E O(X), there is exactly one arrow U --+ V if 
U <~ V, and a family {Ui --+ U} is covering iff U = V Ui (The distributivity law (1) 
ensures that the stability axiom for Grothendieck topologies holds.) The topos of sheaves 
on this site will be denoted 

Sh(X). 

As for topological spaces, every sheaf on a locale X can be represented as the sheaf of 
sections of a local homeomorphism between locales E --+ X. This gives an equivalence 
of categories between Sh(X) and the category of such E --+ X. 

The construction of the topos Sh(X) of sheaves on a locale X is functorial. Indeed, 
a map of locales f :  X --+ Y gives a morphism of sites (cf. 3.5) f - l :  O(Y) - 4 0 ( X ) ,  
hence a geometric morphism Sh(X) --+ Sh(Y). 

5. Some representation theorems 

Recall from Section 2 that for a topological space X equipped with a continuous action 
X • G --+ X by a topological group G, one can construct a topos She(X) of G- 
equivariant sheaves. Exactly the same construction can be given for a locale X equipped 
with a continuous action by a localic group G (a group object in the category of locales). 
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5.1. THEOREM (Freyd [F2]). For every Grothendieck topos $ there exists a locale X 
equipped with a continuous group action by a localic group G, and an atomic connected 
map p: S h c ( X )  ---. g. 

We explain some of the terms: a geometric morphism p: 7" --~ g is said to be surjective 
of p*: g --+ .T" is a faithful functor, and connected if p* is also full. (Intuitively, this 
means that p has connected fibers.) It is called atomic if p* preserves exponentials as 
well as the subobject classifier (i.e. p* (B A) ~- p* (B) p• (A) for any two objects A, B E g, 
and p*(f2e) ~ ~27). Since any inverse image functor p* automatically preserves finite 
limits and arbitrary colimits, Freyd's theorem states that for every Grothendieck topos g 
there exists an embedding p* of $ into a category of equivariant sheaves on a locale, 
such that the embedding preserves "all" the topos structure. 

It is possible to improve on this theorem, and get an actual equivalence of topoi 
p: S h o ( X )  _7+ g, if one allows G to be a localic groupoid rather than a group. To be more 
explicit, first recall that a groupoid is a category in which every arrow is an isomorphism. 
Similarly, a topological groupoid is a groupoid in the category of topological spaces. It 
is given by a space X of objects, a space G of arrows, source and target maps 

s, t: G =t X 

and a composition map m: G x x G --+ G denoted m(g, h) = g o h, a map i: X ~ G 
assigning to each point x E X the identity arrow i(x), and a map r: G ~ G assigning 
to each point g E G its inverse r(9) = g - 1 .  These maps are all required to be continuous 
and to satisfy the usual identities. Now let E be a sheaf on X, represented as (the sheaf 
of sections of) a local homeomorphism p: E --+ X. An action by G on E is given by a 
continuous map on the pullback E x x G along t: G --+ X, 

a: E x x G - - + E ,  d e n o t e d a ( e , g ) = e . g .  

Thus, this map is defined for every pair (e, g) such that p(e) = t(g), and satisfies the 
usual identities for an action 

p(e.  g) = s(g), (e. g) . h =  e.  (go h), e.  i(x) = e (1) 

(for any e E E, x E X and g, h E G for which these expressions are defined). A sheaf 
on X with such an action is again called an equivariant sheaf. The category S h e ( X )  for 
all such equivariant sheaves, and action-preserving morphisms, is a Grothendieck topos. 
(It is called the classifying topos of the groupoid G =t X.) 

These definitions never make essential use of the points of the topological spaces G, 
X and E. Indeed, the equations (1) can also be expressed by commutative diagrams. 
Therefore one can define, in exactly the same way, the notion of a localic groupoid 
G ~ X, as a groupoid in the category of locales, given by locales X and G together 
with appropriate morphisms of locales (s, t, m, i and r). Similarly, one can construct for 
such a localic groupoid G ~ X a topos S h a ( X )  of equivariant sheaves. Surprisingly, 
every topos is of this form: 
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5.2. THEOREM (Joyal and Tierney [JT]). For every Grothendieck topos 8 there exists a 
localic groupoid G ::t X and an equivalence of topoi S h e ( X )  ~- 8, between 8 and the 
topos of G-equivariant sheaves. 

The functor S h a ( X )  --+ Sh(X) ,  defined as "forget the action", is the inverse image 
functor of a geometric morphism 

q: Sh(X)--+ S h c ( X ) ,  (2) 

surjective because this functor is faithful. Thus from Theorem 5.2 (or from 5.1) it follows 
that for every topos s there exists a surjective geometric morphism of the form S h ( X )  --+ 
,5'. Using the fact that the frame O(X) can be suitably embedded into a complete Boolean 
algebra lt~, one obtains "Barr's Theorem". 

5.3. THEOREM (Barr [B]). For every Grothendieck topos C there exists a surjective mor- 
phism r: Sh(I~) --+ C from the topos of sheaves on a complete Boolean algebra to E. 

This result was of course originally proved without use of Theorem 5.2. Barr's theorem 
is extremely useful in practice: Since a topos of the form Sh(]~) is very much like the 
topos of sets (cf. 2.7(ii)), and since r*: s --+ Sh(l~) preserves colimits and finite limits, 
one concludes that any property which can be expressed in terms of such colimits and 
finite limits, true for sets, is true in any Grothendieck topos. 

Various further refinements of Theorem 5.2 are possible. For example, given represen- 
tations S h c ( X )  ~- s and S h a , ( X ' )  ~- s as in Theorem 5.2, one can describe geometric 
morphisms s --+ s in terms of the localic groupoids G and G'. One thus obtains the 
result [M2] that the category of Grothendieck topoi can be obtained as a category of 
fractions (in the sense of [GZ]) from that of localic groupoids. 

The representation Theorem 5.2 is further improved in [JM2, JM2], by showing that 
it suffices to consider localic groupoids G ~ X of a very special form, namely those 
where G is a groupoid of homotopy classes of paths in X (much as in the fundamen- 
tal groupoid of a topological space, or a subgroupoid thereof). Furthermore, for this 
path-groupoid, the geometric morphism q: S h ( X )  --4 S h c ( X )  ~- s of (2) induces iso- 
morphisms in homotopy and cohomology. Thus although topoi originally arose for more 
general cohomology theories than the cohomology of topological spaces, it suffices (in 
theory!) to consider only cohomology of locales. We should add that there has so far 
been little study of the locales so arising, and their possible applications. 

6. Cohomology 

In topology, one often uses cohomology groups of a space X with coefficients in a 
varying abelian group A. This variation may consist in an action of the fundamental 
group 7rl (X, x0) on A, and A is then said to be a "twisted" system of coefficients. 
Such a system may also be viewed as a locally constant sheaf on X (see Section 7). 
More generally, cohomology groups with coefficients in any abelian sheaf A can be 
defined and used, as discussed extensively in [Go]. Generalizing such sheaf cohomology 
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groups, Grothendieck and his collaborators (M. Artin, J.-L. Verdier and others) introduced 
cohomology groups for an arbitrary topos. The generality and flexibility of this framework 
was successfully applied in the solution of the Weil conjectures about the number of zeros 
of polynomial equations with integer coefficients modulo a prime number, by using the 
so-called 6tale cohomology groups of schemes. These are the cohomology groups of 
the 6tale topos associated to the scheme. They fit in well with Grothendieck's earlier 
theory of the fundamental group of a scheme (Section 7 below), e.g., by the Hurewicz 
formula (1) in Section 7. 

In this section we will introduce these sheaf cohomology groups for an arbitrary topos, 
and present some of their basic properties. In particular, we will introduce the more 
explicit t~ech cohomology groups associated to a cover of a topos, and explain Cartan's 
criterion providing conditions for when these Cech cohomology groups agree with the 
sheaf cohomology groups. Verdier's theory of hypercovers provides a generalized (~ech 
cohomology which always agrees with sheaf cohomology. 

Let s be a Grothendieck topos, and write Ab(s for the category of abelian groups in s 
Thus, if s is the topos Sh(C, J) of sheaves on a site (C, J),  then an object A E Ab(s is 
sheaf A on C such that each A(C) has the structure of an abelian group, and each arrow 
c~: C --+ D in C induces a group homomorphism A(D) --+ A(C). This category Ab(s is 
an abelian category with enough injectives. Now write Ab = Ab(Sets) for the category 
of abelian groups. The global sections functor F: s --+ Sets (see 3.1(iii)) sends abelian 
group objects to abelian groups, so induces a functor (again denoted)/-': Ab(s --+ Ab, 
which is left exact and preserves injectives. Thus one can introduce the cohomology 
groups Hn(s A) by using the standard resolutions of homological algebra: 

6.1. DEFINITION. For any group object A in s the cohomology groups Hn(s are 
defined to be the right derived functors of F, as 

Hn(s  A) := Rnl-'(A). 

Thus Hn(E, A) is the n-th cohomology of the abelian cochain complex 

FI ~ -+ FI 1 -+ I'12 _+... 

obtained from an injective resolution 0 --+ A --+ I ~ ~ I 1 --+ . . .  in Ab(s The con- 
struction of these groups Hn(s A) is functorial, contravariant in s and covariant in A, 
as usual. For an object X E s one also considers the right derived functors of the 
functor s  which sends an abelian group A to the group of arrows X --+ A in s 
("sections over X"). These groups are denoted Hn(s X; A). For such an object X E s 
the product functor X*: s ~ s  (sending Y to Y • X ~ X) induces a functor 
X*: Ab(s --~ Ab(s which is exact and preserves injectives. Thus for A E Ab(s 
there is a canonical isomorphism 

Hn(s '~ Hn(c/X,X*(A)) .  

The latter group will also be denoted simply Hn(s A). 
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6.2. EXAMPLES. 
(i) (Cohomology of spaces) For a topological space X, the functor [': AbSh(X) -+ Ab 

sends an abelian sheaf A to A(X). The cohomology groups Hn(Sh(X), A) are the usual 
sheaf cohomology groups of X with coefficients in A, used extensively in topology, cf. 
[Go, I]. 

(ii) (Cohomology of groups) Let G be a group, with its associated topos (G-Sets). 
An object A of Ab(G-Sets) is an abelian group A equipped with an action by G, or 
equivalently, a Z [G] -module. In this case/"(A) is the subgroup A c if fixed points. The 
cohomology Hn(G-Sets, A) is the usual Eilenberg-MacLane cohomology of the group 
with coefficients in A, [M]. 

(iii) (Algebraic geometry) Let X be a scheme, with associated 6tale topos Sh(X). The 
6tale cohomology groups Hn(Xet, A) of the scheme X are by definition the cohomology 
groups Hn(Sh(X) ,A)  of the (small) 6tale topos. (In fact, the big 6tale topos has the 
same cohomology; [SGA4], 2, p. 353.) 

(iv) (Cohomology of categories) Let C be a small category, with presheaf topos 
Sets c~ An object A of Ab(Sets c''p) is simply a functor A: C ~ ~ Ab. The cohomology 
groups Hn(SetsC"P,A) are the cohomology groups of the category C, discussed, e.g., 
in [Q2], p. 91, [R]. 

In the rest of this section, we will simply outline some very basic properties of topos 
cohomology. For further study the reader may consult, among others, [SGA4] (vol. 2), 
[Mi, AM, B, T]. 

6.3. Leray spectral sequence. For any geometric morphism f: .T" --+ s between 
Grothendieck topoi, the direct image functor f , :  .T" --+ s also defines a functor 
f , :  Ab(.Y') --+ Ab(s Grothendieck described a spectral sequence for the composite 
of two functors. For the composite/" o f ,  this gives the Leray spectral sequence of f: 

E~ ,q = HP(s f .(A)) ~ HP+q(:F,A). 

For example, if f comes from a continuous map between topological spaces f: X --+ Y 
(cf. 3.1(i)) then this is the usual Leray spectral sequence for sheaf cohomology [Go], 
p. 201-202. For the geometric morphism ~a: (G-Sets) --+ (H-Sets) induced by a 
group homomorphism as in 3.1 (ii), the Leray spectral sequence is precisely the Lyndon- 
Hochschild-Serre spectral sequence in group cohomology [M]. The Leray spectral se- 
quence in 6tale cohomology is discussed in [SGA4] (2), [Mi]. 

6.4. The basic spectral sequence associated to a simplicial object. Let ,5' be a 
Grothendieck topos. A simplicial object X. = {Xp)p>>.o in s gives rise to an augmented 
chain complex in Ab(s 

a 
0 +--- Z +--- Z . X  0 L Z . X l  +'- " ' "  �9 (6.4.1) 

Here Z .  ( - ) :  s --~ Ab(s is the free abelian group functor (left adjoint to the forget- 
ful functor), and 0 is defined as usual by alternating sums of the boundary operations 
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di: Xn+l ~ Xn.  The simplicial object X. is said to be locally acyclic if this com- 
plex (6.4.1) is exact. (If s has enough points, X. is locally acyclic iff for each point 
p: Sets --+ g the simplicial set p*(X.) is acyclic, i.e. Hn(p*(X.) ,Z) = 0 for each 
n />  0.) For any such locally acyclic simplicial object X. there is a spectral sequence 

E~ 'q - E~ 'q (X.) = HPH q (C/X., A) =~ H p+q (C, A). (6.4.2) 

We will discuss two kinds of locally acyclic objects, (~ech coversand the more general 
hypercovers. 

6.5. ~ech cohomology. Any epimorphism U ~ 1 in a Grothendieck topos C gives 
rise to a locally acyclic simplicial object U. - {Up)p, with Up - U •  • U (p + 1 
times, the factors numbered 0 , . . . ,  p) and di: Up --+ Up-i the projection omitting the i-th 

p0 coordinate, for i - 0 , . . . ,  p. The E 2' -term of (6.4.2) is the cohomology of the complex 

HomE(U, A) --+ HomE(U x U, A) - + . . .  (6.5.1) 

and is called the (~ech cohomology of s for the cover U, denoted/7/* (U, A). For two such 
epimorphisms U --+ 1 and V --+ 1, any map ("refinement") a: V --+ U induces a map 
of cochain complexes a*" HomE(U., A) --+ HomE(V., A). Up to homotopy, this map is 
independent of a, so induces a well-defined homomorphism/7/* (U, A) --+/7/* (V, A). By 
definition, the (~ech cohomology/:/* (C, A) is the direct limit over all these U ---- 1" 

HP(E, A) "- I ~ u  [-IP(U, A ) = I ~ u  E~'~ (6.5.2) 

(This direct limit is well-defined, because the system is directed, and a small set of epis 
U ~ 1 is cofinal, cf. (6.6.2) below.) The direct limit of (6.5.2) thus yields a spectral 
sequence 

E~ 'q = li__mv HPHq(g/U., A ) ==> HP+q(C, A). (6.5.3) 

This sequence has the special property that E ~ = 0 for q > 0. For q - 0, there is a 
canonical edge homomorphism 

~: E~"~ = HP(C,A) -+ HP(C,A), (6.5.4) 

which is an isomorphism for p - O, 1 and a monomorphism for p = 2. 

6.6. 6"ech cohomology and sites. Let (C, J)  be a site for C. We assume that C has finite 
limits, and that every representable presheaf C ( - ,  C) is already a sheaf (in this case the 
topology J is called "subcanonical"). Then, for each object C E C, the comma category 
C/C,  with the evident topology inherited from J, is a site for the topos C / C ( - ,  C). Let 
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A: C ~ --+ Ab be an object of Ab(E). For any covering family/4 = {C~ --+ 1}~i  of the 
terminal object 1 in C, one obtains a complex C (/,/, A) defined by 

C p(lg,A)= H A(Cio • 2 1 5  (6.6.1) 
(io ..... i~) 

This is the complex (6.5.1) where 

U __. 

iEI 
These covers coming from the site are cofinal in the system (6.5.2), so 

[-IP(e, A) = l ~ u  H p (C" (bl, A)) , (6.6.2) 

where/g ranges over the covers of 1 in the site C, ordered by refinement (P = {Ds --+ 
1 }s~s refines {Ci --+ 1 }i~I if for each s E S there is an i E I and a map D~ --+ Ci). 
For a specific cover/4, the E~'q-term of the spectral sequence (6.4.2) takes the form 

HP( H Hq(s •  • C~,,'A)) �9 
(io ..... i,,) 

(6.6.3) 

Suppose now that there is a class of objects B in C, closed under products, such that 
every object C E C is covered by objects from B. Then in the direct limit (6.6.2) it 
suffices to consider covering families b/consisting of objects B E B. Thus, if for each 
B E B one has Hq(s  = 0 (q > 0), the spectral sequence (6.4.2) with E2-term 
(6.6.3) collapses, and the homomorphism (6.5.4) is an isomorphism 

/-:/P(g', A) ~~ HP(C, A) (p 1> 0); (6.6.4) 

i.e. (~ech cohomology coincides with ordinary cohomology. If in addition B is closed un- 
der pullbacks, a slightly more careful inspection of the basic spectral sequence will in fact 
show that, to obtain an isomorphism (6.6.4), it is enough to assume that nq(~ /B ,  A) = 0 
for q > 0 (rather than Hq(s  = 0) for every B E B. This condition for the iso- 
morphism between (~ech cohomology and topos cohomology is called Cartan's criterion 
[Go], p. 227. This criterion is often useful. For example, any manifold M has a basis 
of contractible open sets, so the (~ech and sheaf cohomology groups of M coincide, 
for any locally constant sheaf A of abelian coefficients. Another example is provided 
by the sheaves W(F) on the small 6tale site of a scheme X which are induced from 
quasi-coherent sheaves F for the Zariski-topology on X; cf. [SGA4] (2), p. 355. 

6.7. Hypercovers. (Verdier [SGA4], Artin and Mazur [AM], Brown [Br].) It is possible 
to obtain an isomorphism of the form (6.6.4) without any conditions on the site C, if one 
allows more general covers U. in the direct limit (6.5.2) (or (6.6.2)). Recall from [Q1] 
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that a map f:  X. --+ Y. between simplicial sets is a trivial fibration if any square of the 
form 

A[n] . x 

/ 
/ 

A N  . y 

has a diagonal filling (as indicated by the dotted arrow). Here A[n] is the standard 
n-simplex and A[n] is its boundary. In other words, f :  X. --+ Y. is a trivial fibration if 
the map 

Xn - Hom(A[n], X.) --+ Hom(A[n], X.) XHom(A[n],y.)Hom(A[n], Y.) 
(6.7.1) 

is surjective. If Y. = 1, this is the familiar requirement that X. is a contractible Kan 
complex. Call a map f:  X. -+ Y. between simplicial objects in g a local trivial fibration 
if the corresponding map (6.7.1) is an epimorphism in g. (If $ has enough points, this is 
the case iff for every point p: Sets ~ $ the map p* (f)  is a trivial fibration of simplicial 
sets.) A simplicial object X. is called a hypercover of g if X. -+ 1 is a local trivial 
fibration. For example, for any object U --~ 1 in g the simplicial object U. described 
above is a hypercover. Denote by HR(g)  the category of hypercovers of g and ho- 
motopy classes of maps. Clearly every hypercover is locally acyclic, and gives rise to 
a basic spectral sequence (6.4.2). As for 12ech cohomology, one can form a "Verdier 
cohomology" direct limit over all hypercovers 

P "- HP(Homc(X.,  A)) HVerdier (~, A) I ~ X . E H R ( g  ) 

= fi_mx. H P H ~ 1 6 3  

The direct limit over all hypercovers of the spectral sequence (6.4.2) gives another spectral 
sequence 

Ef 'q - l i m H P H q ( g / X .  A) ::> HP+q(g A) 

with edge homomorphism 

v p HP($, A) 
~: Hge rd i e r (~ '  , A) ~ (6.7.2) 

This spectral sequence collapses (since lira x Hq(c,/X., A) = 0 for q > 0), and e is an 
isomorphism. (One can also prove that (6.--~.2} is an isomorphism along the lines of [Bn], 
p. 427, by using that the local trivial fibrations in a topos form part of a "category of 
fibrant objects" in the sense of [Br], see [Ja].) 
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7. The fundamental group 

A map p: E -4 X between topological spaces is said to be a covering space of X if there 
exists a covering of X by open sets U with the property that p-1 (U) is (homeomorphic 
to) a disjoint sum f i s t s  Vs of open sets such that p restricts to a homeomorphism 

p: Vs --% U for each Vs. If the space X is connected and locally simply connected, 
these covering spaces are "classified" by the fundamental group 7rl (X, z0) where :co is 
any base point. Specifically, the functor which sends a covering space p: E --+ X to 
the set p-~(zo), equipped with the action of 7rl(X, z0) defined by "pathlifting", is an 
equivalence of categories. 

These covering spaces can be described within the category of sheaves on X, when 
we identify sheaves with local homeomorphisms (6tale spaces). Indeed, a local homeo- 
morphism p: E --+ X is a covering space iff there is a surjective local homeomorphism 
U ~ X for which 

E• Z: 
s 6 S  

U 

over U; in other words, the sheaf E --+ X becomes "constant" when pulled back to a 
sheaf E x x U --4 U over U. 

This description applies to any topos. Specifically, let g be a Grothendieck topos, with 
a "base point" p: Sets --+ 6. This topos is said to be connected if its terminal object 
cannot be decomposed as the sum of smaller objects (equivalently, the unique geometric 
morphism g --+ Sets is connected, cf. just below Theorem 5.1). An object E of g is said 
to be locally constant if there exists a set S, an epi U ~ 1 in g, and an isomorphism 

E x U ~ - ~ U  
sES 

over U. (Thus, viewing topoi as generalized spaces, E/E --~ C. is a "covering space" 
of 6.) Such a locally constant object is said to be finite if S is a finite set. In that case 
the set p*(E) is finite as well since p*(E) ~- S. Let FLC(E) be the full subcategory of 
s consisting of such finite locally constant objects. It can be shown that there exists a 
profinite topological group G, unique up to isomorphism, such that FLC(E) is equivalent 
to the category of finite continuous G-sets. The construction of (7 makes use of the 
point p. This group G is the profinite fundamental group of the topos E with base 
point p, and denoted 7rl (s p) (or 7r~ f (6, p) for emphasis). 

The explicit construction of this profinite group G proceeds in an indirect way, using 
Grothendieck's categorical Galois theory [SGA 1 ], Exp. V. This theory gives an axiomatic 
characterization of categories of continuous G-sets for a profinite group G, as follows. 

7.1. DEFINITION. A Galois category is a category G equipped with a functor F: G -+ (fi- 
nite sets), satisfying the following conditions: 

(i) G has finite limits, finite sums, and for every object X E G and any finite group 
H of automorphisms of X the quotient X / H  exists in G. Furthermore, every morphism 
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f :  X --+ Y in G can be factored as an effective epi X --, f (X)  followed by a mono 
f (X)  ~-~ X. Finally, every mono T ~-~ X has a complement T '  ~-~ X (i.e. T+T'  _7+ X). 

(ii) The functor F preserves all the structure mentioned in (i): finite limits and sums, 
quotients by such finite groups, epi-mono factorizations and complements. 

(iii) For every arrow f in G, if F(f) is an isomorphism of finite sets then f is an 
isomorphism in 9. 

If G is a profinite topological group, than the category C(G) of finite continuous 
G-sets, with the "underlying set" functor U: C(G) --+ (finite sets), is a Galois category. 
Conversely, Grothendieck's theorem states that for any Galois category (9, F )  there is, up 
to isomorphism, a unique profinite group G and an equivalence of categories C (G) ~ ~, 
so that F corresponds to U under this equivalence (up to natural isomorphism). For a 
connected Grothendieck topos C with a point p, the inverse image functor p* restricts to 
a functor p*: FLC(s --+ (finite sets), and it is not difficult to verify that (FLC(C),p*) 
is a Galois category. Thus Grothendieck's theorem for such categories gives the profinite 
fundamental group 7rl (E, p) as described above. 

7.2. EXAMPLES. 
(i) Consider a connected locally simply connected topological space X with base 

point x0, and its associated topos Sh(X). The point x0 gives a point of this topos, 
Y~0: Sets --+ Sh(X). An object E of Sh(X) is locally constant iff, when viewed as 
an 6tale space E -+ X, it is a covering projection. As mentioned at the beginning 
of this section, this category of covering projections is equivalent to the category of 
sets with an action by the usual fundamental group 7rl (X, x0), constructed using paths. It 
follows that the Grothendieck profinite fundamental group 7rl (Sh(X), Y~0) is the profinite 
completion [GR] of 7rl (X, x0). 

(ii) (algebraic geometry) Consider a connected scheme X,  with associated (small) 6tale 
topos Sh(X). A geometric point x0 of X will again give a point ~0 of the topos Sh(X), 
and one can form the profinite fundamental group 7rl (Sh(X), :2)0). In this case it follows 
by descent theory [SGA1], VIII.7, that every finite locally constant object of Sh(X) is 
actually representable by a finite 6tale cover X '  --+ X of schemes. Thus 7rl (Sh(X), Yco) 
is the usual fundamental group 7rl (X, x0) of the scheme X ([SGA1], Exp. V). 

It is also possible to classify arbitrary covering spaces (not just finite ones) of a topos g, 
provided E is locally connected. To define this, first call an object E of g connected if E 
cannot be decomposed as a sum E ~ E1 § E2, except in the trivial ways where E1 -- 0 
or E2 -- 0. The topos E is said to be locally connected if every object E of E can be 
decomposed as a sum of connected objects, say 

E -  ~ E i .  
iEI 

This decomposition is essentially unique, and its index set I is the set of connected 
components of E, denoted 7r0(E). In this way one obtains a functor 7r0" g --+ Sets. 
(This functor is left adjoint to the functor ,6 of 3.1(iii).) For example, for a topological 
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space X the topos Sh(X)  is locally connected whenever X is locally connected; and for 
a scheme X, the 6tale topos Sh(X)  is locally connected when X is locally Noetherian. 

For a locally connected topos ,f, the full subcategory SLC(s consisting of sums of 
locally constant objects of E, is again a Grothendieck topos. Furthermore, the inclusion 
functor SLC(C) ~-+ C is the inverse image part of a geometric morphism s -~ SLC(s 
In particular, a point p of E gives by composition a point 15 of SLC(s An infinite 
version of Grothendieck's Galois theory ([M3], Proposition 3.2) shows that SLC(8)  is 
equivalent to a topos of the form BG (= continuous G-sets) where G is a prodiscrete 
localic group; or equivalently, a (strict) progroup. This group G is essentially unique, 
and the equivalence identifies it3*: SLC(E) -+ Sets with the underlying set functor 
U: BG -+ Sets. One denotes G by 7rl (s p). 

This "enlarged" (when compared to the profinite one) fundamental group 7q(~',p) 
shares many of the usual properties of fundamental groups of spaces. For example, for 
any abelian group A there is a canonical isomorphism 

H 1 (C, A(A))  ~- Hom(Trl (C, p), A), (1) 

analogous to the Hurewicz theorem in topology which states that the first homology 
group is the abelianization of the fundamental group. 

Using Verdier's hypercovers, one can also define higher homotopy groups of a con- 
nected locally connected topos C with base point p. These higher homotopy groups 
are pro-groups, called the ~tale homotopy groups of (s and denoted 7rn(E,p) (or 
7r,~(~, p)). For n - 1, this agrees with the enlarged fundamental group 7rl (,f,p) just de- 
scribed. Their construction can be outlined as follows: For any hypercover X. of ,f, the 
connected components functor 7r0: E --+ Sets gives a connected simplicial set 7r0(X.). 
A base-point of such a hypercover ("over" the point p of E) is by definition a vertex :r0 
of the simplicial set p*(X.). The canonical map p*(X.) -+ p* ATro(X.) ~- 7ro(X.) will 
then give a base-point Y:o of the simplicial set 7r0(X.), and one obtains homotopy groups 
7rn (7r0(X.), z0). The 6tale homotopy groups are defined as the pro-groups ("formal" 
inverse limits) 

l (x, o ) 

indexed by all the pointed hypercovers and homotopy classes of maps between them (or 
rather, some small cofinal system of such, just as for (~ech cohomology). These groups 
are described in detail in [AM]. 

8. Topoi and logic 

The starting point for the relation to mathematical logic is the following observation. Let 
s be an elementary topos, and for each object X in ,E let Sub (X) denote the poset of 
subobjects of X. 

8.1. PROPOSITION. 
(i) For each object X the poset Sub(X) is a Hefting algebra. 
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(ii) For each arrow f:  X --+ Y in g the pullback functor f - l .  Sub(Y) --+ Sub(X) 
has both a left and a right adjoint, denoted 3i,  'q'l" Sub(X) --+ Sub(Y). 

(iii) For each pullback square 

Y x x Z  '~2 > Z 

Y > X  

the identities 9 -1 o V S = V~r2 o 7rl I and 9 -1 o 3f  = 3~r2 o r ~  1 hold. 

In the topos of sets, Sub(X) is the Boolean algebra of all subsets of X, and for a 
function f:  X --+ Y the adjoints 3 S and Vf are defined in terms of the existential and 
universal quantifiers: for any subset U c_ X, one has 

3I (U ) = {y E Y I3x  E f - ' ( y ) "  x E U} 

and 

V/(U) = {y ~ Y IVx ~ f - ' ( y ) "  x ~ U}.  

Part (i) of this proposition states that the poset Sub(X) has a largest element l x  and a 
smallest one 0x,  as well as operations of infimum, supremum and implication, denoted 
for U, V E Sub(X) by 

U A V ,  U v V ,  U = ~ V .  

Furthermore, one can define a negation ~U as ~U -- (U ~ 0x).  The poset Sub(X) is 
a Heyting algebra because these operations satisfy the laws of the intuitionistic proposi- 
tional calculus. 

The topos g is said to be Boolean if for every object X the Heyting algebra Sub(X) 
is a Boolean algebra. This means that the laws of the ordinary ("classical") propositional 
logic hold. Thus a topos s is Boolean if every subobject has a complement. An arbitrary 
topos g always contains a "largest" (in some sense) Boolean subtopos s (constructed 
as sheaves for the Lawvere-Tierney topology given by "double negation"; cf. 1.5). 

It follows from the proposition above that one can interpret formulas of predicate logic 
in any topos. More specifically, one can associate to each topos s a language L(s of 
"typed" predicate logic. The types of this language are the objects of 8. Furthermore, if 
X l , . . . ,  Xn, Y are objects in g then any arrow f:  X 1 x . . .  x X n --~ Y is a function 
symbol of the language (taking n arguments of types X 1 , . . . ,  Xn respectively to a value 
of type Y), and similarly every subobject R E Sub(Xl • ' ' '  • Xn) in s is a relation 
symbol of the language (taking n arguments of types X 1 , . . . ,  Xn). For any formula 
T ( x l , . . .  ,xn) of this language, with free variables xi of types Xi E s one can then 
build up an object (the "value" of T), 

{ ( x , , . . . , x n )  [ ~o(x , , . . . ,xn)}  E Sub(X, x - - .  x X,~), (1) 
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by induction on the construction of cp, using Proposition 8.1. For example, typical in- 
ductive clauses in the definition of this object (1) read 

I A = I A I 

I = I 

here ~ stands for the sequence of variables z l , . . . ,  zn ,  while V# is the "quantification" 
along the projection arrow 7r: X1 x . . .  x Xn+l  --+ X1 x . . .  x X n  of E. This valua- 
tion (1) obeys all the rules of intuitionistic predicate logic. Moreover, exponentials y x  
and power objects P ( X )  = g2 X give a corresponding structure on the types of this 
language L(~'), making it a "higher order" language. In this way, one obtains in fact 
a suitable correspondence between elementary topoi on the one hand, and intuitionistic 
theories in such higher order languages on the other. This correspondence and some of 
its applications are exposed in detail in [LS]. 

Thus, any topos can be viewed as some universe of sets which obeys the rules of 
intuitionistic logic. This can be exploited in two directions. 

On the one hand, one can use topos theory to prove results about logical systems. These 
will in general be systems of intuitionistic logic, unless the topoi involved are Boolean. 
(But remember that any topos can be "Booleanized".) In order to model interesting logical 
theories in a topos C, one generally assumes that C has a natural numbers object (n.n.o.). 
Such an n.n.o, is a universal object N equipped with arrows z: 1~ --+ N (zero) and 
s: N --+ N (successor). Universality in this case means that for any other object X in s 
with given arrows a: 1 --+ X and t: X --+ X, there is a unique arrow f: N --+ X so 
that f o z = a and f o s = t o f. This property is essentially equivalent to the Peano 
axioms for N. In the topos of sets, the usual set of natural numbers is an n.n.o., and the 
unique arrow f is defined by "recursion". Any Grothendieck topos has an n.n.o. 

For example, Cohen's famous proof of the independence of the Continuum Hypothesis 
has a sheaf theoretic interpretation, due to Tierney [Ti]. Say that a monomorphism A ~ / 3  
in a topos s is strict of there is no nonzero object U in s for which there exists an 
epimorphism U x / 3  ~ U x A over U. In the "internal" logic of s this expresses that A 
is a subset o f /3  with cardinality strictly smaller than that of/3.  

8.2. THEOREM. There exists a Boolean (Grothendieck) topos s with an n.n.o. N,  in 
which there are strict monomorphisms N ~ A ~ P ( N ) .  

From this theorem one can derive the independence of the Continuum Hypothesis 
from the usual axioms of Zermelo Fraenkel set theory, by imitating the construction of 
the cumulative hierarchy of sets 

v=Uv  
OL 

inside ,5'; see [F]. 
In a similar vein, E Freyd [F1] gave a very elegant topos-theoretic proof of the 

independence of the Axiom of Choice. 



Topos theory 527 

If any topos s with n.n.o., one can interpret the usual construction of the set of real 
numbers in terms of Dedekind cuts in the language of that topos, and construct an object 
RE of real numbers in g. The intuitionistic aspect of the "logic of topoi" is illustrated very 
strikingly by the fact that in many naturally arising topoi, the statement that all functions 
are continuous ("Brouwer's theorem") holds. This is described in detail in [MM]. 

Most of the proposed models for intuitionistic logic can be seen as special cases of 
the interpretation of logic in topoi. For example, Kripke models [Kr] describe truth in 
the topos Sets P'p of presheaves on a poset I?, while Beth models [Be] describe truth 
in the topos of sheaves on the Cantor space (or Baire space NN). Kleene's recursive 
realizability semantics [K] can also be viewed as the description of truth in a topos, the 
so-called effective topos [H]. 

In the other of the two directions mentioned above, one can construct objects in 
a topos and prove properties about them, just as if these objects were sets, provided 
these constructions and proofs are intuitionistically valid (that is, all constructions must 
be explicit, and use of the axiom of choice and the excluded middle is prohibited). 
This is particularly effective when one studies geometric morphisms and pullbacks of 
Grothendieck topoi ("change-of-base"). Thus, if f :  .T" --+ g is a geometric morphism 
between Grothendieck topoi, one may view g as a "universe of sets" and construct a site 
(C, J) inside this universe, so that 9 r is (equivalent to) the topos of "internal" sheaves 
on (C, J )  constructed inside s denoted Shc(C, J). If p: s  --~ s is another geometric 
morphism, then the pullback s  • E .~" can be constructed by first using the inverse image 
functor p*: s --+ s to obtain a site p* (C, J)  in s t, and then constructing internal sheaves 
in s thus 

sh , (p* (c,  J)) = e' •  

up to equivalence of topoi over s This combination of exploiting the internal logic 
and change-of-base provides a powerful technique, exploited, e.g., in the references [JT, 
JM1, JM2, M1, M2] already mentioned in Section 5. 
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Category theory is a young subject yet has, by now, contributed its share of substantial 
theorems to the vast body of mathematics. In certain areas, I consider that it has also 
managed to revolutionize thinking. Examples of such areas, and the innovative categorical 
concepts, are: 
- homolog ica l  a lgebra:  abelian category [F, Sch, Gt]; 
- universal  algebra:  triple (= monad), sketch [ML2, Sch, BW]; 
- a lgebra ic  geometry:  scheme, topos [SGA, Sch, Gd, Jt, MLM]; 
- set  theory: elementary topos [Jt, BW, MLM]; 
- enumerat ive  combinator ics:  Joyal species [Joy]. 

These matters are well covered by the indicated accessible literature; therefore, it is not 
the purpose of this article to repeat them. I shall be concerned more with categories as 
vital mathematical structures (as emphasized by Ehresmann [Ehl, Eh2] and Lawvere [L]), 
rather than with traditional category theory. 

In topology texts, we read that the spaces were designed to carry continuity to a 
useful conceptual level. Yet, categories are two steps away from naturality, the concept 
they were designed to formalize. The intermediate notion, functor, is the expected kind of 
morphism between categories. From the very study of the established practice of routinely 
specifying morphisms along with each mathematical structure, we were presented, in the 
1940's, with an extra dimension: morphisms between morphisms. We were naturally led 
by naturality to objects, arrow and  2-cells. Topology had its analogue: homotopies. 

The reader will be assumed to have familiarity with categories, functors and natural 
transformations. My starting point is the introduction of 2-cells. I consider a category 
further equipped with 2-cells, but with no compositions apart from the composition of 
arrows already existing in the category; this is called a derivat ion scheme.  With such a 
simple structure, this paper explores some fundamental interconnections involving: 
- rewrite systems; 
- free higher-order categories; 
- cubes and simplexes; 
- string diagrams, Penrose tensor notation, and braids; 
- the d-simplex equations arising in the study of exactly soluble models in statistical 

mechanics and quantum field theory; 
- homotopy theory; 
- coherence in category theory. 

Convent ion.  The composite of arrows c~: a --+ b, /3: b --+ c in a category A will 
be written in the algebraic order c~ o/5: a --+ c. The other order may be regarded as 
"evaluation", so that parentheses/3(c~): a --+ c will be used. 

1 .  G r a p h s ,  a n d  2 - g r a p h s  

Recall that a (directed) graph G consists of two sets Go, G1 and an ordered pair of 
functions s, t: G1 -+ Go. Elements of Go are called objects,  vertices, or  O-cells. Elements 
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of G, are called arrows, edges, or 1-cells. Call s(7) the source of the arrow 7, call t(3') 
its target and denote this by 7: s(3") --+ t(7).  For objects a, b of G, we write G(a, b) 
for the set of arrows 7: a --+ b. There is a category G r p h  whose objects are graphs; 
the arrows f :  G --+ H,  called graph morphisms, are pairs of functions fo: Go --~ H0, 
f l :  G1 --+ H1 such that, if 3': a --+ b in G, then fl (3'): fo(a) -+ fo(b) in H. 

The opposite of a graph G is the graph G ~ obtained from G by interchanging the 
functions s, t. 

Each category A has an underlying graph (since a category has a set A0 of objects 
and a set A1 of arrows) which we also denote by A. The free category on (or generated 
by) a graph G is the category FG of paths in G, described as follows. The objects of 
FG are the objects of G. A path from a0 to an of length n >~ 0 is a (2n + 1)-plet 

(ao,  3"1, a l ,  3 " 2 , . . . ,  3"n, an): 

71 ")'2 ")'3 3',~) 
ao ) a l > a2 ~ " "  a n  

where 7m" a m - I  --+ a m  in G for 0 < m ~< n. An arrow a" a --+ b in FG is a path 
from a to b of any length g(c~)/> 0. Composition of paths is given by 

( a o ,  3"1 ,  a l  , . . . , 7n, an) o ( b o ,  ~ l  , b l  , . . . , ~ n ,  bn) 

= (ao, 7l, a l , . . . ,  3"n, a,~, ~1, b l , . . . ,  ~n, bn) 

for an = bo. So g(c~ o/3) = g(c~) + g(/3). It is convenient to identify the edge 7: a --+ b 
of G with the path (a, 7, b)" a ~ b, and to denote the path (a)" a --+ a of length 0 by 
la" a --+ a (as we do for identity arrows in any category). For n > 0, we then have 

( a o , 3 " l , a l , 3 " 2 , . . . , 3 " n , a n )  = 3'1 0 ' ) ' 2  o . . .  o 3 '  n .  

A category is called free when it is isomorphic to a category FG of paths in some 
graph G. For example, the category I~1 which has one object 0, natural numbers n: 0 --+ 0 
as arrows, and addition as composition, is free. Each free category A has a length functor 

g: A --+ N; 

the generating graph has the same objects as A, but only the arrows of length 1. The 
generating graph for I~1 is a terminal object in the category Grph.  

Let 2 denote the free category on the graph with two objects 0, 1, and one arrow 
0 --+ 1. Let 3 denote the free category on the graph with three objects 0, 1, 2, and two 
arrows 0 --+ 1 --+ 2. Let i~i: 2 ~ 3, / -- 0, 1,2, denote the functor which is injective on 
objects and does not have i = 0, 1,2 in the image. 

A functor f :  A --+ X is said to be ulf (for "unique lifting of factorizations") when 
each commutative square of functors 
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2 

1 
A 

/ A" 

/ 
/ 

/ 
/ 

:- X 

has a unique filler, as shown by the dashed functor, making the two triangles commute. 
A category A is free if and only if there exists an ulf functor g: A --+ N. 

For any category A, there is a functor eomp: FA --+ A given by "composing the 
paths": 

eomp(~) = ")q o . . .  o "In for ~ = ( a o ,  ~1 ,  a l ,  . . . , ~ n ,  a n ) .  

In fact, the category structure on the graph A is encapsulated by the graph morphism 
comp: FA --+ A; the precise statement is that the underlying functor from the category 
Cat  of categories to Grph  is monadic (or "tripleable"). 

The chaotic graph Xch on a set X has source and target given by the first and second 
projections X • X --+ X. There is a unique category structure on Xch so it is also called 
the chaotic category on X. The discrete graph Xd on the set X has source and target both 
given by the unique function O --+ X. The discrete category on X is the free category 
FXd on Xd; its source and target are both the identity function 1 x :  X --+ X of X.  

Let 7r0G denote the set of connected components of G; it is obtained from Go by 
identifying objects which have an arrow between them. Clearly 7r0G = 7r0FG. 

A 2-graph G consists of three sets Go, G1, G2 and four functions s, t: G1 --+ Go, 
81, t l :  G2 -4 GI such that sl o s = tl o s and 8 2 0  t = tl o t. The last two functions are 
denoted by s, t: G2 -+ Go. Terminology for the graph s, t: G1 -+ Go is used for the 
2-graph. Also, the elements u of G2 are called 2-cells; when 3', ~: a -+ b and sl (u) = 7, 
tl (u) = ~, we write either 

u ' y ~ $ ' a  ~ b or a g u  b 

Write G(a,b) for the graph whose objects are arrows q': a -+ b, and whose arrows are 
2-cells u: 3' :=> ~: a -+ b. The graph sl, tl: G2 -+ G1 is the disjoint union of the graphs 
G(a, b), a, b E Go. There is a category 2-Grph of 2-graphs whose arrows f:  G -+ H, 
called 2-graph morphisms, are triplets of functions fi: Gi -+ Hi, i = 0, 1,2, such that 
(f0, f l) ,  (fl ,  f2) are graph morphisms. 
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The opposite G ~ of a 2-graph is obtained by interchanging s, t: G1 -4 Go. The 
conjugate G c~ of G is obtained by interchanging sl, tl" G2 -4 G1. There is also G c~176 

2. D e r i v a t i o n  s c h e m e s ,  sesquicategor ies ,  and  2 -categor ies  

This section reviews concepts, selected from [$2] and [ES], which underpin 2-dimen- 
sional categories. 

A derivation scheme D consists of a 2-graph D together with a category (D) whose 
underlying graph is s, t: Dl -4 Do. We shall often provide the data for a derivation 
scheme D in a diagram 

81,tl: M -4 A 

where A is the category (D) and M is the set D2. There is a category DS of derivation 
schemes whose arrows f :  D --4 E, called derivation scheme morphisms, are 2-graph 
morphisms for which (fo, fl):  (D> -4 (E) is a functor. 

Each 2-cell u: 7 =~ 3: a -4-4 b in a derivation scheme D can be thought of as a rewrite 
rule which labels the directed replacement of 7 by 3. An application of the rule u is the 
replacement of any arrow of the form c~ o "7 o ~ by a o ~; o ~3. We label this application 
by the symbol au~: ~ o 7 o ~ =~ a o ~ o ~, and call it the whiskering of u by c~, ~ as 
suggested by the following diagram. 

a ~ a b -~ b' 

It is harmless to identify u with its whiskering by identities. This gives a derivation 
scheme wD with the same category (D) and with the whiskered 2-cells; so wD con- 
tains D. A derivation in D is a finite sequence of applications of rules; more precisely, 
it is a path in the graph 81, tl: (wD)2 -4 DI. We obtain another derivation scheme dD 
with the same category (D) and with derivations as 2-cells. We write (dD)(a,  b) for the 
path category of the graph (wD)(a, b). In fact, dD is more richly structured than a mere 
derivation scheme, it is an example of a "sesquicategory". 

A sesquicategory S consists of a derivation scheme S and a functor 

S ( - , - ) :  (S) ~ x <S)--4 Cat  

whose composite with the functor obj: Cat  -4  Set  is the homfunctor of the category (S), 
and whose value at an object (a, b) E (S) ~ • (S) is a category with underlying graph 
S(a, b). We now write S(a, b) for the category and not just the graph; the composition of 
S(a, b) is called vertical composition and denoted by .. For each pair of arrows a: a t --4 
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a, ~: b --+ U, a functor S ( a ,  ~)" S(a, b) --+ S ( d ,  U) has its value at u: 7' =~ 5: a -4 b 
denoted by 

a o u o / 3 :  a o - y o f l ~ a o ~ o f l :  a t - > b  t 

where o between 1-cells is composition in the category (S). Let ((S)) denote the cat- 
egory whose underlying graph is sl, tt: $2 -4 St and whose composition is vertical 
composition o. 

There is a category Sqe of sesquicategories; the arrows, called sesquifunctors, are 
2-graph morphisms which preserve all the compositions and identities. 

Each sesquicategory S gives rise to a category ekS, called the quotient category of S. 
The objects are the objects of S. The set of arrows is the set of components of the 
category ((S')/. Composition is induced by that of (S) (this uses the compatibility of (S) 
composition with existence of 2-cells). 

A 2-category K [Ehl, Eh2] is a sesquicategory K such that, for all u: 7 => .yt: a -4 b, 
v: 5 => St: b -4 c, the following equation holds: 

(u o 5 ) .  (.y' o ~) = (7 o v ) .  (u o 5'). 

The 2-cell given by either side of the last equation is denoted by 

u o v" 7o5==~'y~o5 t" a --+ c 

(and called the horizontal composite of the 2-cells u, v). 
(HC) 

uo8 
y o 8  _- y 'o8  

yov ~lo V 

yo 8' .. y'o 8' 
Uo~' 

It follows that the middle-four-interchange law holds: that is, for each diagram 

y 8 

y" 8" 
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in K ,  there is an equality 

( u .  u')  o = (u o (u' o 

So, horizontal composition - o - :  K(a, b) • K(b, c) -+ K(a,  c) is a functor. There is a 
category 2-Cat of 2-categories; the arrows, now called 2-functors, are sesquifunctors. 

The basic example of a 2-category is Cat: its objects are categories (subject to some 
size restriction, if the reader feels this is needed), arrows are functors, and 2-cells are 
natural transformations [Gt], Appendix. Just as one considers additive categories, which 
are categories whose homsets are enriched in the monoidal category of abelian groups, 
we can describe 2-categories as categories whose homsets are enriched in Cat (with 
cartesian product as tensor product); see [EK] for precise definitions. Some connection 
between 2-categories and homotopy theory can be found in [GZ]. The connection between 
2-categories and derivations in rewrite systems was made in [Bns]. 

Each sesquicategory S yields a 2-category fS by forcing commutativity in the 
squares (HC). This can be described by constructing a new derivation scheme E which 
will provide rewrite rules for arrows in S. Take (E) = ((S)). Take E2 tobe  the sub- 
set of $2 X $2 consisting of those pairs (u, v) of nonidentity 2-cells with t(u) : s(v), 
and where s l , t l :  E2 -+ (S)l take (u,v) to the lower, upper paths around theabove 
square (HC). 

(u, (7 o (u o 
o (.y, o v )  

Then form the quotient category q d E  of the sesquicategory dE.  The objects of q d E  
are the arrows of S. Our 2-category fS is given by (fS) = (S) and ((fS)/ - qdE.  
There is a canonical sesquifunctor S --~ fS, and composition with it establishes a 
bijection between 2-functors fS -+ K and sesquifunctors S ---> K,  for all 2-cate- 
gories K.  

For any derivation scheme D, we can apply the construction of the last paragraph to 
the sesquicategory S = dD where the 2-cells are derivations in D and so have length. 
It is possible then to replace the derivation scheme E by the sub-derivation-scheme 1" D 
of E whose 2-cells (u, v) are restricted to those with u, v both derivations of length 1. 
We call 1" D the lift of D. 

For any derivation scheme D, we obtain a 2-category fdD. Two derivations in D are 
called equivalent when they are identified by the canonical sesquifunctor dD --+ fdD; 
this means there is an undirected sequence of applications of the rules of 1" D taking one 
derivation to the other. 

3. Pasting, computads, and free 2-categories 

Repeated horizontal and vertical composition in a 2-category K determine a more general 
operation called pasting. For example, consider the following diagram in K. 
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(P) 

a ,- b = c ,., = d 

r~ v 

f 

g 

A 2-cell in a region means that its source and target are given by the composites of the 
indicated paths: for example, we have v : A o 3 :=> t, m : 7/o t o e; :=> e, and r : c~ =v 0 o A. 
(Care is needed in placing the double arrow in each region so that it is clear which path 
is intended to be the source and which the target. If the arrow for r had pointed from 
left to right instead of downward, the result would be meaningless.) The 2-cells of the 
diagram (P) can be whiskered in such a way as to obtain a path from c~ o 3 o 7 to 6 o e o ( 
of length 5 in the underlying graph of the category K ( a ,  d); for example, 

ro3o~y Oovo'y uot, o',/ 
~o3o 7 > OoAo3o 7 > Oo~o-y > 

6o~7o~on 6omo( 
6 o r / o ~ o 7  > 6 o r / o ~ o R o f f  > 6 o ~ o ( .  

Another such path is 

c, o3on ro3o,~o( uo>,o3o,~o( 

6o71ovo,~o( 6omor 
6 o 7 / o A o # o , ~ o r  > 6 o ~ / o ~ o ~ o (  ~ 6 o ~ o r  

We leave it as an exercise for the reader to check that these paths have the same composite 
in the category K (a, d). Diagrams such as (P) are called pasting diagrams, and the 2-cell 

( r  o 3 o,,,,). (0 o v o ~ ) .  (~ o,~ o ~ ) .  (,~ o ~ o,~ o ~ ) .  (,~ o , ~  o C ) o ~ o ~ o 7  

6 o~ o ( :  a ~ d 

is called the pasting composite of the diagram. Notice that, if we reversed the direction 
of the 2-cell r (say) in (P), we would no longer h~ve a pasting diagram since no path in 
K(a,  d) could be made from it by whiskering the 2-cells. 

A computad C consists of a graph s, t" C1 --+ Co, denoted by C #, together with a 
derivation scheme s l, t l" Cz --+ FC #. The elements u of C2 can be pictured as diagrams 
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. . . .~  a 3 

bl"--. ~ bn_ l ~ S n  am 

where the upper path is Sl (u) and the lower is tl (u). A computad morphism f: C ~ C' 
is a triplet of functions fi" Ci ~ C~, i = 0, 1,2, for which there is a morphism (f0, f[, f2) 
of the derivation schemes such that f~ agrees with fl on arrows of length 1. This gives 
a category Cptd of computads. Having given this precise definition, we can regard a 
computad as a derivation scheme C with (C) a free category, so long as we take care 
to remember that the computad morphisms preserve the length of 1-cells. 

Each 2-category K has an underlying computad C = U K  with C # the underlying 
graph of the category (K),  with 

(72 = { (~, u, r / ) l ~  , 77 are paths in C # and u: comp(~) ==~ comp(r/) in K} ,  

and with sl, t~: C2 ~ F(K)  taking ((, u, 77) to (, r/, respectively. 
The free 2-category FC on the computad C is fdC. There is an obvious inclusion 

computad morphism i: C --+ UFC. For each 2-category K and each computad mor- 
phism f:  C --+ UK,  there exists a unique 2-functor g: FC ~ K such that the following 
triangle commutes. 

C ~ U F C  

S 
U K  

This means that the functor U has a left adjoint F. Taking C = UK,  we obtain a 2-functor 
past: F U K  --+ K,  called the pasting operation for the 2-category K. A 2-category 
structure on a computad C can be characterized in terms of an abstract pasting operation 
UFC ~ C. More precisely, the functor U: 2-Cat --+ Cptd is monadic. 

This pasting operation will now be related to our previous discussion of the dia- 
gram (P). Suppose now that (P) is made up from data of a computad C. For example, 
there are 2-cells 

and 

v: (e,A,b,~,c) ~ (e,~,c), m: ( f ,~ ,e ,~ ,c ,a ,g)  =v (f ,~,g),  

r" (a,a,b) =~ (a,O,e,A,b). 
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Whiskering the five 2-cells in the derivation scheme D of C, we obtain 2-cells 
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r o ( b ,  13, c,~/,d), (a,O,e) o v o ( c , ' y , d ) ,  uo (e ,L ,c ,~ / ,d ) ,  

(a ,~ , f ,  rl, e,t.,c) o n  , (a, 6, f )  o m o ( g , ( , d )  

from (a, a, b,/3, c, "7, d) to (a, 3, f, e, g, (, d) in wD; they form a path in the graph 
(wD)(a, d). The connected component (with respect to (HC)) of this path gives a 2-cell 

(a, a, b, /~, c, "y, d) =~ (a, ~, f , e, g, f ,  d ): a -+ d 

in FC. This is, of course, none other than the pasting composite of the diagram (P) in 
the 2-category FC. Conversely, any other representative of this 2-cell in FC by a path 
in (wD)(a, d) leads us back to a planar diagram equivalent to (P). So a pasting diagram 
in C seems to provide a geometrically invariant way of depicting a 2-cell of FC. For a 
2-category K, the pasting operation past: FUK --+ K assigns the pasting composite to 
the pasting diagram. 

In general, however, when there are 2-cells which have source or target paths of 
length 0 in the computad C, the faithful geometric representation of 2-cells of FC by 
pasting diagrams breaks down. The reason is that the following three geometrically 
inequivalent pasting diagrams all represent the same 2-cell when 

t, (u) -- sl (v) -- la: a --+ a. 

Y Y la la y 

We shall see below that this problem can be overcome by using the string diagrams 
which are planar dual to pasting diagrams. 

4. Strings, and the terminal computad 

Consider the planar dual of the pasting diagram (P) at the beginning of Section 3. Each 
2-cell r, u, v, m, n becomes a node labeled by the same symbol; each arrow a , /3 , . . .  
becomes an edge, called a string. A string is attached to a node when the original arrow 
formed part of the boundary of the region containing the 2-cell. Moreover, we require 
that the strings progress down the page from nodes that were source 2-cells towards 
nodes that were target 2-cells. The resultant graph, embedded in the plane, is called a 
string diagram. 
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The value of this string diagram is the 2-cell cz o 13 o "7 =v ~ o e o ( obtained by 
breaking the diagram into horizontal layers with nodes at different levels in different 
layers. Reading from left to right, we obtain a horizontal composite of 2-cells from each 
layer; each node contributes its 2-cell, and each nodeless string contributes the identity 
2-cell of its arrow. This gives the value of each layer. Then the values of the layers are 
composed vertically, reading down the page. For our example, we obtain: 

(~ o ~ o n ) .  (0 o ~ o ~ o r  (~ o ,  o ~ o r  (~ o m o r  

The reader should enjoy checking that this agrees with the pasting composite of the 
pasting diagram (P) using the axioms for a 2-category. 

The above string diagram can be deformed in the plane (as below) so as to preserve 
the strings' progression downward. The value remains the same [JS2]. 

8 
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The value of this deformed string diagram is 

(~ o e o - r ) .  (u o ~ o ~ o-r) �9 (~ o , 7 o ~  o - r ) .  (~ o ,7o~ o n ) .  (~ o ~  o r 

which is also equal to the pasting composite of (P). 
Moreover,  the string representation deals with the problem involving identities de- 

scribed at the end of Section 3. For suppose we have 2-cells u, v with tt (u) = Sl (v) - 
l a: a ~ a. Corresponding to the pasting diagram 

Y 

~" tZ 

8 

we have the string diagram 

whose value is u �9 v and which can be deformed to 

Q ( ~ Q 
8 8 
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which have the values u o v and v o u, respectively. This suggests that the geometry of 
the string diagram provides a faithful representation of 2-cells in free 2-categories, which 
is indeed the case [JS2] as we shall explain in more detail below. 

Just as it is of particular interest to consider the free category N on the terminal graph, 
it is also worth considering the free 2-category M on the terminal co.mputad. Recall that 
N is a one-object category, and so is really just a monoid. Similarly, M is a one-object 
2-category, and so is really just a strict monoidal category (that is, a monoid in the 
category Ca t  of categories and functors). 

The terminal computad Ct is the terminal object in the category Cptd.  The graph Ct # 
is the terminal graph. So FCt  # = N. There must be exactly one 2-cell for each possible 
source and target path; so the derivation scheme of Ct is the chaotic graph on the set 
{0, 1 , 2 , . . . }  of natural numbers. We write the 2-cells of Ct # as m / n :  m ::, n. 

The derivation scheme wCt  has 2-cells of the form (1, m / n ,  r)" 1 + m + r =~ 1 + n + r 
obtained by whiskering m / n  on the left by 1 and on the right by r. Thus the free 
2-category M on Ct is obtained by taking paths of these 2-cells and identifying subject 
to condition (HC) of Section 2. 

This gives the following direct description of M as a strict monoidal category. Consider 
the graph W whose vertices are natural numbers and whose edges (1, m / n ,  r)" a --+ b 
consist of natural numbers l, m, n, r with l + m + r = a and l + n + r = b. Then consider 
the path category FW.  We introduce the following "rewrite rule" on arrows of F W  of 
length 2" 

(/, m / n ,  r) o (/', m ' / n ' ,  r ')  

(l', m ' / n ' ,  r' - n + m )  o (l - m '  + n',  m / n ,  r) 
for l' + m '  ~< l, 

and, to exclude the case where the top and bottom are equal, we ask that not all of I -- l', 
m = n = m '  = n '  = 0 hold. This rule is a directed form of the condition (HC) as with 
the 2-cells of the lift 1" Ct. An application of this rewrite rule is the replacement of a 
path 7r o a o 7r' by 7r o T o r '  where a is the top path and T is the bottom path of the rule. 
To obtain M, identify arrows of F W  when one arrow can be obtained from the other by 
a finite sequence of undirected applications of the rewrite rules. For objects c, d of FW,  
we have functors 

c +  , + d :  F W - - + F W  

taking (l, re~n, r)" a ~ b to 

(c + l, re~n,  r)" c + a -~ c + b, (l, re~n, r + d)" a + d -~ b + d, 

respectively. The identification of arrows in F W  was introduced precisely so that these 
functors would induce partial functors for a functor 

M x M ~ M  

which provides the tensor product for M; it is given on objects by addition of natural 
numbers. 
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We briefly consider the question of whether the (directed) rewrite rule above can be 
used to find "normal representatives" in F W  for arrows in M. Notice that we do have 
"confluence" for the rewrite rules in the sense that, starting with a path in W of length 3 
for which two rewrite rules can be applied, we can begin by applying either rule, yet 
continue applying rules to obtain a common result. For, suppose we have both l t + m '  <~ 1 
and l" + m 't <~ 1 ~. Then l" + m"  <<. 1 ~ <~ l - m '  <<. l -  m '  + n'; so we have the following 
derivation. 

(l,mln,r)o(l',m' In',r')o(l",m" In",r) 
(l',m' /n',r'-n+m)o(l-m' Wn',m/n,r)o(l",m" /n",r) 

(l',m' In',r'--n+m)o(l",m" In",r"--nWm)o(l--m' +n'--m" +n",m/n,r) 
(l",m" /n",r"--nWm--n' +m')o(l'--m" h-n",m' /n',r'-n+m)o(l-m' +n'-m" +n",m/n,r) 

Also, ( l ' -  mt '  + n" )  + m '  = (1 t + m ' )  - m "  + n 't < l -  m "  + n" ;  so we have the 

following derivation. 

(l,m/n,r)o(l',m' /n',r')o(l",m" /n",r) 
(l,m/n,r)o(l",m" /n",r"-n'  +m')o(l'-m" +n",m' /n',r') 

(l",m" /n",r"--n' +m'--n+m)o(l--m" +n",m/n,r)o(l'--m" +n",m' /n',r) 
(l",m" /n",r"--n' +m'--nWm)o(l'--m" +n",m' /n',r'--n+m)o(l--m" +n"--m' +n',m/n,r) 

Notice that the derivations both lead to the same bottom line, yielding the desired con- 
fluence. 

A path in W is called reduced when the rewrite rules cannot be applied to it. So 
a path (l, m / n ,  r ) o  (l', m ' / n ' ,  r') of length 2 is reduced when either 1 < l' + m' ,  or 
m = n - m t - n t = 0 and 1 = l'. An arbitrary path is reduced if and only if every path 
of  length 2 through which it factors is reduced. Notice that, if l' + m '  ~< l, then the path 

(l', m ' / n ' ,  r' - n + m)  o ( 1 -  m '  + n', re~n, r') 

is reduced if n' + m > 0; so in this case, for paths of length 2, a reduced path is obtained 
in one application of a rewrite rule. For the case n '  + m - 0, notice the derivation of 
length 2: 

(.e. O/n. o) o n) 
(0. m,/0.0) o (0.0/n. 0) 

o (n. m , / 0 . 0 )  

This is why we need the second sentence of the following result. 

PROPOSITION 4.1 [ES]. Let 7r: a -+ b be a path of  length k in the graph W.  Suppose 7r 
does not contain both an edge (1, m / n ,  r) with m = 0 and an edge (l', m ' / n ' ,  r') with 
n t = O. Then all derivations with source 7r, using the above rewrite rules, have length 
<<. k ( k -  1)/2. Moreover, 7r is equivalent to a unique reduced path. 

REMARK. Without the second sentence of the Proposition 4.1, the upper bound k ( k -  1) /2  
must be increased (as shown by the above derivation of length 2 with k -- 2). David 
Benson has advised me that k ( k -  1) is an upper bound in the general case, and that this 
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follows from his paper [Bns]. The complication is related to the one discussed at the end 
of Section 3, which reminds us to look at a string model for M. 

A plane graph F is a compact topological subspace of I~ 2 with a distinguished set F0 
of points whose complement F - F0 in 1" is homeomorphic to a finite union of disjoint 
open intervals. The elements of 1"0 are called vertices and the connected components of 
1 " -  1"0 are called edges. We say that (x, y) is above (x', y') in ]~2 when y' <<. y; below 
means the reverse. The plane graph 1" is called progressive when aboveness is a total 
(linear) order on each edge. Progressive plane graphs are directed graphs: the source and 
target of an edge are the vertices in the closure of the edge; the source is above the 
target. 

A progressive plane graph with boundary consists of a progressive plane graph /~ 
with a distinguished set iF' of vertices such that each vertex in 01" = 1"0 - if '  is in the 
closure of precisely one edge, and if '  is an interval in the aboveness order on 1"0 (that 
is, if p, q, r are vertices with p above q and q above r, then p, r E i1" implies q E iF). 
Notice that 01" is the disjoint union of the subset s1" of those vertices which are sources 
and the subset t1" of those vertices which are targets. For example, in the progressive 
plane graph depicted below, the white nodes provide an acceptable set if '; so the black 
nodes constitute OF, the cardinality of s1" is two, and the cardinality of tF  is eight. 

Of course, the size of the nodes is exaggerated for visibility. It is customary to omit the 
boundary (black) nodes from the picture, leaving loose the single edge having it in the 
closure. 

Suppose 1", 1"' are progressive plane graphs with boundary. We say that 1" is a defor- 
mation of F' when there exists a homeomorphism h: 1[~2 ...+ ]1~2 such that h(F) = 1"', 
h(i~1") = i~F r, and h preserves the aboveness order on edges. 
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Now we give the geometric model of the strict monoidal category M. The objects 
are natural numbers. An arrow IF]: m --4 n is a deformation class of progressive plane 
graphs with boundary such that the cardinalities of sF,  t F  are m, n, respectively. We 
define the composite [F] o [A]: m -+ p of arrows [F]: m -+ n, [A]: rz -+ p by choosing 
representatives F,  A such that 

s F =  t A -  {(k,O)" k -  1 , 2 , . . . , n } ,  

with F - t F  contained in the upper half plane and A - sA in the lower half plane; then 
put 

[V] o [A] = [V U A] 

where (/-'U A)0 = (/-'o U A0) - tF  and i9(/-' U A) = (O/-'U OA) - t F .  We define the tensor 
product 

[v] | IV']: m + m '  + + 

of arrows [F]: m -+ n, IF']: m '  -+ n'  by choosing the representatives F, r '  to be 
contained in the left, right half plane (respectively); then put 

[F] | [A] = [F U A] 

where (FUA)o = F0UA0 and i~(FUA) = 8FUaA.  There is a graph morphism W -+ M 
which is the identity on objects and takes the edge (1, re~n, r) in ~ / t o  the deformation 
class of the following graph. 

l r 

I I I 

m 

I 

I I 
//, 

This graph morphism extends to a functor F W  --+ M which is the universal functor out 
of F~/ ident i fy ing the rewrite rules for paths in W [JS2]. 
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REMARK. When returning to the view of M as a 2-category, its single object will be 
denoted by 0, and horizontal, vertical composition will be denoted by o, �9 as usual in a 
2-category, rather than by | o with their usual meaning in a monoidal category. 

5. Length 2-functors, and presentations of 2-categories 

Each free 2-category A has a length 2-functor g: A -4 M induced by the unique computad 
morphism between the generating computads; recall that the generating computad of M 
is terminal. We now attempt to characterize free 2-categories in terms of the length 
2-functor. 

Each 2-functor g: A --+ M determines a computad t? -1 (Ct) which is the subcomputad 
of UA with the same objects, the arrows 7 with t?('7) = 1, and the 2-cells u: a =~ 3 
with g(u) represented by the edge (0, e(a)/t?(/3), 0) of W. If A is free and t? is its length 
2-functor then A is free on the computad g-I (C t). 

Let 22 and 32 denote the free 2-categories on the computads depicted by 

0 ~w 1 and 0 - -1  = 2  - 3 ,  

respectively, and let i3" 22 --+ 32 be the 2-functor which takes w to a o (u �9 v)o/3 .  A 
2-functor f :  A --+ X is said to be ulf when each commutative square 

/ 
/ 

f 

/ 
/ 

A -- X 
f 

can be uniquely filled by a 2-functor as indicated by the dashed arrow. 
A computad (or derivation scheme) is called tight when there are no 2-cells u: c~ ::~ 

/3: a -4 a with c~ the identity of a. (From the rewrite view of C', this is a mild requirement, 
since the possibility of rewriting nothing as something is seldom desirable as it leads 
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to infinite derivations.) Let M ~ denote the free 2-category on the sub-computad of the 
computad Ct consisting of those 2-cells re~n: m =~ n with m r 0. 

PROPOSITION 5.1. A 2-category A is free on a tight computad if and only if there exists 
an ulf 2-functo r 

g: A -+ M'. 

To characterize general free 2-categories, we take the string viewpoint. Let F denote 
a progressive plane graph with boundary, and let D be any computad. A valuation 
u" F --+ D o f / "  in D consists of a pair of functions 

uo" /"1 -+ D1 and ul" iF  ~ D2 

such that, for each z E iF, one has 

ul(x)" vo(el) o uo(e2) o . . . o  vO(em) ==> uo(fl) o uo(f2) o . . . o  uo(fn) 

where e l , . . . ,  em are the edges with target x ordered from left to right in the plane, and 
f l , . . . ,  fm are the edges with source x also ordered from left to right. A string diagram 
in D is a pair (F, u) consisting of a progressive plane graph F with boundary and a 
valuation u: /" --+ D. If (F, u) is a string diagram in D and F '  is a deformation of 
F then there is an obvious way to obtain a valuation u' on Ft;  in this case, (F ' ,  u') is 
called a deformation of the string diagram (/-', u). Write [/-', u] for the deformation class 
of (F, u). 

PROPOSITION 5.2. A 2-category A is free on some computad if and only if there exists a 
2-functor g: A --+ M such that, for each string diagram (/-', u) in the computad g-1 (Ct), 
there exists a unique 2-cell u in A with g(u) = [/-', u]. 

Suppose A in any 2-category. By a valuation u: F --+ A and a string diagram in A, 
we mean a valuation and a string diagram in the computad UA. Suppose (F, u) is any 
string diagram in A. By Proposition 5.2, there exists a unique 2-cell u in FUA with 
g(u) - [/-', u]. The value u(_r') of the string diagram (/", u) in A is the value of u under 
the 2-functor past: FUA --+ A; that is, 

u(F) = past(u) .  

Now that we have some understanding of free 2-categories, we can contemplate pre- 
sentations of 2-categories. A presentation of a 2-category consists of a computad C and 
a relation R on the set (FC)2 of 2-cells of the free 2-category FC. (The elements (a,/3) 
of R are often written as equations a = /3 . )  One obtains a 2-category A (unique up to 
isomorphism) by constructing the universal 2-functor F C  ~ A which identifies R-related 
2-cells; then (C, R) is called a presentation of A. Of course, C can be identified with a 
subcomputad of UA. 
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EXAMPLE 1. Monads. Cons ide r  the c o m p u t a d  (7 with one object  a, one arrow 7-: a --~ a, 

and two 2-cel ls  e" la  =~ 7-, m:  7 o  7" =:~ 7". Whi le  this c o m p u t a d  is not  tight, its con- 

juga te  C c~ is tight, so all v iews  of  F C  are available.  Cons ide r  the relat ions R given as 

fol lows.  

z" 
a ~ a 

Z" 
a ~ a 

1o/-7"-7 
a ---- 

e l a  

/2, ~" a 

These relations can also be drawn using string diagrams, as follows. 
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"C 

Let M n d  denote the 2-category with one object a, and with homcategory  M n d ( a ,  a) 
equal to the category of  finite ordinals and order-preserving functions; horizontal  com- 
posit ion is ordinal sum. The (C, R) provides a presentation for the 2-category M n d  
via the interpretation of  7" as the ordinal 1, and e: 0 --~ 1, m:  2 -+ 1 as the unique 
functions. To give a 2-functor M n d  --+ K into a 2-category K is to give a monad 
in K .  

EXAMPLE 2. Distributive laws between monads and comonads. As a natural example  of 
a computad  C which is neither tight nor has a tight conjugate,  we take one object a, 
two arrows 7-, 3': a --+ a, and five 2-cells e: la =r T, m:  7 o 7 "  =r 7", k: 3" ~ la,  
d: 3" :=> 3" o ,7, r: 3" o 7" =~ 7" o 3'. It will make the relations we are about  to consider  
look more  geometr ical ly appealing if, in the string diagrams, we depict  the 2-cell r as a 
cross-over  of string 3' over string 7", rather than as a node. Let R consist of  the relations 
for e: 1~ =~ 7", m: 7" o 7" =~ 7" as in Example  1, the relations given by inverting the string 
diagrams for e, m and replacing e, m by k, d, and the fol lowing four extra relations. 

y 
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For a 2-category A, the computad morphisms C --+ UA, which identify R-related 2-cells, 
are in bijection with objects a of  A equipped with a monad r ,  comonad 7, and a 
distributive law r between them [Bc, S1, BW]. 

6. Cubes, and Gray's tensor product of 2-categories 

By way of application of the above ideas, we now consider structures arising from 
consideration of cubes of all dimensions. What could be more basic than rewriting a 
single given symbol, say "minus", by another, say "plus"? We begin with a computad 
which, in a sense, is a combinatorial version of the interval, so we denote it by I. The 

graph I # has one vertex (which shall remain nameless), and two edges denoted by - 
and +.  Paths in this graph are words a in the symbols - and +;  such words of length n 
are in bijection with the 2 n vertices of the n-cube. There is only one 2-cell in I which 

we denote by 0 :  - =~ +.  
An application of the rewrite rule 0 : - =~ + to a word a of length n can be identified 

with an edge of the n-cube; it is a word u of length n in the symbols - ,  0, + with 
precisely one 0 occurring. The position of the 0 in u is a position in a where there is a 
symbol - and the target of u is obtained from a by changing this - to a +. Derivations 
in the derivation scheme I are paths around the edges of the cube. So the 2-cells of the 
one object sesquicategory d! can be regarded as paths around some n-cube. Write I In, 1] 
for the subderivation scheme of dl consisting of the words a in the symbols - ,  + of 

length n. 

- - 0  

O - - J  / 
/ 

- 0 -  

+ 0 -  ~, + + _  

I + - 0  

+ - +  

0 - +  / / /  

- 0 +  

o+- 
/ 

- + 0  

= + + +  
+ 0 +  

0 + +  
-4-+  

+ + 0  

The 3-cube | [3, 1]. 

For words c~,/3 C I[n, 1], write c~ ~< /3 when c~,/3 have the same length and c~ has 
the symbol - in every position that/3 does. Clearly there exists a derivation c~ --+/3 if 
and only if c~ ~</3. Moreover, any two derivations with the same source and target are 
equivalent. It follows that the homcategory of the free 2-category fall on dl is a partially 
ordered set: it is a strict monoidal category whose tensor product is juxtaposition of 
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words. If we take the full subcategory of this homcategory consisting of the words c~ of 
length n, we obtain a category Cub[n,  1], called the n-cube with commutative 2-faces. 

However,  we may not wish the 2-faces to commute. In other words, we may not wish 
to identify equivalent derivations. Let us examine the derivations in more detail. Suppose 
ce, fl are words of the same length n in the symbols - ,  + and suppose c~ <~ ft. Write a \ /3  
for the set of positions where c~ has - and fl has +.  A derivation u of  I from c~ to 
can be identified with a listing u = UlU2.. .  uk of the elements of c~\fl (each application 
determines an element of c~\fl which is the position of the symbol 0 and the order is that 
forced by composibility of the applications making up the derivation). With this notation 
it must be realized that the source and target of u: c~ --+ fl must be specified in order to 
fully determine the derivation. Put 

V(u) = {(ui,  uj)" i < j and ui < u j} .  

Notice that, for derivations u: c~ --+ fl, v: fl --+ 7, there is a partition of V(uv)  as 

V(u ) = V(u) + { (u,, < } + V(v). 

We shall now describe the lift derivation scheme 1" I. The objects are words a in the 
symbols - ,  + .  The arrows are derivations u: c~ --+ fl of I. The 2-cells are oriented 2-faces 
of an n-cube which can be depicted in pure - ,  0, + notation as 

a - # - •  

a - ~ o y  

a - , 6 + y  

o t o # - •  

~ o # o •  ~ + ~ o ~ ,  

... t~ + /~ + y 

or in "position of 0" notation as 

v) 

~ - # +  • 
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where u -- g(a) + 1, v - u + g(/3) + 1. Notice in the last square that 

V( u) = o c { (u, } - 

Write I In, 2] for the sub-derivation scheme of 1" I obtained by taking only the objects c~ 
of length n. 

The commuting 3-face relations are the following relations on 2-cells in the free 
2-category F 1" I: for each object c~ of 1" I with the s y m b o l -  in positions u < v < w, 

. > /  
f 

O/W 

(v,w) v 
:::0 

~ W  ~ OlU 

O l U W  

V 

( v, w) 

OlU V 

Ol U V W  .~~W 

OlU 

(u,v) 

V - -  V 

( U, V) 

(U,W) ~UV ~VW 

f " w  
f f U V W  " 

. . ~ . . . . . Z  ~ ~ U 

O l V W  

where c~u denotes the result of changing - to + in position u of c~. 
There is a 2-category Cub[n,  2] defined as follows. The objects are words c~ of length n 

in the symbols - ,  +.  For c~ ~</3, the homcategory Cub[n, 2](c~, 13) is the ordered set of 
listings u - u l u 2 . . ,  uk of the elements of c~\/3 where u <~ u' if and only if );u C_ );u'. 
Otherwise, Cub[n,  2](c~, 13) = O. Horizontal composition 

Cub[n, 2](c~,/3) x Cub[n, 2](/3, 3') + Cub[n, 21(c~, 3") 

is concatenation of listings which is order preserving (by the formula for V(uv)). 

PROPOSITION 6.1. A presentation of the 2-category Cub[n, 2] is provided by the computad 
I[n, 2] subject to the commuting 3-face relations. 

Consequently, the 2-category Cub[n,  2] is called the n-cube with commutative 3-faces. 
This 2-category was given in terms of generators and relations by Gray [Gy2] who 
used the positive part of the braid groups to show its homcategories were ordered 
(strong Bruhat order of the symmetric groups). To make a connection here with pos- 
itive braids notice that the string diagrams for the commuting 3-face relations are as 
follows provided we depict the nodes as crossovers. (More will be said on this in later 
sections.) 
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\ 
W 

The cube 2-categories arose in Gray's work in order to prove that his tensor product 
of 2-categories was a monoidal structure on the category 2-Cat. (That is, that the tensor 
product is associative up to isomorphisms which satisfy certain axioms.) This tensor 
product 

|  2 - C a t  x 2 - C a t  -+  2 - C a t  

is not the product in the category 2-Cat. One way to construct it is to first define it on 
the cube 2-categories by putting 

Cub[m, 2] | Cub[n, 2] : Cub[m + n, 2]. 

Then we need to observe: 

PROPOSITION 6.2. The full subcategory of 2 - C a t  consisting of the 2-categories Cub[n, 2], 
n - - 0 ,  1 , 2 , . . . ,  is dense. (In fact, Cub[3, 2] alone suffices.) 

This means that every 2-category A is a canonical colimit 

A -~ colimiCub[mi, 2] 

of cube 2-categories. Since we wish the functors A @ - ,  
preserve colimits, we are forced to the formula 

- @ B: 2 - C a t  -+  2 - C a t  to 

A | B ~ colimidCub[mi + nj ,  2]. 

The fact that this approach leads to a biclosed monoidal structure on 2-Cat follows 
from a general result of Day [Da2, Da3] on Kan extending tensor products along dense 
functors. Moreover, the 2-Cat-valued homs, which provide right adjoints for A |  and 
- @ B, are easily described as "funny 2-functor 2-categories". 

Before describing these, it is worth looking at the situation with the category Cat. 
Any category V with products becomes a monoidal category by taking the product as 
the tensor product; this is called the cartesian monoidal structure on V. Call V carte- 
sian closed when, for all objects B, C of V, there exists an exponential object [B, C] 
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characterized up to isomorphism by the existence of a natural bijection between arrows 
A x / 3  --+ C and arrows A --+ [/3, C]. In the case V = Cat, of course, [/3, C] is the 
functor category whose objects are functors from A to B and whose arrows are natural 
transformations. Categories with homs enriched in the cartesian closed category Cat are 
precisely 2-categories. 

However, for categories/3, C, there is also the funny functor category {/3, C} whose 
objects are functors f: B --+ (7, and whose arrows 0: f --+ 9 are families of arrows 
Ob: f(b) --+ 9(b) in G' indexed by the objects b E B (no naturality requirement!). There 
is a funny tensor product A | of categories A, /3  such that functors h: A |  --+ C 
are in natural bijection with functors k: A --+ {B, C}. In fact, a category with homs 
enriched in the monoidal category Cat with the funny tensor product is more general 
than a 2-category; it is precisely a sesquicategory. (The funny tensor product was used 
recently [BG1, BG2] in studying Petri nets.) 

The category 2-Cat is cartesian closed. For 2-categories /3, C, the exponential 
2-category [/3, C] has 2-functors as objects, 2-natural transformations as arrows, and 
modifications as 2-cells. A category with homs enriched in 2-Cat, with the cartesian 
structure, is called a 3-category. 

For 2-categories B, C, the funny 2-functor 2-category {B, C} has 2-functors f: /3 --+ 
C as objects, transformations 0: f -+ 9 as arrows, and modifications as 2-cells (this 
terminology will be discussed in Section 9 in the context of bicategories). There is a 
natural bijection between 2-functors h: A @ t3 --+ C (where @ is Gray's tensor product 
of 2-categories) and 2-functors k: A --+ {B, C}. So { B , -  } is a right adjoint for - | 
A right adjoint for A @ - is obtained using the canonical isomorphism 

(A | B)C~ ~ BCO | ACO 

which can be seen for cubes and extended by taking colimits. 
A category with homs enriched in 2-Cat, with Gray's tensor product, we call a Gray- 

category: roughly speaking, this is a sesquicategory X with each homcategory X(z,  y) 
equipped with a 2-category structure, whose 2-cells are called 3-cells of X, such that 
the squares (HC) have 3-cells in them, subject to appropriate axioms. Gray-categories 
are more general than 3-categories. In unpublished work of A. Joyal and M. Tierney, 
suitable algebraic models for homotopy 3-types are found to be Gray-categories in which 
all 1-cells, 2-cells and 3-cells are invertible. 

For more details on the Gray tensor product, the interested reader should consult [Gy 1, 
Gy2]; and, for "strong" Gray-categories, see [GPS]. 

7. Higher dimensions and parity complexes 

Returning to cubes, we consider the case where the 3-faces do not commute. We consider 
the derivation scheme I[n, 3] given by 

sl, tl: {words 0 of length n in the symbols - ,  0, + 

with precisely three O's} --+ ((Flirt, 21/) 
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where sl (0) = left hand side of the commuting 3-face condition, and tl (0) = right hand 
side of commuting 3-face condition, for 0 with O's in the positions u, v, w. From the 
rewrite viewpoint, the words 0 give a directed distinction between confluence checks 
beginning with the word obtained from 0 by replacing the three O's by - ' s .  Recall 
that the category ((Fl[n, 2])) has the arrows of Fl[n, 2] as objects and has the 2-cells as 
arrows. While Fl[n, 2] is a free 2-category and (Fl[n, 2]) is a free category, the category 
((Fl[n, 2])) is not free. So I[n, 3] is not a computad. It is really a "3-computad". 

A 3-computad E (where we rename graphs as "l-computads", and computads as "2- 
computads") is a computad E # together with a derivation scheme 

s2, t 2 :E3  -4 ((FE#//; 

elements of E3 are called 3-cells of E. A 3-computad morphism E --+ E'  is a computad 
morphism E # --+ E '# together with a derivation scheme morphism for which the functor 
((FE#)) --+ ((FE'#)) is induced by E # --+ E '#. Each 3-computad E determines a free 
3-category FE. A presentation of  a 3-category is a 3-computad together with a set of 
relations between 3-cells in FE.  

Here is an example of a 3-computad with one 3-cell called 0 0 0. 

- - 4 -  - 0 -  I 

_oo  oo_ o_ 

_++.. 0 + 0  . i , + -  

4-4-4- 

- - o /  ~ o - -  
x -  / __4- 0 - 0  

-~ I "~ 0 0 +  + 0 0  

--'++ ~ +041 + 4 - -  

Each 3-cell 0 E E3 of a 3-computad E determines two 2-cells S2(0), t2(0) in the free 
2-category F E  #. These 2-cells can be represented by string diagrams in the computad E #. 
Write 0 -  for the set of 2-cells of E # which label the nodes of a string diagram for s2(0), 
and write 0 + for the set of 2-cells of E # which label the nodes of a string diagram 
for t2(0). (These sets are independent of the choices of string diagrams in the deformation 
classes.) So we have two functions 

( - ) - ,  ( - ) + :  E3 --+ P(E2) 

where P(E2) is the power set of the set of 2-cells of E #. In considering only the labels 
on nodes of a string diagram, we are, in general, disregarding quite a lot of information 
about the string diagram. Hence, it is a perhaps surprising consequence of the work 
of [$5, A1, J, $6, ASn, Pwl, Pw2] that we have: 
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PROPOSITION 7.1. For 3-computads E arising from many convex polytopes such as I[n, 3] 
arising from cubes, the functions s2, t 2 : E 3  --+ ((FE#)) are uniquely determined by the 
functions ( - ) - ,  ( - ) + :  E3 -+ PE2. 

At the lower dimension, the corresponding result is easily understood. For, suppose C 
is a (2-)computad. Then, for each 2-cell u E C2, we have paths sl (u), tl (u), and we can 
write u - ,  u + for the sets of 1-cells of the graph C # which occur in the respective paths. 
Provided the graph C # has no circuits, the only other information we need to reconstruct 
the paths from the set is the order. However, the order is forced by knowledge of the 
functions so, to: C1 --+ Co. So the 2-dimensional version of Proposition 7.1 is true. To be 
consistent at even the lowest dimension, we can define c~- = {a}, c~ + = {b} for each 
1-cell c~: a ~ b of C. 

In this way, each n-computad E leads to a graded set Ek, 0 <~ k <~ n, together 
with functions ( - ) - ,  ( - ) + :  Ek --+ P(Ek-1),  0 < k ~< n. This is the basic structure 
involved in the higher-dimensional combinatorial notion of circuit-free graph called parity 
complex [$6, $8]; however, a parity complex is to satisfy some axioms which are not true 
of all such structures underlying n-computads. The axiom which somewhat reflects the 
source-target equations in a computad is, for all cells x of dimension f> 2, the equality 
of sets 

x - -  U x ++ -- x - +  U X+-~ 

where the unions are disjoint, and, for example, S -  is the union of the sets z - ,  z E S, 
for any S C Ek. The main result of [$6] is the construction of the free n-category on 
an n-computad which is uniquely determined by the parity complex. 

Following Aitchison's ideas [A2] for cubes and simplexes, we note that it is possible 
to use string-like diagrams to keep track of facial relations in consecutive dimensions of 
a parity complex. Specifically, suppose we have disjoint finite sets M,  X and functions 
( - ) - ,  ( - ) + :  M --+ P(X)  such that, for all m ~ n in M,  

('m,- n n - )  U (m+ n n+) = 0. 

Put 

Then there is a graph s, t: X --+ M U i)M given by 

x C s ( x ) - N t ( x )  + f o r x E M - N M  +, s ( x ) = ( - , x )  f o r x ~ M  +, 

and 

t(x) = (+,x)  f o r x ~ M - .  

There is no reason why such a graph should be planar; however, we do draw it in the 
plane, with edges directed down, sometimes crossing at non-nodes, with each inner node 
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m C M labeled by m, with each outer node in O M left undistinguished, and with each 
edge z E X labeled by :r. 

Returning to cubes, we look at the 3-computad 114,3]. The set 114,3]k of k-cells 
contains the words of length 4 in the symbols - ,  0, + where the symbol 0 occurs precisely 
k times. In particular, 

114, 3]3 = {-000,  0 - 00, 00 - 0 , 000 - ,  +000, 0 + 00, 00 + 0 ,000+ } 

and the parity complex structure is recorded by the string-like diagrams of [A2] as shown 
below. 

~ 0 0  -0+0 0++0 - 0 0 -  0+0- 0 0 ~  

- o o +  i 

00++ 0-0+ +00+ 0 - - 0  +0-0 ++00 

- - 0 0  -0+0 0++0 - 0 0 -  0+0-  0 0 - -  

00++ 0-0+ +00+ 0 - - 0  +0-0 ++00 
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By Proposition 7.1, each of these string-like diagrams represents a 2-cell in the 2-category 
FI[4, 2]. The commuting 4-face relation is the equality between these two 2-cells. The 
3-computad 114, 3] together with the commuting 4-face relation provides a presentation 
of a 3-category Cub[4, 3]. 

There is an explicit description of the free m-category on an m-dimensional parity 
complex in [$6]. In particular, there is a combinatorial model for Fl[n, m]. Except in 
the case m = 2, as described above, I do not know of a combinatorial model for the 
n-cube Cub[n, m] with commuting (m + 1)-faces. Of course, we do have a presentation 
of the m-category Cub[n, m] (as the m-computad I[n, m] and the commuting m-face 
relations), and this suffices for many purposes. 

8. The Yang-Baxter  and Zamolodchikov equations 

In this section we study the connection between categories and the so-called "Bazhanov- 
Stroganov d-simplex equations" which have arisen in statistical and quantum mechanics. 
We discuss here only the algebraic generic forms of these equations as found in [MN1 ], 
[MN2] where other references are provided and some of the physical significance is 
explained (also see [Drl, T, JS3, JS4, Dr2, Z]): 

d = 1 Matrix commutativity 

k J = B ~ A ~  Ai Bk 

d = 2 Yang-Baxter equation 

A k, k, B~1 k.~ Cj, i.~ : Ck:k, Rk,j.~ Aj, j, i3 k 2 k 3  --i2i3 "ille3 klk2 

d = 3 Zamolodchikov equation 

kl k2 k3 R j l  k41e5 C32J4k6 Dj3jsj6 "Nk3ksk6 ["yk2 k4j6 I2~klj4j5 AJlj2j3 Aili2i3 a'kli4i5 k2kai6 k3ksk6 = z'i3isi6 vi2i4k6 a'ilk4k5 klk2k3" 

In these equations, observe that the subscript on a given subscript is the same as the 
subscript on the superscript directly above it. Also, superscripts are all j ' s  and k's while 
subscripts are all k's and i's; in each case, there is a string of one letter followed by a 
string of the other. So the information in the equations can be recorded schematically as 
follows: 

d =  1: ( ,1)(1, )  = (1,)( ,1) ,  

d = 2 :  (,12)(1 �9 3 ) ( 2 3 , ) =  (23,)(1 �9 3)(,12), 

d = 3 :  (.123)(1 �9 45)(24 �9 6)(356.) = (356.)(24 �9 6)(1 �9 45)(.123). 
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The symbol �9 indicates where the letter change-over occurs. The pattern here is made 
clear by recording the bracketed terms on each side as rows of a matrix; this gives the 
formal matrix identities: 

[, ij [1 ,] 
1 �9 �9 1 [,12] [23,] 
1 �9 3 - -  1 �9 3 

2 3 * �9 1 2 

I 
, 1 2 3 

1 �9 4 5 

2 3 �9 6 
4 5 6 �9 I 4 5 6 *1 _ 2 3 �9 6 

1 �9 4 5 

�9 1 2 3 

So the Bazhanov-Stroganov 4-simplex equation can be reconstructed from the formal 
matrix identity: 

�9 1 2 3 4 4 7 9 10 �9 
1 �9 5 6 7 3 6 8 �9 10 
2 5 * 8 9 = 2 5 * 8 9 
3 6 8 �9 10 1 �9 5 6 
4 7 9 10 �9 �9 1 2 3 

In fact, for building up these equations dimension by dimension and for dealing with the 
nonsquare matrices corresponding to the other entries in Aitchison's Pascal triangle of 
string-like diagrams, it is more convenient to renumber the strings so that the 4-simplex 
equation, in matrix form, becomes: 

�9 1 2 4 7 7 8 9 10 �9 
1 �9 3 5 8 4 5 6 �9 10 
2 3 �9 6 9 - 2 3 �9 6 9 
4 5 6 �9 10 1 �9 3 5 8 
7 8 9 10 * �9 1 2 4 7 

These formal matrices are also related to the numerical matrices for which the vanishing 
determinant condition [MN2] gives the dependence of the d(d + 1)/2 parameters in the 
parameterized version of the d-simplex equation. 

Referring to the A,B, C,.. .  form of the equations, Ian Aitchisom observed (1990) 
that the Penrose diagrams (in the sense of [PR]) for these tensor equations occurred in 
his "Pascal's triangle" of string-like diagrams [A2] associated with the oriented d-cubes 
(not the d-simplexes). For d = 2, this reflects the well-known connections between the 
Yang-Baxter equation, the Coxeter relations for the symmetric groups, and paths around 
the edges of a cube. It should be recalled here that the ordering of the strings into, and 
out of, nodes is ignored (as usual with parity complexes and with Penrose notation). 
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1 

Comparison with the string-like diagrams of Section 7 shows that the d-simplex equa- 
tion is allied with the commuting (d + l)-cube. 



Categorical structures 561 

It is possible to interpret the d-simplex equation as a morphism from a categorical 
structure constructed from geometry to a categorical structure of the same kind con- 
structed from algebra. In particular, consider the Yang-Baxter  equation (d = 2). 

On the geometric side, recall that we have the derivation scheme I In, 2] which involves 
the 2-dimensional faces of the n-cube; this gives the free 2-category Fl[n, 2]. 

On the algebraic side, we would like to consider a 2-category ZVectk whose only 
object is a field k whose arrows V: k --+ k are finite-dimensional vector spaces over k 
and whose 2-cells t: V =:~ W: k --+ k are linear functions t: V --+ W. However, we 
want the composition of arrows to be tensor product of vector spaces which is not strictly 
associative. This really provides an example of a "bicategory" which is the subject of  the 
next section. For our present purposes, this problem can be avoided by using matrices 
instead of linear functions. More precisely, let Z M a t k  denote the 2-category with one 
object k whose arrows are natural numbers and whose 2-cells A: m ~ n: k ~ k are 
m • n matrices A - ( a i i ) ;  the vertical composition is usual multiplication of matrices, 
while the horizontal composite of A: m ~ n, /3: r :=~ s is their Kronecker product 
A | B = (a i j  bpq): m r  =v n s .  

Now suppose R: rnrn  :=~ rnrn  is a 2-cell in ZMatk .  We can extend this to a 2-functor 

R^:  Fl[n, 2] --+ Z'Matk 

determined by the following assignment. 

i t  m 

cz ~- czu k . . . . . . .  ~ k 

(u, v) R A 
v I ~ 

I 

R 
77t 

a v  = a u v  k *" k 
U I n  

The matrix R is called a Y a n g - B a x t e r  m a t r i x  when it is invertible and the 2-functor R A 
identifies the commuting 3-face relations for some (and hence all) n >~ 3. It should be 
clear now how such a matrix R provides a solution to the Yang-Baxter  equation. There 
is an induced 2-functor RA: Cub[n,  2] --+ ZMatu .  

Now consider applying the same ideas to the Zamolodchikov equation. On the ge- 
ometric side there is no problem since we have the free 3-category Fl[n, 3]. A small 
difficulty arises on the algebraic side when we try to push the category of vector spaces 
up another dimension. This time we would like to consider a 3-category ~72Veetu whose 
only object is a field k whose only arrow is the identity of k whose 2-cells V are finite- 
dimensional vector spaces over k and whose 3-cells t: V --+ M are linear functions. 
This time two of the compositions are to be tensor product with the third taken to be 
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composition of linear functions, as before. The problem of nonstrictness of associativity 
of tensor product can be avoided as before by using matrices, however, now we also 
require the middle-four-interchange law: 

(u | v) | (w | x )  : (u | w) | Cv | x )  

which of course does not strictly hold; thbre is only a canonical isomorphism in place 
of the equality. This problem cannot be avoided. In fact, S2Vectk is an example of a 
tricategory in the sense of [GPS]. Using matrices, we obtain a Gray-category Z'2Matk. 
(It is shown in [GPS] that, more generally, every tricategory is "triequivalent" to a Gray- 
category.) As we mentioned at the end of Section 6, every 3-category is a Gray-category. 
It is therefore meaningful to consider Gray-functors from a 3-category to aGray-category. 
In particular, each m 3 x m 3 matrix R induces such a Gray-functor 

RA: Fl[n, 3] --+ S2Matk 

we call R a Zamolodchikov matrix when it is invertible and R ^ identifies the commuting 
4-face relations for some (and hence all) n >~ 4. Such a matrix R provides a solution to 
the Zamolodchikov equation. 

