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Preface to the Second Edition

On the occasion of this new edition, the text was enlarged by several new
sections. Two sections on B-splines and their computation were added to the
chapter on spline functions: Due to their special properties, their flexibility,
and the availability of well-tested programs for their computation, B-splines
play an important role in many applications.

Also, the authors followed suggestions by many readers to supplement
the chapter on elimination methods with a section dealing with the solution
of large sparse systems of linear equations. Even though such systems are
usually solved by iterative methods, the realm of elimination methods has
been widely extended due to powerful techniques for handling sparse matrices.
We will explain some of these techniques in connection with the Cholesky
algorithm for solving positive definite linear systems.

The chapter on eigenvalue problems was enlarged by a section on the
Lanczos algorithm; the sections on the LR and QR algorithm were rewritten
and now contain a description of implicit shift techniques.

In order to some extent take into account the progress in the area of
ordinary differential equations, a new section on implicit differential equa-
tions and differential-algebraic systems was added, and the section on stiff
differential equations was updated by describing further methods to solve
such equations.

The last chapter on the iterative solution of linear equations was also
improved. The modern view of the conjugate gradient algorithm as an itera-
tive method was stressed by adding an analysis of its convergence rate and a
description of some preconditioning techniques. Finally, a new section on
multigrid methods was incorporated: It contains a description of their basic
ideas in the context of a simple boundary value problem for ordinary differen-
tial equations.



vi Preface to the Second Edition

Many of the changes were suggested by several colleagues and readers. In
particular, we would like to thank R. Seydel, P. Rentrop, and A. Neumaier
for detailed proposals and our translators R. Bartels, W. Gautschi, and
C. Witzgall for their valuable work and critical commentaries. The original
German version was handled by F. Jarre, and I. Brugger was responsible for

the expert typing of the many versions of the manuscript.

Finally we thank Springer-Verlag for the encouragement, patience, and
close cooperation leading to this new edition.

Wiirzburg, Miinchen J. Stoer
May 1991 R. Bulirsch



Preface to the First Edition

This book is based on a one-year introductory course on numerical analysis
given by the authors at several universities in Germany and the United States.
The authors concentrate on methods which can be worked out on a digital

computer. For important topics, algorithmic descriptions (given more or less
formally in ALGOL 60), as well as thorough but concise treatments of their
theoretical foundations, are provided. Where several methods for solving a
problem are presented, comparisons of their applicability and limitations are
offered. Each comparison is based on operation counts, theoretical properties
such as convergence rates, and, more importantly, the intrinsic numerical
properties that account for the reliability or unreliability of an algorithm.
Within this context, the introductory chapter on error analysis plays a special
role because it precisely describes basic concepts, such as the numerical
stability of algorithms, that are indispensable in the thorough treatment of
numerical questions.

The remaining seven chapters are devoted to describing numerical meth-
ods in various contexts. In addition to covering standard topics, these chap-
ters encompass some special subjects not usually found in introductions to
numerical analysis. Chapter 2, which discusses interpolation, gives an ac-
count of modern fast Fourier transform methods. In Chapter 3, extrapolation
techniques for speeding up the convergence of discretization methods in
connection with Romberg integration are explained at length.

The following chapter on solving linear equations contains a description
of a numerically stable realization of the simplex method for solving linear
programming problems. Further minimization algorithms for solving uncon-
strained minimization problems are treated in Chapter 5, which is devoted to
solving nonlinear equations.

After a long chapter on eigenvalue problems for matrices, Chapter 7 is

vii



viii Preface to the First Edition

devoted to methods for solving ordinary differential equations. This chapter
contains a broad discussion of modern multiple shooting techniques for

solving two-point boundary-value problems. In contrast, methods for partial
differential eguations are not treated svstematicallv. The aim is onlv to noint

ARt AR R RaRIRNRL0 QN 23R AN ARURS Sy ORI ANVA2LS 2 23% Q222 28 VAL ) i

out analogles to certain methods for solving ordinary differential equatlons,
c.g., umerence i‘ncmoua dIlCl Vd.I'id.[lOflal lCCﬂﬂquCb lIlC finai CHdp[Cl' lS ae-
voted to discussing special methods for solving large sparse systems of linear
equations resulting primarily from the application of difference or finite ele-
ment techniques to partial differential equations. In addition to iteration

methods, the conjugate gradient algorithm of Hestenes and Stiefel and the

Buneman algorithm (which provides an example of a modern direct method

for solving the discretized Poisson problem) are described.

Within each chapter numerous examples and exercises illustrate the
numerical and theoretical properties of the various methods. Each chapter
concludes with an extensive list of references.

The authors are indebted to many who have contributed to this introduc-
tion into numerical analysis. Above all, we gratefully acknowledge the deep
influence of the early lectures of F.L. Bauer on our presentation. Many
colleagues have helped us with their careful reading of manuscripts and many
useful suggestions. Among others we would like to thank are C. Reinsch,
M.B. Spijker, and, in particular, our indefatigable team of translators,
R. Bartels, W. Gautschi, and C. Witzgall. Our co-workers K. Butendeich,
G. Schuller, J. Zowe, and 1. Brugger helped us to prepare the original German
edition. Last but not least we express our sincerest thanks to Springer-Verlag
for their good cooperation during the past years.

Wiirzburg, Miinchen J. Stoer
August 1979 R. Bulirsch
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Error Analysis

Assessing the accuracy of the results of calculations is a paramount goal in
numerical analysis. One distinguishes several kinds of errors which may
limit this accuracy:

(1) errors in the input data,
(2) roundoff errors,
(3) approximation errors.

Input or data errors are beyond the control of the calculation. They may be
due, for instance, to the inherent imperfections of physical measurements.
Roundoff errors arise if one calculates with numbers whose representation is
restricted to a finite number of digits, as is usually the case.

As for the third kind of error, many methods will not yield the exact
solution of the given problem P, even if the calculations are carried out
without rounding, but rather the solution of another simpler problem P

which approximates P. For instance, the problem P of summing an infinite
series, €.g.,

may be replaced by the simpler problem P of summing only up to a finite
number of terms of the series. The resulting approximation error is
commonly called a truncation error (however, this term is also used for the
roundoff related error committed by deleting any last digit of a number
representation). Many approximating problems P are obtained by
“discretizing” the original problem P: definite integrals are approximated
by finite sums, differential quotients by a difference quotients, etc. In such
cases, the approximation error is often referred to as discretization error.

1



2 1 Error Analysis

Some authors extend the term “truncation error” to cover discretization
errors.

In this chapter, we will examine the general effect of input and roundoff
errors on the result of a calculation. Approximation errors will be discussed
in later chapters as we deal with individual methods. For a comprehensive
treatment of roundoff errors in floating-point computation see Sterbenz
(1974).

1.1 Representation of Numbers

Based on their fundamentally different ways of representing numbers, two
categories of computing machinery can be distinguished:

(1) analog computers,
(2) digital computers.

Examples of analog computers are slide rules and mechanical integrators as
well as electronic analog computers. When using these devices one replaces
numbers by physical quantities, e.g., the length of a bar or the intensity of a
voltage, and simulates the mathematical problem by a physical one, which is
solved through measurement, yielding a solution for the original mathemati-
cal problem as well. The scales of a slide rule, for instance, represent num-
bers x by ‘line segments of length k In x. Multiplication is simulated by
positioning line segments contiguously and measuring the combined length
for the result.

It is clear that the accuracy of analog devices is directly limited by the
physical measurements they employ.

v snn snssd vern Auremsesann

Digital computers express the digits of a number representation by a
tors and electronic digital computers.

EXAMPLE

123101«————»1{ T_1

Each digit is represented by a specific physical quantity. Since only a
small finite number of different digits have to be encoded—in the decimal
number system, for instance, there are only 10 digits—the representation of
digits in digital computers need not be quite as precise as the representation
of numbers in analog computers. Thus one might tolerate voltages between,
say, 7.8 and 8.2 when aiming at a representation of the digit 8 by 8 volts.



1.1 Representation of Numbers 3

Consequently, the accuracy of digital computers is not directly limited by
the precision of physical measurements.

For technical reasons, most modern electronic digital computers repre-
sent numbers internally in binary rather than decimal form. Here the
coefficients or bits o; of a decomposition by powers of 2 play the role of digits
in the representation of a number x:

x=4(02"+ 0 2" '+ 422’ ta 27 b a 27240,
=0 or 1

In order not to confuse decimal and binary representations of numbers, we
tio

denote the bits of a binarv number renresenta
esenta

MVIIV LW Vi G UiiiGi y 1AuAiiVwi AVl i

on by O and L, respectively.

W oo A I T 40 £ _ e el A4

EXAMPLE. 11€ NUIMDECTI X = 108.0 4dmiis inc (lCCOIIlpOSl[lOIl
185=1x2*40x2°+0x22+1x2'4+0x2°+1x2"!

and has therefore the binary representation

LOOLO.L.

We will use mainly the decimal system, pointing out differences between
the two systems whenever it is pertinent to the examination at hand.

As the example 3.999... = 4 shows, the decimal representation of a
number may not be unique. The same holds for binary representations. To
exclude such ambiguities, we will always refer to the finite representation
unless otherwise stated.

In general, digital computers must make do with a fixed finite number of
places, the word length, when internally representing a number. This number

n is determined by the make of the machine, although some machines have
built-in extensions to integer multinles 2n zn .. {dnnh]e word length_ trinle

CWRALLTIIL VALVIISIVILIS VU LLITVEVL AZILAIPAWS Lit,y A VAN SNAIPYAAy A ApeY

word length, ...) of n to offer greater precision if needed A word length of n
places can be used in several different fashions to represent a number.

Fixed-point representation specifies a fixed number n, of places before and
a fixed number n, after the decimal (binary) point, so that n=n, + n,
(usually n, =0 or n, = n).

ExAMPLE. Forn=10,n;=4,n, =6

30.421 —» | 0030 | 421000

0.0437 — | 0000 | 043700

r— e i

n n;

In this representation, the position of the decimal (binary) point is fixed.
A few simple digital devices, mainly for accounting purposes, are still re-



4 1 Error Analysis

stricted to fixed-point representation. Much more important, in particular for
scientific calculations, are digital computers featuring floating-point rep-
resentation of numbers. Here the decimal (binary) point is not fixed at the
outset; rather its position with respect to the first digit is indicated for each
number separately. This is done by specifying a so-called exponent. In other
words, each real number can be represented in the form

(1.1.1) x=ax 10°(x =a x 2°) with |a| <1, b integer

(say, 30.421 by 0.30421 x 10?), where the exponent b indicates the position
of the decimal point with respect to the mantissa a. Rutishauser proposed the
following “semilogarithmic” notation, which displays the basis of the
number system at the subscript level and moves the exponent down to
the level of the mantissa:

0.30421,,2
Analogously,
O.LOOLOL,LOL

denotes the number 18.5 in the binary system. On any digital computer there
are, of course, only fixed finite numbers t and e,n = t + ¢, of places available
for the representation of mantissa and exponent, respectively.

ExaMmPLE. For t = 4, ¢ = 2 one would have the floating-point representation

0 | 5420 04 | or more concisely | 5420 | 04
10 .

for the number 5420 in the decimal system.

S
5420 = 0542 04 0.0542,,5, one could also have the floating-point
representation

0 | 0542 05| or | 0542 | 05

10

instead of the one given in the above example.

A floating-point representation is normalized if the first digit (bit) of the
mantissa is different from 0 (O). Then |a| > 107! (|a] >27") holds in
(1.1.1). The significant digits (bits) of a number are the digits of the mantissa
not counting leading zeros.

In what follows, we will only consider normalized floating-point rep-
resentations and the corresponding floating-point arithmetic. The numbers
t and e determine—together with the basis B = 10 or B = 2 of the number
representation—the set 4 & R of real numbers which can be represented
exactly within a given machine. The elements of A are called the machine
numbers.
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While normalized floating-point arithmetic is prevalent on current elec-
tronic digital computers, unnormalized arithmetic has been proposed to
ensure that only truly significant digits are carried [Ashenhurst and
Metropolis, (1959)].

1.2 Roundoff Errors and Floating-Point Arithmetic

The set A of numbers which are representable in a given machine is only
finite. The question therefore arises of how to approximate a number x ¢ A

i@ nnat o manhica misalaa anmitmmhar - 2 A whisk 10 Thig saen~

Whlbh iS 10T 4 Macning nuiniocr U_y a Nuiniocl y =V § Wlll\/ll ID 1118 plUblClll iS
encountered not only when reading data into a computer, but also when
representing intermediate results within the computer during the course of a
calculation. Indeed, straightforward examples show that the results of
elementary arithmetic operations x + y, x x y, x/y need not belong to A,
even if both operands x, y € 4 are machine numbers.

It is natural to postulate that the approximation of any number x ¢ A by
a machine number rd(x) € A should satisfy

(1.2.1) |x —rd(x)] < |x —g]| forailge A

Such a machine-number approximation rd(x) can be obtained in most cases
by rounding.

ExAMPLE 1 (t = 4)

rdm 14285, Aﬂ\ = 0.1429..0

............... i0%v

rd(3.14159,,0) = 0.3142,,1,
rd(0.142842,,2) = 0.1428,,2.
In. general, one can proceed as follows in order to find rd(x) for a ¢-digit

computer: x ¢ A is first represented in normalized form x = a x 10%, so that
|a] = 107". Suppose the decimal representation of |a| is given by

la| =030, ... i1y ..., O0<o;<9, oy #0.
Then one forms

a,_]O.ozlaz...a, if0<a,, <4,
\0.tgoy ..o, + 107 ifa,,, =5,

that is, one increases a, by 1 if the (¢t + 1)st digit «,,; > 5, and deletes all
digits after the tth one. Finally one puts

rd(x) ==sign(x) - a’ x 10",
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Since |a| =107, the “relative error ” of rd(x) admits the following bound
(Scarborough, 1950):

~/ —_
\ rd(x) — x| _5x107¢*D -
— —|<———F— <5x107"
l X I 1ai
With the abbreviation eps := S x 107, this can be written as
~,
(1.2.2) rd(x) = x(1 + &), where |¢| <eps

The quantity eps = 5 x 107* is called the machine precision. In the binary
system, rd(x) is defined analogously: Starting with a decomposition
x = a x 2’ satisfying 27! < |a| < 1 and the binary representation of |a|,

!a!=0.0(1...0(!0(!+1..., (X,=OOI‘L, O(1=L

-

one forms

, _ [0y o ifo,,; =0,
|00y oo, +27° ife,, =L,

rd(x) = sign(x) - a’ x 2°.

a

Again (1.2.2) holds, provided one defines the machine precision by
eps=2"".
Whenever rd(x) € A is a machine number, then rd has the property (1.2.1)
of a correct rounding process, and we may define
rd(x):=rd(x) for all x with td(x) e A.

Because only a finite number e of places are available to express the expon-
ent in a floating-point representation, there are unfortunately always num-
bers x ¢ A with rd(x) ¢ A.
EXAMPLE 2 (t = 4, e = 2).

(a) rd(0.31794,0110) = 03179,,110 ¢ A.

(b) 7d(0.99997,,99) = 0.1000,,100 ¢ A.

(c) 1d(0.012345,,—99) = 0.1235,,— 100 ¢ A.

(d) rd(0.54321,0— 110) = 0.5432,,— 110 ¢ A.

In cases (a) and (b) the exponent is too greatly positive to fit the allotted
space: These are instances of exponent overflow. Case (b) is particularly
pathological: exponent overflow happens only after rounding. Cases (c) and
(d) are instances of exponent underflow, ie., the exponent of the number
represented is too greatly negative. In cases (c) and (d) exponent underflow
may be prevented by defining

rd(0.012345,,—99) = 0.0123,,— 99 € 4,

(12.3)
rd(0.54321,,—110) = O € A.
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But then rd does not satisfy (1.2.2), that is, the relative error of rd(x) may
exceed eps. Digital computers treat occurrences of exponent overflow and
underflow as irregularities of the calculation. In the case of exponent
underflow, rd(x) may be formed as indicated in (1.2.3). Exponent overflow
may cause a halt in calculations. In the remaining regular cases (but not for

As dafinad K
all makes of computers), rounding is defined by

rd(x):= rd(x).

Exponent overflow and underflow can be avoided to some extent by
suitable scaling of the input data and by incorporating special checks and
rescaungs uurmg computations. Since each different numerical method will
require its own special protection techniques, and since overflow and
underflow do not happen very frequently, we will make the idealized
assumption that e = oo in our subsequent discussions, so that rd := = rd does

indeed provide a rule for rounding which ensures
rd:R— 4,

(1.2.4)
rd(x) = x(1 + &) with |¢| <eps forallxe R

In further examples we will, correspondingly, give the length ¢t of the man-
tissa only. The reader must bear in mind, however, that subsequent state-
ments regarding roundoff errors may be invalid if overflows or underflows
are allowed to happen.

We have seen that the results of arithmetic operations x + y, x x y, x/y
need not be machine numbers, even if the operands x and y are. Thus one
cannot expect to reproduce the arithmetic operations exactly on a digital
computer. One will have to be content with substitute operations +*, —*,
x *, /*, so-called floating-point operations, which approximate the arithmetic
operations as well as possible [v.Neumann and Goldstein (1947)]. Such
operations may be defined, for instance, with the help of the rounding map
rd as follows

x+*y:=rd(x + y),
=rd
(1.2.5) T (x =) for x, y € A,
xx*y —rd(x X y),
x [*y=rd(x/y),

so that (1.2.4) implies

(1.2.6) |&;| < eps.
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On many modern computer installations, the floating-point operations
+*, ... are not defined by (1.2.5), but instead in such a way that (1.2.6) holds
with only a somewhat weaker bound, say, |¢;| <k - eps, k > 1 being a small
integer. Since these small deviations from (1.2.6) are not significant for our

examinations, we will assume for simplicity that the floating-point opera-
tions are in fact defined hv {1 2 i\ and hence satisfy (126)

A2 QL% A1l LGS Y aVaAlANSS SRiaNe Jiviiww Svisa \ AoV e

It should be pointed out that the floating-point operatlons do not satisfy
the well-known laws for arithmetic operations. For instance,

<—17S|x|, X,y € A,

where B is the basis of the number system. The machine precision eps could

e lal

ideed be defined as the smallest positive machine number g for which

eps=min{g € A|1 +* g > 1and g > 0}.

Furthermore, floating-point operations need not be associative or
distributive.

EXAMPLE 3 (t = 8). With

Q
|

b= 0.33678429,,2,
C = —033677811102,

one has

* (b +* c) = 0.23371258,,— 4 + *0.61800000,, — 3

PP P Y

=0.64137126,,—3,
(@+*b) +* ¢ =0.33678452,42 —* 0.33677811,,2
= 0.64100000,,— 3.

The exact result is

a+ b+ c=0641371258,,—3.

When subtracting two numbers x, y € 4 of the same sign, one has to
watch out for cancellation. This occurs if x and y agree in one or more
leading digits with respect to the same exponent, e.g.,

X = 0.315876101,
y = 0314289, 1.

The subtraction causes the common leading digits to disappear. The exact
result x — y is consequently a machine number, so that no new roundoff
error x — * y = x — y arises. In this sense, subtraction in the case of cancella-
tion is a quite harmless operation. We will see in the next section, however,
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that cancellation is extremely dangerous concerning the propagation of old
errors, which stem from the calculations of x and y prior to carrying out the
subtraction x — y.

Far ayvnreceino the recnlt
A Vi \Inyl\lvh"lls CALlW AWOIRAAL

slightly imprecise notation has been widely accepted, and we will us
frequently ourseives: If it is clear from the context how to evaluaie an
arithmetic expression E (if need be this can be specified by inserting suitable
parentheses), then fl(E) denotes the value of the expression as obtained by

floating-point arithmetic.

EXAMPLE 4

fix x vii=x x* v
=AY g7 b P4

flla+ (b+c))=a+*((b+*c)
fii(a + b) + c)==(a+*b) +*c.

We will also use the notation f 1(\/;), fl(cos(x)), etc., whenever the digital
computer approximates functions \/_ , COs, etc., by substitutes \/_ * cos¥,
etc. Thus fl(\/x)=./x*, and so on.

Ther_ arithmetic operations +, —, x,/, together w/ilh those basic functions
like / , cos, for which fioating-point substitutes ./ *, cos*, etc., have been
specified, will be called elementary operations.

1.3 Error Propagation

We have seen in the previous section (Example 3) that two different but
mathematically equivalent methods (a + b) + ¢, a + (b + c¢) for evaluating
the same expression a + b + ¢ may lead to different results if floating-point
arithmetic is used. For numerical purposes it is therefore important to dis-
tinguish between different evaluation schemes even if they are mathemat-
ically equivalent. Thus we call a finite sequence of elementary operations (as
given for instance by consecutive computer instructions) which prescribes
how to calculate the solution of a problem from given input data, an
algorithm.

We will formalize the notion of an algorithm somewhat. Suppose a prob-
lem consists of calculating desired result numbers y,, ..., y,, from input
numbers x,, ..., x,. If we introduce the vectors

[~}

then solving the above problem means determining the value y = ¢(x) of a
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certain multivariate vector function ¢: D - R™, D < R", where ¢ is given by
m real functions ¢;,

Vi=@ixy, ..., X,), i=1,..,m

At each stage of a calculation there is an operand set of numbers, which
either are original input numbers x; or have resuited from previous opera-
tions. A single operation calculates a new number from one or more ele-
ments of the operand set. The new number is either an intermediate or a final
result. In any case, it is adjoined to the operand set, which then is purged of
all entries that will not be needed as operands during the remainder of the
calculation. The final operand set will consist of the desired results
Yo ooos Vm-

Therefore, an operation corresponds to a transformation of the operand
set. Writing consecutive operand sets as vectors,

x{P
xP=1 1 | eRY

we can associate with an elementary operation an elementary map
(P(i): Di - R"H-l’ Di c R"i,
so that
PO (x®) = x*+ D),

where x(*1) is a vector representation of the transformed operand set. The
elementary map ¢ is uniquely defined except for inconsequential permuta-
tions of x and x“* ! which stem from the arbitrariness involved in arrang-
ing the corresponding operand sets in the form of vectors.

Given an algorithm, then its sequence of elementary operations gives rise

to a decomposition of ¢ into a sequence of elementary maps
p 0] q
":D;>D;y,y, i=0,1,...,7, D;SR"Y,
Q= (p(’) ° (p(r—l) o-- (p(O) Do =D, Dr+1 c R+ = R™

which characterize the algorithm.

(13.1)

ExampLE 1. For ¢(a, b,c)=a+ b + ¢, consider the two algorithms n:=a + b,
y:=c+nand n:=b + ¢, y:=a + n. The decompositions (1.3.1) are

a+b]|
©'%a, b, ¢)= 1’ e R?, ePu,v)=u+veR
and
©(a, b, ¢):= b ic e R?, oM, v)=u+veR
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ExaMPLE 2. Since a? — b?= (a + b)(a — b), one has for the calculation of
o(a, b):=a* — b? the two algorithms

Algorithm 1: n,=a x a, Algorithm 2: n,=a + b,
r]2==bxb, n2==a——b,
Yy =m —n2, Y T nmXnz.

Corresponding decompositions (1.3.1) are

2

Algorithm 1:  ¢'©(a, b):= ‘;) ], oMy, v):= [:2], oP(u, v)==u — v,
a
i [ u ]
Algorithm 2:  ¢'°(a, b) ==L b J, o (a, b, u) = la : b]’ o ®P(u, v)=u-v.
a+b

Note that the decomposition of ¢(a, b) :=a® — b? corresponding to Algorithm 1
above can be telescoped into a simpler decomposition:

0 at _
oren=ff]. oo

Strictly speaking, however, map ¢'® is not elementary. Moreover the decomposition
does not determine the aigorithm uniquely, since there is still a choice, however
numerically insignificant, of what to compute first, a® or b2

Hoping to find criteria for judging the quality of algorithms, we will now
examine the reasons why different algorithms for solving the same problem
generally yield different results. Error propagation, for one, plays a decisive
role, as the example of the sum y=a + b + c shows (see Example 3 in
Section 1.2). Here floating-point arithmetic yields an approximation
y = fl((a + b) + c) to y which, according to (1.2.6), satisfies

n:="fl(a+b)=(a + b)(1 + &),
y=Mn+c)=(@n+c)l+e)
=[(a+b)1 +¢&)+c](1 + &)

+b
=(a+b+c) 1+a—i—ﬁ—csl(l+£2)+82 )

For the relative error ¢,:= (y — y)/y of ,

a+b
g,=————¢(1 + &) +¢,
a+b+c

or disregarding terms of order higher than 1 in &’s such as ¢,¢,,
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The amplification factors (a + b)/(a + b + ¢) and 1, respectively, measure
the effect of the roundoff errors ¢, €, on the error ¢, of the result. The factor
(a + b)/(a + b + c) is critical: depending on whether |a+b| or |b+ c| is

.
the smaller of the two, it is better to proceed via (@ + b) +cr

a + (b + c) for computing a + b + c.

In Example 3 of the previous section,

a+b  033..,,2
a+b+c 064..,,-3

b+c _ 0618...,0—3
a+b+c  064...,,-3

which explains the higher accuracy of fl(a + (b + ¢)).

The above method of examining the propagation of particular errors
while disregarding higher-order terms can be extended systematically to
provide a differential error analysis of an algorithm for computing ¢(x) if this
function is given by a decomposition (1.3.1):

— - - ... 9)
¢ =097 e

To this end we must investigate how the input errors Ax of x as well as the
roundoff errors accumulated during the course of the algorithm affect the
final result y = ¢(x). We start this investigation by considering the input
errors Ax alone, and we will apply any insights we gain to the analysis of
the propagation of roundoff errors. We suppose that the function

(pl(xl’."-’ X")]
L (p,,,(xl,'. s X))

is defined on an open subset D of R", and that its component functions ¢,
i=1, ..., n have continuous first derivatives on D. Let x be an approximate
value for x. Then we denote by

¢: D> R" o(x)=

Ax;=X; — x;, Ax=Xx—Xx

the absolute error of x; and x, respectively. The relative error of x; is defined
as the quantity
ii - X,-

if x; # 0.

Replacing the input data x by x leads to the result y := ¢(x) instead of
y = ¢(x). Expanding in a Taylor series and disregarding higher-order terms
gives

Ay; =y — yi = @i(X) — @i(x) = Z (X; — x;)—
(1.32)

50
= z
ji=1
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or in matrix notation,

—5(01 5(!’1-
[ fa 7 o, |[2%]
(1.33) Ay=| : |ﬁ : : | : |=D<p(x)-Ax
OPm OPm
Lav.] |50+ o Lo

with the Jacobian matrix De(x).

The notation “ = ” instead of “ = ”, which has been used occasionally
before, is meant to indicate that the corresponding equations are only a first
order approximation, i.e., they do not take quantities of higher order (in &’s
or A’s) into account.

The quantity dg,(x)/0x; in (1.3.3) represents the sensitivity with which y;
reacts to absolute perturbations Ax; of x;. If y; # O for i=1,..., m and

x; # 0 for j=1, ..., n, then a similar error propagation formula holds for
relative errors:

(1.3.4) €y = 3 % Ooilx) €

<1 @ilx) Ox;
Again the quantity (x;/¢@;) 0p;/0x; indicates how strongly a relative error in
x; affects the relative error in y;. The amplification factors (x;/¢;) 0@, /0x;
for the relative error have the advantage of not depending on the scales of y,
and x;. The amplification factors for relative errors are generally called
condition numbers. If any condition numbers are present which have large
absolute values, then one speaks of an ill-conditioned problem; otherwise, of
a well-conditioned problem. For ill-conditioned problems, small relative
errors in the input data x can cause large relative errors in the results
y = o(x).

The above concept of condition number suffers from the fact that it is
meaningful only for nonzero y;, x;. Moreover, it is impractical for many
purposes, since the condition of ¢ is described by mn numbers. For these
reasons, the conditions of special classes of problems are frequently defined
in a more convenient fashion. In linear algebra, for example, it is customary
to call numbers ¢ condition numbers if, in conjunction with a suitable norm

I-1,

Xj*

o) - o()] _ % - x|
o] B

(see Section 4.4).

EXAMPLE 3. For y = ¢(a, b, ¢c)*=a + b + ¢, (1.3.4) gives

a b c

&y = — &
e rbtc T arbrct bt

&.

The problem is well conditioned if every summand g, b, ¢ is small compared to
a+b+ec
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ExampLE 4. Let y = ¢(p, q)= —p + q. Then
6(p —y 37, 1

\/p+ BN T . N AT

so that
=p q _ P p+/P t4g

e Tt St adirg

,J_\gl . P+y/pta
NI ' 2/p* +4q

¢ is well conditioned if ¢ > 0, and badly conditioned if ¢ = — p?.

e

Since

<1 for g > 0,

For the arithmetic operations (1.3.4) specializes to (x # 0, y # 0)
(1.3.5a) o(x,y):=x-y: &,=¢ +¢
(1.35b) @(x, y)=x/y: &g, =86 —¢&

X

— . y .
(1350) ol y)=xty: txey= " et 7 re fxdy+0.

(1.3.5d) o(x) ==\V/)-c: &y

v

W=

€x

]

It follows that the multiplication, division, and square root are not dan-
gerous: The relative errors of the operands don’t propagate strongly into the
result. This is also the case for the addition, provided the operands x and y
have the same sign. Indeed, the condition numbers x/(x + y), y/(x + y) then
lie between 0 and 1, and they add up to 1, whence

x| < max{e. [z,

If one operand is small compared to the other, but carries a large relative
error, the result x + y will still have a small relative error so long as the other
operand has only a small relative error: error damping results. If, however,
two operands of different sign are to be added, then at least one of the factors

y
X+y

=
x+yl
is bigger than 1, and at least one of the relative errors &,, &, will be amplified.
This amplification is drastic if x ® —y holds and therefore cancellation
occurs.

We will now employ the formula (1.3.3) to describe the propagation of
roundoff errors for a given algorithm. An algorithm for computing the func-
tion ¢: D > R™, D = R", for a given x = (x, ..., X,)" € D corresponds to a
decomposition of the map ¢ into elementary maps (p“’ [see (1.3.1)], and leads
from x'® = x via a chain of intermediate results

(136) x=x© o pOx®)=xD 5 -+ 5 pOx") = x"* D=y
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to the result y. Again we assume that every ¢” is continuously differentiable
on D;.
Now let us denote by ¥ the “ remainder map”

YO =" o @ Do-iop®: D, » R i=012...,r

Then y© = ¢. Do and Dy/*’ are the Jacobian matrices of the maps ¢’ and
Y. Since Jacobian matrices are multiplicative with respect to function
composition,

we note for further reference that

(1.3.7a) Dol(x) = Do (x™M) - D"~ D(xr— D). - Do'9(x)

\ J YA\"v/ ¥ o\ J h 7Y J b d \"vp

(1.3.7b) Dx//""(x"") = Dp"(x")) - Do~ D(xr= D) - . D(p"’(x“’)
i=01,...,r

With floating-point arithmetic, input and roundoff errors will perturb the
intermediate (exact) results x” so that approximate values x? with
XD = fl(p?(x")) will be obtained instead. For the absolute errors
AxD = 30 _ x®
(138)  AXE*D = [fl(p(x)) — O(&0)] + [pV(X?) — pO()]

By (1.3.3) (disregarding higher-order error terms),
(1.39) PD(XD) — pO(xD) = DED(xP) Ax®.

If ¥ is an elementary map, or if it involves only independent elementary
operations, the floating-point evaluation of ¢? will yield the rounding of the

avart valne-
WNAUWE YallWuw.

(13.10) fl(p®(u)) = rd(®u)).

Note, in this context, that the map ¢”: D, » D;,; = R%*! is actually a
vector of component functions ¢{: D; > R,

<p‘f’(u)

(l)+ 1(“)

Thus (1.3.10) must be interpreted componentwise:
fi(@f(u)) = rd(@Pu) = (1 + &) (u),
lej| <eps, Jj=1,2,...,n,,.

¢O(u) =

(1.3.11)

Here ¢; is the new relative roundoff error generated during the calculation of
the jth component of ¢ in floating-point arithmetic. Plainly, (1.3.10) can
also be written in the form

@) = (I + E;yy) - 0(u)
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with the identity matrix I and the diagonal error matrix

—81 0]

N

Ei =

0 , g <eps.

[_ Eni+1 |

This yields the following expression for the first bracket in (1.3.8):
f1 (go“’(i‘”)) _ go(i)(i(i)) = Ei+l . (p(i)(g(i))'

Furthermore E,., - ¢V(X¥) = E;,, - ¢”(x"), since the error terms by
which ¢(x®) and ¢"(x") differ are multiplied by the error terms on the
diagonal of E; ,, giving rise to higher-order error terms. Therefore

(1312) fl@OEM) - p9(FO) = E,, - 0O(x0) = Eryy - X070 =i,

The quantity «;,, can be interpreted as the absolute roundoff error newly
created when ¢ is evaluated in floating-point arithmetic, and the diagonal
elements of E;, , can be similarly interpreted as the corresponding relative
roundoff errors. Thus by (1.3.8), (1.3.9) and (1.3.12), Ax“* ) can be expressed
in first-order approximation as follows

Ax(i+ 1) =0y + D(p(i)(x(i)) . Ax(i) — Ei+l . x(i+1) + D(p(i)(x(i)) . Ax(i)’

i=0, Ax? = Ax.

Consequently
AxV = Do ®(x) Ax + a4,
Ax(2) = DoV (DY D0 Y 4+ o o
X9 = D' V(xDY D' (x) - Ax + o] + a3,

Ay = Ax"*V = Do ... De® - Ax + Do ... D'V -y + - 4+ o, 4.

In view of (1.3.7), we finally arrive at the following formulas which describe
the effect of the input errors Ax and the roundoff errors «; on the result
y= 207D = p(x)

Ay = Do(x) - Ax + DY (xP) - ay + - + DY (x) - o, + 0,44
(1.3.13) = Do(x) - Ax + DYV (xP) - E;xV + - + DYO(x") - E, - x
+ Er+ 1)

It is therefore the size of the Jacobian matrix Dy/'” of the remainder map

which is critical for the effect of the intermediate roundoff errors «; or E; on
the final result.

ExampLE 5. For the two algorithms for computing y = ¢(a, b) = a* — b? given in
Example 2 we have for Algorithm 1:
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2 2
I A

Y D(u, v) = u — 03, YD (u, v)=u—v,
Do(x) = (2a, —2b),
DY) = (1, ~26), DY) = (1, 1)

i} ey Y oo ] ]
o] l
[€207 | |

0 0
0y = ;2 E; = [,\
€20 [V &
a3 = e3(a® — b?), |e;| <eps fori=1,2,3.
From (1.1.13) with Ax = [iZ]
(1.3.14) Ay = 2a Aa — 2b Ab + a%e; — b%e; + (a® — b?)e;.

Analogously for Algorithm 2:

X = X0 = [Z], X = [a+b], XD =y = g? b2,

a—b>
YN u, v)=u - v,
D¢(x) = (2a, —2b), Dy (xV) = (a — b, a + b),
- ZEZiI;; , oy =¢x(a® —b?), E,= [g’ (8)2] |e:| < eps,
and therefore (1.1.13) again yields
(1.3.15) Ay =2a Aa — 2b Ab + (a* — b?)(e, +er + €3).

If one selects a different algorithm for calculating the same result ¢(x) (in
other words, a different decomposition of ¢ into elementary maps), then Dg
remains unchanged; the Jacobian matrices Dy, which measure the propa-
gation of roundoff, will be different, however, and so will be the total effect of
rounding,

(1.316) D‘ll(l)al + et + Dl//(r)a,. + d,+1.

An algorithm is called numerically more trustworthy than another algor-
ithm for calculating ¢(x) if, for a given set of data x, the total effect of
rounding, (1.3.16), is less for the first algorithm than for the second one.

ExaMPLE 6. The total effect of rounding using Algorithm 1 in Example 2 is, by
(1.3.14),

(1317)  |ae, — bPe, + (a® — bP)es | < (a® + b* + |a® — b?|)eps,
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and that of Algorithm 2, by (1.3.15),
(1.3.18) [(@® — b*)(e1 + &2 + €3)] < 3|a® — b?|eps.

Algorithm 2 is numerically more trustworthy than algorithm 1 whenever

§ < |a/b |* < 3; otherwise algorithm 1 is more trustworthy. This follows from the
equivalence of the two relations §< |a/b|* <3 and 3|a® — b?| <a® + b* +
|a* — b?*|.

For a:=0.3237, b:=0.3134, using four places (t = 4), we obtain the following
results.
Algorithm 1: a x* a = 0.1048, b x*b=09822,,—1,
*

(o sc® 2 _ % (b s« * BbY — 0 £520
\u ~ u, \U N U’ V. UJ OV

Algorithm 2: a +* b= 0.6371, a—*b=0.1030,,—1,
(a +* b) X N (a —* b) = 0.656210—'2-
Exact result: a* — b* = 0.656213,,—2.

In the error propagation formula (1.3.13), the last term admits the follow-
ing bound:’

|E, .1 y| <|y|eps,

no matter what algorithm had been used for computing y = ¢(x). Hence an
error Ay of magnitude |y|eps has to be expected for any algorithm. Note,
moreover, when using mantissas of ¢t places, that the rounding of the input
data x = (x,, ..., x,)" will cause an input error A®x with

|Ax| <|x|eps,

unless the input data are already machine numbers and therefore represent-
able exactly. Since the latter cannot be counted on, any algorithm for com-
puting y = ¢(x) will have to be assumed to incur the error Do(x) - A'%x, so
that altogether for every such algorithm an error of magnitude

(1.3.19) A®y:=[|De(x)|- |x| + |y|leps

must be expected. We call A®y the inherent error of y. Since this error will
have to be reckoned with in any case, it would be unreasonable to ask that
the influence of intermediate roundoff errors on the final result be con-
siderably smaller than A©y. We therefore call roundoff errors «; or E,
harmless if their contribution in (1.3.13) towards the total error Ay is of at
most the same order of magnitude as the inherent error A’y from (1.3.19):

| DYO(x®) - ;| = | DY (x®) - E;xD| = Ay,

If all roundoff errors of an algorithm are harmless, then the algorithm is said
to be well behaved or numerically stable. This particular notion of numerical
stability has been promoted by Bauer et al. (1965); Bauer also uses the term

! The absolute values of vectors and matrices are to be understood componentwise, e.g.,
[yl =Upals s yml)"
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benign (1974). Finding numerically stable algorithms is a primary task of
numerical analysis.

ExaMPLE 7. Both algorithms of Example 2 are numerically stable. Indeed, the inher-
ent error Ay is as follows:

A(°’y—([2|a| 2|b|]- [“,{

Comparing this with (1.3.17) and (1.3.18) even shows that the total roundoff error of
each of the two algorithms cannot exceed A©y.

\
+ |a® - b2|)eps = (2(a® + b*) + |a* — b?|)eps.

Let us pause to review our usage of terms. Numerical trustworthiness,
which we will use as a comparative term, relates to the roundoff errors
associated with two or more algorithms for the same problem. Numerical
stability, which we will use as an absolute term, relates to the inherent error
and the corresponding harmlessness of the roundoff errors associated with a
single algorithm. Thus one algorithm may be numerically more trustworthy
than another, yet neither may be numerically stable. If both are numerically
stable, the numerically more trustworthy algorithm is to be preferred. We
attach the qualifier “ numerically ” because of the widespread use of the term
“stable ” without that qualifier in other contexts such as the terminology of
differential equations, economic models, and linear multistep iterations,
where it has different meanings. Further illustrations of the concepts which
we have introduced above will be found in the next section.

A general technique for establishing the numerical stability of an algor-
ithm, the so-called backward analysis, has been introduced by Wilkinson
(1960) for the purpose of examining algorithms in linear algebra. He tries to
show that the floating-point result Sz y+ Ay of an algorithm for comput—
ing y = @(x) may be written in the form y = @{(x + Ax), that is, as the result
of an exact calculation based on perturbed input data x + Ax. If Ax turns
out to have the same order of magnitude as |A®@x| < |x|eps, then the
algorithm is indeed numerically stable.

Bauer (1974) associates graphs with algorithms in order to illuminate
their error patterns. For instance, Algorithms 1 and 2 of example 2 give rise
to the graphs in Figure 1. The nodes of these graphs correspond to the
intermediate results. Node i is linked to node j by a directed arc if the inter-
mediate result corresponding to node i is an operand of the elementary
operation which produces the result corresponding to node j. At each node
there arises a new relative roundoff error, which is written next to its node.
Amplification factors for the relative errors are similarly associated with,
and written next to, the arcs of the graph. Tracing through the graph of
Algorithm 1, for instance, one obtains the following error relations:

e, =1-¢+1-¢+¢, &, =1 g+ 1 6 +¢&,

M )
& =—"—°§¢g, ———— &, + E3.
Y m — N2 " N — N2 " 3
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Figure 1 Graphs Representing Algorithms and Their Error Propagation.

To find the factor by which to multiply the roundoff error at node i in order
to get its contribution to the error at node j, one multiplies all arc factors for
each directed path from i to j and adds these products. The graph of Algor-
ithm 2 thus indicates that the input error ¢, contributes

a a
(a+b 1+a—b 1) a

to the error ¢,.

1.4 Examples

ExaMPLE 1. This example follows up Example 4 of the previous section: given p > 0,
q > 0, p > g, determine the root

y=-p+/p +4

with smallest absolute value of the quadratic equation
¥ +2py—q=0.

Input data: p, . Result: y = ¢(p, )= —p + /p* + ¢q.

The problem was seen to be well conditioned for p > 0, g > 0. It was also shown
that the relative input errors ¢,, ¢, make the following contribution to the relative
error of the result y = ¢(p, q):

—p q —p p+p*+gq

&, + &, = &, +— &, .
JrP+qa ' /PP +q ' JrP+a’  2/pP+q




1.4 Examples 21

Since

‘ p \gl, p+\/p’+q<1,

_
Jr+a 2/p" +4q
the inherent error A@y satisfies
A©
eps < &= 5 Y <3 eps.

We will now consider two algorithms for computing y = ¢(p, q).

Algorithm 1: s=p?
t=s+gq,
wi= i
y=-p+u
Obviously, p > g causes cancellation when y:= —p + u is evaluated, and it must

therefore be expected that the roundoff error

Au:= e\ﬂ = a\/p—zﬁ-—q,

generated during the floating-point calculation of the square root

fi(/t)= /1l +¢), |e| <eps,

will be greatly amplified. Indeed, the above error contributes the following term to

the error of y:
1 Au = VP~ 14

y —p+J/PP+a

/PP +a+pP +qk=k- e

Q|

Since p, g > 0, the amplification factor k admits the following lower bound:
2
k> 2p— >0,

which is large, since p > g by hypothesis. Therefore, the proposed algorithm is not
numerically stable, because the influence of rounding ./ p? + q alone exceeds that of
the inherent error &” by an order of magnitude.

Algorithm 2: s +=p?,

t=s+q,
u=Ji,
vz=p+u’

y=q/v.
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This algorithm does not cause cancellation when calculating v := p + u. The roundoff

error Au = &,/ p* + q, which stems from rounding ./ p? + g, will be amplified accord-
ing to the remainder map ¥ (u):

u—>p+u—>p—:ifu=|lf(u).

Thus it contributes the following term to the relative error of y:

l%'Au=—~~——_q 3 - Au
y Ou y(p + u)
_ —aypitq
(—p+ VP> +q)p+ /P’ + )
/-3, -
_ VPt 4q

= -2 2 =k
P+yp'+4

The amplification factor k remains small; indeed, |k| < 1, and Algorithm 2 is there-
fore numerically stable.

The following numerical results illustrate the difference between Algorithms 1 and
2. They were obtained using floating-point arithmetic of 40 binary mantissa places—
about 13 decimal places—as will be the case in subsequent numerical examples.

p = 1000, g = 0.018 000 000 081.

