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PREFACE

=N

In classical Fourier analysis the action takes place on the uni
circle, on the integers and on the real line. During the last 25 or 30
years, however, an increasing number of mathematicians have
adopted the point of view that the most appropriate setting for the
development of the theory of Fourier analysis is furnished by the
class of all locally compact abelian groups. The relative ease with
which the basic concepts and theorems can be transferred to this
general context may be one of the factors which contributes to the
feeling of some that this extension is a dilution of the classical
theory, that it is merely generalization for the sake of generali-
zation,

However, group-theoretic considerations seem to be inherent in
the subject. They are implicit in much of the classical work, and
their explicit introduction has led to many interesting new analytic
problems (it is one of the aims of this book to prove this point) as
well as to conceptual clarifications. To cite a very rudimentary
example: In discussing Fourier transforms on the line it helps to
have fwo lines in mind, one for the functions and one for their
transforms, and to realize that each is the dual group of the other.

Also, there are classical subjects which lead almost inevitably
to this extension of the theory. For instance, Bohr (1) noticed
almost 50 years ago that the unique factorization theorem for
positive integers allows us to regard every ordinary Dirichlet series
as a power series in infinitely many variables. The boundary values
yield a function of infinitely many variables, periodic in each, that
is to say, a function on the infinite-dimensional torus 7'¢. It then
becomes of interest to know the closed subgroups of 7%, and it
turns out that these comprise all compact metric abelian groups.
Once we agree to admit these groups we have to admit their duals,
i.e., the countable discrete abelian groups, and since the class of all
locally compact abelian groups can be built up from the compact
ones, the discrete ones, and the euclidean spaces, it would seem

(]
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artificial to restrict ourselves to a smaller subclass
The principal object p

algebras L1(G) and M (G); L*(G) consisfs of all complex functions
on the group G which are integrable/ with respect to the Haar
measure of G, M (G) consists of all bounded regular Borel measures
on G, and multiplication is defined in both cases by convolution.
Although certain aspects of these algebras have beenstudied fogx on-
commutative groups G, I restrict myself to the abelian case. Other
L? - spaces appear occasionally, but are not treated systematically.

The development of the general theory, given in Chapter 1, is
based on some simple facts concerning Banach algebras; these, as
well as other background material, are collected in the Appendices
at the end of the book. It seems appropriate to develop the material
in this way, since much of the early work on' Banach algebras was
stimulated by Fourier analysis. Chapter 2 contains the structure
theory of locally compact abelian groups. These two chapters are
introductory, and most of their content is well known.

The material of Chapters 3 to 9, on the other hand, has not
previously appeared in book form. Most of it is of very recent
vintage, many of the results were obtained only within the last
two or three years, and although the solutions of some of the prob-
lems under consideration are fairly complete by now, many open
questions remain.

My own work in this field has been greatly stimulated by con-
versations and correspondence with Paul J. Cohen, Edwin Hewitt,
Raphael Salem, and Antoni Zygmund, and by my collaboration
with Henry Helson, Jean-Pierre Kahane, and YitzhakKatznelson.
It is also a pleasure to thank the Alfred P. Sloan Foundation for
its generous financial support.

s of study in h:}gesent book are the group

Madison, Wisconsin WALTER RUDIN
November 1960



1.1
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

The Basic Theorems of Fourier Analysis

Haar Measure and Convolution. . . . e e e .
The Dual Group and the Fourier Transform e e e e e e
Fourier-Stieltjes Transforms .

Positive-Definite Functions . . . . . . . . . . . . .
The Inversion Theorem . . . . . . . ., . . . . . . ..
The Plancherel Theorem . . . . . . . . . ., . . . . ..
The Pontryagin Duality Theorem . . . . . . ., . . . . . .

The Bohr Compactification
A Characterization of B(I')

CHAPTER 2
The Structure of Locally Compact Abelian Groups
The Duality between Subgroups and Quotient Groups . .

Direct Sums L] - - - L] * - - L] L] - - - - L] - - - - - . - -
Monothetic Groups . . . . . + « . o o000 e
The Principal Structure Theorem . . . .

The Duality between Compact and Dlscrete Groups e e e e e

Local Units in A"} . . « « v « ¢ v v v v v v v 0 v o o
Fourier Transforms on Subgroups and on Quotient Groups

CHAPTER 3
Idempotent Measures

Outline of the Main Result . . . . . . . . . . . . . . ..
Some Trivial Cases . . . . . . . . « . . o .« . o .
Reduction to Compact Groups .

Decomposition into Irreducible Measures . . . . . . . . . .
Five Lemmas. .. e
Characterization of Irreduc1ble Idempotents e e e e e
Norms of Idempotent Measures .

A Multiplier Problem . . . . . . . . . . . . .« . o

CHAPTER 4
Homomorphisms of Group Algebras

Outline of the Main Result . . . . . « .« . « .+ + .,
The Action of Piecewise Affine Maps . . . . . . . . .

[vii]

13
17
21
26
27
30
32

35
36
39
40
44
48
53

59
61
62
63
66
69
72
73

77
79



Vil

4.3
4.4
45
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
9.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.9
7.8

8.1
8.2

CONTENTS

Grapbs in the Coset Ring . . . .
Compact Groups Ce e e
The General Case . . . ..
Complements to the Main Result
Special Cases .

CHAPTER &
Measures and Fourier Transforms on Thin Sets

Independent Sets and Kronecker Sets

Existence of Perfect Kronecker Sets

The Asymmetry of M (G} . “ e
Multiplicative Extension of Certain Linear Functmnals
Transforms of Measures on Kronecker Sets .

Helson Sets . . . . . . . . . o . ..

Sidon Sets . . . . . . - . . .. .. .

CHAPTER 6
Functions of Fourier Transforms

Introduction . .

Sufficient Conditions e e e e e e e e e
Range Transformations on B(I"} for Non-Compact I" .
Some Consequences . e e e e e e e
Range Transformations on A4 (I} for Discrete I" . .
Range Transformations on A4 (I") for Non-Discrete I" . .
Comments on the Predecing Theorems e
Range Transformations on Some Quotient Algebras
Operating Functions Defined in Plane Regions

CHAPTER 7
Closed Ideals in L! (G)

Introduction . . . . .

Wiener’s Tauberian Theorem

The Example of Schwartz .

The Examples of Herz

Polyhedral Sets.

Malliavin’s Theorem

Closed Ideals Which Are Not Self Ad]omt

Spectral Synthesis of Bounded Functions . . . . . . .

CHAPTER 8
Fourier Analysis on Ordered Groups

Ordered Groups.
The Theorem of F. and M R1esz

80
82
85
87
92

97

99
104
108
112
114
120

131
132
135
140
141
143
147
149
153

157
159
165
166
169
172
181
183

193
198



CONTENTS

8.3 Geometric Means . . . . . . . . . . . . ..
8.4 Factorization Theorems in HY{G) and in H2%(G)
8.5 Invariant Subspaces of H?(G)

8.6 A Gap Theorem of Paley . . . . . .

8.7 Conjugate Functions

CHAPTER 9
Closed Subalgebras of L!(G)

.1 Compact Groups . Ce e
9.2 Maximal Subalgebras . . . . . . . . ..

9.3 The Stone-Weierstrass Property . . . . . . . .
Appendices

A, Topology . « . - o v v .00 e ..

3. Topological Groups . . . . . . . .

(.. Bamach Spaces . . . . . . . v « v v 4 4.

1. Banach Algebras . . . . . . . . . . . .. ..

I, Measure Theory . . . . . . . . . .« .+ ..

Bibliography e e e e e e e e e e e e e

List of Special Symbols . . . . . . . . . . . . ..

Index

231
232
239

247
252
256
261
264

271
281
283






CHAPTER 1

8 nl | 1)) . ey oo . A L .
1 he basic lheorems ol I'ourier Analysis

The material contained in this chapter forms the core of our
subject and is used throughout the later part of this book. Various
approaches are possible; the same subject matter is treated, from
ditferent points of view, in Cartan and Godement [1], Loomis [1],
and Weil [1].

Unless the contrary is explicitly stated, any group mentioned in
this book will be abelian and locally compact, with addition as
group operation and 0 as identity element (see Appendix B). The
abbreviation LCA will be used for “locally compact abelian.”

I1.1. Haar Measure and Convolution

1.1.1. On every LCA group G there exists a non-negative regular
measure m (see Appendix E), the so-called Haar measure of G,
which is not identically 0 and which is franslation-invariant. That
is to say,

(1) m(E + z) = m(E)

for every x ¢ G and every Borel set E in G.

For the construction of such a measure, we refer to any of the
following standard treatises: Halmos [1], Loomis [1], Montgo-
mery and Zippin (1], and Weil [1]. The idea of the proof is to
construct a positive translation-invariant linear functional " on
C.(G), the space of all continuous complex functions on & with
compact support. This means that 7f = 0 if f = 0 and that
T(f,) = Tf, where f, is the translate of f defined by

(2) L) =fy—=2) (yeG)

As soon as this is done, the Riesz representation theorem shows
that there is a measure m with the required properties, such that
1
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(3) Tf = Jrgfdm (7€ C,(G)).

1.1.2. I} V is a non-empty open subset of G, then m(V) > 0,
For if m(V) = 0 and K is compact, finitely many translates of V
cover K, and hence m(K) = 0. The regularity of » then implies
that m(E) = 0 for all Borel sets E in G, a contradiction.

1.1.3. We have spoken of the Haar measure of G. This is justi-
fied by the following uniqueness theorem:

I} m and m' are two Haar measures on G, then m' = Am, where A
1s a positive constant.

Proof: Fix ge C,(G) so that [ _gdm = 1. Define 4 by

[ &(—z)dm’ @) = 4.

For any feC,(G) we then have
[ 1am = [ gWyam(y) | Ha)im' @)
= [ _ew)dm(y) [tz + y)anm’ (@)
= [ am'(z) [ e@)f(x + y)am(y)
= [ @m' () [ gty — =)F(y)dm(y)
= [ @am(y) [ ely — z)dm' @) = 2 [ tdm.

Hence m’ = Aim. Note that the use of Fubini’'s theorem was legi-
timate in the preceding calculation, since the mtegrands gy)f(x+y)
and gy — x)f(y) are in C,(G X G).

Thus Haar measure is unique, up to a multiplicative positive
constant. If G is compact, it is customary to normalize # so that
m(G) = 1. If G is discrete, any set consisting of a single point is
assigned the measure 1. These requirements are of course contra-
dictory if G is a finite group, but this will cause us no difficulty. .

Having established the uniqueness of #, we shall now change our
notation, and write [ f(2)dz in place of [y fdm. Thus dz, dy, . . .
will always denote integration with respect to Haar measure.
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1.1.4. For

set m'(E) = m(— E), m’ is a Haar measure on G, and so there is
a constant 4 such that m(— E) = Am(L) for all Borel sets E.
Taking E so that — E = E, we see that 4 = 1.

1.1.5. Translation in L?(G). If Gisa LCA group and 1 < $
= oo, we shall write L?(G) in place of L*(m) (see Appendix E7).

It is clear that the L?-norms are translation invariant, i.e., that

any Borel set E in G, m(— E) = m(E). Forif w

g

eg
|9

(1) ||fm||'p: ”f”p (xeG),
where, we recall, f, is the translate of / defined by
(2) f(y) =y — x) (y € G).
THEOREM. Suppose 1 < p < oo and fe L?(G). The map
(3) x —> f,

is a unmsformly continuous map of G into L?(G).

Proof: Let ¢ > 0 be given. Since C,(G) is dense in L?(G) (Appen-
dix E8) there exists g ¢ C,(G), with compact support K, such that
llg — fil, < &/3, and the uniform continuity of g (Appendix B9)
implies that there is a neighborhood V of 0 in & such that

£
(4) ||g - gm”oo < '?: [m(K)]—l/p
for all zxe V. Hence ||g — g,ll, < ¢/3, and so

W= Falls S W — gl + 118 — &llo + llge — Lell, <e

if zeV. Finally’ fcc T fy — (f - fy—w)a'.: so that ”fw — f’y”@l <e if ‘
y —x eV, and the proof is complete.

Note that the same theorem (with the same proof) is true with
Co(G) in place of L?(G), but that it is false for L*(G), unless &
1s discrete.

1.1.6. Convolutions. For any pair of Borel functions f and ¢
on the LCA group G we define their convolution f#* g by the
formula

(1) (F g) (@) = [z — y)e(y)dy
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provided that _
(2) [lHe — )e)ldy < .

Note that the integral (1) can also be written in the form
(3) [ @)y

so that f * g may be regarded as a limit of linear combinations of
translates of f; this statement may be made precise, but we assign
it only heuristic value at present. (See Theorem 7.1.2.)

THEOREM. (a) If (2) holds for some x e G, then (f=g)(x) =
(€ * /) @).

(b) If f e LY(G) and g € L™(G), then f g is bounded and uniformly
CONLINUOUS.

(c) If f and g are in C (G), with compact supports A and B, then
the support of f+ g lies in A + B, so that f* geC,(G).

d) If1<p<oo,1/p+ 1jg=1, fe L?(G), and g ¢ LY(G), then
/% g€ Co(G).

() If f and g are in LY(G), then (2) holds for almost all x € G,
f*gelG), and the tnequality :

I/ * gl = 1I/1hllglh
holds.
(f) If f, g, % are in LY(G), then (f* g)xh = f* (g« h).
Proof: Replacing y by y + zin (1) and applying 1.1.4, we obtain
(7 % 8)(&) = [ 1~ wely+a)dy = [ JW)g(~ y+a)dy= (¢ )z),

and (a) is proved. |
Under the hypotheses of (b), it is clear that

((f*8)(@)! = [fllllglle  (eG)

so that f* g is bounded. For z ¢ G, z € G, we have

10+ ~ (@) = [, lie — v) — /e — 9)liew)dy
= ”f—m —f—zHIHg”cxr
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Theorem 1.1.5 shows that the last exprﬁssa can be made arbi-
trarily small by restricting # — z to lie in a suitably chosen neigh-

borhood of 0 and (b) follows.

If f vanishes outside A and g vanishes outside B, then f(x —y)g (y)
= 0 unless ye B and # —ye A, ie., unless e A + B. Thus
/ * g vanishes outside 4 4 B, and (c) is proved.

