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INTRODUCTION

There was more imagination in the head of Ar-
chimedes than in that of Homer.

-VOLTAIRE

When Isaac Newton made his famous understatement "If
I have seen further than [others], it is by standing upon
the shoulders of giants," he surely had in mind Archi-
medes of Syracuse, the greatest mathematician of antiq-
uity. Archimedes, however, was also a mechanical genius,
inventing, among other gadgets, the water snail, or Ar-
chimedean screw, a helical pump for raising water for
irrigation. Although little is known about Archimedes'
life or about his assessment of his own work, most com-
mentators suspect that he valued his theoretical mathe-
matical discoveries more than his practical inventions.
Plutarch, for one, writes, "And yet Archimedes pos-
sessed such a lofty spirit, so profound a soul, and such
a wealth of scientific theory, that, although his inventions
had won for him a name and fame for superhuman sa-
gacity, he would not consent to leave behind him any
treatise on this subject, but regarding the work of an en-
gineer and every art that ministers to the needs of life as
ignoble and vulgar, he devoted his earnest efforts only to
those studies the subtlety and charm of which are not
affected by the claims of necessity. " Other commentators
add that even when he dealt with levers, pullies, or other
machines, he was seeking general principles of mechan-
ics, not practical applications.

How much Archimedes truly preferred the theoretical
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2 ARCHIMEDES' REVENGE
to the practical may never be known. It is clear, however,
that in his work there is tension between theory and ap-
plication, a tension that still pervades mathematics
twenty-two centuries later.

My aim in this book is to sketch the range and scope
of mathematics. I do not pretend that this book is com-
prehensive. Indeed, it is quirky in its choice of subjects.
But it couldn't be otherwise. Mathematics is a discipline
practiced in every university in the world, and it is at
least as broad a field as biology, in which one researcher
tries to understand the AIDS virus while another studies
the socialization of wombats.

I approach mathematics as I do a Chinese menu, trying
dishes here and there, recognizing both common ingre-
dients and distinctive flavors. After only one Chinese
meal, you'll hardly be an expert on Chinese cuisine, but
you'll know much more about Chinese food than some-
one who has never eaten it at all. So it is with mathe-
matics. By dipping into a handful of mathematical topics,
you'll not learn everything that's important in mathe-
matics, but you'll have a much better feel for the subject
than someone who hasn't taken the plunge.

Many books have been written about the philosophical
underpinnings of mathematics, about the extent to which
it is the science of certainty, in that its conclusions are
logically unassailable. Many other works have rhapso-
dized at length about the nature of infinity and the beauty
of higher dimensions. Such philosophical and poetic ex-
cursions have their place, but they are far from the con-
cerns of most working mathematicians. In this book I
give a glimpse of some of the things that mathematicians,
pure and applied, actually do.

I also want to counter a misconception: that any result
in mathematics can be achieved just by laboriously doing
enough computation-that, in other words, if you want
to solve a mathematical problem, it's merely a matter of
doing enough arithmetic. Granted, you and I lack the



computational skills to attack complex mathematical
problems, but we suspect that those in the know-those
who understand mathematical symbols-can grind out an
answer to almost any problem if they choose to. After
all, we are taught to believe that mathematics is syllogis-
tic, that deducing a mathematical result is as straightfor-
ward as drawing the conclusion "Socrates is mortal"
from the premises "All men are mortal" and "Socrates
is a man." If only mathematics were that simple!
; One of my aims is to convey a sense of the limits of
mathematical knowledge. In each area of mathematics
that we examine, I'll point out what is known and not
known. Sometimes our knowledge- is limited because a
field is young and not many mathematicians have devoted
themselves to it. In other cases, little is known because
the problems are extraordinarily difficult. In still other
cases, there are more fundamental reasons for the math-
ematician's limited knowledge; it can be shown that the
problems are simply immune to quick mathematical so-
lutions.

Mathematics is full of surprises. Number and shape are
among humanity's oldest concerns, and yet much about
them is still not understood. What could be simpler than
the concept of a prime number-an integer greater than
I like 3, 5, 17, or 31 that cannot be evenly divided by an
integer other than I and itself? The ancient Greeks knew
that the supply of primes is inexhaustible, but no one
knows whether the supply of twin primes-pairs of
primes, such as 3 and 5, that differ by 2-is infinite, too.
No one knows whether there's an infinite number of per-
fect numbers, integers like 6 that are equal to the sum of
all of their divisors except, of course, the integer itself
(in this case, 3, 2, and 1). And no one knows if a perfect
number can be odd. Paul Erdos, the great Hungarian
number theorist who is a master of proving basic theo-
rems about primes-at the age of eighteen, he came up
with a celebrated proof that there is always a prime be-
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4 ARCHIMEDES' REVENGE
tween every integer greater than I and its double-
believes that mathematicians are nowhere near under-
standing the integers, let alone other kinds of numbers.
"It will be another million years, at least," says Erdos,
"before we understand the primes."

The mathematical understanding of shape is no more
advanced. In two dimensions, many questions remain un-
answered about what shapes can be used to tile a surface,
given certain basic constraints. The three-dimensional
analogue of the tiling problem, the packing of shapes as
densely as possible into a given space, is not solved for
many basic shapes. Lack of theoretical knowledge, how-
ever, need not always stand in the way of pragmatists, as
the designer Ronald Resch demonstrated when he built a
three-and-a-half-story Easter egg.

With fundamental questions about number and shape
still unsettled, it is no wonder that there is much dis-
agreement and confusion about what the computer-a
very complex mathematical tool-can and cannot do. I
have tried to stay clear of mushy metaphysical issues
about the nature of man and machine in favor of pre-
senting what little is known about the theoretical limits
on computing. I discuss the surprising power of Turing's
universal computing machine-a strip of paper divided
into cells. And I look at a probable limitation: computer
scientists think they'll be able to prove that a certain class
of simple-sounding computational problems-including
that of the traveling salesman who wants to choose the
shortest route between a bunch of cities-can never be
efficiently solved by machine (or mathematician). Mov-
ing from theory to practice, I look at the efforts of Hans
Berliner and Danny Hillis to design, respectively, a chess-
playing machine and a general-purpose computer that
takes the idea that "two heads are better than one" to an
amazing extreme. It is much too early to see completely
how these efforts will pan out, but both machines are



already outperforming traditional computers in certain
areas.

The traveling-salesman problem is definitely mathe-
matical in nature, yet traditional mathematical attacks
have proved to be of little help in its solution. A similar
solution, I'll show, arises in the design of a voting system
or a method of apportioning representatives. Mathemat-
ics can't help in an absolute sense. Indeed, mathematics
demonstrates the theoretical futility of creating a per-
fectly democratic voting system. But short of perfect de-
mocracy, mathematics points the way to a fair voting
system and a fair method of congressional apportion-
ment.

Legend has it that Archimedes, in a fit of rage, com-
posed an insanely difficult numerical problem about
grazing cattle. His revenge was felt for twenty-two hun-
dred years, until 1981, when the problem was finally dis-
posed of by a fledgling super-computer. The cattle
problem is somewhat contrived. Yet the frustration
generations of mathematicians felt in the face of Ar-
chimedes' revenge resembles that caused by simpler
mathematical problems that arise more naturally. The, re-
venge that mathematics itself has wrought shows no sign
of abating.

A formidable student at Trinity
Solved the square root of infinity;
It gave him such fidgets
To count up the digits
He chucked math and took up divinity.

-ANONYMOUS
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NUMBERS

In ancient Greece, there were no Social Security num-
bers, no phone numbers, no censuses, no postelection
polls, no statistical data, and no 1099 forms to fill out.
The world was not yet digitized, and yet numbers were
foremost in the minds of the Greek intelligentsia. In-
deed, in the sixth century B.C. Pythagoras of Samos made
a kind of religion out of the study of numbers, regarding
them not as mere instruments of enumeration but as sa-
cred, perfect, friendly, lucky, or evil. The branch of
mathematics called number theory-the study of the
properties of integers-began with the ancient Greeks and
is still flourishing today.

The next three chapters are devoted to number theory.
In them, I emphasize that some of the oldest and most
elementary-sounding problems are still unsolved. Why they
are unsolved is unclear, but that they are is a fact that
looms large and that should dispel any notion that math-
ematics is some kind of rote activity. Number theory used
to be regarded as the purest branch of mathematics; it
seemed to have no application to the real world. Recently,
however, it has become a powerful tool in cryptography.
But, as I discuss in the fourth chapter, "The Cryptic Case
of a Swarthy Stranger," there are legendary codes that to
this day defy mathematical analysis.
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666 AND FRIENDS

Michael Friedman, now an undergraduate at the Massa-
chusetts Institute of Technology, was a cocky high school
senior from Brooklyn when he won third place in the
1985 Westinghouse Science Talent Search. For his award-
winning project, he didn't want to dirty his hands with
brine shrimp, fruit flies, or flatworms. And he didn't want
to tackle just any age-old theoretical question. No, he
chose to confront a problem so old that it could well be
the oldest unsolved problem in mathematics, a problem
that confounded the ancient Greeks and everyone since:
Is there an odd perfect number?

Pythagoras and his cronies saw perfection in any whole
number that equaled the sum of all its divisors (except
the number itself). The first perfect number is 6. It's
evenly divisible by 1, 2, and 3, and it's also the sum of
1, 2, and 3. The second perfect number is 28. Its divisors
are 1, 2, 4, 7, and 14, and they add up to 28. That much
the Greeks knew, but try as they did, they could not find
an odd perfect number.

The perfection of the numbers 6 and 28, biblical com-
mentators have observed, is reflected in the structure of
the universe: God created the world in six days, and the
moon orbits Earth every twenty-eight days. Yet it is the
numbers themselves, not any connection to the empirical
world, that makes them perfect. Saint Augustine put it
this way: "Six is a number perfect in itself, and not
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ARCHIMEDES' REVENGE

because God created all things in six days; rather the
inverse is true; God created all things in six days because
this number is perfect. And it would remain perfect even
if the work of the six days did not exist."

"This whole area of mathematics is high-level doo-
dling," says Peter Hagis, Jr., a mathematics professor at
Temple University. "I got involved with perfect numbers
out of idle curiosity, because it's probably the oldest un-
solved problem. It is, perhaps, a trivial pursuit, yet the
problem is so old that it's not considered a complete waste
of time to work on it. If the problem had first been
brought up five years ago, it would be totally uninterest-
ing. "

Perfection in any realm should be hard to come by,
and the even perfect numbers are no exception, but at
least they are known to exist. Thirty of them have been
discovered, the largest being the 130,000-digit monstros-
ity 2216090 (221609'-l). Perhaps a thirty-first perfect num-
ber will not turn up. For more than twenty-three hundred
years mathematicians have known that there are infinitely
many primes (numbers that can be evenly divided only
by themselves and by 1). But in that same period of time,
they have not been able to determine whether perfect
numbers are also inexhaustible.

I would have been happy to interview Michael Fried-
man over Cokes at the Russian Tea Room or the Four
Seasons, but he preferred that we meet in his principal's
office at Stuyvesant High School, a Manhattan enclave
for math and science jocks. Einstein, it is rumored, could
barely add or subtract but could do higher mathematics
in his sleep. The same might be said of Michael. The
simple act of choosing a time for our meeting was a mi-
nor ordeal because the whiz kid was not adept at con-
verting high school time-"third period" and "fifth
period"-into the hours and minutes that the rest of us
go by. Yet once we did get together, the gawky phenom
proved to be an articulate delight.
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666 and Friends
Perfect Number Number of Digits

1. 2'(2 - 1) = 6

2. 22(2' - 1) = 28

3. 24(2' - 1) = 496

4. 26(2 - 1) = 8,128
5. 211(2' - 1) = 33,550,336
6. 2"(27 - 1) = 8,589,869.056
7. 2V(21 .- 1) = 137,438,691,328
8. 2-(2-' - 1) =

9. 20(2" - 1) =
10. 2"(2# - 1) =
11. 2'l6(2'' - 1) =

12. 212 (2 -1) =

14. 2--(2-- - 1) =

15. 2' "1(2' - 1) =

16. 2',''(2't'N- 1) =
17. 22.261(22'.' - I) =

18. 24.26(22.93 - Id =

20. 2'5(2" - 1) =
20. 24.4'22(24.423 -X =

21. 2-8'6(2-6 - 1) =
22. 299-(2-1' - 1) =
23. 2 1.21 '(2''.2 -1) =

24. 29.91(2'9973 - 1) =

25. 2217''(22'- 1) =

26. 2'3 N(22-1.3 - 1) =
27. 24.4%(2-49, - I) =

28. 2-.242(2*.241) -

29. 2932.'M(2,.M9 - l) =

30. 22 M.'226.(N -l) =

THE THIRTY PERFECT NUMBERS

11

19

2
3
4
8

10
12
19

37
54
65

77
314
366
770

1,327
1,373

1,937
2,561
2,663
5,834
5,985
6,751

12,003
13,066
13,973
26,790
51,924
79,502

130,100
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"I had to do a paper last year for a math teacher,"
Michael told me. "I knew about the problem of odd per-
fect numbers. It interested me because it's so simple, but
no one has found the answer." First, Michael looked into
the history of perfect numbers.

The ancients knew of only four perfect numbers, the
first four: 6, 28, 496, and 8,128. Euclid recognized-and
only the Greek gods know how-that these four numbers
are generated by the formula 2" '(2"1-1) for n equals 2, 3,
5, and 7. The computations are as follows:

For n = 2, 21(22 - 1) = 2 (3) = 6.
For n = 3, 22(23 - 1) = 4 (7) = 28.
For n = 5, 24(2 - 1) = 16 (31) = 496.
Forn = 7, 26(27 - 1) = 64 (127) = 8,128.

Euclid saw that in all four computations 2" - I was a
prime (3, 7, 31, and 127). This observation inspired him
to prove a powerful theorem: the formula 2"-'(2" - 1)
generates an even perfect number whenever 2", - 1 is a
prime.

Euclid's proof got the theory of perfect numbers off to
a roaring start, but the nearsightedness of other mathe-
maticians made progress slow. Many fine minds thought
they saw patterns in the numbers where none existed. If
they had looked a little further, they would have seen
that the patterns were illusory.

The ancients observed that each of the first four perfect
numbers ended in a 6 or an 8. Moreover, the final digits
were seen to alternate 6, 8, 6, 8. It was therefore as-
sumed that the final digit would always be a 6 or an 8
and that they would continue to alternate. The fifth per-
fect number, which the ancients did not know, does end
in a 6. But the sixth perfect number, alas, ends in a 6,
too, which breaks the alternating pattern. The ancients
were right, however, about the last digit's always being
a 6 or an 8. Today, mathematicians can study thirty per-
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fect numbers-oyer seven times more than the ancients
could-but they have yet to find a pattern to the terminal
6s and 8s.

The ancients also observed that the first perfect number
has one digit, the second perfect number has two digits,
the third has three, and the fourth has four. They as-
sumed, therefore, that the fifth perfect number would
have five digits. Seventeen centuries after Euclid, the fifth
perfect number was discovered, and it weighed in at a
whopping eight digits: 33,550,336. The numbers contin-
ued to grow rapidly, the next three being 8,589,869,056;
137,438,691,328; and 2,305,843,008,139,952,128.

Euclid's proof that 2"-'(2" - 1) will yield a perfect
number whenever 2" - I is a prime says nothing about
which integral values of n will make 2" - 1 a prime.
Since the first four values of n that make 2", - I a prime
are the first four prime numbers (2, 3, 5, 7), it might be
assumed that whenever n is a prime, 2" -1 is also a
prime. Well, let's try the fifth prime number, 11. For n
= 11, 2n - I is 2,047, which is not a prime (it's the
product of 23 and 89). The truth is that n must be a prime
for 2" - I to be a prime, but n being prime does not in
itself make 2" - I a prime. Indeed, for most prime val-
ues of n, 2"- 1 is not a prime.

Numbers generated by the expression 2" - I are now
known as Mersenne numbers, after a seventeenth-century
Parisian monk, Marin Mersenne, who took time out from
his monastic duties for number theory. On account of
Euclid's formula, everytime a new prime Mersenne num-
ber is discovered, a new perfect number is automatically
known. In 1644, Mersenne himself stated that the three
Mersenne numbers 21' - 1, 217 - 1, and 219 - I are
primes (8,191; 131,071; and 524,287). The monk also
claimed that the huge Mersenne number 267 - I would
prove to be a prime. This bold claim went unchallenged
for more than a quarter of a millennium.

In 1903, at a meeting of the American Mathematical
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14 ARCHIMEDES' REVENGE
Society, Frank Nelson Cole, a Columbia University pro-
fessor, rose to deliver a paper modestly entitled "On the
Factoring of Large Numbers." Eric Temple Bell, the his-
torian of mathematics, recorded what happened: "Cole-
who was always a man of very few words-walked to the
board and, saying nothing, proceeded to chalk up the
arithmetic for raising 2 to the sixty-seventh power. Then
he carefully subtracted I [getting the 21-digit monstrosity
147,573,952,589,676,412,9271. Without a word he
moved over to a clear space on the board and multiplied
out, by longhand,

193,707,721 x 761,838,257,287.

"The two calculations agreed. Mersenne's conjec-
ture-if such it was-vanished into the limbo of mathe-
matical mythology. For the first and only time on record,
an audience of the American Mathematical Society vig-
orously applauded the author of a paper delivered before
it. Cole took his seat without having uttered a word. No-
body asked him a question."

Some two thousand years after Euclid proved that
his formula always yields even perfect numbers, the
eighteenth-century Swiss mathematician Leonard Euler
proved that the formula will yield all the even perfect
numbers. The problem of odd perfect numbers can then
be put another way: Are there any perfect numbers not
generated by Euclid's formula?

To see what recent progress had been made, the young
Michael Friedman plowed through back issues of Math-
ematics of Computation, Journal of Number Theory,
Acta Arithmetica, and a host of other periodicals rare-
ly found on coffee tables. He even consulted Richard
Guy's formidable classic, Unsolved Problems in Num-
ber Theory, which discusses not only perfect numbers
but also dozens of other arcane subjects: "almost
superperfect numbers," "friendship graphs," "grace-



666 and friends
ful graphs," "greedy algorithms," "loopy games,"
"Davenport-Schnitzel sequences," "quasi-amicable
numbers," "sociable numbers," and "untouchable
numbers.\"

Michael learned that number theorists, frustrated by
the intractability of the problem, have proved all sorts of
things about what an odd perfect number must be like if
one exists. It must be evenly divisible by at least eight
different prime numbers, of which the largest must ex-
ceed 300,000 and the second largest must exceed 1,000.
If an odd perfect number is not divisible by 3, it must be
divisible by at least eleven different prime numbers.
Moreover, an odd perfect number must leave a remainder
of I when divided by 12 or a remainder of 9 when di-
vided by 36.

What are we to make of these results? The more con-
straints there are on an odd perfect number the less likely
it is that one exists. Indeed, in 1973, using constraints
like these and aided by a computer, Peter Hagis defini-
tively proved that there is no odd perfect number below
1050. Since 1973, Michael read in Guy's book, other
number theorists have "gradually pushed the bound be-
low which an odd perfect number cannot exist, to above
102°°, though there is some skepticism about the latter
proofs. "

Since no less an authority than Guy questioned these
proofs, Michael decided to tackle the lower-bound prob-
lem anew. With an IBM PC and a list of constraints,
including some from India rarely mentioned in the liter-
ature, Michael demonstrated that there are no odd perfect
numbers below 1079 that have eight prime divisors (which
is the minimum number of prime divisors an odd perfect
number could have).

"In my paper," said Michael, "I just quoted Guy's
statement that previous proofs [of high lower bounds for
odd perfect numbers] were suspect. When I got into the
Westinghouse finals, I decided to review the other proofs
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16 ARCHIMEDES' REVENGE
but couldn't find any reason why they were suspect. So
I phoned Guy up, and he told me that mathematicians
don't like proofs that are done by computers, because
you never know: Did the guy make a little mistake cod-
ing it? Did the computer have a glitch?"

Even supposing that the computer's number crunching
checks out (on, say, another computer), the proofs them-
selves are often so long and complex that no one other
than their author has gone through them step by step.
Only Hagis's proof (all eighty-three pages of it!) has been
thoroughly dissected by other mathematicians and pro-
nounced valid.

Michael grinned broadly. "My proof," he said
proudly, "is also suspect." Either the folks at Westing-
house didn't catch on or didn't care. "As far as I
know," Michael noted, "no one really reviewed my
paper. "

On the basis of his paper and other supporting material,
Michael was one of 40 Westinghouse finalists selected
from a pool of 1,100 applicants. The 40 were summoned
to Washington, where they would be whittled down to
10 winners. "Once you're in Washington," Michael ex-
plained, "it's almost not based on your paper. You're
interviewed by a bunch of scientists. They'd ask, 'How
do you measure the distance between the earth and the
sun? How do you measure the height of the Washington
Monument?' One girl said, 'With a tape measure.' One
of the scientists was wearing a tie with half the periodic
table on it. He asked everyone about the periodic table.
Some people noticed the tie and read off the answers. I
didn't, so I had to remember about the number of protons
in oxygen and about electron orbitals."

When Michael added, "We were also questioned by a
psychiatrist," I winced. "That's what everyone does
when I tell them about the psychiatrist. He asked people
about their family life. Westinghouse wants to identify
future Nobel Prize winners. That's their big thing. They
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want future Nobel winners to be in the top ten." Michael
explained that five past Westinghouse finalists (there are
forty a year, and the competition has been going on for
forty-four years) have won the Nobel Prize, but of these
five, only one was in the top ten. Michael patiently ex-
plained to me that Westinghouse was doing worse than
random. (The random selection each year of ten from
forty would have resulted in 1.25 Nobel Prize winners
in the top ten. Leave it to mathematicians to conceive
of a quarter of a scientist going to Stockholm.) To
improve their record, the psychiatrist was evidently
brought in to spot the germ of Nobel Prize-winning per-
sonalities.

"My adviser," Michael went on, "wrote in my appli-
cation that I wouldn't let go of a problem, that I was very
stubborn. So the psychiatrist spent the entire fifteen min-
utes asking me about being stubborn. 'How stubborn are
you? Do you think that being stubborn would ever hurt
you in your later life? Do you ever refuse suggestions
just because you originally argued against them?' "

Since Michael made it into the top ten, perhaps stub-
bornness is part of the Nobel laureate profile. Unfortu-
nately for Westinghouse (and for Michael), there is no
Nobel Prize in mathematics or computer science. If he
wants one, he may have to play with brine shrimp after
all.

But abandoning perfect numbers may even be good for
Michael's health. Others who have studied them too long
have been inexorably drawn into the numerical mys-
ticism of the ancients. Michael Stifel and Peter Bungus
were mathematicians in the Renaissance who failed to
unravel the mystery of perfect numbers; Stifel asserted
incorrectly that all perfect numbers except 6 are divis-
ible by 4, and Bungus made a false claim about their
terminal digits. Having toyed with perfection, Stifel
and Bungus turned to the opposite quality-evilness-
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18 ARCHIMEDES' REVENGE
which they found in 666, the notorious number of the
beast.

Wallace John Steinhope, the physicist in Paul Nathan's
story "Newton's Gift," is obsessed with the idea that
Isaac Newton and other scientific luminaries of yester-
year must have squandered inordinate amounts of time
on tedious mathematical computations. Imagine poor
Newton suffering endless delays in the discovery of grav-
ity because of a simple error in arithmetic! When Stein-
hope invents a knapsack-size time machine, he decides
to go to the England of 1666-Newton's golden year and,
coincidentally, the final year of that century's great
plague-and bestow on Newton a pocket calculator.
Steinhope's motive, of course, is to emancipate "New-
ton's mighty brain from tedium."

Newton, however, is afraid of the calculator, particu-
larly its glowing red digital display: "As the Lord is my
savior, is it a creation of Lucifer? The eyes of it shine
with the color of his domain."

"You cannot deny your own eyes," Steinhope re-
sponds. "Let me show you it works. I'll divide two num-
bers for you with just the punch of a few buttons.'
Steinhope entered, at random, 81,918 divided by 123.
When the answer lit up, Newton fell to his knees and
started to pray. Then he got up, grabbed a hot poker
from the fireplace, and swung it at Steinhope, who
barely escaped back to the space-time coordinates
of today.

Newton's violent reaction can be explained by Stein-
hope's unfortunate choice of numbers: 81,918 divided by
123 happens to be 666, the number of the beast. The
religious Newton was aghast to see the calling card of
the fallen archangel pulsate before him in eerie red light.
It was this brush with the devil, it is said, that inspired
Newton to write theological tracts.

Although this clever story is fictitious, it is true in spirit
to Newton's fascination with the occult and the super-
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natural. Newton penned more than 1,300,000 words on
biblical and theological subjects. He wrote extensively
about interpreting the language of prophets, and he was
undoubtedly familiar with biblical prophecies involving
the nefarious number 666. Because other men of science
and mathematics have been caught up in the mysticism
of 666, it is worth exploring how this number got such a
bad rep.

In the Middle Ages, a group of Jewish scholars known
as cabalists had an ingenious answer to religious heretics
who pointed to apparent inconsistencies, trivialities, and
non sequiturs in Scripture. Much of the Old Testament,
the cabalists claimed, is in code. That's why Scripture
may seem muddled. But when the code is broken, every-
thing will make sense and divine truth will be revealed.
The chief method of decryption was gematria: a word or
phrase is converted into a number by taking all the let-
ters, substituting a predetermined numerical value for
each one, and computing the sum of these numbers. The
word or phrase is thought to be related to other words or
phrases that yield the same sum.

In Genesis 18:2, for example, Abraham looks up, "and
lo! three men stood by him," but the men are not iden-
tified. The cabalists used gematria to discover that these
men were the archangels Michael, Gabriel, and Raphael.
If the letters in the original Hebrew for "and lo! three
men" are replaced by their numerical equivalents, they
sum to 701, as do the letters in "these are Michael, Ga-
briel, and Raphael." By similar cryptomathematical
methods, the cabalists were able to answer the question,
posed in Deuteronomy 30:12, "Who shall go up for us
to heaven?" A combination of letters from the begin-
nings and ends of these words in Hebrew yields the same
numerical sum as the Hebrew words for circumcision and
Jehovah, implying that God saw circumcision as a pass-
port to heaven. This numerical manipulation of Scripture
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fostered an interest in mathematics among Jewish schol-
ars.

Christian theologians were quick to adopt the analyti-
cal methods of the cabalists. The New Testament itself
actually promotes the practice of finding the correspon-
dence between names and numbers, and this is where 666
first entered the picture. Revelation 13:11 warns of an
evil force: "And I beheld another beast coming up out
of the earth; and he had two horns like a lamb, and he
spake as a dragon." Seven verses later we learn that the
beast is a man associated with the number 666: "Here is
wisdom. Let him that hath understanding count the num-
ber of the beast: for it is the number of a man; and his
number is six hundred threescore and six." But who is
the man? The above verse is an open invitation to ap-
ply gematria to people's names in order to identify the
beast.

The beast is the Antichrist, or false Messiah. In bibli-
cal times, the false Messiah was thought to be the Roman
Empire, which challenged God's rule by establishing a
kind of pagan religion, complete with emperor worship
and its own priesthood. Biblical commentators have sus-
pected that the beast was Nero, the Roman emperor, but
it takes much manipulation to squeeze 666 out of his
name. If Nero's name is written in Greek (Neron), the
title Caesar appended, and the combination Neron Caesar
then transliterated into Hebrew and the letters assigned
their numerical equivalents, the enumeration of his name
is 666.

In any event, the enigmatic description of the beast as
a man whose number is 666 has given generations of
numerologists much to mull over. In the sixteenth cen-
tury, even mathematicians got into the act. Michael Stifel
was a German monk who dabbled in algebra and number
theory. He was one of the first to use the symbols + and
- for addition and subtraction. He slipped a peculiar
interpretation of the number of the beast into a classic
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book on algebra. Determined to impugn the character of
Pope Leo X, Stifel put His Holiness's name through con-
tortions..'

He spelled out the X as DECIMUS (the Latin word for
"tenth") and then changed the U to V, in the spirit of
the Romans, to get DECIMVS. From LEO DECIMVS,
he picked out the letters that are Roman numerals-L, D,
C, 1, M, and V-and, for good measure, threw in the X
from Leo X. Now, substituting numbers for the Roman
numerals, Stifel computed the numerical value of the
name: L(50) + D(500) + C(100) + I(l) + M(l,000) +
V(j) + X(10) = 1,666.

Oops! A thousand too much. So, thought Stifel, the M,
whose value is 1,000, must stand for mysterium ("mys-
tery"). By-removing the mystery from the group of let-
ters, he got 666 exactly. With this discovery, he
renounced his monastic vows and became a follower of
Martin Luther.

Stifel could have achieved the same result with fewer
dubious-contortions if he had focused on the Roman nu-
merals in one of the pope's Latin titles, Vicarius Filii
Dei: V(5) + 1(1) + C(100) + I(l) + U(5) + 1(1) +
L(50) + 1(1) + 1(1) + D(500) + If() = 666.

Be that as it may, Stifel managed to achieve what he
wanted. Angered by his treasonous discovery, papists
threatened to kill him. In 1522, he took refuge in Lu-
ther's own house. Luther was glad to have a new convert
but told him to forget the numerological hogwash. Stifel
did not take the advice but proceeded to comb the Bible
for clues to when the world would end. He convinced
himself that doomsday was October 18, 1553, and he
delivered sermons on the coming of the end until he was
arrested. As the day came near, his parishioners spent
their savings on good eating and drinking. When they
woke up on October 19 and the world was still intact,
they wanted to kill their deceiver and would have done
so had Luther not intervened. Two death threats in one
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lifetime were enough for Stifel, so he gave up prophe-
sying and devoted himself fully to mathematics. He went
on to become one of the outstanding German algebraists
of the sixteenth century.

I should add that Stifel's interpretation of the number
of the beast did not go unchallenged. His contemporary
Peter Bungus, author of the 700-page Numerorum Mys-
terium (The Mystery of Numbers), managed to foist the
number on Luther himself. Take the name Martin Luther
and Latinize the surname to get MARTIN LUTERA.
Now let the letters from A to I represent the numbers
from I to 9 (considering I and J interchangeable, as was
the custom then), the letters K to S represent the numbers
from 10 to 90 (by multiples of 10) and the letters from T
to Z represent the numbers from 100 to 700 (by multiples
of 100). With this connection between letters and num-
bers, Bung saw that M(30) + A(1) + R(80) + T(100)
+ 1(9) + N(40) + L(20) + U(200) + T(100) + E(5)
+ R(80) + A(1) = 666. Imagine that!

The Bible provides much inspiration for recreational
mathematics beyond 666. When a number is used in the
Bible that is not a nice round number like 100 or 1,000,
it is there because the ancients considered that number to
have mystical significance. In general, a particular num-
ber acquired occult status if it was found to have certain
elegant but simple arithmetic properties, often involving
the sum or the product of a string of consecutive integers.
For example, in the Gospel according to John (21:11),
Jesus and his disciples have a successful fishing trip on
the Sea of Tiberias. When they haul in the catch, they
find 153 fish: "Simon Peter went up, and drew the net
to land full of great fishes, an hundred and fifty and three:
and for all there were so many, yet was not the net bro-
ken." What is special mathematically about 153? Ponder
this before I give the show away.

To begin with, 153 = I + 2 + 3 + 4 + 5 + 6 + 7
+ 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 +
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17. In other words, it is equal to the sum of all the in-
tegers from 1 to 17.

But there is more to the magic of 153. It can be ex-
pressed in another fundamental way: 153 = 1 + (1 x
2) + (1 x 2 x 3) + (1 x 2 x 3 x 4) + (1 x 2 x 3
x 4 x 5). Contemporary mathematicians would write
this equation more economically: 153 = 1! + 2! + 3!
+ 4! + 5! When a number is followed by an exclamation
point, you are supposed to take the product of all the
integers from I to the number itself. This operation is
called taking the factorial of the number.

Somewhere along the line, a savant discovered that if
you sum the cubes of the digits in 153, you get back 153.
To put it simply, 153 = 13 + 53 + 33. Then, in 1961,
according to the mathematics writer Martin Gardner, Phil
Kohn of Yoqne'am, Israel, informed the iconoclastic
British weekly New Scientist that 153 lies dormant in
every third number. I leave it to you to figure out what
Kohn told New Scientist, but here's a hint: Take any mul-
tiple of three. Sum the cubes of its digits. Take the result,
and sum the cube of its digits. Keep doing this indefi-
nitely.

Let's turn to another number in the Bible, 220. In Gen-
esis 32:14, Jacob gives Esau 220 goats ("two hundred
she goats and twenty he goats") as a gesture of friend-
ship. But why 220? The Pythagoreans had identified par-
ticular numbers as "friendly," and 220 was the first of
these. The concept of a friendly number was based on
their idea that a human friend is a kind of alter ego.
Pythagoras once said, "A friend is the other 1, such as
are 220 and 284," What is so special mathematically
about these two numbers?

It turns out that 220 and 284 are each equal to the sum
of the proper divisors of the other. (Proper divisors are
all the numbers that divide evenly into a number, includ-
ing 1 but excluding the number itself.) The proper divi-
sors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and
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110. Sure enough, 284 = I + 2 + 4 + 5 + 10 + 11
+ 20 + 22 + 44 + 55 + 110. The proper divisors of
284 are 1, 2, 4, 71, and 142, and they sum to 220.

In spite of the ancient interest in friendly numbers, a
second pair (17,296 and 18,416) was not discovered until
1636, by Pierre de Fermat. By the middle of the nine-
teenth century, many able mathematicians had searched
long and hard for pairs of friendly numbers, and sixty
had been found. But it was not until 1866 that the second-
smallest pair, 1,184 and 1,210, was discovered, by a
sixteen-year-old boy.

Modem mathematicians have extended the concept of
friendliness from pairs to triplets. In a friendly trip-
let, the sum of the proper divisors of any of the num-
bers equals the sum of the other two numbers. This is so
with 103,340,640; 123,228,768; and 124,015,008.
Another friendly triplet is 1,945,330,728,960;
2,324,196,638,720; and 2,615,631,953,920. But such
numbers do not look friendly to me. Indeed, notes Joseph
Madachy, the great recreational mathematician, friendly
triplets "are not easy to find. The numbers in this last
set have 959, 959, and 479 divisors, respectively."

Mathematicians, heeding the old adage that safety
comes in numbers, are not ones to refrain from taking a
good thing too far. Someone decided to see what happens
when you take a number, sum the proper divisors, then
sum the proper divisors of that sum, and so on, ad nau-
seam. Well, what happens? Most of the time, nothing
interesting, but once in a blue moon you get back the
original number somewhere along the way. Take 12,496.
Its proper divisors are 1, 2, 4, 8, 11, 16, 22, 44, 71, 88,
142, 176, 284, 568, 781, 1,136, 1,562, 3,124, and
6,248. Add 'em up, and you get 14,288. Sum the proper
divisors of 14,288, and you get 15,472. (If you don't
believe me, try it yourself!) Repeat this procedure two
more times, and you get 14,536 and 14,264, respec-
tively. Now, the proper divisors of 14,264 are 1, 2, 4,
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8, 1,783, 3,566, and 7,132. Sum the seven divisors, and
you get, lo and behold, 12,496. If you have time to kill,
try the same thing starting with the number 14,316.
You'll get the number back-after twenty-eight rounds!
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When Srinivasa Ramanujan, the great Indian mathema-
tician, was ill with tuberculosis in a London hospital, his
colleague G. H. Hardy went to visit him. Hardy, who
was never good at initiating conversation, said to Ra-
manujan, 'I came here in taxi-cab number 1729. That
number seems dull to me, which I hope isn't a bad
omen. "

"Nonsense," replied Ramanujan. "The number isn't
dull at all. It's quite interesting. It's the smallest number
that can be expressed as the sum of two cubes in two
different ways." (Somehow, Ramanujan had immedi-
ately recognized that 1729 = 13 + 123 as well as 93 +
103.)

Ramanujan, who died in 1920 at the age of thirty-two,
was a number theorist, a peculiar breed of mathematician
who studies the properties of whole numbers. Number
theory is one of the oldest areas of mathematics and, in
a sense, the simplest. Numbers, of course, are the uni-
versal building blocks of mathematics, yet many funda-
mental questions about them are still unanswered.

In the third century B.C., Apollonious of Perga could
not have known what was in store for him-and for gen-
erations of mathematicians-when he innocently im-
proved on Archimedes' work on large numbers. "I'll
show you who knows about large numbers," Archimedes
thought, and for revenge he reportedly concocted a com-
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putational problem about grazing cattle whose solution
requires numbers so large that it was not solved until
recently. Moreover, it was solved not by man but by ma-
chine: the fastest computer in the world.

The posing of the insanely difficult cattle problem is
but one of many incredible exploits that made Archime-
des a legend in his own time. When the Roman general
Marcellus blockaded the harbor of Syracuse, Sicily, in
212 B.C. the king of the city, Hieron, called on Archi-
medes, a relative, to expel the sixty enemy ships. Archi-
medes had recently discovered the lever (the occasion for
his celebrated statement "Give me a place to stand, and
I will move the earth"), and he combined levers and
pulleys to build huge cranes that hefted the invading ships
out of the harbor. The cranes had help in battle from
catapults and from a system of convex mirrors that fo-
cused sunlight onto the ships, setting them on fire. The
Roman fleet was devastated. Marcellus said, "Let us stop
fighting this geometrical monster who uses our ships like
cups to ladle water from the sea."

For three years, Archimedes held off the enemy. Then,
one night, when the Syracusans were preoccupied with a
religious celebration, Roman soldiers scaled the walls and
opened the gates. As Marcellus' troops rushed in, he
said to his men, "Let no one dare lay a violent hand on
Archimedes. This man shall be our personal guest."

When one of Marcellus' men found Archimedes in a
courtyard, drawing geometric figures in the sand, he dis-
obeyed his orders and drew his sword. "Before you kill
me, my friend," Archimedes pleaded, "pray let me fin-
ish my circle." The soldier did not wait. As Archimedes
lay dying, he said, "They've taken away my body, but I
shall take away my mind."

In keeping with Archimedes' wish, his tombstone was
engraved with a sphere inscribed in a cylinder-the sym-
bol of his proud discovery that the volume of a sphere is
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two-thirds the volume of the smallest cylinder that en-
closes it.

How much of this legend is true? Archimedes was un-
doubtedly a mechanical genius. There is good evidence
that he designed powerful catapults that could hurl fifty-
pound shot 300 feet. But recent investigations into the
history of technology rule out the possibility that he con-
structed cranes capable of snatching enemy vessels from
the sea. The basis of this myth may have been his inven-
tion of a cranelike apparatus for lifting his own (station-
ary) ships onto land.

Many scientific luminaries, including Galileo Galilei,
and the French naturalist Georges-Louis Leclerc, comte
de Buffon, were taken by the idea that Archimedes used
a mirror to burn enemy ships, much as a child would use
a magnifying glass to ignite paper. In theory, such a mir-
ror could be constructed, but it would need a variable
focal length that would keep the sun's rays focused on a
moving target; that rules out ordinary mirrors. (In 1747,
Buffon claimed to have used a complex mirror to set wood
on fire at a distance of 150 feet and to melt lead 10 feet
closer.) In any event, Archimedes would not have taken
the trouble to build a special mirror, because a simple
and highly effective incendiary weapon was known at the
time: pots of naphtha mixed with a chemical that spon-
taneously ignites on contact with water were hurled at
the enemy ship.

The picturesque story of Archimedes' death may well
be true, although one must be suspicious of the words
attributed to him. The great Roman orator Cicero came
across Archimedes' tomb in 75 B.C. and found it en-
graved with a cylinder circumscribing a sphere.

What of the cattle problem? Was it really first posed
by Archimedes? Whether or not Archimedes really
dreamed it up in a fit of pique, he is known to have
worked on the problem, so it is a least twenty-two hun-
dred years old.
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"Compute, 0 friend," the problem begins, "the host

of the oxen of the sun, giving thy mind thereto, if thou
hast a share of wisdom. Compute the number that once
grazed upon the plains of the Sicilian isle Trinacria [Si-
cily itself] and that were divided according to color into
four herds, one milk-white, one black, one yellow and
one dappled. The number of bulls formed the majority
in each herd and the relations between them were":

1. White bulls = yellow bulls + ('/2 + 1/3) black
bulls.

2. Black bulls = yellow bulls + ('/4 + 1/5) dappled -
bulls.

3. Dappled bulls = yellow bulls + ('/6 + 1/7) white
bulls.

4. White cows = (I/3 + 1/4) black herd.
5. Black cows = ('/4 + '15) dappled herd.
6. Dappled cows = ('/s + 1/6) yellow herd.
7. Yellow cows = ('/6 + 1/7) white herd.

"If thou canst give, 0 friend," the problem continues,
"the number of bulls and cows in each herd, thou art not
all-knowing nor unskilled in numbers but not yet to be
counted among the wise." Stripped to its mathematical
essentials, the problem so far is to solve seven equations
that involve eight unknowns (four groups of bulls speci-
fied by color and four groups of cows of corresponding
color). It turns out that these equations are not hard to
solve. Indeed, they admit infinitely many solutions, the
smallest involving a total herd of 50,389,082 cattle, a
number that could comfortably graze on Sicily's
6,358,400 acres.

Archimedes, however, did not stop there. He made the
problem much more difficult by imposing two additional
constraints on the number of bulls:
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8. White bulls + black bulls = a square number.
9. Dappled bulls + yellow bulls = a triangular

number.

"When thou hast then computed the totals of the herd,
o friend," the problem concludes, "go forth as con-
queror, and rest assured that thou art proved most skilled
in the science of numbers."

By introducing the idea of triangular numbers and
square numbers, Archimedes' cattle problem was draw-
ing on the work of Pythagoras. In the sixth century B.C.,

Pythagoras and his followers had represented numbers as
patterns of dots arranged as triangles, squares, or other
geometric figures. Numbers like 3, 6, and 10 were called
triangular numbers because they could be represented by
dots that formed triangles:

00 @0 00 * - @00

* * 0* -0000@

3 6 10

The number of fish Simon pulled from the sea, 153, is
also a triangular number. By the same token, numbers
like 4, 9, and 16 were called square numbers because
they could be represented by dots arranged in squares:

* 0 000 0000

4 9 16
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Lest you think that the ancients spent long hours doo-

dling in order to figure out whether a particular number
could be represented by a particular geometric dot pat-
tern, you should know there was a purely numerical way
of finding this out. All triangular numbers can be gen-
erated by summing consecutive integers (starting with 1);
thus, 3 = 1 + 2, 6 = 1 + 2 + 3, and 10 = I + 2 +
3 + 4. All square numbers can be generated by squaring
integers: 4 = 2 X 2, 9 = 3 x 3, and 16 = 4 x 4.