Higher dimensions offer no new problems. For the d-simplex equation, there is an 
appropriate structure Z 'a - lMatk  with precisely one/-cell  for each i <~ d - 2 ,  whose ( d -  
1)-cells are natural numbers, whose d-cells are matrices, whose first d -  1 compositions 
are Kronecker product (among which the middle-four-interchange law holds only up to 
a coherent invertible d-cell), and whose remaining composition is usual matrix product 
(which strictly satisfies the middle-four-interchange law with each earlier composition). A 
d-simplex matrix is an invertible m a • m a matrix R which induces a structure-preserving 
morphism 

R^: Cub[d + 1,d]--+ S a - l M a t k .  

9. Bicategories 

Bicategories (and the appropriate 3-graph with bicategories as 0-cells) were first defined 
by B6nabou [Bnl, Bn2]. 

A bicategory B is a 2-graph equipped with the following extra structure: 
(Ba) for each pair of objects a, b, a category structure on the graph B(a, b) with 

composition called vertical and denoted by �9 ("invertibility" for 2-cells will mean with 
respect to this composition); 

(Bb) for each triple of objects a, b, c a fonctor 

o: B(a, b) x B(b, c) -+ B(a, c), 

called the horizontal composition and written between the arguments; 
(Bc) for each object a, an arrow la: a ~ a called the identity for a; 
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(Bd) invertible 2-cells 

aa,~,.y: a o (/3 o 3') =~ (a o/3) o 3': a -+ d, 

called associativity constraints, which are natural in a,/3, 3' E B(a, b) x B(b, c) x B(c, d); 
(Be) invertible 2-cells 

l a :  l a  o a ::#" or: a -+ b, r a :  ct o lb  ~ a :  a --+ b, 

called identity constraints, which are natural in a E B(a, b); 
subject to the following commutativity conditions: 

(B 1) pentagon for associativity constraints 

(ao  t~ o ( •  0 

o ( t ~ o  ( •  o3) 

1~ o 

a o ((t~ o • o 8)) 

( ( ~  o / 3 ) o  ~ o 8 

18 

�9 " ( ~  o ( ~  o • o 8 

(B2) triangle for identity constraints 

tZ 
a o ( l b  o fl) - ( a  o l b ) o  /~ 

1~ o ~  S o l ,  
0t o /~ 

EXAMPLE 1. Let A be a category equipped with a choice of pushouts for each pair of 
arrows with common source. There is a bicategory CospnA defined as follows. The 
objects are the objects of A. For a, b E A, the category (Cospn A)(a, b) has as objects 
triples (P0, t, Pl), called cospansfrom a to b, consisting of an object r and arrows P0: a --+ 
r, pl: b --+ r of A; an arrow 05: (p0, r, pl) --+ (or0, s, o'1) of cospans is an arrow qS: r --+ s 
in A such that 

Po~ p! o~=o"1. 
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Given (Po, r, p ,)  c (Cospn A)(a, b) and (a0, s, O'1 ) C (Cospn A)(b, c), define 

(po, ~, p , )  o Wo, ~, o , )  = (po o ~o; p, ~, o ~ , )  

where the square 

Pl 
b ~ r 

a0 % 

= p 

is the selected pushout of Po, a l .  Using the universal property of pushout, we can extend 
this functorially to arrows of spans as required for (Bb). The identity cospan for a is 
1 a - (1 a, a, 1 a). Given cospans 

(po, r,p,) C (CospnA)(a,b),(ao, s,a,) C (CospnA)(b,c) 

and 

(T0, t, T, ) C (Cospn A)(c, d), 

we can form the diagram 

Pl 
b ~ r 

% 

c = s = P 
W I 

% 

W' 0 W" 0 

~ f l  Wrrl 
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of selected pushouts. Each of the cospans 

(po, r ,p , )  o ((ao, S, al) o (ro, t, 71)), ((po, r, pl) o (ao, s, al)) o(7o, t, 71) 

is canonically isomorphic to (P0 ow0 owg, m, Plow, ow~'), and so, to each other, yielding 
the associativity constraints. There are also canonical isomorphisms 

la o (po, r, pl ) ~ (po, r, p, ) ~= (po, r, p , ) o  lb 

yielding the identity constraints. To check commutativity of (B1), (B2), it suffices to 
check after composition with the coprojections w0, Wl into the appropriate pushouts, and 
we recommended this as an exercise. 

EXAMPLE 2. A monoidal (-- "tensor") category V (in the sense of [EK]) can be defined 
to be a bicategory B with one object. More precisely, if V is a monoidal category then 
a bicategory with only one object a is defined by B(a, a) = V; the tensor product of V 
is the horizontal composition o of B. While, if a is any object of a bicategory B then 
B(a, a) becomes a monoidal category. For many purposes it is convenient to distinguish 
V from the one-object B; the notation Z V  for B is not bad. 

EXAMPLE 3. A bicategory in which all the constraints are identities in a 2-category (Sec- 
tion 2). As each category A can be regarded as a 2-category for which each category 
A(a, b) is discrete, we can also regard categories as special bicategories. 

EXAMPLE 4. There is a bicategory Prof  which stands in relation to the 2-category Cat  
much as the category of sets and relations stands in relation to the category Set of sets and 
functions. The objects of Prof  are categories. An arrow M: A --+ B is a profunctor (also 
called "distributor" [Bn2], "bimodule" [L], or just "module" [$3]); that is, a functor 
M:  A ~ x B --+ Set. The 2-cells M =:> N are natural transformations between the 
functors. Composition of profunctors M: A --+ B, N: A --+ B is given by the coend 
formula (see [ML1, ML2] for the history of "ends"): 

b 

(M o N)(a,  c) = M(a,  b) x N(b, c). 

Suppose B, X are bicategories. A lax functor (also called "morphism of bicategories") 

T: B ---> X 

is a 2-graph morphism which is functorial on vertical composition and is equipped with 
the following extra structure: 

(LFa) for each object a of B, a 2-cell. ia: IT(a) :=> T( l a )  of X; 
(LFb) 2-cells m~,~: T ( a ) o  T(13) ~ T ( a  o/3) which are natural in (a,/3) c B(a, b) x 

B(b, c); subject to the following commutativity conditions: 
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(LF1) 

(T(a)  o T ( ~ ) ) o  r ( y )  

(T(a )  o ( r ( N  o T(• 

1 o m ~ ~ ' ~  
r ( a )  o r ( ~  o • 

m o 1 

---.<__ 
T((a o 3 ) o  • 

T(a  o (t~ o ~)) 
m 

(LF2) 

1~.  / oT(a) = T(a) 

 o11 
T(lo) o T(~) -- T(lo o - )  

m 

T(u) o 1T(b) -. T(~) 

T(a) o T(lb) . T(~ o lb) 
m 

EXAMPLE 5. Suppose F:  A ~ X is a functor between categories with selected pushouts. 
Then there is a lax functor T = Cospn(F)" Cospn A ~ Cospn X described as follows. 
Let T take a general 2-cell 4): (P0, r, Pl ) =:~ (O'0, 8, O'l )" a -+ b in Cospn A to the 2-cell 

F(dp)" (F(po), F(r), F(pl )) ~ (F(c~o), F(s), F((71))" F(a) -4 F(b) 

in Cospn X.  The 2-cells of (LFa) are identities. The universal property of pushouts in 
X yields a canonical comparison arrow from the pushout of F(p0), F (o l )  to F(p) (in 
the notation of Example 1). This gives the data for (LFb). The axioms (LF1), (LF2) are 
easily verified. 

EXAMPLE 6. A monoidal functor F: V -~ W (in the sense of [EK]) amounts precisely 
to a lax functor T: Z'V -+ E W  (see Example 2). 

EXAMPLE 7. For bicategories B, X, a lax functor T: B -~ X is called a pseudo functor 
(also called "homomorphism" in [Bnl, Bn2]) when all the 2-cells 

m.,~" T(a) o T(3) ~ T(a o 3) 
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and ia: 1T(a) =r T( l a )  are invertible. When these 2-cells are all identities, T is called 
a 2-functor; when B, X are both 2-categories (see Example 3) this agrees with the 
terminology in Section 2. It is perhaps of interest that, for any category C, pseudo 
functors T: C ~ --+ Cat are equivalent, via the "Grothendieck construction", to functors 
P: E --+ C which arefibrations; in particular, when C is a group (regarded as a category 
with one object and all arrows invertible), such a T is a Schreierfactor system as occur in 
group cohomology (for example, see [Gd]). A lax functor T: B --+ X is called normalized 
when all the 2-cells ia: 1T(a) =~ T(al )  are identities. Jean B6nabou [BnZ] has shown 
how to construct, from every functor (not just fibrations!) P: E -+ C, a normalized lax 
functor T: C ~ --+ Prof  (see Example 4); the Grothendieck construction generalizes to 
reverse this construction. 

EXAMPLE 8. Let 1 denote the one-object discrete category. A lax functor T: 1 -+ B 
amounts to a monad in B (also see Section 5). 

EXAMPLE 9. Lax functors can be composed in a fairly obvious way (which we leave to 
the reader) yielding a category Bicat whose objects are bicategories and whose arrows 
are lax functors. 

EXAMPLE 10. Each object k of a bicategory B determines a pseudo functor 

Hk = B ( k , - ) :  B --+ Cat 

called the pseudo functor represented by k. The category Hk(a) is B(k, a). The functor 
Hk(a) :  B(k, a) --+ B(k, b) is given by composing on the right with c~: a --+ b. For each 
2-cell u: c~ =~/3, the natural transformation Hk(u): Hk(a)  =~ Hk(/3) has component 
Hk(u)~ = e o u: e o a =~ e o/3 at e E B(k, a). The natural transformation 

ia: 1B(k,a) =0" -- o 1~ 

is provided by the inverse of the identity constraint r. The natural transformation 

Hk( ) o Hk( ) Hk(  

has component (e o a) o/3 --+ e o (a  o/3) at e E B(k, a) given by the inverse o f  the 
associativity constraint a. Axiom (LF1) is a pentagon since Cat  is a 2-category and it 
amounts to axiom (B 1) for B. We leave (LFZ) as an exercise. 

Suppose S', T: B --+ X are lax functors. A transformation O: S ::~ T consists of the 
following data: 

(Ta) for each object a of B, an a r r o w  Oa: S(a) --+ T(a)  of X; 
(Tb) Z-cells 0~: S(c~) o Ob ~ Oa o T ( a )  which are natural in a E B(a, b); 

such that the following commutativity conditions hold: 
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(T1) 

(s(,~) o s(~))o 0, 

s(~)  o (oh o T(~)) 

(S(,~) o Ob) o ~ )  

t o o l  

Oao T(oto ,6) 

oo o ( r ( ~ )  o T ( ~ )  

. (0~ o ~ ) ) o  T ( ~  
0 . o l  

(T2) 

-1  
l r 

7~a) 

S(I~) o 0~ - 0~ o T(I~) 
191. 

A transformation 0: S =,. T is called strong when each of the 2-cells 0,~" S(c~) o Ob =:~ 

0a o T(a )  is invertible. 

EXAMPLE 1 1. Suppose ~;: h ~ k is an arrow of a bicategory B. There is a strong 
transformation 0 = H,~: Hk ~ Hh whose component 0a: B(k,a)  ~ B ( h , a ) i s  
the functor given by composition on the left with ~;, and whose natural isomorphism 
0,~: Hk(a)  o Ob ::~ Oa o Hh(a) has component at (: k ~ a given by the associativity 
constraint a:  tr o (~  o a )  -+ (~ o ~) o a .  

Suppose 0, r S =~ T: B ~ X are transformations. A modification m" 0 ~ r is a 
family of 2-cells 

~(~) ~mo T(a) 
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subject to the following commutativity condition" 
(M) 

s(a)  o Ob 

1 o m  b 

S(a)  o ~b 

m a o  1 

: ~o o T(a)  

EXAMPLE 12. Each 2-cell w: ~ :=> A: k -+ h in a bicategory B yields a modification 

Hw" H,~ --+ H~" Ilk ~ Hh: B -+ Cat 

whose component at a E B is the natural transformation given by horizontal composition 
on the left with the 2-cell w. 

Modifications m: 0 --+ r n: r --+ r can be composed to yield a modification 
m �9 n: 0 --+ r using pointwise vertical composition in X. Transformations 0: S ~ T, 
0'" T ~ U can be composed to yield a transformation 0 o 0': S =r U by putting 

(0 o 0 ' ) .  = 0 .  o 0" 

and 

( S(a) ~ (Ob ~ a> (S(a) ~ ~ O~~ ! Oa ~ T(a)) ~ )"  
(0 00t)tx -- a-l) 0 a 0 (T(oL)o Orb) 1o0~ Oa o (Ota o U(ol.)) ) (Oa o 0 ~ ) o  g(ol.) ' 

this composition is not strictly associative, but the associativity and identity constraints of 
X yield associativity and identity constraints here. This describes a bicategory Lax(B, X) 
whose objects are lax functors, whose arrows are transformations, and whose 2-cells 
are modifications. Write Psd(B, X) for the subbicategory of Lax(B,X) consisting of 
the pseudo functors T: B --+ X, the strong transformations between these, and the 
modifications between these. Notice that Lax(B, X) and Psd(B, X) are 2-categories if X 
is a 2-category (there is no need for B to be). 

EXERCISE. Show that a lax functor 1 --+ Lax(1,X) amounts to a pair of monads on the 
same object of X together with a distributive law between the monads (see Section 5). 

For each bicategory B, there is a pseudo functor 

y: B -+ Psd(B, Cat) ~ 
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the letter "Y" is for Yoneda since this is a generalization of the Yoneda embedding 
of categories. The value of 32 at a 2-cell w: t~ :=> A: k --+ h in B is the displayed 
modification in Exercise 11. The data (LFa), (LFb) for 32 are supplied by the identity 
and associativity constraints of B. 

For any pseudo functor T: B --+ Cat, we shall describe a strong transformation 

e: Psd(B, Cat)(y,  T) ~ T: B -~ Cat. 

For each k E B, the functor ek" Psd(B, Cat)(Hk, T) --+ T(k) takes an arrow m: 0 --+ 4) 
in the category Psd(B, Ca t ) (Hk ,T)  to the arrow mk(lk)" 0k(lk) --+ qSk(lk) in the 
category T(k). For each t~" k --+ h in B, the natural isomorphism 

e~" H~ o eh =~ ek o T(~)" Psd(B, Cat)(Hk, T) --+ T(h) 

whose component at the object 0 of Psd(B, Cat)(Hk, T) is the isomorphism 

I-Ik( ) o oh ok o 

PROPOSITION 9.1 (Bicategorical Yoneda Lemma [$3]). For each object k of the bicate- 
gory B and each pseudo functor T" B --+ Cat, the functor 

ek" Psd(B, Cat)(Hk, T) --+ T(k) 

is an equivalence of categories. 

An arrow a: a ~ b in a bicategory B is called an equivalence when there exist an 

arrow/3" b --+ a and invertible 2-cells a o/3 =~ la, lb =*,/3 o a; write a: a ~> b. For 
example, using the axiom of choice, one can see that an arrow f: A --+ B in Cat is an 
equivalence if and only if the functor f:  A --+ B is full, faithful and each object b of B 
is isomorphic to an object of the form f (a)  for some a E A. As another example, an 
arrow 0 in Psd(B, X) is an equivalence if and only if each arrow 0a is an equivalence 
in X. 

Hence, the bicategorical Yoneda lemma states that e is an equivalence in the bicat- 
egory Psd(B, Cat). Notice that 32 and hence Psd(B, Cat)(Y, T) are 2-functors if B is 
a 2-category, so we obtain the following result which is an example of a "coherence 
theorem". 

COROLLARY 9.2. If B is a 2-category then every pseudo functor T: B --+ Cat is equiva- 
lent, in the 2-category Psd(B, Cat), to a 2-functor. 

A lax functor T: B --+ X is called a biequivalence when it is a pseudo functor, each of 
the functors T: B(a, b) --+ X(T(a),  T(b)) is an equivalence, and, for each object z of X, 
there exists an object a of B and an equivalence T(a) ~> :c in X. Using the axiom of 
choice, we can see that T: B --+ X is a biequivalence if and only if there exists a lax 
functor S: X --+ B and equivalences T o S --Y-+ 1B, lx ~> S o T in the bicategories 
Lax(B, B), Lax(X, X), respectively. 
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The following proof is due to R. Gordon and A.J. Power and was made public at the 
1991 Summer Category Theory Conference in Montr6al. 

PROPOSITION 9.3 [MP]. For every bicategory B, there exists a 2-category K with a 
biequivalence B --+ K. 

PROOF. It follows from the bicategorical Yoneda lemma that the functors 

y :  B(a, b) --~ Psd(B, Cat)~ Hb) 

are equivalences. So we can take K to be the sub-2-category of Psd(B, Cat) ~ obtained 
by restricting to those objects of the form Ha. Then y gives the desired biequivalence. 

D 

A direct proof, based on the above recall (Example 2), that every monoidal cate- 
gory is monoidally equivalent to a strict monoidal category, can be found in [JS5]. 
The result [GPS] for the next dimension is that every tricategory is "triequivalent" to 
a Gray-category (not in general to a 3-category). These references also explain how to 
extract from this result the coherence theorems in the more familiar form "all diagrams 
commute". 

10. Nerves 

The purpose of forming the nerve of a categorical structure is to create an object which 
contains all the information of the structure and yet is in a form more able to be compared 
with familiar geometric structures. There is a notion of cubical nerve, but we shall deal 
with the more usual simplicial nerve. In preparation for this, we need to modify our 
discussion of cubes to extract simplexes. For each natural number r, consider the word 
c~,-,n of length n in the symbols - ,  + which begins with r minuses and ends with n - r 
pluses. 

= : -  . . . .  

r n - - r  

Let Stop[n, m] denote the sub-m-category of Cub[n, m] obtained by taking only the 
objects c~r,n. The m-category Smp[n, m] is the n-simplex with commuting (m + 1)- 
faces. (There is an analogue of Proposition 4.1.) In particular, Snap[n, 1] is a linearly 
ordered set with n + 1 elements; it is more usual to use the ordered set 

[n] = {0, 1 , . . . , n } .  

Also, we have the 2-categories (using "position" notation): 



572 R. Street 

Stop [0, 21 

Smp [1, 2] 

Smp [2, 21 

1 = + 

n n  

- -+  : + +  
1 

Smp[3, 21 
2 23 

- + +  

123 

- - +  ~< 

= 2 1 . . 1 2  

- +  

+ + +  + + +  

123 

Recall that (Cat) denotes the category of (small) categories and functors. The category 
A of finite nonempty ordinals and order-preserving functions is the full subcategory A 
of (Cat) consisting of the categories [n]. A simplicial set is a functor S: A ~ ~ Set; 
its value at [n] is denoted by Sn. The nerve N(A)  of a category A is the simplicial set 
obtained by restricting the representable functor 

(Ca t ) ( - ,  A)" (Cat) ~ -+ Set to AL~ 

SO 

N(A)n = (Cat)([n], A). 

This construction is obviously functorial in A E (Cat), so we obtain nerve as a functor 

N" (Cat) -+ [A~ Set] 

into the category [ A ~  Set] of simplicial sets. It is easily seen that this functor is full, 
faithful, and has a left adjoint which preserves finite products. The simplicial sets S 
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which are isomorphic to nerves of categories can be characterized as those functors 
S: A ~ --+ Set which preserve pullbacks; but they can also be characterized as those S 
for which each admissible horn has a unique filler (see [$4, $5, $7] for this terminology). 

There is a canonical 2-functor Snap[n, 2] --+ Snap[n, 1] which is the identity function on 
objects and identifies the 2-cells. Each functor f :  Smp[n,  1] --+ Smp[n ' ,  1] has a lifting 
to a 2-functor f ' :  Smp[n,  2] --+ Smp[n ' ,2]  uniquely determined by the condition that 
each arrow f ' (r:  ar,n --4 C~r+l,n) is given by the natural ordering of f(a~,n)\f(a~+l,n).  
This gives a functor 

j :  A --+ (2-Cat), In] ~ Smp[n, 2], f ~-+ f ' .  

The nerve N ( K )  of a 2-category K is the simplicial set obtained by composing the 
functor jop: Aop __+ (2.Cat)op with the representable functor 

(2 -Ca t ) ( - ,  K):  (2-Cat) ~ -+ Set. 

So, an element of N ( K )  of dimension n is a 2-functor x: Snap[n, 2] --+ K;  we think of 
this as an n-simplex in K with commuting 3-faces. We obtain a nerve functor 

N: (2 -Ca t ) -+  [A~ Set] 

with a left adjoint; but this time the functor is not full. We need to take account of more 
structure on the simplicial set N ( K ) ,  namely, those elements of dimension 2 which are 
commutative triangles. It is possible [$4] to characterize (up to isomorphism) nerves 
of 2-categories as simplicial sets, with some distinguished elements (called "hollow" or 
"thin"), satisfying some axioms the main one of which states that each admissible horn 
should have a unique thin filler. 

There is also a notion of nerve for a bicategory [DS] which has not received much 
attention. Let Bieatnorm denote the category whose objects are bicategories and whose 
arrows are normalized lax functors. As every category is a bicategory, we can regard A 
as a subcategory of Bieatnorm. For each bicategory B, the composite of the inclusion of 
A ~ in Bicatnorm(-, B) with the representable 

Bicatnorm (--  B)  �9 op , " Blcatnorm -+ Set  

is defined to be the nerve N(B) of B; so 

N(B)n  -- Bicatnorm ([n], B). 

EXERCISE. For a 2-category K,  the nerve of K as a 2-category is isomorphic to the nerve 
of K as a bicategory. 

EXERCISE. Biequivalent bicategories have homotopically equivalent nerves. (See [GZ] 
for homotopy for simplicial sets.) 

The nerve of an m-category was made precise in [$5], and other approaches appear 
in [A1, JW, ASn]. Essentially each proceeds as above after giving a precise description 
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of Smp[n ,  m]. Verity [V] has shown that this nerve functor, defined on (m-Cat) and 
viewed as landing in the category of simplicial sets with distinguished "hollow" (or 
"thin") elements, is fully faithful. A good deal of progress has been made by Michael 
Zaks and Dominic Verity on the characterization (up to isomorphism) of these nerves; 
but at the time of writing (November 1992), the conjecture of John Roberts (see [$5]) 
remains unproved. 

Finally, we remark that categorical structures canbe  considered inside categories whose 
objects are more geometric than sets. Nerves then are simplicial geometric objects whose 
"geometric realizations" are "classifying spaces" [Sg]. 
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Added in proof 

This paper was completed in November 1992. The references have been updated during 
proofreading and [S1, $8, $9] have been added. We point to [$9] as suitable for further 
reading in the area. 

There have been two notable developments in the last three years. In July 1993, 
Dominic Verity completed the proof of the Roberts conjecture (see the end of Section 10). 
Also, Verity and the author have developed the use of surface diagrams for tricategories 
generalising the use of string diagrams for bicategories. 
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1. Introduction 

The cohomology of groups is one of those branches of mathematics which is regarded 
by many, even some of its most enthusiastic proponents, as a tool for other areas of 
study. Indeed part of the mystique is that it is a meeting point for so many different 
subjects. It has had applications in homotopy theory, class field theory, representation 
theory, K-theory and a host of other fields. 

The origins and roots of the subject lie both in algebra and topology. First in algebra 
during the early part of the century, the low dimensional cohomology groups were used 
to classify objects such as projective representations [Scu] and group extension [Sce]. 
As a "theory", the cohomology of groups was born in the attempt to understand geomet- 
ric/topological phenomena. In the mid 1930's, Hurewicz defined the higher homotopy 
groups 7rn(X) for n ~> 2. In 1936 [Hurl, he considered aspherical spaces, spaces X 
with 7rn(X) = 0 for n /> 1. He showed that the homotopy type, and hence also the 
homology and cohomology groups of such a space are completely determined by the 
fundamental group G = 7rl (X), assuming that the space is path connected. Hurewicz 
did not find the actual relationship between G and the (co)homology of X. The first step 
in this direction was taken by Hopf [Hop]. The formulas which Hopf devised and the 
geometry of Hurewicz served as an inspiration to write an algebraic definition of group 
cohomology in terms of projective resolutions. More historical information can be found 
in the article by MacLane [McL2]. 

The modern topologist associates, to any group G, a classifying space BG, which is a 
If(G, 1), an Eilenberg-MacLane space, a CW-complex with no homotopy in dimensions 
above one and hence aspherical. The cellular chain complex of the universal cover, EG 
of BG, is a free ZG-resolution of Z. Hence the (co)homology of BG = EG/G is the 
same as that of G - 7rl (BG). Such spaces have long been a source of motivation and 
examples in topology. 

Yet the clearest indication of the connection between algebraic topology and coho- 
mology of groups is expressed in the more recent theorem of Kan and Thurston [KaT]. 
Roughly it says that given any connected space X there is a group G with the property 
that X and G have the same homology and cohomology. Thus groups have a certain 
universality with respect to homology of spaces. It should be said that the applications 
of group cohomology and representation theory to topology are not limited to the com- 
putation of homology. See [Cas] and [Lan] for just two examples. 

From an algebraic viewpoint, the cohomology of groups is really two subjects which 
share a common set of techniques and interests. For infinite groups, the cohomology 
theory is very much a part of group theory itself. Groups are often classified accord- 
ing to their homological properties such as cohomological dimension. By contrast, the 
cohomology of finite groups is much more closely associated to modular and integral 
representation theory. Here too it can be used as a classification device, but more often 
for modules than for groups. 

For reasons of space this survey will concentrate on the algebraic techniques and 
applications of the subject. We will not discuss the connections to topology, K-theory or 
other areas beyond what has already been said. We will also not discuss noncommutative 
cohomology, connections with varieties of groups or other cohomology theories such as 
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those of Lie algebras, algebraic groups or relative theories. Many of these topics will be 
treated elsewhere in the handbook. 

The bibliography at the end of this article is not meant to be exhaustive. We have 
tried to list, for each subject, a few recent papers from which other references can be 
found. A lot of material on cohomology of groups can be found in the standard texts 
on homological algebra such as [CaE, McL1] and [HIS]. Some texts such as [Gru, Lag, 
Stm] and [Thm3] are aimed at specific aspects of group cohomology. The most modern 
overall references are the books [Brwl] and [Ben2]. Even at 10 years old Brown's text is 
close to being up to date particularly for the sections on infinite groups. For finite groups 
and the connections to representation theory the best text is definitely that of Benson. 

2. Basic definitions and structures 

Throughout this essay it will be assumed that the reader is familiar with fundamental 
techniques from homological algebra. Background can be found in any of the standard 
texts on the subject. 

2.1. Projective resolutions and homology. Let Z denote the ordinary integers and let G 
be a group. We let Z also stand for the trivial ZG-module on which the group elements 
act by multiplication by 1. To define the cohomology groups H n ( G , Z )  we begin by 
taking a projective resolution (P, ,  0) of Z. This is an exact sequence 

�9 " - + / : ' 2  a~rp~ a , > p  ~ ~ r Z ~ O  

in which each Pi is a projective ZG-module. If M is a ZG-module then the cohomology 
of G with coefficients in M are the groups 

Hn(G, M)  = H n (Homza(P , ,  M))  = ker O~+I/Image O n 

of the complex 

�9 .. + - -  Homza(P l ,  M)  <~7 Homza(Po, M)  < O. 

Likewise the homology of G is the homology 

H n ( G , M )  = Hn(P, @ZG M ) =  ker(0n @ 1)/Image(0n+l | l) 

of the complex 

�9 "" --+ P1 |  M --+ Po @za M --+ O. 

The n-cycles, n-boundaries, n-cocycles and n-coboundaries are respectively elements of 
the groups ker(On | 1), Image(On+l | 1), ker O~+ 1 and Image O~. 
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From the left exactness of the Homza functor it can be seen that 

H ~  M )  ~- Homza(Z,  M)  = M a 

where 

M a = { m  E M l g m  = m for all g E G} 

is the set of G-fixed points of M. Likewise @ z c M  is right exact and H0(G, M)  -~ 
Z @za M, the set of cofixed points. In the terminology of category theory, H n ( G , - )  is 
the n-th derived functor of the fixed point functor (see [H1S]). 

2.2. Functoriality. It follows from standard arguments that the homology and cohomol- 
ogy of G are independent of the choice of the projective resolution (P, ,  ~). The map 
6: ZG --+ Z with e(g) = 1 for all g E G is called the augmentation map. It is usual to 
assume that P0 = ZG in any projective resolution. 

The constructions are easily seen to be functorial. In particular, if a: M --+ N is a 
ZG-homomorphism then the chains 

a .  = Homza(P . ,  M) -+ Homza(P . ,  N),  

obtained by composing with a, and 1 @ a" P.  @za M -+ P. @za N induce a map 
a.. Hn(G,M) -+ Hn(G,N) and a." Hn(G,M) -+ Hn(G,N). 

In particular if 

O ~ L  ~ ) M  Z ) N ~ O  

is an exact sequence of ZG-modules, then we have a long exact sequence 

0 ~ H~ L) '~*~ H~ M)  ~*~ H~ N)  '~ H 1 (G, L) --+ , * *  

�9 .. ---+ Hn(G,  M)  fL H a ( G  ' N)  ~ ~ H n+l(G, L) '~*~ . . . .  

There is a similar sequence for homology. The maps marked 5 are called the connecting 
homomorphisms. 

It is also true that the homology and cohomology are functorial in G, the group variable. 
However the properties of this functoriality are much more subtle. The restriction and 
inflation maps are involved. See Section 4. 

2.3. Ext and Tor. The connection between group cohomology and module theory can 
be seen from the construction. That is, the isomorphisms H n ( G , M )  ~- Ext~c(Z , M)  
and H n ( G , M )  ~- T o ~ G ( Z , M )  are obvious from the definitions of Ext and Tor. But 
further, M | N and Homz(M, N) can be made into ZG-modules by defining 

g(m | n) = gm | gn and g f  (m) - g . f ( g - ' m )  
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for all 9 E G, m E M,  n c N,  f c H o m z ( M ,  N) .  As such it can be seen that 

H o m z a ( L  | M, N) ~- Homza(L, Homz(M, N)) 

by the homomorphism which sends f :  L |  -+ N to 9 where (9(g))(m) - f (g|  
The extension to cohomology assures that 

E x t r a ( M ,  N ) ~ Ex t~c(Z  |  M , N )  ~ H~(G, Homz(M,N)) .  

2.4. Example: Finite cyclic group. Suppose that G = (9 I 9 n - 1 ) is a cyclic group of 
order n. A projective resolution of Z is given by 

�9 . . ~ Z G  O 2 > Z G . _ ~ Z G  ~ > Z - ~ 0  

where i~i(1) = 9 - 1 if i is an odd integer and [}i(1) = 1 + g + . . .  + gn-1 if i is an 
even integer. Now HomzG(ZG,  Z) -~ Z is generated by the augmentation map ~. So we 
have that D*" Z -+ Z is the zero map if i is odd and is multiplication by n if i is even. 
Hence Hm(G,Z) = 0 if m is odd and Hm(G,Z) = Z /nZ  if m is even. Of course 
H~ Z) ~ Z. Likewise Z G  |  Z ~ Z and we have a similar result on homology. 

If k is a field of characteristic p > 0 and we regard k as a ZG-module  with trivial 
G-action then, assuming p i n ,  Hm(G,k) ~- Hm(G,k) "~ k for all m / >  0. 

2.5. Example: Infinite cyclic groups. Suppose that G is an infinite cyclic group with 
generator 9. Then the homomorphism 0: Z G  -+ ZG which sends 1 to 9 -  1 can be seen 
to be injective. So the sequence 

0 
0 - +  Z G  > Z G  > Z - + 0  

is exact. It follows that Hm(G,Z) ~- Hm(G,Z) -~ Z if m = 0 or 1 and is zero otherwise. 

2.6. Direct products. Let Gl and G2 be groups and G = G1 x G2 the direct product. 
Then Z G  ~ •G1 |  ZG2 with the obvious multiplication. Suppose that we are given 
projective resolutions (X . ,  iY) of Z as a ZG, -module  and (Y., iY') of Z as a ZG2-module. 
Then by the Ktinneth Theorem, the tensor product (over Z) of the two resolution is a 
ZG-project ive resolution of Z. The tensor product has the form (P. ,  a) where 

Pn = ~ X~ | Y3" 
i+j=n 

and for x c Xi,  y E Yj, 

a(x | y) : | y + ( - 1 ) ' x  | o"y. 

It is now possible to construct some of the cohomology of G from that of G I and G2. 
For example, if a" Xm --+ M and/3: Yn --+ N are cocycles for M a ZGl-module  and 
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N a ZG2-module, then the homomorphism a | may be composed with the projection 
Pm+n ~ Xm | Yn to yield a ZG-cocycle Pm+n --+ M | N.  

2.7. Abelian groups. If G - ( z l , . . . ,  Zn) is a free abelian group of rank n then G = 
(Zl) x . . .  x (zn). It can be deduced from the above analysis that 

He(G' Z) = Z 
il +. .-+i ,~ =g 

Hil((Zl), z )  @Z " ' "  @Z Hir~((Zn),Z) �9 

Now suppose that E = G'/(zr~,.. . ,  z p) is an elementary abelian group of order pn, p a 
prime. Then E = (Xl) x . . .  x (Xn) where xi is the coset of zi. Each (xi) is cyclic of 
order p. It can be seen that 

H * ( E , k )  -- H*((Xl) ,  k) |  "'" | H*((Xn) ,k )  

for any field k of characteristic p. The computation of H*(E,  Z) is a bit more tricky 
because there are G-cocycles which cannot be written as products as in (2.6). Nevertheless 
it can be accomplished with the same sort of analysis (e.g., see [Chp 1]). 

2.8. Low dimensional cohomology. In low dimensions the homology and cohomology 
groups can be expressed in terms of the pieces of a presentation. Notice that if S c G 
is a set of generators for G then the augmentation ideal I(G) - kere  is generated as 
a ZG-module by the set { s -  1 ] s E S}. The proof requires only induction and the 
observation that if g = g's for g,g' E G, s E S then g -  1 -- g'(s - 1) + g~ - 1. It 
follows that the term P1 in a projective resolution (P, ,  0) of Z can be taken to be a 
free ZG-module  with a basis T - {fs ] s E S} indexed by the set of generators. Then 
assuming that P0 - ZG, 01" Pl --+ P0 is given by ~1 (f~) - s -  1. Of course if F is the 
free group on the set T, then we have a presentation 

0 
1- -+R- -+F > G--+ 1 

where O(fs) = s and R is the kernel of 0. With some argument in this direction, it is 
possible to prove the formula of Hopf [Hop]" 

H2(a, Z) R n IF, El~JR, El. 

Here [A, B] means the subgroup generated by all commutators [a, b] = aba- 'b  -1 for 
a E A, b E B. Similar formulas exist for cohomology groups and for homology groups 
in other dimensions (e.g., see Chapter 3 of [Gru]). In particular we mention the well 
known formula g 1 (G, 7Z) '~ a / [ a ,  a]. Several other generalizations of the Hopf formula 
can be found in the literature. The ones by St6hr [Sto] and by Brown and Ellis [BrE] 
seem to be the most comprehensive. 
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2.9. Universal coefficients. The cohomology of groups has a universal coefficient the- 
orem as does the cohomology of spaces. It says that for n ~> 1 and any ZG-module M 
with trivial G-action 

H n ( G , M )  ~- Homz(Hn(G,Z) ,M)  @ Ex t z (Hn- I (G ,Z ) ,M) .  

3. Some applications in low dimensions 

The early algebraic applications of group cohomology were invented without the benefit 
of a larger accompanying theory. They can be easily connected to the later-developed 
theory by considering the standard (bar) resolution for computing the cohomology. As 
noted earlier, the definitions are independent of the resolutions. So it makes sense to use 
a specific resolution to fit a task at hand. 

3.1. The standard resolution. Given the group G, the standard resolution of Z as a 
ZG-module is given by (P. ,  i~) where for each i ~> 0, Pi = ZG |  | ZG, i + 1 
factors. The action of G on Pi is defined as multiplication on the left most factor, 
i.e. 

g(ot0 |  | C~i) : (go~0) | OLI |  | ~i- 

Hence Pi is a free ZG-module having as ZG-basis the set 

{ 1 | gl |  @ 9 i [ 9 i , . . . ,  gi E G}. 

So Po ~ ZG and e: Po -+ Z is the augmentation. The boundary map i~,,~: Pm -+ Pro-1 
is given by 

m - I  

•m(9O | 91 |  | 9m)= ~ ( - 1 )  j9o |  | 9j9j+l |  | 9m 
j=o 
+ (-1)rag0 | . . .  | gm_l. 

So for m = 1, O(g | h) = gh - g = g(h - 1) e I (a) ,  the proof that the resolution is 
exact can be accomplished by showing that the boundary homomorphisms have partial 
inverses as Z-modules. 

3.2. Projective representations. Schur's earliest work on the subject of cohomology 
concerned projective representations of finite groups [Scu]. Suppose that we are given a 
vector space V over a field k. A projective representation of a finite group G on V is a 
homomorphism 

p: G --4 PGL(V)  ~- G L ( V ) / Z  (GL(V)).  

Here Z(GL(V))  ~- k x is the center of GL(V).  So PGL(V)  is the group of invertible 
linear transformations on the projective space of V. Schur's discovery was that the 
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obstruction to lifting a projective representation p to an ordinary representation is an 
element of H2(G, k • where k • = Z(GL(V))  has trivial G-action. 

The reasoning behind Schur's discovery works out as follows. Suppose that 0: G --+ 
GL(V) is a section of p. That is, 7r0 = p where 7r: GL(V) --+ PGL(V)  is the quo- 
tient map. Of course, 0 may not be a homomorphism. However, because p is a homo- 
morphism, for every pair g,h E G there must exist f (g ,h )  E Z(GL(V))  such that 
O(g)O(h) = f(g,  h)O(gh). Now we define a homomorphism r P2 --+ Z(GL(V))  = k • 
by r | 9 @ h) = f(9, h). The associative law [(O(9)O(h))O(j) = O(9)(O(h)O(j))] 
implies that 

f(g, h).  f(gh, j) = f(g, h j ) .  f (h ,  j). 

The relation says precisely that r o 03 = 0 or that r is a 2-cocycle. (Notice that 
maps an additive group to a multiplicative group.) Hence r defines a cohomology class 
cls(r E H2(G, k • 

On the other hand, suppose that we have two sections 01 and 02, giving maps fl and f2. 
Then for some function 7 : ( 7  ~ k • 01 (g) = 7(g)" 02(g) for all g E G. So for g, h E G 

O1 (g)O1 (h) = 7(g)7(h)O2(g)O2(h) 

= 7(9)7(h)f2(g, h)O2(gh) 
= ")'(g)7(h)'y(gh) -lf2(9, h)O1 (9h). 

Hence f,  (9, h) = "y(g)'y(h)'y(gh) -1 f2(g, h). Let #: P1 --+ k • be defined by #(1 | g) -- 
"),(g). Then #(i~(1 @ 9 | h)) = "y(g)7(h)f(gh) -1. Hence r and r defined by 01 and 
02, differ by the coboundary # and must represent the same cohomology class. Now if 
the representation p lifts to an ordinary representation, then there is some 02 which is a 
homomorphism. The corresponding maps r and f2 are zero, and any cocycle r defined 
as above is in the zero class. 

In addition to all of this Schur proved that for any element ~ E H2(G, k• there 
exists a k-space V and a projective representation on V which has ~ as its cohomology 
class. Although his methods work for any field, Schur was actually only concerned with 
the case k -- C, the complex numbers. The group H2(G, C • is known as the Schur 
multiplier. It was also proved that there exists an extension 

O ~ A i > E --+ G--+ I 

where i(A) is in the center of E, A ~- H2(G, CX), and every projective representation 
of E lifts to an ordinary representation. The group E is called a representation group 
of G. The functions f:  G x G --+ k x are called factor sets and they arise again in the 
following. 

3.3. Classifying extensions. 
exact sequence 

An extension of G by A is a group E such that there is an 

7: 0 ~ A  J > E  ~ > G - + I .  (3.4) 
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Here A is a G-module, an additive group, with the G-action defining the conjugation 
action in E. That is, for a E A and s c E with 7r(s) -- 9 then sj(a)s -1 = j(ga). Here 
G can be any group. Two sequences, "7 and '7', are equivalent if there is a commutative 
diagram 

7: 0 > A  ~ E  

II 10 
"71: 0 > A > E '  

~ > G  >1 

~ G  >1 

where the vertical maps on the ends are identities. The split extension is the one for 
which there is a map a: G --+ E with 7ra -- Ida. Notice however that in the split 
extension, a(G) is not normal in E unless the action of G on A is trivial. 

The classification of such extensions by H2(G,A) goes back to Schreier [Sce]. It 
is very similar to the development by Schur given above. Given an extension '7 as in 
(3.4), let a: G --+ E be a section, i.e. a function with 7ra = Ida. Because cr may 
not be a homomorphism, there is a factor set f:  G • G --+ A defined by the equa- 
tion o'(9)a(h) = f(9,  h)o(9h). The associative law (o'(9)cr(h))cr(k) = cr(9)(o(h)o'(k)) 
implies that (changing multiplication to addition) 

gf(h ,  k) + f (g,  hk) = f(9,  h) + f (gh,  k). (3.5) 

Hence the function ~: P2 --+ A by ~(1 |174 = f(9,  h) is a cocycle. It can be checked 
that two such cocycles differ by a coboundary if and only if they come from equivalent 
extensions. Finally, suppose that we are given a factor set f:  G x G --+ A, defined by a 
cocycle ~b, ~b(1 @ g @ h) = f (g,  h). Then, on the set E = A x G, the operation 

(a,, 9 , ) .  (a2,92) = (a, + a2 + f (9, , 92), 9,g2) 

makes E into a group. The projection 7r: E --+ G makes E an extension of G by A, and 
the section cr: G --4 E, given by cr(9 ) = (0, 9) has f as the corresponding factor set. 

There is an extensive literature on Schur multipliers. The lecture notes of Beyl and 
Tappe [BET] are reasonably up to date and give a picture of recent developments. 

3.4. Other applications and higher cohomology. Some similar interpretations have been 
found for the homology groups in degrees one and two and for the group cohomology in 
degree one. A few interesting applications can be found in [AsG] and [Gur]. Computer 
programs have been developed for calculating some of these groups [Ho13, Ho14]. 

Eilenberg and MacLane worked out a group theoretic interpretation of H3(G, A) in 
terms of the obstruction to certain types of group extension of G by a nonabelian group 
with center A. See MacLane's book [McL 1 ] for an account. Although several improve- 
ments were made on this work, there was no adequate interpretation of the higher coho- 
mology groups until the late 1970's. At that time several people independently showed 
that the higher cohomology groups classified crossed extensions. The first of these re- 
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suits is likely due to Huebschmann [Hue2], but see also [Holl, Hil] and, for a simplified 
version [Con]. A brief historical account is given in [McL3]. 

Briefly we review the case with n = 3. Suppose that we are given a group G and 
ZG-module A. A triple (B, C, 0) is a crossed module in this context, if there is an exact 
sequence of groups 

O--+A J > B  ~ - - ~ C ~ G - - + I .  

We are assuming that the action of C on A is induced by the given action of G on A. The 
definition of the crossed module (B, C, 0) requires that C act on B and that the action 
be completely compatible with the homomorphism 0: B --+ C. Two crossed modules are 
said to be equivalent if there is a commutative diagram 

0 > A  > B  0 > C  

]1 I 1 
0 > A > Bi o' > C, 

> G  >1 

> G  >1 

The actual equivalence relation is the least equivalence relation which contains this one. 
Note that the vertical maps on B and C need not be either injective or surjective, so 
there is no hope of finding an inverse to the given morphism of exact sequences. 

The theorem is that the set of equivalence classes of crossed modules is in one-to-one 
correspondence with the elements of H3(G, A). The idea of the proof is sketched as 
follows. To the extension of G by B / j ( A ) ,  we may associate a factor set 

f:  G x G ~ B / j ( A ) .  

We must be careful here as B / j ( A )  may not be abelian. To lift the factor set to all of B, 
we choose a section a: B / j ( A )  ~ B. Let F = a o f and consider the cocycle relation 
as in (3.5) for F.  The two sides of the relation differ by an element #(9, h, k) E A which 
happens to be a 3-cocycle. This represents the corresponding cohomology class. 

The interpretation of the higher dimensional cohomology groups is similar. It is very 
reminiscent of the Yoneda definition of Ex t , (C ,  A) as the set of equivalence classes of 
n-fold extensions 

O ~ A - +  Bn_I ~ . . .  -+ Bo -+ C -+ O 

of R-modules. However the noncommutativity in the group case necessitates many com- 
plications. 

4. Some methods and their consequences 

As we mentioned in Section 2, the cohomology of groups H * ( - ,  M)  enjoys some func- 
torial properties in the group variables. Any homomorphism r G1 --+ G2 of groups 
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can be factored as a surjection G1 --+ G l / k e r r  ~ r followed by an injec- 
tion r  --~ G2. If M is a ZGz-module then the corresponding homomorphism 
Hn(G2, M) --+ Hn(G1,M) is the composition of a restriction map followed by an 
inflation map. Before defining these maps, we should state that there is no left or right 
exactness of cohomology with respect to these maps in the group variable. Consequently 
long exact sequences such as those in (2.2) do not exist. In low degrees there are some 
substitute exact sequences which can best be explained using a spectral sequence. 

4.1. Restriction. Let H be a subgroup of G. The left module ZG when viewed as a 
ZH-module is a free module. A basis can be taken as any set of representatives of the 
left cosets of H in G. Hence any projective ZG-module is also a projective ZH-module 
by restriction. In particular a projective ZG-resolution (P, i)) of Z is also a projective 
ZH-resolution. If (: Pn -+ M is a ZG-cocycle then it is likewise a ZH-cocycle, and 
similarly ZG-coboundaries are ZH-coboundaries. Notice that it is possible for a ZG- 
cocycle to be a ZH-coboundary even when it isn't a ZG-coboundary. Consequently the 
restriction map which sends the class of a ZG-cocycle to its class as a ZH-cocycle is 
well defined but not necessarily injective. We denote the restriction map by 

resa,g:  Hn(G, M) ~ Hn(H, M). 

4.2. Inflation. Let N be a normal subgroup of G. Any G/N-module M is easily made 
into a G-module by defining 9" m = (9N)" m for 9 E G, m E M. This is the essence 
of the inflation homomorphism. For the details we need to observe that if (Q, i) ~) is 
a projective Z(G/U)-resolution of Z and if (P, i~) is a projective ZG-resolution, then 
there is a chain map #: (P, a) --+ (Q, i~') lifting the identity on Z as in the commutative 
diagram 

�9 . . - - - - - ~ P ~ - - - - - ~ P o  ~ > z  ~ o  

! 

�9 . . - - - - ~ Q 1 - - - - ~ Q o  ~ ~ z  >0 

The inflation map 

infG/N,a: Hn(G/N,  M) ~ Hn(G, M) 

sends the class of a G/N-cocycle (: Qn -+ M to the class of the cocycle (#n. The fact 
that (#n is a cocycle follows from the commutativity. It is standard homological algebra 
to check that the inflation is independent of the resolutions and of the choice of #. 

4.3. Transfer. There is one other standard homomorphism of this type, called the trans- 
fer or corestriction. The transfer dates back to Schur and is an idea inherited from the 
theory of finite groups. To define it we must assume that H is a subgroup of finite index 
[G : HI in G. Most texts present it in terms of induction of modules but the definition can 
be stated more simply. We begin by choosing a ZG-resolution (P, 0) of Z and make it 
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into a ZH-resolution by restriction. Let x ~ , . . . ,  xr be any set of left coset representatives 
of H in G, r = ]G : HI. Let f :  P~ -+ M be a ZH-cocycle. Then the map 

trCH(f)" Pn -+ M, 
r 

defined by tran(f)(u) = ~ x i f  (xs~ lu), 
i=1  

u E Pn, is a ZG-homomorphism and a ZG-cocycle. It is independent of the choice of 
the coset representatives, and if f = 9an for 9 E H o m z H ( P n - I , M )  then t r y ( f )  = 
trY(9) o On is a ZG-coboundary. Therefore the map which sends cls(f) E Hn(H, M) 
to cls(tr~(f))  E Hn(G,M)  is well defined. This is the transfer homomorphisms and 
we denote it by try4. 

4.4. Restriction-transfer applications. Notice that if f :  Pn --+ M is a ZG-homomor- 
phism then t r~( f ) (u)  = I G g l f ( u ) ,  u E P~. Consequently if f is a G-cocycle then 

trCH(resa,H(cls(f))) --IG" H I . cls(f). 

More generally, tr~I o resa,H -- IG" HI. Two applications of this fact follow. 
Suppose that G is a finite group with order IGI. Let E = { 1 } C_ G be the identity 

subgroup. Then Hn(E, M) = 0 for all n > 0 and any ZE-module M. So if M is a 
ZG-module, then 

[G I �9 Hn(G, M) - [G " HI" Hn(G, M) = trGE (resa,E(Hn(G, M)))  = O. 

The second application shows that if IG : HI is not divisible by a prime number p and if 
Hn(G, m)p denotes the p-torsion in Hn(G, m),  then resG,H is injective on Hn(G, m)p. 
This is a simple result of the fact that tr~ o resc,H is invertible on H~(G, M)p. In 
particular if k is a field of characteristic p and if P is a Sylow p-subgroup of a finite 
group G then resc,p is injective on g~(a, k), because gn(G,  k) is a k-vector space. 
The same also holds if k is replaced by a kG-module M, as coefficients. 

4.5. Induction of modules. One other relation between the cohomology of G and a 
subgroup is given by induction on the coefficient module. Let M be a ZH-module.  The 
induced and coinduced modules of M are defined to be 

I n d , ( M ) -  ZG @ZH M and C o i n d ~ ( M ) -  HomzH(ZG, M) 

respectively. They are made into ZG-modules by defining x(9 | m) = x9 | m and 
(xf)(g) -- f(gx), for x, g E G, m E M, f E HomzH(ZG, M). If G is finite then the 
induced and coinduced modules of M are isomorphic. The so-called "Shapiro-Lemma" 
says that 

H . ( H , M )  ~- H.(G, IndGH(M)) and H*(H,M)  ~- H*(G, CoindCH(M)). 
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In the cohomology case the isomorphism is induced from the isomorphism 

r Homzc(Pn,HOmzH(XG, M)) --+ Homzn(Pn, M), 

given by r  = (f (u))(1)  for u e Pn. The inverse is given by (r = 
f(xu) for x E ZG. These isomorphisms respect cup products (see below). 

4.6. Product structures. The cup product on group cohomology can be defined in any 
of several equivalent ways depending on the situation with the coefficients. In H*(G, Z) 
a product can be given by the Yoneda splice on exact sequences representing cohomology 
elements, or if we regard cohomology elements as chain maps on projective resolutions, 
then the product can be defined by composition of the chain maps. For other coefficients 
it is easiest first to define an "outer" cup product. 

Given a ZG-projective resolution (P, 0) of Z, we may form the tensor product (P | 
P, a) which is then a projective resolution of Z Q Z  ~ Z (see (2.6)). Then there is a chain 
map #: (P, 0) --+ (P| ~) which lifts the identity on Z. The chain map # is sometimes 
called a diagonal approximation. Suppose that M and N are kG-modules and a: Pm --+ 
M,/3: Pn ~ N are cocycles. The tensor product of the maps a | ~: Pm| Pn --+ M | N 
when composed with the projection Pm,n: (P | P)m+n ~ Pm| Pn and the chain map 
#re+n: Pm+n --+ (P | P)m+n is a cocycle. It is easy to check that it is a coboundary 
if either a or/3 is a coboundary. So the product 

Hm(G, M)@ Hn(G, N) ---+ Hm+n(G, M @x N) 

is defined by cls(a) @ cls(/3) --+ cls((a | ~) o Pm,n o #re+n). If M = N = R is some 
ring on which G acts by automorphisms, then the multiplication R | R -+ R gives a 
product 

Hm(G, R) | Hn(G, R) ~ Hm+n(G, R | R) ~ Hm+n(G, R). 

The associativity of the product is guaranteed by the coassociativity of the diagonal 
approximation. That is, the chain maps (# | 1) o # and (1 | #) o # which map (/9, O) to 
(P  @ P @ P, O) are chain homotopic since they both lift the identity on Z. Consequently 
they induce the same map on cohomology. 

In the case that R is a commutative ring of coefficients with trivial G-action, the cup 
product satisfies the commutative law r = ( -1)mnTr  for m - deg((), n = deg(7). So 
if ( E Hm(G,R) and m is an odd integer then (2 = (_ l )m: (2  = _(2.  Therefore either 
(2 = 0 or (2 has (additive) order 2. 

4.7. Examples of cohomology rings. Let G = (Z l , . . . ,  Zn) be the free abelian group of 
rank n (see (2.7)). For each i, we have that H*((zi),  Z) = Z[ffi]/(ffi2). That is, H*((zi), Z) 
is a free Z-module of rank 2 with generators 1 in degree 0 and ffi in degree 1. Also if2 _ 0. 
Then, as in (2.7), 

H*(G, Z) = H* ((Zl), Z) |  | H* ((zn), Z). 
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Let ui = 1 @. . .  @ ~i @ ' "  @ 1 (~i in i-th spot). The commutativity relations says that 
uiuj = -ujui .  Otherwise the multiplication respects the tensor product so that u/2 = 0. 
It follows that 

H*(G,  Z) = A z ( v l , . . . ,  Un), 

is the Z-exterior algebra on V l , . . . ,  vn. 
Next suppose that G = (x [ x v = 1) as in (2.4). Assume that p is a prime and that k is 

a field of characteristic p > 0. Then Hn(G, k) ~- k for all n ~> 0. Let 7n be a generator 
for Hn(G, k). We have two possibilities. 

a) If p = 2, then it can be shown that "7 n ~ 0 and hence by adjusting scalars we have 
that H* (G, k) = k[')'l] is a polynomial ring in ")'1. 

b) If p > 2 then .),2 = 0 since 7~ must have additive order p r 2. However it can be 
shown that 7~ r 0 and "/1"/~ 7 ~ 0 for all n > 0. So we have H*(G,k)  = k[71,',/2]/(71z). 

Finally let G = (X l , . . . ,  xn) be an elementary abelian p-group (x~ - 1, z ix j  = xjx i )  
and let k be a field of characteristic p > 0. Let 

r/i = 1 | " ' "  | | 1 7 4  1 

w h e r e  71 E Hl( ( z i ) , k )  appears in the i-th position in the factorization 

H*(G,k) = H*((Xl) ,k)  |  H*((xn) ,k )  

(see (2.7)). If p = 2, then H*(G, k) = k [ ~ l , . . .  , ~n].  On the other hand if p 7~ 2, then 
q72 = 0. So let (i = 1 |  N 3'2 N - . .  | 1 (i-th position). Using case (b) above, we see 
that 

H* (G, k) = k [~ l , . . . ,  fin] | Ak(r /1, . . . ,  r/n). 

4.8. Spectral sequences. A spectral sequence is a sequence of complexes which, by 
taking successive (co)homologies converges to the (co)homology of a given complex or 
to some graded version thereof. Any of the standard texts on homological algebra or 
cohomology of groups contains an account of the theory of spectral sequences. Probably 
the most complete listing of the standard sequences is in [McC]. The most commonly used 
spectral sequence in group cohomology is the Lyndon-Hochschild-Serre (LHS) spectral 
sequence. One method of constructing the LHS sequence is outlined in the following. 

4.9. The LHS spectral sequence. Suppose that H is a normal subgroup of G. Let (P, 0) 
and (Q, 0') be, respectively, a ZG- and Z(G/H)-projective resolution of Z. We regard 
(Q, ~') as a complex of ZG-modules on which H acts trivially. The tensor product 
(Q | P, 0) is a projective ZG-resolution of Z. This resolution provides a filtration of the 
cohomology of G with coefficients in any ZG-module M.  If ( E Hm(G, M),  then ( is 
represented by a cocycle 

m 

f (Q | P )m -- @ Qj | P m - j  ~ M. 
j=0 
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We say that ( is in the i-th filtration ~i(Hm(G,M))  if there exists a cocycle f repre- 
senting ( such that f is supported on 

m 

Y~. Q3 | Pro-3. 
3=i 

That is, f (Qj  @ Pm-j) = 0 if j < i. 
Now let Eo 's -- Homzc(Q,. @/:'8, M).  This is a double cochain complex with two 

different boundary homomorphisms induced from the boundary homomorphisms on Q 
and P. The cohomology of the total complex is, of course, H*(G, M). We proceed to 
the first page of the spectral sequence by taking the cohomology with respect to (1 @ i))*, 
the coboundary homomorphism induced from that on (P, 0). Before doing this we should 
recognize that 

E~ "'~ = Homzc(Q,.  | P~, M) -~ Homz(c/H)(Q,. ,  Homzs(P~,  M)) ,  

where the isomorphism sends f to O(f) such that O(f)(u))(v) = f (u  | v) for u E Qr, 
v E P~. Consequently the homology with respect to (1 @ i~)* is 

E1 '8 , H  8 . = Homz(c/H)(Q,- (H, M))  

Next take the cohomology with respect to the boundary homomorphism of (Q, i~). This 
is the dl-differential and it maps dl" E~ "'8 --+ E~ +l's. Its cohomology gives the terms of 
the Ez page and we can see that E~ 's ~ Hr(G/H,H~(H,M)) .  The differential on the 

E2 page is d2" E~ 's --+ E~ +2's-1, and the cohomology gives the E3-page. In general, the 

Et page has a boundary homomorphism dr" JEt '~ --+ Et  +t's-t+l and the cohomology 
gives the terms of the Et+l page. The spectral sequence converges because for any pair 

r, s there are only a finite number of values of t for which either dr" Et 's --+ S t  +t's-t+l 
or dr" E r-t's+t-I --+ Et 's are not zero. That is Et 'b - 0 if either a < 0 or b < 0. In 
particular, E t  '~ = Et~_~l . . . . .  E ~  ~ if t > r + s. 

For t > n + 1, the terms of the Et page of the spectral sequence are precisely the 
factors in the filtration 3 r on Hn(G, M). That is, we have 

0 C .T'n (Hn(G, M)) c_... c .T'o(Hn(G, M)) = Hn(G, M) 

where 

J:'i (Hn(G, M))/J:'i+l (Hn(G, M))  "" E~ 'n-i -- Ei'o~ ~-i. 

4.10. The edge homomorphisms. 
have 

On the E2 page of the LHS spectral sequence we 

E2 '~ - H" (G/H, H~ M)) ~- H" (G/H, M H) 
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where M H is the G/H-module of H-fixed points on M. For t /> 2 the boundary dt is 

zero on Et '~ Hence E ~  ~ is a quotient of E~ '~ The edge homomorphism 

E~ '~ = H" (G/H, M H) ~ E~ ~ C H r (G, M) 

is the inflation Hr(G/H,M H) --+ Hr(G,M H) composed with the map induced by the 
inclusion M H c M. So 

Jz n (Hn(G, M)) = infc/n,G (H n (G/H, M s ) ) .  

On the other edge we have that E ~ - H~ HS(G, M)) is the set of fixed points 
of HS(H, M) under the action of the factor group G/H. Moreover we have that 

is a subgroup of HS(H, M). Of course, E~o s = HS(G, M)/Jcl (HS (G, M)).  The quotient 
map H~(G, M) --~ E~ s c_ H~(H, M) is, in fact, the restriction homomorphism resc,H. 

4.11. The Five term sequence. From the spectral sequence it is immediate to deduce 
the-standard five term exact sequence for low dimensional group cohomology. The exact 
sequence is 

0 -+ H' (G/H, M H) o ,  H1 (G, M) ~ ~, H' (H, M) c /u  

~ H 2(G/H, M H) 6> H2(G, M). 

1,0 H l Here c~ is the inclusion E ~  ~ C_ E 2 into (G,M),  /3 is the quotient map by 
.T'I (H 1 (G, M))  followed by the inclusion into n 1 (G, M) C/H ~ E~ 3' is d2, and 

is the quotient by the image of d2 followed by the inclusion into H2(G, M). Several 
extension and other versions of the sequence have been given as for example in [BrL] 
and [Hue3] (see also [E1R] and [ChW]). 

4.12. Remarks on LHS. In the original paper of Hochschild and Serre [HoS] the spectral 
sequence was defined using the ~ standard (bar) resolution. The construction certainly 
duplicated some of the ideas of Lyndon [Lyn], though it is not clear that Lyndon had a 
spectral sequence. Hochschild and Serre actually defined at least two spectral sequences. 
It was long assumed that the constructions gave equivalent objects, but no proof was 
offered until that of Evens [Eve2]. The equivalence has been further generalized by Beyl 
[Bey], but the reader should see [Bar] for the most thorough treatment. 

4.13. Other spectral sequences. There are several other spectral sequences which apply 
to group cohomology. For example the Eilenberg-Moore sequence was used very effec- 
tively in the calculations of Rusin [Rus2]. The hyper-cohomology spectral sequence was 
useful in [BeC3] and might yet prove useful with constructions such as that in [Web 1]. 
The Bockstein spectral sequence was used in the calculations [LPS] and [HaK]. It should 
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also be mentioned that the LHS spectral sequence as well as some of the others have 
multiplicative structures. 

4.14. The norm map. When H is a subgroup of finite index in G, it is possible to 
define a multiplicative induction from ZH-modules to ZG-modules. Just as ordinary 
induction can be used to define the transfer map, which is an additive homomorphism 
on cohomology, multiplicative induction defines a multiplicative map, the (Evens) norm 
map 

H 2n (H, Z) ~ H 2nlG:HI (G, Z) 

(see [Eve 1 ]). The norm map can be defined on H 2n (H, M) for any ZH-module M, but 
the definition becomes very complicated whenever M is not a commutative ring with 
trivial H-action. 

An outline of the construction starts with the fact that, because IG:HI is finite, 

there is an embedding of G into the wreath product G = G / H I H .  An element of 
H2n(H,Z)  -~ Ext~nH (Z, Z) is represented by an exact sequence E of length 2n, that 
begins and ends with Z. Taking the tensor product of IG:HI copies of this sequence 
(or more precisely, of the complexes formed by truncating the terminal copy of Z) we 
get an exact sequence of length 2nlG:H I on which G / H  acts by permuting the copies. 

Hence we may regard it as a sequence of ZG-modules. Now restrict the sequence to the 
subgroup isomorphic to G. The cohomology class of the restriction, as an element of 
H 2nlG:nl (G, Z) is defined to be the image under the norm map. The norm was originally 
devised by Evens to prove the finite generation of cohomology rings of finite groups. 
However it has been very useful in several other ways. 

4.15. The Steenrod operations. The Steenrod operations were invented in a topological 
setting as operations on the cohomology of spaces. The operations form an algebra and 
the cohomology of any space or group is an algebra over the Steenrod algebra. Moreover 
the action of the algebra is natural and commutes with such constructions as restriction, 
inflation and spectral sequences. See [BeC4] for one example of applications of the 
Steenrod algebra. Unfortunately, even a list of the properties of the Steenrod operations 
is too long to include here. See [Ben l] for a condensed list of properties without proof. 
An algebraic development of the Steenrod operations can be found in [Ben2]. 

5. Topics in finite groups 

In recent years there has been a great deal of activity in the area of cohomology of 
finite groups. Much of it has been motivated by applications to the module theory for 
group algebras and to topology. Unlike the case in many of the classical applications, the 
relevant structures have been the more general ring and module theoretic constructions. 
The methods have included some algebraic geometry and commutative ring theory, as 
well as simplicial geometry and topology. In several cases the important calculations 
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have first been made or theorems first been proved in the mod-p case for p a prime 
dividing the order of the group. 

5.1. Varieties and cohomology rings. The primary ingredient which is necessary to 
begin a theory of cohomology rings is the finite generation theorem of Evens [Eve 1] (see 
also [Ven]). It says that H*(G,Z)  and H*(G, k), for k a field, are finitely generated. 
Moreover if M is any finitely generated ZG-module (kG-module), then H*(G, M) is 
a finitely generated module over H*(G,Z)  (respectively, H*(G, k)). The results were 
proved by reducing to the case of a p-group, using the norm map, and then applying 
induction on the group order. So when k is a field of characteristic p, the k-algebra 
H* (G, k) has an associated affine variety, VG (k), it~ maximal ideal spectrum. Notice that 
if p is odd then H* (G, k) is not commutative. However this does not affect the spectrum, 
because only elements of odd degree fail to commute and they are all nilpotent. 

It was Quillen [Qunl] who showed that the dimension of VG(k) is equal to the p-rank of 
G. The components of Vc(k) correspond to the conjugacy classes of maximal elementary 
abelian p-subgroups by way of the restriction maps. In particular, the intersection of the 
kernels of the maps resG,E: H* (G, k) --+ H* (E, k), for E an elementary abelian p-group, 
is a nilpotent ideal, and the map on varieties VE(k) --+ Vc(k) is always finite-to-one. 
The Dimension Theorem is a consequence of the fact that VE(k) is affine k-space, k n, 
if k is algebraically closed and E has p-rank n (see (4.7)). An algebraic proof of the 
theorem is given in [QuV]. In [Qun2] it was shown that VG(k) is stratified according to 
the action of G on its elementary abelian p-subgroups. 

5.2. Varieties and modules. Most of the results mentioned above have been extended 
to the support varieties for finitely generated kG-modules. If M is such a module, then 
let J(M) denote the ideal in H* (G, k), which is the annihilator of 

H* (G, Homk(M, M))  -~ Extra (M , M).  

Let VG(M) be the subvariety of VG(k) corresponding to J(M). The first attempt at 
generalizing Quillen's Dimension Theorem was set in the context of the complexity of 
M [ALE1]. Roughly speaking, the complexity of M is the polynomial rate of growth of 
the ring Ext~G(M , M)  and is equal to the dimension of VG(M). Subsequent refinements 
[ALE2, Avr] proved that 

VG(M) -- Ures~,E(VE(M)) 

where the union is taken over the maximal elementary abelian p-subgroups of G. 
In the case of an elementary abelian group G = E = (Z l , . . .  ,:rn) of order pn, the 

variety VE(M) can be computed directly from the structure of M. For this, suppose that 
k is algebraically closed. For c~ = (C~l,..., an) E k n, let 
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Note that u,~ is a unit of order p in kE. Let Us = (u,~), and let 

V~,(M) = {0} t_J {a  E k n I M is not free as a kU-module}. 

Then V~(M) is called the rank variety of M [Car2]. Under proper identification it is 
equal to the cohomological variety Vc(M) [AvS]. The varieties of modules have several 
interesting properties. A couple of the most significant are that Vc(M) = {0} if and 
only if M is projective and that Vc(M | N) = Vc(M) N Vc(N). Hence it is possible 
to discover whether the tensor product of two modules is projective without computing 
the product. See [BeC2] for one application of this fact. 

5.3. Depth and systems of parameters. Several recent investigations have looked at 
regular sequences and systems of parameters for cohomology rings. It had been a folk 
theorem (proved using LHS) that any element in H2n(G, k) whose restriction to a cyclic 
subgroup in the center of a Sylow p-subgroup of G is nonzero, must be a regular element. 
Duflot [Dufl] has extended the result to show that H*(G,k) has a regular sequence 
whose length is at least equal to the rank of the center of the Sylow p-subgroup of 
G. Landweber and Stong [LaS] have conjectured that the Dickson invariants, taken in 
proper order, should provide a regular sequence of maximal length. In [BeC3] the authors 
investigate the case in which the cohomology ring is Cohen-Macaulay and also offer 
some speculation on the ring structure when the depth is smaller then the p-rank. 

The cohomology rings of modules, Ext~c(M , M) seem to be more problematic in that 
they may not be graded commutative. However even here, some progress has been made 
on the maximal idea structure [Niw]. 

5.4. Irreducible modules. One question which has attracted some attention is the role of 
irreducible modules in the cohomology of groups. In particular, there is an old conjecture 
that if M is a simple kG-module in the principal block of kG, then H* (G, M) ~ 0. In 
the last decade, Linnell [Lin] and Linnell and Stammbach [LiS1, LiS2] have succeeded 
in proving the statement true under the assumption that G is p-solvable or p-constrained. 
The proofs rely on the natural occurrence of the simple modules in things like the 
composition series of the group itself. Of course, this does not happen in general and 
the conjecture remains open. The question of when an arbitrary module in the principal 
block has vanishing cohomology was investigated in [BCR]. However this may or may 
not be applicable to the question about simple modules. 

5.5. Chern rings. Some recent work has focused on subrings of the cohomology ring 
H*(G, Z) or H*(G,k). The Chern ring Ch(G) C_ H*(G, Z) is the subring generated by 
the Chern classes coming from all complex representations of G. Given a representation 
p of G over C, we may assume that p: G --+ U(n) the unitary group of n • n matrices. 
Now H*(U(n),Z) is a polynomial ring in classes in degrees 2 ,4 , . . .  ,2n. The pull- 
backs of these classes under p are called the Chern classes of G for this representation. 
If the representation is faithful then H*(G,Z)  is finitely generated as a module over 
H*(BU(n),Z). For more information see Thomas' book [Thm3] and the papers [Alz, 
CaL, Lea, Thml] and [Thm2]. 
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5.6. Calculations. Recent years have witnessed a great many interesting and sometimes 
very impressive calculations of cohomology groups and rings over both the ordinary 
integers and fields of finite characteristic. Almost all of the computations make use of 
some sort of spectral sequence. Some, such as [Rus2] have used computer technology. 
The computations [AMM2] and [AdM] have used the work of Webb on the Brown 
complex [Web2]. Others employed diagrammatic methods from representation theory 
[BeC1, BCo]. Some of the computations which have been done are the following. 

Extraspecial p-groups: [Die, BeC4, HaK, Lea, Lew] and [Qun3]; 
Other p-groups: [EvP1, MiM, Rusl] and [Rus2]; 
Classical simple groups: [AMM1, AMM2, Car2, Chp3, FiP, Hun l, Hun2, Kle, Qun4, 

Tez, TeY1, TeY2] and [TeY3]; 
Sporadic simple groups: [AdM, Chp2] and [Lea]. 
Several other studies such as [Car2] and [CPS] have considered the cohomology with 

coefficients in simple modules. 

5.7. Other investigations. Finally we list a few of the other studies which are worth 
mentioning. The exponents of integral cohomology have been investigated by a few 
authors (e.g., [Adel, Car3]). The ring of universally stable elements in the image of 
every restriction map were studied in [EvP2]. Varieties have been defined and studied 
for many of the standard constructions such as the image of the transfer map in [EvF]. A 
great deal of impressive work has been done on the connection between the cohomology 
of finite groups and that of algebraic groups. See [Fre] for one example. Quillen proved 
several of the results on varieties for compact Lie groups. For further results in this 
direction see [Fesl] and [Fes2]. Adem has noted that many of the results on varieties 
apply to groups with finite virtual cohomological dimension [Qunl, Ade2, Ade3]. 

6. Topics in infinite groups 

For infinite groups the cohomology theory is a primary device for classification. It is 
not surprising that the theory has been mixed with many methods from geometry and 
topology. However the study of group actions on spaces and geometric objects such as 
trees could be the subject of another whole essay. We mention some parts of it only 
briefly here. 

6.1. Cohomological dimension. From the early stages of homological algebra it was 
natural to ask the question of what groups had finite cohomology or had cohomology in 
only finitely many degrees. The cohomological dimension of a group G (cd(G)) is the 
smallest natural number n for which there is a ZG-projective resolution (P, ~) of Z with 
Pi - 0 for all i > n. It is also the smallest n such that Hi(G,M)  = 0 for all i > n 
and all ZG-modules M. From the definition it is clear that cd(H) < cd(G) whenever 
H is a subgroup of G. Because nontrivial finite groups do not have finite cohomological 
dimension, all groups with finite cohomological dimension must be torsion free. Serre 
[Ser] has shown that if H C_ G and G is torsion free then cd(H) = cd(G) provided 
[G'H[ is finite. 
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An easy topological argument proves that free groups have cohomological dimension 
one. For example if G is free on n generators then the wedge of n circles is a K(G, 1). 
The converse of the statement for G finitely generated was proved in a celebrated paper 
of Stallings [Sta2]. Swan [Swa] extended the work to show that cd(G) = 1 implies that 
the group G is free. Dunwoody has pushed the result even further. Let cdR(G) = n if 
the coefficient ring R as a trivial RG-module has a projective resolution of length n. In 
[Dun] it was shown that cdR(G) <~ 1 if and only if G is the fundamental group of a 
graph of groups in which no vertex group has a finite subgroup whose order fails to be 
invertible in R. 

6.2. Other finiteness conditions. 
projective ZG-resolution 

A group G is said to be of type FPn if there exists a 

�9 .. ~ P~ -~ P o - ~  Z ~ 0  

such that Pi is finitely generated for i < n. It can be shown that the word "projective" can 
be replaced by "free" with no loss. Recently Abels and Brown [AbB] (see also [Brw3]) 
gave examples of groups Gn such that Gn is of type FPn-I but not of type FPn for 
n >/3. The examples had been previously known. Abels had proved that they were not 
of type FP1 and Bieri had shown that Gn was not of type FP,~. See the survey by Bieri 
[Bie2] for more background. 

A group G is of type FP if cd(G) < cx~ and also G is of type FPoo. It can be shown 
that for such a group 

cd(G) = max { n I Hn (G, ZG) r 0}. 

Brown and Geoghegan have found an example G with Hn(G, ZG) = 0 for n > 0, and 
G torsion free, but G not of type FP. In this case G is of type FPoo but not of type 
F P .  For other work in this direction see [Abe, CuV, Krol] and [Ratl]. 

Other groups of interest arise from the sort of combinatorics associated to computers. 
Automatic groups were introduced in [CEHPT] where it was shown that they are of type 
FPoo. The Anick-Groves-Squier Theorem states that a group with a finite complete 
rewriting system is of type FPoo (see [Gro]). A more topological approach is given by 
Brown [Brw4]. 

6.3. Duality groups. A group G of type FP is a duality group if there exists a ZG- 
module D and a positive integer n such that Hi(G, M) ~- Hn-i(G, D | M) for all 
i and all ZG-modules M. If G is a duality group with n = cd(G) then it can be 
assumed that D = Hn(G, ZG) with the right-handed G-action. Also D must be torsion 
free as an abelian group. See Brown's book [Brwl] for details. The group G is said to 
be a Poincar6 duality group if in addition D ~ Z. Examples include finitely generated 
free abelian groups. Finitely generated free groups, knot groups (which always have 
cohomological dimension 2) and arithmetic groups are duality groups but not Poincar6 
duality groups. 

It is still an open question as to whether there must exist a finite dimensional K(G, 1) 
if (] is a Poincar6 duality group. Eckmann, Mtiller and Linnell solve the problem in 
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dimension 2 by showing that a Poincar6 duality group of dimension 2 must be the 
fundamental group of a surface (see the survey article by Eckmann [Eck2]). Partial 
results in dimension 3 have been given by Hillman [Him]. For other recent  work on 
duality groups see [KrR] and [Rot]. 

6.4. Other results on finite cohomological dimension. Groups of cohomological dimen- 
sion 2 have been much studied but have yielded no spectacular results as for those of 
dimension one. Background on this problem can be found in the notes [Biel ] and [Bie2]. 
A classical theorem of Lyndon says that torsion free one-relator groups have cohomo- 
logical dimension two or less. No such theorem is valid for two-relator groups [How], 
but see also [Huel]. Other related results include [Gil, HoS] and [Rat2]. 

Another notion which is of particular interest in knot theory is that of the ends of 
groups. The ends of a group are defined topologically, but the number of ends is equal 
to 1 + rank(H 1 (G, ZG)). It is well known that a group has one, two or infinitely many 
ends. Stallings [Stal] has settled some of the structure of groups with more than one 
end. For other recent work on ends of groups see [Ho12] and [GEM]. 

6.5. Solvable and nilpotent groups. Kropholler [Kro2] has recently finished a problem 
on solvable groups with finite cohomological dimension. He showed that for such a group 
G the following are equivalent: 

(i) G is constructible, 
(ii) G is a duality group, 

(iii) G is of type FP, 
(iv) cdz(G) = torsion free rank of G, 

and 
(v) cdQ(G) = torsion free rank of G. 

All but the implications (v) =~ (i) had been proved by Baumslag and Bieri. Kropholler 
used the methods of [GiS] to finish this part. 

A rank function has been defined for torsion free nilpotent groups. It is the sum of the 
ordinary ranks of the quotients Gi-1/Gi where 

1 = Gn C_ G n - 1  C . . .  C Go = G 

is a central series. This rank is called the Hirsh number and is denoted hG. It is easy 
to show that ccl(G) = hG. Kropholler has recently announced a proof that the rank of 
any solvable group of type FPoo is finite [Kro4]. Several recent results have dealt with 
the homology and cohomology of nilpotent groups [Rob2, Rob3]. See [Rob l, Rob4] 
for other references. In addition, the results of Huebschmann [Hue4, Hue5] provide nice 
answers for groups of class 2. See also [BAD, BDG, Kro3] and [Lor] for other interesting 
results. 

6.6. Virtual ideas. A group is said to have a virtual property if it has a subgroup of 
finite index with that property. The property may be something like finite cohomolog- 
ical dimension or duality. In the case of a group G with finite virtual cohomological 
dimension, there is the notion of Farrell cohomology, Hn(G,Z) ,  which is defined for 
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all values of n [Far]. Farrell cohomology is a generalization of the Tate cohomology for 
finite groups. It has all of the usual properties of ordinary cohomology with which it 
coincides in large degrees. It vanishes if the group is torsion free, but it seems to depend 
not only on the finite subgroups of G but also on the way in which they are embedded 
in G [Ade2, AdC]. See Brown's book [Brwl] for a full account. For linear groups of 
finite virtual cohomological dimension see [A1S]. Eckmann and Mtiller have extended 
their work on Poincar6 duality groups of dimension 2 to virtual pD2-groups [EMu]. For 
other similar considerations see [GeG]. 

6.7. Ranks and Euler characteristics. The Euler characteristic is another major invariant 
for groups which are virtually FP. This notion coincides with the topological Euler 
characteristic if the group G has a finite K(G, 1) (which requires that G be torsion free). 
The Hattori-Stallings rank (see [Brwl ]) makes it possible to define Euler characteristic 
using complexes of projective modules rather than free modules. Thus it is defined for 
any group of type FP. If G is of virtual type F P  then G has a subgroup H with 
IG : HI < c~ and with torsion free of type FP. So the Euler characteristic of G is 
defined as 

x(C) = x (H) / IG  : HI. 

It need not be integral or even positive. In fact if G is finite then x(G) = 1/IGI, while 
x(SL2(Z))  = - 1 / 1 2 .  Brown has shown that the denominator of x(G) divides the least 
common multiple of the orders of the finite subgroups. For more recent results see [Brw2, 
Dye] and [SmV]. 

6.8. Relation modules and related objects. There has been a lot of recent activity con- 
cerned with the calculation of cohomology and structures related to the presentations of 
a group G. If 

I ~ N - + F ~ G ~  I 

is an exact sequence and F is a free group, then the relation module for G is the 
abelian group M = N/[N,  N] made into a ZG-module by the conjugation action. The 
corresponding extension 

I ~ M ~ F / [ N , N ]  ~ G ~ I 

is called the free abelianized extension. Several investigations have looked at the homol- 
ogy and cohomology of this extension. Gupta [Gup] has shown that the homology can 
have torsion even when G is torsion free. See [HAS, KKS, Kuz] and [PrS1] for other 
references. 

6.9. Miscellaneous results. Several results of interest do not fit neatly into the other 
categories. They include the work of Mislin [Mis] and Eckmann and Mislin [EMi] on 
Chern classes and the stable range results for congruence subgroups by Charney [Cha] 
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and Arlettaz [Arl]. We should mention also the calculations [PrS2] and [ScV]. Finally 
Baumslag, Dyer and Miller [BDM] have considered the inverse problem of finding a 
group G whose n-th homology group is isomorphic to a previously given group A - 
Hn(G,Z). 
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Introduction 

The origins of relative homological algebra can be found in different branches of algebra 
but mainly in the theory of abelian groups and in the representation theory of finite 
groups. Pr0fer introduced in 1923 the notion of purity which nowadays is one of the 
most important notions of abelian group theory [F]. Generalizations of purity in the 
category of abelian groups and in module categories have many applications and are 
really tools of homological algebra. 

In representation theory we have also the important notions of relative projectives and 
relative injectives, and the analysis of their properties has led Hochschild in 1956 to the 
discovery of "relative homological algebra" [Ho]. It is worth noting that ideas of relative 
homological algebra were contained "internally" in the "Homological algebra" of Cartan 
and Eilenberg [CE]. 

Finally, Buchsbaum [Bc] and others (see [Mal]) have given axioms for a "proper 
class" of short exact sequences in any abelian category and MacLane has rewritten in 
his "Homology" [Mal] a part of homological algebra from the point of view of relative 
homological algebra. 

The first years after that have yielded many interesting examples of proper classes 
which have been used for proving "relative" versions of "absolute" theorems. Thus in 
representation theory Lam and Reiner [LR] discovered the relative Grothendieck group, 
Warfield [W] introduced the notion of Cohn-purity in a module category which gener- 
alized Pr0fer purity and he used it for researching the interesting class of algebraically 
compact modules, Eilenberg and Moore [EM] generalized the notion of proper class start- 
ing from a triple and this allows us to develop relative homological algebra in categories 
more general than the abelian. 

Mishina and Skornyakov in 1969 [MS] (see also the expanded English translation 
in 1976) and then Sklyarenko in 1978 [Sk] have given good surveys of the development 
of relative homological algebra at that time. 

In this article we do not intend to give a review of all contributions to relative homo- 
logical algebra but we only present the main ideas of the theory and also some recent 
advances in it. 

In Section 1 we introduce the notion of a proper class of cokernels in a pre-abelian 
category. This generalization of the usual notion of a proper class of short exact sequences 
will be used in Section 2 for defining relative derived categories. This construction was 
made in [G7] to give a unified approach to homological algebra in pre-abelian categories 
which allows to include the approaches in [RW1, Y] in the framework of a single theory. 

Section 3 is devoted to relative homological algebra in module categories and we 
discuss recent results on the classification of inductively closed proper classes which are 
closely related with algebraically compact modules. Some results concern the structure 
of such modules. We also discuss in this section the so-called "group of relations" of 
relative Grothendieck groups. 

The language of relative homological algebra is useful in defining the cohomology 
of small categories (see [HIS]), and the corresponding theory is presented in Section 4. 
Moreover, we discuss there a new cohomology introduced by Baues and Wirsching [BaWl 
which generalizes the Hochschild-Mitchell cohomology [Mtl]. 
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Section 5 contains some applications of the results of the preceding sections to the 
cohomology of partially ordered sets (-- posets). 

Section 6 contains the cohomology theory of coalgebras (including the relative case). 
For simplicity we restrict ourselves to the case where the base commutative ring is a field. 
Note that the general case has been considered in [J], which uses the relative homological 
algebra developed in [EM]. 

1. Proper classes in preabelian categories 

1.1. Let A be a preabelian category, i.e. A is an additive category in which every mor- 
phism has a kernel and a cokernel. Any morphism f" X --+ Y in A admits a canonical 
decomposition 

coim f f im f 
f" X > C o i m f  ~ I m f  ~Y (1) 

where coim f - coker(ker f )  is the coimage of f ,  im f - ker(coker f )  is the image of 
f (cf., e.g., [BD]). Recall that an abelian category is a preabelian category such that for 
any morphism f the morphism f in (1) is an isomorphism. 

A morphism is called a kernel (respectively a cokernel) if it is a kernel (respectively 
a cokernel) of some morphism. A morphism f:  A --+/3 is called a retraction if there is 
a morphism 9: B --+ A with f 9  - lB .  

A sequence 

A i > B  " > C  (2) 

is called a short exact sequence if i - ker a and a - coker i. 

1.2. A class co of cokernels in a preabelian category A is said to be a proper class (in 
short, p.c.) if the following axioms are satisfied: 

P0. Every retraction in A belongs to co. 
P1. If a, 7- E co and aT exists then aT E co. 
P2. For any pullback 

' B' A I o" 

A ~ > B  

(3) 

i f c r E w t h e n c r  ~Ew.  
P3. If aT, "i- E w then cr E w. 

A short exact sequence (2) is called w-proper if ~r E w. 
From the definition we derive the following statement. 



Relative homological algebra 615 

1.3. PROPOSITION [G7]. Let co be a p.c. in a preabelian category A. Then: 
a) co is closed with respect to (finite) direct sums of  morphisms; 
b) for  any morphism 7- if ~rT- C co then cr E co. 

We can define dually a p.c. of kernels. Usually we do not formulate (but freely use) 
the dual statements concerning this notion. 

1.4. EXAMPLES. 
a) A cokernel cr is a preabelian category A is called semistable if for any pullback (3) 

the morphism ~r ~ is a cokernel. A semistable kernel is defined dually. A short exact se- 
quence (2) is called stable if i is a semistable kernel and cr is a semistable cokernel. In 
this situation the morphisms i and cr are called a stable kernel and a stable cokernel re- 
spectively. The class of all stable cokernels (respectively stable kernels) is proper [RW 1 ]. 

The class of all semistable cokernels (respectively semistable kernels) is also a 
p.c. [G7]. Note that axiom P2 implies that every cokernel cr in a p.c. co is semistable, 
and so the class of semistable cokernels is the largest p.c. of cokernels. 

b) Richman and Walker [RW1, RW2] have investigated stable and semistable mor- 
phisms is specific preabelian categories such as: a) the category of topological (Hausdorff) 
modules; 2) the category of valuated groups, and others. 

c) The class of all retractions in a preabelian category A is a p.c. 

Further examples of p.c.s (in abelian categories) are discussed below (especially for 
module categories see Section 3). 

1.5. REMARKS. 
1) In general the class of all cokernels in a preabelian category is not proper. 
2) If co is a p.c. of cokernels then the class {ker cr I cr E co} does not need to be a p.c. 

of kernels. 

1.6. Let co be a p.c. of cokernels in a preabelian category A. An object P E A is called 
w-projective if P is projective w.r.t, all cr C co, i.e. for any or: M --+ N in co the induced 
homomorphism cr.: HomA(P, M )  -+ HomA(P, N)  is surjective. If co is a p.c. of kernels 
then the notion of an co-injective object is defined dually. 

Let .M be a class of objects in A. Denote by co(M) the class of cokernels cr in A 
such that all objects M E A d  are projective w.r.t, or. Plainly co(M) is a p.c., and we say 
that co(M) is projectively generated (by 3,4). 

A p.c. co of cokernels is said to be projective if for any object A E A there is a cokernel 
or: P -+ A in co with P co-projective. 

1.7. PROPOSITION. Let co be a projective p.c. Then co is projectively generated by the 
class )k4w of  w-projective objects. 

PROOF. Plainly, we have co C_ w(.Ad~o). Now if or: A --~ B is in co(.Ad~o) consider a 
cokernel 7-: P --+ /3 in co with P w-projective. By definition there exists 7-~" P --+ A 
such that crT-' - 7-, and by 1.3b we have ~r C co. El 
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1.8. An object P E A is said to be cokernel-projective if P is projective w.r.t, all 
cokernels in A. We say that a preabelian category A has enough cokernel-projective 
objects if for any A E A there exists a cokernel or: P --+ A with P cokernel-projective. 

1.9. PROPOSITION [G7]. I f  a preabelian category A has enough cokernel-projectives then 
any cokernel in A is semistable. 

Hence in the situation of the proposition the class of all cokernels in A is proper and 
additionally it is projectively generated by the class of cokernel-projectives (cf. 1.7). 

1.10. The notion of a proper class is more familiar for abelian categories. A p.c. co 
of cokernels in an abelian category A is uniquely determined by the class of kernels 
{kero- ]cr C co} which satisfies the dual axioms to P0-P3; we denote by PO~ ,P3 ~ 
these duals respectively. So one can define a proper class of short exact sequences in an 
abelian category A using only some pairs of the dual axioms in this list. For example, 
in [Mal] the axioms P0, PO ~ P1, P1 ~ P3, P3 ~ (with slight modifications) are used. 
Also the axioms of an exact category in the sense of Quillen [Q] are the reformulation 
of the definition of a p.c. of short exact sequences. 

1.11. Let T: A ~ lt~ be a functor between abelian categories which reflects epimorphisms 
(i.e. T is faithful) and suppose that it has a left adjoint S: 1~ -+ A, i.e. there are 
natural transformations c~: Id~ --+ T S  and/3" S T  --+ IdA such that (~S)(Sc~) - ids, 
(T~)(c~T) = idr.  Let co be a p.c. of cokernels in It~. Define T-l(co) as a class of 
morphisms f in A with T ( f )  c co. By assumption co' = T - i  (co) consists of cokernels 
in A. 

1.12. THEOREM [EM, HIS]. Under the hypotheses above, suppose additionally that co is 
a projective p.c. Then col is a projective p.c. o f  cokernels in A. 

Slightly modifying the proof of this theorem we obtain the following result. 

1.13. THEOREM. Under the hypotheses above (see 1.11) let co be a p.c. projectively gen- 
erated by a class o f  objects A4 c_ Ob(I~). Then co' - T-l(co) is a p.c. projectively 
generated by the class S(.A4) - { S ( M )  I M E .All}. 

2. Relative derived categories 

2.1. Fix any preabelian category A and any p.c. co of cokernels in A. Denote by K(A) the 
homotopy category of the category A, i.e. the quotient category of the category Kom(A) 
of (cochain) complexes over A modulo homotopy equivalence. On the category Kom(A) 
(and also K(A))  there is defined the shift operator M ~-+ MIl l  where (MIll)  n = M n+', 
dM[l] = --riM. The inverse of this operator we denote as follows: M ~-+ M[-1] .  

A sequence in Kom (A) 

K" I>L" g>M" (1) 
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is called a short exact sequence if for every n E Z there is a short exact sequence in 

A: K n f'~) L n g" M n. > The short exact sequence (1) is called co-proper if 9 n E co for 
every n. 

A complex M" - (M n, d~t ) is called co-acyclic if for any n E Z we have d ~  - #nun 
with v 'n E co and #n = kerd~+J. Denote by C(A) the full subcategory of K(A)  which 
consists of co-acyclic complexes. 

2.2. THEOREM [G7]. Given an w-proper sequence (1) in Kom(A) such that some two 
complexes in it lie in C(A) the third also lies in C(A). 

If the category A is abelian this theorem can be derived from the long exact coho- 
mology sequence which corresponds to the sequence (1). We have no such cohomology 
sequence in our general context, and the role of the above theorem is to replace it (when 
we can do so). 

2.3. COROLLARY. Given a commutative diagram in A 

A '  > B '  > C' 

A > B  > C  

A I! > B "  > C"  

if  all rows and any two columns in it are w-proper short exact sequences then the third 
column is also w-proper provided the composition o f  the morphisms in the middle column 

is zero. 

This statement is a generalization of the well-known 3 • 3-1emma for abelian categories. 

2.4. The mapping cone of a morphism f: M" --+ N" in Kom(A) is defined as the 
complex 

C ( f ) -  (Mn+l 0 N n , d c ( i ) ) ,  
--dM 0 ) 

dc( f )  - f dN " 

The cylinder Cyl(f)  of f is defined as the mapping cone of the morphism 

(31) 
We have the following sequence of complexes 

M" Y> N ' - g - + C ( f )  n>M[1] 
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where 

N n g'~> C ( f )  n - -  M n+l (3 N n 

and 

C ( f )  n h"> Mn+l 

are the canonical injection and projection respectively. The family of such sequences (up 
to isomorphism the so-called "distinguished triangles") defines the structure of a trian- 
gulated category on the homotopy category K(A) (see the details in [Ha, V] or [GEM]). 

2.5. PROPOSITION. C(A) is a triangulated subcategory of the triangulated category K(A). 

PROOF (sketch). We need only to prove that for any morphism f: M" -~ N" in C(A) the 
mapping cone C ( f )  lies in C(A). We have the short exact sequence: 

M ' - +  Cyl(f) --+ C( f ) ,  

and as Cyl(f) ~ N ' O C ( - 1 M )  and C ( - 1 M )  ,-~ 0 the desired statement follows from 2.2. 
U] 

2.6. A full triangulated subcategory C of a triangulated category 79 is said to be 
6paisse [V] if the following condition is satisfied: given a composition in D f: X --+ 
V -4 Y with V c C and such that in the distinguished triangle containing f 

X f> Y ~, Z >X[1] 

Z c C we have also X, Y E C. 
The following important fact allows simplification of the recognition of 6paisse sub- 

categories. 

2.7. THEOREM [Ri]. The full triangulated subcategory C of a triangulated category 79 is 
~paisse iff any direct summand (in 79) of an object V c C also lies in C. 

Using this general fact we can prove the following result. 

2.8. THEOREM [G7]. Let A be a preabelian category, w be a p.c. of cokernels in A. Then 
the full subcategory C(A) of co-acyclic complexes over A is an dpaisse subcategory of 
the homotopy category K(A). 

Sketch of the proof. Let Y c C(A) and X be a direct summand of Y in K(A), i.e. we 
have the morphisms f:  X --+ Y, g: Y ~ X such that g f  ~ 1 x .  Consider the morphism 
qD: Y --> C (g f ) such that 
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As C ( 9 f )  " C( lz )  ~ 0, C(9 f )  E C(A) and so by 2.5 C(T) E C(A). As is easily 
seen we have in Kom(A)" C(~)  = X[1] | C(9), and consequently X E C(A). Now the 
theorem follows from 2.7. 

2.9. The significance of the notion of an 6paisse subcategory is explained by the fact 
that one can construct the category fractions of a triangulated category w.r.t, an 6paisse 
subcategory (cf. [V]). We discuss this construction for our situation. 

2.10. A class S of morphisms in a category 79 is said to be right localizing ([GaZ]) if 
the following conditions are satisfied: 

a) l x E S for any object X E 79, and if s, t E S then st E S (provided st exists). 
b) for any morphism f:  X -+ Y in 79 and any s: Z --4 Y in S there exists a morphism 

t E S and a morphism 9 such that f t  = s9. 
c) if t f  - 0 for a given morphism f, with t E S, then there exists an s E S such that 

f s = O .  
A left localizing class is defined dually. A class of morphisms that is both right and 

left localizing is called localizing. 
For any right localizing class S of morphisms in 79 we can form the category of 

fractions 79 [S -1] (or the localization of 79 w.r.t. S): it has the same objects as 79, and 
morphisms from X to Y in 79 [S -1 ] are represented by diagrams of the form 

s f 
X <  Z >Y w i t h s E S  

(cf. [GaZ]). 

2.11. A morphism f" X --+ Y in K(A) is called an w-quasi-isomorphism if its mapping 
cone C ( f )  is w-acyclic. We denote by ,9~ the class of all w-quasi-isomorphisms in K(A).  

Theorem 2.8 implies now the following result. 

2.12. PROPOSITION. The class of w-quasi-isomorphisms $~ in K(A) is localizing. 

2.13. By Proposition 2.12 we can construct the localization of K(A)  w.r.t. S~, and we de- 
fine the (relative) derived category D(A) of A as this localization: D(A) = K(A)[S~-I]. 
Note that D(A) inherits the structure of a triangulated category from K(A).  