To prove (d), choose sequences {f,} and {g,} in C,(G) such that
I/, — fll, = 0 and ||g, — g||, = 0 as » — oo. Holder’s inequality
shows that f, * g, — f * guniformly. By (c),/, * g, € C.(G). Hence
f#geCy(G), and (d) follows.

The proof of (e) will depend on Fubini’s theorem, and we first
have to show that the integrand in (1) is a Borel function on
G X G. Fix an open set V in the plane, put £ = f~1(I), E' =
E X G,and let E"” = {(z,y) :x — y e E}. Then E’is a Borel set
in ¢ X G, and since the homeomorphism of G X G onto itself
which carries (z, y) to (x + ¥, y) maps E" onto E”, E" is also a
Borel set. Since f(x — y) ¢ VV if and only if (z, y) € E”’, we see that
f(x —y) 1s a Borel function on G X G, and so is the product

Hz —v)e(y).
By Fubini’s theorem,

o) e — v)e@)ldzdy = |ifllell,.

Setting ¢(z) = [¢ |f(x — ¥)g(y)|dy, it follows that ¢ ¢ L1(G). In
particular, ¢(x) < co for almost all #, and so (f % g)(x) exists for
almost all z. Finally, |(f* g)(x)| < é(%), and the proof of (e) is
complete.

The proof of (f) is also an application of Fubini’s theorem, justi-
fied by (e) for almost all z:

(F* (g = W) (@) = [ f& — 2) (g * h)(2)dz
= [ [t — 2)gG — y)h)dy dz
= [ [ te — 2 — v)e@)hiy)dy dz
= [ (F* )& — »)hly)dy = ((f» g) * ) (@).
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117 Tounoprnw I Tr 4 vz~ T 10N tatimp
1.1./7. 1HEOREM. [°07 any L. A gruwy , L7\ oo a commuidiive

Banach algebra, if multiplication is defined by convolution. If G s
discrete, LY(G) has a unit. - _
Proof: The tirst statement follows from parts (e), (f), and (a) of
Theorem 1.1.6, since the distributive law holds: f* (g + &) =

frg+f=h

If G is discrete and the Haar measure is normalized as indicated
in Section 1.1.3, then

(f xg) (=) = 2 flx — ¥)g(y),

yeG

and if ¢(0) = 1 but e(x) = 0 for all # =£ 0, then ¢ e L(G) and
f*e={f Thus ¢ is the unit of L}(G).

1.1.8. If G is not discrete, then L1{(z) has no unit (see Section
1.7.3) but approximate units are always available.

. THEOREM. Given f e LY(G) and ¢ > 0, there exisis a neighborhood
V of 0 in G with the following property: if u is a non-negative Borel
function which vanishes outside V, and if [ou(x)dx = 1, then

W=7l <e

Proof. By Theorem 1.1.5, we can choose V so that ||f — f,|I; <e
for all ye V. If u satisfies the hypotheses, we have

(= u) (@) — f(z) = [ [Hw — ) — F@)]uly)dy
so that
If#u— flly < [ lu@)ldy [ 1@ — y) — f()|de
= [ IIf = hllin(y)dy < &

1.2. The Dual Group and the Fourier T ransform

1.2.1. Characters. A complex function y on a LCA group G is
called a character of G if |y (x)| = 1 for all z € G and if the functional
equation

(1) vz + y) = yx)r(y) (x, 4 €G)
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1S sa ,.1 T cont ~f ATl An e S I L Lo ey
b A b HAlT sTi ul d.JJ LU fbbl/ﬂ'rWUWb cnaracters o1 & 101r11as a Hliuup
I', the dual group of G, if addition is defined by

(2) 1+ v2) (@) = y1(@)rale) (el yvael).

Throughout this book, the letter /" will denote the dual group of

the LCA group G.
In view of the duality between G and I" which will be established
in Section 1.7, it is customary to write

(3) (@, ¥)
in place of y(x). With this notation, (1) and (2) become

4) @+y )= ()@ and (@ 9+ vs) = (& 1) (@, 7,)-
[t follows immediately that

(5) (0,9) = (x, 0) =1 @eG,yel)
and
(6) (—a,y)=(x, —y) = (@ y)= (2 7).

We shall presently endow I" with a topology with respect to
which I' will itself be a LCA group. But first we identify I" with
the maximal ideal space of L'(G) (Appendix D).

1.2.2. THEOREM. If y eI and if
O = [ @) (2 nde  (fe1NG),

then the map | — f(y) s a complex homomorphism of L1(G), and 1s
not identically 0. Conversely, every non-zero complex homomorphism
of LY(G) ts obtained in this way, and distinct characters induce distinct

homomorphisms.
Proof: Suppose [, ge L}{(G), and £ = f*g. Then

= [, * @) (— 2 de = [, (— 2,7 [ 1z — D))y dx
= [0 (= 9. 9)y [ fe — 9)(— 2+ v v)de = 20)0).
Thus the map f— f(y) is multiplicative on the Banach algebra
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I {G), 1d since it is blcc’lrly linea

(= 2.9}l = L, f(3) 2 0 for some /¢
For the converse, suppose % is a complex homomorphism of

LY(G), B # 0. Then & is a bounded linear functional of norm 1

(Appendix D4), so that

@) W) = [ j@pdz (f<13(6))

J G

s
.l

(s
a

for some ¢ ¢ L*(G) with ||¢||, = 1 (Appendix E10). If f and g are
in LYG), we have

[ re@)b@)dy = h(Dh(E) = h(f = g) = |, * &) @) ()da

= [ ew)dy | te — y)pl)de = [ _e@h(f,)dy,
so that N, R

(3) h(H)dly) = 1)

for almost all 4 ¢ G. By Theorem 1.1.5 and the continuity of %, the
right side of (3) is a continuous function on G, for each f ¢ L1(G).
Choosing f so that #(f) % 0, (3) shows that ¢(y) coincides with a
continuous function almost everywhere, and hence we may assume
that ¢ is continuous, without affecting (2). Then (3) holds for
all y e G.

If we replace y by « + # and then f by /, in (3), we obtain

R(f)p @ + y) = Alfary) = A((2),) = 2(L)b(y) = A{)p(x)$ (y),
so that

(4) ¢+ 9) =dldly) (2 y<G).

Since |¢{x)| = 1for all x and since (4) implies that ¢(—x) = ¢(x)7%,
it follows that |¢(x)] = 1. Hence ¢ eI

Finally, if f(y,) = f(y,) for all feLY(G), (1) implies that
(— =, ¥1) = (— =, v,) for almost all z € G, and since y, and y, are
continuous, 1.1.2 shows that the equality holds for all z € G, so
that y; = y,.

1.2.3. The Fourier transform. For all fe L1(G), the func-
tion f defined on I'" by
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fo) = [ @)~z y)de  (yeT)
is called the Fourier transform of f. The set of all functions f so
obtained will be denoted throughout by A4 (I').
By Theorem 1.2.2, fis precisely the Gelfand transform of f. If
we give I' the weak topology induced by 4(I") (Appendix A10),
the basic facts of the Gelfand theory (Appendix D4) show that

A(I) is a separating subalgebra of Cy(I"). We summarize some of
the properties of 4 (I).

1.2.4. THEOREM. (a) A(I") 4s a separvating self-adjoint sub-
algebra of Co(I'), so that A(I') is dense in Cy(I"), by the Stone-Weier-
sirass theovem.

(b) The Fourier transform of f+g is f3.

(c) A(I') is invariant under translation and under multiplication
by (x,v), for any x e G.

(d) The Fourier transform, considered as a map of LY(G) into
Co(l), s norm-decreasing and therefore continuous: || f Hoo = |1fll1-

(e) For je L1(G) and y e T, (f* )(x) = (z, »)f(»).

Proof. For fe L*(G), define f by

fe) = f(= a).
The Fourier transform of fis the complex conjugate of f, and (a)
follows; (b) is implicit in Theorem 1.2.2. If y,¢ I" and g(z) =
(, yo)f(x), then g(y) = fly — 3,), so that A(I') is translation in-
variant. If g = f,, then

80) = [ 1y — 2)(— 9, »)dy
= (= =,) [ Iy — 2) & — 9, )y = (— 2, y)f().

This proves (c); (d) and (e) are trivial; (e) allows us to interpret
the Fourier transform as a convolution:

Fo) = (f*9)(0)  (FeLY(G),yeT).

1.2.5. THEOREM. I} G is discrete, I' is compact. I} G is compact,
I' 1s discrete.
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rruu; if G is ulbucw then LG \U} has a unit \111601‘(‘:111 I1.1. 4)
and its maximal ideal space I'is therefore compact (Appendix D4).
If G is compact and its Haar measure is normalized so that

m(G) = 1, the orthogonality relations

1 ify =0
o) [ wnm={, 177

hold. The case y = 01is clear. If y 5= 0, then (z,, y) - 1 for some
x, € G, and

[o@ vz = (2, 7) [, & — 20, )z = (w0, ) [ (@ y)de,

so that (1) is proved. If f(z) = 1 for all 2 ¢ G, then f € L'(G) since
G is compact, and f(0) = 1, f(y) = 0, if y 5£ 0, by (1). Since f is
continuous, the set consisting of 0 alone is open in I', and so [ is
discrete.

1.2.6. The topology of I". So far, I"is a group and a locally
compact Hausdorff space. We shall now prove that these two
strur tures fit together so as to make I' a LCA group. Our proof
depends on an alternative description of the topology of I

THEOREM. (a) (x, y) #s a continuous function on G X I
(b) Let K and C be compact subsets of G and I, respectively, let
U, be the set of all complex numbers z with |1 — z| < r, and pul

NEK,7) = {y: (x,y) eU, for all x K},
N({C,7) = {x: (x,y) e U, for all yeC}.
Then N(K, r) and N (C, r) are open subsets of I' and G, respectively.
(c) The family of all sets N(K, r) and their translates is a base for
the topology of I
(d) I és a LCA group.
Proof: Equation (3) of Section 1.2.2, rewritten in the form

(1) F @ y) =Ff0) (eG, yel)

implies (a), as soon as it is proved that f,(y) is a continuous func-
tion on G X I, for every fe LY(G).
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Fix z4, y¢, an

of y, such that

2) e — fagh <& and |f () — fo(vo)l <&

for all zeV, y e W, by Theorem 1.1.5 and the continuity of fx
Since | f,(y) — fo, ()] = 1ifu — f211, it follows that | £, () — fu (vo)!
< 2 ifxelV and ye I, and ( ) is proved.

Choose a compact set K in (G, choose » > 0, and fix v, e N(K, 7).
To every z, ¢ K there correspond neighborhoods V of x, and W of
vo Such that (x,y) eU,, if z e V and y ¢ W; this follows from (a).
Since K is compact, finitely many of these sets V cover K, and if
W* is the intersection of the corresponding sets W, then
W* CN(K, r). Since W* is a neighborhood of y,, N(K, 7) is open.

The same proof applies to N(C, 7).

To prove (c), assume that V is a neighborhood of y,. We have to
show that y, + N (K, ») CV for some choice of K and r. Take
vo = 0, without loss of generality. The definition of the Gelfand
topdlogy on I" shows that there exist functions f,, .. ., f, ¢ L(G)
and £ > 0 so that

®) N o= 1) —J0) < Cv.
Since C,(G) is dense in L'(G), we may assume that f,, .../,

vanish outside a compact set K in G. If

(4) 7 < efmax ||f,ll;

and if y e N(K, r), then
(5) fily) — fi(0)! éle(— z, v) — 1||f(x)lde < 7{|f:ll, < e

Hence N(K,r) CV, and (c) follows.
Given y’', 9" ¢ I' and N(K, r), the obvious relation

6) Y +N(K,7/2)] — " + N(K,7[2)]Cy" — " + N(K, 7)

shows, by (b) and (c), that the map (', ") =" — y" of I' X I
onto I' is continuous. This completes the theorem.
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(a) the additive group R of the real numbers, with the natural
topology of the real line;

(b) the additive group of the reals modulo 2z, or, equivalently,
the circle group T, the multiplicative group of all complex numbers
of absolute value 1I; -

(c) the additive group Z of the integers.

The circle group is of particular importance to us, since charac-
ters are nothing but homomorphisms into 7.

Suppose G = R and fix y € I. Write y(x) instead of (z, y), for
the moment: there exists é > 0 such that :

(1) [Py a0

The functional equation

(2) y@ + 1) =y)ylt) (@ teR)

then implies that

(38) aryl) =y@) [yt =y -+ at ="y

Since y is continuous, the last expression is differentiable, and so y
has a continuous derivative 9’. Differentiate (2) with respect to ¢
and then set £ = 0. The result is the differential equation

() y(@) = Ayl), A=y
Since y(0) = 1 and since y is bounded, (4) implies that
(5) y(@) =

for some y € R. The correspondence y <= ¥ is an isomorphism be-
tween I' and R. Thus: The dual group of R is R.

We still have to check that the natural topology of R is the same
as the Gelfand topology of the dual group. For » > 0 and # =
1,2,3,...,1let V(n, r) be the set of all ¥ such that |1 — *¥| < 7 if
|| < n. By Theorem 1.2.6, the sets V' (#n, ) form a neighborhood
base at 0 with respect to the Gelfand topology. But y e V (n, 7) if
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and only if
coincide.

If G =T, the same computation as above shows that every
character of 7" must be of the form (5), but now we also must have
v{z + 27) = y(x). Hence y must be an integer, and I' is identified
as the discrete group Z (compare Theorem 1.2.5).

If G=27 and y eI, then (l,y) = ¢’ for some real «, and it
follows that (u, y) = e*. The correspondence y <> ¢** is an iso-
morphism between [' and 7, and we conclude that T is the dual
group of Z (the two topologies coincide, as in the case G = R).

The Fourier transforms, in these three cases, have the following
forms:

,;.-l - I‘A\ - -y ! TL!- 1.

| f O/, PR f ol v Al w4
Iy . \A/ﬂr} dl ikl I\I/A}.. EliU> LI L L

W opologies

o0

G=R: fl) =[" f@)e e (y < R),

- 00

G=T: fmn) = %f” f(et?) im0 (neZ),

G = Z: f(e"“) = § f(n)e—m* (e eT).

