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Preface

T here are two main goals in this book. The first is to describe and illustrate basic
statistical principles and concepts, typically covered in a one-semester course, in a

simple and relatively concise manner. Technical and mathematical details are kept to a
minimum. Throughout, examples from a wide range of situations are used to describe,
motivate, and illustrate basic techniques. Various conceptual issues are discussed at
length with the goal of providing a foundation for understanding not only what statistical
methods tell us, but also what they do not tell us. That is, the goal is to provide a
foundation for avoiding conclusions that are unreasonable based on the analysis that
was done.

The second general goal is to explain basic principles and techniques in a manner
that takes into account three major insights that have occurred during the last half-
century. Currently, the standard approach to an introductory course is to ignore these
insights and focus on methods that were developed prior to the year 1960. However, these
insights have tremendous implications regarding basic principles and techniques, and
so a simple description and explanation seems warranted. Put simply, when comparing
groups of individuals, methods routinely taught in an introductory course appear to
perform well over a fairly broad range of situations when the groups under study do
not differ in any manner. But when groups differ, there are general conditions where
they are highly unsatisfactory in terms of both detecting and describing any differences
that might exist. In a similar manner, when studying how two or more variables are
related, routinely taught methods perform well when no association exists. When there
is an association, they might continue to perform well, but under general conditions,
this is not the case. Currently, the typical introductory text ignores these insights or
does not explain them sufficiently for the reader to understand and appreciate their
practical significance. There are many modern methods aimed at correcting practical
problems associated with classic techniques, most of which go well beyond the scope
of this book. But a few of the simpler methods are covered with the goal of fostering
modern technology. Although most modern methods cannot be covered here, this book
takes the view that it is important to provide a foundation for understanding common
misconceptions and weaknesses, associated with routinely used methods, which have
been pointed out in literally hundreds of journal articles during the last half-century,
but which are currently relatively unknown among most non-statisticians. Put another
way, a major goal is to provide the student with a foundation for understanding and
appreciating what modern technology has to offer.

The following helps illustrate the motivation for this book. Conventional wisdom
has long held that with a sample of 40 or more observations, it can be assumed that
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observations are sampled from what is called a normal distribution. Most introductory
books still make this claim, this view is consistent with studies done many years ago,
and in fairness, there are conditions where adhering to this view is innocuous. But
numerous journal articles make it clear that when working with means, under very
general conditions, this view is not remotely true, a result that is related to the three
major insights previously mentioned. Where did this erroneous view come from and what
can be done about correcting any practical problems? Simple explanations are provided
and each chapter ends with a section outlining where more advanced techniques can be
found.

Also, there are many new advances beyond the three major insights that are
important in an introductory course. Generally these advances have to do with the
relative merits of methods designed to address commonly encountered problems. For
example, many books suggest that histograms are useful in terms of detecting outliers,
which are values that are unusually large or small relative to the bulk of the observations
available. It is known, however, that histograms can be highly unsatisfactory relative to
other techniques that might be used. Examples that illustrate this point are provided.
As another example, a common and seemingly natural strategy is to test assumptions
underlying standard methods in an attempt to justify their use. But many papers illustrate
that this approach can be highly inadequate. Currently, all indications are that a better
strategy is to replace classic techniques with methods that continue to perform well when
standard assumptions are violated. Despite any advantages modern methods have, this
is not to suggest that methods routinely taught and used have no practical value. Rather,
the suggestion is that understanding the relative merits of methods is important given
the goal of getting the most useful information possible from data.

When introducing students to basic statistical techniques, currently there is an
unwritten rule that any major advances relevant to basic principles should not be
discussed. One argument for this view, often heard by the author, is that students with
little mathematical training are generally incapable of understanding modern insights
and their relevance. For many years, I have covered the three major insights whenever I
teach the undergraduate statistics course. I find that explaining these insights is no more
difficult than any of the other topics routinely taught. What is difficult is explaining to
students why modern advances and insights are not well known. Fortunately, there
is a growing awareness that many methods developed prior to the year 1960 have
serious practical problems under fairly general conditions. The hope is that this book
will introduce basic principles in a manner that helps bridge the gap between routinely
used methods and modern techniques.

Rand R. Wilcox
Los Angeles, California
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Introduction

A t its simplest level, statistics involves the description and summary of events. How
many home runs did Babe Ruth hit? What is the average rainfall in Seattle? But

from a scientific point of view, it has come to mean much more. Broadly defined, it is
the science, technology and art of extracting information from observational data, with
an emphasis on solving real world problems. As Stigler (1986, p. 1) has so eloquently
put it:

Modern statistics provides a quantitative technology for empirical science; it is a
logic and methodology for the measurement of uncertainty and for examination
of the consequences of that uncertainty in the planning and interpretation of
experimentation and observation.

The logic and associated technology behind modern statistical methods pervades all
of the sciences, from astronomy and physics to psychology, business, manufacturing,
sociology, economics, agriculture, education, and medicine—it affects your life.

To help elucidate the types of problems addressed in this book, consider an
experiment aimed at investigating the effects of ozone on weight gain in rats (Doksum
and Sievers, 1976). The experimental group consisted of 22 seventy-day-old rats kept
in an ozone environment for 7 days. A control group of 23 rats, of the same age,
was kept in an ozone-free environment. The results of this experiment are shown
in table 1.1.

What, if anything, can we conclude from this experiment? A natural reaction is to
compute the average weight gain for both groups. The averages turn out to be 11 for the
ozone group and 22.4 for the control group. The average is higher for the control group
suggesting that for the typical rat, weight gain will be less in an ozone environment.
However, serious concerns come to mind upon a moment’s reflection. Only 22 rats
were kept in the ozone environment. What if 100 rats had been used or 1,000, or even a
million? Would the average weight gain among a million rats differ substantially from 11,
the average obtained in the experiment? Suppose ozone has no effect on weight gain. By
chance, the average weight gain among rats in an ozone environment might differ from
the average for rats in an ozone-free environment. How large of a difference between
the means do we need before we can be reasonably certain that ozone affects weight
gain? How do we judge whether the difference is large from a clinical point of view?
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Table 1.1 Weight gain of rats in ozone experiment

Control: 41.0 38.4 24.4 25.9 21.9 18.3 13.1 27.3 28.5 −16.9
Ozone: 10.1 6.1 20.4 7.3 14.3 15.5 −9.9 6.8 28.2 17.9
Control: 26.0 17.4 21.8 15.4 27.4 19.2 22.4 17.7 26.0 29.4
Ozone: −9.0 −12.9 14.0 6.6 12.1 15.7 39.9 −15.9 54.6 −14.7
Control: 21.4 26.6 22.7
Ozone: 44.1 −9.0

What about using the average to reflect the weight gain for the typical rat? Are there
other methods for summarizing the data that might have practical value when
characterizing the differences between the groups? The answers to these problems
are nontrivial. The purpose of this book is to introduce the basic tools for answering
these questions.

The mathematical foundations of the statistical methods described in this book were
developed about two hundred years ago. Of particular importance was the work of Pierre-
Simon Laplace (1749–1827) and Carl Friedrich Gauss (1777–1855). Approximately a
century ago, major advances began to appear that dominate how researchers analyze data
today. Especially important was the work of Karl Pearson (1857–1936) Jerzy Neyman
(1894–1981), Egon Pearson (1895–1980), and Sir Ronald Fisher (1890–1962). During
the 1950s, there was some evidence that the methods routinely used today serve us quite
well in our attempts to understand data, but in the 1960s it became evident that serious
practical problems needed attention. Indeed, since 1960, three major insights revealed
conditions where methods routinely used today can be highly unsatisfactory. Although
the many new tools for dealing with known problems go beyond the scope of this book,
it is essential that a foundation be laid for appreciating modern advances and insights,
and so one motivation for this book is to accomplish this goal.

This book does not describe the mathematical underpinnings of routinely used
statistical techniques, but rather the concepts and principles that are used. Generally,
the essence of statistical reasoning can be understood with little training in mathematics
beyond basic high-school algebra. However, if you put enough simple pieces together,
the picture can seem rather fuzzy and complex, and it is easy to lose track of where we
are going when the individual pieces are being explained. Accordingly, it might help to
provide a brief overview of what is covered in this book.

1.1 Samples versus populations

One key idea behind most statistical methods is the distinction between a sample of
participants or objects versus a population. A population of participants or objects consists
of all those participants or objects that are relevant in a particular study. In the weight-
gain experiment with rats, there are millions of rats we could use if only we had the
resources. To be concrete, suppose there are a billion rats and we want to know the
average weight gain if all one billion were exposed to ozone. Then these one billion rats
compose the population of rats we wish to study. The average gain for these rats is called
the population mean. In a similar manner, there is an average weight gain for all the rats
if they are raised in an ozone-free environment instead. This is the population mean for
rats raised in an ozone-free environment. The obvious problem is that it is impractical
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to measure all one billion rats. In the experiment, only 22 rats were exposed to ozone.
These 22 rats are an example of what is called a sample.

Definition A sample is any subset of the population of individuals or things
under study.

Example 1. Trial of the Pyx

Shortly after the Norman Conquest, around the year 1100, there was already a
need for methods that tell us how well a sample reflects a population of objects.
The population of objects in this case consisted of coins produced on any given
day. It was desired that the weight of each coin be close to some specified
amount. As a check on the manufacturing process, a selection of each day’s
coins was reserved in a box (‘the Pyx’) for inspection. In modern terminology,
the coins selected for inspection are an example of a sample, and the goal is to
generalize to the population of coins, which in this case is all the coins produced
on that day.

Three fundamental components of statistics

Statistical techniques consist of a wide range of goals, techniques and strategies. Three
fundamental components worth stressing are:

1. Design, meaning the planning and carrying out of a study.
2. Description, which refers to methods for summarizing data.
3. Inference, which refers to making predictions or generalizations about a

population of individuals or things based on a sample of observations
available to us.

Design is a vast subject and only the most basic issues are discussed here. Imagine
you want to study the effect of jogging on cholesterol levels. One possibility is to assign
some participants to the experimental condition and another sample of participants to a
control group. Another possibility is to measure the cholesterol levels of the participants
available to you, have them run a mile every day for two weeks, then measure their
cholesterol level again. In the first example, different participants are being compared
under different circumstances, while in the other, the same participants are measured
at different times. Which study is best in terms of determining how jogging affects
cholesterol levels? This is a design issue.

The main focus of this book is not experimental design, but it is worthwhile
mentioning the difference between the issues covered in this book versus a course on
design. As a simple illustration, imagine you are interested in factors that affect health.
In North America, where fat accounts for a third of the calories consumed, the death
rate from heart disease is 20 times higher than in rural China where the typical diet is
closer to 10% fat. What are we to make of this? Should we eliminate as much fat from
our diet as possible? Are all fats bad? Could it be that some are beneficial? This purely
descriptive study does not address these issues in an adequate manner. This is not to
say that descriptive studies have no merit, only that resolving important issues can be
difficult or impossible without good experimental design. For example, heart disease is
relatively rare in Mediterranean countries where fat intake can approach 40% of calories.
One distinguishing feature between the American diet and the Mediterranean diet is
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the type of fat consumed. So one possibility is that the amount of fat in a diet, without
regard to the type of fat, might be a poor gauge of nutritional quality. Note, however,
that in the observational study just described, nothing has been done to control other
factors that might influence heart disease.

Sorting out what does and does not contribute to heart disease requires good
experimental design. In the ozone experiment, attempts are made to control for factors
that are related to weight gain (the age of the rats compared) and then manipulate
the single factor that is of interest, namely the amount of ozone in the air. Here the
goal is not so much to explain how best to design an experiment but rather to provide
a description of methods used to summarize a population of individuals, as well as
a sample of individuals, plus the methods used to generalize from the sample to the
population. When describing and summarizing the typical American diet, we sample
some Americans, determine how much fat they consume, and then use this to generalize
to the population of all Americans. That is, we make inferences about all Americans
based on the sample we examined. We then do the same for individuals who have
a Mediterranean diet, and we make inferences about how the typical American diet
compares to the typical Mediterranean diet.

Description refers to ways of summarizing data that provide useful information
about the phenomenon under study. It includes methods for describing both the sample
available to us and the entire population of participants if only they could be measured.
The average is one of the most common ways of summarizing data. In the jogging
experiment, you might be interested in how cholesterol is affected as the time spent
running every day is increased. How should the association, if any, be described?

Inference includes methods for generalizing from the sample to the population.
The average for all the participants in a study is called the population mean and typically
represented by the Greek letter mu, μ. The average based on a sample of participants
is called a sample mean. The hope is that the sample mean provides a good reflection of
the population mean. In the ozone experiment, one issue is how well the sample mean
estimates the population mean, the average weight-gain for all rats if they could be
included in the experiment. That is, the goal is to make inferences about the population
mean based on the sample mean.

1.2 Comments on teaching and learning statistics

It might help to comment on the goals of this book versus the general goal of teaching
statistics. An obvious goal in an introductory course is to convey basic concepts and
methods. A much broader goal is to make the student a master of statistical techniques.
A single introductory book cannot achieve this latter goal, but it can provide the
foundation for understanding the relative merits of frequently used techniques. There
is now a vast array of statistical methods one might use to examine problems that are
commonly encountered. To get the most out of data requires a good understanding of
not only what a particular method tells us, but what it does not tell us as well. Perhaps
the most common problem associated with the use of modern statistical methods is
making interpretations that are not justified based on the technique used. Examples are
given throughout this book.

Another fundamental goal in this book is to provide a glimpse of the many advances
and insights that have occurred in recent years. For many years, most introductory
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statistics books have given the impression that all major advances ceased circa 1955.
This is not remotely true. Indeed, major improvements have emerged, some of which
are briefly indicated here.

1.3 Comments on software

As is probably evident, a key component to getting the most accurate and useful
information from data is software. There are now several popular computer programs for
analyzing data. Perhaps the most important thing to keep in mind is that the choice of
software can be crucial, particularly when the goal is to apply new and improved methods
developed during the last half century. Presumably no software package is best, based
on all of the criteria that might be used to judge them, but the following comments
might help.

Excellent software

The software R is one of the two best software packages available. Moreover, it is free and
available at http://cran.R-project.org. All modern methods developed in recent years,
as well as all classic techniques, are easily applied. One feature that makes R highly
valuable from a research perspective is that a group of academics do an excellent job
of constantly adding and updating routines aimed at applying modern techniques.
A wide range of modern methods can be applied using the basic package. And many
specialized methods are available via packages available at the R web site. A library
of R functions especially designed for applying the newest methods for comparing
groups and studying associations is available at www-rcf.usc.edu/˜rwilcox/.1 Although
not the focus here, occasionally the name of some of these functions will be mentioned
when illustrating some of the important features of modern methods. (Unless stated
otherwise, whenever the name of an R function is supplied, it is a function that belongs
to the two files Rallfunv1-v7 and Rallfunv2-v7, which can be downloaded from the site
just mentioned.)

S-PLUS is another excellent software package. It is nearly identical to R and the
basic commands are the same. One of the main differences is cost: S-PLUS can be
very expensive. There are a few differences from R, but generally they are minor and
of little importance when applying the methods covered in this book. (The R functions
mentioned in this book are available as S-PLUS functions, which are stored in the files
allfunv1-v7 and allfunv2-v7 and which can be downloaded in the same manner as the
files Rallfunv1-v7 and Rallfunv2-v7.)

Very good software

SAS is another software package that provides power and excellent flexibility. Many
modern methods can be applied, but a large number of the most recently developed
techniques are not yet available via SAS. SAS code could be easily written by anyone
reasonably familiar with SAS, and the company is fairly diligent about upgrading the

1. Details and illustrations of how this software is used can be found in Wilcox (2003, 2005).

www-rcf.usc.edu/%CB%9Crwilcox/
http://cran.R-project.org
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routines in their package, but this has not been done as yet for some of the methods to
be described.

Good software

Minitab is fairly simple to use and provides a reasonable degree of flexibility when
analyzing data. All of the standard methods developed prior to the year 1960 are
readily available. Many modern methods could be run in Minitab, but doing so is
not straightforward. Like SAS, special Minitab code is needed and writing this code
would take some effort. Moreover, certain modern methods that are readily applied
with R cannot be easily done in Minitab even if an investigator was willing to write the
appropriate code.

Unsatisfactory software

SPSS is certainly one of the most popular and frequently used software packages. Part of
its appeal is ease of use. When handling complex data sets, it is one of the best packages
available and it contains all of the classic methods for analyzing data. But in terms
of providing access to the many new and improved methods for comparing groups and
studying associations, which have appeared during the last half-century, it must be given
a poor rating. An additional concern is that it has less flexibility than R and S-PLUS.
That is, it is a relatively simple matter for statisticians to create specialized R and S-PLUS
code that provides non-statisticians with easy access to modern methods. Some modern
methods can be applied with SPSS, but often this task is difficult. However, SPSS 16
has added the ability to access R, which might increase its flexibility considerably. Also,
zumastat.com has software that provides access to a large number of R functions aimed
at applying the modern methods mentioned in this book plus many other methods
covered in more advanced courses. (On the zumastat web page, click on robust statistics
to get more information.)

The software EXCEL is relatively easy to use, it provides some flexibility, but
generally modern methods are not readily applied. A recent review by McCullough and
Wilson (2005) concludes that this software package is not maintained in an adequate
manner. (For a more detailed description of some problems with this software, see
Heiser, 2006.) Even if EXCEL functions were available for all modern methods that
might be used, features noted by McCullough and Wilson suggest that EXCEL should
not be used.



2

Numerical Summaries of Data

T o help motivate this chapter, imagine a study done on the effects of a drug designed
to lower cholesterol levels. The study begins by measuring the cholesterol level of

171 participants and then measuring each participant’s cholesterol level after one month
on the drug. Table 2.1 shows the change between the two measurements. The first
entry is −23 indicating that the cholesterol level of this particular individual decreased
by 23 units. Further imagine that a placebo is given to 176 participants resulting in the
changes in cholesterol shown in table 2.2. Although we have information on the effect
of the drug, there is the practical problem of conveying this information in a useful
manner. Simply looking at the values, it is difficult determining how the experimental
drug compares to the placebo. In general, how might we summarize the data in a manner
that helps us judge the difference between the two drugs?

A basic strategy for dealing with the problem just described is to develop numerical
quantities intended to provide useful information about the nature of the data. These
numerical summaries of data are called descriptive measures or descriptive statistics, many
of which have been proposed. Here the focus is on commonly used measures, and at the
end of this chapter, a few alternative measures are described that have been found to
have practical value in recent years. There are two types that play a particularly important
role when trying to understand data: measures of location and measures of dispersion.
Measures of location, also called measures of central tendency, are traditionally thought of
as attempts to find a single numerical quantity that reflects the ‘typical’ observed value.
But from a modern perspective, this description can be misleading and is too narrow
in a sense that will be made clear later in this chapter. (A clarification of this point can
found in section 2.2.) Roughly, measures of dispersion reflect how spread out the data
happen to be. That is, they reflect the variability among the observed values.

2.1 Summation notation

Before continuing, some basic notation should be introduced. Arithmetic operations
associated with statistical techniques can get quite involved and so a mathematical
shorthand is typically used to make sure that there is no ambiguity about how the
computations are to be performed. Generally, some letter is used is to represent whatever
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Table 2.1 Changes in cholesterol level after one month on an experimental drug

−23 −11 −7 −13 4 −32 −20 −18 1 7 −32 −14 −18 6 10 −4 −15 −7
−21 −10 10 −20 −15 −10 −11 −10 −5 0 −13 −14 −6 9 −19 −10 −19 −11
5 −6 −17 −6 −15 6 −8 −17 −8 −16 2 −6 −14 −22 −11 −23 −6 −5
−12 −12 0 0 −3 −14 −34 −8 −19 −30 −17 −17 −1 −30 −31 −17 −16 −5
8 −23 −12 9 −33 4 −18 −34 −2 −28 −10 −8 −20 −8 19 −12 −11 0
−19 −12 −10 −20 −11 −2 −17 −24 −18 −18 −13 25 4 −13 −1 −7 −2
−22 −25 −19 −8 −17 −10 −27 −1 −6 −19 4 −16 −29 4 −8 −16
−16 1 −7 −31 −9 0 −4 −16 −5 −6 −14 −3 0 31 −10 −23
−14 −24 −11 −2 20 −5 −21 −1 −2 −3 −21 −5 −10 −12 0 −5
10 −26 −9 −10 16 −15 −26 1 −18 −19 −16 10 0 4 −9 −4

is being measured; the letter X is the most common choice. So in tables 2.1 and 2.2,
X represents the change in cholesterol levels, but it could just as easily be used to
represent how much weight is lost using a particular diet, how much money is earned
using a particular investment strategy, or how often a particular surgical procedure is
successful. The notation X1 is used to indicate the first observation. In table 2.1, the first
observed value is −21 and this is written as X1 = −23. The next observation is −11,
which is written as X2 =−11, and the last observation is X171 =−4. In a similar manner,
in table 2.2, X1 = 8, X6 = 26, and the last observation is X177 = −19. More generally,
n is typically used to represent the total number of observations, and the observations
themselves are represented by

X1,X2, . . . ,Xn.

So in table 2.1, n = 171 and in table 2.2, n = 177.
Summation notation is simply way of saying that a collection of numbers is to be

added. In symbols, adding the numbers X1,X2, . . . ,Xn is denoted by

n∑
i=1

Xi = X1 + X2 +·· ·+ Xn,

where
∑

is an upper case Greek sigma. The subscript i is the index of summation and
the 1 and n that appear respectively below and above the symbol

∑
designate the range

of the summation. So if X represents the changes in cholesterol levels in table 2.2,

n∑
i=1

Xi = 8 + 7 + 2 · · · = 22.

Table 2.2 Changes in cholesterol level after one month of taking a placebo

8 7 2 5 11 26 2 0 −10 6 −28 3 −14 2 −27 1 12 0
17 68 14 −16 10 10 30 −27 −35 6 −1 22 2 1 0 −11 −5 −36
10 4 7 15 −6 10 −8 −4 6 −2 −2 −1 10 34 39 4 15 −4
−7 1 −8 −4 −7 −3 −12 0 −17 −1 −17 7 −16 −1 15 20 1 −9
1 −3 −14 0 2 1 7 2 −17 −25 −7 −16 3 −1 −2 9 11 0
13 8 −20 0 −3 10 −1 −4 −9 −7 9 −7 9 −43 10 −17 −10 −18
11 −11 −22 0 11 11 10 6 −5 8 71 −11 −9 −1 12 0 −6 −1
−21 11 5 −3 24 −11 −36 −1 4 18 −8 −8 1 −1 3 0 6 3
−5 8 0 −4 −7 11 0 16 −1 −3 −11 −16 −14 −12 6 −5 21 −16
−11 6 −10 3 13 −5 13 5 −1 −1 −8 5 −9 18 −19
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In most situations, the sum extends over all n observations, in which case it is customary
to omit the index of summation. That is, simply use the notation∑

Xi = X1 + X2 +·· ·+ Xn.

Example 1

Imagine you work for a software company and you want to know, when
customers call for help, how long it takes them to reach the appropriate
department. To keep the illustration simple, imagine that you have data on
five individuals and that their times (in minutes) are:

1.2,2.2,6.4,3.8,0.9.

Then

4∑
i=2

Xi = 2.2 + 6.4 + 3.8 = 12.4

and ∑
Xi = 1.2 + 2.2 + 6.4 + 3.8 + 0.9 = 14.5.

Another common arithmetic operation consists of squaring each observed
value and summing the results. This is written as∑

X 2
i = X 2

1 + X 2
2 +·· ·+ X 2

n .

Note that this is not necessarily the same as adding all the values and squaring
the results. This latter operation is denoted by(∑

Xi

)2
.

Example 2

For the data in example 1,∑
X 2

i = 1.22 + 2.22 + 6.42 + 3.82 + 0.92 = 62.49

and (∑
Xi

)2 = (1.2 + 2.2 + 6.4 + 3.8 + 0.9)2 = 14.52 = 210.25.

Let c be any constant. In some situations it helps to note that multiplying
each value by c and adding the results is the same as first computing the sum
and then multiplying by c. In symbols,∑

cXi = c
∑

Xi .

Example 3

Consider again the data in example 1 and suppose we convert the observed
values to seconds by multiplying each value by 60. Then the sum, using times
in seconds, is ∑

60Xi = 60
∑

Xi = 60 × 14.5 = 870.
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Another common operation is to subtract a constant from each observed
value, square each difference, and add the results. In summation notation, this is
written as ∑

(Xi − c)2.

Example 4

For the data in example 1, suppose we want to subtract 2.9 from each
value, square each of the results, and then sum these squared differences.
So c = 2.9, and∑

(Xi − c)2 = (1.2 − 2.9)2 + (2.2 − 2.9)2 +·· ·+ (0.9 − 2.9)2 = 20.44.

One more summation rule should be noted. If we sum a constant c n times,
we get nc. This is written as∑

c = c +·· ·+ c = nc.

Problems
1. Given that

X1 = 1 X2 = 3 X3 = 0
X4 = −2 X5 = 4 X6 = −1
X7 = 5 X8 = 2 X9 = 10

Find
(a)

∑
Xi , (b)

∑5
i=3 Xi , (c)

∑4
i=1 X 3

i , (d) (
∑

Xi)
2, (e)

∑
3, (f)

∑
(Xi − 7)

(g) 3
∑5

i=1 Xi −∑9
i=6 Xi , (h)

∑
10Xi , (i)

∑6
i=2 iXi , (j)

∑
6

2. Express the following in summation notation. (a) X1 + X2
2 + X3

3 + X4
4 ,

(b) U1 + U 2
2 + U 3

3 + U 4
4 , (c) (Y1 + Y2 + Y3)4

3. Show by numerical example that
∑

X 2
i is not necessarily equal to (

∑
Xi)

2.

2.2 Measures of location

As previously noted, measures of location are often described as attempts to find a single
numerical quantity that reflects the typical observed value. Literally hundreds of such
measures have been proposed and studied. Two, called the sample mean and median,
are easily computed and routinely used. But a good understanding of their relative merits
will take some time to achieve.

The sample mean

The first measure of location, called the sample mean, is just the average of the
values and is generally labeled X̄ . The notation X̄ is read as X bar. In summation
notation,

X̄ = 1

n

∑
Xi .
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Example 1

A commercial trout farm wants to advertise and as part of their promotion plan
they want to tell customers how much their typical trout weighs. To keep things
simple for the moment, suppose they catch five trout having weights 1.1, 2.3,
1.7, 0.9 and 3.1 pounds. The trout farm does not want to report all five weights
to the public but rather one number that conveys the typical weight among the
five trout caught. For these five trout, a measure of the typical weight is the
sample mean,

X̄ = 1

5
(1.1 + 2.3 + 1.7 + 0.9 + 3.1) = 1.82.

Example 2

You sample ten married couples and determine the number of children they
have. The results are 0, 4, 3, 2, 2, 3, 2, 1, 0, 8. The sample mean is
X̄ = (0 + 4 + 3 + 2 + 2 + 3 + 2 + 1 + 0 + 8)/10 = 2.5. Of course, nobody has
2.5 children. The intention is to provide a number that is centrally located
among the 10 observations with the goal of conveying what is typical. The
sample mean is frequently used for this purpose, in part because it greatly
simplifies technical issues related to methods covered in subsequent chapters.
In some cases, the sample mean suffices as a summary of data, but it is important
to keep in mind that for various reasons, it can highly unsatisfactory. One of
these reasons is illustrated next (and other practical concerns are described in
subsequent chapters).

Example 3

Imagine an investment firm is trying to recruit you. As a lure, they tell you
that among the 11 individuals currently working at the company, the average
salary, in thousands of dollars, is 88.7. However, on closer inspection, you find
that the salaries are

30,25,32,28,35,31,30,36,29,200,500,

where the two largest salaries correspond to the vice president and president,
respectively. The average is 88.7, as claimed, but an argument can be made that
this is hardly typical because the salaries of the president and vice president
result in a sample mean that gives a distorted sense of what is typical. Note
that the sample mean is considerably larger than 9 of the 11 salaries.

Example 4

Pedersen et al. (1998) conducted a study, a portion of which dealt with the
sexual attitudes of undergraduate students. Among other things, the students
were asked how many sexual partners they desired over the next 30 years. The
responses of 105 males are shown in table 2.3. The sample mean is X̄ = 64.9.
But this is hardly typical because 102 of the 105 males gave a response less than
the sample mean.

Outliers are values that are unusually large or small. In the last example,
one participant responded that he wanted 6,000 sexual partners over the
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Table 2.3 Responses by males in the sexual attitude study

6 1 1 3 1 1 1 1 1 1 6 1 1 1 4
5 3 9 1 1 1 5 12 10 4 2 1 1 4 45
8 5 0 1 150 13 19 2 1 18 3 1 3 1 11
1 2 1 1 1 12 1 1 2 6 1 1 1 1 4
1 150 6 40 4 30 10 1 1 0 3 4 1 4 7
1 10 0 19 1 9 1 1 1 5 0 1 1 15 4
1 4 1 1 11 1 1 30 12 6000 1 0 1 1 15

next 30 years, which is clearly unusual compared to the other 104 students. Also,
two gave the response 150, which again is relatively unusual. An important
point made by these last two examples is that the sample mean can be highly
influenced by one or more outliers. That is, care must be exercised when
using the sample mean because its value can be highly atypical and therefore
potentially misleading. Also, outliers are not necessarily mistakes or inaccurate
reflections of what was intended. For example, it might seem that nobody
would seriously want 6,000 sexual partners, but a documentary on the outbreak
of AIDS made it clear that such individuals do exist. Moreover, similar studies
conducted within a wide range of countries confirm that generally a small
proportion of individuals will give a relatively extreme response.

The median

Another important measure of location is called the sample median. The basic idea is
easily described using the example based on the weight of trout. The observed weights
were

1.1,2.3,1.7,0.9,3.1.

Putting the values in ascending order yields

0.9,1.1,1.7,2.3,3.1.

Notice that the value 1.7 divides the observations in the middle in the sense that
half of the remaining observations are less than 1.7 and half are larger. If instead the
observations are

0.8,4.5,1.2,1.3,3.1,2.7,2.6,2.7,1.8,

we can again find a middle value by putting the observations in order yielding

0.8,1.2,1.3,1.8,2.6,2.7,2.7,3.1,4.5.

Then 2.6 is a middle value in the sense that half of the observations are less than 2.6
and half are larger. This middle value is an example of what is called a sample median.

Notice that there are an odd number of observations in the last two illustrations; the
last illustration has n = 9. If instead we have an even number of observations, there is
no middle value, in which case the most common strategy is to average the two middle
values to get the so-called sample median. For the last illustration, suppose we eliminate
the value 1.2, so now n = 8 and the observations, written in ascending order, are

0.8,1.3,1.8,2.6,2.7,2.7,3.1,4.5.
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The sample median in this case is taken to be the average of 2.6 and 2.7, namely
(2.6 + 2.7)/2 = 2.65. In general, with n odd, the median is a value in your sample,
but with n even this is not necessarily the case.

A more formal description of the sample median helps illustrate some commonly
used notation. Recall that the notation X1, . . . ,Xn is typically used to represent the
observations associated with n individuals or objects. Consider again the trout example
where n = 5 and the observations are X1 = 1.1, X2 = 2.3, X3 = 1.7, X4 = 0.9 and
X5 = 3.1 pounds. That is, the first trout that is caught has weight 1.1 pounds, the
second has weight 2.3 pounds, and so on. The notation X(1) is used to indicate the
smallest observation. In the illustration, the smallest of the five observations is 0.9, so
X(1) = 0.9. The smallest of the remaining four observations is 1.1, and this is written as
X(2) = 1.1. The smallest of the remaining three observations is 1.7, so X(3) = 1.7, the
largest of the five values is 3.1, and this is written as X(5). More generally,

X(1) ≤ X(2) ≤ X(3) ≤ ·· · ≤ X(n)

is the notation used to indicate that n values are to be put in ascending order.
The sample median is computed in one of two ways:

1. If the number of observations, n, is odd, compute m = (n+1)/2. Then the
sample median is

M = X(m),

the mth value after the observations are put in order.
2. If the number of observations, n, is even, compute m = n/2. Then the sample

median is

M = (X(m) + X(m+1))/2,

the average of the mth and (m+1)th observations after putting the observed
values in ascending order.

Example 5

Seven individuals are given a test that measures depression. The observed
scores are

34,29,55,45,21,32,39.

Because the number of observations is n = 7, which is odd, m = (7+1)/2 = 4.
Putting the observations in order yields

21,29,32,34,39,45,55.

The fourth observation is X(4) = 34, so the sample median is M = 34.

Example 6

We repeat the last example, only with six test scores

29,55,45,21,32,39.

Because the number of observations is n = 6, which is even, m = 6/2 = 3.
Putting the observations in order yields

21,29,32,39,45,55.
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The third and fourth observations are X(3) = 32 and X(4) = 39, so the sample
median is M = (32 + 39)/2 = 35.5.

Example 7

Consider again the data in example 3 dealing with salaries. We saw that the
sample mean is 88.7. In contrast, the sample median is M = 31, providing a
substantially different impression of the typical salary earned. This illustrates
that the sample median is relatively insensitive to outliers, for the simple reason
that the smallest and largest values are trimmed away when it is computed. For
this reason, the median is called a resistant measure of location. The sample mean
is an example of a measure of location that is not resistant to outliers.

Example 8

As previously noted, the sample mean for the sexual attitude data in table 2.3
is X̄ = 64.9. But the median is M = 1, which provides a substantially different
perspective on what is typical.

With the sample mean and median in hand, we can now be a bit more
formal and precise about what is meant by a measure of location.

Definition A summary of data, based on the observations X1, . . . ,Xn, is
called a measure of location if it satisfies two properties. First, its value must lie
somewhere between the smallest and largest values observed. In symbols, the
measure of location must have a value between X(1) and X(n), inclusive.
Second, if all observations are multiplied by some constant c, then the
measure of location is multiplied by c as well.1

Example 9

You measure the height, in feet, of ten women yielding the values 5.2, 5.9,
6.0, 5.11, 5.0, 5.5, 5.6, 5.7, 5.2, 5.8. The sample mean is X̄ = 5.501. Notice
that the mean cannot be less than the smallest value and it cannot be greater
than the largest value. That is, it satisfies the first criterion for being a measure
of location. We could get the mean in inches by multiplying each value by
12 and recomputing the average, but it is easier to simply multiply the mean
by 12 yielding 66.012. Similarly, the median is 5.55 in feet, and in inches it
is easily verified that the median is 12 × 5.55 = 66.6. More generally, if M
is the median, and if each value is multiplied by some number c, the median
becomes cM . This illustrates that both the mean and median satisfy the second
condition in the definition of a measure location.

The practical point being made here is that when a statistician refers to a
measure of location, this does not necessarily imply that this measure reflects
what is typical. We have already seen that the sample mean can be very atypical,
yet it is generally referred to as a measure of location.

1. Readers interested in more mathematical details about the definition of a measure of location are
referred to Staudte and Sheather (1990).
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The sample mean versus the sample median

How do we choose between the mean and median? It might seem that because the
median is resistant to outliers and the mean is not, use the median. But the issue is not
this simple. Indeed, for various reasons outlined later in this book, both the mean and
median can be highly unsatisfactory. What is needed is a good understanding of their
relative merits, which includes issues covered in subsequent chapters. To complicate
matters, even when the mean and median have identical values, it will be seen that for
purposes beyond merely describing the data, the choice between these two measures of
location can be crucial. It is also noted that although the median can better reflect what
is typical, in some situations its resistance to outliers can be undesirable.

Example 10

Imagine someone invests $200,000 and reports that the median amount earned
per year, over a 10-year-period, is $100,000. This sounds great, but now
imagine that the earnings for each year are: $100,000, $200,000, $200,000,
$200,000, $200,000, $200,000, $200,000, $300,000, $300,000, $-1,900,000.
So at the end of 10 years this individual has earned nothing and in fact lost the
$200,000 initial investment. (The sample mean is 0.) Certainly the long-term
total amount earned is relevant in which case the sample mean provides a useful
summary of the investment strategy that was followed.

Quartiles

As already explained and illustrated, the sample median divides the data into two parts:
the lower half and the upper half after putting the observations in ascending order.
Quartiles are measures of location aimed at dividing data into four parts. This is done with
two additional measures of location called the lower and upper quartiles. (The median
is sometimes called the middle quartile.) Roughly, the lower quartile is the median of
the smaller half of the data. And the upper quartile is the median of the upper half.
So it will be approximately the case that a fourth of the data lies below the lower
quartile, a fourth will lie between the lower quartile and the median, a fourth will
lie between the median and the upper quartile, and a fourth will lie above the upper
quartile.

There are, in fact, many suggestions about how the lower and upper quartiles should
be computed. Again let X(1) ≤ ·· · ≤ X(n) denote the observations written in ascending
order. A simple approach is to take the lower quartile to be X(j), where j = n/4. If n = 16,
for example, then j = 4 and a fourth of the values will be less than or equal to X(4), and
using X(4) is consistent with how the lower quartile is defined. But when n = 10, this
simple approach is unsatisfactory. Should we use j = 10/4 rounded down to the the
value 2, or should we use j rounded up to the value 3? Here we deal with this issue using
a method that is relatively simple and which has been found to be well suited for another
problem considered later in this chapter. The method is based on what are called the
ideal fourths. To explain, let j be the integer portion of (n/4)+ (5/12), meaning that j is
(n/4) + (5/12) rounded down to the nearest integer, and let

h = n

4
+ 5

12
− j .



18 BASIC STATISTICS

The lower quartile is taken to be

q1 = (1 − h)X(j) + hX(j+1). (2.1)

Letting k = n − j + 1, the upper quartile is

q2 = (1 − h)X(k) + hX(k−1). (2.2)

Example 10

Consider the values

−29.6,−20.9,−19.7,−15.4,−12.3,−8.0,−4.3,0.8,2.0,6.2,11.2,25.0.

There are twelve values, so n = 12, and

n

4
+ 5

12
= 3.41667.

Rounding this last quantity down to the nearest integer gives j = 3. That is, j is
just the number to the left of the decimal. Also, h = 3.416667 − 3 = .41667.
That is, h is the decimal portion of 3.41667. Because X(3) = −19.7 and
X(4) = −15.4, the lower quartile is

q1 = (1 − .41667)(−19.7) + .41667(−15.4) = −17.9.

In a similar manner, the upper quartile is

q2 = (1 − .41667)(6.2) + .41667(2) = 4.45.

An important feature of the lower quartile is that it is insensitive to the
smallest values among the data under study. In modern terminology, it is
resistant to outliers. In the last example, the smallest value is −29.6. If the
value −29.6 is lowered to −100, or even −1,000,000, the lower quartile does
not change and the upper quartile is unchanged as well. In a similar manner,
the upper quartile is resistant to outliers as well. (This property will be exploited
in section 2.4.)

Five number summary of data

The term five number summary refers to five numbers used to characterize data: (1) the
lowest observed value, (2) the lower quartile, (3) the median, (4) the upper quartile,
and (5) the largest observed value. (Software packages typically have a function that
computes all five values.)

Problems
4. Find the mean and median of the following sets of numbers. (a) −1, 03, 0, 2, −5.

(b) 2, 2, 3, 10, 100, 1,000.

5. The final exam scores for 15 students are 73, 74, 92, 98, 100, 72, 74, 85, 76, 94, 89,
73, 76, 99. Compute the mean and median.

6. The average of 23 numbers is 14.7. What is the sum of these numbers?
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7. Consider the ten values 3, 6, 8, 12, 23, 26, 37, 42, 49, 63. The mean is X̄ = 26.9.
(a) What is the value of the mean if the largest value, 63, is increased to 100?
(b) What is the mean if 63 is increased to 1,000? (c) What is the mean if 63 is
increased to 10,000?

8. Repeat the previous problem, only compute the median instead.

9. In general, how many values must be altered to make the sample mean arbitrarily
large?

10. In general, approximately how many values must be altered to make the sample
median arbitrarily large?

11. For the values 0, 23, −1, 12, −10, −7, 1, −19, −6, 12, 1, −3, compute the lower
and upper quartiles (the ideal fourths).

12. For the values −1, −10, 2, 2, −7, −2, 3, 3, −6, 12, −1, −12, −6, 8, 6, compute
the lower and upper quartiles (the ideal fourths).

13. Approximately how many values must be altered to make q2 arbitrarily large?

14. Argue that the smallest observed value, X(1), as well as the the lower and upper
quartiles, satisfy the definition of a measure of location.

2.3 Measures of variation

Often, measures of location are of particular interest. But measures of variation play a
central role as well. Indeed, it is variation among responses that motivates many of the
statistical methods covered in this book.

For example, imagine that a new diet for losing weight is under investigation. Of
course, some individuals will lose more weight than others, and conceivably, some might
actually gain weight instead. How might we take this variation into account when trying
to assess the efficacy of this new diet? When a new drug is being researched, the drug
might have no detrimental effect for some patients, but it might cause liver damage in
others. What must be done to establish that the severity of liver damage is small? When
asked whether they approve of how a political leader is performing, some will say they
approve and others will give the opposite response. How can we take this variability into
account when trying to assess the proportion of individuals who approve? The first step
toward answering these questions is to introduce measures of variation, which play a
central role when summarizing data. (The manner in which these measures are used to
address the problems just described will be covered in subsequent chapters.)

The range

The range is just the difference between the largest and smallest observations. In symbols,
it is X(n) − X(1). In table 2.1, the largest value is 31, the smallest is −34, so the range is
31− (−34) = 65. Although the range provides some useful information about the data,
relative to other measures that might be used, it plays a minor role at best. One reason
has to do with technical issues that are difficult to describe at this point.



20 BASIC STATISTICS

The variance and standard deviation

Another approach to measuring variation, one that plays a central role in applied work, is
the sample variance. The basic idea is to measure the typical distance observations have
from the mean. Imagine we have n numbers labeled X1, . . . ,Xn. Deviation scores are just
the difference between an observation and the sample mean. For example, the deviation
score for the first observation, X1, is X1 − X̄ . In a similar manner, the deviation score
for the second observation is X2 − X̄ .

Example 1

For various reasons, a high fiber diet is thought to promote good health.
Among cereals regarded to have high fiber, is there much variation in the
actual amount of fiber contained in one cup? For 11 such cereals, the amount
of fiber (in grams), written in ascending order, is

7.5,8.0,8.0,8.5,9.0,11.0,19.5,19.5,28.5,31.0,36.0.

The sample mean is X̄ = 17, so the deviation scores are

−9.5,−9.0,−9.0,−8.5,−8.0,−6.0,2.5,2.5,11.5,14.0,19.0.

Deviation scores reflect how far each observation is from the mean, but
often it is convenient and desirable to find a single numerical quantity that
summarizes the amount of variation in our data. An initial suggestion might
be to simply average the deviation scores. That is, we might use

1

n

∑
(Xi − X̄ ).

But using the rules for summation already described, it can be seen that this
average difference is always zero, so this approach is unsatisfactory. Another
possibility is to use the average of the absolute deviation scores:

1

n

∑
|Xi − X̄ |.

This is reasonable, but it makes certain theoretical developments difficult. It
turns out that using the squared differences instead greatly reduces certain
mathematical problems related to methods covered in subsequent chapters.
That is, use what is called the sample variance, which is

s2 = 1

n − 1

∑
(Xi − X̄ )2.

In other words, use the average squared difference from the mean. The sample
standard deviation is the (positive) square root of the variance, s.

Notice that when computing the sample mean, we divide by n, the
number of observations, but when computing the sample variance, s2, we
divide by n − 1. When first encountered, this usually seems strange, but
it is too soon to explain why this is done. We will return to this issue in
chapter 5.
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Example 2

Imagine you sample 10 adults (n = 10), ask each to rate the performance of
the president on a 10-point scale, and that their responses are:

3,9,10,4,7,8,9,5,7,8.

The sample mean is X̄ = 7,
∑

(Xi − X̄ )2 = 48, so the sample variance is
s2 = 48/9 = 5.33. Consequently, the standard deviation is s = √

5.33 = 2.31.
Another way to summarize the calculations is as follows.

i Xi Xi − X̄ (Xi − X̄ )2

1 3 –4 16
2 9 2 4
3 10 3 9
4 4 –3 9
5 7 0 0
6 8 1 1
7 9 2 4
8 5 –2 4
9 7 0 0

10 8 1 1∑
0 48

The sum of the observations in the last column is
∑

(Xi − X̄ )2 = 48. So again,
s2 = 48/9 = 5.33.

The interpretation and practical utility of the sample variance, s2, is unclear
at this point. For now, the main message is that for some purposes it is very
useful, as will be seen. But simultaneously, there are variety of situations where
it can highly unsatisfactory. What is needed is a basic understanding of when
it performs well, and when and why it can yield highly misleading results. One
of the main reasons it can be unsatisfactory is its sensitivity to outliers.

Example 3

Consider the 10 values 50, 50, 50, 50, 50, 50, 50, 50, 50, 50. As is evident, the
sample mean is X̄ = 50, and because all values are equal to the sample mean,
s2 = 0. Suppose we decrease the first value to 45 and increase the last to 55.
Now s2 = 5.56. If we decrease the first value to 20 and increase the last to 80,
s2 = 200. The point is that the sample variance can be highly influenced by
unusually large or small values, even when the bulk of the values are tightly
clustered together. Put another way, the sample variance can be small only
when all of the values are tightly clustered together. If even a single value is
unusually large or small, the sample variance will tend to be large, regardless
of how bunched together the other values might be. This property can wreak
havoc on methods routinely used to analyze data, as will be seen. Fortunately,
many new methods have been derived that deal effectively with this problem.
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The interquartile range

For some purposes, it is important to measure the variability of the centrally located
values. If, for example, we put the observations in ascending order, how much variability
is there among the central half of the data? The last example illustrated that the sample
variance can be unsatisfactory in this regard. An alternative approach, which has practical
importance, is the interquartile range, which is just q2 − q1, the difference between the
upper and lower quartiles.

Notice that the interquartile range is insensitive to the more extreme values under
study. As previously noted, the upper and lower quartiles are resistant to outliers, which
means that the most extreme values do not affect the values of q1 and q2. Consequently,
the interquartile range is resistant to outliers as well.

Example 4

Consider again the 10 values 50, 50, 50, 50, 50, 50, 50, 50, 50, 50. The
interquartile range is zero. If we decrease the first value to 20 and increase the
last to 80, the interquartile range is still zero because it measure the variability
of the central half of the data, while ignoring the upper and lower fourth
of the observations. Indeed, no matter how small we make the first value,
and no matter how much we increase the last value, the interquartile range
remains zero.

Problems
15. The height of 10 plants is measured in inches and found to be 12, 6, 15, 3, 12, 6,

21, 15, 18 and 12. Verify that
∑

(Xi − X̄ ) = 0.

16. For the data in the previous problem, compute the range, variance and standard
deviation.

17. Use the rules of summation notation to show that it is always the case that∑
(Xi − X̄ ) = 0.

18. Seven different thermometers were used to measure the temperature of a
substance. The readings in degrees Celsius are −4.10, −4.13, −5.09, −4.08,
−4.10, −4.09 and −4.12. Find the variance and standard deviation.

19. A weightlifter’s maximum bench press (in pounds) in each of six successive weeks
was 280, 295, 275, 305, 300, 290. Find the standard deviation.

2.4 Detecting outliers

The detection of outliers is important for a variety of reasons. One rather mundane
reason is that they can help identify erroneously recorded results. We have already seen
that even a single outlier can grossly affect the sample mean and variance, and of course
we do not want a typing error to substantially alter or color our perceptions of the data.
Such errors seem to be rampant in applied work, and the subsequent cost of such errors
can be enormous (De Veaux and Hand, 2005). So it can be prudent to check for outliers,
and if any are found, make sure they are valid.
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But even if data are recorded accurately, it cannot be stressed too strongly that
modern outlier detection techniques suggest that outliers are more the rule rather
than the exception. That is, unusually small or large values occur naturally in a
wide range of situations. Interestingly, in 1960, the renowned statistician John Tukey
(1915–2000) predicted that in general we should expect outliers. What is fascinating
about his prediction is that it was made before good outlier detection techniques were
available.

A simple approach to detecting outliers is to merely look at the data. And another
possibility is to inspect graphs of the data described in chapter 3. But for various purposes
(to be described), these two approaches are unsatisfactory. What is needed are outlier
detection techniques that have certain properties, the nature of which, and why they
are important, is impossible to appreciate at this point. But one basic goal is easy to
understand. A fundamental requirement of any outlier detection technique is that it
does not suffer from what is called masking. An outlier detection technique is said to
suffer from masking if the very presence of outliers causes them to be missed.

A classic outlier detection method

A classic outlier detection technique illustrates the problem of masking. This classic
technique declares the value X an outlier if

|X − X̄ |
s

≥ 2. (2.3)

(The value 2 in this last equation is motivated by results covered in chapter 4.)

Example 1

Consider the values

2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,1,000.

The sample mean is X̄ = 65.94, the sample standard deviation is s = 249.1,

|1,000 − 65.94|
249.1

= 3.75,

3.75 is greater than 2, so the value 1,000 is declared an outlier. In this particular
case, the classic outlier detection method is performing in a reasonable manner;
it identifies what is surely an usual value.

Example 2

Now consider the values

2,2,3,3,3,4,4,4,100,000,100,000.

The sample mean is X̄ =20,002.5, the sample standard deviation is s = 42,162.38,

|100,000 − 20,002.5|
42,162.38

= 1.897,

and so the classic method would not declare the value 100,000 an outlier even
though certainly it is highly unusual relative to the other eight values. The
problem is that both the sample mean and the sample standard deviation are
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sensitive to outliers. That is, the classic method for detecting outliers suffers
from masking. It is left as an exercise to show that even if the two values
100,000 in this example are increased to 10,000,000, the value 10,000,000 is
not declared an outlier.

In some cases the classic outlier detection rule will detect the largest outlier
but miss other values that are clearly unusual. Consider the sexual attitude data
in table 2.3. It is evident that the response 6,000 is unusually large. But even
the response 150 seems very large relative to the majority of values listed, yet
the classic rule does not flag it as an outlier.

The boxplot rule

One of the earliest improvements on the classic outlier detection rule is called the
boxplot rule. It is based on the fundamental strategy of avoiding masking by replacing
the mean and standard deviation with measures of location and dispersion that are
relatively insensitive to outliers. In particular, the boxplot rule declares the value X an
outlier if

X < q1 − 1.5(q2 − q1) (2.4)

or

X > q2 + 1.5(q2 − q1). (2.5)

So the rule is based on the lower and upper quartiles, as well as the interquartile range,
which provide resistance to outliers.

Example 3

Consider the values

1,2,3,4,5,6,7,8,9,10,11,12,13,14,100,500.

A little arithmetic shows that the lower quartile is q1 = 4.417, the upper quartile
is q2 = 12.583, so q2 + 1.5(q2 − q1) = 12.583 + 1.5(12.583 − 4.417) = 24.83.
That is, any value greater than 24.83 is declared an outlier. In particular, the
values 100 and 500 are labeled outliers.

Example 4

For the sexual attitude data in table 2.3, the classic outlier detection rule declares
only one value to be an outlier: the largest response, 6,000. In contrast, the
boxplot rule labels all values 15 and larger as outliers. So of the 105 responses,
the classic outlier detection rule finds only one outlier, and the boxplot rule
finds 12.

Problems
20. For the values

20,121,132,123,145,151,119,133,134,130,

use the classic outlier detection rule to determine whether any outliers exist.
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21. Apply the boxplot rule for outliers to the values in the preceding problem.

22. Consider the values

0,121,132,123,145,151,119,133,134,130,250.

Are the values 0 and 250 declared outliers using the classic outlier detection rule?

23. Verify that for the data in the previous problem, the boxplot rule declares the
values 0 and 250 outliers.

24. Consider the values

20,121,132,123,145,151,119,133,134,240,250.

Verify that no outliers are found using the classic outlier detection rule.

25. Verify that for the data in the previous problem, the boxplot rule declares the
values 20, 240, and 250 outliers.

26. What do the last three problems suggest about the boxplot rule versus the classic
rule for detecting outliers?

2.5 Some modern advances and insights

During the last half-century, and particularly during the last twenty years, there have
been major advances and insights relevant to the most basic methods covered in an
introductory statistics course. Most of these advances cannot be covered here, but it is
very important to at least alert students to some of the more important advances and
insights and to provide a glimpse of why more modern techniques have practical value.
The material covered here will help achieve this goal.

Means, medians and trimming

The mean and median are the two best-known measures of location, with the mean
being used in a large proportion of applied investigations. There are circumstances
where using a mean gives satisfactory results. Indeed, there are conditions where it
is optimal (versus any other measure of location that might be used.) But recent
advances and insights have made it clear that both the mean and median can be highly
unsatisfactory for a wide range of practical situations. Many new methods have been
developed for dealing with known problems, some of which are based in part on using
measures of location other than the mean and median. One of the simpler alternatives
is introduced here.

The sample median is an example of what is called a trimmed mean; it trims all
but one or two values. Although there are circumstances where this extreme amount
of trimming can be beneficial, for various reasons covered in subsequent chapters, this
extreme amount of trimming can be detrimental. The sample mean represents the other
extreme: zero trimming. We have already seen that this can result in a measure of location
that is a rather poor reflection of what is a typical observation. But even when it provides
a good indication of the typical value, many basic methods based on the mean suffer from
other fundamental concerns yet to be described. One way of reducing these problems is
to use a compromise amount of trimming. That is, trim some values, but not as many
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as done by the median. No specific amount of trimming is always best, but for various
reasons, 20% trimming is often a good choice. This means that the smallest 20%, as
well as the largest 20%, are trimmed and the average of the remaining data is computed.
In symbols, first compute .2n, round down to the nearest integer, call this result g, in
which case the 20% trimmed mean is given by

X̄ t = 1

n − 2g
(X(g+1) +·· ·+ X(n−g)). (2.6)

Example 1

Consider the values

46,12,33,15,29,19,4,24,11,31,38,69,10.

Putting these values in ascending order yields,

4,10,11,12,15,19,24,29,31,33,38,46,69.

The number of observations is n = 13, 0.2(n) = 0.2(13) = 2.6, and rounding
this down to the nearest integer yields g = 2. That is, trim the two smallest
values, 4 and 10, trim the two largest values, 46 and 69, and average the numbers
that remain yielding

X̄ t = 1

9
(11 + 12 + 15 + 19 + 24 + 29 + 31 + 33 + 38) = 23.56.

Example 2

Imagine a figure skating contest that uses nine judges who rate a skater on a
six-point scale. Suppose the nine ratings are

5.1,5.3,5.3,5.5,5.0,5.1,5.4,4.2,5.2.

A natural concern is that some raters might not be fair under certain
circumstances, or they might provide a poor reflection of how most raters would
judge the skater, which in turn might make a difference in a competition. From
a statistical point of view, we do not want an unusual rating to overly influence
our measure of the typical rating a skater would receive. For the data at hand, the
sample mean is 5.1, but notice that the rating 4.2 is unusually small compared
to the remaining eight. To guard against unusually high or low ratings, it is
common in skating competitions to throw out the highest and lowest scores
and average those that remain. Here, n = 9, 0.2n = 1.8, so g = 1. That is, a
20% trimmed mean corresponds to throwing out the lowest and highest scores
and averaging the ratings that remain, yielding X̄ t = 5.2.

Other measures of location

Yet another approach when measuring location is to check for outliers, remove any that
are found, and then average the remaining values. There are, in fact, several variations
of this strategy. There are circumstances where this approach has practical value, but the
process of removing outliers creates certain technical problems that require advanced
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techniques that go beyond the scope of this book.2 Consequently, this approach to
measuring location is not discussed further.

Winsorized data and the winsorized variance

When using a trimmed mean, certain types of analyses, to be covered later, are not
done in an intuitively obvious manner based on standard training. To illustrate how
technically correct methods are applied, we will need to know how to Winsorize data
and how to compute the Winsorized variance.

The process of Winsorizing data by 20% is related to 20% trimming. When we
compute a 20% trimmed mean, we compute g as previously described, remove the g
smallest and largest observations, and average the remaining values. Winsorizing the
data by 20% means that the g smallest values are not trimmed, but rather, they are set
equal to the smallest value not trimmed. Similarly, the g largest values are set equal to
the largest value not trimmed.

Example 3

Suppose the reaction times of individuals are measured yielding

2,3,4,5,6,7,8,9,10,50.

There are n = 10 values, 0.2(10) = 2, so g = 2. Here, 20% Winsorizing of the
data means that the two smallest values are set equal to 4. Simultaneously the
two largest observations, 10 and 50, are set equal to 9, the largest value not
trimmed. That is, 20% Winsorizing of the data yields

4,4,4,5,6,7,8,9,9,9.

In symbols, the observations X1, . . . ,Xn are Winsorized by first putting
the observations in order yielding X(1) ≤ X(2) ≤ ·· · ≤ X(n). Then the g smallest
observations are replaced by X(g+1), and the g largest observations are replaced
by X(n−g).

Example 4

To Winsorize the values

10,8,22,35,42,2,9,18,27,1,16,29

using 20% Winsorization, first note that there are n = 12 observations,
.2 × 12 = 2.4, and rounding down gives g = 2. Putting the values in order
yields

1,2,8,9,10,16,18,22,27,29,35,42.

Then the two smallest values are replaced by X(g+1) = X(3) = 8, the two largest
values are replaced by X(n−g) = X(10) = 29, and the resulting Winsorized
values are

8,8,8,9,10,16,18,22,27,29,29,29.

2. The technical problems are related to methods for testing hypotheses, a topic introduced in chapter 7.



28 BASIC STATISTICS

The Winsorized sample variance is just the sample variance based on the
Winsorized values and will be labeled s2w. In symbols, if W1, . . . ,Wn are the
Winsorized values,

s2w = 1

n − 1

∑
(Wi − W )2, (2.7)

where

W = 1

n

∑
Wi,

the average of the Winsorized values. The sample mean of the Winsorized
values, W , is called the sample Winsorized mean. The Winsorized sample standard
deviation is the square root of the Winsorized sample variance, sw.

Example 5

To compute the 20% Winsorized mean and variance for the observations

1,2,8,9,10,16,18,22,27,29,35,42,

first Winsorize these values yielding

8,8,8,9,10,16,18,22,27,29,29,29.

The mean of these Winsorized values is the Winsorized mean given by

X w = 8 + 8 + 8 + 9 + 10 + 16 + 18 + 22 + 27 + 29 + 29 + 29

12
= 17.75.

The Winsorized sample variance is

s2w = (8 − 17.75)2 + (8 − 17.75)2 +·· ·+ (29 − 17.75)2

12 − 1
= 82.57.

The Winsorized sample standard deviation is sw = √
82.57 = 9.1.

For the observations in the last example, the sample mean is X̄ = 18.25
and the sample variance is s2 = 170.57, which is about twice as large as the
sample Winsorized variance, s2w = 82.57. Notice that the Winsorized variance
is less sensitive to extreme observations and roughly reflects the variation for
the middle portion of your data. In contrast, the sample variance, s2, is highly
sensitive to extreme values. This difference between the sample variance and
the Winsorized sample variance will be seen to be important.

Example 6

For the data in the last example, suppose we increase the largest value, 42, to 60.
Then the sample mean increases from 18.25 to 19.75 and the sample variance,
s2, increases from 170.57 to 275.3. In contrast, the Winsorized sample mean
and variance do not increase at all, they are still equal to 17.75 and 82.57,
respectively. The sample Winsorized variance provides resistance to outliers
because its value does not increase as we increase the largest observation, a
property that will turn out to have great practical value.
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A Summary of Some Key Points

• Several measures of location were introduced. How and when should one measure
of location be preferred over another? It is much too soon to discuss this issue in
a satisfactory manner. An adequate answer depends in part on concepts yet to be
described. For now, the main point is that different measures of location vary in how
sensitive they are to outliers.

• The sample mean can be highly sensitive to outliers. For some purposes, this
is desirable, but in many situations this creates practical problems, as will be
demonstrated in subsequent chapters.

• The median is highly insensitive to outliers. This plays an important role in some
situations, but the median has some negative characteristics yet to be described.

• In terms of sensitivity to outliers, the 20% trimmed mean lies between two extremes:
no trimming (the mean) and the maximum amount of trimming (the median).

• The sample variance also is highly sensitive to outliers. We saw that this property
creates difficulties when checking for outliers (it results in masking), and some
additional concerns will become evident later in this book.

• The interquartile range measures variability without being sensitive to the more
extreme values. This property makes it well suited to detecting outliers.

• The 20% Winsorized variance also measures variation without being sensitive to the
more extreme values. But it is too soon to explain why it has practical importance.

Problems
27. What is the typical pulse rate (beats per minute) among adults? Imagine that you

sample 21 adults, measure their pulse rate and get

80,85,81,75,77,79,74,86,79,55

82,89,73,79,83,82,88,79,77,81,82.

Compute the 20% trimmed mean.

28. For the observations

21,36,42,24,25,36,35,49,32

verify that the sample mean, trimmed mean and median are X̄ = 33.33,
X̄ t = 32.9 and M = 35.

29. The largest observation in the last problem is 49. If 49 is replaced by the
value 200, verify that the sample mean is now X̄ = 50.1 but the trimmed
mean and median are not changed.

30. For the last problem, what is the minimum number of observations that must be
altered so that the trimmed mean is greater than 1,000?

31. Repeat the previous problem but use the median instead. What does this illustrate
about the resistance of the mean, median and trimmed mean?

32. For the observations

6,3,2,7,6,5,8,9,8,11

verify that the sample mean, trimmed mean and median are X̄ = 6.5, X̄ t = 6.7
and M = 6.5.
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33. In general, when you have n observations, what proportion of the values must be
altered to make the 20% trimmed mean as large as you want.

34. A class of fourth graders was asked to bring a pumpkin to school. Each of the
29 students counted the number of seeds in their pumpkin and the results were

250,220,281,247,230,209,240,160,370,274,210,204,243,251,190,

200,130,150,177,475,221,350,224,163,272,236,200,171,98.

Compute the sample mean, trimmed mean and median.

35. Compute the 20% Winsorized values for the observations

21,36,42,24,25,36,35,49,32.

36. For the observations in the previous problem, compute the sample 20%
Winsorized variance.

37. In the previous problem, would you expect the sample variance to be larger or
smaller than 51.4? Verify your answer.

38. In general, will the Winsorized sample variance, s2w, be less than the sample
variance, s2?

39. For the observations

6,3,2,7,6,5,8,9,8,11

verify that the sample variance and Winsorized variance are 7.4 and 1.8,
respectively.

40. Consider again the number of seeds in 29 pumpkins given in problem 34.
Compute the 20% Winsorized variance.

41. Snedecor and Cochran (1967) report results from an experiment dealing with
weight gain in rats as a function of source and amount of protein. One of the
groups was fed beef with a low amount of protein. The weight gains were

90,76,90,64,86,51,72,90,95,78.

Compute the 20% trimmed mean and the 20% Winsorized variance.
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GRAPHICAL SUMMARIES
OF DATA AND SOME
RELATED ISSUES

T his chapter covers some of the more basic methods for graphically summarizing
data and it comments on some related issues. Included are some modern insights

regarding when these graphical methods perform well, and when and why they might
be unsatisfactory. A few comments about more modern methods are provided.

3.1 Relative frequencies

The notation fx is used to denote the frequency or number of times the value x occurs.
To be concrete, imagine that 100 individuals are asked to rate a recently released movie
using a 10-point scale, where a 1 means the movie received a poor rating and a 10 indicates
an excellent film. The results, which for convenience are written in ascending order, are
shown in table 3.1. In table 3.1, the value 2 occurs five times, which is written as f2 = 5,
the number 3 occurs 18 times, so f3 = 18. In a similar manner f4 = 24, f5 = 25, f6 = 15,
f7 = 9 and f9 = 4. The relative frequency is just the frequency divided by the sample
size, which here is n = 100. That is, the relative frequency associated with the value
x is fx/n, the proportion of times the value x occurs among the n observations. The
value having the largest frequency is called the mode. The plot used to indicate the
relative frequencies consists of the observed x values along the x-axis with the height of
spikes used to indicate the relative frequencies. The relative frequencies, taken as whole,
are called an empirical distribution. Figure 3.1 shows a plot of the relative frequencies
(the empirical distribution) for the data in table 3.1. The mode is 5.

Plots of relative frequencies help add perspective on the sample variance, mean and
median introduced in chapter 2. Moreover, relative frequencies help convey some basic
principles covered in chapter 4. But first it is noted how the sample mean is computed
using relative frequencies. Observe that the sum of the frequencies yields the sample
size, n. That is,

n =
∑

fx,
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Table 3.1 One hundred ratings of a film

2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6
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Figure 3.1 Relative frequencies for the data in table 3.1.

where now the summation is over all possible values of x. For table 3.1,∑
fx = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10

= 0 + 5 + 18 + 24 + 25 + 15 + 9 + 40 + 0 + 0 = 100.

The sample mean is

X̄ = 1

n

∑
xfx =

∑
x

fx
n

. (3.1)

So if we know the relative frequencies (fx/n), it is a simple matter to compute the mean
even when the number of observations, n, is large. (And writing the sample mean in
terms of relative frequencies helps elucidate a basic principle covered in chapter 4.)
The sample variance is

s2 = n

n − 1

∑ fx
n

(x − X̄ )2. (3.2)

Example 1

One million couples are asked how many children they have. For illustrative
purposes, suppose that the maximum number of possible children is 5 and that
the relative frequencies are f0/n = 0.10, f1/n = 0.20, f2/n = 0.25, f3/n = 0.29,
f4/n = 0.12 and f5/n = 0.04. Then the sample mean is

X̄ = 0(.10) + 1(.20) + 2(.25) + 3(.29) + 4(.12) + 5(.04) = 2.25.

To compute the sample variance, first compute

0.10(0 − 2.25)2 + 0.20(1 − 2.25)2 + 0.25(2 − 2.25)2 + 0.29(3 − 2.25)2

+0.12(4 − 2.25)2 + 0.04(5 − 2.25)2 = 1.6675.
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Figure 3.2 Relative frequencies that are symmetric about a central value. For this special case, the
mean and median have identical values, the middle value, which here is 3. The relative frequencies
in the left panel are higher for the more extreme values, versus the right panel, indicating that the
variance associated with the left panel is higher.

Because n/(n − 1) = 1,000,000/999,999 = 1.000001, the sample variance is
1.000001(1.6675) = 1.667502.

Look at figure 3.2. The left panel shows five relative frequencies where the
middle spike is the highest and the other spikes are symmetric about this middle
value. When this happens, the mode, median, mean and 20% trimmed mean all
have the same value, which is equal to the middle value. Here this middle value
is 3. The right panel shows another plot of relative frequencies symmetric about
the value 3 (again the mean), but now the relatively frequencies associated with
the values 1 and 3 are much smaller, and the relatively frequencies associated
with the values 2 and 4 are higher, indicating that the sample variance is smaller
in the right panel versus the left. In the left panel, the data used to create the
plot has a sample variance of 1.21 and in the right panel it is 0.63.

The cumulative relative frequency distribution refers to the proportion of observations
less than or equal to a given value. Note that for each possible x value, a certain proportion
of the observed values will be less than or equal to x, which will be denoted by F (x).
These proportions, taken as a whole, are sometimes called the empirical cumulative
distribution function.

Example 2

In the previous example, the smallest observed value is 0, the corresponding
relative frequency is f0/n = 0.10, so the proportion of values less than or equal
to 0 is F (0) = 0.10. The next largest observation is 1, its relative frequency
is f1/n = 0.20, so the corresponding cumulative relative frequency is F (1) =
0.10+0.20 = 0.30. In a similar manner, F (2) = 0.45, F (3) = 0.84, F (4) = 0.96
and F (5) = 1.00.
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Problems
1. Based on a sample of 100 individuals, the values 1, 2, 3, 4, 5 are observed with

relative frequencies 0.2, 0.3, 0.1, 0.25, 0.15. Compute the mean, variance and
standard deviation.

2. Fifty individuals are rated on how open minded they are. The ratings have the
values 1, 2, 3, 4 and the corresponding relative frequencies are 0.2, 0.24, 0.4, 0.16,
respectively. Compute the mean, variance and standard deviation.

3. For the values 0, 1, 2, 3, 4, 5, 6 the corresponding relative frequencies based on a
sample of 10,000 observations are 0.015625, 0.093750, 0.234375, 0.312500,
0.234375, 0.093750, 0.015625, respectively. Determine the mean, median,
variance, standard deviation and mode.

4. For a local charity, the donations in dollars received during the last month were 5,
10, 15, 20, 25, 50 having the frequencies 20, 30, 10, 40, 50, 5. Compute the mean,
variance and standard deviation.

5. The values 1, 5, 10, 20 have the frequencies 10, 20, 40, 30. Compute the mean,
variance and standard deviation.

3.2 Histograms

An important feature of the data previously used to illustrate plots of relative frequencies
is that a few values occur many times. In figure 3.2, for example, the responses are limited
to five values. But when there are many values, with most values occurring a small number
of times, plots of relatively frequencies can be rather uninteresting. If each value occurs
only once, a plot of the relatively frequencies would consist of n spikes, each having
height 1/n. A histogram is one way of trying to deal with this problem. It is similar to
plots of relatively frequencies, the main difference being that values are binned together
to get a more useful plot. That is, a histogram simply groups the data into categories
and plots the corresponding frequencies.

Example 1

A histogram is illustrated with data from a heart transplant study conducted at
Stanford University between October 1, 1967 and April 1, 1974. Of primary
concern is whether a transplanted heart will be rejected by the recipient. With
the goal of trying to address this issue, a so-called T5 mismatch score was
developed by Dr. C. Bieber. It measures the degree of dissimilarity between
the donor and the recipient tissue with respect to HL-A antigens. Scores less
than 1 represent a good match and scores greater than 1 a poor match. The

Table 3.2 T5 mismatch scores from a heart transplant study

0.00 0.12 0.16 0.19 0.33 0.36 0.38 0.46 0.47 0.60 0.61 0.61 0.66 0.67 0.68
0.69 0.75 0.77 0.81 0.81 0.82 0.87 0.87 0.87 0.91 0.96 0.97 0.98 0.98 1.02
1.06 1.08 1.08 1.11 1.12 1.12 1.13 1.20 1.20 1.32 1.33 1.35 1.38 1.38 1.41
1.44 1.46 1.51 1.58 1.62 1.66 1.68 1.68 1.70 1.78 1.82 1.89 1.93 1.94 2.05
2.09 2.16 2.25 2.76 3.05
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Table 3.3 Frequencies and relative frequencies for grouped T5 scores, n = 65

Test score (x) Frequency Relative frequency

–0.5–0.0 1 1/65 = .015
0.0–0.5 8 8/65 = .123
0.5–1.0 20 20/65 = .308
1.0–1.5 18 18/65 = .277
1.5–2.0 12 12/65 = .138
2.0–2.5 4 4/65 = .062
2.5–3.0 1 1/65 = .015
3.0–3.5 1 1/65 = .015

T5 scores, written in ascending order, are shown in table 3.2 and are taken from
Miller (1976). Suppose we group the T5 values into eight categories: (1) values
between −0.5 and 0.0, (2) values greater than 0.0 but less than or equal to
0.5, (3) values greater than 0.5 but less than or equal to 1.0, and so on. The
beginning and end of each interval are called boundaries or class interval and the
point midway between any to boundaries is called the class mark or midpoint.
So here, the first interval has boundaries −0.5 and 0.0 and the corresponding
class mark or midpoint is (−0.5+0)/2 = −0.25. Similarly, the second interval
has boundaries 0.0 and 0.5, so the class mark is (0.0+0.5)/2 = 0.25. Note that
all of the categories have the same length, which is a feature routinely used.
The frequency and relative frequency associated with each of these intervals is
shown in table 3.3. For example, there are eight T5 mismatch scores in the
interval extending from 0.0 to 0.5 and the proportion of all scores belonging
to this interval is 0.123. Figure 3.3 shows the resulting histogram.

How many bins should be used when constructing a histogram and how
should the length of the bins be chosen? The general goal is to choose the
number of bins so as to get an informative plot of the data. If we have one bin
only, this tells us little about the data, and too many bins suffer from the same
problem. There are simple rules for choosing the number of bins. One is called
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Figure 3.3 A histogram of the heart transplant data in table 3.5.
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Sturges’s rule, which is commonly used by statistical software, but no details
are given here. The main point is that standard methods for choosing the
number of bins can result in a rather unsatisfactory summary of the data, as
will be illustrated. The good news is that substantially better methods are now
available, some of which are outlined in the final section of this chapter.

What do histograms tell us?

Like so many graphical summaries of data, histograms attempt, among other things, to
tell us something about the shape of the data. One issue of some concern is whether data
are reasonably symmetric about some central value. In figure 3.2, we see exact symmetry,
but often data are highly skewed, and this can be a serious practical problem when dealing
with inferential techniques yet to be described. The left panel of figure 3.4 shows data
that are not symmetric, but rather skewed to the right. The right panel shows data that
are skewed to the left. In recent years, skewness, roughly referring to a lack of symmetry,
has been found to be a much more serious problem than once thought for reasons that
are best postponed for now. But one important point that should be stressed here is that
when distributions are skewed, generally the mean, median and 20% trimmed mean will
differ. In some cases they differ by very little, but in other situations these measures of
location can differ substantially, as was illustrated in chapter 2. Moreover, even when
these measures of location are virtually identical, subsequent chapters will demonstrate
that often the choice for a measure of location can make a practical difference when
addressing common problems yet to be described.

Example 2

In an unpublished study (by M. Earleywine) was performed that generally dealt
with the effects of consuming alcohol. A portion of the was concerned with
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Figure 3.4 The left panel is an example of a histogram that is said to be skewed to the right.
In the right panel, it is skewed to the left.
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Figure 3.5 A histogram of the measurement of hangover symptoms.

measuring hangover symptoms after consuming a specific amount of alcohol in
a laboratory setting. The resulting measures, written in ascending order, were

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 2 2 2 3 3 3 6 8 9 11 11 11 12 18 32 32 41.

Figure 3.5 shows a histogram based on these data. As is evident, the histogram is
skewed to the right with a fairly large difference between the median and mean.
Note that the rightmost portion indicates three bins that are separated from
the rest of the plot. This might suggest that any value greater than 16 should be
flagged an outlier, but a boxplot rule indicates that only values greater than or
equal to 32 are outliers. Although histograms can provide a useful summary of
data, as an outlier detection method, it is not very satisfactory. One fundamental
problem is that, when using a histogram, no precise rule is available for telling
us when a value should be declared an outlier. Without a precise rule, there can
be no agreement on the extent to which masking (described in chapter 2) is
avoided.1 (Also, examples will be seen where extremely unlikely values occur,
yet a histogram does not suggest that they are unusual.) As a general rule,
histograms might suggest that certain values are outliers, but when making a
decision about which values are outliers, it is better to use methods specifically
designed for this task, such as the boxplot rule.

Populations, samples, and potential concerns about
histograms

Histograms are routinely taught in an introductory statistics course and in some cases
they provide useful information about data. But like so many methods covered in
this book, it is important to understand not only when histograms perform well,

1. Outlier detection methods are typically designed to have other properties not covered here. Again,
without a precise rule for deciding what constitutes an outlier, it is impossible to determine whether a specific
method achieves the properties desired.
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but also when, and in what sense, they might be highly misleading. Without a basic
understanding of the relative merits of a method, there is the potential of drawing
erroneous conclusions, as well as missing interesting results. The immediate goal is
to illustrate a fundamental concern about histograms, and in the final section of this
chapter, methods aimed at correcting known problems are briefly indicated.

As mentioned in chapter 1, there is an important distinction between samples of
individuals or things versus a population of individuals or things. Samples represent a
subset of the population under study. Consider, for example, the last example dealing
with hangover symptoms. There were 40 participants who represent only a small
proportion of the individuals who might have taken part in this study. Ideally, the
available participants will provide a reasonably accurate reflection of the histogram we
would obtain if all participants could be measured. In some cases, histograms satisfy
this goal. But an important practical issue is whether they can be highly unsatisfactory.
And if they can be unsatisfactory, is there some strategy that might give substantially
better results? In turns out that they can indeed by unsatisfactory, and fundamental
improvements are now available (e.g., Silverman, 1986). The only goal here is to
illustrate what might go wrong and provide information about where to look for
better techniques.

First we consider a situation where the histogram tends to perform tolerably well.
Imagine that the population consists of one million individuals and that if we could
measure everyone, the resulting histogram would appear as in figure 3.6. (Here, the
y-axis indicates the relative frequencies.) Now imagine that 100 individuals are selected
from the one million individuals in the population, with every individual having the same
probability of being chosen. An issue of fundamental importance is the extent to which a
histogram based on a sample of only 100 individuals will reflect the histogram we would
get if all individuals could be measured. Mimicking this process on a computer resulted
in the histogram shown in figure 3.7. So in this particular case, the histogram provides
a reasonable reflection of the population histogram, roughly capturing its bell shape.
A criticism of this illustration is that maybe we just got lucky. That is, in general, perhaps
with only 100 individuals, the histogram will not accurately reflect the population.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

X

Figure 3.6 A histogram of an entire population that is approximately symmetric about 0 with
relatively light tails, meaning outliers tend to be rare.
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Figure 3.7 A histogram based on a sample of 100 observations generated from the histogram in
figure 3.6.

This might indeed happen, but generally it gives a reasonable sense of the shape of
the population histogram.

Now consider the population histogram in figure 3.8. This histogram has the
same bell shape as in figure 3.6, but the tails extend out a bit farther. This reflects
the fact that for this particular population, there are more outliers or extreme values.
Now look at figure 3.9, which is based on 100 individuals sampled from the population
histogram in figure 3.8. As is evident, it provides a poor indication of what the population
histogram looks like. Figure 3.9 also provides another illustration that the histogram can
perform rather poorly as an outlier detection rule. It suggests that values greater than 10
are highly unusual, which turns out to be true based on how the data were generated.
But values less than −5 are also highly unusual, which is less evident here. The fact
that the histogram can miss outliers limits its ability to deal with problems yet to be
described.
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Figure 3.8 A histogram of an entire population that is approximately symmetric about 0 with
relatively heavy tails, meaning outliers tend to be common.
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Figure 3.9 A histogram based on a sample of 100 observations generated from the histogram in
figure 3.8.

A rough characterization of the examples just given is that when the population
histogram is symmetric and bell-shaped, and outliers tend to be rare, it performs tolerably
well with 100 observations, in terms of indicating the shape of the population histogram.
But when outliers are relatively common, the reverse is true.

Problems
6. For the data in table 2.1, dealing with changes in cholesterol levels, suppose a

histogram is to be created with bins defined as follows: −40 −30 −20 −10 0 10
20 30 40. That is, the first bin has boundaries −40 and −30, the next bin contains
all values greater than −30 but less than or equal to −20, and so on. Determine
the frequencies for each bin and construct a histogram.

7. For the data in table 2.2, suppose a histogram is to be created with bins defined
as follows: −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80. Determine the
frequencies for each bin and construct a histogram.

8. The heights of 30 male Egyptian skulls from 4000 BC were reported by Thomson
and Randall-Maciver (1905) to be

121 124 129 129 130 130 131 131 132 132 132 133 133 134 134 134 134 135
135 136 136 136 136 137 137 138 138 138 140 143.

Create a histogram with bins extending from 120–125, 125–130, and so on. Based
on this histogram, does the largest value, 143, appear to be an outlier?

9. For the data in the previous problem, does the boxplot rule (described in
chapter 2) indicate that 143 is an outlier?

10. What do the last two problems suggest about using a histogram to detect outliers?
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Table 3.4 Word identification scores

58 58 58 58 58 64 64 68 72 72 72 75 75 77 77 79 80 82 82
82 82 82 84 84 85 85 90 91 91 92 93 93 93 95 95 95 95 95
95 95 95 98 98 99 101 101 101 102 102 102 102 102 103 104 104 104 104
104 105 105 105 105 105 107 108 108 110 111 112 114 119 122 122 125 125 125
127 129 129 132 134

3.3 Boxplots and stem-and-leaf displays

A stem-and-leaf display is another method of gaining some overall sense of what data are
like. The method is illustrated with measures taken from a study aimed at understanding
how children acquire reading skills. A portion of the study was based on a measure that
reflects the ability of children to identify words. (These data were supplied by L. Doi.)
Table 3.4 lists the observed scores in ascending order.

The construction of a stem-and-leaf display begins by separating each value into
two components. The first is the leaf which, in this example, is the number in the ones
position (the single digit just to the left of the decimal place). For example, the leaf
corresponding to the value 58 is 8. The leaf for the value 64 is 4 and the leaf for 125 is 5.
The digits to the left of the leaf are called the stem. Here the stem of 58 is 5, the number
to the left of 8. Similarly, 64 has a stem of 6 and 125 has a stem of 12. We can display
the results for all 81 children as follows:

Stems Leaves
5 88888
6 448
7 22255779
8 0222224455
9 011233355555555889

10 1112222234444455555788
11 01249
12 22555799
13 24

There are five children who have the score 58, so there are five scores with a leaf of 8,
and this is reflected by the five 8s displayed to the right of the stem 5 and under
the column headed by Leaves. Two children got the score 64, and one child got the
score 68. That is, for the stem 6, there are two leaves equal to 4 and one equal to 8,
as indicated by the list of leaves in the display. Now look at the third row of numbers
where the stem is 7. The leaves listed are 2, 2, 2, 5, 5, 7, 7 and 9. This indicates that
the value 72 occurred three times, the value 75 occurred two times, as did the value 77,
and the value 79 occurred once. Notice that the display of the leaves gives us some
indication of the values that occur most frequently and which are relatively rare. Like
the histogram, the stem-and-leaf display gives us an overall sense of what the values
are like.

The leaf always consists of the numbers corresponding to a specified digit. For
example, the leaf might correspond to tenths digit, meaning that the leaf is the first
number to the right of the decimal, in which case the stem consists of all the numbers to
the left of the leaf. So for the number 158.234, the leaf would be 2 and the stem would
be 158. If we specify the leaf to be the hundredth digit, the leaf would now be 3 and the
stem would be 158.2. The choice of which digit is to be used as the leaf depends in part



42 BASIC STATISTICS

on which digit provides a useful graphical summary of the data. But details about how
to address this problem are not covered here. Suffice it to say that algorithms have been
proposed for deciding which digit should be used as the leaf and determining how many
lines a stem-and-leaf display should have (for example, Emerson and Hoaglin, 1983).