If we start with the homotopy category K+(A)  (respectively K - ( A )  or Kb(A)) of 
complexes bounded from below (respectively bounded from above or bounded com- 
plexes) then we get in a similar way the derived categories D + (A) (respectively D - ( A )  

or Db(A)). 

2.14. If we associate to every object A E A the complex �9 . -0  -+ A --+ 0 . .  �9 concentrated 
at zero degree we obtain the functor I: A -+ D(A) which is a full embedding. 

Now we have the opportunity to introduce the "relative groups of extensions" as 
follows: 

w Ext , (A,  B) - HomD(A)(I(A), I(B)[n]) where A, B E A. 
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2.15. THEOREM. Given an w-proper sequence in A: 

E :  A i or , . ~B  >C 

and an object X E A the following sequences o f  abelian groups are exact: 

a) r wExt~ ( C , X )  - ~  wExt~ ( B , X )  i* �9 -. > wExt~ (A ,X)  
( c , x )  . . . 

b) ~ wExt~ (X,A)  i. �9 -. ~ wExt~ (X,B) or*~ wExt~ (X,C) 
(X,A)  >--- 

w Ext2 +l 

> wExt~ +l 

PROOF. The statement follows from the fact that the functors HomD(A) (U, - )  and 
HomD(A) (--, U), where U c D(A), are cohomological (see [GEM]). [-] 

2.16. When w = wst is the class of all stable sequences in a preabelian category A (or 
even a subclass of wst) Theorem 2.15 was established in [RW1]. This result is well- 
known in the case where A is an abelian category [Mal]. Moreover, similarly to the 
case of abelian categories, the elements of w Ext~.(A, B, ) n /> 1, with w C_ Wst are 
represented by w-acyclic complexes of the form (see [G7])" 

0 > B > M -n+~ > M -'~+2 ~ . . .  > M ~ > A >0. 

So, in the case w C_ wst the groups wExt~(A, B) can be defined alternatively using 
"Baer addition" on the set of equivalence classes of such complexes [RW1 ]. 

2.17. Let w be a projective p.c. in a preabelian category A. For any object A E A we 
can construct an w-projective resolution, i.e. the w-acyclic complex 

�9 d l  
Pn a,,~ Pn - l  : " "  > Po ~ A ~ 0 (2) 

with all Pn w-projective. The morphism e: P0 ~ A induces obviously a morphism 
of complexes ~: P. = (Pn, dn) --+ A (here A denotes the complex concentrated in 
zero degree). The complex P. = (Pn, tin) is also-called an w-projective resolution. Any 
two such w-projective resolutions of A are homotopic. Moreover, the complex (2) is a 
mapping cone of the morphism ~: P. --+ A, and so s is an w-quasi-isomorphism. 

Let K-(79~o) be the homotopy category of complexes bounded from above over 
the full subcategory 79~o of A consisting of w-projectives. There is a natural functor 
,P: K-(79~o) --+ D~ (A) which takes P E K-(P~o) C K - ( A )  to its image in Dy  o (A) 
under localization. 

2.18. THEOREM [G7]. I f  w is a projective p.c. in a preabelian category A then the functor  
~: K-(79~o) --+ DS (A) is an equivalence o f  categories. 

Thus, every object in D~,(A) is represented by a complex bounded on the right 
over "P~o. Certainly one has also the dual result for an injective p.c. of kernels in A 
(with Dg  (A) being replaced by D + (A)). 
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2.19. Let F: A ~ C be an (additive covariant) functor from a preabelian cate- 
gory A to an abelian category C. Define the functor K - ( F ) :  K-(T'~o) -+ K - ( C )  by 
K - ( F ) ( P n ,  dn) = (F(Pn), F(dn)); this definition is correct since homotopic complexes 
are taken to homotopic ones. Now we get an induced functor 

D - ( F )  = Qc o K - ( F )  o ~: D S (A) --4 D - ( C )  

where Qc: K - ( C )  --+ D - ( C )  is the corresponding localization functor and g' is the 
equivalence of categories quasi-inverse to qs. One can prove that D - ( F )  is exact (as a 
functor between triangulated categories, i.e. D - ( F )  takes distinguished triangles to the 
distinguished triangles). Moreover, D - ( F )  solves some universal problem defining a "left 
derived functor" (cf. [V]). Then we can get the classical (relative) left derived functors 
as the restriction of D - ( F )  to A composed with the cohomology object functors Hn: 

L~F = H n o D-(F)[A" A --+ C. 

It is easily proved that for n > 0 L~oF = 0, and so it is natural to introduce the notation 
L ~ F  - Lyo n F for n />  0. 

A functor F:  A --+ C (where C is abelian) is called right co-exact if for any co-proper 
sequence in A A --+ B -+ C the induced sequence F(A)  --+ F ( B )  --+ F ( C )  -+ 0 is 
exact. 

2.20. THEOREM [G7]. Let co be a projective p.c. in a preabelian category A, F: A -+ C 
be a right w-exact additive functor to an abelian category C. Given an w-proper sequence 
in A A -+ B -+ C the following sequence is exact: 

>L"~F(A) >L~F(B)  >L~F(C) > Ln_l (A ) > " -  

L~F(C)  ---+ F(A)  ~ F(B)  F(C) >0. 

Essentially this result is a consequence on the exactness of the functor D - ( F ) .  

2.21. REMARKS. 
a) The (relative) right derived functors R~oF of an additive covariant functor F 

with co being an injective p.c. of kernels are defined similarly. The right and left de- 
rived functors of contravariant functors can be defined by the duality. In particular we 
can prove that for the contravariant functor F = H o m A ( - , X ) :  A -+ .Ab we have 
R ~ F  = co E x t , ( - ,  X) (where co is a projective p.c.). Also we may state a similar result 
for the functor H o m A ( X , - ) .  

b) In view of 1.9 the main result of [Y] is contained in 2.20. 

2.22. (Relative) derived categories can be constructed in a more general context. Namely, 
let A be an additive category. A class co of cokernels in A is called proper if co satisfies the 
axioms P0-P3 from 1.1. The pair (A, co) is said to be an epi-exact category. This notion 
generalizes both the exact categories of Quillen and preabelian categories with fixed 
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p.c.w. In this setting we can repeat the definitions and constructions above which lead 
us to the derived categories of bounded types, i.e. D+(A) and Db(A) [G8]. If A satisfies 
additionally the condition of splitting of all idempotents then we can also construct the 
unbounded derived category D(A) [N, G8]. 

2.23. REMARK. In [N] the derived categories of bounded types of an exact category are 
constructed under the additional condition that "every weakly split idempotent splits", 
but as easily seen any epi-exact (hence exact) category satisfies this condition [G8]. 

3. Relative homological algebra in module categories 

3.1. Let R be an associative ring with identity. Denote by Mod R (respectively mod R) 
the category of all (respectively finitely generated) right (unital) R-modules. As we 
pointed out in Section 1 a p.c. w in Mod R may be given by a class of w-proper se- 
quences or by the class of corresponding w-proper epimorphisms or else by the class of 
corresponding w-proper monomorphisms. 

3.2. We begin with one of the most famous p.c.s, namely, purity in the category .Ab 
of abelian groups. Recall that a subgroup H of an abelian group (7 is said to be pure 
if for any natural number n we have H N n G =  ni l .  A short exact sequence 0 

H i ~ G ~r K ~ 0 in .Ab is called pure if i(H) is the pure subgroup of (7. The class 
of the pure sequences is proper; usually it is called the (classical) purity. It has many 
important applications in abelian group theory (see, e.g., [F]). This class is projectively 
generated by the class of finite abelian groups and it is injectively generated by the same 
class of groups [F, MS]. The w-projective (respectively w-injective) groups for the purity 
w usually are called pure-projective (respectively pure-injective) groups. The class of 
pure-injective groups coincides with the class of so-called algebraically compact abelian 
groups [F]. 

It easily follows from the definition that a monomorphism H --+ G is pure iff for any 
abelian group X the induced homomorphism H @ X -+ (7 @ X is a monomorphism. 

3.3. Let .A4 be a class of left R-modules, w be the class of monomorphisms i: A -+ B in 
Mod R such that for any M E A4 the induced homomorphism i | M: A @ M --~ B @ M 
is injective. One can readily show that w is a p.c., and we call w the p.c. flatly generated 
(by .M). 

If we take for .A4 the class of all modules (or even only finitely generated modules) 
then we get the p.c. which usually is called the Cohn purity. This p.c. was profoundly 
investigated in [W] and many properties of the classical purity in ftb were extended 
there to this general context. In particular, the Cohn purity wp is projective and injective, 
moreover it is projectively generated by the class of finitely presented right R-modules. 
The wp-projective (respectively wp-injective) modules are called pure-projective (re- 
spectively pure-injective). 

3.4. From the properties of the tensor product, it is easy to see that any flatly generated 
p.c. w is inductively closed, i.e. for any direct system {Ei ] i E 1} of w-proper sequences 



Relative homological algebra 623 

in Mod R over a directed set I the colimit E = lim. Ei is also an w-proper sequence. 
.-7-+1 

The converse is not true in general, but it is true in the category .Ab of abelian groups 
[Mn, Ku]. More completely, we have the following result over a bounded HNP-ring R. 
Recall that a ring R is said to be bounded if every essential onesided ideal of R contains 
a nonzero (two-sided) ideal; here "HNP-ring" means "hereditary noetherian prime ring". 

3.5. THEOREM [G1]. Let R be a bounded HNP-ring. Every inductively closed p.c. in 
Mod R is flatly generated iff R is a Dedekind prime ring (i.e. R is a HNP-ring without 
nontrivial idempotent ideals). 

~'" . . . . . . . .  in [G o . 1 . , _ _  _, . . . . . . . . . . . . . .  lvx~,~c~,v~, I, ~vl  tnc t:la~snlt;auon of an inductively closed p.c.s is given for the 
cases where R is either a bounded HNP-ring or a time hereditary finite dimensional alge- 
bra over a field. These results have interest in view of the still open question (see [MS]): 
to describe all p.c.s in the category .Ab of abelian groups. 

Also note that over a bounded HNP-ring R every inductively closed p.c. in Mod R 
is uniquely determined by its restriction to the subcategory mod R of finitely generated 
modules [G 1 ], but the similar statement for the case where R is a tame hereditary algebra 
is false [G6]. 

Since every (Cohn-)pure sequence in Mod R, R being any ring, is the colimit of a 
direct system of split exact sequences, every inductively closed p.c. contains the Cohn 
purity [Sk]; so the Cohn purity is the least inductively closed p.c. 

By Kaplansky's theorem we have a good description of pure-injective (-- algebraically 
compact) abelian groups [F]. Generalizations of this theorem are proved in [G1, G6] in 
the cases where R is either a bounded HNP-ring or a tame hereditary algebra. 

Part of the results concerning the Cohn purity were generalized in [St] to the category 
of functors from a small additive category into .Ab (see also [Ca]). 

3.6. Note that we can introduce the notion of a "relative" global dimension of a ring (or 
even of a category) w.r.t, a projective p.c. w similarly to the absolute case (cf. [Mal ]). The 
notion of the pure global dimension (i.e.w.r.t. the Cohn-purity) is the most interesting 
among these global dimensions and has been investigated by many authors (see, e.g., 
[Si, GrJ, BALI). 

3.7. Let 7: S --+ R be a (unital) ring morphism and 7*: Mod R -+ Mod S be a corre- 
sponding "forgetful" functor. Let w be a p.c. of short exact sequences in Mod S and let 
w' = (7*) -1 (w) be the class of short exact sequences in Mod R which being considered 
over ,5' are w-proper. Plainly w I is a p.c.; we call it the p.c. induced by w. 

3.8. PROPOSITION. 

a) If  w is a p.c. projectively generated by a class dk4 of S-modules then the induced 
p.c. w' is projectively generated by the class of R-modules { M  |  R !  M c A/I). 

b) If w is a p.c. injectively generated by a class A/[ of S-modules then the induced 
p.c. w' is injectively generated by the class of R-modules {Homs(R,  M)  I M 6 A/l}. 

This result follows immediately from 1.13 (and its dual) since the forgetful functor 7* 
has the functor - |  R (respectively H o m s ( R , - ) )  as a left (respectively right) adjoint. 
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3.9. If in the preceding construction w -- w0 is the p.c. in Mod S consisting of split 
sequences then the short exact sequences in w D - (3'*)- '  (w0) are called (R, S)-proper. 

I When S is a (unital) subring of a ring R and ~,: S --+ R is the inclusion the p.c. w 0 
was used by Hochschild [Ho] in the construction of the relative cohomology theory of 
associative rings (cf. 4.7 below). As a consequence of 3.8 and 1.12 we have the following. 

3.10. PROPOSITION [Ho]. Let 7: S -+ R be a ring morphism and w be the class of 
(R, S)-proper sequences. Then: 

a) a right R-module M is w-projective (respectively w-injective) iff M is a direct 
summand of an R-module of the form X | R (respectively, Homs(R ,X) )  with an 
S-module X;  

b) w is a projective and injective p.c. 

3.11. Let w be a p.c. of short exact sequences in a (small) abelian category A. Let F 
be the free abelian group on the set of (representatives of) isomorphism classes [M] of 
objects M in A. The relative Grothendieck group K0(A, w) is defined as the quotient of 
the group F modulo the subgroup H of F generated by elements of the form r(E) = 
[A] - [B] + [C] which correspond to w-proper sequences E: 0 --+ A --+ B -+ C -+ 0. If 
wo (respectively, wl) is the p.c. of all split exact (respectively exact) sequences then we 
denote Ko(A, w0) (respectively K0(A, wl)) as K0(A, 0) (respectively, Ko(A)). Plainly 
K0(A) is the (absolute) Grothendieck group of the category A. 

Consider the short exact sequence 

o E(A,w) -+ Ko(A, O) Ko(A, 0 (1) 

where 7r is the natural homomorphism. If the Krull-Schmidt theorem is satisfied in the 
category A the group K0(A, 0) is free and has as a set of free generators the (isomorphism 
classes of) indecomposable objects in A. In this context the group E(A, w) in (1) is called 
usually "the group of relations" of the group K0(A, w) (indeed we have a presentation 
of this group in terms of generators and relations). Denote also with E(A) = E(A, (.U 1), 
the group of relations of K0(A). 

If R is a right noetherian ring the category mod R of finitely generated right R-modules 
is abelian, and then we denote the group K0(mod R, w) (respectively, E(mod T, w) and 
E ( m o d R ) )  by Ko(R,w) (respectively, E(R,w)  and E(R)).  

3.12. Historically the first example of a relative Grothendieck group was considered 
by Lain and Reiner [LR]. Let G be a finite group, H be a subgroup of G, k be a 
(commutative) field. Denote by R - k[G] and S = k[H] the corresponding group 
algebras. Let w be the class of (R, S)-proper short exact sequences in mod R (3.9) (it 
will be convenient to call these sequences also (G, H)-proper). Then the group Ko(R, w) 
and its relations with Ko(R, 0) and Ko(R) was investigated in [LR]. 

3.13. When R is an artin algebra the groups of relations of the groups Ko(R, w) is related 
with so-called almost split sequences [Bu, A]. Recall that a ring R is said to be an artin 
algebra if its center C is an artinian ring and R is a finitely generated C-module. A ring 
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R is said to be of finite representation type if it has only a finite number of isomorphism 
classes of indecomposable modules. A nonsplit short exact sequence 

E: 0 >A >B g ~ C  >0 

is called an almost split sequence if A and C are indecomposable modules and for any ho- 
momorphism h: X -+ C which is not a split epimorphism there exists a homomorphism 
h ~" X --+ B suchthat  g h ' =  h. 

3.14. THEOREM. Let R be a ring of finite representation type, and let co be the p.c. of 
short exact sequences in mod R. Then the group E(R,  co) if freely generated by elements 
of the form r(E) (see 3.11) where E runs through all w-proper almost split sequences. 

The absolute case of the theorem is proved for an artin algebra R in [Bu, A], and the 
general case is proved in [G3]. 

Note also that over a ring R of finite representation type any inductively closed p.c. 
in Mod R is uniquely determined by its restriction to mod R [G2] (cf. 3.5). 

3.15. A similar problem is solved in [G4] for tame hereditary finite dimensional alge- 
bras R. In this situation we add to the almost split sequences new classes of short exact 
sequences in mod R and using them we obtain the set of free generators of the group 
E(R,  w). Note that these new short exact sequences are also used in the classification of 
all p.c.s in mod R (cf. 3.5). 

Another set of free generators of absolute group E(R) for (tame or wild) hereditary 
finite dimensional algebra R was introduced in [Gei]. 

By the same methods the description of sets of free generators of E(R,  co) is given 
for chain right noetherian rings R in [G5]. 

3.16. Some additional information on relative homological algebra in a module category 
can be found in the excellent review by Sklyarenko [Sk]. For brevity we do not discuss 
the "relative" spectral sequences considered in [Sk] (see also [Khl]). 

4. Cohomology of small categories 

4.1. Let J: C -+ D be a functor between small categories. We have the induced functor 
J*" Ab D -+ Ab c, J*(T) = T .  J for a functor T: ID --+ Ab. As the category Ab is 
complete (i.e. every functor F: C --+ ~Ab has a limit) the functor J* has a right adjoint 
J: Ab e --+ ,AbD; it is called the right Kan extension [Ma2]. If w is a projective p,c. in 
,Ab e then we can construct the (relative) right derived functors R~o J" ,Ab e --+ Ab • of the 
functor J.  Define the (relative) cohomology H~ (J, T) of J with coefficients in a functor 
T: C --+ .Ab as follows" 

H n (J, T) - R :  J (T) .  

In this context any functor T in Abc is usually called a C-module. 
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4.2. Consider the obvious functor I: Cd --4 C where Cd is the discrete category cor- 
responding to a category C (i.e. Ob(Cd) -- Ob(C), Cd(A, B) is empty if A -r B, and 
Cd(A, A) = {1a}). The induced functor I*" .Ab e --+ .Ab ed is faithful and has a left 
adjoint I: .Abcd --+ .Abc (since .Ab is a cocomplete category). The category .Ab ca is a 
product of copies of .Ab and then the class Wd of all epimorphisms in .Abcd is a pro- 
jective p.c. Clearly, (I*)-l(Wd) is a class of all epimorphisms in .Ab c, and by 1.12 it 
is a projective p.c. If we take in 4.1 w = (I*)-l(wd) we get the absolute cohomology 
H* (J, T) defined in [HIS]. 

4.3. Let now J: C --+ 1 be the obvious functor where 1 is the category with one object 
and only one morphism. In this situation 

H~(C, T) : H~(J, T) (1) 

is called the (relative) cohomology of the category C with coefficients in T: C --+ Ab. 
One gets the absolute cohomology H* (C, T) if one takes w as the p.c. of all epimorphisms 
in Abc. 

We can identify J*" .Ab = .Ab I --+ .Abc with the functor which associated to an abelian 
group A the corresponding constant functor A: C --+ .Ab (i.e. A(X)  = A for all objects 
X in C). 

4.4. PROPOSITION. The right adjoint J: Ab c --4 Ab of the functor J* coincides (up to 
isomorphism) with the functor jib c (~, - ) .  

Sketch of the proof. Let 

a: Abc (7t, F) -+ Ab(A, Abc (Z, F) ) 

be a map such that for a natural transformation 7/: ft. --+ F the natural transformation 
cr(r/)(a)" Z --+ F is defined as follows: (cr(r/))x(1) = fix(a) where X E Ob(C), 
a E A (1 is a generator of Z). The inverse -r = a -1 is a map which to a natural 
transformation r A --+ .AbC(Z, F)  associates the natural transformation "r(()" fi_ --+ F 
such that "r(()y(x) = r 

4.5. PROPOSITION. H n (C, T) : EXt~bc (Z, T). 

This statement follows from 4.3 and 4.4. Note that if P." -. .  -~ P1 --~ P0 --> 0 is an 
w-projective resolution of Z (in .Ab c) then we can compute H~ n (C, 7') as the cohomology 
of the complex .AbC(P., T). 

4.6. If we consider a finite group G as a category G with one object then we get the 
well-known result (or rather a definition!)" 

Hn(G, T) = Hn(G, T) : EXtra(Z, T) 

where Z is a trivial G-module, T is a G-module (cf. [HIS, Mal]). 
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If H is a subgroup of the group G and w is the p.c. of (G, H)-proper sequences 
(see 3.12) then 

H~ (G, T) : w Ext~c(Z , T), 

that is the relative cohomology H~(G, T) coincides with the group Hn(G, H, T) intro- 
duced in [Ho]. 

So we can compute the cohomology Hn(G,T) (respectively, H~,(G, T)) using the 
standard (or bar) projective (respectively (G, H)-projective) resolution P. of Z (see [Ho]), 
namely: 

H n (G, T) = H n (Homza (P., T)) 

(and similarly in the relative case). 

4.7. Another example is given by the relative Hochschild cohomology of algebras. Let 
3" A --+/3 be a K-algebra homomorphism where K is a commutative ring. Define 

S = A | B ~ R = B | /3op, "~ = 7 Q I" S --+ R. 

Let w be a (R, S)-proper class (w.r.t. ~) (see 3.9). We have the natural ring homomor- 
phism 

J: R -+ B, J(bl | b2) - bib2. 

The ring R (respectively/3) can be considered as an additive category R (respectively B) 
with one object [Mtl] and then J is a functor between these categories. Following 4.1 
we get the functor 

J*" ,Ab B - B-Mod -+ R-Mod = ,Abe 

and its right adjoint J: R-Mod -+ B-Mod. As in 4.4 we have J ( - )  - H o m R ( B , - ) ,  
and hence for any B-bimodule (= R-module) T 

H2(J, T) = R~oJ(T) - co Ext , (B ,  T) - Ext~R,s)(B , T). 

Consequently these cohomology groups coincide with the groups Hn(B,  A, T) defined 
in [Ho]. 

For computation of this cohomology we may use the standard (R, S)-projective reso- 
lution of B (see [Ho]): 

�9 ,- X n  dn d n -  1 d o  ) 
~ ) X n - 1  ~ ' ' .  > X 0 B ) 0 

w h e r e  X n  -- /~ @A /~ @ A . - .  @A /~ (n + 2 times), 

n 

dn(bo |  | bn+l) -- ~-'~(- 1) k (b0 |  | bkbk+l @. . .  | bn+l). 
k=l 
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So we have 

H~,(J, T) = H* (Homn(X.,  T)) .  

4.8. It is easy to see that for any C-module T: C ~ .Ab lim T ~ .Abc(Z, T) and hence 
we get the following +--- 

4.9. PROPOSITION. Hn(C, T) = lim n T, the n-th derivedfunctor of l im.  +_._ +.- 

4.10. Now we discuss a further generalization of the cohomology of small categories 
introduced in [BaW], namely, cohomology with coefficients in a natural system. Let C 
be a small category. Thecategory of factorizations in C (denoted by F(C))  is defined 
as follows. The objects of F(C)  are morphisms in C and a morphism f --+ g is a pair 
(a, g) or morphisms in C such that c~fg = 9; composition is defined naturally. 

A natural system (of abelian groups) on C is a functor D: F(C)  --+ .Ab. 
The cohomology of a category C with coefficients in a natural system D is defined as 

H* (C, D) = H* (F(C), D) 

where the right side is the cohomology from (1) in 4.3. 

4.11. Any functor M: C ~ x C -+ .Ab is called a C-bimodule. We have a forgetful 
functor 7r: F (C)  -+ C ~ x C with associates to a morphism or: X -+ Y E Ob(F(C))  the 
pair (X, Y). Define the cohomology of the category C with coefficients in a C-bimodule 
M as 

M/:  n-(c, 

This cohomology (usually called Hochschild-Mitchell cohomology) was introduced 
by Mitchell in [Mtl]. 

4.12. If C is a small category and K is a commutative ring then K C  is defined as 
the category whose objects are those of C and KC(A,  B) is the free K-module on the 
set of morphisms C(A, B). Composition in K C  is defined naturally so that we obtain 
an additive category. It is easy to see that there exists an isomorphism of categories 
K C  ~ (Mod K)  c. Moreover, K C  can be considered as a functor KC:  C ~ x C ~ Ab. 

The case where K = Z has particular interest. 

4.13. THEOREM [BaW]. For any C-bimodule M 

H n (C, M)  = Ext~tbF(C , (Z, ~* M)  = EXt~bc,,,, • (ZC, M).  

If p: C ~ x C ~ C is the natural forgetful functor then we have for any C-module T 
that 

EXt~bF(C , (Z, p*Tr*T) = EXt~bc (Z, T) [BaWl 
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and hence the definition in 4.10 is indeed a generalization of the definition of the coho- 
mology in 4.3 (cf. 4.5). 

4.14. Let C be a category and NC -- {Nn(C)} be the nerve of C (see [GEM]) (for 
example, Nn(C), n >~ 1, is the set of sequences ( a l , . . . ,  an) of n composable morphisms 

Ao al  A1 ~a2 . . . .  .~'~ An; N0(C) = Ob(C)). Let D be a natural system on C. Denote 
a. -- D(a, 1), b* - D(1, b) for any morphisms a, b in C. Now we construct the following 
cochain complex F ' -  {F n, ~}" F n = F n ( c ,  D) is the abelian group of all functions 

f: Nn(C)--+ Qfl D(g) 
gEMorC 

(here U denotes a disjoint union) such that f ( a l , . . .  ,an)  e D ( a l . a 2 . . . . .  an); the 
addition in F n is given "componentwise" in the abelian groups D(g); the coboundary 
5" F n-1 --+ F n is defined by the formula: 

n-I  

(S f ) (a l , . . .  , an )= (a l ) , f (a2 , . . .  , an )+ ~ ( - 1 ) n f ( a l , . . .  ,a ia i+l , . . . ,an)  
i=l 

+ ( - - 1 ) n a * f ( a l , . . .  , a n - l ) .  

4.15. THEOREM [BaW]. Hn(C.,D) = Hn(F').  

This result is proved in [BaW] with the use of a generalized bar resolution /3. - 
{/3n, d} of Z in Ab E(c) for which we have F n ~- .Ab E(c) (Bn, D), and so 

Hn(F ") - H n (Ab  F(C) (Bn, D)) - EXt~bF(C , (Z, D) - Hn(c ,  D) 

(see 4.4). 

4.16. A function d E F 1 (C, D) such that d(xy) -- x.  (dy)+ y*(dx) is called a derivation 
(from the category C to the natural system D). An inner derivation is a function d 
for which there exists an a -- F~  such that d(x) -- x . a ( A ) -  x*a(B) where 
x: A --+ B. Denote by Der (C, D) and Ider (C, D) the abelian groups of all derivations 
and all inner derivations, respectively. 

4.17. PROPOSITION [BaW]. H 1 (C, D) - Der (C, D)/Ider (C, D). 

This statement follows immediately from 4.15 since derivations (respectively inner 
derivations) are cocycles (respectively coboundaries) in F 1. 

4.18. REMARK. As in the cohomology theory of groups the second cohomology 
H2(C,D)  can be described in terms of so-called linear extensions of a category C 
by a natural system D [BaW]. An extension of this description is made in [Go] for any 
n-th cohomology Hn(C, D). 
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4.19. Let C be a small category and R be a ring. Define the R-cohomological dimension 
of C by 

cdR C - sup { k I ExtkRc ( R , - )  ~ 0} 

where for brevity RC = ( R - M o d )  c (see 4.12), and R is the constant R-valued functor 
in RC. When R = Z we write simply cd C. 

It follows immediately from the definition that (see [Mt3]): 
a) if F: C -+ ID is any functor (between small categories) then cdR C ~< cdR D; 
b) if 7: R -+ S is a ring homomorphism then cds C <~ cdR C; in particular cdR C <~ 

cd C; 
c) if C has an initial object then cdR C = 0; the converse is true if additionally C is 

a connected category in which all idempotents split. 

4.20. The Hochschild-Mitchell K-dimension dimKC of a small category C (where K 
is a commutative ring) is defined as the projective dimension of K C  (see 4.12) in the 
category ,Ab c~ xC, i.e. 

dimKC = sup {n I Ext~tbC,,p• # 0}. 

When K = Z we write simply dim C. By 4.13 dim C can be described as 

dim C = sup {n I H n ( c ,  M) # 0 for some C-bimodule M}.  

The Hochschild-Mitchell dimension is related to another dimensions. For example, 
we have the following. 

4.21. THEOREM [Mtl, Mt3]. Let C be a small category, A be an abelian K-category 
(i.e. for any pair (X, Y)  of objects in A A(X, Y)  is a K-module and the composition 
in A is K-bilinear). I f  A has exact coproduct then for all T E A c 

pr.dim. T < dimKC + sup {pr.dim. T ( X )  I X  c Ob(C)}. 

Consequently, 

gl.dim. A c ~< dimKC + gl.dim. A. 

m 

If we take A = Mod K and T = K: K C  -+ ,Ab, a constant functor, we obtain 

4.22. PROPOSITION [Mt3]. cdKC <~ dimKC. 

Note that in general cdg C r dimgC, but for example if C is a group (cf. 4.6) the 
inequality in 4.22 is an equality [CE]. 

4.23. THEOREM [Mt3]. Let C be a small category such that the only idempotents in C 
are identities. Then dim C = 0 iff C is equivalent to a discrete category. 
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We do not discuss other cases where C has a low Hochschild-Mitchell dimension and 
note only that many interesting classes of categories with dim C ~< 2 are investigated 
in [Mtl, Mt3] (cf. 5.10). 

4.24. The Baues-Wirsching dimension Dim C of a small category C is defined as 
Dim C - cd ~ ( C )  where .T(C) is the category of factorizations in C (4.1 0), i.e. Dim C is 
a projective dimension of the constant natural system Z. It easily follows from definition 
and 4.13 that dim C ~< Dim C (cf. 5.8 below). 

4.25. THEOREM [BaW]. 
a) I f  C is a free category then Dim C ~< 1. 
b) I f  C is a small category such that Dim C ~< 1 and 27-1C is a localization of  C with 

respect to a subset 27 of  morphisms in C then Dim 27-1C ~< 1. 

This result corresponds (and partly generalizes) a similar result for the Hochschild- 
Mitchell dimension (see [CWM]). 

5. Cohomology of posets 

5.1. We can apply the results on the cohomology of small categories (see Section 4) if 
we consider any poset (= partially ordered set) as a category o such that Ob(o) = / and 
o(i, j )  consists of only one morphism if i <<. j; o(i, j )  - O otherwise. 

Recall that the cohomological R-dimension cdR I of a poset I where R is a ring is 
the projective dimension of the constant functor R: I -+ .Ab which has a value R on 
every object in I,  particularly cd I = pr. dim. Z (see 4.19). 

5.2. As for any functor T: I --~ .Ab we have H n ( I , T )  = Ext~tb, (Z, T ) = limn(T) (4.9) +_._. 
the groups Hn(1,  T)  are isomorphic to the cohomology groups of the Koos complex 
(cf. [Ro]): 

d 1 d n 
0 > H T ( c o )  dO> H T(cl)  ' " "  > H T ( c n ) - - + " "  

co co< cl co< cl <. . .< cn 

where the differential d n is defined by the formula: 

n 

< . . - <  < - . .  < < . . .  < 

i=0 

q - ( - 1 ) n + I T ( c n  < C n + I ) f ( c o  < " "  < On).  

The following result is an immediate consequence of this observation. 

5.3.  PROPOSITION. Let I be a poset for  which there exists a natural number n such that 
every chain of  the form co < Cl < . . .  < Cm has the length m ~ n. Then cd I ~ n. 
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5.4. Let Mn be the poset defined as follows: as a set 

M n =  { a l , . . . , a n } U { b l , . . . , b n } U { 1 }  

and a partial order on Mn is generated by the relations: bi ~< ai and ai ~< 1 for all i" 

bi ~< ai+l for i = 1 , . . . , n -  1; bn <~ al. 

5.5. THEOREM [CM]. Let I be a poset with dcc and let R be a ring. Then cdaI  <~ 1 iff 
I does not contain Mn as a retract for  any n >/2. 

Recall that a subset J c I is said to be a retract if there exists a morphism of posets 
77: I --+ J such that r / I a=  Idd. 

We notice additionally that an algorithm was given in [Ch] for determining when a 
finite poset I has cdRI <~ 1. 

5.6. THEOREM [Mt2]. I f  iop is a directed set and R is a ring then cdRI  -- n + 1 where 
Rn is the smallest cardinal number of  a cofinal subset of  iop. 

5.7. In general there exist finite posets for which cduI  is dependent on the ring R. In 
fact, one can make the difference cdRI - c d s l  as large as one likes for suitable I, R 
and S [Mtl ]. A similar result holds for gl dim K I ,  the global dimension of the incidence 
algebra K I  of a poset I [Mtl, IZ]. 

5.8. Let dim I (respectively Dim 1) be the Hochschild-Mitchell dimension (respectively 
Baues-Wirsching dimension) of a poset I (cf. 4.20 and 4.24). In contrast to the inequality 
dim C ~< Dim C (4.24) we have the following. 

5.9. PROPOSITION [Kh3]. I f  I is a poset then dim I - Dim I. 

5.10. THEOREM [Mt 1 ]. Let I be a poset and let K be a commutative ring. Then dimK I ~< 
1 iff I is the free category generated by an oriented graph. 

In particular if I -- Z is a poset of integers then dim Z = 1. 
Note that Mitchell [Mtl] gives also a description of some class of categories with 

dimKC <~ 2 including all locally finite posets. 

5.11. We discuss now the case of totally ordered sets. In this case the Hochschild- 
Mitchell dimension is a monotone function: if I is a totally ordered set and J _c I then 
dim J <~ dim ! [Kh3]. 

5.12. THEOREM [Mt3]. I f  I is a totally ordered set whose closed intervals all have car- 
dinal numbers at most Rn then dim I <~ n + 2. 

This inequality is best possible in view of the following fact: if I contains Rn + 1 or 
(Rn + 1)~ then dimKI /> n + 2 for any commutative ring K [Mtl]. In particular, if 
I - Q is the poset of rational numbers then dim Q - 2. 
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5.13. The problem of determining the precise Hochschild-Mitchell dimension of any 
totally ordered set I is still open (see [Mt3]). In the interesting case where I - R is 
the poset of real numbers Mitchell proved that 2 <~ dim IR ~ 3 (the latter inequality was 
proved under assumption of the continuum hypothesis) and supposed that dim IR depends 
on the continuum hypothesis [Mtl, Mt3]. This problem was solved by Balcerzyk [Bar] 
(independent solution was given by Khusainov [Kh2, Kh3]). 

5.14. THEOREM [Bar, Kh2, Kh3]. dimR = 3. 

So dim R does not depend on the continuum hypothesis. In turn Khusainov [Kh3] dis- 
cusses a new hypothesis about connections between the Hochschild-Mitchell dimension 
and the continuum hypothesis. 

6. Cohomology of coalgebras 

6.1. Let k be a fixed field. We denote the tensor product | over k simply as | A 
coalgebra (C, A, e) over a field k is a k-vector space C together with k-linear maps 
A: C --+ C @ C and e: C --+ k such that the diagrams 

C ,6 > C |  C C C 

C |  ~ | 1 7 4 1 7 4  k |  ~| C |  ~|174 

are commutative (here C -~ k | C etc. is the canonical isomorphism). A is called the 
comultiplication and e the counit of the coalgebra C. We usually simplify the notation 
as C = (C ,A ,e ) .  

A pair (M, m) (or simply M) where M is a k-vector space and m is a k-linear map 
is called a left C-comodule if the following diagrams are commutative: 

M m > C |  M M 

C |  l| > C | 1 7 4  C |  ~| k |  

A right C-comodule is defined similarly. Every right C-comodule can be considered as a 
left C~ where C ~ is the opposite coalgebra of C. Morphisms of left (or right) 
C-comodules and morphisms of coalgebras are defined naturally. The category of left 
(respectively right) C-comodules will be denoted by C-Comod (respectively Comod-C). 
It is well known that the category C-Comod is abelian and has enough injectives (see, 
e.g., [D]). 

Let C, D be two k-coalgebras. M is called (C, D)-bicomodule if there exist k-linear 
maps ml: M ~ C |  and m,-: M --+ M |  such that (M, ml) (respectively (M, m~)) 
is a left C-comodule (respectively right D-comodule) and (1 | m~)m~ = (m~ | 1)m.. 
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Every (C, C)-bicomodule is naturally a left C~-comodule where C ~ - C | C ~ is the 
enveloping coalgebra of C. In particular C is a left C~-comodule. 

6.2. Define the cohomology of a coalgebra C with coefficients in a (C, C)-bicomodule N 
a s  

H n (N, C) = Ext~,e (N, C) 

(see [D]). So if X is an injective resolution of C as a left C~-comodule then 

H n ( N ,  C) = H n ( H o m c , ( N , X ' ) ) .  

6.3. We shall construct a standard complex which is similar to the standard complex 
used in the computation of the Hochschild cohomology (cf. 5.7). Let K n = C |  | C 
(n + 2 times), n >~ 0, with the following (C, C)-bicomodule structure" 

k, (co |174  ~.+,) = A(~o) | ~, |  | ~.+,, 

k~(~o | 1 7 4  c .+ , )  = co |  | ~. | A(~.+,) ,  

and then define the differential dn: K n --+ K n+l by 

n + l  

dn(co @ " "  | Cn+l) = Z ( - 1 ) ' c o  |  | A(ci) |  @ cn+,. 
i = 0  

It is easy to see that 

C Za>K~ d~ l d' >K r . . .  

is an injective resolution of C as a left C~-comodule. As a consequence we have 

H n ( N ,  C) = Ext , .  (N, C) = H n ( H o m c . ( N , K ' ) ) .  

6.4. We use the identifications in the standard complex K n ~- C e @ ~ where ~ n  is 

the n-fold tensor product of C (~-o = k), and then 

Homc. (N, K n) = Homc. (N, C '~ | K'~) ~ Homk (N, ~ n ) .  

Hence the H n ( N ,  C) are the cohomology groups of the complex 

{Homk(N, Kn),d}n~>0 where ~n. H o m k ( N , ~  "n) __+ HOmk(N,~  n+') 

is given by 

3n( f )  = (1 | f ) n l -  (A | 1 | 1 7 4  1)f + (1 | A |  | 1)f . . . .  

+(--1)n(1 |  | 1 @ A) f  + (--1)n+l(f  @ 1)nr. 
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6.5. A k-linear map f" N --+ C from a (C, C)-bicomodule N into C is called a coderiva- 
tion if it satisfies the property A f  -- (1 | f )n l  + ( f  | 1)n~. The coderivation f: N --+ C 
is called inner if there exists a k-linear map "7" N -+ k such that 

f = (1 | ")/)nl - -  (")/| 1)n~. 

Denote by Coder(N, C) (respectively Incoder (N, C)) the k-space of all (respectively 
inner) coderivations from N into C. 

6.6. PROPOSITION. For any (C, C)-bicomodule N we have: 
a) H ~ (N, C) -~ Homc~ (N, C)" 
b) g 1 (N, C) -~ Coder(N, C ) / I n c o d e r ( g ,  C). 

This follows immediately from the description of Hn(N,  C) in 6.4. 

6.7. We note that Doi [D] establishes one-to-one correspondence between H2(N, C) and 
the set of equivalence classes of so-called "extensions over C with cokernel N", hence 
the second cohomology group of a coalgebra is described in a manner which is similar 
to the classical case of algebras. 

6.8. A coalgebra C is called coseparable if there exists a (C, C)-bicomodule map 7r: C@ 
C --+ C such that 7rA = l c. 

6.9. THEOREM [D]. Let C be a k-coalgebra. The following statements are equivalent: 
a) C is coseparable; 
b) for every (C, C)-bicomodule N we have n n ( N ,  C) = 0 for all n >~ 1" 
c) every coderivation from any (C, C)-bicomodule N into C is an inner coderivation. 

6.10. Let M and N be (C, D)-bicomodules. A (left) cointegration from M into N is a 
D-map F: M --+ C |  which satisfies the property (AN 1)f -- (1 |  |  
A cointegration is called inner if there exists a D-map r M --+ N such that f = 
(1 | r  - nl r k-spaces of cointegrations and of inner cointegrations from M into N 
will be denoted by Coint(M, N) and Incoint(M, N) respectively. 

We have a connection between cointegrations and coderivations in the case where 
N - C .  

6.11. PROPOSITION [Gu]. If M is (C, C)-bicomodule that there exists a natural iso- 
morphism t~: Coint(M, C) -+ Coder(M, C) which restricts to a natural isomorphism 
c~" Incoint(M, C) -+ Incoder(M, C). 

PROOF. This isomorphism is given by the relation t~(f) - (1 | e) f  where f E 
Coint(M, C). The inverse map is given by/3(9) - (9 | 1)mr where 9 E Coder(M, C). 

D 

6.12. Consider the short exact sequence of (C, D)-bicomodules 

0 >M ~'>C| >O(M) >0, 



636 A.I. Generalov 

i.e. n ( M )  = Coker(m,). 

6.13. PROPOSITION [Gu]. There exists a natural isomorphism of abelian groups 
Homc_D(N,  f2(M)) = Coint(N, M). 

6.14. Let co be p.c. of short exact sequences in the category C-Comod-D of (C, D)- 
bicomodules which split over D. It is easy to see that the forgetful functor 

S: C-Comod-D -~ Comod-D 

has as right adjoint 

T = C | - :  Comod-D --+ C-Comod-D. 

So if coo is the p.c. consisting of split exact sequences in Comod-D then co = S -1 (w0) 
(cf. 1.11). Using the dual versions of 1.12 and 1.13 we obtain 

6.15. PROPOSITION. The p.c. co in 6.14 is injective and is injectively generated by the 
class of comodules {C @ X I X  E Comod-D}. 

6.16. Let w E x t ~ _ D ( N , - )  (respectively R~ Coint ( N , - ) )  be the relative right derived 
functors of the functor H o m c _ o ( N , - )  (respectively Coint ( N , - ) )  (cf. 2.19 and 2.21). 

6.17. THEOREM [Gu]. For any ( C -  D)-bicomodules M, N there exist natural isomor- 
phisms of abelian groups: 

R~ Coint(N, M) -~ w Ext~+_lo(N, M),  n >t 1. 

PROOF. As C | M is w-injective (6.15) we deduce from 6.12 that 

wExt~_D(N,  g2(M)) ~- wExt~+lD(N,M), n >~ 1. 

Now we see from 6.13 that 

Ext,,_ D (N, I2(M)) ~ R~ Coint(N, M),  n ~> 1, 

and the statement follows. 

6.18. PROPOSITION [Gu]. Let R n Coder(M, - )  be the relative right derived functor of the 
functor C o d e r ( M , - )  where M is (C, C)-bicomodule. We have the natural isomorphisms 
of abelian groups: 

R~ Coder(M, C) ~ w Ext~ +i (M, C) -~ H n+' (M, C), n ~> 1. 

This proposition follows from 6.17 and 6.11. 

6.19. REMARK. Some applications of the developed theory to the cohomology of Hopf 
algebras can be found in [D]. 
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6.20. If we replace the base field k by a commutative ring then the category Comod C 
of comodules over k-coalgebra C is not in general an abelian category (and is even not 
preabelian). Nevertheless the cohomology of such coalgebras was introduced in [J] using 
the relative homological algebra developed in [EM]. The corresponding generalizations 
of some results mentioned above and further investigations can be found in [Gu]. 

6.21. A different approach is presented in [Gr] to the development of cohomology theory 
of commutative coalgebras. This theory is in many respects dual to the Andrr-Quillen 
cohomology theory of commutative rings. 
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1. Combinatorial homotopy theory 

The homotopy theory of simplicial sets and homotopical algebra have their roots in a 
mistake of Poincar6 [60, 61]. He made something of a mess of the proof of his famous 
duality theorem; this theorem asserts a relation 

bp -- bn-p 

between the Betti numbers of a compact connected oriented manifold of dimension n. The 
problem was that there was no good definition of Betti numbers-  such things were only 
talked about intuitively at the time. To correct the error, Poincar6 introduced the concept 
of polyhedron, which to us is a finite CW-complex X with enough information about 
the incidence relations between cells such that a chain complex C.X and its associated 
homology groups H.X can be formed (he specialized to ordinary simplicial complexes 
later). Then, for X, bp is the rank of HpX. He fixed his proof, and invented the theory of 
chain complexes and homology in the process, although apparently the homology groups 
themselves were not introduced until much later [15, 51] at a suggestion of Emmy 
Noether. 

One of the bothersome details left over was the question of whether H.X  was in- 
dependent of the given triangulation of X. This was settled by Alexander, using the 
simplicial approximation theorem of Brouwer. The theorem says, in modern terms, that 
if f :  [K] --+ [L I is a continuous map between the realizations of finite simplicial com- 
plexes K and L, then, after sufficiently many subdivisions of K and L, f may be replaced 
up to homotopy by the realization of a simplicial map. One of the three ways the Alexan- 
der proves his result is by putting this theorem together with Poincar6's "observation" 
that there is an isomorphism 

sd" H, (X) ~ H. (sdX) 

associated to barycentric subdivision. 
This was the birth of a field of mathematics that came to be known as Combinatorial 

Topology. Explicitly, this was the study of manifolds, triangulations of such, and associ- 
ated chain complexes and homology invariants. The subject languished under this name 
until Lefschetz rechristened it "Algebraic Topology" in his book of 1942 [48], on the 
grounds that, by this time, there was more algebra than combinatorics to be found in the 
subject. The assumption was false, but the name stuck. 

Eilenberg's introduction of singular homology theory in his Annals paper of 1944 [ 19] 
was a decisive leap forward. I like to write 

Iz~n[ -- {(~0,.-.,~n)E ]l~n+l [ ~ i  ~" l, ~i ~ 0} 

for the topological standard n-simplex. There are maps 

d i" IAn- l l  ---+ IAnl, 0 ~ i  ~ n ,  
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defined by 

i 
( tO, . . . , tn- l )  ~-~ ( tO, . . . ,O, . . . , tn_l)  

which are now called cofaces, and which satisfy the fundamental relation 

did i = d i d  j - 1  if i < j. (1) 

A singular n-simplex of a topological space Y is a continuous map a: [An[ --+ Y, and 
one defines the group Cn (Y; Z) of integral singular n-chains to be the free abelian group 
on the set Sn (Y) of singular n-simplices. A boundary operator 

a: Cn(Y ,Z)  -~ C._,(Y;Z) 

is defined on generators by 

n 
O(cr) - ~ ( - 1 )  i (a o di), 

i=0 

and it follows from (1) above that i~ 2 = 0. The resulting homology groups are the integral 
singular homology groups H .  (Y; Z) of the space Y. 

This theory has important advantages: it is manifestly functorial, and in no way depends 
on a triangulation of the space Y. 

The structure S(Y),  consisting of Sn(Y), n >~ O, and all face maps 

di : Sn (Y) --4 Sn-1(Y) 

defined by 

di(cr)=crod i, O <~ i <~ n, 

is a type of generalized simplicial complex. Eilenberg and Zilber [20] call it a semi- 
simplicial complex. 

Recall that a finite oriented simplicial complex K consists of a totally ordered set 
{v0 , . . . ,  VN) of vertices, together with simplices a = [vio,..., vik], which are elements 
of the power set of {vo , . . . ,  VN}, such that 

(1) each vi is a simplex of K,  and 
(2) if T C a and a is a simplex of K,  then so is T. 

Examples include: 

A n -- all nonempty subsets of the ordinal number n = { 0 , . . . ,  n} 

(standard n-simplex), (2) 

0 A  n : A n -  [ 0 , . . . ,  n] (boundary  of  A n ) ,  and (3) 
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A~ = subcomplex of A n generated by all faces [0 , . . . ,  i - 1, i + 1 , . . . ,  n] 

except the k-th face (the k-th horn of An). (4) 

A simplicial complex K may be identified with a semi-simplicial complex by putting in 
the empty set in degrees above its dimension; the face maps are defined by 

d j  [Vio, . . . , v i k  l = [Vio, . . . , v~j  , . . . , v i i i  (i.e. remove the vertex vi~). 

Each such K has a canonical barycentric realization IKI; this is the topological space 
defined by 

IK[ = {(to, . . . ,  tN) ~ ]I~ N + I  I {Vi I t~ r 0} is a simplex of K and 

t i  = 1, t i  >1 0}.  

There is a natural map of semi-simplicial complexes K --+ SIK[, defined by 

Eilenberg showed that this map induces a homology isomorphisrp, but the most efficient 
proof uses the fact that the standard k-simplex A a has a simplicial contracting homotopy 

,4 n X A 1 -+ A n, 

which can be viewed in categorical terms as the diagram 

0 = 0  = 0  = " "  = 0  

0 ~1 ~'2 ~-""  ~.n 

A map f:  K --+ L of oriented simplicial complexes is defined to be an order-preserving 
function on the vertices such that f ( a )  is a simplex of L whenever rr is a simplex of K.  
Such an f induces a map 

f , :  C , ( K )  - +  C , ( L ) ,  

which is given by 

f f(o) 
f . ( ~ , )  - 0 I. 

if dim(a) = d im(f  (a)), 
if dim(a) > dim(f(cr)). 

The simplices of K x A 1 are defined to be sequences of pairs of the form 

(V~o,..., vi,~) x o, (rio,... ,  v~) x 1, 
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o r  

hj (V/o, . . . ,  v/,~) = ((V/o, 0 ) , . . . ,  (v/j, 0), (v/j, 1 ) , . . . ,  (v/n, 1)), 

where, in all cases, [v/0,... , vim] is a simplex of K. 
Now let f, g: K --+ L be maps of simplicial complexes. A simplicial homotopy from f 

to 9 is defined to be a commutative diagram of maps of simplicial complexes of the form 

K 

K •  h ~ L ,  

K 

(5) 

where i0 sends (Vio , . . . ,v /n)  to (V/o, . . . ,v / , , )  • O, and i, sends (v /o , . . . , v in)  to 
( r io , . . . ,  v/,~) • 1. Then h determines a chain homotopy from f ,  to 9, defined by 

n 

h.  {V,o , . . . ,  ~,o ] = ~ ( -  ~)' h, [~,o, �9 �9 �9 v , .  ]. 
i=O 

Most of these definitions appear, either in [19] or in the subsequent paper [20]. With the 
appearance of [20], the foundations of singular homology theory are mostly in place. 

In the contracting homotopy for A n, the images of the hi [0 , . . . ,  n] want to be (n + 1)- 
simplices of the form 

i 
[ 0 , . . . , 0 ,  i , . . . , n ] .  

It is convenient to keep such "degenerate" simplices (having repeats) around, together 
with the means of producing them; the definition of 

f," C, (K) -+ C, (L) 

above was, after all, quite artificial, as was the description of the hi operators. A simplicial 
set X ("complete semi-simplicial set" in the language of [20]) is often defined to be a 
sequence of sets Xn,  n >~ O, together with functions 

di" Xn  --+ X n - l ,  0 <~ i <. n, (face maps) 

and 

sj" Xn  --+ Xn+l,  0 <<. j <~ n, (degeneracies) 
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such that the following s impl ic ia l  ident i t ies  hold: 

d id j  = d j _ l  di if i < j, (6) 

8 i 8 j  = 8 j + l S i  if i ~< j,  

S j - l d i  if i < j ,  
d~sj  = 1 if i = j , j  + 1, 

s j d i - 1  if i > j + 1. 

The s ingu lar  c o m p l e x  S ( Y )  of a topological space Y is a standard example; the sj are 
induced by precomposition with the continuous maps 

IA"I, 
defined by 

(to, . . . , tn+l  ) w+ (to, . . . , t j  + t j+l  , . . . , tn+l  ). 

Any oriented simplicial complex K can be enlarged to a simplicial set in a canonical 
way, by allowing symbols [vi0,. . . ,  vim] with repeats and decreeing that s j  puts in a 
repeat in the j- th place. We shall keep the same notation for the simplicial sets A n, 0A n 
and A~. 

One can (and should) also think of a simplicial set as a contravariant functor 
X :  A ~ -+ Sets, defined on the category Z~ of finite ordinal numbers n - {0, 1 , . . . ,  n )  
and the functors between them. This is a consequence of the presentation of A in terms 
of generators d i, s j and relations dual to the simplicial identities which is given by 
MacLane in [50]. From this point of view A n is the contravariant functor which is rep- 
resented by the ordinal number n. Furthermore, and perhaps most importantly, maps of 
simplicial sets are just natural transformations. 

More generally, any category C has associated to it a simplicial set B C ,  called its 
nerve,  where B C n  is defined to be the set of functors from n to C (we shall agree to 
suppress set-theoretic conundrums here and now). The "space" B G  associated to the 
category with one ~ object canonically associated to a group G is the standard model for 
the Eilenberg-MacLane space K ( G ,  1). 

One obtains the space in quotes by realizing the simplicial set B G .  Explicitly, the 
real izat ion IXI  of a simplicial set X is defined, most properly in the category of compactly 
generated Hausdorff spaces, by 

I X I -  lim IA n] 

A'~ --?-+X 

where the colimit is taken over the simplex category A $ X. The objects of the simplex 
category are the simplicial set maps 

A n - - % X  
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(aka. simplices of X,  by the Yoneda Lemma), and the morphisms of A $ X are the 
commutative triangles 

A m 

J 
A n 

X 

of simplicial set maps. 
The realization of a simplicial set was first constructed by Milnor (see [53]) although 

not in this form. The definition given here appears in [26]. This functor is left adjoint to 
the singular functor; this was the first discovered example of an adjoint pair of functors, 
due to Kan [45], who formulated the concept. 

This definition of the realization functor immediately implies that the realization of 
the standard n-simplex A n is canonically homeomorphic to the topological standard n- 
simplex [An[. Similarly, 10Anl is a triangulated ( n -  1)-sphere, and IA~I is what is left 
of this sphere after cutting out the interior of one of the top cells (it's also a cone on an 
( n -  2)-sphere). Furthermore (see [26] again), the cell structure of A n • A l can be used 
to show that the canonical projection map 

IA n A'I  IAnl IA'I 

is an isomorphism, so that IX x Al I is canonically homeomorphic to IX[ x [All, for any 
simplicial set X. Finally, since simplicial sets are unions of skeleta in an obvious sense, 
the realization of any simplicial set is a CW-complex. 

In particular, since IAtI is a copy of the unit interval, any simplicial homotopy (5) 
gives an ordinary homotopy of maps of CW-complexes when the realization functor is 
applied. 

Kan showed, in the mid 1950's [41-44], that it is possible to construct a "homotopy 
theory" which is completely internal to the category S of simplicial sets. Let me try to 
explain what might have been the intuition behind the theory, albeit from a modern point 
of view. Note that all of the following constructions have topological analogues which 
arise from applying the realization functor to everything in sight. 

Everyone agrees that the homotopy extension property is a good thing. To see what it 
means in the simplicial set world, suppose that L is a subcomplex of a simplicial set K,  
and let X be a simplicial set. The homotopy extension property for the data consisting 
of the diagrams 

f f 
L > X  L > X  

K L x z l  1 
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consists of the existence of a dotted arrow H which makes the following diagram com- 
mute: 

(K x 0)U(LxO ) (L x A l) (g,h) 

1 " ~ ~ N  

K x A  1 

~.x 

In other words, H is a homotopy which restricts to h on L • A 1 and starts out at 9. X 
has the homotopy extension property for all such maps 9 and inclusions i if and only if 
the dotted arrow exists making the diagram commute in all diagrams of the following 
form: 

( A  n X 0)U(OAnx0  ) (DA n x A 1) 

1 - 
A n x A 1  

0 ~.x 
/ 

f 

In the one-dimensional case (n = 1) this requirement can be described using the 
following picture of A1 • A1- 

(0, O) v > (1, O) 

(0, 1) z " (1, 1) 

We have a simplicial map 0 taking values in X defined on the l:simplices z, y, and z, 
and which agrees on their common vertices. We want to extend the map 0 to all of 
A 1 • A 1. This amounts to solving two extension problems, namely 

(o,o) (o,o) 

A~cA=. 1 c 1 ~  (7) 
(0,1) 7(1 ,1)  (0,1) > (1,1) 

and 

(0, O) > (1, O) (0, O) > (1, O) 

Ao2CA 2" ~ c ~ 1  (8) 
(1,1) (1,1) 

in that order. 
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More generally, if one can find the indicated extension in every diagram of the form 

lJ 
A n 

~ X  

/ , (9) 

then X has the homotopy extension property with respect to all inclusions of simplicial 
sets. 

Kan calls the property (9) the extension condition. Most homotopy theorists are in 
the habit of saying that a simplicial set which satisfies the extension condition is a Kan 
complex. 

There is a rather dramatic source of examples of such, in that the singular set S(Y)  
of every topological space Y is a Kan complex. In effect, IA~[ is a strong deformation 
retract of IAn]. The classifying object BG of a group G is also a Kan complex, since 
the category G is a groupoid. 

In general, however, the nerve BC of a category C is not a Kan complex. In particular, 
A n is not a Kan complex for n t> 2: try finding the dotted arrow in the category 2 which 
makes the diagram 

0 ~1 

/ 

/ 

2 

commute. 
Kan's early work on cubical complexes suggested the possibility of defining homotopy 

groups for a Kan complex directly, without passing to the associated realization [46]. This 
was taken up by Moore in [58]. Let X be a Kan complex, and let �9 denote a choice of 
base point (vertex or 0-simplex) and all of its degeneracies. Initially, the symbol rr,~ (X, .)  
stands for the set of simplicial homotopy classes of maps of pairs (A n, ()A n) % (X, *) 
in the category of simplicial sets. This set carries a group structure of n /> 1, namely 
the one which makes the homotopy addition theorem work (see [13, 53], for example), 
and 7rSn (X, *) is the n-th simplicial homotopy group, based at , .  Of course, 7r,~ (X, ,)  is 
abelian for n ~> 2, for the standard reason that the multiplication can be defined in two 
ways satisfying an interchange law in those degrees. 

An obvious adjointness argument implies that there is a group isomorphism 

for all topological spaces Y, and so the simplicial homotopy groups coincide with or- 
dinary topological homotopy groups. It is a result of Milnor's (see [53] again) that the 
natural unit map r/: X -+ SIX] induces an isomorphism in all simplicial homotopy 
groups for all Kan complexes X. On the other hand, the counit map e: [SY I --+ Y was 
well-known to be a homotopy equivalence for CW-complexes Y. Furthermore, S and 
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I" I preserve the respective homotopy relations by adjointness. These results imply that 
the homotopy category of CW-complexes is equivalent to the homotopy category of Kan 
complexes. This observation appears in [44]. 

2. Homotopicai algebra 

The late 1950's is the classical period of simplicial homotopy theory. Moore constructed 
the natural Postnikov tower of a Kan complex in [58], and the theories of twisted cartesian 
products and of simplicial fibre bundles were developed at that time [2]. 

Complaints remained about simplicial sets, however. The most serious (still being 
heard in some circles) was that this homotopy theory only talked about Kan complexes. 
Secondly, while the theory clearly demonstrated that homotopy theory in the large was 
a combinatorial affair, the theory itself was too combinatorial from a practical point of 
view. For example, Kan expressed the extension condition by saying that X satisfies 
the condition if there is an n-simplex x such that dix = xi, i 7~ k, for every n-tuple 
XO, . . .  , X k - 1 ,  X k T 1 , . . .  ,Xn of ( n -  1)-simplices such that d i x j  -- d j - l X i  if i < j and 
i, j ~: k. The whole of the theory was phrased in similar terms, and everything was 
proved by using "prismatic" arguments, which involved repeated explicit solution of 
extension problems. This approach created special nastiness, for example, in discussions 
of simplicial function spaces. 

Both problems were addressed in the 1960's, with the axiomatization of the theory. 
The process began with the introduction, by Gabriel and Zisman [26], of anodyne 

extensions. They define a class ,4 of simplicial set monomorphisms to be saturated if: 
(1) all isomorphisms belong to A, 
(2) ,4 is closed under pushout, 
(3) .A is closed under retracts, and 
(4) .A is closed under countable composition and arbitrary disjoint unions. 
An anodyne extension is a member of the smallest saturated class of monomorphisms 

which contains the maps 

A ~ c A  n, n > ~ l ,  O<~k<~n. 

The inclusions 

(A' •  U ( e •  C (A' •  e - O ,  1, 

associated to an arbitrary inclusion K C L of simplicial sets, are also anodyne extensions, 
by the classical argument. 

Now let B be another class of simplicial set maps. Consider the class .A' of all simplicial 
set maps which have the left lifting property with respect to all members of B. This means 
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that a map i is a member of .,4' if and only if, for every solid arrow commutative diagram 

U > X  

i / f 
, /  

V ~-Y 

of simplicial set maps with f c /3 ,  the dotted arrow exists making the diagram commute 
(one also says in this case that f has the right lifting property with respect to i). The 
key point is that this class .,4' is saturated. Thus, if /3 consists of maps having the right 
lifting property with respect to all inclusions A~ C A n, then the class .,4' contains all 
anodyne extensions. 

Most of the combinatorics (aka. obstruction theory) in the subject can be compressed 
into this last observation. The simplicialfunction space (or function complex) horn(U, X) 
for simplicial sets U and X is defined by 

hom(U, X)n  = simplicial set maps from U x A n to X. 

The functor X ~ horn(U, X) is right adjoint to the functor Z ~-+ Z • U, and it is 
now a formality to show that, if i: U --+ V is a monomorphism of simplicial sets and 
p: X --+ Y has the right lifting property with respect to all anodyne extensions, then the 
induced map 

(i*,p. ) 
hom(V, X)  ~ horn(U, X)  • hom(V, Y) (10) 

has the same lifting property. This is one of the more powerful properties of simplicial 
function spaces. 

It is now common to say that Kan fibration p: X --+ Y is a map which has the right 
lifting property with respect to all inclusions of the form A~ c A n, and hence with 
respect to all anodyne extensions. A simplicial set X is a Kan complex if and only if the 
unique map X -+ ,4 ~ is a Kan fibration. Kan originally defined such fibrations in terms 
of a relative extension condition. 

Some readers will notice that I have started to use the language that Quillen introduced 
in [62]. Let's just say that a Kan fibration is afibration. A weak equivalence of simplicial 
sets is a map f:  X --+ Y whose realization Ifl: LxI ~ IYI is a homotopy equivalence 
of CW-complexes. A cofibration is a monomorphism of simplicial sets. Finally, a trivial 
fibration is a map which is both a fibration and a weak equivalence; there is a corre- 
sponding (dual) notion of trivial cofibration. The following theorem, due to Quillen [62], 
is now the fundamental result of simplicial homotopy theory: 

THEOREM 1. With the definitions given above, the category S of  simplicial sets is a closed 
model category in the sense that the following axioms are satisfied: 
CMI:  S is closed under finite direct and inverse limits. 

CM2: Suppose given maps X f ~ Y 9 > Z of simplicial sets. I f  any two of  f ,  9 or 9 o f 
are weak equivalences, then so is the third. 
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CM3: The classes of  fibrations, cofibrations and weak equivalences are closed under 
retraction. 
CM4: Suppose given a commutative solid arrow diagram 

U > X  

V > Y  

where i is a cofibration and p is a fibration. I f  either i or p is trivial, then the dotted 
arrow exists making the diagram commute. 
CM5: Any map f of  simplicial sets may be factored as 

(a) f = pi, where p is a fibration and i is a trivial cofibration, and 
(b) f = qj, where q is a trivial fibration and j is a cofibration. 

In fact, more is true: these days, one most commonly summarizes the situation by 
saying that the category of simplicial sets is a proper closed simplicial model category 
(see [3]). The "simplicial" part means that there is a notion of function space (i.e. the 
function complexes discussed above) which has good adjointness properties and satisfies 
Quillen's axiom SM7. This axiom says that the map (10) is a fibration if i is a cofibration 
and p is a fibration, and that this map is a trivial fibration if either i or p is trivial. It is 
proved for simplicial sets by using the theory of anodyne extensions. The word "proper" 
means, most succinctly, that weak equivalences are stable under base change by fibrations 
and cobase change by cofibrations. In particular, if 

Z• f*>x 

Z > Y  f 

is a pullback diagram in which p is a fibration and f is a weak equivalence, then f .  
is a weak equivalence. The second part of the statement deals with pushouts of weak 
equivalences by cofibrations. Such things are usually proved by applying the realization 
functor. For this purpose (as well as for many others, including the proof of Theorem 1), 
it is critical to know another result of Quillen [63]: 

THEOREM 2. The realization of  a Kan fibration is a Serre fibration. 

The proof of Theorem 2 is quite subtle, since it depends on the theory of minimal 
fibrations (which goes back at least to [20]). All extant proofs of Theorem 1 use minimal 
fibrations as well. 

The homotopy category Ho(S) is obtained from the category S of simplicial sets by 
formally inverting the weak equivalences. A homotopy category Ho(C) may similarly be 
constructed by formally inverting the weak equivalences in any closed model category C. 
This construction is essentially incidental to the theory, since associated homotopy cate- 
gories can almost never be studied directly. Theorem 1 and its relatives have a list of easy 
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corollaries [62], whose proofs display the interplay between cofibrations, fibrations and 
weak equivalences (and model categories of various descriptions) that homotopy theory 
is really all about. The part of it that is valid in an arbitrary closed model category is 
often called homotopical algebra. 

To illustrate, the Whitehead theorem asserts that any weak equivalence f:  X --4 Y is a 
homotopy equivalence if X and Y are both fibrant (Kan complexes) and cofibrant (note 
that all simplicial sets are cofibrant). In view of the factorization axiom, it is enough to 
assume that f is either a trivial cofibration or a trivial fibration. We shall assume that f 
is a trivial fibration; the other case follows by duality. 

But then the result is proved by finding, in succession, maps 0 and 3' making the 
following diagram commute: 

y, . .  y 

(Y • /I 1) U (X • 0/1 l) (co,(Oof, I x ) )  X 

X x A  l 

where co is the constant homotopy 

y •  p r y  O X 

for the map 0. The point is that j is a trivial cofibration, since 0 x 10/,'~l is a trivial 
cofibration, and trivial cofibrations are closed under pushout (this needs a separate proof). 

Note as well that CW-complexes are topological spaces which are fibrant (since every 
topological space X sits in a Serre fibration X -+ .)  and cofibrant, so the Whitehead 
Theorem given above specializes to the standard topological result. 

There is also the original meaning of the word "closed": 

LEMMA 3. 
(1) A map i: U -+ V is a cofibration of  and only if i has the left lifting property with 

respect to all trivial cofibrations. 
(2) The map i is a trivial cofibration if and only if it has the right lifting property with 

respect to all fibrations. 
(3) A map p: X --+ Y is a fibration if and only if it has the right lifting property with 

respect to all trivial cofibrations. 
(4) The map p is a trivial fibration if and only if it has the right lifting property with 

respect to all cofibrations. 

The point of Lemma 3 is that the various species of cofibrations and fibrations deter- 
mine each other via lifting properties. 
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For the first statement, suppose that i is a cofibration, p is a trivial fibration, and that 
there is a commutative diagram 

U C~>X 

l 
V > Y  

(11) 

Then there is a map 0: V --+ X such that pO = / 3  and Oi -- a,  by CM4. Conversely 
suppose that i" U --+ V is a map which has the left lifting property with respect to all 
trivial fibrations. By CM5,  i has a factorization 

J 
U > W  

V 

where j is a cofibration and q is a trivial fibration. But then, there is a commutative 
diagram of the form 

J 
U > W  

V V 

and so i is a retract of j .  CM3 then implies that i is a cofibration. 
The remaining statements of Lemma 3 are proved the same way. The proof of the 

lemma is as important as its statement: it contains one of the standard tricks that is used 
to prove that the closed model axioms are satisfied in other settings. 

It's hard to tell from this vantage point whether or not it was one of the original goals 
of  the theory, but it's major feature of homotopical algebra that the notion of homotopy 
itself "explodes" in this context. Quillen defines a cylinder object for an object A in a 
closed model category C to be a commutative triangle of the form 

A o A  

(12) 

where V: A LJ A --+ A is the canonical fold map which is defined to be the identity on A 
on each summand, i is a cofibration, and a is a weak equivalence. Then a left homotopy 



654 J. E Jardine 

of maps, f,  9: A --+ B is a commutative diagram 

A u A  

A h :~B 

where (f, 9) is the map on the disjoint union which is defined by f on one summand 
and 9 on the other, and the data consisting of 

i = (io, il)" A u A  --+ .A 

comes from some choice of cylinder object for A. 
X x ,41 is a cylinder object for the simplicial set X,  and Y x I is a cylinder object for 

each CW-complex Y, so that simplicial homotopy and ordinary homotopy of continuous 
maps are examples of this phenomenon, but left homotopy is inherently much more 
flexible, since there are many more cylinder objects around. Any factorization of 27: AU 
A -+ A into a cofibration followed by a trivial fibration that one might get out of CM5 
does the trick. In general, though, not much can be said about left homotopy unless the 
source object is cofibrant [62]: 

LEMMA 4. 
(1) Suppose that A is cofibrant, and that (12) is a cylinder object for  A. Then the 

maps io, il : A --+ fl  are trivial cofibrations. 
(2) Left homotopy o f  maps A --+ B is an equivalence relation if A is cofibrant. 

Dually, a path object for B is a commutative triangle of the form 

B 

/ ~  lp=( TM 

> B x B  ,5 

,pl) (13) 

where ,4 is the diagonal map, s is a weak equivalence, and p (which is given by P0 on 
one factor and by Pl on the other) is a fibration. 

Once again, the factorization axiom CM5 dictates that there is an ample supply of path 
objects. If the simplicial set X is a Kan complex, then the function complex hom(A 1 , X) 
is a path object for X,  by Quillen's axiom SM7. 

There is a notion of right homotopy which corresponds to path objects: two maps 
f,  9: A --+/3 are said to be right homotopic if there is a diagram 

A 

/ ~ 1 (  p,,,~! 
(s,g~ B • B 
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where the map (po,Pl) arises from some path object (13), and (f, 9) is the map which 
projects to f on the left hand factor and 9 on the right hand factor. 

LEMMA 5. 
(1) Suppose that B is fibrant and that B is a path object for B as in (13). Then the 

maps Po and pl are trivial fibrations. 
(2) Right homotopy of maps A --+ B is an equivalence relation if B is fibrant. 

Lemma 5 is dual to Lemma 4 in a precise sense. If C is a closed model category, then 
its opposite C ~ is a closed model category whose cofibrations (respectively fibrations) 
are the opposites of the fibrations (respectively cofibrations) in C. A map in C ~ is a weak 
equivalence for this structure if and only if its opposite is a weak equivalence in C. Then 
Lemma 5 is an immediate consequence of the instance of Lemma 4 which occurs in C ~ 
This sort of duality is ubiquitous in the theory, and there are several veiled references to 
it above. 

Left and right homotopies are linked by the following result: 

PROPOSITION 6. Suppose that A is cofibrant. Suppose further that 

A u A  (/0"/1)1 ~ 
A h > B  

is a left homotopy between maps f ,  9" A --+ B, and that 

lp=(po,pl) 
B - - - z - ~ B  x B 

is a fixed choice of path object for B. Then there is a homotopy of the form 

/) 

(f,g~ B x B 

This result has a dual, which the reader should be able to formulate independently. 
Proposition 6 and its dual together imply 

COROLLARY 7. Suppose given maps f ,  9: A --+ B, where A is cofibrant and B is fibrant. 
Then the following are equivalent: 

(1) f and 9 are left homotopic. 
(2) f and 9 are right homotopic with respect to a fixed choice of path object. 
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(3) f and 9 are right homotopic. 
(4) f and g are left homotopic with respect to a fixed choice of cylinder object. 

In other words, all possible defnitions of homotopy of maps A -+ B are the same if A 
is cofibrant and B is fibrant. 

Quillen's proof of Proposition 6 is an elegant little miracle: {0 is a trivial cofibration 
since A is cofibrant, and (Po, pl) is a fibration, so that there is a commutative diagram 
of the form 

A ~Y >/}  

(s~,h~ B x B 

for some choice of lifting K.  Then the composite K o {1 is the desired right homotopy. 

We can now, unambiguously, speak of homotopy classes of maps between objects C 
and D which are both fibrant and cofibrant. Quillen denotes the corresponding set of 
equivalence classes by 7r(C,D). There is a category 7rCcf associated to any closed 
model C: the objects are the cofibrant and fibrant objects of 17, and the morphisms 
from C to D in 7rCcf are the elements of the set 7r(C, D). 

For each object X of C, use CM5 to choose, in succession, maps of the form 

, _!_% Q X  px X 

and 

Q x  ix> R Q X  qx> *, 

where ix  is a cofibration, px is a trivial fibration, j x  is a trivial cofibration, and qx is 
a fibration. Then R Q X  is an object which is both fibrant and cofibrant, and RQX is 
weakly equivalent to X, via the maps px and i x .  Any map f: X -+ Y lifts to a map 
Q f: QX -+ QY, and then Qf  extends to a map RQf: R Q X  ~ RQY. Furthermore, 
the assignment f ~-+ R Q f  is well-defined up to homotopy and so a functor 

RQ: C --+ 7rCc y 

is defined. This functor RQ is universal up to isomorphism for functors C --+ 79 which 
invert weak equivalences, proving: 

THEOREM 8. For any closed model category C, the category "lrCcf of homotopy classes 
of maps between fibrant-cofibrant objects is equivalent to the homotopy category Ho(C) 
which is obtained by formally inverting the weak equivalences of C. 

This result is an elaboration of various old stories: the category of homotopy classes of 
maps between CW-complexes is equivalent to the full homotopy category of topological 
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spaces, and the homotopy category of simplicial sets is equivalent to the category if 
simplicial homotopy classes of maps between Kan complexes. 

Much of modern homotopy theory is based on Quillen's theorem, and its relatives. 
The closed model structure on the category of cosimplicial spaces is one of the basic 
technical devices underlying the Bousfield-Kan theory of homotopy inverse limits [5]. 
The category of bisimplicial sets carries several different closed model structures (see [5, 
3, 57]), which are used, variously, for the theory of homotopy colimits, and the proofs 
of Quillen's Theorem B and the group completion theorem [35, 65]. Some of the early 
applications of the theory were in rational homotopy theory [4, 64]. More recently, the 
closed model structure on the category of supplemented commutative graded algebras 
over a field was an important technical device in Miller's proof of Sullivan's conjecture 
on maps from classifying spaces to finite complexes [55]. Stable homotopy theory can 
be axiomatized this way as well [3]. 

3. Simplicial presheaves 

There is a growing list of applications of either the closed model theory or the axiomatic 
point of view in subjects related to algebraic K-theory. 

There is a long-standing (and still unsolved) conjecture of Friedlander and Milnor [22] 
that asserts that the canonical map 

~Gln (C) --~ SGln (C) t~ 

of simplicial spaces induces an isomorphism in cohomology with torsion coefficients. 
BGln(C) is endowed, in each degree, with the discrete topology, and so it may be 
identified with the corresponding simplicial set. BGln(C) t~ can be identified with a 
bisimplicial set by applying the singular functor in each degree. The unitary group U,~ 
is the maximal compact subgroup of Gln(C), so that BGl(C) t~ has the homotopy type 
of the space BU of complex K-theory. 

One way or another (use the Riemann existence theorem [56]), it is possible to show 
that 

H*(BGln(C)t~ 

is isomorphic to the 6tale cohomology 

He* t (BGln,c, Z/g) 

of the simplicial scheme BGln,c. Since the integral group-scheme Gl,~,z is cohomolog- 
ically proper [23], 

Het(BGln,c; ?Z/g) 
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may be identified up to isomorphism with the ring 

Het (BCln,k ; Z/e) 

associated to Gln,k defined over any algebraically closed field k of characteristic prime 
to ~. Finally, the induced map in cohomology 

H* (BGln(C)t~ Z/l) --+ H* (BGln(C); Z/l) 

is a special case of a comparison map 

~*" H~* t (BGk;Z/i)  --+ H* (BG(k); Z/g) 

associated to any reductive algebraic group Gk defined over k. The generalized isomor- 
phism conjecture [22] asserts that this map ~* is an isomorphism. 

A proper description of ~* requires simplicial sheaves, and a homotopy theory thereof. 
The theorem of faithfully fiat descent implies that the simplicial scheme BGk represents 
a simplicial sheaf on the big 6tale site (Schlk)a of schemes over k which are locally 
of finite type. The simplicial set BG(k) is the simplicial set of global sections of BGk, 
and the counit of the global sections - constant sheaf adjunction is a map of simplicial 
sheaves of the form 

~: F* BG(k) --+ BGk. 

The category SShv(Schlk)et of simplicial sheaves on (Schlk)a carries a category 
offibrant objects structure that I call the local theory [9, 32, 33]. A local fibration is 
a map of simplicial sheaves which, for this example, induces Kan fibrations in each 
stalk. Weak equivalences between locally fibrant objects are also defined stalkwise via 
sheaves of simplicial homotopy groups (one has to be careful with this, because we are 
not assuming that every section of a locally fibrant object is a Kan complex). These 
two classes of maps satisfy a list of axioms which is essentially half of a closed model 
structure, but which implies that the associated homotopy category Ho(SShv(Schlk)~t ) 
may be constructed via a calculus of fractions. We capture sheaf cohomology in the 
process: it follows from the Illusie conjecture (later, Van Osdol's theorem) [30, 59, 32] 
that there is an isomorphism 

Z/e) [Ba, K(Z/t, n)], 

where the square brackets indicate morphisms in the homotopy category and 

K(Z/g,n) 

is the constant simplicial sheaf associated to the obvious choice of Eilenberg-MacLane 
space. 

There is a corresponding local homotopy theory for simplicial presheaves on arbitrary 
Grothendieck sites [32, 33]. The Illusie conjecture asserts, in its most useful form, that 
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every weak equivalence of locally fibrant simplicial presheaves induces an isomorphism 
on all homology sheaves. It is trivial to prove in cases where the associated Grothendieck 
topos has enough points; in the general case, it reduces to showing that local fibrations 
which are weak equivalences induce isomorphisms on homology sheaves, but then this 
follows from the fact that such maps have a local right lifting property with respect to 
all inclusions of finite simplicial sets. 

Illusie's conjecture [59] can also be proved by using the method of Boolean localiza- 
tion, which is a general trick that faithfully imbeds an arbitrary Grothendieck topos into 
one that satisfies the axiom of choice (this is "Barr's Theorem", [52], p. 513). 

If A is a presheaf of abelian groups, the standard model for the Eilenberg-MacLane 
object If(A, n) is a presheaf of simplicial abelian groups. The Illusie conjecture implies 
the existence of a natural isomorphism 

Ix, K(A, n)] -~ [Z(X), A[n]], 

valid for all simplicial presheaves X between morphisms in the homotopy category of 
simplicial presheaves, and morphisms in thederived category from the presheaf of Moore 
chain complexes Z(X) to the complex A[n] consisting of A concentrated in degree n. 
The latter is identified with a hypercohomology group of X with coefficients in A. If X 
is represented by a simplicial scheme in any of the standard geometric toposes, then 
such hypercohomology groups can be identified with the standard cohomology groups 
of X [21, 32] which arise from sheaves on the site fibred over X. Sheaf cohomology 
can therefore always be identified with morphisms in a homotopy category. 

The calculus of fractions approach to the construction of the set of morphisms 
[X,K(A,n)] in the homotopy category implies that there is an isomorphism of the 
form 

[X, K(A, n)] ~ lim 7r(Z(Y) A[n]) (14) 

yL%x 

where the (filtered) colimit is indexed over simplicial homotopy classes of maps [Tr] 
which are represented by maps 

7r: Y ~ X  

which are local fibrations and weak equivalences. This isomorphism (14) is a generalized 
form of the Verdier hypercovering theorem [1, 9, 32], and maps of the form 7r are now 
called hypercovers. Note that when I say simplicial homotopy classes in this context, it 
means equivalence classes of maps for the relation which is generated by ordinary sim- 
plicial homotopy, since simplicial homotopy of maps between locally fibrant simplicial 
presheaves is not an equivalence relation in general. 

The field k is algebraically closed, and is therefore a point in the eyes of 6tale coho- 
mology. It follows, by an adjointness argument, that there is an isomorphism 

[F*BG(k),K(Z/~,n)] ~- H~(BC(k);Z/~), 
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and so the map e* above is just induced by precomposition with e in the homotopy 
category. 

The map e* has been proved to be an isomorphism when the group G is the general 
linear group G1 [32], as well as for the infinite orthogonal group O and the infinite 
symplectic group Sp [47], and in general when the underlying field k is the algebraic 
closure of a finite field [22, 31 ]. The finite field case reduces, via a Ktinneth formula, to 
a study of the interplay between the Lang isomorphism and the Hopf algebra structure of 
H~t(BGk;Z/g ). The stable results are consequences of the rigidity theorem of Gabber, 
Gillet and Thomason [25, 27], one form of which says that the mod g algebraic K-theory 
sheaf on (Schlk)et is weakly equivalent to the constant simplicial sheaf on the mod g 
K-theory space associated to the field k (Suslin's results [72, 73] calculate the K-groups 
K . ( k ;  Z/e), so we know what the sheaves of homotopy groups look like). The rigidity 
theorem implies - think about what it means stalkwise - that the adjunction map 

e: F*BGL(k)  --+ B a l  

induces an isomorphism in mod g homology sheaves, and so it's a cohomology isomor- 
phism as well. 

Some readers might feel abused at this point by the fact that the general linear group 
Gl is not exactly an algebraic group over k. It is most correctly viewed as a presheaf of 
groups on the big 6tale site for k, given by the filtered colimit 

Gl = lim Gln 
.___4 

in the presheaf category. Then the simplicial presheaf BG1 is a filtered colimit of the 
representable objects BGln, and so the cohomology of BGl may be computed from that 
of the BGln's by a lim I exact sequence. + -  

The 6tale cohomology rings of the classifying simplicial schemes BG of various group- 
schemes G have been calculated. Schechtman [68] has shown that, if S is a scheme whose 
ring of global sections contains a primitive g-th root of unity, then there is an As-algebra 
isomorphism 

H~t (BGln,s, Z/e) ~- As[c , , . . . ,  Cn] 

where As denotes the 6tale cohomology ring H~t(S , Z/g) of the base, and the degree of 
the Chern class ci is 2i. If g = 2 and the ring of global sections of S contains 1/2, then 
the cohomology of the classifying object BO(n)s  can also be calculated [37]: there is 
an As-algebra isomorphism 

Her (BO(n)s ,  g / 2 )  "~ As[HW1, . . . , HWn], 

where deg(HWi) -- i. The classes HWi are called universal Hasse-Witt classes. If the 
base scheme S is the spectrum of an algebraically closed field, then these classes spe- 
cialize the Stiefel-Whitney classes. Thus, you get what you would expect from classical 
calculations for the cohomology of both BGln,s and BO(n)s .  
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Suppose that S = Sp(A) is an affine scheme such that A contains a primitive g-th 
root of unity. Schechtman's result and the vanishing of certain lim 1 terms together imply +-- 
that there is an As-algebra isomorphism of the form 

H* (BGI, Z/g) -~ As[c,, c2,...], 

where the degree of cj is 2j. Any element 

E Hi (BGI(A), Z/g) 

can be represented by an ordinary chain map 

Z/g[/] a.~ Z/g(BGI(A)), 

and so applying the constant presheaf functor gives a map gives rise to a composite 

F*Z/g[i] ~ F*Z/e(BGI(A)) ~ Z/g(BG1) 

of maps of presheaves of chain complexes. The Chern class cj c H 2j (BGl/Z/g) can be 
identified with a map in the derived category (i.e. homotopy category of presheaves of 
chain complexes) of the form cj: Z/g(BG1) --+ F*Z/g[2j], and so the composite c j - c -  

F*a represents an element of H~ ~j-i (A, Z/g). The Chern class cj therefore determines 
a generalized cap product homomorphism 

(cj)." H,(BGI(A),Z/g) --+ H~2{-'(A,Z/g). 

The composite of (cj).  with the mod g Hurewicz map 

Ki(A, Z/g) -+ Hi (BGI(A), Z/g) 

is Soul6's K-theory Chern class map 

�9 r42J-i (A, Z/g) ci,j Ki(A, Z/l) --+ "~t 

for mod g 6tale cohomology. Bruno Kahn has observed that the universal Hasse-Witt 
classes HWj c H~t(BOn,Z/2 ) induce L-theory Stiefel-Whitney classes 

_IL,(B,Z/2)--+ HJeti(B,Z/2) 

for rings B containing 1/2, by exactly the same procedure. 
Schechtman's calculation is more or less "motivic" in that it works for any decent 

cohomology theory with coefficients in a suitable collection of sheaves 3 c" [67]. In that 
case, the Chern class maps, after twisting by certain factorial constants, induce a Chern 
character map 

ch: Ki(A) --+ ( ~  H 2j-i (A, .7"'), 
j>~o 
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which then induces the Beilinson regulator on the eigenspaces of the Adams operations 
on Ki(A). 

I want to explain the name and the utility of the classes HWi, but it involves a foray 
into the homotopical description of nonabelian H 1. Suppose, quite generally, that G is 
a sheaf of groups on an arbitrary Grothendieck site C. Then the nonabelian cohomology 
object H 1 (C, G) has a homotopical classification, given by 

THEOREM 9. There is a natural isomorphism 

H 1 (C, G) ~ [,, BG], 

where [,, BG] denotes morphisms in the simplicial sheaf homotopy category associated 
to C from the terminal object �9 to the classifying simplicial sheaf BG. 

Recall that H 1 (d, G) may also be identified with the set of isomorphism classes of 
G-torsors over the point .. 

Theorem 9 is proved in [36]. The essential idea is that the homotopy invariant 

[, BG] = lim 7r(U, BG) , ____4 
vt_~, 

coincides with the (~ech cohomology object 

lim /_7/1 (V~ G),  
v-2'~, 

and the latter is well known to coincide with H l (C, G). 
Elements o f / ~ I ( v ,  G) can be identified with simplicial homotopy classes of maps 

cosko(V) -+ BG, where the 0-th coskeleton cosko(V) is just the t~ech resolution 

vl  VxV l  V x V x V  . . .  

of the object ,. The simplicial sheaf map cosko(V) --+ �9 is a hypercover of the terminal 
object, so there's an obvious comparison map 

lim /.7/1 (V, G) -+ lim 7r(U, BG). (15) 

Finally, the map (15) is a bijection, since the set of simp!icial homotopy classes 7r(U, BG) 
can be identified with natural isomorphism classes of functors from the sheaf of funda- 
mental groupoids of U to the groupoid G, and the sheaf of fundamental groupoids for U 
is the trivial groupoid associated to the covering U0 - -  * of the terminal object by the 
sheaf of 0-simplices of U. Note that the nerve of this last groupoid is just cosko(Uo). 

To give a concrete example of Theorem 9 at work, suppose that K is a field of 
characteristic not equal to 2, and let/5 be a nondegenerate symmetric bilinear form of 
rank n over K. The form fl trivializes over some finite Galois extension L/K,  say via 
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a form isomorphism A: fl -+ ln. But, if G denotes the Galois group of L / K  and g is a 
member of G, then g(A) is also a form isomorphism, so that the composite 

A -1 g(A)  
In ~ fl , In 

is an automorphism of the trivial form of rank n over L, and hence an element of the 
orthogonal group On(L). The upshot of this construction is that a form/3 gives rise to 
cocycles 

f~: G ~ On(L), 

defined by 9 ~-+ 9(A) A-1 , for suitable choices of Galois extensions. Each such cocycle 
can be identified with a map of simplicial presheaves on your choice of 6tale sites for K 
of the form 

fz: EG xa Sp(L) + BO~, 

where EG xa Sp(L) is just notation for the Cech resolution associated to the 6tale 
covering Sp(L) --+ Sp(K). The fact that this resolution actually is a Borel construction 
in the homotopy theoretic sense for the action of G on Sp(L) is just undergraduate field 
theory. The choices that have been made are invariant up to homotopy and refinement, 
and it's well known that the resulting map from the set of isomorphism classes of 
nondegenerate symmetric bilinear forms of rank n over K to the nonabelian cohomology 
object H~et(K, On) is a bijection. Theorem 9 therefore implies that isomorphism classes 
of such forms may be identified with homotopy classes of maps, i.e. with elements of 
the set [., BOn]. 

From this point of view, any form /3 and any element of the 6tale cohomology of 
BOn,g together give rise to elements of the Galois (or 6tale) cohomology of K,  via the 
induced map 

H2,(BOn,I , Z/2) -+ Z/2). 

Thus, in the tradition of characteristic class theory in Algebraic Topology, the universal 
classes 

determine classes HWi(3) = ~*(HWi) in the mod 2 Galois cohomology of K,  that I 
call Hasse-Witt classes of the form/3. 

The Hasse-Witt classes HWi(~) coincide with the Delzant Stiefel-Whitney classes 
of/3, by a homotopical reinterpretation of the fact that every nondegenerate symmetric 
bilinear from over K diagonalizes over K. Furthermore, HW2 (/3) is the classical Hasse- 
Witt invariant of the form/3, whence the name for the classes HWi(~). 

Let/3 and its trivialization A be as above, and recall that the group On(K ) of auto- 
morphisms of/3 is the group of K-points of a group-scheme On; On is a more tractable 
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notation for the group-scheme of automorphisms Oln of the trivial form ln, from this 
point of view. Let G be the Galois group of L / K ,  as before, and let K be the algebraic 
closure of K. Every representation 

p: G --+ O~(K) 

of G gives rise to two sets of Galois cohomological invariants, namely the Stiefel- 
Whitney classes associated to the composite representation 

G P> Oz(K)  '--+ Oz(L) ~ On(L) ~ On(K), 

and the Hasse-Witt invariants for the Fr6hlich twisted form, given by the cocycle 

g ~ 9(A)p(g)A -l .  (16) 

There has been some activity in recent years relating these invariants to each other, and to 
the Hasse-Witt classes of the underlying form/3, as well as to the classical spinor norm 
[24, 37, 40, 70]. It started with Serre's formula for the Hasse-Witt invariant of the trace 
form, followed by the various proofs of a complementary result of Fr6hlich, which was 
a general formula for the HW2 class of the twisted form (16). There is a similar formula 
for the HW3 class of the twisted form, which can be obtained from the decomposability 
of the spinor class, coupled with knowing that the Steenrod algebra [6, 37] acts on 
everything in sight, and obeys the Wu formulae when applied to Stiefel-Whitney and 
Hasse-Witt classes in particular. 

One of the deep qualitative statements in the area is that the Stiefel-Whitney classes 
of representations of the form p are decomposable; it can be proved by introducing a 
total Steenrod squaring operation in mod 2 simplicial presheaf cohomology [37], or by 
a Brauer lift argument that starts with Kahn's calculations [40]. Of course, if anybody 
ever succeeds in proving the Milnor conjecture that the norm residue homomorphism 

K ,  M (K) | X/2 ~ He* t (K, Z/2) 

defines an isomorphism from the mod 2 Milnor K-theory to the mod 2 Galois coho- 
mology of K, then this result about Stiefel-Whitney classes won't seem so interesting. 
Apparently, Merkurjev has recently shown that this conjecture follows if one can show 
that the Steenrod squaring operation Sq I acts on He*t(K , Z) as though it were decom- 
posable. 

Torsors are a sheaf-theoretic analogue of principal fibrations over some base, and 
there is a classification theory for principal fibrations of simplicial sets. Theorem 9 could 
lead one to expect a homotopical classification theory of principal fibrations of simplicial 
sheaves under a sheaf H of simplicial groups. Such a theory almost certainly doesn't exist, 
however, since it's not at all clear that a weak equivalence of simplicial sheaves induces 
a bijection on the level of isomorphism classes of principal H-bundles. This property has 
been singled out as a condition [39] to be placed on H for such a classification theory 
to exist. The difficulty of importing the principal fibration theory from simplicial sets to 
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simplicial sheaves can be explainedby observing that the simplicial set theory involves 
pseudo cross-sections [53]. These are constructed by solving infinite lists of extension 
problems, so that the Axiom of Choice is implicitly invoked, and this isn't legal in an 
arbitrary Grothendieck topos. 

This is one of the principal difficulties underlying the work on the characteristic classes 
associated to symmetric bilinear forms and representations of Galois groups. Fr6hlich and 
his followers proved the formula for the Hasse-Witt invariant of a twisted form, by using 
an explicit 2-cocycle associated to the central extension 

Z /2  --+ Pinn --+ On. 

This central extension classifies the Hasse-Witt invariant HW2 in some sense, 
while HW1 can be recovered from the determinant homomorphism On --+ Z/2.  There 
is no known corresponding geometric representation for any of the higher Hasse-Witt 
classes HW1, i ~> 3, and hence no explicit cocycles that represent them. Finding geomet- 
ric interpretations of the standard higher characteristic classes is a major open problem 
in many contexts (see [ 12], for example). Breen's recent work on nonabelian H 2 and H 3 
[7, 8] can be viewed as progress in this direction, but it has not yet led to explicit for- 
mulae. One might also hope for an analogue of Loday's work on n-types [49] in the 
simplicial presheaf setting. 

The failure of the Axiom of Choice on the topos level is serious business from a 
homotopical point for view, since it forces the bifurcation of the ordinary homotopy 
theory of simplicial sets into a local and a global theory. The local theory was partially 
described above - recall that it does not arise from a closed model structure. The global 
theory is due to Joyal [38, 33]; there is an antecedent in work of Brown and Gersten [ 11 ]. 
In the category of simplicial sheaves on a site, a cofibration is a monomorphism, a weak 
equivalence is a map which induces an isomorphism in all sheaves of homotopy groups, 
and a global fibration is a map which has the right lifting property with respect to all 
trivial cofibrations. Joyal's result is that, with these definitions, the category of simplicial 
sheaves on an arbitrary Grothendieck site has the structure of a closed model category. 

Global fibrations are local fibrations. The converse is not true, essentially because 
sheaf cohomology is nontrivial. Globally fibrant simplicial presheaves X have the coho- 
mological descent property 

= [ . .  o"x]. 

meaning that the n-th homotopy group of the simplicial set of global sections of a globally 
fibrant simplicial sheaf X coincides with a certain set of morphisms in the homotopy 
category of simplicial sheaves. Thus, for example, choose a sheaf A of abelian groups 
on an 6tale site for a scheme S, and suppose that the map 

i: K(A, n) -+ GK(A, n) 

is a globally fibrant model for the Eilenberg-MacLane presheaf K(A, n) in the sense 
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that i is a (stalkwise) weak equivalence and GK(A, n) is globally fibrant. Then 

%GK(A, n)(S) ~- [., ~ C K ( A ,  n)] ~- [., K(A, n - s)], 

so that 

%GK(A, n)(S) = H~t-~(S, A) 

for 0 ~< s ~ n, and is 0 otherwise, whereas K(A, n)(S) has only one nontrivial homotopy 
group, namely the global sections group A(S) in degree n. Thus, if every locally fibrant 
object were globally fibrant, then sheaf cohomology theory would be trivial. 

Joyal's result was extended to simplicial presheaves in [33]. Any topology on a given 
Grothendieck site gives rise to a closed model structure and a homotopy theory for dia- 
grams (presheaves) of simplicial sets on that site. This holds in particular for the chaotic 
topology (meaning, no topology at all), so there is a sensible notion of global fibration 
and so on for arbitrary diagrams of simplicial sets: cofibrations and weak equivalences 
are defined pointwise, and global fibrations are defined by the lifting property (compare 
[5, 16, 62]). 