N=—00

1.3. Fourier-Stieltjes Transforms

1.3.1. Convolutions of measures. Suppose G is a LCA group,
and u, 4 are members of M (G) (Appendix E1}, i.e., bounded regular
complex valued measures on G. Let y X 4 be their product meas-
ure on the product space G* = G X G, and associate with each
Borel set E in G the set '

(1) Eg=1{y) eG*x +yeE}

Then E, is a Borel set in G? (see the proof of Theorem 1.1.6(d))
and we define u * 4 by

(2) (% ) (E) = (u X A)(E).
The set function g * A so defined is called the convolution of u and A.

1.3.2. THEOREM. (a) If pe M(G) and %e M(G), then
ux e M(G).
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() Ilp = AL = lpll - 1AL

CoRrOLLARY. M (G) is a commutative Banach algebra with unit,
if multiplication is defined by convolution.

Proof: The Jordan decomposition theorem shows that in the
proof of (a) it is enough to consider non-negative measures only.
Since u X A is a measure on G2, it is clear that (u * 2)(E) =
> (u = A)(E,) if E is the union of the disjoint Borel sets E; (7 =
1,2,3,...). If Eisa Borel set in G and if ¢ > 0, the regularity of
u X A shows that there is a compact set K C E,, such that

(u X D)(K)> (o X ) (Ew) — &

If C is the image of K under the map (x,y) -« + y, then Cisa
compact subset of E, K CC,, and hence

(uxA)(C) = (u X A)(Ciq) = (& X )(K) > (uxA)(E) — e

This establishes one half of the requirement that g * 4 be regular.
The other half follows by complementation, and (a) is proved.
(This argument applies to more general situations; see Stromberg
[11.)

Since G 1s commutative, the condition  + y € E is the same as
the condition y + ¢ ¢ E, and hence u % 4 = 4 * u.

The simplest way to prove associativity is to extend the defini-

tion of convolution to the case of # measures uq, . . ., u, € M(G):
with each Borel set E in G associate the set

(1) E,.={@®@,..,2,)eG 12, + ... +2z,¢E}

and put

(2)  (axpe® .. u)(E) = (U X pa X oo X p,) (Ey)s

where the measure on the right is the ordinary product measure
on the product space G". Associativity now follows from Fubini’s
theorem, and (b) is proved.

Let yz be the characteristic function of the Borel set E in G.
The definition of (u * 1)(E) is equivalent to the equation
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o ¢ B S A
(3) [ asds )= [_[ 1l + y)du@)di(y).

Hence if f is a semple function (a finite linear combination of
characteristic functions of Borel sets), we have

(4) fofdwx 2 = [ [t + y)du)daly),

and since every bounded Borel function is the uniform limit of a
sequence of simple functions, (4) holds for every bounded Borel
function f. (One could use (4) as the definition of u*4.) If
lf(@)] =1 for all x¢G, then |[of(® 4+ y)du(x)] = [|u|| for all
y € G, and hence the right side of (4) does not exceed [{u]] * ||A]l.
This proves part (c) of the theorem.

As to the Corollary, it only remains to be shown that M (G) has a
unit. Let d, be the unit mass concentrated at the point o = 0;
e, 0g(E) = 11f 0 € E and §,(E) = 0 otherwise. Then u * d, = u
for all g e M(G), and the proof is complete.

1.3.3. Fourier-Stieltjes transforms. If ¢ M (G), the func-
tion g defined on I' by

(1) A = [ (= pdp@) (el

is called the Fourier-Stieltjes transform of 4. The set of all such
functions 2 will be denoted by B(I).

TuroREM. (a) Edch p e B(I") is bounded and uniformly contin-
1OuS.

(b) If o= pu* A, then o= u - 3. Hence the map u — 1 (y) is, for
cach y e I', a complex homomorphism of M(G).

(c) B(I") is tnvariant under translation, under muliiplication by
(x, y) for any x € G, and under complex conjugation.

Proof: The definition of i shows immediately that | ﬁ ) = [|pll
for all y e I Given 6 > 0, the regularity of |u| shows that there is
a compact set K in G such that |u}(K') < 8, where K’ is the com-
plement of K. For any y,, ¥, e I" we have

i) — 2l S [ L — @y — w)ldlul @) = [+ [,
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If y; — ¥, e N(K, ), as defined in Theorem 1.2.6, the above in tt“:
grand is less than 6 for # € K, hence [z does not exceed dl|u|l. The
second integral is less than 2|u|(K’) < 28. Hence & is umformly
continuous.

Suppose ¢ = u * A. Formula (4) in the proof of Theorem 1.3.2
then implies that

o) = [ A=z a0 = [ [ (— = — v 7)du(@)diw)
= [ (— 2, v)dn@) [ (— v, »)di@) =4I,

and (b) is proved.

The proof of (¢) is quite similar to that of the analogous part of
Theorem 1.2.4. If dA(x) = (x, yo)du(x), then 1 (y) = i{y — vo).
If A(E) = u(E — =), theni(y) = (&, p)i(y). I G(E) = p(— E),
then the Fourier-Stieltjes transform of & is the complex conjugate
of ﬁ

1.3.4. LY{{G) as a subalgebra of M (G). Every f< L(G) gen-
erates a measure u, € M(G), defined by

M) w(B) = [ 1 @)de

and which is absolutely continuous with respect to the Haar meas-
ure of G. Conversely, the Radon-Nikodym theorem (Appendix
E9) shows that every absolutely continuous u e M(G) is u, for
some f e LY{G). Since we identify functions in L1(G) which differ
only on a set of Haar measure 0, the correspondence between f and
t; is one-to-one, and we may therefore regard L'(G) as a subset of
M(G). It is easily seen that f(y) = p,(y) for all y e I' and that
W, = llg,!l. Hence we may use f in place of x4, without causing
confusion. For instance, we may write fxo if feL'(G) and
o € M(G), instead of yu, * o.

1.3.5. Let M (G) and M4(G) denote the sets of all continuous
and discrete members of M(G), respectively (Appendix E§):

TueoreMm. (a) LY(G) and M ,(G) are closed ideals in M(G).
(b) M4(G) is a closed subalgebra of M (G).
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we obtain, for any Borel set E in G,

(1) (= D)(E) = [ w(E — 9)diy).

If u 1s absolutely continuous and m(E) = 0, then m(E — y) = 0
for all y, hence u(E —y) =0, and so (u % 4)(E) = 0 for every
A € M (G). This says that 4 * 1 is absolutely continuous, and hence
LY(G) is an ideal in M(G). Since ||f||l; = ||u,]| and since L'(G) is
complete, L1(G) is closed in M (G). If E is countable, u, ¢ M (G),
and [lg — u,|| — 0, then

W(E)] = Hu — ) (E) Sl — | (E) S Ml — pall,

so that u(E) = 0 and g ¢ M,(G). Thus M,(G) is closed, and part
(a) is proved. Part (b) follows from the observation that the con-
volution of two point-measures is a point-measure.

1.3.6. A uniqueness theorem. We shall see later that z de-
termines g, i.e. if u e M(G) and g = 0, then 4 = 0. At present,
we can prove this for the inverse transform:

THEOREM. If ue M(I") and if

fp(x, y)du(y) =0

for every x ¢ G, then u = 0.
Proof: For every fe LY G),

L,f uly) = [ [ @) (— o, y)dzdu(y)

= [ f@)dz [ (— =, p)du(y) = 0.
Since A4 () is dense in Cy(I") (Theorem 1.2.4), it follows that
[rédu =0 for every ¢ e Cy(I'), and hence u = 0.
1.4. Positive-Definite Functions

1.4.1. A function ¢, defined on G, is said to be posztive-definite if
the inequality

N :
(1) Z CnZ,;QS(xﬂ o xm) ; 0

n, me=1
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If ¢ is positive-definite, the following three relations hold:

(2) b(— x) = $(=);
(3) b(x)] = $(0);

(4) [(x) — $(y)1* = 2¢(0) Re [$(0) — (z — y)].

We conclude from (3) that ¢(0) = 0 and that ¢ is bounded; (4)
implies that ¢ is uniformly continuous if ¢ is continuous at 0,

To prove these relations, take N = 2 in (1); 2, = 0, 2z, = z;
¢, =1, ¢, = ¢. This gives

(5) {1+ [c54(0) + ch(x) + ch(—2) = 0.

Taking ¢ = 1, we see that ¢(x) -+ ¢(— =) is real; ¢ = ¢ shows that
1(¢(®) — d(— x)) is real. Hence (2) holds.

If ¢ is chosen so that c¢d(x) = —|o(x)|, (5) implies (3). To prove
(4), take N=3in (1); 2, =0, z, =&, 23 =19, ¢; = 1, 4 real,
() — ()
o) — by
and ¢g = — ¢,. Then (1) simplifies to

(6) #(0)(1 + 24%) + 22|¢(x) — $(y)| — 242 Re d(z — ) = 0.

The discriminant of the quadratic polynomial (6) in 4 can therefore
not be positive, and this gives (4).

1.4.2. Examples of positive-definite functions. (a) Suppose
fel2(G) and ¢ = f=f. Then ¢ is positive-definite and continuous
on G. |

The convolution of any two functions in L2(G) is continuous
(Theorem 1.1.6(d)) and

S Calup(@n = ) = 3 Clm | @0 — % — 9) f(— 9) dy
=3 0,0 | F@n — 9)in — y)ay = [ I3 ¢, /2, — y)[2dy 20.




BASIC THEOREMS OF FOURIER ANALYSIS 19

lincar combination of characters if the coefficients are positive.
More generally, ¢f u e M(I"), if u = 0, and if

1y p@) = @ )duly) (£e6),

then ¢ is continuous and positive definite.
Indeed, (1) shows that

S ntnbltn — 20) = | 3 catmlitn — 2w ) ()

JIr n,m

= | | 2 Cn(xn: 'y)lzd[,l,('y) =0,

v n

<o that ¢ is positive-definite. Since the sets N(C, ) of Theorem

I.2.6 are open in G, our proof of the continuity of z (Theorem 1.3.3)

shows equally well that ¢ is continuous if ¢ is defined by (1).
1.4.3. The previous example (1.4.2(b)) establishes the trivial

half of the following important characterization of positive-def-

inite functions: .
BOCHNER’S THEOREM. A confrnuous function ¢ on G is postirve-

definite if and only if there is a non-negative measure u € M (I') such

{hat

(1) pe) = [ (& y)dul)  (@<G).

For G = Z, this is due to Herglotz [1]; for G = R, to Bochner
|1]; for the general case, to Weil [1]. Bochner was the first to rec-
ognize the key role which this result plays in harmonic analysis.
By 1.3.6, the above representation (1) is unique.

Proof: Suppose ¢ is continuous and positive-definite. By 1.4.1(3)
we may assume, without loss of generality, that ¢(0) = 1.

If f e C,(G) and has support K, then f(x)f (y)¢ (& — y) is uniform-
ly continuous on K X K, and K can be partitioned into disjoint
sets E£,,..., E, such that the sum

@ S @b — e)m(E)m(E) (@< Ey

i,i=1
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(3) @@ — y)da dy

by as little as we please. Since ¢ is positive-definite, (2) is always
non-negative, and hence so is (3). Since C () is dense in L1(G), it
follows that (3) s non-negative for every fe L'(G).

Define a functional Ty by

(4) Ty(f) = [ ta)p@ydz  (f<1}(G))
and put

(5) [/, 8l =T4(f*8) (1.8 <L}G)).
We recall that g(») = g(— %), so that

(6) [/, g] = f c f S @)W (@ — y)du dy.

Hence [f, g] is linear in f, [g, f] is the complex conjugate of [f, g],
and [f, f] = 0. These are just the properties of the Hilbert space
inner product which are needed for the standard proof of the
Schwarz inequality. In our case, the inequality is

(7) I/, g1* = [/, f1lg, &7

Take for g the characteristic function of a symmetric neighbor-
hood V of 0, divided by m(V). By (6),

1,61 Tolh) = | 1@ ~ $le)lay do

and

g — 1= —1—2”1, bl — y) — 1de dy.

m(V)

Since ¢ 1s uniformly continuous, these expressions can be made
arbitrarily small by taking V small enough and then (7) yields the
inequality

(8) T2 = f1=T4(f =f) (f e LXG)).



BASIC THEOREMS OF FOURIER ANALYSIS 21

4 n A f memAd Ln o Ln—1 . 1 fas __ O & A \ Clamrmn
Put frlz —_ f *J dl1ilL ",?!‘ -— Hzn I Y ] \’Nr — 4, i), ‘:l', - . .}. T HRL

ll¢lleo = 1, we have ||T 4|l = 1, and if we apply (8) with %, A%, A%, . ..
in place of f, we obtain

TR = Ty(h) S Ty} < ... < (T, < W)

As n — o0, the last expression converges to the spectral radius of
h, ie. to |}A]),. (See Appendix D 6 and Theorem 1.2.2.) Hence

9) 1T,()12 = 1kl = IfilZ or IT,HIZflle (FeLY(G)).

This means that T, may be regarded as a bounded linear func-
tional on A4 ("), with respect to the supremum norm. (We have
not yet proved that f; = f, implies f, = f,, but (9) shows that
f, = f, implies T 4(f1) = T4(f;), and this 1s sufficient.) We can
extend T to a bounded linear functional on Cy(I"), preserving its
norm, and the Riesz representation theorem then implies that
there is a u e M (I'), with ||u|| = 1, such that

(10) Tyl = [ f(—auty) = [ _t@)dz [ (@ y)duly).

Comparison of (10) and (4) shows that (1) holds for almost all
r ¢ G, hence for all #, since both sides of (1) are continuous.
Finally, taking # = 0 in (1), we have

1= (0) = [ duly) = w(I) < llull = 1;
hence u(I') = }|u||, and this implies that gy = 0.

1.5. The Inversion Theorem
1.5.1. We let B(G) be the set of all functions f on G which are

representable in the form

(1) o) = [ @ r)du@)  (@eG).

Bochner’s theorem implies, in combination with the Jordan de-
composition theorem, that B(G) is exactly theset of all finite linear
combinations of continuous positive-definite functions on G.
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(b) If the Haar measure of G is fixed, the Haar measure of I"
can be so normalized that the inversion formula

(2) f@)=[ fo)wrdy (<G

s valid for every fe L'(G) n B(G).