Result y according to Algorithm 1: 0.900 030 136 108,,-5,
Result y according to Algorithm 2: 0.899 999 999 999,,—5,
Exact value of y: 0.900 000 000 000,, —5.

ExaMPLE 2. For given fixed x and integer k, the value of cos kx may be computed
recursively using for m= 1, 2, ..., k — 1 the formula

cos(m + 1)x = 2 cos x cos mx — cos(m — 1)x.

In this case, a trigonometric-function evaluation has to be carried out only once, to
find ¢ = cos x. Now let |x| # O be a small number. The calculation of ¢ causes a
small roundoff error:

¢=(1+¢)cos x, |e| < eps.

How does this roundoff error affect the calculation of cos kx?
cos kx can be expressed in terms of c¢: cos kx = cos(k arccos c) =:f(c).
Since

if_ k sin kx
de  sin x

b

the error ¢ cos x of ¢ causes, to first approximation, an absolute error

(14.1) A cos kx = e 2 X sin kx = ¢ - k cot x sin kx
sin x

in cos kx.
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On the other hand, the inherent error A%, (1.3.19) of the result ¢, *=cos kx is
A©¢, = [k|x sin kx| + |cos kx|]eps.
Comparing this with (1.4.1) shows that A cos kx may be considerably larger than

A®c¢, for small |x|; hence the algorithm is not numerically stable.

ExaMpLE 3. For given x and a “large” positive integer k, the numbers cos kx and
sin kx are to be computed recursively using

cos mx =cos x cos(m — 1)x — sin x sin(m — 1)x,

sin mx *=sin x cos(m — 1)x + cos x sin(m — 1)x, m=12 ...k

How do small errors ¢, cos x, & sin x in the calculation of cos x, sin x affect the final
results cos kx, sin kx? Abbreviating c,, *= cos mx, s, *=sin mx, ¢ :=cos X, s :=sin X,
and putting

we have

[en] — U[C"'"], m=1,...k
[Sm | [Sm-1]

Here U is a unitary matrix, which corresponds to a rotation by the angle x. Repeated
application of the formula above gives

o o )

ou [t o a_U_O——lz:A
oc |0 1| s |1 0 ’

and therefore

0 i _ ppk-1
6cU = kU*"",

%U"= AU ' y UAU* 2 4+ - 4+ U Y4

= kAU*" 1,

because A commutes with U. Since U describes a rotation in R? by the angle x,

0 o, [cos(k —1)x —sin(k — 1)x

dc~  lsin(k —1)x  cos(k — 1)x|
a U* = —sin(k — 1)x —cos(k — 1)x
0os cos(k — 1)x —sin(k — 1)x|
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The relative errors ¢, & of ¢ = cos x, s = sin x effect the following absolute errors of
cos kx, sin kx:

A =[S 0| o] ccos xov [2 0o s
[ée ]10] 1os 110}

| Asy | cc
(1.4.2)
ok [oos(k — t)x] . [—sintk - 1)x|
— ek cosx Isin(k - l)xJ t+&kosin xI cos(k — l)xl'

The inherent errors A'®c, and A©s, of ¢, = cos kx and s, = sin kx, respectively, are
given by

A©¢, = [k]|x sin kx| + |cos kx|]eps,
(1.43) .

A©s, = [k|x cos kx| + |sin kx|]eps.

Comparison of (1.4.2) and (1.4.3) reveals that for big k and | kx| = 1 the influence of
the roundoff error ¢, is considerably bigger than the inherent errors, while the round-
off error ¢ is harmless. The algorithm is not numerically stable, albeit numerically

more trustworthy than the algorithm of Example 2 as far as the computation of ¢
alone is concerned.

ExaMPLE 4. For small | x|, the recursive calculation of

Cm = COS MX, S, = Sin mx, m=12 ...,

based on

cos(m + 1)x = cos x cos mx — sin Xx sin mx,
sin(m + 1)x = sin x cos mx + cos x sin mx,

as in Example 3, may be further improved numerically. To this end, we express the
differences ds,, ., and dc,, ., of subsequent sine and cosine values as follows:

dcp+1 i=cos(m + 1)x — cos mx

= 2(cos x — 1) cos mx — sin x sin mx — cos X cOs mx + cos mx
- 2 x
= —4|sin 5] cos mx + [cos mx — cos(m — 1)x]
dSpm+1 *=sin(m + 1)x — sin mx
= 2(cos x — 1) sin mx + sin x COs mx — €OS X Sin mx + sin mx
. 2 -x . . .
= —4|sin 5 sinmx + [sin mx — sin(m — 1)x].

This leads to a more elaborate recursive algorithm for computing c,, s, in the case
x>0

de, = -2 sinz’z-‘, t:=2 de,,

dSl = \/:dcl(Z + dCl),

50 :=0, Cco =1,
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and form:=1,2, ..., k:
cm:=cm—l+dcm, de+1:=t'Cm+de,
Sm i =Sm—1 + dSp, ds, .=t " s, +ds,.
For the error analysis, note that ¢, and s, are functions of s = sin(x/2):
cx = cos(2k arcsin s) =: ¢, (s),

s, = sin(2k arcsin s) =: @,(s).

An error As = ¢ sin(x/2) in the calculation of s therefore causes—to a first-order
approximation—the following errors in ¢:

?Elg sin 5_8 . Msin g
ds ° 2 cos(x/2) 2
= —2k tan %sin kx - g,
and in s;:
%a sin E-—2ktan zcosk o
ds ° 2 2 X

Comparison with the inherent errors (1.4.3) shows these errors to be harmless for
small | x|. The algorithm is then numerically stable, at least as far as the influence of
the roundoff error ¢, is concerned.

Again we illustrate our analytical considerations with some numerical results. Let
x = 0.001, k = 1000.

Algorithm Result for cos kx Relative error
Example 2 0.540 302 121 124 —034,,-6
Example 3 0.540 302 305 776 —-0.17,0—-9
Example 4 0.540 302 305 865 —0.58,0—11

Exact value 0.540 302 305 868 140...

EXaMPLE 5. We will derive some results which will be useful for the analysis of
algorithms for solving linear equations in Section 4.5. Given the quantities c, a,, ...,
a,, by, ..., b,_; with a, # 0, we want to find the solution B, of the linear equation

(1.4.4) C—-albl—"'—-a,,_lb,,_l—a,,ﬂ,,=0.
Floating-point arithmetic yields the approximate solution

(1.4.5) b =fl(c_albl —'"—a..-lb,_l)

an
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as follows:
S0 *=¢C;
(1.4.6) forj=12,...,n—1,
s;=fl(s;-y —a;bj) = (sj-1 — a;b;(1 + p))(1 + a;);

bn ‘=fl(S,,_ l/an) = (1 + 5)911— l/arn
eps. If a, = 1, as is frequently the case in applications, then

with |1 |2, 19] <

0 =0, since b, :
We will now describe two useful estimates for the residual

re=c—ayb;, —- —a,b,.
From (1.4.6) follow the equations
so—c=0,
sj— (-1 —a;b))=s;— (1 fa_ + a,-b,-,u,-)
J
—ajbu;, j=L2...,n—1,

%j
=sj————
1+cx,~

anbn — Sp-1 = 0 Sp-1-

Summing these equations yields

n n-1 a
- Za,-bi= z (—S_,l_—‘ +anJll}) —55,,_1
i=1 ji=1
and thereby the first one of the promised estimates:
eps , n—1
(14.7) Il <7 eps [0 sl + X (sl + 1oy
j=

5 _Jo ifa,=1,
|1 otherwise.

The second estimate is cruder than (1.4.7). (1.4.6) gives
nt 1+ 5

]—[(1+ak)—— Za, 1+u,)]—[ (1 + o)

(1.438) b, =

which can be solved for c:

n—-1 j—1
c= Y ab(l + ) [T (1 + )" +apb(l +8)7" [T (1 +a)™".
k=1 k=1

(1.4.9)
A simple induction argument over m shows that
(1+0)= ]_[(l—i-a)il |ox] <eps, m-eps<1
implies
m - eps

|U| 1l—m- eps
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In view of (1.4.9) this ensures the existence of quantities ¢; with

n—1
(1.4.10) c= Y ajbj(l +j- &)+ ayb,(1 + (n — 1 + &)e,),

=1

12| eps 5,:=]0 ifa, =1,

Bl ST n- eps’ |1 otherwise.
Forr=c¢—a;b, —a,b, —--- — a,b, we have consequently
(1.4.11) Ir] <P __ "f'|ab|+(n 1+ &)|a,b,|

B 1 \l—n-eps j=l] g i ) n%n .
In particular, (1.4.8) reveals the numerical stability of our algorithm for comput-
ing B,. The roundoff error a,, contributes the amount
¢—ayb; —ab; — - — a,bn o

an

to the absolute error in f,. This, however, is at most equal to

c & — albleal - = ambmea,.
an
(1el + ¥ lanilJeps
< =1 .
4] '

which represents no more than the influence of the input errors ¢, and ¢, of c and a;,
i=1,..., m respectively, provided |¢|, |&,| < eps. The remaining roundoff errors
i and § are similarly shown to be harmless.

The numerical stability of the above algorithm is often shown by interpreting
(1.4.10) in the sense of backward analysis: The computed approximate solution b, is
the exact solution of the equation

¢c—ayby —-—ab,=0,
whose coefficients
a;=ayl + je;), l<jsn-—-1,
Gy = (1 + (n— 1 + 8')ea)

have been changed only slightly from their original values a;. This kind of analysis,
however, involves the difficulty of having to define how large n can be so that errors
of the form ne, |¢| < eps can still be considered as being of the same order of
magnitude as the machine precision eps.

1.5 Interval Arithmetic; Statistical Roundoff
Estimation

The effect of a few roundoff errors can be quite readily estimated, to a
first-order approximation, by the methods of Section 1.3. For a typical
numerical method, however, the number of arithmetic operations, and con-
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sequently the number of individual roundoff errors, is very large, and the
corresponding algorithm is too complicated to permit the estimation of the
total effect of all roundoff errors in this fashion.

A technique known as interval arithmetic offers an approach to determin-
ing exact upper bounds for the absolute error of an algorithm, taking into
account all roundoff and data errors. Interval arithmetic is based on the
realization that the exact values for all real numbers a € R which either enter
an algorithm or are computed as intermediate or final results are usually not
known. At best one knows small intervals wich contain a. For this reason,
the interval-arithmetic approach is to calculate systematically in terms of
such intervals

a=|da,a",
bounded by machine numbers a’, a” € A4, rather than in terms of single real
numbers a. Each unknown number a is represented by an interval
a = [a, a"] with a € a. The arithmetic operations @ € {®, O, ®, O} be-
tween intervals are defined so as to be compatible with the above interpreta-

tion. That is, ¢=a © b is defined as an interval (as small as possible)
satisfying

{atb|laeaand b e b

idpoints.

instance, this holds if @ is defined as follows:
[C,, C”] — [al’ au] 6') [b,, b”],

¢ = max{y’ e A|ly <a + b7},
c¢"==min{y” € A |v” a’ + b"},

with A denoting again the set of machine numbers. In the case of multiplica-
tion ®, assuming, say, a’ > 0, b’ > 0,

[c/’ cu] — [al’ an] ® [b’, bu]
can be defined by letting

¢ =max{y € A|y <d x b},

<
¢’ ==min{y”" € A|y" = a” x b"}.

Replacing, in these and similar fashions, every quantity by an interval and
every arithmetic operation by its corresponding interval operation—this is
readily implemented on computers—we obtain interval algorithms which
produce intervals guaranteed to contain the desired exact solutions. The
data for these interval algorithms will be again intervals, chosen to allow for
data errors.

It has been found, however, that an uncritical utilization of interval arith-
metic techniques leads to error bounds which, while certainly reliable, are in
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most cases much too pessimistic. It is not enough to simply substitute inter-
val operations for arithmetic operations without taking into account how the
particular roundoff or data errors enter into the respective results. For
example, it happens quite frequently that a certain roundoff error ¢ impairs
some intermediate results u,, ..., u, of an algorithm considerably,

Q_“_i >1 fori=1,...,n,
O¢
while the final result y = f(u,, ..., u,) is not strongly affected,
i
| 0e| =7

even though it is calculated from the highly inaccurate intermediate values
Uy, ..., U, the algorithm shows error damping.

ExampLE 1. Evaluate y = ¢(x)= x> —3x? +3x = ((x —3) x x + 3) x x using
Horner’s scheme:

u=x—3,
vi=u X X,
wi=p+ 3,
yi=wxx.

The value x is known to lie in the interval
x € x =[09, 1.1].

Starting with this interval and using straight interval arithmetic, we find
X©][33]=[-21, —-19),
u®x=[-231, —1.71),

w= 10O [3, 3] =[0.69, 1.29],

y=w® x = [0.621, 1.419).
The interval y is much too large compared to the interval

{o(x)|x € X} = [0.999, 1.001],

which describes the actual effect of an error in x on ¢(x).

I

u

]

v

ExaMPLE 2. Using just ordinary 2-digit arithmetic gives considerably more accurate
results than the interval arithmetic suggests:

x=09 x=1.1

u | ~21 -19
v | —19 -21
w 1.1 09
y 0.99 0.99
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For the successful application of interval arithmetic, therefore, it is not
sufficient merely to replace the arithmetic operations of commonly used
algorithms by interval operations: It is necessary to develop new algorithms
producing the same final results but having an improved error-dependence
pattern for the intermediate results.

ExaMPLE 3. In Example 1 a simple transformation of ¢(x) suffices:
y=o0(x)=1+ (x — 1)

When applied to the corresponding evaluation algorithm and the same starting
interval X = [0.9, 1.1], interval arithmetic now produces the optimal result:

i, =xO[1,1]=[-0.1,01],

iy =i, @ iy =[—0.01, 0.01],

ity =01, ® it; = [—0.001, 0.001],
y=13 ®[1, 1] = [0.999, 1.001].

As far as ordinary arithmetic is concerned, there is not much difference between the
two evaluation algorithms of Example 1 and Example 3. Using two digits again, the
results are practically identical to those in Example 2:

x =09 x=1.1

u,  —0.1 0.1
U 0.01 0.01
uy  —0.001  0.001
y 1.0 1.0

For an in-depth treatment of interval arithmetic the reader should
consult, for instance, Moore (1966) or Kulisch (1969).

In order to obtain statistical roundoff estimates [Rademacher (1948)], we
assume that the relative roundoff error [see (1.2.6)] which is caused by an
elementary operation is a random variable with values in the interval [ —eps,
eps]. Furthermore we assume that the roundoff errors ¢ attributable to
different operations are independent random variables. By p, we denote the
expected value and by 62 the variance of the above round-off distribution.
They satisfy the general relationship

0?2 = E(e — E(£))* = E(*) — (E(£))* = He2 — pZ.
Assuming a uniform distribution in the interval [ —eps, eps], we get

1 eps

t? dt = 1 eps? =: &%

1.5.1 =F =0 - 2\
(1.5.1) u,==E({)=0, o} =E() o |

Closer examinations show the roundoff distribution to be not quite uniform
[see Sterbenz (1974), Exercise 22, p. 122]. It should also be kept in mind that
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the ideal roundoff pattern is only an approximation to the roundoff patterns
observed in actual computing machinery, so that the quantities p, and o?
may have to be determined empirically.

The results x of algorithms subjected to random roundoff errors become

random variables themselves with expected values u, and variances o2,
connected again by the basic relation

il vy Uasiy

02 = E(x — E(x))* = E(x?) — (E(x))* = py2 — 12.

The propagation of previous roundoff effects through elementary operations
is described by the following formulas for arbitrary independent random
variables x, y and constants «, f € R:

Maxxpy = E(ax £ By) = aE(x) + BE(y) = ap, £ Bu,,
(15.2) 0%+, = E((ax + By)’) — (E(ax £ By))*
= o’E(x — E(x))* + B*E(y — E(y))* = o*c2 + p*c2.
The first of the above formulas follows by the linearity of the expected-value
operator. It holds for arbitrary random variables x, y. The second formula is

based on the relation E(xy) = E(x)E(y), which holds whenever x and y are
independent. Similarly, we obtain for independent x and y

Hexy = E(x x y) = E(x)E(y) = p 1y,
(1.53) 0ixy= E(x x y — E(X)E(Y)) = terttya — uimy
= o202 + plel + ulal.
ExaMmpLE. For calculating y = a®> — b? (see Example 2 in Section 1.3) we find, under

the assumptions (1.5.1), E(a)=a, 62 =0, E(b)= b, 6f =0, and using (1.5.2) and
(1.5.3), that

n=a*(1 +¢&)  E(n)=ad* ol =a*?
n2 = b*(1 + &), E(n:) = b* o7, = b*e,
y=m—n)1+e), EQy)=E(@m —n)EQ+ &)= a’— b’

(n1, n2, €3 are assumed to be independent),

2 __ .2 2 2 2 2 2
Oy = O0n-n01+e3 + Pny—ny 0146y + H1 46300, -0,

= (02, + 02,)&* + (a* — b?*)’&* + (a2, + o2,)
= (a* + b*)e* + [(a® — b*)* + a* + b*]E%.
Neglecting &é* compared to £? yields
o? = ((a® — b*)* + a* + b*)e%.
For a=0.3237, b:=0.3134, eps :=5 x 10™* (see Example 5 in Section 1.3), we find
o, = 0.144¢ = 0.000 0415

which is close in magnitude to the true error Ay = 0.000 01787 for 4-digit arithmetic.
Compare this with the error bound 0.000 10478 furnished by (1.3.17).
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We denote by M(x) the set of all quantities which, directly or indirectly,
have entered the calculation of the quantity x. If M(x) n M(y) # & for the
algorithm in question, then the random variables x and y are in general
dependent.

The statistical roundoff error analysis of an algorithm becomes extremely
complicated if dependent random variables are present. It becomes quite

=LA 2SRl IV Al LAVA L) § L LUULUEEILY

easy, however, under the following simplifying assumptions:

(1.54)

(@) The operands of each arithmetic operation are independent random
variables.

(b) In calculating variances all terms of an order higher than the smallest
one are neglected.

(c) All variances are so small that for elementary operations t in first-order
approximation, E(x t y) = E(x) T E(y) = p, T i,.

If in addition the expected values u, are replaced by the estimated values x,
and relative variances &2 =02 /u2 = o2 /x* are introduced, then from (1.5.2)
and (1.5.3) [compare (1.2.6), (1.3.5)],

x\? W, -
z=fl(xty) &= (—) e+ (;) e + &,
z=1l(x x y): & =&+ ¢ +&,

z=1l(x/y): & =& +¢e +&.

It should be kept in mind, however, that these results are valid only if the
hypotheses (1.5.4), in particular (1.5.4a), are met.

It is possible to evaluate above formulas in the course of a numerical
computation and thereby to obtain an estimate of the error of the final
results. As in the case of interval arithmetic, this leads to an arithmetic of
paired quantities (x, e2) for which elementary operations are defined with
the help of the above or similar formulas. Error bounds for the final results r
are then obtained from the relative variance &7 , assuming that the final error
distribution is normal. This assumption is justified inasmuch as the distribu-
tions of propagated errors alone tend to become normal if subjected to many
elementary operations. At each such operation the nonnormal roundoff
error distribution is superimposed on the distribution of previous errors.
However, after many operations, the propagated errors are large compared
to the newly created roundoff errors, so that the latter do not appreciably
affect the normality of the total error distribution. Assuming the final error
distribution to be normal, the actual relative error of the final result r is
bounded with probability 0.9 by 2¢,.
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EXERCISES FOR CHAPTER 1

1.

:tk

Show that with floating-point arithmetic of t decimal places

holds in analogy to (1.2.2). [In parallel with (1.2.6), as a consequence,
fl(a * b) = (a * b)/(1 + &) with |e| <5 x 10! for all arithmetic operations

* =4+, —, X, /]

. Let a, b, ¢ be fixed-point numbers with N decimal places after the decimal point,

and suppose 0 < a, b, ¢ < 1. A substitute product a * b is defined as follows: Add
107%/2 to the exact product a - b, and then delete the (N + 1)-st and subsequent
digits.

(a) Give a bound for |(a * b) * ¢ — abc].

(b) By how many units of the Nth place can (a * b) * ¢ and a * (b * ¢) differ?

n
. Evaluating ) q; in floating-point arithmetic may lead to an arbitrarily large

i=1
relative error. If, however, all summands q; are of the same sign, then this relative
error is bounded. Derive a crude bound for this error, disregarding terms of
higher order.

naxs bmaxs t punliiate sha
Show how to evaluate the

1 1 -
(5% 1% for |x| <1,
/ 1
X+ — - x—l for x > 1,
x x
1 —cos x

for x#0, x| <1

. Suppose a computer program is available which yields values for arcsin y in

floating-point representation with t decimal mantissa places and for |y| <1
subject to a relative error ¢ with |¢| <5 x 107" In view of the relation

. x
arctan x = arcsin 55
J1+x

this program could also be used to evaluate arctan x. Determine for which values
x this procedure is numerically stable by estimating the relative error.

. For given z, the function tan(z/2) can be computed according to the formula

_ 1/2
tan zZ_ + 1 —cosz .
2 1 +cosz

Is this method of evaluation numerically stable for z = 0, z = n/2? If necessary,
give numerically stable alternatives.
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7. The function

9.

10.

11.

1
Jcos? ¢ + k2 sin? ¢

flo, k)=
is to be evaluated for 0 < o <n/2,0 <k < 1.
The method
k?:=1—kZ,
o k) = ——
)= A K sin? o

avoids the calculation of cos ¢ and is therefore faster. Compare this with the
direct evaluation of the original expression for f (¢, k.) with respect to numerical
stability.

For the linear function f(x):=a + bx, where a # 0, b + 0, compute the first
derivative D), f(0) = f'(0) = b by the formula

_ I —f(=h)

Dh f (0) - 2h

in binary floating-point arithmetic. Suppose that a and b are binary machine
numbers, and h a power of 2. Multiplication by h and division by 2h can be
therefore carried out exactly. Give a bound for the relative error of D,, f(0). What

is the behavior of this bound as h —» 0?

The square root =+ (u + iv) of a complex number x + iy with y #+ 0 may be
calculated from the formulas

u_+\/x+m

2 b

Compare the cases x > 0 and x < 0 with respect to their numerical stability.
Modify the formulas if necessary to ensure numerical stability.

The variance S? of a set of observations x, ..., x, is to be determined. Which of
the formulas

1 n
§? = ( x,-z—nxz),
n—1 i=zl
P i (x; — x)? with %=1 ix-
n—1~0" n&st

is numerically more trustworthy?
The coefficients a,, b,(r =0, ..., n) are, for fixed x, connected recursively:
b, = a,;

(*) forr=n—-1,n-2,...,0: b,=xb,,, +a,.



Exercises for Chapter 1

(a) Show that the polynomials

35

A(z)= Z":Oa,z', B(z)= zn:b,z'“

r
satisfy
Az

(b) Suppose A(x) = by is to be

1

= (z — x)B(z) + by

P

calculated by the recursion (*) for fixed x in

floating-point arithmetic, the result being by,. Show, using the formulas

(compare Exercise 1)

u+v
fl(u+v)=1+6, lo| <eps,
fl(u-v) = 1“4'_';, |n| < eps,
the inequality
’ e !
|AG) =~ b5| <3 o (2e0 b5 )

where e, is defined by the following recursion:

forr=n—-1,n

€= |a|/2;

-2,..,0; e=|x|e+1+ |b|.

Hint: From
b, =ay,
— , _ Xb:'+l
I7r—fl(xb,«n)—‘—_l_}_n’+1 $ r=n-1,...,0,
’ "+a" ’
b, :=fl(pr +ar)= pl__f_‘o,: = Xbr+l +a, + 9,
derive
6,= —xb, 4, Mrr — o,b, (r=n-1,...,0)
1+TC,+1

then show by = Y %-¢ (ax + du)x*

12. Assuming Earth to be spherical,
Cartesian coordinates

, 8, =0, and estimate )% | 6| | x |*.

two points on its surface can be expressed in

pi = [xi, yi, z)] = [r cos a; cos B;, r sin a; cos B;, r sin B}, i=1,2,

where r is the earth radius and «;, B; are the longitudes and latitudes of the two

points p;, respectively. If

Pip2 _
r?

cos § = cos(a

1 — a2) cos B, cos B, + sin B, sin B,,

then rd is the great-circle distance between the two points.
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(a) Show that using the arccos function to determine é from the above expres-
sion is not numerically stable.
(b) Derive a numerically stable expression for 4.
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Interpolation

Consider a family of functions of a single variable x,

®(x; ag, - .-, a,),

hoying 1 smoramatarg sl ~ al: chara > l\n e IOt
naving »n + 1 parameters ag, ..., g,, WNosc vaiues cnaract erize the indivi-

dual functions in this family. The interpolation problem for ® consists of
determining these parameters a; so that for n + 1 given real or complex pairs
of numbers (x;, f;), i=0, ..., n, with x; # x, for i # k,

(p(xi;ao,...,a")=ﬁ, i=0,...,n,
holds. We will call the pairs (x;, f;) support points, the locations x pport

abscissas, and the values f; support ordinates. Occasionally, the vai ues of
derivatives of @ are also prescribed.

The above is a linear interpolation problem if ® depends linearly on the
parameters a;:

D(x; ag, ..., a,) = agPo(x) + a; @,(x) + - + a, D,(x).

This class of problems includes the classical one of polynomial interpolation
(Section 2.1),

®(x; g, ..., Ap) =G + A1 X + Ay x> + - + @, X",
as well as trigonometric interpolation (Section 2.3),
®(x; ag, ..., Q) = Ao + a, € + a,e* + - + g, (iP= —1).

In the past, polynomial interpolation was frequently used to interpolate
function values gathered from tables. The availability of modern computing
machinery has reduced the need for extensive table lookups. However, poly-
nomial interpolation is also important as the basis of several types of numer-

37
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ical integration formulas in general use. In a more modern development,
polynomial and rational interpolation (see below) are employed in the con-
struction of “extrapolation methods ” for integration, differential equations,
and related problems (see for instance Sections 3.3 and 3.4).

Trigonometric interpolation is used extensively for the numerical Fourier
analysis of time series and cyclic phenomena in general. In this context, the
so-called “fast Fourier transforms ” are particularly important and success-
ful (Section 2.3.2).

The class of linear interpolation problems also contains spline interpola-
tion (Section 2.4). In the special case of cubic splines, the functions @ are
assumed to be twice continuously differentiable for x € [x,, x,] and to coin-
cide with some cubic polynomial on every subinterval [x;, x;, ] of a given
partition xg < x; < < X,.

Spline interpolation is a fairly new development of growing importance.
It provides a valuable tool for representing empirical curves and for approxi-
mating complicated mathematical functions. It is increasingly used when
dealing with ordinary or partial differential equations.

Two nonlinear interpolation schemes are of importance: rational
interpolation,
ag + ay;x + -+ a,x"

(D(x;ao,...,an,bo,...,bm)5b0+b b
1 m

and exponential interpolation,
D(X; ag, ..., Ap, Ags .-y Ay) = Ag€** + ay €M™ + - + a, ™,

Rational interpolation (Section 2.2) plays a role in the process of best
approximating a given function by one which is readily evaluated on a
digital computer. Exponential interpolation is used, for instance, in the

analvsis of radioactive decav.

IG1y O10 Vi 1QaVAVMIY VY LV ay

Interpolation is a basic tool for the approximation of given functions. For
a comprehensive discussion of these and related topics consult Davis (1965).

2.1 Interpolation by Polynomials

2.1.1 Theoretical Foundation: The Interpolation Formula
of Lagrange

In what follows, we denote by IT, the set of all real or complex polynomials
P whose degrees do not exceed n:

P(x)=ao+a;x+ -+ a,x"

(2.1.1.1) Theorem For n + 1 arbitrary support points
(xl"f;')’ i=05"'sn9 X,‘#kaori#k,
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there exists a unique polynomial P € I, with

P(x;) =1, i=0,1,...,n
PROOF. Uniqueness: For any two polynomiais P,, P, € I1, with
N1 »n
Uy Ly coeg Ik

Pix)= P (x\)= i =
1\Ri) = L2\Ri) T i ¢

2

the polynomial P:=P, — P, € I, has degree at most n, and it has at least
n + 1 different zeros, namely x;, i =0, ..., n. P must therefore vanish iden-
tically, and P, = P,.

Existence: We will construct the interpolating polynomial P explicitly
with the help of polynomiais L; € I1,, i =0, ..., n, for which

{1 £ __ 1
. = g == Jl ST
(2.1.12) Li(xi) = Ou 10 ifi+k

The following Lagrange polynomials satisfy the above conditions:

o (e =xp) o (= Xim g )X — Xi4q) - (X = Xy)
Lix):= (i = X0) -o (Xi = X )X — Xigq) --. (% — X,

(2.1.1.3) )
w(x -
=-—-1—F— Wwitho(x):= X — X;).
= xy W e)= TLee=x)
Note that our proof so far shows that the Lagrange polynomials are
uniquely determined by (2.1.1.2).
The solution P of the interpolation problem can now be expressed
directly in terms of the polynomials L, leading to the Lagrange interpolation
formula:

2119 Pe)= 3 L= 3 4 [T S8, O

The above interpolation formula shows that the coefficients of P depend
linearly on the support ordinates f;. While theoretically important, Lagran-
ge’s formula is, in general, not as suitable for actual calculations as some
other methods to be described below, particularly for large numbers n of
support points. Lagrange’s formula may, however, be useful in some situa-
tions in which many interpolation problems are to be solved for the same

support abscissae x;, i =0, ..., n, but different sets of support ordinates f;,
i=0,...,n

ExAMPLE. Given for n = 2;

x,-013
1132

Wanted: P(2), where P € I1,, P(x;)=fifori=0, 1, 2.
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Solution:
_ (x=1)(x = 3) _ (x=0)(x - 3) _(x=0)x—1)
B | M e (T R R
P(2)=1-1_0(2)+3-L1(2)+2-L2(2)=1-‘T1 +3-1+2-%=¥

2.1.2 Neville’s Algorithm

Instead of solving the interpolation problem all at once, one might consider
solving the problem for smaller sets of support points first and then updating
these solutions to obtain the solution to the full interpolation problem. This
idea will be explored in the following two sections.

For a given set of support points (x;, f;),i=0, 1, ..., n, we denote by

P i € I
that polynomial in IT, for which

Py, .alx)=f;,, i=0,1,.. k

These polynomials are linked by the following recursion:
(2.1.213) Pl(X) Ef;,

igiy ...

(2121b) Pioi1 ,-k(x) (x — xio)Piliz i"(x) — (x — xik)Piol'l v - 1(x) .

X X

il

i~ Nio

PROOF. (2.1.2.1a) is trivial. To prove (2.1.2.1b), we denote its right-hand side
by R(x). and go on to show that R has the characteristic properties of

P;;, ... - The degree of R is clearly no greater than k. By the definitions of
Pio... ixk-1 and Pi1 e ik

R(xio) = Pio OO 1(xi0) =j;'09

R(xi,,) = P;, ...ik(xik) = Jips
and

R(xy) = B = Xy = b =l _

Xi, — Xig

for j=1,2,..., k—1. Thus R=P,; ., , in view of the uniqueness of
polynomial interpolation [Theorem (2.1.1.1)]. O

Neville’s algorithm aims at determining the value of the interpolating
polynomial P for a single value of x. It is less suited for determining the
interpolating polynomial itself. Algorithms that are more efficient for the
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latter task, and also more efficient if values of P are sought for several
arguments x simultaneously, will be described in Section 2.1.3.

Based on the recursion (2.1.2.1), Neville’s algorithm constructs a symme-
tric tableau of the values of some of the partially internnlming polynomials

bleau of the values of some of the partially interpolating polynomia
P

, for fixed x:

iogig ...
k=0 1 2 3

Xo fo= Po(x)
Pox(x)

X fi = Py(x) sz(x)

(2.122) T Py5(x) Po123(x)

X2 fo = P,ix) Pya3(x)
Py3(x)—

X3 fi= P3(x)

The first column of the tableau contains the prescribed support ordinates f;.
Subsequent columns are filled by calculating each entry recursively from its
two “neighbors” in the previous column according to (2.1.2.1b). The entry
P,,;(x), for instance, is given by

(v — v YD Y A v\ FERY
A ALJE 23 A) A A3 12A)

X3 — Xy

ExaMPLE. Determine Py ;,(2) for the same support points as in section 2.1.1.

k=0 1 2

Xn=0 J0=P0(2)=1

xp =1 fi=P,2)=3 Py12(2) =42

Xy =3 fa=Py(2)=2

=(2—0)-3—(2—1)-1 _

Poi(2) s 5
P 20 22005
Poa(2)= 20 542_—0(2 -3)-5 _ 1~3q'

We will now discuss slight variants of Neville’s algorithm, employing a
frequently used abbreviation,

(2.1.23) T =Piisy, itk
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The tableau (2.1.2.2) becomes

Xo Jo=Tho
Ty
1 Ji = 1ji0 <22
(2.1.24) ’1"21\ /-,T33
X2 fa=Th 2T
\Tsl/
X3 fi= Tso/

The arrows indicate how the additional upward diagonal T;,, T;4, ..., T; can
be constructed if one more support point (x;, f;) is added.

»»»»»

The recursion (2.1.2.1) may be modified for more efficient evaluation:
(21.25a) To:=f;

(x = x; )T g — (x — xi)n—l,j;l_

Ty =
(2.1.2.5b)

for i =0 step 1 until n.do
begin ¢[i] =/[i];
for j:=i— 1 step — 1 until 0 do
tll=1lj + 11+ ([ + 1] — o[j]) x (z — x[iP/x[i] — x[j1)

end;

After the inner loopn has terminated. t[ 1] = 0 <j < i. The desired

TESSSSsasEEETESS ‘l l J’ >~ ST EAAs W

value T,, = Py, of the interpolating polynom1a1 can be found in ¢[0].

Still another modiﬁcation of Neville’s algorithm serves to improve some-
what the accuracy of the interpolated polynomial value. Fori =0, 1, .
let the quantities Q; , D, be defined by

Qio =Dy =1,

Qu=Tyu— T x4 \
Dy =T, — 7:'—1.1(—1’

The recursion (2.1.2.5) then translates into
(2.1.2.6)

> 1,

Qi =(Dik—1— Qi—1.x-1) i

Xi—x — X

X — X
Dy =(D ik-1—Qicqx-1) L

Xi—x — X;
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Starting with Q;, :=D;o *=f;, one calculates Q,,, D, from the above recur-
sion. Finally

=

T :=f L
“nn Jn 1V

k

0.
Xnk

1

If the values fy, ..., f, are close to each other, the quantities Q; will be small
compared to f;. This suggests forming the sum of the “corrections”
Qnis ---» Qun first [contrary to (2.1.2.5)] and then adding it to f,, thereby
avoiding unnecessary roundoff errors.

Note finally that for x = 0 the recursion (2.1.2.5) takes a particularly
simple form

2127a) T =,

Tyt — Ty ae
(2.1.2.7b) Tp=T o+ —iZLAd 1<k<i

Xi-k _ 4
X

—as does its analog (2.1.2.6). These forms are encountered when applying
extrapolation methods.

For historical reasons mainly, we mention Aitken’s algorithm. It is also

based on (2.1.2.1), but uses different intermediate polynomials. Its tableau is
of the form

Xo | fo= Po(x)

Xy fi=Py(x) Poy(x)

Xy | f2=Py(x) Po(x) Poy2(x)

X3 f3 = P3(x) Pos3(x) Poy3(x) Po123(x)

Xa | fa=P4(x) Poa(x) Po14(x) Po124(x) Po1234(x)

The first column again contains the prescribed values f;. Each subsequent
entry derives from the previous entry in the same row and the top entry in
the previous column according to (2.1.2.1b).

2.1.3 Newton’s Interpolation Formula: Divided Differences

Neville’s algorithm is geared towards determining interpolating values
rather than polynomials. If the interpolating polynomial itself is needed, or if
onc wants to find interpolating values for several arguments £; simultan-
eously, then Newton’s interpolation formula is to be preferred. Here we
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write the interpolating polynomial P € I1,, P(x;)=f;,i=0, 1, ..., n, in the
form

I)(JC) = 1)01 ".n()c)
(2.1.3.1) = ay + ay(x — Xo) + az(x — xo)(x — x;) + -+
+ a,(x = X0) .-+ (x — X, 1).

Note that the evaluation of (2.1.3.1) for x = £ may be done recursively as
indicated by the following expression:

Yoo L a ME— x
] T J\S N

Thic 'y *1 +h aliiats M121) ¢
111iS requ;reo ICWer GperauGﬁS tnan evaluauﬁg \<-1.0.1) iCrm by term. It

corresponds to the so-called Horner scheme for evaluating polynomials
which are given in the usual form, i.e. in terms of powers of x, and it shows
that the representation (2.1.3.1) is well suited for evaluation.

It remains to determine the coefficients g; in (2.1.3.1). In principle, they
can be calculated successively from

fo = P(x,) = a,,
fi=P(x;) = ao + a,(x; — x,),

i

f2 = P(x;) = ag + ay(x3 — xo) + az(x; — Xo)(x2 — x;),

This can be done with n divisions and n(n — 1) multiplications. There is,
however, a better way, which requires only n(n + 1)/2 divisions and which
produces useful intermediate results.

Observe that the two polynomials P; ; _;(x)and P, ; _; ,(x)differ by a
polynomial of degree k with k zeros x,o, R P since both polyno-
mials interpolate the corresponding support points. Therefore there exists a
unique coefficient

igiy .

(2132) fiotris  k=0,1,..n,
such that
(2.1.3.3)
Pii, %) = Pigiy iy () + figiy ilx — X — xi,) -0 (x — x;, ).

From this and from the identity P; (x) = f;, it follows immediately that
(2.1.3.4) Py, 4(x) =S F fioi (X — X;0) + -+
+ froty (X = Xi)(x — Xi,) oo (x = x;,_,)

is a Newton representation of the partially interpolating polynomial
P, ...i,- The coefficients (2.1.3.2) are called k th divided differences.
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The recursion (2.1.2.1) for the partially interpolating polynomials trans-
lates into the recursion

.fil N _.fio R

Xi, — Xig

—
(®)
[
W
tn

e’

f. . .
Jigiy ... ik

and f; ., _, are the

for the divided differences, since by (2.1.3.3), f;, .,

coefficients of the highest terms of the polynomials P; ;, ; and P,; i _,,
respectively. The above recursion starts for k = 0 with the given support
ordinates f;, i=0, ..., n. It can be used in various ways for calculating
divided differences f;_, fi.i,, - .-, fii, ... i,» Which then characterize the desired

interpolating polynomlal P=P,

ioiy . n
Recause the nolvnomial P.

vwis e v P YAy RAVIIAGE 2 loll

—
7

uniguelv determined hv the sunno
y Q¢ pport

lk u;aa\luv -.v- AZARRANNS iiv S

points it mterpolates [Theorem (2 1.1 1)], the polynomial is 1nvar1ant to any
permutation of the indices iy, iy, ..., i, and so is its coefficient f; ;, . ;, of x*.
Thus:

(2.1.3.6). The divided differences f,;, .., are invariant to permutations of the
indices iy, iy, ..., i If

(jOsjl" ’]k) (30’131""’is;,)

is a permutation of the indices iy, iy, ..., i, then

Jiair s = Jiois ..

If we choose to calculate the divided differences in analogy to Neville’s
method—instead of, say, Aitken’s method—then we are led to the following
tableau, called the divided-difference scheme:

k=0 k=1 k=2 k=n

Xo Jo
fo1
Xy N fo12
(2.13.7) . le ) ‘. A
X2 12 . : ) fo12...n
fn—2,n—l,n
fn—l,n

X Jn

The entries in the second column are of the form
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those in the third column,

f012=f12 —fox, f123=f23 —J12

X3 — Xo X3 — X;
Clearly,
P(x)= Poy ...a(x)
= fo +fo1(x — xo) + - + for .alx = Xo)(x — x1) ... (x = x,-1)

is the desired solution to the interpolation problem at hand. The coefficients

of the above exnansion are found in the top dpcnpndlng diagonal of the

QUUTY VApPQLUDIVIL QiVv iV N v wwiiNeiaa SeIQ UL VR v

divided-difference scheme (2.1.3.7).

ExAMPLE. With the numbers of the example in sections 2.1.1 and 2.1.2, we have:

XO=0 f0=1
Jor =2

x; =1 fi=3 Jorz= —
12= —2

X3 —3 fa=2

f012(,& fl-r2(x—0)—%(l—0)(x— 1),

Instead of building the divided-difference scheme column by column, one
might want to start with the upper left corner and add successive ascending
diagonal rows. This amounts to adding new support points one at a time
after having interpolated the previous ones. In the following ALGOL
procedure, the entries in an ascending diagonal of (2.1.3.7) are found, after
each increase of i, in the top portion of array t, and the first i coefficients
fo1 ...; are found in array a.

for i =0 step 1 until n do
begin f[i]:=/Ti];
for j:=i — 1 step — 1 until O do
tlj] = (elj + 1] — D[] — x[jD);
iy afi] = ¢[0]

Afterwards, the interpolating polynomial (2.1.3.1) may be evaluated for any
desired argument z:

p=aln];

for i:=n — 1 step — 1 until 0 do
p=p x (z — x[i]) + a[i];
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Some Newton representations of the same polynomial are numerically
more trustworthy to evaluate than others. Choosing the permutation so that

|6 —x, | > |6=x,_,], k=01,..,n-1

b

dampens the error (see Section 1.3) during the Horner evaluation of
(2.1.3.8)

P(x)= Pi, (%) = fig + fiois (X = Xig) + - 4 figiy i — Xi0) oo (6 — x;,_ )

All Newton representations of the above kind can be found in the single
divided-difference scheme which arises if the support arguments x;,
i=0,...,n, are ordered by size: x; < x;,, for i=0, ..., n — 1. Then the
preferred sequence of indices iy, iy, ..., i, is such that each index i, is
“adjacent” to some previous index. More precisely, either i, = min{i;|0 <
l<k}—1 or i, =max{j;|0<I!<k}+1 Therefore the coefficients of
(2.1.3.8) are found along a zigzag path—instead of the upper descending
diagonal—of the divided-difference scheme. Starting with f; , the path

proceeds to the upper right neighbor if i, < i, _, or to te lower right neigh-
bor if iy > i,_,.

ExXAMPLE. In the previous example, a preferred sequence for & = 2 is
i0= 1, i1=2, 12=0
The corresponding path in the divided difference scheme is indicated below:

xo =0 fo=1
f01=2
x =1 fi=3 for12=—%

f12=—117
x2=3 f2=2

The desired Newton representation is:

Piao(x)=3 —3(x — 1) — 3(x — 1)(x — 3),
Piaol2) = (—32 - 3) DR - 1) +3 =4

Frequently, the support ordinates f; are the values f(x;) = f; of a given
function f(x), which one wants to approximate by interpolation. In this case,
the divided differences may be considered as multivariate functions of the
support arguments x;, and are historically written as

fXip -0 X3}
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These functions satisfy (2.1.3.5). For instance,

SIxo]l =1 (x0),

r 3 Jf[xi] _Jf[XG] Jf(xi) _Jf\xﬁ)
fle, xl] = = )
X1 — Xo X1 — Xo

Slx1s X2] = f[x0, x4]
_ S 0e2)(xy = xo) = f (x1)(x2 — Xo) + f (Xo)(x2 — Xy)

N (1 = Xo)(x2 — Xo)(x2 — Xy)

f[xo, X1s x2] =

b

f[xO’xl, ---,xk]E f[xb ey xk] _f[xO, ""xk—I],
xk—xo

Also, (2.1.3.6) gives immediately:

(2.1.3.9) Theorem. The divided differences f|x;,, ..., x;] are symmetric func-

io*
tions of their arguments, i.e., they are invariant to permutations of the

. .
Xigs =9 Xiy-

If the function f(x) is itself a polynomial, then we have the

(2.1.3.10) Theorem. If f(x) is a polynomial of degree N, then

f[xO, ...,xk]=0
for k > N.