Similar results hold for presheaves of spectra [34], leading, for example, to generalized 
6tale cohomology theories. Such theories are represented by presheaves of spectra in the 
homotopy categories associated to 6tale sites of schemes, and can be calculated as stable 
homotopy groups of global sections of globally fibrant models, l~tale K-theory is an ex- 
ample [33]. Subject to the existence of certain bounds on cohomological dimension, these 
groups can be recovered from the cohomology of the underlying site with coefficients 
in sheaves of stable homotopy groups. This is achieved with the cohomological descent 
spectral sequence [33, 34, 75], the existence of which is now a formal consequence of 
the ambient homotopy theory. 

The Lichtenbaum-Quillen conjecture can be formulated in the language of globally 
fibrant models of presheaves of spectra. Suppose, for example, that L is a field of char- 
acteristic not equal to g, which contains a primitive/-th root of unity and has Galois 
cohomological dimension d < ~ with respect to g-torsion sheaves. There is such a thing 
as the mod g K-theory presheaf of spectra K/g on the 6tale site for L, with 

7rjK/g(N) = Kj(N, z/g)  

for all finite Galois extensions NIL. Now take a globally fibrant model 

K/g i> GK/g 

in the category of presheaves of spectra, for the 6tale topology. Then the Lichtenbaum- 
Quillen conjecture, in this setting, asserts that the induced map 

7rjK/g(L) i.) 7rjGK/g(L) 

is an isomorphism in ordinary stable homotopy groups for j ~> M, for some M thought to 
vary linearly with d. It must be emphasized that the mod g K-theory presheaf of spectra 
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itself  could never  be globally fibrant if d ~> 1: the spectrum K / g ( L )  is connective,  so 

it 's missing some homotopy  groups in negative degrees which its globally fibrant model  

certainly has, on account  of the descent  spectral sequence.  

The L ich tenbaum-Qui l l en  conjecture would imply that the torsion part  of  the algebraic 

K - t h e o r y  of L could be recovered in high degrees f rom its Galois  cohomology,  via the 

cohomologica l  descent  spectral sequence.  The torsion K - t h e o r y  of L would therefore 

be periodic and effectively computable  in all but finitely many degrees.  The strongest  

result  in this area is Thomason ' s  theorem [75], which asserts that if the field L has a 
finite Tate-Tsen filtration, then the mod g K - t h e o r y  presheaf  of spectra on et[L has the 

cohomologica l  descent  property, after the Bott e lement  has been formally inverted. This 

conjecture is the focus of much of the current research in algebraic K- theory .  
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1. Introduction 

1.1. Historical remarks 

Derived categories are a 'formalism for hyperhomology' [61]. Used at first only by 
the circle around Grothendieck they have now become wide-spread in a number of 
subjects beyond algebraic geometry, and have found their way into graduate text books 
[33, 38, 44, 62]. 

According to L. Illusie [32], derived categories were invented by A. Grothendieck in 
the early sixties. He needed them to formulate and prove the extensions of Serre's duality 
theorem [55] which he had announced [24] at the International Congress in 1958. The 
essential constructions were worked out by his pupil J.-L. Verdier who, in the course of 
the year 1963, wrote down a summary of the principal results [56]. Having at his disposal 
the required foundations Grothendieck exposed the duality theory he had conceived of 
in a huge manuscript [25], which served as a basis for the seminar [29] that Hartshorne 
conducted at Harvard in the autumn of the same year. 

Derived categories found their first applications in duality theory in the coherent setting 
[25, 29] and then also in the 6tale [60, 13] and in the locally compact setting [57-59, 22]. 

At the beginning of the seventies, Grothendieck-Verdier's methods were adapted to 
the study of systems of partial differential equations by M. Sato [53] and M. Kashiwara 
[37]. Derived categories have now become the standard language of microlocal analysis 
(cf. [38, 46, 52] or [6]). Through Brylinski-Kashiwara's proof of the Kazhdan-Lusztig 
conjecture [9] they have penetrated the representation theory of Lie groups [4] and finite 
Chevalley groups [54]. In this theory, a central role is played by certain abelian subcate- 
gories of derived categories which are modeled on the category of perverse sheaves [2], 
which originated in the sheaf-theoretic interpretation [14] of intersection cohomology 
[20, 21]. 

In their fundamental papers [1] and [3], Beilinson, and Bernstein and Gelfand used 
derived categories to establish a beautiful relation between coherent sheaves on projective 
space and representations of certain finite-dimensional algebras. Their constructions had 
numerous generalizations [16, 34-36, 10]. They also led D. Happel to a systematic 
investigation of the derived category of a finite-dimensional algebra [26, 27]. He realized 
that categories provide the proper setting for the so-called tilting theory [7, 28, 5]. This 
theory subsequently reached its full scope when it was generalized to 'Morita theory' for 
derived categories of module categories [48, 50] (cf. also [39-41]). Morita theory has 
further widened the range of applications of derived categories. Thus, Brour's conjectures 
on representations of finite groups [8] are typical of the synthesis of precision with 
generality that can be achieved by the systematic use of this language. 

1.2. Motivation of  the principal constructions 

Grothendieck's key observation was that the constructions of homological algebra do 
not barely yield cohomology groups but in fact complexes with a certain indeterminacy. 
To make this precise, he defined a quasi-isomorphism between two complexes over an 
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abelian category .A to be a morphism of complexes s: L --+ M inducing an isomorphism 
Hn(s): Hn(L) --+ Hn(M) for each n E Z. The result of a homological construction 
is then a complex which is 'well defined up to quasi-isomorphism'. To illustrate this 
point, let us recall the definition of the left derived functor TorA(M, N), where A is an 
associative ring with 1, N a (fixed) left A-module and M a right A-module. We choose 
a resolution 

. . .  _+ p~ _+ p~+l _+ . . .  _+ p-~  _+ p0 _4 M -+ 0 

(i.e. a quasi-isomorphism P -+ M) with projective right A-modules pi.  Then we consider 
the complex P | N obtained by applying ? | N to each term pi ,  and 'define' 
TorA(M, N) to be the ( -n ) - th  cohomology group of P | N. If P '  -+ M is another 
resolution, there is a morphism of resolutions P --~ Pt (i.e. morphism of complexes 
compatible with the augmentations P --4 M and P' -~ M), which is a homotopy 
equivalence. The induced morphism P| N -+ P' @A N is still a homotopy equivalence 
and afortiori a quasi-isomorphism. We thus obtain a system of isomorphisms between 
the H - n ( P  @A N), and we can give a more canonical definition of TorA(M, N) as 
the (inverse) limit of this system. Sometimes it is preferable to 'compute' TorA(M, N) 
using flat resolutions. If F ~ M is such a resolution, there exists a morphism of 
resolutions P -4 F. This is no longer a homotopy equivalence but still induces a quasi- 
isomorphism P | N --~ F | N. So we have H - n ( P  | N) --~ H - n ( F  (~)A N). 
However, the construction yields more, to wit the family of complexes F | N indexed 
by all fiat resolutions F,  which forms a single class with respect to quasi-isomorphism. 
More precisely, any two such complexes F | N and F ~ @A N are linked by quasi- 
isomorphisms F| N +- P|  N -+ F' | N. The datum of this class is of course richer 
than that of the TorA(M, N). For example, if A is a fiat algebra over a commutative 
ring k, it allows us to recover TornA(M, N | X) for each k-module X. 

Considerations like these must have led Grothendieck to define the derived category 
D(.A) of an abelian category .,4 by 'formally adjoining inverses of all quasi-isomorphisms' 
to the category C(~4) of complexes over .A. So the objects of D(.A) are complexes and 
its morphisms are deduced from morphisms of complexes by 'abstract localization'. The 
right (resp. left) 'total derived functors' of an additive functor F: .A --+/3 will then have 
to be certain 'extensions' of F to a functor R F  (resp. LF)  whose composition with 
Hn(?) should yield the traditional functors R n F  (resp. LnF). 

It was Verdier's observation that one obtains a convenient description of the morphisms 
of D(A) by a 'calculus of fractions' if, in a first step, one passes to the homotopy 
category H(.A), whose objects are complexes and whose morphisms are homotopy classes 
of morphisms of complexes. In a second step, the derived category is defined as the 
localization of H(.A) with respect to all quasi-isomorphisms. The important point is that 
in H(.A) the (homotopy classes of) quasi-isomorphisms M'  +-- M (resp. L +-- L ~) starting 
(resp. ending) at a fixed complex form a filtered category SM (resp. LZ'). We have 

Homo(A) (L, M)  - ~ Z:MHOmH(A)(L, M') - li__.m L~Homu(A)(L', M).  
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The elements of the two right hand members are intuitively interpreted as 'left fractions' 
s - i f  or 'right fractions' 9 t-1 associated with diagrams 

L I t M ' < *  M or L < t  L' g ~ M  

of H(.A). This also leads to a simple definition of the derived functors: Examples suggest 
that the derived functors R F  and L F  can not, in general, be defined on all of DA. 
Following Deligne [12], 1.2, we define the domain of R F  (resp. LF)  to be the full 
subcategory of D(A) formed by the complexes M (resp. L) such that 

lim ,r F M '  (resp. lim L,v F L ' )  
__..+ +..._. 

exists in D(B) and is preserved by all functors starting from the category D(/3). For such 
an M (resp. L) we put 

R F M  := lim EMI:i'M ' (resp. L F L  := l imLEFL') .  
___+ +---- 

The functors thus constructed satisfy the universal property by which Grothendieck and 
Verdier originally [61] defined derived functors. When they exist, they enjoy properties 
which apparently do not follow directly from the universal property. 

1.3. On the use of derived categories 

Any relation formulated in the language of derived categories and functors gives rise to 
assertions formulated in the more traditional language of cohomology groups, filtrations, 
spectral sequences .... Of course, these can frequently be proved without explicitly men- 
tioning derived categories so that we may wonder why we should make the effort of 
using this more abstract language. The answer is that the simplicity of the phenomena, 
hidden by the notation in the old language, is clearly apparent in the new one. The 
example of the Ktinneth relations [61 ] serves to illustrate this point: 

Let X and Y be compact spaces, R a commutative ring with 1, and .T and ~ sheaves 
of R-modules on X and Y, respectively. If R -- Z, and either .T or G is torsion-free, we 
have split short exact sequences 

0--+ ~ HP(X,F) QRHq(Y,G) --+ Hn(X • Y, JCQRG) 
p+q--n 

---+ ~]~ TorZ(HP(X,.T),Hq(Y, G)) -+ O. (1) 
p+ q=n + l 

When the ring R is more complicated, for example R = Z//"Z, l prime, r > 1, and if 
we make no hypothesis on .T" or G, then in the traditional language we only have two 
spectral sequences with isomorphic abutments whose initial terms are 

'K~ 'q - ~ Tor_Rp(H~(X,.T),H~(Y,~7)), 
r+s=q 

(2) 
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"K~ 'q = H p (X • Y, Tor_Rq (.T ", ~)). (3) 

However, these spectral sequences and the isomorphism between their abutments are just 
the consequence and the imperfect translation of the following relation in the derived 
category of R-modules 

RF(X,$-) | RF(Y, 6) ~> RF(X • Y,$| g), (4) 

where RE(X,  ?) denotes the right derived functor of the global section functor and | 
denotes the left derived functor of the tensor product functor. (We suppose that X and Y 
are spaces of finite cohomological dimension, for example, finite cell complexes.) The 
members of (4) are complexes of R-modules which are well determined up to quasi- 
isomorphism, and whose cohomology groups are the abutment of the spectral sequences 
(2) and (3), respectively. Of course, formula (4) still holds when ~ and g are (suitably 
bounded) complexes of sheaves on X and Y. The formula is easy to work with in practice 
and also allows us to formulate commutativity and associativity properties when there 
are several factors. 

Extension of scalars leads to an analogous formula in the derived categories: If S is 
an R-algebra and .T" a sheaf of R-modules on X, we have the relation 

RF(X, ~')| S ~; RF(X,.T" | S). 

Metaphorically speaking, one can say that na'fve formulas which are false in the tradi- 
tional language become true in the language of derived categories and functors. 

2. Outline of the chapter 

The machinery needed to define a derived category in full generality tends to obscure 
the simplicity of the phenomena. We therefore start in Section 3 with the example of 
the derived category of a module category. The same construction applies to any abelian 
category with enough projectives. 

The class of abelian categories is not closed under many important constructions. Thus 
the category of projective objects or the category of filtered objects of an abelian category 
are no longer abelian in general. This leads us to working with exact categories in the 
sense of Quillen [47]. We recall their definition and the main examples in Section 4. 

Heller's stable categories [30] provide an efficient approach [26] to the homotopy 
category. They also yield many other important examples of triangulated categories, and, 
more generally, of suspended categories (cf. Section 7). We give Heller's construction in 
Section 6. It is functorial in the sense that exact functors give rise to 'stable functors'. 
The notion of a triangle functor (= S-functor [42] = exact functor [12]) appears as the 
natural axiomatization of this concept. Triangle functors, equivalences and adjoints are 
presented in Section 8. 

In Section 9, we recall basic facts on the localization of categories from [15]. These 
are then specialized to triangulated categories in Section 10. Proofs for the results of 
these sections may be found in [29, 6, 38]. 
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In Section 11, we formulate Verdier's definition of the derived category [56] in the 
context of exact categories. 

In Section 12, we give a sufficient condition for an inclusion of exact categories to 
induce an equivalence of their derived categories. This is a key result since it corre- 
sponds to the theorem on the existence and unicity of injective resolutions in classical 
homological algebra. 

In Sections 13, 14, and 15, we develop the theory of derived functors following 
Deligne. Derived functors are constructed using a 'generalized calculus of fractions'. 
This approach makes it possible to easily deduce fundamental results on restrictions, 
adjoints and compositions in the generality they deserve. Proofs for some nontrivial 
lemmas of these sections may be found in [12]. 

3. The derived category of a module category 

For basic module theoretic notions and terminology we refer to [31], I, IV. We shall 
sometimes write C(X, Y) for the set of morphisms from X to Y in a category C. 

Let R be an associative ring with 1 and denote by Mod R the category of right R- 
modules. By definition, the objects of Db(Mod R), the derived category of Mod R, are 
the chain complexes 

d P 

P =  ( ' " - +  P~ ~> Pn-,  - -+' ' ' )  

of projective right R-modules Pn, n c Z, such that we have Pn = 0 for all n << 0 
and Hn(P) = 0 for all n >> 0, where H,~ (P) denotes the n-th homology module of P. 
If P and Q are such complexes a morphism P --+ Q of Db(Mod R) is given by the 
equivalence class f of a morphism of complexes f: P --+ Q modulo the subgroup of 
null-homotopic morphisms, i.e. those with components of the form 

dn% i rn -k- rn-  l d P 

for some family of R-module homomorphisms rn" Pn -+ Qn-1, n E Z. The composition 
of morphisms of D b (Mod R) is induced by the composition of morphisms of complexes. 

The category of R-modules is related to its derived category by a canonical embedding: 
The canonical functor can: Mod R --+ D b (Mod R) sends an R-module M to the complex 

"''--+ Pn+ , -~ P~ ~ ' " - +  P, -+ Po ~ O--+ O - + " "  

given by a chosen projective resolution of M. If f: M -+ N is an R-module homo- 
morphism, can f is the uniquely determined homotopy class of morphisms of complexes 
9: can M --+ can N such that H0(9) is identified with f.  

We endow D 6 (Mod R) with the endofunctor S, called the suspension functor (or shift 
functor), and defined by 

(SP)~ = Pn-1, dSn p =--dR_l ,  
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on the objects P E D b (Mod R) and by S f  = ~, gn - - -  fn-1, on morphisms f.  
We omit the symbol can from the notations to state the fundamental formula 

HomD(M, SnN) ~~ E x t ~ ( M , N ) ,  n E N, (5) 

where HomD(, ) denotes morphisms in the derived category and M, N are R-modules. 
This isomorphism is compatible with the product structures in the sense that the compo- 
sition 

L ~ ~ SmM s ~  S~+n N 

corresponds to the 'splicing product' [31 ], IV, Exercise 9.3, of the n-extension determined 
by f with the m-extension determined by 9. 

EXAMPLE 3.1. Fields. Suppose that R = k is a (skew) field. Then it is not hard to see that 
each P E D b (Mod k) is isomorphic to a finite sum of objects SnM, M E Mod k, n E Z. 
Moreover, by formula (5) there are no nontrivial morphisms from SiM to S jN  unless 
i -- j ,  and 

Homo(S iM,  SiN) ~~ Homk(M, N).  

Thus, Db(Mod k) is equivalent to the category of Z-graded k-vector spaces with finitely 
many nonzero components. The equivalence is realized by the homology functor P ~-+ 
H. (P).  

EXAMPLE 3.2. Hereditary rings. Suppose that R is hereditary (i.e. submodules of projec- 
tive R-modules are projective). For example, we can take for R a principal domain or 
the ring of upper triangular n • n-matrices over a field. Then, as in Example 3.1, each 
P E D b (Mod R) is isomorphic to a finite sum of objects S riM, M E Mod R, n E Z. 
Formula (5) shows that 

0, 

HomD(SiM, SJN) - HomR(M,N), 
E x t , ( M ,  N) 

j ~ i , i + l ,  
j = i ,  
j = i + l .  

EXAMPLE 3.3. Dual numbers. Let k be a commutative field and let R - k[~]/(~ 2) be 
the ring of dual numbers over k. The complexes 

-4 0 --4 A ~ r A  ~ ~ �9 .. ~ . . .  r A  r A - - + 0 - - + . . .  

with nonzero components in degrees 0 , . . . , N ,  N /> 1, have nonzero homology in 
degrees 0 and N, only, but they do not admit nontrivial decompositions as direct sums 
in D b (Mod R). 



Derived categories and their uses 679 

4. Exact categories 

We refer to [45] for basic category theoretic notions and terminology. A category which 
is equivalent to a small category will be called svelte. 

A pair of morphisms 

A ~ B  P r C  

in an additive category is exact if i is a kernel of p and p a cokernel of i. 
An exact category [47] is an additive category A endowed with a class s of exact 

pairs closed under isomorphism and satisfying the following axioms Ex0-Ex2 ~ [39]. 
The deflations (resp. inflations) mentioned in the axioms are by definition the morphisms 
p (resp. i) occurring in pairs (i, p) of s We shall refer to such pairs as conflations. 

Ex0. The identity morphism of the zero object is a deflation. 
Exl.  A composition of two deflations is a deflation. 
Exl~ A composition of two inflations is an inflation. 
Ex2. Each diagram 

B 

C ! 

> C  

where p is a deflation, may be completed to a cartesian square 

p! 
B '  > C I 

1 
B r ' > C  

where pl is a deflation. 
Ex2 ~ Each diagram 

A 

~ 
A' 

> B  

where i is an inflation, may be completed to a cocartesian square 

A ~ > B  ol 1 
A t e > B,  

where i' is an inflation. 
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An abelian category is an exact category such that each morphism f admits a fac- 
torization f - ip, where p is a deflation and i an inflation. In this case, the class of 
conflations coincides with the class of all exact pairs. 

If ,,4 and B are exact categories, an exact functor ,,4 --+ 13 is an additive functor taking 
conflations of ,A to conflations of 13. 

A fully exact subcategory of an exact category ,,4 is a full additive subcategory 13 C ,,4 
which is closed under extensions, i.e. if it contains the end terms of a conflation of ,,4, it 
also contains the middle term. Then 13 endowed with the conflations of ,,4 having their 
terms in 13 is an exact category, and the inclusion 13 C ,,4 is a fully faithful exact functor. 

EXAMPLE 4.1. Module categories and their fully exact subcategories. Let R be an asso- 
ciative ring with 1. The category Mod R of right R-modules endowed with all short exact 
sequences is an abelian category. The classes of free, projective, flat, injective, finitely 
generated . . . .  modules all form fully exact subcategories of Mod R. 

In general, any svelte exact category may be embedded as a fully exact subcategory of 
some module category [47, 39]. As a consequence [39], in any argument involving only 
a finite diagram and such notions as deflations, inflations, conflations, it is legitimate to 
suppose that we are operating in a fully exact subcategory of a category of modules. 

EXAMPLE 4.2. Additive categories. Let ,At be an additive category. Endowed with all split 
short exact sequences ,,4 becomes an exact category. 

EXAMPLE 4.3. The category of complexes. Let ,At be an additive category. Denote by 
C(,A) the category of differential complexes 

. . .  ~ An d~) An+l ~ - . .  

over .4. Endow C(.A) with the class of all pairs (i, p) such that (i n, pn) is a split short 
exact sequence for each n E Z. Then C(A)  is an exact category. 

EXAMPLE 4.4. k-split sequences. Let k be a commutative ring and R an associative 
k-algebra. Endowed with the sequences whose restrictions to k are split short exact the 
category Mod R of Section 3 becomes an exact category. 

EXAMPLE 4.5. Filtered objects. Let ,,4 be an exact category. The objects of the filtered 
category F(,A) are the sequences of inflations 

. p  

A = ( . . . - +  A v J A), AV+l __+...), p 6 Z, 

of  .,4 such that A p - 0 for p << 0 and C o k j ~  - 0 for all p >> 0. The morphisms 
from A to B E F(.A) bijectively correspond to sequences fP E .A(AP, B p) such that 
fp+ljff  4 -- jPsf p for all p E Z. The sequences whose components are conflations of .,4 
form an exact structure on F(.A). Note that if .,4 contains a nonzero object, then F(.A) is 
not abelian (even if .,4 is). 

EXAMPLE 4.6. Banach spaces. Let ,,4 be the category of complex Banach spaces. The 
axioms for an exact structure are satisfied by the sequences which are short exact as 
sequences of complex vector spaces. 
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5. Exact categories with enough injectives 

Let .A be an exact category. An object I E ,4 is injective (resp. projective) if the sequence 

A(B ,  I) '* > A(A,  1) --+ 0 (resp. A(P, B) P*r A(P, C) --+ O) 

is exact for each conflation (i, p) of ,A. We assume from now on that ,A has enough 
injectives, i.e. that each A c ,,4 admits a conflation 

A iA~ I A  PA S A  

with injective IA.  If A also has enough projectives (i.e. for each A E .A there is a deflation 
P -+ A with projective P), and the classes of projectives and injectives coincide, we 
call .A a Frobenius category. 

EXAMPLE 5.1. Module categories. The category of modules over an associative ring R 
with 1 has enough projectives and injectives. Projectives and injectives coincide for 
example if R is the group ring of a finite group over a commutative field. 

EXAMPLE 5.2. Additive categories. In Example 4.2, each object is injective and projec- 
tive, and we can take iA to be the identity of A for each A c .A. 

EXAMPLE 5.3. The category of complexes. In Example 4.3, we define 

[0o 101 (IA) n - A n • A n+l , d~A - -  , ( i A )  n dA 

( S A ) n = A  n+l, d~A=--dnA +l, p ~ - [ - d ~  1]. 

It is easy to see that I A  is injective in C(.A). Now the inflation i A splits iff A is 
homotopic to zero: Thus, a complex is injective in C(.A) iff it is homotopic to zero. Since 
the complexes IA,  A E C(.A), are also projective, C(A) is a Frobenius category. 

EXAMPLE 5.4. k-split exact sequences. In Example 4.4 we can take for i M the canonical 
injection 

M --4 HOmk(R, M),  m ~ (r ~ rm).  

If R = k[G] for a finite group G, the fully exact subcategory of Mod R formed by finitely 
generated k-free R-modules is a Frobenius category. 

EXAMPLE 5.5. Filtered objects. In Example 4.5 it is not hard to see that F(A) has enough 
injectives iff .,4 has, and in this case the injectives of F(~4) are the filtered objects with 
injective components [39]. Similarly, F(.A) has enough projectives iff .A has, and in this 
case the projectives of F(.A) are the filtered objects of A with projective components 
and such that j~  splits for all p E Z. 
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EXAMPLE 5.6. Banach spaces. As a consequence of the Hahn-Banach theorem, the one- 
dimensional complex Banach space is injective for the category of Example 4.6. More 
generally, the space of bounded functions on a discrete topological space is injective. 
There are enough injectives since each Banach space identifies with a closed subspace of 
the space of bounded functions on the unit sphere of its dual with the discrete topology. 

6. Stable categories 

Keep the notations and hypotheses of Section 5. The stable category ,4 associated with 
.A has the same objects as .A. A morphism of A is the equivalence class f of a morphism 
f" A --+ B of .,4 modulo the subgroup of morphisms factoring through an injective of 
.A. The composition of .A is induced by that of .A. 

EXAMPLE 6.1. The homotopy category. The homotopy category H(.A) of an additive 
category .A is by definition the stable category of the category C(.A) of complexes over 
.A (cf. Example 4.3). So the objects of H(.A) are complexes over .A and the morphisms 
are homotopy classes of morphisms of complexes, by Example 5.3. 

The stable category is an additive category and the projection functor .A --+ A is 
an additive functor. However, in general, ~4 does not carry an exact structure making 
the projection functor into an exact functor. Nonetheless, in order to keep track of the 
conflations of r we can endow ~4 with the following 'less rigid' structure" 

First, we complete the assignment A ~-~ S A  to an endofunctor of .A by putting S f  - h, 
where h is any morphism fitting into a commutative diagram 

iA PA 
A ." I A  > S A  

i B 
B > I B  ~ S B  

Indeed, by the injectivity of I B ,  such diagrams exist. Clearly h does not depend on the 
choice of 9. 

Secondly, we associate with each conflation e = (i, p) of .A a sequence 

A ~ B  r  a~ S A  

called a standard triangle and defined by requiring the existence of a commutative 
diagram 

A i " B  P > C  

I lL l iA PA 
A > I A  > S A  

i~e = ~. 
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Again, 9 exists by the injectivity of IA ,  and g is independent of the choice of 9. 
If C is an arbitrary category endowed with an endofunctor S: C --+ C, an S-sequence 

is a sequence 

X ~ > Y - Z + Z  ~ '>SX 

of C and a morphism of  S-sequences from (u, v, w) to (u', v', w') is a commutative 
diagram of the form 

X ~ > Y  V > Z  

X '  ~' ~- y , .  ~__X~ Z ~ 

W > S X  

I S a :  �9 

! 

> S X  l 

With this terminology, we define a triangle of ,A to be an S-sequence isomorphic 
to a standard triangle. A morphism of triangles is a morphism of the underlying S- 
sequences. Note that the standard triangle construction defines afunctor from the category 
of conflations to the category of triangles. 

THEOREM 6.2. The category A endowed with the suspension functor S and the above 
triangles satisfies the following axioms SP0-SP4. 

SP0. Each g-sequence isomorphic to a triangle is itself a triangle. 
SP1. For each object X,  the S-sequence 

O-~ X 2 ~  X--+ SO 

is a triangle. 
SP2. If (u, v, w) is a triangle, then so is (v, w , - S u ) .  
SP3. If (u, v, w) and (u', v', w') are triangles and x, Y morphisms such that yu - u'x, 

then there is a morphism z such that 

zv = v 'y  and ( S x ) w  = w'z.  

X ~ > Y  V > Z  ~ > S X  

' y ,  v' ZI  ~,' X '  ~ > > > S X  I 

SP4. For each pair of morphisms 

X U y V z 
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there is a commutative diagram 

X 

II 
X 

u > y  ~ > Z '  

> Z  u . y ,  

X !  1 ~ X !  

S Y ~ S  ' 

> S X  

II 
S ~ S X  

I S u  

r ~ ' S Y  

where the first two rows and the two central columns are triangles. 
We refer to [26] for a proof of the theorem in the case where ,,4 is a Frobenius category. 

Property SP4 can be given a more symmetric form if we represent a morphism X -+ S Y  

by the symbol 

X + ~ S Y  

and write a triangle in the form 

X 

§ 
/ 

Z 

> Y  

With this notation, the diagram of SP4 can be written as an octahedron in which 4 faces 
represent triangles. The other 4 as well as two of the 3 squares 'containing the center' 
are commutative. 

y !  

Z '  ~ X '  + 

X Z 

Y 
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7. Suspended categories and triangulated categories 

A suspended category [42] is an additive category S with an additive endofunctor S: S 
S called the suspension functor and a class of S-sequences called triangles and satisfying 
the axioms SP0-SP4 of Section 6. 

A triangulated category is a suspended category whose suspension functor is an equiv- 
alence. 

By Theorem 6.2, the stable category of an exact category .,4 with enough injectives 
is a suspended category. If .A is even a Frobenius category, it is easy to see that ~ is 
triangulated. 

EXAMPLE 7.1. The mapping cone. Let j t  be an additive category. The homotopy category 
I-I(A) is triangulated (6.1). Here the suspension functor is even an automorphism. Axiom 
SP4 implies that for each morphism of complexes f" X --+ Y, there is a triangle 

X i > y  ~ Z  h > S X .  

Concretely, we can construct Z as the mapping cone C f  over f .  It is defined as the 
cokernel of the conflation [i x f]t. X -+ I X  G Y and hence fits into a diagram 

X 

X 

[ix "fit > I X  @ Y [k g] > C f 

~x 1['~ v I h" 
I X  :" S X  

The standard triangle provided by this diagram is clearly isomorphic to (f ,  ~, h). Explic- 
itly 

( c  f )n  = xn+l  @ yn ,  d~$ = [ fn+l d~.. ' 

gn = [ : ]  , hn = [ -1  0] �9 

The following properties of a suspended category S are easy consequences of the axioms. 
Proofs may be found in [29, 6, 38]. 

a) Each morphism u: X --+ Y can be embedded into a triangle (u, v, w). 
b) For each triangle 

X U>Y- -L+Z ~ > S X  

and each V E S, the induced sequence 

s(x, v) +- s(Y, v) ~- s(z, v) +- s(sx,  v) +- s(sv,  v ) . . .  

is exact. In particular, vu = wv = (Su)w = O. 
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c) If in axiom SP3 the morphisms x and y are invertible, then so is z. 
d) If (u, v, w) and (u', v', w') are triangles, then so is 

x �9 x '  �9 Y' z �9 z '  s ( x  �9 x ' ) .  

e) If 

X U V > Y > Z - ~ S X  

is a triangle, the sequence 

O ~ Y  V > z  W > S X ~ O  

is split exact iff u = 0. 
f) For an arbitrary choice of the triangles starting with u, v and vu in axiom SP4, there 

are morphisms w and z such that the second central column is a triangle and the whole 
diagram is commutative. 

Now suppose that S is a triangulated category. Then in addition we have 
g) If (v, w , - S u )  is a triangle of S, then so is (u, v, w). 
h) If (u, v, w) and (u', v', w') are triangles and y, z morphisms such that zv = v'y, 

then there is a morphism x such that yu = u'x and (Sx)w - w'z. 
i) For each triangle 

X ~>Y  V>Z W>SX 

and each V E T the induced sequence 

T(V, X )  ~ T(V, Y)  ~ T(V, Z) ~ S(V, SX)  ~ S(V, S Y )  ~ . . .  

is exact. 
This implies in particular that our notion of triangulated category coincides with that 

of [2], 1.1. 

8. Triangle functors 

We shall denote all suspension functors by the same letter S. 
Let S and 7- be two suspended categories. A triangle functor from $ to T is a pair 

consisting of an additive functor F" S --+ 7- and a morphism of functors a" F S  --+ S F  
such that 

F X  Fu> F Y  Fv> F Z  (aX)(Fw)> S F X  

is a triangle of T for each triangle (u, v, w) of S. This implies that a is invertible, as 
we see by considering the case Y -- 0 and using property b) of Section 7. 
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EXAMPLE 8.1. Triangle functors induced by exact functors. Let .At and B be two exact 
categories with enough injectives. Let F:  .A --+/3 be an exact functor preserving injec- 
lives. Then F induces an additive functor __F" .,4 --+/3. For each A E .A define aA to be 
the class of a morphism a fitting into a commutative diagram 

Fi& 
FA -- FIA Fp% FSA 

I l l  1 o 
FA'  'FA> IFA PFA> SFA 

Then (__.F, c~) is a triangle functor .A --+/3. This construction transforms compositions of 
exact functors to the compositions of the corresponding triangle functors. 

A morphism of triangle functors (F, c~) --+ (G, 3) is a morphism of functors #" F --+ G 
such that the square 

F S  ~ > SF  

GS > SG 

is commutative. A triangle functor (F, c~): S --+ T is a triangle equivalence if there 
exists a triangle functor (G,/3): T --+ S such that the composed triangle functors 
(GF, (3F)(Gc~)) and (FG, (aG)(F3)) are isomorphic to the identical triangle func- 
tors ( l s ,  1s) and (17-, l s ) ,  respectively. 

LEMMA 8.2. A triangle functor (F, a) is a triangle equivalence iff F is an equivalence 
of the underlying categories. 

Let (R, p): S --+ T and (L, A): T --+ S be two triangle functors such that L is left 
adjoint to R. Let ~: 17- --+ RL and #: LR --+ Is be two 'compatible' adjunction 
morphisms, i.e. we have (#L)(Lff') -- 1L and (R#)(ff'R) = 1R. For X E T and Y c S, 
denote by #(X,  Y) the canonical bijection 

S(LX,  Y) ~ T(X,  RY), f ~ (Rf ) (~X) .  

Then it is not hard to see that the following conditions are equivalent 
i) A =  (#SL)(Lp-IL)(LS~),  

ii) p - ~ =  (RS~)(RAR)(~SR), 
iii) ~ S -  (S,~)(AR)(Lp), 
iv) S~  = (pL)(RA)(~S), 
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v) The following diagram is commutative. 

,S(LX, Y) 

~(x,Y) 1 

T (X ,  RY)  

s S (SLX ,  SY)  ~* ~ S ( L S X ,  SY)  

l , (sx ,  sy) . 

s T ( S X ,  SRY)  < o. T ( S X ,  R S Y )  

If they are fulfilled, we say that ~5 and ~ are compatible triangle adjunction morphisms 
and that (L, A) is a left triangle adjoint of (R, p). 

LEMMA 8.3. Let S and T be triangulated categories, (R, p): S ~ T a triangle functor, 
L a left adjoint of R, 4~: LR  -+ Is  and ~: I T --+ RL compatible adjunction morphisms 
and )~ = (~SL)(Lp -1 L)(LSP). Then (L,)~) is a triangle functor and is a left triangle 
adjoint of (R, p). 

A proof is given in [40], 6.7. 

EXAMPLE 8.4. Infinite sums of triangles. Let T be a triangulated category and I a set. 
Suppose that each family (Xi)i~z admits a direct sum ~ i ~ t  Xi in T. This amounts to 
requiring that the diagonal functor 

D: T-+l-I T, 
iEI  

which with each object X E T associates the constant family with value X, admits 
a left adjoint. Now the product category admits a canonical triangulated structure with 
suspension functor S(Xi)  = (SXi), and (D, 1) is a triangle functor. Thus, by the lemma, 

@: 1-I T-+ T 
iEI  

can be completed to a triangle functor. Loosely speaking this means that sums of families 
of triangles indexed by I are still triangles. 

9. Localization of categories 

If C and 79 are categories, we will denote by Hom(C, 79) the category of functors from 
C to 79. Note that in general, the morphisms between two functors do not form a set but 
only a 'class'. A category C will be called large to point out that the morphisms between 
fixed objects are not assumed to form a set. 

Let C be a category and X' a class of morphisms of C. There always exists [15], I, 1, 
a large category C[S -~] and a functor Q: C --~ C[S -1] which is 'universal' among the 
functors making the elements of L' invertible, that is to say that, for each category 79, 
the functor 

nom(Q, Som(C[Z-'], Som(C, 
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induces an isomorphism onto the full subcategory of functors making the elements of 27 
invertible. 

Now suppose that 27 admits a calculus o f  left fractions, i.e. 
F1. The identity of each objects is in 27. 
F2. The composition of two elements of E belongs to 27. 
F3. Each diagram 

X ,  < s X Y...~ y 

with s E Z can be completed to a commutative square 

Y 
X > Y  

f '  
X '  > Y' 

with t E I7. 
F4. If f,  g are morphisms and there exists s E S such that f s  = gs, then there exists 

t E S such that t f - tg. 
Then the category C[Z '-1] admits the following simple description: The objects of 

C[~ '-1] are the objects of C. The morphisms X --+ Y of C[Z '-1] are the equivalence 
classes of diagrams 

X f ~ y ' ~ _ L _ y ,  

where by definition (s, f )  is equivalent to (t, 9) if there exists a commutative diagram 

y! 

Z ~ y m  <~ _ y 

y , ,  

such that u E 27. Let (s ! f )  denote the equivalence class of (s, f ) .  We define the 
composition of C[E -1] by 

(s I f )  o (t l g) = (s't l g' f) ,  
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where s ~ and g' fit into the following commutative diagram, which exists by F3' 

Z t! 

g,/S 

Y '  Z'  

/ / 
X Y Z 

One easily verifies that C[S -l] is indeed a category, that the quotient functor 

Q" C--+C[~y-1], X ~ X ,  f ~ ( l l f )  

makes the elements of S invertible (the inverse of (1 I s) is (s I 1)), and that it does 
have the universal property stated above (cf. [15]). 

If S also admits a calculus of  right fractions (i.e. the duals of F1-F4 are satisfied), 
the dual of the above construction yields a category, which, by the universal property, is 
canonically isomorphic to C [ S -  1]. 

Now let 13 C (7 be a full subcategory. Denote by S f3 13 the class of morphisms of 13 
lying in Z. We say that 13 is right cofinal in C with respect to S,, if for each morphism 
s: X '  --+ X of S with X '  E 13, there is a morphism m: X --+ X "  such that the 
composition ms  belongs to S n/3. The left variant of this property is defined dually. 

LEMMA 9.1. The class 2? f3 13 admits a calculus of  left fractions. I f  13 is right cofinal in 
C w.r.t. 2?, the canonical functor 

B[(z: n m - ' ]  -+ c 

is fully faithful. 

10. Localization of triangulated categories 

Let 7- be a triangulated category and A/" C 7- a full suspended subcategory, i.e. a full 
additive subcategory such that SA/" c A/" and A/" is closed under extensions, i.e. if the 
terms X and Z of triangle (X, Y, Z) belong to A/', then so does Y. We say that A/" is a 
full triangulated subcategory if we also have Z'-IA/" C A/'. 

Let Z be the class of morphisms s of T occurring in a triangle 

N ~ X  ~ > X '  ~ S N ,  

with N E A/'. 

LEMMA 10.1. The class 2?, is a multiplicative system with $2? C ~,. Moreover, if in the 
setting of  axiom SP3 (Section 6), the morphisms x and y belong to 2?, then z may be 
found in 2?. I f  N is a full triangulated subcategory of  7-, we have S-12? C 2?. 
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The localization T[s -1] is an additive category and the quotient functor Q: T --+ 
T [ S  -l] an additive functor (by [15], I, 3.3). We endow it with the suspension functor 
S' induced by ,5': T --+ T. We declare the triangles of T [ S  -1] to be those S-sequences 
which are isomorphic to images of triangles of T under the quotient functor. 

By SP1 and SP2, the morphisms N --+ 0 with N E .A/" belong to Z. Thus the quotient 
functor annihilates A/'. We define 

T/A/:= T[S-~]. 

If S is a suspended category, denote by Homtria (T, S) the large category of triangle 
functors from T to S. 

PROPOSITION 10.2. The category 7"/ .~ endowed with the above structure becomes a 
suspended category and (Q, 1): 7- -+ T/A~" a triangle functor. For each suspended 
category S, the functor 

Homtria(Q, $): Homtria(T/./V', S) --+ Homtria(T, S) 

induces an isomorphism onto the full subcategory of  triangle functors annihilating ./V'. I f  
A/" C T is a full triangulated subcategory, then T/A~" is triangulated. 

Let S C T be a full triangulated subcategory. If 

N -+ X -+ X '  -+ S N  

is a triangle with N E .A/" and X, X '  E S, then N lies in S N A/" as an extension of X 
by S -1X '. So the multiplicative system of S defined by S fq A/" coincides with Z fq S. 

LEMMA 10.3. I f  each morphism N --+ X '  with N E iV" and X '  E $ admits a factorization 
N -+ N '  -+ X '  with N '  E .Af N S, then S is right cofinal w.r.t. ~,. In particular, the 
canonical functor S / $  fq A/" --+ 7-/JV" is fully faithful. 

11. Derived categories 

Let .,4 be an exact category (cf. Section 4). A complex N over .,4 is acyclic in degree n 

if d~v-1 factors as 

Nn-1  , d n-1 ~ N n 

Zn-1 

where pn-1 is a cokernel for d n-2 and a deflation, and i n-1 is a kernel for d n and an 
inflation. The complex N is acyclic if it is acyclic in each degree. 
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EXAMPLE 11.1. ,4 abelian. Then N is acyclic in degree n iff Hn(N) = 0. 

EXAMPLE 11.2. Null-homotopic complexes. Let R be an associative ring with 1 and e E R 
an idempotent. Let .,4 be the exact category of free R-modules (cf. Example 4.1). The 
'periodic' complex 

�9 . . l - ~ R  ~ R ' - ~ R  e . . .  

is acyclic iff Ker e and Ker(1 - e )  are free R-modules. Note, however, that this complex 
is always null-homotopic. If .,4 is any exact category it is easy to see that the following 
are equivalent 

i) Each null-homotopic complex is acyclic. 
ii) Idempotents split in .,4, i.e. Ker e and Ker(1 - e )  exist for each idempotent e: A 

A o f A .  
iii) The class of acyclic complexes is closed under isomorphism in H(.A). 

Denote by Af the full subcategory of H(.A) formed by the complexes which are isomor- 
phic to acyclic complexes. 

LEMMA 11.3. Af is a ful l  triangulated subcategory o f  It(.A). 

The morphisms ~ of H(.A) occurring in triangles N ~ X -2-+ X '  ~ S N  with N E Af 
are called quasi-isomorphisms. If .,4 is abelian, a morphism g is a quasi-isomorphism if 
and only if l-ln(~) is invertible for each n E Z. By definition (cf. Section 10) the 
multiplicative system X' associated with .IV" is formed by all quasi-isomorphisms. The 
derived category of.At is the localization (cf. Section 10) 

D(A) := H(A)/Af  = H ( A ) [ Z - ' ] .  

EXAMPLE 11.4. The abelian case. If .A is abelian, this definition of D(.A) is identical 
with Verdier's [56]. 

EXAMPLE 11.5. The split case. If each conflation of .,4 splits, we have A/" - 0 and 
H(A) ~> D(A). 

Let 

E" X i y v> Z 

be a sequence of complexes over .,4 such that (in, pn) is a conflation for each n E Z. 
We will associate with e a functorial triangle of D(.A) which coincides with the image of 
(L P, i~e) if (i n, pn) is a split conflation for all n E Z (cf. Section 5). Form a commutative 
diagram 

[ix i] ~ [k g] 
X ~ I X  @ Y )" Ci 

II l ,o,, 
X i , y  P ~-Z 
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where Ci is the mapping cone of Example 7.1. In the notations used there, the triangle 
determined by e is then 

x % Y z s x ,  

where Q is the quotient functor and (Qs) -1 is well defined by the 

LEMMA 11.6. The morphism ~ is a quasi-isomorphism. 

Let C + (.A), C - ( j t )  and cb(A) be the full subcategories of C(.A) formed by the 
complexes A such that A n - 0 for all n << 0, resp. n >2> 0, resp. all n >> 0 and all n << 0. 
Let I-I + (.A), H-(.,4) and lib(A) be the images of these subcategories in 1-1(.,4). Note 
that these latter subcategories are not closed under isomorphism in li(.A). Nevertheless 
it is clear that their closures under isomorphism form full suspended subcategories (cf. 
Section 10) of H(.A). For �9 E { + , - ,  b} we put 

D* (.,4) := H* (.,4)/H* (.,4) fq A/'. 

Note that we have canonical isomorphisms 

H + (,,2[ ~ - ~  H -  (,A.) ~ D + (,./lop) ~> D -  (A) ~ 

mapping a complex A to the complex B with B '~ = A -n  and d~ = dA n-1. 

LEMMA 11.7. The canonical functors 

D*(,4) ~ D(.A), �9 E { + , - ,  b}, 

induce equivalences onto the full subcategories of D(.A) formed by the complexes which 
are acyclic in degree n for all n << 0, resp. r~ >> 0, resp. all n >> 0 and all n << 0. The 
subcategory H+(.A) (resp. H-(.A)) is right (resp. left) cofinal in H(j t )  w.r.t, the class 
of quasi-isomorphisms. The subcategory Hb(.A) is right cofinal in H-(.At) w.r.t, the class 
of quasi-isomorphisms. 

12. Derived categories of fully exact subcategories 

Let ,4 be an exact category and B C .A a fully exact subcategory (cf. 4). Consider the 
conditions 

C1. For each A E ,4 there is a conflation A --+ B --+ A' with B ~ B. 
C2. For each conflation B --+ A --+ A' of ,4 with B E B, there is a commutative 

diagram 

B 

B 

> A  > A '  

> B l > B" 
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whose second row is a conflation of B. 
Note that C2 is implied by C1 together with the following stronger condition: For each 
conflation B --+ B'  --+ A" of A with B and B ~ in B, we have A" c B. 

THEOREM 12.1 (cf. [39], 4.1). a) Suppose C1 holds. Then for each left bounded complex 
A over A, there is a quasi-isomorphism A --+ B for some left bounded complex B over 
13. In particular, the canonical functor D + (/3) -+ D + (,A) is essentially surjective. 

b) Suppose C2 holds. Then the category H + (B) is right cofinal in I-I + (fl,) w.r.t, the 
class of quasi-isomorphisms. In particular, the canonical functor D § (/3) -~ D+(J[) is 
fully faithful. 

EXAMPLE 12.2. Injectives. If .A has enough injectives (cf. 5), conditions C1 and C2 are 
obviously satisfied for the full subcategory B = Z formed by the injectives of .A and 
endowed with the split conflations. Thus we have 

D +(.A) <~ D + ( Z ) ( ~  H +(Z). 

EXAMPLE 12.3. Noetherian modules. Let R be a right noetherian ring and modR the 
category of noetherian R-modules. The dual of Condition C2 is clearly satisfied for the 
fully exact subcategory mod R c Mod R. Thus the functor 

D -  (mod R) ~ D -  (Mod R) 

is fully faithful. 

EXAMPLE 12.4. Filtered objects. Let s be an exact category and .,4 the category of 
sequences 

A = ( . . . - -+  A p f'~r A p+l ~ ' " )  

of morphisms of s with A p = 0 for all p << 0 and f~ invertible for all p >> 0. Let 
/3 = F(C) be the category of filtered objects over s (cf. Example 4.5). It is not hard to 
prove that/3 viewed as a fully exact subcategory of .A satisfies the duals of C1 and C2. 

13. Derived functors, restrictions, adjoints 

Let S and 7- be triangulated categories, and A4 C S and .A/" c T full triangulated 
subcategories (cf. Section 10). Let 

(F, V): S -+ 7- 

be a triangle functor. We do not assume that F.A4 C Af. Hence in general, F will not 
induce a functor S / A 4  ~ T/A/'.  Nevertheless there often exists an 'approximation' to 
such an induced functor, namely a triangle functor RF:  S / A 4  --+ T/A~" and a morphism 
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of triangle functors can: QF --~ (RF)Q.  We follow P. Deligne's approach [12] to the 
construction of RF .  

S 

Q 

s/M 

F 
T 

cT_lQ 7-/At 
R F  

Let S be the multiplicative system associated with .h4 (cf. Section 10). Let Y be an 
object of S/ .M.  We define a contravariant functor r F Y  from T / A f  to the category of 
abelian groups as follows. The value of r F Y  at X E T/A/" is formed by the equivalence 
classes ( f  Is)  of pairs 

X f > F Y ' ,  Y'<S y, 

where f E (7- / .~) (X,  FY' )  and s E Z'. Here, two pairs (f, s) and (9, t) are considered 
equivalent if there are commutative diagrams of 7-/Af and S 

F Y '  Y' 

X > F y m  ym < u y 

F Y "  Y" 

such that u E Z.  We say that R F Y  is defined at Y if r F Y  is a representable functor. In 
this case, we define R F Y  to be a representative of rFY.  So R F Y  is an object of T/A/" 
endowed with an isomorphism 

(T/JV)(?, R F Y )  - ~  rFY. 

The datum of such an isomorphism is equivalent to the following more explicit data: 
�9 For each s: Y -~ YP of 2?, we have amorph i sm ps: FY '  -~ R F Y  such that 

pu(Fv) -- ps whenever u - vs belongs to •. 
�9 There is some so: Y -~ Yd and a morphism tr: R F Y  -~ FY~ such that (1Fr-, I 

s) = (crps [so) for each s: Y --~ Y'. 
In fact, if the isomorphism is given, Ps corresponds to the class (IFY, I 8) and 1RFY 

to (cr [ so). Conversely, if the Ps, so, and cr are given, the associated isomorphism maps 
g: X - .  ( R F ) Y  to (~rg [ so), and its inverse maps ( f [ s )  to Psf. 

If we view Y as an object of $, then, by definition, the canonical morphism 
can: Q F Y  -~ (RF)QY equals Ps for s = l v .  
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Let c~ = (t I g) be a morphism Y --+ Z of S / M .  We define the morphism 
rFc~: rFY  --+ rFZ  by 

rFc~(f I s ) - -  ( ( F g ' ) f l s ' t ) ,  

where s t and gt fit into a commutative diagram 

FZ" 

7 /  
FyI  yI Z I 

s /  g 

X Y Z 

Z l! 
g,/' 

which exists by F3 (cf. Section 9). One easily verifies that this makes r F  into a functor 
from S/.A/I to the category of functors from T/N" to the category of abelian groups. 
Now suppose that R F  is defined at Y and Z. We define the morphism RFa by the 
commutative diagram 

(T/H)(?, r F Y )  ~ ~ r F Y  

(T/N)(?, r F Z )  ~ > r F Z  

Thus R F  becomes a functor lg --+ T/AZ, where U denotes the full subcategory formed 
by the objects at which R F  is defined. Suppose that R F  is defined at Y E B/)~4. The 
following chain of isomorphisms shows that R F  is defined at S Y  and that 99: FS ~ SF  
yields a canonical morphism R99: ( R F ) S  --+ S (RF)  

(rF)(SY)  ",~ r(FS)(Y)  ~> r(SF)(Y)  e y-- (T/A:)(?, SRFY) .  

PROPOSITION 13.1 (cf. [12], 1.2). If 

X ,~'~Y ~'~Z w S X  

is a triangle of S / ,M and RF is defined at X and Z, then it is defined at Y. In this 
case (RFu, RFv, (R99)(X)RFw) is a triangle of T/A/'. 

In particular,/4 is a triangulated subcategory of S / M  and (RF, R99): H --+ T/A/" is 
a triangle functor. It is called the right derived functor of (F, 99) (with respect to .M 
and A/'). 

Let I denote the inclusion of the preimage of H in S. 

LEMMA 13.2. The canonical morphism can: QFI  -+ ( R F ) Q I  is a morphism of triangle 
functors. 
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The left derived functor (LF, Lqo) of (F, 99) is defined dually: For X E S / M ,  one 
defines a covariant functor IFX whose value at Y E T/dV" is formed by the equivalence 
classes ( s l f )  of pairs 

X + Z - - X  1, F X '  l--~y, 

where f E (T /Af ) (FX' ,  Y) and s E Z ; . . . .  The canonical morphism can: Q F X  --+ 
L F Q X  corresponds to the class (1x I 1FX) . . . .  

EXAMPLE 13.3. Inducedfunctors. If we have F M  C A/', then R F  and L F  are isomorphic 
to the triangle functor S/A4 -+ T/A/" induced by F,  and can: QF --+ RFQ and 
can: LFQ ~ Q F are isomorphisms. 

Suppose that (F ' ,  qd) is another triangle functor and #" F -~ F '  a morphism of triangle 
functors. Then for each Y E S / M ,  the morphism # induces a morphism 

r#: rFY  -4 rF 'Y  

and hence a morphism R/z: R F Y  -+ RF 'Y  if both, R F  and R F  1, are defined at Y. 
Note that the assignments # ~ r#  and # ~4 R# are compatible with compositions. 

LEMMA 13.4. The morphism R# is a morphism of triangle functors between the restric- 
tions of RF and RF I to the intersection of their domains. 

Keep the above hypotheses and let H c S be a full triangulated subcategory which is 
right cofinal in S with respect to 2?. Denote by I: H ~ S the inclusion functor. Recall 
from Lemma 10.3 that the induced functor RI:  L//(L/N .M) ~ S/A4 is fully faithful. 

LEMMA 13.5. Let U E 1X. Then RF is defined at U if and only if R ( F I )  is defined at U 
and in this case the canonical morphism 

R(FI)(U) -~ RFRI(U) 

is invertible. 

Keep the above hypotheses. Let (R, p)" 8 --+ T be a triangle functor and (iS, ,k)" 7- -+ 
8 a left triangle adjoint (cf. Section 8). Let X E T / A f  and Y E 8/A4 be objects such 
that LL is defined at X and RR is defined at Y. 

LEMMA 13.6. We have a canonical isomorphism 

L,(X, Y)" S /A4(LLX,  Y) -+ 7-/Af(X, RRY).  

Moreover the diagram 

S / M ( L L X ,  Y) s > S / M ( S L L X ,  SY)  

v(X,Y) 1 

T / A f  (X, RRY)  ~ T/A/'(SX, SRRY)  

( L) 0 * 

(rip). 

S/.A,4 (LLSX,  SY)  

l ~(sx,s~') 

T/]V( SX, RRSY) 
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is commutative. 

In particular, if RR and LL are defined everywhere, then LL is a left triangle adjoint 
of RR (cf. Section 8). 

14. Split objects, compositions of derived functors 

Keep the hypotheses of Section 13. An object Y of S is F-split with respect to .M and 
.N" if R F  is defined at Y and the canonical morphism F Y  ~ R F Y  of T / A f  is invertible. 

LEMMA 14.1. The following are equivalent 
i) Y is F-split. 

ii) For each morphism s: Y ~ Y'  of •, the morphism QFs  admits a retraction 
(= left inverse). 

iii) For each morphism f: M --+ Y of S with M E .M, the morphism F f factors 
through an object of AT. 

Let Yo be an object of S. If there is a morphism so" Yo --+ Y of E with F-split Y, 
then R F  is defined at Yo and we have 

RFYo ~ > R F Y  ~ ~ FY. 

Indeed, this is clear since rF(so [ l y )  provides an isomorphism rFYo ~> rFY.  
We say that S has enough F-split objects (with respect to .M and A/') if, for each 

Yo E S, there is a morphism so: Yo ~ Y of E with F-split Y. In this case R F  is 
defined at each object of S/ .M.  

Let R. be another triangulated category,/Z C 7~ a full triangulated subcategory and 
G: 7Z ~ ,5 a triangle functor. Suppose that for each object Zo of 7~, the multiplicative 
system defined by L contains a morphism Z0 -+ Z such that Z is G-split and GZ is 
F-split. 

LEMMA 14.2. The functor RG is defined on T~IL, the funcwr R F  is defined at each 
RGZo, Zo E TZ/s and we have a canonical isomorphism of triangle functors 

R(GF)  ~> RGRF. 

15. Derived functorsbetween derived categories 

Let .A and C be exact categories and F: .A --+ C an additive (but not necessarily exact) 
functor. Clearly F induces a triangle functor H(.A) --+ H(C), which will be denoted by 
(/7, ~). The construction of Section 13 then yields the right derived functor (RF, R~) 
of F defined on a full triangulated subcategory of D(.A) and taking values in D(C). 
Similarly for the left derived functor (LF, Lcp). 
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If C is abelian, one defines the n-th right (resp. left) derived functor of F by 

R n F X  = H n ( R F X )  (resp. L n F X  = H - n ( L F X ) ) ,  n E Z. 

Typically, R F  is defined on D + (,,4). Lemma 13.5 and Lemma 11 then show that the 
restriction of R F  to D + (A) coincides with the derived functor of the restriction of F to 
H+ (.A). 

An object A E .,4 is called (right) F-acyclic if A viewed as a complex concentrated 
in degree zero is a (right) F-split object of H(.A). The following lemma is often useful 
for finding acyclic objects. 

LEMMA 15.1. Let 13 C ,,4 be a fully exact subcategory satisfying condition C2 of Sec- 
tion 12 and such that the restriction of F to 13 is an exact functor. Then 13 consists of  
right F-acyclic objects. 

EXAMPLE 15.2. Injectives. If /3 is the subcategory of the injectives of ,4, then each 
conflation of 13 splits. So any additive functor restricts to an exact functor on/3. Hence 
an injective object is F-acyclic for any additive functor F.  

Let ,Ac c ,,4 be the full subcategory formed by the F-acyclic objects. 

LEMMA 15.3. The category ,Ac is a fully exact subcategory of ,,4 and satisfies condition 
C2 of Section 12. The restriction of F to ~4c is an exact functor. 

Now suppose that ,,4 admits enough (right) F-acyclic objects, i.e. that for each A E ,,4, 
there is a conflation 

A - +  B ~ A' 

with F-acylic /3. This means that .Ac satisfies condition C1 of Section 12. Hence for 
each X E H + (.A) there is a quasi-isomorphism X --+ X '  with X '  E H + (.Ac). 

LEMMA 15.4. The functor R F  is defined on D + (.A). I f  X a left bounded complex, we 
have R F X  ~ F X  t, where X --+ X t is a quasi-isomorphism with X t E H + (.Ac). Each 
left bounded complex over .Ac is right F-split. 

EXAMPLE 15.5. Injectives. If .,4 has enough injectives, it has enough F-acyclic objects for 
any additive functor F.  The right derived functor is then computed by evaluating F on 
an 'injective resolution' X ~ of the complex X constructed with the aid of Theorem 12.1. 

Now let R: gt --+ C be an additive functor and L: C --+ A a left adjoint. Suppose that 
,A admits enough right R-acyclic objects and that C admits enough left L-acyclic objects. 
Then we have well defined derived functors RR: D + (.A) --+ D(C) and LL: D-(C)  --+ 
D(,A). 

LEMMA 15.6. For X E D-(C)  and Y E D + (Jr), we have a canonical isomorphism 

u(X,  Y): D(.A)(LLX, Y) ~~ D(C)(X,  R R Y )  

compatible with the suspension functors as in Lemma 13.6. 
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1. Why not only ideals? 

The theory of ideals in its present form was created by Dedekind [7] from the theory of 
the so called ideal numbers of Kummer. But, even then, he introduced the more general 
notion of fractionary ideals which are in fact modules and Kronecker [ 16] already used 
modules over the ring of polynomials. 

Let us say, before giving more precise definitions, that we get modules by using the 
axioms of vector spaces but allowing the scalars to be in any ring, except that we shall 
assume here that it is a commutative one. 

Modules do appear quite naturally. 
Look for instance at Hilbert's famous theorem on syzygys: 
The data are a (homogeneous) ideal I of the ring R = k[X1 , . . . ,  Xn] of polynomials 

where k is a field and a finite system { f l , . . . ,  f r}  of generators of I. 
The kernel of the map: (91 , . . . ,  9r) ~ f191 + " "  + fr9r of R n into R is no longer 

an ideal but a submodule of the R-module R n called the first module of  syzygys of  I. 
It is finitely generated. So we can repeat the same procedure with a finite system of 

generators of it and get the second module of syzygys of I and so on. 
The theorem asserts we get 0 after at most n such operations. 
So very often, as in the above example, we need to consider together with an ideal I 

of a ring R the R-module R / I .  
Another reason to introduce modules is the linearization of some a priori nonlinear 

notions. 
A very significant example is the example of integral elements [30]. 
Let R be a ring and S an overring. An element x E S is integral over R if it is a root 

of a monic polynomial 

f ( X )  = X n + an_l  x n - 1  .-~- . . .  + ao e R[X]  

This does not seem at first to be a linear condition but ,you may translate it into the 
following linear one: the R-module R[x] is finitely generated. 

Using that condition you very easily get the main properties of integral elements, 
for instance: sum and product of integral elements are integral, integral dependence is 
transitive. 

The notion of modules is also important in representation theory. 
�9 Let G be a group. In its simplest form, a linear complex representation U of G is a 

group morphism g ~ U(9) of G into the additive group of linear transformations of 
a C-vector space, e.g., C n. 

�9 It defines a structure of a group with operators G over Cn; more precisely, we have a 
map (g, x) ~ U(9)(x) from the product G x C n to C n with convenient properties. 

�9 Considering the group ring R = C[G], we get on G the structure of an R-module. 
The extension to modules of natural notions or properties of ideals is called modulation. 
This process was quite alive in the sixties, allowing clearest proofs in commutative 

algebra. Here is an example: 
Let R be a noetherian local ring and S - R its completion. If I and J are two ideals 
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of R, we get an equality 

. ~ .  A A 

(I fq J ) R  = I R  M JR.  

A 

This is a formal consequence of the fact that R is a flat module over R. The same process 
gives the same result for instance when R is the ring of germs of analytic functions and S 
the ring of germs of indefinitely differentiable functions in a neighborhood of the origin 
of  R n. 

We shall see too that there exist very useful characterizations of rings by the properties 
of  some types of modules over them, e.g., the simplest one: A ring R is a field iff every 
module over it is free. 

After arguing a strong thesis, we may give a mild antithesis by asserting that the most 
important notion is the notion of ideals. 

Some very interesting books or papers do not need and do not use the notion of 
modules: look, for instance at [23]. 

It is also worth saying that it is sometimes possible to get properties of a module from 
properties of an ideal. Here is the principle of idealization of Nagata ([22], p. 2). 

Let R be a ring and M a module over R. On the additive group S = R @ M,  define 
a product by 

Thus one gets a commutative ring. The map x ~ (0, x) identifies M with an ideal of S 
and every submodule of M with an ideal contained in it. 

For instance, M. Nagata gets the primary decomposition of modules from the primary 
decomposit ion of ideals which emerged at first in Lasker 's works ([22], Exercise 1, p. 24). 

2. Basic definitions 

Here is a short and nonexhaustive sketch of definitions and basic properties of modules 
over commutative rings, setting out the category of modules as an abelian category. 

Most of them extend easily to modules over noncommutative rings but some extensions 
are much more difficult! 

Let us recall, for instance, that a ring R is simple if it is ~ 0 and has no left ideal but 
0 and R. A commutative ring is simple if it is a field but, if the ring is not commutative, 
it is a matrix ring over a skew field! l 

Let R be a commutative ring. 

DEFINITION 2.1. 1. An R-module  is an abelian group M (in additive notation) with an 
external product: (a, x) ~-+ ax from R • M to M such that 
�9 ( A + # ) x = A x + # x ,  VA,#ER,  VxEM.  
�9 A ( x + y ) = A x + A y ,  VAER, Mx, y E M .  

i You need also, and it is not always difficult, to extend the notions to sheaves of modules over sheaves of 
tings but everything in its own time! 
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�9 A(p,x) = (Ap,)x, VA, p, E R, Vx E M. 
�9 1 X = x ,  V x E M .  

2. A morphism of the R-module M into the R-module M '  is a map f :  M -+ M '  
which is linear, i.e. such that 

f ( A x + # y ) = A f ( x ) + # f ( y ) ,  V A , # E R ,  Vx, y E M .  

3. A submodule of the R-module M is an R-module M t such that M' C M and the 
natural injection M' -+ M is a morphism, i.e. an additive subgroup such that 

A E R ,  x E M ' ~ A x E M ' .  

4. We shall use the term overmodule, which is a little unusual, of a module M ~ to 
indicate a module M admitting M '  as a submodule. 

Examples 
�9 Let I be a set. The set R t of maps from I to R has a natural structure of a module 

over R where f + 9 and )~f are defined by 

( f  + g)(x) = f (x )  + g(x), (Af)(x) = Af(x),  Vx E I. 

You may write also 

R ' - -  {(xi)~eI I xi E R}.  

�9 The support of f E R I is the subset {i E I / f ( i )  r 0). 
The subset R (I) of R I of maps with finite support is a submodule of R I called the 
free R-module generated by the set I. 
If I is finite R (I) = R I. 

�9 A submodule of the R-module R is an ideal of the ring R. 
�9 The submodule of the R-module M generated by a subset X of M is the intersec- 

tion s(X)  of all the submodules containing X.  It is also the submodule of linear 
combinations of elements of X.  

�9 If s(X)  -- M we say that X is a set of generators of M.  
�9 If there exists a finite set X of generators of M,  we say that M is finitely generated. 

If I is infinite, the R-module R I is not finitely generated. 
Here is a first characterization of rings by properties of modules: 

THEOREM 2.2 (Noetherian rings). Every submodule of every finitely generated module 
over R is finitely generated iff every ideal of R is finitely generated. 

Such a ring R is called noetherian. 
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Morphisms 
The composite of two morphisms is a morphism. The identity map 1M of a module M 
is a morphism. 

DEFINITION 2.3. A morphism f:  M -+ M I is an isomorphism if there exists a morphism 
g s u c h t h a t g o f =  1M; f ~  1M,. 

The morphism f is an isomorphism if and only if the map f from the set M to the 
set M I is bijective. We have then g - f - 1 .  

The composite of two isomorphisms is still an isomorphism. The identity map 1M is 
an isomorphism. 

DEFINITION 2.4 (Kernel and Image). Let f be a morphism from the R-module M to the 
R-module M t. 

1. The kernel of f is the submodule ker(f)  of M 

k e r ( f ) -  {x ~ M l f ( x  ) = 0}. 

2. The image of f is the submodule im(f)  of M '  

im(f )  : {f(x)  l x ~ M}. 

DEFINITIONS 2.5 (Cokernel and Coimage). 
�9 Let N be a submodule of the R-module M. We define on the quotient group M / N  a 

structure of an R-module by 
AT = Ax where x is a representative of �9 E M/N.  
It is called the quotient module of M by N. 

�9 The cokernel of a morphism f" M -+ M '  is the module coker(f)  = M'/ im( f ) .  
�9 The coimage of it is the quotient module coim(f)  - M~ ker(f) .  

The morphism f defines an isomorphism ~ ~-+ f (x)  from coim(f)  to im(f) ,  where x is 
a representative of ~ E coim(f) .  

DEFINITION 2.6 (Exact sequences). 
t f g t t  �9 A sequence M -:+ M -:+ M is exact if ker(9) = im(f) .  

If M '  - 0, this means that 9 is one to one. 
If M "  = 0, this means that f is onto. 

�9 A sequence of morphisms is exact if every sequence of two consecutive morphisms of 
it is exact. 

�9 An exact sequence 

0 - ~  M '  ~ M -5 M "  -~ O, 

is called a short exact sequence. 
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A diagram of morphisms is commutative if the composite of morphisms from one module 
to another does not depend on the path you take. 

Here is a typical example of the use of these notions. 

PROPOSITION 2.7 (Snake lemma). Let there be a commutative diagram with exact rows 

M '  ~ ~ M '  6 M "  

N '  '~ . N ~ " N "  

with ~ onto and a one to one. The following sequence is exact: 

ker(f) -+~ ker(9) ~-+ ker(h) --~ coker(f) -~ coker(9) -~ coker(h) 

where r r r r are natural and a is defined as follows: 
i f  z"  E ker(h), let z E M be such that z"  = 5(z); then ~(9(z ) )  = O; let u' E N '  such 

that 9(z)  = a(u ' ) ;  then O(z") is the class o f  u' modulo im(f). 

The snake lemma has many corollaries. There exist also the five lemma, the four  lemma 
and others whose proofs use so-called diagram chasing. See for instance [5]. 

2.1. The functor Hom 

We show here the property of  left exactness of  the functor Hom. 
It is very important because from it we can deduce the exactness o f  some fundamental 

functors, the so called representable functors, for  instance the tensor product. 
Let M,  N be R-modules. 
The set Homn(M, N )  of  morphisms from M to N has a natural structure of  an 

R-module. 
Let us fix M. We get a covariant functor F - HomR(M,- )  from the category of 

R-modules into itself: 
�9 If N is an R-module, F ( N )  = HOmR(M, N). 
�9 If r N --+ N'  is a morphism, F(r is the morphism r ~ r o r 

THEOREM 2.8. The functor HomR(M,- )  is left exact. 

This means that for every short exact sequence 

O-+ N '  ~ N - %  N "  

the sequence 

Hom(M,f) Hom(M,g) 
0 --+ HomR(M, N') -. ~ HomR(M, N) ~ HomR(M, N") 

is exact. 
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PROOF. 
�9 As f is one to one, Hom(M,  f )  is one to one: f o r - 0 :=> r = O. 
�9 k e r ( H o m ( U ,  9)) - i m ( H o m ( U ,  f))" 

r e ke r (Hom(M,  g)) :=> g o r = 0 :=> r  C ker(g) = i m ( f )  

~ 3 r 1 6 2 1 6 2  
In the same way, if we fix the R-module  N,  we get a contravariantfunctor HomR(-- ,  N)  
which is also left exact, i.e. for every short exact sequence 

M ' ~ M ~ M " ~ O ,  

the sequence 

Hom(g,N) Horn(f ,N) 
0 ~ H o m R ( M " ,  N )  > HomR(M,  N)  ~ H o m n ( M ' ,  N)  

is exact. [3 

2.2. Sums and products 

DEFINITIONS 2.9. Let {Mi}~ei be a family of modules over the ring R. 
�9 The product 

P = I - [ M i  
iEI  

has a natural structure of a module over R. 
�9 The direct sum is the submodule of P 

S = ~ Mi - {{xi) iei  [ x i -  0 but for a finite number of i}. 
iE I  

�9 A submodule N of M is a direct summand if there exists a submodule P of M such 
that M "~ N • P .  

The modules P with the projections Pi: P -+ M~ and S with the injections ji: Mi -~ S 
have natural universal properties. 

If the set I is finite, let us say I = { 1 , . . . , n } ,  we have P = S and there is a set of 
natural formulas connecting those projections and injections: 

n 

~ -~ j i  o pi = 1 p ,  

i - - I  

Pi ~ ji -- 1Ui, p j o j i - - O  i f j ~ i .  
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If for every i, Mi = R, remark that the product is the module R I and the sum the 
module R (I) defined before. 

2.3. Direct and inverse limits 

We introduce now two important notions: the first one, the inverse limit, is connected 
with the notion of  intersection and the second one, the direct limit, with that of  union. 

Let I be a preordered set by a relation <~ . 

DEFINITION 2.10 (Inverse system). An inverse system indexed by I consists of the data: 
�9 A family { Mi}ie  I of R-modules. 
�9 For every i, j C I with i ~< j ,  of a morphism fij from Mj to Mi such that 

- if i <~ j <<. k, fik = fi j  o f j k ,  
- f i i  - -  1Mi. 

The submodule M of the product 

IlMi 
i E I  

whose elements are the elements (xi)ieI such that i <~ j :=> xi -- f i j ( x j )  is called the 
inverse (or projective) limit of  the inverse system, in notation M - tim 71///. 

Let aj  be the restriction to Jim Mi of the projection from the product 

I-[Mi 
i E I  

to Mj.  

THEOREM 2.1 1. For every R-module N we have the following isomorphism: 

HomR(N, tim Mi) -+ tim HomR(N, My), 

g ~ (ajog) jes .  

Here is now the dual notion of direct system and limit. 

DEFINITION 2.12. A direct system indexed by I of R-modules consists of the data: 
�9 A family {Mi}ie z of R-modules 
�9 For every i, j E I with i <~ j ,  of a morphism fji  of Mi in Mj such that 

- if i <<. j <~ k, fki - -  f k j  o f j i ,  

- fii = 1 Mi for every i E I. 

The R-module 
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where ~ is the submodule generated by the elements (Yi)ic/ for which there exists 
j ,  k E I with j <~ k such that Yi = 0 if i -r j,  k and Yk - fk j (yj) ,  is called the direct 
limit (injective limit) of (Mi, fji)i,yez, in notation M -  l i~  M/. 

Let/3j be the morphism from My to lin~ Mi which is the composite of the injection 
of My into the direct sum 

(~Mi 
iEI  

and the surjection from it to l i~  Mi. 

THEOREM 2.13. For every R-module N, the map 

is an isomorphism of HomR(l i~ Mi, N)  onto tim HomR(Mj,  N). 

THEOREM 2.14 (Exactness of inverse and direct limits). 
�9 The functor inverse limit is left exact. 
�9 The functor direct limit is exact. 

Let us explain what exactness means for direct limits. 
�9 A morphism r of the direct system (M',  fi~)i,jez into the direct system (Mi, fiy)i,j~z 

is the data for every i E 1 of a morphism r of M '  into Mi such that if i < j 

f jior - Cjo f~i. 
�9 The notion of a short exact sequence 

o-+ (i" f;,) ( i ,  f j , )  r M "  " , , , , , & ) - + O  

of direct systems indexed by I is the evident one. 

Some remarks 
1. If the set ! is discretely ordered, i.e. if two distinct elements are incomparable, the 

inverse limit is the product and the direct limit the direct sum. 
2. Of great importance 2 is the case where the ordered set I is directed, which means: 

Vi, j E I, there exists k E I such that i, j ~ k. 
Then we get the equality 

ker(13i) = U ker(fji). 
j~>i 

3. Mixing case 1 and case 2, you get any inverse or direct limit. 

2 Look for that the study of Grothendieck abelian categories ([13], Axiome AB5). 



Ideals and modules 715 

4. You may look at a module M as the union of its finitely generated submodules but 
it is often much better to look at it as a direct limit (not the union!) of finitely presented 
modules, i.e. quotient modules of free finitely generated modules by finitely generated 
submodules. 

We now leave the general definitions to sink into more subtle notions which came from 
the theory of abelian groups. 

This theory of abelian groups goes back to Gauss, who in the Disquisitiones studied 
the finite abelian group of the classes of quadratic forms with a given discriminant. 

This was extended to the theory of modules over principal ideal rings and then over 
more general rings. 

We shall sometimes introduce a notion for abelian groups and then extend it to modules 
over any ring. 

3. Free modules  

3.1. Free modules 

Elementary linear algebra begins with the study of vector spaces and the main theorem 
asserts first that every vector space has a basis, maybe empty, and second that the 
cardinal of such a basis only depends on the space. 

DEFINITION 3.1. An R-module L is free if it has a basis, i.e. a subset {xi}i~i  such that 
every element of L may be written in only one way Y'~ieI Aixi with Ai E I and Ai = 0 
but for a finite subset of I.  

The R module R (I) is free with basis (x i} i~xwhere  xi is the map / --+ R defined by 
xi(i) = 1 and xi( j )  = 0 if j ~ i. We shall identify i to xi and so I to a basis of R (I). 

The R-module L is free with a basis indexed by I iff it is isomorphic to R (z). 
In general, there exist modules which are not free. Here are two simple reasons for 

that. 
�9 First of all, note that if a module has a nonempty basis it is only cancelled by 0, i.e. 

if A E R and AM = 0 then A = 0. 
If the ring R has an ideal I ~ (0) and R, which means that R is neither 0 nor a field, 
the R-module R / I  has no basis because it is cancelled by I. 
Hence a ring R is a field iff every R-module is free. 

�9 On the other hand, note that an ideal of a domain R is a free module iff it is principal, 
a quite useful characterization of principal! 
For example the nonprincipal ideal (3, x/-L-5) of the ring Z[x/-Z5] is not free. 

THEOREM 3.2. Two bases of a free module have the same cardinality. 

Proof is easy. 
Let {x i} ie i  be a basis of the free R-module M.  If the commutative ring R is not 0 

it has a maximal ideal I. The quotient module M / I M  gets a structure of vector-space 
over the field R / I  and, writing ~ for the class of y E M,  we see that {-s is a basis 
of this vector-space. So the cardinal of I depends only on M.  
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We shall not list here all the extensions to free modules of properties of vector-spaces. 
Let us give the following one coming from the isomorphism 

Hom (R (I), M)  ~ (Hom(R,  M ) ) '  "~ M I" 

Suppose that the sequence of R-morphisms 

M '  --+ M ~ M "  

is exact and that N is a free R-module.  
Then the transformed sequence 

HomR(N,  M ' )  --+ HomR(N,  M ' )  --+ HomR(N,  M " )  

is exact too. 
Here are some properties connected with free modules. 

�9 We saw that if the ring R is not a field, there exist modules which are not free. 
Nevertheless, if R is not a field, any R-module  M is a quotient of a free R-module L 
for instance R (M). 

�9 The module M is finitely generated iff we can chose the free module L with a finite 
basis. 

�9 We say it is finitely presented if it is of type L / N  where L is free with finite basis and 
N is a finitely generated submodule of L. 

�9 The ring R is called coherent if every finitely generated R-module  is finitely presented. 3 
A noetherian ring is coherent but the converse is wrong: 
An infinite product of fields is coherent but is not noetherian. 

3.2. Torsion modules 

If the ring R is an integral domain, an obstruction to an R-module  M being free is the 
existence of nonzero elements a E R and x E M such that ax = O. 

If M is a finitely generated module over a principal ideal domain R, for instance a 
finitely generated abelian group, this is the only obstruction. 

To give a more precise structure theorem, let us give some definitions. 

DEFINITION 3.3. Let R be an integral domain and M be a module over R. 
�9 The subset 

T ( M )  = {x e M [ 3a e R, a # O; a x = 0 }  

is a submodule of M called the torsion submodule of M.  
�9 The module M is called torsion if T ( M )  = M and torsion free if T ( M )  = O. 

3 This notion is useful in the study of analytic spaces when the dimension is c~. 
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We remark that the quotient submodule M / T ( M )  is torsion free and that T ( T ( M ) )  = 
T ( M ) .  So you can imagine the axiomatic definition of a general notion of torsion and 
of what is called torsion theory: you give the class of modules you want to be torsion 
with natural properties [8, 27]. 

For instance, if 57 is a multiplicative subset of R, one can take the class of modules 
M such that ,[7 - 1 M  = 0. 

This theory is connected to localization and for instance to the localizing subcategories 
of P. Gabriel [ 12]. 

Here is one of the oldest and most famous results. 

THEOREM 3.4. Let R be a principal ideal domain and M be a finitely generated module. 
�9 M is the direct sum of  its torsion submodule T ( M )  and a free module. 
�9 I f  M is a torsion module, it may be written in only one way in the form: 

n 

M = R / ( d , )  
i - - 1  

where di E R and di+l divides di (i = 1 , . . . ,  n -  1). 

The elements di are called the invariant factors of the torsion module M. 

The main example 
Let k be a field, V a finite dimensional k-vector space and u an endomorphism of  V. 

Define on the additive group V a structure of module M = Vu over the ring R = k[X] 
of polynomials by setting, if f ( X )  E k[X] and x c V, 

f ( X ) x - -  f (u ) (x ) .  

Then Vu is finitely generated like V. It is a torsion module: the Hamilton-Cayley 
theorem says that, if x ~ ( X )  is the characteristic polynomial of u, X~(U) = 0 and so 
x (x)v  = (0). 

4. Projective modules 

4.1. Projective modules 

If the ring R is principal, any submodule of a free module L and so any direct summand 
M of L is free. 

Fortunately, owing to the importance of the problems involved, even the last assertion 
does not hold for any ring. 

A direct summand of a free module is not necessarily free. 
For instance, let R be the Dedekind ring Z[x/-~] and M be the ideal (3, 1 + 2x / -~) .  

This ideal is not principal and so the R-module M is not free but, as it is a quotient of 
the free module R 2, we shall see below that it is a direct summand of it. 

DEFINITION 4.1. A projective module is a direct summand of a free module. 
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THEOREM 4.2 (Projective ideals). If  the ring R is an integral domain, an ideal I is pro- 
jective iff it is invertible and then it is finitely generated. 

This means that there exist a l , . . . ,  an,  E I and/31, . . . , /3n,  d ~ 0 E R such that, in the 
field of quotients of R: 

/3~I c R; 
n 

i = 1  

Such an ideal is generated by c~l, . . . ,  an and so is finitely generated. 

Some definitions using projective modules 
First of all let us give this easy result: every R-module is projective if and only if the 
ring R is a finite product of fields. 

Now we give two important definitions. 

DEFINITION 4.3. 
�9 A ring R in which every ideal is projective is called hereditary. 
�9 A ring R in which every finitely generated ideal is projective is called semi-hereditary. 

If R is an integral domain, R is hereditary iff it is a Dedekind ring, i.e. a ring in which 
every proper ideal is a product of prime ideals. 

A semi-hereditary integral domain is called a Prtifer ring, as is any Bezout domain, 
i.e. a domain in which every finitely generated ideal is principal. 

Here are two well known examples of such rings: 
�9 the ring of entire functions in the complex plane 
�9 the ring of all the algebraic integers. 
The following structure theorems of modules over such rings generalize those for prin- 
cipal ideal domains [6]. 

THEOREM 4.4. 
�9 I f  the ring R is semi-hereditary, every finitely generated submodule of a free R-module 

is the direct sum of a finite number of modules each of which is isomorphic with a 
finitely generated ideal of R. 

�9 If  the ring R is hereditary, every submodule of a free module is the direct sum of 
modules each of which is isomorphic with an ideal of R [6]. 

Connection between projective and free modules 
The following question is quite natural and important: 

Is every projective R-module free? 
We have to distinguish between the finitely generated and the nonfinitely generated 

case. 
�9 First of all, let us give the following result of I. Kaplansky [15] improved by C. Walker 

[31]: 
Every projective module is a direct sum of countably generated modules. 
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�9 In [2], H. Bass proved that nonfinitely generated modules do behave better than the 
finitely generated ones!: 
If  R is a connected 4 commutative noetherian ring, every not finitely generated projec- 
tive R-module is free. 

�9 A famous problem of J.P. Serre connected with the problem of triviality of vector 
bundles over affine spaces was solved independently by D. Quillen [24] and A. Suslin 
[28] in 1976. They proved: 
Every projective module over the ring k[Xl,... ,Xn] of polynomials over a field k is 
free. 

4.2. Miscellaneous 

Is any R-module (resp. finitely generated module) a quotient of a minimal projective 
module, i.e. a so-called projective cover? 

If the answer is yes, H. Bass says that the ring R is perfect (resp. semi-perfect) and 
he gets structure theorems in the not necessarily commutative case [3]. 

Here they are in the much simpler commutative case. 
�9 The ring R is semi-perfect iff it is a finite product of local rings. 
�9 The ring R is perfect iff it is a finite product of local rings with T-nilpotent maximal 

ideals. This means that for any sequence (an)heN of elements of the maximal ideal 
there exists m such that a l " "am  - O. 

What about a direct product of projectives? S. Chase proved in 1960: 
Every product of projectives is projective if and only if the ring _R is artinian [9]. 

5. Flat modules 

The notion of flat modules was introduced by J.P Serre in a famous paper, often named 
GAGA, [29], connecting classical algebraic geometry to so-called analytic geometry, the 
study of zeros of analytic functions. 

A very important example is that of the ring C { X 1 , . . . ,  Xn}  of convergent power 
series looked at as a module over the ring C[X1 , . . . ,  Xn] of polynomials. 

In the same vein [20] is the example of the ring Cn of germs of functions of class C ~ 
in a neighborhood of the origin in R n looked at as a module over the ring of germs of 
analytic functions. 

Let us first recall very briefly some facts about the tensor product. 

5.1. Tensor product 

Let M and N be two R-modules. 
Consider the set product M • N and the free R-module L = R (MxN); SO we may 

identify the set {(z, Y)}~eM,u~N to a basis of L. 

4 This means without idempotent other than 0 or 1. 
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Then let �9 be the submodule of L generated by elements of one of the following 
types: 
�9 (Xl + x2, y) - ( x l , y )  - (x2, y); Zl ,Z2 E M;  y E N 
�9 (x, Yl + Y2) - (x, Yl) - (x, Y2); x E M;  Yl, Y2 E Y 
�9 (,kx, y ) - , k ( x , y ) ;  ) ~ E R ;  x E M ;  y E N  
�9 (x, A y ) - - , ~ ( x , y ) ;  ) ~ E R ;  x E M ;  y E N  

Finally put M Q R N  = L / #  and write x |  for the class of (x, y) E M •  C R (MxN) 
modulo # and c~ for the bilinear map: (x, y) ~ x | y from M x N to M | N. 

The R-module M @R N is called the tensor product of  the two modules M and N. 5 

THEOREM 5.1 (Universal property). For every bilinear map r from the product M • N 

to an R-module P there exists one and only one morphism r from M @R M to P such 
that r = r o a. 

For a sketchy proof, remark that r defines a morphism r from L to P by r ((X, y)) = 
r  y)). 

The module �9 has been chosen in such a way that the bilinearity of r implies that 
r (4~) = 0. The morphism r is then defined naturally by quotient. 

THEOREM 5.2. Tensor product is right exact but not always left exact. 

You can prove this using the universal property and the left exactness of the functor 
H o m [  17]. 

5.2. Flat modules 

DEFINITIONS 5.3. Let R be a ring and M a module over A. 
1. The module M is flat if, for every exact sequence 

0--+ N '  ~ N --% N "  --+ 0, (1) 

the transformed sequence 

0 --+ M | N '  M|162 M @R N M|149 M | N "  ~ 0 (2) 

is exact. 
2. It is faithfully flat if the exactness of (2) is equivalent to that of (1). 
3. An R-algebra S is flat or faithfully flat if the R-module S is so. 

As the tensor product is right exact, M is flat if every injection remains an injection 
when tensored by M and faithfully fiat if the converse holds. 

5 You may define in the same way the tensor product of any number of modules and prove natural properties 
of associativity. 
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Examples 
�9 The R-module R is (faithfully) flat. 
�9 A direct sum of flat modules is flat. 
�9 A direct summand of a flat module is flat. 
�9 A free module is (faithfully) flat. 
�9 A projective module is flat. 
The characterization of finitely projective modules as finitely presented modules which 
become free when localized at any prime ideal of the ring R gives a converse to the last 
assertion above. 

A finitely presented flat module is projective. ([5], Chapter II.5 2, Corollary 2 of 
Theorem 1.) 

5.3. Characterization with ideals 

In fact, the special sequences (1) of type 0 --+ a --+ R with a ideal of R are enough to 
give flatness. 

THEOREM 5.4. The R-module M is flat if and only if for every ideal and even for every 
finitely generated ideal a of R the homomorphism 

~ Xi Q ai ~ ~ aixi 

from M | a to M is injective. 

As an easy corollary we get: 
If  the ring R is a principal ideal domain, the R-module M is fiat if and only if it is 

torsionless. 
The tensor product commutes with direct sums and so every direct sum offlat modules 

is still flat. What about products of flat modules? 
S. Chase answered that question in [9]: 
The ring R is coherent iff every product of flat modules is flat or iff for every set I 

the R-module R I is flat. 

5.4. Using linear equations 

Here is a rather concrete characterization of flat modules by homogeneous linear equa- 
tions. The characterization of faithfully flat modules is the same but with nonhomogeneous 
linear equations. 

It is worth applying it to the following examples of flat modules: 
�9 R is a field and the R-module M is an overfield. 
�9 R is the ring of germs of analytic functions in a neighborhood of the origin of R n and 

M is the ring Cn of germs of functions of Class C ~ .  
�9 R is a noetherian local ring and M is its completion. �9 
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THEOREM 5.5. Let j be an integer >>. 1 
The following assertions are equivalent for an R-module M:  

(i) The R-module M is flat. 
(ii) For every aij E R and xi E M (i = 1 , . . . ,  r; j = 1 , . . . ,  n) such that 

7' 

E a~jx~ = O; 
i = l  

j = l , . . . , n ,  

there exist 

s E N * ,  b~kER,  y k E M ;  k - l , . . . , s  

such that 

• aijbik = O; j =  1 , . . . , n  and xi = ~ bikyk. 
i = 1  k = l  

(iii) The assertion (ii) only for  j = 1. 

SKETCH OF PROOF ([5]). 
(iii) =~ (i) Let a l , . . . ,  a,. be generators of a finitely generated ideal I. The condition 

E a i x i  - -  0 

i - l  

means that the element 

r 

E x i  @ai 
i - - I  

is in the kernel of the morphism 

)~: xi ai ~-+ aixi 
i--1 i - - I  

from M | 1 to M. The assumption implies that such an element is 0. 
By induction on the number of elements of a minimal system of generators, you get: 

(for instance, [17], p. 243-244). 

PROPOSITION 5.6. A finitely generated module M over a local ring R is fiat iff it is free. 

5.5. Lazard's characterization 

Here now is a very nice result of  D. Lazard [18]. 

THEOREM 5.7. Any R fiat module M is a filtering direct limit of  free R-modules. 
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We do not give the proof but only the inverse system of free modules involved. 
Let A be the set of finite subsets of the product M • If c~ E A, note {e(m,n)}(m,n)~a 

the natural basis of the R-module R (~). 
Let u,~ be the morphism from R ('~) into M such that u,~(e(m,n)) = m. 
Let I be the set of elements (c~, N,~) with c~ E A and N,~ a finite subset of K s  = 

ker(u,~) naturally ordered. 
For every i E / ,  let Mi be the finitely presented module R(a)/s(N,~) where s (X)  is 

the module spanned by X.  
We prove then: 

�9 M = l i~  (Mi)iEI. 
�9 The subset J = {i E I I Mi is free} is cofinal to I. 
�9 M = lin~(Mi)i~j.  

5.6. Absolutely flat rings 

It is natural to look at the rings R for which every R-module is fiat. 
Those rings are the regular rings of Von Neumann. To avoid the possible confusion 

with the regular rings of commutative algebra, Bourbaki called them absolutely flat and 
we shall agree with that terminology [5]. 

DEFINITION 5.8 (Von Neumann). The (commutative) ring R is said to be absolutely flat 
if it satisfies the following equivalent properties where a is any element of R: 1. There 
exists b E R such that a = ba 2. 2. The ideal aR is a direct summand of R. 3. The 
R-module R / a R  is flat. 

Here are some remarks: 
�9 if a = ba 2, the idempotent ea = ba generates the ideal aR. So every principal ideal of 

an absolutely flat ring is generated by an idempotent. 
�9 If e and f are idempotents of a ring R, e + f - e f  is also one and the ideal (e, f )  is 

equal to the principal ideal (e + f -  e f ) .  
�9 Every finitely generated ideal Of an absolutely flat ring R is principal, hence R is a 

Bezout ring. Such an ideal is generated by an idempotent and is a direct summand of 
R. 

THEOREM 5.9. The ring R is absolutely flat iff every R-module is fiat. 

6. Injective modules 

We introduce here the notion of injective modules, which is in duality with that of  pro- 
jective modules. Some properties may be deduced from those of projective modules using 
categorical duality but the most important ones, e.g., the fact that every module is a 
submodule of an injective one, need a specific treatment. 
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6.1. Some history 

The notion of divisible abelian groups was introduced by R. Baer [ 1 ] as a direct summand 
of every abelian group which admits it as a subgroup. 

He also gave the following more explicit definition. 

DEFINITION 6.1. A divisible abelian group is a group G such that 

Vx E G, Vn E N*, 3y E G I x = ny. 

To extend that definition, it is worth translating it in the following way: 
Any homomorphism f from (n) to G, given by x = f (n) E G, may be extended to a 

homomorphism g of  Z into G by g(1) = y with ny  = x. 
This is illustrated by the following commutative diagram: 

o (n) 

G 

Here are some easy consequences, where group means abelian group: 
�9 A divisible torsionless group G is a vector-space over Q: define ( n / m ) x  with n, m E 

N*, x E G, as ny  where y is the only one element such that m y  = x. 
�9 A quotient of a divisible group, for instance a direct summand, is divisible. 
�9 A direct product of divisible groups is divisible. 
�9 A divisible subgroup H of a group G is a direct summand of G. 
Here is a sketch of  the proof of  the last assertion: 

Zorn's lemma gives us a subgroup K of G which is maximal for the property K N H = 
(0). Check then K + H = G. 

THEOREM 6.2 (Divisible abelian group structure). 
�9 A divisible abelian group is a direct sum of  indecomposable divisible groups. 
�9 An indecomposable divisible group is isomorphic to 

- the additive group Q, 
- the additive group of  p-adic integers Zvoo. 

Using the property of extensions we get the following generalization of the notion of 
divisible groups. 

DEFINITIONS 6.3. An R-module M is injective if it satisfies the following equivalent 
conditions: 

(i) M is a direct summand of any over-module N. 
(ii) The functor H o m n ( - ,  M)  is right-exact and so exact. 

(iii) Any morphism to M from a submodule N ~ of a module N may be extended to 
a morphism of N into M. 
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If the ring R is an integral domain, a torsion free-module is injective iff it is divisible. 
The following characterization is noteworthy: 
The integral domain is a Dedekind ring iff every divisible module is an injective one. 
The structure theorem of indecomposable divisible groups was generalized to any 

injective module over a noetherian ring R by E. Matlis. 

THEOREM 6.4 (E. Matlis). Let R be a noetherian ring. 
�9 Any injective R-module is a direct sum of indecomposable injective modules. 

�9 Any indecomposable injective module is isomorphic to the completion 1~i of R in the 
I-adic topology, i.e. the topology of powers of a prime ideal I. 

REMARK. m direct product of injective modules is injective. What about direct sums of 
injectives? 

H. Bass proved in his Ph.D. (1956): Every direct sum of injectives is injective if and 
only if the ring R is noetherian [9]. 

6.2. Injective hull 

The notion of injective hulls is dual of that of projective covers, and is quite important 
in noetherian commutative algebra but also in other parts of mathematics, for instance 
in algebraic topology. 

Especially it allows computation of the injective dimension of a module. To con- 
vince yourself look at the fundamental paper by H. Bass: On the ubiquity of Gorenstein 
rings [4]. 

The existence of the injective hull was established first for abelian groups by Baer and 
then extended by Eckmann and Schopf 

Its connection with the primary decomposition of modules was proved by Matlis and 
extended to abelian categories by P. Gabriel. 

THEOREM 6.5. For any R-module M, there exists an injective R-module E ( M )  which 
is minimal among the injective over-modules of M. 

It is unique up to automorphism and is called the injective hull of M. 

SKETCH OF PROOF. 
An overmodule P of M is called an essential extension of M if for a submodule N 

of P the two following conditions are equivalent: 
o N = O .  
. N n M = O .  
You may also say: for any nonzero element x of P there exists ~ E R such that ~x is a 
non zero element of M. 

The notion of essential extension is transitive. 
The following lemma is the crux! But we leave its proof. 

LEMMA 6.6. The R-module P is injective iff it has no essential extension other than 
itself 
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Ordered by inclusion the set of essential extensions of M (except for isomorphism) is 
inductive: every linearly ordered subset of it has an upper bound. 

So Zorn's temma gives us a maximal essential extension E(M).  By transitivity of 
the notion of essential extension and the characterization of the lemma, we see that the 
R-module E(M)  is injective. 

It remains to check that it is a minimal injective over-module of M and that it is 
unique except for isomorphism. 

7. Some generalizations 

The R-module M is projective (resp. injective) if the functor H o m R ( M , - )  (resp. 
HomR(- ,  M))  transforms every short exact sequence into another one. 

It is difficult to resist the temptation to look at modules M such that H o m R ( M , - )  
(resp. HomR(- ,  M))  transforms into an exact sequence every element of a convenient 
class of short exact sequences. 

