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PREFACE 

This preface upresses some personal thougtU5. It is my chance 10 " 'rite about how 
linear Ilgrbra can be laught and learned. If we teach pun: abstrxtion. or Kille for 
cookbook fonnulas. we mi§s the best pari. This course has come a long way, in living 
up 10 wllat i[ can be. 

It may be helpful to mention the web pages connectw to this book. So 
many menages come back with suggestions and encouragement. and I hope thaI 
professors and students will make fn..., use of everything. You can direclly access 
... ~b.mll.ftlU/I8.06Iw_ . which is continually updated for the MIT course lh.al is ta ught 
~ry semester. l inear Algebra is also on !he OpenCourseWare site oo:w.mit.«h.l, wilen: 
18.06 bKame exCC'pliooal by including video!; (which you definitely don't have 10 walch 

). I can brieny indicate part of "'hat is nailable now: 

I. Lectu re iiChedu le and cu...,nt homew<:>rt:s and exams w;lh solutions 

2. "The goals of the oourse and COI>Cq)Iual questions 

J. Interact;I'c Java demos for cigenVlllues and lease squares and more 

4. A table of eigenvalueleigen\~or iMormalion (s.ee page 362) 

5. GltnfIJ,,' A Dictionary for Linear Algebra 

6. Linear Algebra T~acbing Codes and MATlAS probl~ms 

7. Video!; of the filII course (tauglll in a real classroom). 

These web pag ... are a re!iOtll'r<' for professors and students worldwide. My gooJ i. to 
make this boot; as lISCful as possible. with all the course m.oterial I can provide. 

After this jlfeface. the boot; will . peak for itsl:lf. You will see the spirit right 
away. The goal is to show the beauly of linear algebra. and its valU( , The emphasis 
is on undtrstanding- I try /() up/a;" mth" than to fkd,,~. Thi' is a book about real 
mathematics. not ~ndl~n drill. I am oonstantly working wilh exarnpl ... (n eate • matrix. 
find its nul/space. add another oolumn. see w~ changes. (Uk lor htlp!). The textbook 
has to help tOO, in teaching whal students need. The effon is absolutely rewarding. and 
fonun.ately this subject is IIQ/ roo hard. 

The New Edition 

A major addition 10 the boot; is the large number of Worked Examples. section by 
section. Their PUrp<.l5e is to oon~ the text directly 10 the homewort. proble nu. The 
complete wlutinn to a vector e<tuation Ax = b is xpon .... t. + x""l1"""", - and the steps 
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are explai lKd ~s clearly as I can. The Worked fuamplc 3 .4 A com·en, this explanation 
into actK>n by taking .,wry ~tcp in the solutiO!' (slaning with the teS! for solvabilily). I 
hope lhese model examples will bring the COnlcnl of e""h ~tion into focus (see 5. 1 A 
and 5.2 B on detcrminanb). The ··Pascal malrices" are a neat link from the amazing 
propcnies of Pa§cai"s triangle 10 linear algebra. 

The book contains lleW problems of all kinds - 11"lOfl: basic practitt. applications 
throughout §cicoce and engil"lCCring and managcmcnl. and jusl fun with mat~. North
west and SOI.Ilhea5t maltices wander inlo Problem 2.4.39. Googlr appears in Chapter 6. 
Please look al the laSI cxen:ise in Sectioo 1.1. I hope the proble.m are B slrong poim 
of this book- the ne,,·esl one is about the Sill 3 by 3 JJennutatK>n matrices: Wh.aJ. are 
their detenninam, and piVOIS and lraces and eigenvalues? 

The Glossary is also lleW. in the book and on the web. r belie,.., Siudents will 
find it helpful. In addilion 10 defin ing the important lenns o f linear algebra. lhere VtllS 
also a chantt to ioclude many of ,he kcy f",,1S for quick reference. 

ronunatcl y. the need for linear algebra is widely rccogniled. This Jubj«1 i3 abo 
solU/ely as imporwIII as calculus. I don·1 corocedc anything. when Ilool at IK.>w mathe
malics is used. There is c,·cn a light-heaned essay called ··Too Much ealcul .... •• on the 
web page. The century uf data has begun! Su many applicalion, are discrete nuher 
th.an continuous. digital rather than analog. The truth i, that ~W()f$ and matrices ha", 
become the languagc 10 know. 

The liMa. Alge~a COUtSf! 

The C<tuation Ax = b uses that language right away. 1lle matrix A limes any veclor x 
is a combilUllj<m o/Ihe columllS 0/ A. The equalion is asking for /J combination lhal 
pro(/UUf b. Our $(llulion comes al three lc'·els and they a~ all important: 

I . Di~ct li()lution by forward elimination and bark subSlillltion. 

2. Matrix SfHu,,·on x = A- 'b by in,"cning the matrix. 

J. VU f()r space solution by looking at the column ' p""e and nullspac<: o f A. 

And lhere is another possibility: Ax = b may have no :wlurion. Eliminatioo may lead 
to 0 = I. The malrix approach may fail to find A - ' . The vector spoce approach can 
look al all combinations Ax of the columns. but b might be outside that column spac<:. 
Pan of malhematics is undefStanding when Ax = b is solvable. and what to do when 
il is !lOt (the leaS! squares solution u~s AT A in Chapter 4). 

Another pan is learning to visuali7.e vecton. A ~wor u with twO componen ts 
is !lOt hard. Its componoenlS Vt and to:! tell IK.>w far to go across and up- "·e df3w 
an arrow. A second vector UI may be perpendicular 10 U (and Chapter I tells when) . 
If those vectors ha", six components. " ·c can·t drJw them but our imagination keeps 
Irying. In six-dimcnsional spoce. we can ICSI quickly for a right angle. It is easy to 
visualize 2u (Iwitt as far) ~nd - w (opposite to UI). We can al",os. s« a combination 
like 2u - w. 

, 



MOSt important is tt.. dfon 10 imagine all/ht tombinalions tu+ ,lw. 'Illey fi n a 
··lwo-dilllC'nsiolUll plane·· in.l ide It.. ~i~-dimensional space. As t write tlK-~ words. I am 
no! al all ~u re thaI I can Ott this subspact. But linear algebra ",·Qlt.s easily wilh '"«Iors 
and malriCt'$ of any si~e. If ,,, .. ,, have currenlS on six edges. or ~s for Sill produclS. or 
just posilion and ,·"Iocily of an airplane. we are dealing wilh si~ dilllC'nsions. For image 
processing or w"b !iearches (or the human gellOme). si~ might chang<: 10 a million. h 

is slill linear alg<:bra. and linear combinations still hold the key. 

Structure of the Tedbook 

Already in this prefoce. you can see the Style of the t>ook and ils goal. 'The style is 
informal but the goal is absolutely serious. Linear algebra is great mathematics, and r 
c"nainly hope that each profeswr who teaches this coorse will learn something ncw. 
The author always &.:Ies The s1Udcm will l10Iicc how the applications reinforce the 
ideas. I hope you will Soee how this t>ook moveS forward. gradually and madily. 

L 

1. 

[ want 10 1101" Sill points aboul the.- organizalion of the box>k: 

Chapter I pmvides a trier introduct ion 10 vectors and dot prodllClli. If lhe class 
has met them before, lhe coorsc Can begin with Chapter 2. 1ba1 chapter sol,-es 
n by n systems Ax : h. and prepa'"'" for the whole course. 

I now use lhe ,."dltct:d row «h~lon form rTI()I"e Ihan before. Tl!c MATLA6 com
mand r,d{Al produces bases for the R)W space and column space. Bener than 
Ihat reducing the combined malrix [A I J prodU«s t~al information about all 
four of lhe fUOOalllC'nlal subspaces. 

J. lltosc four subspacts are an excellent way to leam about linear independence and 
base. and dimension. TIley go to the hean of the malrix. and toc,), are genuinely 
the key to applications. 1 hate jusl making up vector sp3("Cs when so many im
portant ODeS come naturally If lhe class sees plenty o f examples. indepert<leoce 
is vinually undeJstood in advance: A has independenl columns when ... : 0 is 
the only solution to Ax : O. 

4. Section 6.1 introduces eigel"'alues for 2 by 2 ma/nus. Many CO\If"SeS want to 
'iCe eigenvalues early. Jt is absolule1y possible 10 go directly from Chapter 3 10 

Section 6.1. T1Ic determinant is easy for a 2 by 2 matri~, and c igshow on the 
web eaptur<:. i:"'phic~tty Ille moment when 11..< _ u . 

S. E,·ery seclion in Chapters I 10 7 ends wilh D highlighted H~ I·~"" at r"~ K~y IdNS. 
'The reader can recaptul"C the main points by goillg carefully through this review. 

6. Chapter 8 (ApplicUl;O~S) has a new seclion o n MatriUJ ;n Il'ng;nttring. 

When soflware is available (and time 10 usc il). I see two possible approaches. 
One is to carry out instantly the steps of lesling linear independence. orthogonali~ing 
by Gram·Scllmidt. and solving Ax _ b and Ax '" ..... 'Ille Teaching Codes follow 
the steps deseribcd in class - MATLAR and Maple and Mathemalica compule a lillie 
differentl y. All can be llsed (op"'Qn,,{iJj with lhis t>ook. "The other approach is to ex
peri ment on bigger problems- like finding the largest determinant of a ±I matri~. or 

, 
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lhe .,·ernge size of a piH)\. llle lime 10 compule A - I b is measured by tic; irwiA) . b; 
IOC. Choose A = r~nd(l000) anoJ compare with tie; Al b; tOC by di=t (iiminalion. 

A one·semester course lhat moves sleadily will reach eigenvalues. llle key idea 
is to diagonaliu A by iii eigell''CCtor malri~ S. When that sOC<:eeds. the eigenvalues 
appear in S- IAS. For symmetric matrices we can d~ S-I = ST. ~n A is 
rectangular we rKT<l UTA V (U ~s from eigenvectors of AA T anoJ V from AT A ). 
Chapters I to 6 are the hean of a basic course in linear algebra - IIIeOl)' plus applica_ 
tion.<. llle beauty of thi s subject is in the way thO§<' come together. 

May I end with this thought for profC"SSOl"S. You might fccl thai the direction 
is right. and .... ·ooder if )"OUr Sludent • ..,.., ready. 1"5/ gi"" III"", a cil{lnu! Literally 
thousands of students ha'"C wrillen to me. f1"NJucnlly with suggestions and surprisi ngly 
often with thanks. llley know wilen the course has a purpose. becau50: the professor 
and the book are on their side. Linear algebrn is a fantastic subject. enjoy il. 
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1 
INTRODUCTION TO VECTORS 

The hea" of lillCat algebra is in tWO operations- both with "«tors. We add vectors (0 
get D + III . We multiply by numbers c and d 10 get CP aoo dill. Combining those two 
operations (adding CP 10 dill ) gives the linear combi/UJliQn cp + d., 

Linear combinations are all · impoflant in this subject! Sometimes we wanl one 
panicular combination. a spttilic choif;:e of c and d thaI produCC's a tksim:! co + d ... 
Other times _ wanl 10 V;Sual;1.e (ll/lhe combi/UJ/;Q'I$ (coming from all c and d). The 
''«Iors cO lie aLong a line. The combinations cu + d .. IIQITILIllly fill a two-d;men~ional 

pi""", (I have to say "two-dimensional" because linear algebra allows higher-dimen
siOlla! planes.) From four ,'ector.< II , p . III. Z in four_dimensional spac'('. their combina
tiOQs are likely 10 fill the whole space. 

Chapter 1 c~plajns Illcsc central ideas. on which e''t'rything bui lds. We start with 
two-dimensional V«1ors and tlu..e-dimensional vectol'S, which are reasonable 10 draw. 
Then we move inlO higher dimensions. The really impressive featur~ of li""ar algebrn 
is how smoothly it takes Ihal step inlO n--dimensional splOc;e . Your menial picture slays 
oompletely CQrTtd. even if drnwing a len--dimensional vector is impossible. 

This is where the boot. is gQing (inlO n--dimensional space). and the first S1eps 
are the OJIC'rntions in Sections 1.1 and 1.2: 

1.1 Vtctor lUidition 0 + III ,,,,d Unror combinotion, co + dill . 

1.2 The dot prodllct ~ . W ond the length I ~ ~ '"' .ji7i. 

VECTORS AND LINEAR COMBINATIONS. 1.1 

"Yoo can't IIdd apples and ornn~$:' In a stran~ way. this is the reason for vect(M$l 
If w<: kttp lhe number of apples separate from !he number of oranges. we have a pllir 
of numbers. Thai pair is a two-dimMJionol l'utO#" o. with "components" VI and 112 ' 

VI = number of apples 
112 = number of oranges. 

, 

, 
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2 C~ 1 ln1J'Q<1oc:1fon '" Vee"", 

We wrile ~ ai a co/umn .ttlor. The main poinl !IO far is 10 ha,.., a single l~ner II (in 
ooldfact ilalic) for this pair of numl:>eJ$ VI and "l (in lightface imlic). 

Even if "''' don'l add VI 10 t>:!, w.., do (MId ,.,CIQt'S, llIC firsl romponems of u 
and .. stay separale from I~ second componems: 

"ECTON. 
ADDITION '00 

You sec t~ reason. we ",ant to add apples to apples. Subtraction of veclor.; follow. 
I~ sa"", idea: The com("mems of ~ - III art "1 - WI and 

'I'hc ocher basic operation is ,,,,,Iilr multiplied/ion. Vectors can be mUltiplied by 
2 or by - I or by any number c. 'I'hcre a", 1 ..... 0 w·ay. to <k>uble a vector. One way is 
to add ~ + ~ . The ot~r ",ay (the usual way) is 10 multiply each ~'Ompoocnt by 2: 

SC,\ LA N. 
MULT IPLICATION 

1ltc: romponentS of n af'l: CVI aoo r"l, ll>e number c i. ralleU a "sealar". 
Noti«, that I~ wm of - ~ and ~ is the zero ,'eclor. Th is is 0 , .. hich ii not 

the same as t~ number zero! llte "ector 0 has components 0 and O. Forgive me: for 
hammering away at t~ difference bet",,,,",n a vector and i~ component •. Linear algebra 
i. built on t~se operations. + III and n _ tuJtling vrcton aM multiplying by scamn . 

The on.Icr of addilion makes nO diff~""oce: ~ + III "'Iuals III + ~. Check that 
by algebra: 1ltc: firsl componenl is VI + WI which "'Iuals WI + Vt. OI«k also by an 
""ample: 

Linear Combination. 

By combining d-.esc: operalions. We now form "'intor conlbi"",ions" of ~ and III . Mul · 
liply ~ by rand n'uhip!y .. by d: then add cr + d ill . 

DEFINITION Tht gqm of'~ tlnd dll is tl /I"tar rombmlllion of ~ and II 

r"OUr spttial linear ,,)mbin~t ions are: sum, diff~rence, u ro, aoo a scalar multiple n: 

h + 1., ~ Sum of """tors ill Figure I. I 
h - JIII ~ difference of vectors in Figure , , 
o~ + 0 111 ~ ~~ro .ttlQr 

cD + 0 .. ~ ,'«tor cu in the direction of • 

'I'hc >;em ,tttor is always a possible combination ("tKII tIM: rocfl1ciems are LCm). 

EveI)' time w'e sec a "space" of "ectors, that zero '-ectOr wi ll be included. It is \hi . 
big ,';Cw. laking all the combinations of u and XI , Ihal makes I~ SUbject " 'ork. 

, 
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"The figure, sllow how yoo can visualize ' ·ectors. r""01" algebra. we JUS! need the 
components (li ke 4 and 2). In!he: plane. !hal "ec!or • is represented by an arrow. The 
arrow gors UI .. 4 uni!, to !he right and ~ = 2 units up. II ends a! !he: pI);n! wh<Jse 
.l . )" coordinates are 4. 2. Th is pl)int i$ another representation of the vector- SQ ""1' 

have !h"", ways to deSLri~ o. by an arrow QT a "rnm QI" a pair oj numiHrs. 
Using arrows. you can see how !o vi sualize the Sum u + 11> , 

VulOT addirion (head to tail ) AI the tIId of o. place the sum of 11> . 

We travel along. and then along 11> . Or we take: the . honcut along . + II> We coo ld 
al$O go along II> and then o. In other ",·ord~ . .. + . gi\'es the same answer as u + ... 
These are different ways along the paralklogrnm (in this enmple it is a rectangle). 
"The endpoint in Figure 1.1 is the diagonal. + .. "'hich is also .. + •. 

~ ~ [:] 
>--'l4--~[;] 

Figure 1.1 Vector addition. + II> prudu<:c. lhe diagonal of a paraJlclogrdm. The 
linear combination on the right is 0 - .. . 

The zero vector has Vt = 0 and ~ = O. [I is 100 sIlon to draw a decent arrow. 
but you know th~t 0+ 0 "" o. For 20 we double lhe leng!h of !he arrow. We reverse: irs 
direction for - 0. This lC,,,qing gi,-.:s the sublrac!ioo On the right sKlc of Figure 1. 1. 

p 

2 

Figure 1.2 The vmw usually stan. at the origin (0.0) ; cg is always paral lel 10 u. 

t 



Vectors in Th.ee Dimf'ns;ons 

A v«tor with tWO oom~ms corresponds to a point in the x )' plar.e. 1lIe oomponenlS 
of p are the coonlilllnes of the poin!: X '" VI and y _ "2. 1lw: arrow ends at this poinl 
(VI. "2). when it Slans from (0.0). Now we allow vn:ton to have 1hJe,e compor.en ts 
(VI. "2. 11). 1ne x )' plane is repl~ by th=-dimensional spaI'e . 

Here are typical vectors (still column \/«tOTS but witli three componem~): 

1lIe ,= . COI'TI:spoods to an arrow in 3·space. USlially t .... arrow stan, at I .... origin. 
where the xyz llXt!l meel and I .... c""ruinales are (0 . O. 0 ). 1ne urow ends al the point 
wilh coordinates VI. t>j. VJ. 1lw:re i. 8 perfect malch belween I .... column ."tttor and 
the turo'" from tht orit"" and the poinf .. 'hut Iht DrrtJ'" t "d& . 

Fr'Jln nO'" 011 • = [~] if (1lso ",rint " (1f • = ( I. 2. 2) 

1ne reason for the row fonn (in paren t .... scs) is to iil ... e 1ipB«. But. = (I . 2. 2) is not 
a row V«I<M"! Ie is ill actuat ity a rotumn vn:lor. just lemporarily lying down. n.e row 
"eclor II 2 2 1 is absolutely different. even tlloogh it ha5 the same three compor.en ts. 
It is the "Iranspose" of "'" column • . 

, 
y 

(3.2) (1. - 1.11 ' 

Figure 1.J Vectors [} J and [i 1 oom:spond 10 poinlS (x .)") and (x . )" . t ). 

In Ih= dimensions • • + .. is . till done a componenl at a time. 1lIe Sum has 
components VI + WI and 112 + "-'2 and II) + 1lIJ. You _ how 10 add '"e{:tors in 4 or 
5 or " dimensions. When .. slarts al lhe end of •. lhe Ihiru s ide ;s p + ... 1lIe ot ..... 
way around the paf"llilclogram ;s .. + p. Quc~tion : Do t .... fOIl' sides all lie in lhe same 
plane? y~s. And lhe sum . + .. - ~ - .. goes complelely HO\Ind 10 prodtJ« __ • 

A I)'pical linear combination of Ih= ,"CCttm in three dimensions is II + 4. - 2 .. , 

, 
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The ImlJOrlanl Queslions 

For one vector u . the OIIly linear combinatiOlls are the multiples c .. . For twa ,'ectcm. 
lhe oombinaliOlls are ..... +d •. For Ihm! veclors.the combinalions are cu+d'+" III . Wi ll 
you take the big SlCp from OM linear cornbinalioo to ,III linear combinations? Every e 
and d and .. are allowed. Suppose the veclOl'S U,'. III are in lhn:e-dimc:nsion.al space: 

1 What is lhe picture of all combinalion, ..... ? 

2 Whal is the picture of all oombinatioos e .. + d.'1 

J Whal is the picture of all combinations e .. + d. + .. WI? 

The answers depend 00 the particular vectOC!t u . D. and WI. If they were all zero vec

tOC!t (a ''''ry ext~mc case), tllen every combination wuuld be 7.ero. If they are typ;';al 
nonzero vectors (cornponencs chosen at random). here are the thn:e answers. Th is is 

the key to our subject: 

1 Thc combination5 eu till a Ii ..... 

2 The combinalions ell + d . fill a pis ..... 

J Thc combinations ell + d . + .. .., till Ihru..Jim" " 5iQI11l1 spaC<'. 

The line is intinildy loog. in the dim:tion of .. (forwanl and back,,·ard. going through 
Ille zero vector). II is the plane of all e .. + d. (combining two lines) Ihal I especially 
ask )'00 to think about. 

Adding all ..... on O/U! lint 10 all d , on tht othtr liM jills in tht pkme in fig ...... 1.4. 

Line from 

(.) 

Plane from 

all e .. +d. 

Figure 1.4 (al The line Ihrough .. . (b) The plane OOI1\.1.ining the lines through 
.. and • . 

Wilen we include a third vector WI, the multip .... ~ .., gi,.., " thin! line. Suppose 
Ihal line is 00( in tile plane of .. and P. Then combining all .. .., with all eu + do tills 
up the whole three-dimensional space. 

i 



6 C~ I In_tion to VKtor> 

This is the typical situation! l ine. then plane. then sp;oce. But OIher possibi lities 
ex ist. When .. happens to be ('II +d •. lhe third vector is in the plane of the 61$1IWO, 
The combinations of II.'. II> will not go outside thaI n plane. We do not get the full 
t h~-dimensional space. Please think aboul the special cases in Problem l. 

• REVIEW OF THE KEY IDEAS • 

I. A "«tor . in lwo-dimen§ional space has tWO components UI and "2. 

2 . , + III '" (UI + WI. "2 + wz) and co = (evI. ('''2 ) are execUlw a component al a 
time. 

J. A linear combinalion of II and , and III is (,II + d. + t ill . 

4. Take all linear oombin~l ions of II . or " and ' . or II and • and Ill . In th= di · 
mensions. those combinations typicalLy IiIL a line. a plane. and the whole space. 

• WORKED EXAMPLES • 

1.1 A Describe all the linear combinations o f . = (1. 1. 0) and .. = (0 . 1. 1). Rnd 
a """tor thai is nOi a combination of • and Ill . 

Solution These are veclors in Ih~-dimens ional space RJ , Their combinalions (" + 
d .. fill a plane in RJ. The vectors in INn plane ~JlQw any c and d: 

fuur particular \'ecIOrs in that plane are (0. O. 0) and (2. J. I) and (5.7.2) and 
(./i, O. - ./i). The ~ component is al ..... ay. the sum of the firs t and thin! compo
nenlS. The ' 'eCtor (I. I. I) is nOi in tlw= plane. 

Another Ikscriplion of Ihi s plane through (0.0, 0) is 10 ~1lOW a \'ttlor ~rpen' 
,/i('u/",' to Ihe plane. In Ihi s case n ". ( I. - I. I) is perpendicular, as Seclioo 1.2 will 
~'Onfirm by lesling <.lot prodUCIS: , . n "" 0 and Ill ' " "" O. 

1.1 8 For . '" (1. 0) and .. = (0.1). describe aU the poinls c. and all the combi
nalions ... + <I .. with any d and (I ) ,,·!tole num"",s c (2) nonnegut;"e (' 2: O. 



SoIutiOf'l 

( I ) 11le v«ton '" "" (c . 0) with whole numbers " are e<jually sparffi point. along 
the X u:is (the dinxtion of u). They i .. d ude ( - 2.0). (- I. 0). (0. 0). (I. 0). (2. OJ. 
Adding all ',(,(:101'$ d ID = (0. d) puiS a full lille i .. the Y dirttlion through those 

poinls. We have infinitely many parol/~llin~J from '" + dID = ("'hoir ""mMr. 
o"y m/~r). ~ an: vntical lines in lhe xy plalle. Ihrough e<juaUy spaced 
points on the x a!t is. 

(1) The vectors '" wilh c <:. 0 fill II ~half-line" . It is the posili>'r X a!t;s. starling at 
(0. 0) when: c = O. It i",ludes (;"f.0) but not (- :r.0). Adding all ,~tors d ID 
puts. full line in the )' direction cmssing I'veI)' point on that half_line. Now we 
have a Iwl/-pla"r, It is the right h.al f of the x )' plane. whell' x <:. O. 

Problem Set 1.1 

Probkms 1-11 an' abou t addition of ~ect(H"5 a lld li .. ear ro .. ,binal !o .. s.. 

, Describe gro_trically (as a line. plane.. ) all liocar <;QI1lbinations of 

(.) [:] ,od [:] (b) [i] ,od [:] ,<) [i] ,od [:] , od [:] 

2 Dfaw the ,,«tors u = [1 1 aDd .. = [-i) and v + ., aDd v - ... on a s ingle 
x )' plane . 

J If • + ., = (t 1 alld v - .., = [; J. compute and d/aw v alld .., . 

4 From , = [t ) aDd '" .. [n liDd the C(lm~nu of 3. + ., and , - 3., and 
Cf +d.,. 

5 Compute " + . and " + u+ .. and 2" + 2. + ... when 

6 E~ery C(lmbination of v = ( I . - 2.1) and '" = (0 . 1. - I) has <;QI1lponents that 

"'" " __ " Fi nd r and ,I so thai cr + d ... = (4. 2. - 6). 

7 In the xy plane Itllttt. all nine of these liocar combinations: 

, , 



8 CIYp<e< 1 ln1rOOuoion 10 IItcIot< 

8 The parallelogram in Figure 1.1 hu diagonal P + III . What is ilS OIhe. diagonal? 
Whal is lhe sum of lhe lWO diagonals? Dnlw thaI vector sum. 

9 If thm: «>men of a parallelogram are (I. I). (4.2). and (1.3). whal are all lhe 
possible founh romers? Dnlw IWO of lhem. 

(0.0. 1) - . 
, , 

• 
• • 

, ' J, 
(0 . I. 0) 

; 

• ( 1.0. 0) 

Figure 1.5 Unil cube from i.j. k : twelve clock . '<"Clors. 

Pl'oblt'ms 10-14 lire llbou t spKilil ,·«clOrs on cubes lind clocks. 

10 Copy the cube and draw the ~CClor ~um of ; = ( 1.0.0) and j '"' (0 . 1.0) 0..1<1 
II :: CO. O. I). The addition i + j yields the diagonal of __ , 

11 Four comers of the cube are CO. O. 0). ( I. O. 0). (0. 1. 0). (0. O. I). What are lhe 
Olher four comen? Find lhe coordinates of lhe ce nler poinl of !he cube. The 
Cf:lIter poinl$ of the s ix faces are __ ' 

11 How many wrTIel1l ~s a cube have in 4 dimensions? How many faces? How 
many edgcs? A Iypical comer is (0. O. 1.0), 

13 (a) What i~ the sum V of lhe twct.·c v<"CtOf"S Ihal go from tbe cenlCr of a clock 
10 lhe hours 1:00. 2:00 . ...• 12:001 

(b) If lhe vector 10 4:00 is removed. find the sum of !he ele,cn lemain;ng vec
,~ 

(e) What is the unil ,ector 10 I:OO? 

14 Suppose lhe ' ''clv( v<"Ctors sIan from 6:00 at the boItom instead of CO. 0) al the 
""Iller. The vcctor to 12:00 is doubled to 2j = (0.2). Add !he new 1"",lvc 
,'«tors. 

Problems 1S-19 go further wllh linear combinations or P lind III Wlgure 1.6) 

15 The figure shows ! p +! III . Mark the points ip + i lll and i ' + i .. and , + III . 

16 Mark !he point - , + 2111 and any other combinalion r . + a lii wilh c + a -= I. 
Dnlw lhe line o f all rombi nations that have r + a = I. 



l.t Vector>.nd l,,-, Comb<"..;"", 9 

17 Locate ~~ + ~ 1CI and ip + j ..,. TIle combi nations CI + e lO fill out whal l i~? 
Rcstrk1ed by (" ~ 0 tOOse combinations with e = d fill oot what half line? 

18 Restricted by 0 !: C !: I and 0 !: d !: I. shade in all combinations el + d ..... 

19 Restricted only by c ~ 0 and d ~ 0 dlllw the: "cone '. of all combinations ep +d.., . 

~ms 20-21 deal ,,'ilh II . P. III In three-dimensional s.pace (see F1gu", 1.6). 

20 Locate I" + I. + ! 1CI and ~ II + i .. in the dashed triangle. Challenge problem: 
Under what restrk1ions on c. d. e, will the combinations CII +d. +U' fill in the 
dashed triangle? 

21 TIle thm: s ides o f the da.<hcd triangle are ~ - II and III - I and " - 10. The ir 
sum is __ . Draw the hcad'1O-tail addition II/OOnd a plane triangle of (3. l) 
pl us (- I. l) plus (-2. - 2). 

22 Shade in the PYlllmid of combinations CII +d. +e lll with C ~ 0, d ~ O. t ~ 0 and 
(" + d + t !: I. Mark the Y«tor ! (II +. + .. ) as inside or outside this pyramid. 

• • • 
, 

, ' , , 

Figure 1.6 Problems 15-19 in I plane Problems ro.-27 in 3--dimensional spatt 

23 

24 

25 

" 
" 

If you look al all combinations o f tOOse II . P. and 10 . is then: any VKtor that 
can'! be produced from ell + ,h +e .. ? 

Which \'eCtors an: combinations o f It and p, and aim combinations of • and ..,? 

Draw vectors u . . . .. §O tbatlheir combinations I'll +d. + t ill fill I)IIly a line. 
Draw vectors u . '. III :;0 thai their wmhinltions CI + d . + t IP fill only a planc. 

What combination of the \'eCtOT1 [!l and [ ~ ] produces [':]7 Express thi s 

question a> two equations for the "'" cients (" and d in the li near combination. 

Rt .·jew QUtstj(HI. In X)'Z space. where is the plane of aU linear combinations of 
i = (1.0.0) and j = (0. LO)? 

, 



28 If (a. b) is a mUl1iple of (c.d ) with abcd '" O. silo .. ' IMI (o .d is II lIIulljpl~ of 
(b. d). This is surpris ingl~ imponant: call il a challeng~ queslion. Vou could use 
numbers firs! to see how II. b. c. d are relatro. The q~stioo will lead to: 

If A '" [: ~ 1 has dependenl rows then il has dependent columns. 

And cvcnluall~ : If AN '" ( ~~l'hen HA '" [: ~ J. That looks so simple. 

LENGTHS AND DOT PROOUaS • 1.2 

The fi /Sl >cction mentioned muhiplicatioo of ' 'eCtors. btll it backed off. Now we go 
forward to define the "do' prodIlC' " of u and Ill . This muhiplication in,'Oh'es the sepa
rate proIiucIs ~IW t and ' '2 W2 . but it doesn' , stop lhere. Those IWO numbe .. are lidded 

10 produ« the single number ~. /II . 

DEfiNITION The dOl product or j nnu produ('/ of ~ "" 11'1 "1~ and 1tI '" \tl'l. ~ 'll 

, ~ the number 

II ' II' = 1'1 U' , + "1U·1. , I) 

Eumple 1 The vectors u = (4. 2) and '" = (- I. 2) ha~ a ~ro <101 pIOduct : 

In mathematics. lCro is alwa~s a spedal number, For dot prodo.w.:t.s. il mcans thaI Ihtst 
''''0 ,·teW,s It .... ptTptndiculoT. The angle bcIwec n them is 90". When we drew them 
in Figure 1.1. ,,'e saw a rectangle (not jusl a"~ parallclogrnm). The dearest e~amplc 
of perpendicular ''eCtoo; is i = (1.0) along the x a~is and j = (0. 1) up the Y lU is. 
Again the dot prodUCI is j . j "" 0 + 0 "" O. Those "«tors i and j form a right an gle , 

The dot product of ~ = ( I. 2) and II' '" (2 . I) is 4. Pleast check this. Soon Ihat 
will revul the angle between v and '" (not 90°) . 

b .uTlple 2 Put a weighl of 4 al the po;nl x = - J and a weight of 2 at the poim 
x = 2. The x lUi s will balanee on the ce nter poin! x "" 0 (like a see-saw). The weights 
balllJlcr b«au$C the dQr prodUCt is (4)( - ] ) + (2)(2) = O. 

This cxample is typical of engineering and seience. The vcctor of weights is 
( "'" "'1 ) = (4 . 2). The ''eClor of distances from the center is (" " 112) = ( - J. 2). TIle 
,,·eight.s times the distances. "' IVI and "'1"l. give the "moments". l1Ic cqu3tiQII for!he 
see-saw 10 balance is UII VI + "'1 1>: = O. 

The d<X prodllC' Ill·. t qun/t • . 111. The order of • and ., makes 00 difference. 

b"mpll' 1 Dol proIiucts enler in ecooomics and business. We ha,'e !h~ products to 
buy and $Cl]. l1Icir prices a", (p ,. m. Pl ) for each unit _ thi s is lhe "priIx "cctor'" p. 

, 
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The quanlilies we buy or sell arc (q , .I{2. q)-posilive when we ~IL negati~e when 
we buy. Selling ql uni ts of the firsl product al the price P I brings in ql PI. The lotal 
income is lhe do! producI q . p : 

A zero dol: prodUCI means thaI Mlhe booIts balance."' Total s.ales etjual lotal purchases 
if q • p = O. Then p is perpendicular 10 q (in Ihree-dimensiona l spa<X). Wilh Ihree 
products. lilt IYCfon /I,.. ,lIrte-dilftl ll5;OIwl.. A supermarkel goes quickly into high 
dimensions. 

Small DOte: Sprcadsht:eu; ha,,<= become essenlial in managelnent They compule 
linear rombinalions and do! product:;. What you see o n the sc=n is a malriX. 

o\Uin point To romputc lhe: do! JlfU'/UCI .. ... mulliply each "i limes Wi. Then add. 

lengths and Unil YNION 

An imporlanl cas<: is the: dol: prodUCI of a vwor willt iI5~1f. In tbi s case g = ... When 
lhe ,"tdor is • = ( I. 2. 3). lhe dol: produc1 wilh ilself is , .• = 14: 

The ans,,'er is DOt lC:TO because , is not perpendicula r 10 itsel f. Inslead of a 90" angle 
belWttll "«Iors we have 0". The dol: prodUCI , ., gives lhe Itng/It of ' $(/"/',-ro, 

DEFIN1TION Tht: I~nglh (or nonn ) of a ,'eclor u is the square ro<~ of ,. u 

length = ~ ' I = .J;7'i. 

In two dimensions lhe lenglh is J,,; + ci- In Ih= dimensions il is Jv; + cj + "j. 
By lhe caleula1ion above. lhe length of • = ( I . 2. 3) is Oa' = J'i4. 

We can explain this definilion. laD is jusl the o rdinary lenglh of lhe arrow Ibal 
Iq)I'l'SCnls lhe vector. In I,,'() dimensions. lhe arn)W is in a plane. If the COmponenlS 
arc I and 2. the arn)W is the third side o f a rigb! triangle (Figurc 1.7). The fOfTT1ula 
a l +bl =2. which connedS the Ih= sides. is 11+ 21 = B' R1. 

FQr the leng!h of • = (1.2.3). we used 1he righl lriangle fOfTT1ula Iwice. The 
V«1or (I. 2. 0) in !he base: bal; length ./S. This base: "«lor is perpendicular 10 (0. O. 3) 
thai goes , naigh! up. So the diagonal o f lhe boK has lenglh I_I '"' Jr+9 - J'i4. 

The length o f a four..Jimen5ionat vector WQUld be Jv; + ,,1 + 05 + v]. Thus 
( L t . I. I) has leng!h J t 2 +11+11+11 = 2. This is tbe diagonaJ thrwgh a unit 
cube in four-dimensionaJ space. The diagonal in n dimension ~ hu length .,r.;. 



(0.2) (1.2) 

( I. 0) 

(0,0. 3), 
" 

- - - .. ; 

... ... ~2+ v';+uj 
~ = ]!+2l 

]4 = ]2 +22+32 

" , - (1.2.3) has leng\h Ji4 
" 

)',-----~, . (0.2.0) 
" •••• - : .... (]. 2. 0) has length ./S 

figure 1.7 11le length ~ Qf t"".dimensional and three.dimensiooal "«lOrs. 

The: word " pnit" is always indicating thai some measurement equals "one." 'The 
unit price is the price for one item. A unit cube has s ide~ of length (HlC. A unit ci .de 
is a circle wilh nodius o ne. Now " -e define: the idea of a "unit V«ior:' 

DEFIN1TION A""" "uwr II is 0 "Ufor "'h"sr Ir"glh rqll"/s "Rr Then II' II '" 1 

A .- -, d- - - (t t I I ) _ _ -, +' +' +' ) n eumpl'O In ,our lmenSIOflS IS II = """1. 111,,1\ " ' U IS , ;a: i .=. 
We di>' ided • '" ( I. I . I . I) by its length D. I = 2 10 get this IInil vector. 

Example 4 The siandard unit ~«tors along the x and)' axeS are ,.,ritlen i and j . III 
the x y pia"". the unit vector thai makes an angle "theta" with the x a~is is (cos 1:1. sin 1:1): 

When 0 = O. the horiwrnal vector II is i . When 0 = 90" (or t nodians). the vt:nical 
,'«tor is j . At any angle, the oompo""nls cos9 and sinO produce 11'11 = I because 
CQ510+sin19 = I. llIese , -ectors reach OUlto the unit circle in Figure I,S. Thus cosO 
aoo s in 0 are simply the coordinates of thai point at angle 0 00 the unit c ircle. 
In three dimensions. the unil V«lors along the a:ces are i . j . and 1: , Their comlX""""ts 
are (1. 0 . 0 ) and (0. 1.0) and (0 . 0. I). Notice how every three.dimensional ,-ector is 
a linear oombinalion of i. j . and k , The '-eclor u = (2. 2. I) is equal to 2i + I j + 1: . 

liS length is JI2 + 21 + 12. This is lhe S<[uare root of 9. SO • • • = 3. 
Since (2, 2. I) has length 3. the ,-eclor (i. i. !) has length I. Check Ihal 11 ' 11 = 

; +; + ~ = L To Cll:ate a unit "«tor. just divide u by its length n-I. 

I" Unit vectorl Dirilk ""Y "o,,~ro rut", 0 by jts k"gtll n..n II "" orl. ' " a 
uIIII ,«lor In the same dneclion as )' 

, 



i =(O. I) i +j = (1.1) 

.. = (l. I)/ J2 

; = (1.0) 

- j 

FigUrf'1.8 The coordinate ~ j and j . The unit vector u at angle 45' (left) 
and the unit Vec10r (cos 8 . sin 8) at angle 8. 

The Angle Belwef'n Two VKlors 

We ~Ialed IlLat p"~ndi<,:ular vectOfS have .. ... = O. The dot pn:o:Iuct is zero when 
the angle is 90". To e~plain this. we have 10 connect angles 10 dot prodoclll. Then we 
show how ..... finds the angle bdween any two nonte ro ~t'Clors • and ... 

1 B Righi angles Tht dOl prod .. cr is . . .. = 0 "'ht n " is ptTJH" dicu/QT fO .. 

Proof When" and .. a~ p"rpcndicullll. lhey form two sidc:s of a right triangle. The 
third side is r - .. (the hypolenuse going across in Figure 1.7). The PytlJagonu Law 
for the sidc:s of a right mangle is ,, 2 + b l '" cl : 

Writing out the formulas for those: lengths in two dimensions. this equation is 

(uf + ui) + (wT + wi) _ (u, - W,)2 + ("2 _ ""l)2. 

(2) 

(3) 

The right side begins with ur - 2u, w, + wf. Then vi and wi are on boIh sides of 
the equation and they can(:<'1 , k aving - 2u,wl ' Similarly vi and w~ cancel. leaving 
- 2"2""l. (In three dimensions there would also be -211) "')' ) The 11$1. step is to divide 
by - 2: 

O= - 2u,w, - 2I1:lWl which leads to u, w, +"2""l = 0. (4) 

Conclusion Right angles produce r ... '" O. We h.avc proved Theorrm lB. The dot 
product is 7.c:ro when the Ingle is (J = 1l(JO. Then cos (J = O. The zero vector • = 0 is 
P"'l'\'ndicular to every v«tor .. bKausc O· .. is always zero. 

, 
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14 eh,pI<'!' I Introduclioo to W<1OrS 

, 

angle atJo,"t' 90" 
in Ihis half-plane 

, 
angle below 90° 

, in this half-plane 

Figure 1.9 
~ . w > O. 

""rpendicular veclQrs have u · '" = O. 1l>e angle i~ belQW 90° when 

NQW suppose u . .. is 001 zero. II ma~ be pmilive. il may be negali'"t'. The 
sign of ~ . .. immroialcly telis whelher we are below or abo"e a righl angle. The 
angle is less Ihan 90" when u' .. is pm;I;,·e. The angle is aOO\"t' 90" when f· .. is 
negative. Figure 1.9 shows a typical vOXlor u = (3 . I). The angle with .. = (1 .3) is 
Ie" Ihan 9QO. 

1l>e borderline is where vectors are perpendicular to u. On thai dividing line 
between plus and minus. where we find III = ( I. -3). lhe dot JIf"Oducl is ze ....... 

1l>e nexl page lakes Qne more slep. 10 find lhe exacl angle 8 . This is not neces
sary for linear algcbra - yoo coold stop here! On« " 'c 1Ia"e mal rices and linear equa· 
lioo •. we ,,'Qn't <:Qme bock IQ 8. But while " 'e are QIl the subject of angles. this is lhe 
place for lhe fQm1ula. 

SIan with unil voxtors It and V. The sign of It • V Idls whether () <" 90° or 
8 > 90°, Be<:ausc lhe veclors haw lenglh I. we learn more lhan that. Tht dol produrt 
u • V is the ({}sint of 8 . This is true in any number of dimens;',"s, 

IC If It and Ii are unit 'c.:I"" then It· U =oos8, (enainl) I'" V I!O 1 

Rcmember lhat ros 8 is ne,'cr greater than I, II is ne,'cr less than - I. Tht dol prot/"" 
of Itnit ,'utors is 1H"~'t!tn - I , ... d 1. 

Figure 1. 10 shows this clearly when lhe ,"CCtors are u = (cod. sin 8) and i = ( I. 0) . 
The dot product is It · j = cos8. TIlal i~ the cosine of lhe angle between them. 

Afler rotati"" through any angle a. thesl: are slill unil vectors. Cailihe "CClors 
u = {cos (3. sin (3) and V = (cosa_ sin 0 ). 1lH:ir dot product is cos 0 cos {3 + sin a s in (3. 
From trigooomctry this is the same as cos({3 - 0), Sin« {3 - 0 equals 8 (no change 
in the anglo- betl,.-""n lhem) wc ha'"t' reached the formula u · V = c058. 

l'roblem 26 proves I'" V I !O I difttlly. without mentioning angles. 1lH: inequality 
and the cosine formula ,,' U _ cos 8 are al"'ays I"", for unit vecton;. 

W/ult if ~ and .. an> not unit ucto'J? Divide by their Io-ngths to get " = v/ l gU and 
V = 111 / 1111 1, 1lH:n the dot prodl>Cl Qf IhQsc unit vcctOf'!i " and V gi"es oos (). 

, 



[<." ] sIn tI 

u = [~:~] 

~L" ~ [::] 
9=fj-r1' 

Figure 1.10 TIle dol prodUCt of unit , 'eclors is the cosine of ,he angle 9. 

Whatever lhe angle. litis dot product of ~/n D I wilh .,/1 .,1 new. e~~t«ls ooc. 
ThaI is the "Sthwort intquality" for dot prodUCtS-or rr.)re ~!ly II\(, Cauchy
Schwarz-Buniakowsky inequality. It was found in Franc<: and Germany and Russia (and 
maybe clsc:wllere-il is the mosl imponant inequality in mallicmalics). Wilh the divi 
sion by . _8 H'" frum mealing to unit '-e<:tors. we have cosO: 

1 D (a) COS!;>,.: "OM." UI.A If • and '" are "",,~ero ''''-'01'1' then 

(b) SCII\\ARZ INEQUA I. ITY If u atld III a"" an) \'ttIO .... tllen I P • " I!: P ~ 11111. 

hample 5 Find cosO for. = Ul 800 .. = U1 in Figu", 1.9b. 

Solution The dol prodllCt is . . .. = 6. Bolli • and III have length ./Ri. The cosine is 

1lle angle is below 90" because: •. III ,. 6 is positive. By the Schwan inequality. 
n-I I .. I = 10 is larger !han . . .. = 6. 

hample 6 n.e dol product o f p _ (a. b) and .. _ (h, a) is 2nb. Bolli lengths . .... 

.; o! + b!. The Schwan inequa]il~ sa~s that 2nb .:": o! + bl . 
R,oson The diffen=ncc bet" ·een ,,! + b! and 2t,b can never be negative: 

Th i, is rnon: famous if we write .< = 02 and y '" b 2. 1lien the "geometric rnc.an· · ./Xi 
i ~ IlOl larger than t~ ··arithmetic rnc.an:· which is tho:: .''''rage h r + y): 

, 
i 
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1 f> Ch.lpte< 1 Inlro6.lction 10 WcIon 

Notl'!! on Computing 

Write the componenl.S of ~ as v(l) ..... urN ) and s imilarly for "'. In FORTR AN. the 
sum _ + 111 re<juires a loop 10 add components sep<U'lltely. l1Ie dot produci also loops 
to add the separate v(i)w(i): 

00 10 I " I,N 00 10 I " I ,N 
10 VPLUSW(I) .,. v(i)+w(l) 10 VOOTW '" VOOTW + V(i ) • W(i ) 

MATLAB "m'.Q dir«ll)' "'ilk ",/wJe ,'«Iors. nol tk~ir componems. No loop i, 
needed, When f and ... have been defined. ~ + w is immediately understood, It is 
printed unleSS the line ends in a semicolon. In])llt u and 111 as rQWs - the prime ' at the 
end t""'sposes them to columns. l1Ie combination 2. +) ... uses * for multiplication. 

u .-,,[2 3 4 )' ; .. ~( t 

l1Ie dot pnxiOCI f · 111 is usually see" as " row rime,,, column ("'ilk no dOl): 

• • •• 

l1Ie lenglh of _ is al~lOdy known to MATLAB DS IlOfTTl(U). We could define il our
selves as sqr1(. · • • ). USing the "'Iua~ mol function - also known. l1Ie cosine ,,"'e have 
10 define oursel,'es! Then the angle (in radians ) wmes from lhe an: cosine (acos) i 
function : 

cosine = f ' . ... /(norm (. ) • IlOfm ( 111 » ; 
angle = <>cos (cosine) 

An M -file would treate a tlew fU11Ctioo coslne( • • w) for future use. (Quite a few M
files have been created especially for this book. l1Iey ate lisled at the end.) 

• REVIEW OF THE KEY IDEAS • 

L l1Ie dot pnxiUCI • • 111 multiplies each component Vi by U'; and adds (he V/W/. 

2. 1bc length I f I ;s the squan: rool of •• ' . 

J. l1Ie veclor _/ l uD is a unit ''tClor. lis length is l. 

4. 1bc: dOl pnxiUCI is ~. 111 '"' 0 when v and 111 a~ perpendicular. 

5_ 1bc: cosine of (J (Ihe angle between any nonzero . and 111 ) never u ceeds I: 



• .2 LengtM and Dot Prndurn 1 7 

• WORKED EXAMPLES • 

1.2 A For the vectors v = (3. 4) and III = (4.3) test the Schwan: inequality <)n 

~. III and the triangle inequality on I ; + 1111. Find cos e for the angle between ~ and 
III. When will we hav.: equoliry Iv, 1111 = I vn 11111 and a.+ 1111 '"" I vl + I lII n? 

Solution The dol product is ~ . III =: (3)(4) + (4)(3) = 24. The length of .. i ~ 

1' 1=./9 + 16 ~ and al5Q Dllln .. 5. The sum "+111 =(7. 1) has length 10+ 111 1 "" 
1./i. "" 9.9. 

Sth .... rz Intquallty 
TrIangle Inequality 
Cosine of anglt 

Iv, 1111::; nvll lll l is 24 < 25. 
I ~ + 1111 ::s .' 1 + 01111 is 7./i. < 10. 
cosO = ~ (Thin angle!) 

If one ~1Or is • multiple of the other as in III = -2~. then the angle is 0" or 180" 
and Icos OI = 1 and I" 1111 ~quol~ I _n I lII n. If the angle;s if. as in III = 2 • • then 
I_ + 1111 = a. 1 + 1111 1. The triangle is Aal. 

1.2 B Find a unit V<:<.:1Or II in the direction of u 
p"~ndicular 10 II . How many possibilities for U? 

(3. 4). Find a unit V<:<.:tor U 

Solution For a unit vector II. divide ~ by il$ length h i = 5. For a pl'rpendicular 
-=tor V we can ,boose ( -4.3) since .he dot product ... V is (3)(-4) + (4)(3) ,. O. 
Rlr a unir vector U. divide V by il$iength I VI: 

v = ~ .. (-4.3) = (_~.~) 
II V I 5 S S 

The only other perpendicular unit vector would be - V = (~. -~). 

Problem Set 1.2 

1 Calculate the dot producl$ II •• and II' III and ... III and til .• : 

2 Compute the lengths nun aoo R' I and Util i of those ,"«tors. Check the Schwan 
inequalities 1"" 1::; nli D Ur i and I" 1111 ::s "11 1111. 

1 Find unit vectors in the dirKtions of ~ and III in Problem 1. and the cosine of 
the angie O. O!oose vectors that make if, 90· . and 1110· angles with III . 

4 Fioo unit vectOtS " I and 112 in the directions of .. = (3.1) and III = (2 . 1.2). 
Find unit veclors VI . nd V l th~1 arc perpendicular 10 II I and 1/1. 

, 
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5 For any "n;/ '~tOB • and .. . find the dol prodUCtS (actual numbers ) of 

(a) u aRd - u (b) . + .. and u - It' (c) 0 -2 .. and v +21t' 

II I'iRd the angle 9 (from its oo.Iinc) between 

(., 

(,' 

.. [},J 
' ~ [},J 

,,'" (b) 

" ) 

7 (a) Describe every ,-ector It' = (Wt. UJ;l ) that is perpendicular to • = (2. - II . 

(b ) llIoC' vectors that are perpendicular to V = (]. l. l) lie on a 

(e ) llIoC' ,~,C>fS ,ha' a~ ""rpendicular 10 ( I. I. I) and ( I . 2. J) lie on a 

8 True or false (give a reason if true or a countere~ample if false): 

9 

(a) If " is perpendicular (in Ihree dimensions) to ~ and .. . lhen • and .. 
are pandlcl. 

(b) If " is perpeRdicular In ~ and It' . then " is ""rpendicular to v + 210. 

(e) If " and . are perpendicular unit vectors then l u - vi = /2_ 
The slopes of the arrows from (0. 0) to (Ut. 1/2) and (WI. UJ;l) are 1/2/.1 and W2/Wt . 
If lhe prodUCt UlW:Z/UtWl of those slopes is - I. show llIat .. .. ... 0 and the 

10 DJaw arrows from (0.0) to the points. = (1.2 ) and '" = (- 2.1). Multiply 
their slopes. That answer is a signal that .... = 0 and the arrows are 

II If •. It' is negative. what does this say aboul tt.. angk between u and .. ? Draw a 
241imcnsional "ector • (an arrow). and show whe~ to find all .. ·s with .... < O. 

11 With. = (I. I) and II' = ( I. 5) choose a number c SO tllat II' - co is perpendicular 
10 u. Then find the formula that gives this number c for any oonzero • and .. . 

1l f ind tWO vectors. and .. that are perpendicular to 0.0.1) and to each other. 

14 f ind three vectors II . . . .. that are perpendicular to (I. 1. I. I) and to each other. 

15 1lIc grometnc mean of x = 2 and y = 8 is .JXY = 4. 1lIc arithmetic mean is 
larger: !(x + y) : . This came in EJ.amplc 6 from the Schwarl inequality 

for • = (/2. Ji) and .. = (Ji. /2). Find oos 9 for this 0 and .. . 

16 How long is the vector. = ( I . I .... 1) in 9 dimensions? find" unit ,·ector u 
ill the same direction as • and a vector II' thai is perpeRdicular to ._ 

17 What are the oo.Iincs of the angles a. ft. (J between the \"ector (I. O. - I) and lhe Unil 
\"ettOB j . j. k along Ihe "~es? Chc<.:k the formula cosl a + C0!i2 fi + 00.110 = I. 

, 



Probk'ms 111 .... 31 ..... d I ... Ih~ main ra~ts abuul I~nglhs and angles in triangles. 

18 The parallelogram wilh sides ~ = (4, 2) and ., = (- 1, 2) i§ a =tanll~' Check 
the Pythagoras fonnula (I ~ + b~ =.-2 which is for riglrl triangln only: 

19 In thi ~ 900 case. (1 2 + f>2 =.-2 also wOOs f(,lf ~ - .,: 

(length ... f ~)2 + (length of ., )1 = (length of u _ ., )1. 

Give an e.tample of ~ and III (001 al right angle.s) for wh ich this equation fails. 

20 (Rules for dol products) lllesc equations are simple but usdul: 
(I) u,., = Ill' u (2) II ' ( ~ + ., ) = II ' ~ + 11 '111 (3) (e .), III = e(p, III) 
UIOC (I) and (2) with II = p + w to prove D. + wD' = ~ . 11 + 2tt· III + .,. lU . 

21 The triangle ;nt qlloliry says: (length of p + Ill ) :::; (length of p) + (length of lUI. 
Problem 20 found I tt + wl~ = 1' l l +2p,w+ l lII l l . UIOC the &h",'ar~ il"M.'qualit)" 
11'., :::; I tt l 0111 1 10 lum Ihis into the triangle itle<:luaJity: 

21 A righl triangle in three dimension .. still obeys l uRl + 0111 11 = l u + 11111. SIw:>w 
how Ihis leads in Problem 20 10 Vt WI + lIJWJ + vJ u'J = O. 

~ __ -::l O+' , . . _ . 
. -::z.-

23 The figure slw:>ws thai COS a = vi/ l pi and sin a = ill/U r i. Similarly cosll is 
_ _ and si nfJ is __ , The angle e is Il- a. Substitute into the fonnula 

COS fl cosa + sin fl sin a for cos(fl - a ) 10 find CQS 1:1 '" u • ., In _ • • .,g. 

24 With' and ., al angle e, lhe "Law of Cosines" comes from (tt - Ill ) ' (r - Ill ): 

Itt .... 111 1' = Iral - 20. 11 111 1 ~os l:l + n.,nl. 
If (J < 90" show Illat 1. 12 + I "'D2 is larger Illan nu - "' I' (the thin! side). 

2S The Schwar~ inr;:quality I. · "' I :5 1. llwl by algebra instead of lriganomelry: 

(a) Multiply OU1 both sides of (UtW t + I>.!w,)l :5 (ur + ul )( wi + u,j ). 

(b) Sttow Illat the difference belween lOOse sides equals (Ultu;! _I>.!W I)l. Th is 
canllOl be negati,..., §i~ it is a sqUan:: - 1iO the inequalily is lrue. 

, 
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16 One· line proof o f the 5<:hwar.r. i!>e(juaJity III ' V I.:!: I for unil ''«IOf'S: 

Pul (11 ). 11 2) = (.6, .8) 300 WI. U2) = (.8 .. 6) in WI whole line aoo fioo cos6. 

17 Why is Icos61 !le''<'r greater than I in lhe first place? 

28 Pick any numbers IMI add 10 x + y +z = O. Find die angle between your "eCtor 
~ = (x .y.=) and the "eCtor .. _ ( •. x.),). Challcnge question: Explain why 
~ . - /I-n ... is always -!. 

'v.I (Ruo-mmeM..a) If 11 . 11 = S and II II' ll = J. what are the smallest and largest 
,-allies of li p - _ II? Whal are lhe smallesl and la'l!eSl ""II ... of. · II'? 

30 If p = (\. 2) draw all "«lOIS _ = (x . y) in lhe xy plane with v· .. = S. Which 
is the §honest II'? 

3 1 Can lh~ ~ectors in lhe xy plane have u· ~ < 0 and p . _ < 0 and U·III < 01 
don' t know how many , '«ton in xy;: spaoc can have all .... galive dot products. 
(Four of those vectors in the plane woold be impossible ... ). , , 



2 
SOLVING LINEAR EQUATIONS 

VECTORS AND LI NEAR EQUATIONS . 2.1 

~ ~ntn.t problem of linear algebra is 10 solve a system of equations. n.os.e equations 
are linear, which means thaI the unknowns an: only multiplied by numbers - we never 
sec: .r limes y. Our fi~ example of a linear system is certainly noc big. 11 has tWO 
equations in \\\otl unknowns. Bul you will sec: how far il kads: 

x 2)' = 
3x + 2-, '" II 

( I) 

We begi n a ro ... a/ n rimr. The first equation x -2, = I produces a Sln iglll line in !he 
xy plane. Thc point X = I. )' = 0 iii on the line because il solves thaI equation. The 
point x = 3.y = I is also on the line because 3 _ 2 = l. If we clxxlse x = 101 VI'(: 

find )' = SO. The slope of Ihis particular line is i (y illCrnses by SO when x cllanges 
by 100). But slopes a rc imponanl in calculus and thi s is linear algebra! 

y 
1t +2), = I ] 

x=3 

2 3 

fis ure 2. 1 Row piCfU~: The point (3. 1) where the lines meet is the SQlulion. 

Figure 2.1 shows that line It - 2)' .. 1. 'The second line in Ihis "row picturt''' 
rome. (rom the SCCQnd equation 100 + 2y '" I I. You can't miss the intersection point 

2t 

, 
t 



22 Chop<:r 1 5<>I.i"8 linear ["",,'ion' 

when: the tWO line~ m«L TIt~ pqint ): = 3,}' = 1 lies on bOIh linn That point solves 
both equalion~ al once. This is lhe SOIUlion 10 our sy~le(ll of linear equ~lions. 

R Th~ ro ... pic/uN' ,.ho"" , ...... lines mUling al a single point. 

Tum now 10 the rolu(lln picture. 1 w~m to recognize lhe linear system as a ","«

IOf equal ion". In.tead of numbers we need to see ,."cfOrs. [f you separale Ille original 
syslem inlo ils columns instead of its ""'"'s, ),OU gel 

(2) 

This has two CQlumn ve<:IOrs On Ihe left side. 'fIK= problem is /0 find the combirwlion 
olilros~ l"eclorJ 111m tqutllJ Ih~ ,.,,(/or on Ihe rigili. We an: multiplying the first co[
umn by ): and the second CQlumn by y. and adding. With the righl choices .. = 3 and 
y = I. Ih is prodllCcS 3(coIlimn 1) + [(column 1) = b. 

C Thr coillmn pic/uN' combines lilt en/um" ,""c/Urs 0" Ih~ I~/I siJr /0 producr Ihr 
'""c/Or b !>n Ihe righl ,iJ~. 

[-;] , 
, 

, , 

, 

[f [:] 

Figure 2.2 Column p,'CIUN': A combination of cQ[umns proo:h,,:es the right side ( 1.11). 

Figun: 2.2 is the "column picture'· of 1"'0 equations in t""o un knowns. TIle firsl 
pan shows the 1""0 separale column.. and that first column multiplied by 3. This mul· 
liplicalion by a scalar (a number) is one of the IWO basic operations in linear aJgcbl1l: 

Scalar multipl ication 
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If the components of a >"OClor r are UI and II:!. then cp has components C~I and Cto:!. 

The ocher ba,ic operation is '-«lor oddilio~. We add the fir;;l components and 
the SCCOf>d components separalely. The ,·OClor sum is (I. I I) as desired: 

\'oclor additlon 

The graph in Figure 2 .2 shows a paralklogram. The sum ( I. I I) is along the diagonal : 

Thesid~SQrr [ !] and [ -n· Th~ diagonalfum i. [ ! ~ n = [ I: ] 

We have multiplied the original columns by .. = 3 and y = I. That combination 
prOOlI«5 the '"«lor b = (1. II) on the righl side of the linear C(juations. 

To repeat: The left side of the I"«lor C(juation ;s a linear eombinaljo~ of the 
columns. The problem is to fi nd the right coefficients x = 3 alld )" = I. We are 
combining scalar muhiplicalion and v«lor addilion into one Step. That step is crucially 
important. because it contains both of lhe basic operalions: 

Linear combination 

Of OOU~ the solution .r = 3. Y = I is lhe same as In the row piclu re. [ don·t 
know which piCIUre you prefer! I suspect that the tWO intersecting lines are 1I10re fa
mi liar al (j 1S!.. You may like the row picture bell..,.. but only for one day. My Own 
preference is to combine column vectors. It is a lot easier 10 s« a combination of 
fOUT vectors in four-dimensional space. than 10 visualize how foor hyperplanes might 
possibly 1I"-OCt at a point. (EI·~n {)lie h)"ptrplatlt is hard etWUgir . .. ) 

The cfNlficitlll maltV o n lhe left side o f the C(juations is the 2 by 2 malrix II: 

Coefficient nlMtrix [ ' -2] A = J 2 . 

Th is is very typical of linear algebra. to look at a matrix by rows and by columns. 
Its rows give the row picture and its columns ghoe the column picture. Same nu m· 
bers. different picI U~. same equations. We write those equations as a malriX problem 
Ax = b: 

Matriu~uatio" [~ -; ][;] = [ II l 
The row picwre deals with t~ IWO ~ of A. 1bc column picture combines the columns. 
The numbers x = 3 and )" '" I go into the solulion v«tor 1: . Then 

AI: = b i, - 2 
2 ]['] =[ ,,] 

, 



24 Chaplet' 2 Sojving Lino., ["""ions 

Three Equations in Three Unknowns 

llIe three unknowns are x . )'. l. llIe linear equalion~ Ax = b are 

x + 2)' + 
2x + 5)' + 
fu 3)' + 

), 
2, , 

~ 
, 

- , 
~ 2 

(3) 

We looIr;: for numbers x. y. l that wive all three ~qualion.l at once. 1ltose desired num
bers might or mi ght noc exist. For this system. they do exisl. When the number of un· 
known~ ma!che~ the numbe!' of equations. lhere i~ uSU(JII), one w lulion. Before w iving 
the problem. we visuali>:e il both ways; 

R The row piclun shoWf lhne pllllles metrillg al a single poim. 

C The column piclun combilles Ihne columlls 10 product Ihe ~10l' (6.4.2). 

In !he row picture. each C<jua!iOll is a plone in three-dimensional spaa:. llIe lirst plane 
comes from the lirst equation x + 2)' + 3z = 6. Tha! plane crosses the x and y and 
Z aJ<cs al the points (6. O. 0 ) and (0.3.0) and (0. O. 2). 'Those three points wive !he 
equat ion and they determine the whole plane. 

ll>e "«tor (x . y.~) _ (0. O. 0) doe. not ..,Ive x + 2)' + 3. _ 6. ll>erefOl'C the 
plane in Figure 2.3 does no! con!ain the origin. 

Ii"" L i. on 
both pia .... 

!i"" L .....,.. 
tltinl plane 
a1 ""'U1ion 

Jl!l 

figure 2.3 Row picture of three equation~: Three planes mttt at a point. 
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The plaoe x + 2y + 3z = 0 does pass through the origin. and it is paraJJel to 
x + 2,. +)z = 6. When the right sid. i~ to 6. the plane moves .w~y from the 
origin. 

The second plaoe is gi>'en by the second equation 2x +Sy + 2z = 4. II ill/trUelJ 
Iht firSI pJan~ in a lint L. The usual result of tWO equations in three unkoov.'ns is a 
line f , of solutions. 

The third equation gi>'es a third plane. It cuts the line L at a single point. That 
point lies on all Ihree planes and it solves all three equations. It is hankr 10 dnw 
Ihis triple inters«tioo poinl Ihan 10 imagine it The three plane.; ID('eI at the solution 
(which "'e haven'l found yet). The column fOnTl u.ows immediately " 'hy z = 2! 

Tilt co/um" pic"'n ftOns o>'illl tilt ,,«lor fann of lilt tqlUJliom: 

, [ : 1 +, [ -ll +, [ ; 1 : [ ; l· (4) 

The unknown numbers x . y. z are the coefficients in this linear combination. Wc "'ant 
to muhiply the three column vectors by the ~ numbers .l.y.: to produce b '" 
(6.4.2). 

Figur .. 2.4 Column picluff: (x. y.:) _ (0.0. 2 ) bc<:ause 2(3.2. L) _ (6.4. 2) _ b . 

FiIlUn: 2.4 sllows this ooLumn pictun:. Linear combinations of those columns Can 
produce any vector b ! The oombination that produces b .. (6.4.2) is JUSt 2 ume$ the 
third column. TM CotjficitnlS "'t nud a" x = O. Y = O. lInd z = 2. This is also the 
intersection point of the three pl3ne$ in the row picture. It solves the system: 

t 



26 Ch.apte< 2 Solving li»edf ["",tlOnS 

The Malrix Form of the Equations 

W~ have th"'" I't)WS in the row pietu,", and th= column, in the column pietu,", (pl u~ 

the right >ide). TlIe th= rows and three column~ contain nine numbers. Tltr:.e nint 
num/w's fill " 3 by 3 mlJlrir. The """"ffici~m matrix'· has the row. and column~ tNtt 
ha'-e SO far been k~pI separate: 

Thu~flkienf mQrru U A ~ [i j ~ l 
The C8pital lene r A >lands for all nme codlic ients (i n this S<Juan: amy). TlIe 

letter b denotcs the column ,"C<:IOf with componenls 6 . 4 .2. TlIe unknown x is also 
a wlumn ,"c<:tor. with componems x . y. Z. (We use boldface becau5t it is a , 'ector. X 

because it is unknown.) By rows the etjuation, we ,", (J), by columns they Were (4 ). 
and now by matrices they arc (5). The shonhand is Ax =<' b: 

(S) 

We multiply the malrix A limes lhe unknown \'eclor x 10 gel the right side b. 
8mic 'lues/ion: What does it mean 10 ··multiply A times x" 1 We can multiply 

by ~ or by w lnmns. Either way. Ax .. b must be a ~ represemation of the 
th= etjuations. Yw do the same nine multiplicatiOfl> either way. 

Multiplication b~ "''''' Ax comes from dot producls. each row limes the column x : 

[ (~'()"] Ax", I "n,' 1 ] . x 

{ "'''' J \ . X 

(6) 

.u"ltipiiclltiofl b, Co/UMns Ax is a combinlltion of column n eton: 

Ax _ X (coIMMlI I ) + 1 (tol.",,, 2) + l (wa.",,, J). (7) 

W .... n we substitute the solution x = (0. O. 2) . the multiplicatiOfl Ax produces b: 

[;' _ 2~ ,3,] [0:] = 1 rimr f column J = 

The fi rst <101 prod"'" in I't)W multiplication is (1 .2.3) . (0 .0,2) = 6. The OIher dol 
products are 4 and 2. Multiplication by w lumns is simply 2 times column 3. 

This book .res Ax ." II combinllfl'on of Iht column. of A. 

, 
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hample 1 Here are 3 by 3 matrices A and I. wilh three ones and six zeros: 

If you are a row person. tIM: produCt of every row (I 0.0) " 'ith (4.5.6) is 4. If you 
are a column person. the linear combination is 4 times the first column (I. I. I). In 
tllat matrix A. tile second and third columns are zero vectors. 

n.c example with Ix de",r.-es a careful look. becau", the matrix I is special. It 

has ones Of1t lM: "main diagonar·. Off that diagonal. all tIM: entries are zeros. Whor ... .,-r 
,-n:IQr ,hi. "'<IIri .. ",u/rip/in. that "reIOr is not cltangt"d. This is li\:.e multiplicat ion 
by I. but for matrices and vectors. n.c excepl ;onal matrix in this example is the J by J 
ilhnliry IfIQln.r. 

I =0 [i ! ~] always yield'! lhe muluplical,oo I x = x. 

Matrix Notation 

11K' first row of a 2 by 2 matrix contain! "11 and 0l!. 1lle second row con tains a ll 

and ''n. Thc first index givcs the row number. so that a ;} is an enll)' in row i . The 
sewnd index j gi,'cs the column number. But those subscripts are not convcnient on 
a keyboard! lnSlcad of oi) it is easier to type A(I . j). The ttlt,., O~J = A(5. 7) ""Quid 
1M in ro ... 5, colum" 7. 

A . [all OIl]. [A( I.1) A(I.2)] 
all an A(2, I) A(2.2) . 

r-or an nI by n matri~. lhe row index i goes from 110m. TIle column index j stops 
at n. TIlere are nln cmnes in the matri.~. A squart: matrix (order,, ) 1Ias,,2 enlrics. 

Mulliplication in MATlAB 

I want to express A and x and their product Ax using MATlAB commands. This is a 
first step in learning that language. I t,o,gin by defining the matrix A and the "ector x . 
This veclor is a 3 by I matrix. with three rows and one column. Enter matrices a row 
at a lime. and uSoe a semicolon to signal the end of a row: 

A = II 2 J: 2 .<; 2 : 6 - 3 II 

x = 10:0:21 

, 
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liere are three way~ to multiply Ax in MATLAB. III reality. A. x is the way to do i\. 
MATLAB is a high le~eI language. and il works with matrilXS: 

MtIIri..r.~ b _ A. X 

We can also pick oul the fifSl row of A (as a smaller matriX!). The notation for 
that I by 3 wbmatrix i~ A( I. :) . Here lhe colon symbol ktt'ps aJJ columll" of row 1: 

R .. w til a ti",e b =[ A(I.:) .x : A (2.: )* x ; A(3.:) *x] 

Those are dot prodUCts. row limes column. I by 3 matri~ times 3 by I matri~ . 

The other way to multiply uses the columns of A. The first column is the 3 by 
s ubmatri~ A(:. I). Now the colon symbol : is ~eeping all rows of column I . This 
column multiplies .. (I) aOO the other columM multiply x(2) and x (3): 

Col"",n til 0 Ii"" b = A( : .J) •. «1) + A(;. 2) . .. (2) + A(: .3) . .. (3) 

I think Ihal malrices all' slored by columns. Then multiplying a column al a time will 
be a lillie faster. So A. x is actually e~ecuted by columns. 

You can see lhe same choitt in a FORTRAN·type SlnK:ture. " 'hich operates on 
single elllm of A and x . Thi ~ lower level language needs an outer and inner " 00 
loop". When lhe OUICr loop uses lhe row number f . muhiplication is a row al B lime. 
The inner loop J = I. 3 goes along earh row I. 

When the Outer loop uses J . muhiplicalion is a column al a time. I will do Ihal 
in MATLAB . which needs two more lines "end" "end~ to close "for r and "for r: 

FORTRAN by rmn 

DOlO 1 = 1,3 
DOlO J = 1. 3 
10 8(1 )= 8(1)+A (I.J) .X(J) 

MATLAS by columns 

forJ=I:3 
forl=I:3 
b(l) = b(l) + MI. J) .... (1) 

Notice Ihal MATLAB is sensit ive to upper ca'lC "ersus lower case (cal'ilal Iellers and 
small leners). If lhe matrix is A lhen ils entr';es are AU. J ) not 0(1. J). 

I Ihink you will prefer the higher level A . x . FORTRAN won'l appear again in 
this book. Maplt' and MQ/Mmillico and graphing calculators also opeTlIle at the higher 
level. Multiplication is A. x in MIl/hm'lJIicll. It is multiply(A. xl: or ~valm(A&u); in 
Mople. Those languages allow symbolic entries <I .b ....... and not only real numbers. 
Li ke MATLAS's Symbolic Toolbox. tMy give 1M symbolic answer. 

• REVIEW OF THE KEY IDEAS • 

1. "The basic operalion ~ 00 veclOrs "'" muhiplicalioo c. and "ector addition, + !P. 

2.. Togelher chose operatioos g;"e linear combinalions c' + d ill . 

C right€"? rna'sonar 



2.1 Vect<:n.ond lIf"IHt [""",.,.,. 29 

J. Matrix·~or multiplication A.I" can be executed by rows (dot prodl/CU). BUI it 
should be undetstood as a combination of the columns of A! 

4. Column p;clUre: A ... = II asks for a combination of columns 10 produce II. 

3. Row picture: Each equation in A ... = b givcs a line (II = 2) or a plane (II = 3) 
or ~ "hyperplane" (II :> 3). TIley intcrsecl at !he solution or solutions. 

• WORkED EXAMPLES • 

2.1 A Describe !he C(llumn p;cture of these three equations. Solve by careful inspec-
lion of the columns (instead of eliminalion): 

~!;;!;~: =~ which is Ax :. II : [23' i, i,] [~] - [=~,] 
3x+3y+4z:.-5 .. 

Solution 1llc column picture asks for a linear combination that prudl>CeS II from !he 
th= columns of A In thiS example b is minus rhe suond columll. So the solution 
is x '" O. Y "" -I. , :. O. To show Ilial (0. - I. 0) i. lhe onl)" solut;':m we ha,'e 10 
know lhal " A is in",nible" and "!he columns are independent"' and "Ihe o:Ietenninanl 
isn't zero". l'hose words are not yet defined OOt lhe te:sl oomcs from eliminalion: We 
need (and we lind') • full sel of tllree nontcro pivots. 

If the righl s ide changes to b :. (4.4.8) = sum of the lim tWO columns. then 
!he right combination has .l"= l .y'" 1 .~ "'O.1llc solution becomes x :(1.1.0). 

2 .1 B Th is system has no soIu/ion. because the Ihree planes in !he row pkture don ' l 
pas. tllrough a point. No combinalion of the th= columns prud~ b: 

.o:+ 3y+ 5, .. 4 
x+2y-3,:5 

h+5y+ 2z: 8 

( I) Multiply the equations by 1.1. - I and add 10 show that these planes don ', meet 
at , point Are any IWQ of the planes parallcl? What are the equalions of pLanes 
parallel 10 ... + 3)' + 5, = 47 

(2) Take the dol prod ucl of each column (and also b) with J = ( 1. 1. - I). How do 
those dol prodUCts show that the system has no SOlution? 

(3) Find Ih= right s ide V«tors b' and b" and b'·' Ihat do allow solutions. 

C JPYnght :I mall:: tal 



Solution 
(I ) Multiplying the: C«uations by l. l. - I and adding gi\'es 

.>:+3y+S;:=4 

.>:+2 ), -3z=S 
-[2.>: + 5)" + 2~ - 8[ 

0.>: + 0)" + 0;: '"' I No Solution 

n.., plalloeS don't """",t at any point. but no tWQ planes a.., par1IlIel. For a plane 
par1IlIel tQ .>: + 3)'+~z = 4. just chan ge the: " 4". lbc par1Illel plane .>:+3),+Sz = 0 
g()es through the CHigin (0.0.0). And the equation multiplied by any nonzero 
(onstant still gi~, the same plane. 11> in 2.>: + 6)' + 10. = g. 

( 2) The 00t prodllCl of each column with y = 0.1. - I) is ~ro. On the right s ide. 
y , b = (I. I. - I) • (4. S. 8) = 1 ;s 11{)( zero. So a solutioo is impossible. ( I f 
a rombination of "Qlumns could produce b. take dot prodUCts with y . Then a 
combination of zeros ... ""Id produce I. ) 

(3) The", is a solution when b is a combi"ation of the columns. These three exam
ples b' ." " . b'" have solutions ~ ' = (1,0.0) and ~ " = ( I , 1.1) and ~ '" = 
(0. O. 0): 

b' ~ [l] '"' fi~t colunm b" = [~] = Sum ofcolum"s b'" = [~l 

Problem Set 2.1 

l'roblems 1- 9 a~ about the row and column pictUre! of A~ _ b. 

1 With A = I (the identity matrix ) draw the planes in the row pietu"" Th= sides 
of a OOX med at the solution ~ _ (~.)' .• ) '" (2. 3. 4): 

Lr+O)'+ 0.= 2 
0~+I )'+ Ol=3 

0-,, +0)'+ 1.= 4 

2 Draw the VCCI<)r$ in [he wlunm picture of Problem I. Two times col umn 1 plus 
three timts wluntn 2 plus four times w lumn 3 equals the right s ide b. 

3 If [he equati(lflS in Problem I a", multiplied by 2.3.4 they become Ax = b: 
1.+0)' +0~= 4 

0/ + 3)'+ 0::= 9 
0-,,+0)'+ 4:= 16 

Why is the row pietu.., the same? ls the: solutioo i the same as .>: ? Wh~t is 
changed ;n the rolumn pictu", - the columns or the right combination to gi~ b? 

, 



2.1 \le<;oors <Uld line~r ( ",",!ions 31 

4 If equation I is added 10 eqUluion 2. which of these are changed: lhe planes in 
lhe row picrure. the column picture. the coefficienl malrix. lhe solulion? The new 
equations io Problem I would be x "" 2. x + y = s. z = 4. 

5 Find a point w;lh Z = 2 on the intersection line of the planes x + y + 3, ~ 6 and 
x - y + z = 4. Find the point wilh z = 0 and a Ihird point halfWllY betw...,n. 

6 The tiTSl of these: equation. plus the SCCQnd equals the third: 

x + y + z= 1 
x +2)"+ z=] 

2x+3, +2::= 5. 

The /im two planes meet along a line. The thin! plane <'Ootains that line. be<:ausc 
if x. Y. l satisfy the first 1",'0 equatiQns then they also __ . The equalions ha"e 
infinitdy many solutions Vhe whole line L). Find Ihree solutions on 1... 

7 Move the third plane in Problem 6 10 a paraJlel plane 2x + 3)' + 2:: = 9. Now 
the Ihree equution!! have JlO solulion- why IIQl1 The fi~l two planes mecl along 
the Ii"" L, but lhe third plane doesn't _ _ Ihal Ii"" . 

8 In Problem 6 lhe columns are ( I. 1.2) and (1. 2.3) and (I. I. 2). Thi~ is a ··sin· 
gular case.'" be<:ausc the thin! column is . Find twO <'Ombinalio ns o f the 
columns Ihal give b = (2. J. 5). This is only possible for b = (4. 6. r) if c = 

9 NonnaJly 4 " planes" in 4-dimensional space meel at a __ . NonnaJl y 4 <'01-
umn ' "t'Clon< in 4-dimensional space can ~"Ombioe to produce b. What colllb;n8tiQfl 
of (1.0.0.0).{l . 1.0. 0) . (l . I. 1.0).(1.1. I. I) prod uces b = (3.3.3.2)1 What 
4 equations for x. )'. z. r are you ..,lving? 

Problems 10-15 are aooul mulllplylng malrkt>s MOO n~CIOrs. .. COlllpute each A.r by dot products of lhe rows with lite column vector: 

[-; , 
nm [1 

, 0 

l][l] (.) ) (b) 
l , , 1 -. t 
0 , 

" Compute each A.r in Problem 10 as a <'Ombinalion of the <'Olumns: 

How many separale multiplications for Ax. when the mal ri~ is "3 by 3"'1 

, 
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32 Ch.tpfef 2 Solving li ..... ' ( quat;"'" 

12 Find lhe IWO componc:nls of A ... by rov,-, or by co]umn.: 

13 Multiply A limes ... to find Ihree components o f A ... : 

14 (a) A matrix wilh In rows and n ~'Olumns mullipl~ a "cctor wilh _ com.
ponents to produce a ,~or with __ componenl$_ 

(b) 'The planes from the m njuations A ... "" b are in __ -"<limensional space. 
The combination of lhe columns o f A is in _ ---dimensional space. 

1 S Write 21' + 3y + z + SI = 8 as a matrix A (how many rows?) multiplyi ng the 
column '"eCtor ... = (x . y. :. t) to produce b. 'The solutions x fill a plane or ··hy
perplane" in 4--.dimensional space. The plane ;1 J·dimtruionalwilh N} 4D l'(lI~",e. 

Problems 16-23 ask ror matrkt'l; thai act In spedal "'MYS on .·~tors. 

Wh31 is the 2 by 2 identilY mamx? I times [;; J njuals [ ;; J. 
Whal is the 2 by 2 exc hange matrix? P times [1 J njuals r n " (. ) 

(') 

" (. ) 

''l 

Whal 2 by 2 matri x R rotates every vector by 90"? R times [;; 1 is L! J. 
Whal 2 by 2 matrix roIales every "CClor by ]80"1 

18 find the matrix P tllal muhiplies (x.y.:) to gi'-e (y.: . ... ). Find the malrix Q 
tllat multiplies (y.z .... ) to bring back (x .y.z). 

19 WlLat 2 by 2 matrix E subtracts the first component from the second component? 
WIlat 3 by 3 matrix does the same? 

... 
20 Whal 3 by J matrix £ muhiplies ( ... . )". z) to give ( ... . y. z + ... )1 What matrix £ - t 

multiplies (x . y. z) to gi'''' (x . , ". z - ... )? If you multiply (3. 4.S) by £ and then 
multipl y by £ -t. the two resu hs are ( ) and ( ). 

2 1 What 2 by 2 matrix P t projects the vector (x . )'j o nto the x ax;s to produce 
(x.O)? What mamx P,. projects OOtO the y axis to produce (0. y )? If you mul 
tiply (S. 7) by P t and then multipl y by p,.. you get ( __ ) and ( __ ). 

, 



22 What 2 by 2 maU"ix R !'OlateS e",,'Y vector thn')Ugh 45~? n.: veclor (1.0) goes 
to (.fin, .fi/2). The veclQr (0.1) goes to (- ..Ji/2 . .fi/ 2). Those detennine 
the matrix . Draw these particular ,·ectors in the xy plane and find R. 

23 Write the dot product of (I. 4. 5) and (x. y. z) as ~ matrix multiplication Ax . TIle 
matrix A has one row. 1llc solution~ to Ax = 0 lie on a __ perpendicular 
to the ve<:tor _ _ . TIle columns of A are only in __ -dimensional space. 

24 In MATlAB notation. write the commands that define !hi, matrix A and the 001_ 
umn ,·ectors x and b. What command would test whether or noo: A:r = b? 

25 n.: MATLAB commands A = eye() and v = I); 51' produce the ) by 3 iden_ 
tity matrix and the column vector (3. 4. 5). What are the outputs from A ' \I and 
v" v'! (Computcr noo: needed!) If you ask for \1 * A. what happens? 

26 If yOU multiply the 4 by 4 all-<)nes matrix A '" ooes(4,4) and the col umn \I = 
<:>rn:'S{4, 1). what i. A _v? (Computer ....... needed.) If yOtl multiply B = eye(4 ) + 
ones(4 ,4) times w '" zeros(4. 1) + 2 · ooes(4, 1). what is B· w? 

Questions 27-29 aJ't II J'tvlew of thc row and column pictures. 

27 Draw the two pictures in two planes for the equations x - 2y = 0, x + y = 6. 

28 For IWO Imcar I!(jultion!i in Ihree unknowns x.y. z. the row picture will show 
(2 or 3) (lines or planes) in (2 or 3)-<iimen!J ional space. 1llc C()lumn picture is 
in (2 or )-dimensional spoce. 1llc ..,Iulion. ",,"nally lie on a 

2') For four linear equations in lwo unknowns .. and y. the row piclure iohow. four 
__ . n.: column pietu,," is in _ _ -dimensional space. TIle equations ha'·c 
00 solution unless the vcctor on the right side is a combination of __ . 

30 Start with the ,·cctor " 0 = (1 . 0). Multiply again and agai n by the same ··Markov 
matrix'· A below. 1llc ""XI three ,-ectors are " I. " 2. 11 3: 

_[.8 .3]['],[.,] 
li t - .2 .7 0 .2 

, 
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3 1 With a CQmpule r. conlinue from " o == (1.0) 10 " 7. sod from f O == (0.1) 10 ~7. 
Whal do yOti notice ab/.Mll " 1 and ~1? Here are 1 .... 0 MATLAB codes. one: ""ilh 
while and o ne: wilh for. They plol " 0 10 U7- YOti can use other languages: 

u ~ (1 ; 0 1; A ~ I.B .J ; .2 .71; 
x ; u; k; (0 :7]; 
while size(x,2) <= 7 
u= A · u;x =l~ul; 

."" plOllk, x) 

u = (1 ; 01; A ,. I. B .3 ; .2 .71; 
K = u; k =10:71; 
lorj=I : 7 

u .. A·u; x "Ix ul; 
~d 
pIOl(k, xl 

J2 The u 's aod ~ ·s in Problem J I arc applUllChing a sleady stale vector s. Guess 
Ihal vector and check thai As == s. If )'OIl Sian wilh S. you Slay wilh s. 

33 Thi s MATLA6 code allows you 10 inpUI .ro wiih a!ll()tlse click. by g input. w ilh 
I == l. A rotales ''«Iors by Ihnu. The plot will show A.ro. Al .ro . ... going 
aroomd a circle (I > I will ~pi",J OUI and I < I .... ill spin] in). YOti can change 
Ihn .. and lbe Slop al j= 10. We plan 10 pul Ihis code on "'·eb.mil.edullll.06Iw ...... : 

lheta " 15 . pill 80; I = 1.0; 
A _ 1 ' lc05(H><.'13) -sinU het~ ) ; s in(ifw..~,,) c 05(thcia)); 

displ'Clid to select starting fXlint"l 
lxI , x21 = ginpui(1); x = (xl ; x2 1; 
for j=1:10 

x = [x A-xl:, end)]; .,.., 
plo t(K(l ,:), xI2,:), '0'1 
hold off 

34 Invent a 3 by 3 magk malrl~ M j with entries 1. 2 •.... 9. All rowS and columns 
and dio,gonals add \0 13. The first row could be: 8. 3. 4. Whal is M j lime. (I . I . I)? 
What is M~ times (1. I. I, I) if Ihis magic malrix has enlries l. . .. . 161 

, 



2.2 The kIN 0/ Elimination 35 

THE IDEA OF ELIMINATION . 2.2 

This chapler explains a systematic way to soh·e linear eqU3lioos. 'The method is called 
"~Ii",iMtio,,· '. and you can see it immediately in our 2 by 2 example. Bef"", elimi_ 
nalion, X and )" appear in both equations. After elimination. lhe first untnown x has 
disappeared from the second equation: 

< -2,_ 1 

3x + 2)"= I I 
Afier 

(mu!ripl)" b). 3 muJ 5ublrtICl) 
(x haJ bun tliminlll~d) 

'The lasl equalion 8)" = 8 instantly gi,-es }" = 1. Substituting for )" in the first equalion 
leaves x - 2 '" I . Therefore x '" 3 and tbe solution (x. y) = (3. I) is complete. 

Elimination produ~s an upper triangular s)"stem- th is is the goal. The nonlcro 
coefficients I. - 2. 8 form a lriangle. The lasl equalion 8)" '" 8 reveals)" '" l. and we 
go up lhe lriangle 10 x . This quick process is called bad; substitution. It is used (or 
upper Irian gular systems of any size. after forwanl elimination is complete. 

lmponanl poinl: The original equations ha~e the same SO lutioo .r = 3 al>d )" = I. 
Figure 2.5 repeats this original system as a pair o( lines, inlc~;ng al lhe solution 
poinl (3. I). Aller el imination. lhe lines still meet at the same point! One Ii"" is Imr
izonlal because its equation 8}" = 8 docs not contain x . 

How did ..... gd f rom Ihe first pair of lints to tht ftcond pDir? We sublracled 
3 times lhe first equation from !he secood equation. The step that eliminates x from 
equation 2 is lhe fundamental operalion in this chapler. We use it so often lhat we 
look at il closely: 

To eliminalt x : Subtract 0 mulliple of t quotion I f rom t quation 1. 

Three times x - 2, = I gi,·cs 3x - 6}" '" 3. When this is subtracted from 3.1'+2)" = II. 
the righl side becomes 8. The main point is Ihal 3x cancels 3-". What remains on tlK
left side is 2}· - (-6,. ) or 8,.. and x is eliminated. 

lkf"'" elimination After .Iim;""tion 

(l. I ) 

, , 

Figure 2.5 Two lines meet al the solution. So docs the new line 8)" = g. 

, 
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36 Chaptet 2 SoIv'ng ti ..... ' Equaloons 

Ask yoursel f how that multiplier l: 3 WIIS found. Tbc first t(juatioo contai ns x. 
Thr finl pirol is I (the coefficient o f x ). 1llc second t(juation 'ontains 3 .... so the first 
t(juation ... ·as multiplied by 3. Then subtraction 3x - 3x producro the tero. 

You will ~ the multiplier rule if we cllange the first t(juation to 4x - 8y: 4. 
(S~me straight Ii"" but the first pivot bccOlIlCS 4 .) 1llc correct multiplier is now l = 1. 
To firul Ih~ mulljplj~r. ,Ii,·ja~ Ihe t otj}kiml M J " /0 ~ d imiruJlM by 'he pi.-o' ., 4 ", 

4 ... - 8y= 4 
3x+ 2y_ 11 

Multiply equ~tlon 1 by ~ 
SubtraC1 from equation 2 

4x - 8)" = 4 
8y = 8. 

1llc final syMem is triangular and the last equation still gi"es y : J. Back substitution 
produces 4 ... - 8 = 4 and 4 ... : 11 and x = 3. We changed the numbers but 001 the 
lines or the solution. DiI"ide by rhe pivot 10 find IhM ",ultiplier t = ~ , 

1'10-01 _ firsl "on;,ro in Ih, row Ihlll dots lilt , /i",inlll;o" 
Mu/tip/itr = (enlry 10 elimina/t) di"idtd b, (pirol) : I' 

The ""w ~ equation starts with the 5CWnd pi,"OI. whi<.:h is 8. We "QUid use it 10 
elimiNnc y frum the third equalion if t he~ we~ ooc. To sol'V! " tquorions "'e ... ant 
11 pj."OIs. Tht piv«s an on Ihe diagonal o! ,h, /rMnflt /ifler eU",ination . 

You rould .... "e ,.,lyW those equations for ... and y without readi"l]; this book. It 
is an extremdy humble problem. but "v! stay with it a linle longer. E""n for a 2 by 2 
system. elimination might b~ak 00.-'" and ,,'to have to see how. By urKlerstanding the 
possible t.r..akllown (when we can't fi nd • full ..,t of pivots). you will urKlerstand the 
whole: ~" of elimination. 

B~akdown of Eliminat ion 

Normally, elimination produ"". the pivots that take us 10 the sol ~tion. Rut failu~ i~ 

po$Sible. At some point. the method might ask us to aMde by zero. We can't do it. 
The process ha~ 10 ~top. Thc~ might be ~ " 'ay 10 adju~t and continllC- or failu~ may 
be una~oidable. E:.ample I fail~ with no solution. E.umple 2 fails with too many 
solutions. E:.ample 3 .uco;eeds by c:<'hanging the equations. 

Example 1 I'e,.,.<lnmt !<li/UIY " 'ilh no wlu/ion. Elimination makes this clear: 

x - 2)"= 1 
3 ... - 6)" = 11 

Subtract 3 limes 
eqn. I from eqn. 2 

x 2>-",1 
0 ,.",8 

1llc last cqualion is Oy = 8. 1llc~ is 110 SOlu tion . Nonnally "'to divide the right side 
II by the scrond pivot. but 11r~ system NU no s« oruf pI,,,,/. (Zero i. neHr <llfo" ... d .n 
<I piWJI!) The row and column piclU~S of lhi~ 2 by 2 sysrem show that railu~ was 
unavoidable: . If the~ i. no solution. dimination must ",,"ainly have trouble:. 

The row pi"u~ in Figu~ 2.6 ~oo..·s paral lelli""5-whi<.:h never meet. A solution 
must lie on both line •. With no mttting point. the equation~ have no solution. 

, 
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, 
""' [II column 1 

"""'" [-'I column -6 

Figure 2.6 Row piclure and column piCTU,"" fO'< Enmple I: no solurion. 

l1Ie column picture shows the IWO columns (1.3) and (- 2. -6) in the same di
recTion. All combiMtions of the co/umn.< Ii~ along "Ii~. BUI lhe column (fQm lhe 
right s ide is in a different direclion ( I. II). No combinaliOfl of tile columns can pr0-

duce this right side - lherefore no solution. 
When we change the right side 10 (1.3). failure shows as a whole line of solu

lions. Instead of no solution there are intinitcl~ many: 

bample 2 Pt rm(Jnt tll / (Ji/ure " 'ilh ill/i1lildy m(JnY soluriQn'; 

x - 2,,;o I 
3 ... - 6y =:3 

Subuact 3 limes 
eqn. I from eqn. 2 

.~, 2y=: I 

0,· "" 0 

E"ery y satis fies 0)' =: O. 1lIere is really only one etluation x - 2,. =: I. llle unkoown 
" is '1ree"', After ,. is freel~ chosen. x is deteonined as x == 1+ 2". 

In lhe row picture. (he parallel lines have become the same line. Every point on 
Ihat line SlIli sfies both etluations. We have a whole line of soluliOfls. 

In ,he column picture. the right .ide (1.3 ) i • • oow the ... me • •• he first rolumn. 

So we can choose ... = I and }" = O. We can also choose ... =: 0 and )' = -~: 
the second column times -! etluals the right s ide. l1Iere are infinitely many oth~r 
solutions_ E~ry (x. y ) Ihal sol~s lhe row problem Rlso sol~s the column problem_ 

El imination can go wrong in a Ihird way _ but this lime it can be fixed. Suppost 
Ihe first pi'"t}1 position COII/ains :.ero_ We refuoc: 10 allow ~ro as a piVOI. When the 
tirsl etlualion has no leon involving x. we can c:c.change il wilh an equalion below: 

bample 3 Tn nportJry /(Ji/ure bUI " ro .. rxch"ngt prodUCtS t .... pi..."" 

0 ... +2)"=4 
3 .. - 2)" _ 5 

Exchange the 
IWO lNIuations 

3,,--2.0=5 

2" '"' 4 

, 
I 



38 Chopter 2 Solving li .... ~, ("""tions 

,. 

Sll"... line (rum both "'Iuatioo. 
Solutions all.torrS thio line 

lineorr the: line of columns 

- ~(sccondcolUmn) .. [~l 

Figure 2.7 Row and column piclures for Example 2: infini/~Iy mdt'y so/u/ioltS. 

llIe new syslem is already triangular. Th is small e~ample is ready for back subslilution. 
1lIe hlSl eq uation givc~ y '"' 2. and tlx:n tlx: first equation gives -" = 3. 1l>c row 
picture is 1IQm1a1 (lwO inlersecting lines). 1l>c column picture is also normal (column 
''«Iors no( in lhe s.ame dimotion). TIle piVOlS ] and 2 are nonnal-bln an exchange 
wlls required to pul lhe rows in a good onJcr. 

Examples I and 2 lUl: singular - there is no §«'OnIi pivot. Example] is nOllsin
gu lar - lhere is a full SCI of pivots and exaclly one solulion. Singular equalions lIave 
no solution or infinitely many ..,Iutions. Pivots muSt be oonzero because we have 10 
divide by them. 

Thrl'<! EquatiolK in Thrl'<! Unknowns 

To undersland Gaussian elimination. you have !O go beyond 2 by 2 syslemS. Three by 
three is enough 10 see lile panem. For now the matrices are square-an equal number 
of rov,'s and columns. Here is a 3 by 3 system. specially cons1ruclcd so Ihal all steps 
lead to whole numbers and no( fractions: 

2x +4y-2z=2 

4.< +9y -3: =8 

- 2x - 3}' +7z= 10 

(' ) 

What are the steps? The first pivot is the boldface 2 (upper lerl). Below Ih~1 pivot "'"<' 
wanl 10 create zeros. 1l>c first multiplier is the ratio 4/2 = 2. Multiply lhe pivot equa
tion by (2t = 2 and subtract. Subtraction removes the 4-" from IIx: second equalion: 

, 
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Step I Subtract 2 times equation I from equation 2. 
We also eliminate -2x from equation 3-slill using the first pi~. 'The quick way is 
to add equation I to C(juation 3. "Then 2.1" cancels -2.1". We do exactly that but the 
rule in this book is to subtraci ralhtr lhan IIdd. The systematic pattern has multiplier 
il! = -2/2 '" - I . Subtracting - I times an C(juation;s the Same as adding: 

Step 2 Subtract - I times equation I from equation 3. 
"The two fIoCw equations in,·ol>.., only )" and z. The second piwt (boldface) is I : 

1)"+1:=4 

1)"+5z=12 

lI'e II!IL"C reuched" 2 b)" 2 sy,um. "The tinal Slep e!imin.otes )" to make it I by I: 

Slep 3 Subtract equation 2new from 3new. "The multiplier is I. 1licn 4: = 8. 

"The original system Ax = b h".. been ,on",ned imo a triangular S)"Sl(:m U x = c: 

2.r+4,·-2:=2 

4 .. +9 .• · - 3~ = 8 has become 

-2.<-3"'+7:; 10 

2.r +4 . - 2z = 2 

1>'+1.; 4 

4z = 8. 

(2) 

The goo.l is ach ic~ed - forwanl elimination is complete. Nona Ihc p;,"Ots 2.J.4 olonll 
the diagtlllal. 1llo>e pivots I and 4 "'ere hidtkn in the original system! Eliminatioo 
brought them out. Th is triangle is read)" (Of back substitution. which is quick: 

(4~ = 8 g i,""s z = 2) ()" + z = 4 gi.·es )" = 2) (eq uation I gives x .. - I) 

The solution i. (x .)". z) = (- I. 2. 2). 'The row picture has th= planes from three 
equations. All the planes go through this solution. The original planes are sloping. bul 
the Ia.t plane 4: = 8 after elimination is horizontal. 

"The column picture shows a combination of column ,'ectors producing the righl 
s ide h. 'The coefficients in that combination Ax are - 1.2.2 (the solution): 

(J) 

TIle numbers x.y. Z multiply columns I. 2. 3 in the original system Ax "", b and also 
in the triangular system Ux '" c. 

fVr a 4 by 4 problem. or an n by n problem. elimination procc...>ds lhe same " ·a)". 
Here is the whole idea of forward elimination. column by column: 

Column 1. Usc the finl tqu(Jti(Jn 10 crtme ~ros below the finl pil"Ol. 

Column 2. Usc Iht ncw tqualio" 2 10 crttJle ~ros btl_ Ihe suond pi."OI. 

Columns 3 10 II. " u p go;"g 10 find Iht othu pivots tJnd Ihc Iri(Jngulor U. 

ma1e-nal 



The: resul! of forward elimination is an upper triangular system. II is oonsingular if 
the:re is a full set of n pivots (never zero!). Quu tion: Which x could be changed to 
boldfa.cc x because the pivOl is koown? Here is a final example to show the original 
Ax = 1>. the: triangular system Ux = c. and the solution from back substitution: 

.< + y+ z= 6 

.< +2y+2:=9 

.<+2y+3z= 10 

.<+y+z=6 
y + z=3 

:= 1 

All multipliers are I. All pivOlS "'" I. All planes meet at the: solution (3.2.1). The 
columns combine with coefficients 3.2. I to give I> = (6. 9. 10) and (" = (6.3. I). 

• REVIEW OF THE KEY IDEAS • 

I. A linear system bec<>mes upper triangulu after elimination. 

2. The upper triangular system is solved by back substitution (staning at the boItom). 

3. Elimination subtract> I;J times equation j from C<]u~ti()fl i. to make the (i. j) 
entl)l zero. 

•• "The If r . t entry 10 eliminate in row; Pi be ' mu tp ler tS ;j = p"'OI m row J . V(l(S can rtOI zero. 

,. A ',ero in the: piVOl position can be rtpain;tJ if thert is a nonlero below it. 

,. When brtakdown is pennaroent. the system has 00 SOlution or infinitely many. 

• WORKED EXAMPLES • 

2.2 A When elimination is applied 10 this matrix A. what are the first and ~nd 
pivots? What is the: multiplier i2t in the first step (ilt times row I is subtracted from 
row 2)? What entry in the: 2. 2 position (inSlcad of 9) would fon:e an exchange of rows 
2 and 3? Why is the multiplier ilt "" O. subtracting 0 limes row I from row 3? 
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Solulioo The first pivot ;s 3. The multipl ier i ll is ~ '" 2. When 2 times I"OW I is 
subtnl(:!e\l from row 2. the $«Ond pivot ;s revealed as 7. If we reduce the entry .'9 .. 
to Mr. th~t drop of 7 in the (2. 2) position would foo:e a row exchange. [Il1e KWnd 
row would lUIn with 6. 2 which i ~ an exoct multiple of 3, I in the first row. Zero will 
"I'P"ar in the SC<:()<I(I pivot position.) The mult ipl ier i JI is zero because aJI = O. A 
zero at the stan of • row needs no elimination. 

2.2 B Use elimination 10 reach upper tnangular malnces U. Solve by bock substi· 
tution Of explain why this is impossible. What are the pivots (never zero)? Exchange 
equations when oeccssary. The only diffcren« is the - x in equation (3 ). 

x+y + ~=7 

x+}·-z", S 
x-)' +z =3 

x +y + z ... 7 
x+ y-t =S 

- x -,' + z= 3 

Solulion FUr the first sySlem. subtract equation I from equations 2 and 3 (the mu l
tipliers an: il l _ ] and t JI _ I). n.. 2.2 enlry becomes. zero. "" exchange equations: 

X+ Y+z '" 7 
Oy - 2z = - 2 exchanges into 

x+y +z_ 7 
- 2y + Oz =-4 

- 2y + Oz" _ 4 - lz =-2 

Then back substitution gives z = I and )" = 2 and x = 4. The pivots are ]. - 2. - 2. 
For the second system. SIIbtract equation I from equation 2 as before. Add equa

tion I to equation 3. This leaves zero in the 2.2 entry and btlow: 

x + y + z_ 7 
0)"-2z=-2 
0),+ 2z= 10 

TIN:n: i. no pi.'O/ in wlumn 2. 
A funtler e limination Slep gives 0: = 8 
TIN: th= planes don·1 ~I! 

Plane ] IneC'IS plane 2 in .. line. Plane I meets plane 3 in a panlle] line. No iWlurion. 
If "'" change: the M3~ in the original Ihird equalion to ~ _ S·· then elimination would 

leave 2: .. 2 instead of 2z = 10. Now : = I would be consistent - we ha,,,, mo\IN 
the Ihird plane. Subslituting : = I in the first equation leaves .. + y = 6. There are 
infinitely many solutions! ~ rhru plont J /1010' mu r along a " 'holt line. 

Problem Set 2.2 

J>ToIIIftm 1-10 I", a""", ellmlna,1on 01\ 2 by 2 systems. 

1 What multiple t of equation I should be subtracted from equation 21 

2.>+3),,,,,1 

10..+9),= II . 

After this elimination step. wrile down the upper triangular sYlitem and circle the 
,wo pivots. 1be numbers 1 and ] I have no influence on those pivOlll. 

, 
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2 Sol." the triangular system of Problem I by back substitution. ), b<>fore x. Verify 
that x limes (2, 10) plu~ y times (3,9) equals ( I. II). If the right side changes 
to (4.44) . what is lhe new S()lutOon'! 

3 What multiple o f "'luation I should be .""b/mere" from "'luation 21 

2..-- 4y= 6 

-.>:+5y=0. 

After this elimination Slt'['. S()h" the triangular system. If the right side changes 
10 (-6,0). what is the new 5(>lution1 

" What multiple l of equatioo I should be subtrxtoo from "'luatioo 21 

5 

ax +by=/ 

ex +dy = g. 

"The first piVOl is a (assumed oonzero). Elimination produces what fonnul~ for 
the sewnd piv«? What is y1 The se<:ood pi'"Ot is missing when ad = hr. 

Chox>se a right s i,x, which gi,·eo.< "" S()IUlion and a~r right s i,x, which gives 
infinitely many solutions . What are 1"'0 of those 5(>IUlOon.1 

1<+2),= 10 

6.0:+4),= 

6 Choose 1I cocflkiem b thai makes this system singular. 11>cn choose a righl side 
g Ihal makes il solvable. Find IWO solutions in Ihat s ingular case . 

l<+b)'= 16 
4.0: + 8y _ g. 

7 Rlr which numbers a does eliminalion break do"'n ( I) pennanenlly (2) temporarily? 

tI.>:+3)-=-3 

4.0:+ 6,· = 6. 

Sol"" for x and y after fixing the second breakdown by a row e~change. 

8 Rlr which Ihm: numbers k docs ci in'inatioo ~ak down? Which is fixed by a 
ro'" exchange? In each case. i. lhe number of solulions 0 or 1 or 007 

h+3_v = 6 

3x+ty= - 6. 

, 
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9 What test on b l and f>2 decides wh/.."\her t~se tWO etj~at ions allow a solution"! 
I-Iow many ..,Iution. will tlley .... ,·c? Draw the CQlumn p;~tu",. 

3x-2y=b, 

6.> - 4y=b~. 

10 In the xy plane. draw t~ lines x + y = 5 aoo x + 2)" = 6 and the Njuation 
, = __ that CQmcs from elimination. The line 5x - 4 )" =, will go through 
tile iIOl ution of the$c equations if , = __ " 

I'"robl~ ntS 11_20 study ~lIml natlon on 1 by 1 SystfntS (and possl ble rallun). 

n Reduce this sylt~m to upper triangular form by h .. "(} row operations: 

2.t+3)"+ : = 8 

4x+7y+5::=20 
-2y+2z: O. 

Circle the pivots. Solve by back substitution for ::,,. .. T. 

n Apply elimination (circle the pivoo;) aoo bad; substitution to solvc 

2.r - 3,. =, 
4.<- 5,,+ ::7 

2.r- y - 3:=5. 

List the three row operations: Subtract times row from row 

1] Which number d forces a row uchan~. and what is the triangular system (not 
singular) fOf that d7 Which d makes this system s ingular (no third pivOl)? 

2.t+5y+,= O 

4.1+<ly+::=2 

)·-~=3. 

14 Wh ich nun.ber b leads talO;"' to a row c ~chan!;c? Which b leads 10 a missing 
piVOl7 In that s ingular case fiJld J nonzero iIOlution x. y.::. 

x+by = 0 
x- 2y -::= 0 

y+ ::= O. 

I S (.) ConStruct a 3 by 1 systcm that DCCds 1WO row c1changes 10 reach a trian
gular form and • solution. 

(b) ConStrrn.1 a 3 by 3 system that needs a row c~changc to keep going. bm 
breaks down later. 

, 
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16 If row~ I and 2 are lhe wnc. IIow far Can you gel with elimirullion (allowing 
row e~changc)? If columns I and 2 arc: the ~ ..... hkh piVO! i ~ missing? 

2.< -y+;: =O 

2.<-y+:=O 
4x +y+::= 2 

2.<+2y+;:=0 

4x+ 4y + z: 0 
6x+6y+z:2. 

17 Con~troc[ a 3 by 3 example that has 9 different coefficients on the left ~ide. but 
rows 2 and 3 become uro in ehminatioo. How many solutions to your system 
with b : (I. 10. 100) and how many with b : (O.O.O)? 

18 Whkh number q makes this syStem s ingular and whkh righl side I gives it in
finitely many solutions? Find the solution that has : = I. 

x+4},- 2z= I 

x+ 7y- 6<: :6 

ly+q: = r. 

19 (RCC\')ITlID('nded) It is impouible for a system of liMat equations to have exactly 
two <olutions. Explain why. 

(a) If (x, y,;:) and ( X, y, Z) are IWO solutions, what is Booher OM? 

(b) If 25 planes meel al tWO poinlS, where else do they meet7 

10 Three planes can fail to have an intcrsectioo point, when no tWO planes are pM

allet. tne system is s ingular if row 3 of " is a __ of the fi rst two rows, 
Find a third equation that Can'l be solved if x +)' + z = 0 and x - 2}' - Z = I. 

Problems 21-23 mo"f up to 4 by 4 and /I by /I, 

11 Find the piwlts and the sululioo for these four equalioos: 

2.< + )' '" 0 
x+2),+ z ~ O 

y+2::+ r=O 

Z+2,=5, 

21 This $ys~m has the $lime piVO!s and right side as Problem 21. How is the sol u
lion differenl (if il is)7 

2.< - )' : 0 

- x+2y- Z = 0 

y +2::- 1=0 

- ;:+21=5, 

, 
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13 [fyou extend Problems 2 1-22 following the: 1. 2,1 pattem or the - [,2, - [ pat
tern, what iJ the fifth pivot" What is the 11th pivot? 

24 [ f el imination leads to tllese equationJ, find three possible original matrices A: 

,,+z= o 
3: = 0, 

25 For which two numbers a will el imination fail on A = [ : ~ ] ? 

26 For which three numbers a will elimination fail 10 give three piVQU? 

27 Look for a matrix that has row sums 4 and 8, and column sums 2 and . : 

. [" '] MatTU = c d 
a+b = 4 a+c = 2 
c+d = 8 b+d= s 

The four equations a~ !;Ollr.Ible only if s = __ ' Then find tWO dilfe~nt ma
trices that haY<' the CQI'T'CCt row and column .ums. ExIra c ..,.lil: Write down the 4 
by 4 system Ar "" b with r = (a , b, c, d ) and make A triangular by elimination, 

28 Elimination in the usual order givcs what pi''OI matri~ and what .KIlution to thi s 
"lower triangular" syStem? We a~ ~ally solv ing by forward .ubSfiIUliO'l: 

3..- = 3 

6.<+2" = IJ 
9". - 2y+z= 9, 

29 C~atc a MATLAB command A(l, : ) • '" for the new row 2, 10 .ubcract 3 
times row I from the e~isting row 2 if the m.atri~ A is a)n:ady known. 

30 Find experimentally the a''erage first and scoond and third pi'll)( sitts (usc the lib
!;Olute value) in MATLAS's A = rand (3 . 3). The ave"'8c of abs(A(1. I» should 
be 0,5 but I don't know the others, 

, 



ELIMINATION USING MATRICES . 2.3 

We now combine tWO ideas- elimination aoo matrices. The goal is to exJ'f"'SS all the 
steps of elimination (and the fi nal result) in the dearest possible " ·ay. In a 3 by 3 
e.~ample. elimination could be described in words. For la rger systems. a long list of 
steps would be ~Iess . You will Stt how 10 subu-act a mulliple of ooe row from 
a110lher row- Il.fing marricu. 

The malrix form of a linear system is Ax = b. Here are b. x . aoo A: 

I The ,-c<,:lor of righl sides is b. 
2 The vector of unknowns is x . (The unknowns change to " I . .. !. " J •... because 

".., run out of I .. ners befon: we rull out of numbe r5. ) 
3 The codlie~n1 matri x i. A . In this dUlpt .. r A is square . 

The example in the J'f"'vious section has the beautifully shon form Ax = b: 

2.< t +4"1-2r}= 2 
4.< t + 9.r! - 3.r} = 8 

- 2.< t - 3" 1 + 1.<J = 10 

The nine numbers on tho! left go into the malrix A . That matrix IlOl only sits beside .. . 
it mullip/its x . The rule for ·' A limes .... is CJlactly chosl:n to yield lhe Ih= equalions. 

Rev"w of A Iimel x . A malrix lime. a ,-c<,:= gi, ·e. a ~tOl". The matrix is squ","" 
when the number of equations (th=) matches the number of unknowns (th=). Our 
malrix is 3 by 3. A g<'neral square matrix is n by n. T1len the ,·ector x IS In n· 
dimensional space. This example is in 3-dimensional spatt: 

Theunknownu "=[;i] andlhl sa/ul,·an u x=[-n· 
Key JIOint: A .. = b represents the row form and also the column form of the equalions. 
We can multiply by taking a column of A al a lime: 

(2) 

This rule is usro so often Ihat we express ;1 once more for emphasis. 

2A The produCi ·\ x is a rombinalion of Ihe colum". of A Componoems of .. mul-
IIply columns: A .. = Xt times (column I) + ... +x. limes (CQlumn n). 

One JIOint to repeal aboul matrix 11OIalion: The en11)" in row I. column I (the lop 
left comer) is called atl. The entl)" in row 1. co lumn 3 is atJ. The .. nIl)" in row 3. 
column I is a l t. (Row number COllin befon: col~mn number.) Tlte word •· .. nII)"M for 
a malrix corresponds to I~ word ··component"· for a "ector. General rule: Til, I nu, 
in row i . t oilimn j of III, malti.< A is Ilij. 

, 



hample 1 This m3~ri~ has 'J;} = 2i + j. Then " II = 3. Also " 12 = 4 and "ll = 5. 
Here is Ax with numbers and leiters: 

[; :][~] = [~:; : : : :] [:~: ::~][;:] = [::: ; : :::!;J 
The first oom~nl of Ax is 6 + 4 = 10. Thai is lhe prodUCt of the row 13 41 with 
the column (2. I). A ro ... timu " t olu,"" giwi II dOl product ! 

The i th componenl of Ax invol'·a row i. which is [ Oil ",2 ... II,. I. The sllon 
formula fOf itli dol product with x uses ~liigma ~alion~: 

" 
28 The Ilh component of Ax i, il" XI + iI,! .<! + . + a,~.<~. Thi l " L iI'J Xj . 

r' 

The sigma symbol L is an in>\ruction to add. Stan with j = I and Slop with j =". 
Sian lhe Sum wilh "iI"] and stop ",·i,h "io" •. ' 

The Matr;~ Form of Om- Elimination Step 

Ax = " is a convenient form for lhe original equal ion . Whal about the elimination 
steps? The first step in this example sublracts 2 times the first et]uation from the second 
equation. On the right side. 2 times the first compoocnt of b is subtracted from lhe 
sccund component: 

b = [1~] chang~ \0 " - = [l~l 
We want to do Ihat sublrnction with a mat ri~! The ~me result b_ = " b is achieved 
wilen we multiply an ~eliminatioo matri ~·· £ times b. II sublracts 2b, from /1::: 

Thr r limination ,"Il/fix is E = [-i o , 
o 11 

Multlplication by E !ubtracts 2 tirms row from row 2. Rows I and 3 stay the 
same: 

o 
1 
o 

NOIia: how h i = 2 and bJ = 10 stay the same. The first and third rows of " = the 
first and third rowS o f the identity matri~ I . The new sc:cond component iii the number 
4 that appeared after the elimination step. Th is is /1:: - 2b,. 

' Ei_in >Mn<ntd 'hi • ....,. """" by """1Ii,,, Iht [ . The ~_ J ift "'i ' ; " .. """",;". Jly ......... 

adili'''''. H< ...., • . .- III< ... m .. d{~; . Noo lI<iftJ !'.i .... in. we indud ..... [ . 

, 
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It is ea~y to describe ~ "elemrntary matrices" or ··elimination nlatri~s·· like E. 
Stan with the identity matrix I . eN"'gc 0111' of irs ;:,eros /0 /he mll/ljp/jeT -t: 

2C n.." iJ~,,/;ry molrix lib 1·, on llIe dia~ooal and OIl1erwl'IC O·s. n.."n I b = b 
Tile ~1~mM/tJry mtJIrix or ~jjm,·natio" mtJIrix t.." llim 'ublrocl, a multIple (of row j 
fn'm "'" , Ita, tile ell", nonzen, cnll)' -/ in lhe i. j po<;.tl<lll 

h.mple 2 

Idenllly I "" [~ i ~] 
o 0 , 

Elimina tion Ell = [ ; 
- I 

o , 
o 

When you multiply 1 times b. you get b. But E)I SUbtlllC,", t limes ~ fim component 
frum the Ihird component. With t = 4 " ·e get 9 - 4 = 5: 

and Eb '" [ ; -. 
o , 
o n[l] =[l]· 

What about the left side of Ax ~ b? n.." multiplier I '" 4 was chosen to prOOu« a 
lem. by subtracling 4 times the pivOi. El l Cl"lfllCS tJ ;:,ero j " tht (3, 1) po~itie". 

n.." notaticn fits this purpose. SIan with A. Apply E'. to produce zeros below 
the piwts (the fint E is El t). End wilh a triangular U. We now look in detail at 
those steps. 

First a small point. n.." vector x Slays the same. The sohltion is not changed by 
elimination. (TIta1 may be more than a small point. ) It is the coeffident malri~ that is 
eh.anged! When WC' stan with Ax = b and multiply by E. the =ult is EA x = Eb. 
Thc new malrix EA is the result of multiplying E times A. 

Malrj~ Mulliplicalion 

Thc bil question is, 110" do ..... m .. lliply t...., mtJtriu s? When the first matrix i, E (an 
e liminatioo matrix ). there is already an imponant clue: . We know A. and Yo'(; know wllltt 
il bewmes after the elimination Slep. To keep e,·el),thing right. we hope and u l""'t 
that EA is 

o , 
o 

0] [' • -'] [' • -'] o 4 9 -3 : 0 1 1 
1 - 2 - 37 - 2-37 

( ... ;/10 ,M uro). 

This SlCp docs oot change rowS I and 3 of A. 1llOSC rows IlI"C unchanged in EA _ ooly 
row 2 is diffe"'nt. T ... i", 1M firSI ro'" /ws bun ... b/roc/e(/ fmm ,he .«<OM row. Matri~ 

ntultiplicalion agrres wilh elimination - and the new sy5lem of equations is EAx = Eb. 
EAx is simple but it inwlves a .... btle idea. Multiplying boIh ~ides of ~ origi nal 

equ.alion gives E(Ax ) = Eb. With our proposed multiplication or malnus. this is also 

, 
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(EA)x = Eb. 1lIe first was E limes Ax. the second i~ EA times x . "TItey an': the 
same! 1lM: parentheses Iln': not needed. We JUSl write EA x = Eb. 

When multiplying ABC. you can do 8C first or you can do A8 first. This is 
the poinl of an ·'associati,.., law" li ke 3 >< (4 >< 5) = (3 >< 4 ) >< S. We multiply 3 times 
20. or we multiply 12 limes 5. Both ans .... -ers are 60. That law seems 50 obvious Ihat 
il is hanl to imagine il could be false. But the "commUUllive law" ) x 4 = 4 x 3 IQCIks 
even more obvious. For malrices. EA is differem from AE. 

20 ASSOCIATIVE I,A\\' M8C) = (AB )C 

NOT CO,\I\IUTA1"I".: LAW Often AH -F HA . 

There is another requirement on matrix multiplication. Suppose 8 lias only one 
col umn (this column is b). The matrix·matrix law for £8 should be consistenl with 
the old matrix-vector law for Eh. Even 1TIOfl:. we should be able 10 mullipl)' molrit;t's 

" column a/ " rime: 

Th is holds lrue for the malrix mulliplicalion above (where the matrix is A instead o f 
B). If you mulliply column I of A by E. you get col umn I of EA: 

o , 
o 

:] [ :] = [i] and E(column j of A ) = column j of EA . 
' - 2 - 2 

Th is re«uiremem deals with columns. whik elimination deals wilh rows. 1lM: next :;«_ 

lion describes each individual entl)' of the product. 1lM: beauly of matrix multiplication 
is titat all three approaches (rows. columns. whole matrices) come OUI right. 

TM M~trix Pi; fm a Ro w hd ... n~ 

To subtract row j from row I we use EI} . To excllan~ or "pennulc" those rows wc 
use another matrix P;j. Row exchanges are needed when un> is in the piVOl position. 
Lower down that piVOl column may be a nonuro. By exchanging the two rows ..... 'C 

havc a pivot (never un>!) and d imination goes forwanl. 
Whal matrix Pn exchanges row 2 with row 37 We can lind it by exchanging 

rows of the identity matrix I : 

Permutation mIItrix 

, 
t 



This is a ",II' ~rf'hallg~ matrix. MUltiplying by /7.J exchanges components 2 and 3 of 
any column vector. merefore it al§O exchanges mws 2 and 3 of any matrix: 

'"' [~ ~ ~] [~ ~~] [~: ~] . 
01 0 065 00 3 

On the right. P!J is doing whal it was created for. With lero in the second pivot 
posit ion and ··6·· below it. the exchange puts 6 into the pi''Ot. 

Matri~ ael. mey don ·1 just sit lhere. We will soon meet other pennutation 
matrices. which can change the onler of :;e,·eral rows. Rows 1. 2. 3 can be moved to 
3. I. 2. Our I'D is one panicular pemlUlatioo matrix - it exchanges rows 2 and 3. 

2E Row t:.~change Malrix I" j I> the idemil ~ malrix wilh n:ows i and ) re""N:<.!. 
When P'i mulliplies a matri ~ A. it c,changes fO\\ < ; and j of A. 

To ~.rdlQnllt t qlUlII·ons J ami J mulliply by Pll= [:~~J . ". 
Usually row exchanges an: not required. me odds are good that elimination uses only 
the E ;j . But tlte P;j are ready if needed. to nlO'"e a pivot up 10 lite diagonal. 

Tm- Augmented Matri~ 

This booIo; e""ntuall y goes far beyond elimination. Matrices have all b nd, of prac.:lical 
applications. in which they are multiplied. Our best starting point was a square E ti mes 
a square A. blxause we met Ihi s in el imination-and we know what answer to expect 
for EA. me nexi step is 10 allow a r«lImgU/Ur malrix. It still comes from our original 
e<juBlions. bul now i1 iocludes tile right side b. 

Key idea: Elimination doe. the same mw operations 10 A and to b . Wt can 
illcludf b as all r.rtra to/umn and fol/ow it through dimifllltion . "The matrix A is 
enlarged or ··augmented·· by the eXira column /" 

AUllmenl~d ma/ri.r 
"' - 2 
9 -3 

-3 , I~ ] 
Elimi J"lalion <KIf on .... ·hoJf rows of Ihis malT;x. n.c left side and righl side are both 
multiplied by E. to subtract 2 times equatiOll I (rom equatiOll 2. Wilh r A b ithose 
SlCps happen togelher: 

o , 
o 

, 
9 

-J 

-, 
- 3 , '] [' , 8 = 0 I 

10 - 2 - 3 

-, , , !]. " 
"The new second row contains O. I. 1. 4. "The new second equatiOll is Xl + X } = 4. 
Matrix multiplicat ioll works by row. and at the same li~ by columns: 

, 



R (by rows): Each row of E acts on [A h l!O gi~c a row of [EA "' h I. 

e (by columns): £ acu; on each col umn o f [A h Ito gi~e a column of [ E A Eh [. 

NoI:ice ag.;n that word ··acts." This is es~ntial. Matrices do something! n.e matrix A 
acts on X to prodocc h. n.e matrix E operates on A to give EA. 1lle whole })fOCess 
of el imination is a $eqlK:1lCC of row operations. aliM malrix muhiplications.. A goes 10 
Ell A which goes!O EJI ElI A. Finally E)2E 1I E2I A is a tri angular matrix . 

"The right sHk is inclt>ded in tM augmented malrix. "The coo resuh is a triangular 
system of equations. We stop for uen:ises on muhiplication by E. before wri ting down 
the rules for all matrix mUlliplicalion'! (inc luding block multiplicalion ). 

• REVIEW OF THE KEY IDEAS • 

I . Ax = XI limes column I + ... + x. limes colum" fl . Aoo (Ax )/ = EJ. I ail xj. 

2. ldemity matri~ = I. elimination matri~ = Eij. exch.ange malrix = Pij . 

3. Muhiplying Ax = h by E2! subtracts a muhiple (21 o f equalion I from equa
tion 2. n.e number -(21 is lhe (2.1) entry of the elimination matrix Ell. 

4. For the augmented matrix [A h J. that el imination step gives [Ell A Ell h ]. 

S. When A muhiplies any malrix B. it multiplies each column of B s<>par.l!cly. 

• WORKED EXAMPLES • 

2.3 A What 3 by 3 matrix Ell subtracts 4 limes row I from row 2? What matrix 
Pn exchanges row 2 aoo row 3? If you muhiply A on the ' igh' instead of lhe len . 
describe the =u11$ AElt and APll. 

Solution By doing thw: operalions 011 the identit y matrix I. we find 

£11= [ -4~~l ,., 
[

' 0 0 1 PJl=OOI. 
o 0 , o , 0 

Mulliplying by E21 00 the right s ide wi ll subtrnct 4 times roIumn 2 from column I . 
Multiplying by PJ2 on the righl will exchange roIumns 2 100 J . 

2.3 B Write down lhe augmented matrix [A hI with an extra column: 

.. +2y+2. = I 
4 .. + 8)" + 9::=3 

3)" +2z= 1 

Apply Ell and tMn 1')2 to reach a triangular system. Solve by back substitution. What 
combined matrix Pn El l will do both stcps al once? 
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Solution n.e aug~nted matrix and the result of using Elt a~ 

jA b ] "" [! ; ~ ~] 
032 1 

I'J! e~thanges C\iuatiOll 2 and 3. Back substitution produces ( ... y .• ): 

2.] C Multiply tileS<' matrH;es in tWQ ",a)'5: first. rows of A times columns of 8 
w Rnd e...::h enlry of A8. and acoond. column$ of A Ij""," roW& of 8'0 produce lWO 
mauiccs llial add to A8. How many SCpar.itc ordinary multiplicalions are Ilttded~ 

AB= [! ~][~ ~] =(3bY2)(2bY2) 

Solution Rows of A limes columns of B arc 001 products of ,"e(,1ors: 

[l 41 ['] (row I ) . (column t) _ I .. 10 is the (I. I) entry of AB 

(row2) . (columnl )= 115 1 [7]= 7 is the (2. I) entry of AS 

l1Ie first columns of AS an: (10.7.4) and (16.9. 8). We need 6 dol prodUCH. 2 nml· 
tiplk.tions e""h. 12 in all (3 . 2 • 2). l1Ie o.ame A B COfIV'S flQlll ",,>I .. mru of A linrtJ 
row. of 8 : 

'I [' "] [' '] [IO =2 4+55 = 7 
4 8 0 0 4 "] , . , 

, , 



Problem Sel 2.3 

Problrms I- IS are about ellmln .. 1on 1lUItrkes. 

1 Wrile down lhe 3 by 3 malrices mal prodoce these eliminalion steps: 

(a) E21 subtracl~ ~ time~ row I from row 2. 

(b) En subtracts -7 times ruw 2 from row 3. 

(c ) P exchanges TlWo'S I and 2, lhen row~ 2 and 3, 

2 In Problem I, applying Elt and then En 10 !he column b = (I, 0 , 0) givn En Ell b = 
__ . Applying El l before E21 gives E21 Ellb = ~. When Ell comes 
firsl, row feds 110 effecl (rum row 

1 Which Ihltt malrices El l. EJj. EJ2 pUI " inlo lriangular f(lTTll U1 

4 

A = [ : 
-2 

Multipl y those E'~ 10 gf!1 0"" matrix Mihal does eliminalion- Mil = U , 

Include b = (1 , 0 , 0) lIS a foonh oolumn in Problem 3 10 produce I A b I, C.rry 
001 the elimin~tion steps On Ihis augmenled matn... 1(1 solve A.r = b, 

5 Suppose all = 7 and lhe Ihird pivtll is 3, If yoo change <Ill 10 II, lhe Ihird pi\t()l 
;, __ ' If )'00 change <Ill 10 __ , lhere is no Ihird pi\t()l. 

(, Ifevcl)' column of A is a mulliple of (1,1 , 1), lhen A.r is always a mulliple of 
(1.1. I), Do a 3 by 3 example, How many pivots are produced by diminalion? 

7 Suppose Ell subtractS 7 times row 1 from row 3. To reverse Ihal s~p yoo should 
__ 7 times row __ ,,~ __ ' This "inverse malrix" is RJ] = __ " 

8 Suppose El l subcracu 7 limes row 1 from row 3, What malrix Rli is changed 
inlo 11 'Olen El l Rl] _ 1 ... ~'" Problem 7 has Rli e ll _ I , Both ,...., true! 

<J (a) " 21 WbtraclS row 1 from row 2 and then 1'2] ""clung<'s I'OW$ 2 and 3. 
Whal matrix M = 1'2]£21 does btlIh steps al once? 

(b) I',.J exchanges rows 2 and 3 and then Elt subtrac1S row I from row 3, 
What malrix M = f.'J' p..) does both steps al once? E:tplain why lhe M " 
are the same but lhe £ 's are different 

10 (a) Whal 3 by 3 malri" E ll will add row 3 to row 11 

(b) What malrix adds row 10 row 3 and III lire sa_ lim, row 3 to row 11 

(c) What malri" adds row 10 row 3 and lite" adds row 3 1(1 row 11 

, 
t 
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" Cre~te a matri~ that has " " = " ll = " ll = I bul elimination prodoces tWO 
!legati"e pi>'0111 without row nchange~ . (n.. first pi"'t is I. ) 

" Multiply theiOC matrU:es: 

[l 0 i][i 
, 

:W 
0 i] [-: 0 lH: 2 l] , 5 , , ; 

0 8 0 -, 0 , 
13 Explain these facts. If tile third column of R is all zero. the third column of £ B 

is all '.ero <for any E ). If the third ro ... of B is all zero. tile third row of E B 
might nQI be ~cro. 

14 This 4 by " matri~ will JlCCd climin~ti(N\ matrice~ E2t and En and E~J. What 
are those matrices? 

[ 
,-, 0 0] 

_ - I 2 - ] 0 

" 0 - I 2 - I . 
o 0 - I 2 

1 S Write down the 3 by ) matrix that has " oj = 2i -3 j. This mlurix has all = O. but 
elimination >till neNs EJl 10 prooJu .. ~ a l tro in the 3 . 2 posit ion. Which previou< 
~tep destroys the original lem and what is El l ? 

Problems 16-23 are about creating and multiplying matricu. 

16 Write these ancient problems in a 2 by 2 matri~ form Ax = b and SQI,"e them: 

(a) X is twice as old as Y and their agts add to 33. 

(b) (x. y) _ (2. 5) and (J . 7) he on the line y = mx + c. Find 11'1 and c. 

17 n.. parabola )' = a +bx +rxl goes through tile points (x . y) = (I. 4) and (2. II) 
and (). (4). Find and SQI,~ a matrix equation for the unknowns (" . b .c). 

18 Multiply these matrices in the orders Ef' and f ' £ and £ 2. 

" 

[' 0 0] 
E = " I 0 

, 0 , 

AIM> compute E! = EE and f·J = FFF. 

[' 0 0] F = 0 I 0 . 
o , , 

Multiply tl>ese row uchange matrices in tl>e onlcrs PQ anti QP an..I 

~ ~] . 
o 0 [

0 , "] P = I 0 0 

o " , 
and Q = [~ 

Find four matrices wl!ose "luares are M l = I. 

, 



20 (a) Suppose all columns of 8 are the same. Then all columns of t:: 8 are the 
same. because each ooc is /:.' times 

(b) Suppose all rows of B are (I 2 4). Show by uamplc lhat all rows of 
E8 are 11(>/ II 2 4J. h is true that lOOse rows = __ , 

21 If E adds row I to row 2 aoo F adds row 2 10 row l. Uoes EF equal FE? 

22 llIe enuies of A aoo x are a ij and Xj. So the first component o f Ax is L a t/ x/ = 
lI" X, + .. . + lI,.x •. If E21 sublracts row I from row 2. write a fonnuls for 

(a) the third componcnt of A x 

(b) !he (2 . 1) entry of El, A 

(e ) !he (2.1 ) entry of E2,( E2, A ) 

(d) m., first component of EA x . 

23 The e limination matrix E = [_ ~ n subtract. 2 Times row I of A from row 2 of 
". The lI:.ult is E". What is (he effect of E( EA)? In (he opposite order ,IE. 
we are subtracting 2 times __ of A from __ ' (Do example •. ) 

Problems 24-29 include t~ column ~ in the augmented matrix [ A b I, 

24 Apply e limination 10 the 2 by 3 augmented matrix [A b ]. What is t~ triangular 
' y§tem V x '" e? What is the solution x ? 

25 Apply elimination to the 3 by 4 augmented matrix [" b [. How do you know 
this sy§tcm has 00 solution? Qlange the I"'t number 6 SO there is • solut ion. 

26 The equations Ax _ b and " x ' '" b' ha"c the same matrix " . What double 
augmented matrix should you uSC in elimination to solve both equations at once? 

SoI"e both of these equations by 'oIIQrking Of! a 2 by 4 matrix : 

27 O!oose the numbers a.b.c.d in thi s augmemcd matrix so that there is (I I no 
solution (b) infinitely many solutions. 

[
' 2 3 "] [" b j = 045b 
o 0 d c 

Which of the numben lI, b, c. or d have no elf...;t on the solvabiliTy? 

, 



28 If A8 = / and BC = 1 use the as§C)Cialive law 10 prm'e A = C. 

29 Choose 1 ..... 0 malricccs M = [~ : J wilh <!elM =aJ-bc= I and with a.b.c.d 
positive inlegers. Prove Ihal every such nunrix M either has 

EITHER row I !: row 2 OR row 2 !: row I. 

Sublracrion makes 1_1 t 1M or [~ -11M oonnegative bot smaller tllan M. If yoo 
conlinl>e and reach I . ..... rile your M ', as prod"",.. of the in"erses [1 ~ 1 and [~ 1], 

30 Rnd the lriangular malrix £ that mlUoCeS "Pa$ca/'f marru" to a smaller Pas.:aJ: 

RULES FOR MATRIX OPERATIONS. 2.4 

I will sIan with basic facts. A malrix is a rectangular amo.y of num~rs or "entries." 
When II has m rows and n col umn s. il is an "m by n" malrix. Matrices can be added 

if their shapes are the same. They can be multiplied by any OOIlSlant e. Here are 
examples o f A + B and 2A. for 3 by 2 matrices: 

MalrK:e:s are added exactly as >"eCtors an: - one entry at a lime. We could even regard 
a column veoctor as a malrix wilh only one column (50 /I = I). The matri" -II CQlne5 
from multiplicalioo by c '"' - I (reversing all the signs). Adding A to - A leaves lhe 
~ro nrmru. wilh all emties zero. 

The 3 by 2 zero matrix is different from lhe 2 by 3 zero malrix. Even zero has 
a shape (scvcntl shapes) for matrices. All this is only common scnse. 

Tilt t n'" ;'1 ro ... ; find to/lu"n j is eQllt d al j or A(i. j). The n en lnes along 
lhe firs! row are "tt.ilt! ..... "t •. The lower left entry in lhe malrix is il .. 1 and the 
lower righl is a", •. The row number; goes from I to m. The column number j goes 
from I to n. 

Matrix addition is easy. The serious qucstion is mmnx mllu,'p/icolion. When can we 
multiply A times B. and what is the prodllCt AB? We canOOl multiply " 'hen A and B 
are 3 by 2. 1bey don't pas:s the following test: 

To ",1I1rt'p1y A8: If A hilI n to/limns, 8 "'''SI iul"" " ro ... s. 

If A has LwO columns. B mu'\L ha>-e two rows. When A i~ 3 by 2. the matrix tJ un 
be 2 by I (a "«Lor) or 2 by 2 (square) or 2 by 20. E>-ery column of B is ready to 
be multiplied by A. Tkn A B i! 3 by I (a >-eclor) or 3 by 2 or 3 by 20. 



Supposoe A is m by " and B is " by p, We can mulliply. ll>e product A B is m 
by p. 

[" ":ot::~] [p :;~:ns ] = [p :.r::::s l 
A row Ii""" a oolumn is an exlreme case. ll>en I by " multiplies" by l. "The result 
is I by l. That single numocr is lhe ··dot product:· 

In e,-ery case AH is fi lled with dot products , For the top comer. the (I. I) entry 
of A B is (row I of A) • (oolumn I of B ), To multiply malriC<'s, \.ate all these dot 
products: (caell row 0/ A ) · (c~II colum" of B), 

2f The tlltry ill ro"" .. "d ro/"mn ) of AH is (row i of A) · (column j of B). 

Figure 2.8 pick! oot the second row (i == 2) of a 4 by 5 matrix A. It pick! oot the third 
column U == 3) of a ~ by 6 matrix B. "Their dol product goes into row 2 and column 3 
of AB. ll>e matrix AH has as "",,,)' ro .. ', as A (4 rows). and as man)' ro/umns a.r B. 

[ ~~" .~ .• , J 
• • >'1 • • • 

=[' 'J 
• 

'" (AB)ij • • • 
•• • .. , • s,) 

A is4by5 His5 by6 ABis 4by6 

figure 2.8 Here i == 2 and) = 3. Then (A B )1..I is (row 2). (oolumn 3) == I:a1.lblJ. 

Example 1 Square matrices can"" multiplied if and only if they ha~ the ~me si>:e: 

"..., lim dot pn>duc. is J • 2 + I • 3 _ 5. Three more dot products gi~ 6. I. and O. 
Each dot product requires two multiplications-thus eighl in all . 

If A and B arc " by II. 50 is AB. It contains ,, 2 dot products. row of A times 
column of B. Each dol product needs " multiplications. so tilt eo"'plUalion of AB 
" stf ,,3 scpartUt .,ultiplicatW,,,. For n = 100 we multiply a million times. For" = 2 
we ha~ " l = 8. 

Mathemat icians thought until recently that A B absolutely needed 23 = g mul
tiplicalions. lllcn somebody found a way to do it with 7 (and eXIra additions). By 
breaking" by " matrices into 2 by 2 block!. this idoa also reduced the count for large 
matriC<'s. InStead of"l il went ""low " u. and the exponent keeps falling. I "The best 

tMoybo a.. ox...,..... ...,.', """ ,.m,,! t>Of_ :!. No numbc< in _ IooU .pedal, 

, , 
t 
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at this momcn1 if n2.m,. But the algorithm is so awkward that scientific oomputing is 
done the regular way: n ! dol produ~lS in A 8. and n multiplications for each one. 

hample 2 Suppose: A if a row ~ector (l by 3) and B if a column vector (3 by 1). 
1l>en li B i~ I by I (Oflly ""'" emry. the dol product). On the other hand B times II 
(/I co/"",n 11m", II ro"') is a full 3 by 3 matrix. Th is multiplication is all~! 

A row times a column is an "";,mer" product-that is anQIilcr nam<: for dot product. 
A oolumn times a row is an "QUIt' "" product. 1l>ese arc extreme casc~ of matrix mul
tiplication. with very thin matTice!. They follow the rule for shapt"5 in multiplication: 
(n by 1) timc:s (I by n). 'The product of oolumn times row is n by n. 

HXllmpl" J will show ho"" 10 mullipl] AB using columns limli rows. 

Rows and Columns of 118 

In the big piclUn:. II mulTiplies each column of B . 'The ll:Sult is a column of liB . In 
that column. we "'" oomhining the columns of A. HQeh ,o/""'n of II 8 is /I ro",/JI
nation of th" co/umnl of II. That is the column piclUre of matrix multiplication: 

Col"mn of AB is (""'Irio: II) timts (column of 8 ). 

The row picture is reversed. Each row of II multiplies the whole matrix B. 'The result 
is a row of AB. It is a combination of the rows of B. 

[
' 2 '] ! rowior A] 4 .') 6 =[row iofABJ. 
, , 9 

We see row operatiOfls in elimination ( E times II ). We see columns in IItimc:s x . 'The 
"row-column pictun:" has the dot products of rows with columns. Be l ie,~ it or DOt, 

there js olso 0 "CIIlum"-ro,,, piclurt. " Not everybody knows that columns I ..... n of 
A multiply rows I . •. . . n or B and add up to the same anSwer liB . 

The laws for Matrix Operations 

May r put on record six laws that matrices do obey. wh ile emphasiting an C<juation 
they don"t obey? TlIe matrices can be square or rectangular. and the laws involving 
II + 8 are all simple and all obeyed. Here are three addition law.: 

1I + 8=8+A 
c{A+ 8 )= .. A + e B 

A + (8 + C) = (A + 8 ) + C 

(commutative law) 
(distrib\lti"e law) 
(anociati vc law). 

, 



Three ITIOI'e laws hold for multiplication. but AB '" BA is not one of them: 

AB :Ifl"BA (the commutat ive "law" is usually broUn) 

CIA + B ) '" C A + C B (distribulive law from lhe left) 
( A + B)C '" AC + BC (distribuli,'e law from lhe right) 

ACBe) _ '(Aft ) (as§()Cialiw law for ABC) (pannth~us not nUdt d ). 

When A and B arc 001 squa..,. AB is a differenl size from 8A . 'These mallic~s Can 'l 
be equal - even if bo!h mul!iplicalions are allO\\'W, For square malrieCS. almosl any 
u~mple shows lhal A8 is different from 8A: 

but 8A '" [~ ~][~ ~] '" [~ ~l 

I! is II\1t lha! A I = I A . All square matrices commute with I and also wilh rI , Onl~ 
lhcse matrices cI commute with all ~hcT matrices. 

1lic law A(B + C ) == A B + AC is p«wed a column at a time. Slart with A(b + 
f ) = A /) + Af for the first column. lRat is the key to cvc')'thing _ lin .... ril}'. Say 00 
~. 

Th .. III", A(BC) = (A8 )C m .... ns that you e .. " mulliply BC /int or A8 /in' . 
1llc direcl proof is son of awkward (Problem 16) bul this law is extremcly useful. We 
highlighled il above: i! is !he key !O !1Ie way we mul!iply maTrices. 

Look at the special case when A = H = C = square matrix . 1licn (A timl'$ A2) = 
(A 2 liml'$ A ). 'The product in either order is A J , 'The malri~ powers A P follow the 
samc ru les as numbers: 

Those arc lhe ordinary laws for exponenls. AJ t,mcs A4 '$ A ' (seven factors), 
Al Ia the foonh power is All (lwelve A's). When p and q are zero or negali, .... lhese: 
rules sl'lIhold. provided A has a "- I power" - which is the in .... rs .. matru A ~I. Tkn 
AO = I is lhe i<lemily malri1 (no factors). 

For a number, a - t is 1/ ... For a malrix , lhe in,'erse is wrinen A- I. (I! is "",'U 
f I A. except this is allov>'ed in MAnAS,) Every number lias an inverse except a == O. 
To decide when It has an in''er.;e is a ccnlr.oi problcm in linear algebra. &ctiOfl 2.5 
will uart on lhe an" , 'cr. Th is sc:ction is a Rill of Rights for malriccs. to say when A 
and B can be: multiplied and ho .... 

, 



81oc~ Matrices and 810ck Multiplication 

We have 10 say one more Ihing aboul malrices. TIley Can be cm into b1DtU (which 
are smaLler malrices). This often happens naturally. Here is a 4 by 6 malrix broken 
into bloch of oi7.e 2 by 2- and each block i~ jusl I : 

h [-::---:::+0---:::+:---::-: 1 = [' 
101010 I 

o I 0 0 I 

I 
I 

If 8 i ~ also 4 by 6 and ilS block sizes match the block sizes in A, you can add A + 8 
" block'" a lim~. 

We have $Cen block malrices before. "The right side "ector b was placed ne~t 10 A 
in the "augmem~ matri~. " TIlen JA b J has IwO blocks of different sizes. Multiplying 
by an eliminalion matrix ga''C [EA Eb [. No problem 10 muhiply blocks lirne:s blocks. 
when their shapes pennit: 

2C Rlock multiplication If lhe: cut. bel,,"een columns of A malch the cuts be"'een 
row. of R. then block nluillpli<ation of A8 IS allooed: 

(1) 

This equation is lhe same as if the blocks were numbers (which are I by I blocks). 
We are careful 10 keep A's in from of B's. becauSoe 8A can be different. "The cUIS 
be' ... ·een rows of A give cuts between rows of A8. Any column culS in 8 are also 
column CUIS in 118. 

Main (XJini When matrices splil inlO blocks, it is oflen simpler 10 see how they act. 
1lIe block matri x of /'s above is much clearer than the original 4 by 6 malrix A. 

Eumple 1 (Impor1llnl special case) lei the blocks of A be ilS II C(>lumns. lei the 
blocks of 8 be its" rows. ll1cn block multiplication A8 adds up roi"",,,s ti",,, rows: 

(2) 

This is another ... ·a)' to multiply matrices! Compare it with !he usual rows times columns. 
Row I of A limes column I of B gave the (1.1) entry in A8. Now column I of II 

a'ena] 



times row I of B gi,~. full matrix _ not jU$l a single number. Look at !his example: 

[:][321+[:]1' 01 

[i ij+[; :] (3) 

We Stop the~ SO )'ou can sec columns multiplying rows. If a 2 by I matrix (a column) 
mUltiplies a I by 2 matri~ (a row). the ~suh is 2 by 2. Thlll is what ,' .. e found. [)Qt 

products are "inner products;' these are "outer products." 

When you add !he tWO matrices a1 the end of equation (3). you get !he correct 
answer "'B. In the lOp left oorncr the ans",'cr is 3 + 4 = 7. Th is agrees with the 
row-rolumn dol prodUCt of (1.4 ) with ( 3. 1). 

SUlIIIIIIlry 11>e usual way. rows limes columns. gives four dol products (8 multiplica. 
lions). 1be new way. columns ti mes rows, gives IWO full matrices (8 multiplications). 
1be eight multiplications. and also the four additions. are all the $Imc. Yoo JUSt execute 
them in a different order. 

Example 4 (Elimination by blocks) SuJlPO$<' the fi rst column of ... contains 1.3. 4 . 
To change 3 and 4 to 0 and O. multiply the piYQl row by 3 and 4 and subnact . "Those 
row operations are really multiplications by elimination matrices E2' and E3' : 

° , 
° 

° , 
° 

n.e "bkxk idea" is to do boIh eliminations with one matrix E. That matri~ clears out 
the whole firs t column of ... below the pim! a = 2: 

° , 
° 

0
°, 1 multiplies 

Siock multiplication gil"n a fo nnula rOf E .... The matrix'" tLas foor blocks lI . h . e. D: 
the piVO(. the rest of row I. the ~t of column l. and the ~Sl of the matrix. Watch 
!low £; multiplies A by bkxks: 

(4) 

Elimination multiplies the first row I u h J by c / ll . 11 subtracts from C to get zeros in 
the filSt column. It subtnlcts from D to gel D - ch/ a. This is onlinary dimination. a 
column al a time- wrillen in bkxks. 

maklrlal 



• REVIEW OF THE KEY IDEAS • 

I. The (i. j) entry of A B is (row i of A ) · (column j of tI ). 

2. An m by II maniA limes an II by p matrix uses mllp separate mult iplic~tions. 

J. A times Be e(juals A /j times C (surprisingly imponanl). 

4. A B is also the Sum of these malrices: (column j of A) times (row j of 8). 

S. Bloek multiplication is allowed when lhe bloek shapes malch corm:lly. 

• WORKEO EXAMPLES • 

2.4 A Put your.;elf in lhe positioo of lhe author! I want 10 show you malrix mul· 
liplicaTions thai a~ sp«ial. bul moslly I am sluck with small malrices. There is one 
1errific family of f'1lS(:1I.1 matrices. and they come in all sizes. and abo~ all lhey have 
real meaning. I thin k 4 by 4 is a good si"" 10 ,how some of their amazing plOnems. 

Here is lhe lower triangular Pascal matriA L. lis entries come fmm "Pwrnl"s 
"i<"'81~". I .... ill multiply I. ti"",' the ones Vttlor. and the powe .... '"«lor: 

f'asca l 
",atrb [: ;, ] [:] ~ [i] [:,,] [:,] ~ [(: i:,,] 

I 3 3 I 1 g I 3 3 I ... J ( I + ... )J 

Cacb row of L leads 10 IIle next r'()W: Ad<1 all entry ro Ihe ~ "" ils Itft 10 gtt 'he 
till? 1N10 .... In symbols t;j + t;j~1 = l;+lj. 1bc numbers after 1.3.3. i would 
be 1.4,6. 4. I. Pa;cal liYed in the 1600·s. long beFore malrices. bu1 his triangle fits 
perf«1ly ;nlO L. 

Mulliplying by ones is lhe same as adding up each row. 10 gtl powers of 2. In 
facl po"ers = ones .... hen .r = I. By writing out the lasl1m''S of L limes powers. you 
see lhe cnttks of L as lhe "'bil>OmiaJ coefficients'" lhal arc §O essential 10 gamblers: 

1 + l.r + u 1 = ( I + .1' )2 1 + 3 ... + 3.<2 + Ix) = (I +.1'») 

Tne number '"3" cOUnlS lhe .... ays 10 gel Heads once and Tails l .... ice in Ihree coin Hips: 
HlT and THT and TIH. TlIt other '"3" COUntS the .... ays 10 gel Heads twice: HHT 
and HTH and THH. ~ are examples of "i choose r _ lhe number of ways 10 
gel j heads in ; coin nips. lltal number i ~ exao::tly l;j. if we SIan counting rows and 
columns of L al i = 0 and j = 0 (al\lJ n:mcmber 01 = 1): 

, .. (.) , 
t'j - j - i ~Ioome j - J'(; n! 

1bcre arc six " 'ays to choose two aces OUI of four aces. We will see Pucar s lriangle 
and these manice. again. H .. rc arc the queslions 1 wanl to ask now: 

, 



2.4 Rules lor Moo,,;, Ope<.,...... 63 

1. Wha! is H "" L~? This is the ··hypercube matrix··. 
Z. Multi ply H !itI"ICS ones and pow" rs. 

J. The last row of II is 8. 12.6. I. A cube has 8 comers. 12 edges. 6 faces. I bo~. 
WNtt ... ould Ihe nexl ro ... of /I tell abo", a It)"~rr:ubr ill 41>1 

Solution Multiply L times L to get the hypercube matrix II = L 2, 

[! ; J ,J[! ; J ,Hl ,~ , l" 
Now multiply /I times the vectors of ones and powers: 

, 
12 6 

[f.o: = 1 .... ·c get the """""rs of 3 If .r = 0 wc get l"'O"·ers or 2 (where do 1.2. 4.8 
appear in H?). Where L changed .r 10 [ + .r. applying I. again changes 1+ .0: !O 2+.0: . 

How do Ihe n".I"·S (Or H «runt «rmers and edges and facts 0( a f ube? A 
square in 20 hB'! 4 comers. 4 edges. I face. Add ~ dimension at a time: 

Con"ec/ two U/uures 10 g~1 u 3D wht. COMtCf ","v cubr. 10 gel " 40 1t)"JH' r"Cubr. 

llle cube has 8 comers aoo 12 edges: 4 edges in each square and 4 between!he squares. 
llle cube has 6 faces: I in each "luare and 4 faces between the squares. Th is row 
8. 12. 6. [ of /I will [cad 10 the ocx! row (ooc more dimension) by l it; i + Itl i-t = 
h i+l J. 

Cm, you .ee litis in fOllr dim .. nsiolt.l? llle hypercube has 16 comers. no problem 
It has 12 edges frum OtIC cube. 12 from the other cube. 8 that connect comers between 
tlK.>se cubes: lotal 2 " 12 + 8 = 32 edges. It has 6 f~ rn)m each ~p""'te cube and 
12 more fmn' connecting pairs of edges: total 2 )( 6 + 12 = 24 faces. It has one box 
fn)m each cube and 6 tn<.lfe from connecting pairs of faces: total 2 x [+6 = 8 boxes. 
And 'Ure enough. the oc.\t n)W of II is 16. 32. 24. 8. 1. 

2.48 For these matrices. when does AB = BA? When does BC = CB'! When 
docs A times HC e<jual AB lim~s C ? Give lhe conditioo. on their entries p. q. r.~ : 

[ 0 'J C = 0 0 

If 1'. q. r. I . Z are 4 by 4 blocks instead of numbers. do the ans ..... ers change? 

, 
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Solution FiM of all. A times BC ul"'(J),J C<Juals A B t;ml"$ C. We <k>n't need ~II

theses in A (BC) = (A B)C '" IIBC, But we do need to keep the matrices ill this order 
II . B. C . Compare A B with BA: 

" = [p p] 
q q + r 

We only ha~ A 8 = BA if q '" 0 and p '" r. Now compare BC with C B: 

B and C happen to commute. One uplanatioo is that the diagonal pan of B is I. 
which commutes with all 2 by 2 matrices. 1be off-diagonal pan of B looks ulOCtly 
like C (except for a scalar factor z) and every matrix commutes with itself 

When p . q . r. Z are 4 by 4 blocks and 1 changes to the 4 by 4 identity matrix. 
all these products remain C()ll'eC! So the an!iwen are the same. (If the ('S in lJ were 
changed to blocks 1.1.1. then BC would ha"e the block IZ and C B would h.a~ the 
block l/. Those would normally be d ifferent-the order is important in block multi
plication. ) 

2.4 C A di r«le<! graph starts with" nodes. 1bere are ,,2 poosible edges _ each 
edge leaves one of the " nodes aowl ~nt~rs one of the " node. (possibly itself). 1be " 
by n adjaceocy matrix has a ij '" I ",henllll edge lea'o'CS node i and enters node ): if 
no edge then ail = O. H~re are IWO directed graphs and their adjlJ«ncy matrices: 

node I to node 2 

node 1 wnode I Ci()2 A=[: ~] 
node 2 to node I 

The i. j t mry af A 1 is IJj 1 a I) + ... +aj "an)' Why does that sum CQUnt the Moo-step 

palru from j to any node to j? The i.) entry of III counts k-Slep paths' 

: ] CQUIII$ the paths 
with IWO edge$ [

110 2 10 l. I to I to I 
2tol101 

<0 
'<0 

<0,] 
'" 2 

List all of the 3-step paths belw~n e",h pair of nodes and com~ wilh Al. Whell 
At has no ~ros. th~t number k is the dillmeler of the graph _ the number of edges 
r.eeded to CQnncct the mosl diSlanl pair of nodes. What is the diameter of the S«OOd 
graph? 

Solution The number fli \atj will be "I " if there is an edge from node i 10 k and 
an edge from k to j. This is a 2-step path. The number aotal} will be ''{t'' if either of 

i 



those W~S (i to k. J: to j) is mi ssing . So the sum of ai/alj is tile n~mber of 2-step 
paths leaving i and entering j. Matrix multiplication is just right for tllis COlInt. 

TIle 3-stC"p paths an: counted by A1: ""e look at paths to IM".><k 2: 

A' [3 '] = 2 , 
COlI nlS lhe palhs 
Wilh three slep!! 

I to I 10 I 102.1 10210 I 102] 
2101101102 

These Al conlain the Fibonacci numbers O. I. 1,2.3.5. S. 13 .... comins in Section 6.2. 
Fibonacci's rule Fl.+!:: FHI + F, (as in 13 "" 8 + 5) shows up in (A)(Al) = "HI : 

[' ']['''' t 0 F. 

"Thm: are 13 six-step paths fmm node I 10 node 1. but I ~an't find them all . 
.... t a/Sf} CQunts M'Qrtb. A path like I 10 I to 2 to I ~sponds 10 the number 

1121 or 11M: word allba. The numllcr 2 (the lener b) is not aJloww to repeat tJe.::ause 
tbe grapt. has no roge flQlTl node 2 10 node 2. TIle i. j entry of AI counts the allo"'ed 
numbers ( ...... words) of length J: + I thai stan with lhe ilh lener and end with the jth. 

1lIe second graph also has diameter 2: A2 has no :.t'IW. 

Problem Set 2.4 

Problem!; 1_11 a~ about the laws or matrix multlplkatlon. 

1 .... is 3 by 5. 8 is 5 by 3. C is 5 by I. alld D is 3 by I. All t"ntri.-s aft" I. Which 
of these mBtri~ operalions are allowed. and what are the results? 

8A AB ABf) DBA 

2 What rows ...... columns Or matrices do you multiply to find 

(.) the third column of A 8 ? 

(b) tbe fiTS{ row of .... 8 ? 

(el the entry in row 3_ ~'Olumn 4 of AB? 

(d) the entry in row l. column I of eDE? 

] Add 11.8 to IIC and oompa .... with II (B + C): 

A ( B + C). 

A [' '] = 2 3 ... B - [0 '] - 0 , and C = [~ ~l 
4 In Problem 3, multiply A times Be. Then multiply 11.8 times C. 

S Compute 11.1 and " l. Make a predict jon for A' and .... ~: 

A=[~ n and A=[~ ~J. 

, 



66 C~ 1 SoI¥ing LinNr [quo'IOM 

b Show lhal (A + 8 Jl is differenl from Al + 2A H + HZ. when 

A =[~ ~] and B = (~ ~l 
Wrile down lho: C()t'n'C1 rule for ( A + R) ( A + 8 J = Al + ~~ + B1, 

7 True Of fal!iC. Give. ' )I«illc eumple "'hen faJ",, : 

(a) If columns I and 3 of H are the same. 50 are columns I and 3 of A B, 

(b) If mws and 3 of B are the ~me. 50 an: mws I and 3 of A8. 

{() If row~ and 3 of A are tho: ~mc. 50 are rows I and 3 of A 8e. 

(d) ( AB)l,., A18 1. 

6 How is e",h row of DA and EA related (0 (he rows o f A, when 

, 
How is each column of AD and AF. related (0 (ho: columns of A? 

Row 1 of A is added to row 2. This gives F.A below, Tho:n colum n I of F.A is 
addc<ltO column 2 to produce ( E A ) I" : 

" - [' - , 
, .. (EMf' = (EA ) [~ 

(a) Do (hose steps in the opposite order. First add column I of A (0 column 
2 by AI". then add row 1 of AI" to row 2 by E(An. 

(b) Compare with ( EAl l" . What!aw is obeyed by matrix multiplication? 

10 Row I o f A is again added 10 row 2 to produce EA. 1lv::n I" adds row 2 of EA 
to row 1. Tho: result i., I"(EA): 

F(EA) = [~ :][a:c b!d]=[::rC ~::l 
(a) Do those SlCPS in tho: opposite order: first add row 2 to row I by FA. tho:n 

add row I of FA to row 2. 

(b) What I~w is or is not <>belt"(! by matri~ multiplicat ion? 

11 (3 by 3 matrices) Choose the only 8 50 that for every matrix A 

(a) BA =4A 

(b) BA =48 

, 



2 .• Ru .... lor M.>l1'i. Op .... t""" f:,7 

(c) BA has rows I and 3 of A reversed and row 2 unchanged 

(d) All rowS of BA an: the same as row 1 o f A. 

12 SUppos.!' AB = BA and AC = CA fo.- tiles/, tWO particular matrices B and C: 

A=[; :] (~mmuteswith B =[~ ~ ] aJKJ c = [~ ~l 
Prove that <l = d and b = c = O. "Then A is a multiple o f f . "The only matrices 
that commute " 'ith B and C and ail other 2 by 2 matrice, are A = multiple of I . 

13 Wh ich of the following matrices are guaranteed to equal (A - 8 )2: Al - Bl . 
( 8 _A)2. A2 _2A8+82. A(II-R ) -8(II-R ). Al _AH _ RA+Hl? 

14 True or false : 

(a) If Al i. defined {hen A is neces<llrily square. 

(b) If AB 1100 BA are defined Illen A and B are square. 

(e) If AB and BA are defined tllell AB and BA are square. 

(d) IfAR = R tIleIlA = I. 

15 If A is m by It. how many scl"""te mu ltiplication , an: in>'OJ-'cd when 

(a) A mullipLies 11 ,·« tor ¥ with It componellls? 

(b) A mUltiplies an n by p matri .• B1 

(el A multiplies ilself to prod""" Al1 Here m = It . 

If:, To prove that ( IIR )C = A(RC). uSC the co lumn "«Ion bl .. . .. b. of B. Finl 
suppose that C h.u (01)' one column c with entries et .... . e.: 

A H has rolumn. Ab t . .. . . Ab. aoo Bc has """ column c lb t + ... + c.b •. 

"Then (ARlc = qAb t + ... + c. Ab. equals A(q b t + ... +". b.) '" A( Be). 

UnMrif)' gives equalit), of those t"t) sum • . and (AB)e = A(Be). The same is 
lruc for all other __ of C. Therefon:: (A81C = II ( Be ). 

17 For II = U :1 1 and B = fl:n romputc these lUIS",en and no/h'-nll trw": 

(a) col umn 2 o f AB 

(b) row 2 of AB 

(el row 2 of AA = Al 

(d) row2of AAA = Al. 

rroblcm~ 111-20 use ~ij for tt... enlry In row i. column j of A. 

18 Writc down Ille 3 by 3 malri~ II whose entric. are 

, 
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(a) uli = minimum of i and ) 

( 1:» Ufi",, (-I)I+J 

(e ) a ij = il). 

1') Wha( words WQUld you use 10 describe each o f these classes of matrices? Gi\'c 
a 3 by 3 example in each class. Which matrix belongs to all four classes? 

(a) aii= Oi( ;#) 

(1:» a IJ= Oifi <) 

(e) (Ii} = aji 

(d ) (1'1 = (11 / . 

20 The entries of A are U/J. Assuming lhat zeros don'l appear. what is 

(I l the first pivot? 

(1:» the mulliplier III of row I 10 be subtmcted from row 3? 

(c) the IlC'W entry that replaces <Ill after tha( . ublmction'> 

(d) (he second pivot? 

1'robltHls 21_25 inmh"e p ...... ' rs of A. 

21 Co mpulC Al. Al. A· and also Ap. Al p. Al • • A· p for 

,- [: , "] · ~m 0 , 0 ,,'" - 0 0 o , 
0 0 o 0 

" Find all the powers Al. Al •.. . and AB. (AB)l •.. . f~ 

, ~ [' , '] , ,od B - [' - 0 -n 
2) By lrial and error find real nonzero 2 I:>y 2 malricC's such thaI 

24 (a) 

(b) 

Be_a DE.: = -ED (not allowing DE = 0 ). 

Find a nonzero matrix A for which A1 = 0 . 

Find a matri~ th~t h~s Al # 0 bill AJ = O. 

2S By upMimcnt wilh " = 2 and If = 3 predict A" for 

, , 



Problems 26-J.4 II.W coIumn·row multiplication and block multiplication. 

26 Multiply A 8 using column~ times rows: 

27 The pr(lduct of upper uiangular matrices is always upper triangular: 

RO'M' fimu roI"m" iJ dot prodUCI (Row 2 of A ). (column I of 8 ) = O. Whidl 
other dol productS gi"e zeros? 

Co/um" li=$ row is full molriJ; Dnlw x 's alld O's in (column 2 of A) times 
(row 2 of H) and in (column 3 of A ) times (row 3 o f 8 ). 

28 Dnlw the cuu in A (2 by 3) and B (3 by 4) and AB to sl'low how each o f the 
four multiplication /U~ is ",ally a bloo.:k multipl icatio n; 

(I) Matrix A times columns of H. 

(2) Rows of A times matrix B . 

(3) Rows of A ti mes columns of B . 

(4) Columns of A ti mes rows of B . 

2'J Draw cuts in A and X to muhipl>' Ax a column at a lime: xt (colurnn I) + . 

30 Which malricx=s E21 and El( producx= zeros in the (2. 1) and (3.1) positions of 
E2( A and El lA? 

A - [-~ ~ 1]-
Roo the single matrix E = E)( E21 that producx=s boIh zeros at once. Multi
ply EA . 

3 1 Bloo.:k multiplication says in the tex t that column is eliminatw by 

In Problem 30. what a", c and D and what is D _ cb/a1 

, 



32 With i l = - I. the I'f"'loct of (A +i H) IUId (x +; J' ) is Ax + i Hx +i Ay - H J', U~ 
blocks to separale the real part witllout i from the imaginary part that multiplies i: 

33 Suppose you !'G1 \'e Ax = b for three >peeial righl sides b: 

If the three solutions XI. X l . Xl are lhe ~olumn s of a mat ri~ X. what is A til'l'l<:S X1 

34 If the three solutions in Que.ltion 33 are XI = (I. 1. I) and Xl = (0.1. I) and 
Xl = (0. 0. I). !'GIve Ax = b when b = (3. 5. 8). Challenge problem: What is A? 

35 Elimi"",iml for " 2 by 2 bloa. ","'rix: When you multipl y the first block row 
by CA - I and subtract from lhe _=olld row. what is the " Sd.M w mplenltnl" S 
that appears? 

36 Find all matrices A = r: : l that sal j~fy AI] 11= r1 11A. 
37 Suppose. "ci",le , "'ph" has 5 notks C()Ilnecte<l (in boI:h di=tion ~) by edges 

amYnd • circle. What is its adjacency matrix from Worked E~ample 2.4 C? Whal 
an: Al and Al and the dia.....,tcr o f this graph? 

38 If 5 edges in Question 37 g<> in one di=tion onl)'. from nodes I. 2. 3. 4 . S to 
2. 3, 4, 5. I. Whal are A and Al IUId lhe diameter of !hi. OfIC·way drcle? 

3<.t If you multiply a lU.mh"·'sl malri~ A IUId a s"",heus/ ntalriJ; B. what type of 
matriC<'S are AB and BA? "Nonh .. 'cst"· and "SOIltheast" mean zeros below and 
abo'l: tile antidiagonal going from ( I. n) 10 (n. I ). 
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INVERSE MATRICES. 2.5 

Suppose A is a square matrix. We look for an " inO'rrse matrix" A- I of the same size. 
such that A - I rirnes A equals I. Whatever A does. A - I un.does. 1licir prod...:t is lhe 
identity matrix - which docs noIhing. But A- I might noI exist. 

What a malri~ mostly does is to multiply a vector x . Multiplying Ax '" " by A- I 
gives A - I A ... = A- lb. 1lic lert side is just ... ! 1lic prodUCI A-IA is like multiplying 
by a number and lhen dividing by that number. An ordinary number has an in~erse if 
it is 1101 zero- matrices are more complicalffi and more interesting. 1lic matrix A - I 

is called "A inverse."' 

DEFINITION The matrix A is ;",~"'ible If there elli," a matri~ A I <u<:h that 

'" 
NOf al/ matrices haO'r inO'rrses. This is the first question we ask aboul a square 

matrix: Is A in'"en ible? We don't mean that we immediately calculate A- I. In most 
problems we never compute it! Here ale six HnotCS

H abool A-I . 

NOle I The i",'trse e ... ists if a'" only if dimina,;on productS n piWJls ( row e~-

changes allowed). Elimination solves Ax = II wilhout expl icitly using A- I. 

NOle 2 1lic matrix A cannol have tWO different im·erses. Suppose BA = I and also 
AC = I . Then B .. C. acconling to thi s "proof by parentheses" : 

B(AC) = (B A)C giws 81 .. IC or B = C. (2) 

This shows that a Itft·inwru B (multiplying from the lert) and a right·inw'Je C (mul 
liplying A from the right 10 give AC .. /) must be the .<arne m>ll1rix. 

Noic J If A is in,wtible. the one and only solution to Ax .. b is ... = A- III : 

• Tllen x _ A- lAx ... ,, - lb. 

Nole 4 (Imponant) S lIppOse the,.,. is II nonZtro I'ttlO/' x Silth IhtJl Ax = 0 Then 
A runno! Iut,·c <In Im·erst. No matrix can bring 0 bark to ... . 

If A is in'"en iblc. tllen A ... = 0 can only have the tero solution ... ,. O. 

Nole 5 A 2 by 2 matrix is invcnible if and only if <ld - be is noI tero: 

[; (3, 

This number ad - be is the dnun,;"",,! of A. A matrix is ill"cnible if its dctcm,inant 
is 001 Zero (Chapter 5). "The (esl for n pivots is usually dc-cidcd beflm the detenninant 
appcan . 



72 CIlaj>Ie< 2 Solving li...,~r [ """tion!. 

No~ 6 A diagonal matm has an inverse provided no diagonal ~ntri" are uro: 

hample 1 The 2 by 2 matrix A ,. [ [ f J i~ not invcn iblc. It fails the teSt in Note 

5. because ad - be e<;juals 2 - 2 ,. O. It fails the test in Note 3. because Ax = 0 when 
x = (2. - I). It rail~ to ha"e two pivots as m:juircd by Nore I. Elimination turns the 
second row of II illto a uro row. 

The Inverse of a Product A 8 

For two nonuro numbers a and b. the sum II + b might Of might riot be inven iblc . 
The numbers a =3 and b = -3 have inve~s ~ and - ~. 1lleir ~um a+b=O ha~ 
no inverse. BUI the product ab = - 9 ~s have an inverse. which is ~ limes -!. 

For Iwo m;otrice. A and B. the . ituation is similar. It is h.ard to say much about 
the in, .... nibility o f A + B. But the product II B has an inverse. whenever the fact~ A 
and B an: scpar.ltdy in,'enib lc (and the same size). 1lle imponant point i. that A- t 

and B- t rome in rt" f"U ord~r: 

2H If A and tJ are in,'cniblc then SO i) AB The inveroc of a [IIOduct AB is 

"J 

To see why the order is revt:TSt:d. multiply II 8 time!! 8 - t A - t. 1lle inside slep is 8 B- ' ~ I : 

( A B)( B - I A - I ) = Al A-I = II A- t = I . 

We moved parentheses 10 multiply BB- t first . Simi larly 8 - I A - 1 timeS AB ~u.al s I . 
This illuslrares a basic ruLe of malhematics: I nve~s COme in reverse order. It is also 
common sense: I f you put on socks and then shoes. the first to be taken off an:: the 
__ . The same idea awlies to three Of more malli ce.: 

hample 2 
row 2. then 

R f Vl'1"lil' o!"tkr (A 8 C)- 1 _ C - L 8 - 1 A- I. 