Proor. Because of the unique solvability of the interpolation problem
(Theorem 2.1.1.1), P,  .(x)=f(x) for k > N. The coefficient of x* in

by f[xo, ..., ;] according to (2.1.3.3). O

EXAMPLE. f(x) = x2.

X; k=0 1 2 3 4
0 0
1
1 1 1
3 0
2 4 1 0
5 0
3 9 1
7
4 16
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If the function f(x) is sufficiently often differentiable, then its divided
differences f[x,, ..., x,] can also be defined if some of the arguments x;
coincide. For instance, if f (x) has a derivative at x,, then it makes sense for

(‘Pt‘fﬂiﬂ nurnnees to {‘Pﬁﬂf-‘

WA LRIl s PUSWYS U Neviaiiav

flxo, x0]=f"(xo)-

For a corresponding modification of the divided-difference scheme (2.1.3.7)
see Section 2.1.5 on Hermite interpolation.

2.14 The Error i

A 11w

Once again we consider a given function f(x) and certain of its values

fi=f(x:) i=0,1,...,n

which are to be interpolated. We wish to ask how well the interpolating
polynomial P(x) = P, __,(x) with

P(x;) = f;, i=0,1,...,n

reproduces f (x) for arguments different from the support arguments x; . The

_____ £(x) — P(x),

where x # x;,i =0, 1, can clearly become arbitrarily large for suitable func-
tions f unless some restrictions are imposed on f. Under certain conditions,
however, it is possible to bound the error. We have, for instance:

(2.1.4.1) Theorem. If the function f has an (n + 1)st derivative, then for every
argument X there exists a number & in the smallest interval I[x,, ..., X,, X]
which contains x and all support abscissas x;, satisfying

F6) = Por..o5) = L1,

where
o(x) = (x — xo)(x — x4) ... (x — x,,).

PrOOF. Let P(x):= Py, _,(x) be the polynomial which interpolates the
function at x;, i =0, 1, ..., n, and suppose X # x; (for x = x; there is nothing
to show). We can find a constant K such that the function

F(x):=f(x) — P(x) — Kw(x)
vanishes for x = x:

F(%) = 0.



50 2 Interpolation

Consequently, F(x) has at least the n + 2 zeros

X0s cees Xy X

in the interval I{x,, ..., x,, X]. By Rolle’s theorem, applied repeatedly, F '(x)

has at lqas_ + 1 zeros in the above interval, F”(x) at least n zeros, and
finally F‘"“’(x) at least one zero ¢ € I[x,, ..., x,, XJ.
Since P"* Y(x) = 0,

Fnt 1)(5) =f(n+ 1)(5) — K(n + 1)! =
or
f(n+ 1)(6)
(n+ 1)1
This proves the proposition
o(X)

(n+1)!

A different error term can be derived from Newton’s interpolation for-
mula (see Section 2.1.3):

f(x) = P(X) = Ko(x) = —— =5 "+ D(E). O

n

Pix) 1..n(X¥) = fTxo] + f1x0, x1](x — x0) + -
+f[x0’ Xiy oees x,,](x - XQ) (x — xn-—l)'

Here f[x,, X;, ..., x,] are the divided differences of the given function f. If in
addition to the n + 1 support points

(xi, ) fi=1(x), i=0,1,...,n
we introduce an (n + 2)nd support point
(Xns 1o far 1)t Xnr1 =X, fro1=f(X),
where
X # Xx;, i=0,...,n,
then by Newton’s formula

J(X)= Po _.n+1(X) = Po __a(X) + fx0, ..., X,, X]e(X),
or

(2.142) f(x) = Po_.alX) = 0(x)f X0, -, Xa, X]

The difference on the left-hand side appears in Theorem (2.1.4.1), and since
w(x) # 0, we must have

1)

f[xO,---’xn’)_C]= (n+ 1)|

for some ¢ € I[x,, ..., x,, X].
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This also yields

(2143)  flxo,---» Xa) for some & € I[xq, ..., X,),

_ f(")(é)
n!

which relates derivatives and divided differences.

EXAMPLE. f(x) = sin x:

xi=%, i=0,1,2,3,45 n=S5,

sin x — P(x) = (x — xo)(x — x1) ... (x — xs):%g—é,
. _ 1 _ _ _ - |w(x)|
|sin x — P(x)| < 7do|(x — xo)(x — x1) ... (x — x5)| =

We end this section with two brief warnings, one against trusting the
interpolating polynomial outside of I[x,, ..., X,] and one against expecting
too much of polynomial interpolation inside I[x,, ..., x,]-

In the exterior of the interval I[x,, ..., x,}, the value of |w(x)| in
Theorem (2.1.4.1) grows very fast. The use of the interpolation polynomial P
for approximating f at some location outside the interval
I[xq, ..., x,}—called extrapolation—should be avoided if possible.

Within I[x,, ..., x,] on the other hand, it should not be assumed that
finer and finer samplings of the function f will lead to better and better
approximations through interpolation.

Consider a real function f which is infinitely often differentiable in a
given interval [a, b]. To every interval partition A= {a=xo < x; < <
x, = b} there exists an interpolating polynomiai P, € I1, with P,(x;) = f; for
x; € A. A sequence of interval partitions

A,={a=x{ <x < < x™ = b}

gives rise to a sequence of interpolating polynomials P, . One might expect
the polynomials P, to converge toward f if the fineness

] =max |2, x|
i
of the partitions tends to 0 as m — oo. In general this is not true. For
example, it has been shown for the functions

R
1+ x%’

flx)= [a,b] =[-5,5], or f(x)=./x, [ab]=[0,1],

that the polynomials P, do not converge pointwise to f for arbitrarily fine
uniform partitions A,,, xX™ =a + i(b —a)/m,i=0, ..., m.
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2.1.5 Hermite Interpolation

Consider the real numbers &;, y®, k=0,1,...,n,— 1,i=0,1, ..., m, with

Co<C1 < <Cm

The Hermite interpolation problem for these data consists of determining a
polynomial P whose degree does not exceed n, where

n+1:=>%n,
i=0
and which satisfies the following interpolation conditions:

1\ k) g\ __ (k) ., _ N 1 . 1 N1 22
A) NG =yih K=uU, 1, ..., ; — 1, I=VU, 1,...,TIn.

W

2.1.

—

This problem differs from the usual interpolation problem for polynomials
in that it prescribes at each support abscissa &; not only the value but also
the first n; — 1 derivatives of the desired polynomial. The polynomial inter-
polation of Section 2.1.1 is the special case n; = 1,i=0, 1, ..., m.

There are exactly  n;=n+1 conditions (2.1.5.1) for the n+1
coefficients of the interpolating polynomial, leading us to expect that the
Hermite interpolation problem can be solved uniquely:

(2.1.5.2) Theorem. For arbitrary numbers &, <&y < <&,, ¥, k=0,
1,...,m;—1,i=0, 1, ..., m, there exists precisely one polynomial

Pell,, n+1:=Y3n,
i=0

which satisfies (2.1.5.1).

ProoF. We first show uniqueness. Consider the difference polynomial
Q(x):= P,(x) — P,(x) of two polynomials P,, P, € II, for which (2.1.5.1)
holds. Since

Q(k)(éi)=0’ k=0, 1,'-°,ni_1, l=0, 1,...,m,

&, is at least an n;-fold root of Q, so that Q has altogether ) n; = n + 1 roots,
each counted according to its multiplicity. Thus Q must vanish identically,
since its degree is less than n + 1.

Existence is a consequence of uniqueness: For (2.1.5.1) is a system of n
linear equations for n unknown coefficients c; of P(x)=co +c¢;x +
-++ 4+ ¢, x". The matrix of this system is not singular, because of the uni-
queness of its solutions. Hence the linear system (2.1.5.1) has a unique
solution for arbitrary right-hand sides y®. O

Hermite interpolating polynomials can be given explicitly in a form ana-
logous to the interpolation formula of Lagrange (2.1.1.4). The polynomial
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P € 11, given by

m m—1
(2153) P)= Y T WL4(x)

i=0 k=0
satisfies (2.1.5.1). The polynomials L € II, are generalized Lagrange poly-
nomials. They are defined as follows: Starting with the auxiliary
polynomials

Iik(x)==£)i;é—i)f l‘m[ (x—é_,-)"i 0<is<m, 0<k<n

O
|
-

[compare (2.1.1.3)], put
Li.ni—l(x):zli.n,'—l(x)’ l=0, 1, e, m,
and recursively fork=n,— 2, n,— 3, ..., 0,
n—1
Li(x) = ly(x) — kz K(E)L(x).
v=k+1

By induction

L=t Hi=jandk=o
{0 otherwise
Thus P in (2.1.5.3) is indeed the desired Hermite interpolating polynomial.
In order to describe alternative methods for determining P, it will be
useful to represent the data &;, y™,i=0,1,...,mk=0,1,....,n,— 1,ina
somewhat different form as a sequence %, = {(x;, fi)}i=o. ... Of n + 1 pairs
of numbers. The pairs

(xost)’ (xlsfl), ) (xno—l, j;l()" 1)5 (x,,o, fno)’ ceny (x,.,f;,)
of #, denote consecutively the pairs
(509 y(()O))9 (éO’ y(()l))’ fet (60’ y((;”—l))7 (él’ y(IO))’ tet (ém’ ysr'nlm— l))'

Note that x, < x; < -** < x, and that the number ¢; occurs exactly n; times
in the sequence {x;};—o. . -

reny

EXAMPLE 1. Suppose m =2, no =2, n; = 3 and
£o=0, yW=-1 y'=-2;
EGi=1, y=0, W=10, yP=40
This problem is described by the sequence F4 = {(x;, fi)}i=o. ... 4:
(0. fo)= (0. 1), (enfi)=(0, =2)  (x2.f2) = (1, O)
(x3.f3) = (1, 10), (x4, fa) = (1, 40).
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Given any Hermite interpolation problem, it uniquely determines a se-
quence #,, as above. Conversely, every sequence #, = {(x;, f})}i=0, .. Of
n + 1 pairs of numbers with x, < x; < - < x, determines a Hermite inter-
polation problem, which will be referred to simply as #,. It also will be
convenient to denote by

[x — xo ¥

the polynomials

[x — x0]° =1,
(2.1.5.4) -
[x = xo V== (x — xo)(x — x3) ... (x = x;-,)
of degree j.
Our next goal is to represent the polynomial P which interpolates &, in
Newton form [compare (2.1.3.1)]:

(2.1.5.5) P(x)=ap + a,[x — xo] + a,[x — xoI* + *** + a,[x — xoI"
and to determine the coefficients a; with the help again of divided differences
(2.1.5.6) a = f[xo, X1, -5 Xi), k=0,1,...,n

However, the recursive definition (2.1.3.5) of the divided differences has to be
modified because there may be repetitions among the support abscissae
Xo < x; < - < x,. For instance, if x, = x,, then the divided difference
f[xo, x;] can no longer be defined as (f[xo] — f[x,])/(x; — xo)-

The extension of the definition of divided differences to the case of
repeated arguments involves transition to a limit. To this end, let

Co<Cy < <iy

inct support abscissas, and consider the divided differences

fl&, ---» i+x) which belong to the function f(x) := P(x), where the polyno-
mial P is the solution of the Hermite interpolation problem #,. These
divided differences are now well defined by the recursion (2.1.3.5), if we let
fi=P({;) initially. Therefore, and by (2.1.3.5),

(2.157a)  P(x)= Y ajfx — (el a;=f[Co,Cy --n )

ji=0

(2.1.5.7b) fIG] = P(G),
(2.1.5.7¢c)
f[Cb Ci+l7 ey Ci+k] = f[c:'+1’ Ci+2’ crty Ci+k] _—f[Ci, Ci+l’ (RS Ci+k—l],
Ci+k - Ci
fori=0,1,...,n,k=1,...,n— i Since xy < x; < - < X, all limits

f[xi7 xi+l7 LR xi+k] = llm f[Cia Ci+1’ LR} Ci+k]

Lj=xj
i<j<i+k
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exist provided they exist for indices i, k with x; = x;,; = *** = X;,. The
latter follows from (2.1.4.3), which yields
. 1
(2.1.5.8) im fCi, Civgooens Ginad = ,,_,P(k)(xi)
i<T<ih
if X=X = = Xjupe

We now denote by r = r(i) > 0 the smallest index such that
X, =X,y =" =X;.
Then due to the interpolation properties of P with respect to %,
P®(x;) = PO(x,) = f s,
so that by (2.1.5.8)
k!
In the limit {; - x;, (2.1.5.7) becomes

flxi, Xiv 1 s Xl = if =X, =" = X
(2.1.5.9a) P(x) = _Zoaj[[x — x; 1, a;=fxo, Xy, ..., x}]
I=

f .
21.5.9b f Xis Xit1s 00 Xi+k :=:‘I*r(-l):_k lf xl- - XH,‘
k!
(2.1.59¢)  flxis Xiv1s --os Xiva]

— ST Xivas oo Xiwald = fIX0 Xiv 15 s Xivra]

Xi+k = Xj

b

otherwise.

(Note that x, < x; <--- < x, has been assumed.) These formulas now
permit a recursive calculation of the divided differences and thereby the

coefficients a; of the interpolating polynomial P in Newton form.

ExaMPLE 2. We illustrate the calculation of the divided differences with the data of

Example 1 (m=2,n, =2,n; =3):
F+=1{0, —1), (0, =2), (1, 0), (1, 10), (1, 40)}.
The following difference scheme results:
xo=0 —1*=f[xo]
~2* = f[xo. x1]

x; =0 —1*=f[x,] 3 = f[xo, x1, x2]
1=f[x1, x2] 6 =f[xo, ..., x3]
x;=1 0*=f[x;] 9 =f[x,, x3, x3] 5=f[xo0,---
10* = f[x;, x3] 11 =f[xy,..., x4
x3=1 0*=f[x;] 20* = f[x;, x3, X4}

10* = f[x3, x4]
xg=1 0*=f[x4]

[} x4]
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The entries marked * have been calculated using (2.1.5.9b) rather than (2.1.5.9¢). The
coefficients of the Hermite interpolating polynomial can be found in the upper
diagonal of the difference scheme:

- - - s T n2 ., s n3l . " -
P(x)= —1—2[x — xo] + 3[x — xo]* + 6[x — x0T + 5[x — xo]*

il
—
NI

—1—2x + 3x% 4+ 6x%(x — 1) + 5x%(x — 1)~

The interpolation error which is incurred by Hermite interpolation can
be estimated in the same fashion as for the usual interpolation by polyno-
mials. In particular, the proof of the following theorem is entirely analogous
to the proof of Theorem (2.1.4.1):

(2.1.5.10) Theorem. Let the real function f be n + 1 times differentiable on the
interval [a, b), and consider m + 1 support abscissae &; € [a, b],

fo <&y < <.

If the polynomial P(x) is of degree at most n,
Yn=n+1,
i=0

and satisfies the interpolation conditions
PRE)=f®E),  k=0,1,...m—1, i=0,1,...,m,

then to every X € [a, b] there exists € I[¢,, ..., &,, X] such that
. _y_ o(X)f V()
f(x) P(X)—- (n + 1)! ’
where

@fx) = (x — Lo)'o(x — &) ... (x — L)
Hermite interpolation is frequently used to approximate a given real
function f by a piecewise polynomial function ¢. Given a partition
Aa=C¢(y<é < <, =b

of an interval [a, b}, the corresponding Hermite function space HY is defined
as consisting of all functions ¢: [a, b] - R with the following properties:

(2.15.11).

(@) @ € C'~Y[a, b]: The (v — 1)st derivative of ¢ exists and is continuous on
[a, B].

(b) @|I; € 1,,_, : On each subinterval I,:=[¢;, &01],i=0,1,....m—1, ¢
agrees with a polynomial of degree at most 2v — 1.

Thus the function ¢ consists of polynomial pieces of degree 2v — 1 or less
which are v — 1 times differentiable at the “knots” &;. In order to approxi-
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mate a given real function f € C*~![qa, b] by a function ¢ € HY’, we choose
the component polynomials P; = ¢ |I; of ¢ so that P; € I1,,_, and so that
the Hermite interpolation conditions

P}”(éi) =f(k)(éi)5 ng)(éi-fr 1) =f(k)(éi+ 1)9 k = 0, 1’ ey V— 1,

are satisfied.

Under the more stringent condition f € C**[a, b}, Theorem (2.1.5.10) pro-
vides a bound to the interpolation error for x € I; which arises if the com-
ponent polynomial P; replaces f:

| £ £\ .. 4 \ v
A TGN TG v
/() = )| < 5= max | 72g)|
(2.15.12) |Eivy — é'lzv
< S max | f@V(E)].
22v . (2\’)‘ tel, |f (é)l

Combining these results for i =0, 1, ..., m gives for the function ¢ € HY),
which was defined earlier,

@1513) [ f= ollw= max | f(x)— o(x)| < 5ger

S (2v) © A 2v’
x €la, b) 22"(2\7)' "f ” " ”

where

"A" = max léin - é;l

0<i<m-1
is the “fineness ” of the partition A.
The approximation error goes to zero with the 2v th power of the fineness
|A; ] if we consider a sequence of partitions A; of the interval [a, b] with
|A; || = 0. Contrast this with the case of ordinary polynomial interpolation,

where the approximation error does not necessarily go to zero as |A; | -0
(Section 2.1.4).

Ciarlet, Schultz, and Varga (1967) were able to show that also the first v
derivatives of ¢ are good approximations to the corresponding derivatives

of f:
(2.1.5.14)

£ _ £ v—k
17009 = peg] < 1T 2 - ma )

forallxel;,,k=0,1,...,v,i=0,1, ..., m — 1, and therefore

|A]Z>* 1727
25721 (2 = 24)! °

2.1515)  |f% - %, <

fork=0,1,...,v.
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2.2 Interpolation by Rational Functions

2.2.1 General Properties of Rational Interpolation

t of sunnort noints {Y )i=012 ... Wewil

v M YAY VAL v Jip

now examine the use f rational functions

P“*(x) _ag+ayx+- +a,x"
0**(x) ~ bo+byx+-+b,x

O ¥(x) =

for interpolating these support points. Here the integers y and v denote the
maximum degrees of the polynomia s in the numerator and denominator,

respectively. We call the pair of integers (y, v) the degree type of the rational
interpolation problem.
The rational function ®*" " is determined by its u + v + 2 coefficients
ag, Ay, ..., a,, by, by, ..., b,.

On the other hand, ®*" ¥ determines these coefficients only up to a common

factor p # 0. This suggests that @ " is fully determined by the u +v + 1
interpolation conditions

(2.2.1.1) " (x;) =f;, i=0,1,...,u+v.

We denote by A*” the problem of calculating the rational function ®**
from (2.2.1.1).

It is clearly necessary that the coefficients a,, b; of ®"* solve the hom-
ogeneous system of linear equations

(22.1.2) P*>(x;) — f;Q**(x;) = 0, i=0,1,..., u+v,
or written out in full,
o+ ayxi+ 0 +ayxf — filbo + byxi - + byx7) =0
We denote the above system by S*:°.
At first glance, substituting S** for A" does not seem to present a
problem. The next example will show, however, that this is not the case, and

that rational interpolation is inherently more complicated than polynomial
interpolation.

ExaMPLE. For support points

x,-| 01 2
fil122
and uy=v=1:
Qg —'lbo =0,

ag +ay — 2(b0 + bl) =0,
ap + 2a1 - 2(b0 + 2b1) = 0.
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Up to a common nonzero factor, solving the above system S ! yields the coefficients
a0=0, bo=0, a1=2, b1=1,
and therefore the rational expression

2x

ol l(x) =2,
X

which for x = 0 leads to the indeterminate expression 0/0. After canceling the factor
x, we arrive at the rational expression

o (x)=2

Both expressions ®!'! and ®!'! represent the same rational function, namely the
constant function of value 2. This function misses the first support point (x,, fo) =

Biew L. AN ealSad 222233 e 2adSt L% L% 3540/

(0, 1). Therefore it does not solve A™*. Since solving S* s necessary for any
solution of A" !, we conclude that no such solution exists.

The above example shows that the rational interpolation problem A4*"*
need not be solvable. Indeed, if S** has a solution which leads to a rational
function that does not solve A" *—as was the case in the example—then the
rational interpolation problem is not solvable. In order to examine this
situation more closely, we have to distinguish between different representa-
tions of the same rational function ®" ", which arise from each other by
canceling or by introducing a common polynomial factor in numerator and
denominator. We say that two rational expressions,

. Pa(x) Py(x)
(Dl(x) = Ql(x) ° (DZ( )' Qz(x) Ql(x) $ 0’ QZ(x) $ 09
are equivalent, and write
q)l ~ (I)Z’

if
P (x)Q2(x) = P5(x)Q,(x).

This is precisely when the two rational expressions represent the same rat-
ional function.

A rational expression is called relatively prime if its numerator and deno-
minator are relatively prime, i.c., not both divisible by the same polynomial
of positive degree. If a rational expression is not relatively prime, then can-
celing all common polynomial factors leads to an equivalent rational expres-
sion which is.

Finally we say that a rational expression ®* " is a solution of $* " if its
coefficients solve S*°. As noted before, ®* " solves S$* ¥ if it solves A*".

Rational interpolation is complicated by the fact that the converse need not
hold.
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(2.2.1.3) Theorem. The homogeneous linear system of equations S** always
has nontrivial solutions. For each such solution

Q" "(x) £ 0 holds, i.e., a

Proor. The homogeneous linear system S** has u + v + 1 equations for
u + v + 2 unknowns. As a homogeneous linear system with more unknowns
than equations, S* ¥ has nontrivial solutions

(@, ay, ..., a,,b,....,b,)#(0,...,0,0,...,0).

-

AT e oy~ cernliiei~ NU, VI L O ol
For any such solution, Q" "x) £ U, since

0*"(x)=by+byx+-+b,x"=0
would imply that the polynomial P**(x) = a, + a; x + --* + a, x* has the
zZeros

P**(x;)=0, i=0,1,...,u+v.

It would follow that P**(x) = 0, since the polynomial P** has at most
degree u, and vanishes at u+v+1>pu+1 different locations,

PROSP I S
CULILLAUICLLTE

(@, ay, ..., a,,by,....,b)# (0, ..., 0) O

The following theorem shows that the rational interpolation problem has
a unique solution if it has a solution at all.

(2.2.1.4) Theorem. If ®, and ®, are both (nontrivial) solutions of the homogen-
eous linear system S*:*, then they are equivalent (0, ~ ®,), that is, they deter-
mine the same rational function.

Proor. If both ®,(x) = P(x)/Q,(x) and ®,(x)= P,(x)/Q,(x) solve S*,
then the polynomial

P(x) := Py(x)Q2(x) — P5(x)Q;(x)
has u + v + 1 different zeros
P(x;) = Py(x:)Q2(x;) — P2(x;)@1(x:)
= £;Q1(x;)Q2(x:) ~ f:Q2(x:)Q1(x:)
= 0, i=0,1,...,u+v.

Since the degree of polynomial P does not exceed u + v, it must vanish
identically, and it follows that ®@,(x) ~ ®,(x). O

Note that the converse of the above theorem does not hold: a rational
expression ®; may well solve $** whereas some equivalent rational expres-
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sion ®, does not. The previously considered example furnishes a case in
point. In fact, we will see that this situation is typical for unsolvable interpo-
lation problems.

Combining Theorems (2.2.1.3) and (2.2.1.4), we find that there exists for

each rational 1nterpolat10n problem A" " a unique rational function, which is

A e et ad wntinmnl avmesacoinn AUV 4ot arluag tha AncecacmAn Az

leleClllw Uy au_y 1ativllal UAPICDBiUll W uiat SoIves lllc VCULIWWPULIULLILE
linear system S*:*. Either this rational function satisfies (2.2.1.1), thereby

solving A", or A*" is not solvable at all. In the latter case, there must be
some support point (x;, f;) which is “ missed ” by the rational function. Such

a support point is called inaccessible. Thus A* " is solvable if there are no
inaccessible points.

Suppose ®*'(x) = P**(x)/Q*'(x
i€ {0, 1, ..., u+ v} we distinguish th
(1) @*"(x;) # 0,
(2) @*"(x)=0
In the first case, clearly, ®* *(x;) = f;. In the second case, however, the sup-
port point (x;, f;) may be inaccessible. Here

PI‘, v(x,-) = 0

must hold by (2.2.1.2). Therefore, both P*¥ and Q*” contain the factor
x — x; and are consequently not relatively prime. Thus:

a solution to S**. For any

two cases:

ﬂiv

(2.2.1.5). If $*-" has a solution ®"* which is relatively prime, then there are no
inaccessible points: A" is solvable.

Given @, let d** be an equivalent rational expression which is relatively
rime. We th have th 1€ gener. ral result:

(22.1.6) Theorem. Suppose ®** solves S**. Then A" is solvable—and ®*-”
represents the solution—if and only if ®" " solves S**".

PrOOF. If *'* solves S*, then A*” is solvable by (2.2.1.5). If & * does not
solve §**, its corresponding rational function does not solve A*:". O

Even if the linear system $*** has full rank u + v + 1, the rational interpola-
tion problem 4*'* may not be solvable. However, since the solutions of S$**
are, in this case, uniquely determined up to a common constant factor p = 0,
we have:

(2.2.1.7) Corollary to (2.2.1.6). If S** has full rank, then A*" is solvable if and
only if the solution ®"" of S**” is relatively prime.

We say that the support points (x;, f;), i =0, 1, ..., ¢ are in special posi-
tion if they are interpolated by a rational express:on of degree type (k, 1)
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with k + A < o. In other words, the interpolation problem is solvable for a
smaller combined degree of numerator and denominator than suggested by
the number of support points. We observe that

(2.2.1.8). The accessible support points of a nonsolvable interpolation problem

A"V are in special position.

PRrROOF. Let iy, ..., i, be the subscripts of the inaccessible points, and let ®**
be a solution of $* *. The numerator and the denominator of ®*' ¥ were seen
above to have the common factors x — x; , ..., x — x;_, whose cancellation
leads to an equivalent rational expression ®* with k =y —a, A =v — a.

®* % solves the interpolation problem A** which just consists of the
u+ v+ 1 — a accessible points. As

o SVMIIIVAT pPRaARS,

K+iA+l=pu+v+1l-2a<pu+v+1-—a

the accessible points of A*'* are clearly in special position. O

The observation (2.2.1.8) makes it clear that nonsolvability of the rational
interpolation problem is a degeneracy phenomenon: solvability can be
restored by arbitrarily small perturbations of the support points. In what
follows, we will therefore restrict our attention to fully nondegenerate prob-

hao al
lems that 1 1§, pI'Obl\.um for which no subset of the s support puuuo is in DpCblal

position. Not only is 4*** solvable in this case, but so are all problems 4** * of
Kk + A + 1 of the original support points where x + 4 < u + v. For further
details see Milne (1950) and Maehly and Witzgall (1960).

Most of the following discussion will be of recursive procedures for solv-
ing rational interpolation problems A™ ". With each step of such recursions
there will be associated a rational expression ®* " of degree type (u, v) with

i L and md nttlanc tlan cnrrreemmn b PR S R
JTARS

X manav ", ana CllllCl LIC 1NUllcC1atvl Ul lllc UCllUllllIldlUl Ul ‘-l" WIU DC
increased by 1. Because of the availability of this choice, the recursion
methods for rational interpolation are more varied than those for polyno-
mial interpolation. It will be helpful to plot the sequence of degree types
(4, v) which are encountered in a particular recursion as paths in a diagram:

v“ 012 3
0 *—o—q
1
2 ¢
: ]

We will distinguish two kinds of algorithms. The first kind is analogous to
Newton’s method of interpolation: A tableau of quantities analogous to
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divided differences is generated from which coefficients are gathered for an
interpolating rational expression. The second kind corresponds to the
Neville-Aitken approach of generating a tableau of values of intermediate
rational functions ®**. These values relate to each other directly.

2.2.2 Inverse and Reciprocal Differences. Thiele’s
Continued Fraction

The algorithms to be described in this section calculate rational expressions
along the main diagonal of the (u, v)-plane:

WNio 12 3
0| »—

(2.22.1) !

5
3 ‘—1

Starting from the support points (x;, f;), i =0, 1, ..., we build the following
tableau of inverse differences:

i X; h

0 X0 fo

1 X1 S @(xo, x1)

2 X2 12 ?(xo, X2) @(xo, X1, X3)

:.” X3 fa (P(xo., x3) @(xo, X1, x3) @(xo, X1 X2, X3)

The inverse differences are defined recursively as follows:

X; — X;
@(x;, x;) = ——

fi=5i°

x_i—xk

2222 olx;, xj, ) = ,
( ) ( i» %) o(xi, x;) — @(x;, Xi)

Xm — Xp

O(xiy ooy Xy X)) — O(Xi5 oy Xy, X))

(p(xh cevs Xy X xn)=
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On occasion, certain inverse differences become oo because the denomina-
tors in (2.2.2.2) vanish.

Note that the inverse differences are, in general, not symmetric functions
of their arguments.

Let P*, Q" be polynomials whose degree is bounded by u and v, respec-
tively. We will now try to use inverse differences in order to find a rational
expression

P*(x)
Q"(x)

" (x) =

with

""(x;)=f; fori=0,1,...,2n
We must therefore have

Px) _
0"(x)

P'(x)  P"(xo)

Q"(x)  Q"(xo0)

P~ 1(x) X — Xg

o)t ryP ()

fo +

= fo + (x — Xo)
The rational expression Q"(x)/P"~(x) satisfies

Q"(x; X; — X
P"'(l(x).-) == = 0xo, x))

oM L 0k o)
P~ P00 M) F el T Ry
0" '(x)
= (p(-an xl) + (x - xl)Pn-l(x)
X — X,

=¢(Xo,x1)+m,

and therefore

P"_l(xi)z Xi — Xy
Q"M x:)  @lxo, Xi) — @(xo, Xy

)=(p(x0’xl’xi)’ i=2’3""’2n'
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Continuing in this fashion, we arrive at the following expression for ®™ "(x):

P"(x) X — X
q)"’” = =
W= =t iy
X —X
=f0+ OY—Y‘ — e
O(X0, X1) + e 17y s
Bo2 1)+ o= 10T ()
—f+ X — X
X — X
(P(xo,x1)+ :
x—‘X2
o(xg, X1, X2) +
(o, X1, X2) @lxo, X1, X2, X3) +
X x2n—1
+_._____
O(Xg 5 ---r X2)

@™ "(x) is thus represented by a continued fraction:

x) = f0+x—xo/(p X0, x1)+x—x1/<p Xg, X1, X3)

+x XZI/;("‘O’ X1, Xz, X3) +°

)i_—_-xZn—I/(p(xO’ X15 ey x2n)‘
It is readily seen that the partial fractions of this continued fraction are

nothing but the rational expressions ®" *(x) and ®**1#(x), u=0,1, ...,
n — 1, which satisfy (2.2.1.1) and which are indicated in the diagram (2.2.2.1):

—
)
]
[\
W

S

A0, I\_t‘
WA=

D O(x) = fo + X — Xo/@(Xo, X1 ),
QY Y(x) = fo + x — Xo/@(Xo, X1) + X = X1 /0(Xo, Xy, X2),

EXAMPLE
i X; f; o(xo0, X;) @(x0, X1, Xi) @(x0, X1, X2, X;)
0 0 0
1 1 -1 -1
212 -3 -3 —4
3] 3 9 i 3 4

O ' (x)=0+x/—1+x—1/—1/2+x—2/1/2=(4x* — 9x)/(—2x + 7).
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Because the inverse differences lack symmetry, the so-called reciprocal
differences

p(xia xi+1, ey xi+k)

are often preferred. They are defined by the recursions

p(x;) =1,
xi —_ xi
P(X;, Xppq) 1=,
(22.24) fi — finr
P(Xis Xit 15 -+ s Xigi) = Xt — Xitk
P(Xis oo Xivko1) — P(Xiw 15 o s Xiak)

+ P(Xit g5 o5 Xivg—1)

For a proof that the reciprocal differences are indeed symmetrical, see
Milne-Thompson (1951).
The reciprocal differences are closely related to the inverse differences.

for

x(), ceey xp_2)=0Jv' p: 1]

b

Proor. The proposition is correct for p = 1. Assuming it true for p, we
conclude from

xp—‘xp+1
(p(xo, ...,xp)—(P(xo, veeg xp_l, xp+1)

i - \
P\Xos X15 ---» .xp+1’ =

that

xp _xp+1
p(xo, ey xp)_ p(xo, cees Xp—1, xp+1)

(p(x07 > STIREES xp+l)=

By (2.2.2.4),

Xp+1 — Xp
p(xo, s Xp) = p(Xps1s Xo, -5 Xp)

P(Xps1s X05oo0s Xp) = P(X65 s Xpo 1) =

Since the p(...) are symmetric,

(P(xo,xl, ""xp+1)=p(x0’ '-"xp+1)_p(x09 tet xp—1)9

whence (2.2.2.5) has been established for p + 1. O
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The reciprocal differences can be arranged in the tableau

Xo Jo
p(Xo, x1)
~1 Jfl p(x()’ X1, xi)
(22.2.6) p(xy, x3) p(Xo, X1, X2, X3)
X3 /2 (x1> X2, X3) :
p(xz, X3
X3 f3 :

Using (262.2,5) to substitute reciprocal differences for inverse differences
in (2.2.2.3) yields Thiele’s ¢ ontinued fraction:

" "(x) = fo + X — Xo/p(Xo0, X1) + X = X;/p(Xo, X1, X2) — p(xo)

(2‘2'2’7) + -+ x— Xop—1 p(xo, ey xz,,) - p(xo, coey X2n_2).

2.2.3 Algorithms of the Neville Type

We proceed to derive an algorithm for rational interpolation which is analo-
gous to Neville’s algorithm for polynomial interpolation.

A quick reminder that, after discussing possible degeneracy effects in
rational interpolation problems (Section 2.2.1), we have assumed that such
effects are absent in the problems whose solution we are discussing. Indeed,
such degeneracies are not likely to occur in numerical problems.

We use

PE(x)

5 7(x)

o4 (x) =

to denote the rational expression with

O (x;))=f; fori=s,s+1,...,s+nu+v,

P*>, Q" being polynomials of degrees not exceeding u and v, respectively.
Let p¥¥ and ¢* " be the leading coefficients of these polynomials:

PRr(x) = pioxh 4, Q)= g X o
For brevity we put
;=x—x; and T (x, y)'= Py (x) =y *(x),
noting that
T (x;, f;) = 0, i=s,s+1,....,s+pu+v.
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(2.2.3.1) Theorem. Starting with

P3O(x) = £, ¢ ox) =1,
the following recursions hold:
(@) Transition (u — 1, v) = (i, v):
PE(X) = 3yt ™ P () = ey @ PET ),
L) = oot T QAT (X) = s @RS TQET ().
(b) Transition (u, v — 1) — (u, v):
PEY(x) = o ph YT IPE T (x) = agy e PRV PR YT M (X),

Q;‘ ( )"aspg‘ 1Qs+1 ( )—as+u+\pg+‘l ! ;l.v—l(x).

ProOF. We show only (a), the proof of (b) being analogous. Suppose the
rational expressions ®*~!-¥ and ®*; ! ¥ meet the interpolation requirements

T 2Y(x;, f)=0 fori=s,...,s+pu+v—1,
2232 _
( ) T 1Y x, f))=0 fori=s+1,...,s+pu+v
If we define P *(x), Q% *(x) by (a), then the degree of P;'" clearly does not
exceed u. The polynomial expression for Q¥ ¥ contains formally a term with
x** 1 whose coefficient, however, vanishes. The polynomial Q%" is therefore
of degree at most v. Finally,

T?’\‘(X, y)=asqg s \Ts+1 (X, y) s-l*u+\qs+l \Tg b \(Xﬂ y)
From this and (2.2.3.2),

T ¥(x;,f;)=0 fori=s,...,s+ u+ v

Under the general hypothesis that no combination (u, v, s) has inacces-
sible points, the above result shows that (a) indeed defines the numerator
and denominator of @} . O

Unfortunately, the recursions (2.2.3.1) still contain the coefficients p%*~?,
g"~ . The formulas are therefore not yet suitable for the calculation of
o () for a prescribed value of x. However, we can eliminate these
coefficients on the basis of the following theorem.

(2.2.3.3) Theorem.

-1,v —1,v- (x—xs+l) (X— Xs + +v—1)
(@) @1 (x) = @i T (x) =k Qu*}“ﬁj#
with kl —pg+11 - q;‘ b s
b). ®* -1 ¥(x pr-Lv1 =k Q‘f— xgjﬁl)"'(x—_xs+u+v—1)
O ) = 0 =k T g e )

; _— u—-1,v—1_pu—1,v
with k2 = —Ps+1 9s+1" -
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Proor. The numerator polynomial of the rational expression
Pu—l.v. u—l.\'—lx P;‘"‘_lx u—1,v
Qe (x) - Qrolr i (x) =28 (")anu_1 v( ) - - 1+vx , (x)Qs (x)
s ) (X) s+1 (’C)
is at most of degree 4 — 1 + v and has u + v — 1 different zeros

X;, i=s+1,s+2,....,s+u+v—1

by definition of ®*~ ! and ®*;-*~ ! It must therefore be of the form

(X = Xgeq) s (X = Xgypayog) Withky = —phi T g
This proves (a). (b) is shown analogously. O
(2234 Theorem. For u>1v 1
\Sedmese Ty B EINLUE TR i U ® = Py a
u 1, v X u 1.v X
@) 050 = 01 () + e
u—1,v l v
as+u+v s+1 (x) +1 x)
Y

Oy (x) — o ””’(’C)

Qv 1 ]

1 S+1 ( ) (x) l

AU v—1/(.\ Au— 1 v—1/.1\

us+u+vl “’s+1 \"’ Wi q V"J

ProoF. By Theorem (2.2.3.1a),
(D“‘V(X)= sqg b VP.’:+11 v( )—- as+u+vqs+1 Pﬂ b v( )

n—1,v u—1,vyu—1,v
sqs s+1 (X) s+u+vqs+l s (X')
We now assume that p#; ¥~ ! # 0, and multiply numerator and denomina-
tor of the above fraction by

~p£;}.v—l(x — X5+ l)(x - xs+2) (X - xs+u+v—l)
X)) T ()
Taking Theorem (2.2.3.3) into account, we arrive at

", v =as®g:11.v(x)[ ]l"‘as+u+v¢;‘-1’v(x)[ ]2
(2233) &) ol b=l T ’

where
[ )= @71 — ),
[ .= six‘ "(x) = LT (x),
(a) follows by a straightforward transformation. (b) is derived analogously.

O

The formulas in Theorem (2.2.3.4) can now be used to calculate the values
of rational expressions for prescribed x successively, alternately increasing
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the degrees of numerators and denominators. This corresponds to a zigzag
path in the (u, v)-diagram:

(2.2.3.6)

—

Special recursive rules are still needed for initial straight portions—vertically
and horizontally—of such paths.

As long as v =0 and only u is being increased, one has a case of pure
polynomial interpolation. One uses Neville’s formulas [see (2.1.2.1))

0 °(x) =,
o @5 O(x) — a0 B O(x)

n, 0 = X7 —
@4 °(x) , u=12 ..
as - as.{.,‘

Actually these are specializations of Theorem (2.2.3.4a) for v = 0, provided
the convention ®*;}- ! := oo is adopted, which causes the quotient marked
* (on page 69) to vanish.

If u = 0 and only v is being increased, then this case relates to polynomial
interpolation with the support points (x;, 1/f;), and one can use the formulas

0°(x) =1,

(2237)  @0(x)= D Doty . ov=12,...,

L . 2
Q% Hx) @ (x)

which arise from Theorem (2.2.3.4) if one defines ®_.};"~*(x)=0.
Experience has shown that the (u, v)-sequence

(0,0)—> (0, 1) > (1, 1) > (1,2) > (2,2) >

—indicated by the dotted line in the diagram (2.2.3.6)}—holds particular
advantages, especially in the important application area of extrapolation
methods (Sections 3.4 and 3.5), where interest focuses on the values @4 *(x)
for x = 0. If we refer to this particular sequence, then it suffices to indicate
u + v, instead of both u and v, and this permits the shorter notation

Ti=@"(x) withi=s+pu+v,k=p+v
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The formulas (2.2.3.4) combine with (2.2.3.7) to yield the algorithm

To=fi, T, -1=0,

I; ¢ — I;- _
2238) Tyu= Ty, + A
( ) k ,k—1 X—xi—k[i_Ti;x—_— -l k-1 1
X = X; E,k—l—Ti—:,k-zj

for1 <k <i,i=0,1,.... Note that this recursion formula differs from the
corresponding polynomial formula (2.1.2.5) only by the expression in
brackets [...], which assumes the value 1 in the polynomial case.

If we display the values T; in the tableau below, letting i count the
ascending diagonals and k the columns, then each instance of the recursion
formula (2.2.3.8) interrelates the four corners of a rhombus:

(u, v) = 0, 0) ©, 1) (1, 1) (1,2)...
fo = Too
0= 72),—1 Tu
fx = Tyo T,,
0=T, _, T, >T33
f — T T o
J2 120 132 :
0= ?},_1 T?l

If one is interested in the rational function itself, i.e. its coefficients, then
the methods of Section 2.2.2, involving inverse or reciprocal differences, are
suitable. However, if one desires the value of the interpolating function for
just one single argument, then algorithms of the Neville type based on the
formulas of Theorem (2.2.3.4) and (2.2.3.8) are to be preferred. The formula
(2.2.3.8) is particularly useful in the context of extrapolation methods (see
Sections 3.4, 3.5, 7.2.3, 7.2.14).

2.2.4 Comparing Rational and Polynomial Interpolations

Interpolation, as mentioned before, is frequently used for the purpose of
approximating a given function f(x). In many such instances, interpolation
by polynomials is entirely satisfactory. The situation is different if the loca-
tion x for which one desires an approximate value of f(x) lies in the prox-
imity of a pole or some other singularity of f (x)—like the value of tan x for x
close to m/2. In such cases, polynomial interpolation does not give satisfac-
tory results, whereas rational interpolation does, because rational functions
themselves may have poles.
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ExAMPLE [taken from Bulirsch and Rutishauser (1968)]. For the function f(x) =
cot x the values cot 1°, cot 2°, ... have been tabulated. The problem is to determine
an approximate value for cot 2°30'.

Polynomial interpolation of order 4, using the formulas (2.1.2.4), yields the

oy Uy PR
tduicdu

X; fi = cot (x;)
1° 57.28996163
14.30939911
2° 28.63625328 21.47137102
23.85869499 22.36661762
3° 19.08113669 23.26186421 22.63519158
21.47137190 23.08281486
4° 14.30066626 22.18756808
18.60658719
5° 11.43005230

Rational interpolation with (u, v) = (2, 2) using the formulas (2.2.3.8) in contrast
gives

1° | 57.28996163
22.90760673

2° | 2863625328 22.90341624
22.90201805 22.90369573

3° | 19.08113669 22.90411487 22.90376552
2291041916 22.90384141

4° | 1430066626 22.90201975

, 22.94418151
5° | 11.43005230

The exact value is cot 2°30' = 22.903 765 5484 . . .; incorrect digits are underlined.

A similar situation is encountered in extrapolation methods (see Sections
3.4, 3.5,7.2.3, 7.2.14). Here a function T(h) of the step length h is interpolated
at small positive values of h.

2.3 Trigonometric Interpolation

2.3.1 Basic Facts

Trigonometric interpolation uses combinations of the trigonometric func-
tions cos hx and sin hx for integer h. We will confine ourselves to linear
interpolation, that is, interpolation by one of the trigonometric expressions

M

(2.3.1.1a) ¥Y(x)= %9 + ) (Ay cos hx + By sin hx)
h=1
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M-1 A
(2.3.1.1b) ‘I’(x)—_zg + Y (A, cos hx + B, sin hx)+TMcosMx
h=1

=0
S {xk,Jk’,n—U, ey

AN

periodic of known period. Indeed, the expressnons ¥(x)in (2.3.1.1) represent
periodic functions of x with the period 2n.!