Example 1

Chapter 1 mentioned the software S-PLUS. When its version of a stem-
and-leaf display is applied to the T5 mismatch scores, the result is

Decimal point is at the colon

0 : z122344

0 : 556667777788889999

1 : 000001111111223334444

1 : 5566777788999

2 : 0122

2 : 8

3 : 0

The z in the first row stands for zero. So this plot suggests that the data are
reasonably symmetric, with maybe a hint of being skewed to the right. Also,
there are no values visibly separated from the overall plot suggesting that there
are no outliers. (The boxplot rule, described in chapter 2, also finds no outliers.)

Boxplot

Proposed by Tukey (1977), a boxplot is a commonly used graphical summary of data,
an example of which is shown in figure 3.10. As indicated, the ends of the rectangular
box mark the lower and upper quartiles. That is, the box indicates where the middle half
of the data lie. The horizontal line inside the box indicates the position of the median.
The lines extending out from the box are called whiskers.

Boxplots determine whether values are outliers using the boxplot rule described in
chapter 2. (See equations 2.4 and 2.5.) Figure 3.11 shows a boxplot with two outliers.
The ends of the whiskers are called adjacent values. They are the smallest and largest
values not declared outliers.
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Figure 3.10 An example of a boxlpot with no outliers.
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Figure 3.11 An example of a boxplot with outliers.

All of the statistical software mentioned in chapter 1 contain routines for creating
boxplots. In case it helps, here is an outline of how they are constructed using the
data in figure 3.11. First, compute the lower and upper quartiles using the method in
chapter 2 (based on the ideal fourths). This yields q1 = 49.8 and q2 = 120.75, which
correspond to the lower and upper ends of the box, respectively. The median is M = 80
and determines where the line within the box is placed. Next, using the boxplot rule
in chapter 2, determine how small a value must be to be declared an outlier. Here, this
value is −56.5. The smallest value not declared an outlier determines the end of the
lower whisker, which is 14. Again using the boxplot rule, any value greater than 227 is
declared an outlier. The largest value not declared an outlier is 215, so this value marks
the end of the upper whisker. There are two values greater than 227, which correspond
to the horizontal lines at the top of figure 3.11.

Problems
11. Table 3.5 shows the exam scores for 27 students. Create a stem-and-leaf display

using the digit in the ones position as the stem.

12. If the leaf is the hundredths digit, what is the stem for the number 34.679?

13. Consider the values 5.134, 5.532, 5.869, 5.809, 5.268, 5.495, 5.142, 5.483, 5.329,
5.149, 5.240, 5.823. If the leaf is taken to be the tenths digit, why would this
make an uninteresting stem-and-leaf display?

14. For the boxplot in figure 3.11, determine, approximately, the quartiles, the
interquartile range, and the median. Approximately how large is the largest value
not declared an outlier?

15. In figure 3.11, about how large must a value be to be declared an outlier? How
small must it be?

Table 3.5 Examination Scores

83 69 82 72 63 88 92 81 54
57 79 84 99 74 86 71 94 71
80 51 68 81 84 92 63 99 91
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16. Create a boxplot for the data in table 3.1.

17. Create a boxplot for the data in table 3.2.

3.4 Some modern trends and developments

We have seen that in terms of providing information about the shape of the population
histogram, a histogram based on 100 observations can be relatively ineffective in certain
situations. There is a vast literature on how this problem might be addressed using what
are called kernel density estimators. There are in fact many variations of this approach,
some of which appear to perform very well over a fairly broad range of situations. Some
of these methods come with the software R and S-PLUS mentioned in chapter 1. The
computational details go well beyond the scope of this book, but an illustration might
help motivate their use.

Example 1

Consider again the data used to create the histogram shown in figure 3.9. Recall
that the 100 observations were sampled from a population having the symmetric
histogram shown in figure 3.8, yet the histogram in figure 3.9 suggests a certain
amount of asymmetry. In particular, the right tail differs from the left; values
in the right tail appear to be outliers and the values in the left tail seem to
have a low relatively frequency, but otherwise there is no sense that they are
unusually far from the central values. One of the seemingly better methods
for improving on the histogram is called an adaptive kernel density estimator.
Figure 3.12 shows a plot of the data in figure 3.9 using this method.2 The plot
in figure 3.12 does not capture the exact symmetry of the population histogram,
but typically it does a better job of indicating its shape versus the histogram.

A Summary of Some Key Points

• No single graphical summary of data is always best. Different methods provide
different and potentially interesting perspectives. What is required is some familiarity
with the various methods to help you choose which one to use.

• However, the choice of method is not always academic. The histogram is a classic,
routinely taught method, but it is suggested that kernel density estimators be given
serious consideration. Perhaps the most important point to keep in mind is that the
histogram performs rather poorly as an outlier detection technique.

• The boxplot is one of the more useful graphical tools for summarizing data. It conveys
certain important features that were described and illustrated, but kernel density
estimators can help add perspective.

• The stem-and-leaf display can be useful when trying to understand the overall pattern
of the data. But with large sample sizes, it can be highly unsatisfactory.

2. The S-PLUS function akerd was used, which belongs to a library of S-PLUS functions mentioned
in chapter 1.
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Figure 3.12 An example of a kernel density plot based on the same 100 observations generated
for figure 3.8 and used in figure 3.9. Note how the kernel density plot does a better job of capturing
the shape of the population histogram in figure 3.8.

Problems
18. Describe a situation where the sample histogram is likely to give a good indication

of the population histogram based on 100 observations.

19. Comment generally on how large a sample size is needed to ensure that the sample
histogram will likely provide a good indication of the population histogram?

20. When trying to detect outliers, discuss the relative merits of using a histogram
versus a boxplot.

21. A sample histogram indicates that the data are highly skewed to the right. Is this
a reliable indication that if all individuals of interest could be measured, the
resulting histogram would also be highly skewed?
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PROBABILITY AND RELATED
CONCEPTS

A s indicated in chapters 1 and 3, one of the main goals is to cover basic methods
that are aimed at making inferences about a population of individuals or things

based on a sample or subset of the population that is available. Basic probability plays a
key role when addressing this issue. This chapter covers the fundamentals of probability
and some related concepts that will be needed.

4.1 The meaning of probability

Coming up with an acceptable definition of the term probability turns out to be a
nontrivial task. For example, imagine that we have a bowl with 100 marbles, 50 are
blue and the other 50 are green. When someone picks a marble from the bowl, without
looking, what is the probability that the chosen marble will be blue? A seemingly natural
response is 0.5 because half the marbles are blue. But suppose all of the green marbles are
on the bottom of the bowl and the person picking a marble has a penchant for picking
marbles from those on top. Then the probability of a blue marble is virtually 1; it will
happen with near certainty unless this individual decides to reach deeply into the bowl.
Of course we can mix the marbles in the bowl so that not all of the blue marbles are at
the top. But when is the bowl of marbles sufficiently mixed so that the probability of a
blue marble is 0.5? A response might be that all marbles must have the same probability
of being chosen. But we cannot use the term probability as if we know what it means in
our attempt to define probability.

Another seemingly natural way of defining probability is in terms of a long series
of events. For example, if you flip a coin, what is the probability of a head? You might
flip the coin a hundred times, a thousand times, and we can conceive of flipping the
coin billions of times with the idea that the proportion of times we observe a head is
equal to the probability of a head on any one flip. There is a famous result (called the
law of large numbers) telling us the conditions under which the proportion of heads will
indeed converge to the true probability of a head. This result says that if the probability
of a head is the same on every flip, as we increase the number of flips, the proportion of
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times we observe a head will converge to the true probability. But again, we have used
the term probability as if we already know what it means.

Probability functions

The typical way of dealing with probability, at least for the problems covered in
this book, is to view probability in terms of what are called probability functions,
which must obey certain rules that are about to be described. This approach does not
define probability, but rather makes precise the rules of probability that are needed to
make progress. Before explaining what this means, some new terms and notation are
needed.

A random variable refers to a measurement or observation that cannot be known in
advance. If someone with heart disease is put on a new medication, will they have a heart
attack during the next 12 months? How much weight will someone lose if they follow
Aunt Sally’s weight reduction method for 4 weeks? Consistent with previous chapters,
usually some upper case Roman letter is used to represent a random variable, the most
common letter being X . That is, X is a generic term representing whatever we want
to measure. A lower case x is used to represent an observed value corresponding to the
random variable X . So the notation X = x means that the observed value of X is x. For
instance, we might let a 1 indicate that someone has a heart attack and no heart attack is
indicated by a 0. So here, X = 1 indicates that a heart attack occurred and X = 0 means
that it did not occur. This is an example of what is called a discrete random variable,
meaning that there are gaps between any value and the next possible value. Here there
are only two possible values, the next possible value after 0 is 1, no value between 0 and
1 is possible, so X is discrete. In terms of Aunt Sally’s weight reduction method, X
represents how much weight was lost and X = 12 refers to the event that someone lost
12 pounds. That is X = 12. In principle, this is a continuous random variable, meaning
that for any two outcomes, any value between these two values is possible. For example,
someone might lose 12 pounds, 13 pounds, or any amount between 12 and 13.

The set of all possible outcomes or values of X we might observe is called the
sample space. For the heart disease example, the sample space consists of two outcomes:
heart attack or no heart attack, or in numerical terms, 1 and 0. For the weight loss
example, the sample space consists all possible results we might observe in terms of
how much weight was lost or gained. Unless stated otherwise, the elements of the
sample space are assumed to be mutually exclusive. That is, one, and only one, element
of the sample space can occur. In the heart disease example, X = 0 and X = 1 are
two mutually exclusive events simply because if an individual did not have a heart
attack (X = 0), this eliminates the possibility that a heart attack occurred (X = 1).
In a similar manner, in the weight loss example, all possible outcomes are mutually
exclusive.

Example 1

An investment strategy for buying stocks has been recommended to you. You
plan to try out the new strategy by buying 10 stocks and observing how many
stocks gain value after 6 months. Here, X represents the number of stocks that
gain value and the sample space is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. This is an
example of a discrete random variable.
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Next, we introduce the notion of a probability function, which for
convenience is described in terms of a discrete random variable, still assuming
that the elements of the sample space are mutually exclusive.

Definition A probability function is a rule, denoted by p(x), that assigns
numbers to elements of the sample space with the following properties:

1. p(x) ≥ 0
2. For any two distinct elements in the sample space, say x and y, p(x or y) =

p(x) + p(y). In words, the probability of observing the value x or y is equal
to the sum of the individual probabilities (assuming that these two events
are mutually exclusive).

3. The sum of the probabilities associated with all of the elements in the sample
space is one. (That is,

∑
p(x) = 1).

The definition of a probability function is somewhat abstract, but it is
easy to understand if we think of probabilities in terms of proportions. To be
concrete, imagine that 100 students are asked to rate their college experience
on a 5-point scale: 1, 2, 3, 4, 5. Further imagine that among the 100 students,
10 respond 1, 20 respond 2, 35 respond 3, 30 respond 4 and 5 respond 5.
So the proportions corresponding to 1, 2, 3, 4, 5 are .1, .2, .35, .3 and .05,
respectively. Now think of these proportions as probabilities. It is evident that
all proportions are greater than or equal to 0. Consider any two responses,
say 2 and 4. The number of students responding 2 or 4 is 20 + 30 = 50, so
the proportion responding 2 or 4 is .5. In symbols, letting P(2or 4) be the
probability of a 2 or 4, P(2or 4) = p(2)+p(4) = .2+ .3 = .5. That is, condition
2 in the definition of a probability function is satisfied for these two values and
for any other two values we might choose. And condition 3 is satisfied because
the proportions sum to 1.

Example 2

Imagine that the sample space consists of the values

x : 0,1,2,3,4

and consider

p(x) : .1, .2, .25, .3, .25, .2.

That is, p(0) = .1, p(1) = .2 and so on. Then p(x) does not qualify as a
probability function because the sum of all five p(x) values is greater than 1.

Problems
1. If the possible values for x are 0, 1, 2, 3, 4, 5, and the corresponding values for p(x)

are .2, .2, .15, .3, .35, .2, .1, respectively, does p(x) qualify as a probability function?

2. If the possible values for x are 2, 3, 4 and the corresponding values for p(x) are .2,
−0.1, .9, respectively, does p(x) qualify as a probability function?

3. If the possible values for x are −1, 2, 3, 4, and the corresponding values for p(x) are
.1, .15, .5, .25, respectively, does p(x) qualify as a probability function?
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4. If the possible values for x are 2, 3, 4, 5, and the corresponding values for p(x) are
.2, .3, .4, .1, respectively, what is the probability of observing a value less than or
equal to 3.4?

5. In problem 4, what is the probability of observing a value less than or equal to 1?

6. In problem 4, what is the probability of observing a value greater than 3?

7. In problem 4, what is the probability of observing a value greater than or equal to 3?

8. If the probability of observing a value less than or equal to 6 is .3, what is the
probability of observing a value greater than 6?

4.2 Expected values

The notion of expected values is important for two general reasons. First, it provides a
precise definition of quantities associated with populations that play a fundamental role
in methods to be described. Second, it provides a link between samples and populations
in a sense explained in chapter 5.

Consider any random variable X with probability function p(x). The expected value
of X is

E(X ) =
∑

xp(x). (4.1)

In words, multiply every value in the sample space by its probability and sum the results.
The expected value of a random variable plays such a fundamental role, it has been given
a special name: the population mean, which is typically written as μ (a lower case Greek
mu). That is, μ = E(X ).

The notion of expected value might be made clearer by noting that it is similar to
how the sample mean was defined in chapter 3. Recall that if we collect data and observe
the values x having relative frequencies fx/n, the sample mean is

�X =
∑

x
fx
n

.

Now imagine that an entire population consists of N individuals and that the relative
frequencies are fx/N . Further assume that we view these relative frequencies as
probabilities. That is, p(x) is taken to be fx/N . Then the average value for the population
of individuals is

μ = E(X ) =
∑

x
fx
N

.

That is, the population mean is just the average of all the individuals in the population,
if only they could be measured.

Example 1

For

x : 1, 5, 10

and

p(x) : .2, .5, .3
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the population mean is

μ = 1(.2) + 5(.5) + 10(.3) = 5.7.

Example 2

A carnival game costs 2 dollars to play and for each play, a contestant can win
1, 2 or 3 dollars. Imagine that the probabilities associated with these three
outcomes are .25, .40 and .35, respectively. That is, p(1) = .25, p(2) = .4 and
p(3) = .35. Then the expected winnings are∑

xp(x) = 1(.25) + 2(.40) + 3(.35) = 2.10.

This says that on average, a contestant would win $2.10 and, because it costs
$2.00 to play, on average the carnival would lose 10 cents.

Example 3

Imagine that when buying a car, you are offered an extended warranty for $200.
To keep the example simple, further imagine that four outcomes are possible:
no repairs are needed, or one of three repairs can occur costing $50, $150 and
$250. If the probabilities corresponding to these four outcomes are .7, .15, .10
and .05, respectively, the expected cost of a repair is

0(.7) + 50(.15) + 150(.10) + 200(.05) = 30.

This says that on average, the cost to customers who buy this warranty is
$200 – $30 = $170.

Example 4

Consider a population of one million individuals who have played a particular
video game. Further assume that if asked to rate the game on a 5 point scale,
the proportion who would give a rank of 1, 2, 3, 4 and 5 would be .1, .15, .35,
.30 and .1, respectively. If we view these proportions as probabilities, the mean
or expected rating is

μ = 1(.1) + 2(.15) + 3(.35) + 4(.30) + 5(.1) = 3.15.

A population mean is an example of what is called a population parameter,
which is a quantity that is generally unknown because it is impossible to measure
everyone in the population. The sample mean is an example of an estimator,
a value computed based on data available to us and based on a sample taken
from the population. As is probably evident, the sample mean �X is intended
as an estimate of the population mean, μ. A fundamental issue is how well the
sample mean �X estimates the population mean, μ, an issue we will begin to
address in chapters 5 and 6.

Population variance

We have seen that there are two types of means: a population mean, which is the average,
μ, that we would get if all individuals or things could be measured, and a sample mean,
which is just the average based on a sample from the population. In a similar manner



PROBABILITY AND RELATED CONCEPTS 51

there is both a sample variance, s2, introduced in chapter 2, and a population variance,
which is the average squared distance between the population mean and all the measures
associated with all individuals or things in the population under study. More formally,
the population variance is

σ 2 =
∑

(x −μ)2p(x), (4.2)

where σ is a lower case Greek sigma. The (positive) square root of the population
variance variance, σ , is called the population standard deviation.

Example 5

Consider the following probability function.

x: 0 1 2 3

p(x): .1 .3 .4 .2

The population mean is μ = 1.7. So for the value 0, its squared distance from
the population mean is (0 − 1.7)2 = 2.89 and reflects how far away the value
0 is from the population mean. Moreover, the probability associated with this
squared difference is .1, the probability of observing the value 0. In a similar
manner, the squared difference between 1 and the population mean is .49, and
the probability associated with this squared difference is .3, the same probability
associated with the value 1. Continuing in this manner, we can compute the
population variance. In particular,

σ 2 = (0 − 1.7)2(.1) + (1 − 1.7)2(.3) + (2 − 1.7)2(.4) + (3 − 1.7)2(.2) = .81.

Example 6

For a five-point scale measuring anxiety, the probability function for all adults
living in New York City is

x: 1 2 3 4 5

p(x): .05 .1 .7 .1 .05

The population mean is

μ = 1(.05) + 2(.1) + 3(.7) + 4(.1) + 5(.05) = 3,

so the population variance is

σ 2 = (1 − 3)2(.05) + (2 − 3)2(.1) + (3 − 3)2(.7) + (4 − 3)2(.1) + (5 − 3)2(.05) = .6,

and the population standard deviation is σ = √
.6 = .775.

Problems
9. For the probability function

x : 0,1

p(x) : .7, .3
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verify that the mean and variance are .3 and .21, respectively. What is the
probability of getting a value less than the mean?

10. Imagine that an auto manufacturer wants to evaluate how potential customers will
rate handling for a new car being considered for production. Also suppose that if
all potential customers were to rate handling on a 4-point scale, 1 being poor and
4 being excellent, the corresponding probabilities associated with these ratings
would be p(1) = .2, p(2) = .4, p(3) = .3, and p(4) = .1. Determine the population
mean, variance and standard deviation.

11. If the possible values for x are 1, 2, 3, 4, 5 with probabilities .2, .1, .1, .5, .1,
respectively, what are the population mean, variance and standard deviation?

12. In problem 11, determine the probability of getting a value within one standard
deviation of the mean. That is, determine the probability of getting a value
between μ−σ and μ+σ .

13. If the possible values for x are 1, 2, 3 with probabilities .2, .6 and .2, respectively,
what is the mean and standard deviation?

14. In problem 13, suppose the possible values for x are now 0, 2, 4 with the same
probabilities as before. Will the standard deviation increase, decrease, or stay the
same? Verify your answer.

15. For the probability function

x : 1,2,3,4,5

p(x) : .15, .2, .3, .2, .15

determine the mean, the variance, and the probability that the a value is less than
the mean.

16. For the probability function

x : 1,2,3,4,5

p(x) : .1, .25, .3, .25, .1

would you expect the variance to be larger or smaller than the variance associated
with the probability function used in the previous exercise? Verify your answer by
computing the variance for the probability function given here.

17. For the probability function

x : 1,2,3,4,5

p(x) : .2, .2, .2, .2, .2

would you expect the variance to be larger or smaller than the variance associated
with the probability function used in the previous exercise? Verify your answer by
computing the variance.

4.3 Conditional probability and independence

Conditional probability refers to the probability of some event given that some other
event has occurred. For example, what is the probability of developing heart disease
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Table 4.1 Hypothetical probabilities for getting a flu shot
and getting the flu

Get a shot Get the flu

Yes No

Yes .25 .20 .45
No .28 .27 .55

.53 .47 1.00

given that your cholesterol level is 250? What is the probability of winning one million
dollars or more given that you buy 100 lottery tickets?

A convenient way of illustrating how conditional probabilities are computed is in
terms of what are called contingency tables, an example of which is shown in table 4.1.
In the contingency table are the probabilities associated with four mutually exclusive
groups: individuals who (1) receive a flu shot and get the flu, (2) do not receive a flu
shot and get the flu, (3) receive a flu shot and do not get the flu, and (4) do not receive
a flu shot and do not get the flu. The last column shows what are called the marginal
probabilities. For example, the probability of getting a flu shot is 0.25+0.20 = 0.45. Put
another way, it is the sum of the probabilities associated with two mutually exclusive
events. The first event is getting the flu and simultaneously getting a flu shot, which has
probability .25. The second event is not getting the flu and simultaneously getting a flu
shot, which has probability .2. The last line of table 4.1 shows the marginal probabilities
associated with getting or not getting the flu. For example, the probability of getting
the flu is 0.25 + 0.28 = 0.53.

Now consider the probability of someone getting the flu given that they receive a flu
shot, and for convenience, view probabilities as proportions. So among all individuals we
might observe, according to table 4.1, the proportion of people who get a flu shot is 0.45.
Among the people who got a flu shot, the proportion who got the flu is 0.25/0.45 = 0.56.
That is, the probability of getting the flu, given that an individual received a flu shot,
is 0.56.

Notice that a conditional probability is determined by altering the sample space. In
the illustration, the proportion of all people who got a flu shot is 0.45. But restricting
attention to individuals who got a flu shot means that the sample space has been
altered. More precisely, the contigency table reflects four possible outcomes, but by
focusing exclusively on individuals who got a flu shot, the sample space is reduced to two
outcomes.

In a more general notation, if A and B are any two events, and if we let P(A)
represent the probability of event A and P(A andB) represent the probability that events
A and B occur simultaneously, then the conditional probability of A, given that B has
occurred, is

P(A|B) = P(A andB)

P(B)
. (4.3)

In the illustration, A is the event of getting the flu and B is the event of getting a flu shot.
So according to table 4.1, P(A andB) = 0.25, P(B) = 0.45, so P(A|B) = 0.25/0.45, as
previously indicated.



54 BASIC STATISTICS

Example 1

From table 4.1, the probability that someone does not get the flu, given that
they get a flu shot, is

.20/.45 = .44.

Independence and dependence

Roughly, two events are independent if the probability associated with the first event is
not altered when the second event is known. If the probability is altered, the events are
dependent.

Example 2

According to table 4.1, the probability that someone gets the flu is 0.53. The
event that someone gets the flu is independent of the event that someone gets
a flu shot if among the individuals getting a shot, the probability of getting the
flu remains 0.53. We have seen, however, that the probability of getting the flu,
given that the person gets a shot, is 0.56, so these two events are dependent.

Consider any two variables, say X and Y , and let x and y be any two
possible values corresponding to these variables. We say that the variables X
and Y are independent if for any x and y we might pick,

P(Y = y|X = x) = P(Y = y). (4.4)

Otherwise they are said to be dependent.

Example 3

Imagine that married couples are asked to rate the the extent marital strife is
reduced by following the advice in a book on having a happy marriage. Assume
that both husbands and wives rate the effectiveness of the book with the values
1, 2, and 3, where the values stand for fair, good, and excellent, respectively.
Further assume that the probabilities associated with the possible outcomes are
as shown in table 4.2. We see that the probability a wife (Y ) gives a rating of 1 is
0.2. In symbols, P(Y = 1) = .2. Furthermore, P(Y = 1|X = 1) = .02/.1 = .2,
where X = 1 indicates that the wife’s husband gave a rating of 1. So the event
Y = 1 is independent of the event X = 1. If the probability had changed,
we could stop and say that X and Y are dependent. But to say that they

Table 4.2 Hypothetical probabilities for rating a book

Husband (X )

Wife (Y ) 1 2 3

1 .02 .10 .08 0.2
2 .07 .35 .28 0.7
3 .01 .05 .04 0.1

0.1 0.5 0.4
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are independent requires that we check all possible outcomes. For example,
another possible outcome is Y = 1 and X = 2. We see that P(Y = 1|X = 2) =
.1/.5 = .2, which again is equal to P(Y = 1). Continuing in this manner, it
can be seen that for any possible values for Y and X , the corresponding events
are independent, so we say that X and Y are independent. That is, they are
independent regardless of what their respective values might be.

Now the notion of dependence is described in a slightly more general context that
contains contingency tables as a special case. A common and fundamental question in
applied research is whether information about one variable influences the probabilities
associated with another variable. For example, in a study dealing with diabetes in
children, one issue of interest was the association between a child’s age and the level
of serum C-peptide at diagnosis. For convenience, let X represent age and Y represent
C-peptide concentration. For any child we might observe, there is some probability
that her C-peptide concentration is less than 3, or less than 4, or less than c, where
c is any constant we might pick. The issue at hand is whether information about X
(a child’s age) alters the probabilities associated with Y (a child’s C-peptide level). That
is, does the conditional probability of Y , given X , differ from the probabilities associated
with Y when X is not known or ignored. If knowing X does not alter the probabilities
associated with Y , we say that X and Y are independent. Equation (4.4) is one way of
providing a formal definition of independence. An alternative way is to say that X and
Y are independent if

P(Y ≤ y|X = x) = P(Y ≤ y) (4.5)

for any x and y values we might pick. Equation (4.4) implies equation (4.5). Yet another
way of describing independence is that for any x and y values we might pick,

P(Y = y and X = x)

P(X = x)
= P(Y = y), (4.6)

which follows from equation (4.4). From this last equation it can be seen that if X and
Y are independent, then

P(X = x andY = y) = P(X = x)P(Y = y). (4.7)

Equation (4.7) is called the product rule and says that if two events are independent,
the probability that they occur simultaneously is equal to the product of their individual
probabilities.

Example 4

In table 4.1, if getting a flu shot is independent of getting the flu, then the
probability of both getting a flu shot and getting the flu is .45× .53 = 0.2385.

Example 5

Consider again the diabetes in children study where one of the variables
of interest was C-peptide concentrations at diagnosis. Suppose that for all
children we might measure, the probability of having a C-peptide concentration
less than or equal to 3 is P(Y ≤ 3) = .4. Now consider only children
who are 7 years old and imagine that for this subpopulation of children,
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the probability of having a C-peptide concentration less than 3 is 0.2.
In symbols, P(Y ≤ 3|X = 7) = 0.2. Then C-peptide concentrations and age
are said to be dependent because knowing that the child’s age is 7 alters the
probability that the child’s C-peptide concentration is less than 3. If instead
P(Y ≤ 3|X = 7) = 0.4, the events Y ≤ 3 and X = 7 are independent. More
generally, if, for any x and y we pick, P(Y ≤ y|X = x) = P(Y = y), then
C-peptide concentrations and age are independent.

Problems
18. For the following probabilities

Income

Age High Medium Low

< 30 .030 .180 .090
30–50 .052 .312 .156
> 50 .018 .108 .054

determine (a) the probability someone is under 30, (b) the probability that
someone has a high income given that they are under 30, (c) the probability of
someone having a low income given that they are under 30, and (d) the probability
of a medium income given that they are over 50.

19. For the previous exercise, are income and age independent?

20. Coleman (1964) interviewed 3,398 schoolboys and asked them about their
self-perceived membership in the “leading crowd.” Their response was either yes,
they were a member, or no they were not. The same boys were also asked about
their attitude concerning the leading crowd. In particular, they were asked
whether membership meant that it does not require going against one’s principles
sometimes or whether they think it does. Here, the first response will be indicated
by a 1, while the second will be indicated by a 0. The results were as follows:

Attitude

Member 1 0

Yes 757 496
No 1071 1074

The sample size is 3,398. So, for example, the relative frequency of the event
(yes, 1) is 757/3398. Treat the relative frequencies as probabilities and determine
(a) the probability that an arbitrarily chosen boy responds yes, (b) P(yes|1),
(c) P(1|yes), (d) whether the response yes is independent of the attitude 0,
(e) the probability of a (yes and 1) or a (no and 0) response, (f) the probability
of not responding (yes and 1), (g) the probability of responding yes or 1.

21. Let Y be the cost of a home and let X be a measure of the crime rate. If the
variance of the cost of a home changes with X , does this mean that cost of a home
and the crime rate are dependent?
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22. If the probability of Y < 6 is .4 given that X = 2, and if the probability of Y < 6 is
.3 given that X = 4, does this mean that X and Y are dependent?

23. If the range of possible Y values varies with X , does this mean that X and Y are
dependent?

4.4 The Binomial probability function

The most important discrete distribution is the binomial. It arises in situations where
only two possible outcomes are possible when making a single observation. The outcomes
might be, for example, yes and no, success and failure, agree and disagree. Such random
variables are called binary. Typically the number 1 is used to represent a success and a
failure is represented by 0. A common convention is to let p represent the probability
of success and to let q = 1 − p be the probability of a failure. When dealing with the
binomial probability function, the random variable X represents the total number of
successes among n observations.

The immediate goal is to describe how to compute the probability of x successes
among n trials or observations. In symbols, we want to evaluate P(X = x). For example,
imagine that five people under go a new type of surgery and you observe whether the
disorder is successfully treated. If the probability of a success is p = .6, what is the
probability that exactly three of the five surgeries will be a success?

Assuming that the outcomes are independent and that the probability of success is
the same every time the surgery is performed, there is a convenient formula for solving
this problem based on the binomial probability function. It says that among n observations,
the probability of exactly x successes, P(X = x), is given by

p(x) =
(

n
x

)
pxqn−x. (4.8)

Here, n = 5, x = 3, and the goal is to determine p(3). The first term on the right side of
this equation, called the binomial coefficient, is defined to be(

n
x

)
= n!

x!(n − x)! ,
where n! represents n factorial. That is,

n! = 1 × 2 × 3 ×·· ·× (n − 1) × n.

For example, 1! = 1,2! = 2, and 3! = 6. By convention, 0! = 1.

Example 1

For the situation just described regarding whether a surgical procedure is a
success, the probability of exactly three successes, can be determined as follows.

n! = 1 × 2 × 3 × 4 × 5 = 120,

x! = 1 × 2 × 3 = 6,

(n − x)! = 2! = 2,

in which case

p(3) = 120

6 × 2
(.63)(.42) = .3456.
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Example 2

Imagine 10 couples who recently got married. What is the probability that four
of the ten couples will report that they are happily married at the end of 1 year?
Assuming responses by couples are independent, and that the probability of
success is p = .3, the probablity that exactly x = 4 couples will report that they
are happily married is

p(4) = 10!
4!× 6! (.3

4)(.76) = .2001.

Often attention is focused on the probability of at least x successes in n trials
or at most x successes, rather than the probability of getting exactly x successes.
In the last illustration, you might want to know the probability that four couples
or fewer are happily married as opposed to exactly four. The former probability
consists of five mutually exclusive events, namely, x = 0,x = 1,x = 2,x = 3, and
x = 4. Thus, the probability that four couples or fewer are happily married is

P(X ≤ 4) = p(0) + p(1) + p(2) + p(3) + p(4).

In summation notation,

P(X ≤ 4) =
4∑

x=0

p(x).

More generally, the probability of k successes or less in n trials is

P(X ≤ k) =
k∑

x=0

p(x)

=
k∑

x=0

(
n
x

)
pxqn−x.

For any k between 0 and n, table 2 in appendix B gives the value of P(X ≤ k)
for various values of n and p. Returning to the illustration where p = .3 and
n = 10, table 2 reports that the probability of four successes or less is .85. Notice
that the probability of five successes or more is just the complement of getting
four successes or less, so

P(X ≥ 5) = 1 − P(X ≤ 4) = 1 − .85

= .15.

In general,

P(X ≥ k) = 1 − P(X ≤ k − 1),

so P(X ≥ k) is easily evaluated with table 2.
Expressions like

P(2 ≤ x ≤ 8),

meaning you want to know the probability that the number of successes is
between 2 and 8, inclusive, can also be evaluated with table 2 by noting that

P(2 ≤ x ≤ 8) = P(x ≤ 8) − P(x ≤ 1).

In words, the event of eight successes or less can be broken down into the sum
of two mutually exclusive events: the event that the number of successes is less
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than or equal to 1 and the event that the number of successes is between 2
and 8, inclusive. Rearranging terms yields the last equation. The point is that
P(2 ≤ x ≤ 8) can be written in terms of two expressions that are easily evaluated
with table 2 in appendix B.

Example 3

Assume n = 10 and p = .5. From table 2 in appendix B, P(X ≤ 1) = .011 and
P(X ≤ 8) = .989, so

P(2 ≤ X ≤ 8) = .989 − .011 = .978.

A related problem is determining the probability of one success or less or
nine successes or more. The first part is simply read from table 2 and can be
seen to be .011. The probability of nine successes or more is the complement of
eight successes or less, so P(X ≥ 9) = 1 − P(X ≤ 8) = 1 − .989 = .011, again
assuming that n = 10 and p = .5. Thus, the probability of one success or less
or nine successes or more is .011 + .011 = .022. In symbols,

P(X ≤ 1 or X ≥ 9) = .022.

There are times when you will need to compute the mean and variance of
a binomial probability function once you are given n and p. It can be shown
that the (population) mean and variance are given by

μ = E(X )

= np,

and

σ 2 = npq.

Example 4

If n = 16 and p = .5, the mean of the binomial probability function is μ = np =
16(.5) = 8. That is, on average, eight of the 16 observations will be a success,
while the other eight will not. The variance is σ 2 = npq = 16(.5)(.5) = 4, so
the standard deviation is σ = √

4 = 2. If instead, p = .3, then μ = 16(.3) = 4.8.

That is, the average number of successes is 4.8.
In most situations, p, the probability of a success, is not known and must be

estimated based on x, the observed number of successes. The estimate typically
used is x/n, the proportion of observed successes. Often this estimator is written
as

p̂ = x

n
,

where p̂ is read p hat. It can be shown that

E(p̂) = p.

That is, if you were to repeat an experiment millions of times (and in theory
infinitely many times), each time sampling n observations, the average of the
resulting p̂ values would be p. It can also be shown that the variance of p̂ is

σ 2
p̂

= pq

n
.
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Example 5

If you sample 25 people and the probability of success is .4, the variance of p̂ is

σ 2
p̂

= .4 × .6

25
= .098.

The characteristics and properties of the binomial probability function can be
summarized as follows:

• The experiment consists of exactly n independent trials.
• Only two possible outcomes are possible on each trial, usually called ‘success’

and ‘failure’.
• Each trial has the same probability of success, p.
• q = 1 − p is the probability of a failure.
• There are x successes among the n trials.

• p(x) =
(

n
x

)
pxqn−x is the probability of x successes in n trials, x = 0,1, . . .,n.

•

(
n
x

)
= n!

x!(n − x)! .
• You estimate p with p̂ = x

n , where x is the total number of successes.
• E(p̂) = p.

• The variance of p̂ is σ 2 = pq
n .

• The average or expected number of successes in n trials is μ = E(X ) = np.
• The variance of X is σ 2 = npq.

Example 6

Two basketball teams are contending for the title of national champion. The
first team to win four games is declared champion. If we assume that the
probability of a win is the same each time they play, and that the outcome for
any two games are independent, can we use the binomial probability function
to determine the probability of four wins? The answer is no. The problem here
is that the number of games to be played, n, is not fixed. If the two teams played
exactly seven games, then the binomial probability function would apply. But
the total number of games to be played is 4, 5, 6 or 7.

Problems
24. For a binomial with n = 10 and p = .4, use table 2 in appendix B to determine

(a) p(0), the probability of exactly 0 successes, (b) P(X ≤ 3), (c) P(X < 3),
(d) P(X > 4), (e) P(2 ≤ X ≤ 5).

25. For a binomial with n = 15 and p = .3, use table 2 in appendix B to determine
(a) p(0), the probability of exactly 0 successes, (b) P(X ≤ 3), P(X < 3), (c)
P(X > 4), (d) P(2 ≤ X ≤ 5).

26. For a binomial with n = 15 and p = .6, use table 2 to determine the probability of
exactly 10 successes.

27. For a binomial with n = 7 and p = .35, what is the probability of exactly 2
successes.
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28. For a binomial with n = 18 and p = .6, determine the mean and variance of X , the
total number of successes.

29. For a binomial with n = 22 and p = .2, determine the mean and variance of X , the
total number of successes.

30. For a binomial with n = 20 and p = .7, determine the mean and variance of p̂, the
proportion of observed successes.

31. For a binomial with n = 30 and p = .3, determine the mean and variance of p̂.

32. For a binomial with n = 10 and p = .8, determine (a) the probability that p̂ is less
than or equal to .7, (b) the probability that p̂ is greater than or equal to .8, (c) the
probability that p̂ is exactly equal to .8.

33. A coin is rigged so that when it is flipped, the probability of a head is .7. If the
coin is flipped three times, which is the more likely outcome, exactly three heads,
or two heads and a tail?

34. Imagine that the probability of head when flipping a coin is given by the binomial
probability function with p = .5. (So the outcomes are independent.) If you flip
the coin nine times and get nine heads, what is the probability of head on the
tenth flip?

35. The Department of Agriculture of the United States reports that 75% of all
people who invest in the futures market lose money. Based on the binomial
probability function, with n = 5, determine

(a) the probability that all 5 lose money.
(b) the probability that all 5 make money.
(c) the probability that at least 2 lose money.

36. If for a binomial, p = .4 and n = 25, determine (a) P(X < 11), (b) P(X ≤ 11),
(c) P(X > 9) and (d) P(X ≥ 9)

37. In the previous problem, determine the mean of X , the variance of X , the mean
of p̂), and the variance of p̂.

4.5 The normal curve

This section explains how probabilities are computed when dealing with continuous
variables that follow what is called the normal curve. In contrast to discrete variables,
probabilities associated with continuous variables are given by the area under a curve.
The equation for this curve is called a probability density function, which is typically
labeled f (x). The normal curve, or normal distribution, plays a central role in a
wide range of statistical techniques and is routinely used in a plethora of disciplines
including physics, astronomy, manufacturing, economics, meteorology, medicine,
biology, agriculture, sociology, geodesy, anthropology, communications, accounting,
education, and psychology. Many published papers make it clear that for a wide range
of situations, the normal distribution provides a very convenient and highly accurate
method for analyzing data. But there is also a wide range of situations where it performs
poorly. So in terms of building a good foundation for understanding data, a crucial
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Figure 4.1 A normal distribution mean μ = 0. The area under the curve and to the left of −1 is
0.158655, which is the probability that an observation is less than or equal to −1.

component is understanding when the normal distribution serves us well, and when it
can be misleading and highly unsatisfactory.

An example of a normal distribution is shown in figure 4.1. Note the vertical line
at −1. It can be shown that the area under the normal curve and to the left of −1 is
0.158655. This means that if a random variable X has the normal distribution shown
in figure 4.1, the probability that X is less than or equal to −1 is 0.158655. In symbols,
P(X ≤ −1) = 0.158655.

Normal distributions have the following important properties:

1. The total area under the curve is 1. (This is a requirement of any probability
density function.)

2. All normal distributions are bell-shaped and symmetric about their
mean, μ.

3. Although not indicated in figure 4.1, all normal curves extend from −∞ to
∞ along the x-axis.

4. If the variable X has a normal distribution, the probability that X has a value
within one standard deviation of the mean is .68 as indicated in figure 4.2.
In symbols, if X has a normal distribution, P(μ − σ < X < μ + σ ) = .68
regardless of what the population mean and variance happen to be. The
probability of being within two standard deviations is approximately .954.
In symbols, P(μ − 2σ < X < μ + 2σ ) = .954. The probability of being
within three standard deviations is P(μ− 3σ < X < μ+ 3σ ) = .9975.

5. The probability density function of a normal distribution is

f (x) = 1

σ
√

2π
exp

[
− (x −μ)2

2σ 2

]
, (4.9)

where as usual, μ and σ 2 are the mean and variance. This equation does not
play a direct role in this book and is reported simply for informational
purposes. The main point is that for any distribution to qualify as a
normal distribution, its probability density function must be given by this
last equation. It turns out that many distributions are symmetric and bell-
shaped, yet they do not qualify as a normal distribution. That is, the
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.68

.954

Figure 4.2 For all normal distributions, the probability that an observation is within one
standard deviation of the mean is .68. The probability of being within two standard deviations
is .954.

equation for these distributions do not conform to the equation for a normal
curve. Another important point is that the probability density function is
determined by the mean and variance. If, for example, we want to determine
the probability that a variable is less than 25, this probability is completely
determined by the mean and variance if we assume normality.

Figure 4.3 shows three normal distributions, two of which have equal means of zero
but standard deviations σ = 1 and σ = 1.5. The other distribution again has standard
deviation σ = 1, but now the mean is μ = 2. There are two things to notice. First, if
two normal distributions have equal variances but unequal means, the two probability
curves are centered around different values but otherwise they are identical. Second, for
normal distributions, there is a distinct and rather noticeable difference between the two
curves when the standard deviation increases from 1 to 1.5.

−4 −2 0 2 4

Figure 4.3 The left two distributions have the same mean and standard deviations 1 and 1.5.
The right distribution has a mean of 2 and standard deviation 1.
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Historical remarks

Some brief comments about the history of the normal distribution will help put its
relative merits in perspective. Consider a binomial probability function with n = 1,000
and p = .5. To be concrete, imagine we flip a coin 1,000 times and that unknown to
use, the probability of a head is .5. Note that if we get 450 heads, we would estimate
the probability of a head to be .45. In a similar manner, if we get 550 heads, we would
estimate the probability of a head to be .55. Abraham de Moivre (1667–1754) asked
the following question: what is the probability of getting between 450 and 550 heads?
That is, what is the probability that the estimate of p, the probability of success in a
binomial distribution, will be between .45 and .55 when in fact p = .5? Put another way,
what is the probability that the estimated probability of a success will be close to its true
value?

The problem, of course, is that without a computer, the calculations needed to
answer this question are prohibitive. Even calculating the probability of exactly 450
heads is a tremendously difficult task, and the problem requires that one also compute
the probability of exactly 451 heads, 452 heads, and so on, until we get to 550 heads,
and then these 101 values would need to be summed. So de Moivre set out to find
a reasonably accurate approximation for solving the problem. Over 12 years later, he
had a solution, which he announced in 1733, and which was based on the normal
distribution.

Initially, de Moivre’s derivation of the normal distribution generated little interest.
Many years later, Laplace was searching for a family of distributions that might be
used to solve some of the basic problems covered in this book. But his best attempt
led to an approach that proved to be highly impractical in terms of both theoretical
and computational details. Karl Gauss realized that a slight modification of Laplace’s
approach greatly simplified the theoretical and computational details needed to solve
practical problems. His slight modification resulted in the normal distribution. Gauss’s
work was so influential, the normal curve is sometimes called the Gaussian distribution.
But although the normal curve proved to be extremely convenient from a mathematical
point of view, both Laplace and Gauss were concerned about how to justify the use of
the normal distribution when addressing practical problems. In 1809, Gauss described
his first attempt at solving this problem, which proved to be highly unsatisfactory. In
1810, Laplace announced an alternative approach, the so-called central limit theorem,
the details of which are covered in chapter 5. Laplace’s result forms the basis for assuming
normality for an extremely wide range of problems. We will see that in some instances,
this justification is extremely successful, but in others it is not.

Another issue should be discussed: If we could measure all the individuals (or
things) who constitute a population of interest, will a plot of the observations follow
a normal distribution? The answer is rarely, and some would argue never. The first
study to determine whether data follow normal distribution was conducted by Wilhelm
Bessel (1784–1846) in the year 1818. His astronomical data appeared to be reasonably
bell-shaped, consistent with a normal curve, but Bessel made an important observation:
The distribution of his data had thicker or heavier tails than what would be expected
for a normal curve. Bessel appears to have made an extremely important observation.
Roughly, heavy-tailed distributions tend to generate outliers, which turn out to create
practical problems to be illustrated. But it would be about another 150 years before the
practical importance of Bessel’s observation would be fully appreciated.
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During the nineteenth century, various researchers came to the conclusion that
data follow a normal curve, a view that stems from results covered in chapter 5.
Indeed, the term normal distribution stems from the first paper ever published by Karl
Pearson. He was so convinced that the bell-shaped distribution used by Laplace and
Gauss applied to data, he named it the normal distribution, meaning the distribution
we should expect. To his credit, Pearson examined data from actual studies to see whether
his belief could be confirmed, and eventually he concluded that his initial speculation
was incorrect. He attempted to deal with this problem by introducing a larger family
of distributions for describing data, but his approach does not play a role today when
analyzing data. More modern investigations confirm Pearson’s conclusion that data
generally do not follow a normal curve (e.g., Micceri, 1989), but this does not mean that
the normal curve has no practical value. What is important is whether it provides an
adequate approximation, and as already mentioned, in some cases it does, and in others
it does not.

4.6 Computing probabilities associated with normal curves

For the moment, we ignore any practical limitations associated with the normal curve
and focus on some basic issues when the normal distribution is used. To be concrete,
assume that human infants have birth weights that are normally distributed with a mean
of 3,700 grams and a standard deviation of 200 grams. What is the probability that a
baby’s birth weight will be less than or equal to 3,000 grams? As previously explained,
this probability is given by the area under the normal curve, but simple methods for
computing this area are required. Today the answer is easily obtained on a computer.
But for pedagogical reasons a more traditional method is covered here. We begin by
considering the special case where the mean is zero and the standard deviation is one
(μ = 0, σ = 1) after which we illustrate how to compute probabilities for any mean and
standard deviation.

The standard normal distribution

The standard normal distribution is a normal distribution with mean μ = 0 and standard
deviation σ = 1; it plays a central role in many areas of statistics. As is typically done, Z is
used to represent a variable that has a standard normal distribution. Our immediate goal
is to describe how to determine the probability that an observation randomly sampled
from a standard normal distribution is less than any constant c we might choose.

These probabilities are easily determined using table 1 in appendix B which reports
the probability that a standard normal random variable has probability less than or
equal to c for c = −3.00, −2.99, −2.98, . . . ,−0.01, 0, .01, . . .3.00. The first entry in
the first column shows −3. The column next to it gives the corresponding probability,
.0013. That is, the probability that a standard normal random variables is less than or
equal to −3 is P(Z ≤ −3) = .0013. Going down the first column we see the entry
−2.08, and the column next to it indicates that the probability of a standard normal
variable being less than or equal to −2.08 is .0188. Looking at the last entry in the third
column, we see −1.55, the entry just to the right, in the fourth column, is .0606, so
P(Z ≤ −1.55) = .0606. This probability corresponds to the area in the left portion of
figure 4.4. Because the standard normal curve is symmetric about zero, the probability
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Figure 4.4 The left tail indicates that for a standard normal distribution, the probability of a
value less than or equal to –1.55 is .0606, and the probability of a value greater or equal to 1.55 is
.0606 as well.

that X is greater than 1.55 is also .0606, which is shown in the right portion of figure 4.4.
Again, looking at the first column of table 1 in appendix B, we see the value c = 1.53,
and next to it is the value .9370 meaning that P(Z ≤ 1.53) = .9370.

In applied work, there are three types of probabilities that need to be determined:

1. P(Z ≤ c), the probability that a standard normal random variable is less than
or equal to c,

2. P(Z ≥ c), the probability that a standard normal random variable is greater
than or equal to c, and

3. P(a ≤ Z ≤ b), the probability that a standard normal random variable is
between the values a and b.

The first of these is determined from table 1 in appendix B, as already indicated.
Because the area under the curve is one, the second is given by

P(Z ≥ c) = 1 − P(Z ≤ c).

The third is given by

P(a ≤ Z ≤ b) = P(Z ≤ b) − P(Z ≤ a).

Example 1

Determine P(Z ≥ 1.5), the probability that a standard normal random variable
is greater than 1.5. From table 1 in appendix B, P(Z ≤ 1.5) = .9332. Therefore,
P(Z ≥ 1.5) = 1 − .9332 = .0668.

Example 2

Next we determine P(−1.96 ≤ Z ≤ 1.96), the probability that a standard
normal random variable is between −1.96 and 1.96. From table 1 in appendix
B, P(Z ≤ 1.96) = .975. Also, P(Z ≤−1.96) = .025, so P(−1.96 ≤ Z ≤ 1.96) =
.975 − .025 = .95.
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In some situations it is necessary to use table 1 (in appendix B) backwards.
That is, we are given a probability and the goal is to determine c. For example, if
we are told that P(Z ≤ c) = .99, what is c? We simply find where .99 happens
to be in table 1 under the columns headed by P(Z ≤ c), and then read the
number to the left, under the column headed by c. The answer is 2.33.

Before continuing, this is a convenient moment to illustrate the notion
of a quantile. If for any variable X , P(X ≤ c) = .5, then c is said to be the
.5 quantile. The .5 quantile corresponds to the population median, which is
estimated with the sample median described in chapter 2. If P(X ≤ c) = .2,
c is the .2 quantile, and if P(X ≤ c) = .75, c is the .75 quantile. Percentiles are
just quantiles multiplied by 100.

Example 3

We have seen that for a standard normal distribution, P(Z ≤ 2.33) = .99.
This says that 2.33 is the .99 quantile. From table 1 in appendix B, P(Z ≤
−1.96) = .025. Said another way, −1.96 is the .025 quantile of a standard
normal distribution. To determine the .4013 quantile of a standard normal,
we simply go to table 1 in appendix B and find entry the value z such that
P(Z ≤ z) = .4013. The answer is −.25.

When using table 1 in appendix B, two related problems also arise. The
first is determining c given the value of

P(Z ≥ c).

A solution is obtained by noting that the area under the curve is one, so P(Z ≥ c)
= 1−P(Z ≤ c), which involves a quantity we can determine from table 1. That
is, you compute d = 1 − P(Z ≥ c) and then determine c such that

P(Z ≤ c) = d .

Example 4

To determine c if P(Z ≥ c) = .9, first compute d = 1−P(Z ≤ c) = 1− .9 = .1.
Then c is given by P(Z ≤ c) = .1. Referring to table 1 in appendix B, c = −1.28.

The other type of problem is determining c given

P(−c ≤ Z ≤ c).

Letting d = P(−c ≤ Z ≤ c), the answer is given by

P(Z ≤ c) = 1 + d

2
.

Example 5

To determine c if P(−c ≤ Z ≤ c) = .9, let d = P(−c ≤ Z ≤ c) = .9 and then
compute (1 + d )/2 = (1 + .9)/2 = .95. Then c is given by P(Z ≤ c) = .95.
Referring to table 1 in appendix B, c = 1.645.

Solution for any normal distribution

Now consider any normal random variable having mean μ and standard
deviation σ . The next goal is to describe how to determine the probability
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of an observation being less than c, where as usual, c is any constant that
might be of interest. The solution is based on standardizing a normal random
variable, which means that we subtract the population mean μ and divide by
the standard deviation, σ . In symbols, we standardize a normal random variable
X by transforming it to

Z = X −μ

σ
. (4.10)

The quantity Z is often called a Z score; it reflects how far the value X is from
the mean in terms of the standard deviation.

Example 6

If Z = .5, then X is a half standard deviation away from the mean. If Z = 2,
then X is two standard deviations away from the mean.

It can be shown that if X has a normal distribution, then the distribution
of Z is standard normal. In particular, the probability that a normal random
variable X is less than or equal to c is

P(X ≤ c) = P

(
Z ≤ c −μ

σ

)
. (4.11)

Example 7

Someone claims that the cholesterol levels in adults have a normal distribution
with mean μ = 230 and standard deviation σ = 20. If this is true, what is the
probability that an adult will have a cholesterol level less than or equal to 200?
Referring to equation (4.11), the answer is

P(X ≤ 200) = P

(
Z ≤ 200 − 230

20

)
= P(Z < −1.5) = .0668,

where .0668 is read from table 1 in appendix B. This means that the probability
of an adult having a cholesterol level less than 200 is .0668.

In a similar manner, we can determine the probability that an observation
is greater than or equal to 240 or between 210 and 250. More generally, for
any constant c that is of interest, we can determine the probability that an
observation is greater than c with the equation

P(X ≥ c) = 1 − P(X ≤ c),

the point being that the right side of this equation can be determined with
equation (4.11). In a similar manner, for any two constants a and b,

P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a).

Example 8

Continuing the last example, determine the probability of observing an adult
with a cholesterol level greater than or equal to 240. We have that

P(X ≥ 240) = 1 − P(X ≤ 240).
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Referring to equation (4.11),

P(X ≤ 240) = P

(
Z ≤ 240 − 230

20

)
= P(Z < .5) = .6915,

so

P(X ≥ 240) = 1 − .6915 = .3085.

In words, the probability of an adult having a cholesterol level greater than or
equal to 240 is .3085.

Example 9

Continuing the cholesterol example, we determine

P(210 ≤ X ≤ 250).

We have that

P(210 ≤ X ≤ 250) = P(X ≤ 250) − P(X ≤ 210).

Now

P(X ≤ 250) = P

(
Z <

250 − 230

20

)
= P(Z ≤ 1) = .8413

and

P(X ≤ 210) = P

(
Z <

210 − 230

20

)
= P(Z ≤ −1) = .1587,

so

P(210 ≤ X ≤ 250) = .8413 − .1587 = .6826,

meaning that the probability of observing a cholesterol level between 210 and
250 is .6826.

Problems
38. Given that Z has a standard normal distribution, use table 1 in appendix B to

determine (a) P(Z ≥ 1.5), (b) P(Z ≤ −2.5), (c) P(Z < −2.5), (d) P(−1 ≤ Z ≤ 1).

39. If Z has a standard normal distribution, determine (a) P(Z ≤ .5),
(b) P(Z > −1.25), (c) P(−1.2 < Z < 1.2), (d) P(−1.8 ≤ Z < 1.8).

40. If Z has a standard normal distribution, determine (a) P(Z < −.5),
(b) P(Z < 1.2), (c) P(Z > 2.1), (d) P(−.28 < Z < .28).

41. If Z has a standard normal distribution, find c such that (a) P(Z ≤ c) = .0099,
(b) P(Z < c) = .9732, (c) P(Z > c) = .5691, (d) P(−c ≤ Z ≤ c) = .2358.

42. If Z has a standard normal distribution, find c such that (a) P(Z > c) = .0764,
(b) P(Z > c) = .5040, (c) P(−c ≤ Z < c) = .9108, (d) P(−c ≤ Z ≤ c) = .8.

43. If X has a normal distribution with mean μ = 50 and standard deviation σ = 9,
determine (a) P(X ≤ 40), (b) P(X < 55), (c) P(X > 60), (d) P(40 ≤ X ≤ 60).

44. If X has a normal distribution with mean μ = 20 and standard deviation σ = 9,
determine (a) P(X < 22), (b) P(X > 17), (c) P(X > 15), (d) P(2 < X < 38).
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45. If X has a normal distribution with mean μ = .75 and standard deviation σ = .5,
determine c is (a) P(X < .25), (b) P(X > .9), (a)P(X < c) = .1587, (b) P(X >
c)=.382, (c) P(.5 < X < 1), (d) P(.25 < X < 1.25).

46. If X has a normal distribution, determine c such that

P(μ− cσ < X < μ+ cσ ) = .95.

Hint : Convert the above expression so that the middle term has a standard normal
distribution.

47. If X has a normal distribution, determine c such that

P(μ− cσ < X < μ+ cσ ) = .8.

48. Assuming that the scores on a math achievement test are normally distributed
with mean μ = 68 and standard deviation σ = 10, what is the probability of
getting a score greater than 78?

49. In the previous problem, how high must someone score to be in the top 5%? That
is, determine c such that P(X > c) = .05.

50. A manufacturer of car batteries claims that the life of their batteries is normally
distributed with mean μ = 58 months and standard deviation σ = 3. Determine
the probability that a randomly selected battery will last at least 62 months.

51. Assume that the income of pediatricians is normally distributed with mean
μ =$100,000 and standard deviation σ = 10,000. Determine the probability of
observing an income between $85,000 and $115,000.

52. Suppose the winnings of gamblers at Las Vegas are normally distributed with
mean μ = −300 (the typical person loses $300), and standard deviation σ = 100.
Determine the probability that a gambler does not lose any money.

53. A large computer company claims that their salaries are normally distributed with
mean $50,000 and standard deviation 10,000. What is the probability of
observing an income between $40,000 and $60,000?

54. Suppose the daily amount of solar radiation in Los Angeles is normally distributed
with mean 450 calories and standard deviation 50. Determine the probability that
for a randomly chosen day, the amount of solar radiation is between 350 and 550.

55. If the cholesterol levels of adults are normally distributed with mean 230 and
standard deviation 25, what is the probability that a randomly sampled adult has a
cholesterol level greater than 260?

56. If after one year, the annual mileage of privately owned cars is normally
distributed with mean 14,000 miles and standard deviation 3,500, what is the
probability that a car has mileage greater than 20,000 miles?

4.7 Some modern advances and insights

Four types of distributions are important when trying to assess and understand the
relative merits of methods covered in this book: symmetric with outliers rarely occurring,
symmetric with outliers commonly occurring, asymmetric with outliers rarely occurring,
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and asymmetric with with outliers commonly occurring. (Symmetric distributions with
outliers rarely occurring includes the normal distribution as a special case.) Most of the
details must be postponed for the moment, but we will see that the latter three types of
distributions are a serious concern when analyzing data with commonly used methods
based on means. However, some comments can be made now regarding situations where
distributions are symmetric with outliers commonly occurring. A fundamental issue is
this: If a plot of the data indicates that the underlying distribution is bell-shaped like
a normal distribution, is it safe to assume normality? For some purposes the answer is
yes, but for others the answer is an emphatic no. Normal distributions typically result
in relatively few outliers. But when outliers tend to occur more frequently, some of the
basic properties of a normal distribution are no longer true.

The so-called contaminated or mixed normal distribution is a classic way of
illustrating some of the consequences associated with symmetric, bell-shaped distri-
butions where outliers tend to be common. Consider a situation where we have two
populations of individuals or things. Assume each population has a normal distribution,
but they differ in terms of their means, or variances, or both. When we mix the two
populations together we get what is called a mixed or contaminated normal. Generally,
mixed normals fall outside the class of normal distributions. That is, for a distribution
to qualify as normal, the equation for its curve must have the form given by equation
(4.9), and the mixed normal does not satisfy this requirement. When the two normals
mixed together have a common mean, but unequal variances, the resulting probability
curve is again symmetric about the mean, but even now the mixed normal is not a
normal curve.

To provide a more concrete description of the mixed normal, consider the entire
population of adults living around the world and let X represent the amount of weight
they have gained or lost during the last year. Imagine that we divide the population of
adults into two groups: those who have tried some form of dieting to lose weight and
those that have not. For illustrative purposes, assume that for adults who have not tried
to lose weight, the distribution of their weight loss is standard normal (so μ = 0 and
σ = 1). As for adults who have dieted to lose weight, assume that their weight loss is
normally distributed again with mean μ = 0 but with standard deviation σ = 10. Finally,
suppose that 10% of all adults went on a diet last year to lose weight. That is, there is
a 10% chance of selecting an observation from a normal distribution having standard
deviation ten, so there is a 90% chance of selecting an observation from a normal curve
having a standard deviation of one.

Now, if we mix these two populations of adults together, the exact distribution can
be derived and is shown in figure 4.5. Also shown is the standard normal distribution,
and as is evident there is little separating the two curves. Note that in figure 4.5, the tails
of the mixed normal lie above the tails of the normal. For this reason, the mixed normal
is often described as being heavy-tailed. Because the area under the extreme portions of
a heavy-tailed distribution is larger than the area under a normal curve, extreme values
or outliers are more likely when sampling from the mixed normal.

Here is the point: Very small departures from normality can greatly influence the
value of the population variance. For the standard normal the variance is 1, but for the
mixed normal it is 10.9. A related implication is that slight changes in any distribution,
not just the normal distribution, can have a big impact on the population variance. And
as for the sample variance, its value can be drastically altered by only a few outliers
no matter how large the sample size might be. The full implications of this result are
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Figure 4.5 Shown is the normal and the mixed normal described in the text.

impossible to appreciate at this point, but they will become clear in subsequent chapters.
But two implications can be illustrated here.

We have seen that for any normal distribution, the probability of being within one
standard deviation of the mean is .68, as illustrated in figure 4.2. In symbols, if X has a
normal distribution,

P(μ−σ ≤ X ≤ μ+σ ) = .68.

More generally, if a distribution is symmetric and bell-shaped, but not a normal
distribution, is it approximately true that the probability of being within one standard
deviation of the mean is .68? The answer is no, not necessarily. For the contaminated
normal considered here, the probability exceeds .925.

A criticism of this last example is that perhaps we never encounter a contaminated
normal in practice, but this misses the point. The contaminated normal illustrates a
basic principle: When sampling from distributions where outliers tend to be common,
certain interpretations of the standard deviation that are reasonable under normality can
be highly inaccurate. And we will see that other uses of the standard deviation can result
in serious practical problems yet to be described.

Here is another implication worth mentioning. As previously pointed out, normal
curves are completely determined by their mean and variance, and figure 4.3 illustrated
that under normality, increasing the variance from 1 to 1.5 results in a very noticeable
difference in the graphs of the probability curves. If we assume that curves are normal,
or at least approximately normal, this might suggest that in general, if two distributions
have equal variances, they will will be very similar in shape. But this is not necessarily
true even when the two curves are symmetric about the population mean and are bell-
shaped. Figure 4.6 provides another illustration that two curves can have equal means
and variances yet differ substantially.

The illustration just given is not intended to suggest that the variance be abandoned
when trying to understand data. Rather, the main message is that when learning basic
statistical techniques, it is important to be aware of when the variance provides accurate
and useful information, and when and why it might be unsatisfactory. That is, basic
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Figure 4.6 Two distributions with equal means and variances.

training should include concepts and results that help you avoid reading more into data
than is warranted.

Skewness

Heavy-tailed distributions are one source of concern when using means. Another is
skewness, which generally refers to distributions that are not exactly symmetric. It is too
soon to discuss all the practical problems associated with skewed distributions, but one
of the more fundamental issues can be described here.

Consider how we might choose a single number to represent the typical individual
or thing under study. A seemingly natural approach is to use the population mean. If a
distribution is symmetric about its mean, as is the case when a distribution is normal,
there is general agreement that the population mean is indeed a reasonable reflection
of what is typical. But when distributions are skewed, at some point doubt begins to
arise as to whether the mean is a good choice. Consider, for example, the distribution

Median = 3.75

Mean = 7.6

Figure 4.7 For skewed distributions, the population mean and median can differ tremendously.
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shown in figure 4.7, which is skewed to the right. In this particular case the population
mean is located in the extreme right portion of the curve. In fact, the probability that
an observation is less than the population mean is 0.74. So from a probabilistic point of
view, the population mean is rather atypical. In contrast, the median is located near the
more likely outcomes and would seem to better reflect what is typical.

Comments on skewness and transforming data

A classic suggestion regarding how to deal with skewed distributions is to transform the
data. One of the easiest transformations that is often suggested is to take logarithms. It
is true that in some cases, this creates a more symmetric looking plot of the data, but
even when using more complex transformations, a plot of the data can remained skewed.
Another important point is that this is a relatively ineffective way of dealing with outliers.
Although simple transformations might reduce outliers, often the number of outliers
remains the same and in some instances the number of outliers actually increases. There
are more effective methods for dealing with skewness, most of which are not covered in
this book. (But a few comments on dealing with skewness will be made in subsequent
chapters.)

Example 1

The left panel of figure 4.8 shows a plot of 100 observations generated on a
computer. Using the boxplot rule, five of the values are declared outliers. The
right panel shows a plot of the same data after taking the logarithm of each
value. The plot appears to be more symmetric, but an important point is that
the same five outliers are again declared outliers.

8 10 12 14 0.90 0.95 1.00 1.05 1.10 1.15

Figure 4.8 Taking logarithms sometimes results in a plot of the data being more symmetric, as
illustrated here, but outliers can remain.
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8 10 12 14 0.90 1.00 1.10 1.20

Figure 4.9 Taking logarithms sometimes reduces skewness but does not eliminate it, as
illustrated here.

Example 2

The left panel of figure 4.9 shows a plot of another 100 observations generated
on a computer, only this time the data were generated from a distribution a
bit more skewed than the distribution used in figure 4.8. Using the boxplot
rule, six of the values are declared outliers. The right panel shows a plot of the
same data after taking the logarithm of each value. This time the plot remains
noticeably skewed. The number of outliers is reduced to four, this is better than
six, but the more salient point is that the presence of outliers is not eliminated.

This next example illustrates yet one more point worth mentioning.
Consider the following values:

1,2,3,4,5,6,7,8,9,10,200,500

The sample mean is 62.9 and the median is 6.5. If we take logarithms (to the
base 10), the values are now

0.0000000,0.3010300,0.4771213,0.6020600,0.6989700,0.7781513,

0.8450980,0.9030900,0.9542425,1.0000000,2.3010300,2.6989700.

The mean of these value is 0.8116246. Does this somehow provide an estimate
of the mean before we transformed the data? In general, transforming data
makes it difficult to estimate the mean of the original values. If we simply
transform back by raising 10 to the power 0.8116246, we get 100.8116246 = 6.48,
a value close to the median of the original values, but quite different from the
mean. This illustrates a common situation: Using the mean of values after
taking logarithms often results in using a measure of location that is close
to the median of the original values, rather than the mean. This does not
necessarily mean that transformations are bad. But it is important to be aware
of this property.



76 BASIC STATISTICS

A Summary of Some Key Points

• This chapter introduced the normal distribution and described some of its properties.
One important property has to do with the fact that the standard deviation determines
the probability that an observation is close to the mean. For example, the probability
that an observation is within one standard deviation of the mean is .68, as was
illustrated.

• In various situations, the normal distribution has considerable practical value, but
this is not always the case. An important goal in this chapter was to provide a
foundation for understanding one reason why it can be unsatisfactory. This was done
with the mixed normal distribution, which illustrates that even when a distribution
is bell-shaped, certain properties of the normal distribution are no longer true. For
example, the probability that an observation is within one standard deviation of the
mean exceeds .925 when dealing with the mixed normal distribution. The practical
implications associated with this result will become clear in the next three chapters.

• Even when an entire population of individuals is measured, the mean, median and
20% trimmed mean can differ substantially.

• Transforming data might reduce skewness, but a fair amount of skewness can remain,
and under fairly general conditions, this represents an unsatisfactory approach when
dealing with outliers.

Problems
57. Can small changes in the tails of a distribution result in large changes in the

population mean, μ, relative to changes in the median?

58. Explain in what sense the population variance is sensitive to small changes in a
distribution.

59. For normal random variables, the probability of being within one standard
deviation of the mean is .68. That is, P(μ−σ ≤ X ≤ μ+σ ) = .68 if X has a
normal distribution. For nonnormal distributions, is it safe to assume that this
probability is again .68? Explain your answer.

60. If a distribution appears to be bell-shaped and symmetric about its mean, can we
assume that the probability of being within one standard deviation of the mean
is .68?

61. Can two distributions differ by a large amount yet have equal means and variances?

62. If a distribution is skewed, is it possible that the mean exceeds the .85 quantile?
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SAMPLING DISTRIBUTIONS

R ecall that the population mean μ represents the average of all individuals or things
under study. But typically, not all individuals can be measured. Rather, we have

only a small subset of all individuals available to us, and the average response based on
this sample, X̄ , is used to estimate the population mean, μ. An issue of fundamental
importance is how well the sample mean, X̄ , estimates the population mean, μ. If the
sample mean is X̄ = 23, we estimate that the population mean is 23, but generally this
estimate will be wrong. So what is needed is some method that can be used to assess
the precision of this estimate. That is, based on the available data, if X̄ = 23, can we
be reasonably certain that the population mean is less than 42? Can we be reasonably
certain that the population mean is greater than 16? In a similar manner, when we
compute the sample median, M , how well does it estimate the population median?
Given some data, is there some method that allows us to conclude, for example, that
the population median is between 8 and 10? When working with the binomial, if we
observe 67 successes among 100 observations, we estimate the probability of success to
be .67. But how might we assess the accuracy of this estimate? A key component when
trying to address these problems is the notion of a sampling distribution.

5.1 Sampling distribution of a binomial random variable

The notion of a sampling distribution is perhaps easiest to explain and illustrate when
working with the binomial distribution. But first the binomial distribution is described
in a slightly different manner, and the notion of random sampling needs to be made
more precise.

As done in chapter 2, imagine we have n observations, which we label X1, . . . ,Xn.
To be concrete, suppose we want to determine the proportion of adults over the age of
40 who suffer from arthritis. For the first person in our study, set X1 = 1 if this individual
has arthritis, otherwise set X1 = 0. Similarly, for the second person, set X2 = 1 if this
individual has arthritis, otherwise set X2 = 0. We repeat this process n times, so each
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of the variables X1, . . . ,Xn has the value 0 or 1. These n values are said to be a random
sample if two conditions are met:

• Any two observations are independent,
• Each observation has the same probability function.

For the binomial, the second condition merely means that for every observation
made, the probability of getting a 1 is the same, which we label p. In symbols, for the n
observations available,

P(X1 = 1) = P(X2 = 1) = ·· · = P(Xn = 1) = p.

When working with the binomial, the sample mean of these n values is typically denoted
by p̂. That is,

p̂ = 1

n

∑
Xi,

which is just the proportion of ones among the n observations.

Example 1

Imagine you want to know the percentage of marriages that end in divorce
among couples living in Iceland. You do not have the resources to check all
records, so you want to estimate this percentage based on available data. To
keep the illustration simple, suppose we have data on ten couples:

X1 = 1,X2 = 0,X3 = 0,X4 = 0,X5 = 1,

X6 = 0,X7 = 0,X8 = 0,X9 = 0,X10 = 1.

That is, the first couple got a divorce, the next three couples did not get a
divorce, the fifth couple got a divorce, and so on. The number of divorces
among these ten couples is∑

Xi = 1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1 = 3,

so the estimated probability of a divorce is

p̂ = 3

10
= .3.

Notice that for the binomial, if we knew the true probability of a divorce, p,
we could compute the probability of getting p̂ = .3 based on a sample of size
ten. When n = 10, it is just the probability of observing 3 divorces. Referring
to equation (4.8), this probability is

p(3) =
(

10
3

)
p3q7,

where q = 1 − p. If, for example, p = .4, then p(3) = .215. That is, the
probability of getting p̂ = .3 is .215. More generally, if we observe x successes,
the estimate of p is p̂ = x/n, which occurs with probability p(x), where p(x) is
the binomial probability function given by equation (4.8).

Now imagine a collection of research teams and suppose each team
estimates the divorce rate based on the records of ten married couples. By
chance, different research teams will get different results. For example, the first
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team might get p̂ = .5, the second team might get p̂ = .1, the third team might
get p̂ = .3, and so on. The sampling distribution of p̂ refers to the distribution of
the p̂ values we would get if millions of research teams were to conduct the same
study. Put another way, the sampling distribution of p̂ is just the probabilities
associated with all possible values for p̂ that we might observe. But for the case
of the binomial, and assuming random sampling, the distribution of p̂ is simple;
it corresponds to the binomial probability function. That is, we can determine
the probability of getting a particular value for p̂ among the many studies that
might be performed once we are given the sample size, n, and the probability
of success p. Moreover, from chapter 4, the average of the p̂ values among the
many studies that might be conducted is p and the variance of the p̂ values is
p(1 − p)/n.

Example 2

Various research teams plan to conduct a study aimed at estimating the
occurrence of tooth decay among adults living in a particular geographic region.
Assume random sampling, that each team plans to base their estimate on five
individuals, and that unknown to them, the proportion of people with tooth
decay is .3. So n = 5 and p = .3. Then for each research team that might
investigate this issue, the possible values for p̂ are 0/5, 1/5, 2/5, 3/5, 4/5, 5/5,
and the corresponding probabilities are 0.16807, 0.36015, 0.30870, 0.13230,
0.02835 and 0.00243, respectively, which correspond to the probability of a 0, 1,
2, 3, 4, and 5, based on the binomial probability function. So from chapter 4,
the average value of p̂, among the many research teams, is p = .3, and the
variance of the p̂ values is p(1 − p)/n = .3(.7)/5 = .042.

Example 3

A college president claims that the proportion of students at her institution with
an IQ greater than 120 is .4. If various individuals plan to sample 20 students,
with the goal of estimating the proportion who have an IQ greater than 120,
what is the probability that an investigator will get an estimate less than or
equal to 4/20 if the claim is correct? An estimate less than or equal to 4/20
corresponds to getting 0 or 1 or 2 or 3 or 4 students with an IQ greater than
120. If the claim p = .4 is correct, then from table 2 in appendix B (with n = 20),
the probability of getting four or fewer students with an IQ greater than 120
is .051. That is, if the president’s claim is correct, it would be rather unusual to
get p̂ ≤ 4/20, suggesting that perhaps the claim is wrong.

Problems
1. For a binomial with n = 25 and p = .5, determine (a) P(p̂ ≤ 15/25), (b)

P(p̂ > 15/25), (c) P(10/25 ≤ p̂ ≤ 15/25).

2. Many research teams intend to conduct a study regarding the proportion of people
who have colon cancer. If a random sample of ten individuals could be obtained,
and if the probability probability of having colon cancer is .05, what is the
probability that a research team will get p̂ = .1?

3. In the previous problem, what is the probability of p̂ = .05?
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4. Someone claims that the probability of losing money, when using an investment
strategy for buying and selling commodities, is .1. If this claim is correct, what is
the probability of getting p̂ ≤ .05 based on a random sample of 25 investors?

5. You interview a married couple and ask the wife whether she supports the current
leader of their country. Her husband is asked the same question. Describe why it
might be unreasonable to view these two responses as a random sample.

6. Imagine that a thousand research teams draw a random sample from a binomial
distribution with p = .4, with each study based on a sample size of 30. So this
would result in 1,000 p̂ values. If these 1,000 values were averaged, what,
approximately, would be the result?

7. In the previous problem, if you computed the sample variance of the p̂ values, what,
approximately, would be the result?

5.2 Sampling distribution of the mean under normality

When working with the binomial, we have seen that the sampling distribution of p̂
is fairly easy, because we merely use the binomial probability function as described in
chapter 4. The goal in this section is to extend the notion of a sampling distribution
to situations where data have a normal distribution. So again we have n observations
X1, . . . ,Xn, but rather than having a value of 0 or 1, these variables have values that
are continuous with mean μ and standard deviation σ , and if all individuals could be
measured, a plot of the data would have the normal distribution described in chapter 4.

As with the binomial, we imagine that many research teams plan to conduct the
same study, or that the same research team plans to repeat their study many times. To
be concrete, imagine the goal is to estimate how many additional hours of sleep an
individual gets after taking a particular drug. Further suppose that the drug is tried on
20 individuals yielding a sample mean of X̄ = .8 hours. But if the study were repeated
with another 20 participants, chances are we would get a different result. This time
we might get X̄ = 1.3. And repeating the study yet again might yield X̄ = −0.2. In
statistical terms, there will be variation among the sample means. The goal is to be able
to determine the probability that the sample mean is less than .5, less than 1, less than
1.3, and more generally, less than c, where c is any constant we might choose. In symbols,
we want to be able to determine P(X̄ ≤ c) for any constant c.

Of course, we could solve this problem simply by repeating the study many times,
but this is impractical. It turns out that three key results provide a solution based on
a single study when n observations are randomly sampled from a population having a
population mean μ, and a population standard deviation σ . These results are:

• Under random sampling, the average value of the sample mean, over millions
of studies (and in theory over infinitely many studies) can be shown to be
equal to μ, the population mean. In symbols, E(X̄ ) = μ. Said another way,
in any given study, chances are that the sample mean will not be equal to
the population mean. But on average (over many studies), the sample mean
provides a correct estimate of the population mean.

• Under random sampling, the variance of the sample mean, over millions of
studies (and in theory over infinitely many studies) can be shown to be σ 2/n.
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That is, the average squared difference between the sample mean and the
population mean is σ 2/n. In symbols, the variance of the sample mean is
E[(X̄ −μ)2] = σ 2/n.

• When observations are randomly sampled from a normal distribution, the
sample mean also has a normal distribution. Put more succinctly, when n
observations are randomly sampled from a normal distribution with mean μ

and variance σ 2, the sample mean has a normal distribution with mean μ and
variance σ 2/n. The practical implication is that the probability of getting a
value for X̄ less than or equal to 1, 3, or c, for any c we might choose, can be
determined under normality when the mean, variance and sample size are
known, as will be illustrated.

Note that the first two results require the assumption of random sampling only—
normality is not required. The third result assumes normality. As previously remarked,
normality is rarely if ever true, so there is the issue of how to deal with the more realistic
situation where data do not follow a normal curve. For the moment this issue is ignored,
but it will be discussed in detail at various points.

The variance of the sample mean is called the squared standard error of the sample
mean. Often this variance is written as VAR(X̄ ) or σ 2

X̄
. To be a bit more concrete,

imagine we randomly sample 25 observations where, unknown to us, the population
mean is 1.5 and the variance is 2 (σ 2 = 2). We might get a sample mean of X̄ = 1.45.
Further imagine that we repeat the study many times yielding the sample means

1.45,1.53,1.90,1.43,2.72,1.70,1.13,1.94,1.23, . . . .

It can be shown that if the study is repeated a very large number of times, the average
of these sample means will be equal to the population mean, 1.5, and that if we were to
compute the sample variance based on these values, we would get σ 2/n = 2/25. That is,
the variance of the sample means is equal to the variance of the distribution from which
the observations were sampled, divided by the sample size, assuming random sampling
only. The (positive) square root of the squared standard error, σX̄ = σ/

√
n, is called the

standard error of the mean. In practice, the variance (σ 2) is rarely known, but it can be
estimated with the sample variance, s2, as previously noted. This, in turn, provides an
estimate of the squared standard error, namely, s2/n, and an estimate of the standard
error is s/

√
n.

Example 1

Ten randomly sampled batteries from a particular manufacturing company are
found to have the following lifetimes (in months):

55,69,77,53,63,71,58,62,80,61.

The sample variance is s2 = 82.54, so an estimate of σ 2/n, the squared standard
error of the sample mean, is 82.54/10 = 8.254 and an estimate of the standard
error is

√
8.254 = 2.87.

Example 2

Sixteen observations are randomly sampled from a normal distribution having
mean 10 and standard deviation 1. That is, n = 16, μ= 10 and σ = 1. By chance
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n = 16

n = 1

Figure 5.1 An illustration of how the sampling distribution changes with the sample size under
normality.

we might get X̄ = 9.92. If we repeat this study, again with n = 16, now we might
get X̄ = 10.76. If we continue to repeat this study many times, the average of
the sample means will be 10. And if we were to compute the variance of these
sample means we would get σ 2/n = 12/16 = .0625, and the standard error of
the sample mean is σ/

√
n = 1/4 = .25.

Figure 5.1 shows the normal distribution used in the last example, which
is indicated by n = 1. Recall that σ 2 reflects how closely a single observation
tends to be to the population mean. Also shown is the sampling distribution
of the sample mean, X̄ , which is the distribution indicated by n = 16. For
example, the area under this curve and to left of the value 1, say, corresponds
to the probability that a sample, based on 16 observations, will have a value less
than or equal to 1, assuming normality. Because its variance is σ 2/n, which
is smaller than the variance based on a single observation, the sample mean
tends to be closer to the population mean, on average. Indeed, as we increase
the sample size, σ 2/n decreases. Intuition suggests that the larger the sample
size, the more accurate will be the sample mean in terms of estimating the
population mean. The result just given helps quantify just how much more
accurate it will be.

Definition An estimator is some expression, based on the observations made,
intended to estimate some feature of the population under study. The sample
mean, X̄ is an estimator of the population mean, and its observed value is
called an estimate. The sample variance, s2 is an estimator, and its observed
value is said to be an estimate of the population variance.

Definition An estimator is unbiased if its average value over millions of
studies (and in theory infinitely many studies) is equal to the quantity it is
trying to estimate. The sample mean is an unbiased estimate of the population
mean because it can be shown that E(X̄ ) = μ. For the binomial, E(p̂) = p, so
p̂ is an unbiased estimate of the true probability of success, p. It can be shown
that on average, the sample variance, s2, is equal to σ 2. That is, s2 is an
unbiased estimate of the population variance. In symbols, E(s2) = σ 2.
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Determining probabilities associated with the
sample mean

The results just described make it possible to address the following type of problem. If
we are told that data are randomly sampled from a normal distribution with a specified
sample size, population mean and population variance, what is the probability that the
sample mean is less than 10, less than 20, or less than c for any constant c we might pick?
In symbols, we want to know P(X̄ ≤ c). Recall from chapter 4, that if X has a normal
distribution, we can determine P(X ≤ c) by standardizing X . That is, if we subtract the
population mean and divide by the population standard deviation, X is transformed to
a standard normal random variable. In symbols, we used the fact that

P(X ≤ c) = P

(
Z ≤ c −μ

σ

)
,

where Z has a standard normal distribution. Here, the same strategy is used when
working with the sample mean, the main difference being that the sample mean has
standard deviation σ/

√
n rather than σ . In symbols, under random sampling from a

normal distribution,

Z = X̄ −μ

σ/
√

n

has a standard normal distribution. This means that

P(X̄ ≤ c) = P

(
Z ≤ c −μ

σ/
√

n

)
, (5.1)

which can be determined by referring to table 1 in appendix B. In addition, the probability
that the sample mean is greater than or equal to c is

P(X̄ ≥ c) = 1 − P

(
Z ≤ c −μ

σ/
√

n

)
, (5.2)

and the probability that the sample mean is between the constants a and b is

P(a ≤ X̄ ≤ b) = P

(
Z <

b −μ

σ/
√

n

)
− P

(
Z ≤ a −μ

σ/
√

n

)
. (5.3)

Example 3

If 25 observations are randomly sampled from a normal distribution with mean
50 and standard deviation 10, what is the probability that the sample mean will
be less than 45? We have that n = 25, μ = 50, σ = 10 and c = 45, so

P(X̄ ≤ 45) = P

(
Z ≤ 45 − 50

10/
√

25

)

= P(Z ≤ −2.5)

= .0062.