Inl'tnf of on Elimination Matrix. 
E- t adds S times row I to row 2: 

o , 
o 

I f £ subtractS 5 limes row 

,,, 

MUltiply E£- t to get lhe identity matrix I. Also multiply E-I E to get I . We an: 
adding and subtracting the same S times row l. Whether we add and then subtmct 
(thi s is E£- ') or subtract and then add (this is £ - I E ). we are back at the stan. 

, 



2.5 In..- MoIrice$ 7] 

For SqUfl" IfItJ/riUS, flll inl'f!ru Oil on, sUk is aUIOIIUIIkall, an imv rs, Oil Ih, wh, r 
sid, . If A8 = f then automatically BA = f. In thai case B is A- I. This is very 
usdul 10 know bol we arc not n:ady 10 prove il. 

Examplc] Suppose F subl raclS 4 times row 2 from row 3, and F - I adds il back: 

[

' 0 
F == 0 I 

o - , 

Now mu ltiply F by the matri~ E in E~amp1e 2 to fi nd FE . Also multiply E- t limes 
f'- I to find ( f ' E) - I. NOIi« lhe oroers FE and E - I F - I! 

[ 

, 0 

FE = - 5 I '" -, 
is in""nM by E - t 1'" - 1 = [ i o 0] , 0 . . , (6) 

The n:sull is slrnnge but correcl. The prodllCl FE contains "20" bol its inverse doesn·t. 
E sublracls 5 times row I from row 2. Then I'" sublracts 4 times me nr>l' row 2 (changed 
by row I) from row 3. III lhi$ onkr FE, ro .. J [u/s fln '1/«1 [rom ro .. 1. 

In lhe o rder E- I F - 1, Ihal effect does not happen . First F - I adds 4 limes row 
2 to row 3. After Ihat. E - I adds 5 ti mes row I to row 2. Then: is no 20. becauSC' 
row 3 doesn't ellange again. III this onkr, ro .. 3 [ ttls 110 ,Utel /rolfl ro .. I . 

For e limination wilh IlOmlal o rder F E . Ih, prot/un o[ i"''''ru1 E - 1 F-I 
Is quick. Thr IfI~ lllplirrs [ flU 11110 piau 1H10~' lht diagollol 0/1 's. 

Th is special property of E - I F- I and E- I F - IG -I will be useful in the next sec
tlon. We will explain it again. '"""" completely. In thi s section Otlr job is A- I. and we 
expecl some seriOtlS work 10 compule it. Hen: is a way 10 organize Ihal compulat ion. 

Calculatillg A- I by Ga uss-Jordan Elimin.llio n 

I hinted that A- I might not be explicitly needed. The equation A.r = b is sol\'Cd by 
.r _ A- l b . BUI il i. not necessary or effic ienl to compule A- I and multiply it ti mes 
b. EllminlJlion g~J dirtctly /0 .r . Elimination is also me \O'ay to calculate II _ I . as wc 
now show. The Gauss,Jordan idea is to 50I vc AA- I = I . fim/ing t ach col umll 0/ A- I. 

A multi plies the first column of A - I (call that .r l) to g i" c lhe fi rst column of I 

(call thai t l). This is our equatio n A.r l =CI = (1.0, 0). Each o f the columns 1: 1 • .r2 . 
.r J o f A - I is multiplied by A 10 produce a column of f : 

(7 ) 

To in--en a 3 b~ 3 matrix A. we have to solvc three s~§tenu of equations: A.r l = 
f l and A.r l _ f l _ (0. 1. 0) aoo A.rJ = ' J = (0 . 0. I). Th is already sllows why 

, 
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computing A- ' is upcnsi\'e, We muSi sol"e n equalions for ils n columns. To solve: 
A x = b " 'ilooul A- '. we deal only wilh onr column. 

In dcfen!iC of A- '. we I>'anlto say that its cost is not n times tfK, cost of one 
system Ax = b. Surprisingl y, the cost for n columns is only multiplied by). This 
sa"ing is because the n equations A Xi = r ! all in,'Olve the same matrix A. Working 
with the right sides is relatively cheap. because elimination only has to be done once 
on A. llle complete A- t needs " J elimination steps. where a single x needs "J/ ). 
llle next !iCCtion cakulates these costs. 

llle GOllu.Jorru.n m ethod comput"'l A _t by solving all n equations together. Usually 
the "augmented ma1rix" has one eWlt column b. from the right side of the I!<:iuations. 
Now we have three right sides "" "1. " J (" 'hen A is) by 3). 1l>ey are the columns of 
I. so the augmented matrix is really the block matrix [A I]. Here is a wor\;ed-oUt 
uample " 'hen II has 2's on the main diagonal and - I 's next to the 2'" 

[ 2 - I 0 0 :] s,," G'~J"d"" 
[A t t "2 t Jj = - I 2-1 0 

o - I 2 0 0 

-[ 
, - I 0 0 

:] 0 J - I 1 (! roll' I + roll' Z) , 2 
0 -I 2 0 0 

-[ 
, - I 0 0 

:] 0 
, 

-I , , 
2 2 

0 0 • 1 2 ( ~roll' 2 + ro ... ) ) , J J 

We are now It.alfway. The matrix in the /irs! three columns is U (upper triangular). 
Thc pi'~s 2.~. i are on its diagonal. Gauss would fi nish by bark substitution. Thc 
contribution of Jordan is 10 cQnlinllf "'ilh tlimirwlion! He goes all the way to the 
un tllleN u htlon ,,,,,,,n. Rows are added to rows atxl\'e them. to pro<Iuce ~ros abow 
I" t pirob: 

-[ 2 - I 0 0 0 

1 
0 J 0 J J J 

2 , 2 , 
0 0 

, , 
l , , 

(l roll' ) + ro1l'2) 

-[ 2 0 0 J 1 

1 
, 2 

0 
, 

0 
, , 

! , , , 
0 0 

, , , , , , 
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The IIISI Gauss·Jordan step is 10 divide each row by ils pi'lOl. The new pi"01~ 

are I. We !la~ reached f in lhe first !laIr of lhe malrill" because A is invertible. Tht 
thru columns of A -I tJn ill rht ~ffOnJ hQI! of II A - I / : 

(divide by 2) 0 0 
, , 

1 , , 
(divide by !) 0 0 

, , , 
= (I " " .0") I· I , 

(divide by ~) 0 0 
, , , , , , 

Slaning from !he 3 by 6 malrix [A I] . ... -e ended wilh [I A - I I. Here is the whole 
Gauss-Jordan process 00 one line: 

~ eliminalion ~teJl!l gradually creal" the in'= matrix. For large malrices. we pr0b
ably don"1 wanl ,, - I al all. BUI for small matrices. il can be very worthwhile 10 t now 
the inverse. We add Ihree ~t\"alions aboullhi s panicular A- I because il is an impor
tant example. We introduce the words symtrWlric. IridiagQtlol. and ,"Irrmirulnl 
(a.aple. 5): 

I. A is ',mmttrie across its main diagooal. Su is A- I. 

2. A is tridiagonal (oo ly Ihree nonzero diagonals). BUI A- I is a full n\alri~ with 
rK.> zeros. n"l1 is lnOIhe. reason we don"' often compule A- I. 

3. ~ prodUCI of pivots is 2(~)(~) = 4. This number 4 is !he tktufNinont of A. 

A _ I invoil'tl di~ision by Iht tklt nllinonl ;\ - 1=_2 4 2. ,[3 2 '] 
4 I 2 3 

(8) 

Example 4 Find A- I by Gauss-Jordan el ;minalioo starting from ;\ = U n ~re 
art two row opc:nl1ions and then a division to pul I's in the pivots: 

[A ,] = [! 3 :] - [; l , :] , 0 , -, 
[' 0 , -n -+ [~ 0 

, -1] = [I 
, rl ]. - 0 -2 -2 

~ ~uccd echelon form of [ A I ) is [l A- I [. This A- I invoh'eS di vis ion by It.. 
determinant 2 · 1 - 3 • 4 = 2. 11le code for X = inveI"se(A) has Ihree imponam lin.es! 

1 = eye (11 .11): % Defin.e the idenlity malrix 
R = rref ([ A I]) : % Eliminale on lhe augmenled malri ll 
X = H(:.II+ l : n + n) % PIck A- I from [he las[ II columns or R 

II must be invenible. or ~Iimina[ioo will nOI reduce ;1 (in It.. lefl half of It) (0 f . 

, 



Singular versus Invertibl<l' 

We come back 10 lhe cenu,,1 queslion. Which malrices ha,·c invc~s? n.e Slart of Ihis 
sec.ion proposed .he pivot lCS1: A -I (;cnls ( ;clICtl, ..-hen " /uJs 11 1 .. 11 SCI 01 " piWJts. 
(Row exchanges allowed.) Now we can pro~c Ihat by Gauss-Jordan elimination: 

1. Wilh" pivou, elimination ..,Ives all !he eq ualions A"'i = ' i. n.e columns ;c1 go 
inlo A - I. n.en AA - I = I and A - I is alleast a riglll_im.,nl. 

2. Eliminalion is really a s"quence of mul1iplications by £ ·5 and P"s and D- I ; 

(D - I··· /:.' · · · /'· ·· /:.' )A=I. (9) 

D - I divides by lhe pivots. n.e matrices £ produu zeros below and above the pivots. 
P will exchange rows if needed (see S«tion 2.7). n.e product malri~ in equation (9) 
is eYidenlly a Ir/' -I .. ..,nc. With .. pi.,ou we reach ,, - 1.04 = I . 

TM riglrl-im"tr~ equals 1M Irft-inl·er~. That was NOte 2 in mis section. So a 
square matrix with a full ~t of pivots will always haY<' a tWQ-sided inverst:. 

Reasoning in rel·erst: will now show that A must ha"e n pivOts if IIC = I. n.en 
We deduu thai C is alsa a Ieft · inverse. Here is one route 10 lhose conclusions: 

I . If II doesn·, have n piVQIs. e limination will lead to a za o row, 

2. ~ diminalion steps are laken by an invertible M . So" row of M II is :,t'ro. 

J. If AC = I Ill<:n MAC = M . n.e zero row of MA. times C. 8i\'1'S a zero row 
of M. 

4. TIle im-ertib1e matri~ M can·l have a zero row! A "' .. 51 have n pivots if AC = I . 

s. n.en equalion (9) di splays !he left i" ,-erst' in BII = I. and NOte 2 proves 8 = C. 

Thai argument tool< five Sleps. but Ill<: OUlcome is sbon and important. 

21 A complete lest for in'crtlbilily of a square matri~ II con"" fmm elimination. 
A-I txislS (and Gll uu-JorthJn fillds il) exllcll, .. ·II'n A hilS n pirMs_ n.e full ar

gument <ho",~ n>O"'-

If AC",! Ihen CA= ! and C= A I 

, 
i 



" I..-Mmi<; ... " 
h~mpll' 5 If L is lower triangular wilh I's on the diagonal. SO is L - I. 

U"" the Gau~~-Jordal\ method to construct L - I. Sian by sublrllCting multiples of pi~ 
I'tl'.n frum rowS btl",,', Normally tbis gets uS halfway 10 ,t.. in""l'Se. but for L it gets 
uS all the ""ay. L - I appears on the riglu when I appears on the lefl: 

,] ~ [! 0 0 0 ;] [ I. I 0 0 I , I 0 0 

-[: 0 0 , 0 !] , 0 -3 , (3 limes row frum row 2) 
_ 0 , , -, 0 (4 limes row (rom row 3) 

- [~ 
0 0 I 0 

:] = [ , , 0 - 3 I L - I ]. 

0 II -, 
When L goes 10 I by elimination. I goes 10 L - I, In otMr woo;is, the prodUCt of 
climinatioo ma1fin,s £ )2£)[ £ 21 is L- ' . All pivOIs are ]'s (a fu ll sel). L-1 is lower 
triangular. The strange entry " 11 " ill L - I don noc appear in E2,' Eli Ei:/ = L. 

• REVIEW OF THE KEY IDEAS • 

I . The inverse matrix gi>-es AA- 1 = / and A-I", = f. 

2. A is invertible if and only if it has n pivoU (row exchanges allowed). 

3. If Ax = 0 for a nonzero .-«Ior x . then A has 00 i .. ,..,rse. 

4. The inverse of AB is the reverse prodllCt 8 -' ",-1 . 

5. The Gauss-Jon.tan method solves A.C' = I to find the n columns o f A- I. 11Ic 
aUGmenled malrix [A { 1 is row· reduced 10 [f A- I]. 

• WORKED EXAMPLES • 

2.5 A Three of lhese malrices are inY<:niblc. and lliree are singular. Find lhe ill· 
verse whell il exists. Gi,·., reasons for noninvcnibilily (1.ern dctenninall\. 100 few pi,'OIs . 
IIOIll.ero solulion to Ax '" 0) for lhe other three. in thai order. 11Ic mauices 
A. 8 . C. D . E. f ' are 

[::][:n[ , '] , 0 [ : 

, 
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Solulion 

7 -3] -, . c-,_,-[O '] 
36 6 - 6 £ - 1 _[ - 1 ~~l 

o -I I 

It is noI invenible because its determinant is 4 • 6 - 3 • 8 = 24 - 24 = O. D is 
not invcnible becau.sc there is only one pi\'(\!: the se<.:ood row becomes UfO when the 
firs! row is subtracted. F is noI invenible because a oombinatioo o f the columns (the 
second column minus the first ~olumn) is ~fQ_in "'her words Fr ., 0 ha:;; the $Olution 
r = (- 1.1.0). 

Of course all three reasons for noninvenibi lity would apply to each of II. D. F. 

2.5 B Apply the Gauss-Jordan mc:tlloti to find the inverse of this triangular MPascal 
matti~ .. It = abs(pd!;cai(4.1)). You see Pascal's lriangMo- adding each entry to the 
entry 00 its left givcs the entry below. T1lc entries are "binomial coefficienuM

: 

Triangular Pascal matri:< ,-[ ::::] - I 2 I 0 
I 3 3 

501,,1'00 Gau~._Jordan stasis with [A 1 J and produces zero. by , ublracting row J: 

[A I) = [ : ! ~ ~ i ! ~ ~]- [i ! ~ ~ =: 
I J J I 0 0 0 I 0 3 3 I - J 

o 0 0] I 0 0 
o I 0 . 
o 0 I 

T1lc ne:1U stage createS ~n)S below the second pi"",. using multipliers 2 and 3. llIcn 
the last stage SIIbtracU 3 times the new row 3 from the new row 4; 

[ 
~ ~ ~ ~ -: i ~ ~] [~~ ~ ~ -: ~ ~ ~] [I . - ' [. 

- 0 0 I 0 1 - 2 1 0 - 0 0 I 0 I - 2 I 0 = ,. 
o 0 3 I 2 -3 0 1 0 0 0 1 - I J - J I 

Alltllc pi"",. were I! So we didn't need to divide rows by pivots 10 get I. T1lc inverse 
matrix A - t IooI;s li ke II itself. cx""pt odd-numbered diagonals are multiplied by -I. 

Plca!iC noli"" that 4 by 4 matrix A - t. we will see Pascal matri"". again. llIc s.amc 
pattern CQntinucs to n by" Pasca l matrices- the in'~rse ha.. "alternating diagonals'. 

Problem Set 2.5 

1 Find the ;~IleS (din:<:tly or frum the 2 by 2 formula) of A. B. c : 

A=[~ ~] and B=[; ~J and c=[~ ~l 
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2 R>r these "permu tatioo matri~§" find p -I by trial and error (with I', and O·s): 

[
0 0 '] p = 0 I 0 
, 0 0 

and P = [~ ~ ~]. 
, 0 0 

1 Solve for lhe rolumns of A- I = {j : J: 

4 Show Iltat [~il has no inwn;e by trying to wive for lite column (x. J): 

[' ,][, '] ~ [' 0] m,"ioc'" [' '][']_[' ] ' 6 " 0' '6,-0 

5 Fin<! an upper triangular U (001 diagonal ) willt V 1 = I and V = V - I. 

f> (al If A is in,·ertible and AB = AC, prI)''' quick.l y thaI B = C. 

(bl If A = [1 tl. find Iwo matrices B ,,"C suclt that AB = AC. 

7 (Important) If A has row I + row 2 = row 3. shvw that A is 001 i!l\"ertiblc: 

(a) Eltpl ai n why Ax = ( LO,O) canOOI ha,,, a wlutioo. 

(b) Which righl sides (b,. h].. bl l might allow a w[ut ioo to Ax = b? 

(c) Whal happens 10 row 3 in climination? 

8 If A has rolumn I + rolumn 2 = column J . show tlla! A is not in,'ertible: 

(a) Fi nd a nonzero solution x to Ax = O. 1be matrix is 3 by l. 

(b) Eliminalion keeps column I + column 2 = column 3, Explain wh y 11Ien: 
is 00 third pi,"OI . 

9 Suppose A is invertible an<! you e.' change its first IWO rowS to reach B. Is lhe 
new matrix fJ invertible and how would you fin<! B- 1 flQffi A-I ? 

10 Fin<! the inw~s ( ill any legal way) of 

A = 0 0 3 0 

[

0 0 0 '] 
o 4 0 0 
S 0 0 0 

[
' , 0 0] 4 3 0 0 

a00.8 = 00 65· 

o 0 7 6 

11 (a) Find invertible matrices A and B such tltat A + B is 001 invertible. 

(b) Fin<! singular maltices It an<! 8 such Ihal A + 8 is invertible. 

:tpynghted malenal 
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12 If lhe prodUCI C = A8 is inv~rt iblc (A and 8 are square). then A itself is in
v~rtible. Find a fonnula for A-I Ihal invol,l'S C- I and B. 

13 If the prQduct M = A BC of three squan: malrices is inv~nible. lhen B is i,,''en 
ible. (So are A and C ., Find. fannul. for 0 - 1 Ihal involv~s ,If-I and A and C. 

14 If you add row I of A 10 row 2 10 get 8. how do you find B- 1 from A- I? 

Nociee the order. The inverse of 8 [' - , :][ A 1 " 
15 Prove that a ml\lrix wilh a column of '.eros eannoc have an inverse. 

16 Multiply! : : 1 limes [ _~ - : ]. Whal is the in,..,rse of each malri~ if ad ". be? 

17 (a) What mania £ has the same effect as these three Steps? Subtract row I 
from row 2. subtract row 1 from row J. thot n SUbtracl row 2 from row 3. 

(b) What single malri~ I. has the same effect as these three re""I'SC steps? Add 
row 2 10 row 3, add row I 10 row 3, then add row 1 to row 2. 

18 If 8 is lhe in"erse of Al . show thai AB is the inverse of A. 

19 Find lhe numbcr$ " and b that g;"c the i",~ of S · eye<4) ones(4,4 ): 

[ , -, -, -']-' ['" '] - I 4 - I - I b a b b 
- I - I 4 - I = b b a b . 
- I - I - I 4 b b b a 

Whal an: a and b in thot inv~rse of 6 ' eye\S) ones(S,S)? 

10 Show Ihal A '" 4 · Cye(4) - ones(4,4 ) is MI in""re ibk: Multiply A · ()(I('S(4 , I ). 

2 1 There are sixI".,n 2 by 2 matrices w~ emries are I's and O·s. lIow many of 
them are invereibJe? 

QuC!;llons 22.- 28 a~ aoout lhe Gauss·Jurdau I"Mlhod fur nlleulallng A- I. 

22 Change I inlO A-I as you reduce A 10 I (by row oper.ltions) : 

23 Follow the 3 by 3 te~1 e~ample but with plus s igns in A. El iminate above: and 
below the piVOls 10 reduce (A I J \0 (I A- I J: 

i~~~~l· 
200 1 
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24 Use Gauss-Jordan dimination 011 ] A I] to soLve AA- I : I: 

25 Find A _ t and B - 1 (if they ex;!t) by elimination on [A 11 and [ B I ]: 

, '] , , 
, 1 "'" [ , -, -'] 8 = - I 2 - I . 

-I - I 2 

26 What three matrices E ll and Ell and V - t reduce A : rUJ to tho: identi ty 
matrix? Multiply D- I E tl El l to find A- t. 

27 Invert these matrices A by the Gauss-Jordan methQd slllrting with [A II : 

[' ° 0] A: 2 I 3 ° 0 , 

, '] , 2 . 
2 3 

28 Exchange rows and continue with Gauss-Jordan to find A-I: 

[0 1'0] [11/]=2201' 

29 True Of fal", (with a COtlmcrexamplc:: if false and a ...,s..,n if lrue): 

(a) A 4 by 4 matrix with a row of zeros is not in""l'tible. 

(b) A matrix with I '~ down the main diagonal is invertible . 

(c) If II i~ ilWel'tiblc:: then A- t is in'"ertiblc. 

(d) If II is invertible then A' is iIWel'tible. 

30 For which three numlx rs c is this matrix not invmiblc::. and why not? 

[' , '] A=ccc. 
o , , 

31 Prove that A is invertible if ,.."O and,.." b (find the pivots Of A- t): 

[' , '] A _ a a b . , , , 
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32 This malri~ has a remarkable inverse. Find A _ t by el imination on [A I]. EA
tend 10 a S by S -alternating matri~" aOO guess ilS in~l"S<' : then multiply to ron· 
fi~. 

[' -, '-'] o I - 1 1 ,, = 0 0 I -I . 

o 0 0 1 

33 Use the 4 by 4 in>-erse in Question 32 10 ",I>'" Ax = (I. I. I. I). 

34 Suppose P and Q ha"e 11M: same rows IS I 001 in any order. Silow that P - Q 
is singular by solving ( 1' - Q )x = O. 

35 f iOO and check the inverses (assuming they e~iSl ) of lhese block matrices: 

[~ ~] [~ ~] [~ ~l 
36 If an invcnibJe matri~ A commuteS wilh C (Ihi s means AC = CAl show that 

A- I commutes with C. If also 8 wnunUles with C. show that AB wmmutes 
with C. Translation: If AC = C A and BC = CB then (A B)C = C(AR). 

37 Could a 4 by 4 matri~ A be in\'f:nibJe if evcl)' row wlllains the num~ O. 1.2,3 
in some ooler? What if e~1)' row of B rontains O. I. 2. - 3 in §<)me ortIcr'I 

38 In the ... -oded eAample 2.5 B. the triangular Pascal malri~ A has an in>-erse with 
"alternating diagonals". OIt:ck that thi s A- I is DAD. when: lhe diagonal matri~ 
o has alternating entries I. -I. I. - I. n..n ADA 0 = I . so what is the inverse 
of AD = pascal (4, 111 

39 The Hilben malri~s hav" H I} = 1/ (; + j - 1). Ask MATLAB for the exact 6 
by 6 inverse invhilb(6). n.. n ask for inv(hilb{61). How can these be diffe rent . 
when lhe computer ne"lC'r rn.a1es mistakes? 

40 Use inv(S) 10 invert MATLAB's 4 by 4 symmetric matri~ S = pasc.lI(4). Creale 
Pascal"s IO\O-'cr triangular A = abs(paSC.l1{4, I)) and test inv{S1 .. invlA') ' invlA}. 

41 If A "" ooes(4,4) and b = rand(4 .1), how does MATLAB lell you that Ax = b 
has roo solution? If b = ones(4,1). which solution to Ax = b is found by A \6 '1 

42 If AC = 1 and AC' = 1 (all square matrices) usc 21 to pro~ that C = C'. 

43 Direct multiplication gives MM - I = I . and I would recommend doing 13. M - I 

show. the change in A- I (useful to know) when a matrix is subul>Cied from A : 

I M = I - .. ~ "'" M - I = I + "./ (1 - 1111 ) , M = A - uu , .. M - ' = A- ) + " -' lIlIA- I /( 1 - .A- ' ,, ) 

J M = / -U V , .. M - I = I. + U{I .. - VU)-I V 

4 M ""A-UW- I V , .. M -1 = ,, - I + A - IU( ", _ V A- IU) - l V A-I 

, 
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l1Ie Woodbtiry-Morrison formula 4 is the ··ma1ri.~ inversion lemma" in engineer
ing. The four identities come from the !. I block when in~rc ing tllcsc matrices 
(u is I byn. u is n by I . V is m byn. U is n by m.m ~ n ): 

ELIMINATION = FACTO RIZATION: A = L U • 2.6 

Students orten say that mathematic$ COIlI"SCS are too theoretical. Well. oot this =ioo. 
h is almos! purely practical. The goal is to tkscribe Gaussian elimination in tlK- m<)St 
useful way. Many key ideas of linear algebra. when you look althem closely. are really 
factori:.ations of a matrix. l1Ie original matrix It becomes the prodUCI of Iwo or three 
special matrices. l1)e first factorization - also Ille m<)S1 imponant in pl1OCt~_CQmes 
now from elimination. The fadan an mangufur mamUI. Tht fIKfOri;:;uion that 
eomes/rom elimination is A. _ l.V. 

We already know U. the upper triangular matrix with the pi,"OIs on its diagonal. 
The elimination steps lake A to U. We will show how n::'~rsing thosoe steps (taking 
V back 10 A) is achieved by a lower triangular l.. The entries 0/ L an unell, the 
mulliplius i 'j - which muhiplied row j when il was sub/I1OCled from row i. 

Stan with a 2 by 2 e~ample. The malri x A C()ntain~ 2. 1. 6 . 8 . The number to 
eliminale is 6. Subrroet J timtl ro ... I from ro>o' 2. Thai slep is E21 in the forwanl 
direction. The return step from U to A is L '" Eii (a n addilion using + 3): 

Fm-..vml/romA lOU : Elt A ~ [_! ~][~ !J "' [~ ~] _ u 

BIKkfrom U toA : ElltU= [~ ~][~ ~]",[! ~] ", A . 

The se«>nd line is our factori l 31ion. Inslead of E;,IU '" A we write LV .. A. Mo ' ''' 
now to larger matrices with many £·S. Thrn f. ... iII i nclude nil/heir inwrus. 

Each s.ep from A to U multipl ies by a matri~ E'l to J>I<I<Iuce u ro in .he (I. j) 
position. To kocp lhi s cleat. we Slay with the most frequent c~- "'hell 110 10'" u , 
, hanges an j"'"fI/I"td. If A is 3 by 3. we multiply by Ell and El t and £ 11. The 
multipliers tij produce zeros in lhe (2. I) and (3. I ) and (3. 2) positions- all below 
lhe diagonal. El imination ends with the upper triangular U . 

Now mo~ those £'s onlO the OIher side. "'h," l/rclr i,..,'a ",s mulli" ,y U: 

The in''efStS go in opposite order. as they must. 1lt.at product of thm: in"e I"SCS ;s L. 
Wt ha l'f! nnChM A _ I ,U. Now we stop to understand it. 

aklnal 



hplanalion ;and Eumples 

First point: E~ery inverse matrix Eij l is /u ... u triangular. lis O'ff..<Jiagonal entry is 

tij' 10' undo lhe subu3Cti(>l'l with -tij . 1lIe main diagonal, of E and E - t ~Ofllain l Os. 
Outexample above had II I ",,3 and £;0 Utl and £ - 1 '" l1tJ. 
&rO'Old point: Equation (I) show, a lower triangular matrix (the product O'f Eij ) mul

tiplying A. . It ;alw shows a lower triangular matrix (the product of E;)t ) multiplyinll 
U to bring back A. Thu prod"cI IJf in~nes " L. 

One reason fO'r wming with the inverses is that wt' want to' factor A, not U. 
1lIe -inverse form"' gives A '" LU. 1lIe serood reasoo if that We get wme:thing extra, 
almost more: than ,' .. e deserve. This is the third point, showinll that L is exactly right. 

Third poinl; EKh multiplier ljj goes di=tly intO' its i, j position - unchangt d - in 
the pn)doct of in~ which is L. Usually matrix mult iplication wi ll mix up all the 
numbe",. Here that <klesn '! happen. 1lIe O'.u.,r is right for the inveTV matrices, to' keep 
the t's unchanged. 1lIe reason is given below in equation (3). 

Since tach £ -1 has I's down ilf diagonal, the final good point is that L does 

21 (A _ I.V ) This is rlimina/;on . ·ilhoul row u changts. "The upper triangular V 
has the pivots on Ib diagO'nal. l1ll'" IO'''l''r triangular f ha!> all I', on its diagonal Tht 
mulliplirn t'i art below Iht diagonal of L. 

h;ample 1 The matrix Aha .. 1.2. I on its diag<Hlals. Eli mination subiracts ! times 

row I from row 2. The laSl step subtracts j times row 2 from row 3. The kJ-,o.·er 

triangular L has II I "" ! and III = 1- Multiplying LU produces A: 

, ~ [~ ~ ~]=[~ ~ 
o I 2 0 j 

0] [' , o 0 ~ 
, 0 0 

1] =w. 
1lIe (3 , I) multiplier is zero because the (3. I) entry in A is zero. NO' opention needed. 

hample 2 Change the top left entry from 2 to' l. The pivots all become I. 1lIe 
multiplier.; are all I. That pattern roll1inues when A is 4 by 4: 

o 0] , 0 

I : . 

These LU e~ampks are ' hawing something eXira, which is very important in pntCtice. 
Assume: no row exchanges. When ~an "-':: predict ~ros in L and V ? 

When u row of A slam wilh ;:l'ros. w dOf's r!wl row of L. 

Whtn a column of A slUr" with :.t'roJ, so dots r!wl colurwr of U , 

, 



1.6 Elimi",.,fOfI _ f oiCt(lnU'fOfI: A ... LV 8S 

If a row >tans with zero. _ don'l need an dimination step. L hu a zero. which laves 
oom[lUter time. Similarly. leros 1.1 lhe sian of a column survi,~ inlO V. Bul please 
..,alilc: Zeros in the: middle of a malrix are li kel~ to be filled in. whi le elimination 
sw«ps forward. We now explain why L lias the multipliers (Ii in position. with JlO 

mix-up. 

Th~ b y n tHon "'hy A ~q .. al~ LV: Ask you rself aboul the pivot rows Ihal an: sub
(facIe(! from lower rows. A.., lhey lhe original rows of A" No. elimiml.lion probably 
changed thc:m . A.., thc:y rowS of U? Yu . thc: pivot rows never change again . When 
computing the thin;! row of U, we subira<;:t multipks of carlier rows of U (nol ro"" of 
A !): 

Row 3 of U = (Row 3 of A) - ()I(Row I of U ) - tn(Row 2 of U). (2) 

Rewrite Ihi~ equation to see that lhe row r IJI In I J is mulliplying U: 

'(~ 3 of A) - l31(JWw J of.U) +~:'2 of CfCf 1~ .3 pf U), (3) 

This is u/lcfl, row 3 of A = LV. AU rows look like this, whatever the size of A. 
Wilh no row exchanges. " 'c ha,·c A "" LV . 

Remark l1Ic: L U factorization is "unsymmetric" because: U has lhe pivots on its di
agonal " .. here L has 1'5. This is ea;;y 10 change. Divide U by " dUlgo"al ,mtttV 0 
,ha' conrQi,,~ 'he pi''''''' ThaI leaves a new IT\.iUriX with l Os on the: diagonal: 

d, 

Splil U imo 

J. 

It is oon~niem (bul • lillie confusing) 10 k«p the same letter U for thi s new uppe' 
triangular matrix . It lias I 's on the diagonal (like L ). Instead of lhe normal LU, lhe 
new form has 0 in the middle: ~r trianglilar L h"", diag/lnoJ l) 'ilffts IIppe. 
,rianflilar V. 

",,...trlMtpIM~t tt"" ~1H .....,,, ~"'''l:g: .. '~ .... A ~ rpu, 
Whenever you see L DU. il is underslood lhat V has I's on the diagonal. Each row 
/s d/"/ded by iu ji,.l n""::ero ~nlry-lhe plVQ/. ,"", ,, L and U are treated e~nly in 

LOV : 

[,' 0,] [0' ',] splils (unher inlo (4) 

'"'" piy,," 2 and 5 _ lit into D. Dividing the rows by 2 and S k ft the rows r I 41 
and [0 ! 1 in lhe new U. l1Ic: mUltiplier 3 is ~ill in L , 

My OK'n lu lUl'rs &omtlimu SlOp 01 this pooitll. n.c next paragnphs show how 
elimination fX\des a.., organized, and how long lhey take. If MATLAB (or Bny softWllrc) 
is available. I strongly recommend lhe last problcJ115 32 to 35. You can measure the 
compuling lime by jusl counting the sewnd$! 

C rrg~ j 



66 C~ 1 Solving Linea, (quO!..".. 

One SqUilre System _ Two Tri;tngular Systems 

TIle matri~ I. con\.llin~ our rrw:mory of Gau u ian elimination , It holds the numbers that 
multiplied the pivOt rows, before sublt3Cling them from Iow~r rows. When do we noed 
this TttOni and how do we uSC it? 

We noed I. as soon as then: is a right £iJ~ b. Tnc facmrs L and V".,,'" com· 
pietely decided by the left side (the lIunri .• A), On the right side of A ... = b. we usc 
Sol..." 

1 Fal'('" (into Land V. b) fo.ward elin'ina!ion on A) 

2 SO/O.,. (forward ehmination on b using L. then back ,ubstitution u~ing V). 

Earlier. we worked on b while: we Were wooing on A, No problem wilh that _ 
juSt augment A by an e~tra ,olumn b. But most C(>ml"'ter , odes k""p the 1,,'0 sides 
scpanue. TIle memory of fo,....·ani eliminatioo is held in L and V. at no e~\Ta cost in 
storage, Then we proce$~ b whenever w" " 'ant to. TIle Uscrs Guide 10 U NPACK 
remarks thaI "This silUatiOll is SO common and the saving~ an: so important that no 
provision has ~n made for solving a single system " 'ith JUSt one subroutine." 

How does So/..., work on b? First. apply fo,....·ard eliminatioo to the right $ide (the 
multipliers an: stored in L. usc them r>OW), This changes b to a new right side e- ,.. .. 
art! ""I/y wl>';ng I.e = b. TIlen back substitution sol"es V ... = e as always. TIle 
original system A ... = b is facl~ into t>ro lrianguillr systems: 

~ Le_b <" 
To see that ... is COfT<:Ct. multiply V x = e by L. 'Then tVx = Lc is juS! A ... = b. 

To emphasi~e: There i. narlting n ...... ~boul those steps, This is e:<actly what " 'e 
have done all along. We were really solving the tri angular i )'Stem Lt = b as elimina
tion Wtnt fOtWard. TIlen back substilUlion produced x . An e~ample shows il aiL 

Example J Fotwanl elimination 01\ Ax = b ends al V x = c: 

Th< 

.. + 2,,= 5 
4u + 9" = 2 1 

mulliplier " 'as 4. which is saved in 

Le '"" .. The lower triangular system 

Vx _ e TIle upper triangular syslem 

u+2,, = 5 
11 = l. 

L. The right side used it to fi nd c: 

[: :][+[,i] gives , = [i] 

[: i]['Hi] g'ves <0[:] 
It is ""tidying th31 L and V can take the n2 storage Iocalions thaI originally held A. 
TIle t·s go below the diagonal. The whole discuss ion is only looking 10 see what elim
ination actually did. 

, 
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1.6 Elimi .... ion .. Foctori ... ion: A .. /.1.1 87 

T~ Cost of Elin.inalion 

A very praclical qkle!;lion is OOSI - or compuling lime. Can .... e solve 1000 ntualions 
on a PC? Whal if 11 = 10.OOO? Large sy~lems come: up all the time in scien.ific 
computing ..... here a three-dimensional problem Can easily lead 10 a million Ilnk oown~. 
We can let the calculation run O\"miglu. bll! " 'e ,an't lea\'e it for 100 years. 

n.e first stage of climimuion. on column I . prodoccs zeros below the first pivot. 
To find eiKh new entry below lhe pivot row m:juires one muhiplication and one sub
traction. We .... ill COUlll Ihis fir31 sluge <IS n2 multipUculioru un</ n2 5ubmxliOtU. It is 
iKlUally leSll. n l - n. because row I doxs 001 ,hange_ 

TlIe next stage clcars out the second column below the second pivot. TlIe wort.
ing matrix is oow of siu n - L Estimate thi s stage by (n - 1)1 mult ipl"ation~ and 
subtractions. n.e matriocs are gCl ting smaller as e limination goes forward. n.e rough 
COIIJI( to re""h U is the sum of squares nl +(n _ 1)2 + ... + 22 + II . 

n.cre is an exact formula t n(n + ~ )(II + I ) for this sum of squares. When II is 

large. the ! and thoc 1 are 001 imponanl. The n"miN'r IMI malle~;3 ) nJ. n.e sum of 

squares is like the integral of x 2 ! n.c inlcgml from 0 10 n is inJ; 

EliminOlirJII 1111 A "quirts aooUi lllJ mu//iplirlJfialls and ~ "J sub/rae/10m. 

What about the right side b? Going forwanl. "'C subtract multiples of bl from the 
lower components bJ. _ ... b •. This is n - I steps. lbe second stagc takes only n - 2 
steps, because bl is not involved. The lasl Stagc of forward e limination takes one step. 

Now start back substilulion . Computing X. U$CS one step (divide by the lasl pi>'OI). 
lbe ne~1 unkoown U5CS IWO steps. When We reach Xl it will m:ju ire n SICPS (n - I 

substitutions of the other unkoowns. then divis ion by lhe first pivot). n.c lot~1 COIInt 
on the right side. from 10 10 C 10 x - ftmmrd /() Ihr bottom and buck 10 Ih~ lop- is 
uactly 11 2: 

!{1I- 1)+(n-2)+,,·+1 1 + [ 1 + 2 +-" +(" - I)+n) ,,,, ,, 2. (6) 

To sa: Ihal sum. pair off (11- I) wilh I and (n - 2) with 2. TlIe pairings I~ave " tenns. 
each I!\[ual to n. That makes ,,2. lbe right s ide ,O(;ts a lot less than lhe lefl side! 

Earh riRht side nuds nZ muitip/iro/iom lind "I subtractions. 

Here are the MATLA8 codes 10 factor A. illlo LU and to solve A.x = b. 11lc program 
slu stops right away if a number smaller than the lolentntt "lor appears in a pivot 

, 



pll'iition. Later the f"Ogrnm pi .. will look """'n the column for a piVO!. to eJlecu~ a ruw 
exchange and continue !IoOlving. lllcse Teoching Codes are on web.mit.edulIlUI6Iwww. 

l'unclion IL , UJ < ... kI(A) 
~ Square I.U fOCIOriUlion with 1>0 ruw exchanges! 
(n.nl = $l.ze(.4); 101 =1.e- 6 ; 
fork:l:n 

if abs(A(k.k )) < 101 
e nd ~ Cannot proceed wilhooot a ruw e xchange: stop 
L (t .k) = I : 
for i '" t + I : n ~ Multipliers for column k are put into L 

L (i . k ) = A (i. k)/A (I: .k): 
for j = k + I : n ~ Elimination beyond row I: and colu mn k 

A(i .j)= A(i. j )- L (i. k).A(k. j ): % Matrix still called A ,., ,., 
forj=k:" 

U(k. j ) = A(I: . j); ,., 
",d 

functiOn x _ ..... ~, ") 

% ruw I: is settled. now name it U 

~ Solv.: Ax = h using L and U fr<)f11 sl u (A). No row cxctllmges! 
[ L . UI = slu(A): 
fori = l : n 

forj=] : k - ] 
1= S + L(I:, i) H(j): ,., 

c(l:) = h(k) - I: ~ Forward elimination to soh -e Lc = I> ,., 
for I: '" n : _ I : 1 % Going """kwarm from x (n) to x (l) 

for j = k + I : n % Bock substitution 
I = I + U(I:. j) . x li): ,., 

x ( t ) = (e(l: ) - 1)/ U(t . I: ): ~ Divide by piVO! ,., 
x = x ': ~ TllInspose 10 column vector 

How long does il till to solve Ax = 1>1 For a random malrix o f order" z: 1000. 
we tried (he MATLAB command tic; A\/>; IOC. "The time on my PC WllS 3 seconds. 
For n = 2(XXl (he time wa:;; 20 sewnds. whiCh is approaching the " l rule . "The lime is 
multiplied by aboUI 8 when n is muhiplied by 2. 

According 10 tllis n l rulc. matriccs Ihat are 10 times as large (order IO.<XXl) will 
lake thooosands o f seconds. Matrices o f order 100.000 will take millions of seconds. 

, 
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2.6 Elim,nation . Fac!Oti .. !ion: ". I..U 89 

This is 100 c~pcnsive witbout a supcn;:ompuler. but ~membo:r that I~ matrices arc 
full. M05t matrices in practice are sparse (many zero entries). In thai case A =0 LU 
i. much faster. For tridiagonal matrices of order 10jX)(). 5IOring only the non.zeros. 
solving Ax = b is a breete. 

• REVIEW OF THE KEY IDEAS • 

I. Gaussian elimination (with no row exchanges) foctors A into L times V. 

2. "The lower triangular L contains the numbers that multipl y pivot rows. going from 
A to V."The product LV add5tho!;e rows back to TttOVer A. 

J . On tile right side we soll'e U = b (fOl"l-'ard) and V ol' = c (back""anIs). 

4. "There are !(H) - H) multiplications and submlctions on tile lef! side. 

S. "There are HI multipli<;ations and subtractions on tile right s ide. 

• WORKED EXAMPLES • 

2.6 A "The 10000'cr triangular Pascal ma(ri~ PL was in the won:ed cxample 2.5 8. 
(It contains the "Pascal tri'mg/~" and Gauss-Jordan foond its inve.,...) This problem 
C(HIReCts PL to tile sy~tric Pa5l;al matri~ Ps and the upper triangular Pu . "The sym
metric Ps has Pa5l;ai"s triangle tilted. SO each entry is the sum o( the entry above and 
the entry to the left. "The n by n symmeu>c Ps is pascal(n) in MATLAS. 

Problem: Establish th~ amajng IO" 'n-uppu jac/Ori:J<tion Ps = PLPU: 

, 
2 
3 

• 
, '] [' 3' , 
6 10 = I 

10 20 I 

000][""] 100012 3 
2 I 0 0 0 I 3 = PLPU. 

331 0001 

Then pmlkt al\d check the ne~t row and column (or ~ by ~ Pascal matrices. 

Solution Yoo could multiply PLPU to get Ps. Betler to stan with the symmetric 
Ps and reoch the upper triangular Pu by elimination: 

[" "] ['" 1234 012 
P5= 1361O - 025 

141020 0 39 
'] [" 3 ° , 
9 - 0 0 
19 0 0 

~ ~] - [~ 1 ~ ~] = Pu . 
3100001 

The multipliers t" that entered these steps go perf«tly into PL. Then Ps = PLPU is 
a pa"icularly neat eumplc of A '" LV. NOlicc that e' .. ~ry pi,"Or i~ I ! TlJe piwJl ~ are 

ate-nal 



on the diagonal o f Pu. The: nexl section will show how symmetry produces a special 
relatKmship beiw<:cn the triangulllJ L and U . You see Pu ali the -n-all'pose" of PL. 

You might expect lhe MAHAB command lu(pascal(4 )) 10 pmd~ thes.e fattOl$ 
PL IlIId Pu. That ~sn't happen be<;alls.e the III subromine ,hoose!l the largeSl avai l
able piw)I in each column (it will CAchange rows so the $eC(>Ild piVQI is 3). But. dif
ferent ,ommand elml factors without row ex,hanges. 1llcn {/ .. VI = chol lpascal (4)) 
product'S the triangular Pascal matrices as L and V. Try il. 

In the S by S 'liSe the new fifth rows do mainutin Ps = PLPu: 

No.1 Hm." I 5 15 35 70 for Ps I 464 

I will only check Ihal this fifth row of PL limes the (same) fifm column of Pu gi~es 
I! + 41 + (,2 + 42 + ]2 _ 70 in the fifth row of Ps. n.. full prn>f of Ps "" PLPU 

is quite fascinaling - mis faclorizalion can be reached in al leasl four differenl ways. I 
am going to put these prn>fs On the course "..,b page .. ·eb.mil.tdulI8.061 .......... whiCh 
is also available through MIT's O,.,..nC/Jur.<t' Wart at oc .... mil.edu. 
~ Pas.;.1 matrices PS. PL . Pu ha,.., S(I many remarkable properties- ... e will 

see them again. You could locate them using the Indu al the end of lhe book. 

2.68 llte problem is: Sol .... Ps x = b = (1.0.0.0). This special righl s ide means 
Ihal x will be the first column of r; '. lltat is Gauss-Jordan. matching the oolumns 

of Ps Ps- t '" I We already kllOW the triangu lar PL IlIId Pu from 2.6 A. SO we solve 

PLC = b ( forward sUbstitmion) Pu x = c (bark substitution) . 

Us.e MATLAB to find the full inverse malrix Ps-
t _ 

" . 1 ([ = + 1 
,, + " •• <1 = - ] 

Ct +2c:+ " •• gl'"cs 
' ') - + 1 

CI +x::+,kJ +q .0 c. =-1 

Forward elimination is mulliplication by PLt . II prodU<;Cl; the upper triangular syStem 
Pux '" c. The soiutiort X COII'C'$ ali always by bark substilulioo. bot/om 10 lOp: 

Xt+Xl+ xJ+ Xo _ 

x: + lxl + 3x, '" - I 
xl+ 3x.= I 

Xo '" - I 

gives 

X, '" +4 
X2 =-6 
Xl = +4 x. = - I 

The: complete inverse malrix " s- t has that x in ils first column: 

[ 
, 

- 6 
inv(pascal (4 )) = 4 

- I 

- 6 

" - II 
3 

, 
- II 

10 
-3 

-; 1 -3 . 
1 

, 
i 



2_6 Iiimi ......... . f ..ctoliWion: " . LV 9 1 

Problem Set 2.6 

Problems 1_ 14 wmpule Ihe (KlorlZlllion .... _ LV (and also" .. LDU). 

1 (importam) for,.'ard eliminacion clLanges [111'" ., b to a triangular [~ ll ... = r : 

x + y = 5 
x +2y= 7 [ : , '] , 7 

'IlIa1 scep subl:ractcd III = __ timo::s r()W I from row 2. "The rtcverse scep 
addJ ilt time5 row I to row 2. "The matrix for that reverse Slep i'i L = __ . 

Multiply Ihis L cimeli che criangular sySlem [ : : 1'" '"" [~l to get __ - __ . 
In Ienen. L multipl ies U ... = r co give __ . 

2 (Move co 3 by 3) Forwani eliminaCion changes " ... ., b to a triangular U ... = r : 

x+ y+ ~= 5 
x+ 2y+3;:=7 
x +3y+ 6;:= JI 

x+ y+ <= 5 
y+ 2;: =2 

h+5z=6 

x + y + t= 5 
y+2;:=2 

<:=2 

The equation t = 2 in U ... = t comes from che original x + 3y + 6.1: = II In 

" ... = b by subl:racting ht = __ times equation I and l31 = __ limes 
the i""'/ equation 2. Re~crsc tlLat to recovcr I 1 3 6 11 I in " and b from che 
final 11 I 1 S]andIO I 2 2]and10 0 I 2]inUandr: 

Row 3 of{ A b 1 = (l3t Row 1+ hl Row 2 + I Row 3) of( U r ]. 

In macrix nocacion chis ill mUlliplicacion by L. So II = L U and b = Lr. 

3 Wrile down lhe 2 by 2 triangular syslems Le = b and Ux = t from Problem 1. 
Che-ck Ihat e = (5. 2) solves lhe IiTSt one. Find ... that solves lhe SCCQnd one. 

4 Whal are ~ 3 by 3 trian gu lar systems Lr = b and Us = e from l'mblem 21 
OI«k Chat t = (5. 2. 2) solves che first one. Which ... soh'CS [he second one? 

S Whac matrix E puts A inlo lriangular foon E .... = U1 Multiply by E - t = L co 
faclor A into LU: 

[' I 0] A = 0 4 2 . 
6 3 ' 

6 What two elimination matners Ell and En put " into upper triangular form 
EJ2£ 11 " = U? Muhiply by E)ll and E211 to faclor .... into LU = £ 211 EnIU: 

A=[i :il 
C righted makrKlI 



7 What three elimination matrices E2t. El t. Ell put A into upper triangular form 
E)2 E)I £ 2I A = U? Multiply by Elr Eltt and E:;t' to factor A into LU where 

L =EitIEli Eill. Find I. and U; 

[

' 0 
A = 2 2 

J , il 
8 Suppo5C' II is already lower triangular with I 's on the diagonal. Then U = I ! 

A ~ I.~ [; : :]. 
b , , 

The el imination matri"". El l . Ell. Ell contain - " then - b the n -c. 

(a) Mul1iply £ ll £ Jt £ ll \0 find lhe si ngle matri~ E that produces EA _ I . 

(h) Multiply £:;i £ Jtt £ 3l1 to bring back L (nicer til"" E). 

'" When uro appears in a pi\"Ot position. A = LV is tlQl possible! (We arc requi ring 
nonzero pivots in U .) Show diR.-ctly why these IlfC both impossible: 

Th is difficulty is fi l ed by a row exchange. That needs a "permutation" P . 

10 Wh ich number c leads to zero in the se<:ood pivot position'! A TOW exchange is 
nc«Ied and A = I.U is not possibLe. Wh i<;:h c produces tero in the third pivot 
position? Then • row CJlchange can 't Ilelp and diminatiOlI fails: 

[' , 0] .-1= 2 4 I . 
J 5 , 

11 What arc Land D for this ,""trix A1 What is V in II = LU and what is the 
new U in II .. L DU? 

12 A and B are symmetric IICfQSS the diagonal (because 4 = 4). Find their triple 
foctorizations L DU and say how U is related 10 L for these symmetric matricn: 

A=[! l ~ ] and B=[i , 0] 
12 " . 
, 0 

, 
i 



Il (Rerommended) Compute L and U for the symmetric matri~ 

Find four rondit ion~ on Q. b. c. d 10 gel A ~ LU with four pivots. 

14 Find L and U for the oonsymmctric malri~ 

Find tile four conditions OIl G. b. c. d. r. S. I to get A = LU with four pivots. 

Problems 15- 16 lise L and U ( ... lIhoul needing A) 10 50h" Ax _ b. 

IS Solv.: tile triangular ~ystem Lc = b I" find c. 1lten solv.: Ux = C 10 find x: 

fur safety find A = LU and solve Ax = b as usual. Circle c wilen you _ it. 

16 Solv.: Lc = b to find r 1lten solv.: Ux = c I" find x . What wa, A? 

[ 

1 1 
andU = OI 

o 0 

1 7 (a) When you apply tile u ~ual eliminali()ll steps to L. what mallix dQ you reach'! 

L = [1:' 
1" 

o 0] 1 0 . 
In I 

(b) Wilen you aWly lhe same ~teps to I. whal matrix dQ yoo get? 

(e) When you apply lhe same steps 10 LU. what matri~ dQ you get? 

18 If A _ L D U and also A = L1DIVt with all factors in'·ettible. Illen L = L t and 
D = Dt and V = Vt. "Tlre lac/afl <Ire unique." 

Deriv.: the e<juati()ll Li t LD .. D1Vt V - 1. Are the two ~;des triangular or diag" 
onal? Ded..ce L = LI and V ... V I (they all ha"c diagonal 1"0). "Then D .. D ,. 

, 



19 Tridiagonal IIJarr;UI ha~ zero entnes except on the main diagonal and the two 
adjacent diag.;.nals . Factor these into A ,. LV and A = LOL T: 

[' , 0] 
A = I 2 I 

o , 2 
and A= a a+b b . [" , 0] 

o b b + c 

20 When T is tridiagonal. its L and V facton have only IWO nonzero diagonal s. 
How would ) 'QU take advantage of lhe U'ro§ in T in a computer code for Gaussian 
elimination? Find L and V. 

2 1 If A and B ha~ nonlcros in the positions mmed by x . which zcro§ (macted 
by 0 ) art: still 7.cro in their factors L and U? 

A = x x x 0 [' , , '] 
Ox xx 
OOxx 

22 After eliminalion has produced I Cro§ below the liM pivOi, put x 's to show which 
hlank entries are known in [he final L and U: 

13 Suppose you eliminate upwards (allTlO>t unheard of). Usc the last row 10 produce 
zcro§ in [he lasl column (the pi\'{)( is I). n..,n usc the SCCQIId row 10 produce 
zcro aoo.'C [he .second pivot . Find the factors in A = V L(!): 

[

' 3 A .. 3 3 , , 
24 Collins uses elimination in ~h directions. meeting al the cc"tcr, Sub!'litution 

goes out from the center. After eliminating ~h 2·s in A. one from alxwc and 
one from belQw. what 4 by 4 matrix ;s left? Soh 'C AX '" b his way. 

[ 
, , 
2 , 

A", 0 1 

o 0 

, 
i 



2S (Imporlanl) If A has pivOlS 2.1.6 with DO row eAchanges. whal are !he pi>1)!S 
for lhe upper len 2 by 2 submalri~ B (wilhoul row 3 and column 3)1 E~plain 

why. 

26 Slarling from a 3 by 3 malri~ A wilh pi>vts 2.1. 6. add a founh row and column 
10 produce M, Whal are !he firsl Ihree pivots for M. and wh)'l Whal fourlh row 
~OO column are sure 10 produce 9 as liIe foonh pivot1 

27 U5e chol(pascaI(5)) to find the lriangular Pascal faclors as in Worked E!c ample 
2.6 A. Silow Ilow row exchanges in t L. U I = lu (pascal (5)) spoil Pascal's pancm! 

28 (Careful review) For which numbers c is A ~ L V impossible-with three pi> ... ,,? 

[' 2 0] A = 3 c I 
o , , 

29 Change lhe program slu(A) imo sldu(A), so thaI it produces L . 0, and U . Pul 
L. 0 , U inlo lhe II' slorage localions that held lhe original A. 1lte ext'" " orage 
used for L is 001. required. 

30 E!cplain in words why .«1: ) is (c(t ) - r) / U(k.t ) al lhe end of sI~ ( A. b). 

31 Write a program that muhiplies a N ... ...!iagonal t. limes a Iwo-diagooal U. 000'1 
loop from I 10" when you koow !here are zeros! L limes U should undo ~I u. 

32 I jusl learned MATLAB's lic- toc command. which measures computing lime. 
Previously I C1)U m<:<l second~ until the answer appeared. " 'hich required very large 
problems- oow A = rand(IOOO) and b = rand(IOOO, I ) is large enough. 
How much fasler is lie; A\b; loc for eliminalion than lie; inv(A)* b; toc which 
compll!es A - t 1 

I I Compare lie; irw(A); toe for A .. ,and(500) aoo A .. raoo(I 000). The n' 
operation counl \-IIys that doubling n should mulliply computinG lime by 8. 

34 I = eye(l000): A = rand(I000): 8 = triu(A); produces a random tm.ngular 
malrix B. Compare lhe times for inv(8 ) and B \ t . Bockslash is engineered 
to use the ~ros in R, while inv use~ !he tefO!i in I when reducing I R I) by 
Gauss-Jordan. (Compare also with inv(A) and A \ I fur the full matri~ A.J 

35 Esti"'''te the lime difference for each new right side b when n _ 800. Create 
A = rand(800) and b = rand(800,1) and 8 = rand(800,9). Compare tic; A\b; 
loe and ti c; A\B; toe (which wl>'Cs for 9 right sides), 



)6 Show IlulI L -, has entries jJi 00 and below its main diagonal: 

0 0 0 0 0 0 , 
0 0 

, 
0 0 

t= 
-, ,," L - I "" 

, 
, , 

! o -j 0 , 0 

0 o -i , , , , , , 
I think this panem continues for L : eyem - di~g( l :S)\diag(l :4,- 1) and inv(L). 

TRANSPOSES AND PERMUTATIONS . 1.7 

We need one: ~ malr;~. and fonunarely it is mIlCh s imp~r than ~ in"" ...... 11 j§ the 
·'r,..",spost" of A. which is dc:OOIed by AT. Tire ro/"""'t of AT are 1M rows "/ A. 

Whe n II is an '" by n matri~. the tran~pose is n by m: 

You can write [he rows of A into the oolumlls of AT. Or you can write the columns 
o f A into the rows of AT. The malri~ "flips oYff" il$ rrI.lin diagooal. lbe entry in row 
i. column j of AT comes from row j. column j of the original iI : 

, 
(A )U- AJI' 

The Ir.lnsposc: of a lower triangutar malri~ is upper niangular. (But tile in''C1'Se is still 
1O'o'"CT triangular.) llle transpose of AT is A. 

Note MATLAB's symbol for the transpose of A is iI '. 1'\Iping [I 2 3[ gives a row 
' "cctor and the column '"eClOr is ~ = I I 2 31'. To enter a matri~ M with second col
umn '" = I 4 5 6 I' yl)U could (k,fi"" M = I u ., I. Quick~r to enter by rows and 
l~n tmn>pOSe the whole m~trix: M = II 2 3: 4 5 61' , 

The rules for transposes are very direct. We can transpose A + B to get (A + B )T. 
Or ,",'e can transpose A and 8 separately. and then add AT + BT - same result l1Ie 
serious qllCStions are about t~ transpose of a prodoct AB and an invcne A- t : 

l1Ie transpose of 11+ B is AT + BT, 

~~or A8 il (A8)T _ 8TAT. 

Thctransposeof A- t IS (A- 1)T= (AT)-t . 

(O J 

(2) 

(3) 

, 
i 



Notice especially how BT AT ~O~J in I'\"~rse order. r-m in"crses. tllis re,'crse 
order was quick to cheek: n - t A - t times AB produces I . To understand (AB)T = 
BTAT. stan with (AX )T ;xTAT , 

A x combines the col .. mns of A ""hile x TAT combincs Ihe ro"'s of AT, 

I! is the JlIme combinatioo of the JlIme '"tttors! In A tb.!y are columns. in AT they 
arc n;>W'. So lhe ullnspose of the column Ax i5 lhe row x TA T. That fits our fonnula 
( AX )T = xTAT. Now we can prove !he fonnula for (A 8)T. 

When B = lx , x l1 has t""'O columns. apply lhe sa~ idea to each column. n.e 
columns of AB are Ax I and AX l. TMir transposes an: lhe rows of BT AT: 

l.'~ [:[:: 1 whkh;, 8' A'. ,<) 

TIle rigllt answ~r BT AT comes oot a row at a lime. TMre is also a "1r'tJn$ptJrent proof" 
by looking Ihroogh the page al !he cnd of lhe problem set Here are numbers! 

... B'A'-[' 'J[' - 0 I 0 

Now apply lhis product rulc to boIh sides of A- I A .. I . On onc side. IT is I. 
We confinn the ",Ie thai ( A - 1l is (he in"crse of AT: 

'S) 

Similarly AA - l ,. I leads (0 ( A - Il AT = I . We call in,,,,,, the transpose or lran ~posc 
the inverse. Nocice especially: AT is inl'f!rfiblc u lJell, ",ht n A is in,V'rtiblt, 

Example I n.e inverse of A = f!'J is A- I = [J ,J. The transpose is 
AT_[ ~n 

(A- I)T (mil ( AT) - I IJrt both t qulJl to [ ~-n 

Before leaving these rules. We call allcnlioo to doc products. TM following Slutc· 
menl loots eXlremely simple. but il aclually contains !he deep purpose for the transpose, 
For any vectors x and y. 

(61 

When A moves flQm one side o f a doc produci 10 lhe OChel side. il becomes AT , 

, 
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Here are IWO quick applications to electrkal cn,incering and mechanical eng;· 
neering (wilh more in Chaper !I). The s.a1T1C' II and II aWC'3r in both appli,aliQns, 

_3 

edge 23 

- , 
edge 12 

-, 

,'Oltage Xj 

eu".,nl )'2 

voltage Xl 

eu".,nt ,.. 

,'Oltage XI 

"~3 

column 23 

""" , 
column 12 

"~ , 

movemrnt Xl 

force )'1 

movemrnt Xl 

force )'1 

mo,-.:ment XI 

figure 2.9 A line of resistors and a structure. both go,'fft1ed by /I and /I T. 

EI« lriclll Nelworks The vcclOT X = (XI. Xl. Xl) gives voltages at J nodes. and Ax 
gives lhe ,ullage diffcrences acroSs 2 edges. The "diffcrence rnauix" A is 2 by 3: 

~, _ n [ ~~ ] = [ ;~ =;~ ] = vohagdiffere~es 
n.e VC<.:IQr' = (y,.y:. ) gives currents 00 those edges (node I to 2. and node 2 10 3). 
Look how /IT, finds lhe 100al eu".,"ts leaving each node in Kirdthoff"s e ll.....,nl Law: 

,., 1 ["mOl ''''''g -, 1 n - YI = OU I minus In at node 2 . 
- )'1 ell""m Icaving node 3 

Seclion 8.2 studies netwQrks in detail. He,"" >ve look at ~ energy J( TAT , lost as heal: 

Enrrg)" ("oIlage,; x ) . (InpulS /IT, ) = HUll loss ("olillge drops /I ... ) . (currenlS , ) . 

Fon:es on 11 Slrutlu l"t" n.e ,'eclor J( = ("'1. X2. Xl ) gi,,,, the: movement of each floor 
under the " 'cighl of the: noon .bo'·c. n.e matrix A takes differences of the x 's to give 
lhe strains /I .... the movementS between 1I00rs: 

~ , , -i] [;!] = [ ;~ = ;! J= [:~::~: ~:.:~ ~ :~~;] 
n.e ,-ector , = ()"I.)'2) gi,"Cs the stresses (internal fon:es from the columns lhal I"Csisl 
(he mo'"CR1Cn( and sa,'e the structure). n.en AT, gi\"CS ~ forces that balaocc tile 
weigh!: 

[ 
, 

/I T, = ~, 

0 

,., 1 
n ~ " 

~" 
[

weight of floor I 1 
weight of floor 2 
weight of floor 3 

In resistors. the relation of ,to A x is Ohm's Law (eu".,nt proportional 10 voltage dif· 
fc,""l1Cc). r-.Jr elastic Structures th is is Hooke's Law (mc~ proponional 10 strain), The 

, 



caTasTrophe on September II came when the fires in The World Trade CenTer weakened 
The sTeel columns. H<XIke·s Law evenTually failed. "The inTernal forces couldn·t balance 
the weighT of the tower. After the first columns buckled. the columns below l-ouldn·T 
take the cxtrn weight. 

For a linearly eia"ic 5tn.JClure. Ihe work balance etjualion is (Ax )T y = xT(AT , ): 

ItUutllll '4"Qrk (slrw]n Ax )· (stn'SS y ) = t-::Xlu/t(/I .. vrk (mon' ment x ) · (rorce AT, ). 

Symmelric Malrices 

For a symmnric malrix - these are Ihe mOSI impor1anl malritts - lransposing A 10 AT 
produces no change. "Then AT = A. "The matrix is symmelric across 1M main diagonal. 
A symmetric matrix is necessarily square. Its U . i ) alld (i.j) emries are equal. 

OEFINITION A symmfln·c malrix ha~ AT = A This Im'an ~ th~t I',; = a" . 

Example 2 [' '] , A : 2 S :A ,"" 
A is symmetric be<;:ause of lhe 2·s On opposite sides of the diagonal. "The rows agree 
with the columns. In 0 Ihose 2·s are zeros. EvCT)' diagonal malrix is symmetric. 

Th~ ino~r"Se 0/ Q ,,"'''' flric matrix Is a/so symm~tric. (We ha", 10 add: ··If A Is 
'mwI/hle:·) "The lranspose of A- I is (A-I )T : (AT)-I: A-I . so A- t is symmetric: 

' -'= [' -'] -, , ,"" D - '- [' 0 ] - 0 0.1 . 

Now we show Ihal mu/tlp/ying any matrix R by RT Kil~S a s,-mmerric matrix. 

Choose any matrh. R. probably ""'ta"8ul..,.. Muhiply RT limes R. Then lhe prod""t 
/(TR is aUTomatically it square symmetric malrix· 

That is a quick proof of symmelry for /(T R. We could also 1<XIk at the (;. j) entry of 
/(T R. It is the dol prodUCt of row i of RT (column; of R) with column j of R . 1llC 
(j. i) entry is the same dol product. column j with column i . So /(T R is symmetric. 

T1le matrix RRT is also symmetric. ("The shapes of R alld RT allow multipli · 
C3tioo. ) But R/(T is a different matrix from RT R. In our ClCperience. most sc ientific 
problems that sIan with a reclangular matrix R coo up with RT R or /( RT or Doth . 



100 Ch.1pt<:r 2 Sol.ing li!l('."l r ['1""1;00. 

Eumpll:' 3 R= [I 2] and RT = U] produce RTH= [~ ;] and RRT ",,[51. 

1llc product RT I( is n by n . In the opposite order. R I(T is m by m. E~en if m = n. 
it is not ~~ry lik~ly lhal RT R = R RT. EqualilY Can happen. bul it is abnormal. 

When el iminalion is applied 10 a symmelric malri~. A T = A is an advantage. The: 
smaller matrices stay symmetric as elimi~ti<>n pnxe«ls. and ""e can ","ork with half 
the malri~! II is true lhal the upper lriangular U cannot be symmetric. The symMetry 
is in LDU. Remember how the diagonal matri~ D of pi'"Ots can be di~ided OOt. to 
leave I's on tbe diagonal of both L and U: 

(L U misses the symmetry) 

(LDU cap!:u~ the symmetry) 
Now U is the tmnspott of L. 

Wben A is symmetric. tbe usual fonn A = LDU becomes A = LDI.T. The: final U 
(wi th I's o n the diagQflal) is the 1r"n~ of L (also with I's on the diagonal). The: 
diagonal D _ the matrix of pivots- is symmetric by itself. 

21( If A = AT can be factored intu LDU with no row e ~change, . lhe n U = LT. 

The .ymmetric factori;.ation of a symmetric m(Jtrir is A = LDL T 

NOIice thai the transposoe of L D L T is autonlat ically (L T)T DT I.T which is LDL T 

again. The: won of eiiminatioo is cut in half. fron' nl/3 multiplicali<>ns 10 " l /6. The 
storage is also cuI esse ntially in half. We only keep L and D. not U. 

Pl:'rmutalion Matrices 

TIle transposoe plays a special role fOf a ptrmutation mmrU. This matrix P has a single 
.01 o. in every row and enry column. 1bcn P T is also a pennutation matri~ _ maybe the 

same Of maybe diffcn:nl. Any product P, ~ is again a pennulation matrix. We now 
cn:ate every P from the identity matrix. by rrordering lhe rows of f . 

TIle simplesl pennutation matrix is P = 1 (no ,xdumgt.). The: next simplest are 
tbe row exchanges Pi) . 1ltosc are CQfIstructed by exchanging tWO rows i and j of I . 
Other pennutations rronkr more rows. By doing all possible row CJ;changes 10 f. we 
get all possible pennutation matrices: 

DEfiNITION A /Nnllulalion malrir I' htJ .• the rows of 1 in any urdu. 

C pyrlght€'? mate-nal 
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hample 4 ll>cre all: six 3 by 3 pennutation matrices. HCIl:!hey are without the zeros: 

The", UN' n! ""rmularion INJlriU$ 'if order n. llIe symbol n! means ·'n fltl'lorial:· the 
product of the numbers (1)(2)···{n). Thus 3! '" (1){2)(3) which is 6. There will be 
24 pennut3tion mauires of Ofdcr " = 4. And 120 pennulations of Ofdcr S. 

There are only lWO pennu!a!ioo matria.s of order 2, "amely [:: 1 and [t ~ J. 
fm{HJrram: 1'-1 iJ also a {Wrmll/arion malrix, Among lhe six 3 by 3 1'., dis· 

played abo,'e, the four malrices on lhe left are their own inVC'NeS. 11>c two nllurices 
on lhe righl are inverses of each Oilier. In all eases. a single "",' exchange is ilS own 
inverse. If we repeat the uehange We are back to /. But for P:u P:!! . the inverses go 
in opposite order (of CQUrse ). The i!l\"cl'l<' is P:! t "2. 
More imponanl: 1'-1 is 1l/""(lYS the snme as pT. TIle two matrices on the right = 
transposes-and inwrses_of cach OIher. When We multiply ppT, the 'T· in the first 
row of I' hilS the Mr' in the firsl oolumn of pT (since the first row of P is the first 
column of 1'1). It misses the ones in all the other oolumns. So ppT = I. 

Another proof of p 'T = 1' _1 looks at I' as a product of row exchanges. A row 
uchange is its own tnmspose and ilS own inverse. pT and p-t both come from lhe 
product of row exchanges in the QIlpo'lile Ofdcr. So p T and p - t are lhe same. 
Symmetric mtlln·us led /0 A = 1-01-1. No ... ptrmulntiOlu lead 10 PA = I.V. 

The LV FactOfizalion with Row hcha"ges 

We Sure hope you Il:member A = L U. It SIaJ'tOO with A '" (£:;i ... £ :": I , .. )V. Every 
e1imin~lion step was carried out by an EIj and it wa.o invened -by t:~t~ 11x>se in'·ers.es 
were oompressed into one matrix I.. bringing U back TO A. llle Io\>o'er triangular L 
has I·s on lhe diagonal. and the "'~ult i. A ~ I. U . 

This is a great factoriution. but it doesn't al .... ays work! Sometimes row e~
changes are rM.'edcd to produce pivots. llItn A '" (£ _1 ... p - t ... E- I ... p - I ... )v. 
Every row exchange is carried out by a Pi) and i",'eTtCd by that Pli. We now compress 
those row e~changes into a single {Wrmutarion matrix I' . Thi~ gi\"eII a factorization for 
c~ery invcnible matrix A -which wc naTurally want. 

1lIe main question i~ where to ool~ the Pi} 's. There are two good po'lsibilitics 
do all the exchanges before elimination. or do them after the Eij's. TIle fi~t way gives 
I' A '" L U. TIle 5eCOlId way has a pemmtation matrix PI in the middle. 

J. The row exchanges can be done in adml1Ct. llleir product I' puIS the rows of A 
in the right order. $0 that nn exci'Langes are 1lCCdcd for Pi\ . Theil P A _ L V . 

, 
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2. If we hold 1'0'" excllanges until aft.., tliminmion. tile piVOl I'O"'S are in a strange 
order. 1'1 put ~ tllem in tile romxt triangular order in UI. Then A - '-II'IUI. 

l' A = '- U is cooslantly used in aimosl all compuling (and al"'ays in MATLAB). W# 
.. 'ill COnctlltrol# 011 this form l' A = I. U. The faciorizlllioo A = 1. 1 PI UI mighl be 
mo~ elegant [f we mention both. it is because tile difference is no! well known, Prob
abl), )'00 will IlOl spend a long lime on titller one. Please don't The ITI()St imponam 
case has l' = I. wilen A Njual s '- U with no exchanges. 

For Ihis malrix A. exchange rows I and 2 10 put Ille tiT$1 piVl)/ in ilS usual place . 
Then go throogh elimination on pA : 

[! i lJ- [i ~ lJ- [i r tJ - [i 1 !l 
A PA ill = 2 in=3 

The malrix pA is in good order. and it fact"" as usual into LV : 

['00]['2 PA "" O[OOI 
2 3 I 0 0 

n =L V. (8) 

We staned " 'ith A and ended with U. TIle only requirement is im'erlibilily of A. 

2L If A is inwniblc. a pcrmul.;uion P ",II put its I'O"'S in Ille righl order 10 factor 

l' A = I. U . There must be a full set of P,VI)/s. after rov. exchanges. 

In the MATLAB code. A([r k],:) = AUk rl .:) exchanges row t with row r below 
it (wllere the kth pi''01 I\a$ been found). Then " 'e update L and l' and tile sign of 1': 

AU' kJ. :) = A(lk r], :): 
L(lr kJ . 1 :k - I)= L{[k r l. I :.1: - 1): 
PUr tJ. :) = I'U.I: rJ. :): 
s ign = -sign 

The "sIgn" of l' tells wllether lite number of 1'0'" uchanges is even (sign = + \) 
or odd (sign = - I). At tile stan. l' is f and sign = + 1. When there is a row uchange. 
the s ign is reversed. The tina l value of sign is the ~lermjnanl or l' and il does no! 
depend on the order o f the 1'0'" uchanges. 

For l' A we gel back 10 the familiar I. U. This is the usual factoriVllion . In re
ality. MATLAB might not use lhe ti~ available piVOl. Mntllematically we can ~p1 a 
small piVOl _ anYlhing but lero. 11 ;s better if the rompuler looks down the column for 
the 1ar'll"SI piVOl . (Section 9.1 explains why Ihis "porrilll piroling" reduces lhe round· 
off error.) P may conlain 1'0'" e~,hange'> Ihal are IlOl algebraically necessary. Still 
I'A _ LU. 

, 
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Our advice is 10 1l00er.;land permutations bul let MATLAB do the CQmpuling. Cal. 
culali()l\§ of A "" L U are eoough 10 do by hand, wilhout 1' , The Teaching Code 
splu ( A) f""ors I' A = L U and spiv ( A . b) §Olves Az == " for any in.-ercible A. Thoe 
program Spill Slops i( 00 pi"'" can be roond in column k. Thai (acl i§ prinlrd. 

• REVIEW OF THE KEY IDEAS • 

I, Thoe I"'nspose puts the rows o r A inl0 the CQlumns o r AT. Thoen ( AT);} = Ap . 

2. The lransJXlsc of AH is 8 T AT. The transpose of A-I is lhe im'crse of AT. 

J. The dol product (A Z)T)" equals the dot product ... T (AT J) . 

4. When A is symmetric (AT = A). its LDU factorization is symmetric A = 
LDLT. 

5. A pennulalion malrix I' has a 1 in each row and CQlumn, and pT = 1' _ 1. 

6. If A i§ in"ercible then a permulati()l\ P will n:order its rows for pA = L U. 

• WORKED EXAMPLES • 

2.7 A Applying the permutalion I' 10 the rows o( A deslroys ils symmelry: 

[' , 5] 
A = 4 2 6 

5 , 3 [
' 2 '] 1',1 = S 6 3 , , , 

What permutation matrix Q applird to the CQlumns of P A will rero,'er sy~lry in 
P AQ? The numbers 1.2. 3 must come back 10 lhe main diag()l\al (not necessarily in 
order). How is Q related to 1'. when symmetry is sa,'ed by pAQ? 

Solution To recover symmetry and put M2"' on the diagonal. CQlumn 2 of I' A must 
move to CQlumn L Column 3 of I' A (c()I\taining "3") muSI mo,,, to column 2. Then 
the "I" moves 10 the 3.3 position. The m.wix that permulCS columns is Q: 

[
' 2 '] PA = S 6 3 
, , 5 [' , '] pAQ = 6 3 5 is symmetric . 

, 5 , 

TM ma'ru Q i. pT. This choice always =m"rs symmelry. because pApT is guar
ant~d to be symmetr>c. (111i transpose iii again I'AI'T.) ~ mlllrU Q is alsa 1' _ 1. 
/>«UlIU the ,,,verse of ewry ~rm"ICllion malrix is ils lranspose. 

, 
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104 CNpIe< 2 Soi>-i"ll U ..... EquatIOnS 

If we look only at tile main diagonal f) of A. we are finding mal POpT is 
guamme«! diagonal. When P """'..,s row I down lO row 3. pT 00 !he right will I1lO\o"e 

column I to column 3. "The (I. I) enll)' moves down to (3. I) and over 10 (3. 3). 

2.7 8 F",d!he symmetric factorizalion A = LOLT for lhe malrix A above. Is A 
invertible? Find alS(lthe PQ .. L V foctQrization for Q. which needs row exchanges. 

So lutio n To factor A imo LOL T we eliminate below the piVOls: 

TIle multipliers " 'en: il l = 4 and ( l l = 5 and ill ., I. llIc pivotS I. - 14. - 8 go inlo 
D. When " 'e divide (he rows of U by I~ piVOls. LT should appear. 

,=cm'=[: : :][' -" ][::;] 
511 - gOOI 

This matrix A is invertible because ilm,s thru pi",,'J. lIS inverse is (LT)- I O-1L-1 

and il is also synmtetric. llIc lIumbe", 14 ~nd g willlum up in the denominators of 
A - 1. The "de1erminanf' of A is the product of !he pivots (1)(- 14)(-8) '" 112. 

"The matrix Q is certainly invertible. But eiiminatiOll needs two row CJ<ctLanges: 

[
0 0 '] Q = I 0 0 
o , 0 - row, [' 0 0] _ 0 I 0 = I . 

2 .·03001 

"Then L = 1 and V = 1 are !he L U factors. We only need Itte permutation P that pul 
the rowS of Q inlo their right order in I. Well. P musl be Q- I. It is tlte same Pas 
above! We could find it as a product of Itte IWO row exchanges. I _ 2 and 2 _ 3: 

Problem Set 2.7 

Questions 1-7 are about tbe rules ror transpose matrices. 

1 Find AT and A- I and (A- I)T and (AT)-I for 

A =[ ~ i] andalso A= [~ ~J. 

C :tpynghted malenal 



2.1 Tr.nspooes ~nd Pe<mut.a!ions 105 

2 Verify that (A8 )T equals 8 T AT but those are different from AT 8 T: 

A = [~~] 8 .. [~ n AB = [~ n-
In case A B = BA (Il0l ~ncrally lrue!) how do you pro~e lhat 8 T AT = AT 8 T? 

3 ( I) The rnalri:< «A R )-l l C(HTIeS fn)m (A - I)T and (8 - I)T. In ,,'hal ordn? 

(b) If U is upper lriangular lhen (V-I)T is _ _ triangular. 

4 Show lhal Al = 0 is ~sible bUl AT A = 0 is IlOl possible (unless A = zero malri x). 

5 (a) Tl>c row vector x T lime~ A lime. lhe colulT\JI y produces what number? 

, 
7 

, [' 2 3J[0] x Ay = [O t) 4 .5 6 ~ =-_. 

(b) This is lhe row x T A ., __ limes lhe column y = (0 . t . 0 ). 

(e) This is the row xT = 10 11 limes lhe column Ay = __ . 

When you lranspose a block rnalri:< M = [~ g jlhe resull is ""T = __ . Tcsc 
i1. Under whal condilions 011 A. 8. C, D is lhe block malrix symmeli;"'? 

True or false: 

(a) The block malrix [: : 1 is aulomalically symmelric. 

(b) If A and 8 ""' symmelnc lhen lheir producI A B is symmelric. 

(e) If A is noI syrnmc:tric !hen A -I is IlOl symmelric. 

(d ) When A . B. Can: symmelric. !he lranspose of ABC is C8A. . 

QuestJons 8-15 are aboul pennullilion malrkts. 

8 Why are there n 1 pennutation matrices of order n1 

9 If P I and PJ. are pennutation matrices. so is PI PJ. . This still has the rows o f I 
in some order. Give examples wilh P I 1'2 "F- PJ. PI and f»P. = P. I'] . 

10 l1>ere .It' 12 "","",,'" pennulalion. o f ( I> 2. 3. 4). wilh an "" en nUmNr 0/ ~tchangrs. 

TWo of !hem ""' ( I. 2. 3. 4) with DO cx~hanges and (4 . 3. 2. I) with two cx~hangcs. 
Liu !he OIher len. [nslead of writing each 4 by 4 matri x. use !he numbers 4 . 3. 2 . I 
to give the position of lhe I in each row. 

11 (Try Ihi s question) Which pcrmulation makes P A upper triangular? Which pennu
lations make P I A f'2 lower triangular? Multiplying A on tile rill"l by f'2 f xcJllmges 
" , __ o/A. 

[0 ° 6] A = I 2 3 . ° 4 , 

, 
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106 o..pIC< ~ Solving line.l' fqw'ionf, 

12 Explain why the dol product of x and:l equaJ~ the dol product of Px and P:l. 
Then from (P xl T ( P:I) '" x T, deduce that P T P '" 1 for any pennutation. With 
x '" (1.2. J) and , '" (1.4.2) choose P to show that Px · y is not always equal 
tox·p, . 

13 Find a J by 3 pennutation matrix with p l '" 1 (but 001 P '" I). Find a 4 by 4 
permutati(>n P with p' "F f. 

14 If you take JlO"'ers of a permutation matri~. " 'hy is some pi e"entualJyequal 
to 11 

Find a S by 5 permutation P so that lhe smallest JlO"'er to equal 1 is p6. 
(Thi~ is a challenge questi<.>n. Combine a 2 by 2 bk>ck with a J by 3 bk>ck.) 

I S Row exchange matrice. an: symmetric: pT = P. Then pTp ., I be<;~s p I., 

I . Some other pennulalion malriccs an: also symmelric. 

(a) If P sends row I 10 row 4. then pT sends row __ '" ~ 
~n p T = P lhe row exchanges 'Qme in pairs with IIQ Qverlap. 

(b) Find a 4 by 4 example with p T = P thaI moves all four rows. 

16 If A = AT and 8 = 8 T. which Qf Ihc-se matrkes an: certainly symmetric? 

(a) AZ_ Bz 

(b) ( A + B)(A - 8) 

(e) ABA 

(d ) ABAB. 

17 Find 2 by 2 sy mmetri<: matrices A = AT with thc-se propcnic:s: 

(a) A i~ rIC)( in,·en ible. 

(b) A is invenible but camlOl be faclored into L U (row e~changes needed). 

(e) A can be factored imo LDLT bul 001 imQ l.LT (be<.:ause o f ... gative D). 

18 (a) How many entries o f A can be chosen independently, if A = AT is S by 5? 

(b) How do l. and D (slilI S by 5) give the same number of choices? 

(c) How many entries can be chosen if A is s*",,··S}·mm~ITjc? (AT = - A ). 

19 SuJlPOSl' 1/ is rectangular (m by n) and A is symmetric (m by m I. 

(a) TrnMP<JSC I/T A 1/ 10 show ils symmelry. What shape is this matrix? 

(b) Show why I/T I/ has IIQ negative numbers on its diagonal. 

, 
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" 

Factor these symmetric malIices inlo" "" LDL T. The piYOl ma,ri~ D is diagonal -

[ 
, -, 0] 

and A = - I 2 -I . 
o -I 2 

After clirninatil)ll dealS out column I below the first pivot find the symmetric 2 
by 2 matrix that appean in the lower right comer: 

[' , "] A ., 4 3 9 

" 9 ° [' , <] and A =bJe. 
< , f 

Questions 22-30 are about 1M fadorlzallons P A _ L U and A _ '-I PlU to 

22 Find the PA = L U factorizations (and check tllem) for 

A = [! i !] rum A = U ; n· 
23 Find a J by 3 pennulation matrix (call it A) thaI needs ho'O row uchanges 10 

reach the end of e liminalion. For this malri~. what are ils factor.; P. L. and U? 

24 Factor the following matrix into PA ,. LV. Factor il al§O inlo A = L,P,U, 
(hold the exclutng<' of row 3 until 3 limes row I is subtracted (rom row 2): 

" Write OUt 

26 Write 001 

A = 0 3 8 . 
[

0 , '] 
2 , , 

P after each step of the MATLAB rode splu. when 

[
0 ° '] and.4 =23 4. 

° , 6 

P and L after each step of It... code spill when 

[
0 , '] A = I I 0 . , , , 

27 Extend the MATLA8 rode splu to a rode spldu which faclors PA into I.DU. 

" ]["'] [' I 3 ---> 00 2 = 1',Ut= 0 
58 036 0 

, 



1 08 Ch,,~ 2 Solving li"" •• fquo."'" 

2':1 rro.'<, Ihat the identily nuuri~ canOOI be lhe pmoJUCI of th~ row udlllngC5 (or 
6 .. ,,). It Can be tile prQduct of 1WO exchanges (or four). 

10 (a) 0I00sc Ell 10 ..,move the 3 below the firsl pivot ll1en mulliply E! IAt:II 
10 "'Il1O'IC OOth l's: 

J 0] " . 
4 9 [' ° 0] i ~ going IOwan! 0 = 0 2 0 . 

o 0 , 

(b) 0I00sc EJ2 10 ..,move lhe 4 below lhe second pi'"Ot. Then A i. reduced 
(00 by Ell E2I At:!IEI2 = D. In.~" lhe E'5 10 find L in 11. = LOe. 

Th" nexl queslions are abou l applicalions of 1M IM ol;ly (Ax)T J _ xT(JI,T J). 

11 Wi..,s go betwttn Bo!;IOCl. Chicago. and Seanle. Those ci(ies are al \'Ollages XB. xc. 
"s. Wilh unit resislances betw~'en cilies. the CurrenlS belween cities"", in J : 

,.,. ;, [;;~ ] = [: - : -:] [:;]. 
YIJS I 0 -I Xs 

(I ) Find the loeli currenl. AT y OUI of lhe three cilies, 

(b) V"rify lhal ( Ax)T)' as"",. with xT ( IITJ) _si~ lenn. in both. 

12 Producing XI trucks and Xl planes nced~ XI + SOXl tons of slttl. 40XI + I(O)X2 
poulKls of rubbo:r. and ht + SOX2 monlhs of labor. If tlw: unit CQSts YI.)'l.)'3 are 
$700 pcr Ion. $1 per pound. and $J(XXJ pcr monlh. whal "'" the "alues of ooe 
lruck and one plane? Those are the romponcnlS of AT,. 

11 Ax gives the amounl' of steel. rubber. and labor (0 prod~ .r in Problem 32. 
Find II. ll1en A x .:! is lhe __ of inputs while x .AT J is the value of __ . 

14 ll>e malri~ P thaI multiplies (x .)".;:) to gi"e (z. x. Y) is alS(> a rotalion matrix. 
Find f' and " J. The rotation u;s a '" (I. J. 1) doesn 'l mo'~. il equal~ I'a. Whal 
is lhe angle of rotalion from u = (2. 3. -~) 10 pg = (-5. 2. 3)7 

15 Write A = [ ~: 1 as lhe prodUCI E H of an elementary row ~ralion malrix E 
and ~ symmelric matrix II. 

36 Here is a new factorizDlion of II inlo Iria"gu/<rr li"'~J S)'IIlllltlriC: 

Stan fmrn A = LDU. 'Olen A = L(UT)- I limes UT D U. 

Why is L(UT)- I lriangular? I I~ diagonal is all I ·s. Why is UT D U ' ymmc:tric? 

17 A IlrouP of malm-es indutles AB and A- I if il includes II and 8 . "Products 
and inverses stay in the group." Which of the~ sets are groups? Lower trian· 
gular malrices L wilh ! 's on the diagooal. symmetric malrices S. posil;'" ma
tnc..s M. diagonal invenible matrices lJ . pennulation matrices P. matrices with 
QT;o Q- I. In\l1:nt IWO more matrix groups. 
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38 If C\"<'ry row of a 4 by 4 ma1l1~ contains the numbel'll O. 1. 2. ) in some order. 
can the matrix be symm<:1ne? 

39 P,,:we that nO reordering of rowS and reoro.:,ring of C()lumns Can tJ1Ulsposc. a tYJ>" 
ical matrix . 

40 A square not1h"~J/ m(Jlnx R is zero in the !IOOtheasl romer. below lhe an1idiag' 
onallhal oonnecls (1. n) 10 (II. I ). Will BT and Bl be IIQI1hwCSI matrices? Will 

8 - t be n.orth"'l:$1 (K !IOOtheast? What is the shap" of BC = nor1h"v5t timu 
50Ulh~(u(! OK 10 oombine p"nnutations with the usual L and U (!IOOth,,'esl and 
nonheast). 

41 If P has I·s on [he amidiagonal from ( I.,,) to (". I). ~scribe PAP. 

. , 

I B 0 
0 • 

~ 
• 0 • 

• 0 
A AB • • • • • • 

< • • • :< • • • 
• • • • • • • • • 

0000 ................................ ~ 

• Tra"'~pare nl proof llull (A8IT _ a T AT. Malnees can be tl'llnsposro by looking 
through the page from the OIMr side . Hold up 10 the ligh! and pract''''' with B. 

its oolumn wilh four entries ® becomes a row. WMn you look from the ~I; 
and the symbol BT is upright. 

The til"'" malrices are in posilion for matrix multiplication: the row of A times 
the column o f B gi,"<'s the enlt)' in A B. LooIting from the re,'erse side. tM row 
of BT times the column of AT gives the C(>I'nXI e nlt)' in BT AT = (AB )T. 
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3 
VECTOR SPACES 

AND SUBSPACES 

SPACES Of VECTORS • 3. 1 

To a newcomer. matrix calculations inYOIw: a lot of numbefs. To you. they involve ''«
tors. The columns of A ... and A8 Me linear oombinalions of II v«tors - the columns 
of A. This chapler mo\lf:S from number.; and vectors to a thin! 1e'l'J of understand
ing (the higtx.SI ~L). Instead of individual CQlumn! . we look a1 ~SpaceSM o f vecton;. 
Without seeing lIUlor SPOUI and especially their subspo«s. you haven ', uOOel'Slood 
~lYthil\g about A.r = b. 

Since thi s chapter gQeS' li n le deeper. il may seem a linle hartler. Thai is natura l. 
We a~ looking inside the ca lculations. 10 find 1he malllenwics. The author's job is to 
rmokc it clear. 1'bese ~ go \0 tile: heart of lillCat algebra. 

We begin wilh the most impOnam vector spaces. They are derlOl.ed by K I. M!. 
R), RO,. ", Each spa« R" consisu of a whole collection of v«1O<S. K' comains 
all column vectors with five components. This is called "S-dimensional space." 

DEFINITION TM sp<u'e M" t"OllSist~ of 01/ .. alumn l~c'on P "';Ih n ('omp/mints. 

~ components of p are real number.>. which is the reason for the teneT R. A ,·ector 
.. hose " components are complu numbcts lies in the spaee (. ... 

The vector spaee R2 is represenled by lhe usual xy plane. Each vector .. in Rl has 
tWO componems. The word "space~. asks us to thin k of al1thosc vectors - the whole 
plane. Each veclOf gives the x and y ooonlinates of a point in the plane. 

Similarly the veclon in R3 correspond 10 points (x. y. z) in three-dimensional 
space. ~ one-dimensional space R 1 is a line (like the x axis). As before. we prim 
>'eC(OfS as a column between brackelS. or along. line using commas and ~mheSC$: 

[i] ,,'" R' (1.1.0.1.1 ) is in R'I . 

111 

(l+ iJ .. C' I -i Ism. 
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1l1c greal Ihing aboul linear algebra is lhal il <kal ~ ea~ily wilh Ih-e-dimensional 
spa«. we don'l draw lhe ' ·CCIOlll. "iC jU~1 need lhe fivc numbers (or II numbers). To 
mulliply p by 7. multiply cvery componenl by 7. Here 7 is a Mscal ar:' To add VCCIOlll 
in R.I. add !hem a rompooenl al a lime. The IWO essenlial .. ector openllions go on 
;lISid, ,It, ,",elor spt1C,: 

K'r can add an] '""cron ill R", fJlld " "" C/lII ","Iripl] all] ''«Ior b, all, scalar. 

"Inside the I'CClor spa«" means thai Ihr I"I'SIIII sla,s ill Ihr IptlN:, If p is lhe 'lector 
in R4 with componems I. O. O. I. lhen 2. is lhe vector in R' with romp:;>nents 2 . O. O. 2. 
(In this ca:le 2 is the scalar.) A whole series of properties Can he ~erified in RO. 1l1c 
COn1mutatil-e law is • + III = III + r ; lhe dislriootil-e law is c( r + w) = e. +ell>. 1l1cn: 
is a unique "uro 1"eClor" satisfying 0 + . : P. ll>OSC an: three of the eight conditions 
listed at !he start o f the problem SCI. 

TlIcsc e ighl conditions are required of every veclOr s~. There arc .. ector.; other 
than column I-eelor.;. and '"eClor spaces other than K". and they have 10 obey the eight 
n:asonable roles. 

II ' till I·te/or sptlu is a stt oj "I"CCIOfS" /o~tlhtr .<"i/k ,"Itl for ,'<'C/o, addilion 
IIl1d for ",uilipliea/ioo by rt'aillum"",s. The addition and lhe multiplication mU.l1 pro. 
duee , 'eclO1l1 ltun are in lhe spa«. And lhe eight condilions muSI he satisfied (which 
is usuall y no problem). Hen: an: three "ector st-'Cs other Ihan R": 

" The ' -ector spaI'c of all "al 2 by 2 ",a{rien 
F Tllc , ector 'pace of a/l nal fallcrionl f(xl. 
Z TlIc ,<,."Ior ,~ thaI oonsi'i. onl) of a ;l'ro '""CfO' 

In M 1"" "vectors" arc n:ally malriccs. In . ' I"" .-..ctors arc fuoctiom. In Z the only 
addition is 0 + 0 = O. In each case " 'c can add: malriccs to malrlccs. functions 10 
functions. zero ~ector 10 zero ' "eClor. We can mllhiply a matrix by 4 or a function by 
4 or !he '.crQ vector by 4. TlIc ",suit is still in M or •• or Z. 1l1c eight conditions an: 
all easi ly checked. 

The s~ Z is 'LCro-di~nsional (by any ",a1Ollablc definition of di,""nsion ). It is 
the smallest possiblc "ector spact'. We hesitat~ to call it RO. " 'hid means no 
<'Ornponenu _ y<>u might think lhere was no ,'ector. 1lle , 'ector space Z contains ex
actly O/It '"«lor (zero). No space can do without that zero vector. Each space has ilS 
""'n zero ,-ector- lhe zero matrix. the lero function. the ~ector (0.0.0) in RJ , 

SubspaCH 

At diffen,:nt times. we will ask y<>u 10 think of matrices and funetions as "CCtors. BUI al 
all limes, the vectors that wc need most arc ordinary column vectors. TlIcy an: vectors 
with n componentS- OOI may"" 1101 all of the l"eCtors with n components. There arc 
irnponant vcctor sp3Co:>! i".id~ R". 

Start wilh t"" usual three-dimensional space Rl. Choose a plane through lhe 
origin (0. O. 0 ). Tha, plalle is II ,.,.cra. spate in j'l o ... n righI, If we add 1"'-0 veelOlll 
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[: :1 

[: :1 
• 

[: :1 
smallest '"CC1<lf >pitt 

[: :1 

Fisure 3,1 "Four-dimen5ional" ma1ri~ space M. The "zero-dimensional" space Z. 

in !he plane. their sum is in the plane. If we multiply an in·plane vector by 2 or - 5, 
it is sti ll in the plane. The plane is ~ R 2 (even if it looks like R 2). The vectors ha"e 
three components and they belong to RJ. The plane i5 a vector spoce inside RJ, 

Th is illustrates one of the rTlC)St fundamental ideas in linear algebra The plane is 
a s"bsptK' of the full ¥ector spao:x RJ. 

DEFINITION A sub~PQ" of a ,~tor space is a sct of 'e<:tOfS (including 0) that 
satisfies t"'·o reqUIrements: If ~ o.nd III 0.,., "1l"10I"S in Ih, , .. bsptJC' o.nd c is any 
scalar, th, n <I) 0 + III is in the subspace and (II) cl' is in the subspace. 

]n other words. the §C1 of veclors is "closed" under addition, + .. and multipl icalion 
CJ' (and c ", ). l1Io!;e openotions leave us ;11 the subspace. We can a]50 sublra\.'!. becBU$I: 
- .. is in !he subspao:x and its sum with r is r-Ill . ]n short. o.U lineo.r eambilllJlionJ 

JhJy in th, JubJfMC'" 
All these opeT8tions follow the ru les of the host space. 50 the eight required con· 

ditions "'" BUtomalM.:. We juS! have to ch«k the mjuiremenlS (I) and ( II) for • sub

.""". 
Fim fact : f:~ry subspoc, COIIlaiNS Ih,;;ero "KWr. The plane in R J h"" to go 

through (0. O. 0 ). We mention this separately. for elCtra emphasis. but it fo]lows directly 
from rule (U). Oooosc c = 0, and the ru le req ui~ O. 10 be in the subspace. 

Planes that don', contain the origin fai l those 1C$1S. When • is on such a plane. 
- , and O. are 1101 on the plane. A plane that misses !he origin is ~ a subspace. 

U,. , s Ih,.o,..,11 1M origi,. lin also I UMpoctJ. When _ muhiply by S, or add 
two ve<.:tors on the line. _ stay Of! the line. But the line muS! go through (0, O. 0). 

Another subspace is all of Rl. The whole space is a subspace (of imlj). Here 
is a list of all the possible subspaces of RJ: 

(L ) Any line through (0. O. 0) 

(P) Any plane through (O. 0, 0) 
(RJ) The whole space 
( Z ) The singlc: ve<.:tor (0.0,0) 
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If we II)' to keep only port of a plane or line. the ~~irements for a subspace don 't 
Ilold. Loot: at these examples in Rl. 

Example I Keep only the vectors (x . y) whose components are JXlSiti~ or zero (this 
is B quaner-plane). lbe v«tor (2. J) is inclu.dcd but (- 2. - 3) is 001. So rule (II) is 
violated when "'e try to multiply by c = - I. Th~ qlUJrt~"'pUJn~ is not II subspace. 

Example 2 Include al50 the v«tors whose components are both negative. Now _ 
have: tWO quaner-planes. R""Iuirement ( Ii) is satisfied; we can multiply by any c. But 
rule (I) now fails. lbe sum of 0 = (2. J) and III = ( -3. - 2) is (-I. I). which is 
outside the qua"er-plancs. 710"0 qUII"~"'pUlntS dOn'l IfIob ° l"bSfHIC~. 

Rules ( I) and ( Ii ) involve: '"lXtor addition, + III and multiplication by scalars like 
c and d . lbe rules can be combined into a single r"e<Juirement - th, rul, for subspace$: 

A. $~ ~ " fUIfI III _lUI ~ all ~ u.WAyja .. c" of dill, 

Example 3 Inside the vector space 1\1 of all 2 by 2 matrices. here are two subspace!: 

(V) All upper triangular matrices [~ !] (D) All diagonal matrices [~ ~]. 
Add any two matrices in U, and the sum is in U. Add diagonal matrices. and the sum 
is diagonal. In this c;uo:: 0 is also a subspace: of Ul Of coorsc the zero matri x is in 
these subspaces. when a, h, and d all ""Iual zero. 

To find a smaller subspace of diagonal matrices, we coold ~uire a = d. lbe 
matrices are multiples of the identity matrix I . lbe sum 21 + 31 is in this subspace. 
and so is ) times 41 . It is a ·'line of matrices" inside 1\1 and U and D. 

Is the matrix I a subspace by itself? Cenainly 001 . Only the zero matrix is. Your 
mind will invent more subspaccs of 2 by 2 matrices - IHite them down for Problem 5. 

The Column Space of A 

lbe rnQSt important subspaces are tied directly to a matrix A. We are trying to sol~ 
Ax = h. If A is 001 inve"ible. the system is iIOlvable for some b and 001 solvable for 
other b. We want to describe the good right sides b- the ,·«ton that can be wrinen 
as II times some vector x . 

Remember tllat Ax is 8 combination of the columns of II. To gel every possible 
b, IV(: usc: e""ry possible x . So start with the columns of A. and lau all th~ir linUlr 
eombinalw,". This produus Ih~ tolumn sfHIC~ af A. It ;s a vec10r space made: up of 
column vecton _ OOI JUSt the n columns of A. but all their combinations Il l' . 

DEfiNITION n-.c column spuc~ con,iSt. of all "'n~ar tambiuationl "f Ih~ calumni. 
lbe combinations are all posSible vectors Ax . lbe)" fi II the column <pace C( A). 

This column 'pac<' is crucial to the whole book. and he", ;$ why. T" ial~ Ax "" 
b is to upnss b GS II combination of the columns. lbe righl side b has 10 be in lire 
column spucr produced by II on the lefl side. or no solution! 
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Figure 3.2 The column space e ( A ) is a plane conlaining the IWO column~. I\x "" b 
is solvable when II is on thai plane. Then b is a combinalion of lhe columns. 

JA The 5~slem Ax "" II is solvable if and only if II is in Ille column ~pace of 11.. 

When II i$ in tile ~olumn spa«"', il is a combinatk>n of the columns. The , oocfli. 
cients in Illal combinalion give us a solution x 10 lhe syslem Ar "" b. 

Suppose 1\ is an '" b~ II malri~ . hs columns have m componenlS ( no! II ). So the 
columns belong 10 R'" . Tile rol,,". ,, SplICe of A is " fubSpdce of R- (,,'" R" ). The 
s.et of all column combinations Ax salisfies rules (I) and (II) for I subspace: Wilen we 
add linear combinations or multiply by scalars. we sli ll produce combinalions of the 
columns. The ","Old "subspace" is juslified by ,di"S all lilleD' combi1l(11iQltS. 

H,rc is a 3 by 2 m.alri~ 1\. whose column space is a subspace of Rl. It is a plane. 

fumple 4 

The column space consisls of aU combinations of the 1"''0 columns - any Xt lilTlCS tile 
first column plus any X! limes lhe second column. ThoY combinm;QltSjillllp 0 pion .. in 
Kl (Figure 3.2). If tile righl silk b Iks on that plane, then il is one of lhe combinations 
and (-<I . Xl) is a solulion to Ax '" b. The plane has zero thickness. so il is more likely 
Illal b is 001 in Ille column space. Then there is no solution to oor 3 equations in 2 
unknowns. 

Of course (0. O. 0) is in the column space. The plane paS5eS Ihrough lhe origin. 
There ;s ""nainly a solution 10 I\ x = O. ThaI solulion. always 1'"IIi lablc . is x '" 
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To repeat. the attainable right sides b are e~ aclly the vectors in tho column space. 
One possibility is the firs.1 column illOelf_ take -'" _ I and -"1 _ O. Another combination 
is the second cQlumn-take -"I = 0 and -"1 = I. "The new 1e.'C1 of uildeTStallding is co 
sec: all ~ombi"ationS-lho whole subspace is generaled by lhose IwO columns. 

Notation The l"Olumn ~pace of A is denoted by CI A). Stan wilh lho column. and 
lake all Iheir linear combinations. We might gel the whole H'" or only a subspace. 

Example 5 Describe the column spaces (they are subspace~ of HZ) for 

, - [' OJ - 0 , , .. A - [' - , '"' [ ' 2 'J H = 0 0 4 . 

Solution The column space of I is tho .. ·hoI~ S!,<IC~ Hl. " ''Cry ve<:tor i~ a combination 
of lhe column~ of I . In ve<:lOT space language. C (I) is HZ. 

"The column space of A is only a !inc. The serolld column (2. 4) is a multip le 
of the firM column (I. 2). Tbosc: '·""'ION are different. but our eye is on veclor S!'<'U S . 

T1Ie coLumn space contains (1.2) and (2. 4) and all other vectors (<,.k) along that 
line. The equatiQn A.r = b is only solvable when b is on the line. 

"Thc thin! matri~ (wit~ t~ ree coLumns) pl""'es "" n:.<triclion on b . "Thc column 
,pace C(H ) is a ll of H2. Ewry b is anainable. The .·ector b = (5 . 4) is column 2 
plus oolunm J. §() x can be (D. I. I) . "Thc same '"eCtor (5. 4) is also 2(column t) + 
column 3. SO llI>Othcr possible x is (2. D. I). This malrix has lhe same column space as 
I - any b is allowed. But now x luu extra components and there an: more solutions. 

"Thc ncxt section createS aOOlher """'tor space. co describe all the solu1ions of Ax = D. 
This section created the column space. to desi::ribe all the attainable right sides b. 

• REVIEW OF THE KEY IDEAS • 

1. HO contains all column '«lors with n realoomponcnts. 

2. 1\1 (2 by 2 matrices) and F (functions) and Z (zen:> ,"eetor alone) arc '"eCtor spaces. 

J. A subspace comaining ~ and .. muSt contain all lhoir combinations co + d .. . 

4. TIle combinations of the columns of A fonn tile column sfMu C(A). 

5. A.r = b hti a solution exactly when b is in the column space of A. 

• WORKED EXAMPLES • 

3. 1 A We an: g;,·en three diffc",m '''''Iors b l, bl. b j. Co-nstruct a matrix SO that the 
equalions A.r _ b , and Ax .. bz are solvable. but Ax = bJ ;s 001 solvable. How' can 
)"ou decide if this is possible? How OOIl\d you construct A? 

, 
i 
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Solution we W3lII 10 have b l and b2 in lhe column slIKe of II . 1lIen liz = b l and 

liz = b 2 ""ill be solvable. The qu;tUII "'''y is to mau b l "nd bl 1M two collOm". oj 
A . lnellihe solUliuns are.r = (1.0) and x = (0. 1). 

Also. we don 'l wanl Ax = bl 10 be solvabk. So don'l mate the oolumn space 
any larger! K~ping only the co lumns of b l and b2. the question is: 

Is Ax = [ b l b l ] [ ;: J = bl solvable? 

If the anSwer is no. ,,'(: have the desired matri~ A. If the ar.s~ is yes. then it is nOl 
fJ'f!JJibl~ 10 con~I""1 A. When the column space CQfIlail\li bl and b 2. it will !Lave 10 
conlain aU their linear combinlilions. So b3 WOII ld necessarily be in tllal column space 
and Ax = bJ wQUld ~sarily be solvable. 

3. 1 8 De>eribe a subsp<ltt S o f each vector space V. and lhen a subspace SS of S. 

VI = all combinalions of (I . I. O. 0) and (I. I. I. 0) and (I. I . I. I) 
V I = all '"""too; perpendicular to u = ( I . 2. 2. I) 
VJ = all symmetric 2 by 2 matrices 
V. = all solulions 10 lhe equalion d"yfdz · = O. 

De>eribe each V IWO ways: All combitliJlioru oJ ....• all wimions oj 1M NllUllioru 

Solution A subspace S of V I comes from all combinations of the first t"-o vectors 
(I. I . O. 0) and ( I . I. 1. 0). A subspace SS of S comes from all multiples (c . .... O. 0) o f 
lhe first vector. 

A subspace S of Vl comes from all combinations of two vectors (1. 0 . 0. - I ) 
and (0. 1. -1.0) that are perpendicular to II . 1lIe vector z = (1.1. - I. -I) is in S 
and all ilS mullipks ex give a subspace SS. 

The diagonal matrices are a subspace S of the symmetric matrices. The mull iples 
d are a subspace SS of the diagonal matrlces. 

V. con",ins all cubic polynomials y = o+bx+c ... l + d./J• The quadratic polyno
mials gi.'" a subspace S. The linear polynomials are one choice of SS. The conslants 
could be SSS. 

In all four parts we could have chosen S = V itlielf. and SS = the zero sub-
. pace Z. 

Each V can be described as all combinations of .... and as all solutions of. 

VI = all combinations of lhe 3 vecton = all solutions of ~I - "l = 0 

VI = all combinalions of (1. O. o . - I) . (0. l. -1. 0) . (1: . - I. O. 0 ) 
= all wlutions of liT p = 0 

V, = all combinations or[~n [t n UtJ = all solutions [ ~~ ] of b =" 
V. '" all CQmrnn31iotls of I ........ :. x l = all solulions 10 d" y Idx· = O. 

C JPYlighted matanal 
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Problem Set 3.1 

The fine pro.>bk_ 1-11 art aboou O"fflor SP'K'I'!' in gtMral. The .tdon In lho!;e 
~ art no( ~rlly roIumn O"tdon. In the dmnltiotl of I "'""or spou. , 'ff· 
tor IIddltlon .1'+1 I nd !JCa1ar multlplkatlon rx must .y lhe foIlo,,-ing right rules; 

(2) .1' +(, +:)-(.1' + , )+ : 

(3) lbere is a unique M~ro , -«lOr" such lliat .1' + 0 = X for all X 

(4) R>r each x lhere: is a unique .-ector - .I' such that x + ( - x ) "" 0 

(~) 1 umes x equab x 

(7) <"(.1' +1) _<".1' +(1 

(8) « ,+ <"1).1' _<"1 " +<"1 • . 

I SuPflOl'C' (x ,. x:) + b 'l.n) is dcfir.cd to be (X I + ) ',/, X : + Yt). With lhe u,ual 
muillplicatloo ( X _ (el'I . i"X2). which of the eight conditions an: not satisfied'! 

2 SuPflOl'C' lhe multiplication rx i. defined 10 produce (exl. 0) inslt!ad of (ex ,. all. 
w ilh lhe usual iddition in lot :. are: the eight oondit~ satisfied'! 

J (al Which ruk:li are: broken if ""e k"",p only the positive numbers x > 0 in lot 11 
every e mu" be al lowed, The hal f· lin.e is not • • u~. 

(b) Tho:' positi\~ numbers with x + 1 and el' mkfina! to equal the usual .1'1 
and x ' do utisfy lhe: dght rule$. Test rule 7 when <" _ J . .. _ 2., _ I. 

(rhen z + 1 _ 2 and rI = 8.) Whidt number IICfS lI5 the "UfO >utor"'? 

" The matrl~ A _ {i :11 is • "......-ror" in the space M o f .U 2 by 2 malrica. 

Write down the Uro >"«1Or in this spIa. the -'WI' ~A. and the veeWI' - A. 
Whal ITWIius lie in the ~]1esI w~ containing A1 

S (I ) Ddcribe I su~ of M that conlains A = (':1 but IlOl 8 _ [ : _~ l
(b) If . Mlbspao;'e of M conwns A and 8 . mil" il contain 11 

(e) Describe I I-Ubspao;'e of M thal contains no nonzero diagooaJ matrices. 

6 The functions / ( .1' ) _ xl and , (x ) = Sol' arc: ",.tc1Of"SM in )', This is the vector 
spacc of all real functions. (The functions an: defined for -00 < x < 00.) The: 
combi na!ioo 3/ (x) - 4,(x) iJ the function 11 ( .. ) = __ , 
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7 Wllicll rule is bn)ko:,n if multiplying I (x) by c gives the function I(cx )? Kt<.'p 
the usual addition f(J ) + , (x). 

8 If lhe sum of the M VOClors" I(x) and ,(x ) is defined 10 be the funcli....., I(, (J)). 
lhen 1lx= "uro ~ is , (x ) = J. Keep the usual scalar mulliplicalion c I (x ) 
and find IWO ruin tllat are broken. 

Qu~tlons 9-18 are _!lout the ''SlIbsplKe reqlllrelMnls": x + ~ lind tx (and Ihen 
all linear comblnalio ns CJ + d J) must SIlly in the subspatt. 

9 One requi rement can be mel while the (H iler fail s. Show thi s by finding 

(I ) A SCI of voctors in R2 for which J + J scays in the set but !x may be 
outside. 

(b) A set of vectors in R1 «Hlx=r than two quarter· planes) for which every ex 
nays in the set bul x + J =y be outside. 

10 Which of tlx= following sut/scts of RJ an: actually subspaa:s? 

(.) "The plane of V«lors (bl . b1. b,) with 1>1 = 1>:.. 
(b) "The plane of V«1ors wilh b l = I. 

(c) "The v«tors with blbzbJ '" O. 

(d) All linear combinations of • = ( I. 4. 0) and .. = (2 . 2. 2). 

(e) All veclors Ihal satis fy b l + h]. + bJ '" O. 

(f) All vectors with b l :::;: h]. :::;: bJ. 

11 Describe tlx= smallest subspace of lhe malri~ space M tllat comains 

(a) [~ ~] and [~ ~J 

(b) [~ ~] (e) [~ ~] and [~ n 
12 LeI P be lhe plane ill RJ with e<:]uation x + y - 2z '" 4. "The origin (0 . O. 0) is 

PO( in P! Find 1"'0 V«Iors in P and coc'Ck thalllx=ir Sum is PO( in P. 

13 Let Po be the plane through (0.0.0) parallel to the ~vious plane P. What is 
the e<:]uation for Po? Find lWO ve.:t<>n in Po and check lhallheir sum is in 1'(1. 

14 "The subspaccs of RJ an: plaTlC$. lines. RJ iJl;elf. or Z corllaining only (0. 0.0). 

(a) Describe I"" three Iy~s of subspaccs of H2. 

<b) Describe the five Iy~s of subspaccs of R~. 

I S (I) The imel'"$«lion of lWO planes through (0. O. 0) is pn.>bably a _ but il 
could be a It can'l be Z ! 



(b) The inlcn;«1ion of. plane through (0, O. 0) .... ith a line through (0. O. 0) is 
probably a bul il could be a 

(el If S and T arc subspaces of It'. prove Ihal their inle~ion Sli T (v«lors 
in both subspacesl is a subspace of It'. C/,«I< 1M 'f'qllimn",,'s "n r +, 
mu/ cr . 

16 Suppose P is a plane Ihrough (0.0.0) and l is a line 1hrouglr (0.0. 0). The 
smallest '-ector space tQntaining both P and l is ~ilher or 

17 (a) Show that the ,"'I of im'u/lbl" matrices in M is noI a subspace, 

(b) Show Ihat I"" set of 5ill811/(lr matrices in M is noI a subspace. 

18 Truo: or false (c~k addiliQf1 in each case by an example): 

(a) The symmetric matrices in M (wilh AT"" A) form a subspace. 

(b) The skew-symmetric ma1rices in M (wilh AT"" - A) form a subspace 

(c) The unsymmelric matrices in M ("-ilh AT oF A ) form a subspace, 

QuestKtIlS 19-27 a~ about t(liumn Splices C iA ) and lhe equation Ar _ b. 

19 Describe:!iIe column spaces (lines or planes) of these par1icuJar matrices: 

A - [i~] and B = [i~] and c=[i ~l 
20 For which righl sides (find a condition on bt. I>:!. bJ) an: these systems solvable? 

(" [ ' , '] ["] [h'] 23 4x2 =1>-0 
- J - 4 -2 XJ b] 

(b) [ ' '] [ J [h'] 29
x '=I>:!. 

- 1 - 4 X2 bl 

2 1 Adding row 1 of A10 row 2 produces R, Adding column I 10 column 2 produces 
C. A combination of the columns of is also a combinalion of the tQlumns 
of A. Which twO malrittS ha"e the s.ame column ? 

22 For which ,'ectors (bl.l>:!. bJ) do!ilese systems h,a,,, a solulion? 

, 
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23 (Recommended) If "''e add an eXIra column II 10 • matrix A. then the column 
space gets larger unless __ . Give an example where the column space gets 
IlIfgCr and an e.umple where it doesn ·\. Why is Ax '" II solvable exactly when 
the C(llumn space tiMJn ', gel larger- il is the same for A and [A 11 ]1 

24 "The columns of A 8 are combinations of the rolu mns of A. This means: The 
ooIumn JPOU of AB i$ ronlained in (possibly equal to) 1M ooIumn $p<JU of A. 
Give an elIamp!e where lhe rolumn spaces of A and A B are noc equal. 

25 Suppose Az = b and A, = b' are both solvable. "Then Az = II + b' is solwble. 
What is t ? This lranslat~ inlO: If II and II ' are in the column space C(A). then 
II + b' i5 in C(A ). 

26 If A is any 5 by 5 Il!veT1lblc matrix. then its column space is __ . Why? 

27 True or faJ.so: (with a oountefCl!amplc if false): 

(I ) "The ve<:1OI"S II thai are noc in the column splICe C ( A) form • subspac<'. 

(b) If C(A) contains only lhe zero ,~tor. then A is the zero rrwrix. 

(e) "The column space of 2A equals the rolumn space of A . 

(d) "The column space of A - I equals the rolumn spllt"e of A 

28 Constn.w;t a 3 by 3 matrix whose column space rontains ( I. 1. 0) and ( I . O. I) but 
noc (1. 1. I). Construct a 3 by 3 matrix whose column space is only a line. 

29 If the 9 by 12 system Ax "" II is )(lIvable for every b, then C(A) = __ , 

, 
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THE NULLSPACE OF A: SOLVING AX = 0 • 3.2 

This seclion is aboul llie space of solulions 10 Ax :: O. 1lIe malri~ A can be square or 
= la0l:uI8r. One ;mmed;a/e so/ur;on i,' x :: O. For in"cnible rnarrices thi s is the only 
<olut;on. For OIher matrices. 1\01 in\"cniblc. the~ a~ non7.cru solutions to A .., :: O. 
Each so/urion .., /Xlongs /Q rhe ""I/spau of " . 

EliminatiQfl wi ll find aJi solutioos and identify this vcry im]lOMant sub,pace. 

OfFlNInON T"~ nul/sptUc of A e<msisl$ of 011 ~o/IIriO"~ 10 A.., = o. These solu· 
I;"" '<'(tors Jt arc In Kn The nulls~ comaming all \.OIuIIon5 is !lel\Ole(l by N (A). 

Checl that the solution VectOfS form a subspace. Suppose .., and , are in tile nullipaCC 
(this meanS Ax :: 0 and AJ = 0). 1lIe rul~ of matrix multiplication gi..., A(x + J ) :: 
0 + 0. 1lIe rules also gi\"e A(ex ):: rl), 1lIe righl s ides a~ slill lCru. 11Ie~fore x + J 
and ex an: also in th< nuLispace N ( A ). Since we Can add and multiply without leaving 
the nullspoce. it is a subspac<'. 

To repeat: Thc solulion ,·ectors x have: ~ components. 1lIey are vc:<: ton; ;n R" . 
so llor nullsptU~ ;s a sIIbsp<IU of Hn. 11M: column space CI A) is a subspace of R"'. 

If Ih< right side b is nOl lero. the SOlutions of Ax = b do /WI form a subspace . 
n.. V«''''- z = 0 is on ly ~ solu,ion if b _ O. When ,II<: SC' of solu. i,,"s does not 

indude X = O. it cannOl be a subspace . Seclion 3.4 will show how lhe solutioos 10 
Ax = b (if the~ a~ any sol utions) are shifted a"oay from the origin by one par1icular 
solut ion. 

Example 1 "The eq uation x + 2,. + 3z = 0 comes frum the I by 3 matrix II = 
(I 2 3 (. This equation produ~s a plane through the origin. 11M: plane is a subspatt 
or R). II ;S Ih~ nlll/space of A. 

1lIe solutions to Jt + 2,. + 3z = 6 also form a plane. but nOl a subspa«". 

hample 2 Describe lhe nullspace of" = [~ ~l 
Solutio n Apply e limin31i()ll to tIK- li ... ar equ3tion~ A.r = 0: 

[
Z, +2x2Z O] _ [.<, +2x2 = 0] 
3Z,+6.0-2= 0 0 .. 0 

TIlere i. ",ally only ~ eqU31;on. The SttOnd equal i()ll is the first equalion multiplied 
by 3. In tile row picture. tile Ii ... x, + 2t~ = 0 is the same as the line 3x, +6..-2 = O. 
That Ii ... is IIIe null spact' N (A}, 

To describe this Ii ... o f SOlutions. here is an efficient way. Choose: 0 ... point on 
the Ii"" (one ··sJM~UJI so/"tion··). lloen all ]IOinlS On tile line an: multiples of thi s one. 
We choose the second compone nl 10 be .1'1 = I (a sJl"<"ial choice). From lhe equalion x, + 2tl = O. the first component must be .<, = -2. 11M: special SOlulion is (-2. I): 

1lIe nullspac'" N(A) coma;n. all multIple' of J ~ [ -n' 
C nght€"? maklnal 
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This is !he besl ,,'ay to describe the nullspa<X. by compuling sp«ial §alulions 10 Ax = 0 , 
The nul/space consists of nil coltfbilltllions of those sperinl solutiom. This ~xample 
has ""'" sp«iaJ ",Iution and the nullspace is a line. 

The plane .T + 2}' + 3z = 0 in Example 1 had 1'><'0 special §alulions: 

[I 2 3] [n = 0 has lhe sp«ial §alulions' t = [ -1] and " 2 = [ -fl 
Those V('(tors SI and S2 lie on lhe planc x + 2}' + 3z = O. which is the nullspace of 
A = [I 2 3]' All .·ectors on the plane are CQmbinalio ns of" and ' 2. 

NOIice what is special aboul 't and ' 2. They ba,'e ones and zeros in lhe last 
two CQmponenlS. Those CQI1Ipmtt'tIIS Ore ·'fru" lind ><'t' chooSl' Ihem s~citJlI}' . Then 
lhe firsl componenls - 2 and -3 are dctelTIlincd b}' the C(juation Ax = O. 

The first column of ;\ = [I 2 3] contains the pil'ot. so the first component 
of x is IWl fort'. Thc fn:.:: components correspond to columns without pivots. This 
descriptioo of special §alution. will be completed aflel o ne II"ICJfe example. 

Thc special choice (""'" or zero) is only for the free variables. 

Example 3 Describe the nullspa<Xs of these thn:.:: matrices A. B. C: 

B-[,:]= [i l] 
6 16 

Solution The ajuatioo Ax = 0 has only the zero solution x = O. rh~ nullspac~ ;$ 
z. It contains ooly the single point x = 0 in K 2. This cotnCS from elimination: 

[ ' ,][ ,,] = [0] old, [' ,][,,] = [0],,,,, [" = 0] . 3 8 Xl 0) 0 2 Xl 0 Xl = 0 

A is invenible . Then: are no special §alutions. All columns have pi.'OIS, 
Thc mungulat matrix B has the same nutlspact' Z. The first tWO ajualions in 

Bx _ 0 again ""'Iuire .r _ O. The last tWO aju~tions WQUld also force x = O. When 

we add extra ajuations. the nul1space cenainly can/lOl become larger. The extra R)WS 

imj>OliC man: co .. ditiOtls on ,he vectors .r in the null.pace. 
The mtangular malrix C is different. It has eXtra columns irrslCad of extra fO"·s. 

The solutioo ,'cctor .r has four components. Elimination will prodL>Ce pivOtS ill the firsl 
t .. 'O columns of C. but tIM: last tWO CQlumns arc "fn:.::··. They don', have piVQts: 

c = [' , , 
3 • 6 

, ] [' 2 16 becomes U = 0 2 

, t 

, '] ° , , t 
piVot ooI~ free columns 

f"Of the fn:.:: variables Xl and X4. we make special choices of ones and zeros. First 
Xl = I. X. = 0 and second XJ = O. x. = 1. Thc piVQt variab les Xt and X! arc 

, , 
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determined by the "<Iuation Ux = O. We gcl t,' .. o special solutions in the nulls~ of 
C (and abo the nullspace of U). The spec ial solutions are: 

-.~ - variables - f= - ,·ariables 

One more comment to anticipate ...-hal is coming soon. Elimination will not Slop 
at the upper triangular U! We can continue to make !his matrix simpler. in two ways: 

I. / 'rodua ~ros Ilboo·~ Ih .. pilVli. by ('i iminalmg up .... -ard. 

2. ProduCt' IJn<'S In Ih t p;,vu. by dividing lhe .... hole row by ,IS pwoc 

Those sreps don ·1 chang<' lhe zero VCClor on lhe righl side of lhe equalion. The 
nullspace stays the same. This null$pace becQmes cuksl 10 = whe .. we relOC h the 
rtduu d roll' tclltlon J- R. It has I in lhe pivot columns: 

u = [~ 2 
2 

2 
o become, R [' 0 = 0 I 0 

2 

t I 
pivot columns cOI!lai .. I 

I subt"",\Cd row 2 of U from row I. and then multiplied row 2 by j. The original 
tWi) e<Juations ha,.., s implified 10 X t + Lf} = 0 and Xl + 2x. = o. 

The fi~1 special solulioo is still S t = (- 2.0.1. 0). and J ! is uochanged. Special 
solulions are mo.u:h caskr to find from the redoccd system Rx = O. 

Befon: moving 10 m by n matrices A and their nullspaces N(A ) and special s0-

lutions. allow me to "'peat one comment. For many matrices. the 0II1y solutioo to 
Ax = 0 is x = O. Their null spaces N ( A ) = Z contain only that one , ·CCtor. The only 
combination o f lhe colummi thai prodo.u:cs b = 0 is then lhe ··ze ro COOlbinalion·· or 
Mtri vial combinalion". The solution is trivial (just X = 0) bul the idea is no! mvia!. 

This case of a zero nul1s~e Z is o f the greatest imJlOrtaoce. h says that the 
columns of A an:: independent . No combinatiOfl o f columns giYCS the ~ero vector ("". 
oept the zero combination). All col umns have pivots and 00 columns a", frtt. You will 
see this idea of indepcndeoce again 

Solving Ax '"' 0 by Elimination 

Th is is imponant. A is rtcumgu/Qr tJtu/ ..... still us~ d iminlllion. We solve m e<Juations 
in " unknowns when b = O. After A is simpli fied by row operalions. we read off the 
solution (or solutions). Remember the two stages in solving Ax = 0: 

, 
i 
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t . Forward elimination from It 10 a triangular U (or il! reduced fQf1T1 R). 

1. Back substitution in U;r = 0 or R;r = 0 to find x . 

You will notice a d;ffe~nce in bock substitution, when It and U heave fC>1.'ef than 

/I piVOlS. We a" alla..'in8 all mlJlrirn in l/tis eMple •. 001 ju~ lhe nice ones (wbicb 
are Iq~ matrkes with invelSC's). 

Pivots an: still rIl>IUero. The columns below the pivots are still zero. But it migbt 
happen that a column has 00 piVOl:. In Ihal case. don ' t SlOp the calculation. Go 011 10 

Ihe Mid rof"",", The fi~t e~ample is a 3 by 4 matrix with two piVOl:5: 

[

' I 
It = 2 2 

3 3 

2 
8 

10 
Ii]. 
13 

Certainly /ltt = 1 i$ the first pivot. Clear OUI the 2 and 3 below thai piVOl:: 

[
' I 2 ' ] It .... 0 0 4 4 
o 0 4 4 

(subtract 2)( row 1) 
(subtract 3 )( row 1) 

The $eCOIId column has a zero in the pivot position. We 100II: below lhe zero for a 
oonzero entry, ~ady to do a row Q.cl\an~. The m t.), k low thot position is also ,-"ro. 
Elimination can do nothing with the second column . This s ig nals trouble. which we 
expect anyway for a =tangular matm. Then: is 00 ~1SQI1 to quit, and we go 011 to 
the third column. 

The $eCOIKI piVOl is 4 (but it is in the third column). Subtracting row 2 from 
row 3 clears 001 tbat column below the piVOl:. We anivt! at 

[

' I 2 
Triangular U : U = 0 0 " 

o 0 0 

("nI1 /~'" pi''O/I) 
(the last ~quOl,'on 

bream. 0 = 0) 

llIe founh column also has a zero in IIIe piVOl position - but nothing can be done. 
Then: is no row below it to e~cl\an~. and fOlWll1d elimination is complete . Tbe matri.~ 
has three row,. foor column •• and only "''0 pi,'QIs. n.e origina l A;r _ 0 seemed to 

involve three different equations . but the third equation is the sum of the first two. It is 
automatically satisfied (0 = 0) when tbe first two equations an: satisfied. Elimination 
~veab the inner truth about a system o f equations. Soon we push on from U to R. 

Now comes back substitution. to find a ll solutions to U ;r '" O. With four un · 
knowns and only two pivots. there are many solmions. The question is how 10 write 
them all down. A good method is to ~parate the pi..", >'dI'UIblrs from the fre. Wlri
tiblrl, 

P The piO'()( \-anablcs are;rt and .<). since columns 1 and 3 contain pi\UlS, 

F The free variabks are "1 and ..... bec.u~ columns 2 and 4 ha\'e no p"ut~ 

, , 



The frtt variabl~s x l and x. can Ix given any values wMtsoevcr. Tllen back substitu 
lion fioos lhe pi>'01 ' ·ariablcs .f( aoo Xl. (In Chapl~r 2 no variables were frtt. When A 
is invcnible. all ''llrlablcs are pivot ,·anabl~s.) The simplesl ciloices for lhe frtt "an
abies are ones and zc,.,.. ll>ose ciloi""s gi'" the s",dol solutiolU. 

S",dal Solution~ to XI + Xl + 2xj + JX4 .. 0 and 4x) + 4x. = 0 

• 

• 

Sci X! = I and x. = O. By back ~ub~lilUlion X) = O. 1llen XI = -I . 

Sci Xl : 0 and X4 = I. By back substitution XJ '" - I. 1llen X I = - I. 

n-.e~ .spe<:ial solut;';'ns solve Ux : 0 and therefore Ax : O. 1ney are in the nullsp~. 
The good thing is that n..,ry .w/utilm is 0 rombinmion oj t~ s{MC"iol solutions, 

< . 
'n 

complele 

PI~ase I()()\;: again at Ihat answer. It is the main goal of this !leC11on. The vector I I : 
(- 1.1.0.0) ;s the special solulion when Xl = I aoo x. = O. The!IeCond special 
solution has X2 _ 0 and x. '" I. /tl/ so/uti,,,,. are linear Combilla/,'Olll of I I altd 
'1' The special solutions an'! in the nullspare N (A ). and lheir combinations fill OUlthe 
wilole nullspace. 

The MATLAB code null basis compules these special solut;';'ns. They g., into the 
columtlS of a nulhpllu lItalrU N . The complete wlution 10 Ax : 0 is a combination 
.,f t~ columns. CJonc., w~ have the special solutions. we have the whole nullspace. 

There is a special solut;';'n for eoch frtt ,.,.riabk. If no variables are free - Ihis 
means there are" piVOls - then the only solulion 10 Ux = 0 and Ax = 0 is lhe trivial 
solUlion x : O. All variables are pi,'OI variables. In th~t case the nullspaces .,( .... and 
U comain only the zero ,·cctOf. Wilh no free variables. and pivOis in every column. 
the output from nullbMsis is an empty matrix . 

h~mple 4 Find lhe nullspace of U: [~ ~ ~] 
The second column of U has no piVOl . So Xl is frtt. Thc special solut;';'n has Xl = I. 
Back substitution into 9x) = 0 gives Xl '" O. Then XI + 5.1";' = 0 or X , '" -So The 
SQIUlions 10 Ux = 0 are multiples of one ~pecial SOlution: 

1lM: nullspace of U is a linc in KJ. 
It contains multiples of lhe special solution. 
One "ariable is free. and N = nuUbll'S1s (U) has one colu mn. 
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1.2 The Null~e '" A, Solving Az _ 0 127 

In a minute "'e wi ll continue elimination on U. to get ;:t:ros uJ>Q .... , /h~ p;''O/s mId on~J 
jn /h~ pi''OIs. "The 7 is eliminated and the pivOl changes from 9 to I. The final rc.suh 
of thi f cl iminali(Nl wi ll be the rcUuced row echelon matrix R: 

[' , U; 0 0 '] ["0] 9 reducestoR ; 0 0 I . 

This makes i! e'o'en dearer thai the special solulion (column of N ) is. I = (-5. 1.0). 

Echelon Matrices 

Forward eliminalion goes from A !o U. "The ~ss starts with an m b~ /I matri~ A. 11 
acts by row operations. including row e~c hanges. II goes 0fI 10 the neXI column w""n 
00 piVOt if available in lhe cumnt wlumn. 1m: m by n ··s!aircase.M U is an ttht lon 
lfllUrU. 

H~ is a 4 b~ 7 echelon matrix with the three pi\'Ols highlighted in boldfatt : 

u - [~ 
, , , , , :] Thn.'C p"QI "anables XI . xz. X6 , , , , , 

Four f~ "anables XJ ...... XS.'<7 - 0 0 0 0 0 , ., 
Four special solutions in N(U) 

0 0 0 0 0 0 0 

Question Wha! are the column space and the null space fOf thi s matrix? 

AlISwrr"The columns ha~e fOllr wmponcnl.l so they lie in R4. (Not in Rl!) "The fOllnh 
component of every column is zero. Every combina!iOfl of the columns- every vec!Of 
in the column s~-has fOllnh component 7.ero. The column space ClUj consists o! 
al/ ,·tt/QTS o! the lorm (h i./>.!. hl. 0). For !hose vectors we can solve Ux ; b by back 
substitution. These vectors b are all possible combinations of the SC'o'cn columns. 

"The nullspace N (U) is a subspace of K7, The solutions !O Ux = 0 are all the 
combinations of!he fOllr special sol u!iOfls-ollt for eoch fru mriahle: 

I. Columns 3,4. S, 7 have: no pi\'Ols So!he fftt variables are X] .X4 ,XS.X7. 

2. Set one free variable 10 I and sel t"" other free variables 10 '.ero. 

J . Solve Ux = 0 fOf t"" pivot ""riables X t. X l. X6. 

4, This gives one of the four special w lu!ions in lhe nullspace matrix N. 

"The nomen) ~ of an echelon matrix go down in a slaircase panem. The pi"ou 
an: the lim non'.c:n) entries in lhose rows. 1lIere is a column of zeros below 1"0"<'1")1 

pivot. 
Coun!ing lhe pivots leads 10 an extn::""'ly in'ponanl !hc>on!m. Suppose" has 

""""' oolumn~ than IQWS. Wah /I > m Ihue u IU UllSt one Ine ""riBble. 1lIe system 
Ax = 0 has a! leasl one special solulion. This solution is not ::ero! 

, 
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38 If Ax "" 0 I!as more unknowns than el.jllahons (II > m. rr>Ofe columns than row,). 
tllen it has nonlero solution •. TlIcre mu,t be free columns. withoot pivOb. 

In other woros. a sl!on wide matri~ (n > m) always has nonzero VOCtors in ils nlilispacc. 
There mUSI be al Ieasl II - m free variables, since the number of piVQIs (anDOl e~ceed m . 

(1be matri~ only has m rows, and a row never haJ; two piVQIs.) Of ~'OIlrse a row mighl 
h."" 1\0 pi,'OI _ which """ans an I:XIr1I free variable. Bul Ilere is lhe point: When (here 
is a free variable, il can be SCI to l. ~n the ~uat ion Ax = 0 has a r>Onzel'O solution. 

To repeat: 1ben: are at most m pi VQIs. Wilh" > m. the system Ax = 0 has a 
nonzero solution. Actually t~ """ infinitely many solutions. since any multiple ex 
is also a SOlution. The nullspace contains at least a line of solutions. With tWO free 
variables, then: are two special solutions and the nullspacc is even larger. 

TIle 1I~lIspact is 0 subspact. Its "dimmsio"" is the "umb<-. of fru .-a.iobln This 
central idea- the dimeNsion of a subspace - is defined anod e~plai ned in Ihis chapler. 

The Reduud Row Echelon Matrix II 

>From an echelon matri~ U we can go one rr>Ofe step. Continue with our enmple 

o 
o 
, '] , , . 
o 0 

We ron d,,-ide the second row hy 4. Then botl! piVQIs equal I. We can subm.ct 2 rirMJ 
lhis lIew row [0 0 I t ]from the row "bo,·e. 1be rrdueed roW edltloll IftIUrix II Iuu 
u ros obo~ the pivots .1$ well fI$ belo",,: 

II has l's as pi'l)I$. Zeros above pi'"OIs come from up~~rd , liminDIion. 
If A is invertible, ils rrduced row echelonjorm is Ihe idemit)' ",nlnf II = I . This 

is the ultimate in row rWUClion. Of course the nullspacc is then Z . 
TlIc zeros in II make it easy to find the special solutions (the s.amc: as before) : 

1. ~ X2" ] and X4 = 0. Soh-e IIx = 0. Then .f t '"' - I and XJ = 0. 

l11QS(' numbers - 1 anod 0 are , itting in column 2 of R (with plus sign,). 

2. Set X2 =0 and .1'4 '" I . Solve Rx = 0. Then X t = - I and XJ "" - I. 

Thosoe numbers - 1 anod - I = sitting in col umn 4 (with plus signs). 

, 



j.2 fhe Nul""""'" of A, Solving A~ _ • 129 

By 1"I"'~rsing signs ..... can mw oJ! th~ sp«ial wlutiolU dir~Clly from R. The nul/space 
N (A) = N (U) = N (R) rotlloim all combilWlio"s of the 5~riol so/uliOtlJ." 

,." [-l] +" [ ~j] . Imm,'''' . o'oriooo/ A>: 0) . 

The next section of the book moves firmly from U to R. Tlle MATLA6 command 
I R . pivro/) = rrrl (A) produces R and also a li st of lhe pivot columns. 

• REVIEW OF THE kEY IDEAS • 

I. The nu!1space N ("J. a subspace of R~. ronlains all solutions 10 Ax = O. 

2. Elimination produces an echelon malrix V. and then a row reduced R. " 'ilh pivot 
columns and free columns. ' 

J . E, 'cry free column of U or R leads 10 a special solutioo. The free variable equals 
I and the other free variables equal O. Bock SUbSlilUlion solves Ax = O. 

4. The complete solution 10 Ax = 0 is a combination of the special SOIUlions. 

s. If" :> m then A has at least one column without pivots. giving a special solution. 
So the..., a..., noouro vector.; x in the nul!space of Ihis m:tangular II . 

• WORkED EXAMPLES • 

J.2 A Crealc a 3 by 4 malrix whose special solulions 10 Ax = 0 are ' ( and ' 2' 

pivot columns t and 3 
free variables Xl and x, 

YOtI COtlld ,,,,ate the matrix II in n)W redUoCed form R. Tllen describe aIL possible 
malricccs II wilh the fl!qui",d nulLspace N (A) = aIL combinations of I I and ' 2· 

Solution The reduced matrix R hal pivots = t in column! I and 3. There is no 
lhird pivot. so lhe third n)W of R is all zeros. The free columns 2 and 4 will he 
combinalioos of lhe piVOl columns: 

[
1302] 

R = 0 0 I 6 
o 0 0 0 

lias RS t = 0 and RI2 = O. 

Tlle enuies 3.2.6 arc lhe negati''t'S of -3. - 2. - 6 in the speciat solulioM! 

, 
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R i§ (>Illy one matrix (one pm§ible A ) with the required nullspace . We could 
do any elementary opcrntioos on R - exchangc rows. multiply a row by any e #- O. 
sublract any multiple of one row from allOt her. R can be multiplied by Imy im'erlible 
mlllrix. without changing the row sp<lce and nullspace. 

Every J by 4 matrix has at lease one sl'«ial solution. Th~w A's Iu".., ""v. 

:1.2 8 Find toc ' I'«ial solution.! a/Ml describe the eomplnr .wlmion to Ax "" 0 for 

A , = J by 4 ;:rro ",mrix 

Which arc the piVQ\ w lumn,'! Which arc ,he f= variables? What i, 1/ in each case? 

Solution A , ... = 0 has four special solutions. They arc the columns It . I l. ll. l~ of 
toc 4 by 4 identity matrix. The nullspace i§ all of R'. The complete solution is any 
.II = <" " + <'l l l + el ' ) + <'.,, in R4. Therc arc I>() pin lt coluntns: all variables arc 
f=: the reduced 1/ is the same zero matrix as A ,. 

A 1X = 0 has onl y one special solution 1 = (-2.1 ). The muhip~ ... = <', gi''C 
the complete solution . The first column of A l is its piml column. and Xl is tile free 
, 'ariabk. The row reduced matrices R) for A: and R) (or A) = I Al A2 1 have 1'.1 in 
the pivot: 

Rl= [~~] RJ= [~~O~] 
Notice Ihat R) has only one pivot column (the first column). All the variab~ 

Xl. Xl. x. are fn-e. There arc three special solutions to A ) ... = 0 (and also 1/) ... = 0): 

With r piwts. A has n - r free variables and Ax = 0 has n - r special solutions. 

Problem Set 3.2 

Q~tions 1-1 and S-H an' about the malrices In Problems I lind 5, 

1 Reduce thes.e malJi<:es to their ordinary echelon fonn:;; U: 

,. j A = [: ; ; 
o 0 

, 6] 
6 • , , (b) 

Which arc the f= variables and which arc the pivot variables? 
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l.1 ' ho: Null~ <J "" Soh'ing Az _ 0 13 I 

'2 For t~ malri<xs in Problem 1. fitwJ a special solulion for each fltt vari able. (ScI 
lhe f_ variable to l. Set I~ OIhcr fltt variables 10 zero.) 

l By combining u.., spox-ial solutions in Problem 2. <kscribc cvc'}" solution to A.r = 
o and B:.r = O. "The nullspace conlains only x '" 0 w~n lhere are 00 __ . 

4 By funiler row operalions on each U in Problem 1. fitwJ the reduced echelon 
form R. Trut 01" foist: "The lIul!space of R equals I~ nul!spa<:C of U. 

5 By row op=ilions redu<x each matri.~ to its echelon form U . Write down a 2 
by 2 lowtr lriangular L such Ihal 8 = LU. 

(. ) [-' A ", - 2 
) , 1~] (b) [-' 8", - 2 

) 

6 

6 FitwJ lhe special solulions to Ax = 0 and Bx = 0 For an m by n matrix. the 
number of piVQI variablC"!i plus lhe number of free variables is __ . 

7 In Problem 5. describe lhe nullspaccs of A and B ill two wa~. Oi"" the equa· 
lions for the plane or lhe line. and gi"" all vectors X Ihat sat isfy lhose equations 
as combinations of the special solutions. 

8 Reduce the echelon forms U in Problem 5 to R. For each Ii draw a box arootwJ 
the identity matrix thaI is in the pi'"OI rows and pivot columns. 

Questions 9-17 an about free ' lIrtable!! and p"·ot ,·arlables. 

!I True or false (with l"!Casoo if lrue or example to show ;1 i~ false): 

<a) A ii<juan: matrix has 00 fltt variables. 

(b) An im"n ibk: matrix has 00 fltt ,·anables. 

(c ) An m by n matrix has 00 more than n pivot variables. 

(d) An m by n malrix luis no more than m pivot variables. 

10 ConStruct 3 by 3 matrices A 10 satisfy these n"quiremcnls (if possible): 

(a) A has 00 l ero entOes bul U = I. 

(b) A has 00 lCTO entnes bul R = I. 

(c) A has 00 tero entnes bul Ii '" U. 

(d) A =U= 2R. 

11 Put as many I 's as p<miblc in a 4 by 7 echelon matrix U whose pi,"OI ,.,.nables ,. 
(a) 2. 4. 5 

(b) J. 3. 6. 7 

(e) 4 ~od 6. 
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112 Chopre< l \lector Sp.oc.,. ,nd ~.,. 

12 Put as many I 's as possible in a 4 by 8 """ail echelon matri~ R so that the 
f"", "anables a", 

(a) 2. 4. 5, 6 

(b) 1.3. 6.7.8. 

11 Su~ column 4 Qf a 3 by 5 malrix is all zero. Tnen ... is ttnainly a _ _ 
variable . Tne . pecial 5(lluli"" for thi s variable is the v<'CtCN" x "" 

14 SuPJXlSC' the first and last cCllumn. Qf a J by 5 matrix are the same (Il()\ zero). 
Tnen is a f"", variable. fi nd the special 5(llutioo for this variable. 

1 S SUPP"sc an m by " matrix has r piv<)ls. lllc number of special 5OIuti!)ns is 
Tne null sJ-l"C" C(lnlain' only .. = 0 .. ,;Ilen r = . "The column sJ-l"C" is all of 
K'" when r = 

16 The nullspacc of a 5 by 5 matri~ contains o nly x = 0 wilen the matrix has __ 
pin)!s. The column space is R5 when the", a", pivots. F~plai n why. 

11 n.e equali"" .. ~ 3,. ~ l = 0 ~t~nni....,. a plane in Kl. What is the matri~ A in 
this equation? Wh ich are the free ,'anables? The special solutions are (3. 1.0) . ., 

16 (Recommended) "The plane .. ~ 3)' ~ ~ = 12 is parallel l<.> the plane X -3y-z = 0 
in Problem 17. One panicular p"int Qn thi s plane is (12.0. 0). All points Qn the 
plane have the fonn (fi ll in lhe first comp"rIents) 

19 i'TIwc that U and II = LU havc the same nullspacc when L is invcnible: 

If Ux = 0 then LUx = O. If LUx = O. how do yoo know UI( = 01 

20 Supp<.>SC column 1 + column 3 + column 5 = 0 in a 4 by 5 matrix with four 
pi .. '<JtS. Wh ich column is sure tQ ha'lC' 0(1 pivot (and which variablc is free)? What 
is the special solu tion? What is the nulLspacc? 

Quest ions 21 - 28 ask rQr mat ri«s (If po:ssib~) .. lth specific propu t ies. 

21 Con,truet a matrix wllQse null spact' consists Qf all combinations of (2. 2. 1.0) 
and (3.1, 0 .1). 

22 Con>truet a matrix wbose null spKe coo,i, ts o f all multiples. Qf (4 . 3. 2. I). 

23 Construe! a matrix wh<:>se column space contains (I. I. S) and (0 .3. I) and " '1IQse 

null spa~ contains ( I . 1. 2). 
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},l Tho> Nu ll~ d A: Solving Ax .. \1 13J 

24 Construct a malrix whose column space contains (1. 1,0) and (0 , 1,1) and whose 
nullspace conla;ns (1,0.1 ) and (0 . 0, 1), 

25 Conslruct I matri~ whose column spllC(' conlains (1. 1,1) and whose null space is 
!he line of multiple:; of ( I. l. 1. I). 

26 Conslruct. 2 by 2 malr'i~ whose nullspal': e(]uals i15 column space. This is pos
sible. 

27 Why <Joo:s no 3 by ) rnatri~ have a nullspace that e(]uals its column Sf"'C<'? 

28 If AD = 0 then !he column space of IJ is conlained in lhe 
an example of A and D. 

of A , Give 

29 lbe ~~ form R of a 3 by 3 rnalri~ willi randomly chosen entries is almost 
SUII!' 10 be __ , Whal R is vi"ually certain if the random A is 4 by 3? 

30 Show by eJUlmple thaI lhese lhree stalement< all!' generally foist: 

(a) A and AT lIave !he same null space, 

(b) A and AT lIave lhe same free variables, 

(c) If R is !he ~~ form rr-er(A) lhen RT is rref(AT), 

31 If lhe nullspace of A consisls of all multiples of x = (2, 1. O. I), how many pivots 
appear in U? Whal is R? 

32 If !he special ..,IUlians to Rx = 0 = in !he columns of!hese N, go backward 
10 find lhe nonzero rows of lhe redl>C«l matrices R, 

N = [l f] and N = [~] and N = [ ] (em~y 3 by I), 

33 <a) Whal are !he five 2 by 2 rnluccd echelon matri«s R whose entries all!' all 
O·s and I 's? 

(b) What an:: !he eight I by 3 malri«s corolaining only O's and l's? Are all 
eighl of them rnluced echelon matrices R'! 

34 Explain why A and - A always have the same reduced ecllclon form H, 

C JPYnghted malenal 



1 34 C~ 1 Vooor Sp.>ces .nd ~ 

THE RANk AND THE ROW REDUCED fORM . 3.3 

Thi. section rempletes the ~tep from Ato its reduced row echelon fonn N. "The matrix 
A is m by n (completely general). "The matrix R is al$(l m by n. bm each pivot relumn 
has only 0"" nontcro elltry (the pivot ... ·hich is always I). This e!tample is J by 5: 

Reduced Row Ethelon Form N •• [! ~ ~ ; =~l 
o 0 0 0 0 

You see tcro above tile: sccOfld pinll as ... ·ell as below. R is llle: tinal result of elimi· 
nation. and MATLAB uses the command rm. "The Teaching Code t llm for this book 
has rn:r built into i1. Of course rref(R) would give Ragain! 

MATLAB: I R. pilleo/1 == rm(Al Teaching Code: IE. R1 = tUm(A) 

"The exira OYtpul pi,wl gives the number.; of the pivot columns. "They are Ille same in 
A and R. 1lIe extra OUtput E is lhe m by m t liminlllion mlllm that puiS 11M:: original 
A (whate~r it was) into its row reduced form N: 

E 1'1== R. (I) 

"The square matrix E is the prochlCt of elementary matrices Elj and Plj and D- t • Now 
w~ allow j > i. when E'j subtlaCtS a multiple of row j from row i. Pij exchanges 
llle:sc rows. D- t divides rows by their pi\"Ots to produCC' J·s. 

If we wanl E . we can apply row reduction to tile: matrix [A ,] wilh n + m 
columns. All the elemelltary matrices that multiply A (to produce: R) will al§O multiply 
f (to produce E). "The ,,·hole augmented matrix is being multiplied by E: 

E I A I] = IN E 1 (2) 

Th is is cxoctly what ·"Gau .. -JonIan·· did in Chapter 2 to compute A-'. WIr , " A is 
squllre lind inl'trtibit, itt rtduu d ro'" ttlldon / _ is R = I . "Then EA = R booomcs 
EA '"' I. In this invertible case. E is A- I . This chapter is going further. to any 
(re<:tangular) matrix A and its reduced form R. The matrix E thaI multiplies A is still 
square and in'·cn ible. bul the best it can do is to produce R. "The pivot columns are 
reduced to ones and uros. 

The Rank of a Matrix 

"The number.; m and " gi'"<' the size of a matrix _ but not ~sarily the Iru~ si~ of 
a linear system. An equation li~ 0 = 0 should not COY nt. If llIere are IWO identical 
rows in A. the scrond one disappear.; in R. Also if row 3 is a combination of rows I 
and 2. lhoen row 3 will be«lme all '.eros in R . We <.Ion ·t want 10 CQUnt rows of zeros. 
Tilt In" skt "/ A is K;'~II by its Milk.: 
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l.J The R.>nk and the Row Redu<:ed Form I JS 

DEFINITION 'flit rant of It ;$ tht number of pi''OIs, This "UlIINr is r. 

The malrix R al !he mrt of Ihis ~liOfl has ... ok r = 2. II has IWO pivots and 
IWO pi\"Ol ,olulllns. So docs Ille unknown malrix It Ihal produced R. This number 
r = 2 will he crucial 10 lhe lheory, bul ils first definilion is entirely , ompu"lional. To 
ex~u" Ille wmmand r = rank (It) . lhe rompuler just counlS lhe pivots. When pi.-col 
gives a lisl of lhe piW>! wlumns. lhe length of Ihal list is r. 

Actuall y !he wmpuler has a hard lime to de<:ide whelher a small number is really 
zero. When il sublra.:!S 3 limes ~ from L dIx. il oblain zero? Our Tea<:hing Codes 
Ircal numbers below lhe mleraru.:e 10-6 as zero. 

We know righl away Ihal r :5 m arod r :5 ~. The number of pivots can·1 be 
grealer Ihan Ille number of rows. II can', be grealer Ihan Ihe number of columns. The 
cases r = m and r = M of ·' full row rank·' ar>d ··full co lumn rank·· will be especially 
important. We menli"" lhem here and <,:Qme blOCk to lhem §OOII: 

• A liDS full row rt1llt if t Vl'ry row hIlS /J P;''OI: r = III. No urn rows i ll R . 

• It hOI full column ront if twry columll hDS II pi."OI: r = n, No frrr ' ·/JrWblt s, 

A square invertible malri~ has r = III = M. Then R is Ihe same as I . 
A, lhe other exlreme are lhe malrkes of ront Ollt. There is onl y O"I! pivot. When 

eliminalion clears OUI lhe firsl column. il clears OUI all lhe co lul111ls. E.·ery ro .. ' is " 
multiplt of the piml ro .... AI the same lime. every rolumn is a muhiple of ,he pivO! 
column! 

K~nk one malri~ 

) 

6 
9 ~] - '0] o . 

o 
The column space of a rank 0IlC malri~ is ~one-dimensional"'. Here all columns are on 
tile line through n = (1.2.3). The wlumns of A are If and 3u and lOu. I'Ut those 
numbers inlo !he row ~T = [ I 3 10 ) and you h.,,, the specia l rank one form 
A=uvT: 

It = column limes row '" u~ T [~ : ~]=[ ! rl 
) 10 1 

hample 1 When all rows are multiples of one pivot row, the ran k is r = I: 

) 

6 : ] and [~ ~ ] aoo [i] and [ 6 ] all have rank! 

The reduced row echelon fOrnI, R = rrTf (Ao) can be cheded by eye: 

R - [ ' - 0 
) 

o ~] and [~ ~] and [~] and [ I ] ha,e on ly one p'''M. 

(lJ 

Our secQnd <kfinitiOfl of rank .s roming at a higher level. 11 deal s with en tire 
rows and entire columns-vectors and no! ju.1 numbers. The malrices A and U and /( 

, 
i 



have r im/~pendent rows (the pivot rows). They also have r independent columns (the 
pivot columns). Section 3.5 says what it means for rows Or columns 10 be independent. 

A third definition of ran\;. at the lOp level of linear algebra. will deal with spaas 
of vectors. nv" rank r is the "dimension" of the ~olumn spare. It is also the dimension 
of the row space. n.., great thing is that r al so rt-veals the dimension of the nullspace. 

TIw: Pivot Columns 

n., pi,'Ot columns of R ha,'C I's in the pi,'QIS and O's "'''TYwhere cis... 11>e r pivOt 
columns taken together contain an , by r identity matrix I. It sits above m - r rowS 
of leros. The numbers o f the pivot columns arc in the list pivcol. 

n., piVQt ~olumns of A. at<: probably,,,,, obvious from A. ilsclf. But their column 
numbers are given by the sattU" list p;rcol. n., r columns of A that eventually have 
pi"OIs (in U alld R) are the pi,"OI columns. llIe firsl mani. R in Ihi s scction is the 
row reduced echelon fnon of this matri~ A. with pilm = (1.3): 

,'I\'ot 
Columns 

o , , '-'J [' 4 - 3 yields H .. 0 
6 -4 0 

3 

" o 
• , 
• 

2 - '] 4 - 3 . 

o 0 

llIe col umn spaces of R and A ~an be different! All columns of Ihi s R elld with 
zeros. E sublracts rows 1 alld 2 of A from row 3 (to produce that zero row in Rl: 

o , 
-, ,," [' 0 0] E- t : 0 I 0 . , , , 

11K r pi\"Ot columns of A are also the first r columns of E - 1. n., reason is 
Ihat each column of A is E -I times a column of R. n.., r by r identity matrix inside 
R jusl picks oot the first r columns of E - 1. 

One more facl about piVQt columns. nv"ir definitioo has becn purely computa· 
tional. based on R. Here is a direct mathematical descri plion of the piVQt columns of A: 

JC T"~ pi.." CQlu mns II"" n()/ combina/,'onl of hlrliu w/umnl. Tbe f"", column. 
",... combtnauOfIs of earlier colutnn\. l1tc<.e combinalion; are the specIal '\OIUlions! 

A pivot column of R (wilh I in the piVQt row) cannot be a combination of ear
lier columns (wilh O's in thaI row). Tho! same column of A can 'l be a combination of 
earlier columns. because Ax = 0 cacll), .. 'Ir~n Rx = 0. Now \>Ie look at the special 
sol~lion x from each f= column. 

.1 
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The Special Solulioos 

ElIch special SOlution 10 Ax = 0 alld Rx = 0 has one free variable equal to I. The 
other f"", variables are aU zero. llIe solutions come directly from lhe echelon form R: 

rl'ft columns 
FI'ft VlIrlables 

" 

The free .'anables are in boldface. Set the fin;t f"", variable to X2 = I with x. = X! = 
O. The equations giyc lhe pi'1)\ vanables Xt = -3 and XJ = O. This says that column 2 
(a free column) is 3 times column I. llIe special solution is ' l = (-3. 1.0.0.0) 

llIe next spec ial solution has x. = l. The OIher f"", yariables are X2 = X5 = O. 
The solulion is ' 2 = (-2.0. - 4 . 1.0). NOIice - 2 and - 4 in R. wilh plus s igns. 

The thin! special solution has Xl = l. Wilh x2 = 0 and x. = 0 we find Sl = 
( I. O. 3. O. I). The numbcn; XI = I and Xl = J are in column 5 of R. again with oppo
site s igns_ This is a gcneral rule as we soon ' 'erify. 1bc nullspace malri~ N conlains 
the Ihree special SOlutions in ils columns: 

-J -2 , ~f= , 0 0 f= 
Nu llspact' matrix N~ 0 -, J ~f= 

0 , 0 f= 
0 0 f= 

1bc linear combinations of lhese Ihree columns give all veclors in ~ nullspI'CC_ This 
is the complete solution to Ax = 0 (and Rx = 0). Where R had the identity matrix 
(2 by 2) in its pi''Ol columns. N has the i.x.ntity malrix (3 by 3) in its free rows. 

Tltuf! js G sM cial solulit", lor twry 1,-"" l"i<rWblfl. Since r columns h .. "" pivots. 
Ihat Icaycs n - r f~ yanables. Th is is lhe key 10 Ax = O. 

3D Ax = 0 Itos 0 - r Irtt mriablflS God spt!cial sol"lionr n columns minus r pi'OI 
columns. The nullsfHJu matrir N has n - r columns (the special solulio",). 

Whe n wc introduce ~ i.x.a of Mill(\ependcnt'· vectors. we will show lhat lhe spe
cial solulions are independent. You can see in N that no column is a combination of 
lbe Oilicr columns. llIe beautiful thing is that the count is exoctly right: 

Ax = 0 hGS r indept!ntknl equOIiollJ sO n - r indt~ndtnl solutions. 

, 
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To compkte this section. look again at the special sol~tions. Suppose for sim
plic-ily thai the firsl r columns are the pi",,)! columns. and the last n - r columns are 
free (no pivOIIi). Then the reduced row echelon fonn looks li ke 

H - [ , - 0 

r piVOl column. 

F ] r piVOI rows 
o m - r lero rows " ) 

n - r free columns 

3E The pivOi variables in Inc, n - r special solut ion. Corn<" b) changing F to -F 

N = [ - : ] 
r 1''''01 variables 

" - r free variable. '" 
Check RN "" O. The firsl block row of RN is (I limell - F ) + (F lime. /) _ 

zero. The columns of N solve Rx '" 0 , W)x>n lhe free par! of Rx '" 0 moves 10 the 
righ • • KIo . ,he lef • • ide juS! hold. lhe iden';'y malrix, 

,[ pO'" ] vanables .. (6) 

In e",h , pec;a l solutiOll. the free variables are a column of I. Then the p;H)! variables 
are a column of - f '. Those special solution! gi'"e the nullspace matrix N . 

The idea is still true if lhe piml columns are mixed in with the free wlumns. 
Then I and F are mixed logether, You can still !itt -1' in the solutioos. Here is an 
uamplc when: I '" [11 comes first and l' = [2 3] comes last. 

hampl!' 2 The special solutions of Rz '" Xl + 2..-2 + 3x) = 0 are the columns of N: 

R=[12Jj [-' -3] N = ~ ~ . 

The rank is one, The n: are n - r = 3 - I special solutions (-2. 1. 0) and ( - 3. O. I). 

Pint./ NOlt I'low can [wri(e confidenlly about R when I don'( know which StC~ MAT_ 
LAB will take? A could be reduced to R in different WI )'S. Very likely you and Math
ematH:a and Maple WOIJld do lhe elimination differently. The key point is thai Ih~ final 
malrix R is aJ .. 'tlyt Ih~ ~mt. The original A romp/nely dntrmints 1M I ",14 l' 11114 
~,ro m .. 's in R. ",,<,OIding '0 le: 

The pivOi wlumns Of? no/ combinations of earlier column! of A. 

The free columns Ort combinalions of earl ier columns (1' tells the combinations). 



A small example with nlnk one will show IW<) E's lha! produce the 

correct £11 == R: 

. __ [2,2,] [' '] " ~ucesl0 N = 0 0 and 00 OIlier R. 

You could multiply row 1 of II by;. and su~racl row I from row 2: 

0]["2 O]~[ '/2 O] ~ E 
1 0 1 - 1/2 L . 

Or you could exchange rows in A. and then sublJaCI 2 times row I from row 2: 

[-~ ~][~ ~J = [~ _~] = EROW • 

Multiplication gives Ell = R and also £_11 = R. Difftr",t £ ', but Iht JIlm' R. 

• REVIEW OF THE kEY IDEAS • 

I . lbe rank of A is the number of pi~OIs (,,'hich are 1's in N.). 

2. ~ , piVOI columns of A and R a~ in the same list phm. 

J. llIose r pivot columns are not combinations of earli..,. CQlumns. 

4. lbe " - r free columns a~ combinations of earlier columns. 

5. 'Those combinatioos (using - I' laken from R) give the n - r special solutions to 
II r = 0 and R:r = O. TIley are the n - r columns o f the nullspace mauix N . 

• WORKED EXAMPLES • 

3.3 A FlICtor t!lese nmk one matrices imo II = ... T = row timrs co lumn: 

[
' 2 ' ] A = 2 4 6 
, 6 , 

1\ =[: !] (lin<ldfromu-I .I>. c) 

Split th is rank two matrix imo U \ pT + u 2pI .. (3 by 2) limes (2 by 4) using £ - 1 
and Ro 

[' , A = I 2 , , 
o , 
o , 
o , 

o ' ] o I =E-1 R. 
o 0 



140 Chapoot- ] \I<!ctof ~ . 00 SuI>op.>ces 

So lution For the 3 by 3 matrix A. all rows are multiples of ~T = II 2 31. All 
columns are multiples of the column u = (I. 2, 3). This symme!ric matrix has u = 1> 

and A is u u T . EveI)' I'Mk one symmetric matrix will have this fonn OJ else _ uIIT . 

If the 2 by 2 matrix r:: J has rank one. it mlm be si ngular. In Cha~er 5. its 
derenninant is ad -be = O. [n this cha~er. row 2 is a multiple of row I. ThaI multiple 
is i (the prublem assumes a cF- 0 ). Rank one always produces column times row: 

[ " b] ~ [ , ] ,. b' ~ [" b ]. So d ~ "". 
c d cIa c be/a a 

TIle 3 by 4 matrix of nmk two is a sum of (1<'0 I1I6lrius of runk one. All rolu mns 
o f A are combinations o f the piVOl rolumns I and 2. All rows are combinations of the 
nonzero rows of R. TIle pivot rolumns are li t and II ! and those nonzero rows are oT 
and wI. TIlen A is Ut 1>T + Ul 1>I. multiplying rolumns of £-1 times rows of R : 

["0' ] ['] " 1203,.,1 
2 3 0 5 2 

° ° ° " 
3.3 B Fi nd the row redUttd form R and the rank r of A (rhou de~rnl 011 c). Wh kh 
an: the piV(ll rolumns o f A 1 Whj~h variables are r.....,7 What....., the special .."Iulions 

and the nuLlspace matn" N (always depending on c)? '* 

[
' 1 '] A= 3 6 3 
, 8 c 

Solution TIle 3 by 3 matrix A has rank r ,., 2 tx"t pl if c = 4. TIle pivots ....., in 
rolumns I and 3. llle Soecood variable Xl is free. Notice the form of R: 

CcF-4 R=[~ ~~] 
° ° ° 

.. =4 R =[ ~ ~ ~] . 
° 0 ° 

When" = 4 . the only pivot is in rolumn I (one piVOl rolumn). Columns 2 and 3 
are multiples of rolumn 1 (so rank = I). TIle second and third variablts are f=. 
producing two special solutions: 

C cF- 4 Special solution with Xl = I goes into N = [ -1 ] . 

C = 4 Another specia l solution goes into N = [-1 -i ] 
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The 2 by 2 mauh U~l ~ ranltr~ I Uctpli! c= O. when tile rank is zero! 

c ~O R = [~~] 
Tho: fi~t CQlumn is the pi>'Ol column if c ~ O. and the second variable is free (one 
special !K)lution in N). The matri" has no pi'"''' columns if c = O. and both variabk' 
an: free: 

c= o N = [~ ~l 

Problem Set 3.3 

1 Which of these roles gives a c~t definition of the ronk of A1 

(8) The number of nonzero rows in R. 

(b) The number of oolumns minus the total number of "",·S. 

(f;) The numhcr of columns minus the number of free CQlumns. 

(d) The number of I·s in the matrix R. 

2 Find the redoced row echelon forms R and the rank of these matncc,s: 

(a) The 3 by 4 matm of all ones . 

(b) The 3 by 4 malri" with Ol} = j + j - I. 

(c) The 3 by 4 matri:< with aij =(_ I)i. 

3 Find R for each of these (block) matrices: 

[0 0 0] 
A = 0 0 3 

246 
8 =[ A A] c = [~ ~] 

4 Suppose all the piVOl. variables co,"", /0.$1 instead of first. Describe all four blocks 
in the red~ echelon form (the block B should be r by r): 

R =[~ ~l 
Whal is the nullspace malri" N CQntaining the special solulions? 

5 (Si lly problem) Describe all 2 by 3 malncc,s AI and Al . with row echdOD forms 
Rt and H2. such that Ht t Rl is the row echelon form of At +A2. Is is true 
thai Ht = AI and H2 = Al in this case? 

t 



6 If A has r piml columns, how do )'OU know lhal AT has r piVO! columns? Give 
a 3 by 3 e;(ample for which (he column numbers all: different. 

7 Whal are !he spe<:ial SQluliOfls In Rr = 0 and ,T R : 0 for lhese R? 

[' 0 2 3] 
R = 0 I 4 5 

o 0 0 0 
, '] o 0 
o 0 

Problems 8-11 u,.., aoout malrk.,. nr rank r _ I. 

8 Fill out the.., m.ollices SO thai lhey have rank I: 

[
' 1 '] 

A _ 1 , ,J .00 M=[: 'J 
9 If A is an '" by n malri~ wilh r = I. ilS columns all: mulliples of one column 

and ilS rows an: muhipLes of one row. The column space is a __ in R'". The 
nullspare is a __ in N". Also !he column spac<: of AT is a in K~. 

10 Choose vectors u and ~ so that A = U~T = column times row: 

[' , 'J A = I 2 2 
488 

"'" , _ [2 2 6 4] 
- -I - I - 3 -2 . 

A = UgT is lire nalural fo rm for ~'~ry marrix IMI MJ rank r = l. 

11 If A is a rank Olle malri~. the second row of U i.' __ , Do an example. 

Problems 12-14 are aboul r by r Inn rt lble matrices Inside A. 

12 If A has ",nt r, Ilten ilitas eln r by r submatrix S t/rm is inwmible. Remove 
'" - r rows and n - r columns 10 find an invertible submatrix S inside each A 
(you could keep the piVO! rows and pivO( columns of A): 

A = [: 1 '] 1 4 ,or' 1 3] 2 4 , [0 , 0] 
A = 00 0 . 

o 0 , 

13 Suppose P is the submalnx of A containing ooly the pivO( columns. Explain 
why Ihis '" by r subm.ol rix P has rank r. 

14 In Problem 13, "1: can transpose P and find the r pivot columns of pT. Trans
posing ba< k. we have an r by r invertible submatrix S inside P : 

[' 2 3] For A = 2 4 6 find P (3 by 2) and then S (2 by 2). 
1 4 1 

, 
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Problems 1S-20 show thllt rllnk(AB) Is DOl !;Il'a tt r than I"lInk(A) or I"lInk ( B). 

15 Find the ranks of A B and AM (rank one: matri ~ times rank one: matri~): 

A - [' '] - , , and B=[i I '] 1.5 6 and M = [~ !J. 
16 The r.mk one matrix u~T tinles the rank one matrix .. : T is .. : T linle' the number 

__ . This has rank one unless __ = o. 

17 (a) Suppose column i of B is a combination of previous columns of B. ShQw 
that w lumn j of AB is the same combination of previous columns of A B. 
llIen I"lInk (AB) .:!: rank eR). because 118 cannot ha'"e new piVOI columns. 

(b) Find At and III so tllat rank(1I 1 B) = 1 and rank(II , B) = 0 for B = U n 
18 Problem 17 proved that rank (AH ) :5 r.Ulk(8). Thcn the same reasoning gi,·es 

ntJlk( HT liT) :5 rank (A T). How do you dedklU that n nk (A 8 ) .:!: nlnk A1 

19 (Import .. ", ) Suppose A and B an: n by n matrices. and A8 = I. Prove from 
r.ulk(lIB) :5 rank (A) that tile mok of II is n. So A is in,·enible and B must be 
its two-sided inverse (Se\;tion 2.5). Tltcrefore HA = I (,.·hich ;~ /WI!W 00'·;01<51). 

20 If A is 2 by 3 and B is 3 by 2 and AS = I. shQw from it< rank that HA # I . 
Give an example of A and 8 . For m < n. a right inverse is not a left in,·erse. 

2 1 Suppose A and H have tile SilfM red~ row echelon fonn R. 

(a) Show tllat II and B have the s.ame. nuli space and the same row space. 

(b) We know EIII = R and E,8 = R. So A equals an __ matrix times 8 . 

22 Eve'}" m by n matrix of ran k r reduces to (m by r ) times ( r by nJ: 

II _ (pivot oolumns of II ) (fi rst r rowl of R) '" (COL)(ROW)T. 

Wri\e lhe 3 by 5 malrix II al the start of this section as the product of the 3 by 
2 matrix from the pivot columns and the 2 by 5 matrix from R. 

23 A _ (COL)(ROW)T i . a '~m of r TOnk one rnalric.,. (multipty ootumn • • i",.., 
roWS). E~press A and 8 as the sum or tWO I3nk one matrices: 

I 0] I , 
I , 

8 = [11 A]. 

24 Suppose A ;5 an m by n malri~ of rank r . Its reduced ..citel"" form is R . 0". 
scribe e~OC1ly the malri.~ Z (iu shape and all ils entries) that comes from ,raIlS· 
posing the reduced row «ltd"" form of R' (prime meanS Ir.Inspose): 

R = rrer(A) and Z ... ( rn:f( R'))'. 

, 
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2S Instead of transposing R (Problem 24) we could transpOSe A fi rst. Explain In 

ooe line why r = Z: 

Y := rrt'r(A' ) and r:= rrel(Y' ). 

