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NUMBER THEORETIC BACKGROUND

J. TATE

1. Weil Groups. If G is a topological group we shall let G¢ denote the closure of
the commutator subgroup of G, and G** = G/G* the maximal abelian Hausdorff
quotient of G. Recall that if H is a closed subgroup of finite index in G there is a
transfer homomorphism ¢: G® — H?, defined as follows: if s: H\G — G is any
section, then for ge G,

#gG9) = Il h,, (mod H?),
x€H\G
where h, , € H is defined by s(x)g = h,, s (xg).

(1.1) Definition of Weil group. Let F be a local or global field and F a separable
algebraic closure of F. Let E, E’, --- denote finite extensions of Fin F. For each such
E, let Gz = Gal(F/E). A Weil group for F/F is not really just a group but a triple
(Wg, ¢, {rg}). The first two ingredients are a topological group W and a continu-
ous homomorphism ¢: Wr — G with dense image. Given Wy and ¢, we put
Wy = ¢~Y(Gy) for each finite extension E of F in F. The continuity of ¢ just means
that Wy is open in Wy, for each E, and its having dense image means that ¢ induces
a bijection of homogeneous spaces:

WF/WE ; GF/GE' ~ HOmF(E, F)

for each FE, and in particular, a group isomorphism Wy/ W, ~ Gal(E/F) when E/F
is Galois. The last ingredient of a Weil group is, for each E, an isomorphism of
topological groups rgz: Cyz =~ W%, where
— {The multiplicative group E* of E in the local case,
E ™ \the idele-class group A%/E* in the global case.

In order to constitute a Weil group these ingredients must satisfy four conditions:
(W,) For each E, the composed map
CE E Wﬁb induced by ¢ G%!’

is the reciprocity law homomorphism of class field theory.
(W) Let we Wrand o0 = ¢p(w) € Gp. For each E the following diagram is com-
mutative:

AMS (MOS) subject classifications (1970). Primary 12A70.
© 1979, American Mathematical Society



4 J. TATE

'E

Cg 4
{)r;dgced [ggng’;}xgation
rpo
Cgo L2 Wb
(W3) For E’ = Ethe diagram
rg’
Cy weab
induced by
inclusion transfer
E'CE
r
Cg E Wb
is commutative.
(W,) The natural map

We—> projElim{ Wg,r}

is an isomorphism of topological groups, where
(1.1.1) Wg,p denotes Wp/W§g  (not Wg/Wpg),

and the projective limit is taken over all E, ordered by inclusion, as E — F.

This concludes our definition of Weil group. It is clear from the definition that if
W is a Weil group for F/F, then, for each finite extension E of F in F, Wy, (fur-
nished with the restriction of ¢ and the isomorphisms rz, for E’ o E) is a Weil
group for F/E.

If W is a Weil group, then for each F = E’ < E the diagram

r
E
Cg Wb
norm, induced by
(1 .22) NE/E’ Jinclusion WECWE'
ot
Cg £ Wb

is commutative.
This follows from the fact that, when H is a normal subgroup of finite index in G,

the composition

induced by
Hab inclusion Gab transfer Hab

is the map which takes an element 4 € H into the product of its conjugates by re-
presentatives of elements of G/H. (In the notation of the first paragraph above,
hg. = s(x) gs(x)"},ifge Hc G.)

(1.2) Cohomology; construction of Weil groups. Let Wy be a Weil group for F/F.
Then for each Galois E/F the group Wy, r = Wg/WE is an extension of W/ Wy =
Gal(E/F) by Wg/W§g ~ Cg. Let ag,r € HGal(E/F), Cg) denote the class of this
group extension. For eachn e Z, let

(1.2.3) a(E|F): H"(Gal(E/F), Z) —> H"%(Gal(E/F), Cx)
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be the map given by cup product with az, . Since Cg. — CSE/E" is a bijection for
F c E' c E, the property (W3) above implies, via an abstract cohomological
theorem (combine the corollary of p. 184 of [AT] with Theorem 12, p. 154, of [S1]),
that «,(E/F) is an isomorphism for every n. Moreover, the canonical classes are
interrelated by

(124) infl Qp/Fp = [E:EI](XE/F and res Op/F = CE/E’

(for the first, use Theorem 6 on p. 188 of [AT]; the second is obvious). Thus, implicit
in the existence of Weil groups is all the cohomology of class field theory.

For example, taking n = —1 in (1.2.3) we find HY(Gal(E/F), Cg) = 0. Taking
n = 0, we find H2(Gal(E/F), Cg) is cyclic of order[E:F], generated by aj, . Taking
n = —2 we find an isomorphism G¥r ~ Cy/Ng,Cg which, by (W), is that given
by the reciprocity law. For E/F cyclic, this isomorphism determines ay, r, and it
follows that o, 5 is the “canonical” or “fundamental” class of class field theory.
The same is true for arbitrary E/F as one sees by taking a cyclic E;/F of the same de-
gree as E/F, and inflating ag, r and ag p to EE;/F, where they are equal by (1.2.4).

Conversely, if we are given classes a g,z satisfying (1.2.4) and such that the maps
(1.2.3) are isomorphisms, then we can construct a Weil group W, as the projective
limit of group extensions Wy, made with these classes. This construction is ab-
stracted and carried out in great detail in Chapter XIV of [AT]. The existence of
such classes ag, g is proved in [AT] and [CF].

Thus, a Weil group exists for every F; to what extent is it unique?

(1.3) Unicity. A Weil group for F/Fis unique up to isomorphism. More precisely:

(1.3.1) PROPOSITION. Let Wy and Wi, be two Weil groups for F|F. There exists an
isomorphism 0: Wy = Wy such that the diagrams

W Wi
3
TE
0 Gr and Cg induced by 0
4 "
W (We)*

are commutative.

For each finite Galois E/F, let I(E) denote the set of isomorphisms f such that the
following diagram is commutative

id f id

> CE WE/F Gal(E/F)———> 0

Since the two group extensions Wy, rand Wy, each have the same class, namely
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the canonical class az,p, as their cohomology class, I(E)is not empty. Since
HY(Gal(E/F), Cg) = 0, an isomorphism fe I(E) is determined up to composing
with an inner automorphism of Wy, by an element of Cz = W3. The center of
W, ris Cr, and Cg/Cr is compact. Hence I(E), as principal homogeneous space
for Cg/Cr, has a natural compact topology. For E, o E, the natural map I(E;) —
I(E) is continuous for this topology, since it is reflected in the norm map Nz,
once we pick an element of I(E;). Hence the projective limit proj limg(Z(E)) is not
empty. An element § of this limit gives an isomorphism W= Wy by (W,), and
has the required properties.

It turns out (cf. (1.5.2)) that 6 is unique up to an inner automorphism of Wy by
an element w € Ker ¢, but we postpone the discussion of this question until after
the next section.

(1.4) Special cases. We discuss now the special features of the four cases: Flocal
nonarchimedean, F a global function field, F local archimedean, and F a global
number field. In the first two of these, G is a completion of Wr; in the last two it is
a quotient of Wp.

(1.4.1) F local nonarchimedean. For each E, let kg be the residue field of E and
gr = Card(kg). Let k = (Jzkz. We can take W to be the dense subgroup of G
consisting of the elements ¢ € G which induce on k the map x — x4 for some
ne Z. Thus Wy contains the inertia group I (the subgroup of G fixing k), and
We/lr = Z. The topology in Wy is that for which I gets the profinite topology
induced from Gy, and is open in Wy. The map ¢: Wy — Gpis the inclusion, and the
maps rg: E¥ — W are the reciprocity law homomorphisms. Concerning the sign
of the reciprocity law, our convention will be that rz(a) acts as x + x'“'t on k,
where |a|z is the normed absolute value of an element a € E*. (If z is a uniform-
izer in E, then ||zg | = ¢gz'; thus our convention is that uniformizers correspond
to the inverse of the Frobenius automorphism, as in Deligne [D3], opposite to the
convention used in [D1], [AT], [CF], and [S1].)

(1.4.2) F a global function field. Here the picture is as in (1.4.1). Just change “re-
sidue field” to “‘constant field”, “inertia group I;” to ‘“‘geometric Galois group
Gal(F/Fk)”, and define the norm ||a||z of an idele class a € Cjy to be the product of
the normed absolute values of the components of an idele representing the class.

(1.4.3) F local archimedean. If F ~ C we can take Wy = F*, ¢ the trivial map, rp
the identity.

If F ~ R, we can take Wy = F* |J jF* with the rules j2 = —1 and j¢j ! = ¢,
where ¢ — ¢ is the nontrivial element of Gal(F/F). The map ¢ takes F* to 1 and
jF* to that nontrivial element. The map ry is the identity, and 7 is characterized by

re(—1) = jWg,
re(x) = 4/x W§ for xe F, x > 0.

(W5 is the “unit circle” of elements u € F with ||u|| = Ngpu = 1))

(1.4.4) F a global number field. This is the only case in which there is, at present,
no simple description of Wy, but merely the artificial construction by cocycles
described in (1.2). This construction is due to Weil in [W1], where he emphasizes the
importance of the problem of finding a more natural construction, and proves the
following facts. The map ¢: Wy — G is surjective. Its kernel is the connected com-
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ponent of identity in Wp, isomorphic to the inverse limit, under the norm maps
Ng, g of the connected components Dy of 1 in Cg. These norm maps Dy — Dy, are
surjective, and rg(Dg) = (Ker ) W§/Wgis the image of Ker ¢ in Wy, . If Ehas ry real
and r, complex places then Dy is isomorphic to the product of R with r; + r; —1
solenoids and r;, circles.

(1.4.5) Notice that in each of the four cases just discussed the subgroups of Wy
which are of the form Wy for some finite extension E of F are just the open sub-
groups of finite index. Their intersection, Ker ¢, is a divisible connected abelian
group, trivial in the first two cases, isomorphic to C* in the third, and enormous in
the last case.

(1.4.6) In each case there is a homomorphism w +— ||w| of W} into the multipli-
cative group of strictly positive real numbers which reflects the norm or normed
absolute value on Cr under the isomorphism ry : Cr & Wb, By (1.1.2) and the
rule | Ng, rallr = llallz, the restriction of this “norm” function |w|| from Wgto a
subgroup Wy is the norm function for Wy, so we can write simply ||w| instead of
[lw]lr without creating confusion. In each case the kernel W} of w — |w|| is com-
pact. In the first two cases, the image of w — || w|| consists of the powers of g, and
Wr is a semidirect product Z x WE. In the last two cases w — ||w| is surjective,
and in fact, Wy is a direct product R x W4

Let us refer to the first two cases as the “Z-cases” and the last two as the “R-
cases”. In the Z-cases, ¢ is injective, but not surjective; in the R-cases, ¢ is surjec-
tive, but not injective.

(1.5) Automorphisms of Weil groups. Let Wy be a Weil group for F/F. Let
Aut(F, W) denote the set of pairs (g, a), where o € G is an automorphism of F/F,
and « is an automorphism of the group W such that the following diagrams are
commutative, the second for all E:

r
Wk ¢ G Ce E wg
a Inn(a) induced induced
by o by a
F—go_. G F Eo rgo Wg?

Here Inn(a) denotes the inner automorphism defined by a.
We shall call an automorphism of W essentially inner if it induces an inner au-
tomorphism on W,  for each finite Galois E/F.

(1.5.1) PrROPOSITION. In the R-cases Aut(F, Wy) consists of the pairs (p(w),
Inn(w)), for we Wg.

In the Z-cases, Aut(F, W) consists of the pairs (o, a,), for o € Gy, where a,
denotes the restriction of Inn(g) to Wy, viewed as a subgroup of Gr via ¢. This
automorphism a; of Wy is not an inner automorphism if o ¢ Wy, but it is essentially
inner in the sense of the definition above.

(1.5.2) CoROLLARY. The isomorphism 0 in (1.3.1) is unique in the Z-cases, and is
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unique to an inner automorphism of Wy by an element of the connected component
W§ = Ker ¢ in the R-cases.

To prove (1.5.1) in the R-cases, we note first that, since ¢ is surjective, we are
reduced immediately to the case of the corollary: We must show that if (1, &) €
Aut(F, Wy), then @ = Inn(w) for some w € W§. Going back to the proof of (1.3.1)
with Wy = Wy we find that the group of these &’s is given by

projElim (Cg/Cp) = projElim (&8 (1 for norm 1)

= projElim Cga/projb}im C}  (by compacity)

wol(zZ N W) (existence theorem; O for con-
nected component)

Il

WY Z

as claimed, where Z is the center of W.

Suppose now we are in a Z-case. Since ¢ is injective, i.e., Wr < Gy, it is clear
that Aut(F, W;) consists only of the pairs (s, «,). The center of Gy is 1, because
Gr/Gy ~ Gal(E/F)acts faithfully on Cr = G for each finite Galois E/F. Hence,
since Wy is dense in Gp, a, is not an inner automorphism of Wy unless ¢ € Wr.
However, «, does induce an inner automorphism of Wz, for finite E/F. Since Wy
is dense in Gy it suffices to prove this last statement for ¢ close to 1, say o € Gg.
Then «, induces an isomorphism of the group extension 0 - Cp - Wg,p —
Gal(E/F) — 0 which is identity on the extremities, and hence is an inner automor-
phism by an element of Cg, since H! (Gal(E/F), Cg) = 0.

(1.6) The local-global relationship. Suppose now F is global. Let v be a place of F
and F, the completion of F at v. Let F (resp. F,) be a separable algebraic closure of
F (resp. F,) and let Wy (resp. W) be a Weil group for F/F (resp. for F,/F,).

(1.6.1) PROPOSITION. Let i, : F — F, be an F-homomorphism. For each finite ex-
tension E of Fin F, let E, = i(E)F, be the induced completion of E. There exists a
continuous homomorphism 0,: Wg — W such that the following diagrams are com-
mutative

* ~
Wk, Gr, E; we
6, i gdzced "y ;, r;d’;:ced
1
Wg Gp Ce - wg

where n, maps a € E} to the class of the idele whose v-component is a and whose other
components are 1.

If Fis a function field, then 0, is unique. In the number field case, 6, is unique up
to composition with an inner automorphism of W; defined by an element of the
connected component W9 = Ker ¢.

The proof of this is analogous to the proof of (1.3.1) and (1.5.1), using the stand-
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ard relationship between global and local canonical classes, and the vanishing of
Hl(Gal(Eu/Fu > CE)
Combining (1.6.1) and (1.5.2) we obtain

COROLLARY. The diagram

Wk, Gp,
0, 1y
WF GF

is unique up to isomorphism, and the automorphisms of it are the inner automorphisms
of W, defined by elements w eW°, which induce an automorphism of Wy, (i.e., for v
nonarchimedean, w fixed by Gy, ; for v archimedean, w a product of an element of W°
by an element of (WO)Cr,).

2. Representations. Let G be a topological group. By a representation of G we
shall mean, in this section, a continuous homomorphism p: G - GL(¥V) where Vis
a finite-dimensional complex vector space. By a quasi-character of G we mean a
continuous homomorphism y: G — C*. If (o, V) is any representation of G, then
det p is a quasi-character which we may sometimes denote also by det V. The map
V — det V sets up a bijection between the isomorphism classes of representations
V of dimension 1 and quasi-characters. Of course we can identify quasi-characters
of G with quasi-characters of G?.

We let M(G) denote the set of isomorphism classes of representations of G, and
R(G) the group of virtual representations. A function A on M(G) with values in an
abelian group X can be “extended” to a homomorphism R(G) — X if and only if it
is additive, i.e., satisfies A(V) = A(V’) A(V") whenever 0 — V' — V' —» V" — Qisan
exact sequence of representations of G.

(2.1) Let F be a local or global field, F an algebraic closure of F, and W, a Weil
group for F/F. Let (p, V') be a representation of Wj. Since Wy = proj lim {Wg, s}
and GL(V) has no nontrivial small subgroups, p must factor through Wy, , for
some finite Galois extension E of Fin F. It follows that if « is an essentially inner
automorphism of Wp in the sense of (1.5), then V* =~ V. Thus essentially inner
automorphisms act as identity on M(Wy) and R(W;). By (1.5.1) we can therefore
safely think of M(W;) as a set depending only on F, not on a particular choice of F
or of Weil group Wy, for F/F, and the same for R(W}). In this sense, if v is a place
of a global F, the “restriction” map M(Wy) — M(W}y,) induced by the map 0, of
Proposition (1.6.1) depends only on v, not on a particular choice of the maps i, and
0, in that proposition, and the same for R(Wy) — R(Wp,). We shall indicate this
map by p — p, or ¥ — V,. (The independence from 6, results from (1.6.1), and the
independence from i,, from (1.5.1).)

If E/F is any finite separable extension, we have canonical maps
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TesE/p
restriction

R(Wp) R(Wpg)

induction

Indg/F
satisfying the usual Frobenius reciprocity, for we can identify Wj with a closed
subgroup of finite index in Wjy.

(2.2) Quasi-characters and representations of Galois type. Using the isomorphism
Cr ~ W2 we can identify quasi-characters of Cp with quasi-characters of Wb,
For example, we will denote by w;, for s € C, the quasi-character of W associated
with the quasi-character ¢ — ||c||%, where | c| is the norm of ¢ € Cp. Thus w,(w) =
[w]ls in the notation of (1.4).

On the other hand, since ¢: Wy - Gy has dense image, we can identify the set
M(Gp) of isomorphism classes of representations of G with a subset of M(W). We
will call the representations in this subset “of Galois type”. Thus, by (1.4.5), a re-
presentation p of W is of Galois type if and only if p(Wp) is finite.

With these identifications, a character y of Gy is identified with the character y
of Cr. to which y corresponds by the reciprocity law homomorphism.

(2.2.1) In the Z-cases, i.e., if F is a global function field, or a nonarchimedean
local field, then every irreducible representation p of Wris of the formp = ¢ ® w,,
where ¢ is of Galois type. This is a general fact about irreducible representations of
a group which is an extension of Z by a profinite group; some twist of p by a quasi-
character trivial on the profinite subgroup has a finite image; see [D3, §4.10].

(2.2.2) If Fis an archimedean local field, the quasi-characters of Wy, i.e., of F* ~
Wb, are of the form y = z=Nw,, where z: F — C is an embedding and N an integer
= 0, restricted to be 0 or 1 if Fis real. If Fis complex, these are the only irreducible
representations of F* = Wy, If Fis real, Wy has an abelian subgroup Wz = F* of
index 2, and the irreducible representations of Wy which are not quasi-characters
are of the form p = Indz/r(z"Nw,) with N > 0. (For N = 0 this induced represen-
tation is reducible:

(2221) Indi/F(Os =, ® x_lwsﬂ

where x: F — C is the embedding of Fin C.)

(2.2.3) Suppose F is a global number field. A primitive (i.e., not induced from a
proper subgroup) irreducible representation p of Wp is of the form p = o ® y
where ¢ is of Galois type and y a quasi-character.

Choose a finite Galois extension E of F big enough so that p factors through
Wg,r = Wg/W§. Since p is primitive and irreducible, o(W§’) must be in the center
of GL(V), because W is an abelian normal subgroup of W, r. In other words,
the composed map Wy £, GL(V) - PGL(V) kills Wy and therefore gives a pro-
jective representation of Gal(E/F). This projective representation of Gal(E/F)can
be lifted to a linear representation oy: G = GL(V) (see [S3, Corollary of Theorem
4)). Let ¢ = oy - ¢. The two compositions

I3

Wp —— GL(V)

PGL(V)

are equal; hence p = o ® y for some quasi-character y.
(2.2.4) Note that, in all cases, global and local, the primitive irreducible represen-
tations of Wy are twists of Galois representations by quasi-characters.
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(2.2.5) In the local nonarchimedean case one can say much more about the
structure of primitive irreducible representations (see [K]). A first result of this sort
is

(2.2.5.1) PrROPOSITION. Let F be local nonarchimedean and let V be a primitive
irreducible representation of Wy. Then the restriction of V to the wild ramification
group P is irreducible.

This result is proved in [K] and [B]. The proof depends on the supersolvability
of Gg/P.

(2.2.5.2) COROLLARY. The dimension of V is a power of the residue characteristic p.
Indeed, P is a pro-p-group.

(2.2.5.3) CorOLLARY. If U is an irreducible (not necessarily primitive) representa-
tion of Wy of degree prime to p, then U is monomial.

Because U is induced from a primitive irreducible ¥ whose dimension is prime to
p and a p-power, hence 1.

(2.3) Inductive functions of representations. Let F be a local or global field. For a
representation V of Wy, let [F]e R(Wy) denote the virtual representation de-
termined by V. Let RO(W ;) denote the group of virtual representations of degree
0 of Wy, i.e., those of the form [V']—[V’], with dim ¥V = dim V",

(2.3.1) PrROPOSITION. The group R(Wy) is generated by the elements of the form
Indg, [yl for E/F finite and y a quasi-character of W. Similarly, R(Wr)is generated
by the elements of the form Indg, p([x] — [x']-

It suffices to prove the second statement, because R(Wy) = RY(Wy) + Z -[1].
Let RY(Wy) denote the subgroup of ROY(Wp) generated by the elements
Indg,#([x] — [x']). By the degree O variant of Brauer’s theorem [D3, Proposition
1.5] we have RY(Gy) = RY(Wp). The formula Ind (0 ® Res y) = (Ind p) ® y shows
that Ry - y = R for each quasi-character y of Wp.

To prove the proposition we must show for each irreducible representation p of Wy
that[o] — (dim p) [1]€ RY(WF). For each p there is a finite extension E of F and a prim-
itive irreducible representation pg of Wy such that p = Indg, r 5. Then [p] — (dim p)-
[1] is the sum of Indg, p([o£] — (dim pg)[1£]) and (dim pg) (Indg, p1£]— [E:F] [1£]).
The latter is of Galois type, so by the transitivity of induction we are reduced
to the case in which p is primitive and irreducible. But then p = ¢ ®y with
o € R(Gp) and y a quasi-character (2.2.4). If n = dimp = dimo¢

lo] — n[1] = ([o] — Al1D [x] + n(ly] — [1D)

and this is in R%(Wp) by the remarks above, since [¢] —n [1] € RY(Gp).

(2.3.2) DerFINITION. Let F be a local or global field. Let A be a function which
assigns to each finite separable extension E/F and each Ve M(Wjg) an element
A(V)in an abelian group X. We say A is additive over F is for each E and each
exact sequence 0 —» V' —» ¥V - V" — 0 of representations of Wy we have A(V) =
A(V)A(V"). When that is so we can define A on virtual representations so that A:
R(E) —» X is a homomorphism for each E. We say A is inductive over F if it is
additive over Fand the diagram
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R(Wpg)

Indg/E’ X
/
R(WE)

is commutative for finite separable extensions E/E’/F. We say A is inductive in degree
0 over Fif the same is true with R replaced by RO,

(2.3.3) REMARK. By (2.3.1) a A which is inductive over F, or even only inductive
in degree 0, is uniquely determined by its value on quasi-characters y of W (i.e.,
of Cp), for all finite separable E/F. In [D3, §1.9] there is a discussion, for finite
groups, of the relations a function A of characters of subgroups must satisfy in order
that it extend to an inductive function of representations.

(2.3.4) ExamPLE. Let a € Cr. Put

A(V) = (det V)(rg(a)) for Ve M(Wrg).

Then A is inductive in degree 0 over F. This follows from property (W3) of Weil
groups and the rule.

det (Ind V) = (det V) - transfer, for V virtual of degree 0

(cf. [D3, §1)).

(2.3.5) EXAMPLE. Suppose v is a place of a global field F, and A is an inductive
function over F,. If we put for each finite separable E/F and each V € M(Wj)

w place of E; wlv

we obtain an inductive function 2, over F. If 4 is only inductive in degree 0, then
A, is inductive in degree 0.

Indeed, by a standard formula for the result of inducing from a subgroup and
restricting to a different subgroup we have

(Indg, 5 V), = ®| Indg,r, Ve

because if wy is one place of E over v, then the map ¢ — gw, puts the set of double
cosets Wg\Wg/ Wy, in bijection with the set of all such places, and for each ¢ we can
identify Wk,,, with (¢ Wg,071) N Wpg.

3. L-series, functional equations, local constants. The L-functions considered in
this section are those associated by Weil [W1] to representations of Weil groups.
They include as special cases the “abelian” L-series of Hecke, made with ‘“Gros-
sencharakteren” (= quasi-character of Cj), and the “nonabelian” L-functions of
Artin, made with representations of Galois groups. Our discussion follows quite
closely that of [D3, §§3, 4, 5] which we are just copying in many places.

(3.1) Local abelian L-functions. Let F be a local field.

For a quasi-character y of F* one defines L(y) € C* U {oo} as follows.

(3.1.1) F ~ R. For x the embedding of FinCand N = Qor,
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defn
L(xNw,) = I'y(s) = n=5/2 I'(s/2).
(3.2.1) F ~ C. For zanembedding of FinCand N = 0,

defn
Lz Nw,) = TI'(s) = 2Q2r)=1(s).
(3.1.3) Fnonarchimedean. For 7 a uniformizer in F,

L(y) = {( 1 — x(=))7, if y is unramified,
1, if y is ramified.
In every case, L is a meromorphic function of y, i.e., L(yw,) is meromorphic in s,
and L has no zeros.

(3.2) Local abelian e-functions. We will denote by dx a Haar measure on F,
by d*x a Haar measure on F* (e.g., d*x = ||x||~! dx) and by ¢ a nontrivial additive
character of F.

Given ¢ and dx, one has a “Fourier transform”

7o) = [ £696 (o)
The local functional equation

(32.1) ¥ (x)L‘zgf;_(l’;) VX _ oy, gy dry SSOUD 47 (x)f((;)) I

defines a number e(y, ¢, dx)e C* which is independent of £, for f°s such that the two
sides make sense. If f is continuous such that f(x) and f(x) are O(e") as | x| —
00, then the two sides make sense naively for y such that y(x) = [ x|/ with 0 <
o < 1, and each side is a meromorphic function of y. One takes the same multi-
plicative Haar measure d*x on each side. The dependence of ¢ on ¢ and dx comes
from the dependence of the Fourier transform f(x) on ¢) and dx. One finds

(3.2.2) e(y> ¢, rdx) = re(y, ¢, dx), forr > 0,
(3.2.3) e(y> Plax), dx) = x(a)" a|e(y, ¢, dx) forae F*.

Easy computations carried out in [T1] and [W2] show that the function ¢ is given
by (3.2.2), (3.2.3) and the following explicit formulas:

(3.24) F ~ R. Let x be the embedding of FinCand N=0or 1. For ¢ =
exp(2zix) and dx the usual measure, e(x N, ¢, dx) = iN.

(3.2.5) F = C. Let z be an embedding of F in C and N =z 0. For ¢ =

exp(2zi Trepz) and dx = idz A dz (= 2da db for z = a + bi), e(z Nw;, ¢, dx)
= iN,

(3.2.6) F nonarchimedean. Let @ be the ring of integers in F. Put

n(¢) = the largest integer n such that J(z—70) = 1,

a(y) = the (exponent of the) conductor of y (= 0 if y is unramified, the smallest
integer m such that y is trivial on units = 1 (mod z™) if 7 is ramified),

¢ = an element of F* of valuation n(¢) + a(y). If y is unramified,

(.2.6.1) e, & dx) = X9 _f dx.

llell

(In particular, &(y, ¢, dx) = 1, if [, dx = 1, and n(¢)) = 0 when y is unramified.)
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For y ramified,
o d) = r@e@a= D[ iwgwds
(3.2.6.2) e

- j' W@
From these formulas one deduces, for y arbitrary and w unramified

(3.2.6.3) e(yw, ¢, dx,) = e(y, ¢, dx) w(ar P taw),

(3.3) Local nonabelian L-functions. We owe to Artin the discovery that there is
an inductive (2.3.2) function L of representations of Weil groups of local fields
such that L(¥V)= L(y) when V is a representation of degree 1 corresponding to the
quasi-character y. The explicit description of L is as follows:

(3.3.1) F archimedean. Since L is additive, we can define it by giving its value on
irreducible V. For F complex, Wy = F* is abelian, and the only irreducible ¥’s are
the quasi-characters y, for which L has already been defined. For Freal, the only
irreducible 7’s which are not of dimension 1 are those of the form V = Indg/r ¥,
where y is a quasi-character of F* = Wj which is not invariant under “complex
conjugation”. For such ¥ we put L(V) = L(y), as we are forced to do in order that
L be inductive.

(3.3.2) F nonarchimedean. Let I be the inertia subgroup of Wy. Let @ be an
“inverse Frobenius”, i.e., an element of Wy such that |@| = ||z | z. This condition
determines @ uniquely mod 7 and we put L(V) = det(1 — @|V7)~1, where V7 is the
subspace of elements in V fixed by I.

A proof that the “nonabelian” function L defined as above is inductive can be
found in [D3, Proposition 3.8] (as well as in [A]). In the archimedean case one uses
the relation 'g(s) = I'r(s)r(s + 1). Technically, in order that L have values in a
group, we should view L as a function which associates with ¥ the meromorphic
function s — L(V w;,), and take the X in Definition (2.3.2) to be the multiplicative
group of nonzero meromorphic functions of s.

(3.4) The local “‘nonabelian’’ e-function, e(V, ¢, dx). For this there is at present
only an existence theorem (see below), no explicit formula.! This lack is not sur-
prising if we recall that the formulas defining ¢ in (3.2) make essential use of the
interpretation of y as a quasi-character of F*; if we think of y as a quasi-character
of Wi we have no way to define &(y, ¢, dx) without using the reciprocity law iso-
morphism F* ~ W, In fact it was his idea about “nonabelian reciprocity laws”
relating representations of degree n of Wy to irreducible representations 7 of
GL(n, F), and the possibility of defining &(z, ¢, dx) for the latter, which led Lang-
lands to conjecture and prove a version of the following big

(3.4.1) THEOREM. There is a unique function ¢ which associates with each choice of
a local field F, a nontrivial additive character ¢ of F, an additive Haar measure dx
on F and a representation V of W a number e(V, ¢, dx) € C* such that e(V, ¢, dx) =
ey, ¢, dx) if V is a representation of degree 1 corresponding to a quasi-character y,
and such that if F is a local field and we choose for each finite separable extension E

1Except for Deligne’s expression in terms of Stiefel-Whitney classes for orthogonal representa-
tions [D5, Proposition 5.2].
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of F an additive Haar measure ug on E, then the function which associates with each
such E and each V € M(Wg) the number e(V, ) « Trg,r, ug) is inductive in degree 0
over F in the sense of (2.3.2).

The unicity of such an ¢ is clear, by (2.3.1); the problem is existence. The experi-
ence of Dwork and Langlands indicates that the local proof of existence, based on
showing that the e(y, ¢, dx) satisfy the necessary relations, is too involved to publish
completely. Deligne found a relatively short proof (see [D3, §4]; possibly also
[T2)]). It has two main ingredients, one global, one local: (1) the existence of a
global ¢(¥) coming from the global functional equation for L(¥) (cf. (3.5) below),
and (2) the fact that if F is local nonarchimedean and o a wildly ramified quasi-
character of F*, there is an element y = y(a, ¢)) in F* such that for all quasi-charac-
ters y of F* with a(y) < %a(a), we have e(ya, ¢, dx) = y~1(y)e(a, ¢, dx), a rather
harmless function of y.

Granting the existence of (¥, ¢, dx) the following properties of it are easy con-
sequences of the corresponding properties of e(y, ¢, dx), via inductivity in degree
0 and (2.3.1).

(3.4.2) ¢ is additive in V, so makes sense for ¥ virtual.

(3.4.3) e(V, ¢, rdx) = rdimV ¢(¥, ¢, dx), for r > 0. In particular, for V virtual of
degree 0, e(V, ¢, dx) = &(V, ¢) is independent of dx.

(3.4.4) e(V, ¢a, dx) = (det V)(a) l|lal|~4™V &(V, ¢, dx), for ae F* (cf. (2.3.4)).

(B.4.5) e(Vws, ¢, dx) = e(V, ¢, dx) (V)5 d(¢p)—4mV, where:

6(¢) = q39 in the nonarchimedean case and is characterized in the archimedean
case by the fact that §(¢a) = |la|~t d(¢), and d(¢p) = 1 for ¢ asin (3.2.4) and (3.2.5).

f(¥) =1 in the archimedean case, and = g%, the absolute norm of the Artin
conductor of ¥ in the nonarchimedean case. This f can be characterized as the uni-
que function inductive in degree 0 such that f(y) = g4*® for quasi-characters y. For
the well-known explicit formula for a(¥) in terms of higher ramification groups,
see [S1] or [D3, (4.5)].

(3.4.6) Suppose F nonarchimedean, W unramified. Then

eV ® W, ¢, dx) = e(V, ¢, dx)iinW . det W(geV)+dimVnig)),

(3.4.7) Let V* denote the dual of ¥ and dx’ the Haar measure dual to dx relative
to ¢. Then

e(V, ¢, dx)e(V*wy, p(—x), dx’) = 1.
In particular
[e(V, g, d0)|2 = f(V) (6()dx/dx)imV, if V* =V,

i.e., if ¥ is unitary.

(3.4.8) If E/Fis a finite separable extension, ¥ a virtual representation of degree
0 of Wz and V5 the induced representation of Wp, then e(Vg, ¢) = e(Vg, ¢ - Tx).

(3.5) Global L-functions, functional equations. Let F be a global field, ¢ a non-
trivial additive character of A4y/F, and dx the Haar measure on A such that
] 4mpdx = 1 (Tamagawa measure). Call ¢, the local component of ¢ at a place v,
and let dx =[], dx,be any factorization of dx into a product of local measures such
that the ring of integers in F, gets measure 1 for almost all v.
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Let V be a representation of “the” global Weil group W, and put
(3.5.1) L, s) = [1 L(V, wy),
v

(3.5.2) eV, 5) = Il e(V, 05, ¢» dx,).

(3.5.3) THEOREM. The product (3.5.1) converges for s in some right half-plane and
defines a function L(V, s) which is meromorphic in the whole s-plane and satisfies the
Sfunctional equation

(3.5.4) LV, s) = e(V, s)L(V*, 1 — 5)
where V* is the dual of V.

For V a quasi-character y this result was proved by Hecke. In the modern version
of his proof ([T1], [W2]) one shows by Poisson summation that for suitable func-
tions fon 4

f Joos i axe = | o, 500 i,

the integrals being defined for all s by analytic continuation. Takingf = [] £, and
using the local functional equation (3.2.1) (with y replaced by yw;) one finds that
(3.5.4) holds in the “abelian™ case, V' = y.

At this point, even without having a theory of the local nonabelian
eV, ¢, dx,)’s, one gets, via (2.3.1), (2.3.5), and the inductivity of the local L’s,
that L(V, s) is meromorphic in the whole plane for each ¥V, being defined by the
product (3.5.1) in a right half-plane, and that L(V, s) is inductive as a function of V.
It follows that

, defn L V’ s
€(V5 S) = L(V”E,l —)-S)

is inductive in ¥ and satisfies &'(y, s) = [I, e(y,w;, ¢,» dx,) for quasi-characters y
of A*/F*. It is this fact about the local e(y,, ¢,, dx,)’s—that their product over all
v for a global y has an inductive extension to all global ¥—that Deligne uses in
his *“global” proof of the existence of local nonabelian ¢’s. Once their existence is
proved, we have ¢'(V, s) = (¥, s) by the unicity of inductive functions since &(¥, s),
defined by the product (3.5.2), is inductive in degree 0 by (2.3.5).

(3.5.5) Hecke’s global function L(y, s) is entire if y is not of the form w,. Artin
conjectured (in the Galois case) that L(V, s) is entire for any ¥ which has no con-
stituent of the form w,. Weil proved Artin’s conjecture for function fields. Recently
Langlands, using ideas of Saito and Shintani, made a first breakthrough in the
number field case, treating certain V’s of dimension 2 by base change, using the trace
formula. (See The solution of a base change problem for GL(2) (following Langlands,
Saito, Shintani), these PROCEEDINGS, part 2, pp. 115-133.) These methods work for
all V’s of dimension 2 for which the image of Wy in PGL(V) is the tetrahedral group.
They also work for some octahedral cases, but a new idea will be needed to apply
them in the nonsolvable icosahedral case. However, J. Buhler [B], with the aid
of the Harvard Science Center PDP11 and the main result of [DS], has proved the
Artin conjecture for one particular icosahedral ¥ of conductor 800, by checking
the existence of the corresponding modular form of weight 1 and level 800.
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Although the Riemann hypothesis concerning the zeros of L(y, s) has been
proved by Weil in the function field case, there seems to be no breakthrough in
sight in the number field case. The conjunction of the Artin conjecture for all V'
and the Riemann hypothesis for all y is equivalent to the positivity of a certain
distribution on W (cf. [W3]).

(3.6) Comparison of different conventions for local constants. The modern ref-
erences for the material we have been discussing are Deligne [D3] and Langlands
[L], and we have here followed the conventions of [D3]. Happily, the definition of
L-functions, both local and global, in [D3] coincides with that in [L]. But Deligne’s
local constants &(V, ¢, dx), which we will designate in this section by ¢p, instead of
just e, differ somewhat from Langlands’ (¥, ¢) which we will denote by ¢; here.
The relationship is

(3.6.1) er(V, ¢) = ep(Vwy/z ¢, dxy),

where dx, is the additive measure which is self-dual with respect to ¢b. The other
way around we have

(3.6.2) ep(V, ¢, dx) = (dx/dxy)é™V er(Vw_1/2, ).

In the nonarchimedean case the constant dx/dx, is given explicitly by
g /2, dx. Also, in that case if ¥ corresponds to a quasi-character y of F* we
have

oY) ¢ (ufc) du
| 50.;(_1(14)9& (u/c) du| ’

where ¢ is an element of F* of valuation a(y) + n(¢) as in (3.2.6).
Langlands puts

defn
(3.6.4) er(s, V, ) = et(Vws—a,2, ¢) = ep(Vas, ¢, dxy).

Then the “constant” ¢(¥, s) in the global functional equation (3.5.4) is given by
eV, s) = Il,els, V., ¢,) for any nontrivial character ¢y of 4/F, because if dx, is
self-dual on F, with respect to ¢, for each place v, then dx = [], dx, is self-dual
on A with respect to ¢), and is therefore the Tamagawa measure on 4.

The behavior of ¢;, under twisting by an unramified quasi-character is given by

(3.6.3) ey, ¢) = x(o)

(3.6.5) el(Vos, §) = e,(V, V) d(g)~ 4imV
as in (3.4.5), but its dependence on ¢ is according to

(3.6.6) er(V, ¢o) = (det V)(@)e(V, ¢),
instead of as in (3.4.4). If V* is the contragredient of V, then
(3.6.7) e(V, Per(V*, ¢ = 1.
Hence, by (3.6.6)

(3.6.8) er(Vs §) el(V*, ¢) = (det V)(— 1)
and on the other hand,

(3.6.9) le(V, ¢)| = 1, if V is unitary.

The ¢;-system has the advantage that it avoids carrying along the measure dx,
but it has the following disadvantage: in the nonarchimedean case, if ¢ is a dis-
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continuous automorphism of C, then V7 is again a representation of Wp, and ¢°
an additive character, but e.(V?, ¢°) is not in general equal to (¥, ¢)? (nor is
(0, V7, %) = ¢,(0, V, ¢)?). The trouble is that the absolute value (in (3.6.3)) may
not be preserved by g, and/or that the self-dual measure dx, in (3.6.1) may involve
+/D, and hence may not be preserved by ¢. If one does wish to eliminate the measure
dx, it is probably preferable to define, say,

(3.6.10) a(V, ¢) = ep(V, ¢, dxy),

where dx; is the measure for which ¢ gets measure 1 in the nonarchimedean case,
and is the measure described in (3.2.4) and (3.2.5) in the archimedean case. This
convention has the minor disadvantage that the ¢(¥) in the global functional equa-
tion is not equal to the product of the local &)(V,, ¢,)’s, but is, rather, a~! times that
product, where a is the square root of the discriminant for a number field, and is
q¢7! for a function field of genus g with g elements in its constant field. But the
e1(V, ¢) has the advantage that in the nonarchimedean case we do have &,(V7, §?) =
e1(V, ¢) for all automorphisms ¢ of C. This is clear, by unicity (2.3.3) and the
formula

(3.6.11) el §) = 1@ % (y)

#€0* mod 780 c
which follows from (3.2.6.1) and (3.2.6.2) where the notation is explained. Thus
in the nonarchimedean case we can define, for ¥ and ¢) over any field E of charac-
teristic 0 (an open subgroup of I acting trivially on ¥, and ¢ trivial on some z"0),
an g(V, ¢) € E*, in a unique way such that &;(V%, ¢%) = (¥, ¢)* for any homo-
morphism a: E — E’ and such that ¢, is the old ¢;, given by (3.6.10), when E =
C.So defined, &;(Vg, ¢ - Trg, ) is inductive in degree 0 (2.3.2) for every field of scalars
E of characteristic 0, and ¢,(¥, ¢) will be given by (3.6.11) if ¥ corresponds to a
quasi-character y: F* — E*,

In writing these notes I was tempted to shorten things a bit by using only &,(¥, ¢)
instead of ep(V, ¢, dx), but decided against it because (1) the ¢,-system avoids all
choices and is the most general and flexible—any other system, like ¢, or ; can be
immediately described as a special case of ¢p; (2) the dependence of ¢ on dx shows
“why” e is inductive only in degree 0, and (3) in case our local field F is nonarchi-
medean, the ¢p-system, like the ¢;, works over any field E of characteristic 0, as
soon as one defines the notion of Haar measure on F with values in E (cf. [D3,

(6.1))).

4. The Weil-Deligne group, A-adic representations, L-functions of motives. The
representations considered in §3 are just the beginning of the story. Those of Galois
type are effective motives of degree 0—which Deligne calls Artin motives in his
article [D6, §6] in these PROCEEDINGsS—with coefficients in C. We cannot discuss
the notion of motive here (cf., e.g., [D1] and [D6] for this) but we do want to discuss
the way in which L-functions and e-functions are attached to motives of any degree.
Only very special motives of degree #0 correspond to the representations of W
considered in §3, namely, those of type A, i.e., those which, after a finite extension
EJF, correspond to direct sums of Hecke characters of type 4, over E. (A candidate
for a “motivic Galois group” for these is constructed by Langlands in these
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ProceeDINGs [L3].) The simplest motives not of this type are those given by elliptic
curves with no complex multiplication; their L-functions are the ‘“Hasse-Weil
zeta-functions” which are not expressible in terms of Hecke’s L-functions.

The procedure for attaching L-functions to motives in the form given it by
Deligne [D3], [D6] can be outlined schematically as follows:

F is a global field.

v is a place of F.

E is a field of finite degree over Q.

A runs through the finite places of E whose residue characteristic is prime to
char(F).

o is an embedding of E in C.

Motive M over F System (H;(M)) of A-adic
with cx. multn. by E representations of G
d. fid. l-adic o
gxtension u coho. U restriction
Motive M, over F, System (H,(M,)) of A-adic
with cx. multn. by F representations of Gp,
Hodge theo: : nonarchimedean;
cf24.g4) ry u v archimedean ﬂ zf. “2) edean
Hodge structure Hdg(M,)
over F, with cx. multn. by
Equiv. class V(M, ,) of
(cf. (4.4)) M repns. of the Weil-Deligne
group Wi, over C, invariant
under Aut(C/E)
Equiv. class V(M,,,) of repns.
over C of the Weil group Wg, U cf. (4.1)
of. 3.3), 3.4) ﬂ
L- (i.e. I*) and e-factors L- and e-factors at the
at the archimedean place v nonarchimedean place v

In the next sections we discuss some of the steps and concepts indicated in the
above chart. We begin with the Weil-Deligne group. This is a group scheme over
0, but what counts, its points in and representations over fields of characteristic
0, can be described naively with no reference to schemes.

(4.1) The Weil-Deligne group and its representations. Let F be a nonarchimedean
local field and let F, G = Gal(F/F), W (Weil group), and [ (inertia group) have
their usual meaning. For w € Wy, let |w| denote the power of g to which w raises
elements of the residue field, as in (1.4.6). Thus we have |w| = 1 for we [, and
@] = ¢g7! for a geometric Frobenius element . We view W as a group scheme
over Q as follows: for each open normal subgroup J of I, we view Wp/J as a
““discrete” scheme, and we put Wy = proj lim (W/J), the limit taken over all J.
In other words, we have

Wp = 1] 91 = [] spec 4,,

neZ neZ
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where A, is the ring of locally constant Q-valued functions on @"1.

(4.1.1) DerFINITION [D3, (8.3.6)]. The Weil-Deligne group W is the group scheme
over Q which is the semidirect product of Wy by G,, on which Wy acts by the rule
wxw™l = |w|x.

Let E be a field of characteristic 0. The group Wi(E) of points of W5 with
coordinates in Eis just E x W with the law of composition (a;, w;)(as, Wp) =
(al + “Wl ” as, WIWz) for a, az € E and Wi, Wy € WF'

Let ¥ be a finite-dimensional vector space over E. A homomorphism of group
schemes over E

o't W xq E— GL(V)

determines, and is determined by, a pair (o, N) as in (4.1.2) below, such that, on
points, p’((a, w)) = exp(aN)-p(w). That is the explanation for the following defini-
tion:

(4.1.2) DErFINITION [D3, (8.4.1)]. Let E be a field of characteristic 0. A representa-
tion of Wr over E is a pair o’ = (p, N) consisting of:

(a) A finite-dimensional vector space ¥ over E and a homomorphism p: Wy —
GL(¥V) whose kernel contains an open subgroup of 7, i.e., which is continuous for
the discrete topology in GL(V).

(b) A nilpotent endomorphism N of V, such that p(w)Np(w)~! =|w|N, for
we W.

(4.1.3) @-semisimplicity. Let o’ = (p, N) be a representation of W over E. Define
v:Wgp—> Zby |w| = g *®. There is a unique unipotent automorphism u of V'
such that ¥ commutes with N and with p(W5) and such that exp(aN)p(w)u—*® is
a semisimple automorphism of ¥ for all a € E and all w e W—I [D3, (8.5)]. Then
pss = (pu=, N) is called the @-semisimplification of o', and p’ is called @-semisimple
if and only if p’ = p, i.e., u = 1, i.e., the Frobeniuses act semisimply. For this it
is necessary and sufficient that the representation p of W be semisimple in the ordi-
nary sense, because o(®) generates a subgroup of finite index in p(Wp), and in
characteristic 0 a representation of a group is semisimple if and only if its restriction
to a subgroup of finite index is semisimple. In his article in these PROCEEDINGS,
Borel discusses admissible morphisms Wy — LG; when G = GL,, these are just our
O-semisimple (o, N)’s.

(4.1.4) ExaMPLE. Sp(n) is the following representation (p, N) of Wy over Q.

V= Q” = QeO + Qel + e+ Qen-—l’
P(W)ei = (I),-(W)e,' (= "wniei)’

Ne; = e;; O=i<n-1),Ne,; =0.

(4.1.5) Given any (p, N), Ker N is stable under Wp. Hence (p, N) is irreducible <
N = 0 and p is irreducible. It is not hard to show that the @-semisimple indecom-
posable representations of Wy are those of the form p’ ® Sp(n) with o’ irreducible.
(The ® is defined by (0, N) ® (01, N) = (0 ® o, N® 1 + 1 ® Ny).)

(4.1.6) Let (o, N, V) be a representation of Wy over E. We put V{; = (Ker N)/
and define a local L-factor, a conductor, and a local constant by
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Z(V, 1) = det (1 — @t| V)L, and L(V,s) = Z(V, q~), when E < C;
a(V) = alp) + dim V7 — dim V§,
(V) = e(p)det (— 0| 1/ V),
and
eV, 1) = e(V)teV.,

Here, for ¢, the usual ¢ and dx are understood, but omitted from the notation.

These quantities do not change if we replace V by its @-semisimplification; but
note that they are not additive as functions of ¥, because V' is not. If N = 0, they
are the same as before.

One of the main reasons for introducing the Weil-Deligne group is the fantastic
generalization of local class field theory embodied in:

(4.1.7) Conjecture. Let F be a nonarchimedean local field and # an integer = 1.
There is a (in fact more than one) natural bijection between isomorphism classes of
@-semisimple representations of Wy of degree n, and of irreducible admissible re-
presentations of GL(n, F).

For n = 1 this is local class field theory. For n = 2, it is discussed at length in
[D2, (3.2)]. In this conjecture, for any n, the irreducible representations of Wx
(which are just irreducible representations of W) should correspond to the cuspidal
representations of GL(n, F). I understand that Bernitein and Zelevinsky have
shown that the way in which arbitrary admissible representations of GL(n, F) are
built out of cuspidal ones follows the same pattern as the way in which arbitrary
@-semisimple representations of Wy, are built up out of irreducible ones. Thus the
main problem is now the correspondence between irreducibles and cuspidals.

A more general conjecture, involving an arbitrary reductive group G rather than
just GL(n), relates admissible representations of G(F) to homomorphisms of Wg
into the “Langlands dual” of G (see Borel’s article in these PROCEEDINGS). This
more general conjecture is the nonarchimedean local case of ‘“Langlands’ philo-
sophy”.

(4.2) A-adic representations. Now suppose / is a prime different from the residue
characteristic p of F and let ¢;: Iz — Q, be a nonzero homomorphism. (Such a ¢,
exists and is unique up to a constant multiple, because the wild ramification group
P is a pro-p-group, and the quotient I/P is isomorphic to the product [],.,Z;.) We
have

twow™) = ||w| 1(0), forcel,we W,

because conjugation by w induces raising to the ||w| power in I/P. Let @ be an in-
verse Frobenius element (4.1.8). Suppose E; is a finite extension of Q,. A A-adic
representation of Wi is a finite-dimensional vector space V', over E; and a homo-
morphism of topological groups p;: Wr — GLg(V;) where GLg, (V) has the 2-adic
topology (i.e., the topology given by the valuation).

(4.2.1) THEOREM (DELIGNE [D3, §8)). The relationship V; = V and
0:(@70) = p(@ 0)exp(t(o) N), oel,neZ,
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sets up a bijection between the set of A-adic representations (0;, V) of W and the set
of representations (o, N, V) of Wy over E;. The corresponding bijection between iso-
morphism classes of each is independent of the choice of t,and @.

To show that every p; is of this form one uses

(4.2.2) CorROLLARY (GROTHENDIECK). Let (p;, V) be a A-adic representation of Wp.
There exists a nilpotent endomorphism N of V; such that py(o) = exp(t,(¢)N) for ¢
in an open subgroup of I.

A proof of the corollary can be found in the appendix of [ST]. Here is a sketch.
Since 7 is compact, p;(7) stabilizes a ““lattice” L in ¥;. Replacing F by a finite exten-
sion we can assume that p(I) fixes L (mod /2). Then p,(J) is a pro-l-group, so is a
homomorphic image of #,(I), since Ker ¢, is prime to /. Choose ¢ € Q, such that
ct(I) = Z,. Then thereis an ¢ € GL(V)) fixing L (mod /2) such that

0:(0) = a®t@ = exp(t,(c)N)

for all ¢ € I, where N = ¢ log a. Conjugating by p;(®) we find p(®)Npy(®)! =
g~N. Thus the set of eigenvalues of N is stable under multiplication by ¢g~1. Since ¢
is not a root of unity in characteristic 0, it follows that the only eigenvalue of N is
zero, i.e., N is nilpotent.

(4.2.3) COROLLARY. If V; is a semisimple A-adic representation of Wy then some
open subgroup of I acts trivially on V;, so V' can be viewed as an “‘ordinary’’ represen-
tation of Wp.

For any V; the kernel of N is stable under Wy because p(w)N,(w)~! = [w|N.
So if ¥, is irreducible, then N=0, and the statement follows from (4.2.2). A semi-
simple ¥, is a direct sum of irreducible subrepresentations.

(4.2.4) In view of (4.2.3), ¢(V;) and a (¥V;) have meaning if ¥ is semisimple. For
arbitrary V;, if (03, V) and (p, N, V) correspond as in (4.2.1), we define the L- and
e-factors associated to ¥, to be those associated to V. These can be expressed di-
rectly in terms of ¥ as follows:

Z(V, 1) = det(1 — @| V] = Z(V;, 1),
alV) = a(V¥) + dim(V$) — dim V; = a(V)),

det(— @|(VD)))

V) =MD “gex(— o[V

= 5( Vl)}

and
E(I/, t) = E(Vl)ta(vl) = €(V15 t)’

where V¥ is the semisimplification of V; in the ordinary sense. One can define a
“@-semisimplification” of V;, analogous to that of V' (4.1.3). The quantities on the
right do not change if we replace V; by its @-semisimplification, but they are not
additive in V;, because V1 is not.

(4.2.4) Motives. Suppose now E is a finite extension of Q. Let M be a motive with
complex multiplication by E, defined over our nonarchimedean local field F ([D1],
[D6]). Let n be the rank of M. Attached to M will be /-adic representations Hy(M),
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vector spaces of dimension # over @, on which G acts continuously, one for each
I # char(F). The field E will act on these, and for each / we get a decomposition
H(M) = @;, Hi(M), where for each place 1 of E above /, we put H(M) =
E; ® ggq, Hi(M), a vector space of dimension m over E, where m is the rank of M
over E, given by n = m[E: Q).

For each ! # p and each A above / let H;(M) be the representation of W . over E;
corresponding to H;(M) by (4.2.1). If our motive M lives up to expectations, the
system of A-adic representations H (M) will be compatible over E in the sense that
the system H;(M) is compatible over E in the following naive sense: for any two
finite places 4, y of E not over p and every commutative diagram

E/EA\C
N

the m-dimensional representations of W over C, Hy(M) ®, C and H (M) ®g,C,
are isomorphic (or at the very least, have isomorphic @-semisimplifications).
If so, then the isomorphism class of (the @-semisimplifications of) these representa-
tions depends only on the embedding E — C in the diagram above.

We denote this isomorphism class by V' (M), where ¢ denotes the embedding of
EinCand M, = M ®g ,C is the motive of rank m with coefficients in C deduced
from the original M, the action of E on it, and the embedding.o of E in C, cf. [D6,
2.1]. Associated to V(M,) as explained in (4.1.6) are the local quantities a, L, and
¢ which we shall denote by L(M,, ), etc.

(4.3) Reduction. Let r be an integer = 0 and X a projective nonsingular variety
over F. In this paragraph we shall restrict our attention to the special motive M =
H7(X)given by the r-dimensional cohomology of X, and we shall ignore any com-
plex multiplication. For the moment F can be any field. Put X = X x ; F, the
scheme obtained by extending scalars from F to F. For each prime / # char(F)the
l-adic étale cohomology group H"(X,,, Q)) is defined, and gives an /-adic representa-
tion of G = Gal(F/F) (by functoriality, G acting on X through F). In the nota-
tion of the previous paragraph we have now E = Q, 1 = [, H(M) = H"(X,,, Q).
I do not know to what extent the compatibility of the H,(M)’s is known (assuming
now again that F is local nonarchimedean), but the compatibility at least of their
@-semisimplifications is known in one very important case—that of

(4.3.1) Good reduction. Let O be the ring of integers in F, and k = @/z0 the re-
sidue field. The scheme X is said to have good reduction if there exists a scheme
X projective and smooth over @ such that X = X x , F. Choosing such an X, one
calls ¥ x , k the reduction of X. Let us denote this reduction by X,. Putting X, =
X, x , k, where k is the residue field of F, the base-change theorem gives a canonical
isomorphism

Q) H(M) = H"(X, Q) ~ H"(Xo, Q)

compatible with the action of the Galois groups. Hence H,(M) is unramified, i.e.,
fixed by Z, and the structure of H,(M) as representation of W is given by the action
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of @. Let ¢: Xy — X, be the Frobenius morphism, and ¢: k — k the Frobenius au-
tomorphism. The composition ¢ x ¢ acts on Xy = X, x k by fixing points and by
mapping f+— f7 in the structure sheaf. This map induces (a morphism canonically
isomorphic to) the identity on the site (Xy),;, so the action of the Frobenius mor-
phism ¢ on H7(X,, Q) is the same as that of ¢—1, which is the one corresponding to
our @ under the isomorphism (). That is why Deligne calls @ the geometric Fro-
benius.