Example 4

A company claims that after years of experience, students who take their
training program typically increase their SAT scores by an average of 30 points.
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They further claim that the increase in scores has a normal distribution with
standard deviation 12. As a check on their claim, you randomly sample 16
students and find that the average increase is 21 points. The company argues
that this does not refute their claim because getting a sample mean of 21 or less
is not that unlikely. To determine whether their claim has merit, you compute

P(X̄ ≤ 21) =P

(
Z ≤ 21 − 30

12/
√

16

)

=P(Z ≤ −3)

=.0013,

which indicates that getting a sample mean as small or smaller than 21 is a
relatively unlikely event. That is, there is empirical evidence that the claim
made by the company is probably incorrect.

Example 5

A researcher claims that for college students taking a particular test of spatial
ability, the scores have a normal distribution with mean 27 and variance 49.
If this claim is correct, and you randomly sample 36 students, what is the
probability that the sample mean will be greater than 28? First compute

c −μ

σ/
√

n
= 28 − 27√

49/36
= .857.

Because P(Z ≤ .857) = .20, equation (5.2) says that P(X̄ > 28) = 1 − P(Z ≤
.857) = 1 − .20 = .80. This says that if we randomly sample n = 25 students,
and the claims of the researcher are true, the probability of getting a sample
mean greater than 28 is .8.

Example 6

Thirty-six observations are randomly sampled from a normal distribution with
μ = 5 and σ = 3. What is the probability that the sample mean will be between
4 and 6? So in the notation used here, a = 4 and b = 6. To find out, compute

b −μ

σ/
√

n
= 6 − 5

3/
√

36
= 2.

Referring to table 1 in appendix B, P(X̄ ≤ 4) = P(Z ≤ 2) = .9772. Similarly,

a −μ

σ/
√

n
= 4 − 5

3/
√

36
= −2,

and P(Z ≤ −2) = .0228. So, according to equation (5.3),

P(2 ≤ X̄ ≤ 6) = .9772 − .0228 = .9544.

Problems
8. Suppose n = 16, σ = 2, and μ = 30. Assume normality and determine (a)

P(X̄ ≤ 29), (b) P(X̄ > 30.5), (c) P(29 ≤ X̄ ≤ 31).
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9. Suppose n = 25, σ = 5, and μ = 5. Assume normality and determine (a)
P(X̄ ≤ 4), (b) P(X̄ > 7), (c) P(3 ≤ X̄ ≤ 7).

10. Someone claims that within a certain neighborhood, the average cost of a house is
μ =$100,000 with a standard deviation of σ = $10,000. Suppose that based on
n = 16 homes, you find that the average cost of a house is X̄ = $95,000.
Assuming normality, what is the probability of getting a sample mean this low or
lower if the claims about the mean and standard deviation are true?

11. In the previous problem, what is the probability of getting a sample mean between
$97,500 and $102,500?

12. A company claims that the premiums paid by its clients for auto insurance has a
normal distribution with mean μ = 750 dollars and standard deviation σ = 100
dollars. Assuming normality, what is the probability that for n = 9 randomly
sampled clients, the sample mean will a value between 700 and 800 dollars?

13. Imagine you are a health professional interested in the effects of medication on
the diastolic blood pressure of adult women. For a particular drug being
investigated, you find that for n = 9 women, the sample mean is X̄ = 85 and the
sample variance is s2 = 160.78. Estimate the standard error of the sample mean
assuming random sampling.

5.3 Non-normality and the sampling distribution of the sample mean

During the early years of the nineteenth century, thanks to efforts made by Gauss, it was
realized that assuming data have a normal distribution is highly convenient from both a
theoretical and computational point of view. But this left open an issue of fundamental
importance: How might one justify the use of the normal distribution beyond mere
mathematical convenience? In particular, when approximating the sampling distribution
of the sample mean, under what circumstances is it reasonable to assume that the normal
distribution can be used as described and illustrated in the previous section? Gauss
worked on this problem over a number of years, but it is a result derived by Laplace
that is routinely used today. Announced in the year 1810, Laplace called his result the
central limit theorem, where the word central is intended to mean fundamental.

Roughly, the central limit theorem says that under random sampling, as the sample
size gets large, the sampling distribution of the sample mean approaches a normal
distribution with mean μ and variance σ 2/n. Put another way, if the sample size is
sufficiently large, we can assume that the sample mean has a normal distribution. This
means that with a ‘sufficiently large’ sample size, it can be assumed that

Z = X̄ −μ

σ/
√

n

has a standard normal distribution.
An important aspect of the central limit theorem, particularly in light of some

modern insights, is the phrase ‘sufficiently large’. This is rather vague. Just how large
must the sample size be in order justify the assumption that the sample mean has a
normal distribution? For reasons described in this chapter, currently, a common claim
is that n = 40 generally suffices. But in subsequent chapters it will become evident that
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two key components of this issue were overlooked. In particular, general situations will
be described where a much larger sample size is required when attention is restricted to
the mean. There are many recently derived methods that provide strategies for dealing
with small sample sizes, and a glimpse of some of these techniques will be provided.

Approximating the binomial distribution

We have seen that when using the binomial, we estimate the probability of success
with p̂, which is just a sample mean based on n variables having the value 0 or 1.
Consequently, under random sampling, the central limit theorem says that if the sample
size is sufficiently large, p̂ will have, approximately, a normal distribution with mean
p (the true probability of success) and variance p(1 − p)/n. This means that if we
standardize p̂ by subtracting its mean and dividing by its standard error, the result
will be a variable having, approximately, a standard normal distribution. In symbols,

Z = p̂ − p√
p(1 − p)/n

will have, approximately, a standard normal distribution. This implies that for any
constant c, if n is sufficiently large, it will be approximately true that

P(p̂ ≤ c) = P

(
Z ≤ c − p√

p(1 − p)/n

)
, (5.4)

where Z is a standard normal random variable. That is, this probability can be determined
with table 1 in appendix B. And for any constants a and b,

P(a ≤ p̂ ≤ b) = P

(
Z ≤ b − p√

p(1 − p)/n

)
− P

(
Z ≤ a − p√

p(1 − p)/n

)
. (5.5)

The accuracy of these approximations depends on both n and p. The approximation
performs best when p = .5. When p is close to 0 or 1, much larger sample sizes are
needed to get a good approximation. A commonly used rule is that if both np and
n(1 − p) are greater than 15, the normal approximation will perform reasonably well.
The left panel of figure 5.2 shows a plot of the probability function for p̂ when n = 10
and p = .5, and the left panel is when n = 100, again with p = .5. Based on these plots,
it does not seem too surprising that the normal distribution gives a good approximation
of the sampling distribution of p̂ when the sample size is not too small.

Example 1

Consider a binomial distribution with p = .5 and n = 10, and imagine we want
to determine the probability that p̂ will have a value less than or equal to 7/10.
That is, the goal is to determine P(p̂ ≤ .7). Using methods already described,
the exact probability is 0.945. Using the approximation given by equation (5.4),

P(p̂ ≤ .7) = P

(
Z ≤ .7 − .5√

.5(1 − .5)/10

)
= P(Z ≤ 1.264911).

Referring to table 1 in appendix B, P(Z ≤= 1.264911) = .897, which differs
from the exact value by .945 − .897 = .048.
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Figure 5.2 The sampling distribution of p̂, the proportion of successes when working with the
binomial distribution having probality of success p = .5.

Example 2

We repeat the previous example, only now we approximate P(.3 ≤ p̂ ≤ .7).
So referring to equation (5.5), b = .7, (b − p)/

√
p(1 − p)/n = (.7 − .5)/√

.5(1 − .5)/10 = 1.264911 (a−p)/
√

p(1 − p)/n = (.3− .5)/
√

.5(1 − .5)/10 =
−1.264911, so the approximation of P(.3 ≤ p̂ ≤ .7) is P(Z ≤ 1.264911) −
P(Z ≤ −1.264911) = 0.8970484 − 0.1029516 = 0.7940968. The exact value
is 0.890625.1

Example 3

Consider a binomial distribution with p = .5 and n = 100, and imagine we
want to determine the probability that p̂ will have a value less than or equal to
.55. The exact value is 0.8643735. The normal approximation is

P(p̂ ≤ .55) = P(Z ≤ 1) = 0.8413447.

So compared to the case n = 10, we see that we get a better approximation
here. This is to be expected based on the central limit theorem, which says that
the approximation will improve as the sample size gets large.

Example 4

We repeat the last example, only now we compute the probability that p̂ will
have a value between .45 and .55. Referring to equation (5.5), the approximate
value of this probability is

P(Z ≤ 1) − P(Z ≤ −1) = 0.6826895.

1. There are many ways of improving the approximation when n is small, some of which are mentioned
in later chapters.
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The exact value is 0.6802727. So again we see that the approximation is
performing better compared to the situation where n = 10.

Example 5

Again consider the case n = 100, only now p = .05 and we want to determine
the probability that p̂ will be less than or equal to .03. So now

(c − p)/
√

p(1 − p)/n = (.03 − .05)/
√

.05(1 − .05)/100 = −.917663,

and based on the central limit theorem, P(p̂ ≤ .03) is approximately equal
to P(Z ≤ −.9176629) = 0.1794. The exact value is 0.2578387, and so the
approximation is less accurate than when p = .5.

Approximating the sampling distribution of the sample
mean: The general case

Now we discuss approximating the distribution of the sample mean, via the central limit
theorem, for the more general case where X is virtually any variable. In particular, we no
longer assume that X has a normal distribution. With the aid of a computer,it is a fairly
simple matter to illustrate how well a normal distribution approximates the sampling
distribution of the mean. The binomial with n = 100 and p = .5 is an example of a
relatively light-tailed distribution where, based on the boxplot rule, few outliers tend to
occur. The immediate goal is to consider what happens when observations are sampled
from a symmetric distribution where outliers tend to be common.

Imagine we randomly sample 10 observations from the contaminated normal
distribution in figure 4.5 and compute the sample mean. To get some idea of what
the distribution of the sample mean looks like, we can repeat this process 4,000 times
yielding 4,000 sample means. A plot of the resulting sample means is shown in
the left panel of figure 5.3. Also shown is the normal approximation of the sample
mean stemming from the central limit theorem. The right panel of figure 5.3 shows
the distribution of the sample means when the sample size is increased to n = 40
plus the normal approximation of the sample mean stemming from the central limit
theorem. The approximation is fairly good with n = 10 and for n = 40 it is quite
accurate.

Next we consider the sampling distribution of the sample mean when sampling
from the skewed distributions shown in figure 5.4. The distribution shown in the left
panel of figure 5.4 is relatively light-tailed, roughly meaning that a random sample tends
to contain a relatively small proportion of outliers. The distribution in the right panel is
heavier-tailed, meaning that outliers are more common.

The top left panel of figure 5.5 shows a plot of 4,000 sample means when sampling
from the light-tailed distribution in figure 5.4, with n = 10, and the the right panel is the
sampling distribution when n = 40. The bottom two panels show plots of 4,000 sample
means when sampling from the heavy-tailed distribution instead, again with n = 10
and 40. We see that with a skewed, light-tailed distribution, the sampling distribution
of the mean is approximately normal with n = 40. When sampling from the heavy-
tailed distribution with n = 10, the normal approximation is noticeably worse versus
the case when sampling from a light-tailed distribution instead. But even now,
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Figure 5.3 As the sample size gets large, the sampling distribution of the mean will approach a
normal distribution under random sampling.
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Figure 5.5 With skewed, light-tailed distributions, smaller sample sizes are needed to assume that
the sample mean has a normal distribution versus situations where sampling is from a heavy-tailed
distribution.

with n = 40, the approximation based on the normal distribution performs
tolerably well.

Some key points

Figures 5.3 and 5.5 illustrate why it is commonly assumed that with a sample size of
40 or more, generally, normality can be assumed. Historically, the classic illustrations
of the central limit theorem were based on two specific distributions. One is called a
uniform distribution, which is symmetric and extremely light-tailed, and the other is
called an exponential distribution, which is skewed and light-tailed as well. Both of
these distributions look nothing like a normal distribution, and again we find that with
n = 40, the sampling distribution of the sample mean is well approximated by a normal
distribution. These findings have had a tremendous influence regarding views about how
large the sample size must be to justify normality. But there is a very important point that
cannot be stressed too strongly. Subsequent chapters will describe classic methods for
comparing groups based on means, which are routinely taught and used. If the sampling
distribution of the sample mean has, approximately, a normal distribution, does this
necessarily imply that these methods will perform well? There are circumstances where
the answer is yes, but under general conditions, the answer is no. Fortunately, many
modern methods have been derived for dealing with known problems, some of which
will be described.

Although an argument can be made that in general, the sampling distribution of
the mean is approximately normal with n = 40, it should be noted that there are circum-
stances where this rule breaks down. One such situation is the binomial where the prob-
ability of success, p, is close to 0 or 1. Another situation is where extreme outliers occur.

Example 6

Imagine we resample, with replacement, 40 values from the data on sexual
attitudes that are given in table 2.3. If we repeat this process 4,000 times, each
time computing the sample mean, a plot of the means is as shown in the left
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Figure 5.6 Although it is often the case that with a sample size of 40, the sampling distribution
of the sample mean will be approximately normal, exceptions arise as illustrated here.

panel of figure 5.6. As is evident, now the sampling distribution of the mean
looks nothing like a normal distribution. The problem here is that there is
a single extreme outlier with the value 6,000. If we remove this outlier, the
resulting plot of the means is shown in the right panel of figure 5.6. Even now,
the plot of the means differs from a normal distribution in an obvious way.

Problems
14. You randomly sample 16 observations from a discrete distribution with mean

μ = 36 and variance σ 2 = 25. Use the central limit theorem to determine
(a) P(X̄ < 34), (b) P(X̄ < 37), (c) P(X̄ > 33), (d) P(34 < X̄ < 37).

15. You sample 25 observations from a non-normal distribution with mean μ = 25
and variance σ 2 = 9. Use the central limit theorem to determine (a) P(X̄ < 24),
(b) P(X̄ < 26), (c) P(X̄ > 24), (d) P(24 < X̄ < 26).

16. Referring to the previous problem, describe a situation where reliance on the
central limit theorem to determine P(X̄ < 24) might be unsatisfactory.

17. Describe situations where a normal distribution provides a good approximation of
the sampling distribution of the mean.

5.4 Sampling distribution of the median

All estimators, such as the median, 20% trimmed mean, the sample variance, and the
interquartile range, have sampling distributions. Again we imagine repeating a study
millions of times, in which case a plot of the estimates would indicate what the sampling
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Figure 5.7 Plots of 4,000 means and medians, each based on a random sample of a size 10, taken
from a normal distribution. Note that the sample means tend to be closer to the population, 0.

distribution is like. One positive feature of sampling distributions is that they provide a
useful perspective on how estimators compare.

The focus here is on the sampling distribution of the median. The median is of
interest in its own right, and it helps provide perspective when trying to understand the
relative merits of the mean. Recall that when distributions are symmetric about a central
value, the population mean and median are equal. This means that the sample mean and
median are attempting to estimate the same quantity. Is there any practical advantage
to using one estimator over the other in terms of getting a more accurate estimate? The
notion of a sampling distribution helps address this problem.

Example 1

First consider the situation where observations are randomly sampled from
a standard normal distribution. So both the mean, X̄ , and median, M , are
attempting to estimate the same value: 0. For illustrative purposes, the sample
size is taken to be n = 10. Will the sample mean tend to be more accurate than
the median? To find out, we can use a computer to generate observations from
a standard normal distribution, compute both the mean and median, and then
we repeat this process 4,000 times yielding 4,000 sample means and medians.
figure 5.7 shows a plot of the results. Notice that the sample means are more
tightly clustered around 0. This indicates that on average, they are more likely
to give a more accurate estimate than the median. The improvement of the
mean over the median might not seem that striking, but in other contexts to
be described, the mean offers a distinct advantage.

It can be shown that under normality, the sample mean has the smallest
standard error of any location estimator we might choose. In particular,
it performs better than the median or 20% trimmed mean. But under
non-normality, there are situations where it performs poorly.

Example 2

To illustrate that the mean can perform more poorly than the median, we
repeat the last example, only now observations are sampled from the symmetric,
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Figure 5.8 Plots of 4,000 means and medians, each based on a random sample of a size 10, taken
from a symmetric heavy-tailed distribution. In this case, the median is much more accurate than
the mean, on average.

heavy-tailed distribution shown in figure 4.5. Figure 5.8 shows a plot of the
results. As indicated, now the sample medians are much more tightly clustered
around the central value indicating that on average, the median provides a
much more accurate estimate.

Example 2 illustrates a general result of some practical importance. When
sampling from a distribution where outliers are relatively rare, the mean will
have a smaller standard error than the median. But as we move toward situations
where the number of outliers tends to be high, eventually the median will have
a smaller standard error than the mean.

Estimating the standard error of the median

Like the squared standard error of the mean, the squared standard error of the median
refers to the variation of the median over many studies. Estimating the standard error
of the sample mean is straightforward: use s/

√
n. But when dealing with the median,

no single estimator is routinely recommended. Here, a simple estimator is used that
has practical value in situations to be described. Caution must be exercised because we
will see that there are conditions where it performs poorly. (And many alternatives for
estimating the standard error of the median suffer from a similar problem.)

The estimate used here was derived by McKean and Schrader (1984). To apply it,
first put the observations in ascending order, which is denoted by X(1) ≤ X(2) ≤ ·· ·≤ X(n).
Next, compute

n + 1

2
− 2.5758

√
n

4
,

round this value to the nearest integer, and call it k. The McKean-Schrader estimate of
the squared standard error of the median is

s2M =
(

X(n−k+1) − X(k)

5.1517

)2

.
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Example 3

The values

2.2,−11.0,−7.6,7.3,−12.5,7.5,−3.2,−14.9,−15.0,1.1

are used to illustrate how to estimate the standard error of the median. Putting
these values in ascending order yields

−15.0,−14.9,−12.5,−11.0,−7.6,−3.2,1.1,2.2,7.3,7.5.

So X(1) = −15, X(2) = −14.9 and X(10) = 7.5. The sample size is n = 10 and

10 + 1

2
− 2.5758

√
10

4
= 1.4.

Rounding 1.4 to the nearest integer yields k = 1. Because n− k +1 = 10−1+
1 = 10, the squared standard error of the sample median is estimated to be

(
X(10) − X(1)

5.1517

)2

=
(

7.5 − (−15)

5.1517

)2

= 19.075.

Consequently, the standard error is estimated to be
√

19.075 = 4.4.

Example 4

There are realistic situations where the estimated standard error of the median
can be substantially smaller than the estimated standard error of the mean. For
example, Harrison and Rubinfeld (1978) conducted a study dealing generally
with the cost of homes in regions near Boston, Mass. One of the variables of
interest dealt with crime rates. Based on a sample size of 504, the estimated
standard error of the median was 0.035 versus 0.382 for the mean, which is
more than 10 times as large as the standard error of the median.

For continuous variables, where tied (duplicated) values never occur, the
estimate of the standard error of the median, just described and illustrated,
performs reasonably well. But when dealing with discrete random variables,
where tied (duplicated) values occur, the estimate can perform rather poorly.

Example 5

Imagine that a training program for investing in stocks is rated on a scale
between 0 and 10. So there are only 11 possible outcomes. Further assume
that for the population of individuals who have taken the training program,
the probability function is as follows:

x p(x) x p(x)

0 .028247524 6 .0367569090
1 .121060821 7 .0090016920
2 .233474441 8 .0014467005
3 .266827932 9 .0001377810
4 .200120949 10 .0000059049
5 .102919345
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If 100 observations are sampled from this distribution, it can be shown that the
standard error of the median is approximately .098. But over 75% of the time,
the McKean–Schrader estimate exceeds .19. That is, typically, the estimate is
about twice as large as it should be, which will be seen to be a source of practical
concern. Roughly, the problem here is that because the only possible values are
the integers from 0 to 10, with n = 100, tied values will occur.2

The central limit theorem and the median

A version of the central limit theorem applies to the sample median, meaning that
there are general conditions where the sampling distribution of the median approaches
a normal distribution as the sample size gets large. When sampling from continuous
distributions, or distributions where duplicate values occur infrequently if at all, typically
the sample size does not have to be very large for the sampling distribution of the
median to be approximately normal. Letting θ (a lower case Greek theta) represent the
population median this means that if we are given the value of the standard error of the
median, say σM , then

Z = M − θ

σM

will have, approximately, a standard normal distribution. Consequently, for any constant
c, it will be approximately true that

P(M ≤ c) = P

(
Z ≤ c − θ

σM

)
.

In words, this probability can be determined by computing (c −θ )/σM and using table 1
in appendix B. In practice, σM is not known, but it can be estimated with sM , suggesting
that we use the approximation

P(M ≤ c) = P

(
Z ≤ c − θ

sM

)
, (5.6)

and it turns out that this approximation can be very useful. But for discrete distributions,
where only a few possible values might be observed, a normal approximation of the
sampling distribution can be quite unsatisfactory. That is, when tied (duplicated) values
occur, the approximation given by equation (5.6) can perform poorly. For instance,
in example 5, approximating the sampling distribution of the median with a normal
distribution is unsatisfactory with n = 100.

Example 6

For a continuous distribution where the standard error of the median is .5,
someone claims that the population median is 10. In symbols, the claim is that
θ = 10. If you collect data and find that the median is M = 9, and if the claim
is correct, is it unusual to get a sample median this small or smaller? To find
out, we determine P(M ≤ 9). We see that (c − θ )/σM = (9 − 10)/.5 = −2,
and from table 1 in appendix B, P(Z ≤ −2) = .023, suggesting that the claim
might be incorrect.

2. Many other proposed methods for estimating the standard error of the median also perform poorly
for this same situation.
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Example 7

Based on 40 values sampled from a continuous distribution, a researcher
computes the McKean-Schrader estimate of the standard error of M and gets
sM = 2. Of interest is the probability of getting a sample median less than or
equal to 24 if the population median is 26. To approximate this probability,
compute (c − θ )/Sm = (24 − 26)/2 = −1. So the approximate probability is
P(Z ≤ −1) = .1587.

Example 8

A study is conducted yielding the following values: 1, 3, 4, 3, 4, 2, 3, 1, 2,
3, 4, 1, 2, 1, 2. In this case, it would not be advisable to assume that the
sampling distribution of the median is normal because tied (duplicated) values
are common. In particular, the McKean–Schrader estimate of the standard
error might perform poorly in this case.

Problems
18. For the values 4, 8, 23, 43, 12, 11, 32, 15, 6, 29, verify that the McKean–Schrader

estimate of the standard error of the median is 7.57.

19. In the previous example, how would you argue that the method used to estimate
the standard error of the median is a reasonable approach?

20. For the values 5, 7, 2, 3, 4, 5, 2, 6, 7, 3, 4, 6, 1, 7, 4, verify that the
McKean–Schrader estimate of the standard error of the median is .97.

21. In the previous example, how would you argue that the method used to estimate
the standard error of the median might be highly inaccurate?

22. In problem 20, would it be advisable to approximate P(M ≤ 4) using
equation (5.6)?

23. For the values 2, 3, 5, 6, 8, 12, 14, 18, 19, 22, 201, why would you suspect that the
McKean–Schrader estimate of the standard error of the median will be smaller
than the standard error of the mean? (Hint : Consider features of data that can
have a large impact on s, the sample standard deviation, and recall that the
standard error of the mean is s/

√
n. )Verify that this speculation is correct.

24. Summarize when it would and would not be reasonable to assume that the
sampling distribution of M is normal.

5.5 Modern advances and insights

A fundamental goal is finding an estimator with a relatively small standard error. When a
distribution is reasonably symmetric, for example, the mean and median are estimating,
approximately, the same quantity, so it is desirable to use the estimator that on average is
most accurate. That is, we would use the estimator that has the smallest standard error.
Yet one more important issue is being able to estimate the standard error based on the
observations available.

We have seen that the standard error of the mean can be relatively large compared
to the standard error of the median. In general, the standard error of the mean might be
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relatively large when one or more outliers are present. Although the median can have
a substantially smaller standard error than the mean, it has several practical problems
that were described in this chapter. In some situations it provides an important and
useful alternative to the mean, but there are general circumstances where it is less than
satisfactory.

One strategy is to use means if no outliers are found, but we will see in chapters 6
and 7 that even when outliers rarely occur, serious practical concerns about the mean
remain. And later in this section we will see that simply discarding outliers and using
the mean of the remaining data creates technical problems when trying to estimate the
standard error.

The immediate goal is to describe just one of several alternatives to the mean
and median that has been found to have practical value in a wide range of situations.
(chapter 13 will summarize the relative merits of a variety of methods aimed at dealing
with non-normality.) It is motivated by the realization that practical problems with the
median arise roughly because it uses an extreme amount of trimming—it trims all but one
or two of the values. So one possibility is to trim fewer values. But how much trimming
should be used? One approach is to choose an amount of trimming that maintains, to a
reasonable degree, the positive features of the mean, but which eliminates the practical
problems associated with the median. Although no specific amount of trimming is always
optimal, it has been found that a 20% trimmed mean, already described in chapter 2,
is often a good choice. One advantage of 20% trimming is that in terms of achieving a
small standard error, it competes fairly well with the mean when sampling from a normal
distribution, but unlike the mean, the standard error remains relatively small when
outliers are common. Another advantage of trimming is that normality can be assumed
in situations where normality should not be assumed when using the mean. (Details are
given in chapter 6.) In addition, a good approximation of the sampling distribution can be
obtained when sampling from a discrete distribution that has relatively few values. That
is, trimming 20% deals with the problem of tied values when using the median, which was
illustrated by example 5 in section 5.4. A related problem with the median, when sam-
pling from a discrete distribution that has relatively few values, is getting a good estimate
of the standard error. Again, by trimming only 20%, this problem becomes negligible.

There is, however, a negative feature associated with a 20% trimmed mean. If the
number of outliers is sufficiently large, the median could have a substantially smaller
standard error than the 20% trimmed mean.

Example 1

It is informative to repeat example 6 in section 5.3 where observations are
sampled with replacement from the data in table 2.3. Recall that these data are
skewed with an extreme outlier. figure 5.6 illustrated that a plot of 4,000 sample
means, with n = 40, looks nothing like a normal distribution. The right panel
of figure 5.9 shows a plot of 4,000 20% trimmed means, and the left panel
shows the medians. The point is that the plot of the 20% trimmed means
looks more like a normal distribution than a plot of the means or medians. Not
only does the plot of the medians not resemble a normal curve, the sampling
distribution of the median is discrete with only a few values for the sample
median occurring. Also, the standard error of the mean is approximately 87
versus 1.02 and 0.9 for the median and 20% trimmed mean, respectively.
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Figure 5.9 When tied values occur, situations are encountered where the sampling distribution
of the sample median is highly discrete and non-normal, as illustrated in the left panel. For the
same situation, the sampling distribution of the 20% trimmed mean is reasonably continuous and
has a more normal shape, as indicated in the right panel.

The last example illustrated that the 20% trimmed mean can have an
approximately normal distribution in situations where the sampling distri-
bution of the mean and median is clearly non-normal. A criticism of this
illustration might be that, although outliers appear to be common, extreme
outliers such as the one in table 2.3, are rare. But we will see situations
in chapters 6 and 7 where the choice among these three estimators is of
considerable practical importance in situations that are much more common.
It should be stressed, however, that despite any advantages enjoyed by both
the 20% trimmed mean and median, for skewed distributions, they are
not estimating the population mean. That is, if there is specific interest in
estimating the population mean, the median and 20% trimmed mean can be
highly unsatisfactory when a distribution is skewed. But if the goal is to avoid
a measure of location that that lies in the tails of a distribution, the median and
20% trimmed mean can be much more satisfactory than the mean.

Estimating the standard error of a trimmed mean

There is a simple method for estimating the squared standard error of a 20% trimmed
mean:

s2t = s2w
.62n

, (5.7)

where s2w is the Winsorized sample variance introduced in chapter 2. (The .6 in the
denominator is related to the amount of trimming, which is assumed to be 20%. If 10%
trimming is used instead, the .6 is replaced by .8.) The standard error of the trimmed
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mean is estimated with the (positive) square root of this last equation:

st = sw
.6

√
n
. (5.8)

In practice, situations are encountered where the standard error of the mean is about
as small or slightly smaller than the standard error of the 20% trimmed mean. As will
be illustrated, the standard error of the 20% trimmed mean can be substantially smaller
than the standard error of the mean, but the reverse rarely, if ever, occurs.

Example 2

An earlier problem dealt with a study where rats were subjected to a drug that
might affect aggression. The measures of aggression were

5,12,23,24,18,9,18,11,36,15.

The 20% Winsorized variance can be computed as described in chapter 4 and
is equal to 27.1667. Because n = 10, the squared standard error of the 20%
trimmed mean is

27.1667

.36(10)
= 7.546.

So the standard error is estimated to be
√

7.546 = 2.75. As for the mean and
median, the estimated standard error is 2.83 and 6.02, respectively. So the 20%
trimmed mean has the smallest estimated standard error, but in this case, the
improvement over the mean is not that striking.

Example 3

The data in table 5.3 are from a study on self-awareness and reflect how long
a participant could keep a portion of an apparatus in contact with a specified
target. The trimmed mean is X̄ t = 283 and its estimated standard error is
56.1. In contrast, the standard error of the sample mean is s/

√
n = 136, a value

approximately 2.4 times larger than the sample standard error of the trimmed
mean. So in contrast to the previous example, the trimmed mean has a much
smaller standard error than the mean. The sample median has an estimated
standard error of 77.8.

Discarding outliers and using the mean

Another seemingly natural strategy is to check for outliers, remove any that are found,
and compute the mean with the remaining data. There are situations where this approach
has practical value, but there are serious technical issues that are not immediately evident.
Methods for dealing with these technical issues are available, but generally they are not
obvious based on methods covered in an introductory course. Although, these issues are
not discussed in detail here, one of these technical issues is worth mentioning.

Imagine that for a random sample of n observations, we check for outliers, remove
them, and now m values remain. How should the squared standard error be estimated? It
might seem that the problem is trivial: compute the sample variance using the remaining
m values and divide the result by m. This would be valid if n−m values were randomly
removed. But this was not done only extreme values were removed. It can be shown that
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when extreme values are removed, the remaining m values are no longer independent.3

And the dependence among the remaining values requires special techniques when
estimating the standard error of an estimator. Notice that when using the 20% trimmed
mean, the sample variance of the values left after trimming was not used when estimating
the squared standard error. Rather, the 20% Winsorized variance was used, and this value
was divided by .36n, not m. It can be shown that this distinction is not trivial, but no
details are given here. Suffice it to say that technically correct methods for estimating
the standard depend in part of how outliers or extreme values are treated.

Example 4

For the data in table 2.3, the estimated standard error of the 20% trimmed
mean is .532 using the technically correct estimate of the standard error based
on the Winsorized variance and given by equation (5.8). There are 63 values
left after trimming. Imagine that instead of using equation (5.8) we simply use
the method for the sample mean using these 63 values only. That is, compute s
using these 63 values and then compute s/

√
63. This yields 0.28, which is less

than half of the value based on the equation (5.8). The discrepancy between
these two values will be seen to be substantial.

A Summary of Some Key Points

• The sampling distribution of the sample mean reflects the likelihood of getting particular
values for X̄ . In particular, it provides information about the likelihood that X̄ will be
close to the population mean, μ, when a study is repeated many times. That is, the
sampling distribution of the sample mean provides some sense of how well X̄ estimates
the population mean μ. The accuracy of X̄ is reflected by its standard error, σ/

√
n.

• All estimators, such as the sample median, the 20% trimmed mean, and the sample
variance have a sampling distribution. If a study could be repeated millions of times,
each time yielding a sample variance, we would know, for example, the sampling
distribution of s2 to a high degree of accuracy. That is, we could determine P (s2 ≤ c)
for any constant c.

• Under normality, the sampling distribution of X̄ is also normal with mean μ and
variance σ2/n.

• The standard errors corresponding to the mean, the 20% trimmed mean, and the
median, can differ substantially. For the special case where sampling is from a perfectly
symmetric distribution, this means that that are conditions where the median and 20%
trimmed mean can provide a much more accurate estimate of the population mean
relative to the sample mean, X̄ .

• Estimating the standard error of the mean and 20% trimmed mean is relatively simple.
The same is true when using the median provided tied values never occur. But with tied
values, obtaining a reasonably accurate estimate of the standard error of the median
can be difficult even with very large sample sizes.

3. A relatively nontechnical explanation can be found in Wilcox, 2003.
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• The central limit theorem indicates that with a sufficiently large sample size, the sample
mean will have, approximately, a normal distribution. When the population standard
deviation is known, it appears that under fairly general conditions, normality can
be assumed with a sample size of n ≥ 40. But we saw that exceptions occur, and
subsequent chapters will make clear that when the population standard deviation σ is
not known, assuming normality can be highly unsatisfactory.

• A version of the central limit theorem also indicates that the sampling distribution of
the 20% trimmed mean will be approximately normal provided the sample size is not
too small. Currently, it seems that tied values have little or no impact on this result. But
when dealing with medians, assuming normality can be highly unsatisfactory when
tied values can occur.

Problems
25. For the values

59,106,174,207,219,237,313,365,458,497,515,

529,557,615,625,645,973,1065,3215,

estimate the standard error of the 20% trimmed mean.

26. For the data in problem 25, why would you suspect that the standard error of the
sample mean will be larger than the standard error of the 20% trimmed mean?
Verify that this speculation is correct.

27. The ideal estimator of location would have a smaller standard error than any other
estimator we might use. Explain why such an estimator does not exist.

28. Under normality, the sample mean has a smaller standard error than the 20%
trimmed mean or median. If observations are sampled from a distribution that
appears to be normal, does this suggest that the mean should be preferred over
the trimmed mean and median?

29. If the sample mean and 20% trimmed mean are nearly identical, it might be
thought that for future studies, it will make little difference which measure of
location is used. Comment on why this is not necessarily the case.

30. Imagine that you are able to generate 25 observations on a computer from the
distribution shown in the left panel of figure 5.4. Outline how you would
determine the sampling distribution of the sample median, M . In particular, how
would you determine the probability that M will have a value less than 1.5?
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ESTIMATION

C hapter 4 described what are called population parameters. They are unknown
quantities that characterize the population of things or individuals under study. An

example is the population mean, μ, which represents the average of all individuals if only
they could be measured. Another example is p, the probability of success associated with
a binomial distribution. A fundamental goal is making inferences about these unknown
parameters based on data that are available, with the available data representing only a
subset of all the individuals of interest. As in chapter 2, we might have n observations
and compute the sample mean X̄ , which is an example of an estimator; it estimates
the population mean μ. In a similar manner, if 12 of 100 persons develop negative side
effects when taking a drug, then

p̂ = 12

100

provides an estimate of the probability of negative side effects among all individuals who
might take the drug. That is, p̂ estimates p, the probability of success associated with a
binomial distribution. In chapter 5, it was noted that X̄ is a reasonable estimate of μ in
the sense that if we imagine conducting millions of studies, the average of the resulting
sample means will be equal to μ. In more formal terms, assuming random sampling,
E(X̄ ) = μ. That is, X̄ is an unbiased estimate of μ. In a similar manner E(p̂) = p when
working with a binomial distribution. Nevertheless, for any given study, it is generally
the case that X̄ is not equal to the population mean μ, for the simple reason that not
all individuals or things of interest have been measured. Similarly, in general, p̂ is not
equal to p, the true probability of success. This raises a fundamental question: Given
some data, and if, for example, X̄ = 12, can certain values for the population mean be
ruled out as being highly unlikely? Is there some way, for example, to conclude that the
unknown value for μ is at least 2 and does not exceed 20? Put another way, given some
data, what range of values for μ is reasonable? In a similar manner, when working with
the binomial, if we observed 15 successes among 20 trials, is it reasonable to conclude
that the unknown probability of success, p, is at least .5?

The classic strategy for addressing these problems, one that is routinely used today,
was derived by Laplace about two centuries ago. The basic idea is to take advantage
of results related to sampling distributions covered in chapter 5. There are conditions
where this classic strategy performs very well, but today it is realized that there are general
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conditions where it can fail miserably, for reasons outlined at the end of this chapter.
A brief indication of how modern methods deal with this problem is provided.

6.1 Confidence interval for the mean: Known variance

A confidence interval for the population mean μ is an interval, based on the observed data,
that contains the unknown population mean with some specified probability. Generally,
confidence intervals will vary over studies. For instance, one study might suggest that
the interval (2, 14) contains μ, and another study might suggest that the interval (5, 10)
contains μ. If, for example, the method for computing a confidence interval contains μ

with probability .95, then the resulting confidence interval from any one study is said to
be a .95 confidence interval for μ.

To elaborate on what this means and how confidence intervals are computed, we
begin with the simplest case where sampling is from a normal distribution and the
population variance, σ 2, is known. This is unrealistic in the sense that σ 2 is rarely if ever
known, but this simplifies the reasoning and helps make clear the principles underlying
the method. Once the basic principle is described, more realistic situations are covered
where σ 2 is unknown and sampling is from non-normal distributions.

Example 1

Ten patients were given a drug to increase the number of hours they sleep.
Table 6.1 shows some hypothetical data and, as indicated, the sample mean is
X̄ = 1.58. Momentarily assume that among all patients we might measure, the
increased amount of sleep has a normal distribution with variance σ 2 = 1.664.
Then from chapter 5, the sampling distribution of the sample mean has a
normal distribution with variance σ 2/n = 1.664/10 = 0.1664. So the standard
error of the sample mean is

√
.1664 = .408. From chapter 5, it also follows

that, regardless of what the true value of the population mean happens to be,

Z = X̄ −μ

0.408

Table 6.1 Additional hours sleep
gained by using an experimental drug

Patient Increase

1 1.2
2 2.4
3 1.3
4 1.3
5 0.0
6 1.0
7 1.8
8 0.8
9 4.6

10 1.4

X̄ = 1.58



104 BASIC STATISTICS

has a standard normal distribution. But from chapter 4, we know that with
probability .95, a standard normal random variable will have a value between
−1.96 and 1.96. In symbols,

P

(
−1.96 ≤ X̄ −μ

0.408
≤ 1.96

)
= .95.

Rearranging terms in this last equation, we see that

P(X̄ − 0.8 ≤ μ ≤ X̄ + 0.8) = .95. (6.1)

In words, if we were to repeat this study millions of times (and in theory,
infinitely many times), 95% of the intervals (X̄ −0.8, X̄ +0.8) would contain
the unknown population mean, μ. In our example, X̄ = 1.58, and

(X̄ − 0.8, X̄ + 0.8) = (0.78, 2.38) (6.2)

is a .95 confidence interval meaning that the interval was constructed so that
with probability .95, it will contain the unknown population mean.

Rather than compute a .95 confidence interval, you might want to compute
a .99 or .90 confidence interval instead. From table 1 in appendix B, or as
pointed out in chapter 4, it can be seen that the probability of a standard
normal random variable having a value between −2.58 and 2.58 is .99. That is,

P(−2.58 ≤ Z ≤ 2.58) = .99.

Proceeding as was done in the last paragraph, this implies that(
X̄ − 2.58

σ√
n
, X̄ + 2.58

σ√
n

)

is a .99 confidence interval for μ. In the example, σ/
√

10 = .408, so now the
confidence interval for μ is (0.53, 2.63).

Notation A common notation for the probability that a confidence
interval does not contain the population mean, μ, is α, where α is a
lower case Greek alpha. When computing a .95 confidence interval,
α = 1 − .95 = .05. For a .99 confidence interval, α = .01. The
quantity α is the probability of making a mistake. That is, if we
perform an experiment with the goal of computing a .95 confidence
interval, there is a .95 probability that the resulting interval contains
the mean, but there is a α = 1 − .95 = .05 probability that it
does not.

The method can be described in a slightly more general context as follows,
still assuming that sampling is from a normal distribution. Imagine the goal
is to compute a 1 − α confidence interval for some value for 1 − α you have
chosen. The first step is to determine c such that the probability of a standard
normal random variable being between −c and c is 1−α. In symbols, determine
c such that

P(−c ≤ Z ≤ c) = 1 −α.
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Table 6.2 Common choices for
1 −α and c

1 −α c

.90 1.645

.95 1.96

.99 2.58

From chapter 4, this means that you determine c such that

P(Z ≤ c) = 1 + (1 −α)

2

= 1 − α

2
.

Put another way, c is the 1 − α/2 quantile of a standard normal distribution.
For example, if you want to compute a 1 −α = .95 confidence interval, then

1 + (1 −α)

2
= 1 + .95

2
= .975,

and from table 1 in appendix B we know that

P(Z ≤ 1.96) = .975,

so c = 1.96. For convenience, table 6.2 lists the value of c for three common
choices for 1 −α.

Once c is determined, a 1 −α confidence interval for μ is(
X̄ − c

σ√
n
, X̄ + c

σ√
n

)
. (6.3)

Definition The probability coverage of a confidence interval is the
probability that the interval contains the unknown parameter being
estimated. Roughly, if we repeat a study millions of times, the
probability coverage refers to the proportion of the resulting intervals
that contain the unknown parameter. The desired probability
coverage is typically represented by 1 −α, with 1 −α = .95 or .99
being common choices. The value 1 −α is called the confidence level
or confidence coefficient associated with the confidence interval.

Example 2

Imagine that a training program for improving SAT scores has been used
for years and that among the thousands of students who have enrolled in the
program, the average increase in their scores is 48. For illustrative purposes, we
imagine that the number of students is so large that for all practical purposes, we
know that the population mean is μ = 48. Now imagine that we estimate the
effectiveness of the new method by trying it on n = 25 students and computing
the sample mean yielding X̄ = 54. This means that based on our experiment,
the average effectiveness of the new method is estimated to be 54, which is
larger than the average increase using the standard method, suggesting that
the new method is better for the typical student. But we know that the sample
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mean is probably not equal to the population mean, so there is uncertainty
about whether the experimental method would be better, on average, than the
standard method if all students were to attend the new training program. For
illustrative purposes, assume that the population standard deviation is known
and equal to 9. That is, σ = 9. Then a .95 confidence interval for the unknown
mean associated with the experimental method is(

54 − 1.96
9√
25

, 54 + 1.96
9√
25

)
= (50.5, 57.5).

So based on the 25 students available to us, their SAT scores indicates that μ

is somewhere between 50.5 and 57.5, and by design, the probability coverage
(or confidence level) will be .95, assuming normality. Observe that this interval
does not contain the value 48 suggesting that the experimental method is better,
on average, than the standard training technique.

Example 3

We repeat the last example, only this time we compute a .99 confidence interval
instead. The .99 confidence interval for μ is(

54 − 2.58
9√
25

, 54 + 2.58
9√
25

)
= (49.4, 58.6).

Among the millions of times we might repeat this experiment with n = 25
students, there is a .99 probability that we have computed a confidence interval
that contains μ. Note that again this interval does not contain 48, again
suggesting that the experimental method is better on average.

Example 4

Suppose that for n = 16 observations randomly sampled from a normal
distribution, X̄ = 32 and σ = 4. Compute a .9 confidence interval. Here,
1−α = .9, so we can determine c simply by referring to table 6.2, and we see that
c = 1.645. Without table 6.2, we proceed by first noting that (1+0.9)/2 = 0.95.
Referring to table 1 in appendix B, P(Z ≤ 1.645) = .95, so again c = 1.645.
Therefore, a .9 confidence interval for μ is(

32 − 1.645
4√
16

,32 + 1.645
4√
16

)
= (30.355,33.645),

and there is a .9 probability that this interval contains μ. Although X̄ is not,
in general, equal to μ, note that the length of the confidence interval provides
some sense of how well X̄ estimates the population mean. Here the length is
33.645 − 30.355 = 3.29.

Example 5

A college president claims that IQ scores at her institution are normally
distributed with a mean of μ = 123 and a standard deviation of σ = 12.
Suppose you randomly sample n = 20 students and find that X̄ = 110. Does
the 1 − α = .95 confidence interval for the mean support the claim that the
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average of all IQ scores at the college is μ = 123? Because 1−α = .95, c = 1.96
as just explained, so the .95 confidence interval is(

110 − 1.96
14√
20

,110 + 1.96
14√
20

)
= (103.9,116.1).

The interval (103.9,116.1) does not contain the value 123 suggesting that the
president’s claim might be false. Note that there is a .05 probability that the
confidence interval will not contain the true population mean, so there is some
possibility that the president’s claim is correct.

Important conceptual point

In this last example, suppose that the .95 confidence interval is (119, 125). Would it
be reasonable to conclude that the president’s claim (that μ = 123) is correct? The
answer is no. It could be that the population mean μ is 120 or 124 for example; these
values would not be ruled out based on the confidence interval. Confidence intervals can
provide empirical evidence that certain values for the parameter being estimated (in this
case the population mean) can probably be ruled out. But proving that the population
mean is exactly 120 is virtually impossible without measuring the entire population of
students under study. We can, however, design studies to improve the precision of our
estimates simply by increasing the sample size, n. Looking at equation (6.3) we see that
the length of a confidence interval is(

X̄ + c
σ√
n

)
−

(
X̄ − c

σ√
n

)
= 2c

σ√
n
.

So, by increasing the sample size n, the length of the confidence interval decreases
and reflects the extent to which the sample mean gives an improved estimate of the
population mean.

Use caution when interpreting confidence intervals

Care must be taken not to read more into a confidence interval than is warranted.
For the situation at hand, the probability coverage of a confidence interval reflects the
likelihood, over many studies, that the confidence interval will contain the unknown
population mean, μ. But there are several ways in which a confidence interval can be
interpreted incorrectly, which are illustrated with the last example where .95 confidence
interval for the average IQ score at some university was found to be (103.9, 116.1).

• 95% of all students have an IQ between 103.9 and 116.1. The error here
is interpreting the ends of the confidence intervals as quantiles. That is, if
among all students, the .025 quantile is 100.5 and the .975 quantile is 120.2,
this means that 95% of all students have an IQ between 100.5 and 120.2.
But confidence intervals for the population mean tell us nothing about the
quantiles associated with all students at this university.

• There is a .95 probability that a randomly sampled student will have an IQ
between 100.5 and 120.2. This erroneous interpretation is similar to the one
just described. Again, confidence intervals do not indicate the likelihood of
observing a particular IQ , but rather indicate a range of values that are likely
to include μ.
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• All sample means among future studies will have a value between 103.9 and
116.1 with probability .95. This statement is incorrect because it is about
the sample mean, not the population mean. (For more details about this
particular misinterpretation, see Cumming and Maillardet, 2006.)

Problems
1. Explain the meaning of a .95 confidence interval.

2. If you want to compute a .80, or .92, or a .98 confidence interval for μ when σ is
known, and sampling is from a normal distribution, what values for c should you
use in equation (6.3)?

3. Assuming random sampling is from a normal distribution with standard deviation
σ = 5, if you get a sample mean of X̄ = 45 based on n = 25 subjects, what is the
.95 confidence interval for μ?

4. Repeat the previous example, only compute a .99 confidence interval instead.

5. A manufacturer claims that their light bulbs have an average life span that follows
a normal distribution with μ = 1,200 hours and a standard deviation of σ = 25. If
you randomly test 36 light bulbs and find that their average life span is X̄ = 1,150,
does a .95 confidence interval for μ suggest that the claim μ = 1,200 is reasonable?

6. For the following situations, (a) n = 12, σ = 22, X̄ = 65, (b) n = 22, σ = 10,
X̄ = 185, (c) n = 50, σ = 30, X̄ = 19, compute a .95 confidence interval for the
mean assuming normality.

7. What happens to the length of a confidence interval for the mean of a normal
distribution when the sample size is doubled? What happens if it is quadrupled?

8. The length of a bolt made by a machine parts company is a normal random
variable with standard deviation σ equal to .01 mm. The lengths of four randomly
selected bolts are: 20.01, 19.88, 20.00, 19.99. (a) Compute a .95 confidence
interval of the mean. (b). Specifications require a mean length μ of 20.00 mm for
the population of bolts. Do the data indicate that this specification is not being
met? (c) Given that the .95 confidence interval contains the value 20, why might it
be inappropriate to conclude that the specification is being met?

9. The weight of trout sold at a trout farm has a standard deviation of .25. Based on
a sample of 10 trout, the average weight is 2.10 lb. Compute a .99 confidence
interval for the population mean, assuming normality.

10. A machine to measure the bounce of a ball is used on 45 randomly selected tennis
balls. Experience has shown that the standard deviation of the bounce is .30. If
X̄ = 1.70, and assuming normality, what is a .90 confidence interval for the
average bounce?

6.2 Confidence intervals for the mean: σ not known

There are two practical concerns with the method for computing confidence intervals
described in the previous section. The first is that the population variance σ 2 is, in
general, not known. The other is that distributions are rarely, if, ever, exactly normal.
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Assuming normality is convenient from a technical point view, but to what extent does
it provide a reasonably accurate approximation? If, for example, we claim that a .95
confidence interval for the population mean has been computed, is it possible that the
probability coverage is only .9 or even .8? Under what conditions is the actual probability
coverage reasonably close to .95? Here, we first focus on how to proceed when the
standard deviation σ is not known, still assuming normality. Then we will discuss the
effects of non-normality and how they might be addressed.

Example 1

Imagine you are a health professional interested in the effects of medication
on the diastolic blood pressure of adult women. For a particular drug being
investigated, you find that for nine women, the sample mean is X̄ = 85 and the
sample variance is s2 = 160.78. So although we do not know the population
varianceσ 2, we have an estimate of it, namely s2 = 160.78, as noted in chapter 5.
If we momentarily assume that this estimate is reasonably accurate, then a
natural strategy is to compute confidence intervals as described in the previous
section and given by equation (6.3). Because n = 9, we see that s/

√
n = 4.2, so

a .95 confidence interval for the mean would be

(85 − 1.96(4.2), 85 + 1.96(4.2)) = (76.8, 93.2).

Prior to the year 1900, the process just illustrated was the strategy used to compute
confidence intervals, and it turns out that this approach is reasonable if the sample size
is sufficiently large, assuming random sampling. That is, a form of the central limit
theorem tells us that provided the sample size is reasonably large,

T = X̄ −μ

s/
√

n
(6.4)

will have, approximately, a standard normal distribution. Moreover, the accuracy of this
approximation improves as the sample size increases.

However, William Sealy Gosset (1876–1937) noted that the sample standard
deviation s is an erratic estimator of σ when the sample size, n, is small. Even when
sampling from a normal distribution, concerns arise. Gosset worked for Arthur Guinness
and Son, a Dublin brewery. His applied work dealt with quality control issues relevant to
making beer, typically he was forced to make inferences based on small sample sizes, and
so he set out to find a method that would take into account the fact that s might be a rather
unsatisfactory estimate of σ . He published his results in a now famous 1908 paper, “The
Probable Error of a Mean.” In essence, Gosset determined the sampling distribution
of T , assuming that observations are randomly sampled from a normal distribution.
But initially Guinness did not allow Gosset to publish his results. Eventually, however,
he was allowed to publish his results provided that he use a pseudonym chosen by the
managing director of Guinness, C. D. La Touche. The pseudonym chosen by La Touche
was ‘Student.’ For this reason, the distribution of T is called Student’s t-distribution.
The main point is that under normality, we can determine the probability that T is
less than 1, less than 2, or less than c for any constant c we might choose. It turns out
that the distribution depends on the sample size, n. By convention, the quantiles of the
distribution are reported in terms of degrees of freedom: ν = n−1, where ν is a lower case
Greek nu. Figure 6.1 shows Student’s t-distribution with ν = 4 degrees of freedom.
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−2 20

Normal curve

Figure 6.1 Shown is a standard normal curve and a Student’s t-distribution with four degrees
of freedom. Student’s t-distributions are symmetric about zero, but they have thicker or
heavier tails.

Note that the distribution is similar to a standard normal. In particular, it is symmetric
about zero. With infinite degrees of freedom, Student’s t and the standard normal are
identical. But otherwise, Student’s t-distribution does not belong to the class of normal
distributions, even though it has a symmetric, bell shape. That is, a distribution is called
normal if the equation for the curve has the form indicated by equation (4.6). Generally,
the equation for Student’s t does not have this form. Put another way, all normal
distributions are symmetric and bell-shaped, but there are infinitely many symmetric
and bell-shaped distributions that are not normal.

Table 4 in appendix B reports some quantiles of Student’s t-distribution. The first
column gives the degrees of freedom. The next column, headed by t.9, reports the .9
quantiles. For example, with ν = 1, we see 3.078 under the column headed by t.9. This
means that P(T ≤ 3.078) = .9. That is, if we randomly sample two observations from
a normal distribution, in which case ν = n − 1 = 1, there is a .9 probability that the
resulting value for T is less than 3.078. Similarly, if ν = 24, P(T ≤ 1.318) = .9. The
column headed by t.99 lists the .99 quantiles. For example, if ν = 3, we see 4.541 under
the column headed t.99, so the probability that T is less than 4.541 is .99. If ν = 40,
Table 2 indicates that P(T ≤ 2.423) = .99. Many software packages, such as Minitab,
R and S-PLUS, contain functions that compute Student’s t-distribution for any ν ≥ 1.

Similar to the situation when working with normal distributions,

P(T ≥ c) = 1 − P(T ≤ c), (6.5)

where c is any constant that might be of interest. For example, with ν = 4, P(T ≤
2.132) = .95, as previously indicated, so P(T ≥ 2.132) = 1 − P(T ≤ 2.132) = .05.

Example 2

Imagine you are involved in a study on the effects of a cold medication on
reaction times. Assuming normality, you randomly sample 13 observations and
compute the sample mean and variance. What is the probability that T is less
than 2.179? The degrees of freedom are ν = n−1 = 13−1 = 12. From table 4
in appendix B, looking at the row with ν = 12, we see 2.179 in the column
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headed by .975, so P(T < 2.179) = .975. That is, we do not know the value
of the population mean, μ, but regardless of what its true value happens to be,
the probability that T will be less than 2.179 is .975. The practical implication
of this result is that we can compute a confidence interval for μ, as illustrated
momentarily.

Example 3

If ν = 30 and P(T ≥ c) = .005, what is c? Because table 4 gives the probability
that T is less, than or equal to some constant, we must convert the present
problem into one where table 4 can be used. Based on equation (6.5), if P(T ≥
c) = .005, then P(T ≤ c) = 1 − P(T ≥ c) = 1 − .005 = .995. Looking at the
column headed by t.995 in table 4, we see that with ν = 30, P(T ≤ 2.75) = .995,
so c = 2.75.

With Student’s t-distribution, we can now compute a confidence interval for μ

when σ is not known, assuming that observations are randomly sampled from a normal
distribution. Recall that when σ is known, the 1 −α confidence interval for μ is

X̄ ± c
σ√
n

=
(

X̄ − c
σ√
n
, X̄ + c

σ√
n

)
,

where c is the 1 −α/2 quantile of a standard normal distribution and read from table 1
in appendix B. When σ is not known, this last equation becomes

X̄ ± c
s√
n

=
(

X̄ − c
s√
n
, X̄ + c

s√
n

)
, (6.6)

where now c is the 1 − α/2 quantile of Student’s t-distribution with n − 1 degrees of
freedom and read from table 4 of appendix B. If observations are randomly sampled
from a normal distribution, then the probability coverage is exactly 1 −α.

Example 1 (Continued )

In the first example of this section we computed a .95 confidence interval for
μ assuming that σ 2 = s2. The result was

(85 − 1.96(4.2), 85 + 1.96(4.2)) = (76.8, 93.2).

But based on Student’s t , with ν = 8 degrees of freedom, the value for c should
be 2.306 rather than 1.96. So now the .95 confidence interval is

(85 − 2.306(4.2), 85 + 2.306(4.2)) = (75.3, 94.7).

Example 4

Doksum and Sievers (1976) report data on weight gain among rats. One group
was the control and the other was exposed to an ozone environment. For
illustrative purposes, attention is focused on the control group and the goal is to
determine a range of possible values for the population mean that are reasonable
based on the data available. Here, we compute a .95 confidence interval. Because
there are n = 22 rats, the degrees of freedom are n−1 = 22−1 = 21. Because
1 −α = .95, α = .05, so α/2 = .025, and 1−α/2 = .975. Referring to table 4
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in appendix B, we see that the .975 quantile of Student’s t-distribution with
21 degrees of freedom is approximately c = 2.08. Because X̄ = 11 and s = 19,
a .95 confidence interval is

11 ± 2.08
19√
22

= (2.6,19.4).

That is, although both the population mean and variance are not known, we
can be reasonably certain that the population mean, μ, is between 2.6 and 19.4,
if the assumption of sampling from a normal distribution is true.

Example 5

Imagine you are interested in the reading abilities of fourth graders. A new
method for enhancing reading is being considered, you try the new method on
11 students and then administer a reading test yielding the scores

12,20,34,45,34,36,37,50,11,32,29.

For illustrative purposes, imagine that after years of using a standard method
for teaching reading, the average scores on the reading test has been found
to be μ = 25. Someone claims that if the new teaching method is used, the
population mean will remain 25. The goal here is to determine whether this
claim is consistent with the .99 confidence interval for μ. That is, does the
.99 confidence interval contain the value 25? It can be seen that the sample
mean is X̄ = 30.9 and s/

√
11 = 3.7. There are n = 11 observations, so the

degrees of freedom are ν = 11 − 1 = 10. Because 1 − α = .99, it can be seen
that 1 −α/2 = .995, so from table 4 in appendix B, c = 3.169. Consequently,
the .995 confidence interval is

30.9 ± 3.169(3.7) = (19.2,42.6).

This interval contains the value 25, so the claim that μ = 25 cannot be refuted
based on the available data. Note, however, that the confidence interval also
contains 35 and even 40. Although we cannot rule out the possibility that the
mean is 25, there is some possibility that the new teaching method enhances
reading by a substantial amount, but with only 11 participants, the confidence
interval is too long to resolve how effective the new method happens to be.1

A conceptual issue

Given the goal of computing a confidence interval, there is an important conceptual
issue that is worth stressing. Notice that the key to computing a confidence interval
when the standard deviation σ is known is being able to determine the quantiles of the
distribution of

Z = X̄ −μ

σ/
√

n
.

Under normality, Z has a standard normal distribution and these quantiles are given in
table 1 in appendix B, which in turn yield a confidence interval for the population mean.

1. There are methods for determining how many more observations are needed so that confidence
interval will have some specified length (e.g., Wilcox, 2003), but the details go beyond the scope of this book.
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When the standard deviation σ is not known, the key to computing a confidence interval
is to determine the quantiles of the distribution of

T = X̄ −μ

s/
√

n

and again this can be done assuming normality. During the last two centuries, the
strategy has been to appeal to the central limit theorem when dealing with non-normal
distributions. That is, hope that the sample size is large enough so that even under non-
normality, T has approximately a Student’s t-distribution. Since about 1990, however, it
has become clear that there are general conditions under which the sample size must be
much larger than previously thought. A description and illustration of why problems arise
are provided in section 6.5. (And another fundamental concern, described in chapter 7,
has been evident since at least 1960.) Fortunately, modern methods are now available
that deal with this problem in a very effective manner.

Problems
11. Assuming the degrees of freedom are 20, find the value c for which

(a) P(T > c) = .025,
(b) P(T ≤ c) = .995
(c) P(−c ≤ T ≤ c) = .90.

12. Compute a .95 confidence interval if

(a) n = 10, X̄ = 26, s = 9,
(b) n = 18, X̄ = 132, s = 20,
(c) n = 25, X̄ = 52, s = 12.

13. Repeat the previous exercise, but compute a .99 confidence interval instead.

14. For a study on self-awareness, the observed values for one of the groups were

77,87,88,114,151,210,219,246,253,262,296,

299,306,376,428,515,666,1,310,2,611.

Compute .95 confidence interval for the mean assuming normality.

15. Rats are subjected to a drug that might affect aggression. Suppose that for a
random sample of rats, measures of aggression are found to be

5,12,23,24,18,9,18,11,36,15.

Compute a .95 confidence interval for the mean assuming the scores are from a
normal distribution.

6.3 Confidence intervals for the population median

This section describes and illustrates three methods for computing a confidence interval
for the population median, θ . (Again, θ is a lower case Greek theta.) The first method
is included partly to illustrate a general principle used by many conventional methods
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for computing confidence intervals. But the other two have certain practical advantages
to be described.

Recall from chapter 5 that like the sample mean, the sample median has a sampling
distribution. A rough but useful way of conceptualizing it is to think of millions of
studies, each resulting in a sample median based on n observations. The variance of
these millions of sample medians is the squared standard error of the sample median.
As noted in chapter 5, one way of estimating this squared standard error is with the
McKean–Schrader estimator, S2

M . The (positive) square root of this last value, SM ,
estimates the standard error.

A version of the central limit theorem says that under random sampling,

ZM = M − θ

SM

will have, approximately, a standard normal distribution if the sample size is sufficiently
large. Note the similarity between this last equation and the methods for computing
confidence intervals for the population mean. In practical terms, a confidence interval
for the population median can be computed by assuming that ZM has a standard normal
distribution. So an approximate .95 confidence interval for the population median is

(M − 1.96SM , M + 1.96SM ) (6.7)

and more generally, if c is the 1 −α/2 quantile of a standard normal distribution,

(M − cSM , M + cSM ) (6.8)

is an approximate 1 −α confidence interval.

Example 1

Consider again the sleep data in table 6.1. The sample median is M = 1.3, the
McKean-Schrader estimate of the standard error is SM = 0.8929 and the .95
confidence interval for the population median is

(1.3 − 1.96(0.8929), 1.3 + 1.96(0.8929)) = (−0.45, 3.05).

This is in contrast to the .95 confidence interval for the mean, based on
Student’s t : (0.7001, 2.4599). Note that the length of the confidence interval
based on the median is 3.05− (−0.45) = 3.5 versus a length of 1.76 using the
mean.

Important conceptual issue

This method for computing a confidence interval for the median illustrates a general
strategy for computing confidence intervals that currently dominates applied research.
It is important to be aware of this strategy and to develop some sense about its relative
merits compared to more modern techniques. Consider any unknown parameter of
interest, such as the population median, mean or the population standard deviation.
When computing a confidence interval, the most basic form of this strategy stems from
Laplace and consists of standardizing the estimator being used. That is, subtract the
parameter being estimated, divide by the standard error of the estimator and then assume
that this standardized variable has, approximately, a standard normal distribution. Under
general conditions, the central limit theorem says that this approximation will perform
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reasonably well if the sample size is sufficiently large. When working with means, X̄
estimates μ, an estimate of the standard error of X̄ is s/

√
n, so this standardization takes

the form

T = X̄ −μ

s/
√

n
,

and an improvement on Laplace’s approach was to approximate the distribution of T
with Student’s t-distribution. When the goal is to make inferences about the population
median, the sample median M estimates the population median θ , SM estimates the
standard error of M , so this same strategy suggests assuming that

ZM = M − θ

SM

has a standard normal distribution, which in turn means that a confidence interval for
the median can be computed. This general strategy has proven to be very useful, but it
is important to be aware that under general conditions, the confidence interval for the
median given by equation (6.8) performs poorly, namely situations where duplicate or
tied values tend to occur. For example, if we observe the values 4, 7, 8, 19, 34, 1, all values
occur only once and so it is said that there are no tied values. But if we observe 23, 11,
9, 8, 23, 6, 7, 1, 11, 19, 11, then tied values occur because the value 11 occurred three
times and the value 23 occurred twice. In chapter 5, it was pointed out that when tied
values tend to occur, SM can be a highly unsatisfactory estimate of the standard error of
the median.

There are at least two ways of improving upon the above method for computing
a confidence interval for the median. One of these is a very general technique called
a percentile bootstrap method, the details of which are outlined in the final section of
this chapter. (It is general in the sense that it can applied to a wide range of problems.)
Another is the method given in box 6.1.

Example 2

To illustrate the method in box 6.1, imagine a study yielding the values

4,12,14,19,23,26,28,32,39,43.

Note that the values are written in ascending order so for the notation used in
box 6.1, the X(1) = 4, X(2) = 12 and X(10) = 43. Also note that the sample size
is n = 10. The method in box 6.1 uses confidence intervals having the form

(X(k), X(n−k+1)),

where k is some integer between 1 and n/2. The problem is, given some choice
for k, what is the probability coverage? For illustrative purposes, first consider
k = 1 in which case n − k + 1 = 10. Consider a binomial random variable Y
with probability of success p = .5 and n = 10. As indicated in chapter 4, we
can use table 2 in appendix B to determine that P(k ≤ Y ≤ n−k) = P(1 ≤ Y ≤
9) = .998. This says that (X(1), X(10)) = (4, 43) is a .998 confidence interval for
the population median. For k = 2, the confidence interval becomes (12, 39).
Box 6.1 indicates that the probability that this interval contains the population
median can be determined from table 2 in appendix B and is given by P(k ≤
Y ≤ n − k) = P(2 ≤ Y ≤ 8) = .978.
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BOX 6.1

Goal : Compute a 1−α confidence interval for the median based on the observations
X1, . . . ,Xn.

Consider a binomial distribution with probability of success p = .5. Given the
sample size n, consider any integer k greater than 0 but less than or equal to n/2. Let
Pk be the probability that the number of successes is between k and n − k . In
symbols, if Y is a binomial with probability of success .5, Pk = P (k ≤ Y ≤ n − k ).
Illustrations are covered in chapter 4. For example, if n = 15 and k = 3, then
n − k = 12 and from table 2 in appendix B, Pk = .996 − .004 = .992. Put the
observations X1, . . . ,Xn in ascending order yielding X(1) ≤ ·· · ≤ X(n). Then

(X(k ), X(n−k+1))

is a confidence interval for the population median having probability coverage Pk ,
assuming random sampling only.

(The software, Minitab, has a built-in function that performs the calculations, called
sint, and an S-PLUS or R version is available as well, which is stored in the library of
functions Rallfunv1-v7 mentioned in chapter 1. These functions use a refinement of
the method just described and allow you to choose the α value.)

Given k, we can determine the probability coverage based on the method
in box 6.1, as just illustrated. But if, for example, we want to compute a .95
confidence interval, there might not be any value of k that accomplishes this
goal exactly. There is an extension of the method aimed at dealing with this
problem; the details are not covered here, but it can be applied with the Minitab
and R function sint mentioned in box 6.1.

Example 3

It is illustrated that with small sample sizes, the choice between the more
accurate method used by the R function sint, versus equation (6.8), can make a
practical difference. (The method leading to equation 6.8 is included primarily
to illustrate the conceptual issue that was just described.) Consider again the
data in table 6.1. Using the R function sint, a .95 confidence interval for the
(population) median is (0.93, 2.01). Note that this interval differs substantially
from the confidence interval obtained in example 1. It is also noted that the .95
confidence interval for the mean, based on Student’s t , is considerably longer.
The length is 1.7 versus 2.01 − .03 = 1.08 using the function sint.

Problems
16. Suppose M = 34 and the McKean–Schrader estimate of the standard error of M

is SM = 3. Compute a .95 confidence interval for the population median.

17. For the data in problem 14 of section 6.2, the McKean–Schrader estimate of the
standard error of M is SM = 77.8 and the sample median is 262. Compute a .99
confidence interval for the population median.
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18. If n = 10 and you compute a confidence interval for the median using
(X(k), X(n−k)), as described in box 6.1, what is the probability the probability that
this interval contains the population median if k = 2?

19. Repeat the previous problem, only with n = 15 and k = 4.

20. For the data in problem 14 of section 6.2, if we use (88, 515) as a confidence
interval for the median, what is the probability that this interval contains the
population median?

6.4 The binomial: Confidence interval for the probability of success

Consider the binomial distribution introduced in chapter 4. A common goal is to make
inferences about the unknown probability of success, p, based on observations we make
where the only two possible outcomes are 1, for success, and 0 for failure. In formal
terms, we observe X1, . . . ,Xn, where now X1 = 1 or 0, X2 = 1, or 0, and so on. The
sample mean of these n values corresponds to the proportion of successes among the
n observations made. But rather than label the average of these values X̄ , the more
common notation is to use p̂. That is

p̂ = 1

n

∑
Xi (6.9)

is the observed proportion of successes and estimates the unknown probability of
success, p. In fact, p̂ can be shown to be an unbiased estimate of p (meaning that
E(p̂) = p) and its squared standard error or variance is

VAR(p̂) = p(1 − p)

n
.

So its standard error is

SE(p̂) =
√

p(1 − p)

n
.

As noted in chapter 5, the central limit theorem applies and says that if the sample size
is sufficiently large,

p̂ − p√
p(1 − p)/n

will have, approximately, a standard normal distribution. In the present context, this
means that Laplace’s method is readily applied when computing a confidence interval
for p. It is given by

p̂ ± c

√
p(1 − p)

n
,

where c is the 1−α/2 quantile of a standard normal distribution. We do not know the
value of the quantity under the radical, but it can be estimated with p̂, in which case a
simple 1 −α confidence interval for p is

p̂ ± c

√
p̂(1 − p̂)

n
. (6.10)
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Example 1

Among all registered voters, let p be the proportion who approve of how the
president of the United States is handling his job. Suppose 10 people are
asked to indicate whether they approve of the president’s performance. Further
imagine that the responses are

1,1,1,0,0,1,0,1,1,0

and you want a .95 confidence interval for p. So, as before, c = 1.96, which
is read from table 1 in appendix B and corresponds to a .975 quantile of a
standard normal distribution. In terms of the above notation, X1 = 1 (the first
individual responded that she approves), X2 = 1 and X4 = 0, and the proportion
who approve is p̂ = 6/10. So the estimated standard error associated with p̂ is√

.6(1 − .6)/10 = .155 and a .95 confidence interval is

.6 ± 1.96(.155) = (.296, .904).

In words, we do not know p, but based on the available information, if we
assume random sampling and that p̂ has a normal distribution, then we can be
reasonably certain that p has a value between .296 and .904.

Example 2

A sample of 100 voters in a town contained 64 persons who favored a bond issue.
To assess the proportion of all voters who favor the bond issue, we compute a
.95 confidence interval for p. Here, n = 100, X = 64, p̂ = .64, c = 1.96, and√

p̂(1 − p̂)

n
=

√
.64 × .36

100
= .048.

So the .95 confidence interval is

(.64 − .094, .64 + .094) = (.546, .734).

Agresti-Coull method

The accuracy of the confidence interval just described and illustrated depends on both
the sample size n and the unknown probability of success, p. Generally, the closer p
happens to be to 0 or 1, the larger the sample size must be to get an accurate confidence
interval. As is probably evident, a practical problem is that we do not know p, this raises
concerns, and many improvements have been proposed. Brown et al. (2002) compared
several methods and found that what they call the Agresti-Coull method, which is a
simple generalization of method derived by Agresti and Coull (1998), performs relatively
well. The Agresti-Coull method is applied as follows.2

Let X represent the total number of successes among n observations, in which case

p̂ = X

n
,

2. Blyth’s (1986) comparisons of various methods suggest using Pratt’s (1968) approximate confidence
interval, which can be applied with the S-PLUS or R software mentioned in chapter 1. The function binomci
performs the calculations. It appears to be unknown how Pratt’s method compares to the Agresti-Coull
method.
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the proportion of successes among the n observations.3 As before, let c be the 1 − α/2
quantile of a standard normal distribution. Compute

ñ = n + c2,

X̃ = X + c2

2
,

and

p̃ = X̃

ñ
.

Then the 1 −α confidence interval for p is

p̃ ± c

√
p̃(1 − p̃)

ñ
.

Blyth’s method

For the special cases where the number of successes is X = 0, 1, n − 1 and n, Blyth
(1986) suggests computing a 1 −α confidence interval for p as follows:

• If X = 0, use

(0, 1 −α1/n).

• If X = 1, use (
1 − (1 − α

2
)1/n, 1 − (

α

2
)1/n

)
.

• If X = n − 1, use (
(
α

2
)1/n, (1 − α

2
)1/n

)
.

• If X = n, use

(α1/n, 1).

Example 3

Some years ago, a television news program covered a story about a problem that
sometimes arose among people undergoing surgery: Some patients would wake
up and become aware of what was happening to them and they would have
nightmares later about their experience. Some surgeons decided to monitor
brain function in order to be alerted if someone was regaining consciousness.
In the event this happened, they would give the patient more medication to
keep them under. Among 200,000 surgeries, zero patients woke up under this
experimental method, but hospital administrators, worried about the added
cost of monitoring brain function, argued that with only 200,000 surgeries, it
is impossible to be very certain about the actual probability of someone waking
up. Note, however, that we can compute a .95 confidence interval using the
method just described. The number of times a patient woke up is X = 0, the

3. In the notation used at the beginning of this section, X = ∑
Xi .
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number of observations is n = 200,000, so a .95 confidence interval for the
probability of waking up is

(0, 1 − .051/200000) = (0, .000015).

Example 4

Example 1 is repeated, only now we compute the Agresti-Coull .95 confidence
interval. As before, X = 6, n = 10 and c = 1.96. So ñ = 10 + 1.962 = 13.84,
X̃ = 6+1.962/2 = 7.92 and p̃ = 7.92/13.84 = .5723. And the .95 confidence
interval is

.5723 ± 1.96

√
.5723(1 − .5723)

13.84
= (.31, .83).

In contrast, using equation (6.10), the .95 confidence interval is (.296, .904).
Notice that the upper end of this confidence interval, .904, differs substantially
from the Agresti-Coull upper end, .83.

Problems
21. You observe the following successes and failures: 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0. Compute a .95 confidence interval for p using equation (6.10) as well as the
Agresti-Coull method.

22. Given the following results for a sample from a binomial distribution, compute
the squared standard error of p̂ when (a) n = 25, X = 5, (b) n = 48, X = 12,
(c) n = 100, X = 80, (d) n = 300, X = 160.

23. Among 100 randomly sampled adults, 10 were found to be unemployed. Give a
.95 confidence interval for the percentage of adults unemployed using
equation (6.10). Compare this result to the Agresti-Coull confidence interval.

24. A sample of 1,000 fish was obtained from a lake. It was found that 290 were
members of the bass family. Give a .95 confidence interval for the percentage of
bass in the lake using equation (6.10).

25. Among a random sample of 1,000 adults, 60 reported never having any legal
problems. Give a .95 confidence interval for the percentage of adults who never
had legal problems using equation (6.10).

26. Among a sample of 600 items, only one was found to be defective. Explain why
using equation (6.10) might be unsatisfactory when computing a confidence
interval for the probability that an item is defective.

27. In the previous problem, compute a .90 confidence interval for the probability that
an item is defective.

28. One-fourth of 300 persons in a large city stated that they are opposed to a certain
political issue favored by the mayor. Calculate a 99% confidence interval for the
fraction of people of individuals opposed to this issue using equation (6.10).

29. A test to detect a certain type of cancer has been developed and it is of interest to
know the probability of a false-negative indication, meaning the test fails to detect
cancer when it is present. The test is given to 250 patients known to have cancer
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and five tests fail to show its presence. Determine a .95 confidence interval for the
probability of a false-negative indication using equation (6.10).

30. In the previous problem, imagine that 0 false-negative indications were found.
Determine a .99 confidence interval for the probability of a false-negative
indication.

31. A cosmetic company found that 180 of 1,000 randomly selected women in New
York city have seen the company’s latest television advert. Compute a .95
confidence interval for the percentage of women in New York city who have seen
the advert using equation (6.10).

6.5 Modern advances and insights

This chapter has covered the basic strategies used to compute confidence intervals,
strategies that are routinely taught and used. It would be remiss, however, not to mention
that there have been many advances and insights related to the methods covered in this
chapter, a few of which are outlined here.

Student’s t and non-normality

Computing confidence intervals using Student’s t technique is a classic method that
is routinely used and therefore essential to know. Also, Student’s t represents a major
breakthrough in our ability to assess the information in data. At one time, there were
reasons to suspect that it continues to perform reasonably well when sampling from non-
normal distributions, but modern insights make it clear that this is not always the case. As
seems evident, getting the most accurate information possible from data requires a good
understanding of when Student’s t gives accurate results when computing confidence
intervals as well as when it fails.

To address this issue, we first stress a connection between sampling distributions,
covered in chapter 5, and Student’s t . Momentarily, suppose we know the population
mean μ, and imagine that we sample 21 observations and compute the sample mean X̄
and the standard deviation, s. Then, of course, we can compute

T = X̄ −μ

s/
√

n
.

Further imagine we repeat this process thousands and perhaps even millions of times.
Then a plot of the resulting T values would provide a very accurate approximation of the
actual distribution of T . If, for example, the sample size were n = 21 and we found that
the proportion of T values less than 2.086, say, is .975, and if the proportion of T values
less than −2.086 is .025, then we would know how to compute a .95 confidence interval
for the population mean: simply use c = 2.086 in equation (6.6). And indeed, the exact
value under normality is c = 2.086.

Now we consider what happens when we sample from non-normal distributions.
If we repeat the process just described, again with a sample size of n = 21, only we
sample from a non-normal distribution, will the proportion of T values less than
2.086 be approximately .975? For many years it was conjectured that the answer is
yes. This conjecture was not based on wild speculations, but today it is known that a
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poor approximation might result and we understand why problems were missed for so
many years.

Example 1

Imagine that 25 observations are randomly sampled from the skewed distribu-
tion shown in figure 6.2. This distribution has a population mean μ = 1.6487.
So once we compute the mean X̄ and sample standard deviation, s, we can
compute T = √

n(X̄ −μ)/s. The method for computing a confidence interval
for the mean, covered in section 6.2, assumes that if we repeat this process
many times, a plot of the resulting T values will be approximately the same as
a plot of Student’s t-distribution with 24 degrees of freedom. Here we repeat
this process 4000 times resulting in 4000 T values. Figure 6.3 shows a plot

3210

Figure 6.2 A skewed, light-tailed distribution used to illustrate the effects of non-normality when
using Student’s t .
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Figure 6.3 Shown is the distribution of T when sampling from the distribution in figure 6.2 and
the distribution of T when sampling from a normal distribution.
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of these T values plus a plot of Student’s t-distribution with 24 degrees of
freedom. As is evident, the actual distribution of T is poorly approximated by
a Student’s t-distribution with 24 degrees of freedom. One obvious concern is
that the actual distribution of T is not even symmetric. Under normality, the
probability that T is less than or equal to −2.086 is .025. But when sampling
from the skewed distribution used here, the probability is approximately .12.
And the probability that T is greater than 2.086 is only .001.

The process used in this last example, to study the properties of Student’s t , is an
example of what is called a simulation study. Roughly, using a computer, we sample
observations from a distribution we pick. For example, we could sample data from a
normal distribution having mean 0 and variance 1.4 In the example, because we know
the mean, we are able to assess whether a confidence interval based on Student’s t will
contain the population mean. We then repeat this process many times and for illustrative
purposes, imagine we repeat it 10,000 times. So when computing a .95 confidence
interval, for example, we have 10,000 confidence intervals. If a method for computing
a confidence interval is performing well, then it should be the case that approximately
95% of all confidence intervals contain the population mean.

It was mentioned in chapter 5 that roughly, when dealing with skewed distributions,
as the likelihood of observing outliers increases, the larger the sample size we might need
when trying to approximate the sampling distribution of the sample mean with a normal
curve. When dealing with Student’s t , this remains true. That is, large sample sizes might
be needed so that the actual distribution of the T values will be approximately the same as
the distribution under normality. Indeed, realistic situations are known where a sample
size greater than 300 might be required to get accurate results with Student’s t .

Example 2

Table 2.3 reports the responses of 105 undergraduate males regarding how
many sexual partners they desired over the next 30 years. Here the extreme
outlier is removed leaving 104 observations. The median response was one.
Imagine that we resample, with replacement, 104 observations from these
values. (Sampling with replacement means that when an observation is
sampled, it is put back, and so has the possibility of being chosen again.)
In effect, we are sampling from a distribution with a known mean, which is
the sample mean of our observed data. Consequently, we can compute T .
Repeating this process 1,000 times yields an approximation of the distribution
of T , which is shown in figure 6.4. The smooth symmetric curve is the
distribution of T assuming normality. As is evident, the two curves differ
substantially. (In essence, this is a bootstrap-t technique, which is discussed
later in this chapter.)

If the sample size is large enough so that the sampling distribution of the sample
mean is approximately normal, does it follow that it is safe to use Student’s t to compute
a confidence interval? The answer is, not necessarily, as illustrated by the following
example.

4. Using the software R, this can be done with the function rnorm.
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−10 −5 0

Figure 6.4 When dealing with data from actual studies, we sometimes encounter situations
where the actual distribution of T differs even more from the distribution of T under normality
than is indicated in figure 6.3. Shown is the distribution of T when sampling from the data in
table 2.3, with the extreme outlier removed. The sample size is n = 104. With the extreme outlier
included, the distribution of T becomes even more skewed to the left.

Example 3

Chapter 5 provided an example where a plot of 1,000 sample means, each
sample mean based on 40 observations, is approximately normal even though
sampling is from a distribution that is clearly non-normal. For convenience, the
results are duplicated in figure 6.5. The left panel shows the distribution from
which observations are sampled, and the right panel shows a plot of the resulting
sample means. The dashed curve is the normal curve used to approximate the
plot of the sample means via the central limit theorem. Now look at figure 6.6.
The solid line is a plot of 1,000 T values and the dashed line is the distribution
of T assuming normality. The left tail of the two distributions are reasonably
similar, but the right tails are not. When using T , assuming normality implies
that the .025 and .975 quantiles are −2.02 and 2.02, respectively. That is, when
computing a confidence interval, it is assumed that c = 2.02 should be used. But
the actual .975 quantile of Student’s t-distribution, when observations follow
the distribution in the left panel of figure 6.4, is approximately 1.37, which is
not reasonably close to the value under normality, namely, 2.02.

In summary, Student’s t might provide an accurate confidence interval for the
population mean, but there are realistic situations where this is not the case. Modern
methods, briefly outlined in the final section of this chapter, provide various strategies
for dealing with this problem.

Comments about Bell-shaped distributions

We have just seen that when sampling from skewed distributions, Student’s t might be
unsatisfactory when computing a confidence interval for the population mean. A positive
feature of Student’s t is that when observations follow a symmetric distribution, all
indications are that under fairly general conditions, the actual probability that the
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Figure 6.5 When sampling from the distribution in the left panel, with n = 40, the sampling
distribution of the sample mean is approximately normal. But compare this to the sampling
distribution of T shown in figure 6.6.
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Figure 6.6 When sampling from the distribution in the left panel, with n = 40, even though
the sampling distribution of the sample mean is approximately normal, the sampling distribution
of T can differs substantially from a Student’s t-distribution, as illustrated here.

confidence interval will contain the population mean is at least 1−α. So if we compute
a .95 confidence interval, we can be reasonably certain that the actual probability coverage
is at least .95 if the distribution is approximately symmetric. There is, however, another
concern: Under very small departures from normality, the length of the confidence
interval might be relatively higher than the length we would get using some other
measure of location such as the median.