With the restrictions on the bulls involving triangular
and square numbers, the cattle problem became so thorny
that no real progress was made for two thousand yeams
In 1880, a German investigator demonstrated, after te-
dious computation, that the smallest herd satisfying all
eight conditions was a 206,545-digit number that began
776. Archimedes may have been diabolical, but he was
certainly not realistic: such a herd could never have fit
on the small island of Sicily. As one number theorist put
it, "A sphere with a radius equal to the distance from
the Earth to the Milky Way could contain only a small
part of the animals even if they were the smallest mi-
crobes-nay, even were they electrons."

But lack of realism has never been known to impede
mathematical research. Two decades later, in 1899, a civil
engineer in Hillsboro, Illinois, and a few friends formed
the Hillsboro Mathematics Club, devoted to finding the
other 206,542 digits. After four years of calculations,
they concluded that they had found the 12 rightmost digits
and 28 more of the leftmost ones, although subsequent
work shows that they goofed in two instances. Another
six decades passed before the first complete solution was
found, by three Canadians who used a computer, but they
never published it. In 1981, all 206,545 digits were fi-
nally revealed to the world, when forty-seven pages of
printouts from a Cray 1 supercomputer at Lawrence Liv-
ermore National Laboratory were reproduced in small
type in the Journal of Recreational Mathematics.
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Back then, the Cray 1 was the fastest computer in the

world. Cray supercomputers are expensive machines-
the latest version costs $20 million-and laboratories and
companies do not buy them in order to solve age-old
problems in number theory. They are purchased for use
in designing new pharmaceuticals, prospecting for oil,
cracking Soviet codes, creating flashy special effects in
Hollywood films, and simulating space-based weapons.

Nevertheless, thorny computational problems from the
annals of number theory are often given to supercom-
puters in order to make sure that they're functioning
properly. The virtue of such problems is that the solu-
tions, even when previously unknown, can easily be ver-
ified by plugging them back into the equations.
Archimedes' cattle problem was solved when Lawrence
Livermore was testing its new Cray 1. In ten minutes,
the supercomputer had found the 206,545-digit solution
and double-checked its arithmetic.

It seems only fair to close with a problem Archimedes
tackled that we might conceivably solve. Hieron had
given a goldsmith a known quantity of gold (call its
weight 4) to make into a crown. When Hieron received
the crown, he asked Archimedes to determine whether it
contained all the gold or whether the smith had stolen
some of it and replaced it with a cheaper metal. Accord-
ing to Vitruvius, the celebrated Roman architect of the
first century B.C., "While Archimedes was turning the
problem over, he chanced to come to the place of bath-
ing, and there, as he was sitting down in the tub, he
noticed that the amount of water which flowed over the
tub was equal to the amount by which his body was im-
mersed. This indicated to him a method of solving the
problem, and he did not delay, but in his joy leapt out of
the tub, and, rushing naked toward his home, he cried
out in a loud voice that he had found what he had sought.
For as he ran he repeatedly shouted in Greek, heurika,
heurika [Eureka, eureka, or I have found, I have found]."
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What did he find? Archimedes realized that since gold

is the densest metal, a pure gold crown of weight W would
have a slightly smaller volume than an adulterated gold
crown of the same weight. He filled a container to the
brim with water and dropped gold of weight W into it.
Then he collected the water that overflowed, which was
equal in volume to the gold. Next he filled another con-
tainer with water and dropped the crown under inspec-
tion into it. Sure enough, it displaced a larger volume of
water, proving that King Hieron had been ripped off by
the villainous goldsmith.
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PRIME PROSTITUTION

Atomism-the belief in atoma, "things that cannot be
cut or divided"-guided the ancient Greeks in their study
not only of matter but also of numbers. Euclid and his
contemporaries recognized that certain whole numbers,
among them 2, 3, 5, 7, and 11, are essentially indivisi-
ble. Called prime numbers, they can be evenly divided
only by themselves and the number 1. The numbers that
are not prime-4, 6, 8, 9, 10, and so on-have additional
divisors. These numbers are said to be composite be-
cause each is uniquely "composed" of primes. For ex-
ample, 4 = 2 x 2, 6 = 2 x 3, 8 = 2 x 2 x 2, 9 = 3
x 3, and 10 = 2 x 5.

In September 1985, when the Chevron Geosciences
Company in Houston was checking out a new supercom-
puter, called a Cray X-MP, it identified the largest prime
number known to man (or machine) after more than three
hours of doing 400 million calculations per second.

Some twenty-three hundred years ago Euclid proved
that there are infinitely many primes, but no one has yet
found a pattern to them or an efficient formula for gen-
erating them. With no pattern to go on, it is no small
feat to find a new largest known prime, and news of such
a discovery spreads quickly not only through the math-
ematics community but through the world at large. Wal-
ter Cronkite had a soft spot for prime-number stories,
and National Public Radio still does.
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The record-setting prime that Chevron's computer hit

upon weighs in at 65,050 digits. This 65,050-digit whop-
per is a Mersenne number; it is equal to the number 2
raised to the 216,091st power minus 1. To list all the
digits would require 30 pages of this book. 'We just
happened to crunch enough numbers to come up with a
new prime," a Chevron vice-president told the press.
"It's my responsibility to get the machine up and running
and make sure we have a good one and not a lemon. The
results are interesting. . . . but they are certainly not go-
ing to help me find oil."

Like the search for an odd perfect number, the search
for still larger primes, and the probing of their proper-
ties, is part of number theory. Number theory is decep-
tively simple. Its major theorems can often be stated in
terms that anyone can understand, but the proofs-when
they are known-may require deep, complex mathemat-
ics. In 1742, for example, the Prussian-born mathemati-
cian Christian Goldbach conjectured that every even
number greater than 2 is the sum of two primes. On this
analysis, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 +
5, and so on. With the aid of computers, number theor-
ists have decomposed all even numbers up to 100 million
into the sum of two primes, but they have not been able
to prove that Goldbach's simple conjecture is universally
true. And it is not for lack of trying. Over the past two
and a half centuries, many of the ablest mathematicians
have put their mind to it.

Of all branches of mathematics, number theory has
traditionally been the most removed from physical real-
ity. Seemingly abstract results in other esoteric areas of
mathematics have been put to good use in physics, chem-
istry, and economics. This is not true of most results in
number theory. If a proof of Goldbach's conjecture were
found tomorrow, mathematicians would rejoice but phys-
icists and chemists would not know how to apply the
result, if indeed it has any application. Consequently, the
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contemplation of prime numbers has been regarded as
mathematics at its purest, mathematics unadulterated by
application. A few centuries ago, this kind of purity
earned number theory the appellation "the queen of
mathematics. "

Today, however, there is trouble in the palace. The
purest subjects, the prime numbers, are prostituting
themselves in the name of national security. Some of the
best codes our government reportedly uses depend on
prime numbers. The basis of these codes, in which let-
ters are converted to numbers, is a neat mathematical
fact: some computational procedures are comparatively
easy to execute but monstrously hard to undo. For eX-
ample, it is extremely easy for a computer to find the
product of two 100-digit primes. But given that 200-digit
product, it is immensely difficult to recover those prime
divisors (unless, of course, they're told to you). The im-
plications of this for cryptography are mind-boggling. A
person who is able to encode messages need not be able
to decode them. To encode a message, he need know
only the 200-digit product. But to decode the message,
he has to know the two prime divisors; knowledge of the
product isn't enough.

Such a code is called public key cryptography because
it can be used in a highly public way. If I want to receive
secret messages, I simply publish the 200-digit number
(and an explanation of how it's used for encryption). Then
anyone who wishes can send me a coded message. By
keeping the two prime divisors to myself, I am the only
one who can readily decode the message. The only rea-
son this cryptosystem works, however, is that number
theorists have not yet figured out how to factor huge com-
posite numbers into their component primes.

"This kind of cryptosystem," says Carl Pomerance, a
noted prime-number theorist at the University of Geor-
gia, "is an application of ignorance. Because of the
codes, more people are involved in number theory. The
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more mathematicians who knock their heads against the
factoring problem [finding the prime divisors] and don't
succeed, the better the codes are." The success of this
cryptosystem depends on number theory in another way:
sophisticated mathematical methods must be used to
identify the 100-digit primes that are multiplied to-
gether.

Now that prime numbers are at the forefront of cryp-
tography, I want to take stock of what is known (and not
known) about them. Euclid long ago proved that the sup-
ply of primes is inexhaustible. His 2,300-year-old proof
is still a paradigm of mathematical simplicity and ele-
gance.

Assume, said Euclid, that there is a finite number of
primes. Then one of them, call it P, will be the largest.
Now consider the number Q. larger than P, that is equal
to the number 1 plus the product of thu consecutive whole
numbers from 1 to P. In other words, Q = 1 + I x 2
x 3 . . . x P. From the form of the number Q. it is
obvious that no integer from 2 to P divides evenly into
it; each division would leave a remainder of 1. If Q is
not prime, it is evenly divisible by some prime larger
than P. On the other hand, if Q is prime, Q itself is a
prime larger than P. Either possibility implies the exis-
tence of a prime larger than the largest prime. This
means, of course, that the concept of "the largest prime"
is a fiction. But if there's no such beast, the number of
primes must be infinite.

Mathematicians have long dreamed of finding a for-
mula with which, by plugging in integral values of n
from 0 to infinity, one could generate all prime numbers.
Leonhard Euler, the mathematical phenom of the eigh-
teenth century, played around with the seductively simple
formula n2 + n + 41. For n = 0, the formula yields the
prime number 41; for n = 1, the prime number 43; for
n = 2, the prime number 47. Indeed, as n takes on suc-
cessive values from 0 to 39, Euler's formula yields noth-
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ing but primes. But for n = 40, the formula suddenly
ails. The result, 1,681, is 41 squared.

n nl + n + 41

0 41
1 143
2 47
3 53
4 61
5 71
6 83
7 97
8 113
9 131

10 151
11 173
12 197
13 223
14 251
15 281
16 313
17 347
18 383
19 421
20 461
21 503
22 547
23 593
24 641
25 691
26 743
27 797
28 853
29 911
30 971
31 1033
64 4201
65 4331
66 4463

Outcome n n2 + n + 41 Outcome

PRIME 32 1097 PRIME
PRIME 33 1163 PRIME
PRIME 34 1231 PRIME
PRIME 35 1301 PRIME
PRIME 36 1373 PRIME
PRIME 37 1447 PRIME
PRIME 38 1523 PRIME
PRIME 39 1601 PRIME
PRIME 40 1681 COMPOSITE
PRIME 41 1763 COMPOSITE
PRIME 42 1847 PRIME
PRIME 43 1933 PRIME
PRIME 44 2021 COMPOSITE
PRIME 45 2111 PRIME
PRIME 46 2203 PRIME
PRIME 47 2297 PRIME
PRIME 48 2393 PRIME
PRIME 49 2491 COMPOSITE
PRIME 50 2591 PRIME
PRIME 51 2693 PRIME
PRIME 52 2797 PRIME
PRIME 53 2903 PRIME
PRIME 54 3011 PRIME
PRIME 55 3121 PRIME
PRIME 56 3233 COMPOSITE
PRIME 57 3347 PRIME
PRIME 58 3463 PRIME
PRIME 59 3581 PRIME
PRIME 60 3701 PRIME
PRIME 61 3823 PRIME
PRIME 62 3947 PRIME
PRIME 63 4073 PRIME
PRIME 83 7013 PRIME

COMPOSITE 84 7181 COMPOSITE
PRIME 85 7351 PRIME
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n n2 +n + 41 Outcome n n2 + n + 41 Outcome

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

4597
4733
4871
5011
5153
5297
5443
5591
5741
5893
6047
6203
6361
6521
6683
6847

EULER'S FORMULA

In 1963, Stanislaw Ulam, the brilliant mathematician
who did pioneering work on the atomic bomb at Los Al-
amos, was doodling numbers on a slip of paper. He
scribbled consecutive whole numbers, starting with 1, in
a kind of square spiral radiating outward.

37..136 35 34 33 32 31
38 17 16 15 14 13 30
39 18S5 4 3 12 29
40 19 6 1/2\11/28
41/2O 7/8 9 10 27
42 21 22 23 24 25 26
43/744 45 4647 48 49

ULAM'S LITTLE DOODLE

To his surprise, the prime numbers in his doodle, which
I've marked in gray, tended to fall on diagonal lines.

PRIME 86
PRIME 87
PRIME 88
PRIME 89
PRIME 90
PRIME 90
PRIME 92
PRIME 93
PRIME 94

COMPOSITE 95
PRIME 96
PRIME 97
PRIME 98
PRIME 99

COMPOSITE 100
COMPOSITE

7523 PRIME
7697 COMPOSITE
7873 PRIME
8051 COMPOSITE
8231 PRIME
8413 COMPOSITE
8597 PRIME
8783 PRIME
8971 PRIME
9161 PRIME
9353 COMPOSITE
9547 PRIME
9743 PRIME
9941 PRIME

10141 PRIME
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421 420 419 415 417 416 415 414
422 347 3" 34 344 343 342 341
423 1 233 Mii 29 275 277 278
424 349 32 Z223 22* 221 E2N 219
425
426
427
428
429
43'
431
42
433
434
435
436
437

413 412 411 410 409 408 407 486 405 464
1 3H 338 337 33 335 334 333 332 331
275 274 273 m 2 270 269 23 267 2C
218 217 216 215 214 213 212 211 210 2S

3S 283 7_ 113 I72 171 174 I IN 16 INb 16 S 164 163 162 2 264 327 398
311 34 23 174 131 1N 12 128 127 12 25 4IU 123 122 161 23 3 326 391
352 35 226 175 132 97 N 95 94 03 92 91 9 121 10 267 26 325 396
353 2 227 176 133 9S 71 70 69 68 67 C6 89 120 153C 261 324 395
354 28723 177 134 n n 53 52 Si So a 1# IN 15C Z Z 23394
36S 3 22 m17 13516 73 54 43 42 49 4 87 I IS 1 2029 122 393
X 20 236 179 136 101 74 55 44 41 41 63 S 117 156 263 258 321 392
357 2Z 23 IN 137 IU- 75 56 45 46 47 42 85 11U 155 ZU 257 33Z 391
318 291 232 1IS 138 103 76 57 SS 59 0 61 84 IIS 154 261 256 31 390
359 292 233 18 139 104 77 78 79 80 81 82 83 114 153 20 255 318 389
360 293 234 18 340 115 106 107 108 109 310 111 12 113 152 199 254 31; 388
361 294 235 1U 141 14Z143 144 145 14C 10-414 9 156 1116 253 31C 3S7
362 295 236 185 18 18f7l U1 13 6 191 1*91w494 195 196 197 252 31s 386
363 296 237 238 239 24 241 242 3U3 4 244 * 247 248 249 250 51 314 385
364 297 29 2" 360 391 M 38 , 30 4 315 J 1 307 3663 310 311 312 311 384
36S 3M6 367 368 369 376 372 373 374 375 7 377 378 3' 380 381 382 383

ULAM'S BIGDOODLE

Inspired by this serendipitous discovery, Ulam and two
co-workers, Mark2Wells and Myron Stein, investigated
square spirals that started with whole numbers other
than 1. The whole numbers from 41 to 44 also form
a spiral. Again, the primes often fall on diagonal
lines. The main diagonal running from 421 to 383 cor-
responds to the primes generated by Euler's formula
n3 + n + 41.

In 1963, the Maniac II mainframe at Los Alamos had
in its memory the first 90 million primes. "At Los Ala-
mos, we also had one of the first graphics facilities,"
recalls Wells, "so we got very excited about having the
computer plot the primes." Maniac II drew a square-
spiral diagram for all the primes under 10 million. Sure
enough, many uncannily preferred diagonal lines.

41

403 4U2
33= 401
3Za 4o
32S399
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MANIAC'S DOODLES

Euler's formula n2 + n + 41 turns out to be surpris-
ingly good for large values of n. Maniac II computed that
for the primes under 10 million, the formula generated
primes 47.5 percent of the time. The formula works even
better for lower values of n. For values of n under 2,398,
there's an even chance of getting a prime. And for values
of n under 100, the formula yields 86 primes and only
14 composite numbers.

Ulam and his co-workers discovered other prime-
generating formulas that are almost as good as Euler's.
With a success rate of 46.6 percent, the formula 4n2 +
170n + 1,847 yields 760 primes below 10 million that
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are not generated by Euler's formula. And the formula
4n2 + 4n + 59, with a success rate of 43.7 percent,
yields some 1,500 primes not generated by the other two
formulas,

The biggest paradox of all is that, despite these high
success rates, despite the apparent diagonal-line regular-
ity in the square spirals, number theorists have proved
that no formula vaguely resembling Euler's can generate
all the primes or nothing but primes. Nonetheless, this
proof has not deterred romantics from looking for pat-
terns to the primes.

Of the first 100 numbers, 25 are prime: 2, 3, 5, 7, 11,
13, 17, 19, 23, 29, 3X1, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89,. and 97. The spacing between these
consecutive primes (and the infinitely many others that
succeed them) follows no obvious pattern. Since 2 is the
only even prime number, 2 and 3 are the only prime
numbers that can differ by one.

What about primes-called twin primes-that differ by
two? Among the first 25 primes are eight pairs of twin
primes: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41,
43), (59, 61), and (71, 73). For almost 150 years, num-
ber theorists have conjectured that pairs of twin primes
are inexhaustible, like the primes themselves, but no one
has been able to prove this. Progress was made in 1966,
when the Chinese mathematician Chen Jing-run proved
that there exist infinitely many pairs of numbers that dif-
fer by two in which the first number is a prime and the
second is either a prime or the product of two primes. (A
number that is the product of two primes is called "al-
most prime," a description that attests to the irrepressible
optimism of mathematicians as well as to the intractabil-
ity of bona fide prime numbers.)

In another display of optimism, Chen proved a weaker
version of Goldbach's conjecture: every "sufficiently
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large" even number is the sum of a prime and an almost
prime. "Sufficiently large" is a euphemism in the prime-
number literature for "I know my proof is true for all
numbers beyond some number Q, but I don't know what
Q is." Despite the vagueness of the phrase "sufficiently
large," mathematicians consider Chen's proof to be the
most significant contribution to prime-number theory in
the past three decades.

Much more is known about how far apart primes are
than about how close together they are. Indeed, it is easy
to prove that there are arbitrarily long sequences of con-
secutive numbers that are not prime. Let n! represent the
product of all the whole numbers from I to n. By its
construction, n! can be evenly divided by every whole
number from 2 to n. Imagine the sequence of consecutive
numbers n! + 2, n! + 3, n! + 4, and so on all the way
to n! + n. Now, the first term in the sequence, n! + 2,
is evenly divisible by 2; the second term, n! + 3, is
evenly divisible by 3; the third term, n! + 4, is evenly
divisible by 4; and so on. There are n - I numbers in
this sequence, and none is a prime number. By choosing
n to be as large as you want, you can have a prime-free
sequence of consecutive whole numbers as long as you
want.

Prime-rich sequences, however, are also abundant. In
fact, number theorists believe that the prime numbers can
form arbitrarily long arithmetic progressions (sequences
of primes separated by a common difference). Short ar-
ithmetic progressions of primes are easy to find. For ex-
ample, the primes 3, 5, and 7 form a progression of three
terms with a common difference of 2. (In 1944, it was
proven that there are infinitely many sets of three primes
in arithmetic progression.) And the primes 199, 409, 619,
829, 1,039, 1,249, 1,459, 1,669, 1,879, and 2,089 con-
stitute a progression of ten terms with a common differ-
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ence of 210. For longer progressions, the initial prime
and the common difference escalate rapidly, making them
difficult to find. In 1983, however, Paul Pritchard at Cor-
nell found 19 primes in arithmetic progression; the initial
prime is 8,297,644,387, and the common difference is
4,180,566,390.

Some mathematicians have even conjectured that there
are arbitrarily long arithmetic progressions of con-
secutive primes. For example, the consecutive primes
1,741, 1,747, 1,753, and 1,759 form a four-term pro-
gression with a common difference of six. Nevertheless,
at this point no one has been able to prove this conjec-
ture, let alone the weaker conjecture about arithmetic
progressions in which the primes need not be consecu-
tive.

A mammoth treatise could be written about what is
known and not known about primes. One more simple
example will suffice. It has been proved that there is at
least one prime between any number greater than I and
its double. (A surprising consequence of this proof is
that there are at least three primes having exactly n
digits, where n is any positive integer whatever.) But
no one knows whether a prime lies between the square
of any number greater than I and the square of its suc-
cessor.

Since the prime numbers themselves follow no
known pattern, it is perhaps only fitting that no rhyme or
reason is apparent in what mathematicians have been able
to prove about them. Some basic theorems-that there are
infinitely many primes, that there are arbitrarily wide gaps
between them-have proofs that could not be simpler.
Other theorems, such as Goldbach's conjecture, have re-
sisted proof, although no self-respecting mathematician
doubts their truth. To make progress, number theorists
have resorted to proving theorems about "almost primes"
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and "sufficiently large numbers." What the field needs
is another Euclid or Euler. Until then, we may remain in
the curious situation where forces in government and in-
dustry that depend on secret communications continue to
profit from the ignorance of mathematicians.

Readers who are taken by number theory can try their
hand-and their calculators-at these unproven conjec-
tures. If the conjectures are true, the proofs will presum-
ably draw on technical mathematical results that are
beyond the scope of laymen. But if-contrary to expec-
tation-they happen to be false, all that's required is a
counterexample. The best mathematical minds have been
known to slip up. Euler claimed that a fifth power can
never equal the sum of two fifth powers, three fifth pow-
ers, or four fifth powers. (In other words, there are no
integers x, y, and z that satisfy the equation x5 = y5 +
z5, no integers a, b, c and d that satisfy the equation a5

= b5 + c5 + d5, and no integers m, n, o, p and q that
satisfy the equation m5 = n5 + 05 + p5 + q5 .) Two
centuries later, in 1966, this claim was refuted by the
discovery of a counterexample: 144 raised to the fifth
power turns out to equal the sum of four fifth powers,
namely, those of 27, 84, 110, and 133.

If contemplating unproved conjectures is not your
thing, perhaps thinking about specific numbers is. But
don't make Hardy's mistake of prematurely dismissing a
taxicab number as uninteresting. I was recently on a long
plane flight, absorbed in a novel, when the fidgeting fel-
low in the next seat made an awkward stab at initiating
conversation: "We are on flight 407. That number seems
dull to me, which I hope isn't a bad omen."

"Nonsense," I replied, without looking up from my
reading. "The number isn't dull at all. It's quite inter-
esting. It's the largest three-digit number that equals
the sum of the cubes of its digits." The man looked
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me as if I were crazy, but he took out a pad and
started scribbling numbers. He did this for the duration
of the flight, and I was able to finish my novel uninter-
rupted.



4

THE CRYPTIC CASE OF
A SWARTHY STRANGER

Cryptography-the science of making and breaking
codes-is an increasingly quantitative discipline, prac-
ticed by mathematicians who have access to the latest in
computer technology. The ciphers used today in the mil-
itary and in private industry barely resemble the ciphers
of yesteryear and are generally much harder to break.
And yet, despite these advances, in many situations the
newfangled mathematical codes are not useful, and some
age-old ciphers remain immune to state-of-the-art code-
cracking techniques.

Cryptography certainly has come a long way since the
first century B.C., when Julius Caesar reportedly used a
naively simple substitution cipher, in which each letter
was replaced by the letter that followed it alphabetically
by three places. Caesar's confidants would have under-
stood him had he said "Hw wx, Euxwh!" instead of "Et
tu, Brute!" Remarkably, almost two thousand years later,
the Confederate generals A. S. Johnson and Pierre Beau-
regard, resurrected this simple cipher during the Battle
of Shiloh.

A cipher found in the Old Testament is just as simple.
In Jeremiah (25:26 and 51:41), the prophet wrote She-
shach for Babel. The second letter of the Hebrew alpha-
bet (b) was replaced by the second-to-last letter (sh), and
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the twelfth letter (I) was replaced by the twelfth-to-last
letter (ch). (The vowels are in the wrong order, but in
Hebrew vowels are of secondary importance.) The cipher
is called Athbash, an acronym formed from the first He-
brew letter (a), the last letter (1h), the second letter (b),
and the second-to-last letter (sh).

The drawback of an elementary substitution cipher is
that it can be cracked simply by analyzing the frequency
with which each symbol appears. In every language, the
letters of a lengthy plaintext (the intelligible message)
exhibit a predictable frequency. For example, e is the
most common letter in English, showing up an eighth of
the time. It is a good assumption that the most common
symbol of a long ciphertext (the concealed message) rep-
resents the letter e. If, on the basis of a frequency count,
the cryptoanalyst can decipher the nine most common
letters e, t, a, o, n, i, r, s, and h, respectively, he has
generally broken 70 percent of the cipher. The most
modem of code-cracking techniques is based on the age-
old method of frequency analysis.

Frequency analysis also applies to the positions of let-
ters within words and to combinations of letters. For ex-
ample, the first letter of more than half of all English
words comes from the five-letter group t, a, o, s, and w.
Only ten words (the, of, and, to, a, in, that, it, is, and
I) make up more than a quarter of the typical English
text.

The larger the number of words enciphered, the easier
it is to crack the cipher by frequency analysis. In the heat
of battle, there is generally no shortage of ciphertext, as
messages are continually radioed back and forth between
field stations and headquarters. In World War 1, the Ger-
mans transmitted by radio two million enciphered words
a month. In World War II, the Allied Supreme Head-
quarters often sent out more than two million enciphered
words a day.

A cipher, like Caesar's or Athbash, in which the as-
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signment of cipher symbols to plaintext follows a pat-
tern, is particularly vulnerable because the pattern can
be discovered with minimal effort. For example, if fre-
quency analysis of a sample of Caesar ciphertext suggests
that h stands for e, w for t, and d for a, the cryptoanalyst
will suspect that each cipher letter stands for the plaintext
letter that precedes it alphabetically by three places. He
will then check to see if his suspicion was correct.
Hunches and guesses, of course, are central to code
breaking, because it is easy to pursue them and see
whether they pan out.

If it hadn't been for frequency analysis, Mary Queen
of Scots might have kept her head. In the simple substi-
tution cipher that she used to write her perfidious corre-
spondence, she showed herself to be wiser than both
Caesar and Jeremiah. She assigned the cipher symbols
randomly, and she peppered her correspondence with
"nulls," meaningless symbols.

Wg wmHofawr+aw xoo :R+±l V1 ork
a b c d c f g h i j k; I n n o p q r * t v %s x Y I

,.1,11s

Nevertheless, Sir Francis Walsingham, the founder of the
British Secret Service, managed to weed out the nulls
and do a frequency count of the remaining symbols. He
decrypted Mary's plot to assassinate Queen Elizabeth and
inherit the throne. On the basis of this cryptoanalysis,
Mary was convicted of treason and executed.

If she had known of the work of the fifteenth-century
Italian architect Leon Battista Alberti, she might have
avoided the chopping block. To sabotage a frequency
count, Alberti came up with an amazing scheme-
"worthy of kings," he said-in which every plaintext letter
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could be represented by every cipher symbol. In essence,
more than one cipher alphabet serves to encrypt a given
message. Called a polyalphabetic cipher; Alberti's idea
is the basis of modem cryptography.

Alberti's system makes use of the following table.
Above the table are uppercase letters known as key let-
ters, which identify the cipher alphabets in the table. To
the left of the table are plaintext letters, also in upper
case.

KEY LETTERS

A
B
C
D
E
F

H

K
L
N
N
0
p

Q
R

S
T
U
V

w
x

Y
z

AB
ab
ho

de
ef

ph
gh

j k
k I
In,

no

Pq

q '

MI1

.IU

My

y z
7aM

C

p

d

f

i

y

k

j

M

m

n1

I

x

y

b.

D
d

f
g
h

k
I

pr

P

u

SI

I

y
z

u

b

E
e

f

I
ih

d

k
I

n
0

x

y
z

d

G

p
h

k

P
Si

I

q

d

H

h

i
i
k

I

p

w

y

d
e

r

I J K
i j k
j k I
k I m
I m n
m n o
n o p

° P 4
P q r
q rs

r s I

s I u

uvw

vw x

w x y

x y

Y '. a
z b
a b c
b c d

cd e
d e r
e r 8
r S h
y h i
h . i- , j

L

q

S

d

p

h

MN O
m n o
ni o p

o p q
-P qrpq r
qr s

s 'I

,t uv
I U I

u v

v wx

x. y
my ,
MyC,

z b

a ho
bc d
cd e
deCf
ef y

y h i
h i j
i j k
Ck I
kI m
I m n

p

P

h

d

Q
Ci

I
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Before any messages can be sent, the communicating
parties must agree on a kind of password called a key-
word. To encrypt a message, the keyword is written re-
peatedly above the plaintext. Say the keyword is LOVE
and the plaintext message is SEND MORE MONEY. The
sender would write,
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keyword: LOVE L OVE L OVEL
plaintext: SEND MORE MONEY

The keyword letter above each plaintext letter indicates
which cipher alphabet in the table should be used for
enciphering that particular plaintext letter. The S in
SEND should be represented by the L alphabet (because
the L in LOVE falls above the S in SEND), and so the
ciphertext letter, d, is found in the table at the intersec-
tion of the S row and the L column:

KEY LETrERS
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Likewise, the E in SEND is represented by the 0 alpha-
bet, and so the ciphertext symbol, s, is at the intersection
of the E row and the 0 column:
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Carrying out this procedure for the entire message, we
find that SEND MORE MONEY produces the ciphertext
DSIHXCMIXCIIJ:

keyword: LOVE LOVELOVEL
plaintext: SENDMOREMONEY
ciphertext: DS I H X C MI X C I I J

Decryption is a similar process: the keyword is written
repeatedly above the ciphertext, and the plaintext is ex-
tracted from the appropriate alphabets in the table. The
beauty of the system is that even if an eavesdropper got
hold of the table, he would not get very far without the
keyword. In wartime, the keywords are frequently
changed, for extra security.
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But careless use of the best cipher can compromise its

security, making code breaking much easier in practice
than in theory. Diplomatic and military communications
often begin and end with characteristic pleasantries
("Greetings!" and "Respectfully yours"), which are
footholds for the cryptoanalyst. Certain proper names-
especially ones that are unusually long-can also give the
show away. For example, in World War II, German com-
munications spoke in cipher of the Wehrmachtnachri-
chtenverbindungen, the Communications Intelligence
Service of the Germany Army.

Information can often be coaxed out of the enemy. In
May 1942, the American high command knew that a vast
Japanese force of eleven battleships, five carriers, sixteen
cruisers, and forty-nine destroyers was going to strike
soon, but it did not know where. Japanese radio dispatch-
ers referred again and again to AF. Did AF stand for
California, Alaska, Midway Island, or some other place?
To find out, American intelligence agents instructed the
U.S. garrison at Midway to radio Pearl Harbor that it
was running out of water. The garrison complied. Shortly
thereafter, the Americans intercepted a Japanese dispatch
that reported a water shortage at AF. When the attack
came, the Americans were prepared. With a numerically
inferior force, they repelled the Japanese and won the
great naval battle of Midway.

Even if a cipher is not compromised, it may be broken
because it has intrinsic weaknesses overlooked by the
sender but exploited by the wily eavesdropping cryptoan-
alyst. For three hundred years Alberti's polyalphabetic
cipher was thought to be invulnerable, but then, in the
1860s, Friedrich W. Kasiska, a former Prussian infantry-
man, discovered a few built-in weaknesses. He found,
for example, that if a sequence of plaintext letters that
comes up more than once happens to be enciphered each
time by the same keyword letters, identical ciphertext
results. For example, in the message SEND MORE
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MONEY, the key-letter sequence LO twice enciphers the
plaintext sequence MO as XC:

keyword: LOVE LOVELOVEL
plaintext: SEND MO)REMONEY
ciphertext: D S I H X C M I X C I I J

The repeated ciphertext XC indicates the length of the
keyword. In general, the number of ciphertext letters
from the start of one instance of repeated text to the start
of another instance is a multiple of the number of letters
in the keyword. If bits of the ciphertext repeat often
enough, the cryptoanalyst can figure out the length of the
keyword and, hence, the number of cipher alphabets
employed. Then it's just a matter of cataloging which
ciphertext letters came from which cipher alphabet. For
each cipher alphabet, a frequency count will reveal the
plaintext letters.

In Alberti's cipher, the method of encryption-the ta-
ble of cipher alphabets-can be made public, so long as
the keyword is kept secret, without jeopardizing the se-
curity of the cipher. As we saw in the last chapter, mod-
ern cryptographers, drawing on innovative mathematical
methods, have been able to take this trend to an amazing
extreme: both the encryption method and the key itself
can be made public without compromising the cipher. In
other words, the power to encipher a message is not the
same as the power to decipher it.

In this day and age, when cryptography is increasingly
computerized, breakdowns in technology can have severe
consequences. If a situation ever required secret com-
munication, using one of the virtually impenetrable ci-
phers that modern mathematics has to offer, it was in
October 1985. Early one morning, the Reagan adminis-
tration learned from intelligence sources that President
Hosni Mubarak of Egypt was lying about the where-
abouts of the four Palestinian terrorists who had hijacked
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the Italian cruise ship Achille Lauro and murdered sixty-
nine-year-old Leon Klinghoffer in his wheelchair. Con-
trary to what Mubarak had publicly stated, the hijackers
were still on Egyptian soil, preparing to leave the country
quietly by air. While U.S. intelligence sources managed
to locate the plane that the terrorists planned to take-an
EgyptAir Boeing 737 jetliner sitting on the runway of an
air base near Cairo-the Pentagon's counterterrorist ex-
perts hurriedly came up with a plan for intercepting the
civilian getaway plane with F-14 Tomcats, backed by re-
connaissance and radar-jamming aircraft.

Meanwhile, for President Reagan, it was business as
usual. As the CIA and the Pentagon went into overdrive,
Reagan lunched on baked goods in the Sara Lee kitchens
outside Chicago. Postprandial chitchat was interrupted
by an urgent (and secret) communication from Washing-
ton; the president's advisers outlined for him their auda-
cious plan to force down the EgyptAir jet. Reagan liked
what he heard but before giving a firm go-ahead wanted
to know how many lives would be at risk. A few hours
later, en route to Washington aboard Air Force One, Rea-
gan called Defense Secretary Caspar Weinberger, who
was flying on a military plane to his summer home in
Bar Harbor, Maine. On an open shortwave radio chan-
nel, the president-speaking as he normally does, not in
code, and with his voice not scrambled by high-tech
gadgetry-ordered the reluctant Weinberger to proceed
with the daring mission. An amateur radio operator over-
heard every word of the president's provocative order,
and the brother of the eavesdropper lost no time in con-
tacting CBS News, which chose not to report the presi-
dent's order. Not being "Page Six" of the New York Post,
CBS News wanted a firsthand source, either the radio
operator himself, not his brother, or, better yet, a tape
recording of the overheard conversation. A few hours
later the EgyptAir jet was forced down, in exactly the
manner told to CBS News.
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The New York Times subsequently quoted a White

House official saying, "They [Reagan and Weinberger]
were on two different planes with two different crypto-
graphic systems. They could have been patched through
another cryptographic system, but time was of the es-
sence and they decided to go nonsecure. They felt that
the information was not sensitive enough that they needed
a secure call." But you can be sure that if an amateur
radio operator overheard their conversation, the Soviet
Union, which apparently monitors all radio transmis-
sions from Air Force One, overheard it too. If the Krem-
lin had not shown restraint, the American F-14 fighters
might have encountered a squadron of Soviet MIGs in-
stead of a defenseless civilian jetliner.

When time is of the essence, codes that require elab-
orate machinery or sophisticated mathematical methods
are impractical. In the heat of battle, for example, orders
must be acted on as soon as they are received; there's
not much time for deciphering. If Reagan and Weinber-
ger had known a relatively obscure foreign tongue, they
could have spoken it. In the Boer War, the British run-
ners who delivered messages between encampments
spoke Latin. That, at least, put a tiny obstacle in the way
of eavesdroppers.

In World War I, the commander of the American Ex-
peditionary Force in France, fearing that the Germans
were listening in on every communication, discovered a
unique communications resource in the American Indi-
ans in his regiment who spoke a total of twenty-six
recondite languages, only five of which had written char-
acters. As eight Choctaw Indians spread the word by field
telephone, he orchestrated "a delicate withdrawal" of
the Second Battalion from Chuffilly. Before the United
States entered World War II, the military studied many
native American languages and identified Navaho as ideal
for battlefield communications.

The language was apparently known by only twenty-
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eight people outside the tribe, none of them affiliated
with the enemy. Navaho, like Chinese, is extremely dif-
ficult to learn, because the meaning of words turns on
subtle variations in pronunciation. Moreover, there was
no Berlitz crash course in Navaho; it could be learned
only from native speakers, all of whom, fortunately for
the Pentagon, were here in the United States. And since
the Navahos numbered more than 50,000, there were
surely many able-bodied men who could be conscripted.
By the end of the war, 420 Navahos had helped the Ma-
rines advance from the Solomon Islands to Okinawa,
where they were particularly helpful, barking orders in a
peculiar language that left the Japanese high command
totally baffled but made for swiftly executed ma-
neuvers.

Despite the increasing number of mathematicians
drawn to cryptography, and the increasing supercompu-
ter resources harnessed for code making and breaking.
old ciphers still confound-and distract-the experts.
Written more than a century and half ago, the notorious
Beale ciphers, which apparently conceal the where-
abouts of a $17 million treasure trove, still occupy the
efforts of "at least 10 percent of the best cryptoanalytic
minds in the country," says Carl Hammer, former chief
computer scientist at Sperry Univac for two decades
-Id a pioneer in the computer analysis of the statisti-
cal properties of ciphers. "And not a dime of this effort
should be begrudged," Hammer adds. "The work-even
the lines that have led into blind alleys-has more than
paid for itself in advancing and refining computer re-
search."

The legacy of the Beale ciphers goes back to January
1820, when a tall, swarthy, ruggedly handsome stranger
with jet black eyes and jet black hair, worn longer than
the style of the day dictated, arrived on horseback at the
Washington Hotel in Lynchburg, Virginia. Greeted by
Robert Morriss, the hotel's proprietor, who was known
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to the rich for his conviviality and to the poor for his
generosity, the stranger introduced himself as Thomas
Jefferson Beale. After touring the premises and inspect-
ing the accommodations offered him and his horse, Beale
told Morriss that he planned to stay for the winter. A
spirited conversationalist, Beale proved to be an affable
guest, his manly beauty favored by the ladies and envied
by the men. He regaled the other guests with long stories
on every conceivable subject except that of his family,
his lineage, and his residence-of which he never said
anything. Late that March, he quietly departed for an
undisclosed destination.

For nearly two years, no one heard from him. Then,
in January 1822, he showed up unannounced at the hotel,
the same genial man as before, only swarthier and hand-
somer than ever, his trim and tan body suggesting he had
been on an extraordinary outdoor adventure. Everyone,
particularly the women, welcomed his return. Come
spring, Beale again disappeared, leaving behind a locked
iron box that Morriss was supposed to keep safe until his
return. That summer Morriss received a letter from
Beale, with the dateline St. Louis, May 9, in which he
described encountering buffalo and savage grizzlies.
(Back then, St. Louis was a tiny frontier town.) "How
long I may be absent I cannot now determine," the letter
continued, "certainly not less than two years, perhaps
longer.

"With regard to the box left in your charge I have few
words to say. . . . It contains papers vitally affecting the
fortunes of myself and many others engaged in business
with me, and in the event of my death its loss might be
irreparable. You will, therefore, see the necessity of
guarding it with vigilance and care to prevent so great a
catastrophe. It also contains some letters addressed to
yourself and which will be necessary to enlighten you
concerning the business in which we are engaged. . ..

[Should I or my associates not claim the box within ten
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years from the date of this letter], you will open it, which
can be done by removing the lock.

"You will find, in addition to the papers addressed to
you, other papers which will be unintelligible without the
aid of a key to assist you. Such a key I have left in the
hands of a friend in this place, sealed, addressed to your-
self, and endorsed 'Not to be delivered until June 1832.'
By means of this you will understand fully all you will
be required to do. . . . With kindest wishes for your most
excellent wife, compliments to the ladies, a good word
to enquiring friends, if there be any, and assurances of
my highest esteem for yourself, I remain, as ever, Your
sincere friend, Tho. Jeff. Beale."

Needless to say, Morriss never heard from Beale again.
Whether he was massacred by Indians, or mutilated by
savage animals, or whether exposure, and perhaps pri-
vation, took its toll is only a matter for speculation. The
summer of 1832 came around, and Morriss did not re-
ceive the promised key from St. Louis. By authority of
Beale's letter, Morriss could have broken the box open
that year, but, busy with other duties, he waited until
1845. Inside he found two letters addressed to him-a
long, informative one and a short, uninteresting one-
some old receipts, and a few sheets of paper covered with
strings of numbers.

The long letter, dated January 4, 1822, began, "You
will, doubtless, be surprised when you discover, from a
perusal of this letter, the importance of the trust confided
to you, the confidence reposed in your honor, by parties
whom you have never seen and whose names you have
never heard. The reasons are simple and easily told. It
was imperative upon us that some one here should be
selected to carry out our wishes in case of accident to
ourselves, and your reputation as a man of integrity, un-
blemished honor, and business sagacity, influenced them
to select you in place of others better known but, per-
haps, not so reliable as yourself. It was with this design
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that I first visited your house, two years since, that I
might judge by personal observation if your reputation
was merited."

The letter went on to describe how Beale and a merry
band of twenty-nine friends, all "fond of adventure, and
if mixed with a little danger all the more acceptable,"
had embarked in April 1817 on a two-year hunting ex-
pedition to the far reaches of the great western plains. In
the spring of 1818, some three hundred miles north of
Santa Fe, the hunting party, suffering from fatigue, bore-
dom, and inclement weather, followed an immense herd
of buffalo into a deep ravine. Tired from the chase, the
adventurers tethered their horses and set up camp. As
they prepared the evening meal, a keen observer among
them spied gold in a cleft in the rocks.