Deligne [D4] has proved Weil’s conjecture, that the characteristic polynomial of
¢ acting on H7(X,, Q)) has coefficients in Z, is independent of /, and that its com-
plex roots have absolute value g7/2. From the independence of / it follows in this
case of good reduction that the @-semisimplifications of the H,(M)’s form a com-
patible system; and the H,(M)’s are known to be @-semisimple for r = 1.

It is natural to say that a motive M over F has good reduction, or is unramified if
and only if H(M) = H(M)!, i.e., if V(M) = V(M)§. In case M = H,(4), A an
abelian variety, this is equivalent to 4 having good reduction (criterion of Néron-
Ogg-Shafaryevitch in [ST]).

Similarly we say M has potential good reduction<> N = 0, and M has semi-
stable reduction if V(M) = V(M)!. Clearly this latter can always be achieved by a
finite extension of the ground field.

(4.4) F archimedean. Let now M, E, n, m be as in (4.2.4), but take F to be archi-
medean, instead of nonarchimedean. Let z: F — C be the embedding of F in C
if Fis real, or one of the two isomorphisms of F on C if Fis complex. Such a z gives
us a motive M, over C and M, has a “Betti realization” Hg(M,) which is an »-
dimensional vector space over Q whose complexification Hg(M,) ® C = @ H(M),)
is doubly graded in such a way that the map 1 ® ¢ (¢ = complex conjugation)
takes H#1 to Heb. (For example, if M = H7(X) as in (4.3), then Hg(M,) =
Hr(X2, ), where X2" is the complex analytic variety underlying the scheme
X X g,, C, and the complexification of this space, H7(X2", C), is doubly graded by
Hodge theory.)

Let Z = coz: F — C be the map conjugate to z. By transport of structure, there is
an isomorphism 7: Hg(M,) — Hy(M;) such that v ® ¢ preserves the bigrading on
the complexifications; hence 7 ® 1 carries H?(M,) onto H(M;). The field E of
complex multiplications acts on Hg(M,) preserving the bigradation on the com-
plexification, and ¢ is an E-homomorphism. Let ¢: E — C. Putting V,(M,) =
Hp(M,) ®g, ,C we obtain a bigraded complex vector space of dimension m and
a linear isomorphism 7 ® 1: V,(M,) —» V,(M,) taking V% to V22,

There is a natural action of the Weil group W on these spaces as follows:

F complex. z: F ~ C an isomorphism, W, = F* and Wj acts on V' by scalar
multiplication via the character z=#(2)~4. Clearly, ¢ ® 1 is Wi-equivariant, so the
two representations V,(M,) and V;(M,) are isomorphic. We let V(M) denote their
isomorphism class.

Freal z = z: F — C is the embedding, and W, = C* |J jC*. This time M, =
M;, so we have only one space, V,(M,) = V,(M,), and ¢ ® 1 is an automorphism
of it. The action of W on it is as follows:

u € C* acts as multiplication by u=2(#2)~7 on V',

Jjactsasi?t9(r @ 1)on V.

Again, let V(M,) denote the equivalence class of this representation.
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Notice that the representations obtained from motives via Hodge theory are
very special, in that the p and g are integers.

Finally, define L(M,, s) and e(M,, s) to be the L- and e-factors associated to the
representation V(M,) as in §3. For a table making these explicit see [D6, 5.3].

(4.5) F global. Let F be a global field and M a motive with complex multiplication
by E, defined over F. For each place v of F, let M, denote the restriction of M to
F, Letg: E — C. The product L(M,, s) = ], L(M,,,, s) converges in a right half-
plane. It is conjectured that it is meromorphic in the whole s-plane and satisfies the
functional equation

L(Mm S) = e(Mw S) L(M;k’ 1 - S)

with M* = Hom(M, Q) and &(M,, s) = II,e(M,,,, ).

In the function field case this conjecture has been proved by Deligne. Let g be
the number of elements in the constant field k& of F. Grothendieck proved that for
any given A-adic representation V of Gy which is unramified at all but a finite num-
ber of places v, the corresponding L-function L(V, s) = I, L(V,, s)is a rational
function of g~ (even a polynomial if ¥¢ = 0 and ¥z = 0, where G is the geometric
Galois group, i.e., the kernel of the map of Grto G}), and satisfies a functional
equation of the form L(¥,s) = e(V, s)L(V*, 1 — s) with an ¢ which is a monomial
in g of degree };,[k(v):k] a(V,). Later, Deligne showed that Grothendieck’s
e(V, s) is equal to the product of the local &(V,, s)’s if V' = V;, is a member of a
family (V;);c of A-adic representations of G for some infinite set of places ¥
of a number field E, and the family is compatible in the following weak sense: for
each A, p € & there is a finite set S of places of F such that for v ¢ S, the represen-
tations ¥; and ¥V, are unramified at v and the characteristic polynomals of @,
acting on ¥, and ¥, have coefficients in E and are equal. Deligne’s method is to
prove that Grothendieck’s ¢ is congruent to the product of the local &’s modulo A
for all A ¢ & and is therefore equal to that product. By (4.3) any A-adic representa-
tion coming from /-adic cohomology, i.e., from a motive, is a member of a system
which is weakly compatible in the above sense.

When dim(V) = 2, then by Jacquet-Langlands (resp. Weil), Springer Lecture
Notes 114 (resp. 189), these results show that L(V, s) comes from an automorphic
representation of (resp. modular form on) GL,(A4f). On the other hand, Drinfeld
has recently shown that automorphic representations of GL, give rise to systems
of l-adic representations occurring as constituents in tensor products of those com-
ing from 1-dimensional /-adic cohomology, hence from motives. Thus for GL,
over function fields, the equivalence between motives, compatible systems of /-
adic representations, and automorphic representations is pretty well established.

In this connection it should be mentioned that Zarhin [Z] has proved the isogeny
theorem over function fields: if two abelian varieties 4 and B over a global function
field F give isomorphic /-adic representations, then they are isogenous; more pre-
cisely,

0, ® Homg(4, B) = HomGF(V,(A), V(B)).

Over number fields our knowledge is not nearly so advanced. For Artin motives
of rank 2, Langlands has made a beginning with the theory of base change (see
the remarks (3.5.5)). For elliptic curves M over @, it is not even known whether
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L(M, s) has a meromorphic continuation throughout the s-plane, or whether the
isogeny theorem is true. For a more detailed account of our ignorance, as well as
of a few things which are known, see [S4].
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AUTOMORPHIC L-FUNCTIONS

A. BOREL

This paper is mainly devoted to the L-functions attached by Langlands [35] to an
irreducible admissible automorphic representation = of a reductive group G over a
global field £ and to local and global problems pertaining to them. In the context
of this Institute, it is meant to be complementary to various seminars, in particular
to the GL;-seminars, and to stress the general case. We shall therefore start directly
with the latter, and refer for background and motivation to other seminars, or to
some expository articles on this topic in general [3] or on some aspects of it [7], [14],
[15], [23].

The representation 7 is a tensor product # = ),x, over the places of k, where
m, is an irreducible admissible representation of G(k,) [11]. Accordingly the L-func-
tions associated to 7 will be Euler products of local factors associated to the z,’s.
The definition of those uses the notion of the L-group LG of, or associated to, G.
This is the subject matter of Chapter I, whose presentation has been much influ-
enced by a letter of Deligne to the author. The L-function will then be an Euler
product L(s, «, r) assigned to z and to a finite dimensional representation r of LG.
(If G = GL,, then the L-group is essentially GL,(C), and we may tacitly take for r
the standard representation r, of GL,(C), so that the discussion of GL, can be
carried out without any explicit mention of the L-group, as is done in the first six
sections of [3].) The local L- and e-factors are defined at all places where G and =
are “unramified” in a suitable sense, a condition which excludes at most finitely
many places. Chapter II is devoted to this case. The main point is to express the
Satake isomorphism in terms of certain semisimple conjugacy classes in LG (7.1). At
this time, the definition of the local factors at the ramified places is not known in -
general. For GL, and r,, however, there is a direct definition [19], [25]. In the
general case, the most ambitious scheme is to associate canonically to an irreducible
admissible representation of a reductive group H over a local field F a representa-
tion of the Weil-Deligne group Wy of E into LH, and then use L- and e-factors
associated to representations of Wy [60]. This problem is the main topic of Chapter
IIL

The L-function L(s, 7, r) associated to z and r as above is introduced in §13. In
fact, it is defined in general as a product of local factors indexed by almost all places
of k. It converges absolutely in some right half-plane (13.3; 14.2). Some of the main
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conjectural analytic properties (meromorphic continuation, functional equation),
and the evidence known so far, are discussed in §14.

From the point of view of [35], a great many problems on automorphic represen-
tations and their L-functions are special cases of one, the so-called lifting problem
or problem of functoriality with respect to L-groups. It is discussed in Chapter V.
It is closely connected with Artin’s conjecture (see §17 and the base-change sem-
inar [17]). In §18 brief mention is made of some known or conjectured relations
between automorphic L-functions and the Hasse-Weil zeta-function of certain
varieties, to be discussed in more detail in the seminars on Shimura varieties [8],
[40].

Thanks are due to H. Jacquet and R. P. Langlands for various very helpful com-
ments on an earlier draft of this paper.
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CHAPTER I. L-GRroups.

k is a field, k an algebraic closure of k, k, the separable closure of k in k, and I',
the Galois group of k, over k. G is a connected reductive group, over k in 1.1, 1.2,
2.1, 2.2, over k otherwise.

§81, 2 will be used throughout, §3 from Chapter III on. The reader willing to take
on faith various statements about restriction of scalars need not read §§4, 5.
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1. Classification. We recall first some facts discussed in [58].

1.1. There is a canonical bijection between isomorphism classes of connected
reductive k-groups and isomorphism classes of root systems. It is defined by as-
sociating to G the root datum ¢(G) = (X*(T), ¢, X«(T), p?) where T is a maximal
torus of G, X*(T) (X«(T)) the group of characters (I1-parameter subgroups) of T
and @ (9°) the set of roots (coroots) of G with respect to 7.

1.2. The choice of a Borel subgroup B = T is equivalent to that of a basis 4 of
O(G, T). The previous bijection yields one between isomorphism classes of triples
(G, B, T) and isomorphism classes of based root data ¢(G) = (X*(T), 4, X(T),
). There is a split exact sequence

) (1) — Int G — Aut G — Aut ¢o(G) —> (1).

To get a splitting, we may choose x, € G, (a € 4) and then have a canonical bijec-
tion

@ Aut ¢(G) — Aut (G, B, T, {X.}ec).

Two such splittings differ by an inner automorphism Int ¢ ( € T).

1.3. Given y € I there is ge G(k,) such that g-7T-g71 = T, g-7B-g~! = B, whence
an automorphism of ¢)o(G), which depends only on 7. We let ug: I', — Aut ¢o(G)
be the homomorphism so defined. If G’ is a k-group which is isomorphic to G over
k (hence over k), then ug = uy <> G, G' are inner forms of each other.

1.4. Let f: G — G’ be a k-morphism, whose image is a normal subgroup. Then f
induces a map ¢(f): ¢(G) — ¢(G’) (contravariant (resp. covariant) in the first (last)
two arguments). Given B, T = G as above, there exists a Borel subgroup B’ (resp.
a maximal torus T”) of G’ such that f(B) = B’, f(T) = T’, whence also a map ¢(f):

Do(G) = Po(G").

2. Definition of the L-group.

2.1. The inverse system ¢y to the based root datum ¥y = (M, 4, M*, 4Y)is ¢} =
(M*, 4V, M, 4). To the k-group G we first associate the group LG° over C such that
do(LG°) = ¢o(G)V. Welet LT°, LB° be the maximal torus and Borel subgroup de-
fined by ¢y, and say they define the canonical splitting of £G°.

Let f be as in 1.4. Then f also induces a map ¢¥(f) : ¢o(G")V = ¢o(G)V. An alge-
braic group morphism of £G’° into LG° associated to it will be denoted Zf°. Given
one, any other is of the form Int zoLf°cInt ¢’ (¢ € LT°, t' € LT'°), and maps LT"°
(resp. £B’°) into LT° (resp. LB°®).

2.2. ExampLES. (1) Let G = GL,. Then LG° = GL,. In fact, let M = Z7 with
{x;} its canonical basis. Let {e,;} be the dual basis of M* = Z». Then ¥((GL,) =
M, 4, M*, &) with 4 = {(x; — x;41), 1 S i <n}, 4 = {(e; — e;11), ] S i <n},
hence ¢ = ¢y.

(2) Let G be semisimple and ¥((G) = (M, ©, M*, ®V). As usual, let P(®) =
M ® Q be the lattice of weights of ® and Q(®) the group generated by @ in M.
Define P(®V) and Q(@V) similarly.

As is known G is simply connected (resp. of adjoint type) if and only if P(¢) =
M (resp. Q(¢) = M). Moreover

P@) = Ae M@ Q) O¥> = Z},  P@) = {ie M* ® Q|(A, D) € Z).
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Therefore:

G simply connected <> LG° of adjoint type;

G of adjoint type <> LG° simply connected.

(3) Let G be simple. Up to central isogeny, it is characterized by one of the types
A,, ..., Gy of the Killing-Cartan classification. It is well known that the map
¢o(G) = ¢o(G)” permutes B, and C, and leaves all other types stable. Thus if G =
Sp,, (tesp. G = PSp,,), then LG° = §0,,., (resp. LG° = Sping,;). In all other
cases, G — LG° preserves the type (but goes from simply connected group to adjoint
group, and vice versa).

(4) Let again G be reductive and let f : G — G’ be a central isogeny. Let

N = coker fy: Xo(T) — X(T")  (T' = f(T)),
N’ = coker f*: X*(T") — X*(T).

Then N and N’ are isomorphic and ker Lf° = Hom(N, C*) =, N. In particular,
Lf° is an isomorphism if and only if fis one.

(5) Let f: G — G’ be a central surjective morphism, Q = ker f; and Q° the
identity component of Q. Then ker Lf° ~ Q/Q°.

If Q is connected, then 7" = T () Q is a maximal torus of Q, and the injectivity
of Lf° follows from the fact that the exact sequence 1 - T” - T — T’ — 1 neces-
sarily splits. If Q is not connected, thenr : H = G/Q° — G’ is a nontrivial separable
isogeny, with kernel Q/Q°. Lf° factors through Lr° and, by the first part and (4),
ker Lf° = ker Lr° = Q/Q°. In particular, if we apply this to the case where G' = G4
is the adjoint group of G, and use (2), we see that the derived group of LG® is simply
connected if and only if the center of G is connected. As an example, let G = GSp,,
be the group of symplectic similitudes on a 2n-dimensional space. Then the derived
group of LG® is isomorphic to Spin,,;. In fact, we have LG° = (GL; x Spimy,;)/4
where A = {1, a} and a = (a;, a,), with a; of order two in GL, and a, the nontrivial
central element of Spiny, ;. If n = 2, then Spin,,;; = Spy,. It follows that if G =
GSp,, then LG° = GSpy(C).

2.3. We have canonically Aut ¥y = Aut ¥y. Therefore we may view y; as a homo-
morphism of I, into Aut ¢§j. Choose a monomorphism

(€))] Aut ¢y — Aut (*G°, LB°, LT®)
asin 1.2(2). We have then a homomorphism
ue: I'y — Aut (*G°, LB°, LT®).

The associated group to, or L-group of, G is then by definition the semidirect
product

2) LGlk) =G =LG"x T,

with respect to u;. We note that y; is well defined up to an inner automorphism
by an element of ZT°. The group LG is viewed as a topological group in the obvious
way. The canonical splitting of LG° (2.1) is stable under [";.

We have a canonical projection LG — I’, with kernel G°. The splittings of the
exact sequence

3) 1 LG — LG —— 1
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defined as in 1.2 via an isomorphism Aut &y = Aut(*G°, LB°, LT°, {x,}) are called
admissible. They differ by inner automorphisms Int ¢ (# € L7°). Note that if G splits
over k, then I, acts trivially on LG®° and LG is simply the direct product of LG° and
r,.

2.4. REMARKS. (1) So far, we can in this definition take ZG° over any field. We
have chosen C since this is the most important case at present, but it is occasionally
useful to use other local fields.

(2) There are various variants of this notion, which may be more convenient in
certain contexts. For instance we can divide I, by a closed normal subgroup which
acts trivially on ¥V, hence on LG°, e.g., by I, if k' is a Galois extension of k over
which G splits. Then I, is replaced by Gal(k'/k), and LG is a complex reductive Lie
group.

We can also define a semidirect product ZG° x 2, for any group 2 endowed
with a homomorphism into [, e.g., the Weil group of k, if k is a local or global
field. In that case, we get the ‘“Weil form” of LG.

(3) Let G’ be a k-group which is isomorphic to G over k. Then G and G’ are inner
forms of each other if and only if LG is isomorphic to LG’ over I',. In fact, the first
condition is equivalent to uz = yg-, and the latter is easily seen to be equivalent to
the second condition. In particular, since two quasi-split groups over k which are
inner forms of each other are isomorphic over k, it follows that if G, G’ are quasi-
split and LG = LG’ over [, then G and G’ are k-isomorphic.

2.5. Functoriality. Let f: G — G’ be a k-morphism whose image is a normal
subgroup. Then f;: ¢o(G) = ¢o(G’) clearly commutes with /7, hence so does

JoY 1 o(G) = ¢o(G)’ and Lf°: LG’ — LG°. We get therefore a continuous homo-
morphism Zf : LG’ — LG such that

LG’ LG

A
I

is commutative, which extends Lf°.

2.6. Representations. For brevity, by representation of LG we shall mean a conti-
nuous homomorphism r: .G — GL,,(C) whose restriction to LG° is a morphism
of complex Lie groups.

Clearly, ker r always contains an open subgroup of [',, hence r factors through
LG° % Iy, where k' is a finite Galois extension of k£ over which G splits. The group
LG° % I, ,, is canonically a complex algebraic group and r is a morphism of com-
plex algebraic groups.

3. Parabolic subgroups.

3.1. Notation. We let 2(G/k) denote the set of parabolic k-subgroups of G, and
write 2(G) for 2(G/k). Let p(G/k) be the set of conjugacy classes (with respect to
G(k) or G(k), it is the same) of parabolic k-subgroups, and p(G) = p(G/k). Let
p(G),, be the set of conjugacy classes of parabolic subgroups which are defined over
k (i.e., if P € 0 € p(G),, then 7P e ¢ for all y € I'). In particular p(G/k) & p(G),.
There is equality if G is quasi-split/k.

3.2. We recall there is a canonical bijection between p(G) and the subsets of 4.
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Then p(G), corresponds to the [',-stable subsets of 4 and p(G/k) to those [-
stable subsets which contain the set 4, of simple roots of a Levi subgroup of a
minimal parabolic k-group. In particular we have p(G/k) = p(G), if G is quasi-
split over k. Given P € 2(G), we let J(P) be the subset of 4 assigned to the class
of P

Since two conjugate parabolic subgroups whose intersection is a parabolic sub-
group are identical, we see in particular that if P is defined over k, P’ o P, and the
class of P’is defined over k, then P’ is defined over k.

3.3. Parabolic subgroups of LG. A closed subgroup P of LG is parabolic if y4(P) =
I'yand P° = LG° () Pis a parabolic subgroup of LG°. Then P = Nix(P°). In other
words, a parabolic subgroup is the normalizer of a parabolic subgroup P° of LG°,
provided the normalizer meets every class modulo £G°. We say P is standard if it
contains LB. The standard parabolic subgroups are the subgroups

M LP® x Iy,

where LP° runs through the standard parabolic subgroup of LG° such that J(£P°)
4V is stable under [,.

Every parabolic subgroup of LG is conjugate (under LG or, equivalently, £G°)
to one and only one standard parabolic subgroup.

We let 2(LG) be the set of parabolic subgroups of LG and p(LG) the set of their
conjugacy classes.

The given bijection 4 < 4V yields then, in view of 3.2, a bijection

@ p(G), « p(*G).

We shall say that a parabolic subgroup of LG is relevant if its class corresponds to
one of p(G/k) under this map. We let L2(LG) be the set of relevant parabolic sub-
groups and Lp(XG) the set of their conjugacy classes, the relevant conjugacy classes
of parabolic subgroups. Thus, by definition

©) p(G/k) = Lp(*G).

Thus, if G and G’ are inner forms of each other, p(£G) and p(*G’) are the same, but
Lp(LG) and Lp(LG") are not. If G’ is quasi-split, then Lp(:G') = p(LG"); hence we
have an injection

@ Ip(tG) = Ip(*G) = p(*G)).

If 2G is anisotropic over k, then Lp(LG) consists of G alone.

3.4. Levi subgroups. Let P be a parabolic subgroup of G. The unipotent radical
N of P° is normal in P and will also be called the unipotent radical of P. Then
P/N 5 P°[N x I',. In fact, it follows from (1) that P is a split extension of N,
and is the semidirect product of N by the normalizer in P of any Levi subgroup
M?° of P°. Those normalizers will be called the Levi subgroups of P.

Let P e #(GJ/k), M a Levi k-subgroup of P. Let LP be the standard parabolic
subgroup in the class associated to that of P (see (3)). Then M may be identified
to a Levi subgroup of LP. In fact if M corresponds to (X*(T), J, X«(T), J?), then
LM corresponds to (X(T), J2, X*(T), J) and LM° x ', is equalto LM by definition
and is a Levi subgroup of LP, as defined above.

A Levi subgroup of a parabolic subgroup P of LG is relevant if P is.
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For the sake of brevity, we shall sometimes say “Levi subgroup in G” for “Levi
subgroup of a parabolic subgroup of G.”” Similarly for LG.

3.5. LEMMA. The proper Levi subgroups in LG are the centralizers in LG of tori in
D(LG®), which project onto I',.

Let M be a proper Levi subgroup in LG. It is conjugate to a subgroup
Z(S)° x I',, where S = LT is the identity component of the kernel of a subset
J & 4 stable under ;. Let then S’ be the one-dimensional subtorus of S | 2(:G°)
on which the remaining simple roots are all equal. It is clear that 2(S")° = 2°(S),
and that S’ is pointwise fixed under /",. We have then M = Z(S’).

Let now S be a nontrivial torus in 2(£G°) such that 2°(S) meets every connected
component of LG. Fix an ordering on X*(S). There is a proper parabolic subgroup
P° of LG” of the form Z(S)°- U, such that the weights of S in the unipotent radical
U of P° are the roots of LG° with respect to .S which are positive for this ordering.
U is normalized by Z°(S); hence 2(S)- U is a proper parabolic subgroup P of LG,
and then 2°(S) is a Levi subgroup of P.

3.6. PROPOSITION. Let H be a subgroup of LG whose projection on I'y is dense in
I',. Then the Levi subgroups in LG which contain H minimally form one conjugacy
class with respect to the centralizer of H in LG°.

Let C be the identity component of the centralizer of H in 2(:G°), and D a
maximal torus of H. If D = {1}, then, by 3.5, H is not contained in any proper
Levi subgroup in LG, and there is nothing to prove. So assume D # {1}.

Let /" be a normal open subgroup of /I, which acts trivially on £G°. It is then
normal in LG, and H-]" projects onto [",. Since Z(D) contains H-[", it projects onto
I',, hence is a proper Levi subgroup by 3.5. Let M be a Levi subgroup containing
H. By 3.5, M = Z(S), where S is a torus in 2(:G°). Then S < C, there exists c € C
suchthatc-S-¢c! < D,hencec-M-c7! = Z(S") o Z(D).

4. Remarks on induced groups. (To be used mainly to discuss restriction of scalars
in §5 and 6.4.)

4.1. Let 4 be a group, A’ a subgroup of finite index of 4 and E a group on which
A’ operates by automorphisms. Then we let

1) Ind4(E) = I4(E) = {f : A— E|f(d'a) = d'-f(a) (ac 4; a' €4')}.

It is a group (composition being defined by taking products of values). It is viewed
as an A-group by right translations:

) rof(x) = f(xa)  (x,aeA).
For s e A'\A, let
©) E, ={feI4(B)|fl)) = 0if a¢s).

Then E; is a subgroup, I4.(E) is the direct product of the ESs (s e A'\4), and
these subgroups are permuted by 4. The subgroup E; is stable under A’ and is
isomorphic to E as an 4’ module under the map f —f(e). The product of the E’s
(se A'\A, s # e) is also stable under 4’. We have therefore canonical homomor-
phisms
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“ ExA—IE)yx AA—Ex A

whose composition is the identity.

4.2. Let B be a group, y:B — A a homomorphism. Let B’ = 171(4’) and assume
that x4 induces a bijection: B'\B ~, A'\4. Let E be a group on which A’ operates
by automorphisms, also viewed as a B’-group via y. Then f— g o f induces an
isomorphism

M ' I14(E)—— I3(E),

whose inverse is y-equivariant.

This follows immediately from the definitions.

4.3. Let A, E be as before, C a group and v: C - 4 a homomorphism. Let
¢: C > E x A be a homomorphism over 4. The map ¢): C — E such that ¢(c) =
(¢(c), v(c)) (c € C) is a 1-cocycle of Cin E and ¢ +— ¢ induces a bijection

HY(C; E) —— ¢4(C, E),

where, by definition, ¢,(C, E) denotes the set of homomorphisms ¢:C — E x 4
over A, modulo inner automorphisms by elements of E.

4.4. Let A, A’, B, B’ and E be as in 4.2. We have a commutative diagram with
exact rows

1— T4(E) — TA(E) x A— A — 1
<1> I | I

l1— E — ExAd — A —1

where the vertical maps are natural inclusions (4.1).
Let ¢: B > I4(F) x A be a homomorphism over 4. Using 4.1(4), we get by
restriction a homomorphsim @: B’ - E x A" over A'.

4.5. LeMMA. The map ¢ — ¢ of 4.4 induces a bijection ¢,(B, I4(E)) =
pa(B', E).

We have, using 4.2, 4.3:
) pa(B, I4(E)) = H\(B; I4(E)) = HY(B; I3(E)),
Q@ ®,(B', E) = H\(B'; E).

By a variant of Shapiro’s lemma, contained, e.g., in [4, 1.29]:

H(B; I§(E)) — HY(B'; E),
and it is clear that the isomorphisms (1), (2) carry this isomorphism over to ¢ — .

5. Restriction of scalars. In this section, k' is a finite extension of k in k,, G' is a
connected k'-group, and G = R,,,, G'.

5.1. The Galois group [, of k, over k' is an open subgroup (of finite index) of
I'y and 2, , = I',\I', may be identified with the set of k-monomorphisms of &’
into k,. We have, in the notation of 4.1 (with 4 = [",, 4" = T',)

(1) G®) = Ip(G'®) =TI *G'(h).

#\p
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Assume G’ to be reductive. Then we see easily that ¢(G) = (M, ¢, M*, pV) is related
to (G') = (M', ¢', M'*, ¢'V) by
) M=1Ip M), o=\ ¢-a

asA\A
Similarly, if 4’ is a basis of ¢’, then
3) 4=\, 4 a

is one for ¢.
From this it follows that we have a natural isomorphism

4 o] ~ 70
@ LGP — I4(LG").
We have then a commutative diagram

l LG!O LGI p— LGIO x I'Ik, —_ Pk, —_ 1

® | | |

1 —LG° = IH (LG —LG = LG x [, — [, — 1

5.2. The map P’ —» R, , P’ induces a bijection between #(G'/k") and 2(G/k).
Moreover P’ is a Borel subgroup of G’ if and only if R, P’ is one of G. Hence
G’ is quasi-split/k’ if and only if G is quasi-split over k (see [5, §6]).

Since G(k) =~ G'(k’), we also get a bijection p(G’'/k") =, p(G/k).

If J' = &' is stable under ' then J = | J,canar,(J') is stable under I';. This
map is easily seen to yield a bijection between I",.-stable subsets of 4’ and I',-stable
subsets of 4, whence also canonical bijections

p(EG) —— p(*G),  p(*G") —— Lp(*G).
CHAPTER II. QuasI-SPLIT GROUPS. THE UNRAMIFIED CASE.

In this chapter, G is a connected reductive quasi-split k-group. From 6.2 on, G
is assumed to split over a cyclic extension k' of k, and o denotes a generator of
Gal(k'[k).

6. Semisimple conjugacy classes in LG.

6.1. Assume B and T to be defined over k. Then the action of ', on X*(T) or
X (T) given by y coincides with the ordinary action. The greatest k-split subtorus
T, of T is maximal k-split in G, and its centralizer is T’; in particular, T, contains
regular elements of G. Hence any element w € W which leaves T, stable is com-
pletely determined by its restriction to 7',. It follows that ,/# may be identified with
the subgroup of the elements of W which leave T, stable or, equivalently, with the
fixed-point set of ", in W. If we go over to the L-group and identify canonically W
with W(LG°, LT"), then ,W is also the fixed-point set of I", in W, and it operates on
the greatest subtorus S of LT° which is pointwise fixed under [,. The group S always
contains regular elements; hence any element of , is determined by its restriction
to S. We let ,N be the inverse image of .,/ in the normalizer N of LT in LG°,

6.2. LEMMA. Every element w € ,W has a representative in ,N which is fixed under
a.
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Write 4» = DU ---UD,,, where the D,’s are the distinct orbits of ['(k’/k) in 4».
Let §; be the common restriction to S of the elements of D; and S; the identity
component of the kernel of §;. Then ,W, viewed as a group of automorphisms of
S, is generated by the reflections s; to the S; (1 < i £ m), and it suffices to prove the
lemma forw = s; (1 < i £ m). [The “reflection” s, is the unique element # 1 of W
which leaves S stable, fixes S; pointwise and is of order two.]

We let Lie(M) denote the Lie algebra of the complex Lie group M. For g € 4,
let, as usual

{0 gz = {X e Lie(*G°)|Ad #(X) = a(r) - X (teLT°)}.

It is one-dimensional. Fix i between 1 and m. By construction of LG, we can find
nonzero elements e; € g5 (resp. e_z € g_; (@ € D;)) which are permuted by ¢. We
have then

(2) [e&’ e—o‘i] =c-a,

where ¢ is # 0, and independent of « € D; since ['(k’'[k) is transitive on D,. Here
X (LT°) ® Cisidentified with Lie(£T°), and & with @ ® 1. The element

3) fri =2 es

asD;

is fixed under ¢. Moreover, since the difference of two simple roots is not a root,
we have

@ by = /i f-] =aEZI'.)"[ea, eq=c -&g)ia-

Using (3) and (4), we get

®) U ful = ¢ X (ot B e

By the transitivity of Gal(k'/k) on D;, the number

©) d=3 < B>

aeD;

is also independent of § € D;; therefore
™ (7, fel] = c-d-fu.

We claim that d # 0, in fact that d = 1, 2. The irreducible components of D, are
permuted transitively by Gal(k’'/k) and have a transitive group of automorphisms.
Therefore they are of type A4; or 4,. Then, accordingly, d = 2 or d = 1. It follows
that A;, f; and f_; span a three-dimensional simple algebra pointwise fixed under ¢.
Then so is the corresponding analytic subgroup G; of ZG°. The group G; centralizes
S;and S ) G, is a maximal torus of G;, with Lie algebra spanned by A4;. Then the
nontrivial element of W (G;, S (] G,) is the required element.

REMARK. An equivalent statement is proved, in a different manner, in [35, pp.
19-22].

6.3. Welet Y = L(T,)°. The group X 4(7,) may be identified to the fixed-point set
of I, in X4 (T). The inclusion of X (T,;) = X*(Y) into X, (T) = X*(£T°) induces
a surjective morphism £7° — Y, to be denoted ».

The map A4 : t — t71-7¢ is an endomorphism of LT°, whose differential d4 at 1 is
(do — 1d). Let
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1) U = (ker A)°, V =im A.

Then U is pointwise fixed under g, the Lie algebra of U (resp. V) is the kernel (resp.
image) of dA. Since dA is semisimple, they are transversal to each other; hence

)] LT° = U-V, and U () Vis finite.
Moreover,
3) V = ker y, y(U) =17.

In the rest of this chapter, we let LG stand for the “finite Galois form”
LG° x Gal(k'[k) of the L-group. We now want to discuss the semisimple conjugacy
classesin LG° x ¢ with respect to LG°. We have

@ gl(hxo)g=g1hgxo (g helG);
therefore LG°-conjugacy in LG° x ¢ is equivalent to g-conjugacy in LG°.

6.4. LEMMA. Let ' : LT® x g — Y be defined by v' (t x o) = v(t) (t € LT®). Then
v' induces a bijection
M 5 (CT° % o)fInt N —— ¥/, W.

Let ne ,N. By 6.2, we may write n = w-s with w = ?w and s € LT°. Then the
LT°-component of n71(t x o) nis

sLowlofowos = s71.og.(wl-r-w) e V-wl t-w;
hence
V(nt-(t ) o)-n) = v(wl-tew) = wlop(f)-w = wly'(f 1 o)-w.

Thus y’ is equivariant with respect to the projection ,N — W and therefore induces
a map of the left-hand side of (1) into the right-hand side of (1), which is obviously
surjective. Let ¢, ¢’ € LT° and assume that »'(t x ¢) = w1-V'(¢’ x ¢)-w for some
we W. Then we have v(f) = v(w™1-t' -w), where w is a representative of w fixed
under ¢, whence ¢t = v-(w7l.-t'-w), with ve V. We can write v = s—1-9s for
some se€ LT° and gett x ¢ = n71(¢' x o)n, withn = ws.

6.5. LEMMA. Let (:G° x 0), be the set of semisimple elements in LG° x ¢. Then
the map

7 1 (ET° x g)/Int,N — (LG° x ¢)/Int LG°,
induced by inclusion is a bijection.

By results of F. Gantmacher [12, Theorem 14], j is surjective. Let now s, t € LT°
and g € LG° be such that g71-(s x ¢)-g =t % g, ie., such that g7l.5.79g = 1.
Using the Bruhat decomposition of LG° with respect to LB°, we can write uniquely
g = u-n-v, with u, v in the unipotent radical of £LB° and » in the normalizer N
of LT°. These groups are stable under ¢, and normalized by L7°. We have then

S OU-ON-OV = u-n-v-t, (s-on-s7Y.s-on-oy = y-n-t-(t"1-v-1);

hence %n-s71 = n-t. Therefore the connected component of # in N is stable under
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o, i.e., n represents an element of ,WW; hence ne ,N, and (t x ¢) and (s % ¢)
are conjugate under ,N.

REMARK. This proof was suggested to me by T. Springer.

6.6. If M is a complex affine variety, we let C[M] denote its coordinate algebra.
The algebra C[Y] may be identified with the group algebra of X*(Y) = X(T).
The quotient Y/, W is also an affine variety (in fact isomorphic to an affine space)
and C[Y/, W] = C[Y. '

Let Rep(Y!G) = C[LG] be the subalgebra generated by the characters of finite
dimensional holomorphic representations. Its elements are constant on conjugacy
classes. In particular, they define by restriction functions on (:G° x g)./Int LG°.

6.7. PROPOSITION. The map
a=fgoyl: Y ,W— (!G° x 0)/Int LG°

is a bijection, which induces an isomorphism of C[Y/, W] onto the algebra A of restric-
tions of elements of Rep(LG).

REMARK. We shall use 6.7 only when k is a nonarchimedean local field. In that
case 6.7 is proved in [35, pp. 18-24].

ProoF. That « is bijective follows from 6.4, 6.5. We prove the second assertion
asin [35]. Let p be a finite dimensional holomorphic representation of LG and f, the
function on LT° defined by f,(t) = tr p(t x ¢). It can be written as a finite linear
combination f = Y c;A of characters 1 € X*(LT°). Since tr p is a class function on
LG, we have f,(s71-1-95) =f,(¢) for all 5, t€ LT°. By the linear independence of charac-
ters, it follows that if ¢; # 0, then 2 is trivial on V (cf. 6.3(1)), hence is fixed under
o, 1i.e., may be identified to an element of X*(Y). Thus we may view f, as an element
of C[Y]. But invariance by conjugation and 6.4 imply that fe C[Y/,W], whence a
map 3 : A —» C[Y/, W], which is obviously induced by «. There remains to see that
8 is surjective. Note that C[Y/,W]is spanned, as a vector space, by the functions
M pr= 2 w4

we W

where A runs through a fundamental domain C of , W on X,(T,). But it is standard
that we may take for C the intersection of X,(7T,) with the Weyl chamber of W in
X,(T) defined by B. Therefore every A € Cis a dominant weight for ZG° with respect
to LT”. It is then the highest weight of an irreducible representation z; of LG°. Since
it is fixed under ¢, the representation ?z; : g — 7;(?g) is equivalent to z;. From this
it is elementary that z; extends to an irreducible representation 7; of LG of the same
degree as ;. The highest weight space is one-dimensional, stable under ¢. Let ¢ be
the eigenvalue of ¢ on it. Then the trace gives rise to a function equal to ¢ ¢; modulo
a linear combination of functions ¢,, with 12 < 2, in the usual ordering. That im 8
contains ¢; (4 € C) is then proved by induction on the ordering.

7. The Satake isomorphism and the L-group. Local factors.

7.1. We keep the previous notation and conventions. We assume moreover k to
be a nonarchimedean local field, £’ to be unramified over k, and ¢ to be the image
of a Frobenius element Frin [7,.

Let Q be a special maximal compact subgroup of G(k) [61]. We assume Q N T'is
the greatest compact subgroup of T(k) and Q contains representatives of ,W. Let
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H(G(k), Q) be the Hecke algebra of locally constant, O-bi-invariant, and compactly
supported complex valued functions on G(k). The Satake isomorphism provides a
canonical identification H ~, C[Y/, W], hence also one of Y/, W with the characters
of H [6].

By 6.7, we have now a canonical isomorphism of H with the algebra A4 of restric-
tions of characters of finite dimensional representations of LG to semisimple ZG°-
conjugacy classes in (!G° x g), hence also a canonical bijection between characters
of H(G(k), Q) and semisimple classes in LG° x ¢. Furthermore, each suchclass can
be represented by an element of the form (¢, ¢), with z € LT° fixed under ¢ (and is
determined modulo the finite group U () ¥, in the notation of 6.3).

7.2. Local factors. Assume now that U is hyperspecial [61]. Let ¢) be an additive
character of k. Let (z, U,) be an irreducible admissible representation of G(k) of
class 1 for Q and r a representation of LG. Then the space of fixed vectors of Q in
U, is one-dimensional, acted upon by H via a character y,. To the latter is assigned
by 7.1 a semisimple class S, in LG° x ¢. We then put

1)) L(s, &, r) = det(1 — r((g x 0)), 9757, e(s, mr, ) =1,

where g is the order of the residue field, and (g, o) any element of S,.

CHAPTER III. WEIL GROUPS AND REPRESENTATIONS. LOCAL FACTORS.

In this section, k is a local field, W), (resp. W) the absolute Weil group (resp. Weil-
Deligne group) of k. If H is a reductive k-group, then [I(H(k)) is the set of infinitesimal
equivalence classes of irreducible admissible representations of H(k).

G denotes a connected reductive k-group.

The main local problem is to define a partition of JI(G(k)) into finite sets [T, or
II, indexed by the set @(G) of admissible homomorphisms of W, into LG, modulo
inner automorphisms (see §8 for ¢(G)), and satisfying a certain number of condi-
tions. So far, this has been carried out for any G if k = R, C [37], for tori over any
k [34] and (essentially) for G = GL, (cf. 12.2). §9 recalls the results for tori; §10
describes some of the conditions to be imposed on this parametrization; §11
summarizes the construction over R or C. Such a parametrization would allow one
to assign canonically local L- and e-factors to any = € I[[(G(k)) and any complex
representation of ZG. Two elements 7, 7’ in the same set ]L, would always have the
same local factors, and are hence called L-indistinguishable. In the case of GL,
however, local factors have been defined in an a priori quite different way, so that
the parametrization problem becomes subordinated to one concerning L- and
e-factors. This is discussed in §12.

8. Definition of &(G).

8.1. Jordan decomposition in W,. If k = R, C, then W, = W, and, by definition,
every element of W, is semisimple.

Let k& be nonarchimedean. Then x € W, is said to be unipotent if and only if it
belongs to G,; the element x is semisimple if either ¢(x) # O or x is in the inertia
group. Here ¢: W, — Z is the canonical homomorphism W, - W, - k* —» Z.
Every element x € W, admits a unique Jordan decomposition x = x;-x, with x;
semisimple, x, unipotent and x.x, = x,x, [60].
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8.2. The set ®(G). We consider homomorphisms « : W, — LG over [}, i.e., such
that the diagram

W, — LG
\ /
I,

is commutative, and which satisfy moreover the following conditions:

(i) « is continuous, «(G,) is unipotent, in LG°, and @ maps semisimple elements
into semisimple elements (in LG: x = (u, 7) is said to be semisimple if its image
under any representation (2.6) is so).

(ii) If w(W,) is contained in a Levi subgroup of a parabolic subgroup P of LG,
then P is relevant (3.3).

Such «’s are called admissible. We let @(G) be the set of their equivalence classes
modulo inner automorphisms by elements of £G°.

If we write a(w) = (a(w), v(w)) with a(w) € LG° then w — a(w) is a 1-cocycle of
W, (acting on £G° via W, — ['}) in LG". It follows that

) D(G) = H\(W;; LG°).

Let H be a subgroup of W,. Then a: W, — LG is said to be trivial on H if v(H)
acts trivially on £G° and a(H) = {1}. Note that if v(H)\acts trivially on £G°, then
aly is a homomorphism.

8.3. Assume G’ is an inner quasi-split form of G. Then

) o(G) = O(G).
In fact LG =~ LG’ and Lp(LG’) >Lp(LG); therefore o € O(G) = a € P(G’).

8.4. PROPOSITION. Let k' be a finite separable extension of k; let G’ be a connected
reductive k-group and G = R,,,,G'. Then there is a canonical bijection ®(G) =, O(G’).

We consider the situation of 5.2, 5.4 with 4 = [, A' = Iy, B = W,, B’ = W,
E = LG'°. We have the injections (8.2):

®(G) c H\(W;; 1G°),  &(G') = H(Wy; LG®).

Moreover LG° = I7(LG'°) (see 5.1); whence, by Shapiro’s lemma and 5.2:
H\(W}; 1G°) —— H\(W; 1G").

But it is clear that this isomorphism maps @(G) onto @(G’).

8.5. Let Z;, = C(t!G°). If a: W, » Z; and b: W, - LG®° are l-cocycles, then
ab: w — a(w)b(w) is again a 1-cocycle of W, in LG°. If a is continuous and b cor-
responds to ¢ € @(G), then ab corresponds to an element of @(G). We get therefore
maps

M H\W,; Z;) x H(W, ;LG°) —> H (W, ; LG"),
@ H\W, ; Z,) x &(G) — @ (G),
which define actions of the group HY(W,; Z;) on the sets H(W,; LG°) and 9(G).
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8.6. PROPOSITION. Let ¢: Wy — LG be an admissible homomorphism. Then the
Levi subgroups in LG which contain ¢(W,) minimally form one conjugacy class with
respect to the centralizer of p(W,) in LG°.

Since p(W;) projects onto a dense subgroup of I, by definition, this follows from
3.6.

ReEMARK. Formally, this also applies to the archimedean case, but the proof in
that case is simpler [37, pp. 78-79]. In fact, the argument there applies in all cases to
admissible homomorphisms of the Weil (rather than Weil-Deligne) group because
o(W,) is always fully reducible. In this case, the Levi subgroups which contain
¢(W,) minimally are those of the parabolic subgroups which contain ¢(%,) mini-
mally. Those parabolic subgroups form therefore one class of associated groups.

9. The correspondence for tori.

9.1. Let T be a complex torus. A continuous homomorphism ¢: T — C* is
described by a pair of elements 4, x € X*(T) ® C such that A — y € X*(T), by the
rule p(t) = Ain.

Similarly, a continuous homomorphism ¢:C* — T'is given by u, v € X, (T) ® C
such that 4 — v € X,(T); we have ¢(z) = z¢z*, meaning that, for any e X*(T),
Aogp: C* —» C* is given by

Ap(2)) = 23w 209,

This can also be interpreted in the following way: identify X,(T) ® C with
the Lie algebra Lie(T(C)). Then the exponential map yields an isomorphism
(X«(T) ®C)/27iX,(T) = T(C). Then y,ve Lie(T(C)) are such that ¢(e*) =
ehethu (he C).

9.2.Let G = Tbeak-torus,and/ = dim 7.

Any ¢ € @(G) is trivial on G, ; hence

@ O(G) = Hi(W,; *T°) = Hi(W,; XX(T) ® C*),
where H], refers to continuous cocycles.
On the other hand
@ I(G) = Hom((X«(T) ® k¥)'s, C*).
We have canonically [34, Theorem 1]
3 (G) = ¢(G).

In fact, LT and W, are replaced in [34] by a finite Galois form £T° x [}, and a
relative Weil group W,.,,, where k£’ is a finite Galois extension of k& whose Galois
group acts trivially on £7°°; this is easily seen not to change @(G). The proof then
consists in showing first that the transfer from W, to k'* yields an isomorphism

@ H\(Wens Xo(T)) —— Hy(kK'*; X (T)) ¥4 = (K'* @ Xo(T))* 1,
and second that the pairing
Q) Hi(Wyps LT°) x Hy(Wyp; Xo(T)) — C*,

associated to the evaluation map (¢, 2) — A(?) (t € LT°; A € Xy (T)) yields an
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isomorphism of the first group onto the group of characters of the second group,
which is then (3) by definition.

For illustrations, we discuss some simple cases.

9.3. k = C. Then W, = C* and (G) = Hom(C*, LT®). The correspondence
follows from 9.1 since both Hom(C*,L7T°) and Hom(7, C*)are canonically identi-
fied with {(4, )14, pe X*(T) @ C, A — ue X*(T)}.

9.4.k = R. We have

@ Wg=C*x{r} witht?= —1,7-2.771 = z(ze C¥).

Put C* = S x R*, with S = {ze C*, z-z = 1}. Then Int 7 is the identity on R*,
the inversion on S.

Write ¢(z) = (a, ), where a is determined modulo g-conjugacy, hence may be
assumed to be fixed under o (6.3(3)). We have then p(— 1) = a2 Let 4, v be the
elements of X*(T) ® C such that

2 o(2) = z¢-2v (zeC*), p — ve X*(T),

(see 9.1). We have ¢(2) = a(¢(2)) (z € C*); hence v = (). Fix h e X*(T) ® Csuch
that @ = exp 2zih. Then the character 7 associated to ¢ is given by

3 w(e) = exp(Ch,x — 0 %)) - exp(p X + 0-x))[2 (xe X(T) ® C)

[37, p. 27]. Here — denotes the complex conjugation of Lie(7(C)) = X(T) ® C
with respect to X(T) ® R; hence x — ¢ - x is the complex conjugation withrespect
to Lie(T'(R)). It follows that e* € T(R) if and only if x — ¢-% € 27i - X,(T).

ExAMPLES. (a) Let T be anisotropic over R. Then ¢ = — 1 and we may assume
a = 1,h = 0. We have e* € T(R) if x is purely imaginary and then (3) yields 7 = y.
The fact thatp(— 1) = 1 shows that y € X*(T), confirming that [[(T(R)) = X*(T).

(b) Let T be split over R. Then ¢ =1, y =y, ¢(z) =(z-2)#, a®> =1 and
h e X*(T)/2. We have e* € T(R)if and only if x — x € 2zi- X*(T). It is then easily
checked that x is given by y on the connected identity component of T(R), while
its restriction to the torsion subgroup of T(R)is the character naturally defined
by A.

9.5. The unramified case. Let k be nonarchimedean, and assume 7 to split over an
unramified extension k’ of k. A character y of T'(k) is said to be unramified if it is
trivial on the greatest compact subgroup 97'(k) of T'(k). On theother hand, ¢ € @ (T)
is unramified if it is trivial (see 6.2) on the inertia group. The bijection &(T) = I(T)
induces a bijection between the sets @,,(T) and [T, (T) of unramified elements
[34]. In view of its importance, we describe it in more detail.

Given te T(k'), let v(r) e Hom(X*(T), Z) be defined by v(¢)(m) = ord m(z)
(m € X*(T)). It is well known, and easily deduced from Hilbert’s Theorem 90, that
HY(I', 5 0F) = 0, where of is the group of units in the ring o,, of integers of k'.
Since T splits over k', it follows that H(I",.,; °T(k')) = 0. By Galois cohomology,
this implies that (T(k')/°T (k")) = T(k)/°T(k), therefore ¢ — ¥(¢) yields a bijection

M T(k)[°*T(k) —— Hom(X*(T), Z)"* = Xy(T)'* = X4(T,),
where T, is the greatest k-split torus of T (this can also be expressed by saying that
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the inclusion T; = T induces an isomorphism T,(k)/°T (k) = T(k)/°T(k), cf. [6]).
We have then

@ T T()) = Hom(X,(T)™, C¥) = Y.

The group I, operates on LT via the cyclic group I",., which is generated by the
image ¢ of a Frobenius element Fr. An unramified ¢ is completely determined by
¢(Fr), which can be written p(Fr) = (¢, Fr), where ¢ € LT” is determined up to con-
jugacy by LT°. Thus @,(T) = (L!T° x ¢)/Int LT°; and elementary special case
of 6.4 provides a canonical isomorphsim of the latter set onto Y, whence the de-
sired isomorphism.

10. Desiderata. In order to formulate them, we need two preliminary construc-
tions.

10.1. The character y,, of C(G) associated to ¢ € O(G) (cf. [37, pp. 20-34]). We
want to associate canonically to ¢ € @(G) a character of the center C(G) of G. Let
@ .4 be the greatest central torus of &. Then G_,4 — G yields a surjective homomor-
phism LG — LG 4, whence a map &(G) — &(G,,y). In view of 7.2, this allows us to
associate to ¢ € @(G) a character y, of G,,4. Thus, if C(G(k)) = G,.4(k), our prob-
lem is solved.

In the general case, G is enlarged to a bigger connected reductive G, generated by
G and a central torus, whose center is a torus. One shows that @&(G;) — @(G) is
surjective. Using the previous step, we get a character of C(G,), hence one of C(G)
by restriction. It is shown to be independent of the choice of G; (loc. cit.), and is
%, by definition.

The map ¢ — y, is compatible with restriction of scalars [37, 2.11].

10.2. The character =, associated to o« € H{(W; Z;) [37, pp. 34-36]. We recall
that Z; denotes the center of LG° (8.5). We can always find a k-torus D such that
HY(I',; D) = 0, and a k-group G isogeneous to G x D such that there is an exact
sequence

0 1 D—G—G—1.

Since H(I",; D) = 0, the map y: G(k) — G(k) is surjective. Let G, be the universal
covering of the derived group 2G of G. We have a commutative diagram

1
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Going over to L-groups, we get

1
LD°
4 wo
LG, LG —1(G[Gy)
Lgo
LG°
1

Since LGy, is of adjoint type (2.2), we see that Z; = ker La°. Moreover, it is easily
seen that

) Z; =~ ker L§°.
This yields a map
3 HYWy; Z) — ket{H'(W; YG/G,)°) — HY(W,; LD)}.

This allows us to associate to « € H(W,; Z;) a character g, of (G/G..)(k) which
is trivial on D(k), hence a character 7, of G(k) = G(k)/D(k). It can be shown to be
independent of the choice of D. The map a — =, is compatible with restriction of
scalars [37, 2.12] and satisfies:

) Ao = TaYp (. € H(Wy; Z1), ¢ € O(G)).

10.3. Conditions on the sets II,,. (1) If z € II,,, then 7(z) = y,(z)-1d (z € C(G)).
QI g =a-9(p, ¢ € 0G), ac H(W;; Z})) (see 6.5), then Il = {z,@zl|z e 1,}.
(3) The following conditions on a set /], are equivalent:
(i) One element of ]I, is square-integrable modulo C(G).
(i) Allelements of /I, are square-integrable modulo C(G).
(iii) ¢(W}) is not contained in any proper Levi subgroup in LG.
(4) Assume ¢(G,) = {1}. The following conditions on a set 11, are equivalent:
(i) One element of /], is tempered.
(i) All elements of I, are tempered.
(iii) ¢(W,)is bounded.

(5) Let H be a connected reductive k-group and »: H — G a k-morphism with
commutative kernel and cokernel. Let ¢ € #(G) and ¢' = Ly o ¢. Then any z € II,,,
viewed as an H(k)-module, is the direct sum of finitely many irreducible admissible
representations belonging to /7,,..

10.4. The unramified case. We say that ¢ € @(G) is unramified if it is trivial, in the
sense of 6.2, on G, and on the inertia group I. If so, Im ¢ may be assumed to be in
LT. Therefore, if ¢(G) contains an unramified element, then G is quasi-split (see
8.2 (ii)).

Assume now G to be quasi-split, to split over an unramified Galois extension
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k' of k, and let p € @(G) be unramified. There exists ¢ € (LT°)"* such that

0)) ¢(Fr) = (¢, Fr),
(9.5) and we have
2) o(w) = (¢, Fryew (we W),

where ¢:W, — Zis the canonical homomorphism. The element ¢ defines an un-
ramified character y of a maximal k-torus T of a Borel k-subgroup B of G (9.5).
It is then required that JI, consists of the constituents of the unramified normalized
principal series PS(y) which have a nonzero vector fixed under some hyperspecial
maximal compact subgroup. Conversely let (z, V) be an irreducible admissible
representation with a nonzero vector fixed under some hyperspecial maximal
compact subgroup. There exists then an unramified character y of T such that
(z, V) is a constituent of PS(y) (and y is determined modulo the relative Weyl
group). We have then (z, V) € II,,, for the unramified ¢ which maps Fr to (¢, Fr),
where ¢ represents y (9.5). Note that if U is a special maximal compact subgroup of
G(k), then G(k) = B(k)-U; hence the fixed-point set of U in PS(y) is at most one-
dimensional. It follows that PS(y) has at most one irreducible constituent with
nonzero fixed vectors under U.

This assignment is consistent with 7.2. Namely, if 7 11, then the semisimple
class S, in LG° x ¢ corresponding to the character of the Hecke algebra defined by
« is indeed represented by ¢ x ¢. This follows from [6].

ReMARK. Originally, it was thought that /], should consist of those constituents
of PS(y) which had a nonzero fixed vector under some special maximal compact
subgroup. However it was pointed out during the Institute by I. Macdonald that
such representations may belong to the discrete series. If so, this condition would
contradict 10.3(3). Upon a suggestion of J. Tits, this has led to the restriction to
hyperspecial maximal compact subgroups made above. Those cannot belong to the
discrete series, so that 10.3(3) and 10.4 are consistent.