This gives rise for instance to the notions of quasi-projective or quasi-injective modules 
[11, 10]. 

Here is a significant application [26]. Use the class of short exact sequences of type 

0 - +  a --~ R --+ R / a -+ O. 

You get the following characterization of finitely generated projective modules, dual to 
that of injective modules using only ideals: 

The finitely generated module P is projective iff, for every ideal a of R, every morphism 
of M into R /a  comes from a morphism of M into R. 
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O. Introduction 

The guiding theme of this article is the Euclidean algorithm. First stated for the inte- 
gers in Euclid's Elements, Book VII, it was extended to polynomials in one variable 
by S. Stevin (1585). Its extension to more than one variable is difficult if one allows 
the variables to commute. But the weak algorithm, described in Section 3, provides a 
counterpart to the Euclidean algorithm (to which it reduces when commutativity is im- 
posed) and it forms a natural tool for the study of polynomials in several noncommuting 
indeterminates. Just as in a Euclidean domain every ideal is principal, so the (one-sided) 
ideals in a ring with weak algorithm are free, as modules over the ring, and this leads 
to firs and semifirs which form the subject of Section 2. Much of the module theory 
for firs applies more generally to hereditary rings, and Section 4 summarizes what is 
known, while Section 5 deals with coproducts, a natural extension of free algebras. In 
this context it is interesting to note that the weak algorithm was first observed in the 
coproduct of skew fields (Cohn 1960). I am indebted to M.L. Roberts for his comments 
on a preliminary version. 

1. Skew polynomial and power series rings 

1.1. For any ring R the polynomial ring R[x] is a familiar construction, obtained by 
adjoining to R an element x subject to the rule 

a x = x a ,  for a l l a E R .  (1) 

As is well known, every element of R[x] can be uniquely expressed as a polynomial  in 
x with coefficients from R: 

f = ao + xal  + . . . - J r  X nan, ai E R.  (2) 

The degree of f ,  deg f ,  is defined as n if an r 0; by convention, deg0 = -oo .  
We observe that 

deg ( f  - g) < max{deg f, deg g}, (3) 

deg f g  <~ deg f + deg g. (4) 

If R is an integral domain, then equality always holds in (4) and it follows that in this 
case R[x] is again an integral domain. 

This situation may be generalized by giving up (1) but still demanding that every 
polynomial can be written in the form (2). We now need to replace (1) by a commutat ion 
rule which expresses ax  in the form (2). If we wish to preserve (4), the most general 
such rule has the form 

ax  = xa  '~ + a ~, (5) 
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where a ~ a s,  a ~-~ a ~ are well-defined maps of R into itself (by the uniqueness of (2)). 
The distributive law: (a + b)x  = a x  + bx,  shows that 

x ( a  + b) ~ + (a + b) ~ = x a  '~ + a ~̀ + xb ~ + b ~, 

while the associative law: (ab )x  - a (bx )  entails 

x ( a b )  ~ + (ab) '~ - a ( x b  ~ + b ~) - ( x a  ,~ + a~)b ~ + ab '~. 

Together with the rule 1.x -- x. 1 = x this yields 

( a + b )  '~ = a  '~ + b  '~, (ab) '~ = a ' ~ b  '~, 1 a = 1, a, b e  R ,  (6) 

(a + b) '~ = a ~ + b ~, (ab) ~ = a'~b a + ab ~, 1 ~ = 0, a, b c R .  (7) 

By (6), a is an endomorphism of R; its kernel is a proper ideal of R, hence a is injective 
whenever  R is a simple ring, in particular, when R is a field. Equation (7) shows 5 to 
be a linear map called an a-derivation. For a given endomorphism a,  any element m of 
R defines an a-derivation dim by the rule 

a 5m = a m  - m a  '~; 

5m is called the inner  a-derivation induced by m. An a-derivation which is not inner is 
said to be outer.  

Given a ring R with an endomorphism a and an a-derivation 5, we can define a 
multiplication on the set of all polynomials (2) by using the commutation rule (5) to 
'straighten' products x m a x n b .  Applying (5), we find 

x m a x n b - -  x m + l a o ~ x n - l b +  x m a S x n - l b  

and an induction on n reduces the product to the form (2). The resulting rings is denoted 
by R[x;  a,  5] and is called the skew p o l y n o m i a l  ring; it has been defined here by the 
presentation with defining relations (5) in addition to the relations in R. We still need 
to show that the form (2) for its elements is unique; this follows by letting it act on the 
right R-module  R N consisting of all sequences (ai) indexed by N, by the rules 

(a i )b  = (a~b), ( a i ) x  = (a~ + a i ~ , ) ,  where a_ ,  = O. 

For f -- ao + xa l  --]--...-if- znan applied to (1,0, 0 , . . . )  just gives (a0, a l , . . . ) ,  so two 
elements (5) which are equal in R[x;  a ,  5] must have the same coefficients. We also note 
that 5 is now inner, induced by x, as we see by writing (5) in the form a 6 = a x -  xa  ~. 
If 5 happens to be inner on R, induced by m, then we can reduce 5 to 0: 

= R [ x  - m ;  0] .  

In case 5 is zero, one often writes R[x;  a] in place of R[x;  a ,  0]. 
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If all coefficients are written on the left, (5) takes the form xa  = aC~x + a 6 and we 
obtain a left skew polynomial rings. When c~ is an automorphism, this is the same as the 
right skew polynomial ring R[x; c~ - l  , -c~-16], but in general the two notions are distinct, 
i.e. a left skew polynomial ring with a nonsurjective endomorphism cannot always be 
expressed as a right skew polynomial ring. 

If K is a skew field with endomorphism c~ and c~-derivation 5, then K[x;  c~, 6] is a right 
Ore domain and so has a skew field of fractions, denoted by K ( x ;  c~, 5). More generally, 
this holds when K is a right Ore domain (Curtis 1952), cf. (Cohn 1985, p. 54). However, 
even for a field K ,  K[x ;  c~, 5] is not left Ore, unless c~ is an automorphism. For a right 
Noetherian ring R with an automorphism c~, the skew polynomial ring R[x; c~, 3] is again 
right Noetherian (Hilbert basis theorem), but for a general endomorphism this need not 
be so (Lesieur 1978; Cohn 1985, p. 58, 1990, p. 366). 

Examples of  skew polynomial  rings 
1. Let k be any field; the Weyl algebra A1 [k] is defined as the k-algebra generated by 
p, q over k with defining relation pq - qp = 1. If B = kip], then A~ [k] = B[q; 1, d/dp], 
where d / d p  is the derivation on B mapping f to its derivative d f / d p .  Every element 
of A~[k] can be written as a linear combination of terms p~qJ and d f / d p  = f q  - q f ;  
similarly d f / d q  -- p f  - f p .  It is easily checked that A1 [k] is a simple Noetherian domain 
when char k = 0. In prime characteristic r say, A1 [k] is of dimension r 2 over its center 

2. Let k be a field containing a primitive n-th root of 1, w say. Then any cyclic algebra 
A of degree n over k is generated by elements u, v such that 

u ~ = c ~ ,  v n = / 3 ,  w h e r e c ~ , ~ E k ,  v u = c o u v .  

If F -- k(u)  and x n - - O L  is irreducible over k, then the Galois group of F / k  is generated 
by a: u ~ wu and A = F[v, cr]/(v n - fl). 

3. The two-dimensional soluble nonabelian Lie algebra over k has a basis x, y with 
multiplication [x, y] -- y. Its universal associative envelope may be described as A[y; cr], 
where A - k[x] and a is the shift automorphism, f ( x )  ~-+ f ( x  + 1). It has the defining 
relation xy  -- y ( x  + l) and is also called the translation ring over k. 

4. Let k be a field of prime characteristic p and consider the set A of all polynomials 
of the form 

m - - 1  

f ( x )  = aox p'~ + a l x  p + ' . "  q- a m - i X  p k- amx ,  

with the usual addition and with substitution as multiplication: ( f g ) ( x )  -- f ( g ( x ) ) .  This 
set A is a ring under these operations. If a: a ~+ a p is the Frobenius endomorphism in k, 
then the map 7/: k[x; a] --+ A defined by x m ~-+ x p'~ and linearity is a homomorphism. 
This ring was first defined and studied by Ore (1933). 

5. If R is a principal ideal domain with an automorphism a, then R[x; a] is right 
Noetherian, but not principal unless R is a skew field. Now Jategaonkar (1969) has 
observed that when a is an endomorphism of R which maps every nonzero element 
of R to a unit, then R[z; c~] is again right principal, and for a suitably chosen ring he 
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has shown that this construction can be iterated transfinitely, to produce principal right 
ideal domains which form a good source of counter-examples: (i) right Noetherian rings 
whose Jacobson radical is not nilpotent, (ii) right but not left primitive rings, (iii) rings 
with preassigned (different) left and right global dimensions. Moreover, Lenstra (1974) 
has shown that the iterated skew polynomial rings constructed by Jategaonkar form the 
precise class of integral domains with a unique remainder algorithm (cf. Cohn (1985), 
p. 532ff.). They lead to examples of rings whose set of right ideals is well-ordered, which 
have been studied by Brungs (1969). 

1.2. Let R be any ring. If in (2) we allow infinite series, with multiplication rule (1), 

f = ao + xal  + x2a2 + . . . ,  (8) 

we obtain a ring R[[x]], called the formal  power  series ring in x over R. It may be 
considered entirely formally, or as the completion of the polynomial ring R[x] in the 
x-adic topology obtained by taking the ideals (x n) consisting of the powers of x as 
system of neighborhoods of 0. This topological point of view is sometimes useful. Thus 
if we want to define a skew power series ring, we find that the rule (5) cannot be used 
when 5 =fi 0, because left multiplication by a E R is not continuous. When 5 - 0, 
we can define the skew power series ring R[[x; c~]] as in the polynomial case, using the 
commutation rule 

a z -  z a  '~. (9) 

From R[[x]] we obtain the ring R ( ( x ) )  o f  formal  Laurent  series by localizing at x; the 
elements are now all Laurent series 

(X) 

f = ~ xZai, 
i = - N  

with the multiplication defined as before�9 When R = K is a skew field, K ((x)) is again a 
skew field, as is well known. To define skew Laurent series we shall need to assume that 
c~ is an automorphism, because the commutation rule (9) now has to be supplemented 
by 

ax  -1 = x - l  a a-~ 

In the context of Laurent series we can deal with derivations by rewriting (5) (with an 
automorphism c~) as a commutation rule for y = x - l :  

ya - a~y  + ya6y.  

By induction on n we obtain 

�9 .. aS'~-lOtyn yn. ya -- aay  + a6'~y 2 + a62'~y 3 + + + ya 6'~ ( lo)  
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As n --+ cx~, this expression converges to a series in y (with coefficients on the left!) 
and this allows us to define the skew field of formal Laurent series in x -1 . If we think 
of x as inducing the derivation 5, we see that derivation produces divergence while its 
inverse produces convergence, a pattern familiar from analysis. 

More generally, one can define skew power series over a skew field I f  for any sequence 
of mappings (t~n) of K such that 

az = za ~~ + z2a 5' + . . .  + zn+laSn + . . . ,  

provided that 
D.1. The 5i are additive maps of K and 50 is injective, 
D.2. 

n 

(ab)~n = E aAnbS'  
i = 0  

(n = O, 1 , 2 , . . . ) ,  

where An is the coefficient of t n+l in (y'~ tk+lrik)~+l (with a central indeterminate t). 
In particular it follows that ~0 is an endomorphism of K;  the sequence (rio, r i l , . . . )  is 
called a higher rio-derivation. 

For example, if 5 is an a-derivation which is nilpotent: rin+l = 0, for some n, then 
the sequence (a ,  5a,  52c~,. . . ,  (~na, 0,. . .) is a higher a-derivation, as follows from (10). 
Conversely, any higher ~0-defivation (rii) with 5i = 0 for i > n is of this form, provided 
that rio is an automorphism and r io , . . . ,  5n are right linearly independent over I f  (Smits 
1968; Cohn 1985, p. 524). In the general case higher derivations are not well understood 
and there have been a number of studies (Brungs and Ti3rner 1984; Dumas and Vidal 
1992). 

1.3. An interesting generalization of power series, the Malcev-Neumann construction, 
allows the group algebra of any ordered group to be embedded in a skew field. Let M 
be a monoid, i.e. a semigroup with 1, and K any ring. The monoid ring I f [M]  is the 
free I f -module  on M as basis, with multiplication 

au.bv = abuv a, b c K ,  u, v c M.  

The general element of I f [M] has the form E auu(au  E K);  it could also be described 
as a family (a~) indexed by M,  with almost all components 0. Then the multiplication 
takes the form 

(au) (b , )  - (c~o), where c~ - E aubu-'~" (11) 

Consider now the set of all series ~ auu, i.e. all families (au). Addition can be defined 
as before, but we cannot use the multiplication (11), because it leads to infinite sums. 
To overcome this problem, let us assume that our monoid M is ordered, i.e. a total 
ordering <~ is defined, such that 

x <~ x ~, y <~ y~ :=> xy  <~ x ~y~. 
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Let K ( ( M ) )  be the set of all series ~ auu whose support {u c M lau :/: 0} is well- 
ordered. It can be shown that this set is a ring in which ~ auu is invertible, provided 
that its leading term ass (i.e. the first term in its support) is invertible. In particular, if K 
is a field and G is an ordered group, then K((G))  is a skew field, so the group algebra 
K[G] has been embedded in a skew field (Malcev 1948; Neumann 1949), cf., e.g., (Cohn 
1985, Chapter 8). These series are also called Malcev-Neumann series. 

Any free group may be totally ordered, e.g., by writing its elements as infinite products 
of basic commutators and using the lexicographic ordering of its exponents (Hall 1959, 
Chapter 11). Thus the group algebra of a free group has been embedded in a skew field. 

G.M. Bergman (1978) has obtained a useful normal form for series in K((M) )  under 
conjugation: If f - ~ auu has an invertible leading term ass and s ~- 1, then there 
exists q with leading term 1 such that q-I  fq  has its support in the centralizer of s in M. 
Further, q may be chosen so that its support meets the centralizer of s in 1; under this 
hypothesis q is unique (cf. (Bergman 1978) or (Cohn 1985, p. 529)). This result is most 
useful when centralizers are small; e.g., in a free group the centralizer of any element -r 1 
is a cyclic subgroup, hence for a free group F any Malcev-Neumann series is conjugate 
to a Laurent series in a single variable. 

2. Firs, semifirs and generalizations 

2.1. Let R be a ring; if all right ideals are projective (i.e. R is right hereditary), then every 
submodule M of a free right R-module F is projective. This follows easily by restricting 
the projections F --+ R to M and noting that M splits over the image. Similarly, if all 
finitely generated right ideals of R are projective (i.e. R is right semihereditary), then 
every finitely generated submodule of a free module is projective. 

In homological algebra the global dimension of a ring forms a means of classification, 
and the hereditary rings, i.e. the rings of global dimension 1 are simplest after the familiar 
case of global dimension 0 (the semisimple rings). A second mode of classification 
looks at the form taken by projective modules. Here the simplest class is formed by the 
projective-free rings, in which every finitely generated projective right module is free, 
of unique rank. By the duality for projective modules: P* = Homn(P,  R), it comes to 
the same to demand this condition for left modules. We shall be concerned with rings 
that are hereditary as well as projective-free. They are just the firs, formally defined as 
follows: 

DEFINITION 1. A right fir (= free ideal ring) is a ring R with invariant basis number in 
which every right ideal is free, as right R-module. Left firs are defined similarly and a 
left and right fir is called a fir. 

THEOREM 2.1. Over a right fir R, any submodule of a free right R-module is free. 

This follows like the corresponding assertion for hereditary rings mentioned earlier. 
In the commutative case a fir is just a principal ideal domain (PID), for every ideal 
is free and its rank cannot exceed 1 because any 2-element set is linearly dependent: 
x y -  yx - 0, so x, y cannot form a basis. Hence any nonzero (left or right) ideal is free 
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on a 1-element basis, and this ensures that it is a PID. More generally, a right fir which 
is also a right Ore domain is a principal right ideal domain. Of course every PID is a 
fir; as examples of one-sided firs we have right but not left principal ideal domains, but 
there are also examples of one-sided firs that are not Ore (cf. 3.5 below). 

The condition of invariant basis number (IBN) was imposed from the beginning (Cohn 
1964) to exclude pathology. Metafirs, for which IBN fails, exist in profusion (cf. 3.6 
below), but have not really been studied. If we impose finite generation, we obtain a 
notion which is automatically symmetric: 

DEFINITION 2. A semifir is a ring R with IBN in which every finitely generated right 
ideal (or equivalently, every finitely generated left ideal) is free. 

To study semifirs, we introduce another condition which is itself symmetric. A relation 

X l Y l  n t- ' ' "  n t- X n Y n  = 0 (1) 

in a ring R is called trivial if for each i = 1 , . . . ,  n either xi = 0 or yi = 0. We shall 
call (1) an n-term relation and write it more briefly as 

x .y  = O, 

where x is a row and y is a column. If there is an invertible matrix P such that on writing 
x ~ - xP ,  y' = p - l y ,  the relation x~y ~ = 0 is trivial, then (1) is said to be trivializable. 

For example, writing x = ( 3 , - 1 , 4 ) ,  y = (2, 10, 1) T, we obtain a relation (1) which is 
not trivial, but which can easily be trivialized over Z. 

To prove the symmetry of semifirs, it is convenient to have another definition: 

DEFINITION 3. For any integer n >~ 0, an n-fir is a ring r 0 in which every m-term 
relation for m ~< n is trivializable. 

Thus a 0-fir is a nonzero ring and a 1-fir is a nonzero ring in which ab -- 0 implies 
a = 0 or b = 0; in other words, a 1-fir is just an integral domain. 

THEOREM 2.2. For any nonzero ring R and any integer n >~ 0 the following conditions 
are equivalent: 

(a) every relation of  at most n terms can be trivialized, 
(b) every right ideal o f  R, on at most n generators, is free o f  unique rank, 
(c) every submodule on at most n generators o f  a free right R-module is free o f  unique 

r a n k ,  

(d) every matrix relation X Y  = O, where X has at most n columns, can be trivialized, 
the left-right analogues of  (a)-(d). 

Here a matrix relation X Y  = 0, where X is r x m and Y is m x s say, is trivialized 
by an invertible m x m matrix P if the relation X P . P - 1 Y  = 0 is trivial, in the sense 
that for each i = 1 , . . . ,  m,  either the i-th column of X P or the i-th row p - 1 y  is 0. 
A proof of Theorem 2.2 (which is not difficult) may be found in Cohn (1990, p. 427) or 
(1985, p. 66) or (1995, 1.6, p. 35f.). 
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If Sn denotes the class of n-firs, we have the inclusions 

So ~ S1 3 . . . ,  (2) 

which are all proper (cf. 3.6 below), and S = ["1Sn is the class of all semifirs, by (b) of 
Theorem 2.2. Moreover, this theorem shows the symmetry of the definition of a semifir; 
in fact we may define a semifir symmetrically as a nonzero ring in which every relation 
is trivializable. By (2) we see that every semifir, in particular, every left or right fir is an 
integral domain. It can be shown that every semifir can be embedded in a skew field (cf. 
(Cohn 1971, p. 283, 1985, p. 417, 1995, 4.5, p. 182)). Since every class Sn is clearly 
defined by elementary sentences, it follows from (2) by the compactness theorem of 
logic that embeddability in a skew field cannot be defined by a finite set of elementary 
sentences (Cohn 1974, 1981, 1995, 6.7, p. 328). 

In the commutative case (or more generally, the Ore case) semifirs just reduce to 
Bezout domains (i.e. integral domains in which every finitely generated ideal is principal). 
In fact a commutative 2-fir is just a Bezout domain; thus the chain (2) collapses to 
SO ~ S1 ~ $2 -- S in the commutative case. 

Over a local ring every finitely generated projective module is free (in fact, this holds 
for any projective module, cf. Kaplansky (1958)), and a local ring always has IBN, hence 
any local ring which is left (or right) semihereditary is a semifir. Such rings can also be 
characterized as follows (Cohn 1992b): 

THEOREM 2.3. A local ring R is a semifir i f  and only if  it satisfies the following trivial- 
izability condition: 

Given a l , . . . ,  an E R, i f  there is a nontrivial linear relation 

aibi - O, bi c R,  not all O, (3) 

then there exists a relation (3) in which one of  the bi is a unit. 

Since the Ore condition holds for all Noetherian domains, it is clear that general firs 
will not be Noetherian. Nevertheless there is a chain condition satisfied by firs. A module 
is said to possess the ascending chain condition on n-generator submodules, ACCn for 
short, if any ascending chain of n-generator submodules becomes stationary. By a ring 
with right ACCn we mean a ring satisfying ACCn as right module over itself; similarly 
for left ACCn. 

THEOREM 2.4. Let R be a right fir. Then any free right R-module satisfies A CCn for  all 
n>~ l. 

For let Nl C N2 C ..- be an infinite strictly ascending chain of n-generator sub- 
modules of a free module F.  Then the union N -- [,J Ni is countably but not finitely 
generated, hence free of countable rank, with basis Ul, u 2 , . . . ,  say. The submodule P 
generated by u l , . . . ,  un+l is a direct summand of N and is contained in some Ni,,, hence 
a direct summand of Ni,,, but this contradicts the fact that Ni0 is free of rank n. 
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The conclusion of Theorem 2.4 holds more generally for any finitely related R-module.  
Further, the result extends to ~0-firs, where a right c~-fir is a ring in which every right 
ideal with a generating set of cardinal at most c~ is free, of unique rank (Bergman 1967; 
Cohn 1967, 1985, p. 72). 

2.2. Semifirs satisfy a form of Sylvester 's law of nullity, once the appropriate notion of 
rank has been defined. Let A be an m x n matrix over any ring R; there are various 
ways of writing A as a product of  an rn x r by an r • n matrix: 

A = PQ, P E mRr, Q E rRn. (4) 

If the factorization (4) of R is chosen so as to give r its least value, it is called a rank 
factorization of A and r itself is called the inner rank or simply the rank of A, written 
r(A). For example, an element of R, as 1 x 1 matrix, has inner rank 1 unless it is 0, 
for 0 can be written as a product PQ, where P is a matrix with no columns and Q a 
matrix with no rows. When R is a skew field, the above definition agrees with the usual 
definition of rank; in more general cases the rank is usually not defined, and even when 
it is (e.g., for commutative rings) it need not coincide with the inner rank. 

It is clear that the inner rank of a product of matrices is bounded above by the ranks 
of  the factors: r (AB)  <~ min{r(A) ,  r(B)}.  In a semifir we also have a lower bound on 
the inner rank: 

SYLVESTER'S LAW OF NULLITY. Let R be a semifir and A E mR n, B E n R  p. Then 

r (AB)  >~ r(A) + r(B) - n. (5) 

The class of rings satisfying (5) has been studied by Dicks and Sontag (1978) (cf. 
also (Cohn 1985, 5.5, 1989b)) under the name Sylvester domain. Formally a Sylvester 
domain is defined as a ring ~ 0 such that 

SD. For any A E turn ,  B e nRP, if A B  = O, then r(A) + r(B) <. n. 

From this special case of (5) the full form can be obtained by taking a rank factorization 
of AB,  say A B  - PQ, where Q has r (AB)  rows. Then 

(A 

hence by SD, 

r(A) + r(B)  <~ r(A P) + r (B Q)T <~ n + r (AB) ,  

i.e. (5). By taking A, B to be 1 x 1, i.e. elements of R, we see that a Sylvester domain 
is indeed an integral domain. 

Every Sylvester domain has weak global dimension at most two and is projective-free; 
in the commutative case the converse also holds, but in general it is not known whether 
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every projective-free ring of weak global dimension at most two is a Sylvester domain. 
But every projective-free ring of weak global dimension at most 1 which is also right 
coherent is a semifir (cf. Dicks and Sontag (1978) or Cohn (1985, p. 256)). 

A square matrix, say n x n, of inner rank n is said to be full. Thus over a skew 
field, a square matrix is clearly invertible if and only if it is full, and it follows that 
only full matrices can be inverted under a homomorphism to a skew field. If r R --+ 
K is a homomorphism to a skew field which keeps every full matrix full (an honest 
homomorphism), then it is an embedding and the skew field generated by the image is a 
universal skew field of fractions of R, in a sense which can be made precise (cf. Cohn 
(1985, 7.2)). It can be shown that every semifir has a universal skew field of fractions 
inverting all full matrices. More generally (Dicks and Sontag 1978; Cohn 1985, p. 417): 

THEOREM 2.5. A ring has an honest homomorphism to a skew field (and hence has a 
universal skew field of  fractions) if and only if it is a Sylvester domain. 

In a Sylvester domain every full matrix is regular (i.e. a non-zero-divisor); for an Ore 
domain the converse holds: If in an Ore domain R every full matrix is regular, then R 
is a Sylvester domain. 

As examples of Sylvester domains, apart from semifirs, we have polynomial rings in 
two variables over a field: k[x, y], but not in more than two variables. For example, in 
k[x, y, z] the matrix 

0 z - y )  
- z  0 x 
y - x  0 

is full, and so of inner rank 3, but it is a zero-divisor, since it annihilates the row (x, y, z) 
(Dicks and Sontag 1978; Cohn 1985, 5.5, 1989b). The polynomial ring Z[x] is a Sylvester 
domain; more generally, if A is a commutative PID, then the free algebra A ( X )  is a 
Sylvester domain (Dicks and Sontag 1978; Cohn 1985, p. 260). The same method will 
show that the group algebra A[F] of a free group F over a commutative PID A is a 
Sylvester domain; that A[F] is projective-free was shown by Bass (1964). 

3. The weak algorithm, free rings 

3.1. Let R be a filtered ring, i.e. R has a sequence of additive subgroups 

RoC_Rl c _ . . . ,  U R h - R '  

such that RiRj  C_ Ri+j and 1 c R0. Then Ro is a subring and each Rh is an Ro- 
bimodule. Moreover, R is an R0-ring; this jusi means a ring with a homomorphism 
from Ro into it (in this case an embedding). On R we define a filtration v by putting 
v(0) = -cx~ and for x -r 0 defining 

v(x) - min{h I x E Rh}; 
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we shall call v(x) the degree of x. It is clear that v(x) is an integer-valued function on 
R • satisfying: 

V.1. v(x) >~ 0 for all x 5r 0 (v(0) = - c ~ ) ,  
V.2. v ( x -  y) ~ max{v(x) ,  v(y)}, 
v.3. v(xv) < v(x) + 
V.4. v(1) = 0. 
We shall mainly have to deal with the case where equality holds in V.3; then v is 

called a degree function. Conversely, any Z-valued function satisfying V. 1-4 leads to a 
filtration on R. Every ring R is trivially filtered by the rule R = R0; the corresponding 
filtration: v(x) = 0 for all x r 0, is said to be trivial. 

With a filtered ring R we associate a graded ring (Hi) in the usual way by writing 
Hi - R i /R i - l  and defining the product of c~ E Hi and/3 E Hj  by taking representatives 
a E Ri of c~ and b E Rj of/3  and putting c~/3 equal to the coset ab + Ri+j-1. Clearly 
c~/3 depends only on c~,/3 and not on a, b and with this product (Hi) becomes a graded 
ring, also written gr R. We shall need a notion of linear dependence; this will be defined 
in terms of the filtration, though it is easily expressed in terms of gr R, a task left to the 
reader. 

If R is any filtered ring, with filtration v, then a family (ai) of elements of R is said 
to be right v-dependent if ai = 0 for some i or there exist elements bi E R, almost all 0, 
such that 

v ( E a i b i )  < max {v(ai)  + v(bi)}. 

A v-independent family is one that is not v-dependent. For example, any linearly 
dependent family is right v-dependent, though not conversely, and linear dependence is 
the special case of t-dependence, where t is the trivial filtration. 

An element a C R is said to be right v-dependent on a family (ai) if a --- 0 or if there 
exist ci E R, almost all 0, such that 

v ( a - E a i c i  ) < v(a),  v(ai) + v(c~) <<. v(a) for all i. 

Left v-dependence is defined analogously. 
Using a degree function we can express the usual division algorithm as follows: 

DA. Given a, b E R, b ~ O, there exist q, r c R such that 

a = bq + r, v(r) < v(b). (1) 

An equivalent form turns out to be more convenient for us: 

DA/. For any a, b E R the one of a, b of higher (or equal) degree is right v-dependent 
on the other. 

If DA holds, and v(b) ~ v(a) say, then either b = 0 or (1) holds, so v ( a -  bq) < 
v(b) ~ v(a), which shows a to be right v-dependent on b. Conversely, assume DA' and 
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let a, b c R be such that b r 0. Choose q c R such that v ( a -  bq) is minimal; to satisfy 
DA we must show that v(a - bq) < v(b). But if v(a - bq) >~ v(b), then by DA' there 
exists ql E /~  such that v(a - b(q + ql)) < v(a - bq), and this contradicts the definition 
of q. This shows DA and DA I to be equivalent. 

The division algorithm is particularly suited to the study of polynomial rings, for we 
have 

THEOREM 3.1. Let R be a ring with a degree function v. Then R satisfies the division 
algorithm if and  only if  either R is a skew field or R = K[z;  a, 6] for  a skew field K 
with endomorphism a and a-derivation 6, where v ( z )  > 0 (cf. Jacobson (1934); Cohn 
(1961, 1985, p. 92)). 

For a generalization to several variables it is important not to require the variables to 
commute. The division algorithm is then replaced by a relative dependence condition on 
finite families: 

WAn. A ring R with a filtration v is said to possess an n-term weak algorithm (WAn) 
relative to v i f  in any right v-dependent family o f  at most n elements a l , . . . ,  am (m ~ r~), 
where 

v(am) 

say, some ai is right v-dependent on a l , . . .  , a i - l .  I f  the n-term weak algorithm for  all 
n holds in R, then R is said to possess a weak algorithm (WA). 

To take some simple cases, WA, states that v(ab) = v(a) + v(b), for a, b -r 0, i.e. v is 
a degree function; WA2 states that v is a degree function and for any a, b that are right 
v-dependent, where v(a) >~ v(b) say, there exists c E R such that v ( a -  bc) < v(b). If 
moreover, R is commutative, then any two elements are linearly dependent, as we have 
seen, hence right v-dependent, so for commutative rings WA2 reduces to the division 
algorithm in the form DA !. More generally, this holds for any filtered Ore domain with 
WA2 and it shows that in the commutative (and even Ore) case, WA2 implies WA. By 
contrast, for general filtered rings the conditions WAn can be shown to be all distinct 
(Bergman (1967); see also 3.6 below). In any filtered ring R with WA2 the subring R0 
is a skew field; for if a c R~, then 1, a are right v-dependent, because 1.a - a.1 --/= 0, 
and v(a) = v(1) = 0, so 1 is right v-dependent on a: v(1 - a b )  < 0, hence ab = 1. 
Now b c Ro, so bc = 1 for some c E R and c = ab.c = a.bc = a, which shows a to be 
invertible, as claimed. 

By expressing the weak algorithm in terms of the associated graded ring, one can show 
that WAn and hence WA is left-right symmetric, i.e. it holds for a ring R if and only if 
it holds for the opposite ring (Cohn 1961; Bergman 1967; Cohn 1985, 2.3). 

A familiar argument shows that any commutative filtered ring with a division algorithm 
is a PID. Correspondingly one has 

THEOREM 3.2. A filtered ring with n-term weak algorithm is an n-fir with A CCn; a fil- 
tered ring with weak algorithm is a (left and right)fir. 
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To prove the second statement, one writes, for any right ideal ct of R, ct~ = ct N R~, 
takes a maximal right v-independent subset B1 of al and defines Br recursively as a 

t the set of elements of ctr right v-dependent on ct~_l; minimal spanning set of ct~ over a r, 
in effect B,. is an R0-basis for a~/a~. Now B = UB,. is a basis for a which is therefore 
free, and the rank is easily verified to be unique, so that IBN holds in R. Thus R is a 
right fir, and by the symmetry of WA it is also a left fir. Now the case WAn follows easily 
as a special case, while ACCn follows by associating with any right ideal generated by 
a l , . . . ,  am the indicator ( v ( a l ) , . . . ,  V(am), (x) n-m)  and noting that these indicators are 
well-ordered (in the lexicographic ordering) (Bergman 1967; Cohn 1985, 2.2). 

3.2. Let k be a commutative field and X any set. The free k-algebra on X, written k(X),  
is the k-algebra generated by X with an empty set of defining relations. Thus k ( X )  
consists of all linear combinations of products of elements of X and this expression is 
unique: 

f - ~ a i x i ,  ai E k, almost al l0,  (2) 

where x1 = x i l . " x i ,~  is a typical product of elements of X. The degree of f ,  defined 
as m a x { l I ] l a i  r 0} provides a degree function on X. More generally, we obtain a 
degree function by assigning arbitrary positive integers as degrees to the elements of X. 
If X* denotes the free monoid on X, then k ( X )  may also be described as k[X*], the 
monoid algebra on X*. When X consists of a single element x, then k ( X )  = k[x] is 
just the polynomial ring in x, but for IXI > 1, k(x> is noncommutative. We recall the 
characteristic property of k(X):  Given any k-algebra C and any mapping f :  X -+ C, 
xi ~-* ci, there is a unique homomorphism from k ( X )  to C extending f ,  namely 

-~alxi~ �9 �9 �9 X i ~  ~ Z aIci~ �9 �9 �9 t i n .  

By the uniqueness of the normal form (2) this is well-defined. Since k is a field, it is 
determined by k ( X )  as the set of all units, together with 0; X cannot be determined in 
the same way, but its cardinal is an invariant of k (X) ,  called the rank of the algebra. 

Often a more general construction is needed, where the free generators need not com- 
mute with the scalars. Let D be a skew field and k a central subfield. Then the free 
D-ring on a set X over k is defined as the D-ring generated by X subject to the 
defining relations 

a x = x c ~ ,  for a l l x E X ,  a E k .  (3) 

This ring is denoted by Dk(X) ;  clearly it reduces to the previous case when D = k. 
It has the universal property that any map of X into a D-ring extends to a unique 
homomorphism; here it is essential for k to be contained in the center of D. 

The elements of Dk (X) do not have quite as good a normal form as in (2) (to get a 
reasonable form one has to choose a basis u~ for D over k and consider the k-linear 
combinations of products of terms u~xi), but there is again a degree function, defined 
as before. 
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More generally, let U be any D-bimodule over k; this means that c~u = uc~ for all 
u E U, ~ E k. Let us put 

U ~  U " = U | 1 7 4 1 7 4  w i t h r f a c t o r s ,  r > /  1, 

as D-bimodule,  where the tensor product is taken over D. Then the direct sum 

D ( U )  = U ~ @ U 1 ~[~ ' ' "  (4) 

can be defined as D-ring using the D-bilinear maps D i Q DJ --+ D i+j. This ring is called 
the tensor D-ring on U; confusion with the earlier notation k I X  ) is unlikely, since it 
is usually clear whether U is a D-bimodule or a set. In particular, D k I X )  has the form 
D ( U ) ,  where U = (D o | D) (x) and D o is the opposite ring of D. We again have a 
degree function, defined by the natural grading of (4); more generally, U itself may be 
a direct sum of terms of different positive degrees. 

We now show that for any D-bimodule U over k, D ( U )  is a ring with a weak 
algorithm: 

THEOREM 3.3. Let D be a skew field with a central subfield k and let U be a D-bimodule 
over k. Then the tensor D-ring D ( U )  is a ring with weak algorithm relative to the degree 
function defined by U. Hence D ( U )  is a fir. 

PROOF. We put R = D ( U ) ,  decompose U into its homogeneous components if necessary 
and take a basis B of U as left D-space. Then each element of R can be written as 
a linear combination of monomial terms a u l . . . u ~ ,  where a E D, ui E t3. Moreover, 
when two such terms are multiplied: 

bvl �9 �9 �9 Vsaul �9 �9 �9 U r ,  

then the product can be brought to the form of a sum of monomial terms by rearranging 
b v l . . . v s a .  When this has been done, all terms in the sum will clearly end in U l . . . u r .  

We fix a particular monomial  U l . . . u r  of degree m (usually m = r, but this is not 
essential) and define the left transduction for this monomial as the left D-linear mapping 
f ~ f*  of R into itself which maps any monomial of the form W U l . . . u ~  to w and 
all others (those not ending in u l . . .  ur)  to 0. This is a well-defined map, because the 
different monomials form a D-basis of R; for any f E R we have v ( f * )  <~ v ( f )  - m 
and for f ,  9 E R we have 

( f  9)* =_ f g* (mod Tv(I ) - l ) .  (5) 

For when 9 is a term of degree at least m, we actually have equality; when 9 is a 
term of degree less than m, the right-hand side of (5) vanishes and (5) then holds as a 
congruence, hence it holds generally by linearity. 
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We can now verify the weak algorithm for R. Assume that a l , . . .  ,an is a right 
v-dependent family, i.e. b l , . . . ,  bn C R exist such that 

v ( E a i b i )  < d=max{v(a i )+v(b i ) } .  

We may assume that the ai are numbered so that v(al)  ~ v(a2) ~ ' ' '  ~ v(an) and we 
then have to show that some ai is  right v-dependent on a l , . . . ,  ai-l. By omitting terms 
if necessary we may assume that v(ai) + v(bi) = d for all i; then v(bl) ~>.- . />  v(bn). 

In terms of our basis B for U let Ul "''Ur be a product of maximal degree rn = v(bn) 
occurring in bn with a nonzero coefficient c~ and write �9 for the left transduction for 
Ul " "Ur .  In ~ aib~ the i-th term differs from (aibi)* by a term of degree < v(ai) <~ 
v (an). Hence 

v ( E a i b ~ - E ( a i b i ) *  ) < v(an), 

while 

v ( E ( a i b i ) * )  < ~ v ( E a i b i  ) - m  < d - m = v ( a n ) .  

Thus v(~-~ aibT) < V(an), and this gives a relation of right v-dependence of an on 
a 1 , . . . ,  a n - 1  because b~ - a E D X. C] 

This result was first proved for free algebras (Cohn 1961); the above proof is modeled 
on that of Bergman (1967). Conversely, it can be shown that any filtered D-ring with 
a weak algorithm has a free generating set X for a left ideal complementing D such 
that every element can be uniquely written in the form (2) (Cohn 1961). More generally, 
Bergman has given a complete determination of all rings with weak algorithm (Bergman 
1967; Cohn 1985, p. 113). We note that Theorem 3.3 shows in particular that Dk (X} with 
the usual degree function (assigning degree 1 to all elements of X) has weak algorithm 
and so is a fir. 

3.3. Let R be any filtered ring for which Ro is a skew field K. If the terms 
Rn/Rn-1 of the associated graded ring are finite-dimensional as right K-spaces, say 
dimK(Rn/Rn-l)  = C~n, then we can form the formal power series 

H ( R .  K )  - 

It is called the Hilbert series (or also Poincar6 series) of R. For example, in the free 
algebra k (X) let us assign positive degrees to the elements of X; if there are ,kd elements 
of degree d, we put H(X)  - ~ Adt d. With this notation an easy counting argument 
shows the truth of 
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THEOREM 3.4. The Hilbert series of a free algebra k (X ) ,  where X contains/~d elements 
of  degree d and H ( X )  = ~ / k d t  d, is 

H ( R "  k ) -  ( 1 -  H ( X ) ) - ' .  

In particular, if X consists of m elements, all of degree 1, then H ( R  : k) = (1 - rot) -I . 
This should be compared with the corresponding formula H ( A  : k) = (1 - t) -m for the 
polynomial ring A = k [ x l , . . . ,  xm]. 

Similar results can be proved more generally for any ring with a weak algorithm (Cohn 
1985, p. 107). 

Any finitely presented module M over a semifir R has a resolution 

0 ~, R m ~ R n ~ M ~0. 

Here the number n - m  depends only on M, not on the resolution (by Schanuel's lemma) 
and it is called the characteristic of M, x (M) .  If R = k (X)  as in Theorem 3.4 and M 
is a finitely presented R-module, then it can be shown (Cohn 1985, p. 109) that 

x ( M )  = (1 - [ X [ ) d i m k ( M ) .  (6) 

For example, if R = k ( x l , . . . , X m ) ,  a is a right ideal of rank r and dimk(R/a) = n, 
then by applying (6) to R / a  we find x ( R / a )  = 1 - r, hence 

r -  1 - - ( m -  1)n. (7) 

This is the Schreier-Lewin formula (Lewin 1969; Cohn 1969); it is the analogue of 
Schreier's formula for groups. 

3.4. In the free algebra k (X)  we have, besides the degree function, an order function, 
defined as the least degree of terms in the support. This may be regarded as arising from 
an inverse filtration, satisfying 

1.1. v(x) C N, for x ~= 0, v(0) = c~, 
1.2. v ( x -  y) >~ min{v(x), v(y)}, 
1.3. v(xy) ~ v(x) + v(y). 
An inversely filtered ring R is said to have an inverse weak algorithm (IWA) if the 

corresponding graded ring gr R satisfies the weak algorithm, defined as before. This is 
not an algorithm ending in a finite number of steps, but in general it has an infinite 
number of steps and to obtain useful results one has to operate in the completion of R 
relative to the given filtration. Just as the weak algorithm characterizes free algebras, 
so the inverse weak algorithm (with completeness) characterizes free power series rings. 
Here the free power series ring may be defined asthe completion of the free algebra k ( X  I 
in the X-adic topology, i.e. the topology defined by the powers of the ideal generated 
by X. 

THEOREM 3.5. A complete inversely filtered ring Fg satisfies an inverse weak algorithm 
if and only if R/R1 is a skew field K and R1 contains a set X such that every element 



Polynomial and power series rings 749 

of R can be expressed as a convergent series in the products of elements of X with 
coefficients in a set of representatives of K in R. 

We have stated this result somewhat loosely to convey the flavor; for a precise form 
further definitions are needed (cf. Cohn (1962, 1985, p. 129)). 

A ring with IWA is a semifir but not generally a fir; all we can generally say is that 
it is a ' topological '  fir, in the sense that every right ideal ct has a linearly independent 
subset generating a right ideal dense in a. 

As for the weak algorithm one can define the inverse n-term weak algorithm; in the 
commutative (or more generally, the Ore) case the IWA is a consequence of the 2-term 
IWA, and a complete inversely filtered ring with 2-term IWA is a discrete rank 1 valuation 
ring (or a skew field). 

A natural question asks when the a-adic filtration (by the powers of an ideal ct) defines 
an IWA. This is answered by 

THEOREM 3.6. Let R be a ring with an ideal a such that 
(i) R / a  is a skew field, 

(ii) a |  2, 
(iii) ["l an = 0. 

Then R has an inverse weak algorithm relative to the a-adic filtration. 

Condition (ii) holds whenever ct is fiat as right (or left) ideal. Two important conditions 
where these conditions are satisfied are: 

1. R is a fir with an ideal a such that R / a  is a skew field. 
2. R is a semihereditary local ring with maximal ideal rn which is finitely generated 

as right ideal, and whose powers intersect in zero. 
Cf. Cohn (1970, 1985, p. 132, 1992b). 

For an inversely filtered ring with IWA there is an important relation with its comple- 
tion. Let S be a ring and R a subring. Given a E S n, b c ns ,  the product 

ab = E aibi 

is said to lie trivially in R if for each i = 1 , . . . ,  n either ai and bi lie in R or ai = 0 
or b~ = 0. If for any families of rows (ax) in S n and columns (b,)  in n S  such that 
a),bu E R for all ,~, # there exists an invertible n x n matrix P over S such that all 
the products a x P . p - l b ~  lie trivially in R, then R is said to be totally inert in S. If this 
holds for all finite families (a),), (b,) ,  R is said to be inert in S. 

To illustrate this notion let us show that every inert embedding is honest. Let A be a 
full matrix over R and suppose that A = U V  is a rank factorization over S. Since R 
is inert in S, there exists an invertible matrix P such that all entries of the product 
U P.P - l  V lie trivially in R. Now no column of UP and no row of p - 1 V  can vanish, 
because U V  was a rank factorization. Hence all entries of U P  and p - 1 V  lie in R, and 
this shows A to be full over S, as claimed. Let us state two important cases of inertia: 

THEOREM 3.7 (Inertia theorem). Let R be a fir which is inversely filtered with inverse 

weak algorithm and let R be its completion. Then R is totally inert in R. 
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For a proof see Cohn (1985, p. 133). Special cases of this result were obtained by 
Tarasov (1967) and Bergman (1967). For some purposes the following more elementary 
result is sufficient: 

THEOREM 3.8 (Inertia lemma). Let R be a semifir. Then for any central indeterminate t, 
R[[t]] is inert in R( (t) ). 

With the help of Amitsur's theorem on generalized polynomial identities this leads to 
a useful property of full matrices: 

THEOREM 3.9 (Specialization lemma). Let D be a skew field with infinite center k such 
that [D : k] is infinite. Then any full matrix over Dk(X)  becomes invertible for some 
choice of values of X in D (Cohn 1985, p. 285, 1990, p. 429, 1995, 6.2, p. 287). 

The condition [D : k] = c~z is clearly necessary; whether it is necessary for k to be 
infinite is not known, but this is also needed in Amitsur's proof of his theorem on rational 
identities (Amitsur (1966), or for a proof using the specialization lemma, Cohn (1972)). 

3.5. Because of its symmetry the weak algorithm is unsuitable for constructing one-sided 
firs. We therefore try to modify the definition of a degree function. In that definition, 
V. 1-4 of 3.1, we used the addition on N. Instead of N we shall use the ordinals as values. 
Thus we consider a function w on a ring R satisfying 

T.1. w maps R • to an initial segment of the ordinals, w(1) = 0, w(0) = - 1 ,  
T.2. w ( a -  b) <~ max{w(a) ,  w(b)}, 
T.3. w(ab) >~ w(a) for any b E R x . 

Such a function w will be called a transfinite degree function on R. Clearly its existence 
implies that R is an integral domain (by T.3). We also note that the usual division 
algorithm satisfies T. 1-3. Given a transfinite degree function w on R, a family (ai) in R 
is called right w-dependent if ai = 0 for some i or there exist bi E R almost all 0, such 

that 

w ( E a i b i  ) <max{w(a ib i ) } ,  

and a E R is said to be right w-dependent on a family (ai) if a = 0 or there exist c~ E R 
almost all 0 such that 

for all i. 

Now R is said to possess a right transfinite weak algorithm (TWA) if in any right 
w-dependent family a l , . . . ,  an with w(al) <~ . . .  <<. w(an), some ai is right w-dependent 
on a l , . . . ,  a i - l .  As for the WA one shows that a ring with right TWA for a function w 
is a right fir and the set {x E R [ w ( x )  <~ 0} is a skew field. 

To find examples of this notion let us turn to monoids. A monoid M is said to be 
rigid if it satisfies cancellation and if au - by, then either a = bs or b = as for some 



Polynomial and power series rings 751 

s E M. Further, if ab - 1 implies a = b- -  1, M is said to be conical, and M satisfies 
right ACCI if any ascending chain of principal right ideals aiM C a2M C ..-  breaks 
off. 

On any monoid M we can define a preordering by left divisibility: 

u~<v  if and only if v - - u s f o r s o m e s E M .  

If M is conical and has cancellation, this is actually a partial ordering, which satisfies 
the minimum condition precisely when right ACCl holds in M. Suppose that M is a 
conical monoid with right ACC1 which moreover is rigid. Then for any s E M, the lower 
segment generated by s, viz. {x E M I x ~< s} is totally ordered and so by ACC1 is an 
ordinal number, which we shall denote by w(s), and call the transfinite degree function 
defined by left divisibility. It is easily verified that 

w(u) <~ w(v) ~ w(cu) <<. w(cv) fo ru ,  v, c E M ,  (8) 

w(b) <~ w(c) ~ w(bu) <~ w(cu) for b, c, u E M. (9) 

Let R -- k[M] be the monoid algebra of M over a field k and extend w to R by writing 

-- max {w(s)]As ~ 0}. 

Then (8), (9) still hold when b, c E R, u, v E M, and T.1-3 can be verified, as well as 
the transfinite weak algorithm. Thus we have 

THEOREM 3.10. Let M be a conical rigid monoid with right A CC1. Then the monoid 
algebra k[M] satisfies the transfinite weak algorithm with respect to the left divisibility 
ordering of M, and hence k[M] is a right fir. 

For details of the proof see Cohn (1985, p. 141). This construction developed from an 
earlier one (Cohn 1969a) which was suggested by a method of Skornyakov (1965) for 
constructing one-sided firs. 

By way of example consider the monoid M generated by y, xi (i E Z) with the 
defining relations 

y x i = x i - l .  

Every element of M can be written in the form 

x i l . . ,  xi,.Y m, ip E Z, r , m  >/O, 

and this form makes it easy to verify that M is a conical rigid monoid and satisfies right 
ACCI. Thus the monoid algebra R = k[M] is a right fir, but it is not a left fir, because 
left ACC1 fails to hold: Rx0 c Rxl C .-.  (Cohn 1985, p. 142). 



752 P.M. Cohn 

If in Theorem 3.10 we omit right ACC1, the ring need not even be a 2-fir, as Ced6 
(1988) has shown by taking the group G = (x,y ] yxy -- x). The submonoid H 
generated by x and y is conical and rigid, but k[H] is not a 2-fir, since the relation 

(1  - x ) ( 1  - y )  - (1 - y ) ( 1  + xy) 

is not trivializable. 
To exclude this case, let us define a monoid M to be irreflexive if for any a, b, c E M 

such that a is a nonunit and a - bac, it follows that b = c = 1. Then the monoids whose 
monoid algebra is a right fir can be characterized as rigid irreflexive monoids with right 
ACC1 whose group of units is free (Kozhukhov 1982). The monoid algebra of M is a 
two-sided fir if and only if M is the free product of a free monoid and a free group 
(Wong 1978). 

3.6. For any filtered ring R with a degree function v we can define the dependence 
number )%(R) of R relative to v as the largest number n for which WAn holds, or ~ if 
WAn holds for all n. The larger ~v(R), the more we can prove about R, and it would 
be desirable to be able to read off )% from a presentation of R. This is too much to 
expect, but for presentations of a certain prescribed form, basically to ensure that no 
"short" relations occur, it is possible to establish a lower bound for )~v(R). We shall 
not describe the precise result here (cf. Cohn (1969b, 1985, p. 145)), but state a simple 
consequence which is often useful. It requires a basic construction which itself is of 
independent interest and is not as widely known as it should be. 

Let R9 be the category of rings and R9n the category of all n x n matrix rings (over 
some other ring). Thus an object of R9n consists of a ring R with n 2 distinguished 
elements eij, the matrix units, which satisfy the relations 

eijem - 5jkeil, ~ e i i  = 1. (10) 

A morphism in Rgn is just a ring homomorphism preserving the matrix units. We have 
a functor Mn: R9 --+ R9n which associates with each ring R its n • n matrix ring 
Mn(R). This functor has a left adjoint, the n-matrix reduction functor Wn: 

Rg(R, Mn(S)) ~- Rg(Wn(R) ,S) .  (ll) 

This functor Wn may also be defined explicitly: Let Fn(R) be the ring generated by R 
and n 2 elements eij satisfying the equations (10) for matrix units, and in case R is a 
k-algebra, the relations c~eij = eijc~ ((~ c k). In terms of coproducts (Section 5) we have 

Fn (R) = R~Mn (k). 

Now Fn(R) contains n 2 matrix units, by construction, and so is of the form Fn(R) = 
Mn(P), where P is the centralizer of all the e~j in Fn(R) (cf., e.g., Cohn (1989a, 
p. 136)). This ring P is denoted by Wn(R), so that 

Fn(R) -- Mn(Wn(R)) .  
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Intuitively Wn(R) may be described as follows: take the elements of R, treat them 
as n • n matrices and form the ring consisting of all their entries. Explicitly this means 
that for each a E R we have n 2 elements aij ,  given by 

aij -- ~ euiaeju. 
1.1 

By the properties of matrix rings we have 

Rg(R, Mn(S)) ~- Rgn(Fn(R) ,Mn(S))  - Rgn(Mn(Wn(R) ) ,Mn(S ) )  

~- Rg (Wn (R), S) . 

Thus Wn (R) as defined here satisfies (11), and, as is well known, this determines it up 
to natural equivalence. 

Now the theorem mentioned (but not quoted) above can be used to establish 

THEOREM 3.11. Let R be a nonzero k-algebra. Then the matrix reduction Wn(R) has 
a filtration v for which the ( n -  1)-term weak algorithm holds. Hence Wn(R.) is an 
(n - 1)-fir. 

For a proof see Bergman (1974b, p. 57) or Cohn (1985, p. 148, or 1995, 5.7, p. 247). 
More generally this method shows that if R is an ( r -  1)-fir but not an r-fir, then Wn (R) 
is an ( n r -  1)-fir, but not an nr-fir. Another possible generalization consists in replacing 
the elements of R by rectangular matrices such that for any product ab occurring in a 
defining relation the number of columns of a and rows of b is u, where u ~> n. 

As an application we construct, for any n ~> 1, ( n -  1)-firs that are not n-firs. Let R 
be generated by a, b with defining relation ab-- 1. Then T = Wn (R) is an ( n -  1)-fir, 
but there are two n x n matrices A, B over T such that AB = I, B A  ~ I. Explicitly, 
this means that T n ~ T n �9 K as right T-modules,  where K ~ 0, and it shows that 
T is not an n-fir. Similarly one can show (using the remark after Theorem 3.11) that 
the k-algebra with 2ran generators air,  bri (r = 1 , . . . ,  m,  r -- 1 , . . . ,  n) satisfying the 
relations (in matrix form, writing A -  (air),  B -- (br~)), 

A B - I m ,  B A - I n  

is an r-fir, where r -- min(m,  n) - 1. For m < n say, this algebra R is an ( m -  1)-fir, 
but it is not an m-fir, since R m ~- R n. However, R can be shown to be a metafir, using 
the methods of Bergman (1974a, 1974b), see Cohn (1995), 5.7, p. 246ff. 

Another example illustrates the construction of Sylvester domains (cf. 2.2 above). For 
any integers m, n, r denote by R(m, r, n) the/c-algebra generated by r(m + n) elements 
forming the entries of an m x r matrix A and an r x n matrix B, with defining relations (in 
matrix form) AB -- 0. By the remark after Theorem 3.11, R is an ( r -  1)-fir. Moreover, 
Dicks and Sontag (1978) show (using results from Bergman (1974b)) that R(m, r, n) 

(i) is a Sylvester domain if and only if r ~> m + n, 
(ii) has every full matrix regular if and only if r > max(m,  n), 
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(iii) has every full matrix left regular if and only if r > n. 
There is another result for estimating the dependence number, due to Hedges (1987). 

Let R be any ring and n >~ 1; an element c E R is said to be n-irreducible if it is not 
zero or a unit and in any representation as a sum of terms 

C - -  E aibi 
1 

either ~ aiR -- R or ~ Rbi = R. For example, in an integral domain an element is 
1-irreducible precisely when it is an atom (i.e. unfactorable). Now Hedges (1987) proves 
the following result relating to algebras with a single homogeneous defining relation: 

THEOREM 3.12. Let F = k (X )  be the free k-algebra on a graded set X and let c be an 
element of F which is homogeneous for the given grading and n-irreducible. Then the 
1-relator graded algebra R = F / F c F  satisfies the n-term weak algorithm relative to 
the degree function induced from F. In particular, if c is an atom, then R is an integral 
domain. 

More precisely, Hedges shows that the n-irreducibility of c is necessary as well as 
sufficient for WAn and both are equivalent to the condition that R is an n-fir. 

4. Modules  over  firs and semifirs 

4.1. Let R be any ring. An R-module M is said to be bound if 

M* = HomR(M,  R) = O, 

unbound if it contains no bound submodule apart from 0. The pair of classes consisting 
of all bound and all unbound modules form the torsion theory cogenerated by R (cf., 
e.g., Stenstr/3m (1975, p. 219)). For example when R = Z, the finitely generated bound 
modules reduce to torsion modules and generally bound modules play a similar role 
to torsion modules (though the term 'torsion module' will in general be used here in a 
specific way, defined below). Over a semihereditary ring any finitely generated projective 
module is unbound; Theorem 4.1 below gives conditions under which the converse holds. 

Given any R-module M (for any ring R), we can form the sum of all bound submod- 
ules of M to obtain a submodule Mb, the bound component of M.  It is characterized 
as the largest bound submodule of M,  or also as the smallest submodule such that the 
quotient M / M b  is unbound. To state conditions for M to split over MD we shall need a 
finiteness condition (Cohn 1992a). A ring R is said to possess bounded decomposition 
type (BDT) if for each n ~> 1 there exists r = r(n) such that R n cannot be written as a 
direct sum of more than r terms. For example, any projective-free ring has BDT (with 
r(n) = n); this includes all semifirs. 



Polynomial and power series rings 755 

THEOREM 4.1. Let R be a right semihereditary ring with bounded decomposition type 
and let M be a finitely generated right R-module with bound component Mb. Then there 
is a decomposition 

M = M b @ P ,  (1) 

where P is projective. 

For if M is unbound, then an induction on the number of generators of M shows M 
to be isomorphic to a direct sum of right ideals, hence projective. For general M this 
shows M/MD to be projective and this leads to the splitting (1). 

The characteristic of a finitely presented module has already been defined in 3.3. More 
generally, for any semihereditary ring R with an embedding in a skew field K we can 
define a rank function on projective modules by taking r(P) to be the dimension over K 
of P | K. This rank function is integer-valued and faithful (i.e. r(P) # 0 for P # 0) 
and it satisfies Sylvester's law of nullity ((5) of 2.2). Conversely, a faithful integer-valued 
rank function (with r(R) = 1) for which Sylvester's law of nullity holds, leads to an 
embedding in a skew field (Schofield 1985, p. 106). In terms of such a rank function we 
can again, on a semihereditary ring, define a characteristic x ( M )  for finitely presented 
modules. In addition we put x (M)  - -cxz if M .is finitely generated but not finitely 
related, and x ( M )  - oo if M is not finitely generated. The characteristic so defined 
is non-negative for commutative rings, but in general it may take negative values, e.g., 
when R = k(x, y), M = R / ( x R  + yxR  + y2xR), then x (M)  = -2 .  

Over a semihereditary ring R with such a rank function we define a torsion module 
as an R-module M such that x (M)  - 0 and x (M' )  >~ 0 for all submodules M '  of M.  
Over a semifir every finitely presented module is defined by a matrix and here M is a 
torsion module precisely when the defining matrix is full (cf. 2.2 above). Generally, in 
any homomorphism between torsion modules, f:  M --+ N, the kernel and cokernel are 
again torsion, by the exact sequence 

0 > k e r f  r M  / > N  ~ c o k e r f - - - + 0 ,  

which leads to the inequalities 0 ~ x(ker f )  - X(coker f )  ~< 0. 
For any semihereditary ring the transpose functor Tr (M) -- E x t , ( M ,  R) establishes 

a duality between left and right torsion modules and Tr2(M) ~ M (in fact, Tr can be 
defined more generally and plays a role in the representation theory of algebras). For 
hereditary rings the torsion modules satisfy both chain conditions (cf. Theorem 2.4 for 
the case of firs, Cohn (1985, p. 231) for the general case). This leads to the following 
description of the category of torsion modules (Cohn 1992a). 

THEOREM 4.2. Let R be a semihereditary ring with an embedding in a skew field. Then the 
category of 7-R of right torsion modules is an abelian category closed under extensions 
and the functor Tr (M) - E x t , ( M ,  R) establishes a duality between 7-R and R7-, the 
category of left torsion modules. If R is hereditary, all the objects of 7-R and RT- are of 
finite length. 
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In the special case of firs, Theorem 4.2 can be translated into matrix language and it 
then yields a theorem on the factorization of matrices. Two matrices A, B (not necessarily 
square) over a ring R are said to be assoc ia ted  if there exist invertible matrices P, Q 
over R such that A - P B Q .  If A | I is associated to B | I, where the unit matrices need 
not be of the same size, then A and B are stably associated.  Any m x n matrix A defines 
a mapping of free left R-modules f :  R m --+ R n or of free right R-modules '~R --+ "~R. 
The map f is injective precisely when A is left regular, i.e. X A  - 0 implies X - 0, 
and the left R-module defined by A is bound if and only if A is right regular. Two 
regular matrices define isomorphic modules precisely when they are stably associated 
(Cohn 1985, p. 27f.). Another equivalent condition can be stated in term of comaximal 
relations. Two matrices A, B each with m rows are right comax imal  if their columns 
span the free right R-module m R ;  'left comaximal '  is defined similarly and a matrix 
relation A B '  - B A  t is called comaximal  if A, B are right and A', B t left comaximal. 
We recall that a ring R is weakly  f ini te  if R n ~- R n �9 K (as left R-modules) implies 
K - 0; in terms of matrices this means that A B  = I implies B A - I for any square 
matrices A, B. For example, any semifir is clearly weakly finite. Now the isomorphism 
of modules defined by matrices is described in the following theorem (cf. Cohn (1985, 
p. 28))" 

THEOREM 4.3. Let  R be a weakly  f inite ring and  A,  A t any matrices  over  R. Then (a), 
(b) below are equivalent  and  imply (c): 

(a) A and  A t satisfy a comax imal  relation A B '  - B A ' ,  

(b) A and  A '  are stably associated, 

(c) the left modules  def ined by A and  A '  are isomorphic.  

When A,  A t are left regular, all three condi t ions  are equivalent.  

To translate Theorem 4.2 in the case of firs into matrix language, let us define an atomic  

matrix or atom as a square matrix which is not a unit and which cannot be written as a 
product of (square) nonunits. In particular, such a matrix must be full, since otherwise 
we could write it as a product of matrices with zero rows and columns. 

THEOREM 4.4. Let  R be a fir. Then any fu l l  matrix  is e i ther a unit or  its admits  a 

fac tor i za t ion  into atoms. Any  two such fac tor i za t ions  have the same number  o f  terms; i f  

they are C - A1 . . .  A r  -- B l  . . .  Br,  then f o r  some permuta t ion  i ~+ i t o f  1 , . . . ,  r, Ai ,  

is s tably assoc ia ted  to Bi.  

This result can be proved more generally for full n x n matrices over a 2n-fir with 
left and right ACCn (Cohn 1985, p. 168). 

For a PID there is a stronger conclusion" in this case the full matrices are just the regular 
square matrices, and the inner rank can then be defined as the order of the largest regular 
square submatrix. We shall say that a is a total divisor  of b, all b, if a R  D_ R e  = c R  D_ bR  

for some c E R. 

THEOREM 4.5. Let  R be a pr inc ipal  ideal domain  and  A an n x n matrix  o f  rank r 

over  R. Then there exist invertible n x n matrices  P, Q over  T such that 

P A Q  = d iag(a l ,  . . . , ar, O, . . . , O), where ai l lai+l.  (2) 
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Moreover, this form is unique up to association for  r >~ 2, and unique up to stable 
association for  r = 1. 

The existence (in a weak form) wasoproved for Euclidean domains by Wedderburn 
(1932) and in the full form by Jacobson (1937). The step to PID's was taken by Teich- 
mtiller (1937), and Nakayama (1938) showed that the form (2) is unique up to stable 
association, but the question remained whether any two forms (2) are associated. This 
was answered affirmatively for r />  2 by Guralnick, Levy and Odenthal (1987), who also 
give examples to show that 'stable' cannot be omitted for r - 1. 

In terms of modules Theorem 4.5 shows that any finitely generated module over a PID 
is a direct sum of a finite number of cyclic modules: M = Cl e - . .  @ Cn, where Ci-1 
is a homomorphic image of Ci. For Euclidean domains the matrices P, Q in (2) can 
be taken to be products of elementary matrices, but this may not be possible in general 
PID's, e.g., the ring of integers in Q(x/-Z- 19) (cf. Cohn (1966)). 

4.2. We can use modules to embed firs in skew fields. Let R be a fir; an R-module 
will be called prime if it has characteristic 1 and any nonzero submodule has positive 
characteristic; e.g., R itself is prime. It is easily checked that for any prime module M, 
EndR(M) is an integral domain. Now let/2 be the category whose objects are homomor- 
phisms R --+ M (M a prime left R-module) and whose morphisms are maps M --+ N 
forming a commutative triangle with the canonical maps. Between any two objects of 
Z: there can be at most one morphism, thus s is a preordering, which moreover, can 
be shown to be directed. Its direct limit U is a left R-module with R as submodule 
and the R-endomorphisms of U are transitive on the nonzero elements of U, hence 
E = Endn(U) is a skew field with R as subring. This proof is due to Bergman (1984) 
(cf. Cohn (1985, p. 243)). 

5. Coproducts of rings 

The customary notion of a K-algebra (with unit element) may be briefly described as a 
ring R with a homomorphism from K to the center of R. Often a more general concept 
is needed and we define a K-ring as a ring R with a homomorphism K --~ R. For 
example, the free D-ring Dk (X) defined in 3.2 is a D-ring in this sense. A K-ring R is 
faithful if the canonical map K --+ R is injective. 

Let R1, R2 by any K-rings; their coproduct over K, R1 ~4R2, is defined as the pushout 

of the diagram with the canonical maps Ai: 

K > R1 

R2 > P 

To see that it exists we simply take presentations of R1, Rz and add the relations 

7A~ =7A2 for a l l T c K .  
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Let us take two faithful K-rings R1, R2 and form their coproduct P = RI ~ R2. The 

first questions are: 
Q.1. Is P faithful as K-ring? 
Q.2. Are the natural mappings of R1, R2 in P embeddings? 
Q.3. If R1, R2 are embedded in P, is their intersection in P equal to K? 
It is easy to see that in general the answers are negative, e.g., an element of K may 

have an inverse in R1 and be a zero-divisor in R2. If Q.2 has an affirmative answer, the 
coproduct P is called faithful; if Q.3 has an affirmative answer, P is called separating (in 
Cohn (1959) a faithful separating coproduct was called a 'free product' by analogy with 
the group case, where these conditions always hold). A K-ring R is called left faithfully 
fiat if R is a faithful K-ring and, identifying K with its image in R, we have R / K  flat 
as left K-module. The following existence theorem was proved in Cohn (1959): 

THEOREM 5.1. Let Rx be a family of K-rings. If each Rx is left faithfully fiat, then their 
coproduct over K is left faithfully flat and separating. 

In particular, this theorem can be applied when K is a skew field or more generally a 
semisimple ring. In the skew field case there is a direct (nonhomological)proof, obtained 
by taking left K-bases for each Rx adapted to the inclusion K C_ Ra. This fact can be 
used to show that the coproduct of a family of skew fields over a common subfield 
is a fir (Cohn 1960). This proof was greatly generalized by Bergman (1974a) to obtain 
estimates for the global dimension and information on projective modules for a coproduct 
over a semisimple ring. For any ring R we denote by P(R)  the 'monoid of projectives', 
i.e. the set consisting of all isomorphism types [Q] of finitely generated projective left 
R-modules Q, which forms a commutative monoid for the operation [P] + [Q] = [P | Q]. 
Each ring homomorphism R ~ S induces a homomorphism 79(R) --+ 7:'(S) by the rule 
P ~  S| 

THEOREM 5.2 (Bergman's coproduct theorem). Let K be a semisimple ring, (R~) a fam- 
ily of faithful K-rings and P = KRx their coproduct over K. Then 

r.gl.dim.P = ~ sup(r.gl.dim.Rx) if this is positive, 

t <~ 1 if all R~ have gl.dim.zero. 

Secondly, the monoid 79(P) of projectives is the pushout of the maps 79(K) --+ 79(R~) 
induced by the canonical maps K --+ R~. 

For a proof see Bergman (1974a) or Cohn (1995, 5.3, p. 218ff.) (cf. also Schofield 
(1985, Ch. 2)). These results were further extended to direct limits of rings by Dicks 
(1977). 

Theorem 5.2 was applied by Bergman (1974b) to construct a hereditary ring R with 
prescribed monoid of projectives; here 79(R) can be any finitely generated abelian monoid 
which is conical with order-unit, i.e. an element E such that for each z E 79(R) there 
exists y E T'(R) and an integer n such that x + y = nE. 
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1. Simple rings 

We shall start with the definition of a simple ring and examples of simple rings. 

DEFINITION. A ring R is called simple if it has no proper two sided ideals and R 2 ~ 0. 

First of all any field and any skew field are simple rings. The following lemma shows 
that the ring of n by n matrices over a (skew) field is simple. 

1.1. LEMMA. The ring of n • n matrices over a ring R is simple if and only if R is 
simple. 

PROOE Let R be simple and I a nonzero ideal of the ring of n by n matrices Rn. Let 
us denote for an element r C R by rij the matrix whose (i, j )  coefficient is r and all 
others are zero. For a matrix M c Rn we denote by Mij its (i, j )  coefficient. 

If M is a nonzero matrix from I, Mij 5r 0 then R M i j R  is a two sided ideal of R. 
This is a nonzero ideal. Indeed, the left annihilator L = {l E R I 1R = 0} is a two 
sided ideal which is not equal to R (because R z r 0) and so L = 0. If R M i j R  = 0 
then M i j R  c L = 0. Analogously, the right annihilator of R is zero, and Mij = 0. Thus 
RM~jR = R. 

If N is an arbitrary matrix, then Ntv E RMi jR ,  or in detail 

k 

and in matrix form 

N = ~ (rktv)ti �9 M .  (skt,,)j~ c I. 
t,v,k 

Inversely, if R is not simple and A is proper ideal of it then the set An of all matrices 
with coefficients from A is a proper ideal of Rn. N 

1.2. Rings of infinite matrices and simple rings. For a given ring R and infinite set U 
two types of rings of U x U matrices can be defined: the ring of column-finite matrices 
Line(R)  and the ring of row-finite matrices LinT(R). 

If M, N are infinite matrices with coefficients M~,,, N,,v, u, v c U, respectively, then 
addition and multiplication are defined by the usual formulae 

(M + N)uv = Muv :i: Nuv, (1) 

(MN)uv  = ~ M~kNkv. (2) 
k 

The summation in the second formula would be well defined if k runs over a finite set. 
It will be so if any of matrices M, N has a finite number of nonzero coefficients in any 
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column Mk = {Muk l u E U} (respectively Nk = {Nuk l u E U}). Thus formulae (1), 
(2) define the ring of column-finite matrices 

Lind(R) = { M I V k  the set {u ]M~,k ~ O} is finite}. 

In the same way if both of matrices M, N has only a finite number of nonzero coef- 
ficients in any row M ~ = (Muk ] k E U} then this formula is also well defined and we 
obtain the ring of row-finite matrices 

Lint(R)  = {M [ Vu the set {k I Muk ~ 0} is finite). 

Evidently the intersection L(R) = Lind(R) fq Lint(R) is also a ring. If R has a unit 
element 1 then each of these three rings has a unit e l emen t -  this is the infinite matrix 
E with E~,~, = 1, E~,v = 0, u ~ v. 

None of these rings is simple. The set S~(R) of all matrices M each of which has only 
a finite number of nonzero rows is a two sided ideal in the ring Linc(R). Analogously 
the set fir(R) of all matrices M each of which has only a finite number of nonzero 
columns is a two sided ideal of the ring Lint(R).  Evidently So(R) N St(R) <~ L(R). 
More generally, if c~ is an infinite cardinal then we can define the ideal S~(R) and, 
symmetrically, the ideal S~(R) of all matrices M such that a cardinality of the set of all 
nonzero rows (respectively columns) of M is less than c~. 

1.2.1. THEOREM. If R is a simple ring with 1 then So(R) and St(R) are simple rings. 

PROOF. Let I be a nonzero ideal of S~(R) and 0 ~: M E I. If, for instance, Mij J: 0 
then RMi jR  - R and we can find a presentation of the unit element 

y~  r(k) Mjts (k) 
k 

It follows 

l tt = ~ (r(k))tim(s(k))j t E I 
k 

for all t E U. If N is an element of Sc(R) and n is a number of nonzero rows of N then 

t = l  

E I N C I .  

In particular if R = F is a field (or, more generally, skew field) then the rings So(R) 
and St (R)  are two more examples of simple tings. If the set U is infinite then these 
rings have no unit elements. 
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1.2.2. If R = F is a (skew) field then the ring Linr(R) can be characterized as the 
complete ring of linear transformations EndF V of a left linear space V of dimension 
equal to the cardinality of the set U (the space of rows of length IUI with a finite number 
of nonzero elements). Respectively, the ring L~(R) can be identified with the complete 
ring of  linear transformations End VF of a right linear space of the same dimension (the 
space of columns of depth IUI having a finite number of nonzero coefficients). 

Indeed, for any linear transformation f of V and a fixed basis {v u I u E U} we can 

define a finite-column matrix M (S) whose coefficients M~(s ) - P~k are uniquely defined 
by the following formula 

(v~) f = ~ #ukv k. (3) 
kEU 

Inversely, any finite-column matrix M formula (3) with #uk - Muk defines a linear 
transformation f(M). The correspondences f ~-+ M (y), M ~-~ f(M) define the isomor- 
phism which gives the desired characterization. 

Formula (3) shows immediately that under this characterization the ideal Sg(F) is 
identified with the set of all linear transformations f which have images im f of dimen- 
sion < c~ (note that here c~ is an infinite cardinal). Recall that the dimension of ira f is 
called the rank of f .  So Sg(F) is the ideal of all transformations of rank less than c~. 

This characterization allows one to construct another important example of simple 
rings. 

1.2.3. THEOREM. Let F be a (skew)field and U be any set of cardinality c~. Then Sg (F) 
is a maximal ideal of L~(F). In particular the factor ring Lc(F) /Sg(F)  is a simple 
ring with unit element 1 + S~(F). 

PROOF. For a subspace W of V let us denote by W • a direct supplement of W in 
V, i.e. a subspace  such that W + W  • = V, W N W  • - 0. I f W  is of dimension c~ 
then it is isomorphic to V and we can define a linear transformation Pw" V --+ V such 
that i m  Pw - W and it is an isomorphism of V onto W. So there exists an inverse 
linear map p~)" W --+ V. Let us define P~v -- P ~  on W and P~v = 0 on W • Then 
p ~  E E n d F ( V ) =  Line(F). 

A transformation f does not belong to S~(F) iff it has rank c~. Let W - (ker f ) •  
The restriction of f to W is an isomorphism of W with im f and it is possible to define 
a transformation f* which is equal to f - 1  on im f and zero on (ira f ) •  We have 

1 = pw" f" f*'P~v 
It follows that if an ideal I contains an element f of rank c~ then it contains 1 and 

therefore it is equal to Linc(F). D 

NOTE. Of  course the same statement is true for the ring Lint(F).  

1.3. Algebra of differential operators (Weyl algebra). Let F be any field and A - 
F[ t l , . . . ,  tn] be the algebra of polynomials in n variables. For any element a E A we 
define an operator of (right) multiplication r,~" A -+ A. This is the linear transformation 
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acting by the formula ( f ) r a  = f a .  Any variable ti defines a partial derivative O/Oti 

which is also a linear transformation, O/Oti �9 E n d  A .  

The subalgebra of E n d  A generated by these two types of transformations is called 
the Weyl algebra or the algebra of differential operators A n .  

Let us denote by xi the multiplication by ti and by Yi the operator O/i~ti. We have 

? 
( f ) ( x ~ y j ) -  ( ( f ) z~ )y j  = ( f t~)yj  = (ft~)t~ 

! t ! i = ( f ) t j "  ti + f .  ( i) t j  = ( f ) ( y j x i  + 5 j ) .  

Therefore x i y j  = y j x i  if i :/: j and x i y i  = y i x i  + 1. Evidently y i y j  = y j y i  and 
X i X j  = X j X i  by definition. Thus the algebra A n  is generated by the elements X l , . . . ,  xn ,  

Y l , . .  �9 Yn with the following relations 

x i y j  = y j x i ,  i T~ j ,  x i y i  = y i x i  + l ,  

x i x j  = x j x i ,  YiYj = YjYi.  (4) 

1.3.1. THEOREM. I f  the f ie ld  F has zero characterist ic  then A n  is a s imple  ring. 

PROOF. Let I be a nonzero ideal of An. By using relations (4) one can transform any 
element u of A n  to the form 

- -  . . . . . .  X n 
i , j  

where i = ( i l , - . . , i n ) ,  j = ( j l , . . . , j n )  are multi-indices. Let u �9 I be a nonzero 
element with the smallest possible degree, where the degree is the maximum of the sums 
i l + . . .  + in + j l  + " "  + jn  with c~i,j r 0. If u has zero degree then u = c~0,0 =/= 0 and 
1 - uc~, 1 �9 I;  therefore I = A n .  

i l  Finally, the monomial ui, j  - -  Y l  . . . . . .  y~r,x~l XnJn commutes with Xk and Yk according 
to the formulae 

�9 i k  - -  1 in X~I jn 
U i , j X k  - -  X k  U i , j  - -  ik �9 y~ �9 �9 " Yk "'" Yn "'" Xn , 

- y i '  ' 
. . . . . . . . . . .  X n �9 

This implies that if u has nonzero degree then one of the commutators [u, xk], [u, Yk] is 
nonzero and has lower degree. Cq 

1.4. Genera l  structure. Now we are going to consider a structure of an arbitrary simple 
ring. The first steps show in fact that any simple ring is an algebra over a field. 

1.4.1. LEMMA. A center  o f  a s imple ring is ei ther a f ie ld  or zero. In the f o r m e r  case a 

unit  o f  the center  is a unit o f  the ring. 
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PROOF. Recall that the center Z (R)  of a ring R is the set {z E R IVr E R (zr = rz)} .  
If 0 r z E Z then z_R is a nonzero ideal of R, so z R  -- R and for any Zl E Z there 
exists an element r E R such that zr  -- Zl. It is enough to show that r E Z. We have 
0 = [z,, x] = [zr, x] = z[r, x] and therefore zR[r, x]R = 0. Here [r, s] is short for 
rs - sr. So either R[r, x]R = 0 and r E Z or R[r, x]R = R and z = 0. 

Finally, if e is a unit of the center then e(ex - x) = 0 and R e R ( e x  - x) = 0, so 

R(ex  - x) = 0 and ex - x = O. [:3 

This lemma shows in particular that any simple ring with a unit can be considered as 
an algebra over a field (its center). If the center of a simple ring is zero then it still has 
an algebra structure over a f i e l d -  its centroid. Recall that the centroid C(R)  of a ring R 
is defined as the subring of the endomorphism ring of the abelian group (R, + ) ,  which 
commutes with left and right multiplications: 

C(R)  = {~ E End(R ,  +) I ~(axb) - a~(x)b, a, b E R U { 1 } }. 

It is easy to see that if a ring has a unit then the centroid is equal to the center. 

1.4.2. LEMMA. The centroid of a simple ring is a field. 

PROOF. First of all the centroid has a unit 1 which is the identity endomorphism 1 (x) - x. 
If 0 r ~ E C(R)  then ~(R) is a nonzero ideal of R. Therefore ~(R) = R. Moreover if 
~(r) = 0 then ~(RrR)  = 0 which implies that r = 0 and ker ~ = 0. Thus there exists 
an inverse map ~- l :  R --+ R, which is also an element from the centroid: ~-l (axb)  -- 
~ - l (a~(~- ' ( x ) )b )  = ~ - '~ (a~- ' ( x )b )  = a~- ' (x)b .  [5 

Any simple ring becomes an algebra over its centroid with linear space structure 
~x = ~(x). Therefore without loss of generality in general theory one can consider only 
simple algebras over a field. 

DEFINITION. A simple algebra is called central if the base field is equal to its centroid. 

The following result is one of the fundamental facts in the theory of simple algebras. 

1.4.3. THEOREM. The tensor product of  a central simple algebra with a simple one is 
simple. I f  both algebras are central then the product is central as well. 

A proof of this fact can be obtained with the help of the following useful property of 
linearly independent sets in central simple algebras. 

1.4.4. LEMMA. I f  d l , . . . ,  dn are linearly independent elements of  a central simple al- 
gebra R and a is an arbitrary element of  this algebra then there exist elements 
8 1 , .  �9 �9 , 8 m ,  t l , .  �9 �9 , t i n ,  such that 

sidlti  - a, ~ sid2ti -- O, . . . ,  Z sidnti -- O. (5) 

This lemma easily follows from the Jacobson-Chevalley density theorem: the algebra 
R should be considered as an irreducible module over a tensor product L -- R ~ | R, 
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with the action d . / 3  = ~ sidti,  where /3 = ~ si | ti and R ~ is the R-opposite 
algebra, i.e. the linear space R with a new multiplication s .  Sl = sis.  In this case the 
statement of the lemma means that R ~ N R is a dense subring in the ring E n d  R of 
linear transformations of the space R. 

1.5. Embeddings. In this section we will see, in particular, that a general structure of 
a simple ring can be quite complicated. 

1.5.1. THEOREM. Any algebra over a field can be embedded into a simple ring. 

PROOF. Let A be an algebra of dimension d over a field F. Let V be a linear space of 
the polynomial algebra R = A[X], where X is an infinite set of cardinality c~ ~> d. We 
can embed A into the algebra of linear transformations E n d  V by right multiplications 
~: a ~ ra, where ( f ) ra  = fa .  The rank of any right multiplication ra, a E A is equal 
to c~ because i m  ra contains the linearly independent set {xa, x E X } .  This implies that 
the composition 

A --+ L in~(F)  --+ L i n ~ ( F ) / S ~ ( F )  

has zero kernel and by Theorem 1.2.3 we are done. 

This theorem was first obtained by L.A. Bokut' [Bo63]. His method is a little bit 
complicated and more general. It is based on the Shirshov composition lemma (or the 
diamond lemma). This lemma allows one to find a basis of an algebra R ( X  II u) 
generated by a set of variables X with a set of relations U of the type wi - f i (X) ,  
where wi is a monomial in X and fi is a polynomial in X with all monomials less then 
wi with respect to the natural ordering of monomials. The composition lemma gives 
sufficient conditions for a set of all monomials T which have no submonomials wi to be 
linearly independent in the algebra R (see details in [Bo76] or in [Bo77]). 

By means of this method L.A. Bokut' obtained, in particular, the following unexpected 
results. 

1.5.2. THEOREM. Any algebra R can be embedded in a simple algebra A which is a sum 
of  four  subalgebras Al ,  A2, A3, A4 with zero multiplication A 2 - 0, i.e. any element a 
o f  A has a form a = al d- a2 -k- a3 d- a4, with ai E Ai.  

1.5.3. THEOREM. Any countable algebra can be embedded in a simple algebra with three 
generators. 

1.5.4. THEOREM. Any algebra can be embedded in a simple algebra which is a sum of  
three nilpotent subalgebras. 

This result is completed by the following theorem of O. Kegel [Ke63]. 

1.5.5. THEOREM. Any algebra which is a sum of  two nilpotent subalgebras is nilpotent 
itself 

Needless to say that no nilpotent algebra is simple. 



Simple, prime and semiprime rings 769 

The following result of EM. Cohn [Co58] can also be obtained with the help of the 
composition lemma. 

1.5.6. THEOREM. Any algebra with no zero divisors can be embedded in a simple algebra 

with no zero divisors. 

1.6. Radicals and simple rings. Recall that a radical is a map p which associates to 
every ring R an ideal p(R)  with the following properties 

(1) If (: R -+ A is a homomorphism, then ( ( p ( R ) )  C p ( ( ( A ) ) .  
(2) The ideal p(R)  is the biggest ideal with the property p( I )  - I .  
(3) For any R the relation p ( R / p ( R ) )  - 0  is valid. 

If R = p(R)  then R is called a p-radical ring. If p(R) - 0 then the ring R is called 
a p-semi-simple ring. Evidently any simple ring R is either p-radical or p-semi-simple. 
Therefore it is a question of interest to describe all simple p-radical rings. 

To any ring property can be associated the map which associates to a ring the biggest 
ideal (if any) obeying as a ring this property. If such a map proves to be a radical, then 
the property is called a radical property. 

We are going to consider a problem of existence of simple p-radical rings for the 
three most important radicals: the Levitzki locally nilpotent radical, the Koethe upper 
nil-radical and the Jacobson one. The corresponding three questions can be formulated 
in the following way. Does there exist a simple locally nilpotent ring (i.e. a simple ring 
such that every finitely generated subring S c_ R is nilpotent S n - 0)? Does there exist 
a simple nil ring (i.e. a simple ring such that each element a is nilpotent a n - 0)? Does 
there exist a simple Jacobson radical ring (i.e. a simple ring such that for any element a 
of it there exists an x such that ax + a + x - 0 ) ?  

The answers are very different: no, nobody knows, yes. 

1.6.1. THEOREM. There exist no locally nilpotent simple rings. 

PROOF. It is enough to note that in a locally nilpotent ring R every nonzero element a 
does not belong to the ideal R a R .  This would imply that in a simple locally nilpotent 
ring R a R  = 0 and R 3 = 0, which contradicts the fact that R -- R 2 - R 3 in any simple 

ring. 
Thus, let 

a -- rl atl  + �9 �9 �9 + rnatn .  (6) 

The subring S generated by the elements r l , . . . ,  rn  is nilpotent S m -- 0, i.e. r i l r i 2  

�9 " r i m  = 0 for any 1 <~ i l , . . "  , i m  <<. n. 
By iterating equality (6) we have 

n 

a -  ~ 'r'ila~:il -- ~ rilri2ati2t41 
/1=1 I K i l , i 2 K n  

r ~ l r i 2  . . . r i m a t i m  " ' "  ~ i 2 ~ i l  = O.  

1 <~il . . . . .  i n = m < N n  

[3 
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1.6.2. Does there exist a simple nil-ring? This is an open problem. By 1.6.1 a simple 
nil-ring cannot be locally nilpotent. The existence problem of a nil-ring which in not 
locally nilpotent was set by J. Levitzki in 1945. This problem and the Kurosh prob- 
lem [Ku41] concerning the existence of an algebraic algebra which is not locally finite 
was solved only in 1964 by E.S. Golod in a famous paper [Go64]. So far there is not 
another known way to construct a nil-ring which is not locally nilpotent. Therefore for 
a construction of a simple nil-ring one has to either find a new solution of the Kurosh-  
Levitzki problem or investigate deeply the Golod construction. We will make here only 
a first small step. 

1.6.3. LEMMA. There exists a simple nil-ring if and only if there exists a nil-ring with an 
element a such that 0 ~ a E R a R a R .  

PROOF. Of course if R is a simple nil-ring, then R a R a R  is a nonzero (if a ~- 0) ideal 
and therefore R = R a R a R ,  so a E R a R a R .  

Inversely, let 0 ~ a E R a R a R  = S and R is a nil-ring. The set M of all ideals I <~ R 
such that a ~ I and I C_ S is not empty, 0 E M. This set is inductive, i.e. for every 
chain of any cardinality 

Il C I2 C_. . . c_I ,~  C_.. .  

of its elements the union U la  belongs to M. Therefore we can apply the Zorn lemma to 
A 

M, which says that M has a maximal element U. In this case the factor-ring S - S / U  
is a simple nil-ring. 

Indeed, it is nil as any subring of a nil-ring is nil and any factor-ring of a nil ring 
is nil. As a ~ U then ~ # 0, where gt = a + U in the factor-ring. Also we have 
a C R a R a R  C_ R S R S R  C_ S 2 and therefore ~ E ,~2. This implies ~2 :/: 0. 

If W is a proper ideal of S, then one can find a set W _D U such that W = W + U in 

the fac tor - r ingS.  Now S W S  is an ideal of R as so is S. Moreover S W S  c_ W as W 
is an ideal of S. By the choice of U either a ~ S W S  + U or S W S  c_ U. In the former 
case S = R a R a R  c S W S  + U C W - a contradiction. 

In the last case we consider the set g = {x  ~ S I x S  C_ U}, which is evidently an ideal 
of R, containing both S W  and U. If a E g then a S  C_ U and a E R a R S R  c_ aS  c_ U 

- a contradiction. This implies a r g and therefore g E M. By the choice of U we have 
- U. In particular S W  C_ U. 
Finally, the set g' - {x ~ S I S x  C_ U} is an ideal of R, which contains both W and 

U. If a c g', then Sa  c_ U and a c R S R a R  c_ Sa  C_ U - a contradiction. So g' ~ M 
and bLthe  maximality of U we have g' - U, which is impossible because g' 2 W :/: U. 
Thus S is a simple nil-ring. N 

By this lemma all we need for a solution of the problem is to add the one additional 
relation 

X - -  X l X X 2 X X  3 - + - X 4 X X 5 X X  6 

to the Golod system of relations, which gives a nil but not nilpotent finitely generated 
algebra R -  (x, Xl, x2, x3, xa, x5, x6), and prove that in the result x is not zero. Nobody 
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has proved this to date. The A.Z. Anan'in paper [An85] has something to do with this 
matter. In this paper there is constructed a finitely generated nil algebra A over a field, 
such that A | A is not equal to its Jacobson radical, and the intersection 

oo 

A A  n 
n - - 1  

is not zero. This is a step in the right direction, because for a simple nil-ring R we would 
have R | R ~ is primitive, in particular its Jacobson radical is zero, and 

N R  n 
n - - 1  

= R .  

(Note that the Anan'in example A has an involution and therefore it is isomorphic 
to A~ 

1.6.4. Simple Jacobson-radical rings. The first example of a simple ring which coin- 
cides with its Jacobson radical was found by E. S~siada in 1961. It was published in a 
joint paper with P.M. Cohn [SC67] in a simplified and slightly generalized form. This 
example is based on the following lemma. 

1.6.5. LEMMA. Let R be the ring of formal power series in two noncommuting indeter- 
minates x and y over a field F. Denote by 1 the ideal of R generated by x -  yx2y; then 

This lemma shows that in the factor-ring A = R ' / I  of the ring of formal power series 
R' with zero constant terms by the ideal I,  the element x is nonzero and x = yx2y. The 
ring A is radical because this is the case for R'. If we note that Lemma 1.6.3 is also 
valid for the Jacobson radical (in the proof we have used only the fact that an ideal of a 
radical ring is radical), then the relations 0 5r x = yx2y -- y2x2y2x2y2 C A x A x A  would 
imply the existence of a simple Jacobson radical ring. 

After the construction of a simple radical ring there arises a natural problem of embed- 
ding of an arbitrary radical algebra in a simple radical ring. Attempts towards a positive 
solution of this problem led P.M. Cohn [Co73] to the following embedding theorem. 

1.6.6. THEOREM. Any radical algebra over a field embeddable in a division algebra is 
embeddable in a simple radical ring. 

A complete solution of this problem was obtained by A.I. Valitskas [Va88] by con- 
struction of a big collection of radical algebras which cannot be embedded in simple 
rings. He also found necessary and sufficient conditions for an algebra to be embedded 
in a radical algebra. 

Recently new examples of simple radical algebras were found by N.I. Dubrovin 
[Du80]. His examples have a number of additional properties. In particular he has 
constructed a simple radical chain Ore domain. This construction is based on the old 
D.M. Smirnov example [Sm66] of a right ordered group. 
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1.7. Subdirect decompositions and simple rings. Recall that a ring R is called a subdi- 
rect product of a family of rings {Rs,  c~ E A} if there exists an embedding 7r of R into 
the direct product 

H Rs,  
sEA 

such that its compositions with the natural projections 

P s: ~ R s - + R s  

result in epimorphisms. In this case we write R -  SsEARs. 
Notice that the subdirect product is not uniquely defined by the family {Rs, c~ E A}. 

For instance, any intermediate subring S, 

is a subdirect product of {Rs,  tx E A}. Here ~ Rs  is the subring of all elements 
f E I-I Rs  which have only a finite number of nonzero components 

1.7.1. DEFINITION. A ring R is said to be approximated by a family of rings {Rs, c~ E A} 
if there exists a family {Is,  c~ E A} of ideals of R such that 

N I s = 0 ,  R / I s ~ - R s .  
sEA 

1.7.2. PROPOSITION. A ring R is approximated by the family {Rs, c~ E A} iff R -  
SsE A Rs. 

PROOF. If R - SsEARs then the family of all kernels {ker 7rps } is the required family 
of ideals. Inversely the map 7r: r --4 ( . . .  , r  + I s , . . . )  is a homomorphism of R to 
l-IseA Rs.  Its kernel is equal to r'IA Is  -- 0. So it is an embedding. Evidently, 

r -7 rps  = ( . . . , r  + I s , . . . )  = r + Is  

and therefore im 7rps = R/Is .  f-I 

1.7.3. DEFINITION. A decomposition R = S s E A R s  is called trivial if one of the projec- 
tions 7rps is an isomorphism. A ring R is said to be subdirectly indecomposable if it 
has no nontrivial decomposition in a subdirect product. Proposition 1.7.2 implies imme- 
diately that a ring R is subdirectly indecomposable iff the intersection of all its nonzero 
ideals is nonzero, or, equivalently, the ring R has a smallest nonzero ideal. This ideal is 
called a heart of the ring R. 
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1.7.4. THEOREM. Any ring is a subdirect product of  subdirectly indecomposable rings. 

PROOF. For any nonzero element a let us denote by Ma the set of all ideals I ~ R such 
that a ~ I. This set is inductive. By the Zorn lemma there exists a maximal element Ia 
in Ma. Evidently [')OCaeR Ia = 0 (because a ~ Ia). So, it is enough to note that the 
factor-ring R~ = R/ I~  is subdirectly indecomposable. 

Any nonzero ideal J of this factor-ring is defined by an ideal J of R, properly con- 
taining the ideal Ia. As Ia is a maximal ideal from Ma, then J ~ Ma, i.e. a c J. It 
implies that ~ -- a + Ia is a nonzero element in the heart of the ring Ra. El 

Finally, the following lemma of Andrunakievi6 gives the connection between subdirect 
decompositions and simple rings. 

1.7.5. LEMMA. The heart H of  any subdirectly indecomposable ring is either simple or 
it has zero multiplication H 2 = O. 

PROOF. Let H 2 5~ 0. For any ideal I of the ring H the set H I H  is an ideal of R, 
contained in H. Therefore either H I H  = 0 or I D H I H  = H. In the former case the 
left annihilator l (H)  - {h E H I  h H  - 0} is an ideal of R, properly contained in H 
(as H 2 r 0) and therefore it is equal to zero. We have H I  C_ l (H)  = 0. Analogously 
r (H)  = {h E H ] H h  - 0} is equal to zero and I C_ r (H)  = O. vq 

1.8. Simple artinian rings. Recall that a ring R is called left (right) artinian if it satisfies 
the following Descending Chain Condition (DCC) for left (right) ideals: any strictly 
descending chain of left (right) ideals 

I1 ~ I 2 D ' " D I n D " "  

has finite length. 
Simple'left (right) artinian rings are characterized by the classical Wedderburn-Artin 

theorem, which plays a fundamental role in ring theory. 

1.8.1. WEDDERBURN-ARTIN THEOREM. A simple ring R is left (right) artinian iff it is 
isomorphic to a ring of  n • n matrices over a skew field. The number n and the skew 
field are uniquely determined (up to isomorphism). 