Chapter 4 described what is called a mixed normal distribution. As was indicated,
this distribution is very similar to a standard normal distribution, yet its variance is 10.9
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versus 1 for the standard normal. Also recall that because the distribution is symmetric
about zero, the population mean and median are identical. Here, this means that the
sample mean and median are attempting to estimate the same unknown parameter.
Chapter 5 illustrated that when sampling from a mixed normal distribution, the standard
error of the median is strikingly smaller than the standard error of the mean. This suggests
that in the present context, confidence intervals based on the median will, in general, be
substantially shorter, and this turns out to be the case.

Example 4

To illustrate the point just made, 30 observations were sampled from a
contaminated normal distribution. The .95 confidence interval based on
Student’s t was (−3.62, 1.71), versus (−0.49, 0.34) using the median. Both
confidence intervals contain zero (the true value of the population mean and
median), as they should, but the confidence interval based on the median gives
us a much more precise indication of the value of the population mean and
median.

We can summarize the performance of Student’s t as follows:

• When sampling from a symmetric distribution where outliers tend to be
rare, such as any normal distribution, Student’s t performs well in terms of
both probability coverage and the length of the resulting confidence interval
relative other methods you might use.

• When sampling from an asymmetric distribution where outliers tend to be
rare, a sample size of 200 or more might be needed to get a reasonably accurate
confidence interval. A positive feature is that the length of the confidence
interval continues to compete well with other methods. Also, even when the
distribution of the sample means is approximately normal, it is possible that
Student’s t is providing inaccurate confidence intervals unless the sample size
is fairly large.

• When sampling from a symmetric distribution where outliers tend to be
common, the length of the confidence interval based on Student’s t might
be very high relative to other methods that might be used.

• When sampling from an asymmetric distribution where outliers tend to be
common, a sample size of 300 or more might be needed to get accurate
probability coverage, and the length of the confidence interval will tend to
be larger than that obtained by alternative techniques.

Dealing with practical problems

When sampling from a skewed distribution, what can be done to improve probability
coverage? One suggestion might be to check for outliers, and if none are found, assume
Student’s t gives accurate results. Currently, it is unclear how large the sample size
must be in order to recommend this approach. And even if it were used, what do we
do when there is good evidence that sampling is from a distribution where outliers
are common?

One of the many alternative strategies is to use a bootstrap-t method. To provide
a brief indication of how the method is applied, consider again the simulation studies
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illustrated by examples 1 and 2. Note that using a computer, simulations could be used
to determine the distribution of Student’s t under normality. That is, we could generate
observations from a normal distribution resulting in a value for T , and by repeating this
process many times, we would have an accurate approximation of the distribution of T .
For example, based on 1,000 T values, we might find that 97.5% of the values are less
than 2.03, in which case we would estimate that the probability of getting a T value
less than 2.03 is .975. The bootstrap-t is based on the same strategy, only rather than
sample observations from a normal distribution, you randomly sample observations,
with replacement, from the data at hand. That is, we perform a simulation study based
on the observed data rather a hypothetical (normal) distribution. (Gosset used a similar
strategy as an empirical check of the validity of his Student’s t-test. Without a computer,
the calculations to him over a year to complete.)

When the goal is to make inferences about the population mean, the bootstrap-t
method for computing confidence intervals performs well relative to other methods
that have been proposed, but even it can fail to provide accurate probability coverage.
In figure 6.4, for example, published papers suggest that the bootstrap-t method
underestimates the negative consequences of sampling from a non-normal distribution.5

However, despite the fact that a bootstrap-t method fails to correct all problems problems
with Student’s t , it has considerable practical value in situations not covered here.

A common suggestion is to transform the data by taking logarithms, for example,
and more complicated transformations have been proposed. Here it is merely noted that
this approach can be relatively unsatisfactory for reasons outlined in chapter 4.

Recall from chapter 2 that the median belongs to the class of trimmed means: it
trims all but the middle one or two values after putting the observations in ascending
order. Generally, the more we trim, the less effect skewness has on accurate probability
coverage. But a negative consequence of using a median (the maximum amount of
trimming) is that when dealing with distributions where outliers are relatively rare, such
as normal distributions, the length of the confidence interval might be relatively long
compared to using Student’s t . (And there is the added problem of dealing with tied
values, as previously noted.) Also note that when dealing with skewed distributions,
confidence intervals based on the median generally tells us little or nothing about the
population mean for the simple reason that the population mean and median differ, and
they might differ substantially.

One of several alternative possibilities is to simply trim less so as to get reasonably
short confidence intervals when dealing with normal distributions, and simultaneously
get accurate probability coverage when dealing with skewed distributions. As in previous
chapters, a good choice for general use is 20% trimming. To compute a 1−α confidence
interval for the population 20% trimmed mean, let h be the number of observations left
after trimming. Let c be the 1−α/2 quantile of the Student’s t-distribution with h − 1
degrees of freedom and let sw be the Winsorized sample standard deviation. The 1−α

confidence interval for the trimmed is(
X̄ t − c

sw
.6

√
n
, X̄ t + c

sw
.6

√
n

)
.

5. For more information about the relative merits of the bootstrap-t , see Wilcox (2003, 2005). These
books describe easy-to-use R and S-PLUS software.
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Table 6.3 Self-awareness data

77 87 88 114 151 210 219 246 253 262
296 299 306 376 428 515 666 1310 2611

Example 5

The data in table 6.3 are from a study on self-awareness and reflect how long a
participant could keep a portion of an apparatus in contact with a specified
target. (These data were used in problem 14 and are reproduced here for
convenience.) The trimmed mean is X̄ t = 283 and its estimated standard
error is sw/(.6

√
n) = 146.804/(.6

√
(19)) = 56.1. In contrast, the standard error

of the sample mean is s/
√

n = 136, a value approximately 2.4 times larger
than the estimated standard error of the 20% trimmed mean. The number of
observations trimmed is 6, so the number of observations left after trimming
is h = 19 − 6 = 13 and the degrees of freedom are ν = h − 1 = 12. When
computing a .95 confidence interval, 1−α/2 = .975, and referring to table 4 in
appendix B, c = 2.18. So the .95 confidence interval for the population trimmed
mean is

283 − 2.18(56.1), 283 + 2.18(56.1) = (160.7, 405.3).

The percentile bootstrap method

We conclude this chapter with a brief outline of a fairly modern method that offers an
alternative to Laplace’s strategy for computing a confidence interval. Imagine we have
n observations, say X1, . . . ,Xn. A bootstrap sample of size n is obtained by randomly
sampling, with replacement, n observations from X1, . . . ,Xn yielding say X ∗

1 , . . . ,X ∗
n .

Example 6

Suppose we observe the 10 values

1,4,2,19,4,12,29,4,9,16.

If we randomly sample a single observation from among these 10 values, we
might get the value 2. If we randomly sample another observation, we might
again get the value 2, or we might get the value 9 or any of the other values
listed. If we perform this process 10 times, we might get the values

2,9,16,2,4,12,4,29,16,19.

This is an example of a bootstrap sample of size 10. If we were to get another
bootstrap sample of size 10, this time we might get

29,16,29,19,2,16,2,9,4,29.

Now suppose we create many bootstrap samples in the manner just
described and for each bootstrap sample we compute the median. For
illustrative purposes, imagine we repeat this process 1,000 times yielding
1,000 (bootstrap) sample medians, which can be done very quickly on
modern computers. If we put these 1,000 sample medians is ascending order,
then the middle 95% form an approximate .95 confidence interval for the
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population median. In terms of achieving accurate probability coverage, this
method performs very well when using a median or 20% trimmed mean,
but it does not perform well when using the mean; a bootstrap-t method is
preferable. When sample sizes are sufficiently large, the percentile bootstrap is
not necessary when working with a 20% trimmed mean, but for small sample
sizes it is preferable and in fact works very well, even in situations where all
methods based on means perform poorly. Although the percentile bootstrap
method is not necessary when computing a confidence interval for a single
median, when working with more complicated problems covered in subsequent
chapters, it currently seems to be the best method to use.6

A Summary of Some Key Points

• Confidence intervals provide a fundamental method for assessing how well an
estimator, such as the sample mean, X̄ , estimates its population analog, such as the
population μ. Probability coverage of a confidence interval refers to the probability,
over many studies, that the resulting confidence intervals will contain the population
parameter being estimated.

• The classic and routinely used method for computing a confidence interval for μ is
based on Student’s t . For symmetric, light-tailed distributions, its actual probability
coverage tends to be reasonably close to nominal level. For symmetric, heavy-tailed
distributions, the actual probability coverage tends to be higher than the stated level.
But for skewed distributions, probability coverage can be poor, and when outliers are
common, practical problems are exacerbated. Problems can occur even with n = 300.

• In terms of achieving accurate probability coverage, methods based on 20% trimmed
means perform better than methods based on means for a wide range of situations.
For symmetric, heavy-tailed distributions, using a 20% trimmed mean can result in
a substantially shorter confidence interval for the population mean than methods
based on the sample mean. For skewed distributions, methods based on 20% trimmed
means do not provide a satisfactory confidence interval for μ, but they do provide
a satisfactory confidence interval for the population trimmed mean that might better
reflect what is typical.

• Fairly accurate confidence intervals for the population median can be computed using
equation (6.8) when tied values never occur. But with tied values, a percentile bootstrap
method should be used.

• Equation (6.10) is the basic method for computing a confidence interval for p, the
probability of success associated with a binomial distribution, that is typically covered
in an introductory course. But all indications are that the Agresti-Coull method is
preferable in practice. For the special cases where the number of successes is 0, 1,
n − 1 or n, use Blyth’s method.

• Bootstrap methods can provide more accurate confidence intervals. There are
conditions where they provide little improvement, but there are conditions where they
have practical value. With a large enough sample size, bootstrap methods are not
needed, except possibly when dealing with the median, but it is unclear how large the
sample size must be for this to be the case.

6. For easy-to-use software, see the discussion of S-PLUS and R software in chapter 1.
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Problems
32. Describe in general terms how non-normality can affect Student’s t-distribution.

33. Chapter 5 illustrated that when (randomly) sampling observations from a skewed
distribution where outliers are rare, it is generally reasonable to assume that plots
of sample means over many studies has, approximately, a normal distribution. This
means that reasonably accurate confidence intervals for the mean can be computed
when the standard deviation, σ , is known. Based on information summarized in
this section, how does this contrast with the situation where the variance is not
known and confidence intervals are computed using Student’s t-distribution?

34. Listed here are the average LSAT scores for the 1973 entering classes of 15
American law schools.

545 555 558 572 575 576 578 580
594 605 635 651 653 661 666

(LSAT is a national test for prospective lawyers.) The .95 confidence interval for
the population μ is (577.1,623.4). (a) Use a boxplot to verify that there are no
outliers. (b) A boxplot suggests that observations might have been sampled from
a skewed distribution. Argue that as a result, the confidence interval for the mean,
based on Student’s t , might be inaccurate.

35. Compute a .95 confidence for the trimmed mean if (a) n = 24, s2w = 12, X̄ t = 52,
(b) n = 36, s2w = 30, X̄ t = 10, (c) n = 12, s2w = 9, X̄ t = 16.

36. Repeat the previous exercise, but compute a .99 confidence interval instead.

37. Problem 14 (in this chapter) used data from a study of self-awareness. In another
portion of the study, a group of participants had the following values.

59,106,174,207,219,237,313,365,458,497,515,

529,557,615,625,645,973,1,065,3,215.

Compute a .95 confidence interval for both the population mean and 20%
trimmed mean.

38. The ideal estimator of location would have a smaller standard error than any other
estimator we might use. Explain why such an estimator does not exist.

39. For the values

5,60,43,56,32,43,47,79,39,41,

compute a .95 confidence interval for the trimmed mean and compare the results
to the .95 confidence interval for the mean.

40. In the previous exercise, the confidence interval for the 20% trimmed mean is
shorter than the confidence interval for the mean. Explain why this is not
surprising.
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HYPOTHESIS TESTING

T he previous chapter described confidence intervals, which provide a fundamental
strategy for making inferences about population measures of location such as the

population mean μ and the population median. About a century after Laplace’s ground
breaking work on sampling distributions, a new set of tools was developed for making
inferences about parameters that adds perspective and which are routinely used when
attempting to understand data. One of the main architects of this new perspective was
Jerzy Neyman. Forced to leave Poland due to the war between Poland and Russia,
Neyman eventually moved to London in 1924 where he met Egon Pearson (son of Karl
Pearson, whom we met in chapter 1). Their joint efforts led to the Neyman–Pearson
framework for testing hypotheses that is the subject of this chapter.

7.1 Testing hypotheses about the mean of a normal distribution,
σ known

The essence of hypothesis testing methods is quite simple: A researcher formulates
some speculation about the population under study. Typically the speculation has to do
with the value of some unknown population parameter, such as the population mean.
Then data are analyzed with the goal of determining whether the stated speculation
is unreasonable. That is, is there empirical evidence indicating that the speculation
is probably incorrect? The speculation about the value of a parameter is called a
null hypothesis.

Example 1

A manufacturer of a high definition television claims that the average life of the
bulb used in their rear projection model lasts an average of at least 48 months.
Imagine that you want to collect data with the goal of determining whether
this claim is correct. Then the null hypothesis is that the population mean for
all televisions is at least 48. This is written as

H0 : μ ≥ 48, (7.1)
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where the notation H0 is read “H nought.” The alternative to the null hypothesis
is written as

Ha : μ < 48. (7.2)

In this last example, imagine that for 10 televisions, you determine how
long the bulb lasts and find that the average life is X̄ = 50 months. That is, you
estimate that μ is equal to 50, which supports the claim that the population
mean is at least 48. So in particular, you would not reject the stated hypothesis.
But suppose you get a sample mean of X̄ = 46. Now the estimate is that the
population mean is less than 48, but the manufacturer might claim that if
the population mean is 48, a sample mean of 46 is not all that unusual. The
issue is, how low does the sample mean have to be in order to argue that the
null hypothesis is unlikely to be true?

For the moment, we are making three fundamental assumptions:

• Random sampling
• Normality
• σ known.

As noted in chapter 6, assuming that σ is known is generally unrealistic, it is
rarely known exactly, but it provides a convenient framework for describing
the basic principles and concepts underlying hypothesis testing methods. For
convenience, we denote some hypothesized value for μ by μ0. In the last
example, μ0 = 48.

The logic of hypothesis testing

There are three types of null hypotheses that are of general interest:

1. H0 : μ ≥ μ0.
2. H0 : μ ≤ μ0.
3. H0 : μ = μ0.

Consider the first hypothesis. The basic strategy is to momentarily assume that μ = μ0

and to consider the probabilistic implications associated with the observed value of
the sample mean. So in example 1 dealing with how long a bulb lasts, we give the
manufacturer the benefit of the doubt and momentarily assume that μ = 48. The idea
is that if we find empirical evidence strongly suggesting that the mean is less than 48,
then we would conclude that the hypothesis H0: μ ≥ 48 should be rejected.

If μ = μ0 and the three assumptions made are true, then from chapter 6,

Z = X̄ −μ0

σ/
√

n
(7.3)

has a standard normal distribution. Consider the rule: reject the null hypothesis if
Z ≤ c, where c is the .05 quantile of a standard normal distribution. So from table 1
in appendix B, c = −1.645. Then the probability of erroneously rejecting, when in fact
μ = μ0, is .05.

It might help to note that the rule just given is tantamount to rejecting if the sample
mean is sufficiently smaller than the hypothesized value. More precisely, rejecting if Z ≤ c



HYPOTHESIS TESTING 133

is the same as rejecting if

X̄ ≤ μ0 + c
σ√
n
.

In the last example, c = −1.645, so the rule would be to reject if X̄ ≤ μ0 −1.645σ/
√

n.
But for convenience, the rule is usually stated in terms of Z.

Definition Rejecting a null hypothesis, when in fact it is true, is called a
Type I error. For the situation just described, assuming the underlying
assumptions are true, the probability of a Type I error is .05 when μ = μ0.

We can summarize a decision rule for H0: μ ≥ μ0 in more general terms as follows.
Let c be the α quantile of a standard normal distribution and suppose this null hypothesis
is rejected if Z ≤ c. Then, if the three underlying assumptions are true, the probability
of a Type I error is α.

Example 2

A researcher claims that on a test of open mindedness, the population mean
for adult men is at least 50 with a standard deviation of σ = 12. So in the
notation used in this chapter, μ0 = 50 and the null hypothesis is H0: μ ≥ 50.
Based on 10 adult males, would the researcher’s claim be rejected if the sample
mean is X̄ = 48 and the Type I error probability is to be .025? To find out, first
note that from table 1 in appendix B, the .025 quantile of a standard normal
distribution is c = −1.96. Because n = 10, we have that

Z = X̄ −μ0

σ/
√

n
= 48 − 50

12/
√

10
= −0.53.

Because −0.53 is greater than −1.96, the null hypothesis is not rejected.

Example 3

We repeat the last example, only now suppose the sample mean is X̄ = 40.
Then Z = −2.635, this is less than −1.96, so reject the null hypothesis. That
is, there is empirical evidence that the claim is unlikely to be true.

Now consider the second type of null hypothesis, H0: μ ≤ μ0. For this
case, we would not reject if the sample mean is less than the hypothesized
value μ0, for the simple reason that if the null hypothesis is true, this is the
type of result we would expect. Rather, we would reject if the sample mean is
sufficiently larger than the null value, which means that we would reject if Z is
sufficiently large. More formally, if we want the probability of a Type I error
to be α when in fact μ = μ0, let c be the 1 −α quantile of a standard normal
distribution and reject null hypothesis if Z ≥ c.

Example 4

Imagine that the goal is to test H0: μ ≤ 15 assuming normality, σ = 4, and that
the Type I error probability is to be .01. Then 1 − α = .99 and from table 1
in appendix B, c = 2.33. If based on a sample of size 25, the sample mean
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is X̄ = 18, we have that

Z = 18 − 15

4/
√

25
= 3.75.

Because 3.75 is greater than 2.33, reject the null hypothesis.
Finally, consider the third type of null hypothesis, H0: μ = μ0. Now

we would reject if the sample mean is sufficiently smaller or larger than the
hypothesized value, μ0. In symbols, if the goal is to have the probability of a
Type I error equal to α, reject if Z is less than or equal to the α/2 quantile of
a standard normal distribution or if Z is greater than or equal to the 1 − α/2
quantile. Put another way, reject if |Z| ≥ c, where now c is the 1−α/2 quantile
of a standard normal distribution.

Example 5

Imagine you want to test H0: μ = μ0 with α = .05. Then α/2 = .025, so
1−α/2 = .975, meaning that you would reject if |Z| ≥ 1.96, the .975 quantile
of a standard normal distribution. Figure 7.1 indicates for which values of
Z we would reject. The shaded region indicates the critical region, meaning
the collection of Z values for which the null hypothesis would be rejected.
Here, the critical region consists of all values less than or equal to −1.96 as
well as all values greater than or equal to 1.96. The constant c is called a
critical value.

Example 6

We repeat example 4, only now we test H0: μ = 15, again assuming
normality, σ = 4, and that the Type I error probability is to be .01. So
α/2 = .005, 1−α/2 = .995, and from table 1 in appendix B, c = 2.58. Because
|Z| = 3.75 > 2.58, reject the null hypothesis.

Z
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−1.96 1.96

Fail to reject

Figure 7.1 A graphical depiction of the rejection rule when using Z and α = .05. The shaded
portions indicate the rejection regions.
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Summary

The details of the three hypothesis testing methods are summarized here for convenience,
assuming that the probability of a Type I error is to be α. Once the sample mean has
been determined, compute

Z = X̄ −μ0

σ/
√

n
.

Case 1. H0: μ ≥ μ0. Reject H0 if Z ≤ c, the α quantile of a standard normal
distribution.

Case 2. H0: μ ≤ μ0. Reject H0 if Z ≥ c, the 1 − α quantile of a standard normal
distribution.

Case 3. H0: μ = μ0. Reject H0 if Z ≥ c or if Z ≤ −c, where now c is the 1− α
2 quantile

of a standard normal distribution. Equivalently, reject if |Z| ≥ c.
The hypotheses H0 : μ ≥ μ0 and H0 : μ ≤ μ0 are called one-sided hypotheses.

In contrast, H0 : μ = μ0 is called a two-sided hypothesis. The constant c is called
a critical value.

p-Values

Notice that if you are told that the null hypothesis is rejected with α = .05, and nothing
else, it is unknown whether you would also reject with α = .025, α = .01 or α = .001.
Generally, what is the smallest α value that would result in rejecting the null hypothesis?
This smallest α value is called a p-value and can be determined by using the observed
value of Z as a critical value. Generally, p-values have values between 0 and 1. The
closer the p-value is to zero, the stronger the evidence that the null hypothesis should
be rejected.

Example 7

Imagine that the goal is to test H0: μ ≥ 6 and that the value of the test statistic
is Z = −1.8. If you wanted the probability of a Type I error to be α = .05,
then the critical value would be c = −1.645. And because the value of Z is less
than the critical value, you would reject. But suppose you had used a critical
value equal to the observed value of Z, namely, −1.8. Then the corresponding
probability of a Type I error is called the p-value and is equal to P(Z ≤= −1.8).
From table 1 in appendix B, the p-value is equal to 0.036. So in particular, you
would reject if the desired Type I error probability were .05, .04 or even .036,
but not for α = .03.

For the three types of hypotheses that arise, here is a more detailed
description of how to compute the p-value given X̄ , μ0, n and σ , which will
help make clear a certain conceptual issue to be described.

Case 1. H0: μ ≥ μ0. The p-value is

p = P

(
Z ≤ X̄ −μ0

σ/
√

n

)
, (7.4)

which can be determined using table 1 in appendix B.
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Case 2. H0: μ ≤ μ0. The p-value is

p = P

(
Z ≥ X̄ −μ0

σ/
√

n

)
. (7.5)

Case 3. H0: μ = μ0. The p-value is

p = 2

(
1 − P

(
Z ≤ |X̄ −μ0|

σ/
√

n

))
. (7.6)

Example 8

Imagine that n = 36, σ = 5, X̄ = 44 and you test H0: μ≥ 45, which corresponds
to case 1. Then Z = −1.5, and the p-value is the probability that a standard
normal random variable has a value less than or equal to −1.5, which is
P(Z ≤ −1.5) = 0.0668. Because the p-value is greater than .05, you would
not reject if you wanted the Type I error to be .05. If the p-value were .015,
then in particular you would reject if the largest Type I error probability you
wanted to allow were α = .05 or .025, but not if α = .01.

Example 9

We repeat the previous example, only with X̄ = 46. Then Z = 1.5 and the
p-value is P(Z ≤ 1.5) = .933. So this is not even close to rejecting, which is
not surprising because the hypothesis is that μ is greater than or equal to 45,
and the sample mean is consistent with this speculation.

Example 10

A company claims that on average, their beef hotdogs have 150 calories.
Assume normality and that σ = 10. Imagine that the average calories for
12 hotdogs is X̄ = 145 and the goal is to check the company’s claim. In formal
terms, the goal is to test H0: μ = 150, which corresponds to case 3. The test
statistic is Z = −1.73. The corresponding p-value is

p = 2(1 − P(Z ≤ |− 1.73|)) = 2(1 − 0.958) = .084.

So the null hypothesis would not be rejected if the desired Type I error prob-
ability were .05, but it would be rejected with a Type I error probability of .1.

Comments on interpreting p-values

Care must be taken not to read more into a p-value than is warranted. Notice that the
expressions for computing a p-value make it clear that it is influenced by three factors:

1. The difference between the sample mean and the hypothesized value, X̄ −μ0,
2. the magnitude of the standard deviation, σ , and
3. the value of the sample size, n.

Said another way, a p-value is determined by the difference between the sample mean
and the hypothesized population mean, X̄ − μ0, as well as the standard error of the
sample mean, σ/

√
n. The point is that if a p-value is close to zero, and we are told
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nothing else, it is not necessarily the case that the estimate of the population mean, X̄ ,
differs substantially from the hypothesized value. The reason could be that the standard
deviation is small relative to the sample size. In particular, a small p-value does not
necessarily mean that the difference between the null value of the mean and its actual
value, namely μ−μ0, is large.

Here is another perspective that is helpful. A p-value reflects a property of the
sampling distribution of the test statistic Z. Roughly, it reflects the likelihood that Z
will have a value greater than 0. If the null hypothesis is true, and the assumptions
made here are true, the probability that Z will be greater than 0 is .5. When the null
hypothesis is false, this probability will be less than or greater than .5, depending on
how μ differs from the hypothesized value, μ0. It can be shown that on average, if the
null hypothesis is true and sampling is from a normal distribution, the p-value will be
.5. That is, the p-value will differ from one study to the next, but over many studies, its
average value is .5 if H0 is true. This is related to the fact that when the null hypothesis
is true, Z has a standard normal distribution, meaning that with probability .5, its value
will be greater than 0. Under non-normality, we will see that skewness and outliers also
affect the magnitude of the p-value.

A common convention is to describe a test of some hypothesis as significant if the
p-value is small, say less than or equal to .05. But the term significant is a statistical
term meaning that there is strong evidence that the null hypothesis should be rejected.
It does not necessarily mean that there is an important or large difference between the
hypothesized value of the mean and its actual value. One way to asses the magnitude of
μ−μ0 is to compute a confidence interval for μ using the methods in chapter 6.

Power and type II errors

There are two fundamental types of errors when testing hypotheses. The first is a
Type I error, which has already been discussed. The second is called a Type II error,
meaning that the null hypothesis is false, but we failed to reject. The probability of a
Type II error is usually labeled β, a lower case Greek beta. The probability of rejecting,
when the null hypothesis is false, is called power and is labeled 1−β. That is, power is the
probability of making a correct decision about the null hypothesis when the hypothesis is
false. Table 7.1 summarizes the four possible outcomes when testing hypotheses. Power
is of critical importance for reasons illustrated by the next example.

Example 11

Imagine that a new drug for treating hypertension is being studied, but there is
an issue about whether the drug causes liver damage. For illustrative purposes,
suppose that based on some appropriate measure, liver damage is of little
concern if μ ≤ 14. If a pharmaceutical firm reports that they tested H0: μ ≤ 14

Table 7.1 Four possible outcomes when testing hypotheses

Reality

Decision H0 true H0 false

H0 true Correct decision Type II error (probability β)
H0 false Type I error (probability α) Correct decision (power)
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and failed to reject, is it reasonable to assume that the drug is safe? Based only
on the information given, the answer is not known. Imagine, for example, that
if μ = 16, severe liver damage could result. The concern is that if in reality
μ = 16, by chance we might fail to reject. For example, if the pharmaceutical
firm reveals that a sample size of only 10 was used, intuitively, one would be
suspicious about any conclusions regarding the entire population of individuals
who might take this drug. In statistical terms, the issue is how much power
is afforded with a sample size of only 10. If power is only 1 − β = .2, there
are serious concerns because this means that there is only a 20% chance of
discovering a practical problem with this drug.

For the situation at hand where sampling is from a normal distribution
and σ is known, power depends on four quantities: σ , α, n, and the value of
μ − μ0, which is the difference between the true value and the hypothesized
value of the population mean. Here is how power is computed for the three
types of hypotheses previously described.

Case 1. H0: μ < μ0. Determine the critical value c as previously described.
(The critical value is the 1 − α quantile of a standard normal
distribution.) Then power, the probability of rejecting the null
hypothesis, is

1 −β = P

(
Z ≥ c −

√
n(μ−μ0)

σ

)
.

In words, power is equal to the probability that a standard normal
random variable is greater than or equal to

c −
√

n(μ−μ0)

σ
.

Case 2. H0: μ>μ0. Determine the critical value c, which is now the α quantile
of a standard normal distribution. Then power is

1 −β = P

(
Z ≤ c −

√
n(μ−μ0)

σ

)
.

Case 3. H0: μ = μ0. Now c is the 1 − α
2 quantile of a standard normal

distribution. Power is

1 −β = P

(
Z ≤ −c −

√
n(μ−μ0)

σ

)
+ P

(
Z ≥ c −

√
n(μ−μ0)

σ

)
.

Example 12

After years of production, a manufacturer of batteries for automobiles finds
that on average, their batteries last 42.3 months with a standard deviation
of σ = 4. A new manufacturing process is being contemplated and one goal
is to determine whether the batteries have a longer life on average based on
10 batteries produced by the new method. For illustrative purposes, assume
that the standard deviation is again σ = 4 and that the manufacturer decides to
test H0: μ ≤ 42.3 with the idea that if they reject, there is evidence that the new
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manufacturing process is better on average. Moreover, if in reality μ = 44, and
the Type I error probability is set at α = .05, the manufacturer wants a high
probability of rejecting the null hypothesis and adopting the new method.
So a practical issue is how much power there is when μ = 44. With α = .05,
the critical value is c = 1.645. So power is

1 −β = P

(
Z ≥ c −

√
n(μ−μ0)

σ

)

= P

(
Z ≥ 1.645 −

√
10(44 − 42.3)

4

)

= P(Z ≥ .30)

= .38.

Example 13

We repeat the last example, only now we determine power when the sample
size is increased to 20. Now, power is

1 −β = P

(
Z ≥ c −

√
n(μ−μ0)

σ

)

= P

(
Z ≥ 1.645 −

√
20(44 − 42.3)

4

)

= P(Z ≥ −0.256)

= .60

Increasing n to 30, it can be seen that power is now 1−β = .75, meaning that the
probability of correctly identifying an improved manufacturing process, when
μ = 44, is now .75. A rough explanation of why this occurs is as follows. Recall
that the accuracy of the sample mean, as an estimate of the population mean,
is reflected by its squared standard error, σ 2/n. So as n gets large, its squared
standard error decreases, meaning that it is more likely that the sample mean
will be close to the true population mean, 44, as opposed to the hypothesized
value, 42.3.

We have just illustrated that increasing the sample size can increase power,
roughly because this lowers the squared standard error. Now it is illustrated
that the larger σ happens to be, the lower the power will be given α, n
and a value for μ − μ0. This is because increasing σ increases the standard
error.

Example 14

For the battery example, again consider α = .05, μ−μ0 = 44−42.3 = 1.7 and
n = 30 with σ = 4. Then power is .75 as previously indicated. But if σ = 8,
power is now .31. If σ = 12, power is only .19.



140 BASIC STATISTICS

Finally, the smaller α happens to be, the lower will be the power, given
values for n, σ and μ − μ0. This is because, as we lower α, the critical value
increases, meaning that the value for Z needed to reject increases as well.

Example 15

For the battery example with n = 30, consider three choices for α: .05, .025,
and .01. For α = .05 we have already seen that power is .75 when testing
H0 : μ < 42.3 and μ = 44. For α = .025, the critical value is now c = 1.96,
so power is

1 −β = P

(
Z ≥ c −

√
n(μ−μ0)

σ

)

= P

(
Z ≥ 1.96 −

√
20(44 − 42.3)

4

)

= P(Z ≥ .059)

= .47.

If instead you use α = .01, the critical value is now c = 2.33 and power can be
seen to be .33. This illustrates that if we adjust the critical value so that the
probability of a Type I error goes down, power goes down as well. Put another
way, the more careful you are not to commit a Type I error by choosing α close
to zero, the more likely you are to commit a Type II error if the null hypothesis
happens to be false.

The results just described on how n, α and σ are related to power and can
be summarized as follows:

• As the sample size, n, gets large, power goes up, so the probability
of a Type II error goes down.

• As α goes down, in which case the probability of a Type I error
goes down, power goes down and the probability of a Type II
error goes up.

• As the standard deviation, σ , goes up, with n, α and μ − μ0

fixed, power goes down.

Confidence intervals versus testing hypotheses

There is a simple connection between confidence intervals covered in chapter 6 and
tests of hypotheses. As an illustration, imagine that the goal is to test H0: μ = 64 with
a Type I error probability of α = .05. Rather than proceed as was done here, you could
simply compute a .95 confidence interval for the population mean and reject if this
interval does not contain the hypothesized value of 64. Under the assumptions made
here, the probability of a Type I error will be 1 − .95 = .05. More generally, if a 1 −α

confidence interval is computed, and you reject the null hypothesis if this interval does
not contain the hypothesized value, the probability of a Type I error will be α. Both
approaches have their own advantages. Confidence intervals not only tell us whether
we should reject some hypothesis of interest, they also provide information about the
accuracy of our estimate of μ. A related advantage is that they provide information about
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which values for μ appear to be reasonable and which do not. If we are told only that
we reject the null hypothesis, or if we are only told the p-value, this information is not
available to us. But hypothesis testing makes clear the notion of a Type I error. And it
has the added importance of highlighting the notion of power. A criticism of p-values
is that it tells us nothing about the magnitude of μ−μ0, the difference between actual
population mean and its hypothesized value. This difference is an example of what is
called an effect size, which is a general term for measures aimed at quantifying the extent
to which the null hypothesis is false.

Another important point is that p-values do not tell us the likelihood of replicating
a decision about the null hypothesis. For example, if we get a p-value of .001, what
is the probability of rejecting at the .05 level if we were to conduct the study again?
This is a power issue. If unknown to us, power is .2 when testing with α = .05, then
the probability of rejecting again, if the study is replicated, is .2. If the null hypothesis
happens to be true, and by chance we got a p-value of .001, the probability of rejecting
again is .05 or whatever α value we happen to use.

Problems
1. Given that X̄ = 78, σ 2 = 25, n = 10 and α = .05, test H0 : μ > 80, assuming

observations are randomly sampled from a normal distribution. Also, draw the
standard normal distribution indicating where Z and the critical value are located.

2. Repeat the previous problem but test H0 : μ = 80.

3. For problem 2, compute a .95 confidence interval and verify that this interval is
consistent with your decision about whether to reject the null hypothesis.

4. For problem 1, determine the p-value.

5. For problem 2, determine the p-value.

6. Given that X̄ = 120, σ = 5, n = 49 and α = .05, test H0 : μ > 130, assuming
observations are randomly sampled from a normal distribution.

7. Repeat the previous problem but test H0 : μ = 130.

8. For the previous problem, compute a .95 confidence interval and compare the
result with your decision about whether to reject H0.

9. If X̄ = 23 and α = .025, can you make a decision about whether to reject
H0 : μ < 25 without knowing σ ?

10. An electronics firm mass produces a component for which there is a standard
measure of quality. Based on testing vast numbers of these components, the
company has found that the average quality is μ = 232 with σ = 4. However, in
recent years the quality has not been checked, so management asks you to check
their claim with the goal of being reasonably certain that an average quality of less
than 232 can be ruled out. That is, assume the quality is poor and in fact less than
232 with the goal of empirically establishing that this assumption is unlikely. You
get X̄ = 240 based on a sample n = 25 components, and you want the probability
of a Type I error to be .01. State the null hypothesis and perform the appropriate
test assuming

11. An antipollution device for cars is claimed to have an average effectiveness
of exactly 546. Based on a test of 20 such devices you find that X̄ = 565.
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Assuming normality and that σ = 40, would you rule out the claim with a Type I
error probability of .05?

12. Comment on the relative merits of using a .95 confidence interval for addressing
the effectiveness of the antipollution device in the previous problem.

13. For n = 25, α = .01, σ = 5 and H0 : μ ≥ 60, verify that power is .95 when μ = 56.

14. For n = 36, α = .025, σ = 8 and H0 : μ ≤ 100, verify that power is .61 when
μ = 103.

15. For n = 49, α = .05, σ = 10 and H0 : μ = 50, verify that power is approximately
.56 when μ = 47.

16. A manufacturer of medication for migraine headaches knows that their product
can damage the stomach if taken too often. Imagine that by a standard measuring
process, the average damage is μ = 48. A modification of their product is being
contemplated, and based on ten trials, it is found that X̄ = 46. Assuming σ = 5,
they test H0 : μ ≥ 48, the idea being that if they reject, there is convincing
evidence that the average amount of damage is less than 48. Then

Z = 46 − 48

5/
√

10
= −1.3.

With α = .05, the critical value is −1.645, so they do not reject because Z is
not less than the critical value. What might be wrong with accepting H0 and
concluding that the modification results in an average amount of damage greater
than or equal to 48?

17. For the previous problem, verify that power is .35 if μ = 46.

18. The previous problem indicates that power is relatively low with only n = 10
observations. Imagine that you want power to be at least .8. One way of getting
more power is to increase the sample size, n. Verify that for sample sizes of 20, 30,
and 40, power is .56, .71 and .81, respectively.

19. For the previous problem, rather than increase the sample size, what else might
you do to increase power? What is a negative consequence of using this strategy?

7.2 Testing hypotheses about the mean of a normal distribution,
σ not known

When the variance is not known, one simply estimates it with the sample variance, in
which case the test statistic

Z = X̄ −μ0

σ/
√

n

becomes

T = X̄ −μ0

s/
√

n
. (7.7)

When the null hypothesis is true, T has a Student’s t-distribution with ν = n−1 degrees
of freedom when sampling from a normal distribution. This means that the the critical
value c is read from table 4 in appendix B. The details can be summarized as follows.
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Assumptions:

• Random sampling
• normality

Decision Rules:

• For H0 : μ ≥ μ0, reject if T ≤ c, where c is the α quantile of Student’s
t-distribution with ν = n − 1 degrees of freedom and T is given by
equation (7.7).

• For H0 :μ≤μ0, reject if T ≥ c, where now c is the 1−α quantile of Student’s
t-distribution with ν = n − 1 degrees of freedom.

• For H0 : μ = μ0, reject if T ≥ c or T ≤ −c, where now c is the 1− α
2 quantile

of Student’s t-distribution with ν = n−1 degrees of freedom. Equivalently,
reject if |T | ≥ c.

Example 1

Imagine that for a general measure of anxiety, a researcher claims that the
population of college students has a mean of at least 50. As a check on this
claim, suppose that ten college students are randomly sampled with the goal
of testing H0: μ ≥ 50 with α = .05. Further imagine that the sample standard
deviation is s = 11.4 and the sample mean is X̄ = 44.5. Because n = 10, the
degrees of freedom are ν = n − 1 = 9 and

T = X̄ −μ0

s/
√

n
= 44.5 − 50

11.4/
√

10
= −1.5.

Referring to table 4 in appendix B, P(T ≤ −1.83) = .05, so the critical value
is −1.83. This means that if we reject when T is less than or equal to −1.83,
the probability of a Type I error will be .05, assuming normality. Because the
observed value of T is −1.5, which is greater than the critical value, you fail to
reject. In other words, the sample mean is not sufficiently smaller than 50 to be
reasonably certain that the speculation μ ≥ 50 is false. As you can see, the steps
you follow when σ is not known mirror the steps you use to test hypotheses
when σ is known.

Example 2

Suppose you observe the values

12,20,34,45,34,36,37,50,11,32,29

and the goal is to test H0: μ = 25 such that the probability of a Type I error is
α = .05. Here, n = 11, μ0 = 25 and it can be seen that X̄ = 33.24, s/

√
11 = 3.7,

so

T = X̄ −μ0

s/
√

n
= 33.24 − 25

3.7
= 2.23.

The null hypothesis is that the population mean is exactly equal to 25. So
the critical value is the 1 − α

2 = .975 quantile of Student’s t-distribution with
degrees of freedom ν = 11 − 1 = 10. Table 4 in appendix B indicates that

P(T ≤ 2.28) = .975,
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so our decision rule is to reject H0 if the value of T is greater than or equal to
2.28 or less than or equal to −2.28. Because the absolute value of T is less than
2.28, you fail to reject.

Comments on interpreting two-sided tests: Turkey’s three
decision rule

There are some issues regarding the goal of testing for exact equality that should be
discussed. Some authorities criticize this commonly sought goal on the grounds that
exact equality is rarely if ever true. The argument is that if we test H0 μ = 89, for
example, we can be reasonably certain that the actual value of the population mean
differs at some decimal place from 89. For example, it might be 89.00012. In more
general terms, it can be argued that without any data, one can make the argument that
the hypothesis of exact equality is false. A related criticism is that as a consequence, we
should never accept the null hypothesis as being true, so why test this hypothesis in the
first place?

Momentarily imagine that we accept the argument that the population mean is
never exactly equal to the hypothesized value. There is a way of salvaging hypothesis
testing by interpreting it in terms of what is called Tukey’s three decision rule. (For more
details, see Jones and Tukey, 2000.) This means that when assessing the meaning of
the test statistic T , one of three conclusions are reached regarding how the population
mean compares to the hypothesized value. Let c be the 1 − α/2 quantile of Student’s
t-distribution with n − 1 degrees of freedom. That is, we reject if T ≤ −c or if T ≥ c.
The three possible conclusions are as follows:

• If we reject because T is less than or equal to −c, the lower critical value,
conclude that μ < μ0.

• If we reject because T is greater than or equal to c, the upper critical value,
conclude that μ > μ0.

• Otherwise, make no decision about whether μ is greater than or less than
the hypothesized value.

Note that the first two conclusions are subject to a possible error. You might
erroneously conclude, for example, that the population mean is greater than the
hypothesized value, and the reverse conclusion might be made erroneously as well. But
if we make our decision based on whether T is less than the α/2 quantile of Student’s
t-distribution, or if it is greater than the 1−α/2 quantile, then the probability of making
an error is at most α, assuming normality. Put more simply, we apply Student’s t test as
already described and illustrated, but we interpret the results within the framework just
outlined. We do not view the goal as testing for exact equality, but rather, the goal is to
make a decision about whether μ is less than or greater than μ0.

A related issue is making a decision about whether the difference between μ and
μ0 is small. Although it can be argued that perhaps μ is not exactly equal to μ0, this
leaves open the issue of whether there is little difference between these two values.

Example 3

Consider an expensive prescription medication, for which its average effective-
ness is found to be 48, based on some relevant measure. A company wants to
market an alternative drug that is less expensive, but there is the issue of how its
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effectiveness compares to the medication currently being used. One possibility
is to compute a confidence interval for μ. If the length of the confidence interval
is judged to be small, and it contains μ0, conclude that there is little difference
between the average effectiveness of the two drugs.1

Testing hypotheses about medians

One way of testing hypotheses about the median is to use a strategy similar to Student’s t.
That is, subtract the hypothesized value from the sample median and divide by an
estimate of the standard error. In symbols, if θ0 represents some hypothesized value for
the population median, the test statistic is

Z = M − θ0

SM
, (7.8)

where SM is the McKean–Schrader estimate of the standard error described in chapter 6.
As pointed out in chapter 6, if tied (meaning duplicated) values tend to be rare, Z has,
approximately, a standard normal distribution, assuming that the null hypothesis is true.
This means that hypotheses are tested in essentially the same manner as in section 7.1.
For instance, when testing H0: θ = θ0, reject if |Z| ≥ c, the 1−α/2 quantile of a standard
normal distribution.

Example 4

A researcher claims that in 4000 BC, the median height of adult male skulls was
132mm. As a check on this claim, consider the following values for 30 skulls:

121,124,129,129,130,130,131,131,132,132,132,133,133,134,134,

134,134,135,135,136,136,136,136,137,137,138,138,138,140,143.

To test H0: θ = 132 with a Type I error probability of .05, compute the sample
median, yielding M = 134. The value of SM can be seen to be 0.97056, so
the test statistic is Z = (134 − 132)/0.97056 = 2.06. The critical value is the
.975 quantile of a standard normal distribution, which is read from table 1 in
appendix B and found to be 1.96. So reject and conclude that the population
median is greater than 132. The p-value is

2(1 − P(Z ≤ 2.06)) = .039.

A concern about the method just illustrated is that there are tied values, and as
noted in chapter 7, this might mean that SM is a poor estimate of the true standard
error, which in turn means that control over the probability of a Type I error might
be relatively poor. Having tied values does not necessarily mean disaster, but the reality
is that serious practical problems can occur. One way of dealing with this issue is to
compute a confidence interval for the median using the method in box 6.1 and then
reject if this interval does not contain the hypothesized value. Another possibility is
to use a percentile bootstrap method as described in the final section of this chapter.
This latter approach is more interesting in the sense that it provides a method for
comparing medians in more complex situations to be covered.

1. Other approaches have been proposed, but the details are not discussed here.
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Problems
20. Given the following values for X̄ and s: (a) X̄ = 44, s = 10, (b) X̄ = 43, s = 10,

(c) X̄ = 43, s = 2, test the hypothesis H0: μ = 42 with α = .05 and n = 25.

21. For part b of the last problem you fail to reject but you reject for the situation in
part c. What does this illustrate about power?

22. Given the following values for X̄ and s: (a) X̄ = 44, s = 10, (b) X̄ = 43, s = 10,
(c) X̄ = 43, s = 2, test the hypothesis H0: μ < 42 with α = .05 and n = 16.

23. Repeat the previous problem only test H0: μ > 42.

24. A company claims that on average, when exposed to their toothpaste, 45% of all
bacteria related to gingivitis is killed. You run 10 tests and find that the
percentages of bacteria killed among these tests are 38, 44, 62, 72, 43, 40, 43, 42,
39, 41. The mean and standard deviation of these values are X̄ = 46.4 and
s = 11.27. Assuming normality, test the hypothesis that the average percentage is
45 with α = .05.

25. A portion of a study by Wechsler (1958) reports that for 100 males taking the
Wechsler Adult Intelligent Scale (WAIS), the sample mean and variance on
picture completion are X̄ = 9.79 and s = 2.72. Test the hypothesis H0: μ ≥ 10.5
with α = .025.

26. Given that n = 16, X̄ = 40, and s = 4, test H0: μ ≤ 38 with α = .01.

27. Given that n = 9, X̄ = 76, and s = 4, test H0: μ = 32 with α = .05.

28. An engineer believes it takes an average of 150 man-hours to assemble a
portion of an automobile. As a check, the time to assemble 10 such parts was
ascertained yielding X̄ = 146 and s = 2.5. Test the engineer’s belief with α = .05.

29. In a study of court administration, the following times to disposition were
determined for twenty cases and found to be

42,90,84,87,116,95,86,99,93,92

121,71,66,98,79,102,60,112,105,98.

Test the hypothesis that the average time to disposition is less than or equal to 80,
using α = .01.

7.3 Modern advances and insights

Student’s t and non-normality
An issue of fundamental importance is how Student’s t performs under non-

normality. Based on properties of t described in chapter 6, a natural guess is that practical
problems might arise and this speculation turns out to be correct. Although these
concerns have been known for years, currently, they are rarely described and illustrated
in an introductory course.

As done in chapter 6, four types of non-normal distributions are considered.
The first is a symmetric, light-tailed distribution where outliers tend to be rare.
For this case, Student’s t performs well in terms of both Type I errors and power,
compared to alternative methods we might use. For example, the mean and median
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are estimating, approximately, the same unknown value, but there is little or no practical
reason to prefer the median over the mean. The median offers no advantage in terms of
power, roughly because its standard error tends to be larger than the standard error of
the mean due to trimming nearly all of the data.

When sampling from a symmetric, heavy-tailed distribution, generally the actual
probability of a Type I error, when using Student’s t, is less than the nominal level.
A crude explanation is that outliers tend to inflate the sample variance, a large sample
variance lowers the value of T , which in turn makes it less likely to reject. For example,
if you test the hypothesis of a zero mean when sampling from the contaminated normal
shown in figure 4.5, with n = 20 and α = .05, the actual probability of a Type I error is
approximately .025. But in terms of power, Student’s t can perform rather poorly. The
essential reason is that its standard error can be relatively large. As an example we again
test the hypothesis of a zero mean, only now we sample from the contaminated normal
with a population mean of .5, in which case power is approximately .11. But if we test the
hypothesis of a zero median instead, using equation (7.8), power is approximately .35.

Next, consider skewed, light-tailed distributions. We saw in chapter 6 that the
distribution of t can be asymmetric, rather than symmetric. (When sampling from any
symmetric distribution, t also has a symmetric distribution, but otherwise its distribution
is generally asymmetric.) In addition, the actual quantiles can differ substantially from the
quantiles of Student’s t under normality resulting in poor control over the probability of a
Type I error. Imagine, for example, we sample twenty observations from the distribution
shown in figure 6.2 with the goal of having a Type I error probability of .05. The actual
probability of a Type I error is .15. For sample sizes 40, 80 and 160, the actual probability
of a Type I error is .149, .124 and .109, respectively. So control over the probability of
a Type I error is improving as the sample size increases, in accordance with the central
limit theorem, but if we want the probability of a Type I error to be under .075, a sample
size of about 200 is needed.

As for skewed, heavy-tailed distributions, control over the probability of a
Type I error deteriorates. Now a sample size of more than 300 might be needed to
get adequate control over the probability of a Type I error. And an added concern is that
with outliers being common, the standard error of the mean is relatively large, which
could mean relatively poor power. Note that by implication, skewness and outliers affect
p-values, which complicates their interpretation. Despite this, we will see situations in
later chapters where p-values have practical value.

Brief summary of how Student’s t performs under
non-normality

• For symmetric, light-tailed distributions, Student’s t performs relatively well
in terms of both Type I errors and power.

• For symmetric, heavy-tailed distributions, it controls Type I errors reasonably
well, but power can be relatively poor.

• For asymmetric, light-tailed distributions, good control over the probability
of a Type I error might require a sample size of 200 or more. Poor power
could be an issue.

• For asymmetric, heavy-tailed distributions, serious concerns about Type I
errors and power arise, and a fairly large sample size might be needed to
correct any practical problems.
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Figure 7.2 The distribution of t when sampling, with replacement, from data stemming from a
study on hangover symptoms.

It was illustrated in chapter 6 that the actual quantiles of Student’s t can differ
substantially from the quantiles under normality. In the present context, this means that
control over the probability of a Type I error can be poor and power can be affected
as well. Here is another example, based on data from a study on hangover symptoms
when drinking alcohol. (The data are from another portion of the study in example 2 of
section 3.2.) The values from the study were

1,0,3,0,3,0,15,0,6,10,1,1,0,2,24,42,0,0,0,2.

Here, we resample with replacement from the 20 values just given, compute T and
repeat this process 1000 times. (In essence, a bootstrap-t method is being used.) A plot
of the resulting T values is shown in figure 7.2.2 In effect, data are being sampled from
a distribution having mean μ = 5.5. So for the data at hand, under the assumption of
normality and with α = .05, we would reject H0: μ = 5.5 if T ≤ −2.09 or if T ≥ 2.09.
But based on the plot in figure 7.2, we should reject if T ≤ −5.9 or if T ≥ 1.4.

Strategies for dealing with non-normality

It would be extremely convenient if a single hypothesis testing method could be found
that always performs relatively well in comparison to all other methods we might use.
During the last half-century, it has become abundantly clear that, due to the effects of
non-normality, such a method does not exist. To get the most accurate information
from data, an understanding of the relative merits of various techniques is required.

Within the context of testing hypotheses, several strategies that have been
considered when dealing with non-normality. Perhaps the most obvious strategy is
to search for a method based on means that improves upon Student’s t. Various
methods have been proposed, in some cases they do give better results, but under

2. A possible criticism is that perhaps the bootstrap-t method is not giving an accurate approximation
of the actual distribution of T . There is evidence that this is true—practical problems are probably worse than
indicated by figure 7.2.
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general conditions they can be unsatisfactory. Some of these methods are based on
what are called bootstrap techniques, but the details go beyond the scope of this book.
Another common suggestion is to transform the data. For example, use logarithms as
noted in chapter 6. This might help, but as previously indicated, a distribution can
remain skewed, making inferences about the mean of the original scores difficult, and
problems with outliers are not necessarily eliminated. Put simply, do not assume that
all practical problems have been addressed by transforming the data. One could use
diagnostic tools, such as tests for normality, or one might use numerical quantities
aimed at measuring skewness with the goal of determining whether a distribution
is reasonably symmetric. At issue is not whether a distribution is non-normal, but
rather, does it differ from normality to the point that practical problems arise. Tests
for normality, and diagnostic tools in general, are only useful if they have enough power
to detect situations where the normality assumption should be abandoned. Currently,
it is unclear when such tests have adequate power. (In chapter 8 we will summarize
published papers outlining situations where tests of assumptions are unsatisfactory
as a diagnostic tool aimed at justifying Student’s t.) Another common suggestion is
to use what are called rank-based or nonparametric techniques, which are discussed
in chapter 13. These methods have certain practical advantages and deserve serious
consideration, but their relative merits must be postponed for now. Yet another possible
approach is to use some measure of location other than the mean. The median has
the potential of high power, relative to the mean, when dealing with distributions
where outliers are common. Concerns are that power might be less satisfactory when
sampling from normal or light-tailed distributions, and control over the probability of a
Type I error, when using equation (7.8), can be poor when tied values occur. Tied values
do not necessarily spell disaster when using the median, but the reality is that disaster
can strike.

Handling tied values when using the median

One way of dealing with tied values, when testing hypotheses about the population
median, is to use a percentile bootstrap technique, which was introduced at the end of
chapter 6. Consider the goal of testing H0: θ = θ0, the hypothesis that the population
median is equal to the specified value, θ0. It turns out that the percentile bootstrap
technique in chapter 6 can be used to compute a p-value. A rough explanation of
the method is as follows. If the null hypothesis is true, then with probability .5, the
sample median will be greater than the hypothesized value. (With small sample sizes
this probability can differ from .5, but under random sampling, it will be very close to .5
even with fairly small sample sizes.) The closer this probability is to 0 or 1, the stronger
the evidence that the null hypothesis should be rejected. The problem is that we do
not know the sampling distribution of M , but it can be approximated using bootstrap
samples.

As was done in chapter 6, imagine that we generate a bootstrap sample by resampling
with replacement n observations from our observed data, and then we compute the
median. For convenience, label this sample median M∗ to distinguish it from M , the
median based on the original data. We repeat this process B times, and here we use
B = 1000. Let A be the number of M ∗ values that are less than the hypothesized value,
θ0, and let C be the number of times M ∗ = θ0. Let Q = (A + .5C)/B and set P equal
to Q or 1 − Q, whichever is smaller. Then a p-value for testing H0: θ = θ0 is p = 2P .
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Unlike the method based on the McKean-Schrader estimate of the standard error, this
method performs well when there are tied values.

Example 1

Imagine that the goal is to test the hypothesis that the population median is 45.
We generate a bootstrap sample, compute the median, repeat this 1000 times,
and find that 900 of these bootstrap medians are less than 45 and 10 are equal to
45. So A = 900, C = 10, and Q = (A + .5C)/B = (900+ .5(10))/1000 = .905.
Because Q > .5, P = 1 − .905 = .095, and the p-value is 2(.095) = .19.

Example 2

Consider again the skull data used in example 4 in section 7.2. We saw that
when testing the hypothesis that the median height is 132mm, the p-value is
.039 when using the test statistic given by equation (7.8). Using the percentile
bootstrap method instead, the p-value is .046. So in this case, despite the tied
values, there is not that much difference between the p-values. But consider
again the sexual attitude data in table 2.3, which also has tied values, and
suppose the goal is to test H0: θ = 0. Then the p-value using equation (7.8)
is .086, but when using the percentile bootstrap method, the p-value is less
than .001, illustrating that the choice of method can make a substantial
difference.

Trimming less: The Tukey-Mclaughlin method

As noted in chapter 6, practical problems with the median arise, roughly because it trims
all but one or two values. One possibility is to trim less, say 20%, in which case the test
statistic is

T = .6(X̄ t −μ0)

sw/
√

n
, (7.9)

where now μ0 is some hypothesized value for the population trimmed mean, X̄ t

is the 20% trimmed mean and sw is the 20% Winsorized standard deviation. The
hypothesis H0: μt = μ0 is rejected if |T | ≥ c, where c is the 1 − α/2 quantile of a
Student’s t-distribution with ν = n − h − 1 degrees of freedom, where h is the number
of observations trimmed. This method was derived by Tukey and McLaughlin (1963).

Example 3

Doksum and Sievers (1976) report data on weight gain among rats. One group
was the control and the other was exposed to an ozone environment. For
illustrative purposes, attention is focused on the control group and we consider
the claim that the typical weight gain is 26.4, as measured by the 20% trimmed
mean. The sample size is n = 23, the 20% trimmed mean is X̄ t = 23.3, sw = 3.9,
and for H0: μt = 26.4 we see that

Tt = .6(X̄ t −μ0)

sw/
√

n
= .6(23.3 − 26.4)

3.9/
√

23
= −2.3.
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Because there are 23 rats, h = 8, so the degrees of freedom are ν = 23 − 8 − 1
= 14, and the critical value (read from table 4 in appendix B) is c = 2.14. Because
|T | = |−2.3| = 2.3 is greater than the critical value, reject the hypothesis that
the trimmed mean is 26.4.

In the context of hypothesis testing, the Tukey-McLaughlin method has several
advantages. It performs much better than Student’s t in terms of controlling the
probability of a Type I error, meaning that it performs well over a much broader range
of situations. But even the Tukey-McLaughlin method can be unsatisfactory in terms
of Type I errors when the sample size is small and the departure from normality is
sufficiently severe. (This problem can be further reduced by using the percentile bootstrap
method previously described. Using a percentile bootstrap method with a 20% appears
to perform very well even with sample sizes of 10.) Another advantage is that under
normality, its power is nearly comparable to Student’s t and it has higher power than
methods based on the median. Compared to Student’s t, it maintains high power when
sampling from symmetric distributions where outliers are common, but if the number
of outliers is sufficiently high, using medians can have more power instead. When using
equation (7.9), problems with tied values are of little or no concern, in contrast to
comparing medians with equation (7.8). However, all indications are that problems due
to tied values can be avoided when working with the median by using the percentile
bootstrap method.

Another point to keep in mind is that when distributions are skewed, generally the
population mean, median and 20% trimmed mean differ. So, for example, if the goal is
to test the hypothesis that the population mean is 20, this hypothesis could be true even
when the population median has some other value. In practical terms, if there is interest
in making inferences about the mean when a distribution is skewed, methods based on
a 20% trimmed mean or median can be highly unsatisfactory.

It should be stressed that currently, most applied researchers are familiar with the
mean and median, but relatively few are familiar with a 20% trimmed mean. The 20%
trimmed mean is used, but its practical advantages are rarely discussed in an introductory
course.

One final comment might help. Based on the many negative features associated with
Student’s t, the utility of methods based on means might seem rather bleak, in the sense
that there is concern about the possibility of making a Type I error or having relatively low
power, unless perhaps the sample size is quite large. Despite known problems covered
here, plus some additional concerns covered in subsequent chapters, methods based on
means can be argued to have practical value, provided the results are interpreted in a
manner that takes into account modern insights, some of which are yet to be described.

A Summary of Some Key Points

• When using Student’s t test, the actual probability of a Type I error will be fairly close
to the nominal level when sampling from symmetric distributions where outliers are
rare. If outliers are common, the actual probability of a Type I error can drop well
below the intended level.

Continued
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A Summary of Some Key Points (cont’d )

• When using Student’s t test, the control over the probability of a Type I error can be
poor, with practical problems increasing as we move toward situations where outliers
are common. In some cases, even with a sample size of n = 300, Student’s t test can
perform poorly.

• Skewness and outliers can adversely affect the power of Student’s t.
• As a measure of effect size, meaning the extent to which the null hypothesis is false,

p-values can be highly unsatisfactory.
• When using equation (7.8) to test hypotheses about the median, control over the

probability of a Type I error is reasonably good when tied values never occur. But
when tied values can occur, it should not be used; currently the percentile bootstrap is
the best method.

• In terms of controlling the probability of a Type I error, the most effective (non-
bootstrap) method covered in this chapter is the Tukey-McLaughlin method based on
equation (7.9). That is, it performs reasonably well over a broader range of situations.
But note that for skewed distributions, it is inappropriate in terms of testing hyotheses
about the population mean.

• Generally, some type of bootstrap method has practical value in terms of controlling
the probability of a Type I error.

Problems
30. Given the following values for X̄ t and sw: (a) X̄ t = 44, sw = 9, (b) X̄ t = 43,

sw = 9, (c) X̄ t = 43, sw = 3. Assuming 20% trimming, test the hypothesis H0:
μt = 42 with α = .05 and n = 20.

31. Repeat the previous problem, only test the hypothesis H0: μt < 42 with α = .05
and n = 16.

32. For the data in problem 24, the trimmed mean is X̄ t = 42.17 with a Winsorized
standard deviation of sw = 1.73. Test the hypothesis that the population trimmed
mean is 45 with α = .05.

33. A standard measure of aggression in 7-year-old children has been found to have a
20% trimmed mean of 4.8 based on years of experience. A psychologist wants to
know whether the trimmed mean for children with divorced parents differs from
4.8. Suppose X̄ t = 5.1 with sw = 7 based on n = 25. Test the hypothesis that the
population trimmed mean is exactly 4.8 with α = .01.

34. Summarize the relative merits of using a percentile bootstrap method.



8

CORRELATION AND
REGRESSION

O ne of the most common goals in applied research is trying to determine whether
two variables are dependent, and if they are dependent, trying to understand

the nature of the association. Is there an association between aggression in the home
and the cognitive functioning of children living in the home? If yes, how might we
describe it in an effective manner? Is there an association between breast cancer rates
and exposure to solar radiation? What is the association between weight gain in infants
and the amount of ozone in the air? This chapter describes the most commonly used
tools for answering these type of questions. As usual, we provide a description of the
mechanics and the underlying assumptions associated with conventional methods. Then
we describe situations where these techniques perform well and where they can be highly
inaccurate. Many modern tools have been designed for dealing with practical problems
associated with the basic methods described here, but complete details go well beyond
the scope of this book. However, a brief outline is provided of how a few modern methods
deal with practical problems.

8.1 Least squares regression

One approach to studying the association between two variables is to collect data and
then search for a straight line that summarizes the data in a reasonable manner. For
example, imagine that X represents aggression in the home and that Y represents the
cognitive functioning of children living in the home. Then roughly, assuming that a
straight line summarizes the data in a reasonable manner means that if we are told X ,
the amount of aggression in the home, we get a reasonable estimate of Y , the cognitive
functioning of children living in the home, using the equation

Y = β0 +β1X , (8.1)
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where β1 and β0 are the unknown slope and intercept, respectively, that are to be
determined based on observations to be made.1 For instance, if β1 = .5 and β0 = 10,
and we are told that the agression in the home is X = 6, then the estimated cognitive
functioning of a child living in this home is .5 × 6 + 10 = 13.

One problem is determining β1, the slope, and β0, the intercept based on the data
available to us. There are many methods aimed at addressing this problem. Today, the
most popular method is based on what is called the least squares principle, and therefore
it is essential that students understand its relative merits. It has various advantages over
competing methods, but it also has serious deficiencies, as we shall see. To provide some
sense of when it performs well and when it fails, and why the method remains popular
today, it helps to describe some of the reasons the method rose to prominence in applied
research.

A simple example of some historical interest will help set the stage. Newton, in
his Principia, argued that the earth should bulge at the equator due to its rotation. In
contrast, based on empirical measures, the astronomer Cassini suspected that the earth
bulges at the poles, but because of possible measurement errors, there was uncertainty
about whether Cassini’s data could be used to make valid inferences. In an attempt to
resolve the issue, the French government funded expeditions to measure the linear length
of a degree of latitude at several places on the earth. Newton’s arguments suggested that
there would be an approximately linear association between a certain transformation of
the latitude and measures of arc length. For convenience, let X represent the transformed
latitude and let Y represent the arc length. According to Newton, it should be the case
that β1/3β0 is approximately 1/230.

During the second half of the eighteenth century, Roger Boscovich attempted to
resolve the shape of the earth using the data in table 8.1. Recall that any two distinct
points determine a line. If we denote the two points by (X1,Y1) and (X2,Y2), then the
slope, for example, is given by

b1 = Y2 − Y1

X2 − X1
,

the difference between the Y values divided by the difference between the X values. The
intercept is given by

b0 = Y1 − b1X1.

So, for the first and last points in table 8.1, the slope is

b1 = 57,422 − 56,751

.8,386 − 0
= 800.14,

and the intercept is given by

b0 = 57,422 − 800.14(57,422) = 56,751.

But Boscovich has a problem: he has five points and each pair of points gives a
different value for the slope and intercept. Differences were to be expected because the
measurements of arc length and latitude cannot be done precisely. That is, there is

1. The use of the Greek letter beta used in regression should not be confused with the use of β in
chapter 7. In chapter 7, where β has no subscript, it represents the probability of a Type II error. When
dealing with regression, β1 and β0 are typically used to represent the unknown slope and intercept of a line,
and the goal is to estimate β1 and β0 based on observations we make.
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Table 8.1 Boscovich’s data on meridian arcs

Place Transformed latitude Arc length

Quito 0.0000 56,751
Cape of Good Hope 0.2987 57,037
Rome 0.4648 56,979
Paris 0.5762 57,074
Lapland 0.8386 57,422

measurement error due to the instruments being used and variations due to the
individuals taking the measurements. So an issue is whether the different slopes can
be combined in some manner to produce a reasonable estimate of the true slope and
intercept (β1 and β0) if no measurement errors were made.

For the data at hand, there are 10 pairs of points, and the corresponding estimates
of the slopes, written in ascending order, are

−349.19,133.33,490.53,560.57,713.09,800.14,852.79,957.48,1,185.13,1,326.22.

One possibility is to simply average these 10 values yielding a single estimate of the
unknown slope, an idea that dates back to at least the year 1750. This yields 667.
Although averaging the slopes is reasonable, from a practical point of view it has two
serious difficulties. The first is that in general, as the number of points increases, the
number of pairs of points that must be averaged quickly becomes impractical without
a computer. For example, if Boscovich had 50 points rather than only five, he would
need to average 1,225 slopes. With a 100 points, he would need to average 4,950 slopes.
The second problem is that it is not immediately clear how to assess the precision of
the estimate. That is, how might we compute a confidence interval for the true slope?
It might seem that we could somehow extend the methods in chapters 5 and 6 to get a
solution, but there are technical problems that are very difficult to address in a reasonably
simple fashion.2

Before continuing, note that another strategy is to take the median of the slopes
rather than their average. This reflects a modern method known as the Theil-Sen
estimator. For Boscovich’s data, the Theil-Sen estimate of the slope (the median of
the 10 slopes) is

b1ts = 756.6,

and the estimate of the intercept is taken to be

b0ts = My − b1tsMx,

where Mx and My are the medians of the X and Y values, respectively. Here, Mx = .4648,
My = 57,037, so

b0ts = 57,037 − 756.6(.4648) = 56,685.3.

Of course, prior to the computer age, the Theil-Sen estimator does not address the
problems just described. However, with computers, it is a viable option that has several
practical advantages mentioned at the end of this chapter.

2. One complication is that when computing the slopes for all pairs of points, some of the estimates are
dependent, making an estimate of the standard error of the average of the slopes difficult at best.



156 BASIC STATISTICS

Residuals

There are two major advances that took place when trying to address the two practical
problems just described. The first stems from Boscovich who suggested that the fit
of a regression line be judged based on what are called residuals. The basic idea is to
judge a choice for the slope and intercept based on the overall discrepancy between the
observed Y values and those predicted by the regression equation under consideration.

Consider again Boscovich’s data and suppose the goal is to judge how well the slope
800.14 and intercept 56,751 perform for all of the available data. For convenience, we
write the predicted Y value, given a value for X , as

Ŷ = b0 + b1X ,

where the notation Ŷ is traditionally used to make a distinction between the observed Y
value and the value predicted by the regression equation. So for Boscovich’s data, we
are considering the regression equation Ŷ = 56,751 + 800.14X , and the goal is to get
some overall sense of how well this equation performs. Boscovich’s suggestion was to
judge the performance of the equation based on what are called residuals, which are just
the differences between the observed Y values and those predicted by a regression line,
namely Ŷ .

In more formal terms, imagine we have n pairs of points: (X1, Y1), . . . , (Xn, Yn).
Further imagine that consideration is being given to predicting Y with X using the
equation Ŷ = b0 + b1X . Then the residuals corresponding to these n pairs of points are

r1 = Y1 − Ŷ1, r2 = Y2 − Ŷ2, . . . , rn = Yn − Ŷn.

For Boscovich’s data, taking the slope and intercept to be 800.14 and 56,751, the
resulting values for Ŷ and the residuals are:

i Yi Ŷi ri (Residuals)

1 56,751 56,737.43 13.57
2 57,037 56,953.52 83.48
3 56,979 57,073.68 –94.68
4 57,074 57,154.27 –80.27
5 57,422 57,344.10 77.90

Boscovich went on to suggest that the overall effectiveness of a regression line be
judged by the sum of the absolute values of the residuals. In particular, his suggestion
was to choose the slope and intercept to be the values b1 and b0 that minimize∑

|ri |.
That is, determine the values for b1 and b0 that minimize∑

|Yi − b1Xi − b0|. (8.2)

Today we call this least absolute value regression. Boscovich devised a numerical method
for determining the slope and intercept, it reflected an important advance over simply
averaging the slopes of all pairs of points, but major practical problems remained. It was
still relatively difficult to perform the calculations with many pairs of points, and without
a computer, computing confidence intervals cannot be done in a practical manner.
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Least squares principle

In the year 1809, about 50 years after Boscovich’s suggestion to use least absolute value
regression to determine the slope and intercept, Legendre came up with a slight variation
that would prove to be a major breakthrough. Indeed, Legendre’s modification continues
to be the most commonly used technique today. His idea was to use the sum of squared
residuals when judging how well a regression line performs as opposed to the sum of
the absolute values. So Legendre’s suggestion is to choose values for the slope (b1) and
intercept (b0) that minimize ∑

r2
i . (8.3)

That is, determine the values for b1 and b0 that minimize∑
(Yi − b1Xi − b0)2. (8.4)

This is an example of what is called the least squares principle. Initially it might seem
that this modification makes little practical difference, but it greatly simplifies the
calculations and it provides a convenient framework for developing a method for
computing confidence intervals and testing hypotheses. For convenience, let

A =
∑

(Xi − X̄ )(Yi − Ȳ)

and

C =
∑

(Xi − X̄ )2.

Then based on the least squares principle, it can be shown that the slope is
given by

b1 = A

C
(8.5)

and the intercept is given by

b0 = Ȳ− b1X̄ . (8.6)

Example 1

Table 8.2 summarizes the computational details using Boscovich’s data in
table 8.1. As indicated, A = 283.24, C = 0.3915, so the slope is estimated
to be b1 = 283.24/0.3915 = 723.5. Because Ȳ= 57,052.6 and X̄ =0.43566, the
intercept is b0 = 57,052.6 − 723.5(0.43566) = 56,737.4.

Table 8.2 Computing the least squares slope using Boscovich’s data

i Xi − X̄ Yi − Ȳ (Xi − X̄ )2 (Xi − X̄ )(Yi − Ȳ)

1 −0.43566 −301.6 0.18980 131.395
2 −0.13696 −15.6 0.01876 2.137
3 0.02914 −73.6 0.00085 –2.145
4 0.14054 21.4 0.01975 3.008
5 0.40294 369.4 0.16236 148.846
Sums 0.3915 283.24
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A conceptual issue

There are several conceptual issues associated with least squares regression that are
important to understand. Perhaps the most basic is that least squares regression is
attempting to estimate the (conditional) mean of Y given X . To elaborate on what
this means, consider a study conducted by E. Sockett and colleagues that deals with
children diagnosed with diabetes. One of the goals was to understand how a child’s
age is related to their C-peptide concentrations. Consider all children age 7 years. For
various reasons, C-peptide concentrations among these children will vary. One issue of
possible interest is determining the average C-peptide concentration among 7-year-old
children. Similarly, one might want to know the average C-peptide concentration
among all children age 8, or 7.5, and so on. If we fit a least squares line to the
data, it is assumed that the mean C-peptide concentration, given a child’s age, is
equal to β0 + β1(Age), for some unknown slope (β1) and intercept (β0) that are to
be estimated based on observations to be made. In the notation of chapter 4, another
way to write this is

E(Y |X ) = β0 +β1X ,

which says that the conditional mean of Y (C-peptide concentration in the example),
given X (age in the example) is given by β0 +β1X .

Example 2

Imagine you want to buy a house in a particular suburb of Los Angeles.
Table 8.3 shows the selling price (in dollars) of homes during the month
of May, 1998, plus the size of the home in square feet. Given that you are
interested in buying a home with 2,000 square feet, what would you expect
to pay? What would you expect to pay if the house has 1,500 square feet
instead? It can be seen that the least squares regression line for predicting
the selling price, given the size of the house, is Ŷ = 215(X ) + 38,192.
So an estimate of the average cost of a home having 1,500 square feet is
215(1,500) + 38,192 = 360,692.

Table 8.3 Sale price of homes (divided by 100,000) versus size in square feet

Home i Size (Xi) Sales price (Yi) Home i Size (Xi) Sales price (Yi)

1 2,359 510 15 3,883 859
2 3,397 690 16 1,937 435
3 1,232 365 17 2,565 555
4 2,608 592 18 2,722 525
5 4,870 1,125 19 4,231 805
6 4,225 850 20 1,488 369
7 1,390 363 21 4,261 930
8 2,028 559 22 1,613 375
9 3,700 860 23 2,746 670

10 2,949 695 24 1,550 290
11 688 182 25 3,000 715
12 3,147 860 26 1,743 365
13 4,000 1,050 27 2,388 610
14 4,180 675 28 4,522 1,290
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Example 3

We saw that for Boscovich’s data in table 8.1, the least squares regression
estimate of β1 is b1 = 723.44 and the estimate of β0 is 56,737.43. This says, for
example, that the estimated mean arc length, corresponding to a transformed
arc length of 0.4, is 723.44(.4) + 56,737.43 = 57,026.81.

In contrast, least absolute value regression, where b1 and b0 are chosen
to minimize the sum of absolute residuals (as indicated by eq. [7.2]), is
not aimed at estimating the mean of Y , given X , but rather the median
of Y .

Example 4

For Boscovich’s data, least absolute value regression yields b1 = 755.62 and
b0 = 56,686.32. So the estimated median arc length, corresponding to a
transformed arc length of 0.4, is 755.62(.4) + 56,686.32 = 56,988.57. In
this particular case, there is little difference between the estimated mean of
Y (57,026.81) versus the estimated median of Y (56,988.57), but as pointed
out in chapter 2, the mean and median can differ substantially because the
mean is sensitive to even a single outlier, while many outliers are needed to
influence the median. A similar issue occurs here and indeed the two methods
can give substantially different results.

Example 5

Figure 8.1 illustrates that least squares regression and least absolute value
regression can give substantially different results. Shown is a scatterplot of
astronomical data where the goal is to predict the light intensity of stars based
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Figure 8.1 A few outliers can drastically alter the least squares regression line. Here, the outliers
in the upper left corner result in a regression line having a slightly negative slope. If instead we
attempt to estimate the median of Y , rather than the mean, the slope is positive and better reflects
the association among the bulk of the points.
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on its surface temperature. The solid line with the negative slope is the least
squares regression line. The dashed line with the positive slope is the least
absolute value regression line.

There are several practical problems that can occur when using least squares
regression. One is that a few outliers can render the least squares regression
line a poor reflection of the association among the bulk of the points. The last
example illustrates this point. It is evident that there is a positive association
among the bulk of points in figure 8.1, yet the least squares regression line
is negative. The reason is that the four outliers in the upper left corner of
figure 8.1 have a tremendous influence on the estimated slope and intercept
(just as a single outlier can have a large impact on the mean, as indicated
in chapter 2).

A natural reaction is to check for outliers simply by examining a scatterplot,
remove any that are found, and then apply least squares regression to the
remaining data. In some situations this simple strategy is satisfactory, but in
others it is highly unsatisfactory compared to alternative strategies that might
be used. (Some of the reasons it is unsatisfactory are given in the final section
of this chapter.)

Homoscedasticity

Simply adopting the least squares principle does not address the second general
problem that confronts applied researchers: How might confidence intervals for the
slope and intercept be computed and how might hypotheses about the slope and
intercept be tested? From chapters 5 and 6, a natural guess is that if we assume
normality, a solution can be derived. But to get an exact solution, typically an
additional assumption is imposed. To describe it, consider again the diabetes study
where the goal is to estimate the C-peptide levels based on a child’s age. Consider
all children who are exactly 7 years of age. Among all these children, there will be
some variation among their C-peptide levels. That is, simply knowing that a child is
7 years old does not tells us exactly what their C-peptide level might be; some will
have a higher level than others. Similarly, among all 8-year-old children there will be
variation among their C-peptide levels, and the same is true for all 9-year-old children
as well.

Homoscedasticity, in the context of regression, refers to a situation where the variance
of C-peptide levels at age 7 is the same as it is at age 8, or 9, or any age we might pick.
If somehow we could measure millions of children at different ages, a plot of the data
might look something like figure 8.2 for children who are age 7, 8 or 9. Notice that
the variation among the Y values is the same regardless of which age we consider. This
is in contrast to heteroscedasticity, where the variation differs at two or more age levels.
Figure 8.3 illustrates heteroscedasticity.

In a more general and more formal manner, homoscedasticity can be described as
follows. Consider any two variables X and Y and let VAR(Y |X ) be the conditional
variance of Y , given X . In the diabetes example, Y is C-peptide levels and X is
age, so VAR(Y |8), for example, represents the variance of C-peptide levels among all
8-year-old children. Homoscedasticity means that regardless of what the value for X
happens to be, the variance will be the same. Usually, this common (unknown) variance
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Figure 8.2 An illustration of homoscedasticity: The variation among the Y values does not
depends on the value of X .

is represented by σ 2. So homoscedasticity means that regardless of what X we consider,
VAR(Y |X ) = σ 2.

Estimating the assumed common variance

If there is homoscedasticity, how do we estimate the common variance? That is, how
do we estimate σ 2? When using the least squares regression the estimate typically
used is

s2Y .X = 1

n − 2

∑
r2
i . (8.7)

That is, estimate the assumed common variance by summing the squared residuals and
dividing by n − 2 (the number of paired observations minus 2).
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Figure 8.3 An illustration of heteroscedasticity: The variation among the Y values does depends
on the value of X .
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Example 6

For Boscovich’s data in table 8.1, the residuals based on the least squares
estimate of the slope and intercept are:

13.57393, 83.48236, −94.68105, −80.27228, 77.89704.

Squaring each of these values and adding the results yields
∑

r2
i = 28,629.64.

There are five pairs of observations (n = 5), so the estimate of the assumed
common variance is s2Y .X = 28,629.64/3 = 9,543.21.

Extrapolation can be dangerous

Care must be taken when making predictions about Y when using some value for X that
lies outside the range of values used to obtain the slope and intercept. If you want to make
a prediction about Y using some value for X that is less than any value used to compute
the least squares slope and intercept, highly inaccurate results might be obtained. In a
similar manner, making predictions for X larger than any value used to compute b1 and
b0, again highly inaccurate results might result.

Example 7

In example 2 (this section), the sizes of homes range between 688 and 4,870
square feet. What would you estimate the cost of a lot to be with no home on
it? From example 2, the least squares regression line is Ŷ = 215(X ) + 38,192.
An empty lot corresponds to X = 0 square feet. The temptation, based on
the least squares regression line, might be to estimate the cost of the lot to be
Ŷ = 215(0)+38,192 = 38,192. This is an absurd result, however, because for
this particular suburb, it is impossible to find any lot this inexpensive.

Comments about assuming the regression line is straight

Caution must be exercised when assuming that a regression line is straight. Close
examination of data often reveals that over some intervals of the X values, a linear
association between X and Y is a reasonable approximation. That is, a straight line
provides a reasonable summary of the data. But over larger ranges, often a straight line
becomes unsatisfactory. The next example illustrates this point and provides another
example of why extrapolation can be dangerous.

Example 8

Vitamin A is necessary for good health. With too little vitamin A in the diet,
serious health problems will occur. Imagine you perform a study relating intake
of vitamin A to some measure of good health and find a relationship that appears
to be approximately linear. For illustrative purposes, suppose the largest amount
of vitamin A used in the study is 4,000 units. Is it reasonable to assume that
doubling the amount would have positive health benefits? The answer is, not
necessarily. Indeed, if we keep increasing the amount of vitamin A, eventually
poor health would result. In fact, a sufficiently high dose of vitamin A can
cause death. There are two issues here. One is extrapolation because the study
is limited to 4,000 units. The other problem is that over short intervals, a linear
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association between vitamin A and health is reasonable. But over a sufficiently
wide range of vitamin A intake, the association becomes nonlinear.

Problems
1. For the following pairs of points, verify that the least square regression line is

Ŷ = 1.8X − 8.5.

X : 5,8,9,7,14

Y : 3,1,6,7,19.

2. Compute the residuals using the results from problem 1. Verify that if you square
and sum the residuals, you get 47, rounding to the nearest integer.

3. Verify that for the data in problem 1, if you use Ŷ = 2X − 9, the sum of the
squared residuals is larger than 47. Why would you expect a value greater than 47?

4. Suppose that based on n = 25 values, s2x = 12 and
∑

(Xi − X̄ )(Yi − Ȳ) = 144. What
is the slope of least squares regression?

5. The following table reports breast cancer rates plus levels of solar radiation (in
calories per day) for various cities in the United States. Fit a least squares regression
to the data with the goal of predicting cancer rates and comment on what this line
suggests.

Daily Daily
City Rate calories City Rate calories

New York 32.75 300 Chicago 30.75 275
Pittsburgh 28.00 280 Seattle 27.25 270
Boston 30.75 305 Cleveland 31.00 335
Columbus 29.00 340 Indianapolis 26.50 342
New Orleans 27.00 348 Nashville 23.50 354
Washington, DC 31.20 357 Salt Lake City 22.70 394
Omaha 27.00 380 San Diego 25.80 383
Atlanta 27.00 397 Los Angeles 27.80 450
Miami 23.50 453 Fort Worth 21.50 446
Tampa 21.00 456 Albuquerque 22.50 513
Las Vegas 21.50 510 Honolulu 20.60 520
El Paso 22.80 535 Phoenix 21.00 520

6. For the following data, compute the least squares regression line for predicting gpa
given SAT.

SAT: 500 530 590 660 610 700 570 640
gpa: 2.3 3.1 2.6 3.0 2.4 3.3 2.6 3.5

7. Compute the residuals for the data used in the previous problem and verify that
they sum to zero.
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8. For the following data, compute the least squares regression line for predicting Y
from X .