10.5. ExaMPLE. Assume that k = R and that Gis semisimple, possesses a Cartan
subgroup 7 which is anisotropic over R, and is an inner form of a split group.
Then LG is the direct product of ZG° and [",, the Weyl group W contains —Id and
G(R) has a discrete series. We want to describe the parametrization of the latter in
terms of ®(G). As the notation implies, we shall view LT as the L-group of T. Let
¢ € ®(G). It is given by a continuous homomorphism ¢': Wy — LG°. We may
assume that Im ¢’ is contained in the normalizer of 27°. Letn = ¢(z) and let w e W

be the element of W represented by n. Then w2 = 1. Let u, v € X*(T) ® C be such
that

W p(z) =z¢-22  (zeC¥), u — ve X¥T)
(see 9.1). We have
@ o(2) =n- (p(Z) nl = gwu.zwy,

hence y = w-y,v = w-y. Assume now that Im ¢ is not contained in any proper
Levi subgroup in LG or, equivalently, that Im ¢’ is not contained in any proper
Levi subgroup in LG°. Then w = — Id and 4 is regular: in fact, the proper Levi
subgroups in LG" are the centralizers of nontrivial tori. This implies first that w does
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not fix pointwise any nontrivial torus in LT°, hence w = — Id; if now y were sin-
gular, then the centralizer of ;(C*)would contain a semisimple subgroup H # {1}
stable under Int 7, the latter would leave pointwise fixed a torus S # {1} of H, and
Im ¢’ would be contained in the centralizer Z(S) of S, a contradiction. Since v =
w-y = — u,wehave

3 Ap(— 1) = (= D@2, for all e Xu(T).

Let § be half the sum of the roots & of G with respect to T such that {yu, @) > 0.
Then, Lemma 3.2 of [37] implies in particular

)] A (= 1) = (— D@2, for all e X (T).
It follows that
) ped + X¥T).

Therefore y is among the elements of X*(T) ® @ which parametrize the discrete
series in Harish-Chandra’s theorem. We then let /I, be the set of discrete series
representations of G(R) with infinitesimal character y,. If G(R) is compact, then
II, consists of the irreducible finite dimensional representation with dominant
weight ¢ — . In that cdse, no proper parabolic subgroup of LG is relevant; hence
@(G) consists of the ¢ considered here.

10.6. Let G = GL,, k nonarchimedean. Let ¢ be an admissible representation
of W,. If it is irreducible, then ¢(G,) = 1. If it is indecomposable, then it is a
tensor product p ® sp(m), where m divides n, p is irreducible of degree n/m, and
sp(m) is m-dimensional, trivial on 1, maps a generator of the Lie algebra of G,
onto the nilpotent matrix with ones above the diagonal, zero elsewhere, and
w € W, onto the diagonal matrix with entries a(w)) (0 < i <n) [9, 3.1.3]. If y is
a character of W, (hence of k*), and ¢ = y ® sp(n), then I, consists of the special
representation with central character determined by y. In fact, the Weil-Deligne
group came up for the first time precisely to fit the special representations of GL,
into the general scheme (see [9]).

11. Outline of the construction over R, C. We sketch here the various steps which
yield the sets /T, when k = R. For the proofs see [37].
We note first that we may always assume @(W,) = N(:T°), and we can write

©.1)
0@) =22  (zeC*; 1,y e X¥(T) ® C, u — v e XX(T)).

11.1. LeMMA. Let ¢ € O(G). Assume ¢(Wpy) is not contained in any proper Levi
subgroup in LG. Then

(i) G has a Cartan k-subgroup C such that (2G () S)(R) is compact [28, 3.1].

(ii) w is regular; p(C*) contains regular elements [37, 3.3].

The group LC° may be viewed as a maximal torus of LG°; hence there is an
isomorphism ZC —~ LT defined modulo an element of W. Therefore ¢ defines an
orbit of W in @(C), hence, by 9.2, an orbit X, of W in X(C(R)). [Note that W,
which is defined in G(C), operates on C(R), since C(R) (| 2G is compact, hence
on X(C(R)).]

11.2. Let Gy = C(R)((2G)(R))°. Let A, be the set of representations of Gy which



AUTOMORPHIC L-FUNCTIONS 47

are square-integrable modulo the center, and have infinitesimal character
x1(A € X,). The induced representations = = I§{) (7o) (7 € 4p) are irreducible
[37, p. 50]. By definition, 7], is the set of equivalence classes of these representa-
tions [37, p. 54].

11.3. Let ¢ € ®(G). Let LM be a minimal relevant Levi subgroup containing
Im . It is essentially unique (8.6). We assume LM # LG; we may view ¢ as an ele-
ment of @(M). By 11.2, there is associated to it a finite set of /1, of discrete
series representations of M.

We may assume LM to be a Levi subgroup of a relevant parabolic subgroup LP
corresponding to P e 2(G/k). Then U = X*(T) @ R = X, (!T°) @ R. Let V be
the subspace of elements of U which are orthogonal to roots of LM, and fixed
under ;. It may be identified with the dual a} of the Lie algebra of a split compo-
nent 4 of P.

Let & be the character of C(M) defined by the elements of 1, ;. We may assume
that |¢| e Cl(a}"). Let P, be the smallest parabolic k-subgroup containing P such
that |£|, when restricted to ap, is an element of the Weyl chamber a}}. Let M; =
2(ap,) and P’ = P (] M;. Then P’ is a parabolic subgroup of M;. Moreover the
restriction of |¢| to the split component M, (| Ap of P’ is one; therefore, for each
p € Iy, the induced representation Ind%1(p) is tempered. Let /I’ be the set of all
constituents of such representations. Then by definition, I, is the set of Langlands
quotients J(Py, o) with ¢ € II,, (cf. [37, p. 82]).

11.4. Complex groups. Assume now k = C. Then W, = C*, and ®(G) may be
identified to the set of homomorphisms of C* into £7°, modulo the Weyl group
W,ie., to-

) {Q, w), where 2, ue X*(T) @ C, A — ue X*(T)}

modulo the (diagonal) action of W. In this case Im ¢ is in the Levi subgroup LT
of LB, which is the LP of 11.3. The set I,, , consists of one character of T (cf. 9.1).
Choose P, M, as in 11.3. Since the unitary principal series of a complex group are
irreducible (N. Wallach), the set /I, consists of one element. Hence so does /I,,. Thus
each [, is a singleton. The classification thus obtained is equivalent to that of
Zelovenko.

11.5. Let G = GL,, k = R. In this case, it is also true that the tempered re-
presentations induced from discrete series are irreducible [22]; therefore each set
1T, (cf. 9.3) consists of only one element, hence so does /I, and we get a bijection
between @(G) and JIG(R).

Let n = 2. If ¢ is reducible, then Im ¢ is commutative; hence ¢ factors through
(Wg)* = R* and is described by two characters y, v of R*. Then /], consists of a
principal series representation z(, v) (including finite dimensional representations,
as usual). In particular there are three ¢’s with kernel C*, to which correspond
respectively z(1, 1), z(sgn, sgn) and z(1, sgn), where sgn is the sign character. If
¢ is irreducible, then ¢(z) may be assumed to be equal to (so, 7), wWhere s, is a fixed
element of the normalizer of LT° inducing the inversion on it. (R*) belongs to the
center of LGo, and ¢(S) is sum of two characters, described by two integers. Then
II, consists of a discrete series representation, twisted by a one-dimensional re-
presentation.

11.6. As is clear from these two examples, the main point to get explicit knowl-
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edge of the sets I], is the decomposition of representations induced from tempered
representations of parabolic subgroups. This last problem has been solved by A.
Knapp and G. Zuckerman [29], [30].

11.7. Remark on the nonarchimedean case. Langlands’ classification [37] is also
valid over p-adic fields [57]. In view of 8.6, it is then clear that the last step (11.3)
of the previous construction can also be carried out in the nonarchimedean case.
Thus, besides the decomposition of tempered representations, the main unsolved
problem in the p-adic case is the construction and parametrization of the discrete
series.

12. Local factors.
12.1. Let z € [I(G(k)) and r be a representation of LG (2.6). Assume that z € [],,
for some ¢ € @(G). For a nontrivial additive character ¢ of k, we let

(l) L(S, T, r) = L(S, ro GD), 6(5, T, r) = £(S, T, I, Sb) = S(S, rogo, ¢’)’

where on the right-hand sides we have the L- and ¢-factors assigned to the represen-
tation r o ¢ of W, [60]. In the unramified situation of 10.4, this coincides with the
definition given in 7.2.

In view of what has been recalled so far, these local factors are defined if k is
archimedean, or if k is nonarchimedean in the unramified case, or if G is a torus.

12.2. Let now G = GL,. In this case there are associated to z € [[(G(k)) local
factors L(s, z) and e(s, 7, ¢) defined by a generalization of Tate’s method, in [25]
for n = 2, in [19] for any n, which play a considerable role in the parametrization
problem and in the local lifting. A natural question is then whether these factors
can be viewed as special cases of 12.1, where r = r, is the standard representation
of GL,, i.e., whether we have equalities

0y L(s, @) = L(s, =, 1), &5, &, ) = &(s, @, 1y ¢),

with the right-hand side defined by the rule of 12.1.

(a) Let n = 2. It has been shown in [25] that the equivalence class of z is charac-
terized by the functions L(s, 7 ® y), &(s, # ® yx, ¢), where y varies through the
characters of k*. In this case, the parametrization problem and the proof of (1)
are part of the following problem:

(*) Given ¢ € #(G), find 7 = z(o) such that

#)) Ls,0@) =Ls,7®y), &s0@y ) =els,z®y ¢)

for all y’s, and prove that ¢ — n(g) establishes a bijection between @(G) and
(G(k)).

This problem was stated and partially solved in [25]. The most recent and most
complete results in preprint form are in [62]; they still leave out some cases of even
residual characteristic, although some arguments sketched by Deligne might take
care of them (see [63] for a survey).

As stated, the problem is local, but, except at infinity, progress was achieved first
mostly by global methods: one uses a global field E whose completion at some
place v is k, a reductive E-group H isomorphic to G over k, an element p € O(H/k)
whose restriction to L(H/k,) = LG is g, chosen so that there exists an automorphic
representation z(p) with the L-series L(s, p) (see §14 for the latter). This construc-
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tion relies, among other things, on Artin’s conjecture in some cases, and [38]. In
fact, it was already shown in [25] that (x) for odd residual characteristics follows
from Artin’s conjecture, leading to a proof in the equal characteristic case. At
present, there are in principle purely local proofs in the odd residue characteristic
case [63] Note also that the injectivity assertion is a statement on two-dimensional
admissible representations of W, namely, whether such a representation ¢ is
determined, up to equivalence, by the factors L(s, o o ) and &(s, o © ¥, ¢). But, so
far, the known proofs all use admissible representations of reductive groups [63].

(b) For arbitrary n, (1) has been proved in the unramified case, for special re-
presentations, and by H. Jacquet for k = R, C [24].

(c) Local L- and ¢-factors are also introduced for G = GL; x GL, in [21], at any
rate for products # x =z’ of infinite dimensional irreducible representations. Partial
extensions of this to GL,, x GL, for other values of m, n are known to experts.

(d) For n =3, mell(G(k)) is again characterized uniquely by the factors
L(s, z ® y) and &(s, # ® ¥, ¢) [27], [46]. For n = 4 on, this is false [46]. How-
ever, it may be there are still such characterizations if y is allowed to run through
suitable elements of JI(GL,—,(k)) or maybe just [[(GL,_(k)).

12.3. Local factors have also been defined directly for some other classical
groups, in particular for GSp, by F. Rodier [48], extending earlier work of M. E.
Novodvorsky and I. Piatetskii-Shapiro, for split orthogonal groups, in an odd
number 27 + 1 of variables by M. E. Novodvorsky [41]. In the latter case LG° =
Sp,,., and in the unramified case, the local factors coincide (up to a translation in
s) with those associated by 7.2 to the standard 2n-dimensional representation of the
L-group. See also [42].

CHAPTER IV. THE L-FUNCTION OF AN AUTOMORPHIC REPRESENTATION.

From now on, k is a global field, o = v, the ring of integers of k, A, or A the ring of
adeles of k, V (resp. V., resp. V) the set of places (resp. infinite places, resp. finite
places) of V. For ve V, k,, 0, and Nv have the usual meaning. Unless otherwise
stated, G is a connected reductive k-group.

13. The L-function of an irreducible admissible representation of G ,.

13.1. Let z be an irreducible admissible representation of G, and r a representa-
tion of LG. There exists a finite Galois extension k' of k& over which G splits and
such that r factors through £tG° x [,.,. We want to associate to = and r infinite
Euler products L(s, z, r) and e(s, =, r), whose factors are defined (at least) for al-
most all places of k.

Let v e V. By restriction, r defines a representation r, of L(G/k,) = £G° x [,.
On the other hand, = = ®),x,, with =, € [[(G(k,)) [11]. Assume the parametriza-
tion problem of Chapter III solved. Then there is a unique ¢, € ®(G/k,) such that
7, € II,. Then we let

M L(s, z, r) = ILL(s, 7,, 1),
(2) E(S, T, r) = II,,E(S, Tys Tys Sbv)’

where ¢, is an additive character of k, associated to a given nontrivial additive
character of &, and the factors on the right are given by 12.1(1).
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The local problem is solved for archimedean v’s, and for almost all finite v’s
(see below) so that the factors on the right are defined except for at most finitely
many v € V;. For questions of convergence or meromorphic analytic continuation
this does not matter, and we shall also denote such partial products by L(s, =, r).

By 10.4, ¢, is well defined if the following conditions are fulfilled: G is quasi-split
over k,, G(o,) is a very special maximal compact subgroup of G(k,), k' is unramified
over k, and r, is of class one with respect to G(o,). All but finitely many ve V;
satisfy those conditions [61].

13.2. THEOREM [35]. Let 7 be an irreducible admissible unitarizable representation
of G, and r be a representation of LG (2.6). Then L(s, &, r) converges absolutely for
Re s sufficiently large.

We may and do view r as a complex analytic representation of LG° x [},
where k' is a finite Galois extension of k£ over which G splits (2.7). We let V; be the
set of v e ¥V satisfying the conditions listed at the end of 13.1. We have to show that
(M L = I L(s, 7o, 1),

veV)
converges in some right half-plane.

Let Fr, be the Frobenius element of /%, , where v' € V), lies over ve V;. We
have

@ 0o(F1,) = (1,, Fr,), with 1, e LT
and
?3) L(s, 7,, r,) = (det(1 — r((¢,, Fr,))N,;*)) L.

To prove the theorem, it suffices therefore to show the existence of a constanta > 0
such that

4 |u| = (Wv)e for every v e V; and eigenvalue y of r((¢,, Fr,)).

Let n = [k’: k]. Since we may assume ¢, fixed under [, (6.3), we have 1} =
(¢,, Fr,)”; hence it is equivalent to show (4) for all eigenvalues y of r(t,). These
are of the form 72, where A runs through the set P, of weights of r, restricted to LG°.
Thus we have to show the existence of @ > 0 such that

5) |t,|Re* < (Wv)e forallve V) and A€ P,.

Let G’ be a quasi-split inner k-form of G. Then LG = LG’, and G is isomorphic
to G’ over k, for all v e V;. We may therefore replace G by G’; changing the nota-
tion slightly, we may (and do) assume G to be quasi-split over k. We then fix a
Borel k-subgroup B of G and view LT as the L-group of a maximal k-torus T of G.

For a cyclic subgroup D of ', let ¥, be the set of v € ¥; for which [, is equal
to the inverse image of D in [’,. The group U = X,(7T)? is then the group of one-
parameter subgroups of a subtorus S of 7 such that S/k, is a maximal k,-split torus
of G/k, for all v € V. The group

© Y = Hom(U, C*) = Hom(X(T)?, C*) (veVp),

is independent of v, and is the Y of §6 for G/k,. The root datum ¢(G/k,), which is
determined by the action of D, is also independent of v € Vp,.
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Given y € Y, let y, be a “logarithm” of y, i.e., an element of Hom(X(T)?, C)
such that

(7 y(u) = N = Nvoew for ue X (T)P.

This element is determined modulo a lattice, but its real part Re y, € Hom(U, R),
defined by

® Yu) = Ny®esnw

is well defined. If y has values in R¥, then we choose y, to be equal to its real part.
The space a* is the dual of a = U ® R (the so-called real Lie algebra of S/k,), and
is acted upon canonically by W as a reflection group. We let a** be the positive
Weyl chamber defined by B.

Let p, be the unramified character of T(k,), given by ¢ — |3(f)|,, where | |, is the
normalized valuation at v and ¢ half the sum of the positive roots. Then its real
logarithm py is independent of v € V. In fact, it is a positive integral power of Nv
whose exponent is determined by the k,-roots, their multiplicities, and the indices
q, of the Bruhat-Tits theory [61]. But those are determined by the previous data
and the action of [, on the completed Dynkin diagram [61], which is also in-
dependent of v e V). We write g, instead of p, o. We have gy € a**.

The representation r, is a constituent of an unramified principal series PS(y,),
where y, is an unramified character of T(k,), or, equivalently, of S(k,), determined
up to a transformation by an element of ,}. Thus we may assume y,,o to be con-
tained in the closure ¥7(a**) of a**. Since 7, is unitary, the associated spherical
function is bounded, and hence Re y, ¢ is contained in the convex hull of , W(p),
i.e., we have

® {Pp = Yuo» AY Z 0, forall 1ea*t.

(See remark following the proof.)
For A€ X*(LT°), let 2’ be the restriction of A to X, (7TP). In view of 10.4 and our
conventions, we have then

(10) |A(,)] = Nv®Re oo,

Let 1 = ,W(X) | €/(a*"). Since Re y,,9 € €<(a**), we have
an Ny®Re L 2> < NyRe tno D,
Combined with (9), this implies

(12) |A(t,)] £ Nvéeo®,

If now A runs through P,, there are only finitely many possibilities for 1, whence
(4), with a = sup{py, A) (A€ P,), for ve V. Since V; is a finite union of such
sets, this proves (4).

ReEMARK. The relation (9) is proved in [35, pp. 27-29] for the split case. For a
general semisimple simply connected group, see I. Macdonald, Spherical functions
on a group of p-adic type, Publ. Ramanujan Institute 2, Madras, Theorem 4.7.1, or
H. Matsumoto, Lecture Notes in Math., vol. 590, Springer-Verlag, Berlin and New
York, Proposition 4.4.11. In fact, we have used it for a general connected reductive
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group but the reduction to the case of simply connected semisimple groﬁps is
easily carried out by going over to the universal covering of the derived group.

13.3. COROLLARY. Let P be a parabolic k-subgroup of G, P = M -N a Levi decom-
position over k of P. Assume that 7 is a constituent of a representation Ind $4(s)
induced from a unitarizable irreducible admissible representation ¢ of M 4, viewed as
a representation of P 4 trivial on N 4. Then L(s, , r) is absolutely convergent in some
right half-plane.

We view LM as a subgroup of LG (3.3). Let r’ be the restriction of r to LM.

Let v € V; be such that the conditions listed at the end of 13.1 are satisfied by
M, G, g, and =,. Then, by the transitivity of induction, it follows that there exists
%» as in the above proof such that ¢, (resp. «,) is the constituent of class 1 with
respect to M(o,) (resp. G(0,)) of the principal series PS(y,) for M(k,) (resp. G(k,)).
Then L(s, z,, r) = L(s, 7,, r') (7.2, 10.4). This being true for almost all v’s, we are
reduced to 13.2.

14. The L-function of an automorphic representation.

14.1. A smooth representation of G, is automorphic if it is a subquotient of the
regular representation of G, in G,\G 4. It is cuspidal if it consists of cusp forms. If
so, it is unitary modulo the center. We let A(G/k) denote the set of equivalence
classes of irreducible admissible automorphic representations of G,4. By Proposi-
tion 2 of [39], every = € U(G/k) is a constituent of a representation induced from
some cuspidal o € Y(M/k), where M is a Levi k-subgroup of a parabolic k-subgroup
of G. Combined with 13.3 this yields the

14.2. THEOREM (LANGLANDS). Let w € A(G/k) and r be a representation of LG.
Then L(s, 7, r) is absolutely convergent in some right half-plane.

The L-function of an irreducible admissible automorphic representation will
also be called an automorphic L-function.

14.3. There are several conjectures on the analytic character of L(s, z, r) for auto-
morphic 7, all checked in some special cases, going back to the work of Hecke on
L-series attached to Grossencharaktere and to modular forms.

(a) If = € A(G/k), then L(s, w, r) admits a meromorphic continuation to the whole
complex plane.

(b) Assume that z and G are such that the local solution to the local problem
yields factors L and ¢ at all places. It is then conjectured that there is a functional
equation L(s, z, r) = &(s, w, r) - L(1 — s, &, r), where 7 is the contragredient re-
presentation to x.

(c) In a number of cases, it has been shown that:

(*) If z is cuspidal, r irreducible nontrivial, then L(s, x, r) is entire.

Here and there, conjectures to the effect that this should be a general pheno-
menon have been stated. However, there are counterexamples. Heuristically, one
sees this is likely to happen if = is lifted from a cuspidal representation of a reduc-
tive group H (in the sense of V below) and the restriction of » to LH contains the
trivial representation.

14.4. (a) Let G = GL, and r = r, be the standard representation of GL,(C).
Then 14.3(b), (c) are proved in [25] for n = 2, in [19] for n = 2, if L and ¢ are de-
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fined to be the products of the L- and e-factors mentioned in 12.4. As recalled in
12.4, these are the same as those considered here at almost all places, and forn = 2,
at all places.

(b) If G = GL; x GL; and r = r, ® r,, similar results are established by Jac-
quet in [21].

(c) Let G = GL,. If r: GLy(C) —» GL3(C) is the adjoint representation, then
14.3(b), (c) are announced in [16]. This extends results of Shimura [54]. If r =
Sym3(ry), Sym?(r,), then 14.3(b) is stated in [15], in the context of the global lifting
(see V); for Sym3(r,), it is also proved in [51], in the framework of 14.5 below.

(d) Let & be a function field, G = GL,, x GL, and r = r,, ® r,. Let & (resp.
#’) be a cuspidal automorphic representation of the first (resp. second) factor. By
the methods of [19], [26], [27], one can define L and ¢, and (Jacquet dixit) show
14.3(b), and also the holomorphy, except when m = n and x is contragredient to
7'. These methods also yield further examples for other groups and for other re-
presentations. It is expected that similar results hold over number fields.

(e) 14.3(a) has also been checked when G = PSp(4) in some casesin [1], and, in
general, in [42]. A functional equation is also established. 14.3(a), (b) are announced
in [41] for orthogonal groups in an odd number of variables over functional fields,
for the local factors mentioned in 12.3. For a survey and earlier references, see
[43). See also [44].

14.5. We describe some cases in which 14.3(a) has been verified in [33] (see also
[18] for a survey). Let C be a split k-group, of adjoint type, endowed with its canoni-
cal p-structure. Fix a Borel subgroup B of C and a maximal torus T of B defined
over p. Let P be a maximal proper standard parabolic subgroup and P = M - N its
standard Levi decomposition. Since C is adjoint, it is easily seen that C(M) is a
torus. The group M/C(M) is semisimple, split over k, of adjoint type, of rank equal
to rk(C) — 1. We let G = M/C(M). The group £G° is simply connected (2.2(2)).
We have a natural inclusion LG — LM, and LM is the Levi subgroup of a standard
parabolic subgroup LP = LM - U with unipotent radical U (3.3). Let 4 be the split
component of P in T, and L4° the split component of LP° in LT°. The group £4°
acts on the Lie algebra u of U and its eigenspaces are irreducible LG°-modules. We
let Fp denote the set of contragredient representations to these £G°-modules. The
L-functions considered in [33] are of the form L(s, =, ) with r € Fpand 7z an ir-
reducible cuspidal automorphic representation of G. A number of examples are
given in which L(s, z, r) admits a meromorphic continuation. This is deduced from
the results of [32]: let m be the length of a composition series of u with respect to
M. Then, for suitable numbering of the elements of Fp and strictly positive integers
a;, there is a relation

(1) M(S) = H L(ais, T, ri) * L(Sai + la T, ri)_la
1=i=m

where M(s) is the intertwining operator occurring in the theory of Eisenstein series
with respect to P, and is known to have a meromorphic continuation to the complex
plane [32]. If r = 1, this and 13.2 yield the meromorphic continuation. In general,
if we have the analytic continuation for all r,’s except one, (1) gives it for the remain-
ing one.

14.6. The converse problem is to what extent automorphic representations can
be characterized by analytic properties of their L-functions, or to give analytic
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conditions on a given L-function which will insure that it is automorphic. The
first main result was Hecke’s characterization of the Mellin transform of a parabolic
modular form. Then came Weil’s extension of this theorem to congruence sub-
groups [64], [65], its generalization in the context of representations in [25], and the
extension to GL; [46], [27]. In those results, conditions are imposed on the L-func-
tions of = and of the twists 7 ® y of = by characters. However, the analogous
statement is false from » = 4 on [46]. It may remain true if one imposes conditions
on the twist 7 ® p of = by representations of GL,_; or only of GL,_,. For results
in that direction, over function fields, see [45].

Note however that in the general problem outlined here, one wishes rather to turn
things around and deduce the analytical properties of some given L-series by show-
ing directly that it is automorphic (see the seminars on base change and on zeta-
functions of Shimura varieties [17], [8], [40]).

14.7. Other problems. (1) One “representation theoretic”” form of ‘“‘Ramanujan’s
conjecture” is the following: if # = ®=, is an irreducible nontrivial admissible
cuspidal automorphic representation (and G is simple), then each z, is tempered.
It isnow well known to be false for certain orthogonal or unitary groups, and even
for one split group [20].

(2) Let 7 be a unitary irreducible representation of G,. If G = GL,, then its
multiplicity in the space of cusp forms °L,(G(k)\G(4)) is at most one, “multiplicity
one theorem” [25]. In fact there is even a ‘“‘strong multiplicity one theorem” [38]:
given 7, for almost all v’s, there is at most one constituent z of the space of cusp-
forms with those local factors.

The multiplicity one theorem has been proved for GL,, [52] and the strong form
for GL; [28]. It is unknown whether it is true for SL,. On the other hand, there are
counterexamples for some inner forms of SL, [31].

CHAPTER V. LIFTING PROBLEMS.

Although the problems on automorphic L-functions discussed in §14 are only
partially solved, the solutions provide practically all cases in which an L-series
(automorphic or not) has been proved to have meromorphic or holomorphic analy-
tic continuation with functional equation. This suggests trying, given an L-series
and a reductive group G, to see whether G has an automorphic representation with
the given L-series. Many instances of such questions can be viewed more precisely
as special cases of the “lifting problem” or of the “problem of functoriality with
respect to morphisms of L-groups.” There is also a local version. For the sake of
exposition, we shall start with the latter, but it should be borne in mind that the
motivation and requirements stem from the global one, and that local and global
are at present inextricably linked in many proofs. These questions were raised by
Langlands in [35].

15. L-homomorphisms of L-groups.

15.1. Let E be a field and H, G connected reductive E-groups. A homomorphism
u:tH — LG over [, is said to be an L-homomorphism if it is continuous and if its
restriction to LH° is a complex analytic homomorphism of ZH?° into LG°. Let E be
local and G quasi-split. If ¢ € O(H), then u o p € ®(G). In fact, condition 8.2(i) is
clearly satisfied, by u o ¢, and so is 8.2(ii) because every parabolic subgroup of G
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is relevant, G being assumed to be quasi-split. Therefore ¢ — u o ¢ defines a map
O(H) - &(G), to be denoted P(u).

15.2. Let E = k be a global field. For v € ¥, the Galois group [, is a subgroup
of I'y; hence the L-group of G viewed as a k,-group, to be denoted L(G/k,), is a
subgroup of LG = L(G/k). Thus, in particular, the L-homomorphism u of 15.1
defines by restriction an L-homomorphism u,: L(H/k,) — X(G/k,), hence also a
map O(u,): O(H/k,) - O(Glk,) (ve V).

The “lifting problem” is, roughly speaking, whether such maps are mirrored by
maps of representations in the local case, or of automorphic representations in the
global case.

15.3. ExaAMPLE: BASE CHANGE. Let H be a split over E, F a finite Galois extension
of E, and G = Ry, zH. Then LG° is a product of copies of LH°, indexed and per-
muted by Iz, (5.1). There is then anatural L-homomorphism u which is the iden-
tity on [’z and the diagonal map on LH®. If E is a local field, then W is an open
normal subgroup of W, and the map @(x) may be viewed as given by the restric-
tion to Wp.

16. Local lifting.

16.1. Let k = E be a local field, G quasi-split over E, H a connected reductive
E-group and u: LH — LG an L-homomorphism. The problem of local lifting is,
roughly, to establish a correspondence /I(v): II(H(k)) — II(G(k)) which preserves
L- and e-factors. If the local parametrization problem of III is solved, then [I(x)
is the map between indistinguishable classes which assigns II,.,c to I, g
(p € O(H)). The element ITe [I(G(k)) is said to be a lift of = € II(H(k)) if Il €
11y, 6, Where ¢ € @(H) is such that 7 € [I, ;. We have then

¢)) L(s, I, r) = L(s, w,ro9), &s I, r, ) = e(s, m, rou, ¢).

for every representation r of LG.

16.2. The local lifting is thus viewed as a map between classes of L-indistinguish-
able representations rather than one between representations. However it is pos-
sible to single out one lifting under assumptions which, in the global case, are
satisfied almost everywhere: assume H, G to be quasi-split, split over an unrami-
fied extension F of E, endowed with an og-structure such that H(og) and G(og)
are very special maximal compact subgroups, and 7 of class one with respect to
H(og). Then ¢ such that 7 € I, 5, and the set II,., ¢ are well defined. Moreover,
II,.,, c contains exactly one element of class one (with respect to G(og)), to be called
the natural lift of z.

16.3. A full solution of the local parametrization problem does not seem to be
in sight, and it is conceivable that it may require proving at the same time global
results such as Artin’s conjecture. Meanwhile, one wants to settle some approxima-
tions to it, notably to be able to prove some cases of Artin’s conjecture. Note that
if G = GL,, then the sets I, ¢ are either known or conjectured to consist of one
element (12.2, 12.3). Such a lifting problem can then be stated as one of construct-
ing a map u,: lI(H(k)) = II(G(k)) satisfying certain conditions. So far, there are
two examples:

(a) Base change (cf. 15.3) when H = GL; and F is cyclic of prime degree over E
[17], [38], [49], [56]). Besides some naturality conditions and 16.3, the main require-
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ments relate the characters of z and of the hypothetical u.(z). The results also
describe the fibres and the image of u,. [Note that the results of [38] on this problem
are used in [62], so that we cannot invoke the solution of the local parametrization
problem (12.4) for GL, just to use the map /I(u) of 16.1. If we could, then the local
questions [38] would be mainly to relate the characters of z and /I(u)(z).]

(b) H = GL,, G = GL3, and

(1) u: LH® = GLy(C) — LG° = GL4(C)

is given by the adjoint representation of LH*® (see [16]).

In this case, I = u,(x) must be trivial on the center of LG° and be such that the
L- and e-factors of u,(7) ® y (y character of E¥*) are certain given functions. There
is at most one such /1(12.4(d)). In [16], [T is stated to exist, except possibly if E has
even residual characteristic and « is “‘extraordinary.”

16.4. In 16.3(a), the lifting problem was connected with the existence of relations
between characters. This is a direct connection between /I(H) and [I(G), which is
of great importance for the use of the trace formula in proving or using the local or
global lifting. We now mention two other examples of such relations. Assume that
G is a quasi-split inner form of H. There is then an isomorphism u: LH = LG and
an embedding ®(u): ®(H) = O(G). If f: H - G is a k-isomorphism such that
f71 - 7fis an inner automorphism of G for every y € I',, then f establishes a bijection
between conjugacy classes which are stable under [,. Using results of Steinberg
[59], one then sees easily that maximal k-toriin H are isomorphic over k£ to maximal
k-tori in G. This allows one in some cases to assign regular semisimple classes in
G(k) to such classes in H(k), so that it makes sense to compare values of characters
of H(k) and of G(k) on such classes.

(a) Let k be either R or nonarchimedean with odd residual characteristic. Let
G = GL, and H be the group of invertible elements in the quaternion algebra over
k. The sets I, are singletons, ®(u) assigns to a (finite dimensional) irreducible
representation 7 of H(k) a discrete series representation z’ of G(k). In this case,
the semisimple classes of H(k) correspond to the elliptic classes in G(k). It is proved
in [25] that the characters of 7 and #’ differ only by a sign on those classes.

(b) Let k = R. For ¢ € O(H), ®(G), let y, be the sum of the characters of the
elements in [I,. Choose ¢ € @(H) such that ]I, consists of tempered representations.
Then y, and y,., are equal on the regular semisimple classes of H(k), up to a sign
depending only on H and G [S3, 6.3].

16.5. We could also take the Weil forms of the L-groups. In that case an L-
homomorphism, restricted to Wy, is assumed to satisfy the obvious analogue of
8.2(i). Take in particular the case where H = {1}. Then u is just an element of @(G).
The lifting problem in this case is part of the local problem of III.

17. Global lifting.

17.1. Assume G to be quasi-split. Let H be a reductive k-group and u: LH — LG
an L-homomorphism. Let u,: L(H/k,) - X(G/k,) and ®(u,): O(H/k,) - O(G/k,)
be the associated maps (v € V) (see 15.1).

Let z = ®,x, (resp. II = ),1I,) be an irreducible admissible representation of
H , (resp. G). Then []is said to be a lift of 7 if [T, is one of z, for every ve V (16.1).
If that is the case, then, for every representation r of LG, we have

(1) L(S, 1, r) = L(S, T, T ou), E(S, I, ") = e(S, T, o U).
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It is also usually requested that /T, be the natural lift (16.2) of x, for almost all v’s.
The question is then whether every automorphic z has a lift, which is automorphic,
or, somewhat more ambitiously, whether there is a map uy: U(H/k) — U(G/k)
with reasonable properties, which sends = € %(H/k) onto a lift of 7. One also wants
to describe the fibres and the image of u,.

In that degree of generality, the problem appears to be inaccessible at present.
However, there are many results, old and recent, which are very striking illustra-
tions of this principle, some of which will be extensively discussed in various semi-
nars. Here, for orientation, and to give an idea of the scope of the problem, I shall
list briefly some special cases, referring to the literature or to other seminars for
more details.

REMARK. Let r be a representation of LH of degree n. Then it defines an L-homo-
morphism u : LH — LGL, = GL,(C) x [I', in the obvious way. A positive answer
to the lifting problem would imply in particular that if 7 is an automorphic repre-
sentation of H, then L(s, w, r) = L(s, II, r,) where Il is an automorphic representa-
tion of GL, and r, the standard representation. This would therefore to a large
extent reduce the study of automorphic L-functions to those of GL,, with respect
to the standard representation.

17.2. Let H = {1}, G = GL,. Then an L-homomorphism u is just a continuous
complex n-dimensional representation of [,. The question is then whether the
Artin L-series L(s, u) is an automorphic L-series of GL,, (with respect to the stand-
ard representation of GL,(C)), which should be cuspidal if « is irreducible. In view
of known results on GL,, (cf. 14.4) this would imply Artin’s conjecture.

For n = 1, a positive answer is given by class-field theory. For n = 2, 3, a posi-
tive answer is equivalent to Artin’s conjecture, since there are converses to Hecke
theory [25], [65], [27], [46]. For n = 2, it has been proved for dihedral or tetrahedral
representations of /%, and for some others over Q (see [38], [17], [15]).

17.3. Let k' be a Galois extension of k, n the degree of k" over k. Take H =
R, ,,GL,, G = GL,. There is a natural homomorphism f: LH® x [}, into the
normalizer of a maximal torus ZT° of LG°. Since the former group is a quotient of
LH, and LG = LG® x [, we can define an L-homomorphism u: LH — LG by
u(h, v) = (f(h), r) (heLH®, y € I,). An automorphic representation of H is a
Grossencharakter y of k'. The problem is then whether the Artin L-series L(s, )
is the L-series of an automorphic representation of G.

Ifn = 2, k = Q, and k' is imaginary, this was proved by Hecke; = is associated
to a cuspidal holomorphic automorphic form. If n = 2, k = Q, and k’ is real
quadratic, this was established by H. Maass. « is then associated to a nonholomor-
phic automorphic form.

For n = 3, this is proved in [26], [27].

17.4. Base change. This is the global counterpart to 16.3(a). Let £’ be a finite
Galois extension of k. Assume H to be k-split and G = R, ,H. There is again an
L-homomorphism u: LH — LG whose restriction to LH° is a diagonal map. In this
case G(A4) and G(k) are canonically isomorphic to H(A4,) and H(k"); therefore the
problem is to associate an automorphic representation of H(A4; ) to an automorphic
representation of H(A,). Again, it should be a counterpart to the restriction to W,,
of homomorphisms W, — LH®.

If H = GL; and &’ is cyclic of prime degree, the lifting map u, for representa-
tions is constructed in [38], which also gives a description of its image and fibres.
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This extends work of Doi-Naganuma, Jacquet [21] (on the quadratic case) and of
Saito [49], Shintani [55], [56] (cf. [17]).

17.5. Let G be quasi-split, and H an inner form of G. Then LH = LG and ®(H/k,)
< O(G/k,) for all v’s (8.3). Moreover, for almost all v’s, H and G are isomorphic
over k,; hence ®(H/k,) = &(G/k,) and JI(H(k,)) = lI(G(k,)). The question is
then, given 7 = ®,x,, is there an automorphic representation [ = ¥, /I, of G
such that /I, = r, for almost all v’s?

If G = GL; and H is the group of invertible elements of a quaternion algebra D
over k, a positive answer is given by Jacquet-Langlands [25]. Note that, in that case,
because of the “strong multiplicity one theorem,” at most one /I may be associated
to a given « in this way. The possible /I’s are in fact the cuspidal automorphic
representations for which 7, belongs to the discrete series for all v’s over which D
does not split (loc. cit.).

17.6. If G = GL,, G = GL;3 and u is given by the adjoint representation, as in
13.4, the global lifting problem has been solved by Gelbart-Jacquet [16], the “local
lifting”” being the one of 16.2(b).

17.7. Let M be a Levi k-subgroup of a parabolic £-subgroup P of G. Then LM
imbeds naturally into LG (3.3), whence an L-homomorphism u: LM — LG. If #
is cuspidal, then the analytic continuation and residues of Eisenstein series [32] are
known to yield a unitary u.(z) in many cases, and, conjecturally, in general.

18. Relations with other types of L-functions.

18.1. In 17.2, the lifting problem amounts to identifying an Artin L-function
with an automorphic L-function on GL,. One can also include in this problem
more general representations of Weil groups if one passes to the Weil form of the
L-groups. For simplicity, let us limit ourselves to relative Weil groups W,,,,, where
k' is a finite Galois extension of k over which H and G split. An L-homomorphism
w:tH® x W,, - LG° x W, is then a continuous homomorphism compatible
with the projections on W, ,, whose restriction to ZH® is a complex analytic homo-
morphism into LG°, and such that, for w e W, u(w) = (u'(w), w) with u(w) semi-
simple (cf. 8.2(i)).

If H = {1}, an L-homomorphism is said to be an admissible homomorphism of
W, into £G. In analogy with the definition of ®(G) in the local case, we can con-
sider the set @,.,(G) of equivalence classes of such homomorphisms, modulo inner
automorphisms of ZG°, and then pass to a suitable limit §(G) over k'.

The lifting problem asks in this case to associate to any ¢ € @(G) an automorphic
representation z, such that, for any representation r of LG, L(s, =, r) is equal to the
Artin-Hecke L-series of r o u. In particular, is every Artin-Hecke L-series that of an
automorphic representation of GL,, with respect to the standard representation?

If G is a torus, then [34] provides a positive answer. In fact, in this case the irredu-
cible admissible automorphic representations of G are the characters of G(k)\G(4),
and [34] gives a homomorphism with finite kernel of @,.,(G) onto the set of such
characters.

18.2. In the same vein, it is natural to ask whether Hasse-Weil zeta-functions (or
even L-functions of compatible systems of /-adic representations of Galois groups)
can be expressed in terms of automorphic L-functions. For elliptic curves over
function fields, it is a theorem. That it should be the case for elliptic curves over
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Q is the Taniyama-Weil conjecture; it has been checked in a number of special
cases (see [2], [14] for surveys from the classical and representation theoretic points
of view respectively). Apart from that, this problem has been pursued mostly for
Shimura curves and certain Shimura varieties; we refer to the corresponding semi-
nars for a description of the present state of affairs.

Finally, one may ask whether it is possible to characterize a priori those auto-
morphic representations whose L-series have an arithmetic or algebraico-geome-
tric significance. A necessary condition if & is a number field is that for an infinite
place v, 7, should be associated to a representation ¢, of W, whose restriction to
C* is rational, C* being viewed as real algebraic group, i.e., be of type 4, in
[3, 6.5]. If the L-series of 7 is to be an Artin L-series, then 7 should even be of type
Ag (loc. cit.), i.e., o, should be trivial on C*. Let k = Q. Then there are three pos-
sibilities for z,, (11.5). If =, = #(l, sgn), then = corresponds to 2-dimensional
representations of [y with odd determinant by the theorem of Deligne-Serre [10],
[50]. Modulo the Artin conjecture for such representations, the correspondence is
bijective. However, I am not aware of any result for the other two possible values
of z,,. A positive answer would involve nonholomorphic automorphic forms. In
[36], it is shown in many cases for GL; over Q that the L-series of a representation
of type A, is that of a compatible system of /-adic representations of ["y. Over a
function field, there is no condition such as 4. In fact, for GL,, Drinfeld has shown
that all irreducible admissible automorphic representations are associated to l-adic
representations (see the lectures on his work by G. Harder and D. Kazhdan).
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PRINCIPAL L-FUNCTIONS OF THE
LINEAR GROUP

HERVE JACQUET

Regard the group G, = GL(n) as an algebraic group over some local or global
field F. Then ZGY = GL(n, C). Let r, denote the natural representation of this last
group on C~; the L-functions attached to r, play a central role in “Langlands
philosophy”’. We review certain aspects of their theory, taking into account recent
results on classification of representations.

1. Local nonarchimedean theory. We let F be a local nonarchimedean field. When
this does not create confusion, we write G, for G,(F) and use a similar notation for
any F-group.

(1.1) Let z be an admissible representation of G, on a complex vector space V;
we denote by # the representation contragredient to 7, ¥ the space on which it
operates, and ¢ -, - the canonical invariant bilinear form on ¥ x V. The represen-
tation 7% is admissible, and irreducible if 7 is. Moreover (%)~ = =. The functions

(1.1.1) g—<algv, ¥ (veV,veV)

and their linear combinations are the coefficients of 7. Clearly if f'is a coefficient of
7, then the function fV defined by

(1.1.2) Mg =fg™
is a coefficient of 7.
Let M(p x q, F)be the space of matrices with p rows, g columns and entries in

F; denote by #(p x g, F) the space of Schwartz-Bruhat functions on M (p x ¢, F).
If f is a coefficient of 7, @ isin #(p X ¢, f), and sin C set

(1.1.3) Z(@,s,f) = j (g) |det gl £(2) d*s.

The integral is extended to the group G, and d*g is a Haar measure on this group.
Below (Propositions (1.2), (1.4)) we state again the results of [R.G.-H.J.].

(1.2) PROPOSITION. Suppose x is irreducible.

(1) There is sy such that the integrals (1.1.3) converge absolutely in the half-plane
Re(s) > so.
(2) If the residual field of F has q elements, then the integrals represent rational
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Sfunctions of q=5; as such, they admit a common denominator which does not depend on
for®.

(3) Let ¢ # 1 be an additive character of F. There is a rational function 7(s, &, )
such that for all coefficients f of = and all ®

Z@ON1 = s+ 3= 1,fY) =1(s 7, ¢) 2D, s, f),
where O denotes the Fourier transform of @ with respect to ¢.

In (3) 9" is defined by
(124) o) = [ 00) g LN dy,

where dy is the self-dual Haar measure on M(n x n, F). On the other hand the
left-hand side in (3) has a meaning by (1) and (2) applied to 7. Besides we could
formulate Proposition (1.2) for the pair (z, 7) rather than for 7z, the situation being
symmetric in 7, 7 ; this symmetry will be apparent at each step of the proof anyway.

ExampLE (1.2.5). Suppose 7 is cuspidal. This condition is empty and therefore
always satisfied if » = 1; in this case « is just a quasi-character of F* and we
know Proposition (1.2) from [J.T. 1] or [A.W. 3]. If n > 1, the coefficients of =
are compactly supported modulo the center of G,; we can then exploit this fact to
obtain Proposition (1.2), the proof being essentially the same as in the casen = 1
(R.G.-H.J ], [H.J. 1))

(1.3) The proof of Proposition (1.2) will be given in §2. For the time being, we
derive some simple consequences of Proposition (1.2).

If fand @ are as above and /4 is in G,, then the functions f; and @, defined by

1.3.1) Si(8) = f(gh), Di(x) = D(xh)

are functions of the same type. Moreover if we assume (1.2.1), (1.2.2), then:
(1.3.2) Z(y, 5, /1) = |det h|= Z (D, s, f).

It follows that the subvector space I(z) of C(g—) spanned by integrals
(1.3.3) Z(@D,s + 3(n - 1), f)

is in fact a fractional ideal of the ring C[g—, ¢5]. Furthermore if we take f such that

f(e) # 0 and @ with support in a small enough neighborhood of e, we find that
(1.3.3) is actually independent of s and # 0. Thus /(z) contains the constants; in
other words it admits a generator of the form P(g—)~! with P e C[X]. We will
normalize P by demanding that P(0) = 1 and will set

(1.3.4) L(s,z) = P(g™)L

ExampLE (1.3.5). If 7 is supercuspidal then L(s,z) = 1 unlessn = 1 and z(x) =
|x]t. Then (loc. cit.) L(s, #) = (1 — g—=7%)~L

Assume now Proposition (1.2) for(z, #). Because I(z) s 0, the factor y is unique
(which justifies the notation). Set

(1.3.6) es, @, ¢) = 1(s, @, )L (s, W)/L(1 — s, 7).
Then (1.2.3) reads
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Z@N1 =5+ 3(n— D, fY)/LA — s, %)
=¢&(s, @, P)Z(D, s + 3(n — 1), f)/L(s, 7).

In view of the definition of the L-factors, this implies that both e(s, z, ¢) and its
inverse are in C[g—s, ¢°]. Thus (s, z, ¢) is a monomial in g—.

Let also w be the central quasi-character of 7z, that is to say the homomorphism
w: F* - C* such that

(1.3.7)

(1.3.8) n(a) = n(a - 1,) = w(a)ly forae F~.

If the assertions of (1.2.3) are true for one choice of ¢, they are true for any other
choice ¢'. In particular

(1.3.9) (s, m, ') = w(®)|b| 127 e(s, 7, §) if §'(x) = P(xb).
By exchanging 7 and # we find also (if Proposition (1.2) is true for (z, #)):
(1.3.10) el — s, &, Pels, @, ) = w(—1).

Moreover let us denote, for any quasi-character y, by = ® y the representation
g — w(g)y(detg) of G, on V. Let also a or a be the module of F. Then:

(1.3.11) L(s, # ® at) = L(s + ¢, ),
(1.3.12) s, @ at, ) = e(s + t, 7w, P).
The y-factor satisfies similar identities.

2. Induced representations. Again F is a local nonarchimedean field.
(2.1) Let P be an F-parabolic subgroup of G,. To be specific we take P to be
standard of type (n,, ny, --+, ,), so that the matrices p in P have the form

m U;j
my
2.1.1) p= o ,  meG,,.
0 m,
We also set
U = Up (unipotent radical of P),
2.1.2) g )

M = Mp = P/Up.

Most of the time we identify M to the subgroup of p € P such that u;; = 0. Then, in
a natural way,

(2.1.3) M=TG, (Q=<isr).

Ifg;, 1 £i <, is an admissible representation of G, , we can form the representa-
tion ¢ = Xg; of M = PJU, regard it as a representation of P trivial on U, and
induce it to G,. The representation

(2.1.9) § =1(G, P;0) = I(G, P; 01, 03, --~, 0,)
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that we obtain is admissible. Its contragredient £ is equivalent to
(2.1.5) ¢ = I(G, P; ¢) = I(G, P; 6,,63, -, 05,).

More precisely let W be the space of g. Then the space ¥ of & consists of all func-
tions F from G, to W which are smooth and satisfy

(2.1.6) F(pg) = 0p(p)'/*F(g),

where 0 is the module of P. The group G, operates by right-shifts on ¥. The space
V' of ¢ is defined similarly in terms of the space W of 5. For Fe ¥, Fe V' the
function ¢p(g) = {F(g), F(g)) satisfies

2.1.7) @(pg) = dx(P)p(8)-
Denoting by
(2.1.8) ¢ L\G p(g) dg

a positive right-invariant form on the space of continuous functions satisfying
(2.1.7), we may set

@.1.9) EFy = <(Fe), F@)dg

and this is a pairing which allows us to identify ¥’ to ¥ and &' to &.
Let Ry be the ring of integers of F and let

(2.1.10) K = K, = GL(n, Ry).

Since G, = P - K,, we may take (2.1.8) to be

@.1.11) 0 '_’IK o (k) dk.

(2.2) It will be convenient to have a description of the coefficients of & in terms of
those of g. So let f be the coefficient of & determined by FeV, Fe V = V' ((1.1.1));
then the function H: G, x G, — C defined by H(g;, g2) = {F(g,), F(gs)) satisfies
the following conditions:

(22.1)  H(uymgy, ugmgy) = 0p(m)H(gy,8;) forg; € G,, u;e Up, me Mp;

for any g, g, the function m —— H(mg,, g2)

(2.2.2) is a coefficient of ¢ ® OU2;

(2.2.3) His K, x K, finite on the right.
Moreover f'is given by
2.2.4) flg) = J' . Hg, by dn = _"  Hikg, k) dk.

Conversely, if H is any function satisfying (2.2.1)-(2.2.3), then the function f
defined by (2.2.4) is a coefficient of z. The coefficient fV of & is then given by
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@25  fAe) = j . Hlg, by di - where H(g,, &) = H(gs, £)

and H satisfies (2.2.1)~(2.2.3) with ¢ instead of .

(2.3) Before formulating the main theorem of this section we remark that if z is
an admissible representation which is perhaps not irreducible but admits a central
quasi-character ((1.3.8)), then the assertions of (1.2) make sense for (z, 7%), although
they may fail to be true. Below we assume that each ¢; admits a central quasi-
character; thus & admits also a central quasi-character.

(2.3) PROPOSITION. With the notations of (2.1) suppose the assertions of (1.2) are
true for each pair (o;, 5;). Then they are true for (¢, ). Moreover:

1® =1, 1(s & @) = Ilrts 0 9.
The proof will occupy (2.4)—(2.6).
(2.4) Let f'be given by (2.2.4). Then, exchanging the order of integrations, we get
Z(@, s+ 3n —1),f) = j'K dk IG” O(g) |det g|*+-D2H kg, k) d*g
2.4.1) = | j'cn O(k~1 g)|det g|** @7 H(g, k) d~g
= 5 dk dk’ jP¢(k"1 pk’)|det p|s+ V2 H(pk', k) dp.

If moreover we define (p being as in (2.1.1))
2.4.2) U, -, my3 ke, ) = [ 0(k1pk') @

(24.3) h(my, my, -+, m,; k, k') = H(pk', k)35"*(p),

then, after integrating in the variables u;;, integral (2.4.1) can be written as

j dk dk’ s Uy, my, -, m,; ke, KYh(my, -, m,; K, K
(2.4.4)
- [T |det my|s+@—072 @ d=m,.

Because of the K-finiteness of the functions involved, for @ and H given, (2.4.4)
can be written as a sum over a finite set of K x K of the inner integrals. But for
given k and k', U (my, my, ---, m,; k, k') is a finite sum of products [[,¥(m,) with
U, e P(n; x ny, F); similarly h(m,, my, ---, m,; k, k') is a finite sum of products
[1; f; (m;) where f; is a coefficient of ¢, ((2.2.2)). Thus (2.4.1) is a finite sum of
products

(2.4.5) [1Z(@®:, s + ¥n; — 1), f),

where @; is in #(n; x n;, F) and f; is a coefficient of ¢;. So we have proved (2.1.1),
(2.1.2) for &, and even the inclusion I(¢) < [], I(o;).

(2.5) Now we prove the reverse inclusion. Starting with an expression (2.4.5) we
can certainly find @ € #(n x n, F) so that with the notations of (2.1.1):
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@.5.1) _f O(p) ® du;; = [10,0m;).
Moreover there are two K-finite functions 7 and " on K such that
(2.5.2) jj O(k~1xk"yp(kyy' (k') dkc dk' = ®(x).

Then (2.4.5) is equal, for large Re s, to

(2.5.3) j O(k~1pk')|det p|*+#—172 I1 f:(m)d¥2(pyn(k)y' (k') d,p dk dk'.

Let dh be the normalized Haar measure on the compact group K [} P. Changing
k to hk, k' to W'k’ with A and A’ in K | P and then integrating over (K | P) x
(K N P), we find that (2.5.3) is equal to

j dh an’' j O(k—th! ph’k')ldet p|s+(n—1)/z
- T1Am)S P pyo(hkcyy (W) dip dlc e

Now change p to hph'~! and write 4, 4’ in the form (2.1.1) with 4, € K,,, h; € K,,,
instead of m;. We see that (2.5.4) is equal to

(2.5.4)

(2.5.5) j Olk~1pk’\Hy(p, k, k')|det p|*+*"2 d\p dk dk’
where
Hy(p, k, k') = 55 n(hk)y' (W'k’) Uﬁ-(h; - m; - b7V 6¥%(p) dh dh'.
It is easily verified that there is a function H satisfying (2.2.1)-(2.2.3) such that

H(pk,k') = Hy(p,k, k')  (peP,keK, k'eK).

If f is the corresponding coefficient of & ((2.2.4)), then, comparing (2.5.4) with
(2.4.1), we find that

[1Z(®: 5 + 301 = 1), £)) = Z(@,5 + 30 = 1), f).
So we have proved that I(§) = [[:(s;).

(2.6) Now we pass to the functiox_lal equation. In (2.4.1), let us replace f by fV
and @ by @\. Then H is replaced by H ((2.2.5)) and the identity (2.4.3) gives:

(2’6'1) h(ml_l’ m2_1: T m:l; kl, k) = H(Pk, k,)a;’l/z(p)'
Similarly (2.4.2) gives
(2.6.2) U, 1, o, my3 K, ) = [ 0Nk @ s

where ¥ denotes the Fourier transform of ¥ with respect to each one of the vari-
ables m;.
Instead of (2.4.1) and (2.4.4) we have now for Re s large enough



PRINCIPAL L-FUNCTIONS 69
Z(@N, s + 3(n = 1), V)

- j' dk dic j ON(k-1pk’) |det p|*+ D 2H(pk’, k) dyp

(2.6.3)
- jdk dk'_"w(ml, Mg, -y m, s k', K)

< h(mil, mgt, e, mpY K k) [ |det my]s+ @072 @ d*m,.

The functional equations for the representations ¢; and the remarks we made on
h and ¥ imply now

Z(OMN1 — s + 3(n — 1), fV) = Hr(s, 0 P)Z(D, s + 3(n — 1), f).

This concludes the proof of (2.3).
(2.7) Again let the notations be as in (2.3).
From (2.3) applied to & and & we get

(271) L(S, &) = l:[L(S, 0';')’ L(S’ g) = UL(S, 51)
Then the last assertion of (2.3) reads
(2.7.2) . &5, 9) = IleGs, 02, ).