The modern proof of this theorem is based on the Schur lemma and the Jacobson- 
Chevalley density theorem. First of all the DCC allows one to find a minimal nonzero left 
ideal V. The Schur lemma says that a ring D of all endomorphisms of the left R-module 
V is a skew field. Therefore V can be considered as a right vector space over D. With the 
help of DCC one now proves that this space has finite dimension n. Then, any element 
r E R acts like linear transformation on this space by left multiplication r(v) = rv. So 
we have a homomorphism ~: R --+ EndD V. The kernel of this homomorphism is an 
ideal of the simple ring R. This means that either ~ is an embedding or R V  = 0. In 
the latter case the right annihilator p of R is an ideal containing V and, by simplicity, 
p = R, which implies R 2 - 0 in contradiction with the definition of a simple ring. Thus 



774 V.K. Kharchenko 

is an embedding of R into the ring EndD V. The last is isomorphic to the ring of n x n 
matrices over the skew field D. Finally the Jacobson-Chevalley density theorem shows 
that the image of ~ is equal to EndD V, which completes the main part of the proof. 

The uniqueness part in the Wedderburn-Artin theorem is no more than the statement 
that an isomorphism Dn -~ Am implies D =~ A and n = m, which can be proved in a 
number of ways. 

The following fundamental Skolem-Noether theorem also plays an outstanding role 
in ring theory as well as in the theory of presentations of finite groups. 

1.8.2. SKOLEM-NOETHER THEOREM. If f ,  9 are two unitary (i.e. taking the unit element 
to the unit element) homomorphisms of a simple finite dimensional algebra B to a 
central simple artinian algebra A, then there exists an invertible element a c A, such 
that 9(x) = a - l  f (x)a. 

This theorem implies a number of important properties of simple finite dimensional 
algebras. For example any two abstractly isomorphic simple finite dimensional unitary 
subalgebras in an artinian central simple algebra are conjugate in this algebra. Another 
corollary says that any automorphism ~ of a central simple finite dimensional algebra is 
inner, i.e. it has a form ~(x) = a- l xa .  

Note that the unitarity of the homomorphisms as well as the centrality of the algebra 
A are essential in the Skolem-Noether theorem. For instance any ring of n x n matrices 
over a (skew) field D has the following embeddings in the ring of 2n x 2n matrices: 
f:  M --+ diag(M, M)  and g: M --+ diag(M, 0). For any invertible a E D2n we have 
a - l f ( l n ) a  = a - l l z n a  = lzn 7 ~ 9(ln).  Also, if A , B  are fields not equal to the base 
field (so they are noncentral simple algebras) then evidently any two different embeddings 
f, 9: B --+ A are not conjugate in A. 

1.9. Simple finite dimensional algebras, the Brauer group. The most important ex- 
amples of simple artinian algebras are finite dimensional simple algebras. By the 
Wedderburn-Artin theorem such an algebra A has a form Dn, where D is a skew field 
of finite dimension over the base field or, in other words, a finite dimensional division 
algebra (which is called a component of the algebra A). Therefore, the theory of finite 
dimensional simple algebras is closely related to classical field theory and, in particular, 
to Galois theory. We see that the structure of a simple finite dimensional algebra essen- 
tially reduces to that of finite dimensional division algebra. It shows that the following 
definition is rather natural. 

1.9.1. DEFINITION. Two central simple finite dimensional algebras A,/3 are called simi- 
lar, A ~ B, if their division algebras are isomorphic, i.e. A -~ Dn, /3 -~ Din. 

We have seen (1.4.3) that a tensor product of central simple algebras is central and 
simple. Moreover, if A, A1 are similar A =~ Dn, A1 ~ Dm and B, B1 are similar 
B -~ As, B~ ~ Ar then A | B ~ A~ | B~. Indeed, 

A | B ~ (D | , 4 )~  ,-,, (D | ,4)~r ~ A1 | B1. 
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Therefore we can define a well-defined operation on the set of classes of similar central 
simple finite dimensional algebras (over a fixed field F):  [A] + [B] -- [A | B], where 
[A] is the set of all central simple finite dimensional algebras similar to A. 

1.9.2. THEOREM. The set B r  F of  classes of  similar central simple finite dimensional 
algebras over a field F is an abelian torsion group under the addition just defined. 

This group is called the Brauer group, or the class group of the field F .  

PROOF. It is evident that IF] + [A] = [A], which implies that [F] is the zero element. For 
any A let us consider the opposite algebra A ~ which has the same linear structure and 
the opposite multiplication x �9 y = yx. Let us show that [A ~ + [A] --- IF]. For this it 
is enough to show that A ~ | A ~- Fn. 

The dimension of the algebra A ~ @ A is n 2. Let L be the algebra of all linear 
transformations of the space A over F. This algebra has dimension n 2 also and it is 
similar to zero L ~- Fn ~ F. Any element 

v - E ai | bi E A ~ @ A 

defines a linear transformation 

p(v)" x ~ E aixbi" 

It is easy to see that p is a homomorphism: 

Its kernel is an ideal of a simple algebra, therefore p is an embedding. The image of p has 
dimension n 2 in the space L of the same dimension. It means that p is an isomorphism. 

It can be shown that the order of the element [A] divides v /d imE D, i.e. 

[A] x / d i m E  D - 0 

in the Brauer group, where, as usual, A TM Dn. [3 

Now we are going to consider the most important construction of central simple finite 
dimensional algebras. 

1.9.3. Crossed products. Let G be a finite group of automorphisms of a field K,  and 
F be the subfield of fixed elements F =  {a E K [Vg E G a a = a}. In other words 
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K is a normal separable extension of the field F with Galois group G. Let us consider 
a linear space (K, G) over the field F with basis {ug 19 E G}, where the ug are new 
symbols. This means that any element of (K, G) has a form 

E UgO~g~ 
gEG 

where O~g E K. The following formulae, with the help of the distributive rule, define a 
multiplication on the space (K, G): 

OLUg -- UgOL g , (8) 

UgUh -- Ugh~(g, h), (9) 

where ~: G • G -+ K* is a function of two variables on the group G with the values in 
the group of nonzero elements K* of the field K. In such a way we obtain an algebra 
(K, G, ~), in general nonassociative, over the field F with the multiplication 

E u g a ,  EuhZh = EUgh (g,h)% �9 
gEG hEG g,hEG 

For the associative rule to hold it is necessary and sufficient that the equations 
(UaUh)U f = ug(uhuf )  are valid. By using formulae (8) and (9) we have that the fol- 
lowing conditions on the function ~ are equivalent to the associativity of the algebra 

~f (9, h)((gh,  f )  = ~(9, h f ) ( ( h ,  f ) ,  (10) 

where by definition ( f (9 ,  h ) -  (sO(g, h)) y. 
A function (: G • G --+ K* which satisfies formula (10) is called a (G,K)- factor  

set. The associated algebra (K, G, ~c) is called the crossed product of the field F with 
the group G and factor set ~c. The following theorem is very important. 

1.9.4. THEOREM. The crossed product (K, G, () is a central simple algebra over the field 
F =  K C. 

PROOF. The proof of this fundamental result is based on the classical linear independence 
of automorphisms theorem: 

if 9 1 , . . . ,  9n are different automorphisms of  a field K then no linear combination 
klgl + ' "  + kngn over K is zero but the one with kl . . . . .  kn = O. 

Due to this fact it is easy to see that the crossed product with the trivial factor set 
~0(h, 9) = 1 is isomorphic to the matrix algebra Fn. Indeed, the algebra (K, G, @) has 
dimension n 2 over the field F. The correspondence 

~: E UgOLg --+ E ~gg 
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is a homomorphism of (K, G, @) to the algebra of linear transformations of K over F 
(which also has the dimension n2): 

x ( k g .  k l g l )  - ( k x g ) ( k l g l ) -  k l ( k x g )  g' -- k l~g 'x  gg' : kgt~l xgg'. 

By the linear independence of automorphisms theorem the kernel of this homomorphism 
is zero. Thus, # is an isomorphism (K, G, ~0) -~ Fn. 

Another fact from Galois theory we need is that there exist elements a l,..., ., am, bl, �9 �9 �9 
bm E K,  such that 

a~b, + . . .  + a gbm = (5], (11) 

where 5] is the Kronecker delta: 5] = 0 if 9 r 1, and 5] - 1 if 9 = 1. This can be 
proved in two small steps. 

a) Let us consider the linear map #: K NF K -+ K n defined by the formula 

( E  ) - (  gkbi' ) ai | bi " ' "  E ai . . . .  
i 

All we need is to show that there exists a tensor v E K | K, such that #(v) = 
( 1 , 0 , . . . , 0 ) .  We suppose here that {gl = 1 , g 2 , . . . , g k , . . . , g n }  is the group G. As the 
dimension of K NF K and that of K n are both equal to n 2, it is enough to prove that 
the kernel of # is zero. If 

# ( v ) = O ,  v = E a i |  

then in the algebra (K, G, ~0) for any ug we have 

gbi - E aiugbi 0 - -  Ug E a i 

As {Ua} is a basis of the algebra (K, G, ~0) then E aiXbi  = 0 for any X E (K, G, ~0). 
We have seen that the algebra (K, G,~0) is isomorphic to the matrix algebra F~ and 
therefore it is enough to prove the second step: 

b) I f  a l , . . . ,  am are n x n matrices over F, such that ~ aiXbi  = 0 for  any n x n 
matrix X ,  then ~ ai | bi = 0 in the tensor product Fn | Fn. 

Indeed, we can define a linear map p: Fn | Fn -+ LinF(F~)  by the formula 

where c t is a matrix transposed to c. This is a homomorphism: see (7). The tensor product 
Fn | Fn is a simple algebra (it is the algebra of n 2 x n 2 matrices), therefore the kernel 
of p is zero, i.e. 

t 
E a i |  = 0 .  
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As 

t E a i  | bi ~ E a i  | bi 

is an isomorphism of linear spaces, the second step is done and the existence of the ais 
and his in (11) is proved. 

Let, finally, 

V -- E UgOL9 

be a nonzero element in an ideal I of (K, G, ~). By multiplying if necessary with ug-~ 
we can suppose that c~l ~: 0. For the elements defined in (11), we have 

E aivbi - UlOll 

so Ul E I and u 9 - ulu9( (1 ,9 )  -1 c I for all g E G. This means that I - ( K , G , ( )  
and (K, G, s c) is a simple algebra. 

The center of (K, G, () is equal to u l F  ~- F. Indeed, if 

V -- E u90L9 

is a central element then for an arbitrary k E K, we have 

v k  - kv  = ~ u g ( k  - kg)~g  = O. 

So ag = 0 if g -r 1. Analogously, 0 = vug - ugv = Ug(al - a~) and therefore al - a~ 
for all g E G, which implies al  E F = K G. Thus, the crossed product (K, G, () is a 
central simple algebra. [3 

1.9.5. THEOREM. Any finite dimensional central simple algebra is similar to a crossed 
product. 

This theorem shows the importance of a crossed product construction but it surely 
doesn't means that any finite dimensional central simple algebra is isomorphic to a 
crossed product. In fact it was an open problem for a long time whether any finite 
dimensional central simple algebra is isomorphic to a crossed product. The answer is 
"yes" in many important cases. The following theorem is an achievement of algebraic 
number theory. Recall that a field F is called a field of  algebraic numbers if it is a finite 
extension of the field Q of rational numbers. 

1.9.6. THEOREM. Any finite dimensional central simple algebra over a field of  algebraic 
numbers is isomorphic to a crossed product with a cyclic Galois group. 

The first example of a finite dimensional central division algebra which is not a crossed 
product with cyclic Galois group was found by A.A. Albert. This division algebra is of 
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dimension 16. Nevertheless any division algebra of dimension 16 is a crossed product. 
The final solution of the problem was found by S.A. Amitsur [Am72] with the help of 
a generic matrix construction. 

Let Xi = I lx}k [I be an n x n matrix with coefficients x}k that are algebraically indepen- 
dent over Q. S.A. Amitsur proved that the algebra of generic matrices Q [ X 1 , . . . ,  Xm] 
has no zero divisors and satisfies the Ore condition. It follows that this algebra has a 
classical ring of quotients D (n) ~- Q ( X 1 , . . . ,  Xm) which is a division algebra. This 
division algebra has finite dimension over its center (this can be proved by PI-theory 
methods). Finally, if n is divisible neither by 8 nor by any square of a prime number 
then D (n) is not a crossed product. Note that in this example the structure of the base 
field (this is the center of D (n)) is not absolutely clear. 

Details of the theory of finite dimensional simple algebras can be found in the classical 
monographs [A161, Pi82]. Relations of this theory to the theory of PI-r ings are consid- 
ered in the books [Ja75, Ro80, Pr73]. In addition there are a lot of relations between 
classical problems and modern algebraic K-theory and number theory (see volume 1 and 
2 of this Handbook of Algebra). 

We will finish this section with two old open problems concerning the structure of 
skew fields. First of all there is the Kurosh problem for division algebras. 

1.9.7. KUROSH PROBLEM. Is any algebraic division algebra locally finite ? 

Recall that an algebra is said to be algebraic if any of its element is a root of some 
polynomial with coefficients from the base field. To date there is known only one way 
to construct algebraic nonlocally finite algebras. That is the Golod method. How can one 
modify it in order to make the result a skew field? This is the problem. 

There have been a number of positive results with this problem. First of all the solution 
essentially depends on the base field F. Indeed, if for instance F has only finite algebraic 
field extensions (like the field of real numbers) then an algebraic division algebra over 
it has bounded degree. This means that there exists a number n such that any element 
is a root of a polynomial of degree n. In this case the well-known Levitzki-Shirshov 
theorem answers the problem in the affirmative. 

1.9.8. THEOREM. Any algebraic algebra of bounded degree is locally finite. 

Another problem is concerned with the well-known fact that any commutative finitely 
generated ring (not algebra over a field) which is a field is finite. 

1.9.9. PROBLEM. Is a skew field which is finitely generated as a ring, commutative ? 

1.10. Simple noetherian rings. Recall that a ring R is called left (right) noetherian if 
it satisfies the following Ascending Chain Condition (ACC) for left (right) ideals: any 
strictly ascending chain of left (right) ideals 

I~ c h  c - - -  t i n  C . - -  

has a finite length. 
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Any artinian ring with a unit element is noetherian (this is an old result of Hopkins 
[Ho39]). In particular, any simple artinian ring is noetherian, which is completely clear 
as a matrix ring over a skew field has a finite dimension over this skew field as a left 
linear space. We have already constructed an example of a simple noetherian ring which 
is not artinian. It is the Weyl a lgebra-  algebra of differential operators (see 1.3). Passing 
to matrices preserves both ACC and simplicity. Moreover these properties are stable with 
respect to Morita-equivalence. 

Recall that two unitary rings R, S are called Morita-equivalent if the categories of left 
modules L(R),  L(S)  over these rings are equivalent. 

The following Zalesskii-Neroslavskii construction of a simple noetherian ring results 
in a ring which is not Morita-equivalent to a domain (i.e. a ring with no zero divisors). 

1.10.1. THEOREM. Let R be a commutative noetherian domain and ~ be an automorphism 
such that I ~ ~ I for any proper ideal I of R. If R is not a field then A - R[x, x -1 , c~] 
is a simple noetherian domain. 

Recall that A = R[x, x-l,c~] is the ring of polynomials in x, x - l  with the relations 

X X  - 1  - -  X - I x  - -  1~ r x  - -  x r C ~  r x  - 1  - -  x - l r a - l ~  r E R .  

Let F be a field of characteristic 2, K = F(t) the field of rational functions, R - 
K[y, y-l] be the localization of the polynomial ring K[y] with respect to y. If c~ is the 
automorphism of R defined by ya = ty then Theorem 1.10.1 can be applied to R and 
therefore the ring A - R[x, x -1 , a] is a simple noetherian domain. Let finally h be the 
automorphism of A taking x to x - l  and y to y - l .  The automorphism h generates a 
group H with two elements. We can define a trivial crossed product (or in other words, 
a skew group ring) A(H)  = u lA + uhA where the multiplication is defined by formulae 
(8), (9) with ~(9, h ) -  1. 

1.10.2. THEOREM. The crossed product Z N  = A(H)  is a simple noetherian ring which 
is not Morita-equivalent to a domain. 

Simple left (right) noetherian rings have no complete characterization like artinian 
rings. The Zalesskii-Neroslavskii example shows that the situation is much more com- 
plicated than in the artinian case. Nevertheless a number of structural facts are known. 
First of all like any prime left Goldie ring, a simple left noetherian ring R is a left 
order in a simple artinian ring. This means that the set of all left regular elements 
T = {t E R I Vx E R xt = 0 = ~  x = 0} is an Ore set and the classical left ring of 
quotients T - l  R is simple artinian. 

In the theory of simple noetherian rings the notions of Morita-equivalence, global 
dimension, Krull dimension and Goldie dimension play an important role. 

The following theorem of C. Faith and G.O. Michler gives a sufficient condition for 
a simple noetherian ring to be Morita-equivalent to a domain. 

1.10.3. THEOREM. Any simple noetherian ring of global dimension <~ 2 is Morita-equi- 
valent to a simple noetherian domain. 

Another interesting result in the characterization of simple noetherian rings up to 
Morita-equivalence is due to J.T. Stafford. 
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1.10.4. THEOREM. Let R be a simple noetherian ring of  finite global dimension. I f  the 
left Krull dimension of  R is less than a natural number n then R is Morita-equivalent 
to a simple noetherian ring with Goldie dimension less than n. 

It should be noted that any noetherian ring has a Krull dimension (possibly infinite) 
and that the Zalesskii-Neroslavskii example has infinite global dimension. 

Details of the structure theory of simple noetherian rings can be found in the special 
monograph [CF75], which contains lots of examples. The Zalesskii-Neroslavskii exam- 
ples can be found in the original papers [ZN75, ZN77] or in a monograph by D. Pass- 
man [Pa89] on crossed products. Rings with different chain conditions are considered in 
[CH80]. 

2. Prime rings 

2.0. Baer radical and prime and semiprime rings. The Baer radical is defined by the 
smallest radical class, which contains all rings A with zero multiplication, A 2 = 0. The 
Baer radical B(R) of a ring R is the union of the transfinite chain of ideals 

(0) = No c_ NI c_ N2 C_...N,~ c _ . . . ,  

where the ideal N~+1 is chosen in such a way that the sum of all the nilpotent ideals of 
the factor-ring R / N ~  is N,~+I/N~ and the equality 

/3<a 

holds for limit ordinals c~. 
Recall that an ideal I is called nilpotent if there exists a number n such that 

Xl X2 "" " Xn -- 0 for all Xl, x2,. �9 Xn E I. 

2.0.1. DEFINITION. A ring is called semiprime if it has no nonzero ideals with zero 
multiplication, i.e., for an ideal I the equality 12 = 0 implies I = 0. It is easy to see that 
a semiprime ring has no nonzero nilpotent ideals as well. Indeed, if I n = 0 then I n-1 
is an ideal with zero multiplication. 

2.0.2. DEFINITION. An ideal I of the ring R is called semiprime if the factor-ring R / I  is 
semiprime. 

We see that the Baer radical of a ring is a semiprime ideal: if B(R) = N,~ then 
N~ --- N~+I, which means that the factor-ring R / B ( R )  has no nonzero nilpotent ideals. 

The Baer radical can be defined as the smallest semiprime ideal of a ring as well. 
To see this we can use transfinite induction. If I is a semiprime ideal then No C 1, 
which gives a basis for the induction. The inclusion N~ c_ 1 implies that any nilpotent 
modulo N,~ ideal is nilpotent modulo I and due to the semiprimeness of I the inclusion 
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Na+ 1 c I holds. Finally if a is a limit ordinal and N~ C_ I for any/3 < a,  then evidently 

N ~ - U N ~ C _ I .  

2.0.3. DEFINITION. A ring R is called prime if the product of any two of its nonzero 
ideals is nonzero. Accordingly, an ideal I is called prime if the factor-ring R / I  is prime. 
Therefore, the ring R is prime iff (0) is a prime ideal. The following characterization of 
prime and semiprime rings in terms of the ring elements often proves to be useful. 

2.0.4. LEMMA. A ring R is prime iff for  any nonzero a, b E R there exists an x E R, 
such that axb # O. 

A ring R is semiprime i f f for any nonzero element a E R there exists x E R, such that 
axa =/= O. 

PROOF. If in a prime ring axb = 0 for each x E R, then the ideal (a) = aZ + aR  + 
Ra  + R a R  generated by a and the ideal J - Rb + R b R  satisfy ( a ) .  J - O, therefore 
either (a) = 0 or J = O. In the former case a = O; in the latter case R - ( b )  = 0 and 
b = O. Inversely, if A B  = 0 for two nonzero ideals, then aRb = 0 for nonzero elements 
a E A ,  b E B .  

If in a semiprime ring aRa  = O, then (Ra + R a R )  2 = O, so Ra = O; in particular 
a Z a Z  = 0 and (a) 2 = 0. Inversely, if A 2 = 0 and a E A, then aRa c A 2 - O. [~ 

The most important fact which connects the Baer radical and prime rings is the fol- 
lowing theorem. 

2.0.5. THEOREM. Any semiprime ring is a subdirect product of  prime rings. 

PROOF. Let a = ao be a nonzero element of the ring R. According to Lemma 2.0.4, we 
can find an element zl E R, such that al = axla  # O. Using the element al we find 
an element X2 such that a2 = alzzal  7 s O. Continuing this process, we can construct a 
countable sequence of nonzero elements ao, a l , . . . ,  a n , . . ,  s u c h  that an+l - a n X n + l a n  

for certain elements Zl, x 2 , . . . ,  Xn , . . .  of the ring R. 
Let us consider the set M of all ideals containing no elements of the sequence thus 

constructed and ordered by inclusion. This set is not empty since it contains the zero 
ideal as an element. Moreover, the set is directed, thus, according to the Zorn lemma, the 
set M contains maximal elements. Let Pa be one of them. In this case the ideal Pa  does 
not intersect the sequence a0, a l , . . . ,  a n , . . ,  but any ideal strictly containing Pa has a 
nonempty intersection with this sequence. Since a ~ Pa, 

["] pa = 0 
O#aER 

and it remains to show that Pa is a prime ideal. 
Let A and B be ideals of the ring R not contained in Pa. Then A1 -- A + Pa D Pa, 

Bl -- B + Pa 3 Pa, and, since Pa is maximal in the set M, the ideals A1 and B1 do not 
belong to M, i.e. there can be found natural n, m, such that an E Al, am E B1. Let, for 
instance, n > /m.  In this case, since ak+l = akxk+lak E (ak), an E (am). Then we get: 

a n + l  - -  a n X n + l a n  E A1Bl c_ A B  + Pa. 
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Therefore, the ideal A B  + Pa is not contained in Pa and, hence, A B  is not zero mod- 
ulo Pa. U] 

It is a question of interest how far the Baer radical can be away from being nilpotent 
because of the transfinite process of its construction. To a certain extent this question is 
answered by the following theorem. 

2.0.6. THEOREM. The Baer radical of  a ring is locally nilpotent. 

PROOF. Let us consider the inductive construction. We have No is locally nilpotent. Let 
be a limit ordinal, 

0 
/3<a 

and let us suppose that all the ideals N~ are locally nilpotent. If a 1,..., ., an are elements 
from N,~, then there exist transfinite numbers /31,.. . , /3n which are less than a and 
such that a l c N ~ , . . . ,  an C N~n. Let/3 be the largest from the numbers i l l , . . . , / 3n ,  
then, since the ideals {N.y} form a chain, we get a 1 , . . . ,  an C N~ and, due to the local 
nilpotency of N~, these elements generate a nilpotent subring. 

If a is not a limit ordinal, a = /3 + 1 and the ideal N~ is locally nilpotent, then 
by the definition N~ is a sum of nilpotent modulo N~ ideals. As a sum of any finite 
number of nilpotent ideals is nilpotent we have that any finite set s 1 , . . . ,  Sn of elements 
of the ideal N~ generates a subring S, such that S m c_ N~ . However, the subring S m 
is generated by a finite set of elements {si~si2si3.. .sim [ 1 <<, ij <~ n} and, hence, S m 
and, consequently, also S, are nilpotent. V1 

2.1. General structure, Martindale quotient ring. Let R be a prime ring and consider 
the set of all left R-module homomorphisms f" I --+ R where I ranges over all nonzero 
two-sided ideals of R. Two such homomorphisms are said to be equivalent if they agree 
on their common domain, which is a nonzero ideal since the intersection of two nonzero 
ideals in a prime ring contains their product and therefore is nonzero. It is easy to see 
that this is an equivalence relation. Indeed, what is needed here is the observation that 
if f" I --+ R with I f  - 0 and if f is defined on r E R, then r f  - O. This follows since 
I r  c_ I so 0 = ( I r ) f  = I ( r f )  and hence r f  = 0 in this prime ring. We let f denote the 
equivalence class of f and let RE be the set of all such equivalence classes. 

The arithmetic of RF is defined in a fairly obvious manner. Suppose f :  I --+ R and 
9: J -+ R. Then f + ff is the class of f + h: I N J -+ R and fff is the class of the product 
function f9: J I  --+ R. It is easy to see that these definitions make sense and that they 
respect the equivalence relation. Furthermore, the ring axioms are surely satisfied so RF 
is a ring with 1. Finally let rp: R --+ R denote right multiplication by r E R. Then the 
map r -~ r--- 7 is easily seen to be a ring homomorphism from R into RF. Moreover, if 
r -~ 0 then Rrp ~ 0 and hence ~ r 0 by the observation of the preceding paragraph. 
We conclude therefore that R is embedded isomorphically in RF and we will view RF 
as an overring of R. It is the left Martindale ring of  quotients of R. 
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Suppose f" I -+ R and a E I. Then a p f  is defined on R and for all r E R we have 

r ( a p f )  -- ( r a ) f  = r ( a f )  = r (a f )p .  

Hence ~ f = (a f )  o and the map f translates in RF to right multiplication by f .  With 
this observation, the following theorem is an elementary exercise. It is very important 
that the properties of the quotient ring described in this theorem define the left Martindale 
quotient ring uniquely up to isomorphism over R. 

2.1.1. THEOREM. 
(a) R C RF.  
(b) I f  q E RE and Iq  = 0 for  some nonzero ideal I o f  R, then q = O. 
(c) I f  q l , q 2 , . . . , q n  E RE,  then there exists a nonzero ideal I o f  R with Iql ,  

Iq2, . . . , Iqn C_ R. 
(d) I f  I is a nonzero ideal of  R and ~" I --+ R is a homomorphism o f  left R-modules, 

then there exists an element q E RE such that ~(a) = aq for  all a E I. 

These properties can be considered as axioms for a left Martindale ring of quotients. 
Using these axioms one can prove the following useful facts. 

2.1.2. LEMMA. 
(a) The ring RF is prime. 
(b) The center o f  RF  is a field. 
(c) The left Martindale ring of  quotient o f  any nonzero ideal ! o f  R is equal to that 

o f  R, i.e. 1F = RF.  

The extended centroid C = C ( R )  of a prime ring R is defined as the center of RF. 
The central closure C R  of the ring R is the linear space over the extended centroid 
generated by R. In the case of a ring without 1 it is natural to consider the unitary 
central closure S = C + C R .  

Another important subring in RF is the symmetrical quotient ring 

Q ( R )  - {q E RF I qI  C_ R for some nonzero ideal 1 of R}. 

In some sense it is the intersection of the left and right Martindale quotient rings. Here 
the right Martindale quotient ring is defined in an obvious way by changing left to right 
in the construction. 

The extended centroid of a prime ring plays in the theory of prime rings the same 
role the centroid does in the theory of simple rings. This role is defined by the following 
statement which is analogous to the important Lemma 1.4.4. 

2.1.3. LEMMA. I f  d l , . . . ,  dn are linearly independent over C elements o f  RF then there 
exist elements s l, �9 �9 �9 sin, t l, .. �9 tm E R,  such that 

Z sid~ti ~= O' Z sid2ti - O' . . . ,  ~ sidnti  - O. (12) 
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2.1.4. EXAMPLES. Now we are going to consider a number of examples. Let R be a simple 
ring with 1. In this case the collection of all nonzero ideals has only one element, R. Any 
left module homomorphism ~: R --+ R is defined by the right multiplication by ((1)" 
~(r) - ~( r l )  - r~(1), which implies RE = R. We have seen an example of a simple 
ring with a unit element; it is the Weyl algebra An(F).  This algebra has a classical 
quotient division ring, while the Martindale quotient ring is equal to An (F). 

If a simple ring R has no unit element then surely RF 7 ~ R as the quotient ring has 
a unit. In this case R is a right ideal of RE and a two-sided ideal of Q(R).  Indeed, 
the collection of all nonzero ideals of R still has only one element, R. Therefore, for 
any element q E RE we have Rq q R; if additionally q E Q(R), then also qR C 
R. Moreover both of the rings RE and Q(R) are subdirectly irreducible prime rings. 
Evidently the heart of Q(R) is R, while the heart of RE is the two-sided ideal R F R  
generated by R: any nonzero ideal I of RE contains R I  ,~ R and therefore R c_ I. The 
following example shows that the heart of RE might not be equal to R. 

Let R be a ring of all infinite matrices over a field K having only a finite number 
of nonzero elements. This is a simple subring in both the row-finite, Lin t (K) ,  and 
column-finite, Line(K),  rings of matrices. It is easy to see that R is a right ideal of 
Linr(K)  and a left ideal of Linc(K),  which implies at least that its left Martindale 
quotient ring contains Lin~(K) and the right one contains Linc(K).  Moreover R is 
not a two-sided ideal either in Lin~(K) or in Lin~(K); so R cannot be an ideal either 
in the left Martindale quotient ring or in the right one. Note that it can be shown that 
RF = L i n t ( K )  and Q(R) = L in~(K)N Lin~(K). 

Another useful example is given by a free algebra. If K (X) is the free algebra gener- 
ated by a set X in two or more elements then its symmetrical quotient ring is equal to 
K (X) (this is not a trivial fact), while the left Martindale quotient ring is quite large. For 
instance it contains zero divisors. Note here that the symmetrical quotient ring of a ring 
with no zero divisors has no zero divisors: if qs = 0, then for suitable ideals Iq C_ R, 
sJ  c R and so IqsJ  = 0 in the ring R, which implies Iq - 0 or sJ  - O, i.e. q - 0 or 
s - -O.  

2.2. Generalized polynomial identities. A generalized polynomial over a prime ring R 
is a polynomial in noncommutative variables with coefficients in R (or more generally 
in RE). 

By this definition, any generalized polynomial f can be presented as a sum of mono- 
mials 

�9 .. Xint~n+l, (13) 
i 

where d (i) k E RF, xij E X.  Let a 1 , . . . ,  an be some elements from RF. Then the value 
of the polynomial f ( x l , . . . , x n )  at Xl = a l , . . . , X n  - an is the element of ring RF 
obtained by replacing xi with ai in formula (13). 

2.2.1. DEFINITION. A generalized polynomial f = f(xl, . . .  ,Xn) is said to be a gener- 
alized identity of the ring R if f ( r l , . . . ,  rn) = 0 for all r l , . . . ,  rn C R. The identity 
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f is called trivial if it is a consequence of the identities defined by the ring properties 
(distributivity, associativity, etc.) and the identities of the type xc = cx where c is an 
arbitrary element of the generalized centroid C. 

The definition of a trivial identity can be stated in terms of free products: a generalized 
polynomial f is trivial if it is zero as an element of the free product R E , C ( X )  of algebras 
over C, where C ( X )  is the free algebra with free generators {Xl, X2,... , X n , . . . }  - -  X .  

By this definition any generalized polynomial can be reduced modulo the trivial ones 

to the form (13), where the d (i) are elements of a given basis of RF over the field C. In 
this case f is the trivial identity iff in this reduced form all the monomials cancel. 

Another very important criterion of nontriviality for a multilinear generalized poly- 
nomial is based on the observation that all the simplest trivial identities do not change 
the order of the variables in the monomials. It follows that a multilinear generalized 
polynomial is trivial iff all its, so called, generalized monomials are trivial. Recall that 
any multilinear f ( x l , . . .  , X n )  is a sum of n! generalized monomials f -- ~ f~, where 
7r ranges over all permutations of { 1 , . . . ,  n} and a generalized monomial f~ is a sum of 
all monomials of f which have the fixed order of variables x~(1),x~(2),. . .  ,X~(n). The 
criterion is based on the following 

2.2.2. LEMMA. A generalized monomial is an identity if and only if it is a trivial identity. 

2.2.3. Thus we have the criterion: A multilinear generalized polynomial is nontrivial iff 
one of its generalized monomials has a nonzero value. 

The proof of Lemma 2.2.2 follows from Lemma 2.1.3 by an easy induction on degree. 
Indeed, any generalized monomial with the order of variables x l, x 2 , . . . ,  xn can be 
written in the form 

f = E d jx lb jg j ( x2 , . . .  ,xn),  

where the d l , . . . , d k  are linearly independent over C elements of RE. By induction 
we can suppose that b)91 is not an identity. Lemma 2.1.3 says that there exist elements 
S l , . . . , s m , t l , . . . , t m  C R, such that 

al -- E S i d l t i  r O, E s i d 2 t i  - O, . . . ,  E s i d n t i  - 0 

we have that the generalized monomial 

E s i f ( t ~ x l , x 2 , . . .  ,Xn) = a lx lb lg l (x2 , . . .  ,Xn) 
i 

is identically zero on R (if f is). As blgl is not an identity, we can find a 2 , . . . ,  an C R, 
such that v = blgl(a2, . . .  ,an) 5r O. This implies aiRy  -- 0, which is impossible in a 
prime ring. 

2.2.4. MARTINDALE THEOREM. If a prime ring R satisfies a nontrivial generalized iden- 
tity, then its central closure R C  has an idempotent e, such that eRCe is a finite-dimen- 
sional sfield over C. 
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Recall that the "sfield" is the short for skew field ( -  division ring -- quasifield). 
With the help of Lemma 2.1.3 we will prove a number of important corollaries. 

2.2.5. LEMMA. A center o f  the sfield T = e R C e  is equal to Ce. 

PROOF. Let t be a central element of T. Then for any x E R we have 

f (x)  = t x e  - e xe t  = O. 

If the elements e and t are linearly independent over C in the ring R F ,  then, by 
Lemma 2.1.3 there can be found elements vi, ri E R, such that 

Then 

0 -- Z v i f ( r i x )  -- axe  

for all x, which is impossible. Therefore, t = ce. [3 

2.2.6. LEMMA. For any linear over C transformation l: T -+ T there exist elements 

ai, bi E T,  such that 

l (x )  = Z aixbi .  

PROOF. If n is the dimension of the sfield T over the center Ce, then the dimension of the 
space of all linear transformations is n 2. On the other hand, the n 2 linear transformations 
lij: x --+ a i x a j ,  where a l , . . . ,  an is a basis of T over the center, are linearly independent. 

Indeed, if 

f (x)  -- ~ a i j a i x a j  - -O,  x e T,  

then 

i j 

and, applying Lemma 2.1.3 to T and the system of its linearly independent elements 

dl = al,  . . . ,  dn --- an, we get cij = O. D 

2.2.7. THEOREM. I f  a ring with no zero divisors satisfies a nontrivial general ized identity, 

then its center is nonzero and the central closure is a f ini te-dimensional  sfield. 

PROOE According to the Martindale theorem, R C  has a primitive idempotent, but the 
ring Q ( R )  with no zero divisors can have only one nonzero idempotent; it is 1. Therefore, 
R C  -- 1.  R C .  1 = T is a finite dimensional sfield over C. 
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Let us consider a linear over C projection l: T -~ C and assume that l(T) N R - O. 
Then, by Lemma 2.2.6 there are elements as, bi E T, such that 

l(x) = Z aixbi 

for all x E T. For the elements ai, bi one can find a nonzero element q E R, such that 
aiq, qb~ E R, since T c_ Q(R). We have l(qRq) C R and, therefore, C = l(T) - 
l(qTq) = l(qRCq) = l(qRq)C C_ ( l (T )N  R)C = 0. This contradiction proves the 
corollary. I--I 

2.2.8. The Martindale quotient ring arose as a tool for the investigation of prime rings 
in the original paper [Ma69] where he proves Theorem 2.2.4 as a generalization of a 
theorem of Amitsur [Am65]. The construction of the quotient ring as a direct limit is 
quite old (see, for example the survey [E173]). Criterion 2.2.3 and Lemma 2.2.2 are due 
to L. Rowen [Ro75]. 

2.3. Prime rings with a primitive idempotent. In this paragraph we describe the structure 
of the rings arising in the Martindale theorem. A primitive idempotent is an idempotent 
e -- e 2 :/: 0 such that eRe is a sfield. In the literature prime rings with a primitive 
idempotent are called primitive with a nonzero one-sided ideal or primitive with a nonzero 
socle or quite primitive rings. The structure of such rings was investigated in detail by 
N. Jacobson in his classical papers and monographs. Here we are going to present a 
small piece of the subject. 

The socle Soc(R) of a prime ring with a primitive idempotent R is the two-sided ideal 
generated by all its primitive idempotents. 

2.3.1. LEMMA. The socle Soc(R) of a quite primitive ring R is equal to its heart. In 
particular, the socle is generated by any primitive idempotent and is a simple ring. 

PROOF. If I is a nonzero ideal and e is an arbitrary primitive idempotent, then 0 -r ele c_ 
I N ere .  As a sfield has no proper ideals, I n eRe ~ e and, hence, I ~_ Soc(R). f5 

It should be recalled that a module M over the ring R is called irreducible if it contains 
no proper submodules (i.e. submodules other than (0) or M) .  

2.3.2. LEMMA. Let e, f be primitive idempotents of a prime ring R. Then the sfields eRe 
and f R f are isomorphic. The right ideals, f R and eR, as well as the left ideals, Re 
and R f ,  are mutually isomorphic as modules over R and they are irreducible. 

PROOF. Since the ring R is prime, there can be found an element u, such that fue  ~ O. 
By the same reason, the set f u e R f  forms a nonzero right ideal of the sfield f R f ,  
i.e. there exists an element u', such that r u e .  eu~f = f.  Squaring both parts of the 
latter equality, we see that ~c = eu~f f ue  :/: 0. Therefore, ~ is a nonzero idempotent 
(~2 = e u ' f ( f u e ,  eu' f )  f ue  = () lying in the sfield ere .  Thus, eu ' f .  rue = e. It is now 
absolutely clear that the mappings 

ere ~ f uereu' f , f r f  ~-+ eu' f r f u e  
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give the sought isomorphism of sfields. 
Let N be a nonzero right ideal contained in eR. Then eN  - N and, hence, since the 

ring R is prime, eNe = Ne  ~ O. However, eNe is a right ideal of the sfield e r e  and, 
therefore, e E eNe C_ N and eR - N so that eR (and, analogously, Re) is an irreducible 
module. 

Let us now consider the mapping 79" eR --+ fR, given by the rule er --+ fuer ,  where 
u is the element determined above. As f u e  r O, 79 is a nonzero homomorphism of right 
R-modules. As the kernel of 79 is a submodule of eR, then due to irreducibility, 79 is 
an embedding. The image of 79 is a nonzero submodule in f R, coinciding, due to its 
irreducibility, with f R .  Thus, 79 is an isomorphism of modules. The lemma is proved. O 

The lemma proved above makes it possible to determine the sfields of a quite primitive 
ring R as the sfield T, which is isomorphic to e r e  for a certain primitive idempotent 
e. Moreover, the lemma states that the module V -- eR is also independent of the 
choice of a primitive idempotent. Since e r e .  eR c eR, this module can be viewed as 
a left vector space over the sfield T -- ere .  In this case the elements of the ring R 
turn to transformations of the left vector space V over the sfield T. Indeed, the element 
r is identified with the mapping v ~-+ yr. This presentation is exact, since Vr  = 0 
implies r - 0, as R is prime. There now naturally arises the ring Lir~(T)  of all linear 
transformations of the left space V over the sfield T (see 1.2.2). 

The embedding of a quite primitive ring R into the ring Lin~(T) is, by itself, not 
enough information. The most essential is the fact that at such an embedding R proves 
to be a dense subring in Lin~(T).  

A subring S C_ Lin~(T) is called dense, if for any finite-dimensional subspace W C_ V 
and any linear transformation 1 E Linr(T) ,  there exists an element s E S which coincides 
with l on W. In terms of matrices this is equivalent to the fact that for any finite subset 
J C U and any J • J-matrix l = Ill~ll there exists a matrix IIs~ll E S, extending l, 
i.e. such that s ~  - l ~  at c~,/3 E J. 

It should also be added that on the ring Lin~(T) there is a natural topology, called the 
finite topology, such that a subspace is dense in this topology if and only if it is dense in 
the sense defined above. Namely, in the finite topology the basis of zero neighborhoods 
are the sets W • = {l E Lin t (T )  I Wl  - O} where W ranges over all finite-dimensional 
subspaces of V. 

2.3.3. THEOREM. A quite primitive ring R is dense in Linr(T) .  A set of all finite rank 
transformations 1 E R coincides with Soc(R). 

With the help of this theorem it is possible to obtain the result of M. Hacque ([Ha82], 
Lemma 11, and [Ha87], Remark 4.9) on quotient rings of a prime ring with a primitive 
idempotent. 

2.3.4. THEOREM. The left Martindale quotient ring of a prime ring with a primitive 
idempotent coincides with the ring L in t (T) .  

2.3.5. The symmetrical quotient ring. Let us now make a small diversion into general 
topology. Let us consider an arbitrary set X and a set F of its transformations. Of special 
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interest are the topologies for which F proves to consist of continuous transformations. 
It is evident that if (T~, C~ C A} is the class of such topologies (a topology is considered 
to be given by a set of open sets), then their intersection 

N Tot  

A 

will also be a topology for which all the functions f E F are continuous. 
Recall that the linear space V (supplied with a topology) over a topological sfield T 

is called a topological linear space, provided the linear operations (addition and scalar 
multiplication T • V --+ V), as well as the mappings tv ~-~ t for all v ~ 0 are continuous 
(here t ranges over T). 

Let us consider T as a topological sfield with the discrete topology. 

2.3.6. THEOREM. 
(a) There is a weakest topology on V, which turns it into a topological linear space 

over the sfield T, such that R consists of continuous transformations. 
(b) A set of all linear continuous transformations in this topology equals Q(R). 
(c) A set of all continuous finite rank transformations coincides with the socle of the 

ring R. 

2.4. Essential polynomial identities, prime PI-rings. The criterion 2.2.3 of nontriviality 
of a generalized identity inspires the following notion. A multilinear generalized identity 
f of a prime ring R is called essential if the ideal of RF generated by all values of all 
its generalized monomials, while the variables range over RF, contains 1 (i.e. it is equal 
to RF). 

2.4.1. THEOREM. If a prime ring R satisfies an essential generalized identity, then its 
central closure R C  is a finite-dimensional central simple algebra over C. The center Z 
of R is nonzero. The extended centroid C is the quotient field of Z. 

PROOF. By the criterion 2.2.3 and the Martindale Theorem 2.2.4, RC is a prime ring 
with a primitive idempotent. Theorem 2.3.3 shows that this ring is a dense subring of the 
row-finite matrix ring L = Lin t (T )  over a finite-dimensional central division algebra 
T. As the ring operations are continuous in the finite topology, all generalized identities 
can be extended from RC to L. Moreover any multilinear identity of R is also valid on 
RC. Indeed, 

f ( x l , . . . , C l X i  + c2yi , . . . ,Xn)  

-- c l f ( x l , . . . , X i , . . . , Z n )  + C 2 f ( X l , . . . , y i , . . . , Z n )  = O. 

Thus the ring L also satisfies the essential identity f .  Let c~ be the dimension of the 
space V. We will prove that c~ is a finite number. 

If t~ is not finite then the factor-ring R1 - L / S ~ ( T )  is a simple ring with 1 (see 
1.2.3). The generalized polynomial f induces a generalized polynomial f over the ring 
R1, which evidently is an identity of R1. By the criterion 2.2.3 this is a nontrivial 
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identity because the ideal generated by all values of its generalized monomials is the 
homomorphic image of the ideal generated by all values of generalized monomials of 
f and the last one contains 1. So we can apply the Martindale theorem to R1. This is 
a simple ring with 1 and therefore it coincides with its left Martindale quotient ring. 
Therefore it is a prime ring with a primitive idempotent and by 2.3.4, R1 - Lint(T1).  
The row-finite matrix ring is simple only if the cardinality/3 of matrix size is finite, as 
in the opposite case S~(T1) is a proper ideal. Thus we have proved that R1 is the ring 
of n • n matrices over a sfield, which is a contradiction as it is easy to see that for an 
infinite a the factor-ring L r ( T ) / S f f ( T  ) is not artinian. 

So the number ce = n is finite and R C  is a dense subring in the n • n matrix ring over 
the skew field T. The finite topology is discrete in. this case and therefore R C  = Tn. 

Finally, the considerations in statements 2.2.5-2.2.7 show that the center Z of R is 
nonzero (one should replace T with R C  in the proofs). If c E C is an arbitrary element, 
then cI is a nonzero ideal of R for a suitable I <~ R. The center of I is nonzero as this 
ring satisfies the same identity and IF = RF. As Z(I )  C_ Z (R)  we can find nonzero 
central elements zl, z2, such that CZl = z2. [-] 

2.4.2. DEFINITION. A ring R is called a PI-ring if it satisfies a polynomial identity with 
integer coefficients 

2 (~iXil Xi2"'" Xin - -  0 ( 1 4 )  

i 

with one of the coefficients ai  equal to 1. 

2.4.3. THEOREM. The center Z of a prime PI-ring R is nonzero. The quotient ring R Z  -1 
is a finite-dimensional central simple algebra over the quotient field C - Z Z -1. 

PROOF. The standard linearization process allows one to find a multilinear identity of the 
type (14). This identity considered as a generalized polynomial identity is essential: the 
generalized monomial aixi(1)xi(z)...x~(,~) at xi(j) --- 1 is equal to ai .  Due to Theorem 
2.4.1 we are done. [2] 

Note that the fact that the center of a prime PI-ring is nonzero is very important 
for the structure theory of PI-rings. This fact was firstly discovered independently by 
E. Formanek and Ju. Razmyslov with the help of so called central polynomials. These 
are polynomials with only central values, and which are not identities. Theorem 2.4.3 in 
fact was obtained by L. Rowen [Ro75]. He proved that any ring with 1 (not necessarily 
prime) satisfying an essential identity is a PI-ring. This fact is also valid for identities 
with automorphisms [Kh75] and even for differential identifies with automorphisms under 
some additional restrictions (see [Kh91]). 

2.5. Galois theory of prime rings. The Galois theory of noncommutative rings is a 
natural outgrowth of the classical Galois theory of fields. Let G be the group of auto- 
morphisms of a ring R. Then we are concerned with the relationship between R and the 
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fixed ring R c = {r E R l r  ~ = r for all 9 E G) and with the relationship between the 
subgroups of G and intermediate rings R D S ~ R G. Let 

A(S)  = {g ~ A u t R  l s g - s for all s ~ S}. 

The ring R G is called the Galois subring of a group G and the group A(S) the Ga- 
lois group of a subring S. The correspondences G ~-~ R G and S ~+ A(S) invert 
the inclusion relations, i.e. if G1 C_ G2, then R G1 D_ R G2 and if $1 C_ $2, then 
A (S~) D A ($2). We also have A ( R  G) D_ G, R a(S) D S, which immediately yield 

R A(Ra) = R G, A ( R  a(s)) -- A(S) .  Therefore, the mappings under discussion set up a 
one-to-one correspondence between Galois groups and Galois subrings. 

In order to prove the correspondence theorem in a class of rings S it is necessary (and 
sufficient) to answer the following questions" 

(1) Under what conditions does a Galois subring of a group G of automorphisms of a 
ring R E S belong to S?  

(2) When will a group G which satisfies condition (1) be a Galois group? 
(3) Under what conditions an intermediate ring S E S ,  R a c_ S c_ R, is a Galois 

subring? 

2.5.1. Basic notions. Any automorphism g of a prime ring R has a unique extension 
to the symmetrical quotient ring Q(R),  therefore we can suppose that all the automor- 
phisms are defined on Q(R).  This is a pleasant fact. An unpleasant one is that in this 
situation there arises the problem of how to distinguish automorphisms of R in the group 
Aut  Q(R).  The straightforward answer: "by the property R 9 = R", is not good enough. 
The point is that from the Q(R)-point of view the ring R is in no way better than any of 
its nonzero ideals as Q(I)  = Q(R),  while the automorphism groups can be essentially 
different. This leads us to the following notion 

A ( R )  = {g e A u t Q ( R )  I 3I, J ,~R ,  I ~ O ~ J, J C_ I g C_ R) .  

One can prove that .A(R) is a group and .A(R) = .A(I) for any nonzero ideal I. We 
will look at elements of the group .A(R) as the automorphisms under investigation. This 
approach involves only a little difficulty with the proofs while the results become general 
enough to be applied to noninvariant nonzero ideals without any trouble. 

Algebra of a group. The main special effect in noncommutative Galois theory is that 
there arise so-called inner automorphisms. If b is an invertible element then b: x --+ 
b- lxb  is an automorphism. It is easy to see that the group .A(R) contains all inner 
automorphisms of Q(R).  The algebra of a group G c A (R)  is defined as the linear 
space over the extended centroid C generated by all elements b invertible in Q(R) such 
that/~ E G. This space is a subalgebra of Q(R).  We will denote the algebra of a group 
G by B(G). It is an inner part of the group in a ring form. 

If G is a finite group, then its algebra B(G) will be finite-dimensional over C. Of the 
finite order will also be the factor-group G/Ginn,  where Ginn is the normal subgroup 
of all inner for Q automorphisms (such automorphisms are sometimes called X-inner). 
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Reduced order. A group G is called reduced-finite if its algebra B(G) is finite- 
dimensional, while the factor-group G/Ginn is finite. In this case the number dime B(G). 
I G/G~nnl is called the reduced order of the group G. 

Noether groups. Let G be a Galois group, G = A(S). If b = ~ cibi, bi E G, is an 
invertible element of B(G) then it commutes with all elements of S as do the his and 

therefore b c A(S) --- G. This means that any Galois group is an N-group in the sense of 
the following definition. A group G is called an N-group (a Noether group) if any inner 
automorphism of the ring Q corresponding to an invertible element of B(G) belongs 
to G. 

Regular groups. A reduced-finite group G is called an M-group (Maschke group) if 
its algebra 13(G) is semisimple. With the help of the well known Maschke theorem it is 
easy to see that any finite group of order invertible in C is an M-group. 

A Maschke group G is called regular if it is also a Noether group. 
A reduced-finite N-group with simple algebra is called quite regular. 
We need the notion of a finite-dimensional quasi-Frobenius algebra (see the paper 

"Frobenius algebras" by K. Yamagata in this volume). 

2.5.2. THEOREM. The following statements on a finite-dimensional algebra B with 1 are 
equivalent: 

(1) the left B-module t3 is injective; 
(2) the right B-module 13 is injective; 
(3) for every left ideal A and right ideal p of the algebra 13 the following equalities 

are valid: 

(4) the sum of all right ideals conjugate with left ones coincides with the whole 
algebra B; 

(5) the sum of all left ideals conjugate with right ones coincides with the whole 
algebra B. 

Here annz(p) is the left annihilator of p, and annr(A) is the right annihilator of A. 
Recall also that left and right modules A, p are conjugate if there exists a bilinear nonde- 
generate associative form p • A -+ C. It is easy to see that all simple and all semisimple 
finite-dimensional algebras are quasi-Frobenius (even Frobenius). In particular all regular 
and any quite regular groups have quasi-Frobenius algebras. 

2.5.3. THEOREM. Any reduced-finite N-group with quasi-Frobenius algebra is a Galois 
group. 

The proof of this theorem is based on two important considerations. One of them 
is a generalization of 2.1.3, which is a noncommutative analog of the automorphism- 
independence theorem. 
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2.5.4. PROPOSITION. Let dl, d 2 , . . . ,  dn E RF be linearly independent over C elements, 
and let Sl ,S2, . . .  ,sin E RF be arbitrary elements. I f  none of the automorphisms 
91, g2, . . . , 9m E fit(R) is inner for  Q(R)  then there exists a l , . . . ,  ak; b l , . . . ,  bk E R, 
such that 

E aidl bi 7 ~ 0, E aidjbi - O' E a'sgtt bi = O' 
i i i 

w h e r e j - 2 , . . . , n ;  t =  1 , 2 , . . . , m .  

Another fundamental consideration is the construction of trace forms. Let T be a 
transversal for Ginn in a reduced finite group G. If )~, p are conjugate left and right 

* * of p then the form ideals of B(G), with basis a l , . . . ,  an of A and dual basis a l , . . .  , an, 

n 
TA,p(X) = E E ( aixa~)g 

g E T  i=1  

is invariant, i.e. ~',X,p(X) E (Q(R)) G for all x E Q(R).  Moreover there exists a nonzero 
ideal I ,~ R, such that 0 :/: ~->,,p(I) C_ R C. Such a form is called a trace form. 

The above theorem implies that all regular and all quite regular groups are Galois. 
An important example of M-groups is concerned with the case when the ring R has no 
zero divisors. Indeed, the algebra of any reduced-finite group G is contained in the ring 
Q(R) ,  which also has no zero divisors and therefore B(G) is a division ring. Thus we 
have a corollary. 

2.5.5. COROLLARY. If  a ring R has no zero divisors then the Galois closure of a reduced- 
finite group G is the group G.  13" generated by G and the inner automorphisms corre- 
sponding to invertible elements of  13(G). 

The following theorem with 2.5.3 gives us the solution of questions (1) and (2) above. 

2.5.6. THEOREM. Let G be a reduced-finite group with quasi-Frobenius algebra, then 
(a) the Galois subring R C is semiprime if and only if G is an M-group. 
(b) the Galois subring R G is prime if and only if the algebra B(G) has no proper G 

invariant ideals. 

Note that the group G naturally acts on 13(G) because an inner automorphism defined 

by b g equals 9 -l/99. 

2.5.7. THEOREM. Let G be a regular group. An intermediate ring S, R 2 S 2 R C, is a 
Galois subring of  an M-subgroup of  G if and only if it satisfies the following properties 
BM, RC, Sl. 

BM (Bimodule property). Let e E 13(G) be an idempotent, such that se = ese for all 
s E S. Then there exists (an idempotent) f ,  such that e f  = f ,  f e  = e and f s  = s f  for 
all s E S. 
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RC (Rational completeness). If A is a two-sided ideal of S with zero annihilators in 
S and Ar c_ S for a certain r c R, then r C S. 

(This condition is equivalent to SF N R -- S.) 

Sl (Sufficiency of invertible elements).The centralizer 

is generated by its invertible elements and if for an automorphism 9 E G there is a 
nonzero element b E B(G), such that sb = bs g for all s E S, then there exists an 
invertible element with the same property. 

In relation to the first part of condition SI, we should at once remark that if a field C (the 
generalized centroid of R) contains at least three elements, then any finite-dimensional 
algebra with 1 over C is generated by its invertible elements. Therefore, this part of the 
condition is restrictive only in the case when C is a two-element field. The second part 
of the condition is automatically satisfied if R has no zero divisors or, generally, if the 
algebra of the group G is simple. 

We can now formulate the traditional Galois theory correspondence theorems. 

2.5.8. THEOREM. Let G C A(R) be a regular group of automorphisms of a prime ring R. 
Then the mappings H ~-~ R H, S ~-+ A(S) set up a one-to-one correspondence between 
all regular subgroups of the group G and all intermediate subrings obeying conditions 
BM, RC and SI. 

2.5.9. THEOREM. Let G C_ A(R) be a finite group of X-outer automorphisms of a prime 
ring R. Then the mappings H ~-+ R H, S ~+ A(S) set up a one-to-one correspondence 
between all subgroups of the group G and all intermediate rationally-complete subrings 
of R. 

2.5.10. THEOREM. Let G C ,A(R) be a reduced-finite N-group of automorphisms of a 
domain R. Then the mappings H ~ R I-I, S ~+ A(S) set a one-to-one correspondence 
between all N-subgroups of the group G and all the intermediate rationally-complete 
subrings. 

In addition there is a somewhat unexpected Galois correspondence theorem, which is 
based on the fact that the symmetrical quotient ring of a free algebra coincides with this 
algebra. 

2.5.11. THEOREM. Let G be a finite group of homogeneous automorphisms of a free 
algebra F(X)  in more than one variable. Then the mappings H ~-+ R H, S F-+ A(S)  set 
a one-to-one correspondence between all subgroups of the group G and all intermediate 
free subalgebras. 

A traditional problem of the Galois theory is that of finding criteria for an intermediate 
subring S to be a Galois extension over R a.  The conditions for a general case being quite 
complex, we are not going to discuss them here. The considerations of this problem are 
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based on the theorem of extension of isomorphisms. Let us begin with a simple example 
which shows the extension of isomorphisms over R C between intermediate subrings to 
be not always possible for arbitrary M-groups. 

2.5.12. EXAMPLE (D.S. Passman). Let R be the ring of all matrices of the order four 
over a field F ~- GF(2)  and let G be the group of all (inner) automorphisms of this 
algebra. Let us set S = {dia9(a, a, a, b) I a, b E F}  and let $1 = {dia9(a, a, b, b) ] 
a, b E F}.  Then S ~ Sl, and the corresponding isomorphism is the identity on 
R C = {dia9(a, a, a, a)}. Both rings are Galois subrings, since their centralizers Z, Z1 
are generated by invertible elements. At the same time, the isomorphism between S, $1 
cannot be extended to an automorphism of R, as Z is not isomorphic to Zl. 

The situation is better under the assumption that S, $1 are Galois subrings of groups 
with simple algebras. 

2.5.13. THEOREM. Let G be a regular group of automorphisms of a prime ring, S, S 1 be 
intermediate Galois subrings of quite regular groups. Then any isomorphism ~: S --+ S1, 
which is the identity on R C, can be extended to an automorphism Cp E G. 

2.5.14. COROLLARY. Let G be a reduced-finite group of  automorphisms of a domain. 
Then any isomorphism over R G between intermediate subrings can be extended to an 
automorphism g E .A(R). 

2.5.15. COROLLARY. Let G be a finite group of outer (for Q) automorphisms of a prime 
ring R. Then any isomorphism over R, C between intermediate subrings can be extended 
to an automorphism 9 E G. 

2.5.16. Work on noncommutative Galois theory was begun by E. Noether [No33] in her 
study of inner automorphisms of central simple algebras. This was continued in the 1940s 
and 1950s where the work still concerned rather special rings R. For example the Galois 
theory of division rings was initiated by N. Jacobson [Ja40] and [Ja47], H. Cartan [Ca47], 
and G. Hochschild [Ho49]. Complete rings of linear transformations were investigated 
by T. Nakayama and G. Azumaya [NA47] and J. Dieudonn6 [Di48], and somewhat later 
A. Rosenberg and D. Zelinsky [RZ55] studied continuous transformation rings. Much 
of this can be found in Jacobson's book [Ja56]. In addition, simple artinian rings were 
considered by G. Hochschild [Ho50], T. Nakayama [Na52] and in a long series of papers 
by H. Tominaga and T. Nagahara leading to their monograph [TN70]. 

In the 1960s a great deal of work was done on the Galois theory of separable algebras. 
Among the many papers on this subject, we note in particular [Mi66] by Miyashita, 
[CM67] by L.N. Childs and ER. DeMeyer, [VZ69] by Villamayor and D. Zelinsky and 
[Kr70] by Kreimer. 

The results presented here are basically due to the author. They were first proved in 
general form for semiprime rings in a series of papers [Kh75, Kh77, Kh78]. The case of 
prime rings was revised with new achievements by S. Montgomery and D.S. Passman 
in [MP84] from where we obtained this history information. A somewhat new point of 
view of the subject is presented in the book [Kh91]. 
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3. Semiprime rings 

Recall that a ring is called semiprime if it has no nonzero ideals with zero multiplication. 
Evidently a semiprime ring contains no nilpotent ideals: if I n -- 0 then I n-1 has a 
zero multiplication. Moreover a semiprime ring has no one-sided nilpotent ideals: if for 
instance L is a left nilpotent ideal, L n - 0, then (L + LR)  n+l - O. 

Another important consequence of the definition is that any ideal has zero intersection 
with its annihilator I N ann  I - 0, while left and right annihilators of a two-sided ideal 
coincide. In this case the sum 1 + ann  I is direct and this sum has zero annihilator, in 
particular it intersects any nonzero ideal, i.e. it is an essential ideal in the sense of the 
following definition. 

DEFINITION. An ideal I is called essential if it has nonzero intersection with any nonzero 
ideal. Respectively a left (right) ideal is called essential if it has nonzero intersection 
with any nonzero left (right) ideal. 

The Martindale quotient ring of a semiprime ring is defined in the same way as that 
of a prime ring, where instead of nonzero ideals one should consider essential two-sided 
ideals. This quotient ring as well as the symmetrical one have an axiomatic definition in 
the spirit of Theorem 2.1.1. 

3.0.1. THEOREM. Let R be a semiprime ring. There exists a unique (up to isomorphism 
over R) ring RF such that: 

(a) R C_ RF.  
(b) I f  q C RE and Iq = 0 for  some essential ideal I of  R, then q - O. 
(c) I f  ql, q 2 , . . . ,  qn E RF,  then there exists an essential ideal I o f  R with Iql ,  

I q 2 , . . . , I q n  C R. 
(d) I f  I is an essential ideal of  R and ~: I --+ R is a homomorphism of  left R-modules, 

then there exists an element q E RE such that ~(a) = aq for  all a E I. 

Using these axioms one can prove the following useful facts. 

3.0.2. THEOREM. 
(a) The ring RE is semiprime. 
(b) The center of  RE is a commutative self injective yon Neumann regular ring. 
(c) The left Martindale ring of  quotients of  any essential ideal 1 of  R is equal to that 

o f  R, i.e. l r  -- RE.  

The extended centroid C = C ( R )  of a semiprime ring is also defined as the center of 
RE, and the symmetrical quotient ring 

Q ( R )  = {q E RF I qI  C_ R for some essential ideal I of R}. 

Lemma 2.1.3 also remains valid, but instead of linear independence one should take 
the condition dl ~ Cdz + Cd3 + . . .  + Cdn. 

3.1. Goldie and prime dimensions. The prime dimension of a ring R is the largest 
number n, such that R contains a direct sum of n nonzero two-sided ideals. 
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The prime dimension of a prime ring is equal to one. A semiprime ring can have either 
finite or infinite prime dimension. However, if this dimension equals one, then the ring 
is prime: if I J  - 0 ,  then the sum 1 + J is direct. 

3.1.1. THEOREM. The following statements are equivalent for a semiprime ring R. 
(1) The prime dimension of  the ring R is n. 
(2) The ring R contains an essential direct sum of ideals Ii |  @ In, each of which 

is a nonzero prime subring. 
(3) The ring of  quotients RF is isomorphic to a direct sum of  n nonzero prime rings. 
(4) The ring of quotients Q(R)  is isomorphic to a direct sum of n nonzero prime rings. 
(5) The generalized centroid of R is isomorphic to a direct sum of n fields. 
(6) The ring RF has exactly 2 n different central idempotents. 

We have seen in 2.0.5 that any semiprime ring is a subdirect product of prime rings. It 
can be proved that a semiprime ring is presented as a subdirect product of n prime rings 
if and only if its prime dimension is less than or equal to n. In this case the following 
uniqueness theorem is valid. 

3.1.2. THEOREM. If  the prime dimension of a semiprime ring R equals n, then: 
(a) Any irreducible presentation of the ring R as a subdirect product of prime rings 

contains exactly n factors. 
(b) A presentation of R as a subdirect product of n prime rings is unique, i.e. if 

R -- Sn_lRi = Sn=lR~, then there exists a permutation (r such that R~ ~- R~(~) and 
t = kerTr~(i) where 7ri t ker 7r i , ,7r i are the approximating projections. 

(c) The ring R has exactly n minimal prime ideals and their intersection equals zero. 

The left Goldie dimension of a left module V is the biggest number n, such that 
V contains a direct sum of n nonzero submodules. This dimension is also often called 
uniform dimension. 

One can prove (it is not obvious) that if a module does not contain a direct sum of an 
infinite number of nonzero submodules, then it has finite Goldie dimension. 

A ring R of finite Goldie dimension is called a left Goldie ring if it satisfies the 
Ascending Chain Condition for left annihilator ideals. 

It is obvious that a semiprime left Goldie ring has finite prime dimension. In this case 
the prime subdirect factors of the irreducible presentation are prime Goldie rings. 

The following statement presents a very important property of semiprime Goldie rings. 

3.1.3. PROPOSITION. A left ideal of a semiprime left Goldie ring is essential if and only 
if it has a regular element. 

It should be recalled that an element r E R is called regular if sr ~ 0, rs ~ 0 for all 
s E R ,  s # O .  

Most important is the connection of semiprime Goldie rings with the classical quotient 
ring construction. 

3.1.4. DEFINITION. Let R be a subring of a ring 5'. The ring S is called a classical 
quotient ring of the ring R, and the ring R is called a left order in S iff the following 
conditions are met: 
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(1) all regular elements of the ring R are invertible in the ring S; 
(2) all elements of the ring S have the form t2 - lb ,  where a, b c R and a is a regular 

element of the ring R. 

An arbitrary ring does not always have a classical left quotient ring. Indeed, if a ring 
R has a classical quotient ring and a, b E R with b is regular, then ab -1 = c - ld ,  where 
c, d E R and c is regular. Hence, ca - db and we come to the necessity of the following 
left Ore condition. 

For any elements a, b C R, where b is a regular element, one can find elements 
c, d E R where c is a regular element, such that ca = db. 

This condition is known to be sufficient for the existence of a left classical quotient 
ring (the Ore theorem). Moreover, the Ore condition guarantees the uniqueness of the 
left classical quotient ring, this ring being denoted by Qcl(R). 

3.1.5. GOLDIE THEOREM. (a) A ring R is a left order in a simple artinian ring if and 
only if R is a prime left Goldie ring. 

(b) A ring t~ is a left order in a semisimple artinian ring if and only if 1~ is a semiprime 
left Goldie ring. 

Semiprime left Goldie rings have some interesting characterizations. One of them 
replaces the ACC with a nonsingularity condition. Recall that a ring R is called left 
nonsingular if every essential left ideal has a zero right annihilator. 

3.1.6. JOHNSON THEOREM. A semiprime ring R is a left Goldie ring if and only if it is 
nonsingular and contains no infinite direct sums of  nonzero left ideals. 

3.2. A topology on a semiprime ring of  infinite prime dimension. In this paragraph we 
are going to define a topology on a semiprime ring. This topology becomes discrete if the 
ring has finite prime dimension. Therefore this construction as well as the constructions 
in the next paragraph are special tools for the investigation of semiprime rings with 
infinite prime dimension. 

Recall that a partially ordered set A is called directed if for any two elements C~l, c~2 E 
A there exists an upper bound/3 E A: /3 >~ al ,  a2. 

The set of all central idempotents of the ring Q(R)  is partially ordered: el <~ e2 iff 
el e2 -- el. Moreover, it can be easily seen (and it is important) that any subset E1 has 
an exact upper bound sup El.  Let E be a subring of C generated by all its idempotents. 
In this case the rings RF, Q(R),  C, E n d z ( R F )  are modules over E. Here E n d z  RF 
is the ring of endomorphisms of the additive group of the ring RF. This ring is a right 
module over C, but it may be not an algebra over it. The action of the central elements 
is defined by the formula x(q)c) = (xqa)c. 

3.2.1. DEFINITION. Let M be a module over the ring E and A be a directed partially 
ordered set. Let us call an element m c M a limit of the family {ms E M, c~ E A} if 
there exists a directed family of idempotents {e,~, a c A} such that 

(a) ec~ <~ e~ for a ~</3, 
(b) sup e~ = 1, 
(c) for all a E A the equalities me~ = m~e~ are valid. 
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In this case we shall write 

m -  lim ms .  
A 

Accordingly, a set T C_ M is called closed if any limit of any family of elements from 
T belongs to T. The closure of  a set is the least closed set containing the given one. 
Therefore, the operation of closure determines a certain topology on the E-module M. 

Let now qD: MI --+ M be a certain mapping of E-modules. We shall call qo quite 
continuous if the equality 

m - lim m s  
A 

yields 

: 

It should be remarked that any quite continuous mapping qD is continuous. Indeed, 
in this case the total preimage of a closed set is closed and, hence, ~ is a continuous 
mapping. It is evident that if qo preserves the operators of multiplication by the central 
idempotents" qD(me) - qa(m)e, then qa is quite continuous. In particular any E-module 
as well as C-module homomorphism is continuous, while an isomorphism is a homeo- 
morphism. 

It follows that the operators of left and right multiplication z ~-+ rz ,  z ~-+ zr  are con- 
tinuous transformations of the ring RE. Moreover it can be seen that the transformations 
Ha" x ~-+ z + a, as well as all automorphisms and derivations of the ring RF are quite 
continuous. It is also important that the closure of any subring of RE is a subring, as 
well as that the closure of an ideal of a subring S is an ideal of the closure of S. 

The above definition does not imply that the directed family of elements {ms } cannot 
have more than one limit. 

3.2.2. LEMMA. Any directed family of  elements of  a module M over C has at most one 
limit iff M is a nonsingular module. 

The main examples of nonsingular modules are RF, E n d z  (RF)  and all their submod- 
ules. 

3.2.3. DEFINITION. A family {ms [ a  E A} is said to be self consistent if there exists a 
directed family of idempotents {e~}, such that 

(a) sup ec~ = 1, 
(b) if c~ ~>/3 then the relations m~e~ - m ~ e ~ ,  and e~ ~> e~ are valid. 

A subset S c_ M is called complete if any self consistent family of its elements has a 
limit. 

It is very important that the modules RF,  Q(R) ,  C and E n d z ( R F )  are complete. 
Evidently any closed subset of a complete module is complete. Moreover any factor- 
module of a complete module by a closed submodule is complete. 
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3.2.4. THEOREM. Any complete nonsingular module over C is injective and, vice versa, 
any injective module over C is complete. 

This theorem immediately implies that the closure of any C-submodule of t{F as well 
as that of any submodule of a complete nonsingular module is equal to its injective hull. 

A 

3.3. Canonical sheaf In this paragraph we shall present the closure R E  in the topology 
described above as a ring of global sections of a certain sheaf over the structure space of 
the extended centroid. Such a presentation is useful since it enables one to see clearly the 
function-theoretic intuition employed when studying a semiprime ring. It is worthwhile 
adding that in the case of a prime ring all these constructions degenerate and their essence 
and meaning is to reduce the process of studying semiprime rings to that of studying 
prime rings (i.e. stalks of a canonical sheaf). 

Roughly speaking, the ring of global sections of a sheaf is a set of all continuous 
functions on a topological space, the only difference being that at every point these 
functions assume values in their own (local) rings. Let us give the exact definitions. 

3.3.1. DEFINITION. Let there be given a topological space X, and for any open set U 
let there be given a ring (group or, more generally, an object of a certain fixed cate- 
gory) ~(U),  and let for any two open sets U C V there be given a homomorphism 

This system is called a presheaf of rings, provided the following conditions are met: 
(1) if U is empty, then ~(U)  is the zero ring; 
(2) p~ is the identity mapping; 
(3) for any open sets U C V C W we have pW _ v w - - PuPv �9 
Such a presheaf will be denoted by one letter, R. 

The simplest example of a presheaf is the presheaf of all functions on X with the 
values in a ring A. In this case ~(U)  consists of all functions on U with values in A, 
and for U C V the homomorphism pV is the restriction of the function determined on 
V to the subset U. 

In order to extend the intuition of this example to the case of any presheaf, the 
homomorphisms pV are called restriction homomorphisms. The elements of (the ring) 
~(U)  are called the sections of the presheaf ~ over U. Sections of ~ over X are called 
global. Thus, ~(U)  is a ring of sections of the presheaf ~ over U; ~ ( X )  is a ring of 
global sections. 

Returning to the example of the presheaf of all functions on X, let us assume the 
topological space X to be the union of open sets Us. Then any function on X is uniquely 
determined by its restrictions to the sets Us. Moreover, if on every Us a function f~ is 
given, such that the restrictions of f~ and f~ coincide on Us n U~, then there exists a 
function on X, such that every f~ is its restriction to U~. 

These properties can be formulated for any presheaf and they single out an extremely 
important class of presheaves. 

3.3.2. DEFINITION. A presheaf ~ on a topological space X is called a sheaf if for each 
open set U C X and every open cover U - U u s  the following conditions are met: 
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(1) i f  p u , x ( 8 1 )  - pUo~ (82) for s,,s2 E ~ ( U )  and all a ,  then s, - s2; 
(2) if s,~ E ~(U,~) are such that for any a, /3 the restrictions of s~ and s~ on U,~ N U~ 

coincide, then there exists an element s E ~ (U) ,  whose restriction to U,~ is equal to s~ 
for all a .  

Let us try to consider an arbitrary sheaf as a sheaf of functions on the space X. To 
this end it is necessary to determine the value of s(x) for the section s E ~ ( U )  at any 
point x E U. We have the elements s(V) - pUv(S ) for all open neighborhoods V of the 
point x which are contained in U. Thus it is natural to consider their 'limit' ,  and so we 
have to introduce the direct limit 

~ :  : lim ~(V)  

with respect to the system of homomorphisms 

+ 

This limit is called the stalk of the sheaf (or a presheaf) ~ at the point x. 
Thus, a stalk element at the point x is determined by any section over an open neigh- 

borhood of x. And two sections, u, v E ~ (U), define the same element of the stalk at x 
if their restrictions to some open neighborhood of x coincide. 

For any open set U ~ x this gives a natural homomorphism p~: ~ (U) --+ ~ ,  which 
maps a section to the stalk element determined by it. Thus we can define the value of a 
section s at the point x as pU (s). 

3.3.3. The construction. Let us now go over to constructing the canonical sheaf. Let 
C be a generalized centroid of a semiprime ring R. Let us denote by X the set of all its 
prime ideals but C. This set is called a spectrum of the ring C and is often denoted by 
Spec C. The elements of the spectrum are called points of the spectrum or simply points. 

In order to put a topology on X, it is necessary to define the operation of closure. For 
a set A ( X let us define the closure ft. as a set of all points containing the intersection 

N p .  

pEA 

The topology obtained in this way is called the spectral topology. 
In order to construct the sheaf over X,  it is useful to know the structure of open sets 

in X (they are also called domains). 
If e E E is a central idempotent, then by U(e) we denote a set of all points p, such 

that e ~ p. 
Allowing for the fact that the product e (1 - e) = 0 belongs to any prime ideal, we 

see any point of the spectrum contains either e or 1 - e ,  but not both simultaneously. 
Therefore, 

U(e) U U (1 - e) = X,  U(e) A U (1 - e) : 0 .  (15) 
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On the other hand, the closure of U(e) contains only points q containing the intersection 

N;-- N 
e~p 1 -eEp 

po 

The latter intersection contains the element 1 - e  and, hence, 1 - e  E q, which implies 
e ~ q, i.e. by definition, q E U(e). 

Now relations (15) show U(e) to be an open and closed set simultaneously. Such a 
set is called a clopen set. 

3.3.4. LEMMA. Each clopen subset of X has the form U(e) for suitable idempotent 
e E E .  

3.3.5. LEMMA. The sets U(e), e E E form a fundamental system of open neighborhoods 
of X,  i.e. any open set is presented as a union of sets of the type U(e). 

Lemma 3.3.4 shows the set of central idempotents to be in a one-to-one correspondence 
with the set of closed domains of X. One can easily prove that this correspondence 
preserves the lattice operations and order relation: 

U(c1c2) --- U(c1) n U(c2);  U(c1 -n t- c 2 -  c1c2) -- U(c1) U U(c2),  

U(el) c U(e2) ~ el ~ e2. (16) 

This circumstance allows one in a number of cases to identify central idempotents 
with closed domains and consider idempotents as objects consisting of points, which 
makes many considerations extremely vivid. The correspondence under discussion also 
preserves the exact upper bounds 

U 
O~ 

where on the right we have the closure of the union of the domains U(e~). 

3.3.6. THEOREM. The space X = SpecC is an extremely disconnected, compact and 
Hausdorff topological space. 

Recall that a topological space is called extremely disconnected if the closure of each 
open set is open (and of course closed). 

3.3.7. DEFINITION. Now we are completely ready to determine the canonical sheaf F = 
F(R).  Let U be an open set. By formula (15), its closure U is open and has the form 
U(e) for some central idempotent. Let us set 
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Since the inclusion W C_ U implies W c_ U, and this inclusion by formula (16) gives the 
inequality f <~ e for the corresponding idempotents U(f)  - W,  U(e) - U, then the 

A A 

homomorphism x --+ x f  acting from eRE  onto f R E  is defined, which will be viewed 
u 

as the restriction homomorphism p w. 
The validity of axioms (1)-(3) of a presheaf for/~ is absolutely obvious. 

3.3.8. THEOREM. The presheaf 1" determined above is a sheaf 

A 

So, we have achieved our goal: the ring R E  is presented as the ring of global sections 
of a sheaf 1". This sheaf is called the canonical sheaf of the ring R. 

This sheaf satisfies another important condition: any section can be extended to a global 
one (sheaves satisfying this condition are called flabby) and, moreover, the restriction 
homomorphisms are retractions, so that the ring of global sections naturally contains all 

A 

the rings of local sections e R E  c_ RE.  

3.3.9. DEFINITION. The support of a global section s, or more generally, the support of 

a subset S C_ R E  of global sections is defined as the difference 1 - f ,  where f is the 
largest central idempotent with S f  = 0. 

From the function point of view the support of s is a set of all points where the 
function s has nonzero values. 

This definition allows one to describe the stalks of the canonical sheaf. 

3.3.10. THEOREM. A section s belongs to the kernel of the natural homomorphism pp iff 

the support of the element s belongs to p or, which is equivalent, s E pRE.  The stalk 
1"p is a prime ring, isomorphic to the factor-ring 

A A A 

R E / R E N p R E .  

3.4. A metatheorem. The metatheorem is a theorem about theorems, which can be 
transferred from prime rings to semiprime ones using a canonical sheaf. In fact almost 
all logical theorems deal with classes of statements and theorems. Therefore our goal is 
a logical theorem which describes a possibly widest class of properties, which can be 
transferred from stalks of a canonical sheaf to a ring of global sections. Let us recall 
briefly the basic definitions of the language of elementary logic. 

3.4.1. DEFINITION. An n-ary predicate on a set A is a mapping P of the Cartesian power 
A n to a two-element set {T, F )  ( T ++ 'true', F ~ 'false') and an n-ary operation is a 
mapping f from A r~ to A. Predicates of the same name (i.e., those with one name, P, and 
the same arity, n) or operations of the same name can be defined on different sets. In this 
case we speak about the values of the same predicate, P (operation, f )  on different sets. 
A signature is a set g2 of names of predicates and operations put in correspondence with 
arities. An algebraic system of signature ~ is a set with given values of the predicates 
and operations from ~ of the corresponding arity. Sometimes both zero-ary operations 
and zero-ary predicates are considered. A zero-ary operation on set A is a fixed element 
of this set, while a zero-ary predicate is either true or false. 
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The predicates and operations from f2 defined on an algebraic system of this signature 
are called principal or basic. With their help one can construct new predicates: formula 
predicates. 

The simplest formula predicates are those given by atomic formulas 

P ( x , , . . . , x , . ) ,  x, = x 2 ,  F ( x , , . . . , x n ) = X n + , ,  (17) 

where P, F are basic predicates and functions. 

A formula predicate is given by a formula of the elementary language, i.e. it is 
'obtained' from the simplest formula predicates by employing logical connectives, 
&, V, --,,--+ and by quantification by 3, V of subject variables xi. 

Let us finally describe the class that is most important for us: that of Horn formulas. 
The simplest Horn formulas are the following ones: 

A ~ & A 2 & . . . & A  v ~ Ap+l; Ai; --,A~ v ~A2 V . - .  v --nAp, 

where the Ai are formulas of type (17). An arbitrary Horn formula is a quantification 
of a conjunction of simplest Horn formulas. The predicate defined by a Horn formula is 
called a Horn predicate. 

3.4.2. DEFINITION. A flabby sheaf ~ over an extremely disconnected space X is called 

correct if ~(U)  - ~(U)  for any domain U, i.e. the mappings p~ are isomorphisms. 

According to the construction the canonical sheaf/-' is correct. Let us now fix a correct 
sheaf ~ of algebraic systems of a signature f2 (the reader can view ~ as a sheaf of rings 
in an extended signature). 

3.4.3. DEFINITION. Let us call an n-ary predicate P a sheaf predicate provided its values 
are given on all rings of sections and on all stalks of ~ and the following conditions are 
met. 

(a) If P(Sl , .  �9 �9 gn) -- T for gi E Rt, then there exists a neighborhood W of the point 
t and preimages si E ~ (W) ,  such that p ( p W ( s l ) , . . . , p W ( s n ) )  -- T for every domain 
U C W .  

(b) If U - [,.J U,~ and S l , . . . ,  Sn C ~(U),  in which case P ( p ~  ( s l ) , . . . ,  p ~  (sn)) - T 
for all domains V~ C Us, then P ( s l , . . . ,  sn) --- T. 

The following statement shows that it is sheaf predicates that are of primary interest 
to us. 

3.4.4. PROPOSITION. Let P be a sheaf predicate, s l , . . . ,  sn be sections over a domain 
U. Then, if the set of points t E U, for which P (p t ( s l ) , . . .  ,pt(sn)) -- T is dense in U, 
then P ( s l , . . . ,  Sn) = T. In particular, if a certain theorem is given by a zero-ary sheaf 
predicate and is valid in all (or almost all) stalks, then it is also valid in the ring of 
global sections. 
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The proof can be directly obtained by first applying condition (a) to the stalks on 
which predicate P is true, followed by employing condition (b). 

3.4.5. METATHEOREM. Any Horn predicate is a sheaf predicate. In particular, if the for- 
mulation of  a theorem can be presented as a Horn formula, then the truth of  this theorem 
in almost all stalks of  the canonical sheaf implies its truth in the ring of  global sections 
o f  this sheaf 

The importance of this theorem is strengthened by the fact that in the class of prime 
rings every elementary formula is equivalent to a Horn one. Indeed, when constructing 
Horn formulas, it is only forbidden to use disjunctions, but in the class of prime rings 
f - 0 V 9 = 0 is equivalent to Vx f x 9  = 0. In more detail, it is necessary to reduce 
the quantorless part of the given formula to a conjunctive normal form, and then every 
subformula of the type 

f ~ 0 V f 2 ~ 0 V . . . V f k - 7 ( : 0 V g l - - O V " ' V g n = O  

should be replaced with the Horn formula 

V X l X 2 . . . X n - l ( f l  = O& ' ' '  &fn  -- 0 --4 glx lg2.  . . Z n - l g n  = 0). 

The following two facts are also useful. The first allows one to reduce theorems from 
the ring of global sections to theorems about the stalks and the second is a consequence 
of the compactness of the spectrum. 

3.4.6. PROPOSITION. Let P be a sheaf predicate, and Q be a strict sheaf predicate, and 
let us assume that the predicate P --~ Q is true on all algebraic systems (rings) of  
sections. Then this predicate is true on all the stalks as well. 

Recall that a predicate P is said to be strict sheaf if its values are given on all algebraic 
systems (rings) of sections and stalks of the sheaf ~, so that ~ remains a sheaf in the 
category of algebraic systems with the additional predicate P. 

3.4.7. PROPOSITION. Let P l , / 92 , . . . ,  P n , . . .  be a sequence of  m-ary Horn predicates, 
such that the implications Pn --+ Pn+l are true on certain global sections s l , . . . ,  sm 
of  a canonical sheaf F. Then, if for  every point p one of  the predicates Pi is true on 
Sl = p p ( s l ) , . . . ,  Sm = pp(Sm), then one of  the predicates Pi is true on S l , . . . ,  Sin. 

The following theorem concerning Martindale quotient rings can be easily proved with 
the help of the metatheorem. 

3.4.8. PROPOSITION. Let p be an arbitrary point of  the spectrum. Then the following 
inclusions are valid: 

r,(R) C G(Q)c G(R.)c (G(R))., r,(Q) c Q(r,(n)). 
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3.5. Galois theory. We start with an example, vividly illustrating variations in the basic 
notions of Galois theory when going over to a semiprime case. 

Let 

R=HF,~ 
oLE A 

be a direct product of isomorphic fields F~ ~ F and H be a finite group of automor- 
phisms of the field F. Let us define the action of H on the product R in a componentwise 
manner, f h ( a )  = (f(c~)) h, i.e. ( . . . ,  f i~, . . . )h = ( . . . ,  f h . . . ) .  On the other hand, on R 
one can naturally define the action of the direct product 

c - -  1-I 
c~EA 

of the groups Ha isomorphic to H: f g ( a )  - f ( a )  g('~), i.e. 

. . . .  . . . . .  ) = 

In this case the subrings of fixed elements for the group H and for the group G coincide 
and are isomorphic to the direct product of copies of F H. 

3.5.1. Conjugation modules. For an automorphism 9 c A ( R )  1 of a semiprime ring R 
the conjugation module is defined by the formula ~bg = {a E Q I Vx E R xa = ax g}. 
It can be proved that this module is a cyclic C-submodule ~Pg = qogC and that the ring 
Q has a direct decomposition Q = i (9) Q | f Q, where i (9), f are central idempotents, 
such that the action of the automorphism 9 on i (9) Q coincides with the conjugation by 
the invertible (in i ( 9 ) Q )  element qDg. Moreover, for any e ~< i (9 )  the automorphism 9 
is inner on eQ, which, in particular, implies that Ge = {9 E G ] i ( 9 )  >~ e) is a subgroup 
of the group G (for a given e). 

3.5.2. The algebra o f  a group of automorphisms G C_ ,A(R) is equal to the sum of all 
conjugation modules 

9GG 

It is clear that it is an algebra over the extended centroid C. 

3.5.3. Reduced finiteness. The most natural and direct transfer of this notion is as 
follows: the module B(G) is finitely generated over C and a factor-group G / G i n n  is 
finite. Such a definition, however, excludes from consideration in the above example the 
group G, which is the Galois closure of the finite group H. For this reason we have to 
pass to a "local" variation of this notion. 

1 For a semiprime ring R the group A(R) is defined by the formula A(R) = {9 E Aut Q(R) I 3I, J <~ R, 
annl~ I = annR J = O, J C Ig C R}, see 2.5.1 for prime rings. 
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A group G c_ ,A(R) is called reduced-finite if its algebra B(G) is a finitely generated 
C-module and sup(e I I G ' G e l  < c~} = 1. 

3.5.4. Closure of  a group. Returning to the starting example, we should remark that 
the action of every 9 E G on the factor F~ coincides with that of a certain h E H, which 
is c~-dependent. It is this peculiarity that results in the coincidence of the invariants of G 
and those of H. Under general conditions we, by analogy, come to the notion of a local 
belonging to a group: the automorphism 9 locally belongs to a group H, provided there 
exists a dense family of idempotents {e~ E C ] c~ E A}, such that the action of 9 on 
e~Q coincides with that of a certain hc~ E H, i.e. sup{e: 91eQ E Hie Q} = 1. 

A group G is called closed if any automorphism locally belonging to the group G lies 
in G. 

3.5.5. LEMMA. Any Galois group is closed. 

3.5.6. EXAMPLE. We are going to consider an example which illustrates the notion of the 
closure operation in the case of rings with finite prime dimension. Let 

Q - Q ~  o . . . |  

n 

where Qi ~ Q0 is a prime ring. 
If a group H acts on Q0, then on Q we have, first, the product H n -- H •  • H acting 

in a componentwise manner and, second, the group of permutations Sn, rearranging the 
summands 

(ql O "'" G qn) rr -- qTr-i(l) O "'" O q~r-I(n). 

Therefore, an action of the semidirect product G = H n c( Sn is defined on Q. It is 
obvious that G is a closed group. The inverse statement is also valid. 

3.5.7. LEMMA. Let a closed group G C_ Au t  Q act transitively on the components of  Q. 
In this case the rings Qi can be identified in such a way that G - H n cx Sn. 

It is obvious that in the preceding lemma the fixed ring QG is isomorphic to Q~,  
where the isomorphism is defined by a diagonal mapping q --+ q~ + . . .  + q~'~ with the 
help of identification isomorphisms c r l , . . . ,  crn. 

3.5.8. Noether groups (N-groups). This notion remains unchanged" a group G C A(R) 
is called an N-group provided every invertible element of its algebra B(G) determines an 
automorphism from G. It is easy to see now that any Galois group is a closed N-group. 

3.5.9. Maschke groups (M-groups). The definition is preserved: a reduced-finite group 
G is called an M-group provided its algebra is semiprime. 
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3.5.10. Regular groups. If an M-group H is given, then we can extend it to an N-group 
by adding all inner automorphisms corresponding to invertible elements from B(H).  The 
obtained group will have the same algebra B(G) = B(H)  and will, therefore, be reduced- 
finite, the fixed ring Qa _ QH remaining unchanged. We can now extend G to a closed 
group G by adding all the automorphisms locally belonging to G. In this case we also 

have Q C =  QH and B(G) - B(H),  but the group G can be not reduced-finite. 
An N-group G is called regular if it is a closure of an M-group. 
It can be proved that each closed N-subgroup of a regular group is a closure of a 

certain reduced-finite group with the same algebra. 

3.5.11. THEOREM. An automorphism h belongs to the Galois closure of an MN-group 
G iff h locally belongs to G, i.e. A (R C) - G. 

The proof of this theorem is based on the metatheorem. The canonical sheaf cannot be 
used here directly because the group acts nontrivially on the space Spec C and therefore 
there is no natural action of G on the stalks. Instead of the canonical sheaf one should 
consider the so-called invariant sheaf It is defined over the space of orbits S p e c C / G  
of the spectrum. If 7r is a map which takes a point p to its orbit/5 = {pg I 9 E G}, 
then any open set of Spec C / G  has the form 7r(V), where V is an open set of Spec C, 
which allows one to define rings of sections and restriction homomorphisms of the 

invariant sheaf respectively as F(Tr -~ (W)) and P~-l(W)-~-'(u) In this way we obtain a correct 

(see 3.4.2) sheaf as the space of orbits is extremely disconnected. Thus one can apply 
the metatheorem to the invariant sheaf. For this purpose the structure of stalks of the 
invariant sheaf is important. 

3.5.12. THEOREM. Almost all stalks of the invariant sheaf for a reduced-finite group G 
have a decomposition 

F.(p) = / ' 1  + F2 + . . .  + Fn, 

where the Fi are prime rings, isomorphic to the stalk Fp of the canonical sheaf and the 
group induced by the closure of G has the form H n o( Sn, (see Example 3.5.6) where 
H is a reduced finite group of automorphisms of the prime ring Fp. If G is respectively 
a Maschke, Noether or regular group then so is H. 

3.5.13. Galois subrings. Let G be a regular group of automorphisms of a semiprime 
ring R, and let S be an intermediate ring, R D S _D R C. 

It can be shown that the centralizer of S in the ring RE is contained in the algebra 
B(G) of the group G. This centralizer will be denoted by Z. 

Let us reformulate the conditions on an intermediate ring arising in the prime ring 
case in the semiprime ring situation. 

BM. Let e be an idempotent from B(G), such that se = ese for any s E S. Then there 
is an (idempotent) f E Z, such that e f  = f ,  f e  = e. 

SI. The C-algebra Z is generated by its invertible elements and if for an automorphism 
9 E G there is an element b E B(G), such that s b -  bs 9 for all s E S, then there is an 
invertible in e(b)Q element with the same property. Here e(b) is the support of e. 
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RC. If A is an essential ideal of S, and Ar C_ 5' for a certain r E R, then r E 5". 

3.5.14. THEOREM. Any intermediate Galois subring of an M-subgroup of the group G 
satisfies conditions BM, SI and RC. 

3.5.15. THEOREM. Let G be a regular group. Then any intermediate ring satisfying con- 
ditions BM, Sl and RC is a Galois subring of a regular subgroup of the group G. 

The proofs of these theorems are also based on the metatheorem for the invariant 
sheaf. 

3.5.16. EXTENSION THEOREM. Let G be a regular group of automorphisms of a semiprime 
ring R and let S t, Stt be intermediate Galois subrings of M-subgroups. If qo: S t -+ S t' 
is an isomorphism that is the identity on R C, and the ring S I satisfies condition SI for 
all mappings from qoG, then qa can be extended to an isomorphism from G. 

It is interesting to note that the proof of this theorem can be easily obtained as a 
corollary of the correspondence theorem. In this case one should consider the semiprime 
ring R = R @ R with the group G -  G 2 c< $2. Then S = {s | s ~~ s E 5"} will be an 
intermediate subring and one can apply Theorem 3.5.15. 

3.6. The topology considered in 3.2 was introduced in paper [Kh79] as a tool for the in- 
vestigation of derivations in semiprime rings. The metatheorem was discovered indepen- 
dently in three different forms by K.I. Beidar and A.V. Mikhalev [BM85], S. Burris and 
H. Werner [BW79], and V.A. Lyubetzky and E.I. Gordon [LG82, Ly86] at approximately 
the same time. The first approach was based on the notion of orthogonal completeness 
and was oriented to applications in ring theory. The second one was concerned with 
investigations of sheaves of algebraic systems independent of applications in ring theory. 
The last approach is based on nonstandard analysis. Within this framework a semiprime 
orthogonal complete ring (or a closed ring in the topology defined in 3.2) can be viewed 
as a nonstandard prime ring. The formulation of the metatheorem here is taken from the 
book [Kh91 ] where the background intuition of all three approaches is presented. In this 
book the Galois theory for semiprime rings is considered in detail from the modern point 
of view. 
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Introduction 

During the seventies a new branch of mathematics was born: the theory of 7)- 
modules. Roughly speaking it is an algebraic frame work in which systems of lin- 
ear partial differential equations can be studied. The theory grew rapidly, in partic- 
ular the study of modules with regular singularities got much attention and culmi- 
nated in the so-called Riemann-Hilbert correspondence (a generalization of Deligne's 
solution of Hilbert's 21st problem) ([Me l, Me2] and [KK]). Application of the the- 
ory to several parts of mathematics, [Bel, Be2, BeiBe, Brl, Br2, Br3, BrK, Sail, 
Sai2, Sai3], stimulated many people to study the theory. Some nice survey papers 
are [v.D, LeMe] and [Od]. Also several books on 7)-modules appeared [Bjl, Bo, 
P, Sch] and [Me3]. However the theory is not as algebraic as an algebraist would 
like, since at several places analysis and in particular micro-local analysis is used to 
obtain deep results (see, for example, [KO] and [KK]). One of the origins of the 
theory is the highly nontrivial fact that the characteristic variety of a 7)-module is 
involutive. This result was first proved in [SKK] by micro-local analysis. Later in 
1981 O. Gabber gave a purely algebraic proof of this important result [Ga]. His pa- 
per was the starting point of a purely algebraic study of 7)-modules: in fact it was 
Springer who, after reading Gabber's paper introduced the algebraic counter-part of 
the analytic microlocalization, the so-called algebraic microlocalization ([Sp]): let R 
be a filtered ring such that the associated graded ring grR is commutative and S 
a multiplicatively closed subset of R. Then it is not always possible to localize at 
S. However if a(S) is a multiplicatively closed set of grR (a denotes the princi- 
pal symbol map), then it is possible to lift the localization of grR at a(S) to a 
kind of localization of R at S. This result has been generalized by the author in 
[v.E1] to arbitrary filtered rings (i.e. grR need no longer be commutative) in or- 
der to generalize several of the results of the analytic 7)-module theory to a large 
class of filtered rings ([v.E2]). This chapter is an account on algebraic microlocaliza- 
tion and its application to the study of (holonomic) modules with regular singulari- 
ties. 