For the next eighteen months, the letter said, they
mined gold, and silver too, having procured the assis-
tance of friendly Indians. Beale and a few of his com-
panions then hauled the booty to Virginia, where they
planned to stash it in a cave they had visited before, "near
Buford's Tavern, in the county of Bedford." On reaching
the cave, however, Beale found it unsatisfactory as a safe
depository; "it was too frequently visited by the neigh-
boring farmers, who used it as a receptacle for their sweet
potatoes and other vegetables." And so he selected an-
other hiding place.

Then he checked himself into the Washington Hotel.
Satisfied that Morriss was as trustworthy as reputed,
Beale ventured west again to rejoin his fellow miners. In
the fall of 1822, he returned to Virginia, with large quan-
tities of gold and silver, deposited the precious metals in
the hiding place, and entrusted the locked box to Mor-
riss.

As for the three unintelligible papers, which consisted
entirely of numbers, the letter claimed that, when deci-
phered with the promised key, the papers would reveal
the exact location of the hideaway, the precise contents
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of the stash, and the names and addresses of the thirty
adventurers. The letter instructed Morriss to divide the
treasure into thirty-one equal parts, retain one part for
himself, as remuneration for his services, and distribute
the other parts to the kin of the thirty claimants. "In
conclusion, my dear friend," Beale wrote, "I beg that
you will not allow any false or idle punctilio to prevent
your receiving and appropriating the portion assigned
to yourself. It is a gift, not from myself alone but from
each member of our party, and will not be out of pro-
portion to the services required of you."

Morriss's curiosity was undoubtedly piqued by the con-
tents of the box. But he was motivated less by avarice
than by the desire not to betray the confidence placed in
him by the charismatic lady-killer and his twenty-nine
unknown companions who were united by love of daring
adventure and "the wild and roving character of their
lives, the charms of which lured them farther and farther
from civilization, until their lives were sacrificed to their
temerity." Morriss devoted the remaining nineteen years
of his life to recovering the treasure, but without the key
to the mysterious papers, he was unable to make head-
way. Before he died, in 1863, he shared the contents of
the box with James Ward, a bartender and family man
of discretion who had accumulated sufficient savings
to be able to spend his days searching for the elusive
treasure.

Morriss thought that he was doing Ward a favor, po-
tentially a very lucrative one, by letting him in on
Beale's secret. Instead, it proved to be Ward's ruin. He
became obsessed with the ciphers-all the more so
since he managed to decode the second paper, which
revealed the extent of the hidden treasure (2,921 pounds
of gold, 5,100 pounds of silver, and, by today's stan-
dards, some $3.35 million worth of jewels) but not the
burial site.

"It would be difficult to portray the delight he experi-
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enced," Ward wrote of himself, "when accident re-
vealed to him the explanation [of the second paper]. But
this accident, affording so much pleasure at the time, was
a most unfortunate one for him, as it induced him to
neglect family, friends, and all legitimate pursuits for
what has proved, so far, the veriest illusion.... When
the writer recalls his anxious hours, his midnight vigils,
his toll, his hopes, and disappointments, all consequent
upon this promise, he can only conclude that the legacy
of Mr. Morriss was not as he designed it-a blessing in
disguise. "

It is time to take a look at the ciphers themselves:

Paper Number One: The Location of the $17 Million Treasure

71, 194, 38, 1701, 89, 76, 11, 83, 1629, 48, 94, 63, 132, 16, 111,
95, 84, 341, 975, 14, 40, 64, 27, 81, 139, 213, 63, 90, 1120, 8,
15, 3, 126, 2018, 40, 74, 758, 485, 604, 230, 436, 664, 582, 150,
251, 284, 308, 231, 124, 211, 486, 225, 401, 370, 11, 101, 305,
139, 189, 17, 33, 88, 208, 193, 145, 1, 94, 73, 416, 918, 263, 28
500, 538, 356, 117, 136, 219, 27, 176, 130, 10, 460, 25, 485, 18,
436, 65, 84, 200, 283, 118, 320, 138, 36, 416, 280, 15, 71. 224,
961, 44, 16, 401, 39, 88, 61, 304, 12, 21, 24, 283, 134, 92, 63,
246, 486, 682, 7, 219, 184, 360, 780, 18, 64, 463, 474, 131, 160,
79, 73, 440, 95, 18, 64, 581, 34, 69, 128, 367, 460, 17, 81, 12.
103, 820, 62, 116, 97, 103, 862, 70, 60, 1317, 471, 540, 208,
121, 890, 346, 36, 150, 59, 568, 614, 13, 120, 63, 219, 812,

2160, 1780, 99, 35, 18, 21, 136, 872, 15, 28, 170, 88, 4, 30, 44,
112, 18, 147, 436, 195, 320, 37, 122, 113, 6, 140, 8, 120, 305,
42, 58, 461, 44, 106, 301, 13, 408, 680, 93, 86, 116, 530, 82.
568, 9, 102, 38, 416, 89, 71, 216, 728, 965, 818, 2, 38, 121, 195,
14, 326, 148, 234, 18, 55, 131, 234, 361, 824, 5, 81, 623, 48,

961, 19, 26, 33, 10, 1101, 365, 92, 88, 181, 275, 346, 201, 206,
86, 36, 219, 320, 829, 840, 68, 326, 19, 48, 122, 85, 216, 284,
919, 861, 326, 985, 233, 64, 68, 232, 431, 960, 50, 29, 81, 216,
321, 603, 14, 612, 81, 360, 36, 51, 62, 194, 78, 60, 200, 314,
676, 112, 4, 28, 18, 61, 136, 247, 819, 921, 1060, 464, 895, 10,
6, 66, 119, 38, 41, 49, 602, 423, 962, 302, 294, 875, 78, 14, 23,
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111, 109, 62, 31, 501, 823, 216, 280, 34, 24. 150, 1000, 162,
286, 19, 21, 17, 340, 19, 242, 31, 86, 234, 140, 607, 115, 33,
191, 67, 104, 86, 52, 88, 16, 80, 121, 67, 95, 122, 216, 548, 96,
11, 201, 77, 364, 218, 65, 667, 890. 236, 154, 211, 10, 98, 34,
119, 56, 216, 119, 71, 218, 1164, 1496, 1817, 51, 39, 210, 36, 3,
19, 540, 232, 22, 141, 617, 84, 290, 80, 46, 207, 411, 150, 29,

38, 46, 172, 85, 194, 36, 261, 543, 897, 624, 18, 212, 416, 127,
931, 19, 4, 63, 96, 12, 101, 418, 16, 140, 230, 460, 538, 19, 27.
88, 612, 1431, 90, 716, 275, 74, 83, 11, 426, 89, 72, 84, 1300,

1706, 814, 221, 132, 40, 102, 34, 858, 975, 1101, 84, 16, 79, 23,
16, 81, 122, 324, 403, 912, 227, 936, 447, 55, 86, 34, 43, 212,

107, 96, 314, 264, 1065, 323, 328, 601, 203, 124, 95, 216, 814,

2906, 654, 820, 2, 301, 112, 176, 213, 71, 87, 96, 202, 35, 10, 2,
41. 17, 84, 221, 736, 820, 214, 11, 60, 760.

Paper Number Two: The Exact Nature of the Treasure

115, 73, 24, 818, 37, 52, 49, 17, 31, 62, 657, 22, 7, 15, 140, 47,
29, 107, 79, 84, 56, 238, 10, 26, 822, 5, 195, 308, 85, 52, 159,

136, 59, 210, 36, 9, 46, 316, 543, 122, 106, 95, 53, 58, 2, 42, 7,

35, 122, 53, 31, 82, 77, 250, 105, 56, 96, 118, 71, 140, 287, 28,
353, 37, 994, 65, 147, 818, 24, 3, 8, 12, 47, 43, 59, 818, 45, 316,

101, 41, 78, 154, 994, 122, 138, 190, 16, 77, 49, 102, 57, 72, 34,
73, 85, 35, 371, 59, 195, 81, 92, 190, 106, 273, 60, 394, 629,
270, 219, 106, 388, 287, 63, 3, 6, 190, 122, 43, 233, 400, 106,

290, 314, 47, 48, 81, 96, 26, 115, 92, 157, 190, 110, 77, 85, 196,

46, 10, 113, 140, 353, 48, 120, 106, 2, 616, 61, 420, 822, 29,
125, 14, 20, 37, 105, 28, 248, 16, 158, 7, 35, 19, 301, 125, 110,

496, 287, 98, 117, 520, 62, 51, 219, 37, 37, 113, 140, 818, 138,

549, 8, 44, 287, 388, 117, 18, 79, 344, 34, 20, 59, 520, 557, 107,
612, 219, 37, 66, 154, 41, 20, 50, 6, 584, 122, 154, 248, 110, 61,

52, 33, 30, 5, 38, 8, 14, 84, 57, 549, 216, 115, 71, 29, 85, 63, 43,

131, 29, 138, 47, 73, 238, 549, 52, 53, 79, 118, 51, 44, 63, 195,

12, 238, 112, 3, 49, 79, 353, 105, 56, 371, 566, 210, 515, 125,
360, 133, 143, 101, 15, 284, 549, 252, 14, 204, 140, 344, 26,
822, 138, 115, 48, 73, 34, 204, 316, 616, 63, 219, 7, 52, 150, 44,

52, 16, 40, 37, 157, 818, 37, 121, 12, 95, 10, 15, 35, 12, 131, 62,

115, 102, 818, 49, 53, 135, 138, 30, 31, 62, 67, 41, 85, 63, 10,
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106, 818, 138, 8, 113, 20, 32, 33, 37, 353, 287, 140, 47, 85, 50,

37, 49, 47, 64, 6, 71, 33, 4, 43, 47, 63, 1, 27, 609, 207, 229,

15, 190, 246, 85, 94, 520, 2, 270, 20, 39, 7, 33, 44, 22, 40, 7, 10,

3, 822, 106, 44, 496, 229, 353, 210, 199, 31, 10, 38, 140. 297,
61, 612, 320, 302, 676, 287, 2, 44, 33, 32, 520, 557, 10, 6, 250,

566, 246, 53, 37, 52, 83, 47, 320, 38, 33, 818, 7, 44, 30, 31, 250,
10, 15, 35, 106, 159, 113, 31, 102, 406, 229, 540, 320, 29, 66,
33, 101, 818, 138, 301, 316, 353, 320, 219, 37, 52, 28, 549, 320,

33, 8, 48, 107, 50, 822, 7, 2, 113, 73, 16, 125, 11, 110, 67, 102,

818, 33, 59, 81, 157, 38, 43, 590, 138, 19, 85, 400, 38, 43, 77,
14, 27, 8, 47, 138, 63, 140, 44, 35, 22, 176, 106, 250, 314, 216,
2, 10, 7, 994, 4, 20, 25, 44, 48, 7, 26, 46, 110, 229, 818, 190, 34,
112, 147, 44, 110, 121, 125, 96, 41, 51, 50, 140, 56, 47, 152,
549, 63, 818, 28, 42, 250, 138, 591, 98, 653, 32, 107, 140, 112,
26, 85, 138, 549, 50, 20, 125, 371, 38, 36, 10, 52, 118, 136, 102,

420, 150, 112, 71, 14, 20, 7, 24, 18, 12, 818, 37, 67, 110, 62, 33,
21, 95, 219, 520, 102, 822, 30, 38, 84, 305, 629, 15, 2, 10, 8,
219, 106, 353, 105, 106, 60, 242, 72, 8, 50, 204, 184, 112, 125,

549, 65, 106, 818, 190, 96, 110, 16, 73, 33, 818, 150, 409, 400,
50, 154, 285, 96, 106, 316, 270, 204, 101, 822, 400, 8, 44, 37,

52, 40, 240, 34, 204, 38, 16, 46, 47, 85, 24, 44, 15, 64, 73, 138,

818, 85, 78, 110, 33, 420, 515, 53, 37, 38, 22, 31, 10, 110, 106,

101, 140, 15, 38, 3, 5, 44, 7, 98, 287, 135, 150, 96, 33, 84, 125,
818, 190, 96, 520, 118, 459, 370, 653, 466, 106, 41, 107, 612,

219, 275, 30, 150, 105, 49, 53, 287, 250, 207, 134, 7, 53, 12, 47,
85, 63, 138, 110, 21, 112, 140, 495, 496, 515, 14, 73, 85, 584,
994, 150, 199, 16, 42, 5, 4, 25, 42, 8, 16, 822, 125, 159, 32, 204,

612, 818, 81, 95, 405, 41, 609, 136, 14, 20, 28, 26, 353, 302,
246, 8, 131, 159, 140, 84, 440, 42, 16, 822, 40, 67, 101, 102,

193, 138, 204, 51, 63, 240, 549, 122, 8, 10, 63, 140, 47, 48, 140,

288.

Paper Number Three: Names and Addresses of the Kin of the Adventurers

317, 8, 92, 73, 112, 89, 67, 318, 28, 96, 107, 41, 631, 78, 146,

397, 118, 98, 114, 246, 348, 116, 74, 88, 12, 65, 32, 14, 81, 19,
76, 121, 216, 85, 33, 66, 15, 108, 68, 77, 43, 24, 122, 96, 117,
36, 211, 301, 15, 44, 11, 46, 89, 18, 136, 68, 317, 28, 90, 82,
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304, 71, 43, 221, 198, 176, 310, 319, 81, 99, 264, 380, 56, 37,
319, 2, 44, 53, 28, 44, 75, 98, 102, 37. 85, 107, 117, 64, 88, 136.
48, 151, 99, 175, 89, 315, 326, 78, 96, 214, 218, 311, 43, 89, 51,
90, 75, 128, 96, 33, 28, 103, 84, 65, 26, 41, 246, 84, 270, 98,
116, 32, 59, 74, 66, 69, 240, 15,8, 121, 20, 77, 89, 31, 11, 106,

81, 191, 224, 328. 18, 75, 52, 82, 117, 201, 39, 23, 217, 27, 21,
84, 35, 54, 109, 128, 49, 77, 88, 1, 81, 217, 64, 55, 83, 116, 251,
269, 311, 96, 54, 32, 120, 18, 132, 102, 219, 211, 84, 150. 219,
275,312,64, 10, 106, 87, 75, 47, 21, 29, 37, 81, 44, 18, 126,

115, 132, 160, 181, 203, 76, 81, 299, 314, 337, 351, 96, 11, 28,
97, 318, 238, 106, 24, 93, 3, 19, 17, 26, 60, 73, 88, 14, 126, 138,
234, 286, 297, 321, 365, 264, 19, 22, 84, 56, 107, 98, 123, 111,
214, 136, 7, 33, 45, 40, 13, 28, 46, 42, 107, 196, 227, 344, 198,

203, 247, 116, 19,8,212,230,31,6,328,65,48,52,59, 41,
122, 33, 117, 11, 18, 25, 71, 36, 45, 83, 76, 89, 92, 31, 65, 70,
83, 96, 27, 33, 44, 50, 61, 24, 112, 136, 149, 176, 180, 194, 143,

171, 205, 296, 87, 12, 44, 51, 89, 98, 34, 41, 208, 173,66,9,35,
16, 95, 8, 113, 175, 90, 56, 203, 19, 177, 183, 206, 157, 200,

218,260,291,305,618,951,320, 18, 124, 78, 65, 19,32, 124,
48, 53, 57, 84,96,207,244,66,82, 119, 71, 11, 86, 77, 213, 54,

82, 316, 245, 303, 86, 97, 106, 212, 18, 37, 15, 81, 89, 16, 7, 81.

39, 96, 14, 43, 216, 118, 29, 55, 109, 136, 172. 213, 64, 8, 227,
304, 611, 221, 364, 819, 375, 128, 296, 11, 18, 53, 76, 10, 15,
23, 19, 71, 84, 120, 134, 66, 73, 89, 96, 230, 48, 77, 26, 101,
127,936,218,439, 178, 171, 61, 226, 313, 215, 102, 18, 167,

262, 114, 218, 66, 59, 48, 27, 19, 13, 82, 48, 162, 119, 34, 127,
139, 34, 128, 129, 74, 63, 120, 11, 54, 61, 73, 92, 180, 66, 75,
101, 124, 265, 89, 96, 126, 274, 896, 917, 434, 461, 235, 890,

312, 413, 328, 381, 96, 105, 217, 66, 118,22,77,64,42, 12.7,

55, 24, 83, 67, 97, 109, 121, 135, 181, 203, 219, 228, 256, 21.
34, 77, 319, 374, 382, 675, 684, 717, 864, 203, 4, 18, 92, 16, 63,

82, 22, 46, 55, 69, 74, 112, 135, 186, 175, 119, 213, 416, 312,
343, 264, 119, 186, 218, 343, 417, 845, 951, 124, 209, 49, 617,
856, 924, 936, 72, 19, 29, 11, 35, 42, 40, 66, 85, 94, 112, 65, 82,
115, 119, 236, 244, 186, 172, 112, 85, 6, 56, 38, 44, 85, 72, 32,
47, 73, 96, 124, 217, 314,319,221,644, 817, 821, 934, 922,

416,975, 10,22, 18,46, 137, 181, 101, 39, 86, 103, 116, 138,

164, 212, 218, 296, 815, 380, 412, 460, 495, 675, 820, 952.
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How did Ward manage to decipher the second page?

Since the number of numbers in the ciphertext greatly
exceeds twenty-six (the numbers of letters in the alpha-
bet), he wondered whether the numbers might corre-
spond to the words in a document that Beale had
sequentially numbered. With this in mind, Ward tried
numbering the letters of words in many famous docu-
ments and substituting those letters for the numbers in
the ciphertext. "All to no purpose," Ward wrote, "until
the Declaration of Independence afforded the clue to one
of the papers and revived my hopes." What Ward did
was number the first letter of each word in the Declara-
tion of Independence. For example, he numbered the first
nine words as follows:

1 2 3 4 5 6 7 8
WHEN, IN THE COURSE OF HUMAN EVENTS, IT

9
BECOMES

From those words, he found that I = W, 2 = 1, 3 =
T, 4 = C, 5 = 0, 6 = H, 7 = E, 8 = 1, and 9 = B.
Already you can see that Beale had two ways of enci-
phering the letter I, as 2 or 8. Of course, by the time he
numbered the whole Declaration of Independence, he had
many choices for many of the letters. By making liberal
use of all these choices, he made the ciphertext resistant
to code cracking by frequency analysis. Ward was able
to break the cipher because he stumbled on the appro-
priate keytext, the Declaration of Independence, with
which he extracted the following message:

"I have deposited in the County of Bedford about four
miles from Buford's in an excavation or vault six feet
below the surface of the ground the following articles
belonging jointly to the parties whose names are given in
number three herewith. The first deposit consisted of ten
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hundred and fourteen pounds of gold and thirty eight
hundred and twelve pounds of silver deposited November
eighteen hundred and nineteen. The second was made
December eighteen hundred and twenty one and con-
sisted of nineteen hundred and seven pounds of gold and
twelve hundred and eighty eight pounds of silver, also
jewels obtained in St. Louis in exchange to save trans-
portation and valued at thirteen thousand dollars. The
above is securely packed in iron pots with iron covers.
The vault is roughly lined with stone and the vessels rest
on solid stone and are covered with others. Paper number
one describes the exact locality of the vault so that no
difficulty will be had in finding it."

Intrigued by this message, particularly by the last line,
Ward devoted more and more energy to the decryption
of the other papers. But try as he did, he didn't make
any more progress. "In consequence of the time lost,"
Ward wrote, "I have been reduced from comparative af-
fluence to absolute penury, entailing suffering upon those
it was my duty to protect; and this, too, in spite of their
remonstrances. My eyes were at last opened to their con-
dition, and I resolved to sever at once, and forever, all
connection with the affair, and retrieve, if possible, my
errors. To do this, and as the best means of placing temp-
tation beyond my reach, I determined to make public the
whole matter, and shift from my shoulders my respon-
sibility to Mr. Morriss."

And so, in 1894, he published an account of the Beale
ciphers, an account that serves today as our sole source
of knowledge of the ciphers and the fabulous treasure to
which they supposedly lead. Every titillating detail that
I have related to you-that Beale was tall and swarthy,
that Morris hit it off with both the rich and the poor, that
savage animals accosted Beale and his hunting party-
comes from Ward. There is no independent confirma-
tion: no corroborating correspondence, no journals, no
wills, no references to the treasure whatsoever. More-
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over, the box Beale supposedly gave to Morriss has not
survived, nor have the letters and enciphered papers that
were allegedly in it. If Ward was a prankster, he was an
extremely good one, having pulled off one of the longest-
running hoaxes as well as one of the most expensive, if
you consider all the computer time spent on unraveling
the ciphers. "With computers," says Hammer, "we have
played games with these numbers that would take a mil-
lion men a billion years to duplicate with paper and pen-
cil."

In the 1960s, some of the best minds in cryptoanalysis
(and many of the worst ones too) formed a secret society,
the Beale Cypher Association, so that they could pool
their knowledge and resources and unearth the elusive
treasure. Hammer, a prominent member of the associa-
tion, ran extensive statistical tests on the distribution of
the numbers in the undeciphered Beale papers and con-
cluded that the numbers are not random but definitely
conceal an English message. Most cryptographers accept
Hammer's analysis, but the mere fact that there is a mes-
sage doesn't mean that whole thing isn't a hoax. Who's
to say that the message isn't something like "You're the
biggest sucker in the universe, dodo brain"? Louis Kruh,
president of the New York Cipher Society, performed
some statistical tests of another kind, aimed at compar-
ing the style of Ward's writing with the style of Beale's
letters as they were quoted in Ward's pamphlet. Kruh
found that the two styles are so remarkably similar that
he is convinced that Ward wrote Beale's letters. For ex-
ample, the average length of one of Ward's sentences is
28.82 words; that of Beale's, 28.75. Kruh's analysis,
however, has caused few members of the Beale Cypher
Association to turn off their computers and put away their
shovels.

In 1981, the Beale legacy was given new life by Warren
Holland, Jr., a dreamy, disenchanted graduate of Vir-
ginia Tech. Holland had not been able to make it in the
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construction business, because he had had trouble col-
lecting money from clients. "In that business," says
Holland, "forget about being honest, forget about being
an individual. People push you into things you're not."
With his mood and bank account depressed, he turned
inward and read more than ever, including an account of
the Beale ciphers and the scores of treasure hunters who,
some 160 years later, were still digging up the back-
woods of Virginia. Though intrigued by the storyhe was
not the sort who was about to race out and dig up the
countryside-he'd done enough of that in the construction
business. And then, eureka, it came to him, a way he
could satisfy his own pecuniary needs by romantically
appealing to those needs in others. He would encrypt his
own message, market it, and offer a prize for its decryp-
tion.

It took him only a few hours to encrypt one of his
favorite poems by e e cummings, called "A Poet's Ad-
vice," which spoke of the virtues of being nobody but
yourself in a world that's doing its best to make you like
everyone else. Holland proceeded just like Beale. First,
he chose a key, not the Declaration of Independence but
the sixth chapter of Carl Sagan's Cosmos. Then he num-
bered words consecutively, starting with the word first in
a quotation at the beginning of the chapter, each number
standing for the initial letter of a word. Finally, he sub-
stituted the numbers for the letters in "A Poet's Ad-
vice." He decided to write the encrypted text on a
jigsaw puzzle, so that he would have a puzzle within a
puzzle.

That was the easy part, an afternoon's work. The hard
part, marketing the puzzle, took two years. He wanted
to offer a prize of $100,000, which he planned to raise
from the sale of the puzzle. But he wanted to insure the
prize, in case the proceeds didn't amount to $100,000.
Lloyd's of London turned him down because Scotland
Yard claimed that the cipher could be easily broken.
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Eventually, he convinced an American insurance carrier
and found a distributor for the puzzle. Called Decipher,
it sold nearly a quarter of a million sets in the two
years it was marketed, until it was solved in March
1985.

In the winter of 1984, Alan Sherman, a twenty-seven-
year-old Ph.D. candidate in computer science at MIT,
decided to teach a minicourse in cryptography in which
the goal was to solve Holland's Decipher puzzle. Six stu-
dents took the course, including Robert Baldwin, a fel-
low graduate student. The class was armed with a
Symbolics 3600 Lisp Machine, one of the most sophis-
ticated personal computers available, and all the other
resources of MIT's Laboratory for Computer Science,
where Sherman had his office. (He now works four
subway stops away at Tufts University, where he is an
assistant professor.)

Uncracked ciphers were not strangers to the Labora-
tory for Computer Science. Many of the professors there
have made monumental contributions to cryptography,
although their concerns are generally more academic and
theoretical than the pursuit of prize money for solving a
commercial puzzle. And yet papers posted on the labor-
atory's walls suggest that the place isn't devoid of frivol-
ity. Posted prominently is the July 10, 1984, front page
of the supermarket tabloid Weekly World News, which
features the story "Jealous Computer Kills Top Scien-
tist: Old Machine Electrocutes Owner-After He Buys
a More Advanced Model." Also tacked to the wall are
curious block-by-block maps of various Soviet cities.
The CIA used to have offices on the same floor, and
when the agency moved out of the building, MIT stu-
dents fished the maps out of a dumpster along with a
pamphlet called something like How to Trail People in
the City.

Sherman himself almost succumbed to the allure of
skulduggery, not the cloak-and-dagger espionage prac-
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ticed by the CIA but the genteel computer-keyboard
snooping practiced by the NSA, the chief code-breaking
and code-making wing of the government. Even the
budget of this stealthiest of governmental organizations
is classified, although it's thought to be twice that of the
CIA. Its operations are so hush-hush its employees joke
that NSA stands not for National Security Agency but for
Never Say Anything. The NSA was responsible for the
controversial Data Encryption Standard, a complicated
cipher that other government agencies and private com-
panies were supposed to use in order to keep information
confidential in files they maintain on private citizens.
Critics charge that NSA advocated the cipher, touting it
as virtually impenetrable, because the agency built into
it a secret trapdoor that it could effortlessly activate
whenever it wanted access to confidential records. Sher-
man is not one of these critics, but he has devoted much
energy to investigating the mathematical properties of the
Data Encryption Standard and how those properties re-
late to the security of the cipher. He has probed one
curious property of the cipher: there are messages that
are identical to their encryption!

When people leave academe for the NSA, it's generally
not because they're overcome by a sudden urge to serve
their country. Rather, it's because the agency appeals to
the techno-nerd in them: the NSA's top-secret facility in
Maryland apparently houses more computers than are
found anywhere else on the planet. Sherman turned down
the agency's job offer because its strict security regula-
tions might have kept him from ever teaching cryptog-
raphy again or from publishing papers on the subject.
Given the agency's notorious gag orders, it is conceiv-
able that an NSA employee has solved the Beale ciphers
but is barred by agency rules from reporting his solu-
tion or digging up the treasure, even under cover of dark-
ness.

When I met Baldwin, in the spring of 1985, he was
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interested in "crytographic protocol," the use of crytog-
raphy to achieve "higher goals." I should have asked
him what the lower goals were; all I could think of was-
the NSA's reported interception of a radio call between
Moscow limousines, in which a Kremlin bigwig revealed
the special services of a local masseuse. Baldwin, though,
needed no prodding to discourse at length on the higher
goals. He told me how cryptographic signatures could be
used so that when you communicate from a keyboard
with a computer, you know it's the computer you're in-
teracting with-and not some nefarious high-tech sabo-
teur who's impersonating the machine. Another higher
goal is the encryption of personal checks and credit-card
receipts so that no one but the customer knows what he's
spent his money on. "Checks should be anonymous,"
says Baldwin. "They should not provide a trail of where
you've been. It's nobody's business if you write a check
to your mistress."

Baldwin treated me to a demonstration of the computer
system that they used to attack Decipher. He started the
program, and the screen filled up with the following
text:

WARNING: PERMISSION TO USE THIS SYSTEM
IS ONLY GRANTED TO ITS PRIMARY IMPLE-
MENTERS. ARE YOU AN IMPLEMENTER?

"We didn't do anything sophisticated to keep out un-
authorized people," says Baldwin. "Just this, which
makes the moral choice very clear."

The idea of the system is that the user types in a can-
didate keytext and the computer tests all sorts of strate-
gies for assigning numbers to that text. One strategy is
to number the first letter of every word, as Beale did with
the Declaration of Independence. Another way is to num-
ber every letter. And each of these strategies is tried again
and again, starting at various points in the text. Each way
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yields a different assignment of letters to numbers, which
the computer then applies to the ciphertext in an attempt
to extract an English message.

Since the computer doesn't read English, Baldwin and
Sherman had to build in a method it could use to tell
whether the extracted text was gibberish or possibly an
intelligible message. They did this by having it conduct
a statistical test. It counted the frequency of certain letter
pairs in the extracted text and compared this with known
frequencies for English. If the frequencies were close,
the computer would store the extracted text for the pe-
rusal of its more literate human masters.

So far, so good. But the success of the system de-
pended on Baldwin and Sherman's typing in the right
keytext. In this respect, even with all the resources of
modern cryptography, they were no better off than Ward.
Indeed, Ward may have had it easier because there were
fewer documents in print in 1820 and thus fewer candi-
date keytexts to consider. Holland, however, gave out a
few cryptic clues: "3, 19" and "If you knew it began
with C, would it help you?" The first clue was supposed
to reveal Carl Sagan's initials since C is the third letter
of the alphabet and S the nineteenth. The second clue
applied to Cosmos, since it begins with C. As the months
passed and no one solved Decipher, Holland gave out
increasingly helpful clues over a telephone hotline that
puzzlers were urged to call.

"In the beginning of March 1985," Baldwin recalls,
"Holland released a clue that the key was a sequence of
first letters from chapter 6 of Cosmos. We deduced that
he meant first letters of words because there weren't
enough lines or sentences for it to be first letters of those.
We hired somebody to type in the chapter, and by the
middle of March we were running our program but we
weren't getting a match. We actually tried the strategy,
which Holland actually used, of beginning with the
word first, numbering it 1, and so on. We were right up
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to the 256th word, which was c., the abbreviation for
circa. We figured that Holland would count the c. as a
word since it stood for a word. In fact, he deleted it.
That meant that everything else we numbered was off
by one-and that small difference produced total gib-
berish.

"There were other peculiarities. At one point Sagan
writes JPL, for Jet Propulsion Laboratory. Does that
count as one word or three words? Holland chose to de-
lete it. The c. and JPL as well as other complications-
acronyms, footnotes, picture captions, hyphenated words,
and numbers in the text-defeated our program. When
we began, we were thinking in terms of a keytext like
the Declaration of Independence, which has few of the
complications of a modern document like Cosmos. It
wasn't until late in the game that we thought well, gee,
our program is pretty careful about trying thousands of
different strategies-taking every letter after a vowel or
any other weird thing we could think of-but it wasn't
very clever about massaging the text, of deciding what's
a word and what isn't. We realized that there were about
sixty different ways to treat the acronyms, footnotes, hy-
phenated words, and other complications. The program
wasn't designed to do that, and we weren't about to try
them all by hand."

On March 27, Sherman and Baldwin developed a clever
method for detecting partial matches between part of the
message and part of the keytext-a method that avoids
the problem of how to treat the peculiarities of the text.
They noticed that at various places in the ciphertext ad-
jacent cipher symbols were numerically close. For ex-
ample, at one point there was the sequence 867, 877,
860-numbers that differ by at most 17. By concentrating
on instances of seventeen consecutive words in the key-
text that were free of textual complications and number-
ing the words consecutively from 860 to 877, they could
extract plaintext letters for 867, 877, and 860. They ac-
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tually did this on a more elaborate scale so that they
could extract enough plaintext letters to be able to ana-
lyze them statistically. As before, the program compared
letter-pair frequencies in the extracted text with known
statistics for English as a whole.

On March 29, the computer found an extraction that
exhibited the proper statistics. Bob went to work filling
out the partial match until he had the complete text of
e. e. Cummings' verse. "It's funny," he says, "but 99.8
percent of all English texts would score better statisti-
cally than the poem in terms of being closer to average
English. For example, cummings used the words no and
you fifteen times. Yet the poem is still so much closer to
English than to non-English. We were lucky that we had
enough slack in the statistics." If they thought e. e. cum-
mings was bad, they're lucky Holland's favorite poet
wasn't Gertrude Stein. What would their program have
made of the letter frequencies in "Rose is a rose is a
rose"?

Unfortunately for Sherman and Baldwin, the deadline
for submitting a solution to the Decipher contest wasn't
the last day of March, as they had thought, but the last
business day. "It's incredible we didn't realize that," says
Baldwin. "We figured we're MIT students, so we don't
have to carefully read the rules." They take some con-
solation in the fact that they wouldn't have won the
$100,000 outright but would have had to split it with
thirty-six other puzzlers who had submitted timely solu-
tions. "Besides," says Baldwin-never one to pass up a
chance to calculate-"we had promised to give half of
our share to the university for use as financial aid. And
the other half would be split among Alan, the typist, and
me. The typist, you see, was working for a percentage
because we couldn't afford to pay him. That works out
to my share being $700. Hell, I can earn that much money
doing consulting work for two days." And if the con-
sulting business dries up, Baldwin can always go after



The Cryptic Case of a Swarthy Stranger 77
Beale's treasure trove by training their computerized
code-cracking system on his ciphers. Of course, there is
the nagging problem, so far immune to advances in cryp-
tography and computer number crunching, of identifying
Beale's keytexts-and, unlike Holland, Beale is not
around to give out clues.



II

SHAPES

A rudimentary knowledge of mathematics certainly an-
tedates the invention of the wheel, the use of metal, and
the development of writing. Prehistoric artifacts indicate
that early man counted, with the aid of notches in a tally
stick. For example, a wolf bone unearthed in Czechos-
lovakia contains fifty-five deep notches, made in groups
of five some thirty thousand years ago. The ancient cul-
tures of Egypt and Mesopotamia knew about geometry
as well as arithmetic, although there are only fragmented
records of exactly what they knew. Aristotle believed that
it was Egyptian priests, with leisure time to pursue in-
tellectual endeavors, who developed geometry. But He-
rodotus, a Greek historian, thought that geometry was
developed in Egypt out of necessity. Each year the Nile
seriously flooded the farmlands in the river basin, wash-
ing away property markers. To resurvey the land, as the
Egyptians did annually, required an understanding of an-
gles, directions, and lengths. Geometric knowledge was
also undoubtedly required to construct the great Egyptian
pyramids.

Most ancient and primitive cultures seem to have an
appreciation of geometric form. Indeed, a well-developed
sense of shape may be part of the human psyche. Even
"the man who mistook his wife for a hat"-Oliver
Sacks's neurologically impaired musician who couldn't
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recognize faces and ordinary objects-could recognize
geometric forms. As a mathematical discipline, geome-
try is as alive today as it ever was, and geometers are
still making discoveries about the simplest of shapes.



5

ADVENTURES OF AN EGG MAN

"It's the best idea I've ever had," says Kay McKenzie,
an alderman in Vegreville, Alberta. She was speaking of
her plan to commission a three-and-a-half-story Easter
egg for the barren, tornado-swept field opposite the nurs-
ing home in this sleepy agrarian town fifty-five miles east
of Edmonton. Although McKenzie herself is not Ukrain-
ian, most of the five thousand people in Vegreville are,
and they still practice the two-millennium-old Easter tra-
dition of painting pysanki, brightly colored, intricately
patterned chicken eggs. To celebrate the centennial of the
Royal Canadian Mounted Police in 1974, the Canadian
government was offering grants for appropriate commu-
nity projects. Why not a giant egg? McKenzie thought.
It would symbolize the peace and security that the
Mounties had offered to generations of Ukrainians in
Vegreville.

At first, her colleagues in town government roared with
laughter, but ultimately she was able to persuade them
that the egg was an idea whose time had come. After all,
they imagined the grant committee welcoming a fresh
idea after reviewing countless proposals for statues of
Mounties on horseback, trumpeting Canada geese, and
golden maple leaves. In fact, many of the submitted pro-
posals were hopelessly banal. There were numerous plans
for refurbishing old buildings and, almost as an after-
thought, slapping a plaque on the wall in tribute to the
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Mounties. In the end, Vegreville received $15,000-and
a matching grant from the local chamber of commerce-
and immediately sought an egg builder.

The town leaders asked a respected local architect to
build them the world's largest decorated chicken egg-
and he roared with laughter. After a few months, they
called him up to check on his progress; he reported that
he hadn't done any work, because he thought they were
putting him on. They tried another architect, who laughed
even louder. Six design firms later, they contacted Ron-
ald Dale Resch, then a thirty-five-year-old associate pro-
fessor in computer science at the University of Utah. "At
first," recalls Resch, "I laughed too, but when they
ended up giving me the job, I quit laughing for a year
and a half."

The problem Resch faced was that no one other than a
chicken had ever built an egg-and biologists are not all
that clear about how chickens do it, some 390 billion
times a year, according to the trusty Britannica. In the
domestic hen, an egg takes about twenty-four hours to
form, beginning as yolk (the ovum) in the hen's ovary.
The incipient egg starts a long, stop-and-go trek through
the oviduct, the tubular passage that leads from the ovary
to the vagina. On the egg's first, three-hour rest stop, it
picks up albumen (egg white) secreted from cells in the
oviduct walls. The egg then inches along to a section of
the oviduct where, pausing for an hour, it receives the
membranes that will line the shell. Finally, it moves on
to the uterus, where over a period of twenty hours, it
accumulates chalky deposits that harden into the shell.
So far,the egg has always traveled with its more pointed
end leading the way. But half an hour before emerging,
the egg flips over so that it's laid blunt end first.

The egg is initially a fluid structure. In the absence of
external forces, the egg would be a sphere, a shape that
minimizes contact with the rest of the world. Given a
certain volume of fluid, of all shapes that could contain
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that volume, the sphere has the smallest surface area.
The eagle owl and the kingfisher actually lay eggs that
are nearly spheres, but most birds are like the chicken;
their eggs are elongated because the muscular contrac-
tions of the oviduct, which propel the eggs by squeezing
them, modify their spherical form.

Virtually all forms in nature serve a function, and the
shape of an egg is undoubtedly no exception, even if
science cannot yet identify the shape's precise function.
Perhaps it has something to do with how the egg rolls.
If a chicken egg were a sphere, it would be much more
prone to rolling away. Certain sea birds, such as the guil-
lemot, a narrow-billed auk that inhabits northern waters,
lay eggs that are even less like spheres than chicken eggs
are. The guillemot egg is shaped like a top, whose dy-
namics are such that, when it rolls, it moves not in a
straight line but in a tight circle. This is fortunate for the
guillemot, who is more of a daredevil than a home
builder; spurning a nest, the gullemot lays its top-shaped
eggs directly on the slippery edges of ocean cliffs.

That the eggs of chickens and many other birds are
broader at one end than the other means that they can be
packed together closely in a nest-more so than if they
were spheres. "If the four eggs in the nest of a killdeer
[a North American plover known for its woeful, pene-
trating cry] are disarranged," writes Joel Carl Welty, an
ornithologist at Beloit College, "the bird will rearrange
them with pointed ends inward much like the slices of a
pie. Not only is the parent better able to cover its eggs,
but the heat they receive from its body is dissipated less
rapidly, thanks to their compact positioning."

Perhaps the shape of the egg also contributes to its
strength. After all, it must not break under the weight of
a nesting parent. Given its size and the thinness of its
shell, a chicken egg may be relatively strong, but not so
strong that it will survive, as legend has it, the grip of a
muscleman who squeezes it longitudinally in one hand.
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Perhaps this is the same mythical muscleman who can
rip a phone book in two. (The egg's legendary strength
has been touted by a recent advertisement that pictures
an unbroken egg gripped by a metal C clamp.) In reality,
you don't even have to be a he-man to crush an egg
single-handedly; I did it with one of my grubby little
mitts at the age of six, thereby advancing science but
setting back the kitchen floor.

"It may be true in theory,' says Resch, "that if a
strong man applied pressure uniformly to the surface of
an egg, he might not be able to break it. In practice,
however, no one applies uniform pressure-it's greater at
some point than another-and the egg bursts. In text-
books, they like to show a whole bunch of eggs, with
plaster above and below them, and elephants standing on
them without crushing them. That only shows what's true
of any structure: if you distribute a load properly, it will
carry it. In the real world, however, loads are never dis-
tributed properly."

That Resch thinks about what works not only in theory
but also in practice made him the ideal egg man, one
who could see the giant egg through its incubation from
a design on paper to an awesome monument reaching up
thirty-one feet and weighing two and a half tons. Resch
lives by the simple motto "Have mind, will travel."
Sometimes he leaves the United States for months at a
time to meditate in India. At other times, he sets up shop
near a university or research center and works on his
geometric art and computer graphics. But mostly he
moves around, hiring himself out to people, like the folks
in Vegreville, who need help solving a tough problem in
geometric design. With no formal training in mathemat-
ics or engineering, Resch relies chiefly not on analytic
methods but on his ability to play with geometric abstrac-
tions in his mind's eye and then, with his own hands (or,
these days, with his computer printer), to turn those men-
tal abstractions into physical reality.
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For NASA's Langley Research Center, in Virginia, he

designed prefabricated modules that, fitting snuggly in
the space shuttle's cargo bay, could be carried into space,
deployed, and then linked together to form huge space-
station structures. The producers of the film version of
Star Trek hired him to design the mouth of an alien ve-
hicle; they told him to make it look both organic and
high-tech, and he came up with the techno-mouth of the
mysterious spaceship that swallows everything in its path,
including then starship Enterprise. For Royal Packaging
Industries Van Leer, a Holland-based multi-national
package-design conglomerate, he devised a more effi-
cient way of packing in crates such spherical fruits as
apples and plums.

Finding the densest way to pack various geometric ob-
jects is an age-old problem in mathematics that has en-
gendered much discussion. In 1694, for example, Isaac
Newton argued with the Oxford astronomer David Greg-
ory about the maximum number of spheres, all identical
in size, that could be in contact with any one sphere of
the same size. Gregory said thirteen and Newton twelve.
One hundred eighty years passed before Newton was
proved right.

The packing of twelve spheres around a thirteenth
sphere is the key to the packing of spheres in the densest
known way. Imagine a bunch of spheres in a straight line
on a flat surface like a desktop. Now put another line of
spheres up against the first line so that the spheres of one
line fall between the spheres of the other; any given
sphere should be kissing two spheres in the other line.
More lines of spheres should be added until the desk is
covered. A second layer of spheres should be created by
adding them to spaces between spheres in the first layer.
A third layer is then formed by positioning spheres in
spaces in the second layer. If this kind of layering is not
restricted to the desktop but fills all of space, the spheres
will occupy 74 percent of the space. In other words, it's
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KISSING SPHERES

necessary to waste 26 percent of the space. No one knows
whether a denser packing exists.