Considerable conceptual and algebraic simplifications are achieved by
using complex numbers and invoking De Moivre’s formula

Here and in what follows, i denotes the imaginary unit. If c=a +ib,a, b
real, then ¢ = a — ib is its complex conjugate, a is the real part of c, b its
imaginary part, and |c| = /cc = \/Iz + b* its absolute value.

Particularly important are uniform partitions of the interval [0, 2x]
X, = 2nk/N, k=0,....,N—1

to which we now restrict our attention. For such partitions, the trigonomet-

ric interpolation problem can be transformed into the problem of finding a
phase polynomial

(23.12) p(x)=PBo + Bre™ + -+ + By_ ™ 1ix
with complex coefficients B; such that
px)=f, k=0,....,N—-1
Indeed
e~ hixm — o~ 2mihk/N _ ,2%i(N—hk/N _ e(N—h)qu,
and therefore

e}lixg + e(N—h)ix. ehixk - e(N—h)ng
sin hx, = -
2 ’ , 2i

(23.1.3) cos hx;, =

Making these substitutions in expressions (2.3.1.1) for ¥(x) and then collect-
ing the powers of e produces a phase polynomial p(x), (2.3.1.2), with

VIf sin u and cos u have to be both evaluated for the same argument u, then it may be
advantageous to evaluate t = tan(x/2) and to express sin u and cos u in terms of ¢:
) 2t |
sinu=-—-—-, cosuU=-—.
1+¢ 1+
This procedure is numerically stable for 0 < u < n/4, and the problem can always be trans-
formed so that the argument falls into that range.
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coefficients f;,j =0, ..., N — 1 which are related to the coefficients A,,, B, of
¥(x) as follows:

(23.1.4)
(@) If N is odd, then N = 2M + 1 and
A . . .
pwpf, B;=%(4,—iB)), Bv-;=%(4;+iB)), j=1,...,M;

A0=2ﬁ0, Ah=ﬂh+BN—h’ Bh=i(Bh——BN—h)’ h=1,...,M.
(b) If N is even, then N = 2M and

~ A ~ 174 . .- ) ~ 17 4 . wn % - - - -

ﬁo=7°, B;=%A;—iB;), Bn_;=3%A4;+iB;), j=1,...M—1,
Ay
ﬂM_Ts

Ao=2By, A,=PB+Bn-n, By=i(Bn—Bv-s) h=1...M—-1,
AM=2BM

The trigonometric e,.press.o..

Ave

mial p(x) agree for all s arguments x, = 2nk/N of an equidistant
partition of the interval [ ]

ﬂ=w(xk)=p(xk)’ k=09 1,"-,N—1-

However, ¥(x) = p(x) need not hold at intermediate points x # x; . The two

interpolation prnhlpme are equivalent only insofar as a solution to one

N AwvaaaS Gaw SUika &G SVUiveva

problem will produce a solution to the other via the coefficient relations
(2.3.1.4).

The phase polynomials p(x) in (2.3.1.2) are structurally simpler than the
trigonometric expressions ¥(x) in (2.3.1.1). Upon abbreviating ‘

w:.—:.eix
wkzzeixk,
P(w)=PBo + By + -+ + Py 1,

and since w; # w, for j # k, 0 < j, k < N — 1, it becomes clear that we are
faced with just a standard polynomial interpolation problem in disguise:
find the (complex) algebraic polynomial P of degree less than N with

Pw)=f, k=0,..,N—1

The uniqueness of polynomial interpolation immediately gives the following
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(2.3.1.5) Theorem. For any support points (x;, fi), k=0, ..., N — 1, with f,
complex and x, = 2nk/N, there exists a unique phase polynomial

p(x) = Bo + Bre™ + - + By eV
with
p(xe) = fi
fork=0,1,..., N - 1.

The coefficients f; of the interpolating phase polynomial can be expressed

in closed form. To this end, we note that, for 0 <j h< N -1

(2.3.1.6) wl=of and ;' =o].

More importantly, however, we have for 0 <j, h< N -1
N1 N forj=h

2.3.1.7 ol "= ’

2317) 2% N0 forj#h

PROOF. w;_, is a root of the polynomial
N-1
o' —1=(w-1)Y o

from which either w;-p = 1, and therefore j = h, or
N

2

0

1

N-1
v’ = kg:ow{—h = Z w?—h =0. O

k k=0

Introducing the N-vectors

W(h)=(1,w,i,...,w,&_l)1‘, h=0,-",N—1)

we sec that the sums in (2.3.1.7) are the complex scalar products of the
vectors w and wi®:

N-1 _
(2.3.1.8) Y @it = widTw® = [wd), W),

k=0
This definition of the scalar product of two complex vectors is standard;
it implies that [w,w]=)YN_d |wy|*=>0 for each complex vector w.
Thus the vectors w® are seen to form an orthogonal basis of the complex
space C". Note that the vectors are of length /[w®, W] = \/ﬁ instead of
length 1, however.
From the orthogonality of the vectors w® follows:

(2.3.1.9) Theorem. The phase polynomial p(x) = Y= B;e'™* satisfies
p(xk)=ﬁ, k=03 1,"',N—1,
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for f, complex and x, = 21tk/N, if and only if
1 N-1

N-1
Z fiwgi=— Z fre 2N i=0,1,...,N— L

Proor. With the vector notation /= (5, f1, ---» /n-1)">

1A 1 o = 1 ©) N=1) )

N Sy =‘ﬁ[f,w ]=—[30W + 4 By W s W ]=Bj' O
N /=6 N

For phase polynomials g(x) of degree at most s, s < N — 1 given, it is in
general not possible to make all residuals '

fi — q(x), k=0,....,N—1,

vanish, as they would for the interpolating phase polynomial. In this context,
the s-segments

Pux) = Bo + Bre + 1o+ Bet

of the interpolating polynomial p(x) have an interesting best-approximation
property:

(2 3.1. lU) Theorem. The s-segment ps(x), 0 < s < N, of the interpolating phase
polynomial p(x) minimizes the sum

N-1
= 2 14—
k=0

[note that S(p) = O] of the squared absolute values of the residuals over all
phase polynomials

q(x)=yo + y1€~ + - + ys€%

The phase polynomial py(x) is uniquely determined by this minimum property.

ProOOF. We introduce the vectors

Ps = (ps(x())’ sy ps(xN— l))T9 q= (Q(Xo), LR ‘I(xN— l))T
and use the scalar product (2.3.1.8) to write

S(q)=[f—4a.f— 4]
By Theorem (2.3.1.9), ;= (1/N)[f, w?] for j=0,..., N - 1. For j <s,

—Ilv[f_ Ds w(j)] = —11\7 [f_ hgoﬁhw(h)9 w(j)] = Bj - Bj = 09

and

[f— Ps, Ps — Q] = go[f_ Ds, (B} - 'Yj)w(j)] =0.
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But then we have
S@)=[f-q9/-4l
=f-p.+p.—a.f—p+p—d]
=[f=pe.f=p] +[p.— q ps — d]
>[f=ps, S~ ]
= S(p,).
Equality holds only if [p, — g, ps — q] =

bl
equal. Then the phase polynomials p(x) and g(x) are identical by

uniqueness theorem (2.3.1.5).

Returning to the original trigonometric expressions (2.3.1.1), we note that
Theorems (2.3.1.5) and (2.3.1.9) translate into the following:

(2.3.1.11) Theorem. The trigonometric expressions

Ao

5 + Z (4, cos hx + B, sin hx)

¥(x)=

4 M Ay
Y(x) = 5 + Y (A, cos hx + B, sin hx) +T cos Mx,
h=0
where N = 2M + 1 and N = 2M, respectively, satisfy
W(x)=f, k=01,...,N—1,
for x, = 2nk/N if and only if the coejﬁcients of ¥(x) are given by

N-1 N-1 2 hk
A,,=3 Z fi cos hx, = Z fi cos —1;—V—,

2 21thk

N-1
Z ﬁ,81nhxk=— z fi si

ProOF. Only the expressions for 4,,, B, remain to be verified. For by (2.3.1.4)
1 N-1

Ah=ﬂh+BN—h — Z f -—hzxk+e—(N h)zxg)
B, = i(By — Bn-») Z Sle™k — (N 7him),
and the substitutions (2.3.1.3) yield the desired expressions. O

Note that if the support ordinates f; are real, then so are the coefficients
A,, B, in (2.3.1.11).
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2.3.2 Fast Fourier Transforms

The interpolation of equidistant support points (x, f;), x, = 2nk/N, k = 0,
..., N — 1, by a phase polynomial p(x) = Y '-(' B,/ leads to expressions of
the form [Theorem (2.3.1.9)]

1 N-1

(2.3.2.1) Bi=x kZo fre RN i N _1.

The evaluation of such expressions is of prime importance in Fourier
analysis. The expressions occur also as discrete approximations—for N

cqnidietant arouments s—to the Fourier transtorm

uidistant arguments s—to the Fow

vy [T amist

s)=1] Jite “77dt,

which pervades many areas of applied mathematics. However, the numerical
evaluation of expressions (2.3.2.1) had long appeared to require on the order
of N? multiplications, putting it out of reach for even high-speed electronic
computers for those large values of N necessary for a sufficiently accurate
discrete representation of the above integrals. The discovery [Cooley and
Tukey (1965)] of a method for rapidly evaluating (on the order of N log N
multiplications) all expressions (2.3.2.1) for large special values of N has
therefore opened up vast new areas of applications. This method and its
variations are called fast Fourier transforms. For a detailed treatment see
Brigham (1974) and Bloomfield (1976).

There are two main approaches, the original Cooley-Tukey method and
one described by Gentleman and Sande (1966), commonly called the Sande-
Tukey method. Both approaches rely on an integer factorization of N and
decompose the problem accordingly into subproblems of lower degree.
These decompositions are then carried out recursively. This works best
when

N=2" n > 0 integer.

We restrict our presentation to this most important and most straightfor-
ward case, although analogous techniques will clearly work for the more
general case N = N; N, ... N,, N,, integer.

The Cooley-Tukey approach is best understood in terms of the interpola-
tion problem described in the previous section (2.3.1). Suppose N = 2M and
consider the two interpolating phase polynomials g(x) and r(x) with

CI(XZh) = fon, r(xz,,) = fon+1> h=0,....M — 1.

The phase polynomial g(x) interpolates all support points of even index,
whereas the phase polynomial #(x)= r(x — 2n/N) = r(x — n/M) interpo-
lates all those of odd index. Since

Mix, _ ,27iMkIN _ orik _ ’+ 1, k even,

¢ " T121, kodd,
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the complete interpolating phase polynomial p(x) is now readily expressed
in terms of the two lower-degree phase polynomials g(x) and r(x):

Mix M:x
(23.22) p(x)=q\x)(1+e )+( n/M) (1 2 )

This suggests the followmg n step recursive scheme. For m < n, let
=2""1! and R=2"""
Step m then consists of determining R phase polynomials
ps‘m)= + B(m) ix Bs'm”"_ e(ZM-l)ix’ r=09 .R _ 1’
from 2R phase polynomials p™~!(x), r =0, ..., 2R — 1, using the recursion
(2.3.2.2):
207(x) = PO ()L + €4%) 4 P (x — m/M)(1 — €M)

This relation gives rise to the following recursive relationship between the
coefficients of the above phase polynomials:

1 1
287 =BTV + R e r=0,...,R -1,
(2323) : _
~ ni(m) nim—1) plm—1).j i=0 ... M— 1
<Py, M+j— prj — PR+, 18 ' J ? ’
where
E i= e 22 m=0,...,n.

The recursion is initiated by putting

BY:=f,, k=0,...,N—1,

and terminates with

Bi=B%, j=0,..,N—1

This recursion typifies the Cooley-Tukey method.

The Sande-Tukey approach chooses a clever sequence of additions in the
sums Y Y24 f, e” ™ Again with M = N/2, we assign to each term f, e " #**an
opposite term fi . ye™/**¥. Summing respective opposite terms in (2.3.2.1)
produces N sums of M = N/2 terms each. Splitting those N sums into two
sets, one for even indices j = 2h and one for odd indices j = 2h + 1, will lead
to two problems of evaluating expressions of the form (2.3.2.1), each prob-
lem being of reduced degree M = N/2.

Using the abbreviation

Em = e~ 2nif2

again, we can write the expressions (2.3.2.1) in the form
1 N-1

- Z fig®  j=0,..,N-1
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Here n is such that N = 2". Distinguishing between even and odd values of j
and combining opposite terms gives

1 N-1 1 M-1 1 M-1
B..—=_—_ N fe2bk _ = N (f 1L £ Nk _ - N grhk
— £ T n—1 — J k¥n—1
VFlh N kL=_40 JKk®n N kédo \Jk Jk+MJj*n—1 N k‘:_,o
1R eh+ ik _ 1 ! ky hk 1M
ﬂ2h+1 =N Z fk En =ﬁ Z ((ﬁz —fk+M)€n)8n—1 =N Z fkan—l
k=0 k=0 k=0
forh=0...,M —1and M = N/2, since ¢ = ¢,_,, € = — 1. Here
f;c=fk +ﬁ(+M ’
k=0,....,.M—1
K= (f;z —f;(+M)€ﬁ€
In order to iterate this process form=nn—1,...,0, welet M :==2m"1

=2""™ and introduce the notation
m  r=0,..,R—-1, k=0,...,2M — 1,

with ff =f,,k=0,..., N — 1 f§ V and f4, ¥ represent the quantities f}
and f, respectively, which were introduced above. In general we have, with
M= 2""1 and R=2"""

with the quantities f¢ satisfying the recursions:

f(m—l) f(m) + (m) ’ 1 m = n, DRI 1’
rk = r.k+M
(23.2.5) oty (o . < r=0,..,R—1,
r+R k= ( rk r.k+ M ) ‘ —0 A 1
z v vi T i.

PrROOF. Suppose (2.324) is correct for some m<n, and Ilet
M =M/2=2""% R :=2R=2""™*! For j=2h and j = 2h + 1, respec-
tively, we find by combining opposite terms

1 M-1 L1 2M’—1
Bir +r = Bir+r = Z (SO + ) om)els = N Y e Ve,
k=0
1 Mt .
ﬂhR’+r+R = ﬂjR+r = N Z (f(m) _ff-ml)wM)d:
1 M ) 2M' -1
_ (m) _fim) m — f(m 1)8:-: ,
N ; (S ,k+M)'S 1 N kzo +R, kém—1
where r=0,...,R—-1,j=0,...,2M — 1. ]

The recursion (2.3.2.5) typefies the Sande-Tukey method. It is initiated by
putting

fo=f  k=0,...,N—1,
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and terminates with
1
ﬂ,==—f‘,%’, r=0,.... N—- 1.

Returning to the Cooley-Tukey method for a more detailed algorithmic
formulation, we are faced with the problem of arranging the quantities 7
in an array:

Among suitable maps k =«(m,r,j), the following is the most
straightforward:
=2"r

m=090,....,n, r=0...,2""—-1 j=0,...,2" -1

K + J,
It has the advantage, that the final results are automatically in the correct
order. However, two arrays B[ ], B[ ] are necessary to accommodate the
left- and right-hand sides of the recursion (2.3.2.3).

We can make do with only one array B[ ] if we execute the transforma-
tions “in place,” that is, if we let each pair of quantities P, f™},, ; occupy
the same positions in B[ ] as the pair of quantities 87~ ¥, pif', 1), from which
the former are computed. In this case, however, the entries in the array B[ ]
are being permuted, and the maps which assign the positions in B[ ] as a

function of the integers m, r, j become more complicated. Let
T =1(m, r, j)

be a map with the above mentioned replacement properties, namely
Blz] = B with

o y (m=1...n
2326) T(m, r,J.)=T':I_nl— i, 1)) - { ‘l F=0,.. 2 m_1,
AT R M,
and
(2.3.2.7) t(n,0,j)=j, Jj=0,...,N—-1L

The last condition means that the final result §; will be found in position j in

the array B[ 1: B, = B} '
The conditions (2.3.2.6) and (2.3.2.7) define the map t recursively. It
remains to determine it explicitly. To this end, let

t=ag+a; 2+ " a,_, 2" 1 a,=0,1 forp=0,...,n—1,
be a binary representation of an integer ¢, 0 < ¢t < 2". Then putting
(2.3.2.8) p(t)=0p g + @y 2 24 +ap- 2"

defines a permutation of the integers t = 0, ..., 2" — 1 called bit reversal. The
bit-reversal permutation is symmetric, i.e. p(p(t)) = t.
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With the help of the bit-reversal permutation p, we can express z(m, r, j)
explicitly:

(2329) (m, r, j)=p(r)+J,
m=0,....,n, r=0,...,2""—-1 j=0,...,2" -1
ProoF. If again
t=oag+o; 2+ o, , 2" 1 a,=0,1 forp=0,...,n—1,
then by (2.3.2.6) and (2.3.2.7)

1 AY

{ _ - : n
jrin — 1, 0, t) ifa, , =0

= 0 =
== -2 i, =1

Thus
t=1n0,t)=1(n— Lo, y, 00+ "+ 0,5 2""2),
and, more generally,
t=1tm 0, t)=1(m op_y + "+ 0y 2" g+ -+, 2" 1)
form=0,...,n—1Forr=a,_;+ " +a, 2""" ! we find
p(r)=a, 2"+ - +a,_, 2!
and t = p(r) + j. O

By the symmetry of bit reversal,

t(m, p(r), j) =T+,

where 7 is a multiple of 2™, 0 <7 < 2", and 0 <j < 2™ Observe that if
0<j<2™? then

t=1(m, p(r),j)=1tm— 1, p(r), j) =7+,

t=1(m, p(r),j +2" VN=1m—1,p(F)+ 2" ™ ) =F +j+ 2!
mark a pair of positions in B[ ] which contain quantities connected by the
Cooley-Tukey recursions (2.3.2.3).

In the following pseudo-ALGOL formulation of the classical Cooley-
Tukey method, we assume that the array [ ] is initialized by putting

Blok)]=f,, k=0,...,N—1,

where p is the bit-reversal permutation (2.3.2.8). This “scrambling” of the
initial values can also be carried out “in place,” because the bit-reversal
permutation is symmetric and consists, therefore, of a sequence of pairwise
interchanges or “transpositions.” In addition, we have deleted the factor 2
which is carried along in the formulas (2.3.2.3), so that finally

1. .
ﬂj’zﬁﬂ[ﬂ, j=0,...,N— 1
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The algorithm then takes the form

for m =1 stepl until n do
begin for j =0 step 1 until 2"~ — 1 do
begin e ‘= &p;
for 7:=0 step 2™ until 2" — 1 do
begin u =B[F + j]; v=B[F +j + 2" '] x ¢
BlF+jl=u+uv; B[r+j+2" ]:=u—v
end

end
end;

If the Sande-Tukey recursions (2.3.2.5) are used, there is again no prob-
lem if two arrays of length N are available for new and old values, respec-
tively. However, if the recursions are to be carried out “in place” in a single
array f[ ], then we must again map index triples m, r, j into single indices .
This index map has to satisfy the relations

tm—1,r, k)= t(m, r, k),
m—1,r+2"""k)=1tmr, k+2m1)

form=nn-1,...,1,r=0,1,...,2" "—1,k=0,1,...,2" ' — 1. If we
assume

t(n, 0, k)=k fork=0,...,N—1,

that is, if we start out with the natural order, then these conditions are
precisely the conditions (2.3.2.6) and (2.3.2.7) written in reverse. Thus
7= 1(m, r, k) is identical to the index map t considered for the Cooley-
Tukey method.

In the following pseudo-ALGOL formulation of the Sande-Tukey method,
we assume that the array f[ ] has been initialized directly with the values f; :

F[k}=f.. k=01,...,N— 1

However, the final results have to be “ unscrambled ” using bit reversal,

By= s (FloG). j=0.... N~ 1:

for m:=n step — 1 until 1 do
begin for k :=0 step 1 until 2"~ ! — 1 do
begin ¢ := & ;
for 7 := 0 step 2™ until 2" — 1 do
begin u = f[r + k]; v:=f[F + k + 2" '];
Flr+kl=u+v; flr+k+2m"]=(u—-v)xe
end
end
end;



84 2 Interpolation

If all values f,, k=0, ..., N — 1 are real and N = 2M is even, then the
problem of evaluating the expressions (2.3.2.1) can be reduced in size by
putting

gh=fzn+ bf2h+1s h=0 ’M_ 1’

and evaluating the expressions

1 M-1

2nijh/M
y1=_zge 7"1/’ J—Oa ’M_l

M =
The desired values B;,j=0,..., N — 1, can be expressed in terms of the
values yJ,J = O, vees M-1 Iﬂdeed, one has with M =7%o

Py 1 . N 1 7 - . Ve 2 AT o~
=—(y: 4+ W_;)+ =V — Ym—j)e ", j=0,..., M,
(23210) ﬂj 4(')/'1 + M J) 4i (y.l 1274 J)e J

Byn-j=B;, Jj=1...M—-1
Proor. It is readily verified that

1
4(')/'1'*' yM j
Z 2h+1€ i N, d

In many cases, particularly if all values f, are real, one is actually in-
terested in the expressions

N-1 -1 2k
E kacos 21t]k 2 sz 7t]

which occur, for instance, in Theorem (2.3.1.11). The values 4;, B; are con-
nected with the corresponding values for §; via the relations (2.3.1.4).

2.3.3 The Algorithms of Goertzel and Reinsch

The problem of evaluating phase polynomials p(x) from (2.3.1.2) or trigo-
nometricexpressions ¥(x) from (2.3.1.1) for some arbitrary argument x = £ is
called Fourier synthesis. For phase polynomials, there are Horner-type eval-
uation schemes as there are for expressions (2.3.1.1a) when written in the
form W(x z 'L _m B;¢’*. The numerical behavior of such evaluation
schemes however should be examined carefully.

For example, Goertzel (1958) proposed an algorithm for a problem
closely related to Fourier synthesis, namely, for simultaneously evaluating

the two sums
N-1 N-1

Y yecoské Yy, sin k&
k=0 k=1
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for a given argument £ and given values y,,k =0, ..., N — 1. This algorithm
is not numerically stable unless it is suitably modified. The algorithm is
based on the following:

(2.3.3.1) Theorem. For & # rn, r =0, +1, +2, ..., define the quantities

1 N-1
L= =O 1 eee -
UJ Slnf kgjyk Slﬂk ]+ )6 J s 4y ’N 1’
Un=Up,,=0.

These quantities satisfy the recursions
(2.3.3.1a) Uj=y+2UJ+1 COSC—UJ',’.z, j=N_1,N_2,...,O

In particular

N-1
(2.3.3.1b) Y yisin k& = U, sin ¢,
k=1
N-1
(2.3.3.1¢) Y yicos ké =y, + U, cos &€ — U,.
k=0

PrROOF. For 0 <j < N — 1, let
A:yj + 2Uj+1 Ccos f - U +2
By the definition of U;, 4, U;, ,,
1 N-1 ) N-1 )
A=y;+—-—12(cos&) Y wsink—j) — Y ycsink —j— 1)
sin ¢ k=j+1 k=j+2
-1

=y +-—— Z vil2 cos € sin(k — j)¢ — sin(k — j — 1)¢].
smé k=741
Now
2 cos ¢ sin(k — j)¢ = sin(k — j + 1)¢ + sin(k — j — 1)¢&.
Hence
1 N-1
A=——|y;sin &+ ) ysink—j+ 1)¢| =
sin ¢ k=j+1

This proves (2.3.3.1a). (2.3.3.1b) restates the definition of U,. To verify
(2.3.3.1c), note that

1 N-1 1 N-1
Uy=——" Y nsink—1)=——"- Y ysinkk — 1),

sin ¢ &, sin £ =4

and

sin(k — 1)¢ = cos ¢ sin k& — sin ¢ cos kE. O



86 2 Interpolation

Goertzel’s algorithm applies the recursions (2.3.3.1) directly:

U[N]=U[N + 1]:=0; ¢ ==cos(¢); cc =2 x c;
for j:==N — 1step —1 until 1 do

U1 =31 + ce x UL+ 1] - UL + 2
s1:=y[0] + ¢ x U[1] — U[2];
s2 :==U[1] x sin(¢&);

to find the desired results s1 = Y Y- y, cos k&, s2 = Y A= 1 y, sin k.
This algorithm is unfortunately not numerically stable for small absolute
values of ¢, |¢| < 1. Indeed, having calculated ¢ = cos &, the quantity

— -1
s1 = Y720 yi cos k& will depend solely on ¢ and the values y, . We can write

s1 = ¢(c, yo., - ,.VN-1) where
N-1

@(C, Yo, ---» Yn—1) = 2, ¥i cos k(arccos c).
k=0

As in Section 1.2, we denote by eps the machine precision. The roundoff
error Ac = ¢, |&,| < eps, which occurs during the calculation of ¢, causes
an absolute error A sl in s1, which in first-order approximation amounts to

€. COS
Slﬂ

A,sl = aa—(g Ac = Y ky, sin k¢

= g,(cot &) Z ky, sin k¢&.
k=0
An error A¢ = &£, |e| < epsin &, on the other hand, causes only the error

Agsl =

=0

! Y ¥ cos ké!-Aé
o¢ i )

N-
k=0

in s1. Now cot ¢ = 1/£ for small |£|. The influence of the roundoff error in ¢
is consequently an order of magnitude more serious than that of a corre-
sponding error in . In other words, the algorithm is not numerically stable.

In order to overcome these numerical difficulties, Reinsch has modified
Goertzel’s algorithm [see Bulirsch and Stoer (1968)]. He distinguishes the
two cases cos £ > 0 and cos £ < 0.

Case (a): cos £ > 0. The recursion (2.3.3.1a) yields for the difference
8U;=U,;-U,,,
the relation
SU;j=U;—Uj 1 =y;+QcosE =2,y + Ujuy — Ujsy
=y;+ AU 1 +0Uj 4y,
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where
A=2(cos & — 1) = —4 sin?(£/2).
This suggests the algorithm
A= —4 sin (&/2);

U[AV +1 _| —5U[N] =0;

forj:=N — 1 step —1 until 0 do

begin U[j + 1]:=06U[j + 1] + U[j + 2];
dU[j]=4 x U[j + 1] + 8U[j + 1] + y[Jj]

end;

s1:=48U[0] — 4/2 x U[1];

s2:= U[1] x sin(¢); o

This algorithm is well behaved as far as the propagation of the error
AL =¢; A, |&;] <epsin Ais concerned. The latter causes only the following
error A; sl in sl:

Osl osl /04
A181=5A1=811°-—6 55
sin?(¢2) M

£A5in(E/2) cos(€2) & ' 2 ki sin kS

= —sl(tan 6) Z ky, sin k¢

and tan(¢/2) is small for small |&|. Besides, |tan(£/2)| < 1 for cos & > 0.
Case (b): cos ¢ < 0. Here we put

oU;=U;+ Uj,,
and find
oU;=U;+Uj,;=yj+Qcos £+ 2)U;,y —Ujyy — Ujy,
=yj+ AUy — 60Uy,
where now
A=2(cos & + 1) = 4 cos*(¢/2).
This leads to the following algorithm:

A =4 cos*(¢/2);

U[N + 1]:=6U[N]:=0;

for j:=N — 1 step —1 until 0 do

begin U[j + 1]:==0U[j + 1] — U[j + 2];
dU[j]:==21 x U[j + 1] — éU[j + 1] + y[J]

end;

s1:=46U[0] — U[1] x 4/2;

s2:= U[1] x sin(&);
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It is readily confirmed that a roundoff error ALl =¢,4, |¢;| <eps, in A
causes an error of at most

PR |

in s1, and |cot(¢/2)] <1 for cos ¢ < 0. The algorithm is therefore well
behaved as far as he propagation of the error A4 is concerned.

2.3.4 The Calculation of Fourier Coefficients.

Attennatinn Factarc

L 2VLWILWEALVIV LA & u\ILUL\J

Let Z be the set of all absolutely continuous? real functions f: R — R which
are periodic with period 2n. It is well known [see for instance Achieser
(1956)] that every function f € & can be expanded into a Fourier series

o0

(2.3.4.1) fx)=Y ¢,

j=—-o

which converges towards f(x) for every x € R. The coefficients ¢; = c;( f) of
this series are given by

2n
(2342) ¢=clf)=o-| f(e=dx, j=0,+1, %2, ..
27'[ 0

In practice, frequently all one knows of a function fare its values f; :==f(x,)
at equidistant arguments x, :=2nk/N, where N is a given fixed positive
integer. The problem then is to find, under these circumstances, reasonable
approximate values for the Fourier coefficients c;( /). We will show how the
methods of trigonometric interpoiation can be appiied to this probiem.

By Theorem (2.3.1.9), the coefficients f; of the interpolating phase
polynomial

p(x)=Bo + Bie* + -+ By &NV
with

p(xi) = fi

% A real function f: [a, b] - R is absolutely continuous on the interval [a, b] if for every ¢ > 0
there exists & > 0 such that ), | f(b;) — f(a;)| < ¢ for every finite set of intervals [a;, b;] with
a<a, <b <--<a,<b,<band Y, |b,— a;| <d. If the function f is differentiable every-
where on the closed interval [g, b] or, more generally, if it satisfies a “ Lipschitz condition”
| f(xy) = f(x3)| <O0]|x, — x,| on [a, b], then f is absolutely continuous, but not conversely:
there are absolutely continuous functions with unbounded derivatives. If the function is abso-
lutely continuous, then it is continuous and its derivative f’ exists almost everywhere.
Moreover, f(x) = f(a) + {5 f'(t) dt for x € [a, b). The absolute continuity of the functions f, g

in an integral of the form {% f(t)g'(¢) dt also ensures that integration by parts can be carried out
safely.
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fork=0, +1, +2, ..., are given by

1N1

Zfe jis o i=0,1,...,N~1

Since f, = fy, the quantities f; can be thought of as a “trapezoidal sum”

....... \1
[compare (3.1.7)]

1%
N|[2

approximating the integral (2.3.4.2), so that one might think of using the

dUILID

_ o fe
ﬁ] +f J|x1+ +fN—1e JIXN 1+7e XN

(23.43) B{f)= B, ==% kz;o f, e i

for all integers j=0, +1, +2,... as approximate values to the desired
Fourier coefficients c;( f). This approach appears attractive, since fast Four-
ier transforms can be utilized to calculate the quantities B;(f) efficiently.
However, for large indices j the value f J( f) is a very poor approximation to

¢;(f)- Indeed, B;, .~ = B; holds for all integers k, j, while on the other hand
hm, jlew €5 =0. [ThlS follows 1mmed1ately from the convergence of the Four-
ICT SCrics ‘L .) ‘l' 1’ lUl lllC dlgUIllUlll X = UJ I‘\ LlUbC[ lUUK dlbO I'CVCdlS lﬂdl lnc

asymptotic behavior of the Fourier coefficients c;( f) depends on the degree
of differentiability of f:

(2.3.4.4) Theorem. If the 2n-periodic function f has an absolutely continuous
r th derivative ', then

{1 \
C;| =
|J| (l.]lr-%l)

PROOF. Successive integration by parts yields

1 2n .
¢;= EJ- f(x)e™ "™ dx

2nﬂJ. f x)e Jix dx

ﬂ), J- f (x)e™ 7™ dx

1 2n

= Gy J'O ™% dfO(x),

in view of the periodicity of f. This proves the proposition. O
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To approximate the Fourier coefficients c;( /) by values which display the
right asymptotic behavior, the following approach suggests itself: Determine
for given values f,, k=0, +1, +2, ..., as simple a function g € # as pos-
sible which approximates fin some sense (e.g., interpolates f for x, ) and share
with fsome degree of differentiability. The Fourier coefficients ¢ (g) of g are

then chosen to approximate the Fourier coefficients c;(f) of the given func-

tion f. In pursuing this idea, it comes as a pleasant surprise that even for
quite general methods of approximating the function f by a suitable function
g, the Fourier coefficients c;(g) of g can be calculated in a straightforward
manner from the coefficients Bj( f) in (2.3.4.3). More precisely, there are
so-called attenuation factors 7;, j integer, which depend only on the choice of

the approximation method and not on the particular function values f,,

L. _n L1 and far whial
K=vy, T1,..., alla 10T wnicn

cile)=1;B{f), =0, t1,.

To clarify what we mean by an “approximation method,” we consider—

besides the set & of all absolutely continuous 2z-periodic functions f: R —
R—the set

- {(ﬁc)kellf;c € Raﬁ(+N =ﬁ‘ for all k € Z},
Z == {k | k integer},

of all N-periodic sequences of real numbers

f= ("'af—lafoafb )

For convenience, we denote by f both the function f e % and its the corre-

sponding sequence (fi )k« z With f; = f(x;). The meaning of f will follow from
the context.

Any method of approximation assigns to each sequence f € F a function
g = P(f) in #; it can therefore be described by a map

P.F->%

Z and F are real vector spaces with the addition of elements and the multi-
plication by scalars defined in the usual straightforward fashion. It therefore
makes sense to distinguish linear approximation methods P. The vector
space F is of finite dimension N, a basis being formed by the sequences

(2.3.4.5) e® = ()< z, k=0,1,...., N—1,
where

@ .- )1 if k =jmod N,
J 0 otherwise.

In both F and % we now introduce translation operators E: F — [ and
E: ¥ - &, respectively, by

(Ef\=f., forallkeZ iffeF,
(Eg)x)=g(x —h) forallxe R ifge #, h=2n/N = x,.
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(For convenience, we use the same symbol for both kinds of translation
operators.) We call an approximation method P: F > % translation invar-
iant if

: “ohi » s it o] ifted”
for all fe I, that is, a “shifted ” sequence is approximated by a “shifted

function. P(E(f)) = E(P(f)) yields P(EX(f)) = EX(P(f)), where E2 = E - E,
E*=E o E - E, etc. We can now prove the following theorem by Gautschi
and Reinsch [for further details see W. Gautschi (1972)]:

(2.3.4.6) Theorem. For each approximation method P: F — % there exist

attenuation factors t;,j € Z for whzch
(2.34.7) ci(Pf)=1;B{(f) forallje Z and arbitrary fe F

if and only if the approximation method P is linear and translation invariant.

PRrOOF. Suppose that P is linear and translation invariant. Every f € F can be
expressed in terms of the basis (2.3.4.5):

N-1 N-1
f= 3 fie® =Y fEre®
k=0 k=0

Therefore

N-1

g=Pf= Y fE*Pe?,
k=0

by the linearity and the translation invariance of P. Equivalently,

where 7, = Pe'® is the function which approximates the sequence ¢'®. The
periodicity of g yields

Nlﬁ‘

APf)=cio)= T 5t jo o(x — xiJe ™= dx
T
= Tjﬁj(f)’

where
(2.3.4.8) ;= Ncj(no).

We have thus found expressions for the attenuation factors t; which depend
only on the approximation method P and the number N of given function
values f, for arguments x; ,0 < x; < 2x. This proves the “if ” direction of the
theorem.



92 2 Interpolation

Suppose now that (2.3.4.7) holds for arbitrary f € F. Since all functions in
F can be represented by their Fourier series, and in particular Pfe %
(2.3.4.7) implies

on oD

(23.49) (Pf)(x) = (Pf)e"" = z Jﬁj(f)eﬂx

,,'__ }=—m

By the definition (2.3.4.3) of B,(f), B; is a linear operator on # and, in
addition,

1 N-1

BAESf) = ~N Z Joore7 ™

i¥ k=0

1 N1
ﬁe — jin L fke — Jixy
= e "B f)

Thus (2.3.4.9) yields the linearity and the translation invariance of P:

PENX) = Y, 5B = (Bf)x — k)= EC(N). O

j=-o

As a by-product of the above proof, we obtained an explicit formuia
(2.3.4.8) for the attenuation factors. An alternative way of determining the
attenuation factors 7; for a given approximation method P is to evaluate the
formula

_(®f)
(2.3.4.10) S=50

for a suitable fe F.

ExaMpLE 1. For a given sequence f € F, let g := Pf be the piecewise linear interpola-
tion of £, that is, g is continuous and linear on each subinterval [x;, xx+,), and
satisfies g(x;) = fi for k =0, 1, .... This function g = Pf is clearly absolutely con-
tinuous and has period 2x. It is also clear that the approximation method P is linear
and translation invariant. Hence Theorem (2.3.4.6) ensures the existence of attenua-
tion factors. In order to calculate them, we note that for the special sequence f = €'©
of (2.3.4.5)

BAS) =

1—%|x—xs~l if |[x—xw| <h k=0, %1,...

Pf(x)=

0 otherwise,

2n K
ci(Pf)= 2_11:.[0 Pf(x)e #* dx = %j‘ h(l — %)e—iix dx.
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Utilizing the symmetry properties of the above integrand, we find
h

ci(Pf)= %fo (l - %) cos jx dx

2 J'h\'
= sin
J -u"i \2/

With h = 2n/N, the formula (2.3.4.10) gives

N . mj\? ,
r,-=(;jsm —1\7) , Jj=0,%1,....
EXAMPLE 2. Let g := Pf be the periodic cubic spline function (see Section 2.4) with
g(xx)=fi, k=0, +1,.... Again, P is linear and translation invariant. Using the
same technique as in the previous example, we find the following attenuation factors:

T, = sin z) * 3 wherez==1j
R U 1+2cos?z’ N’

2.4 Interpolation by Spline Functions

Spline functions yield smooth interpolating curves which are less likely to
exhibit the large oscillations characteristic of high-degree polynomials. They
are finding applications in graphics and, increasingly, in numerical methods.
For instance, spline functions may be used as trial functions in connection
with the Rayleigh-Ritz-Galerkin method for solving boundary-value prob-
lems of ordinary and partial differential equations. Introductions are for
instance Greville (1969), Schultz (1973), Bohmer (1974), and de Boor (1978).

2.4.1 Theoretical Foundations

Let A:={a = xy, < x, <‘** < x,, = b} be a partition of the interval [a, b].
(2.4.1.1) Definition. A cubic spline (function) S, on A is a real function
Sa: [a, b] - R with the properties:

(@) Sa € C¥a, b, that is, S, is twice continuously differentiable on [a, b].
(b) Sa coincides on every subinterval [x;, x;+4]}, i=0,1,...,n— 1, with a
polynomial of degree three.

Thus a cubic spline consists of cubic polynomials pieced together in such a
fashion that their values and those of their first two derivatives coincide at
the knots x;,i=1,...,n— 1.
Consider a set Y:={y,, y;, ..., ¥.} of n + 1 real numbers. We denote by
Sa(Y; ")

an interpolating spline function S, with S,(Y; x;)=y;fori=0,1,..., n.
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Such an interpolating spline function S,(Y; - ) is not uniquely determined
by the set Y of support ordinates. Roughly speaking, there are still two
degrees of freedom left, calling for suitable additional requirements. The
following three additional requirements are most commonly considered:

(2.4.1.2)

(a) Six(Y;a)=Sa(Y;b)=0,
(b) SY(Y; a)=SY(Y;b) for k =0,1,2: S,(Y;") is periodic,
(c) Sa(Y; a)=yq, SA(Y; b) =y, for given numbers yg, y,.
We will confirm that each of these three conditions by itself ensures unique-
ness of the interpolating spline function S,(Y;‘). A prerequisite of the
condition (2.4.1.2b) is, of course, that y, = y,.

For this purpose, and to establish a characteristic minimum property of
spline functions, we consider the sets

(2.4.13) H™[a, b),

m > 0 integer, of real functions f: [a, b] > R for which f™~ 1 is absolutely
continuous? on [a, b] and f™ e [*[a, b].* By

:;

AJa, b]
weo danata tha cat A a1l fizeadiamo 10 o m L1 erith £\ — f(k)n.\ fork =
WU ULVILIULL LIV DVL Ul all lullbtlUllb lll S l_u, UJ WlLllJ \ ’ J U’ -_— U,
1, ..., m — 1. We call such functions periodic, because they arise as restric-

tions to [a, b] of functions which are periodic with period b — a.
Note that S, € J#[a, b, and that S,(Y; -) € X }[a, b} if (2.4.1.2b) holds.
If fe o?[a, b], then we can define

|f)2 = L | £"(x)[? dx.

Note that || f| > 0. However, || f| = 0 may hold for functions which are not
identically zero, for instance, for all linear functions f(x) = c¢x + d.

We proceed to show a fundamental identity due to Holladay [see for
instance Ahlberg, Nilson, and Walsh (1967)].

(2.4.1.4) Theorem. If fe H2(a, b), f A={a=xo<x,<'-<x,=b}isa
partition of the interval [a, b), and if S, is a spline function with knots x; € A,
then

1f = Sal® = If1? = ISal®
= 2|(f'(x) — Sa(x))Sa(x) [z - f (x) = Sa(x)SE) 3%,

3 See footnote 2 in Section 2.3.4.

* The set I*[a, b] denotes the set of all real functions whose squares are integrable on the
interval [a, b), i, [5 | £(¢)]? dt exists and is finite.
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Here g(x)|¢ stands for g(u) — g(v), as it is commonly understood in the
calculus of integrals. It should be realized, however, that Sy (x) is piecewise
constant with possible discontinuities at the knots x,, ..., x,_,. Hence we
have to use the left and right limits of Q’”’{ x:\ at the locations x; and x;

.
S22 126 231232%%0 2RI VLR IDAZD L2 A -1

respectively, in the above formula. This is 1nd1cated by the notation x;, x;"_ ;.

PROOF. By the definition of |- |,

1= Sall? = [ | £7(x) ~ Si(x)[? dx

Integration by parts gives fori=1,2,...,n

J,:"— (f"(x) — SX(x))Sa(x) dx = (f'(x) — Sa(x))Sx(x)[Z_,

_ f (f'(x) — Sa(x))Sa(x) dx
= (f'(x) = Sax)Sa() i, = (S (x) = Sax))SE(x) 3%

+ [ () = Sax))SE(x) dx.

Xi—1

Now $®*)(x) = 0 on the subintervals (x;_,, x; ) andf”, S, Sx are continuous
on [a, b]. Adding these formulas fori = 1,2, ..., n yields the proposition of

the thpnrpm since

3 (6) - SIS, = () - SabISial. O

With the help of this theorem we will prove the important minimum-norm
property of spline functions.

(2.4.1.5) Theorem. Given a partition A:={a = xo < xy < - < x, = b} of the

interval [a, b}, values Y ={yq,..., y.} and a function fe X ?*[a, b] with

fx)=yi,fori=0,1,...,n,then | f|*> = |Sa(Y; )|, and more precisely
If = Sa(¥; )= £]1* — Sa(Y;-)|* =0

holds for every spline function S,(Y; -), provided one of the conditions [com-
pare (2.4.1.2)]

(a) Si(Y; a) = Si(Y; b)=0,
(b) f € H2(a, b), Sa(Y; -) periodic,
(c) f'(@) = Sa(Y; a), f'(b) = Su(Y; b),
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is met. In each of these cases, the spline function Sa(Y;-) is uniquely
determined.

The existence of such spline functions will be shown in Section 2.4.2.

ProOF. In each of the above three cases (2.4.1.5a, b, c), the expression

(f'(x) — Sabx))Sa) [ — z (f (x) = Sal=)SE()E, =

vanishes in the Holladay identity (2.4.1.4) if S, = SA(Y; - ). This proves the

minimum property of the spline function S,(Y; - ). Its unig an be seen

ARERARANAAGALLL PAIUPWILY Ui ViV ORIV Tiiviival UA‘ i

ess ¢
J- 118 uniqueness ¢
as follows: suppose Sa(Y;-) is another sphne function having the same
f the

properties as S,(Y; ‘). Letting SA(Y;-) play the role of the function
f € A ?a, b] in the theorem, the minimum property of S5(Y'; - ) requires that

"S—A(Y; ) - SA(Y; )”2 = “S_A(Y; )Hz - “SA(Y; )”2 =0,

and since S,(Y; -) and S,(Y; - ) may switch roles,

b

ISa(Y; ) = Sa(Y; )2 = j (Su(Y; x) — SY(Y; x))? dx = 0.