Proof: Let us write B! in place of L'(G) n B(G), and if u is
assoclated with f asin (1) above, let us write 4 = y,. (This notation
has nothing to do with our earlier use of the symbol u, in Section
1.3.4.) If fe B* and A ¢ L'(G), we then have

(3) (b £)(0) = [ 1= 2)f(@)dz = [_h@p)du, ),
and if g is also in B1, (3) implies that

[ hgdu, = ((hxg) % 1)(0) = (b= ) ) (0) = [ Afdu,
Since A(I') is dense in Cy(I"), it follows that
(4) gdu, = fdu,.  (f, g BY).

We shall now define a positive linear functional T on C ().
Suppose K is the support of some ¢ € C,(I'). To every y, € K there
corresponds a function # € C (G) with #(y,) # 0, since C,(G) is
dense in LY(G). The Fourier transform of u 4 is positive at y,,
and is nowhere negative. Since K is compact, there is a finite num-
ber of such functions, say #%,, ..., %, such that the function
g=u %4 + ...+ u, %%, has § >0 on K. Since geC(G),
1.4.2(a) shows that ge B!. Put

(5)  Te= wlé)du,

Note that Ty is well defined: i1f g were replaced by another
function f in B! whose Fourier transform has no zero on K, the
value of Ty would not be changed, since (4) implies that

Y . ('Y
6 ftfd/’ba =J?7§d,u .
(6) fé Fa 8
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inite, hence y, = 0, and it follows that Ty = 0 if w = 0. There
exists y and u, such that [ pdu, 5% 0, and if g is as in (5), we have

(7) Twf) = [ @wlig)du, = [ ydu, # 0.

Thus T £ 0.
Fix p e C,(I') and y4 e I. Construct g as above, so that § > 0on

K and also on K - y,. Setting f(x) = (— @, y,)g(®), we have

) =8 -+ vo) and p(E) = p,(E — 7¢). I po(y) = 0(y — p0),
then

Ty = f [w(y — vo)lE(y)]1du,(y f [ () ()1 (y) = Ty.
Thus T is translation-invariant, and it follows that
(8) Ty = v()dy  (yeCoD),

where dy denotes a Haar measure on I
If now fe Bt and 9 e C (I'), (7) and (8) show that

(9) [ vdu, = Twf) = | vfty,
and since (9) holds for every g e C,(I"), we conclude that
(10) fiy=du,  (feBY.

Since y, is a finite measure, it follows that felt (I'), and substi-
tution of (10) into (1) gives the inversion formula (2).
This completes the proof.

1.5.2. Consequences of the inversion theorem. Iet V be a
neighborhood of 0 in G, choose a compact neighborhood W of 0
such that W — W CV, let f be the characteristic function of W,
divided by m (W), and put g = f #f. Then g is continuous, posi-
tive-definite (by 1.4.2(a)), and 0 outside W — W. The inversion
theorem therefore applies to g. Hence § = |f|2 = 0,

n [ &0y = g(0) =1,
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If xe N(C, 1/3) (in the notation of Theorem 1.2.6), we write

(3) g@) = ([,+[,) &6 @, »)dy;

for yeC, |l — (=, y)| < 1/3, hence Re (z, v) > 2/3, and the in-
tegral over C is at least 2/3 o £ > 4/9. Since |[¢] < 1/3, we see
that g(z) > 1/9 if 2 e N(C, 1/3), and our conclusion is: N{C, 1/3)
CV.

Since the sets N(C, #) are open in G (Theorem 1.2.6(b)), we now
have the following analogue of 1.2.6(c):

The family of all sets N(C, ») cmd thewr translates is a base for the
topology of G.

If 2, € G, 2y # 0, we can choose V in the precedmg paragraph so
that 2, ¢V, and we conclude that (x,, y) % 1 for some ye[I.
Hence I’ separates pownts on G: If z, # x,, then (x;, — x,, v) # 1
for some y, and so (x;, y) # (%, ).

Any function of the form

flz) = % a;(x, ;) (@ € G)

j=1

is called a trigonometric polynomial on G. The set of all trigono-
metric polynomials on G 1s an algebra over the complex field, with
respect to pointwise multiplication, and is closed under complex
conjugation. Since I" separates points on G, the Stone-Weierstrass
theorem yields the following result:

If G is compact, the trigonometric polynomials on G form a dense
subalgebra of C(G).

It follows that the trigonometric polynomials are also dense in
L?(G),1 £ p < oo, if G is compact (see Appendix ES8).

1.5.3. Normalization of Haar measure. If the Haar measure
of G is given, the inversion theorem singles out a specific Haar
measure of I') adjusted so that the inversion formula holds. In
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measures of compact and discrete groups. Since I' is compact
[discrete] if G is discrete [compact] (Theorem 1.2.5) the question
arises whether these normalizations are ‘“‘correct,”” i.e., whether
the inversion formula holds for them.

To prove that this is so, it suffices to consider just one function
(not identically 0) and its Fourier transform. |

If G is compact and m(G) = 1, take f(x) = 1. Then (see 1.2.5)
f(()) = 1and f(y) = 0if y £ 0. If my is the Haar measure of I',
adjusted in accordance with the inversion theorem, then

(1) L= £(0) = [, fr)dy = my ({0}),

and so m assigns measure 1 to each point of I
If G is discrete and each point has measure 1, take 7(0) = 1,
f(x) =0 if # 0. Then f(y) =1, and

(2) m(I) = | fo)dy = 1(0) =

if the inversion theorem holds.

To consider a non-trivial case, take G = R (see 1.2.7) so that
I' = R, and let adx, fdf be Haar measures on G and I'; here dx
and d¢ denote ordinary Lebesgue measure on the real line. Since
e~ > 0, the easily verified formula

Lf)

2B _ > —|t| Lizt
(3) 1"]‘”2_-[—008 et fdt

shows that (1 4 x?)7! is positive-definite, and the uniqueness of
the inverse transform, combined with the inversion theorem,
shows that

@) ALY

With £ = 0, (4) becomes

= 2maf,

(5) 1——-2aﬂf g
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Two of the possible choices are frequently used: « = 1/2%, 8 = 1

or a = f = (2r)7/2
From now on, it will allways be tacitly assumed that the Haar
wmeasures of G and I' are so adjusted that the inversion theorem holds.

1.6. The Plancherel Theorem

1.6.1. THEOREM. The Fourier transform, restricted to(L*nL?)(G),
15 an isomelry (with respect to the L2-norms) onto a dense linear sub-
space of L2(I"). Hence it may be extended, tn a unique manner, to an
isometry of L%(G) omto L2(I').

Proof: If fe (I* ~ L?)(G) and g = f * f, then g e L1(G), g is con-

tinuous and positive definite, |§| = | |2, and the inversion theorem
gives

[ i@)lde = [ t@)f(- x)de = g(0) = [ 80y = [ 1F )12y,
or {|flla = IIflle-

Let @ be the set of all fe A(I') with fe (L' A L?)(G). Since
(L' ~ L?)(G) is translation invariant, @ is invariant under multi-
plication by (z, y), for any x ¢ G. Thus if v ¢ L3(I") and [, ¢pdy
= 0 for all ¢ ¢ P, then also

[ 30100 @y =0 ($ed 2cC).

Since ¢ € L1(I'), the uniqueness theorem 1.3.6 implies that ¢ = 0
almost everywhere, for every ¢ e @. But (L! n L2)(G) 1s invariant
under multiplication by (z, y), for any v € I', and so @ is translation
invariant. Hence to every y, there corresponds a ¢ ¢ @ which is
different from 0 in a neighborhood of »,. It follows that y = 0
almost everywhere, Thus 0 is the only element of L#(I") which is
orthogonal to @, and hence @ is dense in L2(I") (see Appendix C12).

1.6.2. The above extension of the Fourier transform to L2(G)
is sometimes referred to as the Plancherel transform; the symbol
f will be used in this context as well. An important part of the
theorem is the assertion that each function in L2(I") is the Plan-
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case of the Rlesz—Fischer theorem about orthogonal systems of
functions (Zygmund [1], vol. I, p. 127).

If f and g are in L%(G), the identity
4fg = |f + gI* — If — gI* + oif + gl* —olf — 2g)%,

combined with the isometric character of the Plancherel transform,
yields the Parseval formula

[ @@z = | 08wy

1.6.3. THEOREM. A(I") consists precisely of the convoluiions
F,«F,, with F, and F, in L2(I).

Proof. Suppose f, ge L?(G). Replacing g by g, the Parseval
formula assumes the form

(1) [ f@e@)de = [ fr)e(— )y,
and if we replace g(x) by (— =, y4)g(®) in (1), we obtain

[ f@)g@)(— =z, vo)de = [ f(2)8(re — 1)y = (f % &) (vo).

On the one hand, every A e L1(G) is a product % = fg, with
f, g € L*(G), and (2) shows that # = f « g, with f, & ¢ L2(I'), by the
Plancherel theorem. On the other hand, we can start with
f, 8 e L¥(I"), and see from (2) that f=g e A(D).

G\
I-l

1.6.4. THEOREM. If E is a non-empty open set in I', there exists
FeA), f £ 0, such that f(y) = 0 outside E.

Proof: Let K be a compact subset of E, withm(K) > 0, let V be
a compact neighborhood of 0 such that K 4+ V C E, and set
f=g=h, where ¢ and % are the characteristic functions of K
and V, respectively. Then f(y) = 0 outside K + V, feA(@) by
Theorem 1.6.3, and [, f(y)dy = m(K)m(V) > 0, so that f is not
identically 0. -

1.7. The Pontryagin Duality Theorem
1.7.1. If G is a LCA group, we have seen (Theorem 1.2.6) that
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its dual I'is also a L.CA group. Hence I’ has a dual group, say f"‘,
and everything we have proved so far for the ordered pair (G, I')
holds equally well for the pair (I, I'). The value of a character

¢ € I' at the point y ¢ I’ will be written (y, 4#). (This notation is
temporary, and will be abandoned as soon as we prove that
I'=¢G.)

By Theorem 1.2.6(a) every @ € G may be regarded as a continu-

ous character on I, and thus there is a natural map « of & into f“
defined by '

(1) (@ y) = (v.2l®)) (xeG, yel)
1.7.2. THEOREM. The above map « ts an isomorphism and a

homeomorphism of G onto I

Thus I'may be identified with G, and a more informal statement
of the result would be:

Every LCA group is the dual group of s dual group.

This is the Pontryagin duality theorem.

Proof: For x,ye G and y eI, we have

(roalz+9) = +y.9) = (=207
= (7, 2@)) (v, «(¥)) = (v, a@) + «(y))
Hence a(x + y) = «(x) 4+ «(y), and « is a homomorphism. Since
I’ separates points on & (Section 1.5.2), « is one-to-one, and so «,

is an ismorphism of G into I
The rest of the proof may be broken into three steps:
(@) « is a homeomorphism of G into I
(b) «(G) is closed in I
(c) «(G) is dense in I' |
Choose a compact set C in I', choose ¥ > 0, and put
V={&eG: |l — (x,y) <r for all yeC},
(1) W={g’)eﬁ|l—(y,j})|<rfor all y e C}.

By 1.5.2 and 1.2.6(c), these sets IV form a neighborhood base at 0
in G, and the sets W form a neighborhood base at 0 in I". The
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(2) (V) =W n a(G).

It follows that both « and its inverse are continuous at 0, and since
o is an isomorphism, the same result holds, by translaticn, at any
other point of G or of «(G).

This proves step (a), and so «(G) is locallx\ compact, in the

relative topology which «(G) has as a subset ot I. Suppose ¥, is in
the closure of (G ), and let U be a neighborhood of ¥, whose closure
U is compact. Since a(G) is locally compact, a(G) n U is compact,
and hence closed in I'. But ¢ 1s in the closure of a(G) n U, and it
follows that ¢4 € «(G). Thus a(G) i$ closed, and step (b) is proved.

If «(G) is not dense in ﬁ there is a function FF ¢ 4 (ﬁ) which is 0

at every point of «(G) but is not identically 0 (see Theorem 1.6.4).
For some ¢ ¢ L1(I"), we have |

3) F@)=[ ¢0)(—» Pdy  @el)

Sinee F(a(x)) = 0 for all z € G, it follows that

@ [ $0)(— = ndy =] s0)(—». 2@))dy =0  (@eG)

and so ¢ = 0, by the uniqueness theorem 1.3.6. Hence F = 0, by
(3), and this contradiction proves step (c) and completes the proof.

1.7.3. Some consequences of the duality theorem. The
symmetry between G and I which is now established shows that
every theorem proved for the ordered pair (G, I') also holds for
(I, G), and this enables us to complete some of the results which
were previously established in provisional form only.

(a) Every compact abelian group is the dual of a discrete abelian
group, and every discrete abelian group is the dual of a compact abelian
group. This follows from Theorem 1.2.5.

(b) If e M(G) and p(y) = O for all y e I', then y — 0. This is
the dual of Theorem 1.3.6. |

(c) M(G) and LY (G) are semi-simple Banach algebras. (See Ap-
pendix D5). Since the map x — z (y) is a complex homomorphism

i(.-.—— T . ! L i .
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the uniqueness theorem (b). The same uniqueness theorem evi-
dently holds for L1(G), and so L1(G) is semi-simple.

(d) If G is not discrete, then LY (G) has no uwnit. Hence L1(G) =
M (G) if and only if G 1s discrete.

For if G is not discrete, then I"is not compact, by (a), and since
A(I") CCo(IN), A(I") contains no non-zero constants, hence has no
unit. Since A (I') is isomorphic, as an algebra, to L1{G), the proof
is complete.

(e) If we M(G) and u e LX(I"), there exists fe L\G) such that
du(x) = f(x)dx, and

(1) o) = [ ap) e ndy  (@eG).

By hypothesis, u € L} (I') n B(I'); hence if fis defined by (1), the
inversion theorem (applied to the pair (I', G) instead of (G, I)),
shows that fe L}(G) and

2) i) = [ J@)(- 2 p)de  (yel).