When Resch started the apples-and-plums consulting
job for Royal Packaging Industries Van Leer, he assumed
that when spherical fruits are shipped in rectangular
crates, they should be packed according to either of these
two densest known arrangements. For months he pro-
ceeded that way, until it suddenly occurred to him that
the densest known packings made the mathematical as-
sumption that the entire cosmos was filled with spheres.
But here, in the real world, he was dealing with a small
finite volume, a three-foot-by-four-foot crate. With that
insight, he was on the road to a solution, but he had
learned an important lesson: the world itself imposes all
sorts of constraints that armchair theorizing never ad-
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DENSEST KNOWN SPHERE PACKING

dresses. (Resch refuses to reveal his solution because it's
not patented.)

Resch is fond of saying that design is "a kind of feed-
back loop between the designer and the environment''-
a description that also applies to his own career. Raised
in Independence, Missouri, Resch thought about going
into professional sports. In high school, he was a three-
letter athlete, in football, basketball, and track, but a
heart murmur, detected in his junior year, forced him to
abandon sports altogether. "I was always good with my
hands," says Resch, who channeled all the energy he
could no longer expend on the playing field into art, par-
ticularly sculpture, for which he received a scholarship
to the University of Iowa.

Once at Iowa, he also studied industrial design and
stayed there until he got an M.F.A. degree in 1966. But
with no technical training in engineering, he couldn't get
a job in industry. "All these corporate types disapproved
of the fact that I hadn't taken any math courses," Resch
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recalls. "At the time I couldn't avoid an onslaught of
cultural judgment that I was nothing. Today, though, I
feel vindicated. I can build things, unlike the brilliant
idiots the schools are churning out as engineers, who
know all the abstractions but can't do the nuts and bolts.
It also pleases me that today geometric design is critical
to so many major efforts in physics, chemistry, and com-
puter science."

Resch's approach to design is to take certain basic,
minimal forms and examine all the ways they can be ma-
nipulated into more complicated structures. "I have made
a profession," says Resch, "of studying one of the sim-
plest forms, the single sheet," and seeing what happens
when it's bent and folded every which way. "It's not
origami," says Resch, "where the intent is to produce a
recognizable shape. I'm interested in creating systematic
modular forms." And that is what he has done-some
would say to the point of excess. For over two decades,
he has been manipulating single sheets (of paper, alu-
minum, and other materials) into three-dimensional
forms that exhibit some kind of pattern or regular
structure. He has shown the more interesting ones in
art galleries and, somewhere along the way, acquired
a patent on what he believes, but can't prove, are all
the possible ways of folding a sheet into a repeating
pattern.
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FOLDED SHEET PATTERN

"I took on the egg project," says Resch, "because I
thought it would be easy. At the time, I had just made
one of my folded-sheet structures in the shape of a dome.
It looked much like the end of an egg, so I thought I'd
take two of these domes, put a kind of bulging barrel
shape between them, tie the three together," and, presto,
an egg. Resch had developed a computer program to do
simulations of folded-sheet structures, and he thought
that, with only a slight modification, it could simulate an
egg. "When I took on the job," Resch recalls, "I as-
sumed that surely someone in the history of mankind had
developed the mathematics of an ideal chicken egg." By
comparing the mathematics with the geometry of his sim-
ulation, he expected to be able to judge analytically how
good the simulation was.

Resch soon found, however, that there was no formula
in the literature for an ideal chicken egg. For many shapes
that have a name, the literature contains not only an al-
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gebraic formula but also a method of construction. Take
the circle. It is simply the set of all points in a plane that
are equidistant from a given point in that plane. To con-
struct a circle, tie one end of a length of string around a
pencil and anchor the other end with a thumbtack to a
piece of paper. With the string pulled taut and the pencil
point held against the paper, rotate the pencil around the
thumbtack; the result is a circle. At some point, a twisted
wag even turned this simple construction process into a
sick joke, which I learned from the mathematician Mar-
tin Gardner: 'Mommy, mommy, why do I always go
,round in circles'?'" Shut up, kid, or I'll nail your other
foot to the floor."

CONSTRUCTION OF A CIRCLE

It's an easy step from a circle to a sphere-imagine the
kid's foot (or the string's end) nailed to a point in three-
dimensional space, swing the kid's rigid body (or the
pencil on the end of the taut string) every which way and
observe the shape the kid's head (or the pencil point)
traces out. Alternatively, you can think of the sphere as
the shape swept out by a pirouetting circle.

A chicken egg, of course, is closer to an ellipsoid-the
shape swept out by a pirouetting ellipse-than to a sphere.
Even the most demented mathematician wouldn't be able
to generate an ellipse by twirling a child but could do so
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easily with the aid of a pencil and a loose string anchored
by thumbtacks at both ends.

CONSTRUCTION OF AN ELLIPSE

Unlike an ellipse, a chicken egg is blunter at one end
than at the other, but this asymmetry doesn't mean it
can't be represented mathematically. Indeed, back in the
seventeenth century, the French man of letters Rend Des-
cartes ("I think; therefore, I am") explored the algebraic
formula for egg-shaped curves. Two centuries later, the
Scottish mathematical physicist James Clerk Maxwell,
best known for his quantitative demonstration that elec-
tricity and magnetism are part of the same phenomenon,
extended Descartes's efforts. Maxwell was merely fifteen
at the time, and he sent off a paper on egg shapes to the
Royal Society of Edinburgh, Scotland's premier scientific
society. The paper was warmly received, but the august
society refused to let such a pip-squeak address them on
the subject. It missed an arresting demonstration that egg-
shaped curves can be constructed with pencil, thread,
thumbtacks, and a little ingenuity.
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CONSTRUCTION OF AN EGGLIKE SHAPE
The string is anchored initially at point B, then wrapped twice around
the pencil and once around the thumb tack at point A. The end is then
tied to the pencil. With the string taut, the top half of the egg shape
can be traced. The string and pencil setup is then inverted so that the
bottom half can be drawn.

Resch's main problem was that if you've seen one
chicken egg, you haven't seen them all. They do vary
slightly in shape, and it was up to him to discern the
ideal form. In a fit of frustration, he called up the agri-
culture department and had it airfreight him an egg-
grading manual. "I thought," says Resch, "that the
manual would surely include a definition of a chicken
egg. But all I found were photographs labeled A, AA,
B, and BB. Finally, I came to an image called the ideal
egg. So I had it photographed and then digitized in my
computer program." For six months, Resch and two
graduate students worked day and night to turn his folded-
sheet structures into an egg, but all they got were
negative results. "We didn't know what was wrong-
our program, our geometry, or our mathematics."
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Resch ended up throwing out his computer program,

ftting aside the folded sheets that had served him so
weil for two decades, and starting over from scratch. His
plan was to construct the egg out of numerous flat tiles
joined together at slight angles, treating the egg as if it
were a three-dimensional jigsaw puzzle. In theory, infi-
nitely many different configurations of puzzle-piece tiles
would do the trick, but Resch needed more than a math-
ematical solution. His tiles would have to be machined,
and so, in the interests of economy, it was important that
as many of the tiles as possible be of the same shape and
size; that way they could be cut from the same mold.

In two dimensions, tessellations-tile patterns in which
a flat surface is completely covered by tiles (straight-line
shapes) that do not overlap-have a long and rich history.
The third-century astronomer Pappus of Alexandria, in
marveling at the geometric structure of a honeycomb,
attributed to bees "a certain geometrical forethought" in
building hexagonal (six-sided) cells. Since hexagon tes-
sellate the plane, beeswax is saved because each wall is
always common to two cells. Moreover, Pappus thought
it splendid that "no foreign matter could enter the inter-
stices between [honeycomb cells] and so defile the purity
of [the bees'] produce." Pappus observed that besides
the hexagon, the square and the equilateral triangle are
the only other regular polygons (straight-line figures with
all sides equal and all angles equal) that can tile the plane
by meeting corner to corner, but for the bee the hexagon
is superior because it encloses the most area for a given
perimeter. In other words, of the three shapes, it holds
the maximum amount of honey for the minimum expen-
diture of wax.
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HEXAGONAL ADVANTAGE OF THE HONEYCOMB
Of all two-dimensional shapes, the circle has the maximum area for
a given perimeter, but it is not suitable for a bee cell, because too
much space would be wasted between circles. Another advantage of
the hexagonal form derives from the sharing of adjacent sides. The
six outer hexagons yield the inner oneforfree, since sides are shared,
but the six outer circles do not yield a free inner circle-it must be
drawn-since circles never have sides in common. More subtle is the
savings that comes from the sharing of adjacent sides by the six outer
hexagons. The six are constructed from the perimeters of only five
hexagons. Although seven circles are indeed seven circles, five hexa-
gons are effectively seven.
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THE THREE REGULAR TILINGS

It is easy to convince ourselves that Pappus did not
overlook any regular polygons that tile the plane. The
key condition is that the polygons be able to fill up space
about a vertex. To do this requires six triangles, four
squares, or three hexagons. These three kinds of poly-
gons can surround a vertex because the interior angle (60
degrees for the triangle, 90 degrees for the square, and
120 degrees for the hexagon) divide evenly into 360 de-
grees. No other regular polygon has this property. A reg-
ular pentagon, for example, has an interior angle of 108
degrees, and so when three pentagons are placed around
a vertex, 36 degrees of the floor remain untiled.
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TILING REQUIREMENT

If the requirements are relaxed so that more than one
kind of regular polygon is allowed in a tiling, but all
vertices are identical (in the sense that the order in which
polygons are placed around any one vertex is the same
as that around any other vertex), eight additional tilings
are possible. Depending on whether you're mathemati-
cally or empirically inclined, try to convince yourself,
either by armchair analysis or by a comprehensive survey
of fancy bathroom floors, that no other such tilings are
possible.
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U
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EIGHT TILINGS WITH MORE THAN
ONE REGULAR POLYGON

The tilings we have mentioned so far are all periodic;
they repeat like wallpaper. Each tiling contains a "seed,"
the smallest unit that the tiling as a whole is a multiple
copy of. If you had a rubber stamp of the seed, you could
create the entire tiling by repeatedly using the stamp,
moving it up or down or side to side, never needing to
rotate it. In the three tilings consisting of only one reg-
ular polygon (the triangle, the square, and the hexagon),
the seed is obviously the polygon itself; the honeycomb
tiling is created from a single hexagon, the square tiling
from a single square, and the triangular tiling from a
single equilateral triangle. The Dutch artist M. C. Escher
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is well known for his periodic tilings, in which the tiles
are generally not regular polygons but animals of one
sort or another.

For a tiling to be nonperiodic, it need not be compli-
cated. Picture a square tiling. Now imagine each square
split along one of its diagonals into two right triangles.
It's up to you which diagonal to split each square along,
but all the squares must be split in such a way that the
overall tiling of right triangles is nonperiodic. This non-
periodic tiling could not be simpler: it consists of only
one kind of tile-a right triangle-and even though the
tiling does not have a seed, it is predictable in the limited
sense that the triangles form squares.

NONPERIODIC TILING

With a minimum of effort, the right triangles in this
nonperiodic tiling can be rearranged so that the tiling is
periodic. An easy way to do this is to rotate 90 degrees
each two-tile square in which the diagonal runs from the
upper left to the lower right. That way all the diagonals
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will run in the same direction, and the seed is simply the
two triangular tiles that make up any square.

PERIODIC TILING

A nonperiodic tiling can be created from any number
of different kinds of tiles. That the number of possibili-
ties is unlimited makes nonperiodic tiling the choice of
geometrically minded snobs who want their bathroom
floor to be unique. To create a nonperiodic tiling from
two kinds of tiles, we could also start with squares but,
instead of splitting them diagonally, we take a right-
triangular nick out of either the northwest corner or the
southeast corner. As in the earlier case, there should be
no pattern to which of the two corners we choose, and
all the nicks should be the same size. The result is a
nonperiodic tiling made up of right triangles and irreg-
ular pentagons. Again, the tiles can be rearranged into a
periodic pattern by, say, taking each square that has a
triangular tile in the southeast corner and rotating it 180
degrees.

In the early 1960s, mathematicians believed, but

/V A
/V

17[7
17V 7

99



ARCHIMEDES' REVENGE

NONPERIODIC TILING OF TWO TILES
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PERIODIC TILING OF TILES

couldn't prove, that for any nonperiodic tiling based on
at least two different kinds of tiles, there was also a pe-
riodic tiling that involved the same kinds of tiles or a
subset of them. In 1964, Robert Berger, a graduate stu-
dent at Harvard, demonstrated that this belief was false.
Ten years later, while Resch was at work on his egg,
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A

Kitc Dart

KITES AND DARTS

Roger Penrose, a theoretical physicist at Oxford whose
imagination is unbounded, came up with two tiles-called
kites and darts-that do the trick. The kites and darts
must come together at corners, like the other tiles we
have looked at, but certain sides are not allowed to be in
contact with other sides. This restriction is enforced by
putting bumps and dents on the tiles that keep them from
being aligned in prohibited ways.
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F,

BUMPS AND DENTS ON KITES AND DARTS

Amazingly, the kites and darts can tile the plane in
infinitely many ways, not one of which is periodic. The
patterns may have a high degree of symmetry, but they
always stop short of repeating themselves.

PENROSE TILING
(Reproduced courtesy of Longman Group, Ltd., U.K.)
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What is most remarkable, any finite region in any one of
these tilings comes up infinitely often elsewhere in that
particular tiling and infinitely often in every other tiling.
"To understand how crazy this situation is," writes Mar-
tin Gardner in a Scientific American cover story (January
1977)-must reading for devotees of Penrose tiles-
"imagine you are living on an infinite plane tessellated
by one tiling of the uncountable infinity of Penrose til-
ings. You can examine your pattern, piece by piece, in
ever expanding areas. No matter how much of it you
explore you can never determine which tiling you are on.
It is of no help to travel far out and examine disconnected
regions, because all the regions belong to one large finite
region that is exactly duplicated many times on all pat-
terns. Of course, this is trivially true of any periodic
tessellation, but Penrose universes are not periodic. They
differ from one another in infinitely many ways, and yet
it is only at the unobtainable limit that one can be distin-
guished from the other."

And if this is not mind-blowing enough, Gardner goes
on to explain another remarkable property, discovered by
John Horton Conway, a mathematician at the University
of Cambridge. Imagine you live in a town-a circular
region of any size-somewhere in one of these Penrose
universes. How far must you go to find an identical town?
Conway proved that you never have to venture farther
than twice the diameter of your town! Moreover, if you
were suddenly transported to any of the infinitely many
other Penrose universes, you would also always be at
most two diameters away from a region that matches your
hometown-and the odds are that you would be at most
one diameter away.

The cosmological implications of Penrose's work are
astounding. Out of only two simple primitive compo-
nents-atoms, if you will-an unlimited number of uni-
verses can be built, all of which exhibit tremendous
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regularity on any conceivable finite scale but are uniquely
irregular on the cosmic scale.

Resch's concerns were more down-to-earth, even
though his project bordered on fantasy-an egg so large
an army of Easter bunnies couldn't lift it. He knew that
the extensive mathematical and architectural literature on
tiling patterns applied only to flat surfaces, not to curved
ones like that of an egg. Confronting the challenge of the
unknown, he pictured an egg with latitude lines on it. In
other words, he imagined the egg constructed from
bands, stacked one on top of the other, each band indi-
vidually tiled. But a computer simulation of this natural
idea showed that even when the bands were thin and the
tiles numerous, the human eye would fixate on the bands
rather than taking in the shape as a whole.

BANDED EGG

Abandoning the bands, Resch turned to one of the sim-
plest shapes, the equilateral triangle. After six months of
contemplation and simulation, Resch realized that he
could tile the egg with 2,208 equilateral triangles of iden-
tical size and 524 three-pointed stars (equilateral but
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nonregular hexagons) that varied slightly in width, de-
pending on their position in the egg. The angle at which
tiles were joined would vary from less than one degree
in the bulging middle of the egg to a mere seven degrees
at the pointed end. With such small angles, the egg would
appear to curve smoothly, even though it consisted of flat
tiles. Made of 2,000 pounds of anodized aluminum, the
triangular tiles would be an eighth of an inch thick; the
star-shaped tiles, half that. Held together by a 3,000-
pound internal structure, the egg would be 25.7 feet long
and 18.3 feet wide.

"Never before," says Resch, "had a three-dimensional
surface like this been tiled with largely identical tiles.
For example, the heating tiles on the space shuttle were
all different. If the shuttle's designers had known about
my work, or I had known about their problem, the shuttle
might have been tiled like the egg. That way they could
carry replacement tiles into space." As it was, the shut-
tle didn't carry spares, since each tile was unique. When
the tiles fell off, as they often did when the shuttle sped
through the atmosphere, new ones had to be machined.

"When Vegreville hired me," says Resch, "the deal
was that I would design the egg and they would take care
of building and painting it. It became clear to me, how-
ever, that there was no way Vegreville could build it
without calling in an aerospace company to machine the
tiles. And they certainly couldn't afford to do that. So I
told them I'd build and paint it."

The painting of the tiles, which was done before they
were assembled, involved some compromise. The town
wanted the egg brilliantly decorated in vibrant reds,
blues, greens, and oranges but expected the paint job to
last a hundred years. With those colors, Resch told them,
the egg would have to be repainted every three to five
years. In the end, three colors were chosen-gold, silver,
and bronze-that should retain their luster for half a cen-
tury.
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Before he could begin construction-joining the tiles
internally, where the connections would be invisible, by
6,978 nuts and bolts and 177 struts connected to a central
shaft-town regulations required a civil engineer or an
architect to certify that the design was structurally sound.
But mindful of the hundred-mile-an-hour winds that of-
ten swept Vegreville, none of the local engineers or ar-
chitects would attest to the structural integrity of such a
huge unfamiliar form. "There was fear," says Resch
"that it might blow away. And I admit that I, too, was a
little scared. While building it, I'd be inside the damn
thing and under it." At that point, the project had ac-
quired a momentum of its own and the town simply
waived the certification regulation. Many citizens of
Vegreville bet among themselves not on whether the egg
would collapse but on how (by toppling over or blowing
away) and on when (during construction or afterward).

For six weeks, Resch led a team of volunteers in as-
sembling the egg. They had one close call when the top
part of the egg was completed and mounted on the end
of the shaft so that it looked like a huge umbrella. A
fierce storm kicked up, and a tornado dropped out of the
sky. Resch and the others spent a long night turning their
umbrella-like structure into the wind so that it wouldn't
take off.

The egg had to withstand not only the forces of nature
but also the wrath of man. After a hard day of egg build-
ing, Resch would collapse in one of the local taverns,
where he'd overhear people muttering about plans to blow
up the egg. He was even warned a few times that high
school kids were going to dynamite it. He eventually dis-
covered that moments before his arrival in Vegreville the
newspaper had run a story erroneously claiming that town
funds earmarked for building a swimming pool at the
high school had been diverted to the egg. "I ran around,"
says Resch, "trying to explain to everybody where the
money was actually coming from and that they'd get their
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swimming pool. No one ever tried to blow it up, but it
did sustain a few rifle shots."

Long after the egg was finished, Resch used a com-
puter to analyze its structural integrity and concluded
that it was stronger than it needed to be by a factor of
ten. "The whole community," says Resch, "would blow
down before the egg would."

A decade has passed since Resch left Vegreville. The
town is still standing and, consequently, so is the pecu-
liar monument that put Vegreville on the map (and on
Queen Elizabeth's Canadian itinerary). The town's only
complaint is that the egg hasn't yet made it into the Guin-
ness Book of World Records. It doesn't seem fair that
Calgary, another town in Alberta, should be heralded in
Guinness for such frivolity as cooking the world's largest
omelet, from 20,117 eggs.
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THE MOBIUS MOLECULE

A mathematician confided
That a Mobius strip is one-sided,
And you'll get quite a laugh

If you cut one in half,
For it stays in one piece when divided.

-ANONYMOUS

Mathematics can aid in the design of shapes not only on
the grandest scale, like that of a three-and-a-half-story
Easter egg, but on the microscopic scale. This chapter is
the story of how David Walba and his co-workers at the
University of Colorado at Boulder synthesized a mole-
cule in the peculiar shape of a Mobius strip.

The weird Mobius strip is the darling of mathemati-
cians. You can make a M6bius strip by taking a narrow
strip of paper, such as adding machine tape, giving it a
half-twist, and joining the ends with tape to form a closed
ring.

108



The Mbbius Molecule

MAKING A MdBIUS STRIP

Sure enough, if you cut the Mobius strip in half along
the band, it remains in one piece, as the limerick prom-
ises.

CUTTING A MOBIUS STRIP IN HALF

The Mobius strip has only one edge and only one side.
If you run a paintbrush along the band, you'll find that
when you return to where you started, you will have
painted the entire surface of the band. And if you run a
Magic Marker along the edge, you'll soon convince your-
self that the band has only one edge.

In 1858, a scientific society in Paris offered a prize for
the best essay on a mathematical subject. In the course
of coming up with an essay for this competition, August
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Ferdinand Mobius, a mathematician in Leipzig, Ger-
many, "discovered" the surface that now bears his name.
Mobius described his discovery solely in terms of pure
mathematics, with no discussion of, say, the possibility
that Mobius-strip molecules exist in nature.

To be sure, the possibility of Mobius-strip molecules,
for example, could not have occurred to Mobius, because
the science of organic chemistry was in its infancy, and
almost nothing was known about even simple molecular
shapes, let alone complex ones that are mathematically
interesting. Mobius made his discovery at the same time
that August Kekule, at the University of Bonn, an-
nounced a finding that would become the basis of organic
chemistry: carbon atoms can join to form long chains.

Kekule had first contemplated carbon chains four years
earlier, in a daydream on a London bus. "One fine sum-
mer evening," he recalled, "I was returning by the last
omnibus, 'outside,' as usual, through the deserted streets
of the metropolis, which are at other times so full of life.
I fell into a reverie and lo! the atoms were gamboling
before my eyes. . . . I saw how, frequently, two smaller
atoms united to form a pair, how a larger one embraced
two smaller ones; how still larger ones kept hold of three
or even four of the smaller; whilst the whole kept whirl-
ing in a giddy dance. I saw how the larger ones formed
a chain. . . . I spent part of the night putting on paper at
least sketches of these dream forms.'"

Eleven years later, in 1865, Kekule realized that the
carbon chains could curl around to form rings. Again, a
dream provided the inspiration. "I was sitting writing at
my textbook, but the work did not progress; my thoughts
were elsewhere. I turned my chair to the fire, and dozed.
Again the atoms were gamboling before my eyes. This
time the smaller groups kept modestly in the back-
ground. My mental eye, rendered more acute by repeated
visions of this kind, could now distinguish larger struc-
tures of manifold conformations; long rows, sometimes
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more closely fitted together; all twisting and turning in
snakelike motion. But look! What was that? One of the
snakes had seized hold of its own tail, and the form
whirled mockingly before my eyes. As if by a flash of
lightning I woke. . . . I spent the rest of the night work-
ing out the consequences of the hypothesis."

First, Kekule worked out the consequences for the
structure of benzene, which was known to be composed
of six carbon atoms and six hydrogen atoms. The six
carbons formed a hexagon, Kekule concluded, with a hy-
drogen atom linked to each carbon.

BENZENE

In the 120 years since Kk* identified the shape of
benzene, orgaitic chemists have, of course, discovered
the shapes of more complex molecules, such as double-
helical DNAs. But it is only recently that chemists have
observed a molecule in the shape of a Mobius strip.

The Mobius molecule was not found in nature but was
synthesized in the laboratory by David Walba and his
colleagues. He begins the synthesis with a molecule
shaped like a ladder with three rungs. (Each rung is ac-
tually a carbon-carbon double bond, but we can ignore
this.) The ladder is then bent around, in effect, and the
ends are joined to form a loop.

Half of the time the loop will simply be a circular band,
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DNA

MOBIUS MOLECULE

THREE-RUNG LADDER
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THREE-RUNG MOBIUS STRIP

but the other half of the time the loop will be a Mbbius
strip because, as the ends are joined, the ladder gets a
half-twist.

The molecular Mobius strip shares many of the weird
properties of its paper cousin. If all three carbon double
bonds were broken, the molecule would remain in one
piece. Breaking the bonds would be equivalent to divid-
ing a paper Mobius strip in half along a line around its
middle. For both the molecule and the paper, the result
would be a single band with twice the circumference of
the original.

Chemists have long known that two compounds may
have the same molecular formula (that is, be composed
of the same chemical constituents in exactly the same
proportions) but exist as distinct chemical entities. This
can happen if the chemical constituents bond to each
other in different ways or at different angles. Yet, even
with identical bonds, two compounds with the same mo-
lecular formula can still differ chemically. How is this
possum~

The explanation lies in the branch of mathematics
known as topology, the study of the properties of an ob-
ject that remain the same when the object is continuously
deformed. Imagine that the object is made of flexible
rubber. Topologists want to know what properties- remain
invariant when the object is pushed and pulled but never
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TWO KINDS OF MOBIUS STRIPS

punctured or torn. This abstract idea can be fleshed out
with a specific example: the Mobius strip. Suppose you
had a rubber M6bius strip that you stretched every which
way. No matter how much you deformed it, the resulting
shape would always have one side. Hence the property
of being one-sided is of concern to topologists. When
one shape can be continuously deformed into another,
the two shapes are said to be topologically equivalent.
Thus, the M6bius strip is topologically equivalent to
whatever shape we stretch it into.

Consider now two Mobius strips, one made by twisting
a strip of rubber in one direction and the other made by
twisting the rubber in the opposite direction.

Are these two M6bius strips topologically equivalent?
They are not. Neither can be deformed into the other. If
you looked at either strip in the mirror, the reflection
would look like the other strip; the two strips are mirror
images of each other.

I must pause to issue a disclaimer to ward off nasty
letters from mathematicians. Queer birds that they are,
topologists do not restrict themselves to three dimen-
sions. In four dimensions, it turns out that mirror-image
Mobius strips can be deformed into each other. But I will
stick to three dimensions, because molecular shapes, the
ultimate subject of our inquiry, are always observed in
three dimensions. And I repeat, in three dimensions,
mirror-image Mobius strips are topologically distinct.

The possibility of topologically distinct mirror images
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is the key to how two chemical compounds with identical
constituents and identical bonds can still be distinct en-
tities.

Because the right hand and the left hand are familiar
mirror images, it has been customary to refer to an object
that is distinct from its mirror image as being either right-
handed or left-handed. Which image in a mirror-image
pair is called which is a matter of convention, just as the
right side of the street is not an absolute location but
depends on whether you're going up the street or down
it. The two kinds of Mobius strips are referred to as right-
handed and left-handed, but don't worry about which is
which. Molecules that exist in right-handed and left-
handed forms are said to be chiral, from cheir, the Greek
word for "hand."

The right-handed and left-handed Mobius strips are
examples of mirror-iinage shapes that are topologically
distinct. Mirror-image shapes also exist that are topolog-
ically equivalent. To take a simple case, a circle is its
own mirror image, and obviously a circle is topologically
equivalent to itself.

Another example is the letter R and its mirror image,
A1. Picture the R as made of soft rubber. We could
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transform it into its mirror image by a process of topo-
logical deformation.

Molecules, however, are not made of soft rubber.
Physical restraints prevent them from being deformed any
which way. Nevertheless, an R-shaped molecule can be
converted into its mirror image without being bent out
of shape-indeed, without being bent at all. This time,
picture the R and its mirror image, A, as stiff plastic
letters on a tabletop. You can transform either one into
the other simply by picking it up and turning it over.

This kind of transformation is called a rigid transforma-
tion because the object always retains its rigidity.

Many an organic molecule is rigidly chiral: it is rigidly
distinct from its mirror image. The human body has a
decided preference for chiral molecules of a specific
handedness. Most proteins, for example, are made up of
left-handed amino acids and right-handed sugars. When
a chiral molecule is synthesized in the human body, only
those with the desired handedness are created.

But when a chiral molecule such as a drug is synthe-
sized in the laboratory by a nonbiological process, the
result is a fifty-fifty mix of the right-handed and left-
handed forms. It is difficult to remove the undesired form,
so when the drug is administered, the patient receives a
mix. In general, the undesired form is biologically inert
and passes through without effect. But occasionally, it is
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harmful. This was the case with thalidomide, given to
pregnant women in the early 1960s. The right-handed
molecules had the desired sedating property, but the left-
handed caused birth defects.

Writing in the British weekly New Scientist, Stephen
Mason, a chemistry professor at King's College, London,
noted that of the 486 synthetically produced chiral drugs
that are listed in a standard pharmaceutical directory,
only 88 consist of molecules of the desired handedness.
The remaining 398 are fifty-fifty mixtures. "Yet," Ma-
son concludes, "they are used in an environment (the
human body) with a distinct preference for one hand.
What are the effects?"

When an organic chemist analyzes a new molecule,
one of the first things he tries to determine is whether it
is rigidly chiral-rigidly distinct from its mirror image.
Here topology may help. If the molecule is topologically
distinct from its mirror image, then it's rigidly distinct,
too, since a rigid transformation is but one of the many
encompassed by topology. Take our old friends R and its
mirror image, A. In deforming one into the other, we
achieved an intermediate shape R that has reflection
symmetry: its left half is a mirror image of its right half.

Topologists know that if a shape can be deformed into
something that has reflection symmetry, the shape itself
can be deformed into its mirror image. This means that
a chemist can rule out the chirality of a molecule if the
molecule can attain a shape that has reflection symmetry.

This insight often proves useful. Walba had synthe-
sized the molecular Mobius strip from a molecule in the
shape of a three-rung ladder. He asked me to visualize a
similar synthesis from a two-rung ladder. Is the resulting
shape chiral? As the following diagram shows, it is not,
because it can be transformed into a shape that has re-
flection symmetry.
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TWO-RUNG MOBIUS LADDER

Unfortunately, the three-rung Mobius molecule seems
to be immune to this kind of analysis. After many thought
experiments, Walba conjectured that it cannot be de-
formed into a shape that has reflection symmetry. If a
deformation had exhibited reflection symmetry, he would
have concluded that the three-rung Mobius shape can be
deformed into its mirror image. But is the converse true?
Does any deformation's failure to exhibit reflection sym-
metry mean that the molecule itself cannot be deformed
into its mirror image?

Pitfalls lie in the way of an easy answer. Walba asked
me to consider two rubber gloves, one right-handed and
the other left-handed.
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TWO GLOVES

The gloves are obviously mirror images, but are they top-
ologically equivalent? Certainly, the gloves are not rig-
,idly equivalent, because turning one of them over, as we
did to the letter R, gets us nowhere. We can make the
gloves equivalent, however, by turning either one of them
inside out!

TURNING A GLOVE INSIDE OUT

(The topologist therefore finds himself in the unique po-
sition of considering gloves to be neither right-handed
nor left-handed.) At no step in the turning-inside-out pro-
cess did a glove have reflection symmetry.

We might be tempted to conclude that the glove is a
counterexample: a shape that is topologically equivalent
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to its mirror image but none of whose deformations has
reflection symmetry. This conclusion would be wrong.
We simply have not deformed the glove enough. If we
struggled with the glove, we could, at least in theory,
deform it into the shape of a circular disk, which has
reflection symmetry (along any diameter).

4M~
I''?

TURNING A GLOVE INTO A DISK

The upshot is that Walba's innocent investigations in
matters chemical have posed a big question for topolo-
gists: If no possible deformation of a shape exhibits re-
flection symmetry, does it follow that the shape itself is
not topologically equivalent to its mirror image? This
question is a fundamental one, but it does not seem to
have been addressed in the mathematical literature.

All this bears on an important philosophical question:
More often than not, do new ideas in the physical sci-
ences inspire new ideas in mathematics, or is it the other
way around? To put it another way, which comes first-
science or mathematics? Many philosophers have con-
fronted this question, but their answers seem to be as
unsatisfactory as those given to the old question about
the chicken and the egg.

In both cases, the conclusion one reaches seems to be
a matter not of indisputable evidence but of teleological
taste. High-handed mathematicians who follow in the
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footsteps of Plato claim that their discipline is divorced
from physical reality. Numbers, they say, would exist
even if there were no objects we could count. Mathe-
maticians who are less dogmatic may concede that sci-
ence and math are intimately connected, but they
maintain that math comes first. As evidence, they point
to group theory, a branch of mathematics that originally,
in the 1830s, was totally without physical applications
but that has recently been used by particle physicists to
bring order to the study of the multitude of subatomic
particles discovered in the past two decades.

But physicists who believe in the priority of their own
discipline also have history on their side. Isaac Newton,
for example, invented the now famous branch of mathe-
matics called calculus because he needed a mathematical
tool with which to analyze exceedingly small intervals of
space and time. I think the only fair generalization to
make, although it is neither exciting nor particularly in-
formative, is that math and science each profits from the
other. The story of the Mobius strip is a good example
of the intricate give-and-take between mathematics and
the physical sciences. Conceived in an 1858 essay com-
petition as a construct of pure mathematics, the MoSbius
strip now comes up in chemistry, and its manipulation
by chemists has in turn raised questions for pure mathe-
maticians.

You may be amused to know that the Mobius strip is
of service not only to chemists but to industrialists as
well. The B. F. Goodrich Company has a patent on a
M6bius-strip conveyor belt. In an ordinary conveyor belt,
one side is subject to more wear and tear. In a Mobius
belt, however, the stress is spread out over "both sides,"
so that the belt lasts twice as long.
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THE CASE OF THE MISSING
THREE-HOLED HOLLOW SPHERE

WITH ONE HANDLE

During the 1940s and 1950s, many of the keenest minds
in mathematics worked passionately to develop the first
electronic computer. They were successful, of course,
and, in the past three decades, the electronic brainchild
of mathematicians has revolutionized many areas of sci-
ence but not, ironically, mathematics itself. "Look
around this department," says the Stanford mathemati-
cian Joseph Keller. "We have fewer computers than any
other department on campus-and that includes French
literature. "

"It's a funny thing," says Robert Osserman, a col-
league of Keller's who's been at Stanford for thirty years.
"The absence of computers is clearly a combination of
conservatism on the part of mathematicians-their not
wanting to take time out to really learn how to use the
computer effectively-and a strong conviction that a lot
of the time when you use a computer, it's just an excuse
for not thinking harder."

These days, however, Keller and Osserman are more
sanguine about the future of the computer in mathemat-
ics, thanks to a spectacular discovery by a former Stan-
ford student, David Hoffman, who is now at the
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University of Massachusetts at Amherst. With the aid of
an innovative computer graphics system, Hoffman and a
fellow geometer, William Meeks III of Rice University,
discovered an infinite number of graceful surfaces that
adhere to certain strict criteria that only three surfaces
had been known to meet. These strange new surfaces
make the Mobius strip seem mundane and ordinary. They
certainly fill a gap in mathematics, but, like the M6bius
strip, they may also prove to be useful outside of pure
mathematics, in disciplines as diverse as embryology and
dentistry.

The computer's most famous contribution to funda-
mental mathematics is a ten-year-old result that disturbed
the old guard. In 1976, Kenneth Appel and Wolfgang
Haken of the University of Illinois proved the celebrated
four-color-map theorem, which states that at most four
colors are needed to paint any conceivable flat map of
imaginary countries in such a way that no two bordering
countries have the same color.

I was an undergraduate at Harvard at the time, and
when word of the proof reached Cambridge, my instruc-
tor in differential equations cut short his lecture and un-
corked champagne. For 124 years, the four-color-map
theorem-so very seductive in its simple wording-
managed to confound a parade of distinguished mathe-
maticians and dedicated amateurs, who searched in vain
for a proof (or, conceivably, a counterexample). Glasses
held high, my tweedy classmates and I followed our in-
structor's lead in toasting Appel and Haken for having
conquered this mathematical Mount Everest.

Some days later, we learned that Appel and Haken's
proof made unprecedented use of high-speed computers:
1,200 hours logged among the three of them. The proof
is simply too long to be checked by hand. (The curious
reader who has a decade to kill can study more than 460
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pages of checklists in the Illinois Journal of Mathemat-
ics, volume 21.)

I can remember how upset we were. The proof did not
fit in with the vision of mathematics championed by Paul
Erd6s, an itinerant septuagenarian who is the world's
most prolific mathematician. Erdbs believes that God has
a thin little book that contains short, elegant proofs of
all significant mathematical theorems. The four-color-
map theorem is undoubtedly in that book, but Appel and
Haken's proof certainly isn't.

Our instructors shared our dismay. Some were afraid
that the computer might have slipped up and made a sub-
tle error. Others accepted that a machine had helped to
prove the theorem, but did not give up hope that someday
the proverbially bright high school student would con-
struct a short, classy proof, the one savored by Erd6s's
God. Still others wondered whether the tediously long
proof would be the last word on the subject; they spec-
ulated that the four-color-map theorem was representa-
tive of a whole class of interesting theorems for which
simple proofs did not-and could not-exist.

Today, more than a decade later, the verdict on Appel
and Haken's work is still not in, but it certainly hasn't
ushered in an age of computer proofs. To be sure, com-
puters have found new prime numbers and solved Archi-
medes' cattle problem, but that's not proving a theorem.
In fact, no famous theorem since the four-color-map the-
orem has been disposed of by a machine. Hoffman and
Meeks used the computer in another way, which may be
the way of the future. They harnessed the computer's
number-crunching power to obtain an insight that en-
abled them to forge ahead without the machine's help and
prove a fundamental result.

For 150 years, mathematicians have studied the shape
of soap films, and the surfaces that Hoffman and Meeks
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discovered are related to these shapes. If a circular loop
of wire is dipped into a soap solution and then extracted,
the soap film that spans the loop has the shape of a flat
disk. This shape is known as a minimal surface because,
of all surfaces that could conceivably span the wire loop,
the flat disk has the least area.

FLAT-DISK SOAP FILM

If, instead, two circular loops of wire, held one on top
of the other a short distance apart, are dipped into the
soap solution, a film that spans both wires will have a
shape, called a catenoid, that resembles that of a nuclear
power plant's cooling tower.

CATENOID SOAP FILM
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It, too, is a minimal surface; no other surface that
bounds both wire loops has a smaller area. Nature favors
minimal surfaces because they are physically stable: min-
imal area means minimal stored energy.

Leave it to mathematicians to extend the concept of a
minimal surface from the kitchen-physics world of soap
films to the unearthly realm of the infinite. The idea of
an infinite minimal surface may seem like a contradic-
tion, since any surface that extends infinitely in one or
more directions must have an unbounded area. When a
mathematician says that an infinite surface is minimal,
he means that any sufficiently small finite region of that
surface minimizes area the way a soap film does. In other
words, if you took a Magic Marker and drew a small
enough closed curve anywhere on that infinite surface,
the piece of surface within that curve would have the
smallest possible area given that particular curve as a
boundary.

The plane is the simplest example of an infinite mini-
mal surface; the flat-disk soap film is just a piece of the
plane. If the ends of a catenoid are extended forever, the
result is another infinite minimal surface. The plane and
the infinitely extended catenoid are surfaces that do not
intersect themselves. They do not double back on them-
selves, not even near infinity.

Surfaces such as the plane and the unbounded catenoid
can be deformed into a simple finite object: a hollow
sphere that has some number of tiny holes and some
number of hollow handles. (Picture, if you will, a hollow
handle on a piece of luggage that allows air in the lug-
gage to flow through the handle back into the bag. Math-
ematically, each handle serves to increase the
"connectivity" of the surface, because a cut through the
handle will not divide the surface into pieces.) Mathe-
maticians, with their hyperactive imaginations, pretend
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LUGGAGE

that surfaces are made of superflexible rubber. If one of
these surfaces can be deformed into another by stretch-
ing, shrinking, twisting, or any other manipulation that
does not involve ripping, puncturing, or filling holes, the
two surfaces are said to have the same topology.

A hollow sphere, for example, can be stretched into an
egg-shaped surface, and so the two have the same topol-
ogy.
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0
SPHERE TO EGG

The plane is topologically the same as a sphere pierced
by a single, tiny hole, because the hole can be pulled
open indefinitely in this peculiar world that would make
Charles Goodyear weep.

ONE-HOLED SPHERE TO PLANE

The catenoid has the same topology as a hollow sphere
that has two holes in it; each hole can be widened and
stretched to infinity. (In general, each hole in a multi-
holed hollow sphere can be extended to infinity.)
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TWO-HOLED SPHERE TO CATENOID

When Hoffman and Meeks began their investigation,
mathematicians knew of only one other infinite minimal
surface, besides the plane and the unbounded catenoid,
that did not intersect itself and that could be modeled,
by a rubber-sheet deformation, on a holey hollow sphere
(with or without handles). This surface is the unbounded
helicoid, which resembles a screw extended to infinity.
Like the plane, the helicoid has the same topology as a
one-holed hollow sphere.

HELICOID

These three minimal surfaces had been known for al-
most two hundred years, and a string of results in the
past decade made it seem unlikely that a fourth kind ex-
isted. For example, in 1981 Rick Schoen at the Univer-
sity of California, San Diego, proved that a hollow sphere
with two holes could serve as a model only for the ca-
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tenoid and not for any other infinite minimal surface that
was free of self-intersections. In the same year, the Bra-
zilian mathematician Luquesio Jorge proved that a hol-
low sphere with three, four, or five holes and no handles
could not be a suitable model.

JORGE'S UNSUITABLE SPHERES

"Because the existence of new minimal surfaces was
ruled out in all sorts of special cases," says Hoffman,
"a lot of people believed, and tried to prove, that no
new examples could exist. They weren't successful, but
there was a general feeling that the reason they did not
succeed was not because they were futilely trying to prove
something that was actually false, but because they didn't
have sophisticated enough mathematical tools."

In November 1983, Hoffman learned of a graduate stu-
dent in Brazil named Celso Costa, whose dissertation in-
cluded some thorny equations for a proposed surface that
Costa was able to prove was infinite, minimal, and top-
ologically the same as a three-holed hollow sphere with
one handle.

THREE-HOLED HOLLOW SPHERE WITH ONE HANDLE
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NEW SURFACE

But neither Costa nor anyone else knew what the pro-
posed surface looked like, because the equations defining
it seemed hopelessly complex. Moreover, no one knew
whether the surface intersected itself-something it
wasn't permitted to do if it was to join the hallowed ranks
of the plane, the unbounded catenoid, and the unbounded
helicoid.

The question of self-intersection is not an easy one.
"When you have the equations for a surface," explains
Hoffman, "you can't compute some quantity that says
'Yes, it intersects itself' or 'No, it doesn't.' Basically, all
you can show is that a particular piece of the surface
doesn't intersect another piece.'" But that doesn't get you
very far for an infinite surface, because you would have
to compare an infinite number of pieces.