Since SX(Y; -) and Si(Y; ) are both continuous,
Sa(Y; x) = S(Y; x),
from which
Sa(Y; x)=SA(Y; x) +ex +d

follows by integration. But S,(Y; x) = Sa(Y; x) holds for x = a, b, and this
implies c=d = 0. O

The minimum-norm property of the spline function expressed in
Theorem (2.4.1.5) implies in case (2.4.1.2a) that, among all functions f in
A ?[a, b] with f(x;)=y;,i=0, 1, ..., n, it is precisely the spline function
SA(Y; ) with S4(Y; x) = O for x = a, b that minimizes the integral

11 = [ 1P ax

The spline function of case (2.4.1.2a) is therefore often referred to as the
natural spline function. (In cases (2.4.1.2b) and (2.4.1.2c), the corresponding
spline functions S,(Y; ') minimize |f| over the more restricted sets
#2[a, b] and {fe X7a,b)|f(a)=yo, S'(b)— v} A {f|f(x) =y for
i=0,1,..., n}, respectively.)

The expression f”(x)(1 + f'(x)?)™¥2
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indicates the curvature of the function f(x) at x € [a, b]. If f'(x) is small
compared to 1, then the curvature is approximately equal to f”(x). The value
| f|| provides us therefore with an approximate measure of the total curva-
ture of the function fin the interval [a, b]. In this sense, the natural spline
function is the “smoothest” function to interpolate given support points
(xi, ¥:),i=0,1,...,n

Spline functions have been generalized in many ways. For instance,
polynomials of degree k are used to define spline functions S, € C*™![a, b]
of degree k as piecewise polynomial functions with continuous (k — 1)-th
derivatives. All these functions share many properties [see Greville (1969),
de Boor (1972)] with the cubic splines considered in this and the next two
sections.

2.4.2 Determining Interpolating Cubic Spline Functions

In this section, we will describe computational methods for determining
cubic spline functions which assume prescribed values at their knots and
satisfy one of the side conditions (2.4.1.2). In the course of this, we will have
also proved the existence of such spline functions; their uniqueness has
already been established by Theorem (2.4.1.5).

In what follows, A = {x;|i=0, 1, ..., n} will be a fixed partition of the
intervdl [a, b] by knotsa = x, < x; <--*<x,=b,and Y = {y;|i=0,1,...,
n} will be a set of n + 1 prescribed real numbers. In addition let

hj+1‘=xj+1—xj J=0, 1,...,n—1.

We refer to the values of the second derivatives at knots x; € A,
(24.2.1) M;=Si(Y; x;),
of the desired spiine function S,(Y'; - ) as the moments M ; of S5(Y; - ). We will
show that spline functions are readily characterized by their moments, and
that the moments of the interpolating spline function can be calculated as
the solution of a system of linear equations.

Note that the second derivative S3(Y; - ) of the spline function coincides

with a linear function in each interval [x;, x;.;},j=0, ..., n — 1, and that

these linear functions can be described in terms of the moments M; of
SA(Y, . ):

Sa(Y; x) = M;

j=0,1,...,n

Xit1— X X —X;
jt1 J
L +M;,, i for x € [x;, x;44].

j+1 j+1

By integration,

. —_— 2 — . 2
(2422) Sy(Y;x)= —Mjg% + Mj+1§"2—,lél + A,
j+1 j+1
. _ 3 — . )3
Sa(Y; x) = MjM +M,,, =Xy Afx—x,)+ B,
6hs11 6hse1
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for x € [x;, x;+1),j =0, 1,...,n — 1, where A4;, B; are constants of integra-
tion. From Sx(Y; x;) = y;, Sa(Y; X;j41) = yj+1, we obtain the following
equations for these constants 4; and B;:

h?_.
MJ‘L6—' + Bj = yj’
his
M;,, J6 + Ajhj y + Bj=yji4.
Consequently,
’ = i o= = h%;i
(2.4.2.3) Bi=y;— Mj;6_l_9

C_v  h
Aj=yj+l yj _ ]+1(Mj+1_Mj).
hies 6

This yields the following representation of the spline function in terms of
its moments:

(2.4.2.4)
Sa(Y; x) = a; + Bix — x;) + 7j(x — x;)* + 8j(x — x;)® for x € [x;, x;4,),

where

a].:yj,
M.
yj :=.5J'9
M.h

B;=5a(Y; x;) = __1_2u + A;

_Yi+1 ™) 2Mj+Mj+1h

- hj+1 - 6 j+ 1
5. = a(Y; xj) _Mj., — M;

J 6 6h;,,

Thus S,(Y; - ) has been characterized by its moments M ;. The task of calcu-
lating these moments will now be addressed.

The continuity of S3(Y; - ) at theknots x = x;,j = 1,2,...,n — 1 [namely,
the relations Sy(Y;x; )= S\(Y;x;)] yields n— 1 equations for the
moments M ;. Substituting the values (2.4.2.3) for 4; and B;in (2.4.2.2) gives

2
, Xip1 — X
Sy(Y; x) = —Mj—————( ’;}‘1 ) +M,;,,
j+1

s —vVv: h
+y1+l y}_ J+1(Mj+1_Mj)-
hs 6
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Forj=1,2,...,n— 1, we have therefore
h

, - Yi—=Yi-1 W j
SuY;x;) =22 M +IM,_ |,
J hj 3 J 6 J
o~ v. h. h.
Sa(Y; x))=2itt lyl SLA2Y VRN ALY
’lj.'. o v

and since Sy(Y; xj) = Sa(Y; x;),

h; hi+hj,y hjvy _Yiv1=Yi Yi—Vi-1
(24.25) 3M1‘1+ 3 M;+ : M, = Bt A,

for j=1, 2, ..., n— 1. These are n — 1 equations for the n + 1 unknown
moments. Two further equations can be gained separately from each of the
side conditions (a), (b), and (c) listed in (2.4.1.2).

Case (a): Sx(Y;a)=M,=0= M, =Si(Y; b).
Case (b): Sx(Y; a)=Si(Y; b)=M,=M,,

h, h, + hy
6Ty
Yi—=Vn Ia _yn—l‘

hl hn

hy
6

Sa(Y; @)= Si\(Y; b)= M,+—M,

The latter condition is identical with (2.4.2.5) for j = n if we put

hn+l==hl9 Mn+1==M17 yn+l==yl'

Recall that (2.4.1.2b) requires y, = y,.

h h -
Case (c): Sp(Y; a)=yo=> Mo+ 2 M, =217 %0 _y
3 6 I
hn hn ’ n~ Jn-—
S;S(Y7 b)=y;l=>'gMn—l +'§Mn=)’n _X—h‘:’__l

The last two equations, as well as those in (2.4.2.5), can be written in a
common format:

ﬂij_l +2M1+AJMJ+1=dJ, j=1,2,...,n—1,

upon introducing the abbreviations

N hj*l = _ hi
4 b+ by, M 1=4= h; + hj,
(2.4.2.6) =12, ...,n—1L
d.: 6 Yi+1—Y; Yi—JYj—1

ju—hj +hia | by h;
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In case (a), we define in addition

(2.42.7) Ao =0, dy=0, u,=0, d,=0,
and in case (c)

6 (v _ \
(2.4.2.8) =1 dg ==~(y1 ; Yo _ yb),

h
- =8 YY1
#n 1’ dﬂ h (YH h )‘

This leads in cases (a) and (c) to the following system of linear equations for
the moments M;:

2MO + A’O Ml = do N

uiMo +2M, + 41 M, =d,,

#n—an-Z + 2Mn—1 + '{n—an = dn—b
“nMn—l +2Mn = dn'
In matrix notation, we have

(2 4, o | [mMo] [d]
m 2 A M, d,
(2.4.2.9) Hy ¢ =1 -
. . 2 1" -1 . .
0 ﬂn 2 L Mn L dn
The periodic case (b) also requires further definitions,
h, h
1= 1= 1 —_ —__ "
Ay P Aty
(2.4.2.10)
gm0 1= Vn  Yn= Va-y
" h,+hy|\ hy h, |

which then lead to the following linear system of equations for the moments
Ml’ M2, ooy Mn(—_: Mo):

[ 2 Ay Hy ] -M11 —dl ]
Ha 2 A M, d,
(2.42.11) st | T
2 Ay
| A b 2 | | M, | d, |
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The coefficients 4;, u;, d; in (2.42.9) and (2.4.2.11) are 'well defined by
(24.2.6) and the additional definitions (2.4.2.7), (2.4.2.8), and (2.4.2.10), re-
spectively. Note in particular that in (2.4.2.9) and (2.4.2.11)

(7 A5 19) 1
(£.4.2.12) A

\%

n ~ N
0, w=20 A+u=1

for aii coefficients 1;, y;, and that these coefficients depend only on the
location of the knots x; € A and not on the prescribed values y; € Y nor on
Yo, ¥ in case (c). We will use this observation when proving the following:

(2.4.2.13) Theorem. The systems (2.4.2.9) and (2.4.2.11) of linear equations are
nonsingular for any partition A of [a, b}.

This means that the above systems of linear equations have unique solutions
for arbitrary right-hand sides, and that consequently the problem of interpo-

lation by cubic splines has a unique solution in each of the three cases (a),
(b), (c) of (2.4.1.2).

Proor. Consider the (n + 1) x (» + 1) matrix

(2 2, 0 ]
Mo 2 Ay
A= o )
| 2 An-1
10 | Uy 2 ]
of the linear system (2.4.2.9). This matrix has the following property:
(24.2.14) Az=w = max |z;| < max | w;|
for every pair of vectors z = (z, ..., z,), w= (wo, ..., w,)T, z, we R**1,

Indeed, let r be such that |z,| = max; |z;|. From Az = w,
HrZp—y +22r+lrzr+l =w, (#0 ==09 }-n:O)
By the definition of r and because u, + 4, = 1,

mgx|w,-| = |W,| 22|Zr| _urlzr—ll _Arlzr+1|

= 2'2,' - )urlzrl - Arlzrl
= (2 - ﬂr_'lr)lzrl

= |z,| =m§x|zi|

1
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Suppose the matrix 4 were singular. Then there would exist a solution z # 0
of Az =0, and (2.4.2.14) would lead to the contradiction

0 < max|z| <0.

]
The nonsinguiarity of the matrix in (2.4.2.11) is shown similarly. ]

To solve the equations (2.4.2.9), we may proceed as follows: subtract u, /2
times the first equation from the second, thereby annihilating u,, and then a
suitable multiple of the second equation from the third to annihilate u, , and
so on. This leads to a “ triangular ” system of equations which can be solved
in a straightforward fashion [note that this method is the Gaussian elimina-
tion algorithm applied to (2.4.2.9); compare Section 4.1]:

(2.4.2.15) Qo ="—4Ao/2; ug=do/2; 4,=0;
for k=12 ...,ndo
begin p, =, qy -y + 2;

Qi = — /Py
w = (dy, — Wy, )/pe end,;
Mn = Uy,

for k=n-1,n-2 ...,0do
My =qM; | + u;

[It can be shown that p, > 0, so that (2.4.2.15) is well defined; see Exercise
25} The linear system (2.4.2.11) can be solved in a similar, but not as

straightforward, fashion. An ALGOL program by C. Reinsch can be found in
Bulirsch and Rutishauser (1968).

The reader can find more details in Greville (1969) and de Boor (1972),
ALGOL programs in Herriot and Reinsch (1971), and FORTRAN programs in
de Boor (1978). These references also contain information and algorithms
for the spline functions of degree k > 3 and B-splines, which are treated here
in Sections 2.4.4 and 2.4.5.

2.4.3 Convergence Properties of Cubic Spline Functions

Interpolating polynomials may not converge to a function f whose values
they interpolate, even if the partitions A are chosen arbitrarily fine (see
Section 2.1.4). In contrast, we will show in this section that, under mild
conditions on the function f and the partitions A, the interpolating spline
functions do converge towards f as the fineness of the underlying partitions
approaches zero.

We will show first that the moments (2.4.2.1) of the interpolating spline
function converge to the second derivatives of the given function. More
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precisely, consider a fixed partition A ={a=x, < x; <'* < x,=b} of
[a, b], and let
[ Mo]

M
LMnl
be the vector of moments M ; of the spline function S,(Y; - ) with f(x;) = y;

forj=1,...,n—1, as well as

Sa(Y;a)=f"(a),  Ss(Y;b)=1"(b)

A 4 ~\

We are thus dealing with case (c) of (2.4.1.2). The vector M of moments
satisfies the equation

M=

AM =d,

which expresses the linear system of equations (2.4.2.9) in matrix form. The
components d; of d are given by (2.4.2.6) and (2.4.2.8). Let F and r be the

vectors
f”(xo)

Fi= f(:x‘) ,  r=d—AF = AM - F),

LSf"(x) ]
Writing | z|| = max; |z;| for vectors z, and ||A| for the fineness
(2.4.3.1) “A" ‘=max |x)'+1 - le

J
of the partition A, we have:

Ar

(243.2) If fe C*{a, b} and | f*¥(x)| < L for x € [a, b], then
|M — F|| < |[r]| < zL|A|>
PrOOF. By definition, ro = dy — 2f"(x,) — f"(x,), and by (2.4.2.8),

6 (y1—Yo " "
E(y hly "YO)“Zf (x0) = f"(x1).

Using Taylor’s theorem to express y; = f(x,) and f"(x,) in terms of the
value and the derivatives of the function f at x, yields

r0=

6 hl ” h% " i 4 4

I [f'(xo) + Ef (xo) + —6_f (xo) + ;—;f( (ty) - f (xo)]
2

— 2f"(xo) — [f"(xo) + hy f"(x0) + l;_lfm(fz)l

h2 a hz .
4f()( )“—zl‘f( At2)
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with 7., 1, € [x,, x,]. Therefore
7o <2LJAJ*
Analogously, we find for
re=d, — f"(x,-1) — 2f"(x,)
that
|ra| <3L||AJ.

For the remaining components of r = d — AF, we find similarly

ri=d;— H_if”(x_i— 1) — 2f"(xj) — 4; f”(xj+ 1)

_ 6 Yit1 = ¥Vi Vi~ Vi-1
hj+hieo [ Byea h;
e ) )~ )
Taylor’s formula at x; then gives
rj=-1—“i6if’ (x;) + J+l ,,( ,+1fm( )+'}3+1f(4)( )
hj+ hj,y %

h;

) h3
—f(x;) + Ejf”(xj) - gf'(’cj) + z—ifm(fz)]

— h; [f”(xj) — h; f"(x;) + %fm(fs)]

= 2f"(x;)(h; + hj+y)

—hj+1

] e \
f )+ hjey f7(x5) + JTfM)(Q)

— 1 h1+1 @) (g ﬁ (4) hf 4)

3
h1+l

e

Here 14, ..., 74 € [x;_y, Xj4+]. Therefore
1
forj=1,2,....,n— 1. In sum,

Ir < 3L A|>

il <3L (741 + i1 <3L|A|

and since r = A(M — F), (2.4.2.14) implies |M — F|| < ||r|. O
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(2.4.3.3) Theorem. Suppose f € C*[a, bl and | f*)(x)| < Lfor x € [a, b]. Let A
be a partition A = {a = x, < < x, = b} of the interval [a, b], and K a
constant such that

1Al <K forj=0,...,n—1.
If S, is the spline function which interpolates the values of the function f at the
knots x,, ..., x, € A and satisfies Sy(x) = f'(x) for x = a, b, then there exist

constants C, < 2, which do not depend on the partition A, such that for
x € [a, b],

| f®(x) — S¥(x)| < C LK|A|*7%, k=0,1,2, 3.

Note that the constant K > 1 bounds the deviation of the partition A from
uniformity.

Proor. We prove the proposition first for k = 3. For x € [x;_,, x;},

M;—M;_
R AL

= M M- S"(xj-1)

h; h;

J

) =76 = U ) =) _ o
J
Using (2.4.3.2) and Taylor’s theorem at x, we conclude that
calar 1| =)
|SA(x) —f"(x)] <3 h, '(x = XM 7x) + f‘ (1)

(s = X)) — (—"’_‘~lf‘“(n ) — by £(x)

(LY 2 Y
<3LT +§Ts Nis "ZE[XJ'—I, xj]
By hypothesis, [|A|/h; < K for every j. Thus | f"(x) — Sx(x)| < 2LK]A].
To prove the proposition for k = 2, we observe: for each x € (a, b) there
exists a closest knot x; = x;(x), for which |x;(x) — x| < $|A|. From

£7(x) = S3(x) =" (,x)) — Sale ) + [ (F7(e) — S(e)) d,

*xj(x)

and since K > 1,
| f"(x) — SA(x)| <3L|A[? + 3|A| - 2LK|A|

LK|A|?  xe€[a, b]

VAN
P9 pjw
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We consider k =1 next. In addition to the boundary points &, :=a,
¢n+1=b, there exist, by Rolle’s theorem, n further points &; € (x;_,, x;),
j=1,...,n, with

’ N\ g\ N 1 1
j) = 9alsj) J=yY,1,...,n+ 1.

—

£ile
J &

For any x € [a, b] there exists a closest one of the above points ¢ j = &;{x), for
which consequently

|€5(x) — x| < [|A].
Thus

X

£1x) = Sale)= [ (f"(t) - Si(0)) d,

“gi(x)
and

| f'(x) = Sa(x)| <ILK[A|? - |A] = ZLK|A]P,  x€[a, b]

The case k = 0 remains. Since

f) = Sax) = [ () = Sale)) d,

¥ xj(x)
it follows from the above result for k = 1 that

| /(x) = Sa(x)| <3LK|A|* - 3|All =sLK[A|*  xe[ab]® DO

Clearly, (2.4.3.3) implies that for sequences

3
I
ks

A —In—v(m)/v(m)/.../v(m)_hl
Liy — ‘lu - AQ ~.A1 ~ ~ J\nm - Uy

[T

b

of partitions with A,, - 0 and

|4

sup -
(m) (m)
m,j Xj+1 — Xj

<K < 400,

the corresponding spline functions S, and their first three derivatives con-
verge to f and its corresponding derivatives uniformly on [a, b]. Note that
even the third derivative /™ is uniformly approximated by Sy , a usually
discontinuous sequence of step functions.

5 The estimates of Theorem (2.4.3.3) have been improved by Hall and Meyer (1976):
[ fP(x) — SP(x)| < L|AI*7% k=0, 1, 2, 3, with ¢;:=5/384, c,:=1/24, c,=3/8,
¢y =(K + K~ ')/2. Here ¢, and c, are optimal.
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2.44 B-Splines

Spline functions are instances of piecewise polynomial functions associated
with a partition
A={a=xy<x, < <x,=b}

of an interval [a, b]. In general, a real function f:[a, b] —» R is called a
piecewise polynomial function of order r or degree r — 1 if, for each i =
0,...,n — 1, the restriction of f to the subinterval (x;, x;,,) agrees with a
polynomial p;(x) of degree < r — 1. In order to get a 1-1 correspondence
between f and the sequence (py(x), py(x), - .., P,—1(x)), we define f at the knots

v. 1 =0 n _ 1 on that it hecnmece cantinnnne fram the richt  fiv ) —
-/\ri’ y - U, o0y s l’ DWWV V11V AV UVWWULLLIWY WULLMELLIWUV WY 11 VilL uvlww 1‘5“" J \Ail -»—

fx; +0),0<i<n-—1and f(x,) = f(b):= f(x, — 0).

Thus, the spiine functions S, of degree k introduced eariier are poiynomiai
functions of degree k that are (k — 1)-times differentiable at the interior knots
x;, 1 <i<n—1of A By S, , we denote the set of all spline functions S, of
degree k, which is easily seen to be a real vector space of dimension n + k: In
fact, the polynomial S,|[x,, x;] is uniquely determined by its k + 1 coeffi-
cients; this in turn already fixes the first k — 1 derivatives (=k conditions)
of the next polynomial S,|[x,, x,] at x,, so that only one¢ degree of freedom
is left for choosing S,|[x,, x,]. As the same holds for all further polyno-
mials S;|[x;, x;+1),i=2,...,n— l,onefindsdim S, , =k +1+(n—1) 1=
k+n.

B-splines are special piecewise polynomial functions with remarkable
properties: they are nonnegative and vanish everywhere except on a few
contiguous intervals [x;, x;,; ]. Moreover, the function space S, , has a basis
consisting of B-splines. As a consequence, B-splines provide the framework
for an efficient and numerically stable calculation of splines.

In order to define B-splines, we introduce the function f.: R - R

t—x fort>x
£ :=(t — x), == max(t — x,0) = {0 fort < x

and its powers f;, fi(t):= (t — x),, r > 0. Note that f, depends on a real
parameter x. The function f](-) is composed of two polynomials of degree <
r: the O-polynomial P,(t) := 0 for t < x and the polynomial P,(t) := (t — x)’
for t > x. Clearly, ff € C"™! for r > 1. Further, we recall that under certain
conditions, the divided difference f[t¢;, t;.s,---,t;4,] Of a real function f(t),
fiR—> R is well defined for all t; <t;,, <--- <t,,,, even if the ¢; are not
mutually distinct: The only requirement is that f be n; — 1-times differentiable
att=t;, j=1,i+1,...,i+r,if t; occurs n; times among the ¢;, t;.,, ..., tiy,.
In this case, by (2.1.5.9)

o)

rt

fltiy - s tize ] ==

ifti =ty = = iy,
(24.4.1)
f[t t ] . f[ti+17 RS tl'+r] - f[ti’ SRR ti+r—1]
sy bivpd - —

, otherwise.

Live — L
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It follows by induction over r (see Example 2 of Section 2.1.5) that the divided
differences of the function f are linear combinations of its derivatives at the
points ¢;:

[

(24.4.2) Sl tivys oo iy ) = Z %; ZO SO,
j=i s=
where [ O(t;) == f1(t;).
Let
t=Umsjem  —0 Sm <M< 0O,

be any finite or infinite nondecreasing sequence of reals. Then for any integer
r>1 and i with m <i <i+ r <m, the ith B-spline of order r associated
with t is defined as the following function in x:

(2443) Bi,r,t(x) = (ti+r - tl‘).f.vcr—.1 [ti, ti+1’ A ti+r]’

for which we also write B; or B;,. Clearly, B, ,(x) is well defined for all

X # tis tivys -+ tivy, and by (2.4.4.2), is a linear combination of the functions
(in x),

dS

1.<
ar-

fx"l(t)l , s=0,1,...,m—1, i<j<i+r,

1=t;

if t; occurs n; times among the t;, t;,4, ..., t;,,. Thus B;, , is a linear combina-
tion of

(24.44) (t; — x5, where max{r — n;,0} <s<r—1, i<j<i+r

Hence the function B;, , coincides with a polynomial of degree at most r — 1
on each open interval (¢, t;,,) withi < j <i+rand t; < t;,,. Thatis, B; s
a piecewise polynomial function of order r with respect to a certain partition
of the real axis given by ¢; with i < j <i+r, t; <t;,,. At the knots x = t;,
t; e t, the function B;, (x) may have jump discontinuities. In that case, we
follow our previously stated convention and define B;, (t;) := B, (t; + 0).
Thus B;,, is a piecewise polynomial function that is continuous from the
right. Also by (2.4.44) for given t = {t;}, the B-spline B;,(x) = B;, ((x) is
(r — n; — 1) times differentiable at x = t;, if t; occurs n; times within ¢;,
tir1s---» tiv,. Hence the order of differentiability of the B;,(x) at x =¢; is
governed by the number of repetitions of ¢; in t.

ExaMPLE. For the finite sequence t: t, < t; =t, = t3 < t, = ts < t¢, the B-spline B,
of order § is a piecewise polynomial function of degree 4 with respect to the partition
t; <ts < tgof R. For x = t3, ts, t¢ it has continuous derivatives up to the orders 1, 2,
and 3, respectively, asn; = 3,ns =2, and ng = 1.

We note some important properties of B-Splines:
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Bo.1.e Byoe

Figure 2 Some simple B-splines.

(2.4.4.5) Theorem. (a) B;, (x) = O for x ¢ [t;, t;4,]
(b) B, (x) >0 fort; < x < t,,.
(c) Forall xwithinft; < x <supt;

Z Bi,r,t(x) = 1:
]
and the sum contains only finitely many nonzero terms.

By that theorem, the functions B;, = B;, , are nonnegative weight func-
tions with sum 1 and support [¢;, t;,,], if t; < t;,,: they form a “partition of
unity.”

ProoF. (a) Forx < t; <t < t;,,, fI71(t) = (t — x)""! is a polynomial of degree
(r — 1) in t, which has a vanishing rth divided difference

L W tivgs oo i ]=0 = B (x)=0
by Theorem (2.1.3.10). On the other hand, if t; < t < t;,; < x, then fI71(¢) :=

(t — x)! = Ois trivially true, so that again B; ,(x) = 0.
(b) Forr=1and ¢; < x < t;,,, the assertion follows from the definition
By (x) = [(tisg — %)% — (6 — 0, ]=1-0=1,

and for r > 1, from recursion (2.4.5.2) for B-splines B, ,, which will be derived
later on.

(c) Assume first t; < x < t;;,. Then by (a), B;,(x) =0 for all i, r with
i+r<jandalli>j+ 1,so that

YB,)= 3 B,

i=j—r+1
Now, (2.4.4.1) implies
B, (X) = f{  [tivts tivas -5 tiwrd — S oo tings - o5 Linpg 1

Therefore,

Z Bi,r(x) = ;_1 [tj+1’ L ] tj+r] - fx'—l [tj—r+1’ (RS ] t] =1- 0'
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Here, the last equality holds because the function f! !(t) = (t — x)""! is
a polynomial of degree (r — 1) in t for ¢; < x <t <t <t,,, for which
f 15 -5 syl = 1 by (2.1.4.3), and the functlon £ = (t — x) ! van-
ishesfort;_,,; <t <t; < x <t;,,. Forarbitrary x = t; < sup t;, the assertion
follows because
B;,(t;) = l:g: B; ,(x). O
We now return to the space S, , of spline functions of degree k. We want
to construct a sequence t = {t;} such that the corresponding B-Splines B; , ((x)
form a basis of S, ,. For this purpose, we associate with the partition A the
particular finite sequence t = {{;} _; <j<n+ defined by

A

(7446 t ==t ‘= . = s e = = . =
(24.40) t_,= =lg:=X ty=x; < <t, Lyvik ' = X

(=]

Then the n + k B-splines of order k + 1
(24.4.7)  Bijs14(X) = (tiskrr — )t -5 tivins 1o —k<i<n-1,

will form a basis of S, ,: In order to show that B;, ,, , € S5, we note first that
B; ;+1., agrees with a polynomial of degree < k on each subinterval [x;, x;4, ]
of [a, b], and that B;,,, . has continuous derivatives up to order (k + 1) —
n, — 1 = k — 1 at the interior knots x;,i = 1,...,n — 1, of A, since any such
t; = x; occurs only once in t (2.4.4.6), n; = 1.

On the other hand, by a result of Curry and Schoenberg (1968), which we
quote without proof, the n + k functions B, ;,, (x), —k <i <n — 1, are lin-
early independent. Since the dimension of S, ; is equal to n + k, these func-
tions must form a basis of Sy ;.

2.4.5 The Computation of B-Splines
B-splines can be computed recursively. The recursions are based on a remark-
able generalization of the Leibniz formula for the derivatives of the product

of two functions. Indeed, in terms of divided differences, we find the following.

(2.4.5.1) Product Rule for Divided Differences. Suppose t; < t;; < ' < t;4y.
Assume further that the function f(t) = g(t)h(t) is a product of two func-
tions that are sufficiently often differentiable at t = t;, j =i, ...,i + k so that
gltis tivys - tizx ] and h[t;, tiry, ..., t;4i ] are defined by (2.4.4.1). Then

i+k

St tisgs oo tig ] = 2 glty, tivys st dhlt, tigs oons tig )
r=i

ProoF. From (2.1.5.5) and (2.1.5.6), the polynomials
i+k

Z'g[ti:" tJt—1t)...(t—t,_,)
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and

i+k

Z- h[ts: MR ti+k](t - ts+1) oo (t - ti+k)

interpolate the functions g and h, respectively, at the points t=t¢
r

b
tis1s ---» L4 (in the sense of Hermite interpolation, see (2.1.5), if the ¢; are not

mutually distinct). Therefore, the product polynomial

i+k

FO:= Y, glti oo t1E = %) - (= tiy)

i+k

. Z hltg, ooy L] (€ — Lgay) oo (8 — tigy)
=1

also interpolates the function f(t) at t =t;,..., t;,,. This product can be
written as the sum of two polynomials

itk

F(@) = Z = Z: v 4 Z o+ = P, (t) + Py(t).

Since each term of the second sum ), is a multiple of the polynomial
n‘“‘ — t;), the polynomial P,(t) interpolates the O-function at t = ¢, ...,
t;+«- Therefore, the polynomial P (f), which is of degree < k, interpolates f(t)
att=t,, ..., t;4,. Hence, P,(t) is the unique (Hermite-) interpolant of f(t) of
degree < k.

By (2.1.5.6) the highest coefficient of P,(t) is f[t; ..., t;+x). A compari-
son of the coefficients of t* on both sides of the sum representation P, (t) =
Y, <s ... of P; proves the desired formula

i+k

f[ RIS x+k] = Z.g[tu ...,r,]h[t,, ey ti+k]' [:]

Now we use (2.4.5.1) to derive a recursion for the B-splines B, ,(x) = B, ((x)
(2.4.4.3). To do this, it will be convenient to renormalize the functions B; ,(x),
letting
Bi ,(X)
Ni,r(x) = t : = x [tn t1+1: CEEE ) ti+r]:

ivr — L

for which the following simple recursion holds:

Forr Z 2and ti < ti+l’

x—ti t,-+,—x

Ni,r—l (x) + t

i+r ti i+r ti

(24.5.2) N, (x) = Nitgp-1(x).

PRrOOF. Suppose first x # t; for all j. We apply rule (2.4.5.1) to the product
S =@ =07 = =0 — 972 =g f2).
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Noting that g(t) is a linear polynomial in ¢ for which by (2.1.4.3)
glt.l=t;— x, gt i1 =L glty, ..., ;1 =0 forj>i+1,

we obtain
L et 1= — )72 s i + 1 7 2 Mg e iy ]

= (—ti_—X)(fxr_z[tHl’ SRR ) ti+r] - f;_z[ti’ T t“"_l])

ti+r - ti

+ l.f;_z[ti+17 ey ti+r]

X — t _ t+ — X —
o M [T SR [Tt L] § AR S §
Livy — 4 Live — 4

and this proves (2.4.5.2) for x # ¢t;, ..., t;,,. The result is furthermore true for
all x since all B; ,(x) are continuous from the right and ¢; < ¢,,,.
The proof of (2.4.4.5), (b) can now be completed: By (2.4.5.2), the value
N; ,(x) 1s a convex linear combination of N; ,_;(x) and N, ,_4(x) for¢; < x <
t;+, with positive weights A;(x) = (x — t;)/(t;s, — ;) > 0, 1 — A;(x) > 0. Also
N;,(x) and B;,(x) have the same sign, and we already know that B ;(x) =
0 for x ¢ [t;, t;4+,] and B;,(x) > 0 for t; < x < t;,,. Induction over r using
(2.4.5.2) shows that B, ,(x) > Ofor t; < x < t;4,.
The formula
x—1

(2.4.5.3) B; (x) =

B+ T B ()
i+r-1 — L i+r — Ling
is equivalent to (2.4.5.2), and represents B; ,(x) directly as a positive linear
combination of B;,_,(x) and B;,, ,_;(x). It can be used to compute the values
of all B-splines B, ,(x) = B;, ,(x) for a given fixed value of x.

To show this, we assume that there is a ¢; e t with t; < x < t;,, (otherwise
B, .(x) =0 for all i, r for which B;, = B;, , is defined, and the problem is
trivial). By (2.4.4.5)a) we know B, ,(x) = O for all i, r with x ¢ [¢;, ¢;,,], i.e., for
i< j—r and for i > j+ 1. Therefore, in the following tableau of B, :=
B, ,(x), the B;, vanish at the positions denoted by O:

0 0 0 0
0 o0 0 B ;4
0 0 Bi—2,3 B]"‘2,4
(2.4.5.4) 0 B_,, B_s B_.,
B] 1 BJ 2 BJ' 3 B] 4
0

By definition, B;; = B; ;(x) = 1 for t; < x < t;,;, which determines the first
column of (2.4.5.4). The remaining columns can be computed consecutively
using recursion (2.4.5.3): Each element B;, can be derived from its two left
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neighbors B;,_; and By, ,_,

This method is numerically very stable because only nonnegative multiples of
nonnegative numbers are added together.

Bi+1,r—1

ExaMpPLE. Fort; =i,i=0, 1,... and x = 3.5 € [t,, t,) the following tableau of values
B;, = B, (x) is obtained.

r= 1 2 3 4
i=0 0 0 0 1/48
i=1 0 0 1/8  23/48
i=2 0 12 6/8 23/48
i=3 1 12 1/8 1/48
i=4 0 0 0 0
For instance, B, , is obtained from
35-26 6-—351 23
B, 4= B,4(35) = s7 8 6 3 5 @

We now consider the interpolation problem for spline functions, namely,
the problem of finding a spline S, € S, , that assumes prescribed values at
given locations. Since the vector space S,; has a basis of B-splines, see
(2.4.7.7), we may proceed as follows. Assume that r > 1 is an integer and
t = {t;}, <i<n+r @ finite sequence of real numbers satisfying

tl < tz S'“StN_H.

and t; < t;,, fori=1,2,... N. Denote by Bi(x) = B;, (x), i =1,..., N, the
associated B-splines, and by

N
S = { Z a;By(x)|o; € R},
i=1

the vector space spanned by the B;,i = 1, ..., N. Further, assume that we are
given N pairs (¢, f;),j = 1, ..., N, of interpolation points with

& <&y <<y

These are the data for the interpolation problem of finding a function S € &, ,
satisfying

(2.4.5.5) SE)=f, Jj=1,...,N.

Since any S € ,, can be written as a linear combination of the B, i =
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1,..., N, this is equivalent to the problem of solving the linear equations

(2.4.5.6) ZaB(é)— . j=1,...,N.

The matrix of this system

By(&) - By(&)]
A= : : :

Bi(&y) - By(&)

has a special structure: A is a band matrix, because by (2.4.4.5) the functions
Bi(x) = B;, ,(x) have support [t;, t;,,], so that within the jth row of A ail
elements By(¢;) with t;,, < &; or t; > £; are zero. Therefore, each row of A4
contains at most r elements different from 0, and these elements are in
consecutive positions. The components B(¢;) of 4 can be computed by the
recursion described previously. The system (2.4.5.6), and thereby the interpo-
lation problem, is uniquely solvable if 4 is nonsingular. The nonsingularity
of A can be checked by means of the following simple criterion due to
Schoenberg and Whitney (1953), which is quoted without proof.

(2.4.5.7) Theorem. The matrix A = (B/(&;)) of (2.4.5.6) is nonsingular if and only

if all its diagonal elements B;(£) # O are nonzero.

It is possible to show [see Karlin (1968)] that the matrix A4 is totally
positive in the following sense: all r x r submatrices B of A4 of the form

B=(a; ;)pq=1 Withr>1, i3 <iy<-<i, j<j,<' <}

have a nonnegative determinant, det(B) > 0. As a consequence, solving
(7 A5 6)for nongsinonlar 4 hv Ganscian elimination without rnnnhnn iS numer-

\&eTedoUJ 1UL MVIIOIIIEUIAL /1 U Y WG UOOIGIL VILIALG VIR 7WerlirUwe pelVuver 4 RANARXAiwa

ically stable [see de Boor and Pinkus (1977)]. Also the band structure of A
can be exploited for additional savings.

For further properties of B-Splines, their applications, and algorithms the
reader is referred to the literature, in particular to de Boor (1978), where one
can also find numerous FORTRAN programs.

EXERCISES FOR CHAPTER 2

1. Let Ly(x) be the Lagrange polynomials (2.1.1.3) for pairwise different support
abscissas xo, ..., X,, and let ¢; == L;(0). Show that

1 1 for j=0,
(a) Yexi=< 0 forj=1,2,...,n,
i=0
‘( 1Y'xoxy ... x, forj=n+1;
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2. Interpolate the function In x by a quadratic polynomial at x = 10, 11, 12.

(a) Estimate the error committed for x = 11.1 when approximating In x by the
interpolating polynomial
(b) How does the sign of the error depend on x
3. Consider a function f which is twice continuously differentiable on the interval
I =[-1, 1]. Interpolate the function by a linear polynomial through the support
points (x;, f(x:)), i =0, 1, xo, x, € I. Verify that

= §max | £7(8)] max |(x = xo)(x = x1)|

is an upper bound for the maximal absolute interpolation error on the interval 1.

Which values xo, x; minimize «? What is the connection between (x — xo)x
(x — x,) and cos(2 arccos x)?

4. Suppose a function f(x) is interpolated on the interval [a, b] by a polynomial
P,(x) whose degree does not exceed n. Suppose further that fis arbitrarily often
differentiable on [a, b] and that there exists M such that | f¥(x)| < M fori =0,
1,2, ... and any x € [a, b]. Can it be shown, without additional hypotheses about
the location of the support abscissas x; € [a, b], that P,(x) converges uniformly
on {a, b] to f(x) as n —» c©?

S. (a) The Bessel function of order zero,

Jo(x) = % L cos(x sin t) dt,

is to be tabulated at equidistant arguments x; = xo + ih,i=0,1,2, .... How
small must the increment h be chosen so that the interpolation error remains
below 10~ ¢ if linear interpolation is used?
(b) What is the behavior of the maximal interpolation error
max | Pa(x) — Jo(x)|
0<sx<
as n— oo, if P,(x) interpolates .,u(x\ at x =xM:=i/m,i=0,1,...,n?
Hint Tt suffices to s how that [JP(x)| <1 for k = 0,1,.
(c) Compare the above result with the behavior of the error
max S, (x) = Jo(x)|
0<x<1i
as n— oo, where S, is the interpolating spline function with knot sect
= {x{"} and S, (x) = Jo(x) for x =0, 1.

6. Interpolatlon on product spaces: Suppose every linear interpolation problem
stated in terms of functions ¢y, ¢4, ..., @, has a unique solution

(x) = i;“ifpi(x)

with ®(x;) = fi, k=0, ..., n, for prescribed support arguments x,, ... x, with
X; # Xx;, i # j. Show the following: If Y, ..., Y, is also a set of functions for
which every linear interpolation problem has a unique solution, then for every
choice of abscissas

X0y X1y ovvy Xps xi%xj’ l*j,

yO’yb"'synn yl#ij l#.’a
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and support ordinates
ﬁk9 i=0,...,n, k=0,...,m,

there exists a unique function of the form

D(x, y)= Y Y @ (x)Wuly)
v=0 u=0
with (I)(x,-,yk) =ﬁka l=0, 1, ceny n,k=0, R (8

7. Specialize the general result of Exercise 6 to interpolation by polynomials. Give
the explicit form of the function ®(x, y) in this case.

8. Given the abscissas
Yos Y15 -5 Ymos YiF Y, i¥J,
and, for each k=0, ..., m, the values
P, xP L xW X £ XB
and support ordinates
Siks i=0,....,m, k=0,...,m,

suppose without loss of generality that the y, are numbered in such a
fashion that

noznlz...znm'

Prove by induction over m that exactly one polynomial

m n,
P(x,y)= Y Oy XY
u=0 v=0
exists with

P(x®, yi) = fu, i=0,....n, k=0,...,m

9. Is it possible to solve the interpolation problem of Exercise 8 by other
polynomials

M N,
P(x’ y) = Z Oavuxvy“a

p=0 v=

requiring only that the number of parameters a,, agree with the number of
support points, that is,

m M
Z(nu+ 1)= Z(Nu+ 1)?
u=0 u=0
Hint: Study a few simple examples.

10. Calculate the inverse and reciprocal differences for the support points
X; l 01 -1 2 =2
flrs 33 3
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and use them to determine the rational expression ®* 2(x) whose numerator and
denominator are quadratic polynomials and for which ®?* *(x;)=f;, first in
continued-fraction form and then as the ratio of polynomials.

[y
[

Let ®™ " be the rational function which solves the system $™ " for given support
points (x;, fx), k=0,1,...,m+n
(ao + ag X + -+ a,,.x'i') —ﬁ(bo + bIXg + 4 b,.xﬁ) = 0,

k=0,1,...,m+n.

Show that ®™ "(x) can be represented as follows by determinants:

| fos xx— %, ooy (e = X)™, (e — X) fies - oo (X — X)fi[R28
[1, xx = x, ..y Ok — XY™ (xx — X) fie, -os (X — XPRJFZS

Here the following abbreviation has been used:

Oo Co
o
Iak,...,C,,l;,":S:det _l C.l
Om+n oo Cm-Hl

12. Generalize Theorem (2.3.1.11):

(a) For 2n + 1 support abscissas x; with

(b)

13. (a)

A< xo<X3 <" <X, <a+2n

and support ordinates y,, ..., y2,, there exists a unique trigonometric
polynomial

T(x) = 4ao + Y, (a; cos jx + b; sin jx)
=1
with
T(x)=y fork=0,1,...,2n

If yo, ..., y2n are real numbers, then so are the coefficients a;, b;.

Hint: Reduce the interpolation by trigonometric polynomials in (a) to
(complex) interpolation by polynomials using the transformation T(x)=
Y _. cje’*. Then show c_; =T; to establish (b).

Show that, for real x;, ..., x,,, the function
2n X —x
t(x)= [] sin *
k=1 2

is a trigonometric polynomial
n

$ao + _Zl(a,- cos jx + b; sin jx)
J:

with real coefficients a;, b;.
Hint: Substitute sin ¢ = (1/2i)(e'® — e~ ).
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(b) Prove, using (a) that the interpolating trigonometric polynomial with sup-
port abscissas x;,

A< Xg<Xy " <Xzp<a+2m

and support ordinates yq, ..., y2, is identical with

T = 3yt

where
2n — 2n _
ti{x)=[] sin X% /ﬂ sin 2
k=0 2 /k=0 2
k#j k#j
14. Show that for n + 1 support abscissas x; with
0L<xg<xy <" <x, <7

and support ordinates yq, ..., y», @ unique “cosine polynomial”

C(x)= ) a; cos jx
j=0

exists with C(xx) =y, k=0,1,...,n
Hint: See Exercise 12.

15. (a) Show that for any integer j

cos jx; = (2m + 1)h(j),
k=0

2m
Y sin jx, =0,
k=0
with
2rk
xk-2m+1, k=0,1,...,2m,
and

1 forj=0mod 2m + 1
h 1) :=
() 0 otherwise.

(b) Use (a) to derive for integers j, k the following orthogonality relations:
2m

S 2m + 1
Y sin jx; sin kx; =

LG~ k- i + 1)
EL 2m + 1

Y cos jx; cos kx; = TELHG - )+ G+ K]
2m

Y cos jx; sin kx; = 0.
i=0
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16.

17.

18.

Suppose the 2xn-periodic function f: R — R has an absolutely convergent Fourier
series

f(x)=14ao + Y (a; cos jx + b; sin jx).
=

W(x) =340 + ) (A4; cos jx + B; sin jx)
=1

be trigonometric polynomials with

2nk
‘I'(xk) =f(xt), Xx = MMl
fork=0,1,...,2m
Suc'?v that
Ay =a; + Zl[ap(2m+ D+k + Gp2m+ 1)~k O0<k<m,
pP=
By = by + Zl[bp(2m+ 1+k — bpiam+1)-x) I<k<m
p=
Formulate a Cooley-Tukey method in which the array E[ }is initialized directly

(BLj] :=f;) rather than in bit-reversed fashion.
Hint: Define and determine explicitly a map o = o(m, r, j) with the same replace-
ment properties as (2.3.2.6) but ¢(0, r, 0):=r.