Since a(y) = Je (— @, y)du(x), the uniqueness theorem now im-
plies that du = fdz, and the proof is complete.

1.8. The Bohr Compactification

1.8.1. Suppose I'is the dual of the LCA group G, I, is the group
I' with the discrete topology, and G is the dual of I';. Then G is
a compact abelian group which we call the Bokr compactification
of G (Anzai and Kakutani [1]). Let g be the map of G into @
defined by

(1) @ y) = (7.8) (weG yel).

1.8.2. THEOREM. B is a continuous isomorphism of G onto a dense
subgroup B(G) of G.

This theorem allows us to regard G as a dense subgroup of G, so
that @ is indeed a compactification of G. Note, however, that
B(G) is not a locally compact subset of @ and that 8 is not a
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Proof: Since I separates points on G, f is one-to-one, and it is
easy to verify, as in the beginning of the proof of the Pontryagin
duality theorem, that § is an isomorphism.

Let W be a neighborhood of 0 in G. Since a subset of I, is com-
pact if and only if it is finite, Theorem 1.2.6 shows that there exist
Yir - yYp€l and ¥ > 0, such that W contains the set

EFeG |l — (y,, B)<r,i=1,..., 0}
which is a neighborhood of 0 in @. Let
V={zxeG: |l — (&)l <ri=1 ... n}.

Then V is a neighborhood of 0 in G, and z €V implies B(z) e W.
Thus g is continuous at 0, and hence at all points of G, by transla-
tion.

Finally, let H be the closure in G of 8(G). If H # G, then G/H
is a non-trivial compact group, and hence there is a character ¢ on
G[H which is not identically 1. The map & — ¢(Z + H) is then
a continuous character on G, not identically 1, which is 1 if 7 ¢ H.
Consequently there exists yye I’, y4 # 0, such that (z,y,) =
(vo, B(x)) = 1for allz € G. This last equation implies that y, = 0,
and this contradiction completes the proof.

1.8.3. We may interpret the theorem in the following way: G
and I" are given, G is the group of all continuous characters on I,
G/ is the group of all characters on I, and the fact that G (or (G)) is
dense in & leads to an approximation theorem (Hewitt and
Zuckerman [1]):

THEOREM. Given y,,...,y,el’, given ¢ >0, and given any
character ¢ on I', there is a continuous character v on I' such that
(1) lp(a) —ddl <e  (@E=1,....1)

Proof: ¢ € G, and the set of all y e G satisfying (1) is open in G,
hence intersects 8(G).
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1.8.4. A function f on a LCA group G is almost periodic if and
only if it is a uniform limit of trigonometric polynomials on G.
(This is not the usual definition, but is equivalent to it). The al-
most periodic functions on G are precisely those which have con-
tinuous extensions to @; in other words, they are the restrictions
to G of the continuous functions on ¢, and so ¢ may also be ob-
tained as the maximal ideal space of the Banach algebra whose
members are the almost periodic functions on G (Loomis [1}).
These relations between almost periodicity and G are the reason for
associating Bohr’s name with @. We shall not use these relations
and omit their proof.

1.9. A Characterization of B([')

1.9.1. We recall that B(I') is the set of all functions z on I"which
are Fourier-Stieltjes transforms of measures y e M (G). We norm
B(I') by defining ||a|] = ||ul|.

We already know one characterization of B(I'): ¢ € B(I') if and
only if ¢ is a finite linear combination of continuous positive-defi-
nite functions. It seems difficult to apply this, however, whereas
the following criterion will be very useful to us. It was proved by
Bochner [2] on the real line; an integral analogue is due to Schoen-
berg [1]; for the general case, see Eberlein [1].

THEOREM. Each of the following two statements about a function ¢,
defined on I', implies the other:

(a) ¢ B() and ||4]| < 4.

(b) ¢ is continuous, and

(1) 13 el < Al
for every irigonometric polynomial f on G, of the form
(2) f(x) = glci(x’ yi)'

Proof: If (a) holds, then ¢ = g, ||u|]]<'4, and
(3) et =3¢, (— 2 r)duE) = [ {(— 2)du).
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To prove the converse, we pass to the Bohr compactification
G of G. In the notation of Section 1.8, the formula

(4) #@) =z Gl &) (el

extends each trigonometric polynomial f on G to a trigonometric
polynomial on &, and since G is dense in G, the norm |[f|], is not
altered by this extension. The linear functional T defined on the
space of all trigonometric polynomials f of the form (4) by

(5) Tt = 2 cud (V)
thus satisfies the inequality
(6) T/ = Allfiloo

thus T can be extended to a bounded linear functional on C(G), of
norm not exceeding 4, and the Riesz representation theorem im-
plies that there is a measure u ¢ M (@) such that |[u|| < A and

(7) S o) = ¢ H(— E)dp(@)

for all f of the form (4). Taking f(Z) = (y, &), for some y e I', we-
obtain

(8) $0) = o (—v.B)du@ (el

To complete the proof, we have to show that u is concentrated on
G (more precisely, on g(G), in the notation of 1.8).

It follows from the Radon-Nikodym theorem (Appendix E9)
that there is a Borel function g on @, of absolute value 1, such that
gdu = dlu|, and since C(G) is dense in L1(ju|) (Appendix ES8),
there is a sequence of trigonometric polynomials f, on G such that

(9) lim |, |f, — gldlul =

n—=00

By (8), the transforms
(10) $.00) =[5 (=7, Dfal®)duE) (v eT)
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continuous on I' (not merely on I',!). By (9), {¢,}
formly to |

(1) O() = [¢ (v, Bdul(E)  (yeD),

and @ is continuous on I'. The representation (11) shows that @
is positive-definite, and so, by Bochner’s theorem, @ is the Fourier-
Stieltjes transform of a measure ¢ on the dual group G of I The
uniqueness theorem for Fourier-Stieltjes transforms now implies
that o = [y}, hence |y 1s concentrated on G, and so is u.

1.9.2. THEOREM. If ¢, e B(I") and ||$,|| = Aforn =1,2,3, ...,
if e C(I') and if

(1) ' ¢(y) =lim¢,(y) (yel),

n—-o0

unt-

w
(o)
o
=
<
]
—
o
¢
w

then ¢ ¢ B(I') and |id]| =< A.
This is a corollary ot Theorem 1.9.1.



CHAPTER 2

The Structure of Locaﬂy C’ompact Abelian Groups

This chapter contains those structure theorems which will be
useful later. The proofs make strong use of the duality theorem,
For results which go beyond what is presented here, the books by
Montgomery and Zippin [1], Pontryagin [1], and Weil [1] may be
consulted. Some material on local identities is also included.
Theorems 2.6.1 to 2.6.6 use a device introduced by Helson [1]
and Reiter [1].

2.1. The Duality between Subgroups and Quotient Groups

2.1.1. Suppose H is a closed subgroup of the LCA group G, and
A is the set of all y € I' (the dual group of G) such that (x, y) =1
for all e H. We call A the annihilator of H,

For any fixed x € H, the continuity of (z, y) shows that the set
of all y with (z, ) = 1 is closed, so that 4 is an intersection of
closed sets. Since A is evidently a-group, we conclude that A is a
closed subgroup of I

2.1.2. THEOREM. With the above notation A and I'lA are (iso-
morphically homeomorphic to) the dual groups of G/H and H,
respectively.

Proof: Let h be the natural homomorphism of G onto G/H
(Appendix B2). The equation

(1) (@ y) = (hix), ¢)  (xeG)

defines a one-to-one correspondence between the elements y e A
and the continuous characters ¢ on G/H, and if p, corresponds to
¢; (¢ =1, 2), then y, 4+ y, corresponds to ¢, + ¢,, since
(@, Y1+ 72) = (@, 71) (@, 2) = (h(z), $1) (B(2), $3) = (h(x), 1+ a).
Hence (1) defines an isomorphism 7 between 4 and the dual
35
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N(Cy,7) = {¢: 11 — (h(x), $)| <7 for all A(x) e Cy}
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and
N(C,,7) = {y: |11 — (x,y)] < for all zeC,} n A,

then it is clear that T maps N(C,, ) onto N(C,, 7), and Theorem
1.2.6 shows that 7 is a homeomorphism.

The second part of the theorem (that I'/A is the dual group of H)
follows from the first part by the Pontryagin duality theorem, as
soon as the following lemma is proved:

2.1.3. LEmmMA. If A is the annihilator of H, then H 1s the anni-
hilator of A.

Proof: If xy € H, the definition of A shows that (z,, v) = 1 for
all y e A. If zy ¢ H, the argument used at the end of the proof of
Theorem 1.8.2 shows that there exists y € 4 such that (z,, y) 5= 1.

2.1.4. THEOREM. I} H s a closed subgroup of G, every continuous
character on H can be extended to a continuous character on G.

Proof: If ¢ is a continuous character on H, then ¢ ¢ I'/4, in the
notation used above, and if 4 is the natural homomorphism of I
onto I'/A and A(y) = ¢, then (z,v) = (x, ¢) for all x ¢ /. Hence
y is an extension of ¢.

2.2. Direct Sums

2.2.1. The notions of direct sum and complete divect sum of LCA
groups are defined in Appendix B7. The direct sum of G; and G,
will be written G, @ G,, and the direct sum of # copies of G will
be denoted by G*. In particular, 7" is the z-dimensional torus,
R" is n-dimensional euclidean space, and Z* is the group of all
lattice points in R*®, i.e., the group of all points in R” with integral
coordinates. (Compare Section 1.2.7).

2.2.2, THEOREM. [f G =G, ® G, ® ... ® G, and if I'; is the
dual group of G; A =i<n), then '=1,0 ... ®I,.
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Proof: It is clearly enough to consider the case #n = 2. If

x = x; + x, 1s the unique representation of x e G as a sum of ele-

ments of G, and G,, if y, € I'y, y, € I',, the pair 9, v, determines a
character y e I" by the formula

(1) (@, ¥) = (&1, v1) (%2, ¥2).

Since every v € I' is determined by its action on the subgroups G,
and G,, (1) shows that I'is algebraically the direct sum of I'; and
I',, Since I'; and I, are the annihilators of G, and G,, they are
" closed subgroups of I', and since I"is thus algebraically the direct
sum of two of its closed subgroups, the topology of I' is identical
with the product topology of Iy x I,.

- COROLLARY. R" is 1ts own dual; T™ and Z™ are the duals of each
other.

2.2.3. THEOREM. If G is the complete divect sum of a family {G,}
of compact abelian groups, then I’ is the divect sum of the correspond-
ing dual groups .

Proof: Each x ¢ G may be thought of as a string

(1) T=(.,Zyy...),
the group operating being componentwise addition. If
(2) = {00 Vase--)s

with only finitely many y, # 0, then y is a continuous character
on G, defined by

(3) (#, v) = I;[ (Zas Va)s

since each factor in this product is a continuous character on G and
only finitely many factors are different from 1.

Conversely, for each index «, I', is the dual of the subgroup G, of
G which consists of all elements of the form (..., 0,0, z,, 0,0, . . .).
It follows that every y € I'is of the form (2), and that (z, y) is given
by (3). It remains to be proved that only finitely many p, can be
different from 0 for any .

Suppose infinitely many y, are different from 0 in (2), and let
V be a neighborhood of 0in G. The definition of the product topo-
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z,. Hence there exists « such that y, 40 and V O G,. Then

V,7) 2 (G ?) = (Go 7a)s

which is a non-trivial subgroup of the circle 7. It follows that
(V, y) is not contained in {z: |1 — 2| < 1}, and since V was chosen
arbitrarily, the continuity of y is contradicted.

=+
K

2.2.4. Let ¢ be an integer, ¢ = 2, and let I" be the direct sum of
countably many copies of the cyclic group Z, of order ¢. Its dual
(- is compact, is the complete sum of countably many copies of
Z,, by Theorem 2.2.3 (since Z, is its own dual), and is homeo-
morphic to the Cantor set. We shall denote this group G by D,.

2.2.5. Another interesting example is the infinite-dimensional
torus 77, the complete direct sum of countably many copies of 7.
Its dual is the direct sum Z® of countably many copies of Z.
Functions on 7% may be regarded as periodic functions in
countably many variables. If fe LY(7T?), then

f(np Ry, . . ) — fwa(ml: Ly, - - ) exp {Hzinkxk} dx’

where only finitely many of the integers #, are different from O,
and the z, are real numbers modulo 2z. The inversion formula has
the form

fl@g, 2y, ...) = Zf(nl, My, .. .) eXP3i Y ).

T is metrizable, and is, in fact, a universal compact metric
abelian group (we use mefric synonymously with metrizable):

2.2.6. THEOREM. In the class of all compact abelian groups G, the
following three properties are equivalent:

(a) G is metric.

(b) I" is countable.

(c) G is a closed subgroup of T°.

Proof: 1f G is metric, then C(G) is separable. (Appendix Al6).

It y; #yp (yseI'), then

= 7all% = [ @ 72) — (@ po)[2de = 2,
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and so the presence of uncounta 4
separability of C(G). Hence (a) 1mphes (b)
Every countable I'is a quotient group of 2%, and so the implica-
tion (b) — (c) is a consequence of Theorem 2.1.2.
Finally, the dual group of 7“ is countable, the trigonometric
polynomials on 7% are dense in C (7}, and hence C(7I“) is separ-
able and 7% is metric (Appendix A16). Thus (c) implies (a).

2.3. Monothetic UGroups

2.3.1. A topological group G is called monothetic if it has a dense
subgroup which is a homomorphic image of Z. In other words, G
is to contain a dense set of points x, (# € Z) such that z,, 4 z,, =
X (n,me Z).

n+m

2.3.2. THEOREM. Suppose G is a monothetic LCA group. If G is
not compact, then G = Z.

Proof: If G is discrete, then either G = Z or G is a finite cyclic
group, hence is compact. Thus we have to prove that G is compact
if G is not discrete.