X: 40 41 42 43 44 45 46
Y: 1.62 1.63 1.90 2.64 2.05 2.13 1.94

9. In problem 5, what would be the least squares estimate of the cancer rate given a
solar radiation of 600? Indicate why this estimate might be unreasonable.

10. Maximal oxygen uptake (mou) is a measure of an individual’s physical fitness. You
want to know how mou is related to how fast someone can run a mile. Suppose
you randomly sample six athletes and get

mou (milliliters/kilogram): 63.3 60.1 53.6 58.8 67.5 62.5

time (seconds): 241.5 249.8 246.1 232.4 237.2 238.4

Compute the least squares regression line and comment on what the results
suggest.

11. Verify that for the following pairs of points, the least squares regression line has a
slope of zero. Plot the points and comment on the assumption of that the
regression line is straight.

X : 1 2 3 4 5 6

Y : 1 4 7 7 4 1.

12. Repeat the last problem, only for the points

X : 1 2 3 4 5 6

Y : 4 5 6 7 8 2.

13. Vitamin A is required for good health. However, one bite of polar bear liver
results in death because it contains a high concentration of vitamin A. Comment
on this fact in terms of extrapolation.

14. Sockett et al. (1987) report data related to patterns of residual insulin secretion in
children. A portion of the study was concerned with whether age can be used to
predict the logarithm of C-peptide concentrations at diagnosis. The observed
values are

Age (X): 5.2 8.8 10.5 10.6 10.4 1.8 12.7 15.6 5.8 1.9 2.2 4.8 7.9 5.2 0.9
11.8 7.9 1.5 10.6 8.5 11.1 12.8 11.3 1.0 14.5 11.9 8.1 13.8 15.5 9.8 11.0
12.4 11.1 5.1 4.8 4.2 6.9 13.2 9.9 12.5 13.2 8.9 10.8

C-peptide (Y): 4.8 4.1 5.2 5.5 5.0 3.4 3.4 4.9 5.6 3.7 3.9 4.5 4.8 4.9 3.0
4.6 4.8 5.5 4.5 5.3 4.7 6.6 5.1 3.9 5.7 5.1 5.2 3.7 4.9 4.8 4.4 5.2 5.1
4.6 3.9 5.1 5.1 6.0 4.9 4.1 4.6 4.9 5.1

Create a scatterplot for these data and consider whether a linear rule for predicting
Y with X is reasonable.

15. For the data in the last problem, use a computer to verify that a least squares
regression line using only X values (age) less than 7 yields b1 = 0.247 and
b0 = 3.51. Verify that when using only the X values great than 7 you get b1 = .009
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and b0 = 4.8. What does this suggest about using a linear rule for all of
the data?

16. For the data in table 8.3, the sizes of the corresponding lots are:

18,200 12,900 10,060 14,500 76,670 22,800 10,880 10,880 23,090 10,875 3,498
42,689 17,790 38,330 18,460 17,000 15,710 14,180 19,840 9,150 40,511 9,060
15,038 5,807 16,000 3,173 24,000 16,600.

Use a computer to verify that the least squares regression line for estimating the
selling price, based on the size of the lot, is Ŷ = 11X + 436,834.

8.2 Inferences about the slope and intercept

Imagine that the least squares estimate of the slope (b1) and intercept (b0) are computed
as described in the previous section. In general, these estimates will differ from the
true (population) values, roughly meaning the values for the slope and intercept we
would get if all individuals of interest could be measured. Again label the true slope and
intercept as β1 and β0, respectively. In previous chapters we saw how we might make
inferences about the population mean μ based on the data available to us. In particular,
methods for computing confidence intervals and testing hypotheses were described. The
goal in this section is to extend these methods so as to be able to test hypotheses and
compute confidence intervals when dealing with the slope and intercept of a regression
line. For example, based on the observations available to us, is it reasonable to rule out
the possibility that the true (population) slope, β1, is equal to zero? Is it reasonable to
conclude it is at least 1.2?

Classic assumptions

The conventional and most commonly used method for making inferences about the
slope and intercept assumes that the Y values corresponding to any X have a normal
distribution. In the diabetes study, for example, this means that C-peptide levels among
7-year-old children have a normal distribution, as do the the C-peptide levels among
8-year-old children or any other age we might pick. A second assumption is that there
is homoscedasticity. And a third assumption is that if we observe n pairs of points, say
(X1, Y1), . . . , (Xn, Yn), then the Y values form a random sample. So in particular, the
Y1, . . . ,Yn values are independent.

Estimating the standard errors

With these assumptions in hand, it can be shown that when estimating the slope
with the least squares estimator b1 given by equation (8.5), the squared standard error
of b1 is

σ 2∑
(Xi − X̄ )2

(8.8)

That is, b1 has a sampling distribution just as the sample mean has a sampling distribution
as described in chapter 5. So equation (8.8) says that if we were to repeat an experiment
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millions of time (and in fact infinitely many times), resulting in millions of estimates
of the slope, the variance among these slopes would be given by equation (8.8). In
practice, we do not know σ 2, but we can estimate σ 2 with s2Y .X , in which case the
squared standard error of b1 is estimated with

s2Y .X∑
(Xi − X̄ )2

(8.9)

Computing a confidence interval for the slope and
intercept

When there is homoscedasticity, random sampling, and when for any X , the corre-
sponding Y values have a normal distribution, exact confidence intervals for the slope
(β1) and intercept (β0) can be computed using Student’s t-distribution introduced in
chapter 5. Now the degrees of freedom are ν = n − 2, the confidence interval for the
slope is

b1 ± t

√
s2Y .X∑

(Xi − X̄ )2
, (8.10)

where t is the 1 − α/2 quantile of Student’s t-distribution with ν = n − 2 degrees of
freedom. (The value of t is read from table 4 in appendix B.) The confidence interval
for the intercept is

b0 ± t

√
s2Y .X

∑
X 2

i

n
∑

(Xi − X̄ )2
. (8.11)

Testing hypotheses

One way of testing

H0 : β1 = 0, (8.12)

the hypothesis that the slope is zero, is to compute a confidence interval for β1 using
equation (8.10) and reject if this interval does not contain the hypothesized value, 0.
Alternatively, you can compute

T = b1

√∑
(Xi − X̄ )2

s2Y .X

(8.13)

and reject if

|T | ≥ t,

where again t is the 1−α/2 quantile of Student’s t-distribution with ν = n−2 degrees
of freedom. Box 8.1 summarizes the assumptions and computations.
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BOX 8.1 Computing confidence intervals and testing hypotheses using least squares
regression.

Assumptions

• For any X value, the corresponding Y values have a normal distribution with mean
β0 +β1X .

• There is homoscedasticity.
• For the n pairs of observations you observe, (X1, Y1), . . . , (Xn, Yn), the Y values are

independent and represent a random sample.

Confidence Intervals

The 1 −α confidence interval for the slope is

b1 ± t

√√√√ s2
Y .X∑

(Xi − X̄ )2
.

where t is the 1−α/2 quantile of Student’s t -distribution having ν = n − 2 degrees of
freedom and read from table 4 in appendix B. The 1 −α confidence interval for β0 is

b0 ± t

√√√√ s2
Y .X

∑
X 2

i

n
∑

(Xi − X̄ )2
.

Hypothesis Testing

Reject H0 : β1 = 0 if |T | > t where

T = b1

√√√√∑
(Xi − X̄ )2

s2
Y .X

.

Reject H0 : β0 = 0 if |T | > t where now

T = b0

√√√√n
∑

(Xi − X̄ )2

s2
Y .X

∑
X 2

i

.

Example 1

A general goal of a study conducted by G. Margolin and A. Medina was
to examine how children’s information processing is related to a history of
exposure to marital aggression. Results for two of the measures considered are
shown in table 8.4. The first, labeled X , is a measure of marital aggression that
reflects physical, verbal and emotional aggression during the last year, and Y
is a child’s score on a recall test. If aggression in the home (X ) has a relatively
low value, what would we expect a child to score on the recall test (Y )? If
the measure of aggression is high, now what would we expect the recall test
score to be? As aggression increases, do test scores tend to decrease? Can we
be reasonably certain that there is some association between marital aggression
and scores on the recall test?
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Table 8.4 Measures of marital aggression and recall test scores

Family i Aggression Xi Test Score Yi Family i Aggression Xi Test Score Yi

1 3 0 25 34 2
2 104 5 26 14 0
3 50 0 27 9 4
4 9 0 28 28 0
5 68 0 29 7 4
6 29 6 30 11 6
7 74 0 31 21 4
8 11 1 32 30 4
9 18 1 33 26 1

10 39 2 34 2 6
11 0 17 35 11 6
12 56 0 36 12 13
13 54 3 37 6 3
14 77 6 38 3 1
15 14 4 39 3 0
16 32 2 40 47 3
17 34 4 41 19 1
18 13 2 42 2 6
19 96 0 43 25 1
20 84 0 44 37 0
21 5 13 57 11 2
22 4 9 46 14 11
23 18 1 47 0 3
24 76 4

If there is no association between aggression measures and recall test scores,
then the slope of the least squares regression line is zero. That is, the hypothesis
H0: β1 = 0 is true. Suppose the goal is to test this hypothesis so that the
probability of a Type I error is α = .05. Then 1−α/2 = .975. There are n = 47
pairs of observations, so the degrees of freedom are ν = 47 − 2 = 45, and the
critical value (read from table 4) is t = 2.01. The least squares estimate of the
slope is b1 = −0.0405, and it can be seen that

∑
(X1 − X̄ )2 = 34,659.74 and

that the estimate of the assumed common variance is s2Y .X = 14.15, so the test
statistic is

T = −0.0405

√
34,659.74

14.5
= −1.98.

Because |T | = 1.98 < 2.01, fail to reject.

Interpreting standard computer output

A practical matter is learning how to read the output of commonly used software. The
following examples are intended to help achieve this goal.

Here is a portion of the output you might encounter when using Minitab:

Predictor Coef Stdev.Coef t-ratio
Constant 22.47 10.22 2.20
C1 0.7546 0.1417 5.32
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In the first column we see Constant and C1. Constant refers to the intercept, which in
our notation is β0. C1 is the name of the minitab variable that happens to contain the
data for the predictor, X . In the next column, headed by Coef, you see 22.47. This is
the estimate of the intercept. That is, b0 = 22.47. Under 22.47 you see 0.7546, which is
b1, the estimate of the slope. The next column gives the corresponding estimates of the
standard errors. Finally, the last column, headed by t-ratio, gives the values of the test
statistic, T , used to test H0 : β0 = 0 and H0 : β1 = 0, respectively. In the example, the
test statistic for H0 : β1 = 0 is T = 5.32.

SPSS reports the results just described in the following manner:

Variable B SE B T Sig T
X 0.7546 0.1417 5.32 0.000
Constant 22.47 10.22 2.20 0.033

Again the term constant in the first column refers to the intercept, and here X
refers to the predictor. (In reality, you would not see X in this column, but rather the
name of the SPSS variable containing the data used to predict Y .) The column headed
by B reports the least squares estimates, and the values under SE B are the standard
errors. The next column gives the value of the test statistics used to test H0 : β1 = 0 and
H0 : β0 = 0. The final column gives the p-values associated with the test statistics. The
first p-value is 0.000 indicating that you would reject H0 : β1 = 0 even with α values
less than 0.001. If, for example, you want the Type I error to be .01, you would reject
H0 : β1 = 0. As for H0 : β0 = 0, the significance level is .033, meaning that the smallest
α value for which you would reject is .033. Thus, you would reject if you want the Type
I error probability to be .05, but you would not reject if you wanted the Type I error
probability to be .01.

Least squares multiple regression

The focus has been on situations where there is a single predictor, but often there
is interest in taking into account two or more predictors. For example, how is the
the average fuel consumption of a car related to its weight and horsepower? So here
we have two predictors (weight and horsepower), what are often called explanatory
variables or independent variables, as opposed to the quantity to be predicted (average
fuel consumption), which is often called the dependent variable or outcome variable.3

What happens to this association if, in addition to weight and horsepower, we also
consider the speed at which the car is driven? How are grades in law school related
to undergraduate grade-point average and scores on the LSAT (law school admission
test)? What is the association among the heights of college students and their parents?

The classic approach when addressing these questions is based on an extension of
the least squares regression method already covered. The usual assumption is that if we
are told the values for the predictors, the mean of Y is given by a linear combination of
their values. In the law school example, this means that the average grade point in law
school is given by

β0 +β1(GPA) +β2(LSAT),

3. It is usually non-statisticians who all predictors independent variables, a convention that some
statisticians prefer not to follow.
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where GPA is a student’s undergraduate grade-point average, and the goal is to use data
to determine values for the intercept (β0) and the two slopes (β1 and β2). More generally
and more formally, if we have p predictors, X1, . . . ,Xp, then the expected (mean) value
of Y , given X1, . . . ,Xp, is typically assumed to be

E(Y |X1, . . . ,Xp) = β0 +β1X1 +β2X2 +·· ·+βpXp. (8.14)

The least squares principle can be extended to the situation at hand in a
straightforward manner. This just means that if we observe the n vectors of observations

(X11, . . . ,X1p,Y1), . . . , (Xn1, . . . ,Xnp,Yn),

the unknown values of β0,β1, · · · ,βp are estimated with the values b0,b1, · · · ,bp that
minimize ∑

(Yi − b0 − b1Xi1 · · ·− bpXip)2, (8.15)

respectively. The tedious calculations for determining the values b0,b1, · · · ,bp in this
manner can be performed by all of the software packages mentioned in chapter 1.
(For example, when using R or S-PLUS, the function lsfit can be used.) The
computational details are not important for present purposes, so they are not described.

Hypothesis testing

A common goal is to test the hypothesis that all of the slope parameters are zero. In
symbols, the goal is to test

H0 : β1 = ·· · = βp = 0. (8.16)

The classic strategy for accomplishing this goal is based on assumptions similar to the
single predictor case (p = 1). In particular, regardless of the value of the predictor
variables, X1, . . . ,Xp, the corresponding Y values are assumed to have a normal
distribution. (In more formal terms, the conditional distribution of Y , given X1, . . . ,Xp,
is normal.) An additional assumption is homoscedasticity. That is, the variance of the
Y values does not depend on what the value of predictor variables happens to be. Let
Ŷ = b0 + b1X1 + ·· · + bpXp be the least squares regression line. That is, the values

b0, . . . ,bp minimize
∑

(Yi − Ŷi)
2, the sum of the squared residuals. The squared multiple

correlation coefficient is

R2 = 1 −
∑

(Yi − Ŷi)
2∑

(Yi − Ȳ)2
. (8.17)

The classic method for testing the hypothesis given by Equation (8.16) is based on the
test statistic

F =
(

n − p − 1

p

)(
R2

1 − R2

)
. (8.18)

Under normality and homoscedasticity, F has what is called an F distribution with
ν1 = p and ν2 = n−p−1 degrees of freedom. For situation at hand, the null hypothesis
is rejected if F ≥ f1−α , the 1 − α quantile of an F distribution with ν1 and ν2 degrees
of freedom. If the Type I error is to be .1, .05, .025, or .01, the value of f1−α can read
from tables 5, 6, 7 and 8, respectively, in appendix B. For example, with α = .05, ν1 = 3,
ν2 = 40, table 6 indicates that the .95 quantile is f.95 = 2.84. That is, there is a .05
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probability of getting an F value greater than 2.84 when in fact the null hypothesis is
true and the underlying assumptions are true as well. For α = .01, table 8 says that the
.99 quantile is 4.31. This means that if you reject when F ≥ 4.31, the probability of a
Type I error will be .01, assuming random sampling, normality and homoscedasticity.
All of the commercial software mentioned in chapter 1 contain built-in routines for
computing F and determining an appropriate critical value.

Example 2

Imagine a study aimed at predicting depression in young adults. Suppose there
are three predictors and based on a sample of 63 participants, R2 = .3, and it
is desired to test the hypothesis that all of the slope parameters are zero. Then
n = 63, p = 3, so

F =
(

63 − 3 − 1

3

)(
.3

1 − .3

)
= 8.4,

the degress of freedom are ν1 = 3, ν2 = 60, from table 8 in appendix B, f.95 =
4.13, and because 8.4 > 4.13, reject and conclude that not all of the slopes are
equal to zero.

Problems
17. Given that b1 = −1.5, n = 10, s2Y .X = 35 and

∑
(Xi − X̄ )2 = 140, assume

normality and homoscedasticity and find a .95 confidence interval for β1.

18. Repeat the previous problem, only find a .98 confidence interval.

19. Based on results covered in previous chapters, speculate about why the confidence
intervals computed in the the last two problems might be inaccurate. (Comments
relevant to this issue will be covered in section 8.4.

20. Assume normality and homoscedasticity and suppose n = 30,
∑

X1 = 15,∑
Yi = 30,

∑
(X1 − X̄ )(Yi − Ȳ) = 30, and

∑
(Xi − X̄ )2 = 10. Determine the least

squares estimates of the slope and intercept.

21. Assume normality and homoscedasticity and suppose n = 38, Ȳ = 20,∑
X 2

i = 1922,
∑

(X1 − X̄ )(Yi − Ȳ) = 180,
∑

(Xi − X̄ )2 = 60 and s2Y .X = 121.

(a) Determine the least squares estimates of the slope and intercept.
(b) Test the hypothesis H0: β0 = 0 with α = .02
(c) Compute a .9 confidence interval for β1.

22. Assume normality and homoscedasticity and suppose n = 41, Ȳ = 10, X̄ = 12,∑
(X1 − X̄ )(Yi − Ȳ) = 100,

∑
(Xi − X̄ )2 = 400 and s2Y .X = 144.

(a) Determine the least squares estimates of the slope and intercept.
(b) Compute a .9 confidence interval for β1.

23. Assume normality and homoscedasticity and suppose n = 18, b1 = 3.1,∑
(Xi − X̄ )2 = 144 and s2Y .X = 36. Compute a .95 confidence interval for β1.

Would you conclude that β1 > 2?

24. Assume normality and homoscedasticity and suppose n = 20, b0 = 6,
∑

X 2
i = 169,

s2Y .X = 25 and
∑

(Xi − X̄ )2 = 90. Compute a .95 confidence interval for β0.
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8.3 Correlation

The so-called product moment correlation coefficient is

r = b1
sx
sy

, (8.19)

where b1 is the least squares estimate of the regression slope, and sx and sy are the sample
standard deviations associated with the X and Y variables, respectively. An alternative
way of computing r is

r = A√
CD

, (8.20)

where

A =
∑

(Xi − X̄ )(Yi − Ȳ),

C =
∑

(Xi − X̄ )2

and

D =
∑

(Yi − Ȳ)2.

The value of r is commonly used to summarize the association between two variables
and dates back to at least the year 1846 when it was studied by A. Bravais. During the
late nineteenth century, Galton made a considerable effort at applying the correlation
coefficient. And about this time, Pearson solved some technical problems and provided
a mathematical account that helped sway many natural scientists and mathematicians
that it has value in the analysis of biological observations. Due to Pearson’s efforts, r is
often called Pearson’s correlation.

The coefficient of determination

There is yet one more way to relate Pearson’s correlation to least squares regression.
Note that if for any individual we do not know X , a natural guess about the value Y
for this individual is the average of the Y values, Ȳ. In the diabetes data, for example,
if we were given no information about a child’s age or C-peptide level, and we want to
guess what the child’s C-peptide level happens to be, a reasonable guess would be Ȳ, the
average of all the C-peptide levels available to us. One way of measuring the accuracy
of this estimate among the n individuals under study is with

∑
(Yi − Ȳ)2, the sum of

squared differences between the observed Y values and the mean, Ȳ. Recall that this sum
is the numerator of the sample variance of the Y values. In a similar manner,

∑
(Yi − Ŷi)

2

reflects how well we can predict Y using the least squares regression line and X . So the
improvement in estimating Y with Ŷ over Ȳ is the difference between these two sums:∑

(Yi − Ȳ)2 −
∑

(Yi − Ŷi)
2.

So the reduction in error using Ŷ , relative to using Ȳ, is

r2 =
∑

(Yi − Ȳ)2 −∑
(Yi − Ŷi)

2∑
(Yi − Ȳ)2

(8.21)

the squared value of Pearson’s correlation. The quantity r2, is called the coefficient of
determination, which reflects the proportion of variance accounted for using a least
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squares regression line and X to predict Y . In the diabetes study, for example, r2 = .151
meaning that when using a straight regression line to predict C-peptide levels, given a
child’s age, 15% of the variation among C-peptide levels is accounted for based on a
child’s age. Because r has a value between −1 and 1, the coefficient of determination
has a value between 0 and 1.

Here is another way of describing the coefficient of determination. The variance of
the C-peptide levels is .519. The variance of the residuals is .441. So the fraction of the
variance not accounted for is .441/.519 = .850, or 85%. The fraction that is accounted
for is 100%−85%=15%, which is the value of r2.

Yet another way of describing the coefficient of determination is that it reflects the
variation in the predicted Y values (the Ŷ values), based on the least squares regression
line, relative to the variation in the Y values. In the diabetes example, it can be seen
that the variance of the predicted C-peptide levels values is 0.0783. The variance in the
observed C-peptide levels is 0.5192, so the proportion of variance accounted for is
0.0783/0.5192 = .15, which is again equal to r2.

The population correlation ρ, and its basic properties

Before elaborating on the use and interpretation of r , it is noted that there is a population
analog of r , typically written as ρ, where ρ is a lower case Greek rho. Roughly, ρ is the
value of r if all individuals of interest could be measured. Usually, not all individuals can
be measured, so we estimate ρ with r (in much the same way we estimate the population
mean μ with the sample mean X̄ ). It can be shown that the population product moment
correlation coefficient, ρ, has a value between −1 and 1. More succinctly,

−1 ≤ ρ ≤ 1.

A fundamental property of the population correlation coefficient is that if X and Y are
independent, then ρ = 0. This property is of practical importance because if persuasive
empirical evidence, based on r , indicates that ρ �= 0, then it is reasonable to conclude
that X and Y are dependent.

It is not necessarily true, however, that if ρ = 0, then X and Y are independent.
There are, in fact, a variety of ways in which ρ can have a value at or close to zero even
when there is, in some sense, a strong association. For example, if Y = X 2, there is an
exact association between X and Y , yet ρ = 0. This illustrates the general result that
curvature (simply meaning that the regression line is not straight) can affect ρ. But even
when there is a linear association between X and Y , yet ρ = 0, it is possible to have
dependence. In the context of least squares regression, if there is heteroscedasticity, yet
the slope of the regression is zero, then ρ = 0, yet knowing X provides information
about the possible values for Y .

Testing the hypothesis of a zero correlation

The classic method for testing

H0 : ρ = 0, (8.22)

the hypothesis that the population value of Pearson’s correlation is zero, is based on the
assumption that X and Y are independent and that X or Y has a normal distribution.
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The test statistic is

T = r

√
n − 2

1 − r2
. (8.23)

If the null hypothesis is true and the assumptions are met, then T has a Student’s
t-distribution with n−2 degrees of freedom. That is, if the goal is to have the probability
of a Type I error equal to α, reject if |T | ≥ t , where t is the 1 − α/2 quantile of
Student’s t-distribution, which is read from table 4 in appendix B.

Example 1

For the aggression data in table 8.3, n = 47, r = −0.286, so ν = 45 and

T = −0.286

√
45

1 − (−0.286)2
= −2.

With α = .05, 1−α/2 = .975, and from table 4 in appendix B, the critical value
is t = 2.01, and because |− 2| < 2.01, we fail to reject. That is, we are unable
to conclude that the aggression scores and recall test scores are dependent with
α = .05.

The intelligent use and interpretation of the hypothesis testing method just
described requires a closer look at the underlying assumptions. It can be shown that if two
variables are independent, then there is homoscedasticity. Moreover, the assumption of
homoscedasticity plays a crucial role in the mathematical derivation of the test statistic T .
If there is heteroscedasticity, then the test statistic T is using the wrong standard error,
which can have practical implications when interpreting data. For example, it is possible
to have ρ = 0, yet the probability of rejecting increases as the sample size gets large. That
is, regardless how large the sample size might be, you do not control the probability of
a Type I error when using T to test the hypothesis that ρ = 0. However, if X and Y are
independent, the correct standard error is being used and now the probability of a Type
I error can be controlled reasonably well. So, in a very real sense, the test statistic T is
best described as a test of the hypothesis that X and Y are independent, rather than a
test of the hypothesis that ρ = 0. Using the wrong standard error also can affect power,
the probability of detecting dependence when it exists.

Interpreting r

A good understanding of r requires an understanding not only of what it tells us about
an association, but also what it does not tell us. That is, care must be used not to read
more into the value of r than is warranted.

Interpreting r is complicated by the fact that various features of the data under study
affect its magnitude. Five such features are described here.

Assuming that there is a linear association between and X and Y , the first feature
is the magnitude of the residuals. Generally, large residuals tend to result in low values
for r . The left panel of figure 8.4 shows a scatterplot of points with r = .92. The right
panel shows another scatterplot of points, which are centered around the same line as
in the left panel, only they are farther from the line. Now r = .42.
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Figure 8.4 An illustration that the magnitude of the Pearson’s correlation is influenced by the
magnitude of the residuals.

A second feature that affects the magnitude of r is the magnitude of the slope
around which the points are centered (e.g., Barrett, 1974; Loh, 1987). The closer the
slope happens to be to zero, the lower will be the value of r .

A third feature of data that affects r is outliers. For the star data in figure 8.1,
r = −.21, which is consistent with the negative slope associated with the least squares
regression line. But we have already seen that for the bulk of the points, there is a
positive association. Generally, a single unusual value can have a tremendous impact
on the value of r resulting in a poor reflection of the association among the majority
of points. A result is that regardless of how many observations we might have, slight
departures from normality can substantially alter r .

A fourth is restricting the range of the X or Y values. For the star data in figure 8.1,
r = −.21. If we restrict the range of the X values by considering only X values greater
than 3.6, which eliminates the obvious outliers, now r = .61. Restricting the range of
X or Y can lower r as well.

A fifth feature, already mentioned, is curvature.
In summary, the following features of data influence the magnitude of Pearson’s

correlation:

• The slope of the line around which points are clustered
• The magnitude of the residuals
• Outliers
• Restricting the range of the X values, which can cause r to go up or down
• Curvature.

Use caution when rejecting the hypothesis that Pearson’s
correlation is equal to zero

If the hypothesis that ρ = 0 is rejected, a common interpretation is that if r is greater
than 0, than generally, as X increases, Y increases as well. Similarly, if r < 0, a natural
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speculation is that as X increases, Y decreases. This interpretation is consistent with the
least squares regression line because the slope is given by

b1 = r
sy

sx
.

So if r > 0, the least squares regression line has a positive slope, and if r < 0, the
reverse is true. Perhaps this interpretation is usually correct, but this should not be taken
for granted. In figure 8.1, for example, r is negative, but generally, as X increases, Y
increases too. Many methods have been derived to get a more exact understanding of
how X and Y are related. One simple recommendation is to always plot the data, as well
as the least squares regression line, as opposed to relying completely on the value of r
to interpret how two variables are related. At a minimum, the least squares regression
line should look reasonable when viewed within a plot of the data, but even if it gives a
reasonable summary of the data, there can be a considerable practical advantage to using
an alternative regression estimator for reasons noted in the next section.

There is a connection between the squared multiple correlation coefficient, R2,
given by equation (8.17), and Pearson’s correlation that should be mentioned. R2 can be
seen to be the squared Pearson correlation between the observed Y values (the Yi values)
and the predicted Y values based on the least squares regression line (the Ŷi values).

A summary of how to use r

To summarize, Pearson’s correlation, r , has two useful functions. First, it can be used to
establish dependence between two variables by testing and rejecting the hypothesis that
ρ is equal to zero. Second, r2 (the coefficient of determination), reflects the extent to
which the least squares regression estimate of Y , namely Ŷ , improves upon the sample
mean, Ȳ, in terms of predicting Y .

However, even if r2 is close to one, this does not necessarily mean that the least
squares estimate of Y is performing well. It might be, for example, that both Ŷ and Ȳ
perform poorly. And even when Pearson’s correlation is very close to one, this does not
necessarily mean that the least squares regression line provides a highly accurate estimate
of Y , given X . Finally, Pearson’s correlation might be relatively ineffective at detecting
dependence compared to more modern methods that are now available.

Example 2

S. Mednick conducted a study aimed at understanding the association among
some variables related to schizophrenia. With two of the variables he got a
Pearson correlation very close to 1. Momentarily he thought he had a major
breakthrough. Fortunately, he checked a scatterplot of his data and found an
obvious outlier. This one outlier resulted in r being close to one, but with the
outlier removed, no association was found.

Establishing independence

A point worth stressing is that rejecting the hypothesis that ρ = 0 provides a good
empirical argument that there is dependence, but failing to reject is not a compelling
reason to conclude that two variables are independent. More modern methods can be
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sensitive to types of dependence that are difficult to discover when using Pearson’s
correlation only.

Problems
25. Given the following quantities, find the sample correlation coefficient, r , and test

H0 : ρ = 0 at the indicated level.

(a) n = 27,
∑

(Yi − Ȳ)2 = 100,
∑

(Xi − X̄ )2 = 625,∑
(Xi − X̄ )(Yi − Ȳ) = 200, α = .01.

(b) n = 5,
∑

(Yi − Ȳ)2 = 16,
∑

(Xi − X̄ )2 = 25,∑
(Xi − X̄ )(Yi − Ȳ) = 10, α = .05.

26. The high school grade-point average (X ) and college grade-point (Y ) for 29
randomly sampled college freshman yielded the following results:∑

(Yi − Ȳ)2 = 64,
∑

(Xi − X̄ )2 = 100,
∑

(Xi − X̄ )(Yi − Ȳ) = 40. Test H0 : ρ = 0
at the .1 level and interpret the results.

27. For the previous problem, answer the following questions.

(a) Is it reasonable to conclude that the least squares regression line has
a positive slope?

(b) Is it possible that despite the value for r , as high school grade-point
averages increase, college grade-point averages decrease? Explain
your answer.

(c) What might you do, beyond considering r , to decide whether it is
reasonable to conclude that as high school grade-point averages
increase, college grade-point averages increase as well?

28. Using a computer, determine what happens to the correlation between X and Y if
the Y values are multiplied by 3.

29. Repeat the previous problem, only determine what happens to the slope of the
least squares regression line.

30. Consider a least squares regression line Y = .5X + 2 + e, and where X and e are
independent and both have a standard normal distribution. What happens to the
correlation between X and Y if instead Y = .5X +2+2e? Hint: What happens to
the residuals?

31. The numerator of the coefficient of determination is
∑

(Yi − Ȳ)2 −∑
(Yi − Ŷi)

2.
Based on the least squares principle, why is this value always greater than or equal
to zero?

32. Imagine a study where the correlation between some amount of an experimental
drug and liver damage yields a value for r close to zero and the hypothesis H0:
ρ = 0 is not rejected. Why might it be unreasonable to conclude that the two
variables under study are independent?

33. Suppose r2 = .95.

(a) Explain why this does not provide convincing evidence that the least
squares line provides a good fit to a scatterplot of the points.
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(b) If the least squares line provides a poor fit, what does this say about using
Ŷ versus Ȳ to estimate Y .

34. Imagine a situation where points are removed for which the X values are judged
to be outliers. Note that this restricts the range of X values. Without looking at
the data, can you predict whether Pearson’s correlation will increase or decrease
after these points are removed?

8.4 Modern advances and insights

Least squares regression and the conventional method for testing hypotheses, outlined in
box 8.1, reflect a major advance in our attempts to study associations. In some situations
they serve us well, but the reality is that serious practical problems can occur. The goal
here is to outline these problems and then comment briefly on how they might be
addressed.

Consider a situation where the normality assumption is valid but the assumption
of a common (conditional) variance is not. That is, there is heteroscedasticity.
For the housing data, for example, imagine that the variation among the selling
prices differs depending on how many square feet a house happens to have. For
instance, the variation among houses having 1,500 square feet might differ from
the variation among homes having 2,000 square feet. Then the standard method
for testing hypotheses about the slope, described in box 8.1, might provide poor
control over the probability of a Type I error and the corresponding confidence
interval can be highly inaccurate. If the distributions are not normal, the situation
gets worse. In some cases, the actual probability of a Type I error can exceed .5
when testing at the α = .05 level. One fundamental reason for practical problems
is that when there is heteroscedasticity, the wrong standard error is being used
in box 8.1.

There are methods for testing the hypothesis that all of the conditional variances
have a common value, but it is unknown how to tell whether any of these tests have
enough power to detect situations where the assumption of homoscedasticity should be
discarded. That is, you might be in a situation where heteroscedasticity is a practical
concern, yet methods that test the assumption of homoscedasticity fail to alert you
to this problem. Even if the conditional variances are equal, nonnormality remains a
serious concern. And the combination of nonnormality and heteroscedasticity can be
devastating, even with large sample sizes.

Recall that the Theil-Sen estimate of the slope (introduced at the beginning of this
chapter) begins by computing the slope for each pair of observations. The median of all
these slopes is used to estimate β1. This approach has practical value in terms of power,
our ability to detect a true association, plus it has practical advantages when trying to
deal with outliers and heteroscedasticity. Even when the least squares estimate of the
slope is nearly equal to the Theil-Sen estimate, testing hypotheses with the least squares
estimator can result in relatively low power. That is, using the Theil-Sen estimator, for
example, might substantially increase your probability of detecting a true association.
The reason is that when there is heteroscedasticity, the least squares estimator can have
a relatively large standard error, even under normality. Outliers among the Y values
exacerbate this problem.
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Currently, when computing a .95 confidence interval or testing hypotheses about
the slope based on the least squares estimator, there are two methods that appear to
perform well relative to other technique that have been proposed, but no details are
given here.4 The method in box 8.1, can be highly unsatisfactory, but it is important
to know.

Outliers and the least squares estimator

As previously pointed out, one or more outliers can greatly influence the sample mean
and variance. The same is true when using least squares regression, as already illustrated
by figure 8.1. As previously indicated for the data in figure 8.1, the least squares estimator
suggests that as surface temperature increases, light intensity decreases, but it is evident
that for the majority of the points, the exact opposite is true. One problem is that the
four points in the upper left portion of figure 8.1 are outliers that greatly influence the
least squares regression line.

A reasonable suggestion is to eliminate any outliers and examine the least squares
regression line for the data that remain. If, for example, we simply eliminate the obvious
outliers in the upper left corner of figure 8.1, the least squares estimator gives a reasonable
summary of the remaining data. There are, however, several practical issues that need
to be considered before using this strategy. One is that in many cases, a good outlier
detection method is required. Such methods have been derived (Rousseeuw and Leroy,
1987; Rousseeuw and van Zomeren, 1990; Wilcox, 2003), but they require advanced
techniques that go well beyond the scope of this book. A natural strategy is to search for
outliers by examining a boxplot of the X values and then doing the same for the Y values.
Unfortunately, this simple approach can fail to detect outliers that greatly influence the
least squares estimator.

Even when a good outlier detection method is used, if the goal is to test
hypotheses about the slope and intercept, or to compute confidence intervals, dis-
carding outliers and applying the method in box 8.1 can be highly unsatisfactory.
(Similar problems arise when testing hypotheses about Pearson’s correlation.) The
problem is that you can get an incorrect estimate of the standard error, even when
sample sizes are large. (There are exceptions, but expert advice is suggested before
considering this strategy.) More advanced books describe how to deal with this
problem.

Example 1

L. Doi conducted a study aimed at finding good predictors of reading ability.
A portion of her study considered predicting a measure of the ability to identify
words (Y ) with a measure of speeded naming for digits (X ). The values are
shown in table 8.5. A boxplot of the Y values indicates no outliers, and a
boxplot of the X values reveals six outliers. Figure 8.5 shows a scatterplot of
the points. The points that are outliers according to the boxplot are the six right
most points marked with a by a 0. The main point here is that more advanced

4. Among the library of R functions mentioned in chapter 1, the function olshc4 uses the so-called
HC4 estimate of the standard error and appears to be a relatively good choice for general use. A modified
percentile bootstrap methods also performs well and can be applied with the R function Isfitci.
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Table 8.5 Reading data

X : 34 49 49 44 66 48 49 39 54 57 39 65 43 43 44 42 71 40 41
38 42 77 40 38 43 42 36 55 57 57 41 66 69 38 49 51 45 141
133 76 44 40 56 50 75 44 181 45 61 15 23 42 61 146 144 89 71
83 49 43 68 57 60 56 63 136 49 57 64 43 71 38 74 84 75 64 48

Y : 129 107 91 110 104 101 105 125 82 92 104 134 105 95 101 104 105 122 98
104 95 93 105 132 98 112 95 102 72 103 102 102 80 125 93 105 79 125
102 91 58 104 58 129 58 90 108 95 85 84 77 85 82 82 111 58 99
77 102 82 95 95 82 72 93 114 108 95 72 95 68 119 84 75 75 122 127

outlier detection methods indicate that there are five additional outliers, which
are also marked by an 0 in figure 8.5.5

A Glimpse of some modern methods

One general approach when trying to deal with practical problems associated with least
squares regression is to use diagnostic tools. That is, check the data to see whether there
are indications that using least squares regression might be unsatisfactory. Two concerns
with this strategy are that conventional diagnostic tools do not always catch problems
that are a practical concern, and if problems are detected, it can be difficult addressing
them in an adequate manner when least squares regression is used to the exclusion of
all other methods. In fairness, situations arise where diagnostic methods can save least
squares regression, but simultaneously, there are general conditions where this is not
the case.

Another general approach is to use a method that performs about as well as least
squares when the Y values have a normal distribution and there is homoscedasticity,
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Figure 8.5 The six largest X values are clearly outliers but more advanced methods indicate that
there are five additional outliers that might be less obvious.

5. These additional outliers are detected by what is called the minimum volume ellipsoid method.
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but which continues to perform well in situations where least squares regression is
unsatisfactory. There are a variety of regression estimators designed with this second
approach in mind, several of which appear to have considerable practical value. That
is, there are situations where the least squares estimator offers a slight advantage, but
situations arise where it performs very poorly relative to any one of several alternative
methods. One of these is the Theil-Sen estimator mentioned at the beginning of
this chapter. It offers protection against the deleterious effects of outliers and it can
have a much smaller standard error than the least squares estimator when there is
heteroscedasticity or when the Y values have a non-normal distribution. The Theil-Sen
estimator does not eliminate all practical problems, and there are methods for improving
upon it, but no details are given here. Suffice it to say that in some situations, alternative
regression estimators can provide a practical advantage (e.g., Wilcox, 2005).

Currently, the most effective methods for computing confidence intervals are based
in part on a variation of what is called a percentile bootstrap method. As mentioned in
chapter 6, bootstrap methods offer an alternative to Laplace’s strategy for approximating
sampling distributions. The most basic version can be used to compute confidence
intervals when using the Theil-Sen estimator. Box 8.2 outlines the computations. When
using least squares regression, a slight modification of the method in box 8.2 currently
seems to be the best technique for general use, but the details are not given here.
Unfortunately, commercial software does not come with built-in functions for applying
the method, but easy-to-use software is available.6

BOX 8.2

Goal

Compute a 1 −α confidence interval for the slope, β1, using the Theil-Sen estimator.
This is accomplished by approximating the sampling distribution of the Theil-Sen
estimator using a particular type of bootstrap method.

You observe n pairs of points, (X1,Y1), . . . , (Xn,Yn). You obtain a bootstrap sample
by randomly sampling with replacement n points from (X1,Y1), . . . , (Xn,Yn). For this
bootstrap sample, compute the Theil-Sen estimate of the slope and label it b∗. Repeat
this process B times yielding B bootstrap estimates of the slope: b∗

1, . . . ,b∗
B . With

α = .05, B = 399 appears to suffice in terms of achieving an accurate confidence
interval. Put these B values in ascending order yielding b∗

(1) ≤ ·· · ≤ b∗
(B). Set L = αB/2,

round L to the nearest integer, and let U = B − L. Then a 1 −α confidence interval for
the slope is

(b∗
(L+1), b∗

(U )).

Decision Rule

Reject H0 : β1 = 0 if the confidence interval does not contain zero.

6. See the discussion of the S-PLUS and R functions in chapter 1. The function regci computes
confidence intervals when using the Theil-Sen estimator and the function lsfitci is designed for the least
squares estimator.
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A fundamental issue is whether more modern methods ever make a practical
difference versus using the traditional methods described in this chapter. The next
example illustrates that the answer is yes.

Example 2

For the reading data in table 8.6, a .95 confidence interval for the slope
was computed using the method in box 8.2. It can be seen that the least
squares estimates of the slope and intercept are b1 = −0.06 and b0 = 65.46.
The .95 confidence interval for the slope, using the method in box 8.1, is
(−0.43, 0.32), this interval contains zero, so you would not reject H0 : β1 = 0.
(The p-value is 0.76.) So the method most commonly used for making
inferences about the slope provides no indication that the true slope differs
from zero. Using the method in box 8.2, the .95 confidence interval is
(−0.63, 0.00) with a p-value of .035. So now you would reject if you
want the probability of a Type I error to be .05. That is, the method in
box 8.2 leads to the exact opposite conclusion, the main point being that
modern methods can yield substantially different results versus more standard
techniques.

Problems
35. If the normality assumption is violated, what effect might this have when

computing confidence intervals as described in box 8.1?

36. If the homoscedasticity assumption is violated, what effect might this have when
computing confidence intervals as described in box 8.1?

A Summary of Some Key Points

• Least squares regression and Pearson’s correlation are the most commonly used
methods for studying associations. In some cases the associated hypothesis testing
techniques continue to perform well when violating assumptions (normality and
homoscedasticity). But at some point, they break down and become highly
unsatisfactory.

• Pearson’s correlation is useful for establishing dependence, it provides an indication
of whether the least squares regression line has a positive or negative slope, but in
terms of measuring the strength of an association, it has the potential of being highly
misleading.

• Failure to detect an association with Pearson’s correlation is not convincing evidence
that no association exists, even with large sample sizes.

• There are methods for testing hypotheses about Pearson’s correlation and the least
squares regression slope that allow heteroscedasticity, but no details are given here.

• The Theil-Sen estimator is just one example of many estimators that have the potential
of improving upon the least squares estimator substantially.

• Many new methods have appeared in recent years aimed at describing and
detecting non-linear associations. Of particular importance are methods called
smoothers. No details are given here, but it is important to at least be aware
of them.
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8.5 Some concluding remarks

The purpose of this chapter was to introduce basic concepts and to describe standard
hypothesis testing methods associated with least squares regression. Another goal was to
provide some indication of what might go wrong with standard methods and to briefly
outline how some of these problems can be corrected. Generally, it is suggested that the
student seek advanced training before attempting any regression analysis. Also, improved
techniques continue to emerge. For more about regression, see Li (1985), Montgomery
and Peck (1992), Staudte and Sheather et al. (1990), Hampel (1986), Huber (1981),
Rousseeuw and Leroy (1987), Belsley et al. (1980), Cook and Weisberg (1992), Carroll
and Ruppert (1988), Hettmansperger (1984), Hettmansperger and McKean 1998),
Wilcox (2003, 2005).
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COMPARING TWO GROUPS

C hapters 6 and 7 described how to make inferences about the population mean, and
other measures of location, associated with a single population of individuals or

things. This chapter extends these methods to situations where the goal is to compare two
groups. For example, Table 2.1 reports data from a study on changes in cholesterol levels
when participants take an experimental drug. But of fundamental interest is how the
changes compare to individuals who receive a placebo instead. Example 4 in section 6.2
described an experiment on the effect of ozone on weight gain among rats. The two
groups in this study consisted of rats living in an ozone environment and ones that lived
in an ozone-free environment. Do weight gains differ for these groups, and if they do,
how might this difference be described? Two training programs are available for learning
how to invest in stocks. To what extent, if any, do these training programs differ? How
does the reading ability of children who watch thirty hours or more of television per
week compare to children who watch ten hours or less? How does the birth weight of
newborns among mothers who smoke compare to the birth weight among mothers who
do not smoke? In general terms, if we have two independent variables, how might we
compare them?

9.1 Comparing the means of two independent groups

When trying to detect and describe differences between groups, by far the most common
strategy is to use means. We begin with a classic method designed for two independent
groups. By independent groups is meant that the observations in the first group are
independent of the observations in the second. In particular, the sample means for the
two groups, say X̄ 1 and X̄ 2, are independent. So, in the example dealing with weight
gain among rats, it is assumed that one group of rats is exposed to an ozone environment,
and a separate group of rats, not associated with the first group, is exposed to an ozone-
free environment. This is in contrast to using, for example, the same rats under both
conditions, or using rats from the same litter, in which case the sample means might be
dependent.
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The two-sample Student’s t -test

The classic and best-known method for comparing the means of two independent
groups is called the two-sample Student’s t-test. Here we let μ1 and μ2 represent the
two population means, and the corresponding standard deviations are denoted by σ1

and σ2. The goal is to test

H0 : μ1 = μ2, (9.1)

the hypothesis that the population means are equal. It turns out that we can get exact
control over the probability of a Type I error if the following three assumptions are true:

• Random sampling
• Normality
• Equal variances. That is, σ1 = σ2, which is called the homogeneity of variance

assumption.

Before describing how to test the hypothesis of equal means, first consider how
we might estimate the assumed common variance. For convenience, let σ 2

p represent

the common variance and let s21 and s22 be the sample variances corresponding to the
two groups. Also let n1 and n2 represent the corresponding sample sizes. The typical
estimate of σ 2

p is

s2p = (n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

. (9.2)

For the special case where the sample sizes are equal, meaning that n1 = n2, s2p is just
the average of the two sample variances. That is,

s2p = s21 + s22
2

.

Now consider the problem of testing the null hypothesis of equal means. Under the
assumptions already stated, the probability of a Type I error will be exactly α if we reject
the null hypothesis when

|T | ≥ t, (9.3)

where

T = X̄ 1 − X̄ 2√
s2p

(
1
n1

+ 1
n2

) , (9.4)

and t is the 1−α/2 quantile of Student’s t-distribution with ν = n1 +n2 −2 degrees of
freedom, which is read from table 4 in appendix B. An exact 1 −α confidence interval
for the difference between the population means, under the same assumptions, is

(X̄ 1 − X̄ 2) ± t

√
s2p

(
1

n1
+ 1

n2

)
. (9.5)

Example 1

Salk (1973) conducted a study where the general goal was to examine the
soothing effects of a mother’s heartbeat on her newborn infant. Infants were
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Table 9.1 Weight gain, in grams, for large babies

Group 1 (heartbeat)

Subject Gain Subject Gain

1 190 11 10
2 80 12 10
3 80 13 0
4 75 14 0
5 50 15 −10
6 40 16 −25
7 30 17 −30
8 20 18 −45
9 20 19 −60

10 10 20 −85

n1 = 20, X̄ 1 = 18.0, s1 = 60.1, s1/
√

n1 = 13

Group 2 (heartbeat)

Subject Gain Subject Gain Subject Gain Subject Gain

1 140 11 25 −21 −50 31 −130
2 100 12 25 −22 −50 32 −155
3 100 13 25 −23 −60 33 −155
4 70 14 30 −24 −75 34 −180
5 25 15 30 −25 −75 35 −240
6 20 16 30 −26 −85 36 −290
7 10 17 45 −27 −85
8 0 18 45 −28 −100
9 −10 19 −45 29 −110

10 −10 20 −50 30 −130

n2 = 36, X̄ 2 = −52.1, s2 = 88.4, s2/
√

n2 = 15

placed in a nursery immediately after birth and they remained there for four
days except when being fed by their mothers. The infants were divided into two
groups. The first was continuously exposed to the sound of an adult’s heartbeat;
the other group was not. Salk measured, among other things, the weight change
of the babies from birth to the fourth day. Table 9.1 reports the weight change
for the babies weighing at least 3,510 grams at birth. As indicated, the sample
standard deviations are s1 = 60.1 and s2 = 88.4. The estimate of the assumed
common variance is

s2p = (20 − 1)(60.12) + (36 − 1)(88.42)

20 + 36 − 2
= 6,335.9.

So

T = 18 − (−52.1)√
6,335.9

(
1
20 + 1

36

) = 70.1

22.2
= 3.2.

The sample sizes are n1 = 20 and n2 = 36, so the degrees of freedom are
ν = 20 + 36 − 2 = 54. If we want the Type I error probability to be α = .05,
then 1−α/2 = .975, and from table 4 in appendix B, t = 2.01. Because |T | =
3.2, which is greater than 2.01, reject H0 and conclude that the means differ.
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That is, we conclude that among all newborns we might measure, the average
weight gain would be higher among babies exposed to the sound of a heartbeat
compared to those that are not exposed. By design, the probability that our
conclusion is in error is .05, assuming normality and homoscedasticity. The
.95 confidence interval for μ1 − μ2, the difference between the population
means, is

[18 − (−52.1)]± 2.01

√
6,335.9

(
1

20
+ 1

36

)
= (25.5,114.7).

This interval does not contain zero, and it indicates that the difference between
the means is likely to be at least 25.5, so again you would reject the hypothesis
of equal means.

Violating assumptions: When does Student’s t
perform well?

There are two conditions where the assumption of normality, or equal variances, can be
violated and yet Student’s t appears to continue to perform well in terms of Type I errors
and accurate confidence intervals. The homoscedasticity assumption can violated if both
distributions are normal and the sample sizes are equal, provided the sample sizes are not
overly small, say less than 8 (Ramsey, 1980). As for non-normality, Student’s t appears
to perform well in terms of Type I error probabilities provided the two distributions are
identical. That is, not only do they have the same means, they have the same variances,
the same amount of skewness, the tails of the distribution are identical, and so on. So if
we were to plot the distributions, the plots would be exactly the same. If, for example,
you want the probability of a Type I error to be .05, generally, the actual Type I error
probability will be less than or equal to .05.1

Conditions where Student’s t performs poorly

If the goal is to test the hypothesis of equal means, without being sensitive to other ways
the groups might differ, Student’s t can be unsatisfactory in terms of Type I errors and
accurate confidence intervals when sampling from normal distributions with unequal
sample sizes and unequal variances. Problems due to unequal variances are exacerbated
when sampling from non-normal distributions instead, and now concerns arise even
with equal sample sizes (e.g., Algina, et al., 1994; Wilcox, 1990). When dealing with
groups that differ in skewness, again problems with controlling the probability of a
Type I error occur, and the combination of unequal variances and different amounts
of skewness makes matters worse. Some degree of unequal variances, as well as mild
differences in skewness, can be tolerated. But the extent to which this is true, based on
the data under study, is difficult to determine in an accurate manner.

1. A key reason is that if we sample an observation from each group, and if the groups have the same
skewness, the distribution of the difference between these two observations is symmetric. We saw in chapter 7
that for a symmetric distribution, Type I error probabilities larger than the specified α level can be avoided.
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Example 2

Recall from chapter 6 that one of way of determining the distribution of T
under normality is to use simulations. That is, to generate data from a normal
distribution, compute T , and repeat this process many times. With the aid of
a computer, we can extend this method when sampling from two distributions
that have equal means but which differ in terms of skewness and have unequal
variances. In particular, imagine that we sample 40 observations from a standard
normal distribution and 60 observations from the distribution shown in
figure 9.1, and then we compute T . Repeating this process 1000 times provides
a fairly accurate indication of the distribution of T when the null hypothesis of
equal means is true. Figure 9.2 shows a plot of the results plus the distribution
of T assuming normality. Under normality, and with a Type I error probability
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Figure 9.1 A skewed distribution with a mean of zero.

T
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Figure 9.2 The distribution of T when sampling 40 values form a standard normal and 60
values form the distribution in figure 9.1. Also shown is the distribution of T when both groups
have normal distribution. This illustrates that differences in skewness can have an important
impact on T .



COMPARING TWO GROUPS 189

of α = .05, Student’s T rejects the hypothesis of equal means if T ≤ −2.002
or if T ≥ 2.002. But figure 9.2 indicates that we should reject if T ≤ −1.390
or if T ≥ 2.412, values that differ substantially from what would be used under
normality.

Some authorities might criticize this last example on the grounds that if groups
differ in terms of the variances and the amount of skewness they have, surely the means
differ as well. That is, they would argue that Type I errors are not an issue in this
case. But even if we accept this point of view, this last illustration can be seen to create
concerns about power, and it indicates that confidence intervals based on Student’s t
can be relatively inaccurate.

Usually, a basic requirement of any method is that with sufficiently large sample
sizes, good control over the Type I error probability and accurate confidence intervals
will be obtained. There are theoretical results indicating that under general conditions,
when the goal is to compare the means without being sensitive to other features of
the distribution (such as unequal variances), Student’s t can be unsatisfactory regardless
of how large the sample sizes might be (Cressie and Whitford, 1986). Exceptions are
when the sample sizes are equal and when both groups have identical distributions. This
means that Student’s t provides a valid test of the hypothesis that the distributions
are identical, but it can be unsatisfactory when computing confidence intervals for
the difference between the means or when testing the hypothesis that groups have
equal means.

Finally, in terms of Type II errors and power, Student’s t can perform very poorly,
compared to alternative techniques, when outliers tend to occur. The presence of outliers
does not necessarily mean low power, but the reality is that power might be increased
substantially when comparing groups with something other than the means, as will be
illustrated. Some additional concerns about Student’s t are summarized in Wilcox (2003,
2005). One of these concerns is that unequal variances and differences in skewness can
create power problems as well.

Why testing assumptions can be unsatisfactory

Some commercial software now contains a test of the assumption that two groups have
equal variances. The idea is that if the hypothesis of equal variances is not rejected, one
would then use Student’s t . But a basic principle is that failing to reject a null hypothesis is
not, by itself, compelling evidence that the null hypothesis should be accepted or that the
null hypothesis is approximately true. Accepting the null hypothesis is only reasonable
if the probability of rejecting (power) is sufficiently high to ensure that differences that
have practical importance will be detected. If there is a low probability of detecting a
difference that is deemed important, concluding that no difference exists is difficult to
defend. In the case of Student’s t , would a test of the assumption of equal variances
have enough power to detect a situation where unequal variances causes a problem? All
indications are that the answer is no (e.g., Markowski and Markowski, 1990; Moser,
et al., 1989; Wilcox, et al., 1986; Zimmerman, 2004; Hayes and Cai, 2007). Presumably
exceptions occur if the sample sizes are sufficiently large, but it is unclear how we can be
reasonably certain when this is the case. Part of the problem is that the extent to which
the variances can differ, without having a major impact on the Type I error probability,
is a complicated function of the sample sizes, and the extent to which groups differ in
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terms of skewness, and the likelihood of observing outliers. Testing the hypothesis that
data have a normal distribution is another strategy that might be followed. But when do
such tests have enough power to detect departures from normality that are a concern?
The answer is not remotely clear and so this approach cannot be recommended at this
time. A better strategy is to use more modern methods that perform reasonably well
under normality, but which continue to perform well under non-normality or when
groups have unequal variances.

There are many alternatives to Student’s t when comparing groups. Because testing
assumptions seems dubious, how can we tell whether some alternative technique might
give a substantially different sense about whether and how the groups differ? Currently,
the only known strategy that answers this question in an adequate manner is to simply
try alternative methods, some of which are outlined later in this chapter. However, a
criticism of applying many methods is that control over the probability of at least one
Type I error can become an issue. This issue, and methods for dealing with it, are
described and illustrated in chapter 11.

Interpreting Student’s t when we reject

Despite its many practical problems, Student’s t does have a positive feature. If we
reject, this is a good indication that the distributions differ in some manner. This is
because when the distributions do not differ, it controls the probability of a Type I
error fairly well. But even though the method is designed to compare means, in reality
it is also sensitive to differences in variances and skewness. As previously noted, some
would argue that if the distributions differ, surely the means differ. However, when we
reject, it is unclear whether the main reason is due to differences between the means.
The main reason could be differences between the variances or skewness. Moreover,
rejecting with Student’s t raises concerns about whether the confidence interval, given
by equation (9.5), is reasonably accurate. In summary, when rejecting with Student’s t ,
it is reasonable to conclude that the groups differ in some manner. But when Student’s
t indicates that groups differ, there are concerns that the nature of the difference
is not being revealed in a reasonably accurate manner. And when Student’s t fails
to reject, this alone is not compelling evidence that the groups do not differ in any
important way.

Dealing with unequal variances: Welch’s test

Many methods have been proposed for comparing means when the population variances
(σ 2

1 and σ 2
2 ) differ. None are completely satisfactory. Here we describe one such method

that seems to perform reasonably well compared to other techniques that have been
derived when attention is restricted to comparing means. Popular commercial software
now contains this method, which was derived by Welch (1938).

Recall from chapter 5 that the sampling distribution of the sample mean has variance
σ 2/n, which is called the squared standard error of the sample mean. For the situation
at hand, the difference between the sample means, X̄ 1 − X̄ 2, also has a sampling
distribution, and the corresponding mean of this difference is μ1 − μ2, the difference
between the population means. Roughly, this means that if we were repeat a study
millions of times, and if we averaged the differences between the sample means resulting
from each study, we would get μ1 − μ2, the di.erence between the population means.
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Put another way, on average, over many studies, X̄ 1 − X̄ 2 estimates μ1 −μ2. Moreover
the variance (or squared standard error) of the difference between the sample means can
be shown to be

VAR(X̄ 1 − X̄ 2) = σ 2
1

n1
+ σ 2

2

n2
.

Also recall from chapter 6 that under normality, if we standardize a variable by subtracting
its mean, and then dividing by its standard error, we get a standard normal distribution.
That is, if a variable has a normal distribution, then in general,

variable − population mean of the variable

standard error of the variable
, (9.6)

will have a standard normal distribution. Here the variable of interest is X̄ 1 − X̄ 2,
the difference between the sample means, which has a population mean of μ1 − μ2.
Consequently, based on the equation for the squared standard error, VAR(X̄ 1 − X̄ 2),
it follows that

X̄ 1 − X̄ 2 − (μ1 −μ2)√
σ 2

1
n1

+ σ 2
2

n2

has a standard normal distribution. If the hypothesis of equal means is true, then μ1 −
μ2 = 0, in which case this last equation becomes

X̄ 1 − X̄ 2√
σ 2

1
n1

+ σ 2
2

n2

,

which again has a standard normal distribution. As usual, the population variances are
rarely known, but they can be estimated with the sample variances, in which case this
last equation becomes

W = (X̄ 1 − X̄ 2)√
s21
n1

+ s22
n2

, (9.7)

where, as before, s21 and s22 are the sample variances corresponding to the two groups
being compared; this is the test statistic used by Welch’s test.

When the hypothesis of equal means is true, W will have, approximately, a standard
normal distribution if the sample sizes are sufficiently large, thanks to the central limit
theorem. That is, we can determine how large W must be to reject the hypothesis of
equal means using values in table 1 in appendix B. But in general, W will not have
a normal distribution, so some other approximation of an appropriate critical value is
required. Welch’s approach to this problem is implemented in the following manner.
For convenience, let

q1 = s21
n1

and q2 = s22
n2

. (9.8)

As was done with Student’s t , table 4 in appendix B is used to determine a critical value,
t , but now the degrees of freedom are

ν = (q1 + q2)2

q2
1

n1−1 + q2
2

n2−1

. (9.9)
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Under normality, W has, approximately, a Student’s t-distribution with degrees of
freedom given by equation (9.9). That is, reject the hypothesis of equal means if |W | ≥ t .
The 1 −α confidence interval for the difference between the means, μ1 −μ2, is

(X̄ 1 − X̄ 2) ± t

√
s21
n1

+ s22
n2

. (9.10)

Example 3

Tables 2.1 and 2.2 report data on the effectiveness of a drug to lower cholesterol
levels. For the data in table 2.1, corresponding to the group that received
the experimental drug, the sample size is n1 = 171, the sample variance is
s21 = 133.51, and the sample mean is X̄ 1 = −9.854. For the group that received
the placebo, n2 = 177, s22 = 213.97, and X̄ 2 = 0.124. To apply Welch’s test,
compute q1 = 133.51/171 = 0.78076 and q2 = 213.97/177 = 1.20887, in
which case the degrees of freedom are

ν = (0.78076 + 1.20887)2

0.780762

171−1 + 1 20882

177−1

= 332.99.

The test statistic is W = 7.07, the α = .05 critical value is 1.967, and because
|7.07| ≥ 1.967, reject the null hypothesis.

Student’s t versus Welch’s test

Some brief comments about the relative merits of Student’s t versus Welch’s Test should
be made. When comparing groups that do not differ in any manner, there is little reason
to prefer Student’s t over Welch’s test. But if the distributions differ in some way, such as
having unequal variances. The choice of method can make a practical difference. Welch’s
test reduces problems with unequal variances, given the goal of comparing means, but
it does not eliminate them. Differences in skewness remain a concern, and, as is the
case with all methods based on means, outliers can destroy power. So, when rejecting
with Welch’s test, like Student’s t-test, it is reasonable to conclude that the distributions
differ in some manner, but there is uncertainty about whether the main reason has to
do with differences between the population means; the primary reason could be unequal
variances or differences in skewness. And when we fail to reject, this could be because
the groups differ by very little, but another possibility is that power is low due to sample
sizes that are too small, differences in skewness, or outliers.

In fairness, there are situations where Student’s t correctly concludes that groups
differ in some manner when Welch’s test does not. This can happen because Student’s
t can be more sensitive to certain types of differences, such as unequal variances.

A positive feature of Welch’s method is that with sufficiently large sample sizes, it
will control the probability of a Type I error given the goal of comparing means, and
it provides accurate confidence intervals as well, assuming random sampling only. This
is in contrast to Student’s t , which does not satisfy this goal when the sample sizes are
unequal and the groups differ in skewness. A rough explanation is that under random
sampling, regardless of whether the groups differ, Welch’s test uses a correct estimate
of the standard error associated with the difference between the means, X̄ 1 − X̄ 2, but
there are conditions where this is not the case when using Student’s t (Cressie and
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Whitford, 1986). As previously noted, an exception is when groups have identical
distributions. So again, an argument for considering Student’s t is that if it rejects,
a good argument can be made that the groups differ in some manner. A very rough rule
is that a method that uses the correct standard error is likely to have more power than
a method does not. So here, the expectation is that Welch’s test will tend to have more
power than Student’s t , but exceptions are encountered where Student’s t rejects and
Welch’s method does not.

Comments about outliers when comparing means

Any method for comparing groups based on means runs the risk of relatively low power.
As noted in previous chapters, outliers can inflate the sample variances which in turn
can result in low power, and there is some possibility that the mean will poorly reflect
what is typical. Outliers also have other consequences relevant to power that might not
be immediately obvious but which are illustrated by the next example.

Example 4

Imagine that an experimental drug is under investigation and that there is
concern that it might damage the stomach. For illustrative purposes, suppose
the drug is given to a sample of rats, a placebo is given to a control group, and
the results are as follows:

Experimental drug: 4,5,6,7,8,9,10,11,12,13

Placebo: 1,2,3,4,5,6,7,8,9,10.

The goal is to determine whether the average amount of stomach damage
differs for these two groups. The corresponding sample means are X̄ 1 = 8.5
and X̄ 2 = 5.5 and T = 2.22. With α = .05, the critical value is t = 2.1, so
Student’s t would reject the hypothesis of equal means and conclude that the
first group has a larger population mean than the second (because the first
group has the larger sample mean). Now, if we increase the largest observation
in the first group from 13 to 23, the sample mean increases to X̄ 1 = 9.5. So the
difference between X̄ 1 and X̄ 2 has increased from 3 to 4 and this would seem
to suggest that we have stronger evidence that the population means differ and
in fact the first group has the larger population mean. However, increasing
the largest observation in the first group also inflates the corresponding sample
variance, s21. In particular, s21 increases from 9.17 to 29.17. The result is that
T decreases to T = 2.04 and we no longer reject. That is, increasing the
largest observation has more of an effect on the sample variance than the
sample mean in the sense that now we are no longer able to conclude that
the population means differ. Increasing the largest observation in the first
group to 33, the sample mean increases to 10.5, the difference between the
two sample means increases to 5 and now T = 1.79. So again we do not
reject and in fact our test statistic is getting smaller. It is left as an exercise to
show that a similar result is obtained when using Welch’s test. This illustration
provides another perspective on how outliers can mask differences between
population means.
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Comparing medians

Many methods have been proposed for comparing the medians of two independent
groups. Some are based on what are called nonparametric methods, which are discussed
in the final chapter of this book. Although nonparametric methods have practical value,
as a method for comparing medians, they are unsatisfactory unless rather restrictive
assumptions are met (e.g., Fung, 1980). Another possibility is to use what is called a
permutation method, but as a tool for comparing medians, it is unsatisfactory as well
(e.g., Romano, 1990).

Here is a method for comparing medians that is relatively easy to use and which
appears to perform fairly well, in terms of controlling the probability of a Type I error,
when tied (duplicated) values rarely if ever occur. Let M1 and M2 be the sample medians
for the two groups and let S2

1 and S2
2 be the corresponding McKean–Schrader estimates

of the squared standard errors. Then an approximate 1 − α confidence interval for the
difference between the population medians is

(M1 − M2) ± c1−α/2

√
S2

1 + S2
2 ,

where c is the 1 − α/2 quantile of a standard normal distribution. Alternatively, reject
the hypothesis of equal population medians if

|M1 − M2|√
S2

1 + S2
2

≥ c.

Example 5

Imagine a study aimed at measuring the extent to which men and women are
addicted to nicotine. Based on a measure of dependence on nicotine, 30 men
are found to have a median value of 4, and 20 women have a median value of
2. If the McKean–Schrader estimates of the corresponding squared standard
errors are .8 and .6, then

|M1 − M2|√
S2

1 + S2
2

= |4 − 2|√
.8 + .6

= 1.69.

With α = .05, 1−α/2 = .975, and from table 1 in appendix B, the .975 quantile
for a standard normal distribution is 1.96. Because 1.69 is less than the critical
value, fail to reject.

An important issue: The choice of method can matter

It cannot be emphasized too strongly that, when comparing groups, the choice of method
can matter, not only in terms of detecting differences, but in terms of assessing the
magnitude of the difference as well. Also, a basic principle is that failing to reject when
comparing groups does not necessarily mean that any difference between the groups
is relatively small or that no difference exists. Different methods provide different
perspectives on how groups differ and by how much.
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Table 9.2 Self-awareness data

Group 1: 77 87 88 114 151 210 219 246 253
262 296 299 306 376 428 515 666 1310 2611

Group 2: 59 106 174 207 219 237 313 365 458 497 515
529 557 615 625 645 973 1065 3215

Example 6

Dana (1990) conducted a study aimed at investigating issues related to
self-awareness and self-evaluation. (This study was previously mentioned in
connection with example 5 in section 6.5.) In one portion of the study,
he recorded the times individuals could keep an apparatus in contact with
a specified target. The results, in hundredths of second, are shown in
table 9.2. If we compare the groups with Student’s t , the p-value is 0.4752,
and for Welch’s test it is 0.4753. So both methods give very similar
results and provide no indication that the groups differ. However, if we
compare medians with the method described here, the p-value is 0.0417,
so in particular we would reject with the Type I error probability set
at α = .05. (There are no tied values, suggesting that this method for
comparing medians provides reasonably good control over the probability of a
Type I error.)

Why is it that we can reject with medians but not even come close to
rejecting with means? There are at least two fundamental reasons this can
happen. For skewed distributions, means and medians can differ substantially.
For the two groups in this last example, the means are 448 and 598, with
a difference of 448 − 598 = −150. The medians are 262 and 497, with a
difference of −235, which is bigger than the difference between the means.
Also, the estimated standard errors of the means are 136.4 and 157.9 versus
77.8 and 85.02 for the medians. As a result, we conclude that the population
medians differ, but we find no evidence that the means differ as well. In fairness,
however, we can encounter situations where the difference between the means
is larger than the difference between the medians, in which case comparing
means might result in more power.

Some practical concerns when comparing medians

It was noted in chapter 6 that when using the McKean–Schrader estimate of the standard
error, it can result in highly inaccurate confidence intervals and poor control over the
probability of a Type I error due to tied values. This problem extends to the situation
here where the goal is to compare the medians of two independent groups. Many
alternative methods have been found to suffer from the same problem (Wilcox, 2006).
The one method that appears to correct this problem is a percentile bootstrap technique,
which is outlined in the final section of this chapter. Another general concern is that
comparing medians might result in low power, relative to other methods that might
be used, because its standard error can be relatively large when outliers tend to be
rare. But, as previously illustrated, its standard error can be relatively low when outliers
are common.



196 BASIC STATISTICS

Comments on comparing variances

Although the most common approach to comparing two independent groups is to
use some measure of location, situations arise where there is interest in comparing
variances or some other measure of dispersion. For example, in agriculture, one goal when
comparing two crop varieties might be to assess their relative stability. One approach
is to declare the variety with the smaller variance as being more stable (e.g., Piepho,
1997). As another example, consider two methods for training raters to assess certain
human characteristics. For instance, raters might judge athletic ability or they might be
asked to rate aggression among children in a classroom. Then one issue is whether the
variance of the ratings differ, depending on how the raters were trained. Also, in some
situations, two groups might differ primarily in terms of the variances rather than their
means or some other measure of location.

There is a vast literature on comparing variances. The method typically mentioned
in an introductory course assumes normality and is based on the ratio of the sample
variances, s21/s22. But this approach has long been known to be highly unsatisfactory
when distributions are non-normal (e.g., Box, 1953), and so it is not described. (For
the most recent results on how to approach this problem, plus methods for comparing
other measures of dispersion, see Wilcox, 2003.)

Measuring effect size

As noted in chapter 7, when dealing with hypotheses about a single mean (or any other
measure of location), p-values provide an indication of whether some hypothesis should
be rejected, but it is unsatisfactory in terms of understanding the extent to which the
mean differs from the hypothesized value. A similar result applies when comparing
the means of two independent groups. A p-value close to zero provides evidence that
the groups differ. For example, if we reject at the .001 level and the first group has
a larger sample mean than the second, then we conclude that the first group has the
larger population mean. But this tells us nothing about the magnitude of the difference
(e.g., Cohen, 1994).

Example 7

An article in Nutrition Today (1984, 19, 22–29) illustrates the importance of
this issue. A study was conducted on whether a particular drug lowers the risk
of heart attacks. Those in favor of using the drug pointed out that the number
of heart attacks in the group receiving the drug was significantly lower than
in the group receiving a placebo. As noted in chapter 7, when a researchers
reports that a significant difference was found, typically the word significant
is being used to signify that a small p-value was obtained. In the study, the
hypothesis of equal means was rejected at the α = .001 level, and often such a
result is described as ‘highly significant’. However, critics of the drug argued that
the difference between the number of heart attacks was trivially small. They
concluded that because of the expense and side effects of using the drug, there is
no compelling evidence that patients with high cholesterol levels should be put
on this medication. A closer examination of the data revealed that the standard
errors corresponding to the two groups were very small, so it was possible to
get a statistically significant result that was clinically unimportant.
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Acquiring a good understanding of how groups differ can be a nontrivial problem
that might require several perspectives. One possibility is to simply use the difference
between some measure of location, with the usual choice being the means, and in some
situations this simple approach will suffice. But if we limit our choice to the means,
there is a practical concern: Different measures of location can provide a different sense
about how much the groups differ. As already illustrated, if we switch to medians,
this can alter our sense about whether there is a large difference between the groups.
Although we have already seen serious negative features associated with the mean, this
is not to suggest that this approach should be abandoned. Rather, the issue is, if we
limit ourselves to means, are there important details that are being missed? Often the
answer is yes.

Currently, there is a method for measuring effect size, based in part on the means,
that is commonly used by many researchers. The method assumes that the two groups
have a common variance, which we again label σ 2

p . That is, σ 2
1 = σ 2

2 = σ 2
p is assumed.

Then the so-called standardized difference between the groups is


 = μ1 −μ2

σp
, (9.11)

where 
 is an upper case Greek delta. Assuming normality, 
 can be interpreted in
a simple manner. For example, if 
 = 2, then the difference between the means is
two standard deviations, and for normal distributions we have some probabilistic sense
of what this means. A common practice is to interpret 
 values of .2, .5 and .8 as
small, medium, and large effect sizes, respectively. It is known, however, that under
general conditions, this oversimplifies the issue of measuring effect size. For instance,
we encounter situations where 
 = .2, which supposedly would be interpreted as a small
effect size, when in fact there is a large difference based on plots of the data. The usual
estimate of 
 is

d = X̄ 1 − X̄ 2

sp

and is often called Cohen’s d .
Many new methods have been derived with the goal of better understanding how

groups differ (e.g., Agina, et al., 2005; Wilcox, 2003), but these methods are not covered
here. A simple yet useful approach is to plot the data for both groups. Boxplots are often
used, and kernel density estimators, mentioned in chapter 3, are often a good choice.
Some illustrations are given in the final section of this chapter.

The main point, which cannot be stressed too strongly, is that a single numerical
quantity, aimed at assessing how groups differ and by how much, can be unsatisfactory
and too simplistic. This is not always the case, but assuming that a single measure of
effect size is adequate is a strategy that cannot be recommended. The general issue of
assessing effect size in a satisfactory manner is a complex problem that might require
advanced techniques.

Comparing two binomial distributions

In many situations, comparing groups corresponds to comparing two binomial distri-
butions. For example, if the probability of surviving an operation using method 1 is
p1, and if the probability of surviving using method 2 is p2, do p1 and p2 differ, and if
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they do differ, by how much? As another example, how does the proportion of women
who believe the President of the United States is an effective leader compare to the
corresponding proportion for men?

An appropriate test statistic can be derived using the same strategy used by Welch’s
method, as represented by equation (9.6). From chapters 4 and 5, if p̂ indicates the
proportion of successes, the corresponding squared standard error is p(1 − p)/n. For
two independent proportions, p̂1 and p̂2, the variance or squared standard error of their
difference can be shown to be

VAR(p̂1 − p̂2) = p1(1 − p1)

n1
+ p2(1 − p2)

n2
,

and an estimate of this squared standard error is simply

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2
.

So an appropriate test of

H0 : p1 = p2 (9.12)

is

Z = p̂1 − p̂2√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

, (9.13)

and the null hypothesis is rejected if

|Z| ≥ c,

where c is the 1 − α/2 quantile of a standard normal distribution, which is read from
table 1 in appendix B. A 1 − α confidence interval for the difference between the two
probabilities is

(p̂1 − p̂2) ± c

√
p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2
(9.14)

The method for comparing binomial distributions, just described, illustrates basic
principles and so is particularly appropriate for an introductory course. A positive feature
is that it performs reasonably well when the probability of success for the two groups
is not too close to 0 or 1. Many improved methods have been proposed for comparing
binomial distributions, comparisons of which are reported by Storer and Kim (1990)
and Beal (1987). For more recent suggestions, see Berger (1996) and Coe and Tamhane
(1993).2

Example 8

Imagine that a new treatment for alcoholism is under investigation and that a
method has been agreed upon for assessing whether the treatment is deemed
effective after 12 months. An issue is whether the effectiveness of the treatment
differs for men versus women. For illustrative purposes, suppose for 7 out 12
males the treatment is a success, so p̂1 = 7/12, and that for 25 women there

2. Easy-to-use R and S-PLUS functions are available for applying these methods; see chapter 1.
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are 22 successes, in which case p̂2 = 22/25. Then simple calculations, based on
equation (9.13), show that Z = −1.896. If we want the probability of a Type I
error to be .05, the critical value is c = 1.96, and because |−1.896| < 1.96, we
fail to reject.

Example 9

Table 2.3 reported data on how many sexual partners undergraduate males want
during the next 30 years. Of the 105 males, 49 said that they want one partner.
So the estimated probability of answering 1 is p̂1 = 49/105. In the same study,
101 of 156 females also responded that they want one sexual partner during the
next 30 years, so p̂2 = 101/156. For the entire population of undergraduates,
and assuming random sampling, do the corresponding population probabilities,
p1 and p2, differ? And if the answer is yes, what can be said about the magnitude
of the difference? It can be seen that Z = −2.92, and the null hypothesis would
be rejected with a Type I error of α = .01. So the conclusion would be that males
differ from females. The estimated difference between the two probabilities is
−0.181 and the .99 confidence interval is (−0.340, −0.021). That is, we can
be reasonably certain that the difference is at least −0.021, and it could be as
large as −0.34.

Problems
1. Suppose that the sample means and variances are X̄ 1 = 15, X̄ 2 = 12, s21 = 8,

s22 = 24 with sample sizes n1 = 20 and n2 = 10. Verify that s2p = 13.14, T = 2.14
and that Student’s t-test rejects the hypothesis of equal means with α = .05.

2. For two independent groups of subjects, you get X̄ 1 = 45, X̄ 2 = 36, s21 = 4, s22 = 16
with sample sizes n1 = 20 and n2 = 30. Assume the population variances of the
two groups are equal and verify that the estimate of this common variance is 11.25.

3. Still assuming equal variances, test the hypothesis of equal means using Student’s
t-test and the data in the last problem. Use α = .05.

4. Repeat the last problem, only use Welch’s test for comparing means.

5. Comparing the results for the last two problems, what do they suggest regarding
the power of Welch’s test versus Student’s t-test when the sample variances differ
sufficiently.

6. For two independent groups of subjects, you get X̄ 1 = 86, X̄ 2 = 80, s21 = s22 = 25,
with sample sizes n1 = n2 = 20. Assume the population variances of the two
groups are equal and verify that Student’s t rejects with α = .01.

7. Repeat the last problem using Welch’s method.

8. Comparing the results of the last two problems, what do they suggest about using
Student’s t versus Welch’s method when the sample variances are approximately
equal?

9. For X̄ 1 = 10, X̄ 2 = 5, s21 = 21, s22 = 29, n1 = n2 = 16, compute a .95 confidence
interval for the difference between the means using Welch’s method and state
whether you would reject the hypothesis of equal means.

10. Repeat the last problem, only use Student’s t instead.
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11. Two methods for training accountants are to be compared. Students are randomly
assigned to one of the two methods. At the end of the course, each student is
asked to prepare a tax return for the same individual. The amounts of the refunds
reported by the students are

Method 1 : 132,204,603,50,125,90,185,134

Method 2 : 92,−42,121,63,182,101,294,36.

Using Welch’s test, would you conclude that the methods differ in terms of the
average return? Use α = .05.

12. Responses to stress are governed by the hypothalamus. Imagine you have two
groups of subjects. The first shows signs of heart disease and the other does not.
You want to determine whether the groups differ in terms of the weight of the
hypothalamus. For the first group of subjects with no heart disease, the weights are

11.1,12.2,15.5,17.6,13.0,7.5,9.1,6.6,9.5,18.0,12.6.

For the other group with heart disease, the weights are

18.2,14.1,13.8,12.1,34.1,12.0,14.1,14.5,12.6,12.5,19.8,13.4,16.8,14.1,12.9.

Determine whether the groups differ based on Welch’s test. Use α = .05.

13. The .95 confidence interval for the difference between the means, using Student’s
t , is (2.2, 20.5). What are the practical concerns with this confidence interval?

14. For the first of two binomial distributions, there are 15 successes among 24
observations. For the second, there are 23 successes among 42 observations. Test
H0: p1 = p2 with a Type I error probability of .05.

15. A film producer wants to know which of two versions of a particular scene is more
likely to be viewed as disturbing. One group of 98 individuals views the first
version and 40 say that it is disturbing. The other group sees the second version
and 30 of 70 people say that it is disturbing. Test the hypothesis that the two
probabilities are equal, using α = .05 and compute a .95 confidence interval.

16. It is found that of 121 individuals who take a training program on investing in
commodities, 20 make money during the next year and the rest do not. With
another training program, 15 of 80 make money. Test the hypothesis that the
probability of making money is the same for both training programs, using a Type
I error probability of .05.

17. In a study dealing with violence between factions in the Middle East, one goal was
to compare measures of depression for two groups of young males. In the first
group, no family member was wounded or killed by someone belonging to the
opposite faction, and the measures were

22,23,12,11,30,22,7,42,24,33,28,19,4,34,15,26,50,27,20,30,14,42.

The second group consisted of young males who had a family member killed or
wounded. The observed measures were

17,22,16,16,14,29,20,20,19,14,10,8,26,9,14,17,21,16,14,11,

14,11,29,13,4,16,16,7,21.
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Test the hypothesis of equal means with Student’s t test with α = .05 and
compute a .95 confidence interval.

18. For the data in the last problem, the difference between the medians is −7.5 and
the corresponding McKean–Schrader estimate of the standard error is√

S2
1 + S2

2 = 3.93. Verify that you do not reject the hypothesis of equal medians

with α = .05.

19. Referring to the previous two problems, the hypothesis of equal means is rejected,
but the hypothesis of equal medians is not. Comment on why this is not surprising.

20. Does the consumption of alcohol limit our attention span? An article in the July
10, 2006 Los Angeles Times described a study conducted at the University of
Washington where 23 people were given enough alcohol to reach a blood alcohol
level of 0.04% (half the legal limit in many states). A second group of 23 people
drank no alcohol. The researchers then showed members of both groups a
25 second video clip in which two teams passed a ball back and forth and asked
them to count the number of times one team passed the ball. During the clip, a
person in a gorilla suit walks through the crowd, thumps its chest, and walks off.
Researchers found that 11 of the 23 participants in the control group saw the
gorilla, versus 10 in the alcohol group. Verify that you reject the hypothesis that
the two groups have the same probability of seeing the gorilla using α = .05.

9.2 Comparing two dependent groups

Welch’s test and the two-sample Student’s t-test, described in the previous section, both
assume that the groups being compared are independent. But often dependent groups
are compared instead. Imagine, for example, that a training program for increasing
endurance is under investigation, the endurance of participants is measured before
training starts, they undergo the training program for four weeks, and then their
endurance is measured again. An issue is whether there has been a change in the average
endurance, but because the same participants are measured both before and after training,
it is unreasonable to assume that these two measures are independent. And if they are
dependent, Welch’s test and the two-sample Student’s t-test for comparing means,
described in section 9.1, are no longer valid.

As another example, consider again the study where the goal is to assess the effects
of ozone on weight gain among rats. Now, however, rather than randomly sampling
rats, pairs of rats from the same litter are sampled, one is assigned to the ozone-free
group and the other is exposed to ozone. Because these pairs of rats are related, it is
unreasonable to assume that their reactions to their environment are independent.