Let N:=2". Consider the N-vectors f=[fo, ..., fn-1]", B==[Bo, ---, Bn-1]"-
(23.2.1) expresses a linear transformation between these two vectors,
B = (1/N)Tf, where T = [t;] with tz = e~ 2*k/N,
(a) Show that T can be factored as follows:

T=QSP{D,-,SP)...(D,SP),

where S is the N x N matrix

L .

The matrices D, = diag(l, 69, 1,69, ..., 1,6%-,),I=1, ..., n — 1, are dia-
gonal matrices with

o0 = exp(~2mir/2""!"1), r= [-;—,], r odd.

Q is the matrix of the bit-reversal permutation (2.3.2.8), and P is the matrix of
the following bit-cycling permutation {:

C(ao +a12 + +a,._12"_‘)==oz,._1 +a02 + +a,._22"'1.
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(b) Show that the Sande-Tukey method for fast Fourier transforms corresponds

to multiplying the vector f from the left by the (sparse) matrices in the above
factorization.

(c) Which factorization of T corresponds to the Cooley-Tukey method?
Hint: TH differs from T by a permutation.

19. Investigate the numerical stability of the methods for fast Fourier transforms
described in Section 2.3.2.

Hint: The matrices in the factorization of Exercise 18 are almost orthogonal.

20. Given a set of knots A = {x, < x; <''* < x,} and values Y :={y,, ..., y,}, prove
independently of Theorem (2.4.1.5) that the spline function SA(Y;-) with
SA(Y; x0) = SX(Y; x,) = 0 is unique.

Hint: Examine the number of zeros of the difference S% — S% of two such spline
functions. Note that this number is incompatible with S, — S, % 0.

21. The existence of a spline function S4(Y; ) in cases (a), (b), and (c) of (2.4.1.2) can
be established without explicitly calculating it, as was done in Section 2.4.2.

(a) The representation of S,(Y; -) requires 4n parameters «;, f;, ;, 6;. Show
that in each of the cases (a), (b), (c) a linear system of 4n equations results.
(n + 1 = number of knots.)

(b) Use the uniqueness of So(Y; - ) (Exercise 20) to show that the system of linear
equations is not singular, which ensures the existence of a solution.

22. Show that the quantities d; of (2.4.2.6) and (2.4.2.8) satisfy
d;=3"(x;)+0(A]), Jj=01,..,n

and even
d;=3f"(x))+ O(|A|I*), Jj=1,....,n—1,
in the case of n + 1 equidistant knots x; € A.
23. Show that Theorem (2.4.1 5} implies: If the set of knots A’ < [a, b] contains the
set of knots A, A’ o A, then in each of the cases (a), (b), and (c),

1A= 184 (Y5 ) = [1Sa(Y: )
24. Suppose Sa(x) is a spline function with the set of knots
={a=x0<xl <".<x"=b}

interpolating f € o *(a, b). Show that
b
1= Sall? = [ (£(x) - $a(0))f (x) dx

if any one of the following additional conditions is met:
(@) f'(x) = Si(x) for x=a,b.
(b) f"(x) = Sa(x) for x=a,b.
(c) Sais periodic and f'e A5(a, b).
25. Prove that p, > 1 holds for the quantities p,, k = 1, ..., n, encountered in solu-

tion method (2.4.2.15) of the system of linear equations (2.4.2.9). All the divisions
required by this method can therefore be carried out.
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26. Define the spline functions S; for equidistant knots x; = a 4+ ih, h > 0,i =0, .
n, by

Y

Sj(xk) = 6""‘, j, k= 0, PP (N and S;’(xo) = S;I(x,,) = 0.

Verify that the moments M, ..., M,_ of S; are as follows:

1
Mi=—pLMl'+l’ i=1,...,j—2,

1
M,'=" Ml'—l’ i=j+2,...,n—l,
Pn-i
M. = jiﬁ' 1pj—y + 1/pp—;j-y
R R 1/pj~1 = 1/pa-j-1
Mo = (6h7 = M) > forj#0,1,n—1,n,
i-
1 -2
My, = .1(6" - M;)
n—j-

where the numbers p; are recursively defined by p; :=4 and
p,"=4—1/p,‘_1, i=2,3,....
It is readily seen that they satisfy the inequalities

4=p1>p2>--->p,->p,-+1>2+\/§>3.7, 025 < 1/p; <03.

27. Show for the functions S; defined in Exercise 26 that for j=2,3,...,n — 2 and
e1therxe[x,,x,+l]j+l<1<n—lorxe[x, LX) 1< l<j—1

|S;(x)| <—8‘ | M,|.

28. Let S,. ; denote the spline function which mterpolates the function f at prescribed
knots x € A and for which

Sa: r(xo0) = S%; p(xa) = 0
The map f— Sa, ; is linear, that is,
Sair+g=Sas+ Sags  Saiay=0aSas;.

The effect on S,, ; of changing a single function value f(x;) is therefore that of
adding a corresponding multiple of the function S; which was defined in Exercise
26. Show, for equidistant knots and using the results of Exercise 27, that a
perturbation of a function value subsides quickly as one moves away from the
location of the perturbation. Consider the analogously defined Lagrange polyno-
mials (2.1.1.2) in order to compare the behavior of interpolating polynomials.

29. Let A ={xo < Xx; <" < Xp}.
(a) Show that a spline function S, with the boundary conditions
*) S¥(xo) = S&(x,) =0, k=0,1,2

vanishes identically for n < 4.
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(b) For n = 4, the spline function with (*) is uniquely determined for any value c
and the normative condition

Sa(x2)=c.

Hint: Prove the uniqueness of S, for ¢ = 0 by determining the zeros of S% in
the open interval (x,, x4). Deduce from this the existence of S, by the
reasoning employed in exercise 21.
(c) Calculate S, explicitly in the following special case of (b):
-2,-1,0,1,2 c=1.

30. Let & be the linear space of all spline functions S, with knot set

A ={xo <--* < x,} and Si(xo) = Sa(x,) = 0. The spline functions Sy, ..., S, are

the ones defined in Exercise 26. Show that for Y :=={y,, ..., ya},

Sa(Y; x)y= zoy,-Sj(x).
J=
What is the dimension of &?

4

Exponential spline
— ——— Cubic spline

é —

Figure 3 Comparison of spline functions.

31. Let E, ;(x) denote the spline-like function which, for given 1;, minimizes the
functional

Bbl= ¥ [ 070 + #O ] d

over X %(a, b). [Compare Theorem (2.4.1.5).]
(a) Show that E, , is between knots of the form

Ea, (x) = a; + Bi(x — xi) + yithi(x — ;) + di@i(x — x3), X < X < X4 4,
i=0,...,N—1,

Yi(x) = 12? [cosh(4;x) — 1], oi(x) = 16? [sinh(4;x) — 4;x],

with constants «;, fi, 7;, 6;. Ea, s is called exponential spline function.
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(b) Examine the limit as 4; —» 0.
(c) Figure 3 illustrates the qualitative behavior of cubic and exponential spline
functions interpolating the same set of support points.
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Topics in Integration

(

Calculating the definite integral of a given real function f(x),
[ 1) a
is a classic problem. For some simple integrands f (x), the indefinite integral
[T dc=Fe.  Fe=1()

can be obtained in closed form as an algebraic expression in x and well-

known transcendental functions of x. Then

MAIN/ VV i1 ¢ A ll WALLERL ILeRiWLAWS 9399 9 3

[ 1(x) dx = F(b) - F(a).

See Grobner and Hofreiter (1961) for a comprehensive collection of for-
mulas describing such indefinite integrals and many important definite
integrals.

As a rule, however, definite integrals are computed using discretization
methods which approximate the integral by finite sums corresponding to
some partition of the interval of integration [a, b] (“ numerical quadrature ).
A typical representative of this class of methods is Simpson’s rule, which is
still the best-known and most widely used integration method. It is
described in Section 3.1, together with some other elementary integration
methods. Peano’s elegant and systematic representation of the error terms of
integration rules is described in Section 3.2.

A closer investigation of the trapezoidal sum in Section 3.3 reveals that its
deviation from the true value of the integral admits an asymptotic expansion
in terms of powers of the discretization step h. This expansion is the classical

125
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summation formula of Euler and Maclaurin. Asymptotic expansions of this
form are exploited in so-called “extrapolation methods,” which increase the
accuracy of a large class of discretization methods. An application of extra-
polation methods to integration (“ Romberg integration ”) is studied in Sec-
tion 3.4. The general scheme is described in Section 3.5.

A description of Gaussian integration rules follows in Section 3.6. The
chapter closes with remarks on the integration of functions with singulari-
ties. For a comprehensive treatment of integration, the reader is referred to

Davis and Rabinowitz (1975).

3.1 The Integration Formulas of Newton and Cotes

The integration formulas of Newton and Cotes are obtained if the integrand
is replaced by a suitable interpolating polynomial P(x)and if then (% P(x) dx
is taken as an approximate value for |? f(x) dx. Consider a uniform partition
of the closed interval [a, b] given by

x; = a + ih, i=0,...,n,
/n n> 0 integer, and let P, be the interpolating

—a
norl

P(x;)=fi=f(x;) fori=0,1,...,n
By Lagrange’s interpolation formula (2.1.1.4),

Px)= T AL L= [T

k;l

Xk

or, introducing the new variable ¢ such that x = a + ht,

Integration gives
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depend solely on n; in particular, they do not depend on the function fto be
integrated, nor on the boundaries a, b of the integral.
If n = 2 for instance, then

t—-1t-2 1 2 8 12 )_1
24_90 g 4
“‘_fol—o 2 f 2_2t)dt=— (5—4)_3
2t—-0t— 1 1 1(8 4) 1
0=| 35 ?( P —tdt=z\z —7) =7,
Yo 4 T Vs — 1 Y9 213 2) 3

and we obtain the following approximate value:

[ Pa) dx =3 (fo + 4s +)

for the integral {® f(x) dx. This is Simpson’s rule.
For any natural number n, the Newton-Cotes formulas

[b n b—a

(3.1.1) P,(x)dx=h Z fio:, fi=f(a+ ih), h:= ,

provide approximate values for {5 f(x) dx. The weights «;, i=0, 1, ..., n,
have been tabulated. They are rational numbers with the property

(3.1.2) i o; =

This follows from (3.1.1) when applied to f(x):= 1, for which P,(x) = 1.
If s is a common denominator for the fractional weights o;, that is, if the
numbers
0; "= sa;, i=0,1,...,n

are integers, then (3.1.1) becomes

(3.1.3) IbP,,(x) dx=h .;fiai = b—a .‘:26 o; f;-

It can be shown [see Steffensen (1950)] that the approximation error may be
expressed as follows:

b
(3.1.4) f () dx — [ f(x)dx=h*1-K-fOE),  Ee(ab)
Here (a, b) denotes the open interval from a to b. The values of p and K
depend only on n but not on the integrand f.
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For n=1,2,...,6 we find the Newton-Cotes formulas given in the
following table. For larger n, some of the values g; become negative and the
corresponding formulas are unsuitable for numerical purposes, as cancella-
tions tend to occur in computing the sum (3.1.3).

n o ns Error Name

1 1 1 2 R P Trapezoidal rule
2 1 41 6 ks fH() Simpson’s rule

3 1 3 3 1 8 A gHfW(¢) 3/8-rule

4 7 3212 32 7 0 h7 585 f1O(&) Milne’s rule

5 19 7550 5075 19 288 k7 33sSO(C)

6 41 216 27 272 27 216 41 840 h® 1250 /(&) Weddle’s rule

Additional integration rules may be found by Hermite interpolation (see
Section 2.1.5) of the integrand f by a polynomial P € I, of degree n or less.
In the simplest case, a polynomial P € I1; with

Pla)=f(a),  Pla)=f"(a),
Pb)=f(b),  P(b)=S"(b)

is substituted for the integrand f. The generalized Lagrange formula (2.1.5.3)
yields for P in the special case a=0, b = 1,

integration of which gives

f: P(t)dt =3(f(0) + f(1)) + 1—3‘( 1(0) = f(1)).

From this, we obtain by a simple variable transformation the following
integration rule for general a < b (h:==b — a):

(315) |

b

£()dx = MB=1 (£(@) + ) + - (/) = 1B,

If fe C*a, b] then—using methods to be described in Section 3.2—the
approximation error of the above rule can be expressed as follows:

b

(3.1.6) M(h) - ( £(x) dx = ‘7% fOE),  Ee(ab), h=(b—a)
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If the support abscissas x;,i =0, 1, ..., n, xo = a, x,, = b are not equally
spaced, then interpolating the integrand f (x) will lead to different integra-
tion rules, among them the ones given by Gauss. These will be described in
Section 3.6.

The Newton-Cotes and related formulas are usually not applied to the
entire interval of integration [a, b], but are instead used in each one of a
collection of subintervals into which the interval [a, b] has been divided. The
full integral is then approximated by the sum of the approximations to the
subintegrals. The locally used integration rule is said to have been extended,
giving rise to a corresponding composite rule. We proceed to examine some
composite rules of this kind.

The trapezoidal rule (n = 1) provides the approximate value

I; ’=‘2‘[f(xi) + f(xi+1)]

in the subinterval [x;, x;,,] of the partition x;=a +ih, i=0,1,..., N,
h:= (b — a)/N. For the entire interval [a, b], we obtain the approximation

(3.1.7)

T(h)’=§;: Ii=h[£§i) +fl@a+h)+fl@+2h)+--+f(b—h)+ g’)

which is the trapezoidal sum for step length h. In each subinterval [x;, x;, ]
the error

Xi+1 h3
I; - j f(x) dx:ﬁf(z)(éi)a &i € (xi, Xiv1),
is incurred, assuming f € C?[a, b]. Summing these individual error terms
gives
3 N-1 1 N-1

T - [ f(e)dx =" T 1 (b—a)— T 1)
Since

min (&)< = N Z fAE) < max FAl(4)

i i=
and f®(x) is continuous, there exists ¢ € [min; C,-, max; ;] < (a, b) with
1 N-1

f(2) f) _ Z f(z)(f )
Thus

T(h) — jbf(x) dx = b-a R f®(&), &€ (a, b).

Upon reduction of the step length h (increase of N) the approximation error
approaches zero as fast as h?, so we have a method of order 2.
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If N is even, then Simpson’s rule may be applied to each subinterval
[X2is X2i41> X2i42), i=0, 1, ..., N/2 — 1, individually, yielding the approxi-
mation (h/3)(f(x2:) + 4f (X2:+1) + f(X2:+2))- Summing these N/2 approxi-
mations results in the composite version of Simpson’s rule,

S(h) = g [£(a)+ 4f(a+ h) + 2/ (a+ 2h) + 4f (@ + 3h) + -

+2f (b —2h) + 4f (b — h) + f(b)],

for the entire interval. The error of S(h) is the sum of all N/2 individual
errors

hs N/12)-1 h*b—a? (N/2)-1
h)—lf 5 X /Y8 =g § L /U
and we conclude, just as we did for the trapezoidal sum, that
b b—a
S(h) ~ | flx) dx =1 "R, Ee(ab),

provided f € C*[a, b]. The method is therefore of order 4.
Extending the rule of integration M(h) in (3.1.5) has a remarkable effect:
when the approximations to the individual subintegrals
+Xi+1
f(x)dx fori=0,1,...,N—-1
are added up, all the “interior” derivatives f'(x;), 0 < i < N, cancel. The
following approximation to the entire integral is obtained:

L < 2

tflat b+ flb—h)+ =7+ 5 a) =S C)]

= T(h) + (@)~ S O]

This formula can be considered as a correction to the trapezoidal sum T/(h).
It relates closely to the Euler-Maclaurin summation formula, which will be
discussed in Section 3.3 [see also Schoenberg (1969)]. The error formula
(3.1.6) for M(h) can be extended to an error formula for the composite rule
U(h) in the same fashion as before. Thus

b—

b
(18)  UM)— [ f(x)dx= =" hE),  felab)
provided f € C*[a, b]. Comparing this error with that of the trapezoidal sum,
we note that the order of the method has been improved by 2 with a mini-
mum of additional effort, namely the computation of f’(a) and f’(b). If these
two boundary derivatives are known to agree, e.g. for periodic functions,

then the trapezoidal sum itself provides a method of order at least 4.
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Replacing f’(a), f'(b) by difference quotients with an approximation error
of sufficiently high order, we obtain simple modifications [“end correc-
tions”: see Henrici (1964)] of the trapezoidal sum which do not involve
derivatives but still lead to methods of orders higher than 2. The following
variant of the trapezoidal sum is already a method of order 3:

T(h)= h{&f(@) + Bfla+h) +f(a+ 2h)+
+f(b—2h) + 131 (b~ h) + 75/ (b))

For many additional integration methods and their systematic examination
see, for instance Davis and Rabinowitz (1975).

3.2 Peano’s Error Representation

All integration rules considered so far are of the form

G21) I(f) ==§ioako £ (20 + :goak, Fed) + - + ank,, F™(xy).

The integration error

(322) R(f)=1(f)— | f(x)dx
is a linear operator

R(of + Bg) = aR(f) + BR(g) forf,ge V,a BeR

on some suitable linear function space V. Examples are V = C"[a, b), the
space of functions with continuous nth derivatives on the interval [a, b}, or
V =1I,, the space of all polynomials of degree no greater than n. The
following elegant integral representation of the error R(f) is a classical
result due to Peano:

(3:2.3) Theorem. Suppose R(P) = 0 holds for all polynomials P € I1,, that is,
every polynomial whose degree does not exceed n is integrated exactly. Then
for all functions f e C"*[a, b},

RU)=[ 7o 0K () d,

a
where

and
R[(x — t)i]

denotes the error of (x — t), when the latter is considered as a function in x.
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The function K(t) is called the Peano kernel of the operator R.
Before proving the theorem, we will discuss its application in the case of
Simpson’s rule

.1
RU) =41 + 3O + 1 (+1) = | f(x)dx
We note that any polynomial P e I1, is integrated exactly. Indeed, let
Q € I1, be the polynomial with P(—1)= Q(—1), P(0) = Q(0), P(+1)=
Q(+1). Putting S(x):= P(x) — Q(x), we have R(P) = R(S). Since the degree
of S(x) is no greater then 3, and since S(x) has the three roots — 1,0, + 1, it
must be of the form S(x) = a(x? — 1)x, and

2

~

1 A — N
— 1)jJUAr = V.

-

RDIDY __ DIC\ __ ~ Y N
NIy =Rw)= —da| XX
s |

Thus Theorem (3.2.3) can be applied with n = 3. The Peano kernel becomes
K(t) = $R.(x — 1)3]

1 .1
e IR () SN V(B Oy g
-1
By definition of (x — t)?, we find that for t € [—1, 1]

.1 .1 _ )

| (x =)} dx = | (x—t)3dx=(l%4~)~,

D | t

(-1-13=0  (1—-ti=0-1)
s _ | 0 ife=0,
=) <o,

The Peano kernel for Simpson’s rule in the interval [—1, +1] is then

=P+ 3r) ifo<e<

(32.4) K= k(=) if —1<t<0.

PRrROOF OF THEOREM (3.2.3). Consider the Taylor expansion of f(x) at x = a:

(325) f(x)=f(a)+f'(a)(x —a)+ -+ f‘"’(a) (x — a)t + ry(x).

n!

Its remainder term can be expressed in the form
| r
)=y | SO — oy de= |-y
Applying the linear operator R to (3.2.5) gives
1 b
326 RU)= R = oy R 10— o )

since R(P)=0 for P e I1,.
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In order to transform this representation of R( f) into the desired one, we
have to interchange the R, operator with the integration. To prove that this
interchange is legal, we show first that

dic i.b

|' oD x— e de| =

627 zall

0l - o) a

for 1 < k < n. For k < n this follows immediately from the fact that (x — t)?,
is n— 1 times continuously differentiable. For k=n —1 we have in
particular

dr 1 [ ] b dn—l

[ i n+1 f(n+ 1)/ sl 4
dx" 1 I' SEEDE)x —t)s ‘“J = ’ J U)d =1 L —t)3]de
and therefore
dn 1
& O = o1, de| = nt [ 1o 00— o).

= n! | fErO@E)(x —t) dt.
‘a
The latter integral is differentiable as a function of x, since the integrand is
jointly continuous in x and t; hence

d% dd;n_-ll [f:f "+ D(e)(x — ey} dt”

= L D(x)x = x) +n! [ f0 () de

_ l'b £int L)/‘\ir/‘. PR, I I %
= ‘, J \l}dx" l\.& L)+ ] at
Thus (3.2.7) holds also for k = n.
By (3.2.7), the differential operators
dk
— k=1, ...
dxk b Y Y n,

commute with integration. Because I(f) = I(f) is a linear combination of
differential operators, it also commutes with integration.
Finally the continuity properties of the integrand f®*D(t)(x — t)} are
such that the following two integrations can be interchanged:
b

1L 7 e = oy a

b
dx = [ £ ()

b
[ (x =ty dx|at

This then shows that the entire operator R, commutes with integration, and
we obtain the desired result

R(f)= Lw“wm«x—m» 0
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Note that Peano’s integral representation of the error is not restricted to
operators of the form (3.2.1). it holds for all operators R for which R,
commutes with integration.

For a surprisingly large class of integration rules, the Peano kernel K(t)
has constant sign on [a, b]. In this case, the mean-value theorem of integral
calculus gives

(3.2.8) R(f)=f"*1() J'bK(t) dt for some ¢ € (a, b).

The above integral of K(t) does not depend on f, and can therefore be
determined by applying R, for instance, to the polynomial f (x):= x"**. This
gives

R(xn + l)

(329) R() =

ferO(E)  for some ¢ € (a, b).

In the case of Simpson’s rule, K(t) >0 for —1<t<1 by (3.24). In
addition

1
%9

[V

:0 +

wib

R(x*) 1 ( =
=—{L 14 -1—‘ x*dx| =
41 24\’ -
so that we obtain for the error of Simpson’s formula

V04370 + 50~ [ rQd=d fo0, e @n)

In general, the Newton-Cotes formulas of degree n integrate without error

polynomials P €11, if n is odd, and P €Il,,, if n is even (see Exercise 2).
The Peano kernels fnr the Newton-Cotes formulas are of constant sion [see

~ 2 V&L waziwaS iU Azavesriad GRiw Vi wwviadwaz Sigii Luvv

for instance Steffensen (1950)], and (3.2.9) confirms the error estimates in
Section 3.1:

I(in(i"I)‘)f(nm( £) if nis odd,
RUN=4 red
”(igcﬁ)“.)f(ﬁ 2’(5) if n 1s even.

Finally, we use (3.2.9) to prove the representation (3.1.6) of the error
of integration rule (3.1.5), which was based on cubic Hermite interpolation.
Here

h2 b
(fl@) + /() + 5 (/@) ~f(®) - | f(x)dx, h=b-aq,

{
N>

R(f)

which vanishes for all polynomials P € I15. For n = 3, we obtain the follow-
ing Peano kernel:
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1[h h? 2 2 i 3
=g§((a—t) +b-t)3)+ (( —t)+—(b—‘)+)‘f_(x_‘)+dx
1[h h?
S ) s (b—i)z—%(b—t)“}

Since K(t) < 0 in the interval of integration [a, b], (3.2.9) is applicable. We
find for a=0, b= 1 that

4
RO) gy v (ca)— = ok
4! L4\L 12 \ V4 27 [PAY
Thus
-1 ° b — a)’
RU) =35 [ 1000 - - a= -2 o0, ce)

for f € C*[a, b}, which was to be shown.

T ~ .1, Aa~lazze: [ & SR S APRGISPURE
3.3 The Euler-Maclaurin Summation Formula
The error formulas (3.1.6) and (3.1.8) are low-order instances of the famous

Euler-Maclaurin summation formula, which in its simplest form reads (for
ge C2m+2[0’ 1])

(33.1) ng(t)dt=g(20—) 22— g

ZV (21 l)(O) (21- l)(l))

—

_ B2m+2 g(2m+2)(€)’ 0< é < 1.

(2m + 2)!
Here B, are the classical Bernoulli numbers
(3.32) B2 - %, B4 - —"3%, B6 = '41_2, Bg D 0

whose general definition will be given below. Extending (3.3.1) to its compo-
site form in the same way as (3.1.6) was extended to (3.1.8), we obtain for
ge C2m+2[0, N]

jNg(t)dt=@ +g(1)+ -+ g(N - 1)+g_(é_\l_)

+ 3 o0 - 6 0w)

BZm+2 (2m+2)
> .Ng () 0<&<N.
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Rearranging the terms of the above formula leads to the most frequently
presented form of the Euler-Maclaurin summation formula:

g(N )

(3.3.3) g_(z()_) +g(1)+ -+ g(N

= [Codi+ 5 22 @) - g 10)

B
4+ —ImEZNgPmED(E), 0<E<N.

For a general uniform partition x,=a + ih, i=0, ..., N, xy = b, of the
interval [a, b], (3.3.3) becomes

' b B,

(334) T(h)=| f(t)dt + th’ QU =1 a)

B,, o
+ h2m+2 (2m2++22)' (b _ a)f(Z +2)(€),

a<é<b,

where T(h) denotes the trapezoidal sum (3.1.7)

T(h)=h(f—g12 +f(a+h)+-“+f(b—h)+—f—g~b—)).

In this form, the Euler-Maclaurin summation formula expands the trapezoi-
dal sum T(h) in terms of the step length h = (b — a)/N, and herein lies its
importance for our purposes: the existence of such an expansion puts at
~an s Ainemnanl 2 A necnmal marrarfial sanaral “averanalatinn mathade

”
Oonc's Qisposai a8 wiaG< arsciiai of poweriui gendrar  CXirapoiaudn meundas,

which will be discussed in subsequent sections.

PROOF OF (3.3.1). We will use integration by parts and successively determine
polynomials B,(x), starting with B,(x) = x — 3, such that

1

| g(t)dt =B —' B,(t)'(¢)

338 [ Bwd =100 —1 [ B0 d

- 0 Bk(t)g""(t) dt,

0

[ Buc (060 de = 1 B0k 1)

where

(3.3.6) B,.,(x)=(k+ 1)Bi(x), k=12 ...
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It is clear from (3.3.6) that each polynomial B,(x) is of degree k and that
its highest-order term has coefficient 1. Given B,(x), the relation (3.3.6)

determines B, (x ) p to an arbltrary addltlve constant. We now select
these constants so

(3.37) BZI+ 1(0) = B21+ 1(1) b 0 for I > 0,

which determine the polynomials B,(x) uniquely. Indeed, if
By ((x)=x¥"1 4y ,x 2 4 e x + ¢,

then, with integration constants ¢ and d,

v2i+1 (21_+1E i3 214_...4_(7]4.1)/‘\(4—
X 21(21——1)° - e

a

B, ,(0) = 0 requires d = 0, and B,;, (1) = 0 determines c.
The polynomials

Bo(x)=1, Byx)=x-4%, By(x)=x*-—x+4%
Biy(x)=x*-3x2+1x, Byx)=x*-2x>+x-%,

are known as Bernoulli polynomials. Their constant terms B, = B,(0) are the

Bernoulli numbers l'l 3 ’)\. All Bernoulli numbers of odd index &k > 1 vanish
because of (3.3.7).

The Bernoulli polynomials satisfy
(3.3.8) (= 1¥B,(1 — x) = By(x).

This follows from the fact that the polynomials (—1)*B,(1 — x) satisfy the
same recursion, namely (3.3.6) and (3.3.7), as the Bernoulli polynomials
B,(x). Since they also start out the same, they must coincide.

The following relation—true for odd indices k > 1 by (3.3.7)—can now be
made general, since (3.3.8) establishes it for even k:

(3.3.9) Bk(O) = Bk(l) = Bk fOI' k > 1
This gives
.1 1
(3.3.10) | Bule) dt =7 (Buss(1) = B (0)) = 0.

We are now able to complete the expansion of

J: g(t) dt.

Combining the first 2m + 1 relations (3.3.5), observing

LB 0| = — 2 (go1(0) - g1

0
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for k > 1 by (3.3.9), and accounting for B,;,, = 0, we get

(3.3.11) [lg(t) i <90)  al)

‘o 2 2
“ B2 (21-1) (21-1)
+ Y (@ P(0) - g* V(1) + s
=1 (&)
where the error term r,, ., is given by the integral
__1 .1

(3.3.12) | Bomy(t)g?™* V() dt.

r = ——
"L em+ 1),
We use integration by parts once more to transform the error term:

1 1 |1
[ Bams 09 000 dt = 573 (Bamealt) = Ban 2™ 0) |

1t

— ———— | (Bypmsa(t) = Bams2)g?™ " 2At) dt.
343 ) (Bameald) = Ban 2l (0

The first term on the right-hand side vanishes again by (3.3.9). Thus

1 .1
(3313)  rmer= 5y ’ (Bam+2(t) = Bam+2)g?" " 2(t) dt.
\em + 2) %

In order to complete the proof of (3.3.1), we need to show that
B+ 2(t) — Bz 2 does not change its sign between 0 and 1. We will show by
induction that

(3.3.14a) (—=1)"Bym-1(x)>0 for0<x<$
(33.14c) (—1y"*1B,,, > 0.

Indeed, (3.3.14a) holds for m = 1. Suppose it holds for some m > 1. Then for
0<x<i
—1 X
I (B0~ Ban) = (<17 [ Bams(0)de >0
m 0
By (3.3.8), this extends to the other half of the unit interval, < x <1,
proving (3.3.14b) for this value of m. In view of (3.3.10), we have

(~ 1" By = (= 1" [ (B(t) = Ba) dt >,

which takes care of (3.3.14¢c). We must now prove (3.3.14a) for m + 1. Since
B, 1(x) vanishes for x = 0 by (3.3.7), and for x = by (3.3.8), it cannot
change its sign without having an inflection point X between 0 and 3. But
then B,,_(X)=0, in violation of the induction hypothesis. The sign of
B+ 1(x)in 0 < x < §is equal to the sign of its first derivative at zero, whose
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value is (2m + 1)B,,(0) = (2m + 1)B,,,. The sign of the latter is (— 1)"* ! by
(3.3.14c).

Now for the final simplification of the error term (3.3.13). Since
B;...2(x) — B,,, does not change its sign in the interval of integration,

mT L

there exists &, 0 < £ < 1, such that

e = G [} Banea) = Bomea) e - g2+ 20)

From (3.3.10),

Bz.m+2 (Dme + 2
(2m+2)

Tmt+1 = “my 9,

which completes the proof of (3.3.1). 0

3.4 Integrating by Extrapolation

Let f € C?™*2[q, b] be a real function to be integrated over the interval [a, b].
Consider the expansion (3.3.4) of the trapezoidal sum T(h) of f in terms of
the step length h = (b — a)/n. It is of the form

(34.1) T(h) =10+ 1, h* + 1,h* + - + 1, B*™ + a4, (R)R*" 2.

Here
b

ro=j' f(t)dt

is the integral to be calculated,

T, = (123;‘)*'00* D) - f@*=Yg), k=12,...,m,

and

(1) = =0y b= SR, @< &= &) <h

is the error coefficient. Since f2™*2) is continuous by hypothesis in the closed
finite interval [a, b], there exists a bound L such that | f?"*?(x)| < L for
all x € [a, b}. Therefore:

(3.4.2). There exists a constant M,, ,, such that

Iam+l(h)| st+l
forallh=(b—-a)nn=1,2....
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Expansions of the form (3.4.1) are called asymptotic expansions in h if the
coefficients 7, , k < m, do not depend on h, and «,, . {(h) satisfies (3.4.2). The
summation formula of Euler and Maclaurin is an example of an asymptotic
expansion. If all derivatives of f exist in [a, b], then by letting m — oo,
the right-hand side of (3.4.1) becomes an infinite series:

To+ T h? + 1, h* +

This power series may diverge for any h # 0. Nevertheless, because of (3.4.2),
asymptotic expansions are capable of yielding for small h results which are
often sufficiently accurate for practical purposes [see, for instance, Erdélyi
(1956), Olver (1974)].

The above result (3.4.2) shows that the error term of the asymptotic

nnnnnnnnnn (Y2 A1) hanamang cmmall walatis 1. 4 e £ (YA ac L
CApdllblUu \J <F.1) UCLUHILS dliiall rciative lU lllC UlllCl (CIrims o1 \_) i 8 1} ad I

decreases. The expansion then behaves like a polynomial in h? which yields
the value 7, of the integral for h = 0. This suggests the following method for
finding 74: For each step length h; in a sequence
h h h
ho—_—b‘_a, h1 0, h2=_0,..., hm—_—_o,

ny n, P

where ny, n,, ..., n, are strictly increasing positive integers, determine the
corresponding trapezoidal sums

To=T(h), i=0,1,...,m.
Let
Tom(h)=aq + ayh? + -+ + a, h*™
be the interpolating polynomial in h? with
T,.(h)=Th), i=0,1...,m,

and take the “extrapolated” value T,,",,(O) as the approximation to the
desired integral 7, . This method of integration is known as Romberg integra-
tion, having been introduced by Romberg (1955) for the special sequence
h; = (b — a)/2". Tt has been closely examined by Bauer, Rutishauser, and
Stiefel (1963).

Neville’s interpolation algorithm is particularly well suited for calculating
T,.m(0). For indices i, k with 1 < k < i < m, let T;(h) be the polynomial of
degree at most k in h* for which

Tik(hj)‘—‘T(hj), j=i—ki—k+1,...,1
and let
Ty = Ta(0).
The recursion formula (2.1.2.7) becomes for x;.= h}:

(3.4.3) To=T -1 + Tow-1 =Ty k-1 ‘
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It will be advantageous to arrange the intermediate values T, in the triangu-
lar tableau (2.1.2.4), where each element derives from its two left neighbors:

h% T(ho) = Too

Iy
3.4.4) h% T(hy) = Ty TZZ\\’T
(3.4 Ty 33
hi | T(hy) = Ty >T32/
T, :

EXA\‘DI © {‘alcnloﬁnn the
.1
| ¢ dt
‘0

by extrapolation over the step lengths hy = 1, h; = 4, h, = 4, we arrive at the follow-

ing tableau using (3.4.3) and 6-digit arithmetic (the fractions in parentheses indicate
the true values)

W3 =1 | Too = 0.500 000 (= })

I
=]
[N
[* -]
~3
A

—
[
jo

S

-
Q

4
¢

Ll
[
-

h =% | Tyo = 0265 625 (= 42) Ty, = 0.166 667 (= %)
Ty, = 0.167 969 (= 7%)

=1 | Too = 0.192 383 (= {%%)
Each entry T;, of the polynomial extrapolation tableau (3.4.4) represents
in fact a linear integration rule for step length h;, = (b — a)/n;:
Tu=ao fla)+oy fla+h)+ - +a,_y f(b—h)+ a, f(b).

Some of the rules, but not all, with i = k turn out to be of the Newton—Cotes
type (see Section 3.1).

For instance, if hy = hy /2 = (b — a)/2, then T;, is Simpson’s rule. Indeed,
Too = (b —a)(tf(a) + 21 (b)),

Tio =46 - st +(*52) + 150).
By (3.43),

and therefore

T =46 - 5@ + (2 1) + 1560
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If we go one step further and put h, = h, /2, then T,, becomes Milne’s rule.
However, this pattern breaks down for hy = h, /2, since T3, is no longer a
Newton-Cotes formula (see Exercise 10).

In the above cases, T,; and T,

e ol b_al
I3, = 4 ‘

are composite Simpson rules:

-
232 231 f°F AL 2223 i A%

f@)+5f(@+h))+3f(a+2hy)+4%f(a+3h)+41 (b))

[V

b —

g BS@)+4f(a+h)+3f(@+2h)+ + 11 (b))

Iy, =

Very roughly speaking, proceeding downward in tableau (3.4.4) corresponds
to extending integration rules, whereas proceeding to the right increases

their ardoar
uiCll OIGCOT.

The following sequences of step lengths are usually chosen for extrapola-
tion methods:

(3.45).

h h_ ,
(a) h0=b_a, hl=_29""’ hi= 21, l=2, 3,....
’b\ h0=b_a "l=@ llz=b‘q h~=hi_2 i=3 4
\v) g 2’ 3a ’ i 2 s s Ty

The first sequence is characteristic of Romberg’s method [Romberg
(1955)]. The second has been proposed by Bulirsch (1964). It has the
advantage that the effort for computing T(h;) does not increase quite as
rapidly as for the Romberg sequence.

For the sequence (3.4.5a), half of the function values needed for calcu-
lating the trapezoidal sum T(h;,,) have been previously encounterered in
the calculation of T(h;), and their recalculation can be avoided. Clearly

T(hiy,)=3T(h) + hivy(fl@+ hivy) + 1@+ 3hio )+ + (b — hiyy)).

Similar savings can be realized for the sequence (3.4.5b).

An ALGOL procedure which calculates the tableau (3.4.4) for given m and
the interval [a, b] using the Romberg sequence (3.4.5a) is given below. To save
memory space, the tableau is built up by adding upward diagonals to the
bottom of the tableau. Only the lowest elements in each column need to be
stored for this purpose in the linear array {0 : m].

procedure romberg (a, b, f, m);
value a, b, m;

integer m;

real a, b;

real procedure f;

begin real h, s;
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integer i, k, n, q;

array t{0 : m];

h:=b—a;n=1;

t{0]:=0.5 x h x (f(a) + f(b));

for k=1 step 1 until m do

Imamc—ﬂ h—nﬁxh n—?yn a:=1-

hadiad — i '1 il ]
for i==1 step 2 until n — ldo
s=s+f(a+ixh);
t{k] =05 x t{k — 1] + s x h;
print (¢[k]);
for i:=k — 1 step — 1 until 0 do

begin g :=¢q x 4;
il =i + 1] + (i + 1] — o[i])lg — 1);

print (t[l])
end
end
end;

We emphasize that the above algorithm serves mainly as an illustration of
integration by extrapolation methods. As it stands, it is not well suited for
practical calculations. For one thing, one does not usually know ahead of
time how big the parameter m should be chosen in order to obtain the
desired accuracy. In practice, one calculates only a few (say seven) columns
of (3.4.4), and stops the calculation as soon as |T; ¢ — T;+1,6| < &5, wheree
is a specified tolerance and s is a rough approximation to the integral

f | /(t)] de.

Such an approximation s can be obtained concurrently with calculating one
of the trapezoidal sums T(h;). A more general stopping rule will be
described, together with a numerical example, in Section 3.5. Furthermore,
the sequence (3.4.5b) of step lengths is to be preferred over (3.4.5a).
Finally, rational interpolation has been found to yield in most applications
considerably better results than polynomial interpolation. A program with
all these improvements can be found in Bulirsch and Stoer (1967).

When we apply rational interpolation (see Section 2.2), then the recursion
(2.2.3.8) replaces (2.1.2.7):

(3.4.6)
lk 1 Tl lk 1 .
Ta=T; s, + , 1<k<is<m
.k] ll_Tk 1— T Lk-1| 4
Tix-1— Ti- 1,k-2

The same triangular tableau arrangement is used as for polynomial extra-
polation: k is the column index, and the recursion (3.4.6) relates each tableau
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element to its left-hand neighbors. The meaning of T, , however, is now as
follows: The functions T (h) are rational functions in h?,

Po+pih® + - + p,h*
qo + q1h* + - + g, h*

A
1y \n)

o]

pu+v=~k pu=vorpu=v-—1,
with the interpolation property
Talh)=Th), j=i—ki—k+1,..,i
We then define
Ty = Tik(o)s

and initiate the recursion (3.4.6) by putting T,,:=T(h;)fori=0, 1, ..., m,
and T; ,=0fori=0,1,...,m— 1. The observed superiority of rational
extrapolation methods reflects the more flexible approximation properties of
rational functions (see Section 2.2.4).

In Section 3.5, we will illustrate how error estimates for extrapolation
methods can be obtained from asymptotic expansions like (3.4.1). Under
mild restrictions on the sequence of step lengths, it will follow that, for
polynomial extrapolation methods based on even asymptotic expansions,
the errors of T,, behave like h?, those of T;, like h?_, h?, and, in general, those
of T, like h2_, h?_,,, ... h? asi— oo. For fixed k, consequently, the sequence
T,, i=k, k+1,..., approximates the integral like a method of order
2k + 2. For the sequence (3.4.5a) a stronger result has been found:

T "b .2 1.2 2 (_l)kBZk+2

{ - - . A
\3.47) i — ' [1‘(.‘) d.‘ = (b — u)h,—_kll~_k+1 h'

T2k 4 2)!

for a suitable ¢ € (a, b) and fe€ C**?[a, b] [see Bauer, Rutishauser, and
Stiefel (1963), Bulirsch (1964)].

3.5 About Extrapolation Methods

Some of the numerical integration methods discussed in this chapter (as, for
instance, the methods based on the formulas of Newton and Cotes) had a
common feature: they utilized function information only on a discrete set of
points whose distance—and consequently the coarseness of the sample—was
governed by a “step length.” To each such step length h # 0 corresponded
an approximate result T(h), which furthermore admitted an asymptotic ex-
pansion in powers of h. Analogous discretization methods are available for
many other problems, of which the numerical integration of functions is but
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one instance. In all these cases, the asymptotic expansion of the result T(h) is
of the form

(35.1) Th)=1o+ B + 1,0 + - + 1, B’ + W' 'a, . (),
0 <71 <72<"" <Vm+y1

where the exponents y; need not be integers. The coefficients 7; are indepen-
dent of h, the function «,,, ,(h) is bounded for h - 0, and 7, = lim,_,, T(h)is
the exact solution of the problem at hand.

Consider, for example, numerical differentiation. For h # 0, the central
difference quotient

Ty = LR =S = B

2h
is an approximation to f'(x). For functions fe C*"*3[x — g, x + a] and
|h| < |a|, Taylor’s theorem gives
h2m+3

T = 5 10+ 1) + 57700+ 4 e [0 + (1)
~ SO+ AR = 5 S6) + -+ L) + ol
=10+ 1 h* + - + 1, h*™ + K" 2q, (),

where 7o = f'(x), T, = f**V(x)/(2k + 1)! for k=1,2,...,m+ 1, and
(Zm+1(h)=fm+1 + (1)
Using the one-sided difference quotient

T(h) = flx+ h;,) —f(x)

leads to the asymptotic expansion
T(h)=1o + T h+1,h* + - + 1" + K" Ytpey + 0(1))
with

S0()
(k+ 1)

We will see later that the central difference quotient is a better approxi-
mation to base an extrapolation method on, as far as convergence is con-
cerned, because its asymptotic expansion contains only even powers of the
step length h. Other important examples of discretization methods which
lead to such asymptotic expansions are those for the solution of ordinary
differential equations (see Sections 7.2.3 and 7.2.12).

In order to derive an extrapolation method for a given discretization
method, we select a sequence of step lengths

F=1{hy, hy, hy, ..}, ho>h;>hy>->0,

T, = k=0,1,2,....,m+ 1.
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and calculate the corresponding approximate solutions T(k;),i =0, 1,2, .
For i > k, we introduce the “polynomials”
Tik(h) = bo + bl hyl + e + bkhYk,

for which
Tik(hj)=T(hj), j=i—ki—-k+1,...,1i

and we consider the values

T = Tu(0)
as approximations to the desired value t,. Rational functions T(h) are
frequently preferred over polynomials. Also the exponents y, need not be
integer [see Bulirsch and Stoer (1964)].