Hoffman's plan was to use a computer to calculate the
coordinates of the surface's core and then draw a picture
of that core. Conventional computer-graphics packages,
however, would not have helped, because they deal
chiefly with cubes and spheres and other mundane shapes
used by engineers, not esoteric mathematical surfaces
that self-intersect or extend to infinity. Luckily, he
learned of a University of Massachusetts graduate stu-
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ANOTHER NEW SURFACE

dent, James Hoffman, who was developing a novel
computer-graphics package.

"Our game plan," says David Hoffman, "was to use
the computer to look at the surface. If we saw a self-
intersection, we planned to publish a little paper ruling
out this example. We'd probably have to publish in a lousy
journal, because in mathematics it's hard to publish neg-
ative results of this sort. And if we didn't see a self-
intersection, we didn't know what we'd do, except work
very hard to prove that the surface was free of self-
intersection. "

The computer-generated picture, however, defied their
expectation. Not only was it free of self-intersection; it
was highly symmetric as well. It contained two straight
lines that met at right angles. After "viewing" the core
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of the surface from different angles and thinking long and
hard, Hoffman realized that the surface could be decom-
posed into eight identical pieces.

In physics, seeing is believing; in mathematics, that's
not enough. But having seen the symmetries, Hoffman
and Meeks put aside the picture and were able to prove
just from the equations that the surface did not intersect
itself. They had discovered, to their amazement, a fourth
infinite minimal surface, made from two catenoids and a
plane that all sprout from a Swiss-cheese core. Three
months later, they were able to demonstrate the existence
of infinitely many such surfaces, each topologically
equivalent to a three-holed hollow sphere with some
number of handles.

NEW SPHERICAL MODELS

After Hoffman and Meeks published pictures of the
core of the first new surface, they were contacted by a
biologist at the University of Cambridge who thinks that
developing embryos can assume that shape. Area-
minimizing surfaces often occur naturally in interfaces
between organic and inorganic materials, because such
surfaces minimize surface tension. A New York dental
surgeon called Hoffman up and said the picture looked
exactly like what should be used for bone implants to
which false teeth could be secured. He thought, says
Hoffman, that "a minimal surface would be less destruc-
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tive because it would have less contact with the bone.
Plus, there would be a lot of 'handles' for bone to go
through. "

Even if these real-world uses of the surface do not pan
out, Hoffman and Meek's discovery is a monumental one.
It exposes the poverty of recent wisdom about infinite
minimal surfaces. And it is testimony to the utility of the
computer in pure mathematical research. It is hard to
take issue with a staggering, computer-aided advance on
a problem that defied understanding for almost two cen-
turies.



III
MACHINES

The computer has proved useful to mathematicians in
finding large primes, solving Archimedes' cattle prob-
lem, breaking codes, proving the four-color-map theo-
rem, and discovering new shapes. Nevertheless, there are
subtle limits to what the computer can do.

Since the 1930s, mathematics has faced a revolution as
fundamental as the two revolutions-general relativity
and quantum mechanics-that shook the foundation of
physics and toppled classical theories about space, time,
and causality. The landscape of mathematics has been
radically transformed by what Morris Kline of New York
University calls "the loss of certainty." A new breed of
work has focused not on the power of mathematical com-
putation but on its limitations. Meaningful computational
problems-have been identified that either cannot be solved
in principle or can be solved in principle but not in prac-
tice.

The classic example of a meaningful problem that can-
not be solved in principle is the "halting problem,"
posed in 1936 by Alan Mathison Turing. Turing consid-
ered the problem of whether a computer program will
sooner or later come up with a result and halt. The halt-
ing problem is not the exclusive concern of armchair
theorists. It can easily arise in practice.

"You can imagine," says Michael Sipser, an MIT the-
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oretician of computer science, "wanting to know the an-
swer, especially in the old days, when you wrote your
program on cards and then submitted them to the com-
puter center. They'd run them overnight and get back to
you the next day. And you'd have an account with, say,
a hundred bucks in it. Every once in a while, the program
would have an infinite loop and burn up gobs of money.
You'd get nothing out of the program, since it was stuck
in an infinite loop. Either your account would run out of
money or somehow the machine would notice that it had
been going for a very long time and shut itself off.

"So, gee, you'd think, why not test the program first.
And if it has an infinite loop in it, don't run it." But,
amazingly, this natural idea cannot be carried out, be-
cause Turing proved that no test is possible that will work
for all programs.

Besides Turing's proof of the impossibility of solving
the halting problem, the year 1936 witnessed another as-
sault on the illusory goal of absolute mathematical
knowledge. The logician Alonzo Church proved that the
so-called decision problem was unsolvable: there can
never be a general procedure for deciding whether a given
statement expresses an arithmetic truth. In other words,
no computer will ever exist that can spew out all the
truths of arithmetic. Nor for that matter will a machine
ever be able to determine the truth of every conceivable
arithmetic statement you give it. There simply is no rec-
ipe for finding arithmetic truth.

In recent years, the attention of the mathematics com-
munity has turned from the problems that cannot be
solved in theory to problems that can be solved in theory
but not in practice. Among the most notorious of these
are the ones that IBM's Larry Stockmeyer calls "intrin-
sically difficult"-a euphemism, if there ever was one.
He asks you to conceive of the most powerful computer
imaginable. This ideal computer would be the size of the
entire universe (perhaps 100 billion light-years in diam-
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eter). It would be built from hardware the size of the
proton (10 - ' centimeter in diameter), through which
signals would race at the speed of light (3 x 10'° centi-
meters per second). It would have the ability to work on
a single problem for twenty billion years, which is longer
than the estimated age of the universe. An intrinsically
difficult problem has the mind-boggling distinction of be-
ing solvable in principle but not by the most powerful
computer imaginable running for the age of the universe.

One such problem involves playing chess not on the
usual eight-by-eight board but on an n-by-n board (where
n is an arbitrarily large number) with an unlimited num-
ber of pieces (except that there can be only one king on
each side). We want a program for determining whether,
in any given position, one of the players, say White, has
a forced win. One program that works in principle but
not in practice would consider all possible moves for
White, then all possible responses for Black, then all
counterresponses for White, and so on, until all conceiv-
able continuations had been examined through to the end.

The drawback of this exhaustive-search program is that
it is too slow: there are so many possible continuations
that even the ideal computer could not look at all of them
in twenty billion years. In 1981, David Lichtenstein at
Yale and Aviezri Fraenkel, an Israeli mathematician,
proved that for sufficiently large boards there is no faster
program. In other words, there are no shortcuts to the
time-consuming exhaustive search. This chess problem
will always defy computer analysis, even though we know
it has a solution.

In the next four chapters, we'll look at the power and
limitations of computing, both in theory and in practice.
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TURING'S UNIVERSAL MACHINE

In February 1952, Alan Mathison Turing-mathematician
extraordinaire, pioneer in computer science, a key force
in breaking the Nazis' famous Enigma cipher-was ar-
rested in Manchester, England, for the crime of "Gross
Indecency contrary to Section 11 of the Criminal Law
Amendment Act 1885." Turing's home had recently been
burgled by an acquaintance of Arnold Murray, a nineteen-
year-old unemployed youth with whom Turing had had
sexual relations. When Turing reported the burglary to
the police, he told them about his affair with Murray,
naively believing that a royal commission was about to
legalize homosexuality. Two months later, Turing was
tried for six sexual offenses, was convicted of all six,
and, instead of being sent to prison, was given a year's
probation on the condition that he undergo "organo-
therapic treatment," a program of regular doses of an-
drogynizing female hormones. On June 7, 1954, at the
age of forty-one, Turing took his own life by eating half
of an apple he had dipped in a cyanide solution.*

In the field of artificial intelligence, Turing has
achieved immortality in connection with two fundamen-
tal concepts: the Turing test and the Turing machine. The

*The tragic details of Turing's last years are spelled out in Andrew
Hodges's sympathetic biography, Alan Turing: The Enigma (New
York: Simon & Schuster, 1983).
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Turing test was his idea of how to determine whether a
machine can think. The test calls for the machine and a
randomly chosen person to be separated from an inter-
rogator, who asks them each an unlimited number of
questions through an intermediary. Turing thought that if
the interrogator failed to distinguish between the ma-
chine and the human being, it meant that the machine
was thinking. In other words, if the machine passes for
intelligent, it is intelligent.

An explanation of the idea of the Turing machine re-
quires some background. At Cambridge University,
where Turing was made a fellow of King's College in
1935, he was exposed to the revolutionary developments
in physics that toppled traditional ideas of causality and
determinism. According to the Newtonian worldview, if
sufficient information is known about a physical system,
its entire future can be predicted.

In 1795, Pierre-Simon Laplace, a Frence mathemati-
cian and an avid Newtonian, put it this way: "Given for
one instant an intelligence which could comprehend all
the forces by which nature is animated and the respective
situations of the beings who compose it-an intelligence
sufficiently vast to submit these data to analysis-it would
embrace in the same formula the movements of the great-
est bodies and those of the lightest atom; for it, nothing
would be uncertain and the future, as the past, would be
present to its eyes."

The introduction of quantum mechanics, however, in
the early part of this century put an end to the idea that
the future is completely determined by the present and
the past. Cambridge University was in the 1930s at the
center of the philosophical havoc engendered by quantum
mechanics, particularly by the principle that the observer
always influences the observed. Turing found this idea
unsettling, and he was drawn to mathematics because it
seemed to deal with absolute entities, independent of ob-
servers. As G.H. Hardy, the Cambridge number theorist,
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put it, "317 is a prime, not because we think so, or be-
cause our minds are shaped in one way rather than an-
other, but because it is so, because mathematical reality
is built that way."

Turing set himself the task of answering a difficult
question that cut to the heart of the nature of mathemat-
ical reality: Is there a mechanical way of determining
whether any given statement in mathematics is true or
not? To answer the question, he came up with the notion
of a "universal machine"-the Turing machine-that
could routinely answer mathematical questions. By intro-
ducing the idea of a machine that could do mathematics,
Turing aimed to bolster the status of mathematics as a
subject independent of human affairs. Ironically, how-
ever, Turing found that some mathematical questions-
involving, for example, the generation of numbers that
are nonrepeating decimals-could not be solved by me-
chanical means by machine or man.

The Turing machine is an extraordinary concept. From
the point of view of the range of its behavior, the ma-
chine is very limited. Indeed, it is so limited that even if
you know nothing about computer programming (and if
the whole subject scares you), in no time at all you'll
understand the Turing machine's "inner" workings and
be gleefully writing programs for it. From a computa-
tional point of view, however, it can do anything-or, I
should say, anything that a human mathematician can do
and anything that the most powerful computer imagin-
able could do. And if that's not remarkable enough, let
me cryptically add that the Turing machine, in spite of
its name, need not be a machine. It could be a person or
group of people.

So what are the elements of this Turing machine? Well,
first there is a long tape-imagine a narrow strip of paper
on which vertical lines have been drawn that divide the
strip into square cells.
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If a given cell is not blank, it contains one symbol from
a finite alphabet of symbols.The Turing machine has the
ability to scan the tape one cell at a time, generally be-
ginning with the leftmost cell that contains a symbol. If
a scanned cell is empty the machine can leave it empty
or print a symbol in it. If the scanned cell contains a
symbol, the machine can leave the symbol unaltered,
erase the symbol and print another one in its place, or
erase the symbol and leave the cell empty. Then the ma-
chine stops, or it scans the cell immediately to the left
or immediately to the right.

What the machine does to a scanned cell and which of
the two adjoining cells it scans next depends on the state,
or internal configuration, of the machine. The number of
states, like the number of symbols, must be finite. A
machine state is like a mental state-it's what's in the
machine's "mind." One need not be more precise (or
more metaphysical) about the nature of a state in order
to understand the operation of a Turing machine. The
machine is defined by a "table of behavior," which stip-
ulates what the machine will do for each possible com-
bination of symbol and state.

A specific example-that of adding two numbers-will
do much to clarify these abstract ideas. Suppose we write
the numbers in "unary" notation, in which an integer n
is represented by a string of n *s one * per cell in n
consecutive cells. On this basis, ** represents 2 and
***** represents 5. The advantage of unary notation is
that only one symbol, *, not ten different digits, is needed
to represent any given positive integer. To add 2 and 5,
** and ***** are printed on the tape, with a blank cell
between them so that the two strings of *s can be distin-
guished.
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The table of behavior with the diagram explains how

the machine goes about adding the two numbers, but be-
fore I discuss the specifics of the table, I want to describe
the additive process in general terms. The clever machine
finds the blank cell between the numbers, prints * in it
(thus leaving a string of eight *s on the tape), goes to the
end of the string of *s, and erases the last *. This leaves
*******, which, in unary notation, is 7, the sum of 2
and 5.

Let's look at the table now. The machine states are
always listed in the leftmost column. In this case, there
are three states, numbered respectively 0, 1, and 2. The
symbols (and the word blank, corresponding to an empty
cell) are always listed across the top of the table. Here
the only symbol is *.

The machine begins in state 0 and, according to con-
vention, scans the leftmost symbol on the tape (in other
words, the first * in **). The table describes what the
machine does for the combination of state 0 and symbol *.
The machine leaves the symbol unaltered, switches to the
next cell to the right, and stays in state 0. What does the
machine do in this cell? Since the machine is still in state
0 and since the symbol in the cell is still a *, it does the
same thing as before: it leaves the symbol alone, switches
to the next cell to the right, and stays in state 0.

Now, for a change, the cell is blank. The combination
in the table of state 0 and a blank symbol tells the ma-
chine what to do. It prints *, switches to the cell on the
right, and enters state 1. A * is in this cell, and so the
combination of state I and symbol * describes the mach-
ine's behavior: switch to the next cell to the right and
stay in state 1. This step is repeated four times because
a * keeps popping up. When the machine reaches the
blank cell at the end of the string of five *s, it moves
back one cell to the left and enters state 2. In the cell is
a *, which the machine erases. Then the machine stops
and rests on its laurels.
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The power of this approach is that the same table of

behavior can generate the sum of any two numbers, no
matter what their size, written in unary notation with a
single blank cell between them. In state 0, the machine
simply scans the first number cell by cell until it reaches
the blank cell, in which it prints a *. In state 1, it scans
the second number cell by cell until it reaches a blank
cell, turns around, and comes to rest on the last *. In
state 2, it simply erases this *. And, presto, the answer
is on the tape.

This method of addition is known as a finistic ap-
proach, because the table of behavior includes a finite
number of states and a finite number of symbols. Yet this
finistic approach can generate an infinite range of num-
bers. For the Turing machine to be able to handle any
conceivable sum, the paper tape must be unlimited in
length; if it were, say, only 1,000 cells long, it could not
work with a number greater than 1,000.

When the Turing machine finishes adding the two num-
bers by this method, the tape will contain only the an-
swers and not the original numbers. It is tempting to try
to write a table of behavior that preserves the original
numbers. One way that immediately comes to mind is to
have the machine "count" the eight *s in the two strings
of *s. Surprisingly, however, the Turing machine cannot
count. Suppose that when it scans the first *, it kicks into
state 1. Each time it scans another *, it kicks into the
next state. Thus, after scanning the fifth *, the machine
is in state 5, and after scanning the twenty-third *, it's
in state 23. It would seem that by this method the Turing
machine can count the number of *s; when it has scanned
them all, the number of the state it is in will correspond
to the number of *s. Nevertheless, this approach is
flawed. Do you see why?

The problem is that the method is not finistic. It re-
quires an infinite number of states. If there were, say,
only 5 states, it could not count more than five *s, and
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so would be restricted to sums of 5 or less. If there were
50,000 states, it could not handle more than 50,000 *s.
In other words, for a finite number of states n, it could
not handle more than n *s. And this will not do, because
we are looking for a method that applies to any addition
problem whatsoever.

If an infinite number of states (or an infinite number
of symbols) were allowed, the table of behavior could
not be written out. The requirement that the method be
finistic implies that the table of behavior can be written
out and, hence, followed in a routine, mechanical way.

It is time to take up the intriguing idea that a Turing
machine need not be a machine. It is the table of behav-
ior-the software, if you will-that defines the Turing
machine. Any entity, be it a computer, a human being,
a mermaid, a disembodied spirit, or the Kremlin, is a
Turing machine if it follows a table of behavior. You are
a Turing machine if you add two numbers on a tape ac-
cording to the table of behavior in the addition diagram.
In a brilliant paper, Turing was able to demonstrate that
no mathematician and no computer, either in theory or
in practice, could do something that his Turing machine
could not do. A supercomputer may be able to solve
problems much faster, but the slowpoke Turing machine
is also able to solve them.

The best way to grasp the essence of a Turing machine,
and the power of finistic methods, is to write tables of
behavior yourself. I challenge you to write a table for a
Turing machine that can subtract numbers in unary no-
tation. Be warned that you must build into the table a
way of letting the machine know that it has completed
the computation. Otherwise, since the tape may be of any
length, it might continue scanning blank cells forever.
The diagram shows a table of behavior for subtraction.
Other tables will also work.
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SUBTRACTION
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The second problem is to write a table of behavior for
a machine that can test whether a sequence of Ps and Qs
written on -its tape is a palindrome-a sequence that reads
the same forward as backward. One approach is to have
the machine compare the first symbol with the last sym-
bol, the second symbol with the second-to-last symbol,
and so on. But, remember, the approach must be finistic.
If the sequence is a palindrome, you can have the ma-
chine print a Y, and if it's not, you can have it print an
N. One such approach, adopted from an article that An-
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HODGES'S PALINDROME CHECK

PALINDROME CHECK

drew Hodges wrote for the British weekly New Scientist,
is shown.

The drawback of Hodges' approach is that, although
the table has only six states, the machine wastes some
time shifting back and forth along the string of symbols.
Time can be saved if the machine, after comparing the
first symbol with the last symbol, compares the second-
to-last symbol with the second symbol (rather than the
other way around), then the third symbol with the third-
to-last symbol, then the fourth-to-last symbol with the
fourth symbol, and so on. Such an approach, whose table
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of behavior is shown, requires ten states. The longer pro-
gram is the price paid for shortening the computing time.

TEN-STATE PALINDROME CHECK

STARI P Ia IBLANKI

0

2

4

1

6

7

The last challenge is to write a table of behavior for a
Turing machine that can test whether two strings of Ps
and Qs, separated by a blank cell, are anagrams. Again,
Ystands for "yes" and N stands for "no." Here's a hint:
the machine prints a dummy letter, R, while solving the
problem. One possible answer appears right.

149



150 ARCHIMEDES' REVENGE
ANAGRAM CHECK

ANAGRAM CHECK
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DID WILLY LOMAN DIE IN VAIN?

It may be deflating to learn that in a certain fundamental
sense computers and mathematicians are nothing other
than Turing machines in disguise. On the other hand, it
could be seen as encouraging, since the seemingly sim-
plistic Turing machine turns out to be able to solve all
sorts of computational problems. The theoretical resem-
blance between mathematician and machine holds not
only for the problems they can solve but also for those
they cannot solve.

Every day in industry, computers routinely tackle com-
putational problems that are too time-consuming to be
solved by any known method. Industry, however, needs
solutions to these problems, and so the computers-with
the complicity of their programmers-often spew out an-
swers that are less than optimal. Many of these problems
are forms of the notorious traveling-salesman dilemma:
given a network of cities and roads, find the shortest round-
trip that takes a salesman to each city exactly once. The
only known algorithm-a surefire, step-by-step recipe-
for solving a traveling-salesman problem is the laborious,
uninsightful one of trying every possibility. Mathemat-
ics, it seems, offers Willy Loman no relief.

For the past fifteen years, mathematicians have won-
dered whether their failure to find a clever, faster
algorithm reflects their ignorance or the inherent difficul-
ty of the problem itself. According to current wisdom, there
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is no faster algorithm, not even in theory, but no one has
yet been able to prove this. The search for a proof is the
hottest pursuit in theoretical computer science, and
mathematicians who work in this area are known as com-
plexity theorists.

When mathematicians speak of a guaranteed method
of solution, they mean an algorithm. Don't be put off by
the formidable sound of this word, which is a corruption
of the last name of a ninth-century Persian mathemati-
cian, Abu Ja'far Mohammed ibn Musa al-Khowarizmi,
whose semantic legacy also includes the word algebra.
The bark of an algorithm is much worse than its bite.
You already have an intuitive notion of what an algorithm
is.

Remember when in grade school your English teacher
had you write excruciatingly complete instructions for
carrying out some boring, routine task, like tying a shoe-
lace? Then the teacher would ask Johnny Wiseguy to tie
his shoelace by following your instructions exactly to the
letter. (The really mean schoolmarms would have you
read the instructions aloud as Johnny Wiseguy did his
thing.) Of course, he would immediately fail-and make
a big deal of it-because you left out some basic step that
seemed second nature to you, like grabbing the lace by
its plastic-encrusted end rather than in the middle. If you
had managed to write out the instructions in unambigu-
ous detail, you would have an algorithm for shoelace ty-
ing. An algorithm is simply a step-by-step procedure in
which everything is explicitly stated so that a problem
can be mechanically solved. Every step must be labori-
ously spelled out, nothing being left to chance, intuition,
experience, interpretation, or imagination.

Mathematicians, of course, are more interested in al-
gorithms for computational problems than for shoelace
tying. An algorithm for adding two whole numbers, based
on the way the schoolmarms taught us to do it with paper
and pencil, would make explicit such steps as lining the
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numbers up flush right, one above the other, drawing a
line below them, doing the calculation from right to left,
"carrying" a 1, and doing a host of other things we take
for granted. The algorithm would include rules like "If
a 2 in one number is above a 4 in the other, write a 6
below them" and "If a 3 in one number is above a 6 in
another, write a 9 below them."

The power of an algorithm is that it can be applied to
ail instances of a problem. The addition algorithm, fior
example, can find the sum of any two whole numbers.
What it costs you to spell out an algorithm in complete
detail, you gain in having at your disposal a method of
solution that is guaranteed to work. A computer program
is either a single algorithm or a series of them. Without
instructions telling it what to do every step of the way, a
computer could no more add two numbers than it could
simulate the tying of a shoelace. The role of the pro-
grammer is to come up with complete instructions-in
other words, algorithms. When the programmer curses a
bug in his program, he means that somewhere along the
line he made a mistake spelling out an algorithm or trans-
lating the algorithm into computerspeak.

It should be emphasized that the user of an algorithm,
be it a machine or a man, need never make a judgment.
The use of the addition algorithm, for example, requires
no conception of what a number is. To apply the algo-
rithm, you blindly follow the rules. You don't have to
know, say, that 5 comes after 4, that 7 is greater than 3,
or even that you're working with a ten-digit number sys-
tem. Much ink has been spilled in the philosophical lit-
erature on what the absence of judgments means in terms
of a machine's ability to think, but the pursuit of such
intriguing speculations would take us too far afield.

Mathematicians are not concerned with specific in-
stances of the traveling-salesman problem. For a small
set of cities and roads, it may be easy to find the solution,
because there aren't that many possible routes to inspect.
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Even for a large network of cities and roads, you might
be lucky and stumble on the optimal itinerary. When
mathematicians say that the problem is unsolvable in
practice, they mean that the only known methods that
guarantee a solution are as inefficient as an exhaustive
search of all the possibilities, a search that is too slow
for even the superest of supercomputers.

The mathematical cognoscenti have a rigorous way of
defining what makes an algorithm fast (and usable) or
slow (and unusable). Suppose the number n is a measure
of the size of a problem (for the traveling salesman, n
would be a measure of the number of cities and roads).
For an algorithm to be fast, the time it takes to execute
the algorithm must increase no faster than a polynomial
as the size of the problem increases. Polynomials are
mathematical functions such as 2n (doubling), 3n (tri-
pling), n2 (squaring), n3 (cubing), 3n'0 , and 64 n'°0. Slow
algorithms, such as the exhaustive-search method for
solving the traveling-salesman problem, have execution
times that increase exponentially-2n, 6', or 12"-as the
size of the problem grows.

For small values of n (that is, for simple problems), a
given polynomial function may equal or even exceed a
given exponential function, but for large values of n, any
exponential function will explosively overtake any poly-
nomial function. For example, when n is 2, the polyno-
mial function n2 is 4, as is the exponential function 2n.
But when n is 10, n2 is only 100, whereas 2" has sky-
rocketed to 1,024. It was the certainty that exponentials
will overtake polynomials that troubled Thomas Malthus
when he compared the exponential growth of the human
population with the polynomial growth of the food sup-
ply.

The fact that the only known way of solving a traveling-
salesman problem is the exponentially slow approach
of examining all conceivable itineraries means that we
have, in this day and age, no real insight into such a
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seemingly simple problem. Complexity theorists are try-
ing to prove the heady conjecture that we will never have
any insight, no matter how hard we try, because there is
no insight to be had.

Mathematicians do have insight into many problems
that don't seem all that different. Consider, for example,
a highway inspector who examines the network of roads
on which the traveling salesman might drive. Eager to
get home to his wife and children, the inspector wants to
know if he can take a round-trip journey that will traverse
every road once and only once. The inspector doesn't
care about the cities; he just wants to cover every stretch
of road and not repeat himself. The traveling salesman,
on the other hand, doesn't care about the roads; he just
wants to visit every city exactly once, while putting the
least possible mileage on his car.

The question the inspector asked is easy to answer,
thanks to the work in 1736 of Leonhard Euler (pro-
nounced "oiler"), a twenty-nine-year-old Prussian
mathematical wizard. The Prussian city of Konigsberg
(now the Soviet town of. Kaliningrad) lay on both banks
of the Pregel River and included the island of Kneiphof
as well as a spit of land in the middle of a fork in the
river. The four sections of the city were linked by a net-
work of seven bridges.
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THE KONIGSBERG-BRIDGE PROBLEM

Immanuel Kant, it is said, used to go on long constitu-
tionals around the city, and the residents wondered
whether it was possible to go on a round-trip stroll across
all seven bridges without crossing any bridge more than
once. Since the number of bridges was small, the prob-
lem was solved (in the negative) by enumerating all the
possible routes-that is, in the same exhaustive, unin-
sightful way you would use to solve a small traveling-
salesman problem.

Leave it to the prolific Euler, who fathered thirteen
children and eighty volumes of mathematical results,
many reportedly written down in the thirty minutes be-
tween the first and second calls to dinner, to prove in an
insightful way that the journey was impossible. The spirit
of mathematics cries out for an analysis of the most gen-
eral case. And Euler, wanting to solve the problem not
only for the people of Konigsberg but for bridge-loving
strollers everywhere, tackled the general problem:
"Given any configuration of the river and the branches
into which it may divide, as well as any number of
bridges, determine whether or not it is possible to cross
each bridge exactly once." If you think of the land areas
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as cities and the bridges as highways, you will see that
this general problem is equivalent to the one faced by the
highway inspector.

To solve the Konigsberg-bridge problem, Euler repre-
sented each bridge by a geometric line and each mass of
land by a geometric point.

A

C

EULER'S REPRESENTATION OF
THE KONIGSBERG BRIDGES

In this way, he reduced the problem to its essentials,
stripping it of all extraneous information. The line-and-
point representation does not distinguish, say, a wide
bridge from a narrow bridge, a particular bridge from
any other bridge that also links the same land areas, a
large landmass from a tiny one, or even an island from
a river bank. However important such distinctions may
be in other contexts, they have no bearing on the possi-
bility of an exhaustive, nonrepeating stroll. That is the
beauty of a mathematical representation: it need only
preserve what is relevant to the situation at hand. Free
of distracting irrelevancies, the mathematician is better
able to concentrate on the problem.

Euler was able to prove that a nonoverlapping stroll
across all bridges could be taken only when there were
either zero or two points (land areas) from which emerge

.D
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an odd number of lines (bridges). A little thought sup-
ports this conclusion. If you cross a bridge to a piece of
land, there must be another bridge to exit by-or else
you'd be stuck there. Landmasses with an even number
of bridges ensure that where there's a way in, there's
another way out. Landmasses with an odd number of
bridges are possible on a nonoverlapping trip, but only
at the end of the journey (where you don't need a bridge
out) and at the beginning (where you don't need a bridge
in). Since there is only one starting point and one end
point, only two landmasses can have an odd number of
bridges. In Konigsberg, each of the four land areas was
connected to an odd number of bridges, and so a com-
plete, nonoverlapping stroll-even without the stricter
condition that it be a round-trip-was clearly impossible.

It is important to realize that Euler's conclusion about
an arbitrary number of bridges and an arbitrary number
of landmasses does much more than encapsulate com-
mon sense. Our reasoning merely indicated that a trip
wouldn't be possible if the condition he laid down wasn't
met. Euler's conclusion is much stronger (and not intui-
tively obvious): he proved that if this one simple condi-
tion is met (namely, that either zero or two land areas
are associated with an odd number of bridges), a non-
overlapping trip is always possible.

To apply Euler's analysis to a general situation requires
counting up the number of bridges for each land area.
Since each bridge goes to two land areas, each bridge is
counted twice. Therefore, if n is the number of bridges,
Euler's analysis requires 2n steps. The counting of the
bridges could be formulated as an algorithm, and it would
be a very efficient algorithm, since the time it takes to
execute it only doubles as the complexity of the problem
grows. An exhaustive search of all possible itineraries,
on the other hand, would exponentially explode as 21.

In the traveling-salesman problem, however, no short-
cut is known to the inefficient exhaustive search. You
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can't, say, count up the number of cities connected to
each road and draw some conclusion based on whether
those numbers are odd or even-or, for that matter, on
any other property of those numbers. Again, it's not just
that we don't know of some property to look for. It may
be that such a property doesn't exist. That's what com-
plexity theorists are struggling to prove.

The traveling-salesman problem is not the only com-
putational problem for which a fast algorithm eludes
mathematicians. There is a whole class of problems,
called NP-complete, for which the only known algo-
rithms have execution times that balloon exponentially.*
Another notorious example of an NP-complete problem
is known as the clique problem: Given a large group of
people, say, a hundred, is there a large number of them,
say, fifty, all of whom know each other?

"You could solve this problem," says Michael Sipser,
a complexity theorist at MIT, "by writing down a hun-
dred points, one for each person, and drawing a line
between points that correspond to people who know each
other." Then you'd look for a group of fifty points all of
which are connected. "It sounds like a great problem for
a computer," adds Sipser, "but it isn't. The only way
that we know how to solve this problem is essentially to
look at all groups of fifty, of which there are a tremen-
dous number, something like ten raised to the twenty-
ninth power. To do this would take centuries, even for a
fast computer."

The traveling-salesman problem, the clique problem,
and all other NP-complete problems have a curious fea-
ture in common: if someone claims to have a solution to
a particular instance of any one of these problems, it's
an easy matter to check the solution. For the traveling-

*The NP, if you must know, stands for nondeterministic poly-
nomial, and the word complete means that these problems are the
hardest of their kind.
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salesman problem, you would just examine the proposed
itinerary and ascertain that it includes every city once.
For the clique problem, you would double-check that the
fifty people identified as a clique all know one another.
Richard Karp, professor of computer science at the Uni-
versity of California, at Berkeley, likens NP-complete
problems to jigsaw puzzles: "They may be hard to as-
semble, but when someone shows you a complete puzzle,
you can tell at a glance that the puzzle has been correctly
solved. "

Another outstanding feature of NP-complete problems
is that if any one of them can be solved by a fast algo-
rithm, the others can, too. Moreover, it would be a trivial
exercise to take a fast algorithm for one kind of NP-
complete problem and alter it so that it can solve any
other kind. For example, if a fast algorithm were discov-
ered for the traveling-salesman problem, mathematicians
would have at their disposal a fast method for solving the
clique problem and every other NP-complete problem.
Therefore, whether the traveling-salesman problem has a
fast algorithm is part of the larger question of whether
NP-complete problems are really as hard as they seem.

"Virtually every mathematician, I think, now believes
that NP-complete problems are intrinsically hard," says
AT & T's David Johnson, coauthor of the bible of this
field, Computers and Intractability: A Guide to the The-
ory of NP-Completeness. "The real issue," he says, "is
proving it."

It boggles the mind that mathematicians think they may
be able to prove that the traveling-salesman problem and
other problems of its ilk will never yield to a fast algo-
rithm-never ever-not even under the scrutiny of the
Einsteins of tomorrow. How do they propose to prove
such a thing?

Current work centers on the logic gate, which can be
regarded as the most elementary piece of computer hard-
ware. In an electronic computer, the logic gate is a com-
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ponent that consists of any number of input wires and
one output wire. The logic gate is a binary device: the
signal in each wire is considered to be either a I or a 0.
(In electronic terms, high voltage could correspond to a
I and low voltage to a 0).

Each logic gate is able to perform one of three basic
operations: not, and, or or. The names of the three op-
erations are based on the way the words not, and, and or
are used in Boolean algebra, a pioneering system of for-
mal logic developed in the 1840s by George Boole, the
son of a poor cobbler. Self-taught in mathematics, Boole
worked out a system of symbolic logic in which I stands
for true and 0 for false. Although Boole's work earned
him a mathematics professorship in Cork, Ireland, his
system of logic was not fully appreciated by the mathe-
matics community until some hundred years later, when
the first electronic computer was built.

In formal logic, (and ordinary English, too), the ad-
dition of the word not changes a true statement into a
false one and vice versa. To put it in the terms of Boolean
algebra, not converts a 1 into a 0 and a 0 into a 1. Thus,
the not logic gate has a single input wire and converts
the input signal into its opposite: if the input is a 1, it
outputs a 0, and if the input is a 0, it outputs a 1.

BOOLEAN NOT GATE

The word and, of course, serves to link individual
statements into a composite statement, which is true if
each of the components is true. To take a simple exam-
ple, "Jules dined on Tofutti and Jim ate a Dove Bar" is
a true statement only if both Jules and Jim dined on the
aforementioned treats. By the same token, the and gate,
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which accepts two or more inputs, outputs a I only if all
the inputs are l's; otherwise, it outputs a 0.

0

0

0 :D--ŽLHI
BOOLEAN AND GATE

The word or serves to link statements into a composite
statement, which is true if one or more of the compo-
nents is true. If either Jules or Jim (or both of them) ate
their respective treats, then "Jules dined on Tofutti or
Jim ate a Dove Bar" is a true statement. Similarly, the
or gate, which has two or more inputs, outputs a I if at
least one of the inputs is a 1.
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BOOLEAN OR GATE

The beauty of Boolean algebra is that I and 0 need not
stand for true and false but can represent any two distinct
states. In the traveling-salesman problem, for example,
I and 0 might represent the relevant relations between
cities: a I if two cities are connected by a road, a 0 if
they're not connected. In the clique problem, I could
represent the state of two people's being friends (or, in
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the graphical representation of the problem, two points'
being connected by a line) and 0 the state of their not
being friends (two points' not being connected by a line).

In a computer, any number of and, or, and not gates
can be linked together to form a circuit. The diagram
below, for example, shows a small circuit of four and
gates and one or gate that can solve a trivial instance of
the clique problem: In a group of four people, are there
three who are friends?

CLIQUE PROBLEM

As the size of the clique problem grows, however, the
size of the circuit (that is, the number of logic gates)
balloons exponentially for the known methods of solu-
tion. If mathematicians can prove that the circuit must
be exponentially large for any conceivable solution
method, known or unknown, they will have proved that
the clique problem is immune to fast algorithms.

Not knowing how to start such a proof, mathemati-
cians have looked instead at a particular problem-the
parity function-that ordinarily has a fast algorithm and
have tried to restrict the circuit in certain fundamental
ways so that the fast algorithm no longer works. (The
parity function determines whether there is an even or
odd number of l's in a string of O's and I's.) This ap-
proach may seem strange, but it isn't. Mathematicians

163



164 ARCHIMEDES' REVENGE

know very little about how to prove that a circuit must
be large, so any proof to that effect, even one in a con-
trived situation, would be a step forward and might pro-
vide the tools needed to prove the real thing. "This is a
common approach in mathematics," says Sipser. "If a
problem is big, try cutting it down some way and solving
part of it, hoping that the partial solution will give insight
into the original problem."

Early work in this area limited the depth of the circuits,
where the depth is the number of levels of logic gates.
The first results came in 1981, when Sipser and two co-
workers at Carnegie-Mellon University proved that if they
limit the depth of the circuit for the parity function, the
width of the circuit blows up faster than any polynomial.
In the spring of 1985, Andrew Yao at Stanford University
sharpened this result by showing that the circuit's width
blows up not only superpolynomially but exponentially-
the desired sign that this problem, although artificially
restricted, is intrinsically hard.

Word of Yao's result spread quickly through the math-
ematics community. "Everyone thought it was beauti-
ful," says Sipser, "but also very complicated." With
Yao's techniques paving the way, several researchers
quickly improved upon his result. "It's like the first four-
minute mile," says Ronald Graham, director of mathe-
matical sciences at AT & T Bell Laboratories. "Once
somebody does it, everybody does it."

In August 1985, John Hastad, a graduate student in
computer science at MIT, took Yao's essential ideas but
simplified the argument. "In the process," says Hastad,
"I got a stronger result. The smallest circuits we know
how to design [in this restricted problem] aren't much
bigger than the size I have shown theoretically that they
have to be." Each successive proof comes closer to
showing that what mathematicians actually know how to
write down for a circuit isn't much worse than the best
they could do theoretically. For these restricted prob-
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lems, it is the problem itself, not mathematical igno-
rance, that rules out a fast solution.

Two mathematicians at Moscow University, A. Raz-
borov and A. Andreev, had much success in limiting not
the depth of the circuit but the operations it can perform.
Razborov proved that, if not gates are disallowed, the
size of the circuit for the clique problem grows faster
than any polynomial. And mathematicians here have im-
proved this result to show that the circuit must blow up
exponentially. By barring not gates, Andreev was able to
show that another kind of problem also requires huge
circuits.

These results have contributed to general optimism in
the field, although no one yet knows how to go about
dropping the restrictions on the circuits and proving that,
unrestricted, the traveling-salesman problem is as hard
as it seems. "There's still a long way to go," says Sipser.
'Six years ago, I made a bet with someone-I hope he

remembers-that the proof would be found by the year
2000. I'm still pretty confident-that's twelve more
years." Graham is even more sanguine: "A proof- in the
next three years would not surprise me."

Despite the general optimism, researchers in complex-
ity theory-the branch of mathematics that characterizes
the difficulty of problems-have been known to have their
intuition fail them. During the winter of 1985, David
Barrington, a mathematics graduate student at MIT,
proved that a certain primitive representation of what a
computer can do is more powerful than anyone in the
field had imagined. This primitive representation in-
volves not and, or, and not gates but a branching gate
that has two output wires. When a branching gate is trig-
gered, if the input has a certain designated value, the
gate sends a signal out along one of the two wires; for
all other inputs, it sends a signal out along the other
wire. In other words, a branching gate is able to handle
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such statements in computer programs as "If x = 5, go
to step four; for all other x's, go to step seven."

Barrington proved that a circuit constructed entirely of
branching gates with no more than five levels of gates
can solve what is called the majority problem: in a string
of O's and l's, is there a majority of l's? Complexity
theorists had universally (and wrongly) believed that
branching gates restricted to any fixed height-let alone
the tough restriction of five stories-could not solve the
majority problem.

"My proof is simple," says Barrington, "but it sur-
prised everyone because they thought that what I was
trying to prove was false." Barrington's result may have
few practical applications-"except," he adds, "it may
get me a teaching position at a good university." And it
may persuade mathematicians not to be so cocky about
their convictions in the complex field of complexity the-
ory.



10

THE MACHINE WHO WOULD
BE KING

We have looked so far largely at theoretical issues in
computer science, at what kinds of computational tasks
machines and men can do in principle. The kinds of
limits we have discussed are absolute. If complexity
theorists can prove what they suspect is true, the
traveling-salesman problem can never be efficiently
solved. It's not a question of mathematicians' and com-
puters' lacking the proper tools; there are no tools to be
had, and there never will be.

Most mathematicians and computer scientists are not
up against theoretically insurmountable limits. The ob-
stacles they face are self-imposed and can be circum-
vented, at least in principle. A major obstacle-and this
looms large in many endeavors besides mathematics-is
the tendency to play it safe by following the widely ac-
cepted, if not entirely successful, problem-solving tech-
niques of one's colleagues. Those who strike out on their
own had better succeed soon if they want to avoid the
ridicule of their peers. In this chapter, we follow the pi-
oneering efforts of Hans Berliner to build a computer that
plays good chess. In the next chapter, we'll look at
W. Daniel Hillis's attempt to replace the basic architecture
that has served the electronic computer well for its forty-
year history with a revolutionary design of his own.

167



168 ARCHIMEDES' REVENGE
In his own, quiet way, Hans Berliner, a researcher in

computer science at Carnegie-Mellon University, in
Pittsburgh, wants to be the best in the world. He has had
that distinction for himself, and now he wants it for his
computer offspring. In 1968, he became postal chess
champion of the world, after brilliantly demolishing the
wily Soviet tactician J. Estrin in a forty-two-move game
that had Berliner huddled over the board for five hundred
hours. In 1979, a computer program he designed called
BKG 9.8 beat the world backgammon champion, Luigi
Villa of Italy, by the lopsided score of 7-1 in a highly
publicized match in Monte Carlo. Like a proud father,
Berliner was happy that BKG 9.8 had become the first
machine to defeat a human world champion at any board
or card game.

Today, BKG 9.8 is in mothballs (the World Backgam-
mon Association has barred computers from official tour-
naments), but a rookie program called Hitech, designed
by Berliner and his graduate student Carl Ebeling, is up-
holding the honor of machines in another arena, that of
the chessboard. In October 1985, Hitech won the North
American computer chess championship. That success,
along with a string of victories over talented humans,
demonstrated that Hitech plays chess better than any other
machine and better than 99 percent of the thirty thousand
Homo sapiens ("thinking men") who play in tourna-
ments sanctioned by the United States Chess Federation.

Berliner now has his eye on the Fredkin Prize-
$100,000 to the designer of the first computer that de-
feats the human world champion. Hitech is currently not
good enough to depose the champ. But, given Berliner's
tenacity, tutelage, and track record, the program's future
chances should not be underestimated.

Chronologically, Berliner's first love was chess; his
second, machines. Born in Germany in 1929, he moved
to America when he was eight and settled with his par-
ents in Washington, D.C. Finding school to be much less
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demanding here than in Germany, he looked for chal-
lenges outside the classroom. In 1942, at summer camp,
he saw some youngsters playing chess and asked them to
show him the rules. "Even that first day," Berliner re-
calls, "I managed to find somebody whom I could beat.
That was it. I was hooked."