The efforts to generalize results from the 7)-module theory to filtered rings has revealed 
some new approach to filtered rings. This is exposed in Section 0 where we introduce 
two principles for studying filtered rings and their modules (we also refer to the papers 
[Gi] and [ABO] where a similar kind of approach is described). 

In Section 1 algebraic microlocalization is introduced and several of its proper- 
ties are given (universal property, the graded ring of microlocalization, flatness of 
microlocalization,...). In Section 2 we introduce holonomic R-modules, based on the 
involutiveness of the characteristic variety. Furthermore we define R-modules with reg- 
ular singularities and give several equivalent descriptions of this notion. One of them 
is the existence of a very good filtration, which makes the link with results obtained in 
[KK]. The main result, Theorem 2.6.1 gives a local-global description of regular sin- 
gularities in terms of the minimal prime components of the characteristic variety. This 
theorem should be considered as the algebraic analogue of Theorem 4.1 of Deligne in 
[D]. Finally in Section 3 we mention some other applications of algebraic microlocal- 
ization. 
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O. Preliminaries 

All rings are associative with identity. A module is always a left module, unless mentioned 
otherwise. 

0.1. Filtered rings and modules 

A ring R is called a filtered ring if there exists an ascending chain FR: 

�9 .. c F_IR c FoR c F~R c . . .  

of additive subgroups of R such that 1 E FoR and FnRFmR C Fn+mR for all n, m E Z. 
The chain F R  is called a filtration of R. Observe that FoR is a subring of R. A left 
R-module M is called a filtered module if there exists an ascending chain FM: 

�9 .. C F _ I M  c FoM c F l M  c . . .  

of additive subgroups of M such that Fn RFm M C Fn+m M for all n, m E Z. The chain 
F M  is called a filtration of M. Throughout this paper all filtrations considered will be 
exhaustive, i.e. 

U F n R =  R and U F n M  = M. 

For a filtered ring R one defines the so-called associated graded ring, denoted grR, by 

grR = ( ~ g r n R ,  where grnR = FnR/Fn-1R.  

The ring structure on grR is given by the formula 

(r + Fn- IR)  " (r' + Fm-IR)  = rr' + Fn+m-lR.  

We define the symbol map a: R --+ grR by 

a(r) =O i f r e ~ F n R ,  

a(r) = r + F n - l R  if r E FnR\Fn_IR.  

Similarly, if M is a filtered R-module, replacing R by M in the definitions above, we 
can define g r M  = ~]~ grnM where grnM = F n M / F n _ I M  and also the symbol map 
a: M --+ grM.  The formula 

+ F n _ l M ) ( m  + = r m  + F . + , _ I M  

equips g r M  with the structure of a graded 9rR-module. The importance of the associated 
graded ring, module and the symbol map a, comes from the following principle. 



Algebraic microlocalization and modules 817 

LIFTING PRINCIPLE. It is often possible to lift a property of the associated graded module 
(resp. ring) to the filtered module (resp. ring) via the symbol map a. 

EXAMPLE 0.1.1. Suppose 

 F.R= {0}. 

If grR has no zero-divisors, then R has no zero-divisors. 

PROOF. Let rr' = 0 for some r, r '  E R not both zero. Say r E F,~R\Fn_IR and 
r' E FmR\Fm-1R.  Then a(r)a(r')  = rr' + Fn+m-lR = O. So 9rR has zero-divisors, 
a contradiction. Q 

COROLLARY 0.1.2. The ring of differential operators with polynomial coefficients 

An = C [ x l , . . . , x n ,  a l , . . . , i~n] ,  

the n-th Weyl algebra, has no zero-divisors (since grAn ~- C [ x l , . . . ,  Xn, (1 , - . - ,  (n], a 
polynomial ring in 2n variables, where the filtration on An is the usual O-filtration, see 
[Bj 1 ], Chapter 3, for more details). 

EXAMPLE 0.1.3. Let F R  be complete and separated (see 0.2 for the definitions) and grR 
left noetherian. Then R is left noetherian. 

This is a special case of 

EXAMPLE 0.1.4. Let F R  be complete and M a filtered R-module with F M  separated 
(i.e. ~,~ FnM = {0}). If grM is a finitely generated grR-module, then M is a finitely 
generated R-module. More precisely, there exist a finite number of elements rni in M 
and vi E Z such that FnM = SFn- , , ,Rmi  (cf. [v.E1], Proposition 6.5). 

The type of filtrations described in Example 0.1.4 play a crucial role in the theory of 
filtered modules: 

DEFINITION 0.1.5. Let R be an arbitrary filtered ring and M a filtered R-module. A 
filtration F M  on M is called good if there exist a finite number of elements mi in M 
and elements vi E Z such that FnM -- ,UFn-v, Rmi for all n E Z. 

An R-module possesses a good filtration if and only if it is finitely generated over R. 
Furthermore, if F M  and F ' M  are two good filtrations on M, then one easily verifies 
that they are equivalent, i.e. 

DEFINITION 0.1.6. Let F M  and F ' M  be two arbitrary filtrations on a filtered R-module 
M. Then they are called equivalent if there exists an integer c E N such that 

Fn-cM C F~M C Fn+cM, 

for all n E Z. 
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0.2. The topology defined by a filtration 

Let R be a filtered ring with filtration F R  and M a filtered R-module with filtration 
F M .  On M we have an order function v: M --+ Z U { - o e }  defined by v(m) - - o e  if 
m E N FnM,  v(m)  = n if m E F n M \ F n - I M .  

This gives a nonarchimedean pseudo-norm on M (called the associated pseudo-norm) 
defined by Iml = 2 v(m). 

The topology induced on M by this pseudo-norm is called the topology defined by the 
filtration F M .  The filtration F M  is called discrete, resp. separable, resp. complete if the 
topology defined by F M  has the respectively mentioned properties. So more concretely, 
F M  is discrete if there exists an integer N such that FnM = 0 for all n < N, F M  
is separated if N F n M  = {0} and F M  is complete if F M  is separated and all Cauchy 
sequences in the FM-topology converge in M. Finally observe that F M  is separated if 
and only if ll is a norm on M. 

0.3. Strongly filtered rings 

DEFINITION 0.3.1. A filtered ring R with filtration F R  is called strongly filtered if there 
exists an element s E F i R \ F o R  invertible in R such that s -1 E F_1R. 

EXAMPLE 0.3.2. The localized polynomial ring Z[X, X -l] with the natural filtration de- 
fined by v ( X - n a )  = deg a -  n (a E Z[X], n E Z) is a strongly filtered ring; just take 
s = X .  

EXAMPLE 0.3.3. Let X be a complex analytic manifold and p E T*X\T~cX.  Then the 
ring Ep of germs of microlocal differential operators is a strongly filtered ring. ([Bj 1], 
Chapter 4, Theorem 3.5.) 

Filtrations on modules over strongly filtered rings are easy to describe. To see this let 
R be a strongly filtered ring. Then we have the following (easy to verify) formulas: 

FuR = snFoR = FoRs n for all n E Z. 

Furthermore, if M is a filtered R-module with filtration F M ,  then 

F n M  = snFoM = FnRFoM for all n E Z. 

So M = RFoM, since M = U F n M  and R = U Fn R. From these formulas we see that 
a filtration F M  on M is completely determined by the FoR-module FoM. Conversely, 
an arbitrary FoR-submodule Mo of M satisfying RMo -- M gives rise to a filtration 
F M  on M by putting F n M  := Fn RMo. Summarizing: we get a bijection .T" between the 
set of FoR-submodules Mo of M generating M, i.e. RMo = M and the set of filtrations 
of M, given by 

~: Mo ~ 9~(Mo) := (FnRMo)nez.  
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One easily verifies that restriction of .T" to the set of FoR-submodules of M of finite 
type gives a bijection with the good filtrations of M (see Definition 0.1.5). 

0.4. Strongly filtered rings associated to filtered rings 

The importance of strongly filtered rings comes from the fact that to every filtered ring one 
can associate a strongly filtered ring which can be used to reduce problems over arbitrary 
filtered rings to problems over strongly filtered rings (see the reduction principle below). 

Let R be an arbitrary filtered ring with filtration F R  and X an indeterminate. Consider 
the localized polynomial ring R x  := R[X, X -1] which becomes a filtered ring by putting 

F,~Rx = { S r i X i  l v(r~) + i <~ n for all i E Z}. 

One readily verifies that R x  is a strongly filtered ring and call it the strongly filtered 
ring associated to R. Similarly, if M is a filtered R-module with filtration F M  we can 
form M x  := M[X,  X -1] which is a filtered Rx-module with filtration 

FnMx = { Z m i X i  l v(mi) + i <~ n for all i E Z}. 

The associated strongly filtered ring plays a crucial role in describing and finding prop- 
erties of arbitrary filtered rings and modules. 

This is expressed in the following principle. 

REDUCTION PRINCIPLE. To find properties for arbitrary filtered rings (resp. modules over 
filtered rings) first find them for strongly filtered rings (resp. modules over strongly 
filtered rings) and then rewrite the result for the strongly filtered ring R x  (resp. for 
modules over R x )  in terms of the filtered ring R (resp. in terms of R-modules). 

Let us first illustrate the reduction principle with two simple examples 

EXAMPLE 0.4.1. Good filtrations. 
Suppose we only defined good filtrations for strongly filtered rings by the condition 

that FoM is a finitely generated FoR-module. According to the reduction principle the 
corresponding notion of a good filtration for modules over an arbitrary filtered ring R 
would be FoMx is a finitely generated FoRx-modules. Then rewriting this condition 
in terms of the filtration F M  of M would give us exactly the condition formulated in 
Definition 0.1.5. 

EXAMPLE 0.4.2. Equivalent filtrations. 
Suppose we only defined the notion of equivalent filtrations for strongly filtered rings 

by the condition that their induced topologies are the same. Then one readily verifies that 
this is equivalent to the existence of an integer c C N satisfying F_cM C F~M C FcM. 
According to the reduction principle the corresponding notion of equivalent filtrations 
on a module over an arbitrary filtered ring would be that F_~Mx c F~Mx C F~Mx 
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for some c E N. Rewriting this condition in terms of the filtrations F M  and F~M of M 
would give us exactly the condition formulated in Definition 0.1.6. 

REMARK. For an arbitrary filtered ring the condition that two filtrations are equivalent is 
stronger then asking that their topologies are the same. 

Now we give two more results obtained by using the reduction principle (these results 
will be very useful in the sequel, cf. Section 2). 

Let R be an arbitrary filtered ring and M an R-module with filtration F M .  Let M ~ 
be an R-submodule of M.  On M t we have the induced filtration defined by F n M  ~ = 
M / N F n M  and the quotient filtration defined by F n M / M  ~ = M / + F n M / M  ~. One 
readily verifies that if F M  is good on M the quotient filtration is good on M / M  ~. 
However in general the induced filtration of a good filtration need not be good. So we 
can ask 

QUESTION 1. Under which conditions on F R  good filtrations on M induces good filtra- 
tions on submodules M ~ of M? 

To solve this question we apply the reduction principle. So first assume that R is strongly 
filtered and FoM is a finitely generated FoR-module. Then Question 1 amounts to ask: 
under which conditions on F R  is the FoR-module M / N FoM a finitely generated FoR- 
module? 

A natural condition is to assume that FoR is a (left) noetherian ring, since then ob- 
viously M / n FoM is finitely generated over FoR. Now assume that R is an arbitrary 
filtered ring. Then according to the reduction principle we consider the condition" FoRx 
is a (left) noetherian ring. Indeed, if FoRx  is left noetherian then using the formula 
FnM~x = g~x N F n M x  we in particular have that FoM~x - Mix n FoMx,  so FoMtx 
is a finitely generated left FoRx-module and hence FoM ~ is good by Example 0.4.1. 

The ring FoRx = S F n R X  -n  = S, F n R T  n, where T = X - l ,  is a graded ring with 
the obvious T-grading_ It is called the Rees ring of R and denoted R. So the previous 
arguments show that R is left noetherian is a sufficient condition for Question 1. In a 
completely analogous way one can show that the condition R is left noetherian is also a 
sufficient condition for 

QUESTION 2. Under which conditions on F R  filtrations equivalent with good filtrations 
are good? 

So summarizing we have 
, - . . ,  

PROPOSITION 0.4.3. If  R is left noetherian then good filtrations induces good filtrations 
on submodules and filtrations equivalent with good filtrations are good. 

REMARK 0.4.4. In [ABO, LiO] and [Lil] an extensive study is made of filtered rings 
and their interplay with both the Rees ring and the associated graded ring (observe 
that g r R  ~_ S F n R X - n / S F n _ I R X  -n  = F o R x / F - 1 R x  = 9roRx) .  In particular 
Proposition 0.4.3 was obtained in [LiO], Proposition 2.1. 
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Using Proposition 0.4.3 we get a nice correspondence between the good filtrations on 
M and the good filtrations on Mx: if F M  is a filtration on M let 9rx(FM) denote 
the filtration F. M x  defined above on Mx.  Conversely, if F denotes a filtration on 
M x  G(F) denotes the filtration on M defined by FnG(F) = M N Fn. Observe that 
G U x ( F M )  = F M  and that F M  is good on M if and only if 3rx(FM) is good on 
M x  (see Example 0.4.1). For the applications in Section 2 we need 

PROPOSITION 0.4.5. Let R be left noetherian and M a finitely generated left R-module. 
If F - (Fn)neZ is a good filtration on M x  then G(F) is a good filtration on M. 

PROOF. Choose a good filtration F M  on M. By Proposition 0.4.3 it suffices to prove that 
G(F) is equivalent with FM. Since 3rx(FM) is good on M x  there exists an integer 
c E N such that F,~-cMx C Fn C Fn+cMx, for all n E Z. 

Since FnMx M M = FnM for all n E Z, we get Fn-cM C FnG(F) C Fn+~M for 
all n E Z, i.e. G(F) is equivalent with FM,  as desired. [21 

I. Algebraic microlocalization 

1.1. Introduction 

Let R be any ring (containing 1) and 5' C R a multiplicatively closed subset of R. 
Then one can not always form the left ring of fractions. This is only possible if 5' is 
a left Ore set 1 (cf. [Ste]). However, if R is a filtered ring with filtration F R  and S is 
a multiplicatively closed subset of R such that (r(S') is an Ore set in 9rR (i.e. we can 
localize at the graded level), then it turns out that there exist a filtered ring, denoted 
Es(R)  and called the left algebraic microlocalization of R with respect to S, and a 
filtered morphism qa: R --+ Es(R) such that each element qo(s), s E 5' is invertible 
in Es(R).  So roughly speaking, we can lift the localization at the graded level to a 
microlocalization at the ring level (the lifting principle!). 

Algebraic microlocalization was introduced by T.A. Springer in his seminar on 7)- 
modules in the autumn of 1982. His construction assumed that 9rR was commutative 
([Sp]). Other constructions of microlocalizations using the assumption that 9rR is com- 
mutative, where given in [La] and [Gi]. In Iv.E1] the construction of Springer was 
extended to the general case, i.e. without any condition on the filtered ring R. More 
constructions of algebraic microlocalizations where given in [WK] and [ABO]. This last 
construction generalizes ideas of [Gi]. The results of [v.E1] where used in [v.E2] to de- 
velop a purely algebraic theory of modules with regular singularities over a large class of 
filtered rings (see Section 2 for details), including the rings of differential and micro-local 
differential operators considered in [KO, KK] and [SKK]. 

1.2. Definition of algebraic microlocalization and some properties 

In the remainder of Section 1 we assume: 

1 A multiplication subset 5' is an associative ring R is called a left Ore set if for all s E S, r E R then exist 
s ~ES, r ~ ERsuchtha ts~r=r  ~s. 
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R is a filtered ring with filtration FR, S a multiplicatively closed subset of R such that 
tr(S) is a multiplicatively closed subset of 9rR with 0 ~g a(S) and satisfying the (left) 
Ore conditions. Furthermore M denotes a filtered (left) R-module with filtration M. 

THEOREM 1.2.1 ([v.E1], Theorems I and II). There exist Es(R), resp. Es(M), a com- 
plete separated filtered ring, resp. a complete separated filtered Es(R)-module, and a 
canonical morphism of filtered rings qoR: R --+ Es(R) satisfying qoR(s) is invertible in 
Es(R)  for all s E S and ~R(8) -1 E F-nEs(R)  if a(s) E grnR, resp. a morphism of fil- 
tered R-modules r M ~ Es(M),  having the following universal property: for every 
filtered morphism hR: R --+ R', resp. for every filtered morphism of filtered R-modules 
hM: M --+ M', such that FR', resp. FM', is complete and separated and such that 
for every s E S hR(s) is invertible in R' with hR(s) -1 E F-nR' if a(s) E grnR, there 
exist a unique morphism of filtered rings ,'YR: Es(R) -+ R' satisfying P(R o r = hR, 
resp. a unique morphism of R-modules P(M: Es(M)  --+ M' satisfying 2(M OCpM = hM. 

The ring Es(R) resp. the module Es(M)  is called the left algebraic microlocalization of 
R resp. M with respect to S. One easily verifies that the properties stated in the theorem 
characterize the algebraic microlocalizations with respect to S. 

REMARK. The module Es(M)  depends on the filtration FM. So it would be better to 
write Es(M, FM)  instead. However if no confusion is possible we write Es(M).  

To get a more concrete description of microlocalizations and their filtrations, we list the 
following properties ([v.E 1 ]): 

1.2.2. The norm on Es(M)  defined by the filtration on Es(M)  satisfies 

II~R(*)-'~M(m)II-----I*l-'lmls, for all s c S, m c M, 

where [Is  denotes the localized pseudo-norm on M (cf. [v.E1]) defined by 

Imls : inf Ipl-l lpml 
pES 

(it is shown in [v.E1], Proposition 3.2, that Ismls = Islslmls and Isis = Isl for all 
m E M and all s E S). 

1.2.3. From 1.2.2 we can describe the kernel of qOM: M --+ Es(M): 

~M(m) = 0, if and only if II~M(m)ll--0 if and only if inf Ipl-'lpml = o. 
pES 

1.2.4. The elements cpR(s)-' qoM(m) form a dense subset in Es(M) with respect to the 
II II-topology. 
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1.3. Examples 

A 

1 ~ Let S be a left Ore set in R. Then Es(R)  "" S -1 R s, where As denotes the completion 
of S - 1 R  with respect to the following pseudo-norm on S -1R: Is-~rls = Is1-1 Iris, all 
r E R, s E S where I Is is as in 1.2.2. (The proof follows readily from the universal 
property of microlocalization. See also [ABO], Remark 3.11.3.) 

A 

2 ~ Completion. Taking S = {1} in 1 ~ we get E{~}(R) ~_ R (the FR-completion 
of R). 

3 ~ Noncomrnutative localization. If S is a left Ore set of R and F R  is trivial (i.e. 
FnR = R for all n ~> 0 and F,~R = 0 for all n < 0) then Es(R)  = S -1R  (this follows 
from 1 ~ by observing that the filtration on S -1R is trivial and hence complete). 

1.4. More properties of microlocalizations 

PROPOSITION 1.4.1 ([v.E1 ], Proposition 5.24). There exists an isomorphism CR of graded 
rings from a ( S ) - l g r R  to grEs(R) defined by 

for all a(s) -1 a(r) E (a(S) -1 grR)(n). 
More generally: there exists an isomorphism CM of graded a (S) - l  grR-modules from 

a ( S ) - l g r M  to grEs(M)  defined by 

CM(O' (8 ) - lo ' (m) )  -- qPR(8)-lqpM(m) q- F n - I E s ( M ) ,  

for all or(s) -1 a(m) E (a(S) - lgrM)(n) .  

An immediate consequence of this proposition and the Examples 0.1.3 and 0.1.4 is 

COROLLARY 1.4.2. 1) If grR is left noetherian, then grEs(R)  is left noetherian. 
2) If grM is a finitely generated grR-module, then grEs(M)  is a finitely generated 

grEs(R)-module. 
3) If F M  is good on M, then F E z ( M )  is good on Es(M).  

PROPOSITION 1.4.3 ([ABO], Corollary 3.20). Let R be left noetherian. Then 
1) The functor Es(R)| strict maps and is exact on R-modules. 
2) If F M  is good, then Es(R)  | M "~ Es(M),  as filtered R-modules. 

REMARK 1.4.4. If F M  and F ' M  are equivalent filtrations on M, then Es(M,  F M)  - 
E s ( M , F ' M )  (Iv.E1], Proposition 6.3). Consequently if M is an R-module of finite 
type we can take any good filtration on it (since they are all equivalent) and apply 
Proposition 1.4.3 to the filtered module obtained in this way, to get an isomorphism of 
R-modules: 

Es(R)  | M "~ Es(M) .  



824 A. van den Essen 

1.5. Algebraic microlocalization as a completion of a localization 

Finally we mention a result (Corollary 1.5.3 below) obtained in [WK] and [ABO] which 
shows that in many practical cases microlocalization is just a suitable completion of a 
localization at some Ore set of R, i.e. the example 1 o in 1.3 is almost always the general 
case. 

We say that the filtration F R  satisfies the (left) comparison condition if for any finitely 
generated (left) ideal I in R, say 

I = ~ Rrj  
j= l  

there exists an integer c such that 

FnR N I C ~ Fn+crj, 
3=1 

for all n E Z. 

Let ,5' be as stated in the beginning of Section 1. Since 0 ~ a(S)  we get a(s)cr(s') - 
a(ss ')  for all s, s' E S ([v.E1], Corollary 1.11i)). Then we have the following beautiful 
example of the lifting principle 

PROPOSITION 1.5.1 ([WK], Proposition 17). If  R satisfies the left comparison condition 
and S = o - 1  (o- (S) )  (i.e. S is saturated) then S is a left Ore set in R. 

LEMMA 1.5.2. Put ~sat -- O'-1 ( i f (S ) ) .  Then E s ( R )  = Es,  a, (R). 

PROOF. By the universal property it suffices to prove that cpn(_s) is invertible in Es(R)  
for every _s E Ssat. Write _S = ~sat. So  let _s E _S. Since a(_s) = a(s) for some s E S, 
say v(s) = n, we have that _s -  s E Fn_lR.  Hence qon(s_) - qon(s) E Fn- IEs (R) .  
Since v(qoR(s) - I )  = - n  we get z "= qon(s)-lqOR(s_)- 1 E F-1Es (R) .  It is well 
known that the completeness of E s ( R )  implies that each element of the form 1 + z, 
with z E F_IEa(R)  is invertible in Es(R) .  So qon(s)-l~R(_s) is invertible in Es(R) ,  
so cpR(_s) is invertible in Es(R) ,  implying the lemma. O 

Now combining the example 1~ of 1.3 with Proposition 1.5.1 and Lemma 1.5.2 we 
obtain 

COROLLARY 1.5.3. If  R satisfies the left comparison condition, then for any multiplica- 
tively closed subset S of R (as in the introduction of  Section 1) 

Ssat 
E s ( R )  = S;a,' R , 

i.e. microlocalization is just a suitable completion at some Ore set of R. 
N 

REMARK 1.5.4. This Corollary was obtained in [ABO] under the assumption that R is left 
noetherian. However the condition R is left noetherian implies the comparison condition 
but is not equivalent with it (see [Lil], Theorem 3.5.4 and 3.6(D)). 
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2. Modules with regular singularities over filtered rings 

In this section we develop an algebraic theory of modules with regular singularities for a 
large class of filtered rings, including the rings of micro-local differential operators and 
differential operators over the formal and convergent power series in several variables 
over C. Modules with regular singularities will be introduced in steps. First we define 
regular singularities for strongly filtered rings and then we deduce the definition for the 
general case by using the reduction principle. 

In this section we assume: R is a filtered ring with filtration F R  such that 9rR is a 
commutative ring. 

2.0. The characteristic ideal 

Let M be a finitely generated filtered R-module with filtration F -- F M .  Let IF(M)  
denote the annihilator of the 9rR-module 9 r M  and let Jg  be the radical of IF. Suppose 
that F' is any filtration on M equivalent with F,  then one can show that JF -- JF' 
(see [Ga]). Consequently if F is a good filtration on M then JF does not depend on the 
choice of the good filtration (since all good filtrations are equivalent). We therefore may 
denote this ideal by J ( M ) :  it is called the characteristic ideal of M.  

2.1. Dl-modules with regular singularities 

To motivate Definition 2.2.1 below we first recall the classical definition of a Dl-module 
with regular singularities, also called a Fuchsian Dl-module (cf. [Ma]), where D1 is 
the ring of differential operators over the convergent power series in one variable t. So 
D1 = O [ ~ ]  w h e r e O = C { t } a n d ~ =  d , ~ ' .  

An ordinary differential equation is called Fuchsian or an equation with regular sin- 
gularities at 0 if it is of the form 

((ta) r + a t -1  (tO) r - '  + " "  + ao)y = O, 

for some r E N and ai E O. 
(2.1.1) 

Let M be a left Dl-module. Then, following [Ma], M is called a Fuchsian Dl-module 
or a Dl-module with regular singularities if every m E M satisfies an equation of the 
form (2.1.1). One easily verifies that it is equivalent to say that for each m E M the 
O-module 

t:X) 

i=0 

is finitely generated. 
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Assume now that M is a finitely generated (left) Dl-module, say 

m 

q 

Z Dlmj .  
j = l  

Let 

q oo 

Mo = ~ Z O(ta)imJ" 
j = l  i=0  

Then one readily verifies that 791Mo = M and tOMo C Mo. Furthermore, if M has 
regular singularities then M0 is a finitely generated O-module. So if M has regular 
singularities it contains an O-submodule of finite type M0 which generates M as a D- 
module and which is stable under the action of tO. It is not difficult to prove that the 
converse also holds. The condition tOMo C Mo can be expressed in the following way: 
put 

,.7" = {T E Derc O I r(0t)  c Ot}. 

Then 3" = OtO. So tOMo C Mo if and only if 3"Mo C Mo. Summing up 

PROPOSITION 2.1.2. Let M be a finitely generated left Dl-module. Then M has regular 
singularities if and only if their exists an O-submodule Mo of M of finite type such that 
DMo = M and f f  Mo C Mo. 

2.2. Modules with regular singularities over strongly filtered rings 

Let X be a complex analytic manifold and E the sheaf of micro-local differential op- 
erators on X. In [KO] and [KK] E-modules with regular singularities were introduced 
and extensively studied. If p E T*X\T~cX then Ep is a strongly filtered ring (Example 
0.3.3). An Ep-module of finite type M is said to have regular singularities along J(M) 
if there exists a finitely generated FoEp-submodule Mo of M generating M as a left 
FoEp-module and which is stable under the action of the elements P E F1Ep such that 
O" 1 (P) vanishes on V ( J ( M ) ) ,  the characteristic variety of M. 

Now let R be a strongly filtered ring and M a finitely generated left R-module. 
Generalizing the discussion above we put 

,.7 = i f (M)  = {T E FI R ] O" 1 (T)  E J (M)} .  

DEFINITION 2.2.1. M has regular singularities along J(M)  (abbreviated R.S) if and only 
if there exists a finitely generated FoR-submodule Mo of M such that RMo = M and 
3"Mo c Mo. 
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2.3. Modules with regular singularities over filtered rings 

Now let again R be an arbitrary filtered ring with grR commutative, We.use the reduction 
principle to find the definition of R-modules with regular singularities. Therefore we need 
to rewrite "Mx  is an Rx-module  with regular singularities along J ( M x ) "  in terms of 
the R-module M. The result is 

PROPOSITION 2.3.1. Suppose R is left noetherian. Then M x  is an Rx-module with reg- 
ular singularities along J ( M x )  if and only if M possesses a very good filtration, i.e. a 
good filtration such that Ann9rM is a radical ideal i.e. Ann9rM = J(M).  

PROOF. i) Suppose M x  is an Rx-module with R.S. So there exists an FoRx-submodule 
of finite type M0 of M x  generating M x  which is stable under f f (Mx) .  So as observed 
in 0.3 the filtration 9V(M0) is good on M x  and hence by Proposition 0.4.5 the filtration 
G := G(jr(Mo)) is good on M. We claim that this filtration is very good. Therefore 
let a(r) E J ( M ) A g r k R  and m E FnG, i.e. m E M f q F n R x M o .  We must show 
that rm E 17n+r-lG, i.e. we must show that rm E Fn+r-lRzMo.  Obviously we 
may assume v(r) = k. Now observe that a(r) E J (M)  C J (Mx) .  So X - ( k - 1 ) r  E 
f f (Mx) .  Consequently X-(k-1)rMo C Mo. Finally since X - n m  E Mo we get rm E 
xn+k-IMo C Fn+k-IRxMo, as desired. 

ii) Conversely, let F M  be a very good filtration on M. Then F M x  is a good filtration 
on Mx.  So it remains to show that A n n g r M z  is a radical ideal. Therefore we first 

observe that 9 r R x  = grR[-X,-R -1] the external homogenization of 9rR (see [NO]), 
where X denotes the class of X in grRx.  Then one easily verifies that 

A n n g r M x  - g r R ~ , - X - 1 ] A n n g r M  

and this is a radical ideal in 9rRx  since Ann9rM is a radical ideal in 9rR ( F M  is 
very good). [:3 

DEFINITION 2.3.2. Let M be a finitely generated left R-module. Then M has regular 
singularities along J (M)  (abbreviated M has R.S) if M possesses a very good filtration. 

REMARK 2.3.3. It is not difficult to show that in case R is a strongly filtered ring, Defi- 
nition 2.2.1 coincides with Definition 2.3.2 ([v.E2], Proposition 5.4). More precisely an 
FoR-submodule M0 of M satisfies the conditions of Definition 2.2.1 if and only if the 
corresponding filtration .T'(M0) on M is very good. 

An almost immediate consequence of the definition is that R.S is preserved under mi- 
crolocalizations: let S be a multiplicatively closed set such that a(S) is a multiplicatively 
closed subset of 9rR not containing 0. Then 

PROPOSITION 2.3.4. If M is an R-module with R.S, then E s ( M )  is an Es(R)-module 
with R.S. 

PROOF. Let F M  be a very good filtration on M. Then F E s ( M )  is a good filtration on 
E s ( M )  (Corollary 1.4.2). So J (Es (M) )  = r (Ann9rEs(M))  = r ( a ( S ) - l A n n 9 r M )  
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(by Proposition 1.4.1) = a ( S ) - l r ( A n n g r M )  = a ( S ) - l A n n g r M  ( F M  is very good) 
= A n n g r E s ( M )  (by Proposition 1.4.1). So F E s M  is very good, as desired. [:] 

2.4. The characteristic ideal is involutive 

Since grR is commutative we have [r, r'] := r r ' - r ' r  E Fn+m-lR for all r E FuR and 
r' E FmR. This enables us to equip grR with the structure of a Lie-ring by putting 

{r + Fn- lR ,  r' + Fm- lR}  "= [r,r'] + Fn+m-2R. 

So for every n, m E Z we get a Z-bilinear map {, }: grnR x grm R ~ grn+mR which 
can be extended to a Z-bilinear map {, }: grR x grR --~ grR, called the Poisson-product. 
In fact {, } is a bi-derivation, i.e. it is a derivation in the first variable if the second is 
kept fixed (the same holds for the second variable). An ideal I C grR is called involutive 
if {r, r'} E I for all r, r ~ E I. 

EXAMPLE 2.4.1. If I is any ideal in 9rR, then /2 (or more general I n for n ~> 2) 
is involutive since {ab, cd} = a{b, c}d + b{a, c}d + a{b, d}c + b{a, d}c E 12 for all 
a, b, c, d E I. 

EXAMPLE 2.4.2. Let M be a finitely generated R-module with good filtration FM.  Then 
one easily verifies that A n n g r M  is an involutive ideal. 

EXAMPLE 2.4.3. The radical of an involutive ideal is in general not involutive. For ex- 
ample take R = C[x, i~] the first Weyl algebra with the usual i~-filtration. Then I - (x, ~) 
is not an involutive ideal in C[x, ( ] (=  9rR). So by Example 2.4.1, 12 is an involutive 
ideal whose radical is not involutive. 

The more surprising is the following result 

THEOREM 2.4.4 ([Ga]). If grR is a noetherian Q-algebra, then J (M)  is involutive. 

REMARK 2.4.5. Suppose R is a strongly filtered ring. Using the special element s it is not 
difficult to verify that J ( M )  is involutive if and only if i f ( M )  (see 2.2) is a Lie-algebra. 

2.5. Holonomic R-modules 

In this section we want to introduce holonomic R-modules for a large class of filtered 
rings R. Therefore we first consider the classical case that R = Dn, the ring of differential 
operators over the convergent power series over C. Let 27* be the set of involutive prime 
ideals of gr:Dn. Then it is well known that the height of each element of Z* is <~ n 
and that sup htp, p E 27", equals n. 2 A :Dn-module M of finite type is called holonomic 

2 The height of a prime ideal p is a commutative ring A is the largest number h such that there exists a chain 
of different prime ideals Po C Pl C ... C Ph = P; i.e. ht(p) = dim(Ap). 
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if the minimal prime components of J ( M ) ,  which are all involutive by Theorem 2.4.4 
have the maximal height n. 

Let now R be a filtered ring satisfying the following conditions 
a) grR is a commutative noetherian Q-algebra. 
b) all good filtrations are separable. 
Furthermore we put 27 (resp. 27*) the set of all involutive (resp. homogeneous involu- 

tive) prime ideals of grR and vR = sup htp, p E 27 (resp./~R = sup htp, p E 27*). 

DEFINITION 2.5.1. A finitely generated R-module M ~ 0 is called holonomic if htp - 
/zR for all minimal prime components of J(M).  Also M - 0 is called holonomic. 

REMARK 2.5.2. Condition b) implies that for any finitely generated (left) R-module M 
with good filtration FM,  grM = 0 if and only if M = 0 and hence that J(M)  ~ grR. 
From condition a) we conclude that J(M)  is involutive and hence so are all its minimal 
prime components. In particular Z* is not empty since for any finitely R-module M ~ 0 
the minimal prime components of J(M)  belong to Z*. 

In order to have the following proposition we put one more condition on R: 
c) good filtrations induces good filtrations on submodules. 

PROPOSITION 2.5.3. Let 0 --+ M1 -+ M -+ M2 --+ 0 be an exact sequence of R-modules 
of finite type. Then M is holonomic if and only if M1 and M2 are holonomic. 

PROOF. Let F M  be a good filtration on M.  Then the quotient filtration is good on 3//2 
and the induced filtration is good on M1 (by c)). It follows that J(M)  - J(M1)NJ(M2),  
which implies the proposition. D 

REMARK 2.5.4. A filtered ring such that grR is left noetherian, good filtrations induces 
good filtrations on submodules and good filtrations are separated, is called a Zariskian 
ring and F R  a Zariskian filtration ([Lil], Definition 3.5.5, or [LiO], Theorem 3.3). So 
the conditions a), b), c) above imply that R is a Zariskian ring. It is proved in [Lil], 

N 

Theorem 3.5.4, or [LiO], Theorem 3.3, that R is a Zariskian ring if and only if R is left 
noetherian and F_IR C J(FoR), where J(FoR) denotes the Jacobson radical of FoR. 
A complete filtered ring is an example of a Zariskian ring, so in particular all discrete 
rings and all algebraic microlocalizations are examples of Zariskian rings. For more 
details on Zariskian rings the reader is referred to [LiO] and [Lil]. The last reference is 
an enormous source of facts concerning Zariskian rings. 

In order to be able to use the reduction principle we need that M is a holonomic 
R-module if and only if M x  is a holonomic Rx-module.  (observe that R x  satisfies 
the conditions a) and b): a) is obvious. To see b) take any good filtration on M.  The 
corresponding filtration on M x  is good and separated. Since any good filtration on M x  
is equivalent to this good and separated filtration, condition b) is satisfied.) 

PROPOSITION 2.5.5 ([v.E2], Corollary 6.10 and Proposition 6.11). There is equivalence 
between 
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1) M is a holonomic R-module if and only if M x  is a holonomic Rx-module. 
2) #R = uR. 

Therefore we put on R the condition 

d) #R = UR. 

R E M A R K  2.5.6. It is shown in [v.E2], w that condition d) is satisfied if R = D(B), the 
ring of differential operators with the usual filtration when B is either 

i) the ring On of formal or convergent power series over a field of characteristic 
zero (a complete field in the convergent case) or 

ii) A(V) the coordinate ring of an irreducible nonsingular affine variety of dimen- 

sion n. 

It is shown that #Z~(B) = l I D ( B )  - -  91 dim D(B) = n. Furthermore it is proved that the 
notion of a holonomic D(B)-module as defined above, coincides with the one defined 
in the literature, i.e. Ext~(B)(M, D(B)) = 0 for all v r n. 

2.6. A local-global theorem for modules with regular singularities 

From now on (unless mentioned otherwise) we assume: R is a filtered ring satisfying the 
conditions a), b), c) and d) above. 

Let p be a prime ideal of grR. Put Sp : {r E R la(r ) ~ p}. Then Sp (resp. O'(Sp))is 
a multiplicatively closed subset of R (resp. grR) and since 9rR is commutative a(Sp) 
satisfies the Ore conditions. Furthermore 0 ~ a(Sp). So we can define Ep(R) := Esp (R) 
and Ep(M, FM) := Esp(M, FM) for any filtered R-module M with filtration FM. 
If F M  is good on M we write Ep(M) instead of Ep(M, FM) and by Remark 1.4.4 
and Remark 2.5.4 we have Ep(M) ~_ Ep(R)| M. Now we are able to formulate the 
main result of this paper concerning modules with regular singularities (which should be 
considered as the micro-local analogue of Deligne's Theorem 4.1 in [D]). 

THEOREM 2.6.1 ([v.E2], Theorem 7.3). Let M be a holonomic R-module. Then there is 
equivalence between 

1) M is an R-module with R.S. 
2) Ep(M) is an Ep(R)-module with R.S for every prime ideal p of 9rR. 
3) Ep(M) is an Ep(R)-module with R.S for every minimal prime component p of 

J(M). 

PROOF (Sketch). 1) ~ 2) follows from Proposition 2.3.4. 2) --~ 3) is obvious. So it 
remains to prove 3) ~ 1). By using results like M has R.S if and only if NIx has 
R.S, Ep(M) has R.S if and only if Ep(M)x has R.S, and Proposition 2.5.5 and some 
technical lemmas, we can reduce the proof of this theorem to the case that R is a strongly 
filtered ring (cf. [v.E2], w for details or [v.E4]). The remainder of Section 2 is devoted 
to the proof of this theorem in the strongly filtered ring case. 

PROPOSITION 2.6.2. Let M be a finitely generated (left) R-module. Then Ep(M) r 0 if 
and only if p D J (M). 
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PROOF. Ep(M) = 0 if and only if grEp(M) = 0 (since FEp(M) is separated) if and 
only if a(Sp) - lgrM = 0 (Proposition 1.4.1) if and only if a(Sp) n AnngrM ~ 0 if 
and only if p 75 J(M).  [~ 

REMARK 2.6.3. This proposition is the algebraic analogue of the well-known fact that 
the characteristic variety of a coherent sheave of 79 modules .M equals the support of 
the sheaf of E-modules E |  .M. 

2.7. An important involutiveness result for strongly filtered rings 

Let R be a strongly filtered ring with special element s E FiR\FoR, invertible in 
R and with s -1 c F_IR. On 9rR we have defined the Poisson product. Since 
9rR ~ 9roR[X,X -1] ([v.E2], Proposition 4.3) all crucial information of 9rR is al- 
ready contained in 9roR = FoR/F_IR. Therefore we bring the Poisson product, which 
we have on 9rR, over to 9roR, by putting 

{r0 + F_,R, r' o + F_,R} : -  s[ro, r'o] + F_,R. 

One checks again that this Poisson product on 9roR is a bi-derivation. An ideal I in 
9roR is called involutive if {a, b} E I for all a, b in / .  The following lemma is not 
difficult to verify 

LEMMA 2.7.1. Let Po be a prime ideal of 9roR. Put p = grRpo. 
i) p is a homogeneous prime ideal of 9rR. 

ii) p is involutive in 9rR if and only if po is involutive in 9roR. 
([v.E2], Proposition 4.3, Proposition 9.9 and Proposition 4.7). 

As before we assume that R satisfies the conditions a) and c). We don't need d) for 
Theorem 2.7.2 below. Since 9rR = ~ 9rnR is noetherian it follows easily that 9roR is 
noetherian and furthermore that R and FoR are noetherian ([v.E2], Corollary 4.5). Let 
M be a finitely generated left R-module and N an FoR submodule of M.  In the sequel 
we will need a criterion to decide if N is a finitely generated FoR-module. Therefore 
choose a good filtration F M  on M.  So FoM is a finitely generated FoR-module (by 
0.3) and since FnM = snFoM it follows that each FnM is finitely generated over FoR. 
Since FoR is noetherian and M = U FnM we therefore get: 

N is finitely generated over FoR if and only if N C F,~oM for some no if and only if 

Q(n, N) "-- FnM N N/Fn_I M M N = O 

for all n >~ no. Observe that 8-1(FnM f3 N) C Fn- IM f-)N, so Q(n,N)  is a 9roR = 
FoR/F_lR-module. It is straightforward to prove that the left multiplication by s -1 
induces a 9foR linear map from Q(n + 1,U)  into Q(n,U).  So if we put I(n) = 
Anng~o(n)Q(n,U ) and J(n) = r(I(n)) then we get ascending chains I(1) C I(2) C 
�9 .. C 9foR and J(1) c J(2) C ... c 9roR. Since 9roR is noetherian there exists an 
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integer n0 ~> 0 such that l(n) = 1(no) for all n ~> no and hence J(n) = J(no) for all 
n ~> n0. So J(no) -- [.J J(n). We denote this ideal in 9roR by J.  

THEOREM 2.7.2. J is an involutive ideal in groR. 

This result was presented by O. Gabber during the Luminy Congress on D-modules, July 
1983 (see [Bj2] for a proof). 

2.8. A local-global finiteness result for modules over strongly filtered rings 

The notations are the same as in 2.7. So N is an FoR-submodule of M, which is a 
finitely generated R-module with a good filtration F M  and R is a strongly filtered 
ring satisfying a), b) and c). For each prime ideal p of 9rR we define N(p) to be the 
FoEp(R)-submodule of Ev(M ) generated by the elements qOp(n), with n E N and we 
put 

Q(n, N(p)) = FnEp(M) N N(p) /Fn_,Ep(M) N N(p). 

Now we show the following remarkable finiteness result. 

THEOREM 2.8.1. Let M be a holonomic R-module. Then N is a finitely generated FoR- 
module if and only if N(p) is a finitely generated FoEv(R)-module for each minimal 
prime component p of J(M).  

PROOF. If n l , . . . ,  ns generate N as an FoR-module, then qOp(nl),..., qap(ns) generate 
N(p) as an FoEp(R)-module. Conversely, suppose N is not finitely generated over FoR 
but U(p) is finitely generated over FoEp(R) for every minimal prime component of 
J(M).  From the observations in 2.7 we deduce that 1 ~ J .  So we can choose a minimal 
prime component P0 of J.  Then 

Po D J D J(n) D I(n) for a l l n E N ,  

whence Q(n, N)p o ~ 0 for all n E N. By Lemma 2.7.1 p := 9rRpo is a prime ideal in 
9rR and from Lemma 2.8.2 below we obtain that 

Q(n,N(p))  ~ 0 for a l l n E N  (*) 

implying that Ep(M) # O. So p D J(M)  by Proposition 2.6.2. Since M is holonomic it 
follows that p contains some minimal prime component p~ of J(M)  with htff = #n. So 
htp >1 #n. However by Theorem 2.7.2 J is involutive, hence so is P0 and this implies 
that p is involutive (Lemma 2.7.1), so htp <<. #R. Consequently htp = #n implying 
p = p'. So p is a minimal prime component of J(M). By our hypothesis it follows that 
N(p) is finitely generated over FoEv(R ) and hence there exists some no E N such that 
Q(n,N(p) )  = 0 for all n /> no (arguing as in 2.7). But this contradicts (.). So is N 
finitely generated over FoR, as desired, r-l 
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LEMMA 2.8.2. Let Po be a prime ideal in 9roR and p = 9rRpo. Then p is a prime ideal 
in 9rR and the canonical morphism of 9roR-modules 2": Q(n, N) --+ Q(n, N(p)) can 
be extended uniquely to an injective morphism of (groR)po-modules 

2": Q(n, N)p o ~ Q(n, N(p)). 

PROOF. i) Let ro + F_IR E groR\po. Then ro C Sp and since II~p(r0)ll = It01 = 1 
~p(rO) -k- F_IEp(R) is invertible in groEp(R). Hence the canonical map groR --+ 
9roEp(R) extends to a r inghomomorphism r (9roR)p o --+ 9roEp(R). Since by 
Q(n, U(p)) is a left (9roR)po-module, 2" extends uniquely to a (9roR)po-module homo- 

morphism 2"" Q(n, U)p o --+ Q(n, U(p)). 
ii) It remains to verify that A' is injective. Let m E FnM N N and suppose qap(m) c 

Fn_IEp(M). Then Imlp = IqOp(m)l <~ 2 n- ' .  So by 1.2.2 there exists t E Sp, say 
v(t) = k, with Itl-lltrnl <~ 2 n-1. Observe that for the special element s E F1R\FoR 
with s -1 E F_IR, a(s) is a unit in 9rR with inverse a(s-1). In particular a(s) and 
a(s - ' )  do not belong to p, so s and s -1 belong to Sp. Consequently s r E Sp and a(s r) 
is a unit in 9rR for all r E Z. Now put p = s-kt.  So p E Sp. If t m r  0 then a(tm) r 0 
and hence a(s-k)a( tm)  r 0 (since a(s -k) is a unit) whence Is-ktm[ - Is-k[ Itm[. So 
[pl-llpml = It[-llsIk[sl-kltml <<, 2 n - l ,  i.e. [pro I <~ 2 n-1 since [Pl = 1 (obviously if 
t m  = 0 then also Ipm[ = 0 <~ 2n-1). So in any case we have a(p )~  = 0 in Q(n, N) 
implying that ~ -  0 in Q(n, N)p o since a(p) E 9roR\po. So 2" is injective. U] 

2.9. The proof of Theorem 2.6.1 for strongly filtered rings 

Notations as in 2.8. To prove the implication 3) --+ 1) of Theorem 2.6.1 we use one 
more characterization of modules with regular singularities based on the involutiveness 
of J(M).  Recall (2.2) 

J -  i f (M)  - {r E FlR l al(r) E J (M)} .  

Since FoR is noetherian and 3" C F1R - FoRs, f l  is a finitely generated FoR-module.  
Furthermore 3" is a Lie-algebra since 

LEMMA 2.9.1. J(M)  is involutive if and only if f l  is a Lie-algebra. 

PROOF. Using the special element s it is not difficult to verify that the result follows from 

a,  ([r, r ']) = {a,  (r),  a ,  (r ' )  } -- {a ( r ) ,  a(r') } if r, r' C F1 R\FoR. 

COROLLARY 2.9.2. M has R.S if and only if 

O 0  

Fo R~'i m 
i----O 
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is a finitely generated FoR-module for each m E M and each T C ft. 

PROOF. i) Suppose M has R.S. So there exists a finitely generated FoR-submodule M0 
of M such that RMo = M and f lMo C Mo. Let 7- E 3" and m E M and put 

N 

OO 

~ FoRTim. 
i--0 

Since RMo = M there exists an integer k such that m E FkRMo. Furthermore since 
Trm = rTm + IT, rim for all r E FkR and IT, r] E FkR it follows that TFkRMo C 
FkRMo. Consequently N C FkRMo = skMo. Since FoR is noetherian and M0 is 
finitely generated over FoR, hence so is N. 

ii) Conversely, since 3" is finitely generated over FoR we have 

J 
d 

Z FoRT~ 
i--O 

for some ri E 3". Finally 

m __  

q 

Z Rmj  
j = l  

for some mj  E M. By the hypothesis we can find a positive integer k such that 

k - I  

p=0  

for each 1 <~ / ~< d, 1 ~< j ~< q. Then using that 3" is a Lie-algebra one readily verifies 
�9 

that the FoR-module generated by the elements 7-~ . . .  r~dmj with 0 ~< i l , . . . ,  id <<. k -  1 
and 1 ~< j <~ q is stable under 3" (and of course generate M as an R-module). D 

REMARK 2.9.3. In the proof of Corollary 2.9.2 we only used that FoR is noetherian and 
that 9rR is a commutative noetherian Q-algebra. 

PROOF OF THEOREM 2.6.1 (for strongly filtered rings). It remains to prove 3) --+ 1). Let 
m E M and r E 3". By Corollary 2.9.2 it suffices to prove that N - ,F, FoRrim is a 
finitely generated FoR-module. We want to apply Theorem 2.8.1. So let p be a minimal 
prime component of J(M).  Then N(p) = S, FoEp(R)qap(T)iqDp(m). Since 

~Op(T) ~ J ( E p ( M ) )  

it follows from Corollary 2.9.2 and the hypothesis that N(p) is a finitely generated 
FoEp(R)-module, whence N is a finitely generated FoR-module by Theorem 2.8.1. 
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2.10. Modules with regular singularities and short exact sequences 

Let R be a filtered ring satisfying the conditions a), b), c) and d). Let M be an R-module 
with R.S. So it possesses a very good filtration. Let M t be an R-submodule of M. Then 
the induced filtration and the quotient filtration are again good, however they need not 
be very good. Nevertheless we have 

THEOREM 2.10.1. Let 0 -+ M ~ -+ M -+ M" -+ 0 be an exact sequence of holonomic 
R-modules. Then M has R.S if and only if M' and M" have R.S. 

PROOF. i) We use the reduction principle. The sequence 

0-~ M~x --> M x  ~ M~c -~ 0 

is an exact sequence of holonomic Rx-modules (Proposition 2.5.5). So by Proposition 
2.3.1 and Definition 2.3.2 we may assume that R is a strongly filtered ring. 

ii) Assume first that M has R.S. We show that M '  has R.S by showing that Ep(M') 
has R.S for every minimal prime component of J ( M  t) (Theorem 2.6.1). So let p be 
a minimal prime component of J(M~). Then p is also a minimal prime component of 
J(M)  (since each minimal prime component of J(M')  and each of J(M)  has height 
#R). Using that microlocalization is exact we obtain the exact sequence 

o--, (M') --, z ;  (M") --, 0. 

If p is not a minimal prime component of J(M")  then Er,(M" ) = 0 (by Proposition 
2.6.2) hence Ep(M') ~_ Ep(M), so Ep(M') has R.S since Ep(M) has R.S by Proposition 
2.3.4. So we may assume that p is also a minimal prime component of J(M").  Now 
observe that 

and similarly 

J (Ep (M'))  = J (Ep (M") )  = a(Sp)-lp. 

So 

= = 

Then the result follows easily from Corollary 2.9.2 and Lemma 2.10.2 below. The proof 
that M" has R.S is similar. Finally if both M '  and M" have R.S then by arguing in 
a similar way we can show that Ep(M) has R.S along J(Ev(M)) for every minimal 
prime component of J(M).  Then apply Theorem 2.6.1. 

LEMMA 2.10.2. Let Fg be a strongly filtered ring such that FoR is noetherian and ~" E 
F1R. Let 
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be an exact sequence of R-modules. Then EFoRTim is a finitely generated FoR-module 
for all m E M if and only if S, FoRT-im ' and SFoRT-im '' are finitely generated FoR- 
modules for all m' E M'  and m" E M". 

The proof of this elementary lemma is left to the reader. 

2.11. How to construct very good filtrations from good filtrations? 

The main result of this section (Theorem 2.11.1) gives a new characterization of R- 
modules with R.S which enable us to construct very good filtrations from generators of 
the R-module M and generators of its characteristic ideal. In fact the result follows from 
Corollary 2.9.2 using the reduction principle. 

. . . . .  

In this section we only assume: R is a filtered ring such that R is noetherian and 9rR 
is a commutative Q-algebra (it follows from R noetherian that 9rR is noetherian too). It 
follows that FoRx is noetherian and that g r R x  is a commutative noetherian Q-algebra. 

THEOREM 2.11.1 ([v.E3], Theorem 2). There is equivalence between 
1) M has R.___SS. 
2) For every m E M and every D E R with a(D) E J (M)  there exists a positive 

integer p E N such that 

p--1 

DPm E E F(P-~)(r-') RDim '  where r = v(D). (2.11.2) 
z=O 

More precisely, let m l , . . . ,  me generate the R-module M and a ( D l ) , . . . ,  a(Dq) the 
ideal J (M).  If 2) is satisfied then there exists p E N such that (2.11.2) holds for all 
Dj, all mt and the filtration F M  on M defined by 

t. q p - I  

F n U  = E E E Fn_(i,(r,_,)+...+i~(~_,))RD~' . . .  D;qmt 
i= l  j = l  ij=O 

is a very good filtration on M. 

PROOF. 1) -4 2). If M has R.S then M x  has R.S. If D E R with a (D)  E J ( M ) ,  say 
v(D) - r, then 

7-"= X - ( r - l ) D  E f f ( M x ) .  

So if m E M then by Corollary 2.9.2 there exists an integer p E N with 

p - 1  

~'Pm E ~ FoRxTim.  
i--O 
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Multiply this equation with XP(r-  l). Then 

p - 1  

DPm : xP(r-l)TPm E Z X ( p - i ) ( r - l ) F ~  fq M 
i=O 

which implies formula (2.1 1.2). 
2) --+ 1)(sketch). Since J ( M )  = ( a ( D 1 ) , . . .  ,a(Dq)) we get 

J ( M x )  = (a('q ), . . . , a(Tq)) 

with ~-j = X - ( r ~ - I ) D j  and rj  = v(Dj).  Hence 

3"(Mx)  = FoRxT1 + ' "  + FoRxTq + FoRx.  

Furthermore 

t 

M x  = ~ R x m t .  
t = l  

Then from the proof of Corollary 2.9.2 we know that 

g q p--1 

t = l  j = l  ij=O 

is stable under , ,7(Mx) and hence the corresponding filtration (FnRxMo)nez  is 
very good in M x  (Remark 2.3.3). Then one readily verifies that the filtration (M A 
FnRxMo)n~Z on M has the form described above and is very good. [3 

2.12. An application: Modules with regular singularities on a curve 

Let (,.9 -- k(t) be the ring of formal or convergent power series in one variable t over a 
field k of characteristic zero, K its quotient field on A a subring of 59 such that dimk 59/A 
is finite. By 79(K) we denote the set of meromorphic differential operators of the form 
Sa~0 i with a~ E K and by 79(A) the set of D r 79(K) satisfying D(A) C A. It is 
shown in [St Sm] that 79(A) and 79 = 79(0) are Morita equivalent. The equivalence is 
given by the functor P| where P is the set of D E 79(K) satisfying D(59) c A. 
Using Theorem 2.1 1.1 it is shown in [v.E5] that under the Morita equivalence holonomic 
79-modules with R.S correspond with holonomic 79(A)-modules with R.S. Furthermore 
the following remarkable theorem is proved 

THEOREM 2.12.1 ([v.E5], Theorem 3.10). Let N be a finite 79(A)-module and D in 79(A) 
satisfying a(D) -- t~ n where n -- ord D. Then N is a holonomic 79(A)-module with R.S 
if and only if N is D-regular (i.e. each element m E N satisfies an equation of the form 
(2.11.2)). 
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3. Final remarks 

REMARK 3.1. In [Gi] algebraic microlocalization is used to give a new proof of the 
Gabber-Kashiwara theorem ([Gi], Theorem V8). In fact the key point of that proof is to 
show that the well-known Kashiwara filtration DoM C D1M C . . .  C DdM = M, d = 
d(M) is compatible with microlocalization, i.e. Es(R)  | D i M  ~_ Dj (Es(R)  | M) 
([Gi], Proposition V9). For more details on pure modules we refer to [EkH, Bj3, Ekl,  
Ek2]. 

REMARK 3.2. It was shown in [C] that if R is a separated filtered ring such that 9rR 
is an Ore domain then R can be embedded in a skew field. More generally one can 
show: if R is a separated filtered ring and S a multiplicatively closed subset of R, not 
containing 0, such that the elements of a(S) form a regular Ore set in 9rR, then the 
map qOR: R -~ Es(R)  is injective. Furthermore, if grR is a domain and or(R\{0}) is 
an Ore set in grR, then ER\{0} (R) is a skew field. It has been shown in [Li2] that in 
case L is any Lie-algebra then the skew field D constructed in [C] (in which U(L) can 
be embedded) is isomorphic to EU(L)\{o}(U(L)). 

REMARK 3.3. Historically the first paper containing microlocalization goes back to 
I. Schur in 1905 [Schu]" let K be the algebraic closure of C ( ( X ) ) ,  the field of for- 

d Then  mal  Lau ren t  series (so K = Up/>I C ( ( X l / p ) ) )  and let R = K[i~], where  0 - ~ .  

Schur  cons t ructs  the a lgebraic  micro loca l iza t ion  E s ( R ) ,  where  S = {0 n I n  E N} in 

R.  Us ing  this r ing he shows  that if P E R then any two e l emen t s  QI ,  Q2 c R which  

c o m m u t e  wi th  P c o m m u t e  with each other, i.e. [QI, Q2] = 0. 
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All algebras in this article are finite dimensional associative algebras over a field k, 
unless otherwise stated. In 1903, Frobenius [F03] studied algebras for which the left 
and the right regular representations are equivalent, and gave a necessary and sufficient 
condition for this equivalence. As a natural generalization of group algebras, Brauer and 
Nesbitt [BNe37, Ne38] pointed out the importance of the algebras studied by Frobenius 
and named them Frobenius algebras. They gave a simple characterization of Frobenius 
algebras in the following form: an algebra A is Frobenius if and only if there is a 
k-linear map A ~ k whose kernel contains no nonzero one sided ideals. Nakayama 
[N3941 ] defined quasi-Frobenius algebras, and studied the structure of Frobenius and of 
quasi-Frobenius algebras. Moreover, in his paper [N58] he conjectured that a k-algebra 
A is quasi-Frobenius if it has the infinite dominant dimension, namely there is an infinite 
exact sequence 

O-+ A ~ I1-+ I: ~ . . .  

where all In are injective and projective modules over the enveloping algebra 

A e := A ~ A ~ 
k 

Generalizations of quasi-Frobenius algebras were proposed by Thrall [Th48] by in- 
troducing the three kinds of algebras called QF-1, QF-2 and QF-3 algebras, and Morita 
studied them extensively [Mo58a, Mo58b]. Among them, QF-3 algebras were studied 
deeply in connection with the above conjecture by Nakayama. Tachikawa [Ta64] con- 
sidered another definition of dominant dimension by substituting a given algebra A for 
the enveloping algebra A e in the Nakayama's definition. However, B. Mtiller [Mu68a] 
pointed out that the two dimensions are the same, and proved that the conjecture is 
equivalent to say that a generator-cogenerator M over an algebra A is projective when 
Ex t , (M,  M) - 0 for all i > 0. QF-1 algebras seem to be more difficult algebras. The 
QF-1 algebras with squared zero radical or with faithful serial modules are characterized 
ideal-theoretically by Ringel [Rin73] and Makino [Ma91]. But the problem posed by 
Thrall to characterize the QF-1 algebras ideal-theoretically is not yet solved completely, 
and, because of the difficulty probably, the study now seems to be not so popular. An 
important class of QF-2 algebras, surprisingly, appeared in the representation theory of 
vector space categories which were introduced by Nazarova and Rojter to prove the 
second Brauer-Thrall conjecture. This was discovered and developed by Simson [Si85a, 
Si85b]. On the other hand, generalizations to Artinian or Noetherian, or general rings 
without chain conditions were one of the main themes in ring theory in the 1960's and 
in the early 1970's. See [Os66a] and [F76]. Results before 1973 on the generalizations 
by Thrall and on the Nakayama conjecture were propagated by Tachikawa in his lecture 
notes [Ta73]. In particular, he proposed two conjectures by dividing Mtiller's restate- 
ment above of the Nakayama conjecture. Another homological conjecture was proposed 
by Auslander and Reiten [AR75b], called the generalized Nakayama conjecture, which 
is apparently stronger than the Nakayama conjecture. Those conjectures are implied by 
the finitistic dimension conjecture. In the representation theory of algebras, Riedtmann's 
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work, starting with her paper [Rie80a], put quasi-Frobenius algebras on the stage as a 
main theme in the representation theory of algebras, and the quasi-Frobenius algebras 
of finite representation type were classified. In the representation theory of finite groups, 
the defect groups of blocks were determined for tame representation type (including fi- 
nite representation type) by Higman [Hi54], Bondarenko and Drozd [BD77] and Brenner 
[B70]. The work of Dade, Janusz and Kupisch enabled us to treat the group algebras 
of finite representation type as algebras independent of the given groups [G73]. In fact, 
Gabriel and Riedtmann [GR79] classified by quivers and relations the symmetric algebras 
with stable Auslander-Reiten quivers of the form ZAm/n  for arbitrary integers m and 
n, and showed that the blocks of finite representation type belong to the class of these 
symmetric algebras. The shape of stable Auslander-Reiten components of blocks was 
studied mainly by Webb [We82], using the ideas of Riedtmann [Rie80a] and Happel, 
Preiser and Ringel [HPR80]. By making use of Webb's theorem and methods of the rep- 
resentation theory of algebras, Erdmann [Er90] described by quivers and relations some 
symmetric algebras including all blocks of tame infinite representation type. Moreover 
she characterized stable Auslander-Reiten components of wild blocks [Er94]. 

The aim of this article is to survey recent developments in quasi-Frobenius algebras 
over a field, but we devote ourselves to the general ring theory of these algebras. For 
developments in the representation theory, we refer to survey papers by Gabriel [G79] 
for algebras of finite representation type, Skowrofiski [Sk90] for algebras of infinite 
representation type, and lecture notes by Erdmann [Er90] and Benson [Be84] for group 
algebras. 

This article consists of three sections. In the first preparatory section, we recall Morita 
theory and some homological definitions for modules. The second section includes the 
original definition of (quasi-)Frobenius algebras and classical structure theory. We empha- 
size the Nakayama automorphisms to clarify the difference between Frobenius algebras 
and symmetric algebras. Trivial extension algebras are known as an important class of 
quasi-Frobenius algebras. The study of the trivial extensions of hereditary algebras of 
finite representation type was proposed by Tachikawa, and the Auslander-Reiten quivers 
were studied by the author [Y81a82] for the trivial extensions of arbitrary hereditary 
algebras of finite or infinite representation type. These ideas were used by Simson and 
Skowrofiski [SiSk81, Sk82] in the study of some classes of QF-3 algebras and their repre- 
sentations. They were developed further by Hughes and Waschbfisch [HW83] where they 
introduced repetitive algebras (canonical Galois coverings of trivial extension algebras), 
playing an important role in the representation theory of quasi-Frobenius algebras (e.g., 
[H87, ASk88, Sk89, PSk91, ErSk92, SKY2]). Happel studied the relation between the 
category of modules over the repetitive algebra of an algebra A and the derived category 
of bounded complexes of A-modules, and gave a necessary and sufficient condition on 
the derived category for the global dimension of A to be finite [H87, H89]. Moreover 
Morita theory for derived categories was established by Rickard [Ric89a, Ric89b, Ric91] 
and applied to quasi-Frobenius algebras. Happei's theorem on derived categories and 
Rickard's theorem on quasi-Frobenius algebras are introduced in this section, as well as 
the main results in [Y81 a82]. The Riedtmann's classification theorem of quasi-Frobenius 
algebras of finite representation type is given [Rie80a]. As an example of quasi-Frobenius 
algebras appearing in other branches of mathematics, we shall introduce a theorem of 



Frobenius algebras 845 

Mikio Sato concerning a characterization of Frobenius algebras in terms of the associated 
prehomogeneous vector spaces. 

The third section is devoted to generalizations of quasi-Frobenius algebras by Thrall. 
The Nakayama conjecture and some related conjectures are put here, because they are 
well stated using QF-3 algebras. This section has two main subjects. One is the Nakayama 
conjecture, but the definition of the dominant dimension is slightly changed. Namely, an 
algebra A is said to be of dominant dimension n (>~ 0) when, for a minimal injective 
resolution of A as a left A-module 

0--+A--+1o--+I1 --+...--+1,~-1 ~ ln --+..., 

li is nonzero projective for 0 ~< i < n and In is zero or nonprojective. Then a quasi- 
Frobenius algebra has the dominant dimension one, and the Nakayama conjecture means 
that every algebra has finite dominant dimension. Moreover we can state a finitistic di- 
mension conjecture for dominant dimensions of algebras with a given number of simple 
modules. First we shall show a characterization by Morita [Mo58a] of the endomor- 
phism ring of a generator-cogenerator and, via Mtiller's theorems on dominant dimen- 
sion [Mu68a], we shall show some relations between the Nakayama conjecture and the 
other conjectures stated above. Ideas or sketches of the proofs will be given to all results 
related to those conjectures. This section is based on my talk at Bielefeld in 1989, and 
it may serve as a selfcontained and shorter introduction to both research workers and 
graduate students interesting in the Nakayama conjecture. The second aim is to introduce 
the work of Ringel and Makino on QF-1 algebras. Usually it is not easy to know whether 
a given module has the double centralizer property, but there is an important criterion 
by Morita [Mo58b] which will be given with a sketch of the proof. 

In some examples, we shall consider algebras defined by quivers and relations. See 
Gabriel [G80] or Ringel [Rin84] for the definition of quivers with relations. 

The author wishes to express his appreciation to H. Tachikawa for his encouragement 
and suggestions, to D. Simson and A. Skowroriski for reading the manuscript and their 
helpful suggestions, to R. Makino for valuable discussions; and to J. Rickard for his 
permission to include his unpublished result. 

1. Preliminaries (Morita theory) 

Throughout this article all rings are finite dimensional associative algebras with unit 
element over a (commutative) field k, unless otherwise stated. We denote by Mod A the 
category of left modules over a ring A and by mod A the category of finitely generated left 
A-modules. By M n we denote the direct sum of n copies of a module M. For a module 
M, by Add(M) (resp. add(M)) we denote the family of modules isomorphic to direct 
summands of the direct sums of copies (resp. finitely many copies) of M. Morphisms 
of a module operate from the left on the module, and for a ring A the opposite ring is 
denoted by A ~ Usually, by a module we understand a finitely generated left module. 

Let A be an algebra and M a nonzero (finitely generated) left A-module. The Jacobson 
radical of M is denoted by rad M. By soc M (the socle of M) we denote the sum of all 
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simple submodules of M and, by top M (the top of M) the factor module M/rad M. In 
particular, soc(AA) is called the left socle of the ring A, and soc(Aa) the right socle. An 
idempotent el of A is isomorphic to e2 when Ael is isomorphic to Ae2 (Ael ~- Ae2), or 
equivalently el A "~ ezA. By I (M)  or an embedding M ~ I (M)  we denote the injec- 
tive hull (envelope) of M. Since A is finite dimensional over k, I (M)  is the module of 
minimal composition length among the injective modules having submodules isomorphic 
to M. The projective cover of M is denoted by P(M)  or by an epimorphism p: P(M) --+ 
M, that is, P(M)  has a minimal composition length among the projective modules hav- 
ing factor modules isomorphic to M. I (M)  and P(M)  are uniquely determined by M 
up to isomorphism. Let {Si}l<~i<<.n be a set of all nonisomorphic simple A-modules. 
Then the sets {P(Si)}i and {I(S~)}i give all nonisomorphic indecomposable projective 
A-modules and nonisomorphic indecomposable injective A-modules, respectively. 
Clearly, top P(Si) ~- Si ~- soc I(Si), and 

I(Si) ~- Hom (Homa (P(Si), A), k). 

A module M is faithful if aM ~ 0 for any 0 ~ a E A. This is equivalent to say that the 
canonical ring morphism qa: A --+ Endz(M) with (qa(a))(x) = ax for a C A, x E M, 
is monomorphic, where Endz(M) denotes the endomorphism ring of M as an additive 
group. For a finitely generated faithful left A-module M, since the right A-module 
Hom(M, k) is faithful, there is a monomorphism A ~'> Hom(M, k) n for some integer 
n, and we have an epimorphism Hom(u,k): M n --+ Hom(A, k). An A-module M is 
called a generator if there is an epimorphism M n --+ A for some n, or equivalently, 
M n ~_ A | X as left A-modules for some A-module X. A module M is a cogenerator 
if for any finitely generated injective module X there is a monomorphism X --+ M n 
for some n. Any generator and any cogenerator is faithful. The endomorphism ring of 
an indecomposable module is a local ring (i.e. it has a unique maximal left or right 
ideal). The Krull-Schmidt theorem holds for indecomposable decompositions of finitely 
generated modules. 

For a finitely generated module M over an algebra A, the kernel of the projective 
cover of M is denoted by g2A(M) or I2(M) simply, and f2 A (M) or I2- (M)  denotes 
the cokernel of an injective hull I (M);  

0--+ YI(M) ~ P(M)  ~ M ~ O, 

0 ~ M ~ I (M)  --+ O - ( M ) ~  O. 

Let n ~  = M, ~2'(M) = Y2(M), ~2- ' (M) = g2-(M). Inductively we define 

if2 n + l  ( M )  - -  ff2(f2n(M)) a n d  f2 - n - !  ( M )  - if2- (~-2-n(M)) 

for all non-negative integers n. The operation f2 A is called the Hellerfunction and plays 
an important role in the category mod A over a self-injective algebra A. Here, an arbitrary 
ring (associative with 1) A is said to be left self-injective when AA is injective. The self- 
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injective for an algebra is left-right symmetric (Theorem 2.2.1). Now assume that A is a 
left self-injective algebra and let 

0 - - + Y  u v ~ P  ," X --+ 0 

be a short exact sequence in mod A. Then X is nonprojective indecomposable and v is 
a projective cover if and only if Y is noninjective indecomposable and u is an injective 
hull (Heller [He61 ]). 

We say that two rings A and 13 are Morita equivalent when there is a category 
isomorphism between Mod A and Mod 13, denoted by Mod A ~-0 Mod 13. 

MORITA EQUIVALENCE THEOREM. 
(1) Let P be a left module over an algebra A and B -- Enda(P)  ~ Then (i) P s  

is a generator if A P is finitely generated projective; PB is finitely generated projective 
and A -- EndB(P)  if AP  is a generator. (ii) I f  AP is a finitely generated projective 
generator, then so is Ps  and A ~_ E n d s ( P )  canonically. 

(2) Two algebras A and t3 are Morita equivalent if and only if there is a finitely 
generated projective generator AP and 13 ~_ EndA(P) ~ In this case, the equivalence 
functor S: Mod A --+ Mod 13 is isomorphic to 

HomA (P, - )  ~ HOmA (P, A) |  --. 

A typical example is given by basic algebras. Let 

m 

l = Z e i  
i=1 

be the sum of orthogonal primitive idempotents of A and let e be a sum of all non- 
isomorphic idempotents from {ei}. Then the algebra A is Morita equivalent to eAe; 
the projective generator Ae defines the equivalence. The idempotent e is called a basic 
idempotent and the algebra eAe is said to be a basic subalgebra of A, which is uniquely 
determined up to algebra isomorphism. In case e = 1A, the algebra A is called a basic 
algebra. A basic module M is by definition a direct sum of nonisomorphic indecompos- 
able submodules. A property of modules is said to be Morita invariant if it is preserved 
by any category equivalence functor. 

EXAMPLE. For an algebra A, every matrix ring (A)n is Morita equivalent to A. (Take 
A M = A An.) More generally, let M and N be A-modules such that M is similar to N,  
i.e. add(M) = add(N). Then 

B := End(M) ~ and C := End(N) ~ 

are Morita equivalent. In this case, under the equivalence Mod B ~ ,.~ Mod C ~ the right 
B-module M corresponds to the right C-module N. Thus we have that EndB(M) 
E n d c ( N )  as algebras. 
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MORITA DUALITY THEOREM. 
(1) Let Q be a left A-module and B = End(Q) ~ Then (i) QB is a cogenerator if 

AQ is finitely generated injective; QB is finitely generated injective and A ~_ EndB(Q) 
if AQ is a cogenerator. (ii) If  AQ is a finitely generated injective cogenerator, then so is 
QB and A ~ EndB(Q) canonically. 

(2) Let D1 : mod A --+ mod B ~ and D2 : mod B ~ --+ mod A be contravariant functors. 
Then the functors define a duality (i.e. D1D2 ~- lmodBop and D2D1 ~-- lmodA) i f  and 
only if there is an (A,B)-bimodule AQB satisfying the following two conditions: (a) 
D1 ~- HOmA(--, Q), 92 ~- HomB(- ,  Q), and (b) AQ and QB are finitely generated 
injective cogenerators, and B ~_ EndA(Q) ,A  ~_ EndB(Q) canonically. 

A finitely generated injective module I is a cogenerator in mod A if and only if the 
injective left A-module Hom(eA, k) is isomorphic to a submodule of 1 where e is a 
basic idempotent of A; an injective module isomorphic to the module A Hom(eA, k) is 
called a minimal injective cogenerator. A typical example of a Morita duality is defined 
by H o m ( - ,  k), and by the Morita duality theorem it should be induced by an A-bimodule 
Q. In fact, we have that Hom(- ,  k) ~_ H o m a ( - , H o m ( A ,  k)) on modA and modA ~ 
cf. Proposition 2.4.2. See Morita [Mo58a] and Azumaya [Az59] for further results on 
duality. 

2. Frobenius algebras 

2.1. Frobenius algebras 

Let A be an algebra and {Ul , . . . ,  Un} a k-basis of A. Then for each a E A we have the 
two matrices L(a) and R(a) over k such that 

a ( u l ,  . . . , U n )  -" ( U l , . . . ,  u n ) L ( a ) ,  ( U l , . . . ,  u n ) T a  = R ( a ) ( u , ,  . . . , Z tn)  T .  

The correspondences L: A ~ (k)n and R: A --+ (k)n are k-algebra homomorphisms 
called the left and the right regular representations. By linear algebra, there is an A-bi- 
linear form fl: A x A --+ k (i.e. fl(ab, c) = fl(a, bc) for a, b, c E A) exactly when there 
is a matrix P such that R ( a ) P  = PL(a)  for all a c A. (P  is the matrix with (i, j)-entry 
fl(ui, uj).) Moreover, in this case, fl is nondegenerate if and only if P is nonsingular. 
For example, the group algebra kG of a finite group G with coefficients in k has a 
nondegenerate kG-bilinear form fl (let fl(x, y) = 6x,u-~ (Kronecker 6) for x, y E G). 

Now the canonical A-bimodule isomorphism 

Hom(A, k) - ~  Hom(A | A, k) 

induces an A-bimodule isomorphism 

0: Hom(A, k) ~~ Hom(A XA A, k), 

where Hom(A • A,k )  is the set of all A-bilinear forms. We denote by 0(A) = 
fla, O-l(fl) = A~ for any A E Hom(A,k) and /3 E Hom(A X a m,k),  respectively. 
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Then clearly /3(x, y) - AO(xy), and/3 is nondegenerate if and only if A~(xA) is not 
zero for any 0 r x E A, if and only if A~(Ax) is not zero for any 0 r x E A. Moreover 
an A-bilinear form/3: A x A --+ k defines two A-homomorphisms 

fit" AA -+ A Hom(A, k), ~r" AA -+ Hom(A, k)a 

such that /3z(x) = / 3 ( - , x ) ,  /3r(X) = /3 (x , - ) .  Thus A~ = /3 ( - ,1 )  = /3 (1 , - )  and 
/3z(x) = xA~, /3,.(x) = A~x for any x E A. Taking account of these observations, we 
have the following equivalent properties, where we note that the associated A-bilinear 
form/3~ is nondegenerate for any element A E Horn(A, k) such that Horn(A, k) = AA 
or AA. 

DEFINITION 2.1.1. An algebra A is called a Frobenius algebra if the following equivalent 
conditions hold. 

(1) There is a nondegenerate A-bilinear form. 
(2) There is an isomorphism A _~ Hom(A, k) as left A-modules. 
(3) There is an isomorphism A _~ Hom(A, k) as right A-modules. 
(4) Hom(A, k) is a cyclic module as a left or right A-module. 

For a subset X of an algebra A, by gA (X)  we denote the left annihilator set of X in 
A, that is, 

gA(X)  = {a ~ A l a x  = 0}. 

Similarly, r A (X)  denotes the right annihilator set of X in A. For a Frobenius algebra A 
with a nondegenerate A-bilinear form/3: A x A --+ k and A : -  A~, we denote by •  the 
set {a ~ A I/3(a, I)  = 0} and by I • the set {a E A I/3(I, a) -- 0} for a subset I c A. 
Then, by definition of A, 

rA(I  ) -- {a e A IA(Ia  ) = O} = I • 

for a left ideal I. Similarly, • J = gA (J) for a right ideal J.  Moreover we have that 
I -- gArA(I) and dimk A - dimk I + dimk rA(I  ) for any left ideal I. The following 
theorem is a main theorem in Nakayama [N3941], I. Cf. Theorem 2.2.3. 

THEOREM 2.1.1 (Nakayama). An algebra A is Frobenius if and only if, for  a left ideal I 
and a right ideal J, e A r A ( I  ) = I, r A e A ( J  ) = J and 

dimk A = dimk I + dimk r A (I) -- dimk J + dimk ~A (J)- 

Moreover, in this case, r A (I) - I • and eA(J  ) = •  for the defining A-bilinearform ft. 

Let A be a Frobenius algebra with a nondegenerate A-bilinear form/3: A x A ~ k. 
Let /3" A x A -+ k be the bilinear form such that /3(x, y) = p(y,  z) for x, y c A. 
Then, since/3 is a nondegenerate k-bilinear form, there is a k-linear map u" A --+ A 
such t h a t / 3 ( y , - )  = /3 (y  ~', - )  for any y E A. Observe that u is an algebra isomorphism. 
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Thus there is an algebra automorphism u depending on/3 such that/3(x, y) --/3(y ~', x), 
which is called a Nakayama automorphism of A. See (2.4) for another definition. The 
next theorem shows that such an automorphism is uniquely determined up to an inner 
automorphism. 

THEOREM 2.1.2. Let A be a Frobenius algebra with a nondegenerate A-bil inear form 
with Nakayama automorphism v. Then for  any nondegenerate A-bil inear form/31 with 
Nakayama automorphism v I, there is an invertible element c o f  A such that v I o 9-1 __ c, 
where x r := c - l x c  for  any x E A. 

This follows, because there is an elements c such that/3' ( - ,  1) = / 3 ( - ,  c) (linear algebra) 
and then c has no nonzero annihilator in A since/31 is nondegenerate. Observe that any 
element without nonzero annihilator in A is invertible and that 

z' ( J ,  y) = z, y) 

for x, y t A. 
Nakayama proved furthermore that an algebra is uniserial i f  and only i f  each o f  

its fac tor  algebras is Frobenius. Here we recall the definition of the uniserial algebra. 
A module is said to be uniserial when it has a unique composition series, and a serial 
module is a direct sum of uniserial modules. In particular, an algebra A is said to be left 
serial in case AA is serial, and is said to be serial if A is left and right serial. A uniserial 
algebra is by definition a direct product of finitely many local serial algebras. 

2.2. Quasi-Frobenius algebras 

The defining properties in Definition 2.1.1 of Frobenius algebras are not Morita invariant, 
but they imply the injectivity of A as an A-module, which is Morita invariant. 

DEFINITION 2.2.1. An algebra A is said to be quasi-Frobenius when A A is injective. 

A basic quasi-Frobenius algebra is Frobenius obviously. The theorem below shows 
that this definition is independent of the side of operation of A on itself [N3941]. The 
permutation 7r in the theorem is called the Nakayama permutation of A. 

THEOREM 2.2.1 (Nakayama). For an algebra A with basic idempotent e = ~"~/n..~. 1 e / ,  the 
fol lowing statements are equivalent and 7r I = 7r-I. 

(1) A A is injective. 
(2) Ae  ~_ Hom(eA, k) as left A-modules.  
(3) There is a permutation 7r on {1, . . .  ,n} such that soc(Aei)  ~_ top(Ae~(i)).  
(4) There is a permutation 7r on { 1 , . . . ,  n)  such that AAei  " ~  a Hom(e~r(i)A, k). 
(1 i) AA  is injective. 
(2') eA  ~_ Hom(Ae, k) as right A-modules. 
(3') There is a permutation 7r' on { 1 , . . . ,  n)  such that soc(eiA)  ~- top(e~r,(i)A). 
(4') There is a permutation 7r I on {1 , . . . ,  n} such that e i A a  ~-- Hom(Ae~,( i ) ,  k)A. 
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In fact, (4) =~ (2) is trivial, and (4) r162 (4') and (2) ::> (1) follow from the duality 
H o m ( - , k ) .  The implications (1) ~ (4) ~ (3) are easy (see Preliminaries). Thus it 
suffices to show (3) ~ (4). Now assume that A = eAe and suppose (3). Then, since 

soc(Ae,) ~ top(Ae~(i)) -~ soc Hom(e~(i)A, k), 

there is a monomorphism from soc(Aei) to Hom(e~(i)A,k), which is extended to a 
monomorphism 

f~: AAei --+ A Hom(e~r(i)A,k) 

because A Hom(e~(i)A, k) is injective. Hence we have a monomorphism 

f = ~ fi: AA = ~ Ae, ---+ ~[~ Hom(e~(,)A, k) = A Hom(A, k), 
i i i 

which implies that, by comparing the dimensions, f and so each fi is isomorphic. 

THEOREM 2.2.2. An algebra A is quasi-Frobenius if and only if HomA (--, A) is a duality 
functor between mod A and mod A ~ if and only if every left and every right simple 
A-module is reflective. 

The first statement of the theorem follows from Theorem 2.2.1 and the Morita 
duality theorem; see Morita [Mo58a] or Azumaya [Az59] for the second statement. 
Here, a module AM is said to be reflexive when the canonical morphism M --+ 
HomA (HOmA (M, A), A) is an isomorphism. 

Now, if an algebra A satisfies that rAga(J) = J for any right ideal J,  then we know 
that HomA(A/I ,  A) is a simple right A-module for a maximal left ideal I (because 
HomA(A/ I ,A)  ~~ rA(I ) naturally). On the other hand, in case A is quasi-Frobenius, 
applying Homa(-- ,  A) twice to the exact sequence 

0--+ I ~ A --+ A / I --+0, 

we have the canonical morphism 

f: I -+ HOmA (A / r ( I ) ,A )  - gArA(I) 

and 

9" A / I  --+ HomA ( HomA (A/1, A), A), 

each of which is an isomorphism if the other is. Thus, thanks to Theorem 2.2.2, we have 
the following theorem which is one of the main theorems in [N3941]. 

THEOREM 2.2.3 (Nakayama). A necessary and sufficient condition for an algebra A to 
be quasi-Frobenius is that it satisfies the following annihilator condition: gArA(I) = I 
for any left ideal I and rAga(J ) -- J for any right ideal J. 
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NOTES. 
(1) Since every injective (not necessarily finitely generated) module over an algebra A 

is a direct sum of indecomposable injective modules (E. Matlis), A is quasi-Frobenius 
if and only if every injective module in Mod A is projective (Faith and Walker [FW67]). 

(2) Suppose that A is an arbitrary (not necessarily finite dimensional) ring (associative 
with 1). Then A is left and right Artinian, and right self-injective if it is left or right 
Noetherian, and left self-injective. (See Faith [F76].) A self-injective Artinian ring is said 
to be quasi-Frobenius. But, in case A is neither left Noetherian nor right Noetherian, self- 
injectivity is not necessarily left-right symmetric. For example, the endomorphism ring 
of any nonfinitely generated free left module over a quasi-Frobenius k-algebra A (e.g., 
A = k) is left self-injective but not right self-injective (Osofsky [Os66b], Sandomierski 
[San70]). See Kambara [K87] for another example. Goodearl [Go74] gave examples of 
simple, left and right self-injective rings which are not Artinian. We refer to [Mo58a] 
and [Az59] for other homological characterizations of quasi-Frobenius Artinian rings, 
and [Os66a, F76] for some generalizations. 

(3) It is still open whether a left or a right self-injective semi-primary ring is quasi- 
Frobenius ([Os66a], cf. [F90]). Note that a left and right self-injective semi-primary ring 
is quasi-Frobenius. 

(4) The problem whether a self-injective cogenerator ring on the left side (left PF-ring) 
is a right PF-ring was unsolved until the middle of the 1980's (see Azumaya [Az66], 
Faith [F76]). Dischinger and W. MOiler [DM86] gave a counterexample in 1986 to this 
problem. 

2.3. Symmetric algebras 

A Frobenius algebra A with a symmetric A-bilinear form /3: A x A --+ A is called 
a symmetric algebra, i.e. there is a symmetric nonsingular matrix P such that R(a) -- 
P - 1 L ( a ) P  for any a E A [BNe37]. The bilinear form /3 defined in 2.1 for a group 
algebra kG is symmetric. We refer to Kupisch [Ku6570] for the structure of symmetric 
algebras. 

The following theorem clarifies a homological difference between Frobenius algebras 
and symmetric algebras (see Theorem 2.4.1 and Nakayama [N3941], Theorem 12). 

THEOREM 2.3.1. An algebra A is symmetric if and only if A is isomorphic to Hom(A, k) 
as an A-bimodule. 

In fact, assume that A is symmetric and/3 is a symmetric A-bilinear form. There is an 
isomorphism f: A --+ Hom(A, k) as left A-modules such that f (a)  = aA for a E A, 
where A E Hom(A, k) and/3(x, y) = A(xy). Then it suffices to show that a)~ -- )~a for 
a E A: easy. Conversely assume that there is an A-bimodule isomorphism 

f: A ~ Hom(A, k) 
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and let f (1) = A. Obviously aA = Aa for any a E A. Then the corresponding A-bilinear 
form/3~ is clearly nondegenerate and symmetric. 

EXAMPLE. A semi-simple algebra is symmetric [BNe37, Ne38, EN55]. 

In fact, assume that A is a simple algebra and let C be the center of A. Then A | A ~ 
is a simple C-algebra which has a unique simple left module A| (with canonical 
operation), and a unique simple right module AA| Hence, there is an isomorphism 
A ~,~ Homc(A, C) as left AQcA~ or as A-bimodules. Moreover, since k is a 
subfield of C, the canonical map Homk(A, k) --+ Home(A, C) is clearly an A-bimodule 
isomorphism. Thus we have that an A-bimodule isomorphism A ~ Homk(A, k). 

Now, consider an A-bimodule isomorphism f: A ~ Hom(A,k) for a symmetric 
algebra A. Then, for a basic idempotent 

n 

e ~ ~ e i  
i=1 

of A, we have that 

aAei ~~ A Hom(A, k)e~ ~~ a Hom(eiA, k) 

~) a Hom (Hom(Ae~-~(~), k), k) ~r aAe~r-l(i ). 

This implies that i -- 7r(i) for any i, hence 7r is identity. A quasi-Frobenius k-algebra A 
with identity Nakayama permutation is said to be weakly symmetric. In [NN38] there is 
an example of nonsymmetric and weakly symmetric algebra. Another examples will be 
given in 2.5. 

Rickard developed the Morita theory (equivalence) for derived categories of bounded 
complexes of modules [Ric89a, Ric89b, Ric91]. In particular, he characterized the sym- 
metric algebras in terms of derived categories: 

THEOREM 2.3.2 (Rickard). An algebra derived equivalent to a symmetric algebra is itself 
symmetric. 

Here two algebras A, B are said to be derived equivalent if Db(mod A) ..~ Db(mod B), 
where D b (mod R) is the derived category of bounded complexes of R-modules in mod R. 

PROPOSITION 2.3.1. For a symmetric k-algebra A, g22(M) ~_ D Tr(M) and ~2-Z(M) "~ 
Tr D(M)  for any indecomposable nonprojective module M. 

Here, Tr(M) is the transpose of M, i.e. T r ( M ) " -  Coker(HomA(f,A)) for a minimal 
projective resolution 

P1 f ~ Po-+ M - +  O. 

Hence there is an exact sequence 

0 -~ D Tr(M) ~ Hom( Hom(P1, A), k) f-~ Hom( Hom(Po, A), k), 
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m 

where f - Hom(HomA(f, A), k). But, since A "~ Hom(A, k) as A-bimodules by Theo- 
rem 2.3.1, we have an exact sequence 

0--+ D T r ( M )  --+/91 S> P0 --+ M - + 0  

and hence O2(M) _~ D Tr(M). 
A module M over a quasi-Frobenius algebra A is said to be bounded if the lengths 

of ~ (M) (n > 0) have a common upper bound, and periodic if M is isomorphic to 
f2~ (M) @ P for some n > 0 and a projective A-module P. For the group algebra kG 
of a finite group G, Alperin [A177] proved that every bounded kG-module is periodic in 
case k is algebraic over its prime field, and Eisenbud [Ei80] proved it for any field k. 

THEOREM 2.3.3 (Alperin-Eisenbud). Let kG be the group algebra of a finite group G 
with coefficients in a field k. Then every bounded kG-module is periodic. 

Thanks to Proposition 2.3.1, a nonprojective indecomposable periodic kG-module M 
is D Tr-periodic, i.e. M "~ (DTr)n(M) for some n > 0 and D = H o m ( - , k ) .  D Tr- 
periodic modules over an algebra are very important in the representation theory of alge- 
bras. See Happel, Preiser and Ringel [HPR80], Ringel [Rin84], and Auslander, Platzeck 
and Reiten [APR77]. Schulz [Schu86], using an idea of Evens [Ev61], gave a condition 
for a bounded module over a quasi-Frobenius algebra to be periodic. We refer to [A177, 
Ei80] and Carlson [Ca79a, Ca79b] for further results, problems and examples of periodic 
modules. See also Okuyama [Ok87], Erdmann and Skowrofiski [ErSk92, LS93, AR94]. 

As to Frobenius algebras appearing in other branches of mathematics, see Humphreys 
[Hu82] for Lie algebras, Pareigis [Pa71] for Hopf algebras, and Kimura [Ki86] for Mikio 
Sato's theory of the prehomogeneous vector spaces associated with finite dimensional 
algebras. From there let us discuss Sato's theorem on Frobenius algebras from around 
1962. 

Assume that k is an algebraically closed field of characteristic zero, and let the dual 
space of a k-vector space V be denoted by V*. Let G be a connected linear algebraic 
group over k and p a rational representation of G on a finite-dimensional vector space 
V. Suppose that the triplet (G, p, V) is a prehomogeneous vector space (simply P.V.), i.e. 
V has a Zariski-dense G-orbit Y = V - S. Let g = Lie(G) and 91 - Lie(G1), where 
Gl is the subgroup of G generated by the commutator subgroup [G, G] and a generic 
isotropy subgroup Gx(x E Y). Then it is known that for w E 9* there is a rational map 
qD~o: Y --+ V* such that 

~ ( p ( g ) x )  - p* (9)r for g E G, x E Y. 

Moreover, in this case 

= 

for all x E Y and a E 9 if and only if w(91) = 0, where dp is the infinitesimal 
representation of p (hence d p(exp ta)xlt=o = dp(a)x). A P.V. (G, p, V) is said to be 
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regular if it has a nondegenerate relative invariant (a relative invariant f (x) is said to be 
nondegenerate if its Hessian H e s s s i x  ) = det(~2f/axii~xj) is not identically zero), and 
the P.V. is quasi-regular if there exists w E (g/g1)* such that q~o: Y --+ V* is dominant. 
Note that a regular P.V. is quasi-regular. 

Now let A be a k-algebra and A • the multiplicative group of all invertible elements 
of A. Then G :-- A • acts on V := A by p(g)v = gv for 9 E G, v E V so that the triplet 
(G, p, V) is a P.V. which is called the P.V. ofA. Sato's theorem is now stated as follows. 

THEOREM 2.3.4 (Mikio Sato). Let (G, p, V) be the P.V. of an algebra A. 
(1) The algebra A is Frobenius if and only if dual triplet (G, p*, V*) is a P.V. 
(2) The algebra A is symmetric (resp. semisimple) if and only if its P.V. (G, p, V) is 

quasi-regular (resp. regular). 

2.4. Nakayama automorphisms 

For an automorphism a of an algebra A and a left A-module M,  ~ M  is understood to be 
the A-module whose underlying additive group is M with the operation of A: a. m = 
a~m for a E A, m E M. Similarly N~ is defined for a right A-module N. For an 
A-bimodule M and a E A, aL: M -~ M and an: M --+ M stand for the left and the 
right multiplication of a: a L (x) -- ax, an(x  ) = xa for x E M.  

Let A be a Frobenius algebra with a nondegenerate A-bilinear form/3 and let u be 
the Nakayama automorphism associated with/3; /3(x, y) -- fl(y~', x) for x, y E A. We 
know that/3 induces (one-sided) A-isomorphisms/3e and/3r from A to Hom(A, k) (2.1). 
Moreover it is easy to see that they are (after twisting) in fact A-bimodule isomorphisms, 
i.e. 

/3~: A , v  Hom(A, k)~ and /3r: A __Z+ ~_~ Hom(A, k). 

Since the right A-module Hom(A, k) is faithful, the automorphism u is uniquely deter- 
mined with respect to the property that/3e: A ~ Hom(A, k)~, is an isomorphism of right 
A-modules. Thus we have the following theorem, generalizing Theorem 2.3.1, which 
follows from Theorem 2.1.1 and the fact that 

Hom ( A / J  ~, k) "~ {a E A I/3( J~', a) = 0} = {a E A I/3(a, J)  = 0} = • 

THEOREM 2.4.1. For a Frobenius algebra A, an automorphism u of A is Nakayama if 
and only if there is an A-bimodule isomorphism 

A _7_+ Hom(A, k)~, or A _7_+ ~_, Horn(A, k). 

Moreover, in this case, 

A/J~4 "~ Hom (gA(J), k) A , A A / P ' - '  "~ A Hom (r A (I), k) 

for any left ideal I and any right ideal J. In particular, A is symmetric if and only if u 
is inner. 
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As an application we can prove the following Skolem-Noether Theorem. 

EXAMPLE. An automorphism of a central simple k-algebra is an inner automorphism. 

PROOF. For an automorphism cp of A, ~ = cp | 1 is an automorphism of the central 
simple algebra A | A ~ Since A (resp. AT) is the unique simple left (resp. right) 
A | A~ (up to isomorphism), we have an A-bimodule isomorphism 

A --+ Hom(~oA, k) = Hom(A, k)~o. 

As A is symmetric (2.3), it follows from the above theorem that T is inner. 

THEOREM 2.4.2. Let A be a Frobenius algebra and u its Nakayama automorphism. Let 

n 

e - -  ~ - ~  e i  

i=1  

be a basic idempotent o f  A. Then Ae~(i) ~- A(e i )  ~ for  any i. 

PROOF. Let e i~ = 1 - ei. Since A - e i"A @ ,(e'~"AiJ , it follows from Theorems 2.4.1 
and 2.2.1 that 

e~A = A / ( e ~ ) " A  = A / ( e~A)  ~ "~ Hom (gA(e~A) ,k )  = Hom(Ae~ ,k )  ~ e~(i)A. 