Let z be an irreducible component of &; then any coefficient of 7 is a coefficient of
€ and # is an irreducible component of &. It follows that Proposition (1.2) is true
for (z, ). Moreover

(2.7.3) I(x) = 1§), L&) < I&), 1(s,7, ¢) = (s, & ¢).

Thus there are two polynomials P, P in C[X] such that

(274 L(s, ) = P(g9)L(s, &), L(s, #) = P(g9)L(s, &),  PO) = P(0) = 1.
Note that P(g—) divides L(s, £)7! in C[g—5]. Moreover

(s 7 ) = 15,7, ) —HET__ (s, ¢, g) L8 OPE)

275 Ll =57 L( ~ s, HP(g)
= 6 ) i

Since the e-factors are units of the ring C[g—*, ¢°], we find that

(2.7.6) P(X) =TI - a;X), P(X) =110 - a;¢X).

(2.8) In general, if 7 is an arbitrary irreducible admissible representation of G,,,
it is a component of an induced representation of the form (2.1.4) where the ¢, are
cuspidal. Since (1.2) is true for each g, ((1.2.5)), it is true for (¢, §) ((2.3)) and thus
for (z, 7). So (1.2) is completely proved.

3. Computation of the L-factor. We have established (1.2) for any irreducible
admissible representation z of G,; we also know 7(s, z, ¢) ((2.7.2)). It remains to
compute the L-factor.
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(3.1) Square-integrable representations. We have seen that if z is cuspidal then
L(s,z) = lunlessn = 1 and # = «¢, in which case

3.1.1) L(s,z) = (1—g=)7L

We now compute L(s, #) when 7 is essentially square-integrable. Recall that 7 is
square-integrable if it admits a central character @ and its coefficients (which
transform under w) are square-integrable modulo the center. A representation 7z is
essentially square-integrable if it has the form = = zy ® a* where z, is square-
integrable and ¢ real. We now review the work of Bernstein and Zevelenski on the
construction of such representations.

Let r be a divisor of # so that n = jr. Let P be the standard parabolic subgroup of
G, of type (J, j, ---, j). Let also 7 be a cuspidal representation of G,. Set for1 <i <
r,0; = ¢ ® a¢~1. Then the induced representation

(312) e = I(G, P, 01,02, ***, o'r)

admits a unique essentially square-integrable component 7. All essentiélly square-
integrable representations = are obtained in this way and r, ¢ are uniquely deter-
mined by 7.

PROPOSITION (3.1.3). With the above notations L(s, ©) = L(s, 7).

Indeed suppose L(s, 7) = 1. Then L(s, g;) = 1 and by (2.7.1) L(s, §) = 1. By
(2.7.4) we have then L(s, ) = 1. Suppose now L(s, 7) # 1. Thenj= 1, r = n,
7 = a' and our assertion is nothing but Proposition (7.11) of [R.G.-H.J.].

REeMARK (3.1.4). If z is square-integrable then the poles of L(s, z) are in the
half-plane Re(s) < 0. This follows from (3.1.3) or from Proposition (1.3) of
[R.G.-H.J.].

(3.2) Tempered representations. Let again P be a parabolic subgroup of type
(ny, ny, ..., n,). Let now o; be a square-integrable representation of G, . Then it is
well known that the induced representation

(321) T = I(Ga P’ 01,09, **°» o'r)

is irreducible (cf. for instance [H.J. 2]). The irreducible representations of this type
are precisely the fempered ones. Note that if z is equivalent to another representa-
tion

(3.2.2) x' = IG, P'; 01,02 -, 0,)

where the ¢; are square-integrable, then P’ and P are associate. More precisely
r=r', P= MUp, P= M'Up., and there is an inner automorphism of G, taking
Mto M’ and ¢ = Xg; to ¢’ = Xo}; in other words one passes from (M, (¢,)) to
(M’, (¢)) by a permutation of the diagonal blocks of M and M. Conversely if
P’ and the g’ are related to P and the g, in this way, then z' is equivalent to z.

By (2.3),

L(s, 7)) = HL(S, o), L(s, %)= HL(S, G,),

323
( ) G(S, T, ¢) = 1:[5(3’ Oi ¢)
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REMARK (3.2.4). It follows from (3.2.3) and (3.1.4) that the poles of L(s, =) for
« tempered are contained in the half-plane Re(s) < 0.

A representation z is said to be essentially tempered if it has the form z =
o ® of where 7 is tempered and ¢ is real. Then

(3.2.5) L(s, ) = L(s + t, mo)-

(3.3) Langlands construction. We now review the work of Silberger and Wallach
which extends the results of Langlands to the p-adic case.

Let 0 = MU, be a parabolic subgroup of type (py, p, -+, p,) and for each i,
1 £ i £ r,7;anirreducible essentially tempered representation of G,,.. Set 7 = X ;.
Then ¢; = 7,9 ® a’ where z,q is tempered and ¢; real. We assume that

(3.3.1) B>ty > e >0
Then the induced representation
(332) n= I(G, Q; T1>T2 "% 7r)

has a largest proper subrepresentation ' (possibly {0}); the irreducible representa-
tion 7 = /7’ is noted

(333) T = J(G’ Py, 79 00 Tr)'

Every irreducible representation z has the form (3.3.3) where P (standard) and the
7, are uniquely determined.

The space ¥’ of ' may be described explicitly. Let W be the space of ¢ and W
the space of 7. Then V"’ is the space of F in the space ¥ of & such that

(3.3.9) j (F(ig),#>di =0, ¥$eW,geG,

The integral is absolutely convergent and extended to U = Uy = U, where
Q0 = tQ is the parabolic subgroup opposed to Q. It easily follows that the coef-
ficients of 7 can be obtained by integrals similar to (2.2.4). Namely let H: G, x
G, — C be a function satisfying the following properties:

(3.3.5) H(uymgy, iizmgy) = H(gy, 8), € Ug, iz Ug,me My;

(3.3.6) for any g, g; the function m — H(mg;, g) is a
coefficient of 7 ® 0%?;

(3.3.7) His K, x K, finite on the right.
Then the function f defined by the convergent integral

(3.3.8) fle) = LM H(hg, ) dh = j | H kg, k) de da

is a coefficient of 7 and all coefficients of 7 can be obtained in this way for suitable
H (see (3.6.6) and (3.6.7) for convergence questions).

Instead. of Q we may consider Q. Then if condition (3.3.1) is replaced by the
similar condition with the inequalities reversed, the representation analogous to
(3.3.3) is defined. For instance the quotient
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(3.3.9) n' =JG, Q; %, T o, Ty)
of the induced representation
(3.3.10) 7 =IG,Q;%, T2 -, Ty)

is defined. Its coefficients are given by integrals (3.3.8) where H satisfies (3.1.5)-
(3.1.7) with (Q, 7) instead of (Q, 7).

In particular suppose f'is the coefficient of z defined by (3.3.8) where H satisfies
(3.3.5)—(3.3.7) for (Q, 7). Then

(3.3.11) M) = j H(hg, k) dh,
MG

with H(gy, g2) = H(gs, g1). But H indeed satisfies (3.3.5)-(3.3.7) for (Q, 7). Thus
fV is acoefficient of z’ and
(3.3.12) ' = 7.

Of course Q is also conjugate to the standard parabolic subgroup Q' of type
(n,, n,_1, -+, ny) so that
(3.3.13) g=x =JG, Q; %, Fro1s s T1)-

(3.4) THEOREM. Let the notations be as in (3.3). Then

L(S, T) = HL(S, 75 L(S, ﬁ') = HL(S, i':1'),
&(s, ., ¢) = Ile(s, 75, ¢).

It is enough to prove the assertion relative to L(s, z); indeed the one for L(s, 7)
can be obtained by exchanging z and 7 and the last assertion follows then from
(2.7) and (cf. (2.3)) 7(s, 9, ¢) = I1; 7(s, 7i, ¢). The proof will occupy the rest of this
section and (3.5). By (2.3) and (2.7) there are polynomials P and P such that

L(s,m) = P(qITIL(s, 7)), s, ®) = P(g™)ITLGs, 7))

It follows from (3.2.4) and (3.3.1) that L(s,7;)~! and [[ L(1 —s, 7;)! are relatively
prime. Thus P(g—) is prime to L(s, ;)1 ((2.7.5)). So if P # 1 then

(3.4.1) Il L(s,z)

2=i=r
is not in I(z). Therefore it will suffice to show that (3.4.1) is indeed in I(z).
(3.5) The identity

(3.5.1) L(s,7) = 1S]]s L(s, 7;)

is trivial for r = 1. Assuming it is true for r — 1, let us prove it for r. As we have
just seen, it suffices to show (3.4.1) is in I(x).

Set n; = py, ny = p; + =+ + p,. Let Q' be the parabolic subgroup of type
(p2» -, p,) in G,,. Then the representation

(3.5.2) g9 = J(ans Ql9 T2 71‘)

is defined. Set also ¢; = 71,0 = 07 X 02 and let P be the parabolic subgroup of
type (ny, nz) in G,,. Then 7 is actually a quotient of
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(3.5.3) ¢ = I(G, P; 0y, 02).

More precisely it is easy to see that the coefficients of z are given by the integrals
(3.3.8) where H is any function satisfying (3.3.5)-(3.3.7) with (P, ¢) instead of

(@, 7).

If fis a coefficient of 7 defined in this way, then
Z(D,s + 3(n — 1), 1)

— [ faean | . |det g2 0 g H g, k) d,
where # is integrated over U = Up. This is also

fj dk dk’ jj Idet m 1|s+(n1—1)/2 [det m2|s+(nz—l)/2

(3.5.5) 5P<0 mz> 12 [(g’l ?nz)k’,k}d"ml d*my,

A, L ¥

Here m; ranges over G,. We are going to see that given @, € #(n; x ny, F) and a
coefficient f; of ¢ there are H and @ so that Z(®,, s +3(n, — 1), f3) is equal to
(3.5.5). Since, by the induction hypothesis, L(s, o) is equal to (3.4.1), it will follow
that (3.4.1) belongs to I(z) which will conclude the proof.

There is a coefficient f; of z; and a @, in #(n; x ny, F) with support in a compact
neighborhood of e such that

(356) Z(@las + %(nl - l)afl) =L

There are also @, € #(n; x ny, F), Oy € $(ny x ny, F), with supports in a neigh-
borhood of 0 so that the function @ € #(n x n, F) defined by

(3.5.4)

(3.57) o7 )= m)PL0)0n() Olrms)
satisfies

my y _
(3.5.8) jq)[xml g + xy} dx dy = ©y(my) Dy(my).
There are also two K-finite functions & and & on K such that
(3.5.9) jj O(k1zk') E(k)E'(K') dk dk' = D(2).
Then:

Z(q)Z’ s+ %(n - l)sz)

= 5 j |det m lls+(n1—l)/2 |det mz|s+(nz—1)/2 fi(my) fo(my)

3.5.10
©:310) . d myd*m, ” L)L (k') dk di’

— y '
T )i o
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The proof is then finished as in (2.5). Namely let dk and dh’ be the normalized
Haar measures on K (] P and K (| P respectively. Forhe K | P,h' € K (| P set

(50 k(i)

then (3.5.10) is also equal to

jj dk dk’ jj |det m |5+ D72 | det my|s+ D72

3.5.11 oM 0 )12 [’”10 } x

TG, % )]
#{(G" o ]

(3.5.12) ,
= ol O V7| [ et e fihmiti fothomati ) i
0 my

where

There is H satisfying (3.3.5)-(3.3.7) for (P, ¢) so that

(3.5.13) H[(6"1 312>k’, k] - Hl[(g’l 312), , k'].

Comparing (3.5.11) to (3.5.5) we obtain our assertion.

(3.6) Unramified representations. Suppose = is unramified, that is contains
the unit representation of K. Then B, denoting the parabolic subgroup of type
(1,1,1, ---, 1), there are u; € C so that 7 is the unique unramified component of

3.6.1) & = I(G, B,; p1, 2> > thn)s i = ot

We may even assume #; = U, = --- = u,. Changing notations we may write the
n-tuple of the y; in the form

1 1
(v%’ Vg, =, V”v v%, y%, ey ))72‘2’ (XX v’l” vé, ceey vzr)

where n=ny + ny + --- + n,,vi = a'iA4, A4 is a character, ¢; isreal and #; > #,
> -« > t,. Thent; = I(G,, B,;v{, v}, ---, v},) is an essentially tempered unramified
representation of G,,; and in fact

(3.6.2) = J(G, Q; 71,72 "5 T,)s

if Q is the parabolic subgroup of type (n;, ny, -+, n,). This follows from an explicit
computation: if H satisfies the conditions (3.3.5)-(3.3.7) for (Q, X r;) and
H(k, k') = 1 then

(3.6.3) j H(, €) dii # 0.

Thus the “J-component” of y = I(G, Q; 7y, 73, -+, 7,) is unramified; since § = y we
arrive at (3.6.2).
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Thus
L(S, 7’:) = ]:[L(S9 ﬂt’)’ L(Sa 7?) = HL(S’ ﬂ;l)’

(3.64) e(s, m, @) = He(s, ui» ) (= 1if the exponent of ¢ is zero).
For more precise results see [R.G.-H.J., §6].

REMARK (3.6.5). Let the notations be as in (2.3). Suppose ¢; is irreducible un-
ramified. Then & admits a unique unramified component z. It easily follows from
(3.6.4) that L(s, 7) = [IL(s, 0;) with similar relations for L(s, %) and e.

REMARK (3.6.6). Let © be a tempered representation of G,. Let p, =
I(G,, B,; 1,1, ---, 1) and 5, be the spherical function attached to p. Then any co-
efficient of # is majorized by a multiple of 5. Let the notations be now as in (3.3).
Then the coefficients of z; are majorized by a multiple of 5,; ® a*. Moreover if H
satisfies (3.3.5)—(3.3.7) for (Q, 7) then |H| < cH, where H, satisfies (3.3.5) and

Ho(mk, k') = 5¥4m) []5,(m)).

Thus as far as convergence is concerned we may replace z; by p,, ® o' and H by
H, > 0. Together with the next lemma, this takes care of all problems of conver-
gence.

Lemma (3.6.7). If Q is a bounded set of &(n x n, F), then there is ®y = 0 in
SL(n x n, F) so that Dy(k1xky) = Dy(x) for k; € K and |®| < @,.

We may assume that Q contains also all functions x — @(k;xk,) with @ € Q.
Then there is @; = 0 so that |@| < @, for all @ in Q [A.W. 1, Lemma 5]. It suffices
to take @y(x) = [[@,(kixk,) dk, dk, where dk; is the normalized Haar measure on K.

(3.7) According to “Langlands’ philosophy” there should be a “natural bijec-
tion” ¢ — 7(o) between the n-dimensional semisimple representations of the Weil-
Deligne group W and the irreducible admissible representations of G,(F). More-
over, one should have for 7 = z(s)

L(s, ©) = L(s, 0), e(S, T ¢) = E(S, g, ¢):
w(o)~ = n(d), 7o ® y) = n(o) ® -

It is clear that if the map o — 7(g) could be defined for the irreducible representa-
tions of the Weil group, then the conjecture would be proved (cf. §5 below).

4. Local archimedean theory. In §8§4, 5 the ground field F is local archimedean.

(4.1) We let K, be O(n, R) if F = R and U(n) if F = C. We donote by &, the Lie
algebra of the real Lie group G,(F). We consider only admissible representations of
the pair (8,, K,)(as in [N.W.]) although we will often allow ourselves to speak of a
representation of the group G,(F); in any case, we assume the reader to be thor-
oughly familiar with the relation between representations of the group G,(F) and
of the pair (&,, K,,).

Let z be an admissible representation of (®,, K,,); then one can define the con-
tragredient representation 7%, the coefficients of z, and its central quasi-character,
even though 7z is not a representation of the group (cf. [H.J.-R.L., §§5, 6]). Again
if fis a coefficient of z then /' ((1.1.2)) is a coeflicient of 7.
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As in the nonarchimedean case let (p x ¢, F)be the space of Schwartz func-
tions on M(p x g, F). We also introduce the subspace &y = Fy(p x g, F) of
functions @ of the form (P being a polynomial),

O(x) = P(x;))exp(—z 1 x%) if F = R,
Q)(z) = P(Zij’ Zij)exp(_zﬂz Z,-jZ,-,-), ifF = C.

We can consider, for a given 7z, the integrals (1.1.3) where @ is in (p x g, F) and
fis a coefficient of 7.

(4.2) PROPOSITION. Suppose m is an irreducible admissible representation of
(6, K,).

(1) There is sy so that the integrals (1.1.3) converge absolutely in the half-plane
Re(s) > s.

(2) For © in $y(n x n, F), the integrals are meromorphic functions of s in the whole
complex plane. More precisely they can be written as polynomials in s times a fixed
meromorphic function of s.

(3) Let ¢ # 1 be an additive character of F; there is a meromorphic function
7(8, 7, ¢) so that, for all coefficients fof w and all ® € Fo(n x n, F),

Z(@N1 — s+ 3 — 1), fV) = 1(s, 7, ))Z(D, 5, ).
Again @" is defined by (1.2.4). If @ is in Fo(n x n, F) and ¢ is defined by

¢(x) = exp(+2izx), if F= R,
(z) = exp[+2in(z + 2)], if F=C,

then @M is still in &y; the left-hand side of (4.2.3) has then a meaning by (4.2.2)
applied to 7. If ¢ is not given by (4.2.4) then some adjustment has to be made,
that we leave to the reader (cf. (1.3.11), (1.3.12)). From now on, we assume ¢ is
given by (4.2.4).

ExaMPLE (4.2.5). If n = 1, then x is just a quasi-character of F* and (4.2) is
proved in [J.T.] or [A.W. 2].

(4.3) The proof of Proposition (4.2) will be given below in (4.4). For the time
being, we derive some simple consequences of (4.2).

By Lemma (3.6.7), the convergence of (1.1.3) for Re s > s;is actually uniform
for @ in a bounded set; thus, for Re s > s,

4.3.1) O Z(9,s.f)

is a distribution, depending holomorphically on s. Since &y(n x n, F) is dense in
&L(n x n, F), it follows that if f # O then there is at least a @ € & so that Z(9, s, f)
# 0. ‘

Suppose (4.2.2) has been proved. Let L(s) be a meromorphic function of s so
that, for all @ in %y, Z(®, s + 4(n — 1), f)/L(s) is a polynomial; let also / be the
subvector space of C[s] spanned by those ratios. By what we have just seen I # {0}.
Moreover if @ is in &, so is the function @’ defined by

4.2.4)

(43.2) '(x) = % O(xe™)|;o-
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Let w be the central quasi-character of z; if we differentiate with respect to ¢ the
identity

2,5 + 31— 1.f) = [ 0e)f(o]det xfrD2ax
4.33)

w(e")exp[— ts — % (n-— 1)}

and then set ¢+ = 0, we arrive at a relation of the form
4.3.4) (as+b)Z@,s + n— 1, 1)+ Z(@,s + 3(n — 1), f) =0, a#0.

This shows that 7 is an ideal. Let Py be a generator of I and L(s, w) = Py(s) L(s).
We see that the ratios Z(®, s + 3(n — 1), f)/L(s, =) are again polynomials, but this
time they span C[s] as a vector space. Up to multiplication by a constant, these
properties characterize L(s, ).

Assume now (4.2) proved for the pairs(z, 7). Then 7 is uniquely determined and
one can define a factor ¢ as in (1.3.5); then the functional equation (4.2.3) reads as
in (1.3.6). In view of the definition of the L-factors, this implies that both e(s, z, ¢)
and its inverse are in C[s]. Thus e(s, 7, ¢) is just a constant if ¢ is given by(4.2.4);
otherwise it is an exponential factor ((1.3.9)).

REMARK (4.3.5). For the time being the L- and e-factors are defined up to muiti-
plication by constants; of course these constants are related since y is intrinsically
defined. For n = 1, one may take the factors to be those given in [J.T.1, 2].

REMARK (4.3.6). Relations (1.3.9)—(1.3.12) apply to the archimedean case.

(4.4). Let the notations be as in (2.1), the ground field F being now R or C; it
goes without saying that g; is now an admissible representation of (&,, K,,). The
induced representation & ((2.1.4)) can still be defined [N.W.] and its coeflicients
are given by the rule of (2.2), the only difference being that in (2.2.2) g; must be
in K, and in (2.2.3) H must be C* on G, X G,. The remarks made before (2.3)
apply and, as in (2.3), we have:

PROPOSITION (4.4.1). With the notations of (2.1) suppose that each o; admits a
central quasi-character and the assertions of (4.2) are true for each pair (o;, 6;)-
Then they are true for (£, ). Moreover, (s, &, ¢) = [1,;7(s, 6;, ¢) and one can take

L(S, E) = ];[L(S, 0','), L(S, é) = I:IL(S, 0",'),
e(s, &, ¢) = ]]e(s, i ).

The proof is similar to the proof of (2.3). It suffices to observe that if @ is
in &y(n x n; F) the functions x — @(k,xk,), k; € K,, span a finite dimensional
vector space of &, and for each k, k' in K, the functions (2.4.2) belong to the space
® Fo(n; x ny, F).

Notations being as in (4.4.1), let 7 be an irreducible component of &. Then any
coefficient of r is a coefficient of & and # is a component of &. Thus (4.2) is true for
(m, %). More precisely there are polynomials R and R such that

(4.4.2) L(s, 7) = ROIIL(s, 05), L(s, 7) = R&I]L(s, 6)
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while

(44.3) (s, 7, §) = Ur(s, i ).

Since (s, 7, ¢) and (s, g, ¢) are constants R and R have the form

4.4.4) RG) = [[(s = 5), R(s) = cH(l -5 —5).

i
Finally any given irreducible admissible representation z of G, is a component

of some induced representation & as in (4.4.1) with n; = 1. Since (4.2) is then true
for each (g;, G;), it is true for (z, %) and (4.2) is proved.

(4.5) ProPOSITION. For all s, L(s, ) # 0.

ProOOF. Let 7 be an irreducible admissible representation of G, so that z is an
irreducible representation of some induced representation & as in (4.4.1) with
n; = 1. We first show that for any @ in #(n x n, F) the ratio

4.5.1) Z(D,s + 3(n — 1), f)/L(s, )

continues to an entire function of s.

Indeed let sy be such that for Re(s) > sq (resp. Re(s) < 1 — sp) the integrals
Z(®, s + 3(n — 1), f)(resp. Z(D, 1 — s + 4(n — 1), fV)) converge absolutely.
Select sy, 55 such that sy < 57 < s,. Let also Q be a polynomial such that Q(s)L(s, &)
has no pole in the strip 1 — 5, < Re(s) < s,. Let @, be a sequence of %, converg-
ing to some element @ of &. Then, for a given f and a given polynomial R, the
following limits are uniform in the domain s; < Re(s) < s;:

4.5.2) .}i+m R(S)Z(D;, s + 3(n — 1), f) = R(HZ(D,s + 3(n — 1), f),
4.5.3) Jim RS)Z(®: ~ 0,5 + 3 = 1), f) = 0.

Similarly ¢} — @} — 0 so that, uniformly in the domain1 — s, < Re(s) = 1 — sy,
4.5.4) lim R()Z(P — O\ 1 — s+ 3(n — 1), fV) = 0.

i, j—00
Indeed by using repeatedly (4.3.4) one can reduce these assertions to the case R =

1; they are then obvious.
On the other hand,

OZ(®; — 0,5 + 3(n — 1), )
= o5& D QOZ@) — 01— 5 + $a = DS,

The classical formula

T+ 1Y) o | o
TeEW= bl (- v

shows that Q(s)L(s, &)/L(1 — s, &) is bounded by a polynomial in the previous
strip. Thus we also find, uniformly for 1 — s, < Re(s) = 1 — sy,

4.5.5) lim Q()Z(0; — B;, 5 + 3(n = 1), [)=0.
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Now fix fand let ¢ > 0 be given; choose N so that fori,j = N
|Q(S)Z(¢: - q)j’ s + %(n - 1)3f| é g,

for s; < Re(s) < s;or1l — s, < Re(s) =1 — 5,. But now

OS)Z(D; — j s + 3(n — 1), f) = Q)R()L(s, §)

where R is another polynomial. Since L(s, &) decreases rapidly, on any vertical
strips, we find that given (i, ) there is M so that, for [Im(s)| = M,

(4.5.6) |0()Z(@; — 0,5 + 3(n — 1), f)| S e.

Thus by the maximum principle (4.5.6) is satisfied for i, j = Nand 1 — s, < Re(s)
< 5. It follows that Q(s)Z(®;, s + 3(n — 1), f)is a Cauchy sequence for the topo-
logy of uniform convergence on the strip 1 — s, < Re(s) =< s,. Its limit Z(s) is
holomorphic on 1 — s, < Re(s) < s, and coincides with Q(s)Z(®, s + 3(n — 1), 1)
on s; < Re(s) < s,. Since s, is arbitrarily large the holomorphy of (4.5.1) follows.

Suppose now L(sg, z) = 0 and f # 0. Then for each @, the meromorphic func-
tion Z(®, s + 3(n — 1), f) vanishes at sy; but if @ has compact support contained
in G, then Z(®, s + 4(n — 1), f) is defined for all s by the convergent integral
(1.1.3). So we find that (1.1.3) vanishes for s = sy and @ € C(G,); therefore f = 0,
a contradiction. Thus I(sy, ) # 0. Q.E.D.

COROLLARY (4.5.8). Suppose & is as in (4.4.1) and 7 is an irreducible component of
&. Let R and R be as in (4.4.2). Then if s; is a zero of order m of R (resp. R) it is a
pole of order = m of L(s, &) (resp. L(s, §)).

5. Computation of the L-factor; archimedean case. Recall there is a “‘natural
bijection” A — 7(A) between the set of classes of semisimple representations of the
Weil group W of degree n and the admissible irreducible representations of G,(F)
([R.L.], [A.K.-G.Z), [N.W.]). In particular z(2)~ = z(A).

(5.1) THEOREM. For any A of degree n, let 7w be n(R). Then
L(s,n) = L(s, D),  L(s, #) = L(s, D),
e(s, m, ) = e(s, 4, ¢).

The proof of this theorem will occupy all of §5. Since the L-factor has not been
normalized, it would be more correct to say that one can take L(s, z) to be L(s, 1)
and that

765, @, §) = (s, A, Q)L — s, D)/L(s, A).

(5.2) Square-integrable representations. Suppose A is irreducible. Then z(R) is
essentially square-integrable and conversely. More precisely, if # = 1 then 1 is a
quasi-character of F*, A = x, and our assertion follows from the definition of the
factors L and ¢ for A. Suppose n # 1;thenn = 2 and our assertion has been proved
in [H.J.-R.L., Theorem (13.1), Lemmas (13.24) and (5.17)]; actually in this case, the
proof'is a refinement of (4.4.1).

(5.3) Tempered representations. Suppose A is unitary; then z is tempered and
conversely. More precisely A = @ A; where A;is irreducible of degree n;. Set ;=



80 HERVE JACQUET

w(A;). Then = I(G, P; 04, 0, -+, 0,) Where P is the parabolic subgroup of type
(nl, Ng, -, l’l,). By (441)

(5.3.1) L(s, ©) = [1L(s, o) = [1L(s, 2) = L(s, 2).

The factors L(s, %) and e(s, 7, ¢) are computed similarly so our assertion follows
again.

The case of the essentially tempered representations follows from (1.3.11),
(1.3.12), and the relation

(5.3.2) TA® x) = 7(A) ® y.

ReMARK (5.3.3). It follows from (5.3.1) that, when # is tempered, the poles of
L(s, =) are in the half-plane Re(s) < 0.

(5.4) General case. In general, we may write A = @ p,, @, = w0 ® afi where
0 is unitary of degree p;, ¢; real. We set then 7,9 = #(y;,0), 7; = 7(y) so that by
(5.3.2) 7; = 7;0 ® a%. We may assume (3.3.1) is satisfied. Then if Q is the para-
bolic subgroup of type (p;, ps, ---, p,) the induced representation 7 of (3.3.2) admits
a unique irreducible quotient noted as in (3.3.3). That quotientis 7 = 7(4).

By (4.4.1) and (5.3) we already know that

(s, @, @) = I:[T(s, i &) = &5, A Q)L — 5, DL(s, A).

So it will suffice to compute L(s, 7). For exchanging then A and A we will get L(s, 7#)
(since # = z(4)) and the ¢-factor from the y-factor. So it will suffice to show that
L(s, w) = [11i<, L(s, 7;). This is trivial if r = 1. So we may assume r > 1 and our
assertion true for r — 1.

A priori, we have

L(s,7) = POIIL(s, 7)), L(s, %) = P(s)[1L(s, 7))

where P and P are polynomials related by (4.4.4). Let s, be a zero of order u of P.
By (4.5.8) it is a pole of order = u of [];L(s, 7;) and by (4.4.4) a pole of order = u
of TI;L(1 — s, %;). But L(s, 7;) and []L(1 — s, 7;) cannot have a common pole
((5.3.2), (5.3.3), (3.3.1)). Thus it will suffice to show that any pole of order u of
MMize L(s, 7)) = Il;22 L(s, ;) which is not a pole of L(s, 7;) is a pole of order = u
of L(s, z). This will be proved in (5.5) and (5.6).

(5.5) Let now the notations be as in (3.5). Soset ny, = p;, 0y =n — ny, 07 =
(@) = 71,02 = (s @ ... ® g,), 0= 01 x 2. By the induction hypothesis

(5.5.1) L(s, 03) = zél'[g L(s, ).

Again 7 is a quotient of (3.5.3) where P = MU is the parabolic subgroup of type
(ny, ny). The coefficients of 7 are given by the absolutely convergent integrals

(5.5.2) f(g) = _[M\G Hhg, h) dh = jm H(ikg, k) dk

where U = Up, P = 'Pand H: G, x G, — C is any function satisfying the follow-
ing properties:

(5.5.3) H(uymg,, imgy) = H(g1,82), wmeUizeUmeM;
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(5.5.4) for k; € K, the function m — H(mky, k) is a coefficient of ¢ ® J¥%,
(5.5.5) His C~ and K, x K, finite on the right.

This being so if fis given by (5.5.2) then Z(®, s + 3(n — 1), ) is for Re(s) large
enough, equal to (3.5.5) (convergence questions are left to the reader since they can
be handled by (3.6.6) and (3.6.7)). Conversely let @ € #(n x n, F) and f; a coeffi-
cient of g; be given. Set

A((D, s, fl’ fz) — j ]det mlls+(n1—1)/2|det mzls+(nz—1)/z fl (ml)
(5.5.6)
folmy) a)[(ml y )] d*my d*my dx dy.

xmy; my + xy

This multiple integral converges absolutely if Re(s) is large enough. We are going
to show that

(5.5.7) For any @, the quotient A(D, s, f1, f2)/L(s, @) continues to an entire function
of s. If ® is in &Py, it is a polynomial in s.

Assume first @ is in Fy(n x n, F). Then there are two K-finite functions & and &
on K, such that (3.5.9)is satisfied. Let dh be the normalized Haar measure on the
compactgroupK | P = K | P = K (| M; for hin this group write

0 hy
Then there is a function H satisfying (5.5.3)—(5.5.5) such that

H|(§" ¥

= (G ) [ [ Aamihi) o (hamahi 236 (k) i

(5.58) h=(0h)  mekK

(5.5.9)

If fis the coefficient of 7 corresponding to H by (5.5.2) we get, as in (3.5),

(5.5.10) AW, s, f1, f2) = Z(D, s + 3(n—1), f).

This establishes (5.5.7) for @ in &,.

Let us note also that there is for 4 a relation similar to (4.3.4) where @' is defined
by:

(my x \ _ d <m1e—‘ x )l
(5.5.11) o(7 mg) (AR
and is-in % if @ is. Thus the product of 4 by any polynomial is an integral of the
same type with @ replaced by @,. If @is in & so is @;. Moreover @ @, is continuous.
We are going to see now that there is a functional equation

(5.5.12) B@MN1 — s+ 3(n — 1), fY, fY) = 1(s, 7, Q) AD, s, f1, f2)

where B is obtained by replacing in the definition of A the pair (P, ¢) by the pair
(P, 6). It is then clear that (5.5.7) can be proved as the holomorphy of (4.5.1) (cf.
proof of (4.5)).

To begin with it is clear that 7 can be obtained from (P, §) as = is obtained from
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(P, 0). (Cf.(3.3).) More precisely if fis a coefficient of z given by(5.5.2) then fVis
given by (3.3.11) and H (loc. cit.) satisfies (5.5.3)—(5.5.5) for (P, ).
This being so set

B(¢a safl’f‘Z) = .“ |det ml“"'(”l‘l)/zldet m2|5+(”2_1)/2
(5.5.13)
Si(my) fo(mg) Q)Kml ; rx %’1’:2)} d*my d*my dx dy,

each time f; is a coefficient of 4,. Then for @ € &, (5.5.7) applies to B with L(s, %)
instead of L(s, 7). Now let @ € &, and a coefficient f; of g; be given; choose &, &
and H as above so that (5.5.9) is satisfied as well as (5.5.10) where f is given by
(5.5.2). Then

_f j PNE-12kE (k') dk die’ = D).

Moreover H~ being given as in (3.3.11) by H(gy, g2) = H(gs, g1), e find

ﬁRgzl ?flz>k”v k]
= (" o) [ [t ihamatis e e ey i

Since fV is given by (3.3.11) we get
B@N 1-s5,fY,f¥) = Z(@"1 — 5 + 3(n — 1), fY).

Comparing with (5.5.10) this concludes the proof of (5.5.12) and (5.5.7).

(5.6) Let o be the space of functions on X = G, x {M(ny x n,, F)} which, in an
obvious sense, are of compact support with respect to the first variable and of
Schwartz type with respect to the second variable. We give to o the obvious topolo-
gy. In particular C°(X) is a dense subset of /. On the other hand we may regard
&/ as a subspace of thespace of Schwartz functionson {M (n; x ny, F)} x
{M(n; x ny, F)}. For ¢ in CX(G,), §1z in CP(M(ny x ny, F)), @y in
C2(M (ny x ny, F)), and @, in L(n; x n,, F) we may set

G61  Wom,x) = 0y0m) [ PuGm)Pu()Bo(xs + x9) dv dy.

We let o7, be the subspace of o/ spanned by these functions; it is easily checked
that 7, contains a dense subspace of C°(X) so is dense in .o7.
For ¥ in o and coefficients f}, f5 of g1, g, We set

U, s fuf) = II U(my, my) |det my| s+ D72 |det my|s+ a1/

- filmy) fo(mg) d*my d*ms.
The integral converges absolutely for Re(s) large enough. By (5.5.7) we know that
(5.6.3) For U in ¢, the ratio U, s, 11, f2) /L (s, &) continues to an entire function
of s.

On the other hand, we are going to prove that

(5.6.2)
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(5.6.4) For ¥ in s, the ratio UW, s, f1, f2)/L(s, a2) continues to a holomorphic
function of s. As such, it is a continuous function of U, s) on o7 x C.

Let us observe that the first assertion of (5.6.4) is trivial for ¥ in the (algebraic)
tensor product

(5.6.5) oy = CX(G,) ® L(ny x ny, F).

Forif ¥ = ¥, ® ¥, the ratio is the product of an absolutely convergent integral
by Z(¥y, s + $(ny — 1), f2)/L(s, 03) which is a polynomial.

Moreover assume s, is a pole of order u of L(s, g5); then there are f1, f and ¥'e
&1 so that the ratio of (5.6.4) has a pole of order u at 5. Taking at the moment
(5.6.4) for granted, assume s is not a pole of L(s, ¢;) and is a pole of order < u of
L(s, w). Since &/, is dense in «, it follows from (5.6.3) that the distribution
U(-, s, f1, f2), which depends meromorphically on s, has a pole of order < u at s,.
The same is true of the (scalar) meromorphic functions U, s, fi, f3). By taking
¥ in o7, we get a contradiction. This proves (5.1).

It remains therefore to prove (5.6.4). As noted, the first assertion is trivial for ¥
in o7, the ratio being then the product of a polynomial by a function bounded in
vertical strips. Now there is a relation

(5.6.6) (as + DYU(D, 5, f1, f2) + U@, 5, f1,12) = 0, a#0,

where @' is in &7, if @ is and depends continuously on @. Next introduce for Re s
sufficiently small the integral

V(¢’ S’ f'l’f’z)
= jw’(ml, my) |det my [+ D72 |det mp[15 V72 £ (my) foV(my) d*my d*my.

Then, for ¥ € w7,

V(wAs S’flafZ) = T(S, 02, ¢)U(®a Safl:fZ)'

Again V satisfies a relation like (5.6.6). Finally, «7; is dense in 7. These remarks
being made the proof of (5.6.4) is similar to the proof of the holomorphy of (4.5.1).
This concludes the proof of (5.1).

6. Global theory. The field F is now an A-field.

(6.1) Let 7 = ), &, be an irreducible admissible representation of G,(4); again
« may be a representation of some other object than the group [L.P.S.]. Then
7 = Q7x, Set

(6.1.1) L(s,z) = [1L(s, z,), L(s, #) = [1L(s, 7).

Suppose that the central quasi-character w of  is trivialon F*.Then set

(612) 8(5, 75) = He(sa Tys ¢v)

Here ¢) = [[¢,is a nontrivial character of 4/F; almost all factors in (6.1.2) are one
and the product does not depend on ¢.

(6.2) THEOREM. Suppose r is automorphic. Then the infinite products (6.1.1) con-
verge absolutely in some right half-space. They continue to meromorphic functions of
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s in the whole complex plane. As such they satisfy L(s, n) = e(s, m)L(1 — s, %).
If F is a number field, they have finitely many poles and are bounded at infinity in
vertical strips. If F is a function field whose field of constants has Q elements, they are
rational functions of Q.

Proor. If 7 is cuspidal this is Theorems 3, 4, 5, VII, §6 of [A.W. 2] forn = 1,
and Theorem (13.8) of [R.G.-H.J.] for n > 1. If n > 1 and = is not cuspidal, there
is a standard parabolic subgroup of type (n, n, ---,n,), and, for every i, an irredu-
cible automorphic cuspidal representation g; of G,, such that the following condi-
tions are satisfied: for any place v, 7, is an irreducible component of the induced
representation &, = I(G,, P,; 01, 02y, ***» 0,,)- (Cf. [R.L.].) Thus, for any place v,

L(S, 751)) = P”(S) l__[L(S, 0!',v)a
L(S, 7‘7"1)) = P,,(S) HL(S’ 011',0)’
‘]"(.S', TCys ¢v) = I:.[T(sa 0,09 ¢v)’

where P, is a polynomial in s if F, = R or C, and a polynomial in ¢;* if F, is non-
archimedean with residual field of cardinality ¢,. Moreover, for almost all v, «,
and the ¢, are unramified so that ((3.6.5))

P,=P,=1, &, 7w, ¢,) =1, almost allv.
Thus
L(s,z) = [IP,(s) [1LGs, ),
L(s, #) = ];[F,,(s) I:IL(s, ),

(s, ) = ];[ % ]:[e(s, ;).

Our assertions are then obvious, except the one on the boundedness of L(s, z)in
the number field case, which follows from the Phragmen-Lindel6f principle.
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AUTOMORPHIC L-FUNCTIONS FOR
SYMPLECTIC GROUP GSp(4)

MARK E. NOVODVORSKY*

0. Introduction. The paper represents a talk delivered at the Summer Institute
of the American Mathematical Society at Corvallis in 1977.

Let k be a global field, P the set of its normalized valuations, 4 = [ ,p k, the
adele ring of k, G a reductive algebraic group over k, G, = [[ jep G, the group of
ideles of G, 7 = @),<p 7, a class of isomorphisms of irreducible admissible repre-
sentations of G4, p a finite dimensional representation of Langlands’ dual group
LG. R. P. Langlands [1] defined L-function L(z, p, s) as a certain Euler product,

(01) L(n’ P, S) = pl;IPL(ﬂp, pa S),

convergent for all complex numbers s with sufficiently large real part if z is uni-
tarizable. He conjectured that if 7 is the class of an automorphic representation,
then L(z, p) can be continued to a meromorphic function on the whole complex
plane which satisfies the functional equation

(0'2) L(TC, P, S) = 5(7‘-’ P, S)L(TE*, pa 1 - S)’
7«* being the contragradient representation to 7 and

5(77:3 o, S) —'ﬁl;!)e(ﬂp, 05 S)

another Euler product whose existence is a part of the conjecture. However, the
definition of the local factors L(z,, p, s) depends on a parametrization problem (cf.
Borel’s paper, Automorphic L-function, these PROCEEDINGS, part 2, pp. 27-61)
and, therefore, does not work at present until all the irreducible representations
7, of the groups G, corresponding to nonarchimedean valuations p are of class
1. Therefore, in order to prove Langlands’ conjecture one must first construct the
Euler factors L(z,) and e(z,).

A general approach to this problem was suggested by 1. I. Piatetski-Shapiro [2].
Here we develop the ideas of [2] for the symplectic group G = G Sp(4) and prove
Langlands’ conjecture for the standard 4-dimensional representation p of its Lang-
lands dual group LG = G Sp(4, C). We consider also the group G = G Sp(4) x
GL(2) and prove Langlands’ conjecture for generic cuspidal automorphic repre-
sentations 7 (cf. Piatetski-Shapiro’s paper Multiplicity one theorems, these PRro-

AMS (MOS) subject classifications (1970). Primary 10D10, 22ESS.
*Supported by NSF Grant MCS76-02160A1.
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CEEDINGS, part 1, pp. 209-212) and the standard 8-dimensional representation p
of its Langlands dual group G Sp(4, C) x GL(2, C) (i.e. p is the tensor product
of the standard 4- and 2-dimensional representations of the factors). Our results
are complete only for functional global fields k. For number fields k£ we obtain
meromorphic continuations of these automorphic L-functions but, because of
certain difficulties with archimedean valuations, not the functional equations (0.2).

Since the methods of [2] are based on generalized Whittaker models, we consider
generic and hypercuspidal automorphic representations separately (cf. the quoted
paper of Piatetski-Shapiro).

The results for generic representations of G Sp(4) (§1) can be extended to all split
orthogonal groups of Dynkin type B, (Sp(4) covers SO(5)); in this form they were
announced by the author (for char ¥ > 0) in [10] and [11]. The results for hyper-
cuspidal representations of G Sp(4) (§2) were obtained by I. I. Piatetski-Shapiro
and the author. The results for G Sp(4) x GL(2) (§3) were announced by the author
(for char k > 0) in [12].

In this paper we assume that char & # 2.

1. G Sp(4), !generic representations. Let G ~ G Sp(4) be the group of similitudes
of the bilinear form

-1
-1 0

of four variables over k, Z the subgroup of all upper triangular unipotent matrices
from G, ¢) a nondegenerate! character of the group Z, of ideles of Z which is trivial
on principal ideles Z,, p a nonarchimedean valuation of the field k. The space of all
locally constant complex functions W on the group G, which satisfy the equation

() W(ze) = JOW(E) VzeZ,geG,
is denoted #74(G,); G, acts in this space by right translations. A class z, of isomor-
phisms of irreducible admissible representations of the group G, is called non-
degenerate if it contains the subrepresentation of G, in an irreducible G,-invariant
subspace of #"4(G,); this subspace then is called a Whittaker model of z, and de-
noted by #"y(%,).

THEOREM (I. M. GELFAND, D. A. KAZDAN [3], F. RODIER [4]). A Whittaker model
of a nondegenerate class r, is unique.

Let 7, be a nondegenerate class of isomorphisms of irreducible admissible re-
presentations of the group G,. Its restriction to the center C, of G, is proportional
to a character, denote it w,. In view of the canonical isomorphism of the center C
of the group G Sp(4) and the multiplicative group,

a

a N "

(1.2) C> o aek*,
a

'That is, ¢ is not trivial on the ideles of any horocycle subgroup of Z.
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w, can be considered as a character of k}. The contragradient class z} coincides
with 7, ® wy(o,) where ¢ is the unique homomorphism of G Sp(4) into k* whose
square is determinant (o is the factor of similitude). Therefore, ¥ y(z}) coincides
with the set of functions

(1.3) W*g) = W(g) w,'(04(8)), g€ Gy, WeWyxy)

We introduce the subgroups

24
H= “1 e G}~ GL(1),
1
1
U = [ 1 eG
_1 51 ,
1
and consider the integral
a
(14) £, W,s) = J' LCOl el CON L menymy.
p
1

THEOREM 1. The integral (1.4) is absolutely convergent in a vertical half-plane
Re s > and defines ¢ (W) as a rational function in q,°, q, being the number of ele-
ments in the residue field of the valuation p. All the functions ¢ (W), We W y(x,),
admit a common denominator. There exists a rational in q,,° function y(z,) such that

oW, 5) = 1(@p, ) £ (BIV))*, 1 —5),  WeW (Gy),

10
0
01
(1.5) 5 ‘6.
10
o1 O

We denote by Q,(7,) the polynomial in g,° with constant term 1 which is the com-
mon denominator of smallest degree for functions ¢ (W), W € # y(x,),and define

L(ﬂ:pa S) = [Q(n'p, q—-s)]—l’
&7y, ) = 1(7p, ) Lmy, 8)/ L(m}, 1 — ).

Let 7 = ®),cp 7, be the class of isomorphisms of an automorphic generic
cuspidal representation of the group G,. Then all its nonarchimedean components
7, are nondegenerate and the Euler product

(1.7) L(z,s) = [l Lz, ),
pEP\S

(1.6)

S being the subset of all archimedean valuations from P, is absolutely convergent
in a vertical half-plane Re s > ; it coincides with the Euler product of Langlands
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corresponding to the standard 4-dimensional representation of Langlands’ dual
group LG ~ G Sp(4, C) if k is a functional global field and differs from it by a
meromorphic (in the whole complex plane in s) factor if k is a number field. The
factors e(x,) are of the form ag,* and for almost all p € P\S are identically equal to
1; therefore, the Euler product

(1.8) ez, s) = [1 &y, 5)

PEP\S

is, in fact, finite and defines ¢() as an entire function without zeros.

THEOREM 2. The function L(m) admits meromorphic continuation to the whole
complex plane. If char k = p > 0, then this continuation is a polynomial in ps and
p—* satisfying the functional equation

(1.8) Lz, s) = e(z, s)L(z*,1 — s).

2. G Sp(4), hypercuspidal representations. This case has been investigated in co-
operation with I. I. Piatetski-Shapiro.

For hypercuspidal representations, Whittaker models associated to nondegener-
ate characters of maximal unipotent subgroups do not work, and one has to con-
sider other subgroups and generalized Whittaker models. It is convenient for our
purposes to consider a different realization of the group G = G Sp(4). We choose a
2-dimensional semisimple k-algebra K and a 2-dimensional bilinear skew-sym-
metric form B in 2 variables over K; G can be realized now as the group of simili-
tudes of the form try,,B. Now G contains the subgroup

.1 G ~ {ge GL(2,K):detgek}

of all K-linear transformations from G; the subgroup of all upper triangular uni-
potent matrices from G’ is denoted by U’, the unipotent radical of the normalizer
of U’ in G is denoted by U; U is a 3-dimensional commutative horocycle subgroup
in G. The algebra K has a unique nontrivial k-automorphism

.2) K- B

it induces a k-automorphism of the form trg,, B which is denoted 7, 7 € G. We put

T ={(6 g),ICEK*}C G';

obviously, 7’ is isomorphic to the multiplicative group K* of the algebra K. The
groups G’, U’, and T are normalized by 7.

Let p be a nonarchimedean valuation of the field k. We take a nontrivial charac-
ter y of the factor group U,/U, and a quasi-character &’ of the group 7', whose re-

striction on the subgroup
{emeer=g

is unitary. If & is c-invariant, we continue it to a character & of the group 7,
(2.3) T=TUT" (&) =¢).

If & is not r-invariant, we put
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2.4) T=T, &¢=¢ (=€) # &).
In both cases we define
2.5) Z=T-U {(tu)y=§t) - yw) VteT, ueU,;

Z is an algebraic k-subgroup of G, ¢ is a quasi-character of the group Z,. Asin §1,
we denote by #°4(G,) the set of all complex locally constant functions W on the
group G, satisfying the equation (1.1), and an irreducible admissible subrepresent-
ation of G, in #"; by right translations is called the Whittaker model of its class of
isomorphisms 7, and denoted % y(x,).

THEOREM 3. Every class ©, of isomorphisms of irreducible admissible representa-
tions of the group G is either nondegenerate or has Whittaker model W (w,) for some
algebra K, subgroup T, and character ¢ of the described type; for every fixed ¢ this
model is unique.

REMARK 1. One class r, can have Whittaker models corresponding to several of
the characters ¢ described in §§1 and 2.

REMARK 2. The group T'p = T, U T, is the stabilizer of y in the normalizer of
the group U, in G,; so, y can be lifted to either a character or a 2-dimensional ir-
reducible representation of the group Tp - U,. Theorem 3 can be reformulated as the
theorem of the existence and uniqueness of Whittaker models associated to these
1- and 2-dimensional representations; such reformulation might be preferable
logically but leads to more bulky constructions for Euler factors in case of 2-dimen-
sional representations.

In the case when Z and ¢ are defined by the formula (2.3), the uniqueness part of
Theorem 3 was proven by I. 1. Piatetski-Shapiro and the author [8] and by the au-
thor [9]. For supercuspidal representations z, the uniqueness part of Theorem 3
follows from F. Rodier’s Theorem 1 [5].

Now we put

(2.6) H= {(" 1), re k*} c G' < GLQ, k)

and consider the integral

def

@7 2.5 = | TR I D= 141

THEOREM 4. The integral (2.7) is absolutely convergent in a vertical half-plane
Re s > and defines ¢ (W) as a rational function in q,°. All the functions ¢,(W),
W e W y(rp), admit common denominator.

As in §1, we denote by Q,(z,) the normalized common denominator of the
smallest degree and put

(28 L(zp, 8) = [Q(mp, g7

THEOREM 5. Euler factor Ly(n,) does not depend on the choice of the subgroup Z
and the character  of Z, (particularly, if the class r, is nondegenerate, the factors
L(,) defined in §§1 and 2 coincide).
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Let 7 = @pcp @ be the class of isomorphisms of an automorphic cuspidal
representation of the group G,. Choosing for every nonarchimedean p a Whittaker
model #"y(z,), we obtain Euler factors L(z,) and define

29 Lz, s) = Il Lz, ),
pEP\S

S being the set of archimedean valuations of &; this product is absolutely conver-
gent in a vertical half-plane Re s >, it coincides with Langlands’ Euler product
corresponding to the standard 4-dimensional representation of Langlands’ dual
group LG ~ G Sp(4, C) if k is a functional field, and differs from it by a meromor-
phic (in the whole complex plane in s) factor if £ is a number field.

THEOREM 6. The function L(z) admits meromorphic continuation to the whole
complex plane. If char k = p > 0, then this continuation is a rational in p~ function
satisfying the functional equation

(2.10) Lz, s) = ez, s)L(z*, 1 — s)
where e(z) is an entire function in s without zeros.

In fact, ¢(z) is an Euler product of some factors &(z,) appearing in local func-
tional equations; these equations are rather bulky and will appear in a joint work
with L. L. Piatetski-Shapiro. '

3. G Sp(4) x GL(2), generic representations. In this section we use a modification
of H. Jacquet’s treatment of induced representations applied in [7] to automorphic
L-functions on GL(2) x GL(2).

The subgroups C and Z of GSp(4), the character ¢ of Z,, the space
W 4(G Sp(4, k,)), p nonarchimedean, Whittaker model #"y(z,) for a nondegenerate
class 7, of irreducible admissible representations of G Sp(4, k,), the homomorphism
o, and the character w, in this section are the same as in §1. We define the subgroup

b
3.1 H= {<a g d> € GSp(4), a,b,c,dek,ge GL(2)}

Cc

and also its homomorphisms onto the group GL(2, k):

a b
¢13<C g d)*g,

a b a b
wfe )0

We denote by Z the subgroup of all upper triangular unipotent matrices in
GL(2,k,). It is the image of H (| Z under the homomorphism ¢;, and the kernel

v "\
ST

(3.2)
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of this homomorphism considered on the group (H () Z), belongs to its com-
mutator subgroup; therefore, every character of the group Z, defines under ¢,
a character of Z, which we denote with the same symbol. As in §1, we denote by
W S;(GL(Z, k,)) the space of all locally constant complex functions W satisfying the
equation

(3.3) W(zg) = Y(2)W(g), zeZ,geGL2 ky)

and by #74(%,), %, a class of an infinite-dimensional irreducible admissible repre-
sentations of GL(2, k,), a subrepresentation of this group in #",(GL(2,k,)) which
belongs to 7 ,; such a subrepresentation exists and is unique (cf. H. Jacquet, R. P.
Langlands [6]). We denote by @, the restriction of %, on the center of the group
GL(2, kp); we consider @, as a character of the multiplicative group k3 in view of
the canonical isomorphism

GL(Q2) a("‘ a) S aekt.

The space W y(7}), &3 =~ 7, ® @," (det) being the contragradient representation
to 7,, consists of the functions
(3.4) W*(g) = W(g) w,'(det(g)),  ge GL(2, k).

For every locally constant complex function @ on the plane k, @ k, we define its
Fourier transform

3.5) B(x, y) = j o, D080 ) @ — ), )

b

where « is a fixed nontrivial character of the group A/k of classes of adeles; for
every complex quasi-character y of the multiplicative group k3 we put

(3.6) [, 0, p) = L;, O((0, K)¢oh)) - k) di,  he H,.

If the integral (3.6) is absolutely convergent, then the function f'satisfies, obviously,
the equation

a b a b
(3.7 f<< g >h, 92, ,u) = d™) f(h, D, 1), < g > he H,.
0 d d 0

Therefore, we can consider the integral

(W, W, 0, uy(s),s) = _‘.W(h) W(g1(h) f(hs D, 1) || G2(h) |° dh,
ik, 8) = || &% wlk) @x), Wew (xy), Wewyiy),

(3.8)

and a similar one for g(W*, W*, &, uas), ),
ek, 8) = || £]|% w2 (k) @)

THEOREM 7. The integrals (3.6) and (3.8) are absolutely convergent in a vertical
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half-plane Re s > and define g(W, W, @) and g(W*, W*, (f)) as rational functions
in q,°. There exists a rational in q;° function y(z,, 7,) such that
f(W9 W3 q)9 ﬂl(s)a S) = T(n'p’ ﬁ'p’ S) f(W9 W*9 é, ﬂZ(l - S), 1 - S)
VWe W¢(ﬂp), W € W@(ﬁ'l,), .

All the rational functions g(W, W, ) (for different W e W (x,), W € W §(#,), D)
admit a common denominator.

(3.9)

As in §1, we denote by Q(z,, %,) the normalized common denominator of the
smallest degree in g~ and define

L(zy ® Tp, 5) = [Q(7p, Tpo N7,
&(my @ 7y, 8) = 7(Tps Tp, ) Lmp ® 7p, ) Lmy @ 75, 1 — 5).
If # ® % is the class of isomorphisms of a cuspidal generic irreducible representa-

tion of the group G Sp(4, k) x GL(2,kp), & = Qypep Tp & = &) pep 7 then we
put

(3.10)

L(?‘C ® T, S) = l_[ L(ﬂ:ﬁ ® ﬁ'p; S)a
PEP\S

@.11) ez ® 7 5) =[] &(my ® 7p, 5),
PEP\S

S being the set of archimedean valuations of k. As before, the first product is ab-
solutely convergent in a vertical half-plane Re s >. For a functional field & it
coincides with Langlands’ L-function L(z, p, s) if p is the tensor product of the
standard 4- and 2-dimensional representations of the complex groups G Sp(4, C)
and GL(2, C); for a number field k these L-functions differ by a factor meromor-
phic in the whole complex plane. The second product (3.11) is, actually, finite and
defines e(z ® 7) as an entire function without zeros.