26 Answer the same question~ as in Worked Example 1.1 B for 

[' , , '] A = 2 2 4 4 
I e 2 2 

[ ' ~' 2 1 A= 0 2 -c· 

27 What is the nullspacc matrix N ((:()ntaining the special solutions) for A . 8 , C1 

A=[I I] and 8 = [~ ~] and C =! I I II. 

THE COMPLETE SOLUTION TO AX = 8 • ),4 

TIle last sectioo totally solved Ax = O. Elimination convened the problem to Rx "" O. 
~ f...., variables ... ·ere gi""n spttial valUC$ (0"" and U'ro). "Jlw:n the piVO( variables 
,,-ere found by back substitut ion. We paid roo al1ention 10 the right side b because 11 
staned and ended as 7.ero. ~ solution X was in the null space of A. 

Now b is 1101 zero. Row operat ions on the left side must act also on the right 
side . One way to ol)!anize tllat is to add b 115 lin txtrIJ co/limn of I~ 1fUIIriz. We u..p 
the same example A as before. But ... "C .... ugment ·· A with the right side (bl . b;z.b,) = 
(1. 6. 7): 

[ : : : :] [;: ] = [:] :::!,,'" 
1 3 16 ' 7matm 

" 
[" , "] 0 014 6 = [A b ]. 

I 3 I Ii 7 

The lIugmenttd millrix is jU1t [A b J. When we apply the usual eliminatioo steps 10 
A. we also apply them to b. In this e~ample ... ·e subtn>el row I from row 3 and then 
subtract row 2 from row 3. This produces a compln" row of ::.eroJ: 

[
' 3 , '] ["] ['] hM "" [" 0 " ] o 0 1 4 Xl = 6 augmented 0 0 I 4 Ii ",,[ R d] . 
0000 X, 0 matrix 0 000 0 

" 
That very last zem is crucial . II means that the equations can be solved: the third 
equalioo hM become 0 = O. In the original matrix A. (he first row plus the 5eCOfId 
row equals (he third row. If the equatioos an: CQfIsistent. this muSt be true on the right 
side of the equations also! The aJl · imponant property on the right side was 1+ 6 = 1. 

, 
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Here are tlie wnc augmented matrices for a gcnernl b = (bl.l>:!. bl): 

[
" 0 2 . , ] [" 0 2 " ] 0 014h ......... 00t4b. . 
t316 b) 0000 b) - b1 - b1 

Now we gc1 0 == 0 in lhe Ihird etjualion provided h)-h l -1>1 = O. This is hi +1>1 = h 

0"" Particular Solulion 

Clwost Iht fru ,wioblts 10 ~ Xl = .r. = O. llK-n lhe etjualions give the pi'lOl vari· 
abies XI = 1 and X ) '" 6 . llK-y are in the lasl column d of lhe redo.w.:ed augmenled 
millri~. "The code It = partie (A. h) gives Ihis panicular solulion (call ilX,) 10 Ax = b. 
Fint A and b reduce 10 R and d . Zero rows in R mUSI also be zero in d . 1lIcn lhe r 

pi'lOl variables in x are laken dil'ttlly from d . because the pivot columns in R contain 
the idenlily matrix. After row redu<;tion we are just solving I x = d . 

N(IIice how we cIwoJe the f",., variables (ItS zero) and sol,'t for lhe piVOl vari

ables. After lhe row reduction 10 R. lhose SICPS are quic k. Wl1cn tl1c f",., "ariables are 
uro. the piVOI variables for x, arc in Ille exira column: 

Thf> partkular &OIIll;On so/.'t~ Ax p = b 

The M - r spuitll wiul;oMS sO/'V" Ax " = O. 

In thi s e~ample II1c JIIIniculaT oolulioo is (1.0.6.0). 1lIc lWO special (nuJlspact') so
lulions to Rx = 0 COme from lhe tWO free columns of R. by reversing signs of 3.2. 
and 4. P/etHe lIorin how I wrilr '''e wlftpkle , tlIulioll x , + x . 10 Ax = b: 

Qutllion Suppose A is a square invtn ible matri~, 1ft = M = r. What are x , 
and x .? 

AM,.." "The pan ic ular SOlution is tl1c one and OIIly solulion A- tb . "There are 
no special solutions or free variables. R = / has no zero rows. "The only veclor in the 
nullsJllltt is x" = O. 1lIc complete solution is x = x , + x . = A -I b + O. 

This was tl1c s itualion in ChapleT 2. We didn'l menl ion lhe nullspacc in thaI chap
ter. N (A) conla ined onl y lhe zero ¥«tor. Reduction goes from [ A b l lO [I A- Ill ]. 

"The original Ax .. b is reduced all II1c way 10 x ,., A - l b. This is a special casoe here, 
bul square in''tnible malrices are Ille Ones we Ott """I oflrn in pracri.,.,. So Illey go! 
lheir own chapler al the SIan of Ille book. 

For . mall examples we can put [ A IJ 1 inlO red"""ed row ecl1clon fonn. For a 
huge malrix, MATLAB can do il bellrr. Here is a small example wilh foll w llltWI rank. 
BoIh columns have pimts. 



Eumple 1 

A ~ [: ;],., . ~ [~] 
-2 -3 hJ 

This rondilion puIS b in the rolumn spa« o f A. Find lhe comp"",,, x .. x p + x •. 
Solution Usc. the augm.nted matrix. ",'ilh its e~tnil rolumn b. Elimirtalion sublracts 
I"QW I from row 2. and adds 2 times..".. 1 10 ..".. 3: 

[ ' , 
-~ -i 

.,] [' , b:z- O I 
h, 0 - I 

"The laSI e<juation is 0 .. 0 provided " ) + b , + b1 = 0, This is the condilion 10 ptlt b 
in the rolumn spocc: then the system is SQlvable. "The rows of A a<kI 10 the zero .."... 
So for C(>IlsistellCY (these. are equalions!) the entries of II muSl. also add 10 zero. 

This example has IK) free variables and 00 special SQlulions. "The nullspace s0-

lution is x. = O. "The (ooly) panicular SQlution x p is at the top o f the augmented 
wlumn: 

If bJ +bl + b:z is not 7.ero. lhere is 00 solutio n to Ax = b (x p doesn't exist). 
This example is Iypical of the extremely importanl case ... 'hen A has foil col"",,, 

milk . Every column has a pi''<:>I . TM rlmk is r = II . "The matrix is lall and thin 
(m ~ II ). Row reduction ptll$ I at the lop. when A is redocal 10 R: 

Full column rank R ~ [n by n identily matrix] ~ [']. 
HI - /I rows of zeros 0 

(I, 

"There are no free columns or f~ variables. "The nullspocc matrix is empty! 
We will rolltttlogelher the different ways o f rerog.nizing this type of matn.... 

3 F Every matri~ A with rull rolumn nook (r .. /II has all the<ie proopenies' 

1. All columns of A are p"'ut rolumns. 

2. 1bcrc arc IK) f...,., ,'ariables or special SQlution •. 

3. 1bc nullsp;>cc ,vIAl CUm"onS only the zero .. ,:Ior x .. 0 

4 . If Ax = b has a o;olut,on (II might 001) then il has onl) on, ft>/UlliHl. 

In the language of the next seclion, this A has indt~ndttl/ columtIJ. In Chapter 4 we 
... ·ill add one rrKlre f""'l to the li$1: Tht squ(.n /MIra AT A is Im·tnlblt. 



In Ihis ~ase the nullspace a f A (and R) h.u shrunk to the zero vector. n.. solu
liOil 10 1I .f = b is ~"jQ~ (if it exim). There will be m - " (here 3 - 2) zero rows in 
R. So there are m - n ~ I condition) conditions on b in order to have 0 = 0 in 
those rows. If />j + bt + In = 0 is satisfied. A.f = b has e~acdy one solution. 

The Complete Solution 

TIle OIher e~treme case is full row rank. Now 1I.f = b either has one or infinitely may 
!O)lution •. In this case A is shor, and "'id~ (m .:'0 II). n.. number of unknawns is at 
least the number of njuations. A m.alri~ has / IJII 1'0'" I'Ont if r = m, n.. nullsp;tC(' af 
AT shrinks to the zero ,"«tor. Every row has a pi1/{)(. and here is an example. 

Example 2 There are II = 3 unknowns but on ly two njualions. The rank is r = 
m = 2: 

x+ y+z=3 
x+2y-~= 4 

l1Iesc are tWa planes in xyz sJXICC. TIle planes are not parallel !IO lhey intersect in 
a line . This line af solutions is exactly what elimination will find. The ptJrfk lJwr 
ScNlJUOII ... ill be On~ poillt On 'h~ /ill'. Adding rh, nlJllsptJc, I'IClOI"S.f • ... iII mo .... IJS 
aIollg ,h, II"n, . Then .f = x p + x . gives the whole line of solutions. 

We fi nd x p and x~ by elimination. Subtracl row I from row 2 and then subtract 
row 2 from row I: 

[ : 1 1 
2 -I - 2 '] [' 0 3 2] 1 ... 0 I -2 I = ( R d ]. 

TIlt fX'rlic~l/lr so/urion has fret "'Iriablt x] : O. n.. special !IOlution has x] = I: 

x""""_ comes directly from d the right side: xp = (2. 1.0) 
x_ comes from the third column (free. column F ) af R: s = ( -3.2 . I) 

It is wi5e 10 check Ihat x p and , sati sfy lhe original njuations Axp = b and AI = 0: 

2 + I _ 3 
2 + 2 = 4 

-3+2+ I 
-3 +4-1 

~ 0 
~ 0 

The null spIICC !IOlution x . is any multiple of , . It moves along the line af SOlutions. 
$laning at .f~. PI,IUI ,,(Jfiu ngain ho ... '0 ... rilt ,h, am...,,, 

Complete Solution: 

This line is drawn in Figure 3.3. Any point on the linc could have been chosen as 
the particular !IOlution: _ chose lhe poin t with XJ = O. Tne particular solution is not 
mullipliW by an arbitrary constant! The special !IOlmion is. and you understand why. 

, 
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x = x p + x . 

o 

Line of solutions 
Ax = b 

III particular 
Ax p = b 

Nullsp,ltt 

Ax. = 0 

Figure 3.3 1be complete so!utioo is O~~ panicular solutioo plus all lIulispace solu · 
tioos. 

Now " 'e summarize this shon wide case (m !i ~) of full ro ... ro~k : 

3G e ,-err matrix A with f ull ro ... "mt (, = m) IIu all the<;e propenies: 

1. All rov.s ha''e pi>'()ts. and R has 00 lero rov.s. 

2. Ax = b has 3 solu ti"" for ~vcry right side b. 

J . 1l>c column space is the "'hole space K'". 

4 . 1l>cn: an: n - , = n - m special solution~ in the lIulispace of A. 

In this ca<;e with m pivou. the rows an: ~linearly inde~ndent". III other words. 
the columns of AT an: linearly indc:~ndent. We an: II1o(Ml: than n:ady for the definition 
of linear independc:occ. as soon as ,,'e ~ummarize the fOUT possib il ities - which depend 
on the null<. NOIice how ' . m. n an: the critical numbers! 

Th~ fou , poss;bilil;~s fOl' /i,,",r t qUDtiO/1$ d~pt"d 0" tht "",k r: 

r=m 'rnl r =,. Squu~ tmd i",'uliblt Ax .. b has 1 soMion 
r = m 'rnl , < " Shorl and "'id~ Ax = b has 00 solutions 
, < m 'rnl r=n Tall and thin Az = b has 0 or I solution 
, < m ,rnl , < " Unkno""n sOO{H Ax = b has 0 or 00 solutions 

11le reduced R wi ll fa ll in the sa""" category as the matrix A. In case the pi vot columns 
happen 10 come firs t. we can di splay these four poss ibil ities for R: 

R .. [ / ] [I f' ] (~ ] ( ~ ~] 
r= m =n r = m < n , = n< m r < m. r < n 

, 
i 
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Cases I and 2 haY(: full row rank r = m, Cases I and 3 haY(: full column rank r = n. 
Case 4 is ~ he most ~ntf1I.l in theo<y and the least oommoo in practice. 

NOlt In the first edition of this textbook. we generally stopped at U befon' reach · 
ing R. Instead of reading the complele solution directly from Nx "" d . we found it by 
bar:k substitution from U:x "" t . That combination of reduction to U and back substi · 
tution for x i5 slightly faster, Now we prefer the complete reduction : a single ·T· in 
each pivot column. We fi nd that everything is so much clearer in R (and the CQIllplltcr 
should do the hanl work anyway) thaI we redoce all the way. 

• REVIEW OF THE KEY IDEAS • 

I. The mnk r is the number of pivots. The matrix N has m - r zero rows. 

2. Ax " II is solvable if and ooly if the last m - r equations reduce to 0" O. 

J . One panicular solution x p has all (~ variables etjualto zero, 

4. The pivot variables an: determined after the free variables are cho5cn. 

5. Full column rank r = n means 00 free variables : one solution or oone. 

6. Full row rank r 0: m means one solution if m = n or infinitely many if m < n. 

• WORKED EXAMPLES • 

3 .4 A This '1~tioo conne<:ts elimination_pivot columns-back substitution to column 
space-nullspace-rank-sol\"ability (the full picture). The 3 by 3 matrix II has rank 2: 

"'1 + 2x2+ 3"'l + 5"'4" bt 
Ax ,, 11 is 2x 1+4x2 +8xl +I2x4 " b:l 

3"'1 +6.r2 + 7Xl + 13 .... = III 

I. Rffiuce [A II ) to [U t ). so that A:x = II beromes a triangular system U:x " t . 

2. Find the condition 00 ht . b2. bJ for Ax = II to 1uIY(: a 5Olutioo_ 

J. Describe the column space of A. Wllich plane in R' ? 
4 . Describe the nullspace of A. Which special solutions in K" ? 

5. Find a panicular 5Olutioo to Ax " (0. 6, - 6) and then the complete solution. 

6. Reduce [ U t I to [R d ): Special iiOlutions from R. panicular 5Olutioo from d . 

Solution 

I. The multiplicn in elimination arc 2 and Jand - I. 1lw:ymkc[A lI )intolU t ). 



2. The la~t equatioo show~ (he solvability conditioo bJ + b,. - 5bl = O. Then 0 = 0, 

l. First description: The column ~pace is the plane comaining all combinations of 
the pi\"OI oolumns (1.2.3) and O. 8. 7). since the piVO(II are in oolumns I and 3. 
Second description: The column space contains all ~on wilh bJ +b,. - 5bt = 
O. That makes A x = b SOlvable. SO b is in the column space, All roillmnJ 0/ A 
pass Ihis lesl bJ + bl - 5bt = O. This ix Ihe ~ql/Qlion for Ihe PWM in Iht firSf 
description. 

4. The special solutions have free variables Xl = I. X~ = 0 and then X l = O. x~ = I: 

SpKlal soIUlions 10 Ax = 0 
lack sub!;tilutlon In Ux = 0 

The nullspace N ( A) in R~ contains aJi x. = Ct St+<":!J: = (-2Ct-2q. c[ . -'1. '1). 

5. One panicular solution xp has free variables = zero. Back. substitute in Ux = c: 

Particular solution 10 Ax p = (0.6. - 6) 
Th ls , 'eclor b SIItlslies bJ + b,. - Sb t = 0 

The complete solution to Ax = (0.6. -6) is x = x , + all x •. 
6. In the rNuced form H. the third column changes from (3 . 2. 0) in U 10 (0. 1. 0). The 

right side c = (0.6.0) oow becomes d = (-9. 3. 0) showing -9 and 3 in x ,: 

[
' 2 

[Url = OO 
o 0 

; ~ ~ l-IH d l= [~ ~ ~ ; 
00 0 0000 

3.4 B If you have this informalion about the solutions 10 Ax _ b for a specific b. 
what does lhal tell yOll about the shape of A (and A itself)? And p<:>Ssibly about b. 

1. There is exacdy one SOlution. 
2. All solutions to Ax = b have the form x = (} 1 + rf l J. 
l. There are roo solutions. 1 1 
4. All solutions to Ax = b have the form x = [d + r [~] 
5. There arc infinitely many solutions. 

Solution In case I . with ulIClly one solution. A must have full column rank. r = n. 
The nullspace of A contains only the Zero vector. Necessarily m ~ n. 

In case 2. A must ha,'C n = 2 columns (and m is arbitrary). With (ll in the 
nuJlspace of A. column 2 is the ntga/i,·c of column 1. With J: = [} I as a solution. 
b = (column t) + 2 (column 2) '" column 2. 'The column. can't be zero vecton;. 

, 
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In case 3 we only know ll1at II is !lOt in llic column spatt of A. "The rJnk of A 
must be less ll1an m. I guess we know II oF 0, otherwise x = 0 would be a 5Olulion. 

In case 4. A must lIa'"e n = 3 columns. With (1.0. 1) in the nullspatt of A. 
column 3 is the ~gati~ of oolumn I. Column 2 must rIOl be a multiple of oolumn 1. 
or tile nullspace would conlain another special 5014ltioo. So the "",I< o( A is 3 - I :::. 2. 
NecesiVily A has m ~ 2 rows. "The righl side b is column I + column 2. 

In case .5 witll infinitely many solulions. the nullspace muSt wllIain oonzeTO ~ec
Iors. The "",I< r muSt be less tIlan n (001 (ull column rank). and " must be in the 
column spatt of A. We don·t know if e;.t:f). II is in the wlurnn spatt. so ,,·e don·1 

I<nowifr = m. 

3.4 C Rnd tile complete solution x = x l' + x . by forward diminalioo on [A /II ; 

[;;: :][::]-[;] 4 868;! 10 

Rnd numben )'1. )'1.)'J SO Iltat )'1 (row I)+),:! (row 2)+n (row 3) = :.tro roll'. Check 

thaI II '" (4.2.10) salistics lhe condilion )'Ib , + )'1bt + nb, ... o. Why i. Ih is lhe 
condition (or the equalioos 10 be sol~ablc and b to be in lhe column spatt? 

Solution Forward elimination 00 ( A bl prod uces a zero row in [U cl. The Ihird 
equation bcrotroeS 0 = 0 and the equal ions are consistent (and ~""'bJe): 

[

' l , 0 
2 4 48 
4 8 6 8 

: ] - [~ ~ ~ ~ -: ] - [~ ~ ~ ~ -:0 ]· 
10 0 0 2 8 -6 0 0 0 0 

Columns I and 3 contain pivO\s. "The variables .t~ and .t~ are free. If we !iCI those 10 
zero we can solvc (back SUbstitution) (or the panicular solution s I' = (7. o. -3. OJ. We 
see 7 and -3 again if elimination conlinues all the way 10 [R dl : 

[ ~ ~ ~ ~ -: ] - [~ ~ : ~ -; ]-[~ ~ ~ -: -;] 
0000 0 0 000 0 0000 0 

Rlr lhe nullspace !W1 s . wilh II = O. !iCI the free variables X!. x. to I. 0 and also O. I: 

Spedal 5OIuUom '1=(-2.1.0. 0) and I! = (4.0.-4. I) 

Then the complete solulion 10 Ax = II (and Rx = d ) is Xrornplm = xp +CJII +<"";!Il. 

The row. o f A prod U«d thoe zero row from 2(row I) + (row 2) - (row 3) = 
(0. O. O. 0). "The same combinalion (or II = (4. 2. 10) gives 2(4) + (2) - (10) = O. I( a 
combination o( the rows (on lhoe left liide) gives the zero row. then lhe same combina
tion must give zero on lhe righl side. Of course! Otherwise 00 solution. 

, 
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Later we will say this again in diffen:nt words: If every column of A is per· 
pendicular to , = (2, I . - I). then any combination b of those oolumns must also be 
perpendicular to , . OIherwisc b i~ no! in the column sP'K'<' and Ax _ b is no! solvable. 

And OIjain: If :I ;s in the nullspace of AT lhen :I mUSt be perpendicular to every 
b in lhe column spatt. JuS! looking ahead ... 

Problem Set 3.4 

1 (Recommended) Exec ute the si~ steps of Warted Example 3.4 A to describe the 
column space and null space of A and the complele SOlution 10 Ax = b: 

[' , , '] A = 2 5 7 6 
2 3 5 2 

1 Carry om the 5lIme six steps for thi s m..atrix A with nmk one. You will lind ''''0 
conditions On bt.~. b) for Ax = b 10 be !iOlvable. Togelher lhese lWO conditions 
put b into the __ spa« (two planes give a line): 

' JI [" '] [,,] ["] =639 b ""~=30 
4 2 6 h) 20 

Questions 3-15 are 8bOlil the soIulion or Ax _ b. Follow lhe sleps In lhe lUI 10 
x , and Xo. Use lhe augnwnted malrlx .. llh IIl'lI ."Iumn b. 

J Write the rompletc !iOlution as x, plus any multiple of , in the nullspace: 

x + 3),+3z = 1 
2o: + 6y+ 9l= 5 

- .1' - 3),+3,=5. 

4 Find the complete solution (also called the ~"erol w/urion) 10 

5 Under what condition on bl.~. h) is this syste m !>alvable? Include " as a fourth 
column in elimination. Find all solulions when that condition holds' 

.. +2),- 2::= bl 

2x+S)' - 4z=b: 
4x+9), - 8z_ " ). 

, 



6 WJw coodition~ 011 bl. b:2. b). b4 make ~""h system solvable? Find x in that case: 

[! 1] [::]-[~] [i : l] [::] -[~]. 
3 9 12 Xl b~ 

7 Show by elimination that (bl.b,.. bJ) is in the column spact' if b)-2b:2+4b1 = O. 

[
' 3 '] A = 3 8 2 . 
, , 0 

What combination of the rows of A gi.'CS the :tero row? 

8 Which vecton (bt.b,..b) are in the column space of A1 Which combinations 
of lhe rows of A gi~ zero1 

, 
(I) A:: [~ ~ !] 

o , 5 

<I) The Wooed Example 3.4 A re",,1\ed [V c [ from [A b ). Put the multi. 
pliers into L and verify that LV equBI~ A and l.,c equals b. 

(b) Combine the pivot columns of A with the numbers - 9 and 3 in the par
ticular soluti<)fl x". What is that linear combination and why? 

10 Construet a 2 by 3 system Ax = b with pankular solution x p = (2. 4.0) and 
homogeneous solution x. = any multiplc of ( I. I. I). 

11 Why can't a I by 3 system have x p :: (2.4.0) and x . "" any multiple of (1. I. I)? 

12 (a) If Ax = b hIlS two soIutiOflS Xl and Xl. find two solutions to Ax = O. 

(b) Then find IlnOthc:r SOlution 10 Ax = 0 and anoIher solution to .... x OK b. 

13 Explain why the!c arc all false: 

(a) The complete I'Olution is any lirw:ar combination of x p and X •• 

(b) A system .... x .. b Ila$ at most one particu lar solution. 

(c) The soluti<)fl x p with all free variables :tero i5 the shoro:st solution (mini 
mum length Ix l). Find a 2 by 2 countcrexample. 

(d) If .... is in~nible there is no !IOlulion x. in the nul1spact:. 

14 Suppose column S of U has no pivot. Then x, iJ • __ variable. The ~m 
vector (i5) (is noll the only I'Olution to Ax = O. If Ax = b has a $Olution. then 
i\ has $Olutions. 

, 
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I S SuJ.>P05C' I't)W 3 of U has 00 pivot. Then that row is _ _ . "The equation Ux "" c 
is only sol~able provided __ • The equation Ax == /I (iJ) (iJ Il0l ) (miShl IlOl 
M) soh-able. 

Questions 16-20 are abou t lTIlItrl«s of "full rank- , _ m or , _ n. 

16 "The largest possible rank of a 3 by.') matrix is __ . "Then lhere is a pivot in 
e~ry _ of U and R. 'The soIUlion to Ax : II (always aim) (is unique). 
"The column space of A is __ . An example is A = __ . 

17 'The largest possihle rank of a 6 by 4 matri;< is __ . Then 1hcn: is a pivot in 
e~ery __ of U and R. The solution to Ax = II (aJ""Q)"s aiSIJ) (is uni/fIH). 
'The nullspacc of A is __ . An example is A = _ . 

18 Find b)" elimination the nmk of A and also the ran k of AT: 

h[ ; -, 
, 
II , l~] [

' 0 '] and A = t I 2 (rank depends on /f). 
, , q 

19 Find the rank of A. and also of AT A and also of A AT: 

A = [: , '] o , and A=U 1]. 
20 Reduce A to its echelon form U. Then find a triangular L so that A. = LU. 

["'0] A= 6 3 2 I [' 0 , 0] 
3OOA. = 2203. 

o 6 5 4 

21 Find the complete solulion in the form x" + x. 10 lhese full rank systems: 

(a) x+)" + z= 4 (b) 
x+y+ Z= 4 
x -)"+z== 4. 

22 If Ax : II has infinitely many solutions. why is il impossible for Ax = B (new 
right sHk) to ha\"c on1)" """ sol ution? Could Ax = B ha~c no solution? 

23 a.oos.e the number If so llIal (if possible) 1hc ranks are (a) I. (b) 2. (e) 3: 

[' , '] A _ - 3 - 2 - I 
9 , 9 

and B _ [! , '] , q . 

, 
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24 Give examples of matrices A for wllkll the number o f solutions to Ax = b is 

(a) 0 Or I. depending on b 

(b) 00. regamlcss o f b 

(c) 0 o r 00. depending 00 b 

(d) I. regardless of b. 

25 Writc down all known relations between r and m and n if A ... = b has 

(a) no w lution for sorne b 

(b) infinitdy many solutions for ",·ery b 

(e) c~actly ooc solution for some b. no solution fo r Ot ..... "1 b 

(d) exactly one solution for evcry b. 

Questions 26-JJ are aoo ul Gauss·Jordan elimination (up",·ards Il'l ",·ell a.~ do ... n • 
.. ·ards) and lhe reduced K hrlon OUIlrix R. 

26 Com inue elimination from U to II. Di vide rows by pivots so the new pivots are 
all I. 11len produce teros abo .... · those pi\"(J\s \0 re30Ch II : 

[' , '] andU = O J6. 
o 0 5 

2 7 SUjlPQ5C U is S<juare with n pivots (an invertible matrix). £.xpl",·o " ./r)" II = f . 

28 Apply Gau >s·Jordan elimination to U ... = 0 and U ... .. c . Re30Ch II ... = 0 and 

II ... = d : 

[U O l=[~ ~ ! :] and [U 'l =[~ ~ ! iJ. 
Soh.., IIx = 0 to find x . (ils free variable is X! .. I). Solve IIx '"' d to find x p 
(i ls free variable is '<2 ,. 0) . 

2'1 Appl y Ga uss-Jordan elimination 10 reduce 10 lix = 0 and Rx = d : 

Soh·c Ux = 0 or Rx = 0 10 find x . (f= vari able = I) . What are the solutions 
toilx = d? 

, 



30 Reduct' to Ux = c (Gau!iSian elimination) and then Rx = d (Gauss·Jordan): 

[ ' 0' ']["] ['] Ax '" I 3 2 0 Xl '" .5 = b. 
20 4 9 Xl 10 

" 
Find a particular solution xp and all Ilomoger.eou. solutions "' •. 

3 1 Find matrices A and B with the given properly or explain why you can'!: TIle 

only solution of " x = [1] is x '" [n The only solution of 8x '" [n is 

·=m 
32 Find the LU factoriution of A and the complClc solution to Ax = b: 

33 The complete solution to "x _ [J] is x - UJ +c[t} Find A . 

34 Suppose you know lhat the J by 4 matrix" has the V«tor J = (2, J, 1,0) u a 
basis for its nullspace 

(a) What is the rank of " and tile oomplele solution to "x = 01 

(b) What is the exact row reduced cd>elon fonn R of A1 

, 



INDEPENDENCE, BAS IS AND DIMENSION . 3.5 

This important s.ection is about !he true size of a subspace. There are n columns in 
an m by n matrix. and each column has m components. But !he lrue "dimensioo" of 
lhe column space is no! ~ssarily m Of ~. The dimension is meu uml by CQolnting 
,'","~ndtnl columnJ- and " 'c ba,-e 10 say whal lhal means. We will see lhal lite ,rue 
dimtlUion a/ lite co/umn spact is Ihe ra~k r. 

The idea of independence appl ies 10 any vecton ~ t .. . .. ~. in any VN:tor space. 
Most of thi s S«tion conCentrateS on the subspaces that we know and use-especiall ~ 

!he column spacc in R'" and the null space in R" . In the last part Wc also sludy "VN:
Ion" thaI are no! column vecton. They can be matrices and functions; they can be 
linearl~ independent (or not). First come the l;ey examples using column vectors. 

The final gool is to undcmand a /xJsis for a VN:tor space. A basis contains in
<kpendenl vectors Ihal "span the space". We are at the heart of our subject. and ,,-e 
cannol go 00 wilhout a basis. The four essential i<kas in thi s section (with fi rst hints 
al their meaning) arc : 

L IndtJM'nd.ml \~tors (~OI 100 "",n,') 

2. Spanning II sp:Kt' (nol /00 frt<.) 

J. Uasls for a Splitt (nUl 100 ,,",n)" or 100 I~') 

•• Uimtn, ion of a spaee (the ri~hl nu",hrr of '· .... "' .. sl . 

linear Independenc" 

Our first <kfinition of indcpen<kocc is noI so conventional. but you are ready for it. 

OEFINITION The columns of A arc ii" .... d, illdr/V"Jtnl when the only SOlution to 
Ax '" 0 is .x '" 0 No other combination A.x of lite co/umns , ... .,.$ tht ~ro ""clar. 

With linearly independent columns. lhe nullspace N ( A) oon ... i ... only lhe ""II) """lor. 
Let me illustrate linear independence (and linear <kpendeocc ) with Ihree vectors in RJ: 

I. If three VN:lors arc: ItQ/ in the same pi""". !he~ are independent. No combination 
of ~ t. ' 2. ~) in Figure 3.4 gives zero exccpt 0'1 +0' 2 + O'J. 

2. If three vectors " t. " 2. " ) are in the JclfU plal1t . they are \kpendent. 

This i\ka of independence applil:s 10 7 vectors in l2-dimensional space. If they 
are the coLumns of A. and in<kpcndent. the null space ooly contains If = O. Now we 
choose different words to express lhe same i<ka. The following \kfinition of indepen
<kocc will apply to any K<]ueoce of \"CC1On in any vector space. When the VN:lors are 
the columns of A. the two definitions say exactly the same thing. 

, 
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" 

" '-=- -~ 
., 

., ., 
Figure 3.4 
binalion IIl I 

I nde~ndent ve<:t~ ' 1. Fl . FJ. 
- MI l + IIIJ is (0. O. 0). 

Dependent vectors Ill ,. !P2. IO J. The rom-

DEFINITION The sequence of vectors ~I . . p. is lintflrly indtpu rdt nt if the only 
combinallOll thai gi'"'' the ,cm "ector is OFt +O,z + ' ,+OF. Thus hnear ,ndepen 
(Io:""c meall$ tllat 

If a combinaTion gives O. when the ,,'s are IK)I all zero, the ve<:IQn an: d~~rukm. 

COI'TttI language: '11>e scquell<:(: of vectQn is linearl y independent," Acccplabic 
shone .. !: -n.e v«tor.; are independent." Un",ceptable: "'Jbe matrix ;5 independent." 

A $C(JuellCt': of ,-ectors is either dependent or independent 'They can be combined 
10 giv" the zero vector (with rIOOUro ,, '5) or they can't. So the t ty <jlleStion is: Which 
roml>inat;ons of the vectors give uro? We begi n with SQITIe small exampl~ in H2, 

(a) The veel""", (1.0) and (0 . I) are in<kpendent. 

(b ) The vectors ( 1. 1) and ( 1.0.00J0l ) are independent . 

(el The veel,," ( I. l) and (2 . 2) are J~~ntk"'. 

(d) The vectors ( 1. 1) and (0,0) are ,/~p<'"drm. 

Geometrically. ( l. I) and (2. 2) are on a line throogh the origin. TIley are not indepen· 
dent. To use the definition. fiJld numbers X t and X~ so that X t ( I. I) + x j{2. 2) = (0. 0). 
Thi s is the same as $(lIving A x = 0 , 

The columns a~ dependent exactly when IhN"t' is a _::.no ,·tCla, i" Iht ""I/spare. 
If one of the u's is the .ero V«IOf. indelKndence Itas no chanc:e. Why nor? 
Now mo'"C (0 (hrt'e v«wrs in Rl . If one of them i~ a multipt.. of another one. 

t~ v«to .... a~ dependent. But the complete tcst in"olvts all thrt'e ''«tOl"5 a1 O(l(."C. 
We pul them in a matrix and Ity to so"'C Ax = O. 

, 
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bample 1 lbe columns of A an dependent. Ax = 0 lias a nonzero solution: 

TIIc rank of A is only r == 2. IrJdt~1Ilielll colulWls ",olOld give foil column ront r = 
n == 3. 

In that matrix the rows are al!iO dependent. Row 1 minus TOW 3 is the zero TOW. 
For a U/1Ull"l' matrix. we will show llial dependem oolumns imply dependenl rows (and 
vice versa). 

Question How 00 you find Ihal !iOlution to Ax = 01 1be systematic way is elimina· 
tioo. 

A=[~ : n reducestoR==[i ! -!l 
TIIc solution x = (- 3. 1.1) was exactl y the special solution. It shows how the f= 
oolumn (column 3) is a combination of the p;VQl columns. Thai kills independence! 

J H TIIc colunms of A are iOOcp<"ndem exanly when the rank is r = n. Tllcre are n 
pivtJls and no free "anables , Only x = 0 i, in lhe null,pace 

One case is of spttial impon.o.nce becau.., it is clear from lhe sian. Suppose: 
..,,-en columns lIave Ii"e oomponents eacll ("I = S is ic" than n = 7). lben the 
columns mUil be dt~ndenl. Any ..,,'en vcctors from R~ are dependent. lbe rank of 
A canllOI be larger Ilian S. 1lw:-re canllOl be more than he pivOts in five rows, The 
system Ax = 0 has al least 7 - S = 2 free variables. !iO it has nonzero soIUlions- " 'hich 
"""an, thai the columns an dependent 

31 Any sct of n "ectors in R" mil>! be linearly dcp<"ndenl if n > III. 

The matrix has rno.:>re oolumns than rows - it is sllon. and wide. llIc columns are cer
lainly dependem if n > "I, because Ax = 0 lias a nonttro !iOlution. lbe coluntns 
miglll be dependenl or mighl be independent if n !i m. Elimination will reveal lhe 
pivot columns. It ;3 lhou piVOI rolumru Imlt O~ ;1Ilie~ndenl. 

NNe Another way 10 describe linear independence is IlIis: "One "eclor i. " comhi
nillion oj the other '·eclors." llLat sounds clear. Why don'l we say this from the ~Ia"~ 
Our definition was longer: "S()me combinolion g;,"<", Ihe u ro ' "<"Clor; other than Ih~ 
Ir;";(11 combinatitm ... ·ith n'ery J: = 0." We must rule OUI lhe easy way to gel (he '-"m 
veclOr. That trivia! l"Ombination of ttros gi'ICS evel)' author a headache. If one ,'eclor 
is a combination of the olhers. lliat veclor IIB~ CQCflicielll J: = 1. 

, 



The point is. our definition doesn't pick out one particular VC'CtOr as guilt~. All 
~olunlllS of A IU'e tll'ated the same. We look at Ax = 0, and it has a nQIIZCTO solution 
or it hasn't In the end that is hene, than asking if the last oolumn (or the fim. or a 
column in the middle) is a oombination of the Olhcrs. 

YectOI"$ thai Span ol Subspace 

The fiTSl subsp:oce in this book was tt.. oolumn space. Staning with oolumns '1 , '" • 0 •• 

the subs~ was filled out b~ including all combinations XI 01 + .. . + ...... T/u; ro/umn 
5ptJCC =;$/1 0/011 comb;no/;QIU Ax of/he collflllllS. We now introduce the single 
word MspanM to describe th is: The oolumn space is lpanntd b~ the 001umn5. 

DEFINITION A set of \"«um spons a space if tbo:ir Ii....,,,, oombinations fill lhe 
splICe. 

Example 2 "I = [~] and'2 = [n span the full two-dimensional space Rl . 

Example 3 " I = [~J. ' 2= [n . )= [j] also span the full space R2. 

Example 4 "'I = [:] and "'2 = [ :::: :] onl~ span a Ii...., in R! . So does "' I b~ 
itsel f. So does "'2 b~ itself. 

Think of two vectors ~oming out from (0. 0, 0) in 3.dimensional space. ~ner_ 
aU~ the~ span a plane. Your mind fills in thaI plane b~ taking linear oombinations. 
Mathernat icall~ you know other possibilities: IWO vectors spanning a line. three vec
tors spanning all of RJ. three vectors spanning onl~ a plane. It i. """n possible that 
three "eclOTS span onJ~ a line. or ten vectors span only a plane. 1lley art' cer1ainl~ not 

indc~ndcnt! 

The ooLumns span the oolumn space. Hell' is a new subspace- "'lriclr is spoMtd 
by lire rows. Tire co",biMoons 01 lire rows prodUCt Ilrt "row space". 

DEFINITION 1lle ...,w spoct of a m~lri. is the wbsP"Ce of KR spanned by the rows. 

The rows of an m by n matrix have n components. They IU'e vectors in R"
or they would be if they well' wrillen as oolumn vectors. 1llert' is a quic k way to fix 
that: Trons{lOse lire motrix. InSlead of the rows of A. Look at the oolumns of AT. Same 
numbers, but now in oolumns. 

Tire row spact 01 A ~ C(AT), It u tlrt coI .. ",n spact 0/ AT, 11 is a slibspace 
of R· . TIle vt'Ctors that span it art' the oolumns of AT, which art' the rows of A. 

II:: tal 
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Example 5 

[' 'J ; [' 2 3] A= i ~ and A = 4 7 S . Herem =3 and n =2. 

The rolumn space of A is ~P'l"ned by the two rolumn! of A. It i§ a plane in 
R ). TIlt: row ,puc~ of A is .ponned by Iht Ihru rows of A (which are rolumns of 
AT ). This TOW space is all of R 2. Remember: The TOWS are in R~. The rolumns are 
in ROO . Same numbers. different ~ectors, different spaces. 

A Basis for a Vector Space 

In ~ .. y plane. a set of independent ."«tors could be quite smal l- just one ~ector. A 
set that spans the .. y plane could be large- three ~ectors. or four. or infinitely many. 
One vector woo't span the plane. ThTtt ~ectors woo't be independent A ··#xls;'·' is 
just right. We want t nollgh illdt ptlldt nt IVC~ /0 spon the spact, . 

DEfiNITION A #xl.i. for a veclor space ;s a sequence of , eclOrs that has two prop
ertle~ at QIICe, 

I. The ,·ectors are Ii,m.rly indtptndmt. 

2. The "«w rs s,,,,,, tht .pace. 

This combination of propen ies is (undamenta l to linear algebra- Every vector ~ in the 
space is a combination of lhe basis vectors. because they span the space. More than 
thai. the combination that produces ~ is uniqut. because the basis """tors . t ....• • ~ 
are independent 

There Is OM lind only one way 10 ,,'rllt p as a comblnallon of Ihe basis ,·« IOrs. 

Reason: Suppose. = at't + ... +a~ .~ and also , = ht ' I + .. ·+b., •. By subtraction 
(a t - ht) ' t + ... + (a. - h~).~ is the zero vector. From the independence of the , 's. 
each " i - hi = O. H"nce " j = bj. 

hampf.e 6 Thc columns of I = [~ ~] produce the "standard basis" for R 2. 

The basis V«IOrs j = [ ~] and j = [~] are in<.kpen<.km. Thcy span R 2. 

E~rybody thinks of this basis tim. The vector i goes across and j goes straight up. 
Thc columltS of the 3 by 3 identity matri~ are the standard basis i. j. k . Thc columns 
of the " by II identity matrix give the "standard basis" (or R~. Now we find ocher 
b=. 

malenal 



hampll' 7 
for N": 

(Imponanc) "The columns of II"Y im'trtiblt n by " tn(ltriT gi,'e a basis 

and A=[: o 0] , 0 , , 
When A is in'·ettibk. ils oolumn~ are i~pendr:nt "The only SQlulion to Ax .. 0 i~ x = 
O. "The columns span lbe whole space N" - because every vtclOf b is a combinacion of 
lhe columns. Ax " b can always be SQlvcd by x .. A- lb. Do you ~ how e'"tl)'lhing 
comes together for invettibk mauic~? Here it is in one sentence: 

I I TIle "",",10m. ~I. .~. are a /Nu1'IM K" exaclly "'hen lhe} are Ihr columns of 
II" " by " im"tffibit m!llm. TIm, N" has infinilel) many different ~s_ 

When any macrix has i~pendr:nt columns. lhey are a basis for irs column spac-e. 
When che columns an: dependem. ".., keep only che piVOI colum/U- che • columns wich 
pi,·OI$. "TlK-y are independenc and they span che col umn space . 

l ie Thr pi..,,, rol"" .... 01 A IIrt Ii /HJ~js fo. it. column rpo.u. ,-..., PIvot "'," of A 
are a baSI' for It' ,..,.. 'pace, So an:: the p'H~ I'O"S o f IC, tthelon foem R. 

hampll' 8 This matrix is not invcttibk. [u columns are not a basi s for an)·thingl 

Co lumn I of A is the pI\'Ot column. Thai column alQftl: i, a basis for its column space , 
"The S«Ond column o f A would be a different basis. So would any oonuro muhiple 
of thaI column. There is 00 shonage of ba5eS! So we often make a definite choice: 
lhe P;\'OI column •. 

Notice thaI the pivot column of lhi s R ends in zero. That column is a basis for 
the column space of R. bul it is 1101 even a member of the column space of A. The 
column spaces of A and R are different Tneir bases are different. 

"TlK- row space of A is Che S-ame as Che row space of R. h conlains (2.4) and 
( 1, 2) and all other muhiplcs of Ihose "C<.:ION. As always. there are infinitely mallY 
bases to cltoosc from . I Chink lhe most natural choice is to pick die nonzero rows of 
N (rows wi,h a piVOl ). So lhis matrix A with rank QftI: has only one vector in the basis: 

Basis for lhe column space: [ ;] . Basis for the row sp:lCC': [ ~] . 

The next Chapter will come back 10 the5e ba5eS for lhe rolumn space and row space. 
w~ are happy fifS1 with examples where lhe siluation is clear (and the idea of a balii. 
is sCili f1CW). Tne f1CJU examp!.,: is larger but Still clear, 

, 
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Example 9 Find bases for lhe column and row spares of a rank IWO malrill: 

R : [~~!~l 
Columns I and 3 are lhe pivot columns. 1lIey are a basis f<>r lhe column space (of R!). 
The veclors in thaI column space all ha,'c the fonn b == (ll . Y. 0). 1lIe column space 
of R is lhe "llY plane" inside Ille full 3-dimensional llyZ space. ThaI plane is no1 Rl, 
il is a subspace of Rl . Columns 2 and 3 are a basis for lhe same column space. So 
are columns I and 4. and also columns 2 aoo 4. Which pairs of columns of R are not 
a basis for ils column s~? 

The row space of R is a subspace of R·. 1lIe simplest basis for lhal row space 
is the IWO nonzero rows of R. 1lIe third row (the zero '=Ior) is in the row space 100. 

Bul il is no1 in a OOS;S for tile row space. 1lIe basis ve<;tors muSI be independent 

Qu~lion Oiwn five vectors in Rl. how dQ you find a bluis!ar Ih~ spau Ihty . pau? 

Firs! an",'er Make them lhe rows of A. and eliminate 10 find lhe nonzero rows of R. 
Mcood lI/1S\1u Pulthe live vectors into the columns of A. Eliminate to find tile p;vor 
columns (of A nor R!). 1lIe program colbasls uses the column numbers from pil'COl. 

Could anorller basis have more veclOrs. or fewer? This is a crucial qUC5lion wilh 
a good answer. All bases /01''' ~elor space contain fhe Ulme number 0/ ~eton. This 
number is the "dimension" o/ Ihe spoee. 

Oi....,nsion of ~ Vector S""ce 

We ha"" to prm" whal was just staled. There are many choices for the basis vectors. 
but the number of basis ve<;tors doesn't change. 

3l If ~I ..... ~ .. and "' I .... . "'. are both ba!oC< for lhe same 'eclor space. tllen", = n. 

Prool Suppose: th~t tllere are more "OS Ihan ~·s. From 0 :> "' we want to reach a 
contradiction. The D'S are a basis. so "' I muit be a combinatioo of the u's. If "' I 
equals "IIP I + ... + " .. I POI' thi s is the first column of a matrix mulliplicalioo V A: 

We don', know each aij . 00' we know lhe shape of A (il is m by 0). 1lIe second 
,'ector " 1 is also a combina,ion of the II·S. 11Ic coefficienlS in that combinal ioo fill 
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the second oolumn of A. The key is tllat A has a row for e~ry ~ and a oolumn for 
C,'cry III . A is a short wide matrix. siJICC: " "" m . TIr,,., iJ II ,,,,,,~ro wlII/iOll /0 
Ax = O. Then V A.r = 0 whkh is W x = O. A CombiMlilJll of lire III 'J Ili" tl ztm! The 
III 'S could nQI bt a basis - SQ we Cannot ha"e " > m. 

If m >" ",e uchange the . 's and ", 's and repeat the same steps. The only w'y 
to aV()id a contradiction is to ha~ m = n. This completes the proof tllat m = II. 

The numbtr of basis v«tOtS depends on the spI!C'e-DOt on a particular basis. 
The number is the same for every basis . ~nd it lells how many "degn:es o f fottdom" 
the Vtttor space allows. The dimension of R" is n. We now introdu« the impo<tant 
word dim,,,. io" for 0100 v«lor spaces 1011. 

DEFINITION The dimellSio" of /I spact i5 the number of ,«lor; ;11 ever) ba" •. 

This malches our intuilion. The line through ~ '" (I. S. 2) lias dimc:llsion~. It is a 
wbs~ with Of\e vector ~ in lIS basis. Perpendicular 10 that line is the plane 
x+5y+2z-= O. This pi""" has dimension 2. Toprovc ii, " 'e filld. basi. (-S.I.O) 
and (-2. 0 . 1). The dimension i. 2 because the basi s containSlwo veel""". 

The plane is the nullspaox o f the matrix A = [I S 2]. which has two f= 
variables. Our basis v«lon (-5.1.0) alld (-2.0. I) are lhe "special solutions" to 
Ill' = O. The ne~t .section shows thai the n - r special wlutions always gh'c a basis 
for the nullspatt. So N (A) has dimension n - r. Here we emphasize Qnly this: All 
~s for a spaox conmin the same numbtr Qf vec\Qr$. 

!VOlt alJ.ol.l 1M IflIrgUllge lJj lintar ulgebro We never say "the rank of a space" or '1he 
dimension of a basis" or 'lhe basis of a matrix" . Thosoe terms have 00 meaning. It is 

the dilfl'"~WI of tht Col"lfIlI spIIC' that e<]ual s the Ilmk of flr t IftlJIrix. 

8aSti for Matrix Spac~ and function Spaces 

The words " independe"",," and "bas;s" and "dimension" "'" nQI at all re~trktw to 001. 
umn V«\orS. We can ask whe,her th= 3 by 4 maHices A t. "2. AJ are ill<lependenl. 
They are members Qf the spaox of aU 3 by 4 matrices: some combinalion might give 
,he zero matri". We un alSQ ask the dimension of thai ma,ri;t space (it is 12). 

In differential e<]uations , the space Qf !IOlu'ions (Q d!y/dI1 = )" contains fune· 
lioos. One basis is )' = r and y == ~_z. Coontinll the basis functions gives (he 
dimension 2 (for the space Qf all wlu'iQlls). 

We think matri~ spaces and function spaces are opIionaJ. Your class can g<l past 
this page - no problem. BUI in SOme way. you ha,..,n ·1 gQ1 the ideas Qf basis and di. 
mension straig,tu until you can apply 'hem (Q "vec'ors~ Q100 than column vectors. 

M.llrix spaces The vector space 11-1 contains all 2 by 2 matrices. Its dimension is 4. 
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Those matriCf:S are li nearly independent. We are nor looking 31 lheir columns. bill al 
lhe whole matrix . Combinations of those four mattices can produce any matrix in 1\1. 
SO they span the space: 

This is zero only if lhe c ·s are all zero-which provt'!; independence. 

TlIe maU"ices 11 10 Al. 11 4 are a basis for a subspace - the upper triangu lar matri
ces. It. dimension ;s 3. A t and A. are a basis for lhe diagonal matrices. Wh at is a 
basis for the · sy mmettic malr"i«s? K«p AI and A. , and throw in A l + Al. 

To push this fllnher. think about the Space o f all n by n malrices. For a basis, 
choose malrices that ha,'e onl y a si ngle DOOZero cnlly (Ihal enlry is I). TlIere are til 
positions for that r. SO there are "l basis matricc::s: 

The dimension of the ..-oole " by n matrix space Is ,,1. 

The dimension or the 5Ubspace or upPfr trianguu.r matrN:1'li Is !n1 + !". 

The dimension or the subspace or symmtlrie matrices is !n2 + ~n . 

Funct ion spaC1'S TlIe e<[lIations d ly/dx l:O and d 1y / dx 2 = _y and d 1y/ dx 2 =y 
involve: the stCOf>Ii <krivRtivt. In calcul us we solve: to tind the functions y{x) : 

y~: 0 
)"':-y 
)"~ = y 

is sol~ed by any linear funclioo )" = rx + d 
is solved by any oombination y : esinx + dcou 
is solved by any oombination y .. rr + d e-'. 

TlIe sewnd solutioo space has 1"-0 basi s functions: s in x and <Xli X . TlIe Ihim 
solution spac<' has basis functions r and t- · . TIle first space has X and 1. It is the 
··nll 1I5p3C('·· of the sewnd derivutive! TIle dimension is 2 in coch caSC (Ihesc an:: SCCQnd

order e<[lIations). 

TlIe SOlutions o f y N "" 2 don·t form a s.ubspaoe- the right side b = 2 is not zero. 
A panicular solution is y(x ) = x 2. "The complete solution is y(x ) = x2 + ex + d. All 
those functions satisfy 1" = 2. NOIice the panicular solution plus any function ex + d 
in the null spaoe. A linear diffen:ntial e<[uation is like a linear matrix equation Ax = b. 
But "'"C sol\"C ;t by calculus illstead of linear algebra. 

We end he ... with the space Z that ~ontains only the zero vectO<". 1lw: dimellsior, 
o f this spllCC is :uv. The empty lei (containing no Ytt10r5 at all) is 0 basis. We ~an 
never allow the zero vn:tor into a basis, bcc.u5e then li near irw;iep"lIdence is l(>!;t. 
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• REVIEW OF THE KEY IDEAS • 

I. n.c column~ of A """ illlk~"dtlff if X = 0 is the only solution to Ax = 0, 

2. n.c vectors P, •.... P, spa" a space if their oombinalion~ tili thaI space. 

3. A Ixlsis ~onsjJIS 0/ /i-uari, illdf~ndt"t l'ec/~ that spa" rhe space. Every vec
lor is a .. "ique combination of the basi§ vectors. 

4. All bases for a space 1IlI>'e lhe same number of veclors. This number is lhe di
MtlfJio" of tbe space. 

s. n.c pivoc oolumn~ a~ a basis for lhe column space and the dimension is r. 

• WORKED EXAMPLES • 

l.S A Sian wilh lhe ''eC1OrS PI = (I. 2. 0) and ul = (2. 3. 0). (a) A~ lbey linearly 
independent? (b) A~ they a ba~is f~ any space? (c) Whal ~pacc: V do lhey span? (d) 
Whal is lhe dimension of thai ~pacc? (f) Which malrices A have V as their oolumn 
space? (0 Which matrices have V as their n .. H$pace? (II) ~ocribe all vectors ' J that 
Complele a basis " 1. ' l.'J for RJ. 

Solution 

(a) "and .~ an: independent - the only combination 10 give 0 is 0. , +0'2' 

(b) Yes. they a~ a basis f~ whatever ~pace V lhey span. 

(e) That spa<:(' V contains all vectors (x.y. O). It is the.r)' plane in Rl. 

(d) n.c dimension of V is 2 since the basis contains tWO vectors. 

(e) This V is lhe column space of any 3 by n malrix A of rank 2. if every column is a 
combination of li t and'l. In panicular A could just have columns 't and "l. 

(f) This V is lhe nu lispace of any m by J matri:< H of rank I. if every row is a mu lliple 
of (0. O. I). In panic .. lar lake 8 = [0 0 II. n.cn 811 t = 0 and 8 111 = O. 

(g) Any third v«tor OJ = (II. b. e) will oomplele a basis f~ Rl provided c "#- O. 

3.S 8 Sian wilh lh~ independent vectors "' t. "'2. "'J. Take oombinalions of lhosoe 
V«1Ors 10 produce lit . 111. oJ. Write lhe oombinations in matrix form as V = WM: 

' I = "' I + "' ~ 
'I = "' I + 2"'1 + III) 

' J= "' l+e"' J 
whkh i. [,,"" 1 = [ . ,., . , 1 [i i : 1 
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Whal is lhe leSion a malrix V 10 see if ilS wlumns are linearly indcpemlen(! If c I' I 
show !hat V,. ~ ! . ~J are linearly independent. If c '" I show Ihal Ille o S are linearly 
dependenl. 

Solution The test on V for indepemlence of ils wlumns was in our fil'$t definition: 
The nul/space of V musr contain onl)' lire u m w a or. Then x '" (0 . O. 0) is the only 
combination of the columns that gives Vx ", «'ro veclor. 

In c '" 1 in our problem. we can see defNooence in lWO ways. First. ~ t + uJ will 
be llle same as U!. (If you add " 1 + " 2 10 " 2 + Ill ) ),ou gel " 1 + 2"1 +"J which 
is Ol.) In Oilier words 0, - U! +.J = O_ which says Ihal the u's are not independent. 

The OIher way is 10 look alllle nullspacc of M . If c = 1. the "ector x '" ( 1. -I . 1) 
is in thai nUll spacc. and Mx = 0 , TIlen cenainly WMx = 0 which is lhe same as 
Vx = O. So the v's are dependent. This spedfic x '" (1. - 1.1) fn:>m the null space 
lells uS again thai " I - U2 + 0) = O. 

Now suppose c ",. 1 TIlen lhe malrix M is in~eniblc. So if x is any mmzem 
I'ecro, we know thai Mx is flOIl«'ro, Since lhe .,·s are given as independent. w'e funher 
know that WMx is flOIllero. Since V = WM. this says thai x is nor in the nulispat.., 
of V . In other words VI . • l . Ul arc independent 

The genellil rule is "independent .·s from independenl ., ·s when M is in~enible". 

And if these v«tors arc in RJ. they are not only independent _ they are a basis for RJ. 
"Sasis of o S from basis of ., ·s when the change o f basis matrix M is im'enible." 

1.5 C SuJlll'OSC . , . . . .. u. is a basis for R" arwj the n by " malrix A is invenible. 
Show that A.t .... . Auo is also a basis for RO

• 

Solution In mnrrir languagc: Pulthc basis ''e<:1ors Ot . .... 00 in the columns of 
an invenible(!) malrix V. Then A . , . .. . . A •• are tile columns of AV. Since A is 
invenible. so is A V and iis wlumns gi,'c a basis. 

In ,..,cIOT /c",gU<Jge: Suppose Cl APl + .. , + c.,h . = O. Thi. is A. = 0 with 
u ;; Ct Ot + .. . + c • • • . Multiply by A -t !o get V = O. By linear independence o f the 
,·s. all Cj = 0, So the Ap's are independent. 

To show that the A~'s span R· . solve Cl A. j + .. , + c. A • • ;; b which is the 
same as Ct .t + ... +c. ~. = A- Ib, Since the p's Ilfl: a basis. this mUSt be solvable. 

Problem Set 3.5 

Questions 1- 10 a~ abou t linear Independence and linear dependena. 

1 Show Ilial ~ l • • 1. UJ are independent but Pt. '~. PJ. o~ are dependent: 
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2 (R<:«)m"""Nkd) Find lhe I~sl possible nUnl~ of independent vectors among 

3 Prove thaI if a _ 0 or d _ 0 or f _ 0 (3 ca'le!i). lhe colunln~ of U "'" ckpendent' 

[ ' b 'J U= 0 de. 
o 0 f 

4 If a.d. f in Question 3 "'" all nonu:ro. show thaI the only solution to Ux = 0 
is X = O. Then U has independent columns. 

5 Decide the ckpendcncc or independeocc of 

b 

( a) lhe .. eclor.; (I. 3. 2) and (2. I. J) and (J. 2. I) 

(b) the \'CCtOl'S ( 1. -3. 2) and (2. I . -3) and ( - 3.2. I ), 

Choose th= independent colllnln. of U. Then make two ocher choices, Do the 
sa""" for A. 

[' ) , 'J U= 0 6 7 0 
o 0 0 9 
o 0 0 0 

o 6 7 0 

[
' 3 , 'J 

andA "' 0009 ' 
4 6 8 2 

7 If _ I. " 2. " ) "'" indep"ndent ve<;tors .• how that the diffCTellCt'S 't = "2 - " 3 
and P2 = " t - " J and . ) = .. , - " 2 "'" de~ndMI_ Find a combination of the 
, 's that gives zero. 

8 If . ,. " 2 • • ) are independent ve<;tors. show that the sums ' t = - 2 + " J and 
pz = .. , + . J and PJ = . , + . l are illlle~lIdtnt. (Write c, PI +C2 Pl +C) ' J : 0 
in tenns of the .,·s. Find and solY~ equalions for the c',,) 

9 Suppose ' I. ' 1. PJ. p. are vectors in RJ 

(a) These four ve<;tOl'S "'" dep"ndcnt because 

(b) The two vectors " and ' 2 will be dependent if _ _ ' 

(e) The .'ectOl'S" and (0.0. 0) are dependent becausc __ , 

10 Find t" 'O independent vectors on the plane .< + 2y _ lz - I _ 0 in R', Then find 
thn-e independent \'CCIOfS. Why 1101 fou r1 This plane is the nullspacc of what 
rnatri~? 

, 
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~tlons 11- 15 are abou t t~ space splInntd by a KI of ' -ecton. Takt a ll linear 
combina tions or tbe nnors. 

11 Describe die subspatt o f Rl (is it a lin.e o r plane or R) ?) spanned by 

(a) the two v=ton (1. I. - 1) and (- 1. - 1. I) 

(b) !be three v«ton. (0.1. 1) and (1.1.0) and (O.O,O) 

(e) the columns of a 3 by .5 eche lon matrix with 2 pivots 

(d) all vectors with positive components. 

12 The "Ktor b is in the subspace spanned b~ the columns of A when !bere is a 
solution 10 __ • The vector C is in the row spa«' o f A when thcre i$ a sollllion 
~ 

True Of false: If the zero vector is in the row s~. the rows are dependent. 

13 Find the dimensions o f these 4 spaces. Whicb \wo of the spaI'eS are the same') 
(a) column space of A. (b) column s~ of U. (e) row space o f A. (d ) row 
space of U: 

14 Choose Jl "" ( ... I, ... l .... ), .... ) in M;4. It has 24 ..,arrangements like ( ... l, ... I, ... l, .... ) 

IS 

and ( .... . ... ) . ... 1 . ... 2). 1lIose 24 ,-ecton;, including ... itsclf, span a subspace S. Find 
specific VK'IorS ... IiO thai the dimension of S is: (a) zero. (b) one. (el three. 
(d) four. 

0 + .. and v - .. are combinations of 0 and &I, 

of • + &I and • - III . The Iwo pain of vectors 
tbey a basis for !be ~ spa.e? 

Write v and &I U combinatiQns 
the same s~. When are 

Questlollll 16-26 an' aboutthl' req uln'menlS for a basis. 

16 If .1 ..... o. are linearly independent. the spac<' lhey span has dimension __ " 
llItsc vectors are a __ for tbat space. If lhe vectors an: the columns of an 
m by n matrix. !ben m is __ Iltan II. 

17 "i nd a basis for each of these subspaces of R': 

(a) All V«IOrS w~ components a.., «[ual. 

(b) An vectors wt.o::.se components add 10 zero. 

(e) An v«tors that are perpendicular 10 (1.1.0.0) and (1.0.1. I). 

(d) The column space (ill Rl ) and nullspace (in R'j o f U = [ : ~: ~ H 

, 
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18 Find three different bases for the rolumn space of U ~, ~n find two dif
fe~nt bases for the row space of U. 

19 Suppose PI. ~2 ..... lib are six vectors in R·, 

(a) Those vectors (00)(00 not)(ntight not) sJ>3n R~ . 

(b) Those , 'ectors (are)(are not)(might be) linearly independent. 

(c) Any four o f tbose vectors (are)(are not)(might be) a basis for R4. 

20 1lIc rolumnli of It are II vectors from R"'. If they are linearly independent. what 
is the: rank o f It ? If they SJ>3n K'". what is the: rank? If they are a basis for R". 
what then? 

21 Fi nd a basis (or the plane .< - 2y + 3z '" 0 in Rl. 1lIcn fi nd a baliis for the 
intersection of thai plane with the: xy plane. 1lIcn find a basis for al l vectors 
perpendicular 10 the plane. 

22 Suppose the rolumns of a 5 by 5 matrix It are a basis fqr R'. 

(.) 

(b) 

1lIc equation It.r = 0 has on ly the SQlulion .r '" 0 because 

If b is in 11: ' then It.r '" b is 501V3bk because __ • 

Conclusion: It is in'lC'ltibk . Its rank is S. 

23 Suppose S is a S4imen, ional subspace o f Kb. True or false: 

- - ' 

(a) E,..,ry basi, for S can be extended to a basis for K6 by adding one more 
vector. 

(b) Every basis for K6 can be reduced to a basis for S b)' removing one veclor. 

24 U comes from 11 by sublrxling row from row 3: 

[
' 3 '] It '" 0 I I 
, 3 , 

3 '] , , . 
o 0 

Find bases for tbe lWO column spaces. Fi nd bases for the: two row SJ>3CCII. Find 
bases for the IWO nulispact'S, 

25 True or false (give a good reason): 

(I) If lhe columns of I matrix are dependent. SQ are the rows. 

(b) 1be rolumn space of a 2 by 2 matrix is the: same as its row splICe. 

(c) 1be column space o f a 2 by 2 matrix has lhe same dimension as its row 

' p"" 

(d) lbc columns of a matrix are a basis for the colulnn space. 

, 
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26 For which numbers c and d do lhese matrices nave BIlk 21 

[
" , 0 '] /1=00,, 22 
o 0 0 d 2 

QuHtlons 27-32 are aboul spaces wMre 1M ""eclors" are malrlces. 

27 Filld . basis for each of IlleSt: subspaa:s of 3 by 3 malrices: 

(I ) All diagonal matlice5. 

(b) All symmetric mattitts (AT = 11). 

(c) All skew-synunetric matrices (AT = - A ). 

28 Cooslrvcl six linearly independenl) by 3 ochelon matrices UI. _ . . U6' 

29 Find a basis for the space of all 2 by ) malriccs who5c columns add 10 zero. 
Find a bilsi s for the subspace whose rows also add 10 zero. 

30 Show thai IIle six ) by 3 permulalion matrices (Section 2.6) are linearly depen
dent. 

31 Whal subspace of ) by 3 matrices is spanned by 

(I) all invertible mattitts? 

(b) all echdoo mallice5? 

(c) the idenlity matrix? 

)2 find a basis for lhe Sp;tCC of 2 by 3 matrices who5c null space coolains (2. L I). 

QuHtIons J3..37 are allout spaCt'S where the -"'KIIII"$" are fUrKlmll$. 

33 (I) Find all functioos lhal salisfy * = O. 

(b) 0!006e. particular function thai satis6cs * = 3. 

(c) Find all functions lhat salisfy * = 3. 

34 The cosine space . ', COIll.a;nS all rombinations ),(x) = /I cosx+B cos ZX+C cos3x. 
Find a basis for lhe subspace wilh )'(0) = O. 

35 Find. basis for lhe space of functions thai satisfy 

(.) 

(b) 

*-2),= 0 

~_l = 0 
~-' . . 

36 Suppose )'I (X) . )'lex) . )'3(x) = Ihree diffcn:nt funclions of .... The voctor space 
lhey span could nave dimension 1. 2. or 3. Give an cXllmplc of )'1.)'l.)'3 10 show 
each possibility. 

, 
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37 Find a basis (or the Spac<' o( JI'llyllQl1lials p(x) o ( deg= !: J. Find a basis for 
the subspace with pO) ,. O. 

36 Find a basis for the sp"'~ S o( ,"CCtors (0. b. c, d) with a+c+d ,. 0 and also ror 
the space T with a+b = 0 and <" = 2d. What is the di mens ion of the intersection 
s n T? 

39 Write the 3 by 3 identity matrix as a combination o f the OIher Ii,-c permutalion 
matrices! Then show that those livc matrices arc li""arly independenl. (Assume 
a combination gi,'cs zero. and checl entries IQ prove each tenn is :tero.) The 
iiV<' pennutatiQflS arc a basis ((II" the subspac<' Q( 3 by 3 matrices with row and 
column sums all equal. 

40 If AS = SA fQ\" the shift matrix S. show thaI A mUSI have this special form: 

[""][0 '0] [0'0][""] [""] If d ~f 001 = 001 de! thenA = Oab. 
ghi 000 000 glti OOa 

'11Ic subspac<' Qf matrices that commute with the shifl S hll'i dimcnsicm __ : ' 

(a) (1,2. 0) and (0.1. - 1) 

(b) ( I. 1. - I). (2. 3. 4) . (4. I. - I ). (0, 1. -I) 

(c) (1.2.2J.(-1.2. 1). {0.8,O) 

(d) (1.2.2),(- 1,2. 1). (0.8.6) 

4 2 SUpp<l§e A iii 5 by 4 with rank 4 . Show that Ax = b has IIQ solUliQfl when the 
~ by ~ matrix I A b I is inV<'rtible. Show thaI Ax = b iii solvable when I A b I 
is s ingular. 

, 
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DIMENSIONS OF THE FOUR SUBSPACES • 3.6 

llIe main th~m in thiS chap/er connects mnk aoo dimt nsion. llIe mnk of a matrix 
is the number of pivots. "The dimt llJioll of a subspace i~ the number of vectQr$ in a 
basis. We count pivots or we count basis vectOr$.. Tht rant of A rt '"tals lhe dimtNiions 
of all four funJ"m~n/{J1 subspaus. Here are the subspaces. including the new one. 

Two subspaces come directly from A. and the Other tWO from AT: 

l. llIe row spaCt is C( AT), a subspace of H". 

2. "The column sfNJCt is CI A). a subspace of H". 

J. "The nullspaa is ,vI A). a subspace of H" 

4, 1llc Iff/ nullspact is N ( AT). a sub«pace of H'". This is 001 new space 

In th is book the column space and nullspace came fi rst. We know CI A) and N (A) 
pretty well. Now the ~her tWO subspaces come forward. The row space contain. all 
combinations of the row •. This if Iht column spat( of AT 

For tile left null,pace we solve AT:1 _ O-that system is II by m . Tlris;$ Ihe 
nul/space of AT. The vectors y go on the Iff/ side of A when the e\juation is written 
as yT A = OT The matrices A and AT are usually different. So are their oolumn spaces 
and their nullspaces. But those spaces are connected in an absolutely beautiful way. 

Part I of the Fundamental Theorem fillds the dimensions of the four subspace •. 
One facl stands out : The mw spaCt (<lid column ' pau Ira re lht U1me dime, .. ion r 
(the mnk of the matrix). The ~her imponant fact in,'Olves the tWO nu llspaces: Tlreir 
dimemiOll.'l Off II - rand m - r. /0 fMU up lire full dimm.Jions n and m. 

Pan 2 of the Fundamental "Theorem will describe how the four subspaces fit to-
gether (tWO in R" and tWO in R'"). That oompletes the "right way" to untkrsland 
A.r = b. Stay with it - you are doing real malhematics. 

T~ Four Subspaces for Ii 

Suppose A is reduced to its row echelon fonn R. For tMI special form. the four sub
spaces are easy to identify. We will tilld a basis for each SIlbspace alld check its di 
mension. llIen ""e walch how the SIlbspaces cltange (or don ' t change!) as "'.., look 
back at A. "The main point is thaI Ihe frm' dimeNiioNi an 1M same for A ond R. 

As a specific 3 by 5 example. look at the four subspaces for the echelon matrix R: 

m _ J 

II = 5 
r = 2 [

' 3 o 0 
o 0 

~ ~ :] 
o 0 0 

pivot rows I Mnd 2 

plmt columns J and 4 

, 
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TIle rank of Ihis maIn.' R is T = 2 ( t .... o pi,ms). Take lhe subspaces in order: 

1. n.e ro ... s/K'ct of X lias d"nc,,,,ion 2. matching lhe rank 

lI.eason: 11>e firsc two rows are ~ basi s. The row space coolains combinations of aU 
(hltt rows. bot (he Ihin! row «(he zero row) adds OO1hing new. Su rows I and 2 span 
the row space. 

The piVOl rows 1 and 2 lire also independenl. ThaI is obvious for Ihi s e~amplc. 

and i( is alwa)'s (rue. If"..c 10<* only at lhe piVOl: columns. we Stt lhe r by riden_ 
tily malnx. 11lere is no "..ay 10 combine its rov.·s 10 give lhe tero row (e~cepl by lhe 
combination with all coefficicn(s lCro). So (he r pivOl! rows are independem and the 

dimension is T . 

The dimension of tht ro ... spou is r. The nonu ro ro ... s of }{ f orm .. btJsis. 

1. llle column sptJu of R also ha. d"nen<Klo r = 2. 

Reason: 11>c pi~ot column< I and 4 form a ba!iis. n..y ,.,.., independent be<;_use 1hey 

start with (he r by r identilY malnx. No combination of lbose piVOl columns can give 
lbe zero column (excepl .he combin • • ;"" with all coefficients zero). And they also sp;!n 
(he column space. Every Other (fltt) col umn is a combination of (he piv()\ columns. 
Ac(ually the combinations ,,"<' nttd are the Ih= special so1u(ions: 

Column 2 is 3 (column I). The special solution;s (-3. 1. 0.0.0). 

Column 3 is 5 (column I). The special solut;on is (-5.0.1.0.0.). 

COlumn ~ is 9 (column I) + 8 (column 4). That iiOlulion is (-9.0. 0. - 8. I). 

n.. piVO! columns are independent. and they span. SO tbey are a basi s for ("(A.) . 

Tht dimrnsion of 'he column sptJu js r. The piWJI coIu",n. f onn II btJ. k 

3. The nutlJptJct has dimen""" n - r ., 5 - 2. TIleit' are n _ r = 3 fltt vllfiables. 
Here ~ 2 .X.1."' ~ are f .... "<' (no pl\'0t5 In lho~ rolumns) 1lie) yIeld (he (hree ~pe<:ial 
sol .. 1 IonS 10 Hx = Il Se( a free , .. riable to I. &nd sol'·e For .<1 and .<4: 

- 3 -5 - 9 
I 0 0 Rx = 0 has lhe 

11 = 0 I ) = s ~ ", 0 comple(e soluti"" 
0 0 -, x _ X2S2 + X)I ) + x' s, 
0 0 I 

, 
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There is a sJXX'ial solUlion for each free ~able, With n variables and r piwt variables. 
Ihal leaves n - r free variables and sJXX'ial solulions: 

Th~ nuUsJMu hlU dimension n - r. The sptcial solutions form a boJis. 

The sJXX'ial sol ut ioos an: iD<kpeD<knt. because they CQntain the identity malrix in rows 2. 
3. 5 . All solutions are combinations of sp«ial solutioll$, Z = .l2'2 + .lJfJ + .lSf S. be· 
ca use this getS X!, ZJ and x, in the correct positioos. Then the pivot variables XI and 
"'4 arc totally detenninW by Ihe equalions Rx = 0, 

4. The nullspoct of RT has dimension til - r = 3 - 2. 

Ruson: The equation RT J = 0 looks for CQmbinations o f the CQlumll$ of RT (Ihe 
row. 0/ R) that prodlJU zero. This equalion RT y = 0 or yT R = OT is 

)"1[1.3. 

(I) 

The solutions )"1. n. n an: pretty clear. We need )"t = 0 and n = O. The variable )') 
is free (it can he anything). The nullspace of RT contains an vectors y = (0. o . n). 
11 is the line of an mul tiples of the basis v«tor (0. O. I). 

In all cases R ends with m - r zero rows. Every combination of these m -r rows 
gives zero. l1Icse are the onl)" combinations of the rows of R that give zero. becau!iC 
lhe pivot I'O'on an: linearly independent So we can identify the lefl nullspace of R . 
which is the nullspace of RT: 

The left nullsJMCe hr.s di",ensi(HI m _ r. 

The solurions 0" J = (0.. '. O. Y,H., .. )' .. ). 

To prodlJU a zero combination. y must start with r zeros. This leaves dimension '" - r . 

Why i. this a Mltft nullspaceM ? The rellSOfl is Ihal RT y = 0 can be trnru;posed to 

y T R = OT. Now y T is a row ~C<:tOT to the left of R. You see the y's in equalion ( I) 
mul1i plying the rows. This subspace came founh. and some linear algebrn booI:::s Omil 
i1 - oo1 1h31 misses the beauty of the whole subject. 

In R" Iht ro .... sJMu r.nd nullspMt hare dimmsions r and n - r (ttdding to nj. 
In MOl Ihe column sJMcr ond It/I nul/spau hr.l~ dimension. r and m - r (lOCal m). 

So far Ihi5 is proved for echelon malrices R. Figure 3.5 shows the same for A. 

, 
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N (A) 

dimension ~- . 

column 

' ... "' M 

N (AT) 

dimension m-' 

e(A) 

Figure 3,S The dimensions of the four fundamental subspaces (for R and for A), 

The Four Subspaces for A 

We ha'-e a small job still to do. The , ubJiMtt dimtnsiOfIJ 10' A Qrt tht sr.mt /U 

IfJI" R, l1Ic job is to up!ain why, Remember that those m.a~s are , onnectet! by an 
in~ertib!e m.atri~ E (the prodoct o f aU lhe elemental)' malrkes Ihal rcdoce A 10 R): 

EA = R and A _ E - t R (2) 

1 A. has tht SIImt row space as R , Same dimension r and same basis. 

ReaSOfl: EveI)' row of It is a combination of ~ rows o f R. Also evel)' TOW of R 
is a combination o f ~ rows of A. In one direction the rombinations arc gi~n by 
E- 1, in the other direction by E. Elimination changes ~ rows, but the row ~pacts 
are identical. 

Since It has the same row space all R, we can c~ ~ firs! r rows of R as a 
basis. Or we could choose , suitable TOWs of the original It. They might not always 
he the first r TOWS o f A, becau>e those could he dependent. Thc good , rows of A 
arc the Ollcs that end up as pivot rows in R. 

1 The column ' iMtt QI A has dimtllswn r. For e~1)' matrix this is es",ntial: Tht 
n"".bt, 01 itUk~nJt"t col"".ns tqlUlls tht """.bt, 01 iruh~rultnt roIO" , 

Wrong rtasOII : "A and R have the same ,olumn space.- This is fal>e. The columns 
of R often end in zeros. The columns of It don't often end in zeros_ Thc column 
spaces are different , but their JirlU"lIs;onJ are the same- equal to r. 

, 
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Righi rta.son: l1Ic Ioame combinalions of the columns ~ ~ro. for A and R. Sa~ Ihal 
anofher way: Ax = 0 £roclly "'h~n Rx = O. So the , independe nl columns malch. 

ConclusWtl l1Ic, piYOl column ~ of A are a ba~i s for ils column space. 
J A has the Sllme nullsptWC lIS R. Same dimension n - , and samo:: basis. 
Rros(!II: l1Ic elimination steps don 'I change Ihe solulioos. l1Ic special solulioos are 
a buis for Ihis n~II~. l1Icre are n - , (Itt ,·anables. so the dimensioo is n - r . 
Notice tim r + (II - ,) ftluab II: 

".)+ (t.II ... ' ••• oI...... .) _".'.""._'1 01 R- . 

4 Th, left IINllsplJCe 0/ A (Ihe nullspace of AT ) luIS dilllenSWII 111_,. 

RroSOtl: AT is juS( as gQOd a matri~ as A. When lo,e know the dimensions for every 
A, we also know them for AT. Its column space was proved 10 ha"" dimension r. 
Since AT is n by m, lhe ""'hole space" is now R". l1Ic counti ng rule for A was 
, + (n - r ) = II, l1Ic COItnling ru~ for AT is ,+ (m - ,) = m. So the nullspa.cc of 
AT lias dimension m _ r . We now have all details of the main theorem: 

F,,,,dilmell/al Thro",m 0/ Unta, Algrbra. I'orl r 

The calumll spaCt and ro ... spau both haw dimtnswn , . 

Thr lIul/sJNlur ha''e dimensions n - rand m - r, 

By con«nllluing 00 SpaclS of veclors, not on individual numbers or vectors, " 'C get 
these d ean rules. You will SOOIl Ilde them for gmllW- eventuaUy lhey begin 10 look 
obvious. BUl if you wrile down an 11 by 17 malrix wilh 187 nonzero entries. we don', 
think most peQple would _ why these facts are lroc: 

dimension of C (A) = dimension of C( AT) 

dimension of C (A) + dimensioo of N ( A ) = 17. 

hample! A ",[ I 2 31 has m=1 and 11 =3 and nmk , = l. 

l1Ic row space is a line in HJ. ll1c nllJl~ i. lhe plane As _ Xt + 2.<: + 3..-) _ O. 
This planr:: has dimension 2 (which is 3 - I). l1Ic dimensions add \0 1+2 = 3. 

l1Ic columns of Ihi s I by 3 malrix are in H\! l1Ic column space is all of Ht, ll1c 
left nullspace contains only the uro vector. l1Ic only 5OIulion 10 AT, = 0 is , = O. 
the only wmbinalion of the row Ihal gives lhe u ro row. Thus N ( AT) is z . the zero 
space wilh dimension 0 (which i~ m - ,j. In RIO the dimen~ion ~ add 10 1 + 0 = I. 

Exampl402 A=[: ~ ~] has m=2 with 11 =3 and rank , = 1. 

l1Ic row space is lhe same line through ( 1. 2, 3). l1Ic nullspace is Ihe same plane 
Xt + 2.<z + 3Xl = O. l1Icir dimensions S(i ll add 10 1 + 2 = 3. 

, 
t 



178 Ch~ J v..cror Sp.>c ... nd Subop.>< .. 

The columns a~ muhiples o f the fi~ column ( I. I ). Sutthere is more than the 
lero . 'ector in the left nullspact'. The first row minus the ~ row i~ the ~ero row. 
Therd.,.., A T )' = 0 has the SOlution y = ( I , _ I). The column splle(' and left nullspace 
lin: JlCrpendicular lines in Hl. The ir dimensions a~ I and 1. adding 10 2: 

column splle(' = line through [:] 

If A has Ihl'tt equal rows. ils ran k is __ . What are tl"O of the , 's in its left nullspace? 
Tht ,'s co",bint thr rows to g il'#: tht :.rro row. 

Matrices of Rank One 

That last uample had r2Jlk r = I - and rank one matrices are special. We can describe 
them a iL You will s« again that dimension of row space = dimensioo of column space. 
When r = 1. e"cry row is a muhipic of the same row: 

A 2 4 6 

[
' 2 3] 

= -3 - 6 - 9 
o 0 0 

equals [-1] times (I 23]' 

A column times a row (4 by I times 1 by 3) produces a matrix (4 by 3). All rows an: 
muhip!es of the row (1.2.3). All columns are multiples of the column ( I. 2. -3. 0). 
The row spIIe(' is a line in R". and the column spact' is a line in RIO. 

Tht: columns are muhiples of u . The ro,,'s are muhiples of . T. Thr null.pace is Int 
plant p ... ~ndicu/ar 10 •. (Az = 0 means that .. ( ~T z ) = 0 and then .T z = 0.) It is 
this JlCfJX'ndicularity of lhe ~ubspace~ that will be Pan 2 o f the Fundamentailbrorem. 

• REVIEW OF THE KEY IDEAS • 

1. The r pivot rows of R are a b<lsis for the row spaces of R and A (same SpIIe('J. 

2. The T pil'O! columns of A ( !) are a basis for its column space. 

J. The n - r special solutions an: a basis for the nullsp3CeS o f A and R (same space). 

... The llI5l 'II - T rows of I are a basis for the left null space of R. 

5. 'The lasl 'II - T rows o f E are a basis for the left nullspace of A. 

, 



• WORKED EXAMPLES • 

3.& A Find base~ and dimensions for all four fundamental subspaces if you know 
lhal 

['00][' 30' ] A", 2 I 0 0 0 I 6 = £ - 1 R. 
501 0 0 00 

By changing only Ont of lhose numbers, change the dimensions of all four subspaces. 

Solution This malri~ has pivots in columns I and 3. Its rank ;s r = 2. 
Row space: Basis (1.3. O. 5) and (0. O. 1. 6) from R. Dimension 2. 
Column spac.: Basis ( I. 2. 5) and (0, l. 0) from £ -1. Dimension 2. 
Nullspace: Basis (-3.1.0.0) and (- 5. 0,-6.1) from R. Dimension 2. 
Nu ltspllce or AT: Basis (-5. O. I) from row 3 of E. Dimension 3 - 2 = I. 

We need to comment on that left nullspace N(AT). £A = II says lhat lhe last row 
of £ combioes the IhKe rows of A into lhe zero row of R. So that lasl row of E is 
a basis vector for lhe lefl nultspace. If II !lad "'.., zero rows. lhen lhe lasl ""0 ro,,'s 
of E "wid re a basis for lhe left nullspace (which combines rows of A 10 g;\'e zero 
rows). 

To change all lhese dimensions we need 10 change lhe rank r . 'The way 10 do 
thai is 10 change an enll)' (any enlry) in lhe lasl row of II . 

),6 B Suppose you have 10 put four I's inlo a 5 by 6 matrix (all other entries are 
zero). Descrire all lhe ways 10 make lhe dimension of ;IS row spact as small as pos
sible. Descrihe all the ways to make lhe dimension of ils column spaN: as small as 
possible. Describe all lhe ways 10 make the dimension of ils null5(Jace as small as 
possible. Wha! are lhose smallesl dimensions? Whal 10 do if you wanl lhe Sum of Ihl' 
dimemio .... of all four subsptlCes as small as possible? 

Solution 'The rank is I if the four I's go intO lhe s.arrJoO row. or into lhe same wi. 
umn. or inlo ","0 ro ... ~ and "'-0 co/umIU (so ail = a;J = aJi = aii '" I). Since lhe 
column space and row space always have lhe same dimensions. Ihis answers the fi rsl 
two questions: Dimension 1. 

The: nullspace has its smallest possible dimension 6 - 4 '" 2 when the rank is 
r = 4. To ochiev" rank 4, the four I's must go inlO four different rows alO four 
different columns. You can't do anything aboul the Sum r+(n - r )+r+(m - r ) = lI+m. 
[I will be 6 +!I = [I no malter how the I's are placal. "The sum ;s II even if there 
aren't any l·s ... 

If all the Olher entries of A are 2's instead of O·s. how do these answers change? 

, 
i 
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Problem Set 3.6 

1 (a) Lf a 7 by 9 matri~ lias rank 5. what are the diJll('n!ions of tk fou r sub-
spaces? What is the SlIm of all four dimension,? 

(b) If a 3 by 4 matrix h.as rank 3. wkat all' its wLumn spac<: and left nullspace? 

2 Find bases for the four subspaces associated with" and 8 : 

[ ' 2 'J " "'2 48 [ ' 2 'J and8 "'25 8 ' 

J Find a basis for each of the four subspaces aS50Ciated with 

; ~ :] = [: i ~] [: 
0012010 

~ ~ ~ ;]. 
o 0 0 0 

4 Con,uuct a matrix with the required I'fOIX'My or explain why this is impossible: 

(a) Column spac'(' w mainli [l]. [i]. f'O'A.' space contains [ }}. [ ~ J. 
(b) Culumn spac~ ka.I basis [1]. null spa« has basis [il 
(e) Dimensioo of nullspace '" I + dimension of left nulls~. 

(d ) Left nulls~ cQntains [1]. row spact: cQntains [ t ]. 
(el Row space '" column space, nullspace .,. left nullspact:. 

5 If V is the subspace spanlled by (1.1. 1) and (2, 1.0). find a matrix A tl\atl\a.!; 
V ail its row space and a malrix 8 that has V as iu nulbpace, 

(, Witliout eliminatioo, fi nd diJll('n sions and bases for the four subspaces for 

[
0 3 3 3] 

" ",0 000 
o 1 0 1 

i Suppose the 3 by 3 matri~ A is invertible. Write down bases for the four sut>. 
spaces for A. and al§O for the 3 by 6 matrix 8 = [A A J. 

8 What are the dimensions of tile four subspaces for A. B, and C. if I is tile J by 
3 identity matrix and 0 is the 3 by 2 zero matrix? 

9 Which subspaces """ the same for these manKes of different sizes? 

, , 
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(a) [AI and [~] (b) [~J and [~ ~J. 
Prove lhal all th= malrK:es ha~e the same rank r. 

10 If the entries of a 3 by 3 matrix are chosoen randomly betWeen 0 and I ..... hat are 
the mosl likely dimensions o( the four subspa~s? What if the malri~ is 3 by 51 

11 (Important) A is an m by n matrix of rank r . Suppose there are right sides b for 
which Ax = b has no solution. 

(a) What are all inequalities « or ::::) thaI must be lrue between m. n. and r? 

(b) How do you know that AT ~ = 0 has solutions other than y = 01 

12 ConStfUCI a matrix with (I. O. I) and (1.2. 0) as a basis for its row spac<' and its 
column space. Why can', this be a basis (or the row space and nulls~? 

13 True or false: 

(a) I( m = n then the row space of A equals the column space. 

(b) The matricC'l A and - A share the same (our subspaces. 

(c ) If A and B share the same four subspaccs lhen A is a multiple of B. 

14 Wilhoul oom~ning A. find base$ (or the (OIIr fundamental subspaces: 

,. [! ~ ~] [~ ~ ~ ~]. 
9810012 

15 I( you uchange the firsl IWO rows of A. which of the four subspaces Slay the 
same? If g = ( 1,2.3. 4) is in the column s~ o( A. write down a ~eetor in 
the column space of the new matrix. 

16 EJlplain why p = (1. 0 . - I) canttOl be a row of A and also be in the nUllspace. 

11 r.t.escri be the four subspace .• of RJ B<sociate(\ with 

[0 t 0] 
A = 0 0 I 

o 0 0 
,m> t 0] 

t t . 
o t 

18 (Left nullspace) Add the extrJ column b and ~lICC A to eehelon fonn: 

[
" 3 b'] [Ab]=456b;! 
1 8 9 b) [

' 2 3 o -3 - 6 
o 0 0 

A combination o( the rows of A has produced the zero row. What combination is 
it? (i..Qok at bJ - 2b::! + b t on the right side.) Which ~ec!on are in !he null.,p."C(' 
of AT and which are in !he null space of A 1 

, 
t 



182 c....- j _ SpoKe .00 ~ ... 

19 Following lhe metltod of Problem 18. reduce A It) echelon form and loot at zero 
rows. The b column tells "'hich combinalions you ba,'t taken of the row" 

(., 
[

' 2 3 • . , (b) 
[

' 2 
2 3 
2 • 
2 , 

b'] b, 
b, 
b, 

>From the b column after elimination. read off m - r basis vectors in the left 
nullspace of A (combinalions of rows that give uro). 

20 (a) Des.::ri be all solution. 10 Ar = 0 if 

['00][' A = 2 I 0 0 
J 4 I 0 

2 0 '] o I J , 
o 0 0 

(b) How many independent S(>lutions are there to AT y = 07 

(c) Gi." a hu is for the column space of A . 

2 1 Su~ A is the .um of two matrices of ran k 0IlC': A = ,.., T + 11': T. 

<a) Wh;ch vee'"", ' pan ,he cotumn ' p""" of A? 

(b) Which ve<;1Of1; span the row space of A1 

(" 

", 
The rank is less than 2 if or if 

Compute A and its rank if u = : = (1.0. 0) and, = '" = (0. 0.1 ). 

22 Construct A = .. , T + "'ZT whose column splitt has basis ( I. 2.4). (2. 2. I) and 
whose row space lias basis 0. 0.0). (0. 1. I). 

23 Wi!houl multiplying matrices. find bases for the row and column spaces of A : 

A_[; lj[; ~ n 
How do you know from lhese shapes that A is not inveTlible:? 

24 AT Y .. d is solvable: when the righl side d is in which of lhe four subspace.? 
The solut ion is unique when the __ COllla;n. only the lCro vector. 

25 True or fal,., (w ith a reason or a coontcrexamplc): 

(a) A aoo AT hnc the &arne number of pivoCs. 

(b) A and AT ha,'c the i<lrne le:f1 nUlispace. 

{el If lhe row space equal . lhe column space then AT = A . 

(d) If AT = - A then the row space of A equals the column space. 

, 



26 (Rank of "'8) If "'8 = C, the rows of C are combinations of the rows of __ > 

So the I'1lIIk of C il DOt greater than the rank of __ . Since 8 T ",T .. CT. the 
rank of C is also DOt grearer than the rank o f _ . 

27 If a.b.e are gi\'<'n with a "#0, how WOtlld you c~ d w!ha! '" = [: :1 has 
rank one? Find a basis for the row space and nlillspace. 

28 Find the ranks of the 8 by 8 chedertloard mamx 8 and chess matrix C: 

I 0 I 0 I 0 I 0 , , b , , b , , 
0 I 0 I 0 0 I P P P P P P P P 

B ~ 0 0 0 0 ,,'" c~ four l.eTO rowli 
p p p p p p p p 

0 0 I 0 0 , , , , , , , , 
"The numbers r. n. b. q. k. p are all differen!. Find bases for the row IipacC and 
left nullspa.ce of 8 and C. Challenge problem: Find. basis for the Ilu llspace 
of C. 

29 C.n !i<;·tDc·!oe> be oomple!ed (5 ones and 4 ~eros in "') SO !hat ran k (M = 2 bu.t 
nei!ller s ide passoed up a winning roove ? , 
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O RTHOGONALITY 

ORTHOGONALITY OF THE FOUR SUBSPACES • 4.1 

l'wQ "N:101"$ are Qrtliog<:>nal when their dol product is zo,T(): •• III = 0 or uT III = O. This 
dUpler mo'"CS up a Ie,·d . from onllogonal "«ton 10 rmhogollid subs/HluJ. Qnhogo
nal means [he same as pcTJl"ndicular. 

Subspace$ enle~ Chapler ) with a spe<:ilk PU~-IO throw light on Ar = b. 
Right away we needed (he column space (for b ) aoo the nullspace (for x ) . Then the 
ligl1l turned 0010 AT, unoo~ring 1""0 rrK>re subspaces. 1l'Iosc four fundamental sub-
spaces ",,'.,al ",Ita! a manix really does. 

A matrix multiplies a vector: A rimes r , At the tirs! level thi s is only number$. 
At the second 1e,,,1 Az is a wmbilllltion of CQlurnn '«<IQQ. The third level shows sui). 
spacc:s. But I don't think you have ....,n the whole picture until you study Figure 4.L 
It fits the subspa<:'es together. 10 .show the hidden realily of A linxs If . The 90" angles 
between subspaces an: oew - aoo We ha>.., 10 say "'hll ther mean . 

Tht row S/XlCl is ~'1H,",icuhlr /0 Iht trullspau. Every row of A is perpen
dicular \0 ",..,ry solution of Ax _ O. 1lI.al gives lhe 90" "",Ie 00 ti>c left s ide of ti>c 

figo.u"l' . Thi s pelpendkularity of subspaces is Part 2 of the Fundamental Thromn of 
Linear Algebra. 

May we add a wool about the left null spaa:? II is ~r reaclv:d by Ax . 50 it 
might seem useless. But when b is outside the column space - when we wam to 501'1: 
A.., = b and can' t do it - lhen Ihi s nullspace of Ar comes imo ils own. 11 comains 
the error in the ·'Ieasi-squares·· solution. That is \he key applicalion of linear algebra 
in Ihis c hapter. 

Pan ] of lhe Fulld.llmemal ll>ron!m gave the dimensioos of lhe subspaces. 11K 
row and col umn spatts have the same dimension r (!hey are drawn the same size). 
n... "'"0 null space5 haY<: the remaini ng dimensions n - rand", _ r, Now we will 
show Ihal l /ot row span lind nul/span lin on/oqgolUJ/ sIIbspo«s i1lsilk RO. 

DEFINITION 1\0."0 subspaces Y and W of a v«tor space are onhqgo1la/ if e'-cry 
vetlO< • in V is perpendicular 10 every Ve<;lor III in W ; 

,s. 
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( olumn 

"." ,," 

. , 

Figure 4. 1 Two pairs of onllogonaJ sllbspaces. Dimensions add to n and add to III. 

hample 1 'file Hoor of your room (extended to infinity) is a subspace V. 'file linoe 
where two walls meet i. a subspace W (one-dimensional). 1lK.>se subspacts an: Ot1hog
onal. E,'<'I)' vector up the meeting linoe is perpendicular to evcl)' "«tor in the HOOT. lbe 
origin (0.0.0) is in the comer. We assume yoo don"t live in a tent. 

h ample 2 SUP\XISC 11 is Slill the floor but W is a wall (a t"'"O-dimensional space). 
lbe wall and Hoor look like onhogonal .ubspaces but they are~! You can find vectors 
in V and W that an: no( perpendicular. In foct a vector running along lhe boItom of the 
wall is also in lhe Hoor. This "ector is in boIh 11 and W - and it is not perpendicular 
10 itself. 

When a vector is in two onhogonal subspaces. ;1 mUJ{ be zero. It is perpendicular 
10 itself. [t is ~ and it is .. . so gT g = O. This has 10 be the zero vector. 

The crucial examples for linoear algebnl come from the fundamental subspaces. 
Zero is the only point where the null spact'! meelS the n)W space. lbe spatts meet 
al goo. 

4A EveI)' vector x 10 lhe null'pace of A is perpendicular 10 <" -<'I") row of A. because 
Ax = O. Tht nullspau Ilnd row spau Ilrt QrthogQl'1l1 SUbSpaUf_ 

, 
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To see why x is perpendicular 10 lhe rows. look al Ax ". O. Each row mulli
plies .1' : 

][+[:] (I) 

~ 1 

The firsl equalion says Ihal row I is perpendicular 10 x , The las! equalion says Ihal row 

III is perpendicular 10.1'. £.'try row hM" uro dOl prodUCf ... irh x. Then .I' is perpen
dicular 10 every combinalion of lhe rows. The whole row spat<'! qAT) is onhogonaJ 
10 lhe whole nullspace: ,\' (A). 

Bere is a S«OOd proof of lhal onhogonalil y for readers who like malri~ shorthand. The 
.'«Iors in the row space: are combinalions AT 1 of lhe rows. Take lhe dol prod"':l of 
AT 1 wilh any .I' in the null~P"CC'. Tltut "terMS art pt'ptNlicular: 

We like lhe firsl proof, You can see 1I1osI: rows of A mullipl~ing .r 10 prodoo: zeros 
in equalion (I ) . The ~ proof shows why A and AT are both in lhe f undamemal 
Theorem. AT i<JeS wilh !f and A ioe. with .1' . At the cnd !I'C used A.r _ O. 

Eumplr 1 The rows of A an: pe!pendicular 10.1' :(1.1. - 1) in the nullspllCe: 

Now we lum 10 lhe other lWO subspaces. In this example. 1"" C(>lumn Space is all 
of It l . The null~pace of AT is only the zero ,'eclor, 1lIQSoe lWO subspaces an:: also 

onhogooaL 

48 EveI)' V«1or 1 in the nullspace of AT is perpendicular 10 evel)' column of A . 
Tile kft Itulls~e Qltd lite co/umlt s~e Grc orthogollfll ilt M". 

Apply Ih~ origiN'1 proof 10 AT. I~ nullspace is orthoKonal 10 ilS row space - and lhe 
row space of AT is the column space of A. Q.E.D. 

For a visual proof. look at AT!f = O. Each column o f A mulliplies , 10 give 0: 

A'yo ['''''.~" " '] [ , ] 0 [0]. 
(colu mn ~)T 0 

(3) 

The dol producI of , w'ilh e,'cry column of A is zero. 'Then 1 in lhe left nullspace is 
perpendicular 10 each column- and 10 the whole column space . 

, ~ mal!: 3,1 
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Orthogonal Complements 

VI'" Imponolll The fundamental subspaces are ITIOI'e than just orthogonal (in pain). 
Their dimensions a~ al!iO right Two lines coold be p"rpeooicular in R3. butlhey could 
fIOI M the row space 100 nullspace of a 3 by 3 m.alrix . The lines have dimensions I 
and I. adding to 2. The COfK"Ct dimensions r 100 II - r muSt add to II '" 3. The 
fuooamental subspaces have dimensions 2 and I. or 3 100 O. The liubspaces are not 
only orthogonal. they are orthogonal conrplelllrllts. 

DEFINITION The onhogonal eomp/emenl of V contains r\'ery vector that is perpen· 
dicular 10 V. This orthogonal subspace is denoted by V.l (pronounced " V perp"). 

By this definition. the nu llspace is the orthogonal complement of the row spatt. 

E,'u)' ~ that is perpeooicular to the rows satisfies A~ = O. 
The reve/"SC is also true (automalically). If ~ is orthogonal to the nullspace. it 

mUSI be in the row spa«. Otherwise "'" could add this ~ as an extra row of the mal/lx. 
withotlt cluinging ils nul1spacc . The row space .... ould grow. which ~:oks lhe law r + 
(n - r) = n. We conc lude Ihal N (iI).l is exaclly lhe row space C(AT). 

The left nullspace BOO column space are not only onhogonal in Roo. they are also 
orthogonal C(lmplements. Their dimensions add to the full dimension m. 

f'undomtn/al TheMtm af lineD' A/gebI"D. I'art 2 

Tht nullsp<lCl is the anhaganal camplemenf af the row Sp<lU (in H..}. 
The left "ullsp<lct is the ar/hoga"ol camplemem "f the calum" sp<lc, (i" H..}. 

Pan [ gave the dimensions o f the subspaces. Pan 2 gives the 90° angies Ixtwccn 
them. The point of "compkmenls~ is thaI e'TrY ~ can be splil inm a row space com· 
ponellt ~ , 100 a lIul/span' conrpanrnt ~ •. When A multiplies ~ =~, + ~ •. Figure 4.2 
shows whal happens: 

The nul1space componenl goes to zero: A~. = 0 

The row space componenl goes m the column space: A.r, = A.r . 

E~el)' veelor goes to the column space! Mulliplying by A cannot do anything else. 
8uI Il1Ol"e t/uuI 1Iuu: £'"rry "«Ior in the crnumll space WIllrS from line and Qltly QIt~ 
,-re10f' ~ , in Ih~ row spac:r. Proof: If A.r, '" Ax~. lhe difference .r, - .r~ is in the 
nullspacc. It is also in the row space. where ~, and ~~ Came from. Th is difference 
must be the zero veelor. because the spaces are perpeooicular. Therefore~ , = ~ : . 

There is an , by r in~enibie matrix hiding inside A. if we throw away lhe IWO 
nutlspaces. From the row space 10 the w lurnn space. A is invenible. The "pscudoin
~ersc" will inven it in Section 1.4. 

Example 4 Eve!}' diagonal rnalri~ has an l' by , invenible submalrix: 

[
' 0 0 0 0] 

A=05000 
o 0 0 0 0 

contains 

11M: rank is r ~ 2. TIle ocher e leven zeros are responsible for lhe nuliSpacell. 

, 
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dim 11 - ' 

Figure 4.2 The \nIe a<;:tion of A times ~ = .r , + ~~. Row space vector .r , to column 
space. nu ll.pace ve<:IO< .r. '0 ~I"O. 

Section 7.4 ,,·ill show how e-oet)' A becomes a diagonal malfi~. when we choose the 
right bues for 1(" and N". This Sing"",, \'" /,,," iJuo,"positilm i. a pan of the theofy 
tllat h.as become ext~mely imponam in applicatiQ.ns. 

Combining BastS from SubspaCI'§ 

What follows "'" ..,"'" valuable facts aboot bases. l1!ey we~ .... 'Ied umil now _ when 
we are rudy to use them. After a week )·00 llave a durer sense o f what a balis is 
(i1ld~~1Id~", vectors that $p(m the space). Normally we llave to check both of these 
J1fOP"rlieli. When the OOUnt is right ........ properly implies the C)Iher. 

4C Any n Itncatly ,ndependent ...,.;tors ,n N° muSl span R". The) an: I basis. Any 
" ,·«tors that Spall N" muSl be independent. TIley are a basis 

Starting ,,·;th the ~t number of vectors. """ properly of a bali. prudUCQ the 
other. Th is is true ;n any vector space, but we call' most about N° . When the \IttIorS 

go ;1110 the columns of an n by n squa" matri~ A. hen: a~ the .... me two facu: 

, 
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4D If lhe" columns of A an: independenl. lhey span R" . So Ax '= b i, sohable. 
If llle " column< ~pan R". the) an: irldc:pc:ndenl. So Ax _ b has o nly one solutIo n 

Uniquel1Css implies e~istenu and existcnu implies uniquel1C$$. r ht n A is i"~r1iblt. 

If then: an: no frre variables (uniqueness). then: must be" pi'lOt8. Then back sub
stitution sol.'CS Ax = b (existence). Starting in tile opposi1e din:c1ion. suppose Ax = b 
can ah"ays be solved (uistenu of solutions). Then elimination produced no zero rows. 
Then: an: n pivots and 00 frre variables. The nu llspace contains only x = 0 (unique
I1CSS of solutions). 

With a basis for the row space and a basis for the nullspace. we have r+(II - r ) _" 
vectors - the right number. 1lIQSe II veclOrs are inciel"'rldc:nl.l Thtrrfort the)" Spall R". 
They are a basis: 

Each x in R" is the sum x , + x. of a row spoce ,-ector x, and a nullspace vector x". 

This confinns the splining in f igure 4.2. It is the key point of orthogonal complemenu
the dimensions add to II arid all "ectors are fully accounled for. 

bample S forA=[1 1)",[~~~nwriteanyv«1or x as ... ,+ x •. 

(I. O. I. 0) and (0. I. O. I) an: a basi s for the row space. (I. O. - I. 0) and (0. l. O. - I) 
are a basis for the nu llspace of A. 1lIQSe four vectors are a basis for K'. Any x = 
(a.h.c . d ) can be split into x , in the row space and x . in the nulispace: 

[:] ~ .. , [:] b+d[:] =[:] b-d[:]. , 2 I + 2 0 + 2 -I + 2 0 
dOl 0 - I 

• REVIEW OF THE KEY IDEAS • 

I . Subspaces V and W are orthogonal if every ~ in V is orthogonal to every .. 
in W . 

2. V and W are '"orthogonal complemc:nu" if W comains 11 11 vectors perpendicular 
to V <and vice versa). Inside R". the dimensions of V and W add to n. 

1. The nulls~ N (A) and the row space C{AT) are orthogonal complements. front 
Ax = O. Similarly N ( AT) and e tA) are orthogonal complements. 

~ If • <:<>mbinMioo of ItIo _ Ii .... x, + x •• •. 1tIo~ I , __ Jr. io in both MI"'J Xi. 11 i. 
~ '" n..lf and ...... be uro. All ,oeffi<:icnfl 01 ItIo ..,.. opaoce t-oi, ond ..,J1$pO" bo$i$ ""'" 
be uro_ .. ·hioh _ i~ ol'be " _ """""". 

, 
t 



190 Ch.>pIe< 4 Clr\hos<>nallty 

4. Any n indcpc:ndcnl vectors in RO will sp;1JI Ito. 

S . Every It in KO has a null~pace CQIIl~m Z o and a row space CQIIlponenl Z,. 

• WORKED EXAMPLES • 

4.1 II. Suppose S is a s ix-dimo:nsional subspa<:e of 1l9, WhaI = lhe possible dimo:n
s ions o f subspaces o rthogonal to S? What an: lhe possible dimensions of the orthogonal 
CQIIlplemem Sol of S1 Whal is the smailesl possible size: of a malrix A Ihal has row 
s~ 51 Whal is the shape o f its nullspa<:e matrix N1 How ~ould you neale a matri~ 
8 wilh extra rows but the same row space? COrIlpa!"e the nullspacc matrix for B wilh 
the nullspacc malril for A . 

Solulion If 5 is six -dimemional in 1l9. subspaces orthogonal 10 S Can have dimen
s ions O. I . 2. J. The orthogonal romplcmenl Sol will be lhe largesl ortoogooal subspace. 
with dimension 3. The s rnaliesl matrix A muSI have 9 rolumns and 6 rows (its rows 
an:: a basis for the 6-dimensional row space S). liS nullspacc malril N will be 9 by 
3. si~ its rolumns contain a basi s for Sol. 

If row 7 of 8 is a combinalion of the s ix rows of A. then B has the s.amc: row 
space as A . II also has the same nuUspace malrix H . (l1le special SOIUlions 1].12. 1 ) 

will be the same. Elimination will chan~ row 7 of B to all zeros.) 

4 . 1 B The eq ualion ... - 4)' - 5~ '" 0 describes a plane l' in III (actually a subspace). 
The plane l' is the nullspace N(A) of what I by 3 malrix A1 Find a basis ' 1. 12 ofspttial 
solUlions of It - 3)' - 4~ '" 0 (these would be the rolumns of lhe null space malrix N ). 
Also find a basis for lhe line 1'.1 that is perpendk ular 10 1' , Then split u '" (6. 4, 5) into ilS 
nullspace component Uo in l' and ils row space cOrIlponent r, in 1' .1. 

Solution The equatio n ... - 3)" - 4: '" 0 is Ax "" 0 for lhe I by 3 matrix 
A '" II - 3 - 41 . Columns 2 and 3 are free (no pivots). The special solutions 
wilh free variables "1 and 0" = ' I"" (3. 1.0) and I~ '" (4, 0. 1). The row space o f 
A (whith is the line 1'.1) certainly has basis z "" (\. -3. -4). This is perpendicular to 
I I and 12 and lheir plane P. 

To splil' inlo V. + v, "" (Ct l t +Cl I 2) + CJZ . soh 'c for the numbers CJ.Q.CJ: 

leads to C[ "" I. '1 '" I. CJ = - I 
00 = 1\+11 ",, (7. 1.1) is in P "" N (A) 
. ,=-z =(- 1.3. 4) is in p .!= C ( AT). 

C righted malenal 
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Problem Sel 4.1 

Quesdons 1_ 12 grow ou l 01' }lgUIti 4.1 lind 4.2. 

1 Con~,ruct any 2 by 3 matrix of ran~ ooe. Copy Figure 4.1 and put ooe vecto r 
in eKh subspace (IWO in the null , pace). Which ~eclOrs are onllogonal? 

2 Redraw Figure 4.2 fo r a 3 by 2 malrix of rank r = 2. Which subspace is Z (zero 
veclor 001y)7 The nullspact' pan of any ''eCtor ~ in III i, ~ . = __ , 

3 Con ~truct a matriK with the required propeny o r say wh y Ihat is impos~ible : 

(. ) Column space conlains [J ] and [-~]. nullspace conlains [I] 

4 

(b) Row space cootain~ LiJ and [-!J. nullspace contains [I] 
(c) A~ - [I] has. solution and AT m '"' m 
(d) Every row is onhogonal to every column (A i, ...... the zero matriK) 

(e) Columns add up to a column of zeros, rows add 10 a row of l 's. 

If A 8 = 0 then the columns of 8 are in the of " . The rows of " are in 
" " __ of 8, Wh y can ', " and R be 3 by 3 matrices of nlnk 27 

S (I ) If A~ '"' b Iw a solulioo and AT, = 0, then, is perpendicular to 

(b) If AT, = e has a solulion and " x = O. lhen x is perpendicular to 

6 This is a syslem of C<:!ualions Ax = b with no 501ution: 

~+2y + 2l = s 
2.<+2y + 3. = S 

3x+ 4y+5z = 9 

Find numbers YI , n. YJ 10 multiply the equations SO the~ add to 0 = 1, YO\l have 
foond • vector , in which subspace? lis dot prodllCl , b is I. 

7 Evcry system with no SOlutioo is like lhe one in Problem 6 , 11>ere are numbers 
11 •. .. . Y. that mulliply the m C<:!uatioos so lhey add up 10 0 '"' 1. This is caUed 

EXIlell, n~ 01' t htse pl'"lll>kms has a snlul lon 

"x = b O il AT, = 0 with :/Tb = I. 

If b is not in the column space of A. it is not onhogooallo the null.!pacc of AT. 
Mult iply the C<:!Ullions XI - X2 '"' I and X2 - Xl _ I and XI - Xl = I by numbers 
)'1 • n. n chosen M) lhat tbe C<:!ualions add up to 0 '"' 1. 

, 
t 
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8 In Figu~ 4.2. how do we kroow that A.r . i. equal to A.r7 How do we know thai 
this Ve<:tor is in the column space? If A = [ : : 1 and .r = r: 1 whal is .r,? 

9 If A.r i. in the nullspace of AT tl><-n A.r = O. Reason: A x is also in lhe 
of A and the spaces all' __ . CQ"d""imI: AT A IItu 1M $<mIL nullspau as A. 

10 Suppose A is a symmetric matri~ ( AT '"',0])-

(a) Why i. its column space perpeooicular 10 ilS nullspace? 

(b) If A.r = 0 and Al = 5~. ""hich subspllCC's contain these "eigen'"CClOrs~ x 
and l ? Symmetric matrices ha~ perpendicular eigenvectors. 

II (Recommended) Draw Figu~ 4.2 to show each subspace correctly for 

A =[~ !] and H = [~ ~J-
12 Find II><- pi«es .r . and x" and draw Figure 4.2 properly if 

[' -'J A = ~ ~ 

Qlle!itlons 13-13 are about orthogonal sulJspaces. 

1 ) Put ~ for the subspacn V and W illlO the columns of matrices Y and W . Ex
plain why the test for orthogonal subspaces can be wriUen yT W ., zero matrix. 
This matches r T .. = 0 for orthogonal vectors. 

14 "The HOOf V and the waU W all' 001 orthogonaL subspaces. because they shan: a 
n(>Ilzero "e<:tor (along the Li"" whell' they rrw:et). No pLanes V and W in Rl can 
be orthogonaL! Fiod a vector in the col umn spaces of both matrices: 

This will be: • v«tor Ax and .1<0 Hi'_ Thin k ) hy 4 with the matrix I A B I. 

15 Extend problem 14 10 a p -dimensional subspace Y and. q-dimensionaJ subspace 
W of R" . What inequality on p+q guarant"'s thal V intersects W ;I\ a nonzero 
,·«tor? "The~ subspace. cannot be orthogonal. 

16 Pro''C that c''CT)' , ;n "' (AT ) is ]lCrpendi~ul~r to e\'CT)' A.r ;n the column space. 
using the malrix sho.-thand of equation (2). Stan from AT:1 = O. 

17 If S is the liubspace of RJ comaining only the zero ' ·ector. what i • . .,J.. ? If S 
is spanned by (I . 1,1). what is S l? If S is spanned by (2.0.0) and (0.0. 3). 
what is SJ.. ? 

i 
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18 Suppose S only contains 1""0 vectors ( I. 5. I) and (2 . 2. 2) (oot a subspace). ~n 
5 .1. is !he nu llspace of the matrix A = __ . 5 .1. is I subspace e"\'en if 5 is not. 

19 Suppose L is a one-dimensional subspace (a line) in R'. Its orthogonal complement 
1.. .1. i. lhe __ perpc:Ddicular to L . ~n { I.. .1.).1. is • __ perpc:ndicular 10 L .I.. 
In fact (I.. .1.).1. is lhe same as __ • 

20 Suppose V is the whole space a 4. Then V .L contains only lhe veclOf _ . 
Then ( V .I.).1. is _ . So { V .I. ) .1. i$ the same as __ . 

21 Suppose S is spanned by the vec~ (I. 2. 2.3) and ( 1.3. 3. 2). Find t,,"O veclors 
that span S.I. . This ;5 the same as solving Ax = 0 for which A? 

22 If P is the plane of veclors in R4 !;IIlisfying XI +X2 +X} + X4 = 0, wrile a b.asis 
for p .I.. Construct a manU. thal has P as it$ nul1space. 

23 If a subspace S is contained in a su!:>space V , pro~ lhat S.I. conlains V .I. . 

Question! 24-30 are about perpendicular eoIumns and rows. 

24 Suppose an n by n matrix is in~r1ible: AA - 1 .. I. Then the fil"!il column of 
A - I is Or1hog<:>na! to the space spanned by which rows of A? 

25 Find AT A if the columns of A are Unil v«tors. all mutually perpc:ndicu lar 

26 Conmuct. 3 by 3 m.au ix A with no zero enlrks who!;e columns are mutually 
perpendicular. Compute AT A. Why is it a diagonal matrix? 

27 The lillC$ 3 .• + Y = bl and 6x + 2y = I>: are __ • They an: the same line 
if __ . In that cue (bl. 1>:) i. perpendicular to the "ector __ . The nul1space 
o f the matrix is the line 3 .• +}" = __ . One panicular vector in Ih.al nullspac<' 
;, 

28 Why is nCh of these statements false? 

(I) ( I. I. I) i. perpendicular 10 (1 .1. - 2) so the planes x +}" + ~ = 0 and 
x + }" - 2z = 0 are Or1hogonal subspaces. 

(b) The subspace spanned by (I. 1,0.0.0) and (0.0.0.1.1) is the orthogonal 
complement of the subspace spanned by (I. - I, 0, 0, 0) and (l, - 2, 3. 4. -4). 

(e) If tWO $ubspaces "-' only in the uro vector. the subspaces are orthogonal. 

29 Find a malrix with ~ = (1.2.3) in the row space and column space. Find another 
matrix with g in lhe nulispace and column space. Which pairs of subspaces can 
g ~OI be in? 

30 Suppose A is 3 by 4 and B is 4 by 5 aDd AB :=0. Prove rank (A)+rank( B) :5 4. 

3 1 "The ,0l11mand N = null(A) will produce a basis for the nullspace of A. Then 
the command B = null(N') will produ(:e a basis for the __ of A. 

, 
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PROJECTIONS. 4,2 

May we stan this section with IwO qucstioos? (In additioo 10 thaI one .) 'The first ques
lion aim~ 10 show lhal projectio ns are ea~y to visualize. 'The second questio n is about 
"projection matricesM

: 

1 What an the projectioos of " '" (2, 3. 4) ooto the z axis and the It }' plane? 

2 What malrices produce lho5e projection ~ onto a line and a plane? 

When" is projected ooto a line. it. proj«tio" p u the part of " aIo"g that 11'",. 
If " is projected onto a plane. p is the pan in that plane . The projtctiOlt pu P" , 

'There is 11 projection matrix P Ihat multiplies " 10 give p . This seclion finds P 

'"" P. 

'The projection onto the z axis we ca ll P I' 'The second projection drops straight down to 
the It )' plane. The picture in your mind should be Figure 4 .3. Stan with " = (2. 3, 4 ). 
One projectio n gives PI '" (0 , o. 4) and lhe other gives P2 '" (2. 3. 0). Those are the 
pans of 1/ along the z a.~ is and in lhe x)' plan<: . 

'The projectioo mltrices PI and ~ an 3 by 3. 1bey multiply 1/ with 3 compo
nents to produce P with 3 components, Projeclion onlO a line comes from a rank one 
matrix . Projection o n10 a plane comes from a rank two matrix: 

Onto the z u is: PI = [~ ~ ~l 
o 0 I 

Onto the x }' plane: ~ '" [~ ~ ~l . 
o 0 0 

PI picks out the z component o f evel)' vector. PJ. picks o ut lhe x and )' components. 
To fi nd PI and P2' multiply 1/ by PI and PJ. (small P for the vCClo r. capital P for lhe 
matrix that produces il): 

In this case the projections PI and 1'1. are perpendi, ular. The It }' plane and the z axis 
are rmhogoltDl SUl/l fK1U S, like lhe floor of 11 n)Orn and lhe line between two walls. 

Figure 4 ,3 1lle projectio ns of b onlO lhe z axis and lhe It)' plane . 

ghtE"J ma'e-nal 



Mo~ than thaI. the line and plane a~ onhogonal eomphM" nts. 1l1oeir dimensions add 
to I + 2 '" 3- evcry ~ II in the whole spsce is the sum of its pam in the two 
subspaces. 1l1oe projections P t and P l an: exactl y those parts : 

1l1oe matrices give P, + ~ = I. ( I) 

This is perfect. Our goal ;s ~ached- for 'his example. We have ,he same: goal for any 
lilll: and any plane and any ,,-dimensional subspace. 1l1oe object is to find the pan p 
in each sullspace. and the projection matrix P Ihal produces Ihal pan P = Pb. Every 
subspat'(' of ROO has its own m by m projection matrix. To CQmpute P _ "'" absolutely 
need a good descripcioo o f the subspace thai ;t projeclS onlO. 

1l1oe besl descripcion of a subspace is a basis. We pul lhe basis veclOrs inlo lhe 
columns o f A. NolOl..., on proj«li"l o"to the eo/""." space of A! Cenainly the ~ 
ax;, is lhe (olumn space of the 3 by I nwrix A,. "The xy plane is the column space 
of A 2. 1lLa1 pLane is aLso the <:olumn space of AJ (I subspat'(' has many bases) : 

Our problem is to proj«t o"to Iht coI"m" space 01 0", m b, " matrix. 
Stan with a line (dimension" '"' I ). 1l1oe malrix A has only one (olumll. Call it a. 

Projection OntO a tine 

We are given a line Ihrough the origin. in lhe diteelion of 0 = (a, .. . .. 11 .. ) . Along 
thaI line. w<: want the point P dosest to h = (1),,. .. b .. ). "The key 10 projeclion 
is onhogon.lity: Tht Une IIVIII b to P is fWf1Hndiel</ilr to tht "",etM IJ . This is the 
doued line marked " in Figure 4.4 - which we now compute by a lgebra. 

1l1oe projection P is some multiple of o. C.1I it P = XO = "x hat"· limes II . Our 
first step is to compute Ihis unknown number X. That wi ll give the ~tor p. "Then 
from the formula for p. we ~ad off lhe projeclion mauix P. n.es.e three Stcps will 
lead to all projection matnees: fiTld X. tht" fiTld th" WClM p. Ihen find tht matrix p. 

1l1oe doIted line b - p is I> -XII. II is perpendicular 10 a - this will dct<'rmine I . 
Use the fa.ct thai 1"''0 V(X:IOfS an: perpendicular when their dol product is zero: 

a - {b - I IJ )"' O or o·b - Io,o = O or 
a-/> aT" 

' " - -- -0_0 oTa ' 
(2) 

For veclors the multiplication 0 T I> is the same as 0 • b . Using [he t"'"spose is belter. 
because it applies also to matrices, (We will 500II meet ATI>.) Our formula for 1 
immedjat~ly gives ltv: formula roo- p : 

, 
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, 
~ : &-p , , • 

Figure 4.4 The projection p. perpendkular IO~. ha~ kngth 111 0 00<8. 

4E The prop:tion of b onto the hnc lluuugh II is the ,ector p = i ll = ~ ... . '. 
Special case I, If b '" II then :; '" I, The projection of " OIItO /I i> itse lf 

Special case 2: If b is perpendicular to /I then aTb '" 0 The projection j, p = O. 

tnmpll' 1 Project b = [!] OntO /I = [i] to find p = i ll in Fig= 4.4. 

Solution The number i is the: ratio of aTb .. 5 10 (ITa = 9. So the proj«1ion is 
p '"' ~ " , The error vector between b and p is c '" b - p . Those '«<ton p and c will 
add 10 II: 

P = ~ /J = G. I: . ~O) aOOC = b - P = G. - ~. - ~) . 
The error c should be perpendicular 1<.> II = (I. 2. 2) and i1 is: cT II = a - i - i = O. 

Look at (he right triangle of b. p. and c . The ''eCtor b is split into tWO J}ans - its 
component along the line is p . its perpendicular pan is t. Tho:se two sides of a right 
triangle ha'.., length V D COS B and Ob i sin 1:1 . Trigonometry matches the dol producl: 

(3) 

The: dol prodUCt is a 101 simpler than gening invoh'ed with cosO and the length of b. 
The example has square IOOIS in cost! = 5/ 3./3 and 1' 6 = ./3. 11K", _ 00 ilquan: 

roots in c~ projection p = ij a . 

Now comes the projection matrix. In che fonnula for p. what macrix is mulei· 
plying ' 1 You can see ic bcucr i f c~ number i iii on che nghl side or a : 

_ aTb 
p = liz "" liT"" Pb .. ·hrll ,hr malriz;$ 

" 

, 
i 
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P is. roIuron ,i","' ruw! The column is a. the row is a T. Then divide by the number 
aT a. The projection matrix P is m by m, but jls "1111 is ane. We lit proje<:ting ontO 
I one-dimensionallUbspaee, the line through a . 

Example 2 •• ' [' 1 Find Ihc projo=ction matrix I' = 1"'" omo the line through a = 1 . . . , 
Solution Multiply column times ruw and divide by a Ta = 9 : 

p = a~ =_ 2 [1221=- 2 4 "['] ,['2 
0101 9 2 9 24 

This matrix projeclS OIly veclQr b onlO a . Check p = Pb for the panicular b = (I. I . I) 
in ~ample 1: 

p = Pb =- 2 4 4 I =- to '[' 2 2] ['] '['] 
92441910 

which is oorm:t. 

If the ve<.:lor a i. doubled, the matrix P Stay. the same. II still projects onto the s.ame 
line. If the matrix is squared. 1'2 equals P. Profrc/jlft: a ._M lime d~sn 'r cllanr 
(JIf~tIoiIlR . so p l= P. The diagunal entriesuf P add up 10 ~ (l+4+ 4)= I. 

The matrix / ~ P lhoold be a proj«tion 100. II prodUCC$ Ihc Oilier . ide t of the 
triangle-the perpendicular pan of b. NOll' thaI (/ ~ P)b equals b ~ P which is , . 
Wht ll P projulS 01110 on, &ubsptlu. / - P projrcls onlO th' pupelldicuhl,. subsptlNl 
Her!' f - P projects onlO the plane perpendicular 10 a. 

Now we ~ beyond projection ontO a line . Projecting onto an n-dimemional 
subspace: of RIO takes IIlOre effort. n.e tru(ial fonnulu will be collected in equa
tions (~H6.H7). Basically )'l)U need 10 remember them. 

Projl'dion Onto it Subspact' 

Start with" YeCIOr.i 01 1 ••••• 01 . in ROO. A~ume that It.:.SC a '. are linearly independent 
ProbIt",: Fjnd Ih' combjlUloon il a l + ... + i . a. that Is ChlUSl 10 a t:j~n 1'«10/' b. 
We are proje<:ting each b in R- onlO the subspace: spanned by the a ·s. 

With " _ 1 (on ly one V«1Or o J) this is projection onto I line. The line is the col
umn space of A, which has just one column. In general the matrUt A hu n columns 
0 1, .. " °0, Their oombi!lations in ROO lit It.:. v«IOrS Ax in lhe column space. We 
arc looking for the panicular combination p = Ax (Ih, profrclio,,) that is closesl 10 
b. The hal OYer i indicates the M~I choke. 10 give the clQsest veclor in the column 
space. lbal choice is aTb{aT(J when" _ l. For n > I, the best x is 10 br found. 

We solve this problem ror an n-dimensional subspace: ;n Ih= $ICPS: Find lit" 
' 'telor X. find 1M proj«riOfl p .. Ax. find 11t~ malrix P. 

, 
t 
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The k~y is in the ge:omclry! The doIted line in Figure 45 goes from b 10 the 
nearest point Ax in lhe subs~. This t rroy ,,"lor b - Ax is f'trptlUlkllw to tht 
I llbspau. The error b - Ax makes a right angle with all the vectors a t ..... a •. Thai 
gives the II equations we need to lind x: 

('J 

The matrix in tho$c eqUlltion ~ is AT. The II equations all' exactly AT(b - Ai) = O. 
Rf:\>.'ritc AT (b _ Ai) = 0 in its famou~ form AT Ax = AT b. This is tbe eq uation 

for x. and tbe roc:fficient matrix is AT A. Now _ can find x and p and P: 

4F The C(lmbinat ion Xldl + ... + :<.a. '" Ax that is closest 10 b comes from 

AT(b _ Ai}_ O or AT Ax = ATb. (5) 

The symmetric matrix AT A is II by II. II is ill~ .. nibJe if the Q '~ are mdepcndent. The 
solution i< x = (AT A) ' 1 ATb. The projulifJl! of b O/ItO tile subspace is the ''ector 

p = Ai = A( ATA)-I ATb. (6) 

This formula shows the II by II profrctiORI matrix IMt produces p = Pb: 

P = A(ATAj-t AT. (7) 

Compare with projection O/Ito a line. when the matrix A has only one column 01 : 

,,' 
p =....,,-. 

" 
Those form ula:;; are identical with (5) and (6) and (7)! The number a T" becomes the 
matrix AT A. When it is a number. _ divide by it. When it is a matrix. we invert il. 
The new formulas C(lntain (AT A) - I instead of l / a T II . The linear independence o f the 
C(liumlls II I ..... II. will guarantee thai this in",,~ malrix exists. 

The key step was AT {b - Ai} = O. We used geometry (, is pelJlC'ndicular to all 
the 11 ·5). Linear algebnl gives this "oonnal equaliO/lM too. in a very quick way: 

1. Our subspace is the column space of A. 

2, The error vector b - Ax is perpendicular 10 IMI C(liumn spact'. 

l. Therefore b - Ax is in the left nullspace. This means AT {b - Ai} = o. 

The kft nu llspact' is importanl ill projections. This nullspa« of AT contains the error 
.. ector t = b _ Ax . The vector b is being spl il inlo the projection p and the error 
, = b - p. Figure 4.5 shows the right triangle with s ides p. ,. and b. 
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"T~ .. 0 

"I~ .. 0 
.... T1 .. .... T(. _ .... i) _ O 

Figure 4.5 The projedion p is the nearest point to b in the column space of II . 
TIle perpendicullll" error r must be in tt... nu ll~pace of .... T. 

bample 3 If .... = [!!] and b =[i] find 1 and p and P. 

Solulion Compute tt... square matrix AT A and also the veelO<" .... T b: 

TIle combination p = Ai is !he projection of b onlO u., column space of .... : 

(8) 

That 11(>1,.." the problem fO<" one pa"icular b. To soh.., it for every b. compute 
the matrix P "" A(AT A)- lAT. The determinant of AT A i~ IS _ 9 = 6; (AT A)-I IS 

easy. TIlen multiply A li~s (AT A)-I limes AT 10 reach P: 

, .. P = ~ [ ~ 
6 - 1 

( 10) 

i 



TWo checks on the calculatio n. First. lhe error t = ( I . - 2. I ) is perpendicular 10 both 
columns ( I . I . I) and (0. 1. 2) . Second. the final P times b = (6, O. 0) correctly gives 
P = (~ . 2. - I ). We mUSI also have pI = P. because a second pl'Qjection doesn't 
c!utnge lhe fi rst pl'Qjection , 

warni~ TIle matrix P = A( A T A )-1 AT is de<:epl;ve. YO<I might tl)' to split (AT A)- I 
;nto A - times (AT) - I. If yO<l make that mistake. and sub!;titutc il inlo P. yO<I wi]] 
find P = AA - I(AT) - I AT. AppaR:nlly e\'CTylhing cancels. This looks like P = I. the 
identity matrix. We want to say why Ihi s is wrong_ 

Th~ malJir A U rKWII, IIu.r. It Iuu " " ill""n~ malJir. We canno! split (AT A) - I 
into A - I times (AT) - I because there is no A - I in the first place. 

[n oor ex perience. a problem that invoh'CS a rectangular matrix almost always 
leads 10 AT A. We canno! split up its inverse, since A - I and (AT) - I don 't exist. What 
does exist is the in""fSC of the square matrix AT A. This flOCl is so crucial t!utl we state 
it c learly and give a proof. 

4G AT A i. in"cnib le if and on ly if A has li ""arly independent columns. 

Proof AT A is a "'!uarc malrix (II by ,.) . For every matrix A. we will now . how Ihal 
AT A hos Iht $<Imt lIul/Spau liS A . When the columns of A are li""arly independent. its l' 
nu[l space contains o nl y the zero vector. TIlen AT A. with this j.llffiO nu llspace. is in,..,nible. 

Let A be any matrix . If x is in its nullspace. then Ax = O. Mu[tiplying by AT 
gives AT Ax = O. So If is also in the nullspace of AT A . 

Now stan with the nullspace of AT A. From AT Ax = 0 _ must prove that Ax = O. 
We can't multiply by (AT) - I. which generally doesn't ex ist. JU.>\ multip[y by xT: 

(xT)ATAX =O or (AX )T(Ax )= O or I Ax I2 = 0 . 

TIle vector Ax has length zero. TIlerdore Ax = O. E,'CTy vector x in o ne nu[l space 
is in the ocher nu[lspace_ If A has dependent columns. so does AT A. If A has inde· 
pendent columns. so does AT A. This is the good case: 

When A has independent columns. AT A is SqllDN!, symmt llY, and inwmblt. 

To repeat for emphasi s: AT A is (II by m) times (m by II ). It is "'!uare (,. by II ). It 
is symmetric. because its transpose is (AT A)T = AT(AT)T which equals AT A. We 
juS! proved thai. AT A is invenible - provided A has independem columns. Watch the 
difference i)e!",'een dependent and i!ldependent columns: 

AT A ATA AT A AT A 

[; ; :] [l lH~ :] [; , ~l[i n~[; :] 
dependen! singular indep. invertible 
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Vfl'}' brief su_...,. To find the projection p == i la l + .. +;. 11 •• solve AT Ai = ATb . 

This gi~es i . 1k projection is Ai and the mor is , == b- p '" b - Ai. The projection 
matri1 P _ A (AT A)- t AT gi~es P '" Pb. 

This matri1 satisfies p l = P. TIl, diJlallct fro". b to til' '''bspact iJ Itl . 

• REVIEW OF THE kEY IDEAS • 

I . The projection of b onto the Ii"" through II is p == IIi _ a (IITb/a Ta ). 

2. The rank one projectioo matrix P = lIaT/a TIl multiplies b 10 produce p. 

J. Projecting b onto a subsp;ICe leaves , .. b - p perpendicular to lhe subspace. 

... When the columll$ of A are a basis. the etjuation AT Ai = ATb leads to i and 

p = Ai. 

!Ii. The projectioo matrix P '" A(ATAj- IAT has pT = P and p l = P. Another 
projection leaves p = Pb unchanged so p l = P. 

• WORkED EXAMPLES • 

4.2 A Project the vector b = (3. 4. 4) ooto the line through II = (2. 2. I) and then 
onto the plane thal abo contains II' = ( I. O. 0 ). Check that the first em)[" vector b - P 
is perpendicular to II . and the second em)[" veclor b - p' is also perpendicular 10 a '. 
Find the 3 by 3 projection matrix P onto that plane. Find lI. vector " w~ projection 
onto the plane of II and II' is the zero ~eclor. 

Solution The projection of b = (3. 4. 4) onlO the line Ihrough a = (2. 2.1) is 2.a : 

bTa 18 
p _ :r.;" - -, (2.2. I) _ (4. 4 . 2) . .. 

The error vector t ~ b - p = (- I . O. 2) is perpendicular 10 II . So p is COr=!t. 
The plane containing II = (2 . 2. I) and II' = (I, O. 0 ) is the column SP""" of A : 

ATA _[' '] - , , [' 0 0] P = 0 .8 .4 
o .4 .2 

Then p' _ Pb _ (3. 4 .8,2.4) and " .. b - p' _ (0. -.8. 1.6) is perpendicular to 
.. and ... . This vector " is in the nullspace of P and illi projection is 7.eroi NOte 
p 2 _ P. 
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4.2 8 Suppose your pulse is measured at x = 70 beats per minute. then al x = 80. 
then at X = 120. 1ltose th= ~uations Ax = b in one unknown ha,'e AT = II I II 
and b = (70.80. 120). Th, iHd r i$ th, __ of 70. 80. 120. Use calculus and 
projection: 

1 Minimize E = (x - 70)~ + (x - 80)1 + (x - 120)~ by sol~ing dE jdx = O. 

2 Project b = (70. 80. 120) onto a = (I . I. I) to find r _ aTb /aT o. 

In recun;.-r least squares. a new founh measure ment 130 changes :told to xnew. 
Compute Xnew and vcrify the updme !om"da xn..w = XQkI + hl30 - .iO\d). Going 

from 999 to ](XXl measurements. Xnew = Xoid + ~(bl(o) - XoId) would only need 
XQkI and the latest value b1ooo. We don't ha'"e to avcnge all 1000 numben! 

Solution "The: close.t horiwmallinc: to the heights 70. SO. 120 is the a"erage x = 90: 

dE . ~ 70 + 80+120 
-,,- = 2( .. - 70) + 2( .. - SO) + 2( .. - 120) = 0 g,,'es .. = "'--'-'~,-'-= 

_ aTb (I. I. I)T(70 . SO. 120) 70 +SO+1 20 
.. = ....,,-= = 

a a ( I. l.1jT(1.1.!) 3 

AT Ax = AT b is I by I because A has ooly one column (I. I. I). The new measure
ment b~ = 130 add. a founh equatioo and x is updated to 100. either by 3\O'en ging 
bl . b:l. b). b. or by recursivcly using the old 3'"erage of bt. b:l. b): 

7O+SO + 120+ 130 _ I _ I 
"new = 4 = 100 is also Xotd + 4(b. - Xotd) = 90 + 4(40). 

"The: update from 999 10 1000 measurements $bows the "gain matrix" r® in a Kalman 

filter mUltiplying the prniiCliOll error bnew - Xold. Notice ~ = ~ -.: 

_ bt + ... +bt(O) 
( I>CW = 10Cl0 

bt + ···+b<m 1 ( b1+ " '+bm ) 
999 + 10Cl0 btooo - 999 . 

Problem Set 4.2 

Quesllons 1--9 IISk for projecllons 0010 lines. Abo flTOl"S ' _ b - p and mlllri«!i P. 

1 Project the vcctor b OIItn lhe line through a . Ched Ihal , is perpendicular to a: 

(, j .= m ,od .= [:] 
Ighled malanal 
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2 Oraw tile projection of b onto a and also compute it from p = :ia' 

(.) , -[~'] - sine (b) 

3 In Problem I. find tile projection matrix P = aa TJa T a onto tile line through 
each vector a. Verify in boIh cases titat p! = P. Multiply Pb in ea.ch case 10 
compute tlte projection p_ 

4 Construct the projection ITIlItrkes PI and /'1. onlO the lines through the a 's in 
Problem 2. Is il true that (P I + /'1.)~ '" PI + P].? This would be lrue if PI /'1. = O. 

5 Compute lite projection ITIlIlria:S oa TJa T a onto the lines through 0 1 = (- I. 2. 2) 
and o ~ '" (2.2. -1). Multiply those projection malrices and explain why lheir 
product Pt /'1. is whal il is. 

6 Project b = (1. O. 0) onto the lines titrough Ot and a 2 in Problem ~ and also onto 
a ) = (2. - J. 2). Add up the three projections P I + P2 + Pl' 

7 Continuing Problems 5--6. find the projection matrix p) onlO OJ = (2.-1.2). 
Verify that PI + /'1. + Pl = I. llle basis 0 1. a /. aJ is OfIhogonaJ! 

.,=[;] 

,= [:] 

" = [:] 

Queslions 5-fr7 Question!; 8---9---10 

8 Project the vector b = (I. I) onto the lines titrough a \ = (]. 0) and 0 1 = ( I. 2). 
Draw the projections P I and P2 and add P I + P2' 1l>e projectiQn, do not add 
to b because the a 's are not oniJogQnal. 

9 In Problem 8. the projec\iQn of b onto the plaM of a l and o~ will equal b. Find 
P=A(AT A)-I ATforA :[a l a!]:[ U J. 

10 Project 0 1 = (1.0) onto 0 2 = (I. 2). "Then project the ~ult back onto 0 1. Draw 
these projections and multiply the projectioo malrices PI/'1.: Is Ihis a projection? 

QursliofiS I ]- 20 lUI< for proj«t1ous, and proj«t1on matrices, (IIIto subspac:es. 

11 Project b onlO the column space of A by solving ATAx = ATb and P = Ai: 

t 
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(a) 1I =[i l] and b=[!] 
Find t = b - p. It should be pe~ndicular to the columns of A. 

12 Compule the projection matrices PI and ~ onlO the column spaces in Problem 
I I. Verify th.al Ptb gi''es lhe first projection P t. Also ' ·erify pi = ~. 

13 (Quict and Rerommendcd) Suppose A is the 4 by 4 identilY matri~ with its last 
column remo''ed. A is 4 by 3. Project b = (1. 2. 3. 4) onto the column §patt of 
A. What shape is the projection matrix I' and what is 1'1 

14 Suppose b equals 2 times the fi rst column of A. What is the projection of b ontO 
the column SJIlIC<' of ,01 1 Is I' = 1 for sure in this ca",,1 COOlpute p and I' when 
b =fO.2. 4) and the columns of II are (0.1.2) and (1.2.0). 

15 If A is doubled. then P = 2A{4AT A)- t2 AT. This is the same as A (AT A)- t AT. 
n.e column space of 2A is the same as __ . Is :r the same for A and 2A1 

16 What linear combination of ( 1.2. - I) and (1. O. I) is closest 10 b = (2. I . I)? 

17 (/IIllX'rtl'tIf) If 1'2 = p show that (1 - 1')2 = / - P . When I' projects 01110 the 
colum" spac< of A. I - I' I""Oject, onto lhe 

18 (a) If f' is the 2 by 2 projection matrix onto the line through ( l. 1). then 1 - P 
is the projection matri~ onto 

(b) If f' is lhe 3 by 3 projection matrix onto the line through (I. l. I). then 
1 _ P is the projection matrix onlO 

19 To find the projection matrix omo the plane .t -)1- 2z = O. clloosc t,,·o Ve<:tQn 
in that plane and make them the co)umM of A . The plane should be the column 
space. 1lienrompute P = A (ATA)- tAT. 

20 To fi nd lhe I""Ojeclion matrix f' onto the same plane x - y - 2:: = 0, write down a 
''eCtor t thal is perpendicular to that plane. COOlpute the projection Q = ttT/ t T t 
and then 1' = I - Q. 

QutStlons 21- 26 show thai projNotion malrlets salMy p l _ P and p T _ p . 

11 Multiply the matrix P = A ( AT A)- I AT by ilsel f. Can«1 to prove that p l = p . 
Explain why P( Ph) al,,·aY5 equals Ph; The '"eCtor Ph is in the column space 
so its projection is 

22 Prove thaI P = A{ATA)- IAT is symmelric by computing p T Remember that 
the inverse: of a symmetric matrix is symmetric. 

23 If A is square and in'·crtible. the waming against splitting {AT A)- I does 001 
apply. h is true that A A _ I (AT )_ 1 AT = I . WMM II ;$ im·u riblt. wh)";1 P '" I? 
WhDl ;, lht trt"Ql' t ? 

, 
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24 The nullspaee o f AT is _ 10 the column space C(A). So if ATb = 0, the 
projection of b onto C(A ) should he p = _ , Check thaI P = A(AT A)- JAT 

giv~ . tltis answ~r, 

25 The projection matrix P onlO an n-dimensional subspac~ Ita~ nmk T = n, 
Rtl'son .. The projections Pb fill the subspace S, So S is 11K: __ of p , 

2& If an m by m matrix has Al = A and il' rank is m. prove that A = I , 

27 The important fact in Theorem 4G is Ihis: 1/ AT Ax ,., 0 then Ax _ 0, The 
vector Ax is in the nullspacc of __ ' Ax i. al ... a~ in the column space of 
__ ' To be in both perpendicular spaces. Ax must be 7.~ro. 

28 Use pT = P and p 1 = P to pro''e Iltallhe length squared of column 2 a lways 
equals the dill!!onal entry P 1Z, This number is i = ~ + ~ + ~ for 

P = ~22 2, 
[ 

, 2 - '] 

6 - I 2 S 

29 If 8 has nmk m (full row rank. il>depel>denl rows) show Ihal 88T is in"tTtible. 

30 (a) Find lhe projeclion matrix Pc onlO tile column space of A (after looking 
closely alllte malrix!) 

' -[ ' , '] - 4 8 8 

(b) Find lhe 3 by 3 projection matrix PR onto lhe row space of A, Multiply 
8 = PCAPR, Your answer B should be a lillie surprising-can you ex· 
plain it? 



LEAST SQUARES APPROXIMATIONS . 4.1 

II o ften happens that Ax '" b has 00 soluti.,", The u ~uall'uson is: 100 m"ny ~qua/iOlU. 
The matri~ has more rows than columns. There are I11CIre equations than unknowns (m 
is greater than n ). The n columns span II small pan of m..dimensional s~. Unless 
all measurements are peifect. b is outside that column space. Elimiruttion reaches an 
impossible equation and stops. BUI these: are rea l problems and they need an answer. 

To repeat: We eanOO( always get the error t '" b - Ax down to ~ero. When t is 
zero. x is an exact solution to Ax '" h. Wlten ,ht Itngllt of ' is as small IU possiblt. 
X ;s Q Ita5/ squarts wllliion. Our goal in Ihis s«lion is 10 compute x and use: il. 

The pn:viQus S«tiQn emphasiw.l p ( the projection). Th is S«1ion emphasizes x 
(the least squares solution). They are connected by p '" Ai. The fundamental equatLQn 
is still AT Ax = ATh. Here is a short unofficial way 10 derive it: 

w.v ... du tJriIiIuI Az _".IIar ltD WMOP, multiply by AT and solve AT Ai _ AT6. 

Example I A crucial appl ication of least squares is fining a straight line 10 m points. 
SUin with three points: Find Iht closut Un, ti) Iht points (0.6). (1.0). and (2.0). 

No straight line goes through tOOse poinls. We are asking for t,,"O numbers C and 
o that Slll isfy three e<:]uBtions. The line is b = C + 01 . Hen: 1Ul: the e<:]uatLQnS at 
I = 0, 1. 2 to match the given valliCs b = 6, 0, 0: 

The first point is o n the line b = C +OI if C+O·O = 6 

The second point is on the line b = C + 01 if C + o· I = 0 

The thin.! point is o n the line b = C + 01 if C + 0·2 = O. 

This 3 by 2 system hn 00 w lution: b = (6. O. 0) is IK)I a combination of the wlumns 
(I. L l) and (0 . I. 2): 

A=[: !] .. =[~] b =[~] A .. = b isnolsoh·able. 

The same numbers were in Eumple 3 in the last s«tion. We computed i = (S, - 3). 
Those: numbers are the best C and D. so S - 31 is the best line for the 3 points. 

In practical problems. there easily <;:QUId be m = 100 points instead of m = 3. 
They don't e.tactly matcll any C + Dr. Oul numbers 6.0.0 exaggerate the error so 
you can see ic deally. 

Minimizing the Error 

I'low do we make the ermr , = h - Ax as small as possible? This is an important 
questiQn with a beautiful an~wer. The best z (called "i) can he found by geometry or 
algebra or calcu lus: 

, 



By geometry Every A ... lies in lhe plaDe of the columns (I. 1.1) and (0. 1.2). In that 
plane. " 'e i0oi<; for the poinl closest to II. TM ,,~arr~t point is 1M projulion p. 

'The btst choke for Jb i. p. 'The smallest possible error is ~ = II - p. 'The Ihree 
points at heights p = (PI. P2. Pl) do lie on • liDe. because p i. in the column space. 
A ... = p has the same solution i. the beSI choice for (e. D). 

By algebra E~ery v«\or II splits into two parts. The pan ;n the column space is p . 
The perpendicular pan in the leh nullspace is,. There i. an equation ".., canOOl solve 
(A ... = II ), 'The,.., is In equalion ...., do sol~ (by ,..,moving ,): 

A ... _ II _ p + ~ if impon ib/,; Ax _ P is sol.'obl,. (I) 

'The solution Ai = P makes the error as small as possible. because for any ... : 

(2) 

This is the law cl _ ,,2 + b2 for • righl lriangle. 'The vector A ... - P in lhe column 
space is perpendicular 10' in the left nUllspace. We reduce A ... - p 10 teTO by choosing 
... to be i . 1lLalleaves the smailesl possible CrT'0r5. namely, '" ('I.fl'''l). 

Notice what "smallest" means. 'The squared IrnSth of A ... - b is minimized: 

By calculU$ Most functions an' mini mized by calculus! The grapto bottoms out and 
lhe derivalive in every direction is zero. t lerc lhe error function to be m;n;mi~ed is a 
sum of squarrs 'i + "i + "1 (Ihe square of the error in c..::h equation 1. 2. 3): 

'The unknowns an' C and D . With two unknowns lhe,.., a,.., ''''0 deril'llli .... s _ both ,-ero 
al lhe minimum. They are MpaniaJ derivatives" because aElaC ~ats D as constanl 
and aEl aD treat. e as constant: 

aF./ae= 2(C+D·0 - 6) +2(C +D·I) +2{C+D·2) ", 0 

aE/aD = 2(e + D ·O - 6)(0) + 2(C + D · 1)(1) + 2(C + D· 2)(2) '" o. 

aEl aD contains the utn factO<$ O. 1,1 fn)lll lhe chain role. (The derivative of (4 + 
$ ... ): is 2 limes 4+$ .. times an extra $.) In the C derivative the COITl'Sponding fao.1ors 
are l. l. I. because e i~ aJw.y~ multiplied by L II is no acddent that l. l. I and O. 
1,2 arc lhe columns of A. 

, 
i 
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Now cancel 2 from every term abQ>..., and coll..,.;t all C"S alld all O's: 

The C derivati\.., ~ is zero: 3C + 3D = 6 [J J 1 
This matrix hi AT A 

The D derivative % is zero: 3C + 5D = 0 3 5 
" ) 

TII"s" "qllllliom Qn U/""lical "'ith AT Ai = ATb. The ~st C mild 0 are the compo
nents of i . The equations from eakulus are the same as !he ~oormal equations" from 
linear algebra. 1lIese are the key equation~ of Iusl squares, 

The paniQ/ d"rivatil'U of l Ax _ ".2 Qf'I! ~ro wilen AT Ai _ AT .. . 

The sol uti{)ll is C = 5 and D = - 3. Therefore b = 5 - 31 is the best line-it comes 
closest to the three poinlS_ At' = O. l. 2 Ihis lincc goes through p = 5, 2. - 1. 
it could not go Ihrough b = 6. O. O. The error.; are I. - 2. I. Th is is the v..,.;tOr .,! 

Figure 4.00 shows the closest line. It misscs by distances "1. "1. "3 = I. - 2. 1. 
Thou IIU ,·.,rlic(ll dislarICu. The least squares line minimiu-s lhe t01al sqUarN error 

E =er + eJ+tj. 

'·m bl _ 6 

'I - I ·, ·m PI · ' .. , .. m · ·U] • '2 __ 2 
I>J . 0 

.,.0 'J _ 1 r. , 
I'J- -I • 

Figure 4.6 8esI 11"" and projec:llon: "fYI'o pktures, SIIIm problem. The line has 
heightS P = (5. 2. _ I) with error.; t = ( I . - 2. I). The equal ioos AT Ai = ATb give 
i = (5. -3). The ~st Ii"", is b = 5 - 31 and the projeclion is p = SD , - 3<11. 

Figure 4.6b sho"'S the same problem in 3-dimensional space (bpI! . pace). The 
vector b is n01 in the column space of A. Thai is wh y "", could not solve Ax = b 
and put a line through the three pointS. The smallest possible error is the perpendicular 
vector". Th is i. I! = b - Ai. lhe ,'eclor of t'TroI"> ( I . - 2. 1) in the three equatioM _ 
alld the distances from the beSt line. lkhilld both figures is the fundamental equat ion 
AT Ax = ATb. 

NOIicc thaI the m'QI'$ I. - 2. I add to zero. The error " = (e,. el . t)) is perpen
dicular \0 the fiTSl oolumn ( I. I . I) in A. The dot product gives "I + 'l +lfJ = 0. 

, 
i 



The Big Pid ure 

l1Ie key figure o f tbis bool; shows tbe: foor SlIbspaces and the true action of a matri~ . 

l1Ie V«tQr :r on the left s ide of Figure 4.2 went to b '" " :r 00 the right s ide. In tbat 
figure :r was split into :r , + :r • . TIlere were many solutions to "x = b. 

In tbis sectioo the situatioo is just the opposite. TIlere IOl"C' no solulions to " :r = b. 
In5t~ad of splilting up :r ... ~ art splilling up b. Figure 4.7 shows the big piclure for 
least squares. Instead of A:r '" b we soh't' "x = p . TIle error ~ ", b- P is unavuidable. 

, 
tndcprndcnt columns 

No n"tI~ 

" .. . b __ --

, , 
- - - -- - - no! possible --~ - 0( 6 - p + ~ 

b noI in column Sf*'<' \ , , 

f igure 4.7 The projection p '" "x is closest to b. so x minimizes E = 16 _ " :r 12. 

Notice how the nullspace N (A) is very small - jusl one point. Wilh independent 
columns. the only solution 10 "x '" 0 is :r = O. Then "T" is invenible. ",., ..quation 
AT Ai" = "T6 fully detennines the best v«lor x. 

Chapter 7 will h.avc the complete picture - all foor subspaces included. Every :r 
splits into :r , +:r •. and every b splits into p + ,. The best solution is sti ll i (or i ,) 
in the row space. We can't help t and we don't want .... - this leavt!; Ai" .. p. 

Filling a St raigh t Line 

Filling a line is the clearest applicalion of least squares. II Slarts with m > 2 points
hopefully near a straight line. At ti mes It •.... r .. those points an: at heights bt ..... boo. 
Figure 4.6a shows the Ixst line b = C + 01. which misses the points by vertical dis
tances tt ..... t ... No line is perfect. and the least squares line: minimiO(.Cs E = tT + 
... +,!. 

'The first example in thi s section had three points. Now we allow m points 1m 
can be I~). ",., I ...... components of i" an: still C and D . 

A line goes through the m points wilen "''t' e~lICtly solve "of = b. (Xnel1llly We 
ean' t do it Two unknowns C and D determine I line. !IO " has only n = 2 columns. 

.~ted material 



To fit the m points. we are trying 10 soh'c m etjualioll, (aJld we only wanl [w(ll): 

C + Dtl= b, " C + DI1"' iJ: " As = b ;, wilh , : (>, 

C+Dr",= b .. '. 
'The column spaI'C' i ~ SO thin that almost cenainly b is outside of it When b happens 
10 lie in rhe oolumn spaoI'c. the points happen IQ lie 00 a line. In lhat case II = p. 
1l>en AI" = b is soh'3ble and [he errors an: t = (0 ....• 0 ). 

Tht C","SI lint C + DI luu ht ighlS P l •. . . • P. with """,, "(, .•.• t ." 

Fining pointS by a slraighl line is so impoctanl lhal We gi~c (he tWO equations 
AT Ax = tlTh. <.>nIX and for aiL 1l>e tWQ columns of A are inder.ndent (unless all 
times Ii are tile same). So we tum [0 leaS! S<lua~ and solve A Ax = ATh. 'The 
"doI-producl ma1ri~" AT A is 2 by 2: 

[' "] [ , .. I m 
, . . r .. ] : : .. [I i , '. 

(0' 

On the right side of the norm.o.l equatioo is the 2 by 1 VKtor AT" , 

, .. I I: bj 

[b'] [ ] , .. r .. ] b~ = L';b; . 
(7) 

In a specific problem. all lloese numbers ...-e gi,'cn . A foonula for C and V is roming. 

4H The line C + DI which minimizes ri +. . + r;' is detennined b) AT Ai _ AT/I" 

[
m L"][C] [L"] L" L',l f) = L"b, <" 

The "erlicaJ error.; at !he m pOinls ()<l the line are !he oompooents of r = b - p. This 
error '-..clOr (the " sidUllI) b - Ai is perpendicular to lhe columns of A (grometry). It 
is in .he nullspace of AT (linear algebrn). The best i = (C . 0) minimizes the .otal 
error E. the sum of squares: 

£ (x ) = l Ax - bUl '"' (C + 0" - b d 1 + .. . + (C + 01", - b", )! . 

When calculus sets.he deriva'iV<'s ~ E/~C and fi E / flO to zero. il prodoces 4H. 

, 
i 
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OIher least :;quares problem~ have lnort: than IWO unkJ1()Wns. Filling b~ the besl 
panlboLa has II = 3 codlicitnts C. D. E (see below). In general we an: filling m dala 
points by" paramc1ers " I ..... .. 8. 1lle malrix A has n colulJlJ1s aoo n < m. l11e 
derivali,,,s of I Ar - h l 2 give lhe II equaliOlls AT Ax = ATb. The dt'f"h·Mti'·e of a 
sqWlI"e Is IIMar_ this is why the tnethod of lea." :;quam; is 50 popular. 

hample 2 A bas orl/wgonol rotumns when lhe meaSUretnenl times II add to leN. 
Suppose b = 1.2." at times r = -2, o. 2. 11Iose titnes add to 7.ero. 1lle dot product 
" 'itb the other column 1. l. I is zero: 

C+ O(-2 ) = 1 
C+ 1)(0) = 2 
C+ 0 (2) _ 4 

Look at the matrix AT A in the leaSI :;quam equalion for x: 

" 
Maill point: Now AT A is diagOlUJi. We can solve separately for C = J and 0 = i. 
The zeros in AT A are dot products of perpendicular columns in A. The diagooal malrix 
AT A. with entries m = 3 and rll+ rI+rj = 8. is vinualiy as good as the identity ma(ri~. 

Onbogonal columns are 50 helpful Ihal il is wanh moving lhe time origin 10 

produce them. To do that. sUbu3c1 away the average lime i = (II + ... + 1.)/ "'. 
The shifted times T; = I; - i add to zero. Wilh the columns now orthogonal. AT A is 
diagonal. Its enlries are m aoo Til + ... + T~. The best C aoo 0 haw: di=t formul ... : 

C =bl+· ·+b .. 
m ,'" (9) 

TIle hm line is C + OT or C + O{I - 7). The li me shift that makes AT A diagonal 
is an example of lhe Gram-Schmidt process: OfliwgOfUlIi;;# Ihr columns in ,idl'lmcr. 

Fi lling by • P .... abola 

If we throw a ball. il would be crazy to fi t the path by a straight line. A parabola 
b = C + 0 1 + Ell allows the ball 10 go up and ~ down again (b is the height at 
lime I). The aclual palh is not a perfect parabola. but the whole Iheory of projectiles 
Slans with Ihal appro~imalion. 

When Galileo drupped a >lone from the uaning Tower of Pis.a. it .w.:celcraled. 
The distance contains a quadralic term ! gl l. (Galileo·s poinl was lhal Ihe Slone's mass 
is not invol"ed.) Wilhout thai te"" ,,'e could ne\"Cr seoo • S3tdlitc into the right 01"_ 

bit. But even wilh a oonlinear function like ,1. the unknown.> C, 0 , E appear linearly, 
Choosing the best parabola is still a probk-m in linear algebra. 

, 
i 



Problem Fit heights h i .. , .. h .. at ti mes II •... , I .. by a parabola h = C + DI + Ell . 

Wilh m :> 3 points. the m equations fOf an e~act lit arc ge"",rally unsolvable: 

, 
C+OII+Elj=hl 

has lhe m by J malri ~ (10) 

, 
C + 01 .. + EI;' = h .. 

lea~t squares The bo:st parabola clloo:>scs x = (C, O. E) to satisfy the thret: normal 
equatioos /IT /Ix = AT /). 

May I ask you to con~n this to a problem of projcdioo? The column space 
of /I has dimension __ . The pro~lioo of /) is p = Ax. which CQITlbin<'s lhe 
Ihree columns using the coefficients C. D. E. The error at the first dala point is "I = 
hi - C - 011 - E lf. The 100al squared error is er + __ ' If you prt=fer to minimize 
by calculus. lake the panial derivalives of E with rcsptt110 _ _ , __ , __ ' 
These: th...., derinlives will be zero when x '" (C, D. £ ) sol~s the 3 by 3 system of 
equations __ ' 

S«tion 8.S has more lessl squares applications. The big one is Fourier s.eries
approximating fundioos instead of Vtttors. The error 10 be minimiud chang~ from a 
Sum .. i + ... + .. ~ to an integral. We will find lhe straight line d{)§est to f(~). 

Ex .. mple J fur a parabola /) = C + DI + El l to go through the three heights h = 
6. O. 0 when 1 '"" O. 1,2, the equalions an: 

C+D · O+E·02 = 6 

C+ D·I+E.] l= O 

C+D·2+E·22 = O. 

(II) 

This is A~ = b. We can solve it exactly. Thret: data points gi~ Ih...., equalions and • 

squ= matrix. The solution is ~ = (C. D. E) = (6 . -9, 3). The parabola through the 
three points in Figure 4.8a is b = 6 _ 91 + 312. 

What does this mean for pro~tion? The matrix has three columns. which span 
the whole space Rl. The projection matrix is the identity matri~! The pro~tion of b 
is b . The error is uro. We didn't need liT Ax = AT /). bttause: "~sol~ A~ = b . Of 
course we could multiply by liT, but there is IIQ reason to do it. 

Figure 4.8.a also shows a founh point h4 at time I •. If llIal falls on the parabola. 
lhe new A~ .. b (four equations) is still solvable. When the founh point is IIQt 00 the 
parabola, we tum to liT IIi = ATb . Will the least squares parabola stay the SBIIlC', with 
all the error at the fou nh poinl? NO! likely! 

The smallest error ' 'eCtor (el. "2. "), t,) is perpendicular to (I, I. I. I). the fi~ 
~olurnn of A . Least squares oolantt§ out the fOll' C~. and the~ add to zero. 

, 
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Figurt 4.8 From Example 3: An exact fit of tbe parabola th.rough three points means 
p = b and ~ = O. The fourth point will require least squares. 

• REVIEW Of THE KEY IDEAS • 

I. The least iiqualQ solulHJn i minimizes £ = 1A.;r - hl l , This is (he sum of 
sq~ of the moos in tbe m equations (m :> II). 

3. To fil III points by a 1(!Ie b = C + 01 , the: lWO normal equ.a1ions give C and D. 

4. The heights of the IxSI line all: P = (PI ..... P.). The , 'cnical distanc:cs I(> the 

data points are the Crn)l1; r = (c), ........ ). 

S. If we try 10 fit III points by a combination of It < III functions. the III e<juations 
are generally unsolvable. The It normal equations give the least squares solution. 

• WORKED EXAMPLES • 

4.3 A Stan with nine measurements bl 10 bq. all UtTO, al lime!; I = I ..... 9. The 
tenth measurement hlO = 40 is an outlier. Find the best horiWfIIU/ liM Y _ C 10 til the 
U'n points (1.0). (2. OJ •.... (9,0). ( 10. 40) using three measures for the eTTQr E: (1) 
leU! squaJes .. i + ... + eio (2) lea$! lIlllltimum eTTQl" Itmu I (1) least sum of el'T'Of'$ 
lei I + ... + IItlol_ 

~n tlnd the leas! squarn §traighl line C + Dr Illrough those ten points. Wl\al 
happens to C and D if you multiply the bi by 3 and then add 30 10 get /lne ... = 
(30. 30 •.... ISO)? What is the best line if you multiply the times I{ _ 1 ....• 10 by 
2 and then add 10 10 get I ....... _ 12, 14, ... , 301 

Solution ( I) ~ least squares 6110 0 , 0 . ... , 0.40 by a horizontal line is the av
enge C = rtt = 4. (2) ~ lu§t maximum error ta:jllires C = 20. halfway between 

aklnal 



o and 40. (3) The least sum require" C = 0 ( !t), The sum Qf erTOf'S 91CI + 140 - CI 
" 'ould increase if C !l)()\"eS up from zero. 

The least sum romes (rom It.:. mwian measurement (Ille mNiilUl of 0 •.... O. 40 
is zero). Changing tile beSt )' ." C >= bmedian increases half the errors and decreases 
half. Many >talistic;an~ fccl (hal the iell>l squares wlulioo is 100 hea~ily inHuenctd by 
outlie~ like 1>10 : 40. and they prefer least sum. Bul the cquatioos become nonlinear. 

The Ieasl squ=s straight I; ... C + DI requires liT II and II T" with I .. l. .... 10: 

ATA = [~f; E::: ] = [~~ 3;~] ATb=[tl~~J = [:] 
l1lo5e come: from t<!ualion (9). Then AT Ai = ATb gives C = -8 and 0 = 24/11. 
Linearity allows uS to rescale the measurements It = (0.0, ... . 40). Multiplying b by 
3 will muhiply C and D by 3. Adding JO 10 all b; will add 30 to C. 

Muhiplying tlx: limes ' ( by 2 will d;";d~ 0 by 2 (so lhe IillO rellC"'s the same 
heights at (he new limes). Adding 10 to al! limes will ",plaa: I by I - 10. The new 
line C+ D(' -!IO) reaches the ... me heights at r = 12. 14 ..... 30 (with the ... me errors) 
that it previously did at I = 1.2 ..... 10. In linear algem language. these matrices 
A(Jid and A,,"," ha,,, the same column space (why1) SO no change in the projectioo: 

[
1111 I 1 I I 1 IJ' [1 I I 1 1 I 1 1 I IJ' 
I 2 3 4 5 6 7 8 9 10 12 14 16 18 20 12 24 26 28 30 

4 .3 B Find the par:abola C + Vr + E/2 that comes closest (least squares elTOf) to 
the values " " (0.0.1.0,0) at the times I = - 2. - ].0.1.2. First write down the 
fi,'e equations A.r = b in three un~lIQWns .r = (C. V . E) for a par:abola to go through 
the five points. No solutioo because no such par:abola exists. Solve A.r = b by least 
squares (using AT Ai = ATb ). 

I w(>IIld pttdict that V = O. Wh y should the best par:abola be symmetric around 
r = 07 In AT Ai = AT" . equatiOfl 2 for V shou ld unoouple from equations I and 3. 

Solut ion ll>c fi,,, "'!uation, A.r = b and the 3 by J matrill AT A are 

C + D (-2) + £ (_2)2 = 0 -2 , 
C + D (- I ) + £ (_ 1)2 = 0 -, , 

ATA=[ ~ 0 £] c + " (0) + £ (0)2 = 0 A ~ 0 0 " C + D (I) + £ (1 )2 = 0 , , 
" 0 

C + f) (2) + £ (2 )2 = 0 2 , 
Those leros in AT A mean thai column 2 o f A is onhogonalto wlumns 1 and 3. We 
sec: this dire<:tly in A (because the times -2. - I. O. 1.2 are , ymmetric). The beSt C. D. £ 
in the par:abola C + Vr + El2 come from AT A; = AT" . and equatiOfl 2 for D is un
cou pled: 

" " C =-=-
70 35 

D = 0 .s predicted " , E =- - = --70 , 

, 
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Tbc $y mmetry of 1'1 u!lCOUl'icd equation 2. 1lIe syrTlIt1Ctt)' of It = (0 ,0, 1.0, 0) made 

ilS right ~ide um, Symmetric inl'ulS I'rodU(ed a symmetric parabola ~ _ ~Il, 
Column 3 can be (lI'I1\Qg<>nali~ by s..blraCiing ilS projeclion (2,2,2,2.2) 0010 001-
umn I: 

-2 2 0 -, -, [C~2l 0 
Notke lit'" 

Anew i"new = b i. 0 -2 I 
third roIlimn , -, 0 2 2 0 

All ajuati(lfls arc 00'" ullOOllpled! Anew has Qr'\hQg()llal CQlumn$, Immediately 14E '" 
-2 and E = -t and D = 0, Then C +2E =! gi~ C "'; + t = * as bcfQK', 
AT A beC<>mes eally when !he work o f orthQgonaiization (wlti<:1t is Gram-Schmidt) is 

done first. 

Problem Set 4.3 

Probkrns I- II w;e foor data points b = (0 .8,8, 20) to bring oul the kry Idrll$.. 

t With b = 0 , 8,8,20 al I '" 0 , J, J. 4. set up and solve the normal ajualions 
ATAi" = ATb. For the bes t . lraighlli ne in Figure 4,9a, find its foor heights PI 
and fOOl ermn ej. What is !he minimum valllC' £ = ef + q + ej + el? 

2 (Line C + DI does go Ihrough p's ) With b = 0, 8. 8, 20 al times I = 0, I. J, 4, 
write down the fOOl ajualions Ax .. " (unsolvable). Change the measurements 
to p = I. 5. 13, 17 and find an eXie l SOlution 10 Ai" = p. 

l Check thal , = b - p = (- I. 3. -So 3) is perpendicular \() ~h columns o f A. 
What is !he shortest distance lei from II 10 !he column spar<' o f A'! 

4 (By calculus) Write down E = l Ax _ b12 as a sum of fOOf squares-lhe last ooc 
is (C +4D - 20)1. Find the derivative equllions aCjaC .. 0 and aC{a D = O. 
Divide by 2 10 obtain the IIQI'1DlII ajuations AT Ai" = A Tb. 

S Find the height C o f lhe besl iwri:/m lal liMe to fit It = (0. 8. 8, 20) . An exacl fit 
would sol'~ !he unsolvable ajuations C = O. C = 8. C = 8. C = 20. Fi nd 11K-
4 by I malrix A in lhese: e<jualioos and sol,~ AT Ai" = ATb. Draw lhe oonrontal 
line at height i" .. C and the fOOf errors in t . 
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6 Project b = (0 , 8, 8, 20) ontO !he line through a = (l, I. 1. I). Find X = aTb/ aT a 
and the projoection p '" 1a. Check thaI t '" b - p is ~ndicuJar 10 (I , and find 
the shonest disWlCe I t I from b 10 the line Ihrough a. 

7 Find the c losc$t line b '" I),. through th~ origin. to 1i1e Same four points. An 
eAatl fit would !101"e D. 0 = O. 0 . I = 8. 0 ' 3 .. 8. 0 ' 4 '" 20. Find the 
4 by 1 matrix and !lOlve "T " X = "Til. Redraw Figule 4.9~ showing !he best 
line b '" 01 and the ~'s. 

8 Project b = (0. g, S, 20) onto the line through a = (0. 1.3. 4). Find X = 0 
and p ., xa. The best C in Problems 5-6 and the beSI IJ in Problems 7-3 do 
IIQ/ agree with the beSI (C. 0) in Problems 1-4, That is because (l. 1. l. I) and 
(0. l. 3. 4 ) = __ perpendicular. 

9 fur the d oses t parabola b = C + IJI + E rl to !he same: (our points. wrile down 
the unsolvable equat ions Ax = b in three unl;nowns x = (C, D. E ). Set up the 
thtee DOnnal equations AT Ai = ATb (!lOlution 00( required). In Figure 4 .9a you 
are now filling a parabola to 4 points - whal is happening in Fisure 4.9b? 

10 For the c losest cubic b = C + 01 + EI 2 + FrJ to the same (our points. wrile 
down the four equations Ax = b. Soh -c them by ~limination. In Fi8ure 4.9a this 
cubic now goes exactly through the points. What are p and t 1 

11 The a~era8e of the four times is / = l {O + I + 3 + 4) = 2. The a"ent~ of !he 

four b's is b= i(0 + 8+8 + 20) = 9. 

(a) Veri fy thar. the Ixs! line goes through !he cenler poinl (i, b) '" (2. 9). 

(b) E~ plain ,,'hy C + D/ = b comes from !he fi l1it equation in AT Ai ", ATb. 

Questions 12-16 Introduce bask Ide~s of statistics- the foutKIation for least 5qua~ 

h (0, 8. 8, 20) 

" 
, , 
" , 

" 

Figure 4,9 l'roblrms 1_ 11: The dosest line C + VI matches Ca t + Oal in R~. 

i 



12 (Recommended) This problem proj«t> b = (b l , . . . , b.) onto ~he line through 
1/ '" (I ..... J). We solve m NJua~jons I/X = b in I unknown (by leas~ squares). 

(a) Solve I/TI/; = I/Tb 10 show Ihal; is ~he ~n (~he a.·c .... ge) of lhe b',. 

(b) Find e = b - 0; and the '·arian .... • cHl and the SlaMa,../ dn'iarion Ic l . 

(c) llle hori~ontallil>C' b = J is cl~1 10 b = (1 . 2.6). Check Iltal P = 
(J, 3. 3) is perpendicular to c and find the matrix P. 