Two years later, he was champion of his neighbothodd
chess club and holding his own at the best club in Wash's
ington. "My parents were not encouraging," says BE-
liner. "They warned me that I'd come to a bad end if I
kept playing chess all the time. Who knows what would
have become of me if no one had told me that?" In the
short run, however, Berliner did not curb his chess play-
ing. In 1949, he won the coveted Washington city cham-
pionship at the tender, record-breaking age of twenty.

That same year, the American mathematician Claude
Shannon wrote an influential paper in which he described
in general terms how to program a computer to play
chess. The electronic computer was only in its infancy
then, but chess playing was already recognized as an im-
portant goal in the nascent field of artificial intelligence.
Chess, unlike certain other intellectual endeavors, was
appealing because the machine's competence at it could
be precisely judged by pitting it against human oppo-
nents under controlled conditions. Tournament players
have numerical ratings based on how they fare against
other rated opponents. The computer would also earn a
rating, reflecting its performance against rated human
beings.

As pioneers in computer science tried to put Shannon's
ideas into practice, the young Berliner concentrated on
his own chess playing. By 1954, he was among the top
twelve players in the country, and he stayed there for a
dozen years. Sometime in the early 1950s, he read about
the first efforts at computer chess. "Their games," he
recalls, "looked pretty laughable to me."

One of the pioneers was the British mathematical
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phenom Alan Mathison Turing, a seminal thinker in ar-
tificial intelligence and (as we saw in chapter 8) a deep
prober of the limits of mathematical knowledge. Like
Einstein, Turing was an avid, if not accomplished, chess
player; perhaps his lifelong fascination with the game
stemmed from its being one of the few intellectual activ-
ities that he was unable to master. In any event, Turing
wrote down half a dozen pages of recipe-like steps-in
effect, a computer program-for mechanically playing
chess. Although he never got around to encoding the
chess-playing recipe into a computer, he used it to play
a game in 1952 against Alick Glennie, a student at the
University of Manchester in England who was a brilliant
programmer and a less-than-brilliant wood pusher. Tur-
ing's paper machine (so called because it existed only on
paper) lost that game, the first ever played by any ideal-
ized or realized machine.

Turing's recipe gave each piece a numerical value that
more or less reflected its relative strength, as rated by
chess textbooks: king 1,000, queen 10, rook 5. bishop
3.5, knight 3, and pawn 1. In choosing a move, all con-
tinuations that involved captures were followed until qui-
escent positions were reached, positions in which neither
side could take a piece or deliver mate. For each of these
quiescent positions, the relative strength of the armies
was computed by adding up the values of the pieces,
treating the values of the machine's pieces as positive
numbers and those of the opponent's pieces as negative
numbers. A move was selected that led to the quiescent
position in which the machine maximized its relative
strength.

Turing's evaluation scheme was able to find moves that
led to the win of material but was of no use in static
situations. For example, it didn't distinguish among first
moves for White, because at the start of the game, none
of the twenty possible moves (sixteen pawn pushes and
four knight moves) captures a piece or even threatens to
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capture a piece, and so the twenty quiescent positions
have the same relative-strength value of 0, which is
clearly absurd.

Turing overcame this problem by also weighting, in
static positions, such factors as mobility and king safety.
A pawn, for example, gains 0.2 for each rank it's ad-
vanced beyond its home position, plus an additional 0.3
if it's defended by a piece other than a fellow foot soldier
and minus 0.3, if it's undefended. The rook, bishop,
knight, and queen each gains the square root of the num-
ber of legal moves it can make, plus an extra point if at
least one of these moves is a capture. Moreover, should
the rook, bishop, or knight (but not the queen) be de-
fended, there's a bonus point if it's defended once and
two bonus points if it's defended two times or more. The
king gains 0.3 if it's castled, 0.2 if it's poised to castle,
and 0. 1 if castling in the future isn't prohibited.

Turing was also concerned with king safety. In his
evaluation scheme, the king loses points depending on
how wide open it is to attack. Turing ingeniously mea-
sured the wide-openness by imagining the king to be an-
other queen and computing the mobility of this new
queen. Moreover, Turing added 0.5 for a move that put
the enemy king in check and a full point for a move that
threatened immediate checkmate.

In static situations, the paper machine would make the
move that, according to the evaluation function, maxi-
mized mobility, the safety of its own king, and the vul-
nerability of the enemy king. In the 1952 game against
Glennie, the paper machine opened with P-K4, the ad-
vance of the king's pawn two squares; of the twenty
moves possible, P-K4 has the highest value (the move
not only advances a pawn to the fourth rank but also
enhances the mobility of the queen, the king's bishop,
and the king's knight). As early as the third move, the
paper machine made an inferior pawn sortie, but Glennie
did not exploit it. On the twenty-ninth move, the ma-
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chine greedily grabbed a pawn with its queen, because
its evaluation function showed that Glennie had no im-
mediate effective capture in return.
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The program overlooked a simple yet crushing rook
move that, by pinning the program's queen against the
king, led to the queen's forced capture. A proponent of
cybernetic euthanasia, Turing resigned on behalf of the
paper machine.

As primitive as the paper machine was, it did manage
to do some things right. For example, it recognized that
material considerations are of importance only after all
captures are exhausted. In a position on the board you
may be short a queen-which is normally an insurmount-
able disadvantage-but the chances are even if it's your
move and you can capture the enemy queen. You would
not want an evaluation procedure that merely tallied up
the relative strength of the armies without taking into
account the possible capture.

Turing was also on the right track when he incorpo-
rated into the evaluation function such aspects of chess
knowledge as mobility and king safety. The machine's
downfall in the game against Glennie was that it didn't
have enough knowledge. It wasn't able to recognize the
dangers inherent in a particular pattern of pieces: king
and queen on the same file.
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Berliner and other masters, and even numerous players

of far less skill, have this pattern, and countless others,
filed away in their minds. Studies show that the human
master has a remarkable memory for chess patterns and
positions but that this excellent memory doesn't neces-
sarily carry over to matters unrelated to chess. On a per-
sonal level, Berliner found that the success he enjoyed
on the chessboard didn't carry over into the classroom-
at least not initially.

"I was one of those people who ran afoul in my early
academic years," recalls Berliner. "I started off as an
honor student in physics, but somehow I got completely
turned off. I was working my way through school, and at
one point I had saved enough money to pay for the rest
of my education, so I stopped working. That was a crit-
ical error. All of a sudden I had a lot of time on my
hands, so I took up bridge in addition to chess. I quickly
became one of the top fifteen bridge players in Washing-
ton. Everything was going to pot."

After a stint in the army, Berliner wanted to go back
to school. "I couldn't finish in physics," he recalls, "be-
cause my grade-point average was too low, so I switched
to psychology. It seemed like a great field to study be-
cause there were all these interesting facts." Coming
from physics, Berliner expected the facts to be organized
into theories but was disappointed to find that this was
not exactly so.

In 1954, he got married and, between home life and a
new job, had little time for bridge but managed to keep
up his chess. "I was working at the Naval Research Lab
in a field called human engineering," he says. "It was
pretty awful stuff, a mixture of psychology and physics,
that dealt with the design of equipment. That was 1955,
when computers were coming out, and the lab was build-
ing one. I had taken a course in programming, perhaps
written a twenty-line program to add numbers, but other
than that I had no contact with computers.
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"Having no time to travel to chess tournaments, I de-
cided to take up correspondence chess. That was another
big mistake. It takes infinitely more time than over-the-
board chess. For the next thirteen years, I played in postal
chess tournaments and won them all. In the world cham-
pionship, I had to play sixteen games. I figure I spent an
average of four hours contemplating each move-and each
game had some thirty-five moves. That means I invested
2,200 hours to win the title. Then I essentially gave up
the game." He didn't relish the thought of spending an-
other 2,200 hours defending his title.

In 1961, he joined IBM in Bethesda, Maryland, as a
systems analyst and worked chiefly on contract work for
the military. Although he spent eight years there and
worked his way up to a position as a manager, he found
the job unrewarding: "If you do it conscientiously, it's a
terrible life. As a manager, you're the one who gets it
from both the bottom and the top. You have people work-
ing for you who don't really give a damn, and you have
a guy from the military telling you what to do who either
doesn't really know what he wants or else wants some-
thing unreasonable. Then that guy gets replaced by an-
other fellow, who doesn't understand what the first guy
wanted and orders all sorts of changes. I started feeling
that I wanted to do work that I could be proud of when
I looked back on it. I wanted to go into research."

Berliner had been following computer chess from a
distance, but the progress he saw was disappointingly
slow. During the 1950s, academics made rosy predictions
that belied the lack of success in the laboratory; in 1957,
for example, Herbert Simon, now a Nobel laureate at
Carnegie-Mellon, claimed that within ten years a digital
computer would be the world's chess champion.

The magnitude of the programming task was not fully
appreciated. According to popular wisdom, the chess
master is a kind of human computing machine: when he
chooses a move, he explores hundreds of continuations
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in his mind's eye-if I push the king pawn, he'll fork my
rooks, but then I'll trap his queen-at lightning speed
with incredible precision. Calculation is the stock-in-
trade of computers, so it seems they should be naturals
at chess. The problem is that the popular wisdom is
wrong; calculation is not the only, or even the main,
secret to the chess master's success. He depends much
more on pattern recognition than on the exploration of a
mind-numbing aggregation of moves.

The Dutch psychologist Adrian de Groot found that of
the thirty-eight legal moves possible in the typical posi-
tion, the master ponders an average of only 1.76. In other
words, he is generally choosing between two candidate
moves that he recognizes, based on the hundreds of thou-
sands of positions he has played himself or seen others
play, as contributing to the immediate and long-term
goals of the position. "Calculation," writes Father Wil-
liam Lombardy, a U.S. grandmaster, "most often comes
after the goal is achieved, the moment when a winning
position converts into a mathematically forced win." The
instant recognition of familiar patterns is what enables
the grandmaster to play a remarkably strong game of
chess when given only a second or two to move; in this
kinetic version of chess, there simply is no time to look
ahead.

Many of the early programs limited themselves to pon-
dering only a select number of candidate moves (al-
though never anywhere near as few as 1.76). The problem
with the selective-search approach is that no one knows
how to express in computer language, let alone in En-
glish, general, fail-safe principles for choosing candi-
date moves. In 1966, the most successful of the early
selective-search programs, MacHack, developed by
Richard Greenblatt at MIT, became the first machine to
defeat a human player (albeit a weak one) in tournament
play. MacHack also had the pleasure of trouncing Hubert
Dreyfus, the author of What Computers Can 't Do, a man
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who has made an academic career out of belittling the
ability of machines.

In general, however, MacHack's play was seriously
flawed. Although it was capable of playing competent
chess for a long stretch of moves, it was apt to suddenly
make a catcalling blunder that was somehow sanctioned
by the general principles of chess programmed into it.
Moreover, it sometimes overlooked subtle but effective
moves that defied those principles. But it had defeated
human tournament players-and that was a milestone in
computer chess.

"When I heard about MacHack's victories," says Ber-
liner, "I thought, my God, after all this lethargy in com-
puter chess, after all these well-placed people trying
various things with little success, there's a glimmer of
hope. I went to see Greenblatt, and, although I didn't
understand enough about computers to really follow what
he was doing, I was impressed. Because I was between
marriages, I once again had a lot of time on my hands,
so I taught myself programming and spent my evenings
and weekends writing a chess program. I asked IBM if I
could work on computer chess at their research facility
in Yorktown Heights, New York. They said, 'That's not
the kind of project we're funding. Besides, you don't even
have a Ph.D., so we could at best let you do that on the
side if you were doing something else that was useful to
the company.'

"I decided that the only way I could make it was to
join them by getting a Ph.D. I had an exaggerated opin-
ion of my background. I applied to several schools, but
Carnegie-Mellon was the only one that accepted me."
His victory in the world correspondence chess champi-
onship in 1968 apparently helped him get in.

"So there I was in the fall of 1969, a student at the
age of forty. It was a big shock. I found that I had an
awful lot to learn, about the theory of automata, different
programming languages, various hardware configura-
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tions, and artificial intelligence itself." But whereas in
his earlier years in academe Berliner had disliked his
courses, he now took to them.

At Carnegie-Mellon, Berliner continued to work on the
program that he had started in his spare time at IBM.
Called J. Biit (pronounced "jay-bit," an acronym for
Just Because It Is There), the program turned in a re-
spectable performance at the first U.S. computer chess
championship, in New York City in 1970. Like Mac-
Hack, J. Biit did a selective search. The program's
strength was its evaluation function-how it numerically
weighed the strength and weakness of each position it
looked at-but because it searched selectively, it some-
times didn't even consider the right move, let alone make
it. "In specific instances," says Berliner, "it could play
brilliantly. But that's not enough. You have to be consis-
tently right, in all different kinds of positions. J. Biit
wasn't robust enough to confront successfully the whole
game of chess."

In that first U.S. championship, J. Biit lost to the pro-
gram Chess 3.0, designed by the Northwestern Univer-
sity graduate students David Slate and Lawrence Atkin.
A subsequent version of Chess 3.0 conducted not a se-
lective but a full-width search: the exhaustive analysis of
all possible continuations to a certain prescribed depth.
While a full-width search always includes the right move
among the candidate moves it looks at (since it looks at
everything!), it is a very inefficient way to choose a move.
Much time is squandered on the exploration of horren-
dously bad continuations that even the weakest of human
wood pushers would never ponder for an instant. The
wasted effort would hardly matter if the computer could
see clear to the end of the game, as it can in, say, tick-
tacktoe.

The mathematics of chess is testimony to the ineffi-
ciency of a full-width search. A game between human
masters typically takes 84 plies (a ply being a move for
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a given side). Since there are an average of 38 legal moves
in each position, an exhaustive search would have to con-
sider 3884 possible positions. That's an extraordinary
number of positions: 3884 is bigger than 10132, the number
I followed by 132 O's. The universe has been in existence
for only on the order of 10' seconds, and so a computer
working for as long as the age of the universe would have
to analyze 10"4 chess positions per second in order to
see clear to the end of the game.

In tournament play, computers, like people, are not
allowed to think for eternity; they are given only about
120 minutes for forty moves, which amounts to 3 min-
utes a move on the average. Even if the machine adopts
the much more modest goal of exploring all possible con-
tinuations to a depth of only a few moves, the mathe-
matics is forbidding. After only two plies (a move for
each side), the number of possible positions exceeds a
thousand. After four plies, there are more than a million
possible positions.

The computer must not only generate all these posi-
tions but also evaluate them. It does this rather crudely
by numerically weighing such factors as material (the
number and nature of the pieces and pawns on each side),
mobility, control of central squares and open files, pawn
structure, king safety, and so on. At the end of, say, three
minutes, it makes whatever move will minimize its op-
ponent's potential maximum gain; this minimax ap-
proach, borrowed from the mathematical theory of
games, assumes that the opponent sees everything you
see and is out for his own self-interest.

A full-width search, then, even if limited to a depth of
only a few plies, would be impractical, were it not for
the discovery of the alpha-beta algorithm, a clever ap-
proach to evaluation that lets the computer choose its
move without having to evaluate every possibility. Yet,
amazingly, the chosen move is the same move the com-
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puter would have made had it looked at every continua-
tion. How is this possible?

Suppose the machine first explores all the continua-
tions of a specific candidate move, call it A, to a certain
depth. Assuming best play for both sides, the computer
assigns a minimax value to A of, say, 1. (In this scheme,
positive values correspond to an advantage for the com-
puter and negative values to a disadvantage; an advantage
of 1 represents the value of having one more pawn than
the opponent, all other things being equal.) Now, the
computer starts to evaluate another candidate move, call
it B, a particularly stupid move that puts the queen on a
square where it can immediately be captured by a lowly
pawn. If the computer now examines the opponent's nat-
ural reply, pawn takes queen, and rules out the slim
chance that it has brilliantly sacrificed its queen for an
unstoppable attack, it will assign a numerical value to
the position, say -9, indicating that its opponent has a
huge advantage.
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MINIMAX EVALUATION
Modern computer chess depends on the minimax approach: make the
move that minimizes your opponent's potential maximum gain. Sup-
pose the computer has a choice of moves A and B. It sees that the
opponent's best response to A is move a. (The numbers in the diagram
show how good the resulting position is from the computer's point of
view.) The computer now considers B and sees that the opponent, by
responding d, can ensure himself a better result against B than against
A. The computer now knows enough to choose A, no matter what the
result of responses e or I.

The computer does not need to consider the conse-
quences of all other replies, in which the opponent
doesn't take the queen, because it has identified a line of
play in which the opponent can ensure himself of a better
result against move B than against move A. Therefore,
the machine knows that from its own point of view move
A is preferable to move B.

To implement the alpha-beta algorithm effectively, the
computer must look at moves in an orderly fashion; in
the above example, it must examine A before B, and in
analyzing B, it must examine the capture of the queen
before looking at other responses. The order in which it
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investigates moves is dictated by various heuristics, or
general rules of thumb.

The capture heuristic, for example, instructs the pro-
gram to give high priority to moves that involve the cap-
ture of pieces. (Such a capture, which has a better than
average chance of being a good move, particularly if the
captured piece is undefended, also benefits the computer
by helping it clear its brain; with one fewer piece on the
board, it has fewer replies to consider.)

The killer heuristic keeps track of which of the oppo-
nent's responses killed, or refuted, a particular move.
When another move is contemplated, the killer responses
are investigated first. Let's take an extreme case. The
computer discovers that its contemplated capture of an
enemy rook is refuted by the opponent's delivering
checkmate. In pondering an alternative move, it will de-
termine first whether the move avoids the checkmate. In
other words, the killer heuristic serves to identify and
monitor threats, here the lethal threat of an immediate
mate. Another heuristic assigns a high priority to moves
that deliver check, in accordance with the old aphorism
"Always check, it might be mate." In short, the com-
puter now behaves a little more like a human being.

More economy can be achieved in a ful-width search
by looking progressively deeper into all continuations
rather than diving fully into them one at a time. From
the position on the chessboard, all possible continuations
are examined first to a depth of one ply, and, on the basis
of the search so far, the best move is noted. Starting with
that move, all continuations are then effectively exam-
ined to a depth of two ply, and a best move is again
noted. The process, called iterative deepening, is re-
peated until the desired depth is reached.

The effectiveness of a full-width search can also be
enhanced by a table that keeps track of positions the
computer has already evaluated, the values assigned to
them, and the best move found so far. In a full-width
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search, positions tend to come up more than once, and
the table is a useful time-saver, provided it is designed
so that it takes the program less time to look up the eval-
uation than to recompute it.

In the 1970s, Slate and Atkin at Northwestern were
able to make subsequent versions of Chess 3.0 work suc-
cessfully with, among other things, minimax evaluation,
the alpha-beta algorithm, capture and killer heuristics,
iterative deepening, tables of positions already exam-
ined, and-as in Turing's paper machine-a deepening
search of tactical lines of play until a quiescent position
is reached. The result was a program, Chess 4.7, that
played competent chess slightly below the master level.

In 1981, the full-width-search program Belle, created
by Ken Thompson and Joe Condon at AT & T Bell Lab-
oratories, became the first computer to achieve a master
rating, which put it in the top I percent of all U.S. tour-
nament players. Belle owed its success to custom-built
hardware designed specifically to execute chess calcula-
tions. Officials in Washington apparently thought very
highly of Belle. In 1981, federal agents apprehended
Thompson and Condon when they tried to take Belle on
a plane to Moscow to play an exhibition match. The Rea-
gan administration feared that the program might give
away military secrets. Thompson insisted that the only
thing Belle knew how to do was play chess. "The only
way Belle could be used militarily," Thompson told the
press, "would be to drop it out of an airplane. You might
kill someone that way." These days, Washington is less
impressed because Belle's rating has slipped below the
master level, but it still plays formidable chess by looking
an average of eight plies deep, analyzing 120,000 posi-
tions per second.

While Slate, Atkin, Thompson, Condon, and others
were getting the full-width search to work, Berliner was
concentrating on the evaluation function. "I was think-
ing," he recalls, "about de Groot's well-known studies
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of how masters play chess-how they look partway into
a variation, then turn to something else, then go back to
that first variation. It seemed right. At least that's how I
thought I played chess." The existing computer pro-
grams, on the other hand, did not move back and forth
between variations. They followed a particular variation
to a certain depth, assigned a numerical value to the re-
sulting position, and moved on to another variation.

"The trouble with assigning a specific value is that you
can't afford to be wrong," Berliner says. "Take a posi-
tion where you've sacrificed two pawns to obtain a very
strong attack. If you use something like alpha-beta, you
come to a terminal position to which you have to assign
a value; either it was worth giving up the pawns for the
attack or it wasn't. Whichever view you take, you're go-
ing to be wrong a certain amount of the time. It would
be much better to say, 'I'm still not sure. I've lost two
pawns and have a very strong attack. I might in fact mate
the guy or win back more than the two pawns, but I might
also simply be out two pawns.' So you leave the question
open and probe a little bit deeper to see if you can resolve
it.

"I was thinking a lot about this sort of thing, about
how to make the program look deeper when it should.
One evening, I had an inspiration: Instead of assigning a
single value to a position, why not a range of values?"

The top value in the range would mean that the position
was at most that good, and the bottom value would cor-
respond to the worst it could turn out to be. The program
would compare ranges of values rather than single val-
ues, and when a range was too wide, it would look deeper
into the position in order to make the top and bottom
values converge. "This idea was the missing ingredi-
ent," says Berliner. "It's one of those miraculous things
that happen in science every once in a while. You come
up with one thing, and, suddenly, everything makes
sense." The idea of using a range of values became
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known as the B* (pronounced "B-star") algorithm, and
Berliner filed it away in his bag of tricks.

In 1975, as Berliner finished his doctoral thesis on
computer chess, he decided to program a machine to play
backgammon, a game he had recently learned from his
new wife's father. He found the domain of backgammon
an attractive one for studying evaluation because it is a
game in which searching won't get you very far. In a
typical backgammon position, there are more than 400
possibilities (twenty-one dice rolls and some twenty ways
of playing each roll), compared with "only" 38 possi-
bilities in the typical chess position.

In the backgammon program BKG, Berliner departed
from the standard practice in artificial intelligence of do-
ing evaluation according to rules. "In a medical diag-
nosis system," notes Berliner, "you might have a rule
that says, 'If the patient has such-and-such disease and
is over six years old, then you should give thus-and-such
treatment.' And then all of a sudden you're faced with a
patient with the disease who's five years nine months old.
According to the rule, you can't give the treatment. Well,
that's wrong. What you really want is not a black-and-
white cutoff point but a smooth function that somehow
takes into account such factors as age, weight, and gen-
eral health. In this particular case, you might want to
prescribe a reduced dosage.

"When you're first designing intelligent systems, these
kinds of considerations recede into the background.
They're not nearly as important as just getting the basic
information into the machine. But if you want to compete
with the best humans, you can't operate by a set of rules
that's totally inflexible. "

Berliner, of course, wanted his backgammon program
to hold its own against the best human players, and so,
after flirting with more conventional approaches, he
ended up spurning rules that would divide positions into
classes, each class having a different evaluation function.
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Instead, he relied on a single mathematically complicated
function that includes some fifty different variables, cor-
responding to particular features that have different de-
grees of importance, depending on the stage of the game.
Each variable is replaced by a number, a measure of the
extent to which the corresponding feature is present in
the given position. Then each number is weighted: it is
multiplied by another number, called a coefficient, which
represents how much (or how little) attention should be
given to that feature at that point. The coefficients change
slowly and smoothly as the game progresses.

The success of this approach, called SNAC (for
smooth, nonlinear function with application coeffi-
cients), was evident when BKG trounced the human world
backgammon champion only a few months after SNAC
was introduced. Although the program has some lucky
dice rolls, and got away with a few small errors, it
showed itself to be a great player.

From his success at computer backgammon, Berliner
knew that having a smoothly varying function would also
be the key to effective evaluation at chess. Here, too, the
conventional approach involved rules. Consider king po-
sition. In the middle game, you want your king tucked
away in the corner, where it's less likely to be harassed.
The evaluation function might count the number of
squares between the king's actual position and the cor-
ner; the greater the number, the worse off you are. In the
endgame, however, when there are so few pieces left that
the danger of being mated is slim, the king should be in
the center of the board, where it can function as a strong
fighting piece. So in the endgame the evaluation function
might count the number of spaces between the king's
actual position and the center. If you use a rule like
"When there's a certain number of pieces and pawns on
the board, it's a middle game and when there's one unit
less, it's an endgame," you get schizophrenic behavior
at the boundary.
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BKG'S WINNING PLAYS AGAINST LUIGI VILLA, THE

HUMAN WORLD BACKGAMMON CHAMPION

BLACK
1 2 3 4 5 6 7 8 9 10 I1 12

24 23 22 21 20 19 18 17 16 15 14 13

BKG ROLLED A FOUR AND A TWO in this position from the first game
of its match with Villa. The program (Black) had the advantage but was
forced to leave a blot. It played 9-5 and 9-7, leaving a blot on the 7 point
that could be hit by 13 dice rolls. The apparently safer play of 5-1 and 4-
2, leaving a blot on the 5 point that could be hit only by 11 rolls, is inferior
because it leaves two pieces on the 9 point that could become exposed later
when they must move.

"You don't want this," says Berliner. "It should be
continuous-the middle game turning gradually into the
endgame. As the endgame approaches, you're no longer
so certain that you want the king in the corner, and you
tolerate the king migrating slowly toward the middle of
the board. When everyone has agreed that the endgame
is finally here, the king should be close to the center, not
hiding off in the corner." The way to achieve this is to
have one smoothly changing evaluation function, rather
than an arbitrary distinction between the middle game
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BKG ROLLED A FIVE AND A ONE in this position in the last game. The
program made the sensational play of 13-8 and 3-2. If any of BKG's blots
were hit, it would have more time to build up its back game. On the other
hand, if they were not hit, it would be able to make points in its home
board, making it more difficult for Villa 's piece to come back in and then
escape.

and the endgame and a different evaluation function for
each.

By May 1985, Berliner had incorporated many of his
ideas about chess (although not the B* algorithm) into
the program Hitech. The hardware for Hitech consists of
a $25,000, off-the-shelf Sun computer and a tray of sixty-
four identical special-purpose chips, designed by the
graduate student Carl Ebeling. The chips were manufac-
tured by VLSI (very large-scale integration), a state-of-
the-art technology for cramming 15,000 circuit elements
onto a single chip. The more elements, the faster a chip
can generate and evaluate chess positions.
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HITECH'S CHIP

Each chip is responsible for one square of the chess-
board, monitoring what pieces or pawns can move there
and doing a preliminary ordering of these moves. All the
chips operate independently and simultaneously, which
saves even more valuable time. The evaluation of posi-
tions is done by eight additional parallel hardware units,
each capable of evaluating some aspect of the whole po-
sition. These units depend on information downloaded
from the Oracle, a program running on the Sun that is
the source of Hitech's chess knowledge.

The secret of Hitech's success is that it thinks better
(because of the Oracle), as well as 50 percent faster (be-
cause it simultaneously evaluates more than one move
sequence), than its mechanical rivals. Conducting a full-
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width search, Hitech examines on the average an
astounding 175,000 positions per second, or 30 million
in the three minutes allotted for each move. "I doubt,"
says Berliner, "that human beings look at 30 million al-
ternatives in the course of their lives."

Hitech's speed and brains make it the highest-rated
chess program in the world and better than all but a
Kremlin full of humans. Berliner thinks that Hitech or
one of its descendants has a fifty-fifty chance of deposing
the human king of chess by 1990. In pursuit of that goal,
he plans to put more knowledge into the Oracle and have
Hitech try a selective search, perhaps even guided by the
B* algorithm.

How good will Hitech get at chess? For that matter,
how good will any machine ever be at a given intellectual
activity? "I think," says Berliner, "that we're going to
discover that there's a limit to how much knowledge you
can stuff into a machine before some bit of that knowl-
edge starts contradicting another bit." Some researchers
are trying to defuse this possibility by introducing a be-
lief system-the machine pays less attention to one piece
of contradictory knowledge because it comes from a less
reliable source.

"But I don't think a belief system is the answer," says
Berliner. "I think that we want to build a learning ma-
chine, something that's going to sit on the shelf, watch
video tapes, and learn from the bottom up. It may learn
very slowly at first. It may take twenty years for it to
have the understanding that an adult human being has.
And that'll be fine. If what it has is worthwhile, it'll be
worth it. But I'm not holding my breath. It is bound,
however, to happen eventually-not this decade, per-
haps, but the one after."
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A BOY AND HIS BRAIN MACHINE

It is early morning in Cambridge, Massachusetts, in the
summer of 1986, and W. Daniel Hillis, the thirty-year-
old founding scientist of the Thinking Machines Corpo-
ration, is slumped in a chair, staring wearily at a blank
video display screen. He enters a few commands on a
keyboard and an image of black and white lines resem-
bling a dartboard appear on the screen. As Hillis punches
the keys, a sleek, black, five-foot, glasslike cube in a
room down the hall-a computer designed by Hillis and
known as the Connection Machine-is punctuated by
thousands of tiny red lights that flash frantically in no
discernible pattern.

In this apparent randomness, however, may lie the fu-
ture of computing. "Last night," he says, "we had a
breakthrough. The machine actually learned. It learned
by itself, without my ever telling it whether it was right
or wrong."

Hillis and a colleague have spent a long night program-
ming the Connection Machine to unscramble slightly dis-
torted black-and-white line images that have been fed
into it. The process is a primitive example of something
called visual adaptation, which humans do very well. "If
I slipped a crazy pair of glasses on you that distorted
your vision," says Hillis, "you would learn to see nor-
mally." But most computers, unlike people, do not learn
from experience.
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That night the Connection Machine was an exception.

After receiving a distorted image, the computer would
display what it thought the real image looked like. Hillis
never told it how well it was doing. Unlike a chess-
playing computer, which does not get better from game
to game unless the programmer tinkers with it, the Con-
nection Machine had improved each time. After a couple
of hundred tries, it was getting the image pretty much
right. After three minutes, or five hundred tries, it was
totally undoing the distortion.

For Hillis the breakthrough was not that the Connec-
tion Machine could do visual adaptation-although such
a skill might be useful in interpreting fuzzy photos or
even, conceivably, in cryptography, where scrambled
messages must be unscrambled-but that it had learned
to do this. If it could learn to do this, it could undoubt-
edly learn to do other things, too. And that, Hillis thinks,
is essential if true artificial intelligence is ever going to
be more than a dream.

The Connection Machine is the most dramatic example
of an emerging breed of computer, the parallel proces-
sor, that is beginning to transform computer science.
Traditional computers, even powerful ones, rely on just
a single processor, the computational engine where the
calculating takes place. The Connection Machine is rad-
ically different; it harnesses the collective power of
65,536 small processors, or minibrains, all working in
concert to solve a problem.

A parallel processor is simply a computer that has more
than one processor. The underlying principle is rather
simple: two heads are better than one. And if two heads
are better, why not 4 heads or 16 or even 65,536? In
theory, the additional heads, or processors, speed up the
computer's performance, enabling it to tackle not only
problems in artificial intelligence, involving vision and
speech understanding, but also a host of numerically in-
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tense problems faced every day by physicists, engineers,
and military planners.

In a way, Berliner's chess-playing computer is a par-
allel processor; it has sixty-four chips, each of which
corresponds to one square on the chessboard. However,
these chips can evaluate only chess moves, whereas Hil-
lis's processors are flexible enough to tackle all sorts of
computational problems.

As simple as the concept of parallel processing may
sound, formidable obstacles stand in the way of turning
the idea into silicon. How many processors are optimal?
How smart should each individual processor be? How
should the processors be connected so that they com-
municate efficiently and work in concert?

There is also the difficulty of how to program, or in-
struct, the processors to solve a particular problem. Some
problems are like Tom Sawyer's task of painting a picket
fence; it's easy to see how the job could be divided among
additional laborers. Other tasks are more akin to Mark
Twain's writing Huckleberry Finn; it's not evident how
Twain could have benefited from the assistance of other
writers.

The Connection Machine is a working example of one
way to confront these difficulties. In August 1986, Think-
ing Machines delivered a scaled-down, $1 million ver-
sion of the Connection Machine, with 16,384 processors,
to its first commercial customer, Perkin-Elmer. The ma-
chine was installed at MRJ Inc., a Perkin-Elmer think
tank in Oakton, Virginia, which does contract work for
NASA and the Department of Defense. "After using the
machine a few weeks," says the MRJ staff member Tom
Kraay, "we solved an important military problem":
Given that you know the position of enemy radar and a
destination you want to reach, what flight path should
you take to minimize the chance of being detected? "This
problem comes up a lot," says Kraay, "like when we
bombed Libya." Common as it is, the analysis is nu-
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merically intense and a general solution has proved elu-
sive.

Hillis's company, the Thinking Machines Corporation,
was founded in May 1983. At the time, companies in-
volved in artificial intelligence-machines that do things
that people are inclined to call intelligent-were working
on expert systems, computers that can mimic human ex-
perts at one particular activity, say, deciding what chess
piece to move, what bonds to buy, or where to prospect
for oil. Expert systems are still the rage, and despite all
the hoopla in the media and on Wall Street about artifi-
cial intelligence, the best expert systems are nothing more
than idiot savants; a chess-playing computer, for exam-
ple, can do nothing other than play chess.

Thinking Machines was formed with the long-range
goal of building not an expert system but what Hillis calls
an amateur system: a machine that has common sense.
As the company's glossy promotional brochure puts it,
"Someday we will build a thinking machine. It will be
a truly intelligent machine. One that can hear and speak.
A machine that will be proud of us." If this hyperbole
had been the only thing the company had going for it, it
might not have gotten off the ground. But as a means to
its quixotic end, Thinking Machines had the short-term
goal of building the first massively parallel processor.

Even this goal was ambitious, but Hillis at least had an
idea of how to carry it out. Moreover, even those who
were skeptical about artificial intelligence were intrigued
by the possibilities of parallel processing. Thinking
Machine's president, Sheryl Handler, a woman in her
thirties who had helped launch Genetics Institute Inc., a
pioneering biotechnology firm, decided that the best way
to achieve these goals was to bring together an advisory
cast of scientific superstars. Today, the company's advi-
sers include the MIT professor Marvin Minsky, one of
the pioneers of artificial intelligence; the Nobel Prize-
winning physicist Richard Feynman, who served on the
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presidential commission that investigated the Challenger
disaster; Jerome Wiesner, former president of MIT and
science adviser to John F. Kennedy and Lyndon Johnson;
and Stephen Wolfram, a young physicist who was at the
Institute for Advanced Study and who had published his
first scientific paper at the age of fifteen. Even the work-
ers in the company's gourmet lunchroom, where Hillis
and the others dine on carrot vichyssoise, bagna cauda
salad, plum clafouti, and pavlova, are brainy; one kitchen
worker left the company because he won a Fulbright
grant.

With its all-star lineup of headstrong academics, many
outsiders saw Thinking Machines as a highbrow think
tank, full of romantic ideas about artificial intelligence
but short on the nuts-and-bolts know-how needed to build
an eggbeater, let alone a novel computer. Yet, with $16
million from William Paley, the founder of CBS, and
other investors and with $4.7 million from the Depart-
ment of Defense's Advanced Research Projects Agency,
known as DARPA, Thinking Machines managed to de-
sign and build the Connection Machine in only two and
a half years.

A puckish six-footer with twinkling eyes, Hillis does
not look like the sort who would create a revolutionary
computer architecture. His office, a few blocks from his
alma mater, MIT, looks more like a playpen than a high-
tech workplace. Near his captain's desk is a pile of Jap-
anese mechanical toys, a cow-size cardboard dinosaur,
and a propeller-driven wet suit that he made so that he
could walk on water. The wet suit may not even be the
craziest thing he has built; as an undergraduate, he con-
structed a huge ticktacktoe-playing machine from fishing
tackle and thousands of Tinkertoys. Toys and gadgets, he
claims, help him relax and clear his head.

"I want to build computers," Hillis says, "that are
based, even loosely, on the structure of the human brain.
The brain doesn't have one processor, like a conventional
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computer. It has a great many things-neurons-working
in parallel. That's why the Connection Machine was de-
signed to be massively parallel."

Hillis is by no means the only one giving computers
additional processors. Perhaps a hundred other projects
to build multiheaded computers are under way at uni-
versities and companies, chiefly small start-ups funded by
venture capital. Many companies bill themselves as sell-
ing parallel processors, but industry analysts disagree
about who is offering the real thing-the processors must
be able to attack one task together rather than work in-
dependently on different tasks. (The domestic equivalent
of truly parallel processing is mom and dad preparing
dinner together; it's not enough, while mom is cooking
dinner, for dad to be balancing the checkbook, however
useful that may be.) IBM, the world's largest computer
company, is also spending tens of millions of dollars on
research in this area and hopes to have two experimental
designs up and running in 1987. Hillis, however, has
succeeded in linking up tens of thousands more proces-
sors than anyone else.

Despite the flurry of activity in parallel processing, the
technology is still in its infancy. Nevertheless, there's
wide agreement in computer science that parallel pro-
cessing will be the technology of the future. In 1980,
Japan announced its Fifth Generation project, a $1 bil-
lion, ten-year national commitment to building a new
kind of computer that can easily converse with people
and interact with its environment; parallel processing,
the Japanese said, was central to this effort. American
government and industry reacted with alarm. DARPA,
formed in the wake of Sputnik to make sure the United
States never again fell behind in frontier technology, an-
nounced the Strategic Computing program, its own ver-
sion of the Fifth Generation project. As part of this
initiative, DARPA planned to spend $70 million.

The soul of the old machine-the conventional, single-
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processor architecture-was John von Neumann, a bril-
liant mathematician who did seminal work in quantum
mechanics, ballistics, meteorology, game theory, and
nuclear-weapons design. When he came up with the
single-processor architecture, in the 1940s, he wasn't be-
ing lazy or myopic in his vision of computing. The tech-
nology simply didn't exist for him seriously to propose
building more than a single processor. Since neither the
transistor nor the microchip had been invented, the ear-
liest computers were built from ungainly vacuum tubes;
even with only one processor, the 1946 ENIAC, the first
general-purpose computer, filled an entire room.

In von Neumann's design, the processor was separate
from the computer's memory, which contained not only
the data for a particular problem but also instructions for
manipulating that data. The separation made sense in the
1940s because two different technologies were involved.
The processor was made of comparatively fast and ex-
pensive vacuum tubes, whereas the memory was made
of much slower, inexpensive mercury delay lines. Von
Neumann's idea was to program the computer so that the
speedy vacuum tubes were busy and the slowpoke mem-
ory was relatively idle. This required the programmer to
break up a problem in such a way that it could be solved
step by step-as Hillis puts it-by "streaming memory
past the processor." Chunks of data and instructions were
shunted back and forth between the processor and the
memory along one narrow pathway.

Today, the sharp division between the processor and
the memory no longer makes sense, even though it's still
found in all but a few pioneeering machines. The pro-
cessor and the memory are now both made of the same
material-silicon. Despite the change in technology, the
idea of keeping the processor busy by having it attack a
problem step by step hasn't changed at all in conventional
machines. The result is a tremendous inefficiency: 97
percent of the silicon, which is the part devoted to mem-
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ory, is generally idle, while the mere 2 or 3 percent de-
voted to processing is frenetically busy. Hillis decided to
find a way of better utilizing the memory and an alter-
native to the one-step-at-a-time approach to problem
solving.

What Hillis had that von Neumann didn't was a source
of small, cheap processors. In 1970, a tiny start-up com-
pany in Santa Clara, California, called Intel (short for
Integrated Electronics or, less modestly, Intelligence)
managed to cram the 2,300 components of a processor
onto a single slab of silicon an eighth of an inch long by
a sixth of an inch wide. The microprocessor, or "com-
puter on a chip," was born. A computer that occupied
an entire room in the 1940s and 1950s was now the size
of a thumbnail.

Intel and other companies soon figured out how to
mass-produce microprocessors, making computing power
almost as widely available to industry as electricity or
water was. In 1975, there were 750,000 microprocessors
in existence. In 1985, there were 353 million. In 1990,
there will be 1.2 billion, according to Dataquest, a
market-research firm.

While Intel was carrying the torch for miniaturization in
the early 1970s, another fledgling company, Minnesota-
based Cray Research, was moving in the opposite di-
rection. Seymour Cray, the company's reclusive founder,
set out to build the world's fastest computer by com-
bining chips to create one mammoth, ultrapowerful pro-
cessor. The processor in his first supercomputer, the Cray
1, is shaped like a huge letter C, six feet tall and nine
feet in diameter at the widest. Five to ten times as fast
as any machine then in existence, the Cray 1 gave off so
much heat that it would have burned through the floor
had the resourceful Cray not thought to snake freon tubes
through it; old-fashioned refrigerator technology saved
the day.

Cray Research has built two-thirds of the 180 super-
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computers now in existence. The Cray 2, which has four
processors and adopts some extremely limited elements
of parallelism, is currently the world's fastest computer,
six to twelve times speedier than the original Cray. Al-
though these machines are appreciably faster than micro-
processors, they are disproportionately expensive. The
Cray 2 is five thousand times faster than a simple micro-
processor, but at $20 million it is several hundred thou-
sand times more expensive. This brute economic fact is
one of the main reasons the government, universities,
and many companies are pursuing parallel processing,
even if the technology never contributes to artificial in-
telligence, as Hillis believes it will.

The stakes in parallel processing are high. Industry
and government have taken for granted that ever more
powerful computers will continue to be built year after
year. In the past four decades, single-processor comput-
ers have been speeded up by a factor of a thousand,
chiefly by shrinking the basic electronic components and
packing more of them closer and closer together. Further
dramatic speed-ups in single-processor computers may
not be possible, however, because the design is up against
fundamental physical limits, such as the reality that no
signal in the circuitry can move faster than the speed of
light. Significant increases in performance may come
only from harnessing the power of more than one pro-
cessor.

A single processor is simply too slow to do all the
things a computer has to do to be intelligent. A truly
intelligent computer-the ''amateur system'' Hillis
speaks of-must be able to see, to understand human
speech, to read English text, to reason, and to plan. "All
these things are hard for a single-processor machine be-
cause they require a tremendous amount of informa-
tion," says Hillis. "If you try to make the machine
smarter by giving it more information, you actually make
it dumber because it's much slower in accessing that in-
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formation." A single-processor machine responsible for
guiding an unmanned military vehicle would be worth-
less if it needed a year to "see" the difference between
an enemy tank and a boulder. Parallel processing may be
the way out. Speed can be maintained by dividing the
information among different processors.