As a final example, consider the issue of whether men differ from women in terms
of their optimism about the future of the economy. If married couples are sampled and
measured, it is unreasonable to assume that a woman’s response is independent of her
husband’s views.

Assuming normality, there is a simple method for comparing dependent groups.
Roughly, randomly sample n pairs of observations, for each pair compute their difference,
and then apply the one-sample version of Student’s t covered in chapter 7. This can be
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described in a more formal manner as follows. Denote the n pairs of observations by

(X11,X12)
...

(Xn1,Xn2).

So X11, . . . ,Xn1 represent the n observations in the first group and X12, . . . ,Xn2 represent
the n observations in the second. Compute all pairwise differences, which is denoted by

D1 = X11 − X12
...

Dn = Xn1 − Xn2.

It can be seen that the population mean of the D values, say μD , is equal to difference
between the means of the two dependent groups, μ1 − μ2. That is, μD = μ1 − μ2.
Consequently, testing the hypothesis of equal means is accomplished by testing the
hypothesis that the D values have a population mean of zero. To test H0 : μD = 0,
compute the mean and variance of the D values:

D̄ = 1

n

n∑
i=1

Di

and

s2D = 1

n − 1

n∑
i=1

(Di − D̄)2.

Next, compute

TD = D̄

sD/
√

n
.

The critical value is t , the 1 − α/2 quantile of Student’s t-distribution with ν = n − 1
degrees of freedom. The hypothesis of equal means is rejected if |TD| ≥ t . This is called
the paired t-test. A 1−α confidence interval for μD = μ1 −μ2, the difference between
the means, is

D̄ ± t
sD√

n
.

Example 1

A company wants to know whether a particular treatment reduces the amount
of bacteria in milk. To find out, counts of bacteria were made before and
after the treatment is applied resulting in the outcomes shown in table 9.3.
For instance, based on the first sample, the bacteria count before treatment is
X11 = 6.98, after the treatment it is X12 = 6.95, and so the reduction in the
bacteria count is D1 = .03. The goal is to determine whether, on average, the
reduction differs from zero. The sample mean of the difference scores (the Di

values) is D̄ = .258. The sample variance of the difference scores is s2D = .12711.
And because the sample size is n = 12, T = 2.5 and the degrees of freedom are
ν = 12 − 1 = 11. With α = .05, the critical value is t = 2.2, so reject. That is,
there is evidence that the treatment results in a reduction in the bacteria count,
on average.
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Table 9.3 Bacteria counts before and after treatment

Before After Difference
Sample (i) treatment (Xi1) treatment (Xi2) Di = Xi1 − Xi2

1 6.98 6.95 0.03
2 7.08 6.94 0.14
3 8.34 7.17 1.17
4 5.30 5.15 0.15
5 6.26 6.28 −0.02
6 6.77 6.81 −0.04
7 7.03 6.59 0.44
8 5.56 5.34 0.22
9 5.97 5.98 −0.01

10 6.64 6.51 0.13
11 7.03 6.84 0.19
12 7.69 6.99 0.70

Violating the normality assumption

As was the case when comparing two independent groups, if the two groups have
identical distributions, the paired Student’s t-test performs well in terms of avoiding
Type I error probabilities well above the specified level, given the goal of comparing the
means. Roughly, the reason is that for this special case, the distribution of D is symmetric
about the value zero, so we have a situation similar to the one described in section 7.3.
But if the groups differ in terms of skewness, practical problems can occur in terms of
Type I errors when comparing the means, and the corresponding confidence intervals
might be inaccurate. And when there are outliers, again, power might be relatively poor.
With a sufficiently large sample size, practical problems become negligible, but it can
be difficult knowing when this is the case.

Using medians

A simple alternative to using means, when comparing dependent groups, is to use
medians. For example, you can simply test the hypothesis that the population median of
the difference scores has a value equal to zero using the methods covered in chapter 7.
There is, however, an issue that should be made clear. When working with means, a little
algebra shows that the difference between the sample means is equal to the mean of the
difference scores. That is, D̄ = X̄ 1 − X̄ 2. Moreover, the same is true when working with
the population means: μD = μ1 −μ2. Consequently, testing H0: μD = 0 is the same as
testing H0: μ1 − μ2 = 0. However, the same is not true when working with medians.
There are exceptions, but under general conditions, the median of the difference scores
is not equal to the difference between the medians. In symbols, if we let MD be the
sample median of the difference scores, and we let M1 and M2 be the sample medians
corresponding to the two dependent groups, then usually, MD �= M1 − M2.

Example 2

Consider the data in table 9.3. The median bacteria count before the treatment
is M1 = 6.875. The median bacteria count after the treatment is M2 = 6.55.
And the median of the difference scores, given in the final column of table 9.3,
is MD = .145. As is evident, MD �= M1 − M2.
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There are methods for testing the hypothesis that the medians of two
dependent groups are equal, rather than testing the hypothesis that the median
of the difference scores is zero. But the details are too involved to cover in an
introductory course.3

Problems
21. For 49 pairs of sisters, a researcher wanted to know whether the older sisters

differ, on average, from the younger sisters, based on a test of social anxiety. It was
found that D̄ = 3 and sD = 4. Test the hypothesis of equal means with a Type I
error probability of .05. Discuss the interpretation of the result.

22. For the previous problem, compute a .95 confidence interval for the difference
between the means. What concerns, if any, might there be about this confidence
interval?

23. A course aimed at improving an understanding of good nutrition is attended by 28
students. Before the course began, students took a test on nutrition and got the
following scores:

72,60,56,41,32,30,39,42,37,33,32,63,54,47,91,

56,79,81,78,46,39,32,60,35,39,50,43,48.

After the course was completed, they were tested again yielding the scores

66,53,57,29,32,35,39,43,40,29,30,45,46,51,79,

68,65,80,55,38,35,30,50,37,36,34,37,54.

Test the hypothesis that the means of the before scores are equal to the means
after training using α = .05. Also compute a .95 confidence interval.

24. The median of 20 difference scores is found to be MD = 5, there are no tied
values, and the McKean–Schrader estimate of the standard error is SD = 2. Verify
that you would reject the hypothesis that the difference scores have a population
median of zero with α = .05.

25. Referring to the results of the previous problem, suppose the medians
corresponding to these two groups are 7 and 4, respectively. Is it reasonable to
conclude that the hypothesis of equal medians would also be rejected with α = .05?

9.3 Some modern advances and insights

Welch’s test and Student’s t-test were designed to be sensitive to differences between the
population means, but in reality they can be sensitive to other features, such as unequal
variances or a difference in skewness, as already explained. Consequently, when these
tests indicate that groups differ, there can be some doubt about how they differ and by
how much. Welch’s test avoids this problem with sufficiently large sample sizes, but
there is uncertainty about how large the sample sizes must be if the goal is to be sensitive

3. For information about how this is done, see Wilcox (2005).
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to the means only. So a basic issue is whether we can find methods based on measures
of location that correct this problem.

If the goal is to compare the population means, currently, some type of bootstrap
t-method, combined with Welch’s test, seems to be among the best methods available.
As previously explained, the basic idea is to perform simulations on the data with the goal
of determining the distribution of Welch’s test statistic, W , when the null hypothesis
is true. In essence, you use the data to estimate appropriate critical values rather than
assume normality. But it should be noted that even this technique can be sensitive to
differences between the groups beyond differences between the population means. This
is not to suggest all results based on means are suspect; at a minimum they can help
establish that groups differ, but care must be taken when interpreting the results.

Of course, one could compare medians rather than means, in various situations
this strategy performs well, but there are exceptions as already described and illustrated.
A common recommendation for dealing with non-normality is to use some type of
nonparametric method, (see chapter 13). We will see that they have practical value and
provide a useful perspective on how groups compare, but awareness of recent advances,
relevant to these methods, is strongly recommended.

Yet another approach is to use a compromise amount of trimming, and as previously
noted, 20% trimming is often a good choice. One method for comparing 20% trimmed
means was derived by Yuen (1974) and reduces to Welch’s test when there is no
trimming. The computational details, assuming 29% trimming, are as follows.

Let h1 and h2 be the number of observations left after trimming when computing
the 20% trimmed mean for the first and second groups, respectively. Let X̄ t1 and X̄ t1

be the 20% trimmed means and let s2w1 and s2w2 be the corresponding 20% Winsorized
variances. Let

d1 = (n1 − 1)s2w1

h1(h1 − 1)

and

d2 = (n2 − 1)s2w2

h2(h2 − 1)
.

Yuen’s test statistic is

Ty = X̄ t1 − X̄ t2√
d1 + d2

. (9.15)

and the degrees of freedom are

νy = (d1 + d2)2

d 2
1

h1−1 + d 2
2

h2−1

.

The 1 − α confidence interval for μt1 − μt2, the difference between the population
trimmed means, is

(X̄ t1 − X̄ t2) ± t
√

d1 + d2, (9.16)

where t is the 1 −α/2 quantile of Student’s t-distribution with νy degrees of freedom.
The hypothesis of equal trimmed means (H0 : μt1 = μt2) is rejected if

|Ty| ≥ t.
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In terms of Type I errors and power, Yuen’s method offers a substantial advantage
over Welch’s test. In principle, differences between means can be larger than differences
between trimmed means or medians, which might mean more power when comparing
means. Also, methods based on means can be sensitive to differences between groups,
such as differences in skewness, which are missed when comparing 20% trimmed means.
Generally, however, means usually offer little advantage in terms of power, and trimmed
means often provide a substantial advantage. Wu (2002) compared the power of a variety
of methods for comparing two independent groups using data from 24 dissertations. No
single method was alway best and in some cases methods based on means performed
well. But in general, methods based on means had the poorest power and typically the
best power was achieved with methods based on 20% trimmed means.

Example 1

Consider again the self-awareness data in example 6 of section 9.1. We saw that
the hypothesis of equal medians was rejected with a Type I error probability
of α = .05; the p-value was .047. In contrast, comparisons based on the means
did not come close to rejecting. Applying Yuen’s test, it can be seen that
X̄ t1 = 282.7, X̄ t2 = 444.8, ν = 23, Ty = 2.044, and with α = .05, t = 2.069,
so Yuen’s method does not quite reject. (The p-value is .052.) So in this
particular case, methods for comparing 20% trimmed means and medians give
similar results (their p-values differ by very little), but both of these methods
differ considerably, in terms of p-values, compared to using Student’s t and
Welch’s method.

A basic principle underlying this last example is that when groups do not
differ in any manner, meaning that they have identical distributions, the choice
of method for comparing the groups makes little difference. But if the groups
differ, situations are encountered where the the choice of method can make a
considerable difference.

The percentile bootstrap method

Chapters 6 and 7 outlined the basics of the percentile bootstrap method, which is readily
extended to comparing two groups. For illustrative purposes, imagine that the goal is
to compare the medians of two independent groups. Using a computer, we generate a
bootstrap sample from the first group. That is, we randomly sample, with replacement,
n1 observations from the first group. The median, based on this bootstrap sample, is
labeled M∗

1 . We proceed in the same fashion for the second group yielding M∗
2 . Then

one of three outcomes will occur: M∗
1 < M∗

2 , M∗
1 = M∗

2 , or M∗
1 > M∗

2 . Next, we repeat
this process B times, and for the sake of illustration, we use B = 1000. Let A be the
number of times M∗

1 < M∗
2 and let C be the number of times M ∗

1 = M∗
2 . Proceeding in

a manner similar to what was done in section 7.3, let Q = (A + .5C)/B and set P equal to
Q or 1−Q, whichever is smaller. Then a p-value for testing H0: θ1 = θ2, the hypothesis
that the population medians are equal, is p = 2P . Currently, this is the only method for
comparing medians that has been found to provide reasonably accurate control over the
probability of a Type I error when tied (duplicated) values are likely to occur.

A confidence interval for the difference between the population medians can be
computed as well. Let U ∗ = M∗

1 − M∗
2 . That is, based on a bootstrap sample from

each group, U ∗ is the difference between the resulting medians. Repeating this process
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1000 times yields 1000 U ∗ values, which we label as U ∗
1 , . . . ,U ∗

1000. If we put these
1000 values in ascending order, the middle 95% provide a .95 confidence interval for
the difference between the population medians.

Example 2

Using a computer, we find that among 1000 bootstrap samples from each of
two independent groups, there were 900 instances where M∗

1 < M∗
2 , and there

were 26 instances where M ∗
1 = M∗

2 . That is, B = 1000, A = 900 and C = 26.
Consequently, Q = (A+.5C)/B = (900+.5(26))/1000 = .913, P = 1−.913 =
.087, and the p-value is 2 × .087 = .174.

The percentile bootstrap method does not perform well when the goal is to
compare means. But it does perform very well when comparing 20% trimmed
means.

Comments on plotting data

Various graphical methods can help provide perspective on how groups differ and by how
much. That is, they can help assess effect size. Among some researchers, one popular
graphical tool is called an error bar, which is just a plot of the means for the two groups
under study plus an interval around each mean based on the standard error. Examples of
such a graph are shown in figure 9.3 using the data from example 6 in section 9.1. The
circles indicate the means. In the left panel, the ends of the lines extending above the
circles indicate the value of the sample mean plus one standard error. Similarly, the lines
extending below the circles indicate the value of the sample mean minus one standard
error. In symbols, the top and bottom ends of the lines indicate the value of X̄ +s/

√
n and

X̄ − s/
√

n, respectively. For the first group, the sample mean is X̄ = 448.1, the sample
standard deviation is s = 353624, the sample size is 19, so the estimated standard error
is s/

√
n = 34.33. Consequently, the bottom end of the first vertical line marks the value
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Figure 9.3 Example of error bars using the self awareness data in example 6 of section 9.1.
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Figure 9.4 Four graphical summaries of the sexual attitude data (with the extreme outlier among
the male response removed).

of X̄ –s/
√

n = 413.77 and the top end indicates the value X̄ + s/
√

n = 482.43. That is,
the ends of the lines indicate a confidence interval for the population mean. In the left
panel, the error bars were computed using two standard errors about the mean rather
than one.

Consider again the sexual attitude data used in example 9 of section 9.1. The upper
left corner of figure 9.4 shows the resulting error bars (with the extreme outlier removed).
Another graphical approach is to simply create a dot plot for each group. That is, simply
plot points corresponding to each of the values under study. The upper right corner
shows such a plot for the sexual attitude data. (The dots on the left reflect the responses
given by males.) Boxplots and kernel density estimates are other possibilities. The lower
left corner shows a boxplot of the sexual attitude data and the lower right panel shows
a kernel density estimate for each group. (The solid line is the plot for males.)4

Although error bars provide useful information, note that compared to the other
graphs, error bars can be relatively uninformative about the overall nature of the data.
Also, in Figure 9.4, plots of the means suggest a large difference between the two groups,
in contrast to the other three plots. Yet one more concern about error bars should be
noted. Imagine that the error bars are constructed so as to indicate a .95 confidence
interval for each mean. If the intervals do not overlap, as is the case in figure 9.4, this
might suggest that the hypothesis of equal means should be rejected. It can be seen,
however, that even if both intervals have exactly a .95 probability of containing the
mean, this approach does not control the probability of a Type I error when testing
the hypothesis of equal means (e.g., Schenker and Gentleman, 2001; Wilcox, 2003,
section 8.4). Even with large sample sizes, poor control over the probability of a Type I
error results, and so in terms of testing hypotheses, error bars should not be used.

4. The plots based on the kernel density estimators were created with the R function g2plot, which
belongs to a library of functions mentioned in chapter 1.
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A Summary of Some Key Points

• Currently, the most commonly used method for comparing groups is Student’s t -test
for means.

• Different methods can provide different conclusions about whether groups differ
and by how much. There are exceptions, but often reliance on a single method
for understanding how, and if, groups differ can be unsatisfactory. (This suggests
using multiple methods for comparing groups, but there are some technical issues that
should be taken into account when performing multiple tests. Details will be covered
in chapter 11.)

• Methods based on medians can reduce power problems associated with means;
medians can provide more accurate confidence intervals and better power if outliers
are common. But if distributions are normal or outliers are relatively rare, some other
method might offer more power. Tied values can destroy the ability of some methods
for comparing medians, in terms of controlling the probability of a Type I error
or providing accurate confidence intervals, but all indications are that a percentile
bootstrap method effectively deals with this problem.

• One strategy for reducing problems that can occur, when using means or medians
is to compare groups, is to use a compromise amount of trimming, and as usual, a
20% trimmed mean appears to be a good choice in many instances. (Chapter 13 will
describe yet another approach that deserves serious consideration.)

• There are other graphical methods for comparing groups that can be useful but which
are not covered here. One of these is called a Q-Q plot and another is called a shift
function. Both deal with comparing all of the quantiles. So included as a special case,
they display the difference between the medians and the quartiles. An advantage of the
shift function is that confidence intervals for the difference between all of the quantiles
are provided, assuming random sampling only. The result is a detailed indication of
where and how groups differ.5

Problems
26. Despite any problems it might have, summarize how you would justify using

Student’s t-test to compare two independent groups.

27. Summarize any practical concerns about Student’s t-test and comment on how
they might be addressed.

28. Summarize the relative merits of comparing groups with medians.

29. For two independent groups, 1000 bootstrap samples are generated and it is found
that there are 10 instances where the bootstrap sample trimmed mean for the first
group is less than the bootstrap sample trimmed mean for the second. And there 2
instances where the bootstrap sample trimmed means are equal. Determine a
p-value when testing the hypothesis of equal population trimmed means.

30. Verify that for the self-awareness data in table 9.1, when applying Yuen’s method,
the test statistic is Ty = 2.044.

5. For appropriate software, see Wilcox, 2003.
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COMPARING MORE THAN
TWO GROUPS

C hapter 9 described methods for comparing two groups, but quite often more than
two groups are of interest. For example, a researcher might have four methods for

treating schizophrenia, in which case there is the issue of whether the choice of method
makes a difference. As another example, several drugs might be used to control high
blood pressure. Do the drugs differ in terms of side effects?

Imagine that the goal is to compare J groups having population means μ1, . . . ,μJ .
The most common strategy is to begin by testing

H0 : μ1 = ·· · = μJ , (10.1)

the hypothesis that all J groups have equal means. The immediate goal is to describe
methods aimed at testing this hypothesis when dealing with independent groups. Then,
at various points, the relative merits of these methods are discussed.

10.1 The ANOVA F test for independent groups

We begin with a classic, routinely used method for testing the hypothesis given by
equation (10.1) when dealing with independent groups. As in chapter 9, independent
groups means that the observations in any two groups are independent. In the
schizophrenia example, this requirement would be met if we randomly sample
participants who will undergo one of the treatments, and then these participants are
randomly assigned to one and only one treatment. If, for instance, all four treatment
methods were applied to the same participants, independence would no longer be a
reasonable assumption and the methods covered here would be inappropriate.

The method assumes

• Random sampling
• Normality
• All J groups have the same variance.
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Letting σ 2
1 , . . . ,σ 2

J denote the population variances, this last assumption means that

σ 2
1 = σ 2

2 = ·· · = σ 2
J , (10.2)

which is called the homogeneity of variance assumption. For convenience, this assumed
common variance is denoted by σ 2

p . Heteroscedasticity refers to a situation where not all
the variances are equal.

Outline of the classic method

The basic strategy for testing equation (10.1), which was derived by Sir Ronald Fisher,
arises as follows. First imagine that the null hypothesis of equal means is true. Then the
sample means corresponding to the J groups under study are all attempting to estimate
the same quantity, yet their individual values will vary. A rough characterization of the
classic method is that it attempts to determine whether the variation among the sample
means is sufficiently large to reject the hypothesis of equal population means. The more
variation among the sample means, the stronger the evidence that the null hypothesis
should be rejected.

Let X̄ 1, . . . , X̄ J be the sample means and momentarily consider the case where all
groups have the same sample size, which is denoted by n. We begin by computing the
average of the sample means,

X̄ G = 1

J

∑
X̄ j ,

which is called the grand mean. Next, we measure the variation among these means in
much the same way the sample variance, s2, measures the variation among n observations.
The variation among the sample means is given by

V = 1

J − 1

∑
(X̄ j − X̄ G )2.

In words, V is computed by subtracting the grand mean from each of the individual
means, squaring the results, adding these squared differences, and then dividing by
J − 1, the number of groups minus one. It can be shown that when the null hypothesis
of equal means is true, V estimates σ 2

p /n, the assumed common variance divided
by the sample size. Multiplying V by the sample size, n, yields what is called the
mean squares between groups, which estimates the assumed common variance σ 2

p when

the null hypothesis is true.1 Put another way, the mean squares between groups is
given by

MSBG = n

J − 1

∑
(X̄ j − X̄ G )2.

However, when the null hypothesis is false, MSBG does not estimate σ 2
p , it estimates

σ 2
p plus a quantity that reflects how much the population means differ. That is,

1. A commonly used term is sums of squares between groups, which is SSBG=n
∑

(X̄ j − X̄ G )2.
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the more unequal the population means happen to be, the larger will be MSBG,
on average.

To say this in a more precise way, let

μ̄ = 1

J

∑
μj

be the average of the population means and let

σ 2
μ =

∑
(μj − μ̄)2

J − 1
,

which represents the variation among the population means. In general, MSBG is
estimating

σ 2
p + nσ 2

μ.

This says that the value of MSBG is affected by two quantities: the variation within
each group, represented by σ 2

p , plus the variation among the population means, which is

reflected by σ 2
μ. When the means are all equal, there is no variation among the population

means, meaning that σ 2
μ = 0. That is, MSBG is estimating σ 2

p .

Next, let s21, . . . , s2J represent the sample variances corresponding to the J groups. By
assumption, all of these sample variances estimate the common (population) variance
σ 2

p . As was done in chapter 9, we simply average the sample variances to get a single

estimate of σ 2
p , still assuming equal sample sizes. This average is called the mean squares

within groups and is given by

MSWG = 1

J

∑
s2j .

A key result is that when the hypothesis of equal means is true, both MSBG and MSWG
are attempting to estimate the same quantity, namely, the assumed common variance.
When the null hypothesis is false, MSWG continues to estimate the assumed common
variance, but now MSBG is estimating something larger, meaning that on average,
MSBG will tend to be larger than MSWG.

Based on the results just summarized, we reject the hypothesis of equal means if
MSBG is sufficiently larger than MSWG. A convenient way of measuring the extent
to which they differ is with

F = MSBG

MSWG
. (10.3)

Note that if each group has n observations, the total number of observations in all
J groups is N = nJ . The distribution of F , when the null hypothesis is true, is called
an F distribution with degrees of freedom

ν1 = J − 1,

and

ν2 = N − J .

That is, the F distribution depends on two quantities: the number of groups
being compared, J , and the total number of observations in all of the groups, N .
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Moreover, the hypothesis of equal means is rejected if F ≥ f , where f is the 1 − α

quantile of an F distribution with ν1 = J − 1 and ν2 = N − J degrees of freedom.
(This is the same F distribution introduced in chapter 8.) Tables 5, 6, 7 and 8 in
appendix B report critical values, f , for α = .1, .05, .025 and .01 and various degrees
of freedom. For example, with α = .05, ν1 = 6, ν2 = 8, table 6 indicates that the .95
quantile is f = 3.58. That is, there is a .05 probability of getting a value for F that
exceeds 3.58 when in fact the population means are equal. For α = .01, table 8 says that
the .99 quantile is 6.32. This means that if you reject when F ≥ 6.32, the probability
of a Type I error will be .01, assuming normality and that the groups have equal
variances.

The method just described for comparing means is called an analysis of variance or
ANOVA F test. Although the goal is to compare means, it goes by the name analysis
of variance because the method is based on the variation of the sample means relative
to the variation within each group. Table 10.1 outlines what is called an analysis of
variance summary table; it is a classic way of summarizing the computations. Table 10.2
summarizes the analysis based on the data in table 10.1.

Example 1

Imagine a study aimed at comparing four groups with ten observations in
each group. That is, J = 4 and n = 10, so the total sample size is N = 40.
Consequently, the degrees of freedom are ν1 = 3 and ν2 = 36. Figure 10.1
shows the distribution of F when the hypothesis of equal means is true. As
indicated, the .95 quantile is f = 2.87, meaning that the hypothesis of equal
means is rejected if F ≥ 2.87.

The description of the ANOVA F test was done with equal sample
sizes primarily for convenience. The method is readily applied when the
sample sizes are unequal using the steps in box 10.1. Many software packages
perform the calculations. What is perhaps more important is understanding
the relative merits of the method, which is a topic discussed momentarily.
But in case it helps, the following example illustrates the computational
steps.

Table 10.1 Analysis of variance (ANOVA) summary table

Source of variation Degrees of freedom Sum of squares Mean square F

Between groups J-1 SSBG MSBG F = MSBG

MSWG
Within groups N-J SSWG MSWG
Totals N-1 SSBG + SSWG

Table 10.2 ANOVA summary table for the data in table 10.1

Source of variation Degrees of freedom Sum of squares Mean square F

Between groups 3 0.36 0.12 1.51
Within groups 36 2.8542 0.0793
Totals 39 3.2142



BOX 10.1 Summary of the ANOVA F test with or without equal sample sizes.

Notation

Xij refers to the i th observation from the j th group, i = 1, . . . ,nj ; j = 1, . . . , J . (There
are nj observations randomly sampled from the j th group.)

Computations

A =
∑∑

X 2
ij

(In words, square each value, add the results, and call it A.)

B =
∑∑

Xij

(In words, sum all the observations and call it B.)

C =
J∑

j=1

1
nj

⎛
⎝ nj∑

i=1

Xij

⎞
⎠

2

(Sum the observations for each group, square the result, divide by the sample size,
add the results corresponding to each group.)

N =
∑

nj

SST = A − B2

N

SSBG = C − B2

N

SSWG = SST − SSBG = A − C

ν1 = J − 1

ν2 = N − J

MSBG = SSBG/ν1

MSWG = SSWG/ν2

Test Statistic

F = MSBG
MSWG

.

Decision Rule

Reject H0 if F ≥ f , the 1 −α quantile of an F distribution with ν1 = J − 1 and
ν2 = N − J degrees of freedom.
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f

43210

.05

f = 2.87

Figure 10.1 The distribution of F when comparing four groups with 10 observations in each
group and the hypothesis of equal means is true. That is, J = 4, n = 10, so ν1 = 4 − 1 = 3 and
ν2 = 4(10) − 4 = 36. If the Type I error is to be α = .05, reject if F ≥ 2.87.

Example 2

The computations in box 10.1 are illustrated with the following data:

Group 1: 7, 9, 8, 12, 8, 7, 4, 10, 9, 6

Group 2: 10, 13, 9, 11, 5, 9, 8, 10, 8, 7

Group 3: 12, 11, 15, 7, 14, 10, 12, 12, 13, 14.

We see that

A = 72 + 92 +·· ·+ 142 = 3,026,

B = 7 + 9 +·· ·+ 14 = 290,

C = (7 + 9 +·· ·+ 6)2

10
+ (10 + 13 +·· ·+ 7)2

10
+ (13 + 11 +·· ·+ 14)2

10
= 2,890,

N = 10 + 10 + 10 = 30,

SST = 3,026 − 2902/30 = 222.67,

SSBG = 2,890 − 2902/30 = 86.67,

SSWG = 3,026 − 2890 = 136,

MSBG = 86.67/(3 − 1) = 43.335,

MSWG = 136/(30 − 3) = 5.03,

so

F = 43.335

5.03
= 8.615
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The degrees of freedom are ν1 = 3 − 1 = 2 and ν2 = 30 − 3 = 27. With
α = .01 we see from table 8 in appendix B, the critical value is f = 5.49.
Because 8.165 ≥ 5.49, reject the hypothesis of equal means.

When does the ANOVA F test perform well?

Similar to the two-sample Student’s t-test in chapter 9, if the J groups under study
do not differ in any manner, meaning that all J groups have the same distribution,
the ANOVA F test performs well in the sense that the actual Type I error probability
will not exceed the specified level by very much. So if the goal is to have the Type I
error probability equal to .05, the actual Type I error probability will, in general, be
less than or equal to .05 when sampling from distributions that are non-normal but
otherwise identical. In particular, not only do the groups have equal means, they do
not differ in terms of their variances or the amount of skewness. In practical terms,
given the goal of controlling the probability of a Type I error, the ANOVA F test
provides a satisfactory test of the hypothesis that J groups have identical distributions,
meaning that if we reject, it is reasonable to conclude that two or more groups differ in
some manner.

But if the goal is to develop a test that is sensitive to means, without being
sensitive to other ways the groups might differ, the ANOVA F test can be highly
unsatisfactory. Indeed, the ANOVA F test suffers from problems similar to those
described in chapter 9 when using Student’s t-test. In fact, as the number of groups
increases, practical problems are exacerbated. For example, in chapter 9, it was noted
that under normality, if the sample sizes are equal but the population variances differ,
Student’s t controls the probability of a Type I error fairly well except possibly for very
small sample sizes. But when comparing four groups with the ANOVA F test, this is
no longer true.

Example 3

For instance, with equal sample sizes of 50 for each group, if all four groups
have a normal distribution with a mean of 0, the first group has a standard
deviation of 4, and the rest have a standard deviation of 1, the actual Type I
error probability is approximately .088 when testing at the α = .05 level. Non-
normality only makes matters worse. Although the seriousness of a Type I error
will vary from one study to the next, it has been suggested that if the goal is to
have the Type I error probability equal .05, at a minimum, the actual Type I
error probability should not exceed .075 (e.g., Bradley, 1978).

Perhaps a more serious issue has to do with the ability of the ANOVA
F test to detect true differences. There are situations where it performs well,
such as when its underlying assumptions are true. But for a variety of reasons, it
can have poor power relative to other methods that might be used. In fairness,
we encounter situations where it makes little difference which method is used,
and but we also encounter situations where the ANOVA F test does not come
close to rejecting, yet more modern methods detect a difference, a result that
was already illustrated in chapter 9 when using Student’s t . Roughly, the more
groups being compared, the more likely it is that relatively poor power will
result when using the ANOVA F test due to differences in skewness, unequal
variances, and outliers.
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Example 4

Consider the following values for four groups.

Group 1 : −0.89,1.22,1.03,2.02,1.41,1.69,−1.48,1.96,

0.44,0.41,1.71,3.04,−0.63,1.77,2.50.

Group 2 : 2.75,0.26,0.75,−1.52,1.15,1.00,0.78,−0.01,

0.92,−0.68,0.91,−0.41,0.44,0.43,1.34.

Group 3 : 0.12,−0.45,0.37,−1.75,1.31,0.23,−0.53,0.73,

0.54,−1.08,−0.65,−1.89,−0.53,0.20,0.09.

Group 4 : 1.49,0.10,2.21,0.90,−0.17,−0.84,1.18,−0.64,

− 1.32,−0.89,0.27,−0.93,0.56,−0.27,−0.27.

These values were generated from normal distributions where the first group
has a population mean of 1, and the other three groups have population means
equal to 0. It can be seen that the ANOVA F test rejects with a Type I error
probability set equal to α = .01. (The p-value can be seen to be .008.) That is,
the F test makes a correct decision about whether the groups differ. But suppose
one of the values in the fourth group happens to be an outlier. In particular,
what if by chance the first observation in this group were 6 rather than 1.49.
Now the ANOVA F test no longer rejects with a Type I error probability set
to α = .05. Yet, had we compared the first three groups, ignoring the fourth,
we would again reject with α = .01. This illustrates that a single outlier in any
group has the potential of masking true differences among the other groups
under study, even if the other groups have normal distributions.

Example 5

Consider a situation where four normal distributions are to be compared, each
has variance 1, the first group has mean 1 and the rest have means equal to 0.
If all four groups have a sample size of 15 and the Type I error probability is set
at .05, then the power of the F test is, approximately, .71. But now consider the
same situation, only the fourth group has the contaminated normal distribution
described in section 4.6. So the population mean is again 0, but now the power
of the F test is only .38. This illustrates that if the normality assumption is
violated in even one group, true differences among the remaining groups can
be missed as a result, even if they have normal distributions with a common
variance.

Currently, the practical concerns about power, when using the ANOVA
F test, are rarely discussed or illustrated in an introductory course. But it is
easily the most commonly used method when comparing multiple groups,
and so it is important to be aware of the method and have some sense of its
relative merits. An argument for using the ANOVA F might be that there
are conditions where it has relatively high power, possibly because it can be
sensitive to differences among the groups that other methods tend to miss.
Nevertheless, it is unrealistic to assume that the ANOVA F will have high
power—often situations arise where some alternative method is much more
likely to detect true differences.
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One suggestion for trying to salvage the F test is to first test the
hypothesis of equal variances, and if this hypothesis is not rejected, assume
equal variances and use F . Chapter 9 pointed out that this strategy is known
to fail when comparing two groups and it continues to fail when using
the ANOVA F , even when dealing with normal distributions (Markowski
and Markowski, 1990; Moser et al. 1989; Wilcox et al. 1986; Zimmerman,
2004). The basic problem is that tests for equal variances do not have enough
power to detect situations where violating the assumption of equal variances
causes practical problems. As in chapter 9, presumably this is no longer
true if the sample sizes are sufficiently large, but it is unclear just how
large the sample sizes must be, particularly when dealing with non-normal
distributions.

Dealing with unequal variances: Welch’s test

Many methods have been proposed for testing the equality of J means without
assuming equal variances (e.g., Chen and Chen, 1998; Mehrotra, 1997; James, 1951;
Krutchkoff, 1988; Alexander and McGovern, 1994; Fisher, 1935, 1941; Cochran and
Cox, 1950; Wald, 1955; Asiribo and Gurland, 1989; Lee and Ahn, 2003; Scariano and
Davenport, 1986; Matuszewski and Sotres, 1986; Pagurova, 1986; Weerahandi, 1995.)
Unfortunately, all of the methods just cited, plus many others, have been found to
have serious practical problems (e.g., Keselman, Wilcox, Taylor and Kowalchuk, 2000;
Keselman and Wilcox, 1999). If the goal is to use a method that is sensitive to means,
without being sensitive to other ways the groups might differ, the method described
here is not completely satisfactory, but it performs reasonably well under normality and
heteroscedasticity and it forms the basis of a technique that deals with non-normality.
The method is due to Welch (1951) and the computational details are described in
box 10.2.

BOX 10.2 Computations for Welch’s method

Goal

Without assuming equal variances, test H0 : μ1 = μ2 = ·· · = μJ , the hypothesis that
J independent groups have equal means.

Computations

Let

w1 = n1

s2
1

,w2 = n2

s2
2

, . . . ,wJ = nJ

s2
J

.

Next, compute

U =
∑

wj

X̃ = 1
U

∑
wj X̄ j
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A = 1
J − 1

∑
wj (X̄ j − X̃ )2

B = 2(J − 2)
J2 − 1

∑ (1 − wj
U )2

nj − 1

Fw = A
1 + B

.

When the null hypothesis is true, Fw has, approximately, an F distribution with

ν1 = J − 1

and

ν2 =
[

3
J2 − 1

∑ (1 − wj/U )2

nj − 1

]−1

degrees of freedom.

Decision Rule

Reject H0 if Fw ≥ f , where f is the 1 −α quantile of the F distribution with ν1 and ν2
degrees of freedom.

Example 6

Consider again, the data used in Example 3, where all four groups have normal
distributions with a common variance. That is, the assumptions underlying the
ANOVA F test are true. Computing Welch’s test statistic, Fw, as described in
box 10.2, it can be seen that Fw = 3.87, the degrees of freedom are ν1 = 3 and
ν2 = 30.9 and with α = .01, the critical value is approximately 4.486. So unlike
the ANOVA F test, the hypothesis of equal means is not rejected. However,
with α = .02, now Welch’s test rejects. The p-value for Welch’s test is .018
versus .008 when using the ANOVA F . If the assumptions of the ANOVA F
test are true, it will have better power than Welch’s test, but generally the
improvement is not that striking. However, when there is more variability in
some groups versus the others, Welch’s test can detect a true difference among
the means in situations where the ANOVA F does not, even when sampling
from normal distributions.

Example 7

The following data illustrate that the ANOVA F and Welch’s test can yield
substantially different p-values, which can alter your decision about whether
to reject the hypothesis of equal means:

Group 1: 53, 2, 34, 6, 7, 89, 9, 12
Group 2: 7, 34, 5, 12, 32, 36, 21, 22
Group 3: 5, 3, 7, 6, 5, 8, 4, 3.
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The ANOVA F test yields F = 2.7 with a critical value of 3.24 when the
Type I error is taken to be α = .05, so you do not reject. (The p-value is .09.)
In contrast, Welch’s test yields Fw = 8 with a critical value of 4.2, so now you
reject. (The p-value is .009.)

Comparing groups based on medians

Many methods for comparing the medians of multiple groups have been derived.2 One
general approach is to begin by testing

H0 : θ1 = ·· · = θJ , (10.4)

where θ1, . . . ,θJ are the population medians. Relatively simple techniques have been
proposed, but they can be rather unsatisfactory. There are two methods that seem to
perform tolerably well except possibly when tied values occur, but the details are too
involved to give here. Only one method has been found to be generally satisfactory, even
when tied values occur, and it is based on a simple extension of the percentile bootstrap
method outlined in chapter 9; the details are outlined in chapter 11.

Dealing with dependent groups

Often, the groups to be compared are dependent. Consider, for example, a study aimed at
investigating the relationship between environment and aggression. To shed light on this
issue, a psychologist randomly samples litters of mice, and then four mice from each litter
are selected, with each mouse placed in one of four different environments. After some
time, the aggressiveness of each mouse is measured and the goal is to determine whether
the groups differ based on this measure. Because mice from the same litter are used, it
is unreasonable to assume that the observations in any two groups are independent, and
special methods that allow dependence are required.

As another example, an investigator might want to know how a particular drug
affects cholesterol levels over time. If cholesterol levels are measured before the study
begins, and then measured again every month for four months, there are five groups to
be compared corresponding to the five times measures were taken. Because the same
individuals are measured at all five time points, independence cannot be assumed. Such
studies are called within-subjects designs or repeated-measures designs.

It is briefly noted that there is a classic variation of the ANOVA F test aimed at
testing the hypothesis of equal means among dependent groups. This classic approach
requires, in addition to normality, that the variances and covariance satisfy a property
called sphericity (e.g. Kirk, 1995), but complete details are not provided. (If, for example,
all the groups have the same variance, and all pairs of groups have the same Pearson
correlation, sphericity is achieved.) It is merely remarked that violating this assumption
creates practical problems when trying to control the probability of a Type I error.
Under normality, this problem can be reduced by using what is called the Hyunh-Feldt
correction, which is reported by some of the more popular software packages (such as
SPSS). But like all methods based on means, non-normality can wreak havoc on power,
and if the goal is to be sensitive to differences among the means, without being sensitive

2. For a recent comparison of various methods, see Wilcox (2006).
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to other ways the groups might differ, again there are general situations where this
ANOVA F test can be unsatisfactory.

Problems
1. For the following data,

Group 1 Group 2 Group 3

3 4 6
5 4 7
2 3 8
4 8 6
8 7 7
4 4 9
3 2 10
9 5 9

X̄ 1 = 4.75 X̄ 2 = 4.62 X̄ 3 = 7.75
s21 = 6.214 s22 = 3.982 s23 = 2.214,

assume that the three groups have a common population variance, σ 2
p . Estimate σ 2

p .

2. For the data in the previous problem, test the hypothesis of equal means using the
ANOVA F . Use α = .05.

3. For the data in problem 1, verify that Welch’s test statistic is Fw = 7.7 with degrees
of freedom ν1 = 2 and ν2 = 13.4. Then verify that you would reject the hypothesis
of equal means with α = .01.

4. Construct an ANOVA summary table using the following data, as described in
section 10.1, then test the hypothesis of equal means with α = .05.

Group 1 Group 2 Group 3 Group 4

15 9 17 13
17 12 20 12
22 15 23 17

5. In the previous problem, what is your estimate of the assumed common variance?

6. For the data used in the last two problems, verify that for Welch’s test, Fw = 3.38
with ν1 = 3 and ν2 = 4.42.

7. Based on the results of the previous problem, would you reject the hypothesis of
equal means with α = .1?

8. Why would you not recommend the strategy of testing for equal variances, and if
not significant, using the ANOVA F test rather than Welch’s method?

9. Five independent groups are compared with n = 15 observations for each group.
Fill in the missing values in the following summary table.
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Source of variation Degrees of freedom Sum of squares Mean square F

Between groups – 50 – –
Within groups – 150 –

10. Referring to box 10.2, verify that for the following data, MSBG = 14.4 and
MSWG = 12.59.

G1 G2 G3

9 16 7
10 8 6
15 13 9

6

11. Consider five groups ( J = 5) with population means 3, 4, 5, 6, and 7, and a
common variance σ 2

p = 2. If the number of observations is 10 (n = 10), indicate
what is being estimated by MSBG, and based on the information given,
determine its value. That is, if the population means and common variance were
known, what would the value of MSBG be if it were giving perfectly accurate
information? How does this differ from the value estimated by MSWG?

12. For the following data, verify that you do not reject with the ANOVA F testing
with α = .05, but you do reject with Welch’s test.

Group 1: 10 11 12 9 8 7
Group 2: 10 66 15 32 22 51
Group 3: 1 12 42 31 55 19

What might explain the discrepancy between the two methods?

13. Consider the following ANOVA summary table:

Source of Degrees of Sum of Mean square F
variation freedom squares

Between Groups 3 300 100 10
Within Groups 8 80 10
Total 11 428

Verify that the number of groups is J = 4, the total number of observations is
N = 12 and that with α = .025 the critical value is 5.42.

14. A researcher reports a p-value of .001 with the ANOVA F test. Describe what
conclusions are reasonable based on this result.

15. Summarize the reasons you might fail to reject with the ANOVA F test.

16. Someone tests for equal variances and fails to reject. Does this justify the use of
the ANOVA F test?

17. A researcher reports that a test for normality was performed, and that based on
this test, no evidence of non-normality was found. Why might it be unreasonable
to assume normality despite this result?

18. Outline how you might construct an example where sampling is from normal
distributions, Welch’s test rejects, but the ANOVA F test does not.
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10.2 Two-way ANOVA

An important and commonly used generalization of the ANOVA F test has to with
what are called two-way designs. One-way designs refer to studies where multiple levels
of a single factor are of interest. For example, a farmer might want to determine how
different amounts of fertilizer affect the growth of her crops. If five amounts of fertilizer
are under consideration, this reflects a one-way design because a single variable, amount
of fertilizer, is being manipulated. There are five levels for this factor, which correspond
to the five amounts of fertilizer that are under consideration. One of the examples given
at the beginning of this chapter had to do with four methods for treating schizophrenia.
The factor here is method of treatment, and there are four levels because four types of
treatment are to be compared.

A two-way design is like a one-way design, only two factors are of interest rather
than just one. Consider, for example, a study aimed at understanding behavior when
individuals diet in order to lose weight. In a study described by Atkinson et al. (1985,
pp. 324–325), two groups of individuals were identified; those who were on a diet to lose
weight and those who were not. So far, this is a one-way design with two levels. But the
researchers wanted to understand the effects of a second factor—forced eating. Some
participants were forced to consume two milk shakes, others had one milk shake, and a
third group consumed no milk shakes at all. So now we have a two-way design, where
the second factor has three levels and reflects how many milk shakes were consumed.
After consuming the milk shakes, the participants sampled several flavors of ice cream
and were encouraged to eat as much as they wanted. The outcome measure of interest is
the amount of ice cream consumed. It was found that the more milk shakes consumed
by individuals not on a diet, the less ice cream they would consume later. In contrast,
the dieters who had two milk shakes ate more ice cream than those who had drank one
milk shake or none.

Here, the basic concepts of a two-way design are illustrated with a study where the
goal is to understand the effect of diet on weight gains in rats. Specifically, four diets
are considered which differ in: (1) amounts of protein (high and low) and (2) the source
of the protein (beef versus cereal). So this is a two-way design with two levels for each
factor. The results for these four groups are reported in table 10.3 and are taken from

Table 10.3 Weight gains (in grams) of rats on one of four diets

Beef Cereal

Low High Low High

90 73 107 98
76 102 95 75
90 118 97 56
64 104 80 111
86 81 98 95
51 107 74 88
72 100 74 82
90 87 67 77
95 117 89 86
78 111 58 92

X̄ 1 = 79.2 X̄ 2 = 100 X̄ 3 = 83.9 X̄ 4 = 85.9
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Table 10.4 Depiction of the population means for four diets

Source

Amount Beef Cereal

High μ1 μ2
Low μ3 μ4

Snedecor and Cochran (1967). Different rats were used in the four groups, so the groups
are independent. The first column gives the weight gains of rats fed a low protein diet
with beef the source of protein. The next column gives the weight gains for rats on a
high protein diet again with beef the source of protein, and the next two columns report
results when cereal is substituted for beef.

It is convenient to depict the population means as shown in table 10.4. Table 10.4
indicates, for example, that μ1 is the population mean associated with rats receiving a
low protein diet from beef. That is, μ1 is the average weight gain if all of the millions
of rats we might study are fed this diet. Similarly, μ4 is the population mean for rats
receiving a low protein diet from cereal.

Rather than just compare the means of the four groups, often it is desired to compare
the levels of each factor, ignoring the other. For example, you might want to compare
the rats receiving a high versus low protein diet, ignoring the source of the protein. To
illustrate how this might be done, imagine that the values of the population means are
as follows:

Amount Source

Beef Cereal

High μ1 = 45 μ2 = 60
Low μ3 = 80 μ4 = 90

For rats on a high protein diet, the mean is 45 when consuming beef versus 60 when
consuming cereal instead. If you want to characterize the typical weight gain for a high-
protein diet ignoring source, a natural strategy is to average the two population means
yielding (45 + 60)/2 = 52.5. That is, the typical rat on a protein diet gains 52.5 grams.
For the more general situation depicted by table 10.4, the typical weight gain on a high
protein diet would be (μ1 + μ2)/2, the average of the means over source of protein.
Similarly, the typical weight gain for a rat on a low-protein diet would be (μ3 +μ4)/2,
which in the example is (80 + 90)/2 = 85 grams. Of course, you can do the same
when dealing with source of protein, ignoring amount. The typical weight gain for a
rat eating beef, ignoring amount of protein, is (45 + 80)/2 = 62.5, and for cereal it is
(60 + 90)/2 = 75.

What is needed is some way of testing the hypothesis that weight gain is different
for a high protein diet versus a low protein diet, ignoring source of protein. One way of
doing this is to test

H0 : μ1 +μ2

2
= μ3 +μ4

2
,
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the hypothesis that the average of the populations means when the source of protein is
beef is equal to the average for cereal. If this hypothesis is rejected, then there is said
to be a main effect for the amount of protein. More generally, a main effect for the first
factor (amount) is said to exist if

μ1 +μ2

2
�= μ3 +μ4

2
.

Similarly, you might want to compare source of protein ignoring amount. One approach
is to test

H0 : μ1 +μ3

2
= μ2 +μ4

2
,

the hypothesis that the average of the means in the column for beef is equal to the average
for the column headed by cereal. If this hypothesis is rejected, then there is said to be a
main effect for the source of protein. More generally, a main effect for the second factor
is said to exist if

μ1 +μ3

2
�= μ2 +μ4

2
.

Interactions

There is one other important feature of a two-way design. Consider again a 2 by 2 design
where the goal is to compare high and low protein diets in conjunction with two protein
sources. Suppose the population means associated with the four groups have the values
previously indicated. Now look at the first row (high amount of protein) and notice that
the weight gain for a beef diet is 45 grams versus a weight gain of 60 for cereal. As is
evident, there is an increase of 15 grams. In contrast, with a low protein diet, switching
from beef to cereal results in an increase of 10 grams on average. That is, in general,
switching from beef to cereal results in an increase for the average amount of weight
gained, but the increase differs depending on whether we look at high or low protein.
This is an example of what is called an interaction.

More formally, an interaction is said to exist if

μ1 −μ2 �= μ3 −μ4.

In words, an interaction exists if for the first level of factor A the difference between
the means is not equal to the difference between the means associated with the second
level of factor A. No interaction means that these differences are equal. In symbols, no
interaction means that

μ1 −μ2 = μ3 −μ4.

The basic ideas just described have been extended to more complex situations where
the first factor has J levels and the second has K . Consider, for example, a study of survival
times of animals given one of three poisons. This is the first factor, which has J = 3
levels. Further imagine that four methods aimed at treating the animals are of interest.
This is the second factor, which has K = 4 levels. This type of design is often called a
J -by-K design. In the example, we have a 3-by-4 design.

To describe a common approach to analyzing J by K designs, imagine that the
population means are labeled as shown in table 10.5. So, for example, μ11 is the
mean of the group associated with the first level of first and second factors. The mean
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Table 10.5 Commonly used notation for the means in a
J -by-K ANOVA

Factor B

μ11 μ12 . . . μ1K

μ21 μ22 . . . μ2K

Factor A
...

...
...

...

μJ 1 μJ 2 . . . μJK

corresponding to the third level of factor A and the fourth level of factor B is denoted
by μ34. The following example provides some indication of how the groups are often
compared.

Example 1

Consider again the 3 by 4 design design where the first factor corresponds to
three types of poison and the second factor reflects four types of treatments.
Using the notation in table 10.5, μ11 is the mean survival time when an animal
is exposed to the first poison and is given the first treatment. Similarly, μ12 is
mean survival time when an animal is exposed to the first poison and is given
the second treatment. The marginal mean survival time when exposed to the
first poison is just the average of the means among the four treatments. That
is, the marginal mean is

μ̄1. = μ11 +μ12 +μ13 +μ14

4
.

In a similar manner, the marginal means for the second and third poisons are

μ̄2. = μ21 +μ22 +μ23 +μ24

4

and

μ̄3. = μ31 +μ32 +μ33 +μ34

4
.

And a common way of comparing the levels of Factor A, ignoring factor B, is
to test the hypothesis that the marginal means are equal. In symbols, test

H0 : μ̄1. = μ̄2. = μ̄3..

When this hypothesis is rejected, it is said that there is a main effect for factor A.
In the example, this means that typical survival times, ignoring treatment,
differ.

As is probably evident, comparing levels of factor B, ignoring factor A, can
be handled in a similar manner. Now, for each level of factor B, the strategy is
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to consider the average of the population means over the levels of factor A. Then
the goal is to test the hypothesis that the resulting marginal means are equal.

Example 2

Consider again the previous example, only now the goal is to compare
treatments, ignoring the type of poison. For each type of treatment, the average
survival times over the type of poison are

μ̄.1 = μ11 +μ21 +μ31

3
,

μ̄ 2 = μ12 +μ22 +μ32

3
,

μ̄.3 = μ13 +μ23 +μ33

3
,

and

μ̄.4 = μ14 +μ24 +μ34

3
.

Then a natural way of comparing treatments, ignoring the type of poison, is to
test

H0 : μ̄.1 = μ̄ 2 = μ̄.3 = μ̄.4.

Finally, there is the issue of interactions for the more general case of a
J -by-K ANOVA design. An interaction is said to exist if there is an interaction
for any two levels of factor A and any two levels of factor B.

Example 3

Continuing the previous two examples, consider the first and third levels of
factor A. That is, we focus on survival times when dealing with the first and
third types of poison. Simultaneously, consider the second and fourth types of
treatments. So we are considering four means:

μ12 μ14

μ32 μ34.

Extending the earlier description of an interaction in an obvious way, if μ12 −
μ14 = μ32 − μ34, there is no interaction among these four means. If instead
μ12 −μ14 �= μ32 −μ34, there is an interaction. More generally, no interaction
is said to exist if for any two levels of factor A, say i and i′, and any two levels
of factor B, say say k and k′,

μik −μik′ = μi′k −μi′k′ .
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Example 4

Imagine that unknown to us, the population means are

Factor B

Level 1 Level 2 Level 3 Level 4

Level 1 40 40 50 60
Factor A Level 2 20 20 50 80

Level 3 20 30 10 40

Looking at level 1 of factor A, we see that the means increase by 0 as we
move from level 1 of factor B to level 2. The increase for level 2 of factor A is
again 0. In particular, the difference between the first two means is the same as
the difference between the other two, so there is no interaction for these four
means. However, looking at level 1 of factor A, we see that the means increase
by 10 as we move from level 1 to level 3 of factor B. In contrast, there is an
increase of 30 for level 2 of factor A, which means that there is an interaction.
In formal terms, the difference between the first two means is not equal to the
difference between the other two.

The focus has been on understanding what is meant by ‘no main effects’ and ‘no
interactions’ in a two-way ANOVA design. But nothing has been said about how these
hypotheses might be tested. Suffice it so say that again, main effects and interactions
can be tested, assuming normality and equal variances but, for brevity, the tedious
computational details are not provided. However, a brief outline of the quantities
routinely computed might be of some use. Recall that in a one-way design, a quantity
is computed that reflects the variation among the means; it is called the sum of squares
between groups, and multiplying this quantity by the sample size yields an estimate
of the assumed common variance called the mean squares between groups (MSBG).
Similar quantities are computed in a two-way design. When the means associated with
the first factor are equal, we get a quantity called the mean squares for factor A, MSA,
which estimates the assumed common variance. Similarly, the second factor is typically
called factor B, and when the means are equal, a quantity called the mean squares for
factor B, MSB, estimates the assumed common variance. Finally, when the hypothesis
of no interaction is true, a quantity called the mean squares interaction, MSINTER, also
estimates the assumed common variance. When any of these three hypotheses are false,
the corresponding mean squares term tends to be larger than the mean squares within
groups (MSWG). The test statistic for factor A is

F = MSA

MSWG
,

and the degrees of freedom are ν1 = J − 1 and ν2 = N − JK . For factor B the test
statistic is

F = MSB

MSWG
,
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with degrees of freedom ν1 = K − 1 and ν2 = N − JK . And for the hypothesis of no
interactions, the test statistic is

F = MSINTER

MSWG
,

with degrees of freedom ν1 = (J − 1)(K − 1) and ν2 = N − JK .

Example 5

Consider again the study of survival times where animals are given one of three
poisons and of interest are four methods aimed at treating the animals. So
J = 3, K = 4, and for illustrative purposes, assume 10 animals are assigned to
each of these 12 groups. So the total sample size is N = 3 × 4 × 10 = 120.
Imagine that a computer program reports that for the first factor, MSA=200
and MSWG=103. Then F=1.94, and the degrees of freedom are ν1 = 2 and
ν2 = N − JK = 108. If we want the Type I error probability to be α = .05, from
table 6 in appendix B, the critical value is f = 3.08, and because F is less than
3.08, fail to reject. If MSINTER=250, then F = 250/103 = 2.42, the degrees
of freedom are ν1 = 6 and ν2 = N − JK = 108, the critical value is 2.18, and
because F exceeds this critical value, reject the hypothesis of no interaction.

Violating assumptions

The two-way ANOVA F test assumes normality and equal variances. As was the case
for the one-way design, violating these assumptions can result in the test being sensitive
to features other than differences among the means. Problems do not always arise, but it
is unrealistic to assume that this issue can be ignored. So as before, the ANOVA F can
provide an indication that groups differ, but it might not adequately isolate the nature of
the difference. There are methods aimed at allowing unequal variances, which include
extensions of Welch’s test, but no details are given here. And as usual, when comparing
groups with any method based on means, there is some risk of relatively low power.

A Summary of Some Key Points

• The methods in this chapter are aimed at comparing groups based on means. In terms
of controlling the probability of a Type I error, they perform well when all groups have
identical distributions. That is, not only are the means equal, the variances are equal,
groups have the same amount of skewness, and so on.

• If the methods in this chapter reject, it is reasonable to conclude that two or more
of the groups differ in some manner. But because the methods are sensitive to more
than just differences among the means, there is uncertainty about how groups differ
when we reject. Also, the methods in this chapter do not indicate which groups differ.
(This issue is addressed in chapter 11.)

• Generally, the more groups that are compared, the more sensitive the ANOVA F
becomes to differences among the groups beyond the means. That is, if the goal is
control Type I errors when all groups have equal means, the more groups we have,
the more difficult it is to achieve this goal.

Continued
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A Summary of Some Key Points (cont’d )

• If the goal is to compare groups in a manner that is sensitive to a measures of location
(such as the median), without being sensitive to other differences that might exist,
more advanced techniques should be used. These advanced methods help isolate how
groups differ and by how much.

• As is the case with all methods based on means, when using the methods in this
chapter, power might be low relative to other methods that have been developed in
recent years. But the methods described here are routinely used, so they are important
to know.

Problems
19. Consider a 2-by-2 design with population means

Factor B
Level 1 Level 2

Level 1 μ1 = 110 μ2 = 70
Factor A

Level 2 μ3 = 80 μ4 = 40

State whether there is a main effect for factor A, for factor B, and whether there is
an interaction.

20. Consider a 2-by-2 design with population means

Factor B
Level 1 Level 2

Level 1 μ1 = 10 μ2 = 20
Factor A

Level 2 μ3 = 40 μ4 = 10

State whether there is a main effect for factor A, for factor B, and whether there is
an interaction.

21. A computer program reports that for a 2-by-3 ANOVA, with 15 observations in
each group, MSA = 400, MSB = 200, MSINTER = 200, MSWG = 50.
Perform the tests of no main effects and no interaction with α = .01.

22. A computer program reports that for a 4-by-5 ANOVA, with 10 observations in
each group, MSA = 600, MSB = 400, MSINTER = 300, MSWG = 100.
Perform the tests of no main effects and no interaction with α = .05.

10.3 Modern advances and insights

There is a variety of methods aimed at improving upon the ANOVA F test and Welch’s
method for comparing multiple groups. Many of these modern methods help isolate the
nature of any differences that might exist. For example, some methods are designed to
be sensitive to differences in measures of location, without being sensitive to other ways
the groups might differ. That is, when you reject, there is more certainty that this is due
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to differences in measures of location. When the ANOVA F test rejects, the primary
reason might be differences among the variances or different amounts of skewness.
Perhaps a more serious concern with both the ANOVA F test and Welch’s method
is that they can have poor power, relative to more modern techniques. As in previous
chapters, some of the best methods are based on 20% trimmed means. Methods for
dependent groups as well as a two-way ANOVA design are available as well. Bootstrap
methods also have practical value. However, the details of all of these methods are much
too involved to give here.
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MULTIPLE COMPARISONS

C hapter 10 described how to test the hypothesis that two or more groups have a
common mean. In symbols, the goal was to test

H0 : μ1 = ·· · = μJ . (11.1)

But typically, one wants to know more about how the groups compare: which groups
differ, how do they differ, and by how much?

Note that rather than test the hypothesis given by equation (11.1), another approach
is to test the hypothesis of equal means for all pairs of groups. For example, if there are
four groups (J = 4), methods in chapter 9 could be used to test the hypothesis that the
mean of the first group is equal to the mean of the second, the mean of first group is
equal to the mean of third, and so on. In symbols, the goal is to test

H0 : μ1 = μ2,

H0 : μ1 = μ3,

H0 : μ1 = μ4,

H0 : μ2 = μ3,

H0 : μ2 = μ4,

H0 : μ3 = μ4.

There is, however, a technical issue that needs to be taken into account. Suppose there
are no differences among the groups, in which case none of the six null hypotheses
just listed should be rejected. To keep things simple for the moment, assume all four
groups have normal distributions with equal variances, in which case Student’s t-test in
chapter 9 provides exact control over the probability of a Type I error when testing any
single hypothesis. Further assume that each of the six hypotheses just listed is tested
with α = .05. So for each hypothesis, the probability of a Type I error is .05, but the
probability of at least one Type I error, when performing all six tests, is approximately .2.
That is, there is about a 20% chance of erroneously concluding that two or more groups
differ when in fact none of them differ at all. With six groups, there are 15 pairs of
means to be compared, and now the probability of at least one Type I error is about .36.
In general, as the number of groups increases, the more likely we are to find a difference
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when none exists if we simply compare each pair of groups using α = .05. To deal with
this problem, many methods have been proposed with the goal of controlling what is
called the familywise error rate (FWE). The familywise error rate (sometimes called the
experimentwise error rate) is the probability of making at least one Type I error when
performing multiple tests.

11.1 Classic methods for independent groups

We begin by describing classic methods for comparing the means of independent groups
that assume normality and that the groups have equal population variances. So for
J groups, homoscedasticity is assumed meaning that

σ 2
1 = ·· · = σ 2

J .

These methods are generally called multiple comparison procedures, which simply means
multiple hypotheses are to be tested. Concerns with these classic methods have been
known for some time, but they are commonly used, so it is important to be aware of
them and their relative merits.

Fisher’s least significant difference method

One of the earliest strategies for comparing multiple groups is the so-called least
significant difference (LSD) method due to Sir Ronald Fisher. Assuming normality and
homoscedasticity, first perform the ANOVA F test in chapter 10. If the hypothesis
of equal means is rejected, apply Student’s t to all pairs of means, but unlike the
approach in chapter 9, typically the assumption of equal variances is taken advantage
of by using the data from all J groups to estimate the assumed common variance when
any two groups are compared with Student’s t . Under normality and homoscedasticity,
this has the advantage of increasing the degrees of freedom, which in turn can mean
more power.

To elaborate, suppose the ANOVA F test rejects with a Type I error probability of
α = .05 and let MSWG (the mean squares within groups described in chapter 10) be
the estimate of the assumed common variance. (So for equal sample sizes, MSWG is
just the average of the sample variances among all J groups.) Consider any two groups,
say groups j and k. The goal is to test

H0 : μj = μk, (11.2)

the hypothesis that the mean of the jth group is equal to the mean of the kth group.
In the present context, the test statistic is

T = X̄ j − X̄ k√
MSWG

(
1
nj

+ 1
nk

) . (11.3)

When the assumptions of normality and homoscedasticity are met, T has a Student’s
t-distribution with ν = N −J degrees of freedom, where J is the number of groups being
compared and N = ∑

nj is the total number of observations in all J groups. So when
comparing the jth group to the kth group, you reject the hypothesis of equal means if

|T | ≥ t1−α/2,
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Table 11.1 Hypothetical data for
three groups

G1 G2 G3

3 4 6
5 4 7
2 3 8
4 8 6
8 7 7
4 4 9
3 2 10
9 5 9

where t1−α/2 is the 1 − α
2 quantile of Student’s t-distribution with N − J degrees of

freedom.

Example 1

The method is illustrated using the data in table 11.1. Assume that the
probability of at least one Type I error is to be .05. It can be seen that
MSWG = 4.14, the sample means are X̄ 1 = 4.75, X̄ 2 = 4.62, and X̄ 3 = 7.75,
and the F test rejects when the Type I error probability is α = .05. So according
to Fisher’s LSD method, you would proceed by comparing each pair of groups
with Student’s t-test performed with α = .05. For the first and second groups
( j = 1 and k = 2),

T = |4.75 − 4.62|√
4.14( 1

8 + 1
8 )

= .128.

The degrees of freedom are ν = 21, and with α = .05, table 4 in appendix B
says that the critical value is t = 2.08. Therefore, you fail to reject. That is,
the F test indicates that there is a difference among the three groups, but
Student’s t suggests that the difference does not correspond to groups 1 and 2.
For groups 1 and 3,

T = |4.75 − 7.75|√
4.14( 1

8 + 1
8 )

= 2.94,

and because 2.94 is greater than the critical value, 2.08, reject. That is, conclude
that groups 1 and 3 differ. In a similar manner, you conclude that groups 2 and
3 differ as well because T = 3.08.

When the assumptions of normality and homoscedasticity are true, Fisher’s method
controls FWE when J = 3. That is, the probability of at least one Type I error will be
less than or equal to α. However, when there are more than three groups (J > 3), this
is not necessarily true (Hayter, 1986). To gain some intuition as to why, suppose four
groups are to be compared, the first three have equal means, but the mean of the fourth
group is so much larger than the other three that power is close to one. That is, with
near certainty, you will reject with the ANOVA F test and proceed to compare all pairs
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of means with Student’s t at the α level. So in particular you will test

H0 : μ1 = μ2,

H0 : μ1 = μ3,

H0 : μ2 = μ3,

each at the α level, all three of these hypotheses are true, and the probability of at least
one Type I error among these three tests will be greater than α.

The Tukey-Kramer method

Tukey was the first to propose a method that controls FWE, the probability of at least
one Type I error. He assumed normality and homoscedasticity (equal variances) and
obtained an exact solution when all J groups have equal sample sizes. Kramer (1956)
proposed a generalization that provides an approximate solution when the sample sizes
are unequal and Hayter (1984) showed that when the groups have equal population
variances and sampling is from normal distributions, Kramer’s method is conservative.
That is, it guarantees that FWE will be less than or equal to α.

When comparing the jth group to the kth group, the Tukey-Kramer 1 − α

confidence interval for the difference between the means, μj −μk, is

(X̄ j − X̄ k) ± q

√
MSWG

2

(
1

nj
+ 1

nk

)
, (11.4)

where nj is the sample size of the jth group, MSWG is again the mean square within
groups, which estimates the assumed common variance, and q is a constant read from
table 9 in appendix B, which depends on the values of α, J (the number of groups being
compared), and the degrees of freedom,

ν = N − J ,

where again N is the total number of observations in all J groups. When testing
H0 : μj = μk, the test statistic is

T = X̄ j − X̄ k√
MSWG

2

(
1
nj

+ 1
nk

)

and the hypothesis is rejected in |T | ≥ q. Alternatively, reject if the confidence interval,
given by equation (11.4), does not contain zero. Under normality, equal variances and
equal sample sizes, the probability of at least one Type I error, when no two groups
differ, is exactly α.

Example 2

Table 11.2 shows some hypothetical data on the ratings of three methods
for treating migraine headaches. Each method is rated by a different sample
of individuals. The total number of participants is N = 23, so the degrees
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Table 11.2 Ratings of methods for treating migraine
headaches

Method 1 Method 2 Method 3

5 6 8
4 6 7
3 7 6
3 8 8
4 4 7
5 5
3 8
4 5
8
2

of freedom are ν = N − J = 23 − 3 = 20, the sample means are X̄ 1 = 4.1,
X̄ 2 = 6.125, and X̄ 3 = 7.2, and the estimate of the common variance is
MSWG = 2.13. If the probability of at least one Type I error is to be α = .05,
table 9 in appendix B indicates that q = 3.58. When comparing groups 1 and
3 ( j = 1 and k = 3), the test statistic is

T = 4.1 − 7.2√
2.13

2

(
1
10 + 1

5

) = −5.48.

Because | − 5.48| ≥ 3.58, the hypothesis of equal means is rejected. The con-
fidence interval for μ1 −μ3, the difference between the means corresponding
to groups 1 and 3, is

(4.1 − 7.2) ± 3.58

√
2.13

2

(
1

10
+ 1

5

)
= (−5.12,−1.1).

This interval does not contain zero, so again you reject the hypothesis that the
typical ratings of methods 1 and 3 are the same. You can compare methods 1 to
2 and methods 2 to 3 in a similar manner, but the details are left as an exercise.

Some important properties of the Tukey-Kramer method

There are some properties associated with Tukey-Kramer method that are important to
keep in mind. First, in terms of controlling the probability of at least one Type I error,
the method does not assume, nor does it require, that you must first reject with the
ANOVA F test. This is in contrast to Fisher’s method, which requires that you first
reject with the ANOVA F test. Second, if the Tukey-Kramer method is applied only if
the ANOVA F test rejects, its properties are changed. For example, if we ignore the F
test and simply apply the Tukey-Kramer method with α = .05, then under normality and
when the population variances and sample sizes are equal, the probability of at least one
Type I error, when none of the groups differ, is exactly .05. But if the Tukey-Kramer
method is applied only after the F test rejects, this is no longer true, the probability
of at least one Type I error will be less than .05 (Bernhardson, 1975). In practical
terms, when it comes to controlling the probability of at least one Type I error, there
is no need to first reject with the ANOVA F test to justify using the Tukey-Kramer
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method. And if the Tukey-Kramer method is used only after the F test rejects, power
can be reduced. Currently, however, the usual practice is to use the Tukey-Kramer
method only if the F test rejects. That is, the insight reported by Bernhardson (1975)
is not yet well known.

It was previously noted that if, for example, three groups differ and have normal
distributions, but there is an outlier in a fourth group, the F test can fail to reject and
consequently miss the true differences among the first three groups. Notice that even
if the Tukey-Kramer method is used without first requiring that the F test rejects,
this problem is not necessarily corrected. The reason is that it is based on the sample
variances of all the groups. For instance, when comparing groups 1 and 2, the sample
variances from the other groups are used to compute MSWG. The point is that if
there are outliers in any of these other groups, they can inflate the corresponding variance,
which in turn can inflate MSWG, which can result in low power when comparing groups
1 and 2. More generally, outliers in any group can can result in low power among groups
where no outliers occur.

Example 3

Consider the following data for three groups

G1 : 268,114,−21,313,128,239,227,59,379,100

G2 : −209,−37,−10,151,126,−151,41,158,59,22

G3 : 32,187,−21,−54,14,169,−17,304,134,−103.

It can be seen that MSWG is 15,629 and that when comparing groups 1 and 2
with the Tukey-Kramer method, T = 4.2. If the probability of at least one
Type I error is to be .05, table 9 in appendix B indicates that the critical value
is q = 3.5, approximately. Because the absolute value of T exceeds 3.5, reject
the hypothesis that groups 1 and 2 have equal means. But suppose the first
two observations in the third group are increased to 400 and 500, respectively.
Then MSWG increases to 24,510, and now, when comparing groups 1 and 2,
T = 3.34, and the hypothesis of equal means is no longer rejected, even though
none of the values in groups 1 and 2 were altered. A way of avoiding the problem
just illustrated is to switch to one of the methods described in the next section
of this chapter.

Scheffé’s method

There is one more classic method that should be mentioned that can be used to compare
all pairs of groups and which is designed to control FWE (the probability of at least
one Type I error). It is called Scheffé’s method, which assumes normality and that groups
have equal variances. The computational details are not given here, but a property of
the method should be described. If the goal is to compare all pairs of groups, Scheffé
(1959) shows that the Tukey-Kramer method is preferable because if the underlying
assumptions are true, Scheffé’s method will have less power versus Tukey-Kramer. The
reason is that Scheffé’s method is too conservative in terms of Type I errors. That is, FWE
will not be exactly .05, but less than .05 to the point that the Tukey-Kramer method will
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be more likely to detect true differences. Both the Tukey-Kramer and Scheffé’s method
can be used for more complex comparisons that are not covered here. It turns out that for
some situations, Scheffé’s method is preferable to the Tukey-Kramer method, but the
details go beyond the scope of this book. But, like the Tukey-Kramer method, when
the assumptions of equal variances and normality are not true, this method can perform
poorly relative to more modern techniques.

Problems
1. Assuming normality and homoscedasticity, what problem occurs when comparing

multiple groups with Student’s t-test?

2. For five independent groups, assume that you plan to do all pairwise comparisons
of the means and you want FWE to be .05. Further assume that n1 = n2 = n3 =
n4 = n5 = 20, X̄ 1 = 15, X̄ 2 = 10, s21 = 4 and s22 = 9, s23 = s24 = s25 = 15, test
H0 : μ1 = μ2 using Fisher’s method, assuming the ANOVA F test rejects.

3. Repeat the previous problem, only use the Tukey-Kramer method

4. For four independent groups, assume that you plan to do all pairwise comparisons
of the means and you want FWE to be .05. Assume n1 = n2 = n3 = n4 = n5 = 10
X̄ 1 = 20, X̄ 2 = 12, s21 = 5, s22 = 6, s23 = 4, s24 = 10, and s25 = 15. Test H0 : μ1 = μ2

using Fisher’s method.

5. Repeat the previous problem, only use the Tukey-Kramer method

6. Imagine you compare four groups with Fisher’s method and you reject the
hypothesis of equal means for the first two groups. If the largest observation in the
fourth group is increased, what happens to MSWG? What does this suggest about
power when comparing groups 1 and 2 with Fisher’s method?

7. Repeat the previous problem but with the Tukey-Kramer method.

11.2 Methods that allow unequal population variances

All of the methods in the previous section are known to be unsatisfactory, in terms of
Type I errors, when groups have unequal population variances, even when the normality
assumption is true (e.g., Dunnett, 1980a; Jeyaratnam and Othman, 1985). As in previous
chapters, when groups do not differ in any manner, meaning that they have identical
distributions, the Tukey-Kramer and Scheffé methods are satisfactory. But in terms
of computing accurate confidence intervals and achieving relatively high power, they
can be highly unsatisfactory under general conditions. Important advances toward more
satisfactory solutions are methods that allow unequal variances. Many such methods have
been proposed that are designed to control the probability of at least one Type I error
(FWE), comparisons of which were made by Dunnett (1980b), assuming normality.
Still assuming that independent groups are to be compared, two of the methods that
performed well in Dunnett’s study are described here.
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Dunnett’s T3 method

Dunnett’s so-called T3 procedure is just Welch’s method described in chapter 9, but
with the critical value adjusted so that FWE is approximately equal to α when sampling
from normal distributions. Let s2j be the sample variance for the jth group, let nj be the
sample size, and set

qj = s2j

nj
.

When comparing group j to group k, the degrees of freedom are

ν̂jk = (qj + qk)
2

q2
j

nj −1 + q2
k

nk−1

.

The test statistic is

W = X̄ j − X̄ k√
qj + qk

,

and H0 : μj = μk, the hypothesis that groups j and k have equal means, is rejected if
|W | ≥ c, where the critical value, c, is read from table 10 in appendix B.1 A confidence
interval for μj −μk, the difference between the means of groups j and k, is given by

(X̄ j − X̄ k) ± c

√√√√ s2j

nj
+ s2k

nk
.

When using table 10, you need to know the total number of comparisons you plan to
perform. When performing all pairwise comparisons, the total number of comparisons is

C = J 2 − J

2
.

In the illustration, there are three groups (J = 3), so the total number of comparisons to
be performed is

C = 32 − 3

2
= 3.

If you have four groups and you plan to perform all pairwise comparisons,
C = (42 − 4)/2 = 6.

1. Table 10, appendix B provides the .05 and .01 quantiles of what is called the Studentized maximum
modulus distribution.
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Example 1

Four methods for back pain are being investigated. For each method,
10 randomly sampled individuals are treated for two weeks and then they
report the severity of their back pain. The results are as follows:

Method 1 Method 2 Method 3 Method 4

5 2 3 4
2 0 0 4
3 0 0 7
3 4 0 3
0 3 1 2
0 0 8 3
0 2 2 2
1 4 0 4
0 0 2 1

13 3 0 9

Tedious calculations yield the following results:

Method Method |W | c ν

1 2 0.655 3.09 12.10
1 3 0.737 2.99 15.11
1 4 0.811 3.00 14.82
2 3 0.210 2.98 15.77
2 4 2.249 2.97 16.06
3 4 2.087 2.93 17.98

For example, when comparing methods 1 and 2, the absolute value of the test
statistic is |W | = 0.655 and the critical value is c = 3.09, based on degrees
of freedom ν = 12.1, so the hypothesis of equal means is not rejected.
For all other pairs of groups, again the hypothesis of equal means is not
rejected.

Games-Howell method

An alternative to Dunnett’s T3 is the Games and Howell (1976) method. When
comparing the jth group to the kth group, you compute the degrees of freedom, ν̂jk,
exactly as in Dunnett’s T3 procedure, and then you read the critical value, q, from table 9
in appendix B. (table 9 reports some quantiles of what is called the Studentized range
distribution.) The 1 −α confidence interval for μj −μk is

(X̄ j − X̄ k) ± q

√√√√1

2

(
s2j

nj
+ s2k

nk

)
.

You reject H0 : μj = μk if this interval does not contain zero, which is the same as
rejecting if

|X̄ j − X̄ k|√
1
2

(
s2j
nj

+ s2k
nk

) ≥ q.
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Under normality, the Games-Howell method appears to perform better than
Dunnett’s T3, in terms of Type I errors, when all groups have a sample size of at
least fifty. A close competitor under normality is Dunnett’s (1980b) C method, but no
details are given here.

Example 2

Imagine you have three groups with X̄ 1 = 10.4, X̄ 2 = 10.75,

s21
n1

= .11556,

s22
n2

= .156.

Then ν̂ = 19 and with α = .05, q = 3.59, so the confidence interval for the
difference between the population means, μ1 −μ2, is

(10.4 − 10.75) ± 3.59

√
1

2
(.11556 + .156) = (−.167, 0.97).

This interval contains 0, so you do not reject the hypothesis of equal means.

ANOVA versus multiple comparison procedures

Dunnett’s T3 and the Games-Howell method do not require that you first test the
hypothesis of equal means with a method in chapter 10 in order to control the probability
of at least one Type I error (FWE). Indeed, they are designed to control FWE when
applied as just described. If they are used contingent upon rejecting the hypothesis of
equal means with the methods in chapter 10, their properties, in terms of Type I errors,
are altered. This raises the practical issue of when and why the methods in chapter 10
should be used. If we assume normality and that the groups have equal variances, there
are methods for performing all pairwise comparisons, called step-down and step-up
techniques, that make use of the methods in chapter 10 and which can increase power.
Variations that allow unequal variances could be used as well. However, under non-
normality, these methods can have exceptionally poor power when comparing means
and therefore are not described. (Switching to measures of location that perform well
under non-normality might correct practical concerns about power.)

Comparing medians

There is a simple extension of the T3 method that can be used to compare medians
rather than means. Simply put, for any two groups, test the hypothesis of equal medians
by applying the method in section 9.1, which is based on the sample median and the
McKean-Schrader estimate of the standard error. In symbols, let Mj and Mk be the
sample medians corresponding to groups j and k and let S2

j and S2
k be the McKean-

Schrader estimates of the squared standard errors. The hypothesis of equal medians is
rejected when

|Mj − Mk|√
S2

j + S2
k

≥ c,
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where c is read from table 10 with degrees of freedom ν = ∞ in order to control the
probability of at least one Type I error. As noted in chapter 9, when comparing two
groups, this approach appears to perform reasonably well, in terms of controlling the
probability of a Type I error, provided there are no tied (duplicated) values within either
group. But with tied values in any group, the actual Type I error probability might be
considerably larger than intended. (A method for handling tied values is described in
the final section of this chapter.)

Example 3

Imagine that for five groups, all pairs of groups are to be compared using
medians. Then the total number of tests to be performed is C = (52−5)/2 = 10.
If the familywise error rate (FWE) is to be .05, table 10 says that the critical
value is c = 2.79. So if for groups 1 and 3, M1 = 12, M3 = 4, S2

1 = 16 and
S2

2 = 22, the test statistic is

12 − 4√
16 + 22

= 1.3,

which is less than 2.79, so we fail to detect a difference between the medians
corresponding to groups 1 and 3.

Dealing with two-way ANOVA designs

The multiple comparison procedures described in this section can be generalized to
a two-way ANOVA design. (Independent groups are being assumed.) But before
continuing, it helps to quickly review Welch’s test covered in chapter 9, which is aimed
at comparing the means of two independent groups. The goal was to test

H0 : μ1 −μ2 = 0,

the hypothesis that the two means are equal. The strategy was to estimate the difference
between the means with the difference between the sample means: X̄ 1 − X̄ 2. Then this
difference was divided by an estimate of the standard error of X̄ 1 − X̄ 2, which is given√

s21
n1

+ s22
n2

,

and which yields the test statistic

W = X̄ 1 − X̄ 2√
s21
n1

+ s22
n2

,

where s21 and s22 are the sample variances corresponding to the two groups being
compared, and n1 and n2 are the sample sizes. In words, the estimate of the squared
standard error of the first sample mean is given by the corresponding sample variance
divided by the sample size. Similarly, the estimated squared standard error of the second
sample mean is equal to the corresponding sample variance divided by the sample size.
Finally, the estimated squared standard error of the difference between the means is
given by the sum of the estimated squared standard errors.
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To explain how Welch’s test can be extended to a two-way design, it helps to begin
with the simplest case: a 2-by-2 design. As already explained in chapter 10, we are
dealing with a situation that can be depicted as follows:

Factor B

μ1 μ2
Factor A

μ3 μ4

Recall from chapter 10 that when dealing with factor A, the goal is to test

H0 : μ1 +μ2

2
= μ3 +μ4

2
.

Chapter 10 described how this hypothesis can be tested, but another important approach
is described here. Normality is assumed, but unlike the F test in chapter 10, the method
is designed to handle unequal variances. For convenience, note that this last hypothesis
can be stated as

H0 : μ1 +μ2 = μ3 +μ4,

which in turn can be written as

H0 : μ1 +μ2 −μ3 −μ4 = 0.

Notice the similarity between this hypothesis and the hypothesis tested by Welch’s
method as described in chapter 9. Both deal with a certain linear combination of
the means. Welch’s test is concerned with H0: μ1 − μ2 = 0, the hypothesis that the
difference between the means is zero. In general, when dealing the jth group, an estimate
of the squared standard error of the sample mean, X̄ j , is given by

qj = s2j

nj
,

the sample variance divided by the sample size. With Welch’s test, we get an estimate
of the squared standard error of the difference between the sample means by adding
the estimates of the corresponding squared standard errors. That is, we use q1 + q2.
It can be shown that for independent groups, if we add some means together and
subtract out others, again the squared standard error is estimated simply by summing
the corresponding estimates of the squared standard errors of the sample means. So
here, when dealing with H0 : μ1 +μ2 −μ3 −μ4 = 0, we estimate μ1 +μ2 −μ3 +μ4,
which is an example of what is called a linear contrast, with

X̄ 1 + X̄ 2 − X̄ 3 − X̄ 4,

and an estimate of squared standard error is given by

q1 + q2 + q3 + q4.

The resulting test statistic is

W = X̄ 1 + X̄ 2 − X̄ 3 − X̄ 4√
q1 + q2 + q3 + q4

.
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When using an extension of Welch’s method, the degrees of freedom are based on two
quantities. The first is

V1 = (q1 + q2 + q3 + q4)2,

which is the square of the sum of the estimated squared standard errors. The second is

V2 = q2
1

n1 − 1
+ q2

2

n2 − 1
+ q2

3

n3 − 1
+ q2

4

n4 − 1
.

The degrees of freedom are ν = V1/V2 and when dealing with a single hypothesis,
the null hypothesis is rejected if |W | ≥ t , where t is the 1 − α/2 quantile read from
table 4 in appendix B. (When dealing with multiple hypotheses, use table 10, instead,
as illustrated momentarily.)