13 Fi~1 a$Sumplion beh.ind least S<:juate$: Each measurement error has mCDII ~,o. 

Mulliply lhe 8 elTO' ",CIO<$ b - Ax = (±I. ±1. ± I) by (AT A )-I AT to show that 
lhe 8 '"oxton i - x also a" crnge 10 ttTO. llle estirnale ; is unbia$ed. 

14 5ec<>nd assumplion behind least squares: llle m errors t ; are independent " 'ilh 
"anance .,!. so the a"crage of (b _ Ax )(b _ i\X)T is (ll/. Mutliply on the lefl 
by (AT A )- ' AT and on the righl by A(AT A )-' 10 silo ... Ihal lhe a"''''ge of Ix 
X )1x - x )T is ,,2(AT A)-I. This is the covarianct matrix for the error in i . 

15 A doctor takes 4 readings of you. heart rate. llle beSt solution 10 x = bl . .... x = 
b~ is the average :< of bl . ... • b~. llle matrix A is a column of I·s. Problem 14 
gi~cs the expected error (i _ .1' )1 as ,,2( AT A )-I = __ . By averaging. lhe 
variance drops from ,,1 to ,,1/4. 

16 If you 1;:1"10\>-' lhe average X9 of 9 numben bl . .... b<, . how can you quickly find 
lhe a"cragc i\O wilh one more number blO 1 1be idea of T«ursil'e least squaJe' 
is 10 a"oid ...Jding 10 numbe~. What coefficient correctly gives xl01 

XIO = lhblo + __ X9 '"' M b l + ... + b tO)· 

Q ...... t ion' 17_25 gin morT p ractk c ,",'lIh i and p lind t. NOIe Q uestion 26. 

17 Write do ... n Ih"'" equations (or the line b = C + DI \0 go through b '" 7 It 
I = - I. b = 7 all = I. and b = 21 at' = 2. Find the kast S<[uaI'CS solul ion 
:i = (C. Dj and draw the rlose51 line. 

18 Find lhe proj«lion p = Ai in Problem 17. This gives the three height> of the 
clostst line, Show Ihat lhe error veclor is e = (2. - 6. 4). 

19 Sup~ lhe mea~"".ments at I = - I. 1.2 are \he errors 2. - 6. 4 in Problem 18. 
Compule i and the clostSt line to these new measurements. Explain lhe ans"'cr: 
b = (2. - 6. 4) is perpcndicobr In __ §O the proj«tion i. p = O. 

20 Suppose the measurements 81 r = - I, 1.2 are b = (5. 13. 17). Compule X and 
lhe closeSI line and t . 1be error is t = 0 because this b is 

21 Which of the four subspace! cooui lU the error .-eclor t ? Which contains p? 
Which <.'Onl8.ins i1 What is lhe nullspace of A? 

12 Find the besl line C + 01 \0 til b ~ 4.2. - I. O. 0 31 times' .. -2. - I. O. I. 2. 

, 
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2l (Oisumcr betv .. een li~~) The pointli P = (x, x , x) art' 00 a line through (I. I. I) 
and Q '" IJ', J)" -I) art' on another line, Choose x and )' to minimize the squam;! 
di5UIncc I P _ QI1, 

24 Is the error \'CClor t orthogonal to " or port or i1 Show that It nl ~uals t T" 
whi<.:h ~ual s "T. _ pTb_ This iii tile smalle~t total error E. 

25 The dcri\1Itives <If I Ax i l with respect \0 the variables Xl, ... ,X. fill the vector 
2 AT Ax. Thc deril'lltives of 2bT Ax fill the V«tor 2ATb. So the deril'lltives of 
l Ax - b l1 an= lero when __ " 

26 Wh<ll condilion on (It, b.) , e'l, ~), ( I) , b.l) pillS rhost Ihru poi1llS onlo" slroi8hl 
Ii~? A column space answer is: (bt, ~, b.l) must be a oontbinatioo of ( I, I, I) 
and (II, 11, IJ). Try to rt'och a specific ~uation oonn.e<:ling lhe ,'s and "'s. I 
should haVl: thought of thi s question sooner! 

27 Find the pla,,~ that gives lhe beSt fit 10 the 4 value. b = (0 , I, 3, 4 ) al the OOmer$ 
(], O) aOO (0 , I) anti (- ] , 0) anti (0 , - 1) o f a square. Thc ~u.lions C + Dx + 
E)' = b at thQsc 4 points an: Ax = b with 3 unknowns x = (C, D , E). At the 
center (0,0) of the squart', show that C + l)x + E y .. aven ge <If the b's. 

, 



ORTHOGONAL BASES AND GRAM·SCHMIDT • 4.4 

This se<.:tion Itu tWQ goals. "The first is to see how onhogonality can make calculations 
s impler. Doc products are zero - so AT A bewnw:s a diagonal malrix. "The second gool 
is 10 COIIS/nICI onhogolUll ~ctors. We will pick CQmbinalions of the original ~«10fS 
10 produce right angles. Those original vectors an: the CQlumns of A, probably no/ 
orthogonal. "The orthogonal ~«10fS will be the CQlumll$ of a new matrix Q. 

You know from o.OIpIer ) whal a basis consins of- independent ~«tors that span 
the space. "The basis v«1OIS CQUld ~t at any angle (except 00 and ,goo). Bul e,-err 
lime .... e visuali ze axes. they are pcrpendkular. In our imaslna/lon. /h~ roorninllle ,au 
are proctlcally always orthogonal. This simplifies lho piclure and il greally s implifies 
the compulations. 

"The "«IOrs q I •...• q. are onllogolUll when their dot products q j • f J an: zero. 

More e"actly q T q j = 0 whene>w ; to j. With one II"IOfl: step- just divide each ,·«tor 
by its length - the vectors beeQn", onhollonal unil OWlan. "Their lengths are all I. 
TIlen the basis is called onllonontlol. 

DEFINITION The .«tors q t . .... f . are artlwnor",D/ if 

, 10 when i to j (orthogonal 'l:CtQrs) " -'1- I "hcni=j (u",·',·cclors:Uq, I =I) 

A matrix ",th orthonormal columns is assigned the special leiter Q 

Tilt matrix Q u tlUJ 10 work ... i,h bleaust QT Q .. I . This repeats in malrix 
langu~ge that the oolumns f 1_ ...• q. an: onhonormal. It is equation (I ) below. and 
Q is no! required to be square. 

Whon Q is squ=. QT Q = I means that QT = Q~l : IrtJnspoU " ;"'·Ust. 

"A matrix Q .. ·Ith orthonormal columns satlws QT Q _ I 

Q'Q ; [ 

- qT-

W 
, 0 0 

- qI f:.] = 
0 0 

q, ; I . "' , , 
- q. 0 0 

When row I Qf QT multiplies column j of Q. the dot product is fT f j. Off the diagonal 
(I -F j) thaI dot prodUC1 is zero by onhogonali!y. On lho diag<>nal (i = j) the unit 
,.«!or.; give f Tq; '"' Dq ,ll .. l. 

, 
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If the columM are OIIly onhogonal (no( unit "ectors). then QT Q is a diagonal 
matrix (no( the identity matri x). We wouldn't u SC the leiter Q. But tltis matri~ is 
almost as good. llle important tlting is onhogonality- then it is easy to prodoce unit 
vecto ,,;, 

To " {'tot : QT Q .. I e>'en when Q ;s rectangular. In tltat case QT is only an 
inverse from the leli. For S<juare matrices ,,'c also Ita>'c QQT = I. so QT is the two
sided inverse of Q. TlIe ""'" of a S<juare Q are onlionormal like the co lumns. The 
In.~ru Is the truns(H1u . In litis square case " 'e call Q an onhoJf(>ntJf INtJtm.1 

Here are tltree examples of orthogonal matriceS-l'OIatioo al>d permutation and 
reHection , llle quidest test is 10 ehed QT Q 0: I , 

Example I (Rolalloo) Q rQtltes every vector in the plane through the angle 9: 

Q = [~9 -Sin 8 J 
, m8 cos 9 

TlIe columns of Q are onItogooal (take their 001 product). TlIey are unit vec(Ql'S tJe. 
causc sin2(1 +cosI9 = l. 1bosc CQlumn~ give an orfhtJnormof btJsi$ for the plane Rl . 
lbe Mandan! basis ve<.:ton i al>d j are rQlatro tltrough (1 (iItt Figure 4.10.). 

Q _l rotates vectors back tltrough -9. It agrees witlt QT. because the cosine of 
-8 is the cosine of 8. and s ine -8) = - Sin 9. We ha>'e QT Q = 1 and QQT = f, 

Example 2 (~rmulallon) These matrices cltange the ordet to (y . <, .. ) and (y, .. ): 

All columns of these Q 's are unit vectors (their lengths are obviousl}' I). They are also 
onhogOllal (the I ', appear in different places). TIre im ... rse of a permulotion matrix is 
lu rronsprue. llle inverse pUIS the components back inlo their original order. 

E-,.,,, /H_lUaJitJn IJI#IIIV Q lUI ~ -m. 

Exa mple 3 (RefRdlon) If Il is any unit vector. sct Q = 1- 2 1lllT , Notice that 
"" T is a matrix wltile "T" ;s the number . " .: = I. lben QT and Q-t both equal Q : 

1~ ....n,- """,,1<1 ha"" Mft • _ name fu< Q. t.., it' • ..,. <»«L AI\)' ....n. "itt. 
.. d .... "',.t <XII ....... lAs , hoc: k1O<f Q. but . '. Mly c.tl ~ on _~ -u ... hoc:" i. ;. __ 
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ReHection matrices I - 21/11 T art: symmetric and also onhogOllaL If yOtl squart: them, 
you get the identity matrix : Q2 = QT Q = I , RcHocting twice through a mirror brings 
back lhe original. NOlice 1/ T II = I in~ idc 411 11 T 11 11 T in equation (2 ), 

As examples choose tWO unil vectors, " = (1, 0) and then u = (l / ,fi, - ll ,fi), 
Compute 21111 T (column limes row) and liubtmel from I 10 get Q: 

"'" Q' ~ 1 - 2[ , - .']~ [O 0'] . - ,5 .5 1 

Q I rt:flecl1 (I. 0) across the }' n is to (_ I. 0). Every vector ( .. , y ) goes into its image 
( - ,r , )' ). and the )' axis is the minur: 

Reflec:lion from Q I: [-0' 

Q l is relleclion across the 45" lillC', Every (,r, y) goes 10 (y , .. ) - this ""as the permu· 
tation in E;o:arnple 2. A >-eclor like (3, 3) doesn't move when you exchange 3 and 3 _ it 
ill 011 the mirror lit'll', Figure 4 ,10 b shows the 45· mirror. 

ROlations prese~ !.he length of a Vttlor, So do reflections, So do ~rmutations, 

So (!OX, multiplkation by any onllogonal matrix - h llgtlu fl lld fl llgies dall " ( hflllge, 

41 1/ Q has ""''''ftortflal columns (QT Q _ I), il Ira • .,.. lenglhs unchallged: 

J 

DQ,r , = U,r l for every vector ,r , 

Q I .. J 

Q I .[~ ' ,.nOJ 

, 

, 

mim 

, ' 

" , ' , ' 

, 

, 
QJ .. I 

IJ, 

Figure 4 . 10 ROla tion by Q '" [ ~ -~] and reHection ac ross 45° by Q '" [ ~: ], 
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Proof nQ ... . 2 equals Ixnl because (Qr )T(Qr ) = r TQTQr = x Tl x = x l x . 
Onhogonal m:nrices are excellent for compu tations-numbers can 1Ie,'er grow too large 
when lengths of Ve<;:tOB I"" he<.! . Good computer codes use Q's as much as possible. 
That makes them numeri<.:,lIy ~ble 

Pro jections Using O rthogon;lil Rases: Q Repl~ cl'S A 

This chapleT is about projections onto subsp"'cs. We developed the eq uations for x 
and p and P. When the columns of A wcrt' a tlasis for the subspace. all formulas 
in,'ol,'ed liT A. 11lc entries of liT II are the dol produc~. 4T 4J. 

Suppose: the tlasis , '«tors are actually orthononnal. 11lc Q's become q ·s. Then 
AT II simplifies to QT Q = I . ~ at tl><: impro"~ments in i and p and P. Instead 
of QT Q W'e print a blank for the ide ntity matrix: 

i = QT" and p = Qi and P = Q Q' (. ) 

Tht I~'nt SqU4"'S solution of Qx _ "is i _ QT". Th~ proju "lion ",tUn.. is P _ QQT. 

There are 00 matrices 10 in,·c". This is lhe p<.>inl o f an orthonormal boosis. "The bc:M 

; = QT" just has dot products of " with lhe ~ of QT. which are the q 's: 

{dol prod...:-tsj 

We have n sepanlle I·dimensional projc:c1ions. 11lc Mcoupling matrix'· or "rom:lation 
matrix" 11111 is now QT Q = I . "There is 00 coupling. Here is p :; Qx: 

I'roju ,;ou (S) 

Important case : When Q is squa"" and m = n. the subspace is the whole space. 
Then QT = Q- ' and; _ QT" is the !ioIIme as x _ Q - ' ''. The solutioo is ""lOCI! 11lc 

projection of " <»1to thl: whole sp8«' is b ilself. In this ease P = QQl = I . 
You may think thai projection onto the whole space is t10I worth mentioning. But 

whl:n p = " . OUr fonnula assembles " out of ils l-dimensional projections. If q , . .... q~ 
is an onhooonnal basis for the whole space, so Q is square, then c"cry " is the sum 
of its comp<.>ncnts along {hi: ,, 's: 

(6) 

Tha{ is QQT _ I . It i. lhe foundalion of Fourier series and all {he 8""at ""transforms" 
o f applied maltlcmalics. 11lcy break ve<:tors o r fuoclions into perpendicular pittes. 11lcn 
by adding {tic pi«cs, the inverse transform puIS the fuoclion back {~ther. 

. 'aklnal 
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Figure 4.11 First project b OOtO tile line ttwuglt .. 300 find 8 as b - p . Then project 
C onlO (he A 8 plane and find C as e - p . Then divide by I AI . ABD. and l e i . 

Example 4 The oolumns of this matrix Q arc orthonormal ,'t'C1Of!; q (, q 2- f l : 

." '"' ro',m" , ,= n 1 [-' , '] Q= ! 2 - 1 2 
2 2-1 

The separate projections of b = (0,0, I ) O\lCO ' I alld ( 1 aoo f ) are 

The sum of the tiM tWO is the projection of b 01110 the plan, of { I and f l- The Sum 
of all three is the projection of b 01110 the ... ·holl' JpaCt'~which is b itself: 

The Gram-Schmidt Process 

The point of 111is seclion is Ihal "onhogonal is good." Projections and least squares 
always inml..., AT A . When this mal.h bttomes QT Q = I , the inverse is roo problem. 
The ooe4imensional projections are uncoupled. The best i is QTb (n separate dol 
produCts). For this 10 be true. we had 10 say "// lhe: v«ton. are onhonormaJ: " 
Nqw Wf! find II ..... y , .. C"o./I' orth tJnormoi l'«I'ors 

Stan with three in~~ndenl "«10110 " . b, c. We intend to CQIlSIru<:t \h= o"lIog
ooal "ocl"'" A , B . C . 1lM:n (at !he end is easiest) we divide A . 8 . C by t~ir length •. 
That produces thrtt onhononnal vectors f l = 04 /104 1. ql = B/i RI. f J = C/ IC I. 

Gram-Schmidt Begin by choosing A = fl . This first diKCtioo is accepted. 1lM: !le." 
direction 8 must be JlCrpcndicular to A. Srtu1 wirh " and i ubtmcr in pro-frclum a/oIlS 

i 



224 eM.,..,. 4 Onhogonoolil)i 

A . This ica'"t's tile perpendicular P'lJ1. which is (he orthogonal ,·ector 8 : 

Gram-Schmidt Idea 
A' b 

A 
A' A 

(7, 

A and B are O<thogonaJ in Figure 4. 11. Take the doc product with A to '"t'Tify lilat 
AT B = A Tb _ ATb = O. This ' 'eCtor 8 is what we ha,"t' called the e rror veclor e. 
perpendicular 10 A . NOI:K:e thai B in equalion (7) is noc W"Q (otherwise 4 and b would 
be dependent). The direclions A and B are !lOW set. 

The third direction SIaJ1S with c. This is not a combinatioo of A and 8 (because 
e is noc a combination of .. and b). B UI mosl likely e is noc perpendicular 10 A and 
B . So subtra<.:1 off its componenl5 in {hose two directions to get C: 

ATc BTc 
C=c ---,' --- H. 

A T A 8 1 8 
(8) 

This is lhe one and only idea of tile Gram-Schmidt process. Subrrocr from eve" lie'" 
vector its projutiOIlJ ill Ihl dinclions .. Irtady Itl. Thai idea is repeated al every su,p.2 
If we also had a fouJ1h vector d. we "'ould subtra<.:1 ilS projeclions onto A, B. C 10 
get D. At the end, divide the o J1hogonal ''eCtors A . B . C. D by their lengths. The 
resulling vectors q { . f l' f J' f 4 are onhononna1. 

Example 5 Suppose the independem non..,nhogonal vectors " . h. c are 

Then A = 4 has ATA = 2. Subtra<.:t from b ilS projection along A =(1.- 1. 0): 

8=b-;;:A =b-!A=[-il 
Check: AT B = 0 ItS required. Now subtract two projections from c to get C: 

C=c - A;e A- B;C B = c - ~A +~B = [:]. 
A A B B I 

Check: C '" (1 . I, 1) is perpendicular to A and B. Finally conveJ1 A . B . C to unit 
vectors (length J. orthonormal ). The lengths of A, B , C are ,fi and ,J6 and ,/1 
Divide by those lengths, for an onhonormal basis: 

q t= ~[-l] and f 2 = ~[j] and f )= ~[:J. 
Usually A . B. C contain fractions. Almost always q t. f 2. f ] contain square 11)C)tS. 

I I thin~ Gnm hod Ihc: 0:I<a. t <10<1', '''''tty ~ ........ s.:_ 00"'. in. 

, 
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TIM! Facl or; ~al;on A = Q R 

We staned with a matri x A. wllos<- columns were Q . b . .,. We ended with a matrix Q. 
whose columns are , I' q " f l' How are lhose matrices re lated? Since the ,'«tors Q . b. e 
are combinalions of tile , 's (and "ice "'1Sa), m.,n: must be a Ihird malrix coonecting 
A to Q. Call it R. 

'Tho: fi rst step was , I = a /lla l (OIller ve<:lOrs 001 involved). llIc ~ Slep was 
equation (7). where b is a combination of A and B. At that stage C and ' ] wen: not 
involved. Th is non-invol""ment of laler vectO~ is the key poinl of Gram-Schmidt: 

• 'Tho: ,'ector.; /I and A and ' I are all along a single Ii .., . 

• 'Tho: vectors .. . b and A. . Band ' I"l an: all in the same plane . 

• 1l>c veclOrs Q . b . ., and A . R . C and ' I. ' 2. q) an: in one subs~ (dimension 3). 

Al every slep a l ..... al are combinations of ' I ..... qt. Laler q 's are 001 invol"ed. 
The connecting matrix R is triangular. and we have A = QR: 

[ " b } [ . , . , 'WT
" :1: ;;:] ~ hQH. (9) 

A = QR is Gram-Schmidt in a nutshell. Multiply by QT to see why R = QT A. 

41<: (Gram-Schmidt) From mdcpcndem ve<:tors 01 I. • do. Gram-Schmldl constructs 
ortitOIK)rrn.a1 ,e<;:tors q I, .... q._ The malrices "ith these coluntns satisfy A = QR. 
Then R = QT A I. triangular because laler , 's are onhogonaJ 10 eariier a 's_ 

Here are the a 's and , 's from the example. The i_ j entry of R = QT A is row ; 
of QT times column j of A_ This is the dot product of q; with OIl 

[
' 2 ' ] [I /./'i 1/ ./6 

A = - I 0 - 3 = - I/ .ti 1/ ../6 
o - 2 3 0 - 2/ ./6 

I f./3] [./'i ./'i "liS] 1/ .[3 0 J6 - ./6 = Q R . 
1/ ./3 0 0 ,f3 

The lengths of A . IJ . C an: the numbers .fi . ./6, .jj on the diagonal of R. Because of 
(he square roots. QR looks less beautiful (han L V. BOIh factorizations are absQlutely 
cent",l to calculations in linelU' al gebf1\. 

Any m by n matri x A with independent columns Can be fac(ored into QR. n." 
m by " matrix Q has onhooormal columns, and the square matrix R is upper triangular 
with positive di agonal. We must 001 forget why (his i$ useful for least squares: AT A 
~quals RT QT QR _ RT R. 1lIe least squares equation AT Ai = ATb simplifies to 

(10) 

, 
i 



In~(ead of wiving Ax = b. which is impossible, we §(lIve Hi = QT /I by back substitu
tion _ which i~ very faR The Il:a\ CQSI is (he m~2 muhiplicalions in the Gram-Schmidt 
Pfl)Ccss. which a~ needed 10 Mnslrucl the orthogonal Q and thl' triangular H. 

Here i. an informal cO<k. h ex,""u!tS "'IualionS ( I I) and (1 2), for k = I then * = l 
and e\'en1U~lIy k = ~. Equation ( I I) l101lTIali7.e5 to unit veclOrs: RIr k : 1 ... , . n 

.. '" '., '1,1= - for ;=I. .... m . 

'" 
Equation (12) sublr:octs ffQm ilj its prujttlion Of'lo q l: Rlr j = k + \ .. , .... 

• 
'Ij = L q,ja;j 

i _ I 
,,'" 

Staning from d . b, C '"' a,. " 1. " J this colic will COIlMrucl q I' B . f l- C . f l: 

I f t - a , /D" , l in(ll j 

2 H .. .. ~ - (,Ta~)q , and C = a j - (f TQj)f ,in (l21 

, 
, 

' 1 _ RIU BI in (11) 

C .. C' - (q1C' )' 1 in (12) 

5 ' J = C/R q in (II) 

( II ) 

(12) 

Equalion ( 12) subuacts off projtcli()lls as soon ~ {hot new "«100" 91 is found . ... "is 
change to "subt~t one projttlion al a lime" is called modified Gram.&h",iJl. It is 
numerically more slable lhan equalioo (8) which subtracts all projections alonce. 

• REVIEW OF THE KEY IDEAS • 

I . I f the o nhonormal ,·""tors " , .. . .. " . are the columns of Q. then " J" j : 0 and "r", ~ I translate imo Q1 Q = I . 

2. I f Q is S<juare (an tmhogonal mOlri.r) then QT: Q_l. 

J. The length of Q.r equals the length of .r : I Q.r 1 = l .r l. 

4. The projection onto lhe column space .\panOled by the ,, 's is P = QQT. 

S. I f Q is squm: then P= I aode'"!:,), b = " t(" Tb)+·· ·+ II .(,,: b). 

6. Gram-Schmidt produ<;es ont>onormal ,·""tor.; II I . " 2' " 3 fA)l1l independent II . b. c. 
In matri~ (onn Ihis is the r .... torizal;"" A. = QK = (onOOg"".1 Q)(triangular KI. 

, 
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• WORKED EXAMPLES • 

4,4 A Add two Il1OIt' column~ with all entries 1 or - I. so the column~ of this 4 by 4 
" Hadamard matrix" are onhogona!. How do you tum H into an orthogo~al molrir Q1 

[' "'] H= "" " 
I - I .. x 
I - I .... 

] 
Why can't a 5 by 5 matrix have onhogonal columns of l's and - I's1 Actually the 
next possible size is g by 8. COniitl'\lCled from four blocks: 

The block matrix Hs = [Z _ Z] is a Hadamard matrix with orthogonal 

columns. What is the prod""t HlH,1 

The pro~tion of b = (6, O. 0, 2) onto the first column of H is P t == (2. 2. 2. 2) 
and the projection ooto the second column is P~ = ( I. I. - I . - I). What is the pr0-

jection P l.2 of b onto the 2-dimensional space spanned by the fil'Sl two columns, and 
why? 

Solution Columns) and 4 of this H could be multiplied by - lor exchanged: 

H - [: - , , 
, , '] I - I - I 

_ I I _ I lias onllogonal column~. 

- I - I I 

H 
Q == "2 has ortllononnal columns. 

Dividing by 2 gi,-.:s unit vectors in Q. Onhogonalily for S by 5 is impossible because 
the dot product of columns WOt.Ild have five I's andlor _ los and could nOl add to zero. 
The 8 by 8 matrix Ha docs have onllogooal columns (of length J'S). Then Q8 will 
be Hs/J8: 

o 1 ["' lilT 1/ "" 0 

When columns are OI'1hogonal . we can project (6. 0 ,O.2) onto ( 1, 1. 1.1) and 
(l.I. - I. - I) and add: 

Projection P t.2 = P t + P2 '" (2,2.2, 2)+(1.1. - 1,-1) = (),3. 1. 1), 

This is the value of OI'1l>ogonal columns. A quick proof of P t.2 == P t + P2 is to 
check tIIat columns I and 2 (call them " I and " 2) are perpendicular to the error t '" 

b - Pt- P2: 

and also aIO!' = O. 

So PI + P2 is in the space of " I and a 2, and ilS error O!' is perp<'ndicu/ar 10 l/oal spacr. 

, 
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'The Gram·Schmidt I'f'OUSS (MI u.os., onhogonal columns a t and a 2 would be 
happy with their directions. It would only divide by their lengths. /JUI if /I t and " 1 
d" fWI orriwgOlUd. Iht projtr'io~ P t 2 is "'" gtMroll)" Pt + Pl' For ~umple. if b = a t 
then P I = b and Pu= b bul P2 "# 0. 

Problem Set 4.4 

l'mblen.s 1_12 a..., aoou t orthogonYI , 'Kton and orthogonal matrices. 

1 All' these pain of ,-ectors onhonormal or only onhogonal or only independent? 

(b) [:]'od [_:] (0) [~']'od [-""']. .. n O cosO 

Chang~ the second ' -eclor when nc«s~ to produce orthonormal V<:'Clors. 

2 The vectors (2. 2. - I) and (- 1.2.2) "'" onhogOflal. Divide them by lhei, kngths 
to find onool'H)rrn.ol "':ClOtS f t ~nd f 2- Put those into the ",-,Iumns of Q and mul _ 
tiply QT Q and QQT. 

l (aJ If A ~ thn:e onhogonal columns cach "r lenglh 4. what is AT .... 1 

(h) If A has th..,., I.M1hogonal columns of knglh! I. 2. 3. what is AT A ? 

4 Gi>1: an nample of each of the following: 

(a) A malrix 0 that has orthonormal columns but QQT"# I . 
(bJ Two QTthogooal v<:'Ctors thai In: no( linearly independent. 

(e) An onhononnal basis for R·. when: every component is ! or -~. 

5 ~i nd 1""0 onhogonal ,-eclors in lhe J>lane x+)"+2" = O. Make lhem onhol'H)rmaI. 

6 If Q, and Q1 "'" onhogonal matrices. show that their producr Q,Q2 is also an 
onhogonal matri~_ (Use QT O = I .) 

7 If 0 has orIhonormal column'!. whal is the least squares solution i 10 Qx = b? 

8 If f t and f l "'" orthonormal '-Ktors in R!. what combinatiOfl __ q,+ __ " 
is ci«<st to a Si'-en v<:'Ctor b? 

9 (a) ComJllltc I' = QQT when f t = (.S .. 6.0) and , : = (-.6 .. 8.0). Vcri fy 
Ihat 1'1 ~ 1' , 

(b) Ptove that alwayS (OQT)(OQT) = QQT by using QlQ = I . Then P = 
QQT is lhe J>FOje<:lion matrix "nto the column ~poce of Q_ 

10 o"hononnal ,'ectors are autolTlilticaJiy linearly independent T>.o.'o proors: 

, 
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<a) Veclor proof: When CI ' I + C1 ' 1 + CJ' ) = O. whal dot product leads 10 
CI = 01 Similarly C1 = 0 and C3 = O. Thus lhe , 's are independtonl. 

(b) Malrix proof: Show Iltal Qx _ 0 leads 10 x = O. Since Q may be rectan · 
gular. you Can use Q T OOt flO! Q- I, 

" <al Find onhononnal vectors ' I and ' 2 in lhe plane of " = ( I. 3. 4. 5 . 7) and II '" (-6. 6. g. O. 8). 

(b) Whi<:h ~ in Ihis plane is CJoseSIIO ( I. O.O.O. O)? 

12 If " I. a ,. a l is a basi s for Rl . an)' >'eclor II can be wrinen as 

(a) SUPJ'O'i'" lhe ,, '$ • .., onhonormaL Show thai XI _ "Tb. 
(b) SuPJiOSC' lhe ,, '$ are o"hogonaL Show Ihat XI = " TIt/ " T" I. 

(e) If the ,, 's are independem. XI is the lim oornjlOnent of __ limes II. 
Problems 1J-15 a~ about the Gram-Schmidt proctSS and A .. Q R. 

13 What multiple of " "" [ t 1 should be subtracted from I> = [: 1 10 make lhe n:sul! 
H orthogonal 10 a 1 Sk<1ch a figure 10 show " . II. and R . 

14 Complete lhe Gram-Schmidl process in Problem 13 by oompuling ' I = " /Ba l 
and ' 2 = HI I B I and fact<>ring imo QR: 

I S (al Find onhonormal veclors f I' f l ' f ) such lhat f I' ' 1 span the oolurnn s~ of 

(b) Which o f the four fundamcnl~1 subspaces oontain< q J 7 

(e) Sol"" Ax _ ( I, 2. 7) b)' IcllSl !iquan:s. 

16 Whal mu ltiple of " "" (4. 5. 2, 2) is c losest 10 I> _ (I . 2. O. Ol? Find orthonormal 
vect<m f I and f 1 in the plane of II and 1>. 

17 Find the projectioo of II 01110 lhe line 1hrough 01 : 

a=[:] and II "" D] and p -? a,~ t = b -p =? 

Compule the onhononrud ''eclors f l = Il/! II I and f 2 "" t / lt l . 

, , 



230 Chapter 4 Ollhogoo .. lily 

18 (Recommended) .... ind onhogOflal ve<;l~ It, H. C by Ol1lm·Schmidt (rom II . h. 1': 

II = ( I. -1.0.0) h =(0 . 1.-1.0) 1' =(0.0.1. - 1). 

A. B . C and II . h. e are ba5e'!i (0<' lhe ve<;l~ ~ndi~ular 10 d = ( I. I. I. I) . 

19 If A = O R lhen AT A = RT R = _ lriangular t;mc:s __ triangular. 
Gram-Schmidt 0" A curuJ'pondJ /0 elimintlliOll on AT A, Compare the piVOls 
for AT A with !II M2 = 3 and "r 12 = 8 in Problem 17: 

20 True or false (give all eumple ;n eilher case): 

(a) 0- 1 is an OI'ihogonal matri~ when 0 is an orthogOflBt matrix. 

(b) If 0 (3 by 2) has onholl(ll1l'lal columns then 10x i alwayS equals Ix l. 

21 Find an o rthonormal basis for the relumn .~ of A : 

,od 

llIcn oompule lhe proj«tiOfl of h OfIto that column space. 

22 Find orthogonal ,'ttton A. B . C by Ol1lm-Schm;dt from 

23 Find ql' 92' II ) (orthonormal ) as oombinalion. of II . h. e (independen t oolumns), 
11lcn wrile It as OR: 

[ ' 2 'J A = 0 0 ~ 
o 3 6 

24 (a) f ind a basis for the subspace S in H· <panned by all solutions o ( 

... 1+ ... 1+ ... ]- .... = 0, 

(b) Find a basis for the on""gonal oomplemc:nt S J. . 

(~) Find b l in S and b, in Sol so that h i + b1 = b = ( I. I. I. I). 

, 
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25 If ud - be > 0, the entries in A 0: QR are 

[" -,][",+" "'+Cd] 
[

" '] {"" 0 ad - be 
{" d = ./"l+cl ./"z+cl . 

Write A "" QR when " ,b,c,d=2, 1.1. J and also 1.1.1. 1. Which entry of R 
becomes uro when the columns are depelllknt and Gram-Schmidt breaks down? 

Problems 26-2' use the QR rode In tqUlltlons ( 11- 12). It uec:utts Gnm-Schmldl. 

26 Show why C (fou nd via C' in the steps after (12) is equal to C in equation (8). 

27 Equatioo (8) sublracts from c its compooents along A and R. Why 1101 subiract 
the components along u and along II? 

28 Write a worting code and apply it to u = (2, 2. - I ). II '" (0 , -3, 3), ( '" ( I. O. 0). 
What are the q 'l? 

29 Where an: the m"l multiplications in tquations ( 11) and (1 2)1 

l'roblrnu 3O-JS inwhf orthog<>nai matrices Ihal are sp«ial. 

30 The filSl fQUI ... 'O""kfJ an: in the wlumns of Ihi s wa~lct matri~ W · 

l]. 
o -.ti 
o 

What is special about lhe wlumns? Find the inverse wavelet ttansform W- I. 

" (.) Choo.;c c 50 that Q is an orthog""al matn...: 

[ , -, -, -'] -, -, -, 
Q =c -, , -, . -, -, -, -, , 

(b) Change the first row and column to all I', and till in another orthogonal 
Q. 

32 Project b = (1. 1. I. I) onto the first wlumn In Problem 31(1). Then project II 
onto the plane of the fi .. t two columns. 

33 If u i. a unit Vtttor. then Q ., I _ 2uu T i~ a Householder ,dlcet;"" matrix 
(Example 3). Find Q I from u :. (0, I) and QJ from u = (0 . .til l, .ti/2). 
Dnt.w lhe renections when Q I and Q l multiply (x . r ) and (x . y .z ). 

, , 



34 Q = I _ 21111 T is a n:HCClion malri., when liT II '" l. 

(a) Show that QII = - ... . lbc mirror is perpendicular 10 u. 
(b) Find Q. wlK-n II T u = O. lbc mirror contains • . H n:Hects to itself. 

3S (MATLAB) Factor [Q. Rj _ 'Ir (" ) for A = eJ r (4)- dial!.(11 ! 1 J. - I). Can 
you n:normaliu lile onlloJ!.onal columns of Q to get nicc integer oomponems? 

36 Find all matrices (hal an: both orthogonal and lower triangular. 

, 



5 
DETERMINANTS 

THE PROPERTIES OF DETERMINANTS. 5.1 

~ de!ennin~m of a squ= matTi.' ;~ a s ingle number. That number 'Ofltains an aInU· 
ing amount of information about the matrix. It tells immediately whether lhe mauix 
is i",-enible . The dt lemrilUln/ is ~ro ",htl! Ihe MOf1U Iuu /I" ;".~rse. When II is 
in>,<,n ible. the determinant Qf A- I is I /(de1 A). If del A = 2 then del A- I _ 4. In ract 

lhe determinant leads to II formula for "'"Cry elll!)' in A-I. 
Th is is one use for dcterminanlS- 1O find formulas for inverse matrices and pivou 

and wMioos A-l b. For a matrix of numbers. We seldom u.e those formu las. (Or 
1'1I1her. we use elimination as the quickest way [0 the answer.) RIr a mauix with entnes 
iI. b. r:. d. ;1$ delermirwlC shows how II -I d\anges as II changes: 

A -I _ I [d -b] 
- adbc-cu' '" 

Multiply those mauiccs 10 gel I , TIle dete rminant of II is ud -be. When <kl II = O. 
" "C are asked 10 divide by zero and " 'e can't- then II has no inverse . (The rows an: 
parallel when o/e = bid. This gives od = />(; and a zen) det~rmiruuu .) Oepcr><ltnt 
rows lead to det A = O. 

llIe determinant is also connected to 11M: pivOits. For a 2 by 2 matri~ the pi>'<)t$ 
are a and d - (clalb. T/ot produ~t of 1M P;0"0tS is I/o' dtttrm;nonl: 

After a row exchange 11M: pivOitS are c and b - (a /c )J. Those pivots multiply to gi'·c 
be - ad. 1l>t" row uchang~ reveTSed the s ign of the determinant. 
l1)Qiing ah~ad n..: determinam of an II by n malrix can be found in lh= "cays: 

I Mul tiply tIM: II pivOiS (limes I Of -I ). 
2 Add up n! lerms (limes I or - I). 
J Combine n smaller determinants (limes I Of - I). 

233 

This is lilt pivot formula. 
This is tIM: ··big·· formula. 
This is the oofaclOf formula. 
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You o;ee that plus or minus sjgns-thedeci~ions between I and - I - playa big pan in 
determinants. That comes from the follo"'ing rul" for n by n matrices: 

The determin6nl (h6nges sign .·hen two rows (or 1.,-0 columns) "rt txch""gtd. 

1l>e idenlity matri x has determinant + 1. Excbange t"""O "W'S and detP .. - I. Ex_ 
chang.- tWO mon: rowS and the new pc:rmutation h"", det P .. + 1. Half of all pc:rmu
tat ions ~ n .... " (del P = I) and half = odd (del P = - I). Sianing from I . bal f of 
the p's involv<: an even numlxr of e:tcllanges and balf ~ui~ an odd numller. In the 
2 by 2 case. ad has a plus sign and be has minus_roming from lhe row u chang.-: 

1l>e other essential rule is linearity-but a warning comes first. Line~rity does 
not mean thai dct(A + 8 ) = det A + del 8 . This is 6bs&lutdJ /611'. ThaI kind of 
linearity is not c..-en true " 'hen A = I and H = I . 1be false rule would l>lIy that 
del 21 = I + I = 2. 1l>e true rule is del 21 = 2". iklmninant5 a~ mult iplied by r 
(not just by 2) when malria:s are multiplied by 2. 

We don'! intend to define the delenninant by its formulas. II is beuer 10 start 

wilh ito propcnies_sign rtwrwl and Iin~W"il)". ~ propcn ies "'" simple (Stttion S.l) 
"l"hey ~pare for the formulas (Stttion 05.2). Thoen c"",,, the applicalioll'l. i",luding 1-
these tbree: 

(1 ) Determinants gi .. e A - t and A- t" (Ihis formula is called Cramer's Rail'). 

(2) When the edges of a box are the rows of II. the "oIullle is I del AI. 

(3 ) 1lle numlx" A for which A - A I is singular and det ( A - AI) = 0 "'" the ej8~n
H"~CI of A. This ;s the """I imp<)IU.nl appJic.uion and il fills Chap!""- 6. 

The Propert ies of lhe Delermin;Jnl 

llw:~ are Ihree basic propenie$ (rules I. 2. 3). By using those rules we can compute 
lhe delerminant of any 5(juart: malri~ A. This number is ... rint n in rwo WIIJr, IItt A 
and 1..4 I. N01;a:: Bnocl<et~ for the matri~ . straight ~ fOl its detenninant. When A 
is a 2 by 2 matrix. lhe lhra: propenies lead to the an~wer we expect: 

The dcICrminam of [~ :] is I: =1 = ad - be. 

We "'ill check each rule again" this 2 by 2 formula. blll do not forget: llw: rules apply 
10 any n by n ITUItriX . When we pnwc that propenies 4- 10 follow from 1-3. the proof 

must apply to all ~uare matrices. 
J>rupcny I (the easies! rule) matches the determinanl of I ",ilh lhe '"0111"'" of a unit culx. 



5. 1 The Propertlel 01 Del!ermi .... nl, 2]5 

1 Thr tlt lt rmitUml of Iht R by " itURtity ",aim if I . 

,,'" ",I. 

2 Tht tlt lrrmimml c/umgrs siK" .,.·htR ""'/I rows o.n uclrangt tl (sign re,·crsal): 

Ole<:k: I; ~ I "' -I ; !I (both sidesequaloc - atl). 

Bttausc of this rule. "'e can find det P for any pennutatioo malrix. Just exchange rows 
of / umil you ",ach 1' . Then de! P '" + 1 for an tl"l'n number of row exchanges and 
det P '" -I for an 00d number. 

The lhird rule has to make the big jump to the detenninant§ of all malrices. 

] The tlt ttrminolll is a Ii"t ar I"Rclio" /II t lXh row " para/t ly (all other rows stay hro). 
If the firsl row is multiplied by I. !he dctcnn;nant is multiplied by I. If first rows are added. 
oclenninams are added. This rule only applies when the OIher rows do not change! Notice 
00w c and d stay !he same: 

I '~ 'd'l- ,I: d'i multil'l}· row 1 by any number f: . _, 

In the first casc. both sides are ,ad - Ioc. Then I factors out. In lhe sc:cond case. both 
sides are ud+a'd-oc-b'c. 1lic", ru"'$ $lill apply when A is n by n, and the Ia.ll 
/I - I fO\Io·S don·1 change. May " ·c emphasize rule 3 with numbers: 

5 0 0 0 0 
010",5010 
o 0 0 0 

,,'" 
, 3 

o t 0 
o 0 

o 0 o 2 3 
o I 0 + o t 0 
o 0 o 0 

By itself. rule 3 docs not say whal any of lhose dctcnninams arc. BUI ",·ilh rule I. !he 
firs! de!enninam is 5 (and the §ccond is I). 

Combining mullil'lication and addition. we gel any linear rombinaliQn in the first 
row: I (row I of ..4. ) + I'(row 1 of A' ). With !his combined row. lhe detenninam is I 
times de! A plus" times dctA '. The OIher rows must stay the ume. 

This rule docs not mean lhat de! 21 = 20cI I. To obtain 21 ",·c ha,·e 10 multiply 
bollt rows by 2. and lhe faclor 2 romes out both limes: 

I, 01 ' o 2 ",2"",4 '00 I, 0 I ' o I ",,/'. 

This is JUS! like area and '·olume. Expand a rectangle by 2 and iu area increases by 4. 
Expand an n-dimensional box by I and itS volume increases by I". The connection is 
no accident - we wi ll see 00w ikltrnrinanls tqual vo/umts. 
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236 C~ S De!efmi .... n .. 

Pay special al1enlion to rules 1-3. "They completely determine !he number det A _ 
but for a big matrix Ihal fact is no( obvious. We could Slop here to fi lO a fonnula 
for n by n deu-rminants. 11 ,,"OUld be a lillie complicated- we pn:fer to go gndualiy. 
Inst~ad we write down other properties which follow directly from the first three. Th.esc: 
~x tra rule. mak~ determinants much ea~ier to wort; wilh. 

4 If two ro"'. of A ani equal. then del A _ O. 

Check 2 by 2: I: :1 = O. 

Rule 4 follows fmm rule 2. (Remember we must use lhe rules and oot the 2 by 2 
(onnula.) Exdum8f' rlre ,.. ... equal ","·s. "The determinant 0 is supposed 10 change 
s ign. But a lso 0 has 10 stay !he §.lime. becauiiC lhe matrix is no( changed. The only 
number wilh - I) ,. I) is f) .. O- Ihis must be the determinant . (NGle: In Boolean 
algebra the ",asoning fails. becaUiiC - 1 = I. Then 0 is defined by rules I. 3. 4.) 

A matrix with two equal rows has no inverse. Rule 4 makes det A = O. But 
matrices can be si ngular alMl determinants can be zero without llaving equal rows! Rule 
S will be the key. We can do row operations without changing det A. 

5 S ubtracting a ",uUip/e of Olle ro"'fro'" allOlhu ro", k a",s del A ulICiumged. 

I a b ! .. b'l 
<'-fa d-Cbl=l<' d 

Linearily splits the left s ide into the right side plus ano(her term -CI: t \. This extra 
term is zero by rule 4. Thete fore rule S is OO~1. Note haw the second row changes 
whi le the firs t row SUlys the same- ali required by rule 3. 

Condusion Tire dererminafll i. /WI changed by lloe u.ual e/imiM/ion I1CpS from A 10 
U. Th us det A equals det U. If we can find determinants of triangular matrices U. 
we can fi nd determinants of all malrl«S A. Every row exchange "'VttSCS the s ign. 110 

always del A = ± det U . Rule S has .... mJ\\o'W the problem to triangular matrices. 

6 A ",urri.l; ",ilh u row of ;;J!rtJ$ luu dt l A • O. 

fur an easy proof. add some other row to !he zero row. The determinant is oot ehanged 
(rule S). But lhe malrix now has two equa l rows. So det A = 0 by ru~ 4. 

7 1/ A U lriungu/ur tht n del A _ UII"22·· · 0 ••• product of dwgonal tn/mI. 

and also 

Suppose all diagonal entries of A are nonzero. Eliminate (he olf~iagonal entries by 
the usual steps_ (If A is lower triangular. subtract multiples of each row from lower 

, 



5.1 The ~ d OeiemIi ... "" 237 

rows. If A ;s uppc-r triangular. wblrno;:t from higher rows.) By rule 5 the determinant 
is not changed- and now the matri~ is diagooal : 

." o 
"" We must litill proYe that det 

o " .. 
For this we apply rules I and 3. Factor 1111 from the first row. Then factor IIU from 
the ~ row. Eventually factor II.~ from the last row. The <io.terminam is all ti,,
an ti~ ... times II •• ti~ <io.t I. Then rulc 1 (usa:] at la.>t! ) is del 1 = I. 

What if a diagonal cntry au is zero? Then the triangular A is s ingular. Elim
inollion prodocccs a ~ro row. By rulc 5 the determinant is u!>Changed. and by rule 6 
I zero row ~ans det A = O. Thus rule 7 is proved- triangular matrices ha"c easy 
<io.terminants. 

8 If A is IlnfflllDr rh~n MI A _ O. 1/ A. is inV(!"ibl~ Ihm det A .,. O. 

[', db] is ~ingular if and ooly if lid - be _ O. 

Proof Elimination ~s from II to V. If A is singular then V has a zero row. The 
rules give det A = det V = O. If A is invertible then V has the pivots alung its diago
nal. The prod".,t of nonzero pivots (using rule 7) gi~es a DOOzeR) <io.terminarn: 

del: A. _:l::tkt V_ =': (procI.et fA tM pivots). 

The pivots of a 2 by 2 matri~ (i f a "" 0) are a and d - (x/ a): 

T he determinant Is I: ! I = I ~ d _ tbe/ II ) I-ad-Ix:. 

This is rhe firsr jormu/ajor the dcurminant. MATLAB woold usc it to find del A 
from the pivots. The plus or minus sign depends on whether the number of row c~ 
chan~ is even or odd. In other words. + lor - I is the determinant of the permuta
tion matrix P Ihal e~chaDgC3 rows. With fK) row c~changes. the number zero is even 
and P _ / and del A = del V = product of piVOlS. Always del. L = I. becalL>C L is 
triangular with l's 011 the diagonal. Whal " "C ha,.., is this: 

If PA '" LV then <let P del A = del L det V . 

Again. det" = ±I and <letA = =': detV . Equation (3) is oo r first ea!iC of rule 9 . 

9 TIl, Ik",.",inanl of All is dd A tim,. det B: IA Il I _ I AII Il I. 

I: !II: ; I=I:;~!; ::!!!I· 

(J) 
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"'' - '., to 
(det A)(del A - ' ) _ del f _ L 

This product rule is the most i~tricate so far. We coold ch«k the 2 by 2 case by algebra: 

IAI1 81 : (ud - bej(". - qr) = (ap + br) (cq + ds) - (aq + bJ)(cp + dr) '" IA 81. 

For the n by " case. here is a snawy proof that IA 81 = IAIIBI. When 181 is not zero. 
cOfl,ider the ralio D(A) = IAB1/181. If this ralio has propenies 1.2.3-which we now 
check- it has to be the <!etenninanl IAI. 

Propt'rty I (lkurmi1l<mloj I) If A : I lhen lhe ralio becomes IBI/IBI : 1. 

Properly 2 (Sign I"I!ur<tlf) When IW" rows "f A are exchanged. S<I are lhe same two 
ruws of AB. Therefore IABI changes sign and SO docs lhe ratio IA81/1 81. 

Properly 3 (Un~arif)') When ruw I of A is multiplied by I. SO is ruw I "f AB. This 
multiplies IABI by I and multiplies lhe ralio by I - as desired. 

If row I of A is added 10 row I of A' . lhen row I of AB is added to row I of 
A' H. By role 3 .• he de.enninanl~ add. Af.er div;.ling by IRI. the "'t;os add. 

Conclu5ion This ralio IABI/IBI has the same three propeni"'l thaI defi"" IAI. 1bere· 
fon: it equals IAI. This prm'es the prodUCI rule IABI: IAIIBI. The c~ 181:0 is 
sepa"'IC and easy. because AB is singular when B is singular. The ru le IA 81 = IAIIBI 
becomes 0 = O. 

10 Tiot lranspose A 'r Ioas llot samt dtltrmilUlnl a. A. 

I", d' I-I"b d'i Check: _ since bolh sides eq ual ad - Ix-. 

The equation IA TI ,. IA I becomes 0 = 0 when A is singular (we koow thai AT is also 
singular). Otherwise A has the usual factorization I' A '" LV. T.-""sp;>Sing bolh sides 
gi"es A r"r = VT L T. The proof of IAI ., IATI romes by using rule 9 for products: 

Compare del" del A : del L del V wilh 'kl AT de! P T = ""I V T det f. T. 

Fir.;t. det L = del L r = I (both ha,.., I's on the diagonal). Second. det V '" det VT 
(transposing lea"es lhe main diagonal unchanged. and lriangular ""tenninaniS <J<lly in
V(llve Ihat diagonal). Third. det " '" del P T (pcnnutatiOfls have P T '"' p - t. SO I PI I pT I : 
1 by rule 9: Ihus 11'1 and IpTI both C<]ual 1 or both equal - I). Fount. and finally. lhe 
companS<lfl pm"es Ihal ""t A equals del AT. 

'mporlonl comment Rule 10 pnoclically doubles Ottr list of propcnies. Every rule for 
lbe ruwS can apply also 10 the columns (jUSI by lranspo!ing. since IAI = IATI). "The 
delcnninant changes sign when two columns are exChanged. A ~ro column or "'-0 
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ellUill co/limns ,,'ill tMU Ih~ d~urmirwnl :I'm. If a column is multiplied by I. so is 
lhe determinant. The delerminant is a Ii"",,,,. funclion of each column stpanItely. 

It is lime 10 stop. The list of properties is long enough. Nut we find and use 
an expli cit formula for the detem,inant. 

• REVIEW OF THE KEY IDEAS • 

I . The determinant is defir.ed by del I = I. sign rever.;.al. and li"",arily in each row. 

2. After elimination del A is ± (product of tt.. pi,·OlS). 

J . "The determinant is zero exactly when A is nO! invenible. 

4. Two remarkable propcnies are det A8 = (del A)(det 8 ) and det AT = del A. 

• WO RKED EXAMPLES • 

5. 1 A Apply these operalions 10 A and find the determinanlS of /lf l. /If!. M3. /If~ : 

In MI. each al} is mul1iplicd by (_ I)'+i. This gives It.. sign pallern soo-.·n 
below. 

In /If!. rows l. 2. 3 of A are sublrocled from rows 2.3. l. 
III /If) . rows l. 2. 3 of A are added 10 rows 2.3. l. 
The i. j entry of /lf4 is (row i of A ) · (row j of A). 

How u~ tht deltrmirwtlls of /If I • "h. ~1). M~ ~IU/td /0 Iht dtlerminatll of A? 

[ ." -." ",,] 
-all an - a n 

all -a12 a 3l 
[-' --'] row2 - rowl 

row3-row2 [
_ t·_ , 
row2 · rowl 
row3·rowl 1 

Solution The four determinants are delA. O. 2OOA . and (del 1\)2. Here are rea-
sons: 

MI =[ ' -, ] [::: :~~ :~ ][' - , ] so deIMI=(-I)(det A)(-I). 
I /Ill /llZ /Ill I 

The matrix Ml is singular because ils rows add to the zero row. Then det!lf2 = O. 
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240 C~ 5 o...m.inonb 

TIle matrix MJ can be split into ~igltl trWlrica by Rule 3 (1 i""arity in eoch row): 

~ , 

All but the first and last have repeated rows and zero <ktenninant. TIle fi rst is A and 
the last has Iwo row exchanges. 5Q del M J = del A + del A. (Try A = I .) 

The malrix M4 is exactly AA T. hs delcnninam is (dcl 11. )(00 AT) = (dcl A)l. 

5.1 B Find the delenninam of A by subn""ling row I fron' row 2. then column 3 
from column 2. lhen row Of column exchanges 10 make the matrix lower triangular. 

[' , 
A = 0 I 

o b 
i. singular fOf which u and b? 

Solul ion Subll'aCl row I from row 2. then coluJIUl 3 from column 2. T,,·o exchanges 
make lhe matrix lriangular. TIlen de1 A = (u - l)(b - 1). 

o 
o 

b- ' 
'] ~., _ , [ " - ' 0 o _ 1 1 

I coJumns 2_3 0 1 

o ] o . 
b- ' 

NQle thaI a = I gi>'es eqllal rows in A and b = 1 gi.'e§ equal columns. 5Q n(lI SUr
pris ing Ihal (0 - 1) and (b - 1) are faclors of de!A. 

Problem Set 5.1 

Quest ions 1_ 12 are aOOuI lhe rlltes for determina nts. 

1 If & 4 by 4 malrix has de! A = ~. find de! (2A) and det( - A) and del (Al ) and 
dct(A - t ). 

2 If a 3 by 3 matrix has del A = -I. find det (~ A) and de1(- A) and OO(A2) and 
del (A- t ) . 

3 True or falSC'. with a reawn if true or a «>unterexample if false; 

(I ) "The determinant of I + A is 1 + del A. 

(b) "The dete rminanl of ABC is IAIIBI1C[. 

(c) "The determinant of 411. is 41" 1. 

(d) The determinant of AB - BA is zero. (Try an example.) 
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4 Which row e~changes show that tllese """'elSe idemity matrices" JJ and J. have 
Ih l = - 1001 IJ.I = +17 

[
0 0 'l detOIO =-1 
, 0 0 '''' [

0 0 0 'J o 0 I 0 
del 0 I 0 0 = +1. 

I 0 0 0 

5 For n = 5.6.7. counl tile row e~changes 10 pennutc the reverse idenlil~ J~ 10 
the identity m.at ri~ I. J>roposc: a rule for every size n and predict wllether Jtll! 
has determinant + 1 or - I. 

6 Show how Rule 6 (determinanl= 0 if a row iii all lero) comes from Rule J. 

7 Find lite detcrminams of rotation, and ",flections: 

,rnJ 

8 Prove tlLat e'""ry orthogonal matri~ <OT 0 = /) has determinant lor-I. 

(al Uo;e tile product rule IA81 = II\I IBI and tile transpose rule IQI = IQTI. 

(b) Uo;e only tile product rule. If I det QI > ] tllen del Q" = (del QJ. blows 
up. How do you know this can't happen to 0"7 

9 Do these matrices have determinant 0, 1. 2. or 3? 

[
0 0 t 1 

A= I 00 
o , 0 

10 If Ille entries in e,..,ry row of A add to zero, solve Ar = 0 10 prove det A = O. 
If those entries add to one. show thaI tlet(A - /) = O. Docs !his mean det A = 17 

11 SUI'P""" that CO = - DC and find tile flaw in this ",,,,,,,ning: Thking determi
nants gives ICIIOI = -IOlln The",fore ICI = 0 or 10 1 = O. One or both of 
the matrices must be singular. (ThaI is not true.) 

12 The inverse of a 2 by 2 matri:t seems to have determinant = I: 

detA =det = = I. _ , '[ d -b] ad - be 
ad be -e a ad be 

What is wrong wilh this calculation? What is lhe COlTl!1.'t del A - '? 
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Qllesllon~ 1J-17 u~ Ihe r lll<'1i 10 ron'pu lr spttlfic dctcrm ina nlS. 

1l Reduce A 10 U and find del A = prodoct of tho l'iVOIS' 

A = [: 

, 
il A ~ [i 2 n 2 2 

2 3 

" H)' appLying row opet"dlioos to ."uduce an "I'per trianguLar U. COInl'U1e 

'f 
, 3 

1] 
[ ' ->0 0] , , - 1 2 - 1 0 -, 0 0 

,., 
del 0 - I 2 - L . 

0 , 0 o 0 - I 2 

I S U~ row ope"'tions 10 siml'l if)' and com .... le these determinants: 

['" "" ~'] det [ :, 

, "] <leI 102 202 ~, ,., , . 
"3 203 303 ,. , , 

" Find the delcrminanlS of a ran~ one ma1rix ~nd a skew-symmetric matri~: 

hm l ' [" II - 4 5J K = - I 0 
-3 - 4 

17 A skew-symmetric malrix has KT == - K . l"sen a.b.c for 1.3.4 in Question 
16 and show Ihat IX I = 0. Write down a 4 by 4 examl'le with IX I = I. 

18 Use row operutions to show that the 3 by 3 ··VandenoorKlc determinanf' is 

[' " "'] <leI 1 b b~ =(b-a)(c-a)(c -bj. 
J c '--

19 Find lhe determinams of U and U - l and U l . 

[' , '] U "" 0 2 5 
o 0 3 

,., 

20 Suppose )'011 do two row operations al <>oce. g<.>ing from 

[; :] '" [
U-L(" b-Ld] 
'-'-In d-/b . 

Find lhe s.econd del<>rminam. Does ;1 oqua! ud -Ix? 
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21 Row eJ<C"""g~: Add row I of A 10 row 2. tllen subt"""l row 2 from row I. lllcn 
add rry.N I to TOW 2 and mult iply row I by - 1 to reoch R. Which ",Ies show 

det8 =1: ~ I equal~ - deIA= -I: b I' J . 

11lose rulc~ could replace Rule 2 in lhe definition of \he detenninant. 

22 From ou-be, find the detcnninanl5 of A and A - ! and A- )'/: 

,- [' '] - , , and A-
t =![' -'] 3 - I 2 ['-' and A -)' / = -1 

Which two numbers ), lead 10 det(A -),/) = 01 Wrile down tile matri~ A -), / 
for each of those numbers )' _ il sl>oold not be in'·c"ible. 

23 From A = [ ~J J fioo ,oi l aoo A -t aoo A - H and tlleir determinant~. Which 

two numbers), lead to 1,01-),/ 1= 0 1 

24 Elimination reduces A to V. lllcn A = LV: 

, = [ : : ~] = [; ~ :] [i 
-3 5 - 9 - I 4 I 0 

3 ' ] 2 - J =LV, 

° -, 
Find tile detcrminant~ of L, V, A , V - t L -I, BOO v-I L -I A. 

25 [(Ille i. j cnll)' of A is i times j. ~how Ihat del A = O. (E!treplion when A = II].) 

26 Iflhe;. j cnlry of A is; + j, show thai det A = O. (E!treplion ,,'hen n = I or 2.) 

27 Compute the determinanTs of these maTrices b~ row operaTions: 

,"d H = [! 1 i lJ [0 " 0] 
A = 0 0 b 

< 0 0 and C=[: : ~l 
28 True or false (give a ",,,,,,,n if \til<: or . 2 by 2 u :.mple if false): 

(a) If A is not in\,cn ible tllen AB is not inve"ib1c. 

(b) l1w: determinant of A is always the product of iu piV0\5. 

(c) The determinam of A - 8 equals det A - det 8. 

(d) AH and 8A ha''e lhe same determinant 

29 Whal is wrong with thi s proof that projecliQll malrices have del P = 11 
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30 (Cakulu~ qlleSlion) Show lhal lhe panial derivalives of In(del A) gi~e A- I ! 

1(0. h. (". d) '" In(ud - /7(") leadi to [
31/3u 3/13("]_ A- I 
a/l3h 31/ fJd - . 

31 (MATLAB) The Hilbe" matrix hllb(,, ) has;. i entry equal to 1/(; + i- I). Prim 
!he dc:tenninanu of hllb(I). hllb(2) ..... hllb( IO). Hilbert matrices are hanl to 
woO; with! What are the pi~OIS? 

31 (MATLAB) What i~. typical detenninanl (experimentally) of rand(II) and randn(,, ) 
for " = SO. 100.200. 4007 (And whal does " Inf"" mean in MATLAB7) 

33 (MATLAB) Find the Ilrgest delenninanl of a 6 by 6 matri.1 of I's and - I ·s. 

34 If you know that del A '"' 6. what is the del ... nninam of B? 
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PERMUTATIONS AND COFAOORS • 5.2 

A compuler finds lhe <klerminanl flOm the piVQl$. Th is seclion ~xplains l""O Olher ways 
to do it. TIlere is a "big formula" using all II! permutatiOflS. lbere is a "cofOC\or 
formu la" u~ ing <k!erminanls of size n - I. TIle best example is my fa,..,ritc 4 by 4 
matrix : 

[ 
2 -1 0 0] 

A _-12 - IO 
- 0 - 1 2 - 1 

o 0 - 1 2 

has detA "" S. 

We can find thi s determinant in all three: ways: pivots, big 1_""', co/~(/on. 

I. lbe product of the piV1)!s is 2. ~ . ; . i. Cancellation produces 5. 

2. lbe "big formula" in equation (8) has 4! "" 24 terms. Only fi,'e ternls are nonzero: 

detA = 16-4 _ 4 _ 4+ I = 5. 

l1te 16 comes from 2 · 2 · 2 · 2 on the diagooal of A. Where do _ 4 and + 1 Cortlo! 
from? Whe n you can find those: five: termS, you have: undcntood formula (8). 

3. l1te numbers 2. - I. 0, 0 in the fint row multiply their oofactors 4. 3. 2. I from the 
OIher rows. That gives 2 · 4 - 1 · 3 "" 5. Those cofactors all: 3 by 3 determinants. 
Tltey uSC the rows and columns thai an: nOi used by the entry in the firsl row. 
E"",] fum in ~ dCfu millllllf " sn f IlCh ro ... ~nd col"mll OIlU! 

The PivOl Formula 

Elimination lca'l:S the pivots d l . .. .• d~ Ofl 1he diagooal of the upper triangular U. If 
00 row exchanges art: invoh-ed. "."Itip/y rhou pi."OIS 10 find the determinant 

( 1 ) 

This formula for det A appca.w in the previous section. wi1h the funher possibility of 
row exchanges. Tlte permutation matri x in P A = L U has delerminant - I or +1 . This 
factor det I' _ ±I cnte~ th<: determinant o f A : 

(del; P )(deI; A.) _ (det L)(deI; U) ghu det A = ±(dl d2" .J.). (2) 

When A has fev-'c r ttlan n pivots. del A = 0 by Rule 8. The matm is singular. 

Example 1 A row eXChange produres pivots 4. 2. I and that imporlant minus sign: 

[0 0 1] 
A = 0 2 3 , , , [' , '] P A = 0 2 3 

o 0 1 
del A "" -(4)(2)(1 ) ~ - 8. 

l1Ie odd number of row exchange,; (namely one exchange) ntCans that det P =-1. 

, 
1 



The next example has no row exchanges. It may be the first matrix we factored 
into I. V (wben it " 'as 3 by 3). What is Rcmarkable is that we can go di~tly to n by 
n. Pi~OIs give the determinant. We will also see how determinants give the pivots. 

bample 2 The firs! pivots o f thi s tridiagonal matrix A are 2.~. j. The next are i 
and ~ and C'o"cntu all)" ~ Factoring this" by n matrix revcals its determinant: 

1 -I 
- I 1 -I 

- I 2 

- I 

- j 
= 

-I 

2 

-; 

1 - I 

~ - I , , -I 
"-' • 

The pi'"OIs are on the diagonal of V (the last matrix). When 2 and ~ and j and i are 
multiplied. the fractions cancel. The determinant of the 4 by 4 matrix is 5. The 3 by 
J determinam is 4. TM n by n <letumintml is n + I: 

Important point: The first pivots depend only on the up".,r kfi ("Q'''tr of the 
original matrix A. This is a rule for all matrices witbollt row CJlchanlles. 

The first * piVOlS come from the k by k matrix AI in the lop left cor
ner o f A. Tlrt delerminant a! Ilraf cam~r s"bmmrix AI is <itdl . . ·<11. 

The I by I matrix At contains the ,-ery fi rst pivot d t. This is del At. The 2 by 2 
matrix in the l"Omer has del Al "" dtdl. Evenwally the n by n determinant uses the 
producl of all n pivots to give de! A. which is det A. 

El iminat ion deals with the comer malrix AI while 5laning on the whole matrix . 
We assume no row exchanges - then A "" L V and AI = LtVI. Dividing one determi
nant by the previous determinant (de! AI divided by det AI _I) cancels c'""r)1hing but 
the latest p;vOI al. This gi'"('s a TUlio 01 <lelt rmi1llJnt$ / onrrul4lor lire pi .. OlS: 

l'i'Ol~ from 
d~lerminanlS 

= (31 

In the - I. 2. - I matrices this ratio correctly gives the pin>,s f. ~. ~ ..... ~. The 
Hilben matrices in l'rublem 5.1.3 1 also build from the upper left OOmer. 

We <lon'l nud m'" e.xd""'ges ... lren all IMS<: COmu s~l>m"'rirts Ir(ll"/' det At #-- O. 

The Big Formula for D-eterminants 

PiVQU are good for computing. They concentrale a lot of information-enoogh to find 
{he determinant. Bu{ ;t is hard to CO/lrteCt them to the original (1jj. That pan will be 

i 



dearer if we go back to rules 1-2-3, linearil~ and sign J'e\'t'fSI\1 and del I "" I, We ,,-am 
10 deri~ a single e~p1icit formula for the de1erminant. directl y from the entries 0;). 

The f""""'" Ita, n! lentls, Its size grows fasl because nl "" 1. 2, 6.24. 120 ..... 
For /I = I I lhen: an: fOfty million lerms. fur n "" 2, the IWO lenns are ad and be. 
Half the lerms 113 • .., minus signs (as in - be). 1be other lla.lf lla.ve plus signs (as in 
ad). fur " = 3 lhen: an: 3! "" (3)(2)0 ) lenns. Hen: an: those six lemU: 

J by 3 
dolenninam 

all a'l "II 

O!I all "1_1 "" 

"ll "Jl "'l 
+OllllnOll + OI:!O!lOll + 0U"ll"'l 

-"II"!3(1)! - "12"21" J) - "1 J"12'" I . 
(" 

Notice lhe pattern. Exh product like " 11"231132 ha.\ line em" f rom fil ch row. lt also 
has "ne Ulrry fm ... filCh col"mn. 1be column order l. 3, 2 means that this panicular 
lenn comes with a minus sign. 1be column onler 3. I. 2 in II ,J" lI Oll has a plus sign . 
II wi ll be "pennutatioos .. Ihal tell us the sign , 

The next step (II = 4) brings 4! "" 24 lenns. 1ben: are 24 ways to choose one 
emry from each TOW and column. Down the mai n diagonal . a ll a 22" l)lI44 with column 
onler 1, 2.3. 4 always has a plus sign. That is the "identity pennutatiOfl". 

To derive the big formula I stan with II = 2. The goal is 10 reac h ad - be in a 
systematic ,,'ay. Ilreak each row into tW(l simpler rows: 

[" bl ""l o OJ +[O bJ .00 [c dJ ""[c OJ+ [O dJ. 

Now appl y linearity, fi Bt in row I (with row 2 hnl) and then in row 2 (wilh row 
fi~nI): 

I: ;1 = I: ~H: ;1 
= I: :H: ~H: :H: ;1 

(S) 

The last line has 22 _ 4 detenninants, The fiBI and founh are zero because their 
rows an: dependenl - one row is a multiple of lhe other TOW. We are left with 2! "" 2 
delenninams to compute: 

1be splining lnl to pennulation matrices. The ir de1enninants gi,.., a plus or minus sign. 
1be I's are multiplied by numbeB tlla.\ come from A. . The pennutation tell s the column 
sajucoce. in thi s case ( I. 2) or (2, J)_ 

Now Iry II "" 3. Each row splits inlo J simpler rows li ke la " 0 0 ]. Using 
linearity in eac h TOW. de! A. spliu into 3) = 21 simple de1e""inanl<. If a column choice 
is repeated- for example if we also choose 1"1 1 0 0 I- then the simple detc""inallt 
is zero. We pay allention Oflly when tllr IIallU ro lentil Came fm ... t#l/er-rllt columl/s. 

, 
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"" "" an I" 11 a,l all I 
", "" " 2.\ - 1'!2 + a1l + IIIll 

I a_II a)2 aH an a.'I all 

"" " 12 "" + a,l + lOll + al~ 

all a,n "" 
Th~rt art 3' = 6 M'a,)', tt> anJ~~ Ih~ colamtu, 10 soX <kl~rminanh. The "" 

permu,,'ioro ~ of ( I. 2. 3) include: lhe iden.ilY permu.a.ion (1.2.3) from P = I : 

Column numMrs = (I . 2. 3). (2. 3. I). (3. I. 2) . ( I. 3. 2). (2. 1. 3). (3 . 2. I). (6) 

The laSl Ihree are odd permUlm;QIU (one uchangc). The firsl (I1rtt are ...... " ptrn'U/(l. 

tiQIU (0 or 2 .. ".hanges). When the wlumn s.eq~11tt is (a. (3, w), " .... ha" .. chosen lhe 
cn.rks ",~{l l~(lJ...-and .he wlunm s.equc...., wmcs wilh a plus or minus sigll. The 

det .. rminant of A is now splil inlo six s imple .enns. Factor out the OIl' 

The firsl .hrtt ( .. ve:n) pcnnuul1ions haYe del P = +1. lhe lasl .hree (odd) pcnnulalioos 
have del P = - 1. Wc have: proved .he 3 by 3 fonnula in a sy51cmalic way. 

Now y ...... can sec lhor " by " formula. There are II! orderings of .he .00unms. 
The wlunms (1 .2 ..... ,,) go in each possible order (a . (I.. .. ... ). Tak ing "'~ from 
R)W I and (I~ from f"(M' 2 and e\'cn.u.all~ {I . ... from R)W n .• hor dc:1crminanl CQfI'ains 
.he prodUC1 "Iu"l,,"'''_ limes + 1 or - I. Half lhe wlumn onIerings hal'" s ign - I. 

The wmplele delcm,inan' Qf A is .he sum Qf these tI! simple delCrminanlS .• hoes 
lor - I. The simple deICrminanlS <1,~al" _. , " . ... clIOOS<' a" .. <'Iflr] from .. ~ry row "lId 
col" ... ,,: 

de. A = sum o , 'cr a ll II ' w lumn pennulauons P _ (a . (3. _. w) 

IS) 

The 2 by 2 Case is +<1l1an - <1 12"1' (which is ad - be ). Here P is (1.2) or (2. 1). 
The 3 by 3 case has .hree producu Mdown 'Q .he righ.M (see Problem 30) and 

.hrtt produm "down 10 the ",fl"'_ Warning: Many people believe: .hey should follow 
Ihis pallern in .he 4 by 4 case. "They only .ake 8 produclS - b.n w .. need 24. 

, 
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bample J (Dcterminam of U) When U is upper triangular, (>Illy one of the n! prod
UCIS Can be nonzero, Thi!! one term comes from lhe diagonal: ~I U = +1I1 111 12" , "~" _ 
All other column orderings pick at kast one entry bcclow the diagonal. whe~ U has 
~ros. AS soon as we pick a number like UZI = 0 from below the diagonal. thaI lerm 
in e<.juation (8) is su~ to be zero. 

Of course dell = 1. The only non7.ero term is + (1 )(1 )'" (1) from the diagonal. 

hample 4 Suppose Z is the i~lllily malri~ e~c<pt for column 3. Then , 0 " 0 

determinant of Z = 0 , b 0 
(9) 

0 0 0 
= c. , 

0 0 , 
The term (1) ( 1)(,, )(1) ~s from the main diagonal with a plus sign. The~ are 23 

other produ", (choosing one fa.cIOl' from each row and column) bul lhey are all zero. 
Reason: If " 'e pick II. b. or d from column 3, that column is u~ up. Then the only 
available choice from row 3 is zero. 

Hc~ is a diffe~nt reason for the same answer. If c '" O. lhen Z has a row of 
zeros and del Z '" c '" 0 is COtTt'CL If c is not zero. uSt tlimirllliion. Subtract multipks 
of row J from the other rows, to knock QUI l1.b,d. llLa.t kaves a diagonal matrix and 
dctZ ",c. 

This example will SOO1t be u~ for "elllmers Rule" , If we move 11, b, c, d inlO 
the first column of Z. the determinarl( is del Z "" Ii , (Why?) Changing one column of 
I lea''t'S Z with an easy determinanL coming from its main diagonal OJlly. 

bample 5 Suppose A has l's just abo~ and bcclow the main diagonal. Here II = 4: 

,,'" have determinant I . 

The only nonzero choice in the first row is column 2. The only nonzero choice in row 
4 is column 3. Then ro,,'5 2 and J mUSI choose columns 1 and 4. [n other word.s p. 
is the only permutation Ihal pitb 001 nonzeros in A~. The determinanl of 1', is + 1 
(two uchanges to rea.ch 2, 1. 4.3). Therefore del A. = + 1. 

Ot-terminant by CofactOls 

Formula (8) is a diR:Ct definition of the determinant. It gives you everything al once_ 
but you hl"e 10 digest il. Somehow Ihis sum of n' teTTTl$ mu Sl satisfy rules [·2·3 (tben 
all the other propc:n ies follow). The easiest is dell = l. already eh«kcd. The rule 
of linearity becomes ekar, if you Sl:p3ll1te OUI the factor 1111 01' I1 U 01' "I" tbal comes 
from lhe firsl row. Wilb II = 3 we sep;!flIte the delerminant into 

• 
([0) 

, 
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'fho5e Ihree quanlilies in parenlheses arc ~alled "colac/orT'. llIey = 2 by 2 deler
minants. coming fn)m matrices in rows 2 and 3. The first row comribulQ the fOC!ors 
all . all. III ) . The lower row, comribute lhe cofoctors CII. Cll. Cu. Cen.ain ty the 
delerminant III1CII +1I11CI1 + OUC U depends linearly on 1I11.1I11.lIn- lhis is rule 3. 

llIe cofactor of all is CI I = "12113) - lln on . You can ._ it in Ihis splitting: 

"II 11 11 " Il 

" 11 " 12 " !3 '" 
" ll " 32 a )) 

"" 
II ll " 11 + "21 

IIll 1111 " ll 
'" " ll + Ill' " 12 

" ll IIl l " 12 

"" 

We arc still choosing 0/1' ,/1/,., lrom lOCh roll' and column. Since "II uses up row 
and column 1. Ihat leaves a 2 by 2 del.erminam as its cofoclor. 

As always. we have to watch signs. The 2 by 2 determinanl that gClC:s wilh 011 
looks like 11110)) - " !3a) ,. But in the cofactor Ci l . ;/S J;gll i. ",·~rud. 1llcn a' l ell 
is lhe COI"I"eCt 3 by 3 detenninant llIe sign patlem for cofoclors along the first row is 
plus-minus-plus-minus. r tlu CfVJ! OU/ row l and colum n j 10 gr l a , ,,bmOlJ"Uo Ml j 
al slu " - I. Multiply ilS del.crminanl by (_ I) I+J to gel the cofactor: 

1llc cofaclOrs along row I are Cl j '" (_ I)I +j det Ml j . 

The cofactor upanslon is del II '" " IICII + "11Cl l + . .. + " I. Cl.. ( II ) 

In the big formula (8). lhe terms that mulliply /III combine 10 give det Mil. The sign 
is ( - I) I + I. meaning plw. Equl tioo (I I) is another form of equatioo (8) and alS(> equa
tioo ( 10). with factors from row I multiplying cofoctOfS from the other rows. 

Note Whatever is possible for row I is possible for row i . The entlie$ OIJ in that row 
also have cofOC!ors Clj . 'fho5e are determinanls of order " - I. mu ltiplied by (_ \ y+ J . 
Since III) occounts for row i and column j. Ih' submatrir Mlj Ihrows out roll' i (<lid 
roIumn j. llIe di,play s!>ows lI.l and M. l (with row 4 and column 3 crussed OUt). The 
sign (_ 1)'"+3 multiplies the de1enninam of M .. J 10 gi~e C"J . llIe sign matrix shows 
the ± pattern· 

• 
• 
• 

"" 
signs (_ I{tj = 

[ ++-- ++ ++ +~- l· 

SA llIe delcnn.nam I> the dot product of an)" 10" j of II " uh i1> cofaclor:s: 

COFACTOR FOH"ULA ( I 2) 

Each cofactor C'j (order II-I. "itl>oUl lOW i and column j) includes its correct oign: 
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A detemlinant of order n i~ a combination of detenninants of order n - I. A m;ursive 
person would keep going. Each subdctcnninant breaks into detenninants of order 11 -2. 
11-" could defiM al/ d~termjlllJllt$ "ja ~qUlJtion ( 12). This rule goe~ from order n to n - I 
10 n - 2 aoo eventually to order I. Define the I by I determinant 10110 be the number 
a. "Then the cofactor method is complete. 

We preferred to construct det A from its properties (l inearity. sign reversal. and 
det I = I). "The big fQmlula (8) and the cofactor formulas (1O)-{ 12) follow from those 
properties. One last formula comes from the rule that det A '" det AT. We can e~pllnd 
in cofactor.;. do"'n II column in.tead of lICl"OIiS a row. Down column j the entries are 
a' i to a..;. "The cofactor.; are e 'j 10 C~j. T1Ic determinant is the dot product: 

Cofactor.; are most useful when the matri""" have many zel"Oli-as in the next examples. 

hample 6 
two cofactor.; 

, -, 

The - 1. 2. - I matrix ha.! only two nortZeIDS in its first row. So only 
Cit and et2 are invol"ed in the determinant. r win highlight e tl: 

-, , -, -, -, , -, 
~ , -, 1 -, - (-I) 1 -, ( 14) -, l -, -, l 

-, 1 -, l 

You see 2 times ell first on the right. from crmsing out row and column I. This 
cofactor has exaccly the same - I. 2. - I pattern lIS the original A -oot one size smaller. 

To compute the boldface Cu. uSt' cofactors MK'II itJjirst column. TIle only nonzero 
is at the top. That oontriootes allOlher - I (so we are back to minus). Its cofactor i~ 

the - 1.2. -I detenninant which is 2 by 2. lK'o ,ius smaller than the original A . 
SUtn1lUlry Equation (14) gives the 4 by 4 determinant D. from 20) minus ~. Earh 
D~ (the - 1.2. -I deferminanf of ortf.., n) comes f rom O~_I and 0 . _2: 

and generaJly (IS) 

Direct calculation gives OJ = 3 and OJ = 4 . Therefore D. ,. 2(4) - 3 = S. These 
determinants 3. 4. S fit the formula D . .. " + 1. That "specialtridiagCMlal an~wer" also 
came from the product of piV<>l' in Example 2. 

The idea behind oofactors i~ to reduce the order one step at a time. '11M: de· 
te""inants D~ = If + I obey the recursion formula If + I = 2n - (n - I). As they 
must. 

h~mple 7 This i ~ the same matri~. ucept the first entry (upper left) is !\OW 1: 

-, 
B~ = [ 

, -, 
1 -, -, 2 -, 

, 
i 
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AU piVQIIi of Ihis malrix lum OUI 10 be l. So its determinam is L How does Ihal 
come from cofaclors? Expanding on row I. !he cofaclors all agm: wilh Example 6 . 
JuSI change " II = 210 b ll = I; 

instead of 

'The delerminant of B4 is 4 - 3 '" I. 'The determinant of every B. is II - (II - I) '" I. 
Problem 13 asks you 10 use cofaclor:s of lhe last row. You still find det IJ~ .. 1. 

• REVIEW OF THE KEY IDEAS • 

I. With no row exclwlges. del A '" (product of 'he pi.ms). In the upper left COfJler. 
del At = (producf of the fim k pi.'Ots). 

2. Every lenn in lhe big fonnula (8) uSC'S each row and column 00Ct'. Half of the 
II! lennS have plus signs (when det P '" + 1) and hal f have minus s igns. 

3. The cofactor e ij is ( _ I)I+j times !he smaller determinant that omits row; and 
column j (because a;J uSC'S lhat row and column). 

4. 1lle dctenninam is the dot product of any row of " with its row of cofactors. 
When a row of " has a 101 of lero§. we only ntt<;I a few cofactors. 

• WORKED EXAMPLES • 

5 .2 A A HtJUnberg malri.~ is a triangular matrix with one extra diago nal. Use co
factors of row I to show that !he 4 by 4 detenninam satisfies F,lxmacci's rule IH.I '" 
IHll + IHll. 1lle same rule will cominl>e for all Sil.eS, I II~' '" 111._11 + I H~_ll . Whkh 
Fibon~i number is IH. I? 

H. = [1 2 : :l 
Solution 'The cofactor ell for H4 is the dctenninant IHll. We also need e ll (in 
boldface): 

I 
CIl -- J 

I 0 2 
2 1 ,.-

2 

I 0 
2 I + 

2 

o 0 
, I 

2 

, 
i 
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Row~ 2 and 3 slayw the :>arne and we u>ed linearily in row !. 'The tllo'O determinants 
on I"" righl are -I H31 and +I H: I. Then the 4 by 4 demm inant is 

'The octual numbers are IH! I = 3 and IH31 = ~ (and of course IHt l = 2). Sinc~ IH. I 
foLlows Fibonacci's rule IH. _ II + IH. _11. it must be IH.I = F.+~. 

5.2 8 These questions use the ± signs (even and odd P"s) in the big formula 
for det A: 

I. If A is the 10 by 10 all-oncs matrix. how does the big formula give detA = O? 

2. If you multiply all n! permutations tog~ther inlo a si ngl~ P. is it odd or even? 

3. If you multiply each aji by the fmelion 1. why is del A unchanged? 

SoluliOfi In Question 1. with all ajj = I. all the products in the big formula (8) 
will be I. Half of them come with a plus sign. and half with minus. So they cancel 
to kave det A = O. (Of wurse the all.ones matrix is singular.) 

In QueSIH;m 2. multiplying [: ~ ][ Hl gives an odd permutation. AI..., for J by 
J. the three odd pemlulations multiply (in any order) to gi .. e otld. BUI for" :> 3 the 
product of all permutations will be ">"en. 'The~ a~ n'/2 odd permutations and Ihal is 
an even number as soon as ;t includes the factor 4 . 

In Question 3. each alj is multiplied by iIi . So each product a{"all' " . ... .. In 
the big formula is multiplied by all the row numbers,- = 1.2 . .... " and divided by all 
the oolumn numbers i = 1.2 •.... n. (n>e columns conle in SOllie pemlUled order') 
Then each product is unchanged and det II slays the $arne. 

Another approach 10 Queslion 3: We a~ multiplying lhe matrix A by lhe diagonal 
matrix 0 = diag(1 : TI) when row i is mulliplied by i. And we a~ poJStmultiplying 
by O-{ when oolumn j is divided by j. 'The determinanl of DAD- t is del A by the 

product rule. 

Problem Set 5.2 

Problems 1_ 10 usr lhe big formula " 'i1h "! Ie"",,: IA I _ L :t:"1."1l'· · . ...... 

1 Compute the determinants of A. 8 . C frum six terms. Are tlw:ir I"QWli indepen_ 
dent? 

A=U 2 '] , 1 
2 , [

' 2 '] 11 = 4 4 4 
, 6 7 

, , 
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2 Compule the dctCmIinams of A. H. C. Are their columns independent? 

[' , 0] 
A = I 0 1 

o , , 

[' , '] A:; 0 0 ... 
o 0 , 

[' , 3] 
8 = 4 5 6 

, 8 , 

(Whal i ~ (he rank of A1) 

4 Thi~ problem ~hows in IWO ways (hat del A = 0 (the .. '~ are any numbers): 

, ., , , , 
, , , , , 

A = 0 0 0 , , 
0 0 0 , , 
0 0 0 , , 

(a ) How do you know Ihat the ro .... s an: linearly dependenl? 

(b) E>..plain why all 120 lenni an: zcm in t~ big fQmlula for dcl A . 

5 Find t~ ""y. to choose nonzeros from four d;ffc~n1 rowS and columns: 

o , , 
[

' 0 0 

A = I 1 0 
, 0 0 [

' 0 0 '] o 3 4 5 
8 = S 4 0 3 ( 8 has lhe same l eros as A). 

2 0 0 1 

Is del A "'I"al to I + I or I - I or - 1 - 11 What is dct8 '! 

(, Place lhe smalle~ number of zeros in a 4 by 4 matrix that will guarantee del A = 
O. Place as many zeros as possible " 'hile still allo",ing del A ;b. O. 

7 (a) If lit t = 022 = Illl = O. how many of the ~ix lerms in del A will be zero? 

(b) If at t = all = <Ill = 11-'4 = O. ho .... many of Ihe 24 producls UI I"~"J/".Io, 

arc sure to be 7J:m? 

8 How many 5 by S permulalion matrices have det P = + 11 "Those are ,,'"Cn per
mU1.alions . Find one Ihal n«ds four exchanges 10 n:ach lhe idemily matrix. 

9 If del A is ~ 7.cm. al lca~1 one of Ihe,,! terms in fonnula (8) is 001 zero. Deduce 
Ihal SOIllC onlcring of (he rows of A lea"es no zeros On (~diagon~J. (Don't u", 
P from elimination; lhal PAean ha\'e zeros on Ihe diagonal. J 

10 Sho .... lha! 4 is lhe larges\ delenninam for a 3 by 3 matrix of I"s and - ]·s. 

, 
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11 How rrumy permutB!ions of (I. 2. 3. 4) are even and whal are lhey? EXII1I cmtil: 
What are all the possible 4 by 4 dctCT1Tlinants of I + p.,..,n? 

Problems 12-24 11H coflldon Cli .. (_l i +J del MI} . RelDO.e row i lind column j. 

12 Find all oofacton and put th<:m into a ,ofacr()r matrix C. Find det» by oofa.c:tors: 

[

I 2 
8 = 4 S 

7 0 

13 Find th<: oofk!or matrix C and multiply A. times CT. Compare AcT with A-I: 

[ 2 -I 0] 
A ,. - J 2 - 1 

o - I 2 

14 The matrix B~ is the - I. 2. - I matrix A.~ ,",CCpt that b it ,. 1 instead of (/ II = 2. 

" 

Using oofa.c:ton of th<: kHl row of B~ show that IB, I ,. 2IB)I-IB11 and find I B~ I: 

- [ - : - ; - I 1 B, - - 1 2 - 1 

- I 2 
[ 

1 - I ] 
BJ" - I 2 - I . 

- I 2 

"The m:ursion I B~ I = 2IB._II - IB._11 is satisfied when every IB.I = 1. Th is 
m:ursion is the same as for the A ·s. "The d ifference is in the starting values I. I. I 
for,,=1.2.3. 

The " by " determinant C. has l's above and below the main diagonal : 

0 1 0 
0 1 0 0 

Ct = 101 C2 = I ~ ;1 Cl ,. 1 0 1 C, ,. 1 0 1 0 

0 0 
0 1 0 1 
0 0 0 

(a) What arc the5e dc\erminanl< Ct. Cl. C]. C, ? 

(b) By oofa.c:ton find the relation between C~ and C._ t and C._2. Find CtO. 

16 The matrices in Problem IS have I's j ust abm-.: and below the main diagonal. 
Going down the matrix. which order of oolumns (if any) gives all J 's? Elo:plain 
why that permutation is ",'C" for " .. 4. S. 12 .. .. and odd for " ,. 2. 6. lO .. 

Tho" 

C. = 0 (odd ,,) C.=l (" ... 4. 8 . · · ·) 

, 
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17 The tridiagooal I. I, I malrix of order II Ius determinanl E.: 

EI = II I 
o , 

, , 
E. = 0 , 

o 0 

(a) By «.>factQlS .\.how that E. = E._I - E. _1. 

(b) Stan;/lg from E\ = I and El = 0 find E). E., _ '. E • . 

(c ) By _icing how these numbers evenlually rqleat. find Eloo . 

18 F. is the determinanl of the I. I. - I tridiagonal m.alri~ of order II: 

I - 1 0 
-, 

o 0 
o 

I, -'I Fl= II =2 Fl= I 1 - I =3 F. = 
o 

-, 
I _ I ;"'4. 

Expand in «.>factors 10 show Ihal F. :: ""_1 + F._l. 1llese determinants are Fi
botwl(X'; n~r$ 1. 2.3. S. 8, 13 . ... T"he ~\Jence usually StatU I. 1.2.3 (with 
1 ... ·0 I 's) SO our F. is the usual F.+I . 

19 Go bad 10 8. in Problem 14. II is the same as II . nC(C~ fOf bit = I. So use 
li""arit y in the first row. whc~ II -I 01 e<Juals ! 2 - I 0 J minus [I 0 0 1: 

-, 0 , -, 0 o 0 

18.1 :: 
-, -, 

= 11. _1 11 ._1 
-, 

11. _1 
0 0 o 

l.inurity gi~s 18.1=-111.1-111 0_11 = 

20 Explain why the 4 by 4 Vandcrmondc determinant contains x l but not ... . or ... ': 

T"he determinant is len) al ... = . and . "TN! «.>fOC1or of ... l is 
Vj = (b-a){" -a )( .. -b). Then V. "" (b - a) (e - al(e - b)( ... - a)( ... - b){ ... - .. ). 

2 1 Fi nd Gl and G) and then by row operations G • . Can )·ou predict G. ? 

o , 
GJ = 0 I 

o 

o , 
o , , 
, 0 , 

o 

, 
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11 CQlllpute the determinants SI, S2. Sl of lhese 1. 3, I tridiagonal matrices: 

3 

Sl = I 
o 

o 
3 1 

3 

Make .II. Fioonacri gl,l('\.i fQr S. and veri fy thai you are right. 

13 Cofactors o f the 1. 3.1 matrices in Problem 22 give .II. recursiQn Sw "" 3S._ 1 -

S._ I. 

Challenge: Sho>.· lhal s" is Ihe Fibonacci number 1'110+2 by prm'in8 1'110+2 "" 
31'110 - Fa _I. K~p using the Fibonacci's rule 1'1. "" 1'1. _ 1 + 1" _2. 

24 Change 3 to 2 in the upper left comer of the malri<:c$ in Problem 22. Why does 
that subtn>ct s,,- I from the detcnninant S.? Show that the detc nninants b«ome 
the Fibonacci numbers 2. ~ . 13 (always Fa+I). 

Probifms 25-28 are about block matrkes and block de1ff"111lnanl5. 

2S With 2 by 2 blocks in 4 by 4 matrices. you cannol always usc block iktcTminanl5: 

"" I ~ ~ 1 ~ IA \l D I - IC I1 8 1 . 
( I ) Why is the tirst Slalement lrue? Somehow B doesn'l emer. 

(b) Show by example that equality fails (as shown) when Centers. 

(f;) Show by e xample thai the answer det (A D - C B) is abo wrong. 

26 With block multiplication. A "" LU has AI = I. IUI in the lOp left romer: 

(a) SuppOSe the first three piVQ!s of A are 2. 3. - I. Whal are the dctcnninants 
of L I. Ll. LJ (with diagonal I's) and UI. Ul. UJ and A I. A2. AJ? 

(b) If AI. Al. AJ have dete rminanls 5.6.7 fi rJd 1he Ihree pivots from cq ...... tion 0). 

27 Block e limination subtracts CA- I times the first row 1,01. B I from the scoond 
row IC DI. This lea, .." the: Schur complm,etll D - C A- 18 in the COlTEr: 

[-C~ - I ~][~ ~] = [~ O_%A-I B). 
Take delerminants of thn;c block malrices to prove: COfTCCI rules for ~uarc blocks: 

I ~ 81 
D -

IA\l D -CA-1 BI _ 

if A- I ""ists 
lAD-CHI 

if AC "" CA . 

, 
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28 If A is m by II and B is II by m. block mul1iplicalion give'S del M .. del A 8: 

,, ~ [ ° '] ~ ['" A][ , 0] , -8 I 0 I - 8 I . 

If A is a single row and 8 is a ~ingl~ C(llumn what is de! ,., '! If A i~ a C(llu mn 
and Il is a row what is det M? 00 ~ J by J example of each_ 

29 (A ~akulU! qlll:Stion based on the C(lfOClOr expansion) Show ll1al !he derival;\'e 
of de! A with Il:Specl 10/1 11 is the CofOClor C lI _ 1lw: other enll;es are I1xro - we 
are only changing /1)1. 

)0 A 3 by 3 del~nninant has th= prodl>C'lS "b'n to the righ1" and Ih= "down 10 
lhe leff' wi1h minU! signs. Compute lhe s i~ lerms in the figure 10 find f). 1lw:n 
explain " 'ilhool delerminanls why Ihis matri~ is or is 001 in''enible: 

, 
, 
• , , 

• • • 
3 1 For E. in Problem 17. lhe of lhe 4' .. 24 lerntS 'n the big formula (8) all: 

nonzero. Find those five terms to sllow tllat E. = - L. 

32 For the 4 by 4 tridiagonal matrix (entrie$ - I. 2. - I) find the 11", t~rms in the 
big formula Ihat gi''e del A = 16 _ 4 _ 4 - 4 + l. 

3J find lhe delenninanl of this cyclic" by cofactor.; of row I and then the "big 
fonnula". How many exchange'S reorder 4, 1. 2. 3 inlo 1.2.3. 41 Is 1,,11 = I or 
- 11 

l5 

° ° '] ° ° ° , ° ° ° , ° [
0 0' 0] 

1'1_
0001 _[°'] - I 0 00 - 10 ' 
o I 0 0 

The - 1.2. - I matrix is Z.eye(II)-diag(ones(II-l, I), 1)-dia~{ones(II - I . 1). - I). 
Change M I. I) to I so det A = I. Predici the emries of A - ~ on " = 3 
and leSt lhe prediclioo for II = 4. 

(MATLAS) 1lw: - 1.2. - I malrices ha,-c de1erminam II + I. UHllpul~ (II + I)A- I 

for II _ J and 4. and \'~rify your gll<'ss (or " '" S. (Inverses of tridiagonal 
malrices have the ran~ one form ... ~T abo,~ the diagonal. ) 

, 
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36 1lH: sym~ric !'aKal malrices llave determinant L. If I subtract I from the n. n 
enlly. why doe~ lhe delerminant become zero? (Use rule 3 or cofactim in row ,., 

~, [! 
, , 

~ 1 = , (koo." ~, [! 
, I 

~ 1 = 0 (10 "pI,;". 
2 J 2 3 
J , J , , 10 , 10 19 

CRAMER'S RULE, INVERSES, AND VOLUMES. 5.3 

This section applies delerminants 10 sol'" A.r = b and also to in'~n A. In tile en lrie~ 

of A-I. you wi ll sec del A in every denominator - we divide by i1. (If det A = 0 then 
we can't divide and A- t doesn't e!C is1.) Each n~mber in A-I is a determinant divided 
by ano!IIer determ inant. So is C'"ery com)JOfl"nt of .r ., A-l b. 

Cmmu', Ruk ,0/"", Ax = b. A neat idea gives the first component XI. Replacing 
the first col umn of I by X gives a matri~ with determinant XI. Wilen ) '00 multiply by 
A. [lie first column becomes A.r ... ·hich is h. 1lH: other coluntns an: copied from A: 

[ A (I) 

We multiplied a column a[ a time. Now IUU determinants. 1bc prQdu<;t ",Ie is: 

(del A )(xl) = <let HI 
do 8 , 

XI =--· ,,,A (2) 

Th is is tile first component of X in Cramer's Rule! Changing a column of A gives BI. 
To find Xl . put !he ,-ector .r into the second column o f the idenlity matrix: 

(3) 

Take determinants to find (del A)(Xl) = de! 81. This gives Xl in Cramer's Rule : 

58 (CRAMER's RULE) If det A is no! zero. Ax = h has tile unique: soluMn 

<let HI det B1 del N • 
.r l = del A .f l = detA X. = delA 

Tht ",tllrix Bj IItI.' Iht jill culumn tlf II "plared h, Iht VfflfH h. 

, 
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A MATLAS program for Cramer's rule only needs one line to find 8, and X( 

x(j) = deI([A(:, I: j - I) b A(: ,j + I : 1I)])/deI{A) 

To solve an II by II system, Cramers Rule evaluates II + I determinattt~ (of " and 
lhe II differenl 8's), When each one is the sum of II! terms- applying the "big fonnula~ 

wilh all permutalions- this makes a IOlal of (II + I)! lerms. II would b<! cro~ ,O.w/'"e 
equ{j/;ollS l/rat ' ... y. B UI " -e do finally ha>1: an eX!,licit fonnula for lhe solution z . 

bample 1 Usc Cramer's Rule (it needs four <le1.erminanu) to sol'"e 

Xt+Xl+XJ = I 
- 2x t +Xl =0 
-4.l t +X) = 0 

with 

, 
deIA =-ZI 

- 4 0 

, 
o =7. , 

The right side ( 1.0.0) goes inlO columns 1. 2. 3 to produce lhe matrices 8t, 8 l. 8}: , 
18d_ 010 = 1 

o 0 , 
IB21: -2 0 0 : 2 

_ 4 0 1 
11111= - 2 I 0 = 4. 

- 4 0 0 

Cramc:r's Rule takes ralios to find lhe , omponcnlS of z . Always divide by del A: 

IBt! I IBzl 2 IBJI 4 
xt =iAT =7 Xl=iAT= 7 .l")= IAI = :;> 

1 always substitute Xt. Xl. Xl b""k into lhe equalions. 10 d ,ed the ,akulations. 

A formula for A- I 

In EJ:.ample I. the right side b waS the first oolumn of I. The sollllion (+. ~ > ;) mUSI 
be the fir'!it column of A- I. Then the fir'!it oolumn of AA- I = I is <:OrTec1. 

lmponan! point When b = (1.0.0) replaces a column of A. the determinant is 
I limes a co/aero,. look back to see how the delmninants IBjl are 2 by 2 cofactor'!i 
of A: 

IBt! = I is the cof""tor Cll - I~ ~ I Cross out row I. column I 

IB1[ = 2 is the ,of""tor 1-' CIl = - -4 ~I Cross OUt row I. column 2 

IB)I= 4 is the cofactor Cu: I=; ~ I Cross OUt row 1. column 3 

M;ain poin t: Tile lIumerators ;n A - 1 0f? Cq!fJCfO",. TII~J an dividtd bJ det A. 

For the second column of A _I. 'hange b to (0 , I. 0) . Th~ d~urmilUml' q/ Bt. Bl. Bl 
"" cqfocrqrs (in bold) from croning mil ro'" 2. The cofactor signs are (-){ +)( - ): 

o I 
t I 0 =-1 
o 0 I 

1 0 1 
- 2 1 0 = 5 
_4 0 I 

I 
- 2 I 
_. 0 

Ohide - I. S. _ 4 bJ IA I = 7 lq flrl lhr J~ctJltd wlumn 0/ A-I. 

o 
I = _ 4. 
o 

, 
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For the third column of A- I. lhe righl side is b = (0.0,1). The detenninants 
of die th= 8 's hcco,"" cofactors of the third row. Those are -I. - 2. J. We always 
divide by tAl = 7. Now we have an ,olurnn~ of A- I, 

,[I -I -I] ,ofaclorsofA 
Inl"tl"R malri:o: A- I = - 2 ~ - 2 = dete · r A ' 

7 4 -4 J nmnan! 0 

Summa". In solving AA- I .. I. the colurnn~ of I lead to the columns of A- I. Then 
Cramer's Rule using II = columns of I gives the short fonnula (4) fOf A- I. We will 
incllNk a sc!,aflne direcl proof of Ihis fonnula below. 

SC Tlrr i. i rn(ry IJ/ II ·1 is Ilrt cIJ/nflor C,' (1lOI C,,) dMlkd by det A 

,., C' 
A' = del A 

The COfaclOfS CII go inlo lhe n co/ acror "",(rix
n C. Irs '",,,spos. kath ff) A-' . 

'" 

To rornpute the i. i cntl)' of A-I . cross OUt row i atld column i of A, Mulliply 
the detenninant by (_ I)Hi 10 get the cofactor. and divide by detA. 

Example 2 The malri~ II = [~ ~ 1 has cofactor malri~ C "" Lt -: ]. Look. at A 
times lhe lranspose of C: 

IIC
T =[; !H-: -!] = [ad~be Ud~bcJ. (S) 

The malri~ Of! the righl is de! A li,",,5 I. So divide by del A. Then A li,",,5 CT/ <kl A 
is I. which revul s A- I: 

" 
C' 

... A 
which is , [J -'J adbe - c u' 

(b) 

This 2 by 2 uample u~ lcuen. The J by 3 uamplc used numbers . lnve,.,ing a 4 by 
4 maml wooLd need sil tecn cofaclQrS (each one is a 3 by 3 detenninant). Elimination 
is faster- but oow we koow an explicit fonnu la fOf A- I. 

DirK! proof of tIw fortJHJb A- I _ CTI ~I II The idea is to multiply A li,",,$ CT: 

["" "" ".11 

Row I of A limes ,olumo I of the ,ofoctors yieLds the firsl del A on the right: 

aliCli +aI2CU + aUCIl = det A by the COfaclOf role. 

Similarly row 2 of A times column 2 of CT yields de! A. 'The cntt1cs 1121 are mulli· 
plying coflOCtors C2j U they should. 10 give lhe determinant. 

, , 
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How IQ up/oin lite ::eros ()ff Ihe nI(Iin diagmw/ in equof;o~ (7)7 RO\Oo's of A a~ 
multiplying cofactor'S from diffr"nI rows. Row 2 of A times column 1 of CT gives 
1.ero. but why? 

(8) 

An."'Cr. Thi~ is the cofactor rule for a new matrix . when the second row of A is 
copied inlo its first row. 'The new matrix ". has twO e<JuaJ rows. so del ". = 0 in 
e<Jualion (8). Notice Ihal ". has the.arne cofactors Ctl .CI!. C tl as A - ~ause all 
rows agree after the first row. Th us the remarkable malrix mull iplicalion (7) is ()()n'eCt: 

hample 1 A triangular matrix o f l's has delenninant 1. Tnen A- I oornaiM 
cofactors: 

[
' 0 0 0] 1 I 0 0 

11. _ 1 I I 0 

1 I 1 I 

o 0 
, 0 -, 
o - , 

Cross out row I and column I of A to see the) by 3 cofaclor ell = I. Now Cl'OSS OUt 
row I and column 2 for Cn. The 3 by 3 submatrix is still triangular with determinant 
I . But the cofactor C I! is - I because of the s ign (_ 1)1+1. This number - I goes into 
the (2.1) entry of A- l_don't forgello tran ~pose C! 

The ;""O'st ()J" /r;onguhlr rrumir is Iri"ngu/"r. Cofactors gi"" a reason why. 

hample 4 If all cofactors are IIOfIZCro. i. A sun: to he inyertible? No ..... y. 

Example 5 Hen: i. part of a direct computation of A-I (see Problem 14): 

111. 1 =5 
and Cl ! = -(-2) and 

Cll =-6 
, [" A-I '" 5' 2 - 6 

" 
:]. , 

Area of a Triangle 

E\'erybody knows the art'a of a rectangle - basr times height. 'The area of a triangle is 
halJ the basr times the heig ht, But here is a qUCSlion that tOOsc formulas don ' t a~"'N_ 

1/ '" know Ihe come'" (Xl . JI) and ( .I]. n) Dnd (Xl. )'J) oj a truUlglt. w/ult is tht 
ana.' 

Us ing the comers to find the ba>e and height is net a good way. Determinants 
are ",u<;h beller. 1llcre an: ""Iua", roots in the basr and height. but they cancel OUI 
in the good formula. TIlt arla of a trWng/e is hal! of a 3 by ) dttt rminont. If one 
comer is at the origin. say (Xl. Yl) '" (0.0). the determinant is only 2 by 2. 

, 
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Figure 5. 1 General !riangle: spttial lriangie from (0.0); general from three spttial s. 

1lIe !nangie with oomcn. (XI. YI) and (X2. ,''2) and (Xl .. n) has area = ! (octcrmi. 
nanl): 

XI ."1 
Am o( triangle ! X2 n 

Xl JJ I" "I Area = ~ . "hen (Xl. I) = (0.0) 
X2 }':l 

When you set Xl = YJ = 0 in !he J by 3 octerminan!. you get ti>c 2 by 2 oc!erminant 
llIcsc formulas haV<' no square roots - they are reasonable to memorize. llIc 3 by J 
detmninan! breaks inlo a sum of !hree 2 by 2·s. jusl as the third triangle in Figure 5.1 
breaks into !hree uiangles from (0.0): 

" " +t(XI Yl- XH')) 
A •• -j ., " - +~(XlYJ - X ))'2) (9) ., " +~(XJ}'I -.f l)')' 

This shows the area of the general triangle as the sum of Ihree spc'CiaJ areas. If (0. 0 ) 
is outside the uiangJe. !wo of!he special areas can be nega!i~e - but !he Sum is still 
Cl')rm:1. Tbe real problem is 10 explain the spc'Cial area !(xln - XlYl). 

Why is !his !he area o f • triangle'! We can n:moV<' lhe fllClor ~ and change !o 
• parallelogram (!wice as big. because the parallelogram CQOtains two +N;jUallrianglcs). 
We now prove !ha! !he parallelogram area is !he dctemtinanl XI)'2- X2)'I. This area in 
Figure 5.2 is 1 Land lhen:fore lhe lriangle has area y. 

( I. 3)'~_--1 Parallelogram 

(0.0) L--,(;,:, .~,,) (0.0)L-~-;(;:,.~". 
An:a = I ~ !I = II 

Triangle: An:a = y 
Figu,,* 5.2 A !riangle is half of a parallelogram. Area is half of a dctenninant 

, 
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Proof 'h,,' " JMmlielogmm iUlrtlng from (0,0) h"s "~,, _ 2 by 2 dt fUmil1"m. 

TIleR: aJe many proor~ but thi~ one fit~ with the book. We show that !he area has the 
same prope"i~ 1-2-3 as the de1ermin'llU. Tben area = determinant! Remember mat 
those thrtt rul~ defined the determinant and led to all its other properties. 

I When A = I. the parallelogram becoote~ the unit square. Its area i, detl = I. 

2 When rows are exchanged. the determinant reve~ sign. TIle absQlu~ value (posi · 
tive area) Stays the same- it is the same parallelogram. 

3 If row I is multiplied by r. Figure 5.3a sho",', that the area is also multiplied by I. 
Suppose a III:W row (x;. y ; ) is added to (x,. Yt) (keeping row 2 fixed). Figure 5.3b 
shows that (he solid parallelogram areas add to the dotted parallelogram area (becau~ 
the tWO (riangles completed by dotted lines are the same). 

• (0.0) 

m. , 

Full ~a a IA .,. - - ' , 

- ' _--- (u ,· ')'t) 

(x" y ,) 

~tod ~a . Solid area a A + A' 

-
(.<2· }"1) -- (z ,+..<',. ,,+1,) , ---- (x,.,,) 

(0. 0) 

f igure S.3 Areas obey the rule of linearity (keeping the side (x I .n) constant). 

That is an e~OIic proof. when We could use plane geometry. But the proof has a 
major attnortioo-it applies in" dimeMioos. TIle" edges going out from the origin are 
given by the rows of an " by " mal/h. This i. li ke the triangle with two edges going 
out from (0.0) . TIle bo~ is completed by more edges. JUSt as the pan.JI~logram wa, 
completed from a triangle. Figure 5.4 shows a mrtt..(limensionaJ bo~-whose edges 
"'" not at right angles. 

Th, .mumt of Ihe box In Flgu" 5.4 t qUD/s Iht Dbsolule Wllut of dN A. Our 
proof checks again Ihat rules 1- 3 for determinants are also obeyed by volumes. When 
an edge is meIChed by a factor I. the volume is multiplied by I. When edge I is added 
to edge 1'. the new bo~ has edge 1+ 1'. Its volume is the Sum of lhe two orig;nal 
volumes. Th is is Figure 5.3b lifted into mree dimellsions or "dimensioos. I would 
draw the boxes but tltis paper is only two-dimensional. 

, 
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figure 5.4 Three-dimensional bo~ formed from the tllr'~ rows of A. 

llIe unit cube lias volume = I. wh.ich is del J. This l<'aves only rule 2 10 be 
ch",<;l<ed. Row e~changes Of roge exchanges ica''e the !lame OOX and the same abso
lule volume. 1lIc detenninant changes sign. to indicate wllether the edges are a righi
It<Intkd Iriple (del A. > 0) or a Irft-han;hd triple (0,1 A < 0 ). The box volume foLlows 
the ruk~ (Of <kterminan~. so volume of the box (or parallelipcped) = absolute value 
of the detenninanl. 

bample I) Su~. INtangular box (90· angles) has side lengths ','. and I. lIS 
volume is r limes J times I. The diagonal matn,. with cnlrks ' ,S, and I produces 
t~ Ihree sides. lben del A also equals r s t. 

Example 7 In calculus. the box is infinitesimally small! To imcgrIIU: over a eirek. 
_ might change.x and y 10 r and 8. 'Those an: polar roordinales: x = rcosO alld 
y = rsin6l. The area of a Mpolar box" is a determinant J times d,dO; 

' ~Iax,ar ax l iJ(J I~I CO'j8 -,sin91" 
a,ia, (Jy/ iJO sin O • cosO . 

This determinant is the r in the small area dA = rdrd9. 1l'>e stretching faclor J goes 
into double integnlls jU51 as dx/ du goes into an ordinary inlegral f dx = f(dx/du)du. 
For triple inlegrals !he: Jac(>bian malri~ J with nine derivatives will be 3 by 3. 

1M emu Product 

This is an extra <and optional) applicalion, special for th~ dimensioos. Sian wilh "«
Ion " = (U\ . U2. 1I )) and p = (U\.II2. "3). These p3g<'s are about their Croll product. 

Unlike !he: dot product, which is a number. the cross product is • "«lor- abo in three 

dimensions. It ;5 wriuen " ". and pronouoced "" cross p." We will quickly give (he 
components of this vector, and al'>O !he: propen ies Ihal make il useful in geometry and 
physics. 

maklnal 



This time "'C bite the bullet. and wrile down the fonnula hefon: the propenies. 

DEFINITION 'O>e Croll proJrw of u = (''1.U2.U,) and " '"' ("t,''l''1) is the 
'"«!Or 

i j I.: 
u x ~ ". UI 11 1 III =(Il~t·J-IIlV:!)i +("'I·t-UI"l)j+("t\'l-U~"I)t . 

"I ''2 "J 

(10) 

Tlri$ .""" a';$ ~'~IIdicula, ,,, U "lid • . 1lte cruss prQdUCI " x u is -(u X . J. 

Comment 1lte 3 by 3 octcnn;nant is the easie.t way 10 n:mcmbcr U x • . II is JIOI 

especiall y legal. becau~ the firs! row contains v«tOR i . j. k and the OIher rows (:(MItain 
numbers. In the determinant. the vector i = ( 1.0.0) multiplies "2~J and -11 31'2 . llle 
result is (lI l~3 - " lV:!. O. 0). whkh displays lhe first componenl of the cross product. 

NOIicc tile cyclic pallern of tile subscripts: 2 and 3 give componenl I. then 3 and 
I gh.., component 2. then I and 2 give component 3. This completes the ddinition of 
II X II. Now we lisl tile propenies of tile eR)SS product: 

Propet1y 1 .. x u reVer5CS rows 2 and 3 in tile determinant so it equals -(u x oj. 

Properly 2 1lte cross product .. x .. is pe.".,ndicular to .. (and also to 0). llle direct 
proof is to watch termS cancel. Perpendicularity i. a ~ero dot prod"'-'l: 

1lte determinant now h3!i rows U." and • so it is um. 

Properly 3 The cross product of any ''eCtor " 'ith ilsclf (1" '0 equal rows) is u x U = O. 

Wilen .. and, are parallel. the cross product is zero. When .. and " are perpendicular. 
the dot product is zero. One involv.,. sin iJ and the other invoh..,s cos iJ: 

I .. x . 1_1"11_lI sin91 ( 12) 

Example 6 Since U = (3. 2. 0) and .. = ( 1. 4.0) are in the .r,. plane. u x ~ goes up 
the : axis: 

, j 
u xv = 3 2 , • o = 101.: 

o 
llle cross product is II X • = (0. O. 10). 

TIr, 1'"KIIr uf .. x • f q .. al. lit_ ana of ,It_ ptJ,al/f /oKrtJm .. ·itlr ~'W$ II uM •. This 
will be imponant: In this ~xamplc the = a is 10. 

, 



bample 9 1lIecross prodUCI o f Il :(1.1. 1) and p: (l.1.2) is (1 .-1. 0 ): 

i , • • 
1 I = j I' 
" ' 

'1_ ·1' 1 " 
, I . . I = 1 - J . 

This ''eC10f ( I. - I. 0 ) is perpendicular 10 (]. I. I) and ( ]. ]. 2) as p~icled. Area = ..ti.. 
bample 10 The cross prodUC[ of ( 1.0. 0) and (0. 1.0) 00e)'$ [he riShl hlJlu/ rlll~. 
It goes up IlOl down: 

i ~J" ~ 

i j • .. A-, Rule u ~ • points a long , 0 0 =. you r righ[ thumb wt..n 1M 
0 0 lingers eutl from u 10 •. 

Thus 1 x j = k . 1lIe right hand rule also gives j ~ k = i and k x i = j . Note 
[he cyd ic order. In [he opposilC order (ami-cycl ic) [he Ihumb is reversed and thee cross 
prodUCI goes lhee OIher way: k x j = - I and i X k '" - j and j xi = - t . You sec 
the thrtt plus signs and thrtt minus signs from a 3 by 3 determinant 

1lIe definition o f II x U can hee based on VCClon instead of their components: 

DEfiNITION 1be croll prodllcf is a "ector with length DIl U Dull s in 81. Its di=
tion is perpendicular to II 311d u. II poinls "up" or ~down" by lhe right hand rule. 

This definition apP"aJs to physicists. ""ho hate 10 choose axes and ooordinaies. They 
see (II I, " 2. II)) as 1M position of a mass and ( F ... FJ • F,) as a (orce &Cling on il. If F 
is paralJelto II . then u x F = O- there is no turning. 1lIe mass is pushed 001 Of pulled 
in . 1lIe cross produci II X F is lhe turning force Of torque. [\ poims along the turning 
axis (perpendicu lar to u and F ). Its length Dll ll F a sin /I measures lhe "moment" Ihal 
produces IUming. 

Triple Producl .. Delt'Tmirunl _ Volumt 

Since u ~ p is a vt'C10f. we can lake its dot product with . third ve<.:tor a>_ Thai produces 
!he triple prodllct (1/ " 11) .... . It is called a "scalar" IripJe prodOCI. because it is a 
numbef. In f&C1 il is a delerminant 

., 
(II X . ) .a> = "I ., Wl III 

Ul = VI 

., 
"' (13 ) 

We can put ... in lhe top Of bOllom row. 1lIe two determinan ts are lhe same because 
__ row exchanges go from one [0 the O(her. NOIi~ when Ihis determilllUll is 1.<:1"(1: 

( .. )( ~) .... = 0 uacdy when !he vector.; Il ...... Ii(: in {he Mm't: plUM. 



f irst reason u x ~ is perpendicular 10 Ih~1 piaIX' so it~ dot product with III is lero. 

SeaJnd rt.'dson Three "ecwrs;n a plane are dependent. The matrix is §ingular{det = 0). 

Third rr<l50n Zero volume when the u. U. III box is S<juashcd 0010 a plaoe. 

II is remarkable that (u x g) . III equals the volume of the box wilh s ide§ u . ~ . IO . 
This 3 by 3 determinant carries trcmcOOoos information. Liu tid - be for • 2 by 2 
matrix. it .separates invenible from si ngular. Chapter 6 will be looIting for s ingular. 

• REVIEW Of THE KEY IDEAS • 

I. Cramer's Rule soh'es Ax = b by .... t;os like x, '" IB, III AI = 110"2" · .. . 1/11'1 1. 

2. When C is the cofactor m;l1rix for A. the i,m:rse is 1'1 -' = CT I del A . 

• 1. llIc ml u",c of a box is IdetAI . " 'hen the box edges are the rows o f A. 

4. Area and volume arc needed to change variables in double and triple integral s. 

S. In R'. the cross product u x u is perpendicular to u and u. 

• WORKED EXAMPLES • 

5.3 A U>e Cramer's Rule with ratios det Hj/ okt A \0 solve Ax = b. Also find the 
in ... erst matrix 1'1 - ' = CT I del A. Why is the solutiQ<l x in the first pan the same as 
column 3 of A- t'! Which cofllCtOl"S arc imulved in computing that column x~ 

Find the volumes of lhe boxes whose edges arc w/umns of A and then ro""S of A - I. 

Solution l1\c determiHam~ of the Bj (with right side b placed in column j) are 

0 6 2 2 0 2 2 6 0 
18d= 0 , 2 =, 18! 1 = , 0 2 = - 2 IB31 = , , 0 =2. , 9 0 5 0 5 9 , 

Those are cofactOl"S CIt. ell. Cll of row J. llIcir dot product with row 3 is de! A: 

det A = "I' CIt + allCn + (l}Jel) = (5. 9 .0) • (4 . -2. 2) = 2. 

The th= ratios del Bj l det A giw the th= CQIllpnnenls of x = (2. - I. I). This ;r i. 
the third col umn of A- t because b = (0.0. I) is the third column of I . The cofactors 

, 
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5.1 Cramer's Rule, In_ .nd VoIu..- 269 

along the OIher I'OW1 of A, divickd by det A = 2. gi~ lhe OIher ooIumns of A-I : 

Multiply to chc<;:k AA - t = f 

1be box from the columns of A has volume = det A = 2 (the same as the box from the 
1'OW1. since IATI = IA I). 'J'he box from rows of A - t has volume IA- tl = I/I AI =!. 

5.3 B If A is ~ ingular, the e<juation ACT = (det A )I becomes A CT = zero matrix . 
~tl ~aCIt colllmJt 0/ CT i l itl 11r~ n"IIIp1/C~ 0/ A. 'IlIoox columns CORUlin coflloClon 
along rows of A. So the: C(lfacton quickly 6nd the nllll$~ of a 3 by 3 matrix ~ my 
apologies that this comes 50 late! 

SoI~ Ax = 0 by x = rofacton along a row, for these singular matrices of rank 2: 

h[; : ;] 
228 

Any IIOtIUW column of CT will give the: desired solution 10 Ax = 0 (wilh rank 2, A 
~ at lea~t (>lie non~ cofactor). If A has rank I we get x = 0 and the idea will 
not work. 

Solution 1be tirst matrix has these cofacton; along irs lOp row (note the minus sign): 

-1 ;~ 1=2 
'J'hen x _ (6, 2. - 2) solves Ax _ O. TIle ooflloClOI'S along the second row arc 
(- 18. - 6, 6) which is just -3x . This is alS(l in the one-dimcnsional nullspace of A. 

'J'he second matrix has u ro ("OjacIDrJ aJoog its first row. 'J'he null~or 
x _ (0, 0.0) is DO( interesting. TIle rofaclors of row 2 give x = (I. - 1, 0) which 
solves Ax = O. 

Every tl by tI matrix of rank " - I has al leasl one nonUro cofaclor by 
Problem 3.3.9. BUI for rank tl - 2, all oofa<:lon are zero. In thaI case rofaclors ooly 
find x ~ O. 

Problem Set 5.3 

Problems 1-5 are about C .... mer 's HUIe for x _ A- lb. 

I Sol\"!: these lillC'af C<jualions by Cramer's Rule x J = det BJ I det A: 

(.) 
lrt +SXl = I 

Xt+ 4Xl _2 
(b) 

2.l"t + x2 = I 
Xl +2.I"l + x]= O 

x 2 + 2.1"] = 0. 

, 
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270 Ch.1pte< 5 De!t.>mii",,,,, 

2 Use Crame,'s Rule to wive for y (on ly). Call the 3 by 3 detenn;nam 0 : 

(oj 
<I.<+b)"_1 
cx+dy=O 

(lx+by+ CZ= I 
(b) dX +~}'+/~= O 

IIX+hy+ i;;=O. 

3 Cramer's Rule breab down when del A = O. fu ample (a) has 00 SOlution while 

(b) has infinitely many. Whal are the ratios xi = del Bj/ dct II. in these two cases? 

(0' 
2<,+3X2= 1 . 
, 6 , (p<lralkl It""s) (" 

u,+}.<, = 1 _ 
, < ~~ 1 ( ... me line ) .1' ,+ X2= -"1+ .... 2= 

" Quid proof of era'Mr', mit. 1lIe delenninam is a liocar fUflCliOIl of rolumn I. 
It is zrl'O i f I"'.., wlumflS Ilr<" equal. When b = Ax = X' '' I + x~ .. : + XJ" J goes 
inlo the first column o f A. tile determinant of this matrix B, is 

(a) What formula for Xl comes from left side = right side? 

(b) Whal Steps lead 10 the middle equation'! 

5 If the right side b is the fi11i1 will"'" of A . ..,Ive the 3 by 3 sySlcn, A.r = b . 
Uow does each determinant in Cramer's Rule lead to thi' solution >:1 

l'roble,,~~ 6-16 Y", about A. - I _ CTj det A. Kemembet" \0 lra nsposoi' C. 

II FInd A - I from the COflOClOf fonnula C T I det A, Usc symrncuy in pan (b). 

(1I) A :[~;~] 
o , , 

(b) A :[-~ -~ -;] . 
o -I 2 

7 If all the oofactors all: zero. how do yoo ~now that A has no in"ers.e·' [f!lOl\e 
of lhe rofactors an: zero. is A sun: 10 be in,'el1 iblc? 

8 Find lhe cofactors of A and multiply A CT to find detA : 

, '] 1 2 
2 , 

OM c=[' ~3 ' ] 

If yoo ch~nse Iha! 4 to 100. "'h)" is det A unchanged? 

9 Suppose del A : I and yoo ~now all the cofactors. How can you find A? 

10 From lhor f"rmula ACT: (detA )1 show Ihal dete = (deIA)~-I. 

11 (for prof~ssors only) If )"00 know all 16 cofactors of a 4 by 4 inverlibk: matri x 
A. how would you find A? 

i 



S.3 (ramer', l1.u ". In.......,.. ond Volumes 27 1 

12 If all entries of A are integers. and detA = l or - I. prove Ihal all enlries of 
A- I an: integers. Give a 2 by 2 nample. 

1 J If all entries of A and A -I an: intege".. prove lhal det A = lor-I. Hint What 
is det A times det A- I? 

14 Complete ~ calculalion of A- t by cofactors in EJiample 5. 

15 L i, luwer lriangular and S i, ,ynunetric. A"ume ~y are invtr1ible: 

[' 0 0] L = b c 0 , , / [
' b '] S = bee 
d , / 

(8) Which three cofactors of L are zcro? T1tcn L - I is lower lriangular. 

(b) Which Ihree pairs of cofactors of S are equal? Then S- ' is symm..1ric. 

16 r'Of" = 5 the malri~ C contains __ cofactors and each 4 by 4 cofactor 
ron1ain~ __ terms and each term needs __ multiplications. Compare with 
5) = 125 for the Gauss-Jordan computation of A- I in Stttion 2.4. 

Problems 17-27 are about area and .-olume by determinants. 

17 (a) Find the area of the parallelogram with edges ~ = (3. 2) and III = (I, 4). 

(b) Find the area of the triangle with sides ~. Ill . and ~ + Ill . Draw it. 

(c) Find the area of the triangle with sides ~. Ill . and III - u. Draw it. 

18 A oox has C<Jge, from (0.0,0) to 0. 1. 1) and (1.3, I) and (1.1.3). Find ils 
volume and also find the area of each parallelogram face using Oil x ~ I . 

19 (a) T1tc romers of a triangle are (2. I) and tJ.4) and (0. 5). What is the area? 

(b) Add a <:<>mer at (-1.0) to ma);c ~ lopsided ",gion (four ,ides). Whal is 
the area? 

20 The pallillclogram with sides (2. I) and (2.3) has the same area as the parallel· 
ogram with sides (2.2) and (I. 3). Find those arcas from 2 by 2 determinants 
and say why they must be equal. (I can', see why from a picturc. Please write 
to me if you do.) 

21 The Hadamard matrix H has orthogonal rows. T1tc box is II hypercube' 

What is 
I - I - I 

- I -I I 
-\ -I 

= ""Iume of a hypercube in K' ? 

, 
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11 If the columns o f a 4 by 4 matrix ha~e ieng1hs Lt_ L2. L ). 1.4. what is the largeSl 
possible value for the determinant (based on Vl)lume)? If all entries are lor - I, 
... hat "'" those kongths and the maximum determinant? 

13 SIKJw by a picture how a rcrtangle with area Xt)':! minus a =tangle with a~a 
X1Yt produces the same area ... Otlr parallelogram. 

14 When the edge vectors OI . /I , C are IX'rpendi<.:ular. the VQlume of the bo~ is Ua l 
times HbD times Hc8. The matrix ATA is __ . Find detA TA and detA 

15 The box with rog..s ; and j and ., = 2; + 3 j + 4,1: lias height __ . What is 
the volume? What is the matrix with this determinant? What is ; " j and what 
is ilS dot. product with .,1 

16 An n-olitnensional c ube hu how many comers? How many edges'l How many 
(n - I j-olime:nsional faces? The cube whose edges are the rows of 21 lias Vl)1~ 

"~ __ , A hYlX'lUIbe compu ter has p.aralIcL prottssors at the comers with 
coot1«tions aloog the edges. 

17 The triangle with comers (0.0). (I . 0 ). (0 , I) has area !. The pyramid with four 
comers (0 . O. 0 ). (I. O. 0). (0. I. 0 ). (0 . O. I) has volume: __ . What is the vol 
ume of a pyramid in It" with Ihe corners at (0. O. O. 0) and the rows o r I ? 

Problems 211-3 1 Iln' abou l lln'1lS dA Ilnd volumes dV in calculus. 

18 Polar coordinates satid y x = rcosO and Y "" r sin O. Polar area JdrdO 'n · 
dudes J : 

ax/iW l lcoso -rsino l 
iJy/iJO = s in O rrosO' 

The two columns are onhogonaL 1l>eir lengths are __ . Thus J = __ " 

19 Spherica l coordinates p.4>.O SIllisfy x = psin4>rosO and Y = psin4>sinO and 
z = pcos 4J . Find the 3 by 3 matrix of partial derivatives: ih / CJp, Jxja4J , axjIJ(J 
in row 1. Simplify its determinant to J = p ! sin,.. 1l>en /IV in a sphe~ is 
p l sinI/JJp dt/>JO. 

30 The matrix that conne<:ts r, O to X. Y is in Problem 27. In"crt that 2 by 2 matrix : 

J - t _Iarlax arlayl = I ~' 
- iJO / ax iJO / iJy " 

It is su!plising that iJrjax = ax/ar (Ca/(u/us. Gilbert Strang. p. SOl ). Multiply

ing the matrices in 28 and 30 ,iyes the chain rule l; = ~ ~ + ~ ~ = 1. 

3 1 The triangle wilh OOIlK'TS (0.0). (6 . 0 ). and (1.4) has an.a . When you 
roI3tC it by 0 ,", 60° the area is . The determinant of the rQlalion matrix ;s 

J=I:: -:::I" I ~ ;I=? 

, 
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Problems J :t-J9 a~ aboul th~ triple prod llCt (u x ~) . .. In Ih1ft di mensions. 

32 A box bas base area l u x'i. I" I"'rpendicular height is U" l c(>59. 8a5C area 
limes heighl = ,ulume = 1/1 x ' 11" lease which is (II X ~ ) • .,. Compulc roo;( 
area. heighl. and ,ulume for u = (2. 4. 0). P = (-I. 3. 0) . ., = (I. 2. 2). 

33 TIle volume of the same oox is gi~n more directly by a 3 by 3 delcnninant. 
E"aluaIC Ihat detcnninan1. 

14 upand the 3 by 3 delcnninant in equation (IJ) in cofactors of its row "I. "2. " ). 
This c~pansion is lhe dot product of II with the "ector __ . 

3S Which of the triple products (/l x.,). p and (.,x u) ., and (' x.,) . .. are the same 
as {II x , ) · .,1 Which orders of lhe rows II . P ... give lhe corrttt delenninant1 

36 Let f' = (1.0. -I) and Q = (I. 1. 1) and R = (2. 2. I) . Oloose S so that PQRS 
is a parallelogram and compule itl> area. Oloose T. U. V so Ihal OPQRSTUV 
is a lilled box and compulC its volume. 

17 Suppose (x.,..:) and (""O) and (1. 2. 1) lie on a plane through lhe origin. 
Whal dc1enninant is zero? Whal equation does Ihis gi,'t: for the plane? 

36 Suppose (x. y. z) is a linear combination of (2.3. I) and (1.2.3). What deler· 
minanl is zero? Whal equation does this gi''t: for lhe plane of all combinalions? 

39 (a) u plain from ,ulumes why det2A .. 2~ det A for" by " matrices. 

(b) For what sizc matrix is the fals.e statement det A +00 A = det(A+A) true? 

, 
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6 
EIGENVALUES AND 

EIGENVECTORS 

INTRODUCTION TO EIGENVALUES. 6.1 

l inear equations Ax '" " rome from steady slate problems. Eigenval""s have u...; , 
~aleS\ imponalKc in d)'nomic problmu. 1bc solution of d,, / d, '" AN is etlang;ng 
wi,h lime - growing or ~aying or <><cilla!; ng . We can't find il by elimination. This 
chapler enters a new pan of linear algebnL All malri~!i in this chapler a~ square. 

A good model comes from lhe powers A. tt 2• ttl •... of a rnalri~ . Suppose you need 
the hundredth power A 100, 1bc starting rrLlIlrix A becomes unrecognizable after a few 
steps: 

[., .J] 
.2 .7 [

.70 .45] 

.30 .55 [ .6~ .525] 
.350 .475 

,J 
[.6000 .6000] 

.4000 .4000 

A 100 was fouDd by IIsing the .. igm'·aluu of A. not by mult iplying 100 ,"",rices. 1bose 
cigenval""s are a new way \0 s« inlO lhe heaM of a matrix 

To explain eigenvalues. we firs t explain cigenve<:IOfS. Almost all vectors. change 
direction. when they are multiplied by A. Certa ;n U €tptiOIU>i ",ctort x an in the 
, omt djrtction as A ... . Tho"" art rh .. "eigem'f!ctl>n" . Muh iply an eisen"ector by A, 
and the vector A ... is a number ). times the orisinal ... . 

Tht «Uk t quatWn is A ... '" 1...1" . The number ). is the "tigt nOd/ .. t". It tells 
whether the special vector ... is stre1ched or shrunk or !"e''efSCd or left uochanged 
when it is multiplied by A. We may find). '" 2 or! or - I or l. The eigenvalue ). 
could be: zero! Then A ... "" 0 ... means that thi s eigenvector ... is in the nullspacc. 

If A is the identity matrix. C"\'tl)' vector has A ... "" ... . All vecton are eiSenvecton. 
The eigenvaluc (tl>e number lambda) is ). "" I. Th is is unusual to say the least. Most 2 
hy 2 matrices have 1>1'0 eigen"ector directions and /k"Q eigenvalues. This _tion teaches 

274 
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how 10 compuk the .1" 5 and A's, h can come carl~ in the course because we only need 
the determinant of a 2 by 2 matrix, 

For the matri~ A in our model above, here are eigcnve<.:ton x 1 and .1'2. Mulli· 
plying those ~ectors by A gives x , and ! X2 , n.e eigenvalues are A, : I and A1 : !: 

[
.8 

and Ax, : ,2 .3] [.6] = ,7 .4 x , (Ax = x mean§ that At = I) 

[
.8 

and A Xl: 2 ~][-:]=[-~] 
If we again muhiply Xt by A, we still gel Xt. E~cry power of A will fi'~ 

A·x l "' .1' 1_ Multiplying .1' 2 by A gave ~X 2' and if we mulliply again ""e gel (i) Xl' 
Wh, n A is JqlUln d, fh, cig, nvtCf<H'S X I and X l j tay Ih' &am,. 1lIe ),'5 are now 12 
and (i)2. rll, ,ig"'l'alu,~ a,., UlU",.,d! This pal1em keeps going. because the cigen. 
ve<.:tors stay in their own directions (Figure 6.1) and l"IC"er get mixed. The eigenvectors 
of A 100 are lhe!lame XI and .1'2. 1lIe eigenvalues of Aloo are 1100 = I and (~)Ioo = 
'~ry SffiIIJJ numbo:-r. 

Az' . X,.[::J 

Figure 6.1 "The cigenve<.:ton keep their directioos. Al has eigenvalues 12 and (,5)2_ 

Other ve<.:ton do change direction. Hut all {)lher """'tors are wmbinatioos of lhe 
tWO ,igenvectors. The fint wlumn of A is the combination x , + (.2) X2: 

( I) 

Multiplying by A gives the fint column of AI Do il separakly for XI and (.2).n Of 
roune A X I = XI. And A multiplies Xl by its eigenvalue i: 

E«h , jgtnl'Ulor is multipli, d by its ,igMl'aI"t. when we multiply by A. We didn"t 
need these eigen"""tors to find 1\2. Hut it i1 the good way 10 do 99 multiplications. 

, 



2 76 CIwpIer 6 Eige' ... I ...... nd Eisen""""" 

, [6] ["'] is really z l+ ( .2)( :;)OjOjx Z"':4 + small , 
~ "~Ior 

This is the fi rst column of ,, 100, 1lw: number we originally ",TOle 1IS .6000 was nQI 

~~act We left out (.2)(!)'19 ,,-hid .. -ouldn'( show up for 30 decimal places. 

1llc cigenv«lor XI is a " ~e"'y .wle" Ihal doesn't change (becau>e A, = I ). Tne 
cigenV«10r x ~ ;s a "decaying mode" thai vinuall y disaPVC'ars (bec:au>e ).2 = .5). The 
higher the power of A. the doser ils columns app~h the Steady Slale. 

We mention thai this panicular A is a Marko~ mutrlx. lis enlries an: positive 
and ,,' -ery column adds to I. 1'hose facts guaranltt that the largest cigcnval ..e ;s ). = I 
(as "'1: found). Its eigern"eCtor "' I = (.6 . .4) is the Jleady 5Ia/l'- which all columns of 
AI will approach. Section 8.3 shows how ManQv matrkes appear in appl ications. 

R>r projections we can spoIlhc sleady Siale (l = I) and the nullspoce ( l = 0) . 

fu.mp'" 1 1'he projectlotl ... trh P _ [:1 ::1 11M ei&CI;Il'aIua 1 and O. 

Its eigen'-<:elors """ x, _ (l. I) and S l .. ( L - I). For Ih<»e ",""IOrs. P S I .. s , (ueady 
5lale) and I' s ~ _ 0 (nu llspace)_ Thi5 eu,nplc ill u~lrales Ihrtt Ihings Ihal we menliOll -
I. Each column of I' adds 10 I. so 1.."" I is an eigen,'al..e. 

l . P is singular. so ~ = 0 is an eigen'"III..e. 

3. P is symmetric. SO its eigenv,""IOTS ( 1.1) and ( I. - I) a~ ~rpe ndic .. lar. 

n.e (>Illy possible dgenval~ of a pro~lion m~lIi.\ are 0 and I, n.e eigen'"'""tOfS 
fOl" I.. ,. 0 (which meanS Ps = Os) fill up lhe nullspace, n.e eigen,,,,,'OfS for I.. .. I 
(",'hich meanS Ps = s ) fill up Ihe column space. n.e null ~P""<' is pro~led 10 zero. 
n.e column space pro~IS onlO itSC lf. 

An ;n.!xIW«n ",""lor like ~ = (3. I) parlly disappears and panly stays: 

n.e pro~t ioo keeps the column space pari of • and destroys the nullspace part. To 
emphasiu: Spuia/ plUfMrri,S of a malriJ: I,ad 10 !~cial r illt "WI/uU lInd dllr~''errors , 

ThaI is a major theme of thi. ehapler (il is eapiurN in • table a1 the >/Cry end)_ 

Pro~tions have;' = 0 aad I , Permutations have all 1).1 = I. 1be IICxt rn.:ltrix R 
(a rcft'""ti"" and al the same time a pennutation) is also ~ial. 

, , 



hample 2 T .... e"'"'do:>.. III&bU R _ [t n hall t.malues I and -I. , ,. 
llle eillcnveclOr (1 . 1) is uncllan~ by N. lbe s.econd eigenvector is (I . - I) -its sign.! 
are n:versed by R, A m3ui~ wilh no negat ive c/lllies can still have a negative cigen
val",,! 11w: dgen''ttlors for R an: the same as (or P . because R ~ 2 P - I : 

R = 2P - , [0 ,] ~, [ ., "]_[' 0] 
1 0 - .S .5 0 1 " 

(2) 

Here is the point If Pit = Ax then 2Px '" 21o..r . The e igenval~s an: doubled when 
the ma{ri~ ;s doubled. Now subtract I x '" Il . The: resuh is (2 P - f )x = (2).. - I)x . 
When Q mlllnx is slu'jtt tl by I, t ach ;. i, Jhijld by L No ch.an~ in eigenvIXlors. 

"~/ P" .. , 

/ PX2 = OZ2 

Projection 

Figure 6.2 Projeclioos have eigenvalues and O. ReHections ha"c ). = 1 and - 1. 
A typical J( changes direction. but not the eigenvectors XI and Il l. 

The eigenvalues are related exaCtlY as the mat rices an: related: 

R = 2 P - f S(> the eigem"3Jues of R are 2(1 )- 1 = I 3002(0)- 1 =- 1. 

The eigenvalues of Rl are ). 2, In this case HI = I . Ch«k (1 )1 = I and (_ 1)2 '" l. 

The Equation for the Eigeny~lues 

In . mall ""ample. we found ).'5 and r's by lrial and error_ Now we u§e dc:lcnninanlS 
and linear algebra. This is the key caicui(1tiQtl in the chapltr - IO sa/Iv IIr '" ).r . 

fiTS! mo"c ).r 10 lhe left side, Write the equation IIr '" ).r as (II - J.f )r = O. 
The matrix A -A I limes lhe cigen" eclor r is lhe zero veclor, The e;gt nWelan mob 
IIp Iht 1I"'/spott of II - AI! Wilen wt know an e igcn'-aluc A, we find an cigen'"CClor 
by solving (A - Afjr = 0. 

Eigenval..es first. If ( A - Al)r = 0 has a nonzero $(Ilul;on, A - J.f is not invenible . 
Tht dtltmtinonl of A - AI ",,,SI be uro, This is how 10 recognize an eigenvalue ).; 

6A llle number). is an eigenvalue of A If and only ,f A - AI is s ingular-

del (A -AI)=O. (3) 

, 
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This "characteristic equation" inll{)h 't'S only).. not r . When A is II by II. det (A - U) == 0 is 
an equation of degree II. Then A has II eigenvalues andeach). lead!; to r : 

For ItKb ). 501ft (A - U)r _ 0 or Ax _).z to lad lID d.,.wectari. (4) 

hample) A", un is alll:ady singular (zero determinant ). Find its )" s and x ·s. 

When A is singular. ). = 0 is one of the eigem'3.lues. n.c equation Ax = Ox has 
solutions. They are the eigenvectors for ). '" O. But here is the way to find all )"s and 
r's! Ah"ays subtract H from A: 

Sublnu:r ). from fM dw gafUJ/ to find A - ).1 = [I ;). 4':).]' 
TIlIu fhl dl fl1'mjnnnr "ad - be" of this 2 by 2 matrix. From 1 - ). limes 4 - ).. tbe 
"ad" pan i. ).2 - ~). + 4. llle "be" pan. 001 containing ).. is 2 limes 2. 

det[ I;), 4:). ] = O-).)(4 - ). )- (2)(2) = ).! - R (~) 

SIt Ihis defermifUJlIl ).1 - 5). 10 OIro. One solution is ). '" 0 (as expected. since A IS 
singular). Factoring into). limes ). - 5. tbe OIher roo! is ). '" ~: 

del(A - )./) ",).2 _ 5), '" 0 yields !he idgellVll ues ).1 = 0 and ).2 = 5. 

Now fi nd the eigenvectors. Solve (A - U)x = 0 sepanllely for ). , = 0 and ).2 = 5: 

(A - O/)r= [~!][~' ]=[~]YieldSBneigem=tor [n= [-n for).I=O 

( A - SI)r = [-~ -~][n=[~] yieldsaneigenveclor [ ~ ] « [~] for).2=5. 

llle matrices A - 01 and A - 51 are singular (because 0 and 5 all: eigenvalue:s). 
n.c eigenvectors (2. - I) and ( 1.2) are in the null.paces: (A - U)r = 0 is Ar =).z. 

We nttd 10 emphasize: Th~fT ;s lIothillg naprianal about). = O. Like every 
other number. zero might be an eigenvalue and it might noI. If A is singular. it is. 
The eigenvectors fi ll tbe nullspace: Ar = Or == O. If A is invenib1e. zero is 001 an 
eigenvalue. We shift A by a multiple of I to mab ;1 si"Gular. In the uampk. tbe 
shifted mBtri;< A - 51 was singular and 5 " 'as lhe OIher eigenvalue. 

Summary To solve the eigenvalue probkm for an " by II matrix. follow these steps: 

I. C"mpult rllt dt lmllillall' of A - U \'IlIh )' >ubt""'tcd along the diagonal. 
Ihi s delcnn inant stans .. ith )." or - )." _ It is a pol)nomial in ). of deg""" II. 

2. I'ind Ih~ roofS oflhis palynamial. b~ >ol ving det (A - ).f) = O. 1l>c II rootS 

are the " eigcn,-alucs of A TIley mal e 04 - ),/ singular. 

J. For coch cigcn,·.luc ).. so"~ (A - I f) x .. 0 10 find nil ~igrm'tC"IOT x 

, 
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A n<)I~ on quick compulalions. when A is 2 by 2. The dc1enninanl of A -AI,s a 
quadratic ($Iarting with A2). >From factonng or the quadratic formula. we find ;15 1"'·0 
roou (the eigenvalues), Then the eigenvectors come imme<;liately from A - AI . This 
matri~ is s ingular, so both rows are multiples of a , 'ector (<I ,b). Tire eigem"I'Cwr is 
any multiple oj (b. -<I ). The e~ample had A = 0 and A = S: 

A = 0 : rows of A - 01 in the direclion ( 1. 2); eigen"ector in the direction (2. -I ) 

A = S : rows of A - SI in the direclion (-4.2); eigenvector in the direction (2 . 4). 

py"vi()U~ly w~ wlUte tllal last ~igen~eclor as ( 1.2). BoIh (1 .2) and (2.4) are correcL 
Then: is a whole line oj .. igtm'utors-any oonzc:ro muhiple of If is as good a § If . 

MATLAB 's tig(A) divides by It.. length, to mak~ th~ ~igenvector into a unit vector. 

We end with a warning. Some 2 by 2 matrices have only onor line of eigenvectors. 
This can only happen when t"''() eigenvalues are C<juaL (On the other hand A = I 
has C<jual origenvaluors and plenty of eigenvectors.) Simi larly some n by n matrices 
don't have n ioo..peoo..m eigenveclors. Withoul n e igenvN'101"S. we don·t llave a basis. 
We can't write every r as a combinalion of eigen\'t'Cton. In lhe language of lhe JleXI 
section , we call'l diagonali:«: a matrix without n ioo..peoo..m eigcn'"CCtOl"S. 

Good News, Bad News 

Bad news 6rst: If you add a row of A 10 anOlt..r row. or e~change rows. lhe eigen
values uwally cllange. Elimini1lion dot's /WI prt!u n ·e lire A ·S. The triangular U has 
;Is eigellva luors s iuing along lhe diagonal - they an: lhe pivots. Bill lhey an: 1101 the 
eigenvaluors of A! Eigenvalues an: changed when row I is added 10 row 2: 

U_[~~] ha.;A =O a!>d A= I: A=[: :] Ilas A= Oa!>dA=2. 

Good news~: The Prod/tell.. , lim"J Al und lire sum A, +A2 can bejOllml qllickly 
from lhe matrix, Folthis A. lhe produ.:t is 0 limes 2. That agrees with the detcnninam 
(which is 0 ). The ~um of eig~nvalue$ is 0 + 2. That agree~ with the sum down the 
main diagonal (",·hich is I + I). These quick checks always won: 

68 Tlrt producf of fhe " tjgrm ... lues eqllals lilt dtltrminall/ of A. 

6C Tlrr ~um of lire n ,lgt", ... lllt5 tquolf fh t Slim of flrt n d;<lgunal tntritl tI/ A. 
This ~um along the mam diag<)llal i, called the Ir<lce of It: 

(6) 

, 
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Thuse checks are ''''ry useful. They are proved in Problems 16-17 and aga in in the next 
sectiOll_ They don't renlO,'e the pain of computing). '5. But when the computatiOfl is 
wrong, they generaUy leU us so. To compute correct ).'s, go back to det(A - ).1) = O. 

The dctenninant leSI makes lhe produ<'1 of the ). 's t(jual to the prod"ct of the 
pivots ( .... uming no row exchanges). But the sum of the ). 's is not the sum of the 
pivou-as the example sJIOo,..'w . The indi vidual ).'s have almost nothing to do with 
the individual pi'uti , In this new part of linear algebra, the key t(jumion is reaUy 
nonlin~"r: ). muhiplies x . 

Imaginary Eigenvalul"5 

O"e more bit of ne .... ·S ( not tOO terrible). The e igen"alues might not be real numbers. 

Example" Tht \10' roMtion Q _ [J ~] has no ,..,0/ rigtnl'uton or t ;gtOl-aluts. 
No "« lOT Qx SI")" in tht Simle diurtion " s x (except the ~I'Q ,-ector which i. useless ). 
The", Cam'N)! be an e igen"ector, unless .... ·c go to imllginllry num!>tn, Which We do, 

To see IIOw j CIlfI help, loot at Ql ..... hich is - I . If Q is rotation through 90°, 
then Ql is rQlation through 180". lis eigen"alues are - I and - 1. (Certainly - Ix = 
- I x .) Squaring Q is supposed to sqUatl: its eigenvalues)., so ..... e must Mve).2 __ I. 
1M eigen,'u l".,. 0/ the 'Ill' rolli/jon mll/ru Q ",." +; wid - I, because ;1 _ - I. 

Those ~ 's come as usual from det(Q - H ) "" O. This t(juation gi,'CS ).2 + 1 = 0, 
lis roots are ).t = i and ).2 = - i . They add to zero (which is the trace of Q). The 
prodOCI is (j)( - i) = 1 (which is the detenninant), 

We meet the imaginary number i also in the eigen'-ector!; of Q: 

,,'" [ 0 ']['] . ['] - 101= -' 1 ' 

Somehow (hese complex vectors XI = ( I. i) and Xl = (i. 1) keep (heir direction as 
they an: romed. Don"! ask me how. This eumple ma~ .. s the all-important point that 
real matrices ean easily ha,.., complex eigenvalues, l1Ie particular eigenvalues j and -i 
also illustrate two ' peeisl pmpenies o f Q: 

1. Q i. an orthogonal matrix so the absolute value of each), is 1.1.1 = I, 

2. Q i. a skew-symmetric matrix so each), is pun: imaginary. 

A symmetric matrix (AT = A ) can be compared to a ",al number_ A skew-symmetric 
matri.~ I ,tT = -,tJ can be compared to an imaginary number. An orthogonal matrix 
(AT A = I) can be compared to a complex number with 1).1 = L For the eigenvalues 
lhose are more (han analogies-they are theorems to be prm'C'd in Section 6,4. The 
eigen'-ectors (or all (hese: speeial matrices atl: perpendicular. Somehow (i. I) and (I. i) 

are perpendicular l in Chapter 10). 

, 
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Eigshow 

There is a MATLAB demo (jus, Iy~ d gshow), displaying !he eigenvalue problem for 
a 2 by 2 malti~. II $larts wi,h ,he unit vector x = ( I , 0). T~c ""'ust maUl I~is "«/Or 
nrm1' around the unit circle. A, the same ,ime ,lie KrecT1 shows Ax. in color and 
also moving. P~sibly A.r is allead of .r . Possibly Ax is behind .r . Sonretimt!J A.r is 
paraltcllO x . At Ihal pardliel moment. A.r ,,",)..r (twice in tile second figure). 

,_(0,1) 
, -

1" 

. ['.' "", 0.1 "] " 
.3.0.7) 
, 

~",,:::::~A.r = (0.8. 0.2) 

.t = (1.0) 

- - , - , 

The eigenvalue /.. is tile length of A.r. wilen the unit eigenvector .r is paniJlcl. 

The built ·in choices for A illlIStratc three possibilities: 

I . Then: an: no ,."aJ cisem-CC1OT$. A.r Sla)'$ behind or a~ of x , This means tile 
eigenvalucs and eigen"eclors are complex. as they are for IIIe rotation Q. 

2. The re is only OIIc Ii"", of eigcn'-ec\ocs (unusual). The moving directions Ax and 
.r meet but don'l cross. This happens (or the last 2 by 2 matrix bektw. 

l . 1'hcre are eigem'ectors in om independent directions. This is typical! A.r crosses 
.r at the fi ... , eigenvector .r l. and it crosses back a1 ,he Soe<:Qfld eigenvector .r ~. 

SUppos.! A is singular (rank one). lIS column space is a line. The vector Ax 
lias to stay on that line while x cireles around. One eigenvector x is along tile line. 
Another eigenveclor appears when A Xl .. O. Zn"o is an eigcnval .... of a singu lar rnalnx 

You can men\llliy follow x and Ax for these six matrices. How many cigenvC\:tors 
and where? When does A.r go Clockwise. instead of counterclockwise with x1 

t 



• REVIEW OF THE KEY IDEAS • 

I. A x = )..r says that x ~ttpS the <.ame dirtttion when multipl;ro by A_ 

2. A x = ;... alSQ says that det (A - H ) = O. This determines n eigen,·alues. 

3. The eigenvalues of,\2 and A - ' are Al and A- ', with the same eigen ... ,e'OI"S. 

4. The sum and produCt of the A's equal the trace (sum of au ) and delerminanl. 

5. Special malrices like projections P and rotalions Q ha,-e sp.,eial eigem" llICs ! 

• WORKED EXAMPLES • 

6. 1 A Find the eigenvaluc:s and eigenvectors of A and Al and A- I and A + 4/ : 

A=[_~ -~] and A!= [ _~ -:]. 
Check lhe ,race A, +Al and lhe delcmUnanl A, A2 few A llI\d also Al. 

Solulion Tllc cigen'·aluc. of A come from dct(A - AI ) '"' 0: 

I
, -, 

delIA-H )= _ I 

This factnrs into ( J.. - I )(J.. - 3) '"' 0 so the eigenvalue. of A are J..I .. I and Al = 3. 

For the trace. the sum 2 + 2 agrees wilh I + 3. 1"he determinant 3 agrees wilh lhe 
j>flXlllCt AlA) = 3. 1l>e eigen"ectol"S rome separately by solving (A - AI) .. = 0 which 
i. A .. = u: 

I._ I: ( A - f ) .. =(_: - :][;. ] = [~] give>lheeigen"eclewx , =[: J 

1_3: (A - 3f),r =[=: = :][;] = [~] gives lhe eigenveclew"l = [_ :] 

A l llI\d A _ 1 and A + 41 keep lhe , ame dgnll·rt:'OI"s. Their eigcn"aJucs are A I . I. - ' . 
I. +4: 

I t 
has - and -

I 3 
A+41 has I +4 = 5and3+4=7 

Tllc trace of Al is 5+5= I + 9 = 10. T1tedelcmUnanl is 25 - 16 = 9. 

Notes for later sections: A hii-' orrlwg(}fl(l/ eig<'r1w'crors (Sectioo 6.4 on symmetric 
matrices). A can be diugQnoliu d (Section 6.2 ). A is similar 1<:> any 2 by 2 matrix wilh 
eigenvalues I and 3 (Sect;on 6.6). II is a p05ili>-e ,I~finir~ matrix (Section 6_5) siroce 
A = I\T and the )"s are 1'OO;li,-e. 

, 
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6,1 8 For which real numbers c does this matrix A have (a ) twO real eigen,'alues 
and eigenve<;tors (b) a repeated eigenvalue with onl)' one eigenvector {el twO complex 
eigenvalues and cigenve<;tors? 

A ~ [ , 
- I -" - '] 4+ c~ . 

What is the detenninanl of AT A by the prodUl.:t rule? What is its trace? How do roo 
know that AT A doesn't have a negative eigenva lue? 

Solution TIle (\etenninant of A is 4 - c. TIle detenninant of A - ", J IS 

[' -, det - I 
-, ] , 

2 -", = " " - 4,,,+(4- c) =0. 

'The fonnula for the roots of a quadratic is 

,", 4 ·~±cJ~~I6~~I6~+~"'~ = ::: 2 =2±./C. 

Check !be t~ (i t is 4) and the detenninant (2 + JC)(2 - JC) = 4 - c, TIle eigenval. 
ues are real and different for c :> O. There are two independent eigenl~Clors (./C. 1) 

and (-../C. I). BoIh lOOtS become '" = 2 for c = O. and there is only one indepen
dent eigen"ector to . I), Both eigenvalues are compl« for c < 0 and the eigenvectors 
(.fi. 1) and (-../C. I) bel:ome complex. 

TIle detenninant of AT A is det (A T) det (A) = (4 _ c)2. The trace of AT A is 
5+4+rl. If one eigenvalue is negative. lhe other must be positive to prod~ this trace 

"'I + "'l = 9 + C. But then negative times posi til'e .... ,ould give a negative determinant. 
In fact every AT A has real l}{)llnegatil'e eigenvalues (Sation 6.5). 

Problem Set 6.1 

1 'The example at the start of the chapter has 

[
.8 

A ::: .2 
.J] 
. 7 

A ~ "" [.10 .45] 
. 30 .55 

A~ ~ [.6 
•• 

.6] .. . 
TIle matrix Al is hal fway between A and AOQ . Explain why A2 = !(A + AOQ) 
from the eigenvalues and eigenvectors of these three matrices. 

(a) Show from A how a IT1W exchange can produce different eigenvalues. 

(b) Why is a zero eigenvalue "o1 c!langed by the steps of eliminatioo? 

2 Find the eigenvalues and the eigen'~cton of tl'lese tWO matrices: 

A=[~ ~] and A+l .. [; :] . 
A + I has the __ eigenve<;tors as A. Its eigenvalues are _ _ hy I. 



3 Compute the ~ige"" allK's and eigenvectors o f A and A- t : 

__ • , -t = [-3/4 
an" " 1/ 2 I /~] . 

A- I ttU the __ eigenvectors as A . When A has ~igenva lueli At and A2. ilS 
inverse has eigenVll.lues __ 0 

4 Compute the e igenvalues and eigen"ectors of A and ,, 2: 

A = [-~ ~] and A2= [_~ -!]. 
u A. When A has eigenvalues At and ).1. ,,2 lias eige n-

5 Find the eigenvalues of A and B and A + B: 

, 

,rnJ B - [' - 0 :] [' '] and ,,+8= I 2 . 

Eigenvalue5 of A + B (are equal (o)(an: IlOl equal 10) ~igenvalues o f A plus eigen
vallK's of B. 

Find W: eigenvalues of A and B and AB and BA: 

A=[: ~] and B = [~ :] and A8=[: ~] and BA=[~ :l 
Eigenvalues of A B (an: equal to)(an: IlOl equal 10) eige nVll.1 1IC.S of A times eigen_ 

""IlK'S of 8 . Eig~nvallK's of A B (are equalto)(are IlOl equal to) eigen"111leS o f BA. 

7 Elimination produces A : LV. The eigenvalues o f V are on ilS diagonal: the~ 
are the . Thc eigenvalues of L are on its diagonal; they are all 
The eigenvalues of A are I>Ot the limo '" __ 0 

8 (a) If ~ou know x is an eigenvector. the way 10 find ). is 10 

(b) If you know ). is an eigem·alue. the way to find x is to __ 0 

9 What do you do to Ax = l..x. in order to pro\"C (a), (b), and (e)? 

(a) ).1 is an eigen'"llIlK' of 04 1• as in Problem 4. 

(b) ). _ t is an eigen"alue of A- t . as in Problem 3. 

(e) A + I is an eigenvalue of A + I . as in Problem 2. 

10 Find the eigenvalues and cigcnveclQl$ for both of thew: MaRav matrices A and 
,0100, Explain why Atoo is close 10 ,4"": 

, ~ [ o' 0'] 
.4 .8 

and ,4.,.,=[1/3 1/3] 
2/ 3 2/ 3 . 

i 
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11 Here is a $ITaJ1ge fact ahoul 2 by 2 matrices with eigenvalues .1.1 '" .1. 1: The 
columns of 1\ -.1.1 f are multiples of !he eigenvector Xl. Any idea why this should 
1<, 

12 Find the eigenvalues and eigen'i«lO<S for tile projection matrices P and p too: 

P .. .4 .8 [." 
o 0 

I f tWO eigen\~on sha~ lhe: &3.~ .I.. so do all their linear combinations. Find 
an eigen'i«tOl" of P with no zero components. 

11 From the IInit '"«lor II '" U.~. i. il construct the: !link one: projeclion matrix 
p ", ""T. 

(al Show that PII '" II . Then ,. is an eigen'i«tor with;" '" 1. 

(b) If p is perpendicular to " show that pp '" O. Then .I. .. O. 

(e) FlDd three: independent eigen'i«ton of P all with eigenvalue .I. :0 o. 

14 SoI~ del ( Q - .1.1) ., 0 by the: quadratic formula to Il:ach .I. '" cos9 ::I: ; sin 9: 

[~' -" "'] Q '" s inO cos 8 rotates the X)" plane by the angle 8. 

Find the eigen'"«ton of Q by solving (Q - A/)X"' O. Use;2 ",-1. 

15 Every permutation matrix lea~s x '" (1. I. .... 1) unchangai. Then A ., 1. Find 
two ""'"' A·S for these pemlllt8tions: 

[
0 , 0] 

P ", OOI 
, 0 0 

and P = [~ ~ ~] . 
J 0 0 

16 F'n:I>"c tllat the determinant of A equals the: product At A1 ... A.. Start with the 
polynomial det (A - J,.f ) se~led into i~ n {""too. llIen set A = 

deI(A - .1.1)", (J .. t - A)(A I - A)··· (A. - A) so det A = __ . 

17 The sum of the diagonal enws (the frau ) equals the sum of the eigenvalues: 

A=[: !] has det(A - H) =AI-(a+J)A+aJ - IK = O. 

If A has .l.t "" 3 and .1. 2 '" 4 then deI(A -).. /) ... __ . The quadratic formula 
gi\"C'S the ei~n.....:Jues A ., (a+J + ./)/ 2 and A _ _. Their sum i. _ .. 

nalenal 



18 If A has '\, = 4 and '\2 = 5 then def(A - ,\/ ) = (,\ - 4)( ,\ - 5) =,\2 - 9'\ + 20. 
Find three matrices thaI ha\'C trace a + d "'" 9 and delenninanl 20 and ,\ = 4. 5. 

19 A 3 by 3 malrix B is known fO have eigerwalues O. !. 2. This infonnalion is 
enough fO find three: of IMse: 

(a) !he rank of B 

(b) the cietenninant of BT B 

(c) fhe eigenvalues of BT 8 

(d) the eigenvalues of ( B + 1)- •. 

20 Choose the second row of A = [~ ~] so fhal A has eigenvalues 4 and 7. 

21 Choose Q . b. c. so thm det(A -'\1) = 9'\ - ,\3. Then the eigenvalues an: - 3. O. 3: 

A~[~ ~ ~]. 
" b c 

22 Tht tigtm'nlutl of A t qual /ht eigt nl'Qlllts of AT, This is b«ause del(A-'\ / ) 
equals det (A T - ,\I ). That is true b«ause __ . Show by an eJlO.ample thaI the 
eigerwectors of A and AT an: not the same, 

23 COOSlruct any 3 by 3 Markov matrix M : posi tive entries down each column add 
to I. If t = (I, 1.1) verify that MTe = e, By Problem 22. ,\ = I is also an 
eigenvalue of M . Challenge: A 3 by 3 singular Markov matrix with tmee i has 
eigenvalues ,\ = _. 

24 Find three: 2 by 2 matrices that ha\'e '\ t = '\2 = 0, The trace is zero and the 
determinant is zero. The matrix A might nOl be 0 but check that A2 = 0, 

2S This matrix is singuillf with rank one, Find three,, 's and three eigenvectors: 

A= [n p 
I 2]=U ~ ~l 

26 Suppose A and 8 ha\'e the same eigenvalues " t . . , .. ,\~ with the same inde· 
pendent eigen\'eo:'lOrs • •. , , .. • ~ . Then A = B. Rt ason: Any \=tor . is a 
combination Ct . t +, .. + c • ..,.' What is /I ..,? What is 8x? 

27 The blQck B has eigenvalues I. 2 and C has eigenvalues 3, 4 and D lias eigen· 
values 5. 7. Find the eigenvalues of the 4 by 4 malrix A: 

[ 

0 I 

C] = - 2 3 
D 0 0 

o 0 
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28 Find !he !'link and the foor ~i~nval..es of 

A - [: - , , i] [
' 0 , 0] o I 0 I 

andC :
IOIO

' 

o I 0 I 

29 Subtract I from the pn:vioo~ A. Find !he ).'s and then the detcrminanr 

[

0 , , '] I 0 I I 
8 =A- I = IIOI ' 

I I I 0 

When A (all ones) is 5 by S, the cigcnva luo:s of A and 8 = A - I an: 

"'" 
30 (Review) Find the e igenvalue, of A. 8. and C: 

[' , '] A = 0 4 S 006 and8 =[~!~] [
' 2 ' ] and C=222. 
, 2 2 

31 When a + b = c +d show that ( I. I) is an eigenve<:!or and find both e igen,·. I..es 
of 

A = [: :1 
12 wtw.n P cltchanges rows I and 2 and columns I and 2. (hoe eigenvalues don ' t 

change . Find eigenvectors of A and PAP for ). = II : 

, '] , , . 
, 4 [' , '] A .. 3 6 3 

, 8 , 

33 Suppose A has ei~nvalues O. 3. S with independent cigcnvlXton II . F . .. . 

(_) Oi"" a basis for the nu 1JsP"'C' and a basis for the column sP"'C'. 

(b) Find a pank ular solution to Ax = ~ + ... Find all solution,. 

(e) Show t\\at A:r _ II has no solutioo. (If it did !ben _ _ would be in the 

column space.) 

34 b /Mrt a rtul 2 by 2 moiFit: (other than I ) ... ilir AJ = 11 Its eigenval..es must 
~tisfy ).l _ I . They can be c2xi/l and c-2~i /l. What t""", and deteml inant 
woold Ihis give? ConStruct A. 

, 



3S Find the eigcnvalues o f thi. pcmlUtation matrix P. Which VeclOrs an: noI c!lang<:(! 
by tile permutation? They an. eigem"«tors for ). = I. Can you find ho"O mon: 
eigenvectors? 

36 Then: an: si~ 3 by 3 pemll!!ation matrices P. Wllat numbers can be the tkre. · 
miNln/s of P? What numbers can be pi.'Orl! What numbers can be the lmet!' of 
P? What fo"r ""mbers can be eigenvalues of P ? 

DIAGQNALIZING A MATRIX. 6.2 

When x is an eigcm'ector. multiplicat ion by A is juSt multipl ication by a s ingle number. 
Ax = I.x. All the difficulties o f matrices are s .. 'ept away. Instcad of In interconnected 
system. we can follow the eigenvectors sepal1llcly. It is like having a diagonal malr ix. 
with 00 off-diagonal interconneetions. The 1000h pOWer of a diagonal rruurix is easy. 

The point of this section is "ery direct. The ",anix A Ilims ''''0 a diDgolIQ/ 
IIIIWiz A ",II, ,, "'" us, Ille eigt"O'tCfon properly . This is the matri~ fonn of OUr key 
idea. We sllIn rigltl off witll that on<: esse ntial computatioo. 

6D Diagonali zalion Suppose tt.. " by n matrix A has n li""arly indepe ndent c ige n. 
"eclors Xt. , . .1' . , Put them into tile column! of an , igMl'u lor mol.u S. Then 
s-t tiS is It.. ,igen>'O/ .. , malrix II 

[" ... ,.l· S-' AS=/\= ~" ( 0) 

The matri ~ A is "diagOtlal i~." We use capital lambda for the eigenvalue matri x. 
because of the small,, 's (the eigenval ues) o n ilS diagonal. 

proof Multiply tI times ilS cigcn,·cctors. which an. the columns of S. The tim col · 
umn of ti S is Ax ,. llIal is "' x , . Each column of S is multiplied by its eigenvalue: 

, 
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~ trick is to split thi s matrix AS into S ti"""s A: 

Keep those mato«s in ~ right order! ~n AI multiplies the first column X I. as shown. 
~ diagonalization is complete. and we can write AS "" SA in two good ways: 

• 
S-IAS ;: ~. A = SAS- I. (2) 

"The matrix S has an i",..,r.;e. because its columns (~ eigenv«tors of A) ""re assumed 
to be: li .... arly independent. Without ~ ind~~ndmt ~;g~m"eCrors . ... ~ cu,,', diugorralizt. 

"The matrices A and A have IIIe same eigcnval~s 1 1 ••••• 1~. "The eigew.-«tors 
&It' diffen:nt. ~ job of the original eigenvectors was to diagonalil.t A-~ eigen
vectors of A went into S. "The new eigenvectors. fIX the diagonal matrix A. are just the 
columns of f. By diagonalizing A and reaching A. we can solve differential equations 
IX diffen:nce equations or even Ax '" b. 

Example 1 "The projection matrix P = [:j :!l has 1 '" I and O. Put ~ eigenvectors 
(l. I ) and (- I. I ) into S. "Then S- I P S ist lle eigenvalue matrix A: 

[ ' '] [' .5] [' -'] =[' 0] -.5 .5 .5.5 I I 0 0 

5 A 

"The original projection SIItisfied p I = P. "The new projection satisfies Al '" A. "The 
column space has swung around from (1.1) to (1.0). "The nullspace has swung around 
from (- I . I ) to (0. I ). Diagonalization lines up the eigenvectors with the xy u es. 

Here &It' four small n:marits about diagonaliution. IJef~ ~ applications. 

RemlIrk 1 Suppose the numbers 11 •. ... 1. an: all different. "Then il is automatic that 
the eigenvectors X I •••. . x . are independent. See 6E I.x:low. 11le..,f~ OilY tIUJ,ru ,hat 
IuJ.J no ,..~artd eigmvallUJ co" be diaganali:ed. 

RemlIrk 1 'The eigenvector malriX S is r>()I unique . We .... " multiply eigr..I'.u rors by 
,.IIY IIOIIU ro COlIsIII/lh. Suppose we multiply the columns of S by 5 and - I. Divide 
the rows of S- I by 5 and - I to find the new inver.;e: 

S;!. PSn<W =[:~ _:~][ :~ :~][~ _ :] = [~ ~] .. sameA . 

The extreme case is A = I. when every vector is an eigenvector. Any inven ible matrix 
S can be the eigenvector matrix. lben S- I IS = I (which is A). 

RemlIrk 1 To diagonal ize A we mus, use an cigenvCC\or m.atri~ . From S- IAS = A 
we know tlla\ AS ." SA. Suppose the first column of S is x . "Then the first columns 
of AS .nd SA &It' Ax and 11X. For those to be equal. x muM be an eigen,-«cIX. 

nted maklnal 



~ cigenveclors in S corne in the same: order as the eigenvalues in 1\ . To reverse 
the order in S and 1\. PUI (- I. I) befo,," (1. 1): 

[
- .5 , .'] [ , .5 .S '] [-I , , :] = [~ ~] = A in 1he new onkr O,1. 

Remar~ " (repealed warning for ",pealed eigenvalues) So"", matrice~ lIa"" 100 few 
eige",...,mrs. Those ""'triers d " IlOl ,/j"g(m(di::.,blr. Hen: are tWO cxan1ple~: 

l1>eir eigem'llIIlCS happen 10 be 0 and O. NOIhing i ~ special about). : O- il ;s the 
repelilion o f), 1hal COUnts. All cigeove\:tOl'S of the ~ matrix are mulliplcs of ( I . OJ! 

1bere is no )tt()nd ~igenve<:tor, so the unusual olatrix A clnnol be diagOflalized. This 
matrix is the beS! aample to lest any statemc:nt about eigenvectors. [n many 1~-ralsc 

'I1IeS!;ons. Ihis malfix leads 10 fidu. 
M.cmcmber that there is no co nr.e<:1io n bctwecn invenibility and diagonaJizabilily: 

I m'f'n ibifu, is cooccmcd wilh the " igem 'Muli (zero or 001 ). 

",::OC h eigenvalue has at leU! ""'" cigeo\'e<:tQr! If (A - H lx = 0 lead!; you 10 x = O. then 
). is ""f an cigcn,,.,ue. Look for a miSlake in solving det(A - 11) = 0, T,", dg~n" ""'lon 

ror n different l 's MI'I' I ndl'pend~n t and A Is diagonallu blt . 