It is important to realize that, in a certain theoretical
sense, the only advantage a parallel processor offers is
speed. In 1937, Alan Turing-whose contributions to the
theory of computing are second only to von Neumann's-
demonstrated in effect that any computer, given sufficient
time and memory, can do anything that any other com-
puter can do. Therefore, any program that could con-
ceivably run on a parallel processor, even if it had oodles
of processors, could be mimicked on a single-processor
machine, albeit ploddingly. In theory, then, all comput-
ers are equal.

In practice, however, scientists want computers that do
things in real time. They want, for example, to be able
to talk with a computer at a normal conversational pace,
not having to wait eons for it.to respond to a statement.
The promise of doing things in real time is what parallel
processors offer over single-processor machines-not
only for problems in artificial intelligence but also for a
host of thorny computational problems in climate mod-
eling, fluid flow, plasma physics, subatomic particle
physics, battlefield management, and the Strategic De-
fense Initiative, President Reagan's space-based missile
defense plan, popularly known as Star Wars.

Danny Hillis was born in Baltimore, the son of a U.S.
Air Force physician who moved around the world study-
ing hepatitis epidemics. Hillis tagged along, building
zany contraptions everywhere he went. He made a solid-
fuel rocket to send grasshoppers aloft. He turned a tin
can and a rotisserie motor into a mobile robot. Even at
MIT, where Hillis did both his undergraduate and his
graduate work, he continued to build wacky toys, such
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as a wand that spoke when you waved it in front of some-
one.

It was during his freshman year, in 1974, that Hillis
began collaborating with Marvin Minsky, who was then
forty-seven. Minsky has been active in artificial intelli-
gence since the field began forty years ago. Like Hillis,
Minsky is not only a deep thinker but an ingenious tink-
erer. In 1951, he built one of the first electronic learning
machines, from three hundred vacuum tubes, a bunch of
motors, and a gyropilot from a B-24 bomber; like a rat
in a psychology experiment, the machine learned to
"run" a maze. In 1956, Minsky and three colleagues
organized the first conference on artificial intelligence-
at which the field was officially launched-and two years
later he cofounded MIT's Artificial Intelligence Labora-
tory, dedicated to building machines that did such non-
numerical things as reasoning by analogy.

The young tinkerer and the old pioneer met for the first
time when Hillis wandered unannounced into Minsky's
office. The veteran computer scientist was trying to build
an inexpensive computer that could do good graphics,
and the machine's innards-its elaborate circuitry-were
scattered on his desk. "This freshman appeared," Min-
sky recalls. "He was hanging around the office. We
started talking about something or other, while he looked
at the circuits. Then he said, pointing to one of them, 'I
don't see why you need that 'cause the circuit over there
does the same thing.' I looked, and, sure enough, he was
right. I was suitably impressed because he was using just
intuition-he didn't know what the circuits were for! It
was clear that this freshman was something else."

The Connection Machine is the outgrowth of a ques-
tion that has loomed large in Hillis's mind ever since the
time of his first discussions with Minsky: Why can't a
machine be more like a man?

"There are all sorts of things that people can easily do
that machines can't," says Hillis. "You can make a ma-
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chine that is very good at putting a tiny pin into a tiny
hole with a precise amount of force. Yet, in spite of that
precision, the machine can't pick up a glass of water
without spilling it. That's sort of a paradox-the machine
is much more precise than a person, and yet it's much
clumsier." Those who thought about the paradox before
Hillis did usually attributed the person's success to his
having an accurate image of the environment he's inter-
acting with. Hillis found this explanation superficial; a
person's image of the water glass was not static, he
thought, but constantly being adjusted because of tactile
feedback: "If you look at how we pick up a glass of
water without spilling it, it doesn't have anything to do
with how precisely we position our hand or how pre-
cisely we apply a force. It has to do with our getting very
good feedback from our fingers-we can do this even
with our eyes closed, by just feeling how well it's work-
ing out. And if it's not working out, we adjust our grip."
Hillis speaks of this rapid-fire feedback mechanism as a
kind of "controlled hallucination": we have a hypothe-
sis-a hallucination-about the real world (say, the po-
sition of the water glass), sensory feedback from our
fingers causes us to adjust the hypothesis, our fingers
provide feedback about the validity of the adjusted hy-
pothesis, and so on, until we confidently pick up the
glass.

Five years ago, when Hillis was a graduate student, he
built a primitive feedback mechanism into a robotic fin-
gertip made up of 256 tiny pressure sensors. The idea
was to build a finger that operated by controlled hallu-
cination. The finger could distinguish by touch six dif-
ferent objects-all commonly used fasteners-nuts, bolts,
washers, dowel pins, cotter pins, and setscrews. The fin-
ger had a "hallucination" about what it was feeling (say,
a washer), and then it would test that hallucination (by,
say, feeling for the hole in the washer's center). This
approach worked well enough in the machine's limited
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world, but give it anything else, say, a wad of chewing
gum, and the finger would confidently identify it as one
of the fasteners.

Built with Minsky's guidance, the finger was Hillis's
master's thesis and his first foray into parallel processing.
Six processors, each as powerful as an IBM personal
computer, provided the computational might behind the
finger. From this experience, Hillis learned that an awful
lot of computational power would be required to bring
the repertoire of identifiable objects up to the level of the
human forefinger. Hillis is not a man who proceeds
cautiously; the next time he hooked together micropro-
cessors, it was a prototype of the Connection Machine.

The decision to connect tens of thousands of proces-
sors, each weaker than a microchip in a video game,
came from Hillis's pondering the difference between
electronic components in a computer and neurons (nerve
cells) in the human brain. The neurons are a million times
slower, and yet the brain is far faster than any machine
in doing something as simple as distinguishing a man
from a woman, reading handwritten characters, or nam-
ing a four-letter flower that rhymes with hose. Little is
known about how the brain does these things, but its
blinding speed undoubtedly stems from its having many
more basic components than a machine, some hundred
billion neurons, give or take a factor of ten. Moreover,
says Hillis, "the architecture of the brain, as far as we
can see, is completely different from a conventional com-
puter in that it uses a lot of things working in parallel.
So that was the intuition behind building a lot of parallel
architecture into the Connection Machine."

Hillis is the first to admit that the analogy between the
brain and the Connection Machine should not be pushed
too far. To begin with, the connections between neurons
are on the order of perhaps a hundred trillion, which
means a wiring diagram of them is out of the question.
Indeed, the connections are so numerous and intertwined
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that neurobiologists have not yet succeeded in mapping
a single neuron, let alone all of them. Therefore, the
brain does not provide a model of how to link up the
processors in the Connection Machine. Nonetheless,
massive parallelism is such a fundamental feature of the
brain that it seemed worthwhile trying to make a com-
puter architecture that was similar, even if only remotely
and inexactly.

What's more, Hillis recognized how massive parallel-
ism might enable computers to do a host of things, such
as image analysis and recognition, that people do effort-
lessly but that single-processor computers can barely be-
gin to do. No machine, for example, can yet tell a dog
from a cat. Conventional computers are handicapped be-
cause they must analyze a picture point by point. All the
points are stored in the computer's memory and are ex-
tracted one at a time along the single, narrow pathway-
"the von Neumann bottleneck"-linking the memory
and the processor. "It's kind of like scanning a picture
by running a peephole over it," says Hillis, rather than
processing the entire image at once, as the human vision
system does. The Connection Machine has the promise
of faring better because each processor is assigned, in
effect, to one point in the image and the 65,536 proces-
sors, by working together, can analyze the image in its
entirety.

The Connection Machine began as Hillis's Ph.D. the-
sis at MIT. "There was a point when Danny was getting
serious about the design," recalls Minsky. "And I said
to him, 'I hope you don't make the ILLIAC IV mistake.'
And he said, 'Oh, what's the ILLIAC IV mistake?' And
I told him."

The ILLIAC IV was a gigantic machine built in the
1970s at the University of Illinois. It had sixty-four pro-
cessors, each as big as an upright piano because it was
built before its time. In fact, they had to use a forklift to
plug in the units. It took seven or eight years to build,
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and the machine was obsolete by the time it was finished.
The university gave it to NASA, which promised to use
it but had difficulty doing so.

That the project was too ambitious, given the available
technology, was not what Minsky meant by the ILLIAC
IV mistake. He told Hillis that the concept itself was
flawed; it was a mistake, he said, to restrict all the sixty-
four processors to doing exactly the same thing at the
same time, an expanded electronic version of the Olym-
pic event synchronized swimming. Minsky told Hillis that
the processors should be able to operate independently.

"About a month later," Minsky recalls, "Danny came
back to me and said, 'Well, I've decided to make the
ILLIAC IV mistake.' "' Hillis told Minsky that the prob-
lem was not in what the processors did but in how they
communicated. He said that intraprocessor signals got
stuck in traffic jams because, among other things, the
connecting wires were restricted to two dimensions. Hil-
lis recognized that a richer connection scheme was re-
quired, all the more so since he wanted to hook up not
64 processors but 65,536. The signal traffic would be
equivalent to a telephone network serving 65,536 cus-
tomers who placed a quarter of a billion calls per second.
That was the chief technical problem Hillis faced in de-
signing the Connection Machine.

In the end, Hillis and his co-workers at Thinking Ma-
chines settled on a three-dimensional architecture in
which the processors were connected as if they formed a
sixteen-dimensional cube. What this means is that each
processor, although directly connected to only 16 others,
was never more than sixteen steps away from any of the
other 65,536 processors. Moreover, the possibility of a
traffic jam was reduced because in sixteen dimensions
there are numerous possible routes between any two pro-
cessors.

The method of transmitting messages was also novel.
Hillis describes the communication system as being
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"halfway between the way the postal system works and
the way an old-fashioned telephone system works." In
the postal system, there's a lot of flexibility in the route
a letter takes. "If a mail plane is full," says Hillis, "they
can hold your letter and send it on the next plane." The
disadvantage of the postal system is that if you have a lot
to say, you must send an awful lot of letters. The advan-
tage of the phone system is that you can stay on the line
until you're done communicating. "When you and I are
talking on the phone, at least on a local exchange, there's
a wire allocated to us. But when we're not talking, that
wire is still there, using up resources." The Connection
Machine gets the best of both systems. "It's as if I mailed
you a letter with a piece of string attached to it leading
to another letter and a string from that letter leading to a
third letter and so on. Then we could have constant com-
munication. But if we had to, we could cut the string"-
and send the remaining letters by a different route.

When Tom Kraay's superiors at Perkin-Elmer told him
to look into the Connection Machine, he was somewhat
skeptical. "I couldn't conceive of how you would control
65,000 processors," Kraay recalls. "It sounded blue sky,
but it turned out to be easy. No matter what problem I
constructed, it ran faster. It's remarkable how much
mileage you can get from massive parallelism by splitting
up a problem's data so that small chunks are assigned to
each processor."

The Connection Machine has not been around long
enough for us to see what contributions it will make to
artificial intelligence. But it has already proved useful in
less exotic fields by making short work of some routine
but knotty problems involving document retrieval, circuit
design, and air-flow modeling.

Document retrieval is part of the larger problem of
searching through vast quantities of information-what
computer scientists call a database-for something in
particular. This kind of problem is hardly sexy, but it
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comes up all the time. Moreover, when the database is
huge, a conventional computer is intolerably slow. The
Connection Machine turns out to be the Evelyn Wood of
the computer world when it comes to scanning, say, a
year's worth of New York Times articles. Instead of look-
ing at the articles one by one, as a conventional machine
would, the Connection Machine reads all of them at once
because each is effectively assigned to an individual pro-
cessor. "Imagine 65,000 people in Yankee stadium,"
says Hillis. "Each person has a different document. You
announce a topic over the public address system, and
everyone reads his article to see if it matches." That's
what the Connection Machine does, but in three hun-
dredths of a second, hundreds of times faster than any
other machine.

The design of electronic circuits is a basic industrial
task that taxes single-processor computers. In a chip,
thousands of electronic components need to be hooked
together. Once the connections among components are
established in principle, the components must be laid out
so that the length of the connecting wires is minimized
and overlap largely avoided. A conventional computer
does this slowly by changing the circuit design one com-
ponent at a time. This task is made to order for the Con-
nection Machine because, with each processor
representing a different component, various placements
of the components can be easily examined. Indeed, the
Connection Machine is designing the chips for its own
successor, which is rumored to have a million proces-
sors.

One of the most exciting potential applications for the
Connection Machine is in simulating air flows, perhaps
even in modeling the flow of air over a proposed design
for an airplane wing. Computer science is not yet at the
point where aeronautical engineers can simulate the de-
sign of a new aircraft, or even of a wing, on a supercom-
puter and conclude with confidence that it works. The
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mathematical equations describing air flow around a plane
or a wing are notoriously difficult to solve, for man or
machine. Even the construction of an accurate scale
model that performs beautifully in a wind tunnel is no
guarantee that the real thing will fly. There's no substi-
tute for building and testing a full-scale prototype.

Stephen Wolfram, a chunky, bespectacled physicist in
his late twenties with spaghetti hair, long sideburns, and
a craving for ice cream at all hours of the day, is the
brains behind the Connection Machine's novel approach
to air-flow problems. The MacArthur Foundation certi-
fied him a "genius," with one of its prestigious awards,
and no one who meets him would disagree with this des-
ignation.

Wolfram's idea was not to worry about the complex
mathematics, which describes the aggregate behavior of
the air, but to concentrate on the individual air particles.
Each processor is effectively assigned to one particle. In
Wolfram's model, the particles all move with the same
speed in one of six directions. A simple rule defines how
particles scatter if one collides with another. Although
the model is quite primitive, with its restrictions on a
particle's speed and direction, it seems promising, evi-
dently because molecules don't actually solve mathemat-
ical equations but go in, so to speak, with their elbows
held high.

If the model works according to plan, the aeronautical
engineer will be able to watch the particles bombard a
proposed wing design on the screen of his computer ter-
minal. Recently, Wolfram and Hillis determined that with
existing technology it would be possible to add hundreds
of thousands more processors to the Connection Ma-
chine, until it was the size of a small building. Such a
machine would cost $100 billion and consume the energy
of the largest power station that now exists. "With that
machine," says Wolfram, "you could simulate a com-
plete airplane." Others might find that news depressing,
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but not Wolfram. He says, "It gives me hope. Because
if the technology changes, we might ultimately be able
to design a plane."

Optimism is not in short supply at Thinking Machines.
Future applications are a familiar topic of conversation
in the gourmet lunchroom. Hillis and his co-workers speak
of the day when the Connection Machine solves problems
that no conventional computer would dare to tackle, not
even slowly. One such problem is a search not of written
documents but of pictures, each picture assigned to its
own processor. "You can imagine asking the machine,
'In what films did the Three Stooges appear with Zero
Mostel?' or 'In which satellite photos is there corn?' "
says Guy Steele, Jr., a senior scientist at Thinking Ma-
chines. "I can say with confidence that it will take
massive parallel power to solve this kind of problem."

Wolfram fantasizes about using the Connection Ma-
chine to simulate all sorts of physical systems, so that
mathematical equations can be entirely dispensed with.
Hillis looks forward to the day when a big cousin of the
Connection Machine serves as a computer power plant
for an entire city, supplying computing power to every
household and commercial establishment. Minsky plans
to use the Connection Machine to understand how people
think, modeling the human brain by having each proces-
sor simulate small groups of nerve cells.

The company as a whole dreams of exploiting the Con-
nection Machine's multiheaded technology to build a true
artificial intelligence, a walking, talking robot every bit
as versatile and obedient as C3PO, the cybernetic help-
mate in Star Wars. "The long-range goal of this company
is to make a real robot," says Hillis. "The home robot
will eventually be the major appliance, as important as
the automobile is today. It will do everything you'd want
it to do: clean the house, fetch the paper, clear the dishes,
feed the dog."

At IBM, cautious pragmatism, not optimism, is the
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rule. The $50 billion giant is convinced that the future
of computing is in parallel processing, but it isn't sure
that harnessing the power of tens of thousands of weak
processors is the way to go. IBM refuses to comment
officially on the Connection Machine, but its researchers
say that too much is made of the machine's neuron-like
architecture, that Hillis is more of a publicity hound than
a scientist, and that, even with his novel communication
scheme, he may have underestimated the likelihood of
traffic jams.

"I wish we had a better theoretical understanding of
the issues involved in parallel processing," says Abe
Peled, IBM's vice-president of systems and director of
computer science. To get that understanding, IBM, nor-
mally a secretive loner, is collaborating with at least eight
universities whose researchers are pursuing different
strategies. "We can't do it alone," says the IBM com-
puter scientist Greg Pfister, "so our approach is to put
out some water and fertilizer, try to get some flowers to
grow, and see which one makes it."

At IBM itself, two flowers-RP3 and GFll-are ex-
pected to bloom in 1987. RP3 is a forty person effort,
headed by Pfister, to build a machine that contains 512
fairly powerful processors; unlike the more numerous but
weaker processors in the Connection Machine, they will
not all be restricted to doing the same thing at the same
time but can go their own, separate ways. How this
greater flexibility will work in practice remains to be
seen.

Unlike RP3, which is a jack-of-all-trades computer,
the GFlI parallel processor has only one purpose in life:
to test physicists' most fundamental theory of the nature
of matter. For more than twenty-four hundred years,
since the time of the pre-Socratic atomistic philosophers,
man has searched for the indivisible constituents of mat-
ter. In the past few decades, experimentalists have built
powerful machines for smashing bits of matter together
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with more and more force; in the debris of these colli-
sions, they have identified more than two hundred new
species of subatomic particles, exotic relatives of the pro-
ton and the neutron, the two familiar constituents of the
core of atoms. Many of these particles, in turn, showed
signs of an inner structure. In 1964, theorists started to
bring order to this untidy zoo of particles by hypothesiz-
ing that each structured species was made up of a differ-
ent combination of a few elementary building blocks
called quarks. In the early 1970s, the quark hypothesis
became the basis of quantum chromodynamics, or QCD,
a comprehensive theory that describes what particles are
made of and how they interact.

"Today, QCD looks right in 55 million ways" says
Don Weingarten, a particle physicist on the GF11 proj-
ect, "but all these ways are crude and qualitative. What
you'd like is a sharp numerical prediction that you can
go out and compare with the result of an experiment."
QCD does make sharp numerical predictions about ex-
otic phenomena well beyond the scope of experimental
physics, such as a speedy proton as massive as the entire
universe. To extract predictions from QCD about down-
to-earth things like protons in ordinary matter requires a
thorny series of calculations that no man-or existing
machine-could ever make. For example, calculating the
mass of a stationary proton calls for roughly a hundred
quadrillion calculations. That many calculations would
tie up a Cray I for thirty years and an IBM personal
computer for at least two hundred thousand years. The
GFII parallel processor will take only four months, and
the result, when compared with the measured mass, may
afford the first precise test of quantum chromodynamics.

GFll certainly doesn't look like a machine at the fore-
front of theoretical physics. Cooled by two refrigerator-
size air conditioners, it takes up a whole room. Four
hundred thousand chips forming 576 processors are
crammed into twenty huge blue cabinets that resemble
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oversize gym lockers. The processors are linked by two
hundred miles of wire that make up two thousand mul-
ticolored snaking cables known around IBM as Monty's
Pythons, after Monty Denneau, one of GFll's three de-
signers. "The guy who had to thread all the wires still
has a glazed look," says Denneau. "He used to be a
musician. Now he can't do anything."

Each of the 576 processors can communicate with any
other through an ultrapowerful switching network called
the Memphis switch. All messages, even ones between
processors that are in the same cabinet, have to be routed
through the Memphis switch-just as in the early days of
the courier service Federal Express, all packages (even
one, say, from Chicago to Detroit) had to be routed
through the city of Memphis. The switch can handle the
equivalent of two million simultaneous phone conversa-
tions.

Like the 65,536 processors in the Connection Ma-
chine, the 576 processors in GF11 all execute the same
instructions at the same time, but each is much more
powerful. Each can multiply a seven-digit number by a
seven-digit number in sixty trillionths of a second, mak-
ing it three thousand times faster than a Connection Ma-
chine processor. This kind of brute number crunching is
needed to compute the mass of the proton. Although
GF11 is designed to do calculations in quantum chro-
modynamics, IBM hopes that with minor adjustments the
machine will be able to tackle other scientific problems
that are too computationally intense for conventional
machines.

As GFIl and RP3 are being built, the Connection Ma-
chine is hard at work-its tiny red lights blinking hyp-
notically-at Perkin-Elmer's Oakton think tank. The
Strategic Defense Initiative requires mirrors to bounce
laser beams through space. At Perkin-Elmer, the mirrors
are being modeled on the Connection Machine.

Artificial intelligence or not, the Connection Machine
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looks good for problems in battlefield management. "To-
day, a battle might involve 100,000 units, each moving
at 25,000 miles an hour," says Perkin-Elmer's Tom
Kraay. "It will all be over in fifteen minutes, so you'll
have to quickly keep track of a lot of things-which is
where a Connection Machine would come in."

Perkin-Elmer, Thinking Machine's first commercial
customer, could not be more delighted with its purchase.
"We love it," says Kraay, "even if others are not yet
prepared to discard forty years of wisdom about pro-
gramming single processors. Parallel processing is like
rock and roll. 'What's this yucky stuff? What's this Elvis
Presley?' people said at first. But it took over, and so
will this."



IV

"ONE MAN, ONE VOTE"

That mathematics is involved in computers is hardly sur-
prising. After all, computers are at bottom just manipu-
lators of O's and l's. And it was mathematicians like Alan
Turing and John von Neumann who designed the first
electronic computers.

Long before people ever dreamed of computers, phi-
losophers and political scientists were wrestling with the
mechanics of setting up a democratic nation. Here,
mathematics rears its ugly head in a surprising and dis-
turbing way. The Nobel Prize-winning work of the
American economist Kenneth Arrow shows that achiev-
ing the ideals of a perfect democracy is a mathematical
impossibility. Indeed, undesirable paradoxes can arise not
only in voting but even before voting takes place, in de-
ciding how many representatives are allocated to each
district in a system of indirect representation, such as that
of the House of Representatives.
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IS DEMOCRACY MATHEMATICALLY
UNSOUND?

Game theory, the mathematical analysis of conflict, be it
in politics, business, military affairs, or what have you,
was born in 1927, with John von Neumann, the mathe-
matical jack-of-all-trades. Von Neumann recognized that
certain decision-making situations in economics and pol-
itics are mathematically equivalent to certain games of
strategy. Consequently, lessons learned from analyzing
these games are directly applicable to decision-making
situations in real life. Game theory, also called the sci-
ence of conflict, was not widely known until 1944, when
von Neumann teamed up with Oskar Morgenstern, a
Princeton economist, to publish a now-classic book,
Theory of Games and Economic Behavior.

Part of the intellectual appeal of game theory is that
many of its results, like those of quantum mechanics or
the theory of relativity, seem counterintuitive, even sub-
versive. Typical is a problem from a 1948 American
Mathematical Monthly that still comes up in the literature
from time to time. Three men, call them Al, Ben, and
Charlie, engage in a novel dart game in which balloons
are targets. Each contestant has one balloon and remains
in the game as long as his balloon is unbroken. The win-
ner is the player who is left with the sole surviving bal-
loon. Each round, the contestants who remain in the
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! 1

AL BEN CHARLIE
(80% HITS) (60% HITS) (40% HITS)

DART GAME

game draw lots to determine the order of play and then
take turns throwing one dart apiece. They are all aware
of their respective skill: Al can pop a balloon 4 out of 5
times (or 80 percent of the time), Ben can pop one 3 out
of 5 times (60 percent of the time), and Charlie can pop
one 3 out of 5 times (40 percent of the time). What strat-
egy should each contestant adopt?

The answer seems obvious. Each player should aim at
the balloon of the stronger opponent because if he hits
it, he'll be left to face only the weaker shot. Neverthe-
less, if all three contestants follow this sensible-sounding
strategy, they finish in reverse order of skill! Probability
calculations reveal that Charlie, the worst shot, has the
best chance of winning (37 percent) and that Al, the best
shot, has the least chance, 30 percent, to Ben's 33 per-
cent.

What has gone wrong? The problem is that while Al
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AL BEN CHARLIE
30% 33% 37%

"OBVIOUS STRATEGY"

and Ben slug it out among themselves, Charlie faces no
threat at all. His survivability is enhanced by Al's and
Ben's insistence on first doing each other in.

A better strategy for both Al and Ben is not to fire at
each other until they have taken out Charlie. Charlie's
best counter-strategy is still to throw darts at Al, the
stronger opponent. In this case, Al's and Ben's chances
of winning improve to 44.4 percent and 46.5 percent,
respectively, and Charlie's chances decline dramatically,
to 9.1 percent. This scenario may be unstable, how-
ever, because it requires Al and Ben to cooperate. Although
Al is the best shot, he still doesn't have the best chances
of winning, and he might be tempted to double-cross
Ben. But if he fails to knock Ben off with the double-
cross dart, Ben could fire back-and the calculus of
chances of winning would change again.

Instead of cooperating with Ben, whether or not be



ARCHIMEDES' REVENGE

AL BEN CHARLIE
44.4% 46.5%. 9.1%

AL AND BEN ATTACK CHARLIE

double-crosses him, Al might try another strategy, dis-
cussed in the book Game Theory in the Social Sciences:
Concepts and Solutions, by Martin Shubik, professor of
mathematical institutional economics at Yale University.
The idea is that Al, by making verbal threats, tries to set
up a situation in which Ben and he are slugging it out
but in which Charlie is firing not at him, as in the first
scenario, but at Ben. Al announces that he will never
throw darts at Charlie's balloon (and always fire at Ben)
as long as Charlie never fires at him. Al makes it clear
that if Charlie does fire at him, he will fire back. Given
the threat of retaliation, probability calculations show that
Charlie does best to fire only at Ben's balloon. If Ben
attacks Al, the resulting winning chances are 44.4 per-
cent for Al, 20.0 percent for Ben, and 35.6 percent for
Charlie. Al has not increased his chances of winning-
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AL BEN CHARLIE
44.4% 20% 35./6

AL THREATENS CHARLIE BUT ATTACKS BEN

the percentage hasn't changed-but he's now the front-
runner.

Naturally, Ben does not want to be the favorite to lose,
and so he, like Al, also warns Charlie, "I will not fire
at you unless you fire at me, in which case I'll retaliate."
Faced with threats from both opponents, Charlie's best
strategy is to fire not at either of them but into the air,
assuming the rules allow such pacifism! This curious
strategy is best for Charlie, Shubik explains, because his
only goal in the first phase of the game, so long as no
one is attacking him, is to increase his chances of facing
Ben instead of Al in the second phase, the one-on-one
encounter. Charlie's cleverness has increased his chances
of winning by 0.6 percent, the chances now being 38.1
percent for Al, 25.7 percent for Ben, and 36.2 percent
for Charlie. But this is not the final word. Things would
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AL BEN CHARLIE
38.1% 25.7% 36.2%

AL AND BEN THREATEN CHARLIE BUT ATTACK EACH
OTHER

get curiouser and curiouser if Al expanded his threat to
discourage Charlie from firing into the air.

This problem is typical of many in game theory. The
underlying assumption is that each player is rational and
that each is out for his own self-interest. One moral of
this problem is that the obvious strategy-for each con-
testant to try to knock off the stronger opponent-is not
always good. This is what I mean by a solution's being
counterintuitive. Of course, as you plunge further into
game theory, your intuitions change and the unexpected
is less unexpected, if it's unexpected at all. Another moral
of the balloon battle is that the possible solutions cannot
be properly evaluated in the absence of information about
whether the players can communicate, collude, make
threats, and enter into agreements that are binding and
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enforceable. In game theory, it is often necessary to un-
derstand such sociological factors.

Without attempting to be rigorous, we can easily ap-
preciate that the balloon battle might be analogous to a
competitive situation in politics or economics. According
to Steven Brams, professor of politics at New York Uni-
versity, one of the lessons of the balloon battle might be
extended to a multicandidate political race, such as the
1984 Democratic presidential primary in New Hamp-
shire, which had eight candidates. "It might seem," says
Brams, "that a candidate's best strategy is to go after the
strongest opponent in his part of the political spectrum.
If you're a liberal and there are two other liberals, you
go after the stronger one. What happens is that the two
strongest will shoot each other out, and the weakest lib-
eral will be left." Now, if that happens across the board,
the weakest candidate in each segment of the political
spectrum will survive-and "there's no way," says
Brams, "that a strong candidate will emerge from that
kind of field."

In 1951, Kenneth Arrow, an American economist,
astounded mathematicians and economists alike with a
convincing demonstration that any conceivable demo-
cratic voting system can yield undemocratic results. Ar-
row's unsettling game-theoretic demonstration drew
immediate comment in academic circles the world over.

One year later, in 1952, Paul Samuelson, later the win-
ner of the Nobel Memorial Prize in Economic Sciences,
put it this way: "The search of the great minds of re-
corded history for the perfect democracy, it turns out, is
the search for a chimera, for a logical self-contradiction.
Now scholars all over the world-in mathematics, poli-
tics, philosophy, and economics-are trying to salvage
what can be salvaged from Arrow's devastating discovery
that is to mathematical politics what Kurt G6del's 1931
impossibility-of-proving-consistency theorem is to math-
ematical logic."
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Arrow's demonstration, called the impossibility theo-

rem (since it showed, in effect, that perfect democracy
is impossible), helped earn him the Nobel Prize in eco-
nomics in 1972. Today, the fallout from Arrow's "dev-
astating discovery," one of the earliest and most
astonishing results in game theory, is still being felt.

The undemocratic paradoxes inherent in democratic
voting are best explained by an example. Consider three
friends, Ronald, Clara, and Herb, who, after a hard day
of work, have a craving for fast food. They are deter-
mined to dine together at one of three eateries, Mc-
Donald's, Burger King, or Wendy's, but they cannot agree
on which. Ronald, who longs for a McD.L.T., served in
the nifty partitioned container that keeps the greasy ham-
burger runoff from flooding the crisp, farm-fresh veg-
gies, wants to go to McDonald's; of the other two
restaurants, he favors Burger King over Wendy's. Eager
to go where the beef is, Clara prefers Wendy's to Mc-
Donald's and McDonald's to Burger King. Herb, dream-
ing of a double Whopper with cheese, likes Burger King
best and McDonald's least.

Ronald Clara Herb
1. McDonald's 1. Wendy's 1. Burger King
2. Burger King 2. McDonald's 2. Wendy's
3. Wendy's 3. Burger King 3. McDonald's

FAST-FOOD PREFERENCES

The three friends decide to settle the matter by voting
first between McDonald's and Wendy's and then between
the winner of that vote and Burger King. If Ronald, Clara,
and Herb each vote their real preference, they'll end up
at Burger King (with Wendy's the runner-up).
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McDonald's Wendy's

(Ronald) (Clara)
vs. vs. Burger King

Wendy's Burger King
(Clara, Herb) (Ronald, Herb)

SINCERE VOTING

Since Burger King is Clara's last choice, she will not be
happy. If Clara votes on the first ballot not for her real
preference, Wendy's, but for her second choice, Mc-
Donald's, she ensures that McDonald's will win the first
ballot as well as the second. It is paradoxical that Clara
ultimately achieves a preferable result by initially violat-
ing her own preference.

McDonald's McDonald's
(Ronald, Clara) (Ronald, Clara)

vs. ' vs. > McDonald's
Wendy's Burger King
(Herb) (Herb)

INSINCERE CLARA

Moreover, even if Ronald and Herb get wind of Clara's
strategy, they cannot effectively interfere. Herb is out-
raged because Clara's crafty voting has made his third-
choice restaurant the winner, whereas "honest" voting
on her part would have made his first choice the winner.
Herb tries to persuade Ronald to conspire with him in
some insincere voting of their own, but Ronald wants no
part of it, because he cannot possibly improve his own
position: Clara's voting has made Ronald's first-choice
restaurant the winner.

A change in the voting sequence cannot eliminate the
possibility of crafty voting. All it would do is give some-
one other than Clara the opportunity to be insincere.
Suppose the three friends vote first between Burger King
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and Wendy's, with the winner set against McDonald's: if
they all vote "honestly," they'll end up at McDonald's,
leaving Herb disappointed.

Burger King
(Ronald, Herb)

vs.

Wendy's
(Clara)

Burger King
(Herb)

vs. McDonald's
McDonald's >

(Ronald, Clara)

SINCERE VOTING

If Herb's shrewd enough to foresee this, he'll cast a sly
first vote that will steer them ultimately to Wendy's.

Burger King
(Ronald)

vs.
Wendy's

(Clara, Herb)

Wendy's
(Clara, Herb)

vs.
McDonald's

(Ronald)

Wendy's

INSINCERE HERB

The other possible voting sequence-first between
McDonald's and Burger King and then between the win-
ner of that vote and Wendy's-is no better.

Burger King
(Herb)

vs.
McDonald's

(Ronald, Clara)

McDonald's
(Ronald)

vs.
Wendy's

(Clara, Herb)

> Wendy's

SINCERE VOTING

It simply gives Ronald the opportunity for shrewd voting.
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Burger King Burger King

(Herb, Ronald) (Herb, Ronald)

vs. vs. Burger King
McDonald's Wendy's

(Clara) (Clara)

INSINCERE RONALD

Although the predicament of the three would-be diners
is fictitious, it is not contrived. The possibility of crafty
voting may arise in any majority-rule voting in which a
series of ballots are cast to select a single winner from
three or more alternatives. This happens in the House of
Representatives when an amendment to a bill is intro-
duced. First, the House votes on the amendment. If it
passes, a second and final vote is taken between the
amended bill and the option of no bill at all. If the
amendment is defeated, the second vote is between
the original bill and no bill.

Amended Bill
vs.

Amended Bill No bill
vs.

Bill
Bill
vs.

No bill

AMENDMENT PARADOX

In Mathematical Applications of Political Science, Wil-
liam Riker, of the University of Rochester, analyzes a
1956 House vote on a bill calling for federal aid for school
construction. An amendment was offered that would pro-
vide federal aid only to states whose schools were inte-
grated. The House was essentially divided into three
interest groups: Republicans, northern Democrats, and
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southern Democrats. The Republicans, being against
federal aid but in favor of integration, favored no bill at
all but preferred the amended bill to the original. The
northern Democrats favored the amended bill but pre-
ferred the original to no bill. The southern Democrats,
being from states with segregated schools, favored the
original bill but preferred no bill to the amended bill.

Republicans
1. No bill
2. Amended bill
3. Bill

Northern Democrats
1. Amended bill
2. Bill
3. No bill

Southern Democrats
1. Bill
2. No bill
3. Amended bill

PREFERENCES ON SCHOOL AID

On the ballot on the amendment, the Republicans pro-
vided the winning votes, with the northern Democrats.
But on the second vote, between the amended bill and
no bill, the Republicans joined forces with the southern
Democrats to defeat the amended bill. The paradox here
is that in the absence of the amendment, in a straight
vote between the original bill and no bill, the original
bill would undoubtedly have won!

Amended Bill
(Republicans,

Northern Democrats)
vs.
Bill

YET,

Amended Bill
(Northern Democrats)

vs.

No bill
(Republicans,

Southern Democrats

BILL
(Northern Democrat!

Southern Democrats
vs.

No bill

p No bill

, BILL

SCHOOL AID VOTE
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"As if it were not enough that the choice may depend

on the voting order," Riker concludes, "this fact can be
used to twist the outcome of legislative processes. It may
be possible to create a voting paradox such that no action
is taken by the legislature even though a proposed bill
would have passed prior to the creation of the paradox.
A legislator could introduce an amendment to create such
a paradox, and if the voting order were just right, the
amended proposal would then be defeated."

As early as the eighteenth century, the French mathe-
matician Jean-Antoine-Nicolas Caritat, marquis de Con-
dorcet, identified a fundamental voting paradox. He
discovered that society often has preferences that, if held
by an individual, would be dismissed as irrational. Con-
sider again our three hungry friends. Ronald prefers
McDonald's to Burger King and Burger King to Wendy's.
Given those preferences, he would be irrational to prefer
Wendy's to McDonald's. Yet these are precisely the pref-
erences of our friends as a group! In a vote of all three
friends, they prefer McDonald's to Burger King, Burger
King to Wendy's, and Wendy's to McDonald's. Could it
be that. from a mathematical point of view democracy is
inherently irrational?
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RONALD'S PREFERENCES:

McDONALD'S-* BURGER KING -- WENDY'S

THEREFORE McDONALD'S -- WENDY'S

SOCIETY'S PREFERENCES:

-- 1nv. Iag
/ o VCIJJIVNP'.I J .3

WENDY'S

BURGER KING

THE IRRATIONAL SOCIETY

The mathematical paradoxes that arise in democratic
voting have been extensively studied by Steven Brams,
one of the world's most prolific game theorists. He has
brought mathematics to bear not only on questions in-
volving voting but also on all sorts of questions that
hardly seem to be quantitative. In his book The Presi-
dential Election Game, Brams uses game theory to ana-
lyze the behavior of Richard Nixon and the Supreme
Court in the landmark case that forced the president to
release the incriminating "White House tapes." In Bib-
lical Games, he applies game theory to conflicts in the
Old Testament between God and human beings and con-
cludes that He is a superb strategist, a touchy, brooding,
arbitrary Being who is obsessed with His reputation on
Earth. In Superior Beings: If They Exist, How Would We
Know?, he discusses game-theoretic implications of om-
niscience, omnipotence, immortality, and incomprehen-
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sibility. Brams also applies game theory to down-to-earth
subjects, everything from superpower conflicts and pro-
fessional sports drafts to labor-management negotiations
and the scheduling of television shows.

Bramns's interest in applied mathematics goes back to
his undergraduate days, just after Sputnik, at MIT. He
had intended to major in physics but scrapped the idea
when he discovered that he was a total klutz in the lab-
oratory. Leaving broken equipment in his wake, he turned
to mathematics, at which he had always excelled. He also
took courses from big-name professors in the relatively
new political-science department. There he found his
metier: applying mathematics to political situations. His
first efforts were chiefly statistical, involving mathemat-
ical modeling of international trade flow. From MIT, he
went to Northwestern to do graduate work because it had
an avant-garde, very quantitative program in political
science.

"Like every self-respecting political scientist," says
Brams, "I figured that I should do some work in govern-
ment, but it wasn't the Peace Corps for me." During the
summers of 1963 and 1964, he worked first for the di-
rector of the National Institutes of Health and then for
the Office of the Secretary of Defense. When he com-
pleted graduate school, he went to work full-time at the
Institute for Defense Analysis (IDA), a nonprofit re-
search organization that did most of its work for the Joint
Chiefs of Staff and the Office of the Secretary of Defense.
"I was specifically hired to do a study of how decisions
were made in the Department of Defense," recalls
Brams. "For six months, I designed and pretested a
questionnaire. I was about to go into the field and inter-
view high-level people-assistant secretaries, generals,
admirals-when the president of IDA stopped the study.
The Vietnam War was heating up then, and he felt that
the study was too controversial, particularly since the
Department of Defense was IDA's chief client. I was very
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chagrined and decided that the only place I'd have the
freedom and independence to do what I wanted was at a
university. "

He started teaching at the University of Rochester,
which had the most quantitative political-science depart-
ment in the country. Riker, who analyzed the 1956 House
vote on school construction, was at Rochester, and Brams
picked up from him a fascination with game theory.
"And," says Brams, "I've never been off the subject
since. "

Critics of game theory sometimes charge that it is an
insidious discipline, a mathematical stamp of approval
for the crafty tactics of political operators. Game theory,
however, does not create voting paradoxes; it merely
identifies them in a formal way. The paradoxical vote in
the House on the 1956 school construction bill came
about naturally, not because congressmen took their cue
from some Machiavellian game-theoretic journal.

Once a paradox is formally identified, game theory can
help evaluate how often it arises. Consider, for example,
Condorcet's observation that society's preferences, as de-
termined by a vote of individuals, may be paradoxically
"intransitive": that society could prefer McDonald's to
Burger King and Burger King to Wendy's but favor Wen-
dy's over McDonald's. If society consists of three indi-
viduals (Ronald, Clara, and Herb), the intransitivity will
come about only when each of the restaurants is ranked
first by one individual, second by another, and third by
the other. Given that all possible individual preferences
are equally likely, the chance of a societal intransitivity
is 5.6 percent. That may not seem like much, but keep
in mind that this percentage is only for the simplest case
of three people and three alternatives.

In the book Paradoxes in Politics, Brams summarizes
recent studies of the probability of societal intransitivity
in more complex cases. It turns out that the probability
increases both as the number of alternatives increases
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and as the number of voters increases but that it is more
sensitive to the number of alternatives. If the number of
alternatives is held fixed at three, the possibility of the
paradox increases slightly, from 5.6 percent (for three
voters) to 8.8 percent (as the number of voters ap-
proaches infinity). If the number of voters is held fixed
at three, the possibility of the paradox skyrockets, from
5.6 percent (for three alternatives) to 100 percent (as-the
number of alternatives approaches infinity). Indeed, notes
Brams, for any fixed number of voters, the probability of
the paradox climbs to certainty as the number of alter-
natives increases indefinitely.

NUMBER OF VOTERS

3 5 7 9 11 g

z
f 3 5.6% 6.9% 7.5% 7.8% 8.0% 8.0%

-J 4 11.1% 13.9% 15.0% 15.6% 16.0% 17.6%
. 5 16.0% 20.0% 21.5% 23.0% 25.1% 25.1%

° 6 20.2% 25.5% 25.8% 28.4% 29.4% 31.5%
7 23.9% 29.9% 30.5% 34.2% 34.3% 36.9%

x OD 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
z; CHANCE OF SOCIETAL INTRANSITIVITY

From Stevn Brams, Paradoxes in Politics (New York:
Free Press, 1976), 42.

The mathematics in game theory may be simple com-
pared with what is involved in many other abstract math-
ematical disciplines, but it is certainly not trivial. Indeed,
the mathematics often leads to results that counter intu-
ition or defy expectation. The simplicity of the mathe-
matics does not make game theory any less rigorous than,
say, higher-dimensional topology, in which the journals
can be read only by a handful of Ph.D.'s. The simplicity
may even be a virtue: the mathematics in game theory is
so accessible that there is little likelihood that mathe-
matically dubious statements will go unnoticed in the lit-
erature.
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One such statement, which Brams exposed as being

incorrect, was made by-of all people-the officers of the
American Mathematical Society. That such a distin-
guished group of mathematicians could slip up shows how
surprising the results of game theory can be. The erro-
neous statement appeared on the instructions for a ballot
that AMS members were using to elect representatives to
a special committee. For the balloting, the AMS resur-
rected a voting procedure, the system of single transfer-
able vote (also called preferential voting), that was
advocated in the late 1850s by Thomas Hare, an obscure
English barrister who wrote two books critical of tradi-
tional voting systems.