Let V be an open symmetric neighborhood of 0 in G, with com-
pact closure V. If y € G, then y e x,, -+ V for some &, where {z,} is
the dense subset of G described in 2.3.1, and there is a symmetric
neighborhood W of 0 in G such that y — x, -+ W C V. Since Gis _
not discrete, W contains infinitely many of the points x,,, and since
W is symmetric, z_, e W if z, e W. Hence there exists 7 < & so
that x, e W. Putting + = £ — 7, we have ¢ > 0, and

y—z,=y—x,+x,ey —x, -+ WCV.
This proves that

o]

1) G=U (& +V);

£=1

the point is that it suffices to take positive subscripts in (1).
Since V' is compact, (1) shows that

(2) V'CiVJ (€; + V)

i=1
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mteger such h at yex, + V. Then z, — yex,
(1=72=N),by(2),sothatyex, ;+ V. Sinces > 0,z — 7 < #,
and so #» — 7 = 0, by our choice of #. Thus » <7 = N for all
y ¢ &, and so

(3) G=U @+ V).
i=1
Being a finite union of compact sets, G is compact, and the proof
1s complete.

2.3.3. The compact monothetic groups have a simple charac-
terization in terms of their duals (Halmos and Samelson [1], Anzai
and Kakutani {1]):

THEOREM. A compact abelian group G is monothetic 1f and only
if 1ts dual I' 1s a subgroup of T,, the circle group with the discrele
topology.

Proof: If G is monothetic, the continuous characters of G are
evidently determined by their values on the dense homomorphic
image of Z in G. Hence I'is a subgroup of the dual T of Z. Since
G 1s compact, I' must be discrete,

Conversely, if I'1s a subgroup of T',, then G is a quotient group
of the dual of 7', (by Theorem 2.1.2), i.e., of the Bohr compactifica-
tion Z of Z. Since Z is obviously monothetic, so is its continuous
homomorphic image G.

2.4. The Principal Structure Theorem

2.4.1. ToeorEM. Ewvery LCA group G has an open subgroup G,
which is the divect sum of a compact group H and a euclidean space
R (n = 0).

Note that G, is also closed (Appendix B35), and that G/G; is
discrete, since the natural homomorphism of G onto G/G; maps
the open set G, onto the 0 of G/G,.

We shall begin with some lemmas which are of 1ndependent
interest.
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242, TemMma. 171G s aenevaled by a combact netohborhood V of O
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then G contains a closed subgrowp (isomorphic to) Z™, for somen = 0,

such that G[Z™ is compact, and such that V n Z" = {0}.

Proof: Without loss of generality, assume I is symmetric. Put-
tingV, =V, V,,=V,+V,wehave G =]V, (n = 1). Since
V, is compact, there are points z,,... z,eG such that V,C
U@, +V) (1 =:=4). Let H be the group generated by
&y, ..., %,. Assuming that VV, CV 4 H (whichis trivial for» = 1
and true for # = 2, by our choice of 2,, ..., z,), we have

V. .CV4+V+H=V,+HCV+H+H=V 4 H;

by induction, V,CV + H for all » =1, and so G =1V + H.

Let H, be the closure in G of the group H; generated by z;
(1 <i <¢). If each H, is compact, then H is compact, hence
G =V + H is compact, and the lemma is true with = 0. If G
is not compact, it follows that one of the monothetic LCA groups
H, is isomorphic to Z (Theorem 2.3.2). In this case H; = H,,
and we conclude:

It G =V + H, where H 1s a finitely generated group, and if G 1s
not compact, then H contains a closed infinite cyclic subgroup of G.

Since H is finitely generated, there is a largest integer » such that
H contains a closed subgroup of G, say H’, which is isomorphic to
Z*. Since H' n V is a finite set, we may also assume (replacing H'
by one of its subgroups of finite index, if necessary) that H' nV =
{0}. Let ¢ be the natural homomorphism of G onto G' = G/H'.
Then G' = ¢(V') + ¢(H), our choice of » shows that ¢(H) con-
tains no closed infinite cyclic subgroup of G', and the preceding
italicized statement, applied to G’ instead of G, implies that G’ 1s
compact.

2.4.3. LEmMA. Suppose E is a compact open set in G.

(a) There ts a symmetric neighborhood W of 0 in G such that
E 4 W=E.

(b) If 0e¢ E, then E contains a compact open subgroup of G.

(c} E s a finite union of cosets of open subgroups of G.

Proof: Since E is open, to every z ¢ E is associated a symmetric
neighborhood ¥V, of 0 such that x +V, 4+ V,CE. Since E is
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z+wea, +V, + WCa, +V, +V, CE.

This proves (a).

To prove (b), choose W asin (a) and let H be the group generat-
ed by W. Then H C E, H is open, hence H is closed, and since E is
compact, H is compact. Finally, (b) shows that E is a union of
cosets of open subgroups of &, and since E is compact, (c) is proved.

2.4.4. COROLLARY. [If G 1s lotally disconnected, then every neigh-
borhood of O contains a compact open subgroup of G.

This follows from 2.4.3(b), since the compact open sets form a
base for the topology of G (Appendix A4).

2.4.5. LEMMA. Suppose G s connected, locally isomorphic to R,
for some k = 0, and G contains no infinite compact subgroup. Then
G s R

Proof: To say that G is locally isomorphic to R* means that there
is a spherical neighborhood @ of 0 in R*, a neighborhood V of 0
in G, and a homeomorphism ¢ of Q onto V' such that ¢(x 4 y) =
¢(x) + ¢(y) whenever x,y, and x + y are in Q.

For each z € R*, x/n € Q for all sufficiently large positive integers
n. Define ¢(x) = nd(x/n). Since

n(xin) = nme(wjum) = mep(xjm)

provided z/n and x/m are in Q, ¢ is well defined; ¢ is clearly a con-
tinuous homomorphism of K* into G; and ¢ is one-to-one, for
otherwise & would contain a compact subgroup isomorphic to 7.
Finally, ¢ is an open map, hence ¢(R¥) is an open subgroup of G.
Since G 1s connected, G = ¢(R*), and the proof is complete.

2.4.6. Proof of theorem 2.4.1. Let G, be the component of 0
in G, i.e., G, is the largest connected subset of G which contains 0.
Then G, is closed, and if z € G,,, then x — G, is connected and inter-
sects Gy, so that x — G4 C G,. Thus G, is a closed subgroup of G;
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the quotient group G/G, is LCA and total
has a compact open subgroup K, by 2.4.4. Let qS be the natural
homomorphism of G onto G/G, and put G, = ¢71(K). Since K
i1s open, G, is an open subgroup of G.

Since K is compact, K has no open subgroup of infinite index
(otherwise K would be the union of infinitely many disjoint open
sets), and since every open subgroup of G, contains G,, it follows
that &, has no open subgroup of infinite index.

There is a compact neighborhood V in G; such that (V) = K
(compare Appendix A7). The group H generated by V is an
open subgroup of G; which intersects every coset of G, in G,
Since these cosets are connected, H = G;. Thus Lemma 2.4.2
implies that G, contains a closed subgroup Z*, for some #» = 0,
such that G,/Z" is compact.

If I'; is the dual of G, Theorems 2.1.2 and 2.2.2 now show that
I'y/D = T, where D is the discrete dual of G,/Z”. Thus [ is
locally isomorphic to R™ and hence I, the component of 0 in I,
is open in I}. Since G, has no open subgroup of infinite index,
Theorem 2.1.2 implies that I', has no infinite compact subgroup.
Thus Lemma 2.4.5 applies to I’y and shows that [y = R™.

So far, then, we see that I’} has R" as an open subgroup. If we
can show that I is the direct sum of R” and a discrete group 4,
then G, is the direct sum of R” and the compact dual of 4 (by
Theorem 2.2.2), and the proof is complete.

Let A be a subgroup of I'}, maximal with respect to the property:
A n R* = {0}. Since A has at most one point in each coset of R*,
A is discrete. Also, the sum R™ + A is direct. Suppose, to reach a
contradiction, that R®™ + A 5% I'y. Then there exists ye [,
y ¢ R* + A, and the maximality of A shows that there exists
vo € A such that y, + ky = z, for some integer 2 7% 0 and some
xeR"x #0. Ify =xal/kandy; =y —y,thenky, ed,y, ¢ R"+ A,
and hence there exists y, € A such that y, -+ my, = 2z for some in-
teger m # 0 and some z € R", 2 #% 0. This last relation may be
rewritten in the form

kys -+ kmy, = kz £ 0.
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Since ky, and y, are in A, ky, + kmy, e A; but kze R®

contradicts the fact that R® + A4 was a direct sum.
Thus Iy = R* ® A, and the proof is complete.

T"T]’\:f“l‘\
y WILICI

2.4.7. EXAMPLE. As will be apparent from the proof of Theorem
2.4.1, several choices may be possible for G, , and the question arises
whether G, can always be chosen so that G is the direct sum of G,
and a discrete group. The following example (communicated to
the author orally by Kaplansky) shows that the answer is nega-
tive.

Let G be the set of all sequences x = {{,}, »n =1,2,3, ...,
where &, = 0, 1, 2, 3, only finitely many &, are 1 or 3 for any u,
and the group operation is componentwise addition modulo 4. Let
K De the set of all ¢ G with 22 = 0 (i.e., &, = 0 or 2}; K is the
complete direct sum of countably many groups of order 2. Give
K the corresponding product topology, and declare K to be an
open subgroup of G. Then G is a LCA group, and since G is totally
disconnected, G, must be compact. If &, were a direct summand of
G, then G would contain an infinite closed discrete subgroup, but
this is impossible since every infinite subgroup of G has infinitely
many elements in K: if x € G, then 2z ¢ K.

2.5. The Duality between Compact and Discrete Groups

Since the compact abelian groups are precisely those whose
duals are discrete (Section 1.7.3), purely algebraic properties of
abelian groups give information about topological properties of
compact ones. We begin with some algebraic preliminaries.

2.5.1. An abelian group D is called divisible if to every x ¢ D
and to every integer # # 0 there corresponds at least one y e D
such that ny = =«.

TueoreM (Kaplansky [2]). (a) Every abelian group G can be
embedded in a divisible group D; if G vs couniable, D may be chosen
countable.

(b) If ¢ is a homomorphism of a subgroup H of G into a divisible
group D, then ¢ can be extended to a homomorphism of G into D.
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Proof: Every G can be defined by specifying generators and
relations. Thus G = F/H, where F is the direct sum of a certain
number of copies of Z, and H is a subgroup of ¥ which corresponds
to the relations. I' can be embedded in a direct sum E of copies
of the additive group of the rational numbers. Since E is divisible,
so is E/H, and it is clear that G is a subgroup of E/H. If G is
countable, then I (hence E) may be chosen countable and (a)
follows.

To prove (b), choose z,e &G so that z,¢ H, and let H’ be the
group generated by H and z,. If nx, ¢ H forn =1,2,3, ..., let
¢ (x,) be an arbitrary element of D. In the contrary case, let & be
the smallest positive integer such that kz, € H, and choose ¢(z) € D
so that ké(x,) = ¢(kx,); since D is divisible, this choice is possible.
In either case, extend ¢ to H' by defining

¢z + nwy) = d(x) + nd(x,) . (@eH, n=0,+1, +£2,...).

It is easily verified that ¢ is a homomorphism of H’ into D. The
proof is completed by transfinite induction (or Zorn’s lemma),
exactly as in the standard proof of the Hahn-Banach theorem.

2.5.2. THEOREM. Every infinile compact abelian group G contains
an infinite compact metric subgroup.

Proof: A compact subgroup H of G is metric if and only if its
dual is countable (Theorem 2.2.6). By Theorem 2.1.2, the result
to be proved is therefore equivalent to the following algebraic
proposition:

Every infinite abelian group I' can be mapped homomorphically
onto a countably wnfinite group.

If I'is infinite, then I' contains a countably infinite subgroup A
which may be embedded in a countable divisible group D (Theo-
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therefore be extended to a homomorphism ¢ of I' into D. Since
A =¢(A)CH(IYCTD, (I} is countable and infinite, and the
proof is complete.

(If the word ,,abelian’ is omitted from the above proposition,
a false statement results: Schreier and Ulam [1] have shown that



46 FOURIER ANALYSIS ON GROUPS

+tha ograiin P nf all narmiitatinne nf a 1intahla
LLLG SLUUP ¥ i1l 4all FCLIILMLC‘-LLULLD il 4 L L

normal subgroups, the finite permutations and the even finite
ones; hence every non-trivial homomorphic image of P has the
power of the continuum.)

2,5.3. THEOREM. If G is compact and not of bounded order, then
G contains a dense set of elements of infinite ovder.

Proof. For n = 1,‘2, 3,... let I, be the set of all x € G such
that nx = 0, and assume that one of these sets E, contains a non-
empty open set V. If W =1V —V, then nx = 0 for all x e W.
The group H generated by W is compact and open, hence G/H
is finite. If G/H has g elements, it follows that gr ¢ H and so
ngr = 0, for every x ¢ G. Hence G 1s of bounded order.

This contradiction implies that none of the compact sets E,
has an interior, and the Baire theorem implies that the comple-
ment of (J E, is dense in G.

2.5.4. THEOREM. A LCA group G is ¢f bounded order if and only
if its dual I' is of bounded ovder.
Proof: If nx = 0 for all x € G, then

(®, ny) = (x, p)" = (nx, p) = (0,y) =1
for all yelI’, so that ny = 0.

2.5.5. We call a LCA group G an I-group if every neighborhood
of 0 in G contains an element of infinite order.

THEOREM. (a) Every I-group contains a closed subgroup which
1s a metric I-group.

(b) If G 1s not discrete and is not an I-group, then G contains D,
as a closed subgroup, for some g > 1.

Proof: (a) Let G be an I-group. If » > 0 in the structure theo-
rem 2.4.1, then G contains R*, a metric /-group. If z = 0, then
the open subgroup G, of G is a compact /-group, and we may as
well assume that G is compact. By Theorem 2.5.3, it is enough to
show that G contains a eempact subgroup H which is not of bound-
ed order, and Theorems 2.1.2 and 2.5.4 show that this is equivalent
to the following algebraic proposition:
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Every abelian group I’ which is not of bounded order can be mapped
homomorphically onto a countable group which is not of bounded order.
To prove this, note that /" contains a countable group A which is
not of bounded order, and proceed as in the proof of Theorem 2.5.2.
(b) If G is not an I-group and is not discrete, Theorems 2.4.1
and 2.5.3 show that G contains an infinite compact subgroup G, of
bounded order, whose dual I, is also of bounded order, and hence
(Appendix B8) is the direct sum of infinitely many finite cyclic
groups. Some countable subset ot these has the same order, say g;
their direct sum is a direct summand of I, hence is a quotient
group of I}, hence is the dual of a compact subgroup of G, iso-
morphic to D,.