For tlle following discussion of the discretization errors, we will assume
that the T; (h) are polynomials with exponents of the form y, = ky. Romberg
integration (see Section 3.4) is a special case with y = 2. We will use the
abbreviations

z:=h, zi=hi, j=0,1,....m
Applying Lagrange’s interpolation formula (2.1.1.3) to the polynomial
~” oo L h
24 T T Up &

yields for z =0

=Tk j=i-k
with
Then
1 if 1=0,
(3.5.2) 5: )z = ft=1,2 ...,k

j=i—k

l)kzi_kzi_k+1 ...Zi if‘[‘=k+1
Proor. The Lagrange coefficients cf’) depend only on the support abscissas z;
and not on the functions to be mterpolated. Selecting the polynomials z/,
I=0,1, ..., k, Lagrange’s interpolation formula gives therefore

! >

zzﬂ "% I=0,..,k

j=i-k a#j Zj T Za

a=i—k

For z = 0, all but the last one of the relations (3.5.2) follow.
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To prove the last of the relations (3.5.2), we note that

2z
(3.5.3) Frl= i+ (_
j=i—k i;_f:jk \Zg

t) o+ 116 -2

a=i—

Indeed, since the coefficients of z**! are the same on both sides, the differ-
ence polynomial has degree at most k. Since it vanishes at the k + 1 points
z,,0=1i—k, ..., i, it vanishes identically, and (3.5.3) holds. Letting z = 0 in
(3.5.3) completes the proof of (3.5.2). O

(3.5.2) can be sharpened for sequences h; for which there exists a constant

b such that
hj,
h.

J

L<b<1 forallj

In this case, there exists a constant C, which depends only on b and for
which

(3.54) Z |C£lj)| Z;_*—l < Ck Zi—kZi-k+1 -+ Z;.

j=i—k
We prove (3.5.4) only for the special case of geometric sequences {h;} with
h_’=h0bj, O<b<1, j=0,1,

For the general case see Bulirsch and Stoer (1964). It suffices to prove (3.5.4)
for i = k. With the abbreviation 6:=b" we have

25 = (ho by = 25 67,

In view of (3.5.2), the polynomial

k
Pi(z)= Y Wz

j=0
satisfies

x 1 fort=0
P.(0Y) = (k)gﬂ — (k),t ’
w(6°) ,-;oc Zo Z CkiZj 0 fort=1,2,...,k

so that P,(z) has the k different roots 6°, =1, ..., k. Since P,(1) = 1, the
polynomial P, must have the form

k ¢
P,(z) =ni 5

=1
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The coefficients of P, alternate in sign, so that

»

k

T elA = A E ey = A Pyt )|

- i<
_ ﬁ 1ﬁ 6k+1 +'01
o= 10
k146
— K1l +24-+k v
"0 T
= C(0)z0z, ... 2
with
kK 1+ 6
j=1 1 -0

This proves (3.5.4) for the special case of geometrically increasing step
lengths h;.
We are now able to make use of the asymptotic expansion (3.5.1) which
gives for k <m
To= Y ciT(h)
j=i-k
= z C}:)[TO + Tle + Tzzf + -+ TkZ‘} + Z’}+l(‘tk+1 + O(h]))],
Jj=i—k
and for k=m
Tm= Y o+ tiz;+ 152} + 1,20 + 27 Lot 4 (h))
j=i'—m '
By (3.5.2) and (3.5.4),
(3.56) Tu=710+ (—1fz; 4z sy .-  2i(tisy + O(h;_})) fork <m,
and

|T;m - TOI < Mm+1szi—mzi—m+l 4

if |0+ 1(h;)| < M4, for j = 0 [see (3.4.2)]. Consequently, for fixed k and
[ — 00,
T _ TO — 0(zk+1 — O(h(k+ l)y

In other words, the elements T;, of the (k + 1)st column of the tableau (3.4.4)
converge to 7, like a method of order (k + 1)y. Note that the increase of the
order of convergence from column to column which can be achieved by
extrapolation methods is equal to y: y = 2 is twice as good as y = 1. This
explains the preference for discretization methods whose corresponding
asymptotic expansions contain only even powers of h, e.g., the asymptotic
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expansion of the trapezoidal sum (3.4.1) or the central difference quotient
discussed in this section.

The formula (3.5.6) shows furthermore that the sign of the error remains
constant for fixed k < mand sufficiently large i provided 7, , ; # 0. Advantage
can be taken of this fact in the many cases in which

LR

i'ﬂﬂ.k_foi _hiy @+1y _ 1
(35.7) 0l Trru =Tl LMy puen 1
IT;k_'TOI Tk 2
If we put
U =2T11,x — Ta,
then

Uik — 10 = 2T s 1,x — To) — (Tix — To):
For s =sign(T;, , « — 7o) = sign(T; , — 7o), we have
S(Uic = 10) = 2| T ki1 — to| — | T — 0| ® — | Ty — 16| <O.

Thus U, converges monotonically to 7, for i —» oo at roughly the same rate
as T, but from the opposite direction, so that eventually T;, and U, will
include the limit 7, between them. This observation yields a convenient
stopping criterion.

ExaMPLE. The exact value of the integral

L2

| 5(e" — 2)"'e** cos x dx

‘0
is 1. Using the polynomial extrapolation method of Romberg, and carrying 12 digits,
we obtain for T;,, U, 0 <i < 6,0 < k <3, the values given in the following table.

o

T T
Lo 1 12

N R W N O

0.185 755 068 924

0.724 727 335 089
0.925 565 035 158
0.981 021 630 069
0.995 232 017 388
0.998 806 537 974
0.999 701 542 775

0.904 384 757 145
0.992 510 935 182
0.999 507 161 706
0.999 968 813 161
0.999 998 044 836
0.999 999 877 709

0.998 386 013 717
0.999 973 576 808
0.999 999 589 925
0.999 999 993 614
0.999 999 999 901

0.999 998 776 222
1.000 000 002 83
1.000 000 000 02
1.000 000 000 00

~.

Uio

Uiy

Ui2

Uis

[« JKV TN SRR 5 R )

1.263 699 601 26
1.126 402 735 23
1.036 478 224 98
1.009 442 404 71
1.002 381 058 56
1.000 596 547 58
1.000 149 217 14

1.080 637 113 22
1.006 503 388 23
1.000 430 464 62
1.000 027 276 St
1.000 001 710 58
1.000 000 107 00

1.001 561 139 90
1.000 025 603 04
1.000 000 397 30
1.000 000 006 19
1.000 000 000 09

1.000 001 229 44
0.999 999 997 211
0.999 999 999 978
1.000 000 000 00
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3.6 Gaussian Integration Methods

In this section, we broaden the scope of our examination by considering
integrals of the form
b

TOEY:i= | ol flx) d
ST A &

‘a
where w(x) is a given nonnegative weight function on the interval [a, b]. Also,
the interval [a, b] may be infinite, e.g., [0, + o0] or [— o0, + 00]. The weight
function must meet the following requirements:

(3.6.1).

(a) w(x)= 0 is measurable on the finite or infinite interval (a, b).

(b) All moments p, == |2 x*w(x) dx, k=0, 1, ..., exist and are finite.

(c) For polynomials s(x) which are nonnegative on [a, b, {5 w(x)s(x) dx =0
implies s(x) = 0.

The conditions (3.6.1) are met, for instance, if w(x)is positive and contin-
uous on a finite interval [a, b]. Condition (3.6.1c) is equivalent to
{2 w(x) dx > 0 (see Exercise 14).

L} V7L T RS . SUN P RIUP Y. SIS TRPUY PR TSI
YWC WIii dgdlll CAallllllc lllngldUUll LUicd Ul LIIC ly})C
n
(3.6.2) I(f)= Y w f(x).
i=1

The Newton-Cotes formulas (see Section 3.1) are of this form, but the
abscissas x; were required to form a uniform partition of the interval [a, b].
In this section, we relax this restriction and try to choose the x; as well as the
w; so as to maximize the order of the integration method, that is, to maxi-
mize the degree for which all polynomials are exactly integrated by (3.6.2).
We will see that this is possible and leads to a class of well-defined so-called
Gaussian integration rules or Gaussian quadrature formulas [see for instance
Stroud and Secrest (1966)]. These Gaussian integration rules will be shown
to be unique and of order 2n — 1. Alsow; >0anda < x; <bfori=1, ..., n
In order to establish these results and to determine the exact form of
the Gaussian integration rules, we need some basic facts about orthogonal
polynomials.
We introduce the notation

= (p|p(x) = ¥/ + @y ™" + - + )

for the set of normed real polynomials of degree j, and, as before, we denote
by

I1, == {p| degree(p) < j}
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the linear space of all polynomials whose degree does not exceed j. In addi-
tion, we define the scalar product

(f a9): ‘ w(x) f(x)g(x) dx

' I\
on the linear space *[a, b] of all functions for which the integral
b
(51)=| oS (x) dx
is well defined and finite. The functions f, g € I*[a, b] are called orthogonal if
(f; g) = 0. The following theorem establishes the existence of a sequence of

mutually orthogonal polynomials, the system of orthogonal polynomials as-
sociated with the weight function w(x).

(3.6.3) Theorem. There exist polynomials p; € I1;,j=0, 1,2, ..., such that

(3.6.4) (Pi,»p)=0 fori+k.
These polynomials are uniquely defined by the recursions
(3.6.5a) po(x) =1,

(3.6.5b) pi+1(x) = (x - 5i+1)pi(X) - Yi2+1pi— l(x) for i ; 0,
where p_,(x) = 0 and®

(3663) 1+ 1 xpn pz)/(pn pl) for l

=
for1=0,
(3.6.6b) A=l Jori=(
WPi> Pi})\Pi-1> Pi-1) Jori = 1.

PrOOF. The polynomials can be constructed recursively by a technique
known as Gram-Schmidt orthogonalization. Clearly p,(x) = 1. Suppose then,
as an induction hypothesis, that all orthogonal polynomials with the above
properties have been constructed for j <i and have been shown to be
unique. We proceed to show that there exists a unique polynomial
Pi+1 € M4y with

(36.7) (Pi+1, P))=0 forj<i,

and that this polynomial satisfies (3.6.5b). Any polynomial p;, , € IT;, can
be written uniquely in the form

Piv1(x) = (x = ;41 )pilx) + Ci—1Pi-1(x) + Ci—2Pi-2(X) + - + copo(x),

! xp; denotes the polynomial with values xp;(x) for all x.
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because its leading coefficient and those of the polynomials p;, j < i, have
value 1. Since (p;, p;) = O for all j, k < i with j # k, (3.6.7) holds if and only if

(3.6.8a) (Pis1> Pi) = (XPi> Pi) = 0is1(Pis P1) = O,

(3.68b)  (pis1, Pj-1) = (XPj—1, Pi) + ¢j-1(pj-1, Pj-1)=0 forj<i

The condition (3.6.1c}—with p? and p2_,, respectively, in the role of the
nonnegative polynomial s—rules out (p;, p;) =0 and (p;_,, pj_,) =0 for

1 < j < i. Therefore, the equations (3.6.8) can be solved uniquely. (3.6.8a)
gives (3.6.6a). By the induction hypothesis,

v — S\n.
A UiPi—1
for j < i. From this, by solving for xp;_,(x), we have (xp;_,, p;) = (p;, p;) for
j <, so that

c; =__M_=|—??+1 for j = i,
o (Pj-1, Pj-1) | 0 for j < i,
in view of (3.6.8). Thus (3.6.5b) has been established for i + 1. 0

s clearly representable as a linear combination

en. 1 < l \ll thiig ha
S Uiy i ve tnus nave:

(3.6.9) Corollary. (p, p,) =0 forallpell,_,.

(3.6.10) Theorem. The roots x;,i = 1, ..., n, of p, are real and simple. They all
lie in the open interval (a, b).

Proor. Consider those roots of p, which lie in (a, b) and which are of odd
multiplicity, that is, at which p, changes sign:

a<x; <--<x<b.

The polynomial
x)==jljl (x —x;) eIl
is such that the polynomial p,(x)q(x) does not change sign in [a, b}, so that
(Pn> 4) = J @ (x)p(x)a(x) dx # 0

by (3.6.1c). Thus degree(q) = I = n must hold, as otherwise (p,, q) = 0 by
Corollary (3.6.9). O



3.6 Gaussian Integration Methods 153

Next we have the

(3.6.11) Theorem. The n x n matrix
e [ Po(gtl) Pogtn) ]
I_pn—l(tl) pn—l(tn)J

is nonsingular for mutually distinct arguments t;,i=1, ..., n.

PROOF. Assume A i1s singular. Then there is a row vector
- Y=+ 0 with ¢T4 = 0. The polynomial

c = {Co, ey Cpo ) FUWILL O A = Ul 1k POIYNOni
n-1

q(x):= ), cipilx),
i=0

with degree(p) < n, has the n distinct roots ¢, ..., t, and must vanish iden-
tically. Let / be the largest index with ¢; # 0. Then

pi(x) = — clll.;l)cip,-(x).

This is a contradiction, since the polynomial to the right has a lower degree

than p, e I1,. .

Theorem (3.6.11) shows that the interpolation problem of finding a func-
tion of the form

p(x) = "g: ¢ pi(x)

with p(t;) = f;, i =1, ..., nis always uniquely solvable. The condition of the
theorem is known as the Haar condition. Any sequence of functions
Pos> P1» --- Which satisfy the Haar condition is said to form a Chebyshev
system. Theorem (3.6.11) states that sequences of orthogonal polynomials
are Chebyshev systems.

Now we arrive at the main result of this section.

(3.6.12) Theorem.

(a) Let x, ..., x, be the roots of the nth orthogonal polynomial p,(x), and let
Wy, ..., w, be the solution of the (nonsingular) system of equations

- ifk=0
3.6.13 M. = ’(pO, Po) 1 ’
(36.13) L= ifk=1,2 .. n—1
Thenw, >0 fori=1,2,..., n and
b

(3.6.14) [otr(x) dx = 3 wipx)
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holds for all polynomials p € I1,,_,. The positive humbers w; are called
“weights.”

(b) Conversely, if the numbers w;, x;, i =1, ..., n, are such that (3.6.14) holds

for all p € T1,,_,, then the x; are the roots of p, and the weights w; satisfy

Proor. By Theorem (3.6.10), the roots x;, i=1, ..., n, of p, are real and
mutually distinct numbers in the open interval (a, b). The matrix

A=[ Po(x1) .o Polxa) ]

) [p..-x:(xl) p..-;(xn)J

is nonsingular by Theorem (3.6.11), so that the system of equations (3.6.13)
has a unique solution.

Consider an arbitrary polynomial p € I1,,_,. It can be written in the
form

(3.6.16) p(x) = palx)q(x) + r(x),

where g, r are polynomials in 1, _ ;, which we can express as linear combina-
tions of orthogonal polynomials

e Ao

q(x) = :;zoakpk(x ) r(x) = :;Zoﬁkpk(x)'

Since po(x) = 1, it follows from (3.6.16) and Corollary (3.6.9) that
b

| o(x)p(x) dx = (p,, 4) + (, Po) = Bolpo Po).

On the other hand, by (3.6.16) [since p,(x;) = 0] and by (3.6.13),

n

n n n—1
_=Zl w;p(x;) = ; wir(x;) = k;) Bl X wipk(xi)> = Bo(Po> Po)-

i=1

Thus (3.6.14) is satisfied.
We observe that

(3.6.17). If w;, x;,i=1, ..., n, are such that (3.6.14) holds for all polynomials
pell,,_,thenw;,>0fori=1,...,n

This is readily verified by applying (3.6.14) to the polynomials

pi(x) :== ;.1:11 (x —x,)? ell,,_,, j=1...,n,

h#j
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and noting that
b n n
0< | wx)p(x)dx = Y wipi( ﬂ (x; — xp)?
‘a i h=1
h#j

by (3.6.1c). This completes the proof of (3.6.12a).
Assume that w;, x;, i = 1, ..., n, are such that (3.6.14) even holds for all
polynomials p € I1,, . Then

p(x):= H(x - xj)z € I,

j=1
contradicts this claim, since by (3.6.1c)

0<' dx—pr(x) 0.

This proves (3.6.12¢)

To prove (3.6.12b), suppose that w;, x;, i = 1, ..., n are such that (3.6.14)
holds for all p € I1,,_ ;. Note that the abscissas x; must be mutually distinct,
since otherwise we could formulate the same integration rule using only
n — 1 of the abscissas x;, contradicting (3.6.12c).

Applying (3.6. 14) to the orthogonal polynomials p = p,, k=0, ..., n — 1,

IllelVCb w¢e unu

n

1=prk )_' wx)pk( )dx—(plupO)_'O 1fk=1,,n—1

In other words, the weights w; must satisfy (3.6.13).
Applying (3.6.14) to p(x):= p(x)p.(x), k=0, ..., n — 1, gives by (3.6.9)

0= (pi, pn) = pr,, x)e(x:), k=0,...,n— 1

In other words, the vector ¢ :=(wyp,(x,), ..., W, Pa(x,))" solves the homo-
geneous system of equations Ac =0 with A the matrix (3.6.15). Since the
abscissas x;, i = 1, ..., n, are mutually distinct, the matrix 4 is nonsingular
by Theorem (3.6.11). Therefore ¢ = 0 and w; p,(x;) =Ofori=1, ..., n. Since
w; > 0 by (3.6.17), we have p,(x;) = 0,i = 1, ..., n. This completes the proof
of (3.6.12b). O

For the most common weight function w(x) = 1 and the interval [—1, 1],
the results of Theorem (3.6.12) are due to Gauss. The corresponding ortho-
gonal polynomials are (see Exercise 16)

k- d"

Indeed, p, € TI, and integration by parts establishes (p;, p) =0 for i # k.
Up toa factor, the polynomials (3.6.18) are the Legendre polynomials. In the

k=0,1,...,
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following table we give some values for w;, x; in this important special case.
For further values see the National Bureau of Standard’s Handbook of
Mathematical Functions [Abramowitz and Stegun (1964)].

n w; X;

l W, = 2 X, = 0

2 w,=w, =1 x; = —x, =0.577 350 2692...

3 W, =Wy =3 x3= —x, =0.774 596 6692...
Wy = % x;=0

4 W = Wy = 0.347 854 8451... Xg= — X = 0.861 136 3116...
w, = wy = 0.652 145 1549. .. X3 = —x; = 0339 981 0436...

5 w; = ws = 0.236 926 8851... xs= —x; = 0906 179 8459...
w, = w, = 0478 628 6705. .. X, = —Xx, = 0538 469 3101...
wy = 33§ = 0.568 8388 8889... x3=0

Other important cases which lead to Gaussian integration rules are listed

in the following table:
In the lotllowing table:

[a, b] w(x) Orthogonal polynomials
[-1,1] (1 —x2)"12 T,(x), Chebyshev polynomials
[0, o0) e~ L,(x), Laguerre polynomials
(— o0, 0] e H,(x), Hermite polynomials

We have characterized the quantities w;, x; which enter the Gaussian inte-
gration rules for given weight functions, but we have yet to discuss methods
for their actual calculation. We will examine this problem under the assump-
tion that the coefficients J;, 7; of the recursion (3.6.5) are given. Golub and
Welsch (1969) and Gautschi (1968, 1970) discuss the much harder problem of
finding the coefficients J;, ;.

The theory of orthogonal polynomials ties in with the theory of real
tridiagonal matrices

- 1
51 72
Y

2

(3.6.19) Jo=
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and their principal submatrices

r(51 V2 ]

12

',

J

L Vi 0j

Such matrices will be studied in Sections 5.5, 5.6 and 6.6.1. In section 5.5 it
will be seen that the characteristic polynomials p; of J; satisfy the recursions

(3.6.5) with the matrix elements J;, y; as the coefficients. Therefore, p, is the
characteristic nolvnomial of the tridiasonal matrix J,. Consequently we

FELEVIRARRIY pyayaaaiis RINRIG YV 2118w SRSV VAR y

have

(3.6.20) Theorem. The roots x;,i = 1, ..., n, of the nth orthogonal polynomial
p. are the eigenvalues of the tridiagonal matrix J, in (3.6.19).

The bisection method of Section 5.6, the QR method of section 6.6.6, and
others are available to calculate the eigenvalues of these tridiagonal systems.
With respect to the weights w;, we have [Szego6 (1959), Golub and Welsch
(1969)).

(3.6.21) Theorem. Let v := (v}, ..., v'")T be an eigenvector of J, (3.6.19) for
the eigenvalue x;, J, v = x;v1?. Suppose v\ is scaled in such a way that
b

() Tp(i) — —
070 = (3. po) = [ ()

Then the weights are given by

w; = (v{)?, i=1 .., n
PrROOF. We verify that the vector

09 = (poPol(X:), P1P1(Xi)s -+ s Pre 1 Pa- 1(x:)"
where—note that y; # 0 by (3.6.6b)—
‘ 1 forj=0,
Py ‘)' forj=1,...,n—-1

. ]+ l
is an eigenvector of J, for the eigenvalue x;: J, 7" = x; #'?. By (3.6.5), for
any x,

01P0oPo(X) + 721 P1(xX) = 61 po(x) + p1(x) = xpo(x) = xpopo(x).
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For j=2,..., n— 1, similarly,
ViPj-2Pj-2(x) + 6;p;-1 Pj—1(X) + V41 P, Pi(X)

Y N S 20 A S 2V WU OUA Y |

= VPji-1l/jlj-2\*) T Uilj—1\X] T Pi\rA )]

= X0:_.:D: {x\

i irj— iV
and finally,
pn—l[erzpn—Z + 5npn—1(x)] = xpn—lpn—l(x) - pn—lpn(x)9
so that
VnPr—2Pn-2(Xi) + OnPpy Pn1(X;) = X;Pn—1 Pu—1(X:)

holds, provided p,(x;) = 0.
Since p; #0,j=0, ..., n — 1, the system of equations (3.6.13) for w; is
equivalent to

(3.6.22) @Y, ..., 0w = (po, poes
with w=(wy,...,w,), e,=(1,0,...,0).

Eigenvectors of symmetric matrices for distinct eigenvalues are orthogonal.
Therefore, multiplying (3.6.22) by v'"7 from the left yields

@75 )w; = (o, po)tt.
Since py = 1 and py(x) = 1, we have > = 1. Thus
(3.6.23) (@759 )w; = (po, Po).

Using again the fact that #{ =1, we find {0 = v'?, and multiplying
g ag ymng

(3 6. 23) by (U‘n)z gi'v'eS

T, = (01")*(Po., Po).

Since v@Tv¥ = (p,, po) by hypothesis, we obtain w; = (v{)%. O

If the QR-method is employed for determining the eigenvalues of J,, then
the calculation of the first components v} of the eigenvectors v'” is readily
included in that algorithm: calculating the abscissas x; and the weights w;
can be done concurrently [Golub and Welsch (1969)].

Finally, we will estimate the error of Gaussian integration:

(3.6.24) Theorem. If f € C*"[a, b), then

J.:w(X)f(x) dx — i;W.- f(x) f((;n); ) (P Pa)

for some & € (a, b).



3.6 Gaussian Integration Methods 159

ProoF. Consider the solution heIl,,_; of the Hermite interpolation
problem (see Section 2.1.5)

h(x;)=f(x;), H(x;)=f"(x;), i=1..,n
Since degree(h) < 2n,

b n

‘ w(x)h(x) dx = z‘,lwih(xi) = i:leif(xi)

by Theorem (3.6.12). Therefore the error term has the integral representation

Wb n .b

[0 () dx = Twi /() = | @l (x) = h(x) dx

By Theorem (2.1.5.10), and since the x; are the roots of p,(x) € I1,,

@2n (2m
f(x) = h(x) = f(zn)(!C) (x—x1)? oo (x = x,)2 = f(zn)(!C)Pf(X)

for some { = {(x) in the interval I(xy, ..., x,, x) spanned by x,, ..., x,, X.
Next,

SeE(x)) _ f(x) = h(x)

@n)!  pix)

is continuous on [a, b] so that the mean-value theorem of integral calculus
applies:

[ o)) = b)) dx = [ os) 2@ i) dx =~ o )

for some ¢ € (a, b). O

Comparing the various integration rules (Newton-Cotes formulas, extra-
polation methods, Gaussian integration), we find that, computational efforts
being equal, Gaussian integration yields the most accurate results. If only
one knew ahead of time how to chose n so as to achieve specified accuracy
for any given integral, then Gaussian integration would be clearly superior
to other methods. Unfortunately, it is frequently not possible to use the error
formula (3.6.24) for this purpose, because the 2nth derivative is difficult to
estimate. For these reasons, one will usually apply Gaussian integration for
increasing values of n until successive approximate values agree within the
specified accuracy. Since the function values which had been calculated for n
cannot be used for n + 1 (at least not in the classical case w(x) = 1), the
apparent advantages of Gauss integration as compared with extrapolation
methods are soon lost. There have been attempts to remedy this situation

[e.g. Kronrod (1965)]. A collection of Fortran programs is given in Piessens
et al. (1983).
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3.7 Integrals with Singularities

Examining some frequently used mtegratlo n methods in this chapter, we

1. 1 PR mm sem

hat their application to a given integral
| f (x) dx, a, b finite
‘a

was justified provided the integrand f(x) was sufficiently often differentiable
in [a, b]. For many practical problems, however, the function f(x) turns out
to be not differentiable at the end points of [a, b], or at some isolated points
in its interior. In what follows, we suggest several ways of dealing with this
and related situations.

(1) f(x) is sufficiently often differentiable on the closed subintervals of a
partition a = a; <a, <--* < a,,,; = b. Putting f(x):=f(x) on [a;, a;,,],
and defining the derivatives of f;(x) at a; as the one-sided right derivative and
at a;,, as the one-sided left derivative, we find that standard methods can be
applied to integrate the functions f;(x) separately. Finally,

(1w =5 [ e d

(2) Suppose there is a point X € [a, b] for which not even one-sided deri-
vatives of f(x) exist. For instance, the function f(x) = \/x sin x is such that
f'(x) will not be continuous for any choice of the value f'(0). Nevertheless,
the variable transformation ¢ := \/; yields

b b
‘ \/; sin x dx = | 2t2 sin t? dt
Yo Yo

and leads to an integral with an integrand which i1s now arbitrarily often
differentiable in [0, \/_ ]

(3) Another way to deal with the previously discussed difficulty is to split
the integral:

.b L€ .b
.\/;sinxdx='\/;sinxdx+'\/;sinxdx, e>0.
"0 ‘0 e

The second integrand is arbitrarily often differentiable. The first integrand
can be developed into a uniformly convergent series on [0, ¢] so that integra-
tion and summation can be interchanged:

ad €

dx = S = —1) -,

'\/;smx X ‘\/_(x + )dx ‘Z‘O( )(2v+1)‘.(2v+5/2)

For sufficiently small ¢, only few of the series need be considered. The

difficulty lies in the choice of ¢: if ¢ is selected too small, then the proximity of

the singularity at x = 0 causes the speed of convergence to deteriorate when
we calculate the remaining integral.

2v+5/2
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(4) Sometimes it is possible to subtract from the integrand f(x) a function
whose indefinite integral is known, and which has the same singularities as
f(x). For the above example, x\/; is such a function:

b

| \/;sinxdx

‘0
b b b

= | VX 6in x — x)dx + | x/xdx=| /x(sin x — x) dx + b2,
"0 "0 "0

The new integrand has a continuous third derivative and is therefore better
amenable to standard integration methods. In order to avoid cancellation
when calculating the difference sin x — x for small x, it is recommended to
evaluate the power series

: 1 1 2 R 3 < ) 2v
smx—x=—x(§—s_—' i~)-— Z 2v+3 .
(5) For certain types of singularities, as in the case of
I= ' x*f(x)dx, O<a<l,
‘0

with f(x) sufficiently often differentiable on [0, b}, th
{
\

0 nnat hawn o acsrmrsmtadin Avienmcimem ~ 1.,. [
does not have an asymptoliC ¢xpansioii of the f

more general form (3.5.1):

T(h)y~to+ T W' + 1,72 + -+ -
where

i={1+0,2,2+a,4,4+a,6,6+a, ..}

[see Bulirsch (1964)]. Suitable step-length sequences for extrapolation
methods in this case are discussed in Bulirsch and Stoer (1964).
(6) Often the following scheme works surprisingly well: if the integrand of

I= J'bf(x) dx

is not, or not sufficiently often, differentiable for x = a, put

in effect partitioning the half-open interval (a, b] into infinitely many subin-
tervals over which to integrate separately:

aj

Ij==f f(x) dx,

Xj+1

using standard methods. Then
I = 11 + 12 + 13 +
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The convergence of this sequence can often be accelerated using, for
instance, Aitken’s A2 method (see Section 5.10). Obviously, this scheme can
be adapted to calculating improper integrals

j f(x) dx.

(7) The range of improper integrals can be made finite by suitable var-
iable transformations. For x = 1/t we have, for instance,

. @ .1 1 1
| f(x)dx=| 5f|-]ad
1 lo 13\
If the new integrand is singular at 0, then one of the above approaches may
be tried. Note that the Gaussian integration rules based on Laguerre and

Hermite polynomials (Section 3.6) apply directly to improper integrals of
the forms

respectively.

EXERCISES FOR CHAPTER 3

1. Let a < xy < x; <-'*<Xx,<b be an arbitrary fixed partition of the interval
[a, b]. Show that there exist unique numbers yo, 74, ..., }» With

1oP(c) = || PL) d

it-

for all polynomials P with degree(P) < n. Hint: P(x) = 1, x, ..., x". Compare the
resulting system of linear equations with that representing the polynomial inter-
polation problem with support abscissas x;, i =0, ..., n.

2. By construction, the nth Newton-Cotes formula yields the exact value of the
integral for integrands which are polynomials of degree at most n. Show that for
even values of n, polynomials of degree n + 1 are also integrated exactly. Hint:
Consider the integrand x"*! in the interval [—k, +k], n =2k + 1.

3. If f € C?[a, b] then there exists an X € (a, b) such that the error of the trapezoidal
rule is expressed as follows:

1) d = 36 ~ a)(7(@) + £ () = (b — )" (5).

Derive this result from the error formula in (2.1.4.1) by showing that ”(£(x)) is
continuous in Xx.

4. Derive the error formula (3.1.6) using Theorem (2.1.5.10). Hint: See Exercise 3.

5. Let f € C°[—1, +1], and let P € I1 be the Hermite interpolation polynomial
with P(X") =f(x,-), P'(xi) =f'(x,-), X = — 1, 0, + 1.
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10.

11.

(a) Show that

C+1

| Pl de=75f(=1) + $870) + 5 (+1) + S (= 1) = & (+1)

(b) By construction, the above formula represents an integration rule which is
exact for all polynomials of degree 5 or less. Show that it need not be exact
for polynomials of degree 6.

(c) Use Theorem (2.1.5.10) to derive an error formula for the integration rule in
(a).

(d) Given a uniform partition x; =a + ih, i=0, ..., 2n, h = (b — a)/2n of the
interval [a, b], what composite integration rule can be based on the integra-
tion rule in (a)?

Consider an arbitrary partition A:={a= x, < ‘' < x, = b} of a given interval
[a, b]. In order to approximate
b

| f@ya
using the function values f'(x;), i = 0, ..., n, spline interpolation (see Section 2.4)
may be considered. Derive an integration rule in terms of f (x;) and the moments
(2.4.2.1) of the “natural” spline (2.4.1.2a).

Determine the Peano kernel for Simpson’s rule and n =2 instead of n= 3 in
[—-1, +1]. Does it change sign in the interval of integration?

. Consider the integration rule of Exercise 5.

(a) Show that its Peano kernel does not change its sign in [—1, +1}.
(b) Use (3.2.8) to derive an error term.

- ()

=0
K=V 1 =

Prove

using the Euler-Maclaurin summation formula.

Integration over the interval [0, 1] by Romberg’s method using Neville’s algor-
ithm leads to the tableau

h§ =1 Too = T(ho)
T,
h% =% Tio= T(hl) T,
Ty, T3
h% = ILG Ty = T(hz) T,
T,
h} = g‘z T30 = T(h3)

In Section 3.4, it is shown that T, is Simpson’s rule.

(a) Show that T, is Milne’s rule.
(b) Show that T3 is not the Newton-Cotes formula for n = 8.

Let ho=b — a, hy == hy /3. Show that extrapolating T(ho) and T(h,) linearly to
h = 0 gives the 3/8-rule.
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12. One wishes to approximate the number e by an extrapolation method.

(a) Show that T(h)= (1 + h)'™ h+# 0, |h| < 1, has an expansion of the form

P©

71h)==e‘+ _iﬁhi
i=1

!

which converges if |h| < 1.

(b) Modify T(h) in such a way that extrapolation to h = 0 yields, for a fixed"
value x, an approximation to e*.

13. Consider integration by a polynomial extrapolation method based on a geome-
tric step-size sequence h; = hg b/,j=0,1,...,0 < b < 1. Show that small errors
AT; in the computation of the trapezoidal sums T(h;), j =0, 1, ..., m, will cause
an error AT, in the extrapolated value T, satisfying

|AT, .| < Ca(b?) max AT,
0<j<m
where C,(0) is the constant given in (3.5.5). Note that C,(0) — oo as 6 — 1, so
that the stability of the extrapolation method deteriorates sharply as b
approaches 1.

14. Consider a weight function w(x) > 0 which satisfies (3.6.1a) and (b). Show that
(3.6.1¢) is equivalent to

l‘bw(x) dx > 0.

Hint: The mean-value theorem of integral calculus applied to suitable subinter-
vals of [a, b).

15. The integral
L+1
(ha)=|  fx)glx) dx
defines a scalar product for functions f, g € C[—1, + 1]. Show that if fand g are

polynomials of degree less than n, if x;, i =1, 2, ..., n, are the roots of the nth
Legendre polynomial (3.6.18), and if

L +1
vi=| Li(x)dx

-1
with

n X — X

Li(x):= , i=12,...,n
( ) kl;[i X — Xi
k=1

then

16. Consider the Legendre polynomials pj(x) in (3.6.18).

(a) Show that the leading coefficient gf pj(x) has value 1.
(b) Verify the orthogonality of these polynomials: (p;, p;) = 0 if i <.
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17.

18.

19.

Hint: Integration by parts, noting that
dZi +1 ;
WH_I (XZ - 1) =0
and that the polynomial

dl
W (X2 - l)k

is divisible by x? — 1 if I < k.
Consider Gaussian integration, [a, b] = [—1, +1], w(x) = 1.

(a) Show that §; =0 for i > 0 in the recursion (3.6.5) for the corresponding
orthogonal polynomials p(x) (3.6.18). Hint: p/(x) = (—1)'*'p,(—x).
(b) Verify

'.+1 (_1)j22j+1

(x* =1y dx = 7 :
1 izjji(2j+1)

Hint: Repeated integration by parts of the integrand (x* — 1Y = (x + 1)(x — 1).
(c) Calculate (p;, p;) using integration by parts (see Exercise 16) and the result
(b) of this exercise. Show that

22— 2
TR+ 1)Q2i-1)

for i > 0 in the recursion (3.6.5).
Consider Gaussian integration in the interval [ — 1, + 1] with the weight function
1
vi—Tx

In this case, the orthogonal polynomials p;(x) are the classical Chebychev poly-
nomials, Ty(x)=1, Ti(x)=x, T(x)=2x>-1, T(x)=4x>-3x,...,
T;, 1(x) = 2xTj(x) — T;-1(x), up to scalar factors.

(a) Prove that pj(x) = (1/2/~')Tj(x) for j > 1.What is the form of the tridiagonal
matrix (3.6.19) in this case?

(b) For n =3, determine the equation system (3.6.13). Verify that w; = w, =
ws = n/3. (In the Chebychev case, the weights w; are equal for general n.)

Denote by T(f; h) the trapezoidal sum of step length h for the integral

1

“ f(x) dx.
*0
For o > 1, T(x*; h) has the asymptotic expansion

.1
T(x*; h)~ | x*dx + a;h'** + a;h® + agh* + agh® + -
0
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Show that, as a consequence, every function f(x) which is analytic on a disk
|z] < r in the complex plane with r > 1 admits an asymptotic expansion of the
form

W1
T(<*f(x); h) ~ | x*f(x)dx + by h' > + by h2 "% + byh3** 4 -
‘0

+C2h2 +C4h4+c6h6+"'.

Hint: Expand f(x) into a power series and apply T(¢ + y: h) = T(e; h) +
T(y: h).
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Systems of Linear Equations

In this chapter direct methods for solving systems of linear equations
a cee Ay b
[ B
e ol " 1)

will be presented. Here A is a given n X n matrix, and b is a given vector. We
assume in addition that 4 and b are real, although this restriction is inessen-
tial in most of the methods. In contrast to the iterative methods (Chapter 8),
the direct methods discussed here produce the solution in finitely many
steps, assuming computations without roundoff errors.

This problem is closely related to that of computing the inverse 4~ ! of
the matrix A provided this inverse exists. For if A~ ! is known, the solution x
of Ax =b can be obtained by matrix vector multiplication, x = 4~ !b.
Conversely, the ith column g; of A~' = (a,, ..., a,) is the solution of the
linear system Ax = ¢;, wheree; = (0,...,0, 1,0, ..., 0)7 is the ith unit vector.

A general introduction to numerical linear algebra is given in Golub and
van Loan (1983) and Stewart (1973). ALGOL programs are found in Wilkinson
and Reinsch (1971), FORTRAN programs in Dongarra, Bunch, Moler, and
Stewart (1979).

A - L A
AX = D, A

[

4.1 Gaussian Elimination. The Triangular
Decomposition of a Matrix

In the method of Gaussian elimination for solving a system of linear
equations

4.1.1) Ax = b,

167
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where 4 is an n x n matrix and b € R", the given system (4.1.1) is trans-
formed in steps by appropriate rearrangements and linear combinations of
equations into a system of the form

|‘r“ r,,,‘l
. R= S
l 0 r,,,,J
which has the same solution as (4.1.1). R is an upper triangular matrix, so

that Rx = ¢ can easily be solved by " back substitution” (so long as r; # 0,
i=1,...,n):

Rx=r¢

n " .
‘_Ci_2k=i+l FieXe o .,
X; = = fori=i i — 1, ...

Ve

n

>
[

In the first step of the algorithm an appropriate multiple of the first
cquation is subtracted from all of the other equations in such a way that the
coefficients of x, vanish in these equations: hence, x,; remains only in the
first equation. This is possible only if a,, # 0, of course, which can be
achieved by rearranging the equations if necessary, as long as at least one
a;; # 0. Instead of working with the equations themselves, the operations

are carried out on the matrix

dp T b.l
(4. b) = Lo

anl .t aml hn

which corresponds to the full system given in (4.1.1). The first step of the
Gaussian elimination process leads to a matrix (4. ") of the form

[ a’l 1 a’12 s alln hrl_l
(4.12) (4.b)= 0 agz coe Ay 17; ’
L 0 a;:Z s a;m h;,

and this step can be described formally as follows:

(4.1.3)

(a) Determine an element a,, # 0 and proceed with (b); if no such r exists, A is
singular; set (A', b') = (A, b); stop.

(b) Interchange rows r and 1 of (A, b). The result is the matrix (A, b).

(c) Fori=2,3,...,n, subtract the multiple

iy =a; /ay,

of row 1 from row i of the matrix (A, b). The desired matrix (A', b') is
obtained as the result.
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The transition (4, b) — (A4, b) — (A4’, b’) can be described by using matrix
multiplications:

(4.1.4) (/Z, b_) = PI(A’ b), (A,, bl) = GI(Z’ 5) = Gl PI(A’ b),
where P, is a permutation matrix, and G, is a lower triangular matrix:
(4.1.5)

[0 1 0]
I B 0]
| L, 1
Pi=ly 0 -r, G .
1 -1, 0 1
1 L -
| 0 1]

Matrices such as Gy, which differ in at most one column from an identity

matrix, are called Frobenius matrices. Both matrices P, and G, are nonsingu-
lar; in fact

For this reason, the equation systems Ax = b and A'x = b’ have the same
solution: Ax=»b implies G;P;Ax=Ax=b"=G,P,;b, and A'x =V
implies P 'G;'A'x = Ax=b = P{'G{'b.

The element a,; = a;, which is determined in (a) is called the pivot ele-
ment (or simply the pivot), and step (a) itself is called pivot selection (or
pivoting). In the pivot selection one can, in theory, choose any a,; # 0 as the
pivot element. For reasons of numerical stability (see Section 4.5) it is not
recommended that an arbitrary a,; # 0 be chosen. Usually the choice

|a,| = m_ax|ai1|

1s made; that is, among all candidate elements the one of largest absolute
value is selected. (It is assumed in making this choice however-—see Section
4.5—that the matrix A is “equilibrated ”, that is, that the orders of magni-
tudes of the elements of A4 are “ roughly equal ”.) This sort of pivot selection
is called partial pivot selection (or partial pivoting), in contrast to complete
pivot selection (or complete pivoting), in which the search for a pivot is not
restricted to the first column; that is, (a) and (b) in (4.1.3) are replaced by (a’)
and (b'):

(@) Determine r and s so that

|a| =qu|a,-,-|
. ]
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and continue with (b’) if a,, # 0. Otherwise A is singular; set (A', b') =
(A, b); stop.
(b’) Interchange rows 1 and r of (A, b), as well as columns 1 and s. Let the

rmulnnn matrix be lA b)

esul 1, b).
After the first elimination step, the resulting matrix has the form (4.1.2):
a1 a’ bx
(A, b) = |---1---1--
A :

with an (n — 1)-row matrix A. The next elimination step consists simply of
applylng the process described in (4.1.3) for (A, b) to the smaller matrix

fachin £
(A, b) Carryms on in this iasnion, a sequcencc Oi ma trices

(A, b) ==(A(O), b(O))_, (A(l), b(“)—-> RN (A(n—l), b("—l)) =: (R, C)

is obtained which begins with the given matrix (4, b) (4.1.1) and ends with
the desired matrix (R, c¢). In this sequence the jth intermediate matrix
(A9, bY) has the form

* o :* * %
0 I
: “. |
: ) ;
T S L B L R
(4.1.6) (49, V)= |---------- T —— = [
.o ! H H
0 Oyt oty 0} AY 1 bY
. T
0 _:* * %
L

with a j-row upper triangular matrix AY). The transition (4Y, b¥’)—
(AY*D, bU* D) consists of the application of (4.1.3) on the (n—j) x

(n — j + 1) matrix (4Y}, b¥’). The elements of A}, AY), b{” do not change
from this step on; hence they agree with the corresponding elements of
(R, ¢). As in the first step, (4.1.4) and (4.1.5), the ensuing steps can be

described using matrix multiplication. As can be readily seen
A(j), b = G.P. A(i-l), pu—1b X
@17) ( ) =GP )
(R, C)——— G"_.IP"_IG"_ZP"_Z PN GIPI(A’ b),

with permutation matrices P; and nonsingular Frobenius matrices G; of the
form

1 0
o
(4.1.8) G, =
! vy |
|0 L, O 1
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In the jth elimination step (4Y~ D, U~ ) - (49, b'?) the elements below the
diagonal in the jth column are anihilated. In the implementation of this
algorithm on a computer, the locations which were occupied by these ele-

m A far tha ctaracs ~f ¢ imnnartant nantits 1
xuents can now be useéa ior wnc Sioragé o: the HNpOTaiv quauuuvo tijy

i 2j+ 1, of G;; that is, we work with a matrix of the form

rll rlz oo rIJ : r1‘1+1 cee rln c1
-==- | : :
. :
Azi i T2z r2j | :
- = : ! .
T : ! :
TV = 431 432 | Do :
o Ty T+ Fjon Cj
L o T TTTTT T N -
. 1)) () ()
: Aj+1‘j'|aj+1 i+ Ait1,n bj+1
. . 1
: ) 1 '.
'l () )
L )‘nl }‘n2 )‘nj I| an j+1 A, n b ]

Here the subdiagonal elements A, 41 4, Ak+2 ks - > Am Of the kth column are
a certain permutation of the elements [, 4, ..., I, of G, in (4.1.8).