6 E (Independent Z (n>m differenl 1 ) Eo~nW<;IOI'!i Z I ' ' Z I tlwU ~spond 10 dis
lincl fall different) eigen,,.,ues are linearl) In<icpenden1. An n by n maIn. Ihal has n 
different ci~cn'-alucs (no "'I"'ated 1 '9 mu,' be diagonalizable, 

Proof SuPfJ(>'ie C{ ;t{ + "1;[ ~ = O. Multiply by A to find Clll ZI + "112;[2 = 0, 
Multipl y by 12 10 find Cl 1 2Z I + "112;[ . = O. Now SUbll'llCl one from tN: oche~ 

Since the l's are diffe",nl and "' l '" O. we are forced to the conclusion Ihal £'1 _ O. 
Similarly C2 = O. No other combination gives £'1 "' 1 +l'.! Zl '" O. so lhe t igenve(;tlm "' l 
and Zl must be independen1. 

, 
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This proof eXIends direclly 10 j eigenve<:IOfS. Suppose C[x i + ... + ( j x J = O. 
Muhiply by A. muhiply by Aj . and subtract. This remo"es xJ' Now muhiply by A 
and by ", -I and subU1lCt. This removes X j -I. Eventuall)' only XI is lefl: 

(3) 

Similarly every C; = O. When the ).·s are all different. the eigenvec:IOTS are independent. 
Wi!b rr different eigenvalues. the full set of eigenvec:tors goes into the columns 

of the eigenvec:tor matrix S. Then A is diagonaHud. 

Example 2 The Markov matrix A :: [:~:i) in the last ~tion had ).1 = 1 and 
Al = .5. Here is A = SAS- 1 with those eigenvalues in A: 

[.8 .3] = [.6 '] [' 0] [ , '] = 5A5-' . . 2.7 .4 - I 0.5 .4 -.6 

The eigenvec:lors (.6 .. 4) and (1. -I) an: in the columns of S. 'They are also the eigen· 
\"~CIOrs of Al. because Alx :: AJ..:c:: Alx . Then Al bas tbe same S. and Ihe eirerr· 
WI/"e malrix 0/ A 2 is 11. 2: 

JUSt ke<:p going. and you see wby the bigb powers A.~ approacb a "steady stale" : 

A'=5A'5-'=[.' ' ][" 0.][' '] . .4 - I 0 (.5) .4 -.6 

As Ii. gelS lllfJ!er. (.5)* gets smaller. In the limit it disappelll"$ completely. That limit is 

A~=[.6 '][' 0][' ']=[.6.6] . . 4 -I 0 0 .4 -.6 .4 .4 

The limit has the eigenvec:tOl" X l in both columns. We saw th is A"" on the very first 
page of the cbapter. Now we see it more qu ickly from powers like A 100 :: SA looS-' . 

EigenvaluH of AB and 11.+ B 

The firsl guess about the eigenvalues of A B is not tnle . An eigenvalue A of A limeS 
an eigenva lue /3 of B usually does oot give an eigenvalue of AB. II is very tempting 
to think it should. Here is a false proof: 

ABx = A/3x = /3 Ax = /3 i..x . (4) 



It K<:ms that fJ t ime~ '- is an eigenvalue. When ~ is an eigefl"ttlor for A and B. this 
proof is corre<:1. Th~ Ift;l IQU Is 10 txp«1 111m A «ltd B "ulolfttJ/iC"U,litarc Ihe lmII~ 
t igelt>'tc/Qr ~ . Uliually they doo·1. Eigcm"eCI{)r$ of A are no! ll<'nc:raJly eigcn'"eClOn of B. 
A and B Can have all eigenvalu~s 1 = 0 and fj = 0 while I is an ~igenvaluc of A B: 

A=[~ ~] and B=[; ~l lhen AB = [~ ~] and A+B=[; ~l 
For the same reason. the eigen''3lucs of A + B are generally no! '-+ fJ. Here ,-+fj = 0 
while A + B has eigenvalues I and - I, (AI leasl lhey add 10 zero.) 

'The false proof SUgg<'lits whal is lrue. Suppose ~ reall y i~ an cill<'nVttlor for both 
A and B. 11len we do have A B~ = 'AfJ~ . Sometimes all n eigenvccI{)r$ are shared. and 
we mn mulliply e igenvalues. 11le leSI AB = BA for shared cigenvttl{)r$ is importanl 
in quantllm mechanicS _ lime 001 10 mcnlion this applicalion of linear algebra' 

of Com",uting "'otriu s 5/1",., elgemwlon Suppose A and B can be diagonaJi/.ed 
'They >hare fhe same eigen>'tttor matri, S if and (01) ,F AB = BA 

Heismberg's uncertainty principle In quamum mechan~, the position rnatri~ P 
and the """"""ntum rn'01ri~ Q do no! commute. In fact QP - PQ _ I (these ano infini'e 
matrices). 'Then we cannot havc /' ~ '" 0 af the same time 1<5 Qll: = 0 (uniess ~ = 0). If 
we 1< ....... the position e~actly. we cot>ld not also know lhe momemum CJlactly. Problem 
32 deri,~s Heisenberg's uncertainly principle from lhe Schwan inequalily. 

Fibonacci Numbers 

We pres.cm a famous CJlample, " 'here eigenvalues tell how fast the Fibonaocci numbers 
grow, li>'try new l'ibolllJ«i nuntkr Is the Slint of Iht two previous F',: 

'These numbers tum up in a famastic vai'Xly of applications. Plants and trees grow 
in a spiral panem. and a pear lree hn 8 growlhs for eye')' 3 lums. For a willow 
those numbers can be 13 and 5. "The champion is a sunHower of Daniel O·Conneli. 
which had 233 sccili; in 144 loops. l'IIQse are the Fibonacd numbers Fil and Fi l Our 
problem is more basic. 

Problem: Find the FiooootXi number Ft OG 'The s low way is 10 apply the rule 
FI+2 _ F4+1 + F. one step at a time. By adding F~ _ 8 to F7 _ 13 we reach 
fl = 21. Eventllally " 'e come to Ftoo. l inear algcbra gives a beUeT "'3'1. 

'The key is to begin with a matrix equalion 11.1 +1 = A" I . Tliat i, a one-Slep rule 
for vectors. while Fibonacd gave a two-step rule for scalars. we match them by pulling 
twO Fibonacci numbers into a ,'tttor. 

, 
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Enry step multiplies by A = [ I n After 100 steps we reach u 100 = A loouo: 
(S) 

[ 
Fm, 1 

" 100 = FIOO . 

Thi. problem is just right for eigenvalues. Subtract A from the diagonal of A: 

A_A1=[I~A _~] lead. 10 
, 

det(A - AI) = A" - A-I. 

The equation A 2 -A - I = 0 is solved by the quadratic fonnula (-b± Jb2 - 4ac )/2a: 

1 + J5 
1.1 = "" 1.618 

2 

1- J5 
A2 = 2 '" - .618. 

These eigenvalues AI and A2 lead to eigenvectors x I and X 2. This completes step I: 

[I ~', -:.l [+ m 
[I~" -;'][+[~l 

when X I=[~I J 

when X2=[A/]. 

Step 2 finds tile combination of those eigenvectors that gives Uo = (1.0): 

(6) 

Step 3 multiplies Uo by AIOO to find u iOO. The eigenvectors XI and X l stay separate! 
They are multiplied by (I..d loo and 0"2)100: 

(AdIOOXI - {A2)IOOX2 
UlOO = (7) 

We wam FIOO = second component of " 100. The second componems of Xl and X 2 are 
I. Substitute the numbers AI and A2 into equation (7). to find AI - A2 =../S and FlOo: 

1 [(I+.,(j)'OO (1_.,(j)'OOj_ ~ F100= r; - _3.54·10. 
..,r5 2 2 

(8) 

Is this a whole number? Yes. The fl1lctions and squan: roots must disappear, because 
Fibonacci's rule FH2 = FHI + Fk stays with integers. The second tenn in (8) is less 
than !, so it must move the first tenn to the nearest whole number: 
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hh Fibonacci number nearest integer to _1 (1+v'S)'. 
Jl 2 

19) 

The ratio of F6 to F3 is 8/5 = 1.6. The ratio F IOI/ F ux> must be ~ery close to (I + 
v'S)/2. The Greeks called this number the "golden //Jean" . For some reason a rect
angle with sides 1.618 and I look.s especially graceful. 

Matrix Powers At 

Fibonacci's example is a typical difference equation Ul+l = Au*. Each sup multiplies 
by A, The solution is 101* = A*uo, We want to make clear how diagonalizing the matrix 
gives a quick. way to compute A*. 

The eigen~ector matrix 5 produces A = SA5-1. This is a factorization of the 
malrix. like A = LV or A = QR. The new factorization is perfectly suited to com
puting powers. because el'l'ry time S-I mUltiplies S "'e get I : 

SAS- 1SAS- 1 = SA2S- 1 

(S AS- t ) •. . (S AS- 1) = SA * 5- 1. 

The eigenvector matrix for A* is still S. and the eigenvalue matrix is A*. We knew 
that. The eigenvectors don't change_ and the eigenvalues are taken to the hh power, 
When A is diagonalized, Atuo is easy. Here are steps 1.2,3 (taken for Fibonacci): 

1. Find the eigenvalues of A and look for n independent eigenvectors. 

2_ Write uo as a combination q XI + ... + C~X . of the eigenvectors. 

3. Multiply each eigenve<::tor Xi by p.;)*. Then 

Ut = Atuo = q(AI)tXt + ... +C~(A.)tX~. (10) 

In matrix language At is (SAS- I)t which is S times At times 5-1. In vector lan
guage, the eigenvectors in S lead to Ihe c's: 

This says that 1010 = St . 

The coefficieills in Step 2 are t = S-I UO. Then Step 3 multiplies by At. The combi
nation Ut = Le;().;)! x ; in (10) is the product of S and At and c : 

This result is exactly Ut = cl().llx l + ... +cn{)..lxn. It solves 101 *+1 = AUk. 



hample 3 Compute Al = SAIS- t when S and A and s - t cootain whole numbers: 

A is triangular. witll I and 2 00 (he diagonal. Al is alSQ lriangula •. willi I and 2' on 
the diagooal. l1Iose numbers stay separate in Ai . TIley are combined in AI: 

Wilh A = I .. ·t'gtl A. Wilh k =0 .. · .. g<"l l. Wilh .t = - ] ..... g .. 1 A-I. 

Note 11K: zeroth power of evel)' nonsingular malrix is AO = I . 11K: prudoct S " OS- I 
be«lmes SI S- l wlli,ll is I. E"ery J, to the le/Olll power is I. BUI the rule breaks 
down when J, = O. 11K:n (j! is 001 delennined. We don ' t know AO when A i~ singular. 

Nondiagonalizable Matri(es (Optional) 

Suppose ), is an eigenvalue of A. We discover (run fact in t..-o "'3),s: 

t. Eigenvectors (gOOJ1lCtric ) TIlere are nonzcro SOlutions to Ax = J.z . 

2. Ei genvalues (algebraic) 11K: detenninant of 11-),1 is 7.ero. 

11K: number J, may be a simple eigenvalue 01 a multiple eigen"llue. and ""t' wanl 10 
know its multiplieily. Most eigenvalues han' multiplicity M .. I (s imple eigen,·alues). 
"Then lhere is a single line o f eigen''t'CtOfS. and det(A - ),1) does not have a double 
factor. For e~ceptiooal matri~s. an eigenvalue can be "JH'attd. 11K:n there are 1"-0 
different ways (0 count its multiplicity: 

1. (Geometric Multiplicity .. OM) Count the independent eigen,·teton for), . This 
is the dimcntion o f the nullspace of A - AI. 

2. (Algc:1xalc Multiplicity _ AM) COOntlhe repetitions of ), among the eigen'·aloes. 
Look at \he ~ motoof det (A - ),1) _ 0 . 

TIle following matrix A is the standard example o f t"",ble . Its eig<onvalue ), = 0 
is r-epeated. It is a double eigen"alue (AM = 2) with only one {'igenvector (GM = I). 
TIle geometric multiplicity can be brlow the algebraic multiplicity-it is ne, ... , larger: 

"There "should"' be two eigenvectors. because ),,1 = 0 has • double mot. 11K: double 
factor ),1 makes AM = 2. But there is only one eigenv«tor z = ( I. 0). Tlru shortagt 
of tigrm'u/OI'S "'httl GM <: AM "'t "ns that A is nlll dhlgo""lizablr 

, 
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T1le vector called "''''pea,",'' in lhe T~""hing Code ~Ig"al gi.'CS the algebraic mul· 
lipl icily AM for each eigenvalue. When repeats", [I I. .. 11 "'1: kDOW thai the " 
eigen.-alues are all different. A is c~nain l y diagonalizable in that case. "The sum of all 
components in ""'pea,"," is always II. because the 11th degree C<:!uation det(A - AI) '" 0 
always has " roo\S (cou nting I"l:petitions). 

"The diagonal rnaui~ D in the Teaching Code elgn·t gives the geometric multi
pl icity GM for each eigenval~. This counts the independent eigenvectors. 1be tOlaI 
number of independent eigen,"e(:tOl"$ might be leu than n. T1le n by n matrix" is 
diagonaJi zab1e if and only if this total number is n. 

We have to empilalli«: "The", is nothing spetial about ,1, = O. It makes for easy 
computations. bot these three matrices alw ha'1: the same shortage of eigen'"e(:tors. 
llIeir repeated eigenvalue is ,1, '" o5. Traces are 10, dctenn;nants are 205: 

1llose all have dct (A - H) = (,1, - 05)2 . llIe algebraic multiplicity is AM = 2. But 
A -51 has rank r '" I. llle geometric multiplicity is GM '" I. lllere is ooly One 
eigenvector for ,1, = 5. and these matrices arc not diag<>naliuble. 

• REVIEW OF THE KEY IDEAS • 

1. If A has " independent eigen"ectors (they go in lo the columns of SI. then S- l AS 
is diagonal: S- I AS == A and ,, == S AS- I. 

2. llIe powers of A al"l: At = SAkS - I. ll>e eigell\"l:Ctors in S are urn:hanged. 

3. lbe eigenvalues of ,,1 are (~I )t ....• (~. )t . The eigenvalues of A _ I arc I /~; . 

4. llIe solulion 10 II '+-1 = All. staning from 11(1 is II I = "' 110 = SA1S- III (I: 

II l= .. d~dk-'" I+···+c.o •• l -'". pruvided 1I0=Cl-'" I+···+C.-'"., 

5. A is diagonaliuble if every eigenvalue has enough eigen~ectors (GM=AM). 

• WORKED EXAMPLES • 

&.2 A The Lucas numbers are like the Fibonacci numbers except lhey stan with 
L l = I and L 2 '"' 3. Fol lowing the rule LtH >0; Ll-t- l + LI. the.-.exl Lucas numbers 

are 4.7.11. Ig. Show !ha! !he Lucas number Lloo is ,1,:00 + ~~oo. 

C righted malenal 
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Solul ion " l +1 = [ : ~1" 1 ;, the same llli for Fibonacti. becau>e Lhl = 1.4+t + 1,1 

is the same rule (with diffcl!:nt staning values). We can copy equation (5 ): 

The eigenvalues and eigenvcctors of A = [ : : 1 still come from .1.1 = .I. + J: 

Now solve <'l ol l + <'1Xl = II I = (3. J). The coefficients al!: Ct ",.I.I and c:z = .I.1 ! 
Check, 

" ] [ " ] = [ 'i +Ai] = [ ,~ ,,, ' ] = [ '] =" 
1 .1.2 At +.I.l traCe of A 

1lI<' solution 1/ 100 = A9\ll/ t te ll s uS lhe: Lucas numbers (L tOt. Ll(0). 1lI<' sccood com· 
ponents of Xt and Xl ~ I. so the second component of " 100 is 

, ,9\I,9\I,t00,t00 
<..tOO=<'tAI +0.0: "'AI +.01 

Every LI = At +.I.~ i. a whole number (why)? Since .1.1 is very small . Lt must be 

close 10 .I.~. Lucas Starts fa!iter than Fibonacc i. and e nds up larger by a factor near ~. 

6 .2 8 Find all eigenvC(;tO< matrices S that diagonali ze A (rank I) 10 gi,·c S-t AS .. 
Ao 

[' '] [']1' A= : : = : 
" 

What is A" ? Which matrices 8 commUtC with A (so that AR '" 8A)? 

Solution Since A has rank I. its nu ll. pooce is a twlHlimcnsional plane. Any vector 
with X + )" + ~ = 0 (components lidding to zem) solves Ax = O. So.l. = 0 is an 
eigenvalue with multipl icity 2. 1lI<'1!: II!: two independent eigenvccton (GM = 2). 
1lI<' other eigenvalue must be .I. = ) because the tntCC of A i5 I + I + I =). Check 
these .I. ·s: 

,-, 
dct ( A - H) _ ,- , , , 

1-' 

, , 
I 



Then A 1(3 - ;') : 0 and the eig~n, .. lue' are AI = 0, A1 : 0, AJ : 3. The eig~n~eclOrs 
for A : 3 are mul!ipks of XJ = ( I. I, I). The eigenvectors for Al : Al = 0 Ilre /Illy 
1>1'/1 ind'JNnd~m ,'«Iors in 1M plan~ -' + y + ~ = O. These are lhe columns of alL 
possible eigen''eClor matrices S; 

[
• X , 1 

S = y r c 
--'- y - X - Y c [

0 0 0 1 and S-I AS=A= 0 0 0 
o 0 3 

where c'; 0 and x 1 ,; yX, The powers A~ rome: quickly by mUlliplicalion: 

To lind malricc§ 8 Ihal commule wilh A, look al A8 and BA. The l's inA prod~ 
lhe column sums C .. C~, CJ and the row sums Rj, Rl, RJ of B: 

[ C, 
c, 

C, 1 BA "" row sums _ [ 
H, H, 

H, 1 AB = column sums = CI C, C, R, H, H, 
C, C, C, H, H, H, , 

If AB = BA , /III sir ro/umn /lnd row . UfIU of B mu" ~ 1M $0_, One possible B i 
is A itself, si nce AA '" AA, B is any linear combination of permulalioo malricn! 

This is II S-dime:nsiQnal spact: (Problem 3,S,39) of matrices !hal commute with 
A. All B's share the eigeIWCClor ( I. l. I ), Their ~r eigenveclors an. in !he plane 
-' + y + Z = O. Three degrees o f freedom in the A'I and two in lhe unit eigenvectors, 

Problem Set 6.2 

Questions 1-3 liN lloout the tl~n" III LM' and t lgennctor ma lr icts. 

1 Factor these twO matrices inlo A '" SAS- I: 

A =[~ ;] .00 

3 If A has AI =2 wilh dgen'=lor XI = [~J and Al = 5 with -'2 = (l l, use 
SAS- I 10 find A. No OIher malri~ has the same A'S and x's_ 

4 Suppose A '" SAS- I, What is the d ge nvalue matri~ for A + 2f? Whal is !he 
eigenvector matri~? Check thai A +2 1 "'( )( )( ) - 1, 
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5 True or false: If the columns of 5 (e igenvectors of A ) are linearly independent. 
then 

(a) A is invenible 

(c) 5 is invenible 

(b) A is diagonalizable 

(d) 5 is diagonalizable. 

6 If the eigenvectors of A are the columns of I. then A is a matri~. If the 
eigenvector matrix 5 is triangular. then 5- t is triangular. Prove that A is also 
triangular. 

7 Describe all matrices 5 that diagonalize this matrix A: 

A:=[~ ~l 
Then describe all matrices that diagonalize A - I. 

8 Wri te down the most genel1l1 matm thaI has eigenvectors [11 and [-11. 
Questions 9-14 are about Fibonacd and Glbonaccl numbers. 

9 For the Fibonacci matrix A := [ I A], compute A2 and Al and A4. Then use the 
text and a calculator to find FXj. 

10 Suppose each number GH2 is the o"erage of the two previous numbers Gt+! 
and Gt. Then G1+2 := HG1+1 + Gt): 

GHl "" iGHI + ! Gt 

GHI =GHt " 

(a) Find the eigenvalues and eigenvectors of A. 

(b) Find the limit as" ...... 00 of the matrices A" = SI\"S-I. 

(c) If Go = 0 and GI = I show that the Gibonacci numbers approach j. 

11 Diagonalize the Fibonacci matrix by completing s- t: 

Do the multiplication SAt s- t [A) to find its second componenl. This is tbe kth 

Fibonacci number Ft = p.t - A~)/(At - A2). 

12 The numbers At and A~ satisfy the Fibonacci rule FH2 = FH t + Ft : 

~d 

Prove this by using the original equation for the A '5. Then any combination of 
At and A~ satisfies the rule. The combination Ft = (At - An/(AI - A2 ) gives 
the rigtll stan Fa ::: 0 and Fl = I. 
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1] Lucas slarted with Lo = 2 and Ll = l. The rule Lt+2 = Lt+1 + Lt is the same. 
so Fibonacci's matrix A is Ihe same. Add its eigcnvectors XI +X2: 

After iO steps the second comfXlM:n! of AIO(xl +X2) is /..lo+),.~o. Compute that 
Lucas number L 10 by Lt+2 = LHI + Lt. and COmpUle approximately by ),.:0. 

14 Prove that every third Fibonaeci number in 0.1.1. 2. 3 .... 15 even. 

Questions 15-18 an- about dlagonaUzablll ty. 

15 True or false: If the eigenvalues of A are 2. 2. 5 then the matrix is certainly 

(a) invertible (b) diagonalizable (c) not diagonalizable. 

16 True or fal se: If the only eigenvectors of A are multiples of ( 1.4) then A has 

(a) no inverse (b) a repeated eigenvaluc (cl no diagonalization SAS- 1. 

17 Complete these matrices 50 thai det A = 25. Then check that)" = 5 is repeated 
the determinant of A -),.t is p, - 5)2. Find an eigenvector wilh Ax = 5x . These 
matrices will not be diagonalizable because Ihere is no second line of eigenvec-
10rs. 

18 The matrix A = [~ ! 1 is not diagonalizable bei:ause the rank of A - 31 is 
Change onc entry to make A diagonalizable. Which cntries could you change? 

Questions 19-23 are about powers of matrices. 

19 A* = SA*S- I approaches the zero matrix as k ___ 00 if and only if every /.. has 
absolute value less than . WhIch of these matnces has A* - 07 

A ~ [.6 
.4 

.4] 

.6 >e' B ~ [.6 
.I .'] .6 . 

20 (Recommended) Find A and S to diagonalize A in Problem 19. What is lhe limil 
of At as k ..... 007 What is the limit of SAtS- I? [n the columns of this limiting 
matrix you see the __ . 

21 Find A and S 10 diagonaHze 8 io Problem 19. What is 8 tO,,0 for Ihese uo? 



6.2 Di.gonalizi ng a Mat,i, 301 

22 Diagonalize A and compute 51\*5- 1 to prove this fonnula for A*: 

h~ 3' - '] 
3* + I . 

23 Diagonalize B and compute SI\*S - t to prove this formula for Bt : 

B = [~ n B' _ [3' - ° 
Queslions 24-211 are new applications of A = 5 AS-1. 

24 Suppose that A == SI\S- I. Take determinants 10 prove that del A = '""IA2'" '""w = 
product of '"" 's. This quick proof only works when A is __ . 

25 Show Ihat trace AB == tra~ BA. by adding the diagonal entries of AB and BA: 

A = [: :] 

Choose A as S and B as I\S - I. Then SAS- 1 has the same trace as I\S -1 5. 
The trace of A equals the trace of 1\ which is __ . 

26 AB - BA = I is impossible since the left side has trace = __ . BUI find an 
elimination matrix so that A = E and B == £T give 

AB - BA - [-' 0] which has trace zero. - ° , 
27 If A = 5I\S-I. diagonalize the block matrix B _ [ ~zl]. Find its eigenvalue 

and eigenvector matrices. 

28 Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigen
vector matrix 5. Show that the A's form a subspace (cA and Al + A2 have this 
same S). What is this subspace when 5 = l? What is its dimension? 

211 Suppose Al = A. On the left side A multiplies each column of A. Which of 
our four subspaces contains eigenvectors with ). = I? Which subspace contains 
eigenvectors with ). = 07 From the dimensions of those subspaces. A has a full 
set of independent eigen\'ectors and can be diagonalizcd. 

30 (Recommended) Suppose Ax = Ax. If A = 0 then x is in lhe nullspace. If), t= 0 
then x is in the column space. Those spaces have dimensions en - r ) + r = II. 

SO why doesn't every square malrill have II linearly independent eigenvectors? 



J 1 The C'igenvah>es of A are 1 and 9. tile eigenvalues of 8 are -I and 9: 

, .. 
Find a rrumi~ square 1'001 of It from R '" sJA S~I. Why is tllere 00 11:al malri~ 
square 1'001 of II? 

32 (Ufl~n~rg's Uncel1alnty Prloclple) A8 - BA ~ I can happen for infinite 
maims with It = AT and 11 = _ 8T, Then 

.r T r = .. T AII:r _ x T BAx ::; 2IA"' 118.r 1. 

E~plain thsi 11,, 1 ""I' hy using the Schwarz i"""lualily. Then the ine<Juality ~ys 

lha! IAx l/l r D limes aB.rB/nol l is at leasl !. II is impossible to gel tile position 
"11\)1" and momentum ermr both wry small. 

33 If A and B have the !-Orne J.·s with the same independent eigenv«lon. ,Mi. rae_ 
loOl.lIlions into are the same. So II = B. 

34 SupPOSe lhe same S diagonaJizes both It and B. so lhal It = 5A15- 1 and lJ = 
SA~S-I . Prove that AB = BA. 

] 5 Substitute A = 51\5- 1 inlo the ProdllC\ (/\ - ).,I)( A -1..1 1) ··· {A - J../) and 
explain why this produces the zero nl.illri1. We are substituting tile matrix It for 
the number J. in the polYlK)Illial p().) = del (A - AI). The CfJJk" II(1mill()n 
Theorem ~ys that this product is always peA) ,. zero m<JI'u, even if A is 001 
diallon~li1.~ble. 

3& Test the Cayley_ Hamilton lbcorem on F'bonocci 's matrix A = [ : : J. ~ theQ.. 
rem predicts tlLat Al - A - f = O. s illl'e the po;>lYlK)11lial det (A _ AI) i_ A 2 - A - I. 

37 If A = [; : jtllen det(A - ). / ) is 0.. - al(1.. - <I ). O!eck the Clyley-Hamiltoo 
statement that (A -" I)(A - <II) = ::.ero m<JI'u. 

38 (a) When do the eigell,"ect~ for A = 0 span tile null space N ( A)? 

(b) When do all the eigenvecton for A "",0 span the column space C(A)? 

39 Find the eigen."lllues and eigem-ectOfS and the J:th power of A. Wooed Example 
1.4 C described A u the "adjactncy mal ri~" for this 3-node graph. ~ i. j 
entl)' of A' COUntS the k-step paths from i to j-" 'm" is the 2.2 entl)' of A4 
and which 4-step paths along ooges of the l!I1Iph begin and end at node 2? 

, 



40 If A :0 [~t1 and AB '" BA. show that B '" [~ S 1 is also a diagonal matrix. 

B has the same cigen __ as A bul different eigen __ . llJese diagonal 
malriC(:s B form a ","<HlimellsionaJ "'bspace of matri~ spoct'. AB - BA = 0 
giV<'s foor t(jualio ns for lhe unknowns a . b. t. d -6nd the: nmk of the 4 by 4 
malrix. 

4 I If A is S by ~ . lhen A B - B A = zero matri~ giV<'s 25 C<juations for lhe 25 e ntries 
in 8 . How do )'00 know thaI lhe 25 by 25 malri x is singu lar (a nd there is always 
a non~ero S()lutioo Bn 

42 The powers At approach zero if all I"d < I and lhey blow up if IlfIY lAd> I. 
Peler Lu gives these striking examples in his bo<lI< Un.:ar Algebra: 

A = [~ ~] J) = [' -3 
6.'] -, 

cl<t' .... =-c 

Find the eigem-alues .. = ~q of B and C 10 show B~ '= I and C J = - / 

, 
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APPLICATIONS TO DIFfERENTIAL EQUATIONS. 6.3 

Eigenvalues and ej~n\'ectors and A = Si\S- 1 are perfect for malrix JXl"'ers At. "The~ 
are also I"'rfecl for differenlial "<IUa.ioM. This seclion is moslly linear algebn.. bul 10 

read i. you need one foct from cakulus: TIr~ deriw;lIi'"e oj ~ ;4 At». [t helps 10 know 
what ~ is. but I am oot el'en sure that is essential. "The whole point o f the section is 
.his: To COO\'er! differential equations into linear algebra. 

"The ordinary scalM t(juat ion d .. l dl = I' is w[ved by .. = r. "The "<Iuation 
du l dl = 41' is solved by .. = ~ ... ConSIan! coefficient equations have exponential 
solutions! 

d, 
- = AU has .he solutions 1' (/ ) = c~'. 
J, 

( I ) 

"The number C turns up on both sides of du l dl = AU. At I = 0 the wlut;on Ct» 
reduces to C (be<.:au:;e eI' = I). By choosing C = ufO). Iht SOllltiOIl thal sttut. JrDIrI 
UfO) all =0 is u (O)t». 

We just solved a I b~ [ problem. Linear algcbn. moves to II by n. "The unknown 
i. a ,·«tor u (now boldf~). It Slans from the initial vector 11 (0). which is given. "The 
II t(juations ront.ain a §(juare matri~ A: 

Problem 

Solve 
d, 
- = All 
d' 

staning from the vector 11 (0) at I = O. (2 ) 

This system of differential equations is linear, If .II (t) and ~ (I ) are solutions. 100 is C U(I) + 
D~(I ). We will need n constams like C and D to match the II components of 11 (0). Our 
firs! job is 10 find" "pure exponential so[utions" to the equation dil l dl = A .. . 

N()(iC<' that A is a <"".want matrix. In other linear equations. It changes as I 
changes. In nonlinear t(juatioos. It changes as U changes. We don't ha"e either of 
these difficulties. Equation (2) is "l inear with coostanl coefficients". 1'1Iose and ooly 
those an:: the differential equations that we will oonl"en directl y 10 linear algebra. "The 
main point will be: Sol"" linell, tOIlJkmt cocfficint equalit.>lIs by txlHllfelflu.u c'"' ,I; . 

Solution "f dll j dr _ Au 

Our pure ",,]>Onential solution will be ~ times a fi~ed vector ,l; . You may guess that 
A is an eigen"aluc of A. and ;r is the eigenl'ector. Substitute U(I) = e ).' ;r inlo the 
t(juation du ldl = A ll 10 pn.",e ~ou art' righl (the foctor t» will cancel ): 

Au = A';" ,I; ag=' wnh d , " - "" Ae ;r provided A;r = J.;r 
d, 

(l) 

, 
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All components of thi s special solu!ion II = ~x sba~!he same ~,_ The solution 
grows when)., > O. It decays when)., '" O. In general;' ean be a con'ple~ num· 
ber. Then the ~a1 part of )., decides growth or decay. while the imaginary pan gives 
oscilla!ion like a sine wave. 

Example 1 Solve * = Au = l' :Ju staning from 11 (0) = [U 
This is a vector equation for II . l! contains two scalar equations for !he components y 
and ~. 1l1ey are "coupled togethe .... becausc the matrix is no! diagonal : 

d, 
Eq C1lltion - = All d, 

d [ , ] [0 '] [,] d, d, dt : = I 0 z means!hat dl =z and dt =y. 

The idea of eigenvectors is to combine those equations in a way that gets back 10 

I by I problems. The combinations)" + z and )" - z will do ie: 

d 
- (y +z)=z+y d, 

J 
dt (Y - z) = - ( y - z). 

The combination y + z grows like ~. because it has J. = 1_ The combination )" - z 
decays like e- ', because it has J. = - I. HCTl' is!he point We don'! have !o jug
Sle the original equations d ll / dl = Au , looking for thesc special combinations. The 
eigenvcct0r5 and eigenvalues do it for us. 

This matrix A has eigenvalues I and -I. He~ are two eigenvectors: 

, .. 
The pure exponential solutions II I and " 2 taU the form .,A/x with)" = I and - I : 

, .. (' ) 

Notice: "These 11 '5 are eigenvectors. 1l1ey satisfy AliI = U l and Alll = -M,. JUSt like 
X l and Xl. The factors ~ and t - ' change with time. 1lN:>:5e faclon give d ll )/dt = 
" I"" A li I and d li l/dl = - 11 2 = A1I 2_ We have two solUlions!o dll /JI "" All . To find 
all other solutions, muhiply thosoe special solutions by . ny C and D and add : 

Gtnerol wllIlWn U(I ) = Ce' [:] + Dt- ' [_ :] = [~~ ~ ~:=:]. ($) 

With lhese ronstants C and D. we can match any staning ,"«tor 11 (0). Set I = 0 and 
!l = I. The problem asked for 11(0) = (4 . 2): 

C[:]+D[_ :]=[~] yields C=3 and D=1. 
With C = 3 and D = I in the SOlution ($), the initial Vllh>e problem is solved. 

We summarile the steps. The same three steps thaI solved u!+1 = AM. now 
solve dM /dl _ Au . The ~rs At \cd !o )"-. The differential equation leads 10 r": 

, 



1. Find tile ~igcnvalues /,.j ~nd" independent eigenvectors Xi of A . 

2. Write II {O) as a combinalion C[ x I + ... +c~x. of Ille eigen\"CC1ors. 

3. Multiply each eigenvector X I by ~I. l1Ien 11 (1) is tile combination 

(6) 

hample 2 Solvc dll j dl = All knowing tile eigcIMIl1.ICl; J. = 1.2.3 of A: 

~ = 0 2 I II Slaning from 11 (0) = S . 
d [" '] ['] dl 00 3 4 

Step I The eigenvector.> ~ XI '" (I. O. 0) and .1' 2 = ( I. 1. 0) and Xl = ( I. I . I). 

Step 2 The vector 11 (0) = (6. S. 4) is X t + Xl + 4Xl. Thus (Ct .l'j. C) = (I. 1. 4). 

Step 3 The pu~ exponential solutions ~ r' X t and .. !1 .1'2 and .. J< Xl ' 

SoIullon: The conlbination that starts from 11 (0 ) i. 11 (' ) _ r' XI + .. !1 .1'2 + 4rJt X, . 

The coefficients I . I. 4 came: from solving tile linear equation Ct X t +l'jx ! + CJx J = 11(0 ): 

(7) 

You now 1Ia\'e Ille basic idea- how to solvc d ll jdl = All . The ~St of this section 
goes further. We soh'e equ3lions that contain .... cond derivati\"u. because they arise SO 
often in applications. We al50 decide whctller 11 (1) approaclles uro or blows up or 
juSt oscillates. At tile end comes the malru aponrmial .. AI. Then .. ... ' 11 (0 ) solves !he 

equation dll j dl = All in the !.arne way Ihat A'IIO solves tile equation " H I = Ali i . 
All these steps use tile /,.'s and x ·s. With extra time, Ihis section makes a strong 

connection 10 tile whole lopic of diffe~nlial equal ions. II solvc~ tile constant ooc:fficient 
problems that tum into linear algebra. U$C this secllon to clarify these simplest but III(>SI 

important diffc~nlial equal ions- whose solution is contplclely based on r'"'. 

~ond O rder Equations 

The mosl important equation in mechanics is ml ' +by' +k)' = O. l1Ie tiM term is tile 
mass m limes the acceleration G = y". Th is tenTI mG balances the force F (N .... ·ron·~ 
lA ... ~). The force include;j the damping - by' and the el:OSlic ~storing force - kyo pr0-

portional to distance moved. This is a second-<Jf"der equation because it contains lhe 
second derivative y" = d l }·/dI 2. II is still lil1Car with constant ooc:fficicnl$ m. b. k. 

, 



In a differential equations COO~. the rrw:thod of solution is 10 substitute y = ~. 
Each derivative brings down a factor).. We wam )' = eM 10 solve the equation: 

d Zy dy m-, +b-+ ky={m).2+b)'+ kk'" =0. 
d/ dr 

(8) 

E>'cr),lhing depends on rnA.: + b)' + k = O. This equation for J. has IWO roots )'1 and 
).2. Then the equation for y has two pure solutions )') = ~11 and )'2 = ~21. TIleir 
combinations el)'1 + C'H'l give the CQmplete SQlulion. 

In a linear algebra course we Upecl malr10ls alld eigenvalues. 11Ic:n:fon: we tum 
the scalar equation (with yN) into a vector equation (61'S\ derivative only!). Su~ 
m = I. n..: unknown vector u has components), and ,.,. The equation is duj dl = All : 

d" -=)/ 
d, 
d)' 
-=-ty-iJy' 

" 

d [,,] [0 ,][),] 
CQnveMS 10 dl y ' = - .Ie -b y " (9) 

The first equation dy/dl = y' is trivial (bul (roe). lbe SlXOnd equation ronn«IS )'" to 
.,' and ", Together the equations wnnect ,, ' to u . So we solve by eigenvalues: 

[-' ' ] A - U = -k - b -/.. ;,l+ b;'+I: = O. 

~ ~Wltio" for 1M .l.·s is Iht 5lImt'! It is Slill II + bl + t = 0, since m = I, T1Ie 
mol. '" and "1 are now r;gr,rwdues of A. T1Ie eigenvectors and the complete wlution ,. 

[n the tiTSl component of 11 (1 ). you see y =c,rl " +qe-'l'_ the same SQlution as be· 
f~, 

[\ can', be anything else. [n the second component of lI (r) )'ou see dy/dl . T1Ie vector 
problem is completely consistenl with Ille .scalar problem. 

Nol~ 1 Real engineering and real physics deal wilh systerm (no! jusl a single mass 
al one poin!). T1Ie unknown, is a vectOf. T1Ie coefficient of :/' is a mau matrix M. 
no!. number m. The coefficicn, of J i$. "iffir~~~ maITi .. K , nQI a number t , Thc: 

coefficient of " is a damping matrix which might be zeA). 
1lM: equation M,~ + K, = f is a major part of computational mechanics, Ie is 

contA)lIed by lhe eigenvalues of M - I K in K X = AM x . 

Note 2 In linear algebra the serious danger is a sho<t&ge of eigenve<:lors. Our eigen
veccors (I. AI) and ( I, A2) are the same if AI = "2. 1lM:n we can', diagonalize A. In 
this Ca$/: we don't yet have . complete SQlutioo to d ll /dl = All . 

In differential equations the: danger is also a repeated A. Afler y = t'"', a second 
solution has co be found. It turns out to be y = It'"', 

This - impure- solution (with ,he eura r) will SQOfI appear also in r"' . 

, 
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Ex .. mple 3 So!ve y# + 4)" + 3y = 0 by subsliluting eA' and also by linear algebra. 

Solution Subslituting )" = eA' yidds (A 2 + 4A + 3),,1.1 = O. "The quadratic factors into 
A2 + 4A +3 = (A + l)(l +3) = O. Therefore A, = - I and A2 = -3. "The pu"" solulions 
are Yt = t-' and )'.1 = ,,_Jr. "The romplete 5Olution CI ,'t + "V'.I approaclles zero. 

To use linear algebra we set II = ( y. y' ). This leads 10 a \leClor equalion II ' = A ll ' 

d), / dl = )" 
dy' / dl= - 3y-4y' 

ron,'erts to 

This II is called a "rompanion ma1ri~" and we find it s eigenvalues: 

1_, ' I ' IA- I..I I = -3 - 4 -l =l"+ 4)..+ 3=0. 

"The A'S an: slill - I and -3 and the 5Olutioo is tile same. With coost.ant coefficients 
and pure exponentials. cakulus goes back to algebra. 

St .. bility of :I by 2 Ma trices 

For the 5Olntion of d l4 /dl = A ll . there is a fundamcmal queslion. Dotts lhe so/lIlion 
opproach 14 = 0 os I __ oo? Is tile problem slabl,,? Example ) was cntainly sta
ble. because boIh pu"" 5Olutions ,,- I and ,, - )' approach zero. Stability depends on tile 
eigem'alues - I and -3. and tile eigen"alues depend on A. 

"The complete 5Olntion 11 (1) is buill from pure 5Olulions eA' z . If !he eigenvalue A 
is real. we know exaaly when r'"' approaches zero: Tht nu~r l muSI be n<'ga/j;·". 
If tile eigenvalue is a complex number A = r + is. lhe 1"<'0/ pari r mil" be n<'ga/;'·". 
When ~ spliu into r'~S1. the (actor ";" has absolute '"lliue fixed at I: 

~J/=CQ5SI +; s;nSI h"" li"12 _ coslsl+sinlsl=l. 

The factor r' cootrols growth (, > 0 is instability) 01 decay (r < 0 is slability). 
"The question is: Which _ ril'tS Ju, I'f! ntgali"" "igm O'tllllu.' More accurately. 

when are the n al parts of the l's atl negath~? 2 by 2 matrices allow a clear Wlswer. 

bG St .. bili ty The malri ~ II = [~~ l is Slabl" and 14 (t) _ 0 wlx'n the eige n'lIt ucs 

h., .. ""gam .. real parts. The matri~ A mU' 1 pa,' IWQ teStS' 

"The tmce T = II + d must be ""gat'\'<'. 
"The tiet<'rminanl () = /Jd - be mu~t be posilive. 

RU 50n If tile lOs are real and negalive, lheir sum is negati'·e. This is the lmee T . 
TIIe;r product is positi'·e . This is the de!erm;nanl (). TIle argument also goes in the 
reverse direclion . If () = AtA: is positive: . then )..t and II ha\'<' llle same s,gn. If 
T = At + A~ is negalivt, that sign will be negati,.., . We ean Itsl T and D. 
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dclorminam D 

both Rd. < 0 boIh Rd. > 0 

1.., <0 lnd '-:z > 0 : un,...bk 

, , , 

Figure 6.3 A 2 by 2 malri ~ if Slable ( lI (t) -. 0) w~n r ., 0 and D > O. 

If the A's are comple~ numbers. they must have the form r + is and r - is. 
O!herwisc rand D will not be real. n.e detenninanl D is automaticall y po§ilivc. 
since (r + 15)(r - is) = ,2 +12. n.e tl"lltt T is r +;s +, - is = 2,. So a negalive 
tnoce meaM lhal the real par1 , is ncgaliv<: and the matrix is slllbJe. Q .E.D. 

Figure 6.3 shows lhe pafllbola rl = 4D which sepllflll<:S real from complc~ eigen· 
values. Solving Al _ TA + 0 = 0 leads 10 ..IT! 40. This is real below the parabola 
and imaginary abo,~ i1. llIe stable region is lhe up~' {eft quam, of lhe figure - wllere 
the trace T is negative and the detenninant 0 is pos iti ve. 

bample 4 Which of these matrice$ is stable? 

[ 0 -1] A,= - 2 -3 [-. A} = 8 

The bpooenlial of a o\ulrix 

We relum blieHy to write the SOIUli(Ml lI{r) in a new (orm .. AI II (O). Th is gi"es a perf~t 
parallel with Al lI ~ in the previOlls section . First we have to say what tAl means. 

lloc matrix .. AI has I matrix in the upOIlCnI. To define e''' . copy r. n.e direct 
definilion of,... is by lhe ;nfin;le ...,riQ I + x + t xl + j;xl + .... When you . UbM;tut. 

tJw, malri~ AI (or.r. Ihi s selies definc-s the matrix t A': 

Matrix upontnlinl (10) 

lis I dtri,"(lti,y is = A .. A'. 

n.e number lhal divides (AI)- is~" factorial.~ This is n! = (1)(2)··· (n-l){II). 
The fllClorials after l. 2, 6 lie: 4! = 24 and 5t = 12Q. They grow quickly. n.e series 

, 
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3 10 Chap' .... 6 Eigenvalues.nd Eigenvectors 

always converges and its derivative is always .'leA'. Therefore .. A' U(O) solves the dif
ferential equation with one quick formula-el'en if (hue is a shorlag .. of .. igem'eclOr5 .. 

This chapter emphasizes how to find u {l) = .. A'ulO) by diagonaliution. Assume 
A does have n eigenvectors, so it is diagonaliuble. Substitute A = 5AS-1 into the 
series for .. A,. Whenever 5AS- 15AS- I appears. cancel 5- 15 in the middle: 

eA' = I + SAS- I, + ~(5AS-I()(5A5-11) +. 
= 5 [I + At + ! (M)2 +···1 S-I 

= SeArS- I. 

( I I) 

Thai equation says: e A' equals SeAr S-I. To compule e A'. compute the ,-'s as usual. 
TIlen A is a diagonal matrix and so is .. Ar -the numbers .. Ai' are on its diagonal. 
Multiply S .. ArS- Iu (O) 10 recognize the new solution u (t) = eMu (O). It is the old 
solution in terms of eigenvalues in A and eigenvectors in S: 

(12) 

A combination CtxJ+" ·+enxn i~. This matches the star1ing value when u(O) = Se. 
The column C = S-l u(O) atttle end of equation (12) brings back tbe beSt form 

(13) 

This eA' u (O) is tbe same answer thai came from our Ihree steps: 

I. Find the ,-'s and x 's. eigenvalues and eigenvectors. 

2. Write u (O) = ("I X 1 + ... +(".x •. Here we need n eigenvectors. 

3. Multiply each Xj hy .. Ai'. TIle solution is a combination of pure solutions: 

( 14) 

Example 5 Use the series to find eM for A = [J A], Notice that .'14 = I: 

AS.A6.A7.AB will repeat these four matrices. The top right comer has 1.0.-1.0 
repeating over and over. llIe infinite series for .. A' contains I/I!.O. _,l/3!. 0. In other 
words, - ~,] stans that top right comer. and I - ~,2 is in the top left: 



1+A.I +,lAI )'+,(AI ) + ... = 1) I'll [1 _ 1/ 2 + ... 
-I+ ~ I - .. . 

On the left side i~ the series for eAI • The 10J' row of the manix shows the ~ries for 
COSf and sin I. We ha~ found e '" directl y: 

" [,~, , = 
-Sln l 

Sin ']. 
,~ , 

AI I = 0 this gives .,0 = I . Most importanl. the derivative of I'"' is Ae''' : 

d [~' " "'] [-"0' ~,] [0 '][ ~ ' "0'] dl -sinl cost = - COSI - sinl = - I 0 -sinl COSI . 

( I S) 

A is a skew-symmetric matrix (AT = - AJ. hs expoonenlial tAl is an onhogonal matrix. 
'Jbe cigcnVBIue!l of A arc i and _ i . The eigenvalues of e A' a~ ';' and .. _I,. Thi s 
illu>trales 11010 general rules: 

1 The cigcnl'flluc' 0/""" "" .. ~,. 

2 Whtll A is su ..... ','"m .. 'ric, I'M is onhogol/lli. 

Eumple (, Solve ~~ = Au = [~ i] II sianing (rom ufO) = [~] al r = O. 

Solution The ";~nvalues I and 2 arc on the diagonal of A (s i""" A is triangular). 
The eigenvectors arc x , = (1 . 0) and Xl = ( I. J) : 

,t>d 

SICp 2 writes 11' (0 ) as a combination x , + .1' 2 of these eigenvectors. Thi s is St = ., (0 ). 
In this C~ c, = C2 = l. 1llcn 11'(1) is the same combination of pure e~poncntial 
solutions: 

That is the clearest solution .... ,' Z I + .... 1. Z l. In matrix form. the ei~nvectors go into 5: 

That wlllUllrU is "AI . les 001 bad to see what a malrix exponential looks like (this 
is a panicularly nicc one). "IlI.e situBtion is lhe SAme as for 11.1" = b and in'"eTSeS. We 
don ' t really need ", - I \0 find .l". and we don't need .. A, to S<)lve d,, /dr = A" . But as 
quick formulas for the answers. A - 1b and ,,"" ,, (0) are Iln""at~ble. 

, 
t 
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• REVIEW OF THE KEY IDEAS • 

I. ~ equation u' = Au is linear with constant coefficients. starting from 14 (0). 

2. Its solution is usually a combination of ellponentials. involving each I.. and x: 

3. The constants Cr ..... C~ an: determined by 11 (0) = CI X I + ... + Cn X •. 

4. The solution approaches zero (stability) if Real part (I..) < 0 for every 1... 

5. The solution is always 110) = eM u {O). with the matrill cllponential eAI . 

6. Equations involving )''' n:duce to /I ' = Au by combining y' and }' into 14 = 
(y'.)'). 

• WORKED EXAMPLES • 

6.3 A Find the eigenvalues and eigenvectors of A and write 11(0) = (2. O. 2) as a 

combination CI X I + C2 X 2 + q X l of the eige"'t'ctors. Then solve both equations: 

~=Au = 1-2 1 /I d [-' I 0] 
dr 0 1 - 2 

and also 
d' , 
-- =Au d,' with dU (OJ =O. 

d, 

The I. -2.1 diagonals make A into a second dilferenct rrwrrix (like a second deriva
tive). So the first equation /I ' = Au is like the heal eqlmliol1 IJU/IJI = 1J2u /ax Z. Its 
solution U(I) will decay lIS the heat diffuses out. The second equation II" = A I/ is like 
the ""al'e equation a2u/a, 2 = a2u / ax2. Its solution will oscillate like a string on a 
violin. 

Solut ion The eigenvalues and eigenvectors come from det (A - 1..1) = 0: 

-2 -). o 
det (A-H ) = 1 -2-).. 1 = (_2_)..)1_2{_2_).) =0. 

o - 2 -).. 

One eigenvalue is ).. = -2. when -2 -).. is zero. Factor out - 2 - ).. to leave (-2-
;.)2 _2 = 0 or ;.2+4),,+2 = O. The other eigenvalues (also negative) an: A = -2±,;2. 
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The eigenvectors are found separately: 

[! 
1 !][;] m [,," {;] .1..= - 2; (A + 21)x = 0 ~ 

1 -/2 
1 

.1..=-2-./2; [/2 (A - AJ)X = ~ /2 1] [;] - m [oex, {y,] 
[-/2 1 

-~] [;] m [" X,~[~] .1..=-2+./2: (A-Al)x= ~ -/2 

All those eigenvectors have length 2. so ~X l. ~X 2. ~X3 are unit vectors. 1bese eigen
vectors are orthogonal (proved in Section 6.4 for every real symmetric matrix A). Ex
pand 11 (0) as a CQmbination el x 1 + c2 x 2 + Clx J (then CJ = 0 and <':! = C3 = I): 

[
/2 1 

o -J'i 
-../i I 

From u fO) =: X 2+X3 the solution decays to 11 ft) = e - 1.1' x 2+e-I.)'X3. Since all 
.':s are negative. u (t) approaches zero (stability). The least negative).. = 2 - J'i gives 
the decay rate. This is like Problem 6.3.5 except people are in three rooms (change 
people to temperature for the heat equation). The rate u' of movement between rooms 
is the population difference or temperature difference. The total going imo the fi rst 
room is "1 - 2111 as required by A u . Eventually U(I) ~ 0 and the rooms empty out. 

lit U2 room 2 

movement 

-I ,,'0 1 
movement movement 

-I ",en 1 
'I) room I 

movement 

·1 112{1) I -
112 II] room 3 

Tum now to the ··wave equation·· d 2ujdt1 =: A u (not developed in the text). The 
same eigenvectors lead to oscillations e'"" x and e- '"" x with frequencies from w2 = - )..; 

, 
d- . , 
-k''''' x l = A(,.'""x ) 
dt 2 becomes 

There are twO square roots of -A. so we have ti"" X and ,.-i""x . With three eigenvec
tors this makes six solutions. A combination will match the six components of ufO) 
and u'(O) = velocity. Since u' = 0 in this problem. ,.j"" x combines with t - i"" x into 
2cosW/ x . Our panicular ufO) is again X 2 + Xl. and the solution oscillates: 

u(t) = 2(COSlqt)X2 + 2(coswJt)xJ with {rq)2 = 2 +./2 and (W)2 = 2 - Ji. 
Each A is negative. so W1 = - A gives two real frequencies. A symmetric matrix like 
A with negative eigenvalues is a negative d,.finite matrix. (Section 6.5 taXes a more 
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positive viewpoint. for posrtil't definite matrices. ) Matrices like A and -A an: the key 
to all the engineering applications in Section 8.1. 

6.3 B Solve the four equations JaJdl = O. db /d t = n. dcJdt = 2b. dz /dl = 3c 111 

that order staning from u (O) = (a(O) .b(O).c(O).:(O». Note the matrix in u ' = Au 
and solve the same equations by tbe matrix exponential in u (1) = /'''' u (O) : 

d, 
- = All . 
d, 

First find A2. Al . A4 and then e'" = I + AI + !(AI)l+ i(At»). Why does the series 

stop there? Check that e" is Pascal's triangular mattU al I = l. and the derivative of 
e"l at I = 0 is A. Finally. verify k")(t!") = (e 2"). Why is this true for any A? 

Solution Integrate da /d l = O. then db/dl = a. then dc/dl = 2h and dtldl = 3c: 

aCt} = a(O) 
bet) = ta (O) + b(O) 

which must match e"' u (O) . 
c(t) = 12,,(0) + 2Ib(O) + c(O) 

Z( I) = Ila(O) + 31 2b(0) + 3Ic(0) + d O) 

The PO"'US of A are all zero "fter A3. So the series for e"l StOpS afler four tenns: 

[~ 
0 0 

!] [l 
0 0 

!] [i 
0 0 

!] 0 0 A2 = 0 0 Al = 0 0 
A~ 

2 0 0 0 0 0 
0 3 6 0 0 0 

The diagonals move down at each step and disappear for A4. (There must be a diagonal 
diagonal rule to go with the row-column and column-row rules for multiplying matri
ces. ) The matrix exponential is the same one that multiplied (a(O). b(O). c(O). :(0)) 
above: 

", (AI)2 (AI)l [: I 
e =I+AI+--+--~ , 2, 

2 6 I 
13 31 2 31 

At I = I. ell is Puscal's Iriangular malrix PL. The derivative of ('AI at 1=0 is A: 

!] ~ [~ l ~ !] ~ A 
[0 

0 0 
eA'_1 I 0 0 

lim = lim 2 0 ,-0 1 ,-0 I, ,- 3, 3 

A is the matrix lagarithm of Pascal's e"r The inl'erse of Pascal is e- A with two 
negative diagonals. The square of eA is always e 2A (and also eAseA' = eAts +1) for 
many reasons: 
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Solving with t A from , .. 0 to I and then I to 2 agl'eC1 with .. 2A from 0 to 2 

The squared scries (I + A + ~ + ... )l agrees with' + 2A + 12~)1 + ... = r2A. 

If A can be diagonalized (this A can', !) then (S .. I\S-l)(Sti\S~I) = St'lI\S~ I. 

Problem Sel 6.3 

1 Find J,.·s and ... ·s so that u = ,." ... ool,~s 

~~ = [~ nu . 

What combination u = <"1 .... ,' XI + <"'It'll' Xl stans from u (OI = (S. -2)? 

2 Soh·c Problem I for u = (y. z) by back su bstitution: 

3 

. liz . 
FIrst !lQ1~ - = ~ stan,ng from ;:(0) ,., - 2. 

d, 
d, 

11len §Oh-.: .....:... = 4)' + 3~ staning from ,.(0) == s. 
d, 

Tne §Olution for y will be a combination of .. 4, and 1". 

Find A 10 change lhe scalar Clj ualion y" = 5y' + 4J inlo a vector equation for 
u = (y.y'): 

][;:J= Ao 
What are the eigenvalues of A·! Filld them also by substituting,. = I'M inl0 
yH= Sy'+ 4y. 

4 The rnbl!il alld wolf populalions show fasl growth of rnbbilS (fmlll 61" ) 001 10S5 
10 wolves (from - 2w ): 

d, 
-_6.-_2", 
tI, '"' 

dw 
Tt '"' 2f + "'. 

Find the e igenvalues and eigc nvl!Ctors. If r (O) = w(O) == 30 whal are the JIOPu · 
lations at time r1 Afte r a long time. is the ratio of rabbits to wolves I to 2 or 
isit2101 '1 

5 A door is openoed bet","«n 1Q01TlS thaI hold ~(O) = 30 prople and w{OI = 10 
peoplc. The movement bet,..""n 1QOmS is pmponional to lhe: diffcrence v - w: 

d" -" ,,,-v ," '"' 
tlw 
-=v-",. 

" Show thatlhc 101301 v+w is conslant (40 people). Find thc matri ~ in lIu/at = Au 
and its eigenvalues and eigcn\'octors. What are v and w at I = 1? 

, 
t 



(, Rc"crse tile diffusion of people in Problem S 10 d_/ dr = - 1\ ,, : 

d. 
-=II-It! 

" 
_. d. 

-=W-II. 

" 
The 100al II + It! still n:mains constant. How all: (he /..'s cbangro now lllal II is 
changed 10 - .04.7 BUI show that vcr) I:"""'s to in6nity from u(O) ",, )(I. 

7 The: solution 10 yff '" 0 is 11 straight line y = C + Dr . Conven (0 a ma1ri~ 
equal ion: 

Th is matrix A canOOl be diagonaJiled. Find ,, 2 and compute ,"" = f + AI + 
~ A 2, 2 + . MUltiply your .. At times (,(0) , )"(0») to check the s("ugh! line 
}'(t) = y(O) + ,'COlt. 

8 SubsrilUte )' = ~ into yff = 6y' - 9)' to show Ihal A = 3 is a repeated 1'00II. 

This is (rouble; "-': n«d a scrond solution ancr .. 31. Tht: m:mix equation is 

d [ , ] [0 '][ ' ] dly'--96y" 

Show tha! Ihis matrix has I.. = 3.3 and only one: line of eigtonvcclOfS. 
hu~ too. Show that the second solution is y = t?,. 

Trouble 

':I Figure OUt how to wrile my" + by' + ky = 0 as a ' 'eCtor equltioo M,,' = All . 

10 Tht: matrix in (his question is skcw-symmc:tric (A T = - A): 

~ =-c Oa u d [0 '-'j 
dl b-a 0 

II ; = r il l - bill 

.. ~ = '''' J - r "l 
u; '"" bill - 11"1_ 

(aJ The dcrivati,.., of 011 (/)11 = ui + ,, ~ + ,, ~ i~ 2"111'1 + 2"2"2 + lU JIIJ . 
Subsli1U1C 1/'1.111.11) 10 gCt ~ro. Then 1" (1)11 Stays equal to 011 (0)11, 

(b) Wk~ A is JU>o'-s),1/If1I .. "ic. Q '" t ~ r is orl/oogOfWI. Prove QT = ~-AI 
from the scms for Q = .. AI. Then QT Q .. I . 

II (a) Write ( 1, 0) as a c(Hnbinalion Ci x I + q x 1 of these two eigcn''eCtor.I of A: 

(b) 'The SOlution to d ll /dr _ A" staning fR)m (1.0) is CI~'X I +l'1r- j ,x!. 
Subslitute ~, = cos r + i sin I and t- i , = emf - i ~in f to find ,, (1). 

, 



12 (a) Write down t"'O familiar functi(Mls that sol"'" !he equation d1Y/d11 = -yo 
Which one ~rts with )'(0 ) = I and }"(O) = O? 

(b) This second-<Jrdcr equation y" = -y pl'Oduces a , 'ector equation u' = Au : 

, ~ [;, ] d , [ " ] [0 1][,] 71= >"" = - J 0 y' = Au . 

Put y{l) from part (a) into U(I ) = (y. y'). This solves Problem] I ~ain 

13 A panicular 5OIution to a u/ dt = Au - b is u l' = A- lb. if A is in~cniblc_ "...., 
solutiolu to du /dt = Au give u •. Find the complete solution u p + u. to 

(.) 
d, 
-= 2,, - 8 
d, 

14 If cis I1(l( an eige ..... lue of A. SUbstitute u = of' ~ and find ~ to solve d ll /dt ,. 
Au -of' b. This Il = of' ~ is a panicular solution. How does it brr:ak down ",-hen 
c is an eigenvalue? 

15 Find a matrix A to illustrate each of the unstable regions in Figure 6.4: 

(a) At< OandA2> 0 

(b) At>OandA2>0 

(c) COl1lplex A'S with real pan " > O. 

Quatlons Ui_lS a .... aboll t tM matrix exponen tia l 10"' . 

16 Write five tenns of the infinile series for till. Take the t deri""tive o f each lenn . 
Silow thai you have four lenTIS of Ae"' . Conclusion: ell'UO solves u' = Au . 

17 The matrix H = [: -~ l has HI = O. Find t ilt from a (short) infinite series. 

Check thai the derivative of ~ B' is HeB'. 

18 Staning from .. (0) !he solution allime T is e"T u (O)_ Go an additional time t 10 
reach e" ' (e AT u (O»). This solution at time t + T Can also be written as 
Conclusion: .. ", limes .. liT equals __ , 

19 Write A = (Hl in !he form SAS-I. Find e,1l from S,,""S-I. 

20 If 041 = A show that the infinite series produces lOA' = I + (e' - I)A,. For 
04 = [Hl in Problem 19 this gives "At = __ , 

21 Generally e ll e ll is different from ~ fI ~ " . n.ey arc both different from "A+fI. 
Check this using Problems 19-20 and 17: 

[0 -I] 
B _ 0 0 

y 
I 



11 Write A = [ :~I Ili S /\ S- I. Mulliply St"'S - 1 to find the matrix exponential 

eM . O!ecl; f A I ,,·hen t = O. 

13 Put A = n:l into the infinite series to find t Al. I-; r.;t CQmpute Al! 

" [' ~ = 0 0] [, )'] ,[ I + 0 0 +1 

14 Give two ~asons why the matrix exponential ~AI is ne~r singular. 

(a) Write down its in",rse . 

(b) Write down its e igenvalues. If Ax = iI.x then e AI X = x . 

15 Find a solutioo ... (1). }" (I) that gelS l~e as t __ 00. To avoid this in~tability a 
seientist exchanged the t,,"O equations: 

d x / dt = Ox - 4)" 

d y/dt = - 2< + 2)" 
d }"/dt = - 2< + 2" 
d ... / dt = Ox - 4y. 

Now the matrix [ -j J I is stable. It hili negative eigenvalues. Comment on this. 

, 
SYMMETRIC MATRICES. 6.4 i 

For projection onto a line. the e igem-a lues a~ I and o. Eigen,·ectors a~ on the line 
(where Px = x ) and perpendiculor to the Ii"" (when: Px = 0). Now "·c open up 
to all other sy ...... drk motriu s. It is no exaggeration to say that these are the most 
imponant matrices the world will e~r see _ in the tlleol)' of linear a lgebra alld a lso 
in the a JIPlications. We come immediately to the key questions about s)· mmetT)". NO! 
ooly the questions. but also the answer.;. 

Whot is Jpeeinl about Ax _ l...r ",hnr A iJ sy ...... etri&? We an: looking for 
special properties of the eigenvalues 1 alld the eigenvectors J: when A .. AT. 

n.e diagonalization A = SAS- i will reflect the symmetry of A . We gCl some 
him by tlllllsposing to AT = (S- t )T AST. Tllose lUl: the same sioce A = AT. Possib ly 
s - t in the fi rst fOml equab ST in the second form . Tllen STS = I . That makes ea.ch 
eigenvector in S orthogonal to the O!ller eigen'·ector.;. Tlle key fa.cts get fi rst place In 

the l"llble al the end of thi s chapter. and he n: they lUl:: 

1. A symmetric matm has only no/ eige",·o/ueJ 

2. The t igem"U/on can be chosen on /tollo/mol. 

Those o rthonormal eigem-ectors go into the columns of S. Tlle~ an:c " o f them (inde
pendent because they a~ Or1honorm~ l). E~ery symmetric malri~ can be diagOllali«<J. 



6.. Symme!rjc M.>\rioceo J 19 

Its t lgt m'utOT mlltri.x S btctJm" Iln tJrThtJgtJ"ll/ matrix Q. Onhogonal matriccs have 
Q- I _ QT _ whal wc SUSpttled about $ is lrue. To re"""mber il .... ·c wrile $ _ Q . 
.... ·hen we clloose onhonormal eigenvectors. 

Why do we use lhe word "clloose"? Jk,;ause the eigenveclors do II(l( /w"e 10 be 
unil veclors. n.e ir lenglhs are al our disl"'5"l. We will choose unil '"CClors-eigen;'ectors 
of length one ..... ·hich are orthooonnal and not JUSt onhogonal. n.en A = $1\$-1 is in 
its special ar>d plIn icular fonn QI\QT for symmetric matrices: 

6H (S~clral Thl'01"em) Every S}mmetric matrix has the factorization A % QI\QT 
with real eigenV".ilucs in A aoo orthonormal eigenvectQr1 in Q: 

h is easy to see that QI\QT is symmetric. Thke ils transpose. You gel (QT)T 1\ T QT . 
..... hich is QAQT again. n.e harder pan is to prove thai every synunelric matrix has 
real ,1,·s aoo onhonormal x ·s. This is the "sp«lro/lheON'm"" in mathematics and the 
"principtJl Ilxis Iheorem" in geomelry and physics. Wc ha'l' 10 prove il! No choice. I 
..... ill approac h the proof in Ihre<" S1C~: 

I. By an cxample ( ..... hich only proves Ihal It = QI\QT might be true) 

2. By calculating the 2 by 2 ca>e (which convinces mosl fair·minded people) 

3. By a proof when no cigenvalues are repealed (leaving only real diehards). 

n.e diehards are ..... orried aboul repealed eigen'·alues. Are there slill n onhononnal 
cigcn,'ectors? Yes. tMt"e Ilt"e. ll>ey go inlO the column. of 5 ( ..... hich hew,""s Q). n.e 
last page before the prob lems outlines this foun h and final step. 

We oow take Sle~ I ar>d 2. In a sense lhey are opIional. n.e 2 by 2 case is 
mostly for fun. sincc il is included in lhe final" by n c~. 

Exa mple 1 Find theA·~ and .r ·s when A _ [~ ;] ar>d A -,1, 1 "" [1;,1, 4~AJ. 
Solution n.e equation dct(A - At) = 0 is ).2 - S,1, = o. n.e eigenvalues are 0 800 5 
(bmh reo/I. We can see lhem dire<;tly: A = 0 is an cigem-aJuc because A is singular. 
and A = 5 i, lhe other eigenvalue SO Ihat 0 + 5 agrees with 1 + 4. This is lile trOC .. 

down tile diagonal of A. 
Two eigenvectors all: (2. - I) ar>d (I. 2) - onhogonal but not yel onhooormai. n...., 

cigen'-ec\or for;' = 0 is in lhe nI<llsf'll« of A. n.c ~igenveclor for A = 5 is in lile col· 
14mn spa~. We ask ourselves ...... hy are the nullspace and column space perpendicular? 
n.e Fundamental "Theorem says llial the nullspa<:e is perpendicular to the: row spou 
II(l( the: column space. BUI our matrix is s)"mm~lric! Its row and column spaces are 
the same. Its cigen,"eClOrs (2. - 1) and ( 1.2) muS! be (a nd are) perpendicular. 

• t 



l1Iesc eigen,'CCWrs have length ·./i Divide them by ./S to get unit VOI'I(JrS. Put 
those imo the columns of S (which i. Q). Then Q- I AQ is II and Q- I = QT: 

[' -'] ["] 
Q-I AQ = 1 2 [' ']-1 2 = [00] =11. . ./S 24 ./S 05 

Now comes tiIoe cakulation for any 2 by 2 symmetric matrix I a b: b 1;). fi rst, 
f"Ni r;~n .... II"" Second. pupnuJj~,,/Q, ~i~no't!ell1'S, The }.·s come from 

[,-' b] , ' <let b I"-}. =}. -(a + I")}. +«(lc- b-) =0. (I) 

The test for real TOOlS of A), 2 + H}' + C = 0 is based on HI - 4AC. This mUSI nQl be 
nrgalju. or its sqUllJ"C TOOl in the quadMic formula would be imaginary. Our equat ioo 
lias A = 1 and 8 = -(a +e) and C = al" -!? Look at 8 2 - 4A C: 

R~nl rigM .... lllrs: (n + e)l - 4(ar _ hI) must not be negative. 

Rewrite thai as ,,1+2tJe+.? _ 4<le+4bl . Rewrite again as (n _ e )1+ 4!? TIIosc 
squares are not negative! So the roots " I and }.2 (the eigenvalues) are ceMainly real. 

Prrpendk .. /ar tigt nvtlclOrl: Compute X I "lid X2 and their dot product : 

,~,, ]H = ' 

,-',,]H =' w 

1rom 
b", 
~ 

1rom 

="" ~ 

The dol prodUCt of X \ and x 1 proves thatthesc e igen"cctors are perpendicular: 

XI·XZ=b(}.1-C)+().I-(l)b=b(}.I+ ).2-n- I;)= 0 . (2) 

This is :tero becau~ }.I + ). 2 equals the lrace a + c. Thus X I • X z = O. Eagle eyes 
mighl not ice lhe special case u = c. b = 0 whe n X I = Xl = O. This case has repeated 
e igenvalues. as in A = I . It slill has perpendicular e igenvectors (1.0) and (0.1). 

Now comes the gencrnl n by n ca~. with real}.·s and perpendicular e igen'"CCtors. 

61 !lui Eigenvalues The eiJ;c'1'"aluc; of a real ~ymmctric matri~ are real 

Proof Suppose llull Ax = Ax Until Wt kllQW othtrw i!iC. ). might be a compie;< 
number a + ib (a and b n:al ). 11.1 romp/u Conjllgillt jj r = u - Ib, Similarly the 
components of x may be complex nu mbers. and switching the s igns of their imaginary 

, 
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parts gives x. "The good thing is tha! I limes i" is al ..... ays the conjugate of A times x . 
So lake conjugates of Ax = lx. ",mem~ring thai A is real: 

Ax '" lx leads !o Ax '" I:x. Transpose !o x TA = i"ry:. (3) 

Now take lhe dol product of the firsl equation " 'ith x and the last equat;'," with x : 

and also (4) 

llIe left sides are !Ile same so !he right sidc$ are equal. Q,., equBtion tw A, the ocller 
has I. 1l>cy multiply j"T X whkh is not zero - it is!he squar'N length of (he cigcn'"eCtor. 
The"jore 1. must equal I. and 11+ ib equals Q - j b. The imaginary part is b = O. 
Q.E.D. 

The eigenvectors come from S(>lving!he real equat ion ( A - J. f )x = o. So the x '. 
an: also real. The important foct is thai they arc perpendicular. 

6J Orthogonal EigenveclOrs EigenH!C!ors of a n:al symme!nc matm ("'hen they 
C<>m":§pond to differem A 's) an: always P\'rpendicular 

A has n:al eigen"alues and n n:al orthogonal eigcn'"CC!ors if and only if A = A r 

Proof Suppose Ax = J.l x and AJ = ),l J and A = AT. Take doc products of !he 
first equation with y and the SCCQnd with x : 

(5) 

The left s ide is x TAl y . the right s ide is x T Al J . Since 1.1 "F ),1. this proves Ihal x T J = 
O. "The eigen'"eCtOf x (for ),1 ) is perpendicular \0 lhe e igenvector J (for Al). 

Example 2 Find tile A'S and x 's for this symmetrk matrix with trace zero: 

The roots o r A 1 - 205 ... 0 "'" ),1 = 05 and ),1 = -05 (both ""al). The eigenvectors 
X I '" ( I. 2) and Xl == (- 2. I) an: perpendicular. To make !hem into unit vectors. divide 
by their lengths ../S. "The new X I and Xl are the column, of Q. and Q - I equals QT: 

[' -'] [""1 
A = QAQT = 2 I [' O]~ . ../S 0 - 05 .,IS 

This example shows the main goal o f thi s Sl'Cuon- /o ditJ,on4/~ $ymmttric malrice$ 
A by onhogono/ eigenow:tor ",al,ues S = Q : 

, 
i 
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6H (repeated) Every symmetric matrix A has a complete set of onhogonal eigenvec-
10rs: 

If A = AThas a double eigenvalue A. there are twO independem eigenvectors. We 
use Gram-Schmidt 10 make them onhogonal. 'The Teaching Code elg\'« docs Ihis for 
each eig('nspace of A. whatever its dimension. The eigenvectors go into the columns 
of Q. 

One more step. Every 2 by 2 symmetric matrix looks like 

(6) 

The columns Xl and X2 times 'he roll's A\x T alld }.2 x I produce A: 

(7) 

This is the great factorixation Q/l.QT. written in terms of A's and x 's, When the sym
metric matrix is II by II, there are II columns in Q multiplying II rows in QT. The II 
pieces are A;x ;x [. Those are matrices! Equation (7) for our example is 

[
-3 

A= 4 4]~5[' /5 
3 2/5 

215] [4/5 -2/5] 
4/ 5 - 5 -2/5 1/5' (8) 

On the right. each XiX; is a projection matrix. It is like uuT in Chapter 4. The 
spectral theorem for symmetric matrices says that A is a combination of projection 
matrices: 

A; = eigenvalue. P; = projection onto eigenspace. 

Complex Eigenvalues of Real Matrices 

Equation (3) went from Ax = AX to Ax = Ix. In the end. A and X were real. Those 
two equations " 'ere the same. But a JlOllsymmetric matrix can easily produce A and x 
that are complex. In this case. Ax = AX is different from Ax = AX. It gives us a new 
eigenvalue (which is I ) and a new eigenvector (which is X) : 

For real malrices, complex l.'s and x 's come in "Call jugale pairs!' 

1/ Ax = I.X 'hell Ax = AX. 
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Example J A = [~t.:f -::: 1 has }'I = cosO + i sinO and Al = cosO - i sinO. 
Those eigenvalues are conjugate to each other. They are A and I. because the 

imaginary pan sinO switches sign. The eigenvectors must be X and x. because A is 
real: 

- Sin,'] [ 1. ] ={COSO+iSinO)[ I.] 
cos -I -I 

-"~"~ll I] , .. ')[ I] cosO i = (cos - Ism i' 

(9) 

One is Ax = AX. the other is Ax = Ix. The eigenvectors are (I. -i) and (I. i). For 
any real matrix the A's and also the x 's are oomplex conjugates. 

For this rotation matrix the absolute value is IAI = I. because oos20+sin20 = I. 
This f OCI IAI = I holds for lhe eigem'olues of e)'ery onhogonol mouix. 

We apologi~e that a touch of complex numbers sl ipped in. They are unavoidable 
even when the matrix is real. Chapter 10 goes beyond complex numbers A and complu 
vectors X to complex matrices A. Then you have Ihe whole picture. 

We end with two optional discussions. 

Eigenva lues versus Pivots 

The eigenvalues of A are very different from the pivots. For eigenvalues. we solve 
det(A - A1) = O. For pivots. we use elimination. The only connection so far is this: 

prodllCI of piro/S = determinont = prodliCt of eigenl"ollle$. 

We are assuming a full set of pivots dt.··, . d •. There are n real eigenvalues AI.· · · . A •. 
The d·s and A's are not the same. but they come from the same matrix. This paragraph 
is about a hidden relation for symmetric matrices: The pil'Ols ond the eigenroilles hOf'e 
tltt sallie signs. 

6K If A is symmetric the nllmber of positive (negative) eigenwdues equals lhe nllm
ber of positive (negative) pil'Oa. 

Example 4 This symmetric matrix A has one po5itive eigenvalue and one positive 
pivot: 

A = [~ n has pivots I and -g 
eigenvalues 4 and - 2. 

The signs of the pivots match the signs of the eigenvalues. one plus and one minus. 
This could be fal.se when the matrix is not symmetric: 

has pivots 1 and 2 
eigenvalues - 1 and -2. 
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'The piv(){S of B are positive. lhe eigenvalues are negalive. The diagonal has bolh signs! 
The diagonal entries are a third set of numbers and we say nothing about them. 

Here is a proof that the pivots and eigenvalues have matching signs. when 
A = AT. You see it best when the pivots are divided out of tbe rows of U. and 
A = LDLT. The diagonal pivot matrix D goes between triangular matrices Land LT: 

[~n=[~ ~][I -8] [~ n ThlsisA=LDLT. ltls symmelric. 

'The special event is the appearance of LT. This only happens for symmetri c matrices. 
because LOL T is always symmetric. (Take its transpose to get LOL T again,) 

Watch Ihe eigem-a/ues ",hen Land L T more 1O"'ard the identity malrix. At the 
stan. the eigenvalues of LOLT all: 4 and -2. At the end. lhe eigenvalues of l OfT 
are I and -8 (the pivots!). The eigenvalues are changing. as Ihe "3" in L moves to 
zero. But to change sigll. an eigenvalue would have to cross uro, The matrix would 
al that moment be singular. Our changing matrix always has pivots I and - 8. so il is 
never singular. The signs cannot change, as the ,,'s move to the d's. 

We repeal the proof for any A = LOLT. Move L toward I. by moving the off
diagonal entries to zero. The pivots all: nOI changing and not zero. The eigenvalues }. 
of LOL T change to the eigenvalues d of IOIT. Since these eigenvalues cannot cross 
zero as they move inlo the pivots. their signs cannot change. Q,E,D. 

This connects the two halves of applied linear algebra-pivots and eigenvalues. 

All Symmelric Malrices are Diagonalizable 

When no eigenvalues of A are repeated. the eigenvectors are SUIl: to be independent. 
Then A can be diagonalized. Bul a repeated eigenvalue can produce a shortage of 
eigenvectors. This someTimes happens for nonsymmelric matrices , IIlIe" er happens for 
symmetric matrices. Then an al,,'ays enough eigem~clOl'$ 10 diagonoliu A = AT. 

Here all: three matrices. all with;' = -I and I and I (a repeated eigenvalue): 

A = I 0 0 [
0 , 0] 

B = 0 I 0 
[
-I 0 '] 

00' 00' 

A is symmetric. We guarantee that il can be diagonalized. The nonsymmetric Bean 
also be diagonaJized. The nonsymmelric C has only two eigen,'ectors. not Ihree. II 
cannot be diagonalized. 

One way to deal wilh repeated eigenvalues is 10 separate them a little. Change 
the lower right comer of A. B. C from I to d. The eigenvalues are -I and I and d. 
The three eigenvectors are independent. But when d reaches I. IWO eigem'e('lors of C 
('ol/tlpS(' into one. lIS eigenvector matrix S loses invenibility: 

Elgen>'e<:lors of C : r
iO 0 ] OJ , 

OOd - 1 r
iO 0] 

approaches 0 I I Only two eigen"«IOrs! 
000 
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This cannO! happen when A = AT. Reason: The eigem'eclors slay perpendicular. They 
cannot collapse as d ...... I. In our example the eigenvectors don't even change: 

[0 J 0] 
J 0 0 
o 0 d 

has orthogonal eigenvectors '" columns of S = [-l i ~]. 
Final nole The eigenvectors of a skew-symmetric matrix (AT = - A ) are perpendic
ular. The eigcnI'ectors of an orthogonal matrix (QT = Q - l) are also perpendicular. 
The best matrices have perpendicular eigenvectors! They are all diagonalitable. I stop 
there. 

The reason fnr stopping is that the eigeovectors may contain complex numbers. 
We need Chapter iO to say what "perpendicular'" means. When x and } are complex 
vectors. the test is no longer x T } = O. It will change to XT} = O. So we can't prove 
anything now-but we can reveal the answer. A real matrix has perpendicular eigen
"ec/ors if and onl} if AT A = AA T. Symmetric and skew-symmetric and orthogonal 
matrices are included among these "normal"' matrices. They may be called normal but 
they are special. The very beSt are symmetric. 

• REVIEW OF THE KEV IDEAS • 

L A symmetric matrix has rl'al eigml"U/1I1'S and perpendiCillar eigl'm·ectors. 

2. Diagonalization becomes A = QAQT with an orthogonal matrix Q . 

3. All symmetric matrices are diagonalizable. even with rl:peated eigenvalues. 

4. The signs of the eigenvalues match the signs of the pivots. when A = AT. 

• WORKED EXAMPLES • 

6.4 A Find the eigenvalues of AJ and 8 4 • and check the orthogonality of the ir first 
two eigenvectors. Graph these eigenvectors to see discrl:te sines and cosines: 

- J 
B4 = 

[ 

J -J 
2 -J 

-J 2 
- J 

The -1.2. -I pattern in both matrices is a "second diffcrl:oce". Section g.1 will explain 
bow this is like a second derivative. Then Ax = "x and Bx = ).x are like d~xldl~ = 
h . This has eigenvc:>:tors of = sin 11.1 and of = cos /1;/ that are the bases for Fourier series. 
The matrices lead to "discrl:te sines" and "discrete CQ'lines" that are the hases for the Dis· 
crne FOI"iu Transform. This OFf is absolutely central to all areas of digital signal pro
cessing. The favorite choice for JPEG in image processing has been 88. 



Solulion The eigenvalues of " 3 an: ). = 2 - ,fi and 2 and 2 +,fi, Their Sum is 
6 (the tl1l<:e of A 3) and their produet is 4 (the determinant). The eigctlvectOt' matrix S 
g;"'5 the "Discrete Sir.e Tl1Insfonn" aOO the gl1lph shows how the components of the 
first t",o eigenvectors fall onto sine curves. Please dl1lw the third eigen'"CCtor omo a 
third si ne CUf"\"C! 

s= [ 

, 
./2 ./2 

o 
-./2 .in 21 .. ./ 

" .' 
• 

The eigenvalues of B4 an: ). = 2 - .j'i and 2 and 2 + ,fi and 0 (the same: as 
for Il l. plus the zero eigenvalue). The trace is still 6. but the determinant is JlOW zero. 
The eigenycctOt' matrix C g;"'s the 4-poim "Discrete Cosir.e Tl1IIlsform" and the gnoph 
show. how the first two eigen,'cctors fall onto rosine curves. (Please plot the third 
eigenveclOr !) These eigenvectors match cosines at the hoI/way poif/fs -j. ¥. ¥."If. 

no . 
'. 

'. 

C = [ i 
, 

,-'./2] '. 
,fi - I -, . ~. .•.. ,-+--, I 

1- ,fi ,fi - I 
, '" -, , • T -, -, , .. . -..... 

Roth S aoo C ha", orthogonal columns (these an: the eigenvcctor.> of the sym
metric III and 84). When ,',e multiply an input signal by Sore. we split that signal 
imo pure frequencies - li"e separating a musical chord into pun: notes. This Discn:te 
Fourier Transform is the roost useful and insightful transform in all of signal process
ing. We aR: seeing the sir.es aoo C<)Sines (DST and OCT) that go imo the OfT. Of 
oourse these lJc,autiful patterns continue for larger matrices. Hen: is a MATLAB code \0 

create B8 and ilS eigen>'cetor matrix C. and plot the first four eigenvectors onto oosir.e 
curves: 
n = 8; e = ones{n _ 1.1); 8 = 2. eye(,.) -diJg(t. -I )-diag(t. I ): 8(1. I) = I: 
8(,..»): 1: IC. AI:eig(8): pI0l(C(:.1:4).'-o') 

Problem S(>I 6.4 

1 Write II as M + N. symmetric matrix plus skew-symmetric matrix: 

[' , '] 1I~430= M +N 
8 6 , 

For any square matri x. /If = Ai!,,' and N = add up to A, 

i 



2 If C is symmetric prove that ATCA is also symmetric. (Transl""" it.) Wilen A 
i, 6 by 3, what are the slla~s of C and ArCA? 

3 Find the eigen~alllCS and the unit eigen\'ectors of 

, '] o 0 . 
o 0 

4 Find an onhogonal matrix Q that diagonalizes A - [-;; J. 
S Find an or1hogonal matriA Q that diagonalizcs this symmetric matrix: 

, 
7 

[
' 0 '] A ""O-J-2:. 
2 - 2 0 

Find ,III or1hogonal maniccs that diagonalize A "" [I; 12J 10· 

(I) Find a syTTUTJetric matrix [ ~ ~ 1 tllat has a negati'"e eigen\'lIl"",. 

(b) Uow do you know it IIIUSt lIa\'e a negati"" pi\'oc? 

(c) How do you know it can ·t have two negative eigenvalues? 

8 If A ) = 0 then the eigenvalues of A must be __ . Give an ~ample that has 
A -F O. But if A is symmetric. diligonaJize it to prm'" that A mu>t be ?.ero. 

9 If A = a + ib i. an eigen,·alue of a ...,al matri~ A, then its conjugate I : <l - ib 
is also an eigenvalue. (If A.r = J..r then also Ax : Ix.) PIm·e that every real 3 
by 3 matri~ has a real eigen,·alue. 

TO Here is a quick "proor that the eigenvalues of all real matrices are real: 

.rTA.r 
A.r = J..r gi\'es .r T A.r = J..r T.r so A = _ ,_ is real. 

" 
Roo the naw in this reasoning -a hidden assumption that is 00\ justified. 

12J 10 

12 Every 2: by 2 symmetric matri~ is AI .r ,.rT + A2.r2.rl "" AI PI + A2i». , Explain 

PI + i». = .r l.r T +.r l .r 1 = I from columns times rows. PI i». "" .r l.r T + .r l .r 1 "" 0 
and from row times column. 

, 
i 



13 What arc the eigenvalues of A '" Ll ~ J1 Create a 3 by J skew-symmetric matrix 

(AT = - A ) and ,"'rif~ that its e igenval"", arc all imaginary. 

14 This matri~ /If i, i kew symmelric and aloo __ , Then ils eigen,·alues an: a ll 
pure imaginary and lhey have 1).1 = I. (a /lf~ I-I~ n for e'",1)' ~ 00 1J.x 1 = I~ I 

for eigcnHx:tOl1o.) Find all four cigcm·alues of 

, [-i ~ - I 
M = J3 -I I 0 

- 1 - 1 -iJ 
15 5how thai A (symmetric bul ,omplell) doc, !lOt have two independenl eigenvec

tOfS: 

, _ [i - , '] . . . , . IS HOI dlagonahzable; det (A - H) = ).-. - , 

AT = A is not such a special pl"QPO!rty for complex matritts. The good property 

is AT = A (Section 10.2). Then all ).·s are real and eigenveclOfS are orthogonal. 

16 Even if A is I'CCtangular. the block matrix R ", [:T ~] is symmelriC: 

B~ = J.x iii ,,·hich is 

(a) Show that -), is also an eigen\'alllC. with the eigenvector (1. - : ). 

(b) Show that AT Al = ).2 z. SO that ),2 is an eigenvalue o f AT A, 

«() If A = I (2 by 2) find all four eigen""l".,,; and eigenvectOfS of B. 

17 If A = (11 in Problem 16. find all three: eigenvalues and eigenv«tor.; o f B. 

18 IInOlhtr ,"oofthal tigtll,..,clol"S Of"fl ~,~lIdkuln, ..,htll II ., 111·. Suwose II ~ = 
J.x and 111 = 0, and ), ",0. Theil 1 is in the nunspace and ~ is in tile column 
space. They arc perpendicular because __ . Go carefully- why are these sub
spaces onhogonal? If the 5COOnd e igenvalue is a ll()IlU'fO nUlllber p. apply this 
argumenl 10 II - pI. The eigenvalue moves 10 zero and lhe eigenvcctors Slay the 
s-ame-S() they are perpendicular. 

19 Find the eigen"ector matrix S for this matrix B. 5how that it does,,·t collal"" at 
d = I . e..-en though ), = I is repealed. Are !he eigcn'·eclors perpendicular? 

[-' 
B= ~ o '] , 0 

o d 
has ),=-I. l . d. 

, 
i 



20 From the trace and the determinant find the eigenvalues o f 

[ -3 '] A = 4 3 . 

Compare the signs of the A'S with the signs o f the pivots. 

21 True or false. Give a rl:aSOO or a countere~ample. 

(a) A malli x with real eigen""]",,s and eigenvectors is syrrunellie. 

(b) A matrix with real eigenvalues and OI1hogooal eigellvectors is sy"u"elric. 

(e) The im1:rse of a symmetric mallix is symmetric. 

(d) The eigenvector matrix S of a symmetric matrix is symmetric. 

22 A noTmtJl mtJlrix has AT A : AAT; it has orthogonal eigell\"CCtors. Wh y is every 
skew-symmetric matrix normal? Why is every or1hogonal matrix normal? When 

is [-1l J normal? 

23 (A paradox for instructors) If AAT = AT A then II and AT share the same eigen· 
vectors (true). II and AT alw~ys share {he same ei~n\"3],,". Find (he Haw in 

this conclusion: "They must ha\1: the same S and A. Therefore A ajuals AT. 

24 (Recom~) Which of these clas~s of matrices do A and B beloog to: In · 
vCr1ible. orthogooaJ. proje<.1ioo. permutation. diagooalizabie. Markov? 

[
0 0 t 1 

A : 0 I 0 
t OO 

8 : ~ [: 
3 t 

Which of these fa.ctoriwions are pon ible for A and B: I.V. QR. S liS- I. QA QT? 

25 What number bin U ~ J makes A = Q AQT possible? What number makes 

11. = SAS- 1 imp7§sible? What number makes A- I impossible? 

26 Find all 2 by 2 matrices Ihat are orthogonal and also symmellic. Which IWO 
numben can be ei~n"alues? 

27 This A is ~arJy symmetric . But its eigenvectors are far from orthogonal: 

, _ [' - 0 
1O- {5 ] 

1 + 1O- 1S has eigenvectors 

What is the angle betwecn the eigenvectors? 

[:] .00 

28 (MATLAB) Take two symmetric matrices with different eigenvectors. say 
A = [g J and B = n n Grnph the eigen\-'llJues AI (A + r B) and A1(A + I H) 

for - 8 < I < 8. Peter Lv. says on page 113 of Untur AlgtlJru Ihat AI and A1 
appear to be on a ool1ision course at certain values of r. -Yel al the last minute 
they tum asi<k.- How ,Iol;e do they oome'l 

, 
t 
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29 My file scllt'ymll lilib shows what can happen when roundoff deStroys symmetry: 

A=IIIIII:I:5]':8=A'.;t:P=A. inv(B).A';IQ. £J= eig(P): 

B i~ exactly symmetric and P should be, but isn'\. Multiplying Q' . Q will show 
lWO eigenvectors of P wi lh dot product ,9999 instead of 0, 

POSITIVE DEFINITE MATRICES. 6.5 

This section concentrates on symmerric matrices that ha'", positi'''' tig"walues. If sym· 
metry makes a malrix important. this extra property (all '" ;., 0) makes it special. When 
we say special. we don 't mean rare. Symmetric matrices with posi ti>'e eigenvalues enter 
all kinds of applications of linear algebra. They are called positi'''' definite . 

The first problem is to recognize these matrices. You may say. just find the eigen· 
values and test). ;., O. That is exactly what we want to avoid. Calculating eigenvalues 
is work. When the).·s are needed. we can compute them. But if we JUSt Want to know 
that they are positive. there are faster ways. Here are the two goals of this section: 

• To find quick tests on a symmetric matrix that guarantee POSilil't tigtTII'ailies. 

• To explain twO applications of positive definiteness. 

The matrix A is symmetric so the).·s are automatically real. 

Start with 2 b), 2. When does A = [: ~] hare I I > 0 and II ;., 07 

6l The eigenrulues of A an positil't if and ani), if a > 0 and ac _ b1 > O. 

A = [1 ~] has (l = 4 and (lC - b 2 = 28 - 25 = J. So A has positi"e eigenvalues, The 
test is failed by [~:J and also failed by [-~ Jl. One failure is because the determi· 
nant is 24 - 25 <: 0, The OIher failure is because a = - \. The determinant of +7 is 
not enough to pass. be<:ause the test has ''''0 pons: the I by I determinant 0 and the 
2 by 2 determinant. 

Proof of ,h~ 2 by 2 It'srs: If AI > 0 and '"1 ;., 0, then their product AtA2 and 
sum AI + A2 are positive. Their product is the detcnninant so oc _ b2 ;., O. Their sum 
is the trace so a + c ;., O. Then a and C are both positi>'e (i f one were not positi\'e 
then aC - b2 > 0 would have failed). 

Now Start with a ;., 0 and ac - b2 ;., 0, Together they force c ;., O. Since AtA2 
is the positive determinant. the l's have the same sign. Since the trace is a + c ;., O. 
Ihm siKrI mllSI M +. 

This test on a and oc - b1 uses determinants. The !lext test requires positil'e 
pn-ors. 
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6M Th~ l'igtnl'alul'f of A,. AT arc posilil-e if and only if Iht pi''OIf arc posil;w: 

""' 

TIle poinl is 10 recogni~e llLat nllio of posit;,.., nllmbe", as the iUond p""Of of A: 

[: :] 
TIle tim pivot is a The s«and pi"'" is 

b1 ac _ b1 
c - - = 

• • The multiplier is bfa 

This con~tS two big pam of linear algebra. Pasitiw tigtn>..,/utS mtan pasi/iw pi~
otl (md ';u Wr5Q. We g,,'e a proof for all synunetric matrices in the lasl 5«tion 
(fheon:m tiK I. So the pivots gi"e a quick leSl for J. ,. O. TIley are a lot faSICr to 
compute than the eigenvalues. It is very satisfying 10 see pivots and de!enninan!s and 
eigennJues come together in Ihi s C(>UJ"Se. 

hample 1 

[,' ',] has a !legat;ve deICnninanl and pivot. So a MgIIllvt eigenvalue. 

TIle pivots are 1 and - I. TIle e;genval~5 also muhiply to gi'" - I. OM e;genvaJ~ 
is I1('gative (we don-t want its fannula. which has a Sljuare TI)()I. just its sign). 

Here is a different " 'ay to look at symme1ric matrices wilh posilive cigen'·al~s. 
From A ... = J...r , multiply by ... T 10 gel ... T A ... = J...rT ... . TIle righl side is a posit;,.., ;. 
times a positive ... T x = gx l~. So xT Ax is positive for any eigenvector. 

The r>CW idea is that t/ois number x T A ... is positi,oe for all nana m we/on x, oot 

just lhe eigen'~lors. Malrices wilh this propeny X r Ax ,. 0 are posi,iw definite ma
,riUI. We will prove thaI exactl~ 1i1ese matrices h".., positive eigenvalues and piVOls. 

Ikrinilion The malrix A is posi,iw definite if x r Ax ,. 0 for e'"ry nonzero Yttlor: 

X T Ax is a number (I by I matrix). TIle four entries a. b. h, c give lhe four pans 
of ... T Ax . From a and c come lhe pure Sljuares axl and (.,.2. From b and b ofT the 
diagonal come: (he cross lerms b70Y and by70 (Ihc same). Adding lhose (our parts gives 
x T A ... : 

!(x. y) = xT Ax", ax 2 + 2b7O)" + c)"l is "sewnd degree:' 

• t 



The rest of this book has boen li""ar (mostly Ax). Now the dcgra: has JlO"" from I 
to 2. "The uroru{ derivati,"eS ofax2+2b .• y+cy2 are constant. ~ K'COnd derivatives 
are 211, 2b, lb. le. "They go into the ,nalld fkri~atilY III4lri.< 2A: 

'1 (J11 "1 ax = 2.<J.r + 2b)' .,' ayax =[i: "] '"' 2c '" 2A . 
'1 "1 a11 - = lbx +2cy 

'" (Jx(Jy 'y' 
This is the 2 b~ 2 ~ersioo of what everybod~ knows for 1 by I. "There the function is 
l'.r 1, its s lope is 2ox , and its §ccond deri"ative is 20. Now the functioo is x TAx. ilS 
firs t derivatives an: in the Ye<:tor 2A .. . and ilS ~ derivatives are in the matrix 2A. 
Third deri''al;ves are all zero. 

first Applic.Jtioo: Test for a Minimum 

Where does calcu lus use K'COnd derivat;,·es? When r is positive. the curve bends up 
from its tan8"nt Ii"". "The point x '" O ;s a minimum poinl o f y = x 2. It is a maximum 
point o f y '" _ x l. To decide minimum ''ersus maximum for a one-variable function 
I(x). calculus looks at ilS §ccoOO derivative. 

For a two-variable function 1(" , y), the millru 01 stroM derim/iW's holds ~ 
key. One number is not enough to decide m;n;n,um versus maximum (versus .saddle 
point). Tilt function I "" x T Ax /uu a minimum III x '" Y '" 0 if alld onll if A is 
posiliw Ihjiniu. "The statement "A is a positive definite matri:'" is the 2 by 2 ""rsion 
of "n is a posit i"e number" . 

h olmple 2 This matri~ A is positive definite. We test by pivots or delemlinanlS: 

A = [i ;) !u.s positive pivots and detemlina",. (I and 3). 

"The pivot.< I and 3 multiply those squares. This is no accident! By the algebn of 
"completing ~ square;' thi s always happens. So when the pivOls arc posit ive. the 
quad"'tic function 1(", Y) = .. T Ax is guaranteed to be positive: a sum of squares. 

ComplOring our examples I} jj and [~t J. ~ only difference is that change from 
3 to 7. "The bonkrline is 1'12 = 4. Above 4, the matrix is positive definite. At n12 = 4. 
the borderli"" matrix is only semWtjiniu. "Then (> 0) changes to ( ~ 0): 

[,' '.] is s ingular. It has e ig(nval"", 5 and O. 

This matri~ has" ,. 0 bIlt Ill' - b2 = O. Not quite posit;"" deflnile! 

• i 



We will summarize this SoeClion SO far. We have four ways 10 rt'Cognize a posilive 
definite matri~ . Right now ;1 is only 2 by 2. 

ioN When a 2 b) 2 symmelric malrix has one of lhese four propenie<>. il ha. Ihem aIL 

I. BoIh of the e igenvalues are posili'·e. 

2. The I by I and 2 by 2 <ktenninanls an: posili''e: a > 0 aoo uc _ b1 > O. 

4. The fUlICtion xT Ax "" a.r~ + 2bxy + CJl is pos,I"e C\ccpI al (0.0). 

When A has one (lheR'fore aU) o f lhesc four plOJlenies. il is a posiliw definite matrix. 

Noll' We deal only willi symmelric matrices. The cros~ derivalive fjlll~x~y alway~ 
e<Jual$ ~21Ifj)"ax. For I (x .y.z) the nine 'ICC(Ind derivatives fill a symmetric J by J 
mallU:. . II is posilive dc:finile when lhe Ihree pivots (and the IhKe eigenvalues. aoo lhe 
thKe delenninants) Il/"C posili\'e. W .... n the flnl derlnth rs ~/!~x and al l ay an. 
ZC'I"O and I .... M'Cond derh'ath-e malrl~ 15 poslth'e definite. we ha.-e found a local 
minimum. 

bample J Is 1(.1'. y ) "" xl + lIxy + 3y! evel}'where posilive- uccpl al (O.O)? 

5olutioo The second deri"alives are I .. '" 2 and I ., :; I ,. '" 8 aoo In '" 6. all 
positive. But the test is IlOl positi.'e derivative~. We look fIX positive dtfini'tMSS. The 
answer is 110. Ihis function is 1101 always positive. By trial and error we locale a point 
... = I .,. = - I where 1(1. - 1) = I - 8 +3 = - 4 . Bctter to do linear algebra. and 
apply the exacl tests to lhe matri x lhal produced I(x.,. ): 

The I1IlImx has ac - f1l ... 3 - 16. The piVQts are I and - 13. The eigenva(lItS an: 
__ (we oon ' l need them). The matrix is 1101 posilive definite. 

Note how b y comes from a ' l = 4 above the diagonal and " ll = 4 symmetricall y 
below. That malrix muhiplication in X T A ... makes the fUlIClion appear. 

Ma;n point The sign o f b is 1101 the essential thing. The cross deri''lIt;,'e all/a.la,. 
ellfl be posilive or negalive-the test U'ieS bl . The si::e of b. romp<lred to a and c. 
<kcides whether A is positive definite and the fUlIClion 1( ... . y) has a minimum. 

Example 4 For which numbers (" is x~ + 8.1',. + cyl always posil i~e (or ~ru)? 

Solution The matri~ i. A _ [l: ]' Again u = ( passes lhe first lesl. The scoond test 
has QC - ~ = c - 16. For a posi1ive dc:finite matrix " 'e n«d c > 16. 

, 
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The "semidefinite" borderline is e = 16. At that poim [~tn has l. = 17 aoo O. 
d.:tenninants I aoo O. piVOls I and The furoction .. 2+&")"+16)"2 is ( .. + 4)")1. 
li s gruph does noI go below 7.ero. 001 il sla~s al tero all along lhe line .. + 4)" = O. 
This is close to positi>'c definilC. bul cach test JUSt milises: xT Ax ~qulds zero ror the 
"« Ior x = (4. - 1). So A is only semidefinite . 

h<lmple 5 When A is posilive definile. wrile I (x. )") as a sum of Iwo squan:s. 

Solu tion This is eallcd "completing the square." The pan 0 .. 1 +2bx)" is correct in lhe 

firs t square ,,(x + h/, BUI lhal ends with a final a{!y)l. To stay e .... n. thi s added 

amounl b1 yl /0 has to be subtracted off from ryl at the coo: 

( ')' ("' b' ) ax2 +2bxy+cy2=" .. +;;Y + ~ yl, 

Afler that gentle (ouch of algebra. lhe situation is clcarer. The lWo S<juares ( ne~er 

negali"c) are multiplied b~ numbers Ihal could be posit;>'e or negalive. Thou nUmMrs 
" aNl (ae - b2l/a (lrt Ihe pi .. ms! So positive piVOls give a sum of s;'\.uares and a 
positive delinitemallu.Thin~ b<IC~ 10 lhe pivots and multipliers in LDL : 

A [ " - b (a .. - ~)/" J [ri ""] , . (2) 

To complete the square. we staned with a and b. £/iminlllion <lor. u lIcll)" Ih~ so.u, 

It stans with the first column. Inside {x + ~y ) l are the numbers I and ~ frum L . 

£"l'tf'J pmm"l't dtfini/~ "MMe/ric ",atrix Ine/orl 1"'0 A '"' L DL T .. ilh posili"l't pivoh 
i" D. Tin "Chm,sk, !aelan:jltia,," is A _ (1. ,fij){I"./75)T. 

Imponant 10 compare A = LDL T with A = QA QT, One is based on pivots 
(in 0), Thc other is based o n eigen.'alU<'S (in 1\ ). Please do not think that pivots 
equal eigen, .. lues. Their s igns are the sa""", but lhe nUBlbers are entirel~ different 

Posit ive Definite Matrices: " by " 

for a 2 by 2 malrix. the "posilivc definite IClit" uses ~jg~n,""I"~. or dt'ltrm;'UmIJ or 
p j.'O/s. All lOOse numbers BlUSl be posilive. We hope and CXpecl Ihat the :>ame three 
teSlS carry "' .. " 10 " b~ " symmelric malrices. They do. 

, 
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60 When a symmetric malri~ ha~ one of these four propenies, il hM them all: 

I . All II eigem-a/r<es are pos it i.".,. 

1. All II upper lefl dtlUminalll$ are positive. 

3. All II pr.'Ol1 are posiu ve 

4. x T Ax is positive except at x '" O. 1lIc matrix A IS positil't dtfinilt. 

ll>e "uppe. left detemtinanls" are I by I. 2 by 2 ... .. II by II. The las\ one is the 
determinant of the complete malri~ A. This remarkable theorem ties togethel the whole 
li""ar algebra coul'5C- at least for symmetric matrices. We believe that tWO uamples 
are more helpful than a proof (we nearly have a proof already). ll>en ""e give two 
applications. 

h.lmple 6 Test the:se matrices A and A" for positive definiteness: 

[ 
2 -, 0] 

A", - I 2- 1 
o -I 2 

, .. 
[ 

2 - , '] A" '" - I 2 - I . 
b - I 2 

Solution This A ;s all old friend (or enemy). Its pi"ou are 2 and ~ and j. all positive. 

Its upper left detenn;nalllS are 2 and 3 and 4. all positive. Its eigen"alues are 2 - j'i 
and 2 and 2 + j'i, all positive. That completes tests I. 2. and 3. 

We can writc x T Ax as a sum of Ihree squares (sincc n '" 3). ll>e pivots 2. i · i 
appear outside the squares. 'The multipliers - ~ and - i in L are inside the squares: 

x T Ax = 2(xr - XI X2 + x? - .IV) + xi) 

Go to the second matri.~ A ' . The dtlaminam letl is t aSiUI. 1lle I by 1 de· 
terminalll is 2. the 2 by 2 determinant is 3. 'I1lc 3 by 3 determinant romes from the 
whole A' , 

ok. A ' = 4 + 2" - 2b: = (I + h)(4 - 2h) mll.t be pmilive. 

At b '" - I and b '" 2 we get del A ° '" O. In those ca_ AO is positi'''' semidefinite 
(no invel'5C. zero eigenvalue. x TAo x :! 0). {k""'UII b '" - ] and b '" 2 the matrix i. 
(lQsiril'e definite. ll>e comer enlry b '" 0 in the first matrix A was safely between. 

Second Applic~lion : 11K- Ellipse ax l + 2bxy + ryl '" I 

Think of 8 tilted ellipse celllcred 8t (0.0). as in Figure 6.4a. Tum it to line up with 
the coordinate aJle5. ThaI is Figull: 6 .4b. 'These two pictures show the grometry behind 
the: factori7.atiO<l A '" QAQ-l = QAQT: 
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f igure 6 .4 The tilled e ll ipse: S ... l + s..:y + 5yl '" 1. Lined up it is 9X1 + y l = I. 

I. The tilled e ll ipse is asSQCialcd wilh A. hs equation is z T A;r :; t . 

2. The lined-up ellipse is asso';atro with A. 11$ equation is XT A X = L 

3. The l'QIation matri~ from ;r to X that lines up the ellipse is Q. 

hample"1 Find the axes of this tilled ellipse s.,- l + b y + 5)'1 '" l. 

Solution Stan with the posit i'-e definite matri x that malchcs thi s equation: 

ThefullClionis [x y][! ~][~, ] = l. The matrix is A=[! ~l 

The eigenvalues of A ate ).1 = 9 aod Al = 1. The eigen-=I01'5 are [:] and [-11-To 
male them unit ,'ecton.. divide by./2. Then A = QIIQT is 

[' .]'[' '][90]'[' '] 4 .5 = ,fi I - I 0 I ./'i I - I . 

Now multiply by [x )' 1 on the Idt and [ ; ] on [he righl to get back !he functioo 

... T"..-: 

, , (H")' ('- ')' 5..- · + s..:y + 5,. = 9 ./'i + ] ./'i . (3) 

The fuoction is again a SlIm o f two squ=s. But this is different from completing the 
square. The coefficienlS "'" 001 tlK: pivots 5 and 915 from D. (hey are the eigenvalues 
9 and I from /I . Inside t/rc$e squares are the cigellveclOlS { l. l )/./'i and (I, - IJ/ ./'i. 

, 
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6.5 Positive Oefini~ """trices 337 

The axes of Ihe h'/ud ellipst poim along Ihe eigenl'ectors. This explain~ why 
A = Qi\QT is called the "principal axis theorem"- it displays the axes. NO! only the 
axis directions (from the eigenvectors) but also the axis lengths (from the eigenvalues). 
To see it all. use capital leuers for the new coordinates that line up the ellipse: 

,,,., x - \' .ri = Y. 

The ellipse btcomn 9X2 + Y" = I. The largest value of X2 is 1/ 9. The point at the 
end of the shorter axis has X = 1/ 3 and Y = O. Notice; The bigger eigenvalue 1'1 
gi~es the shorr .. , axis. of half·length 1/ ,JJ:j = 1/ 3. The point at the end of the majQr 
axis has X = 0 and Y = I. The smaller eigenvalue J.: = I gives the greater length 
l/ ../fi. = I. 

In the xy sYStem. thc axes an: along the eigenvectors of A. In the XY system. 
the axes an: along the eigenvectors of i\ - the coordinate axes. Everything comes from 
the diagonaliz8tion A = Qi\QT. 

6' Suppose A = Qi\QT is positive definite. The graph of :tT Ax = I is an ellipse: 

[x }' lQi\QT[~ ] =[X YJi\[;] =J. IX" + J.2yl = 1. 

The half· lengths of the axes are 1/,JJ:j and l/A. 

For an ellipse. A must be positive definite. A = I gives the circle x 2 + )'2 = 1. If an 
eigenvalue is negative (exchange 4's and 5's in A) . we oon't have an ellipse. The sum 
of squares becomes a diffaence of squares: 9X2 _ y2 = I. This is a hyperbola. For a 
negative definite matrix like A = -I. the graph of _xl_ y2 = I has no points al all. 

• REVIEW OF THE KEY IDEAS • 

I. Positive definite matrices have positive eigenvalues and positive pi~ots. 

2. A quick test is given by the upper left determinants: a > 0 and II C - b2 > O. 

3. The quadratic function f = x T Ax then has a minimum at x = 0: 

X T Ax = ax! + 2bn' + cl is positive except at (x. y ) = (0. 0). 

4. The ellipse xTA :t = I has its a.,es along the eigenvectors of A. 

S. Coming: AT A is automatically positive definite if A has independent columns. 



• WORKED EXAMPLES • 

6.S A The greal faclorilalions of a symmetric mlHri~ are A = LOe from piv
ots and mullipl~rs. and A = GAQT from eigenval~s and eigenveclors. Show Ihal 
~ T A~ > 0 for all nonzcro ~ exaclly when lhe pivots and eigen"alues are posili,·e. Try 
lhe§c II by II teSIS on p3Kill(6) and ones(6) and hilbl6) and OIlier mal rices in MAT_ 
LAB', gilliery . 

Solution To prove ~T A~ > 0 pUI parenthe§cs inlO ~ T LOL T ~ and ~T QA QT~ : 

~TA~ =(LT~)TO(LT ... ) and ~TA~ =(QT~)TA (QT~) . 

If ~ is nonzero. then, = L T ~ and z = QT ~ are nonzero (!hose malrices are in~rtible). 
So ~ T A~ = :IT D:I = z T A: becomes a sum of squares and A is posilive definile: 

~TA ... = ,TO, = <11>"\+ ... +<1. )''; > 0 
~TA~ = :TI\: = ll:I+···+l.<; > 0 

HoneSty makes me add one linle commenl 10 Ihis faSl and beauliful proof. A zero in 
lhe pivot posilion would fo= a row e~tlutnge and a p"rTTIulalion malrix P . So lhe 
facloriution mighl be PApT = LOLT (we exchange columns wilh pT 10 maintain 
sy rrunetry). Now lhe fasl proof applies 10 A = (P - 1t)0 {p - 1 L)T wilh no problem. 

MATLA8 has a gallery of unusual matrices (Iyp" help gallery) and here are four: 

p3scal(6) is positive definite because all its pi~O!S are I (Worked Example 2.6 A). 

ones(6) is positive semidefinite becau§c its eigen""'l~s are O. O. 0, O. 0, 6. 

hilb(6) is positive definile e~n though eiglhilbl6)) shmn IWQ eigen\"al~s ''eT)' near 

zc:n>. In fact ~T hilbl6) ~ = j~ (~ 1 + ~lS + ... + "'6J~ )2 <Is > O . 

• and(6)+rand(6), can be positive definile or not (experiments gi~ only I in 10000): 

II = 20000: p = 0; for k '" I : n. A = rand(6); p = p + all(eig(A + A') > 0) ; end. 

, I" 
6.S B Find conditions on the bloch A = AT and C = CT and B of Ihis matri~ M : 

WMn Is the symmelrlc block rnMtrb M =1:T ~ 1 posllh'e detinlle? 

Solution TeSI M for posili~ pivots. starting in upper Ie comer. The first pivots 
of M are the pi\"OIS of A! Fi rst condition The block A mllSt be posilive definile. 

Multiply the first row of M by BT A- ! and subtract from the serond row to gel 
a bk.t k of zero1. The Sclrur compltmell' 5 = C - BT A-I B appealS in lhe comer: 

[_B1A-1 ~][:T ~ ] .. [ ~ C - B~r I B ]=[ ri ~] 
The last pi\"(lts of M ~ piV01S of 5! 

The I,",U conditions ~ exaclly 
blOCks. 

S«ond condition S must be positive definite. 
li ke n > 0 and c > b2/u. e~cep1they apply 10 
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Problem Sel 6.5 

Problems 1- 13 a~ about tests foc posh!>'e definiteness. 

1 Which of AI, A~. AJ. A. has tWQ ~iti"" ~igenval""s? Use lhe lest don'l com· 
pute the "·s. Find an .f so that .f T A IX < O. 

[-' A ! = - 2 -'] - 5 "] '00 "] 101 . 

2 For which number.; b and c nre lhese matri~s ~itive defi nite? 

,,' 
With the pi\"QIS in I) and multiplier in L. foctor each A into LDLT. 

] What is the quadratic [= ax!+2bxy+cyl for e",h of these malri~s1 Complete 
lhe square 10 write [ as a lOum of one or tWQ squares dl( )1 + d~( )1 , 

• 
[' '] A = 2 9 

Show thai [(x. y) = xl + 4xy + Jyl does not ha\'e a minimum at (0.0) even 
though it has positive coefficients. Write [ as a dijJertmct of squares and find a 
point (x. y) where! is negative. 

5 llle function [(x . y) = z..-y cenain ly has 8 saddle point and not a minimum at 
(0.0). What symmetric matrix A prodoces this [? What are its eigenvalues? 

I> ( Importam) If A has independent C()lumns then AT A is square and symmetric 
and in""nible (Se<:tion 4.2), Rn'rill! X T AT Ax 10 s/lo,", "'/1, if is positil'l! uUfH 
d l!n .f _ O. Then AT A is more than invenible. it is positi"" definite. 

7 Test to see if AT" is ~itive definite in each case: 

8 The funclion !(x, y) = 3(x + 2)")2 + 4)"2 is positive except al (0.0). Whal is the 
matrix in [= I x )"1"l x ylT1 Check that the pivots of "are 3 and 4, 

'} Find the 3 by 3 matrix A and its pivots. rank. eigenval ues. and detenninant 
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340 Chapt .. & Eigenva lues and Eigenvecro.. 

10 Which 3 by 3 symmc:tric matrices A produce these functions f = x TAx ? Why 
is the first matrix positive definite but not the second one? 

(3) f = 2{.rr + .r1 + .Tj - .r l .r~ - .Tl.l"J) 

(b) f=2(.rf+.rj+.r j -.r1.r2-.rIXJ -.r2.r3). 

11 Compute the three upper left detcnninams 10 establish positive definiteness. Ver~ 

ify that their ratios gi"e the second and th ird pivOis. 

12 For what numbers c and d are A and B positive definite? Test the 3 detenninants: 

"d 
2 
d , 

13 Find a matrix with II > 0 and c > 0 and II+C > 2b Ihat has a negative eigenvalue. 

Problems 14-20 are about applications of the tes ts. 

14 If A is posili" e definite then A- t is positi" e definite. Best proof: The eigenvalues 
of A - t are positive because Second proof (only for 2 by 2): 

, I [ ' -b] TIle emries of A- = , b 
II c b-- a 

pass the detenninant tests 

15 If A lind Bare positi,'e definiu. then A+B is posilit'f definite. Pivots and eigen
values are nOi convenient for A + B. Much beller to prove x T (A + B)x > O. 

16 A positive definitc matrix cannot have a zero (or even worse. a ncgative number) 
on its diagonal. Show that this matrix fails to have x T Ax > 0: 

[

' I 
[X t .r2 Xl ] I 0 

I 2 
). 

17 A diagonal entry ajj of a symmetric matrix cannot be smaller than all the ). ·s. 
If it were. then A - aij I would have __ eigenvalues and would be positive 
definite. But A -ajj l has a __ on the main diagonal. 

18 If Ax =)..x then xTAx = __ . If A is positive definite. prove thai). > O. 



6.5 Pmiti"" Dellnite Matric... 3 41 

19 Re""TSe Problem 18 to show that if all A > 0 Illen x T Ax > O. We must do this 
for eray nonzero x. not just the eigenvectors. So write x as a combination of 
the eigenvectors and explain why all "cross terms" are xJ x } = 0: 

x T Ax = (Cj x t + ... + Co x ")T (cl iq x l + ... + c"'""x,,) = 
" T 2, T 0 ciAl x t x l +"'+C"A"X" X" > . 

20 Give a quick TCason why each of the~ statements is true: 

(a) Every positive definite matrix is invenible. 

(b) The only positi\'e definite projection matrix is P = I. 

(c) A diagonal matrix with positive diagonal entries is positive definite. 

(d) A symmetric matrix with II positive determinant might not be positive def
inite! 

Problems 21-24 use the eIgenvalues; Problems 25-27 a re bllsed on ph'ols. 

21 For which 5 and I do A and B have all '" > 0 (therefore positil'e definite)? 

[,-4-'] 
A =-4s - 4 

-4 -4 s 

3 , 
4 

22 From A = QAQT compute the positive definite symmetric square root QAt/2QT 
of each matrix. Check thai this square root gives R2 = A: 

A = [~ ~] 

23 You may have seen the equation for an ellipse as H)2 + ul = l. What are 0 

and b when the equation is wrinen as AJX2+Alyl = I? 'The ellipse 9..-2+ ]6y 2 = 
I has axes with half·lengths a = __ and b = __ . 

24 Draw the tilted ellipse ..1'2+..-)"+)"2 = I and find the half-]engths of its Mes from 
the eigenvalues of the corresponding A. 

25 With positive pivots in D. the factoriution A = LDLT becomes LJDJDLT. 
(Square roots of the pivots give D = JDJD.) Then C = L.fi5 yields the 
Cho/esk)" factoriZlllion A = CCT which is "symmetrized L U": 

From c=[~ ~J lind A. From A=[: 2!] lindC. 
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2& In the Cholesky factorization A = eeT. with e = L../D. the square roots of the 
pivots are on the diagonal of C. Find C (lower triangular) for 

[' 0 0] A = 0 I 2 
o 2 8 

"d I '] 2 2 . 
2 7 

27 The symmetric factorization A = LDL T means that x T Ax = xT LDLT x : 

28 

The left side is axl + 2bx)" + c)"l. The right side is a(x + ~ )')1 +;:-_ ),1. The 
second pivot completes the square! Test with a = 2. b = 4. c = 10. 

Without multiply'" A ~ I~' _slnl ]I'"]1 "" .. Sill '] fi,d 
.. n' _' OS _<in ' """' • 

(a) the determinant of A 
(c) the eigenvectors of A 

(b) the eigenvalues of A 
(d) a reason why A is symmetric positive definite. 

29 For Il(x.y) = kx4 +xl)" +)"2 and 12(x.),) = x 3 + x)' - x find the second 
derivative matrices A I and Al: 

AI is positive defini te so II is concave up (= convex). Find the minimum point 
of II and the saddle point of h (look where first derivatives are zero). 

30 The graph of z = xl +)"1 is a bowl opening upward. The graph of z = x2 _ y2 
is a saddle. The graph of z = _Xl - )"2 is a bowl opening downward. What is 
a test on a. b. c for: = a.t l + 2bxy + cyl to have a saddle at (O.O)? 

31 Which values of c give a bowl and which give a saddle point for the graph of 
z = 4.11 + l1xy + c)"2? Describe Ihis graph at the borderline value of c. 

32 A group of nonsingular matrices includes AB and A-I if it includes A and B. 
"Products and inverses stay in the group:' Which of these sets are groups (updat
ing Problem 2.7.37)? Positive definite symmelric matrices A. orthogonal matrices 
Q. all exponentials e'" of a fixed matrix A. matrices P with positive eigenvalues. 
matrices D with determinant 1. Invent a "subgroup" of olle of these groups (not 
the identity I by itself-this is the smallest group). 



6.6 Similar Ma_ J 4J 

SIM ILAR MATRICES . 6.6 

The key Slep in this chapler was to diagonaliu a matrix . That was done by S- Ihe 
eigen'-.,.,tor matrix. The diagooal matrix S- IAS is A - the eigenvalue malrix. But di
agonalization was 001. possible for e' .. "y A . So"", matrices re~i~ted alld we had to 
lea,"" them alone. They had too few eigenve<:tors 10 produce S. In this new secti"" . S 
remains the besl choice when we can find il. but '" ,!llo"" 'JIll jnvtl'tible m/llm M . 

Staning from A we go to M - ' AM. This new matrix may happen 10 he diagonal 
more likely 001.. [t still shares important properties of A. No miller which M we d~. 
the eigtnO'Ql" u f UJ1 ,he Ulm,. The matrices A and M - I AM are called ··simi lar··. A typical 
matrix A is similar to a whole family of ()(her matrices becau§e lhoere are SO many choices 
of M . 

DEFINIT10N Let M he any in"ertible matri~ Then 8 = M- I AM is similar to A. 

If 8 = M- I AM then immediately A = M BM- t . That "",ans: If 8 is similar to A IMn 
A ;s similar to 8. The matrix in this reverse direciion is M- I- juSI as good as M . 

A diagonali7,able matrix is similar to A. In that special ca§e M is S. We have 
II = 511.5- 1 and A = 5- I AS. They certainly have the $a"'" eigenvalues! This sectioo 
is opening up to other similar matrices 8 = M- I AM. 

The combinatioo M - I AM appears when we change "Iriables in a differential 
equatioo. Star! with an equation for " and set u = M~ : 

d. 
- = A" becomes 

" 
d . 

M - = AM1I 

" 
which is 

The original """flieient matrix waS A. the new one at the right;s M -I AM. Changing 
variables leads to a simi lar matrix. When M = S the new system is diagonal - the 
maximum in simplicity. aUt ocher choices of ,1.1 also make lhe new system easier 10 

solve. Sirocc we can always go back 10 u . similar malrices have 10 give lhe same growth 
or decay. More preci§ely. the rigem ... /ur. of A and B art! the " ,mr. 

6Q (No change in 1..'$) Similar mam .. -cs A and M -\ AM ha,·c the $aIne eigem"J.lues. 
[f r is an e;gcnwctor of A lhen ,., -1 r is an eigcnvec~or of R = M IA M . 

The proof is quick. ~iroce B = M- I AM gives A = M 8M- I. Suppose Ar = Ax: 

llte eigem'aluc of 8;s the same 1.. . llte eigenve<:tor is now M - Tr . 

C ng~:I 



The following example finds lhl'tt !fUIlrices thaI are similar \0 ~ projlxtion !fUItrix. 

h ample I 

.. [.5 .5]. . ., S ' S [' 00] llIe pruJCCuon A = .5 .5 IS ~ Iml ar to A = - A = 0 

Now choose M =[: n the similarmalri~ W ' AM is [~ ~l 

Also choose M =[~ -~l the similar matrix M -I AM is [-: ~ -:n 
These matri~s AI- l AM all have lhe "",me: eigenvalue> I and O. Ii..."ry 2 b, 2 IIImn.. 
~·ith thou t igtnl"a/ucs U similar to A. The eigenvector.; change wilh M. 

The eigemal"", in that eumple are I and O. not "peut~d. Th is makes li fe easy. 
Repeated eigenvallies are harder. The roe~t uample has eigenvalues 0 and O. 'The zero 
matri .. s!lares those eigcn,-alucs. but it is in a famity by il5cl f: M - 10M = O. 

'The following malrix II is similar toeYn)' nonzero matri~ with eigenvalues 0 and O. 

bamplc 1 

These matrices 8 all have zero delenninant ( like JI. ). Thoey all ha,'e rank one (li ke AI. 
'Their tract: is cd - cd = O. Their eigenvalues are 0 and 0 (like AI. I chose any M ". 
[: : ] with "'} - be = 1. and B = M -1 AM . 

These matrices B can·t be diagonalized. In fact A is as close to diagonal as 
possible. h is the ··Jtmlan I MIII·· f-x the family of matrices B . Th is is the outstand ing 
me:mber (my d~ ,,",ys ··GOOfather") of the family. The Jordan form J = A is as near 
as "'e can f,:Onle to diagonaJiting t~ matri~s. when lhe..., is only one eigenvector. 

Chapter 7 will eaplain anocher llppI"OIoLh to s imilar matrices. Instead of changing 
variableli by u = Alp. we ··CMllgC tht ba5U·'. In this approach. si mi lar matrices will 
rep...,scm the same: transformatioo of ,,~imcn.ional space. When we choose a basis for 
K", ,,'e gel a malrix . The Standard basis vectoo (AI = / ) lead \0 1-1 AI which is A. 
Other bases lead to similar mattice. 8 = M - 'AM . 

In this "similarity transformation·· from A to 8. §OffiC things change and some 
dQn·t. He..., is a table to show coonectioos bet"·ecn similar malOcc,; A and 8: 

Not chllnjlHl 
Eige",.,.I....s 
TI""3Ce and dctenninam 
R~k 

N~mbcr of independent 
eigem'eCtOl$ 

Jordan fonn 

C hllDIlOO 
Eigenvccto~ 

Nullspace 
Column space 
Row space 
Left nullspace 
Singular valllCS 

, 
i 
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The eigenvalues don'l change for similar matriCl:S; the eigenvectors do. The trace 
is the sum of the I.. 's (unchanged). The determinant is the prodllCl of the s.ame I..'s.t 
The nullspace consi.ru of the eigenvectOl'5 for I.. = 0 (if any). so il can change. Its 
dimension" - ( does not change! The "um~r of eigen\lCClors stays lhe same (or each 
I., while the vectors thems.el'"e$ an: multiplied by M - t . 

The singular "a/un depend on itT A. "'hich definitel y changes. They corne in lhe 
next section. The table suggeStS good exercises in lincar algem. But the last entry in 
the unchanged column- the Jordan form - is lOOn: than an exercise. We lead up to it 
with one morc eumple of similar matrices. 

h"mple 3 This J.,man matrix J has triple cigcn,'alu.e 5. 5.5. Its only eigen\lCCtOl'5 
arc multiples of ( I. O. OJ! Algebraic multiplicity 3, geometric multiplicity I; 

I f )=[~ ~~] 
o 0 , 

then ) - 51 '" [~ ~ ~] has rank 2, 
o 0 0 

Every similar matrix B = M - t ) M has the s.amr: triple eigenvalue 5, 5. 5. Also B - 51 
ntust ha"e the same rank 2. Its nuJlspatt has dirnension J - 2 = 1 So each simi lar 
matrix B also has only one independent eigenvector. 

The transpose matri~ P has the sarne eigenvalu.es 5, 5.5. and JT - 51 hu the 
same rank 2. JorrJa,,'s /Ir~ory UJ:fJ Ilral JT u similar /0 J . The matrix that prodUCI:S 
the similarity happens 10 be the m'trse idtrUiry M; 

All bl~nk (ntnes arc zero. An eigtnvector of JT is M - t (I . O. 0) = (0. O. I) . There is one 
line of eigen'tttGn (X t ' O. 0) (0.- ) aod another line (0. O. Xl) (or ) T. 

The key fact is that this matrix) is similar to t'.'try mat rix It with eigenvalues 
',S.5 and one IiMofeigenvectOQ. 1l>r:1l: is an M wilh M - 'A M _ ) , 

Example 4 Since J is IlS close to dil\ional as we can get. the equation d u/ dl "') u 
cannot be simplified by changing variables. We must solve it as it litand~; 

..!!. .. Ju ., 0 5 I )' d [' I 0] ['] 
dl 005 t 

i. 
dx /dl = 5x +y 
d )'ldl = 5y + ~ 
d~/dl = 5z. 
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The syslem is lriangular. We Ihink nalurall~ of back substil ution. Soh'e the lUi eq ua
tion and work upwards. Main point: AI/ solutions conrai" ~r: 

yields : = :(0).-5' 

"" dl ;5y +< yields )";()"(O) + l l (O»)~ 

"' - = 5.r + y yields ;r; (.r (O) + 1)'(0) + " t!:(O»)rS'. 

"' 
The two missing eifenvectOl"S are n:sponsible fOl the 1.-5' and I!~ tenTIS in y and t . 
The factors I and I enter bocau>c ). ; ~ is a triple eigen"aluc willi one eigenveclor. 

The J ord~n Form 

For evel)' A. ""e wan! 10 dKlC.>Se M 5(> Ihal M- I AM is as IUtJriy diagonol tu possibU. 
When A has a full SCI of" eigen,·ector&. lhey go inlo lhe columns of M . Then M ,., S. 
"The matrix S- I AS is diagonal. period. This malrix is lhe Jordan form of A _ when 
A Can be diagonalized. In lhe general case. eigen"ecIOl"S an: miss ing and A can'l be 
n:achcd. 

Suppose A has J independent eigenvectors. Then it is similar to a matrix wilh J 

blocks. Each block is li ke J in Example 3, 7111' rigetlWJ/ue is 011 the diagonal and rhe 
diagonol aool'e it comain. I·s. This block accounls for one eigen''t'C1Of of A. Wben 
lhen: an: n eigenve<:lors and " blocks, the~ are all I by I. In lhal case J is A. 

6R (Jordan form) If A has J independent eigen,'ectors. il is similar to a malrix J 
thai has .f Jordan block! on ils diagonal' There is a matrix M such that 

]-" 
" 

" ) 
Each block in J has one eigenvalue Ai. one eigen,-ectOl. and I's abo,.., the diagonaL 

,20 

This is the big 1heorem abou1 matrix similarity. In evel)' family of similar mao 
trices. " 'e are pkking one: outstanding member called J. It is nearly diagonal (or if 
possible COmpIC1CI~ diagonal). For that J , we CBn 5(>1", d ll /dr; J u as in Example 4. 

, 
t 
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We ~an \.like IlIJ,,' elS II as in Problems 9-10. E\'eT)' other matrix in the family has the 
fonn A _ ~IJM- I. Th.e cooncelion through M solves d14 /dt .. All . 

Th.e point you must sec is that MJM- 1MJM- I = MJ~M - I. Thai cancellatioo 
of M- I M in the middle has been used through this chapter (when M was 5 ). We found 
A 100 from SA looS- t_by diagooaliung the matrix. Now we can·t quite diagooal izc A. 
So we use MJ IOOM - 1 instead. 

Jordan's TIJeor!,m fiR is proved in my lelltbook U nell' A/gebro and Its Applica, 
l iQtlS, published by Il rool::s..cole. Pkase ...,fer 10 tbat book (or I"IlOIl: advanced books) 
for the: proof. n..: reasoning is rather inlr>cate and in actual oomputalions the Jordan 
form is not at all popular- its calculation is not stable. A slight cbange in A will sepa
nile the ""peated eigenvalues and rem,)\"!, the off-4iagooal '·s-switching to a di agonal 
A. !>To\·ed or not. you have caughl the central idea of similarily- IO make A as simple 
as posllible while preserving iu essential propenies. 

• REVIEW OF THE KEY IDEAS • 

I . B is similar 10 A if B = M - 1A M . for some invcnible matrix M . 

2. Similar matrices bave the same eigenvalues. Eigen,·ectors are multiplied by ,>.,- '. 

) . 'f A has n independent eigenvectors then A is simi lar 10 1\ (take M = 5). 

4. Every matrix is simi lar to a Jordan matrix J (which has 1\ all il5 diagonal pan ). 
J has a block for each eigern-CCior. and I ·s for min ing eigen,-ectors. 

• WORKED EXAMPLES • 

6.6 A n..: 4 by 4 triangular Pascal matrix Pt and its inve~ (alternating di a,gooals) 
~ 

o 0 
I 0 

- 2 I 
3 -3 

Check that PL and PZ I have the same eigenvalues. Find a diagonal matrix 0 with 
alternating signs that gives PZ I = 0 - 1 PLO, SO PL is simi lar to PLI. Show tnat PL D 
with columns of alternating signs is il'i own inve~. PLD is pascill (4. 1) in MATLAB. 

Since PL and PZ I are similar they have the s.ame Jordan form I . Find J by 
cht:<:ldng the number of independent eigen~ors of P~ with J.. = l. 

, 



Solution The triangular malril'Cs PL and 1':1 both h~,'C I.. = l. l. l. I 0fI their 
main diagonab. Choose 0 wilh ahemaling I and - I on ils diagonal. 0 equals 0 - 1: 

- I - I 

Check: Changing ~igns in rows I and 3 of PL. and rolumns I and 3. produces lhe 
fOlir negative entries in I'L l . We are multiplying row j by ( _I)I and column j by 
(_I)i, which gi,'cs the ahernating diagOflals. Then pLO = pascal(/I. I) lias columns 
... ith a/terrll/ting Jigru and equals ils own in"erse! 

PL has OfIly One line of eigen"eclors x = (0. O. o . ..-41, with ).. = I. The rank of 
PL - I is certainly 3. So its Jordan form J has only one bind. (also with ~ .. I): 

Pco"" .I~ P,' •• ~~how ,'mil.,," ,,,,,,,"., Jo [! i 1 n 
6.6 B If A is similar 10 A-I. c:<plain why iu eigenval~s rome in =ipnx~i~ 
I.. = a and I.. = !(a. The 3 by 3 Pascal mat rix Ps has pai~ eigen"aluc:s 4 -+: ./15. 4 -
.,fi3". l. Use PL = 0 - 1 PLO and lhe symmelnc faclonzallon Ps = PL P,T1Il Woned 

Example 2 .6 A 10 pro''C Ihal Ps is Jimi/ur 10 Pil. 

Solution When A has nontcro eigenvalues ~ . , .... 1.. •• its invC1"1lO' has eigenvalues 
1..;-1 .. . ,1..;1. Re.lliOll: Muhiply Ax = I..J: by A - I and ). _ 1 10 gel A- I x =)._ 1 x . 

If A and A-I arc similar they ha,'e the same set uf eigenvalues. So an e'o'en 
number of )"s must pair ofT in the form a and II ... The product (4+ .,fi3")(4 -.,fi3") = 
16 -15= 1 shows that4+,fiS.4 - M.I do pair olf pmpcrly 

The symmetric Pascal malrices have paired ciJcn...alues because I's is similar to 
1';1. To prove this similarity. using 0 = 0 - 1 = 0 .. ,tan from Ps = PL pi: 

This is 1'; 1 = M- I PsM (similar matri~s!) for the matrix M = PL O. 
The eigemll.lucs o f larger mauiees Ps don't have nice formulas. But cig(pascal (/I» 

will oonfinn thaI those eigenvalues come in =illfOCal pairs a and I'a. The Jordao 
fonn o f Ps is the diagonal /I.. btcause symmetric malrices alway. have a complete set 
of eigenvectors. 

C :tpynghted matanal 
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Problem Set 6.6 

1 If 8 = I'>r lAM and also C = N- 18N. whal malri:r.: T gives C = T - I A T1 
Conclusion: If 8 is similar 10 A and C is similar 10 8. then __ . 

2 If C = F -I AF and also C = G-18G. whal malri:r.: M gives 8 = M - I AM1 
Conclusion: If C is similar to A and also to B tllen __ . 

3 Show thai A and 8 are similar by fi nding M so thai 8 = I'>r IA M : 

A _ [I - I :] ~d 8 = [g :] 
A _ [I - I : ] ~d B ~ [ I -I -: ] 
A = [~ :] ~d 8 = [~ n 

4 If a 2 by 2 matrix A has eigenvalues 0 and I. why is it similar to A = rAg]? 
Deduce from Problem 2 that aH2 by 2 matrices with tOOse eigenvalues are similar. 

5 Which of these six matrices are similar? Check: their e igenvalues. 

6 There are sixteen 2 by 2 matrices whose entries are O·s and l·s. Similar matrices 
go into the same family. How many families? How many matrices (total 16) in 
each family? 

7 (a) If x is in the nullspace of A show that M- I x is in the nullspace of M- l AM. 

(b) The nuHspaces of A and M- I AM have the same (vectors )(basis)(dimension). 

8 If A and 8 have the exactly the same eigenvalues and eigenvectors. does A = 8 ? 
With n independent eigenvectors we do have A = B. Find A oF 8 when both 
hal·e eigenvalues 0.0 but only one line of eigenvectors (Xl. 0). 

9 By direct multiplication find Al and AJ and A S when 



Q uestions 10-14 YI'r about the Jordan form. 

10 By di=t multiplication. find 12 and I l when 

11 The text solved du l dr = l u (or a J by J Jordan block I _ Add a founh e<;juation 
dwl dr = 5", + _t . Follow lhe patte rn of solutions for :. y. J: to find w. 

12 These Joruan matms Ita,· .. e igenvalues 0 . 0.0. 0. They Ita,· .. IWO eigen~eclon 
(one from each block). Bullhe block sizes don·1 malch and they aJe /WI similar: 

[ 

0 , 

o 0 
J ~ 

o 0 
o 0 

o 0 1 o 0 

o , 
o 0 

,od 
[

0 , 0 
o 0 , 

K = 0 0 0 

o 0 0 

For any malrix M . compare 1M wilh MK. If lhey are e<;jual show Illat M is 
not invenible. Then M - tI M = K is impossible . 

13 Prove Ihal AT is al .. ·a)·s ~;milar If> A (Wf: knew lhe ,, 's are lhe same): 

I. For one Joruan bloc k Ii: Find M; so that M;- t J;M; = ii (see Example 3). 

2. For any J wilh blocks h Build Mo from bloch IiO Iltat Mo' I Mo = JT. 

3. For any A = M J M - ' . Show Ihal AT is s imilar 10 I T and SOlO J and 10 A. 

14 Find tWO more malrices similar 10 J in Example 3. 

15 Pro,'''' thai deI (A - ).1) = d.et (M - t AM - ).1). (You could wrile I = M - t M aad 
(actor oot d.et M - 1 and detM.) Th is says that A and M - t AM have the same 
characteristic polynomial. So their IUOI S are lhe same eigenvalues. 

16 Which pairs are similar? Choose a. h. c. d to pro'~ that the other pairs aren·1: 

[; ;] [: :] [: :] [; :1 
17 True or fal>c . with a good rea$Qll: 

(a) An inveniblc malri~ can"t be: similar 10 a singular matrix. 

(b) A syn,nletric matri~ can' l be similar to a nonsymmctrie matrix . 

(e) A can·t be similar to - A unless A = O. 

(d ) A can·t be: similar to A + I. 

, 
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18 If B i ~ ilWfftible proYe that ,018 Iws rlre Slime ej8~m'aJues liS 8A. 

19 If A i~ 6 by 4 and 8 is 4 by 6. AB and BA have different sizes. But still 

[~ -~][A: ~][~ ~] = [2 B~] = G. 
(a) What sittt are the blocks of G1 They are the same in each ITUlrix . 

(b) This C<j uation is M- 1 F M = G. so F and G have the same ]0 eigenvalues. 
F has the eigenv:aJues of ,018 plus 4 ~ros; G has the eigenvalues of BA 
plus 6 zeros. A 8 has rlre SDWlt t ;gtm'aluts 11.1 S A pillS __ urrn. 

20 Why are these statements all 1nJe? 

(a) If A is similar 10 8 then A! is simi lar 10 8 1. 

(b) ,oi l and 8 1 can be similar when A and 8 are I>(l( simi lar (Iry 1 = O. 0). 

(c) [::1 is limilar 10 [~!J. 

(d) U~] is I>(l( similar to [Bl 
(e) If we exchange rows 1 and 2 of A. and then exchange columns I and 2. 

the e!gem'a1118 stay the same. 

2 1 If J is the 5 by 5 Jordan block with 1 = O. ftnd J ! and coont its eigenveclors 
and find its Jordan form (twO bloct s). 

C righted matmal 



SINGULAR VALUE DECOMPOSITION (SVD) • 6.7 

1'11.. Singular Val"" Ikcomposilion is a higlllight of linear algebra. A is any m by 
" matrix. square or IUtangular. We will diagonalize it. but 001 by S -t AS. lu row 
spac<: is ,-dimensional (inside R~). hs rolumn s"""",, iii also ,-dimensional (inside R'") . 
W~ are going to d>OO5e special ot1hon_tJl ixlns Pl •.... v, for the row s"""",, and 
" l .. . .. .. , for the rolumn space. For ll\o5e bIlses. we wanl each API to be in the 
dilUtion of " l. In matrix form. Ih~s~ ~qlllJll'ons APj '"" n jll j b«om~ AV = UI:. o~ 

A = UI:.VT. This is the SVO. 

lmagt Compression 

Unusually. I am going to stop the theQry and describe applications. This is the century 
of data, and often thai data is Stored in a matrix. A digital image is ,.,ally a ma',~ 0/ 
p~el ''(Jlun. Each linle picture element or "pixel" has a gray scale numher hetwec.n 
black and white (it has lhree numbers for a color picture). 1'11.. picture might have 
512 "" 29 pixels in each row and 256 '" 28 pixels down each column. We 1Ia,~ a 
256 by 512 pixcl matrix with 2 t7 enulcs! To StOre one picture. tile computer has no 
problem. But if you go in for a CT SCan or Magnetic Resonance. you produce an 
image at every cross o<:ction _ a ton of data. If the pictures .,.., frames in a movie. 30 
frames a second means 108,000 images per hour. Compression is especially needed 
for high definition digital TV. or the equipment could 1101 keep up in real lime. 

What is comp...-s' ion? We wanl to replace thosoe 211 matrix entries by a ~maller 
number . ... irhou, losin8 pictu,., qualit)". A simple way " 'ould be to use larger pixels
replace group$ of four pixels by tlleir a"crage value. This is 4 : 1 compression . But if 
we carry it funher. like 16 : L our image becomes ··bkx:ky"'. We want to replace the 
mn emric! by a smaller number. in a way that the human visual system won', noticc. 

CompreSliicm iii a billion dollar problem and c"cryone has ideas. Later in this 
boot. 1 will describe Fourier transforms (used in Jpeg) and wa~lets (now in JPF.G2000). 
Here " 'e try an SVO approach: R~pltlC~ Ihe 256 il}' 512 p~~1 mdlru by a mlllrix of 
rallk one: a CQI"IIItI limes a row. If this is s~ssful. the storage requi"''"''nt for a 
column and row becomes 256 + 512 (plus i l\~lead of times!). 1'11.. compression ratio 
(256)(512 )/ (256+ 512) is beller than 170 I. Th is is more tllan ,,·c hope for. We 
may actually use five matrices of rank one (50 a malri~ appro~imation of rank 5). 1'11.. 
compression ;s still 34 : I and the crucial q""'tion is the picture quality. 

Where docs ,he SVO come in ' The hu t rtJtlk one approximarion 10 A is Ihe 
matr~ UtUj , r It uses the largcst s ingular value Ut and its left and right singular 
vectors Il t and ' t. 1'11.. best rank 5 approx imation includes n2u2_r + ... + aSl<s.I. 
If " 'c can compute tl\o5e .. ·s and , 's quickly (a big "if' since you will see them B< 

cigcn''eClors for AT A and AAT) then this SVD algorithm is com pel itivc. 
I will mention a different maIn.', one that a library needli to compress. 1'11.. rows 

correspond to key words. 1'11.. columns com:spond to t itl~. in the library. The cntry in 
thi s word·rir/e matrix is a;i = I if word i is in title j (otherwise all = 0). We might 
normalize the co lumns to be unit ''eCIOTS. 50 that long titles don ' t get an advantage. 

" 
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Instead of llie litle, we might use a table of coments or an abstl'1lct that bener captures 
the conlent (Other books might share the title "/Ittroduelion 10 Untar Algtbra". If you 
are searching for the SVO, you want the right book.) Instead of ajj = L the entries 
of A can ioclude the frequenc}" of the search words in each document. 

Once the indexing matrix is created. the search is a linear ~lgebl'1l problem. If 
we use 100,000 words from an English dictionill)' and 2.000.000.000 web pages as 
documems. it is a long search. We need a shortcut. This matrix has to be compressed. 
I will now explain the SVO approach. which gives an optimal low rank approximation 
to A. (It works better for library matrices than for natural images.) There is an ever· 
presenl tradCQff in the cost to compule the u 's and u's. and I hope you wi(] invent a 
bener way. 

The Bases and Ihe SVD 

Start with a 2 by 2 matrix. Let its rank be r = 2, !iO this matrix A is invertible. 
Its row space is the plane R2. We Want ~l and ~1 to be perpendicular unit vectors, 
an orthollOrmal basis. Wt also lI'ant API and A ~ 2 to IN ~rpendicular. (This is the 
tricky part. It is whal makes the bases special.) Then the unit ve1::tors U I = A ~ I/~ A~ I" 

and Ul = AU1/ ~A "211 will be orthonormal. As II. specific example. we work with the 
unsyrrunelric matrix 

(I) 

Fiest point Why not choose OTIC onhogonal basis in Q. instead of two in U and V? 
Bl!cm,u no orthogonal lilli/fix Q ... iII mnkl! Q-l,4, Q diagooo/. We need U-I A V. 

Se<:ond point Why not choose the eigenvectors of A as the basis? Beeausl! thaI ixlsis \ 
is nOI orthonormal. A is not symmetric and we need ""'0 difjl!rl!nI orthogonal matrices. _ 

We are aiming for orthonormal bases that diagonalize A. The two bases will be differenl
one basis cannot do it. When Ihe inputs are v I and V1, the outputs are A" I and A "2. We 
want those 10 Hne up wilh u l and 1,1 1_ The /xlsis >'tctors haw to gi."/! A~l = <fl U) and also 
A 1' 2 = "ZU2. The "singular values" "I and 02 are the lengths IA " II and 1,4, 1121. With " I 
and ~ 2 as columns of V you see what we are asking for: 

(2) 

In matrix notation that is AV = VI:. or V - I,4,V = E. or V lA V = 1: . The diagonal 
matrix E is like A (capital sigma versus capital lambda). E conlains the singular 
m/lles 01. 02. which are different from the eigenvalues At. Al in A. 
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The difference comes from V and V. When they bOlh equal 5. we have 5- 1 AS = A. 
The matrix is diagonaHzed. But the eigenl'ectors in 5 art nOi generally orthononnal. 
The new requirement is that V and V musl IN orthogonal "'alriu s. 

Orthonormal basis (3) 

Thus VTV=I which means VT= V- I. Similarly UTU=I and VT =V- 1. 

6R The Singular Value DuomposiJion (SVD) has orthogonal matrices V and V: 

Av=ur; andthcn A=UI:v-l =ur;vT. (4' 
This is the new factorizalion of A: orthogonnl limes diDgonnl times orthogonnl, 

lbere is a neat way 10 remove U and see V by itself: Multiply AT limes A. 

(5) 

VTu disappears because it equals I. Then r;T is next to r;. Multiplying tbose diag
onal matrices gives c l

2 and cf. That leaves an ordinary diagonalization of tbe crucial 
symmetric matrix AT A. whose eigenvalues are 0 1

2 and of: 

o 1 ' , V. u; (6) 

This is exactly like A = QAQT. BUI the symmetric matrix is nOI A itself. Now the 
symmetric malrix is AT A! Alld Ihe columlls of V are Ihe eigl'1n·t'CIOfS of AT A. 

This tells us how to find V. We are ready to complete the example. 

Example 1 Find the singular value decomposition of A = [J i]. 
Solut ion Compute AT A and its eigenvectors. Then make them unit vectors: 

has unit cigenveclOrs [,/,f'ij III = 1/ ./2 00' [-l/,f'ij Uz = 1/ ./2 . 

The eigenvalues of AT A are 8 and 2. The ~ 's are perpendicular. because eigenvectors 
of every symmetric matrix are perpendicular-and AT A is automatically symmetric. 

What about UI and u 2'l They are quick to lind. because AUI is going to be in 
the direction nf II I and Av! is in the direction of U!: 
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A - - -- - . 
VT r 
~ ~ 

" f r f '\ 

--., " "- / 

---------V 

Figure 6.5 U and V are rotations and reHections. 1: is a stretching matrix. 

Clearly AUt is the same a. 2J2u!. The first singular value is 0"1 = 2..12. Then "r = 8. 
which is the eigenvalue of AT A. We have A UI = "I U t exactly as required. Similarly 

Now AU2 is ..nU2. The second singular va lue is <1"2 = J2. And <I"~ agrees with the 
olher eigenvalue 2 of AT A . We have completed the SVO: • 

" ][ 
11J'i 

..12 -1/..12 
l l l'i] 
l / I'i . (7) 

This matri~. and every im'ertible 2 by 2 matrix. trans/onus the unil circle to 011 ellipse. 
You can ~ that in the fi gure. which was created by Cliff Long and Tom Hem. 

One final point about that example. We found the u 's from the v·s. Could we 
find the u 's directly,! Yes. by multiplying AAT instead of ATA: 

This time it is I,TV = f that disappean. Multiplying rrT gives O"~ and <1"1 as before. 
The co/"mns of U art' the eige""l!(lOr$ of AAT: 

AAT = [ , 
- I 

'][' -1] _[80] 121-02' 

This matrix happens 10 be diagonal. Its eigenvectors are ( I. 0) and (0. I). This agrees 
with U t and U z found earlier. Why should we take the first eigenvector to be ( 1.0) 
instead of (0. 1)1 Because we have to follow the order of the eigenvalues. NOIice that 
AAT has the SlIme eigenvalues (8 and 2) as AT A . The singular values are ./8 and ./i. 
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row space - -

/ 

nullspace 

\ 

\ 

\ 

.,=.i[ I] " -, 
nullspace of AT 

-column space --

Figure 6.6 The SVD cllooscs orthononnal bases for 4 subspaces so that APj = (Ti llj, 

hample 2 Find the SVD of the singular matrix A = [t f ]. The rank is r = I. The 
row space lias only one basis vector " 1. The column space lias only one basis veclor 
101 1. We can see lhose vectors (I, I ) and (2. 1) in A. and make them into unit vectors: 

Column space U l = ~ [n 
Then AIIJ mUSI equal 01 1l J. Jt does, with OJ = .JTO, This A is (T1 101 1 liT with rank 1. 

The SVD CQ\Ild stop after the row basis and column basis (it usually doesn·t). 
I t is CUStomary for U and V to be square. The matrices need a SC(:ond column. 'The 
vector "2 must be orthogonal to Dj. and 101 2 musl be orthogonal to " 1: 

,,' 
Tht IItIctor III is in the nullspau. It is perperKIicular to V1 in the row spa~. Multiply 
by A 10 get All! = O. We could say thai the second singular val~ is 02 = O. but 
singular values an: like pivots-only the r nonzeros are counted. 

All three matrices U. I:. V are 2 by 2 in the complete SVD: 

']=UH,=_I [' IJ[M 0J_I [I I] 
I .j5 I -2 0 0 ..ti 1 -I . 

(9) 

65 The mDlrU:es U ond V eontlJin orthonormal basu for all f oUT subspaces: 

fin ' , columns of V : row space of A 

I~' " -, columns of V : nullspace of A 

"", , columns of U : column space of A 

I~' m- , columns of U : nullspace of AT. 
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The first columns PI , ... . v, and U I ..... U, are eigenvectors of AT A and AA T. 
Then AVj falls in the direelion of Uj. and we now explain why. The last v's and u 's (in 
Ihe nullspaces) are easier. As long as those are orthonormal. the SVO will be correct. 

Proof of SVD: Start from ATA ul = ulul. which gives the 11 '5 and u's. To prove 
Ihat AUi = Uj Ui. Ihe key sleps are to multiply by uT and by A: 

(10) 

Equation (10) used the small trick: of placing parentheses in (vT AT)(AV;). This is a 
vector AUj times its transpose. giving "Alii U2. Equation (II) placed ~ parentheses in 
(AAT)(AII;j. This shows that APj is an eigenvector of AAT. We divide by its length 
Ui 10 gel the unit vector Uj = A Vj /0;. This is the equation A Vi = OjUj that we want! 
It says that A is diagonalized by lhese outstanding bases. 

I will give you my opinion directly. The SVO is the climllX of Ihis linear al
gebra CQUfSC. I think of il as Ihe final step in the Fundamental Theorem. First come 
the dimMsioru of the four subspaces. Then their orrhogonality. Then the orllwnormal 
bases which diagonaliz~ A . II is all in the fonnula A = V I: VT. More applications 
are ooming-thcy are certainly important-but you have made it to the top. 

Eigshow (Pari 2) 

Section 6.1 described the MATLAS demo called eigsbow. The first option is eig. wben x 
moves in a circle and Ax follows on an ellipse. lbe second oplion is n'd, wilen two veclOrs 
x and y stay JlCipl:ndicular as they travel around a circle. lben Ax and Ay move too (not 
usually perpendicular). There are four vectors on the screen. 

The SVO is seen graphically when Ax is perpendicular to Ay. Their directions 
at that momenl give an orthonormal basis Ut. Ul. Their lengths give the singular values 
aj.a2. The vectors x and y at thai same moment are tile onhononnal basis UI, ~ 2. 

The Java demo on web.mit.edull8.06Iwww shows Alii = "l UI and AV2 = 0"2 U2. 

In matrix language thai is AV = VI:. This is Ihe SVD. 

1= (0. 1) Ay= (2. t ) -

Ax = (2.-1) 



St>~ rching (he Web 

I will ~nd with an applicalion of lhe SVD 10 web scarch engines. When you Iype a 
§carch word. yoo gCI a lisl of related wcb silcs in order of impo<U'lIX. (Rc~{(~bly. 

I)ping "SVO" produced 13 OOI1·rrtIllhemalical SVO's before lhe real onc. "Cofsclors" 
waS c,'en wOfSe bul ~oofaclo'" had one good entry. "Four subspaces" did much beue •. ) 
~ HITS algorilhm 1 .... 1 We de.s<;ribc is one way 10 prod~ thai ranked tiSI. It begins 
v.ilh aboul 200 sill's found from an index of key words, ~nd afler Ihal we look only 
at links belween pages. HITS is link-based not conlenl·based. 

Sian with lhe 200 sill'S and all sites thai link 10 lhem and all sires they link 10. 
ThaI is oor list. 10 be pul in o.der. Imponance ean be ~asured in lWO ways: 

I. Tne si ll' is an ou/harily: links ro"" fr"'" mon)" silt$. Es~ially from hubs. 

2, lloc 5;11' is a hub: il links to ",an)" s;us in Ihr liJl. Es~ially 10 authorilies. 

We wam numbers .<1, _ •• , x .• - 10 rank lhe: aUlhorilies and ,." _. _ ,!t,' 10 rank lhe hubs. 
SUtrt with a si mpk coon!: xf and ,1 counl lhe links inlO and 0111 of sill' ;. 

~Iere is lhe poin!: A good autlroriry lras nnks from ;mpom"'t ,iu, (like hubs). 
Lints from uni""rsille$ , oum more heavily than links from friends. A good hub is 
IinW 10 importu", sitrs (like aUlhori!ies). A link '0 amazon.rom ~an. rroore lhan 
• link 10 v.·~lIeslt:ycambridge.com. 'I'll<: rankings x· and y' from counling links are 
u(Xbled 10 Xl and ,. ' by taking acroonl of gOO/I links ( ~asuring lheir qualilY by x · 
and ,'): 

Authority \1I1ut5 xt
l .. L yJ 
J _ .. I 

l.Iu b , '. Iues 'I' .. L xJ 
1_ .. J 

(12) 

In m.atri~ language I~ are X l .. AT ,f and ,1 .. AX' . llIe malri~ A conlain. 1'5 
and 0 '5. wilh ulI = I when i Hnks 10 j. In lhe language of graphs. A is an "adjacency 
malri~" for lhe World Wide Web. It is prelly large. 

l1It algorilhm doesn'l SlOP l~. l1It ntW x' and ,.t give betler ran kings. bul 
,lOt lhe be~ . Take another Slep like (12) 10 X Z and ,I. NOIiu Ito .. · AT A and AAT 
apfN"r: . ., ( 13) 

In IWO Sleps we are m~lliplyin8 x· by AT A and , . by AAT. In lwemy steps we 
an: multiplying by (ATA)IO and {A AT)lO. When we take these powers. lhe lUE1'S1 
eigen"alue all begin.> 10 dominate. And lhe ,"«tors x and , gradually line up Wilh the 
leading eigenveclors ' I and " I of AT A and AAT. We are "",,,puling (he lOp lerms in 
lhe: SVO ilerali,..,ly_ by lhe po ... ~r mt'thod Ihal is funher discussed in Section 9.3. It 
is ... ~rful lhal lintar 31~bra helps 10 undersland lhe Web. 

(}oQgl~ aclually Creale~ rankings by a random walk Ihal follows wcb linu. llIe 
more of len Ihis random walk goes 10 a sile. lhe higher lhe ranking. llIe fmjucncy of 
,-isies gi~es lhe leading eigcn,"«!or (l = I) of lhe nonnalized adjacency matrix for lhe 

, " 
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Web. Thm matrix has 2.7 billion rows OM columns, from 2.7 billion web silts. Thi$ 
is the largest eigenvalue problem ever solved. 

Some details are on the Web, but many important techniques are secrets of Google: 
wvw.mathworks.com/company/newsletter/clevescorner/oct02_cleve.shtml 
Probably Google staru with lut momh's eigenvector u a first approximation. and runs 
the random walk vel)' fas!. To get a high ranking. yOll want a lot of links from im
po"an! sites. lhe HITS algorithm is described in the 1999 ScienTific Amtrican (June 
16). But I don'] think the SVO is mentioned there .. 

• REVIEW OF THE KEY IDEAS • 

I. lhe SVO factors A into UI:yT. with r singular value$ 01 '! ... :! 0, > O. 

2. lhe numbers of .. ... a; are the nollLCro eigenvalues of AAT and AT A. 

3. lbe onhononnal columns of U and Y are eigenvectors of AAT and AT A. 

4. TItosc columns are onhononnal bases for the four fundamental subspaces of A. 

S. TItosc bases diagonalize the matru.: Au, = a/u ( for i .:5 r. This is AY = VI:. 

• WORKED EXAMPLES • 

6.7 A Identify by name these decompositions A = Cl ' l + ... + c. ' . of an n by n 
matri)( into n rank one matrices (column c times row , ): 

I. Orthogonal columns Cl •.. .. cn and orthogonal rows ' 1 .... . r. 
2. Orthogorwl columns cl •... . c. and /riangula, rows ' I ..... ' . 

3. Triangular columns ej, .•. • c. and t,iangular rows ' I .. .. .Tn 

Triangular means that CI and r i have zeros before component i. The matrix. C with 
columns c / is lower triangular. the matri)( R with rows ' I is upper triangular. Where 
do the rank and the pivots and singular values come into this picture? 

Solution These three splinings A = C R are basic 10 linear algebra. pure or applied: 

1. Singular Value Decomposition A = UI:yT (or/hogorwl U, of/hogorwl I:yT) 

2. Gram-Schmidt Onhogonaliution A = QR (orthogorwl Q. triangUlaf R) 

3. Gaussian Elimination A = LV (triangular L. rriangular U) 

When A (possibly rectangular) has rank f , we need only r ran};; one matrices (no( n ). 



With orthonormal I'QW$ in VT• the a 's in :£ come in: A = at Ct' t + .. , +a~c.,~, 
With diagonal I '5 in L and U. the pivOis dj come in : A = LDU = dlcl " + , .. + 
d.c. ,~. Wilh the diagonal of R placed in H. QR becomes QHR = h, c ,r , + .. . + 
h~c~ ,~. TIle~ numbers hi have 00 slandarll nlUne and I propose "heighu". Each h i 
tells the height of column; 300...., the base from lhe firsl j - I columns. TIle volume 
of the full n..dimensional box comes from A:= U :£VT = LDU = QHR: 

I del A I_I product of a '$ I_I product of d "s I_I product of h 's I. 

Problem Set 6.7 

l'robkms 1-3 coml/ule Ihe SVD of II squa~ s ingular malrix A . 

1 C{)mpUI~ ATA and ils c igen'1iI1l>CS al.O and unil eigenvectors VI. ~l: 

A:=[~ :l 
2 (a) Compute AAT and ilS eige"value~ a,l,O and unit ";genvcctors U I. Ul. 

(b) V"";fy fmm Pmblcm I that Ap , = a l" ' . Find all enlries in ,he SVD: 

3 Wrile down o nllononnal bases for ,he four fundamental subspaces of this A . 

Problems "-1 ask ror the SVD or IDII.trlces of niDI. 2. 

4 (a) Find the eigcn\1iIlues and unit ci8<'nv«\Ors of ATA and AAT for lhe Fi. 
bonacci matrix 

A- ["] - I 0 

(b) Conmuci lhe singular value dc<:omposilion of A . 

.'; Show that the ... ,ctors in Pmblem 4 salisfy A p, = a, ,, , and APl =a2"2' 
6 Use the SVD pari of the MATLAB demo elgsho,," 10 lind ,he same vectors v, 

and ' 2 graphically. 

i Compute AT A and /I/IT and their cigcnvalt>es and unit ci8<'nvectors for 

A _ [~ : i]. 
Multipl y the Ilu~ malrices UI:VT 1<:> ~CT A. 

I'roblems 8-15 bring oul the undertyin~ Ideas of the S"D. 

8 Suppose U I •...• u. and P, •... ,'. are OI1hooormal bases for R". Construct lhe 
ma,ri~ A .hal 'ra",form. e""h Vi inlO u i to give A" , _ If, ... , . A v~ = u •. 

, 
i 
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'} Construct the matrix with rank ODe that has A p ::0 12 .. for p ::0 ! (I. I. I. I) and 

" ., !(2, 2. 1).115 .... Iy singular value is 0', "" _ _ . 

10 SupPCI5e A has onhogooal columns ." . .,/ .. . .. ... of lengths 0".0'2 •... • ". • . 

What are U . E. and V in the SVD? 

11 Explain how the SVD expres!iO!"s the matrix A as the sum of r rank ooe matrices: 

12 Suppose A is a 2 by 2 synunetnc matrix with unit ~ig~n>·t"Ctors " , and " / . If 
ilS ~igenvalun are 1..) _ 3 and 1.. /::0 -2. " 'hal a~ the matrices U. E. y T in ilS 
SVD? 

13 If A '" Q R wilh an onhononnal malrix Q. then the SVD of A is almost the same 
as the SVD of R. Which of the three matrices in the SVD is changed b«au>e 
of Q? 

14 Suppose A is invertible (wi th 0'1 > "'"I > 0). Change A by as small a malrix as 
pOSsible to produce a singular matrix Ao. Hint: U and Y do not change: 

15 (a) If A changes to 4A. what is the change in the SVD? 

(h) What is the SVO for AT and for A-I? 

16 Why doesn't the SVD for A + I juS! u>e E + I? 

17 (MATLA8) Run a random walk Slarling from web site .. ( I ) '" I and recortl the 
visits to each site. From the site .. (i - l) = I. 2. 3. or 4 the code chooses .. (i) 
witb probabililks given by column .. (i - I ) of A. At the ~nd P gi>"" the fn.o:: lion 
of time aI each sile from a histogram (and A p "" p - please check this steady 
state eigenvector): 

A =IO .1 .2.7; .050.15.8: .15.250.6; .1 .3 .60 ]'::0 

,, = 1000; .. = zeros(l . II ); x (l ) .. I; 
for i = 2:" .. (1: ),., min(find(ra nd « um$lJm(A(:. x(1: - I))))): end 
p = hist(x. I : 4)/ " 

How a~ the properties of a matrix reflected in its eigenval~ and eig~nvectors? 

This questi .... is fundamental throughoul Chapler 6. A table tllal O!J!anizes the key facts 
may be helpful. For each class of matrices. he~ are the special properties of the eigen. 
values J.j and eigenvectors X I. 

, 
t 
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Symmetric: 
AT =A 

Orthogonal: 
QT = Q _l 

Skew-symmetric: 
AT =-A 

Complex Hermitian: 
AT =A 

Posith'e Definite: 
xTA.r >O 

Markov: 
m ij > O. L:7. , m ij = I 
Similar: 

8 = M-1AM 

Projection: 
p = p 2 = pT 

ReHecUon: 
, _ 2u uT 

Rank One: 

",' 
Inverse: 

Shift: 
A+cI 

Stable Powen: 
A" --0 0 

Stable Exponential: 
t Al .... 0 

Cyelic Permutation: 
P(l .... n)=(2 .... n. I) 

Tridiagonal: 

- 1. 2. - 1 on diagonals 

Diagonalizable: 
SAS- 1 

Symmetric: 
QAQT 

Jordan: 
J = M - 1AM 

Every Matrix: 
A = UI:yT 

real)" 's 

ail 1)"1 = I 

imaginary )"'s 

real)" 's 

all ),,>O 

)"max = I 

),,(8 ) = )"(A ) 

)" = I: 0 

),, = -1 : 1. .. . 1 

l i MA) 

)" (A ) + c 

all 1)" 1 < I 

alJRt .l.<O 

krr 
)" .. =2 -2005-, + I 

diagonal of A 

diagonal of A (real ) 

orthogonal x r x j = 0 

orthogonal xix j = 0 

orthogonal xi .r j = 0 

orthogonal xi.r j = 0 

orthogonal 

steady state .r > 0 

column Spll«': nuilspace 

u: .. .I. 

eigenvC<:tors of A 

eigenvectors of A 

( 
b 2b ) 

x .. = sinn+l ,sin
n

+
I 
.... 

oolumns of S arc independent 

oolumns of Q arc onhonormal 

diagonal of J eacb block gives .r = (0 , ' __ 1, .. ,0) 

mnk(A) = rank{I: ) eigenvectors of AT A. AAT in y. U 



7 
LINEAR TRANSFORMATIONS 

THE IDEA OF A LINEAR TRANSFORMATION. 7.1 

When a matrix II multiplies a ''ector ~. it "transforms" ~ into another ,,,,,tor AD 
In g~s 1>. 11U1 rom~s Ill>. This tJ1Ulsfomtalion follows the same idea as a function. 
In goes a number.t. OUt comeii !(x ). For one VttIOl" 1> o r one number x, we multiply 
b~ the matrix or we evaluate the function. n.e d«per goal is to see all U"!i at once. 
We an: (ransfanning the whole Sp"''''' when .,',c multiply every 1> by A . 

Stan again with a matrix A. II transfonns r to Al> . lltransforms III to II.,. Then 
we know what happens to II = 1> + Ill . 1llere is no doubl about Au , il has 10 equal 
Au + II .. , Matrix multiplication T{p) = Au gives a linN' lransformotio,, : 

DEFINITION A trllllsform.alion T assigns an output T( 1)) to each mput "ector u. 
llte tran.fOnTllllion is /i"etlr if '( meets these l"e<:juifl:l11CntS for all u and Ill' 

(a) T( l> + Ill ) = T( p) + T ( w ) (b) T«(1» = "T(1I) for all r. 

If the input is 1> = O. the Otltput muSt be T( p) = O. We t"Ombine (a) and (b) into one: 

Again I tcst matrix multiplication: A(cp +dWl ) =cAp + dA Wl is Ir"~. 
A linear tntJlsfonnation is lIiglll~ restricted. Suppose T adds " 0 to e'·ery ,·ecI01". 

1lIcn T (p) = p + " 0 and T (Wl) = III + " 0. This isn·t good. or 3t IC3St it isn·/ line/lr. 
Appl~ing T to p + Wl prodoces p + .. + " 0. That is 001 the wne as T(u) + T ( .. ): 

U+Wl + UO is different from T(. ) + T( III ) = U + " 0 + .. + " 0. 

1lIc exception is when uo = O. The transformation redoces to T ( . ) = o. This is the 
idenlity IMlIs/ormatioll (lIOIhing mo~s. as in multiplication b~ I). ThaI is ccnainl~ 
linear. III this case lhe inpul space V is tile same as the OUlput space W. 

363 
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The linear-plu~·shin tmllsfonnatioo T(.) = Au + u o is called ""ffiM"· Straight 
lines stay stmight although T is 001 linear. Compu(er graphics works wi(h affioc (rans· 
formations. The shif( to compu(er graphics is in Section 8.6. 

h~mple 1 Choose a fixed , ·ector II = ( 1. 3. 4). and let T (u) be ttw:. dot product " . 0: 

The OU(PU( is TCp) = IJ · , = ~I + 31>.! + 4~J . 

This i, Ijn~ur. TIle inpu(s • come from (hree-dimcnsional space. SO V = R ). The 
outputs are just numbrrs. SO the OUIPU( space is W = lot i. We an: multiplying by the 
mwmatrixA=11 34)."fhenT(.)_A • . 

You will get good at =ogni7.ing .... hich transformations an: linear. If ttw:. outpU( 
invoh"t'S squares or products Of lengths. ~f or ~tl>.! Of I . g. then T is not linear. 
hample 2 The length T (.) = ". 1 is not linear. Requireme:nt (a) fOf linearity .... ould 
be g. + "1'"' I" + 01111. Requiremcn( (b) .... ould be ~c ' l =cO. I. Both are fal~! 

NOI tal: The sides. of a triangle satisfy an in,qUldiry g. + 111 1:;: 1. 1 + li to l . 
NQ/ (b): The length I - un is not - 1' 1. For negati'"e c. we fail. 

hampLe l (lmponant) T is the transformation that ",Ulr,s n·"y ,w;lOr by 30". The 
domain is the xy plane (where the input vector u is). The range is also (he x y plane 
(,,·here the rotated \"«(or T(. ) is). We: described T witliou( mentioning a matrix: just 
rotate (he plane by 30". 

t. miMI;"" I;""ar? Yn It 1$. We can rotale Iwo veclors and IOdd the results. T1>c 
sum of rotalions T(o ) + T( .. ) is the same as dlC rotation T(. + III) of the sum. The 
.... hole plane is turning t"",ther. in thi s line~r inUlsfonnalKm. 
Note Transformations ha'"e a language of their O\I·n. Where there is 00 matrix. We 
can·t talk about a column space. But (he idea can be: rescued and used. The: col 
ul1tn spac\' consisted of all outputs Au. The nullspact' consisccd of all inputs for which 
A. _ O. Translace those imo ··range·· and "'kerner·: 

HlJngr of T = ~t of all oucputs T(. ): corresponds co column space 

Kr ,."t/ of T " §(:c of all inpucs for ..... hich T(.) = 0 : COIl"t'Sponds to nul!space. 