THEOREM 8. The function L(x ® %) admits meromorphic continuation on the
whole complex plane. If char k = p > 0, L(z ® %) is a rational function in p—s
satisfying the equation

3.12) Lz ® 7,5) = e(z ® 7@, s) L(z* ® #*, 1 — ).
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ON LIFTINGS OF HOLOMORPHIC CUSP FORMS

TAKURO SHINTANI

Introduction. In [10], H. Saito calculated the trace of “twisted”” Hecke operators
acting on the space of holomorphic cusp forms with respect to the Hilbert modular
group over a cyclic totally real abelian field of prime degree. He discovered a strik-
ing identity between his “twisted trace formula” and the ordinary trace formula
for the Hecke operators acting on the spaces of elliptic modular forms. Applying
his identity he showed that elliptic modular forms are “lifted” to Hilbert modular
forms (for the origin of “lifting” type results, see [2]). No less significantly, he char-
acterized the space spanned by lifted forms. In the U.S.-Japan symposium *“Ap-
plications of automorphic forms to number theory” which was held at Ann Arbor
in June 1975, the author reported a representation theoretic interpretation and
generalization of Saito’s work (see [13]). Results presented in the author’s talk were
immediately generalized by Langlands in [8]. Moreover, Langlands discovered an
unexpected application of “lifting theory” to the theory of Artin L-functions.

The present paper consists of two sections. In §1, we reproduce (with slight
modifications) what the author presented at Ann Arbor. The second section is
devoted to a few supplementary remarks.

The author wishes to express his hearty thanks to Professor H. Saito, who gave
him detailed expositions of [10] before its publication. Two of the author’s previous
papers [14] and [15] are also motivated by [10].

Notation. For a ring R, R* is the group of units of R. We write G(R) = G =
GL(2, R). For a p-adic field &, a(k) = o, is the ring of integers of k. We denote by
¢ the cardinality of the residue class field of k. For each ¢ € k set d(tx) = a,(t) dx =
t|, dx, where dx is an invariant measure of the additive group of k. For each locally
compact totally disconnected group G, C%(G) is the space of compactly supported,
locally constant functions on G. Let k be a field and F be a field extension of k.
We denote by N the norm mapping from F to k.

1.

1.1. Let k be either a finite algebraic number field or a p-adic field. Let F be a
commutative semisimple algebra over k of prime degree /. We assume that the
group of automorphisms of F over k& contains a cyclic subgroup g of order / gen-
erated by ¢. Then F is isomorphic either to a cyclic field extension of k or to the
direct sum of /-copies of k. Set G = GL(2, F) and G, = GL(2, k). We may regard
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g as a group of automorphisms of G (with the fixed point set G}) in a natural man-
ner. Two elements x and y of Gy are said to be g-twistedly conjugate in Gy if there
exists a g € Gy such that y = goxg~!. We denote by xCr? the set consisting of all
elements of Gr which are g-twistedly conjugate to x in Gr. The set of g-twisted
conjugacy classes in Gy is denoted by %,(Gr). The usual conjugate class in Gy
containing x is denoted by x¢F. For each x € G, set

Nx) = x2"' . x7 % ..x0.x.

It is easy to see that N(g?-xg™1) = gN(x)g ..
We denote by %(G;) the set of conjugacy classes in G,. For the proof of the next
lemma see Lemma 3.4 and Lemma 3.6 of [10].

LeMMA 1 (SAIT0). The notation and assumptions being as above, the mapping
x6r7 s N(x)°F () Gy is an injection from € ,(Gy) into (G,). If F is not a field, the
mapping is a bijection.

In the following, for each ¢ € %,(Gy), we denote by N(c) € ¥(G,) the image of ¢
under the mapping given in Lemma 1. An x € G, is said to be regular if the group
of centralizers of x in G, is a two-dimensional k-torus. We call a conjugate class in
G, regular if it consists of regular elements. A g-twisted conjugacy class ¢ in Gy is
said to be regular if N(c) is regular. We denote by %,(Gy) (resp. ¥'(G,)) the set of
regular g-twisted conjugate classes (resp. regular conjugate classes) of Gp (resp.
Gy).

1.2. We keep the notation in 1.1 and assume that & is a p-adic field. Let G be the
semidirect product of Gy with g. More precisely, Gy is the group with the underly-
ing set g x Gy with the composition rule given by (z, g)(z’, g') = (zz’, g7g")
(z, 7' €g, & &' € Gp). Itis immediate to see (via Lemma 1) that (g, g;) and (g, g2)
are conjugate in Gy if and only if g; and g, are g-twistedly conjugate in Gy. Denote
by G, (resp. Gy) the set of equivalence classes of irreducible admissible unitariz-
able representations of G, (resp. Gy). For each Re Grand z e g, let R be the re-
presentation of Gy given by R*(x) = R(x?). Then R* € G.. Thus, the group g op-
erates on G. Denote by G§ the subset of g-fixed elements of Gy. A representation
of G7 is said to be admissible if its restriction to Gy is admissible. Let R~ be an irre-
ducible admissible unitarizable representation of the group Gz. Asis well known,
the restriction R of R~ to Gy is either irreducible or a direct sum of -mutually
inequivalent irreducible representations of Gr. In the former case R~ is said to be
of the first kind. Assume R~ to be of the first kind and set J, = R~((¢, 1)). Then

1.1 R(g’) = J;'R(g)J,  (V geGp).

Thus R € G§. The relation (1.1) characterizes the operator J, up to a multiplication
by an /th root of unity. Conversely let R € G§. Then there exists a unitary operator
of order / which satisfies (1.1). Hence, R is extended to an admissible irreducible
unitarizable representation R~ of G of the first kind by setting R~((o™, g)) =
J7R(g). For ¢ € C3(GF), denote by R~(¢p) the operator given by

R~(p) = LFRN((:T, 2)p(e) dg,
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where dg is the invariant measure of G normalized so that the total volume of
Gy is equal to 1.
It is shown that there exists a locally summable function y(R~) on G such that

trace R~(p) = IGF¢(8)X(R~)(g) dg.

It is proved that y(R~)(g) depends only upon the g-twisted conjugate class of g in
G and that y(R™) is defined only on %,(G). Foreachr e G,, denote by y, the char-
acter of r. Recall that y,(x) depends only upon the conjugate class of x and that
x, is defined only on %’'(G,), assume further that the characteristic of the residue
class field of k is not equal to 2.

THEOREM 1. Let the notation and assumptions be as above.
(1) For each R € G&, there exist an extension R~ of R to a representation of G%
and an r € G, such that

(1.2) AR = 1 (NX)),

where N is the norm mapping from €.,(Gr) to %'(Gy) given in Lemma 1.
(2) For each r € Gy, there uniquely exists R € G} whose suitable extension R~ to
a representation of G7 satisfies (1.2).

For each r € G, we call R € G§, which is related to r by (1.2), the lifting of r from
G, to G}. (Jacquet introduced in [4] the notion of lifting from a different viewpoint.)

REMARK 1. An analogue of Theorem 1 for finite general linear groups was given
in [14). Furthermore, an analogue of Theorem 1 for the case of (F, k) = (C, R) is
given in [15] (resp. [8]) by a local (resp. global) method.

Let us describe the lifting from G, to G§ in a concrete manner. If F is isomorphic
(as a k-algebra) to the direct sum of / copies of k, G is isomorphic to the direct
product of l-copies of G,. It is immediate to see that the lifting of r € G, is given by
r® --- ®r (the same is true even when the characteristic of the residue class field
of k is equal to 2).

Next, we consider the case when F is a cyclic field extension of prime degree /.
First, let us recall a description of G,. For details, see §§3 and 4 of Chapter 1 of [5).
For quasi-characters y; and y, of k> such that ;5" # a7l let p(u, uo) be the cor-
responding irreducible representation of G, in the principal series. If y;5" = a;,
let o(uy, uz) be the corresponding special representation of G,. For a quadratic
extension K of k and a quasi-character @ of K* such that o’ # o (' denotes the
conjugation of K with respect to k), let 7(w, K) be the corresponding absolutely
cuspidal representation of G,. If the characteristic of the residue class field of k is
not equal to 2 (as we are now assuming), it is known that each infinite dimensional
irreducible admissible representation of G, is equivalent to some of p(u;, w2,
o(w1, p2) and (w, K). For each quasi-character g of k>, we denote by g the quasi-
character of F* givenby g = yo N%. Fora quadratlc extension K # F of k and a
quasi-character w of K*, denote by w the qua51-character of L* (L = K- F) given by
® = w-NE.

PROPOSITION 1. The notation and assumptions being as above, the lifting R of r € G,
to G} is given as follows:
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(D) Ifr = p(u1, p2) (resp. o(u, p2)), R = p(ees o) (resp. R = o(per, pe2))-
) Ifr = n(w, K) and K # F, R = n(w, L), where L = F - K.
B Ifr = n(w, K)and K = F, R = o(w, o).

REMARK 2. The proof of the first part of Proposition 1 is straightforward (even
when the characteristic of the residue class field of & is equal to 2).

1.3. We keep the notation in 1.2. In particular, k is a p-adic field (the residue class
field of k may be of characteristic 2). For an x € Gy, let Z,(x) be the subgroup of Gy
consisting of all elements of g of G satisfying g’xg~! = x. Normalize invariant
measures on Gr and Z,(x) so that total volumes of their maximal compact open
subgroups are all equal to 1. Denote by dg the invariant measure on Gy [ Z,(x)
given as the quotient of the normalized invariant measure of Gy by that of Z,(x).
For fe C%(GF), set

(1.3) Af, %) = j f(goxe™) dg.

GF/Z4(x)

It is shown that the integral is absolutely convergent. Moreover, for ¢ € (Gp),
ALf, x) = A(f, y) for any x, y € ¢. For each ¢ € ¥.(G), we put

1.4 AS, ©) = A4S, %),

where x is an arbitrary element of ¢. For each x € G,, let Z(x) be the subgroup of
centralizers of x in G,. We normalize invariant measures on G, and Z(x) so that the
total volumes of their maximal compact open subgroups are all equal to 1. Denote
by dg the invariant measure on G,/Z(x) given as the quotient of the normalized
invariant measure of G, by that of Z(x).

For fe C(G,), set

(15) agn=f_  fexn de

Gr/Z (x)
It is known that the integral is absolutely convergent. For each ¢ € ¥'(G,), we put
(1.6) A(fs ©) = A(f, x),

where x is an arbitrary element of c. It is easy to see that the right side of (1.6) is
independent of the choice of x € c.

PROPOSITION 2. The notation being as above, for each f € C(Gp), there exists an
fe C&(G,) which satisfies the following conditions (1) and (2):

(1) For each regular ¢ € C,(Gr), A,(f, ¢) = A(f, N(c)).

(2) Foreachce€'(G,) — N(%(Gr)), A(f,¢) = 0.

REeMARK 3. In Proposition 2, assume f is the characteristic function of G,.
Assume further that F is either the unramified cyclic extension of degree / of k or
is isomorphic to the direct sum of / copies of F. Then one may put f to be the char-
acteristic function of G,,.

REMARK 4. The correspondence f — f in Proposition 2 is, in a sense, dual to the
lifting of irreducible characters of G, given in Theorem 1.

1.4. Let k be a totally real algebraic number field of degree » and let k4 (resp. k%)
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be the ring of adeles (resp. the group of ideles) of k. Denote by k., (resp. k4,) the
infinite (resp. finite) component of k4. Then ky = k,, ® ko and kj = k5 x kj o.
Moreover, both groups G, and G,, , are embedded into G, in a natural manner
and G,, = G, x Gy, 0. Let {00y, --+, 00,} be the set of infinite places of k. For each
g€ Gy, set g = 8,80 (800 € Goos 80 € Gpy0) a0 g, = (8evs1s ***5 8y)> Where g,,,;€ G
is the component of g, corresponding to the infinite place co,. For g.,.; we introduce
the following standard parametrization

ges = (") PN o f i 0 cond)

(t; >0, x;eR,y;, >0, 0;€R).
Let (); be the differential operator on G,, given by

oy 02 2(3_2 _QZ_)
0r= = Viggam, Vo2 T a7 )
For § = (64, -, 8,) € R*, we denote by £(f) the element of G, whose ith component
is

( cos f; sin 0,->.

—sin f; cos 6;

Let y be a unitary character of the group kj/k* and let r be a function on the set
of infinite places of k& with values in the set of positive integers. Set r; = r(o0;).
Denote by S(y, r, k,) the space of C-valued functions f on G,, which satisfy the
following conditions (1.7), (1.8) and (1.9).

(1.7) f(g) is bounded, smooth with respect to g, and locally constant with respect
to go. Furthermore, Q,f = fr(r; — 2)/4 (1 =i £ n).

a9 S(1(% L)e) = 1@f® (V7eGyVzeky,
19 f(5(@) = exp(v/ = 135 1:0,)fe) (¥ 0 € R).

Denote by p(k) the set of finite primes of k. For each v € p(k), let k, be the comple-
tion of k with respect to v and let o, be the ring of integers of k,. Then the group
G}, 0 is isomorphic to the restricted direct product [[ G,. Normalize the Haar
measure of G, o so that the volume of [[ G, is equal to 1. For each ¢ € C§%(G,, o),
we denote by T(p) the linear operator on S(y, r, k) given by (T(p)f)(g) =
f Gigo f(gx)p(x) dx. It is shown that T, is of finite rank. Let F be a totally real cyclic
extension of k of prime degree /. Set y = y o Nf4. Then yis acharacter of the group
F%/F*. Extend r to a function r on the set of infinite places of F by setting r(w) =
r(w), where w is any infinite place of F and w is its restriction to k.

For each 7 € g = Gal(F/k) (the Galois group of F with respect to k) and any
function f on Gp,, denote by J.f the function on Gr, given by (J.f)(g) = f(g")
(g € Gp,). It is easy to see that J, leaves the space S(y, », F,) invariant. For each
v e p(k), set F, = k, ®, F. Let o(F,) be the maximal compact subring of F,. The
group g operates on F, in a natural manner. If v remains to be a prime in F, F, is
a cyclic field extension of k,. If v splits in F, F, is isomorphic to the direct sum of
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I-copies of k,. In both cases, F, is embedded in F4 , in a natural manner. The group
Gr, o is the restricted direct product [[,Gr,. For each g € Gy, , we denote by g, €
G, the v-component of g.

In the following we choose and fix a generator ¢ of g once and for all. Let ¢
be an element of C3°(Gr,, ¢) of the formip(g) = [1,¢,(g,), where ¢,€ C3(Gr,) and
¢, is the characteristic function of G, except for a finite number of v. For each
v € p(k), take ¢, € C5°(G,,) which satisfies the equalities (1) and (2) of Proposition
2for f = ¢, and f = ¢,. We may assume that, except for a finite number of v, ¢,
is the characteristic function of G, (see Remark 3 of 1.3). Denote by ¢ the func-
tion on G, , given by ¢(g) = [1,¢,(2). By class field theory, the group k*N{F}
is a subgroup of index / of k3. Let yo (= 1), 1, -+, y;—1 be I distinct characters of
the group k/(k*NETF%).

We are now ready to present an adelic version of Theorem 5.6 of [10].

THEOREM 2. The notation and assumptions being as above (in particular, ¢, and
¢, are related by (1) and (2) of Proposition 1), if ry, vy, ---, 1, > 2,

-1
(1.10) I Trace J,T(p)|S(x> ¥, Fa) = X, Trace T()|S(yx:> 1> ka)-
: =

REMARK 5. In [10, Theorem 5.6], k is the rational number field and F is a tamely
ramified totally real abelian field of degree /. Furthermore, ¢ is assumed to be
unramified. However, the correspondence ¢, — ¢, is explicitly described for each
v. In that point, Theorem 5.6 of [10] is more precise than Theorem 2.

REMARK 6. If I # 2, S(yy:, 1, k) is isomorphic to S(y, r, k4) as G, -module.

1.5. Let us consider the representation theoretic meaning of both sides of the
equality (1.10) of Theorem 2. Via the right regular representation: g — T, the
group G, o acts on S(y, r, F4). By a theorem of Jacquet-Langlands (see Proposi-
tion 10.9 and Proposition 11.1.1 of [5]), the space S(y, r, F,) decomposes into an
algebraic difect sum of irreducible mutually inequivalent Gp, -submodules.
Denote by Gr, o(r, y) the set of equivalence classes of irreducible representations
of Gr, o realized on irreducible G, ;-submodules of S(y, r, F,). For each & €
Gg, o, X) denote by ¥(, r, y) the irreducible G, (-submodule of S(y, r, F,) on
which 7 is realized. We have S(y, r, Fp) = X, V(n-, r, ) (an algebraic direct sum),
where the summation with respect to x is over Gp ot 7). Denote by =7 the re-
presentation of Gp 4,0 given by n%(g) = n-(g") The obvious relation J,T,. = T,J,
implies that 77 € G, ((r, x) for each ze Gr,o(r, 3 and that V(z7, r, n') =
I W (x, v, x) Take a 7 € Gy Lors %) It is known that, for each v e p(k), there
exists ¢, € G , such that z is equivalent to the restricted tensor product &),c, 7,
(except for a finite number of v, =z, is an unramified representation of G, ). Denote
by Gr, o, . g) (g = Gal(F[k)) the subset of G, (r, y) consisting of all z such
that ¢ ~ . If 77 # =, J, induces a cyclic permutation among V(z®, r, y)
(v € g). Thus the trace of the restriction of J,T(¢p) to the subspace of S(y, r, Fy)
spanned by {V(z, v, ); ® € Gp, o(r, ) — Gr, o, > @)} vanishes. If z° = =,
¢ =~ x, for each v e p(k). There exists a linear operator J,(xr,) of order / on the
representation space of z, such that

ﬂ"v(ga) =J 0(7'-'0)_17:0 (g)J v(’rv) (V g€ GF,)
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Such an operator J,(z,) is unique up to a multiplication by an /th root of unity. For
unramified z,, normalize J,(x,) so that it fixes z,(G,)-invariant vectors in the
representation space of mr,. We may assume that the system of linear operators
{J(z,); vep(k)} is normalized so that J,|V(1r, v,y =~ Qyepw Jo(m,). For ¢ =
[T, € C5(Gr,0), set w(p,) = fgp, @X)m,(x) dx. Then z(¢p,) is a linear oper-
ator of finite rank acting on the representation space of 7,. Moreover

Trace J,T(p)|V(x, r, x) = I] trace J,(z,)z(p,).

Hence,
(1.11) Trace J,T(p)|S(x, 1, Fa) = 23 ]_[(k) trace J,(z,)7,(¢,),
= vEp

where the summation with respect to  is over all G L o(Fs %> g). In a similar man-
ner, we have

1.12) Trace T(p)|S(x, 1, ka) = 2] ]_([) trace 7,(¢,)
n  vep(k

for every ¢ = [1,p, € C§°(G,, ), where the summation with respect to z = @,x,
is over all G,, «(r, x) and

ch((pv) = IG’, gD,,(X)ﬂ.',,(X) dx.

Recall that in equalities (1.10), (1.11) and (1.12), ¢, and ¢, are related by the
equalities (1) and (2) of Proposition 2 (V v € p(k)). Thus, it is now natural to infer
that a local implication of these equalities is Theorem 1. Furthermore, a global
consequence is the following representation theoretic version of Theorem 3 of
[10].

THEOREM 3. Assume ry, ..., 1, > 2.

(1) For each = = @,x, € Gy, olr, x) (7, € Gk”), there uniquely exists w =
R, € G, Ogr, VA g) (r, € Gg) such that for each odd place v of k, x, is the lifting
of m, from Gy to G§ .

We call v the lifting of & from Gy, (1, y) to G, o(F; %> 9)-

(2) If 1 # 2, for each & € G, (¥, %, ), there uniquely exists = € Gy, «(r, y) such
that r is the lifting of «.

(3) If I=2, for each & € G% o1, %, 9), there exists a mw € Gy, o1, y) or Gy, o(Fs Yxx1)
(x1 is the character of order 2 of k}[k* which corresponds to F in class field theory)
such that r is the lifting of «.

Moreover, &y and 7y € G, (r, ) have the same lifting to Gr, (r, ¥, g) if and only

lfﬂ.'l = T OF Ty = Ty @ X1 (det)

2. In this section we expose the proof of Proposition 2. Then we indicate how
Theorem 1 and Theorem 3 are made plausible by Theorem 2 (the proof of Theorem
2 is a (more or less obvious) modification of proofs of Theorem 1 and Theorem 5.6
of [10]).

2.1. In the following three subsections we use the notation in 1.1 and 1.3 without
further comment. In particular, k& is a p-adic field. Assume that F is isomorphic to
the direct sum of /-copies of k. Then we may assume that Gy is the direct product
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of I copies of G, and that, for each x = (x;, -+, x;) € G, x° is given by x° =
(x;, X1, -*+, X;_1). For any f € G, set, for any x € G,,

@.1) 16) = ([ | 7Gx 5 e 3) i o

It is easy to see that fe C3°(G,) and that A,(f, ¢) = A(f, N(c)) for arbitrary ¢ €
C.(Gp). Thus the proof of Proposition 2 is quite straightforward for this case.

2.2. We summarize known results on orbital integrals on G,. We denote by g,
the cardinality of the residue class field of k and by z a generator of the maximal
ideal of o(k). Denote by Q, the set of isomorphism classes of two dimensional
semisimple algebras over k. For each K € Q,, choose an embedding of K into
M(2, k) as a k-algebra. Via the embedding, we identify K with a subalgebra of
M(2, k). For each x € K, denote by x’ the image of x under the unique nontrivial
k-algebra automorphism of K with respect to k. It is well known that

%'(Gy = |J U@°* (disjoint union),
KeQ t

where the union with respect to ¢ is over a complete set of representatives of
(K* — k) with respect to the action of automorphism groups of K with respect
to k. Furthermore,

%(Gy) — %' (Gy = U {(Z z) U Z<1 i)ck} (disjoint union).

zek™

Let o(K) be the maximal o(k)-order of K. For each nonnegative integer m, we
denote by o(K),, the unique o(k)-order of K such that [0(K), o(K),,] = q*. Let
o(K)); be the group of units of o(K),,. For each ¢ € o(K)* — o(k)*, there uniquely
exists a nonnegative integer i such that ¢ € o(K); — o(K)7;. Set i = i(¢) for te
o(K)* — o(k)*. For each fe CF(G)), seta(z) = f(z) and B(z) = A(f, 2(*})) (zek>)
(cf. (1. 5)). Then both « and 3 are locally constant, compactly supported functions
on k*. Furthermore, for each K € 0,, we denote by ¢y a function on (K* — k*)
given by ¢x(?) = A(f, t) (note that ¢ does not depend upon a choice of an embed-
ding of Kinto M(2, k)). Then ¢ is a locally constant function on K* — k*. The next
lemma is a version of Lemma 6.2 of [7] (see also Theorem 2.1.1 and Theorem
2.2.2 of [12]). We include a proof.

LEMMA 2. Let the notation and assumptions be as above. Then a triple {¢y;
(K € Q)), a, B} satisfies the following conditions:

(1) The support of ¢ is relatively compact in K*.

(2) px(®) = () (V 1€ K — k).

(3) For each z € k* there exists a neighborhood U(z) of z (s.t. z71U(z) < o(K)*)
such that

@2 ox®) = {1 = - SE b a@) + CUOa 1 plo)

for any te U(z) — U(z) N k*, where we put C(K) = [0o(K)*, o(K){].

Proor. Choose an o € o(K) so that {1, w} is an o(k)-basis of o(K). An o(k)-
basis for o(K),, is given by {1, z"w} (m = 0, 1, 2, ---). For each ¢ € K, there uni-
quely exists
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(@) = <;; 112) such that <§w> = ¢() ((}))

Then the mapping ¢ — ¢(¢) is an embedding of K into M(2, k) as a k-algebra. It is
known that every proper o(K),-ideal in K is principal (see Proposition 1 of [3]).
Thus,

G, = U) G (‘ ﬂm> (K*) (disjoint union).
m=0
Hence, for any fe C°(G,) and any t € K* — kX,

2.3) AL 1) = fo Cnf~(cO))

where we set f~(x) = [, fuxu™) du, c,, = [0(K)*, o(K);],

0=( )0l

(cf. the proof of Lemma 7.3.2 of [5]). It is sufficient to prove the lemma for z
= 1. Since f is locally constant and compactly supported, there exists a neigh-
borhood U of 1 in o(K)* such that

Fn) =" 1) ="y ) =012
and that

ATV = =01,
forall te U — U ) k*. We note that a(1) = f(12),
(1T
80 = Zar (o)
and

[0(K*), 0(K)sial = gdo(K)*, oK)l (m = 1,2, -).

Hence we have
ox®) = {1 = S ) + crgio 6

foranyte U — U ) k*.

A triple {a, 8, px; K€ Q;} of locally constant compactly supported functions
a, 8 on k* and a system {pg; K€ Q,} of locally constant functions g, on K* — k*
is said to be an admissible triple if it satisfies the conditions (1), (2) and (3) of Lem-
ma 2.

The next lemma, which is also a version of Lemma 6.2 of [7], follows from Corol-
lary 1.1.4 of [12] and the previous lemma.

LeMMA 3. Let {a, B, px; K€ Q,} be an admissible triple. Then there exists an
fe CP(G,) such that pi(t) = A(f, t) for any te K* — k*. Moreover, for such an
£, alz) = flz - 13) and B(z) = A(f, z(* 1)).
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. 2.3. Let F be a cyclic field extension of prime degree / of k. For each Ke Q,,
set L = K ®, F. Then L is a two-dimensional semisimple algebra over F. A pre-
scribed embedding of K into M(2, k) is naturally extended to an embedding of L
into M(2, F). Furthermore, the norm mapping N¥ from F to k is naturally ex-
tended to the norm mapping N from L to K. Set L, = {te L*, Nkt = 1} and
Fi=L, N Fand L' = {te L*; Ngte K* — k*}. The following description of
% (Gp) is due to H. Saito (see Lemma 3.5 and Remark 3.8 of [10]).

LeEMMA 4.
0)) €(Gr) = |
KeQ,

U @°re,
: 1
where the union with respect to t is taken over a complete set of representatives for
L'|L, with respect to the action of the automorphism groups of L with respect to F.

@ Ifl#2,

€Gr) = 6,6 = | @1ereu | ! )ere
zeFX/F

2€F%X/F

Ifl=2,

%G -G = U ('fru U o(t)pee

zEk*
For each fe C?(Gp), we define functions « and 8 on k* as follows: For ze
NFF*,setz = Nfz(ze F*)and a (2) = A(f, z-15) and B(z) = A,(f, 2(* 1)) 1], (cf.
(1.3)). Forzek* — NEF*, set f(z) = 0.If | # 2, set a(z) = 0. If = 2, set

a@ = = @ - D A{£(, 1))

It follows from Lemma 1 and Lemma 4 that o and j3 are well-defined functions
on k*. Moreover, they are both locally constant and compactly supported.

For each K € Q,, we define a function g on K* — k* as follows: For te
(K* — k) NEL,set t =Nkt (te LX) and og(t) = A,(f, t). Fort ¢ (K*—k*) N
NEL*, set gg(f) =0. Lemma 1 and Lemma 4 again guarantee that ¢ is a well-
defined function on K* — k*.

The proof of Proposition 2 is now reduced to the following Lemma 5.

LEMMA 5. The notation being as above, {«, B; ¢x; K € Q,} is an admissible triple.

For a subgroup V of K* (K € Q,), set
.4) W) = v U {t(l }) tev kx}.

The next lemma will be applied for the proof of Lemma 5.

LEMMA 6. For a given K € Q,, and a given compact subset Cy of Gy, there exist an
open subgroup V of K* and a compact subset Cy of G such that g'wg=1 € C, for some
we W(V) implies g°g~! € Co,.

Proor. There exists an open compact subgroup ¥, of K* which satisfies the fol-
lowing conditions:
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The mapping: x ~— x' is an isomorphism from V; to V'{ whose inverse mapping
is given by

@.5) X XU/ = Z;(”’)(x 1ym

(V, is so small that the series is absolutely and uniformly convergent on V7).

Denote by C; the image of C; under the norm mapping: x+— N(x) (cf. 1.1).
Since N(gowg™1) = gN(w)g™1; g'wg1 € C,, for some w e W(V)) (cf. (2.4)) implies
gwig7le C3. Put Cy=Cs3 {gw'g™l; weW(V), g€ Gr}. On C,, the binomial
series (2.5) is absolutely and uniformly convergent. Hence the closure Cs of the
image of C, under the mapping: x> x1// is compact. It is easy to see that
gwg™! = (gw'g~1)1/! for w e W(V;). Hence g'wg~1 e C, for some w e W(V)) implies
g°g~ ' e C,C5 . Thus, we may put C; = C;Cs'and V = V.

ProOF OF LEMMA 5. It is easy to see that ¢y satisfies the conditions (1) and (2).
For a tye Nf-F*, take z € F* such that ¢, = N{z. Let C, be the support of f and
choose an open compact subgroup ¥ of K* which has the property described in
Lemma 6 for C; = z71Cy. Then there exists a compact subset C; of G such that
zg'wg~1 € C, for w € W(V) implies gg~1 € C,. (W(V) is given by (2.4).)

Let {y;; iel} be a complete set of representatives for the double coset
G,r)\Gr/G,. It follows from Lemma 1 that the mapping: g — g?g™!is a homeomor-
phism from Gg/G, onto the closed subset {g € Gr, N(g) = 1} of G.. Hence, there
exists a finite subset I of I such that

(2.6) zg'wg~le Cy for a we W(V) implies g € | JG(0p)y,Gy-
i€l
Then, forte V — V () k%, Z,(t) = K* if V is small enough and
px(tot!) = A,(f, zt) = ZI] wiA(fi 1),
i€l

where ;! is the invariant volume of G, (| y7'G(op)y; in G,, and f; € C3(G,) is
given by

fAg) = L(DF)f(zu”yi-’gyflu‘l) du.

Since I, is finite, it follows from Lemma 2 that there exists a neighborhood V; = ¥V
of 1 in K* such that, forany te V; — V; ) k and any i € ],

f) = 409) wo-1 4 ¢ (11
At = {1 = 2B 1) + carggo a5, (1))
However, (2.6) implies that

Zfi(l)ﬂi = Ao(f, 2) = alto),

e (1) = A1) = o

There exists a smaller neighborhood ¥, = V; such that, for te Vy, — Vo ) k%,
i(?) = ord I + i(2).

Set U = {tyt*; t e V,}. Then U is a neighborhood of #,in K*. We have proved
that, foranyte U — U ) k>,
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@.7) putt) = {1 = ZE} ot + CUg "1 B

Nowtakea fyek* — NFF*.SetL = F®,K. If | # 2, NkL* (| k* = NLF~.
Hence there exists a neighborhood U of #yin K such that U N N4L* = @. Hence,
ox(t) = 0 for any te U — U () k*. Since a(ty) = B(ty) = 0, the condition (3) is
satisfied. Next assume / = 2. If K is not a field, there exists a neighborhood U of
ty in K* such that U | N¥L* = . Hence ¢g(t) = Oforany re U — U ) k*.
Since §(tp) = 0and C(K) = g, — |, theequality (2.7)is valid for anyre U — U )
k.

Now assume that K is a quadratic extension of k. Then there exists 5o € L* such
that ¢, = N%s,. Furthermore, Z,(sy) is isomorphic to the multiplicative group of
the division quaternion algebra over k.

The proof of the following Sublemma is quite similar to that of Lemma 6.

SUBLEMMA. The notation and assumptions being as above, for a given compact
subset C; of G, there exist an open subgroup V of K* and a compact subset C; of G
such that gosyvg! € C; for some v € V implies g?syg~1 € C,.

Normalize invariant measures of Z,(s,) and K* sothat volumes of their maximal
compact subgroups are all equal to 1.

It follows easily from the Sublemma that there exists a neighborhood U; of s
in L* such that the following integral is absolutely convergent for s € U; and gives
rise to a locally constant function on Uy: fg,/xx f(g%s¢7Y) dg. If t = Nks ¢ k>,
the above integral is equal to px(f) = A4,(f, ). If s = s, the above integral is equal
to A,(f, So) X fz,isp/xx A%, where dx is the quotient measure of the invariant
measure of Z,(sp) by that of K*. The volume of Z,(so)/K* is equal to 1 or 2
according as K is ramified or not. On the other hand, C(K) is equal to g, or g, + 1
according as K is ramified or not. Since a(ty) = — (¢, — DA,(f, so) and B(ty) =
0, we have shown that there exists a neighborhood U of ¢, such that (2.7) is valid
for any t € U — U ) k*. The proof of Lemma 5 is now complete.

REMARK. The proof of Lemma 5 shows the following further relations between
f and f of Proposition 2 when F is a field extension of k. If z = NFz (ze F>),

fz-15) = Af, z-12) and

A )= a1}

Ifk* 5z¢ NEF*, A(f, 2(*})) = O and
flz 1) =0 if I # 2,

- (g — 1)A,,<f, (Z ‘)) i1 =2.

2.4. When F is isomorphic to the direct sum of / copies of &, the correspondence
f — f of Proposition 2 is made explicit by (2.1). When F is the unramified cyclic
extension of k of degree /, one can make the correspondence explicit if fis bi-G, (z)-
invariant.

In more detail, denote by Ly(G,, G,,) the set of all functions f'e C3°(G,) which
are right and left G,,-invariant. Then Ly(G,, G,;) becomes a commutative
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algebra with respect to the convolution product. For indeterminates X and Y, let
C[X, Y, X1, Y1], be the subalgebra consisting of all elements of C[X, ¥, X~1, Y]
which are symmetric with respect to X and Y. For each fe Ly(G,, G,u), put
F(f, OIX, Y] = X, nez CunX™Y", Where

C,n = gy ™72 5 ) f<(7r”‘ 77:”> (1 31c>> dx.

Then it is known that the mapping: f— F(f, k) is an algebra isomorphism from
Ly(G,, G, ) onto C[X, Y, X~1, Y1), (cf. Theorem 3 of [11]).

Let F be the unramified cyclic extension of k of degree /. For each fe
Ly(Gp, Gy(ry), there uniquely exists a A(f) € Ly(Gy, G,¢)) such that F(f, F)(X’, Y*)
= F(A(f),k)(X, Y). The mapping: f — A(f) is a C-algebra homomorphism from
L(Gp, Gymy) into Ly(Gy, Go)-

The homomorphism A is discussed in [6] in a more general context. The following
proposition is implicit in Saito [10]. In fact, considerable parts of 3.4—3.13 and
5.1—5.4 of [10] are devoted to the proof of Proposition 3.

PROPOSITION 3. The notation and assumptions being as above, f e L(Gr, Gypy)
and X f) € Ly(G,, G,) are related by (1) and (2) of Proposition 2.

2.5. Let M be a finite subset of (k) containing all primes of k& which ramify
in F. Denote by C§(G, M) the subspace of C§(Gr,,) spanned by ¢ =
1,¢, (¢, € C§°(Gy,)) such that, for each v& M, ¢, € Ly(Gr,, Gyr,). For ¢ =
1,0, € C3(Gr, 0, M), we choose ¢ = I],p, € C5°(G,, o) as follows:

For v € M, we choose ¢, € C(G,) so that ¢, and ¢, are related by (1) and (2) of
Proposition 2.

For v ¢ M, if v remains to be prime in F, set ¢, = A(¢p,), where 4 is the homomor-
phism from Ly(Gr, Gyr,) to Ly(G,, G,q,) introduced in 2.4. If v splits in F,
denote by ¢, the function on G, given by the right side of (2.1) for f Do

In both cases, ¢, € Ly(G,, ,,(k)) (v ¢ M). For any unramified z, € G,, , denote by
7y the lifting of 7, from G, to Gy, (see Proposition 1).

It follows from the first part of Proposition 1 that

2.8) trace J,(z3)m5 () = trace m,(p,) (Vv ¢ M).

Denote by G, or, x» M, g) (resp. G, o(r, x, M)) the subset of Gr,or, % 9)
(resp Gy, ofr, x)) consisting of all # = @ =, (resp. 7 = @ =,) such that =, (resp.
7,) is an unramified irreducible representation of G, (resp. G,) for any v ¢ M.
For ¢ = [1¢p, € C5(Gr, 0, M), we have, by (1.10), (1.11) and (1.12) that

2.9) IX]T trace J(x,) m,(¢,) = Z_IOZH trace 7,(p,),

where the summation with respect to z is over all Gy, «(r, 3, M, g) and the sum-
mation with respect to z is over all G, Lol x> M).

For each = = ®mr, €Gp Lot 2 M, g) denote by X(zx) the subset of
Uizh Go,or, xxj» M) consisting of all z = @z, which satisfy the following
condition:

For each v ¢ M, the lifting of , from G, to G}, is =,
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Then equalities (2.8) and (2.9) together with “the strong multiplicity one theo-
rem” (see Theorem B of [9] and Theorem 2 of [1]) show the following:

(2.10) ! g{ trace J(m,)m,(¢,) = X, Il trace z,(p,).

neX (=) veM

Here I must confess that I was too optimistic at Ann Arbor. I was erroneously con-
vinced that both Theorem 1 and Theorem 3 are immediate consequences of the
equality (2.10). Actually, highly nontrivial considerations are necessary to derive
these theorems from (2.10). Anyway, far-reaching generalizations ot Theorem 1 and
Theorem 3 are established in [8].
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ORBITAL INTEGRALS AND BASE CHANGE

R. KOTTWITZ

Let Fbe a local field of characteristic 0 and let E be either F x --- x F (I times) or
a cyclic extension of F of degree /, where / is a prime. Fmbed F in F x - x F
diagonally. Let @ be the valuation ring of F, and let ¢y be O x -+ x Opif E =
F x --- x F, and let it be the valuation ring of E if E is a field. If E is a field, let
I' = Gal(E/F), and let g be a generator of . If E = F x --- x F, let ¢ be the auto-
morphism (x;, -+, x;) = (X, -++, X;, ;) of E, and let I" be the group of automor-
phisms of E generated by ¢; again [ is cyclic of order /.

Let G = GL;. The action of /" on E induces an action of /" on G(E). We use the
embedding of F in E to identify G(F) with G(E)". Define a norm map N: G(E) —
G(E) by putting Ng = g°'.-.g°g. This map was introduced by Saito [2]. It de-
pends on the choice of g.

LemMa 1. Let g, x € G(E). Then
(i) N(g—xg) = g7U(NVx)g;
(i) (Nx)? = x(Nx)x™1;
(iii) det(Nx) = Ng, p(det x);
(iv) Nx is conjugate in G(E) to an element of G(F).

The first three statements are easy calculations, and it is not hard to get (iv) from
(ii). The equality (i) suggests the following definition: x, y in G(E) are g-conjugate if
there exists g € G(E) such that y = g—7xg.

Statements (i) and (iv) together say that N induces a map from ¢-conjugacy
classes in G(E) to conjugacy classes in G(F). This map is always injective, and it is
surjective if E = F x --- x F. It should also be noted that x is g-conjugate to y if
and only if (g, x) is conjugate to (¢, ) in the semidirect product I x G(E).

Choose Haar measures dg and dgz on G(F) and G(E) respectively. If F is non-
archimedean, normalize dg, dgp so that meas(Ky) = meas(Kz) = 1, where K =
G(0p), Kz = G(Op).

For any element 7 of G(F), let G, denote the centralizer of y in G. We now give a
definition which is due to Shintani [4].

DEFINITION. Let ¢ € CZ (G(E)) and f € C°(G(F)). We say that f is associated to ¢
if
1 _
A) 5 flere)%8 = [ oeom %e
G (FNG(F) Gy (FO\G(E)
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© 1979, American Mathematical Society
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whenever N6 = y and 7 is a regular element of G(F);

®) | rero%=o

Gr(FN\G(F)
for every regular element y of G(F) which is not a norm from G(E). In (A) and (B) dt
is a Haar measure on G(F).

REeMARKS. (1) For each regular y € G(F) which is a norm, it is enough to check
condition (A) of the definition for only one 4.

(2) For any element § € G(E), let G{(E) = {ge G(E): g?0g = 6}. It is not
hard to see that if y = N¢ is a regular element of G(F), then G{(E) = G,(F).
For 7 e G(F), define e(y) to be —1 if 7 is central and is the norm of an element of
G(E) which is not g-conjugate to a central element of G(E), and define (y) to be 1
otherwise. It can be shown that if fis associated to ¢, then

dgg
dr’

(A) j fle7 re) % = e(r) ! p(g770g)
Gy (F)\G(F) G(ENG(E)
whenever N§ = 7 belongs to G(F), where dt' is a Haar measure on G§(E) which
depends only on the Haar measure dt on G,(F);

— dg _
(B') 5 fe?re) =0
& FRGP)

for every element y of G(F) which is not the norm of some element of G(E).

LemMA 2. (i) Let ¢ € C(G(E)). There is at least one fe CX(G(F)) which is
associated to .

(ii) Let fe C(G(F)). Then there exists some ¢ € C:°(G(E)) to which f is asso-
ciated if and only if fc (rycw S(87' 78) dg/dt = O for every element y of G(F)
which is not a norm from G(E) (or equivalently, for every regular element 7 of G(F)
which is not a norm from G(E)).

Assume that F is nonarchimedean, and let s = #(G(F), K) be the Hecke
algebra of complex-valued compactly supported functions on G(F) which are bi-
invariant under Kp. Let #r = #(G(E), Kg). Saito [2] introduced a C-algebra
homomorphism b: #y — #r which we will now describe.

A function fin # gives rise to a function fV on the set Dy of isomorphism classes
of unramified irreducible admissible representations of G(F) by putting fV(z) =
Tr z(f) for = € Dg. The set Dy is an algebraic variety over C (it is isomorphic to
C* x C* divided by the action of the symmetric group S,, which acts on the product
by permuting the two factors). The map f+— fV is a C-algebra isomorphism,
called the Satake isomorphism, of s, with the algebra of regular functions on the
variety Dy. This discussion applies to E as well; if E is a field, then Dy is again
isomorphic to C* x C* divided by S,, and if E is F x --- x F, then Dg is Dp x

- X Dg.

There is a map of algebraic varieties from Dy to Dg; if E=F x --- x F the map
sz 7® -+ @z, and if E is a field it is #(z) — z(Res J£r) where z(z) is the
unramified representation of G(F) corresponding to the unramified representation
7 of the Weil group W of F, and z(Res }/£7) is the unramified representation of
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G(E) corresponding to the restriction of  to the Weil group Wy of E. So we get a
C-algebra homomorphism from the algebra of regular functions on Dy to the
algebra of regular functions on Dy, and hence also a C-algebra homomorphism b:
H E—h}f F

REMARK. If E = F x - x F, then #p ~ #r® - @#r, and b(fi® --- ®f))
= fix - ).

LemMMA 3. If F is nonarchimedean and E is unramified over F (E = Fx ---x F is
allowed), then b(p) is associated to ¢ for all p € #r.

This lemma is easy to prove for E = F x --- x F. It was first proved by Saito
[2] when E is a field; it was subsequently proved by Langlands [1] using the build-
ings of SLy(F) and SLy(E).

Let A4 be the group of diagonal matrices contained in GL,. To regular elements of
A there are associated weighted orbital integrals which appear in the trace formula
for GL; over a global field. We need to introduce a function Ax on G(F) whose
logarithm is the weight factor in these integrals. Let g € G(F) and write g = a(} Hk
with a € A(F) and k € Kp. Then A(g) = 1 if x € Or and Ax(g) = |x|~2 otherwise.
The function A is defined in the same way on G(E) in case E is a field.

LEMMA 4. Suppose that F is nonarchimedean and that E is an unramified extension
field of F. Then for any § € A(E) such that N§ is regular, and for any ¢ € #k,

1| b volon i) G - j- plg 3g)log A6(g)%E
ANGE) AFNG(E)

where da is any Haar measure on A(F).

This is proved in §3 of [1].
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THE SOLUTION OF A BASE CHANGE PROBLEM FOR
GL(2) (FOLLOWING LANGLANDS, SAITO, SHINTANI)

P. GERARDIN AND J. P. LABESSE

These Notes present a survey of the results on the lifting of automorphic repre-
sentations of GL(2) with respect to a cyclic extension of prime degree of the ground-
field, and of some of its applications to the Artin conjecture, with some sketches of
proofs. §§1-5 are devoted to the definitions and results on the lifting, §6 to the
proof of the Artin conjecture in the tetrahedral case. The first part ends up with
three appendices describing respectively two-dimensional representations of the
Weil group (Appendix A), representations of GL(2) over a local field (Appendix B)
and a global field (Appendix C). Part II gives some indications on the proof of the
results on lifting. The main tools are the orbital and twisted orbital integrals, and a
twisted trace formula [Sa). The main references for the lifting are [Sa], [S-1], [S-2],
[L]. As a side remark, we would like to point out that the study of the example of
the general linear group over a finite field [S-2] is illuminating.

I. DErFINITIONS, THEOREMS, APPLICATIONS

1. Notation. Let F be a local or global field. Then W is the Weil group of F
and, for F a p-field, Wy is the Weil-Deligne group of F [T]. We recall that there
exists a canonical surjective homomorphism Wy — Cp which identifies W3 with
CF'

In all these notes, E is a Galois extension of F, cyclic of prime degree /, and I’
its Galois group (the “split case”, where E = F x F x --- x F I-times and ["is
generated by o: (X1, X3, -+, X;) — (X, --+, X;, X;) is handled easily and is left to the
reader).

For F local, choose a nontrivial character ¢ of the additive group of F, and de-
fine (/)E/F = ¢ o TrE/F'

In the following we shall use systematically the notation given by Borel [B]
about L-groups : @(G), ---, and by Tate [T] for Weil groups, the L- and e-factors.

2. Base change for GL(1). From abelian class-field theory, there is a commuta-
tive diagram

1 Wy We—T'— 1

|

1 Cye— Cp Y28 Cp T 1
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where ¢ is a generator of /"

The one-dimensional representations of Wy are given by the quasi-characters of
Wb = Cp; by composing a quasi-character of Cy with the norm, a map is defined
called the lifting (or more precisely, the base change lift): y — yg,r = % o Ng/F
which sends the set «Z(F) of quasi-characters of Cp in the set «/(E) of quasi-
characters of Cg.

The group ["acts on the set of quasi-characters of Cg by:

(0)2) = 0(z"), rel,zeCg;

the group /” of characters of /" can be identified with the set of characters of Cp
which are trivial on Nz, Cp; this group I acts on the set of quasi-characters of Cp
by multiplication: y — %{, (€ ['. Then the exactness of the second line of the
above diagram implies the following result:

PROPOSITION 1. The lifting y — yg,r defines a bijection from the orbits of [in
&/(F) onto the invariant elements by I' in s/(E); moreover, the following relations
hold:

Lige/r) = L LG,
e(xe/r) = cl;[f’ e(xQ) for F global,

e(xe/r PesF) = Aesp(d)7! cl;[ﬁ e(xC, ¢) for F local.

3. Base change for GL(2) on the L-groups.

3.1. Let G be the group GL(2) over F, and G, be the group over F defined by
restriction of scalars of the group GL(2) over E, so that Gz, r(F) = GL(2, E); the
group G, r is quasi-split, and there is a natural map:

LG = GL(2, C) x 't —> LGg/p = GL2, C)" x I'r;

here GL(2, C)" is the set of applications from ["in GL(2, C), and ['» = Gal(F/F)
acts by permutations of the coordinates [B, §5].

Given any p € @(G), its restriction to W defines an element pg, € &(Gg, r); the
set ®(G, r) can be identified with the set ®(G/E) [B], and the above map defines the
application

O(G) — 9(Gg,r) = O(G/E),
P pe/F

called the base change.

For Flocal, let Fry be a Frobenius element in ['z; when E is unramified, then
Fry; = Frk e Iz is a Frobenius element for E. Moreover, if p is unramified and
defined by Frp — s, where s is a semisimple element in GL(2, C), then pg,r is
unramified and is given by Fry — s’

The properties of L- and e-factors with respect to induction [T] show that:

Lpg/r) = cl;[f Lo ®0),
e(og/r) = [l elo ® §), for F global,

Ler
&oe/r> PE/F) = Apsp(P)72 cIe-[r elo ® L, ¢), for Flocal.
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3.2. From the classification of the two-dimensional admissible representations of
Wi (see Appendix A), one has the following result:

PROPOSITION 2. (a) The lifting p € O(G) — pg,r € O(Gg, r) has for image the set of
I-invariants in O(Gg, ).
(b) In the following cases, the lifting is given by

(ﬂ @ V)E/F = ﬂE/F @ vE/Fs
(Ind J£0)e/r = Ind 2, Oxe,x for E # K,
(Ind Fr@)er =00 for E=K,1#0€el,

(x ® sp)e,r = xe/r ® sp(2) (for F nonarchimedean).

(¢) Given a nondecomposable p € O(G), the representations which have the same
lifting are the p ® { for all e I'; for p = A @ u, the representations which have the
same lifting are the AL ® ul' forall(, L' e I

4. Base change over a local field. In this section, we denote by ¢ a generator of
I' = Gal(E/F).

4.1. Let II(G) be the set of classes of admissible irreducible representations of
G(F). There is a conjectural bijection ®(G) = II(G) [B]. The base change map
&(G) —» O(Gg, ) mustreflect a map II(G) — II[(Gg, ). The definition of base change
for representations of G(F) will be given in 4.3; since the image of @(G) is the set of
I-invariant elements in (G, r), one studies first the admissible irreducible repre-
sentations of G(E) equivalent to their conjugates by 7.

4.2. Let 7 be an admissible irreducible representation of G(E) such that 7% ~ 7%;
then there exists an operator C on the space of # such that C1%(z)C = 7#(z°),
z € G(E), and C' = Id. This operator is determined up to an /th root of unity. The
mapping 7': (o™, z) — Cm7(z) defines an extension #’ of 7 to the semidirect pro-
duct I' x G(E).

ProOPOSITION 3. This representation has a character given by a locally integrable
Sfunction Tr 7’ on I' x G(E).

On ¢ x G(E), the character Tr %’ defines a g-invariant distribution on G(E),
i.e., invariant under g-conjugation: z — y~9zy, y, z € G(E).

Let us state some properties of the g-conjugation.

For z e G(E), put

Ngspoz =27 20 - z;
or simply N(z) if no confusion can arise.

PROPOSITION 4. (a) N, .,z is conjugate in G(E) to an element of G(F);

(b) z = Ng,r .z defines an injection of the set of o-conjugacy classes of G(E) into
the set of conjugacy classes of G(F);

(c) the elliptic classes of G(F) obtained by Ng,r,, are those with determinant in
Ng,pE*; the hyperbolic classes of G(F) obtained are those whose eigenvalues are
norms of E*; any unipotent class of G(F) is in the image of N.

4.3. Definition of the base change for GL(2) over a local field. Let z € Il(G) and %
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be an irreducible admissible representation of G(E) which is equivalent to its con-
jugate by ¢. Then 7 is called a base change lift of r, or a lifting of x, if either

(a) T = 77:(/" v)and 7 = 77-'(,UE/F) 1)E/F)a or

(b) there exists an extension #’ of # to I' x G(E) such that Tr #'(c x z) =
Trz(x) for ze G(E) whenever Nz, 5, z is conjugate in G(E) to a regular semi-
simple element x € G(F).

Some of the notation in the following theorem is explained in Appendix B.

THEOREM 1 (BASE CHANGE FOR GL(2) OVER A LOCAL FIELD). (a) Any 7 € I(G)
has a unique lifting g, r € I(Gg, r), and any © € II(G) fixed by I'is a lifting;

(b) the lifting is independent of the choice of the generator g of I';

© mp/r =agpen =x@Lforalel, or n = n(y,v), n' = z(y', V') with
iy andyv1y' inl';

) Wz = (@DE/Fs (@ ® Yg/r = Tps/r @ Yg/r Jor any one-dimensional repre-
sentation y of F*, (zg,r)V = (xV)g,r (contragredient representations);

(e) for E o F o k with E and F Galois over k, "(nz,r) = ('n)g,r for any
7 e Gal(E/k), with image y in Gal(F/k);

(f) at least for p € ©(G) not exceptional, m(p)g,r = 7(Pg,F)-

5. Global base change.

5.1. Let JI(G) be the set of classes of irreducible admissible automorphic repre-
sentations of G(4y) = GL(2, Ap), where A is the ring of adeles of the number field
F. From the principle of functoriality [B], the base change on L-groups should re-
flect a map from II(G) to Il(Gg, r), the set of irreducible admissible automorphic re-
presentations of G(Ag) = GL(2, A5) = Gz, p(Ar); such a map must be compatible
with the local data.

For any place v of F, put E, = E ®p F,; it is a cyclic Galois extension of F or a
product of / copies of F; in this latter case, define the lifting 7z /5, of z € II(G) by

Tgyr, = T ® -+ @ m (I times).

5.2. Definition of the global base change for GL(2). Let w € I(G), % € I(Gg/r);
then # is called a lifting of z (or more precisely a base change lift of z) if, for every
place v of F, 7, is the lifting of ,.

5.3. The notations used in the following theorem are those of Appendix C.

THEOREM 2 (GLOBAL BASE CHANGE FOR GL(2)). (a) Every = € II(G) has a unique
lifting g, r € I(Gg/r);

(b) a cuspidal 7 € I(Gg, ) is a lifting if and only if it is fixed by I', and then, it is a
lifting of cuspidal representations; a cuspidal = € II(G) has a lifting which is cuspidal
except for | = 2 and © = =n(Ind £ 0) and then g, r = (0, °0);

(¢) for a cuspidal © € II(G), the representations ', which have rg,p for lifting are
then' =n @ Lwithlel,

(d) Orgyp = (WE/F (central quasi-characters),
(* ® Per = Ter @ Ye/F (twisting by a quasi-character),
(me/r)Y = @)g/r (contragredient representations);

(e) for E o F = k with E and F Galois over k, "(ng,p) = ('m)g,p for any y €
Gal(F/k) image of 7 € Gal(E[k);
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() if = = w(p) for some p € §(G), then wg,r = 7(pg,F)-

ReMARK. There are examples of noncuspidal 7 € I(Gg, r), fixed by I’ which are
not liftings (cf. [L, §10]).

6. Artin conjecture for tetrahedral type. Let p be a two-dimensional admissible
representation of the Weil group of the number field F; we assume that its image
modulo the center: Wy —» GL(2, C) » PGL(2, C) is the tetrahedral group ;.
This group is solvable: 1 — Dy — U, — C3; — 1. The action of the cyclic group Cs
on the dihedral group D;—the so-called mattress group—is given by the cyclic
permutations of its nontrivial elements. The inverse image of D, in W is a normal
subgroup of index 3, hence is the Weil group W of a cubic Galois extension E
of F:

1 Wg Wr Gal(E[F) — 1

Lol b

1 D4 9(4 > C3 1

The restriction pg, r of p to Wy has for image the dihedral group D,; it is induced
from a one-dimensional representation of a subgroup of index 2 in W, so that there
is a corresponding cuspidal automorphic representation z(pg, r) of GL(2, 4g).

The inner automorphisms of %, give an action of C; on Dy, and the action of ' =
Gal(E/F) fixes the class of pg, r, hence also the class of z(pg, ). From Theorem 2
(5.3), this representation is the base change lift of exactly three classes of irreducible
cuspidal automorphic representations of GL(2, Ar), and their central character has
for base change lift the central character of z(pg, r), wWhich is equal to det pg,r =
(det p)g, r; there is only one of them, say 7, with, the central character det p.