Based on this arrangement, the jth step TV"V > TV j=1,2, ... n—1,
can be described as follows (for simplicity the elements of TV~ are denoted
by tiy, and those of TV by tj, 1 <i<n 1<k<n+ 1)

(@) Partial pivot selection: Determine r so that

|t —max|t
ES |

il -

If t,;=0, set TV :=TU~Y: 4 is singular; stop. Otherwise carry on with
(b).
(b) Interchange rows r and j of TV~ ", and denote the result by T = (t).
(c) Replace

ti= 1= u/tu fori=j+1,j+2,.
ti =t — Lijti forl=}+1,...,nandk=j+1,...,n+1,
th = t, otherwise.

We note that in (c) the important elements [;, ; ;, ..., l,; of G; are stored
in their natural order as t}, , ;, ..., t,;. This order may, however, be changed
in the subsequent elimination steps T® — T** 1 k > j, because in (b) the
rows of the entire matrix T® are rearranged. This has the following effect:
The lower triangular matrix L and the upper triangular matrix R,

1 0 I11 Lin
L=-|f2r . R=| - .
_tnl tn n—1 .1_‘ 0 lnn
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which are contained in the final matrix 7"~V = (t;), provide a triangular
decomposition of the matrix PA:

(4.1.9) LR = PA.

In this decomposition P is the product of all of the permutations appearing
in (4.1.7):

P=Pn_1P"_,2...P1.

We will only show here that a triangular decomposition is produced if no
row interchanges are necessary during the course of the elimination process,

ie, if P, == P, , =P =1 In this case,
[ 1. 0]
I = Ly
lnl vee ln,n—l.'lj

since in all of the minor steps (b) nothing is interchanged. Now, because of
(4.1.7),

R——-'G"_l ...GIA;

therefore
(4.1.10) Gi!'...G; 4R =A.
Since
1 0]
1
G l= ,
! Livaj
I Inj 1]
it is easily verified that
i 0
Ly .
G;—l.“G"—_ll__: . - =L
Ll"l R 1_

Then the assertion follows from (4.1.10).
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EXAMPLE.
316 X
BHIE
Lt 1 1] Lx; 4

<}
[\
d
=
»
p——

o3
i
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il
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hﬁ
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oz
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N

3 |

' @ — o

The nivot elements are marked. T 1ancular equation svste
P are markeg. 1 anguiar equation syste
[3 1 6] [x] T[2]
00 —% X3 4

Its solution is

X3 = —8,

3(10 =
x; =3 + x3)= -7,

x; =32 — x; — 6x3) = 19.

1 00 316
p=|o o 1|, Pa=1]1 1 1],
010 213

and the matrix PA has the triangular decomposition PA = LR with
[1 0 0] 3 1 6]
L= l§ 1 OJ, R= lo 3 —1J.
i 41 0 0 —4%
Triangular decompositions (4.1.9) are of great practical importance in
solving systems of linear equations. If the decomposition (4.1.9) is known for

a matrix A4 (that is, the matrices L, R, P are known), then the equation
system

Ax=b
can be solved immediately with any right-hand side b; for it follows that
PAx = LRx = Pb,
from which x can be found by solving both of the triangular systems
Lu = Pb, Rx = u
(provided all r;; # 0).



174 4 Systems of Linear Equations

Thus, with the help of the Gaussian elimination algorithm, it can be
shown constructively that each square nonsingular matrix A has a triangular
decomposition of the form (4.1.9). However, not every such matrix A has a
triangular decomposition in the more narrow sense A = LR, as the example

[0 1]
T o]

shows. In general, the rows of 4 must be permuted appropriately at the
outset.

The triangular decomposition (4.1.9) can be obtained directly without
forming the intermediate matrices TV’. For simplicity, we will show this
under the assumption that the rows of A do not have to be permuted in
order for a triangular decomposition 4 = LR to exist. The equations
A = LR are regarded as n* defining equations for the n* unknown quantities

Faer 1<k,
>k

ly 1 (li=1)
that is,
min{i. k)
/4 4 4 2 A 7 i1 1)\
(4.111, a,-k= L [l'jr)'k (l“: l,
j=1

The order in which the [;;. r; are to be computed remains open. The
following versions are common:
In the Crout method the n x n matrix 4 = LR is partitioned as follows:

< w» wl-—-

24.69

and the equations 4 = LR are solved for L and R in an order indicated by
this partitioning:

1
(1) a;i= Z ljriis rt=ag, i=12,...,n

i=1

1
2) aiy = Y lLjrye i =ay=an/ry, =2, 3,....n

Jj=1

2 -
(3) a; = lejrj,», r2,~:=a2,"_121r1ia i—_—2,3,...,n,etc.
ji=1
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And in general, fori=1, 2, ..., n,

i—1

= Y Lra =ii+1 ..., n
, N 1—1
(4.1.12) .
I ,=aki_2j=1 kilji L — i1 1 ;.9 1
i r K =1 1,1 T <, , 1

1

In all of the steps above [;=1fori=1,2,...,n
In the Banachiewicz method, the partitioning

1s used ; that is, L and R are computed by rows.

The formulas above are valid only if no pivot selection is carried out.
Triangular decomposition by the methods of Crout or Banachiewicz with
pivot selection leads to more complicated algorithms; see Wilkinson (1965).

Gaussian elimination and direct triangular decomposition differ only in

~maratiane Dath alaneithacs ara

than P N ~F +hn nAd nirmne
lllC oracr 1115 O1 Uptliativin. DULII dlBUl lllllllb aic, tncuncuuauy ana numer-

ically, entirely equivalent. Indeed, the jth partial sums

(4.1.13) V=g, — Z lis o

of (4.1.12) produce precisely the elements of the matrix A" in (4.1.6), as can
easily be verified. In Gaussian elimination, therefore, the scalar products

(A1 1)) ara farmad ~ 1 minannag with tamnararv etaring afthoe intarmoadiata
\-' 1. IL’ alv 1VUIL1IINVU Ullly 111 PI\JUDD, wll—ll lblllp\}lal] dLU1L llls Vi lll\.r 11101 lu\.;unau.,

results; direct triangular decomposition, on the other hand, forms each
scalar product as a whole. For these organizational reasons, direct triangu-
lar decomposition must be preferred if one chooses to accumulate the scalar
products in double-precision arithmetic in order to reduce roundoff errors
(without storing double-precision intermediate results). Further, these
methods of triangular decomposition require about n®/3 operations (1
operation = 1 multiplication + 1 addition). Thus, they also offer a simple
way of evaluating the determinant of a matrix 4: From (4.1.9) it follows,
since det(P) = +1, det(L) = 1, that

det(PA) = +det(A) =det(R)=r 7z ... Ipy.

Up to its sign, det(A) is exactly the product of the pivot elements. (It should
be noted that the direct evaluation of the formula

det(A4) = Y, osign(uy, ..., B) Q1,80 - G,

U1, -eos Bn=1
uiFwufor i¥k

requires n! > n’/3 operations.)
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In the case that P = I, the pivot elements r;; are representable as quotients
of the determinants of the principal minors of A. If, in the representation
LR = A, the matrices are partitioned as follows:

s

L 0 R,,

L2221 g
1—21

Lll 0 ||Rll R12 — |A11 AZI
IA‘v\
T 44l L

-
Ttle ] L ie 2

it is found that L,, R;; = A;,; hence det(R,,) = det(4,,), or
Fyp .. g = det(A“),

otes the ith principal minor

ri; = det(A;)/det(A4;-,), i=2,
I‘“ . det(Al).

A further practical and important property of the method of triangular
decomposition is that, for band matrices with bandwidth m,

EE 7

A= , a;=0 for|i—j|>m,

the matrices L and R of the decomposition LR = PA of A arenot full: Risa
band matrix with bandwidth 2m — 1,

%* % 0
R = * , ,
o 2m =1
| 0 il

and in each column of L there are at most m elements different from zero. In
contrast, the inverses A~ ! of band matrices are usually filled with nonzero
entries.

Thus, if m < n, using the triangular decomposition of A4 to solve Ax =b
results in a considerable saving in computation and storage over using 4~ .
Additional savings are possible by making use of the symmetry of A if Aisa
positive definite matrix (see Sections 4.3 and 4.A).
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4.2 The Gauss-Jordan Algorithm

In practice, the inverse A~ ! of a nonsingular n x n matrix A is not frequently
needed. Should a particular situation call for an inverse, however, it may be
readily calculated using the triangular decomposition described in Section
4.1 or using the Gauss-Jordan algorithm, which will be described below.
Both methods require the same amount of work.

If the triangular decomposition PA = LR of (4.1.9) is available, then the
ith column g; of A~ ! is obtained as the solution of the system

(4.2.1) LRa; = Pe;,

where ¢; is the ith coordinate vector. If the simple structure of the right-hand
side of (4.2.1), Pe;, is taken into account, then the n equation systems (4.2.1)
(i=1,...,n) can be solved in about 3n* operations. Adding the cost of
producing the decomposition gives a total of n* operations to determine
A~ ', The Gauss-Jordan method requires this amount of work, too, and
offers advantages only of an organizational nature. The Gauss-Jordan
method is obtained if one attempts to invert the mapping x — Ax =y,
x € R" y € R" determined by A in a systematic manner. Consider the system

A — e
AR =Y.

ag; Xy +”'+alnxn=y1a

(4.2.2)

a1 Xy + + App Xy Yn
In the first step of the Gauss-Jordan method, the variable x, is exchanged
for one of the variables y,. To do this, an a,; # 0 is found, for example

(partial pivot selection)

|ar1| =m_ax|ai1|,

and equations r and 1 of (4.2.2) are interchanged. In this way, a system

allxl + -+ alnxn = .;]1,
(42.3)

anlxl + - +annxn=yn

is obtained in which the variables y,, ..., y, are a permutation of y,, ..., y,
and a,, = a,;, y; = J, holds. Now, a,; # 0, for otherwise we would have
a;; = 0 for all i, making A4 singular, contrary to assumption. By solving the
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first equation of (4.2.3) for x, and substituting the result into the remaining
equations, the system

’ - ’ . e / J—
apyr +apx; + 0+ ax, = Xy,

_ , _
a1y +ay;x; + -+ ay X, = y,,

— , , _ =
a;llyl +an2x2 + - +annxn—yn

1s obtained with

[,
(Y

ar — a/ — *1k
117 = > 1k~ T = ’
aji a
A" &)
(4.2.0) a“ &.lalk
J— 4 —_ 1 .
agW = —, Ay =" Qy ——- fOI'l,k=2,3,...,n

as ay

In the next step, the variable x, is exchanged for one of the variables y,,
..., Yn; then x3 1s exchanged for one of the remaining y variables, and so on.
If the successive equation systems are represented by their matrices, then
starting from A := 4, a sequence

A L, 40 o, g

is obtained. The matrix AY = (a${’) stands for a “ mixed equation system > of
the form

alyy,+--+  afly; + a(lj,)j+1xj+1 + 4+ aflx, =xy,

Ry i . _
PN afyi+-+  aly+ @ x 4+ afldx, = Xj,
@426) . . _ ) )
ayll'lyl+.”+a§.]ll'jyj+a}q'lyj+1xj+l+“.+ay+ln n=yj+l,

@Dy 4. ; : .
ahiy,+ -+ amyj ali i xjer + 4+ alx, =7,

In this system (yy, ..., ¥, Yj+1, ---» Va) IS @ certain permutation of the ori-
ginal variables (y;, ..., y,). In the transition AY™D - AU the variable x; is
exchanged for y;. Thus, A9 is obtained from AY~ 1 according to the rules
given below. For simplicity, the elements of 49~ 1 are denoted by g, , and
those of AY are denoted by aj, .

(4.2.7)
(@) Partial pivot selection: Determine r so that

|a,;| = maxla
izj

yl-

If a,; = O, the matrix is singular. Stop.
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(b) Interchange rows r and j of AY~Y, and call the result A = (ay).
() Compute AV = (a};) according to the formulas [compare with (4.2.5)]

’ o c— ~
aj;=1/a;;,
ap= -, ;==L for i k#],
a;j a;;
o al"‘a‘lk
A = Qy — —=

(4.2.6) implies that
(42.8) A =x,  F=F1-0n 90

where y,, ..., J, is a certain permutation of the original variables y,, ..., y,,
y = Py which, since it corresponds to the interchange step (4.2.7b), can easily
be determined. From (4.2.8) it follows that

(A""P)y = X,
and therefore, since Ax =y,

A"l = A™P,
EXAMPLE.
D11 1 -1 -1 2 -1 1
A=49=11 23|-av=|1 @ 2|-42=]-1 1 -2
1 36 1 2 s -1 2 @
3 -3 1
- AY=1-3 5§ —2|=4"1
L1 -2 1]

The pivot elements are marked.

The following ALGOL program is a formulation of the Gauss-Jordan
method with partial pivoting. The inverse of the n x n matrix A is stored
back into A. The array p[i] serves to store the information about the row
permutations which take place.

for j:=1 step 1 until n do p[j]:=j;
for j:=1 step 1 until n do
begin
pivotsearch:
max = abs (a[j, j]); r =J;
for i:=j + 1 step 1 until n do
if abs (a[i, j]) greater max then
begin max := abs (a[i, j]);
re=i

end;
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if max = O then goto singular;

rowinterchange:
if r > j then
begin for k :=1 step 1 until n do
begin
hri=gali k- ali kl:=galr k1:
ari=apj, Ky, apj, 7= ayr, Kj;
afr, k]:==hr
end;
hi = p[j1; pLj} = plr}; p[r] = hi
end;
transformation:
hr = 1/a{j, jl;
for i:=1 step | until n do
ali, j]=hr x d[i, j];
alj, j]= hr;
for k:=1step 1 until j — 1, j + 1 step 1 until n do
begin

for i:==1step 1 until j — 1, + 1 step 1 until n do
ali, k] = d[i, k] — a[i, j] x a[j, kj;
alj, k] == —hr x a[j, k}
end k
end j;
columninterchange:
for i:=1 step 1 until n do
begin
for k=1 step 1 until n do ho[p[k]]:= d[i, k];
for k:=1 step 1 until n do afi, k] = hv[k]
end;

4.3 The Cholesky Decomposition

The methods discussed so far for solving equations can fail if no pivot
selection is carried out, i.e. if we restrict ourselves to taking the diagonal
elements in order as pivots. Even if no failure occurs, as we will show in the
next sections, pivot selection is advisable in the interest of numerical stabi-
lity. However, there is an important class of matrices for which no pivot
selection is necessary in computing triangular factors: the choice of each
diagonal element in order always yields a nonzero pivot element. Further-
more, it is numerically stable to use these pivots. We refer to the class of
positive definite matrices.

(4.3.1) Definition. A (complex) n x n matrix A is said to be positive definite
if it satisfies:
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(a) A= A", ie, A is a Hermitian matrix.
(b) x#¥Ax > 0 for all x e C", x 3 0.

A = A" is called positive semidefinite if x* Ax > 0 holds for all x € C".

(4.3.2) Theorem. For any positive definite matrix A the matrix A~ exists and
is also positive definite. All principal submatrices of a positive definite matrix
are also positive definite, and all principal minors of a positive definite matrix
are positive.

PRrOOF. The inverse of a positive definite matrix A exists: If this were not the
case, an x #+ 0 would exist with Ax = 0 and x" Ax = 0, in contradiction to
the definiteness of A. A~! is positive deﬁnite We have (A~ ‘)" =
(A")"t = A7 ! and if y # O it follows that x = A~ 'y # 0. Hence y" 4~

AN J T A

x#A" A7 1 Ax = x" Ax > 0. Every principal submatrix

- ailil’ s ailig

A=
a,-k,-l, o Qi

~

of a positive definite matrix A is also positive definite: Obviously 4% = 4.
Moreover, every
[
can be expanded to
Xy ) o
. . { =1]. j= k
T [] EC"’ X#O, xu:=’x1 or u LjsJ 1’ s Ky

x |0 otherwise,

“ T2

Xy

1
J X +0,

and it follows that
A% = xHAx > 0.

In order to complete the proof of (4.3.2), then, it suffices to show that
det(A4) > 0O for positive definite A. This is shown by using induction on n.

For n = 1 this is true from (4.3.1b). Now assume that the theorem is true
for positive definite matrices of order n — 1, and let 4 be a positive definite
matrix of order n. According to the preceeding parts of the proof,

Ayg -.. Oyp
A_l - . .
anl ann

is positive definite, and consequently a,, > 0. As is well known,

a-22 P a.z,,
Ay = det : . det(A)
Ap2 ... Qg
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By the induction assumption, however,

llows from a, O

(4.3.3) Theorem. For each n x n positive definite matrix A there is a unique
n x n lower triangular matrix L (I, =0fork > i)with;; >0,i=1,2,...,n
satisfying A = LI!'. If A is real, so is L.

(Note that I;; = 1 is not required.)

ProOE. The theorem is established by induction on n. For n = 1 the theorem
is trivial: A positive definite 1 x 1 matrix A = («) is a positive number o > 0,
which can be written uniquely in the form

2= 11, 111=+\/a-

Assume that the theorem is true for positive definite matrices of order n — 1.
An n x n positive definite matrix 4 can be partitioned into

[ b ]
A lb" a,,

where be C"! and A,_, is a positive definite matrix of order n — 1 by
(4.3.2). By the induction hypothesis, there is a unique matrix L,_, of order
n — 1 satisfying

n_ =Ln—1Ln—19 lik=0 fOl'k> i, I,',‘>O.

n mmsmccsdan n sva b A Fmons
We consider a matrix L of the form
[ = L,., O
=\ H
C x

and try to determine c € C"" !, 2 > 0 so that

Ln— 1 0 Ln— 1 c An—- 1 b |
34 = = A.
434) i I Y
This means that we must have
L"_ lC = b,

He+at=a,, a>0.

The first equation must have a unique solution ¢ = L, !, b,since L,_, as
a triangular matrix with positive diagonal entries, has det( n-1)> 0. As for
the second equation, if c¢ > a,, (that is, a® < 0), then from (4.3.1) we would
have a contradiction with a? > 0, which follows from

det(4) = |det(L,_,)|*a?
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det(4) > 0 (4.3.2), and det(L,_,) > 0. Therefore, from (4.3.4), there exists
exactly one a > 0 giving LI = A, namely

= +./a, —cc. O

The decomposition A = LI can be determined in a manner similar to
the methods given in Section 4.1. If it is assumed that all [;; are known for
j < k — 1, then as defining equations for I, and I, i > k + 1, we have

A = | Iy |? +|1k2|2+“'+|1kk|» lw > 0,
ay = byl + lala + - + L.

from A = LI".
For a real A, the foliowing algorithm resuits:

(4.3.5)

for i:=1 step 1 until n do
for j:=i step 1 until n do
begin x == da[i, j];
for k:==i — 1 step — 1 until 1 do
x=x — d[j, k] x a[i, k];
if i = j then begin
|f X< 0 then goto fail;

end else

alj. il =x x pli]
end i, j;

Note that only the upper triangular portion of A is used. The lower
triangular matrix L is stored in the lower triangular portion of 4, with the

exception of the diagonal elements of L, whose reciprocals are stored in p.

This method is due to Cholesky. During the course of the computation, n
square roots must be taken. Theorem (4.3.3) assures us that the arguments of
these square roots will be positive. About n3/6 operations (multiplications
and additions) are needed beyond the n square roots. Further substantial
savings are possible for sparse matrices, see Section 4.A. Finally, note as an
important implication of (4.3.5) that

(436) |1kj|<\/akk9 j=1,...,k, k=1,.

That is, the elements of L cannot grow too large.

4.4 Error Bounds

If any one of the methods described in the previous sections is used to
determine the solution of a linear equation system Ax = b, then in general
only an approximation x to the true solution x is obtained, and there arises
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the question of how the accuracy of x is judged. In order to measure the error

X —X

we have to have the means of measuring the *size” of a vector. To do this, a

(4.4.1) norm: | x|
1s introduced on C"; that is, a function
I-]:C"->R,

which assigns to each vector x € C" a real value | x| serving as a measure for
the “size” of x. The function must have the following properties:

(4.42)
(@) ||x]] > 0 for all x € C", x # O (positivity),
(b) |lax| = |«| ||x]|| for all x € C, x € C" (homogeneity),

©) [Ix +y| < |x| + |ly| for all x, y € C" (triangle inequality).
In the following we use only the norms

fm
x|, =/ x"x= \/ Y |xi|*  (Euclidian norm),
i=1

X[l 0 := max | x;| (maximum norm).

(4.4.3)

The norm properties (a), (b), (c) are easily verified.
For each norm | - || the inequality

(4.4.4) Ix =yl = |llx]| = {yll| forallx,yecC"
holds. From (4.4.2¢c) it follows that
Xl = NG = y) + vl < Jlx =y + Iyl

and consequently |x — y|| = | x| — |y||- By interchanging the roles of x and
y and using (4.4.2b), it follows that

Ix =yl = lly = xl = Iyl = I,

and hence (4.4.4).
It is easy to establish the following:

(4.4.5) Theorem. Each norm |-| on R" (or C") is a uniformly continuous
function with respect to the metric p(x, y) = max; |x; — y;| on R" (C").
PrOOF. From (4.4.4) it follows that

[+ k| = Il ] < ).
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Now h=Y"_, h;e;, where h = (hy, ..., h,)", and ¢; are the usual coordinate
(unit) vectors of R*(C"). Therefore

with M ==3>"_, |e;|l. Hence, for each & > 0 and all h satisfying max; |h;| <
¢/M, the inequality

i+ bl = el <e
holds. That is, |

-|| is uniformly continuous. O
This result is used to show:

(4.4.6) Theorem. All norms on R"(C") are equivalent in the following sense: For
each pair of norms p(x), p,(x) there are positive constants m and M satisfying

mp,(x) < py(x) < Mp,(x) for all x.

ProOOF. We will prove this only in the case that p,(x):= || x| = max; | x;|. The
general case follows easily from this special result. The set

.

S = jxe €' max |x |

| O I R
‘Ill'dk |.’(i| = l‘
is a compact set in C" Since p,(x) is continuous by (4.4.5),
max,.s p;(x)= M > 0 and min, .5 p,(x) = m > 0 exist. Thus, for all y # 0,
since y/||y| € S, it follows that

y 1
ms< Pl(_‘) = “”Pl()’) <M,
/ I

and therefore m|y| < p,(y) < M|y||. O

For matrices as well, A € M(m, n) of fixed dimensions, norms || 4| can be
introduced. In analogy to (4.4.2), the properties

|A4] >0 forall A+0,Ae M(m,n),
Al = Ja] Al
|4+ Bl < 4] + |B]

are required. The matrix norm | - || is said to be consistent with the vector
norms |- |, on C" and |- ||, on C™ if

|Ax|s < [|4] ||x||; for all x e C", 4 € M(m, n).

A matrix norm | - | for square matrices A € M(n, n) is called submultipli-
cative if

|AB| < ||4]|| |B| for all A, Be M(n, n).
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Frequently used matrix norms are

(4.4.7a) | A = max ) |au| (row-sum norm),
i k=
n 1/2
(4.4.7b) Al = ( Y !a,-k!z) (Schur norm),
i.k=1
(4.4.7¢c) |A] = max |ay].
i.k

(a) and (b) are submultiplicative; (c) is not; (b) is consistent with the Eucli-

IIII antnAr nAarm ‘ “lﬂ“ a ue
dian vector norm. Given a vector norm “ H a CGrreSpopfh“g A'x"n'atr“’ nerm

for square matrices, the subordinate matrix norm, can be defined by

(4.48) lub(A) = max 4]

xz0 x|
Such a matrix norm is consistent with the vector norm | - || used to define it:
(4.4.9) |Ax| < lub(A) ||x||.

Obviously lub(4) is the smallest of all of the matrix norms | A| which are
consistent with the vector norm ||x|:

| Ax|| < |A) [|x] forall x = lub(4) < ||A].

Each subordinate norm lub(-) is submultiplicative:

ABx A(B
tub(4B) = max F1BX] _ 1oy 1ABY] B
I TR s
e IV UBSL

A max ——— u \1)1 u
=0 IVl xs0 ] o
and furthermore lub(/) = max, ., ||Ix|/|x| = 1.

(4.4.9) shows that lub(A) is the greatest magnification which a vector may
attain under the mapping determined by A: It shows how much ||4Ax|, the

ExXAMPLE.

(a) For the maximum norm | x|, = max, |x,| the subordinate matrix norm is the
row-sum norm

Iu bw(A) ” "°°_m ’maxi‘zk lakx"“ max Z lalkl
x#0 ”x”ao x#0 ‘ max, | x|
(b) Associated with the Euclidian norm | x|, =/x"x we have the subordinate

matrix norm

H H
Ax
lub,(A) = max \/ A /—)f = / Amax(A" A),
x

x*0
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which is expressed in terms of the largest eigenvalue A, (A" A) of the matrix
A" A. With regard to this matrix norm, we note that

(4.4.10) lub(U) = 1

for unitary matrices U, that is, for matrices defined by U*U = I.

In the following we assume that ||x|| is an arbitrary vector norm and || A||
is a consistent submultiplicative matrix norm. Specifically, we can always
take the subordinate norm lub(A) as || 4| if we want to obtain particularly

good estimates in the results below. We shall show how norms can be used
to bound the influence due to changes in 4 and b on the solution x to a

LR =LA 8% S SWivevaws

linear equation system
Ax = b.
If the solution x + Ax corresponds to the right-hand side b + Ab,
A(x + Ax)= b + Ab,

then the relation

Ax=A"1Ab
follows from A Ax = Ab, as does the bound
(4.4.11) lAx| < |47 [|Ab].
For the relative change ||Ax||/||x||, the bound
Ax Ab Ab
R L
fc!lows _from |b] = anﬂ [4]l Ix]l. In this estimate, cond(4):=

stimate

| = lub(A4) lub(A4~ l) this so-
called condmon of A is a measure of the sensitivity of the relative error in
the solution to changes in the right-hand side b. Since AA~! = I, cond(A)
satisfies

lub(I) = 1 < lub(4) lub(4™') < | 4| |47 Y| = cond(A).

The relation (4.4.11) can be interpreted as follows: If X is an approximate
solution to Ax = b with residual

r(x)=b— Ax = A(x — %)
then x is the exact solution of

Ax = b — r(x),

2

and the estimate
(4.4.13) lAx]| < 471 [r(x)|

must hold for the error Ax = x — x.
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Next, in order to investigate the influence of changes in the matrix 4 upon
the solution x of Ax = b, we establish the following

(4.4.14) Lemma. If F is an n x n matrix with |F|| < 1, then
and satisfies

,\
./

1 exists

I+ F)™!
104 P70 <

PrOOF. From (4.4.4) the inequality
I+ F)x|l =[x + Ex|| > Ix]| — [ Fx] = (1 = [F)]x]
follows for all x. From 1 — |[F| > 0 it follows that ||(I + F ‘<“ >0if x #0;

that is, (I + F)x =0 has only the trivial solution x=0, and I + F is
nonsingular.

Using the abbreviation C == (I + F)™!, it follows that
= |C + FC|
= [ = Il IFl

= [Cll(t = iF|) >0,

from which we have the desired result

1
L= F|

I(r+ F)~ ' <

We can now show:

(4.4.15) Theorem. Let A be a nonsingular n x n matrix, B= A(I + F),
! ” < ] ﬁ”li X ﬂl'l{i A\ ,’)l) Iil)ﬁ)‘!oll l’)U A\ B l‘\ R{\ _J_ /\\‘— ”) ’f fn”nuyc that

S Wy YO Litwe

lax] _ JFl
ST
as well as-
|ax| __ cond(a) NLELl
il [B— Al |4
1 — cond(A)—”gW—

if cond(4) - [ B — All/| ] < 1.
PrOOF. B~ exists from (4.4.14), and
Ax=B"'b— A"'b=B (A — B)A™ '}, Xx=A"1p,
x|

<]

<|B YA-B)|=|—-(I+F) A" AF|

IF]

< U+ F)7 ) |F) <1‘_}“|F—H-
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Since F= A"'(B— A)and |F| < |A~
theorem follows. 0O

C=(I+F)'=B'4,
F=A'B-1
are taken into account, it follows from (4.4.14) that

1
1 —[I—A'B]

|B-14] <

By interchanging A and B, it follows immediately from A~'= A" 'BB™!
that

B71|

4.4.16 A7 Y <A™t < | )

In particular, the residual estimate (4.4.13) leads to the bound
A A 17\ = [ ||B_1“ IPYEAY] Y A W N A
{(4.4.17) X —X[| < AR B nXj=0 — AX,

where B™! is an approximate inverse to 4 with |[I — B"'A| < 1.

The estimates obtained up to this point show the significance of the
quantity cond(A) for determining the influence on the solution of changes in
the given data. These estimates give bounds on the error x — x, but the
evaluation of the bounds requires at least an approximate knowledge of the
inverse A~ ! to A. The estimates to be discussed next, due to Prager and
Oettli (1964), are based upon another principle and do not require any
knowledge of A~*

The results are obtained through the following considerations:

Usually the given data A,, b, of an equation system A, x = b, are inex-
act, being tainted, for example, by measurement errors A4, Ab. Hence, it is
reasonable to accept an approximate solution X to the system A, x = b, as
“correct” if X is the exact solution to a “neighboring” equation system

Ax =b
with

(4.4.18) AeW:={A]]|A4 - Ay| < AA}
be B:={b||b—b,| <Ab}.
The notation used here is
| A] = (|oal), where A = (),
|b] = (|Bil. .- |Bal)", where b= (B, ... B,)",
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and the relation < between vectors and matrices is to be understood as
holding componentwise. Prager and Oettli prove:

(4,4.19) Theorem. Let AA>0, Ab >0, and let N, B be deﬁngd by (4.4 18)

\"-' l]’ R IICULVERRe ILCL LA =~ v = U a0y
Associated with any approximate solution X of the system Ay, x = b, there isa
matrix A € ¥ and a vector b € B satisfying

AX = b,
if and only if
[r(x)] < AA|X| + Ab,
where r(X):==b, — Ao X is the residual of x.
PROOF.
(1) We assume first that
AX=b.
holds for some A4 € N, b € B. Then it follows from
A=A, +0A, where |04]| < AA,
b=b, + b, where |0b| < Ab
that
|r(X)] = |bo — AoX| = |b— b — (A — dA)x|
= | —8b + (0A)X| < |ob| + |04]]|x|
< Ab + AA|x|.

(2
(4.4.20) |r(X)| < Ab + AA|X],
and if r and s stand for the vectors
re=r(X)=(p1, .- Pu)’>

s==Ab+AA|.§'|>O, s= (0 -..,0,),
then set

p, <y
(SA = ((Saij), 5b = ’ {’ = ’

0B, Cn
da;; = p; Aayj sign(&;)/a;,
6ﬁi:=_pi Aﬂi/ai, where pi/6i==0if0'i=0.
From (4.4.20) it follows that |p;/0;| < 1, and consequently
A=A, +6A€eN, b=b,+3beB
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as well as the following fori= 1,2, ..., n:

pi=Pi— Y= (Aﬁ,.+ ) Aaijl&:jl)&
i=1 =1 Oi

n
e —58 + Z (SaJEj,
j=1
or
n

z (au + 5aij)c.1 = ﬁ! + (sﬁn

j=1
that is,

Ax = b,

which was to be shown. O

The criterion expressed in Theorem (4.4.19) permits us to draw conclu-
sions about the fitness of a solution from the smallness of its residual. For
example, if all components of A, and b, have the same relative accuracy ¢,

then (4.4.19) is satisfied if
LA % — bal <ellbal + 141 1%
I/'IO.\ UOI\D\IUO' T I/'IOI I.‘\'I.

From this inequality, the smallest ¢ can be computed for which a given x can
still be accepted as a useable solution.

4.5 Roundoff-Error Analysis for Gaussian
Elimination

In the discussion of methods for solving linear equations, the pivot selection

played only the following role: it guaranteed for any nonsingular matrix A

that the algorithm would not terminate prematurely if some pivot element

happened to vanish. We will now show that the numerical behavior of the

equation-solving methods which have been covered depends upon the

choice of pivots. To illustrate this, we consider the following simple example:
0.5]

x —
yl |1
with the use of Gaussian elimination. The exact solution is x = 5000/9950 =

0.503 ..., y = 4950/9950 = 0.497 .... If the element a,, = 0.005 is taken as the pivot
in the first step, then we obtain
0.
- [ 5]’ y=05 x=0.

Solve the system

0005 1
45.1
@s.1) Fal

X

0.005 1
0 —-200] |y -99
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using 2-place floating-point arithmetic. If the element a,;, = 1 is taken as the pivot,
then 2-place floating-point arithmetic yields

b B[] v=ose x=os0
v 1][“ I ]

sl LY

In the second case, the accuracy of the resuit is considerably higher. This
could lead to the impression that the largest element in magnitude should be
chosen as a pivot from among the candidates in a column to get the best
numerical results. However, a moment’s thought shows that this cannot be
unconditionally true. If the first row of the equation system (4.5.1) is mul-

$22m1:0 3 Lo, MY £ nvniemala shhn wnc:ile o ¢hhn cviobnean
UPLICU DY LUV, 1Vl CAAIIPIC, LHC TOOUIL 15 LG dSyosiclll

(4.5.2) [1 I]l 3

which has the same solution as (4.5.1). The element a,; = 1 is now just as
large as the element a,, = 1. However, the choice of a;; as pivot element
leads to the same inexact result as before. We have replaced the matrix A4 of
(45.1) by A = DA, where D is the diagonal matrix

200 O
D=[n 1]‘
LY i

Obviously, we can also adjust the column norms of A—i.e., replace 4 by
A = AD (where D is a diagonal matrix)—without changing the solution x to
Ax = b in any essential way. If x is the solution to Ax = b, theny = D™ Ixis
the solution of Ay = (4D)(D~!x) = b. In general, we refer to a scaling of a
matrix 4 if A is replaced by D, AD,, where D,, D, are diagonal matrices.
The example shows that it is not reasonable to propose a particular choice of
pivots unless assumptions about the scaling of a matrix are made. Unfor-
tunately, no one has yet determined satisfactorily how to carry out scaling so
that partial pivot selection is numerically stable for any matrix A. Practical

experience, however, suggests the following scaling for partial pivoting:
Choose D, and D, so that

> laal = X lau|

k=1 j=1
holds approximately for all i, [ = 1,2, ..., n in the matrix A = D, AD, . The
sum of the absolute values of the elements in the rows (and the columns) of
A should all have about the same magnitude. Such matrices are said to be
equilibrated. In general, it is quite difficult to determine D, and D, so that
D, AD, is equilibrated. Usually we must get by with the following: Let
D, =1, D, = diag(s,, ..., s,), where
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then for A = D, AD,, it is true at least that
Zia,k|=l fOI‘i=1,2,...,n.
k=1

Now, instead of replacing 4 by 4, i.e., instead of actually carrying out the
transformation, we replace the rule for pivot selection instead in order to
avoid the explicit scaling of A. The pivot selection for the jth elimination step
AY™D 5 4V s given by the following:

(4.5.3). Determine r > j so that
|a¥™V|s, = max|ali"V|s; # 0,

izj
J

and take a¥” " as the pivot.

The example above shows that it is not sufficient, in general, to scale A
prior to carrying out partial pivot selection by making the largest element in
absolute value within each row and each column have roughly the same
magnitude:

(4.5.4) max |a,| ¥ max |a;| foralli,l=1,2,..., n
k j

For, if the scaling matrices

200 0
D"[o 1

1 0
’ 1)2:{0 0.005]

are chosen, then the matrix 4 of our example (4.5.1) becomes

-~

A=D1AD2=

1 1

1 0.005]

The condition (4.5.4) is satisfied, but inexact answers will be produced, as
before, if a;; = 1 is used as a pivot.

We would like to make a detailed study of the effect of the rounding
errors which occur in Gaussian elimination or direct triangular decomposi-
tion (see Section 4.1). We assume that the rows of the n x n matrix A4 are
already so arranged that 4 has a triangular decomposition of the form
A = LR. Hence, Land R can be determined using the formulas of (4.1.12). In
fact, we only have to evaluate expressions of the form

b :fl C_albl - _an—lbn—l)
n an bl

which were analyzed in (1.4.4)-(1.4.11). Instead of the exact triangular de-
composition LR = 4, (4.1.12) shows that the use of floating-point arithmetic
will result in matrices L = (I;), R = () for which the residual F :=(f;,) =

12
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A — LR is not zero in general. Since, according to (4.1.13), the jth partial
sums

are exactly the elements of the matrix A, which is produced instead of AV
of (4.1.6) from the jth step of Gaussian ehmmatlon in floating-point arith-
metic, the estimates (1.4.7) applied to (4.1.12) yield
i - eps i—-1
| fuel = aw — X LiFal < Z(la | + || |Fx]) for k>4,
i=1 PS j=
(455) i i—1
== ] <% [0+ S0+ i)
j'—_l 1 - epS l j= 1 J
for k> i
Further,
(45.6) Fa=al Y fori<k,

since the first j + 1 rows of AY [or AY of (4.1.6)] do not change in the
subsequent elimination steps, and so they already agree with the correspond-
lllg TOWS Ul l‘ VVC dbbUlllC lll d.UUlI.lUIl llldl "lkl s l lUl dll l K \W[llbll lb
satisfied, for example, when partial or complete pivoting is used). Setting

a;*=max |af a’= max a;,
i,k 0<i<n-—-1

it follows immediately from (4.5.5) and (4.5.6) that

(4.5.7)
eps
| fue| < T ops (ap +2a; + - +2a,_, +2a,_4)
< 2ka °ps for k < i.
— eps

For the matrix F, then, the inequality

0 00 0 0

1 11 1 1

eps 1 2 2 2 2

(4.5.8) |F| <2a T—eps|1 2 3 3 3

Li 2 3 ... n—-1 n;l
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holds, where | F| = (| fi|)- If a has the same order of magnitude as a,, that
is, if the matrices AY do not grow too much, then the computed matrices LR
form the exact triangular decomposition of the matrix A — F, which differs
little from A. Gaussian elimination is stable in this case.

The value a can be estimated with the help of a, = max, , |a,|. For
partial pivot selection it can easily be shown that

k
ay—y ézao,

and hence that a < 2" 'a,. This bound is much too pessimistic in most
cases; however, it can be attained, for example, in forming the triangular
decomposition of the matrix

1 0 0
-1 1 01
-1 -1 0
A= : : Lo
1 -1 1
1 -1 11
-1 -1 ~1 1]

Better estimates hold for special types of matrices. For example in the case of
upper Hessenberg matrices, that is, matrices of the form

X ... ... X

x -, .
A= T, * . : ’

0 X X

the bound a < (n— 1)a, can be shown. (Hessenberg matrices arise in
eigenvalue problems.)
For tridiagonal matrices

_oz, B, 0-1
Y2 ..

A= |
. * . .. ﬂn
0 T Vn O

it can even be shown that

a = max|a| < 2a
k
holds for partial pivot selection. Hence, Gaussian elimination is quite
numerically stable in this case.
For complete pivot selection, Wilkinson (1965) has shown that

a1 < (k)ao
with the function

fk)=K'2[21 312 413

kl/(k— l)]l/Z.
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This function grows relatively slowly with k:

k |10 20 50 100
(k)| 19 67 530 3300

Even this estimate is too pessimistic in practice. Up until now, no real matrix
has been found which fails to satisfy

ak$(k+l)a0, k=l,2,...,n—l,

when complete pivot selection is used. This indicates that Gaussian elimin-
ation with complete pivot selection is usually a stable process. Despite this,
partial pivot selection is preferred in practice, for the most part, because:

(1) Complete pivot selection is more costly than partial pivot selection. (To
compute A, the maximum from among (n — i + 1)? elements must be
determined instead of n — i + 1 elements as in partial pivot selection.)

(2) Special structures in a matrix, i.e. the band structure of a tridiagonal
matrix, are destroyed in complete pivot selection.

If the weaker estimates (1.4.11) are used instead of (1.4.7), then the follow-
ing bounds replace those of (4.5.5) for the f;,:

eps Lo _ _
|fik[<|_n_é,“q _Z_Jllijll”jkl—lrikll» k> 1,
2T RPR =1 i
eps & - :
Jg 2 7l |- k>i+1,
Iﬁu| l—n'eps nglj“kJIlrJll] i+1
or
eps _ _ _
< —2 _
(459) Pl < = [ZIDIR| - R}
1 0
where D:= 2
0 n

4.6 Roundoff Errors in Solving Triangular Systems

As a result of applying Gaussian elimination in floating-point arithmetic to
the matrix A, a lower triangular matrix L and an upper triangular matrix R
are obtained whose product LR approximately equals A. Solving the sytem
Ax = b is thereby reduced to solving the triangular systems

Ly=b, Rx=y.
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In this section we investigate the influence of roundoff errors on the solution
of such equation systems. If we use y to denote the solution obtained using
t-digit floating-point arithmetic, then the definition of y gives

(A £ 1\ - I3 vy T - T - T - L \/T \
(4.0.1) Yr=1 "1 V1 — L2Y2 — Lr—1Yr—1 T 0p)/ 1)
From (1.4.10), {1.4.11) it follows immediately that
T eps o
b — Y.yl — ilL: Iyl = |y
L e e AT
or
! o]
oanmc ~
462) |b—Ly|<-——— L|D -1yl D= < .
462) 1b- L3l < P (IL|D D)5l l ) J
0 n

In other words, there exists a matrix AL satisfying

_ _ _ eps _

46.3 L+ AL)y=b, AL|< ———(|L|D—1).

463)  (L+ ALy AL|< g (1L =)

Thus, the computed solution can be interpreted as the exact solution of a
slightly -changed problem, showing that the process of solving a triangular
system is stable. Similarly, the computed solution x of Rx = y is found to
satisfy the bound

n 0
- eps _ _
- g b - b
p-Rel <P IRIEIS], E ,
(4.6.4) Lo !
_ _ _ eps —
= AR| <
(R + AR)x =y, |AR| l—n-epislE

By combining the estimates (4.5.9), (4.6.3), and (4.6.4), we obtain the follow-
ing result (due to Sautter (1971)) for the approximate solution x produced
by floating-point arithmetic to the linear system Ax = b:

2(n+1)-eps

_ A%| <
(46.5) |b— Ax| I~ n- eps

|IL||R||x| ifn-eps <43
Proor. Using the abbreviation ¢ :=eps/(1 — n - eps), it follows from (4.5.9),
(4.6.3) and (4.6.4) that
|b—Ax| = |b— (LR + F)x| = | — Fx + b — L(y — AR %)|
= |(—F + AL(R + AR) + L AR)x|
<d2(LID - D|R| + || |R|E +<|L|D - 1)|R|E]|].
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The (i, k) component of the matrix [...] appearing in the last line above
has the form

min(i.k)_
Y @2 =20 +n+1—k+«(j—0;+n+1—=k)|rul,
j=1

. (1 fori=j,

Y0 for i

It is easily verified for all j < min(i, k), 1 < i, k < n, that
2/ =20 +n+1—k+dj—0;+n+1-k)
2n —1+m;m if j<i<k,
<
2n+e(n+1) fj<k<
<2n+2,

since n - eps < 1 implies cn < 2n - eps < 1. This completes the proof of (4.6.5).
0

A comparison of (4.6.5) with the result (4.4.19) due to Oettli and Prager
(1964) shows, finally, that the computed solution X can be interpreted as the
exact solution of a slightly changed equation system, provided that the matrix
n|L||R| has the same order of magnitude as | 4|. In that case. computing
the solution via Gaussian elimination is a numerically stable algorithm.

4.7 Orthogonalization Techniques of
Householder and Gram-Schmidt

The methods discussed up to this point for solving a system of equations
(4.7.1) Ax=b

consisted of multiplying (4.7.1) on the left by appropriate matrices P;,
j=1,..., n, so that the system obtained as the final outcome,

Ay = b

could be solved directly. The sensitivity of the result x to changes in the
arrays AV, b of the intermediate systems

AV = b, (49, bP) = P(AU~D, pU D)
is given by
cond(AY") = lub(A"") lub((4"")~1).

If we d