2.5.6. THEOREM. Suppose G is compact.
(a) If every element of I' has finite order, then G s totally discon-
nected.

(b) If I’ contains an element of infinite ovder, then G contains a
one-parameter subgroup.

(c) G is connected if and only if I' contains no element of finite
order (except y = 0).

A one-parameter subgroup of G is, by definition, a non-trivial
subgroup H of G whicb is the image of R under a continuous homo-
morphism ¢. For instance, for any real A, the set of all points
(e, ei**) (— o < & < ) is a one-parameter subgroup H of the
torus 72; 1t Ais rational, H is compact; if A1is irrational, H is dense
in 72, and hence is not locally compact.

Note that (b) asserts more than just the converse of (a).

Proof: Let G, be the component vt 0in &; G, is a closed subgroup
of G, and if G, consists of more than one point, then G, has a non-
constant character, which may be extended to a continuous charac-
ter y on G, by Theorem 2.1.4. Since y maps G, onto a connected
subgroup ot T, we see that ¢ maps G, onto 7.

If v bad order %, then (z, )" = (x, ny) = (x, 0) = 1 for each
r e G, so that y would map G onto a finite subgroup of T. This
contradiction shows that ¢ has infinite order, and proves (a).

If I’ contains an element of intinite order, then I’ contains Z as a
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the discrete topology) is an isomorphism which, by Theorem 2.5.1,

can be extended to a homomorphism of I'into R;. Theorem 2.1.2
now shows that & contains a compact subgroup H whose dual is a
non-trivial subgroup of R,, and that H is therefore the continuous
image of the Bohr compactification R of R, under a homomorphism
é. Since R is a dense one-parameter subgroup of R, ¢(R) is a
dense one-parameter subgroup of H, and (b) is proved.

To prove (c), assume first that G is not connected. By Lemma
2.4.3, G then contains a proper open subgroup H. The quotient
G/H is finite and its dual is a subgroup of ', by Theorem 2.1.2.
Hence I’ contains a non-trivial finite subgroup.

Conversely, if y € I' has finite order and y # 0, then y maps G
onto a non-trivial finite subgroup of 7', and since y is continuous,

G cannot be connected.

2.5.7. ExamprLes. To illustrate the preceding theorem, let G
be the Bohr compactification of the discrete group G. The know-
ledge that G is discrete tells us nothing about the topology of G;
the algebraic structure of G is decisive:

(i) If G is the discrete additive group of the rational numbers,
then G has no subgroup of finite index, hence I" has no element of
finite order, hence G is connected and contains one-parameter sub-
groups.

(ii) If G = Z, then I'= T'; T has elements of finite and infinite
orders; hence Z is neither connected nor totally disconnected and
contains one-parametér subgroups.

(iii) If G is a discrete group of bounded order, then I" is of
bounded order, hence & is totally disconnected.

2.6. Local Units in A(I')

In this section we gather some technical results which should be
regarded as tools for our later work.

2.6.1. THEOREM. Suppose C 1s a compact subset of I, V C I, and
0 < m(V) < oo, where m isthe Haar measure of I'. Then there exists
k€ LY(G) such that
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(b) NiEll; = {m(C — V)/m(V)}.

Proof: Let g and % be the functions in L2(G) whose Plancherel
transforms are the characteristic functions of ¥ and C — V, re-
spectively, and define

_ glx)h(z)
(1) Be) =5, (x € G).

Then (see Section 1.6.3) k= m(V) (g =4), or

@) ko) = 5 [, W0 =714 el

If yeC, then A(y — 9’) =1 for all 9’ ¢V, hence k(y) = 1. If
yéC -V —V, thenh(y —9') = O0forally’ eV.Since 0 < h <1,
(a) follows.

By the Plancherel theorem, ||gl|, = m(V)}, ||A]l, = m(C — V)3,
and the Schwarz inequality, applied to (1), shows that
kIl < m(V)~lgll,/|#ll,. This implies (b).

2.6.2. THEOREM. If W is an open set in I’ which contains a com-
pact set C, then therve exists f € L1(G) such that f=1onCandf=0
outside W. '

Proof:. Choose an eighborhood V of ®in I'suchthat C+V -V C W,
and apply Theorem 2.6.1.

2.6.3. THEOREM. Suppose f e L1(G), yoe I, flvo) = 0, W is a
neighborhood of vy,, and € > 0. There exists ke LY(G), such that
(a) ll~ll < 2,
(b) £ =1 in a neighborhood of v, and k= 0 outStde w,
(c) IIf =&l <e.
Proof: Without loss of generality, we assume y, = 0. Put
£

(1) = :

4(1 + [I7H4)
I'here exists a compact set E in G.such that the integral of |f| over
the complement E’ of E is less than 6. We can find C and V, as
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in Theorem 2.6.1, subject to thes her ¢ 3 0 1s a1
interior pointof C, (1) m(C — V) < 2m(V), (u) C + V — V C W,
and (iv) |1 — (x, y})| < & whenever ze E and yeC +V — V.
_ Define % as in the proof of Theorem 2.6.1. Then (a) and (b) hold,
and since f(0) = 0, we have

@) (k) = [ f0)kE—y) - ka)ldy (@<G),

so that

(3) if# Rl = [ 1)) - 11, — Rildy = [+ |
The integral over E’ is less than

(4) 21k11,0 < 28{m(C — V)[m(V)}} < 45,
by (i1), and the integral over E does not exceed
(5) 11 - sup |k, — Eily.

Hence the inequality
(8) &y — kil <40 (y<E)

will complete the proof.
In the notation of Theorem 2.6.1,

(7) m(V)(k, — k) =g, — h) + (&, — &)hy.

For y ¢« E (iv) implies, by the Plancherel theorem, that
(8) [lew— gt =[ 11— (o, y)%dy < &m(V),
so that

(9) gy — glls < o{m(V)}* (e E).

Similarly, |k, — %|l, < 8{m(C — V)}}, and since ||g|l; = m(V)}
and |iAj], = m(C — V), we obtain

(10)  m(Nk, — kil < 26{m(V)ym(C —V)}}  (ye E).
By (i), (10) implies (6), and the proof is complete.
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2.6.4. THEOREM. Suppose fe LY (G), yoeI, fly,) =0, and
e > 0. Then there exists v e L1(G) such that © = 0 in a neighborhood
of vo, llvlly < 3, and ||t —[=v||; <e.

Proof: By Theorem 1.1.8, there exists # e L1(G) such that
l|ee]l, = 1 and ||f — f*ull; < &/2. Since (f4)(y,) = 0, Theorem
2.6.3 applies to 7 % #, and so there exists & € L!(G) such that £ = 1
in a neighborhood of y,, ||k||; < 2, and ||} = » * k||; << &/2. Put
v=u—u=%k Then ¢ =0 when £ =1, and

f —Fevlh =llf —Frully + [[fru=xk]], <e

2.6.5. THEOREM. Suppose f € L1{(G), yo € I', W is a neighborhood
of vy, and & > 0. There exists h € L1(G) such that ||h||, < e b= 0
outside W, and

fo) = 2() = fvo)

wn some neighborhood of v,.

Proof: Choose g € LY(G) such that g(y) = f(y,) in some neighbor-
hood of y,. Theorem 2.6.3 applies to f — g, and so there exists
k € L1(G) such that £ = 1 in a neighborhood of v,, £ = 0 outside
W, and ||(f —g) =kl <e Put h=(f—g)+k Then %=
(f — £)k, and so there is a neighborhood of y, in which % = =f—g-

= f f (¥o)-

2.6.6. THEOREM. Suppose fe L (G) and e > 0. There exists
v e L1(G) such that i has compact support and ||f — f=vll; <e -

Proof: Let X be the set of all g € L2(G) such that ¢ has compact
support. By the Plancherel theorem, X is dense in L2*(G). If
v = gh, with g, & € X, then © = § % %, hence 4 has compact support.
Since X is dense in L2(G), the set of all such v is dense in L1(G).

By 1.1.8, there exists u ¢ L1(G) such that ||f — f % u||; < &/2,
and we can choose v € L1(G) such that 9 has compact support and
|l — vfl, < &/(2][fll;). Then

Wf—r=vlly S If —Frully + [If* ( —v)il, <e

2.6.7. Theorems 2.6.1 to 2.6.6 did not depend on any structure
theorems, but our next result does:
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THEOREM. If Cisa uum:yww subset o f I and if if & > 0, there exisis

a Borel set V in I, with compact closure, such that

m(C —TV)< 14 eym(V).

Proof: Let W be a compact neighborhood of 0 in I" which con-
tains C — C in its interior, and let I} be the group generated by
W. Since I is open in I', we may assume, without loss of general-
ity, that IN =TI,

By Lemma 2.4.2, I" has a closed subgroup Z* which has only ¢
in common with W, such that I'/Z* is a compact group, say H. Let
¢ be the natural homomorphism of I" onto H. Our choice of W
and Z* shows that there is an open set X, in I', with compact closure
which contains C and on which ¢ is a homeomorphism. Put
Y, = ¢(Xy).

Since H is compact, finitely many translatesof Y;,say Y,, ..., Y,
will cover H, and there are open sets X, in I, with compact
closure, such that ¢ maps X; homeomorphically onto Y,. If Y;
is the part of Y, not in Y, u... 0 Y, if X; =X, n ¢ 1(Y)),
and if E=J X; (1 £7 <), then E is a Borel set in I', ¢ is
one-to-one on E, and ¢(E) = H. In other words, each z e I'has a
unique representation z = ¢ 4 %, with ¢ ¢ E and # ¢ Z*; we may
visualize I" as being ‘“‘paved’ by the translates E + » of E.

Note also that C C X; = X; C E and that £ is compact.

If w=(ng,... n)eZ" set ||n}| = max, |n;]. Since E is com-
pact and Z* is discrete, Z* n (E + E — E) is a finite set, and so
thereis aninteger s such that {[z|] < sforallne Z*n (E + E — E).

For N=1,23,..., let Voy=U (E+=n) (in|=N). If
xeVy-+E thenx =n -+ ¢ -+ e, =n" 4 ¢; since e;}e,—e e Z”
we have !ln’ — u}] < s; hence lin’|| = |in}] +s SN + s, and so
Vy +EC VN+S' '

Since m(Vy) = (2N + 1)*m(E), we have

M(C -+ VN) - M(E + VN) < m(VN+s) _ {l 4+ 28 }k
mVy) —  mVyx) ~ m(Vy) 2N +1

and the last expression tends to 1 as N — oo.
The theorem follows if we take V' = —V, with N large enough.
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set V' with compact closure for whlch the desired inequality holds.
We shall not need this stronger result.

2.6.8. THEOREM. Suppose C is a compact set wn I', and ¢ > 0.
Then there exists ke LY(G) such that k=1 on C, k has compact
support, and {|k]}; <1 4 e.

Proof: Combine Theorems 2.6.1 and 2.6.7.

2.7. Fourier Transforms on Subgroups and on Quotient
Groups

Throughout this section, H will be a closed subgroup of G, and
/A will be the annihilator of H, as in 2.1.1.

2.7.1. THEOREM. A measure p e M(G) is concentrated on H 1f
and only if u is constant on the cosets of A.
Proof: If p is concentrated on H and y,e /1, then

(1) (— 2, yo)au(z) = dulz),
since (z, y,) = 1 on H, and so
2) mly + vo) = uly)  (voed, ye).

Conversely, if (2) holds, then (1) holds by the uniqueness theo-
rem for Fourler-Stieltjes transforms, so that (z, y,) = 1 almost
everywhere with respect to |u{, for all y4 € A. This implies that the
support of u lies in H.

2.7.2. THEOREM. The functions belonging to B(A) are presicely
the restrictions to A of the functions belonging to B(I').

Proof: Let ¢ be the natural homomorphism of G onto G/H. If
@ eM(G), the map

(1) o [ @) due)

is a bounded linear functional on Cy(G/H), and hence there is a
unique measure ¢ € M (G/H), with [|o]| < ||g||, such that

(2) [fP@))du@) = [, to  (fColGIH)).
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We write ¢ = mu if (2) holds. In this case (2) also holds for all
bounded Borel functions on G/H, and in particular (2) holds for all
continuous characters on G/H, ie., for all y e 4. (Recall that A
plays a double role: it is the dual group of G/H, and it is a subgroup
of I'.) Hence u(y) = a(y) if 6 = mu and if y € A, and the proof of
the theorem will be complete as soon as we show that = maps
M (G) onto M (G/H).

If V is a compact neighborhood of 0 in G/H, then, as in the proof
of Lemma 2.4.2, the group generated by V is V' +- D, where D is a
discrete subgroup of G/H. Hence G/H is covered by a collection
{V,} of translates of V, such that every compact subset of G/H is
covered by a finite subcollection of {Va}. To each V, there corre-
sponds a compact set E, CG such that ¢(E,) =V,. Put X =
U E,. Then X is locally compact, $(X) = G/H, and ¢ 1(K) n X
is compact for every compact subset K of G/H.

Let S be the subspace of all g € Cy(X) which are constant on the
intersections of X with the cosets of H; S is isometrically isomorph-
ic to Co(G/H). If 0e M(G/H) and f(zx) = g(¢~(z)), the map
g — [ tdo is a bounded linear functional on S; extending it to
Co(X), we find that there is a measure y e M (X), with {|¢|] < ||6}],
such that (2) holds.

This completes the proof.

2.7.3. Suppose mg, my, and mqy are the Haar measures of the
indicated groups, and let £ = &(z) be the coset of H (the element
of G/H) which contains z, where z ¢ G. For any fe C (G), the
integral

(1) [, fo + y)dmy )

is not changed if z is replaced by  + %, where 2 ¢ H. Hence (1) is
a function of &, which belongs to C,(G/H). The Haar measures
can be adjusted so that

(2) [ tame = [, dmam (&) f@ + y)dmy @)

for every f e C,(G), since the right side of (2) is a positive transia-
tion invariant linear functional on C/(G).
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gral (1) by F(£). e map I defined by F = T} is a bounded

linear transformatlon of LI(G) into LY(G/H); it is easy to see that

T is actually onto, and that T is nothing but the restriction of the

map # of Theorem 2.7.2 to L}(G). Hence F(y) = f(y) if y e 4.
Summarizing, we obtain the following result: ‘

2.7.4. THEOREM. The functions belonging to A(A) are precisely
the restrictions to /A of the functions belonging to A(I'). For f ¢ L1(G),
_f vanishes on A if and only if

IH z + y)dmy(y) = 0
for almost all x € G.