The Artin conjecture for the representation p is the holomorphy of the corres-
ponding L-function: s — L(s, p). According to Jacquet-Langlands [J-L, Theorem
11.1, p. 350], the L-function s+ L(s, =) corresponding to cuspidal z is holo-
morphic ; hence, the Artin conjecture will be proved for p if we show the equality of
these two L-functions. From [J-L, pp. 404-407], this will be done if the following
assertion is shown to be true:

(co) @, = 7(p,) for each archimedean place v of F, and for almost all v.

As E is cubic over F, each infinite place v of F splits in E, so for w|v, we have the
equations:

Ew =F, (pE/F)w = 0Ops \”(pE/F))w = ﬂ(pv) = Ty

which are more generally true for any place v of F which splits in E.

Now if v does not split and is unramified in E, and if moreover p, is unramified,
then so is the restriction pg ,r, of p, to Wy, and the representation (zg,p), =
7(og,r,) is unramified; since E,/F, is unramified this representation is the base
change lift of unramified representations. This shows that x, is unramified; call
pr, @ two-dimensional representation of Wy, such that 7, = n(p,). We have
shown that our assertion (cg) is equivalent to:

(cy) if v does not split and is unramified for p and E, p, and p,, are equivalent.

The adjoint representation of PGL(2) defines an injection of PGL(2) in GL(3),
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hence a morphism 4: GL(2) » GL(3). We observe now that the condition (c;) is
equivalent to the apparently weaker condition:

(cp) if v is unramified for p and E, the three-dimensional representations 4p, and
Ap,, are equivalent.

In fact, call a (resp. b) the image of a Frobenius in Wj, through p, (resp. p,);
if (cp) is satisfied, a € C*b; but det @ = det b, hence a = +b. If a = —b then,
since p, and p, have the same restriction to W, a® is conjugate to —a3, that is
Tr(a®) = 0. Hence A(a®) is of order two, and this means that A(a) is of order 6;
but the image of Ap, is in the tetrahedral group which has no element of order 6;
so we have a = b, hence p, = p,. The introduction of Ap is motivated by the
crucial observation, due to Serre, that this three-dimensional representation is
induced by a one-dimensional representation of Wg; in fact, the tetrahedral group
leaves invariant the set of the three lines joining the middles of the opposite edges of
the tetrahedron. This means that 4p is induced by the one-dimensional represen-
tation @ of the stabilizer of one of these lines (obtained by restriction of 4p); but
this stabilizer is the pull-back of the dihedral group Dy = ¥, in W, which is the
subgroup Wpg:

Ap = Ind /£ 6.

From [J-PS-S], to such a three-dimensional irreducible monomial representation
Ap of W is associated an irreducible cuspidal automorphic representation 7(4p) of
GL(3, A4r). On the other hand, the morphism 4 reflects a lifting from irreducible
cuspidal automorphic representations of GL(2, 4r) to automorphic representations
of GL(3, 4y); and, here, the representation Az corresponding to z is cuspidal
[G-J-2]. To prove (cy) it suffices to show the condition:

(c3) the lifting Az is equivalent to w(4p).

There is a practical criterion given by [J-S] to prove the equivalence of such repre-
sentations: z; and z, are equivalent if and only if L(s, #; x 7%,) hasapoleats = 1,
where L is the L-function attached to the representation of GL3(C) x GLy(C) in
GLy(C) given by the tensor product.

We shall prove that almost all local factors of L(s, Az x n(4p)V) and of
L(s, n(4p) x m(Ap)V) are equal; by nonvanishing properties of local factors
[J-S], this is enough to prove that L(s, Ax x n(A4p)V) has a pole at s = 1, and
hence (c3) will be proved. If v is split, then =, = 7(p,) and, at least when z, and
o, are unramified, (4Ax), = z(4p,): the local L-factors are then equal.

If v does not split in E and is unramified for E and p, the two local L-functions
are those associated to the nine-dimensional representation of W given by
Ap., ® ((4p)Y) and Ap, ® ((4p)y'); but we know that Ap, = Ind /£ 0,.

Now if U (resp. V) are representations of a group G (resp. a subgroup H) one has
U ® Ind§ V =~ Ind §(V ® Res §U); also recall that the two representations p, and
0, have equivalent restrictions to Wy ; hence 4p, ® (4p), isequivalent to (4p,)
® (Ap)y so that they have the same L-factor.

This concludes the proof of the Artin conjecture for the tetrahedral case.

The above proof is taken from a letter of Langlands to Serre (December 1975);
it also contains some indications on a method to handle the octahedral case;
however the latter requires some results on group representations which are not
yet' available. Still, a partial result is obtained [L, §1]:
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Assume that p is of octahedral type; we use the fact that &, has a normal sub-
group U, of index 2; hence there is a quadratic extension E of F for which the res-
triction pg, 5 is of type %,. By the above theorem, z(pz, r) exists and, by Theorem 2,
it is the base change lift of two cuspidal admissible irreducible automorphic
representations 7z’ and 7" of G(Ar). Assume now that F = Q, that E is totally real
and that the complex conjugations in Gal(Q/Q) are sent by p into the class of
(¢ _9); in such a case the components of z’ and z” at the real place verify z’c, =
oo = w(p,,) With p, = 1 @ sign; then 7’ and z” correspond to holomorphic
automorphic forms of weight one.

This situation has been studied by Deligne-Serre [D-S], and they show that
7' = z(p") and 7" = z(p") for some representations p’, p” of Wy in GL(2, C);
now, by Theorem 2, n(p")z,r = 7(0’g/r), and the same is true for z”; this shows
that p’ and p” are the two representations which lift to oz, r; hence either p = o’
or p". Thus one concludes that either z’ = z(p) or " = z(p), and this gives

THEOREM 4. For a two-dimensional representation of Wy which is of octahedral type
and which sends the complex conjugation on (5 _9), and such that the above quadratic
field E is real, the Artin conjecture is satisfied.

Appendix A. List of the two-dimensional admissible representations of W [D].

Notations. F is a local (resp. global) field, Cr is F* (resp. the group of ideles
classes of F); W is the Weil-Deligne group of F[T].

For F global, v a place of F, there is an injection Wy, — Wy which defines an
application p — p, from the two-dimensional admissible representations of Wy into
those of Wy ; if another representation p’ of Wy satisfies p, ~ p, for all but a
finite number of places, then p’ is equivalent to p, and p, ~ p, for all v. The two-
dimensional admissible representations of Wy are classified by the image of the
inertia group in PGL(2, C), called the type of the representation.

(1) Cyclic type: 4 @ v is the sum of the two one-dimensional representations
of Wr defined byuand v; p@v~v @ py;det(u®v) = w; (t ®») ® y =
(ux) @ (Vy); (w @ v)Y = x1 @ v1 The L- and e-functions verify:

L(p @ v) = L()L(v), e(p ®v) = e(we(v) (f Fis global),
s ®v, ¢) = e(y, e, ¢) (f F is local),
u®v=Q,u ®v,) (f F isglobal).

(2) Dihedral type: ¢ = Ind}yz 0, where 0 is a quasi-character of Cyg, and
K a separable quadratic extension of F; r is irreducible if and only if § #
°9 (1 # o € Gal(K/F)). For § = 70, let y be a quasi-character of Cr such that§ =
x o Ng,r and let G be the character of Cr with Kernel Nk, rCx. Then Indjz 0 =
D y6; det © =6 - 0Olc,; v ® y = IndpE (Oy o Ng,p); T = Indfpr6—1; L(z) =
L(0), e(r) = e(0) (F global), e(r, ¢) = Ak, r(()e(0, ¢ o Trg,p) (F local); for
F global, 7 = ®r, with 7, = Ind}}% 0, for K,/F, quadratic, and 7, = 0, @ 0,
for K, = F, x F,. The equivalences are: Ind}}! ; ~ Ind}£ 0, <> either K; = K;
and 6,, 0, conjugate by Gal(K/F), or K; # K,, 0,07 and 0,703" are of order 2
and 6y o Nk kyk, = 02 o Nk kyky

(3) Exceptional type: the image of the inertia group in PGL(2, C) is ¥, (tetra-
hedral type), &, (octahedral type), or U5 (icosahedral type); they occur only for F
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global or F nonarchimedean local of even residual characteristic; in this latter
case, the icosahedral type does not occur.

(4) Special type (occurs only for F nonarchimedean local): y ® sp(2) for a
quasi-character y of F* and sp(2) the representation of W, defined by

o 1 z o w0
zeC (O 1) and we Wy (0 1).

Appendix B. List of admissible irreducible representations of GL(2, F), F local
field [J-L].

Notations. G = GL(2, F), | | is the absolute value defined by the dilatation of the
Haar measure on F: d(ax) = |a| dx, and ¢ is a nontrivial character of the additive
group of F.

Representations. (1) Principal series p(y, v), where 4, v are quasi-characters of F*.

(a) Definition. Let p(u, v) be the representation of G by right translations in the
space of smooth functions for G such that

flang) = p(u() luv=1|12 f(g)

for any ge G,a = (49 e G, ne (}%). When this representation is irreducible,
then z(u, v) is p(u, v). When p(y, v) is reducible, there are exactly two irreducible
subquotients; one is finite dimensional and z(y, v) is this one. The other one is
denoted o(y, v).

(b) Equivalences. n(u, v) ~ n(v, p). For F = C, any irreducible admissible re-
presentation of G is equivalent to a z(, v).

(¢) Finite dimensional representations. F nonarchimedean: they are one-dimen-
sional, and are the z(y, v) for w1 = | [*1: z(g, v) (x) = |det x[*V% (det x), x € G:
the corresponding representations ¢(u, v) are called the special representations;

F = R: They are the z(y, v) with yy~1(a) = |a[***V . sign(a)* for integers n = 0;

F = C: they are the z(y, v) with w~Y(a) = [a#1(@)»+1]*! for integers n = 0,
m= 0.

(d) Other properties.

Restriction to the center: wg(,,) = uv;

twisting by a quasi-character of F*:z(u, v) ® y = w(uy, vy);

contragredient representation: z(u, v)V ~ w(u™, v71);

local factors: L(z(u, v)) = L)L), e(z(u, »), ¢) = e(u, P, ¢).

(2) Weil representations. n(r), v = Indjjf @, with 6 a quasi-character of K*,
and K a separable quadratic extension of F.

(a) Definition. Let G be the subgroup of index two in G defined by those
elements which have a norm of K* for determinant. Fix a nontrivial character ¢ of
the additive group of F. Then z(z) is the class of the representation of G induced
by the following representation r(f, ¢) of Gk, in the space of smooth functions f
on K* such thatf(r! x) = 0(¢)f(x) fort,xe KX, Ng,p t = 1:

(r0. (o )7 )o) = 9,0 0, weF,
(0. (%, 1)@ = 2@ [ S0 r¥y,
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(r6. 9 (; ‘1’) £)o) = 00 ®x) fora = Ny b, be K,

where ¢, = ¢ o Trg,p, y° is the conjugate of y by the nontrivial element ¢ of
Gal(K/F), d;y is the self-dual Haar measure on K with respect to the character
¢dx,r and Ag,p(¢) is the unitary part of the local factor &(G, ¢), where G is the
nontrivial character of F* which is trivial on Ng,K*.

(b) Equivalences.

(1) z(Indyt 0) = z(Ind}yE 20);

(2) z(Ind}yE 0) ~ =(y, x°)if6 = 70 and y is a quasi-character of F* such that
0(a) = X(NK/F a);

(3) Other equivalences: 71:(Ind;?,,",fl 01) = z(Ind}fr, 0,) for K; # Ky, if and only if
0,7107* and 6,7207* are of order 2 and satisfy 6,0 Ng,x,x, = 02 o Ng,kyx,-

(c) Characterization. If a nontrivial character y of F* fixes a class z of irreducible
admissible representations of G: 7 ® y = =, then y is of order 2, attached to a
separable quadratic extension K of F and z = z(r) where z = Ind}}r ¢ for a
suitable §, and conversely (cf. [L, §5)).

(d) Other properties. For F = R, or nonarchimedean with odd residual char-
acteristic, any irreducible admissible representation is a z(4, ) of a z(Indj}£ 6);

restriction to the center: w, ) = 6 - 0|px;

twisting by a quasi-character of F*: z(z) ® y = z(Indff£ 0. y o Nk, r),

contragredient representation: n(¥) = z(Indjyr 6-1),

local factors: L(x(c)) = L(0), e(x(2), ) = Ax/r($)e(0, /).

(3) Exceptional representations. They occur only for F nonarchimedean of
residual characteristic 2, and, up to twisting by quasi-characters of F*, their number
is 4(]2|=2 —1)/3 for F of characteristic 0, infinite for F of characteristic 2. They are
supercuspidal (see complements below) (cf. [Tu]).

(4) Special representations. They occur only for F nonarchimedean, and are the
infinite dimensional subquotient ¢(y, v) of the reducible p(y, v), that is for ! =
| 1¥1; one has a(y, v) ~ o(v, ), o(u, v) = xo(l 1172, | [71/2) for y = yl 7172

Complements.

(1) Representations ¢(u, v). When the induced representation p(y, v) is not
irreducible, o(yu, v) denotes any representation equivalent to the unique infinite
dimensional subquotient of p(y, v): for F = R, the representations g(y, v) are the
representations z(Ind ¥# 0), 6 # 0.

(2) For a two-dimensional admissible representation p of W, there is at most
one irreducible admissible representation z of G often denoted z(p) when it exists
such that w, = det p, Lz @ y) = L(p ® 3) and e(z @ y, ¢) = e(p ® x, ¢) for
any quasi-character y of F*; for p reducible, p = u @ v, then z = z(y, v); for
p =y ®sp(2) then 7 = g(y, v) with g = y| 172, v = x| [71/2; for p dihedral
o = Indjj£ §, then # = z(Ind}Jr 0); in the remaining cases, that is when p is ex-
ceptional, the existence of x is still not completly settled, but base change techni-
ques were used to prove it in many instances. Conversely, any z should be
an(p).

Appendix C. Irreducible admissible automorphic representations of GL(2) [J-L].
Notations. F is a global field, A4y its ring of adeles, Cr = AF/F* the group of
ideles classes, | | the absolute value on 4.
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(1) Noncuspidal representations.

(1.1) @(4, p) for A, u Grossencharakters of F: they are the following represen-
tations: z(4, w) = @,7(4,, w,); the one-dimensional representations are the
(A, p) for Au~1 = | [*L

(1.2) Any noncuspidal irreducible admissible automorphic representation z of
GL(2, 4F) has the following form: there are two Grossencharakters A and y of F,
and a finite set S of places of F, such that the components z, of 7 are given by

Ty = ﬁ(lw ,Uu), v ¢ S7 Ty = 0-(}'11, ﬂv): ve S,

where ¢(4,, u,) denotes the infinite dimensional subquotient of the reducible
o(4y, u,) (Appendix B).

(2) Cuspidal representations (examples).

(2.1) z(r) with ¢ = Ind}jr 0 for a separable quadratic extension K of F and a
Grossencharakter § of K, not fixed under Gal(K/F), is the representation

z(z) =& n(Ind%;: 8,

with Ind}r. 0, = 0, ® 0, for K, = F, x F,.

Properties. (1) Let 7 € [I(G); in order that there exist a nontrivial Grossen-
charakter y of Fsuch that z ® y = =, it is necessary and sufficient that there exist
a separable quadratic extension E of F and a Grossencharakter 6 of E such that

(a) y is the character of Cr with Kernel Ng,rCg;

(b) # = =(Indjt 6) (in particular z = z(z, ry) if § = 0, where 7 is a Grossen-
charakter of F which has g for lifting to F);

?2) 71-(11'1d%§1 01) = z(Indfr, 6;) <> either K; = K, and 0, = 0, or %6;, or K; #
K, then 0, ;" and 0,-°0;* are of order 2, and (61) o Ng,x,/x, = (02) o Nk kyx,-

(3.1) More generally let p be a two-dimensional admissible representation of
Wg; we say that 7 = @, is () if z, =~ z(p,) for all v. The existence of such z
when p is irreducible is related to the Artin conjecture for the p ® y, where y is
any quasi-character of Cp [J-L, §12].

(3.2) Of course there are many other, more complicated, types of cuspidal
representations: think of the classical 4 for example.

I1. BASE CHANGE FOR GL,, A SKETCH OF THE PROOF.

1. The trace formula. In all the following we shall use notations close to those of
[G-J-1] in these PROCEEDINGS.

Let F be a number field, E a cyclic extension of prime degree, put Z; =
Ng/r Z(Ag), where Ag denotes the ring of adeles of E, and Z(F) = Z; | Z(F); as
usual Z is the center of GL, = G and is identified with the multiplicative group.
Since E/Fis cyclic one has Z(F) = Ng,rZ(E).

Choose a character w of Z,/Z,(F) and consider the space L%(Z, - G(F)\G(A), w)
= L2 of functions on G(F)\G(A), which transform on Z; according to w:

p(zrg) = w(2)p(g),  z€Zy, y e G(F),

and square-integrable on Z; - G(F)\G(A).
In such a situation, which is slightly more general than the one studied in [G-J-1]
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(Where E = F), one defines in an obvious way the spaces L§ and L%, The re-
striction of the natural representation of G(4) in L2 to L§ @ L2, will be denoted by
r. If fe €2°(Z,\G(A4), w™1), the space of smooth functions on G(4) compactly sup-
ported modulo Z; which transform according to w=! on Z,, the operator r(f) is of
trace class. The Haar measures being chosen as in [G-J-1, §§6-7] we assume more-
over that vol(Z; - Z(F)\Z(A)) = I. Then tr r(f) is the sum of the expressions (i)—(vii)
below (we assume that f'is a tensor product of local functions f,) (cf. [L, §8]).

0 > vol(Zy-GF)\G() - f2),
2€Z1(F)\Z (F)
0) T s vol(Z, - GNG) [ ey ) de

where & is a set of representatives of the conjugacy classes of elliptic elements
(i.e., whose eigenvalues are not in F) taken modulo Z;(F), and &(y) is % (resp. 1)
if the equation §~1yd = zy has (resp. has not) a solution in z € Z;(F) — {1}.

(i) —% 0 (M),
9= (g, ) ;7€ D°

where D° is the set of pairs 9 = (u, v) of characters of 4*/F* such that uv in-
duces @ on Z;, where M(y) and 7, are defined in [G-J-1, §4], and with 7,(f) =
{zpcw f(g)m,(g) dg. A Haar measure dy on D° is defined as in [G-J-1, §7-D] by
considering D° as a union of homogeneous spaces under the group of characters of
A*[F* (with the dual Haar measure), acting by y - (g, v) = (qu, x"v).

This allows us to write the fourth term:

. 1 ,
(i) 5 [ i - m@u,0)
the derivative m’ being computed as in [G-J-1, §7-D].

-1 dg 1 1
1. Sz a6, fA812M08) , = >’
© zezl(ZF)\Z(F) 010_1 L(a,1,) <n0 (0 1>

where Ag and other notations are defined in [G-J-I, §7-B]. The remaining terms will
not be written as in [G-J-1] since they are there expressed by noninvariant local
distributions. For example the local distribution

— b)x,
f,,K<g (a b)x ) log |x,| dx,

A, f) = - 4) |

12y1>1

where y = (39), 4.(y) = |(@ — b)¥ab|}? and fX(g) = |, f.(k~'gk) dk, can be
written Ay(7, f,) + As(r, f,) where Ax(y, f,) is invariant, and A3 fits with other
terms to provide an invariant expression.

More precisely one takes for a nonarchimedean place v:

AZ(T’f;J) = logl(a - b)/aIuF(T5f;;) + Av(T)qu(z)j‘lx |>110g|xv| dxv_ 'a/bll/z'lajvl

0
togla- [ flemgdg (2= (5 o))
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where F(y, f,) = 4(7) {asc, fA&'r8) dg and &, is a uniformizing parameter
for F,. .
If v is archimedean one takes

- _b _Lral) -1

. f) = log|1 = 2| Ferof) = L% [, S mos) de.

This yields the term

(vi) - X Iy X Ay f) I FGr, £)-
1€Z\A(F);r€Z(F) v wEv

It can be checked that y — Aj(7, f,) extends to a continuous map on A(F,) and one
sees that the terms 6.34 in [G-J-1] minus our (V) plus 6.35 minus our (vi) yield the
term

- A—ll ; AS(T’f;) l;lvF(T’fw)-

rEZN\A(F)

This can in turn be transformed by a kind of Poisson summation formula to

[ - ZBwas I ez (f)dy.

One has to add the term 6.36 of [G-J-1] minus our (iv) to get the final term:

(vii) 2 (3 Bty 11 trm, () d,

2. The twisted trace formula. Here we shall use definitions and results of the Kott-
witz lecture (see [K] in these PROCEEDINGS). As above we follow closely [L, §3].
Let L%(Z(A5)\G(4g), @) = L2 where @ = w o Ng, . The Galois group I' = Gal(E[F)
acts on L2 by 7p(x) = p(x?) for pe L2, x € G(4g) and g € [

Let R, denote the restriction of the natural representation of G(4g) in L2 to the
discrete spectrum L} @ f.szp. The projection commutes with the action of the Galois
group; hence R, can be extended to a representation R} of I' x G(A4g). Let ¢ €
%>(Z(Ag)\G(Ag), @71); then R (¢) is of trace class and Ry(g) is unitary for g € I,
The operator R,(¢) can be represented by a kernel K(g, x, y) and then the operator
R (0)R,(¢) is represented by the kernel K(¢, x7, y) and

. = Ki 7, x) dx.
tr(R(0)RAP)) j s K50, dx
Assuming, as usual, that ¢ is a tensor product: ¢ = ®g,, one can proceed as in
[G-J-1] to compute this integral; if ¢ # 1 it is the sum of the following terms
@M-(N:
(Z(A)GYE)\GYA j' ~o8g) d
0 3 VolZAGENGAD) |, HE0) e
where the sum runs over the g-conjugacy classes of elements ¢ such that N(J) is
central, and Gj§ is the g-centralizer of § (cf. [K]).
2 2 8(5)V01(Z(A)-G§(E)\G‘.§(AE))5 P(g0g) dg

06, Z(Ap)G}(AR)\G (4E)
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where &, is a set of representatives of the g-conjugacy classes that are not g-con-
jugate to a triangular matrix, taken modulo Z(E) in G(E), and &(0) is % or 1 accord-
ing as the equation 7?07 = zg has or not a solution in Z(E) with z ¢ Z(E)1~.

©) =5 I e(Memo)r$)

o=y
where 7V = (v, ) if = (u, v) is a pair of characters of A5/E* with xv = @&. The
representation r, is realized in a space of functions on G(A4g), the action of g € I’
defines an operator 7,(¢) from the space of x, to the space of =z, ; then Myz(°y)
intertwines z,, and 7.,- but 7" = 7. Hence the product M(°p) =,(0)7,(9) is a well-
defined operator in the space of 7.,-, and the above expression is meaningful.

@ | o0 " (] tr(mi(0)mi($)) dy

where 7j = (g o Ng/p,V o Ng,p) if 9 = (u, v). There are /2 elements 7 giving rise to
the same 7. The reader should be aware that our notation 7 has not the same
meaning as in [L].

(5) '10 ]:[ 0”(0’ ¢v)s

where 6°(0, ¢,) = L(1, 1,)7! [[| ¢ (k—ot—on fgntk)t=% dn dt dk, with k € K,
the standard maximal compact subgroup of GLy(E ® F,),

_(a O o _ | @[ _ (1 z
(=g g =" wma m=( )
such that trg,, z = 1. The integration is on K, x Z(E)\A(E,) x N(F,)\N(E,),
where E, = EQ® F,.

© - AL 3 % 456,60 T PG ),

eF v

where # = {d e Al“"(E)Z(E)\A(E)lN(a) ¢ Z(F)},
Fo(8, ¢) = 4,7) § 280 ar) ¢ Pu(87°08) dg

and y = N(9). An explicit definition of A%, ¢,) will not be given here; we shall
simply say that A%(5, @,) = lA4x(y, f,) if £, is associated to ¢, under the base change
correspondence (see [K]).

As above the remaining term can be written

™ 7§ 5 B[] )

For a definition and a detailed study of distributions A% and B the reader is referred
to [L, §7] (where the subscript ¢ is omitted) and to [K, Lemma 4].

3. The comparison. We assume now on that the function f = Qf, €
%>(Z\G(4),w™) and the function ¢ = ®¢, € € (Z(4)\G(4g), @) are such
that ¢, and f, are “associated” in the sense defined in [K]; we consider
@y = L te(RUDRAP) — tr ().
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ProOPOSITION 1.
2
=4 | X (B0, 8) - % B ) T ez, () dy
D° 77 w#v

_ _5_12i h tre(M(*p)z (o), ()

7=, )i p# 0 pp=o
where

51,2=1 l:fl=2,
=0 ifl+2.

The proof amounts to the comparison term by term of the expressions for
tr(r(f)) and /- tr(R(o)RA)).

For example to prove that /-(1) = (i) note that we work there with a sum over
elements g € G(E) such that N(0) is central in G(F); hence GYE) is the set of F-
points of a twisted inner form of G. Since we use Tamagawa measures,

[vol(Z(A)GH(ENG3(Ag)) = I Vol(Z(A)G(F)\G(4)) = vol(Z,G(F)\G(4));

the expressions to be compared are products of the local analogues, and now, using
properties A’ and B’ in [K] for associated functions and the fact that the number of
places where a minus sign occurs is even, we obtain the desired results. To prove
[ - (2) = (ii) is even simpler since in that case G§(E) = G,(F), where y = N(J): the
twisting is trivial since G, is abelian.

To compare /-(3) and (iii) is slightly more complicated; we must distinguish two
cases:

(@) I # 2; then %y = 7" implies %) = » = 7" and in such a case one has M(y) =
— 1. One the other hand one should note that tr 7, (f,) = zpa, Fa, f,)n(a) da
and that for associated functions f, and ¢, one has F(a, f,) = F’(b, ¢,) if a =
N(b). Moreover

tr 7, (o) () = jz  Fe(b, $)7.0) db,
where Z, = Z(E® F,) and 4, = A(E ® F,). Then tr(z;(0)ny(9)) = tr(z,(f) if
¢ and fare associated and if § = (g o Ng/p, Vo Ng,p) and 9 = (g, v).
This yields /- (3) = (iii).
(b) If I = 2, the same arguments apply if y = 7V = 9, but there are other terms
corresponding to » = (y, v) with g = % # 7y and then
) ,
I-(3) = (i) = — PX tr(M( )z (0)7(4))-
10 =, 1) 37 =0
To prove that /-(4) = (iv) we use the previous remarks and the fact that mg(7)!
= [I,.; m(n), where 5 — 7 means that 9 = (g, ») and 7 = (uo Ng/p, Vo Ng,p) =
(#, v) and by definition:
L g™ ad mury = L A7)
= m =25 77
m(n) I vy and  mg(7) o0 )
Now [:(5) = (v) follows from the comparison of orbital and twisted orbital in-
tegrals on unipotent elements.
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To conclude the proof of Proposition 1 it is enough to show that /-(6) = (vi),
which in turn follows from the equality:

AZ(T’f;) = Ag(a’ ¢v) if T = N(a)'

4. The main theorem. The representation # is a discrete sum of unitary irreducible

representations of G(A) with multiplicity one:
r= 2= 2 Qi

sl il

and trr(f) = X;e; 1, tr 7, (f,) for some set 1.

Let v be a nonarchimedean place. Given f, in the Hecke algebra of G(F,) then
tr z; (f,) is zero unless 7; , is unramified and hence corresponds to the conjugacy
class of some semisimple element ¢;,,€ GL,(C), the connected component of the
L-group. Any function f, in the Hecke algebra defines a rational class function
[y on GLy(C) such that fY(¢,,,) = tr «;,(f,). Choose a finite set ¥ of places of F
containing archimedean ones and assume f, is in the Hecke algebra for v ¢ V. Then
one has

LEMMA 1. tr l'(f) = ZiHvEV tr ni;v(fv) H0$Vf\v/(ti,v)'

The representation R, can also be written
Ry = 2 II; = 2 I,
j€J j€J] v
where /I; is an automorphic representation of G(4g) and II; , a representation of
G(F, ® E). Since °R, ~ R, and is multiplicity free, ¢ permutes the II;. If °JI; ~ II;
one can restrict the operator Ry(¢) to the space of II;, and denote this restriction by
IT{(0). The nonfixed II; do not contribute to the trace of R(0)R,(¢) (a permutation
matrix without fixed point has trace zero) and then

tr R()RAp) = X, tr I{(0)I(4).

ol =1 j

Moreover II; = ®II,,, and °II; , ~ I, ,; we can define [T} , (o) up to /th roots of
1. If IT; , is unramified, there is a canonical choice. If ¢, and f, are associated in the
Hecke algebras, we choose a semisimple element ¢;,, € GL,(C) such that

tr ]]/I, v(o)nj,v(¢v) =1r ”j,v(¢ﬂ) = fi\!/(tj',r))’

and then for some big enough finite set V" of places of F, we have:
LeMMA 2. tt R(0)RA(9) = Z; Moy tr I} (o)1, (@) [loev £3(2;.0)-

ReMARK. If v is nonarchimedean and split in E, then any f, is associated to some
#,; in fact in such a case ¢, may be taken to be f, ® f,,® -+ ® f,, where the w;
are the places of E above v, and f, = f,, * f,,,* --- # f,,, can be any smooth function
on G(F,); the conjugacy class of ¢;,, is well defined by 11 ,.

If v does not split in E, is unramified, and if ¢, and f, are associated in the Hecke
algebras, one can define a function ¢,/ on GL(2, C) as above; we have

Y@ = ¢y() for ¢t semisimple in GLy(C).

In such a case the conjugacy class of the ¢;,, above is not uniquely defined.
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Ifl # 21et R = IR,.

Assume for a while / = 2; if g is a character of 4%/E* such that uy = @ and
ou # u, we consider 7, = x,, where 5 = (u4, ‘). As was said above, the operat-
or M(°p)x,(0) = 7,(0) maps the space of z, into itself. One defines in such a way
a representation 7, of I' x G(4g). One should remark that 7, ~ 77,. Let us
denote by 7 the set of such representations (modulo equivalence) and let

R =IR,® ), 7,
T.ET
An analogue of Lemma 2 can be stated.
We can now state the main theorem (cf. [L, Theorem 9.1]).

THEOREM 1. Assume f and ¢ are associated; then tr R'(6)R(P) = tr r(f).

(Recall that the definition of the correspondence “f and ¢ are associated” de-
pends on the choice ofag e I' — {1}.)
The proof of the theorem can be carried out as follows: consider the expression

(a) tr R'(0)R(P) — tr r(f).
Thanks to Proposition 1 above, this is equal to
®) & | 28 60— % B 1) 11 7, (f) .

17y

Using properties of some weighted orbital integrals [K, Lemma 4], one can prove
that

lB(ﬁw ¢0) - Z B(7]m fv) =0,
e/l
at least when v is nonarchimedean, unramified in E, with ¢, and f, associated and
in the Hecke algebras. Hence there is a finite set of places ¥ such that (b) can be
written

(®) f s I wm(rdy

with some nice function §.
Now choose a place vy ¢ V split in E; then (b’) reduces to an absolutely con-
vergent integral:

®) [ oG ) as

where a, b depends on the central character w,,. All we need to know is that d(s)
is some continuous, bounded and integrable function on the real line. On the other
hand (a) can be written using Lemmas 1 and 2 above

@") kz%) ap fol(te)

with g, € C and t, € GLy(C) semisimple elements corresponding to inequivalent
unitary representations of GLy(F,). The series, as the integral, is absolutely con-
vergent. Now f, is arbitrary in the Hecke algebra (since v, is split in E) and the
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Hecke algebra separates inequivalent unramified representations. The Stone-
Weierstrass theorem and easy majorations prove that all a, are zero (which is a
stronger statement than Theorem 1). All the desired results can now be xtracted
from Theorem 1 and from some results on the characters of representations of
I’ x GL(E,) (cf. [L, §5]). We shall try to explain some of the steps.

5. Existence of weak liftings. Choose a finite set ¥ of places of F containing all
archimedean places and all places ramified in E. Assume that ¢, and f, are as-
sociated and in the Hecke algebras for v¢ V. One can, using Lemmas 1 and 2,
choose element ¢, , € GLy(C) for v € ¥ and n € Nsuch that

tr R,;(O')Rd(¢) = ; an(¢) vg’ f;/(tn.v),
LD @) = X8 T1 1),
tr r(f) = ; Tn(¢) !e—{,ft}/(tn.v);

P

we may assume moreover they are chosen such that the functions T, ($,),ev —
M,ev f)(t,,) on the product for v ¢ ¥V of the Hecke algebras are distinct. (Recall
the remark after Lemma 2.) Let §, = la, + 8, — 7,; then the above theorem can
be restated in the following form

ZIIV 0ADTAp) = 0.
Another use of density arguments, the T, being distinct, yields

PROPOSITION 2. For all n one has ,(¢) = 0.

Thiscanberead la, + 3, = 7,

Assume that there exist a representation I = ®II,, unramified outside V,
occurring in L such that tr II,(¢,) = fY(t,,,) for some n with a,, not zero, and any
v ¢ V; then using the strong multiplicity one theorem [C] one concludes that such
a Il is unique and satisfies JT ~ ¢/I. The fact that L(s, IT) is entire allows one to
conclude that no other I occurring in L2 or in & has the property that tr II,(¢,) =
FYt0), v ¢ V. Then a(§) = T,ey tr I(o)I($,) and B,(g) = O; since la, + f, =
7, We conclude that 7,(¢) is not identically zero and hence there exists (at least) one
zin L ® L%, such that 7 = @, and tr #,(f,) = f)/(1,,) for v ¢ V and then II, is
the lifting of «, for v ¢ V. We shall say that [T is a weak lifting of = if [T, is a lifting
of &, for almost all v. We then have proved

THEOREM 2. If II is a cuspidal automorphic representation of GLy(Ag) such

that Il ~ ]I, then Il is the weak lifting of some automorphic representation © of
GLy(A).

A direct study of L2, allows one to prove:

PROPOSITION 3. Any = occurring in L%, lifts to a Il in L2, and all o-fixed represen-
tations in L%, are obtained in this way.

In the case / = 2, assume that /T = 7(y, °x) occurs in 7 and that 4, is unramified
for v ¢ V; one can show using Proposition 2 and results on L-functions on GL, x
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GL; that [T is the weak lifting of 7 = 7(p) where p = Ind}}£ » and that there exists
n € N such that

vg te I(0)1(¢,) = BB) = 1) = ,,gv tr z(f,)-

This can be used to show that at all places of F: tr II,(0)I(¢,) = tr z,(f,), and
hence

THEOREM 3. Let the fields E and F be either local or global. Then n(y, °y) is the lift-
ing of (p) where p = Indjjt 4.

6. Any cuspidal 7 has a weak lifting. Assume for a while that some z occurring in
Lg has no weak lifting. Let ¥ be a finite set of places of F including archimedean
places and those where E or z are ramified. Let f = ) f, be associated to some ¢
and such that f, is in the Hecke algebra for v ¢ V. Consider the z; in L§ ® L2, such
that tr z, (f,) = tr z,(f,) if v ¢ V. Since the 7, have no weak lifting, Proposition 2
shows that the sum of the «, gives a zero contribution to tr r(f):

Z H tr ﬂk,v(f;i) H tr 7tv(f;;) =0-

k  veV VEV
hence there is a set ¥; = V such that 35, [[,ey, tr 7,,,(f,) = 0. One has to prove
that this is impossible unless the sum is empty. The idea of the proof (by induction
on the cardinality of V) is that characters of inequivalent representations are
linearly independent, but the proof is complicated here by the fact that f, cannot
assume all values, since f, must be associated to some ¢, (cf. [L, §9, pp. 25-30)).
This yields

THEOREM 4. Any cuspidal & has a weak lifting.

7. Local liftings. To finish the proof of the global theorem on base change for
cuspidal representations, one must show that the above weak liftings are liftings at
all places. Let [T ~ ]I, occurring in L, unramified outside a finite set ¥ chosen as
before; there is an n such that, according to Proposition 2, la,(¢) = 7.,(4), which
can be written, for some V; = V,

11 te Io)I(8,) = ; IT trz..(f),

VEV] vV
where the 7, = ®=;,, have Il as weak lifting. One then proves [L, §9, pp. 33-34]:

LEMMA 3. If for some v the representation II, is the lifting of some 7, then it is the
lifting of 7y, for all k, that is tr [I,(0)I,($,) = tr 7., (1)

Then one may assume that ¥; does not contain such places.

On the other hand existence and properties of local liftings are easy to prove, or
are deduced from Theorem 3 above, except for some supercuspidal representations
(exceptional ones). Lemma 3 and this remark show that all desired local or global
results (cf. part I of this paper) can be deduced from

THEOREM 5 [L, §9, PROPOSITION 9.6)). (2) Every supercuspidal rc, has a lifting.
(b) I 11, ~ ]I, and is supercuspidal, then r,, is a lifting.

Part (a) of this theorem is proved by embedding the local situation in an ad hoc
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global one, where the existence of liftings is known at all places except perhaps at
one place, and to use the above equation with ¥, reduced to one element.

Part (b) then follows from the orthogonality relations of [L, §5].

The last paragraph of Langlands paper [L] is devoted to the proof of the exist-
ence of lifting for noncuspidal representations, using their explicit description (cf.
Appendix C).
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REPORT ON THE LOCAL LANGLANDS
CONJECTURE FOR GL(2)

J. TUNNELL

Let ®(GL(2)/K) be the set of isomorphism classes of two-dimensional F-semi-
simple representations of the Weil-Deligne group W of a nonarchimedean local
field K. The purpose of this report is to discuss the following conjecture of Lang-
lands relating @(GL(2)/K) and the set [[(GL(2, K)) of isomorphism classes of irredu-
cible admissible representations of GL(2, K).

Conjecture. For each representation ¢ in ®(GL(2)/K) there exists a representation
7 = n(¢) in [I(GL(2, K)) such that the determinant of ¢ and the central quasi-
character of z are equal and such that

Lz®y) =Lo®y and &xz ® y) = &0 ® )

for all quasi-characters y of K*. The map o — z(0) is a bijection of ®(GL(2)/K) with
II(GL(2, K)).

The existence statement in the conjecture was formulated in [4], where it was
shown that for a given representation ¢ there is at most one representation z satisfy-
ing the desired conditions. The injectivity statement is equivalent to saying that a
two-dimensional F-semisimple representation of Wy is determined by its twisted
L- and e-factors and determinant. It is straightforward to show directly that redu-
cible two-dimensional representations are in fact determined by the twisted L-
factors alone. The known proofs of the injectivity statement for irreducible repre-
sentations use admissible representation techniques.

As discussed in [1, 3.2.3] it follows from the work of Jacquet and Langlands that
n(o) exists when ¢ is reducible, and that this establishes a bijection of the set of
isomorphism classes of completely reducible (repectively reducible indecompos-
able) two-dimensional F-semisimple representations of Wy with the set of isomor-
phism classes of principal series (respectively special) representations of GL(2, K).

Let &, (GL(2)/K) consist of isomorphism classes of irreducible two-dimensional
representations of the Weil group Wy, and let [..s,(GL(2, K)) be the set of iso-
morphism classes of supercuspidal representations of GL(2, K). Members of
these sets are characterized by the requirement that their twisted L-factors are all
equal to 1. To prove the conjecture it is enough to verify that z(¢) exists for all g in
0,.,(GL(2)/K) and to show that this establishes a bijection of @, (GL(2)/K) and

" AMS (MOS) subject classifications (1970). Primary 12B30, 12B15; Secondary 10D99.
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IL.s(GL(2, K)). This was first proved for local fields with odd residue characteristic
(see §2), which suggested the bijectivity portion of the conjecture in general.

The conjecture has been proved for all nonarchimedean local fields except those
extensions of @, of degree greater than 1 which do not contain the cube roots of
unity. References for the proof are given in the following survey.

1. Existence of z(o). If ¢ is a representation induced from a one-dimensional
representation of an index two subgroup of Wy there is an explicit construction
(due to Weil) of an irreducible admissible representation () of GL(2, K) with the
desired properties [4, 4.7]. When K has odd residue characteristic all representations
in 9, (GL(2)/K) are induced from proper subgroups [1, 3.4.4], so the construction
above applies.

For each local field of even residue characteristic there exist irreducible two-
dimensional representations of the Weil group which are not induced from a
proper subgroup [11, paragraph 29]. There is no explicit construction of z(¢) known
for such representations. The approach of Jacquet and Langlands to the existence
of z(¢) in this case is to imbed the local problem in a global one as follows. Let F be
a global field and let p be an irreducible continuous two-dimensional complex re-
presentation of the Weil group Wp. For each place v of Flet p, be the restriction of
p to the Weil group of the local field F,.

THEOREM 1 [4, 12.2]. If the global L-functions L(s, p ® y) are holomorphic and
bounded in vertical strips as functions of the complex variable s for all quasi-characters
x of A¥|F* then n(p,) exists.

Cases when the hypotheses of this theorem are met have been described in the
discussion of Artin’s Conjecture in the base change seminar at this conference. A
homomorphism of a group to GL(2, C) will be said to be of type H if the composi-
tion with the quotient map to PGL(2, C) has image isomorphic to H. The results in
brief are that Theorem 1 may be applied when p is induced from a proper subgroup
(Artin), when F is a field of positive characteristic (Weil), when p is of 4, type
(Langlands-Jacquet-Gelbart), and when F = Q, p is of S, type and the image of
complex conjugation has determinant — 1 (Langlands-Serre-Deligne).

THEOREM 2 [10, THEOREM A). Let K be a nonarchimedean local field which contains
the cube roots of unity if it is a proper extension of Q,. Then n(o) exists for all ¢ in
O(GL(2)/K).

This theorem is proved by constructing a global field F, a place v of F such that
F, ~ K, and a representation p of W satisfying the hypotheses of Theorem 1 such
that p, ~ ¢. The nonarchimedean local fields of even residue characteristic which
do not contain the cube roots of unity are precisely those for which there exist re-
presentations of the Weil group of S, type [11, paragraph 25]. The fields excluded in
Theorem 2 are those for which there are two-dimensional representations of the
Weil group which are not restrictions of global representations known to satisfy
the hypotheses of Theorem 1. Deligne has indicated that if /-adic representations
can be associated to certain automorphic representations related to Shimura varie-
ties arising from division algebras over a totally real field F, then the hypotheses of
Theorem 1 will hold for representations of W of S, type with prescribed behavior
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at the infinite places. Theorem 2 will then be true for K a completion of F at a prime
dividing two; since each finite extension of @, is the completion of some totally
real field, the proposition and Theorem 3 of §4 would then prove the conjecture in
all cases.

2. Odd residue characteristic. The Plancherel formula for GL(2, K) shows that
the supercuspidal representations of the form z(¢) for ¢ in @;,(GL(2)/K) exhaust
the supercuspidal representations if K has odd residue characteristic. References
[3], [8] and [9] contain treatments of the representation theory of GL(2, K) and
related groups when K has odd residue characteristic.

The injectivity statement may be proved by examining the explicit formulas for
characters of supercuspidal representations in the case of odd residue characteristic
which are given in [7] and the references above (at least for SL(2) and PGL(2)). Sup-
pose that ¢ is induced from a 1-dimensional representation A of the Weil group Wy
of a quadratic extension E of K. Denote the quasi-character of E* corresponding to
A by the same symbol. The restriction of the character function of z(s) to a Cartan
subgroup isomorphic to E* is given by a formula involving A and its Gal(E/K)
conjugate. From the explicit form of the character it can be seen that z(¢) deter-
mines A up to Gal(E/K) conjugation, and hence determines the induced represent-
ation .

3. Positive characteristic. The discussion of §1 shows that z(¢) exists for all
representations of the Weil group of a local field of positive characteristic. The
bijectivity assertion of the conjecture seems to have first been proved by Deligne
[2] as a consequence of Drinfeld’s results relating automorphic representations of
GL(2) over global function fields to /-adic representations.

4. A method is presented in [10] that gives alternate proofs of Langlands’ Con-
jecture for the cases discussed in §§2 and 3 and proves the conjectured bijection for
all fields in Theorem 2.

PROPOSITION [10, 2.2]. Let g, and o4 be two-dimensional representations of the Weil
group of a local field, each of which is the restriction of a global representation satisfy-
ing the hypotheses of Theorem 1. If n(01) ~ =n(02) then o, =~ 0.

The proposition above is proved by an inductive application of base change for
GL(2). The assumptions of the hypothesis are necessary because the proofs of the
base change results for local fields utilize global methods.

The following result holds for any nonarchimedean local field K.

THEOREM 3 [10, §84 AND 5]. There are partitions of @, (GL(2)/K) and
lws,(GL(2, K)) into finite sets ®; and II; respectively (indexed by a common set A)
such that

(1) If o € @; and 7(0) exists, then n(o) € II,.

(2) Card(®;) = Card(I) for all 2 € A.

The partition elements are determined by conditions on the Artin conductor
and determinant (resp. conductor and central quasi-character) of elements in
0,..(GL(2)/K) (resp. II..sp (GL(2, K))). Since the conductor of a representation is de-
termined by the twisted e-factors, the first statement follows from the definitions.
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The computation of the cardinality of the sets @, is done by constructing all irredu-
cible two-dimensional representations of W as in [11] and counting those with a
given Artin conductor and determinant. The sets /T; are studied by utilizing the cor-
respondence between square-integrable representations of GL(2, K) and admissible
representations of the group of invertible elements in the quaternion division
algebra over K.

Theorem 2 together with the injectivity proposition and the counting results of
Theorem 3 show that @; and /I, correspond bijectively by means of ¢ +— (o) for
the local fields in the hypotheses to Theorem 2. This gives the known cases of the
conjecture stated in the introduction.

5. Remarks. While the statement of Langlands’ Conjecture is purely local, the
proofs described above in the case of even residue characteristic utilize global
methods (base change and cases of Artin’s Conjecture). Only in the case of odd
residue characteristic are the proofs described above purely local.

Cartier and Nobs have indicated a proof of the conjecture for the field O, which
is purely local. They calculate the necessary e-factors for irreducible two-dimen-
sional representations of Wg, and match them with the factors of supercuspidal
representations of GL(2, @,) constructed in [6]. The supercuspidal representations
are constructed by inducing finite dimensional representations of subgroups of
GL(2, K) which are compact modulo the center. In [5] a similar construction of
supercuspidal representations for GL(2, K) is given which should allow, in theory,
the calculation of e-factors and matching with the factors of representations of Wy
to be done in general.
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THE HASSE-WEIL {-FUNCTION OF SOME MODULI
VARIETIES OF DIMENSION GREATER THAN ONE

W. CASSELMAN

Introduction. Let £ be a number field of finite degree, G a connected reductive
group over k. By restriction of scalars, one may as well assume k& = Q. Let K =
G(R) be the product of the center of G(R) and a maximal compact subgroup. Then,
in certain circumstances, one may assign to X = G(R)/Ky a G(R)-invariant com-
plex structure; if /"is an arithmetic subgroup of G small enough to contain no
torsion then /'\X will be a nonsingular algebraic variety. In many cases one can
show that it has a model defined over a rather explicit number field, and under
certain further assumptions—as Deligne and Langlands may explain—one can
choose a canonical model defined over an abelian extension of a special number
field E determined, roughly speaking, by G and the complex structure on X.

One might expect that the Hasse-Weil {-function of a canonical model is a pro-
duct of L-functions of the sort Langlands associates to automorphic representa-
tions of G(A). This turns out to be false (see the Introduction to [22]), but it is
suggestive. The first result of this kind is due to Eichler, who showed that when
G = GLy(Q) and I'=Ty(N), then I'\X has a model over @ and its Hasse-Weil
C-function is, as far as all but a finite number of factors in its Euler product are
concerned, a product of L-functions defined in this case by Hecke. This result was
extended by others, notably Shimura, Kuga, Ihara, Deligne, and Langlands, to
include: (a) other ["in this G, (b) other G, (c) Z-functions associated to nontrivial
locally constant sheaves, and finally (d) factors of the {-function corresponding to
primes where the variety behaves badly. With one exception—some unpublished
work of Shimura—all this work is concerned with X of dimension one. (Refer—for
a sampling—to [11], [28], [14], [6], and [19].)

As a consequence of these results one had a generalization of Ramanujan’s con-
Jecture, applying the result of Deligne on the roots of the {-function of varieties
over finite fields. A further consequence was a functional equation for and analytic
continuation of the Hasse-Weil {-function concerned, which turned out—excepting
again Shimura’s example—to be a {-function associated in a particularly simple
way to GL, or a quaternion algebra.

Over the past several years, Langlands has attacked the problem of varieties of
dimension > 1, and what Milne and I are going to discuss in our lectures is the
simplest case he deals with. '
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To be more precise, let:

F = a totally real field of degree, say, n;

0p = integers in F;

B = a quaternion algebra over F;

0p = a maximal order in B.

We recall that this means simply that B is an algebra of dimension four over F such
that B ® F = M,(F), where F is an algebraic closure of F. Since over any locally
compact field there exists a unique quaternion division algebra, if v is any valuation
of Fthen B, = B ®p F, is isomorphic either to My(F,) or to this unique division
algebra, depending on whether or not B, has 0-divisors. The algebra B is said to be
split at v in the first case, ramified in the second. It is in fact split at all but a finite
number of valuations; quadratic reciprocity says this number is even, and another
classical result says that for each even set of valuations there is a unique quaternion
algebra ramified at exactly those valuations. Thus B itself is a division algebra if
and only if it is ramified somewhere. If v is nonarchimedean, the closure of oz in B,
is a maximal compact subring of B,—unique if B is ramified at v, otherwise only
unique up to conjugacy by an element of B.

Let G be the algebraic group over Z defined by the multiplicative group of op.
Thus for any ring R, G(R) = (0 ® R)*. In particular, G(Q) =~ B> (canonically)
and G(R) ~ GLy(R)! x (H*)! (noncanonically), where I is the set of real valua-
tions of F where B is split, J those where it is ramified. For every rational finite
prime p over which B does not ramify,

G(Z,) = [l GLy(or,,),  G(@,) = [] GLy(F),

where the product is over all primes p of F dividing p.

Of course the simplest case is B = M,(F), but that is unfortunately the case we
will not allow—i.e., from now on we assume B to be a division algebra. Furthermore,
we will assume B totally indefinite at the real primes of F—i.e., thatJ = @. Langlands
himself does not make these assumptions, but acknowledges gaps in the argument
unless they hold.

Let 4 be a finite set of rational primes containing those over which either F
or B ramifies, and let K, be a compact open subgroup of G(Z) of the form K-
[ pees G(Z,), where K is a compact open subgroup of [ ,c ;s G(Z,).

Let Z be the center of G, and Zx = (Z(4y) N K;) - Z(R).

Consider C* as embedded in GLy(R):

a+by—1 H(‘; ‘Z)

and let K be the image of (C*)! in G(R). (This is the connected component of the
K used before.) Then G(R)/Kpy is a product of n copies of C— R.

Let K be Ky, - K. The set xS(C) = G(@Q)\G(A)/K is (as will be explained later)
the union of a finite number of compact complex analytic spaces of dimension #;
it will be nonsingular if (as we assume from now on) K is small enough.

Milne (in his lectures at this Institute) will show that this space is the set of C-
valued points on a certain moduli scheme xS which is defined, smooth, and proper
over Spec Z[1/d], where d is the product of primes in 4. He will also discuss the
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structure of its points over finite fields. What I will do is to identify its Hasse-Weil
{-function as one of Langlands’; the basic idea in doing this will be to use the
Selberg trace formula to calculate p-factors of Langlands’ L-function, and Milne’s
results and an unorthodox application of the trace formula to calculate p-factors of
Hasse-Weil—both for p not dividing 4. (This will be a lot of trouble, and I should
explain at the outset that, although when S has dimension one it is possible to use
a congruence relation to obtain the final result, this will not suffice in general.)
One may then apply Deligne’s results on the roots of the Frobenius to get a gen-
eralization of Ramanujan-Petersson; however, results about a functional equation
for Hasse-Weil are incomplete.

In everything both Milne and I do we are essentially reporting on Langlands’
work. The result we discuss is only a special case of a more complicated result of
his involving subgroups of B*. We avoid, in treating this special case, problems of
what he calls “L-indistinguishability,” which perhaps he himself will talk about.
His result is more general in other ways, too; I include remarks on this in the last
section, where I have collected together a number of substantial parenthetical
remarks.

My main reference is the summary [21]; complete statement and proofs are in
[22]. Also relevant are Langlands’ talk in the Hilbert problems Symposium [20]
and his talks at this Institute.

1. Cohomology of S(C) and representations.

1.1. Let v be the reduced norm: G — G,,. Since B is a division algebra, the coset
space G(Q)\G(A) is compact, where G}(A4) is the kernel of the modulus homomor-
phism |y| : x — |v(x)]|. Since the image of G®"*(R), the connected compact of G(R),
under [y| is all of Rrs, the set G(Q)\G(4)/G*™(R) is compact as well. Since K| is
open in G(Ay), the set G(Q)\G(A4)/G™(R)K is finite. Therefore there exists a finite
set Z of elements of G(A4) such that G(4) = | JG(Q)xG*™(R)K (x € Z). (Strong
approximation gives one a better parametrization of &, but we won’t need that;
see [7].)

1.1.1. LEMMA. For any x € G(A), the space G(Q)\G(Q)xG™(R)K;/K; as a
G(R)-space is isomorphic to I'\G°™(R), where I, is the image in G*(R) of
G(Q) N G*™(R)- xKpx1.

This is because G™(R) certainly acts transitively on this space and [, is the
isotropy subgroup of the coset G(Q)xK.
Let s# be the upper half-plane in C. As a consequence of the above:

1.1.2. PROPOSITION. The G*(R)-space G(Q)\G(A)/K; is isomorphic to a disjoint
union of spaces I'\G<™(R) (x € &). The variety xS(C) is the disjoint union of the
T\

The same argument as that used to prove Lemma 2.1 of [19] may be applied to
show that if K, is only small enough, each ', acts freely and xS(C) is nonsingular.
We assume this from now on.

1.2. Let &7, be the space of automorphic forms on G(Q)Z(R)\G(4). It is a direct
sum @z of irreducible, admissible, unitary representations of G(4) (an abuse of
language since not G(R), but only its Lie algebra g, acts). If § is the Lie algebra of
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G(R) = G(R)/Z(R), then in fact the representation on .o, factors through §. Let £
be the Lie algebra of K = Ki/Kg (| Zg.

1.2.1. PROPOSITION. The de Rham cohomology H*(xS(C), C) is naturaily isomor-
phic to DH*3, ¢, 7..) ® wk/.

The cohomology is the relative Lie algebra cohomology. The sum is over all
constituents 7w of 7, (with multiplicity if necessary), which one factors as z =
7. ® m; where r,, is an irreducible admissible representation of G(R) (more abuse
of language as before) and z; one of G(4).