The range is in the oucput space W. The: kernel i~ in the inpu( space V. When T is mul 
tiplication by a matri~. T (.) = A_. you can translate to column space and nullspace. 

For an m by " macri~. the nullspace is a subspace of V = K". The column space 
i< a subspace of . "The range: mighl or might not be the whole Outpul space W. 

h~mples of Transformations (mostly linear) 

hample 4 Project t"<ery J-di mensional ,·ectDr <Iown ooto che x )" pl~ne. The: range: is 
lnal pla'tC. which comains e"ery 1"(u). The kernel is the : ""is (which projects down 
to u ro). Thi s projection is linear. 

hample 5 Projec( .... cry 3-dimcllsional veclor onto lhe horizoncal plB"" ~ _ I. The: 
vector u = (x . y.: ) is transformed (0 T(.) = (x.)". I). This transformation is no1 

linear. Why nor? It !Iocs,,·t ,,'·cn lransform • = 0 into T (u) = O. 

, 



7.1 The Ide, of , U""., Tr>Miorm.o!ior> 16S 

MultIpl y e'ery 3-dimensional veclQr by a 1 by 3 ma!n~ A This is <J..fini!ely B 
linear transformalion! 

T (e + "') = A(o + "') y,hich does equal Au + A III = T (o) + T (IlI ). 

bample 6 Suppose A is an jm'uribl~ mtJlrU. n.e kernel of T is lhc: zero vec!Qr; !he 
range W equals the dorn.a.in V. Another linear transfOTTlu"ion is multiplication by A - , . 
This is the i~n~ tmnsf _tIIioll T - ', which brings every ,'«lor T (o) bock to.: 

T - '(T (.») = 0 matches the matrix multiplication A - '(A') = •. 

We are reaching an unavoidable queSlion. A,.,. all liMilT tNlfIqa,..".tIliolls pro
duud bJ _rius! Each m by " matrix does produce a linear transformation from 
V = R· to W = R'". Our question is lhe conVeTSC. When a linear T is described as 
B "roulion" or ~projection " or " .. . ~. is there always a matrix hiding behind T? 

The answer iii yes. This is all approach to linear algebra that doesn'l stan with 
matl"i«s. The nexi section shows til.al we sti ll end up with matnce-s. 

linear TramfOl"maliom of the Plane 

It is mort' interesting to su a transformation than to <J..fine it. When a 2 by 2 matrix 
A mul1iplies all vectors in R2, we can walch how il acts. Stan with a "housc" that 
has tlevcn endpoints. Those eleven vectors 0 are transformw into elewlI ,'«tors A • . 
Straight lines belween ,'s become straight lines between thc: transformed vectors A • . 
(The transformation from housc to housc is linear! ) Applying" to a standard housc 
prodUttS a new housc - pou ibly stretd .ro or routed or otherwise unlivable. 

This pan of the book is visual. 001 theoretical. We wi ll show six houses and the 
matrices thaI prodUtt them. The columns of H all: lhc: clewn circled points of the fiJ$l 
housc. (II is 2 by 12. IiO piot2d will connect the [llh circle 10 Ihc: 6JS1..) The 11 points 
in the house matrix H are mulliplied by A to produce the OIher houscs. The houscs 
on the COVCT of the book were product:d this way (before Christine Cunis !urned them 
into a quill for Professor Cunis). H is in the Teaching Code ~. 

[
-6 

H = -7 
-6 -7 , o 

• 
, 6 6 -1 -3 0 0 - 6J 

2 -7 -7 -2 -2 -7 - 7 . 

• REVIEW OF THE KEY IDEAS • 

I. A transfOl"TTWion T ur.k~s e""h ~ in the input space to T(,) in t~ ou tput space. 

2. Linearity requires that T (ct gl + ... + c. g. ) = ct T (pLl + ... +c. T ( •• ). 

J. The transformation T(.) = A , + '0 is linear only if ~O = 0 ! 

4. The quilt on the book cover shows T(house) '" All fQr nine nwrkes A. 

, 
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, _ [' 0] - 0 , 

,_[0 '] - , 0 

_ [ 07 0.'] 
A - -0.3 0.9 

- sin 350] 
roo 35· 

, _ [0.7 0.3] 
- 0.3 0.7 

"] 0.3 

Figu,,, 7. 1 Linear uan~formalions of a OOuSoe drawn by plot2d(A. H ). 

• WO RKED EXAMPLES • 

7 .1 A 11lc malrix Dn giY~s. ~ht .. ring t1'rlllVOntllUWfl T(x.),) = ( ... . 3.r +)'). 
Oraw (he.ry plane and show what hawns to ( 1.0) and (2.0) on the X uis. What 
happens 10 lhe poinu on lhe venieal liBeli X = 0 and x = a? If the inputs fill tile unit 
squ~ O!: .. ::; I . 0 ::; )' ::; I. draw the OUlpll15 ( !he transformed squm:). 

Solution ThC' points (1.0) and (2. 0) on the .. axis transform by T 10 (1.3) and 
(2.6). The hori:rontaJ .. a~i s trandonns to the straight line with slope 3 (going \tuuugh 
(0. 0) of course), The points on [he )' axis ~ nOi mm'~d because nO. ).j _ (0. r ). 

TIle )' axis is the line of eigcm"«IOf$ o f T wilh J. = L 

t 



11le vertical linc x = a is moved up by 3a. s inoce 3<, is added to lhe y component. 
This i~ the "shearing". Vertical lines slide higher and higher as you go from left 10 

righl. 
The unil square has one side on the y a~is (unchanged). The opposite side from 

(1 . 0) to (I. I) moves upward. to go from ( I. 3) to ( I, 4). The transformed square has 
a lower side from (0. 0) 10 ( I. 3) and a parallel upper side from CO. I) to (1. 4). It is 
a parallelogram. Multiplication by lilly A transfQmlS square. to parallelograms~ 

7.1 B A nonlinfar lransl'ornlal;on T is invertible if every b in the output space 
comes from e~lICt ly one X in the input spa«: T (x ) = b always has exactly one _ 
lution . Which of these transformatioM (on real numbers xl is inVf:rtible and what is 
T - I? None are linear. not even Tl . When you $Olve T (x) = b. you are invc rting T : 

Solution T, is not in'"ertible because x2 = I has /WI, $Olutions (and x2 = - I has aa 
$Olution ). T4 is not invenible because r = - 1 has no solution. (If the output space 
chllllges 10 po.I;I;'~ b's then the iIWcrsc of r '" b is x = In b. ) NOIice that Ti = 
identity. But Tl (x ) = x + 18. What are r l(x) and T}? 

T2. Tl . T~ are in'"Cnible. The solutions to x l = b and x + 9 == b and ~ = b are 
unique: 

Problem Set 7. 1 

1 A linear tr.llIsformalion must leave the ttro ''Ktor fixed; T(O) = O. Prove this 
from T(~ + .. ) _ T ( _) + T ( .. ) by c lw.>ooing .. ___ . !'rove it abo from 
requirement (b) b~ choosing r = __ , 

2 Requirement (b) gi'ICs T (c. ) = CT( D) and al$O T (d .. ) = dT(III ). Then b~ addi
tion. requirement (I) gives T( ) ". ( ). What is T(u + d ill + ~II )? 

3 Which of lhese transfonnations is not linear? The input i ~ ~ = (VI. I>.!): 

fa) T(.) = ( I>.!. Vt ) 

(d) n_) = (0. I). 

(b) T ( r )=(vl.vl) (e) T(.) = (0. Vt) 

, 
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4 If S and l' are li near !r.u\sforma!iOllS. is S(1'( . )) linear or quadratic? 

(I) (Special case) If Sf ' ) =, and 1'( . )"", v. !t.:n S{T( . )) =. or r? 
(b) (General case) st_ 1 + - 1) = S(_ il+S(_ l ) and 1'( '1 + ' 2) = 1'( ' 1)+ T('2) 

combine inlo 

S(T{' I + ' 1»'" S( __ ' " __ + __ . 

5 Suppose 1'( . ) "'. e.teepl !hal 1'(0. ",,) '" (0. 0 ). Show Ihal Ihis Inlnsformaiioo 
satisfies 1'(c. ) = eT(.) but no! 1'( . + _) = 1'( . ) + 1'( _ ). 

" Which of these Inlnsforma! il)lls SJltisfy 1'( , + _ ) = 1'(.)+ 1'(- ) and which SJllisfy 
T (e .) = cT( , )? 

(., 
(d) 

(b) 1'( . ) = " 1+IIl+ ~J 
1'( . ) = larges! compOnent of , . 

'0' 

7 For these Inlnsfonna!iOlls of V = R2 10 W = R2. find 1'(1'(.». b Ihis transfor
ma!ion 1'2 linear? 

(I) 1'( . ) = - , (b) 1'(.) = , + ( I. I) 

(e) 1'( . )., 90" ""I lion., (-"". VI) 

(d) 1'( , ),., projection = ( Ol i "'. ~) . 

8 Find It.: range and ke rnel (li ke lhe C(Ilumn space and nullspace) of 1': 

(Il T(vi. Ill) = ( .'1. VI) (h) 1'(" 1. ' '2. vJ): (VI. Ill) 

(e) 1'(vl. Ill) = (0 . 0) (d ) T(ul. I'l) " (VI. VI). 

9 The "cyclic" transfonnalion l' is defined by T(vl. ' '2. "3)'" (1)2. 111. VI). Wha! is 
T (T (.» ? What is T 3( . )? What i. 1'100( . )7 Apply l' th= limes and 100 limes 

\0 •. 

. 10 A linear transformation from V 10 W has an im'ers~ from W 10 V when the range 
is all of W and lhe kernel COfltains only, = O. Why are lhese tnmsformalions 
no! in~e"ible'! 

(a) 1'(Vt. I'l l = (I'l. I'l) 

(b) T (vi. I'll = (VI. I'l. VI + I!:!) 
(e) T (v l.I'l) = III 

W = Rl 

W = R) 

W = RI 

11 If 1'( . ) = A, and A is", by M. then T is " multiplication by A." 

(a) What are lhe input and output spaces V and W 7 

(b) Why is range of T = C(Ilumn space of A7 

(e ) Why is kernel of l' = nullspace of A? 

, 



7. t The t de~ 01 a linG' T.ansformation 369 

12 Suppose a linear T transforms (1.1) to (2,2) and (2.0) to (0.0). Find T(,,) 
when 

(a) ~ = (2,2) (b) 1/ = (3, I) (e) v = (-1.1 ) (d) v = (ll . b). 

Problems 13-20 may be harder. The input space V contains aU 2 by 2 malrices M. 

13 M is any 2 by 2 matm and A = [~n The transformation T is defined by 
T(M) = AM. What rules of matrix multiplication show that T is linear? 

14 Suppose A = [Hl. Show that the range of T is the whole matrilt space V and 
the kernel is the zero matrix: 

15 

1. 

(I) 1f.A M = 0 prove that M must be the zero matrix. 

(2) Find a solution to AM = B for any 2 by 2 matm B. 

Suppose A = un Show that the identity matrix J is nO! in the range of T. 
Find a non;rero matrix M such that T(M) = AM is ;rero. 

SUfpose T tTllnsposes every matrix M . Try to firK! a matrix A which gives AM = 
M for every M. Show that no matrix A will do it. To professors: Is this II. linear 
transformation that doesn't corne from a matrix? 

17 The lransfonnation T that transposes every matrix is definitely linear. Which of 
these extra. propenies are true? 

Ca) Tl = identity transformation. 

(b) The kernel of T is the ;rero matrix. 

(e) Every matrix is in the nrnge of T. 

(d) T(M) = - M is impossible. 

18 Suppose T(M) = [U][M](gf]. Find a matrix with T(M) I- O. Describe all 
matrices with T CM ) = 0 (the kernel of T) and all output matrices T CM) (the 
range of 7). 

19 If A I- 0 and B I- 0 then there is a matrix M such thaI AM B I- O. Show by 
example that M = / might fail. For your example find an M that succeeds. 

20 If A and B are invertible and T(M ) = AM B, find T - l{M ) in the form ( )M ( ). 

Questions 21-27 are about house transformations AH, The outpulis T (house). 

21 How can you tell from the picture of T (house) that A IS 

(a) a diagonal matrix? 

(b) a nmk-one matrix? 

(c) a lower triangular matrix? 



22 Draw a picture of T (house) for the;;(, matrices: 

D-[' 0] - 0 , d [ " ] an ,01 "".3.3 

21 What an: the conditions 00 A = l: ~ 1 10 ellJure lila! T (house) win 

(a) sit straight up? 

(b) expand the house by 3 in all directions? 

{e l roIate tile house with no change in ils s~? 

2 01 What an: tile ronditiOll~ on del A = ",/ - Ix' to ensure !hal T (house) will 

(al "" squashed omo a line? 
(b) kttp its end""ints in c lockwise order ( IK)I ""fleeted)? 

(el hl"c the same area as the original house? 

If one side of the house stays in place. how do )'00 blow thal A = 17 

25 Oeseri"" r (house) when T ( . ) = - ~ + (1 . 0). This T is "affine." 

2& ClLange !he house matrix H 10 add a chimney. 

27 This MATLAB progl1lm creales a "ector of SO angles called theta. and the n dl1lws 
the unit c ircle and T (circle) = ellipse. You Can change A. 

,0."'121; 1 2) 
thela ~ [0:2 . pil50 :2 . pi): 
ci rcle = )cos!theta); sin(theta)J; 
ell ipse .. A . c ircle; 
axi$\[--4 4 --4 4 1); axisl'square') 
piot[c irde( I.:), cirde(2.;), elii pse( l .:), ellipse(2 ,:)) 

28 Add 1""0 e~es and a smile to the circle in Problem 27. (If one eye is darl< and the 
other is light, Y{)U can tell when the foce is reHe<.:ted -em» the ,' uis.) Multiply 
by matri~s A to get new faces . 

29 The ~tandard house: i. drawn by plol2d(H). Circles from 0 and Ii,... from -: 

~ = H(I . :j':)' = H (2. :)': 
u is([- IO 10-10 10]). ui~ 'square' J 

plot( ... y.' 0', ... y.' -'I: 

Test pIot2d(A" H) and plot2d(A' · A · H) wilh the ma1r';c~ in Figure 7.1. 

Without a computer describe the houses A * H for these matri~$ A: 

'"' ["] ,., .5 .5 [ , -., '] , ,., 

" What matri~s gi"" the houses 01\ the fronl "",,,r? The ~ood is A = I . 

, 
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1.2 The Matrix .J • Line., Tf~nsbm"tion )71 

THE MATRIX OF A LINEAR TRANSFORMATION. 7.2 

TIr" 110;1 pugrs assign a malrix IV r,·try /ilttar IronsjQrlttlJ/i(NI. For ordinary column 
vectors. the input ~ i§ in V = R~ and lhe OUlpUl T(.) is in W .. Roo. "The matm for 
tllis ullnsfonnalion T will be m by n. 

"The standanl basis ~ectors for R" and R" lead to a §tandard malrix for T . "Then 
T(~) .. A. in lhe normal way. But these spaces also have other bases. so the lame 
T is n:p~nted by Olher matrices. A main theme of linear algdml is 10 dl()QSe lIIe 
bases that give the beSt matrix. 

When V and W an: nOl R" and RIO. they still line bases. Each choice of basis 
leads 10 a malrix for T . When the input basis is different from the OUtput basis. the 
malrix for Th) = u will not be lhe identity I . It wi ll be the "change of basis matrix.~ 

Key idea of this §eCtiOfl 

Wlrt n .... how n Pl) .. . .• T ( , . ) jar Iht bogjs VUIOI"!/ Pl •...• U • . 
linearity productS T(. ) jor t>'try OIlrtr >'tcrOl" '. 

Reason EveI)' input" is a unique combination C( ' I + ... + C. ' . of the basis ,·«tors. 
Since T is a linear tT3flsfonnation (hen: is the moment for linearity). lhe output T( , ) 
muSl be the lame combination of the koown ou tputs T (.l) ..... T{ • • ): 

Supp<)Je U _ CI Ut + ... + r. ".' 
Tlren linearity nquirtJ T(.) .. CI T(utl + ... + c. T (u.). ( ' ) 

"The ru le of lincarity ~tends (rom e, +d", \0 all combinations C( ' I + ... +c. ' •. Our 
first example gives the OUtputs T( u) for the standard basis vectors (1. 0) and (0.1). 

hamplf'l Suppose T tr:ansforms ' I = (1.0) \0 T ( ul) = (2.3. 4). Suppose the 
second basis vector ' 2 = (0. I) goes to T( , !) = (5.5.5). If T iii lincar from w: 2 to 
RJ then its "scandard matrix" is ) by 2. Those outputs go into its oolumM: 

Ex .. mple 2 "The derivatives of the functions I. X. Xl . Xl an: 0, I . 2x. 3xl. TIlOSC are 
four facts about the transformation T thal .. tab" lire dtrivati",:' "The inputs and OUI · 
pUI5 are functions! Now add the crucial fact that T is linear 

d. 
T( , ) = -

d, 
obey,; the hflearily rule 

d d~ d~ 
-(e' + dwj = (- + d- . 
d" d... dx 

, 
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It i$ exactl y this linearity thaI you U§( 10 find all other deri'·ati~es. From the derivali"t' 
of each scpllratc !lO"'er I . x . x 2 • x l (those an: the ba$is ~~tors ~ t. P2. ~J . 14) you find 
the derivative o f Bny polynomial like 4 + x + x 2 + ... l: 

d 
-(4 + ... + x 2 + x' ) = I + 2x + 3x1 
J., 

(because of linearity!) 

This eumple applies T (the derivative d l dx) to the input 4PI + " l + I J + "4. Here 

the input splICe V contains all combinalions of I. x . ... 2. x'. I call them vectors. you 
might call them functions. ~ four ~~tors are a basis for the space V of cubic 
polynomials (deg~ :5 3)_ 

Rlr the nullspace of A. we sol~ed AI = O. Rlr the kerne l o f the derivati"t' T . we solve 
dl/ dx = O. n..: solution i$ " = con,cant. lbe null.pace of T is one-dirnensional. 
containing a ll constant functions like I I = I (the first basis function). 

To find the range (or co lumn space). look at all outpulli from T (I) = d. l d .... 
lne inputs Ire cubic polynomials a + bx + 0 2 + d ... J • SO the ou tpul$ an: ql#ulrolic 
polyrrominis (degree :5 2). For the OOtput space W we have a choice. If W = cubics. 
then the range of T (the quadratics) is a subspace. If W = quadratics. then the range 
is all of W. 

That sccood choice emphasizes the difference l!etwocn the domain or input space 
(V = cubics) and the image or OUtput space (W '" quadratics). V has dimension n = 4 
and W has dimension", _ 3. TIle matri~ ()1r T in e«uation (2) will be ) by 4. 

'The range of T is a three-dimensional subspace. 'The matrix wi ll ha~e rank r .. 3. 
'The kerne l is one-dimcnsional . 'The Sum 3+ 1 = 4 is the dimension of the input space. 
This " 11.< T + (II - r ) = II in the Fundamental Theorem of Linear Algebra. Always 
(dimt fllwII af "''''gt) + (dimtflswn of umd) = dimtlUiotl afV. 

Ex~mple 3 n.. itl/' graJ is the im"TSe of the derivative. That is the Fundamental 
Theorem of Calcu lus. We Ii« il now in linear algebra. 'The transformation T - I that 
"takes the integral from 0 to ... - is linear! Apply T- I to I. x .... 2• which are til l. til l. til}: 

fo~ Idx "," x. fo~ xdx= i x1 . fo~ x! dx= ~xJ. 

By linearit y. the integral of til "'" B + Cx + Ox! is T -1 (tII) = Bx + t Cxl + ! O ... J . 

llIe integntl of a quadratic is a cubic. llIe input space of T- I is the quadratics. the 
output space i§ the cubics. irl ltgrotiorl I/lUS W bQd 10 V. 115 matri ~ win be 4 by 3. 

Range 0/ T- 1 llIe ou tputs 8 ... + tCx2 + ~ OxJ are cubics with no constanttcnn. 

KaMlo/ T- I 'The OOlput is zero only if B = C = 0 = O. llIe nullspace is Z. the 
zero ,-ector. Now 3 + 0 = 3 is the dimension of the input space W for T - t . 

Matrices for the Derivative ~nd Integral 

We "'ill show how the matrices A and A - I copy lhe derivati"t' T and the integral T - I. 

This is an excellent example from calculus. n..n comes the general rule - how to "'P" 
re5Cnt any linear transformation T by a matrix A. 

, 



7.2 The M.ll,i~ 01 a linN' T,.nsfo,m01ion 373 

TIle derivative transforTl15 the space V of cubics 10 the space W of quadratics. 
The basis for V is I. X, xl. xl. The basis for W is I. x, x 2. The rna/fix rhar ··lakes rhe 
derivativt'" is 3 by 4: 

~ ~ ~] = matrh form of derivative T. 
003 

(2) 

Why is A the co~ct matrix? Ba:ause multiplying by A agnes with trtJns/onning by 

T . The derivative of u = a + bx + cx2 + dx l is nu) = b + 2n + 3dx l . The same b 
and 2c and 3d appear when we multiply by the matrix: 

[: : ~ :] [:] ~ [~]. 
o 0 0 3_ ~ 3d 

(3) 

Look also al T- 1. The integration matrix is 4 by 3. Watch how the following matrix 
starts with III = B + ex + Dxl and produces its integral Bx + !Cxl + i Dxl: 

[

0 
. , 

InUgraIion: ~ 

o 
o 
I 
o 

(4) 

I want 10 call that matrix A-I, and I will. But yoo realize Ihal rectangular matrices 
don·, have inven;es, At least they don't have two-sided inverses. This rectangular A 
has a ont-sidtd im·tru. The integral is a one-sided inverse of the derivalive! 

[' 0 0] AA-I=OIO 

00' '"' 

If you integrate a function aoo then differentiate, you get back '0 the stan. So AA- 1 = I , 
But if you differentiate before integrating. the constant term is lost. The integral 0/ 
the derivatiw of I is uro: 

T - 1 TO) = integral of zero function = O. 

This matches A _I A. whose first column is all zero. The derivative T has a kernel (the 
constant functions), Its matrix A has a nullspace. Main point again: Au copies nil). 



Conslru<:lion of the Matrix 

Now ..... e con ~truct a malri~ for any linear transformation. Suppose T trandorms the 
space V (II-dimensional ) to the space W (m-dimensional). We choo5e. basis . t . . . .. '. 
for V and a basis 1Il 1 • .•. • IIl .. for W . "The matrix A will be m by II . To find its first 
relurnn. apply T to the first basis ''eCtor ' I: 

Tlu!u lIumbtr~ " 11 •. •.• " .. 1 go imo 11i~ fir., columll of A. Transforming P I to T ( ' I ) 

matches muhiplying (1.0 . . ... 0) by A. II yields that first column o f the matrix. 
Wh"n T is the derivali V<' and lhe first basi! vector is I . its derivatiV<' is T( ' I) "" O. So 
for the dcrivati,·e. the first relumn of A was all uro. 

m lhe integral. the first basis function is again I and ils inlegral is x . This is 
I tillles the KOOnd basis function. So the first returnn of A - I was (0 . 1.0. 0). 

7A Each linear lJansformalion T from V to W is ,,-,presenled by a nuuri~ A (after 
the bases are chosen for V and W ). "The j lh column of A is found by applying T 

to the j th bas is ,·octor PI: 

T( ' j ) = combination o f basis vectors of W = Ol j 11' 1 + ... + <1 .. j lll ... (5) 

These numbers al j • ...• " .. , go into column j of A. Tire maim is c:orutruc/ed to get 
l ire txuiJ '·«/01"1 riglit. Thm lilleQrirJ gets all «lier "l'l!ctOl"l riglll. Every ~ is • combi
natioo Ct ' l +··· +c. ~ •. and T( . ) is a oombinatioo of the IIl ·S. When A multiplies the 
coeffi cient ''eC\Of C = (CI •. . . • c.) in lhe ~ combination. Ac produces the coefficients 
in the T< , ) combinalion. This is because matm multiplication (combining oolurtU1$) 
i$ li"".r like T. 

A tell s what T does. Every linear transfonnatioo can be convened to a matri~. 
This matrix depends 00 the bases. 

hample 4 If Ih' btues change, T is tlie SQme bill Ihe trUUm A is dijfeT"flll. 
Suppose we reamer the basis to x. xl . xl. 1 for the cubics in V. Keep the original 

basis I . X . Xl for the quadratics in W. Now apply T to the first basis ''CCIor 'I. The 
derivative of x is l. This is the first basis vecIOr of W . So the first returnn of A looks 
different: 

[

I 0 0 0] matrix for the deri vative T 
A_ = 0 2 0 0 '" w~n the base. change to 

o 0 3 0 x. xl.xl. l and L x . xl . 

When we reorder the basis of V. we reonIer the relumns o f A. "The input basis vector 

Pj is responsible for relurnn j . The output basis vector Ill; is responsible ror row i . 
Soon the changes in the bases will be rroore than ~rmlllations. 

, 
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T{v ) = [COS(1] 
! smO 

,~ 

L'= __ . " 
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Figure 7.2 Rotation by 0 and projection onto the 45° line. 

Products AB Match Transformations Y S 

The e."(amples of derivative and integral made three points. First. linear transformations 
Y are everywhere-in ealculus and differential equations and linear algebra. Second. 
spaces other than R" are important-we had functions. cubics, and quadratics. Third, 
T still boils down to a matrix A. Now we make sure that we can find this matrix. 

The next examples have V = W. We choose the same basis for both spaces. 
Then we ean compare the matrices A2 and AB with the transformations y2 and TS. 

Example 5 T rotates every plane vet:tor by tbe same angle O. Here V = W = R~. 
Find the rotation matrix A. The answer depends on the basis! 

Solution The standard basis is ~ t = ( I. 0) and U2 = (0. I). To find A. apply T to 
those basis vectors. In Figure 7.2a, they are rotated by O. The first ,'fewr (1 . 0 ) s",ings 
arourul to (cosO, sin (1). This equals cosO times (I. 0) plus sin (1 times (0. I). There
fore those numbers cos (1 and sinO go into cbe first column of A: 

[
COs O 
sin(1 

] shows column I [
COSO -SinO] A = ., ,shows hoth columns. 
Sin cos 

For the second column, transform the second vector (0. I). The figure shows it rotated 
to (- sin (1. cos (1). Those numbers go into the s~ond column. Multiplying A times 
(0, I) produces that column. so A agrees with Y. 

Example 6 (Projection) Suppose T projects every plane vector onto the 45° line. 
Find its matrix for two different choices of the basis. We will find two matri~s. 

Solution Start with a specialJy chosen basis. nOi drawn in Figure 7.2. The basis vector " I 
is along the 45" lille. It projecu /0 itself. From T{11j) = 111, the first column of A contains 1 
and O. The second basis vector U2 is along the perpendicular line (135°). This b<lsis ,'ector 
projects to uro. So the second column of A contains 0 and 0: 

Projedion A = [~ ~] when V and W have the 45° and 135° basis. 

With the basis in the opposite order (135° then 45°), the malrix is __ . 



Now lake the standard basis (1.0) and {O. O. Figure 7.2b shows how (1.0) 
pmjeclS to (t. !). That giyc:s the first relumn of A. The OIlier basis vCCtOl" (0. I) 

also projectS to (!. !). So the standard m.oui~ for this projection is II : 

~~,.' " • = ['1' ','.', 1 • ' VJ'-~ " for the .ulm .. T and the standard ba$is. 

Both A's an: projecti ...... mat~s. If yoo squan: A il doesn't change. Projecting 
lW~ is the same as projecting O~: r 1 = T !iO ;\1 = A. NOIice ",h;1 is hidden in 
thaI Slatemem: The IfUltrix for r2 ;s ,,1. 

We h .. ,"" come to §Ol11ething imponant - the real reason for the way matrices are mul · 
tiplied. A, lOll .. ~ JiJCowr ... hy! Two transformations S and T are represented by t ll'O 

matrices B and A . When " -c apply T to the OUlput from S • .... " get the "CQmposilion" 

TS. When We apply A aflcr B. """ gel (he matrix prodUCt A 8 . Malti~ multiplication 
gives the cont:Ct matrix AB 10 rep.esent TS. 

The lran~rormation S is from a s~ U 10 V. Its malri:< 8 uses a N:iis .. I •...• u p 

for U and a basis Ph ...•• « for V. The matrix is" by p. The transformation T is from V 
10 W as t.. fon: . l IS malrix A mUll UM IM .... 1IIt oo..il ~ 1' .. '. _.for V_ th is is r~ OIItpu\ 
space for 5 and tile input space for T . Then A 8 matclles TS: 

78 Multiplication The linear rransform"rion TS StanS with an) wClOr U III V. goe.> 
\0 Stu ) In \ '.nd rhen 10 T(S( u )) In W 1ltc malri~ A8 ~Ia"> with an) x In RP. 
g~' \0 Dx III K" and I~n to ADx in R". The matrix AD correcrly rt'p~nts TS: 

TS: U _ V _ W A8 · (m by "1(" by p) '" (m by pl. 

The input is u '"" XIUl + ... + xpu p . The ourput T(S(u » matches the OUtput A8x . 
ProdUCt of transformations rmucllcs prodUCt of matriCC's. The mosr important cases are 
wilen tile spaces U. V . W are tile same and their bases are tile s.ame. Wilh m "' " '" P 
""C have square malrices. 

hample 7 S ~ales tile plane by (J and T also IOOlles by 8. Then r s IOOlles by 
2(J. This t .... nsformation r l c~ponds to tile ~al ion marri~ A! through 26: 

,. [00526 -Sin26] 
A '" l"OIa ll(.Nl by 26 = sin 26 00528· 

By malching (tntnSformationr with (matrix)! . "~'e pick up tile fonn~las for cos26 
and sin 26. Multiply A times A: 

[
COS (J - sin 11] [cos (J - sin (J ] = [COS! (J - sin! (J -2 sin (J cos (J ] 
sin 8 cos (J sin (J cos (J 2 sin (J cos (J cos1 8 _ sinl (J • 

Comparing with lhe display above. cos2/) '" cos1(J _s in1(J and sin2/) = 2 sin 8cos(J. 
TrigOllOmelly CO~ from linear algebra. 

, 



Example 8 S roIates by 8 and T rotates by -8. l1len TS = / and AB = /. 
In thi s case T(S(II )) is II . We rotate forward and back. For the matrices to match. 

A Bz mu~t be x . l1le tWO matrices are im'el"Se:S. Check this b~ puuing cos( - 8) = oos8 
and sin(-8)=-sin8 into A : 

, [OOSO Sin O] [OOSO -Sin O] _ [Cos2
0+Sin

2
8 0 ] 

II = - sin 8 005 8 sin8 cos8 - 0 cos28 + sinl8 . 

By the fllJllQUS identity for wsl 8 + ~in l O. thi s is / . 
E.arlkr T took the derivati"" and S took the integral. 1llen TS is the identit y but 

not ST. The~fore A8 is the identity matrix but not BA : 

[
0 I 

AB = 0 0 
o 0 ~~l[!~ o 3 0 0 

!] ~ I 
I 

"', [
0000] o I 0 0 

RA = 0 0 I 0 . 

o 0 0 I 

The Identity Tr .. nsfo r ..... tion ;H1d Ch.lnge of Ibsis 

We need the m<l\rix for the spox ial and boring transfo rm.uion T(~) = ~. This identity 
tranSfomllllion does nothing 10 P. The matrix al&O does nothing. pro"i~d the output 
basis is the same as the input basis. The output 1'('1) is ' I. When the bases are the 
~. this is " I. So the first oolumn of A is (I. O. _ ... 0). 

This seems reasonable : "The identity transfonnation is represented by the identit~ 
matrix. But suppose the bases are diffc",nt. Then T ( p) = p) is a combil\lltion of the 
.. ·s. ll>at combination "'11 "'1 + ... +"'01 "'. tell s uS the tim oolumn of the matrix M . 
We .... ill use M (instead o f A) for a matrix that represenlS the identity transformation . 

",h~n Ih, QUlputs T (p J) _ P j IIrt rombjnllfjfJnS 

L~.t m;i "'l. flr~ "rlrang~ af b<m's mal""" is M . 

TIle basis is changing bot the ,'tttors themselves are not changing: T(. ) = P. When 
the input has one basis and the outpul has another blIsis. the matrix is not I. 

Example 9 The input basis is ' I = (3.7) and ' 1 = (2.5). "The OtItput basis is 
"'I = (I . 0 ) and "'2 = (0 . I) . Tlten the malrix M is casy II) oompute: 

The matrix for T ( p) = p is 101 = [; ;] . 

Reason The lirsl input is PI = (3. 7). "The output is also (3.7) bol ""c express it as 
3"1 + 7"'2. Then the lirst column of 101 contains 3 and 7. 

This seems 100 simple to be imponanl. II hecOl1"lCS lrid ier when the change o f 
bati. goes the ocher way. We gel the in\'e= of the prc~ious malrix M : 

, 
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Eumple 10 l1Ie input basi. is P, = ( 1. 0) and g~ _ (0. I). l1Ie OUtputS are juSt 
T(_) = P. But the output basis ;5 IU , '" (3.7) arod 1111 = (2 . 5), 

[' ']-' ~ [ , 7 5 -7 -'] 3 . 

1te;a§Ol1 l1Ie firS! input is _, '" ( 1.0). The: OUtput is also ' I bu1 ,",'(' e~pn:ss it as 
~ " I - 7111 :. ~k thai 5(3.7) - 7(2. 5) does prod~ (1, 0). We are combining the 
col umns of the previous /If to get the columns of I. 'The matri~ 10 do IhlU is M - I: 

A malhcmatic ian would say that ", ,,, - . corresponds 10 the: prodUCt of two ident it), 
lransformalions. We SlnM and end wilh the SlIme basis (1.0) and (0. 1). Matri~ mu lri_ 
plicatioo must give I , So the tWO change of basis matrices arc inve~s. 

W. ming One miSlake about III is very easy 10 make. E>;ampk 9 changes from the 
basis of .'S 10 the standan:I columns of I . BUI matrix multiplication goes tIM: other way. 
When you rnuhiply 1.1 Ii.....,. the column. of I . you get tile ,'x. It seems backward bu t 
it i. really OK. i 

One Ihing is SUre. MuLtiplying A limes ( 1.0, ...• 0) gives column I of the ma
trix. The !1oOV"lty of thi s sect;';'n is tlLal (1. O ..... 0) st.ands ((II" the first V«\Qf 't, ... ,11_ 
rt~ I~ 1M basis of p·s. Then column 1 of the matri x is that same ,'«tor 01. " 'rillt" 
j~ rht Jlaful<JnJ b<,sls. This is " 'hen _ keep T _ / and change the wis ((II" V. 

,. 

In the ~.t of tho: tnJk "'e keep the Slandard basi~ and T i~ multiplication by A. 

• REVIEW OF THE KEY IDEAS • 

! Linear transformation T 
Input basi&r t •.... ' . 
Output basis !PI .... , !P .. 

Matrix " (m by n) I 
~pfb;Cnts T 

in lhese bases 

J . TIle deri"'t;..., and integral matrices = one-sided inverses: d(constant)/dx ~ 0: 

(Oori'''li...,) (Integral) .. I = Fundamccntal ~nt of Calculw; ! 

4. n.e change ofbasis matrix AI ~prtsenls T ( _) _ • . hs columns a~ tho: coefficients 
of tho: OUlput wisexpressed in the input wis: III j = m tj ' I + ... + m.j '.< 
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• WORKED EXAMPLES • 

7.2 A Using the Slalldard basis, lind the 4 by 4 ma,ri~ P ,hal ~senlS a cyclic 
~rmu/alion from x = (x , . .1'2. X) . x~) ,0 T(x ) = (X4. x ,. "-1. "-j ). Find the malri~ for 
T2. Whal is thr: triple shift Tl{z ) and " .. hy is T ) = T-'? Find two real ill(kpendenl 
eigen~too of P. What art all ,he eigenvalues of P? 

Solution The firs, ~ector (I. O. O. 0 ) in the standard basis ''''''sforms 10 (0. 1. O. 0) 
which is the second basis ffi:1or. So the first ' olumn of P is (0. 1. O. 0). The other 
three columns come from transforming the Olhr:r ,hree standanl basis ,'t'Ctors: 

Sin« we used the standard basis. T ;s Qrdinary m"lliplirolion by P . The matrix fOI 
Tl is a "double cyclic shift·· 1'1 and it produces (x ) . x~ . XI • .1'2). 

The trip~ shift TJ will tnmsfonn x = (x'.-'""1 . ..-) . ..-.) to T J(x ) = ( Xl. Xj. X • • ..-!l. 
If we apply T once mort \I'e an: back to the original x . so r = identity t"'nsforma· 
lion. For matrices Ihi s is 1'4 = I . This means that T 1T = identity and TJ = T - I. 

'TWo n:al eigenvectors of I' an: (1. t. L. 1) with eigenvalue " = 1 and ( I. - t. t. - I) 
with cigem'alue " = - L. The shift "'al'eS (1. I. I . I) unchanged and il n:vcrses signs in 
( t. - I . 1. - I). The other t",'O eigenvalues are "J = i and 4 = - i . "The determinant of I' 
is "'''2,,)4 = - t IU in Problem 5.2 whkh used coflOClors of the first row. 

Notice thaI Ihr: eigenvalues t. - 1. i . - i add to zero (the lrace of 1'). "They art 
the foor roots of I. sin« det{P - "I ) = " . - I. They art equatty spaced around the 
unit cin:~ in thr: comp~x plane. 1 think P mUSI be a 9W rotation times a refl ection 
in R·. 

7.2 B "The space of 2 by 2 matriCt's has these four '",'t'Ctors·· as a basi s: 

T ;S ,hi: Ii"",.r Inmsr~iQn that "'msf"OS"s c''Cry 2 by 2 matrix. What i. 1hI: malrix 
" thai. rtpresents T in this basis (output basis = input basis)? What is the j",·clSe 
matrix ,, - I? What is lhe lransfonnation T- I that invens thr: tnulspose operation? 

Abo. T2 multiplies each matri~ by M = [~ ~ J. What 4 by 4 matrix " 1 repre · 
senls T21 

Solution T",nsposing tOOse four '"basis matrices·· permutes them to " I. "J. " 2. ,, ~ ! 

T(II il = II 1 [) 
T {uz)- uJ . 0 
'() 

gIves thr: four columns of ,, = 0 
" ) = U2 

T{u~) = u~ 0 

, 
i 



The inverse malrix A- I is lhe same as A. The im"CIW: tl1Ulsfonnalion T - I is llle same 
as T . If we lran,p"'" and 1I" n.p"'" again. tile final output equals (lie original input 

To find (he matrix A 2. mulliply (he basis malrices " I. " ~. " J. ". by 101 : 

[

" 0 b 

gives the rol~mns of A = ~ ~ ~ 
o < 0 

This A is the " Kronecker product"· or "tensor product·' o f /If with I. wrilte n /If ® I . 

Problem Set 7.2 

QUl'lilions 1-4 u lcnd (he first derh·ati. e e:rample 10 hig~r deri.·atlvl'lli-

1 TIle transformation S takes the JUIJnQ tkri,·IJli,~. Keep 1. .... x l . ... 3 as the basis 

' 1. 112. ' 1. 11. and al!oO as 11' 1. 11' 2. 11'3 . ... . Write S 1I1. S'2. S 1I). S •• in le rms of 
the ... ·s. Find the 4 by 4 matrix B for S. 

2 What functions have ,n "" 07 1lley are in the I:ernel of lhe second derivative S. 
Wha( vectors are in (lie nullspace of its malrix B in Problem 11 

3 B is not the squaT<: of lho 4 by 3 fi rsl derivalive matrix 

[
0 , 0 0] 

11 = 0020. 
o 0 0 3 

Add a zero row to II. so (ha( OIIlplU .<;paCe '" inpul space. 1lien rompare /1 2 wi th 
B. Conclus i<>n: For B = II I ,,·e also wanl output basis = __ basi s. Then 

"' =11. 
4 (a) 1lie product TS produces (lie third deri' ·alive. Add zero rows to make 4 

by 4 malrices. then rompute li B. 

(b) 1lie mat ri~ B1 correspoelds 10 Sl = fourth deri\'ali,.". Wh y is Ihis emin:ly 

=' 
Question. 5-10 a .... abou t a partkular T and 115 matrix A. 

S Wi lh base. 'I. " l. p ) and 11' 1. "'1. " ). liUPPOSC: T( • .) = 1lI2 and T(Pl) = T (.) = 
" I + "'3. T is a lillC'ar tl1Ulsformation. Find lhe matrix II . 

6 (a) What is llIe output from T in Question oS whon lho input is ' t + ' 2 + , ,1 

(b) Multiply II limes (he V~lOr ( I. l. I). 

, 
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7 Since T( 02) ". T(o]), the solutions to T(.) ". 0 are 0 ". _ ' What ~eclors 
are in the nullspKe of A1 Find all solutions 10 T (a)". "' 1. 

8 Find a vector that is not in the column ~pace of A . Find a combination of ", 's 
that is not in the range of T. 

9 You. don·1 have enough information 10 detennine T~. Why not"? Why is its malrix 
not necessari ly A 27 

10 Find the rank of A . This is 001 the dirtlC.'nsion of the output space W. It is the 
dimension of the of T. 

Questions 11- 14 an: about In,·trtiblr linear Innsformalions. 

11 Suppose T( ' I) = "" + "'~ + " J and T(.! ) = "'! + "'J and T(oJ) = "'J. Find the 
Itllltrix for T using these basis ~ectors. What input vector p giYeS T(.) .. ", ,1 

12 1",~rI the matrix A in PToblem II. Als.o in,~rt the tmnsformation T -what are 
T - 1( ... ) and. T- I("'l) and T - '(", )? Find all ,·s that s.ol~ T ( . )". O. 

13 Which of these are true and why is the other one ridiculous? 

" Suppose the spaces V and W have the same basis 0,. ' 2. 

(.) Dcso;ribc: a tnIl$formation T (001 / ) llLal is its own inve~. 

(b) Describe. transformation T (not / ) thaI equals Tl. 

(e) Why can ' t the same T be used for both (al and (b)? 

QUHtlons 15-20 an: about chllnging the basis. 

15 (a) What matrix transforms ( I. 0) into (2. 5) and. transforms (0 . I) to ( I . 3)? 

(b) What matrix trandorms (2.S ) to (1.0) and. (1.3) to (0. 1)1 

(e ) Why does 110 matrix transform (2.6) to ( 1.0) and ( 1.3) to (0, I)? 

1 6 (a) W hat m.otri~ M t .... sforms (1.0) and (0 , 1) 10 (~.,) and (~ .,,)? 

(b) What matrix N transforms (II . c) and (b, d) to (1.0) and (0. I)? 

(e) What condition on a.b.c.d will make part (b) impossible? 

17 (a) Uow do M and N in Problem 16 yield the matm that transforms (a . c) to 
(r. / ) and (h , d) (0 ($, 1' )1 

(b) What matrix transft)l'tnS (2. S) (0 ( I. I) arwJ ( I, 3) 10 (0 .2)1 

18 If you keep the same basis ,"tttors but put them in a different order. the clLan~ 
of basi~ matri~ M is a __ matri~. If you keep the basi~ vecton; in order but 
chan~ their lengths. M is • __ ft\lUrix. 

, 
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19 ll>e maIn.' Illal rotales lhe a~ is V«lors (1.0) and (0,1) llIrough an angle 0 is 
Q, Whal are the coordinal~S (0. b) of the original ( I. 0) using the new (related) 
axes? This can be lricky. Draw a figure or solve this equalion for 0 and b: 

[=' -""'] Q = sinO cosO [']_ [='] _[->i"'] o _1I ~inO + cos/l' 

20 "The malrix Ihalll1lll.lfOl1Tl'l (1, 0) and (0.1 ) 10 (1, 4) and ( 1, 5) is M = __ . 
ll>ecombinalionll(I. 4)+b(I.5) Illal equals (I.O) has(a,b)=( . ). How 
are 'hose new roordinales of ( I. OJ relale-(! 10 M or M-'? 

Questions 21- 24 al"\' about Ihe!ipllC!~ of quadratic polynomials A + 8 x + CXl. 

2 1 ll>e parabola III , = !(x 1+x) equals one a' x = I and zcro al x ... 0 and x .. - 1. 
Rnd the parabolas 1112. IIIl. and ,(x): 

(a) 111 2 equals one al x = 0 and zero at x = 1 and x =-1. 

(b) III l equals One al x = - I and zcroalx=O and x = 1. 

(c) .1(x) equals 4 al x = I and 5 al x =OaOO6al x =-1. USC 1II ', " I. " }. 

22 One basis for second..tJegrc:c polynomials is PI = 1 and PI = x and IJ = xl. 
AnoIhr:r basis is "'" "'1. "'l from Problem 21. Find IWo cllange of basis malrices, 
from lhe IV 'S 10 the ,'s and from the ,'s 10 lhe III 'S. 

23 Whal are lbe Ihree equalions for.4. H.C if the parabola Y = .4 + 8 x + Cx2 

equals 4 al x = " and S al X = b and 6 a1 X ,., c7 Find lhe dolenninam of 
lhe 3 by 3 malrix, For which numbers II, b. c will il be impossible 10 find Ihis 
parabola Y? 

24 Under what condilion on lbe numbers 111,,1111 • . ..• 1119 do these: Ihree parabolas 
give a basis for the spiIoCe of all parabolu? 

I , (x ) = 111 1 + m l x + m)xl and I l{X) '" m. + m sx + 1116-'" 2 and 

Pl(X) = 111 7 + msx + m9x2. 

2 5 l1te Gram·Schmidt process changes II basis <I I . <I I. <l l 10 an orthonormal basis 
' I, ' l' f l' The'ie are wlumns in .4 = QN. Show Ihal R is lhe change of basis 
matrix f",m the OI 'S to lhe , 's (O l is whal combination of , 's when .4 = QN?). 

2& Elimination changes lhe rows of A 10 the rows of V with .4 '" LV. Row 2 of 
Ii is wbal combinalion of the rows of V? Writing AT = uTLT 10 work wilh 
columns. lhe change of basis malrix is M = LT, (We have bases provided lhe 
malrices are __ .) 

27 Suppose ~ I. _? 0l are eigenv«lors for T . This moans T(,;) "" )./ ' ; for i = 
1.2.3. Whal is the malrix for T when the inpul and OIllpul bases Ilre lhe p's? 

, 



7.2 The M,nri. aI ~ Li_, T,Ofl1iotm.n"", J8J 

28 E"el)' in~e"iblc linear lransformalion Can ha", I as ilS malrix. ~ any inpul 
ba.i$ ~I. " " ~. and for OUlput ba~is choose 11>; 10 be T( . /). Wh y muSI T be 
invertible? 

Questions 29-32 review .'lOme basic linear Iransfor nUltion!l.. 

29 Using ' l = 111 1 and ' e = III ) find the $Iandard matrix for these T's: 

(a) T{'I)= O and T{. :) = 3'1 

30 Sup~ T i$ reflection across lhe x axis and S is reflcct;"'n acT{)$S lhe )' axis. 
The domain V is (he X)' plaae. If v = (x.y) what is S(T(. ))? Find a simpler 
descripci"" of the pr<ldoct ST. 

J 1 Suppose T is reflection across lhe 4So line. and S is reflection ac""", the )" axis. 
If. "" (2. I) then T (. ) "" ( I. 2). Find S(1( , )) ar>d T(S( . ». This shows lhal 
generally ST t- T S. 

12 Show lhal lhe pr<lduCt ST of 1""0 reflections is a rotat ion. Multiply these reflec
tion matrices 10 find lho rotation angle: 

11 Troc or false: If wc know T(. ) for n different nomero veelOO in K". then we 
know T( . ) for c"el)' vector in R". 

, 
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CHANGE Of BASIS • 7.3 

This SC<;1;on ""urnS \0 oroc of the fun.da""'nlal idoas of linoar algebra _ a basis for- K~. 

We don'l intend to change Ihal idea, bul "i., do intend 10 change the basis. II often happens 
(and we w;1I g;..., examples) thaI one basis is especially suitable for a specific problem. By 
changing 10 Ihal basis. lhe v«tors and lhe malriceli n:veal the information we wanl. Tho: 
whole idea of a '.-aflSjOrm (this book "'plains the Fourier transform and waYe\e1 transform) 
is exactl y a change ofbuis. 

Remember what ;1 means for (he l"tttors 111 1. _ ". III. 10 be a basis for R": 

1. llle lI"$ an: linearly independent. 

2. Tho: " x n matri~ W ,,·;,h these C(>lumns is ;"'1:11ibl.,. 

3. EveI)' vector ~ in 11." Can be " 'rine" in uaclly one "'lIy as a combination of (he ", "s: 

0' 
Hen: is the key point: Those CQt'fficicm. Ci •.. "' c. completely describe: the veclOr • . 
aft"~ ..... hi"'" du idu (In Ih, /NJ, is. Originally. a CQlumn vector. just I\a'j the compo.
nents VI ••• "' t'." In the new basis of ,, '5, the !>arne veclor is described by the diff=nl 
~1 of numbrn 1', •. .. r • . 11 takes" numllrr<J to describe each >=t0t" and it also re· 
quires a choke of ba~is. l1te " numben; a .... the roontilllnes of • in tlUI1 basis: 

["' 1 r _ ; 

v. _ ...... 

and also 

A basi5 is a SCt of Illes for RO. 1lIe coordinates c, ..... Co tell how far to go along 
each uis. 1lIe Illes a .... It right angles when the .. 's are or1l1og(lnal. 

Smi.1/ paim: What is the "sttJJldanJ basis"? n.o..c basi, ~IOI"$ are simply the 

columns of tbe " by" idenlity matrix I . These: columns "" ... ' . are the "default 
basis.·' When I wrile do .... n lhe ~1Or . " (2.4.S) in Rl. 1 am intending and you 
a .... e~p«ting the rumdard basi5 (the usual xy~ UtS, .... hen: the ooonlinatcs are 2. 4 . S): 

1lIe new question is: Whut Ilrr ,Itt' coordinall'S CI. C'j:. C) in tltt'"..... basis .. " " 2 . ., )1 As 
u5ual we put the basis ve<"tOT1 into the columns of a maaix . This i5 the basis mmr/x W . 
n.m the fundamental C</uatiOfl I .. e, .. , + ... + e . ... lias the matrix fonn r "'" W t . 
From this we immediately know r '" W- , r . 

7C 1lIe coordillatc,r = Ie ,. . ('. ) of P In the ba", ." . .,. are given by I' '"' W -, r . 
Tiot d"",g~ of M.I. motrU W ., is 1101' i",'l'ru of 110, M Ils IfIotrU II 

, 
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The standard basis has IV = / . The coordinates in that default basis 1"1 . .... t . ~ 
the usual components ~I . .... t ' •. Our first new example is the wa~det basis for R4. 

Example 1 (WII,'elt l basis) Wavelets all: lillie waves. They tu.'"C different lengthS 
and lhey are localized at different places. The firsl basis vector is not actually a wavelet. 
it is the "~ry useful flat ,-eclor of aU ones. The I)lhers ~ "Haar wav~IcIS~' 

(3) 

~ v~ors are Ql"liws ona/. " 'hich is good. YOli _ how " l is locali«d in the fi rsl 
half and " 4 is locali«d in the !i«OOd tu.lf. Their coeffic ients C) and C4 tell us about 
delails in the first half and last half of ~ . The ultimate in localization is the standard 
basis. 

Why do '.-om 10 eMns,. 1M basi~r I think of UI. "2. 1.1). U4 as the intensjl~ of a 
s ignal. It could be an audio signal. like music on a CD. It could be a medical signal. 
like an electrocardiogram. Of course n = 4 is '"Cry short. and n '" 1O.1XK) is ItlOI"e 

ll:aJistic . We may need to COnIl""ess that long signal. by kttping only the largest ~% 
of the coefficients. This is 20 : J oomjlfess ion and (to give only one of lIS applications) 
it makes modem video ronferencing possible. 

If we keep only ~% of the sltmdard basis coeflic icnlS. "'"C lose 9~% of the signal . 
In image p~ssing. most of the image disappears. In audio. 9~% of the tape goes 
blank. But if we choose a better basis o f "'5. ~% of the basis ,·ector.; can come ''t'f}' 

close to the original s ignal. In im ... ge processing and audio coding. yOli can ' t 5« or 
hear the diffcll:nce . We don 't need the other 95%! 

One good basis v~or is a flat (1.1. 1. 1). That part alone can rejlfesentthe oon, 
stant badgn:lUnd of OIlr image. A short wa"e like (0. O. l. - I ) or in higher dimensions 
(0. O. O. O. O. O. I, - I) represe nts a detail at the end of the signal. 

llIc Ihree steps of Irrms/onII and eDmp"ssioll and illlYTR 1rrI~1JrrII ~ 

input ~ _ coefficients e _ oompressed c _ compre..sed i 
!/osslrul II0ss.11 iIYronslruClI 

In linear algebra. where e'"Crything i~ perfect. " 'e omit the oompreSll ion step. The 
output i is ulICtly the s.amt: as the input • . lllc trnnsform gives c '" W -! , and the 
reronstroClion brings back u .. Wr. In true ~ igna! processing. ""heR: nothing is perfect 
but everything is fast. the tl1Ulsform (1oss less) and the oompression (which only loses 
unnecessary information ) 3I"l: ... bsolutely the keys to Sue<:e$$. lllcn i '" WC. 

, 
i 



I will show those steps for a typical , 'ector like D '" (6.4.5. I). 11$ wavelet 
coeffic ienl$ are 4. 1. I. 2. Th is means that D can be: reconstructed from t '" (4. I. I. 2) 
using 1P )o lPl. IP). 1P4 . In matrix form tile rt'COI\, troction i5 D = Wc: 

lllose coefficients 00 '" (4 . 1, 1. 2) an: W- Ig. In,"Clting this basis matrix II' is easy 
~ause the lP 's ill its rolumns are orthogonal. But tlley a~ not unit vectors. So tile 
illYCI"$e is the tnnspose divided by tile lengths squaml, W- I = ( WT W )- I WT: 

w-, - [1 1 ] [: : -: -:] - ! 1 - 1 0 O · 

t oo ! - I 

From the I 's in Ille first row of C = w- I g. notice that" is the average of III. 1>1 . I>'J. ~4 : 

cl= 6+4 + ~ + 1=4. 
4 

Example 2 (Sarrw .Olln"'t basis by ~ul'5km) I can'l resi sl showing you a fastcr 
way to find tile c·s. 'The special point of the wa",let basis is that you can pick off tile details 
in C) and c •. before the rouse deta ils in C2 and the o",rall average in 001. A picture will 
explain this "multiscale" method. which is in Chapler 1 o f my te:<.tbook with Ngu~n on 
W(lI'eltls UtW Fillt ' 8iJnks: 

Split g = (6. 4. 5. 1) into avtrogts and "'avtJ at small scal~ and ,hen ~ seak: 

~ 
j '-... 

nvtragt, dif!errnusl2 

~ ~ 
, , , 

3 3 pi" '=d b, " - 2 , 
j '-... 

ow"", dif!~rrntt/2 

q - 4 
4 4 4 4 I pi" \ I 

, Q ~ 
, 

Zl l -, 

, 
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hample 3 (Fourier basis) The first lIIing an clecuical engineer does willi a signal is 
ro take its Fourier transfonn. This is a discrete signal (a vector v) and we are speaking 
about its DisCrtt~ Fouritr Tronsform. The OFT involves complex numbers. But if wc 
choose n = 4, the matrices are small and the only complCll numbers are i and i J . 

Notice that i 3 = -i because i 2 = -1. A true electrical engineer would write j 
instead of i . The four basis vectors are in the columns of the Fourier matrix F: 

F - [: - 1 

1 

1 
; ;2 
;2 i' 
;l ;6 

Tbc first column is the useful flat basis vector 0. 1.1.1 ). It represents the average 
signal or the direct current (the DC term). It is a wave at zero frequency. The third 
column is ( I. -1.1. -I), which alternates at the highest frequency. Th .. Fouri.., trans· 
form decompous the signal into wa~·e$ at .. qually spaced .frequencies. 

The Fourier matrix F is absolutely the most important complex matrix in math
ematics and science and engineering. The last section of this book explains the Fast 
Foumr Tronsform: it is a factorization of F into matrices willi many zeros. The FFT 
has revolutionized entire industries. by speeding up the Fourier transform. The beautiful 
thing is that F- I looks like F, with i changed to -I: 

F-'='[: 4 1 
1 

1 
(-i ) 

( _ i)2 

( _ill 

1 
(_i)2 
(_i )4 
( _ i )6 

The MATLAB command c = fft{ v ) produces the Fourier coefficients CI ..... Cn of the 
vecror "II. It multiplies v by F- I (fast). 

The Dual Basis 

The columns of W contain the basis vectors "' I •..•• Wn . To find the coefficients 
CI •••.. Cn of a vector in this basis. we use the matrix W - I . This subsection just 
introduces a notation and a new word for the rows of w- I . The vectors in those rows 
(call them uT- . ... uJ) are the dual basb. 

The properties of the dual basis reflect W- I W = J and also WW - I = I . The 
product W-I W takes rows of W- I times columns of W. in other words dot products 
of the u ·s with the w's. The two bases an: ··biorthogonal" because we get \·s and O·s: 

T r 1 
II; VlJ= lO 

ifi= j 
if i # j 

For an arthonorl1U1l basis. the u ·s are the same OJ the w's. We have been calling 
them , 's. The basis of q's is biorthogonal to itself! The rows in W- I an: the same as 
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tile column~ in W. In OIller words W- I = WT. lliat i§ the §peciall y important case 
of an Ql"/hogQtUl1 "l(1trix. 

Other bases are not orthonormal . The axes don ' t have to be perpendicu lar. The 
basi§ matrix W can be illvenible without having onhogonal columns. 

When the inverse matrices are in the opposiLC order Ww - 1 = I. We learn some
thing new. The columns are "'j' the rows are "l, and ea.c h prodUCt is a rank one 
matrix. Multiply co/um .... timt:s rQ"'~: 

WW- I is u.., order thai we constantly use to change the basis. The coefficients are 
in c = W- t , . So W- I is the first (with the ul in its rows). 11M:n we reconstruct ~ 

from We. Use the u '§ and ",'s to state the bask f,.,1S that e = W- I, and p = We = 
Ww- I. : 

" 
The coeffictenlS are CI" u; ~ and the ,""ctor;s u,. L "'1("; pl. (5) , 

The analysis step takes doc products of ~ with the dual ba~is to find u.., c·$. The 
synthesis step adds up the pieces CI "' I to reconstruct the "'"'tor p. 

• REVIEW OF THE KEY IDEAS • 

1. The new basis vectors "'i are the columns of an ill\-.:nible matrix W. 

2... The coefficients o f • in this new basis are C = W- I, (the analysis step). 

J . The vector, is reconsuucLCd as We= cl w i +· ·· + c . ... (the synthesis step). 

4. Conlpressioll would simplify r to c and We reconstruct, = CI "' I + .. + c~ .... 
S. 11M: rows of W- I are the dual basis vectors " i and C; '" "l ' · Then "l "', ,. &11' 

• WORKED EXAMPLES • 

7.3 A MalCh <1(1 + alx + 1I! ... 1 with bQ + bl ( ... + ]) + ~(.( + ])1. to find the 3 by 3 
matrix M I t\\at connects these coefficients by " _ M l b. M ] will be familiar to Pasca]! 

The matrix to n:Verse that e\\ange must be Mi l. and b ,. M ,- 1 Q . This shins the 
relller of the series back, so <I(I+ II I(X -1)+Ul(X - I)l equals bo +blx +~.r 2. Match 

• i 
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those quadratics 10 find M_I . the inverse of Pascal. Also find M , from ao + alI + 
112x2 = bo + b l (x + /) + b2(X + / )2. Verify that M , M, = MH ,. 

Solution Match ao + alX + U2X wilh bo + bl (x + 1) + b2(X + 1)2 to find MI: 

Constant tenn2 
Coefficient of x2 
Coefficient of x 22 

bo +bl+ b2 
b l + 2bz 

b, 

By writing (x + 1/ = 1 + 2x + x 2 we see 1.2. 1 in this change of basis matrix. 
"The matrix MI is PascaJ"s upper triangular Pu. Its jlll'erse M )l comes by match· 

ing ao + al (x - I) +a2(x - 1)2 with bo +blx +b2X2. The constant terms are the same 
if til) - al + a2 = boo This gives alternating signs in M) I = M_I. 

Innrse of MI = M_I = -[' -', .,', 1 
M , M, = M H , and Ml loL I = Mo = I. Pascal fans might wonder if his symmetric 
matrix Ps also appears in a change of basis. II does. when the new basis has negative 
powers {x + l) - k (moll: about this on the course website " ·eb.m!LedulI8.06Iwww). 

Problem Set 7.3 

1 Express the vectors e = (I. O. O. 0) and u = (I. -I. I. -I) in the wavelet basis. 
as in equation (4). The coefficients c,.q. Cj. c. solve lYe = e and IYc = v. 

2 Follow EJ:ample 2 to Il:prescnt v = (7.5.3.1 ) in the wa\'elet basis. Start with 

3 
, splits into 

i averages plus 
differences: , 

6 

- I - I 

6 , , + 

The last step writes 6. 6. 2. 2 as an overall average plus a difference. using I. I. I. I 
andl.l . -I.-1. 

3 What are the eight vCClOrs in the wavelet basis for R8? They include the long 
wavelet (1. I. 1. I. -I. -I. -I. - I) and the short wavelet (I . - 1. O. O. O. O. O. 0) . 
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T1Ie wavelet basis matrix W factors imo simple, matrices W, and Wl' 

[" 1 

0] [I 

0 1 

J][l 
1 0 

!] 1 1 - I o 1 0 - I - I 0 
1 -I 0 1 = 0 0 0 1 
1 - I 0 - I 0 0 0 0 

l1Ien W- I = Wl-
I W,-I allows ~ 10 be computed in 1WO SICps. 1bc liM splining in 

E>:amplc 2 shows WI-I g, Then !he second spli!!ing applies W2-
1. Find lOOse inverse 

matrices W,- I and w2-
t directly from WI and W2. Apply them to , = (6, 4, S, I ). 

S llle 4 by 4 Hadamard matrix is like the WllveiC'1 matri~ but tmirely +1 and - I: 

6 

[
I 1 1 I] 1 - ] ]-1 

H ", 1 ] _ I _ ] . 

I - I - I I 

Find II - I and write g = (7. S. 3. I) a> a C(>mbinat ion of the columns o f II . 

Suppose we have two bases ' I . .. ", ' . and lilt •...• 111. for RO, If a vector has 
c~ffic", nls hi in one basi . and c; in the: OIller ba,is. what i. the clUIng<: of basi. 

matrix in b = Mc1 Start from 

bt ' l + ... + b. , _ '" Vb = Ci ll> , + ... + C. IIl. = We. 

Your aM ..... er repre§cnls T(u) =, with input basis o f , 's and output basis of ", 's. 
Because of differen t bases. \he rTUluh is nQI I. 

7 The dual biosis "«Iors " i ... ", .,: an: the columns of W· = (W-'? Show thaI 
{he "';ginal basis " I •.•• , MI. is "the dual of the dual. " In Other words, sltow 
that the MI'S are the rows of (W', - t, IIInt: Transpose the equation WW - t = I . 

, 
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This soon secli()fl <,:Qmbi r.e~ !he idea~ from Section 7.2 ( mal ri~ of a lir.ear 1"",.forma" 
lion ) and Seclion 7.3 (chang<' o f basi s). 1lle l"Ombinalio n JKOIIuces a needed resull : Ih~ 
cht",g~ of malri~ d,,, to chan1l~ of basis. 1lle matri~ depends o n llle inpul basis and 
OUlput basis. We wam 10 produce a betler matrix than A. by choQsing a bener bas is 
than tile standard basis. 

By rtrtning tht inpul and QUIPUI bas~s, ""t ,,"ill find Iht pst udoinw r"St A+ . II 
sends R" back to R". col umn space back 10 row s~. 

1lle truth is that all our great fa.ctorization s of A can be regarded as a change of 
basis. BUI this is a shan section. SO we ooncentrate on tlx> two oulSlandi ng e~amples. 
In both cases the good maui~ is Ifiagonaf. It is either A or 1: : 

1. S~ I AS = A "'hen Ih .. inp," .md OUlpUI ba.~s are eig~m'~Clors of A. 

2. U~ I AV = 1: ,,'hi'n Iht' inpul and ompul baSt's are tigem"tclors of AT A and AA T 

You see immediate ly tile diffe rence belween A and 1: . In A tile bases an: the same. 
TI>e matrix A must Ix squan:. And some square malrices canllO! be diagonalited by 
any S. because they don 'l haYe n independent eigen''eCtors. 

In 1: lhe inpul and OUlput bases an: diffcn:nl. 1lle malrix A can be rectangular. 
TI>e bases an: orlhOfW, ma/ because AT A and AAT are symmetric. llIen U~ I '" UT 

and V~ I = VT. EYery malri~ A is allOYl·w. and can be diagonali zcd . Th is is the 
Singular Value Decompos ition (S VD) of Seclion 6.7. 

I will justllO!e that tile Gram·Schmidt fa.ctorization II = QR chooses only ont new 
bas is. That is the onoogonal OUtput basis given by Q. ll!c input uses tile Slal>liard bas is 
gi'le n by '. We oon' t rea.ch a di3gonal1:. OOt we do n:a.ch a triangular R. The OIltpul bas is 
matrix appears on tile left and the input basi s appe= on lhe righl. in A = QRI. 

Wt Starl "'ilh il/pul iN,.is equal 10 oUlpm basis. That will JKOIIuce S and S~ I. 

Similar Matrices: A and S~ IAS and W~ I AW 

We begin wi th a S<Juare matri~ and Of!" basis. ll!c input space V is R~ and the OUtput 
space W is also R". ll!c standanl basi s vecWfS an: lhe columns o f I . 1l>c malrix is 
n by n. and lo,e ca ll il A. 1lle li near transformation T is " mu lt iplicatio n by A"'. 

Most of Ihis book has been about one fundaJnc,ntal problem- to mau 11t~ malrix 
simp/~. We made it triangu lar in Olapte r 2 (by elimination) and Chapter 4 (by Gram
Schmidt). We made it diagonal in Chapter 6 (by ~igtm"tClors). Now thaI ,hang;:: from 
A to II comes from a change of />asis. 

Here an: the ma in facts in ad\'llll<X. Wilen yOll change tile basis for V. the ma trix 
changes from A to AM. Because V is the input space. the matri x M goe:l on tile right 
(to come first). When you change lhe basis for W . the new matrix is M~ I A. We are 
work ing wilh lhe OUl put space SO M~ I i. on lhe I<: fl (10 come lasl). If yOOl ~ho"g' 
both bases in tht same ""til. Iht n, ... maJrix is M~ I AM . The good basis ' 'eCtQrS are 
the eig<'nvectQrS of A. in the columns of M = S. n,., matrix be«>mes S~ I AS = II. 

, 
i 
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70 When the basis contains the eigenvectors Xl . .. .. X n • the matrix for T becomes A. 

R~a$o" To find column I of the matrix. input the first basis vector XI. The transformation 
multiplies by A. 'The output is AXI = l'I x l. This is A] times the first basis vector plus zero 
times the other basis ve<:tors. Therefore the first column of the matrix is (AI. 0, .... 0). /11 
the eigtfll'tClor btuis, Ihe tnlllrix is diagQtIill. 

Example 1 Find the diagonal matrix thai projects onto the 135° line y = -x. 'The 
standard basis (I. 0) and (0. I) is projected to (.5. -.5) and (- .5 . .5) 

Standard matrix A ~ [ .5 -.5]. 
- .5 .5 

SolUlion 'The eigenvectors for this projection are Xl = (I. - I) and %2 = (1. I ). 'The 
first eigenvector lies on the 135° line and the second is perpendicular. 
Their projections are Xl and O. Tbe eigenvalues are Al = I and A2 = O. In the 
eigenvector basis. PXI = X I and PX2 = 0 go into the columns of A: 

DLagonaJ1ud matrix A=[~ ~J. 
Wha! if you cboo5C another basis like " I = "'1 = (2.0) and "2 = 11'2 = (I. I)? 

Since WJ is not an eigenvector. the matrix 8 in this basis will not be diagonal. Tbe 
first way to compute 8 follows the rule of Section 7.2: Find column j of the matrix 
by writing the output A~J as a combination of w·s. 

Apply the projection T to (2,0). The result is ( I. - I) which is WI -W2' So the 
first column of 8 contains I and - I. The second ve<:tor W2 = (I. I) projects to zero, 
so tbe second column of 8 contains 0 and 0: 

Th .. [ I ematnxIS 8= _ 1 ~] in the basis wI. JIl 2. ( I ) 

The second way to find the same 8 is more insightful. Use W- t and W to cbange 
between the standard basis and the basis of w's. Those change of basis matrices from 
Se<:tion 7.3 are repre5Cnting the identity transformation. The product of transformations 
is just 1 T I. and the product of matrices is B = W- I A W. B is similnr 10 A. 

7 E For any basis WI ... " 111 .. find the matrix 8 in three steps. Change the input basis 10 

the standard basis with W. 'The matrix in the standard basis is A. 'Then change the output 
basis back to the III'S with W- I. The product 8 = W- I A W repre5Cnts IT I: 

8.', to .,', = W.~ to .·S A,tandard W .. ·, to standard (2) 
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Example 2 (continuing with the projeclion) Apply !his W- t AW rule 10 find S, 
when the basis (2.0) and (I. L) is in the columns of W: 

'Ole W - 1 A W rule has produced the same B as in equation (l). A cJumgt of basis 
prod/lcts a similarity transformation in the ma/'I'U. The matrices A and 8 are similar. 
They have !he same eigenvalues (I and 0). And A is similar too. 

The Singular Value OKomposilion (SVO) 

Now the input basis 1>1 ..... 1>" can be different from the output basis u t ..... U ,". 

In fact the input space R" can be different from the output space RIO . Again the best 
matrix is diagonal (now m by n). To achieve this diagonal matrix E. each input vector 
I>} must transform into a multiple of the output vector uJ. That multiple is the singular 
"alue aj on the main diagonal of E: 

SVD 
for j!Or 

forj>' 
with Ofthonormal bases. (3 ) 

The singular values are in the order a1 :! <72 :! ... :! <7,. The rank , enters because 
(by definition) singular values are not zero. The second part of the equation says that 
' j is in the nullspace for j = , + I, .. "n. This gives the correct number II -, of 
basis vectors for the nullspace. 

Let me connect the matrices A and E and V and V with the linear transforma
tions they represent. The matrices A and E represent the same Iransftm11alion. A = 
VEVT uses the standard bases for R" and RIO . The diagonal E uses the input basis 
of II ·S and the output basis of /I ·S. The onhogonal matrices V and V give the basis 
changes: they represent !he identity transformations (in R" and RIO). The product of 
transfonnations is IT I. and it is represented in the II and u bases by V - t A V which 
is 1:: 

7 F TIle matrix E in the new bases comes from A in the standard bases by V -I A V : 

E.·, ' 0 M', = V.~ to M', Astandanl Vo', to .WIdan:l. (4) 

'Ole SVD cbooses orthooormal bases (V-t = V T and V - t = VT ) that diagonalize A. 

'The two onhooormal bases in the SVO are the eigenvector bases for AT A 
(the II ·S) and AAT (the u ·s). Since those are symmetric matrices. their unit eigenvec
tors are onhononnaL Their eigenvalues are the numbers <7 2. Equations (10) and (II) 
in Section 6.7 proved that those bases diagoualize the standkd matrix A to produce L 
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Polar DN omposilion 

E,'cry complex number has lhe polar fonn rei9 . A IlOflnegalive number r multiplies a 
number on the unil circle. (Remember Ihal l,Jel '" 1 0058 +; 5in81 = I.) Thinking of 
lhese numbers as 1 by I malrices, r <= 0 oorrespoods 10 a posi/i.·c 5cmitkfinile mll/rix 
(call il H) and ,J& com:sponds 10 an or/hoBoMI trUJlrix Q. The polor dccompositWn 
exlends Illis r,;e factoriution 10 malrices. 

7G Ev~1'} real "'lu.", matri. can be fact~d into II = QII. where Q is orthogonal and 
If i, symmetric positi • .., srmiJcjinilr If II is inwnible then If is ~iti,'e definite. 

For lhe prQOf we jusl inscn VTV = / inlO the middle of the SVD: 

(S) 

The firsl faclor UyT is Q. The prod"':l of onllogonal mau'ces is onhogonal. Thc 
serond factor YEyT is If . It is ~itivc semidefinite because ils eigenvalues are in E. 
[f II is invertibLe lhen E and II are also in,'CnibJe. H is tilt Iymmetric politiI'( definitt 
sq,,"n root .. , AT A . Equation (5) says that 1/1 = VI: lyT = AT A. 

There is also a polar dewmposilion A = K Q in lhe revcrse order, Q is the s;une 
but now K _ UI:UT. This is the symmetric positive definitc "'IU,,", root of AAT. 

h ample 3 Find the polar decontposilion A = QII from ils SVD in Sttlioo 6.1: 

A~[ 2 2] ~ [O 1][./1 ][-1/./1 1 /./1]~UH'. 
- I I I 0 2./2 [/ ./2 [/ ..ti 

Solution The onllogonal pan is Q = UyT. The positive definite part is II '" V I: VT. 
This is also If = Q- IA which is QTA: 

Q~[O I][-I/..ti 1 /./2]~[ 1/./2 
I 0 1/..ti 1/./2 - 1/ ./2 

H ~ [11./2 - 1/..ti] [ , '] ~ [J/..ti 
11./2 1/./2 -I I 1/./2 

1/ ./2] 
1/ ./2 

I/..ti] 
J/ ./2 . 

In I'll«hanics. the polar dewmpositioo separates the ro/(J/ion (in Ql from lhe strdching 
(in H ). Thc eigenvalues of If are lhe singular values of A. Thcy give the stretching 
factors. The eigenvectors of II are the eigenvectors of AT II. Thcy give lhe slI .. "ching 
directions (the principal axes). Then Q roIates the axes. 

The polar decomposition jllst splits the key equation A'J = OJ " ; into IWO sleps. 
The "If"' part multiplies ' J by oJ. The "Q" pan swings ' ; around into " I. 

, 
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The P5eUdoinvl'l"S4' 

By choosing good bases. A mulliplies Pi in the row sp.oce to giV(> " 1" 1 in the CQlumn 
~. A- t mUSI do the opposite! If A. = " " then A- I" = -/". "The singular va.lues 
of A- t an: 1/ ". just as the cigenv.l~ of A- I :m 111. "The ~s are .." ..,rscd. "The 
,, 's are in the row space of A- I. the .'s are in the CQlumn~. 

Until tllis moment we W(lUld lIaV(> added "i/ A- I aillS:' Now ".., don·1. 

A matrix that multiplies III to product' . I/Oi dots exist. It is the pscudoinve~ ,01+: 

-, ., 

. -' , 

. ". .. by .. 

The pnwJoilllY~e ,01+ is an n by m matrix. If A-I exisl5 (we said il again). then 
,01 + is the same as A _ I. In Illat case m = n = ~ and we are inverting U 1: VT to get 
V1: - I U T. The new symbol ,01+ is needed when r <: m or r <: n. Then A lias no 
lwo-s ided in~, but it lias a pselOdoinve~ ,01+ willi thai same rank r; , 

A+/I,=-p, rori ~ r and A+ /I,= O fori>r. ., 
"The vectors /I t ••••• /I , in the column space of A go back 10 the row space. "The OIher 
vecwrs " r+\'" .. 11_ are in lhe left nullspacc. and A+ sends them 10 zero. When wc 
know wlult happens 10 elOCh basis ~or II " we know A+ . 

NOIice the pseudoinvenc r + o f the diagonal matrix E. Each" is replaced by 
,, - I. "The product r+r is as near to lhe idenlity as we can gel. We gel r I 's. We 
can'I do My thing about the lero rows and columns! This cumple has " I = 2 and 
"':! = 3; 

[

' /2 
r + r = ~ 1~3 ~l [~ ~ ~l" [~ ~ ~l· 00000000 

,01,01+ "" projection matrix Onto the CQlumn spit« of A 
A+ A "" projection malrix onlO lhe row space of A 

hillmpll' 4 Find the pseudoinV(>n;t: of A = n ~ 1 This matrix is not invertible. 

The rank is 1. "The only singular mue is M. ThaI is inverted 10 I / M in r+ : 

A+=VI:+UT =_' [' '][ I/ M 0] _' [2 '] _.c [2 '] ../i. I - t 0 O ,f5 I -2 10 2 I . 

, 
t 
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Figure 7 .4 A is inve"ibk: from row space to ooLumn space . A+ in'..," s it 

A+ aLso has nmk L. Its column space is the row Space of A. When A takes ( I. I ) 
in the row space to (4. 2) in the coLumn space. A+ ,Joc-s the rtVl'rw:. E,..,'Y rank ()fIoO 

matrix is a column times I row. With unit ~«1on II and r, that is A = O il . T . Then 
the best invc:rw: of a rank ()fIoO matrix is A+ = ~ IITJO. 

The prodUCt AA+ is "liT. the projec1ion onl0 the line through II . The prod.....,t 
A+ A is n T, the proj«tion ontO the Line through • . For all marrinl, AA + ond A+ A 

tlrt fll~ projufions onlO Ihe collllll n l /MCe IUld TO'" spaCt . 

Til. siwrwJl UfISlIfIlNrJ ~ 10 JU _ , is ,r'\- A+ • . Any Qlller ,,«. 
101' th~t so .. ..,s AT Ax "" AT /) is Longer than x + (Problem 18). 

• REVIEW OF THE KEY IDEAS • 

I . Diagonalization S- I AS = 1\ is the same as a cha~ to the eigenvector basi s. 

l. The SVO c~s an input basis of , 's and an OUtput basis of ,, ·s. Those or· 
thonormaL bases diagonalize A. This is A'i *" 0i " / . and A '" UI:vT. 

3. Polar d«omposition facton A into QII. rotation times S1~hing. 

4. The pseu<1oinvc:n;e A+ = VI: +UT transfonns the column space of A back to its 
row space. A+ A is the identity on the row space (and zero on the nullspace). 

t 



• WORKED EXAMPLES • 

7.4 A Start with an m by II malrix A. If ilS rnnk is II (full column rank) !hen il 
has a I,ft im.,rse C = (AT.4)- IAT. This matrix C gives CA = I . ""plain wby the 
pscudoin~rse is A+ = C in this Ca5/: . If A has rank m (full row rank) lhen il has a 
right Im·"ru B with B ., .041 ( .04.041 ) - 1 and .048 = I . ""plain why .04+ = B in this 

Find B and C if JIOS~ibLe and find .04+ for all three matrices: 

Solution If A has rank II (ioo.,~ndent column ~) !hen AT A is inven ible - this is a 
key point of Section 4.2. Certainly C = {ATA )- IAT multiplks A to give CA = I . 
In the opposite order. AC = A{AT A )- t AT is !he projection matrix (Section 4.2 again) 
onto the oolumn space. So C meetS the ~uiremcnts 7" to be A+. 

If A has rank m (full row rank) then AA T is invertibLe. Certainly A multiplies 
B = AT( AAT)- t to give AB = I. In the opposite order. BA = AT( AAT)- IA is the 
projection matrix onto the row space. So B is the pseudoin''CTSC A+. 

"The C!tample A t has full column rank (for C) and A 2 has full row rank (for B): 

NOli« Ai A , - 11J and A 2Ai - Ill . BUI Al has no Left or right invenc. Its pscu

" - . A+ -t T [" II' ........ nvenc " 1 =Ot 't " t = II . 

Problem Set 7.4 

Problems 1-6 compute .nd use the SVD or. partLeular matrix (not IlIvertlble). 

1 Compute AT A and its eigenvalues and unit eigenvectors ' t and . !: 

A = [~ ~] 
Wbat is the only singular value 0"1? "The rank of A is r = I. 

2 (I) Compute AAT and its eigenvalues and unit eigenvectors lI t and " 2. 

(b) Yffify from Problem I that A' t = 0 1" 1. Put numben into the SVD: 

, 
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3 From the u 's and v's write down ortnollOrmal bases for the four fundamental 
subspaces of this matri)'; A. 

4 Describe all matrices that have those same four subsp~s. 

5 From U. V. and 1: find the orthogonal matrix Q = U VT and the symmetric 
matri)'; H = V1:V T. Verify the polar decomposition A = QH. This H is only 
semidefimte because 

6 Compute tIM: pseudoinverse A+ = V1: +UT. The diagonal matrix 1:+ contains 
I / o!. Rename the four subsp~s (for A) in Figure 7.4 as four subspaces for 
04+. Compute 04 +04 and Ao4+, 

Problems 7-11 are about the SVD of an invertible matm. 

7 Compute AT A and its eigenvalues and unit eigenvectors Vt and Vl. What are the 
singular values o! and 01 for this matrix A? 

o4=[_~ ~l 
8 o4AT has the same eigenvalues of and of as ATA. Find unit eigenvectors "l 

and " 2. Put numbers into the SVD: 

9 In Problem 8. multiply columns times rows 10 sllow that A = 01 " l vT + 02 11 2 UI. 

Prove from 04= U1: VT that every matri)'; of ronk' is the sum of r matrices of 
rank one. 

10 From U. V . . and 1: find the orthogonal matriJt Q = U VT and the symmetric 
mam)'; K = U1:UT. Verify the polar decomposition in the reverse order A = 
KQ. 

11 The pseudoinverse of this A is the same as because 

Problems 12-13 compute and use the SVD of a I by 3 J"el:tangular matrix. 

12 Compute AT A and 0404 T and their eigenvalues and unit eigenvectors when the 
malri)'; is A = (3 4 0]. What are the singular values of A? 

13 Put numbers into the singular value decomposition of A: 

A=(3 4 0]=[11 11[01 ° O][ VI U2 V3]T, 

Put numbers into the pseudoinverse of A. CvmpUie 0404 + and 04+04 : 
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14 What is the only 2 by 3 matrix that has 00 pivQU and no singular vailles? What 
is 1: fQr that matrix? A+ is the zero matrix. but what shape? 

15 If det A = 0 how do yoo koow that de! A+ = O? 

16 When are the factors in U1: VT the same as in QI\QT? The cigen''alues 1./ must 
be positi.,c. 10 equal the 17;. Then A must be __ and positi\'e __ . 

Prob"'ms 17- 2{l bring out the main proj)ft'tles of 04+ and x+,. o4 +b. 

17 Suppose all matrices have rank ()I1e. The ,·ector b is (bt. l>2). 

A' 0 [.2 .'] 
.2 . I 

AA' 0 [.8 .4] 
.4 .2 A' A 0 [."] .5 .5 

(a) 'The equation AT Ai = ATb has many solutions because AT A is __ . 

(b) Verify that .., + = A+b = (.2b t + .1l>2 .. 2b t + .1l>2)~ solve AT Ax + = ATb. 

(e) AA+ projttl< OOIQ the wlumn space of A. 'Therefore --rjttlS onto 
the nullspact: of AT. 'Then AT( AA+ -I)b = O. This gives A Ax+ = ATb 
and i can be x +. 

16 Th,. "ufOr x + i$ th~ shorust pouibl~ solution fO AT Ai = AT b. Reas<m: The 
difT=nce i - x + is in the nullspace o f AT A. This is also the nullspace of A. 
Explain how it follows that 

l i l2 _lx+12 + Ii' _ "'+12. 

An)' other sol utioo i has gn:atcr length than x +. 

19 Every b in K- is p + r . Th is is the e<>lumn space pan plus the lert nullspace 
pan. Every x in R" is x, + cr . = (row spatt part) + (nullspace part), 'Then 

['] [' -.'] ['] II = 4 =.8 .6 0 [I]. 

21 A general 2 by 2 matrix A is detennined by (our numbers. If triangular. it is 
determined by th=. If diagonal . by tw(). If I rotation. by ooc. An eigenvector. 
by one. Oleck that the tOOlI CQUnt is four for each factorization of A: 

22 Following Problem 21. check that LDLT and Q AQT are determined by thru 
numbers. Thi s is CQlTCCI because the matrix A is __ . 

, 
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lJ Fl'Qrn A = UI:V T and 11 +., Vl;+UT explain these ~plinings inl0 nmk I : 

, 
II = L ", ,,;,T , 

, , 
+ ,.. ' i" ; 

II : L.. --
, 0 , 

24 Thi. problem k.>ob for all malnce. A with. gi>'en column space in W- and a 
given row sp;oce in K·. Suppol'C' " I ____ . ii, and - I. ___ ,i, are base> for those 
11010 SPaCt'S_ Ma~e them columns of 0 and V. Use II = UEVT 10 w.ow thai A 
has the room OM VT for an • by r in\'t'rlible matrix M . 

25 II pair of singular vectors . and " will >alisfy A~ .,,,. ,, and AT .. = ,, ~. This 

means thai the double V«lor ¥ "" [ : ] is an eigeR'ttlor of w!La1 symmetric ma

trix? With what eigenvalue? 

i 



8 
APPLICATIONS 

MATRICES IN ENGINEERING. 8.1 

This section will sllow how engineering probkm§ prod lICe' symmetric matrices K (of
ICn po5ilive definite matrices). n.: "I inear algebD reason" for symmeu), and positive 
definiteness is their form K "" ATJt and K = ATCA. n.: "physical ",asonM is thaI 
tile ClIpression i" T K" represent! .. " ",,,]- and energy is neveT negative. 

Our first examples come from mechani<,:a l and civil and aeronautical engineer· 
ing. K is the uiJ!.uu ... tlIriJc. and X - I f is the structure"s response 10 fon:n f from 
outside. n.: next section turm; 10 electrkal engineering - the matrices come from net
wOIb and c;fUlIIS. n.: exercises ;nvol Y<: chemical engineering and I could go on! 
EconomiC$ and management and engineering ooign come laler in this chapleT (there 
the key is op(imizalion). 

Here " .. " p~nt equilibrium equations Xu = f . With motion. Md2N/ dl l + 
KII = / becomes dynamic. llK:n We use eigenvalues. or finite differe~1i between 
lime steps. 

Ekfon: explaining the physical examples. may I wrile down the matrices? The 
tridiagonal KO appears many limes in thi s textbook. Now we wiLl Stt its appliulions. 
'These malrit'(:s are all symmetJi<;,. and the fiBt four art pc:>Sitivc definite: 

KO= AJAO= [ 

, -, 
1 

[q +Q -Q 

1 -, 2 -, AJCoAo = - Q ~+ Q -~ -, , -0 C"J + c. 

K! '=ATA! =- [ 

, -, 
1 

["+ "> 
- Q 

-: 1 -, , -, ATC!A! = - "> ~ + " -, , -0 

[ 1 -, 
1 [ 

, -, 
-I 1 K'in8~lar '" - , 2 -, " d rcular = -, , - , -, , -I -, , 
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fhed ~nd I/O '" 0 fixed ~nd I/O =0 
spring CI tension )'1 Spring CI tension )'t 
mass Inl move,"",nt 1/1 mass Inl mo'"C,"",nl II I 

~ " $pring <'l ttnsion Y'2 
m, "' mass 1n 2 l1'I()\'emem " 2 
<, " ~pring c, ttnsion n 

"" "' mass m, moH'me,,1 " l 

" yo ff"ft end )'4 = 0 
hed end 

" '''' 0 

Figure 8. 1 Lines of springs and mas~ wilh diffenmt end conditions: no mo~menl 
(flxed,fi.~ed ) and no fol'l:c at the ~tom (fi.~ed-ff"ft). 

11If matrices Ko. I( I. I(si~g~/(." and I(ci , clIl", ha,"C C '" I for simplicity. This 
means thai alilhe "spring ronSlanIS" all! ej '" 1. Wc included A~CoAo and ATCi/\ 1 

10 ihow how !he spring ronswlIs emu lhe matrix (withoul changing ils posiliyc defi
nileness). Our firsl goal is 10 show whell! these sliffness malrices come from. 

A Li~ of Springs 

l'igu", 8.1 ,how, 'h= rna."". m,. m ,. m J ~on""" ,cd by • linc of <prinp. In one c&Sc 
lhe", an. four springs. with lOp and botlom fixed. n.e fixcd-f= case lias only th= 
springs; !he lowesl mass hangs fltt ly. The ~xed'~xed probkm will lead 10 1(0 and 
IqCo Ao. The find'fl'ft' problem will kad 10 K , and AT C IAI . A ff"ft-ff"ft problem. 
wilh 00 wpport al eilher end. produces lhe mauix l('i~IIII~" 

We wam equalions for lhe mass mo~mcnls 1/ and the tensions (orcomprcs.s ions) y o 

1/ '" (" I, " ~, "J) '" nlO,·.menl_ or Ih~ nUl.~ (down or up) 
y ::: (YI.n.n,H) o r (YI.n,n) '" Irnslons lnlht spt'lngs 

When a mass fDOYe'j downwanl. ils displ~menl is posili~ (II; > 0 ). For the springs. 
lenlioo is positi,'c and rompression is neg.al i~ ()'i < 0). In tension. lhe spring is 
sireiched SO il [lUlls lhe masses inwan.!. Each spring is conlrolled by its own Hooi;c 's 
Law Y = e r: (s' .... 'cl,;n8 fo re.) = (spr;ng conslUn,) li mes (J,,.,,,ching dislUna), 

Our job is 10 link these Qoo-spring equalions imo a -.eclor equation K/J = / for 
lhe: whole systrm. 11le force veclor / ~s from gravity. 11le gravitational constant 
8 m~ltiplies each mass to prod .... -e / = (mI6. m2', In )l/). 

The ",al problem is to find lhe: sliff ... ~ matri~ (hed.filed alld bed·ff"ft). The besl 
way to "reale I( is in Ihree sleps. IlOl one. In~lead of con""",ing the movements " l dir"CClIy 
to the forces I i ' it is much bo:uer 10 ronnect each ,"CCtor to the: TlCxt;n thi s list 

" = Mqumt nl s of n masses = (1/ 1 ..... ... ) 

• = Elq~'lll iqns of m springs = (~I • .... ~ .. ) 
y = l"t eNltd/oren in m springs = (YI.··· ,J,.) 

f = "·xl t rn .. l/orce. on n masses = (/1 •...• /.) 

, 
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The framewort. thal connects II to t to J to f looks like this: 

0 [ZJ t = Au , ;, m by " 
" t" J = Ct C " m by m 

0 
C 

0 f = AT, AT is nbym ~ 

We will write down the matrices A and C and AT for the two examples, finn with 
fixed ends and then with the lower end free. Forgive the simplicity of tllese matricc~, 

it is their form that is so imponant. Esf'"'Cially the appearance of A and AT, 
The e!OTIgo,ion t i. (he stretching dista~-how far the springs are e~lendro_ 

Originally there is no stretching- the system is lying on a table. When it becomes 
"enical and upright. gravity a.cts. The masses move down by dista~s III, " 2, II ). Each 
spring is Streeche<;! or compressed by t; = II; - 11 ; _ 1, the diffortllCt ill di$pluamt nt$: 

First spring: ' I = II I (the top is fixed"" 110 = 0) 
Second spring: t := 1I2- U I 

' J"" " J- U! 

' 4 = - II I 

Third spring: 
Founh spring: (ehe boItom is fixed so II, = 0) 

If both ends move {he same distarw,:e. that spring is not stretched: li t = li t _ I and e; = O. 
The matrix in those foor C<juations is a 4 by 3 difftrrrrct: /IUItrix A, and t = All : 

St~leh ing 

distances 
(tlongatlons) 

, = Au ;, 

, 
-, 
o 
o 

The "",~t C<juation , = C, connects spring elongation, with spring tension J . 
This is HooU's Ww Y; = C,t; Jor rod! ltparatt spring . It is !he "cOlistitutive law" 
thaI depends on the material in the spring. A soft spring has small c, so a moderate 
force y can produce a large stretching t. Hooke's linear law is nearly e~a<;:1 for real 
springs. before they an: overstretched and !he material becomes plastic. 

Since each spring has its own law, the matrix in , = C, is a diagonal matrix C: 

y, 
Hookt's y, ~ 

'u " ~ y, ~ 

CI'I 

'-'1'1 
c l ' J 

e". 
.["][" ,s n = 

" " 
Combining' = All with J = C" the spring fon.:es an: , = CAli . 

Finally comes the balutIC' eqilOtiOtl, the most fundamental law of applied mathe 
matics. The inte rnal forces from the springs balance the external force$ on the masseS. 
Each mass is pulled or pushed by tile spring force Yj above it. From below it feels 
the spring force Yj + ! plus fJ from gra,·;ty. Thus Yj = Yj+l + fJ 0< fJ = )'j - )}+ I: 

, 
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" 
= 
= 
= ,.. [ ~: 1 ~ [i -l -~ J] [ ~ ] J I - 12 

1 2 - )'1 

J }- J~ 

(3) 

That ",Glm is AT, TM equation for balance of jQrcu i~ f = AT y . Na~ure lran~poieli 
the rows and columns of the , - U malri~ 10 prodUtt the f - , maIm. Thi$ is !he 
beauty of the: framework, thaI AT appears along willl A. n.: throe cqual ion~ combine 
inl0 Xu = / ' where the Ifi//"' u matrix is K '"' ATCA: 

combil\e;nlO AT e A .. ", ! or Xu = ! . 

In the language of elasticity., :; All is !he kinematic C<tuation (for di.splacelIlC'nl). The 
force balance f '"" AT, is thl: slIIlk equation (for equilibrium). The consillulh-, la ... 
is !f :; C, (from !he maleria l). Then " T C Ao is n by II '"' (II by m )(m bf m)(m by II). 

Finite clement progl1lms spend major cffore on asscmbling K ,. A CA from thou
sands of smaller p~ We do it for four springs by multiplying AT times CA: 

FIXED 
FlXEJ) [ ][ " 00][ ] I - 1 0 0 0 CI +c: -C:l 0 

o I - I 0 -~ _~ CJ '" -£'1 0+<) -q 
o 0 I -\ 0 0 0 -C) C)+c~ - co 

If all springs an: identical. with Ci '" c: '" C) '" c~ :; 1. then C = I . 'OM: stiffness 
matrix reduces to AT .... . II becomes tile spttial matrix 

[ , -, 0] 
Ko= A~Ao= - I 2 - I . 

o - I 2 
(4) 

Note lhe difTcf1!1lCe belween AT A fR)m engineering a nd LL T fR)m linear algebnL 'The 
matrix A flOl1l four spring$ is 4 by J. 'The lriangular malrix L from el imination is 
5Quare. 'The stifTne~. matrix K is asse mbled from AT A . and !hen broke n up inlo LLT. 
One step is applied mathemalics. lhe other is compulalional malhemalics. Each K is 
buill from =langular matri"". and facl~ inlO square matrices. 

May I list SOI"l1e poope,ties of K '" "TC A? You know allOO:'il all of them: 

I . K is tridiagona l, because masS 3 is not connected to mass 1. 

2. K is symmetric . beca use C is symmelric a nd " T romes with A. 

J. K is posili,·~ dtfinlte . becaus<c Cj > 0 and A has Independent columns. 

4. K - t is a full matrix in equalioo (~) wilh all po;I'ilh·e entrla. 

i 
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Thai lasl propeny lead§ 10 an imponanl fOCI aboul u = K - I F If 01/ jorces OCI dQln,. 
,.."rds (fJ ;. 0) 1m," 01/ ~",..",s /IT .. (/(J":M"'OrdS (uJ ,. 0). NOIiet' that ··posiliveneu·· 
is diffe~m from ··posili,·" definiu,ness·'. He~ K - I is posilive (K is 001). BOIh K and 
K - I an: posili~e definile. 

Example I Suppose all C; = c and rnJ = m. find lhe rr><)VCn)eniS U and lensiollli , . 

All springs an: !he IJlfIle and all ma~ an: lhe ... """. BUI all movements and 

e longations and tensions will fUll be !he 1JlfIle. K - I includes! becau§e ATe,", in
o 

~ Iudes c: 

,» 

lbe displ""""""nl " 2. for the mass in the middle, is grealc, Ihan " I and II ). lbe units 
are CQrTCCt: lhe force mg divided by force PC' unil length c gives a lenglh ". lben 

-, 
o 
o 

m, 
, 

l 
1 

-1 
- j 

11>ose elong31ions add 10 uro because lhe ends of lhe line are fi~t"d . (lbe sum UI + 
(" 1 - UI) + (") - Ul ) + (- I< j) is cenainly 7.<:ro. ) For ea.: h spring fOItt)"i we jusl 

, . , b "~ 3 1 1 J ..... _ 
rnullpy t; y c. ->V )"10)'2, ) "3. )'4 an: -,:m8, 1mg. --,:m8. --,:m8. " '" upper 1,,"'0 
springs are sireiched. the lower 1"-'0 springs an: compresiiN. 

NOli« how 1< . e. , are 'Ompuled in lhal order. We assembled K = ATe A from 
rectangular matrices. To find U = K - I/ . we work with lhe whQle malrix and 001 its 
Ihree pieces! lbe rectangular mllriet's A and AT do rKX have (Iwo-sided) inverses. 

lbe Ihree malrices an: mixed l~r by ATeA, md It.ey ~anr>Ol easily be unlangled. 
In general. liT, '" I has many solutions. And four e<]ualions II .. = e wouLd usually 
have no solulion wilh Ih= uni:nowns. Bul ATeA gives the oorrecl solution 10 all 
Ihree equalions in tile framework. Only when m '" n and the matrices are squall: can 
we go from , =(AT)-I I 10 , =C-' , 10., = A- ' , . We will S« thai now. 

, , 
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Fixed End and Fret' End 

Remove the fOlllth spring. All matri~es become J by J. "file panem does not change ! 
"file matri x A loses its founh row and (of rour,;e) AT loses its fOllnh column. The new 
stiffness matri~ K, becomes a product of S<Ju","" matrices: 

ATc,A, = [~ -l -:] [ C
1 ~ ~ ] [ -l _: ~] 

"file missing column of AT and row of A multiplied the miss ing q . 
way to find the new ATCA is to set <:4 =0 in the old one: 

So the quickest 

FIXED [ C( + ~ - <'2 
FRn ; K , = ATC t At= - <'2 ""l+~ 

o - C ) 

(6) 

If C( = <'2 = ~ = I and C = I. this is the -I . 2. - J tridiagonal matrix. exa:pt the 
last entry is I instead of 2. "file spring at the OOItOm is free . 

hample 2 All Co" = c and all mj = m in the fixed-free hanging line of springs. 

""'. 
Kit = _ 1 , [ , 

c , 

"file fOlees mg from gntvity are the same. But the movements change from the previous 
eumple because the stiffness matrix has changed: 

U = Kil / = ~[ : 
c , 

; ;] [:: ].m, [;] . 
23 mg C 6 

Those move ments are grealcr in thi s fixed·free CISe. "file number 3 appears in U I be
cause all th~ masses arc pulling the fi",t spring oo-.·D. T1Ie next mas. moves by that 
3 plus an additional 2 from the mas,"". below it. "file third mass drops even more 
(3 + 2 + I = 6). "The elongations t = Au in the springs display those number.; 3. 2. 1: 

Multiplying by c. the fOlees , in the th""" springs are 3mg and 2mg and mg. And the 
special point uf S<Juare matrices is that , can be fOllnd di"""ll y from f ! "file balance 
equation AT, = I determines , immediately. because m = " and AT is S<Juare . We 

are aIlO"'ed to write (ATCA)- I = A- IC-I(AT)-' : 

, .(AT)- ' /i, [~ 1 :][:! ]_ [ ~:] . 
o 0 I mg Img 

, 
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mass m l 

~ 
movemenl UI mass m l fIlOVCmeni U I 

spring <"::! lensioo )1 Spring Cl spnng Cj 

mass ml 

I 
InO'o'emenl U l mass m l ITIQ'.'emeni Ul 

spring CJ lensioo Y3 spring C) 

IT\iISI; m ) moVemc:8I Ul mass mJ monmenl " 1 

Figure 8.2 . ' Ift·free ends: A line of springs and a ··ci rcle·· o f springs: S;ngular 

"·s. The masses can I'O()'It\ wilholn ~hing the springs w A" = 0 has oonzcro 

wlulions. 

Two Fret' Ends: K is Singulu 

"The finn line of springs in Figull: 8.2 is free aI both ends. This mean> u'Ollble (lhe 
whole line can move). The malri1 A is 2 by 3. short and wide. Hen: is e = Au: 

] [ -' '0]["' 1 '" 0 - I I :~. (7) 

Now lhen: is B nonzero SQluliQll 10 Au = O. The masses con molY with no Sf~fchillg 
o/fhe SpriIlI/S. "The whole line CBn shif! by u = (1.1. 1) and Ihis lea>'c:s t "" (0.0). A 
bas d~~ruJ~nI coI"mnJ and the Vttlor (I. I. I) is in ils nullspace: 

A .. _ 0 cenainly leads 10 ATCA .. = 0 . So ATC A is on ly posil;'''' Jemid~fi"iIC. Wilholll 

1'1 and c •. The pivots will be Cl and C"J and no Ihird pi.'Ol: 

(9) 

Th'o eigenvaluc:s will be posilive bul Z = ( I. I . I) is an eigenVtttor for 1 = O. We call SQI>'c 
ATe Au .. I only for special vectors I . The forces have 10 add to II + h + h = O. or 
the whole line of springs (wilh boll! ends free) will take off like a rocket. 

i 



Ci rcle of Springs 

A third ~pring will oomplete the circle from mass 3 back to mass 1. This (\oc,sn't m~ke 
K in'"Cnible - the new matrix is Still singular. Thai Stiffness malrix /(d rclliar is not 
tridiagonal. but it is syrnmetnc (always) and umidrfinilt: 

The only pivots an: 2 and !. The eigenvalues an: 3 and 3 and O. The detcnninant is 
zero. The nullspatt sti ll ~ontains ;r _ (1. I. I ). when .1I massa move together (nothing 
is holding them) ~nd the spri ngs a", not stretched. This 1DO\"C"",nt vector ( I . I. I ) is in 
thc: nullspace of Acircw[", and /(ci rc~la,. e,"Cn after the diagonal matrix C of spring 
oonstants is inc luded: 

( 11) 

Continuous Instead of Discrete 

Matrix equations an: discrete. Differential equations are contin uous. We will see the 
diff~",ntial equ~tiQn that COI"Te!Ipoods to the tridiagonal - 1.2. - I matrix AT A. And it 
is a pleasure to see the boondary conditions that go with Ko and KI' 

TM m.",iets A 011(/ AT CQI""'Sfl(md 10 rht dtri.-aliu$ d l dx OM - dl dx! R~""'m· 
ber that ' '" A ll too/l; dilfe",nces WI -III_ I. and / = AT :1 took differences Yi - }·i+l. 
Now the springs an: infinitesimally short. and tho!;c dilfe",1"I("C"$ bttomc derivatives: 

II I - II I_I is like dll JI - JI+I 

ax dx ax 
is like 

The factor ax didn't appear earlier - we imagined the distalltt between masses was 
I. To apprOximate a continuous solid bar. "'"c take many more mas5C$ (smaller and 

ckMr). Let "'" jump to the three steps A. C. AT in the continuous model. when there 
is stretching and Hooke's Law and force balance at e"cry point x: 

du T dy 
r{x ) '" All = - J(x) '" c(x)r(x) A y'" -- "" /(x) 

<Ix dx 

Combining those equations inlo ATCAu(x) '" /(x ). we 1Ia,"C a differential equation 
II()t a ""'trix equation_ The line of spri ngs bcrornes an clastic bat: 

Sulid Elastic" Bar d ( dO) -- c(x)- '" fIx) 
dx dx 

(12) 

t 
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AT A corresponds to a second deri,'alive. A is a "differellCO: ITWtriX" and AT A ;s a "~. 
000 diffeTtoc\, matri)l." , Tht mlWir h(lS - I. 2. -I fJnd Iht tquo!ion hfU _d2u/dx2: 

d1~ 
-WHI + 2~i - ~; _ I is a second dlffen'rI« - -1 is a s«ond derlntin . 

d. 

Now """<' !iee why thi~ symmelric n1alri~ is a favorite. When we mecI a first deri"lli"e 
d~/dx, we have three c lK);""s (forward. bocb.ard. ond ctnured differtllCu): 

~(x) - ~(x - Ax) 

•• ~ 
W(x + Ax) - w(x - Ax) 

lAx 

When we meet d!~/dxl, the nalural clK)ic~ is ~(x + Ax) - 2,,(.<)+ ,,(x - Ax) , divided 
b)' (Axf. Why m:erst Ihe~ 3igns /0 - I. 2, - I ? Because lhe positive definile malrix 
has +2 on the diagooal. NISI derivati"es an: antisymmetric: the trans]lOSC lias a minus 
SIgn. So second diffe",~s are negalive definite, and """<' change 10 _d1~/dxl . 

We have moved from vectors to fullCliQnS. Scientific computing Il1OI"",S the other 
way. It stam ""'i,h a differential equalion like (l l ), Sometimes lhere is a formula for 
the §Olution ~(x), mo", often not. In ",alily we CTMU the <Ji~rete matrix K by ap
proximating the cuntinUQUS problem. Walch how lhe boundary cundi1ions on ~ come 
in! By mining ~o we lreal it (COrTCCtly) '" • .ero: 

[ 

, 0 
FIXED I - I 1 
FIXED Au = Ax 0 - 1 

o 0 

: 1 [ ., 1 d. ., .-, d. 
_I ~ 3 

wilh " G = 0 
~~ "" 0 

( 13) 

Fixing lhe lop end gives the boundary rondilion wo = O. Whal aboul lhe fn:e end. when 
lhe oor hangs in lhe air? Row 4 o f A is gone and §O is ~ •. "The boundary cor.dilioo 
must oome fmm AT. It is the missing H that we arc treating (CO=<:lly) as ....,10: 

FIX": !) T _ I [' - I 0 1 [ y, 1 dy FREE Ay _ _ 0 I - I 12 "'--
AXOO I n dx 

u, '" 0 
y~ _ 0 ( 14) 

The bo~fJdary conditio" y< ,. 0 III Ihe fret tend b«omtJ dw/dx = O. since y "" A~ 
currespond. 10 d~/dx . lbc: fora: oolanc~ AT y '" I at thaI end (in the air) is 0 = O. 

The last r'I)W of K , ~ = I has entries - 1.1 to ",Heet this condition d~/dx = 0. 
May 1 summarize this section? 1 hope this example will help )"011 lum cakulus 

inlO lin<:ar algebra. replacing differential equalions by difference equalions. If your step 
Ax is small enough, you will ha'"", a toU.lly satisfaclory solution. 

The equation Is - - c(x )- = I(x ) " 'Ith 1/(0) = 0 a nd ~(I) or - (I ) = 0 d ( d.) [ d. 1 
dx dx b 

, 
i 



Divide the bar into N pie«s of Ienglh a..-. Replace du l d..- by Au and - dy l d ..- by 
liT,. NQW II and AT include l / a..-, The end conditiollli are "0 = 0 and [UN = 
o or YN = OJ. The th"'" steps - di d): and c():) and di d ): com:spond to AT and C 
and A: 

This i. a fundamental eumplc in comput>Uiooal scienct' and cnginct'ring. Our book 
oonct'ntrates on Step 3 in Ihal process (linear algebra). NQW We have ta~en Slep 2. 

I. Model the JllUblcm by a different ial equation 

2. DiKreliu tho: differential equation to a differenct' e\Juation 

3. UD!letStll.nd and 50lve tho: differel1Ct' ttjuation (and boutJdary conditions!) 

4. Interpret the soMion; visuali7.e it: redesign if needed. 

Numerical si mul~lioo has be<:tmJ<, a third branch of science. together with aperimcnt 
and deduction. Designing the Boeing 117 was much less expensive on a computer than 
in a wind tunnel. Our discussion still has to move from oRiinary to panial differential 
e\Juat ioos, and from linc:ar to nontinc:ar. ~ text Introduelion It) Applied Ma,he",luiel 
(Wellesley--Cambridge ~) develops this whole subject further-sec: the ooursc page 

math.mll.ed ul l8085. The principles remain the same. and I hope this book helps you 
to sec the framework behind the oomputatioos. 

Problem Set 8.1 

1 Show thm det II~Co llo = Cl<'l C'l +CtC)C4+Ct<'lC4 +C2C'le4. Find also det AT Ct A I 
in the fixed·free example. 

2 Invcrt ATCt A t in lhe fixed·f= example by mUltiplying Ai" tC;- t (AT)- t. 

3 In the f= .f= case when ATCA in equation (9) is si ngular. add the th= equa. 
tions itT C A" = I to show that we nttd It + h + h = O. Find a solution 
to ATCA " = I when the forces I = (- 1.0.1) balance thernsciws, Find a ll 
solulions! 

4 Both end conditions for the free·free differential equation are du l d..- = 0: 

"( "") -- c(..-) - = 1(..-) .... ith 
d..- d): "" - = 0 at boIh ends. ", 

Integrate boI.h .ides to show that the fort:e 1(..-) must balance itsdf. f I(..-)d..- = 
O. or there is no solu tion. The complete §Olution is one part~ular solution u(..-) 
plus any con.sw.n\. l1>c corman! oorrespOr>ds to " = (1.1. I) in the nullspa<:e of 
ATCA. 

, 
i 
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S In the fixed-free problem. the matrix A is MJuare and invenible. We can soh'" 
AT J = , separalely from All '" t . Do lhe same for the differen tial equation: 

Solve _ dy = j (A) with y(l) '" O. Graph yeA) if j(x ) = 1. 
d, 

6 The 3 by 3 rnatri~ K, = ATc1 A\ in equation (6) spli" into three "~k"n"nt rna· 
trices"" Cl £ { +<":! £ l +q£,. Write down {hose pieces. one for each c. Show how 
lhey rome from column rimex row muhiplkation of ATet A t . This is how finite 
element stiffness matrices arc actually assembled. 

7 For five springs and four masses with boch ent" fixed. what"..., tt.. matrices A 
and C and K ? With C", I solve KII = ones(4). 

8 Com~ the solution II = (" t. U 2. U l. U~) in Problem 7 10 It.. solution of It.. 
CO<llinltOUS pMJblem - u" = I with u fO) = 0 and u(1) = O. The parabola u(AI 
should c<>rTespond at X '" !. j. j.; to u ~ is there a (A..r )? factor to accou nt for'! 

I) Solve the fixed·free problem - u" = "'8 with ufO) = 0 aoo ,, ' (I ) = O. Com~ 
,,(x ) at x '" ~. j. i with the vector II '" (3mg. Smg. 6ntg ) in Eumplc 2. 

10 (MAH AB) Roo the displacements u( I ) •.... u( IOO) of 100 masses connected b)' 
spring!l .n with c = I. Each f~ is j(i) = .0 1. Print ,"'ph! of u with fin d . 
fixed and bed·frft ends. NOIC that di ag(ones(n. 1). d ) is a matrix wi th n ones 
along diagonal d. This print commaoo wi ll gra ph a vector u: 

plot(". '+"): xlabel(mass number'): ylabel ( mo"ement"): ]lfint 

11 (MATLAB) Chemical engineering has a first deri"ati,,, d ul dA from fluid velocity 
as well as J2u/dx 2 from diffusion. Replace J ul Jx by a forward difference and 
then by a backward diffen:nce. with 6.x ", j.. Graph your numerical oalutions of 

d
l
" du 

- dx l + 10 dx = I with u{O) = u( l ) = 0. 

, , 
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GRAPHS AND NETWORKS. 8.2 

This chapter is about si~ selected applications of linear algebra. We had many applica
tions to choose from. Any time you have a connected system. with each part depending 
on other pans. you have a matrix. Linear algebra deals with interacting systems, pr0-

vided the laws that govern them are linear. Over the years I have seen Olle model so 
often. and found it so basic and useful. that I always put it first. The model consists 
of nodes connected b} edges. This is called a graph . 

Graphs of the usual kind display functions f(x). Graphs of tbis llOde-edge kind 
lead to matrices. This section is about the incidence matrix of a graph-which tells 
how tbe /I nodes are connected b} the m edges. Normally m > II. there are more edges 
than nodes. 

For any m by /I matrix there are two fundamental subspaces in R" and two in 
R"'. They are the row spaces and nullspaces of A and AT. lbeir dimensions are related 
by the most important theorem in linear algebra. The second pan of that theorem is 
the onhogolla/iry of the subspaces. Our goal is to show how examples from graphs 
U!uminate the Fundamental Theorem of Linear Algebra. 

We review the four subspaces (for any matrix). Then we construct a directed 
graph and its incidence matrix. lbc: dimensions will be easy to discover. But we want 
tbe subspaces themselves-this is where onhogonality helps. It is essential to connect 
the subspaces to the graph they come from. By specializing to incidence matrices. the 
laws of [illear algebra become Kirchhoff's laws. Please don·t be put off by the words 
··current" and ··potential·' and ··Kirchhoff:· "These reetangular matrices are the best. 

Every entry of an incidence matrix is 0 or I or - I. This continues to hold during 
elimination. All pivots and multipliers are ±1. Therefore both factors in A = L U 
also contain O. I. -I. So do the nullspace matrices! All four subspaces have basis 
vectors with these exceptionally simple compollents. lbe matrices are not concocted 
for a textbook. they come from a model that is absolutely essential in pure and applied 
matbematics. 

Review of the Four Subspaces 

Start witb an m by II matrix. lis columns are vectors in R'". Their linear combinations 
produce the column space C(A). a subspace of ROO. Those combinations are exactly 
tbe matri~-vector products Ax . 

The rows of A are veclOrs in R" (or they would be. if the} wert: column vectors). 
Their linear combinations produce the row sptlce. To avoid any inconvenience with rows. 
we transpose the matrix. lbe row space becomes C(AT), the column space of AT. 

The central questions of linear algebra come from these two ways of looking at 
the same numbers. by columns and by rows. 

The nul/span N (A) contains every x that satisfies Ax = O-this is a subspace 
of RM. The ·'left" nill/space contains all solutions to AT} = O. Now } has m compo
nents, and N (A T) is a subspace of Rm. Written as } T A = OT. we are combining rows 
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fi gure 8 .3 The four sub$paces with their dimensions and onhogonality. 

of II to produce the zero row. The four subspaces an: illustrated by Figure 8.3. which 
shows R" on one side and R'" on the OIher. The link between them is II. 

The infonnation in thai. figure is crucial. Fint come the dimel15ions. wllich obey 
the two central laws of linear algebra: 

dimC(A) + dimN( A) = II . 

When the row space has dimension r. the nuJlspaee has dimension n - r. Elimination 
leaves lhe~ two spaces unchanged. and the echelon form U gives the dimension count. 
TIlere are, rows and columns with pivots. TIlere are /1-' free columns without pivots. 
and those lead 10 VectOR in the nulls pace. 

The following incidence matrix II comes from a graph. Its echelon form is U: 

-, , 0 0 -, , 0 0 -, 0 , 0 0 -, , 0 

A= 0 -, , 0 u= 0 0 -, , 
-, 0 0 gocs 10 0 0 0 0 

0 -, 0 0 0 0 0 
0 0 -, 0 0 0 0 

The nullspace of A. and U is the line through ~ ., 0 . 1.1. I). The column spaces of 
A. and U have dimension, = 3. The piVOt rows are a basis for the row $paCe. 

Figure 8.3 shows rroore-the subspace' an: orthogonal. E w ry owt()r III tht ""Uspo<t 
is ptrptrulicuhlr 10 twry Helor i/l tht 1'010' f ptlCt. This comes directly from the m equations 
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Ax = O. For A and U abo"". x = ( I. I. I. I) i. perpendkular to all rows and tllus to the 
whole row space. 

Thi ~ n:v~ of the subspaces applies to any ntalri~ A- ooly the example was 
special. Now we ronccntrate on tllat e~ample. It is the incidence matrix for a particular 
graph. and wc look to the graph for the meaning of cvcry subspatt. 

Directed Graphs and lncidence Malrices 

Figufl"' 8.4 displays a groph witll m = 6 roges and " = 4 nOOcs. Ii() the matrix A is 6 
by 4. It tells whicll nodes are connectro by " 'hich edges. The entries - I and +1 also 
tell the dilttlioo of cach arrow (Ihis is , dim:IM graph ). The first row of A gives. 
record of the fi"'l edge: 

Q) Tlot """ ......... _ 
.... 1 .. _2. ,..._ ........ -). 
_' ..... , .. _1. -<DQ)0 @ 

t" "] , 
_ , 0 , 0 , 

.. . 0 _" 0 , 
'" _ I 0 <> 1 • 

<> -I <> 1 , 
o 0 _ I 1 • 

Figure 8.4 .. Complete graph with m = 6 edges and " '" 4 nodc~. 

Row number.; all' edge number.;. column numbelS arc node numbers. 

You call wrile down A immediately by looking at the graph. 

... 

The second graph lias the same foor nodes but only three edges. Its iocide~ 
matri~ is 3 by 4: 

(j) 

""'" CD",,,, @ 

[-' 0 ;] 
, 

8 '" ~ -, , 2 "'~ 0-> ) , 
(j) , (j) 

Figure 8.411 Tree with 3 edges and 4 nodes and 00 loops. 

, 
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Tho: first graph is compl~u-e~ery pair of nodes is oonnected by an edge. "The S«

ond graph is a '",t - tile graph has /10 clostd loops. Those graphs are the t,,·o e~
lrernes. with the maximum number of edges m = ~ n(n - I) and the minimum number 
m = " - I. We llIl' assuming thaI the graph is ronn«ted. and it makes no fundamental 
difference which way the arrows go. On each edge. flow with the arrow is ··positi",:· 
Plow in the opposite directioo counts as negati",. Tho: How might be a current or a 
s ignal or a fOfCf: - or c~en oi l or gas or walCr. 

Tho: rows of B match the nonzero rows of U - the echelon form found earlier. 
EIi",ination noduu s t~,., graph /0 II tr" . Tho: loops produce l ero rows in U. Look 
at the loop from edges I. 2. J in the first graph. which leads to a zero row: 

[-' , 
- , 0 
o - , 

o :] _ [ -~ _: 
o 0 - I 

o o , 
o 

Those steps are typical. When twO edges share I node. elimination produ~s the ··shon
cut edge~ without Ihat node. If tile graph already has this shoneu t edge. e liminat ion 
gives I row of zeros. When the dust de"", we hI'''' a uc" . 

An idea suggests itself: Ro"", 0"' dt~tUtt'" .. ·ht n Mgt' /0'''' II loop. Indepen
dent ro,,·s come from meso This is the key to the row space. 

R>r the column spare ".., 100/< at A ... . which is a vwor of differences: 

-, , 0 0 Xl - XI -, 0 0 [j} .t) - ·<1 

, .. 0 -, 0 Xl - '<2 
(I' -, 0 0 X4 - XI 

0 -, 0 X~ - .\2 

0 0 -, X4 - Xl 

Tho: unknowns x ). X2. Xl. X4 represent poItrtlill/J at tile nodes. Then A ... gi'·es the 
poIt rtlia/ diffl",nelJ across the edges. It is the.., differences that cause Hows. We 
now examine the meaning of each subspace. 

1 Tho: n"llsptlu COfItains the :;olutions 10 A ... = O. All six potential differences are 
>:ero. This mean" All four poumiols Uff 'qual. E>'Cry X in tile nullspare is a constant 
Vtttor (c.r.c. c) . Tho: nullspace of A is a line in K"_ i\'l dimension is " - r '" I. 

Tho: sccood iocidcnce matrix B has the same nUll space. It con tains (I. I . I. I): 

[

- ' , 0 
Bx = 0 - I I 

o 0 - 1 

We can IlIi", or lower all potentiab b~ the same amount c. without changi ng the 
differences. "There is Bn ~arbitnuy 'Ofl~tant"" in the potentials. Compare Ih is with the 
same statement for functioos. We can raise or lower /(,,) by the same amount C. 
withoul changing its deri\lllti", . "There is an arbitlll'Y con~tant C in the integral. 

, 
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Calculus adds "+C' to indefinite integrals. Graph theQry adds (c. c. c, c) to the 
vector x of potentials. Linear algebra adds any vector x . in the nuJlspace 10 one par
ticular solution of Ax = b. 

The .. +C' disappears in calculus when the integral starn at a blown point x = Q. 

Similarly the nullspace disappears when we set x~ = O. lhe unknown x~ is removed 
and so an: the founh colurtUls of A and 8. Electrical engineers would say that node 
4 has been ""grounded."" 

2 The row spact contains all combinations of the six rows. lIS dimension is cenainly 
not six. lhe equation r + (II - r) = II must be 3 + 1 = 4. lhe rank is r = 3. as we 
also saw from elimination. After 3 edges, we stan fonning loops! The new rows an: 
not independent. 

How can we tell if u = (V1. V:2, II]. II~) is in the row space? The slow way is 10 
combine rows. The quick way is by onhogonality: 

II is ill the row space if Qlld only if it is ~rpemJicular to (l, I, 1, I) ill the nullspace. 

lhe vector II = (0. 1.2,3) fails this test-its components add to 6. The vector (-6. 1,2.3) 
passes the test. It lies in the row space because its components add to zero. It equals 
6(row I) + 5(row 3) + 3(row 6). 

Each row of A adds to zero. This must be true for every vector in the row space. 

3 The columll spact contains all combinations of the four columns. We expect three 
independent colurtUls. sinee !bere were three independent rows. The first three columns 
an: independent (so an: any three). But the fout colurtUls add to the zero vector, whicb 
says again that (1. 1. I. 1) is in the nullspace. How can we tell if Q particular "ector 
b is in the column spact? 

First answer Try to solve Ax = b. As before. orthogonality gives a better answer. We 
an: now coming to Kirchhoff's twO famous laws of circuit theQry-the voltage law and 
current law. Those an: natural expressions of ""laws" of linear algebra. It is especially 
pleasant to see the key role of the left nullspace. 

Second answer Ax is the vector of differences in equation (I). If we add differences 
around a closed loop in the graph, the cancellation leaves zero. Around the big triangle 
fonned by edges I. 3, -2 (the arrow goes backward on edge 2) the differences an: 

(X2 - -"t) + (,1"J - X2) - (X] -Xt) == O. 

This is the .-oUage law: The CQmpollents 0/ Ax adiJ to u ro aroumJ nery loop. When 
b is in the column spa<:e. it must obey the same law: 

Kirchhoff's Voltap LsII': hI + b) - h2 = o. 

By testing each loop, we decide whether b is in the column space. Ax = b can be 
solved exactly when the components of b satisfy all the same dependencies as the rows 
of A. Then elimination leads to 0 = O. and Ax = b is consistent. 
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4 The left flUUsJXlCf contains the solutions to AT, = O. l IS dimension is m -r = 6-3: 

-1 0 
o -1 
1 1 
o 0 

-1 
o 
o 
1 

o 
-1 
o 
1 

(2) 

The true number of equations is , = 3 aod not fI = 4. Reason: The four equations 
add to 0 = O. The founh equation follows automatically from the first ~. 

What do the equations mean? The first equation says that -)"1 - Y2 -)"4 = O. 

The net flow into ntNh I is urn. The fourth equation says that )"4 + )"5 +)"6 = O. 

Flow into the node minus flow out is urn. The equations AT, = 0 are famous and 
fundamental: 

Kirchlwff'r Current LDw: Flow in eqlUlb flow ollt Dl each noM. 

This law deserves first place among the equations of applied mathematics. It expresses 
"conun'ation" and "cominuity" and "balance:' Nothing is lost. nothing is gained When 
currents or forces are in equilibrium. the equation to solve is AT Y = O. Notice the 
beautiful fact that the matrix in this balance equation is the transpose of the incidence 
matrix A. 

What are the actual solutions to AT, = O? The currents must balance them
selves. The easiest way is to flow around a loop, If a unit of current goes around 
the big triangle (forward on edge 1. forward on 3, backward on 2). the vector is , = 
(i. - I. I. O. O. 0). This satisfies AT, = O. Every loop current yields a solution ,. be
cause flow in equals flow out at every node. A smaller loop goes forward on edge I. 
forward on 5. back on 4. Then y = (I . O. O. - 1. 1.0) is also in the left nUllspace. 

We expect three independent ,·s. since 6 - 3 = 3. The ~ small loops in the 
graph are independent. The big triangle seems to give a fourth ,. but it is the sum of 
flows around the small loops. The small loops give a basis for the left nuJlspace. 

1 0 0 1 
0 0 -1 -1 
0 1 0 1 

+ + • -1 0 1 0 
1 -1 0 0 , 3 0 1 -1 0 

3 
small loops big loop 
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Summary 'The incidence matrix A comes from a connected grnp/l with n nodes and 
m edges. 'The row space and column space have dimensions n - 1. 'The nullspaces 
have dimension I and m - n + I : 

1 The constant vectors (c, c, . .. , c) make up the nullspace of A, 

2 'There are r = n - 1 independent rows, using edges from any tree. 

3 Volloge 10 .... : 1be components of Ax add 10 zero around every loop. 

4 ClUTtnllo .... : AT)' = 0 is solved by loop currents. N(A T) has dimension m -r. 
There art m - r _ m - n + 1 ltuhptnMnI IMps in the f1TIIIh. 

For every graph in a plane. linear algebra yields Eukr's formulo: 

(numMr of nOths)-(numMr of edgesJ+(numbtr of smailloops)=l. 

TItis is n -m + (m -n +1) _ 1. 'The graph in our example has 4-6+3 = I. 
A single triangle has (3 nodes) - (3 edges)+( l loop). On a IO·node tree with 9 edges 

and no loops. Euler's count is 10 - 9 + O. All planar graphs lead to the answer I. 

Networks and AT C A 

In a real network., the current )' along an edge is the product of two numbers. One 
number is the difference between the potentials :.: at the ends of the edge. TItis differ
ence is A:.: and it drives !be flow. The other oumber is the "conductanct" ( - which 
measures how easily flow gets through. 

In physics and engineering. c is decided by !he material. For electrical currents, 
( is high for metal and low for plastics. For a superconductor. ( is nearly infinite. [f 

we consider elastic stretching. c might be low for metal and higher for plastics, In 
economics. c measures !he capacity of an edge or its cost. 

To summarize. the graph is k.nown from its "connectivity matrix" A. This tells 
the connections between nodes and edges. A network goes funher. and assigns a con
ductance c to each edge. These numbers Cj, , ... CIIt go into the "conductarlCe matrix" 
C -which is diagonal. 

For a network: of resistors, the conductance is c = I/(resistance). In addition to Kirch
hoff 's laws for the whole system of currents. we have Ohm's law for each particular 
current. Ohm's taw connects the current Yt on edge Ito the potential difference X2-X ] 

between the nodes: 

Ohm 's La,., .. Current along edge = conductance times pottntUil dijf'trtM e. 

Ohm's law for all m currents is J = -CAl' . The vector Ax gives the potential differ
ences, and C multiplies by !he conductances. Combining Ohm's law with Kirchhoff's 
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Figure 8 .S 1be c urrents in a networi; wilh a source S into node I. 

current law AT, = O. we get AT CAl' = O. This is almOl1 the central equatiOfl for 
lle!WQ/k /lows. 1be only thing wrong is the zero on the right s ide! 1be nc\wori; needs 
power from outside-a V<)ltage SOUICC' or a current source -IO make something happen. 

Note about signs In cin:uit theal)' we change from Ax to - Ax . lbc flow i. from 
higher potential to l<'.lYl'er poIentia] 1bere is (positive) current from node I 10 node 2 
when XI - X2 is positive -whe",as Ax was construCted 10 yield .1'1 - XI. 1be minus 
sign in physics and electrical engi",!,<,ring is a pillS s ign in mechanical engillttring and 
ecot>O/I1ics. Ax versus - Ax is a general headache bul unaV<)idable. 

Nott about applitd 1IIIllhtmalics Every new applicalion hIlS its own fonn of Ohm's 
law. For elastic structures , = CAx is Hooke's law. The suess, is (elnticity C) tirne!l 
(sl",cching Ax). fur heal conduction. Ax i. a temperature gradient. fur oil flows il is 
a pressure gradient. 1bere is a s imi 'ar law for leasl square ",greMioo ill statistics. My 
te~lbook Insrodu.:lion /0 Applied Marhe1lllllics (Welles ley-Cambridge ,,",ss) is practi
cally built "n ATCA . This is lhe key 10 equilibrium in matrix equations and alw in 
diffe",nlial equalion •. 

Applied malhematics is tnIl1'e organized lhan il looks. I ha"t Itarned /0 ... arch 
for ATCA. 

We now give an example wilh a currenl source. Kirchhoff's law changes from 
AT, = 0 10 AT, = f . 10 balance the Wurce f from outside. Flo ... imo tach node 
still tquals jftYw out. Figure 8.~ shows the llelwori; wilh its conduclances ct •...• c~. 
and it shows the CII....,1It SOUICC' g<:>ing into node I. 11Ie SOUrce co""'s out at IlCIde 4 
10 keo.p the balance (in = 001). The problem is: Find the (UmlllS ' I , ••• ,', on Iht; 
f ix tdgtJ. 

Example' All conductances are c = I. W lhal C = I . A c u....,1It )'. !la "els direcll y 
from nOOc , 10 oode 4. Other Current goes the long way from node I ! (I node 2 1(1 
oode 4 (Ihis is 'I = )',). Currenl alw goes from nOOc I I" node 3 10 node " (, hi s is 
Y:! '" )'6). We can find lhe six ClllTentS by us ing spe-ciaJ rules (or symmelry. or we can 

, 
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-, , 0 0 

[ - ' - , 0 - , 0 0] 
-, 0 0 

. [ ) , 
'] I 0 - I 0 - I 0 o - , , 0 , ) , , 

o I I 0 0 - 1 -, 0 0 ~ , ) , 
000111 o - , 0 ~ , , ) 

0 0 -, 
Thai last malri~ i ~ no! invertible' We ~annot wive for all poI~ntiaLs because (I. I. J. I) 
is in the nullspace_ One node has to bo: grounded. Setting x. = 0 "'mo~ the foulth 
row and column. and lhis Ica~ a J by J invertible matrix. NQW we wive AT CA.r = f 
for the unkoc..."n poIenli .. I, XI. Xl.Xl. with. source S into node I: 

[-; -, =;] [::]. [:j ["] [SI'] 3 gi,,,s "'2=5/4 . -, -, Xl 5 / 4 

Ohm', law y = - CAx yidds the six currents. Remember C = I and .<, = 0: 

,', -, , 0 0 Sf' 
n -, 0 0 

[SI'] SI' 
" 

, -, 0 Sf' , . -
5/ 4 "" SI' y, -, 0 0 , 

" 0 -, 0 0 SI' 
). 0 0 -, Sf' 

Half tile cu~nl goes direclly on edge 4. That is yo = S/ 2. No currenl crosses from 
node 2 10 node J . SymmelI)' indicated YJ = 0 and now the solution proves it 

'The same malrix AT A appurs in least squares. Nature distributes the curren~. to min_ 
imize the heat loss. Statistics c~s i to rninimi~ the leas! !iquam enur. 

Problem Set 8.2 

l'roblcms 1- 7 and 11-14 are about the: Inddence rnalrke!i ror these graphs.. 

y "'----'--. -' , 

, 
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Write down the J by 3 incidence matri~ A for the triangle graph. 1be firsl row 
tIu - I in column 1 and +1 in CQlumn 2. Wllat ~ (Xt- X2. X) arc in i~ 

nulls~? How do you know ttlat (1 . 0.0) iJ not in its row space? 

2 Write down AT for the triangle graph. Find a "ector J in it~ null$pace. 1be 
componems of J are currents on the edges - how muctl current is going around 
the triangle? 

3 El iminate Xt and Xl from the third equation to find the ec helon matri~ U . Witlt 
tift OOITt'sponds to the two nonzero rowl> of U? 

- XI + x 2 '" ht 

-Xt+ x,:~ 

- X2 + x,: h}. 

4 Oloose a vector (b t .~. h, ) for which Ax = b can be solved. and another vector 
b that allows no solution. How arc those b's rclated to J = (1. - 1. I)? 

5 Oloose a "CC!Or (ft. h . iJ) for ""hieh AT J = I can be SOlved. and a vector I 
that allows no solution. How are those I 's related to x = ( I. I. I)? l1Ic equation 
AT J = I is Kin:hhoff's __ law. 

• Multiply matrices to find AT A. Choose a ''ector I for which AT Ax = I can Ix 
solved. and solve for x . Put those: potentials x and the currents J = - Ax and 
cum:nt SOIlI"CeS I ontO the triangle graph. Conductances arc I because C,. f . 

7 With conductances C[ = 1 and C2 = C) = 2, multiply matrices to find ATCA . 
For I " ( 1. 0. - I ) fi nd a solution to ATCAx ,. I. Write tbe potentials x and 
currents J : - CAx 00 the triangle graph. when the current SOIlrcc I g~ into 
n.odc I and oul from n.odc 3. 

8 Wrile down the S by 4 incidence matri~ A for the squarc graph with two loops. 
Find one solution to Ax = 0 and lwo solutions to AT J = O. 

9 Fi nd two requirements on the b 's for the fi'"e differences X2 - X t. Xl - XI . x, - Xl. 

X4 - Xl. X4 - Xl to equal b l. ~. b,. b4. b ,. You have found Kirchhoff's __ 
law around the two _ _ in the graph. 

10 Reduce II to its echelon form U. TIle ~ nonZCJ() rows gi\"c the incideoce 
matrix for what graph? You found one 11ft in the square gl"llph - find the other 
sewn trees. 

11 Multiply matrices to find AT A and g""" how its cntries come from the gl"llph : 

(I) The diagonal of AT A tel b how rrutny __ into each node. 

(bl 1be off-diagonal s - lor 0 tell which p>lirs o f nodes arc __ . 

, 
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12 Wh.y is each Statement true about .'ITA " Aml<'u for .'ITA ~t">/ A. 

(a) hs nullspace contains ( I. 1. l. I ). hs rank is " - l. 

(b) h is positive semidefinite but not positi"e definite. 

(e) Its foor cigcnvalues are real and their s igns are __ . 

13 With conductances C( '"' l"") = 2 and e ) = c. = c, ... 3, muhiply the matriC(:. 
ArCA. Find a solution to ArCA.1" = I = (1.0 . 0. - I). Writc these poIentia ls 
~ and CUlTCnts J = -CA~ on the nWes and edges of the sqUlU"l: graph.. 

14 llle matri~ A.TC A is 1>01 invc" ible. Wh.at '~ors ~ lU"I: ill ilS nulls~? Why 
<kcs AT C A~ = I have a solution if and only if II + h + h + I. = 01 

15 A connected graph. with 7 nodes and 7 edges has how many loops? 

16 For the graph with 4 oodes. 6 edges, and 3 loops. add a new node. If you connect 
it tOOIlC old node. Euler's formul a IJe<:orncs ( )-( ) +( ) = I. If you connect 
;t to two o ld nodes. Euler's formula bcromes ( ) - ( ) + ( ) = I. 

17 Suppose A ;s a 12 by 9 il>Cidel>Ce matri~ from a oonnectc"<i (but unknowll) graph.. 

(a) How many oolumns o f A are independent? 

(b) What COIIdition on I makes it possible to sol .. " AT J = 11 1-

(el llle diagonal entnes of .'ITA give the number of edges into coch node. What 
is the sum of those diagortal "ntnes? 

18 Why does a rontple1c graph. with n = 6 nodes have m = 15 edges? A t= 
CQfInec1ing 6 nodes Ius _ edgl'S. 
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MARKOV MATRICES AND ECONOMIC MODELS. 8,3 

Early in this book we proposed an experiment. Start with any veclor uo = (x. I - x). 
MuJriply it again and again by the '"trnnsilion matrix" A: 

A = [:~ .3] 
.7 . 

The experiment produces U I = AUn and then Ul = AU l. After Ie steps we have A~un. 
Unless MATLAB went haywire. the vectors Un, Ulo U2. Ul . . approached a "sieady 
stale:' That limit state is Uoc = (.6 .. 4) . This final outcome does not depend on the 
staning \leclor: For e~ry Uo we aI_ys con~rge to (.6 . .4). The question is why. 

At that time we had no good way 10 answer this question. We blew nothing about 
eigenvalues. It is true that the steady state equation Au oo = Uoo could be verified: 

[ .s .3] ["] ~ ["] . 
. 2 .7.4 .4 

You would now say that Uoo is all tigtll~cfor with tjgtn~alut I. Toot mnus il s/tady. 
Multiplying by A does IKK change it. But this equation Auoo = Uoo does not explain 
why all vectors uo lead 10 Uoe. Other examples might have a steady state. but it is IKK 
necessarily altrllClive: 

In this case, the starting \lector uo = (0, I) will give " I = (0.2) and U2 = (0.4). lbe 
second components are being doubled by the '"2" in B. In the language of eigenval· 
ues. B has ). = 1 but it also has ). = 2-and an eigenvalue larger than one produces 
instability. The component of " along that unstable eigen\leclOr is multiplied by).. and 
1).1 > I means blowup. 

This section is about two special properties of A that guarantee a steady stale 
Uoe . These properties define a Mtuleo~ nmtrix. and A above is one panicular example: 

1. EN" tfflTy of A g IIOtIIWptiN . 

2. EN" cohuN,. of A tlllb to I. 

B did not have Property 2. When A is a Markov matrix. two facts are immediate: 

Multiplying a nonnegative uo by A produces a nonnegative " I = A"o. 

If the components of 140 add 10 I. so do the components of " I = Auo. 
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Hwwn: T1le components of I/O add to I when! I .. , I JUG = I. This is true for 
each column of A by Propcny 2. T1len by matri~ multiplication it is true for AUG: 

IJ l/o=l. 

T1le same faets apply to " 2 : AI/ I ~nd I/J : A" 2. Ewry w~ttJl' '" _ AI " o is 
fIImMgQti'~ M'ilh eompo"~"n lidding to I. 'The", are "pro/NIbiUly welon: ' 'The limil 
" '" is also a probabilily veclor-bu\ "'e ha,.., !o prov~ !hal !he", is a limil! 'The u
is!ellCe of a steady state will follow from I and 2 bul no! SO quic~ly_ We ",uS! ~how 
lhal ).: I is an eigenvalue of A. and we must estimate the Oilier eigenvalues. 

hample 1 llIe fme!ion of ren!al cars in Dcn"~r slans at ~ '" .02. 'The fraction 
outside Denver is .98, E~ry IOOnth lhose fractions (which add to 1) are muhipliW by 
the Mar\(W matri~ A: 

A . [.80 
.20 

.05] 

. 9l 1 ... ["] [.065] e""" 10 " I '" A"O '" A .98 = .935 . 

Tha! is a sin gle step of a M ark/)v chai ... In one month. the fraclion of cars in Denver 
i~ up to .065. The chain of ,..,.,tors is "0. " " " 2 •. , .. ~nd each slep mulliplio hy A: 

AlIlllese vectors art' I">Onnegati,.., because A ;s ""nnegali.,..,. FunhertnOl'l' .065+.935_ 
1.000. Each vector " t will h~~ its componenlS adding 10 I. l1Ie '..,.,Ior " 2 : A" I 
is (.09875 .. 9(125). The firsl component has grown from ,02 to .065 10 nearly .099. 
Cars are moving toward Dcn,'er, Whal happens in !he long run? 

This i\CClion involves powers of malrices. The undemanding of AI waS our firs! 
and be>! application of diagonalil-alioo. Whe", At can be complicated. the diagonal 
malrix Ai i~ simpk_ l1Ie (ige1l'lec!or matrix S conne-c!s them: Ai equals SA IS-I. l1Ie 
new aPl'lication !o Markov matrices follows up on Ihis idea _ to use !he ~igenvalues (in 
A) and the eigen"eclors (in S). We will show lhal "00 is an eigen\'cclor COITl'sponding 
to ). '" l. 

SillCe <"very column of II adds to I. noching is los! or gained. W~ a", IOOving 
renlal .ars or populations. and 1>0 . ars or people ~uddenly a~ar (or diS.l~ar). The 
fraclions add 10 I and !he matri~ A keeps lhem lha! way. l1Ie ql>eOlion is how !hey 
are di,uihoued afler k !i~ periods - which kads us 10 Ai . 

Solution to h .. m ple 1 Aficr k steps the fractions in and OUI of Den"er art' tnc compo
nents of Ai " o. To sliMly the I'O"-ers of A we diagonaJite it. The ei~nvalllCs a...., ). = I 
and), : .75. lbc first eigenVN:lOr. with c(Hnponents adding 10 1. is X t = (.2 .. 8): 

IA_ )./ I=I -80 -). 
20 

.9s0~).1 =).2 - 1.75). + .75: (). - l)(). - .7~) 

AU] .{il '00 ,[-:].7>[-:] 

1 
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"Those cige~on are .1" 1 and .1"1. llIeyare the columns of S. llIe smning vedor 110 

is a combination of .1" 1 and .1" 2. in this case with coefficients] and .]8: 

Now multiply by A to find "1 . llIe eigenv«t~ are multiplied by .1.1 = I and .1.1 = 
.75: 

" 1 = I [:;J + (.75)(.18) [- :]. 

Each time "'e multiply by A. another .75 multiplies {he last ,·ector. llIe eigenvector 
Xl is unchanged: 

• ['J . [-'J II I=A uo= .8 +(.75)(.18) I' 

This equation reveals what happens. The rigtllvtcrflf" X t .. ith .I. = I is the stead, Slole 
II"". llIe other eigenv«1Or Xl gradually disappc~rs boeausc 1.1.1 <: I. llIe more steP'! 
we take. the closer we come to II", = (.2 • . 8). In the Limit, ~ of the ellIS are in Dem"er 

and ~ are outside. This is the pattern for Markov chains: 

8A If A is a po1itirr Markov matrix (en lries a'J > O. each column add, to I), then 
A = I is larger than any other eigen'"" l .... TIle eigen"ector X I is the &Itad, stott: 

Assume that "'" components of 110 add to I. llIen this is true of 11 \. " 1 •.... 

llIe key poinl is thai ..... approach a mulliplt of X J from e.·try Jlartinlt "lctor 110 . If 

all cars start outside Den>"cr. or all sian inside. the limit is sliII II ", = .I" t = (.2 .. 8). 
n.e !lm point is 10 10« Ihat A .. I is an eigenVllh"" of II . R~(Json: E",,'Y wlurnn 

of A - I adds to I - I = O. llIe rows of A - I add up to the zero row. "Those rows 
are linearly dependent. SO II - I is singular. Its dctenninant is zero and I.. = I is an 
eigenvalue. Since "'" trace of A was 1.75, the ()(her eigenvalue had 10 be Al = .7S . 

llIe second poinl is that no eigern-alue can ha,-.:: 11..1 > I. Worn such an eigenval"". 
lhe powers At would grow. But At is also a Markov matrix wilh oonnegative entries 
adding 10 I _ and that leaves no room 10 get large. 

A lot of attention i. paid to "'" possibility that anot~r eigern-alue has 11..1 = I. 
SuppO<SC lhe entries of A or any power At are all pruir"vt- uro is not allowed. In 
lhi s "regular" ell5C A = I i~ strictly bigger than any other eigenvaluc. When A and its 
powers have zero entries, another eigen"alue could be as large as At = I. 

, 
t 



Example 2 A = [t ~l has no steady state be<;:ause 1.2 =-1. 

This matri~ sends all cars from inside !)(onver to outside. and vice versa. The 
powers Ak alternale between A and I. 11Ic: second eigenvector r l = (- I.1l is multi _ 
plied by '-2 = - I al every slep-alld ~ II(l( berome smaller. With a regular Mart:ov 
m"tri~. the JIO,,"'efS Al approach lhe rank One matri~ Ihal has the Slcady Slale r , in 
c'-.:ry column. 

Example. 3 ("E"erybody mo\'es") Start with three groups. At each time step. half 
of group 1 goes to group 2 aoo lhe OI1her half goes to group J. 1"IIc OIher groups also 
split in 1Ia/f und mo,' ... If the starting populations are PI, Pl.. Pl, then afler one slep 
the !leW populalions are 

1 
o , , 

A is a Markov matri~. Nobody is born or l05t. It i. true that A cootains zeros. which 
gave lrooblc in Example 2. But afler 1"'0 steps in Ihis!lew example. the zeros disappear 
from Al, 

I , , 
I 
l] [~l· ! I'l 

Whal is lhe steady state? 1"IIc cigen'·alue. of A arc 1'1 = I (because A is Markov) and 
I.j '"' I.J .. -!. Th, .ig .. m"fi" O' r, = (~,~, i) f or '- '" I ... ill be ,ht MUlti, Sllllt. 
When Ihrtt equal populations splil in half and move. the final populations are again 
equal. When lhe populations sian from 110 = (8.16.32). lhe Markov chain approacllcs 
ils Sleady state: 

1"IIc <lep 10 II . will splil some prople in half. This cannot be helped. 11Ic: ullal popula
tion is 8 + 16+ 32 '" 56 (aoo lalcr the lOul is slill 20+ 19 + 17 = 56). 11Ic: steady Sialt 
populations II"" are 56 times (!.!. ! ). You can see the three populalions approaching, 
bul ne'.cr reaching, lheir final limils 56/3. 

Lint'ar Algebra irt Economics: The Consumption Malri~ 

A long essay aboot linear Ilgd ... " in ttononlics would be out of place here. A short 
nOie aboot one matrix seems reasonable. 11Ic: fI"ullmption IfIQ/ris ~ells 110\<' much of 
each ;"put gOf:< inlO a unil of ou'PUI. We ha'"e n indu",IYS li ke chemical~. f<X>d. and 

, 
i 
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oil. To produce a unil of chemicals may mjuire .2 unils of chemicals •. 3 unilS of food. 
and .4 unils of oil. 1bose numbers go inlO row I of IIIe consumption malri.t A : 

[C~=~;:~utl = [:! :! :~l [C";=~~~~tl · 
oil output .5 .J .3 oil input 

Row 2 shows lhe inpulS 10 ~uce food - a heavy use of dlCmicals and food. not so 
much oil. Row 3 of A shows Ille inputs consumed 10 refi"" a unit of oil. The real 
consumption matri:< for the United SlateS in 1958 contained 83 indu51ries. The models 
in lhe 1990's are much Larger and more precise. Wc chose a consumption matri:< ll1at 
has a convenicnt eigenvector. 

Now comes the question: Can thi s eronomy meet demands )'1. ) ':!.)'J for chem
kals. food . and oil? To do that. the inpulS PI. Pl. Pl .... illhave 10 be higher- because 
pan of P is consumed in producing :/. The input is p and the consumption is A p . 
.... hich lca''CS p - A p. This ""I productioo is .... hat meetS the do.mand J : 

Problem Find a 'eclor p such that p-Ap = Y or (I - A)p '"' J or P = ( I A )-t , . 

Apparently tile li"".r algebl1l queslion is .... Ilether 1 - A is in,·ertible. But lhere is 
more 10 the problem. The do.mand vector, is nonnegati ve. and so is A. The pmd"CliQl! 
le"els ill P = (f - A)- I J mU51 ulro be lIonntgati ..... The real question is: 

Wilen is (1- A )- t II "ollncgatiw mlJtri.r? 

This is tile test 00 (f - A)-1 for a productive ecOflOmy ..... hich can meet any positive 
do.mand. If A is small oompwW to I . then Ap is small compared 10 p . There is 
plenty o f OUlput If A is 100 large. tllen production conSUIllCS Il"IOI"e than it y ields. In 
this case the CJl\CT11aJ do.mand J cannot be met. 

"Small"' or "large" is decided by the largest e igen, .. lue " I o f A ( .... hich is positi''t'): 

If ).I> 1 
If).I=1 
If "l < I 

then (I - A)- I has negative enlries 
then (f - A)- I fails 10 e.tist 
lhen (/ - A)- 1 is non""gativ.: as desired . 

n.e main point is lhal lasl one. Th.c rcaK><\ing makes use of a nice formula for (I -

A )-t . .... hich .... e gi"" now. n.e most importanl infinite series in mathematks ;s the 
pomttM $tries I + x + x 2 + .... This series adds up 10 I /( ] - x) provi<bl x i~ 
bet .... een - I and I. (W~n x = I tlK ""ties is ] + I + ] + . .. 00. ~n Ix l ~ ] 
tllC tcmtll x~ dQn 'l go 10 :ten) and lhe series cannot conv.:rge.) The nice fonnula for 
(I - 11. )- 1 is tile geomttric uries of /lltltriets: 

(/-,4)-1 _ I +,4 +,42 +,4)+ ... . 

If you multiply this series by A. you gel the same ""ties S except for I . ~rcfore 
S - AS = I. whkh is (I - A)S = I . "The series adds 10 S == {I _ A)- 1 if it con~erges. 
And il converges if 1),. .... 1 < ] . 

, 
i 
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In our case A ~ O. All terms of the series ate nonnegative. Its sum is (I - A)-1 ~ O. 

Example 4 [
.l.l.( ] 9 d(1 ,,[(125 17] A= . ( .4 .' has k,_. an -A)- "' 13" lJ.16 :W . 
. 5 .1.3 ~ U .16 

This economy is produclive. A is small compared to I. because "max is .9. To meet the 
demand y. Start from p = (I - A)-l y. Then A p is consumed in production. leaving 
p - A p. This is (1- A )p = y. and the demand is met. 

Example 5 A = [Hl has kJ _ 2 and (1- A)-I = -! [l n 
This consumption matrix A is tOO large. Demands can·t be met. because production 
consumes more than il yie lds. The series I + A + Al + ... does not converge to 
(1- A)-t . lbe series is growing while (1- A)- I is actually negative. 

Problem Set 8.3 

Questions 1-14 are about Ma rkov matri«s and their eigenvalues and powers. 

1 Find the eigen\l3.lues of this Markov matrn (their sum is the trace): 

A~[·90 ."] .10 .gS . 

What is the steady stale eigenvector for the eigenvalue At = 11 

2 Diagonalize the Markov malri;.; in Problem I to A = SAS-1 by finding its other 
eigenvector: 

][ ',,][ 1 
What is the limil of At =SAkS- 1 when At = [ ~ . 7~] approaches [a]? 

3 What an: the eigenvalues and the steady state eigenvectors for these Markov rna· 
trices? 

A~[I .'] o .8 
A~[ .' I] .8 0 [

I 
A= t 

I , , 
1 !l 

4 For every 4 by 4 Markov matrix. what eigenvector of AT corresponds to the (known) 
e igenvalue " = I? 



5 EveI)' year 2~ of young people become o ld and 3~ of old propk become dead. 
(No bir1hs.) Find the Slcady stale for 

[y~"g] [.".00 0] [y~"g] 
o ld = .02.97 0 old . 

dead HI .00 .03 I dead * 
6 'fhc sum of lhe componems of x etjuals lhe sum of lhe romponenUl of Ax. If 

Ax = ...... wilh .I. r! 1. prove Ihat lhe componelll. of lhis non ·steady eigenvector 
x add 10 zero. 

7 Find the eigcmcaJues and eigenvector'S of A. FlICtor A into SI\5-I, 

A = [:~ .') .7 . 

This waS a MATLAB example in Chapter I. 1lIere A 16 was computed by squaring 
four limes. What are the factors in A I~_ SA I6S- I? 

8 Explain why the powers AI in Problem 7 approach this matrix A"": 

,. ~ [., .') . 
. 4 .4 

Challenge problem: Which Markov matrices produce lhat steady $talC (.6, .4)? 

9 This I"'ffillIMion malrix i. also a Markov matrix: 

o 0 I 0 [
0'00] 

P = OOOI ' 

I 0 0 0 

The steady state eigenveclor for .I. = I is <i . i.l. i). This i. nol aPPfQ"'hed 
when uo = (0.0,0. 1). What are UI and U2 and UJ aoo u~? Whal are the four 
eigenvalues of P. which solve.l.~ = 11 

10 Prove that the square o f a M:trkoy matrix i. also a Markov matrix. 

II If A = [:: 1 is a Markov matrix. its eigenvalllCs are 1 aoo __ . The steady 
Siale eigen,·ector is XI = __ . 

12 Compklc the lasl row 10 make A a Markov malrix and find lhe steady stale eigen
vector 

[

.7 •. '] 
A = ~ 6 ~ 

When A i. a symmetric Markov matrix. why is XI _ ( I ..... 1) its steady state? 

, 
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13 A Markov differential equation is I\OC dll / dt = All but dll / dt = (A -1)11. Find 
the eigenvalues of 

8 I [
- .2 .3J 

= A - '"" .2 -.3 . 

When e-'-II multiplies the eigenvector X l and ~21 multiplies X 2. what is the steady 
state as t -+ 001 

14 The matrix 8 = A - 1 for a Markov differential equation has each column adding 
to . The steady state XI is the same as for A. but now AI = and 
~11 _ 

Questions 15-18 aft aboul linear algebrt In KOnomics. 

15 Each row of the consumption matrix in Example 4 adds to .9. Why docs that 
make A = .9 an eigenvalue. and what is the eigenvector? 

16 Multiply 1 + A +A 2 + A 3 + ... by 1 - A to show that the series adds to __ 

For A = [ ~ 1] . find A 2 and AJ and use the pattern to add up the series. 

17 For which of these matrices does f + A + A2 + ... yield a nonnegative matrix 
(J - A)- I? Then the economy can meet any demand.: 

18 If the demands in Problem 17 are , _ (2.6). what arc the vecton p = (/ -
A)-1,1 

19 (Markov again) This matrix has zero detcnninanl. What are its eigenvalues'! 

[
.4 .2 .3] 

A= .2.4 .3 . 
.4 .4 .4 

Find the limits of At 110 starting from 101 0 = (I , O. 0) and then 110 _ (lOO, O. 0). 

20 If A is • Markov matrix. does 1 + A + A2 + ... add up to (I - A)- I? 
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LINEAR PROGRAMMING . 8.4 

Linear programming is linear algebra plus two IH!W ingredients: inequalities and mini
mizption . TIle starting point is still a matri~ equation Ax = b. But the only acceptable 
so lutions are IIOllllegaliu. We require x=:O (meaning that no component of x can be 
negative). The matrix has n > m. more unknowns than equations. If there are any 
nonnegative solutions to Ax = b. there are probably a lot. Linear progr.unm.ing picks 
the solution XO =: 0 Ihat minimizes the cost: 

The eOSI is CIXj + ... + C8 X8 • The winning .~ctor x· is 
Ihe nonneglllil'e SolUlion of Ax _ b thilt has smallest COSI. 

Thus a linear programming problem starts with a matrix A and two vectors b and c: 

i) Ahasn>m: forexampleA=11 12] 

ii ) b has m eompolH!nts: for example b = [4) 

iii) TIle cost c has II components: for example c = [5 3 8]. 

Then the problem is to minimize c · x subject to the requirements Ax = band .r =: 0: 

Minimize SX] + JXl + 8.rJ subject to XL + Xl + u J = 4 and XI. Xl . XJ :!: O. 

We jumped right into the problem. without explaining where it comes from. Linear 
programming is actually the most important application of mathematics to management. 
Development of the fastcst algorithm and fastest code is highly competitivc. You will 
sec that finding x · is harder than solving Ax = b. because of the e~tra requirements: 
COSt minimization and nonnegativity. We will explain the background. and the famous 
simplex method. after solving the e~amplc. 

Look first at the "constraints": Ax = b and x =: O. The equation '~ I+;(2+2xJ = 4 
gives a plane in three dimensions. The nonnegativity XI =: O. x2 ~ O. xJ ~ 0 chops the 
plane down to a triangle. The solution XO must lie in Ihe triangle PQR in Figure 8.6. 
Outside that triangle. some compolH!nts of x are negative. On the edges of that triangle. 
one component is zero. At the comers of that triangle. two components are zero. The 
solution X O " 'iII be one of those corners! We will now show why. 

The triangle contains all vCX'!Ors X Ihal satisfy Ax = b and x ~ O. (Those x's 
arc called feosible paims. and the triangle is tile feosible It/.) These points are the 
candidates in the minimization of c . x . which is the final step: 

FinJ x· in 'he triangle 10 minimiu ' he cost 5x I + 3xz + &x}. 

TIle vCX'tors that have ,-era cost lie on the plane 5;(1 +3x!+8.r] = O. That plane does not 
meet the triang le. We cannot achieve zero cost. while meeting the requirements on X. 

SO increase the cost C until the plane 5xI + 3Xl + 8x} = C does meet the triangle. 
This is a family of porallel plones. 01H! for each C. As C increases. the planes move 
toward the triangle. 



R =(O. 0. 2) 
(2 hours by compu,er) 

P .. (4. O. 0) (4 hours by Ph.D.) 

o'I x ~ b is./Ie pl..,..,x, +xl " 2 xl- " 
Triangle hasx,:.! O. x: :.! O. x,:.! 0 

Q= (0. 4.0) (4 bows by .cudem) 

Figure 8 .6 llIe triangle comaining nonnegative solutions: Ax = /J and x ~ O. llIe 
low~Sl ,OSI solution x ' is /)OC of the comers P. Q. Or N. 

llIe first plane .0 10uch the triangle has minimum IVSt C. Th~ poinr ... hue il 
tmochn i~ th~ w1ution x ' . This touching poim muSt be one of .he comers P or Q 
or R . A moving plane wukl not reach !he in~ide of the triangle before illouches a 
Com<1'! So check lhe "",I 5x, + 3x: + 8xJ al ea<:h corner: 

The winner ;s Q. Then x ' = (0. 4. 0 ) solves lbe linc:M programming problem. 
If lhe cost veetor e is ch.anged. lhe parallel planes are tilted. For small cllanges. 

Q is slill the winner. For.he cost t· x ,. 5xI + 4Xl + 7x:1> the opIimum x ' moves to 
R = (0. O. 2). The minimum COS! is oow 7.2 = 14 . 

No ll' I Some linear programs maximi;:, profir inslead of minimizing cos\. llIe math· 
emalics is all1lOS1 the !>arne. The parallel planes stan " 'itb a large val"" of C. instead 
of a small ,,,ltIC. They lfK)\Ie loward the origin (instead of away). as C g~tS smaller. 

TIrt- fim rouching point is Jtilt " COrnu. 

Noll' 2 llIe ret)uill:menlS Ax = b and x ~ 0 could be impossible 10 satisfy. The 
~'<luation x. + X2 + xJ = - I canroot be solved with x ~ O. The feasible set is empty. 

No te 3 It COtlld alw happen tllat!he feasible set is unboundtd. If r change the requill:' 
ment 10 XI + Xl - lxJ = 4. lhe large positive , 'ector ( 100. 100. 98 ) is now a candidate. 
So is lhe large r \'eeiOf ( 1000. 1000.998). The plane Ax '" b is no longer c hopped off 
to a triangle. The IWO comers P and Q are slill candida," for x'. bul the third comer 
has lfK)\Ied 10 infinity. 

No ll' 4 With an unbounded feasible SCI, the minimum cos. coukl be -0;) (minus infin. 
ity). Suppose the COSt is - x ,-x:+ xJ. Theil the vector ( 100. 100. 9g) """IS C _ - 102. 
llIe \'eetQr ( 1000. 1000. 998) CQSU C = - 1002. We all: being paid 10 include XI and 
X!. In.>lead of payinS a COSI for lOOse roml"'nen1s. III realiSTic applica.ions this will 

, 
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not happen, Bul;1 is ~ljcalJy possible thai changes in ,"" b, and c can prodocc 
uneJlpeclCd trianglcs and costs. 

8ackground 10 lilH'ar Programming 

Thi! first problem is made up 10 fit lhe ~vious example. 1lw: unknowns X I . Xl. xl 
n-presenl hours of wort by a Ph.D. and a sludem and a machine. 1lw: COSIS per hour 
are 55. 53. and $8. (I apologize for such 10'" pay.) TIle nllmber of hoors cannol be 
negaliV<': '<1 ~ 0 . .<: ~ O. XJ ~ O. TIle Ph.D. and lhe sludeni get Ihrough one 1lornel>1Xk 
problem pet hour- the mochint sol"ts ' .... 0 problems in one hour. tn principle lhey can 
shalt' OUI the homewon:, which h2s four probtems to be sot~: XI + X2 + !xl = 4. 

Th, problem is ,o/Ulish Ihe four probkm$ al minimum cos,. 

If all th= are ",ming. tbe job Illkes one hoor: XI = '<2 = Xl = l. TIle COSI is 
5 + 3 + 8 = 16. BUI ccnainly the Ph.D. should be PUI out of .... 'Oft. by the student 
(who is just as fast and COstS tcss-thi s problem is getting It'atislic). When the student 
works two haulS and the machine wort.s one. lhe COSI is 6 + 8 and all four problems 
get solved We are on the edge QR of the triangle br<;ause lhe Ph.D. is unemployed: 
Xl = O. Bul lhe best point is al a romer- all work by student (al Q ) or all wort: by 
machine (at R). In this e><arnple the sludent S(>tves four problems in four hoors for 
$12-the minimum cost. 

Wilh only one t(jualion in A.< = b, the comer (0.4,0) lias only one nonzcro 
component. When A.< = " has m equal ions. romers have m nonzcros. As in OJapier 
3, n - m f= VlUiables alt' set 10 7£1"0. We S(>1V<' A ... = " for lhe m basic .-anables 
(pivot variables). Bul unlike OJapicr 3, "'1: don't know which m VlUiables to choose 
as basic. Our choice must minimize the cost. 

The number of possible comers is the number of ways 10 choose m components 
out of n. This number Mil choose m" is heavily invol.'ed in gambling and probabi lity. 
With n = 20 unknowns and m = 8 equations (still small numbers). the "feasible ~f' 
can l\aV<' 2O! / 8!12! corn.c:rs. Thai number is (20)(19) ... (13) = 5,079, 110,400. 

CMcking three comers for the minimum cost Wall fine. Checking fiV<' biUiOfl 
comers is noI the way to go. 1lw: simple>< method described below is moch (aster. 

The ChQI Problem In hnear programming. problelll'i come in pairs. 1lw:n: is a mini
mum problem and a lTWlimum problem- the original and its ~duaJ." The original pr0b
lem was specified by a matrix A and 1 .... 0 Ve(:tOl$ " and .,. "The dual problem hall the 
sarne input. but '"' is transposed and b and c alt' switched. Hclt' is the dual 10 our 
example: 

A chealfr oII"mi 10 50h~ homework problems by tooklng up 1M an
swtrS. 1lw: c~ is y dollars pet problem. or 4y altogether. (Note how 
" = 4 has gone into the cos!.) The cheater must be as cheap as the Pb.D. or 
student or machine: y!S 5 and y :::: J and 2y :::: g. (Note how c "" (5. 3. 8) 
has gone into inequality constrainls). The dleater maximizes the i~ 4)'. 

, 
t 
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lJual I'roblem Maximize b. Y $ubju r ra AT y ::: c . 

1lle muimum occurs ..... he" y '" 3. 1lle iOCQ,..,. i§ 4 )' '" 12. 1lle mlUimum in 
the dual problem ($12) equal~ the minimum in the original ($ 12). This i§ alwa~s 1JUe: 

f)IIality Thea"m If eitlK'r JIfOblem lias a best "octor ( .... or y') then SO 
does the other. The minimum COSf C . ... . equals lhe mlUi",um inCOIne 
b· y' . 

Please noee that I personally often look up the answers. II's noe cheating. 

This book stane<! with a row picture and a column picture. 1lle fir.1t " dualit~ theorem" 
was about ran~: 1lle number of independent rows equals the number of independent 
wlumM. Thai theorem. li ke Ihis one. was cas)' for small matriC<':s. A proof lliat mini
mum cost '" muimum iOCQ,..,. is in OIlr te~t Un~uF Itlgebro (J1Id IIJ Applic(JlioflS. Here 
we establiw the easy IIalf of the theorem: The chealer'. inc(}lnt cann(J/ tIeted the 
honest C(Jst: 

If A ... _b, ... ~O.ATy.=!:c then bTy .. (It ... )Ty ..... T(AT y).=!: ... TC. 

1lle full duality theorem Pys that when bY y reaches its max imum and ... T c read~s its 
minimum. they are equaL b· y' '" c· .... . 

The Simplex Method 

Elin,inat ioo is the workhorse for lioc", equatioru;. T1te simplex method is the workho ..... 
for li near inequalities. We cannot give the simple~ method as much space as elimination 
but the idea can be briefly described. The simplex melhod got'S from one corner 10 " 
neighboring corner of 10k'rr COsl. Eventually (and quite soon in praclice) it n:aches 
lhe rorrtn of minimum COOl. This is the solution .... . 

A comer is a VCCIOI x ::: 0 that s.alisfies the m equations A ... = b witll at mQ!it 
m posi!i'«' components. 1lle other n - m romJ>Ol"'nis are zero. (Those: an: the free 
variables. Back substitution gi~es lhe basic variables. All variables mus! be nonnegative 
or x is a false romer.) For a neighboring corner. o ne ttru romJlOlleni becomes positive 
and one positive rornponen! becomes zero. 

T"t simple ... method must d« We ","ic" component "enters" IIy IItcoming pos
itilY. IUui "'hkh component "ItaIYS" by IItcoming ;:ero. That t ... changt u chosM so 
as to lowtr tht total cost. This u one sup of the simplex method. 

~len: is the overall plan. Look al each zero component al the currenl comer. If 
it changes from 0 to ]. the other nonzeros ha~e 10 adjuS! 10 keep Ax = b. Find !he 
new it by back SUbsliluliOll and compute lhe change in the 100ai \:OSI C· X . This change 

, 
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is the "reduced cost" r of the new component, The (mt~ring I'QriQbf~ is the one that 
gives the most n/'8Qtil'~ r. This is the greatest cost reduction for a single unit of a new 
variab le. 

Example 1 Suppose the current corner is (4.0,0) , with the Ph.D. doing all the work. 
(the cost is S20). If the student works one hour. the cost of x = (3. 1.0) is down to 
S18. The reduced cost is r = -2. If the machine works one hour. then x = (2.0,1) 
also costs $18. The reduced cost is also r = -2. In this case the simplex method can 
choose either the studeDl or the IIliIi:hine as the emering variable. 

Even in this small example. tile first step may nO! go immediately to the best 
x '. The method chooses the entering variable before it Irnows how much of that vari
able to include. We computed r when the enlering variable changes from 0 to I, but 
one unit may be too much or too little. The method !lOW chooses the leaving vari
able (the Ph.D.). 

The more of the entering variable we include. the lower the cos\. This has to 
stop when one of the positive components (which are adjusting to k.eep Ax = b) hits 
zero. The fea~in8 VQrWbf~ is the first posiri" ~ Xi to reach zero. When !hat happens. 
a neighboring corner has been found. More of the entering variable would make the 
leaving variable negative. which is not allowed. We have gone along an edge of the 
allowed feasible sct. from the old corner to the new comer. Then stan again (from the 
new comer) to find the next variables to enter and leave. 

When all reduced costs are positive. the current comer is the optimal x·. No 
zero componem can become positive without increasing e' x , No new variable should 
eDler. The problem is soh·ed. 

Note Generally x · is reaelled in an steps, where a is not large. But examples have 
been invented which use an exponential number of simplex steps. Eventually a different 
approach was developed. which is guaranteed 10 reach x' in fewer (but more difficult) 
steps. The new methods travel through the interior of tile feasible sct. to find x' in 
polynnmial time. Khachian proved this was possible, and Karmark.ar made it efficiem. 
There is strong competition between DantJ:ig's simplex method (traveling around the 
edges) and Kannarkar's method through the imerior. 

Example 2 Minimiz.e the cost e ·x = ht +.I"~+9x)+.q. The constraints are X ~ 0 
and twO equations Az = b : 

.1'1 + 2.1"3+.1"4=4 

.1"2+.1"3-.1"4=2 

m = 2 equations 

n = 4 unknowns . 

A SUlrting corner is x = (4,2. O. 0) which costs c· z = 14. It has m = 2 nonzeros and 
n - m "" 2 zeros (X3 and .1'4). The question is whether X] or .1"4 should enter (become 
nonz.ero). Try each of them: 

If X] = I and.l"4 =0, 
Ifx4=1 and x3= 0 , 

then X = (2. I. I. 0) costs 16. 
then x = (3.3,0, I) costs 13. 
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Compare Ihose costs with 14. The reduced cost of Xl is , = 2. positive and useless. 
The reduced COSI of X4 is , = -I. negative: and helpful. The entering l"Il'iable iJ X4. 