Example 4

Imagine that we have four independent groups with means X̄ 1 = 4, X̄ 2 = 8
X̄ 3 = 2 X̄ 4 = 6. Then an estimate of μ1 + μ2 − μ3 − μ4 is simply X̄ 1 +
X̄ 2 − X̄ 3 − X̄ 4 = 4. If the sample variances are s21 = 24, s22 = 32, s23 = 48, and
s24 = 36, and if the sample sizes are n1 = 12, n2 = 8, n3 = 12, and n4 = 6,
then q1 = 24/12 = 2, q2 = 32/8 = 4, q3 = 4 and q4 = 6. Consequently, the
estimated squared standard error of X̄ 1 + X̄ 2 − X̄ 3 − X̄ 4 is q1 + q2 + q3 +
q4 = 2 + 4 + 4 + 6 = 16, so the estimated standard error is

√
16 = 4, and an

appropriate test statistic for H0 : μ1 +μ2 −μ3 −μ4 = 0 is

W = 4 + 8 − 2 − 6

4
= 1.

We see that V1 = 162 = 256,

V2 = 22

11
+ 42

7
+ 42

11
+ 62

5
= 11.3,

so the degrees of freedom are ν = 256/11.3 = 22.65, in which case, if the
probability of a Type I error is to be α = .05, then table 4 in appendix B
indicates that the critical value is approximately t = 2.07. Because |W | < 2.07,
you fail to reject the hypothesis of no main effect for factor A.

The method for dealing with factor A extends immediately to factor B.
Now the goal is to test

H0 : μ1 +μ3

2
= μ2 +μ4

2
,

which is the same as testing

H0 : μ1 +μ3 −μ2 −μ4 = 0.

So now our test statistic is

W = X̄ 1 + X̄ 3 − X̄ 2 − X̄ 4√
q1 + q2 + q3 + q4

and the degrees of freedom are computed as before.
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Example 5

We continue the previous example, only now we focus on factor B. We have that

W = 4 + 2 − 8 − 8

4
= −2.5.

The degrees of freedom are again ν = 22.65, the critical is again t = 2.07 (still
assuming that the probability of a Type I error is to be α = .05), and because
|W | ≥ 2.07, reject and conclude there is a main effect of factor B,

Interactions are handled in the same manner. The main difference is that
now the goal is to test

H0 : μ1 −μ3

2
= μ2 −μ4

2
,

which is the same as testing

H0 : μ1 −μ3 −μ2 +μ4 = 0.

The test statistic is

W = X̄ 1 − X̄ 3 − X̄ 2 + X̄ 4√
q1 + q2 + q3 + q4

and the the degrees of freedom remain the same.

Example 6

Continuing the last two examples, now we have

W = 4 − 2 − 8 + 8

4
= 0.5,

again the critical value (for α = .05) is t = 2.07, and because |W | < 2.07, we
fail to detect an interaction.

Controlling the probability of at least one Type I error

In the previous three examples, each test was performed with the probability of a Type
I error set at .05. How might we control the probability of at least one Type I error? A
simple strategy, assuming normality, is to note that a total of C = 3 hypotheses are to
be performed, and then simply read a critical value from table 10 in appendix B rather
than table 4.

Example 7

The last three examples tested three hypotheses: (1) no main effects for factor A,
(2) no main effects for factor B, and (3) no interaction. So when referring to
table 10 in appendix B, the total number of hypotheses to be tested in C = 3.
And for each of these tests, the degrees of freedom are ν = 22.65. If we want
the probability of at least one Type I error to be .05, then table 10 indicates
that the critical value is approximately t = 2.58. In each case, |W | is less than
2.58, so now none of the three hypotheses would be rejected.
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Extension to a J-by-K design

It is noted that the method for testing hypotheses in a 2-by-2 design, just described and
illustrated, can be extended to the general case of any J -by-K design. Here the goal is
to briefly outline how this is done.

Consider a 3-by-4 design and for convenience, label the populations means among
these 12 groups as follows:

Factor B

μ1 μ2 μ3 μ4
Factor A μ5 μ6 μ7 μ8

μ9 μ10 μ11 μ12

Following the description of the two-way ANOVA in chapter 10, we write the
marginal means for factor A as

μ̄1. = μ1 +μ2 +μ3 +μ4

4
,

μ̄2. = μ5 +μ6 +μ7 +μ8

4
,

and

μ̄3. = μ9 +μ10 +μ11 +μ12

4
.

As was explained, no differences among the levels of factor A is taken to mean that

H0 : μ̄1. = μ̄2. = μ̄3.

is true. But when this hypothesis is rejected, there is no indication of which levels of
factor A differ.

We begin by rewriting the null hypotheses in a more convenient form in much the
same manner as was done in the 2-by-2 design. To illustrate the process, focus on testing

H0 : μ̄1. = μ̄3..

A little algebra shows that this is the same as testing

H0 : μ1 +μ2 +μ3 +μ4 −μ9 −μ10 −μ11 −μ12 = 0.

As usual, we estimate this linear contrast by replacing the population means with the
sample means yielding

X̄ 1 + X̄ 2 + X̄ 3 + X̄ 4 − X̄ 9 − X̄ 10 − X̄ 11 − X̄ 12.

An estimate of the squared standard error is given by

q1 + q2 + q3 + q4 + q9 + q10 + q11 + q12.

The test statistic is

W = X̄ 1 + X̄ 2 + X̄ 3 + X̄ 4 − X̄ 9 − X̄ 10 − X̄ 11 − X̄ 12√
q1 + q2 + q3 + q4 + q9 + q10 + q11 + q12

.
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The degrees of freedom are

ν = (q1 + q2 + q3 + q4 + q9 + q10 + q11 + q12)2

q2
1

n1−1 + q2
2

n2−1 + q2
3

n3−1 + q2
4

n4−1 + q2
9

n9−1 + q2
10

n10−1 + q2
11

n11−1 + q2
12

n12−1

,

and the null hypothesis is rejected if |W | ≥ t , the 1 − α/2 quantile of Student’s t-
distribution with ν degrees of freedom. As before, if more that one test is to be performed
and it is desired to control FWE, read the critical value from table 10 in appendix B
rather than table 4.

Example 8

Imagine that two medications for treating hypertension are under investi-
gation and that researchers want to take into account ethnic background.
Here, three ethnic backgrounds are considered and labeled A, B, and C. Further
imagine that the results are as follows:

Ethnicity

A B C

X̄ 1 = 24 X̄ 2 = 36 X̄ 3 = 28
1 s21 = 48 s22 = 56 s23 = 60

n1 = 8 n2 = 7 n3 = 12
Medication ——————————————–

X̄ 4 = 14 X̄ 5 = 24 X̄ 6 = 20
2 s24 = 64 s25 = 25 s26 = 40

n4 = 8 n5 = 5 n6 = 10

The goal is to compare medications, ignoring ethnicity. Then the hypothesis of
interest is H0: μ1 +μ2 +μ3 −μ4 −μ5 −μ6 = 0. We see that q1 = s21/n1 = 6,
g2 = 8, q3 = 5, q4 = 8, q5 = 5, and q6 = 4. The test statistic is

W = 24 + 36 + 28 − 14 − 24 − 20√
6 + 8 + 5 + 8 + 5 + 4

= 5.

The degrees of freedom are

ν = (6 + 8 + 5 + 8 + 5 + 4)2

62

7 + 82

6 + 52

11 + 82

7 + 52

4 + 42

9

= 36.8.

With α = .05, the critical value (from table 4 in appendix B) is approximately
2.03, and because |W | > 2.06, reject and conclude that the medications differ,
ignoring ethnicity.

Problems
8. For five independent groups, assume that you plan to do all pairwise comparisons

of the means and you want FWE to be .05. Further assume that
n1 = n2 = n3 = n4 = n5 = 20, X̄ 1 = 15, X̄ 2 = 10, s21 = 4 and s22 = 9,
s23 = s24 = s25 = 15, test H0 : μ1 = μ2 using Dunnett’s T3.

9. Repeat the previous problem, only use Games-Howell.
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10. For four independent groups, assume that you plan to do all pairwise comparisons
of the means and you want FWE to be .05. Further assume that
n1 = n2 = n3 = n4 = n5 = 10 X̄ 1 = 20, X̄ 2 = 12, s21 = 5, s22 = 6, s23 = 4, s24 = 10,
and s25 = 15. Test H0 : μ1 = μ2 using Dunnett’s T3.

11. Repeat the previous problem, only use Games-Howell.

12. For four groups, you get sample medians M1 = 34, M2 = 16, M3 = 42, M4 = 22,
S2

1 = 33, S2
2 = 64, S2

3 = 8, S2
4 = 5. Assuming that the goal is to test the hypothesis

of equal medians for all pairs of groups such that FWE is .05, determine whether
you would reject when comparing groups 2 and 4.

13. In the previous problem, comment on the results if there are tied values in the first
group but not the other three.

14. Referring to example 8 in this section, compare ethnic groups A and B, ignoring
type of medication. Assume this is the only hypothesis to be tested and that the
goal is to have a Type I error probability of .05.

15. In the previous problem, imagine that the goal is to compare all pairs of groups for
factor B and that the goal is to have the probability of at least one Type I error
equal to .05. What is the critical value you would use when comparing ethnicity
groups B and C?

16. Referring to example 8 in this section, imagine the goal is to check for interactions
when dealing with ethnicity groups A and B. Test the hypothesis of no interaction
for this special case assuming all other interactions are to be ignored and that the
Type I error probability is to be .05.

11.3 Methods for dependent groups

The methods described in the previous section take advantage of the independence
among the groups when trying to control the probability of at least one Type I error.
When comparing dependent groups instead, alternative methods must be used.

Bonferroni method

One of the simplest and earliest methods for comparing dependent groups is based on
what is known as the Bonferroni inequality. The strategy is simple: If you plan to test C
hypotheses and want FWE to be α, test each of the individual hypotheses at the α/C
level. For the special case where all pairs of groups are to be compared,

C = J 2 − J

2
.

In terms of ensuring that FWE does not exceed α, the only requirement is that the
individual tests ensure that the Type I error probability does not exceed α/C . So for the
case where means are compared with the paired t-test in section 9.2, if five tests are to
be performed, and the goal is to have FWE equal to .05, then each paired t-test would
be performed with α = .05/5 = .01.
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Example 1

As a simple illustration, imagine that the means for all pairs of four groups
are to be compared with FWE equal to .03. So a total of C = 6 tests are to be
performed, meaning that each test should be performed with α = .03/6 = .005.
If, for example, each group has a sample size of 11, then from chapter 9, the
critical value would be the .995 quantile of a Student’s t-distribution with
degrees of freedom being ν = 11 − 1 = 10, read from table 4 in appendix B.
In particular, the critical value is t.995 = 3.169. So, for example, if the paired
t-test is applied to groups 1 and 2 yielding T = −2.9, because |−2.9|
is less than 3.169, fail to reject, and the other five tests would be performed in
a similar manner.

Statistical software routinely reports p-values when comparing any two
groups. An alternative description of the Bonferroni method is to reject the
null hypothesis if the p-value is less than or equal to α/C , where again C is the
total number of tests to be performed.

Example 2

Imagine that all pairs of four dependent groups are to be compared. Then
C = 6 hypotheses are to tested and, for illustrative purposes, imagine that the
p-values are as follows:

Number Test p-value

1 H0 : μ1 = μ2 p1 = .006
2 H0 : μ1 = μ3 p2 = .025
3 H0 : μ1 = μ4 p3 = .003
4 H0 : μ2 = μ3 p4 = .540
5 H0 : μ2 = μ4 p5 = .049
6 H0 : μ3 = μ4 p6 = .014

So, for example, the p-value for the first hypothesis is p1 = .006, and the p-value
for the second hypothesis is p2 = .025 If the probability of at least one Type I
error is to be .1, the Bonferroni method says that each individual test would be
rejected if its p-value is less than or equal to 0.1/6 = 0.017. So here, hypotheses
1, 3, and 6 would be rejected.

Rom’s method

Several improvements on the Bonferroni method have been published and one that
stands out is a so-called sequentially rejective method derived by Rom (1990), which
has been found to have good power relative to several competing techniques (e.g., Olejnik
et al., 1997). To apply it, compute a p-value for each of the C tests to be performed and
label them p1, . . . ,pC . (Standard software reports p-values.) Next, put the p-values in
descending order, which are now labeled p[1] ≥ p[2] ≥ · · · ≥ p[C]. So p[1] is the largest
p-value, p[2] is the next largest, and p[C] is the smallest. Proceed as follows:

1. Set k =1.
2. If p[k] ≤ dk, where dk is read from table 11.3, stop and reject all C hypotheses;

otherwise, go to step 2.
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Table 11.3 Critical values, dk, for Rom’s method

k α = .05 α = .01

1 .05000 .01000
2 .02500 .00500
3 .01690 .00334
4 .01270 .00251
5 .01020 .00201
6 .00851 .00167
7 .00730 .00143
8 .00639 .00126
9 .00568 .00112

10 .00511 .00101

3. Increment k by 1. If p[k] ≤ dk, stop and reject all hypotheses having a p-values
less than or equal dk

4. If p[k] > dk, repeat step 3.
5. Continue until you reject or all C hypotheses have been tested.

An advantage of Rom’s method is that its power is greater than or equal to the
Bonferroni approach. In fact, Rom’s method always rejects as many, or more, hypotheses.
A negative feature is that confidence intervals are not readily computed.

Example 3

A large company is considering four variations of a baked good for mass
distribution. An issue is whether potential customers rate the baked goods
differently depending on which variation is used. To find out, randomly
sampled individuals are asked to try a baked good produced by each method.
That is, each individual consumes a baked good produced by each of the four
variations. Imagine that all pairwise comparisons among the resulting four
dependent groups are performed yielding the p-values shown in table 11.4.
Further assume that you want FWE to be .05. The largest p-value is .62,
this is greater than .05, so you fail to reject the corresponding hypothesis,
H0 : μ2 = μ3. The next largest p-value is .130, this is greater than d2 = .025
(read from table 11.3), so fail to reject H0 : μ2 = μ4. The next largest is .015,
this is less than d3 = .0167, so you stop and reject the corresponding hypothesis
as well as those having smaller p-values.

Table 11.4 An illustration of Rom’s method

Number Test p-value

1 H0 : μ1 = μ2 p1 = .010 p[5]
2 H0 : μ1 = μ3 p2 = .015 p[3]
3 H0 : μ1 = μ4 p3 = .005 p[6]
4 H0 : μ2 = μ3 p4 = .620 p[1]
5 H0 : μ2 = μ4 p5 = .130 p[2]
6 H0 : μ3 = μ4 p6 = .014 p[4]
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Problems
17. You perform five tests and get the p-values .049, .048, .045, .047, and .042.

Based on the Bonferroni inequality, which would be rejected with FWE
equal to .05?

18. Referring to the previous problem, which would be rejected with Rom’s
procedure?

19. What do the last two exercises illustrate?

20. Five tests are performed aimed at comparing the medians of dependent groups.
The p-values are .24, .001, .005, .12, .04. Which should be rejected when using
Rom’s method if FWE is to be .05?

11.4 Some modern advances and insights

As in previous chapters, if the goal is to compare means, without being sensitive to
other ways the groups might differ, the methods covered here can be unsatisfactory.
Again, concerns arise when groups differ in terms of their variances and skewness. And
as always, outliers can result in relatively low power. An advantage of the methods
that allow unequal variances is that with sufficiently large sample sizes, they will provide
adequate inferences about the means when dealing with non-normal distributions, but as
usual, it is generally unclear just how large the sample sizes must be to achieve this
goal. This issue is complicated because adequate sample sizes are a function of several
factors, including the extent to which the groups differ in terms of their variances and
skewness. However, if these methods reject, it is reasonable to conclude the groups
differ in some manner, consistent with chapters 9 and 10. If the goal is to compute
confidence intervals for the difference between the means, it seems some type of
bootstrap-t method is a relatively good choice, but this does not eliminate all practical
concerns.2

When comparing the medians of independent groups, currently the one method
that performs well, even when tied values occur, is based on a simple extension of the
percentile bootstrap method for comparing medians that was described in chapter 9
(Wilcox, 2006). Briefly, for each pair of groups, determine a p-value. Then use Rom’s
method to control the probability of at least one Type I error.

Again, consistent with previous chapters, a compromise amount of trimming can
have practical value in terms of both Type I errors and power. A simple method, when
dealing with independent groups, is to apply Yuen’s test for each pair of groups under
study. Then, based on the resulting degrees of freedom, use table 10 to determine
an appropriate critical value. Very effective methods, based in part on the percentile
bootstrap technique, are available as well.

Example 1

Imagine that six hypotheses are to be tested with the goal of having FWE equal
to .05. So when referring to table 10, C = 6. In each case, 20% trimmed means

2. For computational details and appropriate software, see Wilcox, 2003, section 12.7.1.
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are compared with Yuen’s method, and for the first hypothesis the test statistic
is Ty = 2.4, with the degrees of freedom are ν = 24. Then from table 10, the
crictical value is t = 2.85, and because 2.4 < 2.85, you fail to reject.

As for comparing dependent groups based on medians or 20% trimmed
means, a simple approach is to apply the methods in chapter 9 to each pair
of groups of interest. Then, Rom’s method can be used to control FWE. As
usual, bootstrap methods can be used as well.

Finally, this chapter outlines how to perform multiple comparisons in a
two-way design using an extension of Welch’s test. It is noted that a simple
extension of Yuen’s test can be used to compare 20% trimmed means, but no
details are given here.

A Summary of Some Key Points

• Methods designed to control the probability of at least one Type I error, which
assume normality and equal variances, such as the Tukey-Kramer technique, appear
to perform fairly well when all groups have identical distributions. That is, they perform
well in terms of Type I errors when testing the hypothesis that groups have identical
distributions. Some departures from normality and unequal variances can be tolerated,
but the extent to which this is true is a complicated function of the sample sizes,
the type of departure from normality encountered, and the degree to which the
variances differ.

• In some cases, methods aimed at comparing means are satisfactory, but for reasons
explained in previous chapters, the methods in this chapter run the risk of relatively
poor power.

• Among the methods covered here, Dunnett’s T3 and the Games-Howell method are
best for comparing means, but there are practical reasons for considering more
advanced techniques (not described in this book) based on a bootstrap-t procedure.
But despite any practical advantages these advanced methods offer, not all practical
problems are addressed when the goal is to compare means.

• Methods based on 20% trimmed means perform well over a relatively broad range
of situations in terms of both Type I errors and power. If the results are similar to
those obtained with means, this suggests that methods based on the sample means
are probably satisfactory in terms of making inferences about the population means.
When they differ, perhaps methods based on means remain satisfactory, but there is
some uncertainty about the extent to which this is true.

• Methods based on medians can be useful and effective. An advantage of using a
percentile bootstrap method is that regardless of whether tied values occur, excellent
control over the probability of at least one Type I error can be achieved, except perhaps
for very small sample sizes.

• Chapter 9 pointed out that different methods for comparing any two groups can
give us a different perspective on how they differ. And the choice of method can
make a practical difference in terms of how much power will be achieved. Of course,
this issue remains relevant here and in fact becomes more complex. For example,
comparing the medians of groups 1 and 2 might be ideal in terms of power, but when
comparing groups 1 and 3, perhaps comparing means or 20% trimmed means is more
effective.
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• Chapter 9 noted that if we apply many methods when comparing two groups,
a technical issue arises. That issue is controlling the the probability of at least
one Type I error. If, for example, we compare two groups with means, then 20%
trimmed means, and then medians, we could control the probability of at least one
Type I error using the Bonferroni method or Rom’s technique. Note, however, that such
an adjustment will lower power.
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CATEGORICAL DATA

T his chapter covers some basic methods for analyzing categorical data. Categorical
data simply means that observations belong to two or more groups. The simplest

case is the binomial distribution, which was introduced in chapter 4. For this special
situation, there are only two categories usually called success and failure. Contingency
tables, also introduced in chapter 4, are used to summarize categorical data and represent
a generalization of the binomial to more than two groups. The main goal here is to
describe some additional methods for analyzing such data.

12.1 One-way contingency tables

One-way contingency tables represent a generalization of the binomial distribution,
introduced in chapter 4, where the outcome associated with a single variable has two or
more categories. Consider, for example, a multiple-choice test item having five choices.
One choice is correct and the other four, called distractors, are incorrect. Among students
who choose the wrong answer, are choices made at random? The variable of interest is
the response among students choosing one of the four distractors. Let p1, p2, p3 and p4

be the probability that, among students who failed to choose the correct answer, they
picked distractor 1, 2, 3, or 4, respectively. Here we let n represent the total number of
students choosing a wrong answer. Then, if students pick a wrong response at random,
it should be the case that these four probabilities are equal. In symbols, the hypothesis

H0 : p1 = p2 = p3 = p4 = 1/4

should be true.
More generally, assume that k mutually exclusive outcomes are possible and that

the goal is to test the hypothesis that the probabilities associated with these k categories
are equal. Said more formally, the goal is to test

H0 : p1 = p2 = ·· · = pk = 1

k
. (12.1)

In case it helps, note that for the special case k = 2, there are only two categories and
the situation reduces to the binomial distribution. In particular, the hypothesis given
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by equation (12.1) is tantamount to testing H0: p = 1/2, where p is the probability of a
success.

Let n1 be the number of participants who belong to category 1, let n2 be the number
of participants who belong to category 2, and so on. So the total number of participants is

n =
∑

nk.

The classic test of the hypothesis given by equation (12.1) was derived by Karl Pearson
and is based on the test statistic

X 2 =
∑(

nj − n
k

)2

n/k
. (12.2)

When the null hypothesis is true, and the sample size, n, is sufficiently large, X 2 will
have, approximately, what is called a chi-squared distribution with ν = k − 1 degrees
of freedom. Figure 12.1 shows chi-squared distributions with degrees of freedom ν = 2
and ν = 4. If the Type I error probability is to be α, the hypothesis is rejected if X 2

exceeds c, the 1 −α quantile, which is given in table 3 in appendix B.
A word of explanation, when reading table 3 in appendix B, might help. The first

column, headed by ν indicates the degrees of freedom. Notice the terms in the top row.
The subscripts denote the quantiles. For example, under χ2

.10 and in the first row where
ν = 1, you will see the entry .01579. This means that for a chi-squared distribution with
1 degree of freedom, the probability of getting a value less than or equal to .01579 is .1.
Similarly, under χ2

.975 and in the row corresponding to ν = 10 is the entry 20.4637.
That is, the probability of getting a value less than or equal to 20.4637, when sampling
from a chi-squared distribution with 10 degrees of freedom, is .975. In the context of
testing some hypothesis with a Type I error probability of α = .025, the critical value,
corresponding to 10 degrees of freedom, would be 20.4637.

Example 1

Consider a six-sided die with each side having between one and six spots. That
is, one side has a single spot, another has two spots, and so on. A gambling

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Two degrees of freedom

Four degrees of freedom

Figure 12.1 Shown are two chi-squared distributions. One has degrees of freedom 2 and the
other has degrees of freedom 4.
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casino assumes that when an individual tosses the die, all six sides have the
same probability of occurring. A gambler believes she can toss the die in
particular fashion so that this is not true; the belief is that some sides have
a higher probability than others. To find out whether the sides have different
probabilities of occurring, the gambler tosses the die 102 times and gets the
following results: n1 = 10, n2 = 15, n3 = 30, n4 = 25, n5 = 7, and n6 = 15,
so n = 102. That is, for 10 of the tosses 1 spot occurred, for 15 of the
tosses, two spots resulted, and so forth. To test the hypothesis that all six
possibilities have the same probability, first note that the degrees of freedom
are ν = k − 1 = 6 − 1 = 5. If the Type I error probability is to be .05, then
from table 3 in appendix B, the critical value is c = 11.0707. Because n = 102,
n/k = 102/6 = 17, so

X 2 = (10 − 17)2 + (15 − 17)2 + (30 − 17)2 + (25 − 17)2 + (7 − 17)2 + (15 − 17)2

17

= 22.94.

Because 22.94 is greater than the critical value, 11.0707, reject and conclude
that the probabilities are not equal.

The method just described can be generalized to situations where the goal is to test the
hypothesis that the probabilities associated with the k categories have specified values
other than 1/k. For instance, imagine that a certain medication sometimes causes a rash.
For present purposes, assume the severity of the rash is rated on a four point scale where
a 1 means no rash and a 4 means the rash is severe. Among a very large number of
individuals, it is found that the proportion of individuals belonging to these four groups
is .5, .3, .2, and .1, respectively. A modification of the medication is under consideration
and one goal is to determine whether this alters the probabilities associated with the
four possible outcomes. That is, the goal is to test H0: p1 = .5, p2 = .3, p3 = .2, p4 = .1.
More generally, given a set of k probabilities p01, · · · ,p0k, the goal is to test

H0 : p1 = p01, · · · ,pk = p0k. (12.3)

Among n observations, if the null hypothesis is true, the expected number of
individuals falling into category 1 is np01. In essence, if we focus on whether or not
an individual belongs to category 1, we are dealing with a binomial random variable.
That is, among the n participants, the probability of belonging to category 1 is p01 and
the probability of not belonging to category 1 is 1− p01. And from the basic features of
a binomial distribution covered in chapter 4, the expected number of individuals falling
into category 1 is np01. In a similar manner, the expected number of individuals falling
into category 2 is np02, still assuming that the null hypothesis is true, and so on. The
test statistics is

X 2 =
∑ (nj − np0j )

2

np0j
. (12.4)

Written in words, the test statistics is

X 2 =
∑ (observed − expected)2

expected
. (12.5)

Again the hypothesis is rejected if X 2 ≥ c, where c is the 1−α quantile of a chi-squared
distribution with k − 1 degrees of freedom.
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Example 2

Continuing the illustration dealing with the likelihood of getting a rash,
suppose that among 88 adults taking the medication, the number of individuals
corresponding to the four ratings for a rash are n1 = 40, n2 = 30, n3 = 15, and
n4 = 3. This says, for example, that 40 of the 88 participants did not get a rash
and 3 got the severest form. As previously noted, the goal is to test H0: p1 = .5,
p2 = .3, p3 = .2, p4 = .1. So the expected values corresponding to the four
types of rash, when the null hypothesis is true, are 44, 26.4, 17.6, and 8.8,
respectively. (That is, n = 88, and so np1 = 44, np2 = 26.4, np3 = 17.6, and
np4 = 8.8.) The resulting test statistic is

X 2 = (40 − 44)2

44
+ (30 − 26.4)2

26.4
+ (15 − 17.6)2

17.6
+ (3 − 8.8)2

8.8
= 5.08.

With α = .05, the critical value is 7.8148, so the null hypothesis is not rejected.

Example 3

In 1988, the Department of Education conducted a survey of 17-year-old
students to determine how much time they spend doing homework. Each
student was classified into one of five categories: (1) none was assigned, (2) did
not do it, (3) spent less than 1 hour, (4) 1–2 hours, or (5) Spent more than
2 hours doing homework. The percentage of students in each of these categories
was found to be 20.8%, 13.4%, 27.8%, 26% and 12%, respectively. A local school
board wants to know how their students compare based on 100 randomly
sampled students. That is, the goal is to test

H0 : p1 = .208, p2 = .134, p3 = .278, p4 = .260 and p5 = .120.

Imagine that 100 randomly sampled students, the number of hours they study
are as summarized in table 12.1. It can be seen that X 2 = 8.7. If the Type I
error is to .05, the critical value is 9.49, so fail to reject.

Gaining perspective: A closer look at the the
Chi-squared distribution

At first glance, it might appear that normality is not assumed when applying the chi-
squared test just described. But this is not true. It can be shown that the test statistic,
X 2, is based on a sum of squared terms, where the individual terms are approximately
normal when the sample size is sufficiently large. Moreover, the formal definition of
a chi-squared distribution is based on the sum of squared standard normal random
variables.

Table 12.1 Hypothetical data on homework survey

Not assigned Not done < 1 hour 1–2 hours > 2 hours
15 10 25 30 20
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The case where there are two categories

Some comments are useful about the special case where there are k = 2 categories. Now
we have the binomial probability function where p is the probability of success. We saw
in chapter 6 how to a compute a confidence interval for p and this method can be used
to test the hypothesis that the probability of success is equal to some specified value, say
p0. If the confidence interval contains p0, fail to reject

H0 : p = p0;
otherwise, reject. Put another way, let p̂ be the proportion of observed successes among
n trials, let

Z = p̂ − p0√
p̂(1 − p̂)/n

,

and let c be the 1 −α/2 quantile of a standard normal distribution, which is read from
table 1 in appendix B. Then reject the null hypothesis if

|Z| ≥ c.

Example 4

Someone claims that for a randomly sampled stock, the probability that its
value will increase after six months is .4. As a check on this claim, 20 stocks
are randomly sampled and it is found that five gain value. So n = 20, p0 = .4
and the estimated probability of success is p̂ = 5/20 = .25. To test the claim,
with a Type I error probability of .05, compute

Z = .25 − .4√
.25(.75)/20

= −1.549.

The critical value is c = 1.96, which is greater than |Z|, so fail to reject.

To underscore the connection between the chi-squared distribution and the
standard normal, note that an alternative approach to the last example is to reject if
Z2 ≥ c2. It can be seen that this corresponds to assuming that Z2 has a chi-squared
distribution with one degree of freedom, meaning that c2 can be read from table 3 in
appendix B.

Problems
1. For a one-way contingency table having four categories, the frequencies

corresponding to each category are: 23, 14, 8, 32. Test the hypothesis that each
category has the same probability. Use α = .05.

2. For a one-way contingency table, the following frequencies are observed: 23, 34,
43, 53, 16. Using α = .01, test the hypothesis that all five categories have the same
probability.

3. A game show allows contestants to pick one of six boxes, one of which contains a
large sum of money. To reduce the expected winnings among the contestants, the
organizers speculate that contestants will not pick at random, but that some boxes
are more likely to be chosen over others. To find out, a study is done where
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potential contestants get to choose a box, in resulting the following frequencies: 6,
20, 30, 35, 10, 5. Test the hypothesis that each box has the same probability of
being chosen. Use α = .01

4. Imagine that 54 individuals are asked whether they agree, disagree or have no
opinion that persons with a college degree feel more satisfied with their lives. The
observed frequencies are 9, 30, and 15. Test H0 : p1 = p2 = p3 with α = .05.

5. It is speculated that the probabilities associated with four categories are .1, .3, .5,
and .1. The observed frequencies are 10, 40, 50, and 5. Test this speculation using
α = .05.

6. It is speculated that the probabilities associated with five categories are .2, .3, .3, .1
and .1. The observed frequencies are 20, 50, 40, 10 and 15. Test this hypothesis
using α = .05.

7. Someone claims that the proportion of adults getting low, medium, and high
amounts of exercise is .5, .3, and .2, respectively. To check this claim you sample
100 individuals and find that 40 get low amounts of exercise, 50 get medium
amounts, and 10 get high amounts. Test the claim with α = .05.

8. A geneticist postulates that in the progeny of a certain dihybrid cross, the four
phenotypes should be present in the ratio 9:3:3:1. So if p1, p2, p3, and p4 are the
probabilities associated with these four phenotypes, the issue is whether there is
empirical evidence indicating that H0: p1 = 9/16, p2 = 3/16, p3 = 3/16, p4 = 1/16
should be rejected. The observed frequencies corresponding to these four
phenotypes, among 800 members of the progeny generation, are 439, 168, 133,
and 60. Test H0 using α = .05.

9. Does the likelihood of a particular crime vary depending on the day of the week?
To find out, the number of crimes for Monday through Sunday were recorded and
found to be 38, 31, 40, 39, 40, 44, and 48. Test the hypothesis that the likelihood
of a crime is the same for each day of the week, using α = .05.

12.2 Two-way contingency tables

This section considers the more general case of a two-way contingency table. There
is a vast literature on how to analyze two-way contingency tables (e.g., Agresti, 1990,
1996; Andersen, 1997; Lloyd, 1996; and Powers and Xie, 1999), but only the basics are
covered here.

We begin with a problem that arises in a variety of settings. To be concrete, imagine
a survey of 1,600 randomly sampled adults who, at two different times, are asked whether
they approve of a particular political leader. At issue is whether the approval rating at
time 1 differs from the approval rating at time 2. For illustrative purposes, suppose the
results are as indicated in table 12.2. For example, of the 1,600 respondents, 794 respond
that they approve at both time 1 and 2. The number who approve at time 1, ignoring
time 2, is 944, and the number who disapprove at time 2 is 720. Consequently, the
estimated probability of getting an approval rating at time 1 is 944/1,600 = .59.

It is convenient to write this contingency table in a more generic form as shown
in table 12.3. So p11 represents the probability that a randomly sampled individual



260 BASIC STATISTICS

Table 12.2 Approval rating of a political leader

Time 2

Time 1 Approve Disapprove Total

Approve 794 150 944
Disapprove 86 570 656

Total 880 720 1600

Table 12.3 Probabilities associated with a two-way contingency table

Time 2

Time 1 Approve Disapprove Total

Approve p11 p12 p1+ = p11 + p12
Disapprove p21 p22 p2+ = p21 + p22

Total p+1 = p11 + p21 p+2 = p12 + p22 p++

Table 12.4 Notation for observed frequencies

Time 2

Time 1 Approve Disapprove Total

Approve n11 n12 n1+ = n11 + n12
Disapprove n21 n22 n2+ = n21 + n22

Total n+1 = n11 + n21 n+2 = n12 + n22 n

approves at both time 1 and time 2, p1+ is the probability of approving at time 1,
ignoring time 2, and p+1 is the probability of approving at time 2, ignoring time 1. The
frequencies associated with the possible outcomes are denoted as shown in table 12.4.
So, for example, n11 is the number of individuals who approve at both time 1 and time 2.
The estimates of the probabilities in table 12.3, namely p11, p12, p21, and p22, are

p̂11 = n11

n
, p̂12 = n12

n
, p̂21 = n21

n
, p̂22 = n22

n
,

respectively. For example, based on the data in table 12.2, the estimate of the probability
p̂11 is p̂11 = n11/n = 794/1600 = .49625. In words, the estimated probability of
approving at both time 1 and 2 is .496. In a similar manner the marginal probabilities
p̂1+, p̂+1, p̂2+, and p̂+2 are estimated with

p̂1+ = n1+
n

, p̂+1 = n+1

n
, p̂2+ = n2+

n
, p̂+2 = n+2

n
,

respectively.
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Now consider the issue of whether the approval rating has changed from time 1 to
time 2. The approval rating at time 1 is p1+, at time 2 it is p+1, and so the change in the
approval rating is

d = p1+ − p+1.

This difference is estimated with

d̂ =p̂1+ − p̂+1

=n11 + n12

n
− n11 + n21

n

=n12 − n21

n
.

In formal terms, the goal is to test

H0 : d = 0, (12.6)

the hypothesis that the difference between the two approval ratings is zero. The standard
approach is to proceed along the lines outlined in chapter 7. That is, we first need to find
a method for estimating the squared standard error of d , where the squared standard
error of d roughly refers to the variance of d over many studies. Using methods not
covered in this book, it can be shown that an appropriate estimate is

s2d = 1

n
{p̂1+(1 − p̂1+) + p̂+1(1 − p̂+1) − 2(p̂11p̂22 − p̂12p̂21)}.

So if the null hypothesis is true, the central limit theorem says that with a sufficiently
large sample size, d̂ will have, approximately, a normal distribution with mean 0 and
variance s2d . This means that an appropriate test statistic is

Z = d̂

sd
,

which will have, approximately, a standard normal distribution when the null hypothesis
is true and the sample size is reasonably large. The computations are simplified by noting
that this last equation can be written as

Z = n12 − n21√
n12 + n21

,

Proceeding along the lines in chapter 7, if the Type I error probability is to be α,
reject the hypothesis of no change if |Z| ≥ c, where c is the 1 − α/2 quantile of a
standard normal distribution read from table 1 in appendix B. A 1−α confidence interval
for d is

d̂ ± csd .

Example 1

For the data in table 12.2,

d̂ = p̂1+ − p̂+1 = 0.59 − 0.55 = 0.04
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meaning that the change in approval rating is estimated to be 0.04. The
estimated squared standard error of d̂ is

s2d = 1

1600
{.59(1 − .59) + .55(1 − .55) − 2(.496(.356) − .094(.054))}

=0.0000915,

the estimated standard error is sd = √
0.0000915 = .0096 so the test statistic is

Z = .04

.0096
= 4.17.

With α = .05, c = 1.96, and because |Z| > 1.96, reject and conclude that
the approval rating has changed. To illustrate the alternative method for
computing the statistic Z, which is called McNemar’s test, we see that n12 = 150,
n21 = 86, so

Z = 150 − 86

150 + 86
= 4.17,

which agrees with value previously obtained. The .95 confidence interval for
the change in the approval rating is

0.04 ± 1.96(0.0096) = (0.021,0.059).

So the data suggest that, with a reasonably high probability, the approval rating
has changed by at least 0.021 and as much as 0.059.

A test for independence

The next goal is to describe a classic technique for detecting dependence in a contingency
table. Imagine that you want to investigate personality style versus blood pressure.
Suppose each participant is classified as having personality type A or B and that each
is labeled as having or not having high blood pressure. Some hypothetical results are
shown in table 12.5. The goal is to test the hypothesis that personality type and high
blood pressure are independent. The notion of independence was formally introduced
in chapter 4, but a quick review, in the context of the problem at hand, might help.

If the probability of a randomly sampled participant having a type A personality is
p1+ = 0.4, and the probability of having high blood pressure is p+1 = .2, then based
on the product rule in chapter 4, independence implies that the probability of having a
type A personality and high blood pressure is

p11 = p1+ × p+1 = .4 × .2 = .08.

Table 12.5 Hypothetical results on personality versus blood pressure

Blood Pressure

Personality High Not High Total

A 8 67 75
B 5 20 25

Total 13 87 100
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If, for example, p11 = .0799999, they are dependent although in some sense they are
close to being independent. Similarly, independence implies that

p12 =p1+ × p+2

p21 =p2+ × p+1

p22 =p2+ × p+2.

In table 12.5, n11 = 8 is the number of participants among the 100 sampled who
have both a type A personality and high blood pressure. Similarly, n12 = 67, n21 = 5,
and n22 = 20. The hypothesis of independence can be tested with

X 2 = n(n11n22 − n12n21)2

n1+n2+n+1n+2
. (12.7)

When the null hypothesis of independence is true, X 2 has, approximately, a chi-squared
distribution with 1 degree of freedom.

Example 2

For the data in table 12.5,

X 2 = 100[8(20) − 67(5)]2
75(25)(13)(87)

= 1.4.

With ν = 1 degree of freedom and α = .05, the critical value is 3.84, and
because 1.4 < 3.84, the hypothesis of independence is not rejected.

Generally, the chi-squared test of independence performs reasonably well in terms
of Type I errors (e.g., Hosmane, 1986), but difficulties can arise, particularly when the
number of observations in any of the cells is relatively small. For instance, if any of the
nij values is less than or equal to 5, problems might occur in terms of Type I errors.
There are a variety of methods for improving upon the chi-squared test, but details are
not given here. (See the final section of this chapter for a list of books dedicated to
categorical data.)

It is noted that the notion of a contingency table is readily generalized to situations
where the variables can have more than two outcomes. A common notation is to let
R represent the number of possible values for the first variable, and to let C represent
the number of possible values for the second. Put another way, R indicates the number
of rows in a contingency table and C represents the number of columns. Consider, for
example, two raters who rate the same figure skaters on a three-point scale. The outcomes
based on a rating of 100 skaters might look something like what is shown in table 12.6.
So here, R = C = 3. This table says that there were 13 instances where rater A gave a
score of 2 and simultaneously rater B gave a score of 3. In this more general context, pij

represents the probability of an observation belonging to the ith row of the first variable
(rater A) and the jth row of the second (rater B). And nij represents the number of times,
among a sample of n observations, an outcome belongs to the ith row and jth column.
The other notation introduced in the previous section is generalized in an obvious way.
For example, ni+ = ni1 +·· ·niC represents the total number of observations belonging
to the ith row. In table 12.6, n2+ = 11 + 6 + 13 = 30 is the number of skaters who got
a rating of 2 from rater B.
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Table 12.6 Ratings of 100 figure skaters

Rater B

Rater A 1 2 3 Total

1 20 12 8 40
2 11 6 13 30
3 19 2 9 30

Total 50 20 30 100

For the more general case where a contingency table has R rows and C columns,
independence corresponds to a situation where for the ith row and jth column,

pij = pi+p+j ,

where

pi+ =
C∑

j=1

pij ,

and

p+j =
R∑

i=1

pij .

(This follows from the product rule introduced in chapter 4.) In words, for any row,
say the ith, and any column, say the jth, if we multiply the marginal probabilities,
independence means that the result must be equal to probability of being in the ith row
and jth column. If for any row and column, this is not true, then there is dependence.

Example 3

Imagine that the probabilities for the two raters considered in table 12.6 are

Rater B

Rater A 1 2 3

1 .18 .08 .06
2 .14 .05 .19
3 .15 .01 .14

Then the probability that rater A gives a rating of 1 is p1+ = .18+ .08+ .06 =
.32, the probability that rater B gives a rating of 2 is p+2 = .08 + .05 + .01 =
.14, and the probability that rater B gives a rating of 3 is p+3 = .39. We see
that p1+p+1 = .32 × .47 = .1507. The probability that simultaneously rater
A gives a rating of 1 and rater B gives a rating of 1 is p11 = .18. Because
p11 = .18 �= .1507, the raters are dependent. As usual, however, we do not
know the true probabilities and so we must rely on observations to make a
decision about whether there is dependence.
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For the more general contingency table considered here, the hypothesis of
independence can be tested with

X 2 =
R∑

i=1

C∑
j=1

n(nij − ni+n+j

n )2

ni+n+j
. (12.8)

The degrees of freedom are

ν = (R − 1)(C − 1).

If X 2 exceeds the 1 − α quantile of a chi-square distribution with ν degrees
of freedom, which is read from table 3 in appendix B, you reject and conclude
that there is dependence.

Example 4

For the data in table 12.6, it can be seen that X 2 = 9.9, the degrees of
freedom are 4, and with α = .05, the critical value is 9.49. So the hypothesis
of independence would be rejected. That is, when it comes to judging skaters,
there is an association between the ratings given by these two raters.

Measures of association

Simply rejecting the hypothesis of independence does not tell us how strong the
association happens to be. That is, to what extent is the association important?
Measuring the strength of an association between two categorical variables turns out
to be a nontrivial task. This section covers some of the more basic strategies aimed at
accomplishing this goal. As in previous chapters, different methods provide different
perspectives. What is required is a good understanding of what these measures tell us
so that a judicious choice can be made when trying to understand data.

It helps to begin with what might seem like a reasonable approach, but which
turns out to be unsatisfactory: use the p-value associated with the chi-squared test for
independence. Generally, p-values are unsatisfactory when it comes to characterizing
the extent to which groups differ and variables are related, and the situation at hand is
no exception.

Another approach that has received serious consideration is to use some function of
the test statistic for independence, X 2. A well-known choice is the phi coefficient given by

φ = X√
n
,

but this measure, plus all other functions of X 2, have been found to have little value as
measures of association (e.g., Fleiss, 1981; Goodman and Kruskal, 1954).

The probability of agreement

A simple yet potentially useful measure of association is the probability of agreement.
In the example dealing with rating skaters, the probability of agreement refers to the
probability that the two raters give the same rating to a skater. In this particular case, the
probability of agreement is just p = p11 +p22 +p33. That is, the probability of agreement
is the probability that both raters give a rating of 1, or a rating of 2, or a rating of 3.
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For the more general case where there are R rows and R columns, the probability of
agreement is

p = p11 +·· ·+ pRR.

Notice that when working with the probability of agreement, in essence, we are
dealing with a binomial probability function. That is, among n observations, either
there is agreement or there is not. The total number of times we get agreement is

na = n11 +·· ·+ nRR,

and the estimate of p is just p̂ = na/n. Moreover, a confidence interval for the probability
of agreement can be computed as described in chapter 6. In particular, if the goal
is to compute a 1 − α confidence interval for p, let c be the 1 − α/2 quantile of a
standard normal distribution, which is read from table 1 in appendix B, in which case
an approximate 1 −α confidence interval for p is

p̂ ± c

√
p̂(1 − p̂)

n
. (12.9)

Equation (12.9) is the classic, routinely taught method, but, as noted in chapter 6, it
is generally regarded as begin rather inaccurate relative to other methods that might be
used. A simple improvement is the Agresti-Coull method, which in the present context
is applied as follows. Let

n̂ = n + C2,

n̂a = na + c2

2
,

and

p̂ = na

n̂
.

Then the 1 −α confidence interval for p is

p̂ ± c

√
p̂(1 − p̂)

n̂
.

Example 5

For the skating data in table 12.6, the number of times there is agreement
between the two judges is na = 20 + 6 + 9 = 35 and the total number of
ratings is n = 100. Consequently, the estimated probability of agreement is
p̂ = 35/100 = .35. To compute a .95 confidence interval for p, we see from
table 1 in appendix B that c = 1.96, and so an approximate .95 confidence
interval for p is given by

.35 ± 1.96
√

.35(.65)/100 = (.26, .44).

Using the Agresti-Coull method, n̂a = 35 + 1.962/2 = 36.92, n̂ = 100 +
1.962 = 103.842, p̂ = .3555 and the .95 confidence interval is

.355 ± 1.96
√

.355(.6445)/103.842 = (.263, .447).
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Odds and odds ratio

Some of the measures of association that have proven to be useful in applied work
are based in part on conditional probabilities. First, however, some additional notation
is required. The notation p1|i refers to the conditional probability of a participants
belonging to category 1 of the second factor (the second column in contingency table)
given that the individual is a member of the ith row or level of the first. In the personality
versus blood pressure illustration, p1|1 is the probability not of having high blood pressure,
given that someone has a Type A personality. Similarly, p2|1 is the probability of having
blood pressure, given that the participants has a Type A personality, and p1|2 is the
probability of high blood pressure, given that the participant has a Type B personality.
In general, pj |i refers to the conditional probability of being in the jth column of the
second factor, given that the participant is a member of the ith row. From chapter 3,

pj |i = pij

pi+
,

where for the situation under consideration,

pi+ = pi1 + pi2.

As previously indicated, the term pi+ is called a marginal probability.
To simplify matters, attention is focused on a two-way contingency table having

two rows and two columns only. Associated with each row of such contingency tables is a
quantity called its odds. First note that for now 1, there are two conditional probabilities
associated with the two columns, namely p1|1 and p2|1. In symbols, the odds for row 1 is

	1 = p1|1
p2|1

,

while the odds for row 2 is

	2 = p1|2
p2|2

.

(The symbol 	 is an upper case Greek omega.)

Example 6

Consider the personality versus blood pressure data shown in table 12.5.
The estimated probabilities are summarized in table 12.7. For instance, the
estimated probability that, simultaneously, a randomly sampled adult has a
Type A personality and high blood pressure is

p̂11 = n11

n
= 8

100
= 0.08.

Table 12.7 Estimated probabilities for personality versus blood pressure

Blood Pressure

Personality High Not High Total

A .08 .67 .75
B .05 .20 .25

Total .13 .87 1.00
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Consequently, the estimated probability of having high blood pressure, given
that someone has a Type A personality, is

p̂1|1 = 0.08

0.08 + 0.67
= 0.1067.

Similarly, the probability of not having high blood pressure, given that you
have a Type A personality, is

p̂2|1 = 0.67

0.08 + 0.67
= 0.8933.

The estimate of the odds for this row is

	̂1 = p̂1|1
p̂2|1

= 0.1067

0.8933

= 0.12.

That is, given that someone has a Type A personality, the probability of
having high blood pressure is estimated to be about 12% of the probability
that the person’s blood pressure is not high. In symbols, your estimate is that
p1|1 = .12 × p2|1 since

p̂1|1 = 	̂1 × p̂2|1.

Put another way, among Type A personalities, the probability of not having
high blood pressure is about 1/0.12 = 8.4 times as high as the probability that
blood pressure is high. As for Type B personalities, the odds is estimated to be

	̂2 = 0.25.

This says that if you have a Type B personality, the chance of having
hypertension is estimated to be about a fourth of the probability that blood
pressure is not high. Notice that you can measure the relative risk of hyper-
tension, based on personality type, by comparing the two odds just estimated.
Typically a comparison is made with their ratios. This means you use what is
called the odds ratio, which is estimated with

θ̂ = 	̂1

	̂2

= 0.12

0.25

= 0.48.

This says that among Type A personalities, the relative risk of having
hypertension is about half what it is for individuals who are Type B
personalities.
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Table 12.8 Mortality rates per 100,000 person-years from lung cancer and coronary
artery disease for smokers and nonsmokers of cigarettes

Smokers Nonsmokers Difference

Cancer of the lung 48.33 4.49 43.84
Coronary artery disease 294.67 169.54 125.13

In terms of population probabilities, the odds ratio can be written as

θ = p11p22

p12p21
,

and for this reason, θ is often called the cross-product ratio. A simpler way of writing the
estimate of θ is

θ̂ = n11n22

n12n21
.

Under independence, it can be shown that θ = 1. If θ > 1, then participants in row 1
(Type A personality in the illustration) are more likely to belong to the first category of
the second factor (high blood pressure) than are participants in row 2. If θ < 1, then the
reverse is true. That is, participants are less likely to belong to the first category of the
second factor than are participants in row 2.

All measures of association are open to the criticism that they reduce your data
down to a point where important features can become obscured. This criticism applies
to the odds ratio, as noted by Berkson (1958) and discussed by Fleiss (1981). Table 12.8
shows the data analyzed by Berkson on mortality and smoking. It can be seen that the
estimated odds ratio is

θ̂ = 10.8

1.7
= 6.35,

and this might suggest that cigarette smoking has a greater effect on lung cancer than on
coronary artery disease. Berkson pointed out that it is only the difference in mortality that
permits a valid assessment of the effect of smoking on a cause of death. The difference
for coronary artery disease is considerably larger than it is for smoking, as indicated in the
last column of table 12.8,indicating that smoking is more serious in terms of coronary
artery disease. The problem with the odds ratio in this example is that it throws away
all the information on the number of deaths due to either cause.

Problems
10. For a random sample of 200 adults, each adult was classified as having a high or

low income, and each was asked whether they are optimistic about the future. The
results were

Yes No Total

High 35 42 77
Low 80 43 123
Total 115 85 200
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What is the estimated probability that a randomly sampled adult has a high
income and is optimistic? Compute a .95 confidence interval for the true
probability.

11. Referring to the previous exercise, compute a .95 confidence interval for
δ = p1+ − p+1. Also test H0 : p12 = p21 using Z with a Type I error probability of
α = .05.

12. In problem 10, would you reject the hypothesis that income and outlook are
independent? Use α = .05. Would you use the φ coefficient to measure the
association between income and outlook? Why?

13. In problem 10, estimate the odds ratio and interpret the results.

14. You observe

Income (father)

Income (daughter) High Medium Low Total

High 30 50 20 100
Medium 50 70 30 150
Low 10 20 40 70
Total 90 140 90 320

Estimate the proportion of agreement and compute a .95 confidence interval.

12.3 Some modern advances and insights

There are many methods for analyzing categorical data beyond those covered here
(e.g., Agresti, 1990, 1996; Andersen, 1997; Lloyd, 1996; and Powers and Xie, 1999;
Simonoff, 2003). One topic of special interest is loglinear models (e.g., Agresti, 1990;
Fienberg, 1980); they can be useful when studying associations in three-way and higher
contingency tables. Another area of interest is a regression problem where the outcome
is binary. For example, what is the probability of getting a heart attack during the next
year if an individual’s cholesterol level is 250? One approach to this problem is to use
what is called logistic regression. For books dedicated to this topic, see, for example,
Kleinbaum (1994) or Hosmer and Lemeshow (1989).
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RANK-BASED AND
NONPARAMETRIC METHODS

Nonparametric and rank-based methods provide yet another approach to comparing
groups and studying associations. Generally, they provide a different and potentially
useful perspective regarding how groups compare and how variables are related. This
chapter introduces some classic, well-known methods and some recent advances and
insights are covered as well.

13.1 Comparing independent groups

This section describes methods for comparing independent groups. We begin with a
classic technique, outline its practical problems, and then mention modern methods for
dealing with these issues.

Wilcoxon-Mann-Whitney test

The classic rank-based method for comparing two independent groups is called the
Wilcoxon-Mann-Whitney test. It was originally derived by Wilcoxon (1945), and later
it was realized that Wilcoxon’s method was the same as a procedure proposed by Mann
and Whitney (1947).

Some care is needed when describing the goal of the Wilcoxon-Mann-Whitney
test. To begin, imagine that a single observation is randomly sampled from each group.
Let p be the probability that the randomly sampled observation from the first group is
less than the randomly sampled observation from the second. In symbols, if X11 is the
first observation from the first group and X12 is the first observation from the second
group,

p = P(X11 < X12),

which is a natural way of characterizing how the groups differ. The Wilcoxon-Mann-
Whitney test is based on a direct estimate of p with the intended goal of testing

H0 : p = .5. (13.1)
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In words, if the groups do not differ in any manner, then there should be a 50% chance
that an observation from the first group is less than an observation from the second.

Again, imagine that a single observation is randomly sampled from the first group,
but now, n2 observations are randomly sampled from the second. For illustrative
purposes, imagine that the value from the first group is 8, n2 = 10, and that the values
from the second group are

2,4,6,9,13,15,18,22,25,29.

So we see that 8 is less than 7 of the observations in the second group. Based on this
data, a natural estimate of p is just the proportion of times the single observation in the
first group is less than the values in the second. Here we write this estimate as p1, where
the subscript 1 means that the first observation in the first group is being used. In the
illustration, p1 = 7/10.

Now suppose that an additional observation is randomly sampled from the
first group. For illustrative purposes, suppose the value is 23. Then, continuing the
illustration, we see that 23 is less than two of the observations in the second group, and
so now the estimate of p would be p2 = 2/10. Continuing in this fashion when there are
n1 observations in the first group, we get n1 estimates of p, which we label as p1, . . . ,pn1 .
A natural way of combining these n1 estimates into a single estimate of p is to average
them, this is what is done in practice, and the result is labeled

p̂ = 1

n1

∑
pi . (13.2)

Example 1

Consider the following observations:

Group 1: 30,60,28,38,42,69

Group 2: 19,21,27,73,71,25,59,61.

The first value in the first group, 30, is less than four of the eight observations
in the second group, so p1 is 4/8. In a similar manner, the second observation
in the first group is 60, it is less than three of the values in the second group,
so p2 = 3/8. Continuing in this fashion, p3 = 4/8, p4 = 4/8, p5 = 4/8 and
p6 = 2/8. Consequently, the estimate of p, the probability that a value from
the first group is less than a value from the second, is

p̂ = 1

6

(
4

8
+ 3

8
+ 4

8
+ 4

8
+ 4

8
+ 2

8

)
= .4375.

An alternative method for estimating p, that is equivalent to the method just
described, explains why the Wilcoxon-Mann-Whitney is called a rank-based technique.
The method begins by combining the observations into a single group, writing them
ascending order, and then assigning ranks. This means that the smallest value among
all of the observations gets a rank of 1, the next smallest gets a rank of 2, and the largest
observation gets a rank of n1 +n2. Next, the sum of the ranks associated with the second
group is computed, which we label S. Letting

U = S − n2(n2 + 1)

2
,
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the estimate of p is

p̂ = U

n1n2
.

The quantity U is called the Wilcoxon-Mann-Whitney U statistic.

Example 2

Continuing the last example, if we pool the observations into a single groupd
and write them in ascending order, we get

Pooled Data: 19 21 25 27 28 30 38 42 59 60 61 69 71 73
Ranks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14.

For convenience, the values corresponding to the second group and their
corresponding ranks are written in boldface. The sum of the ranks associated
with the second group is

S = 1 + 2 + 3 + 4 + 9 + 11 + 13 + 14 = 57,

so

U = 57 − 8(9)

2
= 21,

and

p̂ = 21

6(8)
= .4375,

consistent with the previous example.

Now consider the problem of testing H0: p = .5. The usual description of the test
statistic is in terms of U . If p = .5, then U estimates n1n2/2. The test statistic is based
in part on an estimate of VAR(U ), the variance of U over many studies, which is the
squared standard error of U . If we assume there are no tied (duplicated) values and that
the groups have identical distributions, then VAR(U ) is given by

σ 2
u = n1n2(n1 + n2 + 1)

12
.

This means that the null hypothesis can be tested with

Z = U − n1n2
2

σu
, (13.3)

which has, approximately, a standard normal distribution when the assumptions are met
and H0 is true. In particular, reject if

|Z| ≥ c,

where c is the 1 − α/2 quantile of a standard normal distribution, which is read from
table 1 in appendix B. To make sure that it is clear that the method is based on an
estimate of p, it is noted that the test statistic Z can be written as

Z = p̂ − .5

σu/
√

n1n2
.
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Example 3

Continuing the last illustration, n1 = 6, n2 = 8, so σ 2
u = 6(8)(6+8+1)/12 = 60

Consequently,

Z = 21 − 24√
60

= −0.387.

With α = .05, the critical value is 1.96, |Z| is less than 1.96, so fail to reject.

When does the Wilcoxon-Mann-Whitney test
perform well?

A positive feature of the Wilcoxon-Mann-Whitney test is that when groups have
identical distributions, it performs reasonably well in terms of controlling the probability
of a Type I error. In practical terms, like Student’s t test, when it rejects, it is
reasonable to conclude that the groups differ in some manner. But when distributions
differ, if the primary goal is to make inferences about p, practical concerns arise.
A fundamental reason why is that now, under general conditions, the wrong standard
for U is being used. This can create problems in terms of both Type I error
probabilities and power. Consequently, although the Wilcoxon-Mann-Whitney test is
based on an estimate of p, a more accurate description is that it tests the hypothesis
of identical distributions. Indeed, if tied values are impossible, and the goal is
to test the hypothesis of identical distributions, the probability of a Type I error
can be controlled exactly under random sampling using techniques not covered in
this book.

The Wilcoxon-Mann-Whitney test and medians

Sometimes the Wilcoxon-Mann-Whitney test is described as a method for comparing
the medians of two groups. There are restrictive conditions where this is true, but when
these conditions are not met, the Wilcoxon-Mann-Whitney test performs poorly as a
method for comparing medians (e.g., Fung, 1980). For example, there are situations
where power decreases as the difference between the population medians increases,
and confidence intervals for the difference between the medians cannot be computed
(Kendall and Stuart, 1973; Hettmansperger, 1984).

Dealing with tied values

There are two issues that should be mentioned regarding tied values. The first is that
the formulation of the null hypothesis must be altered. To begin, note that there are
three possible outcomes when sampling a single observation from each group: (1) the
observation from the first group is greater than the observation from the second, (2) the
observations have identical values, or (3) the observation from the first group is less than
the observation from the second. For convenience, let p0 be the probability that the two
values are identical and let

P = p + .5p0.
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Then the goal is to test

H0 : P = .5.

But again, although the Wilcoxon-Mann-Whitney test is based on an estimate
of P , a more accurate description is that the hypothesis of identical distributions is
being tested.

The second issue has to do with how ranks are computed. The standard strategy is
to use what are called the midranks, which involves averaging the ranks corresponding
to the duplicated values. To illustrate what this means, consider the values 45, 12, 32,
64, 13, and 25. There are no tied values and the smallest value has a rank 1, the next
smallest has rank 2, and so on, as previously explained. A common notation for the rank
corresponding to the ith observation is Ri . So in the example, the first observation is
X1 = 45 and its rank is R1 = 5. Similarly, X2 = 12 and its rank is R2 = 1.

Now consider a situation where there are tied values: 45, 12, 13, 64, 13, and 25.
Putting these values in ascending order yields 12, 13, 13, 25, 45, 64. So the value 12 gets
a rank of 1, but there are two identical values having a rank of 2 and 3. The midrank is
simply the average of the ranks among the tied values. Here, this means that the rank
assigned to the two values equal to 13 would be (2 + 3)/2 = 2.5, the average of their
corresponding ranks. So the ranks for all six values would be 1, 2.5, 2.5, 4, 5, 6.

Generalizing, consider

7, 7.5, 7.5, 8, 8, 8.5, 9, 11, 11, 11.

There are 10 values, so if there were no tied values, their ranks would be 1, 2, 3, 4, 5, 6,
7, 8, 9, and 10. But because there are two values equal to 7.5, their ranks are averaged
yielding a rank of 2.5 for each. There are two values equal to 8, their original ranks were
4 and 5, so their final ranks (their midranks) are both 4.5. There are three values equal
to 11, their original ranks were 8, 9 and 10, the average of these ranks is 9, so their
midranks are all equal to 9. So the ranks for the 10 observations are

1, 2.5, 2.5, 4.5, 4.5, 6, 7, 9, 9, 9.

The Kolmogorov-Smirnov test

Yet another way of testing the hypothesis that two independent groups have identical
distributions is with the Kolmogorov-Smirnov test. Unlike Student’s t test and the
Wilcoxon-Mann-Whitney test, the Kolmogorov-Smirnov test is designed to be sensitive
to any differences among the quantiles. For example, if the medians differ, this test is
capable of detecting this difference. If the medians are equal, but say the quartiles differ,
the Kolmogorov-Smirnov test is designed to detect this difference as well. A criticism
of the Kolmogorov-Smirnov test is that when tied values can occur, its power can be
relatively poor. But despite this, there are situations where an extension of the method
(not described here) can provide a deeper and more detailed sense of how groups compare
that goes beyond any of the methods covered in this book that are based on a single
measure of location. And regardless of any practical problems caused by tied values,
there are situations where its power can be relatively high in comparison with other
techniques.
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To apply it, let F̂1(x) be the proportion of observations in group one that are less
than or equal to x, and let F̂2(x) be the corresponding proportion for group two. For
convenience, let

Y1 = X11, Y2 = X21, . . . ,Yn1 = Xn11

and

Yn1+1 = X12, Yn1+2 = X22, . . . ,Yn1+n2 = Xn2,2.

That is, the n1 observations in group 1 are labeled Y1, . . . ,Yn1 and the n2 observations
in group 2 are labeled Yn1+1, . . . ,Yn1+n2 . Let

Vi = |F̂1(Yi) − F̂2(Yi)|,

i = 1, . . . ,n1 + n2. So V1, for example, is computed by determining the proportion of
values in group 1 that are less than or equal to Y1, the proportion of values in group 2
that are less than or equal to Y1, and then taking the absolute value of the difference
between these two proportions. The Kolmogorov-Smirnov test statistic is

KS = max{V1, . . . ,Vn1+n2}, (13.4)

the largest V value. For large sample sizes, an approximate critical value when α = .05 is

c = 1.36

√
n1 + n2

n1n2
.

The Kolmogorov-Smirnov test rejects the hypothesis of identical distributions
if KS ≥ c.1

Example 4

The Kolmogorov-Smirnov test is illustrated with the following data.

Group 1: 7.6, 8.4, 8.6, 8.7, 9.3, 9.9, 10.1, 10.6, 11.2
Group 2: 5.2, 5.7, 5.9, 6.5, 6.8, 8.2, 9.1, 9.8, 10.8,

11.3, 11.5, 12.3, 12.5, 13.4, 14.6.

The sample sizes are 9 and 15. In symbols, n1 = 9 and n2 = 15. Focus on the
first observation in the first group, which is 7.6. Then F̂1(7.6) = 1/9 because
only one of the nine values in group 1 is less than or equal to 7.6. In a similar
manner, F̂1(8.4) = 2/9 and F̂1(8.6) = 3/9. Notice that for the second group,
the smallest observation is 5.2. So for the second group, F̂2(5.2) = 1/15, but for
the first group, F̂1(5.2) = 0/9. That is, for the first group, there are no values

1. The software S-PLUS and R come with a function for applying the Kolmogorov-Smirnov test. But
in general, and particularly when tied values occur, a better choice is the R or S-PLUS function ks, stored
in the files mentioned in chapter 1; it provides exact control over the probability of a Type I error assuming
random sampling only. For more details, see Wilcox (2005).
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less than or equal to 5.2, so the estimated probability of getting a value less
than or equal to 5.2 is 0. The test statistic KS can be computed by proceeding
as follows:

Group 1 Group 2 |F̂1(Y ) − F̂2(Y )| Group 1 Group 2 |F̂1(Y ) − F̂2(Y )|
5.2 |0/9 − 1/15| = 1/15 9.8 |5/9 − 8/15| = 1/45
5.7 |0/9 − 2/15| = 2/15 9.9 |6/9 − 8/15| = 2/15
5.9 |0/9 − 3/15| = 1/5 10.1 |7/9 − 8/15| = 11/45
6.5 |0/9 − 4/15| = 4/15 10.6 |8/9 − 8/15| = 16/45
6.8 |0/9 − 5/15| = 1/3 10.8 |8/9 − 9/15| = 13/45

7.6 |1/9 − 5/15| = 2/9 11.2 |9/9 − 9/15| = 2/5
8.2 |1/9 − 6/15| = 13/45 11.3 |9/9 − 10/15| = 1/3

8.4 |2/9 − 6/15| = 8/45 11.5 |9/9 − 11/15| = 4/15
8.6 |3/9 − 6/15| = 1/15 12.3 |9/9 − 12/15| = 1/5
8.7 |4/9 − 6/15| = 2/45 12.5 |9/9 − 13/15| = 2/15

9.1 |4/9 − 7/15| = 1/45 13.4 |9/9 − 14/15| = 1/15
9.3 |5/9 − 7/15| = 4/45 24.6 |9/9 − 15/15| = 0

The largest absolute difference just computed (among columns 3 and 6) is
KS = 2/5 = .4. The approximate .05 critical value is c = .573, so fail to reject.

At first glance, the Kolmogorov-Smirnov test might seem relatively uninteresting
because when it rejects, it is unclear in what sense the groups differ. An important
extension of the method does provide an indication of which quantiles differ (Doksum
and Sievers, 1976), but the details are too involved to give here. Suffice it to say that the
Kolmogorov-Smirnov test can yield interesting perspectives on how groups differ and
by how much.2

Comparing more than two groups:
The Kruskall-Wallis test

The best-known rank-based method for more than two independent groups is the
Kruskall-Wallis test. The original goal of this method was to extend the Wilcoxon-
Mann-Whitney test to more than two groups. Recall that the Wilcoxon-Mann-Whitney
test is based on an estimate of p, the probability that a randomly sampled observation
from the first groups is less than a randomly sampled observation from the second, is
equal to .5. The Kruskall-Wallis test was intended to test the hypothesis that p = .5
for any two groups. But like the Wilcoxon-Mann-Whitney test, a more accurate
description of the method is that it tests the hypothesis that all groups have identical
distributions.

As usual, we let J represent the number of groups, nj represent the number of
observations in the jth group, and N is the total number of observations. In symbols,
N = ∑

nj . The method begins by pooling all N observations and assigning ranks. That
is, the smallest observation among all N values gets a rank of 1, the next smallest a rank
of 2, and so on. If Xij is the ith observation in the jth group, we let Rij be its rank among
the pooled data. When there are tied values, midranks are used. Next, sum the ranks for

2. For illustrations, see Wilcox (2003, 2005).
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each group. In symbols, compute

Rj =
nj∑

i=1

Rij ,

(j = 1, . . . , J ). Letting

S2 = 1

N − 1

⎛
⎝ J∑

j=1

nj∑
i=1

R2
ij − N (N + 1)2

4

⎞
⎠ ,

the test statistic is

T = 1

S2

(
−N (N + 1)2

4
+

∑ R2
j

nj

)
.

If there are no ties, S2 simplifies to

S2 = N (N + 1)

12
,

and T becomes

T = −3(N + 1) + 12

N (N + 1)

∑ R2
j

nj
.

The hypothesis of identical distributions is rejected if T ≥ c, where c is some appropriate
critical value. For small sample sizes, exact critical values are available from Iman, Quade,
and Alexander (1975). For large sample sizes, the critical value is approximately equal
to the 1 −α quantile of a chi-squared distribution with J − 1 degrees of freedom.

Example 5

Table 13.1 shows data for three groups and the corresponding ranks. For
example, after pooling all N = 10 values, X11 = 40 has a rank of R11 = 1,
the value 56 has a rank of 6, and so forth. The sums of the ranks corresponding
to each group are R1 = 1 + 6 + 2 = 9, R2 = 3 + 7 + 8 = 18 and R3 =
9+10+5+4 = 28. The number of groups is J = 3, so the degrees of freedom
are ν = 2, and from table 3 in appendix B, the critical value is approximately
c = 5.99 with α = .05. Because there are no ties among the N observations,

T = −3(10 + 1) + 12

10 × 11

(
92

3
+ 182

3
+ 282

4

)
= 3.109.

Because 3.109 < 5.99, fail to reject. That is, you are unable to detect a difference
among the distributions.

Table 13.1 Hypothetical data illustrating the Kruskall-Wallis test

Group 1 Group 2 Group 3

i Xi1 Ri1 Xi2 Ri2 Xi3 Ri3

1 40 1 45 3 61 9
2 56 6 58 7 65 10
3 42 2 60 8 55 5
4 47 4
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Problems
1. For the values 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, compute the midranks.

2. For two independent groups, you observe

Group 1: 8,10,28,36,22,18,12

Group 2: 11,9,23,37,25,43,39,57.

Compare these two groups with the Wilcoxon-Mann-Whitney test using α = .05.

3. For the data in the previous exercise, apply the Kolmogorov-Smirnov test, again
using α = .05.

4. Comment on using the Wilcoxon-Mann-Whitney test when the goal is to
compare medians.

5. When the Wilcoxon-Mann-Whitney rejects, how should this be interpreted?

6. You want to compare the effects of two different cold medicines on reaction time.
Suppose you measure the decrease in reaction times for one group of participants
who take one capsule of drug A, and you do the same for a different group of
participants who take drug B. The results are

A: 1.96,2.24,1.71,2.41,1.62,1.93

B: 2.11,2.43,2.07,2.71,2.50,2.84,2.88.

Compare these two groups with the Wilcoxon-Mann-Whitney test using
α = .05. What is your estimate of the probability that a randomly sampled subject
receiving drug A will have less of a reduction in reaction time than a randomly
sampled subject receiving drug B?

7. For the data in the previous exercise, apply the Kolmogorov-Smirnov test, again
using α = .05. (It is interesting to note that if an exact critical value is used, rather
than the approximate critical value described in the text, the opposite conclusion is
reached regarding whether to reject.)

8. When there are many tied values, speculate on whether the
Wilcoxon-Mann-Whitney test will have more power than the
Kolmogorov-Smirnov test.

9. Two methods for reducing shoulder pain after laparoscopic surgery were
compared by Jorgensen et al. (1995). The data were

Group 1: 1,2,1,1,1,1,1,1,1,1,2,4,1,1

Group 2: 3,3,4,3,1,2,3,1,1,5,4.

Compare these groups using the Wilcoxon-Mann-Whitney test using α = .05.

10. Imagine two groups of cancer patients are compared, the first group having a
rapidly progressing form of the disease and the other having a slowly progressing
form. At issue is whether psychological factors are related to the progression of
cancer. The outcome measure is one where highly negative scores indicated a
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tendency to present the appearance of serenity in the presence of stress. The
results are

Group 1: − 25,−24,−22,−22,−21,−18,−18,−18,−18,−17,−16,−14,−14,

− 13,−13,−13,−13,−9,−8,−7,−5,1,3,7,7

Group 2: − 21,−18,−16,−16,−16,−14,−13,−13,−12,−11,−11,−11,

− 9,−9,−9,−9,−7,−6,−3,−2,3,10.

Compare these groups with Wilcoxon-Mann-Whitney test using α = .05.

11. Repeat the previous problem, only use the Kolmogorov-Smirnov test.

12. For three independent groups, you observe

Group 1: 4,6,7,8,9,15,12,19

Group 2: 16,18,2,21,29,30,24,27

Group 3: 20,22,26,31,32,38,39,41.

Perform the Kruskal-Wallis test with α = .05.

13. In the previous exercise, the largest observation is 41, which is in the third group.
The sample means can be seen to be 10, 20.9, and 31.1, respectively, and the
ANOVA F test in chapter 10 rejects with α = .05. If the largest observation is
made even larger, eventually the F test will not reject, even though the sample
mean of the third group increases as well. Is the same true when using the
Kruskal-Wallis test?

13.2 Comparing two dependent groups

The sign test

A simple method for comparing dependent groups is the so-called sign test. In essence, it
is based on making inferences about the probability of success associated with a binomial
distribution.

Imagine that n pairs of observations have been randomly sampled. The pairs of
observations might reflect blood pressure before and after taking some medication, the
attitudes of a married couple regarding abortion, and so on. Following the notation
introduced in chapter 9, these pairs of observations are denoted by

(X11,X12)
...

(Xn1,Xn2).

Primarily for convenience, it is momentarily assumed that tied values never occur. That
is, for any pair of observations, their difference is not equal to zero. Let p be the probability
that for a randomly sampled pair of observations, the observation from group 1 is less
than the observation from group 2. More formally,

p = P(Xi1 < Xi2).
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Letting

D1 = X11 − X12
...

Dn = Xn1 − Xn2,

an estimate of p is simply the proportion of Di values that are less than zero. If we let V
indicate the number of Di values less than zero, then and estimate of p is

p̂ = V

n
. (13.5)

In the terminology of chapter 4, V represents the number of successes, where ‘success’
refers to the event that, for a pair of observations, the first is less than the second. From
chapter 12, the hypothesis

H0 : p = .5

can be tested by computing

Z = p̂ − .5√
p̂(1 − p̂)/n

and rejecting if |Z| ≥ c, where c is the 1−α/2 quantile of a standard normal distribution
read from table 1 in appendix B.

As for situations where ties can occur, a simple strategy—one that is routinely
used—is to ignore or discard these cases. So if among N pairs of observations, there are
n pairs of observations that do not have identical values, then an estimate of p is

p̂ = V

n
, (13.6)

where again V is the number of times the first observation is less than the second.

Example 1

Consider the values

Group 1: 22,12,34,43,54,46,33,19,10,54,66

Group 2: 21,34,19,34,43,22,33,27,29,19,11.

The differences are:

1,−22,15,9,11,24,0,−8,−19,35,55.

Removing the one case where the difference is zero leaves n = 10 values:

1,−22,15,9,11,24,−8,−19,35,55.

Because the number of negative values is V = 3, the estimate of p is
p̂ = 3/10 = .3, and |Z| = 1.38. If the Type I error probability is to be α = .05,
c = 1.96, so fail to reject the hypothesis that the probability of a negative
difference is .5.
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Wilcoxon signed rank test

Another classic method for comparing two dependent groups is the Wilcoxon signed
rank test. The null hypothesis is that the two dependent groups have identical
distributions. The method begins by forming difference scores as was done in
conjunction with the paired T -test in chapter 9 or the the sign test just described.
If any difference scores are equal to zero, they are discarded, and we let n indicate that
number of differences remaining. In symbols, these differences are again denoted by

D1, . . . ,Dn.

Next, rank the |Di | values and let Ui denote the result for |Di |. So, for example, if the
Di values are 6, −2, 12, 23, −8, then U1 = 2 because after taking absolute values, 6 has
a rank of 2. Similarly, U2 = 1 because after taking absolute values, the second value, −2,
has a rank of 1. Next set

Ri = Ui,

if Di > 0; otherwise

Ri = −Ui .

Positive numbers are said to have a sign of 1, negative numbers a sign of −1, so Ri is the
value of the rank corresponding to |Di | multiplied by the sign of Di . The test statistic is

W =
∑

Ri√∑
R2

i

.

If there are no ties, this last equation simplifies to

W =
√

6
∑

Ri√
n(n + 1)(2n + 1)

.

Decision rule: reject if |W | ≥ c, where c is the 1 − α/2 quantile of a standard normal
distribution read from table 1 in appendix B.

Example 2

Imagine a study aimed at reducing feelings of depression. The Wilcoxon signed
rank test is illustrated with the following values for depression taken at two
different times:

Time 1: 45,12,34,56,78,12,43,65,76,66

Time 2: 35,10,22,66,28,10,45,56,43,65.

The differences are

10,2,12,−10,50,2,−2,9,33,1.

The ranks of the absolute values are

6.5,3.0,8.0,6.5,10.0,3.0,3.0,5.0,9.0,1.0.

Multiplying these ranks by the sign of the differences yields

6.5,3.0,8.0,−6.5,10.0,3.0,−3.0,5.0,9.0,1.0.

and a little arithmetic yields W = 1.84. With α = .05, the crticial value is
c = 1.96, so fail to reject.
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Problems
14. For two dependent groups you get

Group 1: 10, 14, 15, 18, 20, 29, 30, 40

Group 2: 40, 8, 15, 20, 10, 8, 2, 3.

Compare the two groups with the sign test and the Wilcoxon signed rank test
with α = .05.

15. For two dependent groups you get

Group 1: 86 71 77 68 91 72 77 91 70 71 88 87

Group 2: 88 77 76 64 96 72 65 90 65 80 81 72.

Apply the Wilcoxon signed rank test with α = .05.

13.3 Rank-based correlations

As in chapter 8, imagine that we have n randomly sampled pairs of observations. For
example, for every individual, we might measure blood pressure and cholesterol levels.
Or we might measure levels of anxiety and the amount of an antidepressant that is being
taken. As in chapter 8, these pairs of points are labeled (X1, Y1), . . . , (Xn, Yn). So, X1

might be blood pressure of the first participant and Y1 might be her cholesterol level.
There are two classic alternatives to Pearson’s correlation that can be used, among other
things, to establish that two variables are dependent. They are called Kendall’s tau and
Spearmans’ rho.

Kendall’s tau

Kendall’s tau is based on the following idea. Consider two pairs of observations, which
are labeled as (X1, Y1) and (X2, Y2). These two pairs of numbers are said to be concordant
if Y increases as X increases, or if Y decreases as X decreases. If two pairs of observations
are not concordant, they are said to be discordant.

Put another way, Kendall’s tau reflects how close the relationship is to being
monotone. A monotone relationship is one that consistently increases or decreases, but
the increase does not necessarily follow a straight line. For each pair of points, Kendall’s
tau is concerned with whether the slope between these two points is positive (concordant)
or negative (discordant). If in general, as one variable gets large, the other tends to
increase as well, then Kendall’s tau will be positive. In a similar manner, if in general, as
one variable gets large the other tends to get smaller, then Kendall’s tau will be negative.
Based on all pairs of points, Kendall’s tau is the difference between the positive slopes
and the negative slopes divided by the total number of slopes. Consequently, its value
lies between −1 and 1. Said another way, among all pairs of points, Kendall’s tau is just
the average number that are concordant minus the average number that are discordant.
If two measures are independent, then this difference should be approximately equal
to zero. If all of the slopes are positive, meaning that as the first variable increases, the
second always increaes as well, Kendall’s tau is equal to 1. And if the second variable
always decreases, Kendall’s tau is equal to −1.
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Example 1

The pairs of points (X1, Y1) = (12,32) and (X2, Y2) = (14,42) are concordant
because X increases from 12 to 14 and the corresponding Y values increase
as well. That is, the slope between these two points is positive. The pairs of
points (X1, Y1) = (10,28) and (X2, Y1) = (14,24) have a negative slope and
are discordant.

To describe how to compute tau in a more formal manner, let Kij = 1 if the ith and
jth pairs of observations are concordant, otherwise Kij = −1. Next, sum all of the Kij

for which i < j , which is denoted by ∑
i<j

Kij .

Then Kendall’s tau is given by

τ̂ = 2
∑

i<j Kij

n(n − 1)
, (13.7)

where τ is a lower case Greek tau. In words, Kendall’s tau is just the average of the Kij

values. (In the notation used here, the number of Kij values is n(n−1)/2.) As previously
indicated, τ̂ has a value between −1 and 1. If τ̂ is positive, there is a tendency for Y
to increase with X —possibly in a nonlinear fashion—and if τ̂ is negative, the reverse
is true.

Example 2

Consider the values

(X1,Y1) = (2,1)

(X2,Y2) = (6,5)

(X3,Y3) = (8,7)

(X4,Y4) = (3,12).

We see that for the first two pairs of points (i = 1 and j = 2), X increases from
2 to 6, Y increases from 1 to 5, so they are concordant. That is K12 = 1. More
generally, we see that

i j Kij

1 2 1
1 3 1
1 4 1
2 3 1
2 4 −1
3 4 −1

Then Kendall’s tau is just the average of these six values, namely, τ̂ = .333. To
illustrate the notation, the sum of these values is

∑
i<j Kij = 2, n = 4, so again

τ̂ = 2(2)

4(3)
= .333.
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The population analog of τ̂ is labeled τ and can be shown to be zero when X and
Y are independent. That is, τ is the value of Kendall’s tau if all individuals could be
measured, and if there is no association, τ = 0. So if there is empirical evidence that
τ �= 0, this indicates that X and Y are dependent. If X and Y are independent, and if tied
values never occur, it can be shown that the variance of τ̂ over many studies, VAR(τ̂ ),
which is the squared standard error of τ̂ , is given by

σ 2
τ = 2(2n + 5)

9n(n − 1)
.

To test

H0 : τ = 0,

compute

Z = τ̂

σ τ
,

and reject if

|Z| ≥ c,

where c is the 1 − α/2 quantile of a standard normal distribution, which can be read
from table 1 in appendix B.

Example 3

Continuing the last example, there are four pairs of points (n = 4), 2(2n+5) =
26, 9n(n − 1) = 108, so σ 2

τ = 26/108 = .2407, and Z = .333/
√

.2407 = .68.
With α = .05, c = 1.96, so fail to reject.

Kendall’s tau provides protection against outliers among the X values, ignoring Y ,
as well as outliers among the Y values, ignoring X . Imagine that τ̂ = .4 and that the
largest X value is 40. If this largest X is increased to one million, τ̂ is not altered, it
remains equal to .4. Nevertheless, a few unusual points, properly placed, can have a
tremendous influence on the value of Kendall’s tau.

Example 4

Consider the points in figure 13.1 and notice that the two points in the lower
right corner appear to be unusual compared to the others, and indeed they are
unusual based on how the data were generated. If we ignore these two outliers,
Kendall’s tau is τ̂ = .37, and we reject the hypothesis that τ = 0 with the Type I
error set at α = .05. (The p-value is .023.) But if we include these two outliers,
Kendall’s tau drops to τ̂ = .13 and the p-value increases to .41, so we no longer
reject, even though all but two of the values were generated in a manner where
X and Y are dependent.