PROOF SKETCH. Let o7& be the subspace of &7 of functions fixed by elements of
K. Since § commutes with K, this is a representation of § which is clearly iso-
morphic to @ z., ® z¥/. Thus the proposition amounts to the claim that
H*(xS(C), C) is isomorphic to H*(g, £, «7Ks). Now from 1.1.2 it follows that
/&7 is the direct sum of subspaces «7§f (x € Z), where each «/§{ is the space
(" \G=™(R)) of Ky-finite, Z(§)-finite functions on /,\G=™(R) ([, is the image
of I, in G). Thus the proof of 1.2.1 reduces to:

1.2.2. LEMMA. There exists a natural isomorphism:
H*I'\G/K, C) = H*(§, |, #(I'\G)).

This sort of thing holds in fact for any semisimple Lie group G, cocompact /" = G
and maximal compact K.

To see it: the cohomology of X = /7,\G/K is that of the de Rham complex, whose
nth term is the space of C= m-forms on X. Now the projection /",\G — X is a prin-
cipal bundle, and the bundle of m-forms is associated to it and the K-space A(g/E)".
Therefore C= m-forms correspond to certain C= functions from /7,\G to A(§/f)",
which by means of an obvious duality may be thought of as K-linear maps from
Am(g/k) to C=(I",\G). In short, the de Rham complex on X may be identified with a
complex whose mth term is Hom;(A(§/E), C=(/",\G)). But this is the mth term of
the complex by which H*(g, £, C~(/",\G)) is calculated, and it turns out (by an
explicit calculation) that the differentials are the same. Therefore 1.2.21s true with
(I, \G) replaced by C=(/"\G). To get the final step, roughly, one recalls that ac-
cording to Hodge theory cohomology classes may be represented uniquely by
harmonic classes, and observes that these lift in the above process to elements of
2. (See Chapter IV of [3] for details on this and other points.)

1.3. Although the number of representations occurring in the sum in 1.2.1 is
infinite, all but a finite number of terms vanish. To be more precise, we must say
more about the relative Lie algebra cohomology of admissible representations.
First of all, since G(R) =~ PGLy(R)! (notation as in the introduction), each r_
factors as ®r.,,,, where each z_,, is an admissible representation of PGLy(R).
One has an easy Kiinneth formula:

H*@g, t, 7...) = QH*(8ly, 80(2), 7..,.)

so that the problem for G(R) is reduced to one for PGL,(R). (Note that the Lie
algebra of PGL, is the same as that of SL,.) For this: let C be the Casimir element
in U(8ly), and recall that it lies in the center of U(8l,) and is centralized by the maxi-
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mal compact O(2), hence acts as a scalar on any irreducible admissible representa-
tion of PGL,(R).

1.3.1. LeMMA. Let (z, V) be an irreducible, admissible, unitary representation of
PGLy(R). Then

H*(815, 80z, V) = 0 ifz (C) # 0,
~ Hom,,(A*(8z/805), V) if m(C) = O.

The idea of the proof here is that if 7 is unitary one can put a natural inner pro-
duct on the complex Hom,,,(A*(8,,/802), V), such that z(C) = dd* + d*d where d*
is the adjoint of d. (This is an observation good for all semisimple groups due to
Kuga.) The lemma follows immediately.

For PGLy(R), there are only three irreducible admissible representations z with
7(C) = 0: (a) the trivial representation C; (b) the character sgn(det(g)); (c) a
single discrete series representation 7, which may be identified with the quotient of
the O(2)-finite functions on P!(R) by the constant functions. Lemma 1.5 and an
easy calculation concerning the restriction of these to O(2) give:

1.3.2. CorROLLARY. If 7 is an irreducible admissible umitary representation of
PGL,(R) other than one of these then H*(x) = H* (8, 80y, w) = 0. For these:

(a) when z is C or sgn (det),

Hm™(z) = C, m =0,
~ 0, m=1,
~C, m=2;

(b) when = = =y,
Hm(z) =~ 0, m=0,
~C+ C, m=1,
~ 0, m = 2.

The assumption of unitarity is not in fact necessary (see [3]).

Hence if the irreducible admissible representation 7. of the original G(R) is
cohomologically nontrivial, it must be of the form ®r..,., where each =, , is one of
the above three representations, and its cohomology may be calculated accordingly.

If z is an irreducible admissible representation of PGLy(R), set

m(z) =0 if = is cohomologically trivial,
=1 if 7 is either C or sgn(det),
= —1 ifzisx,.

If z, = Q =, is an irreducible admissible representation of G(R) define m(z,,) to
be [ m(z..,). If # = 7., ® 7 is an irreducible admissible representation of G(A)
where 7, is trivial on Z(R), then define m(z, K) = m(z.,) - dimz%s. Thus the size
of m(z, K) is just dim 7%/ and its sign reflects the parity of its contribution to co-
homology.

As a final remark let me point out that by applying the strong approximation-
theorem one can show that if z = =, (v over valuations of F) is an irreducible
admissible automorphic representation of G(4) and x, is one-dimensional at a
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place where B is split, then r, is one-dimensional everywhere. In particular, if one
factor of 7, is one-dimensional so are all. As a consequence of this one recovers a
result of Matsushima-Shimura [23] which says that the interesting cohomology of
xS(C) occurs in the middle dimension.

2. The main theorem and some consequences.

2.1. Irecall the L-group attached to G. First of all, if G is considered in the most
straightforward way as a group over F —i.e., so that for any extension F’ of F,
G(F') = (B ®p F')* —then its L-group is just the direct product of .G? = GL,(C)
and Gal(F/F). This is because it is an inner twisting of GL,(F). Since G as a group
over Q is obtained from this one by restriction of scalars, its L-group £G? is the one
in some sense induced from this one: it is the semidirect product of Gal(Q/@) by
LG® = GL,(C)!, where I is the set of embeddings of F into @ and Gal acts on LG®
by permutation of factors. (Since Q may be identified with a subfield of C, this I is
essentially the same as before.) Without any serious loss for our purposes we may
(and will) replace Gal (Q/Q) by Gal (F,,,../F), where F,,.. is the smallest extension
of F normal over Q. It may be helpful if I point out that it is unramified over Q
whenever Fis. I recall also that if p is a prime of Q unramified in Fand @ is a Fro-
benius in Gal(F,,,,/F) over p, then the local L-group LG, , = LG, may be identified
with the subgroup of LG, whose image in Gal(F,,,,/F) is the cyclic subgroup
generated by @. Thus one has an exact sequence 1 » GLy(C)! — LG, — (D) — 1.
(Refer to [2] for everything about L-groups.)

In order to define L-functions associated to automorphic representations, one
must also introduce finite-dimensional representations of LG. There is only one
(for each G) that we will be concerned with, and it is defined as follows: the space of
this representation p is a tensor product of copies of C2, one for each element of /;
the group £G® = GL,(C)! acts through the standard representation on each factor,
and Gal(Q/Q) (or Gal(F,,,,/Q), it makes no difference) acts by permuting the
factors. This does indeed define a representation of LG, since it is a semidirect pro-
duct of these two groups. The dimension of this representation is 2#. When F = Q,
for example, LG = GLy(C) and p is just the standard representation itself.

This particular choice of p may seem arbitrary, but in fact it was motivated ori-
ginally (in Langlands’ formulation) by general considerations about Shimura varie-
ties (one should refer to the Introduction of [22] for a discussion of this point).

2.2, If X is any smooth, proper scheme over Z[1/d] for somed = 1 and pis a
prime not dividing d, then the zeta-function of X over F, is defined to be the func-
tion Z (s, X), rational in p~3, such that (at least formally)

log Zy(s, X) = 31— (4X(F,).
T mp
As a consequence of the étale theory, this agrees with the definition in terms of
l-adic cohomology:

2-dimX
Zys, X) = [[ detd — ®-p~) pix,ap
=0

where @ is the geometric Frobenius. At least as far as factors other than those divid-
ing d are concerned, its Hasse-Weil zeta-function Z(s, X) is the product of these
Z (s, X).
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The main theorem of Langlands is:

2.2.1. THEOREM. Up to prime factors in A, the Hasse-Weil zeta-function of xS
agrees with ] L(s — n/2, &, p)»®K) where the product is over all © occurring as
constituents of /.

Of course one should consider the z with multiplicities if necessary. In fact,
however, because of the theorem in §16 of [16] relating automorphic forms on G
with those for GL,, together with the result for GL, in §9 of [16], each z occurs
exactly once.

In this product, m(z, K) = 0 for all but a finite number of 7z, since after all the
cohomology of xS(C) is finite.

What is actually to be proven is a purely local result: for p ¢ 4, the p-factors of
Z(s, xS) and [[ L(s — n/2, =, p) coincide. Now each = = Q=x, with m(x, K) # 0
has the property that z, for p ¢ 4 is unramified, hence corresponds to an element
g(z,) in the local L-group LG,. The p-factor of L(s — n/2, z, p) is then
det(I — p(g(z,))/p>7/%~1. Upon expansion, the theorem reduces to a formal
equation (p ¢ 4):

S| & 1
22— (8 S(Fpn)) = ] g:dom(yr, K) mZ::Ip"m/ 2 T trace p(g(z,)™).

m=1 mpms

This in turn amounts to an equation of coefficients (for p ¢ 4, m = 1):
.1 $xS(Fym) = _ZL m(z, K)pm /2 trace p(g(z)™).
7 in &

This is the form in which the theorem is actually proven. In these lectures I will give
a complete proof only in the simplest case, when Fis split over p.

2.3. Before beginning the proof, we give an example and some consequences.

The case n = 2 is the first interesting one, in the sense that, as already mentioned,
the case n = 11is an old result and can be (and has been) done more elementarily by
means of a congruence relation. So, suppose for a while that F is quadratic over Q,
and consider the possible p-factors occurring in L(s, x, p). There are two cases: (1)
when p = p;p, splits in F and (2) when p = p remains prime.

We look at (1) first. In this case G(Q,) = GL,(F,) x GL,(F,,) and an unrami-
fied representation of this must be of the form z; ® 7,, where each z; is an unrami-
fied representation of GL,(F, ), hence corresponds to a pair of unramified charac-
ters (a;, ;) of F,;. More precisely, z; may be the whole principal series representa-
tion parametrized by the pair when it is irreducible, or the associated one-dimen-
sional character of GLy(F,) when it is not. (By strong approximation, this last
happens only when the global representation at hand is also one-dimensional.) In
either case, observe that the local L-group LG, is (because p splits) simply the direct
product GLy(C) x GL,(C) and that the corresponding element g(z,) of LG, is

((051(17) > (az(P) >)
B(p)/ B2(p)
The representation p is simply C2 ® C?, so the p-factor of L(s — 1, z, p) is

(1 = a(Pa(p)p'=) 11 — al(P)BAPIP )1 — (P PP )
@2 (1 = B(P)BLPIP) L.

I
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Next case (2). Here 7, is a single unramified representation of GL(F), say cor-
responding to the characters (@, §) of F;/o,'. On the other hand, the local L-group
is still a semidirect product of GLy(C) x GL,(C) by the Galois group of order
2, since the Frobenius @ generates Gal. I leave it as an exercise to verify that the

element g(z,) of LG, is
(0 %) (st

If ey, e, are the standard basis elements of C? then g(z,) acts as follows on the space
of p (recall that @ interchanges factors):

e, ® e - a(ple; ® ey, e1 ® e; > a(ple; ® ey,
e @e - f(pe ®e;, e ey f(ple; B e
Therefore the p-factor of L(s — 1, «, p) is

(23) (1 = a(pp'=)(1 = B(p)p')"'(1 = a(p)B(p)p*)~.

For n > 2, the analogous formulae can be rather complicated. Incidentally, the
unpublished result of Shimura we have referred to before is precisely that the p-
factors are of the form (2.2) and (2.3) for certain quadratic fields F.

For F = Q (n = 1), one consequence of the expression of the Hasse-Weil zeta-
function as an L-function associated to automorphic forms is that it has a func-
tional equation and analytic continuation. For n > 1, this consequence is not
automatic. For n = 2 it is already a difficult question only very recently settled by
Asai [1] under some probably unnecessary restriction on F. Nothing seems to be
known for n > 2. What is easier is to obtain a functional equation for the zeta-
function of xS over F itself, at least for certain small degrees. This depends on a
generalization of an idea of Rankin due to Jacquet and Shimura (see, for example,
[15] and [29]).

3. The analytical trace formula. In this section I will develop a formula for the
right side of equation (2.1), in the next one for the left, and in §5 the two will be
compared. Beginning in §4 I will assume (although Langlands certainly does not)
that p is split in F. This makes things much simpler. The argument will still involve
several important ideas, but will avoid what is at once the most complicated and
intriguing point of all, the use of paths in a certain Bruhat-Tits building. I hope that
what remains is still of some interest. Langlands will presumably say something on
this matter in his own talks (see [17]).

3.1. The right side of equation (2.1),

(3.1 21 m(m, K) pmn/? trace p(g(m,)"),

7 in &9
may be expressed as the trace of a certain operator Ry, for some fe C2(G(4)),
acting on .«Z. Recall that .7 is a discrete direct sum of irreducible, admissible, uni-
tary representations 7 = 7 ® 7? ® 7, of G(4), and for any fe C2(G(A4)/Z)
one has therefore trace Ry = 3., 4, trace z(f), which is equal in turn to

(3.2) 2. trace mp(fg) trace z2( f?) trace z,(f,)

7 in &g
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if ffactors as f5 - f? - f}. Recall that m(z, K) = m(zy) dim(z?)%’. A comparison of
(3.1) with (3.2) suggests choosing the three factors of f so that

(3.3)a) trace z(fz) = m(x)

for any irreducible admissible representation z of G(R)/Z(R);

(3.3)(b) trace z(f?) = dim z%*

for any irreducible admissible representation = of G(4%);

(3.3)(0) trace z(f§™) = pm»/2 trace p(g(z)”) = unramified,
=0 otherwise.

This is just what will be done.
The choice of f? is simple:

f? = (meas K?)~1 char K».

That of f§™ is not so explicit but just as simple: according to the Satake isomor-
phism [4] there exists a unique f{ € #(G(Q,), G(Z,)) satisfying (3.3)(c).

But the matter of f5 is more complicated.

3.2. If the representation 7 of G(R) factors as Xz, according to G(R) =~ GLy(R)!
then m(z) = [Im(z,). If f = [ f, accordingly then trace z(f) = [] trace zn(f).
Thus the problem of finding fz reduces to the problem of finding f € C2(PGLy(R))
such that

(3.4) trace z(f) = m(w)

for any irreducible admissible representation z of PGLy(R). One can do this in
several ways—forexample directly from the Paley-Wiener theorem as in[10], and also
from considerations of orbital integrals (see [26]). But Serge Lang has pointed out
an argument which is in some sense more elementary than either of these and which
I present. below.

From this point I follow Lang’s book [18, Chapter VI, §7] rather closely.

The connected component of PGLy(R) is PSL,(R). Now the maximal compact
of SLy(R) corresponding to the one of GL, (R) at hand is SO(2); lete: SO(2) — C*
be the fundamental character

8<§1°nsg _csggg> =cosf + 4/—1 -sinf.
The single discrete series representation z, of PGL,(R) which is cohomologically
nontrivial has the property that its restriction to SO(2) is a direct sum @e” (|n| =
2, neven). No other discrete series representation has ¢2in its SO(2)-decomposition.

I recall that the Hecke algebra of all compactly supported bi-SO(2)-finite dis-
tributions acts on the space of any admissible representation of SL,(R). If D satisfies
Ly R, D = em(ky)e"(kz)D for all ky, k, € K, then for any such representation
(7, V) the operator (D) takes all of ¥ into the e”-eigenspace and annihilates all but
the en-eigenspace. In the special case m = n and D amounts simply to integration.
against ¢ on K, w(D) is the identity on the ¢#-eigenspace. Therefore, by choosing
f€ C=(SLy(R)) such that
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S(kigks) = e7(ky)e(k2)f(8)

and approximating this D closely enough—i.e., choosing f positive, normalized,
and with support close enough to K—one may assume that z( f) is also the identity
on this eigenspace.

Apply this to the case m = n = 2, 7 = 7, to obtain f; € C°(SLy(R)) such that
(@) filkigks) = e ¥k1)e~%k2)f(g) for all ky, ky € SO(2), g € SLy(R); (b) mo(f1) is
the identity on the e2-eigenspace and 0 on any other SO(2)-eigenspace. Because of
the remark above about other discrete series representations of PGL,(R) and &2,
one even has

trace 7(f)) = 1, T = To,
3.5 0, « is any discrete series representation of
PGL,(R) other than the z,.

At this point recall what Lang calls the Harish transform of an f e C>(SLy(R)):

Hi@ =[x — x| figtag)dg fora=(* ) x# 1.

Here A is the group of all diagonal matrices. This function H; turns out to lie in
C(A4) and even in C°(4)¥, where W is the Weyl group. In fact, f — H, induces
an isomorphism of the space of functions f € C2°(SLy(R)) bi-invariant under SO(2)
with C2(4)W [18, V, §2]. Thus, one may choose f; € C°(SLy(R)SO(2)) with H,, =
Hy, Setf=fi — fo 80 H = 0.

Since a discrete series representation possesses no vectors # 0 fixed by SO(2),
equation (3.5) holds for f instead of f;. Furthermore, if y is any character of 4
and z, is the corresponding principal series representation of SLy(R) then

G.7) trace 7,(f) = | H/@)y(@ da = 0

[18, VII, §3]. Since any principal series representation of PGL,(R) restricts to some
7, on PSLy(R), the same holds for all principal series representations of PGLy(R).

Finally, if z is any irreducible finite-dimensional representation of PGL,(R)
then because its character and that of some unique discrete series representation
add up to a principal series representation,

(3.8) trace z(f) = —1 7w = C or sgn(det),
' =0 other finite-dimensional z.

Define now fr on PGLy(R) to be —f on PSL,(R) and O on the other connected
component. Equations (3.5), (3.7), and (3.8) yield (3.4) for f = f5.

3.3. To recapitulate: the function f = f - f? - fi” € C*(G(A)/Zk) has the
property that

trace Ry|sZy = D, m(xw, K)pm»/2 trace p(g(w,)").
7 in &g

In §5 the trace will also be expressed by means of the Selberg trace formula. 1

will recall it here in a rather general form for purposes of contrast a little later: Let
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% be any locally compact group, /" a discrete subgroup with /'\& compact. The
conjugacy class of any y € I" will be closed in ¢ (a nice exercise) and so for any
F € C2(%) the orbital integral j'gr\g F(g~1yg) dg is defined and finite, where &, is
the centralizer of y in @. If I', = @, (N I’ then clearly I'\&, is compact also. Under
some mild assumption the operator Ry, is of trace class on L(I'\%) and

trace Ry = ), meas([’,\?,)j F(g™'rg) dg
) g\g

where the sum is over all conjugacy classes in I'. This will be applied in §5 to the case
@9 = G(A)|Zg, I' = G(Q)/G(Q) N Zk, Fis the f just constructed.

4. The algebraic trace. In this and the next section I assume, as mentioned earlier,
that p splits completely in F.

4.1. There exists a formula for #4S(F,~) remarkably similar to that which the
Selberg trace formula yields for the right-hand side of equation (2.1).

The set xS(F,) is partitioned naturally by the equivalence relation of isogeny—
i.e., two points lie in the same class when the abelian varieties-plus-structure that
they parametrize are isogenous. The isogeny classes are of two types: (1) Those
associated to systems (F’,{q,}), where F’ is a totally imaginary quadratic extension
of F which splits at some prime over p and the g, are certain ideals of F'—if p;,
.-+, p, are the primes of F which split in F’ then g; is one of the two prime factors of
p;. Two systems (F7, {q;,;}) and (F3, {92,;}) determine the same isogeny class if and
only if F{ = F;and {q;,;}, {gs,:;} areeither equal or conjugate. (2) A single isogeny
class associated to the quaternion division algebra D/F which is ramified precisely
(a) where B/F is, (b) at all primes of F over p, and (c) at all real valuations of F.
This latter case may be thought of as an amalgamation of all the quadratic im-
aginary F’/F which do not split over p.

If Y = (F, {q;}) or D, the class of points in xS(F,) associated to it will be denoted
xS(Y). It is stable under the Frobenius; one may describe rather explicitly its struc-
ture together with this action. (For the parametrization of isogeny classes as well as
the structure of each class, refer to Milne’s lectures.) To each Y is associated: (1)
A certain algebraic group H = Hy defined over Q. If Y = (F’, {q,}) then H is (so
to speak) the multiplicative group of F’, while if ¥ = D it is the multiplicative group
of D. (2) A certain algebraic group Gy = G defined over Q,. First of all, for each
prime p of F over p one has

G, = the multiplicative group of F, = (F))2
if Y = (F', {9,}) and p splits in F’,
= the multiplicative group of D, otherwise—
ie., if Y = (F’, {q,}) and p does not split in F’ or if ¥ = D.
The group G is [[G,. 3) A coset space X = [[X,, where X, = G,(F,)/G,(0,). On
each X, define the transformation )

©, = multiplication by a uniformizing elements of q
if ¥ = (F', {g;}), p splits in F’, and q is the g, over p,

= multiplication by a uniformizing element of the prime ideal of D,
otherwise.
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Expressing G, as (F;)? in the first case, with the first factor corresponding to p,®, is
a little more explicitly multiplication by (p, 1). Let X = Xy = [[X,, & = 0y =
Mo,
_ Let HQ) = H(Q)/H(Q) N Zk, G(A4;) (an abuse of language) = G(4%) x
G(QpIZk N AF.

In every case, observe:

4.1.1. LEMMA. (a) The algebraic group Z is canonically embedded in H ;
(b) There exists a canonical class of equivalent embeddings of H(Q) into G(A%) x
G(Q,), rendering H(Q) as a discrete subgroup of G{A;).

Only the second needs explaining. There clearly exist natural embeddings of
H(Q) into G(4%) and into G(Q,), all equivalent up to inner automorphism. The
group H(R)/Z(R) is compact in all cases (no accident) so that since H(Q) is discrete
in H(A) = H(A;) x H(R) the group H(Q) is discrete in H(4s)/Zx () Af, hence in
G(4y).

Langlands’ main result on the structure of xS(Y) is that there is a canonical class
of bijections between its points and the double coset space

H(Q)\G(4%) x G(Q,)/K? x G(Z,) =~ HQ\G(4))/K? x G(Z,)
~ H(Q)\G(4%) x X/K?.

The Frobenius on gS(Y) corresponds to @ acting on this coset space through its
action on X.

4.2. The number of points of xS(Y) rational over F,. is of course the number of
fixed points of the mth power of the Frobenius. To express this conveniently
requires a digression of some generality.

Suppose ¢ to be any locally profinite group, /" a discrete subgroup. Then ¢
and hence also C(¥) acts on the space C=(/'\¢) through the right regular repre-
sentation. Explicitly, for every F € C2(%), fe C=(I'\%),

Refx) = [ F@f ) dg = [ FOtfo)dy
= [, K o dy

where Kp(x, y) = X rF(x7! ry). The operator Ry (or, sometimes, F itself) will be
said to possess a formal trace if Kp(x, x) has compact support on /'\%, and this
trace is then defined to be [,y Kp(x, x) dx. One can presumably relate this to other
notions of trace, but all that is important here is that the number of fixed points of a
power of the Frobenius can be expressed as such a trace and that one has a formula
for it.

For each y € [, let ¢, be the centralizer of y in @ and I, = I' (1 &,. If F lies in
C>(%), then its orbital integral j"g,\g F(g~lyg) dg is defined in many different
circumstances, but the most elementary hypothesis that guarantees this is that
F(g1yg) has compact support on ¢,\& ; this in turn is assured by the assumption
that the conjugacy class of 7 is closed in .

4.2.1. PROPOSITION. Let F be in C(¥%). Suppose that the y € I' such that F(g717g)
# 0 for some g € € lie in only a finite number of conjugacy classes in I, and that for
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each such y the space I'\%, is compact and the conjugacy class of v in & is closed.
Then F has a formal trace which is given by the formula

> meas(\e) | Flgire) de,
{r} G\g
where the sum is over all conjugacy classes on I'.

Proor. Choose a compact open subgroup ¥, = ¢ small enough so that I'
%, = {1} and Fis bi-invariant under %,. Thus /" acts freely on #/%,. Let Z be a set
of representatives, so that ¢ is the disjoint union of the I'x & (x € Z).

By one assumption on F, for each x € Z the sum )] F(x~lyx) may be restricted
to a finite number of conjugacy classes in [, hence may be written as
X 2 F(x7107170x) where the first sum is over representatives of conjugacy
classes and only a finite number need be taken into account. Because I',\&, is com-
pact and the conjugacy class of y is closed in &, the function F(g~1lyg) lies in
C>(I'\@); this implies that the above sum is nontrivial for only a finite subset of
Z. Thus F does possess a formal trace, which is given by

(meas %g) - >, ), 2 F(x71071y0x)
xex fp Ip\r
where in fact each sum may be restricted to a finite but arbitrarily large subset.
Rearranging this it therefore becomes

P F(x71yx) ds = ) meas(I'\%,) j F(x1yx) dx.

T Jrae o G

4.3. Now take [" to be H(Q), & to be G(A4;)—both corresponding to some isogeny
class Y. Define

F? = (meas K?)~1 char K2,
F{ = (meas G,(v,))"! char(@,” - G(v,)),
F;’”) =11 F,E’”),
Fm = Fp. Fm,

4.3.1. LEMMA. The hypotheses of 4.2.1 are satisfied for this choice of I', ¢, F = F™
withm = 1.

When Y = D, this is clearly so since /'\# is actually compact. Thus let ¥ =
(F’, {g;})- The only serious hypothesis to verify is the finiteness of the number of
conjugacy classes with elements y such that F(g=1yg) # O for some g € . Now in
this case H(Q) = (F')* and G(Q,) = H(_?p(Fp) where G, is (a) (F,)* or (b) D).
In either case F§™(g7rg) = F(r), and F§(y) # 0 if and only if (a) at each p;
where F’ splits y has order m at q; and is a unit at g,; (b) where F’ does not split 7
is a generator of . Furthermore, in order that F2(g~1yg) # Ofor some g € G(4) it
isnecessary and sufficient that y be a unit at all primes not dividing p. Thus if
Fm(g~lyg) # 0 for some g, the order of 7 is specified at all primes of F’. Any two
such 7 differ by a unit. But the units of F’, modulo Z, are a finite set.

The function F™ is important because of:
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4.3.2. PROPOSITION. The formal trace of F™ is the number of fixed points of the
mth power of the Frobenius on xS(Y).

I leave this as an easy exercise.

5. The comparison.
5.1. From §3 one sees that the right-hand side of equation (2.1) is

5.1) Tmeas7\e,) [ Fere) dg

where I' =G(Q)/G(Q) | Zx, ¥ = G(A)Zg, F = fr - f* - f{".

Let ¢: G(A4) » @ be the canonical projection. It is easy to see that p(G(A))\%, is
always compact, so that one may replace &, by p(G,(4)) in the above formula. But
then one may note that ¢(G(A)\# = G,(4)\G(4). Using the factorization of
G(A) each term may be written as the product of

(52 (@) meas(G,(Q)Z\G,(4),
(52 (b) [ orpoce &71770) de,

5.2 j (m)(g—1 d: A
(5.2 (© capeay’ ? (&7'758) dg
(52 @ [ i) d

G;(R)\G(R)
From §4 one sees that #,S(F,») may be expressed as
53) 2 Dmeas (o) (| Fom(eire) dg
Y I\

where:

Y ranges over all systems (', {q;}), identifying a system and its conjugate, and
the single D;

7 ranges over all conjugacy classes of Hy(Q);

g = Gy(4y) = G(4) x Gy(Qp);

Fm = Fp . Fi(im)
as at the end of §4. Just as above, each term here factors as the product of
5.4@ meas(H Q)Zx N 4)\GAADGLQ,)),
(5.4b) Jercaoean PHET70) de,
5.4 j' F§(g17,8) d.
(54© capcap P (87'758) dg

The proof of the main theorem reduces to a comparison of measures and orbital
integrals.

5.2. Even the comparison of measures is not trivial. For the moment let £ be an
arbitrary local field, ¢) an additive character of k. If H is any finite-dimensional
semisimple algebra over k, Tr its reduced trace, then ¢ - Tr is an additive character
of H. There exists on H a unique measure dx self-dual under the Fourier transform
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determined by this character, and this in turn gives rise to an invariant measure
d*x = dx/|x|y on H*.

If now k is any global field, ¢ = []¢, a character of A4,/k, and H a semisimple
algebra over &, one obtains thus measures on all the local groups H,* as well as on
H*(A,), which is called the Tamagawa measure determined by ¢ (§15 of [16]).
Apply this construction in turn to the field F itself, quadratic extensions of F, and
quaternion algebras over F (including M,(F)). I will always assume such measures
chosen from now on. One classical result is that the global measure of H*(A)/ A%
- H*(F) is independent of the quaternion algebra H (§16 of [16], or the lectures [12]
of Gelbart and Jacquet). I will also need a comparison of local measures:

5.2.1. LEMMA. Let k be any nonarchimedean local field, H the unique quaternion
division algebra over k. Then

meas 0f = (¢ — 1)7! meas GLy(0,).

Proor. Changing ¢ only multiplies both measures by the same constant; choose
¢ to be of conductor o,. Let f be the characteristic function of Mj(o,). Then

fo={,  JON(T) dy

X € MZ(D!)’
X ¢ My(oy),

= (meas My(oy)) - f(x).

Therefore meas My(v,) = 1. The group GLy(o,) is open in M,(o,) and since x €
M (o) lies in GL,(oy) if and only if x mod p, is nonsingular,

meas GLy(0) = % GLy(F,)/ My(F,)
= - 1/92(1 + 1/g).

Now let f be the characteristic function of oy. Then

J0 = { g(Teo)) dy

=measMy(0,) {(1)’

1, x € pg,
= meas 0y {O x¢§f1
) H >

or
f = (meas og)(characteristic function of pz').

The Fourier transform of this in turn is f = (meas og)(meas(pz))f. Since
meas(pg') = ¢2 - meas oy, meas oy = g~1. Reasoning as above,

meas o = (1 —1/g)(1 + 1/q)(1/q).

The lemma follows.

One can similarly compare measures on GL,(R) and H*, but that will prove to
be unnecessary.

5.2. Again for a while let k be any local field of characteristic 0, & either GL,(k),
the multiplicative group H *(k) of the quaternion division algebra over k, PGLy(k),



156 W. CASSELMAN

or H*/k*. For any x € ¢ define D(x) = |a — f|?/|af| of the eigenvalues of x (over
an algebraic closure of k) are a, 8. If T is any torus of ¥, then for every regular
te T and fe C(%) define

o0 = | fleg) de.

The function F(¢) = OT({, t) satisfies

(5.5) (a) Fis smooth on the regular elements of 7,
(5.5) (b) D!/2 F is locally bounded,
(5.5)(c) Fhas compact support on 7.

If z is an irreducible admissible representation of # then the character ch, of 7
also satisfies (5.5) (a)—(b). For any f € C2(9),

[r@ e = 3 3§ pwyors o a,

where the sum is over all conjugacy classes of tori in &, and if # is an irreducible
admissible representation then

(5.6) trace 7 (f) = % > j _D(©) ch(D)O"(S; ) .

(For all this see §7 of [16], and for more about orbital integrals see [12] and [26].)

5.2.1. LeMMA. Suppose that ¥ = H*, F a conjugation-invariant function on @
whose restriction to any torus T satisfies (5.5) (a)—(c). If

1
22 5 Do) ch,(OF() dt = 0

for all irreducible admissible representations of  then F = 0.

Fix a torus 7. The set of elements of & conjugate to regular elements of 7'is open.
If fe C>(T™e), there exists h € C(%™€) with support in this set and such that
OT(h) = f. Then

|, mo)F(@ dg = | _p00r@, 0F() a
k4 T

- j _ DOSOF) d.

But the characters of irreducible representations are complete in the space of cen-
tral functions on %, so thatf = Y] f,-ch, (if k is nonarchimedean one can reduce
this question to one about finite groups) and hence by hypothesis the above inte-
gral is 0. In other words, the integral of D-F against any fe C(7T™®#) is 0, which
implies that F itself is O.

One may (and I will) identify conjugacy classes in H* with elliptic and central
conjugacy classes in GLy(k). There exists (by §15 of [16]; see also [12]) a bijective
correspondence ¢ — 7 between (a) irreducible, smooth (hence finite-dimensional)
representations ¢ of H* and (b) irreducible, admissible representations z of GL(k),
space-integrable modulo Z, such that
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(5.7 ch,(f) = —chy(?)

for all regular elliptic elements 7. Representations of H*/k* correspond to repre-
sentations of PGLy(k). When k = R, the trivial representation of H* corresponds
to the single discrete series representation 7y of PGL,. For nonarchimedean k, the
one-dimensional representations of H* correspond to the Steinberg (or special)
representations and all others correspond to absolutely cuspidal representations
of GLZ

5.2.2. PROPOSITION. Let fr € C°(PGLy(R)) be as in §3. Then for semisimple x €
PGL,(R) = ¥,

L L& xg) dg =0, x hyperbolic,
= (meas C*/R*)1, x elliptic,
= —(meas H*/R*)™1, x = 1.

ProOF. The case of hyperbolic x fell out in the very construction of fg.
Recall that f has the property

trace z(fz) = 1, 7z = 1 or sgn(det),
= —1, T = T,
=0, otherwise.

Consider now the constant function h; on H*/R* with the value (meas H*/R*)71.
It satisfies

trace g(hg) = 1, oc=1,

=0, otherwise.

Thus by (5.7) and remarks just afterwards trace z(f) = —trace g(hz) whenever
7 and ¢ correspond to one another. This and equation (5.6) now yield
[, DOch@ar [ fueie) dg
C*X/R* C*\PGL2(R)

- j D()ch, () dt j' he(g~1g) dt
CX/RX x

CX\H

whenever 7 and ¢ correspond. By (5.7) and 5.2.1 (or in this case just Fourier in-
version on C*/R>),

[ oo Tae gy dg = | ha(g711g) dg = (meas C/R¥)
C*\PGL> (R) C\H*

forallt # +1eC*/R*.

Since the orbital integrals of f vanish on hyperbolic elements, f; and — kg corres-
pond to one another in the sense of [12] (the section on ‘“‘matching orbital in-
tegrals’). Hence

Je(1) = —hp(l) = — (meas H*/R*)™".

5.3. Now let k be nonarchimedean and local, and for the moment let G = GL,(k),
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K = GLy(v;). For each m = 0 let f™ be the unique function in the Hecke algebra
#(G, K) defined according to the Satake isomorphism by trace z(f™) =
g™/¥am™ + () whenever = = n(a, () is the unramified principal series represen-
tation associated to the characters x —» (a°d®, gord@) of kx.

One can exhibit f ™ rather explicitly. For every i, j € Z recall the Hecke operator

T (v, p/) = (meas K)~! char K| (vi 7 ,.>K

where 7 is a generator of p. For m = 0 recall also T(p™) = 3 T(¥, ) (,j = 0,
i + j = m). There are the more or less classical Hecke operators and satisfy the
relation T(p)T(p™) = T(p™*1) + qT(p, p)T(p»~1) which may be written formally as

(5.7 (I — T()X + qT(p, p)X2)~1 = 3 T(p™)X™.
5.3.1. LEMMA (IHARA). One has
fO =21, fO =T(p), f™=Tp")—qTpnNTE"? (m==2).

PrOOF. The case m = 0 is clear. And it is well known that trace z(T(p)) =
q* %+ B) if # = n(a, B), which gives thecase m = 1.
Formally, then T(p) < q'/%(a + f) and, also elementary, T(p, p) < af3. Now

(1 — ql/ZaX)—l + (1 — ql/Z BX)—I = iqm/Z(am + ‘Bm)Xm - Zf(m)Xm
0

but this expression also equals
(1 = g'%X) + (1 —q1/%BX) 2 — T@X

(I - ¢"2aX)(1 — ¢'26X) " 1 — T(P)X + qT(p,p)X*
The proposition follows from this and (5.2).
5.3.2. COROLLARY. If
(7 )
X =
( 7

f™(x) = — (measK) g — 1), m=2l,

=0, otherwise.

then

Continue to let H be the quaternion division algebra over k. From each m = 0
let

h™ = (meas pg)~! char(pp — pzth).

5.3.3. PROPOSITION. Let x be a semisimple element of G, m = 1. Then:
(a) If x is hyperbolic,

Jo /@ de =1 ifx= (™)) or (1) mod (& 11 ),

= 0 otherwise.

(b) If x is elliptic
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[ oo ™50 de = [ B (e 58 e

(c) If x is central, f™(x) = —h™(x).

Proor. Recall (say from [4]) the relationship between the Satake isomorphism
and orbital integrals: for f e #(G, K)

f@ = D@\ [ flgag) dg,  tracemy(f) = [ F@(@) da.

By definition of £, then,

Fom () — gm — (7 1
f( ) (a) _q /Z, a= ( 1) 01'( vm)y
=0 otherwise.

Hence (a).

Claim (c) is immediate from 5.3.2 and 5.2.1. Only (b) is difficult. To begin,
consider equation (5.6) as = ranges over all essentially square-integrable irreducible
representations of GL,:

trace 7(f™) = % I  D(@chy(@) da J" (g ag) dg
1 o
+ 5 2|, poehw ar [ 1 de

where now T ranges over all anisotropic tori. Similarly consider (5.6) as ¢ ranges
over all irreducible admissible representations of H*:

trace g(h™) = - Zf D(t)ch,(t) dt j hom (g-11g) de.
2 Ty JT TG
Applying 5.2.1 and equation (5.7), it thus suffices to prove that
— trace z(f™) + % j‘A D(a)ch,(a) daj . [ (g~1lag) dg = trace g(h'™)
A\

whenever ¢ and = correspond. For this: (1) no = occurring here possesses K-fixed
vectors # 0, so trace z(f ) = 0 always. (2) If 7 is absolutely cuspidal then ch,(a)
= 0 unless a € A(o,) (first observed in Lemma 6.4 of [19]; see also [8] and [5]).
According to case (a) already done, O4(f) = 0 on A(p), so the whole left-hand
side vanishes. But in this case ¢ is not one-dimensional, hence not trivial on o,
so that the right-hand side vanishes also. (3) Suppose z is special, corresponding
to the character ¢ = y o Ny, of H*. Thus ¢(h®™) = y(3»™) on the one hand and on
the other

1. 5  Dlaych (@) da j S ag) dg = 1)

also, by case (a) again.

5.4. Return to earlier notation. It will now turn out that there is a bijective cor-
respondence between the nonzero terms of the two sums (5.1) and (5.3), and that
corresponding terms agree. This will conclude our proof.
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According to 5.2.2 the orbital integral of f in (5.2) is O unless 7 is elliptic or
central, so I will assume that to be the case from now on.

Suppose first that y € G(Q) is central. The term in (5.1) corresponding to it is the
product of

(5.8) (@) meas(G(Q)Zx\G(4)),

(5-8) (b) §7(rp) = (= 1) (meas D*(Z,)) ™,
(5-8) (© 12r?),

(5.8) (@) Jere) = (—1)" (meas D*(R)/R*)7".

There is exactly one term in (5.7) corresponding to 7, among the terms indexed by
Y = D.Itis the product of

(5.9) (a) meas (D*(@)(Zx N A))\D*(4y),
(5.9) (b) F{(rp) = (meas D*(Z,))™,
(5.9) () F(r?).

These products match since (5.8)(c) and (5.9)(c) are trivially equal and

meas (G(Q)Zx\G(4)) = meas(D*(Q)Zx\ D*(4))
meas(DX(Q)(Zx 1 A)\D*(4))) meas(Z(R)\D*(R).

Now suppose 7 € G(Q) such that 7 is elliptic. Thus F’ = F(y) is an imaginary
quadratic extension. If this extension splits at no prime of Foverp, let Y = Y, =
D. Otherwise, Y = Y, is one of the (F', {g;}), and the g; must be specified. Now by
the definition of / { as the product of the f, and 5.3.3, if the term for 7 in (5.2) ()
does not vanish then 7, is conjugate in GLy(F}) to

")

whenever p splits in F'. In other words, 7, must have order m at some prime g, of
F' over p and be a unit at the other; set Y, = (F’, {q,}).

In either case the element y clearly gives rise to an element of Hy (@), and it
turns out to be an easy consequence of 5.2.2 and 5.3.3 that the corresponding terms
in (5.2) and (5.4) agree.

6. Supplementary remarks.

6.1. When F = Q, the main theorem follows from a congruence relation between
Hecke operators and the Frobenius. Although such a relation is likely to hold very
generally, it does not yield a formula for the {-function. I want to explain this a bit
more carefully.

First of all, the integral Hecke operators always define algebraic correspondences
on the scheme xS. When F = @, the congruence relation says that modulo p
T(p) = ® + O*-T(p, p) where O is the Frobenius and @* its transpose (refer to
§7.4 of [28]). An equivalent way of expressing this, as Langlands pointed out to
me, is to say that in the ring of algebraic correspondences @ is a root of the poly-
nomial X2 — T(p)X + pT(p, p). In general one may consider the polynomial
det(X — o(g)) as a function of the semisimple element g of LG. By the Satake iso-
morphism it corresponds to a polynomial whose coefficients are Hecke operators.
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These will in fact be integral, and it looks not very difficult to show that @ is a root.
In more concrete terms, this will imply immediately that the roots of the Frobenius
(acting on l-adic cohomology) lie among the roots of this polynomial, or that
factors of Z (X, xS) lie among the factors of [] ., ., det (I — g(g(x,)))"™%?. Now
when F = @, one obtains by a further relation which I have always found a little
mysterious that in fact the roots coincide, but it is this second step that does not
seem to generalize (I refer to 7.10(2) of [28]; see also Piatetskii-Shapiro’s argument
on pp. 333-336 of [24] for a representation-theoretic analogue). Langlands has
remarked that there is in some sense a good reason for this difficulty, inasmuch as
when problems of L-indistiguishability arise one may get in some sense only
partial coincidence of the roots of the Frobenius with those of the Hecke poly-
nomial.

Incidentally, in his proof of the main theorem in the cases already mentioned,
Shimura also used the Selberg trace formula.

I might also mention that it is apparently Thara who first applied the trace for-
mula to matters of this kind—in [14] he showed, modulo some technical problems,
that the Hasse-Weil {-function associated to certain sheaves on SL,(Z)\s# is a
product of Hecke L-functions. Both he and Shimura used what one might call a
global formulation. The first application involving representation theory and local
orbital integrals is Langlands’ Antwerp talk [19]; this earlier work seems to have
played a role in Langlands’ own further development as well as in Drinfeld’s (note
the remark in [9] on this point).

6.2. It is very little extra work to extend the proof of the main theorem to allow
for nontrivial sheaves as well as a refinement which accounts for a factorization of
the {-function according to the direct sum decomposition of .«7.

Let me first sketch how to deal with sheaves. Suppose &: G — GL,, to be a ra-
tional representation of G (i.e., rational over Q) trivial on N},,, the kernel of the
norm map from F* to @* (considered as algebraic groups) which is canonically
embedded as scalars in the centre of G. Then one may associate to & a locally con-
stant Q-sheaf E; on xS(C) and [-adic sheaves E,(Q;) on xS (as in a special case in
[19]), and consider for each “good” p the p-factor of a {-function

2n
Ex(s, kS, 8) = L[odet(l — (O|Hi(S, E(Q))p~) D"

By the Lefschetz trace formula this satisfies
|
lo =) — trace &,(O™).
BL = L T ity O SO

In both these formulas @ is the Frobenius, and for convenience I have written
&,(dm) as the action of @™ on the stalk of E, at the fixed point x of @™

On the other hand one can define numbers m(zg, &) analogous to the numbers
m(zmg) in §1 satisfying, for example, m(zz, &) = O unless Exta,)(é, 7g) # 0 and
set m(z) = m(mwg)m(w?). The main theorem extends to:

Ly(s, xS, &) = .11 L(s — n/2, m,, py*™9.
T n K

The proof is almost exactly the same as for £ trivial; one uses an extended version of
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the trace formula for the trace of Ry, e C°(%), on the representation of ¢ which is
L?-induced from ¢&:

trace Ry = % meas(I’\%,) Tr &(r) L e re) dg.

And one also uses a result of Langlands analogous to the one used above which
gives not only the structure of xS(F,) but of E; on xS(F,) (the natural guess is
correct).

Now the second point. As Langlands shows, essentially, in [19], corresponding to
the decomposition &y = @z one has a decomposition H*(xS(C), @) = @H*.
The only z which occur are those with m(z) # 0, and for a 7 = 7z ® 7, which
does occur the representation 7, may be defined over Q. Corresponding in turn to
this decomposition is one of H*(xS, @), and hence even of H*(xS x F,, Q).
Another extension of the main theorem is that for good p

2n
Ly(s, z, p) = i];[Odet(I — (O|HAD)p~) V.

To prove this: (1) one observes that the subspace H*(Q) is determined in
H*(S,0) by the effect of operators in #(G(A?%), K?) and (2) applies the reason-
ing given above, but allowing f? to be an arbitrary element of this Hecke algebra.

It is this result which Piatetskii-Shapiro is concerned with proving (by means of a
congruence relation) in [24], with F = Q.

6.3. It has not escaped me that the result in §5 on the measures on GL, and H*
says, essentially, that the measures given by Jacquet-Langlands are multiples, by
the same constant, of what Serre calls in [25] the Euler-Poincaré measures on each
group. (This is not quite true since strictly speaking the E-P measures on these
are zero: but there is a clear relationship between E-P measures on SL, and N}.)
Does this observation generalize? For real groups, I would expect a factor
card(Wg ¢,/ Wk) to play arole, as it does in Harder’s work [13]. Indeed, I suspect
that Harder’s paper does essentially relate inner twisting of measures to Serre’s
measures in the case when G is the inner twist of an anisotropic group. If G is not
such an inner twist then Serre’s measure is identically 0; how to describe the rela-
tionship of measures then?

As for comparison of orbital integrals, Drinfeld has a nice result for GL, and
division algebras of degree n (see Kazhdan’s talk at this Institute). Diana Shelstad
had proven in her thesis [27] many pretty results on real groups.
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POINTS ON SHIMURA VARIETIES mod p

J. S. MILNE

There is associated to a reductive group G over Q with some additional structure
a Shimura variety S, defined over C. In most cases it is known that S, has a
canonical model S defined over a specific number field E. For almost all finite
primes v of E it is possible to reduce Sz modulo the prime and obtain a nonsingular
variety S, over a finite field F,. As is explained in [3], in order to identify the
Hasse-Weil zeta-function of S or, more generally, of a locally constant sheaf on
S it is necessary to have a description of (S,,(qu), Frob) where S,,(F'qu) is the set
of points of S, with coordinates in tlle algebraic closure F, of F, and Frob
is the Frobenius map S,(F,) — Sy(F,) which takes a point with coordinates
(a1, ay) to (a%, ---, a®). To be useful, the description should be directly in terms
of the group G. )

Recently [13] Langlands has conjectured such a description of (S,(F,), Frob)
for any Shimura variety S and any sufficiently good prime v. In [12] he has given a
fairly detailed outline of a proof of the conjecture for those Shimura varieties
which can be realized as coarse moduli schemes for problems involving only
abelian varieties, (weak) polarizations, endomorphisms, and points of finite order.
(So G(Q) is of the form Autz(H,(4, Q), ¢) where B is a semisimple Q-algebra
containing an order which acts on the abelian variety 4, ¢ is a Riemann form for
A whose Rosati involution on End(4) ® @ stabilizes B, and Auty refers to B-
linear automorphisms g of H,(4, Q) such that ¢(gu, gv) = ¢(u, u(g)v) with u(g)
lying in some fixed algebra F contained in the centre of B and fixed by the Rosati
involution; there is also a Hasse principle assumption.)

Earlier [8, Conjecture 1] Thara had made a similar conjecture when S is a Shi-
mura curve and had proved it when G = GL, [9, Chapter 5]. When G = B*, Ba
quaternion division algebra over Q, Morita [15] proved IThara’s conjecture for all
primes p of E (= Q) not dividing the discriminant of B. Both he and Shimura have
obtained partial results for more general quaternion algebras (unpublished). More
recently Thara has proved his conjecture for all Shimura curves and sufficiently
good primes (announcement in [11]). While Thara bases his proof on the Eichler-
Shimura congruence relations, Morita’s method, as described in [10], appears to be
quite similar to that of Langlands.

In order to give some idea of the techniques Langlands uses in his proof I shall
describe it in the case that G is the multiplicative group of a totally indefinite qua-
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ternion algebra over a totally real number field. In §1 it is shown that S, para-
metrizes, in a natural way, a family of abelian varieties with additional structure.
The following section describes how Artin’s representability criteria may be used
to prove the existence of a variety Sq over @ which is a canonical model for S,
and which, when reduced mod p, parametrizes a family of abelian varieties (with
additional structure) in characteristic p. Thus the problem of describing (S,(F,),
Frob) becomes one of describing this family. In §5 the Tate-Honda classification
of isogeny classes of abelian varieties over finite fields is used to determine the
isogeny classes in the family, and in §6 the individual isogeny classes are described.
Since this requires the use of p-divisible groups and their Dieudonné modules,
these are reviewed in §3.

Notation. F is a totally real number field of degree d over Q, B is a quaternion
division algebra over F which is split everywhere at infinity, b — b* is a positive
F-involution on B, and Og is a maximal order in B.

G is the group scheme over Z such that G(R) = (Og® ® R)* for all rings R,
where OgPP is the opposite algebra to Og.

A is the ring of adé¢les for @; A = R x Ay = R x A2 x Q} ; 4, =Z; ® 0,
Z; = proj lim ZimZ; Z; = Z% x Z,.

K is a (sufficiently small) open subgroup of G(Z;). 4is a product of rational prime
numbers such that if p f 4 then p is unramified in F, B is split at all primes of F
dividing p, and K = K?G(Z,) where K? = K (| G(4%).

S¢ = gS¢ is the Shimura variety over C defined by G, K, and the map 4: C* —
G(R) defined in §1; thus its points in C are So(C) = G(Q)\G(4)/K K where K.,
is the centralizer of % in G(R).

If V = V(Z) is a Z-module then V(R) = V ®5 R for any ring R.

1. S, as a moduli scheme. Recall that an abelian variety over a field k is an alge-
braic group over k£ whose underlying variety is complete (and connected); its group
structure is then commutative and the variety is projective. For example, an abelian
variety of dimension one is an elliptic curve, and may be described by its equation,
which is of the form

Y2Z = X3 + aXZ? + bZ3, a,bek, 4a3 + 27b% # 0.

It is impractical to describe abelian varieties of dimension greater than one by
equations, but fortunately over C there is a classical description in terms of lattices
in complex vector spaces. Let V be a lattice in C¢%, i.e., V is the subgroup generated
by an R-basis and so V ®,; R ~ Ce. Then C#¢/V is a compact complex-analytic
manifold which becomes a commutative Lie group under addition. When g = 1
the Weierstrass p-function corresponding to V, and its derivative, define an em-
bedding

20 (3(2), Y@, 1):CIV o PR

of C/V as an algebraic subset of the projective plane. Thus C/V automatically has
the structure of an algebraic variety and so is an abelian variety. This is no longer
true if g > 1 for there may be too few functions on C¢/V to define an embedding
of it into projective space. Since any meromorphic function on C#/V is a quotient
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of theta functions on C¢, C¢/V will be algebraic if and only if there exist enough
theta functions. By definition, a theta function for ¥V is a holomorphic function ¢
on C¢ such that, for ve V, 6(z + v) = 0(z) exp (2zi(L(z, v) + J(v))) where L(z, v)
is a C-linear function of z and J(v) depends only on v. One shows that L(z, v) is
additive in v, and so extends to a function L: C¢ x C¢ — C which is C-linear in
the first variable and R-linear in the second. Set E(z, w) = L(z, w) — L(w, z).

Then

(a) E is R-valued, R-bilinear, and alternating;

(b) E takes integer values on V' x V;

(c) the form (z, w) — E(iz, w) is symmetric and positive.

(The symmetry is equivalent to having E(iz, iw) = E(z, w) for all z, w; the positivity
means E(iz, z) =z 0 for all z.)

A form satisfying these conditions is called a Riemann form for V and it is known
that there exist enough functions to define a projective embedding of C¢/V if and
only if there exists a Riemann form for ¥ which is nondegenerate (and hence such
that E(iz, z) is positive definite). If g = 1 we may always define E(z, w) to be the
ratio of the oriented area of the parallelogram with sides Ow, Oz to that of a funda-
mental parallelogram for the lattice. Since this form always exists, and is unique up
to multiplication by an integer, one rarely bothers to mention it. By contrast, if
g > 1, a nondegenerate Riemann form will not usually exist and when it does, it
will not be unique up to multiplication by an integer. However since C¢/V is com-
pact the algebraic structure on C¢/V (but not the projective embedding) defined
by a Riemann form is independent of the form.

Thus, given a lattice in C# for which there exists a nondegenerate Riemann form,
we obtain an abelian variety. Conversely, from an abelian variety A of dimension g
we can recover a complex vector space W of dimension g and a lattice ¥V in W
for which there exists a nondegenerate Riemann form. W can be described (accord-
ing to taste) as the Lie algebra Lie(4) of A, the tangent space ¢, to 4 at its zero
element, or as the universal covering space of the topological manifold A(C). The
lattice V' can be described as the kernel of the exponential exp: Lie(4) - A(C),
or as the fundamental group of 4(C) which, being commutative, is equal to
H\(4, Z). We shall always regard the isomorphism W/V = A(C) as arising from
the exact sequence,

0 - Hy(4,Z) - t, > AC) — 0.

Since H(4, Z) is a lattice in ¢,; we have Hy(4, R) = Hi{(4,Z) ® R = t,. Thus 4
is determined by Hy(4, Z) and the complex vector space structure on H,(4, R).

A complex structure on a real vector space V(R) defines a homomorphism
h: C* - Autg(V(R)), i(z) = (v — zv), and the complex structure is determined by
h. Thus an abelian variety A is uniquely determined by the pair (H\(4, Z), h)
where h: C* — Aut(Hy(4, R)) is defined by the complex structure on Hy(4, R)
= t4. Moreover every pair (V(Z), h) for which there exists a Riemann form arises
from an abelian variety.

Let V(Z) = H(4, Z). A point of finite order on 4 corresponds to an element of
V(R) some multiple of which is in V(Z). More precisely, the group of points of
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finite order on A4 may be identified with ¥(Q)/V(Z) = V(R)/V(Z). For any integer
m > 0, the group 4,(C) of points of order m is equal to m~1V(Z)/V(Z) =
V(ZImZ) ~ (Z|mZ)¥i™@, We define T;A to be proj lim,,4,,(C) = V(Z;) and, for
any prime /, T4 to be proj lim,A4,,(C) = V(Z)); thus T;4A = [[,T;4 and T,4
~ ZMimA)

A homomorphism 4 — A’ of abelian varieties induces a C-linear map 7, — 7,
such that H,(4, Z) is mapped into H(4’, Z). Conversely, if A and A’ correspond
respectively to (V, k) and (V’, i) then a map of Z-modules a:V(Z) — V'(Z) extend-
ing to a C-linear map a ® 1: V(R) — V'(R) (i.e., such that a ® 1 o A(z) = K'(2)
a ® 1 for all z) arises from a map of complex manifolds A(C) — 4'(C) and the
compactness of A(C) and A'(C) implies that the map is algebraic. We write End(4)
for the ring of endomorphisms of 4 and End°(4) for End(4) ®, Q. Since
End°(A) has a faithful representation on H;(4, Q), it is a finite-dimensional Q-
algebra; it is also semisimple, and its possible dimensions and structures are well
understood.

To define a homomorphism i: Og — End(4) when A corresponds to (V, h)
is the same as to define an action of Og on V such that 2 maps C* into
Autp,er(V(R)). When such an / is given we say that Op acts on A4 provided
i(1) = 1. Such an i induces an injection i: B & End°(4).