How much of X4 can enter? One unit of X4 made Xl drop from 4 to 3. Four units 
will make Xl drop from 4 to zero (whi\C X2 increases all me way to 6). The leal'ing 
\'ar;able iJ Xl. The new corner is x = (0.6. O. 4). which costs only e· X = ]0. This is 
the optimal x·. but 10 !rnow that we have to try another simple)!: step from (0.6, O. 4). 
Suppose X I or Xl tries to enter: 

If Xt =] and Xl =0. 
If Xl = ] and XI = O. 

then x =(1,5.0.3) costs II. 
then x = (0. 3. I. 2) costs 14. 

Those costs are higher man 10. BOlh ,'s are positive-it does not pay to move. The 
current comer (0.6, O. 4) is the solution x' . 

These calculalions can be streamlined. It turns out that each simp\c)!: step solves 
three linear systems with the same matru. B. (This is the m by m matri)!: that keeps 
me m basic columns of A.) When a new column enters and an old column leaves. 
there is a quick way to update B- 1. That is how most computer codes organize the 
steps of the simple)!: method. 

One final note. We described how to go from one comer to a better neighbor. 
We did not describe bow to find the first comer-which is easy in th is example but 
nOI always. One way is to create new variables X5 and X6, which begin at 4 and 2 
(with all the original x's at zero). Then start the simple)!: method with X5 + X6 as the 
cost. Switch to the original problem after xs and X6 reach zero-a starting comer for 
the original problem has been found 

Problem Set 8.4 

1 Draw the region in the xy plane where X + 2y = 6 and X ~ 0 and y ~ O. Which 
point in this "feasible set" minimizes the COSt c = X + 3y? Which point gives 
JD.II.l..imum cost'! 

2 Draw the region in the xy plane where x + 2y !> 6. 2x + Y !> 6. X ~ O. Y ~ O. 
It has four comers. Which comer minimizes the cost c = 2x - y? 

3 What are the comers of the set Xt +2t2-Xl =4 with Xt.X2.XJ all ~O? Show 
that Xl + 2xJ can be very negative in this set. 

4 Start at x = (0. O. 2) where the machine solve:s all four problems for $16. Move: 
to X = (0. I . ) to find the reduced cost r (the savings per lIour) for work by 
the student. Find, for the Ph.D. by moving to x = (I. O. ). Notice that r does 
not give the nllmber of hours or the total savings. 

5 Stan from (4 . O. 0) with c changed to [5 3 7 J. Silow that r is bener for the 
machine but the total cost is lower for the student. The simplex method takes 
two steps. first to machine and then to student. 

6 Choose a different c so the Ph.D. gets the job. Rewrite the dual problem (max· 
imum income to the chealer). 



8.5 Fouri .... Sefi ... : Linear Algebra 10< Functions 4 37 

FOURIER SERIES: LINEAR ALGEBRA FOR FUNCTIONS. 8.5 

This section goes from finite dimensions to infinite dimensions. I want to explain linear 
algebra in infinite-dimensional space. and to show that it still works. First step: look 
back. This book began with vectors and dot products and linear combinations. We 
begin by conveniog those basic ideas to the infinite case-then the rest will follow. 

What does it mean for a vector to have iofinitely maoy components? There arc 
two different answers. both good: 

I. The vector becomes ~ = (lit. ~l, U3 •• •• ). It could be O.!. 1.· .. ). 
2. The vector becomes a function j(x), It could be sinx. 

We will go both ways. Then the idea of Fourier series will connect them. 
After vectors come dOl products. The natural clot product of two infinite vectors 

(Ut.I!;! .... ) and (WI. Wl, •• ) is an infinite series: 

~ ' 1iI = UIWI + 1!;!W2 + .. " (I) 

This hrings a new question. which never occurred to us for vectors in R". Does this 
infinite sum add up to a finite number? Does the series converge? Here is the first and 
biggest difference between finite and infinite. 

When v = 111 = (I. I. I.. , .). the sum cenainly does nOI converge. In that case 
v· w = I + 1 + 1 + ... is infinite. Since ~ equals w, we are really computing v . v = 
IIvU1 = length squared. The vector (1.1. l. ... ) has infinite length. We don'lwant lhal 
I·ector. Since we arc making the roles. we don't have to include if. The only vectors 
to be allowed arc those with finite length: 

DEFINITION The vector (VI. 1>2 ••• ) is in our infinite-dimensional " H ilbert space" 
if and only if its length is finite: 

aulll = ~. u = vr + ui + uj + ... must add to a finite number. 

Example 1 The vector v = (I.~. 1 .... ) is included in Hilben space. because its 

length is 2/,fj. We have a geometric series that adds to 4/3. The length of v is the 
square root: 

u'v = I + i+ ~ + ... = --1 =~. 
1-4" 

QueSTion If v and w have finite length. how large can their clot product be? 

AnSl<'cr The sum u· w = VI WI +V"2W2 +.,. also adds to a finite number. The Schwarz 
inequality is still true: 

The ratio of v . W to Il vU I wl is still the cosine of 8 (the angle between v and w). 
Even in infinite-dimensional space, Icos8 1 is not greater than I. 
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Now change over to functions. Those are the "vectors," TIle space of functions 
f(x), g(x), h(x ), . .. defined for 0.:"'0 x .:"'0 2IT must be somehQw bigger than R". What 
is the dot product of f(x ) aM g (x)? 

Key point in the continuous case: Sums are rep/oced by integrals. Instead of a 
sum of Vj times Wj' the dot product is an integrnl of f(x) times g(x). Change the "dot"· 
to parentheses with a comma. and change the .... ,ortis "dot product"" to inner product: 

DEfiNITION The jnner product of f(x) and g(x ), and the kngth sqlUU'tld, are 

{"' 
(f. g) ~ 10 f(x)g(x)dx md 

{'. , 
n/n2 = 10 (/(x ») dx. (3) 

The interval (O, 21TJ where the functions are defined could change to a different interval 
like [0, 1]. We chose 21T because our first e~amples are sinx and cosx. 

Example 2 The length of I(x) e::o sinx comes from its inner product with itself: 

(f. j) = L2'" (sin x)2dx = 1[, The length of sinx is./ii. 

That is a standard integral in calculus-not pan of linear algebra. By writing sm2 x as 
! -l cos lx. we su it go above and below its average value !. Multiply that average 
by the interval length 2JT to get the aoswer 1f. 

More imponant: The f unctions sin x and cos x are ol1hogonaf. Their inner prod
uct is zero: 

L21r sinxcosxdx = 12
'" ! sin lxdx = [-±COS2.rl~'" =0. (4) 

This zero is no accident . It is highly imponant to science. The onhogonality goes 
beyond the two functions sinx and cosx. to an infinite list of sines and cosines. The 
list contains cosOx (which is I). sin x,cosx,sin2.r.cos2x,sin3x.cos3x . . , .. 

Eaoery f unction in that fist is ol1hogonaf to e>'try a/her function in the fist, 

The next step is to look at linear combinations of those sines and cosines. 

Fourier Series 

The Fourier series of a function y(x ) is its expansion into sines and cosines: 

y(x) = Go + at cosx + b l sin x + <J:! cos lx + b-z sin 2x +. .. . (5) 

We have an onhogonal basis! The vectors in "function space" are combinations of the 
sines and cosines. On the interval from x = 2JT to x = 411". all our functions repeat 



what they did from 0 to 21f . Tllcy are ·'~r;odic." Tllc di starICc between repetitions 
(the period) is llf . 

Remember: Tllc list is infinite. Tllc Fourier series is an infi nite ~ries. JuSt as 
we avoided the veetor ~ = ( I, I, L. .) because its length is infinite. so we a"oid a 
function like ~ +cosx + cos 2..- + cos3x +, .. , (NQlt : This is If tirn.es the famous delta 

function. It is an infinite "spike" above a single point. At x = 0 its height ~+ I + I +. 
is infinite. At aU points inside 0 < x < 2:r the M'nes adds in some a>'erage way to 
zero.) Tllc delta function has infinite length. and regretfully it is excluded from our 
space of futlCtioos. 

Compute the length of a typical sum i (x): 

= L1A (aJ +arcos2 x +bl sin2 x +aicos2 2..- +. ,. ) Jx 

= h aJ + If(a l +b; +a~ + ... ). (0' 
Tllc step from line I to line 2 used onhogonality. All products like coS.< cos 2..- and 
sin xcos3x integnlte to gi"" zero. Line 2 contains what is left - the integral s o f each 
sine and cosine squared. ti ne 3 evaluates those integrals_ Unfortunately the integral of 
12 i. 2>r. when all other integrals give n. If we di vide by their lengths. oor fUrlCtions 
be<:ome onhonDrIMI: 

I cosx sinx cos2..-= ' ,-' ,-' r=' ... ;s lin or1honormlll 00siJ l or ollr IlInt oon spatt. 
,,21f "" "Ir "If 

1llese = unit Vec1O!'S. We could combine Lhem " 'jth coefficients AO. iI t, 8 1. il l . , . 
to yield a function F(x). Then the 2 ... and the If'S drop out of the fOmlula for length . 
Equ.alion 6 becomes /unclion Itnglh = ,·trlOr length : 

Hcre is the imponant point. for !(x ) as "", II as F (x ). 71rt /uncfion h<IJfinife lengfh <!:r

aefly " 'hen fht "tc/OI" o! t«jfititms has finift lenglh_ Tllc integJ1l1 o f ( F (x » I matches 
the sum of coefficienlS squared. Through f'-ouner ~ries, we h.>'c • perfect match be· 
tween futlCtion SflI'CC' and infinile-dimcnsional Hilben space. On one side is lhe furIC
lion. on the other side are ils Fourie r coefficients. 

88 lbc fuoction space rontains I(x) exactly "hen the H,lben <pace contains the 
'·CCtOr ~ = lao."t,bt, .) of Rlurier coefficients. Both I(x) and ~ ha>'~ finite 
I~ngth. 

hample l Suppose I(x) is a "square wave:' equal to - I for negati"" x and +1 
for poliiti"" x . That looks like a step function. not a wave. But remember thaI I(x) 

, 
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mU>1 repeal aner each inlerval of lengch 21f _ We should have said 

I (x) =- Ifor - :r < x < O+lfor 0< x <1I . 

11>c wa"e g<;es back 10 - I for 11 < X < 21f . It is an odd funcCion li ke the s ines. 
and all ilS cosine coeflk~nts are ~ero. We will find ilS Fourier series, con(aining only 
sioes: 

'[Sin X sin3x . inSx 
I (.r) =- -+--+--+ 

11" I 3 5 1 <8, 

This square wave has leng(h./iii. because ac every poinc (/ (X»)2 is (_ 1)2 or (+1)2: 

1" 1" Ifn2 = 0 (/ (x »1 dx = 0 ldx=211. 

Al X = 0 the: sines are zero and the Fourier series 8 gives zero. This is half way up 
the: jump from - I to +1. The Fourier series is alSQ interesting when x =}. Al this 
point the S<juare waY<: equals I. and the s ines in equatio n 8 alternate het,,'ttII +1 and 
- 1: 

1 = 4(1 _~+~_~+ ). 
" 3 5 1 

(0' 

Multiply tIuoogh by 11 10 find a magical formula 4(1- ~ + ~ - j + ... ) for thm famous 
numher. 

The Fourier Coefficients 

How do we find the /I's and b's which multiply lhe cosines and s ines? For a given 
funclioo I(x). we are asking for its Fourier coefficients: 

I (x ) = ao +0, cos x + bl s inx + "lcoo 2x + , ... 

Here is the way to find " I' Multiply both JUU, by COIl .\". TM n intt#fTJle l rom 0 10 h . 
The key is onhogonality! All inlegrnls on the: riglll side are zero. UCI'pI lhe integral 

of " I coo2 x: 

fo b< I(x )cosxdx= fo b< u lcoo1x dx=1I"0! . (10) 

Divide by If and yOtl have " I. To find any other /It . mullipl y Ihe Fourier series by 
cosh. Integrale from 0 10 21f . Use onhogo nality. SQ ooly tile inlegral of /I~cos2 h 
is left. TItal integral is If" • • and divide by 11 : 

, 1" 111-- I(xlcoo h dx 
" 0 

and similarly , /." b. '"' - I(x )sink.tdx. , " 
(II ) 

, 



The ucepion is~. Thi. time we multiply by rosO.r = l. The integral of I is 211' : 

.. ' _, 1.2.0 j(.r) . I d.t = average value of j(.rl. ,. , (12) 

I used those formulas to find the coefficients in 8 for the square wave. The integral of 
j(xlcosk.r was lC"ro. The integral of j(x)sinb was 4f t for odd k. 

The point to emphasize is how this infinite-dimellSional case is $0 mu.c:h lite the n· 
dimensional case. Suppose the nonzero ~tors li t . .•.. II. al!: onhogonal. We want to 
write the ~Ior II a:o; a combinalion of those II ·S: 

II = q ' t + <"2 ' l + ... + ... p • . (Il) 

Multiply both sides by ~r U5e orthogonality. so liT II~ = o. Only (lie "t term is left: 

( 14) 

The ~nominalor liT II I is the length squared, lite II' in equalion (I I). The numerator 
-Tb is the inner product li ke J j(xlrosbd.r. CfN/lkkntJ /In f IlS:! lojind ... IoM llof 
"IU;$ I'«lon Q rf fJrtloogfJ"w. We al!: just doing ooe--dimcnsional projttlions. 1Q find 
(be components along each bIlsis '~or. 

The fonnula:o; an: even better wben tbe vectors are orthooormai. Then we have 
unil vectors. The denominatol$ ~r ~. are all I. 111 this orthonormal case. 

,., ( 15) 

You know this in another form. The equalion for lhc .. ', is 

This is an orthogonal matrix Q! Its inverse is QT. That gives the c's in (15): 

Qe = II yields e = QTII . Row by row this ;5<', = IITII. 

Fourier :oene, is li ke having a matrix with infi nitely many orthogonal wlumns. Tl>O$<: 
columns are the basis functions l. cosx .• in .r . .... After dividing by their lengths we 
have an Rinfinite orthogonal matrix.R Its inverse is its U"anspose. lbe formula:o; for the 
Fourier coefficients are like (15) wilen we have unil vectors aoo lite (14) wilen we 
don·t. Orthogonality is what redlloCCS an infinite S<:"Iies to one single term. 

, 
t 
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Problem Set 8.5 

1"lcgmle Ille lrig idcnlily 2 cos jx cos h = cos(j +k) .. +cos(j _ ~ )x 10 sllow Ihal 
cosjx i. onhogonal to cosh. pmvichl j ,.~. Whal ;. lhe ",. ull when j = k? 

2 SIlow Ihatlhe three functions Lx. and .. l_! are onhogonal. when lhe integra

tion is from .. '" - I 10 .. = 1. Wrilc I(x) = 2xl as a combination of thosoe 
onhogooal functions. 

J FirKl a VCClor (WI. W2. W). _ , .J that is onhogonal to V = (I. !.l ... ,J. Compult: 
ilS Icnglh 1.,1. 

4 'The firsl thrtt lLgtndr<! poip,omjais are 1. ... and .. l - i. Choose the number (' 

SO !hal lhe foorth polynomial .. J -CA is onhogonal to the first Ihrtt. TlIe integrals 
still go from -I to I . 

5 For lhe square wave I(.r ) in Example 3. show thai 

{" Jo j( .. J cos .. d .. ", O LU 
I( .. )sinlxdx = 0. 

Wh kh Fourier CQeflkient~ ~ome from those inlegrab? 

6 TlIe square wave has I /U l = 2rr. This equals whal remarkable sum by equa
lion 6? 

7 Graph the square wa~e. TlIen graph by hand the sum of tWQ sine IcrTm in its 
series. Of graph by machine Ille sum of IWO. Ihrtt. and foor lerms. 

8 Find the lenglhs of I~ VCCtot; in Hilbert spau: 

(.) ( t t t 
~ = 71' 71·:n·· ) 

(b) ~ =(I .a.a l ... . J 

(~) 1(" ) '" I +sin ... 

9 Compute the Fourier cocm~ients al and bl for 1(" ) defined from 0 10 211': 

( a ) l(x)=lforO !i x !i If. /(x )= Oforll' <x< 2:r 

( b) I(x) = x. 

10 When I (x ) has period 2lr. " 'hy is ils integral from - II' 10 If lhe same as from 
010 211'? If I(x) is an odd fu~ion. I (-x ) = - /(x). show IILaI folJr I(x)ax 

" 7-"m. 

, 



11 From trig identi ties find tile Oflly two term~ in the Fourier series for I(x): 

(a) I(x ) = ros2 x 

(b) I(x ) = ros(x + i) 

12 'The fuoctions I. rosx. sin x. cos 2<. sin 2< .... are a basis for Hilben space. Write 
the deri vatives of !hose first fi", fuOClion~ as combinatiOfls of the same fi'~ fune· 
liOfl~. What is the 5 by 5 "differentiation matrix" for these functions? 

13 Write the complete solution 10 dyldx = cos.: as a p;;rticular solutiOfl JIlus any 
solutioo 10 dy ldx = 0. 

, 
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COMPUTER GRAPHICS . 8.6 

Computer graphics deals with three-dimensional images. The images are moved around. 
Their scale is changed. They are projected into twO dimensions. All the main ope ra~ 

tions are done by matrices~ bul the shape of these matrices is surprising. 
The Irans/omlaliOlIS of rhree-dimensional space are done wilh 4 by 4 matrices. 

You would expect 3 by 3. The reason for the change is that one of the four key opera
tions cannot be done with a 3 by 3 matri~ multiplication. Here are the four operations: 

Translation(shilt the origin to another point Po = (xo. ~1) . ::O )) 

Rescaling(by c in all directions or by different factors Ct. C2. Cl ) 

Rotation(around an axis through the origin or an a:ds through Po) 

Projection(onto a plane tbrough the origin or a plane through fb). 

Translation is the easiest~just add (xo . Yo.::O) to every point. But this is not linear! 
No 3 hy 3 matrix can move the origin. So we change the coordinates of the origin to 
(0. O. O. I). This is why the matrices are 4 by 4. T1Je ··homogeneous coordinates'· of 
the point (x. y. z) are (x. y. z. I) and we now show how they work. 

1. Translation Shift the whole three-dimensional space along the vector "0. The origin 
moves 10 (Xo . yo. :0). This vector ~o is added to every point ~ in R3. Using homoge
neous coordinates. the 4 by 4 matrix T shifts the whole space by ~O: 

Translation matrix T _ [i - 0 

". 

o , 
o 

'" 

o 
o , 
'" 

Imponant: Complller graphics .... orks wilh row '·eClOrs. We have row times matrix in
stead of matrix times column. You can quickly check that 10 0 0 IJ T = [xo YO ::a I]. 

To move the points (0. O. 0) and (x . . 1'. z) by vo. change to homogeneous coordi
nates (0. 0.0. 1) and (x.y . :. I ) . Then multiply by T . A row vector times T gives a 
row vector: E,V!ry v mo,'es 10 v + vo: [x Y z 11 T = [x + xo y + }~ z + ::a II. 

The output tells where any v will move. (It goes to v + vo.) Translation is now 
achieved by a matrix. which was impossible in Rl. 

2. Scaling To make a picture fit a pagc. we change its width and height. A Xerox 
copicr will rescale a figure by 90%. [n linear algebra. we multiply by .9 limes the 
identity matri x. That matrix is normally 2 by 2 for a plane and 3 by 3 for a solid. In 
computer graphics. with homogeneous coordinates. the matrix is olfe si::e larger: 

Rescalt Iht p/(mt : S -_ [.9 .9 ,] 



Importam: S ;~ fIOt c/. We keep the 1 in the lower comer. Tkn Ix. )'. II times S is 
the correct answer in homogeneous coordinates. Tk origin stay. in positi"" Ixcau"" 
100 liS = 100 11. 

If we change that 1 to e, the ~ult is sirange. The paint (ex. cy, cz. e) is tht 
S<lmt tu ( .... y . z. 1). The Sp«ial propef1y of homogenrous coordinates is that mu/li
plying by c/ do", nol mo,·t I~ paim. n.. origin in R J has homogeneQus coordinates 
(0. O. o. 1) and (0. O. O. c) (01 e"ery nonzero c. This is the idea behind !he word "110-
mogenrous 

Scaling can be different in different directions. To fit a full-page pklure onto a 
hal f·page. scale the )" direction by !. To ereaIC a margin. scale !he x direction by i. 
The graphics matri x is diagonal bot oot 2 by 2. II is 3 by 3 to rescale a plane and 4 
by 4 to rescale a space: 

Se<l/ing malnus S = [i ! 1] S~ [" 
" J 

ThaI last matrix S It'SCa les the .... }". t d ireclions by posili"e numbers C[. Q. CJ. The 
point al tbe origin doesn'l move. bc<;:ause [000 I]S = [OO O 1]. 
Summary' The scaling matrix S is the ~ size as tbe tnmslation matrix T. 1bey 
can be multiplied. To translate and tllen rescale. multiply gTS. To rescale and then 
translate. multiply ~S T. (Are those differen!? Yts.) The extra column in all these 
matrices lea,'es the eXira 1 81 the end of every ,·octor. 

The poinl ( .... y . ~) in RJ has homogenrous coonlinates (x. )".z. l) in pl. This 
"projective space" is not the same as R4. lt is still !hree-dimensional. To achieve sud 
a thing, (cx. ry . ... z.c);s the same point as ( .... y.~.1). Those points of pl ~ really 
lines througb the o rigin in R4. 

Computer graphics uses affint transformations. linear plus shift. An affine trans
fornunion T is executed "" pl by a 4 by 4 matri x with a special (ounh column: , ~ [::: ::: ::~ ~l ~ [;~~:~: ~~ ~l 

alt u)1 al) 0 T(O. o . I ) 0 . 

"~ I 041 "4) 1 T(O. O. 0 ) 1 

The usual 3 by 3 matrix lell. us Ihree OUI[lUIli. this lell . four. The usual OUI[lU1li CO""" 
from the inputs ( 1,0.0) and (0. 1.0) and (0.0, I). When the tran Jfonn.ation is lin 
eal. three outpU\§ reveal everything. When the transformation is affine. the matri~ alliO 
conlains the outpul from (0. O. O).lben ""e know the shifl. 

l . Rotation A rotation in RZ or R) is achieved by an orthogonal matrix Q. The 
determinant is + 1. (Wilh determinant - 1 we get an extra reflection through a mirror.) 
loclude the exira column when you uSC homogellCOUS coordinales! 

P lane rotation [~' R = S'~ ll 
-sin ll 

00" 
o 

, 
i 



ThiJ ma{ri~ rulale~ the plane arQYnd the origin. 1/11'" W(>II/d . ... rotnle /l round <I 

diffu~nt point (4 . 5)7 The an"''',,, brings OU1 the heaulY of Ilomogcnrous coordinates. 
Tro"Jlatt (4 , 5) /0 (O. O). Iht" rot(Jl~ by 9, IhM IrtI, .. lale (0. 0) INld: ff} (4. 5): 

[

I 0 
~ LRT+= { X )' I ] 0 1 

_ 4 - 5 
:] [:: -:~ :] [: : :] . 
!0014 ~ 1 

I WO"'l multipl y. The poinl is 10 apply 1he matrices Olle a1 a ti~: ~ translates 10 ~L, 

Illen rotalCS 10 pL R. and translates boct 10 ~L RT+. Recau~ ta.ch point [x y 11 is 
a row '''''lor. L actS fim . Tlle ~n1er of roIal;OrI (4 , S) - OIherwiK known a> (4. S. 1) _ 
mo, .... first 10 (0 , 0 .1). ROialion doesn't change it. Then T+ JTIO''CS it bact 10 (4, 5, I), 
All u it should he. The poin! (4 . 6 . 1) moveS 10 (0. L I). then turnS by II and mo,-es 

b. d . 
In 1h"", dimensions. c>-cry rotation Q turns around an axi s. The axi s docs,,"! 

nlO~e_ il is a line of eigen,·~ors will! A _ l. SuPl'l"'" the axis is ill the ~ directiOil. 
TIle I in Q is 10 leave tl>c z uis alone. the nUll 1 in R is to ka~ the origin alone: 

- sin O 
,~, 

o 
.rnl 

Now suppose lhe ro.alion is around lhe unil vCC!or a = (" I. a ! '''J). Wilh Ihi s II!I;S fl . 

the ro.ati()fl malrix Q which filS inlO R has three pans: 

.,",] [0 
ala) - sin g - a ) 

oj Ol "' 
The a.<i s docsn't m(wc becau>t fl Q = a . Wilen fl = (0.0. 1) is ill Ille ;: d;rttlion. Ihis 
Q becomes lhe prtviQlls Q _ for rQlalioll around lhe Z a~i s. 

lbc linear lransformalion Q always goes in the upper Jefl blo<.:k of R. Below il 
we Stt u ros. bec.ust rQlalion kaves lhe orilill in place. When lhose are no! u ros. 
the Inlru;fonnalioll is .ffine and lhe origin mo,·t~. 

4. Projl"CliOfl In a linear algebra course. ITIOi'iI planes go Ihrough lhe orilill . In real 
lofe. JllO>I don 'l. A plane llIrough lhe origin is a ''eClOr space. 1be 0100 pla~ are 
affine space>. sometimes callC<1 "ftals.~ An affine space is whal comes From lranslaling 
a "«Ior space. 

We want to (lfUjccl Ihree-<limensionaJ vectors onlO planes. Stan wilh a plane 
tllrough the origin. whose unit nonnal "«Ior is If . (We will keep a as a column vee· 
IOf.) The V«IOrs in lhe plane salisfy n T ~ = O. Tioe a. a,,1 projutifJn onta rloe pfune 

is llot mfllrix f - nn T. To pn)ject a "o:<:IOr. multiply by this matri~. The ''eCIOf '' is 
projected 10 lCro. and the in·plane veclors ~ are projecled 0010 lhemsch-cs: 

, 
i 
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[n homogeneous coordinates the projection matrix ba:omes 4 by 4 (but the origin doesn't 
move): 

Projectioll OlltO the pltme liT It = 0 p~[/- .. ' 1]. 
o 0 0 I 

Now project 0010 a plane 111( 1' - po) = 0 that does not go through the origin. One 
point on the plane is Ito. This is an affine space (or a flat ). It is [ike the solutions 
to A It = b when the right side is not zero. One particular solution lIQ is added to the 
nuUspace - to produce a flat. 

The projection onto the Hat has three steps. Translate vo to the origin by L. 
Project along the II direction. and translate bad: along the row vector ItO: 

Projection onto a flat 

I can't help noticing that L and T+ are inve= matrices: tl1lnslate and translate back. 
They an: like the elememary matrices of Chapler 2. 

The exercises will include reflection matrices. also known as mirror marrien These 
are the fifth t)pe needed in computer graphics. A reHection moves each point twice as 
far as a projection- the reflection goes through the plalle and out the Qther side. So 
change the projection I - nn T to I - 2nn T for a minor matrix. 

The matrix P gave a "parallel"" projection. All points move paratlel to 11 . unti l 
they reaeh the plane. The other choice in computer graphics is a "[H!rs[H!clil'e" pro
jection. This is more popular because it includes foreshortening. With perspective, an 
object looks larger as it moves closer. Instead of Slaying parallel to n (and parallel 
to eacb other). the lines of projection come toward the lye-the center of projection. 
This is how we perceive depth in a two-dimensional photograph. 

The basic problem of computer graphics stans with a scene and a viewing poSitIon. 
Ideally. the image on the screen is what the viewer would see. The simplest image 
assigns just one bit 10 every small picture element-called a pixel. It is light or dart. 
This gives a black and white picture with no shading. You would not approve. In 
practice. we assign shading levels belween 0 and 28 for three colors like red, green. 
and blue. That means 8 x 3 = 24 bilS for each pixeL Multiply by the number of pixels. 
and a lot of memory is needed! 

Physically. a raSler frame bufftr directs the electron beam. It scans like a televi
sion set. The quality is controlled by the number of pixels and the number of bit§ per 
pixel. In this area. one standard text is Computtr Graphics : Principles alld Praclices 
by Foley. Van Dam. Feiner. and Hughes (Addison-Wesley. [990). My best references 
were notes by Ronald Goldman (Rice University) and by Tony DeRose (University of 
Washington. now associated witb Pixar). 
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• REVIEW OF THE KEY IDEAS • 

I. Computer graphics needs shift operations T ( ~ ) = ~ + ~o as well as linear oper
ations T (v) = Av. 

2, A shift in R" can be executed by a matrix of order " + I. using homogeneous 
coordinates. 

J, The e»tra component I in Ix y: I I is preserved when all matrices have the num
bers O. O. O. I as last column. 

Problem Set 8.6 

1 A typical point in R] is x i + y j + rk. The coordinate vectors i . j . and k are 
( 1.0.0). (0. 1.0). (0. O. I). The coordinates of the point are (x . y, z). 

This point in computer graphics i§ xi + )' j + zk + nrlgin. Its Ilomogeneous 
coordinates are ( . , , ). Other coordinates for the same point are ( • . • ). 

2 A linear transfonnation T is detennined when we know T{i ), T(j ). T(k ). For 
an affine transfonnation we also need T{ __ }. The input point (x. y. z. I) is 
transfonned to xT{i) + yT (j) + a{k ) + __ . 

3 Multiply the 4 by 4 matri» T for translation along (1.4. J) and the matrix TJ for 
translation along (0. 2. 5). The product TTt is translation along __ . 

4 Write dnwn the 4 by 4 matrix S that scales by a constant c. Multiply ST and 
also TS. where T is translation by (1. 4.3). To blow up the picture around the 
cemer point ( 1. 4.3). would )'00 use uST or vTS? 

5 What scaling malrix S (in homogeneous coordinates. so 3 by 3) would make this 
page square? 

6 What 4 by 4 matrix would move a comer of a cube to the origin and then mul
tiply all lengths by 2? The comer of the cube is originally at (1. l. 2). 

7 When lhe Ihree matrices in equation I multiply the unit vector a. show Ihat Ihey 
give (cos8)a and (l-cos8)a and O. Addi lion gives IIQ = a and the rotation 
axis is not moved. 

8 If b is perpendicular to a. multiply by the three matrices in I 10 get (cos8)b 
and 0 and a vector perpendicular 10 b. So Qb makes an angle e with b. This is 
rotation. 

9 What is the 3 by 3 projection matri» l - nnT onto the plane j.t + h·+~z = O? 
In homogeneous coordinates add 0.0, O. I as an e» tra row and column in P. 
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10 With the same 4 by 4 matrix P. muhiply LPT+ to find the projection matrix 
onto the plane jx + jy + !~ = 1. The tnmshuion L moves a point on that plane 
(choose one) to (0. O. O. I). The inverse: matrix T + moves it back. 

11 Proj«\ (3. 3.3) onto those planes. Use P in Problem 9 and LPT+ in Problem 
10. 

12 If you project a square onto a plane. what shape do you get? 

13 If you project a cube onto a plane. what is the outline of the projection? Make 
the projection plane perpendicular to a diagonal of the cube. 

14 The 3 by 3 mirror matm that reflects througb the plane n T v = 0 is M = f -
2nn T. Find the reflection of the poim (3. 3. 3) in the plane jx + h' + jz = O. 

15 Find the reflection of (3.3. 3) in the plane jx + jy + ~ z = 1. Take three steps 
LMT+ using 4 by 4 matrices: translate by L so the plane goes through the 
origin. reflect the translated point (3.3.3. I)L in that plane. then translate back 
by T+ . 

16 The vector between the origin (0.0. 0. 1) and the point (x .),. : . I) is the differ-
ence v = __ . [n homogeneous coordinates. vectors end in So we 
odd • __ to a point. not a point to a poin!. 

17 If you multiply only the lasl coordinate of each point to get (x. y . z. c) . you rescale 
the whole space by the number __ . This is because the point (x . y. z. c) is the 
sameas ( . .. 1). 



9 
NUMERICAL LINEAR ALGEBRA 

GAUSSIAN ELIMINATION IN PRACTICE. 9.1 

N~merica l linear algebra is a siroggic for quick solutions and al§O .. crll ral~ solutions. 
We nttd dlic~ncy bm "'" haY(: 10 B""id instab ility. In Gau n ian elimination. the main 
freedom (always avai lable) is to exchange equations. Th is section explains when to 
exchange I'QWS for the sake of speed. and wt..n to do it fQl" the sake o f lIoITuracy. 

'The key to accuracy is to a'-oid unoecessari ly large numbers. Often that requires 
uS to amid small numbers! A small pivot g<,,,,,rally meanS large multipliers (since we 
divide by (he pivot). Also. a ,mall piv~ now means a I~ piYOl later, "The prodUCt 
of the pi.,OIS is a fixed number (ucept for its sign). Thai number is tile detenninant 

A good plan is to choose the larg~M canJidale in .,ach new column as the pivot. 
This is called "porrifll pivoting: ' 'The competiwrs are in the pivot position and below. 
We will Stt why this stnl1egy is built imo COmputer programs. 

Other row exchange~ are done to sas~ ~liminati{)fl steps. In practic<:. most large 
matrices ha>'e only a smail percentage of nonzero entries. The user probably mows 
their locati{)fl. El imination is g~nerally fastest when the equations are onle~ to put 
those nonzcros dose to the diagonal. Thcn the matrix is as "banded" as possible. 

New questions arise for machines with many proces§Or.l in parallel. Now the 
probl~m is communication - to send processors the data they need. when they need it. 
This is a major research area. Thc brief comments in this section will try to inlrodoce 
you 10 thinking in parallel. 

Soxt;on 9.2 is about in"ability thaI can't be ayoided. II i. built into the ]KUblem. 
and Ihis sensitivity is measured by the "condition lIumMr."· Then Section 9.3 de&eribes 
how to wlYe Ax = b by iUrotio lls. Instead of direct elimination. the romputcr soly.,s 
an easier equatioo matty times. Each ans"'er X I gocs back into the !>ame equation 10 
find the next guess XI+t. For good iterations. the Xk converge quickly to X = ,, - tb. 
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9.1 Go ........ n Elimin.alion in Ptxtk~ 45 1 

Itoundoff Error and Partial Pivoting 

Up to now. any piVOl: (lIOfIlero o f cour-:se) Wa'l accepted. In practice a small piVO( i$ 
dangerous. A catastrophe can occur ... hen numbers of different sizes are added. Com
puters kcqI a fixed number of s ignificant digits (say three decimal s. for a vel)" weak 
machine). l1le sum 10.000 + I is rounded o fT to 10.000. The " 1" is completel y lost. 
Watch how that changes the SOlution to this problem: 

.000 I u +~ "" I 
- u+v = O 

stan" with C(lCfficicni matri.~ 

If ... ·c accept .0001 aii the piVO(. elimination adds 10.000 times roW I to roW 2 Round_ 

ofT leaves 

10.OOOv = 10.000 instcad of 10.001 v = 10.000. 

The computed answer v = I is ncar the true V = 9999. Hut then back substitution 
ludii to 

.0001 .. +1=1 instead of .0001 ,, +.9999 = I. 

l1le firsl equation gives .. = O. Tlle COfTt'CI answer (look al the second equation ) is 
.. _ 1.000. By losing the Mr' in the matrix. we h3'''' lost the solution. Th~ rium gr 
fro ... 10.001 to 10.000 hils changed Ihe lIn JOWr fro", .. .. 1 10 II _ 0 (100% eTTUI" !). 

If we exchange rows. even thi s "''Cak contputer finds an answer lhal is correct to 
th= places: 

- .. +v= O 
-lXlO l u + II" I 

- u + v = O 
,,= 1 - u = 1 

II = l. 

'The original piVO(s were .0001 and 10.000-bOOly scaled. After a row exchange the 
exact piVOls are - I and 1.0001 - ... 'C il scaled. The computed pi"()I!; - I and I come 
clO!iC 10 the exact val ues. Small pivOls bring numerical instability. and the remedy is 
par1illl pilfO/i ng. Thc kth p1'"01 is decided when "''C reach and ~arch column k: 

CIooou tloe WTgr.f n .. ",bu in row k 01" klo",. Bx"honge if. row ",ilh ro", k. 

Thc sn:alCgy o f complele pi"ol ing looks also in later columns for the large>t pivot. It 
exchanges columns as well as fOWl>. Thi s expense is seldom justified. and all major 
codes usc partial piVO(ing. Multiplying a row or column by a scaling constam Can also 
he W(lrtItwhile. 1/ the firSf rquoli()lt ohm~ is u + 10.OOOv = 10.(0) ond ..... do"'r 
IYKule. 110",. I is Ih" pi>'Of but .. .., alY in froubl~ again. 

For positive definite matrices. row exclutnges all' rIOl Il'([uitcd. It is safe to accept 
the pivoo; as they appear. Small pivoo; ean occur. but the matrix is not impro'"Cd by 
row exchanges. When its condition number is high. the problem is in lhe ""'tri.~ and 
not in the order or elimination steps. In this case the ou tpllt is unavoidably sensiti'IC 
to tbe input. 

, 
t 



T1Ie ",..ocr DOW undcl"S.lsnds how a oonlpluer actually wives Ax = b - bJ dimiMtion 
"'uh partial pivoting. Compared with the thwretical description-find A- I lind Mill· 

tiplJ A- Ib - the delails IO()k time. But in computer ti"",. eliminalion is much faster. 
I believe ihis algorithm is alS(> the be" approach 10 the algebrn of R)W spaces and 
nullspaccs. 

Operation Count§: full Matrices .and Band Matrices 

Hero is a practical question about cos!. Hmo' mati,. s~parutc op<'.alioru art! ncc<kd 10 
soil", Ax _ b by diminalion? This decides how I~c a problem we can afford. 

L.ooI; fillit at A, which changes gradually into U, When a multiple of row I 
is subtracted from row 2, we do n open.tioll$. The firsl is a division by the piVOl. 
10 find lhe: multiplier t. For the OIIler " - I entries along the row. the: operal ion is a 
··multiply-sublT1lCt.'· For convenience, we COUnt Ihis as a si ngle operalioo. If you regard 
multiplying by t and subcracling from the e~isting enlly as tWO separate operations. 
multiply all our counts by 2. 

The matri~ A is n by n. 1lIc operation count :'FlieS 10 all n - I rows below the 
filli!. Thus it Kquires n times n - I opcraIions. or n - n. to prodllCC zeros below the 
first pi,"OI. Chuk: All n2 cn/rics ort! cMngcd. UCtp! Ih~ n cntries in 1M first row. 

Wilen elimination is do;no.·n to k equations. the: n)WS are shorter. We need only 
k! - k operations (instead of ,,2 - n) to clear OUt lhe column below the piVOl. This is 
true for I :=:: * :=:: n. T1Ie lalit step requires no operations (12 - I "" 0), since the piVOl 
is SCI and forward elimination is complete. The 100ai count to reach U is the sum of 
*2 _ k over all values of k from 1 to n: 

n(n + 1)(211 + I) n(n + I) 
.+n)"" - ~ 

6 2 
,,' - .It, 

'h~' 

Those an: known formulas for the sum of the fillil n numbers and the sum of the first 
" squares. Sub$tituting n = I into n ) - n giYe!i zero. Substituting n = 100 gives 
a million minus a hundred - then divide by J. (That translates into one second on a 
workstalion.) We will ignon: the last term n in comparison with the larger term nl ,lO 

reach OUT main conclusion: 

TII~ operooon tount/or /o",'(>rd , limiflllt;oJ1 (A 10 U) is ~ 1I1. 

That means ~n ) m~ltiplications and !n ) subcractions. Doubling n increases this cost 
by eight (becauSoe n is cubed). 100 equations are OK. 1000 are e~pensive. 10000 are 
imp<>Ssible. We need a faster computer or a 101 of zeros or a new idea. 

On the right sid<: of the equations, the steps go much faster. We operate on single 
numbers. HOI whole row •. ""/I€h righl ~itk nudr uotlly ,, ! operpliun. . Remember 
that we solve twO triangular systems. Lc = b rorward and Ux = c backward. In back 
substitution. the las! unknown "","-.is only divisioo by the last pivot. TIle equation abo'''' 

, 
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Figure 9.1 A = L U for II band matri~. Good zeros in A stay zero in Land U. 

it needs two opcrations-subscituting ~~ and dividing by i,s pi,·ot. llw: tth step needs 
k operations. and the- total for back substitUlion is 

1+2+. n(n + J) t' 
.. + n = 2 ~!n· operations . 

The forward pan is similar. The ,,2 101<""cmc,ly equals 'he coum for mul,iplying A- I b ! 
This lea,·es Gauss ian elimination with two big advantages over A- Ib: 

1 Elimination rt'tIui~ ~ n J operations compared to n \ for A · t. 

2 If A Is bandtd so are L lind U. Hut A ·1 is full of nonuros.. 

Band Mat rices 

llw:se counlS are improved whe-n A has ""good uros ." A good zero is an entry lhal 
remains zero in L and U. llw: most imponanl good zeros are at the- beginning of a 
TOW. No elimination steps are required (the multipliers are zero). So we also find thosoe 
same good zeros in L. "That is especially clear for this rridiugoMllMlrU A: 

,] [' -, -: -:1 
Rows 3 and 4 of A begin wilh zeros. No multiplier is needed. so L has the same 
zeros. Also TOWS I and 2 md with zeros. When a multiple of TOW I is sublractcd 
from row 2. no cakulatiQfl is required beyon<! the sccon<! CQlumn. lk rol''-S are short. 
They Slay shorl! Figure 9.1 shows how II band malri~ It has band factors L and U . 

lbese zeros lead 10 II CQmplete change in the opcration CQunt. for ""half·bandwidth·· w: 

A bnnd matrix has . ,i _ 0 "'IItn II -"II > • . 

Thus w = I for a diagonal matri~ and w = 2 for a tridiagonal matri~. The length of 
the pi,,)t TOW is at most w. lbe", arc 00 I1"II")re than w - I oonzeros below any pivot. 

, , 



Each stage of elimination is complete after w(w - I) opera!ioos. and rh~ bond 5tructurt 
su .... ·j,· .. s. There are II columns !o clear out. Therefore: 

f 'onl'Oro tliminllnoll 011 II ootid mlllrix needs If!u t /w.II .. 1 .. Opt!llltiOIlS. 

For a band matrix. the count is proponional to II instead of Il l. It is also proportional 
!O wI. A full matrix lias w:; II and we an: back to Il l. For a closer count. remember 
that the bandwidth drops below w in the lower right COmet (not eoough space). The 
exact count to tilld L and U is 

w(,., - 1)(311 - 2w + I) 

3 
11(11 - 1)(11 + I) 

3 
= 

for a band matrix 

wh<" W:; M. 

On the righl s ide. to find x from h. the CO!i! is about 2,.,11 (compared !o the usual,, 2). 
Mai" poinr: Far u band '1W1rU thf! operolioll CQUnrs ure proporrionll/ to II. This is 
extremely fast. A tridiagonal matrix of o rder 10.000 is very cheap. provided we don '! 
compute A-I. Tha! inverse matri x has no zeros a! a ll : 

[_: A= 0 

o 

-, 
2 -, 
o ~l-ll 

We an: actually worse off knowing A- I Ihan knowing L and U. Mul!iplicalion by 
A- I needs lhe rull n l steps. Solving Lc = b and Ux :; c needs only 2111n. Here 
that means 411. A band structure is very common in prnctice. when the matrix reH~tS 
conne<.:lions belw~n near neighbors. We see "11 = 0 and al" = 0 becau§c I is no! • 

neighbor o f 3 and 4. 

We close with N '" """'" operation COUnts: 

2 

1 Start with AA - I = I . The j th column of A-I solves AXj = j th c"lumn of I . 
Normall y each of tOOse " right sides needs III o peratio ns. making III in all. The left 
s ide CO!iIS i") as u.",aI. (Th is is a (K"l-lime COSI! Land U are not repeated for each 

IlCW right side.) Th is count gives jal • bul ""e can get <.kM·n to Ill. 

The spec ial saving f<lf the j!h column of I COliteS from its first j - I 'leros. No 
work is required on the right side until diminati"" reaches row j. The forward COSI 
is !(II _ j)l instead of ~,,2. Summing O'V j . the total for forward elimination on the 

, 
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" right sides is !"l. n.en the final counl of multiplications for A- I (with an equal 

numbc-r of subcJ1lCtions) i~ "l if we actually wanl the inVCl'S<' matrix: 

III Il' (~) "'3 (L and UJ + 6" (forward) +" T (back substitutions) = " l . (I) 

2 n.e Gram-Schmidt process wOfts with columns instead of rows-that is oot SO) im· 
pon.ant 10 the count. n.e key difference from elimination is that lire mU/lip/ie, i~ dt
cilkd by a dOf prod"CI, So it tak~ " operations to find the multiplier. where elim· 
inatiort just divides by the pi,'OI. Then tllcre = n "multiply-subcJ1lCt~ operations to 
relTlO\'e from column 2 its projection along column 1. (See Section 4.4 and Problem 
4 .4.2lI for the sequence of proj«tiorts. ) n.e cost for Gram-Schmidt is 2" whe", for 
elimination it is II. This factor 2 is the price of onhogonality. We are changing a dot 
product to zero instead of changing an entry 10 zero. 

u ulion To judge I nutne1'ii:al algorithm. it is 1101 enough 10 COOn! the operations. Be
yond "flop counting" is a study of stability and the Oow of data. Van Loan emphasizes 
tile thme Ie~els of linear algebra: linear combinations cu + r (Ie''el I). matrix-vector 
Au + r (level 2). and matrix -matrix AB + C (level 3). For parallel computing. level 3 
is best. AB u§es 2n' flops (add itions and multipl ications) and only 2nl data - a good 
ratio of woO; to communication o''emead. Solving U X '" B for matrices is beller than 
U JC = b for vectors. Gauss-Jonlan partly wins after all! 

Plane Rotations 

11lere = two ways 10 reach the important factorizalion A '" QR. One way "'OTks to 
find Q, the other way won:s to find R. Gram-Schmidt chose lhe first way, and the 
columns of A were onhogonalized 10 go into Q. (Tkn R was an aftenhoughl. It 
was upper triangular because of the order of Gram-Schmidt steps.) Now we look at a 
meth<:o:l that starts with A and aims dirttt]y at R. 

Elimination gives A = L U, onhogonal ization gi\'eS A = QR, What is the dif
ference, when R and U ,.,.., both upp"r triangular? For ~liminatiOfl I. is a prodoct of 
£ 's-with 1'500 the diagonal and the multiplier ii) below. QR Wei ()f'lhogQll;'/ mo
trictl. n.e £'5 are 001 allowed. We don't want a uiangular L, "'e wanl an orthogonal 
Q. 

"There = two simple orthogonal matrices to take the place of the £ 's. n.e n_ 
~ftW" "UltriU S I - 2.,u T are named after Householder. The p/allt rotatioll matrictf 
are named after Givens. The matrix that roIatcs tile xy plane by 9. and leaves the z 
dirtttiort alone. is Q2t: 

Gh'ens Rotation 
- s in /! 0] 
cos~ ~ . 

, 
t 



456 Chapte< 9 Numeric~1 Linea, Algebra 

Use Q~I the way you used E2t. 10 produce a zero in the (2. I) position. That de
termines the angle 9. Here is an example given by Bill Hager in Applied Numerical 
Linear Algebra (Prentice-Hall. 1988): 

[ 

6 

Q2t A = -.~ 

.8 

.6 
o 

~] [I~ 
I 200 

-15] 

-79 
-40 

114] [15<1 
-223 = 0 

]95 200 

-155 

" -40 

-110] 
-225 . 

395 

The zero came from - .8(90) + .6(120). No need to find 8. what we needed was 

'"' 
-120 

sin 8 = :r.wf",,, J90'- + ]20'-' 
(2) 

Now we al1ack the (]. I) elllry. The rotation will be in rows and columru ] and \. 
The numbers cos 8 and sin 8 are determined from ISO and 200. instead of 90 and 120. 
They happen 10 be .6 and - .8 again: 

-]25 

" lOll 

25<1] -225 . 
m 

One more step to R. The (3.2) entry has 10 go. The numbers cos 8 and sin fI now 
come from 75 and 100. The rolalion is now in rows and columns 2 and 3: 

o 
.6 

-.8 

0] [25<1 - 125 
.8 0 75 

.6 0 100 

.] [25<1-125 . = 0 125 

. 0 0 

25<1] 125 . 
m 

We hare reached the upper triangular R. Whal is Q1 Move the plane rotations Qli 
10 tile olher side to find A = QR-jusl as you moved the elimination matrices E ;] 10 

Ihe Olher side to find A = L U: 

means (3) 

The inverse of each Qlj is Q7; (rotation through -11) . The inverse of Eij was nOI an 

onhogonal matrix! E;jt added back to row i Ihe multiple i;j (times row j) that E;j 
had sublracted. J hope you see how the big computalions of linear algebra- L U and 
QR - are similar but not the same. 

There is a third big compulation- eigelll'alues and eigelll'ec/QTS. If we can make A 
triangular. we can see its eigenvalues on Ihe diagonaL But we can'l use U and we 
can't use R. To preserve the eigenvalues. the allO"'ed step is nOI Qll A bul Qll A Qi'i. 
Thai eJ\tra factor Qi'i for a similar matrix wipes out tile zero that Qll crealed! 

There are two ways 10 go. Neither one gives the eigenvalues in a fixed number 
of steps. (That is impossible. The calculation of cosfl and sin 8 involved only a square 
root. The IlIh degree equation del(A - >.J ) = 0 cannOI be solved by a succession of 
square roots.) But still the rolations QU are useful: 
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Melhod 1 Produce a zero in the (3.1) entry of Q21A, instead of a,1). That zero is 
nol destroyed when Q2i multiplies on the right. We are leaving a diagonal of nonzeros 
under the main diagonal. so we can'l read otT the eigenvalues. But this "Hessenberg 
matrix" with the extra diagonal of nonzeros still has a lot of good zeros. 

Method 2 Choose a ditTereru Q21. which does produce a zero in the (2. I) position 
of Q21 A Q21t , This is just a 2 by 2 eigenvalue problem. for the matrix in the upper 
left comer of A. The column (cose. - sin 9) is an eigenvector of that matrix. This is 
the first step in "Jacobi's method." 

The problem of destroying zeros will oot go away. The second slep chooses QJI 
so Ihat QJIQ2IAQ2ttQ"li has a zero in the (3. I) position. But it loses the zero in the 
(2. I) position. Jacobi solves 2 by 2 eigenvalue problems to find his Q ij. but earlier 
nonzeros keep coming back. In general those OODZeroS are smaller each time. and after 
several loops through Ihe matri,; the lower triangular pan is substantially reduced. Then 
the eigenvalues gradually appear on the diagonal. 

What you should remember is this. The Q's are onhogonal matrices-their 
colunms with (cos(J. sin (J) and (- sine, cos(J) are onhogonal unit vectors. Compu
tations with the Q's are very stable. The angle (J can be chosen 10 make a panicular 
entry zero. This is a slep toward the final goal of a triangular matrix, That was the 
goal at the beginning of the book. arK! it still is. 

Problem Set 9.1 

1 Find the IWO pivots with and without pan ial pivoting for 

A_[·OOIO] 
-11000' 

With panial pivoting, why are no entries of L larger than I? Find a 3 by 3 matri,; 
A with all laljl :0:: I and lilj 1 :0:: I but third pivot = 4. 

2 Compute the exact invef$C of the Hilben matrix A by elimination. Then compute 
A- I again by rounding an numbers to Ihree figures: 

l 
I 
I !l 

3 For the same A compule b = Ax for x = ( I. 1. 1) and x = (0. 6. -3.6). A small 
change 6 b product's a large change 6x. 

4 Find the eigenvalues (by computer) of the 8 by 8 Hilben matrix III} = I/O + 
j - I). In the equation Ax = b wilh Ubn = l. how large can gx l be? If b has 
roundotT error less than 10- 16, how large an error can Ihis cause in x? 
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S For back subslitulion wilh .. band malrix (width w). show Ihat the number o f 
mulliplications to solve U~ = t is approximalely ".'II. 

(, If you know L and U and Q and R. is;t faster to solve L U~ = b or QH~ _ b? 

7 Show that the number o f mullipl icatioos 10 in~crt an upper triangular n by n 
matrix is about ~ n ) . U~ back suhstitutioo 00 the columns of I. upward from l·s. 

8 Choosing the largest available pivot in each column (I»'rtial pivoting). factor each 
A into PA = L U: 

., l'ut I's o n the three ce nltlll diagooals of a 4 by 4 tridiagonal matrix. Find the 
cofactors o f the six zero entries. llIose entries a~ OOfIZCro in A- I. 

10 (Suggested by C. Van Loan.) Find the L U faclonZlllion of A = [r : J. On your 
computer !!Olve by eliminatiOll when ~ = IO- J.IO-6.1O-9.1O- 1~. IO- I ): 

The true ~ is (I. I) . Make a table to show the error for each~. Exchange the 
two equations and sol"e again-the CmIfll should almost disappear. 

11 Choose sinO and cosll to triangul arize A. and find R: 

A = [~' - "~ " 'll ' -'l or· ·l =N. Otl s in ll rose 3 ~ O. 

12 Choose sinO and cosO to make QlIA Q 1t
l triangular (same A). What a~ the 

eigen"al",,!'! 

13 When A is multiplied by Qlj . which of the nl entries o f A a~ changed? When 

Q jj A is multiplied 011 the right by Q~ I. which enHies a~ changed now? 

14 How many multiplications and how many additions an:: used to compute QIJ A? 
(A careful organization of the whole Se<J""ncc of rotations gives jnl multiplica
tiOlls and ,II) additions -the same as for QR by reflectors and twice as many 
as for L U. ) 

1 S (Turning a robot hand) The roboc produces any 3 by 3 rotation A frorn plane 
rotations around the~ .)". Z axeS. Then QJl QJI Qll A = R. whe~ A is onhogo
nal !IO R is I! The three roboc turnS are in A = Q111 Ql i Qll1. The three angles 

, 



9.l Norms arid Condition Number. 459 

are "Euler angleS-' and det Q = I to avoid reflection. Start by choosing cos O and 
sin O so that 

- sinO 
cosO 
o 

o - 2 0] , [-' 
I 3 2 

-, , , '] is zero in the (2, 1) position. 
2 -1 

NORMS AND CONDITION NUMBERS . 9.2 

How do we measure the size of a matn};? For a "ector, the length is Ur U. For a matri}; . 
the norm js nAil. This word ""Qr"," is sometimes used for ,·e.:tOI'$. instead of length. 
It is always used for matrices. and there are many ways to measure G A ~. We look at 
tbe requirements on all "matrix nollll"i", and then choose nne. 

FrolJc,nius squared all the entries of A and added: bls norm ~ AIIF is the square 
root. This treats the matrU like a long vector. It is bener to treat the matri}; as a 
matn};. 

Start with a vector norm: II x +)'Ii is not greater than Ux l + U )' ~. This is the 
triangle inequality: x +)' is the tbird side of the triangle. Also for ve.:tors. tbe length 
of lr or - lr is doubled to 21Ix ~. The same rules apply to matrix norms: 

UA + BII::: UAU + IIB II (I) 

The second requirements for a norm are new for matrices-because matrices mul
tiply. The size of AX and the site of A B must stay under control. For all matrices 
and all vectors. we want 

DAx l == I An nx l IIABII == IAn UBn. (2) 

This leads to a nalUral way to define "AI. Except for the zero matrix. the norm is a 
posi tive number. The following choice satisfies all requirements: 

DEFINITION Th~ norm 0/ /I matrix A is lh~ ltJrg~st rotio IAxl/lx I: 

,An _ II Ax l1 
_max . 

x,",o 6x ll 
(3) 

HAx l/nx D is never larJ:er lhan nAil (ilS ma:timum). This says thaI BAx U ::: gAn Ux U· 

Example 1 If A is tbe identity matrix I. the ratios are always nx l / llx U. Therefore 
11 1 11 = I. If A is an orthogonal matri}; Q. then again lengtbs are preserved: II Qx l = 
IIx l for every x . The ratios again give II Q U =] . 



hample 2 The nom> of a diagonal macri~ is ics large>l entl)' (using absoluce ''alues): 

The norm of A = [~ ~] is l AD = 3. 

The racio is IAx l = J22xI + 32,,£ divided by U.:r l = J"I +.:rj. That is a maximum 
when XI = 0 and "l = l. This ' "<.'Ctor .:r = (0. I ) is an eigen,'eccor with A.:r = (0 , 3). 
The e igenvall1C is 3. This is the largest eigenvalue of A and it equals the norm. 

For II positiw dt./iniu symmttric matrix Iht nOrM is 111. 1 = .I. ... ,. 

~.:r co be che eigenv«tor with maximum eigenvalue: A.:r = J.mu.:r . Then I A.:r I/D.:r D 
e\luals .I.,..,.". The point is that no other V«\or It can make lhe racio larger. The IIIIItri~ 
is A = QAQT, and che orthogooalllllltrM:es Q and QT leave lengths unchanged. So 
the ratio to maximize is really . A.:r l/ll.:r l . The 00m> .I. ...... is the largesc eigenvalue in 
che diagonal nMrix A. 

Symmetric matrices Suppose A is symmecric buc 001 positi,." definite - some eigen
'OII""s o f A are negative or zero. Then the norm 111. 1 is che large!i1 of 1.1. 11 . 1.1.11 . ... . 
I J.~ I . WC takc absolute value!i of the J. 's. because lhe norm is only <,:Of\\:e~ wi th 
length . For an eigcnve<;tor "'c have I A.:r ~ = IJ..:r I. which is 1.1.1 cimes 11.:r1. Divid· 
ing by l .:r l ka,."s 1.1. 1. The .:r thai gives the maximum ratio is the e igenvector for the 
maximum 1.1. 1. 

Umymmetric matrices If A is not symmetric, its eigenvalues may 001 "",,,,,,Ire its 
true si~e. The norm can be large .... hen the e igenvalues an: small. Thus th~ norm is 
gmauUy larg~r tlra .. 1.1.1 ...... . A vcI)' un. ymmecric example has 1 1 = 11 = 0 but its 
II()ITI1 is 001 zero: 

A = [~ ~] has norm 

The ve<;COf It = (0.1 ) gives A.:r = (2. 0). lbe ratio of lengths is 2/ 1. This is the 
maximum ratio 111. 11, even though.:r is 001 an cigenvecCOf. 

II is the symmetric matrix AT A . 001 the unsymmetric A. Ilia! has .:r = (0 , I ) as 
ilS eigenvector. The norm is really decided by the /arsl ./ cigem'tJ/ut uf AT A. as we 
now pm,·e. 

9A Tht "unn pf II (s}rnmetric Of not) is Ihe squnn rooi pf )., ... , ( A T A): 

= max 
' .. '" 

, 
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Proof ~:z to be !be eigenvector of AT A com:spondin8 to its laJge51 eigenvalue 
1.. .... . The nuio in equation (I ) is !ben xTATA z :< zT{I.. .... )x divided by xTx. For 
this panicular x . the ralio equals 1..1t\U . 

No OIher z can give a larger ratio. The symmetric malrix AT A has onhonor
mal e igenvector.; f l ' f 2- ' ... f • . Every z is a combination of tli<»e veclOl$. Try this 
combinatioo in the ratio and remember thai f Tf l = 0, 

That IIlSI ratio cannot be larger Ih.an 1.. ..... . Thc muimum ratio i~ when all c ·~ are zero, 
ucept the one that multiplies '-<rob' 

Note 1 Thc ratio in (S) is known as the Ra)"leiglt qUQliem (or lhe matrix AT A. Thc 
muimum is the largest eigenvalue '- .... {AT A) . The minimum is '-..... (AT A). If you 
substitute any >"eCtor Z into the Rayleigh qUOlient z T AT Ax/ z T X. yoo are guaranteed 
to gel a number between '- .... and 1.. ...... . 

NOle 2 "The norm IAI equal~ lbe largest singular ,""Iut (J .... o( A. The singular values 
01 •.. .• 0, are the square roots of the positive eigenvalues o f AT A. So cenainly (J .... :< 
('-... ) In. This is the norm of A. 

Nott' 3 Check that the unsymmetric example in equation (3) has ). .... (AT i\) = 4: 

A :< [~ ~] leads 10 ATA = [~ ~] willi '-... , :< 4. So the norm is IA I= .!i.. 

Tht' Condition Number of ,\ 

SoctiOIl 9.1 showe-d tMt roundoff error can be serious. Some systerm are sensitive, OIh
ers are not SO sensitiVll. Thc sensitivity to error is mt'llSured by the uUldmon nu",/Hr. 
Thi. i~ the first chapter in the bo<K which intentionally introduces eTTQn. We want 10 

estimate how mltCh they change x . 
Thc original equation is Az = b. Suppose the right s ide is changed to b + A b 

beeause o f roundoff or measurement error. Thc solution ilthen ch.anged to x +Ax . Our 
gool il to " timale the ctllmge Az in the solution (rom the change Ab in the equation. 
SlIbiraction gives the error equation A(A:z ) = Ab: 

Subtract Ax ", b from A(x +Ax )= b +tJ.b tofind A'(4z) _ tJ. • • (6) 

Thc error is Ax = A- t Ab. 11 is large wben A- I ;s large (then A is nearly s ingular) 
l1Ie em)I" Ax i. especially large when Ab points in the WOI"S! direc1ion- which i. am
pli fied most by A- I. Thc worst error hIlS I Ax R "" I A-II I Ab Y. That is the largest 
possible OUlput error Ax . 

, 
t 
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This error bound gA- l a has one serious drawback. If we multiply A by 1000. 
then A- I is divided by 1000. TIte matrix looks a thousand times bener. But a simple 
rescaling cannot change the reality of Ihe problem. It is true that 6 x will be divided 
by 1000. but so will the exact solution x = A- tb. The rewti"e error ~ 6x l/nx Q will 
slay tile same. It is this relative change in x that should be compared to the relative 
change in b. 

Comparing relative errors will now lead to the "condition number" {" = RAilA - t n. 
Mult iplying A by 1000 does not change this number. because A- t is divided by 1000 
and the product {" stays the same. 

98 The solution error is less tlum c = l Al l A-II times the pro~m error; 

g6x U 1 6b ~ -- «--. 
Rx g - nb ll 

If the problem error is 6A (error in the matrix instead of in b), this elulIIges to 

II AxR 
IIx + 6xD 

(7) 

(8) 

Proof The original equation is b = Ax. The error equatiun (6) is 6x = A - t 6 b. 
Apply the key property (2) of matrh norms: 

Ob ll !O UAl llx n ,,' 
Multiply the left sides 10 get Ubi U6xll. and also multiply the right sides. Divide both 
sides by Ibl lx U. TIte left side is now the relative error 16 x l/nx U. The right s ide is 
now the upper bound in equation (7). 

The same condition number c = HAD nA- 11i appears when the error is in the 
matrix. We have 6A instead of 6 b: 

Subtract Ax = b from (A + llA )(x + 6x ) = b to find A (6 x ) = - (6A )(x + 6x ). 

Multiply the last equation by A-I and take norms to reach equation (8): 

Conclusion Errors emer in two ways. They begin with an error 6A or 6 b-a wrong 
malriJl or a wrong b. This problem error is amplified (a lot or a linle) into the solution error 
6x. That error is bounded. relative to x itself. by the cundition number c. 

TIte error 6 b depends on cumputet roundoff and on the original measurements of b. 
TIle error 6A also depends on the elimination steps. Small pivots tend to produce large 
errors in Land U. Then L + 6L times U + 6U equals A + 6A. When 6A or the 
condition number is very large. the error 6x can be unacceptable. 
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bample 3 ~n A is symmelric. c = I A II A~I I coma from the ~igenwJues: 

This A is symmetric positive definitc. Its DOrm is I. ... = 6. 11Ie DOrm of A ~ I is 
III. .... = ~. Multiplyillj tllose I>Orrns gives lhe cOIIdilion number: 

,~ 6 
,. ~~ = - =3. 

"min 2 

bample 4 Keep the same A. with eigenvalues 6 and 2. To maR .r small . clloose 
b along the first eigenveetor (1.0). To itW.e Ilz large. c~ li b along the secQnd 
eigcn~ (0. I). Then I( = ~ b and Ilz = ! b. The ratio I llz l l l z l is exactly e = 3 
times the n tio Illb l /l llo ,. 

This shows that the worst error allowed by [he condition number can ac[ually 
happen. Her!: is a useful rule of lhumb. experimentally verified for Gaussian elimina
tion: TIt<! compuu. ron IMe log e decitool places 10 roundoff trror. 

, 
Problem Set 9.2 

Find the norms I. .... and condition numbers I. ..... /I.";n of these positive definite 
malri<;:es: 

[0' ~l 
2 Find the norms and oonditioo numbers from the !;quarc roocs of ""..,(AT A ) and 

"min(AT A): 

J Explain these two i..equalities from lbe definitions of IA I and I B I: 

I ABz l ~ I AII Hz ' ~ I AII Bllz l. 

From the ratio llial gives IAB I. ded~ that IAB I ~ I AII BD. Th is is the key 
10 using matrix norms. 

4 Usc I AB I ~ 111. 118110 pro"" Ihal lhe cooditioo number uf any matrix A is at 
\ellSt!. 

S Why is J the only symmetric positi,·e definite malrix thaI has """ _ "min = I? 
Then the only ITLllIrices wilh l AD = I and I A ~ II = I must have AT A = J They 
are malrices. 

, , 



(, Onhogooal matrices have oonn IQU = I. If A = QR show thai III. " S I R ~ 

and also IRI :: 111. 1. Then 111. 1 = IRa. Find an example of A = L U with 
IAq < ILiIU I. 

7 (a) Which f~mQllS inequality gives 1(11. + tI)A" 1 :!: I,b l + I lIA" 1 for every A" ? 

(b) Wh y does the definition (4) o f matrix norms lead IQ III. + 81 :!: I A II + I 8 I? 

8 Show that if), is any dgenvall>e of A. then 1).1 :!: !AI. Stan from AA" .. ).A" . 

9 The "sp.('nfal rlJdius" ptA) .. 1). ..... 1 is the largest absolute >'aille of the eigen' 
values. Show with 2 by 2 examples that ptA + 8 ) :: 1'(11.) + 1'( 8 ) and ptA 8 ) :!: 
p(A)p(tI) can both be Jalu. The !.pe<:lral radius is nQI a.cceptable as a norm. 

10 (al Explain why A and A- I have the same condition number. 

(b) Explain why A and AT have 1M same norm. 

11 Estimate the condition number o f the il1-conditioncd matrix A '"" [1 t.O:- , ], 

12 Why is the determinam o r A no good as a oonn? Why is il no good as a coo
dition number? 

13 (Suggestw by C. Moter and C. Van Loon.) Compute b - A, and b - A: when 

b - [ ."'] '" [780""] A = .913 .659 

Is y closer than: to solving AA" = b? Am;wer in IWO ways: Com~ lhe ~.idu/JI 
b - Ay 10 b - At. Then compare, and .: to the true A" " (I. - I ). i:IoIh anSwers 
can be right. Sometimes "'e wanl a small resid ual. sometimes a small 6 A" . 

14 (al Compute 1M determinam of A in Problem 13. Compute A- t . 

(b) If possible compute 111. 1 and ' '' -'1 and show that c > IcY'. 

I"rohlcms 15- 19 a~ about ...,""or norms other than ,he nsual IA"I .. .,fF7X. 

15 The ~I t oorm" and the "130 nonn" of A" = (Xt ... .. X~) are 

Rr Ht = Ix t! +". + Ix.1 and Ur i "" = ow; IXil. 
I !;:I~. 

Compule lhe '1QITIlS Ix l and IIr ll and Or l"" of lhese 1""0 veet.,.. in K': 

A" _ (1. I. I. 1. I ) x = (.1 •. 7 .. 3 .. 4 .. ~). 

1& l'rove IMt l x lo" =:; IA" I:!: Ir l l. Show from the Schwan ine<jualilY that Illc ratios 
Ir U/lr i"" and IA" 1,/nA" n an: never larger than .;n. Which Y«tor ('<1 > •••• .1".) give. 
ralios equal to .;n? 

, 
i 
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17 An v«tOr norms must satisfy the Iriangl~ in~qualilJ. Prove that 

, ... 
18 Vector noons mLl$l also satisfy lexl = lei I..: '· The nooo must be positive except 

when..: = O. Wh ich of these are norms for ( .. 1 .... 2)? 

1..:1" = Ixil + 21x:1 

Ix le = lol l + Ix loo 

gxb = min lxjl 

ax il> = I Ax l (answer del"'nds on A). 

, 



ITERATIVE METHODS FOR LINEAR ALGEBRA . 9.3 

Up to now. our approach to Ax = II has been "direct:' We acc<'pled A as it came. We 
aUKked it with Gaun ian elimination_ Th is scctiOIl is about iltl'fUi,'tI "'~Ihods, which 
reph...:e A by a ~impler matrix S. The differe nce T = S - A is moved ""er to the right 
side of the equation . The problem becomes easicr to 5Oh-e, with S instead of A. But 
there is a price-I~ simpf~' J)'SI~'" lras 10 ~ so/"ed m ... , ond moer. 

An iteralive method is easy to invenl. JUSt split A into S - T. Then Az = II is 
the same as 

Sx =Tx + lI . ( I) 

SX*,+- I _ T xk+ lI , (2) 

Start " 'ith any xO). Then sol"1: SX I = Txo+ l>. Continue to lhe 5/Xond iteration SX 2 = 
TXI + II. A hundred iteratiOllS are '''''Y commQn - maybe more. SlOP when (and if!) 
the new ' 'eC1Of Xl +1 is sufficiently clo§c to Xt - or when the res idual AXt - b is near 
zero. We can choose the stopping tesl. Our hope is 10 gCt near the true solution, I11()I'C 

Quickl y than by elimination. When the Soe<:Iuence X t converg~s, its limit X = X oo does 
sohoe equation (I). The proof is 10 let t __ <XI in equatiOll (2). 

1lle tWO goals of the splitting A ., S - T an: spud per strp and ftl1i1 co" .... rtr"ct 
of l il t Xl . n.e speed of each step depe nds on S and lhe speed of convergence depends 
On S- IT : 

1 &juatioo (2 ) shou ld be easy to solve for Xl + t. The "pncondiliolld ' S could be 
diagOIla l or triangular. When its L U factorization is known, eoch iteration step 
is (ast_ 

2 1lle difference X - Xl (thi s is the error ~1) should go Quic kly 10 zero. SUMracting 
equation (2 ) from ( I) cancels b. and it leaves the urn. t qU(ltioll : 

(3) 

At co.-cry stcp the error is mulliplied by S- IT . If S-I T is small, ils powers go quickly 
to zero, But what is "small"? 

The ex treme spli u ing is S = A and T = O. 1llen the first step of the iteration is 
the original Ax = II. Convergence i. perfect and S- tT is zero. BUI the COSt o f thai 
step is what we wanted to avoid. The e hoiC<' of S is a banle between speed per step 
(a simple S) aad fast convergence (S close 10 A ). Hen: an: some popular choices: 

J S = diagonal pan o f A (Ihe iteration is called Jacobi 's method) 

GS S '" lower tri angular part of A (Gauss·Seidel me/hod) 

, 
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SOH S '" combination of Jacobi and Gau~s·Seidel (5ucc<'Ssi"~ o"errtlw;(Jlion ) 

ILU S = approximate L lime~ appro~imate U (illCompln~ L U mnhod). 

Our first question is pure linear algebra: WIIM do /h~ Xl 'S ~om""'"Ite / t> xl T1>c 
answer uncovers the number 11..1".., that controls con,'ergence. In examples of J and 
GS and SOR. we will compute this "spec/rul ,.wi"," 1).1 ....... [\ is the largest eigenvalue 
of the ileralion malri~ 5- t T, 

The Spectra l Rad ius Controls Convergence 

Equation (3) is ~H I = 5-tT~J.. Every ileration step multiplies the error by the same 
malrix B = S-I T. TIle error after k steps is el = Bteo. Tile u ror opproachtJ zero 
if the po.·en of B _ S- IT (Jpproot h u ro. It is beautiful to sec how the eigenvalues 
of B_the largeM eigen""lue in pankular- oonlrol the matrix powers Bt. 

9C Convergence The power; B' approach aro if and only if e"ery eigenl'al..c of 
B satisfies 1).1 <: 1. Th~ rol~ of fO"'~rgenu is tontrolled /1)' the spettrol rodiu! 
1).1 ... ,· 

The /esl jQr COln'ergellCe is 1).1 .... .. I. Real eigen''alues must lie between - I and I. 
Complex eigenvalues A = <1 +1/1 must lie inside lhe unit cil'l:Ie in the complex plane. In 
that case the absolute value IAI is lhe square TOOl of 01 + b2_ Chapler 10 will discuss 
complex numbers. In e,'ery case tbe spectral radius ;s lhe largest dislance from the 
origin 0 to the eigenvalues )'1 ,' _. A. ll>ose are eigen""lue. of the iteralion matri~ 
B = 5- IT. 

To see why 1).1 ...... ] is neu-ssary. suppose the staning error to happens 10 be 
an eigenvector of B. After one step the elTOl' is IJto = lto. Afler k S1e~ the error i~ 

Bleo = ).Ito, If we stan with an eigenvector. we continue with that eigenveclor_ and 
il grow. or decaY" with the powers It. This J«CIOT II 8tHS 10 ~ro .. ,It~" III < l. 
Since this condition is required of every eigenvalue, We need Illma> .. l. 

To see why Ill ........ I is sufficienl for lhe elTOr to approach zero. suppose eo is 
a combin~lion of eigenvecmn: 

This is the point of eigenvIXtors! They grow independently. each one controlled by 
ils eigen''al"". When we multiply by B. the eigenvIXlor X; i. multiplied by l;. If all 
Il;l < I then equation (4) ensun:s that I I goes to zero. 

h ample 1 8 = U :~l has l ...... = 1.1 B' = [.: t :~l has ). .... , = .6 Bl is 1.1 
times B. Thc:n 8 ' is ( l.I)l times 8. 1lle JXl""CTS of IJ blow up. Contrast with the 
po"'ers of 8 '. The matrix (B' l has (.6l and (.S)l on its diagonal. TIle off-diagonal 
entries alw invo);.., (.6)1. which sets the speed of con''''rgencc, 

, 
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Nole 1bcre is a technical difficult~ ,,-"'n 8 docs not have n indcrrndent eigenvector$. 
(To prQduc~ Ihis effect in 8 ', change . ~ 10 .6 .) 1bc starling error to may 001 be a 
combination of eigenve!:tors - tllere are too few for a basis. 11Ien diagonalization is 
imp<J$sible and N/uation (4 ) is oot correct. We tum to 1M J",,/an form: 

B = SJS- I . ., (5) 

Section 6.6 shows how J and J ~ are made of "bloc ks~ with one repeated eigenvalue: 

[' 'j'; [,. "'-'j 1bc powen o f a 2 by 2 block are 0 ~ 0 ~~ . 

If 1).1 < I then these Ixn, .. etS approach zero. Tltc extra factor,t from a double e igenvahte 
is ""erwllelmed by the decreasing factor ~~- I. This applies to all Jordan blocks_ A 
larger block has ,t1;,' - 1 in )1., " 'hicll also approac hes zero when 1;'1 < I. 

If all 1).1 < I then )1 --> O. This pro"<'s 9<:: CtJn.."~,,ct rt!qllirt!s 1).1 __ < I. 

lacobi versus Seidel 

We now solve a specific 2 by 2 problem. Tltc theo!y of iteration says tlLat the key 
number is lhe spectral radius of B = s-' r. Walch for that numlxT 1).1 .... It is also 
wriuen p(8 )_ lhe Greek !cue, "rho" siands for the spectral radius: 

211- 11= 4 
- 11 +211=-2 has the soluloon [:]=(~l (6) 

1lIe fitSt splilting is Jacobi's mtthod. Keep the dillg<",,,/ lermJ on the lefl s ide (this is 
S). Move the olf~iagOlUlI part of A 10 the righl s ide (this is n. 1lIen iterate: 

2uHI =1'1+4 

2" ... , = UI - 2. 

SIlU1 the iteration from 110 = I-tI = O. 11w: fitSl Slep goes to 11\ = 2. VI = - I. Keep 
going: 

This shows coo"<'rgI'lI("C. At steps I. 3, 5 the second component is - I. - 1/ 4, - 1/ 16. 
l1>e error is multiplied by * every two steps. s., is lhe error in lhe fitSl component. 

The values 0, 3/2, 15/ 8 have elTOf"S 2, ~, ~. Those: also drop by 4 in each twO steps. 
TM t rror tqumion is Stl .. 1 = Ttl< : 

(7) 

, 
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That last matrix is S- J T. lis eigenvalues are ~ IlIId _ ~. So its spectral radius is ~: 

Two steps mul tiply the error by 1 exactly. in this special example. The important mes
sage is this: Jacobi's method works well when the main diagonal of It is large com
pared to the off-diagonal pan. The diagonal part is S, the rest is -T. We want the 
diagonal to dominate and S- tT to be small . 

The eigenvalue ).. = ! is unusually small. Ten iterations reduce the error by 
210 = 1024. Twenty iterations reduce t by (1024)2. More typical and more ex-pensive 
is 1)..lmu = .99 or .999. 

The Gauss-Seidel method keeps the whole lower triangular part of It on the left 
side as S: 

2UHt =Ut+4 
-lIl+t + 2u!+t = - 2 

II!+J = !U! +2 
UHt = !UHt - !. 

(' l 

Notice the change. The new 1I!+t from the first equation is used imml'diately in the 
second cquation. With Jacobi . we saved the old II! until the wlKlle step was complete. 
With Gauss-Seidel. the new values enter right away and the old II! is deStroyed. This 
cuts the storage in half! It also speeds up the iteration (usually). And it costs no more 
than the Jacobi method. 

Starting from (0. 0), the exact answer (2. 0) is reached in one stcp. That is an 
accident I did not expect. Test the iteration from another start 110 = 0 and ItI = -1: 

[ 3i2] 
- 1/ 4 [ 151'] 

-1/1 6 [~~~!;] approaches [~l 
The errors in the fi rst component are 2. 112. 1/8. 1132. The errors in the second compo
nent are -I. -1/4. -1/ 16. -1 /32. We divide b)· 4 in arle step not two steps. Gouss
SeUJeI is twice as fast as Jocabi. 

This is true for every positive definite tridiagonal matrix: 1i,1"... for Gauss-Seidel 
is the square of 1,l"lmu for Jacobi . This holds in many other applications- but not 
for every matrix. Anything is possible when It is strongly nonsyrrunetric-Jacobi is 
sometimes better. and both methods might fail. Our example is small: 

The Gauss-Seidel e igenvalues are 0 and 1. Compare with ~ and -! for lacobi. 

With a small push we can ex-plain the succrssi'"f! o,'t!rTf!/axotion method (SOR). The 
new idea is to introduce a parameter w (omega) into the iteration. Then choose this 
number w to make the spectral radius of S-IT as small as po5sible. 



Rewrite Ax = b as w Ax = wh. The matrix S in SOR has the diagOllal of the 
original A. oot below the diagOllat We u!;c wA. The matri~ T on the right side is 
S- w A: 

""'t +4w 
(9) 

- MlI+I + 2".I+t = (2 - 2«»,'.1 - lw. 

This looks mo~ complicated to us. OOt the computer goes as fast as ever. Each new 
UHt from the first equalion is used immediately 10 fiOO "Ht in the second equalion. 
This is like Gaun-Seidel. with an adjustable number w_ 'The key matri~ is always 
s- tr : 

s-tr =[ t l -w 
,w( 1 -wI 

(10) 

The determinant is (l _w)2. AI the bc$1 w. boIh ei~nvalues tum QUt to equal 7- 4J3. 
which is dose to ( i)2. Therefore SOR is twice as fast as Gauss-Seidel in this eJlample. 
In other examples SOR can cOIl'"erge len or a huOOred limes as fast. 

I will put on =on! lite mo!l valuable test matrix of order n. It is our favorite 
- I. 2. - I tridiagonal matrix . The diagonal is 2/ . Below aOO above a~ - 1·s. Our 
uample had n .. 2. which leads 10 cos 1- = ! as lite Ja.cobi eigenvalue. (We found 

thaI ~ above. ) Notice especially thai this cigem-alue is squared for Gauss-Seidel: 

9D The 'phllings of tlte - I. 2. - I matri~ of order n yield lhe!;C cigen"alues o f H 

Jacobi (5", O. 2, 0 mam x): 

Gauss-Seidel (S = - I. 2. 0 malri~ ): 

SOR (" ith lite best wI; 

" s -' r has 1'-1 ... , = cos~~ ,+ 1 

S- I T has 1'-1 .... = ( cos n: 1)2 

( ,~ --"--)'/(1+ '" -" )' n+1 n+l 

Let me be clear: For the - I. 2. - 1 matrix you shoold IlOl use any of the:;e 
itemtions! Elimination is "cry fllS!. (exact L U). hemtions are inlended for large sparse: 
matrice! - wben a high percentage of tbe ~ro entries a~ ''Il0l good." The oot good 
zeros a~ inside tbe baoo. whi~h is wide . They become oonzero in lbe exact L aOO U. 
which is why eliminalioo becomes expensive. 

We mentiOll one mon: splining. It is asSQ<.:ialed wilh the words "irlcompht' L U ." 
'The idea is 10 set the small oon~ros in I. and U back 10 ~ero. This lea"", triangular 
matrices Lo and Uo which are again sparse:. That allows fast computations. 

TIle spliuing has S = LOUO on lite left s ide. Each Step is qu ick: 

LoUOXHI = (A - LoUo)x l + b. 

On the righl ~ide we do sparse: malri~-vectOf multiplications. Oon't multiply 1.0 limes Uo
those are matrices. Mulliply XI by Uo aoo then multi~l y thai vector by Lo. On the lert side 

, 



we do forwanl and back substitutions. If LoUo is close to A. then 1" 1"",, is small . A 
f.,.... iterations w;[I givoe • close answer. 

11Ic: difficulty with .n four of these spl ittings is that a single large eigenvalue 
in s - t T would spoi l cVl:rything. ~ is a safer iteration- the co/li"xtJ/e grot/ien/ 
me/llod - whkh avoids this difficulty. Combined with a good pr«onditiooer S (from 
the splining A = S- T). this produces one of the most popular and llO"'mul algorithm~ 
in numerical linear algebra. I 

Iterative Methods fOf Eigenvalues 

We 0I0Vl: fmm Az = II 10 Az = J..z. Iteralions are an opIi(Nl for linear equations. 
11Ic:y ~ a necessity for eigenvalue problems. 11Ic: eigenvalues of an " by n "Ialri)< 
~ the I'OOlli of an 11th deg= polynomial. Tltc determinant of A - J.f starts with 
(-")-. This book must 00( Ica~ the imp~sioo that eigelWalues should be oompule<J 
from Ihis polynomial. The determinanl of A - AI is a very poor approach-except 
when II is small . 

Rlr n > 4 there is no formula 10 sol~ det(A - "/) = 0 Worse than lhat. the 
,,'$ ean be ~ry unstable and sensiti,'e, It is much better 10 work with A itself. grad
ually rnal<ing it diagonal or triangular. (f11cn the eigenvallleS appear on the diagonaL) 
GoOO computer codes ~ avail able in the l APACK library-individual routines are fn..., 
on w .. 'w.netJlb.o<"g. This library combines the earlier U NPACK and EISPACK. with 
improvements.. It i$ a Collection of Fortran 77 programs for linear algebra on high
performance computers. (The email message send IndH rrom lapaek brings informa
tion.) For your computer and mine. the same efficiency is achieved by high quality 
matrix packages like MATLAB, 

We will bricfty discuss the power method and the Q R method for computing 
eigenvalues. It rnal<" no sense 10 gi~ full delail s of the codes. 

1 Power methods and invcl'$l' powe, methods. Stan with any ,"CClor uo. Multi · 
ply by A to find " I. Multiply by A again to find u!. If 110 is a combination of the 
eigemt<:torS. then A muhipl;"s each eigenvector Z ; by,,; . After k steps we ha~ (,,;)1: 

( II ) 

As the power method continues. III~ ItJrgts/ ei~II""lu~ bqins 10 dotnillfJlt. l1Ie vee· 
t"'" II ~ point toward that dominant eigen'"CCIOr. We saw this for Markov malrices in 
Chapter 8: 

A = [.9 .'] 
.1 .7 has ~ .... '" I with eigen"cctor [ .. ',,']. 

Stan with " 0 and multiply at every step by A: 

uo .. [~]. 1I 1~[:n· U2 =[:~] is approaching II~= U~] · 
' ca..jupl< ~ .. deo<ribod ;" .... _., _ I",,,,,,,~ '" App/kd ~ • .,.j in 

,....... ~I ~ 00Iub-...... '-'*' on<! b)' T_s... 

, 



472 Clwplet" 9 Numericol li""'" Algebra 

The speed of convergence depends on the mlio of the second largest eigenvalue A2 
to the largest AI. We don't want AI to be small. we want AIIAI to be small. Hen: 
A2 /AI = .6/1 and the speed is n:asonable. For large matrices it often happens that 
IA2/AI I is "ery close to I. Then the power method is too slow. 

Is then: a way !O find Ihe smallest eigenvalue-which is often the most imponant 
in applications? Yes, by the im'erse power method: Multiply uo by A-I instead of A. 
Since we never want to compute A-I. we actually solve AUI = uo. By saving the 
L U factors. the next step AU2 = U l is fast. Eventually 

(12) 

Now the smallest eigenvalue Amin is in control. When it is very small. the factor I / A!,;n 
is large. For high speed. we make Amin even smaller by shifting the matrix to A - A'I. 
If A' is close to Ami" then A- A" has the very small eigenvalue Amin -A' . Each shifted 
im'erse power step divides the eigenvcc!Or by this number. and that eigenvector quickly 
dominates. 

2 The QR Method This is a major achievement in numerical linear algebra. Fifty 
years ago. eigenvalue computations wen: slow and inaccurate. We didn't even realize 
that solving det (A -).1) = 0 was a terrible method. lacobi had suggested earlier that A 
should gradually be made triangular-then the eigenvalues appear automatically on the 
diagonal. He U);ed 2 by 2 rotations to produce off-diagonal zeros. (Unfonunately the 
previous l.eroS can become nonzero again. But Jacobi's method made a partial come~ 
back with parallel computers.) At present the QR method is the leader in eigenvalue 
computations and we describe it briefly. 

The basic step is to factor A. whose eigenvalues we want. into QR. Remember 
from Gram-Schmidt (Section 4.4) that Q has onhononnal columns and R is triangular. 
For eigenvalues the key idea is~ RHene Q and R. The new matri~ is RQ. SilK:e 
AI = RQ is similar!O A = QR. the eigem'alues are Ilot challged~ 

(13) 

This process continues. Factor the new matrix A I into Q I RI. Then reverse tbe factors 
to RIQI. This is the nexl malrix A2. and again no change in the eigenvalue$. Amaz
ingly, those eigenvalues begin 10 show up on the diagonal. Often the last entry of A4 
holds an accurate eigenvalue. In Ihat case we remove the last row and column and 
continue with a smaller matrix to find the next eigenvalue. 

Two extra ideas make this method a sucrcss. One is to shift the matri~ by a 
multiple of I. befon: factoring into QR. 1ben RQ is shifted back: 

Factor A .. - CI< I into QI< RI<. The next matri~ is Ak+t = RI< Q. + ckl. 

AHt has the same eigenvalues as Ak. and the same as the original Ao = A. A good 
shift chooses c near an (unknown) eigenvalue. That eigenvalue appears more accurately 
on the diagonal of A'+t -which tell s us a better c for the nellt step to Ak+2· 



n.e ~r idea is to obtain off.diBgonal te1'Q!; before the QR method starts. Change 
A 10 the similar rnalri~ L - IAL (no change in the eigenvalues), 

L-I AL = [' -, 
L - I subtrocted row 2 from row 3 to produce the tero in oolumn l. Then L added 
rolumn 3 10 rolumn 2 and left the tero alone. If I try for another tero (too ambitious). 
I will (ail. Subtracting row I from row 2 produces a zero. But now f. adds column 2 
10 column I and destroys il. 

We mu", leave !bose oonze1'Q!; I and 4 along one subdiagonal. This is a "He~
unMrg IMtru-. " 'hieh is ..,actLable in a fixed number of Stcps. 'The zc1'Q!; in the lower 
left comer will §lay tero through the QR method. 'The operation count for each QR 
faclorization drops from 0(11 ) 10 O(lI l ). 

Golub and Van Loan gi>'c tltis example of one shifled QR step 011 B liessenberg 
malri~ A. The shift ;s cJ _71: 

A = 4 ~ 
[

' 2 
6.53 - 6.656 . 
1.69 0.835] 

o .001 .00002 7.01 2 

Factoring A -7/ inlo QR produced AI = R Q + 71. NOI:K:c the very .mall number 
.00002. "IlIe diagonal entry 7.012 is almost an e~oct eigenvalue of AI. and the..,fore 
of A. AlIOIber QR . lCp with shift by 7.0121 would give terrific ",,",uracy. 

Problem Set 9.3 

Problems 1_12 a .... about iterat i' -e methods fOl' Ax _ b. 

1 Change Ax ,. b to .1' ,. (/ - A )x + b. What a.., 5 and T for this . pl ining? Whal 
malri~ 5- ' r controls the convergence of xHI : (I - A)xl + b1 

2 If ), is an eigenvalue of A , then _ i. an eigenvalue of B _ 1 _ A . The ..,al 
ei~",-.Jues of B have absolulC value less than I if !he ..,al e;~nval\ICS of A lie 
between and 

1 Show why !he iteration x HI ,. (/ - A )"'l+b <loci not ron"crge for A ,. [ _~ - ~ ]. 

4 Why is the norm of 8 l never larger than I Bnl? Then 18 1 < I guarantees Ihat 
the JlO,'.-,:rs Bt BJlPf'OI".'h 7.ero (converge~). No surprise since 1),1 __ is below 
181. 

5 If A. is singular then all spliuings A ,. 5 - r must fail. From A ... = 0 show that 
S- I T ... _ ... . Sothismatri~ B=S- IT has)._1 and fai ls. 

, 
t 



474 C .... pI1'f 9 Numeriol U...,., AIg<!br. 

I> Change lhe 2's 10 3'$ and find lhe eigenvalues of S- IT for Ja.cobi ·s method: 

Sh .. I= T;q + b is [~~l"HI= [~ ~l"t +b. 
7 Find (he e igenvalues of S- IT for !he Gauss-Seidel metbod applied 10 Problem 6: 

[_~ ~] ~ I +I = [~ ~] Z.+ b . 
Does 1'.1 .... for Gauss-~idel e<juaJ I A I~ for Jocobi? 

8 fur any 2 by 2 matrix [ :: I show that 1). 1 .... , e<juals lbe/odl for Gaun-~idel 
and lbe/ad ltr. for Jacobi. We need ad #- 0 for the malrix S 10 be i1lV<'nible 

':I The best w produces IWO equal eige nvalues for S- IT in !he SOR metbod. 1l>O$C 
eigenvalues alt' OJ- I because !he dete rminanl is (w-l)~. Sel!he lrace in equa
tion (10) equal 10 (w - I) + (OJ - I) and find Ihis opIimal w. 

10 Wrile a compuler rode (MATLAB or OIher) for lhe Gauss·Seidel melbod. You can 
define: S andT from A. or set up lhe ileralion loop din:clly from !he enmes " I) . 
T« 1 il on lhe - I, 2. - I malrices A o( order 10. 20, ~ with b = (I . 0 • . .. • 0 ), 

11 The Gauss-Se idel iteration at component; is 

I_ I • 

. rr' = ~tJ + "I .. (b; - L>;jx)- -L ";jXj*I ). 
" i_1 J-i 

I( evel)' x;'"' = ~r how does this show that (he SOlution z is oorre<:t? How 
does !he formula change (or Jacobi 's melbod? For SOR insert OJ oulside the 
palt'nlhescs. 

12 The SOR splining malrix S is lhe same as for Gauss-Seidel except Ihal the di
agonal is divided by w. Write a program (or SOR on an " by " malrix . Apply 
il wilh w = I. 14. l .g, 2.2 when A is lhe - I. 2, - I matrix of " ruer" = 10. 

11 Divide equat ion ( I I) by At and explain why IAl!).' I controls the con\'crgenee of 
lhe power melbod. Consll\ICl a malrix A for which thi s melbod dQf!s "or 00'" 
"~rg~. 

14 The Manov malrix A = U;fl has A = I and .6. and the power method u, = 
AI"o converges to [:iij. Find the e igenvectors o f A- '. Whal does lhe inve rse 
power melhod " _I = A- I uo con'~rge [0 (after you multipl y by.fI)? 

15 Soow Ihal lhe " by " matrix wilh diagonals - 1. 2. - ] has the e igen'"N:tor z, = 
(sin ;;h. sin );., . .... sin #f). Find lhe e igenvalue A, by muhipLy i"i Ax ,. 
Note: For the OIher eigcm'eclors and eige nvalues o f lhi s matri x. change n 10 
j n in x , and A, . 

, 
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16 For A = [-f -11 apply the power method IIHI = Allk three times starting with 
IIG = [A J. What eigenvector is the power method CQnverging to? 

17 In Problem II apply the in .. e~se power method UH t = A-I Ut three times with 
the same uo. What eigeovector are the II l ·S approaching? 

18 In the Q R method for eigenvalues. show that the 2. I entry drops from sin (J In 
A = QR to -sinJ(J in RQ. (Compllie R alld RQ.) This "cubic convergence'· 
makes the method a success: 

';"] ~ QR ~ [,"" - ';"] [I o SIn(J cos 8 0 

19 If A is an orthogonal matrix. its QR factorization has Q = and R = 
. Therefore RQ = __ . These are among the rare examples when the 

QR method fails. 

20 The shifted QR method factors A - c f into QR. Show that the next matrix 
Al = RQ+cf equals Q- tAQ. Therefore AI has the __ eigenvalues as A 
(but is closer to triangular). 

21 When A = AT. the ··U1nC;f)S meThod·' finds o·s and b·s and orthononnal q ·s so 
that Aqj = bj _1qj_1 + ajq j + bJ'IJ+l (with qo = 0). Multiply by qJ to find a 
fonnula for aj' The equation says that AQ = QT where T is a __ matrix. 

22 The equation in Problem 21 develops from this loop with bo = I and ' a = any q I: 

q j+1 = ' jlbj : j = j + I: OJ = qJ Aqj: r j = Aqj - bj _ lqj_1 - ajq j: hj = II ' jll· 

Write a computer program. Test on the - I. 2. -I matrix A. QT Q should be I . 

2l Suppose A is IridiogQllaf olld symmeTric I,r Ihe QR mnlrod. From AI = Q- 1A Q 
show that AI is symmetric. Then change Then change to Al = RAR- I and 
show that AI is also tridiagonal. (If the lower part of At is proved tridiagonal 
then by symmetry the upper part is too. ) Symmetric tridiagonal matrices are al 
the heart of the QR method. 

Q uestions 24-26 art' about quick .. ·ays to estimate the locatioo of the eigen,·alues. 

24 If the sum of laiJ I along every row is less than I. prove thaI 1.1.1 < I. (If lx/I 
is larger than the other components of x . why is l I:aijx jl less Ihan lx/I? That 
means I).x;l < Ix; I so j)..1 < I.) 

(Gershgorin circles) Every eigenvalue of A is in a circle centered at a diagonal 
entry IIIi with nKiius ' 1 = I:j,olloiJI , Thisfollowsfrom (.I.-Di/}X/ = I:j,o/OijXj . 

If Ixil is larger than the other components of x . this sum is at most ri lxll. Di, 
viding by Ix; 1 leaves 1.1. - 11,,1 :": 'i. 
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25 Whal bound 00 1).1 ... does Problem 24 give for the~ malrices? What are lhe 
three Gershgorin circles WU cOIIlain all the eigc.walucs? 

[

.3 
A = .3 

. , .3 .' ] .2 .4 
.4 .1 [ , -, '] 

A = - I 2 - I . 
o - I 2 

26 These malrices a~ diagonally dominanl b«ause each a,i> ' I = absolute sum 
along the ",st of row i. From the Gershgorin circles OOIltaining all ),."5. show lhat 
diagonalJy dominant matrices are in,'<!rtible . 

[
' .3 A] 

A =.3 1 .5 
.4 .5 J 

The key point for Ia~ IIUItritH is thlll matri". ~ector multipliclot>on Is much fasleT 
than matrix-lTllIlrix mUltlpliclotlon. A crucial COIIstroction starts wilh B '"eCtor b and 
computes Ab, Al b, ... (OOt I\e\'er A1!). The firsl N ~ttlors span lhe NIh "rylo. s",," 
SptlU, ~ are the columns of the ",.,10' mutri.r K",: 

Herc in "pseudocode" are IWO of the most important algorithms in numerical linear 
alg<:t>ra: 

Arnoldi iteration 
q l = bJl bn 
for n=l lo N-l 

~ = Aq. 

for j= l lo n 

hj.= qJ p 

~ = . - hi. IIJ 

h.+t .• = I_I 

onjugate Gradient Iteration for Positln ~finitc A 

"'0 = 0" 0 = b, Po = r l) 
for n:l lo N 

(1'. = (r~_ I '~_I)/(p!_I Ap._ t)step length "'~_I to ... . 

.... = .... -t +(I'. P. _ I 

r . = ' . _1 -(I'~A p. _ t 

fJ,. = (r~r. )J(r!_t r . _t ) 

P. = r . + fJ,. P._1 

approximate wlution 

new ",sidual b - A .... 

improvemenl this step 

nc~t search dirttlion 

qo+t = p/ h.+I .• % No/iet: only I mmri.T->·n'I01' m,o/Iiplicarion Aq and Ap 

27 In Arnoldi shooA-' that II I is onhogon~1 to q t, The Arnoldi method is Ornm_s<':hmidt 
onhogonal i7 .... tion appl~ 10 the KI)"lov matrix : " N = QNHN. Thc eigenvalues 
o f Q1AQN an: often vel)" close 10 those of A C\'Cn for N « n. Thc umcZOJ 
ilua/iOll is Arnoldi for symmetric malrices (all coded in ARPACK). 

28 In Co njugate Gradients show Ihat r t is onhogonallO r (} (onhogOllal residuals) and 
pIllpo = 0 (scard directions arc A-<n1IK>gonal). The ilCl1ltion iOl~es A ... = b by 
minimizing the error ~ T A ~ ;n the KI)"I0~ subspace. It;s a fanUIStic algori thm. 

, 



10 
COMPLEX VECTORS AND 

MATRICES 

COMPLEX NUMBERS . 10.1 

A complete ItIro')' of linear alg<'bra rnu~t ;rodOJ<l,., romplex num~rs. Even when the 
malri~ is real. the eigenvalues and eigenvectors are often complex. E.,!c ample: A 2 by 
2 rotatioo matrix has no real c;llen,..,cton. E"cry vector turns by 8- tlle direction is 
changed. But there are complex eigcnV«tors ( I,i) and ( I.-i). The eigenvalues are 
al!iO complex numbers 18 and , _j6. If we insist on !Haying with real numbers, the 
lhcofy of eigcnvailies will be left in midair. 

The s.ec(>oo reason for allowing complex numbcrs goes beyond 10. and x 10 the 
malrix A. The matrix iru/l /II/ly be (omplu. We will dcvocc a whole ~ion to the 
mosl imponam example- 1M Fourier matrix. Engineering and scknce and music and 
economics all USC' Fou.rier series. In reality the series is fi nite , not infinite. Computing 
(he coefficients in ell' + <'.1110 + ... + c~lu is lI. li""ar algebra problem. 

This section gi"es the main facts about complex numbers. II is a ~iew for some: 
students and a reference for everyone. "The underlying fact is that ;2 = ~ L. Everything 
comes from thai. We will gtt as far as the am..azing formula .. 2>rf = t. 

Adding and Multiplying Complex Numbers 

Stan with the imaginary number;. Everybody knows that ... 2 = - L has no n:al wlu· 
tion. When you squan: a n:al number. the answer is never no:galive. So the world has 
agreed on a wlution cal led ;. ( Ex~p! that el«tri~.1 engi,..,.,n ~all il j.) Imaginary 
numbers follow the normaJ rules of addition and multiplica1ion. with one difference. 
Wh .. nn ... r;2 "PP""rJ il is "ploced by - I. 

, 
t 
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IDA A complrx ,wmMr (say 3 + 21) is Iht sum of anal numbrr (3) and a pun 
imaginary IIu mbu (2;). Addlli()tl k...,ps the real ~nd imaginary pans separate, Mul
tiplication use.l ;1 '" _]: 

Add : (3+21)+(3+21):6+4i 

Multiply, (3 + 2;)(1 - i) = 3 + 2; - 3i - 21~ '" 5 - i. 

If I add 3+ 21 to I - i. the answer is 4 +1. 1llc real numbe~ 3 + I stay Soeparllte from 
the imaginary numbe~ 21 - i. We all: adding Ille veclQl'S (3 . 2) and ( I. - I). 

The number (l - i ll is I - I tinles I-i. The rules give the surpris ing an. ""'cr - 21: 

(1 - i)(l - I ) = I - i-I + i 1 '" - 2i. 

In the ,omple~ plane. I - i is al an angle o f _ 4.5°. When we sqUaIl: il 10 get - 21. 
the angle doubles to - W _ If we square again. the answer is (-2I)l = - 4. The -W 
~nglc has become - 180". which is the direction of a ncgati...e real number. 

A real number is JUSt a rompielc number: = a + bl . with zero imaginary pari: 
b = O. A pure imaginary number has lJ = 0: 

The nal pa" i ~ a,. Re (t! + bi). The imagilmry 1M" is b ", 1m (a + bi ). 

The Complu Pl.lne 

Conlplex numbe~ ~spond to points in a pl~ne. Real numbers go along lhe x u is. 
Pu", imagirw-y numbers a", on the y u is. The compkx " .. mMr 3+21 is at 'h, poilU 
",ith coordinatt s (3 . 2) . The number zero. which is 0 + 01. is at tM o rigin. 

Adding and subt"",ting complex numbc~ is like adding and subtracting vect"" in 
the plalle . The ",al component stays separate fromtM inu.ginary compollent. The vectors 
go head-to- tail as usuaL The comple~ plane C t is like the ordinary two-dimensional plane 
R 1 , e~cept Ihal w'e multipl y compk1. numbers and we dido't mu ltipl y ' ·CC\Ol$. 

Now comes an important idea. Thr cOlJlplrx conjugrur of 3 + 21 is 3 - U. 1llc 
romple:< conjugate of z ,. I - i is z,. I + I. In gelleral the ronjugate o f z "''' + bi is 
Z ,. a - bi. (Notice the " 001'" on the number to indicate the conjug~le. ) The imagirw-y 
pans of z and "z bar"' Iut...e opposile . igM. I .. the complex plane, Z is the image of z 
on the othe, side of 1M real lIllis. 

1'wu useful facts. Wllnl '" ..... ltipl' co/li"gateJ Zt and Z:, '" grf 'he co/liugtUe 
of ZI Z: _ When w.., add Zt and z:. ,,'e get 1M conjugate o f Zt + Z2: 

'!I + Zl ,. (3 - 2i) + ( I + I) = 4 - i,. «>njugale o f Zt + :::. 

'!t " '!: ,. (3 - 2i )" (I + I) = 5 +i,. conjugate o f Zt "z:. 

Adding and multiplying is ex....,tly what lillelll" algebra needs. By taking COfljugalCi o f 
Ax = J.x. when A is ",al. W'e have another eigenvalue ;: and its e igenvector x : 

If A ... = J.x and A is n al'hrn Ai' ,. Ix. ( I) 

, 
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:: .. 3+ 2i 

Real axis , , 
Figu", 10.1 l "" Q + bi oom:sponds 10 lhe point (u. b) and lIN: ~Ior [; J. 

Some!h.inll special ha~n$ when : _ 3 + 21 combines with its own ooml'lc:~ conjugate 
! = 3 - 2i . Tlte =Ull from lidding: + 1 or multiplying tl is always real : 

(3+21) + (3-21) = 6 (real ) 

0+21) l< (3 - 20 = 9 + 61 - 6i _ 4i2 = 13 (",al ). 

Tlte sum of : = Q +bl and ilS conjugate:- =" -bi is the real number 20. The product 
of :: !imc$ ! is the real number Q2 + b2: 

Tlte neJ<1 Slep wilh CQlnple~ numbers is division. Tlte besl idoa is to mulliply the <Ie
nominator by its conjugate 10 product: ,,1 + b 1 " 'hich is real : 

a - Ib a - ib 
o-+-'-b - u +;bu Ib =u1+1J2 

1 3- 2; 3- 21 
3 + 2; = 3 + 213 - 21 =-,-,-

In case a l +b1 = I. this iIIys !h.a! (a + ib)- I is a - lb. On Ihe .mil circu . l Iz is l . 
Later "", will illy: I /~ is ~_;9 (the conjugate). A beller w.y 10 multiply and divide: 
is !o use the polar form wi!h. distance , and angle 8. 

The Polar Fo rm 

Tlte :;quare fOOl of a1+trl is 1:1. This is lhe IIbwiule l'flIue (or mooulus) of lhe number 
:: '" a + i b. llle same :;quare fOOl is also wriltcn r. because il is the distance from 0 
10 the complex number. Tlte number r in the polar form gives the s ize of z: 

Tlte abwlute ..... lue of :: = II +;b is I:I ~ J . 2-+ 1J2 . This is also called r. 

TlteabsoLute ..... lueof z= 3+2i IS 1 ~ 1= ,j31+21, This is,=m. 

llle OIher pan o f the polar form is the angle 8. Tlte angle for :: = S is 8 = 0 (because 
thi s z is real and po$il;Ve). Tlte angle for :: = 3i is n/ 2 radians. The angle for :: =-9 
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Figure 10.2 Coojugalcs give the mirror image of the previous figu~: z + z is ",al . 

is " radilUlS. The ""gle doubles .. ·hell rhe nllmber is sqll,,"d. This is one ",asoo why 
the polar form is good ror mUltiplying comple~ number.; (001 so good fo.- addition). 

Wh/,n the disUJ1ef: is r and the angr is II. trigonomeuy gives the OIher two side!; 

of the triangle. 11Ic ",al pan (along the bottom) is " == roos ll. The imaginary pan 
(up or down) is b = r sinO. Put those together. and the recW1gular form becomes the 
polar form: 

TIN ,,_~ .,',f." +.it >is," ,f . ·,.eoif·-+i,. .ld" 
Nose: COi'lIl + i sin' /uu IlMtHUlc Wlluc r _ I /1«flUst cos:, + slnl, _ 1. Thus 
cosO + ; sin8 lies 00 the circle of r3dius I - Ihe un"l circlc. 

hample 1 Find r and 8 ro.- : = I + i and also ror the conjugate ~ = I -i. 

Solution The absolute -;aluc is the same for ~ and ~. He", it is T = JT+T = ./2: 
and also 

",., diStance from the cen ter is ../i.. What about the angle? llIc number I + i is at 
the point ( 1. I) in the complex plane. n.e angle 10 that point is " /4 r3dians or 45°. 
The cosine is I/ ../i. and the sine is I/ ·/i Combining r and 0 brings back z = I +i: 

roos 8 + i r sin O = ../i. (~) +i./2 (~) = I + i . 

llIe angle to the conjugate I-I can be positive or negative. We can go to 711/4 
radians which is 315°. 0.. we can go 1x1C1oo"tJnJs through a IIrgal;'.,. allglr. to - lf / 4 
r3dians or _ 45· . If t is at flngk 8, its co'ljug"tc t is at 2. - , find fIlso at -,. 

We can flftly add 211 or 411" or - 2" 10 any angle! "Tho!;e go full circlcs so 
the final point is the same. This explains why then: an: infinitely many choices of O. 
Often we select the angle between zero and 211 llIIdians. But -8 is vcry useful for the 
conjugate ~. 
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Powers and Products: Polar form 

Computing ( I +i )2 and ( I +i)8 is quickest in polar form. That form has, =..fi and 
0= ;r / 4 (or 45°). If we square the absolute value to get ,2 = 2. and double the angle 
to get 28 = ;r/ 2 (or 90°). we have ( I + i )2. For the eighth power we need , 8 and 80: 

,8=2·2·2·2=16 and 80=8.
1f 

=21f. 
4 

This means: (I + ; )8 has absolute value 16 and angle 21f . The eighth po .... er of 1+; 
is the real '/limber 16. 

Powers are easy in polar fonn. So is multiplication of comple)( numbers. 

lOB The polar fonn of zn has absolute value ,~ . The angle is l'I limes 0: 

The nIh power of z "" ,, (cos 9 + i SiD 9) is z" = r"(cos 1'19 + i SiD 1'19 ). (3) 

[n that case z multiplies itself. [n all cases. multiply ,. 's and add angles: 

r (cos 0 + i sin 0) times r' (cos 0' + i sin 0') = rr' (cos(O + 0') + i sin(O + 9'») . (4) 

One way to understand tbis is by trigonometry. Concentrate on angles. Why do we 
get the double angle 28 for Zl? 

(cos (} + i sinO) x (cosO + i sin 0) = cos! 0 + ;2 sin! 0 + 2i sin 0 cos O. 

The real pan cos2 0 - sin2 0 is cos 28. The imaginary pan 2 sin 0 cos 0 is sin 28. Those 
are the "double angle" fonnulas. They show that 0 in z ])e(:omes 28 in in :l. 

When the angles /l and 0' are different, use the "addit ion formulas" instead: 

(cosO + i sinO)(cos 0' + i s in 0') = lcos 0 cosO' - sin 0 sin 0') + i15inO cosO' + cos 0 sin 0') 

[n those brackets. trigonometry sees the cosine and sine of 0 + 0'. This conflnns equa
tion (4), that angles add when you multiply comple)( numbers . 

There is a second way 10 understand the rule for t". It uses the only a.ma<:ing 
formula in this section. Remember that cos O +i sinO has absolute value I. The cosine 
is made up of even powers. starting with 1- !8 l . The sine is made up of odd powers. 
starting with 0 - ~83. The beautiful fact is Ihat el8 combines both of those series into 
cos8+ isin O: 

~ I 1 I J e =l+x+-x +-x + ... 
2 6 

'8 I ll l Jl tl =1+,9+-,9 +-,9 + ... 
2 6 

Write -I for ;2. The real part I - ~92 + .. . is exactly cos9. The imaginary pan 
8 - t9l + ... is sin9. The ... ·hole right side is cosfJ + j SiD 9: 

Euler's Formulu ~8 =cos9+isin8. (5) 



-, ~ Iz.. il~ = ~z,.1 = I 

f iguroe 10.3 (a) Multipl ying "'O limes e' 9' . (b) The 61h JIO"'cr of ,l~i/~ is ~:,.; ,. I. 

The special choice 9 = 2:T gives cos 21r + ; sin 21f which is L. Somehow the infinite 
..,~s .. 'bf l '"' I + 1:. ; + ! (2n 0 1 +.. adds up 10 1. 

Now multiply .. ,6 tim<'!i ;9' , Angles add for the same ",ason that uponenls add: 

,1 limes " is .. 5 bttau"" (" 1(") x ( .. )(.-)( .. ) _ (<,,)(<,)(<, )(<,,)( e ) 

~j limes ~9 is ,218 ~9 limes ~9' is ~Ihf·~ . 
(6, 

E.'cry oompleJ<. number .. +ib = rcos O +ir sin /;I now gtlCs into iu besc possible form. 
Thai fonn is u's. 

The powers ( r ,JB )~ "'" ,""ual to ." .. i.9 . """,y Slay on the unit cin:1e when r .. 1 
and r' : l. Then we find " dilfcn:nt numbers whose nih powers equal 1: 

1'hosc are the "nih roots of I." They solve tile: etjualion ~. "" I. They are equally 
spaced around lhe unit cil'de in Figure IO.3b, where the full 2,. is divided by". Mul . 
tipl y their angles by n 10 take nih powers. That g i'1:s \/)" = .. br l ,,-hich is 1, AIS<! 
(11)1 )" = .... 1 = I. Each of those numbers. to the nth power. comes around lhe: unil 
cin:1c !O I . 

These I"OOIS of I "'" the key numbe~ for signal procnsing. A n:al digital rom· 
JlU le. uses onl y 0 and 1. The complex Fourier transform u."'s w and its powers. The 
las! se<;l i(Ml of lhe booI; shows how 10 decompose a vector (a signal) inlo n frequencies 
by It... Fa>1 Fo .. ~r Transform. 
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Problem Set 10.1 

Q uestions 1-8 are abou t o~rll t ions On comp~x numMI"S. 

1 Add and muhiply each pair of comple~ numbers: 

(a) 2+ ;.2 - ; (b) - 1+;.-1+; (e ) cos9 + ;~in 9.C<)S9-;sin 9 

2 Locate these ""illls on the comp~~ plane. Simplify thcm if rwx~~sary: 

(a) 2+ ; (0) 
, 

rn (d) 12 +;1 

] Find the absolute ,·a.]ue r '" Izi of these four numbe ..... If (} i5 thc ang~ for 6 - 8'-. 
what are the angles for the othcr three number5? 

(a) 6 - 8; (b) (6 _ 8i)2 (el ~ (d) (6 + 802 

4 If Izl = 2 and Iwl = 3 tllen I~ x wi = __ and Iz + wi ::!: __ and I:/NII '"' 
__ and I:-wl::!: __ . 

5 Find I' + ; b for the numbers at angles 30". 60°. 90". l WO on the unit cirde. If 
w is the number at 30". chttk that wl is at 000. What power of UI C<:[uals ]"! 

• If z = r cos 9 +'-rsin 9 then 1/: has absolute value __ and angle __ . '" 
polar form is __ • Multiply z x 1/: to g~ l. 

7 The I by complex mulliplicatioo M = (a + b; ){c + di) is a 2 by 2 real mulli
plicatioo 

[: -:][:] = [ ] 

The right sidecomains the real and imaginary paruof M . Te" At = (I +30(1 - 3; ). 

8 A .. A I +; A2 is a complex n by n matrix and b = b l +,-b2 is a complex '~Ior. 
The §()IUlion 10 Ax : b is x , + ;.1' 2. Write Ax = b as a real syStCm of size u.: 

[ ][::]=[!:] 
Q uestions '1-16 are about 1m- conjugate :- _ Q - ,-b _ r e-I' or the numMr : _ 
a+ ib . re". 

9 Write down the complex conjugatc of each number by changing i to -I: 

,.) 
''I 

2-; (b) 
,1" __ 1 

(2-1)(I -i) (e) ,J1t/l (which is i) 

(e) ~ (which is al§() i) (I) ; ,0)= 

, 
i 



10 l1le sum : +! is always . "The difference ~ - =- is always . An ume 
z "" 0 l1le produ<:~ z " :: is always __ . l1le ra~io zII always has absolute 
~I~ 

11 For a real 3 by 3 matrix. the numbers "2. "l. 00 from the detenninam are real : 

det ('" - l/) = _lJ +lIll l + iliA +00 = O. 

Each roo! 1 is an eigen'·alue. Taking conjugates gives _IJ +"lI
1 
+"tI+oo '" O. 

5(1 I is also an eigem"lllue. For the matrix with ajj = i - j. filld det( '" - l l) and 
lhe Ihl« eigomvalues. 

Not~ l1le conjugal<: of "' ... = I..J: is "'i" = ix. This prove$ ~"'"Q things : I is an 
eigomvalue and i" is its eigenvector. Probkm II only proves that I is an ei~n
va]"". 

12 l1le eigenvalues of a real 2 by 2 matri~ come: from the qU3oI.hmic fOl"Tlluia: 

I
, -, b 1 ' c d -l =l--(a +d)A+ (ad-bc)= O 

gives the tWO eigenvalues (noIice the ± symbol ): 

0+d±j(ll+d)2 4(od I>c) 
l'" 2 

(a) If Il = b >: d "" I . the eigcnvalues are complex when c is 

(b) Whal are the eigen'"1llues when ad = be? 

(e) The 1""0 cigenvalues (plus sign and minus sign) are 1101 always conjugllles 
of each other. Why noI? 

13 In Problem 12 the eigenvalues are no! real when (trace)l = (0 +d)2 iii smaller 
lIum . Show Ihat lhe l's II~ real when be > O. 

14 Find the eigenvalues and eigen\'t'CIOf"> of Ihi s pcnnuwlion matrix: 

1 0 0 0 

[

0 0 0 '] 
P~ = OIOO 

o 0 I 0 

has det(P. - AI ) = __ . 

15 Extend P. above to P6 (fi\"e I 's bcle.w the diagonal and one in the comer). Find 
OO( P6 -l / ) and the six eigenvalues in the romplex plane. 

!I; A real skew-symmetric malrix (AT = -A) has pure imaginary .. igen,·alucs. First 
proof: If "' ... = ..... then block multiplication gi'"es 

This block matrix is symmetric. Its eigenvalues II1llst be __ ! So A is __ . 

, 
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QuHtions 17- 24 are aboul 1M rorm , if or 1M complu number, cos, + i, sin I . 

17 Write lhese numbers in Euler', f.",.., ",i8 . n..n square each number: 

(a) I + ,f)i (b) cos 2f) + i sin 2f) (c) - 7i (d ) S - Si . 

18 Find the absolule ~aluc and lhe angle for z "" sin 0 +i cosO (careful). Locale this 
z in the compleA plane. Multiply z by cooO + i sinO to get __ . 

19 Dn.w all eighl solutions of Zl = I in !he oomple~ plane. What are lhe rtttangular 
forms " + ib of these eigbl numbers? 

20 Locate !he cube TOOlS of I in lhe oomplex plane. Locate tbe cube roots of - I 
Together these are the 5i~tb roots of __ . 

21 By comparing ~, = cos 38 + i sin 38 witb (~6)J = (cosO + i sin O)l, find lhe 
··triple angle~ formulll!; for 00:538 and sio 38 in tcnns of cosO and sinO. 

22 Suppose the conjugate :t is e<juallo I"" rttiprocat liz. Whal are ~Il possible ~ ·s? 

23 (a) Why do ~ and i ' both ha~c absolutc ~alue I? 

(b) In tbe compte;.: plane 1"'1 stars near lhe points ~ and 1'. 

(c) The number j' could be (~"/l )' or (~./l) •. An: those e<jual? 

24 Dn.w the paths of these numbers from r = 0 to I = 21r in the complex plane: 

(b) e( ~ 1+I)o = ~ ~' r" (e) (_ I)' =r'''i. 

, 



466 Chapter 10 Comp~x Vectors and Ma!rH:es 

HERMITIAN AND UNITARV MATRICES. 10.2 

The main message of this section can be presented in the first sentence: When you 
tronspose a complex !lector z or a matrix A, tau the complex conjugate too. Oon·t 
SlOp at z T or AT. Reverse me signs of all imaginary parts. Starting from a colomn 
vector with components lj := aj + ibj • the good row vector is the conjugate rru/lJipou 
wilh components aj - ib{ 

(I) 

Here is one reason 10 go 10 z. The length squared of a real veclor is xf + .. . +x;. The 
length squared of a comple~ vector is nOI z; + ... +:;. With that wrong definition. the 
length of (I. i) would be 12 + i2 = O. A nonzero vector would have zero length-oot 
good. Other vectors woold have comple~ lengths. Instead of {a+bi)2 we want a2 + b2. 
the absalme ,·a/ue 5quared. This is (a + bi) times (a - bi). 

For each component we want ~j times "fj. which is 1:}12 := a 2 + b 2 . ThaI comes 
when the components of z multiply the components of z: 

Now the squared length of (I. i) is 12 + li l2 := 2. The length is .,fi. and oot zero. The 
squared length of (1 +i. I-i) is 4. The only vectors with zero length are zero vectors. 

DEFI NITION The lenglh At D ;$ 'he square roo' 0/ Dtl12 
:= ZT Z := Iztl1 + ... + I:w lz 

Before going funher we replace two symbols by one symbol. Instead of a bar 
for the conjugate and T for the transpose. we just use a superscript H. Thos ZT:= tHo 
This is ··z Hermitian:· the conjugale rratupose of z. The new word is pronounced 
··Henneeshan:· The new symbol applies also to matrices: The conjugate transpose of 
a matrix A is At!. 

Nota tion The vector t H is iT. The matrix AH is AT. the conjugate transpose of A: 

If A=[~ I~i] then AH=[_; I_~]= ··AHmllilian:· 

Com pIe" Inner Products 

For real vectors. the length squared is xT x -rlre inlter prodUCI of x ... ilh lue/! For 
comple~ vectors. the length squared is ZH z. It will he very desirable if this is the 
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inner product of : with itself. To make that happen, the romple~ inner product should 
U5e lhe ~onjug~le transpose (noc just lhe tran~~). There will Ix 00 dTecl wilen lhe 
,'ecIOl$ are ",ai, bul lhe", is a definile effecl when lhey a", romp1e~ : 

OEFINlTlON 11K: ml'lCr product of real or complex ,t'Ctors u and u is 11"0 

["'J ii.1 : = "1"1+"'+". ".' 

". 
(3) 

With complu ,'tttors, II " U i ~ diff~rent from u"u. T/" ordu oj 1M UC/(JI"1 i$ now 
imporlalll. In fact u"u '" Vi"i + ... + v. u. is the ~ompkx conjuglle of ,, " • . We ha"e 
to put up with a few inron"enientts for the greater good. 

bample 1 The innerprodu~t of " '" [:] wilh ~ = [:] is [I - i I [: ] = O. Nm 2i. 

bample 2 1lIe inner product of" = [1 ~ i] with . = [;J is u ll ~ = 2 - 2i . 

Example I is surprisi ng. Those ,'tttors (I , i) and (I, I) don't look perpendi~ular. But 
they are, A ~ro ilUIU prod,,,, pm "'~III1S 1/uJI fh, (tomplu) IUfOl"J IIrt rmhogon(ll. 
Similarly the ''eCtor (1, 1) is orthogonal to the , 'ector (I ,-i). Thoeir inner product is 
I - I = O. We are corm;:tly geuing uro for the inner produtt - where we woold Ix 
in<;OI"1"«tly gelling uro for the length of (1. I) if ... -e fOfgOl to take lhe: t onjugale. 

Note We have ~ho!iC n to ~onjugale the firsl vector u. Some authors choose the Sttond 
vector r . T1leir complex inner product would he uTi. II is a free ~hoice, as long as We 
slick to (H>e or the other. We wanted to use the single symbol II in the next formula 
100: 

Th~ inntr prot/uti of Au ""ilh 0 ~quols Ih~ inna prot/uc/ oj u ",'ilh A"o: 

") 

The conju g~1C of All i. All . TlIUlspo:'ling il gives 'ii'AT as usual. This is ,,"A". Ev

erything thai should work. does work. Th.e rule for II comes from the rule for T. That 
applies 10 products of ""'I~S: 

IDe 'thl! conj"gall! franSPOSI! oj AH j . (A H )" .. 811 \11 . 

We are com;tantly using the ftICt that (a-ib)(c-id) is the conjugate of (u+i b)(c+id). 
Among real malrices, lhe sy",ntnric malrias form lhe mos1 impo<1anl spec ial 

class: A", AT. They ha~e real eigenvalues and a full SCt of onhogonal eigenvectors. 
"The diagonali ?,ing malri~ S is an orthogonal matrix Q. Every symmetric matrix can 

, 
i 



be " 'rinen as A '" Q"Q- I and also as A '" Q"Q1 (because Q-I = QT). Alilhis 
fo llows from aU '" aJi. when A is real. 

Among complex matrH;:a. lhe special dass consists of the Ht nnititrn mat,utJ: 
1'1. = AH. n.e condilion o n !he enlries is now ".j '" a)j. In Illis ca>e we !;IIy Ilial " A 
iJ Hermilian." E,·try " a/ symlt!#!tric miltr;" ;$ Hermi,;"n. because laking its conjugale 
lias no elf«1. l1Ie ne:<1 malri~ is also Hermitian: 

' =[' ;-"] J + 3; 5 
l1Ie main diagonal is rea l since ad = au. 
Across il are COIljugates 3 + 3i and 3 - 3i. 

This eumple will illumaIC tile tllm: crucial propenies of all Hermitian ma\litts. 

100 If A _ A" a"d : is any ,~el(Jr. lilt "umM r :"1'1. : is " tAL 

Quick proof: ;:>lA;: is ee nainl y I by I. Take ilS conjugale lranspose: 

(:"1'1.;: )" = :"1'1. 11 ( ;:11 )" wh ic h is ;:111'1.;: again . 

Rcversing lhe order has produ<:ed the same I by I malri~ (lhi s used A '" AH !) For I 
by 1 malritts. lhe COIljugalt Iranspose is simply the conjugate . So the number :"1'1.: 
equals ils conjugate and musl be real. Here is ;:11 A;: in oor example: 

[- -l[ 2 3- 3i][,, ] ,- ,- () ).,- () )., -:t::l 3 + 3; 5 Z2 '" ::t::t+ ::2<l+ - , ;:I<l+ + , ::t::2· 

l1Ie lenns 21 ;: tll and 51z21l from the diagonal are ooth real. n.e o lf-diagonal terms 
are conjugates of each other- so their sum is real. (n>c imag.inary parts cancel wilen 
we add.) n.e " 'hQle expres1 ioo ;:"1'1.;: is real. 

IOE E,,,ry ti, rno",lut IJ/ a IIt rm itian matrix i. " al 

Proof S uppos.: A;: '" .I. ;:. Multiply bmh . idu by ZH IIJ gt l lilA;: = J.ZH;:. On Ille 
\eft s ide. ;:111'1.;: is real by 10 1). On the right s ide, ;:11. is the length squared. real and 
posili"e. So the ratio .I. '" tllAl l t"z is a real number. Q.E.D. 

The example abm'e has real eigenval..es .I. '" 8 and .I. '" - I . Take !he determinant of 
A - /../10 gel (,/ - 8)(d + I): 

I
' - , 
3 + 3; ~ -=' ~ I ",).2 - 1).+ 10 - 13+3i1! 

", ).2 - 1). + 10 _ 18 = (.I. _ 8)( )' + I). 

10F Th~ ~ig~m~(I()rs of tA IIt rmititrn mDlrix Dft orfhlJglJnDI (prO~idcd tlley c<me· 
,pond 10 d,lfcrcllt ei8cnvalllCs). If A; ).~ and AJ '" f!J lhe" ,It: ~ O. 

, 
i 
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Proof Multiply At = il.z on the Jefl by yH. Multiply yH AH = pyH on the right by t : 

(5) 

The left sides are equal because A = AH, Therefore the right sides are equal. Since p 
is different from A, the other factor yH t must be zero. The eigenvectors are orthogonal. 
as in the example with}. = 8 and p = -I: 

Take the inner product of those eigenvectors y and t: 

(orthogonal eigenvectors). 

These eigenvectors ha~e squared length ]2 + I:! + ]2 = 3. After division by ./3 they 
are unit vectors. They were orthogonal. now they are onhO//Ormal. They go into the 
columns of the eigem'eclcr matrix S. which diagonalizes A. 

When A is real and symmelric, it has real orthogonal eigenvectors. Then 5 is 
Q-an orthogonal matrix. Now A is complex and Hennitian. Its eigenvectors are com
plex and orthonormal. The eigem'utor maJrix 5 is /ike Q, but complex. We now 
assign a new name and a new letter to a complex orthogonal matriA. 

Unitary Matrices 

A unitary matri.r: is a (complex) square matrix with orthonormal columns. It is de
noted by U-the complex equivalent of Q. The eigenveclOrs above. divided by ../3 to 
become unit vectors. are a perfect example: 

U~ _I_ [ 1 
J3 1+ i 

1 - '] 
- I 

is a unitary matrix. 

This U is also a Hermitian matrix. [didn't expect that! The example is almost 100 
perfect. Its second column could be multiplied by -I. or even by j. and the matrix of 
eigen~ectors would still be unitary: 

is also a unitary matrix. 

"The matrix test for real orthononnal columns was Q T Q = I. When QT multiplies Q. 
the zero inner products appear off the diagonal. In the complex case. Q becomes U 
and the symbol T becomes H. The columllS show themselves as orthonormal when UH 

multiplies U. The inner products of the columns are again 1 and O. and they fill up 
UHU = I: 



.'ourltr 
matrl~ 

Figure 10,4 "The cube moIS of I go into the Fourier matrix F = FJ, 

lOG Th~ matnx V has anh"11"",,,al co/umnt .·hl n V IIV _ I. 
If V i. square. it i~ a unilary malnx. Then V " _ V - t , 

" '[' VV = ./3I+i ' -']'[' - I ./3 I+i '-']_[' 0] - I - 0 1 . (6) 

Supt)OSC V (with orthogonal column) multiplies any t . "The , 'ector length stays 
the SlIme. because ZHVHVZ = ZHt. If z is an e igenvector. " 'e learn something ~: 
Tht t lglm'll/uts 0/ uni/ary (and IH'1hogonal) mOlriu s all ha l'e absolul~ .... /u~ II I = 1. 

10H // V is unilary Ihm I V;:I,. hi. Therefore V: = ).: leads to 1).1 '" I. 

Our 2 by 2 example is boIh Iknnitian (V = VII ) and unitary (V - t = VII ). That 
means real eigenvalues (). = I). and it means absolute value one (1 - 1 = :l:). A real 
number with absolute value I has only two possibilities: Th~ ~i8~m'alu~s "" I or - 1. 

One thing more about the example: The diagonal of V adds to zero. lbe trace 
is uro. So one eigenvalue is 1 = I. Ihe ocher is 1 = -I. "The determinanl must be I 
times - I. the producl of the ).'s. 

h~mple 1 The 1 by J Fouri" mtltrix is in Figure 10.4. Is it Hennitian? Is il unilary? 
"The Fourier malri~ is ceMainly symmetric. It (([uals ilS lranspose. Bul il docsn'l (([ual 
its wnjugatc transpose- il is IlOl Hamiliun. If you change i to - i. you get a different 
matri~. 

Is F unilary? YeJ. "The !>quam;! lenglh of every column is j (1 + I + 1). "The 
columns are unit vectors. The first wlumn is onhogonal 10 the second column because 
1 + e 21t lfJ + t4~ I/J = O. Th is is the sum of the three numbe", rnari<ed in Figure 10.4. 

Nocice lhe symmetry of the ftgure. If you roIate il by 120". the three points are 
in the same position. Therefore their Sum S also Slays in tbe SlIme position! The only 
possible sum is S = O. because this is the only point Ihat is in the SlIme positiOll after 
120" rotation. 

, 
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Is column 2 of I' orthogOtlRI 10 column 3? Their dol product looks like 

~( I +t .... l{J +t .... 1fl ) = i(l + I + I ). 

This i5 IlOl uro. 1llat is because we fOl801 10 take complex conjugates! Thc complex 
inner product uses II not T: 

(column 2)"(00Iumn 3) = ~(l.] +t- !;d /ltbi/ ' + t - 4 .• I/lt2loIfJ ) 

= 1 (l + t2;o;!l + t -2;oi il) = O. 

So we do haY<' orthogonality. Conc/"sion: I' if 0 "nittJ" lfIaITU. 
Thc next section will study the M by M R>urier malrices. Among all oomplex uni 

wy matricc$. lhes.e are the most important. When we multiply a vector by 1', w~ are 
compuling its discntt 1'0llri" rmnsfonn. When we multiply by 1'-1, _ are compUl. 
ing the IIII't.st "oru/o.",. The special propeny of unital)' matrice§ is thai 1'- 1 = 1'". 
1lte inverse transform only differs by cllangillg i 10 -i: 

, [' 1'-1 = pH =,J3 : 

Everyone who works with I' recognilCS its value. Thc la~1 SoCClion o f lhe booI::: will 
bring togelhcr Fouricr analysis ar><.! linear algeb"'. 

This section end$ with a I3ble 10 tramllale belween real and complex - fo r ,·«tors 

and for matrices: 

Real , 'cl"!ius Complex 

R': VCCIon with M real components ... C': vectors with M complex comp<".MlenlS 

lenglh: 1.1'12 = xr + ... + x,; ... length: 1: 1: = IZlll + .. . + Iz, ll 

(AT);j = Aj; ... (AH )ij = AJ; 

(AB)T= 8 TAT ... (A B)H = BII AH 

dol prodUCl: x T :f = Xl)"l + ... + X,)", ... inner product: " II u = Ii I VI + . .. + ii.t'. 

( AX)T J = x T(AT J ) ..... (A II ) II~ = " II(A II .) 

onhogOtlshly: x T, .. 0 ... orthogonality, .. II~ .. 0 

symrrw:lric matrices: A = AT ..... Hermitian matrices: A = AH 

A = Qi\Q- 1 = Qi\ QT(real A) ... A = UAU- 1 = U AUH (real A) 

skew-symrrw:trk matrices: XT = - K ..... skew- Hermitian matricc$ KII =-1( 

orthogonal matrices: QT = Q _l ... unital}' matrices: U" = U - I 

orthononnal columns; QT Q = I ... orthonormal column" UIIU = I 

(Qx )T( Q:f) = xT , and IQxl = Ix l ... (U x )lt(U,) = xH J and IVt l = It I 

Thc columns and al!O the eigenvcctQn of Q and U IU"e orthonormal. E,'Cl)' 1'-1 =- I. 

, 
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Problem Set 10,2 

Fil1<J lhe lengths of .. '" (l +i, I - i,1 +20 and. _ (i,i,i) . Also fil1<J II lIp and 
.H II . 

J Solve At = 0 10 find a vector ill lhe lIulls)l<Ia: o f A in Prublem 2. Show that t is 
onhogonal to the CQlumns of All . Show that t ii rtOI onhogonallO lhe CQl umns 
o f AT . 

4 Prublem 3 indil:atC5 that lhe four fundamental subspacei an: C(A) and N(A ) and 
__ '"' __ ' Their dimensions an: "ill r and n - r and r and m - r . l1Iey 
are Sli]] orthogonal sub!ipaces. ~ J}'mboI H rakt:J thl piau ofT. 

5 (a) f'rove Ihal AHA is always a Hermitian malrix. 

(b) If At = 0 then AIIAt '"' O. If AHAt = 0 , multiply by t H to prove Ihat 
At _ O. l1Ie nuli spilC<" of A and AHA are __ . 1l>ere.fore AltA i. 

an in,'en ible Hermitian malrix when the nullspacc of A COIIt.ins only t = 

(0 True or false (gi,'c a reason if true or a cQUnterexample if false); 

(a) If A is a real malrix then A + .. I is in,'ertible. 

(b) If A is • Hermitian malri..: then A + i I is in""n ibLe. 

(c) If U is a unitary malrix then A + i I is in""nib le. 

7 When you multiply a Hermilian malrix by a real number e, is eA slill HemUlian? 
If e '" i show that iA i. skew.Hermitian . The J by J Hermitian matri~, an: • 
subspace provided lhe "sealars" are real numbers. 

8 Which classes of malri«s does P belong 10: orthogonal, invertible, Hermilian, 
unitary, foctori:able inlo L U, faclorizable intO QR? 

[
0 , 0] 

P = 0 0 I . 

, ° ° 
9 Compule p l. p l , and p lOO in Prublem 8. What are lhe eigenvalues of P? 

10 I'ind tile unit eigem'CCtOl$ of P in I'rublem 8, and put them into lhe columns of 
a unilary malrix F. What propeny of P makes the3e eigenveclOB orthogonal? 

, 
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11 Write down the 3 by 3 circulant matrix C = 21 + 5P + 4p2, It has the same 
eigenvectors as P in Problem 8. Find its eigenvalues. 

12 If V and V are unitary matrices. show that V-I is unitary and also V V is unitary. 
Start from VHV = 1 and VHy = I. 

13 How do you know that the detenninam of every Hermitian matrix is real? 

14 The matrix AHA is not only Hermitian but also positive definite. when the columns 
of A are independent. Proof: ZH AH A! is positive if::: is nonzero because __ . 

15 DiagonaHze this Hermitian matrix to reach A = V AVH; 

1 - '] 1 . 

16 Diagonalize this skew-Hermi tian matrix to reach K = V AVH. All }.·s are __ . 

[ 0 -1,.+']. K = 1+ i 

17 Diagonalize this orthogonal matrix to reach Q = V AVH. Now all ,:s are 

Q~ [c~SO -SinO]. 
sm/l CQsO 

18 Diagonalizc this unitary matrix Y to reach V = VAU H. Again all ;,:s are 

V~ _'_ [ 1 
J3 1+ i 

1 - '] -I . 

-_. 

19 If ~ l."" ~n is an orthogonal basis for en. the matrix witb tbose columns is a 
__ matrix. Sbow tbat any vector z equals ( ~ rZ) ~ 1 + ... + { ~~Z) ~n. 

20 The functions e-i~ and ej~ are orthogonal on the interval 0 ::: x ::: 211" because 
their inner product is Joh 

__ = O. 

21 The vectors ~ = {1.i.II. " = (i.l.O) and Z = __ are an ortbogonal basis 
roc 

22 If A = R + iSis a Hermitian matrix. are iu real and imaginary parts symmetric? 

23 TIle (complex) dimension of en is __ , Find a non-real basis for en. 

24 Describe all 1 by 1 Hermitian matrices and uniTary matrices. Do tbe same for 2 
by 2. 



25 How are lhe ~igenv:aJues of A" relalOO 10 lhe ~igen"alues of the square oomp\e::l; 
malri~ ,01 1 

26 If 11 11 11 = I show that I - 211 11 11 is Hermitian and also unitary. 11>e rank-one 
rn.attix 1111 " is the prQ~ion onto what line in C"7 

27 If A + i H is a unitary matrix (A and H are rea!) show that Q = [ ~ -~ l'S an 
OI1hogooal rn.atti~. 

28 If A + i H is a Hennitian rn.atrix ( A and H are real) show that [~-%] i~ sym
metric. 

29 Prove that the in~rsc of a Iknnitian malri . is a Hennitian matrix. 

30 Diagooalize thi s matri. by OOtlstructing its eigen"aJue rn.alriX " and its cigen,'CC
tor matrix s: 

[ 21 - i] _ " 
A = 1+ ; 3 _A . 

3 1 A matrix with orthonormal eigenv«t~ has the: form A = UA U- I = UAU". 
Prme lhal AA" = AHA. These are exactly the tWnrIal lMlnus. , 
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THE FAST FOURIER TRANSFORM . 10.3 

Many applications of linear algebra take time to develop. It is noI easy to explain them 
in an hour. llIc teacher and the autl>or must choose between completing the theory and 
adding new applica1ions. Generally the theory wins, because thi s COtlrse is the best 
clLantt to make it clear- and the imponance of anyone appl ication seems limitw. 
This Stttion is almost an exception, b«ause the imponance of Fourier transform. is 
almost unlimitw. 

More than that, the algebra i. basic. We 1O"llIll/O mulliply quickly by P Ilnd p - t , 

th' Fourier mom ond its inVln,. This is achieved by the Fa, t Fourier TransfOl1ll 
the most valuable numerical algorithm in our lifetime. 

llIc FFf has revolutionizw signal process ing. Whole industries are speeded up by 
this one idea. Electrical engineers are the fi rst to know the difference-they take you r 
Fourier transform as they meet you (if you are a function ). Fourier 's idea is to represent 
! as a Sum of hannonics q "';b. llIc function is Sttn in frrqul ncy space th rough the 
coefficicnts q. instead of physiml .""i:e through its values ! (x). The passage backward 
and fOI"'ard between c's and j"s is by the Fourier transform. Fast passage is by the FFf. 

An ordinary product Fe uses n2 multiplications (the matrix has n2 nonzero cnl nes). 
llIc Fast Fourier Transform needs only n ti mes ~ log2 n. We wi][ sec how. 

Roots of Uni ty and the fourier Matrix 

Quadnuic e<;]uations ha,,, two roots (or one repeatw root). Equatioos of degree" have 
n root:; (counting repetitions). This is the Fundamental Theorem of Algebra. and to 
make it true we muSt allow complex roOIS. This Stttion is about the "cry spe.;:ial equa· 
tion z~ = I. The solutions z an: the "nth roots of unity.M llIcy are n evenly spaced 
points around the unit circle in the complex plane:, 

Figun: 10.5 shows the eight solutions to z' = I. llIcir spacing is 1(3600
) "" 

45" , llIc first root is at 45° 0 1 8 = 2rr / 8 radians. II is Ihe complex numkr w = 
~9 = "';L~/8 . We call thi s num~r it'S to cmphasize that it is an 8th root . You could 
write it in terms of cos ~ and sin ~. but don ' t do it. llIc seVen other 8th roots an: 
w2• wl •.. . • wi . going around the cin:lc . J>ov,'ers of w are best in polar form. b«ausc 
wc wort. only with the anglc 

The founh roots of 1 an: also in the figun:. They are i. - I . -i. I. llIc angle is 
now 2::1 /4 Or 90". llIc first root W4 = t b l / 4 is noIhing but ;' E"cn the squan: roots 
of I an: Sttn. with W2 _ "';bI{1. _ - I. Do 001. despise those square roots 1 and - I. 

The idea behind the FFr is to go from an 8 by 8 Fourier matri~ (containing powers 
of It'll) to the 4 by 4 matri~ below (with powers of W4 = i ). llIc same idea goes from 
4 to 2. By e~ploiting the connections of F, do\r.-·n to F. and up to FI6 (and beyond). 
the FFf makes muitiplicatioo by F IOM very quick. 

We describe the Fourier malrix. first for " = 4. lIS rows contain powers of 1 
and w and wl and w1. These are the founh rootS of 1. and theil JlO"'crs come in a 
spe.;:ial order: 

, 
i 
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.... . -1 ... , 
Roal .. i • 

.. 1 . ;;;. roslf - i oin1' 
wf>. - i 

Figure 10.5 1lIe eight solutions 10 Zl ,. I a~ I. IV. wI .. __ • IV 1 with IV = ( I +,)/ ./2. 

w 
w' 
,,' 

.' 
w' 
.' 

~' l ~ [: .' , 
.' , 

, ' 
i' 

" 
The malrix is !iymmetric (f" .. f "T). It is mil Hennilian. Its main diagonal is oot real. 
BUI ! F is & IInilllry "'111m . which meanS Ihal (tFIl)(! F ) = I: 

T'hc: invers.e ehanges from UI =, to iii = -i. 'ThaI takes us from F 10 F. When lhe 
1'." Fourier Transform givn a quict way 10 multiply by F •• il does lhe wne for the 
in'·ers.e. 

The unitary malrix is U = F / .fii. We ~fer to avoid that Jii and just pul ~ 
()Uts;u. f· - I_ TI>e main point is 10 multiply th<: malrix F limes lhe CQeffidents in the 
Fourier series CO + <"I r" + "leY' + <")rJi': 

F, - [: - , , • ,,' 
w' 

w' 
w' 
,,' 

' i) 

The inpu t is four oomplc~ coefficienlS <"(I . f,. "l. C). l1>c outpul is fOOT functioo ''lllucs 
'l" )'I.)'l. Y3. l1>c fil'Sl OUlput )tI .. CO + <"I + <":l + CJ is the val ue of the Fourier series 
al x = O. ~ s«01ld OUlp"1 i. 1M ",due of ,It.., seriu L q~b <1/ .. = 2>r / 4: 

)'1 = co + cl~br/' + <":l~'''/4 + qiM/' .. CO + <"I W + Clwl + <"J wl _ 

n.c Ihird and founh outputs n and Yl ~~ lhe values o f L <"t.-'b at.< = 4;r /4 and 
x '" 611 / 4. ~ are finiu Fourie, series! They oonlain /I = 4 terms and lhey an: 
evaluated 3t /I = 4 points. 'IlIQe;e points .< .. 0 , 2" / 4. 4,, / 4, &,, /4 an: e<;jually spaced. 

, 
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The ne~t point W()IlId be x == 8JT / 4 which is 2Ir . Then the series is back 10 )tl, 
br:cause ~2Jl1 is the same as IJ == I. Everything cycles an)Uoo with period 4. In this 
world 2 + 2 is 0 because (u? )(w1) "" wo "" I. In matri~ shorthand. F times e gi"es 
• C(liumn ~ector , . The foor )"s corne from evaluating the series at lhe four x's with 
spacing 21r /4: 

, 
:I = Fe produces YJ == Lc~il(2JlJl4) = 

,~ 

21rj 
the value of the series 3t x = ""4' 

We will follow the co.wention thaI j and k go from 0 to ~ - 1 (instead of I to n). 
The ~zeroth row~ and '.~ column" of F contain all o nes. 

The n by n Fourier matri x contain~ ~1'11 of w = ~bi/. : 

'" " • .' w"- ' 
" 

,., 
F.e = .' .' w1v. - 1) 

" = " (l) 

.,.-, w1(. - t) u;!O- U' <". _ 1 Y. _ t 

F. is symmetric but not Hennitian. l /s collmms ot? otthogof/lll, and F.F. == nl. Thtn 
F.- t il F./n. Thc inverse contain~ PO"'~f$ of w. = t - b i / •. Look allhe paUem in F : 

The ,«roth output is JoI:I = <l.l + <". + ... + <". _ t. This is the series L <"1';1. at x = O. 
When wt' multiply e by F., we sum the sel'ks at n poinlS. WM~ ..... mulliply :I by 
F.- t ...... find lhe CfHlfoci~nu e from 1M fuJlcliOJ1 '"(llues , . The matrix F plISscs from 
"freq~ncy space" to "physical space." F - I mums from the function "alues , to the 
Fourier coefficients t . 

One Step of the f.ul fourier Transform 

We wanl to multipl y F times e as quickly as possible. NormaJly a matrix times a 
vector takes n 1 separate multiplications-the matrix h.wi ~2 entries. You might think it 
is impossible 10 do belter. (If the matrix has zero entries then multiplications can be 
~kipped. But the Fourier matrix has no zcl'()$!) By using the special pattern wil for 
its enlries. F can be fKlored in a way that produces many ZC1'05. This is the FFT. 

Th~ U:I UJ~1l Is 10 connUI F. ovilh Ih~ hoif-slu FOU-Vf "",'rix F./ I . Assume 
thaI n is a power of 2 (say n = 2 tO = 1024). We wi ll connect FtOJ.< 10 FJt2-or flIther 
10 ,.." copI~ of f ;tl. When n = 4. the key is in the ~Iatioo beN'ecn !he matrices 

F. = [: , 
, 

" ,\ 1 
" " " 
" " " 

.,'" 



On the left is f .... with 00 ~rus. On t~ right is a matrix thaI is Ilalf zero. The work 
i. CUI in half. Ruc waic. cho5c: maulces are not !he wne. The block macrix wilh CWQ 
tQpies of c~ half·size F is one piece of the piccure 001 oot c~ ooly piece. Here is 
che faccorizacioo of F~ wich many zerus: 

(3) 

The malrix on lhe rigln to a pcnnutatioo. Ie puts che even ( 's (ro and "1) ahead o f 
che odd c's (q and C). The middle malrix performs ~par1Ite half.s ize transfOl'TTlS on 
che evenS and odds. The matrix at the left tQmbines the tWQ Ilal f-size oocputs - in a 
way chat prod"",," the com:ct full-size ootpul, : F.e. Yoo could multiply lhose three 
macrices to see thac their prod"",,! is F •. 

The same idea applies when": 1024 and m : 4" = 512. The numller w is 
~:z.j I I014 II i. al the angle /}: 211'/1024 on che unit ci~le. The Fourier malrix FIOlA 
is full of powers of w, The firsc stage o f the FFT is the great factorization discovered 
by Cooley and Tukey (and foreshadowed in 1805 by Gauss): 

(' ) 

ISI2 is (he idenlicy matrix. DS12 is (he diagonal matrix wilh entries ( I. w ..... wJt1 ). 
The IWQ wpies of Fm are what we expected. Don', forgec Ihac lhey use lhe Sl21h mol 

of ullicy (" 'hich is noIhing 001 w2!!) The pennucncion malrix separates the incoming 
veclor e inlo ils eVe" and odd parts e ' = (ro. <'2 ..... cllm) and c" : (rl. (J .. ..• rlOlJ). 

Here are the algebra formulas whieh i>lIY the same thing as the factorizatioo of FIOlA: 

101 (F.T ~ Set m "" I n The first m and la,( m wmpoocms of y : F. e nre com· 
blll31iOflS of lhe half-sh e lransforms y ' = f -..c' and y" : F.,c", Equalion (4 ) shows 
/, '+ Oy" and/y' - D,": 

j: O . .. ,.m - 1 

)'j+", = )~ - u{ lj". j= O ... , . m-l. 

Tn .. s (he th.--ee sleps are; ,pill e IntO ( ' and c". lran,form them by 
, ". and n:aJII-Ilrucl y from equatlOll (5). 

(5) 

Yoo mighc like che flow graph in Figure 10.6 beller than these formulas. The 
graph for n = 4 shows c' and c" going (hrough che half-size Fl. Those steps are 
ca lk<J "b"lIerjli~s:· from their sllapc. lnen the OUlpulS frum the Fl'S are oombined 
using che I and D matrices 10 produce, : F~e: 

, 
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This reduction from Fn to two F,.·s almost cuts the work in half-you see the zeros 
in the matrix factorization. Thai reduction is goOO but not great. The full idea of Ihe 
.'IT is much more powerful. It saves much more than half the time. 

The Full FIT by Recursion 

If you have read this far. you have probably guessed what comes next. We reduced Fn 
to F.12 - Keep going to F. I~' The matrices F"2 lead to Fm (in four copies). Then 
256 leads 10 128. Tlmr is recursion. [t is a basic principle of many faSI algorithms. 
and here is the second stage with four copies of F = F256 and D = D256: 

F ] [

';" 0.4.8 .... ] 
pick 2.6. 10 ... . 
pick I. 5. 9.··· . 

F pick 3.7.11. ·· · 

F 

We will count the individual multiplications. to see how much is saved. Before 
the FIT was invented. the count was the usual n2 = (1024)'. This is aboul a million 
multiplications. I am not saying thai they take a long time. The cost becomes large 
when we have many, many transfonns to do-which is typical. Then Ihe saving by the 
FIT is also large: 

The finol CQunt f or size n = 2' is redrrced from ,,1 to ~ "l. 

The number 1024 is 210. so I = 10. The original count of (1024)2 is reduced 10 
(5)(1024). The saving is a factor of 200. A million is reduced to five thousand. Thai 
is why the FIT has revolUTionized signal processing. 

Here is the reasoning behind ~nt. There are I levels. going from n = 2' down 
to II = l. Each level has !n muh-ipJications from the diagonal D's, to reassemble 

the h.alf-size outputs from the lower leveL This yields the tinal count int, which is 

!nlogln. 

00 '. ~,:-----:/"",------7 " 00 

01 

01 

,. 
II II 

Figure 10.6 Flow graph for the FasT Fourier Transfonn with n = 4. 



One last 11(>1<" about this remarkable algorithm. "There is an amazing rule for the 
order Ihal the c's enler the FFT. afu:r all ~ cvcn-odd ~rm\ltatioos. Write the num
bers 0 to n - I in binary (base 2). Rtl"eru th, order 0/ IMir digils. "The complete 
piclure shows the bil-reversed order at the stan. the I .. log! n steps o f tile recursion. 
and the final OUtput .ro .... , Yo_I whkh is F. limes t . "The book ends with Ihat vel)' 
fundamental idea. a malrix mUltiplying a ,·ector. 

Thrmk you for u udying lin, 1II' n/gt bru. I hope you enjo)'ed il. and I vel)' much hope 
you will use it. It W3ll a pleasure to wrile about th is neal subject. 

Problem Set 10.3 

I Multiply the lilree matrices in equation (3) and compan: with F. In which six 
entries do you need to k...,w that ;~ = - I? 

2 Invert the Ihree facron. in equation (3) 10 find • fast faclori7.alion o f F - 1. 

J F is symmetric. So transpose equation (3) 10 find a JleW Fast rourier Transfoon! 

4 All entries in the facrorization o f F6 involve JlO""ers of w '" s ixth root of I: 

Write down these thre.e focton. with I. w. wI in 0 and powers of w2 in Fl. Mul
tiply! 

S If ~ = (1.0. 0.0) and ... = (1.1. 1.1). show that F r = ... and F ... = 4 • . 
"Theref"", F - I ... _ u and F - I• = __ . 

I> What is F~ and whal is ,. ... fur Ille 4 by " Fourie r matri,,? 

7 P"lIt ~ ,-ector t '" (1. O. 1. 0) Ihrough the thre.e steps o f the FFT 10 find 1 = Fc. 
Do tile same for c = (0 . 1. O. I) . 

8 Compute 1 = Fit by the three FFT Sleps for t '" (1 . 0.1.0. 1.0. 1.0) . Repeal 
tile oonlputation for t = (0. 1.0. 1.0. 1.0. I). 

10 (a) DnlW all the sixth roots of 1 on ~ unit c in:le. Prove they add to zero. 

(bl What are ~ Ihree cube roots of I? Do they also add to zero? 

, 
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11 The columns o f \he Fourier matrix F are the ~ig~n\'t(:ro,s of the cycli<.: pcnnuta
tion P. Multipl y PF to find the eigenvalues AI to 4: 

[! 

, 0 

l][: 

, , '}[: , 
il ][" J 0 , , 

" 
, 

" " j! 

" 
, 

" 0 0 ,- , , - " 0 0 " " " , " ,-
This is PF '" FA or P = FAF-I . The eigen~ector matrix (usually S) is F. 

12 The equation det ( P _ AI) : 0 if A~ = I. This SOOw$ again that the eigen'-alue 
matrix f\ is __ • Whkh pennutation P has eigenvalues'" cube roots of l~ 

13 (I) Two eigcn-=tor.; of C are ( I. I. I. I) and (I . j. ;!. ;1). What are lhe cigcn . 
..... Iues? 

(b) P = FAF- t immediatdy gives 1'2", FA2F - 1 and pJ = FA] F - t. "Then 
C = CO l +CI P+ C2 Pl + C) p l = F(CO f + CI A+ <'2 A2+n A') F - t '" FE F - 1. 
ThaI malrill E in paremheses is diagonal. It contains the __ of C. 

14 Find the: cigenvalues of the "periodic" - I. 2. - I matrix from E = 2f - 1\ -
I\J. with the ci~nvalues of P in 1\. The -I's in 1he comers make Ihis matrix 
penooi<,: : 

-I 2 -I 0 

[

2 -, 0 -'J 
C = 0 - I 2-1 

-I 0 -I 2 

has co = 2.Ci = - 1.<':1 =O. c) =- 1. 

15 To multiply C times a '~tor x. we can multiply F(E( F - 1x» instead. The direct 
way USC$ n l ~parate multiplicalions. Knowing E and F. lhe second way uses 
only n loS: n + n multiplications. How many of those come from E. 00w many 
from F. and 00w many from F - t? 

16 How oould you quickly compute 1hese four components of Fc stlll\ing from 
CO + <':I. CO - C2. Ct + C) . CI - c)? You an: finding the Fast Fooricr Transform ! 

, 
t 



SOLUTIONS TO SELECTED 
EXERCISES 

Problem Set 1.1, page 7 

4 3. + .. .. (7.5).nd . -3 .. .. (-1.-5) ~nd r.+d., _ (2<:"+d.c+2d) 

9 The foonh """"" <&II be 14.4) or 14.0) or (-2.2). 

11 t"i"" more """"''' (0. O. 1). ( I . I. 01 . ( I . O. I). (0. I. I). ( I . I. I). The cenl.r poinl i, ( ~. ~. !). 
The C.nI .... of 11>0 .i~ face> ..... (~. 1.0). (~.!. I) and (0. ~. ~ ). (1.1. !) and (!.o.l). 
(~ . I. ~). 

11 A r ......... imensional cube has zI .. I" rome" ond 2· 4 .. 8 tllree-<l,men.ion.1 .!des and 24 
1,,'HIimell5ional faces trod J2 onr-dimen,ion&I Nlg<"S. Sft WorI:ed Eump!c 2.4 A. 

13 Sum ~ UR) ''KI0t": ,um '" - 4:00 vttIOI": 1:00 i< fiJO frum hoori_ .... ., (<<>< ~. sin t) '" 
(I· /f). 

16 All rombin;Mion. with c+d '" I ..... "" tile lone throogh • • nd ... The poi", \ ' '" - p + 2 .. 
i. "" ,h.t line Ix"y<:>nd ... 

17 The '"tttOf"> c.+c .. fill 00. tile line pa"ing """"gh (0. 0 ) and " " ~. + ~ .. . I. rominl><S 
be)"<Htod • + .. and (0.0). With c :! O. half this 10 .. i. ,.:rno",," ai..J t~ .... y". OIons a. 
(0. 0 ). 

20 (aJ ~ ~ + ~ • + ~ .. i. tile "" .... of tile triangle to.,wttn II • • and . , I. + ! ., is ,lie cen1e1" 
of tile edge beiWtt1l II and .. (b) To fit( in tht ,ri ... S" k""" c:! O. d:! O. , :! O. and 

c +J +t '" I. 

n The '-e<10< 1111 + • + . ) i. fH<t.idt tile p)· ... mid because c + d +, ., I + l + l > l. 

15 (a) ~ " " »" .. ., any /IOftUR) '"tttOr 

and .. to to. • rombin>lion lik. II + •. 
(b) Choose II ontI • in diff.,.,nt d i=tion •• 

28 An nample i. (a.b ) '" 0.11) and (c. d ) = ( I. 2). The ... tios alc and bid ..... equal. Then 
ad = Ix". Then (d;,ide by bd) tile ralioo alb and rId .... equal! 

SOl 

, 
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Problem Set 1.2, page 17 

J Unil ',«Ion . / 1. 1 = (!.;) = (.6 .. 8) and .. /I ... = (1.!) = (.8 .. 6). The "",il>< of 9 is m . ,::, - ~. The _,on _.11. - '" mak~ 0".90". 180" ""alu .... ilh .,. 

S (a) •• ( - .) = _I (b) <,+ .. )0(,- .. )= 1· »+. ·'-1 · .. - . · .. : I+( 1-( )-1 .. 0 
..,9 .. 90" (e) (.-2.,).(0+2 .. ) .. '., - 4 ..... .. -3 

, All '"«Ion .. .. (c. leI; .11 '"ttIOrS (x . y. :) with .< + y + ~ = 0 lie 00 a p/anL; all ,,«II)(!; 
~lptndicul" 10 (I. l. I ) and (I. 2. J) lie ()fI a liM. 

':I If '>:!">:!IV,lIil = - I then '>:!">:! .. -VIM'I or VI"" + ,>:! 1I'2 .. 0. 

II , ... < 0 mean. angIt > 90"; ,hi. is half of Illt plane. 

12 (1. I) pelptndicular 10 (I. 5) -c(1. 1) if 6 -2<" = 0 or c .. 3; • . ( .. -c. ) .. 0 if c .. ,. "I'· ' . 
IS ! (.< + y) ., 5; ros6 .. 2..!f6/ JTIiJTIi _ .8. 

I' COl" .. I/ ..fi. <:0'}, fl .. O. CO'< r .. - L/..fi. COI2 a + <:O'},2 fl + "",,2 r .. (u / + ,.~ + "jl/ l . ~2 . , 
21 h ... :!: 21. n " l leach [0 n. + .. 11 .., ••• + h· .. + ..... :!: 1. 11 +21. 11 .. , + 1 .. 11 .., 

(1.1 + ,,,"l. 
13 COIfj .. 1Ii , /1'" Ind .infj .. "'2 / 1" 1. Then C05(fj - til .. c,",fjcos" + sinfjsin a .. 

"I "'1 /1 ' 10'" + '>:! "'1/1. 11" 1 = . . .. /1 . 11 _3. 

25 <a) ulwl + 2vIWI,>:!,,>:!Hi"'~:!: "rwl+"I"'i+~l"'I+"iWi is INC beea",", Illt diff."''''"'' 

i. "1 "'1 + "i .'f - 2"1 "'I ' '2 "'2 ,.'hi<ch i . ("1"'2 _ '>:! "'1)2 ;:: o. 

26 Elamplt " 8i'~ I" IIIU,I :!: !(lIr + Uf) and 11I 211U21 :!: !(_j + Uf). The whole IiI>< 

becomes .96:!: (.6)( .8) + (.8)(.6) :!: ~(.62 + .82) + !(,Sl + .62) = I. 

28 TI)' ... (1. 2. -3) and .. .. (-3. 1. 2) "'ilh <:O'},6 .. 1l and 6 ... 120". Writ. , . .. _ 

.<.+ y! + .<y a< !(x + }'+ :ll _ !(.<1 + y2 + .1). If x+'+: .. O Ihi . is _~(X2+},1+:2 1 . 

.., ,. "'U-U"'I - -~. 
31 Th"", =IQB in II>< pi...., "",,'d m&l;e "",Irs ,. 90" wilb oACh othtr: (I. 0 ). (_ I . 4). (-I. _ .. ). 

Foor , 't'Clon could not do this (3W" loul angle). How many {"" do this in R) or R"? 

Problem Set 2.1 , page 30 

2 The column • • ", i = (1.0.0) and j ~ (0.1.0) and I ". (0.0.1 ) and b = 0.3. 4) '" 
2i+3i+4k. 

:I The planrs "'" tllt ....... , l.< .. 4 i . x _ 2. ly _ 9 i. ,_ 3. and 4: _ 16 i. /; _ ... The 

soIUlion is Illt same ;nlC:l'St'Clion point. The roIumllS "'" clwtgM; bul same oombinalioo 
i _ >: . 

, 
i 



5 If :: ... 2 IlI<n.< + 1 = O""';f _ Y'" ,iv<: "'" poin, ( I . -1.2). If 1 ", 0 IlI<n x + y = 6 
iU>d '< _ 1 _ 4 gi~1ho pOi~ (~.1.0). Ilalr,.,.,.y ""' ... ""n i, O.G.II. 

, Equrlioo I + ~"alion 1 - rquarioo 3 i, now 0 ,. - 4. U .... m;. ... pi ..... ; II<> ""Mli"", 

<} Four pia ..... in 4-<!imen,ional """"" normally Ince\., apojn., The , .. h .. ion to Ax '"' (l. 3, 3, 2) i • 
.. .. (0. O. I. 2) if II 11M cold""" ( I. O. O. 0), (1. 1,0, 0). (I. I. 1. 0). (I. 1. L. I). The oq ..... ;on. 
m .. + y+ ;:+ . .. 3.,+ ::+1" J.:: +1 " 3.1 '" 2. 

15 be + 3y + :: + ~t .. 8 i. A. .. .. ~ ",j,h "'" I by 4 nuotn. " .. (2 1 1 5). The soIulion. 
or fill • 3D "pi ...... in 4 dime".;","" 

191.: _ [ , -, 

13 The do< pmdUCl(1 4 Sl[~'] =(1 by 3)(J by I) is un:> for point. ( ... y., ) on . pl . ... 

in 1Io .... dimensions. The column. of " ~ "",,-<limen,ional _1OrS. 

24 ii _ II! : 34)"00 ,, _ (5 - 21' and 6 _ 1 1 7]'. , . I> _A . .. print, as ttro. 

21> Ones(4. 4) . onL'S(4. 1)=( 4 4 4 4 (' : H ... ~(lO 10 10 10)'. 

19 The row pi<'"~ ~ four Ii"" • . The <oiumn pi<M~ i. in ,t>o<r-dime ... iooa) sp;tee. No 
oolu.ioo "nie« "'" rig'" $idc ;, • combi ... ,;"n of 1M two roI~mIU. 

3 1 . , .• 7 . • ' an: ,II do.;< to (.6, A ). 'Their rom_Rl. "iii odd to l. 

" [. , ,n [::] -[::] ->INdy "~,, I , No cha~ "'ben muhi~~ by U 
'] ['" 9 _ 5 _ w_u 

2 5 +" 
,-" ] 5 + w+" ; MJ(1. 1.1)_(15, 15. 15): , - " 

.11.(1. I, l. I) _ (34,34,34,}4) be<:~ lbc "umbers I 10 16 odd 10 136 ,",'h ich i. 4(34), 

Problem Set 2.2, page 41 

J Subuac' _! ,i""", «I""ion I ( 0< odd ~ 'i ..... «I""ion I ). ",. new secontl «IUlIion i. 
3,. '" 1. Then ,. '" I and -" ., S. If lbc right $idI: ol\angf$ Ii",. $0 does the IOIUlioo: 
( .. . ,.)_(_5._1). 

4 Subino:t I '" ~ times C<!uation I. The new ...,ond pivot mulriplying ,. is d _ (rb/D) 0< 

(~d - ixIlD. Then ,.., (dl - ~/l/(~d -ix). 

, 
t 



Soh" iom to S< k cNid E>:erc..... 50 5 

(, Singular sy~lCm if b = 4. bttau>c 4x + 8y is 2 l imes 2,( + 4)'. Then K = 2 • 16 = 32 maI;~s 
, ... sySl~m soh'3bk . 'The li~ """orne ,tie ""''''' infinitrly many soIuti"". lik~ (S. O) and 
(0.4). 

8 I f t = ) tlimination mu§l fail; no SOlution. If t = - 3. t liminalion gi_ 0 ,., 0 in "'lUi, 
lion 2: infinitel)" many oolUlions, If t = 0 a row ~.cllang. i. needed: .,... solution. 

13 Sublrac' 1 times row I from row 1 'Q ",,,,,b (d - 10»' _, ,., 2. Equation (lJ I. Y -l _ l. 

I f Ii = 10 .~cla.nge rows 2 and 3. If d = 11 I'" 5y§ltm is singular; third piVOl is missing, 

14 The sccood ph'OI posilion will roolain - 2 - b. If b '" - 2 we .xchange with row 3. If 
b _ _ I (Singular c_) the IIec<>I>d "'I"ation is _y _ :: .. O. A soIu,ion i. (I. I. - I). 

16 If row I _ row 2. 1"'" row 2 i.:t= . ftrT ,tie first step; uchlJlgo ,tie >.oro row with row 
3 and ttle", i. "" 'him piVOl. If column I .. colnnut 2 1 ... '" i. no Ul:o..d piV<ll.. 

I B Row 2 become. 3,. - 4: '" ~. lhen row 3 beoome!; (q + 4):: _ , - ~ . If 'I _ _ 4 ttle sySlem 

is . ingular - no third piVOl. Then if I = ~ the lIIird "'lultion is 0 = 0, Choosing:: = 1 
the "'lultion 3)' - 4:: ., ~ gi>n ,,., 3 and "'luation I gi,..,. x = - 9, 

20 Singular if row 3 i. a combi""ti"" of row. I IUld 1. From the ~nd "iew. ,he ,11m: planes 
form a triangk. This h;oppons if rows I + 2 '" row ) "" the leA sjdc !>Jt IlOl the right si<lt!: 
for curnple -" + ,. + :: = 0 , x - 2, -::.., I . lr - y.., L No parallcl planes !>Jt "ill "" 
solution. .. , 

He 
a!1 ] rorlJlY".b. r kadS IO U= [~ : :] . 

b +c +) 0 0 ) 

26 a = 2 (equal columnS). " = 4 (equal row1). a _ 0 (>.oro column ). 

29 A(2.: ) .. A(2.:) - 3 _ A( I, :) Sub .. "" .. 3 ,i""" row I r""" row 2. 

30 The .'-eng< pi'"OIS for rand() " 'i'''''''1 row uchanges ".~", ~ . 3. 10 in """ e, pni"",m
bul piVOl' 2 . nd 3 cln be ""'i' .... il,. 1"'lII'. "Tho;, .,~~ ..., ac1u&lly infinil<! With ..
e~clwtges in MATl.A8's lu cotIe. Ihc " "<'rages ,7~ IUld .SO and .3M art mucb morr Ita· 
blc (.nd should be pn:odictablc. abo f", randn ",i,h norm.oJ instrad 0( uniform proI>abilily 
disuibmion). 

1 El ' = [-~ ~ ~] . , , , [' , EJl" 0 I , , 
, , -, 

Problem Set 2.3, page 53 

'] [' , '] [' "] [" o . P = 00 I I 0 0 _ 00 
I 010001 10 

5 Otanging " 11 from 7 to II will chan~ Ihc third piVOl from ~ '0 9 . Changing all from 
7 to 2 will chang. ,tie piVOl from S 10 ItO pil"Ol. 

, , malenal 



506 Solu!iom!O Seleaed Exercises 

7 TQ reverse E31. odd 7 times row I !Q row 3. Tl!e ma!rix is R31 = [~ ~ ~]. 
, 0 , 

9 M = [-i ~ I]· After the exehange. we ~ El l (001 E21) \Q acl 00 !he new row 3. 

10 EIl= [i o :] , [~ ~ ~] : E3 IEI3=[: 
01 101 I 

! f] . Tes! Qn the idemity matrix! 

[1 
8 

~l [i ' 3] 
" 

, I - 2 . 
2 2 -3 

" E21 has t 21 = -!. En has t 32 = - j. E43 has t 43 = - ~. OIherwise the E', match I . 

[" ~l FE = [ ! 00] [" 0] [' 00] " £F = a I IO , £2",2a1 O, F3 =OI O. 
b , I b+ac c I 2b 0 I 0 3c I 

(c) all - :!all (dl { £Axlt = {Ax )1 = L al j Xj' 

25 The last equation becomes 0 = 3. Change the original 6 10 3. Then row 1 + row 2 = 
~ 3. 

27 (al No solutiQTl if a = 0 and c 1< 0 (bl Infini~ly man)' solutions i f d .. 0 and c = O. 
No effeci from a and b. 