2.7.5. THEOREM (Calderon [2]). I} geL'(G), > 0, and §
vanishes on A, then there exists u e M (G), concentrated on H, such
that {u]] < 2, ||g # ul] <, andﬁ = 1 on an open set containing A.

Proof: By Theorem 1.1.8, there exists # e C,(G), such that
If —glli < /3 1f f=g=u Since

(@ +5) — H&' + 5)ldmy(s)
< [ le@dme)| 1@ + s — y) — u@ + s — y)ldmy(s),

the fact that u € C,(G) shows that to each 6 > 0 there corresponds
a neighborhood V; of 0 in G such that the left side of (1) is less
than 6 if z — 2’ e V5. Put

(2) %(&) = [ 1@ -+ s)ldmy(s),

where £ is the coset of H which contains z. If 2 ¢ L1(H), ||k|; < 2,
and

B) ) = [ 1] F - $)R(E — s)dmp (s)ldmy (1),

then f, < 2«, and if 2’ — z eV, we have

g POBEI= [ [t ts)— @' +5) 1k (t—s) | dmg (5) dma (2)
< 2 [ |f(w+s) —f(z'+s)|dmg(s) < 26.
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a finite set of functions f; with f;(y,) = 0. Considering f(z 4- s),

for fixed x € G, as a function ¢{s) on H, Theorem 2.7.4. shows that
$(0) =0, since f(y) = 0 for all y ¢ A. Henceif 6 >0and z,, .. ., z,
are points of G, we can find 2 e L1(H), so that |ik[]; < 2, 2 = l1in
a neighborhood of 0 in I'/4, and

(5) Brlé) <6 (I=7=mn)

Suppose 0 < ¢ < /6. Since a e L'(G/H), there is a compact
set C in G/H such that the integral of « over the complement of C
is less than e. Choose 0 > 0 so that 36 - myy(C) + 2¢ < /3.
There are finitely many &, in C and there is a function % of the
above type, so that to each & in C there corresponds a &; for which

1Be(&) — Bul&)] < 26, as in (4), and so that f,(&,) < § for all 7.
Then B,(¢) < 86 on C, and our choice of ¢ and ¢ shows that

(6) | eBreE)dmam (€) < uf3.

But the integral (6) is just ||f = ul|;, where du = k& dmy. Finally,
llg = plly = I — gllillpll + |If = plly < 29/3 453 =17

2.7.6. THEOREM.  Suppose f 1s a function on the circle T,
0<d<mand () =0ifa — 6 <0 <+ 5. Letgbedefined
on the line by
™) if el ==,

0 if |x| > =

Then f e A(T) if and only if ge A(R). Moreover, there are positive
numbers c,, ¢, (depending on O) such that

(2) c1llg)l = Il = ealigll,

the norms being those of A(T) and A(R), respectively.

Proof: Let % be a function on R with two continuous derivatives,
such that Z(z) = lon [— & + 6,7 — 6] and k(x) = 0 if |z| = 7.
The Fourier transform of 4 is — y%k(y); it follows that

(1) glx) =

(3) h(y) < (— o0 <y < )

a
1+ 4
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for some constant 2. The inversion theorem implies that % « 4 (R).
If fedA(T) and F(x) = f(e**) for all real z, then F e B(R),

I|E|l = |Ifll, ¢ = #F, and hence geA(R) and {lg]| = [IAl] - |IAl
If ge A(R), then g = gh, and so

@ Jor=o [ swrerede=— [ e@heidn

By (3), the inversion formula holds for %; substitution into (4)
yields

(5) foy =" ewhin —y)dy  (ne 2).

By (3), there is a constant b such that % |h(n — y)| < & for
all y e R. Hence

(6) il -—Zlf 1<bj y)ldy = bllgll.






CHAPTER 3

idempotent Measures

A measure u e M (G) 1s said to be idempotent if y + u = u. The
set of all idempotents in M (G) will be denoted by J(G). The prob-
lem considered in this chapter is the determination of all members
of J(G).

Apart from 1its intrinsic interest, the solution of this problem
turns out to be the crucial link in the description of the homo-
morphisms between group algebras (Chapter 4); it yields all
bounded linear projections in L!(G) which commute with transla-
tion (Section 3.8); and it determines the class of all simple functions
on I’ (1.e., those whose range is a finite set) which belong to B(I),

3.1. Qutline of the Main Result

3.1.1. If ye J(G), then u2 = g, so that ﬁ(y) =1 or 0 for all
y e I Define

S(u)={pel:ay)=1  (ue](G))

The problem of finding all ue J(G) ts obviously equivalent to the
problem of finding all subsets of I' whose characteristic function
belongs to B(I').

3.1.2. Suppose A is an open subgroup of I"and H is its annihila-
tor. Since I'(A is discrete, H is compact, and if my is the Haar
measure of H, normalized so that my(H) = 1, then my; may be
regarded as a measure on G. The orthogonality relations 1.2.5
show that g (y) = 1 if y e A and #hgy(y) = 0 otherwise. Hence
A =S(my).

If £E=A4+4 y,, it follows that E = S(u), where du(z) =
(x, vo)dmy(xz). Thus every open coset in I' is S(u) for some
ue J(G). (We call a subset E of I" a coset in I'if E is a coset of

59
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some subgroup of I'; it i
subgroup.)

If 4 and 4 are in jJ(G), then so are the measures u % 4 and
uvi=u-+a1-—p=x4i, as well as d, — u, where §, is the point
measure of norm 1 concentrated at the point 0 in G. Since

Ssd)=Sw) aS@),  Svi)=SuuSA),

and S(6, — u) 1s the complement of S(u), the family £ of all sets
S (u) in I'is closed under the formation of finite unions, finite inter-
sections, and complements. In other words, 2 is a ring of sets, and
_the preceding remarks show that £ contains the coset-ring of I,
the latter is defined as the smallest ring of subsets of I" which con-
tains all open cosets in I

The solution of our problem is simply that £ is equal to the coset
ring:

3.1.3. THEOREM. A subset E of I'is S () for some u € J(G) if and
only if E belongs to the coset-ring of I

3.1.4. Theresult may also bestated without reference to Fourier-
Stieltjes transforms:

Call u an elementary idempotent it du(x) = (@, yo)dmy (x) Where
ve € I"and H is a compact subgroup of G. Then every measure on
G which can be obtained from the elementary idempotents by
finitely many applications of the binary operations = and v (see
Section 3.1.2) and of complementation (d, — x is the “comple-
ment”’ of u) is idempotent; moreover (and this is the non-trivial
part of the theorem) every pe J(G) is obtained in this manner.

3.1.5. If ue M(G), the support group of u is defined to be the
smallest closed subgroup of G on which u is concentrated. A
closed subgroup K of a compact group H is called a singular sub-
group of H if H(K is infinite; this is equivalent to the requirement
that mgy(K) = 0. If |u|(K) = 0 for every singular subgroup K of
the support group of w, then we call u srreducible.

The proof of Theorem 3.1.3 proceeds in three major steps:

(A) It we J(G), then the support group of u is compact.
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(B) It pe J{(G), then p = ayu; 4 . .. + a,u,, where t
integers and the u, are irreducible idempotents.

(C) If G is compact, if uwe J(G), and i} |u|(K) = 0 for every
singular subgroup K of G, then S(u) is a finite subset of I

Once this is done, Theorem 3.1.3 follows easily:

Suppose G is LCA, ue J(G), and H,, ..., H, are the support
groups of the measures g, . . ., #, which appear in (B). Their an-
nihilators A4, . . ., 4, are open subgroups of I', since (A) implies
that the groups H, are compact. By (C), S(u,) is a finite subset of
I'/A;, the dual of H,, since u, € J(H,). Regarding u, as an element
of J(G), S{y,) is thus a finite union of cosets of A4,, hence belongs
to the coset-ring of I'. It follows that the set of all ¥ ¢ I"at which
any finite linear combination > ai;ci('y) assumes a given value
belongs to the coset-ring of I', and this completes the proof, by (B).

Lo o yasy
HE W, Ure

3.1.6. A subset E of the integer group Z is a coset in Z either if E
consists of a single point or if E is an arithmetic progression, in-
finite in both directions. If S belongs to the coset-ring of Z, if
A, ..., A, are the arithmetic progressions involved in the forma-
tion of S, and if 4 is the least common multiple of the differences
d, of the progressions A4,, then it is clear that S differs from a set
with period 4 in at most finitely many places. Thus we obtain the
following special case of Theorem 3.1.3:

A sequence {c,} (— © << n < 00) of zeros and ones is the sequence
of Fourier-Stieltjes coefficients of some measure on the unit circle if
and only if {c,} differs from a periodic sequence in at most finitely
many places.

This result is due to Helson [4], [7]. The case G = T" of
Theorem 3.1.3 was proved by Rudin [13]; steps (A) and (B) of
3.1.5 are also in that paper. P. J. Cohen [2] proved the general
case of Theorem 3.1.3; in particular, the introduction of ‘““pseudo-
periods,” Lemma 3.5.5, and the combinatorial argument of
Section 3.6 are due to him.

3.2. Some Trivial Cases

3.2.1. Since p is continuous, S(x) is open and closed, for every
u € J(G). Consequently, if I'is connected, there are only two pos-
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and 0 are the only members of ] (G).

3.2.2. Every compact open subset of I' belongs to the coset ring of
I'. This follows from Lemma 2.4.3.

3.2.3. Suppose p e J(G), u # 0 and y = 0. Then 4 is positive
definite and u(0) = 1. If y and 3’ are in S(u), then — 5" € S(u),
and the inequality 1.4.1(4) shows that

2 — ) — )l = 20(0) Re [2(0) — u(— )] = 0.
Hence y — y' € S(u), and we conclude that S(u) ¢s an open sub-
group of I

3.24. If ueJ(G) and p # 0, then |[u]] = l[u # ul|| = [|pl[% so
that ||u|| = 1. Suppose ||u|| = 1. Setting do(x) = (z, y)du(z),
proper choice of y assures that ¢(0) = 1. Then

1=20(0) =0(G) < |lo]l = L;

hence o(G) = ||o||, ¢ = 0, and the preceding result implies: If
ue J(G) and ||u|| = 1, then S(u) is an open coset in I

3.3. Reduction to Compact Groups

3.3.1. For technical reasons which will become apparent in the
proof of Theorem 3.4.3, it is convenient to enlarge the class J(G)
somewhat. We let F(G) be the class of all 4 ¢ M (G) such that u is
an integer-valued function. Since g is a bounded function, z has
only finitely many distinct values if y € F(G).

3.3.2. THEOREM. If ueF (G) then the support group of u is
compact.

Proof: Let H be the support group of u. Since y may be regarded
as an element of F(H), we may assume that G = H; i.e., that g is
not concentrated on any proper closed subgroup of G. By Theorem
2.7.1 this means that g is not invariant under any non-zero trans-
lation of I If we define ,u}, by

(1) du, (&) = (z, y)dp () (y e I'),
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1t Iotiows that u, = puil'y 7+ U. oince w, — u 15 an Integer-valea
function, we have

(2) iy — |2l py — 2l =1 (y 5 0).

There is a compact set C in G, with complement C’, such that
lu|(C"y < 1/4. TIf V 1s the set of all y such that

(3) 1 — (@)l < Blul)™t  (@eC),

then V is open in I, and for y € V we have

1 1
(4) o — u,l! éfGH — (=, y)id|y] (=) =fc —l—fc’ é-é Fo<l

Comparison of (2) and (4) shows that the open set V' consists of
0 alone. Hence I'is discrete, G 1s compact, and the theorem is
proved.

We note that this contains step (A) of Section 3.1.5 as a special
case.

3.4. Decomposition into Irreducible Measures

3.4.1. A homomorphism of M (G). Let H be a singular com-
pact subgroup of the compact group G, let {H,} be the collection
of all cosets of H in G, let u, be the restriction of u to H,, for any
p € M(G), and define

(1) ngu=§m-

At most countably many terms are different from 0 in this sum, so
that myu is well defined. Also, 3 ||u.l| = |lul|. If H were not sin-
gular, n;; would be the identity operator.

THEOREM. my is a homomorphism of M (G) into M (G).

Proof:. 1t is clear that ny is a bounded linear map of M (G) info
M (G). Let Ry and Ny be the range and null-space, respectively,
of my.

If 4 and 4 are concentrated on H, and H,, then u = 4 is concen-
trated on H, 4 H,, which is again a coset of H. It follows that
Ry 1s a subalgebra of M(G). Also, wgzu = u if y e Ry.
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The null-space Ny, on t
For if myu =0, 1f 0 = p =
agu(E — &) = 0 for all z eG so that

(2) o(E) = [ p(E — 2)dA(x) =

and so o, = 0. Consequently swgzo = 0, and ¢ e Ng.

The formula y = agu + (4 — 7#yu) represents p as a sum of
two measures, one in Ry, the other in Ny. This representation is
unique, for if y = p; + py, with p, € Ry, 1y e Ny, then

gt = Tgtly + Tpgphs = fh.
Finally, if 4, 2e M (G), then

pxd— (gp) = (wgh) = (A —agl) + (n — wgp) = 2y,
and this lies in Ny, since Ny is an ideal; since Ry is an algebra,

(g u) # (mgA) € Ry. The uniqueness just established implies now
that

(3) g (p o 4) = (wgp) * (7gl),
and the proof is complete.

3.4.2. TuEOREM. If H and ny are as above, and if u e F(G), then
gy € F(G), and mgu ts concentrated on a singular compact subgroup
K of G.

Proof Define u! = u, M = " 1%y, and if P is a polynomial,

= 3 c,t", define P(u) =Y c,n", where u® = é,.

Let ay, ..., a, be the dlstmct values of y, where g is 