Spearman’s rho

Spearman’s rho, labeled rs , is just Pearson’s correlation based on the ranks associated
with X versus the ranks associated with Y . Under independence, the population analog
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Figure 13.1 This scatterplot illustrates that outliers, properly placed, can have a large influence
on both Kendall’s tau Spearman’s rho.

of rs , ρs , is zero. Also, like Kendall’s tau, Spearman’s rho is exactly equal to one if there
is a monotonic increasing relationship between X and Y . That is, Y always increases as
X gets large. And ρs = −1 if the association is monotonic decreasing instead.

The usual approach to testing

H0 : ρs = 0,

is based on

T = rs

√
n − 2√
1 − r2

s

.

When there is independence, T has, approximately, a Student’s t-distribution with
ν = n − 2 degrees of freedom. So reject and conclude there is an association if |T | ≥ t ,
where t is the 1 − α/2 quantile of a Student’s t-distribution with n − 2 degrees of
freedom.

Like Kendall’s tau, Spearman’s rho provides protection against outliers among the
X values, ignoring Y , as well as outliers among the Y values, ignoring X , yet unusual
points can have a big impact on its value.

Example 5

In the last example it was illustrated that Kendall’s tau can be influenced by a
few unusual values. We repeat this illustration with Spearman’s rho. Ignoring
the two unusual values in the lower-right corner of figure 13.1, Spearman’s rho
is rs = .54 and the hypothesis of independence is rejected with α = .05. (The
p-value is .01.) But when we include the two unusual values, rs = .16 and the
p-value is .48. So now we fail to detect any association.
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Problems
16. For the following pairs of observations, test H0 : τ = 0 with α = .05.

Time 1: 10 16 15 20

Time 2: 25 8 18 9.

17. Repeat the previous exercise, only use Spearman’s rho instead.

13.4 Some modern advances and insights

The methods described in this chapter perform well, in terms of controlling the
probability of a Type I error, when comparing groups with identical distributions or
when dealing with associations where the variables are independent. But in terms of
detecting and describing true differences between groups or true associations between
two variables, many new and improved rank-based methods are now available.

The Brunner-Munzel method

Recall that the Wilcoxon-Mann-Whitney test is based on an estimate of P . When
there are no tied values, P is the probability that a randomly sampled observation from
the first group is less than a randomly sampled observation from the second. But if
the goal is to test H0: P = .5, the method is unsatisfactory under general conditions
because it uses the wrong standard error when the distributions differ. There are two
methods that appear to correct this problem to a reasonable degree. One was derived
by Brunner and Munzel (2000). As usual, let Xij be the ith observation from the jth
group (i = 1, . . . ,nj ; j = 1,2). To apply the Brunner-Munzel method, first pool all
N = n1 +n2 observations and assign ranks. In the event there are tied values, ranks are
averaged as previously illustrated. (That is, midranks are used.) As previously described
and illustrated, the results for the jth group are labeled Rij , i = 1, . . . ,nj . That is, Rij is
the rank corresponding to Xij among the pooled values. Let R̄1 be the average of the
ranks corresponding to group one and R̄2 is the average for group 2. So

R̄1 = 1

n1

n1∑
i=1

Ri1

and

R̄2 = 1

n2

n2∑
i=1

Ri2.

Next, for the first group, rank the observations ignoring group 2 and label the results
V11, . . .Vn11. Do the same for group 2 (ignoring group 1) and label the ranks V12, . . .Vn22.
The remaining calculations are shown in box 13.1.3

3. The function bpm, which belongs to the library of R or S-PLUS functions mentioned in chapter 1,
performs the calculations. When using SPSS, access to this function can be obtained via the software zumastat,
also mentioned in chapter 1.
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BOX 13.1 The Brunner-Munzel method for two independent groups.

Compute

S2
j = 1

nj − 1

nj∑
i=1

(
Rij − Vij − R̄j +

nj + 1
2

)2

,

s2
j =

S2
j

(N − nj )2

se =
√

N

√
s2
1

n1
+ s2

2
n2

,

U1 =
(

S2
1

N − n1
+ S2

2
N − n2

)2

and

U2 = 1
n1 − 1

(
S2

1
N − n1

)2

+ 1
n2 − 1

(
S2

2
N − n2

)2

.

The test statistic is

W = R̄2 − R̄1√
Nse

,

and the degrees of freedom are

ν̂ = U1
U2

.

Decision Rule: Reject H0 : P = .5 if |W | ≥ t , where t is the 1 −α/2 quantile of a
Student’s t-distribution with ν̂ degrees of freedom. An estimate of P is

P̂ = 1
n1

(
R2 − n2 + 1

2

)
= 1

N
(R̄2 − R̄1) + 1

2
.

An approximate 1 −α confidence interval for P is

P̂ ± tse .

Example 1

Table 13.2 reports data from a study of hangover symptoms among sons of
alcoholics versus a control. Note that there are many tied values among these
data. In the second group, for example, 14 of the 20 values are zero. Welch’s test
for means has a p-value of .14, Yuen’s test has a p-value of .076, the Brunner-
Munzel method has a p-value of .042, and its .95 confidence interval for P is
(.167, .494). The main point is that if we compare groups with the goal that the
Type I error probability be .05 level, the choice of method makes a difference
in whether or not we reject. But it should be noted that a criticism of using
multiple methods for comparing groups is that if the groups do not differ in
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Table 13.2 The effect of alcohol

Group 1: 0 32 9 0 2 0 41 0 0 0
6 18 3 3 0 11 11 2 0 11

Group 2: 0 0 0 0 0 0 0 0 1 8
0 3 0 0 32 12 2 0 0 0

any manner, and if each test is performed at the .05 level, the probability of
making a Type I error among all of the methods used will be greater than .05.
A simple method for dealing with this is to perform each test at the .05/C
level, where C is the number of tests used to compare the groups. That is, use
the Bonferroni method described in chapter 11. Here, the number of tests used
to compare the two groups is C = 3. The lowest p-value is .042, this is larger
than .05/3, so now we would fail to reject.

Although no details are given here, it should be noted that an alternative to the
Brunner-Munzel method is recommended by Cliff (1996).4 It appears that with very
small sample sizes, it can be a little more satisfactory than the Brunner-Munzel method in
terms of Type I errors (Neuhäuser, et al., 2007). For extensions of the Brunner-Munzel
method to more than two groups, as well as more modern rank-based methods for
comparing dependent groups see Brunner, et al. (2002) as well as Wilcox (2003, 2005).
Reiczigel, et al. (2005) studied a bootstrap method for making inferences about p, and
it appears to have an advantage over the Brunner-Munzel method when sample sizes
are small and tied values never occur. However, with tied values it can perform poorly
in situations where the Brunner-Munzel method performs reasonably well. Currently,
Cliff’s method appears to be the best choice for general use.

The Brunner-Dette-Munk method

The Kruskall-Wallis test performs relatively well, in terms of controlling the probability
of a Type I error, when the null hypothesis of identical distributions is true, but concerns
about relatively low power arise when distributions differ. An alternative rank-based
method, which deserves consideration, was derived by Brunner, Dette and Munk (1997).
The explicit goal is to test the hypothesis that all J groups have identical distributions.
But a rough characterization of the method is that it is designed to be sensitive to
differences among the average ranks. The method pools the data and assigns ranks as
was done in the Kruskall-Wallis test. The remaining calculations are too involved to
give here, but complete details and software can be found in Brunner, et al. (2002) and
Wilcox (2003, 2005).

Finally, a classic technique for comparing more than two dependent groups, based
on ranks, is called Friedman’s test. Like the other classic techniques covered in this
chapter, it performs well, in terms of Type I errors, when comparing groups that have
identical distributions, but when groups differ, several methods are now available that
are aimed at providing higher power. Details can be found in Brunner, et al. (2002) as
well as Wilcox (2003, 2005).

4. In the library of S-PLUS and R functions mentioned in chapter 1, the function cid performs the
calculations and the function cidv2 can be used to compute a p-value.
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A Summary of Some Key Points

• Generally, nonparametric methods provide alternative ways of describing and
detecting differences among groups and associations among variables.

• Rank-based methods are sometimes described as methods for comparing medians,
but under general conditions they are highly unsatisfactory for this purpose. More
generally, if the goal is to compare measures of location, such as the mean, median
or trimmed mean, methods in this chapter are unsatisfactory.

• An advantage of rank-based methods is that they are insensitive to outliers when
comparing groups. That is, power might be high relative to methods for comparing
means. Kendall’s tau and Spearman’s rho provide some protection against outliers, but
they are not completely satisfactory in this regard; methods covered in more advanced
courses are more satisfactory.

13.5 Some final comments on comparing groups

Multiple methods for comparing two or more groups have been described at various
points in this book. And there are additional methods, not covered here, that have
practical value. How should one choose a method from among the many that are
available? There is no agreement on how best to proceed. Using data from 24
dissertations, Wu (2002) compared the power of a variety methods. No single method
was always best and in some cases methods based on means performed well, but in
general, methods based on means had the poorest power. Methods based on a 20%
trimmed mean did not always compete well with other techniques, but it was the most
likely approach to provide the best power. But it should be kept in mind that different
methods tell us different things about how groups differ and by how much. For instance,
we saw examples where despite any negative features associated with means, comparing
means can be argued to be more meaningful than comparing medians or 20% trimmed
means. Simultaneously, there are situations where means provide a dubious summary of
what the typical response happens to be. That is, some thought is required when choosing
a method. Multiple methods could be used, but now there is the issue of controlling the
probability of at least one Type I error. Methods are available for dealing with this issue,
some of which were described in chapter 11, but a concern is that now power might
be poor versus using a single technique. One possibility is to use 20% trimmed means
to make a decision about whether groups differ, and then use alternative techniques to
gain perspective on the nature of any differences that might exist. Another possibility is
choose a single method, and if no differences are found try some alternative techniques.
If many methods are used and each is performed with the Type I error probability set
equal to .05, again there is the issue of controlling the probability of at least one Type I
error. Suppose five methods are used to compare the groups, with a method based on
medians yielding the lowest p-value, which is .04. It can be argued that the evidence is
weak that the groups differ, but that there are indications that perhaps the medians do
indeed differ. So one possibility is to perform a new study where groups are compared
using medians only. Repeating the study might require a considerable effort, but this
seems preferable to always using only one method for comparing groups, and if no
differences are found, throwing the data away. That is, it is undesirable to routinely miss
a true difference due to the method used to compare the groups.



APPENDIX A: SOLUTIONS TO
SELECTED EXERCISE PROBLEMS

Chapter 2

1. (a) 22, (b) 2, (c) 20, (d) 484, (e) 27, (f) −41, (g) 2, (h) 220, (i) 12, ( j) 54.

2. (a)
∑

Xi/i, (b)
∑

U i
i , (c) (

∑
Yi)

4.

3. (a)
∑

Xi/i.
4. (a) X̄ = −.2, M = 0, (b)X̄ = 186.1667, M = 6.5.

5. X̄ = 83.93, M = 80.5.

6. 338.1.

7. (a) 30.6, (b) 120.6, (c) 1020.6.

8. 24.5 in all three cases.

9. One

10. About half.

11. q1 = −6.58 q2 = 7.4 ( j = 3, h = .41667).

12. q1 = −6, q2 = 3, ( j = 4, h = .16667).

13. About a fourth.

14. Clearly, X(1) has a value between X(1) and X(n).

15. If we multiply all of the values by any constant c, then in particular X(1) becomes cX(1).

16. Range = 18, s 2 = 32, s = 5.66.

17. Note that nX̄ = ∑
(Xi), So

∑
(Xi − X̄ ) = (

∑
Xi) − nX̄ = 0.

18. s = .37.

19. s = 11.58.

20. 20 is an outlier.

21. Again, 20 is an outlier.

22. Yes.

26. Sometimes, even with two or more outliers, the classic rule might catch all of the outliers,

depending on where they are, but the boxplot rule is better at avoiding masking.

27. .2 × n = .2 × 21 = 4.2, so g = 4, X̄ t = 80.08.

30. 2.

31. 5. The mean is least resistant and the median is the most resistant.

33. About 20%, or more than g.x

34. X̄ = 229.2, X̄ t = 220.8 M = 221.

35. 24, 24, 25, 32, 35, 36, 36, 42, 42.

36. s 2
w = 51.36.

37. Smaller, s 2 = 81, s 2
w = 51.4.

38. Yes.

40. s 2
w = 1,375.6.

41. X̄ t = 82, s 2
w = 69.2.



292 APPENDIX A: SOLUTIONS TO SELECTED EXERCISE PROBLEMS

Chapter 3

1. mean is 2.85, variance is 1.94697, sd = 1.395.

2. mean is 2.52, variance is 1.2245, sd = 1.11.

3. mean is 3, variance is 1.5, sd = 1.22.

4. mean is 18.387, variance is 85.04, sd = 9.22.

5. mean is 11.1, variance is 42.3, sd = 6.5.

8. No.

9. Yes.

10. The boxplot rule can declare values to be outliers that do not appear to be outliers based on

a histogram.

12. 34.6.

13. There would be only one stem.

14. median = 80, quartiles = 50 and 121, IQR = 121 − 50 = 71, largest value not declared an

outlier is 215.

15. Values less than −56.5 or greater than 227.5 are declared outliers.

18. When the population histogram is symmetric and outliers are rare.

19. In some cases, 100 is sufficient but in others a much larger sample size is needed.

20. Generally, the boxplot is better than a histogram.

21. Not necessarily. Situations are encountered where the sample histogram is a poor indication

of the population histogram.

Chapter 4

1. No

2. No

3. Yes

4. .5

5. 0.

6. 0.5

7. 0.8

8. 0.7

10. mean = 2.3, variance is .81 and the standard deviaitoni is .9

11. mean = 3.2, variance is 1.76 and the standard deviation is 1.3.

12. μ − σ = 3.2 − 1.33 = 1.87 and μ + σ = 3.2 + 1.33 = 4.53. But the only possible values

between 1.87 and 4.53 are 2, 3 and 4. So the answer is p(2) + p(3) + p(4) = .7.

13. mean = 2, standard deviation is .63.

14. Increase.

15. mean = 3, variance is 1.6.

16. smaller

17. larger

18. (a) .3, (b) .03/.3, (c) .09/.3, (d) .108/.18.

19. Yes.

20. (a) 1253/3398, (b) 757/1828, (c) 757/1253, (d) no, (e) 1831/3398

21. Yes, this can only happen if the conditional probabilities change when you are told X .

22. Yes.

23. Yes.

24. (a) 0.006, (b) 0.3823, (c) 0.1673, (d) 0.367, (e) 0.7874

25. (a) 0.00475, (b) 0.29687, (c) 0.4845, (d) 0.6864.

26. 0.1859.

27. 0.29848

28. 10.8 and 4.32

29. 4.4, 3.52.
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30. .7,0.0105

31. .3, .007.

32. (a) 0.3222, (b) 0.6778, (c) 0.302.

33. Two heads and a tail has probability .44, versus three heads with probability .343.

34. .5

35. (a) .755, (b) .255, (c) 1 − .255 − 5(.75)(.25)4.

36. (a) 0.5858, (b) 0.7323, (c) 0.5754, (d) 0.7265.

37. 10, 6, .4, 0.0096.

38. (a) 0.0668, (b) 0.0062, (c) 0.0062, (d) .683.

39. (a) 0.691, (b) 0.894, (c) .77.

40. (a) .31, (b) .885, c) 0.018, d) .221.

41. (a) -2.33, (b) 1.93, (c) −0.174, (d) .3,

42. (a) 1.43, (b) −0.01, (c) 1.7, (d) 1.28.

43. (a) .133, (b) .71, (c) .133, (d) .733

44. (a) .588, (b) .63, (c) .71, (d) .95.

45. (a) .1587, (b) .382, (c) .383, (d) .683.

46. c = 1.96

47. 1.28.

48. .16.

49. 84.45.

50. 1−.91.

51. .87.

52. .001.

53. .68.

54. .95.

55. .115.

56. .043.

57. Yes

59. No, could be much larger

60. No.

61. Yes.

62. Yes.

Chapter 5

1. (a) 0.885, (b) 1 − 0.885 = .115, (c) 0.7705.

2. 0.3151.

3. 0. It is impossible to get p̂ = .05 when n = 10.

4. Note that with n = 25, there are only two ways of getting p̂ ≤ .05: when the number of

successes is 0 or 1. And the probability of getting 0 or 1 successes is 0.2712.

6. .4

7. .4(.6)/30 = .008

8. (a) .0228, (b) .1587, (c) 0.9545.

9. (a) .1587, (b) .023, (c) .977 − .023 = 0.954.

10. .023.

11. .6822.

12. 0.866.

13.
√

160.78/9 = 4.23.

14. (a) .055, (b) .788, (c) .992 (d) .788 − .055.

15. (a) .047, (b) .952 (c) 1−.047, (d) .952 − .047.

16. Skewed, heavy-tailed distribution.

17. Symmetric, light-tailed.
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19. No tied values.

21. There are tied values.

22. No.

23. There is an outlier. sM = 3.60, s/
√

n = 17.4.

25. 69.4.

26. There is an outlier.

27. The sample mean has the smallest standard error under normality. So if there is an ideal

estimator, it must be the mean, but under non-normality it can perform poorly.

28. If the distribution is heavy-tailed, meaning outliers are common, a trimmed mean or median

can be more accurate on average.

Chapter 6

2. 1.28, 1.75, 2.33.
3. 45 ± 1.96(5/5) = (43.04,46.96).
4. 45 ± 2.576(5/5).
5. No, .95 CI = (1141.8,1158.2).
6. (a) (52.55,77.45), (b) (180.82,189.18), (c) (10.68,27.32).

7. Length = 2cσ/
√

n. When n is doubled, length = 2cσ/
√

2n. Therefore, the ratio of the lengths

is 1/
√

2. That is, the length is decreased by a factor of 1/
√

2. For 4n, decreased by a factor

of 1/2.

8. X̄ = 19.97. so .95 CI = (19.9602,19.9798). b) No. c) Just because the confidence contains

20, this does not necessarily mean that μ = 20.

9. .99 CI = (1.896363,2.303637).

10. .90 CI = (1.62644,1.77356).

11. (a) 2.085963, (b) 2.84534, (c) 1.725.

12. (a) (19.56179,32.43821), (b) (122.0542,141.9458), (c) (47,57).

13. (a) (16.75081,35.24919), (b) (118.3376,145.6624), (c) (45.28735,58.71265).

14. (161.5030,734.7075).

15. (10.69766,23.50234).

16. (28.12,39.88).

17. (109.512,414.488).

18. 1 − .022 = .978.

19. .964.

20. n = 19 and k = 3. .9993.

21. n = 15, p̂ = 5/15, CI = (0.09476973,0.5718969) using equation (6.10). Agresti-Coull gives

(0.15, 0.585).

22. (a) .0064. (b) .0039, (c) .0016, (d) .00083.

23. (0.0412,0.1588). Agresti-Coull = (0.05, 0.176).

24. (0.26187550.3181245).

25. (0.04528041,0.07471959).

27. (0.0009958988,0.0013299610).

28. (0.1856043,0.3143957).

29. (0.00264542,0.03735458).

30. (0, .00004).

31. .18 ± 1.96
√

.18(.82)/1000

33. A large sample size might be needed.

35. (a). 52 ± 2.13
√

12/(.6
√

24). (b). 10 ± 2.07
√

30/(.6
√

36). (c). 16 ± 2.07
√

9/(.6
√

12).

37. (293.6, 595.9).

38. Under normality, the ideal estimator is the mean. So if an ideal exists, it must be the mean,

but under general conditions, it performs poorly.

39. For trimmed mean, .95 confidence interval is (34.8, 54.8). for the mean, it is (30.7, 58.3).

40. There is an outlier.
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Chapter 7

1. Z = −1.265, Fail to reject.

2. Fail to reject.

3. (74.9, 81.1).

4. .103.

5. .206.

6. Z = −14, reject.

7. Reject

8. (118.6, 121.4)

9. Yes, because X̄ is consistent with H0.

10. Z = 10, reject.

11. Z = 2.12. Reject.

19. Increase α.

20. (a) T = 1, fail to reject. (b) T = .5, fail to reject. (c) T = 2.5, reject, (c)

22. (a) T = .8, fail to reject. (b) T = .4, fail to reject. (c) T = 2, reject.

24. T = .39, fail to reject.

25. T = −2.61. Reject

26. T = 2, c = 2.6, fail to reject.

27. T = .75, c = −1.86, fail to reject.

28. T = −1.6, −c = −2.26, fail to reject.

29. T = 2.3, c = 2.54, fail to reject.

30. (a) T = .6
√

20(44 − 42)/9 = 0.596, c = 2.2, fail to reject. (b) T = 0.2981, fail to reject.

32. n = 10, so the degrees of freedom are 5, c = 2.571, T = −3.1, reject.

33. The degrees of freedom are 14, c = 2.977, T = 0.129, fail to reject.

Chapter 8

3. Least squares minimizes the sum of the squared residuals. So for any choice for the slope and

intercept, the sum of the squared residuals will be at most 47.

4. In equation (8.5), C = (n − 1)s 2
x = 132. So the estimated slope is 144/132 = 1.09.

5. b1 = −0.0355, b0 = 39.93.

6. b1 = .0039, b0 = .485.

8. b1 = 0.0754, b0 = 1.253.

9. Ŷ = −0.0355(600) + 39.93 = 18.63, but daily calories of 600 is greater than any value used

to compute the slope and intercept. That is, extrapolation is being used.

17. (−2.65,−0.35).

18. (−9.5436,−4.4564).

20. b1 = 3, b0 = −.5.

21. (a) b1 = 3, b0 = −1.(b) T = 2.11, critical value is t = −0.099, fail to reject. (c) (0.602,5.398).

22. (a) b1 = .25, b0 = 7. (b) (−0.76,1.26).

23. (2.04,4.16) indicating that the slope is probably greater than 2.

24. (2.78,9.22).

25. (a) r = .8. T = 6.67, reject. (b) r = .5, T = 1.29, fail to reject.

26. r = .5, T = 2.8, t = 1.7, reject. This indicates dependence.

27. (a). Yes. (b) Yes, outliers can mask a negative association. (c) Plot the data.

28. Nothing, this does not change r .

29. The absolute value of the slope gets larger.

30. The residuals are larger, meaning the the correlation will get smaller.

31. The slope and intercept were chosen so as to minimize the second sum. Ȳ is the regression

line with b1 = 0, and so the first sum must be bigger than the second.

32. There are various ways there might be dependence that is not detected by r .
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33. (a) Many factors affect r . Outliers can result in a large r but a poor fit. (b). Ŷ does much

better than Ȳ , in terms of minimizing the sum of the squared residuals, but both perform

poorly.

34. No. You need to look at the data.

35. The confidence interval can be relatively long and is potentially inaccurate.

36. Again, the confidence interval can be relatively long and is potentially inaccurate.

Chapter 9

3. T = 9.3, reject.

4. W = 10.5, reject.

5. Welch’s test might have more power.

6. T = 3.795. reject

7. WT = 3.795. reject.

8. When the sample variances are approximately equal, the choice between T and W makes

little difference.

9. ν = 31.86066, t2.037283, CI = (1.4, 8.6).

10. CI = (1.49, 8.61).

11. No, fail to reject.

12. W = 1.95, t = 2.06, fail to reject.

13. The actual probability coverage could differ substantially from .95.

14. Z = .62, fail to reject.

15. Z = −.26, CI = (−0.17, .13).

16. Z = −.4, CI = (−.13, .086).

17. T = −3.32, ν = 49, reject, CI = (−13.358907, −3.277457).

19. Difference between the means is −8.3 versus −7.5. Also, there are no outliers suggesting that

the standard error of the median will be larger than the standard error of the means, which

turns out to be the case.

20. Z = 2.23.

21. T = 5.25. Reject.

22. (1.88, 4.12)

23. T = 2.91, reject, CI = (1.28, 7.43).

24. No. The method used in problem 22 is not appropriate for testing the hypothesis of equal

medians. It tests the hypothesis that the median of the difference scores is zero, which is not

necessarily the same.

29. .021

Chapter 10

1. MSWG = (6.214 + 3.982 + 2.214)/3 = 4.14.

2. MSBG = 25.04, F = 6.05, critical values is f = 3.47.

5. MSWG = 9.5

7. No.

8. Don’t know when power is high enough to detect situations where unequal variances is a

practical issue.

11. MSBG estimated 2+25 = 27. MSWG estimates 2, the common variance. Because the null

hypothesis is false, MSBG estimates a larger quantity, on average.

14. The distributions differ, suggesting that in particular the means differ.

15. Low power due to outliers, violating the equal variance assumptions, differences in skewness,

small sample sizes.

16. No.

17. Unclear whether the test has enough power to detect a departure from normality that has

practical importance.
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18. Increase the variances.

19. There is a main effect for A and B, no interaction.

20. There is a main effect for A and B and an interaction.

21. N = 90, Factor A, F = 400/50 = 8, ν1 = 1, ν2 = 90 − 6 = 84, f = 6.95, reject. Factor

B, F = 4, ν1 = 2, f = 4.87, fail to reject. Interaction, F = 4, ν1 = 2, f = 4.87, fail to

reject.

22. N = 200, Factor A, F = 6, ν1 = 3, ν2 = 200 − 20 = 180, f = 2.65, reject. Factor B, F = 4,

ν1 = 4, f = 2.42, reject. Interaction, F = 3, ν1 = 12, f = 1.81, reject.

Chapter 11

1. The probability of at least one Type I error can be unacceptably high.

2. MSWG = 11.6, T = |15 − 10|/√11.6(1/20 + 1/20) = 4.64 ν = 100 − 5 = 95, reject.

3. T = |15 − 10|/√11.6(1/20 + 1/20)/2 = 6.565, q = 3.9, reject.

4. MSWG = 8. T = |20 − 12|/√8(1/10 + 1/10) = 6.325 ν = 50 − 5 = 45, reject.

5. T = |20 − 12|/√8(1/10 + 1/10)/2 = 8.94, q = 4.01, reject.

8. W = (15 − 10)/
√

4/20 + 9/20 = 6.2, ν̂ = 33, c = 2.99, reject.

9. (15 − 10)/
√

.5(4/20 + 9/20) = 8.77, reject.

10. W = (20 − 12)/
√

5/10 + 6/10 = 7.63, reject.

11. |20 − 12|/√(5/10 + 6/10)/2 = 10.787, q = 4.01, reject.

12. |16 − 22|/√64 + 5 = −0.72, fail to reject.

13. Tied values can result in poor control over Type I errors.

14. W = (24 + 14 − 36 − 24)/
√

6 + 8 + 8 + 5 = −4.23, ν = 23, t = 2.07.

15. ν = 23. Critical value equals 2.57.

16. W = −.38, ν = 23.4, c = 2.57, fail to reject.

17. None

18. All of them.

19. Rom’s method has as much or more power than the Bonferroni.

20. Tests with p-values .001 and .005 would be rejected.

Chapter 12

1. X 2 = 17.2, critical value c = 7.8.

2. X 2 = 26.2, critical value c = 13.3.

3. X 2 = 46, critical value c = 15.1.

4. X 2 = 13, critical value c = 5.99.

5. X 2 = 5.3, critical value c = 7.8.

6. X 2 = 5.1, critical value c = 9.5.

7. X 2 = 20.3, critical value c = 5.99.

8. X 2 = 6.36, critical value c = 7.81.

9. X 2 = 4.15, critical value c = 12.59.

10. p̂11 = 35/200. CI = (0.12, 0.23).

11. d = −.19, CI = (−0.29, −0.085). Z = −3.4, reject.

12. X 2 = 7.4, reject. No, phi coefficient is known to be an unsatisfactory measure of association.

13. θ̂ = .448. Individuals with high incomes are about half as likely to be optimistic about

the future.

14. p̂ = .4375, .95 CI = (.385, .494).
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Chapter 13

1. 2.5, 2.5, 2.5, 2.5, 6.0, 6.0, 6.0, 8.5, 8.5, 10.0, 11.5, 11.5, 14.0, 14.0, 14.0.

2. Z = 1.5, fail to reject.

3. KS = .5, fail to reject.

4. It is unsatisfactory under general conditions.

5. The distributions differ in some manner.

6. Z = 2.43, reject. The estimate of p is .9.

7. KS = .71, critical value is .76, fail to reject.

8. A speculation is that the Kolmogorov-Smirnov test will have less power.

9. Z = 2.44, reject.

10. Z = 1.64, fail to reject.

11. KS = .32, fail to reject.

12. T = 14.06, reject.

13. No.

14. Sign test, p̂ = .29, reject. Wilcoxon signed rank test, W = 2.28, reject.

15. W = .76, fail to reject.

16. τ̂ = −0.667, Z = −1.36, fail to reject.

17. rs = −0.8, fail to reject.
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Table 1 Standard normal distribution

z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z)

−3.00 0.0013 −2.99 0.0014 −2.98 0.0014 −2.97 0.0015
−2.96 0.0015 −2.95 0.0016 −2.94 0.0016 −2.93 0.0017
−2.92 0.0018 −2.91 0.0018 −2.90 0.0019 −2.89 0.0019
−2.88 0.0020 −2.87 0.0021 −2.86 0.0021 −2.85 0.0022
−2.84 0.0023 −2.83 0.0023 −2.82 0.0024 −2.81 0.0025
−2.80 0.0026 −2.79 0.0026 −2.78 0.0027 −2.77 0.0028
−2.76 0.0029 −2.75 0.0030 −2.74 0.0031 −2.73 0.0032
−2.72 0.0033 −2.71 0.0034 −2.70 0.0035 −2.69 0.0036
−2.68 0.0037 −2.67 0.0038 −2.66 0.0039 −2.65 0.0040
−2.64 0.0041 −2.63 0.0043 −2.62 0.0044 −2.61 0.0045
−2.60 0.0047 −2.59 0.0048 −2.58 0.0049 −2.57 0.0051
−2.56 0.0052 −2.55 0.0054 −2.54 0.0055 −2.53 0.0057
−2.52 0.0059 −2.51 0.0060 −2.50 0.0062 −2.49 0.0064
−2.48 0.0066 −2.47 0.0068 −2.46 0.0069 −2.45 0.0071
−2.44 0.0073 −2.43 0.0075 −2.42 0.0078 −2.41 0.0080
−2.40 0.0082 −2.39 0.0084 −2.38 0.0087 −2.37 0.0089
−2.36 0.0091 −2.35 0.0094 −2.34 0.0096 −2.33 0.0099
−2.32 0.0102 −2.31 0.0104 −2.30 0.0107 −2.29 0.0110
−2.28 0.0113 −2.27 0.0116 −2.26 0.0119 −2.25 0.0122
−2.24 0.0125 −2.23 0.0129 −2.22 0.0132 −2.21 0.0136
−2.20 0.0139 −2.19 0.0143 −2.18 0.0146 −2.17 0.0150
−2.16 0.0154 −2.15 0.0158 −2.14 0.0162 −2.13 0.0166
−2.12 0.0170 −2.11 0.0174 −2.10 0.0179 −2.09 0.0183
−2.08 0.0188 −2.07 0.0192 −2.06 0.0197 −2.05 0.0202
−2.04 0.0207 −2.03 0.0212 −2.02 0.0217 −2.01 0.0222
−2.00 0.0228 −1.99 0.0233 −1.98 0.0239 −1.97 0.0244
−1.96 0.0250 −1.95 0.0256 −1.94 0.0262 −1.93 0.0268
−1.92 0.0274 −1.91 0.0281 −1.90 0.0287 −1.89 0.0294
−1.88 0.0301 −1.87 0.0307 −1.86 0.0314 −1.85 0.0322
−1.84 0.0329 −1.83 0.0336 −1.82 0.0344 −1.81 0.0351
−1.80 0.0359 −1.79 0.0367 −1.78 0.0375 −1.77 0.0384
−1.76 0.0392 −1.75 0.0401 −1.74 0.0409 −1.73 0.0418
−1.72 0.0427 −1.71 0.0436 −1.70 0.0446 −1.69 0.0455
−1.68 0.0465 −1.67 0.0475 −1.66 0.0485 −1.65 0.0495
−1.64 0.0505 −1.63 0.0516 −1.62 0.0526 −1.61 0.0537
−1.60 0.0548 −1.59 0.0559 −1.58 0.0571 −1.57 0.0582
−1.56 0.0594 −1.55 0.0606 −1.54 0.0618 −1.53 0.0630
−1.52 0.0643 −1.51 0.0655 −1.50 0.0668 −1.49 0.0681
−1.48 0.0694 −1.47 0.0708 −1.46 0.0721 −1.45 0.0735
−1.44 0.0749 −1.43 0.0764 −1.42 0.0778 −1.41 0.0793
−1.40 0.0808 −1.39 0.0823 −1.38 0.0838 −1.37 0.0853
−1.36 0.0869 −1.35 0.0885 −1.34 0.0901 −1.33 0.0918
−1.32 0.0934 −1.31 0.0951 −1.30 0.0968 −1.29 0.0985
−1.28 0.1003 −1.27 0.1020 −1.26 0.1038 −1.25 0.1056
−1.24 0.1075 −1.23 0.1093 −1.22 0.1112 −1.21 0.1131
−1.20 0.1151 −1.19 0.1170 −1.18 0.1190 −1.17 0.1210
−1.16 0.1230 −1.15 0.1251 −1.14 0.1271 −1.13 0.1292
−1.12 0.1314 −1.11 0.1335 −1.10 0.1357 −1.09 0.1379
−1.08 0.1401 −1.07 0.1423 −1.06 0.1446 −1.05 0.1469
−1.04 0.1492 −1.03 0.1515 −1.02 0.1539 −1.01 0.1562
−1.00 0.1587 −0.99 0.1611 −0.98 0.1635 −0.97 0.1662
−0.96 0.1685 −0.95 0.1711 −0.94 0.1736 −0.93 0.1762
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Table 1 (continued)

z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z)

−0.92 0.1788 −0.91 0.1814 −0.90 0.1841 −0.89 0.1867
−0.88 0.1894 −0.87 0.1922 −0.86 0.1949 −0.85 0.1977
−0.84 0.2005 −0.83 0.2033 −0.82 0.2061 −0.81 0.2090
−0.80 0.2119 −0.79 0.2148 −0.78 0.2177 −0.77 0.2207
−0.76 0.2236 −0.75 0.2266 −0.74 0.2297 −0.73 0.2327
−0.72 0.2358 −0.71 0.2389 −0.70 0.2420 −0.69 0.2451
−0.68 0.2483 −0.67 0.2514 −0.66 0.2546 −0.65 0.2578
−0.64 0.2611 −0.63 0.2643 −0.62 0.2676 −0.61 0.2709
−0.60 0.2743 −0.59 0.2776 −0.58 0.2810 −0.57 0.2843
−0.56 0.2877 −0.55 0.2912 −0.54 0.2946 −0.53 0.2981
−0.52 0.3015 −0.51 0.3050 −0.50 0.3085 −0.49 0.3121
−0.48 0.3156 −0.47 0.3192 −0.46 0.3228 −0.45 0.3264
−0.44 0.3300 −0.43 0.3336 −0.42 0.3372 −0.41 0.3409
−0.40 0.3446 −0.39 0.3483 −0.38 0.3520 −0.37 0.3557
−0.36 0.3594 −0.35 0.3632 −0.34 0.3669 −0.33 0.3707
−0.32 0.3745 −0.31 0.3783 −0.30 0.3821 −0.29 0.3859
−0.28 0.3897 −0.27 0.3936 −0.26 0.3974 −0.25 0.4013
−0.24 0.4052 −0.23 0.4090 −0.22 0.4129 −0.21 0.4168
−0.20 0.4207 −0.19 0.4247 −0.18 0.4286 −0.17 0.4325
−0.16 0.4364 −0.15 0.4404 −0.14 0.4443 −0.13 0.4483
−0.12 0.4522 −0.11 0.4562 −0.10 0.4602 −0.09 0.4641
−0.08 0.4681 −0.07 0.4721 −0.06 0.4761 −0.05 0.4801
−0.04 0.4840 −0.03 0.4880 −0.02 0.4920 −0.01 0.4960

0.01 0.5040 0.02 0.5080 0.03 0.5120 0.04 0.5160
0.05 0.5199 0.06 0.5239 0.07 0.5279 0.08 0.5319
0.09 0.5359 0.10 0.5398 0.11 0.5438 0.12 0.5478
0.13 0.5517 0.14 0.5557 0.15 0.5596 0.16 0.5636
0.17 0.5675 0.18 0.5714 0.19 0.5753 0.20 0.5793
0.21 0.5832 0.22 0.5871 0.23 0.5910 0.24 0.5948
0.25 0.5987 0.26 0.6026 0.27 0.6064 0.28 0.6103
0.29 0.6141 0.30 0.6179 0.31 0.6217 0.32 0.6255
0.33 0.6293 0.34 0.6331 0.35 0.6368 0.36 0.6406
0.37 0.6443 0.38 0.6480 0.39 0.6517 0.40 0.6554
0.41 0.6591 0.42 0.6628 0.43 0.6664 0.44 0.6700
0.45 0.6736 0.46 0.6772 0.47 0.6808 0.48 0.6844
0.49 0.6879 0.50 0.6915 0.51 0.6950 0.52 0.6985
0.53 0.7019 0.54 0.7054 0.55 0.7088 0.56 0.7123
0.57 0.7157 0.58 0.7190 0.59 0.7224 0.60 0.7257
0.61 0.7291 0.62 0.7324 0.63 0.7357 0.64 0.7389
0.65 0.7422 0.66 0.7454 0.67 0.7486 0.68 0.7517
0.69 0.7549 0.70 0.7580 0.71 0.7611 0.72 0.7642
0.73 0.7673 0.74 0.7703 0.75 0.7734 0.76 0.7764
0.77 0.7793 0.78 0.7823 0.79 0.7852 0.80 0.7881
0.81 0.7910 0.82 0.7939 0.83 0.7967 0.84 0.7995
0.85 0.8023 0.86 0.8051 0.87 0.8078 0.88 0.8106
0.89 0.8133 0.90 0.8159 0.91 0.8186 0.92 0.8212
0.93 0.8238 0.94 0.8264 0.95 0.8289 0.96 0.8315
0.97 0.8340 0.98 0.8365 0.99 0.8389 1.00 0.8413
1.01 0.8438 1.02 0.8461 1.03 0.8485 1.04 0.8508
1.05 0.8531 1.06 0.8554 1.07 0.8577 1.08 0.8599
1.09 0.8621 1.10 0.8643 1.11 0.8665 1.12 0.8686
1.13 0.8708 1.14 0.8729 1.15 0.8749 1.16 0.8770

Continued
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Table 1 Standard normal distribution (continued)

z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z) z P(Z ≤ z)

1.17 0.8790 1.18 0.8810 1.19 0.8830 1.20 0.8849
1.21 0.8869 1.22 0.8888 1.23 0.8907 1.24 0.8925
1.25 0.8944 1.26 0.8962 1.27 0.8980 1.28 0.8997
1.29 0.9015 1.30 0.9032 1.31 0.9049 1.32 0.9066
1.33 0.9082 1.34 0.9099 1.35 0.9115 1.36 0.9131
1.37 0.9147 1.38 0.9162 1.39 0.9177 1.40 0.9192
1.41 0.9207 1.42 0.9222 1.43 0.9236 1.44 0.9251
1.45 0.9265 1.46 0.9279 1.47 0.9292 1.48 0.9306
1.49 0.9319 1.50 0.9332 1.51 0.9345 1.52 0.9357
1.53 0.9370 1.54 0.9382 1.55 0.9394 1.56 0.9406
1.57 0.9418 1.58 0.9429 1.59 0.9441 1.60 0.9452
1.61 0.9463 1.62 0.9474 1.63 0.9484 1.64 0.9495
1.65 0.9505 1.66 0.9515 1.67 0.9525 1.68 0.9535
1.69 0.9545 1.70 0.9554 1.71 0.9564 1.72 0.9573
1.73 0.9582 1.74 0.9591 1.75 0.9599 1.76 0.9608
1.77 0.9616 1.78 0.9625 1.79 0.9633 1.80 0.9641
1.81 0.9649 1.82 0.9656 1.83 0.9664 1.84 0.9671
1.85 0.9678 1.86 0.9686 1.87 0.9693 1.88 0.9699
1.89 0.9706 1.90 0.9713 1.91 0.9719 1.92 0.9726
1.93 0.9732 1.94 0.9738 1.95 0.9744 1.96 0.9750
1.97 0.9756 1.98 0.9761 1.99 0.9767 2.00 0.9772
2.01 0.9778 2.02 0.9783 2.03 0.9788 2.04 0.9793
2.05 0.9798 2.06 0.9803 2.07 0.9808 2.08 0.9812
2.09 0.9817 2.10 0.9821 2.11 0.9826 2.12 0.9830
2.13 0.9834 2.14 0.9838 2.15 0.9842 2.16 0.9846
2.17 0.9850 2.18 0.9854 2.19 0.9857 2.20 0.9861
2.21 0.9864 2.22 0.9868 2.23 0.9871 2.24 0.9875
2.25 0.9878 2.26 0.9881 2.27 0.9884 2.28 0.9887
2.29 0.9890 2.30 0.9893 2.31 0.9896 2.32 0.9898
2.33 0.9901 2.34 0.9904 2.35 0.9906 2.36 0.9909
2.37 0.9911 2.38 0.9913 2.39 0.9916 2.40 0.9918
2.41 0.9920 2.42 0.9922 2.43 0.9925 2.44 0.9927
2.45 0.9929 2.46 0.9931 2.47 0.9932 2.48 0.9934
2.49 0.9936 2.50 0.9938 2.51 0.9940 2.52 0.9941
2.53 0.9943 2.54 0.9945 2.55 0.9946 2.56 0.9948
2.57 0.9949 2.58 0.9951 2.59 0.9952 2.60 0.9953
2.61 0.9955 2.62 0.9956 2.63 0.9957 2.64 0.9959
2.65 0.9960 2.66 0.9961 2.67 0.9962 2.68 0.9963
2.69 0.9964 2.70 0.9965 2.71 0.9966 2.72 0.9967
2.73 0.9968 2.74 0.9969 2.75 0.9970 2.76 0.9971
2.77 0.9972 2.78 0.9973 2.79 0.9974 2.80 0.9974
2.81 0.9975 2.82 0.9976 2.83 0.9977 2.84 0.9977
2.85 0.9978 2.86 0.9979 2.87 0.9979 2.88 0.9980
2.89 0.9981 2.90 0.9981 2.91 0.9982 2.92 0.9982
2.93 0.9983 2.94 0.9984 2.95 0.9984 2.96 0.9985
2.97 0.9985 2.98 0.9986 2.99 0.9986 3.00 0.9987

Note: This table was computed with IMSL subroutine ANORIN.
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Table 2 Binomial probability function (values of entries are P(X ≤ k))

n = 5

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.774 0.590 0.328 0.168 0.078 0.031 0.010 0.002 0.000 0.000 0.000
1 0.977 0.919 0.737 0.528 0.337 0.188 0.087 0.031 0.007 0.000 0.000
2 0.999 0.991 0.942 0.837 0.683 0.500 0.317 0.163 0.058 0.009 0.001
3 1.000 1.000 0.993 0.969 0.913 0.813 0.663 0.472 0.263 0.081 0.023
4 1.000 1.000 1.000 0.998 0.990 0.969 0.922 0.832 0.672 0.410 0.226

n = 6

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.735 0.531 0.262 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000
1 0.967 0.886 0.655 0.420 0.233 0.109 0.041 0.011 0.002 0.000 0.000
2 0.998 0.984 0.901 0.744 0.544 0.344 0.179 0.070 0.017 0.001 0.000
3 1.000 0.999 0.983 0.930 0.821 0.656 0.456 0.256 0.099 0.016 0.002
4 1.000 1.000 0.998 0.989 0.959 0.891 0.767 0.580 0.345 0.114 0.033
5 1.000 1.000 1.000 0.999 0.996 0.984 0.953 0.882 0.738 0.469 0.265

n = 7

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.698 0.478 0.210 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000
1 0.956 0.850 0.577 0.329 0.159 0.062 0.019 0.004 0.000 0.000 0.000
2 0.996 0.974 0.852 0.647 0.420 0.227 0.096 0.029 0.005 0.000 0.000
3 1.000 0.997 0.967 0.874 0.710 0.500 0.290 0.126 0.033 0.003 0.000
4 1.000 1.000 0.995 0.971 0.904 0.773 0.580 0.353 0.148 0.026 0.004
5 1.000 1.000 1.000 0.996 0.981 0.938 0.841 0.671 0.423 0.150 0.044
6 1.000 1.000 1.000 1.000 0.998 0.992 0.972 0.918 0.790 0.522 0.302

n = 8

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.663 0.430 0.168 0.058 0.017 0.004 0.001 0.000 0.000 0.000 0.000
1 0.943 0.813 0.503 0.255 0.106 0.035 0.009 0.001 0.000 0.000 0.000
2 0.994 0.962 0.797 0.552 0.315 0.145 0.050 0.011 0.001 0.000 0.000
3 1.000 0.995 0.944 0.806 0.594 0.363 0.174 0.058 0.010 0.000 0.000
4 1.000 1.000 0.990 0.942 0.826 0.637 0.406 0.194 0.056 0.005 0.000
5 1.000 1.000 0.999 0.989 0.950 0.855 0.685 0.448 0.203 0.038 0.006
6 1.000 1.000 1.000 0.999 0.991 0.965 0.894 0.745 0.497 0.187 0.057
7 1.000 1.000 1.000 1.000 0.999 0.996 0.983 0.942 0.832 0.570 0.337
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n = 9

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.630 0.387 0.134 0.040 0.010 0.002 0.000 0.000 0.000 0.000 0.000
1 0.929 0.775 0.436 0.196 0.071 0.020 0.004 0.000 0.000 0.000 0.000
2 0.992 0.947 0.738 0.463 0.232 0.090 0.025 0.004 0.000 0.000 0.000
3 0.999 0.992 0.914 0.730 0.483 0.254 0.099 0.025 0.003 0.000 0.000
4 1.000 0.999 0.980 0.901 0.733 0.500 0.267 0.099 0.020 0.001 0.000
5 1.000 1.000 0.997 0.975 0.901 0.746 0.517 0.270 0.086 0.008 0.001
6 1.000 1.000 1.000 0.996 0.975 0.910 0.768 0.537 0.262 0.053 0.008
7 1.000 1.000 1.000 1.000 0.996 0.980 0.929 0.804 0.564 0.225 0.071
8 1.000 1.000 1.000 1.000 1.000 0.998 0.990 0.960 0.866 0.613 0.370

n = 10

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.599 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 0.000
1 0.914 0.736 0.376 0.149 0.046 0.011 0.002 0.000 0.000 0.000 0.000
2 0.988 0.930 0.678 0.383 0.167 0.055 0.012 0.002 0.000 0.000 0.000
3 0.999 0.987 0.879 0.650 0.382 0.172 0.055 0.011 0.001 0.000 0.000
4 1.000 0.998 0.967 0.850 0.633 0.377 0.166 0.047 0.006 0.000 0.000
5 1.000 1.000 0.994 0.953 0.834 0.623 0.367 0.150 0.033 0.002 0.000
6 1.000 1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013 0.001
7 1.000 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070 0.012
8 1.000 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264 0.086
9 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651 0.401

n = 15

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.463 0.206 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.829 0.549 0.167 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000
2 0.964 0.816 0.398 0.127 0.027 0.004 0.000 0.000 0.000 0.000 0.000
3 0.995 0.944 0.648 0.297 0.091 0.018 0.002 0.000 0.000 0.000 0.000
4 0.999 0.987 0.836 0.515 0.217 0.059 0.009 0.001 0.000 0.000 0.000
5 1.000 0.998 0.939 0.722 0.403 0.151 0.034 0.004 0.000 0.000 0.000
6 1.000 1.000 0.982 0.869 0.610 0.304 0.095 0.015 0.001 0.000 0.000
7 1.000 1.000 0.996 0.950 0.787 0.500 0.213 0.050 0.004 0.000 0.000
8 1.000 1.000 0.999 0.985 0.905 0.696 0.390 0.131 0.018 0.000 0.000
9 1.000 1.000 1.000 0.996 0.966 0.849 0.597 0.278 0.061 0.002 0.000

10 1.000 1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.164 0.013 0.001
11 1.000 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056 0.005
12 1.000 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184 0.036
13 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451 0.171
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794 0.537
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n = 20

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.358 0.122 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.736 0.392 0.069 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2 0.925 0.677 0.206 0.035 0.004 0.000 0.000 0.000 0.000 0.000 0.000
3 0.984 0.867 0.411 0.107 0.016 0.001 0.000 0.000 0.000 0.000 0.000
4 0.997 0.957 0.630 0.238 0.051 0.006 0.000 0.000 0.000 0.000 0.000
5 1.000 0.989 0.804 0.416 0.126 0.021 0.002 0.000 0.000 0.000 0.000
6 1.000 0.998 0.913 0.608 0.250 0.058 0.006 0.000 0.000 0.000 0.000
7 1.000 1.000 0.968 0.772 0.416 0.132 0.021 0.001 0.000 0.000 0.000
8 1.000 1.000 0.990 0.887 0.596 0.252 0.057 0.005 0.000 0.000 0.000
9 1.000 1.000 0.997 0.952 0.755 0.412 0.128 0.017 0.001 0.000 0.000

10 1.000 1.000 0.999 0.983 0.872 0.588 0.245 0.048 0.003 0.000 0.000
11 1.000 1.000 1.000 0.995 0.943 0.748 0.404 0.113 0.010 0.000 0.000
12 1.000 1.000 1.000 0.999 0.979 0.868 0.584 0.228 0.032 0.000 0.000
13 1.000 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.087 0.002 0.000
14 1.000 1.000 1.000 1.000 0.998 0.979 0.874 0.584 0.196 0.011 0.000
15 1.000 1.000 1.000 1.000 1.000 0.994 0.949 0.762 0.370 0.043 0.003
16 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.589 0.133 0.016
17 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.794 0.323 0.075
18 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.931 0.608 0.264
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.878 0.642

n = 25

p

k .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

0 0.277 0.072 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.642 0.271 0.027 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.873 0.537 0.098 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.966 0.764 0.234 0.033 0.002 0.000 0.000 0.000 0.000 0.000 0.000
4 0.993 0.902 0.421 0.090 0.009 0.000 0.000 0.000 0.000 0.000 0.000
5 0.999 0.967 0.617 0.193 0.029 0.002 0.000 0.000 0.000 0.000 0.000
6 1.000 0.991 0.780 0.341 0.074 0.007 0.000 0.000 0.000 0.000 0.000
7 1.000 0.998 0.891 0.512 0.154 0.022 0.001 0.000 0.000 0.000 0.000
8 1.000 1.000 0.953 0.677 0.274 0.054 0.004 0.000 0.000 0.000 0.000
9 1.000 1.000 0.983 0.811 0.425 0.115 0.013 0.000 0.000 0.000 0.000

10 1.000 1.000 0.994 0.902 0.586 0.212 0.034 0.002 0.000 0.000 0.000
11 1.000 1.000 0.998 0.956 0.732 0.345 0.078 0.006 0.000 0.000 0.000
12 1.000 1.000 1.000 0.983 0.846 0.500 0.154 0.017 0.000 0.000 0.000
13 1.000 1.000 1.000 0.994 0.922 0.655 0.268 0.044 0.002 0.000 0.000
14 1.000 1.000 1.000 0.998 0.966 0.788 0.414 0.098 0.006 0.000 0.000
15 1.000 1.000 1.000 1.000 0.987 0.885 0.575 0.189 0.017 0.000 0.000
16 1.000 1.000 1.000 1.000 0.996 0.946 0.726 0.323 0.047 0.000 0.000
17 1.000 1.000 1.000 1.000 0.999 0.978 0.846 0.488 0.109 0.002 0.000
18 1.000 1.000 1.000 1.000 1.000 0.993 0.926 0.659 0.220 0.009 0.000
19 1.000 1.000 1.000 1.000 1.000 0.998 0.971 0.807 0.383 0.033 0.001
20 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.910 0.579 0.098 0.007
21 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.967 0.766 0.236 0.034
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.902 0.463 0.127
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.973 0.729 0.358
24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.928 0.723
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Table 3 Percentage points of the Chi-square distribution

ν χ2
.005 χ2

.01 χ2
.025 χ2

.05 χ2
.10

1 0.0000393 0.0001571 0.0009821 0.0039321 0.0157908
2 0.0100251 0.0201007 0.0506357 0.1025866 0.2107213
3 0.0717217 0.1148317 0.2157952 0.3518462 0.5843744
4 0.2069889 0.2971095 0.4844186 0.7107224 1.0636234
5 0.4117419 0.5542979 0.8312111 1.1454763 1.6103077
6 0.6757274 0.8720903 1.2373447 1.6353836 2.2041321
7 0.9892554 1.2390423 1.6898699 2.1673594 2.8331099
8 1.3444128 1.6464968 2.1797333 2.7326374 3.4895401
9 1.7349329 2.0879011 2.7003908 3.3251143 4.1681604

10 2.1558590 2.5582132 3.2469759 3.9403019 4.8651857
11 2.6032248 3.0534868 3.8157606 4.5748196 5.5777788
12 3.0738316 3.5705872 4.4037895 5.2260313 6.3037949
13 3.5650368 4.1069279 5.0087538 5.8918715 7.0415068
14 4.0746784 4.6604300 5.6287327 6.5706167 7.7895403
15 4.6009169 5.2293501 6.2621403 7.2609539 8.5467529
16 5.1422071 5.8122101 6.9076681 7.9616566 9.3122330
17 5.6972256 6.4077673 7.5641880 8.6717682 10.0851974
18 6.2648115 7.0149183 8.2307510 9.3904572 10.8649368
19 6.8439512 7.6327391 8.9065247 10.1170273 11.6509628
20 7.4338474 8.2603989 9.5907822 10.8508148 12.4426041
21 8.0336685 8.8972015 10.2829285 11.5913391 13.2396393
22 8.6427155 9.5425110 10.9823456 12.3380432 14.0414886
23 9.2604370 10.1957169 11.6885223 13.0905151 14.8479385
24 9.8862610 10.8563690 12.4011765 13.8484344 15.6587067
25 10.5196533 11.5239716 13.1197433 14.6114349 16.4734497
26 11.1602631 12.1981506 13.8439331 15.3792038 17.2919159
27 11.8076019 12.8785095 14.5734024 16.1513977 18.1138763
28 12.4613495 13.5647125 15.3078613 16.9278717 18.9392395
29 13.1211624 14.2564697 16.0470886 17.7083893 19.7678223
30 13.7867584 14.9534760 16.7907562 18.4926147 20.5992126
40 20.7065582 22.1642761 24.4330750 26.5083008 29.0503540
50 27.9775238 29.7001038 32.3561096 34.7638702 37.6881561
60 35.5294037 37.4848328 40.4817810 43.1865082 46.4583282
70 43.2462311 45.4230499 48.7503967 51.7388763 55.3331146
80 51.1447754 53.5226593 57.1465912 60.3912201 64.2818604
90 59.1706543 61.7376862 65.6405029 69.1258850 73.2949219

100 67.3031921 70.0493622 74.2162018 77.9293976 82.3618469
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Table 3 (continued)

ν χ2
.900 χ2

.95 χ2
.975 χ2

.99 χ2
.995

1 2.7056 3.8415 5.0240 6.6353 7.8818
2 4.6052 5.9916 7.3779 9.2117 10.5987
3 6.2514 7.8148 9.3486 11.3465 12.8409
4 7.7795 9.4879 11.1435 13.2786 14.8643
5 9.2365 11.0707 12.8328 15.0870 16.7534
6 10.6448 12.5919 14.4499 16.8127 18.5490
7 12.0171 14.0676 16.0136 18.4765 20.2803
8 13.3617 15.5075 17.5355 20.0924 21.9579
9 14.6838 16.9191 19.0232 21.6686 23.5938

10 15.9874 18.3075 20.4837 23.2101 25.1898
11 17.2750 19.6754 21.9211 24.7265 26.7568
12 18.5494 21.0263 23.3370 26.2170 28.2995
13 19.8122 22.3627 24.7371 27.6882 29.8194
14 21.0646 23.6862 26.1189 29.1412 31.3193
15 22.3077 24.9970 27.4883 30.5779 32.8013
16 23.5421 26.2961 28.8453 31.9999 34.2672
17 24.7696 27.5871 30.1909 33.4087 35.7184
18 25.9903 28.8692 31.5264 34.8054 37.1564
19 27.2035 30.1434 32.8523 36.1909 38.5823
20 28.4120 31.4104 34.1696 37.5662 39.9968
21 29.6150 32.6705 35.4787 38.9323 41.4012
22 30.8133 33.9244 36.7806 40.2893 42.7958
23 32.0069 35.1725 38.0757 41.6384 44.1812
24 33.1962 36.4151 39.3639 42.9799 45.5587
25 34.3815 37.6525 40.6463 44.3142 46.9280
26 35.5631 38.8852 41.9229 45.6418 48.2899
27 36.7412 40.1134 43.1943 46.9629 49.6449
28 37.9159 41.3371 44.4608 48.2784 50.9933
29 39.0874 42.5571 45.7223 49.5879 52.3357
30 40.2561 43.7730 46.9792 50.8922 53.6721
40 51.8050 55.7586 59.3417 63.6909 66.7660
50 63.1670 67.5047 71.4201 76.1538 79.4899
60 74.3970 79.0820 83.2977 88.3794 91.9516
70 85.5211 90.5283 95.0263 100.4409 104.2434
80 96.5723 101.8770 106.6315 112.3434 116.3484
90 107.5600 113.1425 118.1392 124.1304 128.3245

100 118.4932 124.3395 129.5638 135.8203 140.1940

Note: This table was computed with IMSL subroutine CHIIN.



308 APPENDIX B: TABLES

Table 4 Percentage points of Student’s t-distribution

ν t.9 t.95 t.975 t.99 t.995 t.999

1 3.078 6.314 12.706 31.821 63.6567 318.313
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.183 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.856 2.306 2.897 3.355 4.501
9 1.383 1.833 2.262 2.821 3.245 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144
11 1.363 1.796 2.201 2.718 3.106 4.025
12 1.356 1.782 2.179 2.681 3.055 3.930
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.976 3.787
15 1.341 1.753 2.131 2.603 2.947 3.733
16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.610
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.552
20 1.325 1.725 2.086 2.528 2.845 3.552
24 1.318 1.711 2.064 2.492 2.797 3.467
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
60 1.296 1.671 2.000 2.390 2.660 3.232

120 1.289 1.658 1.980 2.358 2.617 3.160
∞ 1.282 1.645 1.960 2.326 2.576 3.090

Entries were computed with IMSL subroutine TIN.
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Table 5 Percentage points of the F distribution, α = .10

ν1

ν2 1 2 3 4 5 6 7 8 9

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
7 3.59 3.26 3.07 2.96 2.88 2.83 2.79 2.75 2.72
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 .167 1.63

Continued
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Table 5 (continued)

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 60.19 60.70 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33
2 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
3 5.23 5.22 5.20 5.19 5.18 5.17 5.16 5.15 5.14 5.13
4 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76
5 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10
6 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
7 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47
8 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
9 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

11 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97
12 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90
13 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85
14 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80
15 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76
16 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72
17 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69
18 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
19 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63
20 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59
22 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
23 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
24 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53
25 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52
26 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50
27 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49
28 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48
29 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47
30 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46
40 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
60 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19
∞ 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.
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Table 6 Percentage points of the F distribution, α = .05

ν1

ν2 1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

Continued
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Table 6 Percentage points of the F distribution, α = .05 (continued)

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 241.88 243.91 245.96 248.00 249.04 250.08 251.14 252.19 253.24 254.3
2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 5.97 5.91 5.86 5.80 5.77 5.74 5.72 5.69 5.66 5.63
5 4.73 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.00 2.97 2.93
9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.86 1.81 1.76
24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.
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Table 7 Percentage points of the F distribution, α = .025

ν1

ν2 1 2 3 4 5 6 7 8 9

1 647.79 799.50 864.16 899.59 921.85 937.11 948.22 956.66 963.28
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39
3 17.44 16.04 15.44 15.10 14.88 14.74 14.63 14.54 14.47
4 12.22 10.65 9.98 9.61 9.36 9.20 9.07 8.98 8.90
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52
7 8.07 6.54 5.89 5.52 5.29 5.12 5.00 4.90 4.82
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22
∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11

Continued
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Table 7 Percentage points of the F distribution, α = .025 (continued)

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 968.62 976.71 984.89 993.04 997.20 1,001 1,006 1,010 1,014 1,018
2 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50
3 14.42 14.33 14.26 14.17 14.13 14.08 14.04 13.99 13.95 13.90
4 8.85 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26
5 6.62 6.53 6.43 6.33 6.28 6.23 6.17 6.12 6.07 6.02
6 5.46 5.37 5.27 5.17 5.12 5.06 5.01 4.96 4.90 4.85
7 4.76 4.67 4.57 4.47 4.41 4.36 4.31 4.25 4.20 4.14
8 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67
9 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08

11 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88
12 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72
13 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60
14 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49
15 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40
16 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32
17 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25
18 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19
19 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13
20 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09

21 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04
22 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00
23 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97
24 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94
25 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91
26 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88
27 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85
28 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83
29 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81
30 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79
40 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64
60 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 2.16 2.05 1.95 1.82 1.76 1.69 1.61 1.53 1.43 1.31
∞ 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.
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Table 8 Percentage points of the F distribution, α = .01

ν1

ν2 1 2 3 4 5 6 7 8 9

1 4,052 4,999 5,403 5,625 5,764 5,859 5,928 5,982 6,022
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.50 27.34
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41

Continued
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Table 8 Percentage points of the F distribution, α = .01 (continued)

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞
1 6,056 6,106 6,157 6,209 6,235 6,261 6,287 6,313 6,339 6,366
2 99.40 99.42 99.43 99.45 99.46 99.46 99.47 99.48 99.49 99.50
3 27.22 27.03 26.85 26.67 26.60 26.50 26.41 26.32 26.22 26.13
4 14.55 14.37 14.19 14.02 13.94 13.84 13.75 13.65 13.56 13.46
5 10.05 9.89 9.72 9.55 9.46 9.38 9.30 9.20 9.11 9.02
6 7.87 7.72 7.56 7.40 7.31 7.23 7.15 7.06 6.97 6.88
7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Note: Entries in this table were computed with IMSL subroutine FIN.



APPENDIX B: TABLES 317

Table 9 Studentized range statistic, q, for α = .05

J (number of groups)

ν 2 3 4 5 6 7 8 9 10 11

3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03
5 3.64 4.60 5.22 5.68 6.04 6.33 6.59 6.81 6.99 7.17
6 3.47 4.34 4.89 5.31 5.63 5.89 6.13 6.32 6.49 6.65
7 3.35 4.17 4.69 5.07 5.36 5.61 5.82 5.99 6.16 6.30
8 3.27 4.05 4.53 4.89 5.17 5.39 5.59 5.77 5.92 6.06
9 3.19 3.95 4.42 4.76 5.03 5.25 5.44 5.59 5.74 5.87

10 3.16 3.88 4.33 4.66 4.92 5.13 5.31 5.47 5.59 5.73
11 3.12 3.82 4.26 4.58 4.83 5.03 5.21 5.36 5.49 5.61
12 3.09 3.78 4.19 4.51 4.76 4.95 5.12 5.27 5.39 5.52
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21
18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 5.17
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.93 5.04 5.14
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
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Table 9 Studentized range statistic, q, for α = .01

J (number of groups)

ν 2 3 4 5 6 7 8 9 10 11

2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6
3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.8
4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.6
5 5.71 6.98 7.81 8.43 8.92 9.33 9.67 9.98 10.24 10.48
6 5.25 6.34 7.04 7.56 7.98 8.32 8.62 8.87 9.09 9.30
7 4.95 5.92 6.55 7.01 7.38 7.68 7.94 8.17 8.37 8.55
8 4.75 5.64 6.21 6.63 6.96 7.24 7.48 7.69 7.87 8.03
9 4.59 5.43 5.96 6.35 6.66 6.92 7.14 7.33 7.49 7.65

10 4.49 5.28 5.77 6.14 6.43 6.67 6.88 7.06 7.22 7.36
11 4.39 5.15 5.63 5.98 6.25 6.48 6.68 6.85 6.99 7.13
12 4.32 5.05 5.51 5.84 6.11 6.33 6.51 6.67 6.82 6.94
13 4.26 4.97 5.41 5.73 5.99 6.19 6.38 6.53 6.67 6.79
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19
24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85
40 3.82 4.37 4.69 4.93 5.10 5.26 5.39 5.49 5.60 5.69
60 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23

Note: The values in this table were computed with the IBM SSP subroutines DQH32 and DQG32
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Table 10 Studentized maximum modulus distribution

C (the number of tests being performed)

ν α 2 3 4 5 6 7 8 9 10

2 .05 5.57 6.34 6.89 7.31 7.65 7.93 8.17 8.83 8.57
.01 12.73 14.44 15.65 16.59 17.35 17.99 18.53 19.01 19.43

3 .05 3.96 4.43 4.76 5.02 5.23 5.41 5.56 5.69 5.81
.01 7.13 7.91 8.48 8.92 9.28 9.58 9.84 10.06 10.27

4 .05 3.38 3.74 4.01 4.20 4.37 4.50 4.62 4.72 4.82
.01 5.46 5.99 6.36 6.66 6.89 7.09 7.27 7.43 7.57

5 .05 3.09 3.39 3.62 3.79 3.93 4.04 4.14 4.23 4.31
.01 4.70 5.11 5.39 5.63 5.81 5.97 6.11 6.23 6.33

6 .05 2.92 3.19 3.39 3.54 3.66 3.77 3.86 3.94 4.01
.01 4.27 4.61 4.85 5.05 5.20 5.33 5.45 5.55 5.64

7 .05 2.80 3.06 3.24 3.38 3.49 3.59 3.67 3.74 3.80
.01 3.99 4.29 4.51 4.68 4.81 4.93 5.03 5.12 5.19

8 .05 2.72 2.96 3.13 3.26 3.36 3.45 3.53 3.60 3.66
.01 3.81 4.08 4.27 4.42 4.55 4.65 4.74 4.82 4.89

9 .05 2.66 2.89 3.05 3.17 3.27 3.36 3.43 3.49 3.55
.01 3.67 3.92 4.10 4.24 4.35 4.45 4.53 4.61 4.67

10 .05 2.61 2.83 2.98 3.10 3.19 3.28 3.35 3.41 3.47
.01 3.57 3.80 3.97 4.09 4.20 4.29 4.37 4.44 4.50

11 .05 2.57 2.78 2.93 3.05 3.14 3.22 3.29 3.35 3.40
.01 3.48 3.71 3.87 3.99 4.09 4.17 4.25 4.31 4.37

12 .05 2.54 2.75 2.89 3.01 3.09 3.17 3.24 3.29 3.35
.01 3.42 3.63 3.78 3.89 3.99 4.08 4.15 4.21 4.26

14 .05 2.49 2.69 2.83 2.94 3.02 3.09 3.16 3.21 3.26
.01 3.32 3.52 3.66 3.77 3.85 3.93 3.99 4.05 4.10

16 .05 2.46 2.65 2.78 2.89 2.97 3.04 3.09 3.15 3.19
.01 3.25 3.43 3.57 3.67 3.75 3.82 3.88 3.94 3.99

18 .05 2.43 2.62 2.75 2.85 2.93 2.99 3.05 3.11 3.15
.01 3.19 3.37 3.49 3.59 3.68 3.74 3.80 3.85 3.89

20 .05 2.41 2.59 2.72 2.82 2.89 2.96 3.02 3.07 3.11
.01 3.15 3.32 3.45 3.54 3.62 3.68 3.74 3.79 3.83

24 .05 2.38 2.56 2.68 2.77 2.85 2.91 2.97 3.02 3.06
.01 3.09 3.25 3.37 3.46 3.53 3.59 3.64 3.69 3.73

30 .05 2.35 2.52 2.64 2.73 2.80 2.87 2.92 2.96 3.01
.01 3.03 3.18 3.29 3.38 3.45 3.50 3.55 3.59 3.64

40 .05 2.32 2.49 2.60 2.69 2.76 2.82 2.87 2.91 2.95
.01 2.97 3.12 3.22 3.30 3.37 3.42 3.47 3.51 3.55

60 .05 2.29 2.45 2.56 2.65 2.72 2.77 2.82 2.86 2.90
.01 2.91 3.06 3.15 3.23 3.29 3.34 3.38 3.42 3.46

∞ .05 2.24 2.39 2.49 2.57 2.63 2.68 2.73 2.77 2.79
.01 2.81 2.93 3.02 3.09 3.14 3.19 3.23 3.26 3.29

Continued
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Table 10 Studentized maximum modulus distribution (continued)

ν α 11 12 13 14 15 16 17 18 19

2 .05 8.74 8.89 9.03 9.16 9.28 9.39 9.49 9.59 9.68
.01 19.81 20.15 20.46 20.75 20.99 20.99 20.99 20.99 20.99

3 .05 5.92 6.01 6.10 6.18 6.26 6.33 6.39 6.45 6.51
.01 10.45 10.61 10.76 10.90 11.03 11.15 11.26 11.37 11.47

4 .05 4.89 4.97 5.04 5.11 5.17 5.22 5.27 5.32 5.37
.01 7.69 7.80 7.91 8.01 8.09 8.17 8.25 8.32 8.39

5 .05 4.38 4.45 4.51 4.56 4.61 4.66 4.70 4.74 4.78
.01 6.43 6.52 6.59 6.67 6.74 6.81 6.87 6.93 6.98

6 .05 4.07 4.13 4.18 4.23 4.28 4.32 4.36 4.39 4.43
.01 5.72 5.79 5.86 5.93 5.99 6.04 6.09 6.14 6.18

7 .05 3.86 3.92 3.96 4.01 4.05 4.09 4.13 4.16 4.19
.01 5.27 5.33 5.39 5.45 5.50 5.55 5.59 5.64 5.68

8 .05 3.71 3.76 3.81 3.85 3.89 3.93 3.96 3.99 4.02
.01 4.96 5.02 5.07 5.12 5.17 5.21 5.25 5.29 5.33

9 .05 3.60 3.65 3.69 3.73 3.77 3.80 3.84 3.87 3.89
.01 4.73 4.79 4.84 4.88 4.92 4.96 5.01 5.04 5.07

10 .05 3.52 3.56 3.60 3.64 3.68 3.71 3.74 3.77 3.79
.01 4.56 4.61 4.66 4.69 4.74 4.78 4.81 4.84 4.88

11 .05 3.45 3.49 3.53 3.57 3.60 3.63 3.66 3.69 3.72
.01 4.42 4.47 4.51 4.55 4.59 4.63 4.66 4.69 4.72

12 .05 3.39 3.43 3.47 3.51 3.54 3.57 3.60 3.63 3.65
.01 4.31 4.36 4.40 4.44 4.48 4.51 4.54 4.57 4.59

14 .05 3.30 3.34 3.38 3.41 3.45 3.48 3.50 3.53 3.55
.01 4.15 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.41

16 .05 3.24 3.28 3.31 3.35 3.38 3.40 3.43 3.46 3.48
.01 4.03 4.07 4.11 4.14 4.17 4.19 4.23 4.25 4.28

18 .05 3.19 3.23 3.26 3.29 3.32 3.35 3.38 3.40 3.42
.01 3.94 3.98 4.01 4.04 4.07 4.10 4.13 4.15 4.18

20 .05 3.15 3.19 3.22 3.25 3.28 3.31 3.33 3.36 3.38
.01 3.87 3.91 3.94 3.97 3.99 4.03 4.05 4.07 4.09

24 .05 3.09 3.13 3.16 3.19 3.22 3.25 3.27 3.29 3.31
.01 3.77 3.80 3.83 3.86 3.89 3.91 3.94 3.96 3.98

30 .05 3.04 3.07 3.11 3.13 3.16 3.18 3.21 3.23 3.25
.01 3.67 3.70 3.73 3.76 3.78 3.81 3.83 3.85 3.87

40 .05 2.99 3.02 3.05 3.08 3.09 3.12 3.14 3.17 3.18
.01 3.58 3.61 3.64 3.66 3.68 3.71 3.73 3.75 3.76

60 .05 2.93 2.96 2.99 3.02 3.04 3.06 3.08 3.10 3.12
.01 3.49 3.51 3.54 3.56 3.59 3.61 3.63 3.64 3.66

∞ .05 2.83 2.86 2.88 2.91 2.93 2.95 2.97 2.98 3.01
.01 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.45 3.47



APPENDIX B: TABLES 321

Table 10 Studentized maximum modulus distribution (continued)

ν α 20 21 22 23 24 25 26 27 28

2 .05 9.77 9.85 9.92 10.00 10.07 10.13 10.20 10.26 10.32
.01 22.11 22.29 22.46 22.63 22.78 22.93 23.08 23.21 23.35

3 .05 6.57 6.62 6.67 6.71 6.76 6.80 6.84 6.88 6.92
.01 11.56 11.65 11.74 11.82 11.89 11.97 12.07 12.11 12.17

4 .05 5.41 5.45 5.49 5.52 5.56 5.59 5.63 5.66 5.69
.01 8.45 8.51 8.57 8.63 8.68 8.73 8.78 8.83 8.87

5 .05 4.82 4.85 4.89 4.92 4.95 4.98 5.00 5.03 5.06
.01 7.03 7.08 7.13 7.17 7.21 7.25 7.29 7.33 7.36

6 .05 4.46 4.49 4.52 4.55 4.58 4.60 4.63 4.65 4.68
.01 6.23 6.27 6.31 6.34 6.38 6.41 6.45 6.48 6.51

7 .05 4.22 4.25 4.28 4.31 4.33 4.35 4.38 4.39 4.42
.01 5.72 5.75 5.79 5.82 5.85 5.88 5.91 5.94 5.96

8 .05 4.05 4.08 4.10 4.13 4.15 4.18 4.19 4.22 4.24
.01 5.36 5.39 5.43 5.45 5.48 5.51 5.54 5.56 5.59

9 .05 3.92 3.95 3.97 3.99 4.02 4.04 4.06 4.08 4.09
.01 5.10 5.13 5.16 5.19 5.21 5.24 5.26 5.29 5.31

10 .05 3.82 3.85 3.87 3.89 3.91 3.94 3.95 3.97 3.99
.01 4.91 4.93 4.96 4.99 5.01 5.03 5.06 5.08 5.09

11 .05 3.74 3.77 3.79 3.81 3.83 3.85 3.87 3.89 3.91
.01 4.75 4.78 4.80 4.83 4.85 4.87 4.89 4.91 4.93

12 .05 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.83
.01 4.62 4.65 4.67 4.69 4.72 4.74 4.76 4.78 4.79

14 .05 3.58 3.59 3.62 3.64 3.66 3.68 3.69 3.71 3.73
.01 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.59

16 .05 3.50 3.52 3.54 3.56 3.58 3.59 3.61 3.63 3.64
.01 4.29 4.32 4.34 4.36 4.38 4.39 4.42 4.43 4.45

18 .05 3.44 3.46 3.48 3.50 3.52 3.54 3.55 3.57 3.58
.01 4.19 4.22 4.24 4.26 4.28 4.29 4.31 4.33 4.34

20 .05 3.39 3.42 3.44 3.46 3.47 3.49 3.50 3.52 3.53
.01 4.12 4.14 4.16 4.17 4.19 4.21 4.22 4.24 4.25

24 .05 3.33 3.35 3.37 3.39 3.40 3.42 3.43 3.45 3.46
.01 4.00 4.02 4.04 4.05 4.07 4.09 4.10 4.12 4.13

30 .05 3.27 3.29 3.30 3.32 3.33 3.35 3.36 3.37 3.39
.01 3.89 3.91 3.92 3.94 3.95 3.97 3.98 4.00 4.01

40 .05 3.20 3.22 3.24 3.25 3.27 3.28 3.29 3.31 3.32
.01 3.78 3.80 3.81 3.83 3.84 3.85 3.87 3.88 3.89

60 .05 3.14 3.16 3.17 3.19 3.20 3.21 3.23 3.24 3.25
.01 3.68 3.69 3.71 3.72 3.73 3.75 3.76 3.77 3.78

∞ .05 3.02 3.03 3.04 3.06 3.07 3.08 3.09 3.11 3.12
.01 3.48 3.49 3.50 3.52 3.53 3.54 3.55 3.56 3.57

Note: This table was computed using the FORTRAN program described in Wilcox (1986b).
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adjacent values, 42

Agresti-Coull method, 118, 266

binomial:

and normality, 64

comparing two, 197–199

mean, 59

probability function, 57

variance, 59

Blyth’s method, 119

Bonferroni method, 248

bootstrap-t, 126

bootstrap sample, 128

boundaries, 35

boxplot rule, see outlier

Brunner-Dette-Munk method, 289

Brunner-Munzel method, 287

central limit theorem:

and binomial, 86

and mean, 85

and median, 95

central tendency, 9

chi-squared distribution, 255, 257

class interval, 35

class mark, 35

coefficient of determination, 172

Cohen’s d, 197

confidence coefficient, 105

confidence interval:

for the intercept, 166

for the mean, 105, 111

for the median, 114, 116

for the probability of success, 117, 119

for the slope, 166

versus hypothesis testing, 140

confidence level, 105

contingency table, 53, 254

correlation:

multiple correlation, 170

Pearson, 172–176

critical region, 134

cross-product ratio, 269

cumulative relative frequency distribution, 33

degrees of freedom, 109

dependence, 54

dependent variable, 169

description, 5, 6

design, 5

deviation scores, 20

dispersion, 9

Dunnett’s T3 method, 239

effect size, 141, 196–197

empirical distribution, 31

empirical cumulative distribution function, 33

error bars, 207

estimator, 50, 82

EXCEL software, 8

expected value, 49

experimentwise error rate, 233

explanatory variables, 169

F distribution, 170, 212

factorial, 57

five number summary, 18

frequency, 31

familywise error rate, 233

Friedman’s test, 289

Games-Howell method, 240

grand mean, 211
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histogram, 34

practical concerns, 38

heavy-tailed distribution, 71

homogeneity of variance, 185, 211

homoscedasticity, 160

heteroscedasticity, 160, 211

ideal fourths, 17

independence, 54, 176, 262

index of summation, 10

inference, 5, 6

interaction, 225, 245

interquartile range, 22

Kendall’s tau, 283

kernel density estimator, 44

Kolmogorov-Smirnov test, 275

Kruskall-Wallis test, 277

leaf, 41

least absolute value, 156

least significant difference, 233

least squares, 154, 157

levels, 223

linear contrast, 243

location, see measure of location

logistic regression, 270

main effect, 225

marginal means, 226

marginal probability, 267

masking, 23

McKean-Schrader estimate, 93

McNemar’s test, 262

mean:

confidence interval, see confidence

interval

defined, 16

grand, see grand mean

population, 6, 49

resistance, 16

sample, 6, 11, 31

trimmed, 26

Winsorized, 28

Also see Student’s t and paired t test.

mean squares between groups, 211

mean squares interaction, 228

mean squares within groups, 211, 228

measure of location:

median:

comparing two dependent medians, 203

comparing two independent medians,

194–195, 206, 241

computation of, 15

confidence interval for, see confidence

interval

population, 67

sample, 14

testing hypotheses, 145, 149, 203

also see trimmed mean

midpoint, 35

midrank, 275

Minitab software, 8

mixed normal, see normal distribution

mode, 31

mutually exclusive, 47

normal distribution:

contaminated, 71

defined, 62

mixed, 71

null hypothesis, 131

odds, 267

odds ratio, 268

One-way contingency tables, 254

One-way design, 223

outlier:

boxplot rule for, 24

classic method of detection, 23

defined, 13

and comparing means, 193

and sample variance, 21

p-values:

defined, 135

interpreting, 136, 141

paired t test, 202

percentile bootstrap, 128, 206

permutation method, 194

phi coefficient, 265

population, defined, 4

population parameter, 50

population variance, see variance

power:

and sample size, 140

computing, 138

defined, 137
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product rule, 55

population mean, see mean

probability:

conditional, 52

coverage, 105

defined, 46

marginal, 63

of agreement, 265–26

probability function, 47, 48

probability density function, 61

quartiles:

defined, 17

lower, 18

upper, 18

R software, 7

random sample, 78

random variable, 47

continuous, 47

discrete, 47

range, 19

ranks, 272

relative frequency, 31

repeated-measures designs, 220

residuals, 156

resistant measure of location, see measure of

location

Rom’s method, 249

sample, defined, 5

sample mean, see mean

sample space, 47

sample variance, see variance

sampling distribution:

and binomial, 79

and sample mean, 80

and sample median, 92

SAS software, 7

sign test, 280

signed rank test, see Wilcoxon signed rank test

significance level, see p-value

significant, 137

simulation study, 123

skewed to the left, 36

skewed to the right, 36

skewness and the mean, 73

S-PLUS software, 7

Spearman’s rho, 285

SPSS, 8

standard deviation, 20

standard error:

of mean, 81

of median, 93

standard normal, 65

standard deviation:

population, 51

sample, 20

statistics, defined, 3

statistics, descriptive, 9

Stem-and-leaf, 41

Student’s t:

and non-normality, 121, 126

comparing means, 185

defined, 109

Sturges rule, 36

summation notation, 10

Theil-Sen estimator, 155

three-decision rule, 144

tied values and median, 149

transformations, 74

trimmed mean, 25, 97, 127, 150, 205

Tukey’s three-decision rule, see three-decision

rule

Tukey-Kramer method, 235

Tukey-Mclaughlin method, 150

two-way design:

and multiple comparisons, 243

general, 223

type I error:

and power, 139–140

defined, 133

type II error:

and type I error, 139

defined, 137

unbiased estimator, 82, 102

variance:

and heavy tails, 72

comparing two variances, 196

population, 51

sample, 20, 31

Winsorized, 28

Welch’s test, 190–193, 218–219, 243–244

whiskers, 42
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Winsorized mean, see mean

Winsorizing, 27

whiskers, 42

Wilcoxon-Mann-Whitney test,

271

and median, 274

Wilcoxon signed rank test, 282

Winsorized variance, see variance

within-subjects designs, 220

Yuen’s test, 205–206

Z score, 68

zumastat, 8