THEOREM 2.4.3. Let A be a Frobenius algebra with Nakayama automorphism u. Then 

soc(AA) = soc(AA) =: soc(A) and soc(A) _~ top(A)~ 

as A-bimodules.  In particular soc(A) is a cyclic module as a left and a right A-module. 

PROOF. Let/3 be an A-bilinear form defining u. Then it follows from Theorem 2.1.1 that 

soc(AA) = r A (rad A) = (rad A) -t- = ((rad A) ~') _t_ 

= { x  E A l ~ ( ( r a d A ) ~ ' , x )  = 0} - {x E A lI3(x, radA  ) - 0} 

= _L (rad A) = gA (rad A) = soc(AA). 

Moreover/3 induces isomorphisms 

SOC(AAA) "~ Hom (top(AA), k)~, "~ Hom (top(~,AA), k) '~ top(AA)~,. 

The Nakayama automorphism first appeared in [N3941], II, as well as the Nakayama 
permutation. The importance of the automorphisms is realized mainly in representation 
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theory (e.g., Skowroriski [Sk89], Skowroriski and Yamagata [SKY1, SKY2]). The follow- 
ing fact was quite recently pointed out in [SKY2]. 

PROPOSITION 2.4.1. Let ~: A x A --+ k be a nondegenerate A-bilinear form of a k- 
algebra A with Nakayama automorphism u. Then u = /3~ -1./3e: A ~> ~A~ is an 
A-bimodule isomorphism. 

PROOF. First note that 13,. = D~e. ()**, where D = H o m ( - ,  k) and ()**: A -+ D2A is 
the canonical map (( )** (a)) ( f )  = f (a)  for a c A and f E DA. Let a** = ()**(a). 
Then C/r(1) = 1"*. fie, and we have that for any a c A, 

(fl~(1))(a) = l**(f le (a) )=  l**(a/~e(1)) = (af le(1)) (1)= (fl~(1))(a) 

and h e n c e  f l r  l f l~(1)  -- 1. Hence 

(13~-1.13e) ( a ) =  ~;1 (~e(a)) --/~r--1 ( a~ ( 1 ) )  -- aU (13r--1/3e(1)) = a u. 

Therefore we have that v =/3~-1. fig. 

Now we describe the Nakayama automorphisms of Frobenius algebras as a special 
case of general relations between the modules defining Morita dualities and the outer 
automorphism group (Morita [Mo58a]; cf. Yamagata [Y88], Cohn [Co66]). 

Let A be a basic k-algebra and 

n 

1 - E e i  
i=1 

a sum of orthogonal primitive idempotents. By the Morita duality theorem, a duality 
D: modA --+ modA ~ is defined by the following A-bimodule Q: AQ and Q a  are 
minimal injective cogenerators and End(aQ) ~ ~_ A, End(QA) "~ A naturally. We shall 
call such a module Q a duality module which is denoted by D A  for a self-duality D, 
namely D = H o m a ( - ,  DA).  Two self-dualities D1, D2 are isomorphic if and only if 
D1A ~- DzA as A-bimodules. The Nakayama permutation 7r of a given A-bimodule 
D A  (or of D) is by definition a permutation of the index set s = { 1 , . . . ,  n} such that 
soc(DA)e~ ~_ top A%(~) for i c F2. The module Hom(A, h) is a typical duality module 
with identity permutation. Since there is an isomorphism w: A D A  -+ A Hom(A, k) as 
left A-modules, for any a E A there is a unique element a ~ of A such that 

Horn ( (a ~') L, k) = w. a R. a)--l" A Horn(A, k) --+ A Horn(A, k). 

It is easy to see that the correspondence u: A -+ A is an algebra automorphism so 
that w: D A  --+ Horn(A, k)~, is an A-bimodule isomorphism. In particular, u is inner 
if and only if D A  is isomorphic to Hom(A,k)  as an A-bimodule. We call such an 
automorphism u the Nakayama automorphism of A defined by w (or by D A  or D). In 
case A is Frobenius, the permutations and the automorphisms coincide with those in 2.1 
and 2.2. 
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PROPOSITION 2.4.2. The isomorphism classes of duality modules over a k-algebra A 
correspond bijectively to the outer automorphism group Aut(A)/Inn(A): DA ~-+ u 
under the condition that DA  ~_ Horn(A, k)~ as A-bimodules, where Aut(A) and Inn(A) 
denote the automorphism group and the inner automorphism group of A, respectively. 

Let u be the Nakayama automorphism associated with a duality module DA over an 
algebra A. It induces naturally a Morita equivalence ~: ModA --+ ModA such that 
~(M) = ~,M, with inverse ~ - l ( M )  = ~,-~M. Then it follows from the proposition 
above that 15 _~ Hom(DA, k ) @ a -  and ~ - 1  ~ HOmA(Hom(DA, k ) , - ) .  The functor 

is isomorphic to the identity if and only if u is inner. Moreover, 19 is isomorphic to 
Horn(A, k) | -- (which is called the Nakayama functor (Gabriel [G80])) if and only if 
A is Frobenius with Nakayama automorphism u. 

EXAMPLE. Let A and T be k-algebras with the same quiver and the following relations: 

Oc 

1 < ~ 2; A: a / 3 - / 3 a = 0 ,  T: ( a / 3 ) z = ( / 3 a )  2 - 0 .  

Let D A  be the ideal rad2T. Then A "~ T / D A  as algebras and D A  is a duality 
A-module with Nakayama permutation (12). This is also the Nakayama permutation 
of T. The Nakayama automorphism u of A by DA is the automorphism given by 

= 

2.5. Hochschild extension algebras 

An important class of quasi-Frobenius algebras is given by extension algebras of algebras 
by duality modules. Let A be an algebra and DA a duality module. Then an algebra T 
is called an extension algebra of A by DA if there is an exact sequence 

O-+ D A  '~ T ,  P~ A--+ O 

such that p is an algebra morphism and t~ is a T-bimodule monomorphism from p(DA)p 
to T. If we identify DA with Ker p, then DA is a T-ideal with (DA) 2 - 0 and the factor 
algebra T / D A  is isomorphic to A by p. Since D A  is nilpotent in T, a set of orthogonal 
idempotents {ei} with 

n 

1 A -- ~-~ei 
i= l  

can be lifted to a set of orthogonal idempotents of T, which are denoted by {ei}, so that 

n 

1 T -- ~ e i  
i=1 
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and ei = p(ei) for any i. Hence the Nakayama permutations 7rA, 71" T are the same 
permutations of the set { 1 , 2 , . . . ,  n}. For a A E Aut(A) and a T E Aut(T), a T is called 
an extension of a A (a A is a restriction of aT) if ~ 7 a p  - -  p~7 T .  An extension of A by D A  
corresponds to a 2-cocycle c~: A x A --+ DA,  namely, c~ satisfies the relation 

aa(b, c) + a(a, bc) = a(ab, c) + a(a, b)c 

for all a, b, c E A and it defines associative multiplication on the k-space A | D A  by 
the rule" 

(a, x)(b, y) = (ab, ay + xb + o~(a, b)) for (a, x), (b, y) E A | DA.  

Two extensions 

O --+ D A - ~  T P '~ A ---+ O , 
/.~I I 

O-+ D A ~ T--L-~ A--+ O 

are equivalent if there is an algebra morphism ~-" T -+ T such that ~ = ~-t~ and p -- p~-r 
(so ~- is an automorphism of T). The equivalence classes of extensions of A by D A  form 
the Hochschild cohomology group HZ(A, DA),  in which the zero element is the class of 
splittable extensions (an extension 

O ~ D A --% T --% A---+ O 

is said to be splittable if there is an algebra morphism p~: A -+ T with pp~ = 1 r 
Aut(A)). (See [CE56].) Every A-module M is naturally considered as a T-module by 
p: t m =  p( t )m  for t r T, m r M.  Hence ModA is naturally isomorphic to the full 
subcategory of M o d T  whose objects are annihilated by DA.  The full subcategory (of 
rood T) of T-modules which are not annihilated by D A  is denoted by mod(T\A) .  An 
essential property of extension algebras is the following [Y81a82]. 

PROPOSITION 2.5.1. Let 

O - + D A  ~ P ~ T  >A--+O 

be an extension. Then, for  any idempotent e of  T and e -- p(e), p canonically induces 
isomorphisms" 

T e / ( D A ) e  ~ Ae, soc(TTe) = soc (T (DA)e )  ~ socj  ( (DA)e) ,  

top(Te) ~ top(Ae). 

Moreover, T is a quasi-Frobenius algebra with the same Nakayama permutation as the 
Nakayama permutation of  DA, and the Nakayama automorphism of  A defined by D A  
extends to T. 
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We shall show briefly how to prove the last statement on automorphisms (the others 
are easy). Let w: D A  --+ Hom(A, k)~, be an A-bimodule isomorphism with Nakayama 
automorphism v of A. Since TT is an injective hull of D A  by the first assertion, the 
morphism 

Hom(p, k)w: T D A  ~ T Hom(T, k) 

extends to an isomorphism 

w': TT  ~) T Hom(T,k)  

along t~, i.e. Hom(p, k)w = w ~e;. Hence, for the automorphism v ~ of T such that 

w'" T ~~ Hom(T,k)~, 

as T-bimodules, the morphism w induces an isomorphism D A  --+ Hom(A, k)~,, as T-bi- 
modules. Consequently, v is the restriction of u t by the definition of v. 

Every splittable extension is equivalent to the trivial extension 

O ~ D A ~ A ~ D A  P ~ A ~ O ,  

where t~ and p are the canonical injection and projection, respectively. The trivial exten- 
sion algebra A ~< D A  is the k-vector space A @ D A  with multiplication 

(a, V) = + 

for a, b E A and x, y e DA.  Note that T(A)  := A ~< Hom(A, k) is a symmetric algebra 
because the map 

qo: T (A)  ~ Hom (T(A),  k), (~(a, f ))(b,  g) - f(b) + g(a), 

is clearly a T(A)-bimodule isomorphism [IW80]. Moreover, by the following theorem 
[Y88], symmetric extension algebras of A by D A  exist only in the case where the duality 
module D A  is isomorphic to Hom(A, k) as an A-bimodule. 

THEOREM 2.5.1. Let u be an automorphism of a k-algebra A. Then there is a symmetric 
extension algebra T of A by Hom(A, k)~ if and only if A ~< Hom(A, k)~ is a symmetric 
algebra, if and only if v is inner 

For example, let K / k  be a finite normal separable field extension with Galois group 
G -r {1}, and let A = K and take v(~: 1) E G. Then the above theorem implies that 
K ~< Hom(K, k)~, is a nonsymmetric and weakly symmetric algebra. 

To state some results on the module categories of extension algebras, let us recall 
the definition of the Auslander-Reiten quiver [AR75a77]. A nonsplittable short exact 
sequence 

O - + Z  v y ~ > X ~ O  
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in mod A, where X and Z are indecomposable, is called an almost split sequence if it 
satisfies the condition: for any nonsplittable morphism u": W --+ X in modA, there 
is a morphism u': W --+ Y such that u" = uu ~, or equivalently, for any nonsplittable 
morphism v": Z --+ W in mod A there is a morphism v~: Y --+ W such that v" = v'v. 
Auslander and Reiten proved that any nonprojective (resp. noninjective) indecomposable 
module M has a unique almost split sequence (up to isomorphism) of the form 0 --+ 
~'(M) --+ X -+ M --+ 0 (resp. 0 - +  M --+ Y -+ T - ( M ) - +  0 )where  T(M) = 
Homa (Tr(M), k) and r-  (M) = Tr(Homa (M, k)) [AR75a77]. A morphism f: X -+ Y 
between indecomposable modules is said to be irreducible if for any decomposition of 

f:  X u v >W , > Y  

in modA, u is a splittable monomorphism or v is a splittable epimorphism. Thus 
f is irreducible if and only if f E radHomA(X, Y) but not in rad 2 HomA(X, Y), 
where radHomA(X,Y)  denotes the set of nonisomorphisms from X to Y, and 
rad 2 HomA(X, Y) is the set of all f E HomA(X, Y) with f = f " f ' ,  where f '  E 
rad HomA(X, M), f "  E rad HomA(M, Y) for some A-module M. The Auslander- 
Reiten quiver F(A) is the oriented graph whose vertices are the isomorphism classes 
of indecomposable A-modules, and the number of arrows from [X] --+ [Y] is a(X, Y), 
where a(X, Y) is the dimension of rad Hom(X, Y) / rad  2 Hom(X, Y) over F ( X )  := 
End(X) / rad  End(X) or equivalently over F(Y)  (see [Rin84]). The stable subquiver 
Fs(A) denotes the full subquiver (of I"(A)) of those vertices IX] such that ~-nX is 
neither projective nor injective for any integer n. A regular component is a component 
without any projective modules and any injective modules. The following was proved 
by Auslander and Reiten [AR75a77], V. 

PROPOSITION 2.5.2. Let 

O ~ Z  v y @ p  ~ . ~ X ~ O  

be an almost split sequence over a quasi-Frobenius algebra A, where Y has no nonzero 
projective direct summands and P is projective. Then there is an almost split sequence 
of the form 

o r162 Q r o, 

where Q is injective. 

Modules over a trivial extension algebra T(A) := A ~< Hom(A, k) with rad2A = 0 
were first studied by W. Mtiller [MuW74] (and Green and Reiten [GrRe76]). Tachikawa 
asked if the trivial extension algebra T(A) is of finite representation type (i.e. the 
number of isomorphism classes of indecomposable modules is finite) for a hereditary 
k-algebra A of finite representation type. As to this problem, the theorem below, con- 
cerning a correspondence of indecomposable modules in modA and in mod(T(A) \A)  
and concerning the Auslander-Reiten quiver F(T(A)) ,  was first proved by the author 
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[Y81 a82], I. Then Tachikawa gave another proof of (1) in the theorem and announced it 
at a meeting (Tsukuba, October 1978) and reported in [Ta80] with additional (2), by us- 
ing the description of T(A)-modules by Fossum, Griffith and Reiten [FGR75] (namely, 
the T(A)-module is characterized as the pair (M, qo) with an A-module M and an 
A-homomorphism qo: Hom(A, k) | M --+ M such that r (Hom(A, k) | q~) = 0). It 
should be noted that the theorem below treats the Auslander-Reiten quivers of heredi- 
tary algebras of any representation type (cf. the inaccurate introduction of Section 4 in 
[Ta80]), and that the proof is valid without any change for not only trivial extensions 
but also all extensions of hereditary algebras by a duality module. 

For an algebra A, ind A (resp. proj A, inj A) denotes the isomorphism classes of inde- 
composable (resp. indecomposable projective, indecomposable injective) A-modules, and 
ind T \  ind A is denoted by ind(T\A) for an extension algebra T of A by a module DA. 

THEOREM 2.5.2 (Yamagata). Let A be a hereditary k-algebra and let D A  = Hom(A, k), 
T = A ~< D A and g2 - Y2T. Then 

(1) Y2 and Y2- induce the following bijective correspondences: 

g2: proj A --+ inj A, g2: ind A\ proj A --+ ind(T\A)\ proj T, 

g2-: injA --+ projA, g2-: indA\injA ~ i nd (T \A) \ i n jT .  

(2) The irreducible maps and the almost split sequences in mod A remain so in mod T. 
The Auslander-geiten quiver F(T)  is obtained from F(A) by using Y2. In particular, in 
case A is basic and of infinite representation type, any regular component of _F(A) is a 
component of _F(T), and 

Fs(T) = Fs(A) tO Y2(Fs(A)) 0 Ps t_J Is (disjointunion), 

where P (resp. I) is the component containing all projective (resp. injective) A-modules. 

The proof was given in [Y81a82], I, Theorems 2.12, 4.1 and pp. 425-426; the statements 
on the Auslander-Reiten quivers and the facts that g2(Fs(A)) -- $2 -1 (Fs(A)) are trivial 
consequences of the first statement in (2) and Proposition 2.5.2 (also see [Y88], Remark 
on p. 39). Moreover, P and I are the components of/-'(T) obtained from p(A)t2 g-2(i(A)) 
and O(p(A))t2 i(A) by locating T-projective modules, where p(A) (resp. i(A)) is the 
component of F(A)  containing all projective (resp. injective) A-modules (i.e. the prepro- 
jective (resp. preinjective) component, where one needs to remember that A is supposed 
to be basic and hereditary). See Ringel [Rin86], p. 68, for a generalization of the state- 
ments in (2). 

An important feature of trivial extension algebras is that it implies a relation between 
the finiteness of global dimension of an algebra A and the derived category Db(mod A) of 
bounded complexes of A-modules (Happel [H87, H89]). Consider the trivial extension 
algebra T(A)  as a Z-graded algebra whose elements (a, 0) and (0, f ) (a  C A, f c 
Horn(A, k)) are of degree 0 and 1, respectively. By mod ~ T(A)  we denote the category 
of finitely generated Z-graded T(A)-modules with morphisms of degree zero. 
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THEOREM 2.5.3 (Happel). An algebra A is of finite global dimension if and only if 
Db(mod A) is equivalent to rood z T(A) as a triangulated category. 

Here, the stable category of mod A, denoted by rnod A, has the same objects as mod A. 
For X, Y E mod A, the set of morphisms Horn(X, Y) in rnod A is the factor group 
of HOmA (X, Y) by the morphisms factoring through projective A-modules. The cate- 
gory rnod z T(A) above is similarly defined and becomes a triangulated category in the 
following way: For a module X, let 

0--+ x "; I(x)--+ o - '  (x )  -+ 0 

be the injective hull of X. For a morphism f: X --+ Y, form the pushout 

x -r,Y-%Z, = x ",z(x)-+z, 

and the corresponding short exact sequence 

o-+ z --% z --% n - ' (  x )  -+o. 

Then a2 -1 is an automorphism of rood z T(A) and 

X Y> Y - -~  Z h> ~--1 (X) 

is a triangle in modZT(A). The algebras A, B are stably equivalent when there is a 
category equivalence rood A ..~ rood B. Obviously, a Morita equivalence induces both 
a derived equivalence and a stable equivalence, but the converse is not true in general. 
Morita theory for stable categories is not known yet, but, as mentioned in 2.3, Rickard 
developed Morita theory for derived categories [Ric89b] and proved the following. 

THEOREM 2.5.4 (Rickard). Derived equivalent quasi-Frobenius algebras are stably 
equivalent. Moreover, in case A and B are derived equivalent algebras, T(A)  and T(B)  
are derived equivalent. 

Thus we know that T(A) and T(B)  are stably equivalent if A and B are derived 
equivalent algebras. By the following theorem, for example, we know when two algebras 
have stably equivalent trivial extension algebras [TAW87]. 

THEOREM 2.5.5 (Tachikawa-Wakamatsu). For two algebras A and B, T(A) and T(B)  
are stably equivalent if there is a tilting (A, B)-bimodule. 

Here a finitely generated left A-module M is called a tilting module when it satisfies the 
following conditions: 

(1) proj.dimA M ~< 1, 
(2) Ext~t (M, M) -- 0, and 
(3) there is an exact sequence 0 -+ AA --+ Mo --+ ml --+ 0 with m0, M1 E add(M). 
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If AM is tilting and /3 -- EndA(M)  ~ then MB is also a tilting module and A - 
EndB(M) (Brenner and Butler [BB80], Happel and Ringel [HR82]); A M B  is called a 
tilting (A,/3)-bimodule. The above theorem is also obtained as a corollary of Rickard's 
theory of derived categories [Ric89b]. We refer to Happel [H88] for the derived categories 
for algebras, Reiten [R76] and Martfnez Villa [Mar89] for algebras stably equivalent to 
quasi-Frobenius algebras, and to Wakamatsu [Wak90, Wak93] for more general discussion 
and further results. 

Quasi-Frobenius algebras of finite representation type are closely related to trivial ex- 
tension algebras. For this, see Hughes and Waschbtisch [HW83] and Bretscher, L~iser and 
Riedtmann [BrLR81]. This fact is based on tilting module theory and the classification 
theorem by Riedtmann [Rie80a]: Let A be a quasi-Frobenius algebra of finite represen- 
tation type. For the stable Auslander-Reiten quiver 1"8(A) let x r denote the r-orbit of a 
vertex x. Let .4 be the graph whose vertices are the r-orbits of Fs(A),  and there is an 
edge z ~ - yr in ,4 when there is an arrow a --+ b in l"s(A) such that x r = a ~, y~ = b ~ 
or x r = b r, yr = at .  Then ,4 is called the type of Fs(A).  

THEOREM 2.5.6 (Riedtmann). Let A be a quasi-Frobenius algebra over an algebraically 
closed field of  finite representation type. Then the type of  Fs(A) is a disjoint union of  
Dynkin diagrams. 

For example, let A be a hereditary algebra whose quiver is of Dynkin type ,4. Then the 
trivial (or any) extension algebra T of A by Hom(A, k) has a stable Auslander-Reiten 
quiver of type ,4 (Theorem 2.5.2), and so has T ( B )  for an algebras /3 with a tilting 
(A,/3)-bimodule (Theorem 2.5.5). We refer to [Rie80a, G79] for details and for further 
references, and Webb [We82], Linnel [Li85], Okuyama [Ok87], Erdmann [Er91, Er94], 
and Erdmann and Skowroriski [ErSk92] for the graph structure of stable Auslander-Reiten 
components of group algebras. See Riedtmann [Rie80b, Rie83] and Waschbtisch [Was80, 
Was81 ] for the classification of quasi-Frobenius algebras of finite representation type, and 
Kupisch [Ku6570, Ku75]. For quasi-Frobenius algebras of infinite representation type, 
see Skowroriski [Sk89, ErSk92], Erdmann [Er90] and [ANS89, Neh89, NehS89]. 

EXAMPLES. 
(1) A purely separable extension field K of k has a nonsplittable extension [Y81a82]: 

0--+ Hom(K, k) --+ T --+ K --+ 0. 

More generally, there is a hereditary algebra A, with an arbitrary quiver, which has a 
nonsplittable extension of A by Hom(A, k). A concrete example will appear in [SKY1]. 
(A hereditary algebra A over an algebraically closed field k has no nonsplittable exten- 
sions over Hom(A, k).) 

(2) Let A be a factor algebra of a hereditary algebra (i.e. an algebra without oriented 
cycles in its quiver) and let D A  be any duality A-module. Then any two extension 
algebras of A by D A  are stably equivalent [Y88]. 
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(3) Let To and T1 be the algebras with the same quiver and the following relations; 

Og 

1 > 2 ~ p ;  
To: ce/3= p2, f lc~=0,  

TI: c~/3 = p2, p4 = 0 ,  /3ct =/3pet. 

Then, in case char k = 2, the algebras To and Tl are not isomorphic (Riedtmann). More- 
over, for the algebra A with the same quiver as the Ti (i = 0, 1) but with the relation that 
the composite of any two arrows is zero, we have that A ~_ T0/rad 2 To ~- T1 / rad 2 T1 nat- 
urally as algebras, and, by these isomorphisms, rad2 T0 and rad2 T1 become A-bimodules 
that are isomorphic to each other. Let D A  be a duality A-bimodule isomorphic to 
rad2To( ~ _ rad2T1) as A-bimodules. Then To and T1 both are nonsplittable extension 
algebras of A over D A .  It is not difficult to see that To and T1 are symmetric algebras 
(e.g., use Theorem 2.3.1). Hence, in case char k = 2, there are at least two nonisomorphic 
symmetric nonsplittable extensions of A by D A .  

(4) Let A be a nonzero element of a field k and let A(A) be the local k-algebra defined 
by two arrows c~,/5 with the relation: c~ 2 =/32 -- c~/3 + A/3c~ = 0. Every A(A) is then a 
local Frobenius algebra on four dimensional k-vector space and a nonsplittable extension 
algebra of the Frobenius k-algebra k[z ] / ( z  2) by itself (with indeterminate z). In the case 
where char(k) = 2, A(1) is the group algebra of Klein's 4-group with coefficients in k. 
It seems that, as a natural degeneration of A(1), these algebras A(A) were first observed 
by Nakayama [N3941], I, where he showed that A(A) is symmetric exactly when A = 1 
by checking all ideals (in fact, A := A(A),radA, rad 2 A, 0 and Aa = a A  = k lA + ha 
for a E kc~ + k/3 are the only ideals). As to the Nakayama automorphisms of A(A), let 
u(c~) = Ac~ and u(/3) = A-1/3. Then u induces an automorphism of A(A) naturally, so 
that there is an A(A)-bimodule isomorphism A(A) ~r Hom(A(A), k)~,. It is easily seen 
that u is inner if and only if A = 1. Hence we know again that A(A) is symmetric exactly 
when A = 1 (Theorem 2.4.1). Moreover we have the following interesting fact which 
was discovered by Rickard (unpublished). 

THEOREM (Rickard). A(A) and A(A') are stably equivalent if  and only if  A' = A or 
A ' =  A -1, in which case A(A) and A(A') are isomorphic. 

3. Generalizations and the Nakayama conjecture 

The Nakayama conjecture is a characterization problem of quasi-Frobenius algebras and 
is deeply related to a class of QF-3 algebras introduced by Thrall [Th48]. 

3.1. Thrall's generalizations 

Let A be a k-algebra, M an A-module and let B = End(M) ~ Then M is said to be 
balanced (or have the double centralizer property) if the canonical algebra morphism 
CpM: A -+ EndB(M) is epimorphic. A module M is said to be minimal faithful if 
it is faithful and any proper direct summand of M is not faithful. Note that A A has 



866 K. Yamagata 

projective minimal faithful submodules and A Hom(A, k) has injective minimal faithful 
submodules. 

EXAMPLE. A module M is balanced if M m contains A A as a direct summand for some 
m > 0 (Nesbitt and Thrall (1946); see Section 1, Example, and Morita [Mo58a], Theo- 
rem 16.5). 

DEFINITION 3.1.1. 
(1) A is a left QF-1 algebra if every faithful left A-module is balanced. 
(2) A is a left QF-2 algebra if every indecomposable projective left A-module has a 

simple socle. 
(3) A is a left QF-3 algebra if there is a unique minimal faithful left A-module up to 

isomorphism. 

The definition of QF-1, QF-3 algebras does not depend on the side of modules. Be- 
cause, faithful left A-modules are in a 1-1 correspondence by Hom( - ,  k) with faithful 
right A-modules. (See Harada [Ha66], Morita [Mo69] for the side problem for QF-3 
Artinian rings, see also Masaike [Mas92].) It is clear that any quasi-Frobenius algebra 
is QF-1 (use the above example), QF-2 and QF-3. Conversely, Floyd [F168] proved that 
commutative QF-1 algebras are quasi-Frobenius. (Cf. [DF70, C70, Rin74].) See Morita 
[Mo69] and Fuller [Fu69] for the Morita duality induced by an arbitrary QF-3 algebra. 

The following characterization was proved by Thrall [Th48], Theorem 5 (see Jans 
[J59]). 

PROPOSITION 3.1.1. An algebra A is QF-3 if and only if there is a projective, injective 
and faithful left A-module, and if and only if the injective hull I (AA)  of a A  is projective. 

PROOF. Assume that A is QF-3, and let P and Q be minimal faithful summands of A A 
and A Hom(A, k), respectively. Then, by uniqueness, P "~ Q as A-modules which implies 
that P is injective. Conversely, assume that P is a projective injective faithful module, 
and let M be a faithful module. There is a monomorphism ~: A --+ M (n) for some n. 
Clearly we may assume that P is basic, so that P ~_ Ae for some e - e 2 E A. Since 
P is injective, the restriction qolp: P '-+ M (n) is splittable and hence P is isomorphic 
to a summand of M because P is basic. Thus the basic module P is a unique minimal 
faithful module. The last statement is obviously equivalent to the second statement. 

Now assume that A is left and right QF-2. Then there are minimal faithful modules AP 
and A Q, which are projective and injective respectively, such that any indecomposable 
summand has both a simple top and a simple socle. Let AP -- (~i Pi and AQ -- (~j  Qj 
be indecomposable decompositions. Then every Pi is embedded into some Q,(i), because 
Q is faithful and soc Pi is simple, so that Q~(i) is projective (note: the projective cover 
of Q~(i) has a simple socle because A is left QF-2). Hence we have that the module AQ 
is projective, injective and faithful. Thus we know that every left and right QF-2 algebra 
is QF-3. [2 

NOTES. QF-2 algebras play an important role in the representation theory of vector space 
categories [Si85a, Si85b]. We refer to Simson [Si92] for a general discussion of vector 
space categories and their representations. See also [Ha82, Ha83]. 
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3.2. A construction of QF-3 algebras 

There is an important construction of QF-3 algebras as the endomorphism rings of 
generator-cogenerators over an algebra A. This was first studied by Morita [Mo58a]. 

Let M be a module over an algebra A. Recall that M is a generator if and only 
if AA C add(M), and M is a cogenerator if and only if A Hom(A,k) E add(M). 
For a generator-cogenerator M, decompose it as M = Mo | M1 �9 M2 �9 M3 such 
that Mo has neither nonzero projective summands nor nonzero injective summands, M1 
is projective without nonzero injective summands, M2 is projective and injective, and 
M3 is injective without nonzero projective summands. Let M(p) = M1 | M2 and 
M(t~) = M2 �9 M3. Let B = EndA(M) ~ and let eM(P): M --+ M(p) "--+ M and 
eM(t~): M -+ M(t~) ,--+ M be idempotents of B which are composites of a canonical 
projection and a canonical injection. Now assume that A and AM are basic. Then, since 
A M  is supposed to be a generator-cogenerator, we have that AM(p) " AA, AM(n)  "~ 
A Hom(A, k), and eM(P)BB ~ MB, A ~_ eM(P)BeM(P) as algebras. Hence eM(P)B B 
is a projective, injective and faithful right B-module, because so is M s  by Morita theory. 
On the other hand, B is naturally identified with EndA (M*) and then 

= M *  + -+  M * ,  

where ()* := Hom(- ,  k). Moreover, 

M*(p) = M(~)* A ~ AA, 

M*(e;) = M(p)* "~ Hom(A k)A , A 
= * ,  

and 

This implies that BBeM(e;) is also projective, injective and faithful. Thus we know that 
B is a QF-3 algebra with minimal faithful B-modules BeM(e;) and eM(P)B, which 
proves the next theorem. 

THEOREM 3.2.1 (Morita). Let M be a generator-cogenerator over an algebra A and 
B = EndA(M) ~ Then B is a QF-3 algebra with projective, injective and faithful 
modules BeM(n) and eM(P)B. Moreover, A and eM(P)BeM(P) are Morita equivalent. 

COROLLARY 3.2.1. EndA(A | Hom(A, k)) is a QF-3 algebra for any algebra A. 

Another important example of endomorphism algebras in the above theorem is given 
by Auslander algebras. Here an Auslander algebra is by definition the endomorphism 
algebra of an A-module M such that add M -- add M(A) ,  where A is an algebra of finite 
representation type and M(A)  is the direct sum of all nonisomorphic indecomposable 
A-modules. In this case, obviously A M  is a generator-cogenerator, and we know that 
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gl dim B <~ 2 for B = EndA (M) ~ Indeed, for this it suffices to show that Ker h is 
projective for any morphism h: P1 --+ P0 where P0 and P1 are projective B-modules. 
Let F = B H o m A ( M , - )  and G = AM @B --. Then, since KerG(h) E add(AM) (by 
the definition of AM) and FG ~_ 1 on the subcategory of projective B-modules, we 
have that 

Kerh ~ F(KerG(h ) )  E a d d F ( M )  = add(BB). 

This implies that Ker h is projective as desired. A characterization of Auslander algebras 
is given in Theorem 3.3.2 below, which is proved by Auslander [A71, A74]. Ringel and 
Tachikawa proved it for Artinian rings [RinT75]. Tachikawa related Auslander algebras 
with the problem when the category of projective modules is abelian with generators and 
products [Ta73]. 

3.3. QF-3 maximal quotient algebras 

Not every QF-3 algebra is the endomorphism ring of a generator-cogenerator. In fact, 
for A, M and B as in Theorem 3.2.1, let 0 -+ M -+ I0 --+ I1 be a minimal injective 
presentation of the A-module M. Then I0 and I1 belong to add(a Hom(A,k)). Here 
note that A Hom(A,k) is in add(Am). Applying H o m A ( M , - )  to the sequence, we 
have an exact sequence of left B-modules such that 0 ~ B B -+ Po --+ P1 where Pi = 
HomA(M, Ii) belongs to add(BBe(~)). Hence both P0 and PI are projective, injective 
and belong to add(I(BB)),  where I (BB)  is the injective hull of BB. Thus B is a left 
maximal quotient algebra. Here recall that the left maximal quotient ring Qe(R) of a 
(general) ring R is the endomorphism ring of the right EndR(I(RR))~ I (RR)  
(i.e. Qe(R)) is the double centralizer of I(RR)).  Since each element of R defines an 
endomorphism (as a left multiplication) of EndR(I(RR))~ I(RR),  there is a 
canonical ring homomorphism ~e" R ~ Qe(R). A ring R is called a left maximal 
quotient ring if the canonical morphism qoe is an isomorphism. A right maximal quotient 
ring Qr(R) is defined similarly. A ring R is said to be maximal quotient when it is left 
and right maximal quotient, i.e. both qoe and qD,- are isomorphisms. This definition is due 
to Lambek (originally defined by Utsumi, Osaka Math. J. 8 (1956)) and he proved the 
following effective characterization [L86], w Proposition 1, which is a special case of 
Theorem 3.5.1. 

PROPOSITION 3.3.1 (Lambek). A ring R is a left maximal quotient ring if and only if 
there is an exact sequence 0 -+ R R --+ Io -+ I1 of R-modules such that Io and I1 are 
direct summands of a direct product of copies of I(RR).  In case R is a finite dimensional 
algebra over a field we can take as Io and Ii direct summands of I (RR)  m for some m. 
(Note: we can take I (RR)  as Io.) 

Now we are in a position to state a characterization of the endomorphism algebra of a 
generator-cogenerator by MOller [Mu68a], Theorem 2, and Morita [Mo69], Theorem 1.2. 
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THEOREM 3.3.1. The following statements for an algebra A are equivalent. 
(1) A is the endomorphism algebra of a generator-cogenerator over an algebra. 
(2) A is a QF-3 maximal quotient algebra. 
(3) For a minimal injective presentation 0 --+ AA --+ Io --+ 11, both lo and I1 are 

projective. 

This follows from Theorem 3.2.1, Propositions 3.1.1, 3.3.1, and the following lemma. 

LEMMA 3.3.1. Let A be a QF-3 algebra, and let A Ae and f AA be unique minimal 
faithful A-modules. Then A is left maximal quotient if and only if it is right maxi- 
mal quotient. Moreover, in this case, AeeAe and f Af f A are generator-cogenerators, 
A ~_ End~A~(Ae) ~- EndyAy( fA)  ~ as algebras, and HOm~Ar | Ae ~ 1 on 
add(AeeAe). 

PROOF. I (AA)  and Ae are similar, so Qe _~ EndeAe(Ae) as algebras (Section 1, Exam- 
ple). Similarly, Qr(A) ~_ E n d f A f ( f A )  ~ On the other hand, since f A  ~_ Hom(Ae, k) 
as right A-modules, their double centralizers are isomorphic, i.e. 

E n d f a f ( f  A) ~ "~ EndeAe(Ae). 

Hence 7~e: A -+ Qe(A) is isomorphic if and only if so is ~r: A --+ Qr(A).  In partic- 
ular, by Morita theory, Aeea~ is a generator-cogenerator because A Ae is projective and 
injective. V] 

PROPOSITION 3.3.2. Let A be the endomorphism algebra of a generator-cogenerator B M  
over an algebra t3. Then the following assertions hold. 

(1) E x t , ( M ,  M) = O for some i if and only i f E x t ~ A f ( f  A, f A ) - O, where f A is a 
unique minimal faithful right A-module. 

(2) B M  is projective if and only if A is quasi-Frobenius. 

This is an easy consequence of Morita Theory. First note that MA is projective, injective 
faithful. (1) By Theorem 3.3.1 there is a unique minimal faithful right A-module f A .  Then 
MA and f a A  are similar. This implies tha t /3 (=  EndA(M)) and f A r ( =  E n d a ( f A ) )  
are Morita equivalent, so the assertion (1) follows (Section 1, Example). (2) Assume that 
B M is projective. Then MA is a generator by the Morita equivalence theorem. Hence 
AA is a summand of M ]  for some n > 0 and so AA is injective. Conversely, if A is 
quasi-Frobenius, an embedding AA r M ~  for some m > 0 is splittable because AA 
is injective. Hence MA is a generator and so, by the Morita equivalence theorem again, 
B M  is projective. 

As an application of Theorem 3.3.1 and Lemma 3.3.1 we can prove a characteri- 
zation of Auslander algebras as mentioned in 3.2, where one direction is clear from 
Theorem 3.3.1 and the observation after Corollary 3.2.1. 

THEOREM 3.3.2 (Auslander). An algebra A is an Auslander algebra if and only if 
gl dim A ~< 2 and there is an injective presentation 0--+ A A --+ Io -+ I1 such that 
Io, I1 are projective A-modules. 
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PROOF. Assume that gl dim A <~ 2 and A satisfies the equivalent conditions in Theo- 
rem 3.3.1. Let Ae be a unique minimal faithful A-module, and F = HOm~Ae(Ae,-) 
and G = - |  Ae. Then, to show that A is an Auslander algebra it suffices to show that 
any indecomposable right eAe-module M belongs to add(Ae~a~) (Lemma 3.3.1). Now, 
since Ae~Ac is a cogenerator, there is an exact sequence of right eAe-modules; 

0 ~ M --+ Ae m h Ae n 

for some integers m, n. Then we have that Ker F(h) is a projective right A-module, i.e. 
Ke rF (h )  E add(Aa), because F(Ae)A ~-" AA (Lemma 3.3.1) and gl dimA ~ 2. Hence 

KerGF(h) "~ G( Ker F(h)) E add (G(AA)) = add(AeeAe). 

On the other hand, since 1 ~ GF on add(AecAe) by Lemma 3.3.1, h is isomorphic to 
GF(h),  so that Kerh ~ KerGF(h).  In consequence, we have that M c add(AeeA~) as 
desired, r-1 

NOTES. For an arbitrary ring A, Qe(A) is a left self-injective ring if and only if Qe(A) 
is an injective left A-module ([L86], Proposition 3). 

(1) Masaike [MasT1] gave an ideal theoretical characterization on A for Qe(A) to be 
quasi-Frobenius: Qe(A) is quasi-Frobenius if and only if A satisfies the ascending chain 
condition for left I(AA)-annihilators and r A (L) = 0 for any left ideal L of A such that 
there is an A-homomorphism from L to A which is not extended properly to any left 
ideals. For example, the ring of triangular matrices over a quasi-Frobenius ring is a left 
and right QF-3 Artinian ring whose maximal left and maximal right quotient rings are 
quasi-Frobenius. Sumioka [Su75] proved the converse under some additional condition. 

(2) Kambara [K90] characterized a (yon Neumann) regular ring A with Qe(A) being 
left and right self-injective. In fact, in this case, Qe(A) is a regular and maximal right 
quotient ring. This answers a question posed by Goodearl and Handelman [GoH75]. 

(3) B. M~iller [Mu68b] proved a structure theorem for QF-3 algebras: An algebra A 
is a QF-3 algebra if and only if A is a subalgebra of a QF-3 maximal quotient algebra 
_R such that A contains suitable minimal faithful ideals RRe, f RR and the unit 1 of R. 
See [RinT75] for a generalization to arbitrary QF-3 rings. 

3.4. The Nakayama conjecture 

Nakayama [N58] conjectured that an algebra A is quasi-Frobenius if there exists an 
infinite exact sequence 

O--~ A - +  Xl -+' ' ' - -+ X n - + ' ' "  

of projective and injective A-bimodules Xi, and he proved this for serial algebras (= 
generalized uniserial algebras, see 2.1). Tachikawa [Ta64] considered similar sequences 
where the Xi are projective and injective left A-modules. He defined the left dominant 
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dimension of A to be greater than or equal to n, 1.dom.dim A >/n,  when there exists an 
exact sequence 

O ~ A ~ X I  ~ . . . ~ X , ~  

of projective and injective left A-modules Xi (1 <~ i <~ n). B. Mtiller [Mu68a] proved that 
the Nakayama conjecture is equivalent to say that A is quasi-Frobenius if 1.dom.dim A = 
c~ (i.e. >~ n for any n). However, compared to the usual homological dimensions (e.g., 
projective dimension, injective dimension), we define it in a slightly different way. 

DEFINITION 3.4.1. The left dominant dimension of an algebra A, 1.dom.dim A, is n + 1 
if for a minimal injective resolution of A A 

0--+ A A --+ Io --+ I1 - + . . . - +  In -+ In+l - - + ' " ,  

Ii (0 <~ i <~ n) are nonzero projective but Inq_ 1 is not. Similarly r.dom.dimA is defined 
and 1.dora.dim A = 0 if I(AA) is not projective. 

Then, 1.dom.dimA > 0 means just that A is left QF-3, and A is a QF-3 maximal 
quotient algebra if and only if 1.dom.dimA > 1 (Theorem 2.3.1). Since the dominant 
dimension of quasi-Frobenius algebras is 1, the Nakayama conjecture can be stated as 
follows: 

NAKAYAMA CONJECTURE (NC). Every algebra has finite dominant dimension. 

A crucial theorem for dominant dimensions was first proved by Mtiller [Mu68a], 
Lemma 3, where D -- H o m ( - ,  k). 

THEOREM 3.4.1 (B. Mtiller). Suppose that 1.dom. d imA > 1, and let AAe, f A A  be 
unique minimal faithful modules. Then 1.dom. dim A > n + 1 if and only if 

E X t } A f ( f A  , f A ) - O  f o r O < i  < n + l ,  

if and only if 

Exti~A~ (D(Ae),  D(Ae))  = 0 for 0 < i < n + 1. 

Now suppose that 1.dom.dim A > 1 as in the theorem. Then it follows from Theorem 3.3.1 
and Lemma 3.3.1 that 

A = EndyAy( fA)  ~ = EndeAe(Ae), 

and f A f f A A  "~ eAeD(Ae)A as bimodules via the canonical isomorphism 

f A f  = EndA(f  A) ~ EndA (D(Ae))  - eAe. 
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Thus the above theorem is obtained immediately from the first assertion in the next 
lemma which is used essentially in [Mu68a]. For a module M, a minimal injective (resp. 
projective) resolution is denoted by Io(M): 0 --+ M --+ Io(M) --+ I I (M)  - + . . .  (resp. 
P~ . . . - +  Pl ( M ) --+ Po ( M ) -+ M --+ 0). 

LEMMA 3.4.1. Let A be an algebra A and M an A-module. 
(1) The following statements are equivalent for a projective A-module PA and B = 

EndA(P). 
(a) I i (M)  E add(Anom(P, k ) ) fo r  0 <~ i <~ n. 
(b) M ~_ HomB(P, P | M)  canonically as A-modules and 

E x t ~ ( P , P |  f o r O <  i < n. 

(2) The following statements are equivalent for a projective A-module A Q and B = 
EndA(Q) ~ 

(a) Pi(M) ~ add(AQ)for 0 <~ i <<. n. 
(b) M _~ Q | HomA(Q, M) canonically as A-modules and 

Tor B (Q, HOmA (Q, M))  - 0 for 0 < i < n. 

It is enough to show (1) because of the dual argument, and it is a routine task: Let 
~x" X -+ HomB(P, P | X )  be a canonical A-morphism for an A-module X. 

(a) ::r (b)" Since A Hom(P,k) is injective and ~x  is an isomorphism for X -- 
Horn(P, k) and so for X c addA(Hom(P, k)), it follows that HomB(P, P (~A I . ( m ) )  is 
isomorphic to I~  up to n. 

(b) ::v (a)" Any injective B-module J is a direct summand of Hom(B,k)  m for 
some m > 0. Hence, as A-modules, HomB(P, J)  is a direct summand of HomB(P, 
Hom(B,k ) )  m and HOmB(P, Hom(B,k) )  ~ Horn(P, k). Thus it follows from the as- 
sumption in (b) that HomB(P, I i (BP  (~A M))  contains I i (M)  as a direct summand for 
O <~ i <~ n. 

EXAMPLE 1. For any k-algebra A, there is an idempotent f such that 

n(A) ) 
addA Hom(fA, k) = add 0 I i (Ad)  

i--I 

where n(A) is a natural number such that 

n(A) ) 
I j (AA)  E add ~ Ii(AA) 

i=1 

for all j ~> 0. Then it follows from the Morita equivalence theorem and Lemma 3.4.1 (1) 
that f A f f A  is a generator, A "~ End fA f ( fA )  and EXt~Af(fA , f A )  - 0 for all i > 0. 
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We know that 1.dom.dim A > 0 if and only if r.dom.dim A > 0 (Theorem 3.3.1). But, 
in this case, it is true that both dimensions are equal [Mu68b]. 

PROPOSITION 3.4.1. If  1.dom. dimA > 0 and r.dom, dimA > 0, then 1.dom.dimA = 
r.dom.dim A. 

PROOF. Assume that 1.dom.dim A > n 4- 1 for a non-negative integer n. We have only 
to show that Pi(D(AA))  E add(Ae) for 0 ~< i ~< n + 1, where Ae is a unique minimal 
faithful A-module. Hence, by Lemma 3.4.1, it suffices to show that"~or ieAc(Ae, e(DA))  = 
0 for 0 < i < n + 1, because applying D := Horn(- ,  k) to the algebra isomorphism 
A ~_ Homear Ae) we have that A D A  "" Ae (~eAe e(DA).  But this follows from 
Theorem 3.4.1 and the isomorphism 

D "" e A e  (Ae, e lori (DA))  "~ EXteA c i  (D(Ae),  D(Ae))  

l-q 

The following is a direct consequence of Proposition 3.3.2 and Theorem 3.4.1. 

THEOREM 3.4.2 (B. Mtiller). Let B M  be a nonprojective generator-cogenerator over an 
algebra B, and A = EndB(M) ~ Then 1.dom. dimA < c~ if and only if 

Ext , (M,  M) # 0 for some i > O. 

By using this theorem, the Nakayama conjecture is restated as follows (B. Mtiller). 

(NC-M) A generator-cogenerator M over an algebra A is projective if 

Extra (M, M) -- 0 for all i > O. 

There are other several conjectures related to the Nakayama conjecture. 

(FDC) The finitistic dimension conjecture. For an algebra A, there is a bound for the 
finite projective dimensions of finitely generated A-modules. 

See [Zi92] for a brief history and the recent development of the conjecture. 

(SNC) Strong Nakayama conjecture [CF90]. For any nonzero finitely generated left mod- 
ule M over an algebra A, there is an integer n >~ 0 such that Ext~ (M, A) r 0. 

(GNC) Generalized Nakayama conjecture [AR75b]. For an algebra A, any indecompos- 
able injective A-module belongs to 

U add l i (AA),  
i>>.O 

where 0 --+ AA --~ Io(AA) --+ 11 (AA) ---~ . . .  is a minimal injective resolution of AA. 
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This is equivalent to the next statement because Extra (S, A) r 0 for a simple module 
S if and only if S C Ii(AA): 

(GNC t) For any simple module S over an algebra A, there is an integer n >~ 0 such 
that Ext~ (S, A) :/: 0. 

The following is an analogue of NC-M, which is also equivalent to GNC [AR75b]. 

(GNC-M) a generator M over an algebra A is projective if Exti4 (M, M)  = 0 for all 
i > 0 .  

Tachikawa divided Mtiller's restatement NC-M into the following two statements, 
where D A  = Horn(A, k), and by NC-T we understand the two statements NC-T1, T2 
together. 

(NC-T1) An algebra A is quasi-Frobenius provided that Ext,4 (DA, A) - 0 for all i > O. 

(NC-T2) A finitely generated module M over a quasi-Frobenius algebra A is projective 
if Ext,4 (M, M) - 0 for all i > O. 

Now our aim is to show the following implications among those statements, where the 
implication FDC =~ NC was first noted by Mtiller and the last equivalence is in [Ta73]. 

THEOREM 3.4.3. FDC =v SNC =:> GNC r GNC-M =v NC r  NC-M r  NC-T. 

FDC =~ SNC: Let n be a bound for the finite projective dimensions, and assume that 
Ext~t (M, A) - 0 for some nonzero A-module M and all i >/0. Let 

�9 " - -&+PI  I '~p0  f " > M - + 0  

be a minimal projective resolution of M and F = HOmA(--, A). Then, by assumption 
we have the exact sequence 

0--+ F(Po) F(@ F(P1) F(@ 

where all F(Pi) (i /> 0) are projective right A-modules. Hence we have a projective 
resolution of Im F(fn+2): 

0 ~ F(Po) g(@ F(PI) - + ' " - +  F(P.+I) -+ ImF(f~+2)  -+ 0. 

Since the projective dimension of ImF( fn+2)  is bounded by n by assumption, F(f l )  
and so f, = F(F( f , ) )  must be splittable. Hence AM is projective and Hom(M, A) -r 0, 
a contradiction. 

SNC =~ GNC is trivial (use GNC = GNC~). 
GNC =~ GNC-M" Let A M  be a generator such that Exti4 (M, M) -- 0 for all i > 

0 and B = Enda(M) ~ By the Morita equivalence theorem, M s  is projective and 
A - EndB(M).  Take an idempotent f in B such that add(Ms)  = add(fBB). Then 
A and f B f  are Morita equivalent, under which AM corresponds to f B f f B  (Section 1, 
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Example). Hence it suffices to show that f B f f B  is projective. Now Ext}B f ( fB  , f B )  = 0 
for all i > 0 because of the assumption for AM, which implies that 

Ii(BB) e addB Hom(f B, k) 

for all i />  0 (Lemma 3.4.1(1)). Consequently, B H o m ( f B ,  k) is a cogenerator by GNC 
for B, i.e. f B B  is a generator and so f s f f B  is projective by the Morita equivalence 
theorem. 

GNC-M =~ GNC: For an algebra A take an idempotent f of A as in Example 1 above. 
Then fAf  f A  is projective by GNC-M and hence fAA  is a generator by the Morita 
equivalence theorem because A ~_ EndfAf( fA) .  Hence A Hom(fA,  k) is a cogenerator. 

GNC=> NC: By GNC any indecomposable injective module A I appears in some 
Ii(AA) as a summand. Hence, if dom.dimA = oc, then every AI is projective and 
so A A is injective, i.e. dom.dimA = 1, a contradiction. (Note: GNC-M ~ NC-M is 
trivial.) 

NC-M =~ NC-(TI+T2)" First, assume that Ext~a(DA, A) - 0 for all i > 0, and let 
M = A | DA. Since M is a generator-cogenerator and 

Ext~ (M, M)  = Ext~ (DA, A) = O, 

it follows from NC-M that AM is projective and so ADA is projective, i.e. AA is 
injective. let A be quasi-Frobenius and M an A-module such that Ext'4 (M, M)  - Second, 
0 for i > 0. Then 

Exti4 (M | A, M | A) - 0 

for all i > 0 because A A is injective. Hence, by NC-M, A(M �9 A) and so M are 
projective. 

NC-(T1 +T2) => NC-M: Let AM be a generator-cogenerator such that Ext~ (M, M)  - 
0 for i > 0. We shall show that AM is projective. Since M is a generator-cogenerator, 
there is a summand AN such that add(N) - add(A | DA). Then E x t , ( N ,  N)  - 0 for 
i > 0 implies that 

0 = Ext~ (A | DA, A | DA) - Ext~ (DA, A) 

for i > 0. Hence, by NC-T1, A is quasi-Frobenius and so, by NC-T2, AM is projective. 

REMARK. All implications, except GNC r  GNC-M, in Theorem 3.4.3 are true for a given 
algebra A. But the proof of the equivalence GNC e ,  GNC-M involves the conjectures 
for the endomorphism algebras of some generators over a given algebra A. 

EXAMPLE 2. There is a simple construction of algebras with large dominant dimension 
[Y90] (cf. Theorem 3.4.1). Let 7) be the class of A-modules M such that I i(M) (i = 0, 1) 
is projective, and D = H o m ( - ,  k). Assume the following two conditions: 

(i) AA = P1 | Q1 as left A-modules and AA = P2 | Q2 as right A-modules, where 
every submodule of Pi is projective noninjective and Qi is injective. 
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(ii) Hom(X, M)  = O for any M E 79 and any indecomposable nonprojective injective 
A-module X. 

Then, for B = EndA(AA (~A DA) ~ we have that 

1.dom. dim A + 1 <~ l.dom, dim B ~ 1.dom. dim A + 2, 

g l d i m A + l  ~ < g l d i m B ~ < g l d i m A + 2 ,  

and 

0 ~< gl dim B - 1.dom. dim B <~ (gl dim A - 1.dom. dim A) + 1. 

For example, taking a hereditary algebra A as Al and the endomorphism algebras 

Ai+l := EndA, (Ai @ DA~) 

consecutively, we have then that 

l.dom, dimAl < . . .  < l .dom.dimAn < . . . .  

By this method, the number of simple modules is increasing. However, there is not 
known any class of algebras with arbitrarily large dominant dimension and with the 
same number of simple modules. We conjecture that there is an upper bound for the 
dominant dimensions of algebras having finite dominant dimension and with a given 
number of simple modules. This is still open for the class of algebras (having finite 
dominant dimension) with only two simple modules, see [KK90] and [Zi93]. We state a 
similar problem related to GNC. 

PROBLEM. Find a number n(A) for an algebra A such that 

n(A) ) 
Ij(AA) E add ~ Ii(aA) 

i = 0  

for all j > 0. If we take n(A) minimal, is there an upper bound among those numbers 
n(A) of algebras A with a given number of simple modules? 

Green and Zimmermann-Huisgen [GZ91] proved FDC for algebras A with rad 3 A = 0, 
hence by Theorem 3.4.3 (see the above Remark) these algebras also satisfy GNC and 
NC. This was partially generalized recently by Dr~ixler and Happel [DH92] as follows: 

PROPOSITION 3.4.2. An algebra A satisfies the generalized Nakayama conjecture pro- 
vided that, for some natural number n, rad 2n+1 A = 0 and A/  rad n A is representation 
finite. 
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NOTES. Wilson [Wi86] proved that positively graded algebras satisfy the generalized 
Nakayama conjecture. See Auslander and Reiten, and Solberg [AR91, AR92, AS92], 
Fuller and Zimmermann-Huisgen [FuZ86], and Martfnez Villa [Mar92] for general dis- 
cussion on GNC. It is known that NC-T2 holds for the group algebra kG of a finite 
group over a field k. This is a consequence of the work of Evens [Ev61] and Alperin 
and Evens [ALE81]. It was first proved for finite p-groups by Tachikawa [Ta73]; see 
also Schulz [Schu86] and Donovan [Do88]. See also Hoshino [Ho82] for NC-T2 for the 
trivial extension algebras considered in Theorem 2.5.2. 

3.5. QF-1 algebras 

There is a homological characterization of balanced modules by Morita [Mo71] and 
Suzuki [Suz71]. Cf. [Mo70], Theorem 3.4. 

THEOREM 3.5.1. Let A M  be a (not necessarily finitely generated)faithful A-module, 
and let B = EndA(M) ~ and C = Ends(M). Then A M  is balanced if and only if M 
satisfies the following two conditions: 

(a) the canonical morphism c M B  --+ c HomA(ACo,A M s )  is an isomorphism, 
(b) there is an exact sequence 0 --+ A A --+ Mo.--+ M1, where each Mi is a direct 

product of copies of A M  (in case M is finitely generated, we can take both Mi E 
add(AM)). 

In fact, if A M  is balanced, then (a) is trivial and (b) follows by applying HomB(- ,  MB) 
to a projective presentation of Ms:  

~[~ B B -+ ~ B B --+ M B --+ O. 
jEJ iEI 

To prove the converse, first observe that qo-l(f) - f u  for f E HomA(C,M)  and the 
inclusion u: A '--+ C, where (p: M --+ HomA(C, M) is the canonical isomorphism. 
Then, applying HomA(C,- )  to the exact sequence in (b), we have an isomorphism 

Hom(C, A) --+ A: f ~-~ fu ,  

in particular, the composite identity 

AA~-U+ AC f--~ A A 

for some f. Let 

AC -- AA  0 AC t. 

Then HomA(C', M) = 0 by (a), which forces that C' = 0 because C ' M  C M and c M  
is faithful. Thus we know that u is an isomorphism. 



878 K. Yamagata 

Although the theorem does characterize balanced faithful modules, to study QF-1 
algebras there is more effective criterion by Morita [Mo58b] to check if a module is 
balanced. Up to this time, it is the most important tool to study QF-1 algebras. In fact, 
the main results mentioned below were obtained by using the criterion effectively. 

MORITA'S CRITERION. Let M be a faithful balanced A-module. Then, for an indecompos- 
able A-module N, M @ N is balanced if and only if M either generates or cogenerates 
N (i.e. there is an epimorphism M m --+ N or a monomorphism N --+ M m for some 
m). 

PROOF. Let 

A L = M @ N ,  B = EndA (L) ~ 

and 

e M" L "M) M~n~L ' e N" L ~N~ N ~-~ L 

be the composites of a canonical projection and a canonical injection. Let 

N, "= E { I m f l f  E HomA(M,N)} ,  

and 

No "= N { Kerg [ 9 E HomA (N, M) }. 

Note that Nl = M(eMBeN ) C_ MB.  Since N is indecomposable, D "= EndA(N) is a 
local ring. Let D = D~ rad D, Nl* = N1 + N rad D and 

N~ = / g o ( r a d D ) ( =  {x E N o l x ( r a d D ) =  0}) ~= 0. 

Now assume that N1 -r N and No -r 0. Then N/N~ and N~ are nonzero (A,D)-  
bimodules. Since D is a division ring, there is a nonzero D- morphism from N / N {  to 
N G, so that we have a nonzero D-homomorphism qa: N --+ N such that qa(Ni ~) - 0 and 
~ (N)  C_ N~. Let 

�9 : L ~NrN +>N~-~L 

be the composite of qo and canonical morphisms. Observe that ~b is a B-homomorphism. 
Moreover, since # ( M )  = 0, # is not a left multiplication of any element of A because 
aM ~ 0 for any 0 ~ a E A. Hence we know that A L is not balanced. Conversely, 
take any B-homomorphism #: LB --+ LB, and assume that N1 = N or No = 0. Since 
~b(M) C M,  the restriction #IM: M --+ M is a C-monomorphism, where 

C "= eMBeM ~_ EndA(M) 
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canonically. Then ~ [ M  - -  a L (leftmultiplication) for some a C A, because A M  is 
balanced. Let 

c~ ~ -- ~ -  aL : LB ~ LB. 

Then ~'  (M) - 0, and it suffices to show that ~ '  (N) - 0. In fact, in case N = N1, N C 
M B  and so ~ ' ( N )  C r  = 0. In case N~ = 0, there are b l , . . . ,  bm E B such that 

( bl , . . . , bm ) : N --4 M m 

is a monomorphism for some m > 0. If ~ ' ( N )  ~ 0, then there is some bi such that 
�9 ' (N)bi  ~: 0 because ~ ' ( N )  c N (note that ~'  is a B-homomorphism). But, in this 
case, 

�9 ' (N)b~ = ~" (Nbi) C q~' (M)  = O, 

a contradiction. E] 

COROLLARY 3.5.1. An algebra A is QF-1 if and only if the following two conditions 
hold: 

(a) every minimal faithful A-module is balanced, 
(b) for  any minimal faithful A-module M, every indecomposable A-module is either 

generated or cogenerated by M. 

Thus the condition for all faithful modules in the definition of a QF-1 algebra is 
reduced to some conditions for the minimal faithful modules. Obviously every quasi- 
Frobenius algebra has a unique minimal faithful module. Floyd [F168] conjectured that 
QF-1 algebras have at most finitely many indecomposable faithful modules. But, in 
1986, Makino [Ma86] constructed QF-1 algebras having infinitely many minimal faithful 
balanced modules. Before introducing his example, we mention some results on QF-1 
algebras related to the problem of Floyd. A general structure theorem of QF-1 algebras 
was first proved by Ringel [Rin73]. 

THEOREM 3.5.2 (Ringel). Assume that A is a QF-1 algebras and let e and f be primitive 
idempotents with f (soc(AA) t2 soc(AA))e ~ O. Then 

(1) either I soc(AA)el = 1 or If soc(AA)l = 1, 
(2) I soc(AA)e I x If soc(AA)l <~ 2, and 
(3) I soc(AA)e I = 2 implies that soc(AA)e C soc(AA)e. 

Note that, for a primitive idempotent e of an algebra A, soc(AA)e is not zero if and only 
if Ae is a direct summand of a minimal faithful projective A-module. (This is used in 
several papers, e.g., Fuller [Fu70], Makino [Ma86]). Indeed, let A f  be a minimal faithful 
projective module with an idempotent f ,  and let J = soc(AA). Clearly Je ~: 0 if and 
only if J e A f  ~: 0, because A f  is faithful. But J e A f  ~ 0 just means that e A f  is not 
contained in tad A, or equivalently Ae is a direct summand of A f .  

By using the above theorem, Ringel answered Floyd's question as follows. 
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THEOREM 3.5.3. A QF-1 algebra having an indecomposable faithful module is Morita 
equivalent to a local quasi-Frobenius algebra. 

Thus QF-1 algebras have at most one indecomposable faithful module, and any QF-1 
algebra which is not quasi-Frobenius has no indecomposable faithful module. 

The structure of QF-1 algebras and of QF-1 serial algebras are known as follows: 

THEOREM 3.5.4 (Ringel). Let A be an algebra such that rad2A = O, and let L -- 
soc(AA) and J = soc(AA). Then the following conditions are equivalent: 

(1) A is a QF-1 algebra. 
(2) A satisfies the following conditions: 

(i)forprimitive idempotents e and f with f ( L n J ) e  ~ O, we have that (a) [Je[ -- 1 
or If LI = 1, and (b)ILel • If JI <~ 2, 

(ii) Je C Le for every primitive idempotent e with ILel = 2, 
(iii) f L C f J for every primitive idempotent f with If JL - 2. 

(3) Every indecomposable A-module has either a simple top or a simple socle, and A 
is a left maximal and a right maximal quotient algebra. 

Fuller [Fu68] gave a necessary and sufficient condition for a serial algebra to be QF-1. 
The following theorem by Ringel and Tachikawa [RinT75] implies a construction of 
serial QF- 1 algebras. 

THEOREM 3.5.5. An algebra A over a field k is a serial QF-1 algebra if and only if A 
is isomorphic to the endomorphism algebra of  a module M over a serial k-algebra B 
such that 

(a) add(M) = add(B ~ Horn(B, k)) and 
(b) Hom(X, Y) = 0 for any indecomposable nonprojective and any indecomposable 

noninjective direct summand X and Y of  M, respectively. 

Moreover, every indecomposable left module over a left serial QF-1 algebra has a simple 
socle (Tachikawa [Ta75]). It should be noted that both algebras with squared zero radical 
and left serial algebras have faithful serial modules. Thus the class of algebras in the 
following theorem contains the algebras in Theorem 3.5.4 and left serial QF-1 algebras. 

THEOREM 3.5.6 (Makino). Let A be an algebra over an algebraically closed field. If A 
is a QF-1 algebra with faithful serial modules, then every indecomposable A-module has 
either a simple top or a simple socle. 

Moreover, in fact, he gave a necessary and sufficient condition for an algebra to be a 
QF-1 algebra with a faithful serial module (see Makino [Ma91 ], Theorem II). 

Now we shall give an example of an algebra with infinitely many minimal faithful 
balanced modules (see [Ma86] for further information). 
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Let A be the algebra over a field k with the following quiver and relations" 

W2 Wl 

b ~ a  ) 1 

; /  
V2 

5 < ) 4 

V4 

2 < ) 3  
U2 

U3 

Then 

U5U4~ U4U3~ U3U2~ U2Ul 

V5V2~ V2V3~ V3V4~ V4V5 

V 3 U 2 U l  ~ ' / / , lWl  ~ W l W 2  

V3U2 ~ UlU5V2~ U2V3 ~ V4U3  

U 3 V 4  ~ V5U4~ U4V5 ~ V2UlU5.  

A = Ae~ @Ae~ @Ael @Ae2 @.. .  | Aes, 

where Aeb, Aei (2 ~< i <~ 5) are injective, and Ae~, Ael are not injective. Hence, every 
faithful A-module should have a summand isomorphic to (5) 

Aeb @ ( ~  Ae~ . 
i = 2  

Moreover, a module of the form (5) 
Aeb @ @ Aei @ X 

i = 1  

with noninjective indecomposable module X is minimal faithful if and only if Aea 
is isomorphic to a submodule of X.  Now, taking account of this fact, let Xn be the 
indecomposable module below and consider the module 

Mn -- Aeb �9 Ael @.. .  @ Ae5 @ X n  for n > O. 

Then we have that every Mn is minimal faithful because Aea ~ Xn. 

THEOREM 3.5.7 (Makino). The algebra A is QF-1, and every M,~ (n > O) is a minimal 
faithfid balanced module. 
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Xn" 

0 ~ k  ~ k  

k n 

U 

k n < 

qan 
k n 

> k n 

where 

q~)n ---" 

0 

i .o.  ~149 

�9 ~ �9 �9 "~ 

1 

~n - ( 1 0 . - .  O) and In is the n • n identity matrix. 

The following list of papers is not intended as a comprehensive bibliography of quasi- 
Frobenius algebras. I have selected those articles most relevant to the areas covered in this 
article, which were published after 1970 basically. Articles before 1970, can be found in 
various books or lecture notes, e.g., Curtis and Reiner [CR62, CR8187], Lambek [L86], 
Faith [F76] or Tachikawa [Ta73], Erdmann [Er90], etc. For articles on the representation 
theory of quasi-Frobenius algebras, see Gabriel [G79] and Skowroriski [Sk90]. 
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closed set in a matroid 161 
closed under extensions 680, 690 
closure (operator) on a partially ordered set 161 
closure of a group 808 
clutter 164 
CM-fields 384 
coalgebra 633 
coassociativity of the diagonal approximation 594 
cobase change by cofibrations 651 
coboundary operator 281 
cocartesian square 679 
code 484 
coderivation 635 
codes from near-rings 484 
codewords 398, 400, 484 
coface 642 
coface map 641 
cofibrant 652 
cofibration 650 
cogenerator 846 
Cohen-Macaulay ring 600 
coherent ring 716 
Cohn purity 613, 622 
cohomological descent property 665 
cohomological descent spectral sequence 667 
cohomological dimension 283, 601 
cohomological variety 600 
cohomology groups for an arbitrary topos 517 
cohomology of a category C with coefficients in a 

C-bimodule 628 
cohomology of a category C with coefficients in a 

natural system 628 
cohomology of a coalgebra 634 
cohomology of a group 584 
cohomology of categories 518 
cohomology of coalgebras 633 
cohomology of G with coefficients in M 584 
cohomology of groups 518, 583 
cohomology of Hopf algebras 636 
cohomology of posets 631 
cohomology of small categories 613, 625 
cohomology theory of coalgebras 614 
cohomology theory of commutative coalgebras 637 
cohomology with coefficients in a natural system 628 
coimage 614, 710 
coinduced module 593 
cointegration between bicomodules 635 
cokernel 710 
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cokernel morphism 614 
cokernel-projective object 616 
collineation 471, 485 
column code of a BIB 484 
comaps 171 
comaximal matrix relation 756 
comaximal relation 756 
combinatorial geometry 160 
combinatorial homotopy theory 641 
combinatorial pregeometries 160 
combinatorial topology 641 
comma category 506 
communication system 398 
commutation rule 733 
commutative 2-fir 740 
commutative diagram 711 
commutative free monoid 450 
commutative semiring 427 
commuting 3-face relation 552 
commuting 4-face relation 558 
comonad 506 
comonic block eigenpair for a matrix polynomial 103 
comonic block eigenpair of dimension d for a regular 

matrix pencil 83 
comonic block Jordan pair 84 
compactness theorem in logic 169 
companion linear matrix pencil 101 
companion matrix 341 
companion matrix associated with A(l) 137 
companion regular linear matrix pencil 99 
comparison lemma 508 
compatible family of elements 507 
compatible pair of subgroups 206 
compatible triangle adjunction morphisms 688 
complete balanced block design 482 
complete Boolean algebra 508 
complete determination of all tings with weak 

algorithm 747 
complete filtration 818 
complete group 296 
complete mapping polynomial of Fq 335 
complete n-discrete valuation field 226 
complete ~-semimodule 452 
complete semi-simplicial set 644 
complete set of orthogonal frequency squares 351 
complete subset global section 801 
complete theory 277 
completion 226 
complex multiplication 383 
complexes bounded from above 619 
complexes bounded from below 619 
complexity C N of a normal basis N 327 
complexity of decoding 403 

component 774 
component of an algebra 775 
components of a matrix 123 
composed triangle functors 687 
composition in a localized category 689 
composition lemma 768 
composition of paths functor 533 
composition ring 469 
computad 537 
computad morphism 538 
computational aspects of matrix polynomials 141 
comultiplication 633 
conditionally positive semidefinite 126 
conductor 369 
conductor of a character 369 
conductor of a class groups 370 
conflations 679 
confuence for rewrite rules 543 
congruence class semiring 440 
congruence fibration 486 
congruence in a semiring 427 
congruence on a semiring 440 
conical monoid 751 
conjecture of Friedlander and Milnor 657 
conjugate 2-graph 534 
conjugate left and fight modules 793 
conjugate transpose of a matrix 120 
conjugation module 807 
connected components 533 
connected geometric morphism 515 
connected matroid 163 
connected object of a topos 523 
connected semiautomaton 491,492 
connecting homomorphism 282, 585 
consistent estimate of the Stieltjes transform of the 

normalized spectral function 73 
consistent estimates of generalized variance 71 
constant field extension embedding problem 304 
constant near-ring 467 
constant of a derivation 196 
constant part of a near-ring 467 
constant sheaf functor 510 
constants in a function field 298 
constructible group 603 
construction methods for obtaining planar near-rings 

482 
construction of QF-3 algebras 867 
continuity of the Jordan form 130 
continuous functor 511 
continuous Lyapunov equation 91 
continuum hypothesis 503 
contractible Kan complex 521 
contraction and deletion 163 
contraction of a matroid 162, 171 
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contravariant functor 281,712 
convergence of a spectral sequence 596 
coordinatization of geometric planes by near fields 

470 
coproduct of skew fields 733 
coproducts offings 757 
corestriction 592 
correct sheaf 805 
correspondence between elementary topoi and 

intuitionistic theories 526 
coseparable coalgebra 635 
coskeleton 662 
cospans from a to b 563 
Costas array 333 
counit 633 
countably complete 52:semimodule 452 
countably idempotent Y2:semiring 453 
coupling map 469 
covariant functor 281, 711 
cover of a group 486 
covering families 506 
covering projection with group G 511 
covering space 522 
Coxeter relations 559 
critical exponent of a set of vectors 173 
critical path problem 429 
critical problem of Crapo and Rota 173 
crossed extensions 590 
crossed homomorphisms 281 
crossed module 591 
crossed product 776 
cryptology 346 
cryptomorphisms 159 
cryptosystem 346 
cup product 282 
cup product in group cohomology 594 
CW-complex 646 
cycle matroid of a graph 160 
cyclic codes 406 
cyclic extension 276 
cyclotomic character 289 
cyclotomic coset 408 
cylinder 617 
cylinder object 653 
Cech cohomology 519 
Cech cohomology and sites 519 
Cech cohomology object 662 
Cech cohomology of g for the cover U 519 
Cech resolution 662 

D-bimodule over k 746 
d-dimensional dimer problem 17 
d-dimensional hypercube 350 

d-orthogonal d-dimensional hypercubes 350 
D-regular/)(,A)-module 837 
D-ring 438 
D-semigroup 438 
D-semiring 438 
d-simplex matrix 562 
D b (Mod R) 677 
/)-modules 815 
/)-projective group 311 
/)l-module with regular singularities 825 
d.g. near-rings 468 
DA 743 
deadlock 496 
decimation of a sequence 344 
deciphering scheme 346 
decoder 398 
decoding Goppa codes 415 
decomposable block eigenpair 84 
decomposable block eigenpair of dimension d for a 

matrix polynomial 102 
decomposition theorem for regular matroids 167 
Dedekind domains 367 
Dedekind prime ring 623 
Dedekind ring 718, 725 
Dedekind's formula 324 
defect 287 
defectless field 287 
defining set of a cyclic code 407 
deflating subspaces 85 
deflations 679 
deformation of a string diagram 547 
deformation of progressive plane graphs 544 
degeneracies 645 
degree defined on a filtered ring 743 
degree function 743 
degree map 377 
degree of a divisor on an algebraic curve 417 
degree of a matrix polynomial 101 
degree of a polynomial 733 
degree of an element of a free k-algebra 745 
deletion of a matroid 163 
Deligne's theorem 513 
Delzant Stiefel-Whitney classes 663 
Demushkin group 291 
Demushkin group of rank Ro 292 
dense set in M(G) 473 
dense subring 789 
dense subring of linear transformations 789 
density of a Haar measure 30 
density theorem for near-rings 474 
density theorem of Frobenius 382 
density theorem of Kronecker 382 
density theorems 380 
dependence number of a filtered ring 752 
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dependence relation 160 
dependence relation axioms for matroids 160 
derivation 189, 196, 534, 629 
derivation of L over K 196 
derivation scheme 531,534 
derivation scheme morphisms 534 
derivatives of eigenvalues of matrix valued functions 

134 
derived categories of fully exact subcategories 693 
derived category 661,673, 674, 691,692 
derived category of a finite-dimensional algebra 673 
derived category of Mod R 677 
derived category of the category of modules 678 
derived category of the category of modules over a 

hereditary ring 678 
derived category of the category of vector spaces 678 
derived equivalent algebras 853 
derived functors 694 
derived functors between derived categories 698 
Desarguesian projective incidence group 472 
descending chain condition (DCC) 773 
descending chain condition on left ideals 469 
design 351 
design of experiments 351 
detectable pair of matrices 94 
determinantal identities 168 
diagonal approximation 594 
diagram chasing 711 
diamond lemma 768 
Dickson invariants 600 
Dickson near-field 470 
Dickson polynomials 331 
dictionary between geometry and group theory 486 
difference order 447 
difference set 353, 412 
digital multistep method 354 
dilatation of an incidence structure 485 
dimension theorem 599 
direct image functor 509 
direct limit of modules 714 
direct product of semirings 427 
direct sum of matroids 163 
direct sum of modules 712 
direct sum of subsemimodules 443 
direct summand 712 
direct system 713 
directed graph 531 
directed set 799 
Dirichlet characters 369 
Dirichlet density 381 
Dirichlet series 371 
discrete algebraic matrix Riccati equation 97 
discrete category corresponding to a category 626 

discrete category on X 533 
discrete detectable pair of matrices 97 
discrete filtration 818 
discrete graph Xd on a set X 533 
discrete logarithm 337 
discrete logarithm problem 337 
discrete Lyapunov equation 91 
discrete stabilizable pair of matrices 97 
discrete stable matrix 90 
discrete valuation 287 
discrete valuation fields 224 
discrete, dynamical, time-invariant system 492 
distingttished Galois subfield 201 
distinguished intermediate field 212 
distinguished maximal separable intermediate field 

191 
distinguished triangles 618 
distinguishing set of linear functionals 173 
distribution of eigenvalues and eigenvectors of 

orthogonal random matrices 43 
distribution of eigenvalues and eigenvectors of 

random matrix-valued processes 64 
distribution of roots of algebraic equations with 

random coefficients 45 
distributive element of a near-ring 467 
distributive lattice 429 
distributive laws between monatls and comonads 549 
distributive near-ring 427, 468 
distributive part of a near-ring 467 
distributively generated near-ring 468 
distributor 565 
divisible abelian group 724 
divisible group 724 
division algorithm 743 
division semiring 428 
divisor 416 
divisor on an algebraic curve 417 
Dole~al's theorem 134 
domain 780 
dominant conjecture for Schur functions ("dominance 

conjecture") 18 
Dorroh-extension of a semiring 432 
double centralizer property 865 
double negation 525 
double stochastic matrix 5 
double-neutral element in a semiring 429 
Dowling geometry 166 
Dowling-Wilson inequalities for Whitney numbers 

173 
dual bases of finite fields 326 
dual basis 326 
dual basis for a set of higher derivations 200 
dual code 402 
dual code of a cyclic code 407 
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dual matroid 163 
dual numbers 678 
dual p-base 199 
dual pencil 82 
duality 848 
duality between left and right torsion modules 755 
duality for projective modules 738 
duality group 602 
duality module 857 
duality of matroids interchanges 163 
Dyson equation 54 
Dyson integral equation 54 

e-error-correcting code 401 
edge homomorphism 519, 596 
edge-colorings 17 
edges 454, 532, 544 
effective construction of irreducible polynomials 

over Fq 329 
effective topos 527 
efficient construction of primitive polynomials 

over b-'q 333 
Egorychev-Falikman theorem 14 
eigenvalues of a pencil 82 
Eilenberg-MacLane space 583, 645 
Eilenberg-Moore sequence 597 
Einstein-Smoluchowski equation 67 
element in a semiring 429 
elementarily equivalent fields 277 
elementary quotient matroid 171 
elementary theory of a class .~" of fields 277 
elementary topos 503, 504, 531 
elementary topos versus Grothendieck topos 508 
elliptic law 63 
elliptic modules 384 
embeddability in a skew field 740 
embedding problem 279, 304 
embedding property 310 
embedding theorem for svelte exact categories 680 
enciphering scheme 346 
enclosing ideal 480 
encoder 398 
end of a group 603 
endomorphism semiring of a semimodule 445 
enlarged fundamental group 524 
enough cokernel-projective objects 616 
enough injectives 681 
enough F-split objects 698 
enough points 512 
enriched hom sets 536 
entropy function 399 
entrywise functions of matrices 125 
6paisse full triangulated subcategory 618 

epi-exact category 621 
equal fibration of a group 486 
equation for the resolvent of empirical covariance 

matrices if the Lindeberg condition holds 69 
equation for the Stieltjes transformation of normal 

spectral functions of the empirical covariance 
matrix pencil 70 

equation with regular singularities at 0 825 
eqmexponential modular extension 201 
equivalence in a bicategory 570 
equivalent algebras 285 
equivalent characters 369 
equivalent filtration 817 
equivalent matrix polynomials 135 
equivalued ideal class group 370 
eqmvariant functions 505 
equlvariant sheaf 515 
error 397 
error evaluator polynomial 414 
error locations 414 
error locator polynomial 414 
error pattern 414 
error value 414 
error-correcting capability 400 
error-correcting codes 397 
essential extension 725 
essential ideal 797 
essential polynomial identities 790 
6tale cohomology 657 
6tale cohomology groups 518 
6tale cohomology groups of schemes 517 
6tale homotopy groups 524 
6tale space 505 
6tale topos 508 
Euclid's algorithm 414 
Euclidean algorithm 733 
Euler angles 30 
Euler characteristic 604 
Euler function 353 
Eulerian orientations of graphs 17 
Evens norm map 597 
exact categories of Quillen 621 
exact categories with enough injectives 681 
exact category 679 
exact category in the sense of Quillen 616 
exact category of an additive category 680 
exact category of complex Banach spaces 680 
exact category of filtered objects 680 
exact category of k-split sequences 680 
exact functor 680 
exact pair of morphisms 679 
exact sequences 710 
exactness of inverse and direct limits 714 
exactness property of tensor, product 720 
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examples of morphisms of topoi 509 
examples of near-rings 466 
examples of skew polynomial rings 735 
exceptional near-fields 470 
exceptional polynomial over Fq 334 
exchange 160 
exchange axiom for matroids 160 
exchange closure axioms for a matroid 161 
exchange closures 161 
exhaustive filtration 816 
existence of infinite non-Dicksonian near-fields 470 
existence of perfect codes 401 
existence of the product formula characterizes global 

fields 374 
existence theorem 257, 375 
existence theorem of global class field theory 371 
existence theorem of local class field theory 246 
explicit class-fields 382 
exponentiable object 504 
exponential object 553 
Ext in group cohomology 586 
extended centroid 784, 797 
extended code of a code 402 
extended kernel of a covered group 487 
extension condition 648 
extension of a discrete valuation 233 
extension of a matroid 162 
extension of a semiring 431 
extension of G by A 589 
extremal matroid theory 167 
extremely disconnected 803 

F-acyclic object 699 
F-split object 698 
face maps 642 
factorization of matrix polynomials 81, 100, 136 
factorization of rational matrices 147 
factorization of self-adjoint matrix polynomials 112 
factorization problem 103 
factorization theorem for comaps 172 
factorization theorem for strong maps 171 
Faith-Michler theorem 780 
faithful coproduct 758 
faithful module 846 
faithfully fiat algebra 720 
faithfully fiat module 720 
family of elements in a presheaf 507 
family self consistent 800 
Fano plane 166 
Farrell cohomology 604 
fiber product 274 
fibrant 652 
fibration 567, 650 

fibration of a group 486 
field of algebraic numbers 778 
field of constants of a set of derivations 196 
field of constants of a set of higher derivations 197 
filtered category 674 
filtered module 816 
filtered objects 680 
filtered ring 742, 816 
filtering functor 511 
filtration 742, 816 
filtration of a module 816 
filtration of a ring 816 
filtrations equivalent to a good filtration 820 
finite affine geometry 352 
finite affine plane 352 
finite at infinity 144 
finite colimits 504 
finite CW-complex 641 
finite directed graph 454 
finite embedding problem 280 
finite factorization property 449 
finite field 475 
finite field characterization result 475 
finite generation theorem of Evens 599 
finite locally constant object in a topos 522 
finite ordinal numbers 645 
finite p-class-field tower 386 
finite projective geometry of dimension d/> 2 352 
finite projective plane 352 
finite rank 160 
finite representation type 625, 861 
finite semifields with commutative addition 435 
finite semifields with noncommutative addition 436 
finite simplicial complex 642 
finite spectrum of a matrix pencil 82 
finite topology 473, 789 
finite virtual cohomological dimension 603 
finitely generated group 279 
finitely generated module 709 
finitely presented module 715, 748 
finitistic dimension conjecture 843, 873 
fir 733, 738 
first inequality of class-field theory 372 
first module of syzygys 707 
five lemma 711 
five term exact sequence for low dimensional group 

cohomology 597 
five term sequence 597 
fixed field 273 
flabby sheaf 804 
flat functor 511 
flat in a matroid 161 
flat module 708, 720 
flatly generated proper class 622 
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flatness and linear equations 721 
Fokker-Planck equation 67 
Fontaine-Wintenberger fields of norms 241 
forbidden minors 165 
forbidden-minor theorem 166 
forcing 503 
formal language 450 
formal Laurent series 493, 736 
formal power series ring 736 
formalism for hyperhomology 673 
formally p-adic field 226, 296 
formally real field 276 
formula 805 
formula predicates 805 
forward and backward spectral Kolmogorov equations 

for distribution densities of eigenvalues of 
random matrix processes with independent 
increments 66 

forward Kolmogorov equation 67 
four lemma 711 
four-point plane 352 
frame 513 
Frattini group 278 
Fredholm random determinants 57 
free 2-category 538 
free 3-category F E  555 
free abelianized extension 604 
free category 532 
free D-ring on a set X 745 
free ideal ring 738 
free k-algebra 745 
free monoid 450 
free monoid on X 745 
free pro-C group 280 
free pro-79 group 306 
free product 300, 314, 758 
free product of profinite groups 312 
free profinite group 279 
free V-semiring 433 
frequency hyperrectangles 351 
frequency square 351 
Freyd's topos embedding theorem 515 
Fried, Haran, and V61klein theorem 314 
Fried-V61klein conjecture 307 
Frobenius algebra 849 
Frobenius automorphism 243, 276, 324, 372 
Frobenius category 68 l 
Frobenius complement 471 
Frobenius endomorphism 735 
Frobenius field 310 
Frobenius group 471 
Frobenius kernel 471 
Frobenius map 230 

Frobenius-KOnig theorem 9 
Fr6hlich twisted form 664 
Fuchsian 791-module 825 
Fuchsian ordinary differential equation 825 
full family of finite groups 278 
full matrix 742 
full suspended subcategory 690 
full triangulated subcategory 690 
fully exact subcategories of module categories 680 
fully exact subcategory 680 
fully indecomposable matrix 5 
function complex 650 
function field of one variable over a field 298 
function field over K 298 
functional equations 371 
functions of a matrix argument 119 
functions of matrices 120 
functoriality sheaf axiom 505 
fundamental formula for Ext 678 
fundamental problem of linear coding theory 173 
fundamental result of simplicial homotopy theory 650 
fundamental structure theorem for near-rings 474 
funny 2-functor 2-category 554 
funny functor category 554 
funny tensor product 554 

G-condition 73 
G-fixed points cofixed points 585 
G-Sets 505 
G-torsors 662 
G-coalgebras 506 
Gabber-Kashiwara theorem 838 
gain graphic matroid 166 
Galois category 522 
Galois cohomology of K 664 
Galois extension 200, 273 
Galois field 323, 400 
Galois group 273 
Galois group of 9 over F 302 
Galois pair of subgroups 206 
Galois polynomial 303 
Galois stratification 310 
Galois subfield 205 
Galois subgroup 205 
Galois subgroup of the group of higher derivations 

200 
Gauss's theorem on genera 386 
Gaussian random matrices 39 
general polynomial of degree n 302 
general reciprocity law for n-th powers 380 
generalization of the van der Waerden conjecture 18 
generalized cap product homomorphism 661 
generalized eigenvectors (Jordan chains) 130 
generalized feedback shift-register method 355 
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generalized identity 785 
generalized isomorphism conjecture 658 
generalized monomials 786 
generalized Nakayama conjecture 843, 873 
generalized p-adic valuation of rank d 297 
generalized p-adically closed field 297 
generalized partition 452 
generalized polynomial 785 
generalized S-semialgebras 451 
generalized semigroup semiring 449 
generalized simplicial complex 642 
generalized Sylvester equation 90 
generalized translation structure 486 
generalized variance 32, 71 
generating graph 532 
generating graph of free category 532 
generation of all ray-class-fields of k 383 
generator 846 
generator matrix of a code 402 
generator polynomial of a cyclic code 406 
geometric algebra 169 
geometric cover of a group 486 
geometric inequalities for permanents 12 
geometric lattice 161, 162 
geometric morphism 509 
geometry 160 
(G, H)-proper exact sequences 624 
ghost components 230 
Gilbert-Varshamov bound 401 
Giraud theorem 508 
(G, K)-factor set 776 
global dimension 0 738 
global fibration 665 
Golay codes 401 
Goldie ring 798 
Goldie theorem 799 
good filtration 817 
good filtrations on submodules 820 
Goppa code 412 
Goppa polynomial 413 
Goppa-code cryptosystem 347 
graded set 556 
graph coloring problem 173 
graph morphisms 532 
graphic matroid 160 
Gray-category 554 
greatest common fight divisor of matrix polynomials 

136 
greedoid 161 
greedy algorithm 160 
greedy algorithm axioms for matroids 161 
Grothendieck group 624 
Grothendieck ring 174 

Grothendieck sites 506, 658 
Grothendieck topology 506 
Grothendieck topos 508, 659 
Grothendieck's categorical Galois theory 522 
Grothendieck's theorem an Galois categories 523 
group cohomology of a finite cyclic group 586 
group cohomology of a product of groups 587 
group cohomology of Z 586 
group cohomology rings, examples 595 
group completion theorem 657 
group of higher derivations 198 
group of ideles 374 
group of principal units 228 
group of relations 613, 624 
group of relations of Ko(A) 624 
group of type F P  602 
group of type FPn 602 
group of unit ideles 374 
group of units 224 
group with operators 707 
group-semiautomaton 490 
GSA 490 

h-closure 441 
h-ideal 441 
H~-control 148 
Ho(C) 651 
Ho(S) 651 
Haar measure on the group of orthogonal matrices 30 
Hadamard matrices 354 
Hadamard multiplication ofmatrices 126 
Hahn-Banach theorem 682 
halfring 427 
Hamilton-Cayley theorem 717 
Hamiltonian matrix 95 
Hamming bound 401 
Hamming code 401,405 
Hamming distance 400, 484 
Hamming weight 402, 484 
Hankel determinant 345 
Hasse local-global principle 227 
Hasse-Arf theorem 241 
Hasse-Herbrand function 239 
Hasse-Iwasawa relation 289 
Hasse-Iwasawa theorem 259 
Hasse-Teichmtiller derivatives 332 
Hasse-Witt classes of the form/3 663 
Hasse-Witt invariant 663 
Hattori-Stallings rank 604 
Hazewinkel construction of the reciprocity map 246 
heart of a ring 773 
Hecke's theorem on progressions 381 
height of a prime ideal 828 
Heller function 846 
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hemiring 427 
Hensel lemma 232 
Henselian closure 294 
Henselian field 232, 286 
henselization 233 
hereditary noethedan prime ring 623 
hereditary ring 678, 718, 733 
Heyting algebra 524 
higher tS0-dedvation 737 
Hilbert 90 theorem 246, 285 
Hilbert basis theorem 735 
Hilbert class-field of k 368 
Hilbert irreducibility theorem 302 
Hilbert norm residue symbol 248 
Hilbert series 747 
Hilbert sets 303 
Hilbert symbol 248 
Hilbert syzygy theorem 707 
Hilbert's 9th problem 249 
Hilbert's 21st problem 815 
Hilbert's conjectures concerning Abelian extensions of 

number fields 368 
Hilbertian field 303 
Hirsh number 603 
HNP-ring 623 
Hochschild cohomology group 859 
Hochschild extension algebras 858 
Hochschild-Mitchell cohomology 613, 628 
Hochschild-Mitchell K-dimension 630 
holonomic Dn-module 829 
holonomic R-modules 828 
holonomic Rn-module 829 
Hom functor 711 
homogeneous maps 489 
homogeneous maps on modules 488 
homological characterization of balanced modules 

877 
homology groups 641 
homology of a group 584 
homomorphism 566 
homomorphism of semirings 427, 440 
homotopical algebra 641,652 
homotopy addition theorem 648 
homotopy category 616, 674 
homotopy category Ho(S) 651 
homotopy category of an additive category 682 
homotopy extension property 646 
homotopy theory of simplicial sets 641 
honest homomorphism 742 
Hopf algebra structure of Het (BCI k" g//?) 660 
Hopf formula for H2(G, Z) 587 
horizontal composite 535 
horizontal composition 562 

Horn formulas 805 
Horn predicate 805 
Hurwitz space 309 
hyper-cohomology spectral sequence 597 
hypercohomology 673 
hypercover 520, 521,659 

ideal 441 
ideal class-group (mod f)  370 
ideal in a near-ring 468 
idele 294, 367, 373 
idele class-groups 374 
idele classes 294 
identical triangle functors 687 
identity 427 
identity constraints 563 
identity in a semiring 427 
Ikehara-Delange theorem 381 
lllusie conjecture 658 
image 614, 710 
incidence algebra 632 
independence of the axiom of choice 526 
independence of the continuum hypothesis 526 
independence of triangulation 641 
independence structures 160 
independent set augmentation 159 
independent set axioms for matroids 159 
independent sets 159 
indeterminate 433 
index of a higher derivation 198 
index of a relative to b in a finite field 337 
index-calculus algorithm 338 
induced filtration 820 
induced functors 697 
induced module 282, 593 
induced polynomial function 476 
induction of modules 593 
inductively closed proper class 613, 622 
inert subring of a ring 749 
inertia group 288 
inertia lemma 750 
inertia subfield 235 
inertia subgroup 236 
inertia theorem 749 
infinite eigenvalue of a matrix pencil 82 
infinite p-class-field-tower 385 
infinite rank higher derivations 190 
infinite sums 451 
infinite sums of triangles 688 
inflation 282, 592, 679 
inflation map in group cohomology 593 
inflation of a semiring 434 
information rate 398 
injection of matroids 171 



Subject index 901 

injective Banach space 682 
injective dimension of a module 725 
injective envelope 846 
injective hull 725, 846 
injective module 723, 724 
injective modules and essential extensions 725 
mjective object 681 
lnjectives in module categories 681 
mner cz-derivation 734 
tuner automorphisms 792 
tuner coderivation 635 
inner cointegration 635 
tuner derivation 629 
inner rank of a matrix 741 
input set 490 
inputs 492 
inseparability exponent 190 
inseparability order 191 
inseparable field extension 190 
integral domains with a unique remainder algorithm 

736 
integral element over a ring 707 
integral representation of Pick functions 128 
integral singular homology groups 642 
integral singular n-chains 642 
intersection cohomology 673 
intersection lattice of an arrangement of hyperplanes 

165 
interval computad 550 
mvariant basis number (IBN) 739 
mvariant factors of the torsion module 717 
mvariant polynomials of A()~) 135 
mvariant subgroup relative to another subgroup 205 
lnvariant subspace of a regular pencil 82 
reverse 428 
reverse filtration 748 
inverse image functors 509 
reverse limit 275 
reverse limit of modules 713, 714 
reverse system 275, 713 
reverse weak algorithm 748 
inversion of summations 172 
revertible ideal 718 
revolutions 276 
mvolutive characteristic variety 815 
mvolutive ideal 828, 831 
mvolutiveness of a characteristic ideal 828 
mvolutivity for strongly filtered rings 831 
irreducible morphism between indecomposable 

modules 861 
irreflexive monoid 752 
irreducible N-group 472 
isomorphic idempotents 845 

isomorphism of modules 710 
isthmus element of a matroid 163 
iterative higher derivation 198 
IWA 748 

j-sheaf 506 
Jacobson radical 770 
Jacobson radical for semirings 443 
Jacobson's density theorem for rings 474 
Jacobson--Chevalley density theorem 767 
Jacobson-type radical for near-rings 467 
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Kuratowski's theorem for planar graphs 166 
Kurosh problem for division algebras 779 
Kurosh-Amitsur radical theory for semifields 443 
Kurosh-Amitsur radical theory for semirings 443 

L-theory Stiefel-Whitney classes 661 
Lang isomorphism 660 
Langlands program 368 
Laplace transform 144 
Laplace's expansion for determinants 168 
large category 688 
largest Boolean subtopos 525 
Latin rectangles 17 
Latin square 349 
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morphism of triangles 683 
morphisms between topoi 509 
morphisms of coalgebras 633 
morphisms of left (or right) G'-comodules 633 
morphisms of sites 512 
multilinear generalized polynomial 786 
multiple exchange property 168 
multiplication of rooted trees 495 
multiplicative form of the M6bius inversion formula 

324 
multiplicative monotony law 446 
multiplicative representation 229 
multiplicative system 690 
multiplicative system associated with A4 695 
multiplicatively absorbing element 427 
multiplicatively commutative semiring 427 
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near-ring homomorphisms 466 
near-rings and automata 490 
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partially ordered (p.o.) semigroup 446 
partially ordered (p.o.) semiring 446 
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perfect code 401 
perfect matchings 17 
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progressive plane graph 544 
progressive plane graph with boundary 544 
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real projective group 312 
realization 144 
realization (representation) theorem 516 



Subject index 909 

realization of a rational matrix 144 
realization of a simplicial set 645 
realization of near-rings by GSA's 491 
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reduced-finite group 793 
reduction of random matrices to triangular form 38 
reduction principle 819 
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