28 A =AI= A( BC) =(ABlC=IC=C. 

29 Gi~en positive integers with (Ja - be _ 1. Certainly e < a and b < d would be impo;>s· 
sible. Also C :> (J and b :> d would be imp<lSsible with integers. This leaves row 1 < 

row 2 OR row 2 < row l. An example is M ." [~ ~l Multiply by [~ - :] to 

gel U n then multiply twice by [ _ : n to get [~ : l This shows thai M = 

[ ~ :][: ~][: ~][~ :l 
[ , 0 0 

0] [ , 

0 0 

~] -, 0 o -, , 0 = "inverse of !'aKai"' 
30 E = ~ -, , o . E"entually M - I - 2 , ..wU<:eS Pascal to I 

0 -, , -, 3 - 3 

Problem Set 2.4, page 65 

2 (al A (column 3 of B) (b) (Row I of A) B (el (Row 3 of A)(column 4 of B) 

(d) (Row I of C)V(column I of E). 



7 (I) Truo (b) False (~) TJUC (d) false. 

9 1\ I' : [; ;: :] 100 1..(1\ f) equals (EA) F because malrix mullipl"ocllion is anoriari ..... 

11 (I ) 11: 4 / (b) B =0 (~)B .. OI O 
[

0 0 '] (d) Every row of B is 1.0.0. 
, 0 0 

(b) m"p 

17 (I) U .. only column 2 of B (b) Use only row 2 of tI (eHd) Use row 2 of first tI. 
19 Di&J!OflIl mllti>. \00, .... lriangular. s)·mmttric. III row. "'1l1li. z.,1(> II1Il.i> . 

20 (I) "II (e) un - (~)<111 

23 tI _ [_~ ~] has tl 1 __ /: BC=[ : =:][: :] .. [~ n 
D£"[~ ~][_~ ~] .. [-~ ~] =-£D. 

r - '] , . '] ["" 1 . A~ _ 0 

27 (I) (RQW 1 of tlH ..... lumn I of B ) and (Row 3 0( A jo(roIumn 2 of 8 ) art boIh >.<:rO. 

(b) [~][O x ~l .. U ~~] and [~][OOXl .. n ~ ~] 
upper triangular! 

[ 11 ][=] 

lJA,imesX _ l x , Xl ~ ]l willbel,,"kII<nt;'ymatri./ .. t tlx l A.'l " X ). 

J4 1M OOI"I~ for h U] i. H 3~ 1 +~~~+ hl~ L:l 1\ = [-1 0 !l , will -, 
produce Ibosc .1") .. (1.1. 1). :"2 '" (0.1. l). ~l. (0.0. 1) as columns of it. Min''tISC-. 

0 , 0 0 , , 0 , 0 0 , , , , , 0 , 0 0 0 , 0 , , , 0 , , , .oil + .oi l 
17 tI = 0 , 0 , 0 . ,,1 .. , 0 , 0 , . 1\3 • , , 0 , , no urn,; "" 

0 0 , , , , 0 , 0 , , , 0 , diafn<1<,. 3 
00 , 0 0 0 , , , , 0 

, 
i 



39 If.4 is .. nortIoweoC·.nd 8 is """"he .. !"..48 i. u~, lriotlgulor and B.4 i. Iuw..- trilIlgullI. 
Row j 0( .4 ends with j - 1 "'mi. Column j of B SllIrtS with n - j 'Uro<. If i ". J 
then (lOW i 0( M · (rotunut ) 0( 8 ) • O. So.4B i. upper lriangulu. Similarly 8 .4 i. 
lo,.-e, ,riangula,. ProbIc:rn 2.7.40 asks .bout in..-.nes and tnlnSJIOI"OS and pe,,"ullitioru 0( • 

nonh~\t .4 and a SO.lIhrl5l B. 

Problem Set 2.5, page 78 

I] .-,_[! o . -1 -'J ' . 

, (a) In .4x '" (1 .0.0). equation 1 + eqlllt;',., 2 - hjUIIlion 3 i. O. 1 (b) The ript 
sides ""'" .a!i.fy "} + ~ _ "] (~) Row 3 beoome!i I lOW of zeros- no third pi~. 

8 (I ) The _ x = ( I. 1. _ I) 5(II>'Clt .4x = 0 (b) Elirnil\llion kccps rotumns 1+2 _ 
rotumn 3. When rotumn. I and 2 end in >eros so do<-< rotumn 3, 00 Iltird pi_. 

12 C '" loB gO""s C- L .. B- ' .4 - 1 so .4 - ' ... HC-'. 

14 B- ' _ .4 - ' [: ;] _1 • .4 - ' [_: ;}.ut..ract column 1 uf .4 - ' from column I. 

16 [; : ][ _~ -!] "" [ad; i><" ud ~ i><"] '"' (ud - b<:) I. Tht in"""" of one matrix is 

lhr oo:hef di.idcd by ad - i><". 

18 .41B _ I con be wrinen ., .4 (.4B) .. I . Tht.dore .4 - ' i, .48. 

21 6 of ,be 16 art in""niblc. including III four witlt tltttt [' •. 

[; 
, , 

~] - [~ 
, , 

OJ [' 0 , -n - il .4 - 1]; " , 0 -, , - 0 , -, 
[; 

, , 
OJ [' 0 -. -n=[1 rt]. • 0 , - 0 , 

[i " 
, , , n -[i • , , ' -'j [' , , , - . 

"< ~n " 
, < , , , , , 1 -c _ 0 , , , , , , , , , 0 " , , , , , 

.4-' ~ [-i ' 'j [ , -, -:} " 1 -3 (nolice the pattern): .4-' '" - I , , , , -, 

" [ -; 
, -'j 11 Elimil\llion prudoce< the pi"'" a .nd u-b and a-". .4 - 1 • " , . 

"'" -. • 
:w x _(1, I ..... 1) has Px _ Ox .., ( P - O )x = 0. 

, 
i 



[ , '] [ ,-, 
l S - C I and _v-1erl ' ] [-0 D- I and I 

37 A ca/I be i~nibk ""I B i. 11""Y5 ';ngnlar. Eac:h row of B will tdd w ...,.,. from 0 + 
1 + "1 - 3, so 0.. _!Of Jt '"' (I . l. I. 1) will g;"e BJt .. t . I lhoughl A. would be inveniblc 
.s Ion. u you p ... 11K )', "" ilS main diagonal. 001 IliaI'. wrotIg' 

o 3 1 2 1 [' , , '] [ , ] A.. .. 1 2 3 0 _ I ,. (l ~, '" [~ ~ r ~] i. i.\...niblc 

I 2 0 3 - 1 I 230 

40 1bt ~ Pucal malrices have S .. LV = LLT and thtn inv(S) = inv(L T)inv(L). Nooe 
lhal1he triangular L ;" all5(p<lsca1tll. I)) in MATLA8 . 

42 If AC '"' I for "'I""" rnatria$ then C '" A - I (;1 is pru'o'Cd in 21 11Ia1 CA '" I will also be 
trw). 1lIc ......... -ill be tnIC for C' . BUI a square malri~ hOlS only one invm;e SO C .. C' , 

_ (/w - UV)(I.+U(I .. -VU)- I V ) - I. - U V + U(I .. - VUI -IV - UVU(I .. - VU)-I V - I. - U V + U( / .. - VU H/ .. - VUI-I V _ I. (f"",,ulas 1. 2. 4 .... imilar) 

Problem Set 2.6, page 91 

1 ill - I .nd ill '" 2 (and Ill'" I): ......,"" "'" ~<'J>$ t" ~r .. + 3)' + 6.: .. 11 from 
Ux "" <: 
1 limet (.r + ,+: _ .'1 )+2 li~ (y + 2, ~ 2)+ 1 limes (t =2) giva Jt +3,+ 6, _ II. 

,[: , , -, , '] [' 23 "" U.TIl<-nA .. 2 
o - 6 0 

u .. £21' Cil' U - LU. 

10 ~ _ 2 leods 10 u'" In t1>o """"'<l<I pMJt pooit."" e. chonge rows ond !he matti. will 1:>< 
OK. c _ I leods 10 ....., in !he third p;vot posilioo. In this c .... !he matril is jj~lI~I",. 

12 A_[! I~] _ [~ ~][~ 

A-G_: J[~ -~ 
_ LDI,T. 

'] [' '][' '][' '] . . , 3 - 21 0 J 0 I _ LDU;not"",U"L 

:] -[: , 
4 0 - 1 ,J[' -, J[i i -:] 

, 
t 



5 1 0 Sohlloons 10 Sel<!<:1ed hen:ioes 

, , 
/>- , . - , 

, -, 

,, [: :],"[,;].,= .. [;] "". [i :H~].= , · [-n 

Che<:k lhalA."'W"'[~ 1;]limes"'iS""[l~ l 

18 (a) M"Jtipl~ LOU,. LIOIUI by inverse< 10 gel LI'LD,. D,U,U- ' , The itA sHIt is 
,.,.. ..... lriangular. the righl .ido i. uPI"'f lriangular ... IxlIh ,ides are diagonal. 

(b) Si~ L. U. LI. U, ha,,,diagooal.of l'. ""~ gel 0 .. 0 " Then LI' L i. 1 and U,U- I i, I. 

20 '" tridiagonol T Iw 2 noou"," in lhe piVOl row oJ><! ool~ one noouro below lhe piVOl (so I 
optralion 10 find the mullipliuand I 10 find the l1(:l\I p iVOl!). T '" bidiogoru.l L limn U: 

,.[i ~! ~]-u.[i -r! ~].R . .......e"'PSb~ L ,.[i_: 
00J4 000 1 00 

"] " , , . , , 

25 The 2 by 2 UPI"'f sub""'tri . 8 has the first I...., piVOls 2, 7. R~a5O<I' Elimination 00 II 
>lans in lhe upper itA comtr ",ilh eliminalion "" B, 

, , , , , Pwrol', rrimlgit in L and U. , , • , , , 
" MATtAS', lu code ",ill wm;k 

" 
, , 

" " - , , 
" lhe panem. chol ~, no row 

• " "''' , , , •• changes for .~mrnelri< , " " " • , • , malrices " 'itll posil;'" piVOlS. 

36 This L l"OlneS from lhe - 1.2. - I tridiagonal A. '" L DL T. (Row i of L). (Column j of 

L - I),. Ci/)(/~i)+ ( I )(f ) ~Of<>r/" j.., LL- I '" I. Then L- I lead< to 

A.- l ... (L -I)T 0 - 1 L -I. Tit. _ I. 2. _ I """"'" Iuu /".wu A.~I ,. j(" _ i + 1)/ (" + II 
for i ~ j (" "ffle for j !: j), 

, 
i 



Problem Set 2.7. page 104 

2 (AB)T i. not AT BT UU/H .. -itt'" AS .. SA . In ' hll case trut,po$< to find: BTAT .. 
ATBT. 

4 A .. [~ ~ J has A 1 .. O. 8u, ,tic diagonal ~n,rin of AT A ""' do< prodllCt$ 0( columns of 

A wim ttlcmselves. If ATA .. 0, urn do< prodllCt$ ~ urn roIwruu ~ A .. Un) """!rh. 

8 n.. 1 in """ I lias ~ ohoiceo; tlltn tilt 1 in row 2 ..... ~ - I chokes ... ( .. ! c~ 
CMrall). 

10 (3.1.2. 4) and (2 .3. 1. 4) ~«:ponly 4 in poo.i'ion; 6 more ~n r . keep 1 or 2or3 in 
po5ition: (2. 1. 4. 3) and (3. 4. I. 2) ucla"", 2 pllif"J. TIltn (I . 2. 3. 4) and (4. 3. 2. 1) makc: 
12 ~ r l. 

14 Tbete are 'I! pennuwion maIrices of order n. Even,ully 'wo power> of P ,,"u>I "" ,itt' 
....-. If P' _ P' then P' _S _I. eenlinly r - s :!: " I 

p_[P2 p)J~HYhimP2 _ [~ ~]-p) .. [~ i !]_ P~_I. 

111 (a) ~ +4 + 3+ 2 + 1 .. 1~ indq>rndon' ~ntriel; if A .. AT (b) L has 10 and D has S: 
!(JUJ 15 in LDLT (0) Ztw dil gon.o.t if AT .. -A. IrIVing 4 + 1 + 2+ I .. 10 choiceo. 

, , '] • • 
-2/3 

If " -e wlil 10 

,j[' 'J[:: n 
29 One "'ay to decide eve" "0. odd i. to coon, all pili ... thai P ..... in the wroog order_ 'Then 

P is"""" Of odd ,,·heft ,Iw coon, is ~ or odd. Hard Slep: $bow ""', on uclan", alway. 
",.cnes ,hal coond ",.." 3 or 5 exchanges will leave ,Iw C<)WII odd.. 

, 



512 Soh" ,,,,,. 10 s..I«1ed b e<cioeo 

.. 
''''' ~l [!] = 

33 A .. . ] is tho co" of inpulS whil~ JI • AT ] i. lhe ,-01 .... of o"'put~. 

34 p l '" 1 .., lh= rowion. for .l6tJO; P row"" IR)Und ( I. I. I) by r.!O" . 

, ~, 

I pl~ 

37 ~ on: group': ~r trians.uw willi diagooal 1'$. diqonal invenible D. ptnIlutation, 
P. ortlIo&ooaJ mat';"", with Q '" Q-I . 

40 unainly tiT ;s nonhwe>t. 8 l i • • full matrix! 8 - 1 is _the ... : [ : ~ r l '" [ ~ _ : J. 
"The rowS of 8 ~ in ~"" onle. from I )00, .... triangular L • .., 8 = PC n..n 8 - 1 .. 
L - I p - I has tho ro/"""" in re" ..... order from L- I . So 8 - t ;. _,~,. NorUIwe<I 
times ..,..the ... i, uJ'PC1" ,riangular! 8 .. PI. and C .. PU give 8C .. (pLP )U _ "J'PC1" 
time. uJ'PC1". 

41 The i. j ~ntry of PA l' i, the .. - I + I." - J + I ~n'ry of A . 'The moin dilgonal rcverKS orde-r. 

Problem Set 3.1, page 118 

1 z + ] " ] + z and z: +(] + z )"(z + ]) + z and (~I +<':I)Z: "~ I Z: + <':IZ: . 

l (a) t:z moy...,. bo in our \<:I : ...,. dosed under sell .. multiplicalion. Also ",, 0 and no - r 

(b) e(.I' + ]) i. !he usual (.< ] f , "'hik n f + r] is the IIS ... I (JI')(r"). Thole..., .., ... 1. Willi 
. .. 3. JI .. 2. ] .. I tile)' "'1 .... 1 8. Thi . i, 3(1 + I)!! "The zero _tor i, lhe numbo. I. 

5 (I ) ~ passibili'y: "The ma!rica r A form • , ubspolce ...,. oonlainina H (b) Yes: lhe 
su~ muS! co."ain A - 8 .. I (e) All matrices ",-hoi< main di~1 i. all zero. 

') (a) 'The vectOfS " 'ith im~g<:r rompo .... nlS allow addit ion. bul ...,. multiplication by ~ 

(b) RetDO\~ ,1>0 JI . , is from the JlY pi .... (bul leave ,1>0 origin), Multiplicalion by My C 

i , allowN but no< _II _ ' or additions. 

11 (I) All m."itt5 [~ Z] (b) All matntts [~ ~] «( ) All di.og<> ... 1 ma!rica. 

15 (al Two planu thn:ough (0. 0.0) probably in",rsecI in a Ii .... ,hroug/l (0. 0. 0 ) (b) The 
plan< and Ii .... probably immtti in tho point (0.0.0) (e) SU1'l"* .I' i. in S n T and 
] i. in Sn T . Both vectOfS ore in both ... bspoccs. 1O 1' + ] and t:z .... in both subspoces. 

20 (I ) SoI",i"" ""Iy if ~,. 2b t _nd bj" - hi (b) Solution only if hj _ - b,. 

n "The un1l column b enl",!" t~ column ~ unk .. b ;s alm>dy in tho column ~ of 

. I 6 I .. [' , 'l (1arg<1" column . pace) ['" 1 (6 .Iready in column space) 
A . A 0 0 1 (00 ..,Iution to AI' .. b) 0 I 1 ( AI' ~ 6 hi> I soiu'iooI) 

25 'Tht: soIulion 10 A: = 6 + 6 ' "' : ,. z + ] . If b IIId 6 ' .... in 1M column ~ .., i • 
.!o + b' . 

, 



Solutions to Se lected E>ercises 513 

Problem Set 3.2, page 130 

2 (a) FlU variables xl . . <4 . .tj md solutions (-2. I. O. o. 0). to. O. -2. I. 0). (0. O. -3. O. 1) 

(b) FlU ,'ariable x3: so1u1ioo ( I. -1. 1). 

[" 00 0] [' 4 R =00123.R = 0 
00000 0 

o -'] , ,. 
o 0 

R has the same nullspace as U and A.. 

6 (a) Special solutions (3. 1. 0) and (S. O. 1) 
is n. 

(b) (3. 1.0), Total count of pivot and free 

[' -3 -5] . 8 R= 0 0 0 WIth 1=[1]; _ [' - 3 
R - 0 0 nWith/=[~ n 

10 (a) Impossible abo,'e diagonal [' , '] (b) A. = inyenib1e = I 2 I 
I I 2 t] 

(d) A_21.V=21. R =I. 

14 If column I = column 5 then.t, i. a free variable. lIS special solution is (-1.0.0.0.1), 

16 'The nullspar<' contairu; only x = 0 when A. has 5 pivots. Also the column space is it'. 
because we can sol ve Ax = b and ('l'I)' b is in the oolumn spac<' , 

20 Column 5 is sun: 10 have 00 pivot since it i. a combination of earlier columns. With 4 
pi,'<)IS in the other coluUlJls. the special solution is J "" (I. O. I. O. I). 'The nullspace contains 
all multiple. of s (a line in itS). 

24 This construction is impossible: 1 pi"ot columns. 2 free variables. only 3 oolumns. 

26 A.=(~ n 
30 A = [~ ~] shows that (a)(b)(c j are all false. Notice rref{AT) = [~ ~l 

32 Anyzerorowscomeaft .. theserows:R=[1 - 2 -3]. R -[~~~l R = I . 

33 (a) [~ ~] . [~ n [~a [~n [~~] (b) All 8 maui= are R's! 

Problem Set 3.3, page 141 

1 (a) and (c) are co".,ct: (d) i. false because R might happen to ha\1~ I·s in oonpivot columns. 

3 RII = [~ ~ 1] RJ:! = [R" R,d Rc - [ RO" :..] - uro row in the 

uppor R mo,'e. all the way to the bonom. 



5 14 Solution!; to S<leClM h"",~ 

S I illink thi. i. trw. 

' SptCialool"tion,.,.,co/umru;ofN~I -2 - I 10; - 3 -S 0 II and 
1100:0-2 1 ]. 

13 Ph .. rank r (tile sarno I. ;J) beelU'" elimination producn tile sarno pi ...... column •. 

14 ~ f2S1k of RT i. al><:> r. and tile uample matrix,l has rank 2: 

,,_[122] 
" 1 

s_[~ n 
1ft <nT I(.,.T) _ ~ ( .T .. )!T has rani; on< unless ~T .. _ O. 

18 If we k""", tbat f2S1k </lT AT) ~ ronk( AT), then sin«: "IRk .... y. tile same fur lran>p<JOeS. 
we hlv~ rank(,l B) ~ rank(,l). 

20 Cenainly A and 8 h.a"e ., _ rani; 2. ~" w i, pnx/tIct ,l B has It mosI rank 2. Sin«: 
B,l i~ 3 by 3. i, cannot be: I "",n if ,lB _ I . 

21 (I) ,l and /J 

matrices). 
k.y fx, ' 

"'ill t.o.b hI...., lbe: .. me "uil,1*'" and row spa<:e .. R (same R fu< both 
(b) ,l e<jWlI . an i", .. rtil>l~ mauu limes B. when they lJIare lbc: same R. A 

21 ,l .. (pi~ co/umn.)(oonuro.-, of H ) .. [: :H~ ~ n .. [: 'OJ [oo OJ 10+004, 
I 0 0 0 8 

24 ~ '" by n m.tri~ Z hI. r """" M the ....., of its main dilOgOOal. Otherwi", Z i •• 11 
.=. 

Problem Set 3.4, page 152 

ThenlR dl= [~~f2 ~/2 ~ J 
o 0 0 0 

,l ..- .. b h.a. I ool.tion ,.tI<tI ~ -)hI" 0 and b)- 2b1 .. 0 : tile rotum" spa<:c is til< tine 
lhrough 12. 6. 41 which i. the inler>e<:lion of the planes bJ - )hI" 0 and I>J - 2b1 .. 0; lhe 
nullspa<:c C()fII>in, all rombi~ion. of ' l .. (- 1/2.1.0) and ' 2 " (- 3/2.0.1 ); particu lar 
solution JC p .. d _ (3 . O. 0) and romplet<c oolution JC , + r l l ) + <":2 ' 2. 

, , 
4 "-~ompl~" - (I 'O. !.0)+JCl(-3. ]. 0 .0) +-<. (0.0. -2. I). 

ft (I) Soh-abl< if ":! ~ 2b) Ind 3bl - Jb] +b. ~ O. Then ..- .. [%1 ~:: ] (00 f .... , .. riobles) 

(b) SoI>'abIt if b:! _lb) and 3bl-Jbl + b. = 0. Then z .. [~I~:I]] + -"J [::::J 

, , 



Sol",,,,,,, 10 Soloth'd E>.etc.... 5 15 

8 (I) Ew:ry b i. in , .... column space: jn&t"..","~, "",'J. (b) No>ed bJ _ 21>:. R_ 3 -
2..,....2=0. 

12 (a) .rl-.ll and 0 soI't: .4 .r '" 0 

13 (a) llw: panicul.,. IQIrnion .r p i> alwlyl muhiplicd by 1 (b) Any soIu,ioo c ... be , .... 

panicular soIulion (0) [~ ~] [; ] _ [:]. llw:n [: J is >IIoo1tr (length -12) than [~] 
(d) Tbo -homug~ .......... ' $OIu,;o., in tho nullspac<' i • .r~ ~ 0 ~" .4 i. invenible. 

14 If culumn ~ ..... 00 pi""' . .r, i. 1 free variable. Tbo uro '",,:<or I. "'" ,1>0 only ... 1",;.", 
10 .4 .r = O. If A.r = b h .. a soIu'ion. i, has ill/in;,t!)" ""'")" wlutioos. 

16 The largW rank is 3. Then ,11m: i~ I pi'-"JI in C"(ry..,..... The solu,ion aho·ay. ~.<isIJ. llw: 
col umn .pace i. Rl. "n • .ample i. A _ r I F! for any 3 by 2 mllri . f ' . 

18 Rink = 3: ""'k .. J un""'" q .. 2 (I .... n !"Ink _ 2). 

25 (IJ , < ... always' ::: n (b)'=",'<n (e), <"'. ''''" (d) '''' .. '" n. 

,, [12 3 O]~['" 
004 0 001 

["" '] ['" "] JO I J 2 0 5 _ 0 J 0 -3 J _ 

2049 10 0003 ' 

" " 
'] ~ [' , . '" 

[
' 0 , 0 - ' ] [ - :] 0100 J : .rp=0 
000 I 1 2 

Problem Set 3,5, page 167 

2 .J .• z . • J ~ i~""'m. All $i . ,~ are on the pi ..... (1.1. 1.1) • • ",0 OQ roo four 
Qf these .i~ ,.ectoo; can be i~""'nL 

) If" _ 0 ' .... n column I _ 0: if d _ 0 t .... n b(roIumn 1) - <I(ool"mn 2) _ 0; if f .. 0 

then all coIumn •• Dd in zero (all are perpendicular w (0 .0. 1). all in JI>o.r)" plane. muS! 
be depend<:nl). 

6 Column. 1. 2. 4 are illdqlendt:nt AI ... I. 1. 4 and 2. 3. 4 and """'rs (but".,. L 2, 3)_ 
s...... column numbers (IIQ( samt column,!) fQl" A. 

B If q (" 1+"" )+"( '" + .. ,1+<")(" 1 +"1) '" 0 thon (<":1+<") '" +(c,-k:I)" !+(c, +"2) .. ) = 
O. Since , .... .... are j~""'", ,hi. require~ "1 + cl _ 0, q + C] _ O. q + "1 _ O. Tbo 
unly >OIutioo 1< CJ _ "l _ <"] _ O. Only this combination 0( " ,. " :. oJ give. ltfO. 

, 
i 



5 16 SoIubo .... 10 s..~ [xen:;..,o 

12 b il: in 1M CQlumn ~ ... ·lItn IMre i, a soiul ion 10 ;I ... = II; t is in lhe row space ,,·heft 
lhett i. I ooImion It) ;IT, _ ~. Fu1~. 1b( ttrQ _OC1O< is a lw.ys in lhe row ~. 

14 1b( dimension I)f S is (I ) ""rtI ...-!>tn z = 0 (b) one ... hen z _ ( I. I . 1. 1) (c) lit .... 
,,·!>tn r .. ( 1. I. -I. - I ) boo""s<: all reanang<omentl I)f litis z an: perpeDdicular 10 ( L 1. 1. I ) 
(d) four .... lItn lilt z ', ore no1 C<llIJl and don'l add 10 zrru. No r gl"g d im S _ 2. 

U, l1le " independelll \"ffiOrS span I space <If dimension II . They .... a bwi. for thaI ~. 

If lbey are lhe CQlumn. I)f ;I liltn ." i, ItO/ las than " (m ::! "I . 

19 (I ) The {, _ Ion "'ight "'" spatI 114 

(el Any four "",Irs Iw I basis. 

(b) The 6 vectors UN _ independent 

21 Om 1w;'. is 12. 1. 0). (-). 0.1 ). l1le vec1O< (2. 1.0) i • • basi. for lhe ;nte.....:lion w;1It the 
X)' pi.". . The normal \~10< (I . - 2. 3) i, I ba,i, for lhe line perpendicular 10 lhe plane. 

23 (I ) T"", (h) False bee""", I"" hlsis \-ectors may no1 be in S. 

21> Ibnk 2 if t,. 0 and d ,. 2; rank 2 .'''''pI wlltn c,. d or c ., - d. 

'J .... [ , , -, 

" -[' ,j.[- ,j-[, H, }[' 'H 'J -, 
].4 y(OI '" 0 re<!ui .... ;I + 8 + C _ O. One: ba>is i. CQU - «>s 2.>: and «>Sz - cos)z . 

36 y, (x). )~ (x). n("') can be .... 2.>: . 3.t (dim 1) or ... . 2x .... 2 (dim 2) or z . ... 2. z l (dim 3). 

40 The ""bspoce <If m.urices mal 1Ia", .4 S .. S.4 has dimen' ion 11vn. 

;f2 If I"" 5 by 5 molri, [.4 ~ 1 i, ;"","ihle. b i . 1>01 I combinlllion Qf lhe CQlumn. of .4. If 
[.4 • J is . ingular. and lhe 4 e<>Ium ... of ;I an: independent b is a combina!ion of lhoso 

column • . 

1 (I ) 11_ and CQlumn space di_ion. 
mension .. 2 ~m .. 16 .. In +" 
I)<lly II. 

Problem Set 3.6, page 180 

_ 5. nullspace: dimen, ion ,. 4. Jefl nullSfllCC d i· 
(b) Cl)lu,,,,, space il: II;l ; left nullspace emlliA' 

4 (1) [l~] (h) hnPQS>ihle: , + (n - r) n" .. t be 3 «I [lIJ 

(e) II"", space " CQiumn ,!*,e requires '" '" n. Then '" - r = n - ' : null~ lui...., lhe 
same dimension oDd lCIul lly the ..,... \-ectors ( ;I ... _ 11 meanS z .1 ........ SpICI'. ;IT z _ 11 

..... an . ... .L CQiUnln ~). 

, 



6 A: R"", opace (0.3. 3. 3) and (0. 1.0. 1); column opace (3. 0 . 1) and (3.0. 0); 

n~IJspooce (1.0. 0 . 0) and (0.~ 1,0.1 ); kft n~lIopace (0. 1. 0). B: It_ opace (I). col~mn 

opace ( 1.4. ~ ). null~: empty ba. i •. left nullopace (-4. 1. 0 ) and (- 5. 0 . 1). 

OJ (a) SIUllC row ~ and null'!""tt. n.erdore r.mk (dimension of row '!""tt) is Ihc ... me 

(b) SIUllC column ~ and kfI null~. So"", rank (dimension of column . pa<e). 

11 (a) No solution mean. rhO! , <: ",. Always , !: II. CarI 't com~ '" and n 

(b) If '" - r > O. the left null, pKC """tain. a """"'10 vector. 

11 [i i]U ~ ~] ", n ~ n ' + (n-,)",,,_3~12+ 2 i. 4. 
16 If A • • O and. i • • row of A then •• • ",0. 

18 ltow J- 2 row 2+ row 1= urn row §Otile veclon c{1.-2, I) are in the kf! nullspxe. 
n.e ...... "«ton happnt 10 be in rhe "ull.....,... 

20 (a) All oombillltioo. of (- I. 2. O. 0) and (-1. O. - 3, 1) (b) One (e) (1. 2.3). (0. 1. 4). 

2 1 (I ) M and ., ""' ... , (b) • and : (e) rank <: 2 if II and .. are dcpcndcnl or • and :: are 
(d) The rank of n T + .otT is 2. 

24 AT] _ II pull II in Ihc """ .pac~ of A: unique iOIution if the 1'/1 nl<I/J{HII:' (null'!""tt of 
AT) contain. only J .. O. 

26 n.e 1'OWS of AS '" C .'" combinalioos of the rows of 8 . So rank C !: rank B. Also 
rank C !: rank A. (The columns of C are combin.uions of the column. of A). 

2'.l "1t - I .all" 0,"1) "" I. "n _ 0 . aJ2 '" 1."31 - O. all '" L a)) = O.all '" 1 (not 
unique). 

Problem Set 4.1, page 191 

1 Both null$pa<:e V«"I<lrli are onhogooal 10 lhe row """"" ,'tC1Ot in K}. Cu1u ..... space i. 
p<1ptnd;rullr 10 lhe null~pace of AT in 1t2. 

~ A _ [l : l J (e) (I . I. 1) will be in !be nullspace and row SplICe: 00 such matrix. 

6 Multiply the n]ul lion. by 11 = I. n = 1. )') ., - I. ~ add 10 0 '" I 50 00 iOIu, ion: 
, _ (I. L. - I) is in the Idl nuliSpace. Can' t hi"" 0 _ (, A~ .. ,T" _ L 

, 
t 



5 1 8 Solu~Qm!o $eleele<! Ex"", i .... 

8 x = x,. + Xn. "'here x ,. is in the row space and Xn i. in the nulbpace. l1Ien Ax . = 0 
and Ax ="'x,. + Ax . '"' Ax •. All vect()J'!i Ax "'" rombina!ions of the columns of A. 

9 "'x is always in !M ro/Jlmn span of .... If AT Ax = 0 then Ax is also in the nullspace 
of ... T Perpendicular 10 itself. SO "'x = 0, 

10 (a) For a symmelril: matrilt the wlurnn sp=: and row sp=: "'" the same (b) x is 
in the nullspace and: is in the column space" row space: so these "eigcm'eclOn;" ha"e 
xT:=O. 

12 x splilS into x,. +x . = (I, - I) + ( 1.1) = (2.0). 

13 vT w = zero malrix makes each basis , 'ectOr for V onhogonal 10 each basis veclOr for 
11' . TIK-n every . in V is ol1ho;!lonaJ 10 e'-ery \/I in II' (they"", combinations of the basis 
vect()J'!i). 

14 Ax .. Bx me""" tha! [A B [[ _Il = o. "fhR-e homogeneous «]ualiOflS in four unknowns 

always have a nOflzero solution. Here x = (3. I) and x = (I . 0) and Ax = Hx = (5.6.5) 
is in both column spaces. TWo planes in Rl musl interseci in a line at least! 

16 ... Ty = O=> ("'X )T, =xTAT, ",0. Then ,.lAx and N(AT ) .LC(II). 

18 S.l. is the nullspace of A = [~ ; ~ ].n.erefore S.l. is a sub.pac~ n..,n jf S is 1>01. 

21 Fore~ample (-5.0. 1.1 ) and (0.1.-1.0) span S.l.= nullsp=: of 
A = [1223:1332[. 

23 x in y .l. is perpendicular 10 any "eclOr in Y . Since Y wntains all the vectors in S. x IS 
also perpendicular 10 any vector in S . So n'cry x in V .l. is also in S .l. . 

28 (a) (I . -I. 0) is in both planes, Nonnal '..,Clors are perpendicular. but plane. slill intersect! 
(h) Need th .... e onhogonal vectors to span the whole onhogonal compkmen!. 

(el Line. can mttl without being <lnhogOllal. 

30 When AB = O. the column SplOCC <If B is conaiMd in the null~pace of A. Therefore the 
dimension of C(Bl := dimension of N ( A). This means rank (B) := 4 - rank("' ). 

3 1 null {N ') produce. a basis f<le the row space of A (perpendicular !o N{"' l). 

Problem Set 4.2, page 202 

1 (a) " Tbl aTa = ~/ 3: P = (S / l . S/ l. SO): e = (- 2/ 3. 1/ 3. 1/ 3) 

(b) "Tbl aT,, _ _ I: p= ( 1.3.1 ): t=(O. O.O). 

3 PI = ~ [: : :] andPtb=~ [;] and PI
2 = Pt .I']. .. ..!.. [: 

3 111 3 3 III 

" P I = ( ~. - ~. - ~ ) and P~ = (~. *.-~ ) and P3 ~ ( ;;. -~. 3)· l1Ien P t + p~ + p ) = 
(l . O. O) =b. 



SoIulioM !O ~ E>c_ 519 

11 (a) p '" 1I (II TAj- 1IlTb ~ (2.3.01 and t ""' (0 .0. 4) 
(0. O. 0) . 

(b) p "" (4. 4.6) and t '" 

lS The column spac-o of 2A is lhe: same as lhe: column SjlaCC of II . :; for 2.11 is Ioall of :; 
for A. 

16 ~(I. 2. -1) + ~(1. O. 1) .. (2 . I. 1). The~fon: b i. in llle pi.".. Projmioo ihows Pb .. b. 

18 (a) 1 _ P is !be pruj«Iion "",Iri~ 0010 (1. - I) in !be porpudi<ulor dil"\'Clioo 10 (I.1l 

(b) I - P i. !be prujeclion manu 0010 !be plane x + , + : ,., 0 po'P"ooi<ular 10 (I. I. I). 

20 t=[-:]_ Q = ttT/.Tr =[_ : ~: - : ~: - : ~ ~] _ P=I_Q=[!j: !~: _: ~~ ] . 
-2 -1 / 1 II I 2/ 1 1/ 3 - 1/ 1 1/3 

21 (A (ATA)- I AT)2 .. A( ATA)- I( ATA,(ATA ) - IA T .. A{ATA)- IAT. Therefon: pI .. p . 

Pb is ah'lIy' in 1he: column spac-o ( .. he:~ P projmsj. Them,,", ils proj«lion P(P6) is Pb. 
24 The nullspKC of A r is orillogonalw !be column space C(A). 50 if A Tb = O. the: proj«. 

lioo of b ooto CeA) .tIou1d "" p .. O. Check Pb., AeA T A)- I AT b .. A (A T A)- I 0 .. O. 

28 p2 = I' '"' pT live pT 1' ... P. Then lhe: (2. 2) ~nlry of P «juah lhe: (2. 2) ~try of pT P 

which is the: length squaml of column 2 

29 Se1 A = 8T. Then A h .. ir><lepondent columns. By 40. AT A = 88T i. ;nveniblc. 

30 (a) The column spac-o is III!: lirw: through " = [~] SO Pc = :;: = 21~ [1
9
2 ~ l W. 

can't use (AT A )- I because A has ~I columns. (b) The row SP"tt is the: lirw: 
through. _ (1.2.2) and PR _ • • T/ . T •. Ah .... yl Pe A .. A and APR" A and .lIen 

Pc APR = II! 

Problem Set 4.3, page 215 

, '" [i l"''' [il"~ h - [: :'J .. ,'.-[ ,~,l 
hi_ ,' • • '= i = [:l" ,-,,-[i~l" ,-,-,-[:n 
£ : 1. 11 : 44. 

S £ _eC _ O)I+(C_ S)I+(C _ S)I+(C_ 20)I. AT .. [I I 111. ATA =1 4 Iand 
ATb _ 1361 _nd (AT A ) - I ATb _ 9 .. _ l><igII. C. Errors . .. / - 9. - I . - I. II). 

1 A _ 10 I 3 4 1T . AT" _ 1261 . "" "T6 .. [112]. B¢" f) .. 111/26 •• 05( / 1). 

, 
t 



8 i = 56/13. p = (56/13)(0. l. 3. 4). C _ 9. 0 '" 36/ 13 doII't match (c. 0 ) = (I. 4); 
~ oolumns of A w~re not perpendicular so we can't project ~parately to lind C = I and 
0= 4 

Closest parabola: 
Projecting ~ 
onto a 3-dimensional 
oolumn space [j l.lWHll , 

[ ' • "] [C] ["] ATAi= 8 26 92 0 = 112 . 
26 92 338 £: 400 

11 (I) ~ best li~ i. x = I + 41. which goes through the cem~r poim (i: &) = (2.9) 

(b) Fmm tM first equation: C ·m+D · Ei. tll = Ei.t bi. Divide by m to get C + Or = b. 

13 (AT JI )-t JlT(b _Ax)= i _ x. Errors ~- Jlx ={±I.±l.±I) add to O. so ~ i -x add 
to O. 

14 (i -x)(i- x )T .. (ATArt AT (~ _ AxJ(b_Ax)TA(ATi\} -t. Average (b -Ax )(b 
Ax )T = ,,21 gives ~ cOI'Qr;ance matrix (ATA)-IAT.,. lA (ATA}-t which simplifies to 
"'Z(AT A)-I . 

I 9 - I b 
16 iOb1O+ iOx9= 10(bl + ... + 10)· 

I 8 p .. ,ti '" (3, 13. 17) gi,'~s the heights of the clost'st line. The error is b - p = (2. -6, 4). 

21 ~ i. in N (AT); p is in C(A); i is in qAT): N (A) = {Of = um "e<;lor. 

23 '{M, squ","" of ~ distance between points on two lines i. E = (y_x )2+ (3y_x)1 +(I + x)2 , 
Set ja£/ax = -(.I" -x) - (3y - xl + Ix + I) = 0 and taE/ay = U' - x) + 3(3y - xl = O. 

'{M, SOlulion is x .. -31'.}' = -2j1; £: = 2/7. and Ih~ minimal distance is .tr11. 

26 Direct appro:>ch \(} 3 points on a hne: EqWll slope. (hz-bt)/(12-lt) = (b)-b2)/(13 - 12)' 
Linear algebra approach: If , i. onbogonal 10 the column> (I. 1, I) and (11.12 .13) and b 
is in the column¥.ac~ then ,Tb =0. This J '" (/Z-ll.ll-lj,II-12) i. in lhe lefl 
nullspace. lbcn , b = 0 is the same equal slopes oondilioo wrinen as (/>.l- btJ(ll -12) = 

(b) - bl)(rZ -II)· 

Problem Set 4.4, page 228 

3 (.)AT A= 161 (b) JI T A is diagonal with entries I. 4. 9. 

61f Ql and Qz lI"O onbogonal malrictsillen (QIQz)TQ1QZ=QIQTQ1Ql-QIQ2=J 
which means that Q l Q 2 is orthogonal also. 

6 If q l and q2 "'"" orthonormal ''Ctlon in RS then (q T ~)q t + (q i b)q2 is c1oseStlO ~. 

11 (aJ Two ortJ."Mrmal >'ecton are ,10(1. 3. 4. 5. 7) and ,10(7. -3. - 4.3. -I) (b) ~ c1Q:'l-

rst ''«lor in tile plan~ is ~ projeclion QQT (1. O. O. O. 0) = (0.3. - 0_18. -0,24, 0.4. 0). 



.. [' 'J -[ [[I.' fTltJ:[ I/.ti I/..!'iJ[./2 2J2J= QR 1 0 9 , 'I I 0 IBI 1/..fi. - 1/..12 0 lJ2 . 

1 5 (.) q ,=~(1.2. -2). f l ""'i12. 1.2), QJ_!(2._2._I) (b) The nul!spKe of "T 

"<>."';"$ f ) (e) i .. (AT A)- J .... T (1. 2. 7) .. (I . 2), 

16 The projection p _ ( .. Tbj a T .. ,.. ,., 14a/ 49 .. lit/7 i, ~~ to II: 9 , .. " II'" .. tJ{1 i< 
(4, S, 2. 2)/1. B ", It - " '" (-1.4, _ 4, - 4)/7 has I BI -= I "" " 2 = B. 

18 A _ " _ (1.-1.0. 0): B _ b _ P - (t. !. - I. O): C - < - PA - Ps - ( ~.~. ~. - I ). 
NOIice tlIe pattern in tho!;r orthogonal veclors " . B. C . 

20 (aJ Tnx 

2, The onhonorm:ol >ttIors ~ f ) = (I. I. 1. ])/ 2 and f l = (-S, - I. I. S)/...m. Then It .. 
(-4. -]. 1. 0) prnjec,. to p _ ( _ 7. -J. _ I. 3)/1. Cb«k tha, It _ P _ (-I. -3. 7. - 3)/2 
i. onhogonal to both q , and f l' 

22 it :(l.l. 2). 8=(1. -1. 0). C .. ( - l. - I . I ). NO! ye1orthooormaJ. 

26 (qI C'l<I' J = :" ~B because 9 2 '" I : . and the e.ltrl ' I in C' is onhogonallO f l' 

2':! There an: ''''' mulliplicalion. in (11 ) ."" t",lll multiplications in ~ach pan of (12). 

30 The column, of the u",I<, matri> Wan: Ofthonormal. lllen W- I .. WT. S« Se<:tion 7.3 
for ~ .!)Qu, " .... ·d<'~ 

[' 'J [' 0 ' ] II Q I "" 0 _ 1 ~Hec\S across .< a~is. Q2 '" 0 0 - 1 across plane y +: '" o. 
o _I 0 

36 Onho:gonal and J<:>y,.", ,riangula, q ±I on ,ho main dia.!lonal. 0 "I_ho",. 

Problem Set 5.1, page 240 

do,(211) ~ g and de,( - A) _ (-I)' del A _ ! and deI (A ~) _ ~ ond deI(A -I ) _ 2 

s IJ)I '" 1. I J~I '" - 1. Ihl "" - 1. Th detcnninants an: 1. 1. - 1. - I "'pra'ing. :;Q 

Illol l- I. 

e Q T Q ~ I ,.. IQ I2 '" 1 ,.. IQ I ,. ± I: Q" ""ys orIho:gonal SO c",,·' blow up. Sa ..... f..,.. Q-I . 

10 If lho ""'ric. in "'~ row add '0 ,."". ,'''''' (1.1 .... . I) i. in ,ho nUII$pac<eo $i ngulat A 
has del ~ O. ("The columns add 10 lhe zero roIumn so lhey an: linurly depo:ndtn1.j If 
"'~ry row odd. to on<. then rowS of A _ I add h) un> (not n<tt<sarily dnA _ I). 

11 CD ,., - DC ,.. IC DI .., (-I)"IDCI and _ -l OCI. If ~ i, "'"<11 " .• can ....... IC 0 1 .. O. 

14 deI(A) _ 24 and deI(A) _ 5. 

, 



15 <k1 _ 0 .nd <leI '" I _ 2/1 +,. _ (1 _ ,1)1. 

t 7 Any 3 by 3 skew.symmetric K has <k1( KT) '" da(-K ) = ( _ I)J<Iet( K ). This i. - dtt(K ). 
DUI .1", da( K T I ... <Iet ( K ). "" we muS! have <k1(KI .. O. 

21 Rules 5 and 3 gi", Rule 2. (Si""" Rules "' and 3 give 5, thoy al"" gi", Rule 2.) 

2J drt(A) .. 10. Al _ [:! In. <Iel(A l ) .. 100. A- I", Jo [-i -!]. 
del(A - H) _ ;.! _ n+ 10 .. 0 wben ). ~ 2 or ). .. ~. 

27 <IelA "Dhc. <leIB __ ol>cd, dclC _ o(b _olk_b). 

['""" 'fI'<j [ok "'"J ' [' -'j , 30 al/ab aI/3d .. ;;J::Y;'" .i& ... od - be _~ " _ A- . 

, 
" 

32 Typical <kknninanl$ of rand(~) art Iii'. I~. 107'\1. 10218 for n '" ~. 100.200,400. Using 

randn(~l willi normal bdl-ohapod probab;I;Iics Ibn< art loll. IOn. 10186• Inf means ::! 2 1(12.<. 

MATLA8 rompults 1999'~ " ZIOlJ "" 1.8 " loJO'l bul one """" 9 gi .... Inf! 

3 4 Red""" B 10 I row 3: row 2: row I]. "Then drt B _ - 6 . 

Problem Set 5.2, page 253 

4 (0) "The loS! th~ row. musobe <lependent (b) In each of lhe 120 ~""O: Choices from 
11\0 IlSl 3 row' muSO uS!: 3 oolumru:: 01 ,"->, one choice will be >.em. 

5 " J[ olJoJ;'''"" gives -I. "'~"lJOJ~04 1 gives + I SO <leI A = 0; 
dclB= 2 · 4 ·4 · 2 - I ·4 ·4·1 ~ 48 . 

7 (a) If Oil .. 0!2" 033 EO tho" 4 terms are ... '" l~"'" (b) IS ~rms art ~rtainly urn. 

9 Some Ie"" "1""11' · '0.",;. not ttro! Mo .... rows I. 2 .. .. w iBm rowS D . fl. .,"'. 
l1Icn tb«c nonttrn ••• will be OIl !be main diagonal. 

10 To g<1 + I fur !be ..... n pr""ulations !be matri .. need, an t"Wn number of -I 's. ~!be 
odd p's !be matrix l>eNi III odd number of - I 's. So six I's and <let _ 6 art ill'\fl'Of$ibk: 
mu(d<1 ) _ 4. 

[ 
0 "-~] C _ 0 _2 1 14. <lelB _I(OI+2(421+ 3( _351 __ 21. 

- 3 6 - 3 

[" '] [" '] 1] C _ 2 4 2 and ACT .. 0 4 0 . "The",f""" .... - 1 .. !CT. 
113 004 

I S (a)CI _ O. Cl _ _ I. C,,,,O. C ... I (b)C.",, - C. _ lbyrofoclOrSofrow 
thon cofoci<)rS of CQlumn I. llIen:f"", CIO = - C, ., C6 = - C. _ - I. 

, 



1 i n.e L. I cofKWr is £._ 1. n.e I. 2 oofKWr bu I 'ingle 1 in il' lim column. wi.h COf:lC1Of 10._2· 
S;p, live £ . _ 10._ 1 - 10. _2. n.... 1. O. - I. -1. O. 1 repeats by sius; £100 ~ -I. 

18 n.e I. I ooflClOr i. F. _ I. n.e 1. 2 oofOClOf h.ao I I in column I. wi.h coflC1Or f "_2· 
Mulliply by (_ 1)1+2 and also (- I) from.~ 1.2 e.''Y 10 find F ... 1"._1 + 1". _ 1 (iI() 

Fibonacci). 

20 Since x. x2• xl are .11 in .he sm.: row. m.y are ... ,' .... ""'hip/jed in de! V •. n.e <kttnni· 
naIM is n-m II Jf '" a Of h Of r .... de! V bas f"",on (Jf _ a)(Jf _ h)(Jf - r). Muhip/y by !he 
coflClOf VJ. Any Vaodtl1llOflde matrh Vii'" (q,i- 1 bu dtI V '"' produc1 of all (q - q) 
forl > k_ 

21 G2 ~ - 1. GJ .. 2. G ... -3. and G . ... (- W-l(~ - I) .. (pnxllIo(1. of !hr w eigenvalues!) 

13 n.e problem ..u lIS 10 sOOw Ihal f"20+2 .. 31'20 - f ·2Io_1. ~p u. ing the Fiboo\ac(:; ",Ic, 

1"20 +2 .. I'l.+. + Flo .. Flo + Flo _I + I'l. .. F-z" + ( F-z" - 1"10 _: ) + Flo .. 11"20 - Flo _2_ 

11> (I) All L"I have de! '" I; <let Uk .. de! AI '" 2.6. - 6 for k .. l. 2. 3 (bl Pi""" 2. ~. -!, 

27 Problcm~givcs<let[_CA_: ~] " 1 and del [: ~]" I" l limei ID _C II -1 8 I which 
i, lAD - AC,,-l 8 1. If AC = C" Ihi. is 1110 - C ",, - 18 1 '" dtI/l1.D - C8). 

19 (I) del II .. all C 11 + ... + a loC I. _ The deriVlllive with =pecl 10 all is I~ cofat1OJ C 11. 

I I llIcn: are ~ve ~ro ptQ<Iucts. all I', with. plu, or minus .ign. Hen: . ""he (row. col· 
umn) numbers and !hr oigno: + ( 1. 1)(2.2)( 3.3)(4. 4) + (I. 2)(2. 1)(3. 4)(4.3) - ( I . 2)(2 . I) 
(3.3)(4. 4) - (I. 1)(2.2)(3. 4)(4.3) _ ( I . 1)( 2. J)(3. 2)(4. 4). Toul 1+ 1 _ 1 - 1 - I .. - I. 

34 Wilh all .. I. lhe - 1.2. - 1 "",iii. bas de! .. I and inverse (A-')i) .. " + I - mall(i . j ). 

l S W"h all .. 2. the - 1.2. _ I matriI h.ao del = n + 1 and In + II(A- ' );} .. i(. - j + I) for 

i !: j and . ynun(lricilly (0 + 1)(,, - 1 )Ij '" j(w - i + I ) fOf i ~ j. 

Problem Sel 5.3, page 269 

2 (a) , .. - c/(ad - />c) (b) ' _ UI _ ld)l D. 

1 (I) Jf l .. 3/0 and Jf2" - 2/0: DO solUlion (b) -" I .. % and -"2 .. 0/0: ~..&tk!""i~. 

4 (IJ -" I "" <Iet(l h a2 a J 1) / deI II . if del liFO (b) The delrnn;nanl is Ii ...... in i'$ 
~m column 5(1 Jf llal . z a l l + Jfllaz _2 _11+ -"J la 3 _2 _JI. n.e I", lWO dtt~rminan .. 

-= 
[ 

, 
, -I 

' (.) O ~ 

0-; [" '] (b) ~ 2 I 2 . n.e in......,. o f • ,ymmetric ..... ri. i, .ym ..... tric_ , , , 

, 
t 



524 50<>",""" to Sele<oed ben: i"" 

[ , ~, 'J [" 'J 8 C = J I _ I and ItCT ., 0 J 0 . 
- 621 003 

Thertf.,..., del A .. 3. coracror of 100 is o. 

9 If w·o know the rofactors and del A = I then C T ., It -I and det A - t '"' I. Now A i, the 
in'..,,.,.. of A - t. SO A is the cufacn .. ""'tri~ f{ll' C. 

11 We find delA _(delC).!t with ~,.,4. Then del A- I i, I/ detA . CooSt""" A- I U,inl 
the cofactors. In,...n 10 find A. 

12 The rofaclOrS of A ~ in~Iffl.. Div;. ion by det A .. .:1:1 g;><es inl"8« ...,tne. in A - I . 

16 For" _ 5 the nwril C CQlltains 25 rofactors and each 4 by 4 cufocror CQIItain, U ~""" 
and each lerm needs J mullipli<&liQns: ,oW 1800 multipli<&lion. Y$. 12!1 ({II' Gauss-Jordan. 

18 VOIume _l nt l_ " . 

'" 6../2. 

19 (I) Are. IIB:I- ' . .. 
I, j 'I A"," of fac .. _ length or cross prod""t 3 I I __ 2i - 2J + Ilk _ , " 

(b) 5 + .... w rriangle lrel ~ Ii! : I '" 5 + 7 - 12. _ L • I 

22 The mnimum V<)lmn. i. LIL1 LJ L. ruebcd ",10m the four <:<III" ~ orthogonal in R·. 
With en"," I IlId - I alJ lenglh$ Ire ../1 + 1 + 1 + I .. 2. The "",",imum determinant i. 
2' _ 16. achieYod by Hadamard Ibo>..,. For a J by 3 "",triA. det A _ (.n)' oan·, be 
achieYod. 

.. 11<1 111111<01 
_ .:1:1<1 111111("1 

26 The lI-dimensiotW ""be has "1!' COI"1Iers. 1120- 1 <:<Iges and :z" (II - I)-dimen.ional (aces. 

Coefficients from (2 + ... r in Work<:<l fuampie 2..4A. The cube from 21 h, .. \/{I1"me "1!' . 

27 The p)·",mid """ lIOI"me !. The 4-dimensiooal p)'rsmid has V<)lume 

32 Base ~. 10. heighl 2. volume 20. 

, •• 
36 S ., (2 . I . -1). The ~a is I PQ ~ PSI _ 1(-2. - 2. - 1)1 _ 3. The other four COI"1Iers 

could be (0 . O. 0). (0. O. 2). (I. 2. 2). ( I. 1.0). The V<)lume of the tihed box is Id~' 1 ,., I. 

Problem Set 6.1 , page 283 

A and 1t1 and A'" all 1Ia,.., lhe same eigeo'...wn. The eigenval"'" are I and 0.5 ({II' A, 
I and 0.25 for It l. 1 IlId 0 for A"'. The."'"", Al;, half ..... y bet",een A IlId A"". 

fuellanging the rows of A ch>.ng .. the eigen,,,lues to 1 and -0.5 (it is .. ill a Markov 
rtUltrU. ... ·im ,igen,·a)"" 1. and the Inc< is now O.2 + 0.1 - so the.,.beT eiscnvalue is - 0.5). 

Sing"l ... rtUltrices stay o;nsul ... during elimination. SO ~ '" 0 doc, IlOl chansc· 

3 A """ ~1 ., 4 and ~1 _ - I (ct.c.ok '''''''' and de1o;mUnant) with " I ,., ( I. 2) .nd " 2 _ 
(2. - 1). It -I has the same ~ige......:'ors l$ A. with ~il~","IO>t!; I I I I '" 1/ 4 and Ji l l'" - I. 

, 



Solutions to Selected Exen:ise< 525 

6 A and B haVi: )'1 = I and 12 .. L AB and BA ha,~ 1 "" ~ (3 ± .t3). EigenvalllCs of AB 
art nol rqual to eigenval~ of A limes eigenvalues of B. Eigen"alllC~ of AB and BA an 
rquIIl. 

8 (al Multi ply Ax to see i..r which re"eals I-. (b) Solve (A -ll)x = 0 to lind x . 

10 A has 11 = I and 12 = .4 with XI = (I. 2) and X! = (I. -1). A"'" has 1-.1 = I and ).2 =0 
(same eigenvecton.). Aloo hlUi 11 = 1 and ).2" (.4)100 which is near zero. So A100 is 
vel)' near A"". 

11 M = (A - 12 1)(A - 111) ~ zero malrix so lhe column~ of A - ).11 are in lhe nullspace 
of A -12/. This "Cayley-Hamihon Thw",m" M = 0 in Problem 6.2.35 has a ~hon proof: 
by Problem 9, M hlUi eigen"alues (11 - A2l(11 -11) '" 0 and (12 - A2l(1! - 11) = O. 
Same x I. x l. 

13 (a) PU =(l/uT)u= u (I/TIIl= u sol = l 
(t) XI _ (-1.1.0.0). x p.{-3.0.1,0). 

(b) P ~ ={IIIIT) ~ = II (uT .)_ O SO l=O 
XJ = (-5.0.0. I) are eigenvectors with 1 = 0. 

15 1 = !(-I ± ,./3): 1M. three eigenvalues are 

16 Set 1 = ° to lind del A = ()'1)(}'1)'" (A~). 

1. I.-I. 

17 If A has II = 3 and l! = 4 then del(A - At) = (1.. - 3)(1-.- 4) = 12 -1'- + 12. Always 
Al '" ~(a + d + ';(o d)2 +4bc) and 11= !(a + d - J ). Their sum i. o+d. 

19 (a) rlIIl k '" 2 (b) det( BT BJ .. 0 (d) eigenvalllCs of (B +f)-I are I.~.j. 

21 0=0, b=9. c = Omultiply 1.1.;,2 in OO(A-A() = 9;'_11; A=companion"""rix. 

23 1 _ I (for Madov). 0 <for singular). - i (so sum of eigenvalues = trace = ~). 

24 [~n [~n [=: :l AlwD)'s A2 .. zero maw if ;'",0.0 

(C~yley-Hamihon 6.2.35). 

27 1", I . 2. 5. 7. 

29 B hlUi 1 = - 1. -l, -l, 3 so delB = - 3, The S by.5 matrix A has;',.. O. O. 0, O. S 
and B =A -I has 1 = -I. -I. -I, -I. 4. 

33 <al II is a basis for the nullspace. U aIld '" giVi: a basis for the column space 

(bl x .. (O.l. ~) i. a panicular SOlution. Add aIly ell from the nullspace 

(e) If Ax = U had a solution. u would be in the column space. gi,-ing dimension 3. 

34 With Al = e2Jr1/3 and 12 = e-2-~i/l. the delenninanl is '-I ~2 '" I and the troce is '-! +'-2 .. -J: 

e2..~ I/l+e-2-~;/l = cos2."[ +, sin 2n- +cos2n- _ isin 2u = ~ I.A15o).f=l~=1. 
3 3 3 3 

A .. [:1 Al has this uace -I and determinant I. Then Al = I and every (,\I-IA M )J = (. 

Choosing;'t =12 = I leads to I or else 10 a maw like A = [ ~ I l that has AJ -F l . 



5 26 Solu1ions to Sel~ed Exercises 

35 det( J' -)..1) "" 0 gives !he equation i..1 = I. This ~ftects the fact that p l = I. The 
solutions of .. 3 .. I "'" A _ I (~a1) and A _ t2.~ i/3 ... = e-hi/1 (complex conjugates). 
The ~al eigen"ector '<I = (L 1. 1) is 001 changed by !he permullllion P. The complex 
eigenvecuxs are .r 2 _ ( I. ~-2.~ I/J ... -4.~ ;fJ) and .r ] _ ( I. ~2.TifJ ... 4:rri / 3) = i':. 

Problem Set 6.2, page 298 

4 If A = SAS- I then the eigenvalue matrix for A + 21 is A +21 and the eigenvector malrix 
is still S. A + 21 _ S(A + 21)S-1 _ SAS-I + S(2I)S-1 = A + 21. 

5 (.) FaIie: don't know A's (h) True (c) True (d) False: n«d eigenvC"(:torJ of 
S!. 

7 The column. of S are nonuro multiples of (2. I) and (0. 1 l in either order. S~ for A - I . 

A' [' - 3 
F]l) _ 676S. 

10 (a) A .. [.~ '~J has Al _I. "2 - -~ with .l" l - (1.1 ) . .1" 2 = (1. -2) 

(blA"=(: -!][~ (-~wJ[t_n-AOO=u n 
11 A=SAS-I =[' ']. ' [i..1 A2][" 0][ 1 - .. :] 

I 0 i.. 1 i..: 1 I 0 i..: - I i..1· 

SAtS-
1 

= ~I I A2 (A/ "n [1 ~~][- : -~~][~ J = [( .. t - .. ~)/( .. I - "2J 
13 Direct computation gi'·e. Lo .... . LIO as 2. I. 3. 4. 7. II. 18.29.47. 76. 123. My calculator 

give. AlO = (1.618 ... )10 _1 22.991 .... 

16 (al False: don't know A (b) True: missing an eigenvector (el True. 

17 A=[_~;] (or other). A=[_~ ~l A"[~~ ~l only eigen"e.:1or; are (r. - c). 

19 SAtS- 1 approaches zero if and only if every IAI < I. Bt _ O. 

21 A=[·~.n s=[~n BIO[n=(·9)IO [n B
IO

[_ i]=(.3)IO [_n BIO[~]= 
sum of Iho5e \v .. o. 

[' '][30]'[' '].[3' 3'-"]. 23 Bk - 0 -1 0 2 0 -1 0 2k 

25 trace A B = (aq +b.)+(cr+dl) = (qa + rc)+(.b+td) _!nICe BA. Proof for diagona!izable 
case: t/l(: tl'3tt of SAS- I is the trace of (AS- I)S = A which is rh .. • um of 1/1(: A '5. 
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18 1bc A's frum a subspace since cA and AI + A2 ha,'e!he same S. When S= I !he A's 
Kive !he sub'pace of diagonal matrices. DilTlC'nsiQn 4. 

30 "TWo problems: TIl<" nuli£pace and column space can overlap, SO x could be in bo!h. Tll<"re 
may nol be r inoiependem eigeovecLOrs in !he ooluIIIIl .pace. 

31 R = S../ilS-I .. [~ ~] has Rl = A . ./B would have ~ =./9 and X = J=T so il' trace 

is nOi real. NOle [ - ~ -n can bave J=T "" i and - i. and real square root [_ ~ ~ l 
32 AT _ A iw:s x T ABx .. (Ax )T (Bx ) :": IAx ll Bx l by the Schwlll"Z in"luality. BT = - B 

give, - x BAx .. (Bx ) TA x :": l Ax U Bx I. Add !hese to get Heisenberg when A B - B A .. I, 

3S If A = S"S-I then the pruduct (A- ). lf ) · · ' ( A -~" 1) equals S(" - ;'I/ ) · · , (,,-l. I)S- I. 
The factor" -lj l is zero in row j. The produ<:1 is ~ro in all ""'·s = zero matrix . 

38 (I ) The eigen"ectors for 1 = 0 alway, span !he nulispace {b) 1bc eigen,'ectors for l # 
o span the column space if there are r independent eigen''CCLOr" then algebraic mulTiplicity 
"" geometric muiLiplicity for each nonzero l . 

39 The eigenvalue. 2. _ I. 0 and their eigen"ecLOrs are in " and S. 1bcn At "" S" k S-l is 

[' , 0] [" ] '[' , '] " [' "] ( ,,' [ , -, -'] 1 -1 I (- l l 6" 2 -2 -2 ="6 2 I I + T -I 1 1 
I - 1 - I ok 0 3 - 3 2 I I -I 1 1 

Check k .. I! The (2.2) entry of A4 i5 24/6+(_ 0 4/3 = 18/6 = 3. The 4-step paths 
that begin and end at node 2 are 2 to I to I LO 1 10 2. 2 to 1 to 2 10 I to 2. and 2 10 I 
to 3 to I 10 2. Harder to find the ele"en 4-step paths thai stan and end al oode I. 

41 AB = BA always has the solution B .. A. (In case A _ 0 eve ry B i. a solution.) 

42 8 hl.l 1 "" i and - i. so 8 4 has l4 "" I and I: C has 1 "" (l ± ./3;)/2 = exp(±". i 13) so 
;, l = -I and - I. Then Cl = _/ and CIO:/4 = - C. 

4 [~ - ;] hl.l AI =5. 

W(I ) = 100j , + 20.-2, . 

Problem Set 6.3, page 315 

X l =[~ll2=2. x2=[~lrabbitsr(l) "0 2(NS'+lOr:IJ . 
TIle ralio of rabbits to wolves approaches 20/ 10; ~, dominates. 

5 d(~+ w)/dl = d~/dl + d w/dl = (w - ~)+ (~- w) = O. so the tOl3.l ~+ w is conslant A = 

[- ', ',lhaSAI"Ooand;'1= - 2With XI-[',landx2-[ ',l: u{l) .. 20 + lo.-=:. 
- - w( I) _20 _ IO, ~ 



8 A .. [_~ !] las II"lItt 6 ...... 9. A _ 3 and 3 with ooly <)nO indq>end .. m .. i, ... =1OI' (I. 11. 

9 m)l' +by' +k, ~ O is [; n[;T - [-~ -~][;'J-

10 Wl><n A jt sk"",'·.ymmetric. 1" ('11 _ k "" .. (O)1 = 1 .. (011. So,.A' is an ('''~ 
ml"ri~ 

14 s..bsliMing " ,. r'. J.i'"eS er' . _ I'Ir'. - r'6 or (A - ell. _ II or ~ .. (A _ e l)-I,, _ 
panicular ."luIio)n. If c is an .. jgon~l"" ,I>< .. A - c/ i. IlOl invettib~. 

18 "The solulioo II lime' + T is also ~"' (' +n .. (O). Thus ~"" ,imes ~AT e<jWlI. ~A(HT). 

~ (rJ< -r'l ] , . , 
(b) If A .. _ .... ,I><n ,AI .. = ~ .. and ~ -;'0. 

25 -«I) ,. ~ .. and )'(,) _ -~ .. is • growing w lul;"". "The com:cl malT;' for II>< c.clw!ged 

11III;"""'n ,, ,. (y,.x) i. [_~ -~] and il dMs haw. the WOO ~igc",,"lucs as lhoe oo,i",,1 

main •. 

Problem Set 6.4, page 326 

] .I. = O. 2. - I with un;1 c~""""on ::1:(0 . I. - Il/ J2 and ::1:(2, 1. 1)/ J6 and ::I:{ I. - 1. - Ill J3. 

5Q .. ~[;-~ -~l· 
- I - 2 2 

8 If AJ = 0 tl><n all A l .. 0 so .11 ~ .. 0 ... in A = [g ~ 1 If A is .yl1\lllol:fric thtn 

AJ _ Q r\ J Q T = 0 , h-eo h .. 0 and thoe ooly . ymmelric poo.sibilily i. A .. Q 0 QT .. zero 
matri • . 
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"] ~ 0 [ .64 - .48] + 25 [.36 .48] 
16 -.48 .36 .48 .64 

14 Skew-sy=mc and onhogonal; 1 _ i. i. -i. -i 10 have !raCe ",ro. 

16 (I) IfA : =lyandATy=l:lhen B{y; - :J=[ - A: ; "TyJ= _ ).[y; - :I·So-). 
is also an eigenvalue of B. (b) AT A: = AT (lJ) = ).2 z. "The eigen"alues of AT A are ::: 0 
(c)l __ l._l. I. 12 x l""(1.0.-1.0). x~= {O.I.O.-!). X ] =(1.0.1.0). X 4= 

(0.1.0.1). 

19 B h3'5 eigenv«!<>!"S in S = [~ o , 1 ' 0 _ 
o I +d 

Iw. 

21 (a) Falsc. A = [~ ~] (b) True (c) True. A- I". Qf<.-IQT is also symmetric (d) False. 

2J A and AT have the same l's bol lhe order of !he x's can chlll1ge. A ". [_ ~ ~] h3'5 ).1 = i 

and ).2 ". - ; Wilh x I = (I. i) for A bul xI = O. - i) for AT. 

24 A is in,·enible. onhogonaJ. irmulation. diagonaJizable. MarI<",'; B is pmr.tion. dia,gonaJ· 
izable. MarI<ov. QR. Sf<.S- . Qf<.QT possible for A: Sf<.S-t and Qf<.Q possible for 8. 

15 Sy=uy gi,'cs Q/\ QT when b = I; repealed 1 and no S when b = -I; singular if b = O. 

26 Orthogonal and symmetric requires II I = I and 1 ",al. 50 c,'ery 1 = ± l. Then A = ±J or 

A = QAQT=[~9 -5;n9][' 0][ c?,,9 Sin9] ~ [C?,, 20 Sin 20]= ",Hection. 
S!DO cosO 0 -I -smO cosO sm20 - coslO 

28 The roots of l1 +bl+c" 0 differ by ../b2 .fe. For del(A+' 8 - ll) we ha"e b = -3-g, 
and c .. 2+ 16, _/2. The minimum of b2 -4<" is 1/17 al , = 2/17. Then ).2 -ll = 11m. 

Posilive definil~ 
fOlc>8 

Problem Set 6.5, page 339 

[' 0][' '] [' 0][' 0 ][' '] , 2 I 0 c _ 8 = 2 I 0 c _ 8 0 I = LDL . 

3 f Ix. y) '" x 2 + 4x)" + 9)"2 = (x + 2y)2 + 5y~; fI x. y) '" x 2 + lity + 9y2 = (x + 3>·)2. 

6 x T AT Ax '" (A x )T (A x ) '" 0 only if Ax ". O. Since A h3'5 independent oolumns Ihis only 
happens when x = O. 

8 A = [! I:] = U n [~ ~] [~ n Piv~s wlside squares. and L inside. 



5 30 Solu!ion,; to ~I..aed &e«:ioes 

10 ,1.= - I 2 -I has pivots 2' ~'1; ,1. = -I 2 -I [ssingular. A 1 .. O. [2-' 0] [ 2 -, -'] ['] [0] 
0 - 1 2 -I -I 2 I 0 

1 2 A is posi!ive definite for c :> I: determinants c.'? - I. c-' + 2 - 3c :> O. B is fIC\'t1" positive 
definite (determinants d - 4 and -4d + 12 are never boIh positive). 

14 1bc eigenvalues of A-I are posi""c because !hey are l/ l (A). And the entrics of A-I pass 
the de!erminan! rem . And ... T A -I ... = (A - 1 ... ); A(A - 1 .. ) :> 0 for all .r t- O. 

17 If ajj ""ere smallt1" than all the eigenv.lucs. A - ajJ I would havc posiJi'~ cigenval""s (ii<! 
positi'-e definite ). But A -ajj l has a ~ero in the U. j) position: impossible by Problem 16. 

2 1 It is positive dofinite when s:> 8; B is positive definite ""hen 1:>5 (check determinants). 

24 l1>e ellipse .. 2 + x )" + y2 = 1 has axes wilh half-kngths a = 1/ JI1 = ./'i. and b = .jrrl 

25 It = [~ n c=[; n 
29 It I '" [ 6;...2 ~] is positive definite if .. t- 0: / 1 = ( ~.r2 + y)2 = 0 on the curve 

~x 2 + )" = 0; ,1.2 = [6t ~] = [~ ~] is indefinite and (0. I) is a sadd le point. 

3 1 If r :> !J the graph of ~ is a bowl. if c < 9 the graph has a saddle point. When c =!J the 
graph of ~ = (2.r + 3,-)2 is a trough staying a! zero on Ihe Jille 2.r + 3 Y = O-

n Orthogonal maui""s. exponen!ials ., ,tl. malrices with de! = 1 are groups. E.umpl.,. of 
subgroups are onhogonal matrices wilh del = l. cxponenlial s t An for inleger n . 

Problem Set 6.6, page 349 

1 c .. (M N )- IA(M N ) !In if B is similar to A and C is similar to B . the n A il similaT 
10 C . 

6 Eight families of similar matrices: 6 matrices bave 1 = O. I; 3 matrices It""e 1 = I. 1 and 
3 have ~ = O. 0 (IWO families each' ): Olle has 1 = I. - I: Oflc has ~ = 2, 0 ; tv."\) h"" 
l .. i(l±~) . 

7 (a) (M-IA M )(M - I .. ) = M - I { Ax ) = M - IO = 0 (b) The nullspaces of A and of 
M - I AM lwve the sam< dim~mion. Different vec!ors and differe nt bases. 

8 [~ ~] and [~ ~] h3\'c lhe ~ line of eigcn"~!0f'5 and the SlIme cigcnvalues O. O. 



1) (1) 0I006e MI '"' IleVerse diagonal matrix In ~I Mi-
I JiMI "" MT in ~lCh block (2j Mo 

hu lhose bloch M) "" il> block diagonal '0 gel M;;lJ MO '"' JT. (3) AT ,", (M - ' )T JTMT 

is (M - 1lM; 'JMo MT '"' (MMOMT)-l A(M MoMT), and AT is . imilar In A. 

17 (I) True : One has ). _ 0, Ibt (lIhtt doesn't (b) Fal~. l>i"8onaliv:: I """symmetric 

nwri1 and !r. i, ,ymmclric (e) Fal~: [_ ~ ~] and [~ - ~ ] .n: similar (d) True, 

All ~igcn""l .... of A + I are increlOCd by 1. "" diff"",n' frorn Ibt .igenval .... of A. 

18 A B ,", B- 1( BA)8 "" AB is .imil.,. '0 BA Alw AB .. ", !..Jl lead. TO BA( B .. ) _ l ( B .. ). 

19 l>iagonal. 6 by 6 and 4 by 4: AB Iw al llbt same ~i~n .. l .... as BA plu. 6 _ 4 ze"",. 

Problem Set 6.7, page 360 

1 (I) AAT - [~ ~] tru "r .. 83. M) '"' U~~]· U2 " [- ~~~l 

(b) A" '"' [~ :] [ !~~] -[2~] - JE[~~~] '"' "I MI· 

, [' ,] . 2 3 +./5 2 3-J3 
4 ATA '" 0404 .. 1 I hu e'8"nvalueo ", = 2 and "2" 2 . 

S;""" A '"' AT Ibt .isen_e<I<n of AT A are Ibt ........ as for A. Si""" l: '"' !=f1 ;. 
~j .... "I = II but "2 .. - l2. llJc eigenvccrors ""' 11 .. same as in S«lion 6.2 for A. 

::.~: Ibt[l~;~mji' :n~l ~g:'2 = [l!/j' +"-t j. 
I/yl+lr 1/ l +l~ 

6 A proof lila, eipllow find. Ibt SVO for 2 by 2 mall"ice$. SWling a( Ibt orthogonal poi, 
Y 1 - (1 .0). Y 1 .. (0, 1) Ibt drmo find. A Y 1 and A Y 2 II IlIgle 6 . After I 90'" tum by lbe 
moo~ 10 Y l. - Y ( !be demo finds A Yl and -A Y I al angle ,. - 6. Somev.'1!en: bel"ecn. 
(be coosWllly ootJoconal .(. ' l must 1Ia'o't productd A. ( and 04 '2 al IlIgle 6 '"' ,. / 2. Those 
""' the orthogonal dirtction. for M! .nd M2. 

8 04 _ U y T ,;!'ICe al l "j" L 

14 llJc smallest change in A i. 10 sn ilS . m311m . ingular ""I"" "l 10 , .. ro. 

16 The singular val .... of 04+1 ""' !11K "i+ L They come: from ~igc"""I .... of (AH)T(AH ). 

Problem Set 7.1, page 367 

5 Cboooe • _ (I . I) and .. .. (_ 1. 0). Then T ( . ) + T ( _ ) '"' .+ .. wI T ( . + .. ) '"' (0.0). 

7 (I) T(n.» '" • (b) nn_) = _+(2, 2) (c) nT(. » = - 0 (d) T(n.» _ T(.). 

, 
t 



10 (.) T(1.0) = 0 (b) (0.0.1) i, DOl in !lie range (e) T(O. 1) .. O. 

12 T(a) ~ (4 . 4); (2.2); (2.2); if . .. (a. bl = b(l. 1)+9(2.0) tilt. 7(,) .. b(2. 2)+(0. 0). 

16 No motri. II gives II [~ ~] = [~ ~ 1 To professors: ..,.,. ma1.h spooce I1as di ..... nsioo 4. 

l i ...... '"n,forma'ion. "" ..... from 4 by 4 ma1ricn. Tboso in Probknu IJ- I ~ ",..., opo<ial. 

17 (a) True (b) True (e) True (d) Fal~. 

11 (a) Horiro." .. llines >Cay hori:wot.J, venital lines suy .. n ical 
" Ii... (e) ~,,;c.1 lines .LOy -." i<; .. 1 

24 (a)ad_IN:= O (b)ad-b<->O «) lad - I>cl .. !. If ''«1<)<5 !O '''''' comtlS 
transform ' 0 thomsol .... ' ,ho" by li ..... i,y r .. I. (Fail. if one cotn<r i. (0 . 0).) 

27 This cmphasi .... tlw circles at< tran,f..".....-d to cllipoes (figu'" in Soct;"" 6.7). 

Problem Set 7 .2, page 380 

3 Ill .. B ... beo r 2 .. 5 and OUtpul 1>;0,;., .. inpul basi •. 

7 ... ~(a2 - . )} gi>"" rca) .. 0; nulispooce i. (O.~.-~); oo/UTion. an: (1.0.0) + any 
(O.~. -d. 

1] (e) i. "'1008 beaus.. "' I is noo: gwerally in the '"PUI space. 

[ ; - '] (b) - S 2 = i~~ or (a) 

[' '][' ']-' [; -'] 17 MN = I 2 S 3 .. _ 7 3· 

19 (a. 1» .. (roo 9. _ sin 9). Min'" oj,n frum Q _l .. QT. 

21 "'l(.<) = I - xl; "'l(X)" ~(.<l - x); J " 4"" + 5"'2 + 6.). 

14 ..,.,. motri. M ",illl thest ni ... cotri .. mu" be i",~"ibk . 

. T(o.) W;II "'" be • basi •. We <""kin·, c""""" III, .. T(o;). 

3 1 5(7( . )1 .. (- 1.2) bIn S( a) .. ( - 2. I ) and T(S(.)) .. (I. -2). 

C righted matmal 



Problem Set 7.3, page 389 

2 n.. 1101 ~p wrileS 6. 6. 2. 2 as ttl< 1).· .... 11 ,..,rage 4. 4. 4 . .. plu, ~ diffc~,,", 1. 2. 
- 2. - 2. l11en:fo.e q : 4 lI'od "2 _ 2 and <"J = I .1Id q "" I. 

l n.. ..... ""let wi, is (1. 1.1. 1.1. l. 1.1) and ttl< lon, , ....... Ie, .1Id two medium wa""le" 
(I. I. 
- I. _ I. O. O. O. 0) ar.d (0. O. O. O. I. I. _ I . _ I) alld 4 ~ ....... Iets with . single poi. I. - l. 

6 If Vb = w~ then b _ V- I We. n.. <hang. of basi, matrix i. V- I W. 

7 n.. tnIISpOIIC of WW - I _ 1 .$ (W- I)T WT .. I . So ~ matrix WT ( .. 'hich bas ttlt .... 

in iU !OW, ) i. ~ irwenc 10 the matrix ,hat has the . '·s in ilS coIu"", • . 

Problem Set 7.4, page 397 

(0 A+ * y[I / .j§fj °JUT: 1[' 'J: A+A _ [ ·2 .4J. AA+= [ · I .lJ 
00 !tIZ6 .4 .8 _1 .9 ' 

9 ["1 " 1 "2" 2] [:n = "1 " I.r + ~"~'I- [0 gene<a! 'his ij; " 111 1 or + . , + ", ,,,.J, 

11 A+ i. A- I because A i. invcnible. 

I S If de, A _ 0 III<n rank(A ) -< ~: 'hus rank( A+ ) -< ~ .nd <let A+ ... O. 

18 ..-+ in the !OW 'PItt of A is perpendicular \0 i - ..-+ in the null~ of AT A .. n"lI~ 
of A. n.. rip. triangle has cl = .. 1 +I? 

19 AA+, '"' p. AA+ ... O. A+A..- ,,,, ..- ,. A+ A..-.= O. 

21 L i. determined by i 21 . EKh .igeo.-e<:toc in S i, de1ermined by """ number, n.. COIInlS 
....,l+JforLU. 1+2+lforl. DU. 1+1 for Q R. 1+1+lfocUE yT. 2+2+0 
for S"S- I. 

24 Kttp ooly III< r by , i,r,enible romer E, of E (the rnt i, III um). Thnt A .. UEyT 
Iw the ~uirtd fann A _ U MI E, Mivr with an i"...n iblt M .. M, E, M! in the middle. 

, 
t 



534 SoIUlio<>s to Selected E, =ises 

Problem Set 8.1 , page 410 

1 The rows of the frtt-frtt matrix in "luation (9) add 10 10 0 0] so the right side ~s 
II + 12+ h = O. For I = (- I. O. I ) elimination gives <"2U I-C2UZ = -I. C)Wz -CJwJ = - I. 

and 0 = O. Then IIparticular ., (-cl l 
- cl l • -ei"l. 0). Add any multiple of II nulispace = 

( I. I. I). 

4 J -:" (e(,,)~;) ax = [dO)~: (0) - c(l)~.~ (lJ] = 0 so we ~ J I(x) ax = o. 

(, Muhiply ATCIAI as columns of AT tilms c'slimes rows of AI. The firsl"element matri~ .. 

qEI = II 0 O]Tcdl 0 0] has cr in the top left romer. 

6 The solution 10 -w" = I with w(O) = u(l ) = 0 is u {x) = ~(" _ x2). Al x = !. j. ~. ; 
this w(x) "luals u = 2. 3. 3. 2 (discrete solulion in Problem 7) times (6.1")2 = 1/ 2S. 

11 Forward "5. backward differenc:es for aw/ax ha"e a big effect on the discrete II . because 
Ihal term bas {he large coefficient 10 (and with 100 or 1000 we would ha,'e a real boundary 
layer = near discontinuilY al x = I). The compuled "alues are II =O .. 01 .. 03 .. 04 .. 0S .. 06 • 
. 07 .. 11.0 "ersus II = O .. 12 .. 24 .. 36 .. 46 .. 54. ,SS . . 4 3. O. 

The MATLAB code is E = diag(ol1es(6. I). I); K = 64 * (2* eye(7) - E - E'); 
0 = SO. (E - eye(7»; (K + D)\ol1es(7.1). (K - O')\onesn. I). 

Problem Set 8.2 , page 420 

1 A = [=l-f :} nullspace cont~ns [;l [~] is mK orumgonaJ 10 thaI nwlspace. 

2 AT Y = 0 for y = (1. - I. I); cumnl = 1 along edge I. edge 3. back on edge 2 (full loop). 

5 Kirchhoff's Cumnt Law AT Y = I is solvable for f _ ( I. -I. 0) and !IOI sol\lIble for 
1 =(1.0.0); f muSI be onhogonaJlo (1.1.1) in lhe: nul1space. 

, " [' 2 ], = [_; - ; =;], f = [ :] Y"'" , = [Si'] + [:]_ ,",,""., !_ 
2 - 2 - 2 4 -I 7/ 8 r 

, L. C_131 . B 41'" cumnlS - Ax - l' l' l' 

9 Elimination on Ax = b always leads 10 yTb = 0 which is - bl + 01 - 03 = 0 and 0] -
b~ + bS = 0 (y"s from Problem 8 in the left Dul1spllCe). This is Kirchhoff's Voltage Law 
around Ilte loops. 



diagonal entry .. nurnboo. 

of edges into tile oode 
off4iagooal C11''Y .. -I 
if no<Ios an: ronnt<.ed. 

Il ATCAr: [=~ ~~ =~ =~] .. [i] gives poIernials x '" (fz.!.~.o) (grounded 

o -3 -3 6 _ I 

x. ",0 and solved 1 cq ... ,ionli): 1 = _ CAx .. (J. J.O. ~ . !l. 

11 (a) 8 independen. columns (b) I muSl be onbogonaI '" !be ... nspace SO II + . . + 
19 _ 0 (el "-:11 edge goes iolU 2 no<Ios. 12 edges make diagooal emric:s l um to 24. 

Problem Sci 8.3, page 428 

. ..[.' -'][' '][ , A approac .4 _ I 0 0 - .4 '] ["] .6 ... 4 .4 . 

6 If Ax .. Ax. odd componentS on ~b ,ides \U find • '" 4" If J.. ;. 1 !be ... m mu'>l boo 
. .. 0. 

10 Al2 i. Sfill oonnegati"", 

II ... IIMl .. [1 

[IIIM _II···11somul,;plybyMIOfiod 

II=- columns of Al2 add '" 1. 

11 J.. .. 1 and " + d - 1 from !be !rae("; St<ady ,tate ;. a mullip~ o f x I .. (b. I - <I). 

Il B has J. = 0 and -.3 with xl .. (.J •. 2) and X2" (- I. I): ~-~ """,,*,hcs zero and 
the I"h"ion approlIChcs ql"x l .. q Xj. 

15 "The eigc""","'" is X " (I . l. 1) and Ax = (9 .. 9 . . 9). 

19 J.. .. 1 (Marl<uv), 0 (o;ngu lar). .2 (rrom trae("). Steady ~ O .. 3.4) and (30.30.40). 

20 No. A Iw on eigenvalue J. _ I and (1 - A)-I does noc niSI. 

C JPYnghted matanal 



Problem Set 8.4, page 436 

Fea,ible .. t _ line segmem from (6 . 0 ) 10 (0. 3): min' mum rose '" (6.0). ", .. imum a, to. 3). 

2 ~asible ... is 4·,i<led witb <QnId$ (0.0). (6.0). (2. 2). (0.6). Minimi" 2< - y at (6.0). 

l Only two """"' ... (4 . 0 . 0) and (0.2.0); <boose x, , .try negati,..,. xl .. 0. and "J _ Xt - 4. 

4 From (0. O. 2) mo,.., 10 x _ (0. 1. I . ~) wi'" ,he ron,. .. int x, + " 2 + 2.<) _ 4. llle new rosc 
is 3( J) + 8( I ,5) '" $ 13 $I) , '" _ I is ltot tnIoc<d <QS!. Thoe simplu rnc:!hod .1<1> <b«b 
x .. (1. O. 1.5) wi'" COli' 5( I) + 8( 1.5) '" $17 <I> , '" I (more u pen,; ... ). 

S COSI a 10 at )IaI1 (4. O. 0 ); koq>inK x, + x2 + 2<) '"' 4 """"" 10 (3. 1. 0) ""ith <0>1 18 and 
,,. -2; or """'" 10 a. o . l ) wilh rosc 17 and, _ -3. Cboost XJ o. ent"';", ,vi_ 
and"",,~ 10 (0.0.2) ",ilb <QS! 14, ATlI)lbcT)lCp lU ",ac:b (0.4.0) with minimum rosc 12_ 

6 t '" (3 3 71 lias minimum rosc 12 by ttot 1'11.0 . 5; JIC\' x _ (4. O. 0) is minimizing. Thoe 
dual p!'<IbIcm maximi ..... 4y ... bjoct to Y ~ 3. y.:s 5. ,~7. Max imum. 12. 

Problem Set 8.5, page 442 

102J, ro.(j + ~)X d" ,., [ .... y:..I). 1: ,., 0 and .imilar1y k2J, roo(j - k)x d" _ 0 (in the 

dooominalor notice j _ k ".. 0) If j _ k then 102J, """l j " d .. _ If _ 

.. 1~,( 1 )(-' ) -a) dx = 0 and J~, ( .. 2 - ~)(xJ -"-,)d,,. 0 for all ~ (inl<g:r:o.I of an <Jdd 

fu"" ..... )_ Cboo5e C 50 ,hal 1~ 1 .. (x J - a)dx ~ t!..-5 - i .. JI~, '" , - c, '" O. Thoen 
c _ ~_ 

s n.. in'<g11l1< lead '0 "t "" O. bl" 4/ " , b:! _ o. 

6 Fn)m O<)<Ialion (3) ,he " • ..., uro and bi = 4/ ... . n.. sqlW'l: "' ..... has 1/12 _ 211. 'Th<1l 
equation (6) i. 2:. = II,16{"l)( ~ + fr + -b + --.) $I) "'i. infinite ...-;e. equal. ".2/ 8. 

8 yo. 2. 1+ 2 +,+!+ ..• 2"" 101_ ../2: 1_12_ 1+"2+ "4+ ... _ 1/( 1_ ,,2),,,, 

mo. _ I/~: k2>< ( I + !sin .. + linl .. )d .. ... 211 +0 + " SO Ifl = ..;r;r. 

9 (a) i(x ) _ ~ +! ("IlW'l: ..... ,,,)"" ,,' • ..., to. O. _. and b" .... 2/11. O. -2Illl. 
O. 2/5".. (b) "0 _ 102>< .. dx/lJ< _ II . • other "I ,. O. bl _ -2/ k. 

11 dyldx_rou has y"'y, + y. "'s,.,, +C. 

, 



Problem Set 8.6, page 448 

(x. Y.;:) has ho<not<neous coonlin.alt< ( .... y,!. I) and 0100 (a. q. Cl. c) for any IOClIIUIO c. 

[

1/8.S 
5 S .. I I II I] for. 1 by 1 square. 

_4 5-2 
10 a.o.:.. (0 .0 .3) on (lie pl .... and multiply T_ PT+ - ~ -2 -2 8 ['-' -' 

66 3 

11 (3.3.3) poOjocu to j(- l. _ I. 4) and (). 3. 3. I) poOjocu to (j. !. ~ . I). 

II The projttlion ..... cub< i, • lIeugon. 

14 (l . 3. 3)(1 - :u. ~ T) '"' (!. j. j) [-! -~ =:j .. (-If. - Jf. -i). 
_ 4 - 4 7 

I S (3. 3.3.1) - (3.3.0. 1) - (-I· - ~. -4· I) - (-I· -j . j. I). 
17 Rc..,&k:d by l I e bee_u.., ( ... . y.:. c) i. (lie <arne point a< ( .... Ie. yle. :Ic. I). 

Problem Set 9.1, page 457 

4 The I~ ' ... I_ IA- 1" 1 is If A .... ; IlIe largest error i. 1O- 16/A ...... 

5 Each ruw of U has II most .. entries. 'IlIen .. mulliplicllion. to l ubolit"le romponenl . .... 
r (already kDOWn from below) and divide by ibe piV(Jt. ThuI ror ~ ruwl is less tkon It'~ . 

(, L. U. Ind R need !~ 1 mul1iplication. 10 0<)1 .... linear ' y. ltm. Q _ ,,2 10 mUltiply 

ibe riglll . ide by Q - I _ QT. So QR lak .. 1.5 l imes longer (han LU 10 reICh ... . 

, On roIumn j of I. bKk lUbslilUlion needs ~j 2 multiplic.l ...... (only the j by j " I'P'" lef, 

block i. im"'ved). Then ! (]1 + 21 + ... + ~1 ) '" ~ (j"J). 

C pyrlght€'? mate-rial 



536 SoIuliono;!O Selec!ed b~ 

10 Wilh L6-di,il lIoaling poinl aritlunelie m. t"""l I r - '~I (Olf t = 10-3 , LO-6, 
10- 9.10- 11,10- 15 an: of onIor IO-I ~. 10- 11 . 10-1• 10-·, 10-). 

11 c",hl,JiO. ,in9=-3,JiO, R "'~[_! ~][! -!]=~[I~ I:]. 
14 Q'j A lLI':~ 4n "'u1liplie,"ion~ (2 fO( tach """ry in IOWJ j and j). By facl<lring 0111 cosll. 

tho:: .. ,,.;.,, I and ±un 9 neod QIIly:ln muhipliealioos, " 'hich leads!O i~) fO( QR. 

Problem Set 9.2, page 463 

1.1 1_ 2. c _ 2 f.~ ~ 4; 1.1 1 _ 3. c _ 3/1 _ 3; 1.1 1_ 2+/2. c _ (2+/2)/(2-/2)_ 
H). 

J """ the first inequality n:plo<c r by 8r in IAr l::;; IItUr D: the KOOnd il>C<luaLiry i. just 
18r l::;; 18 11r l. Then 11t8! _ rn.n (lA8r l /lr l) ~ 1A 1I 81. 

7 Tho trianp. il>C<luaJiry ,i"", IAr + 8rl ::;; IAr l + 18rl. Divide by Ir l and take m. 
nwimum over all 1t()ItU1"(> IItttofS 10 find l it + 8 1::;; IAI + 18 1. 

B If Ar = J.r lhen IAr ll lr l = I~ I (Ot" \hal panicul ... _ r. Whetl we maximize lhe 
"'ti<> over all vect<J<$ we K<'t 1.1 1 ~ I~I. 

IJ "!be residual b - AJ _ (10- 1.0) i. "'UoCh .maLl .. than b - A: _ (.001 3 .. 0016). BUI l is 
m""h clostr 10 m. soIUlion than J. 

14 dot .... ~ IO -~ $(I A- I _ [_~::: - ::::] Thtn 1.11 ,. I. 1.1 - '1 " loli. C,. loli. 

16 X[ + .. . + r; is "'" smaller than mv.(rr) and "'" larg .. than rr + ... + .<; + 2"1 11-<1 1 + 
'" l.r l r. c.,ruinly,<; + .. + r; ::;; n max(r}> $(I 1",1 ::;; .fiIl r l"". ctt.oo... )", = 

sign x, _ ± I !O get "'. 1 = 1",11. By Schwarz Ihi. is at moM Ix ll l l = .fiI1"'1. ctt.oo... 
x ,. (1. 1. .... n (0( ,;;. 

Problem Set 9,3, page 473 

2 If .... x .. J.r then (I - it)x ~ (I - ~)x . Ikal eigom":ih .. ". "c 8 _ I - A ha", II _ 1.1 < 1 
pro>"ido<! l i, belw«n 0 and 2 

6 JarobiIwS-tT~~[~ ~]Wjtlt lJ.I ...... _~. 

7 Gau,,·Scidcl has S- J T _ [: t] ... ith IJ.I ..... _ ~ _ mo.l ..... fO( Jacobi)l. 

9 Se1 tho:: I~ 2 -2w+ 1.JZ eq .... 1 10 (",-0 +(",-1) to find '""" =4(2- J3,,,, 1.01. 
Tho eigenvalues '" _ I .,.., about .01. 

, 
i 



1 S n.. jib 00""",,"111 of 11." 1 i. 2.in !fr -sin lj.~I" - sin (~+~{ •. n.. ">1 twO 'trm'S. using 

lin( .. + b ) '" .i"arotb + CQOa .inb. combi ... inl<) -hin!fr coo;;$r. n.. eigeIWoI"" i. 

ll .. 2 -2""" .~1 · 

20 [f II. - d .. OR thtn Al .. RO + d .. O-I(OR +d)O .. O-I AO. No clllllF In 
eiltnvoJ"",. 

21 M~[!ip[y Af } .. bj- l f J_1 +aj f j + bj qJ+ 1 by qJ I<) find f JAfj " "j (bee_o"" tht f ', 
1ft onlIononnaI ). n.. 1"IWri~ form (mulliplying by colo""") i. AQ .. OT ".~ T i. 
triJitltonal. [Ii onlnc. 1ft the .... And />'0. 

2l [ f II. illymmetric llitn AI .. Q- I A 0 .. 0 T A Q i. a[oo ' YllUIIClric. AI .. R Q .. H( OR)R- I 

'" RAR- 1 bat R And R- I upper lriangu[ ar. "" AI cannot III~ lKKIuroo on • lower di
agonal ,han A. If II. i. U"idi.ogon.al And symrl'll!"lric Ihtn (b)' lUi", symmetry fOf tilt upper 
pan of AI ) ,be .... ,ri .. AI .. RAR- I i •• ,.., tridiagonal. 

27 From Iht [astli ... I'll code. 92 is in the direction of . .. 11. 9 1-111\9 1" Af l - (9T A9 1}f " 
n.. dot prodllCl .... ith f I .. zero. Thi. i. Gram·Schmidt with Af I as the ~ inJIIII -. 

28 ' I .. b - "I Ab '" I> _ (I> T I>l b T AI» Ab is orthogona[ I<) ' 0 .. . , /,.. , .. jJ""I, . .. b- A .. arr 
on/loro-I al ~ sup. To ~ oJw /.1 i. onbogonaJ to APO " 11. 6 • • implify P I '0 c P I: 
P I _IAbll l> - (bT Ab)Ab lnd c .. b I> /( I>T Ab)2. Ccruinly (Ab)T P I .. 0 beeause AT .. 
A. (Thol simplifiUlion pot "I inoo P I .. I> - "I AI> + (I> T b _ lal bT 11. & + "fl Abl l)b/ I> T b. 
For • &'J<>d dio.;u .. """ _ Nw_rk,,1 U~r Alp ","" by Trefetlltn and Sau.) 

Problem Set 10.1, page 483 

2 In polar form .- 1ft JY9. y 6. "7s,-j6 . ..Ii 

4 1: .. 1111 .. 6. I: + .. I~S. [: / . " .. i. I:- III I ~S 

5 a+ih~+!j. !+>9i.i. - ~+ 4i; ",12. , . 

'it 2+i ; (2+ i)( I + I) '" 1+:li: ~-;.(l '" _I ; e- i ... - 1; ~ .. _I; ( _i)I(}J .. ( -I)) .. i . 

10 t +: is ,.,.1; : -! it ptI'" imatl'n..,.; d' i. ,..,.ili~; :/I h .. abooIute val"" I. 

12 (0) When a .. b '" d '" 1 lilt oqUIft root become!; .j4;; 1 i. complex if c < 0 (h) l .. 
o And 1 ,. a + d wben lid ~ W (e) lilt l's eM be ",a[ and different. 

13 Comple~ l ', wliCtt (a +d)l < 4(aJ _ W I: wrilo (II + d)l _ 4(ad _ W) as (II _ d)l +4bc 

which i. posilive wben IK :>- O. 

, , 
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14 det(P-AI) = ;.4_1 = 0 has J. = I. -I. i. -I with eigen,'ectors (I . I. I. I) and ( I. -I. I. -I) 
and ( I. i. - I. -I) and (I. -I. -\. I) = <.:Olumns of Fourier matri~. 

16 The hlock matrix has real eigenvalues: 50 iA is real and J. is pure imaginary. 

18 r = I. angle l' - 8: muhiply by ; 9 to get ~"!2 = i. 

21 cos36 = Re(eos fJ + i sin 9)1 = cos19 - 3C059 sin2 9; sin 36 = ]m(cos (J + i sin(J)3 = 
J co.2 hin (J - sinl (J. 

23 (a) ; is at angle 9 = I on the unit circle: Ij~ 1 = I~ = I 
candidate. i< = ~("/2+ 2. .. ~ k' . 

(c) There are infinitely many 

24 (_) Unit circle (b) Spiral in to .. -2.~ (e) Circle <.:Ontinuing around to angle (J = 2;r2. 

Problem Set 10.2, page 492 

J : = multiple of(l+I.1 +1.-2): A:=O gives :HAH =OH so: (not I t) is orthogonal 
to all column. of AH (using complex inner prodlll'l ;:H times column). 

4 The four fundamental subspaces are e t A) . N (Al, C(A H). N (A H). 

5 (a) (AHA)H = AHAHH .. AHA avin (b) If AHA: = 0 then ( ;:HAH )(A ;: ) = O. This 
is I AdZ = 0 so A ;: = O. The nuUspaces of A and AHA are the sam... AHA is invertible 
when N (A) = {O). 

6 (a) False: A = [_~ ~] (b) True: -I is 00\ an eigenvalue if A _ AH 

10 (I. I. I), (I . .. h l / 3 . .. ~" I/l ), ( I. ... bi!3, .. hif3 ) are onhogonal (complex inner prodUCt! ) be
cause P is an onhogonal matrix - and theref~ unitary. 

11 C = [~~ ~ l = 2+SP + 4P1 has A = 2+S + 4 = II. 2 + S .. 2. .. i/1 +-4e~"i fl . 
, 4 , 

2 + 5 .. 4,.1/l + -4e8.'T I/J. 

13 The determinant is the prodUCt of tile eigenvalues (aJi real ). 

15 A=:hL~1 -l~j][~ _OIJ~[_II_i I~il 

18 V""I[I+~ -1+1][' 0]/[1+./3 I-I ]WiLhL2=6+2./3hasl),I= 1. 
1+/1+./3 0 - 1 - 1-/ 1+./3 

V = VH gi,-es real J.. traee len) &i>'es A = I. -I. 

19 The v's are columns of a unitary matrix U. Then :: = UUHz = (multiply by columns) 
= ~t ( ~r: ) + ... + g" {~!!z). 

20 Don't multiply .. -I~ time. ~i~ : conjugate the first. then fOh t2i~ dx = (t2l~ 12iij-~ = O. 



22 R + is ,,, ( H + j S)1I '" R T _ i ST : R;. symmetric but S Ii stew-symmetric. 

24 r 11 aoo I - I J; any [";91: [~a . b ~ ie], [011 ;·,'-l ""j!h 1"'12 + 1:12 ., l. 
v-I" U _, r ill 

Problem Set 10.3, page 500 

8 r ..... (I. I. I. I, O. O. O. 0) _ (4 , O.O.O, 0, 0, 0 ,0) .... (4.0,0.0.4,0. O. 0) .... hich is F,c. The 
0ttQnd . '.,.;10< bowmc. (0 .0, O. 0, I . I. 1. I) ..... (0.0. O. O. 4.0 .0.0) ..... (4,0. 0,0, - 4,0.0,0), 

') If .. 604 .. I then w is • 32nd roo! of I and .,r.; i. a 1l81h tOOl of l. 

IJ ~I .. CO + q + <1 + r , and ~: .. 'lI + " II + czjl + CJi'; E oonl<lin. tile fOIl. eigenval~ 

'" c. 
14 Eigc:n ..... ,ues ', .. 2 - I - I = 0, "l _ 2-1-1} .. 2. ~l" 2 - ( - 1) - ( - 1)., 4, 

,~ .. 2 _ jJ _ 19 .. 2. Check trace: 0 +2+4+2 .. S. 

15 Di'W""'l E need, n multiplications. Fourier malri, F and F - 1 need ~nlogln multiplica. 
tion. e""h by the HT. TOOl) m",b less than the onlifW)' oZ, • 

1& (CO + '"2 ) + (q + <"'31 ; then (CO - <1) + ; (e, - <')): thtn (CO + <'21 - (q + el); thon (CO
<'21 - ;{q - Cl} ' These Slep< are (he nT! 

, , 



A FINAL EXAM 

Tlri$ ...... '''~ jimJl ~r .. m I)" lhu m lNr 17, ZOO] ill Mlr~ li~ar algebra course 18.06 

The 4 by 6 matrix A has all 2', ~1Qw the diagonal and elsewhere all 1'5: 

, 

(a l By elimination factor It into L (4 by 4) limes U (4 by 6). 

(b) Find the rank of It and a basi~ for ils nullspatt (the special solutions would 
be good). 

Suppose you "'now {hal the 3 by 4 I'I'Lalrix A has {he ~ec{or $ .. (2.3, 1. 0) as 
a !wis for its nullspace. 

III' What i. ~ ronk of A and the oompkte solution 10 Ax = 01 

(b) What is 1he (n et row red~ eche lon form R of ..4 1 

j The following matrix is M proj«lion maim: 

p = ~ [ ; 
21 _ 4 

(al Whal subspace does P project 011101 

(bl What is the dis/IlIIU from that subspace to b : ( I. I, 1)1 

(tel What are the th= eige"vaJ~s of P? Is P diagonalizable? 

(a) Suppose (he product of A and 8 is the zero matrix: A B = 0 Tl>en the (I ) 
space of A contains the (2) space of B . Abo the (3) space of 8 conlains 
{he (4) space of A. Those blank wools are 

(1 ) _____ _ (2) ______ _ 

(3) __ _ 1', -------

i 
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(b) Suppose thaI malrix A is 5 by 7 with T3Jlt r. and B is 7 by 9 of T3Jlk 1. 
What are the dirnen~ions of spacn ( Il and (2)1 From lhe fact that space 
( I) C()I1t.ains s p3C(' (2). what do yoo learn about r + s1 

5 Suppose the 4 by 2 matrix Q luis O<1hor>onnal columns. 

(II) Find lhe leal\ squares solulion x 10 Qx : b. 

(b) Explain why QQT is not posilive definile. 

(e) What an: the (nonr.cro) singular values of Q. and " 'hy? 

6 Let S be ttle subsp3C(' o f RJ spltnned by [ i J and [ _~ J. 
(II) Find an orthonormal basis "'. "2 for S by Gram·Schmidt. 

7 

(b ) Write down lhe 3 by J matrix P which projects \l:etors perpendicularly 
()I110 S. 

(e) Silow Ilow the: poopcrties o f P (what are they?) lead to the conclusion that 
Pb is orthogonal 10 b - n . 

(II) If ~ ,. Ul. ~ ) form a basi s for R' ttlen ttle matrix wilh lhose Ihree columns 

" 
(b) If g ). ~l. ~ ,. g. spltn R'. gi,'c all possible ranks for the matrix with those 

four columns. 

(e) If " , . " 1' " l fonn an ortoonoonaJ basis for R). and T is ttle transforma
tion that projectS every '"eCtor ~ OntO the plane o f " , and " 2' what is ttle 
matrix for T in this basis? Explain. 

8 Suppose the n by " matrix A. has 3's along its main diagonal and 2's alOflg 
the diagonal below and tbe ( I. n ) position, 

2 3 0 0 [' 00' ] 
A':~~~~' 

Find by cofactor'S o f row I or OIheTwise the delenninant of A. and then the 
detenn inant o f A. for n > 4. 

9 11Ien: an: s ix J by 3 pennutation matrices P. 

(II) Whal numbers can be lhe delerminwrl of P1 What numbers can be pj'"Q1S1 

(b) Whal numl:>en can be the 'race of 1'1 Wh.u fimr nu",bu~ can be eigen
~al~ of 1'1 

, 
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MATRIX 

FACTORIZATIONS 

A = I.U = (~er lrian~ular L) ( ,upper uiangu.lar U ) !kerion 2.6 
I s on the d,agooal p,VOIS on the dIagonal 

Requin'menlli : No rr:YW exchanges as Gaussian elimination reduces II 10 U. 

A = UlU _ (lower trian~ular L) (p;~ ~alrix) (u!""'rtriangUlar V) 
] 's 00 the dIagonaL 0 IS dIagonal J s on the dIagonal 

Kequin'mt'nls: No row excllanges. The piVOls in D are divided OUllO leave l's in U. 
If II is symmetric then U i. L T and II _ LOL T. ~crjon 2.6and 1.7 

3. l'A = LV (penn .. !alion malrix P 10 avoid zeros in (he pivot positions). 

Kequl .... n...,n~: II is in'~"ible. llIcn P. L. U are iu""nible. P does the lOW 
e~changes in aoJvaocc. Alternative: II = L, I',U •. Stc,ifm 11 

4. E,\ = It (m by'" invenible E) (any A) = rref{A). 

Kequlrt'"W;'nls: None! TM uductd "' ... tcht/{)f1form R has r piVOl I'Qws and piVOI 
columns. The only nonzero in a pivot column is the unit piYOt. The last m - r rows 
of £ an: a basi. for (he left nul1splltt of A. and the first r columns of £ - 1 are a basis 
forlhe column space of A. Me/ion< 3.1-3.3. 

S. A = CCT _ (low~. rri~ng .. lar marrix C) (r""n~""", is uppM" rriangulu) 

M.f"quin''''''"ts : A is symmerric and posiriv~ definite (all" pivors in D are positive). 
This CItoICJt)"/(l("lor izaliOit has C = L,fij. S«liOl! 6.5 

6 . A = QM. = (onhooormal rolumn~ in Q) (upper lriangular R) 

M.f"q uin'rIII'nts : A has indel"'ndenr columns. Tnose are orlhogo"llU;.td in Q by the 
G .... m.S<:hmklt process. If A is sqUIUl' rhen Q - I = QT. McliOl! 4.4 

7. A = Si\S- 1 = (eigenvector.; in SMcigenvalues in i\ )(left eigenvOC!<lO in S-I ). 

H"'lu;n'mcnts: A must have" liroeuly independent eigem"C>Ctors. &crioll 6.2 

8 . A = Q AQT _ (onl\og<>nal matrix Q)(",.I cigen'·alue malri~ i\)(QT is Q - I). 

H"'luln'"",n ts: A is lymmClric. This is lhe Specl",,1 T1lcorem. S«IiOl! 6.4 

so, 

, 
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9 . A = l" lJM- 1 = (generalized eigenvectors in M )(Jonian blocks in J)(M - t ). 

>0. 

11 . 

Requ lremen" : .4 i ~ any square matriK. }orrJ,mjQl"m J lta$a block for each inde~n. 

den! eigen~or of .4. Each block b.aJ one eigenvalue. Sectiml 6.6 

A = U t V' = (Ott/1Qgonal) (m x II singular .valu~ matriK) (on~nal) . 
V tS m x m O"t .... , 0", on ns dIagonal V IS " )( " 

Requirements: None. This lingulur .'O/ue d .. composiriOll (SVD) hai the: eigerweclQn 
of AAT in U and of AT.4 in V ; " i = J1..i( .4T.4) '" J1../(AAT). Secrimls6.7 and 7.4 

A+ _ VI: + UT _ ( OO hogon31) (n )( m pseudoillV<'r5e of 1: ) ( onhogonal) 
- - IIxn I/"' ... .. I/",ondiagonal mxm ' 

Requirements: None. 1lIe puuiloim"l"ru has A+ A = projection onto row spa« of 
A and AA+ = projection onto col umn space. 1lIe shortest least-squares solution to 
All. '" b is ~ = A+ b . Th is solves AT Ai = ATb . Ste/ion 7.4 

12. A = 011 = (orthogooal matrill. Q)(symmetric positive definite matrix 11). 

Kequll"t'r"Mnb : A is i"""nible. This polar decomposi/iOfl has H 1 = AT A . 1lIe 
faclOr H is ..,midefinitt if .4 is s ingular. "T"he reverse: polardeoomposition .4 _ K Q 
has K1 = A.4 T. Both have Q "" V \I T from the SVO . Sec/;on 7.4 

13. A = U/r, U- 1 = (unitary U)(eigenvalue matrix /r,)(U - 1 which is VH = UT). 

Kequlremomb : A is normal: AHA = AA H. Itsonhonormal (and poisiblycomplex ) 
eigcn'"eCton are the columns of U. Complex 1..·s unless A = Aft. &elion /0.2 

14. A = vru- J = (unitary U)(triangular T with 1..·s on di agonal)(V - L '" VH ). 

15. 

Kequire ........ ts: Sellur triongu/ori::llrioll of any square A. 1lIere is a matrix V with 
orthonormal columns that makes V - l AU triangular. &Clion 10.2 

F. =[ ~ _ ~][ .·an Fan][';::::n]= one s!epof the l"-T. 

Requiremenb : F~ _ Fourier matrix with entries wi' whtre w" '"' I. 1lIen F.F'. _ 
li t . D Ita$ 1.1/). 1/)1 . ... 1)0 its diagonal _ Rlr II = i the F<Js/ Fou. i ... Tronsform has 
~ ", multiplic;u ion l from I stagel of D 'J_ S~ti"" 10.1 

, 
t 



CONCEPTUAL QUESTIONS 
FOR REVIEW 

Chapter 1 

I , I Whkh "'~ton a"" lin<:ar c(lf1lb i nation~ of . = (3, I) and III = (4 , 3)1 

1.2 Compare the dot product of • = (3, I) aud III = (4, 3) to the product of their lengths. 
Whi<"h is larger? Whose inequality? 

1.3 What i, the cosine of the angle bet""'«n _ and .., in Quest ion 1.21 What is the cosine 
of the angle between the ,, -lUis and . ? 

Chapter 2 

2. 1 Multiplying a matri~ A limec§ the column ~tor X "" (2 . - I) gives whalcornbinalion 
of the columns of A? How many rows and columns in A? 

2.2 If Ax '"' b then the ~tor b is a linear combin~l ion of what V«Ion from the matrix 
A? In ,"tttor space language. b lies in the __ space of A. 

2.3 If A is the 2 by 2 matri .. [ ~~ l what are its pi~ou'! 

2.4 If A is the matrix! ~ II how does ~Iimin~t ion 1'f'OCn'd1 What pennutation rrwrix P 
is invoh'Cd" 

2.~ If A is the maIri~ Il ~ l find b and c so thaI A .. = b lias no solution and Ax = t has 
a solution. 

2.6 What 3 by 3 matri~ L adds ~ times row 2 to row 3 and then adds 2ti""" row I to row 
2. " 'IIen it multiplies a matrix with three f\}"'~? 

2.7 What 3 by 3 matrix £ subtracts 2 limes row 1 from row 2 and then ... blrncts 51;""" 
row 2 from row 31 How is E related to L in Question 2.61 

2.8 If A is 4 by 3 and B is 3 by 7, how many ro ... ,imn col~mn prodUCtS go into A 8 1 
How many column (imtJ row prodUCtS go into AB? How many separ.ate small mul· 
tiplications are in~ol",d (the same for boIh)? 

'" 



'" 
2.9 Suppose II == [~ Vl is a malri~ with 2 by 2 blocks. What is the inverse matrix? 

2.10 How ~an you find the inverse of II by working with [A II? If you solve the n 
equalion~ Ax == columns of I then the solutions It are columns of __ . 

2.1 1 How does elimination decide whether a square malri~ II is invenib1c? 

2.12 Suppose el imination takes A 10 U (u pper triangular) by row OI"'IlItions with the 
multipliers in L (lower IriangullU"). Why docs the last row of II agree with the last 
row of L limes U? 

2. 13 What is the faclOrization (from e liminatk>n with possible row exchanges) of any 
square in''t:nible matrix? 

2 14 What is the Il'1IlI'lpo5e of the inverse of II 81 

2.15 How do you know thai the inverse of a permu1a\ion matrix is a permullllion malrix? 
How is;1 related 10 the transpose? 

Chapter 3 

3.1 What is the column space of an invcnible n by n matrix? What is the nullspace of 
thai matrix? 

3.2 If~rycolumn of II is a multiple of the firslcolumn. wllat is (he column space of 111 

3.3 What are the lWO ~uirements for a SCI ofveclors in R" 10 be a subspace? 

3.4 If the row redl>Ced form R of a malrix A begins wilh a mwofones, how do you):now 
Ihalthe ocher rows of R Ilfe 1.eTO and whal is 100 nullspace1 

3.5 Suppose lhe nullspaoe of A comains only lhe zero ''ttlor. Whal can you say about 
solulions 10 A ... = 61 

3.6 From lhe row redl>Ced form R. how would you decide [he nmi< of A'> 

3.7 Suppose column 4 of A is lhe sum of columns I. 2, and 3. Find a vector in lhe 
nUlispace. 

3.8 Describe in words the complete SQlulion 10 a linear syslem A ... = b. 

3.9 If A ... '" b has uactly one SQlulion forevt'T)' 6. whal Can you say about A? 

3. 10 Give an example o(vectors Ihat span R2 but Ire flO( a basis for H2. 

3. 11 Whal is the dimension ofille space of 4 by 4 symmetric m:llrices? 

3.12 Describe the meaning of basu and d;meru;on of a vector space. 

, 
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3.[3 Why is every row of A perpendicular to every vector in the nullspace'! 

3.14 How do you know that a column u times a row p T (both IK)nzeroj has rank I? 

3.15 What are the dimensions orlhe four fundamental $ubspaces. jf A is6 by 3 with rank 2? 

3. 16 What is the row reduced form R of a 3 by 4 matrix of all 2's? 

3.17 [)escribca p;"01co{umn of A. 

3. 18 True? The vectors in the lefl nullspacc of A have tile form AT y . 

3.19 Why do the columns of every invertible maIn;.; yield a basis? 

4.1 What does the word complement mean about orthogonal subspace's? 

Chapter 4 

4.2 If V is a subspace of the 7-dimenslonal space R1, the dimensions of V and its 
orthogonal complement add 10 __ . 

4.3 The projection of b onto the line through a is the vector __ . 

4.4 The projection matrix onto the line through Q is P = __ . 

4.5 1lte key equation \0 project b onto the column space of A is the norrrwi ('qua/jon 

-_. 
4.6 The matrix AT A is invertible wilen the columns of A are 

4.7 The least squares solution to Ax = b minimizes what error function? 

4.8 What is the conne<:tion between the least squares solution of Ax = b and tbe idea of 
projection onto the column space? 

4.9 If you graph tbe best straight line to a set of 10 data points. what shape is the matri,; 
A and where docs the proje<ction p appear in the graph? 

4,10 If the columns of Q are orthonormal. why is QT Q = J? 

4.11 What is the projection matrix P onto the columns of Q? 

4.12 If Gram·Schmidt starts with the vectors a = (2.0) and b = (1. 1). which twO 
orthonormal vectors does it produce? If we keep Q = (2.0) does Gram-Schmidt 
always produce the same two orthonormal vectors? 

4. 13 True? Every permutation matri,; is an orthogonal matrU:. 

4.14 The inverse of the orthogonal matrix Q is __ . 
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Chapler 5 

5.1 What is till: determinant of the matrix - / ? 

5.2 Explain how the determinant is a linear function ofthc firs t row. 

5.3 How do you kr>OW Ihaldet A-I = t/ detA? 

5.4 If the pivOis of II (with no row uchanges) are 2. 6, 6, wlull submatrices of II Ila.\"c 
known dclcnninants? 

5.5 SuPJlQSe the first row of II isO. 0, O. 3. What does the "big formula" f.,.. the determi · 
nant of A rcdUC<' to in this case? 

5.6 Is the onlcring (2. 5. 3. 4. I) even orodd? What pemlUlation matrix has what delcr
minant. from yoor answer? 

5.7 What is the cofactor e2l in the 3 by 3 elimination matrix £ that subtracts 4 ti mes row 
I from row 2'1 What entry of £ - 1 is revealed? 

5.8 fu plain the meaning of the oo(",tor formula for de! II using column 1. 

5.9 ~Iow docs Cramer's Ru le give the first compOnent in the :;olution 10 I r = b? 

5.10 If [ combine the enlnes in row 2 wilh (he cofoctor.; from row 1. why is IIllell + 
IIl2C 12 + "2lC 13 automatically zero? 

5.11 What is the C<)Ilneclion between determinants and ,'Olumes? 

5. 12 Find ~ cro'" product o f u = (0. O. I) and p : (0. 1.0) and its direction. 

S.13 If It is n by n. wby is(\ct(A - AI ) a polynomial in A of deg="? 

Chapler 6 

6. I What "'Iuation gives the eigcn'·alucs of A without involving the eigen,·ectors? How 
would you them find ti>(, ~ig~nv""t""? 

6.2 If A is singular what does this .... y about il'! e igenvalues? 

6.3 If II times II "'Iuals 4A. wbat numbers can be eigenvalues of A1 

6.4 Find a real matri~ that has 00 real e igenvalues or eigenvectors. 

6.5 How can you find the sum and product of the eigenval-.es directly from 04 1 

6.6 Wbat are the e;genval"". of the rank one matri~ [] 2 I IT, I I I J? 

6.7 Explain the diagonaliu.tiOll formula A = SI\S- I. Why is it true and when is it nue? 

, , 
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6.8 What is the difference between the algebraic and geometric muhiplicities of an eigen-
value of A1 Which might be larger? 

6.9 Explain why tbe trace of II B equals the lrace of 8 A. 

6.10 How do the eigenvectors of A h.elp 10 solve d u l dl '= Au? 

6.11 How do the eigenvectors of A help to solve " .+1 = Au," 
6.12 Define the malrix exponential .. ,\ and jl~ invcn;e and its square. 

6.13 If II is symmetric . wbal is special about its eigenvectors? Do any other matrices have 
eigenvectors willl this property? 

6.14 What is the diagonaliz3tion formula when A is symmetric? 

6.15 What does it mean to say that A is posit!I'" definite? 

6.16 When is B = AT A a positive definite mmill (A is real)? 

6.17 If A is posit;,-c definite describe the surface ;r T Ax = 1 in R". 

6.18 What does il mean for A and B to be similar? What is sure 10 be the same for II and 

B' 
6.19 The 3 by 3 matrix with ones for i ::':: j has what Jordan form? 

6.20 The SVD expresses A as a product of what three types of matrices? 

6.21 How is the SVO for A linked to AT A? 

7.1 Define 3 linear transformation from R3 to R2 and give one example. 

Chapter 7 

7.2 If the upper middle house on the cover of the book is the original. find something 
nonlinear in !he ltansformations of the other eight houses. 

7.3 If a linear transformation takes every vector in the input basis into the next basis vector 
(and the last into zero). what is its matrix? 

7.4 Suppose we change from the standard basis (the columns of I) to the basis given by 
the column. of A (invenible matri~). What is the change of basi. matrix M ? 

7.5 Suppose our new basis is formed from the eigenvectors of a matrix A . What matri."\: 
represents A in this new basis? 

1.6 If A and B are the matrices representing linear ltansformations S and T on R". what 
matrix represents the ltansfonnalion from v to S(T( v ))? 

7.7 Describe live imponam factorizations of a matrix A and explain when each of them 
sucreeds (what conditions on A?). 



GLOSSARY 

Adjacency mat rix of II graph. Square matrix with O;j _ 1 ""hen there i~ an wge (ronl 
node i \0 node j; OIhcrwise B;J = O. II = AT for an undirected graph. 

Affine transformation T( . ) = Av + ~ "" linear ttan§fonnalion plus shi ft. 

Associalh"e Law ( A B)C "" A (HC). Parenlheses Can be remo\'ed 10 Ica\"e II BC 

Augmented matrix [II b 1. II .. '"' b is wlvabk: when " i. in therolumn spaceof A: then 
[II b I has the same rank as A. Elimination on [II b I keeps equations rorm:l. 

Back subst itution. Upper triangular systems are soh-ed in I'e'-crse onIcr .... to XI, 

Basis for V . Independent v«tors . t ..... ' d whose linear combinations g j,'e tVf:ry , in 
V . A V«lor iipace has many bases! 

Big formul a ror n by n delenninants. Oct(A) i. a Sum of n! tenns.o"" term for each 
permutation P oftl>c columns. Thal1erm iSlhe prodllCtol ~'" a_ down thcdiagonal 
of the I"eQI'tk,red mattix, limes del( P) = ± l. 

OIO(k nuurh:. A matrix can be paniliOllW int{) malrix blocks. by cut. between rows and/or 
betwecnoolumns. Block multiplication of AR is allOW«! irthe block sh~pespennit 
(the columns of A and ","",,'s of 8 must be in matching blocks). 

Cayley·Ha mllton Theo ..... m. pIA) = det (A - ;'1) hal; peA ) = ~u" matrix. 

C hange of basis matrix M . ll>C' old I:>a$is vectors ' J = combinations L "'!j ill, of the 
new buis .'mol'S. n.e roo:;mlinates of el g l + ... + e •• ~ = dl lll i + ... + d. ",~ an: 
relslc,j by d = Me. (For" .. 2 S<'I U I ., '" I I "' I + "' 21 "': __ : ., "' 12 "' 1 + "'nlll l·j 

C haracteris tic equation deI (A - AI) = O. ll>C' n !O()U an: lhe eigenvalues of A. 

C holesky fac torization A = CCT = (L ./D)(L.Il5)T for positive definite A. 

C in:ulant matrix C. Constant diagonals wrap around as in eyetic shift S. Evcrycirculam 
i. co l + C[S + ... + e._ I 5"-1. e x _ conH.]uUon e. x . Eigenvectors in F. 

Cofactor C;I' RCI11O\-'e row; and column j; multiply the determinant by ( _ I )I+j. 

Column pk tu ..... o f Ax = b. ll>C' v~tor b ~1TIC!i 3. rombination of the roIumns of A. 
ll>C' system is solvable only when II is in the column space C(A). 

Column space C (A ) = space of all combinations of the columns of A. 

Commuting matrices AH ." HA. If diagonalizable. they share" cigcn>"tttors. 

Companion matrix. Pul el ..... e. in row n and put " - I I 's along diagonal I. 1lIen 
deI (A - AI) = ± (C[ + <'.1). + C'JAl + ... ). 

Complete solution x = x" + x. 10 Ax = b. (I".uticular x p ) + (x . in nullspacc). 

'" 

, 
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Complex wnJugate ! = (J - ib for any eomple~ number t = (J + ib. "Then zl = Id. 
Condition nnmber corn/(Al = ..- (A ) = l All A-I I = u"., l u ..... In Ax = b. the 

relati~e .hange l&x l / l"' l is ICM than cona( tt) limes the relati,·e change l &bR/Rbft. 
Condition numbers measure the sens;'i,·i,), of the ootput to change in the input. 

C onjugMte Gradient Method. A SC(juence of steps (end of Chapler 9) to solve positive 
definite Ax = b by minimizing ~x T Ax _ xTb o,·er growing Krylov subspaces. 

CO\·Mria~ matrix E. When ra»dom variables Xi have mean = a'·erage value = O. their 
CQvariaocc:§ I:.;j are the averages of Xi Xj. With means Xi . lhe matrix I:. = mean of 
(x - i)(x - X)T is positive (scmijdefinitc: il is diagonal ifthc Xi are independent. 

C ramtr 's Rule for Ax = b. Bj ha~ b "'placing column j of A. and Xj = IBjI/I AI. 

C ross product II x , in RJ. V~lorpe'l"'ndicular to II and u.lenglh III II_MI sinO I = par
allelogr.tl1l area. computed as too ··detenninant"· off i j k : U I " l II): VI "l "J]. 

Cyclic shin S. I'cnnulation with S~I = l.s}1 = I ....• finally 'I . = I. Its eigenvalues 
are nth roots t bil/ . of I: cigen'-'CC\()IS are eolumns of the Fourier matrix F . 

Determinant [AI = del (A). Defined by dell = I. sign revenal for row exchange. and 
linearity in each row. Then [AI = 0 when A is singular. Also [A B [ = IAII BI and 
IA -II = I/I AI and IATI = IAI. The big formula for deI ( A ) has iii sum of n! terms. 
the oofactor formula uses detenninan~ of .i~e n - I. volume of box "" Idet(A)I. 

DIagonal matrix O . d;j = 0 if i "# j. Block-diagona l: lerooutside square blocks Oil. 

Diagonalizable matrix A. Must have n independent eigen~lors (in lhe oolumns of S: 
aUlomalic with /I different eigen~alucs). Then S - 1 AS = Il = eigenvaluc matrix. 

Dl.u.gonalization Il '"' S - 1 AS. Il = eigen'·aluc matrix and S = eigenve<;:lor matrix . A 
must have II independem eigenvectors 10 male S in~r1ible . All Al = Sill S- I. 

Dimension of ,·eclor space dim( Y) = number of v«tors in an y Nsis for Y . 

Distribulh·e Law A(B + C ) = A B + AC. Add then multiply. or multiply then add. 

Dol product X T ~ = .tl)"1 + ... + .t.)" •. Comple~ dot product i. Z-T y . Perpendicular 
vectors ha'·e 1.<:ro dot prodUCI. (AB)'I = ( row i of A).{eolumn j of B). 

I<A:helon malrix U. "The finn r>Qllzcro entl)' (the pivot) in each row comes aner the pivot 
in the pre~ious row. All zero rows come last. 

Eigt'n~alue Ie a nd eigen'·ector x . Ax .. J..x with x '" 0 so del(A - leI) = o. 

Eigshow. Graphical 2 by 2 eigenvalues and singular ~alues (MATLAB or Java). 

F.liminlltion. A SC(juc""" of row operations that reduces A 10 an upper triangular U or 10 
lhe reduced form R = 'rci(A). Then A = LU with multiplieN lij in I..or P A = LU 
wilh row tAchanges in P. or E A = R wilh an invenible E. 

Elimination matrix "" E lementa,,· matrix E'j. "The identily matrix with an tAtra -t/) 
in the i. j enll)' (i '" j). Then E;jA subtTllC~ tij times row j of A from row;. 

, 
i 
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Elli pse (or el lipsoid ) x T Ax = I. A must be positi~e defi nite: the U N of the ellipse are 
eigenV«lon of II . with Lengths I/./i. (For Ix I '" I (he >'«Ion )' = Ax lie on the 
ell ipse l A- I )' Il = )' T(IIAT)- t)' = I displayed by eigr.how: axis lenglhs Uj.) 

Exponential ~AI _ I + III + (111 )1 / 2! + ... has derivative A eAI ; rAI ,,(O) solves ,,' = II " . 

Factorizat ion II = L U. If elimination takes II to U K';lhoUl row ucha"ges. then tile 
lower triangular L with multipliers tjj (and iii .. I) brings U back to II. 

Fasl FourierTransform (.TI). A facwriuuion of the R>urier matri~ F. into l = 10gl II 
matri~s S; limes a pennut3lion. Each S; ne«lsonly ,, / 2 multiplications. SO FoX and 
F.-I e can be computed with "t/2 multiplications. Rcvolutionary. 

Fibonacci num bersO. I . 1.2.3.5, ... sati sfy F. = F._t +F._l = ().1-J,,~)/O.t - J,,2) . 
Growth rate}.t = ( I + ./5) /2 is tile largest eigenvalue of the Fibonacci matrix [ : : l 

Four rundamenlal sub!;paces or A = C ( A). N (A ). C(IIT) . N ( A T). 

Fourlet' matr ix F . Entries Fj . = ebij., o gi~ onhogonal columns FT F = "f . 1ben 
)' = Fe is the (in.-erse) Discrete R>urier Transform Yi = E Cj~b jj.' • . 

FI'\'(' columns or II Columns without pivots; combinations of earlier columns. 

FrH varia ble Xj. Column i 11115 no pivot in elimination. We can &i''C the" - r free variables 
any ""lues. then Ax = b detennines the r piVOI variables (i f soh·able '). 

Full rolumn rank r = II . Indepcndenlcolumll$. N ( A ) = 10 1. no free yariables. 

.' 011 row rank r = m. Independent rows. at least one SOlution to Ax = h. column space 
is all of R"'. Full ro"A;: means full column rank or full row flint . 

• ·unda mental Theo ..... m . TlM: nullspace N ( A ) and row space C (AT) are orthogonal 
complements (perpendicular subspaces of R" with dimens;oo$ r and II - r ) from 
Ax = O. Applied to AT. the column space C ( A) ;s the orthogonal complement of 
N ( AT). 

Gauss-J orda n method. Inyen A by row Ppef1ltions on I A 1110 reacllil A- t I. 

Gram·Schmidt Orlliogonal ization A = QN. Independent column$ in A. orthonormal 
columns in Q. Each column q, of Q is a combination of the firsl j columns of A 
(and co'werscl~. 50 N is upper triangular). Con,,,mion' diag(R) > O. 

G .... ph C. Set of " oodes connected pairwise by ,n edges. A romplde graph ..... alt 
,,( .. - 1)/2 edges between nodes. It trtt hasonly .. - I edges and no closed loops. 
It dil'\'(tt<! gl'1lph has a diltttion armw specified on e""h edge. 

lIankt'1 mat rix H. ConStant along each antidiagooal: hi) depends on i + j. 

Hennit ian ma trix AH = AT = A . Complex analog of a s~mmelric matrix: <lll = UI). 

lIessenberg matrix H . Triangular matrix wilh one exIra nonzero ad~nt diagonal. 

llil bt'rt ma trix hilb("J. Entries Hij = I/ {i + j - I) = fd x l-Ixj - td" . PQsili.-edefinilc 
but extremely small I. ... and large condition number. 

HYP'C'n:ubt' ma trix pl. Row II + I counts comers. edges, faces •... ofa cube in R". 

, 
t 
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Identity matrix I (or I. ). Diagonal entries"" I. off~iagOfl.J entries "" O. 

Incidence ma trix or a dirKtcd graph. The m by n edge-node inciden.cc matrix has a 
row for each edge (oode i \0 node j). wilh entries -I and 1 in columns j and j. 

Indelinite matrix. A symmctrk ITUItriX with ~igennl"". of both signs ( + and -). 

Independent H'Clon VI ..... VI . Nocombinalioo C[ VI + ... +rl~1 '" zero ~ector UIlIeSS 
all Cj : O. If lhe , '5 an: lhe columns of ii , lhe ooly solution to Ax "" 0 is x "" O. 

In"ene matrix A- I. Square malri~ wilh A- I;! "" I and ;!;! _ l "" I . No jn~rsoe if 
det A "" 0 and rank (iI ) < M and Ax "" 0 for a nonzero vector x . The inverses of AN 
and AT are 8 - 1A- l and (;! - I)T. Cofactor formula (A- 1)jj "" Cjil dA!l A. 

lIer olti w method . A Soe<jucn.cc of Sleps inlcnd.'<llo approach lhe dA!sired solution. 

J ordan form J "" M - ' AM. If It has s independent eigenveclors_ its "generalized'" 
eigenvector matrix M givcs J "" diag( J \ .. . . , J,). 'The block J, is " I /j + NI whe", 

NI has 1'5 on diagonal I. Each block has one eigenvalue '" and 0"" eigenvector 
(I. O . .... 0). 

Ki rchhoff's l .... ",'s. Currt tl' In,,", ""t CUlTCnt (in rninu~ QUt) is uro at each roode. \1.>1"'g~ 

10"': Potenlial differences (milage drops) add to lero around any closed loop. 

Kro"....,ker product (Ien_ producl) A ® H . lIk)d s " ji H. cigenvalues ~p( A)"" ( H). 

Krylov sul)s pace Kj( A. b). The subspace spanoed by b. Ab .... . A /-' b. Nurncrkal 
n1Clhods approximate A- l b by Xj with residual b - AXI in this subspace. A good 
ba<ii ~ for Kj fNJ.uires only multiplication by A at each step. 

Least liquares solut ion x . 'The vector X that minimizes the etrof 11,.12 soh'es AT Ax "" 
ATb. Then ~ "" b _ Ax i ~ onbogonal to all columns of A. 

Leh in, 'erso' A+ _ If A has full column rank tI. lhen A+ "" (AT A)- \ AT has A+ A "" I • . 

Left nullspace N ( AT). Nullspace of AT = "Iefl nullspace" of A because J T A = OT. 

u ngth Ix i. Square ~ of x T x (Pythagoras in tI dimensions). 

Linear combina tion cp + d ll! or L C( , ). Vector addition and scalar multiplication. 

LInear tnan~1"ormat ion T. Each '"CcIOr ~ in the input space trandorms to T (.) in the 
OUlPU' space. and IillCaril y requires T (n + d., ) = e T(. ) + d T (., ). fuarnples: 
Matrix multiplication A., differentiation in func~iOfl >pace . 

Linearly dependenl Pl . .. .. p •. A combination OIher than all Cj = 0 gives L Cj l j '" O. 

Luca.~ num!wl"!> L~ "" 2. 1.3. 4 .... salisfy L. '" L. _ I + L._l "" "i + "i . with eigen

values " I. "2 "" ( I ± ./S)/2 of the Fibonacci ma~rix [ : : J. Compare 1-0 "" 2 with 
Fibonacci. 

Markov matrb M . All m,1 :! 0 and each ool~mn sum is I. LargeSl eigennlue" "" I. If 
m ,) > O. 1M columns of M I approach the s'eooy Stale eigenveclor M. '"' . > O. 

, 
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Matrix multIplication AB. The i.j entry of AB is (row i of A)·(column j of B ) = 
L aabkj. By columns: Column j of A B = A times column j of B. By rows: row i 
of A multiplies B. Columns limes rows: AB "" sum of (column k)(row k). All these 
equivalent definitions come from the rule that A B limes ;,; equals A times Bx. 

MInimal polynomial or A. The lowest degree polynomial with m eA) = zero matrix. "The 
roots of III are eigenvalues. and m eA) divides det(A - AI). 

Multiplication AX = .q(column 1) + ... + xn{column n ) = combination of colunms. 

Multiplicities AM and GM. "The algebraic mulliplicity AM of an eigen,-alue '" is the 
number of times A appears as a root of (\et (A - AI) = O. The geometric multiplicity 
GM is the number of independent eigenvectors (= dimension of the eigenspace for 
A). 

Multiplier Ii} . The pivot row j is multiplied by (jj and subtracted from row i !O eliminate 
the i. j enlry: tij = (emry 10 dirninale)/(jth pivot). 

Network. A dill:cted graph that has conslants Ct ... .. e", associated with the edges. 

Nilpotent matri): N. Some power of N is the zero matrix. N~ = O. The only eigenvalue 
is A = 0 (repeated n times). Examples: triangular matrices wi th zero diagonal. 

Norm II AD ora matrix. The .. £2 norm" is the maximum ratio I I A ;,; II/~ ;,;I I = (1" ....... Then 
~Ax l ~ I AOI ;,; II and II A8 0 ~ I I AII! 8 ~ and RA + 8 i ~ IA U + I B ~. FrobenillS 
norm nA D} = I: L ah ; (I and ( OC nonns all: largest column and TOW sums of la ij I. 

Normal equation AT Ax = A Tb. Gives the least squares solution to Ax = b if A has full 
rank n. The equal ion says that (columns of A )·(b - Ai) = O. 

Normal ma trIx N. N NT = NT N . leads to onhonormBI (complex) eigenvectors. 

Nullspace N(A ) = Solutions to A;,; = O. Dimension " - r = (I columns) - rank. 

Nullspace matrIx N. The columns of N are the" - r special solutions to AS = O. 

Orthogonal matri): Q. Square matrix wilh onhononnaJ columns. so QT Q = I implies 
QT = Q _ t. Preserves length and angles. I Qx i = ~ x i and ( Qx )l ( Qy ) = xl y . All 
1.1.1 = I. with onhogonal e igenvectOrli. Examples: ROlation. relkction. permutation. 

Orthogonal s ubs paces. Every II in V is onhogonal TO every w in If. 

Ortho normal \·ecto rsq j ..... 'I • . Dolproducisare q; q j = Oifi i' j andq; 'I , = l. The 
malrix Q with lhese onhonormai columns has QT Q = I. If III = 11 then QT = Q -I 
and 'l l ' .... q. is an orthonormal basis for R": every ~ = L (IIT q) qj' 

Outer product uvT = column times row = rank one maTrix . 

Partia l ph·oling. In elimination. the jib pivot is chosen as the largesl available enlry (in 
absolute value) in column j. "Then all multipliers have I(ijl :5 I. Roundoff error is 
controlled (depending on the colldiliOlt nll",~r of A). 

Particular solution x p ' Any solutiOn 10 Ax = b: often x p has free variables = O. 

Pascal malrix Ps = pascal(n). The symmetric matrix with binomial emries ('~~~2). 
Ps = PL Pu all COllla;n Pascal's triangle willt del = I (see index for more propenies). 
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Permutation matrix 1'. lbere are II! OI'ders of I ..... 11: tbe II! 1"5 tum, tile lOW~ of I 
in those orden. P A puts !be lOWS of A in the same order. P is a product of row 
uchanges P;j : P isn"norodd(det P '" I or - I)based on tbe number of exchanges. 

I'i"ot column~ or A . Columns that contain pivots after r()W reduction: IIQI combinations 
of earlier columns. l1Ie pivoc columns are a basis for the column space. 

Ph'ot d. l1Ie diagonal entl}' (firSt Mtl3'ro) when II. row is used in elimination. 

Plane (or hYpl'rplane) in R-. Solutions to aT x = 0 giv" tile plane (dimension II - I) 
perpendicular to a I< O. 

Polar dec:ompollition A = QH. Orthogonal Q. positive (semi)dcfinite H. 

Posit i'-e definite matrix A. Synunetric matrix with positive eigenvalue. and positive 
pivots. Definition: x T Ax ,. 0 unless x '" O. 

J'roj« t ion p '" a(a Til / a Ta ) onto ttlt lin(: through .. . P "' .. 6 T / a T 6 has rank 1. 

J'ro,i«tion matrix Ponto sub!ipace S. Projection p '" I'll is tbe closest point to b in 
S. e1TQf e = b - Ph is perpendicular to S. p~ = I' '" pT. eigenvalues are I or O. 
eigen''tttors are in S or S J. . If columns of II .. basis for S then P '" A(AT A )- 1 AT. 

i>:seudoin"erse A+ (Moore-Penrose in,·erse). lbe n by m matrix that"inve", " A from 
column space back to lOW space, with N (A+) '" N (AT). A+ A and AA+ are the 
projection matrices ontO tile row space and column spoce. Rank(A +) = nnk(A). 

Random matrix rand(n) or randn(n). MATLAB c...,ateS II. matrix with random enll;", . 
uniformly distributed on r 0 1 I for r .. nd and standard normal distribution for randn. 

Rllnk one ma trix A = U~ T '" O. Column and row space. = lines cu and cu. 

Rank ,CA.) = number of pivots = dimension of column space = di,""nsion of row space. 

Rayleigh quotient q (;r) = ;r T Ax / ;r T ;r for symmetric A: lmin ~ q(;r ) ~ llt\2.t. 1bose 
extremes are reochcd altbe eigenvectors x for l min (A) and lmax(A). 

Reduced row ec:helon form R = rref(A). P;VQ(s '" I: uros above and below pivocs: r 
non~em rows of R give a basis for the row space of A. 

Rdlection mlltri.~ Q = / - 2uu T. lbe unit .. ector u is ...,Heeted to Qu = - u . All vectors 
;r in the plane mirror u T x = 0 an: unchanged because Qx = x . lbe MHouseholdcr 
matrix" has QT = Q-l = Q. 

Rlghtlnnrse A+. If A ha. full row rank m. then A+ '" AT (AAT)- t lias AA+ = I ,.. 

. . [ro .. -sin,] , , RotatIOn matrix R = >in ' .,.,., roIates tbe plan<: by fI and R - = R roIaleS back 

by - fl. Orthogonal matrix. eigenvalues ~9 and ,,- " . eigcn''tttors ( I . ±i). 

Row picture or Ax = II , Each e<juation gives a planc in R": planes intersect 1lI ;r . 

Row space C (AT) '" all combinations of rows of A. Column veetors by COIm: nlion. 

Saddle point or f (XI .. ... -,,_). A poinl wile..., !be first derivatives of f are zero and !be 
second derivative matrix (a2 fllJx; lJxJ = Hessian matrix ) is indefinite. 

Schur complement S '" D - C A MI B Appears in block elimination OIl [ ~~ 1-

, 
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Schwarz inequality Iv, wi !: I I' I O., ft.Tht:n Iv TA III12 !: (v T A 1')(111 T A III ) if A = eTc. 

Semidefinite matrb: A. (Posi tive) semidefinite means symmetric with x T Ax :::: 0 for al l 
vectors x . Then all eigenvalues). :::: 0: no negative pivots. 

Similar matrices A and 8. Every B = M - t AM has the same eigenvalues as A. 

Simplex method for linear programming. The minimum COSt vector x · is found by 
moving from comer 10 lower cost comer along the edges of the feasible Set (where 
the constraints Ax = b and x :::: 0 are satisfied), Minimum COSI at a comer! 

Singular matrix A. A square matrix that has no inverse: det (A) = O. 

Singular Value Decomposition (SVD) A = U I: VT = (orthogonal U) times (diago
nal I: ) limes (orthogona l yT). First r columns of U and Y are orthonormal bases 
of C (A) and C (A T) with th i = 0iUi and singular value 0, > O. Last columns of U 
and V are orthonormal bases of the nullspaces of AT and A-

Ske,,'-symmetric matrix K . The transpose is -K. since Kij = -Kjl . Eigenvalues are 
pure imaginary. eigenvectors are onhogonal. e Kt is an orthogonal matrix. 

Soh'able system Ax = b. Tht: right side b is in Ihe column space of A. 

Spanning set VI .•.•. I'm for V . Every vector in V is a combination of lOt ... .. I'm. 

Special solutions to As = O. One free variable is Si = 1. other free variables = O. 

Spectral theorem A = QA QT. Real symmetric A has real Ai and orthonormal q l with 
A q i = ). I q i' In mechanics the q i give theprindpal a.us. 

Spectrum of A = the set of eigenvalues ().t ... , . )..1. Spectral radius = (Amax (. 

Standard basis for R". Columns nf II hy II identity matrix (written i . j. It. in R3). 

Stiffness ma trix K . If x gives the movements nf the nodes in a discrete structure. K x 
gives the internal forces. Often K = ATe A where C contains spring constants from 
Hooke's Law and A.r = stretching (strains) from the movements x. 

Subspace S of V . Any vector space inside Y. including V and Z = !zero VC(:10r). 

Sum Y + IV ofsubspaces. Space of all (v in V ) + (IV in IV ). Direct sum: dim(V + IV) = 
dim V + dim IV when l ' and IV share only the zero vector, 

Symmetric factorizations A '= LDL T and A = Q ",QT. Tht: number of positil'e pivots 
in D and positive eigenvalues in A is the same. 

Symmetric matrix A. The transpose is AT = A. and aij '= aj;. A -t is also symmetric. 
All matrices of !be form RT R and L DL T and QAQT are symmetric. Symmetric 
matrices have rea! eigenvalues in A and onhonormal eigenvectors in Q. 

Toeplitl: matrix T . Constant-diagonal matrix. so Ilj depends only on j - i. Toeplitz 
matrices represent linear time~invariant fillers in signal processing. 

Trace of A == sum of diagonal entries = sum of eigenvalues of A. Tf A B = Tr BA. 

Transpose matrix AT. Entries A~ '= A jl. A T is II b)' m. ATA is square. symmetric. 

positive semidefinite. Tht: transposes of A 8 and A - t arc BT AT and (A T)- t. 
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Triangle inequality 11 11 + ~ I ::;: 11 1111 + Uv ll, For malrix nonos MA + BH ::;: IIA U + II B U, 

Tridiagonal matrix T: l ij "'" 0 if Ii - j l > I , T- i bas rank. I above and below diagonal. 

Unita ry matrix UH = U T "'" V - i , Onbonormal columns (complex analog of QJ, 

Vandermonde matrix v, Ve = b gives Ihe polynomial p(x) = CO + , .. + ("K_J.f~- i 
with p i x;) = h i al n poinls. Vij = ( XI)j-l and del V = prodUCI of (x, - Xj) for 
/.; > i. 

VeCior v In RK. Sequence of II real numbers ~ = (V I ..... v~) == poinl in RK. 

\ 'ector addi tion. ~ + ILl = (VI + WL ..... L'II + wK ) = diagonalofparaUe!ogram. 

Vector s pace V . Set of ,'ectors such Ihat aJl combinalions ev + d ID remain in V . Eigbt 
required rules are given in Section 3. I for ev + d ID . 

Volume of Dox. The rows (or columns) of A generate a box wi lh volume I det (A)I . 

Wa\'elets wit(t) o r ,'ectors Wjt. Streich and shift Ihe lime axis 10 create IDj t(t) _ 
Woo(2J I - /.;). Veclors from Woo = ( 1.1. - 1. -1) would be (1.-1.0,0) and 
(0 , O. I. -I). 
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B 

Back ~ubstitution. 35. 40. 86 
Balance equation. 403 
Band matrix. 453 
Basis. 161. 163. 169, 188 
Big formula . 245. 248 
Binomial ~oeffi~ie nts. 62. 78 
Bionhogonal. 387 
Block elimination. 69. 83 
Block matrix. 60. 105.257 
Block multiplication. 60. 258 
Boundary ~onditions. 409 
Box. 264. 265 
Breakdown. 36 

C 

Calculus. 202. 207. 244. 258. 265 
Cayley-Hamilton Theorem. 302 
Change of basis. 344. 381. 384. 391 
Change of basis matrix. 371. 377. 384. 

405.406 
Characteristic equation. 278 
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Chess matrix. 183 
chol. 90. 95 
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Cholesky fa<;:toriution. 334. 341 
Cirl'ulam matrix. 493 
Clock. 20 
Closest line. 206. 208. 210 
Coefficient matrix. 23. 26 
Cofactor. 249. 260 
Cofactor formula. 250. 268. 270 
Cofactor matrix. 255. 261 
Column picture. 22. 24. 25. 31 . 37 
Column space. 115. 120.127. 142. 174 
Column times row. 52. 58. ]43 
Column v~to~ 4 
Column-row muhiplication. 69 
Combination of columns. 22. 26. 4<i 
Commute, 49. 58. 67. 82. 292. 297 
Companion matrix. Glossary 
Complete solution. 126. 129. 145. 148 
Completing the Mjuare. 334 
Complex conjugate. 320. 327. 478 
Complu eigenvalues. 322 
Complex number. 477. 478 
Components. I 
Composition. 376 
Compression. 385 
Computer graphics. 444 
Computing time. 87 
Condition number. 450. 461 
Conjugate gradients. 471. 476 
Conjugate transpose . 486 
Consumption matrix. 426 
Comer submatrix. 246 
Comer. 433. 434 
Cosine. 14. 15. 16. 17.30. 437 
Cos!. 431. 433 
Covariance matrix. 2 17 
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Cramer's Rule. 259. 270 
Cross produCI. 266, 267 
Cube. 8, 63, 290 
Cyclic matrix. 258, 362 
Cyclic permutation. 379. 501 

D 

Delta function. 439 
Dependent, 158, 159, 168 
Derivative matrix. 373. 443 
Determinam of transpose. 256 
DeTerminant. 233, 298, 327 
Diagonal malrix, 72. 86, 392 
Diagonalizable. 290. 295. 300. 319. 328 
Diagonalization. 288. 392 
Diagonally dominam. 475 
Diameter. 64. 70 
DifTeren~'e equation. 294 
Differential equation. 304 
Diffusion, 41 I 
Dimension. 63. 128. 163. 164. 174, 196 
Directed graph. 64. 412 
Discrete cosines. 325 
Discrete Fourier Transform. 325. 387 
Discrete sines. 325 
Dislance.201 
DiSTribuTive law. 58 
Domain. 372 
DoT prodUCT. 10.47.56 
Dual basis. 387. 390 
Dual problem, 433. 434 

E 

Echelon matrix. 127 
Economics, 426 
e ig.279 
Eigenvalue, 274. 296, 362 
Eigenvalue matrix, 288 
Eigenvalues of AT. 286 
Eigenvalues of Al . 275 
Eigenvalues of AS. 284. 291. 351 
Eigenvector. 274. 279. 362. 392 
Eigenvector maTrix. 288 
eigshow. 281. 357 
Einstein. 47 

Elastic bar. 408 
Elementary matrix, 48 
Elementary operaTions. 130 
elim. 134 
Elimination. 35,61. 124 
EliminaTion matrix, 47. 48. 53. 91. 134 
Ellipse. 281. 335. 341. 355. 370 
Elongations. 403 
Empty set. 165 
Energy. 98. 401 
Engineering. 98. 401 
Entry. 27.46.56 
Error veclor. 198 
Error. 204. 207 
Euler angles. 459 
Euler's formula. 418. 422. 481 
Even permulation. 105.254 
Exponential. 323, 328. 331 
eye. 33. 80 

F 

Factorial. 10 I 
Factorization. 83 
Fast Fourier TTlInsform. 387. 495. 497. 

501 
Feasible set. 431 
Fibonacci, 65. 252. 256. 292, 297, 299 
Finite elements, 404. 411 
Fining a line, 228 
Fixed-fixed,402 
Force balance. 404 
Formula for A-I. 261 
Formula for deTerminant. 237, 248. 250 
FORTRAN. 16.28 
Forward elimination. 39. 86 
Four fundamental subspaces. 173. 179. 

356 
Fourier matrix. 490. 495 
Fourier series. 222. 438 
Fredholm'S alternative. 191 
Free. 37. 123 
Free CQlumns. 123. 136 
Free variables, 125, 127, 137 
Frobenius nonn. Glossary 
FuJI column rank:, 146, 150 



Full row rank. 148. 154 
Function space. 165. 171.438 
Fundamental Theorem. 113. 177.184. 187. 
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Galileo. 21 I 
Gaussian elimination. 38 
Gauss·Jordan. B. 74. 81. 95. 155 
Gauss-Seidel. 466. 469. 470 
General solUTion. 152.305.310 
Goometric mean. 15. 18 
Goometric multiplicity. 295 
Goometric series, 427, 430 
Gershgorin, 475 
Gi\'ens, 455 
Golden mean, 294 
Google, 359 
Gram-Schmidt. 21 1. 223. 224, 225, 229, 

359,455 
Graph,302, 4 12 
Group. 109.342 

H 

Hadamard matrix, 227. 271, 390 
Half-plane, 7 
Hankel matrix, Glossary 
Heat equation, 313 
Heisenberg uncertainty prirlCiple. 292. 302 
Hermitian matrix, 362, 488, 494 
Hessent>erg matrix, 252, 473 
Hilbert matrix, 82. 244, 338. 457 
Hilbert space. 437 
Homoger\eOus, 445, 448 
Hooke's Law. 98. 403 
Horizontal line. 215 
House, 365, 366, 370 
Householder, 231. 455 
Hypmube, 63. 290 
Hyperplane, 29 

Identity matri~, 27, 48 
Image compression. 352 
Imaginary number, 280 
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Incidence maTrix. 412 
Income, II 
incompleTe L U, 470 
Indefinite matrix. Glossary 
Independent. 124.168.175 
Independent columns, 146. 159 
Independent eigenvectors. 288. 290 
Imler prodUCT. 10.438 
Input s~e. 365. 369. 372 
inv.11O 
Inverse maTrix. 71. 279 
Inverse of product. 72 
Inverse Transformation. 365. 367 
Invertible matrix. 7 I. 76. 162 
Iteration. 450 
Iterations, 466 

Jacobi. 457.466.468.470 
Jacobian matrix. 265. 272 
Java, 357 

Jordan fonn. 344. 346. 351 
JPEG, 325, 352 

K 

Kalman filler. 202 
Karmarkar.435 
Kernel. 364. 368 
Kirchhoff. 412. 416 
Kirchlloff's Current Law, 98. 417 
Kronecker product, 380 
Kryloy subspace. 476 

l 

Lanczos. 475, 476 
lAPACK.471 
largeST determinant. 254. 290 
Law of cosines. 19 
Lax. 303. 329 
Least squares. 206. 209. 222. 396. 399 
LeftnuUspace. 175. 177.181.186 
Left-inverse. 71. 76, 397 
LengTh. 11.438.486 
Line of springs. 402 
Unear combination, I. 2.4.23 
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Linear independence. 151 
Linear programming. 431 
Linear lransfonnation. 363. 374 
Linearity. 67. 235, 363, 371 
Linearly independent. 157. 158, 161 
Loop.414 
lu, 90, 95 
Lucas number. 296, JOO 

M 

Magic matrix. 34 
Maple.2g 
Markov matrix. 33. 274. 276. 284. 286. 

362.423.428 
Mass matrix. 326 
Mmhemol/ru. 28 
MATLAB. 16. 28 
Matrix. 26. 56 

Adjacency. 64. 302 
Augmented. 50. 51. 55. 77. 121. 144. 

172 
Band. 453 
Block. 60. 105. 257 
Change of basis. 371. 377. 384. 405. 

"" Chess. 183 
Circulam.493 
Coefficiem. 23. 26 
Cofactor. 255. 261 
Companion. Glo$$llry 
Consumption. 426 
Comer sub-. 246 
Covariance. 217 
Cyclic. 258. 362 
DeriYative. 373. 443 
Diagonal. 72. 86. 392 
Echelon. 127 
Eigenvalue. 288 
Eigenvector. 288 
Elementary. 48 
Elimination. 47. 48. 53. 91. 134 
Fourier. 490. 495 
Hadamard. 227. 27]. 390 
Hankel. GlolSQry 
Hermitian. 362, 488. 494 

Hessenberg. 252. 473 
Hilbm. 82, 244, 338, 457 
ldentit)'. 27. 48 
Incidence. 412 
Indefinite . Glu$$(lry 
In\·erse. 71. 279 
In,·enible. 71. 76. 162 
Jacobian. 265. 272 
Magic. 34 
Markov. 33. 274. 276. 284. 286. 362. 

423.428 
M~.s. 126 
Negative definite. 313 
Nilpotent. G/o$$(lr)' 
Normal. 325. 329 
NIlI"th"·esl.70. ]09 
Nullspace. 126. 137. 138. 146 
OrthogonaL 220. 228. 241. 280. 311. 

338 
Pascal. 56. 62. 78. 89. 259. 314. 338. 

347.389 
Permutation. 49. 100. 105. 106. 172. 

220.254. 288 
Pixel. 352 
Positive definite. 301. 33 1. 333. 335. 

340.394 
Posili\"e. 4OJ. 423. 427 
Projection. 194. 196. 198.204. 276. 

285.362.376.395 
Random. Glo$$(Ir)' 
Rank one. 135. 142. 178. 197. 361. 

300 
Reduced row echelon. ] 24. 128. 134 
Reflection. 220. 231. 277. 362 
Revcrse identil)". 241. 345 
Rotatiool. 220. 280. 376. 455 
Row exchange. 37, 50. 100 
Scaling. 444 

Second deri\l3.tive. 332. 333. 342 
Second differellCe. 312. 4()9 

Semidefinite. 332. 394. 407 
Shift. 172 
Similar. 282. 343. 346. 349. 362. 392 
Singular. 38. 237 



Skew·symmetric. 242. 280. 311. 316. 
362.484 

Southeast. 70. 109 
Stable. 308. 309. 312 
Stiffness. 307. 401. 404 
Sub... 142 
Symmetric. 99. 318 
Translation. 444 
Tridiagonal. 75. 94. 246. 255 
Unitary. 489 
Uppertriangular. 35041. 236 
Zero. 56.192 
-I. 2. -I. tridiagonal. 246. 251. 276. 

312.362.409.474 
Matrix exponential. 306. 309. 317. 362 
Matrix inversion lemma. 83 
Matrix logarithm. 314 
Matrix multiplication. 28. 48. 56. 57. 376 
Matrix notation. 27 
Matrix powers. 59. 294. JOO 
Matrix space. I 13. I 14. 165. 17J. 379 
Maximum determinant. 254. 290 
Mean. 217 
Mechanics. 306 
Median. 214 
Minimum. 332 
Minimal polynomial. Giossi//)' 
Modified Gram·Schmidt 226 
Multiplication. 376 
Multiplication by columns. 26 
Multiplication by rows. 26 
Multiplicity. 295 
Multiplier. 10. 36. 39. 40. 73 

N 

Negative definite matrix. 313 
Network. 98. 419 
Newton's law. 306 
Nilpotent mauix. Glossa,)' 
No solution. 29. 36 
Nonsingular.38 
Norm. II. 16.459.464 
Normal equation. 198.234 
Normal matrix. 325. 329 
Northwest mauix. 70. 109 

null. 193 
nullbasis.126 
Nullspace.122. 174.269 
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Nullspace matrix. 126, 137. 138. 146 

o 
Ohm's Law. 98. 4 18 
ones. 33. SO. 338 
One·sided inverse. 373 
OpenCourseWare (ocw .mi t .lIdul. 90 
Operation count. 87. 452. 454. 499 
Orthogonal. 13. 184.438 
Orthogonal complement. 187. 190.208 
Orthogonal matrix. 220. 228. 241. 280. 

311.338 
Orthogonal subspaces. 184. 185 
Orthonormal. 219 
Orthonormal basis. 356. 359. 462 
Output space. 365 

p 

I'arabola. 211. 214. 216 
Paradox. 329 
Parallel. 132 
Parallelogram. 3. 8. 263 
Parentheses. 59. 71 . 357 
Partial pivoting. 102. 4SO 
Particular solution. 145. 147. ISO 
pascal. 348 
Pascal matrix. 56. 62. 78. 89. 259. 314. 

338.347.389 
Permutation. 247 
Permutation matrix. 49. 100. 105. 106. 

172. 220. 254. 288 
Perpendicular. 13. 184.299 
Perpendicularei.genvcctors. 192.280. 31B. 

321. 328 
pivcol. 129. 134.136. 163 
Pivot 36. 39. 76. 246 
Pivot CQlumns. 123. 136. 162. 174 
Pivot rows. 173 
Pivot variables. 125. 127 
Pixel. 447 
Pixel matrix. 352 
Polar coordinates, 290 
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Polar decompo~ition. 394 
Positive definite matrix. 301. 331. 333. 

335. 340. 394 
Positive eigenvalues. 323. 331 
Po~itive matrix. 404. 423, 427 
Po~ itive pivots. 331 
Potentials. 415 
Power method. 358. 471. 475 
Preconditiorter. 424. 466 
Principal axis theorem. 3 19. 337 
Probability vector. 4 
Product of eigenvalues. 279. 285. 320 
Product of inverses. 73 
Product of piv(){s. 75. 233. 237. 245 
Projection. 194. 198. 222. 375.446 
Projection matrix. 194. 196.198.204.276. 

285.362.376. 395 
Projection onto a line. 195. 202 
Properties of determinant. 234 
Pseudoinverse. 187.395.398 
Pulse. 202 
Pyramid. 290 
Pythagoras law. 13 

Q 
Quadratic formula. 283. 484 

, 
rand. 45. 95. 244 
Random matrix. Gfos!iflry 
Random walk. 358. 361 
Range. 364. 368 
Rank. 134. 135. 148. 177.359 
Rank of product. 143. 182 
Rank one matrix. 135. 142, 178. 197. 361. 

380 
Rank two. 140. 182 
Rayleigh quotient. 461 
Real eigenvalues. 318. 320. 340 
Real versus Complex. 491 
Recursive. 217 
Reduced echelon form. 74 
Reduced row echelon matrix. 124. 128. 

I" 
Reflection matrix. 220. 231. 277. 362 

Regression. 228. 236 
Relative error. 462 
Repeated eigenvalue. 283. 290. 295. 326 
Residual. 210 
Reverse identity matrix. 241. 345 
Reverse order. 97 
Right hand role. 265. 267 
Right triangle. 19 
Right·inverse. 71. 76. 397 
Roots of I. 482. 495 
Rotation matrill. 220. 280. 376. 455 
Roundoff. 451 
Row at a time. 21 
Row exchange matrix. 37. 50.100 
Row picture. 21. 24. 3 1. 37 
Row space. 160. 174 
rref. 75. 129. 134. 14] 

5 

Saddle point. 332. 342 
Scalar multiplication. 2 
Scaling matrix. 444 
sca ry matlab. ]30 

Schur complement. 70. 257 
Schwan inequality. 15. 17.20.321. 437 
Search engine. 358 
Second derivative matrix. 332. 333. 342 
Second difference matrix. 312. 409 
Semicolon in MATlAB. 16 
Semidefinite matrix. 332. 394. 407 
Shearing. 366 
Shift matrix. 172 
Sigma flOtation. 47 
Sign reversal. 235, 238 
Signs of eigenvalues. 323 
Similar matrix. 282. 343. 346. 349. 362. 

392 
Similarity transformation. 393 
Simplex method. 431. 434 
Singular matrix. 38. 237 
SinguJarValue Decomposition. 352. 354. 

357.359.393 
Singular value. 345. 355. 461 
Singular vectors. 352 
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Slope, 18 
slu and slv. 88 
Solvable. 115, 117. 149 
Southeast matrix, 70, 109 
Span, 160. 161. 170 
Special solution. 122. 126.129. 136. 137 
Speclral radiUJI. 464. 467 
Spcctrnlt~m. 319 
splu and !>plv. t03 
Spreadsheet. I J 
Spring constant. 4(12 
Square IOOI. 394 
Stable matrix. 308, 309. 312 
Standard basis. 161. 384. 392 
Standard deviation. 217 
Statistics, 213. 217 
Steady state. 423. 425 
Stiffness matrix. 307. 401. 404 
Straight JillC'. 218 
Strnightline tit. 209, 236 
Strucrure.98 
Submatrix.142 
Subspace. 113. 114. 117. 122. 137 
Successive overreluation :: SOR. 467. 

469 
Sum of eigenvalues, 279. 285 
Sum of squares. 332 
SVO, 352. 354. 357. 393. 398 
Symbolic toolbox. 28 
Symmetric factoriution. 100 
SYllUlletriC matrix, 99. 318 
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Tensor product. 380 
tic; toc. 88. 95 
Tic-lOC-tCle.183 
Trace. 279. 285. 301. 309. 327 
Transfonn. 222. 363, 384. 385 
Translation matrix. 444 
Transparent proof. 109 
Transpose. 96. 379 
Tree. 415. 422 
Triangle UxquaJity. 17, 19.459.465 
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Tridiagonal matrix. 75.94, 246. 255 
TrigOllOfJletry,481 
Trip]e product. 267. 273 
Two triangular systems. 86 

u 
Unit circle. 300 
Unit vector, 12. 219 
Unitary matrix. 489 
Update. 202 
Upper left determinants. 335 
Upper triangular matrix, 35. 41. 236 
Upward elimination. 128 

V 

Vandcnnonde,242.256 
Variance. 217 
Vector. 1 
Vector addition. 2. 3 
Vectonpace. 112. 118 
Volume. 235, 264. 290. 360 
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Will. 185.192 
W"'e equation. 331 
W.,·elets. 231. 389 
Web. 317 
web.mit.edu/18.06/.389 
Woodbury·Morrison.83 
Work. 99 
World Trade Center. 99 

Z 
Zero-dimensional. 112, 1]3 
Zero maim. 56. 192 

-1.2. - I matrix. 246.251. 276. 312, 362. 
409.474 

(Ar )T y, 97.108 
j . j. k.161. 285 
UpT. 135. 139, 142 
u xp.284 
U } = "tuo, 294 
V.l,187.192 
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xTAx. 331 
det(A - H). 271 
A(ATA)~ IAT.198 

Ax = Ax. 274. 271 
A H =A

T . 486 
AT A. 192. 200. 205. 230. 339. 354. 404 
AT Ax = ATb. 198. 206. 208. 399 
AT A and AAT. 325. 329. 354 
A + = V1: +UT.395 
A = LU. 83. 84. 359 
A = LIP!UI. 102.122 
A = LDL T. 100. 104. 324. 334. 338 
A = LDU . 85. 93 
A=QAe. 319.338 
A = QR. 225. 230. 359. 455 
A = SAS-!. 289. 301 

A = U 1: VT. 352. 354. 359. 393 
a T AT = (AB)T. 103. 109 
B=M~! AM.343 

C".1I1 
C (A). 115 
duJdl = Au . 305 
,.,4'.309.311.317 
j choose j. 62 
II ,.. m. 127. 164 
pl=p- I. I03 
PA = LU.I OI. 102. I07 
QTQ=I.219 
QR method. 472. 475 
K". 1I1 
5- 1 AS = A. 289 



MATLAB TEACHING CODES 
rofaclor 

cramer 
deter 
eigen2 
eigshow 
eig>'al 
eign 'l,; 

ellm 
6ndpi>' 

CompUle the n by n matrix of cofoclOrs. 

Sol>'c the system Ax = b by Cramer's Rule. 
Matrix determinant ,omputro from til<: piVQ!S in Pit = LV. 
Eigen"alues. eigenvectors. and det (A - AI ) for 2 by 2 matrices. 
Graphical demonstration of eigenvalues and singl:llar values. 
EigcnnJues and their multiplicity BS rootS of del(A - AI ) = O. 

Compute as many linearly independent eigen'"cctors as possible. 
Reduction of A 10 row echelon fonn R by an invertible E, 
Find a pivot for Gaussian elimination (used by pia), 

fOllrb~ Conmucl ba5cs for all four fundamental subspact's. 
grllllt5 Gram-Schmidt onhogonaliza\ion of III<- columns of A. 

house 2 by 12 matrix giving the corner coordinates of a house. 
i""use Matrix inve= (if it exists) by Gauss·Jordan elimination. 
lef'tnull Compute a basis for the left nUlispace. 
IInefil Plot !he least5<juares fit to m gi,-en pointS by a line. 
lsq Least square~ solution to Ax = b from AT Ai = A Tb. 
normal Eigenvalues and on honormal eigenvectors when AT A = AA T. 
nulbasls Matrix of special solutions to Ax = Q (basis for nullspace). 
orlhromp Find a basis for the onhogonal complement of a subspace. 
partie Particular solution of Ax = b. with all free variables zero. 
plol2d Two-dimensional plot for the house figures (covcr and Section 7.1). 
plu Rectangular P A = LV factorization with row exchanges. 
poly2slr Express a polynomial as a string. 
project Project a vector b onto the column spa~ of A. 
projmal Construct the projection matrix onto the column sp;Kce of A. 
randpt'rrnConstruct a random pernlutation. 
rowbasls Compute a basis for the row space from the pivot rows of R. 
samespan Test whether two matrices have the same column space. 
sigllpt'rm Determinant of the permutation matrix with rows ordered by p. 
slu LV factorization of II square matrix usillS no l"O"' t .lchongts. 
sh' Apply slu to soh-e the system Ax = b allowing no row exchaoges. 
splu Square P A = LU factorization .... i/ll 1"0'" ex,h(1ng~s. 

sph' The solution to a square. invenible system Ax = b. 
symmeig Compute the eigenvalues and eigenvectors of a s)mmetric matrix. 
Iridiag Construct a tridiagonal matrix with constaot diagonals ". b. c. 

These Teaching Codes are di=tly available from the Linear Algebra Home Page: 
hllp:lfwcb.mit.edulI8.06Jwww 

They were written in MATLAS . aod translated il1to Maple and Mathematica. 
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LINEAR ALGEBRA IN A NUTSHELL
((A is n by n ))

Nonsingular Singular

A is invertible A is not invertible
The columns are independent The columns are dependent
The rows are independent The rows are dependent
The determinant is not zero The determinant is zero
Ax =0 has one solution x =0 Ax =0 has infinitely many solutions
Ax =b has one solution x =A−1b Ax =b has no solution or infinitely many
A has n (nonzero) pivots A has r < n pivots
A has full rank r=n A has rank r < n

The reduced row echelon form is R=I R has at least one zero row
The column space is all of Rn The column space has dimension r < n

The row space is all of Rn The row space has dimension r < n

All eigenvalues are nonzero Zero is an eigenvalue of A

ATA is symmetric positive definite ATA is only semidefinite
A has n (positive) singular values A has r < n singular values

Each line of the singular column can be made quantitative using r.
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