A nondegenerate Riemann form E for A defines an involution « — o' of
End°(A) by the rule E(az, w) = E(z, a'w); this is the Rosati involution, which is
known to be positive, i.e., Tr (aa’) > 0 forall @ # 0 where Tr denotes the reduced
trace from End°(4) to Q. Suppose Op acts on A. We say that two Riemann forms
E and E’ on A are F-equivalent if there exist nonzero ¢, ¢’ € Op such that E(u, cv)
= E(u, c'v) for all u, ve V(Z), and we define a weak polarization of A to be an
F-equivalence class / of nondegenerate Riemann forms. Since F is the centre of
B, the Rosati involutions defined by any two elements of su/ch a / induce the
same map on i(B). We shall be interested in triples (4, i, A) such that E(i(b)u, v) =
E(u, i(b*)v) foru, ve V(R), b € B, E € /, i.e., we require that the Rosati involutions
defined by / stabilize i(B) and induce the given involution b — b* on B.

We next review some notations concerning B. The main involution b — b of B is
so defined that under any R-isomorphism B ® » R = Mj(R), if b corresponds to
M = (¢}) then b¢ corresponds to M¢ = (¢;%); thus b + b¢ = Trg,x(b) and bb¢ =
Nmg,r(b). The Skolem-Noether theorem shows that there exists a ¢ € B such that
b* = r~1bit = tht! for all b € B; automatically ¢2 € F and the positivity of b — b*
implies that 2 < 0, i.e., ¢2 has negative image under all embeddings F & R. We
fix an isomorphism B ®4 R M(R) x --- x My(R) such that if b« (My,---, M)
then b* — (M, ---, M) where M} is the transpose of M,. Since

. (0 =1\, [0 —1
me= (1 To) M7 o)
¢ maps to an element (¢,(3 3), ---, ¢,(§ 7)) with each ¢; € R, and ¢ may be chosen
so that ¢; > 0.
The next lemma implies that if O acts on a complex manifold C24/V then there is

a Riemann form E for ¥ whose corresponding Rosati involution induces b — b*
on B and any two such forms are F-equivalent, i.e., that there is a unique weak
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polarization which is compatible with the Og-action and the given involution.

LEMMA 1.1. Let V = V(Z) be a free Z-module of rank 4d on which Og acts. There
is a nondegenerate alternating form ¢ on V(Q) such that:

@) ¢, vVIe Zifu, ve V(Z);

(b) (ut, u) < 0 forall u # 0, uc V(R); '

(©) (bu, v) = ¢(u, b*v) for all b € B and u, v e V(Q);

(d) for any B-automorphism « of V(Q) there exists a y(c) € F* such that J(au, av)
= J(u, wa)v) for all u, ve V(Q). Moreover® if ' is a second nondegenerate al-
ternating form on V(Q) satisfying (c) then there exists a ¢ € F* such that ¢(u, cv) =
&'(u, v) for all u, ve V.

PrOOF. V(Q) has dimension one over B and so, after choosing an appropriate
basis vector, we may identify V(Q) with B and V(Z) with a left ideal in Op.

Define ¢(u, v) = Trguvit) = Trgeuev*). Then ¢(u, v) = Tr (un*) =
Tr(vt*u*) = Tr(v(—Hu*) = —¢(v, u), and so ¢ is alternating. (a) is obvious, and
O(ut, u) = Trgutu*) = Trp(t2Trg, H(uu*)) < 0 for u # 0, which proves (b)
and that ¢y is nondegenerate. For (c) we note that ¢(bu, v) = Tr(utv*b) =
Tr(ut(b*v)*) = ¢(u, b*v). Finally, any B-automorphism o of V(Q) = B is multi-
plication on the right by an element b € B*. Thus ¢(au, av) = Tr (ubbvit) =
o(u, wla)v) with w(a) = Nmg,(b).

For the last part, consider the Q-linear map v — ¢'(1, v): B — Q. Since Trg,:
B x B — Qis nondegenerate, there is a unique b € B such that ¢'(1, v) = Tr (btv¥)
for all v € B. Then ¢'(u, v) = ¢’ (1, u*v) = Tr (btv*u) = Tr(ubtv¥) = Tr(ubvt). We
also have ¢'(1,v) = —¢'(v, 1) = —Tr (vbt) = —Tr (b)) = Tr (bvt) = Tr (b:tv*).
Thus b = b¢, which implies that it is in F, and we may take ¢ = b.

For the remainder of this section V(Z) will be Og regarded as an Og-module and
¢ will be as in the lemma. For any ring R we may identify G(R) with Aut,,gr(V(R))
since any O ® R-endomorphism of V(R) = Oy ® R is right multiplication by
an element of Oy ® R. Define 4 to be the homomorphism C* - G(R) =
Autggr(V(R)) such that A(i) is right multiplication on V(R) = B ® R = Mj(R)
X ... X My(R) by ((°1 ), -, 1 §). Thus K, = {(M,, ---, M,)} with M of the
form(¢, %), a, be R. The form E = ¢ is a Riemann form for (V(Z), h), e.g.,
OGu, iv) = ¢h(i), vh(@i)) = ¢(u, Nmg,p(h(@))v) = J(u, v) and $@iu, u) =
d(ut/ — (=192, u) > 0 for u # 0. Thus (V(Z), ) defines an abelian variety 4.
The action of O on V(Z) induces a map i: Oy — End(4) and the Rosati involution
defined by the weak polarization A containing ¢ induces b ~— b* on B.

Recall that X is an open subgroup of G(Z,). Two isomorphisms ¢;, ¢2: T¢4 =
V(Z;) are K-equivalent if there is a k € K such that ¢; = k¢,. For example, if K =
K,, = Ker(G(Z;) -» G(Z|mZ)) then to give a K-equivalence class of isomorphisms
T:A — V(Z;)is the same as to give an isomorphism A4,(C) = V(Z/mZ), ie., a
level m structure.

THEOREM 1.2. There is a one-one correspondence between the set of points S¢(C) =
G(Q)\G(A)/K_K and the set of isomorphism classes of triples (A, i, §) where A is
an abelian variety of dimension 2d, i defines an action of Oy on A, and ¢ is a K-
equivalence class of Og-isomorphisms T A = V(Z,).
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REMARK 1.3. (a) We say that two triples (4, i, #) and (4’, i’, ¢') are isomorphic if
there exists an isomorphism a: 4 — A4’ such that @ 0 i(b) = i’() o @ for all b e Oy
and ¢’ o (Tja) e ¢ forall ¢’ € §'.

(b) Normally when considering families of abelian varieties parametrized by
Shimura varieties it is necessary to work with quadruples (4, i, 4, ) with A a (weak)
polarization. This is not necessary in our case because, as we observed above, /1
always exists uniquely.

PROOF OF 1.2. We first show how to associate to any g € G(4) a triple (4, iz, @,).
If g = 1 we take (4, i, ¢) with (4, i) as defined before and ¢ the class of the identity
map T4 = V(Z;) i V(Z;). We write a general g asg = g..g;, 8. € G (R), gr€
G(A)), and use g, and g; to modify respectively the complex structure on V(R)
and the lattice. Define /,: C* — G(R) by the formula k,(z) = g,h(z)g! and define
gV(Z) to be the lattice g,V (Z;) | V(Q), the intersection taking place inside V(4,).
Then 4, is to be the abelian variety defined by the pair (g¥, h,). Since O still
acts on gV(Z) we have an obvious map i,: O & End(4). We define ¢,: T,4, =
g:V(Z;) = V(Z;) to be multiplication by g7

If g is replaced by gk, with ke K, then h, is unchanged since K, is the
centralizer of 4 in G(R). If g is replaced by gk, with k; € K then h, and gV(Z) are
unchanged while ¢, is replaced by k7! ¢,, which is K-equivalent to ¢,. If g is
replaced by gg with g€ G(Q) then g71: V(R) » V(R) defines an isomorphism
(4, ) > (A,, +-+). Thus (4,, ---) depends only on the double coset of g.

Conversely, an isomorphism a: (4, ---) = (4,, ---) is induced by an isomor-
phism V(R) - V(R) which sends gV(Z) isomorphically onto g’'V(Z). In particular
« defines a B-isomorphism gq: V(Q) — V(Q). Thus g € G(Q) and so, after replacing
g’ by g7 lg’ and a by g~ la, we may assume that the map V(Q) — V(Q) correspond-
ing to « is the identity. Thus g i(z)gs! = gLh(z)gs? for all z, and so g5l gl € Koo.
Moreover, gV(Z) = g'V(Z) implies g/ g; € G(Z), and g7': gV(Z;) - V(Z,) being
K-equivalent to g7': g'V(Z;) - V(Z;) implies that g71 g} € K.

Finally we have to show that every (4, i, §) arises from some g. Since B is a divi-
sion algebra there is a B-isomorphism H;(4, Q) = V(Q) which we may use to
identify H; (4, Q) with V(Q). Then H(4, Z) is a lattice in V(Q) and so is of the
form g,V(Z) for some g € G(A4y). The isomorphism V(R) ~ t, induces a complex
structure on V(R), and we let #': C* — Autg(V(R)) be the corresponding map.
Since B acts C-linearly on ¢4, & maps into Autgge(V(R)) = G(R). Obviously there
exists a g, € G(R) such that 4'(z) = g h(z)g=. Any ¢e @ is of the form v —
gr'gt v g V(Zy) - V(Zy) for some gy € G(Z)). It is now clear that (4, ---) =
(4g, ) with g = g.8481.

REMARK 1.4. (a) A map a: A - A’ of abelian varieties is an isogeny if it is
surjective and has finite kernel; when Opg acts on 4 and 4’, « is called an Op-iso-
geny if it commutes with the two actions. Clearly any isogeny (over C) induces an
isomorphism on the tangent spaces and so A4, is isogenous to A4, only if g, and
g<, define the same double coset in G(Q)\G(R)/K,.. On the other hand, the set
End3(4)*\G(4/)/K classifies the triples (4, i, ¢) for which there is an Op-isogeny
A — A;. For example, if g = g, then, after replacing g, by an integral multiple, we
may assume that gV(Z) < V(Z). The identity map V(R) — V(R) now defines an
isogeny A, — A, with kernel V(Z)/gV(Z) (cf. §6 below).

(b) In the case that F = Q, the theorem may be strengthened. Consider the
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projection V(R) x (G(A)/K.K) - G(A)/K. K. We give G(4)/K K its usual complex
structure and the copy of V(R) over gK_K the complex structure defined by #,.
Inside each ¥V, we have a lattice g¥(Z), and these vary continuously with g. Thus
we may divide out and obtain a map of complex manifolds 7 — G(4)/K_K such
that the fibre over gK_K is the abelian variety 4,. We may now let G(Q) act on
both manifolds and divide out again to obtain an analytic family &/ — S, of
abelian varieties. Each fibre 4, has the structure defined by (i,, $,), and these vary
continuously. In fact o# — S¢is an algebraic family, i.e., o/ is an algebraic variety
and the map is algebraic.

If F # Q the above construction fails because units of F may act on (4,, i , ¢,)
and so the action of G(Q) on 7 is not free. However we may “rigidify” the situa-
tion as follows: consider quadruples (4, i, @, ) where 4, i, and ¢ are as before and
¢ is an injection from the unique weak polarization / to F* such that e(¢’) = ce(¢)
if ¢'(u, v) = ¢(u, cv). The isomorphism classes of quadruples are classified by F* x
S¢(C) which is a disjoint union of copies of Sy(C), one for each element of F*, on
which F* acts by permuting the copies. F* x S, may be regarded as a scheme over
C which is an infinite disjoint union of varieties and the previous process gives an
algebraic family of &/ — F* x S of abelian varieties with structure.

References. The most elegant elementary and nonelementary treatments of
abelian varieties over C are to be found respectively in [20] and [17, Chapter I].
Families of abelian varieties parametrized by Shimura varieties were extensively
studied by Shimura in the 1960’s (see his Annals papers of that period). They are
also discussed briefly in [4].

2. S as a scheme over Z [4~1]. We shall see shortly that S, has a model S, over Q,
i.e., that there is a scheme S, over Q@ whose defining equations, when considered
over C, give S¢. There is no reason to believe that Sy will be unique but Shimura
has given conditions which will be satisfied by at most one model; such a model
(when it exists) is said to be canonical. For example, let F’ be a quadratic totally
imaginary extension of F which splits B and let 4, be the abelian variety of dimen-
sion d defined by the lattice Or. = F’ ® R. Then Op. acts on 4, and A, is said to
have complex multiplication by F’. Let 4 = 4y x A,. If we embed F’ in B and
choose a basis {ej, e;} for B over F’ with e}, e, € Op, then we get a map B & My(F”)
c M,(End°(4,)) = End°(4) sending O into End(4). Also we get a map T;4 =
Op ®@0p)® Z; 4,05 ® Z; = V(Z;) (in the notation of §1). The triple
(4, i, @) defines a point of S, and hence a point of S, with complex coordinates.
For S, to be canonical these coordinates must be algebraic over Q and generate a
certain explicitly described class field.

For the reasons explained in the introduction we would like to have a scheme S
defined by equations in Z[4!] which, when regarded over Q, is the canonical
model S, of S¢, and which is such that it is possible to describe explicitly (S(F'I,),
Frob) for any p f 4. Such an S will define a functor R — S(R) which associates to
any ring R in which 4 is invertible the set of points of S with coordinates in R.
(More generally, it associates to any scheme T over spec Z[471] the set S(T) of
maps T — S.) Since the functor determines the scheme uniquely this suggests that
in constructing S we should write down a functor & such that, in particular, #(C)
= S¢(C) = G(Q)\G(A)/K_K and try to prove that it is the points functor of a
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scheme. After §1 it is natural to define #(R) to consist of isomorphism classes of
triples (4, i, ¢) where each of the three objects is the analogue over R of the cor-
responding object over C. Thus A4 is a projective abelian scheme of dimension 2d
over R. Intuitively, 4 can be thought of as an algebraic family of abelian varieties,
each of which is defined over a residue field of R. More precisely it is a projective
smooth group scheme over spec R with geometrically connected fibres. As before i
is to be a homomorphism Oy & End(4) such that i(1) is the identity map. We
assume that 4 has a polarization whose Rosati involution induces b — b* on B.
Two problems arise in defining ¢ which may be best understood if we write ¢: 7,4
—V(Z;)as aproduct [[¢,: [] T;4 — [] V(Z)) of maps. Firstly, if p is not invertible in
R there will never exist an isomorphism ¢,: T,4 = V(Z,); thus we take ¢, to be a
map defined only over R[p~1]. Secondly, unless R is an algebraically closed field it is
unrealistic to expect there to be an isomorphism ¢,: 7,4 — V(Z)) for any /, for this
would imply that all coordinates of all I-power torsion points of 4 are in R. Instead
we assume that K > K,, = Ker(G(Z;) - G(Z|mZ)) some m, and consider isomor-
phisms ¢: A,, = V(Z|mZ) defined on some étale covering of R, two such isomor-
phisms ¢, and ¢, being K-equivalent if ¢y = k¢, k € K, locally on spec(R), and we
take ¢ to be a K-equivalence class in this new sense. It is necessary to put one extra
condition on the triple (4, i, ¢): if the R-algebra R’ is such that Oy ® R' ~
My(Or ® R’) then the two submodules of ¢, corresponding to the idempotents
(39) and (§9) should be free Or ® R’-modules of rank 1 locally on spec(R’).
(This condition holds automatically if R = C; for examples where it fails in an
analogous situation in characteristic p, see [18, 1.29].)

Having defined our functor & we now have to see whether it is the points functor
of a scheme. Generally speaking this is a very delicate question but M. Artin has
given an often-manageable set of criteria for a functor to be the points functor of an
algebraic space. An algebraic space is a slightly more general object than a scheme,
but for our purposes it is just as good; it makes good sense to speak of its points
with coordinates in a ring, and the proper and smooth base change theorems in
étale cohomology, which are the theorems which allow us to compute Hasse-Weil
zeta-functions by reducing modulo a prime, hold for algebraic spaces. (In fact, the
algebraic spaces we get are almost certainly schemes, and this surely could be
proved by using Mumford’s methods [16] instead of Artin’s.)

Consider first the case that F = Q. Then Artin’s criteria may be checked and
show that there is an algebraic space S, proper and smooth over Z [4~1], such that
S(R) = #(R) for any ring R in which 4 is invertible. In particular S(C) = £(C) =
S¢(C) and S(F,) = &#(F,) for any p not dividing 4. The algebraic family o/ — S¢
constructed in 1.4(b) is an element of #(Sy) = S(S¢), and so gives a map S¢ — S.
This induces a map S; — S x spec C which is an isomorphism. Moreover it is
known that S is the canonical model.

When F # Q, then a slightly weaker result holds, but one which is just as useful
to us. Since there are nontrival automorphisms of (4, i, ¢) there can be no algebraic
space S with S(R) = &(R) for all R. However, there does exist an algebraic space
S, proper and smooth over Z [4!], and a functorial map &#(R) — S(R) which is an
isomorphism whenever R is an algebraically closed field. Thus S(C) = £(C) =
S¢(C) as before, and Sy is the canonical model of S;. To prove these facts one may
“rigidify”” the moduli problem as in the second paragraph of 1.4(b), make the
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constructions as in the case F = @, and then form quotients under the left action
by F*, or else work directly with stacks.

Note that in either case, S (F,) = &(F,) has a description in terms of abelian
varieties with additional structure.

References. [1] contains a short introduction to Artin’s techniques for represent-
ing functors by algebraic spaces and [2] a more complete one. In [5] and [18] these
techniques are applied to a situation which is very similar to ours. (In fact, it is
almost identical; see §7 of the Introduction to [5].) The basic definitions concern-
ing abelian schemes can be found in [16].

3. Finite group schemes, p-divisible groups, and Dieudonné modules. In the remain-
ing sections we shall need to consider the finite subgroup schemes of an abelian
variety and so, in this section, we review some of their properties. We fix a perfect
field k of characteristic p # O.

Let R be a finite k-algebra (so R is finite-dimensional as a vector space over k)
and let N = spec R. For any k-algebra R’, a point of N in R’ is simply a map of
k-algebras R — R’; thus N(R) = Hom,, (R, R'). If every N(R') is given the
structure of a commutative group in such a way that the maps N(R') » N(R")
induced by maps R’ — R” are homomorphisms, then we call N, together with the
family of group structures, a finite group scheme over k. As for affine algebraic
groups, giving the family of group structures corresponds to giving a comultiplica-
tion map R ", R ®, R.

ExaMPLE 3.1. (a) Any (commutative) finite group M can be regarded in an ob-
vious way as an algebraic group over k and hence as a finite group scheme. Indeed,
let R be a product of copies of k, one for each element of M, and let N = spec R.
Then N, as a set, is equal to M. The group law on M induces a comultiplication on
R which, in turn, induces compatible group structures on N(R') for all R'. If R’ has
no idempotents other than 0 and 1, then N(R') = M.

(b) p£p» = spec K[T]/(T?" — 1). Then p,(R') = {{ € R'|C?" = 1} is a group under
multiplication for any R’, and these group structures make g, into a finite group
scheme. Note that g,(R) = {1} if R has no nilpotents and, in particular, if Ris
an integral domain.

(¢) @, = spec k[T]/(T?). Then a,(R') = {a€ R'|a? = 0}. As (a + b)? = a? + b?
in any k-algebra, a,(R’) is a group under addition, and these group laws make a,
into a finite group scheme. Again @,(R’) has only one element if R’ has no nilpo-
tents.

(d) Z/pZ = spec k[T)/(T? — T). If R’ has no idempotents other than 0 and 1
(e.g., R an integral domain) then (Z/pZ) (R’) = F,, the prime subfield of R’, which
is a group under addition. This example is a special case of (a), because
K[TI(T? — T) = K[T)YT(T - 1) - (T — (p — 1)) = k x --- x k(p copies).

The rank or order of a finite group scheme N = spec R is the dimension of Ras a
vector space over k. For example the order of the group scheme defined by M in
3.1(a) is the order of M, while the orders of u,., a, and Z/pZ are p*, p and p
respectively.

A homomorphism from one finite group scheme N; = spec R) to a second N, =
spec R, is a k-algebra homomorphism R, — R; such that the induced maps
Ni(R') = N,(R’) are all homomorphisms of commutative groups.
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From now on we consider only finite group schemes of p-power order. The
essential facts are the following.

Facts. 3.2.(a) They form an abelian category. Thus we may form kernels, quo-
tients, etc. exactly as if we were working with a category of modules.

(b) When £ is algebraically closed the only simple objects are z,, @,, Z/pZ.

This means that any finite group scheme of p-power order has a composition
series whose quotients are g, @&, or Z/pZ. There can be no homomorphism from
one simple object to another of a different type.

(c) The category is self-dual, i.e., there is a contravariant functor N+ N (= Car-
tier dual of N) which is an equivalence of the category with itself.

More precisely, for each N there is a pairing N x N - G,, (= GL,) such that,
for any k-algebra R, the pairing induces isomorphisms N(R) =, Homg(N, G,),
N(R) = Homg(N, G,,). For example, (Z/pZ)" = #, and the pairing (Z/pZ)(R)
X pyR) = G,(R)is (n, {) = {*; @&, = @, and the pairing a,(R) x a,(R) -
G, (R)is (a, b) > exp(ab) =1 + ab + --- + (ab)?/(p — D).

(d) Hom (Z/pZ, Z|pZ) = Z|pZ, Hom (uy, ;) = Z/pZ, Hom (@, @,) = k.

The statement for Z/pZ is obvious, and that for g, follows by Cartier duality.
The map a, — a, corresponding to ce kis (T — cT): k[T/(T?) — k[T}/(T?) on
the algebra of @, and (@ — ca): @,(R") = a,(R’) on its points.

(©)If0 - N' > N - N"” - 0Ois exact then order(N) = order(N')order(N").

Let A be an abelian variety over k. For each n, 4, & Ker(p*: 4 —> A) is a
finite group scheme of order (p#)2dim(4)_ j e., the order is the same as when p #
characteristic(k). The system 4, & A, & --- is called the p-divisible (or Barsotti-
Tate) group A(p) of A. More generally, a p-divisible group of height h is a system of
finite group schemes and maps N = (N; ‘1, N, %, N; %, ...) such that N, has
order p* and i, identifies N,_; with the kernel of (N, #-} N,). For example
0,/Z, = (Z|pZ - Z|p*Z — ---) andppe. = (), > pe = pyp — ---) are p-divisible
groups of height one. 4(p) is of height 2 dim(4). A homomorphism ¢: N - N’ of
p-divisible groups is a family of maps ¢,: N, » N, commuting with the maps
i, and i,

Exercise 3.3. (k algebraically closed.) For any abelian variety A there are maps
On: Ap — A s such that Ker(¢,) = Ker(¢g,+;) for all sufficiently large n. Deduce
that 4 has < pdim4 points of order p, and that when equality holds A(p) =
(@) Z,)Im D X (p2)dm@, (Such abelian variety is said to be ordinary.)

Let W = W, be the ring of Witt vectors over k; it is a complete discrete valua-
tion ring of characteristic zero whose maximal ideal is generated by p and which
has residue field k. There is a unique automorphism a — a‘? of W which induces
the pth power map on k. If k' = F, then W is the completion of the ring of integers
in the maximal unramified extension Q%" of @,and a — a‘ is induced by the usual
Frobenius automorphism of Q%” over @,. Let W[F, V] be the ring of noncommuta-
tive polynomials over W in which the relations FV = p = VF and Fa = a'?F,
aV = Va‘®, hold for all ae W. There is a contravariant functor, N — DN =
Dieudonné module of N, associating to each p-power order finite group scheme a
WIF, V]-module which is of finite length as a W-module; D defines an antiequiv-
alence of categories. The length of DN as a W-module is equal to the order of N.
Thus manipulations with finite group schemes correspond exactly to manipulations
with modules over the noncommutative ring W[F, V]. Examples:

D(pe,) = W[pW = k; Facts as 0, V acts as 1;
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D(ay) = k; F=0,V = 0;

D(ZpZ) =k; F=1,V =0.

If N is unipotent and pN = 0, then DN = Lie()V); the bracket operation on Lie(N)
is zero but it has the structure of a p-Lie-algebra and F acts as the “p-power”
operation and V acts as zero. More generally, if N is unipotent and killed by p»,
then DN = Hom(N, W,) where W; = G, = the additive group and W, = the
Witt vectors of length n regarded as an algebraic group. There are canonical,
nondegenerate, W-bilinear pairings (,>: DN x DN - W ® 0,/Z, such that
(Fm, ny = {m, Vn)®) (Vm, n)®» = {(m, Fn).

The notion of Dieudonné module can be extended to p-divisible groups. On
applying D to N = (N; » N, - ---) we obtain a sequence of modules and maps
(DN; < DN, « --), and we define DN = proj lim DN, This is a W[F, V]-module
which is free of finite rank equal to height(N) as a W-module.

In classifying p-divisible groups one begins by considering them up to isogeny:
N and N’ are isogenous if there is a surjective homomorphism N — N’ with finite
kernel or, equivalently, if there exists an injective homomorphism DN’ — DN
whose cokernel has finite length over W. If we write W’ = W[l/p] = W ®2,0,,
W'[F, F11 = W'[F, V] = WIF, V] ®z, @y and D'N for DN ®2z, Q, regarded
as a W'[F}-module, then we see that N and N’ are isogenous if and only if D’'N ~
D'N'.

Let .# be the category of W’[F]-modules whose objects occur as D'N for some
p-divisible group N. When £ is algebraically closed one knows that .# has exactly
one simple object D2 = W'[F]/(Fr — p) for each rational number 4, 0 < A1 = 1,
A = s/r, (r, s) = 1. D* has dimension r over W’, End(D?) is the unique division
algebra over Q, of degree r%, and any D € ./ can be written uniquely as a finite
direct sum D = (Dh)ym @ --- @ (D*)m with distinct A;. Then 2;, ---, A, are the slopes
of D and m,r;, where A; = s,/r;, is the multiplicity of A;. We sometimes write (Ds/7)"
as Dsm/rm_ Thus Ds/7 may now be a multiple of a simple module; it has slope s/r
with multiplicity » and has dimension r over W"’.

When £k is algebraically closed and N is a p-divisible group over k, the slopes of
D'N are called the slopes of N. Clearly N is uniquely determined up to isogeny by
its slopes and their multiplicities. For example, all p-divisible groups of height
one are isogenous (in fact, isomorphic) to g, or @,/Z, because D'(¢,.) = D! and
D'(Q,/Z,) = D° are the only D* of dimension one over W'. There is only one
simple D? of dimension two over W'; itis D1/2 = D'(A(p)) where A is a supersingu-
lar elliptic curve (cf. §5).

Let k& have algebraic closure k # k. Any p-divisible group N over k defines a
p-divisible group N; over k and it is known that DN; ~ DN ®y, W;. If k = F,
with ¢ = pe then F2: DN — DN is W-linear and so its characteristic polynomial
det(T — Fe[DN) = [[}#*™(T — q,) is defined. The set of slopes of D'Nj is {ord (a;),
ord,(az), ---} where ord, is the valuation of the algebraic closure of W, such that
ord,(g) = 1.

If 4 is an abelian variety, we write DA for DA(p). When A is defined over F,
the Frobenius endomorphism z: (ay, ap, ---) — (af, a4, ---) of A induces F2 on DA.
The characteristic polynomial P,(T) of z: A - A in the sense of [17, §19] is
det(T — Fe|DA). Thus the slopes of D’A; can be read off from P 4(T).

We can also define profinite group schemes T;4 = proj limA4, and T\4 =
proj limA,,. If I # char(k) and k is algebraically closed then 7,4 can be regarded
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(as before) as a free Z,-module of rank 2 dim(A4). We write T4 = T24 x T,A.
Finally we note that to classify p-divisible groups up to isomorphism, it is neces-
sary to classify the (F, V)-stable lattices in the objects of .#.
References. The best introduction to the subject matter of this section is [6].

4. S(F,) as a family of abelian varieties. Fix a prime p not dividing 4. From §2
we know that points of S(F,) correspond to isomorphism classes of triples (4, 7, ¢)
where A is an abelian variety of dimension 2d over F,, i is an action of O on A4,
and ¢ is a K#-equivalence class of isomorphisms ¢: T24 — V(Z?%) where T24 =
proj lim,,, 4,(F,). (Recall that ¢,: T,4 — V(Z,) is defined only over the ground
ring with p inverted, and F,[p~1] is the zero ring.) The Oy ® F ,-module ¢, satisfies
the following condition:

@.1) the subspaces corresponding to the idempotents (3§) and (§9) in O ® F,
) ~ My(F,) are free O @ F,-modules of rank 1.

If A is defined by equations Za , T, let A? be the abelian variety over F,
defined by the equations JYa#,T?. There is a Frobeniusmap F = F4: 4 — AP
which takes a point with coordinates (¢, ---, t.) to (¢4, ---, t£). The map F, is a purely
inseparable isogeny of degree p24, which means that Ay, the kernel of F, is a finite
group scheme of order p?? with only one point in any field (so that only &, and
2, occur in any composition series for it). As groups, D(4) = D(4®), but the
identity map DA — DA is (p)-linear, i.e., am — a‘’®m for a e W, m € DA.
The composite DA 4, DA® PF4 D4 is a multiplication on the left by Fe
WIF, V] (see [6, p. 63]). Since F, is zero on t4, t, ~ t4, ~ DAp ~ (DAp)* =
dual(Coker(DA ¥, DA)). Thus (4.1) may be checked on DA/F(DA) instead of #,.

IfPeSF ») corresponds to (4, i, @) then, intuitively, we may think of the coor-
dinates (a;, -+, a,) of P as being the coefficients of the equations defining A. Thus
Frob(P) corresponds to (4, i®, ¢») where i and ¢‘» are such that F,
defines a map of triples (4, i, @) — (4@, P, ).

Finally we observe that there are “Hecke operators” acting. Let g € G(4;) and
suppose that K’ is an open subgroup of G(Z;) such that g~1K'g c K; then x+
xg: G(A) - G(A) induces a map G(Q)\G(A)/K_.K' — G(Q)\G(A4)/K_K which arises
from a map of varieties 7(g): xS¢ — xS¢. If P corresponds to (4', i’, ¢') then
7 (g)P corresponds to (4, i, ¢) if there is an Op-isogeny a: 4 — A’ such that

Tye ,
I, e
mg
V(Z))— V(Z))

commutes with m some positive integer. When we pass to S,, only G(4%) continues
to act: if g € G(4%) and P € x.S(F,) and 7(g)P € xS(F,) correspond respectively to
(4', 7', §') and (4, i, ¢) then there is an isogeny a: 4 — 4" whose kernel has order
prime to p and a commutative diagram

T4,
e, Le
V(Z8) — V(Z2)
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with m a positive integer prime to p. This definition is compatible with that over
C in the sense that both mappings J(g) come by base change from a mapping
T(g): x-S x spec Z ) — xS x spec Z ) where Z,, = {m/n € Q|(n, p) = 1}. (More
concretely, this means that if (4, i, ¢) in characteristic zero specializes to (4, i, ¢)
in characteristic p then 7 (g)(4, i, ¢) specializes to 7 (g)(4, i, Z).)

5. The isogeny classes. Fix a prime p not dividing 4 and consider pairs (4, 7)
where A is an abelian variety of dimension 2d over F, and i is a homomorphism
B & End°(A) such that i(1) = 1. We write 4 ~ A’ if 4 and A’ are isogenous, and
(4,1) ~ (4',7) if the pairs are B-isogenous in an obvious sense. .#, denotes the set
of all B-isogeny classes and (4, i) ® Q the class containing (4, {). It will turn out
(last paragraph below) that the map (4, i, @) — (4, i) ® Q: S(F,) —» #, is surjec-
tive and so, to describe S(F,), it suffices to describe .#, and the fibres of the map.
The first is done in this section and the second in the next. Note that Frob (and
7 (g)) preserves the fibres.

We first remark that, as in characteristic zero, there is a unique weak polarization
on A inducing the given involution on B, and that it gives an F-equivalence class
of pairings 4, x A, - G,, for all n (cf. [17, §23]). In turn these pairings give an
equivalence class of skew-symmetric pairings ¢,;: T)4 x T4 - T,G,, ~ Z; with
nonzero discriminant for each / # p, and a similar pairing ¢,: DA x DA —>W;
this last pairing satisfies the conditions ¢ ,(Fm, n) = ¢,(m, Vn)®, ¢,(Vm, n)» =
¢ (m, Fn). All pairings satisfy ¢(bm, n) = ¢(m, b*n), b € B.

The description of .#, will be based on the following classification of isogeny
classes over a finite field. (Recall that an abelian variety over a field k is simple if
it contains no nonzero, proper abelian subvariety defined over k and that any
abelian variety is isogenous to a product of simple abelian varieties. If 4 is defined
over F, then 7 = x, is the Frobenius endomorphism (ay, a, ---) +~ (a%, a? ---).)

THEOREM 5.1. (a) Let A be a simple abelian variety over F,and let E = End°(4).
Then E is a division algebra with centre Q[z], © is an algebraic integer with absolute
value q'/2 under any embedding Q[w ] & C, and for any prime v of Q[x] the invariant
of E at v is given by

inv(E) = % if vis real,
=0 if v|l, 1 # p,
d .
= XD om0 il

Moreover 2 dim(A4) = [Q[z]: Q][ E: QO[z]]'/? and e = [E: Q[z]]'/2 is the least
common denominator of the inv,(E). The characteristic polynomial P,(T) of =:
A — A is m(T)e where m(T) is the minimal polynomial of 7 over Q.

(b) The simple abelian varieties A and A’ over F, are isogenous if and only if there
is an isomorphism Q[ 4] = Qlx 4] such that © 4 — w4

(c) Every algebraic integer w which has absolute value q'/% under any embedding
Qlz] o C arises as the Frobenius endomorphism of a simple abelian variety A, over
F,

q(d) For any abelian varieties A and B over F, and any prime [ (including | = p)

the canonical map
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Hom(4, B) ® Z, - Hom(A(!), B(l)) = Hom(T;4, T,B)

is an isomorphism. (If | # p then A(l) and B(l) can be regarded as Gal(F,/F,)-
modules.)

Proor. The first part of (a) (the Riemann hypothesis) is due to Weil, part (c)
to Honda, and the remainder to Tate; see [17], [21], [7], [22]. [23].

For example, if in (c) we take 7 = p?, ¢ = p?¢ then we obtain an elliptic curve
Ay such that End°(4 ) is a quaternion algebra over @ which is split everywhere
except at p and the real prime. Any such elliptic curve is said to be supersingular.

It follows easily from (a) that if Q[z] has a real prime then either 4 is a super-
singular elliptic curve or becomes isogenous to a product of two such curves over
F,.

qFrom now on we, let p factor as (p) = p;---p,, in O, where the p; are distinct
prime ideals, and we let d; be the residue class degree of p, over p; thusd = }}d,.

PROPOSITION 5.2. Let (A, i) be as above. The centralizer of B in End°(A) is either:

(a) a quaternion algebra B’ over F which splits except at the infinite primes, the
primes where B is not split, and the p; for which d; is odd, and there does not split; or

(b) a totally imaginary quadratic field extension F' of F which splits B.

In the first case A ~ A where Ay is a supersingular elliptic curve and in the second
A ~ A% where Ay is an abelian variety such that F' < End°(4,).

PROOF. Suppose 4 ~ Ay x Ay, r = 1, where A, is a supersingular elliptic curve
and Hom(4,, 4;) = 0. Then End°(4) ~ M(E) x End®(4,), where E = End°(4,),
and B embeds into M,(E). Consider F o M,(E); we must have d|2r, but d = 2r
is impossible because F does not split E [19, Theorem 10], and so = d or 2d. The
Skolem-Noether theorem shows that, when composed with an inner automor-
phism, the map F — M,(E) factors through M,(Q). Thus the centralizer C(F) of
Fin M,(E) is isomorphic to M,, (F) ® E = M,,(E® F). Let C be the centralizer
of Bin M,(E). Then B @ C ~ C(F) because C(F) and B are central simple alge-
bras over F [19, §8]. It follows that either r/d = 1, C = F, and B=EQ® F, or
r/d = 2 and C is a quaternion algebra over F such that, in the Brauer group of F,
[B] + [C] = [E ® F]. The first is impossible because B splits at infinite primes while
E does not; thus the second holds, and this proves that case (a) of the proposition
holds.

Next assume that Hom(4,, 4) = 0 when A4, is a supersingular elliptic curve, and
fix a large subfield F, of F, such that 4 and all its endomorphisms are defined over
F,. From considering 4/F, we get a Frobenius endomorphism 7z € End°(4), and the
assumption implies that there is no homomorphism Q[z] — R. Consider

B—B[z]—B®; C—E

by

|

0—0Irn]

where E is End°(4) and C is the centralizer of B in E. Clearly, F[z] = F would
contradict our assumption. On the other hand we must have [F[z]: F] < 2 and
F[z] = C for otherwise E would contain a commutative subring of dimension
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> 4d = 2 dim(A4) over Q, which is impossible by 5.1(a). Let F' = C = FJz];itisa
quadratic extension of F and can have no real prime because that would contradict
our assumption. It splits B because, for any finite prime ! # p, (T}4) ® 4, Q, is free
of rank 2 over F; = F’ ® Q,, from which it follows that B ® F; =~ M,(F;), and we
are assuming that B splits at any infinite prime or prime dividing p. Let e be an
idempotent # 0, 1, in (B ® F’) () End(4). Then A, = eA is an abelian variety
such that A ~ A, x A,. Since elements of F’ commute with e, F' < End°(4y).

REMARK 5.3. In case (b) of 5.2, 4, is isogenous to a power of a simple abelian
variety, A, ~ A}, because the centre of E = End°(A4) is a subfield of the field F'.

It follows that, for any pair (4, i) as above, 4 is isogenous to a power of a simple
abelian variety and hence End°(4) is a central simple algebra over the field Q[z].
Let (4, i) and (4', i’) be such that there exists an isogeny a: 4 — A’. The Skolem-
Noether theorem shows that the map B %, End°(4) =, End°(4’), where a.(r)
= aya~), differs from i’": B — End°(4’) by an inner automorphism (y — 875™1)
of End°(4’). Thus Ba is a B-isogeny 4 — A’, and we have shown that 4 ~ 4’ im-
plies(4, i) ~ (4’,1").

We now consider in more detail the situation in 5.2(b). Letp;, -+, 9,0 < ¢ < m,
be the primes of F dividing p which split in F’ and write p; = qg,q; fori < ¢. Since
Or N End(4,) and Z, both act on 4y(p), their tensor product does, and the splitting
F®Q,~ F, x -+ x F, induces an isogeny Ay(p) ~ Ao(p;) x -+ x Ao(p,) and
an 1somorphlsm D'Ag~ D'Ay(p) x -+ x D' Ay(p,,). Clearly Ay(p,) has height
2d; and so D’(A(p,)) has dimension 2d; over W'. Since ¢ (am, n) = ¢,(m, an) for
a € F the decomposition of D’A4, is orthogonal for ¢,, and ¢, restricts to a non-
degenerate form on each D’(4(p,)). This implies that the set of slopes {4;, Az, ---} of
D’(Ay(p,) is invariant under 2 — 1 — A.

Fixani < t. As F,, ~ F,, x F, acts on D'Ay(p;), Ao(p;) splits further: Ag(p,)
~ AO(qt) X AO(q )’ ’AO(pz D’ (AO(qt)) x D’ (AO(qz)) Since F < Endo(A(q:)) has
degree d; = height(4y(q;)) over @,, A(q,) is isogenous to a power of a simple
p-divisible group: we may write D'A(q;) = D*/4, 0 < k; < d,. Correspondingly,
D'A(q;) = Drua; with k; + k; = d;.

Fix an i > t. The [F,;: Q,] = 2d; = height Ay(p;) and so, as above, 4y(p,) is
isogenous to a power of a simple p-divisible group and we may write DAy(p,) =
Ds/r, Since s/r = 1 — s/r we must have s/r = d;[2d;. We write k; = d;/2.

Note that for some i, ] £ i < m, we must have k; # d,/2 for otherwise all slopes
of A(p) would equal 4. Then (see §3 and 5.1(a)) |z/q'/? = 1 for all primes v of
Q[z] and so some power of it would equal one. On replacing F, by a larger finite
field we would have 7 = ¢!/2, and this would imply that 4 isisogenous to a power
of a supersingular elliptic curve, i.e., we would be in case (a). This means that
t = 1—atleast one prime p; splits in F".

THEOREM 5.4. ., contains one element for each pair (F', (k;)1<;<) where F' isa
totally imaginary quadratic extension of F which splits B and is such that at least one
v, splits in it; if p; splits in F' then k; is an integer with 0 < k; < d; and otherwise
k; = d,|2; for at least one i, k; # d; — k;. When p; splits in F' we regard k; and k;
as being associated to q; and q;, and we do not distinguish between two pairs (F', (k;))
and (F', (k,)) which are conjugate over F. There is one additional ““supersingular”
element.



180 J. S. MILNE

For example, if F = Q then there is the supersingular isogeny class and one
class for each quadratic imaginary number field F’ which splits B and in which p
splits. If p splits completely in F then there is the supersingular class and one class
for each totally imaginary quadratic extension F’ of F of the right type and choice
of one out of each pair of primes dividing a p; which splits in F’; one family of
choices is not distinguished from the opposite family.

PROOF OF 5.4. We first construct an isogeny class (4, i) ® @ corresponding to
(F', (ky, -+, k). As before we let p;, 1 < i < ¢, be the primes dividing p which
split in F’. Consider the ideal in O,

a = qiffdok q Uk . qiffdedki | qfffdm b

where f = 2d; --- d,,. For some h, a* is principal, say a* = (z). If we write @ — a
for the nontrivial F-automorphism of F’ then z7 € F and

(z7) = (afa ... a5)* N Op = pi* ... pfF = (p™).

Thus #7 = upf* with u a unit in Op. If u is a square in F then we may replace = by
m/ul/2 and obtain an equation 77 = ¢ with ¢ = pfk. If u is not a square then we
replace 7 by z2/u and obtain a similar equation with ¢ = p2/t. Note that the condi-
tion k; # k; for some 7 implies that = ¢ F and hence that F' = F[z]. Under any
embedding F' & C, Fmaps into R. Thus complex conjugation on C induces a — a
on F'. In particular 7 is the complex conjugate of the complex number z and so
nw = qimplies that |z| = ¢1/2.

Let A, be the abelian variety corresponding, as in 5.1(c) to z, and let E =
End®°(4,). For any prime v of Q[z]

inv(E) =0 if v{p,
= (k;/d)[QIx),: @,] ifv|pandagy,
= (ki/d)[Qlr],: Q,] ifv|p and gifv.

Let e, be the denominator of inv,(E) (when it is expressed in its lowest terms) and
let e be the least common multiple of the e,. Then 2 dim(A4,) = re where r =
[Q[z]: @]. Clearly e,|[F,: Q[x],] for any g|v, v|p, which implies (by class field
theory) that F’ splits E and (trivially) that e divides [F': Q[z]] = 2d/r. As
[Myy,,{E): Qlz]] = (2d[re)2e? = [F': Q[x]]?, F' embeds into M,,,, (E) [19,
Theorem 10)]. Let 4, = A24/re. The characteristic polynomial P, (T') of z on A4 is
c(T)e where c,(T) is the minimal polynomial of 7 € Q[z] over Q (5.1(a)). Thus
P, (T) is c(T)*/r which equals the characteristic polynomial of z € F” over Q.
Corresponding to the splitting F, = Fy x F; x -+, we have 4o(p) ~ Ao(qr) x
Ay(ay) x -+ and P4(T) = Py(T)P((T) --- where P(T) (resp P{(T)) is the char-
acteristic polynomial of the image z; of z in F,, (resp. z; of z in Fy )over 0,
Thus (see §3) A(q;) has slopes equal to ord,(z;) = ( fhidyk,[fh = kd; and A(g;) has
slopes equal to k;/d;. Thus A = Ay x Ay, regarded as an abelian variety over F),,
and the map i induced by B & M,(F’) represent an isogeny class corresponding to
(F,! (kl’ ) km))

(A%, i), where A, is a supersingular elliptic curve, represents the supersingular
class.
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Obviously if (4, i) ~ (4', i') then both represent the supersingular class or
correspond to the same pair (F’, (ky, -+, k,,))-

It remains to show that if (4, i) and (4’, i") both correspond to (F', (ky, ..., k,,))
then (4, i) ~ (4',i"). By considering 4 and A4’ to be defined over some finite subfield
of F, we get elements 7 = 74 € F' and z’ = 74 € F’. The assumption implies that
ord(z) = ord(z") for all q| p, q a prime of F’, and 5.1(a) then shows that |z/z'[, = 1
for all primes of F’. Thus z and z’ differ by a root of 1 and so, after extending the
finite field, we may take them to be equal. It follows that 4 and A4’, being isogenous
to powers of the same abelian variety 4, are themselves isogenous, and 5.3 com-
pletes the proof.

The proof that any class in .# , is represented by an element of S(F,) requires the
following lemma.

LemMA 5.5. Let T = T A be such that T;A|T is finite; then there exists an isogeny
a: A" = A such that Ty maps T;A’ isomorphically onto T.

Proor. The finiteness of T;4/T means that, for all » > 0, the cokernel N of
T/nT — T;A[nT¢A is independent of n. Thus there is a map 4, = T;A/nT;A 2,
N. Define A’ to be the cokernel of a — (¢(a),a): 4, > N x A,anda: A’ — A to
be (b, @) — na; then (T;a)(T;A') = T. ‘

Let (4, i) represent a class in .#, and let O’ = B () End(4); it is an order in B.
Regard (4, i) as being defined over a large finite field F,; then End(4) ® Z, ~
End,(T,4) and O' ® Z, = (B® Z)) ) Endp (T}4). For almost all /, 0' ® Z,
will equal Oy ® Z, and we take T, = T;4; for the remaining / we may choose
a T, of finite index in T;4 which is stable under Op, i.e., such that End, (7)) N
(B® Z) = Op ® Z,. Note that D(T,/pT,) = M is a W[F, V]-module of finite
length over W. We may choose T, such that M/FM satisfies (4.1). Let A’ correspond
to T' = [[,7T; as in the lemma. Then A’ together with the obvious i and some ¢ lies
in S(F,) and represents (4, i) ® Q.

6. An isogeny class. It remains to describe the set Z = Z(4, i, ¢,) of elements
(4, i, ¢') of S(F,) such that (4’,i’) is isogenous to a given pair (4, i). An
Op-isogeny A’ %, 4 determines an injective map Tja: T;A" — T;4 whose image
/ satisfies the following conditions:

(a) Ais Op-stable.

(b) T;A/A is a finite group scheme. (More precisely, Coker(A/nA — T;A/nTA)
= Coker(4, —» 4,) = Ker(4'%, A)forn> 0.)

(©) D(A/p)/FD(A[pA) satisfies (4.1). (For A/pA = A}, and so D(A/pA)/FD(A/pA)
= DA/F(DA).)

Consider all subobjects A of T,A satisfying (a), (b), (c). Any such 4 may be
written /4 = A? x A, with A? a Z#-lattice in T24 (in the usual sense of modules
over Z#) and A, = T,A. We let Y be the set of pairs (4, ¢) with A as above and
é a K-equivalence class of isomorphisms A? = V(Z%). Since (A, @) is determined
by a pair (42, ¢), A,), we may write ¥ = Y? x Y.

By 5.5, every (A, ¢) € Y arises from a triple (4, i’, ") eS(Fi,) equipped with
an isogeny a; A" — A. Thus we have a surjective map ¥ — Z = S(F »)-

For n a positive integer we set n(4, ¢) = (nA, nd), and we define ¥ ® Q to be
the set of pairs (y, n) with y € Y and n e Z.,,, where (y, n) and (3, n’) are identi-
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fied if #'y = ny'. Then we write Y ® Q@ = (Y? ® Q) x (¥, ® Q) where Y ® Q
may be identified with the set of Op-stable lattices A in (T;4) ® Q equipped with
a K-equivalence class of isomorphisms 4 = T 4.

There is an action of H(Q) = Endg,(4)* on Y ® Q: for a € H(Q) we choose a
positive integer m such that mq is an isogeny of 4 and define a(4, ¢, n) = (T{ma),
@T(ma)™1, mn).

LEMMA 6.1. The map Y — Z described above induces a bijection H(Q)\Y ® Q =,
Z.

PROOF. (4, ¢, n) and (A, ¢', n’) map to the same element of S(F,) if and only if
there exist Op-isogenies

A — 4

and an Op-isomorphism ¢y: T4’ — V(Z;) such that
n((Tfa)TfA', ¢0(Tfa)) = (A, 5) and n'((Tfa')TfA', ¢0(Tfa')) = (A’, gz_S').
Then a’a~! makes sense as an element of End°(4) and o’a~X(4, ¢, n) = (1, ¢', n').

LeMMA 6.2. The map G(A%) — Y? ® Q, g — (g(T(A), pag"), induces a bijection
G(A)/K - Y? ® Q.

ProOOF. Obvious.

LeEMMA 6.3. There is a one-one correspondence between Y, ® Q and the set X of
WIF, V1-submodules M of D’'A which are free of rank 4d over W, Og-stable, and
such that M|FM satisfies (4.1).

PROOF. p: A — A induces maps i,: A/p*A & A/p1A which define a p-divisible
group A(p) = (A/p"4, i,). The exact sequence 0 - A4 — T4 - N — 0 (N finite)
gives rise to 0 - N — A(p) —» A(p) — 0. On applying D we get

0 - DA - DA(p) > DN — 0.

Since DN is torsion, we may identify D' A(p) with D'A4. To (A, n) € Y? we associate
n~1(DA(p)) € X.

THEOREM 6.4. With the above notations,
Z(A,i, §) ~ H(Q)\G(4%) x X/K?.

Frob acts by sending M € X to FM; the Hecke operator 7 (g), g € G(A%), “acts” by
multiplication on the right on G(A%).

ProOF. This simply summarizes the above.

It remains to give a more explicit description of X. Note that, corresponding
to the splitting D'A ~ D'A(p;) x --- x D'A(p,,), we have X ~ X| x -+ x X,,.
It is convenient to write G,(Z,) = Auty,(A(p,)) and G(Q,) = Endp,(A(p))* =
End, (D'A(p;))*. In the simplest cases G,(Qp) acts transitively on the lattices M
< D’ A(p,) which belong to X;, and in this case X; ~ G(Q,)/GAZ,). (To say that
GAQ,) acts transitively means that each A'(p,) is isomorphic to A(p,) and not
merely isogenous; cf. [6, p. 93].)
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EXAMPLES 6.5. (a) F = Q, F' is a quadratic extension of @, (p) = qq’ in F’, and
(4, i, ¢) is in the isogeny class corresponding to (F”, (0)).

Then A(p) ~ (Q,/Z,)? x (pp.)? with Oy ® Z, = My(Z,) acting in the
obvious way on each factor. Thus G(Z,) = {(§9) la, b € Z}} and G(Q,) =
{9 la, b e Q5}. In this case X = G(Q,)/G(Z,). Frob acts as (§ 9).

(b) As above, except (4, i, ¢) corresponds to (F”, (1)).

Then A(p) ~ (g5..)* x (Q4/Z,)? (i.e., in the splitting F, = F, x F,,, F, now
corresponds to the g, factor). G(Z,), G(Qp) and X are as before but Frob acts as
%9

(c) F = Q,(4, i, ¢)is in the supersingular class.

Then D'A(p) ~ D'/2 x D'/2 and End(D'/2) = B,, the unique division quater-
nion algebra over @,. B acts through the embedding

B® Q, ~ MxQ,) ™" My(B,).

Thus G(Q,), the centralizer of B ® 0, in My(By), is (By)*. Moreover G(Z,) may be
taken to be O* where O is the maximal order in B,. In this case X ~ G(Q,)/G(Z ).
Frob acts as multiplication by @, a generator of the maximal ideal of O.

(d) F arbitrary, p splits completely in F, (p) = p; -+ by, (4, i, @) corresponds to
(F” (kl, T kd))

Then X ~ X; x --- x X,; where X; is as in case (a) if p, splits in F’" and &; = 0,
as in case (b) if p; splits and k; = 1, and as in case (c) otherwise.

(e) The general case. For a statement of the result, see [14]. (This case is treated
in detail in: J. Milne, Etude d'une classe d’isogenie, Séminaire sur les groupes
réductifs et les formes automorphes, Université Paris VII (1977-1978).)

Added in proof (November 1978). The outline of a proof in [12] of the conjec-
ture for those Shimura varieties which are moduli varieties is less complete than
appeared at the time of the conference. The above proof (completed in the report
referred to in 6.5(e)) for the case of the multiplicative group of a quaternion
algebra differs a little from the outline in that it depends more heavily on the
Honda-Tate classification of isogeny classes of abelian varieties over finite fields.
The complete seminar referred to in 6.5(e), which redoes in greater detail much
of the material in this article and [3], will be published in the series Publications
Mathématiques de 1’Université Paris 7.
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COMBINATORICS AND SHIMURA VARIETIES
mod p (BASED ON LECTURES BY LANGLANDS)

R. E. KOTTWITZ

One of the major problems in the study of Shimura varieties is that of expressing
their Hasse-Weil zeta-functions as products of L-functions associated to auto-
morphic forms. In [1] this problem has been solved for a certain class of Shimura
varieties: those associated to an algebraic group G over @ which is the inverse image
under Respo(B*) === Resp/o(F*) of some connected Q-subgroup of Resp/o(F*),
where B is a totally indefinite quaternion algebra over a totally real number field
F. In this paper we will discuss only the case G = Resg,o(B*). In this special case,
the zeta-functions of the corresponding Shimura varieties can be expressed as
products of automorphic L-functions associated to the group G itself (in general,
groups besides G are needed as well). This case has already been discussed in [2]
and the purpose of the present discussion is to provide further details on the com-
binatorial exercise referred to on the last page of that paper. This is worked out in
detail in §4 of [1] for all of the subgroups of Resy,o(B*) mentioned previously, but
even so it is interesting to carry out the exercise in our situation (with further sim-
plifying assumptions added later) so that the main ideas can be understood more
easily.

First we sketch the arguments of [2] which lead to the combinatorial exercise.
Let K be a compact open subgroup of G(4;) (where A, is the ring of adeles of Q
having component 0 at o). Let Sk be the Shimura variety obtained from G and K
as in [2]. The variety Sk is defined over Q since B is totally indefinite, so its zeta-
function Z(s, Sk) is a product over the places v of Q of local factors Z,(s, Sg).

Let F' be a finite extension field of F which is Galois over Q. For ¢ €
Gal(F'/Q)/Gal(F'[F), let H, = GLy(C) and let V, be the standard representa-
tion of H, on C2 Then LG° = [],H, has anatural representation r on ¥V = ®,V,,
which may be extended to a representation of the L-group LG = Gal(F'/Q) x LG°
by putting r(z)(®,v,) = Q,w, for r € Gal(F'/Q) where w, = v,-1,.

The result of [2] is that Z(s,Sx) = [I. L(s — d/2, m, r)»™ K up to a finite number
of local factors, where d = [F: Q], = runs over the representations of G(A)/Z(R)
(where Z is the center of G) which occur in L%(G(Q)Z(R)\G(4)), and m(x, K) is an
integer which is associated to z and K in a way that is described in [2]. The product
over 7 is actually finite since m(z, K) turns out to be O for all but a finite number of
7. The precise result is
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