Hare was particularly distressed by the fact that in tra-
ditional systems of proportional representation in which
each voting district elects more than one candidate, siz-
able minorities may effectively be disenfranchised, even
though their raw numbers suggest that they are entitled
to representation. Consider an imaginary district in which
two of four candidates are to be elected. Two of the can-
didates, call them Attila the Hun and GI Joe, are card-
carrying conservatives; of the two, Attila is more right
wing. The other two candidates, Hal Handout and Freeda
Freelove, are liberals; of the two, Freelove's heart bleeds
more profusely. There are twenty-three voters in the dis-
trict, of which thirteen are conservative and ten are lib-
eral. The preferences of the twenty-three, in ranking the
candidates from first choice to last choice, are as follows:

Number First Second Third Fourth
of Voters Choice Choice Choice Choice

7 Attila GI Joe Handout Freelove
6 GI Joe Attila Handout Freelove
6 Handout Freelove GI Joe Attila
4 Freelove Handout GI Joe Attila
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In an election in which each voter is allowed to vote

for two candidates, Attila and GI Joe will win, with thir-
teen votes apiece. As a result, the ten liberal voters will
not be represented, even though they constitute 43 per-
cent of the electorate. The thirteen conservative voters,
who make up 57 percent of the electorate, will have 100
percent of the representation.

Believing that the chosen representatives should mirror
more closely the makeup of the electorate, Hate devised
an ingeniously complex system that requires each voter
to list the candidates in order of preference, so far as he
can distinguish among them. The first-choice votes are
then tabulated, and the candidates who achieve a certain
quota of votes are the winners.

The quota is computed to be the minimum number of
first-place votes such that the maximum number of can-
didates who could meet the quota corresponds to the
number of open seats. In the example above, with twenty-
three voters and two open seats, the quota is eight; two
candidates (but not three) could get eight first-place votes.
A quota of seven would be too low because three can-
didates could conceivably meet the quota, one candidate
too many, since only two seats are open. (In general, the
quota can be found by dividing the number of voters by
one more than the number of open seats, adding one to
this quantity, and discarding any resulting fraction.)

Assuming that at least one candidate meets the quota
and at least one seat remains open, the winning votes in
excess of the quota are proportionally transferred to the
next-highest choice of those voters. If this transfer causes
another candidate to meet the quota, he is elected; and
if seats remain unfilled, surplus votes are again propor-
tionally transferred. This process continues until all the
seats are filled. If at any point there is an open seat but
no surplus votes to transfer, the candidate with the lowest
number of votes is eliminated and his supporters simply
transfer their votes to their next-highest choice who's still
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in the race. The idea is that no vote should be wasted: if
a vote is more than a candidate needs to be elected, it
should count elsewhere; if it's squandered on the least-
popular candidate, it should also count elsewhere.

The best way to understand these rules is to apply them
to a specific example. Let's try them in our imaginary
district. Since the quota is eight, each of the four candi-
dates falls short. Consequently, the least-popular candi-
date, Freeda Freelove, is eliminated, and her four
supporters transfer their votes to Hal Handout, their sec-
ond choice. If Freelove is scratched from the preference
lists, the tally is as follows:

Number
of Voters Preferences (Best to Worst)

7 Attila GI Joe Handout
6 GI Joe Attila Handout

10 Handout GI Joe Attila

Now, Hal Handout has exceeded the quota by two votes,
so he is elected. His two surplus votes are passed to GI
Joe:

Number
of Voters Preferences (Best to Worst)

7 Attila GI Joe
8 GI Joe Attila

This time around GI Joe has reached the quota, so he
wins the other seat.

The election of Handout and Joe would please Hare:
both the conservatives and liberals are represented, and
the more extreme candidates in each camp failed to win.
Impressed by results like this one, John Stuart Mill
praised Hare's system "as among the greatest improve-
ments yet made in the theory and practice of govern-
ment." Today, Hare's system is used in legislative
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elections in Australia, Malta, the Republic of Ireland,
and Northern Ireland, school board elections in New York
City, and city council elections in Cambridge, Massa-
chusetts, not to mention in balloting in many profes-
sional organizations like the American Mathematical
Society.

The AMS ballot included two strong statements:
'There is no tactical advantage to be gained by marking
fewer candidates" and "It is advisable to mark candi-
dates in the order of your preference until you are igno-
rant or indifferent concerning candidates whom you have
not ranked." Brams constructed an example to show that
this is not true, that it may be advantageous to mark
fewer candidates. Suppose there are seventeen voters, two
open seats, and four candidates, whom I've named Dr.
Graph, Dr. Digit, Dr. Point, and Dr. Manifold. The
preferences of the voters are as follows:

Number
Class of Voters Preference Order (Best to Worst)

A 6 Dr. Graph Dr. Digit Dr. Point Dr. Manifold
B 6 Dr. Graph Dr. Point Dr. Manifold Dr. Digit
C 5 Dr. Graph Dr. Manifold Dr. Digit Dr. Point

Dr. Graph wins with seventeen votes, a surplus of
eleven votes above the quota of six. Therefore, eleven
votes need to be transferred. In a situation like this, where
the voters who support the winner do not agree on their
other choices, Hare's rules (which the AMS follows) re-
quire that the eleven surplus votes be proportionally
transferred: 6/17 of eleven votes going to class A, 6/17 of
eleven votes going to class B, and 5/17 of eleven votes
going to class C. The result is the following:

Number
C/ass of Voters Preference Order (Best to Worst)

A 3.9 Dr. Digit Dr. Point Dr. Manifold
B 3.9 Dr. Point Dr. Manifold Dr. Digit
C 3.2 Dr. Manifold Dr. Digit Dr. Point
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Since no one meets the quota, the least-popular can-
didate, Dr. Manifold, is eliminated, and the 3.2 votes of
his supporters are transferred to their next-highest choice,
Dr. Digit:

Number

Class of Voters Prejrrence Order (Best to Worst)

A 7.1 Dr. Digit Dr. Point
B 3.9 Dr. Point Dr. Digit

Now, Dr. Digit has surpassed the quota of six, so he
joins Dr. Graph as an elected candidate.

The six voters in Class B (with the preference order
Dr. Graph, Dr. Point, Dr. Manifold, and Dr. Digit) are
pleased that their first choice was elected but disturbed
that their last choice was also chosen. Suppose the elec-
tion is repeated and everything is the same except that
two of these six voters decide to ignore the AMS's state-
ment ("There is no tactical advantage to be gained by
marking few candidates") and mark their ballots only for
Dr. Graph. The preferences now break down into four
categories:

Number
Class of Voters Preference Order (Best to Worst)

A 6 Dr. Graph Dr. Digit Dr. Point Dr. Manifold
B' 4 Dr. Graph Dr. Point Dr. Manifold Dr. Digit
B " 2 Dr. Graph
C 5 Dr. Graph Dr. Manifold Dr. Digit Dr. Point

Again, Dr. Graph is the unanimous choice on the first
tally. The eleven surplus votes of his supporters are dis-
tributed 6

/
1

7 of eleven to class A, 4/i7 of eleven to class
B', 2I7 of eleven to Class B", and 5/17 of eleven to class
C. But class B" drops out because its members did not
mark preferences beyond their first choice. Thus the sit-
uation is this:
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Number

Class of Voters Preference Order (Best to Worst)

A 3.9 Dr. Digit Dr. Point Dr. Manifold
B' 2.6 Dr. Point Dr. Manifold Dr. Digit
C 3.2 Dr. Manifold Dr. Digit Dr. Point

As in the first election, a second candidate did not reach
the quota, so the lowest vote getter, Dr. Point, is
scratched and the 2.6 votes of his supporters are incor-
porated into class C:

Number
Class of Voters Preference Order (Best to Worst)

A 3.9 Dr. Point Dr. Manifold
C, B' 5.8 Dr. Manifold Dr. Point

The two remaining candidates are both short of the quota
of six, but Dr. Point is eliminated since he has fewer
votes, and Dr. Manifold is declared the winner. The two
clever voters in class B who marked short ballots ended
up with a preferable result: their third choice won a seat
instead of their fourth choice.

In an actual election, such a result might be difficult to
achieve. "I wish to make clear," Brains writes, "that I
am not suggesting that voters would routinely make the
strategic calculations implicit [in this counterexample to
the AMS's ballot instruction]. These calculations are not
only rather complex but also could, on occasion, be neu-
tralized by counterstrategic calculations of other voters
in ganielike maneuvers. Rather, I am suggesting that the
advice to rank all candidates for whom one has prefer-
ences is not always rational under the Hare system."

Moreover, the result in Brains's counterexample would
be derailed if too many of the voters in class B tried to
be clever and cast short ballots. Suppose five of the six
voters list only Dr. Graph on their ballots. Then, after
the first tally, the situation is as follows:
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Number

Class of Voters Preference Order (Best to Worst)

A 3.9 Dr. Digit Dr. Point Dr. Manifold
B' 0.6 Dr. Point Dr. Manifold Dr. Digit
C 3.2 Dr. Manifold Dr. Digit Dr. Point

Since no one meets the quota, Dr. Point is forced to drop
out, and his supporters join class C:

Number
Class of Voters Preference Order (Best to Worst)

A 3.9 Dr. Digit Dr. Manifold
C. B' 3.8 Dr. Manifold Dr. Digit

This time Dr. Manifold must bow out, leaving Dr. Digit
the victor, as he originally was when the six voters in
class B ranked all four candidates on their ballots.

Lest you think that Brams's counterexample turns on
the fractions that result when votes are proportionally
transferred, he constructs another counterexample in
which only whole votes are transferred, as candidates are
eliminated. The example involves twenty-one voters who
are electing a single candidate from a field of four. Since
only one candidate is being chosen, the balloting system
is an elimination contest that ends as soon as one can-
didate has at least the bare majority of eleven votes. I
leave it to you to play the role of the game theorist and
construct a counterexample. The goal, of course, is to
assign preferences in such a way that some voters might
benefit by ignoring the AMS's advice. (At the end of this
chapter, you'll find the counterexample that Brams came
up with.)

The problems with the Hare system run much deeper
than these admittedly contrived counterexamples, which
can come about only given certain preferences and then
only if certain voters have precise information about all
the preferences of their fellow voters, if "enemy" voters
don't adopt effective counterstrategies, and if too many
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like-minded voters don't try to be crafty. Gideon Doron
and Richard Kronick of the University of Rochester call
attention to a perverse feature of the Hare system that
can arise even if all the voters cast sincere ballots reflect-
ing their complete preferences. * Under the Hare system,
Doron and Kronick note, a candidate may be hurt if he
receives additional votes. Indeed, more votes can make
a winner a loser!

To understand this perverse possibility, consider Doron
and Kronick's example, embellished by our old friends
Attila the Hun, GI Joe, Hal Handout, and Freeda Free-
love. This time the district has twenty-six voters. Two
candidates are to be elected, so the vote quota is nine.
The preferences of the twenty-six voters are diverse, not
split along liberal-conservative lines:

Number
Class of Votes Preferences (Best to Worst)

A 9 Attila GI Joe Handout Freelove
B 6 Handout Freelove GI Joe Attila
C 2 Freelove Handout 01 Joe Attila
D 4 Freelove GI Joe Handout Attila
E 5 GI Joe Handout Freelove Attila

Since Attila has reached the quota, he is elected. Attila
has no surplus votes, so the lowest vote getter, GI
Joe, is eliminated, and his five votes are transferred to
class B:

Number
Class of Votes Preferences (Best to Worst)

B, E 11 Handout Freelove
C 2 Frelove Handout
D 4 Freelove Handout

*See Doron and Kronick, "Single Transferrable Vote: An Ex-
ample of a Perverse Social Choice Function," American Journal
of Political Science 21 (May 1977): 303-11.
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Handout, with eleven votes, is therefore elected.

Consider, now, a second set of preferences that is iden-
tical to the previous set, with the exception that the two
voters who preferred Freelove to Handout (class C) now
prefer Handout to Freelove (class C'). In other words,
the preferences of class C' are identical to those of class
B, so that Handout starts with eight first-place votes, two
more than before:

Number
Class of Votes Preferences (Best to Worst)

A 9 Attila GI Joe Handout Freelove
B 6 Handout Freelove GI Joe Attila

C' 2 Handout Freelove Gl Joe Attila

D 4 Freelove GI Joe Handout Attila
E 5 GIl Joe Handout Freelove Attila

Again, Attila is immediately elected and has no surplus
votes to transfer. This time, however, the lowest vote
getter is Freelove, not GI Joe, and Freelove's four votes
are combined with the five votes in class E, pushing GI
Joe over the quota:

Number
Class of Votes Preferences (Best to Worst)

B 6 Handout GI Joe
C' 2 Handout GI Joe

E, D 9 Gl Joe Handout

The outcome could not be more perverse. Recall that
all the preference orders are the same, except that two
voters elevated Handout from second choice to first. This
had the effect of denying him election. "It is simply not
fair," Doron and Kronick conclude, "that a candidate
could lose an election because he or she received too
many votes. Most voters would probably be alienated
and outraged upon hearing the hypothetical (but theoret-
ically possible) election night report 'Mr. O'Grady did
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not obtain a seat in today's election, but if 5,000 of the
supporters had voted him in second place instead of first
place, he would have won!' "

The perverse possibility that more votes can turn a
winner into a loser is not just an artifact of the Hare
system. In their book Approval Voting, Brains and Peter
Fishburn, a mathematician at AT & T Bell Labs, show
that it can also plague such familiar voting systems as a
plurality election followed by a runoff between the top-
two vote getters. Consider three candidates, Marco
Denunzio, Patrick O'Rourke, and Basil Jefferson, and
seventeen voters who have the following preferences:

Number
Class of Votes Preferences (Best to Worst)

A 6 Denunzio O'Rourke Jefferson
B 5 Jefferson Denunzio O'Rourke
C 4 O'Rourke Jefferson Denunzio
D 2 O'Rourke Denunzio Jefferson

If all the voters vote sincerely, Denunzio (with six votes)
and O'Rourke (also with six) will end up in the runoff,
which Denunzio will win, eleven votes to six.

Now imagine that the preferences are the same, except
that the last class of voters elevates Denunzio from sec-
ond choice to first choice:

Number

Class of Votes Preferences (Best to Worst)

A 6 Denunzio O'Rourke Jefferson
B 5 Jefferson Denunzio O'Rourke
C 4 O'Rourke Jefferson Denunzio

D' 2 Denunzio O'Rourke Jefferson
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On the first ballot, Denunzio (eight votes) and Jefferson
(five) make the runoff, which Denunzio then loses, eight
votes to nine, because O'Rourke's four supporters join
Jefferson's. Denunzio's increased support has perversely
torpedoed his victory.

Brams also suggests that the public announcement of
how candidates fared in a preelection poll might have the
same perverse effect in a straightforward plurality elec-
tion without a runoff. Given the first set of preferences
above, in which the two class D voters prefer O'Rourke
to Denunzio, the poll results would inform Jefferson's
supporters that their candidate was in last place. Jeffer-
son's supporters would have the information they need to
abandon their candidate and vote strategically for their
second choice, Denunzio, who would thereby win. Given
the second set of preferences above, in which Denunzio
has picked up the support of the class D voters, the poll
results would inform O'Rourke's supporters that their
candidate was in last place. Consequently, they would
throw their support to Jefferson, who would then beat out
Denunzio, in spite of Denunzio's picking up the support
of two more voters. In effect, the poll takes the place of
a first ballot, making the actual election equivalent to a
runoff.

In another paper,* Doron points out another troubling
feature of the Hare system: a candidate who wins in two
separate districts can lose in a combined tally of the two
districts. In Doron's example, a single candidate is to be
elected from a group of four. Each district has twenty-
one voters, so the quota in each is eleven.

*'-The Hare Voting System Is Inconsistent," Political Studies 27
(June 1979): 283-86.
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DISTRICT I

Number
Class of Votes

A
B
C
D

8
4
3
6

Attila
GI Joe
Handout
Freelove

Preferences (Best to Worst)

G6 Joe
Handout
Attila
Handout

Handout
Fteelove
Fteelove
GI Joe

DISTRICT 2

Number
Class of Votes

A
B
C

D'

8
4
6

3

Attila
G1 Joe
Handout
Freelove

Preferences (Best to Worst)

G1 Joe
Handout
Attila

Attila

Handout
Freelove
Freelove

G1 Joe

In both of the districts, no one initially has the quota of
eleven. In district I, Handout is eliminated since he re-
ceived the fewest first-place votes; the votes of his sup-
porters are transferred to Attila, who wins with eleven
votes. In district 2, Attila is also the winner, as he picks
up the three votes from Freelove, the lowest vote getter.

Consider what happens when the two districts are
merged into a single district, where the preferences of
each of the forty-two voters remain the same:

SINGLE DISTRICT

Number
Class of Votes

A
B
C
D
D'

16
8
9
6
3

Preferences (Best to Worst)

Attila
61 Joe
Handout
Freelove
Freelove

G1 Joe
Handout
Attila
Handout
Attila

Handout
Freelove
Freelove
G6 Joe
G6 Joe

The quota is now twenty-two votes. Since voter prefer-
ences are exactly the same, it would be perversely incon-
sistent if Attila were not the victor. But perversity carries

Freelove
Attila

-GI Joe
Attila

Freelove
Attila
G6 Joe

Handout

Freelove
Attila
GI Joe
Attila
Handout
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the day. Since no one has the quota, GI Joe is eliminated,
and the eight votes of his supporters are transferred to
their second choice, Handout:

SINGLE DISTRICT
Number

Class of Votes Preferences (Best to Worst)

A 16 Attila Handout Freelove
B 8 Handout Freelove Attila
C 9 Handout Attila Freelove
D 6 Freelove Handout Attila

D' 3 Freelove Attila Handout

Again, all the candidates fall short of the quota, so
Freelove, who has the fewest votes, is eliminated. Free-
love's three supporters in class D' transfer their votes to
their third choice, Attila, whereas Freelove's six sup-
porters in class D transfer theirs to Handout:

SINGLE DISTRICT

Number
Class of Votes Preferences (Best to Worst)

A. D' 19 Attila Handout
B. C. D 23 Handout Attila

Handout has emerged the winner, with twenty-three
votes.

This perverse result can also arise in the reverse direc-
tion, when a large district is split into two smaller ones.
Forward or reverse, this possibility "makes gerryman-
dering a very attractive option to affect election results,"
Doron concludes.

And this is by no means the end of the paradoxes! In
an entertaining article,* Brams and Fishburn call atten-
tion to two other disturbing features of the Hare system:

*See Fishburn and Brams, "Paradoxes of Preferential Voting,"
Mathematics Magazine 56 (September 1983): 207-14.
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the no-show paradox and the thwarted-majorities para-
dox. In the no-show paradox, the addition of ballots on
which a certain candidate is ranked last may make that
candidate a winner instead of a loser. In other words,
voters who rank that candidate last may be better off stay-
ing home than filling out a ballot on which they, rank him
last!.ln the thwarted-majorities paradox, a certain can-
didate does not win even though he could beat each of
the other candidates in a face-to-face race. (I urge those
of you who aspire to be game theorists to construct nu-
merical examples that demonstrate each of these para-
doxes; if you do not succeed, you can always consult
Brains and Fishburn's very readable paper.)

The thwarted-majorities paradox afflicts not just the
bizarre Hare system but also many common voting sys-
tems, such as a simple-plurality election. Imagine a three-
way race between Mr. Liberal (preferred by 49 percent
of the electorate), Mr. Moderate (preferred by 10 per-
cent), and Mr. Conservative (preferred by 41 percent).
Now, consider the second choice of each of the three
constituencies. The liberal voters naturally prefer Mr.
Moderate to Mr. Conservative, so in a two-way contest
between these candidates, Mr. Moderate will win, with
59 percent of the vote (to Mr. Conservative's 41 percent).
the conservative voters naturally prefer Mr. Moderate to
Mr. Liberal, so in a two-way contest between these can-
didates, Mr. Moderate will win, with 51 percent of the
vote (to Mr. Liberal's 49 percent). In a three-way race,
however, Mr. Moderate will come in last. In certain pri-
maries, a runoff election is held between the top-two vote
getters if no candidate wins a majority. Mr. Moderate
would be excluded from such a runoff even though he
could beat either opponent in a two-way race.

The paradox may run even deeper. Suppose that on the
political spectrum Mr. Liberal is way left of center and
Mr. Conservative is only slightly right of the center. In
that case, in the runoff between Mr. Liberal and Mr.
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Conservative, all the moderate votes might go to Mr.
Conservative, making him the winner, with 51 percent
of the vote. Now we have a curious alignment of pref-
erences in which Mr. Conservative wins on two ballots,
Mr. Liberal wins on one ballot, and Mr. Moderate has
enough strength to defeat either opponent in a head-to-
head contest. You choose your voting system, and you've
chosen your winner.

Brains advocates a voting system called approval vot-
ing. It either altogether eliminates the paradoxes dis-
cussed here, reduces their likelihood, or diminishes their
impact. Approval voting replaces the time-honored prin-
ciple "One man, one vote" with the principle "One man,
many votes." In other words, each voter can approve of
(that is, vote for) as many candidates as he likes, al-
though he can cast only one vote per candidate. The idea
is that a voter need never fear that he is wasting his vote
on an unpopular candidate (say, John Anderson in the
1980 presidential election), because he can also vote for
whomever else he approves of.

Under approval voting, the winner will not be a can-
didate who, in a simple-plurality election, ekes out a vic-
tory because his opponents split the vote. Approval voting
is less likely to thwart the wishes of the majority. And
when the majority has no clear-cut preference (in other
words, when there is a societal intransitivity, when so-
ciety prefers McDonald's to Burger King, Burger King to
Wendy's, but Wendy's to McDonald's), approval voting
will select the choice that meets with the most approval.
We saw how, when Ronald, Clara, and Herb voted on
restaurants in two ballots, it could be advantageous to
vote insincerely, for your second choice instead of your
first choice. When there are three candidates, approval
voting is immune to this kind of insincere voting: it is
never to your advantage to vote for a second choice with-
out also voting for a first choice. Moreover, under ap-
proval voting you never benefit from staying home and
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not voting, as you do in the Hare system, and no funny
business happens when districts are combined or split.

Despite these manifest advantages, approval voting is
apparently used nowhere in the world in a public forum
(other than a few professional societies) except in the
United Nations Security Council, where member nations
can vote for more than one candidate for the post of sec-
retary general. New York and Vermont thought about us-
ing approval voting, but bills to enact it died in the state
legislature. The game theorist's role in influencing public
policy is a minor one, even when he's come up with a
proposal whose benefits to society seem to be mathe-
matically unassailable.

ANSWER TO PROBLEM POSED

Here's Brams's example of a situation in which it could
be advantageous to cut short your ballot in the Hare sys-
tem of voting. There are eleven voters and four candi-
dates for one office.

Number
Class of Votes Preference Order (Best to Worst)

A 7 Dr. Graph Dr. Manifold Dr. Digit Dr. Point
B 6 Dr. Manifold Dr. Graph Dr. Digit Dr. Point
C 5 Dr. Digit Dr. Manifold Dr. Graph Dr. Point
D 3 Dr. Point Dr. Digit Dr. Manifold Dr. Graph

Since no candidate has eleven votes, the lowest vote get-
ter, Dr. Point, is scratched, and the three votes of his
supporters are transferred to class C:
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Number

Class of Votes Preference Order (Best to Worst)

A 7 Dr. Graph Dr. Manifold Dr. Digit
B 6 Dr. Manifold Dr. Graph Dr. Digit

C, D 8 Dr. Digit Dr. Manifold Dr. Graph

Still, no one has a simple majority of the votes, so again
the least-popular candidate, Dr. Manifold, is eliminated.
When the six votes of his supporters are combined with
the seven votes in class A, Dr. Graph is elected, with a
total of thirteen votes.

The three voters in class D are unhappy because their
last choice was the victor. Suppose they had marked only
their first choice on the ballot:

Number
Class of Votes Preference Order (Best to Worst)

A 7 Dr. Graph Dr. Manifold Dr. Digit Dr. Point
B 6 Dr. Manifold Dr. Graph Dr. Digit Dr. Point
C S Dr. Digit Dr. Manifold Dr. Graph Dr. Point
D 3 Dr. Point

As before, no one initially has eleven votes, and Dr.
Point is eliminated. This time, however, his three votes
are not transferred, since his supporters did not indicate
any other preferences. Of the three remaining candi-
dates, Dr. Digit is now the least popular. When his five
votes are incorporated into class B, Dr. Manifold
emerges the winner-a result more to the liking of the
voters in class D.
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THE QUANTUM CONGRESS

In 1882, Roger Q. Mills, a Texas congressman, uttered
one of the most heartfelt denunciations of mathematics
ever to pass through human lips: "I thought that mathe-
matics was a divine science. I thought that mathematics
was the only science that spoke to inspiration and was
infallible in its utterances. I have been taught always that
it demonstrated the truth. I have been told that while in
astronomy and philosophy and geometry and all other
sciences, there was something left for speculation, that
mathematics, like the voice of Revelation, said when it
spoke, 'Thus saith the Lord.' But here is a new system
of mathematics that demonstrates the truth to be false."

Mills was speaking of a problem that has faced the
House of Representatives since the beginning of the Re-
public: How many representatives should each state be
allotted? The mathematics of congressional apportion-
ment may sound like a simple application of the cher-
ished idea of one man, one vote. But, like direct voting
schemes, systems of indirect representation are plagued
by mathematical paradoxes so devilishly striking that they
provoked Congressman Mills to new rhetorical heights.
The paradoxes in direct voting schemes are game-
theoretic in nature; they involve voters conniving to elect
their own candidates. The issue in congressional appor-
tionment is the number of representatives each state is
allowed, not how the representatives are elected. Appor-
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tionment belongs to an area of applied mathematics called
social choice theory.

Why is apportionment such a problem? Article I, Sec-
tion II, of the Constitution of the United States seems to
provide a straightforward solution: The number of rep-
resentatives each state sends to the House of Represen-
tatives shall be proportional to the state's population. The
problem is that although the loyalties of a congressman
can be divided, his body cannot be; human beings, like
pennies or electric charges or subatomic spin states, are
quantized.

Suppose you want to set up a House of Representatives
in a country that comprises only two states: state X, with
a population of 11, and state Y, with a population of 23.
What is the smallest house in which each state could be
represented according to its population? The smallest
house would have 34 members; with fewer members, one
of the states (or both of them) would have a fractional
number of representatives. In other words; when H (the
size of the house) is less than 34, there are no integers X
and Y (the numbers of representatives from states X and
Y, respectively) that satisfy the equations X + Y = H
and X/Y = 11/23. And of course a house of 34 for a
population of 34 is not exactly indirect representation.

The problem is obviously compounded for a country
the size of ours, with fifty states whose populations are
not integral multiples of one another. For a house of a
given size, the ideal number of representatives for each
state is found by multiplying the ratio of the state's pop-
ulation to the total population by the total number of
house members. (So, for a house of 235 seats, a state
whose population is 2,559,253 in a nation of 231,575,
493 would be ideally entitled to 2.597099 representa-
tives: 2,559,253/231,575,493 x 235). Since this ideal
number will probably be fractional, and a quarter of a
representative is not permitted, a better method is needed
for allotting the number of representatives.
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Many of the Founding Fathers, including Alexander

Hamilton, Thomas Jefferson, and Daniel Webster, came
up with their own solutions. Treasury Secretary Hamil-
ton's method, which is the easiest to understand, was
approved by Congress in 1792 but then vetoed by George
Washington-the first presidential veto and one of only
two vetoes that Washington exercised in his eight years
in office. According to Hamilton's method, each state is
initially entitled a number of representatives equal to the
integral part of its ideal representation, the fractional part
being discarded. In other words, if Vermont is ideally
entitled to 3.62 representatives, it gets to have 3 repre-
sentatives. The number of representatives allotted on this
basis is then totaled, and if the total falls short of the
designated house size, the house is filled by allocating
additional representatives to the states with the largest
discarded fractions.

Hamilton's method of apportionment is easy to illus-
trate. The table below shows the populations of five states
and the number of representatives that each would re-
ceive in a house of 26 seats.

Ideal Number First Round Second Round
of Reps. in a of Hamilton of Hamilton

State Population 26-Seat House Allotment Allotment

A 9,061 9.061 9 9
B 7,179 7.179 7 7
C 5,259 5.259 5 5
D 3,319 3.319 3 4
E 1,182 1.182 1 1

Total 26,000 26 25 26

By Hamilton's method, in a 26-seat house, states A, B,
C, D, and E initially receive the following numbers of
representatives, respectively: 9, 7, 5, 3, and 1. But that
accounts for only 25 of the 26 seats, and state D, having
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the highest fraction (.319), thus receives an additional
representative, for a total of 4.

Hamilton's method always satisfies at least one crite-
rion of equity: it gives each state its ideal number of
representatives rounded down or rounded up. In other
words, if state D is ideally entitled to 3.319 representa-
tives, Hamilton's method always provides state D with
either 3 or 4 representatives, never 2 or 5. A method that
adheres to this natural criterion is said to satisfy quota.
Many methods do not satisfy quota, which seems to be
the minimum that you'd expect of an apportionment
method that claims to be fair.

Hamilton's method, however, violates another, subtler
criterion of fairness. Imagine that the size of the house
in our five-state example is increased from 26 to 27:

26-SEAT HOUSE 27-SEAT HOUSE
Ideal Hamilton Ideal Hamilton

State Population Number Allotment Number Allotment

A 9,061 9.061 9 9.410 9
B 7.179 7.179 7 7.455 8
C 5,259 5.259 5 5.461 6
D 3,319 3.319 4 3.447 3
E 1,182 1.182 1 1.227 1

Total 26,000 26 26 27 27

In the 27-seat house, states A, B, C, D, and E receive
the following numbers of representatives, respectively:
9, 8, 6, 3, and 1. Amazingly, state D has lost a repre-
sentative even though the size of the house has increased.
This is a serious defect of Hamilton's method. Think of
it this way: although neither the total population nor the
population of state D changed one iota, state D now has
fewer representatives in a larger house. It has been dou-
bly penalized by a cruel quirk of mathematics, called the
Alabama paradox (because it was first detected in some
calculations involving that state). The five-state example
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above was concocted by Michael Balinski and H. Peyton
Young in a review article on apportionment.* Balinski
and Young spent nine years probing the mathematical
paradoxes of apportionment and researching the history
of political debates on proposed apportionment schemes.
Much of my account is based on their work.

This Alabama paradox-that a state can lose represen-
tatives in a larger house-was not a factor in Washing-
ton's veto of Hamilton's proposal. Indeed, there is no
evidence that the Founding Fathers even kpew about this
mathematical peculiarity. In vetoing Hamilton's pro-
posal, Washington was swayed by the oratory of Secre-
tary of State Thomas Jefferson, who cautioned, "No
invasions of the Constitution are fundamentally so dan-
gerous as the tricks played on their own numbers, ap-
portionment." Jefferson put forward a plan of his own,
which Washington adopted despite its serious drawback
of violating quota.

In Balinski and Young's five-state example, each house
member would ideally represent 1,000 people, since the
total population (26,000) divided by the House size (26)
is 1,000. Hamilton's method has the effect of dividing
each state's population by 1,000 and then rounding down
for all states except those with the largest fractions, which
are rounded up as needed to fill out the house. Instead
of using the divisor 1,000, Jefferson's method (also
known as the method of greatest divisors) calls for using
the largest divisor that will yield numbers for each state
that when left alone or rounded down sum to the size of
the house. In other words, the numbers never need to be
rounded up. In the five-state example, 906.1 turns out to
be the greatest divisor that gives such a result:

*Balinski and Young, "The Quota Method of Apportionment,"
American Mathematical Monthly 82 (August-September 1975):
701-30.
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Hamilton Jefferson
Divisor Divisor
of 1,000 Hamilton of 906.1 Jefferson

State Population for 26 seats Allotment for 26 seats Allotment

A 9,061 9.061 9 10.000 10
B 7,179 7.179 7 7.923 7
C 5,259 5.259 5 5.804 5
D 3,319 3.319 4 3.663 3
E 1,182 1.182 1 1.304 1

Total 26,000 26 26

As the above table shows, Jefferson's and Hamilton's
methods yield different results. Under Jefferson's, state
A-the most populous state-gains a representative (and
state D loses one). That Jefferson's method helps state A
is no fluke; it can be shown mathematically that it favors
large states. His lofty oratory never addressed this math-
ematical favoritism, although, being a shrewd man of sci-
ence, he was no doubt fully aware of it. But it was a
favoritism he approved of, since he was from the largest
state, Virginia (population 630,558), as was Washington.
Indeed, in the first apportionment of House members, in
1792, Jefferson's method (as opposed to Hamilton's) en-
sured Virginia an additional representative, at the ex-
pense of the tiniest state, Delaware (population 55,538).

Jefferson's method was followed more or less for half
a century, from 1792 until 1841. (I say "more or less"
because sometimes the House size was not fixed in ad-
vance but was adjusted, in the interests of political ex-
pediency, so that states would not lose representatives
under a new apportionment.) Daniel Webster, recogniz-
ing that Jefferson's method under-represented the New
England states, Webster's home turf, persuaded Congress
to adopt a new apportionment scheme. Like Jefferson's
method, Webster's (also called the method of major frac-
tions) is based on the selection of a greatest divisor. But
the resulting numbers are not automatically rounded
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down but rounded according to the standard convention,
down for fractions of less than .5 and up for fractions of
.5 and above. For the five states, the greatest such divisor
is 957.2, and state B does better than it did in either of
the other methods:

Webster
Divisor
of 957.2 Webster Hamilton Jefferson

State Pop. for 26 seats Allotment Allotment Allotment

A 9,061 9.466 9 9 10
B 7,179 7.500 8 7 7
C 5,259 5.494 5 5 5
D 3,319 3.467 3 4 3
E 1,182 1.235 1 1 I

Total 26,000 26 26 26

Each step of the way, a few congressmen argued against
upping the House's size, but their appeals, however per-
suasive, fell on deaf ears. Curiously, much more was
made of the unwieldiness of a larger House than of the
illegality; the remarks of Representative Samuel Cox of
New York were typical: "A body is not great by being
big. Corpulence is not health or rigor. A wheezy adipos-
ity is not necessarily a condition of mental alertness.
Layers of lard and monstrosities of fat are not conducive
to manhood."

The failure to follow Hamilton's method was of no
small consequence: in 1876, it robbed Samuel Tilden of
the presidency. In the electoral college, each state re-
ceives a number of electors equal to the number of its
representatives and senators. In that famous election,
Tilden received 264,292 more popular votes than Ruth-
erford B. Hayes but lost the election when Hayes re-
ceived one more electoral vote than Tilden. Balinski and
Young demonstrate that if Hamilton's method had been
followed, as the law required, Tilden would have won,
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because one of the states he carried should have had an
additional elector, at the expense of a state that Hayes
carried.

The Alabama paradox was finally detected in 1881,
when the chief clerk of the census office was investigat-
ing, on the basis of the 1880 census, various apportion-
ments for House sizes ranging from 275 to 350. "While
making these calculations," the clerk wrote to a member
of the House, "I met with the so-called 'Alabama para-
dox' where Alabama was allotted 8 representatives out
of a total of 299, receiving but 7 where the total became
300." For another twenty years, however, the Alabama
paradox remained a defect more in theory than in prac-
tice.

Then, in 1901, when House seats were being reappor-
tioned on the basis of the census of 1900, the Alabama
paradox became a practical problem, evoking vitriolic
debate. The majority of the House pushed through a bill
that set the size of the House at 357 seats, of which Col-
orado received 2. Denouncing "the atrocity which
[mathematicians] have elected to call a paradox," Rep-
resentative John C. Bell of Colorado observed that in
every other size House from 350 to 400, his state would
receive not two but three representatives. In the 357-seat
House, Maine also suffered from the Alabama paradox,
and one of its representatives said, "It does seem as
though mathematics and science have combined to make
a shuttlecock and battledore of the State of Maine. ...

God help Maine when mathematics reach for her!"
Over the next few decades, eminent mathematicians

paraded before the House and offered sophisticated nu-
merical formulas, incomprehensible to most of the polit-
icos, for avoiding the Alabama paradox. One of these
formulas was adopted n 1941, when Franklin Roosevelt
signed "An Act to Provide for Apportioning Represen-
tatives in Congress among the several States by the equal
proportions method."
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The method of equal proportions had been proposed

twenty years earlier by Edward V. Huntington, a Harvard
mathematician. Huntington argued that, given the reality
of so many different states with different populations,
when the representation granted any two states is com-
pared, one of the states will inevitably be shortchanged
and that the amount of shortchangedness can be mea-
sured. If the transfer of one representative from the
better-off state to the worse-off state reduces the relative
amount of shortchangedness, the transfer should be made.
For example, if in a comparison of Virginia and Massa-
chusetts, Virginia is found to be worse off by 3 units of
shortchangedness and the transfer of one representative
from Massachusetts to Virginia turns the tables in such a
way that Massachusetts is now worse off by 2 units, the
transfer should be made, because the relative amount of
shortchangedness-2 units as opposed to 3-is reduced.
If, instead, the transfer turns the tables to such an extent
that Massachusetts is worse off by 4 units, the transfer
should not be made, because the status quo is more eq-
uitable. The idea is to apportion representatives in such
a manner that the relative amount of shortchangedness is
minimized. This will occur when no pairwise compari-
son of states dictates the transfer of a representative.

The idea of trying to minimize the relative amount of
shortchangedness is appealing, but how is shortchanged-
ness to be measured? In the method of equal proportions,
one computes shortchangedness by first taking the nu-
merical difference between the average size of a state's
congressional district and the average size of another
state's congressional district and then expressing that dif-
ference as a fraction of the smaller district size. In the
five-state example, the method of equal proportions yields
yet another assignment of representatives, in which state
C benefits:
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Average Equal Proportion

State Population District Size Allotmentfor 26 seats

A 9,061 1,006.78 9
B 7.179 1,025.57 7
C 5,259 876.50 6
D 3,319 1,106.33 3
E 1,182 1,182.00 1

Total 26,000 26

According to the measure of shortchangedness
described above, state D is shortchanged by (1106.23-
876.50)/876.50, or .2621. The transfer of one represen-
tative from D to C would change the average district size
in state C to 1,051.80 and in state D to 829.75. This
allotment is less equitable because the relative amount of
shortchangedness is increased, state C being short-
changed by (1051.80-829.75)/829.75 or .2676. If you
play around with the numbers in the above table, you'll
find that, given this measure of shortchangedness, no
other assignment of representatives is more equitable.

This measure of shortchangedness, however, has no a
priori claim to being fair. You might, instead, simply
compute the difference between the two sizes and not
bother to express it as a fraction. Or you might compute
for each state what fraction of a representaive each resi-
dent corresponds to and try to minimize the difference
in these fractions from state to state. There are other
possibilities, too, all with equal claims to being fair.

The problem in defining shortchangedness can be un-
derstood by analogy. Suppose I tell you that Bob's annual
income exceeds Jake's by $10,000. By this measure-the
absolute difference in income-Jake is $10,000 worse off,
but this doesn't tell you everything you might want to
know in evaluating their relative standard of living. Jake
might make only $10,000 a year, in which case Bob is
earning 100 percent more. But Jake could also be raking
in $1,000,000 a year, in which case Bob is earning only
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1 percent more. If the difference in income were reported
not in terms of absolute dollars but in terms of percent,
other information you might need in order to judge their
standard of living would be suppressed. For example,
suppose you know that Bob earns 100 percent more
money than Jake. That doesn't tell you whether Bob could
live just as well as Jake and, in addition, buy a $100,000
house in, cash. If Bob earns $200,000 (to Jake's
$100,000), he'd have the extra cash to spare. But if he
makes only $10,000 (to Jake's $5,000), he'd have to set-
tle, say, for a home computer instead of a house. The
moral is that no measure of income disparity-be it ab-
solute dollars, percentage difference, or something else-
has an a priori claim to being the best measure. The same
is true of measuring the relative extent to which states
are shortchanged in their delegations to the House.

Unbeknownst to Roosevelt and the Congress, the
method of equal proportions also violates quota, as Bal-
inski and Young noted in the American Mathematical
Monthly. Moreover, it tends to favor smaller states. (You
can discern either of these drawbacks from the five-state
example.) Perhaps you're beginning to get the idea that
every apportionment system is plagued by paradox, aside
from the obvious inequalities resulting from the inability
to divide a congressman. In their 1982 book, Fair Rep-
resentation: Meeting the Ideal of One Man, One Vote,
Balinski and Young offer a mathematical proof that no
apportionment method exists that always satisfies quota
and always avoids the Alabama paradox.

In the best tradition of social-choice theory (the branch
of applied mathematics that -addresses how the prefer-
ences of individuals should be combined to get a social
choice), Balinski and Young don't stop with the mere
identification of paradoxes but go on to investigate how
frequently they crop up. After all, the real world de-
mands a solution-that representatives be apportioned by
one method or another-and a method that is almost al-
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ways free of paradoxes is clearly preferable to one rid-
dled with them. Balinski and Young were able to show,
on the basis of randomly generated population data, that
Webster's method does not discriminate in favor of big
or small states and that it is less likely to violate quota
than are other apportionment methods immune to the Al-
abama paradox.

Will Balinski and Young's compelling analysis inspire
a movement in Congress for a return to Webster's
method? If the method were used today (instead of the
method of equal proportions), the only difference would
be that New Mexico would forfeit a seat to Indiana. In
the House subcommittee on census and population, the
Indiana delegation, armed with Balinski and Young's
analysis, proposed a bill reinstating Webster's method.
But the bill aroused little interest (except the ire of the
New Mexico delegation) and died in subcommittee. Alas,
the social-choice theorist's lot is a lonely one.
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Thomas Jefferson Beale, a nineteenth
century adventurer, explorer, and fortune
seeker, left behind three sheets of paper
covered with a series of apparently random
numbers. But the numbers are not random:
they comprise a code, and the second sheet
of paper has been successfully deciphered.
It says, in summary, that somewhere in the
county of Bedford, Virginia, Jeff Beale
buried 2,921 pounds of gold, 5,100 pounds
of silver, and 3.35 million dollars worth of
jewels. The last line of paper number two
says: "Paper number one describes the exact
locality of the vault...."

71, 194, 38, 1701, 89 ... So begins paper
number one. Is it an unbreakable code? Will
Jeff Beale's treasure ever be found? Inside
you'll learn how the code for paper number
two was broken, and you'll find the entire
contents of paper number one.
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"Fascinating ... Recommended even for the
reader oppressed by Zip Codes and Social
Security numbers."
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